

OFICINA ESPAÑOLA DE PATENTES Y MARCAS

ESPAÑA

11) Número de publicación: 2 671 044

51 Int. CI.:

F03D 1/06 (2006.01)

(12)

TRADUCCIÓN DE PATENTE EUROPEA

T3

86 Fecha de presentación y número de la solicitud internacional: 28.05.2013 PCT/EP2013/060988

(87) Fecha y número de publicación internacional: 05.12.2013 WO13178639

(96) Fecha de presentación y número de la solicitud europea: 28.05.2013 E 13726493 (3)

(97) Fecha y número de publicación de la concesión europea: 04.04.2018 EP 2855925

(54) Título: Conjunto de pala para rotor de turbina eólica

(30) Prioridad:

30.05.2012 EP 12170113

(45) Fecha de publicación y mención en BOPI de la traducción de la patente: **04.06.2018**

(73) Titular/es:

YOUWINENERGY GMBH (100.0%) Rudolf-Diesel-Str. 9 26135 Oldenburg, DE

(72) Inventor/es:

ROHDEN, ROLF

(74) Agente/Representante:

LEHMANN NOVO, María Isabel

DESCRIPCIÓN

Conjunto de pala para rotor de turbina eólica

El presente asunto se refiere a un conjunto de pala para un rotor de turbina eólica y a un método para ensamblar una pala para un rotor de turbina eólica.

En una turbina eólica comúnmente conocida, se montan una pluralidad de palas en un cubo. El cubo está conectado a un sistema generador. El sistema generador genera electricidad basándose en la energía de rotación causada por la energía eólica ejercida sobre las palas. En instalaciones de turbinas eólicas comúnmente conocidas, el cubo está montado giratoriamente estando el eje alineado de manera sustancialmente horizontal; dicha instalación es denominada como una turbina eólica de eje horizontal.

10 ANTECEDENTES

15

20

En los últimos años, la longitud de las palas de turbina eólica ha aumentado para proporcionar instalaciones de turbinas eólicas con una salida de tanto como 1 MW (el) o más en una sola turbina. Consecuentemente, se han introducido restricciones específicas relativas al transporte de elementos de tales instalaciones de turbinas eólicas. Sin embargo, grandes instalaciones de turbinas eólicas proporcionan una salida incrementada y una eficiencia mejorada, y además de otras, varias mejoras económicas.

Los sistemas convencionales de rotor están configurados con palas de una sola pieza que son montadas en el cubo en la zona de construcción de la instalación de turbinas eólicas. Debido al hecho de que las instalaciones de turbinas eólicas a gran escala son frecuentemente establecidas en lugares alejados, las restricciones con respecto al transporte de palas que tienen una longitud de 50 m o más introducen una limitación de la salida de potencia de la turbina eólica individual y consecuentemente disminuye la eficiencia económica y energética.

Las palas convencionales de grandes turbinas eólicas comprenden dos o más secciones de pala de modo que permitan de manera conveniente el transporte a la zona de construcción de la instalación de turbinas eólicas. Las secciones de pala son ensambladas para formar la pala completa en la zona de construcción y la pala completa es montada en el cubo de la turbina eólica para completar el rotor.

25 Un conjunto de pala relacionado para un rotor de turbina eólica está descrito en el documento US 2007/253824 A1.

RESUMEN

Los inconvenientes con el sistema convencional de rotor son superados por el objeto de las reivindicaciones independientes. Realizaciones ventajosas son el objeto de la reivindicación dependiente.

El presente asunto se refiere a un conjunto de pala para un rotor de turbina eólica que permite una posibilidad de montaje mejorada para formar una pala y que proporciona una resistencia mecánica y seguridad operativa incrementadas del conjunto de pala ensamblado.

Además, el presente asunto se refiere a un método mejorado para fabricar una pala para un rotor de turbina eólica cuyo método está simplificado y proporciona una resistencia mecánica y seguridad operativa incrementadas de la pala ensamblada.

De acuerdo con el concepto básico del objeto, se ha proporcionado un conjunto de pala para un rotor de turbina eólica, comprendiendo el conjunto de pala al menos dos secciones de pala que pueden ser unidas longitudinalmente en partes de extremidad de unión respectivas para formar una pala, teniendo una de dichas secciones de pala al menos una cavidad en su parte de extremidad de unión y teniendo la otra de dichas secciones de pala al menos una protuberancia en su parte de extremidad de unión, en donde dicha cavidad puede ser contraída a una posición contraída en una dirección que es sustancialmente perpendicular a una dirección longitudinal de la pala.

El concepto que subyace en esta disposición proporciona varios efectos ventajosos. Es decir, la cavidad que se puede contraer permite la introducción suave de la protuberancia en la cavidad cuando está en la posición no contraída, y la posición contraída forma una fuerte unión entre la protuberancia y la pared interior de la cavidad. Consecuentemente, la cavidad de acuerdo con el tema actual es una cavidad que se puede colapsar.

De acuerdo con una realización del actual tema, una sección transversal de dicha cavidad es menor en dicha posición contraída que en una posición expandida que es también definida como posición no contraída. La relación de la sección transversal en las posiciones contraída y no contraída proporciona la unión ventajosa cuando la introducción suave y sin forzar es posible mientras puede conseguirse el estrecho contacto entre las superficies de acoplamiento. La forma o configuración exterior de la sección de pala en la posición no contraída de acuerdo con el tema actual es preferiblemente mayor que en la posición contraída. Es decir, cuando la sección de pala que tiene la cavidad está en la posición contraída, la forma exterior de esta sección de pala corresponde a la forma objetivo de la pala en la transición de las secciones de pala. En otras palabras, en la transición de las secciones de pala, las formas o contornos exteriores de las secciones de pala coinciden en la posición contraída de la cavidad es decir, sin crear un escalón entre las secciones de

pala, mientras en la transición entre las secciones de pala, la forma o contorno exterior de la sección de pala que tiene dicha cavidad es mayor en la posición no contraída o expandida que la forma o contorno exterior de la sección de pala que no tiene cavidad.

De acuerdo con una realización del presente asunto, un material de dicha sección de pala que tiene dicha cavidad es deformable al menos en dicha parte de extremidad de unión. De acuerdo con este concepto, la capacidad de contracción de la cavidad es conseguida por propiedades específicas relativas al material. Tales propiedades pueden relacionarse con el uso de partes de espuma en secciones que han de ser provistas de la flexibilidad o elasticidad requeridas. Además, el diseño de las fibras, es decir, el patrón de las fibras en tales secciones.

5

15

45

50

Además del concepto básico del objeto, se forma al menos una interrupción de un material que se extiende desde una superficie interior de al menos dicha cavidad a una superficie exterior de dicha sección de pala que tiene al menos dicha cavidad. De acuerdo con este concepto, la capacidad de contracción de la cavidad es conseguida por propiedades específicas relativas a la forma o configuración de las secciones de pala.

Propiedades relativas al material o propiedades relativas a la forma o configuración de las secciones de pala son citadas. Sin embargo, está dentro del alcance del presente asunto combinar las propiedades relativas al material con las propiedades relativas a la forma o configuración de las secciones de pala.

La previsión de al menos una interrupción de material que es formada extendiéndose desde una superficie interior de dicha cavidad a una superficie exterior de dicha sección de pala que tiene dicha cavidad proporciona una operación de unión mejorada para insertar la protuberancia en la cavidad cuando la cavidad puede extenderse y contraerse debido al menos a dicha interrupción de material.

- Además, al menos dicha interrupción de material se extiende desde una extremidad de dicha sección de pala en su parte de extremidad de unión en la dirección longitudinal de dicha sección de pala. La previsión de al menos una interrupción de material que se extiende desde una extremidad de dicha sección de pala en su parte de extremidad de unión en la dirección longitudinal de dicha sección de pala proporciona una propiedad mejorada de la sección de pala que tiene la cavidad para contraer o expandir la cavidad para insertar y unir la protuberancia de la otra sección de pala.
- De acuerdo con una realización del presente asunto, al menos dicha interrupción de material es formada como al menos una hendidura. Al menos la hendidura de acuerdo con la realización del presente asunto es fácil de formar en el material que forma la sección de pala que tiene la cavidad y puede tener dimensiones predeterminadas para permitir una capacidad de contracción o de expansión apropiada de una cavidad. La hendidura puede ser formada mediante corte o en el curso del moldeo de la sección de pala.
- La interrupción de material puede ser realizada como al menos una hendidura como se ha indicado anteriormente. Como alternativa, la interrupción de material puede ser formada como una hendidura no lineal tal como un corte en zigzag o como un corte en forma de meandro en la sección de pala que tiene dicha cavidad con respecto a la dirección longitudinal de la sección de pala. Es posible formar la interrupción de material mediante una agrupación de agujeros, en donde los agujeros se extienden desde la sección de pala que tiene la cavidad. Los agujeros pueden ser agujeros circulares. Alternativamente, los agujeros pueden tener una forma elíptica que permite su contracción y, así, la contracción de la cavidad. Es incluso posible disponer solamente un único agujero en la sección de pala. Como alternativa adicional, la interrupción de material puede ser formada como al menos una hendidura parcial, que se extiende desde la superficie interior de la cavidad hacia la periferia exterior de la sección de pala que tiene la cavidad, en donde la hendidura termina antes de alcanzar la superficie exterior de la cavidad. Las formas anteriores de la interrupción de material pueden ser combinadas apropiadamente.

De acuerdo con una realización del presente asunto, la cavidad es expandible a una posición expandida estando al menos dicha hendidura abierta y puede ser contraída a una posición contraída estando al menos dicha hendidura cerrada. Como se ha indicado anteriormente, las dimensiones de al menos una hendidura pueden ser predefinidas para proporcionar la sección de pala, es decir, la parte de extremidad de unión de las mismas, con las propiedades requeridas para insertar fácilmente la protuberancia en la cavidad y para llevar la cavidad a una posición contraída para unir la protuberancia de una de dichas secciones de pala a dicha cavidad de la otra de dichas secciones de pala.

De acuerdo con una realización del presente asunto, las formas en sección transversal de dicha protuberancia y de dicha cavidad no son circulares. Prever las formas en sección transversal de la cavidad y de la protuberancia como formas en sección transversal no circulares proporciona un bloqueo e impide así una rotación o inclinación de una sección de pala con respecto a la otra en la operación de unión o después de que se haya completado el ensamblaje.

De acuerdo con una realización, hay previstos medios de aplicación interiores en una superficie interior de dicha cavidad y hay previstos medios de aplicación exteriores en una superficie exterior de dicha protuberancia, en donde dichos medios de aplicación interiores y dichos medios de aplicación exteriores son bloqueados entre si cuando dicha cavidad está en una posición contraída.

De acuerdo con esta realización, se permite un estado bloqueado específico previendo tales medios de aplicación en la superficie interior de dicha cavidad y en la superficie exterior de dicha protuberancia. Los medios de aplicación están

dispuestos de tal modo que se crea una aplicación entre los medios de aplicación interiores y los medios de aplicación exteriores para impedir que el movimiento relativo de las secciones de pala después del ensamblaje para formar una pala completa sea completado. Los medios de aplicación pueden comprender elementos individuales o múltiples, tales como elementos sobresalientes y/o rebajes sobre la superficie exterior de la protuberancia y/o la superficie interior de la cavidad.

5

35

50

55

De acuerdo con una realización del presente asunto, la protuberancia es insertable en la cavidad cuando la cavidad está en una posición expandida mientras que la protuberancia, cuando es insertada en la cavidad es bloqueada en la cavidad cuando dicha cavidad está en la posición contraída.

- Proporcionar la parte de extremidad de unión que tiene la cavidad con una propiedad específica de permitir una expansión o contracción de la cavidad proporciona la ventaja específica de que los medios de aplicación sobre la superficie exterior de la protuberancia y la superficie interior de la cavidad pueden ser llevados a aplicación eficiente posicionando la cavidad en la posición contraída. Es una ventaja específica que, de acuerdo con esta realización, pueda habilitarse un estado bloqueado entre las secciones de pala, mientras es posible una inserción fácil de la protuberancia en la cavidad en el curso de unión de las secciones de pala.
- De acuerdo con una realización del presente sujeto, dichos medios de aplicación interiores y exteriores están formados como dentados interiores en la superficie interior de dicha cavidad y dentados exteriores en la superficie exterior de dicha protuberancia, cuyos dentados están orientados sustancialmente de forma perpendicular a la dirección longitudinal de las respectivas secciones de pala. Los dentados pueden ser formados fácilmente sobre la superficie exterior de la protuberancia o la superficie interior de la cavidad y pueden soportar una elevada carga en particular en la dirección longitudinal de la pala lo que es importante para una seguridad operativa de la turbina eólica que tiene tal pala cuando gira. De acuerdo con una realización del actual tema, dichos dentados interiores y dichos dentados exteriores están dispuestos para proporcionar una aplicación de bloqueo de dicha protuberancia y dicha cavidad cuando dicha cavidad está en la posición contraída.
- De acuerdo con esta realización, la aplicación de bloqueo es conseguida llevando la cavidad a la posición contraída.

 Cuando la cavidad está en la posición contraída en la pala que está formada por el conjunto de pala de acuerdo con el tema actual, se proporciona una seguridad operativa mejorada mediante una aplicación de bloqueo entre la protuberancia y la cavidad debido a la resistencia mecánica inherente de tal disposición.
- No es esencial que los dentados estén orientados sustancialmente de forma perpendicular a la dirección longitudinal de las respectivas secciones de pala. Los dentados pueden estar inclinados mientras se consiga una aplicación de bloqueo y una fuerza en la dirección longitudinal de la pala pueda ser transmitida entre las secciones de pala cuando están ensambladas.
 - De acuerdo con una realización del presente asunto, hay previstas dos hendiduras en dicha parte de extremidad de unión de dicha sección del pala que tiene dicha cavidad, en donde dichas dos hendiduras están previstas en lados opuestos de dicha cavidad. Prever dos hendiduras en la parte de extremidad de unión proporciona una estructura de unión que simplifica además la operación de unión ya que la operación de llevar la cavidad desde la posición expandida a la posición contraída puede ser conseguida más fácilmente y con una precisión más elevada. Además, el material de la sección de pala que tiene la cavidad es menos afectado llevando la cavidad desde la posición expandida a la posición contraída.
- De acuerdo con una realización del presente asunto, al menos se ha formado un trayecto de flujo predeterminado en un límite entre la superficie exterior de dicha protuberancia y la superficie interior de dicha cavidad cuando dicha protuberancia es insertada en dicha cavidad y dicha cavidad está en la posición contraída.
 - De acuerdo con una realización del presente asunto, se forma una pluralidad de trayectos de flujo que son paralelos y/o conectados respectivamente entre sí.
 - De acuerdo con una realización del presente asunto, dicho trayecto de flujo tiene forma de zigzag o de meandro.
- De acuerdo con una realización del presente asunto, dicho trayecto de flujo tiene una entrada para introducir resina, en particular resina termoendurecible, para que fluya a lo largo de dicho trayecto del flujo y una salida para descargar la resina drenada como rebose.
 - El concepto anterior que incluye al menos un trayecto de flujo predeterminado que es formado en el límite entre la superficie exterior de la protuberancia y la superficie interior de la cavidad puede ser empleado para mejorar adicionalmente la resistencia mecánica y la seguridad operativa del conjunto de pala cuando está ensamblado. En particular, es posible introducir resina en el trayecto de flujo que está dispuesto en posiciones predeterminadas con una forma predeterminada, tal como formas de zigzag o de meandro, para proporcionar una unión óptima entre las secciones de pala, en particular, entre la superficie exterior de la protuberancia y la superficie interior de la cavidad. El trayecto de flujo puede también ser extendido a áreas adicionales de la región límite de las secciones de pala, tales como la superficie de extremidad de la protuberancia y la superficie inferior de la cavidad y/o las superficies dirigidas axialmente en los extremos de las secciones respectivas de pala que pueden ser llevadas a contacto uniendo dichas secciones de

pala.

5

10

15

20

25

30

35

40

50

Prever una salida para descargar la resina de drenaje como rebose tiene la ventaja de que el procedimiento de llenar el trayecto de flujo con resina puede ser vigilado o confirmado mediante vigilancia del rebose de resina procedente de la salida. Debido al hecho de que el trayecto de flujo puede ser formado como un único conducto entre la entrada y la salida, el llenado completo del trayecto de flujo puede ser confirmado vigilando el rebose de resina procedente de la salida. Sin embargo, es posible proporcionar una pluralidad de trayectos de flujo que son paralelos o que pueden ser formados como trayectos ramificados que tienen más de una entrada o salida.

De acuerdo con una realización del presente asunto, el conjunto de pala puede ser unido para formar una pala insertando dicha protuberancia en dicha cavidad estando dicha cavidad en una posición expandida, contrayendo dicha cavidad cerrando al menos dicha hendidura e introduciendo resina en dicha entrada con una cantidad que llena dicho trayecto del flujo y curando, preferiblemente termo-endureciendo, dicha resina.

El concepto anterior proporciona una pala que está formada por un conjunto de pala que comprende al menos dos secciones de pala que no requieren una operación de presión axial o longitudinal para presionar la protuberancia a la cavidad para formar una unión fija entre al menos las dos secciones de pala. En su lugar, la protuberancia de una de las secciones de pala puede ser introducida fácilmente en la cavidad en la otra de las secciones de pala sin que se ejerza una elevada presión longitudinal, mientras al mismo tiempo se consigue una unión rígida y fuerte entre las dos secciones de pala llevando la cavidad a la posición contraída llevando por ello la forma de la superficie interior de la cavidad a la forma de la superficie exterior de la protuberancia. Introducir resina en la entrada con una cantidad que llena dicho trayecto de flujo y curar la resina proporciona una unión permanente entre las secciones de pala además de la aplicación óptima entre los medios de aplicación previstos sobre la superficie exterior de la protuberancia y la superficie interior de la cavidad.

De acuerdo con una realización del presente asunto, además de dicha cavidad, hay previstas una o más cavidades adicionales en la misma parte de extremidad de unión, y además de dicha protuberancia, hay previstas una o más protuberancias adicionales en la misma parte de extremidad de unión, en donde el número de cavidades corresponde al número de protuberancias. Las protuberancias y cavidades están separadas y pueden impedir una inclinación o rotación de las secciones de pala respectivamente entre sí cuando son unidas.

De acuerdo con una realización del presente asunto, la cavidad y la protuberancia pueden tener una forma elíptica.

Un método para ensamblar una pala para un rotor de turbina eólica a partir de al menos el conjunto indicado anteriormente comprende las siguientes operaciones:

- mantener dicha cavidad en una posición expandida;
- insertar longitudinalmente dicha protuberancia en dicha cavidad;
- llevar dicha cavidad a una posición contraída; y
- aplicar una operación de mantener dicha cavidad en la posición contraída.

El método anterior es aplicable preferiblemente al conjunto de pala descrito anteriormente y proporciona ventajas y efectos similares como el conjunto de pala.

De acuerdo con una realización del presente asunto, la operación de llevar dicha cavidad a una posición contraída comprende presionar dicha superficie exterior de dicha sección de pala que tiene dicha cavidad.

De acuerdo con esta realización, la cavidad está en la posición expandida mientras no se ejerza fuerza o presión sobre la superficie exterior de la sección de pala que tiene la cavidad, mientras que la cavidad puede ser llevada a la posición contraída ejerciendo una fuerza o presión sobre la superficie exterior de la sección de pala que tiene dicha cavidad. Es decir, la sección de pala que tiene la cavidad estará disponible en la zona de construcción estando dicha cavidad en la posición expandida de tal modo que la protuberancia de la otra sección de pala pueda ser insertada fácilmente en la cavidad. Después de eso, la superficie exterior de la sección de pala que tiene la cavidad es presionada de tal modo que la cavidad es llevada a la posición contraída.

De acuerdo con una realización del presente asunto, la operación de mantener dicha cavidad en la posición contraída comprende aplicar resina suministrando o presionando dicha resina a un área entre dicha protuberancia y dicha cavidad y/o a un área de dicha interrupción del material.

Debido al hecho de que el material para fabricar palas y las actuales secciones de pala puede ser configurado de tal modo que exhiba una elasticidad específica, la posición contraída de la cavidad debe ser mantenida incluso después de liberar la presión sobre la superficie exterior de la sección de pala que tiene la cavidad. Esto se consigue suministrando o presionando resina al menos a un área entre la protuberancia y dicha cavidad y/o a un área de dicha interrupción de material tal como al menos dicha hendidura. La resina puede ser curada y conseguirse una unión por adherencia para mantener la posición contraída de la cavidad. En particular, esta posición contraída es un estado permanente después de

curar la resina. Además, la resina crea una unión rígida y fuerte entre las secciones de pala después del curado.

De acuerdo con una realización del presente asunto, el método comprende además una operación de vigilar parámetros mientras se presiona dicha resina, incluyendo dichos parámetros una cantidad de resina aplicada, una temperatura de dicha resina en forma y una presión de dicha resina.

- Vigilar los parámetros específicos optimiza el procedimiento de unión y proporciona una seguridad mejorada debido al conocimiento específico del único procedimiento de unir las secciones de pala entre sí. Además, los parámetros que son vigilados pueden ser controlados a valores óptimos que aumentan la resistencia mecánica y la calidad de la unión de las secciones de pala.
- De acuerdo con una realización del presente asunto, el método comprende además vigilar un rebose de dicha resina y controlar la cantidad de resina aplicada y/o confirmar una cantidad suficiente de resina aplicada basándose en la cantidad de rebose vigilada.

De acuerdo con esta realización, una cantidad de resina vigilada es suministrada al área entre dicha protuberancia y dicha cavidad y el llenado completo del área, tal como el trayecto de flujo puede ser confirmado por la cantidad vigilada del rebose que es evaluada basándose en la cantidad de resina aplicada o suministrada. Además, está realización proporciona la opción de revelar operaciones inapropiadas, por ejemplo, debido a una fuga de resina indeseada desde ubicaciones dañadas de las secciones de pala.

De acuerdo con una realización del presente asunto, el método comprende una operación de curar dicha resina y unir por ello al menos dichas dos opciones de pala entre sí.

De acuerdo con una realización del presente asunto, la operación de curar dicha resina incluye termo-endurecer dicha resina aplicando calor a dicha resina. La resina mejora la unión entre las secciones de pala. Utilizar una resina termoendurecible aumenta además la resistencia mecánica de la unión de las secciones de pala.

De acuerdo con una realización del presente asunto, se ha proporcionado una pala que es ensamblada mediante un conjunto de pala no se ha indicado anteriormente o ensamblada por un método como se ha indicado anteriormente. Además, esta pala puede ser utilizada para formar un rotor de turbina eólica que puede, a su vez ser empleado para instalaciones de turbina eólica.

BREVE DESCRIPCIÓN DE LOS DIBUJOS

15

25

35

La fig. 1 muestra una pala formada por un conjunto de pala de acuerdo con una primera realización de la invención.

La fig. 2 muestra las partes de extremidad de unión de las secciones de pala antes de unir de acuerdo con la primera realización de la invención.

La fig. 3 muestra las partes de extremidad de unión de las secciones de pala antes de unir de acuerdo con una segunda realización de la invención.

Las figs. 4a-4d muestran distintas vistas de las partes de extremidad de unión de las secciones de pala antes de unir de acuerdo con una tercera realización de la invención.

Las figs. 5a-5d muestran distintas vistas de las partes de extremidad de unión de las secciones de pala antes de unir de acuerdo con una cuarta realización de la invención.

Las figs. 6a-6e muestran distintas vistas de las partes de extremidad de unión de las secciones de pala antes de unir de acuerdo con una quinta realización de la invención.

La fig. 7 muestra las partes de extremidad de unión de secciones de pala relacionadas antes de unir de acuerdo con una sexta realización útil para comprender la invención.

40 DESCRIPCIÓN DE LAS REALIZACIONES

A continuación, se han explicado realizaciones del presente asunto basadas en los dibujos. Ha de observarse que los dibujos muestran realizaciones específicas como se ha explicado a continuación y otras modificaciones alternativas como se ha especificado en la descripción están al menos no ilustradas en la mitad.

Particularmente, la primera a quinta realizaciones descritas en este documento a continuación son cubiertas por la invención actualmente reivindicada. La sexta realización se refiere a un ejemplo útil para comprender la invención.

PRIMERA REALIZACIÓN

La fig. 1 muestra la pala para un rotor de turbina eólica del presente asunto en un estado ensamblado. Como puede verse en la fig. 1 la pala está formada por dos secciones 1, 2 de pala, en donde una sección 1 de pala esta formada como la sección 1 de raíz de pala que ha de ser montada en el cubo del motor de la turbina eólica (no mostrado) y otra

sección 2 de pala es directamente montada en la sección 1 de raíz de pala como la sección 2 de punta de pala. La sección 2 de punta de pala forma una parte notable de la pala completa como puede deducirse a partir del dibujo. Sin embargo, es posible formar la sección 2 de punta de pala en cualquier proporción con respecto a la pala completa en tanto en cuanto el concepto del presente asunto se consiga.

La apariencia exterior de la pala ensamblada mostrada en la fig. 1 no difiere de las palas que han de ser montadas en un cubo de rotor de turbina eólica de acuerdo con la técnica anterior, mientras que la estructura para unir las secciones 1, 2 de pala entre sí forma el concepto básico del presente asunto.

La fig. 2 muestra las secciones de unión de las secciones de pala de acuerdo con el presente asunto.

Como puede deducirse a partir de la fig. 2, la sección 1 de raíz de pala comprende una parte 10 de extremidad de unión en la extremidad de la sección 1 de raíz de pala opuesta a una parte de la misma que ha de ser montada en la pala. Además, la sección 2 de punta de pala comprende una parte 20 de extremidad de unión que está dispuesta en una extremidad de la sección 2 de punta de pala que está opuesta a una extremidad de punta de la sección 2 de punta de pala cuya sección de extremidad de punta forma una punta de la pala cuando está ensamblada.

A continuación, se ha explicado la disposición específica de las partes 10, 20 de extremidad de unión de acuerdo con la primera realización mostrada en la fig. 2. En primer lugar, se ha explicado la parte 20 de extremidad de unión de la sección 2 de punta de pala. La sección 2 de punta de pala comprende una protuberancia 21 que está prevista en la extremidad de la sección 2 de punta de pala. Esta protuberancia 21 sobresale desde una parte de la sección 2 de punta de pala y está formada con una apariencia en sección transversal que es menor que la apariencia en sección transversal exterior de la sección 2 de punta de pala en la parte 20 de extremidad de unión. La protuberancia 21 está formada con una forma en sección transversal no circular, es decir, con una forma aproximadamente rectangular, siendo dos lados opuestos de la protuberancia 21 ligeramente convexos. La protuberancia 21 comprende una superficie exterior 23. En la presente realización, la forma en sección transversal de la protuberancia 21 es básicamente constante o sin cambios a lo largo de la dirección longitudinal de la protuberancia 21 cuya dirección longitudinal corresponde aproximadamente a la dirección longitudinal de la sección 2 de punta de pala o de la pala cuando está ensamblada.

La parte 10 de extremidad de unión de la sección 1 de raíz de pala está formada con una cavidad 11 que se extiende en la dirección longitudinal de la sección 1 de raíz de pala cuya dirección longitudinal corresponde aproximadamente a la dirección longitudinal de la sección 1 de raíz de pala o a la pala en el estado ensamblado. La cavidad 11 tiene una sección transversal no circular larga y se extiende al interior de la sección 1 de raíz de pala en la dirección longitudinal con una profundidad que es al menos correspondiente a la longitud de la protuberancia 21 formada en la parte 20 de extremidad de unión de la sección 2 de punta de pala.

35

40

50

55

En la presente realización, la parte 10 de extremidad de unión de la sección 1 de raíz de pala esta provista con dos hendiduras 12a, 12b que están formadas como una forma de interrupción de material como puede deducirse a partir de la fig. 2. Las hendiduras 12a, 12b se extienden desde la cavidad 11 al exterior de la sección 1 de raíz de pala. En la presente realización, las hendiduras 12a, 12b se extienden no solamente desde el interior de la cavidad 11 al exterior de la sección 1 de raíz de pala sino también en la dirección longitudinal desde la extremidad de la sección 1 de raíz de pala hacia la extremidad opuesta con respecto a la parte 10 de extremidad de unión. Además, la relación entre las hendiduras 12a y 12b es tal que la dirección de extensión desde el interior de la cavidad 11 al exterior de la sección 1 de raíz de pala está alineada, en particular, forma una línea recta desde un lado de la sección 1 de raíz de pala al otro lado de la misma con respecto a una dirección que es perpendicular a la dirección longitudinal de la sección 1 de raíz de pala o de la pala en un estado ensamblado. Además, ambas hendiduras 12a, 12b se extienden en la misma dirección, es decir en la dirección longitudinal de la sección 1 de raíz de pala a una posición predeterminada. En la presente realización, las hendiduras 12a, 12b se extienden al menos con la misma longitud en la dirección longitudinal de la sección 1 de raíz de pala que la cavidad 11. Preferiblemente, las hendiduras 12a, 12b se extienden más allá de la parte inferior de la cavidad 11.

Como puede verse en la fig. 2, las hendiduras 12a, 12b están abiertas para separar las hendiduras 12a, 12b de tal modo que se forman espacios por las hendiduras 12a, 12b. La posición mostrada en la fig. 2 es denominada como una posición expandida de la cavidad 11. Es decir, la sección transversal de la cavidad 11 está expandida y la propia cavidad 11 está ligeramente abierta, es decir, agrandada.

La posición mostrada en la fig. 2 que es la posición expandida de la cavidad 11 está presente cuando no se ejercen cargas externas sobre la parte 10 de extremidad de unión de la sección 1 de raíz de pala.

Como el material que es utilizado para formar las secciones 1, 2 de pala es elástico en una magnitud predeterminada, los espacios formados por las hendiduras 12a, 12b pueden ser cerrados presionando la parte 10 de extremidad de unión de la sección 1 de raíz de pala en una dirección que es perpendicular a la extensión longitudinal de las hendiduras 12a, 12b y perpendicular a la extensión de las hendiduras 12a, 12b desde el interior de la cavidad 11 al exterior de la sección 1 de raíz de pala. Presionando la parte 10 de extremidad de unión de la sección 1 de raíz de pala, la cavidad 11 es llevada desde una posición expandida mostrada en la fig. 2 a una posición contraída en la que las hendiduras 12a, 12b están cerradas.

En la presente realización, la forma en sección transversal de la cavidad 11 corresponde sustancialmente a la forma en sección transversal de la protuberancia 21 cuando la cavidad 11 está en la posición contraída que es conseguida cerrando las hendiduras 12a, 12b como se ha indicado antes. A continuación, se ha explicado un procedimiento para unir la sección 2 de punta de pala a la sección 1 de raíz de pala. Como se ha indicado antes, la cavidad 11 está en la posición expandida cuando no se aplica fuerza externa a la superficie exterior 14 de la parte 10 de extremidad de unión de la sección 1 de raíz de pala. Para unir la sección 2 de punta de pala a la sección 1 de raíz de pala, la cavidad 11 es mantenida en la posición expandida de tal modo que la forma en sección transversal de la cavidad 11 es mayor que la forma en sección transversal de la protuberancia 21.

- En este estado, la protuberancia 21 es insertada en la cavidad 11 que está en la posición expandida. Esta operación incluye alinear la sección 1 de raíz de pala incluye alinear la sección 1 de raíz de pala y la sección 2 del punta de pala con respecto a la dirección longitudinal de que tal modo que debido a la relación dimensional entre la cavidad 11 y la protuberancia 21, el proceso de insertar la protuberancia 21 en la cavidad 11 puede ser realizado sin presionar las secciones 1, 2 de pala entre sí en la dirección longitudinal de las secciones 1, 2 de pala. En vez de ello, la protuberancia 21 puede ser insertada fácilmente en la cavidad 11.
- Con la protuberancia 21 insertada en la cavidad 11 que está en la posición expandida, la sección 1 de raíz de pala y la sección 2 de punta de pala están alineadas. En esta situación, la superficie exterior 14 de la parte 10 de extremidad de unión de la sección 1 de raíz de pala es presionada para cerrar los espacios que están formados por las hendiduras 12a, 12b. Cerrando los espacios que están formados por las hendiduras 12a, 12b, la cavidad 11 es llevada a la posición contraída como se ha descrito anteriormente. En la posición contraída de la cavidad 11, la forma en sección transversal de la cavidad 11 corresponde sustancialmente a la forma en sección transversal de la protuberancia 21 de tal modo que la superficie interior de la cavidad 11 es llevada a contacto con la superficie exterior 23 de la protuberancia 21.
 - La presión que es ejercida desde la superficie interior 13 de la cavidad 11 sobre la superficie exterior 23 de la protuberancia 21 es una fuerza de unión que crea una unión entre la sección 2 de punta de pala y la sección 1 de raíz de pala.
- En esta situación, es decir, mientras la superficie exterior 14 de la parte 10 de extremidad de unión de la sección 1 de raíz de pala es presionada para cerrar los espacios formados por las hendiduras 12a, 12b, la posición contraída de la cavidad 11 con la protuberancia insertada 21 es mantenida pegando la superficie interior 13 de la cavidad 11 a la superficie exterior de 23 de la protuberancia 21 y pegando las superficies que forman las hendiduras 12a, 12b entre sí de tal modo que se mantenga la posición contraída de la cavidad 11.
- 30 En la presente realización, el adhesivo, tal como resina, es aplicado a las superficies 13, 23 para ser pegadas antes de insertar la protuberancia 21 en la cavidad 11. Presionando la superficie exterior 14 de la parte 10 de extremidad de unión de la sección 1 de raíz de pala y manteniendo este estado durante un período de tiempo predeterminado que es suficiente para curar el adhesivo aplicado, el estado de la posición contraída de la cavidad 11 es mantenido y las secciones 1, 2 de pala son unidas permanentemente entre sí.
- De acuerdo con el concepto básico del presente asunto, la protuberancia 21 no es presionada con una fuerza notable al interior de la cavidad 11 para conseguir el contacto estrecho entre la superficie exterior 23 de la protuberancia 21 y la superficie interior 13 de la cavidad 11. En lugar de ello, el contacto estrecho entre la superficie exterior 23 de la protuberancia 21 y la superficie interior 13 de la cavidad 11 es conseguido presionando las superficies exteriores 14 de la sección 1 de raíz de pala en la parte 10 de extremidad de unión de la misma que es habilitada previendo las hendiduras 12a, 12b que se extienden desde el interior de la cavidad 11 al exterior de la sección 1 de pala en la presente realización. Debido al hecho de que la fuerza para insertar la protuberancia 21 en la cavidad 11 es muy pequeña en relación con la técnica anterior, el problema del desgaste y daños de la protuberancia 21 y de la cavidad 11 al ensamblar las secciones 1, 2 de la pala es superado.
- De acuerdo con la primera realización, la posición contraída de la cavidad 11 es conseguida pegando la superficie interior 13 de la cavidad 11 a la superficie exterior de 23 de la protuberancia 21 y pegando las superficies dentro de las hendiduras 12a, 12b que son llevadas a contacto llevando la cavidad 11 a la posición contraída. El pegado de acuerdo con la primera realización es conseguido aplicando adhesivo o resina a las superficies 13, 23 para que sean pegadas antes de insertar la protuberancia 21 en la cavidad 11.
- De acuerdo con una modificación del presente asunto, la resina o adhesivo es aplicado a las superficies 13, 23 que han de ser pegadas después de introducir la protuberancia 21 en la cavidad 11 y después de aplicar la presión a la superficie exterior de 23 de la parte 10 extremidad de unión de la sección 1 de raíz de pala para cerrar los espacios formados por las hendiduras 12a, 12b y llevar por ello la cavidad 11 a la posición contraída.

55

En la presente modificación, la disposición descrita anteriormente para la primera realización es completamente idéntica excepto en las siguientes diferencias. Aquellas superficies 13, 23 que son llevadas a contacto estrecho entre sí presionando la parte 10 de extremidad de unión de la sección 1 de raíz de pala son provistas con un trayecto del flujo que tiene una entrada y una salida. En particular, la superficie exterior 23 de la protuberancia 21 está provista de un rebaje que forma una parte del trayecto del flujo, mientras que la superficie interior 13 de la cavidad 11 está provista de

un rebaje que forma la otra parte del trayecto del flujo. La relación posicional entre el rebaje en la superficie exterior 23 de la protuberancia 21 y el rebaje formado en la superficie interior 13 de la cavidad 11 es tal que el trayecto del flujo está formado por los dos rebajes cuyo trayecto de flujo está dispuesto en la región límite entre la superficie exterior 23 de la protuberancia 21 y la superficie interior 13 de la cavidad 11 cuando la cavidad 11 está en la posición contraída.

5 Además, hay formada una entrada en el área de una de las hendiduras 12a, 12b de la misma manera en la que está conectada a una extremidad del trayecto del flujo formado cuando la protuberancia 21 es insertada en la cavidad 11. Además, hay prevista una salida en el área de una de las hendiduras 12a, 12b de la misma manera que se ha descrito antes y conectada a la otra extremidad del trayecto de flujo de tal modo que el adhesivo, tal como reina o similar puede ser introducido en la entrada, suministrado a lo largo del trayecto de flujo y descargado en la salida para confirmar que se 10 ha terminación el llenado en la parte de flujo. En resumen, de acuerdo con la presente modificación, la protuberancia 21 es insertada en la cavidad 11 y, como se ha descrito con respecto a la realización anterior, se ejerce una presión en la parte 10 de extremidad de unión de la sección 1 de raíz de pala para llevar la cavidad 11 a la posición contraída. Haciéndolo así, el trayecto de flujo es formado en el límite entre la superficie exterior 23 de la protuberancia 21 y la superficie interior 13 de la cavidad 11 así como en las superficies de las hendiduras 12a, 12b. El trayecto de flujo es llenado con adhesivo, tal como resina que se puede curar, y la posición contraída de la cavidad 11 es mantenida durante 15 un tiempo predeterminado. Este tiempo predeterminado está relacionado con el tiempo requerido para curar el adhesivo llenado en el travecto de flujo.

Después de curar el adhesivo o resina, la unión entre la sección 1 de raíz de pala y la sección 2 de punta de pala es hecha permanente.

20 SEGUNDA REALIZACIÓN

25

30

40

45

Una segunda realización es explicada basándose en la ilustración de la fig. 3.

La disposición de la segunda realización es básicamente la misma que la disposición de la primera realización mostrada en la fig. 2 excepto en las siguientes diferencias.

La superficie interior 13 de la cavidad 11 y la superficie exterior 23 de la protuberancia 21 están provistas con medios de aplicación 15, 25 como se ha explicado más adelante. La superficie interior 13 de la cavidad 11 está provista de medios interiores 15 de aplicación que están formados como dentados en la superficie interior 13 de la cavidad 11 como se ha mostrado en la fig. 3. La superficie exterior 23 de la protuberancia 21 está provista de medios exteriores 25 de aplicación que están formados como dentados en la presente realización. Los dentados en la superficie exterior 23 de la protuberancia 21 y los dentados formados en la superficie interior 13 de la cavidad 11 están formados de tal manera que se consigue una aplicación de bloqueo insertando la protuberancia 21 en la cavidad 11 y llevando la cavidad 11 a la posición contraída. Es decir, llevando la cavidad 11 a la posición contraída, como se ha descrito anteriormente, la superficie interior 13 de la cavidad 11 es llevada a contacto estrecho con la superficie exterior 23 de la protuberancia 21. Previendo dentados en estas superficies, se proporciona una aplicación de bloqueo cuando los dentados se aplican respectivamente entre si.

Los dentados pueden ser formados como ranuras y aletas acopladas en las superficies que se aplican entre si llevando la cavidad 11 a la posición contraída.

La ventaja específica de esta realización es explicada a continuación.

Como la cavidad 11 de acuerdo con el presente asunto exhibe una posición expandida y una posición contraída, es posible prever medios 15 de aplicación en la superficie interior 13 de la cavidad 11 y/o en la superficie exterior 23 de la protuberancia 21 ya que tales medios de aplicación 25 se desvían generalmente desde la superficie de los elementos que han de ser unidos. Es decir, los medios de aplicación 15, 25 formados en la superficie interior 13 de la cavidad 11 y en la superficie exterior 23 de la protuberancia 21 pueden ser formados como partes que sobresalen desde la superficie o como áreas que forman rebajes que pueden ser llevados a aplicación entre sí. Consecuentemente, proporcionar la cavidad 11 con la propiedad específica de estar expandida y ser contraída a la posición contraída permite la previsión de tal aplicación de bloqueo basada en elementos que se desvían desde las superficies 13, 23 que han de ser acopladas.

El siguiente procedimiento de unir la sección 2 de punta de pala a la sección 1 de raíz de pala de acuerdo con la segunda realización es el mismo que en la primera realización. Ha de observarse que la modificación de la primera realización con relación a la previsión de un trayecto del flujo es aplicable también a la segunda realización.

TERCERA REALIZACIÓN

Una tercera realización es explicada basándose en la ilustración de las figs. 4a-4d. La fig. 4a muestra una sección 2 de punta de pala que tiene una protuberancia adicional 21a que está prevista además de la protuberancia 21 de la primera realización. La fig. 4b muestra un detalle de la parte 20 de extremidad de unión de la sección 2 de punta de pala de acuerdo con la tercera realización, mientras que la fig. 4c muestra una vista tridimensional de la sección 2 de punta de pala de acuerdo con la tercera realización y la fig. 4d muestra una vista en sección transversal de la sección 2 de punta de pala de acuerdo con la tercera realización. En la realización, la sección 1 de raíz de pala correspondiente tiene dos

cavidades correspondientes a las protuberancias 21, 21a.

De acuerdo con esta realización, la resistencia mecánica de la unión es mejorada y puede impedirse la inclinación o rotación de las secciones 1, 2 de pala relativamente entre sí. En la realización ilustrada, las protuberancias pueden ser circulares. Sin embargo, cualquier otra forma está dentro del alcance.

5 CUARTA REALIZACIÓN

Se ha explicado una cuarta realización basándose en las ilustraciones de las figs. 5a-5d. La fig. 5a muestra una sección 2 de punta de pala en una vista superior que tiene protuberancias adicionales 21a y 21b que están previstas además de la protuberancia 21 de la primera realización. La fig. 5b muestra una vista lateral de la sección 2 de punta de pala mostrada en la fig. 5a. La fig. 5c muestra una vista tridimensional de la sección 2 de punta de pala de la fig. 5a, y la fig. 5d es una vista en sección transversal de la sección 2 de punta de pala de la fig. 5a. En la realización, la sección 1 de raíz de pala correspondiente tiene tres cavidades correspondientes a las protuberancias 21, 21a, 21b.

De acuerdo con esta realización la resistencia mecánica de la unión es mejorada y pueden impedirse la inclinación o rotación de las secciones 1, 2 de pala relativamente entre sí. En la realización ilustrada, las protuberancias 21, 21a, 21b pueden ser circulares. Sin embargo, cualquier otra forma está dentro del alcance

15 QUINTA REALIZACIÓN

10

20

40

45

Se ha explicado una quinta realización basándose en la ilustración de las figs. 6a-6e. La fig. 6a muestra una sección 2 de punta de pala en una vista superior que tiene una protuberancia 21 que es elíptica. La fig. 6b es una ilustración detallada de la sección 2 de punta de pala de la fig. 6a. La fig. 6c es una vista tridimensional de la sección 2 punta de pala de la fig. 6a. La fig. 6d es una vista lateral de la sección 2 de punta de pala de la fig. 6a y la fig. 6e es una vista lateral de la sección 2 de punta de pala de la fig. 6a. La cavidad 11 que no está mostrada en esta ilustración tiene la misma forma elíptica. Esta forma proporciona una unión fuerte y una utilización óptima del espacio en la aplicación específica a palas que son elementos que tienen un perfil plano debido a las propiedades aerodinámicas requeridas. Es decir, las áreas en sección transversal de la protuberancia 21 y de la cavidad 11 están adaptadas al perfil plano de las secciones 1, 2 de pala.

SEXTA REALIZACIÓN

Se ha explicado una sexta realización basándose en la ilustración de la fig. 7. En esta ilustración, la sección 1 de raíz de pala tiene una cavidad 11 que tiene una sección transversal alargada. La sección 2 de punta de pala tiene una protuberancia 21 que tiene una sección transversal de forma correspondiente en la posición contraída de la cavidad 11 como se ha explicado a continuación.

La diferencia principal de la presente realización y la primera a quinta realizaciones es el hecho de que en la presente realización, las hendiduras 12a, 12b o interrupciones de material no están previstas. La presente realización está dispuesta de tal modo que la parte 10 de extremidad de unión de la sección 1 de pala que tiene la cavidad 11 está formada por un material que permite una deformación en una cierta magnitud. Esta propiedad es empleada en esta realización para permitir la contracción de la cavidad 11 presionando la superficie exterior 14 de la sección 1 de raíz de pala en el área de la parte 10 de extremidad de unión sin la previsión de hendiduras 12a, 12b o interrupciones de material.

La forma de la cavidad 11 de acuerdo con esta realización es preferiblemente tal que se permite una contracción de la cavidad 11. Específicamente, la forma puede ser alargada con respecto a la sección transversal de la cavidad 11. Por ello, la cavidad 11 puede ser aplanada presionando la parte 10 de extremidad de unión de la sección 1 de raíz de pala en el área de las partes 10 de extremidad de unión, en particular, presionando hacia los lados largos de la cavidad alargada 11. Sin embargo, esto no es restrictivo y es posible presionar en lugares diferentes siempre que el área en sección transversal de la cavidad 11 sea disminuida mediante tal presión.

El procedimiento de unión explicado en las anteriores primera a quinta realizaciones puede ser aplicado completamente a esta disposición que no tiene hendiduras 12a, 12b o interrupciones de material. Además, la introducción de resina puede ser realizada de la misma manera que en las realizaciones previas excepto en que la entrada y la salida no están interrelacionadas con las hendiduras 12a, 12b. Por ello, en esta realización, hay previstas aberturas diseñadas en la parte 10 extremidad de unión de la sección 1 de raíz de pala para este propósito.

Los medios de aplicación interiores y exteriores 15, 25 que están previstos en la superficie exterior 23 de la protuberancia 21 y en la superficie interior 13 de la cavidad 11, respectivamente, pueden ser previstos de la misma manera que en las realizaciones previas.

La sexta realización permite la capacidad de contraerse de la cavidad 11 basándose en propiedades relativas al material de la sección 1 de pala. La forma de la cavidad 11 que es alargada en la realización proporciona una propiedad ventaiosa en cooperación con las propiedades relativas al material.

La anterior sexta realización puede ser combinada con los conceptos explicados para la primera a quinta realizaciones si

es aplicable.

15

MODIFICACIONES

A continuación, se han explicado modificaciones de las realizaciones.

La posición expandida de la cavidad está presente cuando no hay carga aplicada a la parte de extremidad de unión de la sección de pala que tiene la cavidad en las realizaciones anteriores. Sin embargo, es posible proporcionar un estado intermedio en el que la posición de la cavidad está en una posición intermedia cuando no hay carga aplicada y expandir la cavidad a la posición expandida introduciendo la protuberancia en la cavidad. Es posible disponer los medios de aplicación de tal modo que en el curso de la introducción de la protuberancia en la cavidad, los medios de aplicación sobre la protuberancia sean llevados a contacto con aquellos situados en la superficie interior de la cavidad. Por ello, puede conseguirse un efecto de entrinquetado de tal manera que se consiga un estado ensamblado previamente introduciendo la protuberancia en la cavidad lo que proporciona un ensamblaje preliminar que incluye secciones de palas unidas de modo que se pueden separar.

En el caso de esta realización, la cavidad puede estar formada de tal manera que en la posición no contraída la sección transversal de la cavidad es ligeramente mayor en la extremidad de la sección de pala que en la parte inferior o suelo de la cavidad. Es decir, la cavidad es ligeramente cónica con un ángulo de conicidad de aproximadamente 1° como ejemplo, como se ha mostrado en la fig. 7. En este caso, la protuberancia puede ser de forma cilíndrica, en particular con una forma en sección transversal constante, mientras que la superficie interior de la cavidad consigue una forma cilíndrica cuando está en la posición contraída que eventualmente coincide con la superficie exterior de la protuberancia.

Presionando este ensamblaje preliminar como se ha descrito anteriormente, las secciones de pala son unidas entre sí permanentemente.

Además, es posible proporcionar la sección de pala que tiene la cavidad en el estado contraído cuando no se ha aplicado carga. La cavidad puede ser abierta a la posición expandida ejerciendo una fuerza correspondiente. Después de esta acción, la protuberancia puede ser introducida en la cavidad y puede conseguirse la unión permanente como en las realizaciones previas.

Como se ha descrito anteriormente, la interrupción de material puede ser formada como al menos una hendidura como se ha mostrado en los dibujos. En una modificación, que no está mostrada en los dibujos, la interrupción de material puede ser formada como una hendidura no lineal tal como un corte en zigzag o como un corte en forma de meandro en la sección de pala que tiene dicha cavidad con respecto a la dirección longitudinal de la sección de pala. Es posible formar la interrupción de material mediante una agrupación de agujeros, que no está mostrada en los dibujos, en la que los agujeros se extienden desde la superficie interior de la cavidad a la superficie exterior de la sección de pala que tiene la cavidad. Los agujeros pueden ser agujeros circulares. Alternativamente, los agujeros pueden tener una forma elíptica que permita su contracción y, así, la contracción de la cavidad. Es incluso posible disponer sólo un único agujero en la sección de pala. Como otra alternativa, que no se ha mostrado en los dibujos, la interrupción de material puede ser formada como al menos una hendidura parcial, que se extiende desde la superficie interior de la cavidad hacia la periferia exterior de la sección de pala que tiene la cavidad, en donde la hendidura termina antes de alcanzar la superficie exterior de la cavidad. Las modificaciones anteriores pueden ser combinadas apropiadamente.

El número de hendiduras puede ser uno o dos. En particular, el número de hendiduras no está restringido siempre que se consiga el efecto anterior.

En una modificación, ambas secciones de pala incluye al menos una cavidad y al menos una protuberancia de tal modo que el conjunto comprende al menos dos protuberancias y al menos dos cavidades que son acopladas de manera correspondiente.

En otra modificación, las superficies de acoplamiento de las secciones de pala que son llevadas a contacto en la dirección longitudinal en el curso de la unión están formadas inclinadas con respecto a la dirección longitudinal como se ha mostrado esquemáticamente en la fig. 7.

En las realizaciones, el conjunto de pala es explicado como que tiene dos secciones de pala, es decir, una sección de raíz de pala y una sección de punta de pala. Esto es sólo un ejemplo. Las realizaciones pueden ser modificadas de tal manera que el conjunto de pala comprenda más de dos, por ejemplo tres secciones de pala. De acuerdo con el concepto del presente asunto, dos secciones de pala pueden ser unidas como se ha definido en la solicitud y en caso de que haya presentes más de dos secciones de pala en un conjunto de pala, este concepto es aplicable a tres o más secciones de pala presentes en el conjunto de pala.

Además, las realizaciones están explicadas en vista de una sección de raíz de pala y una sección de punta de pala. Esto no es restrictivo. En su lugar, la sección de raíz de pala y la sección de punta de pala pueden ser intercambiadas mientras el concepto del presente asunto es conseguido.

REIVINDICACIONES

1 Un conjunto de pala para un rotor de turbina eólica, comprendiendo el conjunto de pala al menos dos secciones (1, 2) de pala que pueden ser unidas longitudinalmente en partes (10, 20) de extremidad de unión respectivas para formar una pala, teniendo una (1) de dichas secciones de pala al menos una cavidad (11) en su parte (10) de extremidad de unión y teniendo la otra (2) de dichas secciones de pala al menos una protuberancia (21) en su parte (20) de extremidad de unión, en donde dicha cavidad (11) se puede contraer a una posición contraída en una dirección que es sustancialmente perpendicular a una dirección longitudinal de la pala.

5

10

15

25

30

en donde al menos una interrupción de un material es formada extendiéndose desde una superficie interior (13) de al menos dicha cavidad (11) a una superficie exterior (14) de dicha sección (1) de pala que tiene al menos dicha cavidad (11),

en donde al menos una interrupción de material se extiende desde una extremidad de dicha sección (1) de pala en su parte (10) de extremidad de unión en la dirección longitudinal de dicha sección (1) de pala.

- 2. El conjunto de pala según la reivindicación 1, en donde una sección transversal de dicha cavidad (11) es menor en dicha posición contraída que en una posición expandida, y/o en donde un material de dicha sección (1) de pala que tiene dicha cavidad (11) es deformable al menos en dicha parte (10) de extremidad de unión.
- 3. El conjunto de pala según la reivindicación 1, en donde al menos dicha interrupción de material está formada como al menos una hendidura (12a, 12b).
- 4. El conjunto de pala según una de las reivindicaciones precedentes, en donde dicha protuberancia (21) es insertable en dicha cavidad (11) para unir al menos dichas dos secciones (1, 2) de pala.
- 5. El conjunto de pala según la reivindicación 3 o 4, en donde dicha cavidad (11) es expandible a una posición expandida estando al menos dicha hendidura (12a, 12b) abierta, y puede ser contraída a una posición contraída estando al menos dicha hendidura (12a, 12b) cerrada.
 - 6. El conjunto de pala según la reivindicación 3, en donde una forma en sección transversal de dicha protuberancia (21) corresponde sustancialmente a una forma en sección transversal de dicha cavidad (11) cuando está en dicha posición contraída.
 - 7. El conjunto de pala según una de las reivindicaciones precedentes, en donde dichas formas en sección transversal de al menos dicha protuberancia (21) y de dicha cavidad (11) no son circulares.
 - 8. El conjunto de pala según una de las reivindicaciones precedentes, en donde dichos medios de aplicación interiores (IS) están previstos en la superficie interior (13) de dicha cavidad (11), y hay previstos medios de aplicación exteriores (25) en una superficie exterior (23) de dicha protuberancia (21), en donde dichos medios de aplicación interiores (IS) y dichos medios de aplicación exteriores (25) son bloqueados entre si cuando dicha cavidad (11) está en dicha posición contraída, y/o en donde dicha protuberancia (21) es insertable en dicha cavidad (11) cuando dicha cavidad (11) está en la posición expandida, mientras que dicha protuberancia (21), cuando está insertada en dicha cavidad (11) es bloqueada en dicha cavidad (11) cuando dicha cavidad (11) está en la posición contraída.
- 9. El conjunto de pala según la reivindicación 6, en donde dichos medios de aplicación interiores y exteriores (IS, 25) están formados como dentados interiores (IS) en la superficie interior (13) de dicha cavidad (11) y dentados exteriores (25) en la superficie exterior (23) de dicha protuberancia (21), en donde dichos dentados (IS, 25) están parcialmente orientados sustancialmente de forma perpendicular a la dirección longitudinal de las respectivas secciones (1, 2) de pala.
- El conjunto de pala según una de las reivindicaciones 8-9, en donde dichos dentados interiores (IS) y dichos
 dentados exteriores (25) están dispuestos para proporcionar una aplicación de bloqueo de dicha protuberancia (21) y dicha cavidad (11) cuando dicha cavidad (11) está en la posición contraída.
 - 11. El conjunto de pala según una de las reivindicaciones 3-10, en donde hay previstas dos hendiduras (12a, 12b) en dicha parte (10) de extremidad de unión de dicha sección (1) de pala que tiene dicha cavidad (11), en donde dichas dos hendiduras (12a, 12b) están previstas en lados opuestos de dicha cavidad (11).
- 45 12. El conjunto de pala según una de las reivindicaciones precedentes, en donde al menos un trayecto de flujo predeterminado es formado en un límite entre la superficie exterior (23) de dicha protuberancia (21) y la superficie interior (13) de dicha cavidad (11) cuando dicha protuberancia (21) está insertada en dicha cavidad (11) y dicha cavidad (11) está en la posición contraída, preferiblemente en donde al menos dicho trayecto de flujo tiene forma de zigzag o de meandro.
- 13. El conjunto de pala según la reivindicación 12, en donde al menos dicho trayecto de flujo tiene una entrada para introducir resina, en particular resina termoendurecible, para que fluya a lo largo de dicho trayecto de flujo y al menos una salida para descargar la resina drenada como rebose, y/o en donde hay prevista una pluralidad de trayectos de flujo que son paralelos y/o ramificados entre sí,

y/o en donde dicho conjunto de pala puede ser unido para formar una pala insertando dicha protuberancia (21) en dicha cavidad (11) estando dicha cavidad (11) en una posición expandida, contrayendo dicha cavidad (11) por la presión de dicha sección de pala e introduciendo resina en dicho trayecto del flujo, con una cantidad que llena dicho trayecto de flujo, y curando, preferiblemente termo-endureciendo, dicha resina.

- 5 14. El conjunto de pala según una de las reivindicaciones precedentes, en donde dicha cavidad (11) está en la posición expandida antes de unir al menos dichas dos secciones (1, 2) de pala y en donde dicha cavidad puede ser forzada a la posición contraída ejerciendo una presión predeterminada sobre una superficie exterior (14) de dicha sección (1) de pala que tiene dicha cavidad (11) y/o
- en donde además de dicha cavidad (11), hay previstas una o más cavidades adicionales (11a, 11b) en la misma parte de extremidad de unión, y en donde además de dicha protuberancia, hay previstas una o más protuberancias adicionales (21a, 21b) en la misma parte de extremidad de unión, en donde el número de cavidades corresponde al número de protuberancias y/o
 - en donde además de dicha cavidad (11), hay previstas una o más protuberancias adicionales en la misma parte de extremidad de unión, y en donde además de dicha protuberancia, hay previstas una o más cavidades en la misma parte de extremidad de unión, en donde el número de cavidades corresponde al número de protuberancias.
 - 15. Un método para ensamblar una pala para un productor de turbina eólica a partir de al menos el conjunto de acuerdo con una de las reivindicaciones 1-14, que comprende las siguientes operaciones:
 - mantener al menos dicha cavidad (11) en una posición expandida o no contraída;
 - insertar longitudinalmente al menos dicha protuberancia (21) en dicha cavidad (11);
 - llevar al menos dicha cavidad (11) a una posición contraída; y

15

20

- aplicar una operación de mantener al menos dicha cavidad (11) en la posición contraída.
- 16. El método según la reivindicación 15, en donde la operación de llevar dicha cavidad (11) a una posición contraída comprende presionar dicha superficie exterior (14) de dicha sección (1) de pala que tiene dicha cavidad (11).
- 17. El método según la reivindicación 15 o 16, en donde la operación de mantener dicha cavidad (11) en la posición contraída comprende aplicar resina presionando dicha resina a un área entre dicha protuberancia (21) y dicha cavidad (11) y/o a un área de dicha interrupción de material, comprendiendo preferiblemente además una operación de vigilar parámetros mientras se presiona dicha resina, incluyendo dichos parámetros una cavidad de resina aplicada, una temperatura de dicha resina y una presión de dicha resina; comprendiendo más preferiblemente además vigilar un rebose de dicha resina y controlar la cantidad de resina aplicada y/o confirmar una cantidad suficiente de resina aplicada basándose en la cantidad de rebose vigilada.
 - 18. El método según la reivindicación 17, que comprende curar dicha resina y por ello fijar al menos dos secciones (1, 2) de pala entre sí, preferiblemente en donde la operación de curar dicha resina incluye termo-endurecer dicha resina aplicando calor a dicha resina.
- 19. Una pala para un rotor de turbina eólica que tiene un perfil predeterminado fabricado por un conjunto de pala según una de las reivindicaciones 1-14 o un método según una de las reivindicaciones 15-18.
 - 20. Un rotor de turbina eólica que tiene un cubo para accionar un generador de turbina eólica, teniendo el rotor de turbina eólica al menos una pala según la reivindicación 19.
 - 21. Una turbina eólica que tiene un generador y un rotor de turbina eólica según la reivindicación 20, en donde dicho generador es accionable por el rotor de turbina eólica.
- 40 22. Un método para fabricar un conjunto de pala según una de las reivindicaciones 12 o 13, en donde el conjunto de pala es unido para formar una pala por
 - inserción de dicha protuberancia (21) en dicha cavidad (11) estando la cavidad (11) en una posición expandida;
 - contracción de dicha cavidad (11) presionando dicha sección de pala e introduciendo resina en dicho trayecto de flujo con una cantidad que llena dicho trayecto de flujo, y
- 45 curación, preferiblemente termo-endurecimiento, de dicha resina.

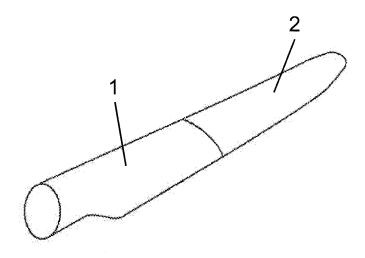


Fig. 1

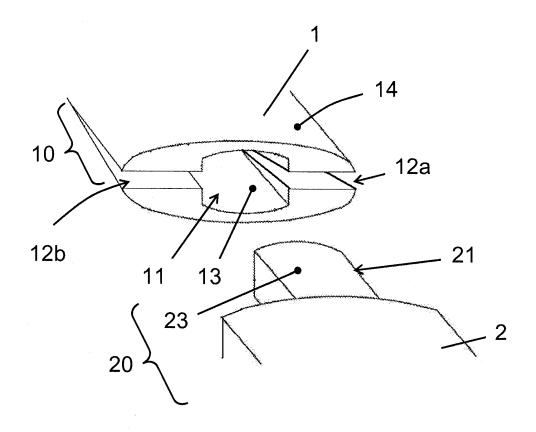


Fig. 2

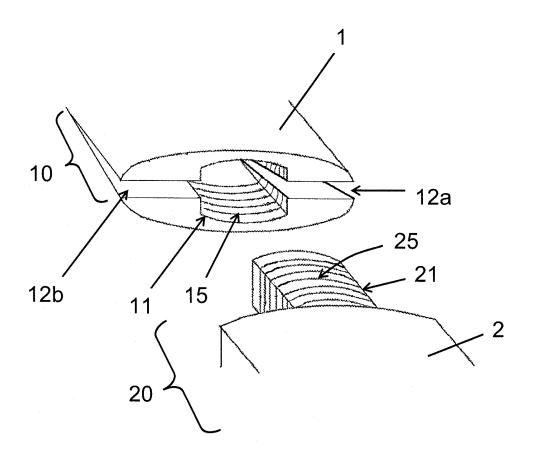


Fig. 3

Fig. 4a

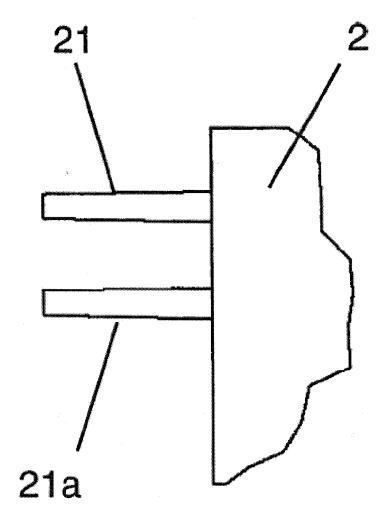


Fig. 4b

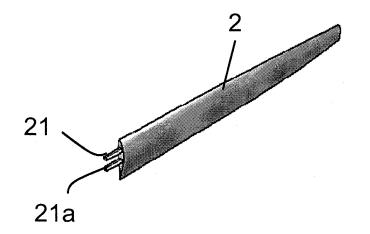


Fig. 4c

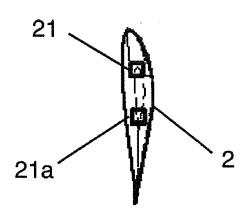


Fig. 4d

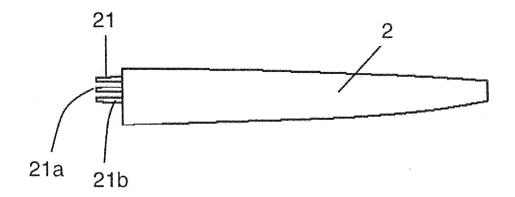


Fig.5a

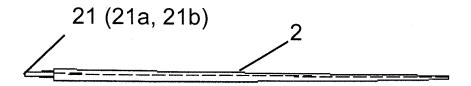


Fig.5b

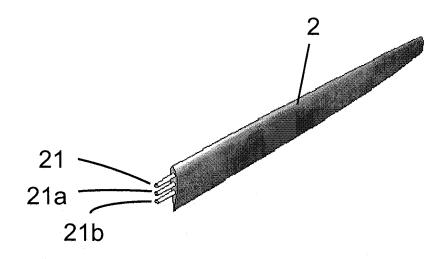


Fig. 5c

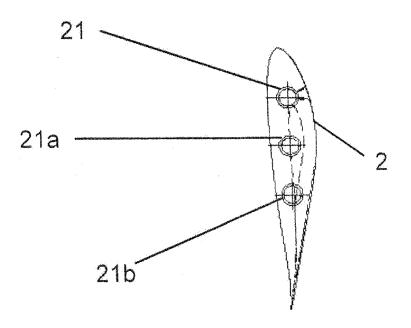


Fig. 5d

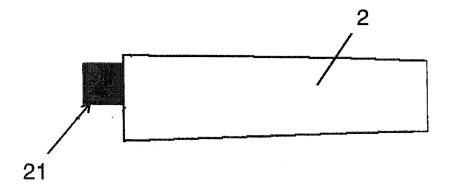


Fig. 6a

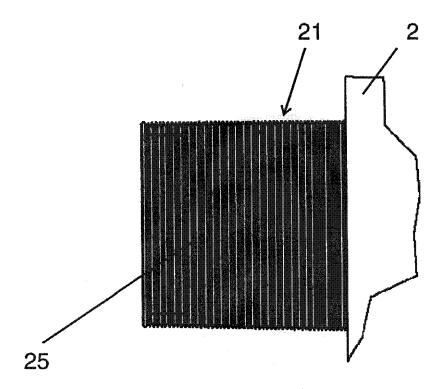


Fig. 6b

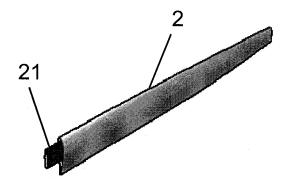


Fig. 6c

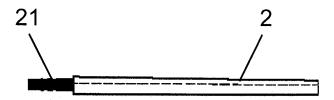


Fig. 6d

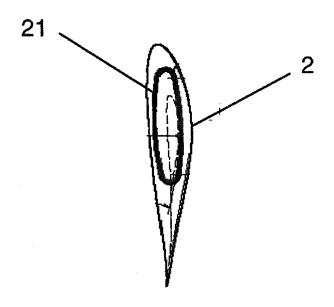


Fig. 6e

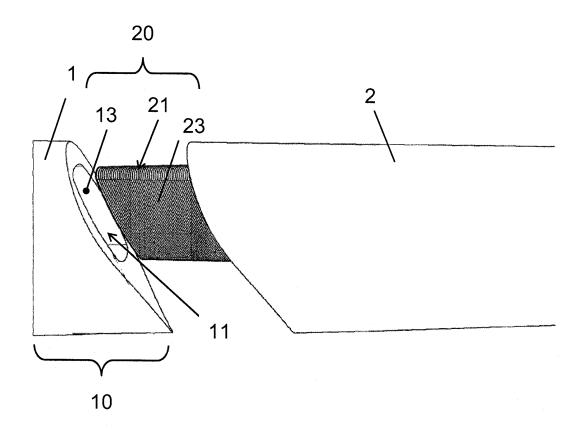


Fig. 7