

OFICINA ESPAÑOLA DE PATENTES Y MARCAS

ESPAÑA

11) Número de publicación: 2 671 195

(51) Int. CI.:

C01B 32/50 (2007.01)

(12)

TRADUCCIÓN DE PATENTE EUROPEA

T3

86) Fecha de presentación y número de la solicitud internacional: 03.12.2013 PCT/FI2013/051131

(87) Fecha y número de publicación internacional: 12.06.2014 WO14087051

(96) Fecha de presentación y número de la solicitud europea: 03.12.2013 E 13860798 (1)

(97) Fecha y número de publicación de la concesión europea: 21.03.2018 EP 2928585

(54) Título: Método y sistema para recuperación de dióxido de carbono de gas

(30) Prioridad:

07.12.2012 FI 20126276

Fecha de publicación y mención en BOPI de la traducción de la patente: **05.06.2018**

(73) Titular/es:

KAAKKOIS-SUOMEN AMMATTIKORKEAKOULU OY (100.0%) Patteristonkatu 3 D 50100 Mikkeli , FI

(72) Inventor/es:

KUOPANPORTTI, HANNU y LINNANEN, TEIJO

(74) Agente/Representante:

TOMAS GIL, Tesifonte Enrique

DESCRIPCIÓN

Método y sistema para recuperación de dióxido de carbono de gas

[0001] La invención se refiere a un método para recuperar dióxido de carbono de gas, en cuyo método

5 – el gas es presurizado,

15

20

25

45

- el gas presurizado y agua usada como un solvente se alimentan a una columna de absorción,
- el dióxido de carbono absorbido en el agua recibido de la columna de absorción se alimenta a una columna de desorción para separar dióxido de carbono de agua,
- el agua que sale de la columna de desorción se recircula a la columna de absorción,
- 10 el dióxido de carbono que sale de la columna de desorción se recupera.

La invención también se refiere a un sistema correspondiente para recuperar dióxido de carbono de gas.

[0002] Una de las mayores amenazas medioambientales de hoy es el aumento continuo de dióxido de carbono en la atmósfera. Algunas de las mayores emisiones de dióxido de carbono artificiales se provocan por gases de combustión de centrales eléctricas que usan combustibles fósiles (carbón, gas natural, aceite, turba). La razón fundamental para el uso de métodos de recuperación actuales no es tanto el cambio climático, sino que el dióxido de carbono se separa y purifica de gases de combustión para uso industrial y materias primas de procesos aguas abajo industriales.

[0003] Según un estudio por Li et al. 2011 (Li Yongling, Liu Yingshu, Zhang Hui & Liu Wenhai 2011. Carbon dioxide capture technology. Energy Procedia 11 (2011), p. 2508-2515.), los métodos más importantes, actualmente al menos en la fase de piloto, para separar dióxido de carbono de gases de combustión y de proceso son:

- 1) Absorción química en soluciones, tales como soluciones de amina o hidróxido [(Ma'mun Sholeh 2005. Selection and characterization of new absorbents for carbon dioxide capture. Faculty of Natural Science and Technology Department of Chemical Engineering, Norwegian University of Science and Technology (NTNU), Doctoral thesis. 132 p) y (Chakravarti Shrikar et al. 2001. Advanced technology for the capture of carbon dioxide from flue gases. First National Conference on Carbon Sequestration, 15-17 May, 2001, Washington, DC. The National Energy Technology Laboratory (NETL). 10 p.)], en líquidos, tales como líquidos iónicos o en materiales sólidos, tales como carbonatación de calcio o litio,
- 2) Absorción física en soluciones o líquidos, tales como líquidos iónicos modificados,
- 3) Absorción en superficies sólidas [(Munoz Emilio, Diaz Eva Ordonez Salvador & Vega Aurelio 2006. Adsorption of carbon dioxide on alkali metal exchanged zeolites. 2006 Aiche Annual Meeting, 12-17 November 2006, San Francisco, CA, paper 71.) y (Bonenfant Danielle et al. 2008. Advances in principal factors influencing carbon dioxide adsorption on zeolites. Science and Technology of Advanced Materials 9 (2008) 013007, 7 p.)]
- 4) Procesos de separación de membrana [(Feron P.H.M. & Jansen A.E. 1997. The production of carbon dioxide from flue gas by membrane gas absorption. Energy Convres. Mgmt 38 (1997), p. 93-98.) y (Zhikang Xu et al. 2001. Separation and fixation of carbon dioxide using polymer membrane contactor. First National Conference on Carbon Sequestration. 15-17 May, 2001, Washington, DC. The National Energy Technology Laboratory (NETL). 8 p.) y (Ho Minh T., Allinson Guy W. A. & Wiley Dianne E. 2008. Reducing the cost of CO2 capture from flue gases using membrane technology. Ind. Eng. Chem. Res. 47 (2008), p. 1562-1568.)] y
 - 5) Destilación criogénica.

[0004] El mayor desafío de métodos de separación es el flujo alto de gas de combustión o de proceso, que aumenta el índice de circulación de sorbentes, dimensiones de equipo y consumo de energía, por ejemplo. Los problemas también se crean por la necesidad y consumo de productos químicos, sus costes de tratamiento y, por otro lado, dificultades en el incremento. Por ejemplo, el método de membrana hasta el momento ha sido aplicado solo a pequeña escala. El uso de ciertos productos químicos, tales como aminas pueden causar salud adversa y efectos medioambientales.

[0005] La tecnología de amina, basada en absorción química, es el método usado más frecuentemente para la producción de dióxido de carbono de gases de combustión para varias aplicaciones industriales. En el proceso de absorción basado en amina, la amina reacciona con dióxido de carbono para producir carbamatos. En un proceso de absorción basado en amina típico, los gases de combustión se deben primero enfriar y se deben eliminar las impurezas (partículas, SO_x , NO_x) de este para obtener un nivel tolerable [Cousins A., Wardhaugh L.T. & Feron P.H.M.2011. A survey of process flow sheet modifications for energy efficient CO2 capture from flue gases using chemical absorption. International Journal of Greenhouse Gas Control (2011), 15 p. (in press)]. Los gases de combustión purificados y enfriados pasan a través de una columna de absorción en una dirección a contracorriente hacia una solución de amina pobre. Las columnas son columnas de relleno de forma aleatoria típicamente y sus dimensiones pueden ser muy grandes. En columnas de relleno desarrolladas durante años recientes, ha sido posible minimizar caídas de presión durante la purga de gas [Menon Abhilash & Duss Markus 2011. Sulzer - reducing the energy penalty for post-combustion CO2 capture. Carbon Capture Journal (2011) 23, p. 2-5.].

10

35

40

45

50

55

[0006] El uso del proceso basado en amina es la mayor parte limitada por los costes de calentamiento de regeneración de amina. El calentamiento se realiza con vapor de agua a un mínimo de 3 bares para lo que el 15 consumo de energía específico varía de 3.8 a 5.3 MJ/kg CO2 o de 1.1 a 1.5 MWh/t CO2, y el consumo de electricidad de bombas y ventiladores varía de 0.1 a 0.3 MWh/t CO₂, dependiendo del proceso [Lee Young, Kwak No Sang & Lee Ji Hyun 2012. Degradation and corrosivity of MEA with oxidation inhibitors in a carbon dioxide capture process. Journal of Chemical Engineering of Japan, Advance Publication. 20.1.2012. 5 p.]. El consumo 20 de vapor vería entre 1/4 y 1/3 de la producción de vapor de una central eléctrica de carbón guemado (Yang Honggun, Xu Zhenghe, Fan Maohong, Gupta Rajender, Slimane Rachid B, Bland Alan E & Wright Ian 2008. Progress in carbon dioxide separation and capture: A review. Journal of Environmental Sciences 20(2008), p. 14-27.) y (Dave N., Do T., Palfreyman D., Feron P.H.M., Xu S. & Gao S. & Liu L. 2011. Post-combustion capture of CO2 from coal-fired power plants in China and Australia, an experience based cost comparison. Energy Procedia 25 4 (2011), p. 1869-1877.) y (Karmakar Sujit & Kolar Ajit Kumar 2011. Thermodynamic analysis of high-ash coalfired power plant with carbon dioxide capture. El diario internacional de investigación de energía (2011) (abstract))]. Una gran parte de este vapor no está disponible para producción de potencia. Las impurezas en gases de combustión y particularmente oxígeno contenido en gases de combustión pueden causar corrosión y descomposición de productos químicos. Las impurezas originadas de gases de combustión y productos químicos 30 deben ser continuamente guitadas de la solución de amina.

[0007] Un problema con el proceso basado en amina se refiere a los riesgos medioambientales y de salud asociados a estos. Las aminas y sus productos de descomposición pueden ser tóxicos para personas, animales y organismos acuáticos. Por ejemplo, los productos de descomposición de aminas, nitroaminas [Fostås Berit, Gangstad Audun, Nenseter Bjarne, Pedersen Steinar, Sjøvoll Merethe & Sørensen Anne Lise 2011. Effects of NOx in the flue gas degradation of MEA. Energy Procedia 4 (2011), p. 1566-1573.] pueden causar cáncer o contaminar agua potable. Todos los productos de descomposición de aminas y sus efectos todavía no son conocidos. Los efectos dependen del tipo de amina usado [Botheju Deshai, Li Yuan, Hovland Jon, Haugen Hans Aksel & Bakke Rune 2011. Biological treatment of amine wastes generated in post combustion CO2 capture. Energy Procedia 4 (2011), p. 496-503.]. Las emisiones de amina se pueden llevar a la atmósfera o hidrovías en forma de líquido o gas. La cantidad estimada de emisiones de amina varía de 300 a 3000 t/a, mientras que la cantidad de generación de dióxido de carbono es 1 Mt/a. [Shao Renjie & Stangeland Aage (Bellona Foundation) 2009. Amines used in CO2 capture - health and environmental impacts. Bellona Report, September 2009. 49 p.]

[0008] En la absorción física, el dióxido de carbono se disuelve en una solución o líquido a una alta presión y se libera disminuyendo la presión y/o aumentando la temperatura. La absorción física es la más eficaz cuando la presión de absorción es alta y la temperatura es baja. En gases de combustión, la presión parcial de dióxido de carbono es relativamente baja, generalmente entre 5 % y 15 % en unos gases de escape a presión normal. Un proceso de absorción basado meramente en un mecanismo físico requiere la presurización de gas para conseguir buena capacidad de absorción. Cuanto más baja sea la presión a la que absorción puede llevarse a cabo, menor será el requisito de energía de presurización que consume electricidad. En la presurización de gases de combustión, más del 80 % de energía se consume para la presurización de nitrógeno. Las soluciones usadas en absorción física incluyen carbonato de (poli)propileno (PC), metanol, N-formilmorfolina y N-acetilmorfolina (NAM) (nombre de producto Morphysorb®), N-alquilopirrolidona, tal como N-metilpirrolidona, (NMP) sulfolano, éteres de polietilenglicol (por ejemplo Selexol®), gliceroles, por ejemplo carbonato de glicerol y dióxido de carbono líquido [Aho Yrjö 2009. Menetelmä hiilidioksidin talteenottamiseksi savukaasuista. Patent application Fl20085233, 19 September 2009. 11 p.].

[0009] El proceso de absorción física es hoy usado en aplicaciones donde la presión parcial de dióxido de carbono es alta, por ejemplo, en la purificación de gas natural. En la absorción física, el dióxido de carbono no reacciona con el solvente; por lo tanto, la regeneración de solvente es más fácil que en la absorción química.

[0010] El equipo usado en la tesis (2007) de Jussi Lähtelä "Kaatopaikkakaasun puhdistaminen liikennepolttoaineeksi vastavirtavesiabsorptiolla" también se conoce como el estado de la técnica, donde una columna de absorción basada en el principio a contracorriente y desorción se usa para separación de dióxido de carbono de biogás. En la absorción física, se usa agua como el solvente en la columna de absorción. Debido a la capacidad de absorción pobre de agua, la presión de suministro de biogás alimentada a la columna de absorción debe ser aumentada a un nivel alto notablemente. Con el aumento de presión, la solubilidad de dióxido de carbono en el agua aumenta y así aumenta la eficiencia de absorción. Sin embargo, los costes operativos del proceso aumentan al mismo tiempo. En la columna de desorción, dióxido de carbono y otros gases disueltos en el agua son separados del agua y liberados en la atmósfera. El equipo usado en la tesis de Lähtelä no está diseñado para la recuperación de dióxido de carbono, y tampoco puede este ser económicamente usado para este fin.

5

10

15

40

50

[0011] La publicación JP 2008063393 divulga un método y un sistema para la purificación de gas de digestión. El gas se presuriza a una presión de 0,55 - 2,0 antes de la columna de absorción. El agua se usa como un absorbente en la columna. El agua recibida de la columna de absorción y el dióxido de carbono absorbido en esta se alimentan a una columna de desorción para recuperar el dióxido de carbono del agua. El dióxido de carbono que sale de la columna de desorción se recupera y el agua que sale de la columna de desorción se recircula a la columna de absorción. El agua que sale se puede introducir en el tanque de reducción de presión antes de ser alimentada en la columna de desorción.

[0012] El objeto de la invención es proporcionar un método para recuperar dióxido de carbono de gas que sea más económico y respetuoso con el medio ambiente en comparación con métodos del estado de la técnica. Las características del método según esta invención se fijan en adelante en la reivindicación anexa 1. Otro objeto de la invención es proporcionar un sistema para la recuperación de dióxido de carbono de gas que sea más económico y respetuoso con el medio ambiente en comparación con sistemas del estado de la técnica. Las características del sistema según esta invención se fijan en adelante en la reivindicación anexa 9.

25 [0013] El objeto del método según esta invención se puede conseguir con un método donde el gas suministrado a una columna de absorción se presuriza a una presión absoluta de 3 - 10 bares, preferiblemente un mínimo de 4 bares y al menos parte del gas se alimenta a una columna de desorción auxiliar antes de presurizar el gas. El agua usada como el solvente se alimenta a la columna de absorción y el agua y dióxido de carbono absorbidos en esta, recibidos de la columna de absorción son primero alimentados a una columna de desorción preliminar, y 30 el das que sale de esta se envía de nuevo a la columna de desorción auxiliar. De la columna de desorción preliminar, el agua que ha absorbido el dióxido de carbono se suministra a la columna de desorción para separar el dióxido de carbono del agua. Luego, el agua que sale de la columna de desorción es recirculada de nuevo a la columna de absorción vía la columna de desorción auxiliar y el dióxido de carbono que sale de la columna de desorción se recupera. Con el uso de una columna de desorción auxiliar, según la presión parcial de dióxido de carbono, el dióxido de carbono se puede desabsorber del aqua de circulación al flujo de gas de combustión a 35 contracorriente, cuando la presión parcial de dióxido de carbono es inferior en la columna de desorción auxiliar en comparación con el paso de desorción. Con tal método, la recuperación de dióxido de carbono puede ser económicamente realizada sin usar productos químicos nocivos para el medio ambiente. En el contexto de esta solicitud, los niveles de presión siempre se refieren a presión absoluta, a menos que se indique lo contrario.

[0014] Ventajosamente, todo el flujo de gases de combustión limpio se suministra vía la columna de desorción preliminar; así, la diferencia de presión parcial de CO₂ entre gas de combustión y agua en circulación se puede mantener a un alto nivel en la columna de desorción preliminar sobre su distancia de flujo a contracorriente, que acelera la desorción en la columna de desorción preliminar.

[0015] Ventajosamente, el dióxido de carbono absorbido en el agua, recibido desde la columna de absorción, se alimenta al tanque de desorción preliminar y el gas recibido desde el principio del mismo se suministra de nuevo a la columna de desorción auxiliar. En la desorción preliminar, el dióxido de carbono se libera del agua a un contenido de dióxido de carbono inferior que en la desorción real. Este método puede utilizarse para aumentar el contenido de dióxido de carbono de la liberación de gas durante la desorción.

[0016] Ventajosamente, el gas para ser purificado, es decir, el gas de suministro del proceso, es gase de combustión, pero el método es también adecuado para uso para recuperar dióxido de carbono de otros gases de suministro, tal como varios gases de proceso, gas natural o similar.

[0017] Según una forma de realización ventajosa, el gas suministrado al proceso es gase de combustión de una central energética.

[0018] Ventajosamente, el gas suministrado al tanque de desorción auxiliar se limpia en una condensación de gas y el tanque de limpieza, a partir de lo cual una gran parte de componentes de gas (sulfuroso) que fácilmente se disuelve y reactiva con agua permanece en el agua de limpieza.

- [0019] El dióxido de carbono que sale de la columna de desorción se puede licuar y destilar para recuperación, en cuyo caso su contenido en dióxido de carbono se puede aumentar y se puede llevar a un volumen razonable para almacenamiento.
 - [0020] La presión absoluta aplicada en el tanque de desorción preliminar puede variar de 1.3 a 4.0 bares, preferiblemente de 1.5 a 2.5 bares. A tal presión, una gran parte de nitrógeno contenido en gases se separa del agua, mientras la parte principal de dióxido de carbono permanece en el agua.
- 10 [0021] La presión absoluta aplicada en la columna de desorción puede variar de 0.2 a 1.1 bares, preferiblemente de 0.3 a 0.8 bares, en los que dióxido de carbono es eficazmente desorbido de agua usada como el solvente.

15

30

- [0022] La presión absoluta aplicada en la columna de desorción auxiliar puede variar de 0.9 a 1.2 bares, preferiblemente de 1.0 a 1.1 bares. A tal presión en la columna de desorción auxiliar, es posible eficazmente transferir (banda) el dióxido de carbono restante en el agua de circulación a gas y parcialmente mejorar la eficiencia de absorción y aumentar la concentración del producto de gas.
- [0023] Ventajosamente, la columna de desorción auxiliar se basa en la así llamada desorción a contracorriente.
- [0024] Ventajosamente, el agua de circulación continuamente se recircula en el método vía la absorción y pasos de desorción de modo que la cantidad total del agua en circulación se puede mantener razonablemente baja.
- [0025] Según una forma de realización, el gas descargado de la parte de arriba de la columna de absorción se suministra a una turbina de gas para la recuperación de la energía de presión. La energía de presión de gas descargada de esta manera puede ser utilizada, por ejemplo, para la presurización del gas enviado a la columna de absorción.
- [0026] En el método, es posible usar un catalizador metálico en la absorción y las etapas de desorción para acelerar la hidratación, donde el catalizador metálico usado es uno de los siguientes: Pd, Pt, rh Ni o Ru. El uso de un catalizador metálico acelera la absorción del dióxido de carbono en el agua de circulación y su desorción de esta.
 - [0027] Las boquillas cónicas se pueden usar en el método para crear un pulso de vacío momentáneo en el flujo de agua de circulación en la columna de desorción. Los impulsos de vacío en el suministro a la columna de desorción mejoran la distribución constante de agua de circulación en la columna de desorción. Las boquillas cónicas también mejoran la distribución constante de agua de circulación a la columna de desorción.
 - [0028] Las boquillas de espiral se pueden usar en el método para distribución uniforme de agua de circulación en la columna de absorción. Una distribución más eficaz de agua de circulación mejora la absorción.
 - [0029] En el fondo de la columna de absorción, una técnica de desintegración implementada con una membrana puede utilizarse para desintegrar gas para burbujas. Esto también mejora la absorción.
- 35 [0030] Una turbina de vapor se puede usar en el método para asistir o reemplazar el motor eléctrico usado para generar la energía de transmisión de compresores de gas. Esto permite la utilización de varias fuentes de energía para generar la energía de transmisión del compresor de gas.
 - [0031] Un ventilador se puede usar en el método al suministrar el gas a la columna de desorción auxiliar. Un ventilador puede mejorar el suministro de gas al lado de la succión del compresor de gas.
- 40 [0032] Un clasificador por centrifugación se puede usar en el método en la separación de dióxido de carbono antes del suministro a la columna de absorción. El uso de un clasificador por centrifugación mejora la economía energética del método.
- [0033] El gas para ser purificado puede comprender nitrógeno de 75 % a 80 % por mol, preferiblemente de 78 % a 79 % por mol. La absorción de agua es particularmente eficaz cuando se purifica tal gas. El gas de suministro usado para la separación de dióxido de carbono puede comprender dióxido de carbono, por ejemplo, de 12 % a

15 % por volumen. Cuando se separa el dióxido de carbono de tal gas, el método según la invención es también útil y eficaz. Cuanto más dióxido de carbono contega el gas suministrado, mejor será la absorción de dióxido de carbono en el agua de circulación.

[0034] El objeto del sistema según la invención se puede conseguir con un sistema que incluye medios de presurización para presurización de gas, una columna de desorción auxiliar situada aguas arriba de los medios de presurización para separación de gases del agua y recircular el agua que sale de una columna de desorción de nuevo a una columna de absorción, y una columna de absorción para absorción de dióxido de carbono en el agua. Además, el sistema incluye una columna de desorción para la desorción del dióxido de carbono del agua. Además, el sistema incluye medios para recircular el agua que viene de la columna de desorción de nuevo a la columna de absorción, y recuperar medios para la recuperación de dióxido de carbono.

[0035] Ventajosamente, el sistema incluye un tanque de desorción preliminar situado abajo de la columna de absorción para la separación del dióxido de carbono absorbida en el agua desde el agua, y medios de recirculación para la recirculación del gas separado en el tanque de desorción preliminar de nuevo a la columna de desorción auxiliar. En la desorción preliminar, el dióxido de carbono se libera de agua a un contenido de dióxido de carbono inferior a la desorción real. De esta manera, es posible aumentar el contenido de dióxido de carbono de la liberación gas durante la desorción.

15

20

30

35

40

[0036] Ventajosamente, la columna de absorción es una columna de burbuja. En una columna de burbuja, la absorción de dióxido de carbono en el agua es eficaz, entre otras cosas, debido a la amplia área de superficie de límite entre agua y gas que contiene dióxido de carbono, ya que la absorción en una columna de burbuja se basa en un flujo de burbujas a contracorriente y agua en la columna de absorción, es decir, así llamada absorción a contracorriente.

[0037] Ventajosamente, el sistema incluye una condensación de gas y un tanque de limpieza situado aguas arriba de la columna de desorción auxiliar, esta condensación de gas y tanque de limpieza puede utilizarse para eliminar una gran parte de los componentes de gas (sulfuroso) que fácilmente se disuelve y reactiva con agua.

25 [0038] El sistema puede incluir un tanque de licuefacción para licuefacción de dióxido de carbono gaseoso. Con licuefacción, el dióxido de carbono se puede llevar a un volumen que sea razonable para almacenamiento.

[0039] Según una forma de realización, el tanque de desorción preliminar y la columna de desorción se localizan en un nivel superior a las partes superiores de la columna de absorción y la columna de desorción auxiliar, para la utilización de la diferencia de presión hidrostática. De esta manera, es posible utilizar la ascensión de la fracción gaseosa y la presión hidrostática de la fracción líquida.

[0040] La columna de absorción puede incluir placas de deflector de gas para prevenir la turbulencia. El uso de un tabique de repartición mejora la absorción.

[0041] El tanque de desorción preliminar puede incluir una pared de división para eliminar burbujas del agua de circulación antes de enviar el agua de circulación a la columna de desorción. El uso de una pared de separación mejora la desorción.

[0042] Los elementos de relleno se pueden incluir en la columna de desorción y/o la columna de absorción, cuyos elementos de relleno son elementos de relleno de tipo cortina anular. Los elementos de relleno aumentan el área de superficie líquida entre gas y líquido.

[0043] Las boquillas cónicas se pueden incluir en la columna de desorción para crear un pulso de vacío momentáneo en el flujo de agua de circulación. El uso de boquillas también puede mejorar la distribución uniforme de agua de circulación en la columna de desorción.

[0044] La columna de absorción puede incluir boquillas de espiral para distribución uniforme de agua de circulación. La distribución uniforme de agua de circulación mejora la absorción.

[0045] Un desintegrador de gas implementado con una membrana puede estar presente en el fondo de la columna de absorción para desintegración de gas para burbujas. La desintegración eficaz de gas para burbujas mejora la absorción.

[0046] El sistema puede incluir una turbina de vapor para asegurar la generación de transmisión de energía para compresores de gas. Una turbina de vapor puede utilizarse para utilizar la presión del vapor, por ejemplo, para generar la energía de transmisión para compresores de gas en caso de fallos de motor eléctrico.

[0047] El sistema puede incluir un ventilador para alimentar gas a la columna de desorción auxiliar. De esta 5 manera, es posible meiorar el suministro de gas al lado de la succión de compresor de gas.

[0048] El sistema puede incluir un clasificador por centrifugación situado aguas arriba de la columna de absorción para la separación de dióxido de carbono y presurización de este antes del suministro a la columna de absorción. Un clasificador por centrifugación puede mejorar la economía energética del método.

[0049] En cuanto a la separación de dióxido de carbono, los criterios más importantes en seleccionar el solvente 10 son: solubilidad alta de dióxido de carbono y su buena selectividad relativamente a los gases de nitrógeno y oxígeno. Otro criterio incluye fácil desortividad, presión de vapor baja y precio de solvente bajo, respetuoso con el medioambiente y estabilidad. Aunque el agua reúne todas las condiciones mencionadas anteriormente con la excepción de la alta solubilidad, según la bibliografía, su idoneidad apenas ha sido estudiada. En condiciones similares, la solubilidad de dióxido de carbono en el agua es casi 100 veces en comparación con la solubilidad de 15 nitrógeno. El uso del método ha sido restringido por la capacidad de absorción de agua relativamente baja. Así, en la absorción de agua basada en circulación de agua cerrada, la cantidad de agua de circulación se vuelve alta, debido a que el contenido de dióxido de carbono de gas es relativamente bajo (normalmente < 15 % por volumen o 20 % por masa). Debido a esto, la energía consumida en bombeo y compresión puede ser un factor que limite el uso del método. Sin embargo, agua es un solvente natural para la recuperación de CO2 en muchas aplicaciones de dióxido de carbono, tal como el proceso de producción de papel donde se usa aqua 20 abundantemente.

[0050] El método según la invención pretende la producción de dióxido de carbono casi puro de gas. El líquido de absorción es agua, que no causa efectos adversos en el equipo o el medio ambiente. En el método según la invención, el gas se puede conducir a través de limpieza de agua antes del proceso de separación de dióxido de carbono real, en la que una gran parte de componentes de gas (sulfurosso) que fácilmente se disuelven y reactivan con agua permanece en el agua de limpieza. Generalmente, aproximadamente el 95 % de los gases NO_x contenidos en gases de combustión es óxido de nitrógeno NO, la solubilidad de agua (a 25 °C) de la cual como gas puro es 0.058 g/l, mientras que la solubilidad de dióxido de carbono puro es 1.5 g/l. Debido a esto, una gran parte de gases NOx contenidos en gases de combustión se descarga del proceso de separación en la parte superior de la columna de absorción junto con el gas nitrógeno.

[0051] El producto obtenido con el método según la invención puede ser directamente usado en procesos aguas abajo industriales como gas o, con compresión, como líquido. El método es adecuado para producir carbonato cálcico precipitado, un material de relleno para papel, directamente en las superficies de fibra en un proceso en línea. Otra solicitud puede ser invernaderos que utilizan dióxido de carbono como un fertilizante. Con el método, es posible producir gas puro que contiene pocos gases NOx, adecuados para el crecimiento. Además, el agua caliente que se genera durante el enfriamiento del gas se puede usar, por ejemplo, para calentar invernaderos.

[0052] Hasta el momento, la recuperación de dióxido de carbono, para el mero fin de almacenarlo en el suelo ha sido realizada a pequeña escala; sin embargo, se ha utilizado, por ejemplo, en relación con la perforación de aceite. Así, el método es una separación de dióxido de carbono y proceso de enriquecimiento, que se puede utilizar en la recuperación de dióxido de carbono.

[0053] La invención se describe aguas abajo en detalle haciendo referencia a los dibujos adjuntos que ilustran algunos de los ejemplos de realización de la invención, donde:

La Figura 1 es una tabla de proceso que muestra el sistema según la invención,

25

30

35

40

45

La Figura 2 muestra un sub-proceso del sistema según la invención, donde el dióxido de carbono es separado del aqua,

La Figura 3 muestra un sub-proceso del sistema según otra forma de realización, donde los pasos de desorción se adaptan para producirse solapándose entre sí.

[0054] Los números de referencia usados en las figuras se refieren a lo siguiente:

condensación de gas v paso de limpieza 16 fondo de columna de absorción Α В paso de separación de dióxido de carbono parte superior de la columna de 20 absorción С 22

destilación de dióxido de carbono y paso de dióxido de carbono absorbido en

	de limpieza	0.4	el agua
10	sistema	24 26	columna de desorción fondo de columna de desorción
12	gas limpio	20	iondo de columna de desorción
12'	gas de combustión	28	parte superior de la columna de desorción
14	columna de absorción	32	tanque de desorción preliminar
34	tanque de desorción preliminar superior	82	fracción de gas presurizado suministrada a la columna de absorción
36	columna de desorción auxiliar	84	fracción líquida descargada de la columna de desorción auxiliar
40	medios de presurización		
42	medios de recirculación		
44	medios de recuperación de dióxido de carbono	86	fracción líquida descargada de la columna de desorción
45	compresor		
46	medios de recirculación		
50	columna de burbuja		
52	tanque de condensación de gas y limpieza	87	fracción de gas descargada de la columna de absorción
53	agua de descarga		
54	refrigerador de agua en circulación	88	fracción líquida descargada de la columna de absorción
56	compresor		
58	turbina de gas	90	fracción de gas descargada del tanque de desorción preliminar
59	intercambiador térmico		
60	bomba de agua de circulación		
62	gas de descarga	92	fracción líquida descargada del tanque de desorción preliminar
64	tanque medio de refrigeración		
66	tanque de agua de condensación		
68	prerefigerador de dióxido de carbono	94	fracción de gas descargada de la columna de desorción
70	tanque de licuefacción de dióxido de carbono		
72	agregado de enfriamiento	96	retorno flujo de agua de condensado
74	dióxido de carbono líquido		
76	elemento de relleno	98	fracción de gas no licuado de licuefacción de dióxido de carbono
78	elemento de relleno		
80	fracción de gas descargada de la desorción auxiliar	100	flujo de gas limpio

[0055] La Figura 1 muestra la tabla de proceso del sistema según la invención. El proceso total está ventajosamente compuesto por tres pasos: un paso de condensación y limpieza A de gases de combustión 12', un paso de separación de dióxido de carbono B y un paso de destilación de dióxido de carbono y de licuefacción C. En el paso A, los gases gaseosos se limpian con agua, en la que una gran parte de componentes de gas (sulfuroso) que fácilmente se disuelve y reactiva con agua permanece en el agua de limpieza. En el paso B, el dióxido de carbono se separa de los otros gases basados en absorción de agua física, y finalmente en el paso C, el dióxido de carbono separado del agua se recupera en forma líquida. En esta solicitud de patente, las figuras particularmente se refieren a un proceso con el cual el dióxido de carbono se puede recuperar de gases de combustión de una central energética.

- 10 [0056] El sistema 10 según la invención incluye una columna de desorción auxiliar 36, una columna de absorción 14 y una columna de desorción 24, como componentes obligatorios. Con estos, el dióxido de carbono puede ser eficaz y estar económicamente separado de los otros gases de manera que el dióxido de carbono se puede recuperar económicamente en forma líquida en un paso de destilación siguiendo estos pasos.
- [0057] En el proceso mostrado en la figura 1, el dióxido de carbono avanza de izquierda a derecha; es decir, el gas de combustión 12' se suministra al lado izquierdo y el dióxido de carbono líquido 74 se descarga del lado de derecho. Ventajosamente, el proceso de recuperación de dióxido de carbono comienza con la condensación de gas y limpieza, que tiene lugar en un tanque de condensación y limpieza de gases 52. Con el proceso de

limpieza, una gran parte de componentes de gas (sulfuroso) que fácilmente se disuelve y reactiva con agua se separa al agua de limpieza. Desde el tanque de condensación y limpieza 52, el gas limpio se envía a la columna de desorción auxiliar 36. La columna de desorción auxiliar 36 puede ser una columna de relleno, donde los gases son separados del flujo líquido que vienen de los últimos pasos de proceso y donde los flujos de gas que vienen de los últimos pasos de proceso se combinan.

5

10

45

[0058] De la columna de desorción auxiliar 36, el flujo de gas con los gases se suministra a los medios de presurización 40. El medio de presurización 40 puede estar compuesto por un compresor 56 que presuriza el flujo de gas. El flujo presurizado se alimenta a la columna de absorción 14, al fondo 16 de la misma. La columna de absorción 14, que opera según el principio a contracorriente, es ventajosamente una columna de burbuja 50, a la que el agua se suministra como el solvente, a la parte superior de la misma. El agua se puede suministrar a la columna de absorción 14 desde el fondo de la columna de desorción auxiliar 36. Ventajosamente, el agua suministrada a la columna de absorción se enfría con un refrigerador de agua circulante 54, que mejora la capacidad de absorción de aqua.

[0059] Ventajosamente, la presión aplicada en la columna de absorción 14 varía a una presión absoluta de 3 a 10 bares, preferiblemente un mínimo de 4 bares. El gas suministrado a la columna de absorción 14 se presuriza a esta presión. A tal presión, el consumo de energía del proceso se vuelve ventajoso en cuanto al consumo de energía específico del proceso total. El gas soluble en el agua es principalmente dióxido de carbono, mientras que una gran parte de los otros gases, tal como N2 termina en la fracción de gas 87 descargada de la parte de arriba de la columna de absorción. La fracción de gas 87 se puede enviar a una turbina de gas 58, que recupera la energía de presión contenida en la fracción de gas. Antes del suministro a la turbina, la temperatura del gas de descarga se puede aumentar en el intercambiador térmico 59 con gas que se ha calentado en el compresor 56 y con gas caliente llevado al proceso en el intercambiador térmico. El calor aumenta la expansión de gas en la turbina que aumenta la emisión obtenida de la turbina. Ventajosamente, la turbina de gas 58 conduce el compresor 56 del medio de presurización 40.

25 [0060] El dióxido de carbono 22 absorbido en agua de la columna de absorción 14 se quita como el producto de fondo y se envía al tanque de desorción preliminar 32. En el tanque de desorción preliminar 32, la presión se mantiene a un nivel que varía de 1.3 a 4.0 bares, preferiblemente a una presión absoluta de 1.5 a 2.5 bares. A tal presión, el gas nitrógeno se desabsorbe del agua proporcionalmente más o más rápido que el dióxido de carbono. La fracción de gas 90 recibida desde el principio del tanque de desorción preliminar 32, es decir parte 30 de dióxido de carbono y nitrógeno disuelto en el agua de circulación se retorna a la columna de desorción auxiliar 36, donde se combina con el flujo de gases limpios entrantes 100. Así, el dióxido de carbono desorbente en el tanque de desorción preliminar 32 se puede nuevamente recuperar en la columna de absorción 14, que aumenta parcialmente el contenido de CO₂ del producto de gas. El fin del retorno del gas de desorción preliminar es aumentar el contenido de dióxido de carbono del producto de gas que se libera de la desorción real y mejorar la eficiencia de absorción. Dividir la desorción en tres etapas de desorción, es decir, desorción preliminar, desorción 35 y desorción auxiliar, puede aumentar el contenido de dióxido de carbono del producto de gas. El efecto de la desorción meramente preliminar en esta serie puede aumentar el contenido de dióxido de carbono de gas que se libera de desorción de aproximadamente 3 % a 7 % por volumen. Dividir la desorción en tres etapas de desorción, es decir, desorción preliminar, desorción y desorción auxiliar, aumenta el contenido de dióxido de 40 carbono del producto de gas y el índice de recuperación de dióxido de carbono en el proceso total.

[0061] La fracción líquida 92 descargada del tanque de desorción preliminar se suministra a la parte superior 28 de la columna de desorción 24. La columna de desorción 24 puede ser una columna de relleno, donde los elementos de relleno 78 aumentan el área de superficie entre agua y gas durante el flujo descendente de agua. En la columna de desorción 24, se trata de liberar todo el dióxido de carbono sobresaturado de agua siempre que sea posible aplicando la presión absoluta adecuada de 0.2 a 1.1 bares, preferiblemente de 0.3 a 0.8 bares. El contenido de dióxido de carbono de agua en el fondo de la columna de desorción debería ser tan cercano como sea posible para el equilibrio de presión de desorción con el gas en la sección inferior. La fracción de dióxido de carbono separada de agua se toma de la parte superior 28 de la columna de desorción 24 y se suministra al medio de recuperación 44.

50 [0062] El agua que viene del fondo 26 de la columna de desorción 24 y el residuo de CO₂ restante en esta se retornan con el agua de circulación a la columna de desorción auxiliar de 36 a 1 bares de presión. Los flujos volumétricos de gases (principalmente dióxido de carbono) que retornaron del agua de circulación son pequeños en comparación con el flujo de suministro de gas y sus efectos en la carga de la columna de absorción son relativamente pequeños. El objeto de la columna de desorción auxiliar es transferir dióxido de carbono de (banda) restante en el agua de circulación para gas y parcialmente mejorar la eficiencia de absorción y aumentar la concentración del producto de gas. En otras palabras, el fin de la columna de desorción auxiliar es funcionar como un paso de post-desorción. Además, la circulación de agua usada en el proceso se vuelve sustancialmente cerrada.

[0063] Un vacío ligero, es decir de 0.3 a 0.8 bar de presión absoluta, aplicado en la desorción es también un parámetro importante que afecta a la eficiencia. Cuando se evalúa un proceso de escala industrial basado en los gases de combustión de una central energética normal con un caudal de agua de circulación de 1.3 m3/s y presión de absorción de 4.5 bares, el consumo de energía específico del proceso consigue el mínimo, aproximadamente 0.35 MWh/t CO₂ (temperatura del agua de circulación 5° C), cuando la presión de desorción es 0.4 bares. El consumo de energía específico mínimo en la recuperación (MWh/t CO₂) depende de la concentración del gas de suministro usada, las condiciones del proceso y los rendimientos operativos de las máquinas, y pueden por lo tanto ser separadamente evaluados para cada situación operativa.

[0064] Como la primera parte, el medio de recuperación 44 incluye un compresor 45, con el cual la fracción de dióxido de carbono que sale de la columna de desorción 24 es presurizada, lo que genera al mismo tiempo el vacío requerido por desorción en la columna de desorción 24. La fracción de dióxido de carbono presurizada se suministra, vía el tanque de refrigeración 64, al tanque de agua de condensado 66, donde agua restante en la fracción de dióxido de carbono se condensa. El agua condensada se envía de nuevo al suministro del tanque de desorción 24. Del tanque de agua de condensado 66, la fracción de dióxido de carbono se suministra adicionalmente al preenfriamiento y a través del mismo 68 al tanque de licuefacción 70, que se enfría mediante el agregado de enfriamiento 72. En el tanque de licuefacción 70, el dióxido de carbono enfriado se licua y las fracciones de gas no condensado son reenviadas al suministro de la columna de absorción 14. El dióxido de carbono líquido 74 se puede usar para preenfriar 68 teniendo lugar aguas arriba del tanque de licuefacción 70, después de lo cual esto se puede recuperar para tratamiento adicional posible.

20 [0065] El método según la invención se basa en absorción física de dióxido de carbono en el agua. En la absorción de dióxido de carbono que contiene gas tiene lugar la columna de absorción, el dióxido de carbono se lleva primero con el gas a la superficie límite de gas y líquido, luego a la película de líquido estable relativamente a través de la superficie límite y además de la película más-profundamente a la fase líquida. Estos últimos resultados de fase de transferencia del movimiento de moléculas una con respecto a otra, es decir difusión, y es también debido al efecto de micro-movimientos del líquido; en otras palabras, se realiza como transferencia de calefacción provocada por microturbulencia. La difusión se puede acelerar bien mediante el aumento de la temperatura y la transmisión de fuerza de difusión, es decir la diferencia de concentración, que lleva a un contenido pequeño de agua a la proximidad de la película líquida o aumentando la presión del gas, lo que aumenta las concentraciones de fase gaseosa.

30 [0066] Por otro lado, el aumento de la temperatura reduce la capacidad de absorción de agua por unidad de volumen. Sin embargo, la capacidad de agua para enlazar moléculas de dióxido de carbono mejora notablemente debido al efecto de temperatura disminuido, particularmente cuando se acerca el punto de congelación de agua. A pesar de la difusión desacelerada, resulta aconsejable realizar la absorción a una temperatura tan baja como sea posible. La transferencia de calefacción se puede acelerar mediante el aumento de la diferencia de velocidad entre gas y líquido. Además, la velocidad de transferencia se puede elevar mediante el aumento del área de superficie límite entre gas y líquido, por ejemplo, mediante la mezcla de gas en el líquido en burbujas más pequeñas. Reducir el tamaño de la burbuja fortalece y sella la superficie límite, pero, como el efecto total, la velocidad de absorción aumenta claramente reduciendo el tamaño de la burbuja.

[0067] Con la mezcla eficaz, la absorción consigue un estado de saturación que casi conforme la ley Henry en menos de dos segundos. En agua limpia (presión de 1 bar), el índice de absorción aumenta de 1.5 g CO₂/ kg de agua a 2.7 g CO₂/ kg de agua, cuando la temperatura se reduce de 25 °C a 5 °C. A 5 °C, si la presión absoluta aumentada de 1 bar a 5 bares (aprox. 4 Atm), el índice de absorción aumenta a 13.4 g CO₂/ kg de agua.

40

45

50

[0068] Ventajosamente, la columna usada como la columna de absorción es una columna de burbuja 50 según la figura 2, que es bien adecuada como equipo de absorción para dióxido de carbono. En una columna de burbuja, el gas y el líquido están a contracorriente, el diseño interno de columna es simple (elementos de relleno no se necesitan) y las pérdidas de presión provocadas por resistencias de flujo permanecen pequeñas. En una columna de burbuja, el líquido alrededor de la burbuja se renueva continuamente y así el tiempo de contacto es corto en condiciones de flujo y la distancia de penetración de gas es corta durante el tiempo de contacto debido a la velocidad de difusión lenta. Cuando la velocidad relativa de gas y líquido aumenta, la velocidad de absorción se puede prever que aumente, porque la turbulencia aumentada en la proximidad de la película líquida aumenta la velocidad de difusión. Por otro lado, la turbulencia excesiva puede reducir la eficiencia total de absorción igualando las diferencias en la concentración de dióxido de carbono en la dirección vertical de la columna. Impurezas, que aumentan la viscosidad de líquido y reducen ondulación de la película líquida, pueden desacelerar la velocidad de absorción.

[0069] En el método y sistema según la invención, un reactor de mezcla también puede usarse donde básicamente un fenómeno similar también ocurre. En un reactor de mezcla, la transferencia de material tiene lugar incluso notablemente más rápido que en una columna de burbuja. Sin embargo, el uso de un reactor de mezcla reduce la economía total del método, porque dispersando el gas en una gran cantidad de agua, requerida

por absorción de agua, consume una gran cantidad de energía. En cuanto a la tecnología de proceso, la absorción se puede también efectuar en una columna de relleno a contracorriente, pero la transferencia material no es tan eficaz y las dimensiones de equipo aumentan. Según Houghton et al. [Houghton G., McLean A.M. & Ritchie P.D. 1957. Absorption of carbon dioxide in water under pressure using a gas-bubble column. Chemical Engineering Science 7 (1957), p. 26-39.], la velocidad de absorción en una columna de burbuja es de 3 a 10 veces más alta, dependiendo de las condiciones, en comparación con una columna de relleno. Para el mismo índice de absorción, el volumen de la columna de burbuja puede ser aproximadamente un tercio del volumen de la columna de relleno.

[0070] El punto de partida para el diseño y operación de una columna de absorción es que las fases de gas y 10 líquido en las extremidades superiores e inferiores de la columna son lo más cercanas posible al equilibrio teórico. Las diferencias de concentración entre gas y líquido, el tamaño de burbuja y la velocidad de ascensión de la burbuja determinan inmensamente lo cerca que está el gas burbuja del equilibrio con el agua en circulación, según la ley Henry. En una caso ideal, el gas está en equilibrio con el agua en circulación suministrada cuando sale de la parte superior del reactor. Es posible influir en el tamaño de la burbuja con el 15 tamaño de poro o de boquilla del distribuidor de gas. Cuanto más pequeñas sean las burbujas a las que el gas de suministro se puede desintegrar, más lentamente aumentará la burbuja y más rápido absorberá el dióxido de carbono. Por otro lado, reduciendo el tamaño de burbuia aumenta el consumo de energía. Si la velocidad de agua de flujo descendente es mayor que la velocidad de aumento de la burbuja, el agua de circulación puede tomar el gas del reactor. Una velocidad relativamente muy alta entre el gas y el líquido puede reducir la eficiencia 20 de separación y afecta al equilibrio de material. La altura mínima de la columna de burbuja varía de 2 a 4 m., preferiblemente al menos 3 metros y el área transversal necesaria se determia en base a la producción de dióxido de carbono deseada. En otras palabras, la altura de la columna de burbuja es tal que el gas burbuja consique casi el equilibrio teórico con la fase líquida envolvente cuando aumenta a la superficie líquida del distribuidor de gas.

25 [0071] En base a la eficiencia energética total y la pureza del producto de gas, la presión óptima aplicada en la columna de absorción está en un rango de 3 a 10 bares, preferiblemente un mínimo de 4 bares de presión absoluta. Si la presión de absorción es inferior a este nivel, la cantidad de agua en circulación aumenta y el consumo de energía total del proceso de separación comienza a aumentar linealmente según el bombeo de energía de agua. Es posible aumentar el índice de recuperación mediante el aumento de la presión de absorción, por ejemplo, a 7 bares, para conseguir un índice de recuperación de casi 90 %. Sin embargo, el consumo de energía específico no aumenta notablemente debido a que la cantidad de agua de circulación en consecuencia se reduce. El consumo de energía específico del proceso de separación de CO₂ del método y el sistema según la invención se puede minimizar, prestando atención al índice de recuperación deseado y las combinaciones diferentes del nivel de concentración de dióxido de carbono del producto de gas, cambiando los niveles de presión de absorción y desorción y las proporciones de reflujo.

[0072] El método según la invención se puede usar como un método de recuperación de dióxido de carbono de una central energética, el método es una alternativa respetuosa con el medio ambiente para métodos químicos del estado de la técnica, como la tecnología de amina. En el método, la temperatura del agua de circulación se puede mantener a un nivel suficientemente-bajo usando, por ejemplo, agua de lago o agua dulce fría suministrada a la central y, en la absorción, es posible conseguir aproximadamente un equilibrio en la columna de burbuja. Con la absorción y valores de presión de desorción anteriormente descritos, la cantidad de agua de circulación permanece moderada y un índice de recuperación superior a 80 % y un contenido de dióxido de carbono de gas superior a 90 % por mol se puede conseguir con el método. La eficiencia de separación de absorción de agua mejora esencialmente si la concentración del gas de suministro de absorción de agua se puede aumentar desde el típico 15 % por mol a 25 % por mol, por ejemplo.

40

45

55

[0073] En el método, la absorción real y proceso de desorción puede llevarse a cabo sin añadir ningún producto químico. Una necesidad potencial de añadir productos químicos solo se relaciona con la purificación del agua de circulación de impurezas que se originan del gas. El método según la invención utiliza la selectividad excelente de agua para absorber dióxido de carbono de gas que contiene principalmente nitrógeno.

50 [0074] Según una forma de realización, en las aplicaciones de recuperación, donde el objetivo es conseguir ambos una alta concentración de gas de dióxido de carbono y un alto índice de recuperación, la presión absoluta más alta de 5 a 15 bares mencionada arriba se puede aplicar en la columna de absorción.

[0075] Ventajosamente, la energía de presión producida en la columna de absorción 14 se utiliza en la turbina de gas 58 para recuperar la energía de gas de descarga y en la circulación de agua, mediante la diferencia de presión debido a las diferencias de nivel de agua entre los tanques. La diferencia de nivel entre los niveles de agua de tanques y columnas se refiere al hecho de que, como se muestra en la figura 2, las partes superiores de la columna de desorción auxiliar 36 y la columna de absorción 14 son ventajosamente a un nivel de aproximadamente 4 metros inferior a los niveles inferiores del tanque de desorción preliminar 32 y la columna de

desorción 24. Con la diferencia de nivel, es posible utilizar la diferencia de presión hidrostática para generar un flujo entre la columna de desorción y la columna de desorción auxiliar de forma que previene la necesidad de bombear el agua de circulación entre estas columnas.

[0076] La Figura 3 muestra otra forma de realización del sistema según la invención donde los pasos de desorción del proceso se adaptan para producirse superponiéndose verticalmente. El sistema se puede diseñar para adaptar ambas aplicaciones pequeñas y a gran escala. Tal forma de realización es particularmente ventajosa en aplicaciones a pequeña escala donde los pasos se pueden implementar dentro de dos tuberías verticales, por ejemplo. Las extremidades de tubo y bandejas se pueden hacer de rebordes de tubo, por ejemplo. En el método, la altura práctica de la columna de absorción puede variar entre 8 y 12 m. Ya que la desorción de dióxido de carbono del agua de circulación tiene lugar más rápido que la absorción, el requisito de altura de columnas puede ser menor para estas. En el método, la capacidad de absorción de CO₂ del agua en circulación en las condiciones del proceso aplicadas determina la proporción de caudal entre el agua de circulación y los gases de combustión es decir "considerada buena por su parte". Otro factor importante para la proporción de flujo es la concentración de CO₂ conseguida de desorción.

5

10

25

30

35

40

45

50

55

15 [0077] El método y el sistema según la invención puede ser mejor usado en aplicaciones industriales donde el agua de refrigeración y gas o gas de proceso están disponibles a una concentración de dióxido de carbono superior a aproximadamente 20 % por mol. El proceso según la invención se puede diseñar y dimensionar según la concentración y la cantidad de CO₂ necesaria. Una gran necesidad de dióxido de carbono (kg/s) requiere una gran cantidad de agua en circulación y así tubo grande y diámetros de equipo, mientras que las alturas de las columnas de burbuja no están afectadas por la capacidad. Si la concentración de CO₂ de gas está por debajo del 20 % por mol, la pre-separación realizada durante la presurización puede reducir notablemente el consumo de energía específico del proceso de separación.

[0078] Según una forma de realización, un catalizador se puede utilizar en el método en los pasos de absorción y desorción para acelerar la hidratación. Un catalizador metálico, tal como paladio (Pd), platino (Pt), rodio (Rh), níquel (Ni) o rutenio (Ru), se puede usar como el catalizador. Se ha demostrado [Gaurav A. Bhaduri and Lidija

 \ddot{S} iller, Nickel Nanoparticles Catalyse Reversible Hydration of Carbon Dioxide for Mineralization Carbon Capture and Storage, Catalysis Science & Technology, 2013,3, 1234-1239.] que un catalizador de níquel cataliza la reacción de agua y dióxido de carbono para producir ácido carbónico y viceversa: $CO_2 + H_2O \Leftrightarrow HCO_3^- + H^+$. Un catalizador usado en el método puede acelerar la absorción y desorción de dióxido de carbono en y desde el agua de circulación al igual que aumentar la cantidad de dióxido de carbono disuelta en el agua, por ejemplo. En el método de proceso, el catalizador se puede llevar con el agua de circulación, como pequeñas partículas (nanopartículas, por ejemplo), que se pueden separar del agua en circulación usando un campo magnético, por ejemplo, si el material del catalizador es magnético. Un catalizador metálico puede también ser instalado en los pasos del proceso como un componente integral, tal como un revestimiento, elementos de relleno o superficie, construcciones laminares o de rejilla hechas de material en láminas o construcciones de red hechas de alambre. También es posible usar catalizadores enzimáticos, como la enzima de anhidrasa carbónica, en el método.

[0079] Según una segunda forma de realización, tales boquillas, tales como boquillas cónicas, se pueden usar en el método para crear un pulso de vacío momentáneo en el flujo de agua de circulación. Al mismo tiempo, los impulsos de vacío también pueden ser utilizados para distribuir uniformemente el agua de circulación a las columnas del método de proceso. En el método, la diferencia de presión entre el paso de desorción preliminar y el paso de desorción, que existien en el agua de circulación se puede utilizar en el suministro de agua en circulación al paso de desorción, para crear un pulso de vacío dinámico momentáneo en la sección cónica de expansión de la boquilla cónica, por ejemplo. Las boquillas cónicas permiten la distribución uniforme de agua de circulación al tanque de desorción. Otros tipos de métodos mecánicos que crean un pulso de vacío o un pulso de presión excesivo también pueden ser utilizados en los pasos de absorción y de desorción del método, para afectar momentáneamente la absorción más alta o condiciones de presión de desorción. En la columna de absorción, las boquillas de espiral, por ejemplo, se pueden utilizar para uniformemente distribuir el agua en circulación en la columna. El agua en circulación pasa a través de una boquilla de espiral eficazmente ya que el flujo líquido a lo largo de la espiral no se reduce y así la diferencia de presión a través de la boquilla es pequeña. Así, la diferencia de presión de la bomba que alimenta el tanque de absorción.

[0080] Según una tercera forma de realización, una técnica de desintegración de gas implementada con una membrana se puede utilizar para desintegración de gas en el fondo de la columna de absorción. Tal técnica es más frecuentemente usada en tanques de aireación. Cuando se alimenta con gas el fondo de la columna de absorción presurizada, debe observarse que el gas comprime bajo presión, a partir de lo cual su volumen cambia proporcionalmente a la presión aplicada en la columna de absorción. Los desintegradores de membrana pueden ser desintegradores de membrana hechos de caucho (EPDM), por ejemplo. Los desintegradores de membrana

pueden crear burbujas con un diámetro que varía de aproximadamente 1 mm a aproximadamente 2 mm en la columna de absorción a una presión excesiva de 3.5 bares. Una membrana crea una diferencia de presión pequeña sustancialmente para el flujo de gas. Un ejemplo de un desintegrador de membrana es el desintegrador de gas de manguera E-Flex, con el cual el gas se puede distribuir con una bandeja de distribución de gas hecha de diferentes conductos cilíndricos en el fondo de una columna de absorción redonda. Estos conductos cilíndricos se pueden diseñar para estar dispuestos superpuestos en la bandeja de distribución de gas y entrelazados por el diámetro circunferencial, basado en el requisito de uniformidad de distribución de gas en el fondo de la columna de absorción. De la columna de absorción, el agua en circulación se puede retirar vía el cono inferior bajo la bandeja desintegradora de gas para prevenir el acceso de gas al agua de circulación descargada desde la columna de absorción. Otros modelos de desintegrador de gas también pueden usarse en el método, tal como desintegradores de montura y de conducto. Otros tipos de soluciones de ubicación para la bandeja de desintegrador también pueden combinarse en esta bandeja de desintegrador de gas del método.

10

15

50

[0081] Según una cuarta forma de realización, las placas de deflector de gas o columnas de absorción paralelas se pueden utilizar en la columna de absorción en el método según la invención. La turbulencia vertical alta de flujos se puede generar en una columna de absorción de burbuja con un área de corte transversal grande, que es desventajosa en el método con respecto al rendimiento de la columna de absorción. Para prevenir esto, las paredes de tabique de repartición intermedias que se disponen verticalmente se pueden diseñar en la columna de absorción o el área en corte transversal requerida para la capacidad se puede construir utilizando diferentes columnas de absorción adyacentes.

20 [0082] Según una quinta forma de realización, en el paso de desorción preliminar del método, el gas se desabsorbe del agua en circulación como burbujas muy pequeñas al agua de circulación. En el tanque de desorción preliminar, una pared de divisional se puede utilizar para eliminar estas burbujas del agua en circulación antes de suministrar el agua de circulación al paso de desorción.

[0083] Según una sexta forma de realización, un área de superficie adicional creada por elementos de relleno se 25 puede utilizar en las columnas de desorción en el método. En la columna de desorción, estas permiten conseguir una distribución uniforme de gas y agua al igual que una pequeña resistencia para flujo de gas y agua. El dióxido de carbono disuelto en el agua en la columna de desorción y la columna de desorción auxiliar desabsorbe de agua a través de la superficie límite líquida/gaseosa a la fase gaseosa. En la columna de desorción y/o la columna de desorción auxiliar del método según la invención, este área líquida entre gas y líquido se puede 30 aumentar con elementos de relleno, para acelerar la transferencia del volumen de gas de CO2 desde el agua en circulación a la fase gaseosa durante la desorción. Al mismo tiempo, los elementos de relleno también aumentan el tiempo de desorción de gas para quedar eliminados de la fase acuosa a la gaseosa. La desorción de dióxido de carbono del aqua en circulación es rápida cuando los elementos de relleno se usan en las columnas. Los elementos de relleno adecuados para este propósito son elementos de tipo relleno cortina anular, por ejemplo. 35 Estos elementos de relleno no crean una alta resistencia de flujo al flujo de gas o el flujo líquido, mientras estos al mismo tiempo uniformemente distribuyen gas y el agua en circulación fluye sobre todo el área en corte transversal de la columna. Los elementos de relleno se pueden utilizar en el tanque de desorción del método al igual que en la columna de desorción auxiliar (columna post-desorción). Debe observarse que diferentes tipos de columna y modelos del elemento de relleno existen que se adecuan al método.

40 [0084] Según una séptima forma de realización, además un motor eléctrico, una turbina de vapor o una turbina de gas pueden alternativamente ser usados en el método para suministrar la energía de transmisión para los compresores de gas. En el método según la invención, se requiere ventajosamente la operación continua de los compresores de gas. En el método, además de un motor eléctrico, los compresores de gas también pueden ser conducidos asistidos por una turbina de vapor o una turbina de gas, en cuyo caso la presión del vapor a través de la turbina puede reducir el consumo de electricidad directo del compresor. En diferentes modelos de turbocompresor, tal como el turbocompresor IHI, este es seleccionable como una opción en el compresor. Además, la presión del vapor, la energía de presión de gas se puede utilizar en compresores como una fuente de energía.

[0085] Según una octava forma de realización, un ventilador de gases de combustión se puede utilizar en el método en alimentar gases de combustión al proceso. Utilizando un ventilador de gases de combustión separado, el gas de combustión se puede suministrar a una presión excesiva ligera a un limpiador de gases de combustión, posiblemente requerido en el proceso y además al lado de succión del compresor de gas vía la columna de desorción auxiliar. De esta manera, es posible mejorar el suministro de gas al compresor de gas en su lado de succión.

55 [0086] Según una novena forma de realización, un clasificador por centrifugación se puede utilizar en el método según la invención para separar dióxido de carbono de antes del suministro a la columna de absorción. Si un sinnúmero de gases de escape con una concentración baja de CO₂ se procesa, esta es una situación difícil con respecto al rendimiento del método. En tales casos, la cantidad de gas puede estar disminuida con un

clasificador por centrifugación durante la presurización de gas suministrado a la columna de absorción. La clasificación del gas de soporte de dióxido de carbono suministrado con el proceso de separación por centrifugación se basa en el peso medio molecular más alto de dióxido de carbono en comparación con el resto del gas, debido a que, el dióxido de carbono se sitúa más en el área de borde del cilindro en el campo por centrifugación del clasificador por centrifugación en comparación con los otros gases. Del clasificador por centrifugación, el gas de dióxido de carbono se retira de la circunferencia externa del cilindro a una concentración más alta de CO2 en comparación con su concentración en el flujo de gas suministrado al clasificador por centrifugación y el resto del gas se retira del clasificador por centrifugación a un contenido de dióxido de carbono inferior a través del centro del mismo. Al mismo tiempo, el clasificador por centrifugación en su mayoría presuriza solo el gas rico en dióxido de carbono descargado de la circunferencia externa, a una alta presión, que es suficiente también para la presurización del gas de suministro requerido en la columna de absorción. La energía rotacional de gas descargada del centro del clasificador por centrifugación puede ser parcialmente reutilizada en el movimiento rotacional del clasificador, después del cual el gas con un contenido de dióxido de carbono inferior se puede enviar de nuevo a una chimenea, por ejemplo. Por ejemplo, el clasificador por centrifugación puede asemejarse a uno mostrado en la figura 5 en la publicación Harazim, 2006 [Harazim Wolfgang 2006. Method for separating gas mixtures and a gas centrifuge for carrying out the method. United States Patent Application US2006/0230933 A1, 19.10.2006. 9 p.].

5

10

15

20

25

35

40

45

[0087] La separación de dióxido de carbono del flujo de gas realizada de esta manera con el clasificador por centrifugación reduce la cantidad total de gas para ser presurizada y suministrada a la columna de absorción, mejorando así la economía de energía del método. Además, aumentando el contenido de dióxido de carbono de gas suministrado a la columna de absorción, realizado de esta manera, aumenta el índice de absorción de dióxido de carbono, según la presión parcial de dióxido de carbono en el aqua en circulación.

[0088] Según una décima forma de realización, un vacío puede ser ventajosamente generado en el paso de desorción del método con un paso de por ventilador de conducto bypass o a gran escala, con un turboventilador. Dependiendo del modelo, estos pueden conseguir vacíos superiores a 0.4 atm. En aplicaciones a pequeña escala, la compresión de gas puede llevarse a cabo en el paso de absorción con un compresor silencioso ventajosamente y de espiral libre de aceite. Los turbocompresores comerciales pueden solo encontrarse para flujos de gas superiores a 10 m³/min, que trabajan más eficazmente en la compresión.

[0089] Según una forma de realización decimo primera, las bombas centrífugas en serie, las alturas de entrega de las cuales son suficientes para una bomba de agua en circulación que alimenta la columna de absorción, se puede utilizar el bombeo a pequeña escala de agua en circulación (de 20 l/min hacia arriba). A gran escala, muchos otros modelos de bomba centrífuga están disponibles también, las alturas de suministro son suficientes para esta solicitud.

[0090] Con relación a su consumo de energía, el método es competitivo con métodos corrientes; sin embargo, el método de absorción de agua es libre de productos químicos, lo que mejora las posibilidades de comercialización de absorción de agua. Las aplicaciones más potenciales de la invención son:

- ajuste de pH en los procesos de la industria química y la industria de pulpa y de papel; por ejemplo, flotación de carbono y minerales de sulfuro para ajuste de pH, y como gas de flotación,
- uso de dióxido de carbono en el tratamiento térmico en lugar de o junto con vapor para aumentar la resistencia de madera contra la humedad y biodegradación,
- como gas reactivo en la modificación y protección de madera con gases pirolíticos,
- separación de dióxido de carbono de gases de combustión de biocombustión para nutriente adicional en invernaderos.
- en la producción de papel, para suministrar dióxido de carbono requerido en la producción de carbonato cálcico precipitado (PCC) de gases de combustión, que hace posible dejar el dióxido de carbono adquirido y la tecnología de amina. El método es integrable para nueva fabricación en línea PCC, donde el dióxido de carbono está directamente suministrado al flujo de tubo de suspensión de fibra como líquido saturado o gas.

REIVINDICACIONES

- 1. Método para recuperar dióxido de carbono de gas, en cuyo método:
 - se presuriza dicho gas (12),

5

10

15

35

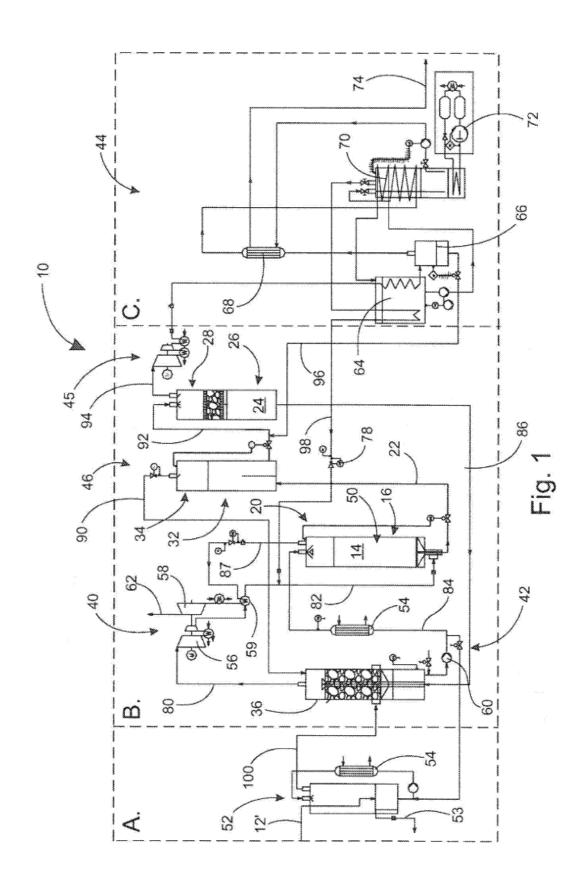
40

45

50

- se alimenta dicho gas (12) y agua presurizados usados como un solvente a una columna de absorción (14),
- se alimenta de agua recibida de la columna de absorción (14) y dióxido de carbono absorbido en esta a una columna de desorción (24) para recuperar dióxido de carbono del agua,
- se recircula aqua que sale de la columna de desorción (24) a la columna de absorción (14),
- se recupera el dióxido de carbono que sale de la columna de desorción (24),

caracterizado por el hecho de que, en el método,


- se presuriza dicho gas (12) suministrado a la columna de absorción (14) a 3 a 10 bares de presión absoluta, preferiblemente un mínimo de 4 bares,
- se alimenta al menos parte del gas (12) a una columna de desorción auxiliar (36) antes de la presurización del gas (12) y
- se envía agua (86) que sale de la columna de desorción (24) y el residuo de dióxido de carbono que permanece en el agua de nuevo a la columna de absorción (14) vía la columna de desorción auxiliar (36) y desorción del dióxido de carbono en la columna de desorción auxiliar (36) del agua en el gas (12).
- 20 2. Método según la reivindicación 1, **caracterizado por el hecho de que** el dióxido de carbono absorbido en el agua (22) recibido de la columna de absorción (14) se alimenta a un tanque de desorción preliminar (32) y el gas (90) que sale de ella se envía de nuevo a la columna de desorción auxiliar (36).
 - 3. Método según la reivindicación 1 o 2, **caracterizado por el hecho de que** el dióxido de carbono que sale de la columna de desorción (24) se licua y se destila para recuperación.
- 4. Método según cualquiera de las reivindicaciones 1 a 3, **caracterizado por el hecho de que** la presión aplicada en el tanque de desorción preliminar (32) está a un nivel de 1.3 a 4.0 bares, preferiblemente 1.5 a 2.5 bares.
 - 5. Método según cualquiera de las reivindicaciones 1 a 4, **caracterizado por el hecho de que** la presión aplicada en la columna de desorción (24) está a un nivel de 0.2 a 1.1 bares, preferiblemente 0.3 a 0.8 bares.
- 30 6. Método según cualquiera de las reivindicaciones 1 a 5, **caracterizado por el hecho de que** la presión aplicada en la columna de desorción auxiliar está a un nivel de 0.9 a 1.2 bares, preferiblemente de 1.0 a 1.1 bares.
 - 7. Método según cualquiera de las reivindicaciones 1 a 6, **caracterizado por el hecho de que** el gas descargado de la parte superior (20) de la columna de absorción (14) se suministra a una turbina de gas (58) para la recuperación de la energía de presión.
 - 8. Método según cualquiera de las reivindicaciones 1 a 7, **caracterizado por el hecho de que** un catalizador metálico se usa en el método en los pasos de absorción y desorción para acelerar la hidratación, donde el catalizador metálico usado es uno de los siguientes: Pd, Pt, Rh Ni o Ru.
 - 9. Sistema para recuperación de dióxido de carbono de gas, el sistema (10) incluye:
 - una columna de absorción (14) para absorción de dióxido de carbono en el agua,
 - medio de presurización (40) para la presurización de dicho gas (12) alimentado en la columna de absorción (14),
 - una columna de desorción (24) para la desorción de dióxido de carbono de agua que ha absorbido dióxido de carbono en la columna de absorción (14).
 - medio (42) para la recirculación del agua (86) que viene de la columna de desorción (24) de nuevo a la columna de absorción (14).
 - medio de recuperación (44) para recuperar dióxido de carbono situado abajo de la columna de desorción (24),

caracterizado por el hecho de que el sistema (10) además incluye una columna de desorción auxiliar (36) situada arriba de los medios de presurización (40) para la separación de gases de agua (86) y recirculación del dióxido de carbono absorbido en el agua (86) que sale de la columna de desorción (24) de nuevo al gas (12) alimentado en la columna de absorción (14).

- 10. Sistema según la reivindicación 9, **caracterizado por el hecho de que** el sistema incluye un tanque de desorción preliminar (32) situado abajo de la columna de absorción (14) para separar dióxido de carbono de agua absorbido en el agua y medio de recirculación (46) para la recirculación del gas (90) separado en el tanque de desorción preliminar (32) de nuevo a la columna de desorción auxiliar (36).
- 5 11. Sistema según la reivindicación 9 o 10, **caracterizado por el hecho de que** la columna de absorción (14) es una columna de burbuja (50).
 - 12. Sistema según cualquiera de las reivindicaciones 9 a 11, **caracterizado por el hecho de que** el sistema (10) incluye un tanque de condensación y limpieza (52) situado aguas arriba de la columna de desorción auxiliar (36) para la limpieza de dicho gas (12) alimentado en la columna de desorción auxiliar (36) de componentes de gas fácilmente disolubles que permanecen en el agua de limpieza.
 - 13. Sistema según cualquiera de las reivindicaciones 9 a 12, **caracterizado por el hecho de que** dicho tanque de desorción preliminar (32) y columna de desorción (24) se localizan en un nivel más alto que las partes superiores de la columna de absorción (14) y la columna de desorción auxiliar (36) para la utilización de la diferencia de presión hidrostática.
- 15 14. Sistema según cualquiera de las reivindicaciones 9 a 13, **caracterizado por el hecho de que** la columna de absorción (14) incluye placas de deflector de gas para prevenir turbulencias.
 - 15. Sistema según cualquiera de las reivindicaciones 10 a 14, **caracterizado por el hecho de que** el tanque de desorción preliminar (32) incluye una pared de división para eliminar burbujas del agua de circulación antes de suministrar el agua de circulación (92) a la columna de desorción (24).

20

10

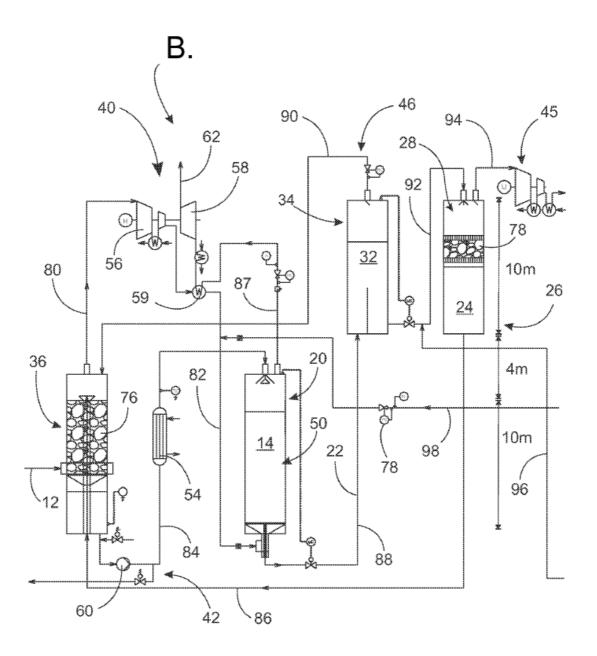


Fig. 2

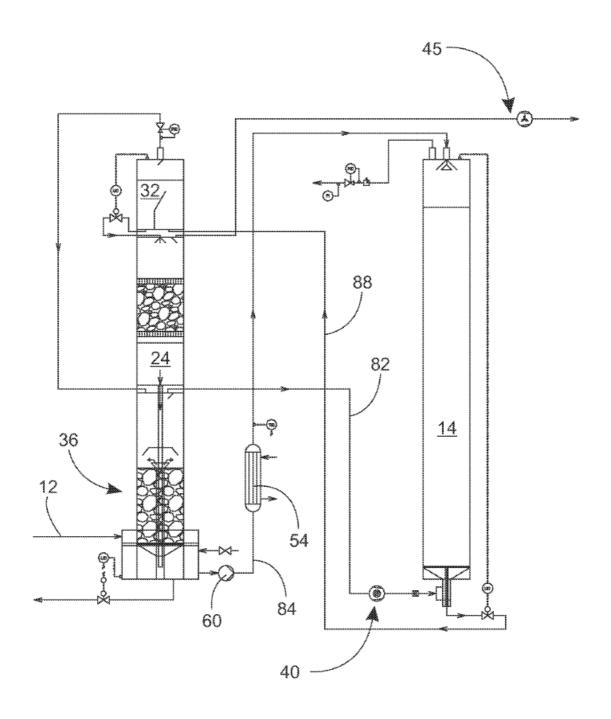


Fig. 3