

OFICINA ESPAÑOLA DE PATENTES Y MARCAS

ESPAÑA

11) Número de publicación: 2 671 493

61 Int. Cl.:

C07K 14/33 (2006.01) **A61K 38/00** (2006.01)

(12)

TRADUCCIÓN DE PATENTE EUROPEA

T3

(86) Fecha de presentación y número de la solicitud internacional: 19.12.2014 PCT/EP2014/078732

(87) Fecha y número de publicación internacional: 02.07.2015 WO15097087

96 Fecha de presentación y número de la solicitud europea: 19.12.2014 E 14821171 (7)

(97) Fecha y número de publicación de la concesión europea: 21.02.2018 EP 3087089

(54) Título: Tratamiento con multiproteasa para el dolor crónico

(30) Prioridad:

23.12.2013 US 201361920053 P 03.04.2014 US 201414244162

Fecha de publicación y mención en BOPI de la traducción de la patente: **06.06.2018**

(73) Titular/es:

DUBLIN CITY UNIVERSITY (100.0%) Collins Avenue Glasnevin Dublin 9, IE

(72) Inventor/es:

DOLLY, JAMES OLIVER; WANG, JIAFU y MENG, JIANGHUI

(74) Agente/Representante:

PONS ARIÑO, Ángel

DESCRIPCIÓN

Tratamiento con multiproteasa para el dolor crónico

5 La presente divulgación señala procedimientos y composiciones que implican derivados de neurotoxina clostrídica que tienen una capacidad mejorada para interrumpir la exocitosis de mediadores del dolor y/o de la inflamación de los nociceptores o inductores de la inflamación, impidiendo así el dolor.

ANTECEDENTES

10

Los serotipos A-G de la neurotoxina botulínica (BoNT), producidos por *Clostridium botulinum*, son los venenos más potentes conocidos debido al bloqueo específico de la liberación de acetilcolina de los nervios periféricos al escindir proteolíticamente las proteínas SNARE (receptores de proteína de unión a NSF soluble) que median la fusión de la vesícula sináptica con la membrana celular y, por lo tanto, son esenciales para la exocitosis estimulada por Ca²⁺ de neurotransmisores, péptidos del dolor y citocinas de la neurona.

La capacidad de las toxinas clostrídicas, como por ejemplo, neurotoxinas botulínicas (BoNT) (incluyendo los serotipos BoNT de BoNT/A, BoNT/B, BoNT/C1, BoNT/D, BoNT/E, BoNT/F y BoNT/G, así como la toxina tetánica TeTx) para inhibir la transmisión neuronal se explotan en una amplia variedad de aplicaciones terapéuticas y 20 cosméticas, véase p. ej., Ward AB and Barnes MP, CLINICAL USERS OF BOTULINUM TOXINS (Cambridge University Press, Cambridge 2007). Como ejemplo, el agente BOTOX® derivado de BoNT/A se ha utilizado en uno o más países para cada una de las siguientes indicaciones: acalasia, espasticidad en el adulto, fisura anal, dolor de espalda, blefaroespasmo, bruxismo, distonía cervical, temblor esencial, líneas glabelares o líneas faciales hipercinéticas, dolor de cabeza, espasmo hemifacial, hiperactividad de la vejiga, hiperhidrosis, parálisis cerebral juvenil, esclerosis múltiple, trastornos mioclónicos, líneas labiales nasales, disfonía espasmódica, estrabismo y trastorno del nervio VII.

Existen toxinas clostrídicas distintas de las toxinas derivadas de C. botulinum y C. tetanus; estos incluyen, sin limitación, las toxinas de C. perfringins, C. septicum, C. difficile, C. spiroforme, C. butyricum y C. barati. Sin embargo, 30 se entenderá que en esta memoria descriptiva, una referencia a "toxinas clostrídicas" o una referencia similar, se refiere a las neurotoxinas de C. subtipos botulinum y C. subtipos tetani, menos que se indique específicamente o contextualmente lo contrario.

Además, las terapias de toxina clostrídica se utilizan o se han propuesto para el tratamiento de afecciones que 35 incluyen, sin limitación,

- a) trastornos neuromusculares, véase p. ej., Kei Roger Aoki et al.., Method for Treating Neuromuscular Disorders and Conditions with Botulinum Toxin Types A and B, patente de EE. UU. N.º 6.872.397 (Mar. 29, 2005); Rhett M. Schiffman, Methods for Treating Uterine Disorders, publicación de patente de EE. UU. N.º 2004/0175399 (Sep. 9, 2004); Richard L. Barron, Methods for Treating Ulcers and Gastroesophageal Reflux Disease, publicación de patente de EE. UU. N.º2004/0086531 (May. 7, 2004); y Kei Roger Aoki, et al., Method for Treating Dystonia with Botulinum Toxin C to G, patente de EE. UU. N.º 6.319.505 (Nov. 20, 2001);
- b) trastornos oculares, véase p. ej., Eric R. First, Methods and Compositions for Treating Eye Disorders, 45 lapublicación de patente de EE. UU. N.º2004/0234532 (Nov. 25, 2004); Kei Roger Aoki et al., Botulinum Toxin Treatment for Blepharospasm, lapublicación de patente de EE. UU. N.º 2004/0151740 (Aug. 5, 2004); y Kei Roger Aoki et al., Botulinum Toxin Treatment for Strabismus, publicación de patente de EE. UU. N.º. 2004/0126396 (Jul. 1, 2004):
- 50 c) dolor, véase p. ej., Kei Roger Aoki et al., Pain Treatment by Peripheral Administration of a Neurotoxin, patente de EE. UU. N.º 6.869.610 (Mar. 22, 2005); Stephen Donovan, Clostridial Toxin Derivatives and Methods to Treat Pain, patente de EE. UU. N.º 6.641.820 (Nov. 4, 2003); Kei Roger Aoki, et al., Method for Treating Pain by Peripheral Administration of a Neurotoxin, patente de EE. UU. N.º 6.464.986 (Oct. 15, 2002); Kei Roger Aoki and Minglei Cui, Methods for Treating Pain, patente de EE. UU. N.º 6.113.915 (Sep. 5, 2000); Martin A. Voet, Methods for Treating
 55 Fibromyalgia, patente de EE. UU. N.º 6.623.742 (Sep. 23, 2003); Martin A. Voet, Botulinum Toxin Therapy for Fibromyalgia, publicación de la patente de EE. UU. N.º 2004/0062776 (Apr. 1, 2004); y Kei Roger Aoki et al., Botulinum Toxin Therapy for Lower Back Pain, publicación de la patente de EE. UU. N.º 2004/0037852 (Feb. 26, 2004);
- 60 d) lesiones musculares, véase p. ej., Gregory F. Brooks, Methods for Treating Muscle Injuries, patente de EE. UU.

N.º 6.423.319 (Jul. 23, 2002);

15

- e) dolor de cabeza, véase p. ej., Martin Voet, Methods for Treating Sinus Headache, patente de EE. UU. N.º 6.838.434 (Jan. 4, 2005); Kei Roger Aoki et al., Methods for Treating Tension Headache, patente de EE. UU. N.º 6.776.992 (Aug. 17, 2004); y Kei Roger Aoki et al., Method for Treating Headache, patente de EE. UU. N.º 6.458.365 (Oct. 1, 2002); William J. Binder, Method for Reduction of Migraine Headache Pain, patente de EE. UU. N.º 5.714.469 (Feb. 3, 1998);
- f) enfermedades cardiovasculares, véase p. ej., Gregory F. Brooks and Stephen Donovan, *Methods for Treating* 10 *Cardiovascular Diseases with Botulinum Toxin*, patente de EE. UU. N.º 6.767.544 (Jul. 27, 2004);
 - **e)** trastornos neurológicos, véase p. ej., Stephen Donovan, *Parkinson's Disease Treatment*, lapatente de EE. UU. N.º 6.620.415 (Sep. 16, 2003); y Stephen Donovan, *Method for Treating Parkinson's Disease with a Botulinum Toxin*, patente de EE. UU. N.º 6.306.403 (Oct. 23, 2001);
 - **g)** trastornos neuropsiquiátricos, véase p. ej., Stephen Donovan, *Botulinum Toxin Therapy for Neuropsychiatric Disorders*, publicación de patente de EE. UU. N.º 2004/0180061 (Sep. 16, 2004); y Steven Donovan, *Therapeutic Treatments for Neuropsychiatric Disorders*, publicación de patente de EE.UU N.º 2003/0211121 (Nov. 13, 2003);
- f) trastornos endocrinos, véase p. ej., Stephen Donovan, Method for Treating Endocrine Disorders, patente de EE. UU. N.º 6.827.931 (Dec. 7, 2004); Stephen Donovan, Method for Treating Thyroid Disorders with a Botulinum Toxin, patente de EE. UU. N.º 6740321 (May. 25, 2004); Kei Roger Aoki et al., Method for Treating a Cholinergic Influenced Sweat Gland, patente de EE. UU. N.º 6.683.049 (Jan. 27, 2004); Stephen Donovan, Neurotoxin Therapy for Diabetes, patente de EE. UU. N.º 6.416.765 (Jul. 9, 2002); Stephen Donovan, Methods for Treating a Pancreatic Disorder.
- 25 lapatente de EE. UU. N.º 6.337.075 (Jan. 8, 2002); Stephen Donovan, *Method for Treating a Pancreatic Disorder with a Neurotoxin,* lapatente de EE. UU. N.º 6.261.572 (Jul. 17, 2001); Stephen Donovan, *Methods for Treating Pancreatic Disorders,* patente de EE. UU. N.º 6.143.306 (Nov. 7, 2000);
- g) cánceres, véase p. ej., Stephen Donovan, Methods for Treating Bone Tumors, patente de EE. UU. N.º 6.565.870 (May 20, 2003); Stephen Donovan, Method for Treating Cancer with a Neurotoxin to Improve Patient Function, patente de EE. UU. N.º 6.368.605 (Apr. 9, 2002); Stephen Donovan, Method for Treating Cancer with a Neurotoxin, patente de EE. UU. N.º 6.139.845 (Oct. 31, 2000); y Mitchell F. Brin and Stephen Donovan, Methods for Treating Diverse Cancers, publicación de patente de EE. UU. N.º 2005/0031648 (Feb. 10, 2005);
- 35 **h)** trastornos óticos, véase p. ej., Stephen Donovan, *Neurotoxin Therapy for Inner Ear Disorders*, patente de EE. UU. N.º 6358926 (Mar. 19, 2002); y Stephen Donovan, *Method for Treating Otic Disorders*, patente de EE. UU. N.º 6265379 (Jul. 24, 2001);
- i) trastornos autonómicos, véase p. ej., Pankai J. Pasricha and Anthony N. Kalloo, Method for Treating 40 Gastrointestinal Muscle Disorders and Other Smooth Muscle Dysfunction, patente de EE. UU. N.º 5.437.291 (Aug. 1, 1995);
- j) así como otros trastornos, véase p. ej., William J. Binder, Method for Treatment of Skin Lesions Associated with Cutaneous Cell-proliferative Disorders, patente de EE. UU. N.º 5.670.484 (Sep. 23, 1997); Eric R. First, Application of Botulinum Toxin to the Management of Neurogenic Inflammatory Disorders, patente de EE. UU. N.º 6.063.768 (May 16, 2000); Marvin Schwartz and Brian J. Freund, Method to Reduce Hair Loss and Stimulate Hair Growth, patente de EE. UU. N.º 6.299.893 (Oct. 9, 2001); Jean D. A. Carruthers and Alastair Carruthers, Cosmetic Use of Botulinum Toxin for Treatment of Downturned Mouth, patente de EE. UU. N.º 6.358.917 (Mar. 19, 2002); Stephen Donovan, Use of a Clostridial Toxin to Reduce Appetite, publicación de patente de EE. UU. N.º 2004/40253274 (Dec. 16.
- 50 2004); y Howard I. Katz and Andrew M. Blumenfeld, *Botulinum Toxin Dental Therapies and Procedures*, publicación de patente de EE. UU. N.º 2004/0115139 (Jun. 17, 2004); Kei Roger Aoki, *et al., Treatment of Neuromuscular Disorders and Conditions with Different Botulinum*, la publicación de patente de EE. UU N.º 2002/0010138 (Jan. 24, 2002); y Kei Roger Aoki, *et al., Use of Botulinum Toxins for Treating Various Disorders and Conditions and Associated Pain*, publicación de patente de EE.UU N.º 2004/0013692 (Jan. 22, 2004).
- La Tabla 2, a continuación, proporciona las secuencias de aminoácidos de los isotipos de diversas toxinas clostrídicas relacionadas con botulina actualmente conocidas (BoNT y TeTX). Estas toxinas poseen un mínimo de aproximadamente el 35 % de identidad de aminoácidos entre sí y comparten la misma organización de dominio funcional general y la arquitectura estructural general. Las toxinas clostrídicas naturales se traducen cada una como 60 un polipéptido monocatenario de aproximadamente 150 kDa que posteriormente se divide por escisión proteolítica

dentro de un bucle disulfuro mediante una proteasa natural, como por ejemplo, una proteasa de toxina clostrídica endógena o una proteasa natural producida en el entorno. Este procesamiento postraduccional produce una molécula bicatenaria madura que comprende una cadena ligera (LC) de aproximadamente 50 kDa y una cadena pesada (HC) de aproximadamente 100 kDa que se mantienen juntas por un único enlace disulfuro entre cadenas e interacciones no covalentes.

Cada molécula de toxina clostrídica bicatenaria madura comprende tres dominios funcionalmente distintos: 1) un dominio enzimático localizado en la LC que incluye una región de metaloproteasa que contiene una actividad endopeptidasa dependiente de zinc que se dirige específicamente a una o más proteínas SNARE que median en la fusión de la vesícula sináptica con la membrana celular; 2) un dominio de translocación contenido dentro de la mitad amino terminal de la cadena H (denominado "H_N") que facilita la liberación de al menos la cadena LC de la toxina de un endosoma en el citoplasma de la célula diana; y 3) un dominio de unión encontrado dentro de la mitad carboxilo terminal de la cadena H (H_C) que determina la actividad de unión y la especificidad de unión de la toxina.

15 La H_C comprende subdominios H_{CN} y H_{CC} s (Las partes N y C-terminal de H_C, respectivamente). Ahora hay evidencia sustancial de que la mayoría o todas las toxinas BoNT/X se unen a una célula diana utilizando un "receptor dual", donde la parte H_C de la toxina que comprende los subdominios H_{CN} y H_{CC} se une a ciertos gangliósidos de superficie celular y un receptor de proteína (quizás glicosilado); la unión del receptor de proteína facilita la internalización de la toxina dentro de la célula. Por "X" se entiende cualquier serotipo de toxina botulínica. Aunque el término "BoNT/X" se usa generalmente para indicar subtipos de toxina botulínica, el término también puede incluir las regiones TeTX de los mismos. H_{CC} se une al complejo receptor localizado en la superficie de la célula diana.

Se entenderá que existen cepas o subtipos de cada serotipo de estas toxinas; estos pueden variar algo en sus secuencias de aminoácidos, particularmente (pero no exclusivamente) en regiones no críticas (denominadas regiones "variables") sin un cambio sustancial en la identidad o en la característica de actividad del dominio de toxina o toxina indicado.

En la Tabla 1 a continuación, se proporcionan los códigos de aminoácidos de una letra y tres letras estándares:

30 Tabla 1

Aminoácido	Código de tres letras	Código de una letra
alanina	Ala	Α
arginina	Arg	R
asparagina	Asn	N
ácido aspártico	Asp	D
asparagina o ácido aspártico	Asx	В
cisteína	Cys	С
ácido glutámico	Glu	E
glutamina	Gln	Q
glutamina o ácido glutámico	Glx	Z
glicina	Gly	G
histidina	His	Н
isoleucina	lle	I
leucina	Leu	L
lisina	Lys	K
metionina	Met	M
fenilalanina	Phe	F
prolina	Pro	Р
serina	Ser	S
treonina	Thr	Т
triptófano	Try	W
tirosina	Tyr	Υ
valina	Val	V

Tabla 2

Secuencias y regiones de referencia de toxinas clostrídicas (identificadas de la dirección de												
amino a carboxi, número de aminoácido a número de aminoácido)												
Toxina	SEQ ID NO:	LC	H _N	H _C								
BoNT/A	7	M1-K448	A449-K871	N872-L1296								
BoNT/B	8	M1-K441	A442-S858	E859-E1291								
BoNT/C1	9	M1-K449	T450-N866	N867-E1291								
BoNT/D	10	M1-R445	D446-N862	S863-E1276								
BoNT/E	11	M1-R422	K423-K845	R846-K1252								
BoNT/F	12	M1-K439	A440-K864	K865-E1274								
BoNT/G	13	M1-K446	S447-S863	N864-E1297								
TeNT	14	M1-A457	S458-V879	I880-D1315								

Los expertos en la técnica reconocerán que pueden existir variantes de toxina de subtipo clostrídica en la naturaleza, que tienen la variaciones en las secuencias de aminoácidos mostradas anteriormente (o en las secuencias de nucleótidos que codifican estas secuencias de aminoácidos). Como se usa en esta invención, el término "variante de dominio clostrídica natural" significa cualquier dominio clostrídico (endopeptidasa, translocación, y/o dominios de unión) producido por un proceso natural, que incluye, sin limitación, isoformas de dominio clostrídico producidas a partir de transcritos de splicing alternativo, isoformas de dominio clostrídico producidas por mutaciones espontáneas y subtipos de dominio clostrídico. Como se usa en esta invención, una variante de dominio clostrídico natural funciona sustancialmente de la misma manera que el dominio clostrídico de referencia en el que se basa la variante de dominio clostrídico natural y puede sustituirse por el dominio clostrídico de referencia en cualquier aspecto de la presente invención.

Una variante de dominio clostrídico natural puede sustituir uno o más aminoácidos, dos o más aminoácidos, tres o más aminoácidos, cuatro o más aminoácidos, cinco o más aminoácidos, diez o más aminoácidos, 20 o más aminoácidos, 30 o más aminoácidos, 40 o más aminoácidos, 50 o más aminoácidos o 100 o más aminoácidos del dominio clostrídico de referencia en el que se basa la variante del dominio clostrídico natural. Una variante de dominio clostrídico natural también puede sustituir al menos 10 aminoácidos contiguos, al menos 15 aminoácidos contiguos, al menos 20 aminoácidos contiguos o al menos 25 aminoácidos contiguos del dominio clostrídico de referencia en el que se basa la variante de dominio clostrídico natural, que posee al menos 50 % de identidad de aminoácidos, el 65 % de identidad de aminoácidos, el 75 % de identidad de aminoácidos, el 85 % de identidad de aminoácidos o el 95 % de identidad de aminoácidos en el que se basa la variante de dominio clostrídico natural, siempre que la actividad biológica o bioquímica del dominio clostrídico natural esté sustancialmente conservada. También se entenderá que las inserciones y deleciones de aminoácidos conservativas también pueden realizarse siempre que no se alteren sustancialmente la función característica y la identidad del dominio.

Debido a la degeneración del código genético, un experto en la técnica reconocerá que estas secuencias de aminoácidos pueden codificarse por un conjunto finito de diferentes moléculas de ADN que tienen diferentes, pero definidas, secuencias de nucleótidos. Por ejemplo, las secuencias de nucleótidos degeneradas que codifican un 30 péptido o proteína dados pueden tener diferentes codones adaptados o seleccionados para favorecer la expresión en una célula huésped particular. Usando esta información, se puede construir un marco de lectura de ácido nucleico abierto expresable para el ensamblaje de una molécula de ácido nucleico que comprende cualquier combinación de estas regiones que codifican dominio de aminoácido, solo o con secuencias de ácido nucleico adicionales, insertado en un vector de expresión adecuado y la expresión posterior dentro de una célula huésped 35 elegida. Por ejemplo, la publicación de patente internacional WO01/14570 divulga procedimientos para fabricar derivados y formas quiméricas e híbridas de neurotoxina clostrídica modificados o sin modificar recombinantes escindibles, monocatenarios usando dichos procedimientos. Entre las publicaciones adicionales que describen procedimientos para fabricar neurotoxinas recombinantes expresables y sus derivados se incluyen las patentes de EE.UU N.º 5.989.545; 6.203.794; 6.395.513; los números de publicaciones de los EE.UU U.S. 2003/0166238; U.S. 40 2002/169942; U.S. 2004/176299; U.S. 2004/126397; U.S. 2005/035730; U.S. 2005/068494; U.S. 2006/011966;las solicitudes de patente internacional WO95/32738; WO 99/55359; WO96/33273; WO98/07864; WO99/17806; WO98/07864; WO02/44199; WO02/40506, y el N.º de serie de la solicitud de patente 13/644,386, depositada el 4 de octubre de 2012.

45 El uso de técnicas de ADN recombinante permite la construcción de neurotoxinas clostrídicas modificadas que tienen propiedades funcionales diferentes o modificadas a partir de los subtipos y cepas de toxina naturales de las mismas.

Por ejemplo, alterando la secuencia de aminoácidos natural de la cadena ligera de la neurotoxina nativa y/o añadiendo un resto terapéutico diferente permite la construcción de proteínas de transporte diseñadas para transportar un agente terapéutico dentro de una neurona. Véase la Patente de Estados Unidos N.º 6.203.794.

5 Alterando el dominio dirigido (unión a célula) se permite que la toxina sea transportada dentro de células pancreáticas, como por ejemplo células acinares, impidiendo así la secreción de enzimas digestivas activadas por dichas células. Véase la patente de EE. UU. N.º 6.843.998, o neuronas aferentes sensoriales, impidiendo así la liberación de neurotransmisores, citocinas y péptidos del dolor y, por tanto, proporcionando alivio del dolor, véase la patente de EE. UU. N.º 6.395.513.

Además, patente de EE. UU. N.º 7.422.877 divulga la creación de derivados de neurotoxina quimérica que comprenden, por ejemplo, el dominio de unión y el dominio de translocación (o versiones modificadas de los mismos) de un subtipo de neurotoxina, por ejemplo, BoNT/A, y la región de cadena ligera de otro subtipo de neurotoxina, por ejemplo, BoNT/E. Se verá que dada la homología estructural general entre los subtipos de 15 neurotoxinas, cualquier combinación de los tres dominios de neurotoxinas clostrídicas básicos, se puede fabricar en una única cadena de aminoácidos (o en moléculas bicatenarias escindidas). Por lo tanto, por ejemplo, un dominio de unión de cualquiera de los subtipos de neurotoxina A, B, C1, D, E, F, G o TeTX puede combinarse independientemente con un dominio de translocación de los subtipos de neurotoxina A, B, C1, D, E, F, G o TeTX, y adicionalmente combinarse de forma independiente con un dominio endopeptidasa de cualquiera de los subtipos de 20 neurotoxina A, B, C1, D, E, F, G o TeTX. Esto puede hacerse, por ejemplo, mediante construcción y expresión

recombinantes y de una única cadena quimérica que se escinde posteriormente para producir la toxina bicatenaria, o mediante expresión separada de cadenas H y L únicas, que luego se combinan, por ejemplo, mediante la creación de un enlace disulfuro entre cadenas y posteriormente se purifica. Además, usando dichas técnicas, la actividad de varios dominios puede alterarse (por ejemplo, pueden introducirse mutaciones en un dominio LC para destruir la 25 actividad proteasa de la LC), o los dominios naturales pueden reemplazarse por otros restos, como se describe en otra parte de esta invención, donde, por ejemplo, el dominio HC de BoNT/A (o una parte del mismo) está mutado o

eliminado y se ha unido un ligando dirigido (TL).

Cuando se habla de los tres dominios de neurotoxina generales de cada subtipo de neurotoxina clostrídica (unión, 30 translocación y endopeptidasa), se entenderá que la investigación de la neurotoxina clostrídica es un campo bien desarrollado, y la correlación de las secuencias de aminoácidos que comprende cada uno de estos dominios con sus funciones es bien conocida. Se entenderá que la referencia a cada uno de estos términos ("dominio de translocación", "dominio de unión" y "proteasa", "endopeptidasa", "LC" o "cadena ligera") incluye los dominios correspondientes contenidos en cualquiera de los aminoácidos, secuencias ácidas de subtipos de neurotoxina 35 clostrídica enumeradas en la SEQ ID NO: 7-14 como se enumera en la Tabla 2, así como variantes modificadas de forma conservadora y optimizadas de estas secuencias o dominios dentro de estas secuencias.

Además, también se conoce la subdivisión de estos dominios generales en subdominios. Por ejemplo, la subdivisión del dominio de unión H_C en subdominios H_{CN} (la parte amino terminal del dominio, que corresponde 40 aproximadamente a los aminoácidos 871-1091 de BoNT/A) y H_{CC} (la parte carboxi terminal del dominio H_{C} , que corresponde aproximadamente a los aminoácidos 1092-1296 de BoNT/A) también es bien conocido. Véase, p. ej. Lacy DB and Stevens RC, Sequence Homology and Structural Analysis of the Clostridial Neurotoxins, 1999, J. Mol. Biol. 291:1091-1104. El subdominio H_{CN} está muy conservado entre los subtipos de toxina botulínica, sin embargo, se sabe poco sobre su función. El subdominio H_{CC} está menos conservado.

Además, se conocen las secuencias de nucleótidos y de aminoácidos de cada uno de estos dominios y subdominios y se han desvelado en esta memoria descriptiva, y por lo tanto se puede hacer uso de la presente divulgación en combinación con el conocimiento del código genético, las secuencias de nucleótidos que codifican una proteína a expresar. Sería, por supuesto, una cuestión de rutina para un experto en la materia a la vista de esta memoria 50 descriptiva, visualizar inmediatamente otras secuencias de nucleótidos que codifican los polipéptidos indicados. Además, debido a la redundancia del código genético, es posible un número finito de secuencias de nucleótidos para cada polipéptido. Además, está claro que pueden sintetizarse ácidos nucleicos que comprenden variantes modificadas conservadoramente de estas secuencias de nucleótidos (o partes únicas de ellas) en la región de homología que contienen no más del 10 %, 8 % o 5 % de diferencias de pares de bases de una referencia 55 secuencia.

Además, se entenderá que las secuencias de aminoácidos expuestas en la Tabla 2 y en otros lugares en esta memoria descriptiva o en la lista de secuencias asociada proporciona una divulgación completa de cualquiera y todas las secuencias de nucleótidos que codifican estas secuencias de aminoácidos y en las regiones indicadas de 60 los mismos. Una secuencia de nucleótidos que codifica un dominio endopeptidasa, dominio de translocación o dominio de unión (incluyendo cualquier subdominio) de un subtipo de neurotoxina dado puede tener respectivamente 60 % o más, o 65 % o más, o 70 % o más, o 75 % o más, u 80 % o más, u 85 % o más, o 90 % o más, o 95 % o más, o 100 % de identidad con cualquiera de dichas regiones de secuencia de aminoácidos de referencia enumeradas en la Tabla 2 o en otra parte.

Las neurotoxinas botulínicas se expresan mediante células clostrídicas que también producen una o más "proteínas asociadas a neurotoxina" que no son toxinas o NAP que se asocian no covalentemente con la neurotoxina para formar complejos de hemaglutinina, también conocidos como complejos progenitores. Estos NAP ayudan a la neurotoxina a resistir la degradación de la proteasa en el intestino cuando se ingiere en alimentos contaminados.

Las proteínas NAP incluyen tres proteínas (HA1, HA2 y HA3) de hemaglutinina (HA), y una proteína no hemaglutinina no tóxica (NTNH). Los tipos A2, E y F de BoNT no tienen los genes HA, y solo producen un complejo 12S (aproximadamente 300 kDa) que comprende BoNT y NTNH. "S" representa la unidad Svedberg, una unidad de velocidad de sedimentación centrífuga. Los tipos B, C y D producen complejos 12S y 16S (aproximadamente 500 kDa); el complejo 16S incluye BoNT, NTNH, HA1, HA2 y HA3. El tipo A1 tiene los complejos 12S y 16S más un complejo 19S de aproximadamente 900 kDA, que puede representar un dímero de complejos 16S.

En la actualidad, los complejos BoNT/A1 y B-hemaglutinina se han aprobado para dichos usos clínicos. Los beneficios terapéuticos del complejo BoNT/A1 son más persistentes que los de BoNT/B debido a que su proteasa 20 tiene una vida útil más larga en las neuronas.

Como se indicó anteriormente, BoNT consiste en un dominio de cadena ligera asociada a la proteasa (LC), que está unida a una cadena pesada (HC) a través de un únicos enlace covalente disulfuro y enlaces no covalentes adicionales. Un resto carboxi terminal (C-terminal) de HC (H_C) se une a sus aceptores específicos expresados en varios tipos de nervios, incluyendo las neuronas motoras, autonómicas y sensoriales. Cuando se une a una célula diana, la molécula de BoNT se transporta a las vesículas por endocitosis; la mitad amino terminal (N-terminal) de HC (H_N) forma un canal que permite que la LC se transloque desde vesículas de membrana de tipo "endosomal" hacia el citosol. Posteriormente, la LC escinde un sustrato de la proteína SNARE específico, destruyendo de este modo la capacidad de SNARE para mediar la fusión de vesículas y membranas y, por lo tanto, la liberación de 30 neurotransmisores, citocinas y péptidos del dolor de la célula.

Las LC de los diversos serotipos de BoNT son similares, pero no idénticos, y dos LC diferentes pueden escindir diferentes proteínas SNARE, o escindir la misma proteína SNARE de forma diferente. Por ejemplo, LC/A, LC/C y LC/E escinden la SNAP-25; LC/B, LC/D, LC/F y LC/G escinde la sinaptobrevina-2 (VAMP-2); adicionalmente, LC/C secinde la sintaxina, otra proteína SNARE que se ha informado que es necesaria para la división celular. La LC de TeTx escinde la VAMP-2. Las LC de cada serotipo dividen su sustrato en una posición única en la molécula.

Por ejemplo, la cadena ligera de BoNT/A (LC/A) elimina 9 aminoácidos del C-terminal de SNAP-25, mientras que la LC/E elimina otros residuos 17 C-terminales y, por tanto, ofrece un bloqueo más disruptivo de la neuroexocitosis mediante la desestabilización de complejos SNARE estables (Meng et al., 2009; Wang et al., 2011). Por ejemplo, la inhibición de la liberación de neurotransmisores por LC/A generalmente puede revertirse elevando la afluencia de Ca²⁺, pero no en el caso de LC/E, presumiblemente debido a la mayor destrucción del sustrato de SNAP-25. Sin embargo, a pesar de la mayor "robustez" de la actividad por LC/E, debido a que LC/E induce solo una parálisis neuromuscular transitoria corta, sus aplicaciones clínicas son limitadas.

Es altamente deseable para crear un agente terapéutico que tenga nuevas propiedades. Por ejemplo, los tratamientos en los que dos o más endopeptidasas de cadena ligera derivadas de más de un serotipo pueden combinarse en un derivado de BoNT o TeTx en el que cada cadena ligera está activa y reconoce una secuencia de aminoácidos diferente en su sustrato, la proteína SNARE puede diseñarse para afecciones como dolor crónico, 50 afecciones inflamatorias crónicas (incluida la artritis) y/o afecciones que implican la liberación de citocinas.

En un ejemplo, un agente terapéutico se diseña la combinación de la proteasa potente de LC/E combinada con la acción de larga duración de LC/A. Esto es particularmente importante para mejorar la eficacia de BoNT/A para el tratamiento del dolor crónico, incluyendo cefaleas tensionales/migrañas y enfermedades inflamatorias crónicas como 55 la artritis porque el complejo BoNT/A por sí solo es efectivo en algunos, pero no en todos, dichos pacientes. *Véase p. ej.*, Naumann M. et al. (2008) ASSESSMENT: BOTULINUM NEUROTOXIN IN THE TREATMENT OF AUTONOMIC DISORDERS AND PAIN (AN EVIDENCE-BASED REVIEW): REPORT OF THE THERAPEUTICS AND TECHNOLOGY ASSESSMENT SUBCOMMITTEE OF THE AMERICAN ACADEMY OF NEUROLOGY, Neurology 70:1707-1714. El bloqueo de la exocitosis de los factores asociados al dolor, como las proteínas del dolor 60 y las citocinas, puede ser útil para tratar el dolor crónico, el dolor neuropático y las afecciones inflamatorias.

BoNT/A no es capaz de bloquear la liberación exocitótica de péptidos estimulantes del dolor [p. ej., péptido relacionado con el gen calcitonina (CGRP) y la sustancia P] a partir de las neuronas sensoriales al ser provocada por la activación de TRPV1 (receptor de potencial transitorio Vallinoid 1), un canal de catión involucrado en la 5 señalización de la mayoría de las formas de dolor (Meng et al., 2007; Meng et al., 2009).

BoNT/E tampoco inhibe la liberación de CGRP y sustancia P en neuronas sensoriales mediada por TRPV1 estimulada por capsasina, debido a que su aceptor de superficie celular (proteína 2A de vesículas sinápticas glicosiladas (SVP2A) y SVP2B glicosilada) es escasa o está ausente en la neuronas sensoriales. Sin embargo, una proteína quimérica en la que el H_C (dominio de unión al receptor) de BoNT/E es reemplazado por su homólogo de BoNT/A es capaz de bloquear la liberación de estos péptidos mediadores del dolor, lo que indica que el receptor de superficie celular BoNT/A facilita la endocitosis y la administración de LC/E en fibras C nociceptivas.

Una vez dentro de la neurona, la proteasa LC/E, elimina 26 residuos de aminoácidos de la SNAP-25, evitando así la 15 formación de un complejo SNARE estable requerido para neuroexocitosis (Meng et al., 2009). Aunque la LC/A también escinde la SNAP-25, solo escinde 9 residuos de aminoácidos y el bloqueo de la actividad exocitótica es menos completa y estable.

Para hacer práctico explotar clínicamente una característica tan ventajosa de la proteasa LC/E, es deseable 20 extender considerablemente su duración de acción.

BREVE DESCRIPCIÓN DE LOS DIBUJOS

- La **Fig. 1** es un esquema para la creación de una neurotoxina compuesta creando una construcción génica que codifica una LC/E activa unida al resto LC/A N terminal de BoNT/A a través de un engarce, para generar neurotoxina compuesta LC/E- BoNT/A, que contiene dos proteasas activas.
- La **Fig. 2A** es una foto de electroforesis en SDS-PAGE que muestra la purificación de los marcados con His6 ("His6" desvelada como SEQ ID NO: 15) construcción de LC/E-BoNT/A mediante cromatografía de afinidad de metal inmovilizado (IMAC), usando resina Superflow de Talon® (fabricada por Clonetech Laboratories, Inc.), una resina de 30 agarosa cargada con Co²⁺ que tiene un alto grado de selectividad para la etiqueta His6 (SEQ ID NO: 15).
 - La **Fig. 2B** muestra la absorbancia y la conductividad frente al tiempo en un perfil de elución de fracciones de IMAC que contienen LC/E-BoNT/A posteriormente sometidas a cromatografía de intercambio catiónico.
- La **Fig. 3** es una fotografía de electroforesis en SDS-PAGE que muestra el tratamiento de LC/E-BoNT/A purificada con trombina biotinilada para crear toxina de doble cadena y eliminar la etiqueta His6 (SEQ ID NO: 15). Los símbolos + y respectivamente indican el tratamiento con o sin el agente ditiotreitol (DTT) para reducir el enlace disulfuro que une las cadenas LC/E-LC/A y HC/A.
 - La **Fig. 4** es una foto de bandas Western en la que se analizan diluciones en serie de BoNT/A (gel superior) y LC/E-BoNT/A (gel inferior) para determinar su capacidad para escindir la proteína SNARE SNAP-25 en neuronas granulares de cerebelo de rata cultivado (CGN).
- 40 La **Fig. 5** muestra la duración de la parálisis muscular en el músculo gastrocnemio inyectado con LC/E-BoNT/A, BoNT/E o BoNT/A, en el que la dosis máxima tolerada (TD_{máx}) se representa en función del tiempo en días.
 - La **Fig. 6A** es una foto de una banda Western en la que se incuban diluciones en serie de LC/E-BoNT/A con TGN de rata (neuronas ganglionares del trigémino) durante la noche, después se ensayaron los lisadosusando anticuerpos anti-SNAP-25 y anti-sintaxina para la capacidad de LC/E-BoNT/A para escindir la SNAP-25 (principalmente para
- 45 proporcionar el producto de escisión de la SNAP-25 truncada de 26 residuos producido por LC/E), pero sin sintaxina. La **Fig. 6B** es una curva de respuesta a la dosis por LC/E-BoNT/A que muestra a) la escisión de la SNAP-25 y b) la inhibición de la liberación de CGRP provocada por 60 mM KCl o c) la capsaicina en TGN de rata, y el fracaso de BoNT/A para reducir significativamente la liberación de CGRP provocada por la capsaicina en los TGN incubados con BoNT/A.
- 50 La **Fig. 7A** es una curva de la duración de la actividad antinociceptiva en un modelo de rata, la prueba de lesión nerviosa residual (SNI), en animales tratados con solución salina, BoNT/A o LC/E-BoNT/A, seguido de la colocación de la pata en una placa fría (4 °C) y midiendo el tiempo requerido para que la rata retire su pata de la placa, llevada a cabo desde 4 días antes de la cirugía hasta aproximadamente 21 días después de la cirugía.
- La **Fig. 7B** es una curva de la duración de la actividad antinociceptiva en un modelo de rata, la prueba de lesión nerviosa residual (SNI) en animales tratados con solución salina, BoNT/A o LC/E-BoNT/A, seguida de la medición de la alodinia inducida. por sensibilidad a la aplicación de filamentos von Frey calibrados en la superficie plantar de la pata trasera, llevada a cabo desde 4 días antes de la cirugía hasta aproximadamente 21 días después de la cirugía. La **Fig. 8A** es un esquema de un polipéptido de doble proteasa de la presente invención. Este polipéptido inactiva
- 60 extremo 5 terminal de BoNT/A a través de una secuencia de engarce (que codifica residuos "DI") para generar la

dos proteínas SNARE diferentes: VAMP por LC/B y SNAP-25 por LC/A. Un gen de LC/B sintético se fusiona con el

neurotoxina compuesta LC/B-BoNT/A. Este último también contiene dos secuencias de reconocimiento de trombina. La **Fig. 8B** es gel de SDS-PAGE teñido con azul de Coomassie que ilustra la purificación de LC/B-BoNT/A etiquetado con His₆ por IMAC, utilizando resina Superflow de Talon® (fabricada por Clonetech Laboratories, Inc.).

La **Fig. 8C** es SDS-PAGE de LC/B-BoNT/A purificada por IMAC después del tratamiento con trombina biotinilada 5 para crear toxina bicatenaria (DC). Los símbolos + y - respectivamente indican tratamiento con o sin el agente reductor ditiotreitol (DTT).

La **Fig. 8D** muestra una banda Western de un gel de SDS-PAGE en el que se incuban diluciones en serie de LC/B-BoNT/A con CGN de rata a 37 °C durante 24 h. Después se analizan los lisados utilizando anticuerpos anti-SNAP-25 y anti-VAMP 2 para controlar la escisión de la toxina de las dos proteínas SNARE SNAP-25 y VAMP 2. La sintaxina

10 1, probada por su anticuerpo específico y no reconocida por LC/B o LC/A, actuó como un control de carga interno. La Fig. 8E muestra curvas de dosis/respuesta para LC/B-BoNT/A que muestra la escisión de la SNAP-25 (rectángulo) y VAMP 2 (triángulo invertido) a concentraciones más altas de la construcción LC/B-BoNT/A.

La **Fig. 9** es otro ejemplo de la presente invención en la que un candidato terapéutico de escisión de múltiples SNARE tiene la capacidad de inactivar los tres tipos principales de proteínas SNARE: SNAP-25 y sintaxina 1-3 por 15 LC/C1 y VAMP1-3 por LC/D. DI es un enlazador entre LC/D and LC/C1.

La **Fig. 10A** muestra una curva de la duración de la actividad antinociceptiva en un modelo de rata, la prueba de lesión nerviosa residual (SNI), en animales tratados con solución salina, PK (LC/E-BoNT/A), o pregabalina seguida de la estimulación de la pata con filamentos de Von Frey y medición del umbral mecánico para que la rata retire su pata, llevada a cabo desde 4 días antes de la cirugía hasta aproximadamente 21 días después de la cirugía.

- 20 La Fig. 10A muestra una curva de la duración de la actividad antinociceptiva en un modelo de rata, la prueba de lesión nerviosa residual (SNI), en animales tratados con solución salina, PK (LC/ E-BoNT/A fabricada utilizando procesos adaptados para la producción conforme a GMP), o pregabalina seguida de de la colocación de la pata en un frío (4 °C) y midiendo el tiempo requerido para que la rata retire su pata de la placa, llevada a cabo desde 4 días antes de la cirugía hasta aproximadamente 21 días después de la cirugía.
- 25 La **Fig. 11** muestra una curva de la duración de la actividad antinociceptiva en un modelo de rata, la prueba de lesión nerviosa residual (SNI), en animales tratados con solución salina o PK (LC/E-BoNT/A fabricado usando procesos adaptados para la producción conforme a GMP) seguido de estimulando la pata con filamentos de Von Frey y midiendo el umbral mecánico para que la rata retire su pata, llevada a cabo desde 4 días antes de la cirugía hasta aproximadamente 36 días después de la cirugía. Se realizó una segunda inyección de PK para un grupo de 30 animales el día 10 después de la cirugía.

DESCRIPCIÓN DETALLADA DE LA INVENCIÓN

40

La presente invención está dirigida a composiciones relacionadas con moléculas de polipéptidos terapéuticos derivados de neurotoxinas botulínicas como se define en la reivindicación 1. En particular, las moléculas comprenden al menos dos dominios de endopeptidasa activa derivados de las cadenas ligeras de diferentes serotipos de BoNT. Muy preferentemente, los dominios de endopeptidasa reconocen y escinden diferentes secuencias de aminoácidos en su sustrato. Los dominios de endopeptidasa se derivan de dos o más serotipos de BoNT.

La capacidad de combinar una cadena pesada de una BoNT seleccionada con al menos dos dominios diferentes de la endopeptidasa de la cadena ligera clostrídica activa proporciona moléculas terapéuticas diseñadas que tienen propiedades mejoradas y personalizadas. Dichos tratamientos se ejemplifican primero por el diseño y la creación de una construcción génica que codifica un compuesto de dos serotipos de BoNT diferentes, y la expresión/purificación procariota de la proteína recombinante que muestra actividades biológicas sinérgicas y múltiples con aplicaciones terapéuticas.

El bloqueo de exocitosis mediante dichos tratamientos multi-endopeptidasas puede tener actividades aditivas como por ejemplo bloquear el tráfico de receptores sensibles al dolor a la superficie de las neuronas sensoriales. Por lo tanto, dichos tratamientos no solo inhiben la exocitosis de factores sinápticos solubles, sino que también pueden inhibir el tráfico de proteínas que son integrales a la membrana neural.

En ciertos tratamientos no ilustrados en la sección de Ejemplos el dominio de unión natural se puede alterar de manera que el tratamiento se redirija a un tipo de célula diferente o adicional. Por ejemplo, en la patente de EE. UU 55 6.776.990 Aoki et al., la región de unión de BoNT se reemplaza por colecistoquinina humana, o un análogo de la misma, dirigiendo así la toxina (que tiene solo una sola endopeptidasa) a células acinares pancreáticas. De forma similar, en el N.º de serie de la solicitud de patente n.º 13/644,386, depositada el 4 de octubre de 2012, un ligando dirigido reemplaza el dominio de unión natural en ciertos ejemplos. En un ejemplo de un gen que codifica el antagonista del receptor de interleuquina-1 humana (IL-1RA) se utiliza para reemplazar la región H_C natural o parte 60 de la misma, dirigiendo así las células secretoras de citocinas.

La molécula actualmente preferida que ejemplifica la invención se basa en un concepto novedoso para la creación de construcciones de ácido nucleico que expresan una proteína que comprende la LC de BoNT/E fusionada al resto de LC/A del recombinante activo de BoNT/A usando procedimientos de biología molecular. Esta molécula única 5 comprende LC/E-BoNT/A (que se muestra en la Fig. 1) que se une a aceptores BoNT /A neuronales (p. ej., la proteína 2 y/o gangliósidos vesiculares sinápticos), se somete a endocitosis mediada por aceptor y se transloca al citosol, donde la proteína SNARE SNAP-25 se escinde eficazmente, lo que da como resultado la inhibición de la liberación de neurotransmisores, citocinas y péptidos del dolor. Por "se escinde eficazmente" se entiende que la mayoría de las moléculas de SNAP-25 tienen un número suficiente de aminoácidos escindidos para impedir la reversión del bloqueo exocitótico al elevar el influjo de Ca²⁺, por ejemplo, como los resultados de la escisión de la SNAP-25 por LC/E.

Las construcciones mencionadas anteriormente se diseñan preferentemente para contener una corta secuencia que codifica los residuos de aminoácidos específicos, situados entre HC y LC de /A, que se reconocen y escinden selectivamente por una proteasa trombina, por lo la proteína recombinante monocatenaria (SC) obtenida se puede convertir a la forma bicatenaria (DC) *in vitro* por exposición a trombina.

Muy preferentemente, la presente invención se ejemplifica por LC/E vinculado al resto de LC/A de BoNT/A a través de un engarce de dos aminoácidos (por ejemplo, ácido-isoleucina aspártico; DI), proporcionando una novedosa toxina compuesta. En experimentos que implican la exposición de neuronas sensoriales a esta construcción, se demostró que las proteasas se liberaban dentro de las neuronas cultivadas, y la LC/E unida se estabilizó lo que, a su vez, produjo neuroparálisis de larga duración como LC/A.

Es importante destacar que, a diferencia de LC/A, esta molécula de acción prolongada produce principalmente productos proteolíticos característicos de LC/E y bloquea la liberación de los mediadores del dolor evocados por capsaicina de neuronas sensoriales cultivadas de rata, debido a la incapacidad de las SNAP-25 escindidas de /E de mediar en la liberación de neurotransmisores, citocinas y péptidos dolorosos. Además, esta proteína compuesta demostró ser más eficaz que la LC/A sola en la atenuación del comportamiento del dolor en un modelo de rata de dolor neuropático (nervio residual inducido por la lesión).

30

La molécula quimérica ejemplar ofrece por lo tanto grandes ventajas como un tratamiento para el tratamiento del dolor crónico: (a) un tiempo de vida muy deseable y muy prolongado de la proteasa E de acción transitoria, en virtud de los motivos de retención/estabilización del terminal nervioso presentes en la LC/A unida; (b) la escisión predominante de la SNAP-25 por la proteasa /E desestabiliza los complejos SNARE y (c) la inhibición de la exocitosis mediada por TRPV1 de los péptidos del dolor de las neuronas sensoriales. Estos nuevos hallazgos resaltan el potencial antinociceptivo de esta proteína de ingeniería patentada que exhibe efectos compuestos sinérgicos. Sus ventajas sobre la primera generación de BoNT naturales se han demostrado de manera concluyente y, por lo tanto, deberían conducir tratamientos mucho mejores.

40 Debido a que los BoNT nativos tienen solo un dominio de proteasa, el concepto innovador de la administración de un LC adicional -que o bien escinde el mismo sustrato en una posición diferente (u otro sustrato)- no solo aumenta significativamente sus propiedades inhibidoras, sino la influencia estabilizadora adicional de la LC/A original dando como resultado una acción sinérgica sorprendente, a saber, una duración del beneficio terapéutico muy extendida en comparación con la BoNT/E.

En otros ejemplos, un tratamiento multi-endopeptidasa diferente se ejemplifica por una construcción de una construcción de ácido nucleico LC/B-BoNT/A usando las técnicas empleadas para la construcción del ácido nucleico LC/E-BoNT/A. Al momento de la expresión del polipéptido codificado por el marco de lectura abierto LC/E-BoNT/A, y el corte de los sitios de trombina, la proteína resultante escinde tanto SNAP-25 como VAMP-2. La escisión de dos proteínas SNARE involucradas en el complejo ternario de fusión sináptica puede resultar más efectiva.

De acuerdo con un concepto general de la invención, se proporciona una composición que comprende un derivado de neurotoxina clostrídica, comprendiendo dicho derivado de neurotoxina clostrídica un polipéptido que incluye: un dominio de unión, un dominio de translocación, un primer dominio endopeptidasa, y un segundo dominio endopeptidasa, donde cada uno de dicho primer dominio endopeptidasa y dicho segundo dominio endopeptidasa tiene una actividad proteolítica selectiva contra, y reconoce un sitio de escisión diferente en, una proteína SNARE como se define en la reivindicación 1.

Los ácidos nucleicos que utilizan esta composición de concepto general también se contemplan como se define en 60 la reivindicación 10. Además, una composición terapéutica que comprende un derivado de neurotoxina clostrídica,

comprendiendo dicho derivado de neurotoxina clostrídica un polipéptido que incluye: un dominio de unión, un dominio de translocación, un primer dominio endopeptidasa, y un segundo dominio endopeptidasa, en donde cada uno de dicho primer dominio endopeptidasa y dicha segunda endopeptidasa dominio tiene una actividad proteolítica selectiva contra, y reconoce un sitio de escisión diferente en, una proteína SNARE para uso en el tratamiento del dolor crónico también se contempla como se define en la reivindicación 12. Adicionalmente, el uso de una composición terapéutica que comprende un derivado de neurotoxina clostrídica, comprendiendo dicho derivado de neurotoxina clostrídica un polipéptido que incluye: un dominio de unión, un dominio de translocación, un primer dominio endopeptidasa, y un segundo dominio endopeptidasa, en donde cada uno de dicho primer dominio endopeptidasa y dicho segundo dominio endopeptidasa tiene una actividad proteolítica selectiva contra, y reconoce un sitio de escisión diferente en, una proteína SNARE para la fabricación de un medicamento para el tratamiento del dolor crónico también se contempla como se define en la reivindicación 14.

De acuerdo con la invención, se proporciona una composición que comprende un derivado de neurotoxina clostrídica, comprendiendo dicho derivado de neurotoxina clostrídica un polipéptido que incluye:

15

- a) un dominio de unión,
- b) un dominio de translocación, y
- c) un primer dominio endopeptidasa derivado de una neurotoxina clostrídica subtipo BoNT/A, y
- d) un segundo dominio endopeptidasa derivado de una neurotoxina clostrídica subtipo BoNT/E;

n

en el que cada uno del primer dominio endopeptidasa y el segundo dominio endopeptidasa es proteolíticamente activo.

De acuerdo con otra realización de la invención, se proporciona un ácido nucleico que codifica un polipéptido que 25 comprende un derivado de neurotoxina clostrídica, comprendiendo dicho ácido nucleico un solo marco abierto de lectura que codifica, en la secuencia de carboxi terminal a amino terminal: un dominio de unión, una dominio de translocación, un primer dominio endopeptidasa derivado de una neurotoxina clostrídica subtipo BoNT/A, y un segundo dominio endopeptidasa derivado de una neurotoxina clostrídica subtipo BoNT/E; en el que cada uno del primer dominio endopeptidasa y el segundo dominio endopeptidasa es proteolíticamente activo.

30

De acuerdo con otra realización de la invención, se proporciona una composición terapéutica que comprende un derivado de neurotoxina clostrídica, comprendiendo dicho derivado de neurotoxina clostrídica un polipéptido que incluye: un dominio de unión, un dominio de translocación, un primer dominio endopeptidasa derivada de una neurotoxina clostrídica subtipo BoNT/A y un segundo dominio endopeptidasa derivado de una neurotoxina clostrídica subtipo BoNT/E para su uso en el tratamiento del dolor crónico; en el que cada uno del primer dominio endopeptidasa y el segundo dominio endopeptidasa es proteolíticamente activo. De acuerdo con otra realización más de la invención, se proporciona una composición terapéutica que comprende un derivado de neurotoxina clostrídica, comprendiendo dicho derivado de neurotoxina clostrídica un polipéptido que incluye: un dominio de unión, un dominio de translocación, un primer dominio endopeptidasa derivada de una neurotoxina clostrídica 40 subtipo BoNT/A, y un segundo dominio endopeptidasa derivado de una neurotoxina clostrídica subtipo BoNT/E para uso en la fabricación de un medicamento para el tratamiento del dolor crónico en el que cada uno del primer dominio endopeptidasa y el segundo dominio endopeptidasa es proteolíticamente activo.

EJEMPLOS

45

<u>Ejemplo 1</u>

Un gen BoNT/A sintético, que tiene sus codones optimizados para la expresión mejorada en *E. coli* y tres nucleótidos extra (AAA) que codifican residuo de Lys, se clonó en los sitios Nde I y Sal I de un vector pET29a de 50 expresión procariota (+) para producir pET-29a-BoNT/A.

Después, pET-29a-BoNT/A se modificó más para proporcionar la capacidad de corte específico controlado y eliminación simultánea de la etiqueta hexahistadina (His6 (SEQ ID NO: 15)) codificada por el vector de clonación pET-29a. Una secuencia de nucleótidos que codifica sitios de escisión de trombina se modificó por ingeniería genética en la región de ácido nucleico que codifica el bucle HC/LC de la toxina. Esto se muestra a continuación tanto en forma de ácido nucleico como de aminoácido, como SEQ ID NO: 1 y SEQ ID NO: 2, respectivamente.

Secuencia de nucleótidos del bucle BoNT/A modificada (SEQ ID NO: 1) y su secuencia de aminoácidos codificada (SEQ ID NO: 2)

60

Sitio de corte de la trombina

C V R G I I T S K T K S **L V P R G S** N K A L N D L C TGTGTCCGCGGTATTATCACCAGCAAAACCAAATCCTTGGTGCCCCGCGGCTCTAACAAGGCGCTCAATGATTTATGC

Además, se insertó un sitio de trombina adicional entre las regiones que codifica las regiones HC/A y His6 (SEQ ID NO: 15) de la proteína expresada. Esto se muestra a continuación tanto en forma de ácido nucleico como de 5 aminoácido, como SEQ ID NO: 3 y SEQ ID NO: 4, respectivamente.

Secuencia de nucleótidos fusionada al extremo 3'del gen BoNT/A (SEQ ID NO: 3) y su secuencia de aminoácidos codificada (SEQ ID NO: 4)

Sitio de corte de la trombina

1 SKL R G Q L E H H H H H H AAAGTCGACAAGCTTCTGGTACCGCGCGGCAGCAAACTGCAGCTCGAGCACCACCACCACCACCACTGA 1 Sal I HindIII Pst I Xho I

10

La secuencia de nucleótidos proporcionada anteriormente contiene las siguientes regiones, de izquierda a derecha, respectivamente:

- 15 a) nucleótidos 1-3: se insertó un codón AAA que codifica Lys adicional para proporcionar un sitio de escisión de tripsina opcional, para eliminar el His6 C-terminal (SEQ ID NO: 15);
 - b) subrayado único: Sitio de endonucleasa de restricción Sal I;
 - c) subrayado doble: Sitio de endonucleasa de restricción Hind III
 - d) negrita: secuencia de reconocimiento de trombina;
- 20 e) subrayado único: Sitio de endonucleasa de restricción Pst I;
 - f) subrayado doble: Sitio de endonucleasa de restricción Xho I;
 - q) nucleótidos 49-66: región de nucleótidos que codifica la etiqueta His6 (SEQ ID NO: 15). Las secuencias de aminoácidos alineadas se muestran por encima de los nucleótidos correspondientes. La flecha indica el sitio de escisión de la trombina, y el asterisco señala el codón de "terminación" traslacional.

Esta construcción de ácido nucleico, que comprende el marco de lectura abierto BoNT/A descrito anteriormente, y que comprende tanto la SEQ ID NO: 1 como la SEQ ID NO: 3, se denominó pET29a-BoNT/A-2T.

- Un producto PCR (amplicón) se amplificó a partir de un ácido nucleico sintético que codifica la proteasa LC/E 30 (residuos 1-411), y dos sitios de restricción (Nde I y Eco RV) se incorporaron durante la amplificación en el extremo 5' y 3' del amplicón de ácido nucleico, respectivamente. Este amplicón de PCR se digirió después con Nde I y Eco RV y se clonó en el vector pET29a(+), también digerido con Nde I y Eco RV. La construcción del vector intermedio resultante se denominó pET29a-LC/E.
- 35 La región del gen de BoNT del marco de lectura abierto "monocatenario" intacta mencionada anteriormente se amplificó por PCR usando pET29a-BoNT/A-2T como plantilla con un par de cebadores (un cebador reverso terminal del bacteriófago T7 y un cebador directo que contiene una secuencia de restricción EcoRV en dirección la secuencia codificadora 5' de BoNT/A). El amplicón de PCR resultante se digirió mediante las enzimas EcoRV y Xho I, se purificó y se insertó en el plásmido pET29a-LC/E escindido con Eco RV y Xho I. Esta construcción final se denominó 40 pET29a-LC/E-BoNT/A, y el marco de lectura de ácido nucleico abierto se divulga como SEQ ID NO: 5, mientras que la secuencia de aminoácidos correspondiente se divulga en esta invención como SEQ ID NO: 6.

Ejemplo 2

45 Para la expresión de LC/E-BoNT/A, la construcción de la secuencia verificada se transformó en la cepa de E. coli

BL21 (DE3), y al expresar la proteína diana se indujo usando medio de autoinducción de Studier (Studier, F.W., 41 Protein Expr. Purif. 207 (2005)). La purificación parcial (~60%) de la proteína etiquetada de His6 (SEQ ID NO: 15) en el lisado de bacterias se logró con el cromatógrafo de afinidad de metal inmovilizado (Co²⁺) (IMAC), usando resina Superflow de Talon. Una proteína principal de Mr~200 kDa se eluye por imidazol mayor que o igual a 50 mM; esto se demuestra en la **Fig. 2A**, que muestra SDS-PAGE y tinción con azul de Coomassie del gel. Los carriles de gel son los siguientes: Carril 1: lisado limpio antes de la aplicación a la columna IMAC; Carril 2: fracción de flujo de columna IMAC; Carril 3: fracción de lavado de columna IMAC; Carriles 4-9, fracciones eluidas usando imidazol de la columna IMAC.

10 Las fracciones eluidas de IMAC extraído eran un intercambio de tampón en tampón de 0,02 M de fosfato de sodio (pH 6,5), y después se purificó adicionalmente mediante la carga en una columna de intercambio catiónico UNO-S1, seguido de lavado con NaCl hasta 150 mM, y después la elución con un gradiente de NaCl; la toxina se eluyó con concentraciones de NaCl iguales o superiores a 220 mM. La Fig. 2B muestra el perfil de elución (absorbancia a 280 nm) del polipéptido monocatenario LC/E-BoNT/A en función del tiempo, con el aumento de la conductividad del 15 gradiente de NaCl superpuesto. La flecha muestra la ubicación del pico de absorbancia que contiene LC/E-BoNT/A.

Ejemplo 3

Después del intercambio del tampón de la toxina intacta eluida en 25 mM de HEPES/145 mM NaC (pH 7,4), la proteína monocatenaria purificada ("SC") se almacenó a -80 °C, y se tomaron alícuotas para el análisis SDS-PAGE. La **Fig. 3** muestra los resultados de reducir (+) y no reducir (-) SDS-PAGE y el análisis de inmunotransferencia tipo Western del polipéptido purificado, confirmando que esta proteína purificada se expresó en una forma SC, como lo revela una banda única que migra con un peso molecular aparente de aproximadamente 200 kDa. Esta banda se observó en ausencia o presencia de agente reductor. Véase p. ej. los carriles SC (-) y SC (+) de la fotografía del gel teñido con Coomassie Brilliant Blue de la **Fig. 3**.

El corte de este polipéptido SC se intentó por incubación con trombina biotinilada (1 unidad/mg de proteína) a 22 °C durante 3 horas; la proteasa trombina se elimina después tratando la muestra con agarosa estreptavidina. Aparece una banda que tiene un peso molecular aparente de aproximadamente 100 KDa después del tratamiento con trombina de la proteína en muestras procesadas en un gel de SDS-PAGE en condiciones reductoras; la banda de ~200 KDa no se ve en estas condiciones, pero está presente en geles ejecutados en condiciones no reductoras, mientras que la banda de ~100 KDa está ausente en estas últimas muestras. Véase p. ej. los carriles DC (-) y DC (+) de la fotografía del gel teñido con Coomassie Brilliant Blue de la **Fig. 3**.

- 35 La banda de ~100 KDa se cree que representa tanto las cadenas LC/E-LC/A como HC/A, que tienen tamaños similares. Las identidades de los polipéptidos en esta banda se confirman mediante inmunotransferencia tipo Western de geles de SDS-PAGE ejecutados en LC/E-BoNT/A cortado y sin cortar usando anticuerpos específicos contra cada uno de los polipéptidos monocatenarios postulados LC/E y BoNT/A.
- 40 Como se muestra en la Fig. 3, la muestra cortada continúa migrando a ~200 kDa en ausencia de agente reductor, lo que indica que había formado el enlace disulfuro entre cadenas entre LC/E-LC/A y HC/A, y persiste, en todas las muestras como se muestra en los carriles de las bandas Western marcadas (-) y desarrolladas usando anticuerpos anti-LC/E o anti-BoNT/A. Por lo tanto, la SDS-PAGE y la inmunotransferencia tipo Western en condiciones reductoras y no reductoras resaltan el corte específico en la región del bucle que se produce sin degradación de la toxina compuesta. Una ligera diferencia en la movilidad de la proteína no cortada y cortada se debe a la eliminación de la etiqueta His6 (SEQ ID NO: 15) en las muestras tratadas con trombina; esto se confirmó usando un anticuerpo específico contra esta etiqueta. Véase la banda Western usando el anticuerpo anti-His6 (SEQ ID NO: 15) de la Fig. 3, en el que la etiqueta His6 (SEQ ID NO: 15) es indetectable. Por lo tanto, este experimento también demostró que la trombina proteasa puede cortar simultáneamente la toxina entre los residuos de cisteína unidos del enlace 50 disulfuro entre el HC y el primer LC, y eliminar la etiqueta His6 (SEQ ID NO: 15).

Ejemplo 4

LC/E-BoNT/A y BoNT/A producidos recombinantemente fueron cada uno incubados durante la noche a concentraciones diluidas serie de 10 veces de 0,01 pM a 1000 pM de toxina con neuronas cultivadas de gránulos cerebelosos de rata (CGN). Estas células se disocian del cerebelo de ratas de 7-8 días y se suspenden a aproximadamente 1x10⁶/ml en 3 partes de medio de Eagle basal y 1 parte de HEPES-NaOH 40 mM, pH 7,3, KCl 78,4 mM, 37,6. D-glucosa mM, CaCl₂ 2,8 mM, MgSO₄ 1,6 mM y NaH₂PO₄ 1,0 mM, así como 1 suplemento de N2, L-glutamina 1 mM, penicilina 60 unidades/ml, estreptomicina 60 μg/ml y 2 % (v/v) de suero de caballo dializado. Se 60 agrega una alícuota (1 ml) de esta suspensión celular a cada pocillo recubierto con poli-D-lisina de 16 mm de

diámetro (es decir formato de 24 pocillos) y se agrega citosina- β -D-arabinofuranosida (40 μ M) después del cultivo durante 20-24 h en 5 % (v/v) de CO₂; las neuronas se mantienen por reemplazo cada 10 días con el mismo medio recién preparado. Cuando se especifica, las neuronas se exponen a BoNT/A o LC/E-BoNT/A (0,2 μ m esterilizadas por filtración) en medio de cultivo durante 24 h.

Después de 24 h de incubación con la proteína BoNT/A o LC/E-BoNT/A, las células se recogen y se someten a SDS-PAGE e inmunotransferencia tipo Western usando un anticuerpo anti-SNAP-25 que reconoce la SNAP-25 intacta, así como la SNAP-25 escindida por LC/A como la SNAP-25 escindida por LC/E. La sintaxina 1 de la proteína SNARE se usó como un control de carga interno positivo.

Se realizó la inmunotransferencia tipo Western usando anticuerpo anti-SNAP-25. Como se puede ver en la **Fig. 4**, LC/E-BoNT/A fue casi tan activo como BoNT/A en la escisión de la SNAP-25 intacta, produciéndose una escisión significativa a concentraciones de toxina superiores a 1 pM en cada caso. Notablemente, como se puede observar, el tratamiento de CGN con LC/E-BoNT/A también proporciona un producto de escisión de LC/A cuando se utiliza por debajo de aproximadamente 1 pM de toxina. Este producto de escisión ("SNAP-25_A") parece escindirse sustancialmente además en el producto de escisión de LC/E ("SNAP-25_E") por la proteasa LC/E coadministrada cuando las concentraciones de la toxina LC/E-BoNT/A se elevan por encima de aproximadamente 0,01 nM (**Fig. 4**). Estos resultados sugieren que el dominio de translocación de cadena pesada BoNT/A es capaz de administrar la proteasas LC/A y LC/E unidas covalentemente al citosol de CGN, donde las proteasas permanecen activas para escindir SNAP-25, inactivando total o parcialmente la proteína SNARE.

Ejemplo 5

La neurotoxicidad específica de LC/E-BoNT/A se determina por inyección intraperitoneal en ratones de la manera descrita en Maisey, E. A., et al., 177 EUR. J. BIOCHEM. 683-691(1988). La cantidad más baja de toxina que mata al 50 % de los ratones en 4 días se define como una dosis letal mínima (mLD50). La actividad específica de las toxinas se puede expresar como el número de mLD50 en unidades/mg de toxina.

La mLD50 de la preparación de LC/E-BoNT/A se observa que es 0,7 x 10⁸. Esta actividad específica se encuentra 30 entre la observada para BoNT/E recombinante (0,4 x 10⁸) y la observada para BoNT/A recombinante (2 x 10⁸). Se evaluó la duración de la acción neuroparalítica *in vivo* usando un ensayo de puntuación de abducción digital en ratones (DAS), descrito en, p. ej., Aoki, KR, 39 TOXICON 1815-1820 (2001).

La LC/E-BoNT/A recombinante se inyecta en el músculo gastrocnemio de ratón a una dosis de 0,5 unidades de la mLD₅₀, que es la dosis máxima tolerada que puede administrarse a animales de experimentación, sin producir síntomas sistémicos. Esta dosis de LC/E-BONT/A causó parálisis durante aproximadamente 27 días; similar al efecto inducido por 6 unidades de BoNT/A nativa; véase la **Fig. 5**. La acción de larga duración de la proteína LC/E-BONT/A en comparación con la BoNT/E aparentemente se debe a la capacidad del resto de la LC/A en la proteína de fusión para estabilizar el resto de la LC/E unido; BoNT/E solo proporciona una parálisis mucho más corta que 40 otras toxinas; véase la comparación de BoNT/E frente a LC/E-BoNT/A en la **Fig. 5**.

Ejemplo 6

Se examinó el potencial antinociceptivo de la proteína LC/E-BONT/A utilizando neuronas ganglionares del trigémino (TGN). Estas células son un buen modelo para este experimento debido a su implicación en la propagación del dolor y al hecho de que estas células en cultivo proporcionan un buen modelo para investigar la liberación de péptidos del dolor (CGRP, SP) activados por diferentes estímulos; véase p. ej., Bacccaglini and Hogan, 80 PROC NATL ACAD SCI U.S.A. 594-598 (1983). La capsaicina, aislada de los chiles, activa el TRPV1, que se expresa principalmente en la fibra C de las neuronas sensoriales. Por lo tanto, la capacidad de la toxina compuesta para bloquear la liberación de CGRP provocada por su agonista, la capsaicina, debería ser una buena indicación de su actividad inhibidora.

BoNT/A solo elimina 9 residuos de aminoácidos desde el extremo C terminal de la proteína SNARE SNAP-25 (el producto de escisión de SNAP-25 truncado en /A), y no afecta a la exocitosis de CGRP provocada por la capsaicina en las TGN. Por el contrario, la eliminación de 17 residuos adicionales por la proteasa LC/E (que da como resultado el producto de escisión de SNAP-25 truncado en /E) bloquea esta liberación de CGRP estimulada por capsaicina; véase p. ej., Meng et al., 29 J NEUROSCI 4981-4992 (2009).

Dado que el producto de escisión de la SNAP-25 principal de la toxina de acción prolongada, LC/E-BoNT/A, es el producto de escisión de SNAP-25 truncado en /E, en lugar del producto de escisión de SNAP-25 truncado en /A en 60 los CGN (véase la **Fig. 4**), se espera que LC/E-BoNT/A bloqueará la liberación del péptido del dolor CGRP.

Brevemente, las TGN se extraen de ratas Wistar de 5 días postnatales después de haber sido profundamente anestesiadas con una inyección intraperitoneal de Dolethal (50 mg/kg de peso corporal). El tejido se coloca en medio L15 helado y después se lava dos veces en CMF-HBSS estéril helada antes de la centrifugación a 170 g durante 1 5 minuto. Después de trocear el tejido en piezas pequeñas y pasarlas a través de pipetas Falcon de 10 ml prerrecubiertas con medio L15, el téjido se incuba con agitación a 37 °C durante 30 minutos en una mezcla 1:1 de solución salina balanceada de Hanks exenta de calcio y magnesio (CMF-HBSS) que contiene 2,4 U/ml de dispasa II y 1 mg/ml de colagenasa I. Después, la suspensión se tritura suavemente a través de pipetas Falcon de 10 ml prerrecubiertas con medio L15 hasta que estén turbias, antes de añadir 1 mg/ml de DNasa I durante 15 minutos.

Después de la centrifugación a 170 q durante 5 minutos, el sedimento celular se suspendió y se lavó tres veces en medio de cultivo [solución F12 de Ham (Sigma-Aldrich, St. Louis, MO) que contiene 10 % (v/v) de suero fetal bovino (FBS) inactivado por calor, 100 UI/ml de penicilina y 100 μg/ml de estreptomicina]. Las células se siembran en placas de 24 pocillos prerrecubiertas con poli-L-lisina (0,1 mg/ml) y laminina (20 µg/ml) en medio F12 suplementado 15 con factor de crecimiento nervioso (NGF) (50 ng/ml) y se mantienen en una incubadora de CO2 a 37 °C. Después de 24 horas (y todos los días a partir de entonces), el sobrenadante de cultivo se reemplaza por medio de cultivo nuevo que contiene el agente antimitótico citosina-β-D-arabinofuranosida (10 μM).

Después de la incubación durante la noche de kas TGN de rata a 37 °C con diluciones en serie de LC/E-BoNT/A, la 20 extensión de la escisión se monitoriza mediante SDS-PAGE seguida de inmunotransferencia tipo Western usando un anticuerpo anti SNAP-25-anticuerpo capaz de unirse a intactos, así como productos truncados en A y truncados en E.

Como se muestra en la Fig. 6A, LC/E-BoNT/A da una escisión dependiente de la dosis de la SNAP-25 con 25 principalmente productos de escisión SNAP-25 truncados en /E.

Además, como se esperaba, los bloques de toxina compuestos de la liberación de CGRP por las TGN evocada por 60 mM KCl o capsaicina en una manera dependiente de la dosis (Fig. 6B). La liberación de CGRP dependiente de Ca²⁺ se estimula mediante tratamiento con 60 mM KCl en HBS (balanceado isotónicamente con NaCl). Para la 30 estimulación con capsaicina, se prepararon soluciones madre (1 mM) en etanol o dimetilsulfóxido, respectivamente, y se diluyeron en BR-HBS a las concentraciones requeridas. En todos los casos, la concentración final del vehículo se mantiene en 0,1 %; esto también se incluye en BR-HBS cuando se mide el eflujo basal.

Las células se estimularon con K⁺ o capsaicina y se monitorizó la liberación de CGRP durante 30 min. Para 35 determinar las cantidades de CGRP liberados, se añadió 0,1 ml de muestra a placas de 96 pocillos recubiertas con un anticuerpo monoclonal contra CGRP, y se realizó inmunoensayo enzimático siguiendo las instrucciones para el kit.

Los resultados muestran la capacidad del polipéptido LC/E-BoNT/A para inhibir la liberación de péptidos del dolor desde grandes vesículas de núcleo denso, mientras que el tratamiento celular similar con BoNT/A no pudo inhibir la liberación de CGRP de la activación del canal de cationes TRPV1. Véase la Fig. 6B.

Ejemplo 7

45 La actividad antinociceptiva de LC/E-BoNT/A se evaluó en un modelo de rata de persistente dolor neuropático periférico, a saber, el ensayo de lesión nerviosa residual (SNI). Este modelo se basa en la observación de que prácticamente todo el dolor neuropático (excepto el caso especial del dolor del miembro fantasma, causado por una lesión completa por amputación) es el resultado de una lesión nerviosa parcial. Estos dolores neuropáticos incluyen neuropatía diabética, neuralgia posherpética, neuropatías tóxicas, neuropatías por compresión y traumatismo, y se 50 caracterizan por lancinante espontáneo, dolor ardiente y dolor tipo shock, así como hipersensibilidad al dolor que incluye alodinia táctil, hiperalgesia por pinchazo e hiperpatía.

La cirugía de SNI se realiza en ratas adultas anestesiadas (como por ejemplo ratas Spague-Dawley), e implica la ligadura y transección de dos de las tres ramas distales terminales del nervio ciático (los nervios tibiales y peroneos 55 comunes), que dejan la tercera rama (el nervio sural) intacta; véase Decosterd, I. & Woolf, C.J., 87 PAIN 580-587 (2000). Este modelo tiene la ventaja de ser técnicamente fácil de realizar y está sujeto a una variabilidad mínima en el grado de daño producido.

Las toxinas se inyectan en el lado plantar (palma) de la extremidad posterior distal. Las dosis máximas intraplantares 60 de LC/E-BoNT/A y BoNT/A (sin afectar la función locomotora) se encuentran entre 75 y 15 unidades/Kg de LD50 en ratón, respectivamente. Las ratas con SNI muestran un comportamiento similar al dolor neuropático de larga duración en contraste con las ratas de control simulado (que están sujetas a la exposición del nervio ciático sin ninguna lesión).

5 Los dos modelos de dolor neuropático son pruebas de alodinia al frío y la alodinia mecánica. En la primera prueba, la de la hipersensibilidad al frío, la pata operada se pone en contacto con una placa fría a 4 °C, y la duración de la retirada de la pata se registra en varios momentos, como se indica en la **Fig. 7A.** Como una medida de la modulación de hipersensibilidad al frío, los valores postratamiento se expresan como un porcentaje de los valores de pretratamiento.

Como muestra la **Fig. 7A**, la hipersensibilidad al frío se reduce eficientemente por LC/E-BoNT/A durante 2 semanas después del tratamiento (P <0,001 en comparación con el tratado con solución salina), en particular para los primeros 10 días. El efecto antinociceptivo de LC/E-BoNT/A es significativamente mayor que el inducido por BoNT/A (P <0,05 a los 5 y 7 días después de la inyección). No se observa alodinia inducida por el frío en los controles simulados, ya sea que se administre toxina o solución salina.

En la segunda prueba, la alodinia mecánica se mide colocando al animal en una rejilla de alambre elevado, y la estimulación de la superficie plantar de la pata tratada con un conjunto de filamentos von Frey para determinar la cantidad de estimulación sensorial que se puede tolerar antes de dolor (indicado por una rápida retirada de la pata).

20 Los filamentos Von Frey (o monofilamentos) están calibrados para proporcionar una escala aproximadamente logarítmica de la fuerza real y una escala lineal de intensidad percibida. El umbral mecánico se expresa como el 50 % del promedio de gramos mínimos de fuerza necesarios para provocar la retirada de la pata.

Como se muestra en la **Fig. 7B**, los umbrales mecánicos se reducen drásticamente por la lesión del nervio (comparación de los controles simulados con las ratas SNI a las que solamente se dio solución salina). Es alentador que LC/E-BoNT/A comience a revertir esta hipersensibilidad mecánica dentro de los 2 días posteriores a la inyección, y se observa un efecto analgésico máximo a los 7 días después del tratamiento. Se registraron umbrales mecánicos significativamente más altos que las ratas tratadas con solución salina de 3 a 10 días después de la inyección (P<0,001 frente a la solución salina). Además, aunque el tratamiento con BoNT/A induce un aumento 30 modesto de los umbrales mecánicos posteriores a la lesión, se encuentra que LC/E-BoNT/A es significativamente más eficaz (P <0.05).

Ni la toxina ni la solución salina afectaron el comportamiento del dolor provocado por el frío y los estímulos mecánicos cuando se administraron a animales simulados (**Fig. 7A, B**). LC/ E-BoNT/A demostró ser mucho más eficaz que BoNT/A para reducir la duración de la retirada del frío (**Fig. 7A**) y, especialmente, aumentar el umbral de retirada mecánica (**Fig. 7B**). Es importante destacar que la inyección de LC/E-BoNT/A en ratas con SNI normalizó la sensibilidad al frío y los estímulos mecánicos en los días 3 y 7 a valores similares a los de todos los controles simulados. En resumen, LC/E-BoNT/A induce potentes efectos antinociceptivos en modelos de rata de dolor neuropático crónico.

Ejemplo 8

40

55

El marco de lectura abierto de la neurotoxina sintética compuesta LC/E-BoNT/A y sus aminoácidos codificados (SEQ ID NO: 5 and 6, respectivamente) proporcionado a continuación contiene las siguientes regiones, respectivamente (identificadas con respecto a los residuos de nucleótidos): residuos 1-1233, LC/E; residuos 1240-5130, BoNT/A. La secuencia de ADN que comprende los nucleótidos (1234-1239) se introduce como un engarce y asegura el marco de lectura apropiado. Las secuencias de aminoácidos alineadas se muestran por encima de los nucleótidos correspondientes. Se inserta una secuencia de reconocimiento de trombina proteasa en el bucle entre LC/A y HN/A; de manera similar, se modificó por ingeniería genética otro sitio de trombina para que tuviera una secuencia de secisión en el sitio carboxi del gen BoNT/A; estos permiten el corte y eliminación simultáneos del His6 C-terminal (SEQ ID NO: 15).

La secuencia del gen compuesto de neurotoxina (LC / E-BoNT / A) y sus aminoácidos codificados (SEQ ID NO: 5 Y 6)

M P K T N S F N Y N D P V N D R T T L Y T K F G G C Q

ATGCCTAAAATCAATTCGTTCAACTATAATCACCCGGTTAACCATCGCACGATCCTGTATATCAAGCCAGGTGGATGTCA 60

F F Y K S F N T M K N T W T T P E R N V T G D T P Q D

81 AGAATTTTATAAATCATTCAACATCATGAAAAATTTTTGGATTATCCCGGAACGCAACGCTCAAG 16

161	F H P P T S 5 K K G D S S Y Y D F N Y 5 Q S D F E K ATTICAUUUGCUGAUCTUUCTGAAAAATOGCGACGTCUTACTATGACCCGAATTATTACAATCGGAAGAAAAA	240
241	D R F L K L V M K L E N R L N N N L S G G L L E E L GATOGTTOCCOGGGGCATCACTTACTTCAGGAATT	320
321	S K A N P Y L G N D N T P D N Q F E I G D A 3 A V E I ATCTARASCHARTCGGTATCTGGGAACGATACCCGGGAAAATCCGCGAATCCACATTGGGAAGCGATGGGAAA	400
401	K F S N G S Q D I L D P N V I I M G A E F D L F E I TTABATT DAGCAACGGCAGTCAAGATATTOTTCTCCCCAAACGTGATTATCATGGGGGCTGAACCTGATCTTTCGGAAACT	480
431	N S S N I S L R N N Y M P S N H G F G S I A I V I F S AATACTCCCACTTACACCCCACACACCACACCACACCA	560
561	F F Y S F R F N D N S M N E F I Q D F A I T L M H F L ACCIGAATATATTTTCGTTTTAACGACAAGAGGAATAATTTTTCCAAGACGCCCTGACTTTGATCCAAGA	640
641	L U S L H G L Y G A K G L F T K Y U L U Q K Q N P L TGATOCATAGCTTGCACGGCCTGTATGGCGCTAAAGGCATCACTACCAAATACACGATTACGCAAAAACAAAATCCCTTA	720
721	I TONDER GOT NOTE ESTED TO FOR TO TO THE STATE OF A CATCACCAACACCCCCCCCAACACCACCACACCACA	800
301	S N D D Y T N L L A D Y K K D A S K L S K V Q V S N P ANGCANCGACATCTATACCANTCTGTTAGCAGATTATAAGAAAATCGCCAGCAATTATCTAAAGTTCAGGTCAGCAATC	880
331	TO NERVED VER ARY SILDER DAS SITYS V NOGCOT STANDOCCOUNTAINS AND A SIGNATION OF STANDARD CONTRACTOR STANDARD S	960
961	I N K F N D I F K K L Y S F T E F D L A T K F Q V K C ATTAATAAACCTAACGATATCCAAAAAATCATATTCCTTCACCGAACCTGGCCACCACAAATCCAGGTCAAATG	1040
1041	R Q T Y I C Q Y K Y F K L S N L D N D S I Y N D S E G TOG LOAAACCTALA FEGGOSAALACAAA FA FTTAAACTGAGCAACCTGCTTAATGA FTCCALCTACAA FATTAGTGAAG	1120
1121	Y N I N K L K V K F R G Q N A N L N F R I I T F I T GTTACAATATTAATAACCTGAAAGTTAACTTCGTGGGCAAAATGCGAACCTGAACCCCGCATCATTACACCCATCACG	1200
1201	G R G L V K K I I R F D I M P F V N K Q F N Y K D P V G00031633116610AAAAAA11A110331116A1A10A1603611031AAAAAAAAAA	1280
1281	N G V D I A Y I K I P N A G Q M Q P V K A F K I H N K CAACGGCGTGAAATGCATTTAAAATCCATAACA	1360
1361	I W V I B E R D F B T N P E E G D L N P B B E A K Q AAATTEGSTGATCCCEEASCGCEATACSTTCACEAACCCGGAAGAAGGAGATTTAAACCCCACCGCCTGAGGCTAAACAG	1440
1441	V P V S Y Y D S T Y L S T D N E K D N Y L K C V I K L GUCCGGGTGTCTTACTATGATAGCACATACCTGAGATGAAAAGGACAACTACCTGAAAAGGTGTTACCAAAACT	1520
1521	FERSON STOLGRAY LLTSON VROUS FWOOSS GTT GAG GATTT GAG GAG	1600
1601	TO DOTE INVIDOTNO INVIQUED SYRSE GCACCATCGATAGAGAGTGAAGTGACTGACACCAACTGCATCGATGCATCACGGTGATGGGACTAGGGGTGAAG	1680
1681	E L N L V I I G F S A D I I Q F E C K S F G H E V L X GAGCITAACCIGGTAATGAITGGGGGGGGGGGGGGGATTAACGAATGTAAAATGTTTTGGGGGGGATGTGAA	1760
1761	L T R N G Y S S F Q Y L R F S F D F T F G F E E S L E TOTSACEOSGAATGSCTATSGATCGACGCASTATATTCGTTTTTCTCCAGATTTCACATTTGGATTTGAAGAAAGCCTCG	1840
1841	V D T X P L G G A G K P A T D P A V T G A H E L I H AAGITGA TAGGAACCCTC FTTTAGGCGCGGGAAAA FTGGCGACGGACCCAGGGGTGACCTTGGCACATGAACTTATTCAT	1920
1921	A G E R L Y O I A I N E N R V F K V N T N A Y Y E M S GCCSGCATCGCTTGTATGGAATCGCCATTAACCCGAACCGTGTTTTCAAGGTGAATACGAACGCGTATTACGAGATGTC	2000
	G TEV S FEFT R T F G G E D A K F T D S T G E N T	

2001	$\tt GGGCTTAGAAGTGTCCTTTGAAGAACTGCGCACGTTTGGCGGTCATGATGCAAAATTTATTGATAGTCTGCAAGAAAACG$	2080
2081	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	2160
2161	A S L Q Y M K N V F K E K Y L L S E D T S G K F S V D GCTAGCTTACAATATATGAAAAACGTTTTCAAAGAAAAATACCTCCTTAGCGAAGACACTTCCGGCAAATTCTCTGTCGA	2240
2241	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	2320
2321	N R K T Y L N F D K A V F K I N I V P K V N Y T I Y TGAATCGGAAAACCTATCTGAACTTCGATAAAGCCGTCTTTAAGATCAACATCGTACCGAAAGTTAACTACACCATCTAT	2400
2401	D G F N L R N T N L A A N F N G Q N T E I N N M N F T GATGGCTTTAATCTGCGCAATACGAATCTGGCGCGAACTTTAACGGCCAGAACACGAAATCAACAACATGAACTTTAC	2480
2481	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	2560
	Sitio de corte de la trombina	
2561	L V P R G S N K A L N D L C I K V N N W D L F F S P CCTTGGTGCCCGCGGGTCTAACAAGGCGCTCAATGATTTATGCATCAAGGTGAACAACTGGGACTTGTTTTCTCTCCA	2640
2641	S E D N F T N D L N K G E E I T S D T N I E A A E E N TCTGAAGATAATTTTACTAACGACTTGAACAAAGGAGAGAAATTACTTCCGATACCAACATCGAAGCAGCGGAAGAGAA	2720
2721	ISLDLIQQYYLTFNFDNEPENISIENLTATTAGCCTGGATCTTATTACCTGACCTTAATTTTGATAACGAGCCTGAGAACATTTCCATTGAGAATC	2800
2801	S S D I I G Q L E L M P N I E R F P N G K K Y E L D TCAGCTCTGACATCATCGGCCAGCTGGAACTGATGCCGAATATCGAACGCTTTCCTAATGGAAAGAAA	2880
2881	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	2960
2961	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	3040
3041	A M F L G W V E Q L V Y D F T D E T S E V S T T D K CGGCGATGTTTTTGGGATGGGGGGGAACAACTGGTATATGACTTTACGGATGAAACTTCTGAAGTCTCGACCACCGACAAA	3120
3121	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	3200
3201	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	3280
3281	L V S Y I A N K V L T V Q T I D N A L S K R N E K W CGCTGGTGTCCTATATCGCAAACAAAGTTTTGACTGTCCAGACGATCGACAACGCGCTCAGTAAACGTAACGAAAAATGG	3360
3361	D E V Y K Y I V T N W L A K V N T Q I D L I R K K M K GATGAGGTGTATAAGTATATTGTTACCAACTGGCTCGCTAAAGTAAACACCCAGATTGACCTGATTCGCAAGAAGATGAA	3440
3441	E A L E N Q A E A T K A I I N Y Q Y N Q Y T E E E K N AGAAGCCTGGAAAACCAAGCAGAAGCCAAAGCTATTATCAACTATCAATATAACCAGTACACAGAGGAAGAAAAGA	3520
3521	N I N F N I D D L S S K L N E S I N K A M I N I N K ATAACATCAACATCAACATCAACATCTATCTCAAAGCTGAATGAA	3600
3601	F L N Q C S V S Y L M N S M I P Y G V K R L E D F D A TTCTTGAACCAATGTAGTGTCAGCTATCTGATGACCCATATGGTGTGAAACGTCTGGAAGACTTCGATGC	3680
3681	S L K D A L L K Y I Y D N R G T L I G Q V D R L K D K AAGCCTTAAAGATGCCCTTCTGAAGTATTTTACGATAATCGCGGAACTCTTATTGGCCAAGTGGATCGCTTAAAAGATA	3760
3761	V N N T L S T D I P F Q L S K Y V D N Q R L L S T F AAGTCAACACGCTGAGTACAGACATCCCTTTTCAGCTGTCTAAATATGTGGACAATCAGCGCCTGCTGTCCACGTTT	3840

3841	${\tt ACGGAATACATCAAAAACATCATCAACACTAGTATTCTGAACTTGCGTTACGAGAGTAACCATCTGATTGAT$	3920
3921	Y A S K I N I G S K V N F D P I D K N Q I Q L F N L E TTACGCATCTAAAATCAACATCGGCTCGAAGGTGAACTTCGATCCTATCGACAAAAACCAGATTCAACTTAG	4000
4001	S S K I E V I L K N A I V Y N S M Y E N F S T S F W AATCGTCAAAGATTGAAGTTATCTTAAAAAATGCGATTGTATAATTCAATGTACGAAAATTCTCTACGAGCTTTTGG	4080
4081	I R I P K Y F N S I S L N N E Y T I I N C M E N N S G ATTCGTATTCCGAAATATTCAACAGTATCTCTTTAAACAACGAGTATACTATCATCAATTGTATGGAGAATAACAGCGG	4160
4161	W K V S L N Y G E I I W T L Q D T Q E I K Q R V V F K GTGGAAAGTGAGCCTTAACTATGGTGAAATCATCTGGACTCTGCAGGACACTCAAGAAATTAAACAACGCGTGGTGTTTA	4240
4241	Y S Q M I N I S D Y I N R W I F V T I T N N R L N N AATACTCACAGATTAACAACTGGATTATTAATTGGTGGATTTTTGTGACAATTACTAACAACTGGCTGAACAAC	4320
4321	S K I Y I N G R L I D Q K P I S N L G N I H A S N N I AGCAAAATTTACATTAACGGTCGCCTGATCGATCAGAAACCAATCAGTAATCTCGGTAACATTCACGCATCGAATAATAT	4400
4401	M F K L D G C R D T H R Y I W I K Y F N L F D K E L N CATGTTCAAACTGGATGGTTGCGCGACACGCACCGTTACATTTGGATCAAATACTTCAATTTATTCGACAAAGAACTCA	4480
4481	E K E I K D L Y D N Q S N S G I L K D F W G D Y L Q ACGAAAAGGAGATTAAGGATCTTATGACAATCAGTCTAATTCGGGTATTCTGAAAGACTTTTGGGGTGATTACCTTCAG	4560
4561	Y D K P Y Y M L N L Y D P N K Y V D V N N V G I R G Y TACGATAAACCGTATTATATGTTAAACTTATATGATCCGAATAAATA	4640
4641	M Y L K G P R G S V M T T N I Y L N S S L Y R G T K F TATGTATCTGAAAGGGCCGCGTGGCAGCGTGATGACCACTAACATTTACTTAAACTCCTCCTCTATCGCGGTACTAAAT	4720
4721	I I K K Y A S G N K D N I V R N N D R V Y I N V V TTATTATCAAGAAATATGCCTCTGGCAACAAGGACAATATCGTACGCAATAACGATCGCGTCTACATTAACGTGGTGGTG	4800
4801	K N K E Y R L A T N A S Q A G V E K I L S A L E I P D AAGAATAAAGAATATCGTCTGGCGACCAATGCTAGTCAGGCGGGGGGGG	4880
4881	V G N L S Q V V V M K S K N D Q G I T N K C K M N L Q TGTGGGTAATTATCCCAGGTGGTTGTGATGAAAAGTAAAATGACCAAGGGATCACCAATAAATGCAAAATGAATCTGC	4960
4961	D N N G N D I G F I G F H Q F N N I A K L V A S N W AAGATAACAACGGCAACGACATTGGTTTTATCGGCTTCCACCAATTCAATAATATCGCGAAACTGGTGGCCTCAAATTGG	5040
5041 5120	Y N R Q I E R S S R T L G C S W E F I P V D D G W G E TACAACCGTCAGATTGAGCGCAGCTCCGGCACTTTAGGCTGTGGGAGTTCATTCCGGTAGATGACGGTTGGGGAGA	
	Sitio de corte de la trombina	
5121	R P L K V D K L L V P R G S K L Q L E H H H H H H * ACGCCCATTGAAAGTCGACAAGCTTCTGGTACCGCGCGCG	5199

Este ejemplo de la presente invención aborda al menos dos problemas principales que presenta el estado de la técnica. En primer lugar, proporciona una quimera de BoNT de larga duración que ha ampliado el potencial 5 terapéutico antinociceptivo. En segundo lugar, proporciona una terapia terapéutica derivada de BoNT de larga duración con un potencial único para la terapia del dolor crónico.

El tratamiento del dolor crónico plantea un desafío importante para la asistencia sanitaria moderna porque quienes la padecen representan más del 20 % de la población adulta. Una proporción sustancial de la población no responde a los analgésicos de uso común. Además, el aumento de la dependencia y el abuso a fármacos relacionados con la profusión de opiáceos recetados, y la corta vida media de muchos analgésicos en la mayoría de los casos originalmente recetados para el dolor, hace que el uso de opiáceos y fármacos antiinflamatorios no esteroideos sean opciones poco atractivas.

15 Los usos terapéuticos de complejo BoNT/A resultaron beneficiosos para algunos, pero no todos los pacientes con

migraña, debido a una interferencia postulada con las vías del dolor. El fracaso de BoNT/A para atenuar la activación neuronal provocada por un péptido del dolor o la activación de TRPV1 de fibras C in situ y la incapacidad para bloquear la liberación de CGRP de neuronas cultivadas resalta que es esencial desarrollar formas duraderas y más ampliamente efectivas.

Una quimera de BoNT/A y BoNT/E derivada de BoNT entra en TGN con éxito, y da / E-como SNAP-25 productos de escisión que, a su vez, inhibe la liberación de mediadores del dolor; sin embargo, su corta duración de acción limita las aplicaciones clínicas.

10 La presente invención combina los dominios de al menos dos BoNT de diferentes serotipos juntos para producir nuevos tratamientos. Esta estrategia innovadora se puede usar para generar otros tratamientos quiméricos multicatenarios, que incluyen construcciones que comprenden LC múltiples de diferentes serotipos de BoNT para producir tratamientos que tienen las propiedades deseadas; por ejemplo, un tratamiento de toxina de escisión de múltiples SNARE (escisión de diferentes proteínas SNARE), que puede construirse, por ejemplo, uniendo LC/C1 a BoNT/A en lugar de LC/E.

Ejemplo 9

En otro ejemplo, se creó una construcción multi-endopeptidasa mediante la sustitución del gen LC/E en el ácido nucleico LC/E-BoNT/A con un gen LC/B sintético para crear un plásmido de codificación final LC/B-BoNT/A como un único marco de lectura abierto de una forma sustancialmente similar a la descrita anteriormente.

Para la expresión de LC/B-BoNT/A, la construcción nucleica de la secuencia verificada se transformó en la cepa de *E. coli* BL21(DE3), y la proteína resultante se expresó como se ha descrito previamente para LC/E-BoNT/A. Se logró la purificación parcial de la toxina etiquetada His₆ a partir del lisado limpio de bacterias usando una etapa de separación de afinidad IMAC, utilizando resina de SuperFlow de Talon. Se eluyó una proteína principal de Mr~200k con imidazol ≥150 mM; esto se demuestra en la **Fig. 8B**, que muestra SDS-PAGE en condiciones reductoras y de tinción con azul Coomassie del gel. Los carriles de gel son los siguientes: Carriles 1: lisado limpio antes de la aplicación a la columna IMAC; 2: fracción de flujo de columna IMAC; 3: fracción de lavado de columna IMAC; 4-8, 30 fracciones eluidas usando imidazol.

Se cambió el tampón del eluato IMAC extraído en HEPES 25 mM HEPES/145 mM NaCl (pH 7,4) y alícuotas analizadas por SDS-PAGE. La **Fig. 8C** muestra SDS-PAGE de la proteína purificada en la que alícuotas se sometieron a electroforesis en reducción (+) y no reducción (-). La electroforesis confirmó que la proteína realmente 35 se expresó en una forma monocatenaria ("SC"), como se revela por una banda principal que migra con un peso molecular aparente de aproximadamente 200 kDa. Esta banda se observó en ausencia o presencia de agente reductor. Véase p. ej. los carriles SC (-) y SC (+) del gel teñido con Coomassie Brilliant Blue en la **Fig. 8C**.

El corte de esta proteína monocatenaria (y la eliminación de la etiqueta His₆) se logró mediante la incubación de la 40 proteína con trombina biotinilada (1 unidad/mg de toxina) a 22 °C durante 3 h; después se elimina la trombina proteasa tratando la muestra con estreptavidina inmovilizada en agarosa. Dos bandas (no resueltas por SDS-PAGE debido a la similitud en la movilidad de las dos cadenas de proteínas) que tienen un peso molecular aparente de aproximadamente 100 K aparecen después del tratamiento con trombina de la proteína en muestras procesadas en un gel de SDS-PAGE en condiciones reductoras; la banda de ~200 K no se ve bajo estas condiciones, pero está presente en los geles que se ejecutan bajo condiciones no reductoras, mientras que las bandas de ~100 KDa están ausentes en estas últimas muestras. Véase p. ej. los carriles DC (-) y DC (+) del gel teñido con Coomassie Brilliant Blue en la **Fig. 8C**. La banda de ~100 KDa se cree que representa tanto las cadenas LC/E-LC/A como HC/A, que tienen pequeñas deferencias en el tamaño.

50 Se incubaron neuronas de gránulos cerebelosos (CGN) cultivadas en rata con LC/B-BoNT/A tratada con trombina a concentraciones diluidas en serie de 5 veces de 0,32 pM a 5000 pM. Después de 24 horas de incubación a 37 °C con LC/B-BoNT/A, las células se recogieron y se sometieron a SDS-PAGE e inmunotransferencia tipo Western, usando a) un anticuerpo anti-SNAP-25 que reconoce tanto SNAP-25 intacto como gran producto de escisión del tratamiento con LC/A, y b) un anticuerpo anti-VAMP2 que recoge la versión intacta. Se usó un anticuerpo anti-sintaxina 1 para detectar la sintaxina 1 de la proteína SNARE, que se usó como un control de carga interno positivo. Las bandas Western representativas (Fig. 8D) y los datos cuantitativos (Fig. 8E) de múltiples bandas muestran que LC/B-BoNT/A escindió SNAP-25 así como VAMP2; sin embargo, VAMP2 se escindió eficazmente a concentraciones más altas de LC/B-BoNT/A. Sin desear estar limitado por la teoría, este resultado puede surgir de la captura de la toxina compuesta en la membrana a través de la LC de BoNT/A que reduciría la escisión de VAMP [Fernández-60 Salas et al., Proc. Natt. Acad. Sci. USA. 2004, 101(9):3208-3213].

Ejemplo 10

Como se ilustra por los resultados funcionales positivos de LC/E-BoNT/A (dos proteasas activas que reconocen dos secuencias diferentes del mismo sustrato) y LC/B-BoNT/A (dos proteasas que escinden dos sustratos diferentes), y a la vista de la divulgación de esta solicitud de patente, un experto en la técnica sabrá que los ejemplos adicionales de la presente invención pueden implicar composiciones y procedimientos para crear otros diversos agentes terapéuticos multi-endopeptidasa mediante la combinación de diferentes neurotoxinas clostrídicas o subtipos de neurotoxina clostrídica para inhibir la liberación de péptidos, citocinas y neurotransmisores del dolor de varios tipos de nervios (p. ej., neuronas sensoriales y simpáticas). Además, la actividad de las acciones de la toxina multi-proteasa bloquearía indirectamente la actividad por dichos mediadores de células liberadoras de citocinas.

Por ejemplo, se crea un único tratamiento que inactiva las tres proteínas SNARE se crea por fusión recombinante de la cadena ligera de BoNT/D (LC/D) al N terminal de BoNT/C1 a través de un engarce (véase la **Fig. 9**). Brevemente, un ácido nucleico que codifica la endopeptidasa de LC/D se inserta "en marco de lectura" en LC/E-BoNT/A para reemplazar LC/E. El gen sintético que codifica LC/D está diseñado para tener codones optimizados para una expresión óptima en *E. coli*. El plásmido resultante codifica una proteína intermedia que comprende LC/D-BoNT/A.

Posteriormente, se usa un gen sintético que codifica BoNT/C1 (como la construcción BoNT/A, con un sitio de 20 escisión de trombina en su región de bucle) para reemplazar el gen BoNT/A en LC/D-BoNT/A para proporcionar un construcción de ácido nucleico final que comprende un marco de lectura abierto LC/D-BoNT/C1. El tratamiento de LC/D-BoNT/C1 expresada, purificada y cortada tendrá capacidad para inactivar VAMP 1-3 por escisión con LC/D; la proteasa LC/C1 escindirá la sintaxina 1-3 y la SNAP-25. Esta construcción será adecuada para el tratamiento del dolor inflamatorio y neuropático crónico.

Ejemplo 11

25

40

Un hombre de 60 años de edad presenta dolor articular crónico grave en la cadera izquierda y tiene dificultad para caminar. Después del examen, se diagnostica al paciente con artritis reumatoide de la articulación acetabulofemoral (cadera).

Se administra al paciente una dosis efectiva de LC/E/BoNT/A derivada de la neurotoxina clostrídica por inyección directamente el ganglio femoral y el ganglio ciático. La construcción génica se realiza como se describe anteriormente y el derivado de la toxina clostrídica se purifica por afinidad después de la expresión de la misma 35 utilizando la etiqueta His₆ (SEQ ID NO: 15), seguido del corte de trombina y el intercambio iónico y de cromatografía de intercambio iónico antes de su uso.

En 48 horas, hay una mejora notable en la extensión y agudeza del dolor, y en una semana el paciente puede caminar con poca dificultad.

Ejemplo 12

Una necesidad eventual proyectada de cantidades suficientes de LC/E/BoNT/A derivada de neurotoxina clostrídica para uso humano necesita una plataforma de producción/purificación para la expresión y purificación de la proteína 45 LC/E-BoNT/A compatible con la producción en una buena instalación de buenas prácticas de fabricación (conforme a GMP). La producción y purificación de la proteína LC/E-BoNT/A a mayor escala se realiza esencialmente como se describe anteriormente en los experimentos de laboratorio. Este proceso produce un producto activado puro que tiene el peso molecular aparentemente esperado (~200 kDa) en SDS-PAGE. Después de la reducción del enlace disulfuro intercatenario, la cadena HC y la cadena LC/E-LC/A migran conjuntamente en un gel SDS PAGE reductor, cada uno con un peso molecular aparente de aproximadamente 100 kDa; la tinción con Coomassie Brilliant Blue revela un patrón de migración sustancialmente idéntico al que se muestra en la Fig. 3. LC/E-BoNT/A fabricado utilizando procesos adaptados para la producción conforme a GMP se denomina "PK".

La actividad de la proteína GMP PK para escindir SNAP-25, y su neurotoxicidad específica en ratones, coinciden 55 con los de la misma proteína producida en laboratorio. De forma similar, el potencial anti-nociceptivo de PK se demuestra por su capacidad de unirse y entrar en neuronas sensoriales que producen predominantemente SNAP-25 truncada en LC/E truncado e inhiben la liberación de CGRP estimulada por despolarización o capsaicina, como se muestra repitiendo los experimentos del Ejemplo 6 con el material de PK, y obteniendo resultados sustancialmente idénticos a los mostrados en la Fig. 6A y 6B.

60

Lo más importante, esta prometedora proteína PK, como la proteína LC/E-BoNT/A producida en laboratorio, también demuestra ser un igualmente un anti-nociceptivo robusto *in vivo*. Una inyección única de PK en una pata trasera de ratas en un modelo de lesión nerviosa residual (SNI) de dolor crónico (véase, p. ej., el Ejemplo 7 y las Fig. 7A y 7B) no afecta la actividad locomotora (como se cuantifica en un Rotarod) o induce cualquier efecto adverso detectable, pero mejora, durante un período prolongado de 14 días, la hipersensibilidad mecánica al nivel de control del grupo Sham. Además, un nivel elevado de alodinia al frío en el modelo SNI también se atenúa de manera similar, como lo indica una marcada disminución de la duración de la retirada. La inyección de vehículo de solución salina en animales operados mediante Sham no altera los niveles de control para los dos parámetros nociceptivos medidos en, por ejemplo, las Fig. 7A y 7B. La proteína PK alivia de manera convincente el nivel elevado de dolor.

10

Estos hallazgos demuestran ser reproducibles a partir de numerosos conjuntos de extensos experimentos con animales y resaltan la eficacia terapéutica *in vivo* de PK para revertir el dolor intenso debido a una lesión nerviosa grave, y revelan la insuficiencia de BoNT/A solo para el tratamiento del dolor, particularmente el dolor crónico.

15 **Ejemplo 13**

La alta eficiencia de este anti-nociceptivo similar a GMP novedoso se demuestra además por la evaluación en el modelo SNI de una sola inyección de PK (75 U/Kg) en relación con la administración diaria sistémica (I.P.) de 10 mg/Kg de pregabalina, un fármaco analgésico usado clínicamente como tratamiento de primera línea para el dolor neuropático, también se sabe que ejerce notables reacciones adversas y efectos analgésicos limitados en una proporción de pacientes.

De nuevo usando la lesión nerviosa residual (SNI) y los modelos de alodinia al frío de dolor crónico en ratas y la misma dosis de agentes activos que en el párrafo anterior, una sola inyección intraplantar de PK produce una 25 duración del beneficio mucho más larga que la de pregabalina diaria que, a diferencia de PK, es incapaz de lograr significativamente la reversión de la hipersensibilidad mecánica (Fig. 10A) e induce una atenuación más modesta de la reactividad aumentada al frío (Fig. 10B). Una segunda inyección de PK prolonga su potente efecto analgésico tanto en la sensibilidad mecánica (Fig. 11) como en la alodinia al frío (no mostrada), produciendo un alivio del dolor significativamente superior al valor de referencia de control que dura más de 25 días después del tratamiento inicial.

30

La invención se describirá ahora mediante el siguiente conjunto de realizaciones (no reivindicadas) presentado a continuación en formato de reivindicación.

- 1) Una composición que comprende un derivado de neurotoxina clostrídica, comprendiendo dicho derivado de 35 neurotoxina clostrídica un polipéptido que incluye: un dominio de unión, un dominio de translocación, un primer dominio endopeptidasa, y un segundo dominio endopeptidasa, donde cada uno de dicho primer dominio endopeptidasa y dicho segundo dominio endopeptidasa tiene una actividad proteolítica selectiva contra, y reconoce un sitio de escisión diferente en, una proteína SNARE.
- 2) La composición de la reivindicación 1, donde dichos dominio de unión, dominio de translocación, primer dominio 40 endopeptidasa y segundo dominio endopeptidasa están comprendidos en una sola cadena polipeptídica.
 - 3) La composición de la reivindicación 2 donde dicho polipéptido comprende además un sitio de escisión de endopeptidasa selectiva localizado entre una primera región que comprende dicho dominio de unión y dicho dominio de translocación, y una segunda región que comprende dichos primer dominio endopeptidasa y segundo dominio endopeptidasa.
- 45 4) La composición de la reivindicación 1, donde dichos dominio de unión, dominio de translocación, primer dominio endopeptidasa y segundo dominio endopeptidasa están comprendidos en más de una cadena polipeptídica.
 - 5) La composición de la reivindicación 4, donde al menos dos de dichas cadenas polipeptídicas están unidas mediante un enlace disulfuro.
- 6) La composición de la reivindicación 1 comprende una primera cadena polipeptídica que comprende dicho dominio 50 de unión y dicho dominio de translocación, y una segunda cadena polipeptídica que comprende dichos primer dominio endopeptidasa y segundo dominio endopeptidasa.
 - 7) La composición de la reivindicación 5 comprende una primera cadena polipeptídica que comprende dicho dominio de unión y dicho dominio de translocación, y una segunda cadena polipeptídica que comprende dichos primer dominio endopeptidasa y segundo dominio endopeptidasa.
- 55 8) La composición de la reivindicación 1, donde el dominio de unión y el dominio de translocación se derivan de una primera neurotoxina clostrídica o un subtipo de neurotoxina clostrídica y donde al menos uno de dicho primer dominio endopeptidasa y dicho segundo dominio endopeptidasa se derivan de una segunda neurotoxina clostrídica o subtipo de neurotoxina clostrídica.
- 9) La composición de la reivindicación 8, donde el dominio de unión, el dominio de translocación y al menos uno de 60 dicho primer dominio endopeptidasa y dicho segundo dominio endopeptidasa se derivan de una primera neurotoxina

clostrídica o un subtipo de neurotoxina clostrídica.

- 10) La composición de la reivindicación 9, donde el dominio de unión, dominio de translocación y dicho primer dominio endopeptidasa se derivan de una primera neurotoxina clostrídica o un subtipo de neurotoxina clostrídica, y dicho segundo dominio endopeptidasa se deriva de una segunda neurotoxina clostrídica o un subtipo neurotoxina 5 clostrídica.
 - 11) La composición de la reivindicación 10 donde la primera neurotoxina clostrídica o el subtipo de neurotoxina clostrídica es BoNT/A y la segunda neurotoxina clostrídica o el subtipo de neurotoxina clostrídica es BoNT/E.
 - 12) La composición de la reivindicación 11, donde la primera neurotoxina clostrídica o el subtipo de neurotoxina clostrídica es BoNT/A y la segunda neurotoxina clostrídica o el subtipo de neurotoxina clostrídica es BoNT/C1.
- 10 13) La composición de la reivindicación 11 comprende una primera cadena polipeptídica que comprende dicho dominio de unión y dicho dominio de translocación, y una segunda cadena polipeptídica que comprende dichos primer dominio endopeptidasa y segundo dominio endopeptidasa.
 - 14) La composición de la reivindicación 13, donde dichas cadena polipeptídica y segunda cadena polipeptídica están unidas mediante un enlace disulfuro.
- 15 15) La composición de la reivindicación 11, donde dichos dominio de unión, dominio de translocación, primer dominio endopeptidasa y segunda cadena polipeptídica están comprendidos en una sola cadena polipeptídica.
 - 16) La composición de la reivindicación 11 comprende una primera secuencia de aminoácidos que comprende un primer sitio de escisión de proteasa localizado entre el dominio de translocación y el primer dominio endopeptidasa.
- 17) La composición de la reivindicación 11 comprende además:
 - a) una secuencia de aminoácidos de polihistadina situada en el lado carboxilo terminal del dominio de unión, o en el extremo amino terminal de dicho segundo dominio endopeptidasa;
- b) una primera secuencia de aminoácidos que comprende una primera secuencia de aminoácidos que comprende un primer sitio de escisión de proteasa localizado entre el dominio de translocación y el primer dominio 25 endopeptidasa; y
 - c) una segunda secuencia de aminoácidos que comprende un segundo sitio de escisión de proteasa localizado entre dicho segundo dominio endopeptidasa y la secuencia de aminoácidos de la polihistadina, o entre dicho dominio de unión y la secuencia de aminoácidos de la polihistadina.
- 30 18) Un ácido nucleico que codifica un polipéptido que comprende un derivado de neurotoxina clostrídica, comprendiendo dicho ácido nucleico una codificación de un único marco de lectura abierto, en la secuencia de carboxi terminal a amino terminal: un dominio de unión, un dominio de translocación, un primer dominio endopeptidasa y un segundo dominio endopeptidasa, donde cada uno de dicho primer dominio endopeptidasa y dicho segundo dominio endopeptidasa tiene una actividad proteolítica selectiva contra, y reconoce un sitio de 35 escisión diferente en, una proteína SNARE.
 - 19) El ácido nucleico de la reivindicación 18, donde los codones que codifican cada uno del dominio de unión, el dominio de translocación, el primer dominio endopeptidasa y el segundo dominio endopeptidasa están optimizados para la expresión en un tipo de célula seleccionada de entre el grupo que consiste en: una célula bacteriana, una célula de mamífero, una célula de levadura y una célula de insecto.
- 40 20) El ácido nucleico de la reivindicación 19, donde los codones están optimizados para la expresión en una célula bacteriana de *E. coli*.
 - 21) El ácido nucleico de la reivindicación 18, donde al menos dos dominios seleccionados de entre el grupo que consiste en el dominio de unión, el dominio de translocación, el primer dominio endopeptidasa y el segundo dominio endopeptidasa están codificados por secuencias de ácido nucleico derivadas de diferentes neurotoxinas clostrídicas
- 45 o subtipos de neurotoxina clostrídica seleccionados entre un grupo formado por: BoNT/A, BoNT/B, BoNT/C1, BoNT/D, BoNT/E, BoNT/F, BoNT/G, y TeTX.
- 22) El ácido nucleico de la reivindicación 21, donde el primer dominio endopeptidasa y el segundo dominio endopeptidasa están codificados por secuencias de ácido nucleico derivadas a partir de diferentes neurotoxinas clostrídicas o subtipos de neurotoxina clostrídica seleccionados de entre el grupo que consiste en: BoNT/A, BoNT/B, 50 BoNT/C1, BoNT/D, BoNT/E, BoNT/F, BoNT/G, y TeTX.
 - 23) El ácido nucleico de la reivindicación 22, donde el primer dominio endopeptidasa está codificado por secuencias de ácido nucleico derivadas a partir de BoNT/A y dicho segundo dominio endopeptidasa está codificado por secuencias de ácido nucleico derivadas a partir de BoNT/C1.
- 24) El ácido nucleico de la reivindicación 22, donde el primer dominio endopeptidasa está codificado por secuencias 55 de ácido nucleico derivadas a partir de BoNT/A y dicho segundo dominio endopeptidasa está codificado por secuencias de ácido nucleico derivadas a partir de BoNT/E.
 - 25) El ácido nucleico de la reivindicación 24, donde dicho marco de lectura abierto codifica al menos seis residuos de histadina entre la secuencia de nucleótidos que codifica un dominio de unión a endopeptidasa y al codón de terminación.
- 60 26) Un procedimiento para el tratamiento del dolor crónico que comprende la administración de una composición

terapéutica que comprende un derivado de neurotoxina clostrídica, comprendiendo dicho derivado de neurotoxina clostrídica un polipéptido que incluye: un dominio de unión, un dominio de translocación, un primer dominio endopeptidasa, y un segundo dominio endopeptidasa, donde cada uno de dicho primer dominio endopeptidasa y dicho segundo dominio endopeptidasa tiene una actividad proteolítica selectiva contra, y reconoce un sitio de 5 escisión diferente en, una proteína SNARE.

- 27) El procedimiento de la reivindicación 26, donde dicho dolor crónico se selecciona de entre el grupo que consiste en dolor nociceptivo inflamatorio y dolor neuropático.
- 28) El procedimiento de la reivindicación 27, donde dicho dolor crónico es dolor neuropático.
- 29) El procedimiento de la reivindicación 28, donde dicho dolor neuropático se selecciona de entre el grupo que 10 consiste en dolor por cáncer, dolor postoperatorio, dolor neuropático, alodinia, neuralgia posherpética, síndrome del colon irritable y otro dolor visceral, dolor óseo, neuropatía periférica, dolor relacionado con el sistema circulatorio y dolor de cabeza.
 - 30) El procedimiento de la reivindicación 27, donde dicho dolor crónico es dolor nociceptivo inflamatorio.
 - 31) El procedimiento de la reivindicación 27, donde dicho dolor crónico es dolor artrítico.
- 15 32) El procedimiento de la reivindicación 26, donde el dominio de unión y el dominio de translocación de dicha composición terapéutica se deriva de una primera neurotoxina clostrídica o un subtipo de neurotoxina clostrídica y donde al menos uno de dicho primer dominio endopeptidasa y dicho segundo dominio endopeptidasa de dicha composición se derivan a partir de una segunda neurotoxina clostrídica o subtipo de neurotoxina clostrídica.
- 20 Aunque se han descrito aspectos de la presente invención con referencia a las realizaciones desveladas, los expertos en la técnica apreciarán fácilmente que los ejemplos específicos desvelados son solo ilustrativos de estos aspectos y de ninguna manera limitan la presente invención. Además, se entenderá que cualquier composición o aparato de la invención comprende, consiste esencialmente en, o consiste en uno o más elementos de la reivindicación, y adicionalmente, se considerará que cada elemento no incluido específicamente como un elemento 25 de una reivindicación tiene base aquí para excluirse específicamente en una limitación negativa de esa

LISTADO DE SECUENCIAS

reivindicación.

```
30 <110> Dublin City University
   <120> TRATAMIENTO CON MULTIPROTEASA PARA EL DOLOR CRÓNICO
   <130> A-05047
   <140>
   <141>
35 <150> 61/920,053
   <151> 2013-12-23
   <160> 15
   <170> PatentIn versión 3.5
   <210> 1
40 <211> 78
   <212> ADN
   <213> Secuencia artificial
   <223> Descripción de la secuencia artificial: Oligonucleótido sintético
45 <220>
   <221> CDS
   <222> (1)..(78)
   <400> 1
             tgt gtc cgc ggt att atc acc agc aaa acc aaa tcc ttg gtg ccc cgc
                                                                                               48
            Cys Val Arg Gly Ile Ile Thr Ser Lys Thr Lys Ser Leu Val Pro Arg
                                                     10
             ggc tct aac aag gcg ctc aat gat tta tgc
                                                                                               78
            Gly Ser Asn Lys Ala Leu Asn Asp Leu Cys
                          20
50 <210> 2
   <211> 26
   <212> PRT
   <213> Secuencia artificial
   <220>
55 <223> Descripción de la secuencia artificial: Péptido sintético
```

```
<400> 2
                 Cys Val Arg Gly Ile Ile Thr Ser Lys Thr Lys Ser Leu Val Pro Arg
                 Gly Ser Asn Lys Ala Leu Asn Asp Leu Cys
                              20
   <210>3
   <211> 69
5 <212> ADN
   <213> Secuencia artificial
   <220>
   <223> Descripción de la secuencia artificial: Oligonucleótido sintético
   <220>
10 <221> CDS
   <222> (1)..(66)
   <400> 3
            aaa gtc gac aag ctt ctg gta ccg cgc ggc agc aaa ctg cag ctc gag
                                                                                          48
           Lys Val Asp Lys Leu Leu Val Pro Arg Gly Ser Lys Leu Gln Leu Glu
           cac cac cac cac cac tga
                                                                                          69
           His His His His His
                        20
   <210>4
15 <211> 22
   <212> PRT
   <213> Secuencia artificial
   <223> Descripción de la secuencia artificial: Péptido sintético
20 <400>4
                 Lys Val Asp Lys Leu Leu Val Pro Arg Gly Ser Lys Leu Gln Leu Glu
                 His His His His His
                              20
   <210> 5
   <211> 5199
   <212> ADN
25 <213> Secuencia artificial
   <220>
   <223> Descripción de la secuencia artificial: Polinucleótido sintético
   <220>
   <221> CDS
30 <222> (1)..(5196)
   <400>5
            atg cct aaa atc aat tcg ttc aac tat aat gac ccg gtt aac gat cgc
                                                                                          48
            Met Pro Lys Ile Asn Ser Phe Asn Tyr Asn Asp Pro Val Asn Asp Arg
            1
                                                                                          96
            acg atc ctg tat atc aag cca ggt gga tgt caa gaa ttt tat aaa tca
            Thr Ile Leu Tyr Ile Lys Pro Gly Gly Cys Gln Glu Phe Tyr Lys Ser
            ttc aac atc atg aaa aat att tgg att atc ccg gaa cgc aac gtg atc
                                                                                         144
```

Phe	Asn	Ile 35	Met	Lys	Asn	Ile	Trp	Ile	Ile	Pro	Glu	Arg 45	Asn	Val	Ile	
	_				_			_		acc Thr		_				192
-	_				_	_				caa Gln 75	_	-	-	-		240
-	_			-		-	-			ttc Phe		-				288
										tta L e u						336
										cag Gln						384
										ggc Gly						432
						_		-	-	cct Pro 155	-			-		480
	_					-	-			tat Tyr	_	_	-			528
					_			_		tca Ser		_		_		576
_			_		-	_		-		atc Ile		_	_		_	624
	_	-		_	_			_	_	cac His		_			-	672
							_		_	caa Gln 235						720
										gaa Glu						768
										caa Gln						816
		_		_	_		_			gcc Ala	_					864

-	cag Gln 290	_	_		_	_			_			-			-	912
	aaa Lys															960
	aat Asn				-										-	1008
	gat Asp															1056
	caa Gln						-	_		-			-			1104
	aat Asn 370		_	-							_		-			1152
=	ggg Gly								_						_	1200
	cgt Arg			_					_		=					1248
_	aac Asn		_					_		-				-		1296
	tat Tyr															1344
	aaa Lys 450									_		_	-	_		1392
_	aac Asn	_	_	_		-				_			_		_	1440
	ccg Pro															1488
	gac Asp															1536
_	aca Thr	_			_	_	_	_					_			1584
	ttt Phe 530															1632

							cag Gln								1680
				_			ggc Gly	_	_		-				1728
							gaa Glu								1776
		-	_	-			cgt Arg 600				_				1824
	_	_	_		_	_	gat Asp	_							1872
							gtg Val								1920
-			-	-			atc Ile	-			_	-	-		1968
_			_				tac Tyr		_	_		_			2016
	_	_	_	_	_		ggc Gly 680			_	_			-	2064
_	_		-		_		cgg Arg	_							2112
_		_					aag Lys			_		 		_	2160
-	_				_		aac Asn	_			_				2208
							ttc Phe								2256
							gag Glu 760								2304
							cgg Arg								2352
							gta Val								2400

785 790 795 800	
gat ggc ttt aat ctg cgc aat acg aat ctg gcg gcg aac ttt aac ggc Asp Gly Phe Asn Leu Arg Asn Thr Asn Leu Ala Ala Asn Phe Asn Gly 805 810 815	2448
cag aac acc gaa atc aac aac atg aac ttt act aaa ctg aaa aat ttt Gln Asn Thr Glu Ile Asn Asn Met Asn Phe Thr Lys Leu Lys Asn Phe 820 825 830	2496
acc ggc ttg ttt gaa ttt tat aag ctc ctg tgt gtc cgc ggt att atc Thr Gly Leu Phe Glu Phe Tyr Lys Leu Leu Cys Val Arg Gly Ile Ile 835 840 845	2544
acc agc aaa acc aaa tcc ttg gtg ccc cgc ggc tct aac aag gcg ctc Thr Ser Lys Thr Lys Ser Leu Val Pro Arg Gly Ser Asn Lys Ala Leu 850 855 860	2592
Asn Asp Leu Cys Ile Lys Val Asn Asn Trp Asp Leu Phe Phe Ser Pro 865 870 875 880	2640
tct gaa gat aat ttt act aac gac ttg aac aaa gga gag gaa att act Ser Glu Asp Asn Phe Thr Asn Asp Leu Asn Lys Gly Glu Glu Ile Thr 885 890 895	2688
tcc gat acc aac atc gaa gca gcg gaa gag aat att agc ctg gat ctt Ser Asp Thr Asn Ile Glu Ala Ala Glu Glu Asn Ile Ser Leu Asp Leu 900 905 910	2736
att caa caa tat tac ctg acc ttt aat ttt gat aac gag cct gag aac Ile Gln Gln Tyr Tyr Leu Thr Phe Asn Phe Asp Asn Glu Pro Glu Asn 915 920 925	2784
att toc att gag aat oto ago tot gac atc atc ggo cag otg gaa otg Ile Ser Ile Glu Asn Leu Ser Ser Asp Ile Ile Gly Gln Leu Glu Leu 930 935 940	2832
atg ccg aat atc gaa cgc ttt cct aat gga aag aaa tat gaa ttg gac Met Pro Asn Ile Glu Arg Phe Pro Asn Gly Lys Lys Tyr Glu Leu Asp 945 950 955 960	2880
aaa tac acc atg ttc cac tat ctc cgc gcg cag gag ttt gag cac ggc Lys Tyr Thr Met Phe His Tyr Leu Arg Ala Gln Glu Phe Glu His Gly 965 970 975	2928
aag tot ogt att got otg acc aat tog gta aac gaa goo ott tta aat Lys Ser Arg Ile Ala Leu Thr Asn Ser Val Asn Glu Ala Leu Leu Asn 980 985 990	2976
cct tcg cgt gtg tac acc ttt ttc tca agc gat tat gtt aaa aaa gtg Pro Ser Arg Val Tyr Thr Phe Phe Ser Ser Asp Tyr Val Lys Lys Val 995 1000 1005	3024
aac aag gcg acc gaa gcg gcg atg ttt ttg gga tgg gtg gaa caa Asn Lys Ala Thr Glu Ala Ala Met Phe Leu Gly Trp Val Glu Gln 1010 1015 1020	3069
ctg gta tat gac ttt acg gat gaa act tct gaa gtc tcg acc acc Leu Val Tyr Asp Phe Thr Asp Glu Thr Ser Glu Val Ser Thr Thr 1025 1030 1035	3114
gac aaa att gcc gat att acc att atc att ccc tat att ggc cct	3159

Asp	Lys 1040	Ile	Ala	Asp	Ile	Thr 1045	Ile	Ile	Ile	Pro	Tyr 1050	Ile	Gly	Pro	
_	ctg Leu 1055					atg Met 1060	_			_	_				3204
_	ctg Leu 1070					gct Ala 1075	-		_	_	_			_	3249
						ctc Leu 1090									3294
	-			_	-	act Thr 1105	-	_	_		-				3339
_	aaa Lys 1115	Arg				tgg Trp 1120						Tyr			3384
	aac Asn 1130					gta Val 1135									3429
_	aag Lys 1145					ctg Leu 1150									3474
-	att I le 1160					tat Tyr 1165									3519
	aac Asn 1175					atc Ile 1180									3564
-	tct Ser 1190				-	atg Met 1195					aag Lys 1200		ttg Leu		3609
	tgt Cys 1205	_	_	-		ctg Leu 1210	-		_	-					3654
	aaa Lys 1220	Arg				ttc Phe 1225							gcc Ala		3699
		Tyr				aat Asn 1240									3744
						gtc Val 1255									3789
	ttt Phe 1265					tat Tyr 1270									3834

						aaa Lys 1285									3879
						aac Asn 1300									3924
						ggc Gly 1315									3969
						ttg Leu 1330									4014
-	-					gcg Ala 13 4 5		-				-		_	4059
						tgg Trp 1360									4104
_						gag Glu 1375						_			4149
		_				gtg Val 1390	_					_			4194
	act Thr 1400	_	_	_		caa Gln 1405	_				_				4239
	Tyr		_	_		aac Asn		_	-				-		4284
	1415					1420			-	-,-	1425	ASII	Arg	Trp	
	ttt	gtg	aca			1420 aac Asn 1435		cgg	ctg	aac	1425 aac	agc	aaa	att	4329
Ile tac	ttt Phe 1430	gtg Val aac	aca Thr ggt	Ile cgc	Thr ctg	aac Asn	Asn gat	cgg Arg	ctg Leu aaa	aac Asn	1425 aac Asn 1440 atc	agc Ser agt	aaa Lys aat	att Ile	4329 4374
Ile tac Tyr	ttt Phe 1430 att Ile 1445	gtg Val aac Asn	aca Thr ggt Gly	Ile cgc Arg	Thr ctg Leu tcg	aac Asn 1435 atc Ile	Asn gat Asp aat	cgg Arg cag Gln	ctg Leu aaa Lys	aac Asn cca Pro	1425 aac Asn 1440 atc Ile 1455 aaa	agc Ser agt Ser	aaa Lys aat Asn	att Ile ctc Leu	
tac Tyr ggt Gly	ttt Phe 1430 att Ile 1445 aac Asn 1460	gtg Val aac Asn att Ile	aca Thr ggt Gly cac His	cgc Arg gca Ala	Thr ctg Leu tcg Ser	aac Asn 1435 atc Ile 1450 aat	Asn gat Asp aat Asn	cgg Arg cag Gln atc Ile	ctg Leu aaa Lys atg Met	aac Asn cca Pro ttc Phe	1425 aac Asn 1440 atc Ile 1455 aaa Lys 1470 tac	agc Ser agt Ser ctg Leu	aaa Lys aat Asn gat Asp	att Ile ctc Leu ggt Gly	4374
tac Tyr ggt Gly tgt Cys	ttt Phe 1430 att Ile 1445 aac Asn 1460 cgc Arg 1475	gtg Val aac Asn att Ile gac Asp	aca Thr ggt Gly cac His acg Thr	cgc Arg gca Ala cac His	Thr ctg Leu tcg Ser cgt Arg	aac Asn 1435 atc Ile 1450 aat Asn 1465 tac	gat Asp aat Asn att Ile	cgg Arg cag Gln atc Ile tgg Trp	ctg Leu aaa Lys atg Met atc Ile	aac Asn cca Pro ttc Phe aaa Lys	1425 aac Asn 1440 atc Ile 1455 aaa Lys 1470 tac Tyr 1485 gat	agc Ser agt Ser ctg Leu ttc Phe	aaa Lys aat Asn gat Asp aat	att Ile ctc Leu ggt Gly tta Leu gac	4374 4419

	cag Gln 1520						Tyr						gat Asp	_	4599
	aaa Lys 1535		-	-	-			_			_			_	4644
	ctg Leu 1550						Ser								4689
	aac Asn 1565												aag Lys		4734
	gcc Ala 1580														4779
	tac Tyr 1595														4824
	aat Asn 1610												gca Ala		4869
	atc Ile 1625						Leu								4914
	aaa Lys 1640														4959
	gat Asp 1655														5004
	aat Asn 1670													cgt Arg	5049
Gln	att Ile 1685	Glu	Arg	Ser	Ser	Arg	Thr	Leu	Gly	Cys	Ser	Trp	gag Glu		5094
	ccg Pro 1700														5139
_	ctt Leu 1715					ggc Gly 1720									5184
		cac His	cac His	tga											5199
732 RT															

<210> 6

<211> 173

<212> PRT 5 <213> Secuencia artificial

<220>
<223> Descripción de la secuencia artificial: Polipéptido sintético

<400>	6
-------	---

- Met Pro Lys Ile Asn Ser Phe Asn Tyr Asn Asp Pro Val Asn Asp Arg 1 5 10
- Thr Ile Leu Tyr Ile Lys Pro Gly Gly Cys Gln Glu Phe Tyr Lys Ser 20 25 30
- Phe Asn Ile Met Lys Asn Ile Trp Ile Ile Pro Glu Arg Asn Val Ile 35 40 45
- Gly Thr Thr Pro Gln Asp Phe His Pro Pro Thr Ser Leu Lys Asn Gly 50 60
- Asp Ser Ser Tyr Tyr Asp Pro Asn Tyr Leu Gln Ser Asp Glu Glu Lys 65 70 75 80
- Asp Arg Phe Leu Lys Ile Val Thr Lys Ile Phe Asn Arg Ile Asn Asn 85 90 95
- Asn Leu Ser Gly Gly Ile Leu Leu Glu Glu Leu Ser Lys Ala Asn Pro $100 \hspace{1cm} 105 \hspace{1cm} 110 \hspace{1cm}$
- Tyr Leu Gly Asn Asp Asn Thr Pro Asp Asn Gln Phe His Ile Gly Asp 115 120 125
- Ala Ser Ala Val Glu Ile Lys Phe Ser Asn Gly Ser Gln Asp Ile Leu 130 135 140
- Leu Pro Asn Val Ile Ile Met Gly Ala Glu Pro Asp Leu Phe Glu Thr 145 150 155
- Asn Ser Ser Asn Ile Ser Leu Arg Asn Asn Tyr Met Pro Ser Asn His 165 170 170 175
- Gly Phe Gly Ser Ile Ala Ile Val Thr Phe Ser Pro Glu Tyr Ser Phe 180 185 190
- Arg Phe Asn Asp Asn Ser Met Asn Glu Phe Ile Gln Asp Pro Ala Leu 195 200 205
- Thr Leu Met His Glu Leu Ile His Ser Leu His Gly Leu Tyr Gly Ala 210 215 220

225	GTĀ	те	THE	THE	230	TYL	THE	ire	THE	235	гуѕ	GIII	ASII	PIO	240
Ile	Thr	Asn	Ile	Arg 245	Gly	Thr	Asn	Ile	Glu 250	Glu	Phe	Leu	Thr	Phe 255	Gly
Gly	Thr	Asp	Leu 260	Asn	Ile	Ile	Thr	Ser 265	Ala	Gln	Ser	Asn	Asp 270	Ile	Tyr
Thr	Asn	Leu 275	Leu	Ala	Asp	Tyr	Lys 280	Lys	Ile	Ala	Ser	Lys 285	Leu	Ser	Lys
Val	Gln 290	Val	Ser	Asn	Pro	Leu 295	Leu	Asn	Pro	Tyr	Lys 300	Asp	Val	Phe	Glu
Ala 305	Lys	Tyr	Gly	Leu	Asp 310	Lys	Asp	Ala	Ser	Gly 315	Ile	Tyr	Ser	Val	Asn 320
Ile	Asn	Lys	Phe	Asn 325	Asp	Ile	Phe	Lys	Lys 330	Leu	Tyr	Ser	Phe	Thr 335	Glu
Phe	Asp	Leu	Ala 340	Thr	Lys	Phe	Gln	Val 345	Lys	Cys	Arg	Gln	Thr 350	Tyr	Ile
Gly	Gln	Tyr 355	Lys	Tyr	Phe	Lys	Leu 360	Ser	Asn	Leu	Leu	Asn 365	Asp	Ser	Ile
Tyr	Asn 370	Ile	Ser	Glu	Gly	Tyr 375	Asn	Ile	Asn	Asn	Leu 380	Lys	Val	Asn	Phe
Arg 385	Gly	Gln	Asn	Ala	Asn 390	Leu	Asn	Pro	Arg	Ile 395	Ile	Thr	Pro	Ile	Thr 400
Gly	Arg	Gly	Leu	Val 405	Lys	Lys	Ile	Ile	Arg 410	Phe	Asp	Ile	Met	Pro 415	Phe
	Asn		420					425					430		
Ala	Tyr	Ile 435	Lys	Ile	Pro	Asn	Ala 440	Gly	Gln	Met	Gln	Pro 445	Val	Lys	Ala
Phe	Lys 450	Ile	His	Asn	Lys	Ile 455	Trp	Val	Ile	Pro	Glu 460	Arg	Asp	Thr	Phe
Thr	Asn	Pro	Glu	Glu	Glv	Asp	Leu	Asn	Pro	Pro	Pro	Glu	Ala	Lvs	Gln

465					470					475					480
Val	Pro	Val	Ser	Tyr 485	Tyr	Asp	Ser	Thr	Tyr 490	Leu	Ser	Thr	Asp	Asn 495	Glu
Lys	Asp	Asn	Tyr 500	Leu	Lys	Gly	Val	Thr 505	Lys	Leu	Phe	Glu	Arg 510	Ile	Tyr
Ser	Thr	Asp 515	Leu	Gly	Arg	Met	Leu 520	Leu	Thr	Ser	Ile	Val 525	Arg	Gly	Ile
Pro	Phe 530	Trp	Gly	Gly	Ser	Thr 535	Ile	Asp	Thr	Glu	Leu 540	Lys	Val	Ile	Asp
Thr 545	Asn	Cys	Ile	Asn	Val 550	Ile	Gln	Pro	Asp	Gly 555	Ser	Tyr	Arg	Ser	Glu 560
Glu	Leu	Asn	Leu	Val 565	Ile	Ile	Gly	Pro	Ser 570	Ala	Asp	Ile	Ile	Gln 575	Phe
Glu	Cys	Lys	Ser 580	Phe	Gly	His	Glu	Val 585	Leu	Asn	Leu	Thr	Arg 590	Asn	Gly
Tyr	Gly	Ser 595	Thr	Gln	Tyr	Ile	Arg 600	Phe	Ser	Pro	Asp	Phe 605	Thr	Phe	Gly
Phe	Glu 610	Glu	Ser	Leu	Glu	Val 615	Asp	Thr	Asn	Pro	Leu 620	Leu	Gly	Ala	Gly
Lys 625	Phe	Ala	Thr	Asp	Pro 630	Ala	Val	Thr	Leu	Ala 635	His	Glu	Leu	Ile	His 640
Ala	Gly	His	Arg	Leu 645	Tyr	Gly	Ile	Ala	Ile 650	Asn	Pro	Asn	Arg	Val 655	Phe
Lys	Val	Asn	Thr 660	Asn	Ala	Tyr	Tyr	Glu 665	Met	Ser	Gly	Leu	G1u 670	Val	Ser
Phe	G1u	Glu 675	Leu	Arg	Thr	Phe	Gly 680	Gly	His	Asp	Ala	Lys 685	Phe	Ile	Asp
Ser	Leu 690	Gln	Glu	Asn	Glu	Phe 695	Arg	Leu	Tyr	Tyr	Tyr 700	Asn	Lys	Phe	Lys
Asp 705	Ile	Ala	Ser	Thr	Leu 710	Asn	Lys	Ala	Lys	Ser 715	Ile	Val	Gly	Thr	Thr 720

Ala	Ser	Leu	Gln	Tyr 725	Met	Lys	Asn	Val	Phe 730	Lys	Glu	Lys	Tyr	Leu 735	Leu
Ser	Glu	Asp	Thr 740	Ser	Gly	Lys	Phe	Ser 745	Val	Asp	Lys	Leu	Lys 750	Phe	Asp
Lys	Leu	Tyr 755	Lys	Met	Leu	Thr	Glu 760	Ile	Tyr	Thr	Glu	Asp 765	Asn	Phe	Val
Lys	Phe 770	Phe	Lys	Val	Leu	As n 775	Arg	Lys	Thr	Tyr	Leu 780	Asn	Phe	Asp	Lys
Ala 785	Val	Phe	Lys	Ile	As n 7 90	Ile	Val	Pro	Lys	Val 795	Asn	Tyr	Thr	Ile	Tyr 800
Asp	Gly	Phe	Asn	Leu 805	Arg	Asn	Thr	Asn	Leu 810	Ala	Ala	Asn	Phe	As n 815	Gly
Gln	Asn	Thr	Glu 820	Ile	Asn	Asn	Met	Asn 825	Phe	Thr	Lys	Leu	L y s 830	Asn	Phe
Thr	Gly	Leu 835	Phe	Glu	Phe	Tyr	Lys 840	Leu	Leu	Cys	Val	Arg 845	Gly	Ile	Ile
Thr	Ser 850	Lys	Thr	Lys	Ser	Le u 855	Val	Pro	Arg	Gly	Ser 860	Asn	Lys	Ala	Leu
Asn 865	Asp	Leu	Суз	Ile	Lys 870	Val	Asn	Asn	Trp	Asp 875	Leu	Phe	Phe	Ser	Pro 880
Ser	Glu	Asp	Asn	Phe 885	Thr	Asn	Asp	Leu	Asn 890	Lys	Gly	Glu	Glu	Ile 895	Thr
Ser	Asp	Thr	Asn 900	Ile	Glu	Ala	Ala	Glu 905	Glu	Asn	Ile	Ser	Leu 910	Asp	Leu
Ile	Gln	Gln 915	Tyr	Tyr	Leu	Thr	Phe 920	Asn	Phe	Asp	Asn	Glu 925	Pro	Glu	Asn
Ile	Ser 930	Ile	Glu	Asn	Leu	Ser 935	Ser	Asp	Ile	Ile	Gly 940	Gln	Leu	Glu	Leu
Met 945	Pro	Asn	Ile	Glu	Arg 950	Phe	Pro	Asn	Gly	Lys 955	Lys	Tyr	Glu	Leu	A sp 960
Lys	Tyr	Thr	Met	Phe 965	His	туr	Leu	Arg	Ala 970	Gln	Glu	Phe	G1u	His 975	Gly

- Lys Ser Arg Ile Ala Leu Thr Asn Ser Val Asn Glu Ala Leu Leu Asn 980 985 990
- Pro Ser Arg Val Tyr Thr Phe Phe Ser Ser Asp Tyr Val Lys Lys Val 995 1000 1005
- Asn Lys Ala Thr Glu Ala Ala Met Phe Leu Gly Trp Val Glu Gln 1010 1015 1020
- Leu Val Tyr Asp Phe Thr Asp Glu Thr Ser Glu Val Ser Thr Thr 1025 1030 1035
- Asp Lys lle Ala Asp lle Thr lle lle lle Pro Tyr lle Gly Pro 1040 1045 1050
- Ala Leu Asn Ile Gly Asn Met Leu Tyr Lys Asp Asp Phe Val Gly 1055 1060 1065
- Ala Leu Ile Phe Ser Gly Ala Val Ile Leu Leu Glu Phe Ile Pro 1070 1080
- Glu Ile Ala Ile Pro Val Leu Gly Thr Phe Ala Leu Val Ser Tyr 1085 1090 1095
- Ile Ala Asn Lys Val Leu Thr Val Gln Thr Ile Asp Asn Ala Leu 1100 1105 1110
- Ser Lys Arg Asn Glu Lys Trp Asp Glu Val Tyr Lys Tyr Ile Val 1115 1120 1125
- Thr Asn Trp Leu Ala Lys Val Asn Thr Gln Ile Asp Leu Ile Arg 1130 1135 1140
- Lys Lys Met Lys Glu Ala Leu Glu Asn Gln Ala Glu Ala Thr Lys 1145 1155
- Ala Ile Ile Asn Tyr Gln Tyr Asn Gln Tyr Thr Glu Glu Glu Lys 1160 1165 1170
- Asn Asn Ile Asn Phe Asn Ile Asp Asp Leu Ser Ser Lys Leu Asn 1175 1180 1185
- Glu Ser Ile Asn Lys Ala Met Ile Asn Ile Asn Lys Phe Leu Asn 1190 1195 1200
- Gln Cys Ser Val Ser Tyr Leu Met Asn Ser Met Ile Pro Tyr Gly 1205 1210 1215

Val Ly 12	_	Leu	Glu	Asp	Phe 1225	Asp	Ala	Ser	Leu	Lys 1230	Asp	Ala	Leu
Leu Ly 12	_	Ile	Tyr	Asp	Asn 1240	Arg	Gly	Thr	Leu	Ile 1245	Gly	Gln	Val
Asp Ar 12	_	Lys	Asp	-	Val 1255	Asn	Asn	Thr	Leu	Ser 1260	Thr	Asp	Ile
Pro Ph 12		Leu	Ser	Lys	Tyr 1270	Val	Asp	Asn	Gln	Arg 1275	Leu	Leu	Ser
Thr Ph		Glu	Tyr		Lys 1285	Asn	Ile	Ile	Asn	Thr 1290	Ser	Ile	Leu
Asn Le 12	_	Tyr	Glu		Asn 1300		Leu	Ile	Asp	Leu 1305	Ser	Arg	Tyr
Ala Se	_	Ile	Asn	Ile	Gly 1315	Ser	Lys	Val	Asn	Phe 1320	Asp	Pro	Ile
Asp Ly 13		Gln	Ile	Gln	Leu 1330	Phe	Asn	Leu	Glu	Ser 1335	Ser	Lys	Ile
Glu Va 13		Leu	Lys	Asn	Ala 13 4 5	Ile	Val	Tyr	Asn	Ser 1350	Met	Tyr	Glu
Asn Ph		Thr	Ser	Phe	Trp 1360	Ile	Arg	Ile	Pro	Lys 1365	Tyr	Phe	Asn
Ser Il 13		Leu	Asn	Asn	Glu 1375	Tyr	Thr	Ile	Ile	Asn 1380	Cys	Met	Glu
Asn As		Gly	Trp	Lys	Val 1390	Ser	Leu	Asn	Tyr	Gly 1395	Glu	Ile	Ile
Trp Th		Gln	Asp	Thr	Gln 1405	Glu	Ile	Lys	Gln	Arg 1410	Val	Val	Phe
Lys Ty 14		Gln	Met	Ile	Asn 1420	Ile	Ser	Asp	Tyr	Ile 1425	Asn	Arg	Trp
Ile Ph		Thr	Ile	Thr	Asn 1435	Asn	Arg	Leu	Asn	Asn 1440	Ser	Lys	Ile
Tyr Il	e Asn	Gly	Arg	Leu	Ile	Asp	Gln	Lys	Pro	Ile	Ser	Asn	Leu

	1445					1450					1455			
Gly	Asn 1460	Ile	His	Ala	Ser	Asn 1465	Asn	Ile	Met	Phe	Lys 1470	Leu	Asp	Gly
Cys	Arg 1475	Asp	Thr	His	Arg	Tyr 1480	Ile	Trp	Ile	Lys	Tyr 1485	Phe	Asn	Leu
Phe	Asp 1490	_	Glu	Leu	Asn	Glu 1495	Lys	Glu	Ile	Lys	Asp 1500	Leu	Tyr	Asp
Asn	Gln 1505		Asn	Ser	Gly	Ile 1510	Leu	Lys	Asp	Phe	Trp 1515	Gly	Asp	Tyr
Leu	Gln 1520	Tyr	Asp	Lys	Pro	Tyr 1525	Tyr	Met	Leu	Asn	Leu 1530	Tyr	Asp	Pro
Asn	Lys 1535	Tyr	Val	Asp	Val	Asn 1540	Asn	Val	Gly	Ile	Arg 1545	Gly	Tyr	Met
Tyr	Leu 1550	Lys	Gly	Pro	Arg	Gly 1555	Ser	Val	Met	Thr	Thr 1560	Asn	Ile	Tyr
Leu	Asn 1565	Ser	Ser	Leu	Tyr	Arg 1570	Gly	Thr	Lys	Phe	Ile 1575	Ile	Lys	Lys
Tyr	Ala 1580	Ser	Gly	Asn	Lys	Asp 1585	Asn	Ile	Val	Arg	Asn 1590	Asn	Asp	Arg
Val	Tyr 1595	Ile	Asn	Val	Val	Val 1600	Lys	Asn	Lys	Glu	Tyr 1605	Arg	Leu	Ala
Thr	As n 1610	Ala	Ser	Gln	Ala	Gly 1615	Val	Glu	Lys	Ile	Leu 1620	Ser	Ala	Leu
Glu	Ile 1625	Pro	Asp	Val	Gly	Asn 1630	Leu	Ser	Gln	Val	Val 1635	Val	Met	Lys
Ser	Lys 1640	Asn	Asp	Gln	Gly	Ile 1645	Thr	Asn	Lys	Сув	Lys 1650	Met	Asn	Leu
Gln	Asp 1655	Asn	As n	Gly	Asn	Asp 1660	Ile	Gly	Phe	Ile	Gly 1665	Phe	His	Gln
Phe	Asn 1670	Asn	Ile	Ala	Lys	Leu 1675	Val	Ala	Ser	Asn	Trp 1680	Tyr	Asn	Arg

Gln Ile Glu Arg Ser Ser Arg Thr Leu Gly Cys Ser Trp Glu Phe 1690 Ile Pro Val Asp Asp Gly Trp Gly Glu Arg Pro Leu Lys Val Asp 1705 Lys Leu Leu Val Pro Arg Gly Ser Lys Leu Gln Leu Glu His His 1720 His His His His 1730 <210> 7 <211> 1296 <212> PRT 5 <213> Clostridium botulinum <400> 7 Met Pro Phe Val Asn Lys Gln Phe Asn Tyr Lys Asp Pro Val Asn Gly Val Asp Ile Ala Tyr Ile Lys Ile Pro Asn Ala Gly Gln Met Gln Pro Val Lys Ala Phe Lys Ile His Asn Lys Ile Trp Val Ile Pro Glu Arg 40 Asp Thr Phe Thr Asn Pro Glu Glu Gly Asp Leu Asn Pro Pro Pro Glu Ala Lys Gln Val Pro Val Ser Tyr Tyr Asp Ser Thr Tyr Leu Ser Thr Asp Asn Glu Lys Asp Asn Tyr Leu Lys Gly Val Thr Lys Leu Phe Glu Arg Ile Tyr Ser Thr Asp Leu Gly Arg Met Leu Leu Thr Ser Ile Val 105 Arg Gly Ile Pro Phe Trp Gly Gly Ser Thr Ile Asp Thr Glu Leu Lys 115 Val Ile Asp Thr Asn Cys Ile Asn Val Ile Gln Pro Asp Gly Ser Tyr Arg Ser Glu Glu Leu Asn Leu Val Ile Ile Gly Pro Ser Ala Asp Ile 150

Ile Gln Phe Glu Cys Lys Ser Phe Gly His Glu Val Leu Asn Leu Thr

				165					170					175	
Arg	Asn	Gly	Tyr 180	Gly	Ser	Thr	Gln	Tyr 185	Ile	Arg	Phe	Ser	Pro 190	Asp	Phe
Thr	Phe	Gly 195	Phe	Glu	Glu	Ser	Le u 200	Glu	Val	Asp	Thr	As n 205	Pro	Leu	Leu
Gly	Ala 210	Gly	Lys	Phe	Ala	Thr 215	Asp	Pro	Ala	Val	Thr 220	Leu	Ala	His	Glu
Leu 225	Ile	His	Ala	Gly	His 230	Arg	Leu	Tyr	Gly	11e 235	Ala	Ile	Asn	Pro	Asn 240
Arg	Val	Phe	Lys	Val 245	Asn	Thr	Asn	Ala	Tyr 250	Tyr	Glu	Met	Ser	Gly 255	Leu
Glu	Val	Ser	Phe 260	Glu	Glu	Leu	Arg	Thr 265	Phe	Gly	Gly	His	Asp 270	Ala	Lys
Phe	Ile	Asp 275	Ser	Leu	Gln	Glu	As n 280	Glu	Phe	Arg	Leu	Tyr 285	Tyr	Tyr	Asn
Lys	Phe 290	Lys	Asp	Ile	Ala	Ser 295	Thr	Leu	Asn	Lys	Ala 300	Lys	Ser	Ile	Val
Gly 305	Thr	Thr	Ala	Ser	Leu 310	Gln	Tyr	Met	Lys	Asn 315	Val	Phe	Lys	Glu	Lys 320
Tyr	Leu	Leu	Ser	G1u 325	Asp	Thr	Ser	Gly	Lys 330	Phe	Ser	Val	Asp	Lys 335	Leu
Lys	Phe	Asp	Lys 340	Leu	Туг	Lys	Met	Leu 345	Thr	Glu	Ile	Tyr	Thr 350	Glu	Asp
Asn	Phe	Val 355	Lys	Phe	Phe	Lys	Val 360	Leu	Asn	Arg	Lys	Thr 365	Tyr	Leu	Asn
Phe	Asp 370	Lys	Ala	Val	Phe	Lys 375	Ile	Asn	Ile	Val	Pro 380	Lys	Val	Asn	Tyr
Thr 385	Ile	Tyr	Asp	Gly	Phe 390	Asn	Leu	Arg	Asn	Thr 395	Asn	Leu	Ala	Ala	Asn 400
Phe	Asn	Gly	Gln	Asn 405	Thr	Glu	Ile	Asn	Asn 410	Met	Asn	Phe	Thr	Lys 415	Leu

Lys	Asn	Phe	Thr 420	Gly	Leu	Phe	Glu	Phe 425	Tyr	Lys	Leu	Leu	Cys 430	Val	Arg
Gly	Ile	Ile 435	Thr	Ser	Lys	Thr	Lys 440	Ser	Leu	Asp	Lys	Gly 445	Tyr	Asn	Lys
Ala	Leu 450	Asn	Asp	Leu	Суѕ	Ile 455	Lys	Val	Asn	Asn	Trp 460	Asp	Leu	Phe	Phe
Ser 465	Pro	Ser	Glu	Asp	As n 4 70	Phe	Thr	Asn	Asp	Leu 475	Aşn	Lys	Gly	Glu	Glu 480
Ile	Thr	Ser	Asp	Thr 485	Asn	Ile	Glu	Ala	Ala 490	Glu	Glu	Asn	Ile	Ser 495	Leu
Asp	Leu	Ile	Gln 500	Gln	Tyr	Tyr	Leu	Thr 505	Phe	Asn	Phe	Asp	Asn 510	Glu	Pro
Glu	Asn	Ile 515	Ser	Ile	Glu	Asn	Leu 520	Ser	Ser	Asp	Ile	Ile 525	Gly	Gln	Leu
Glu	Leu 530	Met	Pro	Asn	Ile	Glu 535	Arg	Phe	Pro	Asn	Gly 540	Lys	Lys	Tyr	Glu
Leu 545	Asp	Lys	Tyr	Thr	Met 550	Phe	His	Tyr	Leu	Arg 555	Ala	Gln	Glu	Phe	Glu 560
His	Gly	Lys	Ser	Arg 565	Ile	Ala	Leu	Thr	Asn 570	Ser	Val	Asn	Glu	Ala 575	Leu
Leu	Asn	Pro	Ser 580	Arg	Val	Tyr	Thr	Phe 585	Phe	Ser	Ser	Asp	Tyr 590	Val	Lys
Lys	Val	As n 595	Lys	Ala	Thr	Glu	Ala 600	Ala	Met	Phe	Leu	Gly 605	Trp	Val	Glu
Gln	Leu 610	Val	Tyr	Asp	Phe	Thr 615	Asp	Glu	Thr	Ser	Glu 620	Val	Ser	Thr	Thr
Asp 625	Lys	Ile	Ala	Asp	Ile 630	Thr	Ile	Ile	Ile	Pro 635	Tyr	Ile	Gly	Pro	Ala 640
Leu	Asn	Ile	Gly	Asn 645	Met	Leu	Tyr	Lys	Asp 650	Asp	Phe	Val	Gly	Ala 655	Leu

Ile Phe Ser Gly Ala Val Ile Leu Leu Glu Phe Ile Pro Glu Ile Ala 660 665 670

Ile Pro Val Leu Gly Thr Phe Ala Leu Val Ser Tyr Ile Ala Asn Lys 680 Val Leu Thr Val Gln Thr Ile Asp Asn Ala Leu Ser Lys Arg Asn Glu Lys Trp Asp Glu Val Tyr Lys Tyr Ile Val Thr Asn Trp Leu Ala Lys Val Asn Thr Gln Ile Asp Leu Ile Arg Lys Lys Met Lys Glu Ala Leu Glu Asn Gln Ala Glu Ala Thr Lys Ala Ile Ile Asn Tyr Gln Tyr Asn 745 Gln Tyr Thr Glu Glu Glu Lys Asn Asn Ile Asn Phe Asn Ile Asp Asp Leu Ser Ser Lys Leu Asn Glu Ser Ile Asn Lys Ala Met Ile Asn Ile Asn Lys Phe Leu Asn Gln Cys Ser Val Ser Tyr Leu Met Asn Ser Met Ile Pro Tyr Gly Val Lys Arg Leu Glu Asp Phe Asp Ala Ser Leu Lys 805 810 Asp Ala Leu Leu Lys Tyr Ile Tyr Asp Asn Arg Gly Thr Leu Ile Gly 825 Gln Val Asp Arg Leu Lys Asp Lys Val Asn Asn Thr Leu Ser Thr Asp 840 Ile Pro Phe Gln Leu Ser Lys Tyr Val Asp Asn Gln Arg Leu Leu Ser Thr Phe Thr Glu Tyr Ile Lys Asn Ile Ile Asn Thr Ser Ile Leu Asn Leu Arg Tyr Glu Ser Asn His Leu Ile Asp Leu Ser Arg Tyr Ala Ser Lys Ile Asn Ile Gly Ser Lys Val Asn Phe Asp Pro Ile Asp Lys Asn

Gln Ile Gln Leu Phe Asn Leu Glu Ser Ser Lys Ile Glu Val Ile Leu 915 920 925

- Lys Asn Ala Ile Val Tyr Asn Ser Met Tyr Glu Asn Phe Ser Thr Ser 930 935 940
- Phe Trp Ile Arg Ile Pro Lys Tyr Phe Asn Ser Ile Ser Leu Asn Asn 945 950 955 960
- Glu Tyr Thr Ile Ile Asn Cys Met Glu Asn Asn Ser Gly Trp Lys Val $965 \hspace{1.5cm} 970 \hspace{1.5cm} 975$
- Ser Leu Asn Tyr Gly Glu Ile Ile Trp Thr Leu Gln Asp Thr Gln Glu 980 985 990
- Ile Lys Gln Arg Val Val Phe Lys Tyr Ser Gln Met Ile Asn Ile Ser 995 1000 1005
- Asp Tyr Ile Asn Arg Trp Ile Phe Val Thr Ile Thr Asn Asn Arg 1010 1015 1020
- Leu Asn Asn Ser Lys Ile Tyr Ile Asn Gly Arg Leu Ile Asp Gln 1025 1030 1035
- Lys Pro Ile Ser Asn Leu Gly Asn Ile His Ala Ser Asn Asn Ile 1040 1045 1050
- Met Phe Lys Leu Asp Gly Cys Arg Asp Thr His Arg Tyr Ile Trp 1055 1060 1065
- Ile Lys Tyr Phe Asn Leu Phe Asp Lys Glu Leu Asn Glu Lys Glu 1070 1075 1080
- Ile Lys Asp Leu Tyr Asp Asn Gln Ser Asn Ser Gly Ile Leu Lys 1085 1090 1095
- Asp Phe Trp Gly Asp Tyr Leu Gln Tyr Asp Lys Pro Tyr Tyr Met 1100 1105 1110
- Leu Asn Leu Tyr Asp Pro Asn Lys Tyr Val Asp Val Asn Asn Val 1115 1120 1125
- Gly Ile Arg Gly Tyr Met Tyr Leu Lys Gly Pro Arg Gly Ser Val 1130 1140
- Met Thr Thr Asn Ile Tyr Leu Asn Ser Ser Leu Tyr Arg Gly Thr 1145 1150 1155
- Lys Phe Ile Ile Lys Lys Tyr Ala Ser Gly Asn Lys Asp Asn Ile

Val Arg Asn Asn Asp Arg Val Tyr Ile Asn Val Val Lys Asn

1160

1165 1170

			117.	5				1	180					1185			
		Lys	Glu 119	_	r Ar	g Le	u Al		hr 195	Asn	Ala	Ser	Gln	Ala 1200	Gly	Val	Glu
		Lys	Ile 120		u Se	r Al	a Le		lu 210	Ile	Pro	Asp	Val	Gly 1215	Asn	Leu	Ser
		Gln	Val 122		l Va	l Me	t Ly		er 225	Lys	Asn	Asp	Gln	Gly 1230	Ile	Thr	Asn
		Lys	Cys 123		s Me	t As	n Le		ln 2 4 0	Asp	Asn	Asn	Gly	Asn 1245	Asp	Ile	Gly
		Phe	Ile 125		y Ph	e Hi	s Gl		he 255	Asn	Asn	Ile	Ala	Lys 1260	Leu	Val	Ala
		Ser	Asn 126		р Ту	r As	n Ar	-	ln 270	Ile	Glu	Arg	Ser	Ser 1275	Arg	Thr	Leu
		Gly	Cys 128		r Tr	p Gl	u Ph		le 285	Pro	Val	Asp	Asp	Gly 1290	Trp	Gly	Glu
	<210> 8 <211> 1291 <212> PRT	Arg	Pro 129		u												
5	<213> Clostridiur <400> 8	n boti	ulinun	n													
	4400 0	Met 1	Pro	Val	Thr	Ile 5	Asn	Asn	Ph	e As	n Ty: 10	r Ası	n As	p Pro	Ile	Asp 15	Asn
		Asn	Asn	Ile	Ile 20	Met	Met	Glu	Pr	o Pr 25		e Ala	a Ar	g Gly	Thr 30	Gly	Arg
		Tyr	Tyr	Lys 35	Ala	Phe	Lys	Ile	Th.	r As	p Ar	g Il	e Tr	p Ile 45	Ile	Pro	Glu
		Arg	Tyr 50	Thr	Phe	Gly	Tyr	Lys 55	Pr	o Gl	u As	p Pho	e As 60	n Lys	Ser	Ser	Gly
		Ile 65	Phe	Asn	Arg	Asp	Val 70	Cys	G1	u Ty	r Ty	r As _] 75	o Pr	o Asp	Tyr	Leu	Asn 80

Thr	Asn	Asp	Lys	Lys 85	Asn	Ile	Phe	Leu	Gln 90	Thr	Met	Ile	Lys	L eu 95	Phe
Asn	Arg	Ile	Lys 100	Ser	Lys	Pro	Leu	Gly 105	Glu	Lys	Leu	Leu	Glu 110	Met	Ile
Ile	Asn	Gly 115	Ile	Pro	Tyr	Leu	Gly 120	Asp	Arg	Arg	Val	Pro 125	Leu	Glu	Glu
Phe	As n 130	Thr	Asn	Ile	Ala	Ser 135	Val	Thr	Val	Asn	Lys 140	Leu	Ile	Ser	Asn
Pro 145	Gly	Glu	Val	Glu	Arg 150	Lys	Lys	Gly	Ile	Phe 155	Ala	Asn	Leu	Ile	Ile 160
Phe	Gly	Pro	Gly	Pro 165	Val	Leu	Asn	Glu	Asn 170	Glu	Thr	Ile	Asp	Ile 175	Gly
Ile	Gln	Asn	His 180	Phe	Ala	Ser	Arg	Glu 185	Gly	Phe	Gly	Gly	Ile 190	Met	Gln
Met	Lys	Phe 195	Cys	Pro	Glu	Tyr	Val 200	Ser	Val	Phe	Asn	Asn 205	Val	Gln	Glu
Asn	Lys 210	Gly	Ala	Ser	Ile	Phe 215	Asn	Arg	Arg	Gly	Tyr 220	Phe	Ser	Asp	Pro
Ala 225	Leu	Ile	Leu	Met	His 230	Glu	Leu	Ile	His	Val 235	Leu	His	Gly	Leu	Tyr 240
Gly	Ile	Lys	Val	Asp 245	Asp	Leu	Pro	Ile	Val 250	Pro	Asn	Glu	Lys	Lys 2 55	Phe
Phe	Met	Gln	Ser 260	Thr	Asp	Ala	Ile	Gln 265	Ala	Glu	Glu	Leu	Tyr 270	Thr	Phe
Gly	Gly	Gln 275	Asp	Pro	Ser	Ile	Ile 280	Thr	Pro	Ser	Thr	Asp 285	Lys	Ser	Ile
Tyr	Asp 290	Lys	Val	Leu	Gln	Asn 295	Phe	Arg	Gly	Ile	Val 300	Asp	Arg	Leu	Asn
Lys 305	Val	Leu	Val	Cys	Ile 310	Ser	Asp	Pro	Asn	Ile 315	Asn	Ile	Asn	Ile	Tyr 320

Lys Asn Lys Phe Lys Asp Lys Tyr Lys Phe Val Glu Asp Ser Glu Gly

				325					330					335	
Lys	Tyr	Ser	Ile 340	Asp	Val	Glu	Ser	Phe 345	Asp	Lys	Leu	Tyr	Lys 350	Ser	Leu
Met	Phe	Gly 355	Phe	Thr	Glu	Thr	As n 360	Ile	Ala	Glu	Asn	Tyr 365	Lys	Ile	Lys
Thr	Arg 370	Ala	Ser	Tyr	Phe	Ser 375	Asp	Ser	Leu	Pro	Pro 380	Val	Lys	Ile	Lys
Asn 385	Leu	Leu	Asp	Asn	Glu 390	Ile	Tyr	Thr	Ile	Glu 395	Glu	Gly	Phe	Asn	11e 400
Ser	Asp	Lys	Asp	Met 405	Glu	Lys	Glu	Tyr	Arg 410	Gly	Gln	Asn	Lys	Ala 415	Ile
Asn	Lys	Gln	Ala 420	Tyr	Glu	Glu	Ile	Ser 425	Lys	Glu	His	Leu	Ala 430	Val	Tyr
Lys	Ile	Gln 4 35	Met	Cys	Lys	Ser	Val 440	Lys	Ala	Pro	Gly	Ile 445	Суз	Ile	Asp
Val	Asp 450	Asn	Glu	Asp	Leu	Phe 455	Phe	Ile	Ala	Asp	Lys 460	Asn	Ser	Phe	Ser
Asp 465	Asp	Leu	Ser	Lys	Asn 470	Glu	Arg	Ile	Glu	Tyr 475	Asn	Thr	Gln	Ser	Asn 480
Tyr	Ile	Glu	Asn	Asp 485	Phe	Pro	Ile	Asn	Glu 490	Leu	Ile	Leu	Asp	Thr 495	Asp
Leu	Ile	Ser	Lys 500	Ile	Glu	Leu	Pro	Ser 505	Glu	Asn	Thr	Glu	Ser 510	Leu	Thr
Asp	Phe	Asn 515	Val	Asp	Val	Pro	Val 520	Tyr	Glu	Lys	Gln	Pro 525	Ala	Ile	Lys
Lys	Ile 530	Phe	Thr	Asp	Glu	Asn 53 5	Thr	Ile	Phe	Gln	Tyr 540	Leu	Tyr	Ser	Gln
Thr 545	Phe	Pro	Leu	Asp	Ile 550	Arg	Asp	Ile	Ser	Leu 555	Thr	Ser	Ser	Phe	Asp 560
Asp	Ala	Leu	Leu	Phe 565	Ser	Asn	Lys	Val	Tyr 570	Ser	Phe	Phe	Ser	Me t 575	Asp

Tyr	Ile	Lys	Thr 580	Ala	Asn	Lys	Val	Val 585	Glu	Ala	Gly	Leu	Phe 590	Ala	Gly
Trp	Val	Lys 595	Gln	Ile	Val	Asn	Asp 600	Phe	Val	Ile	Glu	Ala 605	Asn	Lys	Ser
Asn	Thr 610	Met	Asp	Lys	Ile	Ala 615	Asp	Ile	Ser	Leu	Ile 620	Val	Pro	Tyr	Ile
Gly 625	Leu	Ala	Leu	Asn	Val 630	G1y	Asn	Glu	Thr	Ala 635	Lys	Gly	Asn	Phe	Glu 640
Asn	Ala	Phe	Glu	11e 645	Ala	G1y	Ala	Ser	11e 650	Leu	Leu	G1u	Phe	11e 655	Pro
Glu	Leu	Leu	Ile 660	Pro	Val	Val	Gly	Ala 665	Phe	Leu	Leu	Glu	Ser 670	Tyr	Ile
Asp	Asn	L ys 675	Asn	Lys	Ile	Ile	Lys 680	Thr	Ile	Asp	Asn	Ala 685	Leu	Thr	Lys
Arg	Asn 690	Glu	Lys	Trp	Ser	Asp 695	Met	Tyr	Gly	Leu	Ile 700	Val	Ala	Gln	Trp
Leu 705	Ser	Thr	Val	Asn	Thr 710	Gln	Phe	Tyr	Thr	Ile 715	Lys	Glu	Gly	Met	Tyr 720
Lys	Ala	Leu	Asn	Tyr 725	Gln	Ala	Gln	Ala	Leu 730	Glu	Glu	Ile	Ile	Lys 735	Tyr
Arg	Tyr	Asn	Ile 740	Tyr	Ser	Glu	Lys	Glu 745	Lys	Ser	Asn	Ile	As n 750	Ile	Asp
Phe	Asn	Asp 755	Ile	Asn	Ser	Lys	Leu 760	Asn	Glu	Gly	Ile	Asn 765	Gln	Ala	Ile
Asp	Asn 770	Ile	Asn	Asn	Phe	Ile 775	Asn	Gly	Cys	Ser	Val 780	Ser	Tyr	Leu	Met
Lys 785	Lys	Met	Ile	Pro	Leu 790	Ala	Val	Glu	Lys	Leu 795	Leu	Asp	Phe	Asp	Asn 800
Thr	Leu	Lys	Lys	Asn 805	Leu	Leu	Asn	Tyr	Ile 810	Asp	Glu	Asn	Lys	Leu 815	Tyr

Leu Ile Gly Ser Ala Glu Tyr Glu Lys Ser Lys Val Asn Lys Tyr Leu 820 825 830

- Lys Thr Ile Met Pro Phe Asp Leu Ser Ile Tyr Thr Asn Asp Thr Ile 835 840 845
- Leu Ile Glu Met Phe Asn Lys Tyr Asn Ser Glu Ile Leu Asn Asn Ile 850 855 860
- Ile Leu Asn Leu Arg Tyr Lys Asp Asn Asn Leu Ile Asp Leu Ser Gly 865 870 875 888
- Tyr Gly Ala Lys Val Glu Val Tyr Asp Gly Val Glu Leu Asn Asp Lys 885 890 895
- Asn Gln Phe Lys Leu Thr Ser Ser Ala Asn Ser Lys Ile Arg Val Thr 900 905 910
- Gln Asn Gln Asn Ile Ile Phe Asn Ser Val Phe Leu Asp Phe Ser Val 915 920 925
- Ser Phe Trp Ile Arg Ile Pro Lys Tyr Lys Asn Asp Gly Ile Gln Asn 930 935 940
- Tyr Ile His Asn Glu Tyr Thr Ile Ile Asn Cys Met Lys Asn Asn Ser 945 950 955 960
- Gly Trp Lys Ile Ser Ile Arg Gly Asn Arg Ile Ile Trp Thr Leu Ile 965 970 975
- Asp Ile Asn Gly Lys Thr Lys Ser Val Phe Phe Glu Tyr Asn Ile Arg 980 985 990
- Glu Asp Ile Ser Glu Tyr Ile Asn Arg Trp Phe Phe Val Thr Ile Thr 995 1000 1005
- Asn Asn Leu Asn Asn Ala Lys Ile Tyr Ile Asn Gly Lys Leu Glu 1010 1015 1020
- Ser Asn Thr Asp Ile Lys Asp Ile Arg Glu Val Ile Ala Asn Gly 1025 1030 1035
- Glu Ile Ile Phe Lys Leu Asp Gly Asp Ile Asp Arg Thr Gln Phe 1040 1045 1050
- Ile Trp Met Lys Tyr Phe Ser Ile Phe Asn Thr Glu Leu Ser Gln 1055 1060 1065
- Ser Asn Ile Glu Glu Arg Tyr Lys Ile Gln Ser Tyr Ser Glu Tyr 1070 1075 1080

Leu Lys Asp Phe Trp Gly Asn Pro Leu Met Tyr Asn Lys Glu Tyr 1090 Tyr Met Phe Asn Ala Gly Asn Lys Asn Ser Tyr Ile Lys Leu Lys 1105 Lys Asp Ser Pro Val Gly Glu Ile Leu Thr Arg Ser Lys Tyr Asn 1120 Gln Asn Ser Lys Tyr Ile Asn Tyr Arg Asp Leu Tyr Ile Gly Glu 1130 1140 1135 Lys Phe Ile Ile Arg Arg Lys Ser Asn Ser Gln Ser Ile Asn Asp 1150 Asp Ile Val Arg Lys Glu Asp Tyr Ile Tyr Leu Asp Phe Phe Asn 1165 Leu Asn Gln Glu Trp Arg Val Tyr Thr Tyr Lys Tyr Phe Lys Lys 1180 Glu Glu Lys Leu Phe Leu Ala Pro Ile Ser Asp Ser Asp Glu 1195 1200 Phe Tyr Asn Thr Ile Gln Ile Lys Glu Tyr Asp Glu Gln Pro Thr 1210 Tyr Ser Cys Gln Leu Leu Phe Lys Lys Asp Glu Glu Ser Thr Asp 1220 1225 Glu Ile Gly Leu Ile Gly Ile His Arg Phe Tyr Glu Ser Gly Ile 1235 1240 1245 Val Phe Glu Glu Tyr Lys Asp Tyr Phe Cys Ile Ser Lys Trp Tyr 1255 1260 Leu Lys Glu Val Lys Arg Lys Pro Tyr Asn Leu Lys Leu Gly Cys 1265 1270 Asn Trp Gln Phe Ile Pro Lys Asp Glu Gly Trp Thr Glu 1285 5 <213> Clostridium botulinum

<210> 9 <211> 1291 <212> PRT

<400> 9

Met 1	Pro	Ile	Thr	Ile 5	Asn	Asn	Phe	Asn	Tyr 10	Ser	Asp	Pro	Val	Asp 15	Asn
Lys	Asn	Ile	Leu 20	Tyr	Leu	Asp	Thr	His 25	Leu	Asn	Thr	Leu	Ala 30	Asn	Glu
Pro	Glu	Lys 35	Ala	Phe	Arg	Ile	Thr 40	Gly	Asn	Ile	Trp	Val 45	Ile	Pro	Asp
Arg	Phe 50	Ser	Arg	Asn	Ser	Asn 55	Pro	Asn	Leu	Asn	Lys 60	Pro	Pro	Arg	Va1
Thr 65	Ser	Pro	Lys	Ser	Gly 70	Tyr	Tyr	Asp	Pro	Asn 75	Tyr	Leu	Ser	Thr	Asp 80
Ser	Asp	Lys	Asp	Pro 85	Phe	Leu	Lys	Glu	Ile 90	Ile	Lys	Leu	Phe	Lys 95	Arg
Ile	Asn	Ser	Arg 100	Glu	Ile	Gly	Glu	Glu 105	Leu	Ile	Tyr	Arg	Leu 110	Ser	Thr
Asp	Ile	Pr o 115	Phe	Pro	Gly	Asn	A sn 120	Asn	Thr	Pro	Ile	Asn 125	Thr	Phe	Asp
Phe	Asp 130	Val	Asp	Phe	Asn	Ser 135	Val	Asp	Val	Lys	Thr 140	Arg	Gln	Gly	Asn
Asn 145	Trp	Val	Lys	Thr	Gly 150	Ser	Ile	Asn	Pro	Ser 155	Val	Ile	Ile	Thr	Gly 160
Pro	Arg	Glu	Asn	Ile 165	Ile	Asp	Pro	Glu	Thr 170	Ser	Thr	Phe	Lys	Leu 175	Thr
Asn	Asn	Thr	Phe 180	Ala	Ala	Gln	Glu	Gly 185	Phe	Gly	Ala	Leu	Ser 190	Ile	Ile
Ser	Ile	Ser 195	Pro	Arg	Phe	Met	Leu 200	Thr	Tyr	Ser	Asn	Ala 205	Thr	Asn	Asp
Val	Gly 210	Glu	Gly	Arg	Phe	Ser 215	Lys	Ser	Glu	Phe	Cys 220	Met	Asp	Pro	Ile
Leu 225	Ile	Leu	Met	His	Glu 230	Leu	Asn	His	Ala	Met 235	His	Asn	Leu	Tyr	Gly 240
Ile	Ala	Ile	Pro	Asn 245	Asp	G1n	Thr	Ile	Ser 250	Ser	Val	Thr	Ser	Asn 255	Ile

Phe Tyr Ser Gln Tyr Asn Val Lys Leu Glu Tyr Ala Glu Ile Tyr Ala

			260					265					270		
Phe	Gly	Gly 275	Pro	Thr	Ile	Asp	Leu 280	Ile	Pro	Lys	Ser	Ala 285	Arg	Lys	Ту
Phe	Glu 290	Glu	Lys	Ala	Leu	Asp 295	Tyr	Tyr	Arg	Ser	Ile 300	Ala	Lys	Arg	Let
Asn 305	Ser	Ile	Thr	Thr	Ala 310	Asn	Pro	Ser	Ser	Phe 315	Asn	Lys	Tyr	Ile	G1 ₃
Gl u	Tyr	Lys	Gln	Lys 325	Leu	Ile	Arg	Lys	Tyr 330	Arg	Phe	Val	Val	Glu 335	Se:
Ser	Gly	Glu	Val 340	Thr	Val	Asn	Arg	Asn 345	Lys	Phe	Val	Glu	Leu 350	Tyr	Ası
Glu	Leu	Thr 355	Gln	Ile	Phe	Thr	Glu 360	Phe	Asn	Tyr	Ala	Lys 365	Ile	Tyr	Ası
Val	Gln 370	Asn	Arg	Lys	Ile	Tyr 375	Leu	Ser	Asn	Val	Tyr 380	Thr	Pro	Val	Th
A la 385	Asn	Ile	Leu	Asp	Asp 390	Asn	Val	Tyr	Asp	Ile 395	Gln	Asn	Gly	Phe	Ası 400
Ile	Pro	Lys	Ser	Asn 405	Leu	Asn	Val	Leu	Phe 410	Met	Gly	Gln	Asn	Leu 415	Se
Arg	Asn	Pro	Ala 420	Leu	Arg	Lys	Val	As n 425	Pro	Glu	Asn	Met	Leu 430	Tyr	Le
Phe	Thr	Lys 435	Phe	Cys	His	Lys	Ala 440	Ile	Asp	Gly	Arg	Ser 445	Leu	Tyr	Ası
Lys	Thr 450	Leu	Asp	Cys	Arg	Glu 455	Leu	Leu	Val	Lys	Asn 460	Thr	Asp	Leu	Pro
Phe 465	Ile	Gly	Asp	Ile	Ser 470	Asp	Val	Lys	Thr	Asp 475	Ile	Phe	Leu	Arg	Ly:

Asp Ile Asn Glu Glu Thr Glu Val Ile Tyr Tyr Pro Asp Asn Val Ser 485

 $\label{thm:condition} \mbox{Val Asp Gln Val Ile Leu Ser Lys Asn Thr Ser Glu His Gly Gln Leu}$

			500					505					510		
Asp	Leu	Leu 515	Tyr	Pro	Ser	Ile	Asp 520	Ser	Glu	Ser	Glu	Ile 525	Leu	Pro	Gly
Glu	As n 530	Gln	Val	Phe	Tyr	Asp 535	Asn	Arg	Thr	Gln	As n 540	Val	Asp	Tyr	Leu
Asn 545	Ser	Tyr	Tyr	Tyr	Leu 550	Glu	Ser	Gln	Lys	Leu 555	Ser	Asp	Asn	Val	Glu 560
Asp	Phe	Thr	Phe	Thr 5 6 5	Arg	Ser	Ile	Glu	Glu 570	Ala	Leu	Asp	Asn	Ser 575	Ala
Lys	Val	Tyr	Thr 580	Tyr	Phe	Pro	Thr	Leu 585	Ala	Asn	Lys	Val	Asn 590	Ala	Gly
Val	Gln	Gly 595	Gly	Leu	Phe	Leu	Met 600	Trp	Ala	Asn	Asp	Val 605	Val	Glu	Asp
Phe	Thr 610	Thr	Asn	Ile	Leu	Arg 615	Lys	Asp	Thr	Leu	Asp 620	Lys	Ile	Ser	Asp
Val 625	Ser	Ala	Ile	Ile	Pro 630	Tyr	Ile	Gly	Pro	Ala 635	Leu	Asn	Ile	Ser	Asn 640
Ser	Val	Arg	Arg	Gly 645	Asn	Phe	Thr	Glu	Ala 650	Phe	Ala	Val	Thr	Gly 655	Val
Thr	Ile	Leu	Leu 660	Glu	Ala	Phe	Pro	Glu 665	Phe	Thr	Ile	Pro	Ala 670	Leu	Gly
Ala	Phe	Val 675	Ile	Tyr	Ser	Lys	Val 680	Gln	Glu	Arg	Asn	Glu 685	Ile	Ile	Lys
Thr	Ile 690	Asp	Asn	Cys	Leu	Glu 695	Gln	Arg	Ile	Lys	Arg 700	Trp	Lys	Asp	Ser
Tyr 705	Glu	Trp	Met	Met	Gly 710	Thr	Trp	Leu	Ser	Arg 715	Ile	Ile	Thr	Gln	Phe 720
Asn	Asn	Ile	Ser	Tyr 725	Gln	Met	Tyr	Asp	Ser 730	Leu	Asn	Tyr	Gln	Ala 735	Gly
Ala	Ile	Lys	Ala 740	Lys	Ile	Asp	Leu	Glu 745	Tyr	Lys	Lys	Tyr	Ser	Gly	Ser

Asp Lys Glu Asn Ile Lys Ser Gln Val Glu Asn Leu Lys Asn Ser Leu

		755					760					765			
Asp	Val 770	Lys	Ile	Ser	Glu	Ala 775	Met	Asn	Asn	Ile	A sn 780	Lys	Phe	Ile	Arg
Glu 785	Cys	Ser	Val	Thr	Tyr 790	Leu	Phe	Lys	Asn	Met 795	Leu	Pro	Lys	Val	Ile 800
Asp	Glu	Leu	Asn	G1u 805	Phe	Asp	Arg	Asn	Thr 810	Lys	Ala	Lys	Leu	Ile 815	Asn
Leu	Ile	Asp	Ser 820	His	Asn	Ile	Ile	Leu 825	Val	Gly	Glu	Val	Asp 830	Lys	Leu
Lys	Ala	Lys 835	Val	Asn	Asn	Ser	Phe 840	Gln	Asn	Thr	Ile	Pro 845	Phe	Asn	Ile
Phe	Ser 850	Tyr	Thr	Asn	Asn	Ser 855	Leu	Leu	Lys	Asp	Ile 860	Ile	Asn	Glu	Tyr
Phe 865	Asn	Asn	Ile	Asn	Asp 870	Ser	Lys	Ile	Leu	Ser 875	Leu	Gln	Asn	Arg	880 Lys
Asn	Thr	Leu	Val	Asp 885	Thr	Ser	Gly	Tyr	Asn 890	Ala	Glu	Val	Ser	Glu 895	Glu
Gly	Asp	Val	G1n 900	Leu	Asn	Pro	Ile	Phe 905	Pro	Phe	Asp	Phe	Lys 910	Leu	Gly
Ser	Ser	Gly 915	Glu	Asp	Arg	Gly	Lys 920	Val	Ile	Val	Thr	Gln 925	Asn	Glu	Asn
Ile	Val 930	Tyr	Asn	Ser	Met	Tyr 935	Glu	Ser	Phe	Ser	Ile 940	Ser	Phe	Trp	Ile
Arg 945	Ile	Asn	Lys	Trp	Val 950	Ser	Asn	Leu	Pro	Gly 955	Tyr	Thr	Ile	Ile	Asp 960
Ser	Val	Lys	Asn	Asn 965	Ser	Gly	Trp	Ser	Ile 970	Gly	Ile	Ile	Ser	Asn 975	Phe
Leu	Val	Phe	Thr 980	Leu	Lys	Gl n	Asn	Glu 985	Asp	Ser	Glu	Gln	Ser 990	Ile	Asn

Phe Ser Tyr Asp Ile Ser Asn Asn Ala Pro Gly Tyr Asn Lys Trp Phe 995 1000 1005

- Phe Val Thr Val Thr Asn Asn Met Met Gly Asn Met Lys Ile Tyr 1010 1015 1020
- Ile Asn Gly Lys Leu Ile Asp Thr Ile Lys Val Lys Glu Leu Thr 1025 1030 1035
- Gly Ile Asn Phe Ser Lys Thr Ile Thr Phe Glu Ile Asn Lys Ile 1040 1045 1050
- Pro Asp Thr Gly Leu Ile Thr Ser Asp Ser Asp Asn Ile Asn Met 1055 1060 1065
- Trp Ile Arg Asp Phe Tyr Ile Phe Ala Lys Glu Leu Asp Gly Lys 1070 1075 1080
- Asp Ile Asn Ile Leu Phe Asn Ser Leu Gln Tyr Thr Asn Val Val 1085 1090 1095
- Lys Asp Tyr Trp Gly Asn Asp Leu Arg Tyr Asn Lys Glu Tyr Tyr 1100 1105 1110
- Met Val Asn Ile Asp Tyr Leu Asn Arg Tyr Met Tyr Ala Asn Ser 1115 1120 1125
- Arg Gln $\,$ Ile Val Phe Asn $\,$ Thr $\,$ Arg Arg Asn $\,$ Asn $\,$ Asp $\,$ Phe $\,$ Asn $\,$ 1130 $\,$ $\,$ 1140
- Glu Gly Tyr Lys Ile Ile Ile Lys Arg Ile Arg Gly Asn Thr Asn 1145 1150 1155
- Asp Thr Arg Val Arg Gly Gly Asp Ile Leu Tyr Phe Asp Met Thr 1160 1165 1170
- Ile Asn Asn Lys Ala Tyr Asn Leu Phe Met Lys Asn Glu Thr Met 1175 1180 1185
- Tyr Ala Asp Asn His Ser Thr Glu Asp Ile Tyr Ala Ile Gly Leu 1190 1195 1200
- Arg Glu Gln Thr Lys Asp Ile Asn Asp Asn Ile Ile Phe Gln Ile 1205 1210 1215
- Gln Pro Met Asn Asn Thr Tyr Tyr Tyr Ala Ser Gln Ile Phe Lys 1220 1225 1230
- Ser Asn Phe Asn Gly Glu Asn Ile Ser Gly Ile Cys Ser Ile Gly 1235 1240 1245

Thr Tyr Arg Phe Arg Leu Gly Gly Asp Trp Tyr Arg His Asn Tyr 1250 1255 1260Leu Val Pro Thr Val Lys Gln Gly Asn Tyr Ala Ser Leu Leu Glu 1270 Ser Thr Ser Thr His Trp Gly Phe Val Pro Val Ser Glu 1285 5 <213> Clostridium botulinum Met Thr Trp Pro Val Lys Asp Phe Asn Tyr Ser Asp Pro Val Asn Asp Asn Asp Ile Leu Tyr Leu Arg Ile Pro Gln Asn Lys Leu Ile Thr Thr Pro Val Lys Ala Phe Met Ile Thr Gln Asn Ile Trp Val Ile Pro Glu Arg Phe Ser Ser Asp Thr Asn Pro Ser Leu Ser Lys Pro Pro Arg Pro Thr Ser Lys Tyr Gln Ser Tyr Tyr Asp Pro Ser Tyr Leu Ser Thr Asp 70 75 Glu Gln Lys Asp Thr Phe Leu Lys Gly Ile Ile Lys Leu Phe Lys Arg 85 90 95

<210> 10 <211> 1276 <212> PRT

<400> 10

Ile Asn Glu Arg Asp Ile Gly Lys Lys Leu Ile Asn Tyr Leu Val Val

Gly Ser Pro Phe Met Gly Asp Ser Ser Thr Pro Glu Asp Thr Phe Asp 120

Phe Thr Arg His Thr Thr Asn Ile Ala Val Glu Lys Phe Glu Asn Gly 130

Ser Trp Lys Val Thr Asn Ile Ile Thr Pro Ser Val Leu Ile Phe Gly 145 150 155

Pro Leu Pro Asn Ile Leu Asp Tyr Thr Ala Ser Leu Thr Leu Gln Gly 165 170

GIII	GIII	ser	180	PIO	ser	Pne	GIU	185	Pile	GTĀ	THE	Leu	190	11e	Leu
Lys	Val	Ala 195	Pro	Glu	Phe	Leu	Leu 200	Thr	Phe	Ser	Asp	Val 205	Thr	Ser	Asn
Gln	Ser 210	Ser	Ala	Val	Leu	Gly 215	Lys	Ser	Ile	Phe	Cys 220	Met	Asp	Pro	Val
11e 225	Ala	Leu	Met	His	G1u 230	Leu	Thr	His	Ser	Leu 235	His	Gln	Leu	Tyr	Gly 240
Ile	Asn	Ile	Pro	Ser 245	Asp	Lys	Arg	Ile	Arg 250	Pro	Gln	Val	Ser	G1u 255	Gly
Phe	Phe	Ser	Gln 260	Asp	Gly	Pro	Asn	Val 265	Gln	Phe	Glu	Glu	Leu 270	Tyr	Thr
Phe	Gly	Gly 275	Leu	Asp	Val	Glu	Ile 280	Ile	Pro	Gln	Ile	Glu 285	Arg	Ser	Gln
Leu	Arg 290	Glu	Lys	Ala	Leu	Gly 295	His	Tyr	Lys	Asp	Ile 300	Ala	Lys	Arg	Leu
A sn 305	Asn	Ile	Asn	Lys	Thr 310	Ile	Pro	Ser	Ser	Trp 315	Ile	Ser	Asn	Ile	Asp 320
_	_	_		325			Glu	_	330				_	335	
			340				Ile	345					350		
		355					Glu 360					365			
	370		-			375	Phe		-		380				
385					390		Ile			395	_				400
				405			Ile		410					415	
arg	ASN	PLO	420	теп	GIN	тАг	Leu	ser 425	ser	GIU	ser	vaı	va⊥ 430	Asp	ьеи

Phe	Thr	Lys 435	Val	Сув	Leu	Arg	Leu 440	Thr	Lys	Asn	Ser	Arg 445	Asp	Asp	Ser
Thr	C ys 450	Ile	Lys	Val	Lys	Asn 455	Asn	Arg	Leu	Pro	Туг 460	Val	Ala	Asp	Lys
Asp 465	Ser	Ile	Ser	Gln	Glu 470	Ile	Phe	Glu	Asn	Lys 475	Ile	Ile	Thr	Asp	Glu 480
Thr	Asn	Val	Gln	As n 485	Tyr	Ser	Asp	Lys	Phe 490	Ser	Leu	Asp	Glu	Ser 495	Ile
Leu	Asp	Gly	Gln 500	Val	Pro	Ile	Asn	Pro 505	Glu	Ile	Val	Asp	Pro 510	Leu	Leu
Pro	Asn	Val 515	Asn	Met	Glu	Pro	Leu 520	Asn	Leu	Pro	Gly	Glu 525	Glu	Ile	Val
Phe	Tyr 530	Asp	Asp	Ile	Thr	Lys 535	Tyr	Val	Asp	Tyr	Le u 540	Asn	Ser	Tyr	Tyr
Tyr 545	Leu	Glu	Ser	Gln	Lys 550	Leu	Ser	Asn	Asn	Val 555	Glu	Asn	Ile	Thr	Leu 560
Thr	Thr	Ser	Val	Glu 565	Glu	Ala	Leu	Gly	Tyr 570	Ser	Asn	Lys	Ile	Tyr 575	Thr
Phe	Leu	Pro	Ser 580	Leu	Ala	Gl u	Lys	Val 585	Asn	Lys	Gly	Val	Gln 590	Ala	Gly
Leu	Phe	Leu 595	Asn	Trp	Ala	Asn	Glu 600	Val	Val	Glu	Asp	Phe 605	Thr	Thr	Asn
Ile	Met 610	Lys	Lys	Asp	Thr	Leu 615	Asp	Lys	Ile	Ser	Asp 620	Val	Ser	Val	Ile
Ile 625	Pro	Tyr	Ile	Gly	Pro 630	Ala	Leu	Asn	Ile	Gly 635	Asn	Ser	Ala	Leu	Arg 640
Gly	Asn	Phe	Asn	Gln 645	Ala	Phe	Ala	Thr	Ala 650	Gly	Val	Ala	Phe	Leu 655	Leu
Glu	Gly	Phe	Pro 660	Glu	Phe	Thr	Ile	Pro 665	Ala	Leu	Gly	Val	Phe 670	Thr	Phe

Tyr Ser Ser Ile Gl
n Glu Arg Glu Lys Ile Ile Lys Thr Ile Glu As
n $\,$

		6 75					680					685			
Cys	Leu 690	Glu	Gln	Arg	Val	Lys 695	Arg	Trp	Lys	Asp	Ser 700	Tyr	Gln	Trp	Met
Va l 705	Ser	Asn	Trp	Leu	Ser 710	Arg	Ile	Thr	Thr	Gln 715	Phe	Asn	His	Ile	Asn 720
Tyr	Gln	Met	Tyr	Asp 725	Ser	Leu	Ser	Tyr	Gln 730	Ala	Asp	Ala	Ile	Lys 735	Ala
Lys	Ile	Asp	Leu 740	Glu	Tyr	Lys	Lys	Tyr 745	Ser	Gly	Ser	Asp	Lys 750	Glu	Asn
Ile	Lys	Ser 755	Gln	Val	Glu	Asn	Leu 760	Lys	Asn	Ser	Leu	Asp 765	Val	Lys	Ile
Ser	Glu 770	Ala	Met	Asn	Asn	Ile 775	Asn	Lys	Phe	Ile	A rg 780	Glu	Суз	Ser	Val
Thr 785	Tyr	Leu	Phe	Lys	Asn 790	Met	Leu	Pro	Lys	Val 795	Ile	Asp	Glu	Leu	Asn 800
Lys	Phe	Asp	Leu	Arg 805	Thr	Lys	Thr	Glu	Leu 810	Ile	Asn	Leu	Ile	Asp 815	Ser
His	Asn	Ile	Ile 820	Leu	Val	Gly	Glu	Val 825	Asp	Arg	Leu	Lys	Ala 830	Lys	Val
Asn	Glu	Ser 835	Phe	Glu	Asn	Thr	Met 840	Pro	Phe	Asn	Ile	Phe 845	Ser	Tyr	Thr
Asn	As n 850	Ser	Leu	Leu	Lys	Asp 855	Ile	Ile	Asn	Glu	Tyr 860	Phe	Asn	Ser	Ile
Asn 865	Asp	Ser	Lys	Ile	Leu 870	Ser	Leu	Gln	Asn	Lys 875	Lys	Asn	Ala	Leu	Val 880
Asp	Thr	Ser	Gly	Tyr 885	Asn	Ala	Glu	Val	Arg 890	Val	Gly	Asp	Asn	Val 895	Gln
Leu	Asn	Thr	11e 900	Tyr	Thr	Asn	Asp	Phe 905	Lys	Leu	Ser	Ser	Ser 910	Gly	Asp
Lys	Ile	Ile 915	Val	Asn	Leu	Asn	Asn 920	Asn	Ile	Leu	Tyr	Ser 925	Ala	Ile	Tyr

- Glu Asn Ser Ser Val Ser Phe Trp Ile Lys Ile Ser Lys Asp Leu Thr 930 935 940
- Asn Ser His Asn Glu Tyr Thr Ile Ile Asn Ser Ile Glu Gln Asn Ser 945 950 955 960
- Gly Trp Lys Leu Cys Ile Arg Asn Gly Asn Ile Glu Trp Ile Leu Gln 965 970 975
- Asp Val Asn Arg Lys Tyr Lys Ser Leu Ile Phe Asp Tyr Ser Glu Ser 980 985 990
- Leu Ser His Thr Gly Tyr Thr Asn Lys Trp Phe Phe Val Thr Ile Thr 995 1000 1005
- Asn Asn Ile Met Gly Tyr Met Lys Leu Tyr Ile Asn Gly Glu Leu 1010 1020
- Lys Gln Ser Gln Lys Ile Glu Asp Leu Asp Glu Val Lys Leu Asp 1025 1030 1035
- Lys Thr Ile Val Phe Gly Ile Asp Glu Asn Ile Asp Glu Asn Gln 1040 1045 1050
- Met Leu Trp Ile Arg Asp Phe Asn Ile Phe Ser Lys Glu Leu Ser 1055 1060 1065
- Asn Glu Asp Ile Asn Ile Val Tyr Glu Gly Gln Ile Leu Arg Asn 1070 1075 1080
- Val Ile Lys Asp Tyr Trp Gly Asn Pro Leu Lys Phe Asp Thr Glu 1085 1090 1095
- Tyr Tyr Ile Asn Asp Asn Tyr Ile Asp Arg Tyr Ile Ala Pro 1100 1105 1110
- Glu Ser Asn Val Leu Val Leu Val Gln Tyr Pro Asp Arg Ser Lys
- Leu Tyr Thr Gly Asn Pro Ile Thr Ile Lys Ser Val Ser Asp Lys 1130 1135 1140
- Asn Pro Tyr Ser Arg Ile Leu Asn Gly Asp Asn Ile Ile Leu His 1145 1150 1155
- Met Leu Tyr Asn Ser Arg Lys Tyr Met Ile Ile Arg Asp Thr Asp 1160 1165 1170

Thr Ile Tyr Ala Thr Gln Gly Glu Cys Ser Gln Asn Cys Val 1180 Tyr Ala Leu Lys Leu Gln Ser Asn Leu Gly Asn Tyr Gly Ile Gly 1195 Ile Phe Ser Ile Lys Asn Ile Val Ser Lys Asn Lys Tyr Cys Ser 1210 Gln Ile Phe Ser Ser Phe Arg Glu Asn Thr Met Leu Leu Ala Asp 1220 1225 1230 Ile Tyr Lys Pro Trp Arg Phe Ser Phe Lys Asn Ala Tyr Thr Pro 1235 1240 1245 Val Ala Val Thr Asn Tyr Glu Thr Lys Leu Leu Ser Thr Ser Ser 1255 Phe Trp Lys Phe Ile Ser Arg Asp Pro Gly Trp Val Glu 1265 1270 1275 <210> 11 <211> 1252 <212> PRT 5 <213> Clostridium botulinum <400> 11 Met Pro Lys Ile Asn Ser Phe Asn Tyr Asn Asp Pro Val Asn Asp Arg Thr Ile Leu Tyr Ile Lys Pro Gly Gly Cys Gln Glu Phe Tyr Lys Ser Phe Asn Ile Met Lys Asn Ile Trp Ile Ile Pro Glu Arg Asn Val Ile Gly Thr Thr Pro Gln Asp Phe His Pro Pro Thr Ser Leu Lys Asn Gly 55 Asp Ser Ser Tyr Tyr Asp Pro Asn Tyr Leu Gln Ser Asp Glu Glu Lys 70 Asp Arg Phe Leu Lys Ile Val Thr Lys Ile Phe Asn Arg Ile Asn Asn Asn Leu Ser Gly Gly Ile Leu Leu Glu Glu Leu Ser Lys Ala Asn Pro

105

TĂL	ьeu	115	ASII	Asp	ASII	THE	120	ASP	ASII	GIII	rne	125	ire	GIY	Asp
Ala	Ser 130	Ala	Val	Glu	Ile	Lys 135	Phe	Ser	Asn	Gly	Ser 140	Gln	Asp	Ile	Leu
Leu 145	Pro	Asn	Val	Ile	Ile 150	Met	Gly	Ala	Glu	Pro 155	Asp	Leu	Phe	G1u	Thr 160
Asn	Ser	Ser	Asn	Ile 165	Ser	Leu	Arg	Asn	A sn 170	Tyr	Met	Pro	Ser	A sn 175	His
Gly	Phe	Gly	Ser 180	Ile	Ala	Ile	Val	Thr 185	Phe	Ser	Pro	Glu	Tyr 190	Ser	Phe
		195					200				Gln	205			
	210					215					Gly 220				
Lys 225	Gly	Ile	Thr	Thr	Lys 230	Tyr	Thr	Ile	Thr	Gln 235	Lys	Gln	Asn	Pro	Leu 240
Ile	Thr	Asn	Ile	Arg 245	Gly	Thr	Asn	Ile	G1u 250	Glu	Phe	Leu	Thr	Phe 255	Gly
Gly	Thr	Asp	Leu 260	Asn	Ile	Ile	Thr	Ser 265	Ala	Gln	Ser	Asn	Asp 270	Ile	Tyr
Thr	Asn	Leu 275	Leu	Ala	Asp	Tyr	Lys 280	Lys	Ile	Ala	Ser	Lys 285	Leu	Ser	Lys
	290					295				-	300				
305	-	-	Ī		310	-	_			315	Ile	-			320
		-		325	_				330		Tyr			335	
			340		_			345			Arg		350	_	
GLY	GLn	Tyr 355		Tyr			1eu		Asn	Leu	Leu	Asn 365		ser	ΙΙĘ

Tyr	Asn 370	Ile	Ser	Glu	Gly	Tyr 375	Asn	Ile	Asn	Asn	Leu 380	Lys	Val	Asn	Phe
Arg 385	Gly	Gln	Asn	Ala	Asn 390	Leu	Asn	Pro	Arg	Ile 395	Ile	Thr	Pro	Ile	Thr 400
Gly	Arg	Gly	Leu	Val 405	Lys	Lys	Ile	Ile	Arg 410	Phe	Cys	Lys	Asn	Ile 415	Val
Ser	Val	Lys	Gly 420	Ile	Arg	Lys	Ser	11e 425	Cys	Ile	Glu	Ile	Asn 430	Asn	Gly
Glu	Leu	Phe 435	Phe	Val	Ala	Ser	Glu 440	Asn	Ser	Tyr	Asn	Asp 445	Asp	Asn	Ile
Asn	Thr 450	Pro	Lys	Glu	Ile	Asp 455	Asp	Thr	Val	Thr	Ser 460	Asn	Asn	Asn	Tyr
Glu 465	Asn	Asp	Leu	Asp	Gln 470	Val	Ile	Leu	Asn	Phe 475	Asn	Ser	Glu	Ser	Ala 480
Pro	Gly	Leu	Ser	Asp 485	Glu	Lys	Leu	Asn	Leu 490	Thr	Ile	Gln	Asn	Asp 495	Ala
Tyr	Ile	Pro	Lys 500	Tyr	Asp	Ser	Asn	Gly 505	Thr	Ser	Asp	Ile	Glu 510	Gln	His
Asp	Val	As n 515	Glu	Leu	Asn	Val	Phe 520	Phe	Tyr	Leu	Asp	Ala 525	G1n	Lys	Val
Pro	Glu 530	Gly	Glu	Asn	Asn	Val 535	Asn	Leu	Thr	Ser	Ser 540	Ile	Asp	Thr	Ala
Leu 545	Leu	Glu	Gln	Pro	Lys 550	Ile	Tyr	Thr	Phe	Phe 555	Ser	Ser	Glu	Phe	Ile 560
Asn	Asn	Val	Asn	Lys 565	Pro	Val	Gln	Ala	Ala 570	Leu	Phe	Val	Ser	Trp 575	Ile
Gln	Gln	Val	Leu 580	Val	Asp	Phe	Thr	Thr 585	Glu	Ala	Asn	Gln	Lys 590	Ser	Thr
Val	Asp	Lys 595	Ile	Ala	Asp	Ile	Ser 600	Ile	Val	Val	Pro	Tyr 605	Ile	Gly	Leu
Ala	Leu 610	Asn	Ile	Gly	Asn	G1u 615	Ala	Gln	Lys	Gly	Asn 620	Phe	Lys	Asp	Ala

625	GIU	Leu	Leu	GIY	630	GIY	ire	Leu	Leu	635	Pne	GIU	PFO	GIU	640
Leu	Ile	Pro	Thr	11e 645	Leu	Val	Phe	Thr	11e 650	Lys	Ser	Phe	Leu	G1y 655	Ser
Ser	Asp	Asn	Lys 660	Asn	Lys	Val	Ile	Lys 665	Ala	Ile	Asn	Asn	Ala 670	Leu	Lys
Glu	Arg	Asp 675	Glu	Lys	Trp	Lys	Glu 680	Val	Tyr	Ser	Phe	Ile 685	Val	Ser	Asn
Trp	Met 690	Thr	Lys	Ile	Asn	Thr 695	Gln	Phe	Asn	Lys	Arg 700	Lys	Glu	Gln	Met
Tyr 705	Gln	Ala	Leu	Gln	Asn 710	Gln	Val	Asn	Ala	Ile 715	Lys	Thr	Ile	Ile	Glu 720
Ser	Lys	Tyr	Asn	Ser 725	Tyr	Thr	Leu	Glu	Glu 730	Lys	Asn	Glu	Leu	Thr 735	Asn
Lys	Tyr	Asp	11e 740	Lys	Gln	Ile	Glu	Asn 745	Glu	Leu	Asn	Gln	Lys 750	Val	Ser
Ile	Ala	Met 755	Asn	Asn	Ile	Asp	A rg 760	Phe	Leu	Thr	Glu	Ser 765	Ser	Ile	Ser
Tyr	Leu 770	Met	Lys	Leu	Ile	Asn 775	Glu	Val	Lys	Ile	Asn 780	Lys	Leu	Arg	Glu
Tyr 785	Asp	Glu	Asn	Val	Lys 790	Thr	Tyr	Leu	Leu	As n 795	Tyr	Ile	Ile	Gln	His 800
Gly	Ser	Ile	Leu	Gly 805	Glu	Ser	Gln	Gln	Glu 810	Leu	Asn	Ser	Met	Val 815	Thr
Asp	Thr	Leu	Asn 820	Asn	Ser	Ile	Pro	Phe 825	Lys	Leu	Ser	Ser	Tyr 830	Thr	Asp
Asp	Lys	Ile 835	Leu	Ile	Ser	Tyr	Phe 840	Asn	Lys	Phe	Phe	Lys 845	Arg	Ile	Lys
Ser	Ser 850	Ser	Val	Leu	Asn	Met 855	Arg	Tyr	Lys	Asn	Asp 860	Lys	Tyr	Val	Asp
Thr	Ser	Glv	Tvr	Asp	Ser	Asn	Ile	Asn	Ile	Asn	Glv	Asp	Val	Tvr	Lvs

865					870					875					880
Tyr	Pro	Thr	Asn	Lys 885	Asn	Gln	Phe	Gly	Ile 890	Tyr	Asn	Asp	Lys	Leu 895	Ser
Glu	Val	Asn	Ile 900	Ser	Gln	Asn	Asp	Tyr 905	Ile	Ile	Tyr	Asp	As n 910	_	Tyr
Lys	Asn	Phe 915	Ser	Ile	Ser	Phe	Trp 920	Val	Arg	Ile	Pro	Asn 925		Asp	Asn
Lys	11e 930	Val	Asn	Val	Asn	Asn 935	Glu	Tyr	Thr	Ile	Ile 940	Asn	Cys	Met	Arg
Asp 945	Asn	Asn	Ser	Gly	Trp 950	Lys	Val	Ser	Leu	Asn 955	His	Asn	Glu	Ile	Ile 960
Trp	Thr	Leu	Gln	Asp 965	Asn	Ala	Gly	Ile	As n 970	Gln	Lys	Leu	Ala	Phe 975	Asn
Tyr	Gly	Asn	Ala 980	Asn	Gly	Ile	Ser	Asp 985	Tyr	Ile	Asn	Lys	Trp 990		Phe
Val	Thr	Ile 995	Thr	Asn	Asp	Arg	L eu 1000	-	y Ası	Se:	r Ly:	s Le		yr I	le Asn
	Thr Asn 1010	995 Let			Asp Glr	-	1000 s Se)		•	sn Le	10	05	-	
Gly	Asn	995 Let) Sea	ı Ile	e Asp	Glr	10:	1000 s Se l5	er I	le Le	eu A	sn Le 10	10 eu (020	05 Gly	Asn	Ile
Gly His	Asn 101(995 Let Set	ı Ile	e Asp Asr	o Glr	n Lys 10: 2 Let 10:	1000 s Se l5 l Pl 30	er II	le Le	eu A: Le V	sn Le	10 eu (020 sn (05 Gly Cys	Asn Ser	Ile Tyr
Gly His	Asn 1010 Val 1025	995 Let) Set 5	ı Ile	e Asp Asr e Gly	o Glr	Lys 10: Let 10: Arc	1000 s Se l5 l Pl 30 Ty 45	er I: ne Ly	le Le ys II	eu As	sn Le 10 al A: 10 le Pl 10	10 eu (020 sn (035 he 2	05 Gly Cys Asp	Asn Ser Lys	Ile Tyr Glu
Gly His Thr	Asn 1010 Val 1025 Arg 1040	995 Let Sei Ty: Glu Ilet	ı Ile r Ası r Ile	Asr Asr Gly	o Glr	10: 10: 10: 10: 10: 10:	1000 s Se l5 1 Pl 180 15 15 15) oe Ly yr Pl	le Le ys II ne As	Le Vo	ssn Le 10 10 10 10 10 10 10 10 10 10 10 10 10	100 eeu (000 oo 000 oo	Gly Cys Asp	Asn Ser Lys	Ile Tyr Glu Asn
Gly His Thr Leu	Asn 1010 Val 1025 Arg 1040 Asp 1055	995 Let Ty: Glu Ty:	ı Ile c Asp c Ile I Thr	Asr Asr Gly	Glr Ile	103 Lys 103 104 104 104 104 105 Phe 107	1000 s Se) er I: ne Ly yr P)	yys II	Le Vo	ssn Le 10 10 10 10 10 10 10 10 10 10 10 10 10	100 eu (200 com 200 co	05 Gly Cys Asp Glu	Asn Ser Lys Pro	Ile Tyr Glu Asn Asp

Thr Ile Leu Leu Ala Asn Arg Leu Tyr Ser Gly Ile Lys Val Lys 1115 1120 1125

Ile Gln Arg Val Asn Asn Ser Ser Thr Asn Asp Asn Leu Val Arg

1130 1135 1140

Lys Asn Asp Gln Val Tyr Ile Asn Phe Val Ala Ser Lys Thr His 1145 1150 1155

Leu Phe Pro Leu Tyr Ala Asp Thr Ala Thr Thr Asn Lys Glu Lys 1160 1165 1170

Thr Ile Lys Ile Ser Ser Ser Gly Asn Arg Phe Asn Gln Val Val 1175 1180 1185

Val Met Asn Ser Val Gly Asn Asn Cys Thr Met Asn Phe Lys Asn 1190 1195 1200

Asn Asn Gly Asn Asn Ile Gly Leu Leu Gly Phe Lys Ala Asp Thr 1205 1210 1215

Val Val Ala Ser Thr Trp Tyr Tyr Thr His Met Arg Asp His Thr 1220 1225 1230

Asn Ser Asn Gly Cys Phe Trp Asn Phe Ile Ser Glu Glu His Gly 1235 1240 1245

Trp Gln Glu Lys 1250

<210> 12

<211> 1274

<212> PRT

5 <213> Clostridium botulinum

<400> 12

Met Pro Val Ala Ile Asn Ser Phe Asn Tyr Asn Asp Pro Val Asn Asp 1 5 10 15

Asp Thr Ile Leu Tyr Met Gln Ile Pro Tyr Glu Glu Lys Ser Lys Lys 20 25 30

Tyr Tyr Lys Ala Phe Glu Ile Met Arg Asn Val Trp Ile Ile Pro Glu 35 40 45

Arg Asn Thr Ile Gly Thr Asn Pro Ser Asp Phe Asp Pro Pro Ala Ser 50 55

Leu Lys Asn Gly Ser Ser Ala Tyr Tyr Asp Pro Asn Tyr Leu Thr Thr

65					70					75					80
Asp	Ala	Glu	Lys	Asp 85	Arg	Tyr	Leu	Lys	Thr 90	Thr	Ile	Lys	Leu	Phe 95	Lys
Arg	Ile	Asn	Ser 100	Asn	Pro	Ala	Gly	Lys 105	Val	Leu	Leu	Gln	Glu 110	Ile	Ser
Tyr	Ala	Lys 115	Pro	Tyr	Leu	Gly	Asn 120	Asp	His	Thr	Pro	Ile 125	Asp	Glu	Phe
Ser	Pro 130	Val	Thr	Arg	Thr	Thr 135	Ser	Val	Asn	Ile	Lys 140	Leu	Ser	Thr	Asn
Val 145	Glu	Ser	Ser	Met	Leu 150	Leu	Asn	Leu	Leu	Val 155	Leu	Gly	Ala	Gly	Pro 160
Asp	Ile	Phe	Glu	Ser 165	Cys	Суз	Tyr	Pro	Val 170	Arg	Lys	Leu	Ile	Asp 175	Pro
Asp	Val	Val	Tyr 180	Asp	Pro	Ser	Asn	Tyr 185	Gly	Phe	Gly	Ser	Ile 190	Asn	Ile
Val	Thr	Phe 195	Ser	Pro	Glu	Tyr	Glu 200	Tyr	Thr	Phe	Asn	Asp 205	Ile	Ser	Gly
Gly	His 210	Asn	Ser	Ser	Thr	Glu 215	Ser	Phe	Ile	Ala	Asp 220	Pro	Ala	Ile	Ser
Leu 225	Ala	His	Glu	Leu	Ile 230	His	Ala	Leu	His	Gly 235	Leu	Tyr	Gly	Ala	Arg 240
Gly	Val	Thr	Tyr	Glu 245	Glu	Thr	Ile	Glu	Val 250	Lys	Gln	Ala	Pro	Leu 255	Met
Ile	Ala	Glu	Lys 260	Pro	Ile	Arg	Leu	Glu 265	Glu	Phe	Leu	Thr	Phe 270	Gly	Gly
Gln	Asp	Leu 275	Asn	Ile	Ile	Thr	Ser 280	Ala	Met	Lys	Glu	Lys 285	Ile	Tyr	Asn
Asn	Leu 290	Leu	Ala	Asn	Tyr	Glu 295	Lys	Ile	Ala	Thr	Arg 300	Leu	Ser	Glu	Val
Asn 305	Ser	Ala	Pro	Pro	Glu 310	Tyr	Asp	Ile	Asn	Glu 315	Tyr	Lys	Asp	Tyr	Phe 320

(31n	Trp	Lys	Tyr	Gly 325	Leu	Asp	Lys	Asn	Ala 330	Asp	Gly	Ser	Tyr	Thr 335	Val
Į	Asn	Glu	Asn	Lys 340	Phe	Asn	Glu	Ile	Tyr 345	Lys	Lys	Leu	Tyr	Ser 350	Phe	Thr
(31u	Ser	Asp 355	Leu	Ala	Asn	Lys	Phe 360	Lys	Val	Lys	Сув	Arg 365	Asn	Thr	Tyr
E	?he	11e 370	Lys	Tyr	Glu	Phe	Leu 375	Lys	Val	Pro	Asn	Leu 380	Leu	Asp	Asp	Asp
	1 le 385	Tyr	Thr	Val	Ser	Glu 390	G1y	Phe	Asn	Ile	Gly 395	Asn	Leu	Ala	Val	Asn 400
7	Asn	Arg	Gly	Gln	Ser 405	Ile	Lys	Leu	Asn	Pro 410	Lys	Ile	Ile	Asp	Ser 415	Ile
E	Pro	Asp	Lys	Gly 420	Leu	Val	Glu	Lys	I1e 425	Val	Lys	Phe	Cys	Lys 430	Ser	Val
1	[le	Pro	Arg 435	Lys	Gly	Thr	Lys	Ala 440	Pro	Pro	Arg	Leu	Cys 445	Ile	Arg	Val
7	Asn	A sn 450	Ser	Glu	Leu	Phe	Phe 455	Val	Ala	Ser	Glu	Ser 460	Ser	Tyr	Asn	Glu
	Asn 165	Asp	Ile	Asn	Thr	Pro 470	Lys	Glu	Ile	Asp	Asp 47 5	Thr	Thr	Asn	Leu	Asn 480
7	Asn	Asn	Tyr	Arg	Asn 485	Asn	Leu	Asp	Glu	Val 490	Ile	Leu	Asp	Tyr	Asn 495	Ser
				500		Ile			505					510		
1	Asp	Asn	Ser 515	Tyr	Val	Pro	Arg	Tyr 520	Asp	Ser	Asn	Gly	Thr 525	Ser	Glu	Ile
		530	-	-		Val	535					540	-			
	31n 545	Lys	Val	Pro	Glu	Gly 550	Glu	Thr	Asn	Ile	Ser 555	Leu	Thr	Ser	Ser	Ile 560
Į	Asp	Thr	Ala	Leu	Leu 565	Glu	Glu	Ser	Lys	Asp 570	Ile	Phe	Phe	Ser	Ser 575	Glu

Phe Ile Asp Thr Ile Asn Lys Pro Val Asn Ala Ala Leu Phe Ile Asp Trp Ile Ser Lys Val Ile Arg Asp Phe Thr Thr Glu Ala Thr Gln Lys Ser Thr Val Asp Lys Ile Ala Asp Ile Ser Leu Ile Val Pro Tyr Val Gly Leu Ala Leu Asn Ile Ile Ile Glu Ala Glu Lys Gly Asn Phe Glu Glu Ala Phe Glu Leu Leu Gly Val Gly Ile Leu Leu Glu Phe Val Pro Glu Leu Thr Ile Pro Val Ile Leu Val Phe Thr Ile Lys Ser Tyr Ile Asp Ser Tyr Glu Asn Lys Asn Lys Ala Ile Lys Ala Ile Asn Asn Ser 680 Leu Ile Glu Arg Glu Ala Lys Trp Lys Glu Ile Tyr Ser Trp Ile Val Ser Asn Trp Leu Thr Arg Ile Asn Thr Gln Phe Asn Lys Arg Lys Glu Gln Met Tyr Gln Ala Leu Gln Asn Gln Val Asp Ala Ile Lys Thr Ala Ile Glu Tyr Lys Tyr Asn Asn Tyr Thr Ser Asp Glu Lys Asn Arg Leu Glu Ser Glu Tyr Asn Ile Asn Asn Ile Glu Glu Leu Asn Lys Lys Val Ser Leu Ala Met Lys Asn Ile Glu Arg Phe Met Thr Glu Ser Ser Ile Ser Tyr Leu Met Lys Leu Ile Asn Glu Ala Lys Val Gly Lys Leu

Lys Lys Tyr Asp Asn His Val Lys Ser Asp Leu Leu Asn Tyr Ile Leu

Asp His Arg Ser Ile Leu Gly Glu Gln Thr Asn Glu Leu Ser Asp Leu 820 825 830

- Val Thr Ser Thr Leu Asn Ser Ser Ile Pro Phe Glu Leu Ser Ser Tyr 835 840 845
- Thr Asn Asp Lys Ile Leu Ile Ile Tyr Phe Asn Arg Leu Tyr Lys Lys 850 860
- Ile Lys Asp Ser Ser Ile Leu Asp Met Arg Tyr Glu Asn Asn Lys Phe865870875880
- Ile Asp Ile Ser Gly Tyr Gly Ser Asn Ile Ser Ile Asn Gly Asn Val
- Tyr Ile Tyr Ser Thr Asn Arg Asn Gln Phe Gly Ile Tyr Asn Ser Arg 900 905 910
- Leu Ser Glu Val Asn Ile Ala Gln Asn Asn Asp Ile Ile Tyr Asn Ser 915 920 925
- Arg Tyr Gln Asn Phe Ser Ile Ser Phe Trp Val Arg Ile Pro Lys His 930 935 940
- Tyr Lys Pro Met Asn His Asn Arg Glu Tyr Thr Ile Ile Asn Cys Met 945 950 955 960
- Gly Asn Asn Asn Ser Gly Trp Lys Ile Ser Leu Arg Thr Val Arg Asp 965 970 975
- Cys Glu Ile Ile Trp Thr Leu Gln Asp Thr Ser Gly Asn Lys Glu Asn 980 985 990
- Leu Ile Phe Arg Tyr Glu Glu Leu Asn Arg Ile Ser Asn Tyr Ile Asn 995 1000 1000
- Lys Trp Ile Phe Val Thr Ile Thr Asn Asn Arg Leu Gly Asn Ser 1010 1015 1020
- Arg Ile Tyr Ile Asn Gly Asn Leu Ile Val Glu Lys Ser Ile Ser 1025 1030 1035
- Asn Leu Gly Asp Ile His Val Ser Asp Asn Ile Leu Phe Lys Ile 1040 1045 1050
- Val Gly Cys Asp Asp Glu Thr Tyr Val Gly Ile Arg Tyr Phe Lys 1055 1060 1065
- Val Phe Asn Thr Glu Leu Asp Lys Thr Glu Ile Glu Thr Leu Tyr

1070 1075 1080 Ser Asn Glu Pro Asp Pro Ser Ile Leu Lys Asn Tyr Trp Gly Asn 1090 1085 1095 Tyr Leu Leu Tyr Asn Lys Lys Tyr Tyr Leu Phe Asn Leu Leu Arg 1100 1105 1110Lys Asp Lys Tyr Ile Thr Leu Asn Ser Gly Ile Leu Asn Ile Asn 1120 Gln Gln Arg Gly Val Thr Glu Gly Ser Val Phe Leu Asn Tyr Lys Leu Tyr Glu Gly Val Glu Val Ile Ile Arg Lys Asn Gly Pro Ile 1145 1150 1155 Asp Ile Ser Asn Thr Asp Asn Phe Val Arg Lys Asn Asp Leu Ala 1165 1170 Tyr Ile Asn Val Val Asp Arg Gly Val Glu Tyr Arg Leu Tyr Ala 1180 Asp Thr Lys Ser Glu Lys Glu Lys Ile Ile Arg Thr Ser Asn Leu 1195 Asn Asp Ser Leu Gly Gln Ile Ile Val Met Asp Ser Ile Gly Asn 1210 Asn Cys Thr Met Asn Phe Gln Asn Asn Asn Gly Ser Asn Ile Gly 1225 1220 1230 Leu Leu Gly Phe His Ser Asn Asn Leu Val Ala Ser Ser Trp Tyr 1240 1235 Tyr Asn Asn Ile Arg Arg Asn Thr Ser Ser Asn Gly Cys Phe Trp 1255 Ser Ser Ile Ser Lys Glu Asn Gly Trp Lys Glu 1270 <210> 13 <211> 1297 <212> PRT 5 <213> Clostridium botulinum <400> 13 Met Pro Val Asn Ile Lys Asn Phe Asn Tyr Asn Asp Pro Ile Asn Asn 10

Asp	Asp	ire	20	Met	Met	GIU	PLO	25 25	ASII	Asp	PIO	GIY	30	GTĀ	TIII
Tyr	Tyr	Lys 35	Ala	Phe	Arg	Ile	Ile 40	Asp	Arg	Ile	Trp	Ile 45	Val	Pro	Glu
Arg	Phe 50	Thr	Tyr	Gly	Phe	G1n 55	Pro	Asp	Gln	Phe	Asn 60	Ala	Ser	Thr	Gly
Val 65	Phe	Ser	Lys	Asp	V al 70	Tyr	Glu	Tyr	Tyr	Asp 75	Pro	Thr	Tyr	Leu	Lys 80
Thr	Asp	Ala	Glu	Lys 85	Asp	Lys	Phe	Leu	Lys 90	Thr	Met	Ile	Lys	Leu 95	Ph∈
Asn	Arg	Ile	Asn 100	Ser	Lys	Pro	Ser	Gly 105	Gln	Arg	Leu	Leu	Asp 110	Met	Ile
Val	Asp	Ala 115	Ile	Pro	Tyr	Leu	Gly 120	Asn	Ala	Ser	Thr	Pro 125	Pro	Asp	Lys
Phe	Ala 130	Ala	Asn	Val	Ala	Asn 135	Val	Ser	Ile	Asn	Lys 140	Lys	Ile	Ile	Glr
Pro 145	Gly	Ala	Glu	Asp	Gln 150	Ile	Lys	Gly	Leu	Met 155	Thr	Asn	Leu	Ile	11e
Phe	Gly	Pro	Gly	Pro 165	Val	Leu	Ser	Asp	Asn 170	Phe	Thr	Asp	Ser	Met 175	Il€
Met	Asn	Gly	His 180	Ser	Pro	Ile	Ser	Glu 185	Gly	Phe	Gly	Ala	Arg 190	Met	Met
Ile	Arg	Phe 195	Cys	Pro	Ser	Cys	Leu 200	Asn	Val	Phe	Asn	Asn 205	Val	Gln	Glu
Asn	Lys 210	Asp	Thr	Ser	Ile	Phe 215	Ser	Arg	Arg	Ala	Tyr 220	Phe	Ala	Asp	Pro
Ala 225	Leu	Thr	Leu	Met	His 230	Glu	Leu	Ile	His	Val 235	Leu	His	Gly	Leu	Tyr 240
Gly	Ile	Lys	Ile	Ser 245	Asn	Leu	Pro	Ile	Thr 250	Pro	Asn	Thr	Lys	Glu 255	Phe

Phe Met Gln His Ser Asp Pro Val Gln Ala Glu Glu Leu Tyr Thr Phe

			260					265					270		
Gly	Gly	His 275	Asp	Pro	Ser	Val	Ile 280	Ser	Pro	Ser	Thr	Asp 285	Met	Asn	Ile
Tyr	As n 290	Lys	Ala	Leu	Gln	As n 295	Phe	Gln	Asp	Ile	Ala 300	Asn	Arg	Leu	Asn
Ile 305	Val	Ser	Ser	Ala	Gln 310	Gly	Ser	Gly	Ile	Asp 315	Ile	Ser	Leu	Tyr	Lys 320
Gln	Ile	Tyr	Lys	Asn 325	Lys	Tyr	Asp	Phe	Val 330	Glu	Asp	Pro	Asn	Gly 335	Lys
Tyr	Ser	Val	Asp 340	Lys	Asp	Lys	Phe	Asp 345	Lys	Leu	Tyr	Lys	Ala 350	Leu	Met
Phe	Gly	Phe 355	Thr	Glu	Thr	Asn	Leu 360	Ala	Gly	Glu	Tyr	Gly 365	Ile	Lys	Thr
Arg	Tyr 370	Ser	Tyr	Phe	Ser	Glu 375	Tyr	Leu	Pro	Pro	Ile 380	Lys	Thr	Glu	Lys
Leu 385	Leu	Asp	Asn	Thr	Ile 390	Tyr	Thr	Gln	Asn	G1u 395	Gly	Phe	Asn	Ile	Ala 400
Ser	Lys	Asn	Leu	Lys 405	Thr	Glu	Phe	Asn	Gly 410	Gln	Asn	Lys	Ala	Val 415	Asn
Lys	Glu	Ala	Tyr 420	Glu	Glu	Ile	Ser	Leu 425	Glu	His	Leu	Val	Ile 430	Tyr	Arg
Ile	Ala	Met 435	Cys	Lys	Pro	Val	Met 440	Tyr	Lys	Asn	Thr	Gly 445	Lys	Ser	Glu
Gln	C ys 450	Ile	Ile	Val	Asn	Asn 4 55	Glu	Asp	Leu	Phe	Phe 460	Ile	Ala	Asn	Lys
Asp 465	Ser	Phe	Ser	Lys	Asp 470	Leu	Ala	Lys	Ala	Glu 475	Thr	Ile	Ala	Tyr	Asn 480
Thr	Gln	Asn	Asn	Thr 485	Ile	Glu	Asn	Asn	Phe 490	Ser	Ile	Asp	Gln	Leu 495	Ile
Leu	Asp	Asn	Asp 500	Leu	Ser	Ser	Gly	Ile 505	Asp	Leu	Pro	Asn	Glu 510	Asn	Thr

GLu	Pro	Phe 515	Thr	Asn	Phe	Asp	Asp 520	Ile	Asp	Ile	Pro	Val 525	Tyr	Ile	Lys
Gln	Ser 530	Ala	Leu	Lys	Lys	Ile 535	Phe	Val	Asp	Gly	Asp 540	Ser	Leu	Phe	Glu
Tyr 545	Leu	His	Ala	Gln	Thr 550	Phe	Pro	Ser	Asn	Ile 555	Glu	Asn	Leu	Gln	Leu 560
Thr	Asn	Ser	Leu	As n 565	Asp	Ala	Leu	Arg	As n 570	Asn	Asn	Lys	Val	Tyr 575	Thr
Phe	Phe	Ser	Thr 580	Asn	Leu	Val	Glu	Lys 585	Ala	Asn	Thr	Val	Val 590	Gly	Ala
Ser	Leu	Phe 595	Val	Asn	Trp	Val	Lys 600	Gly	Val	Ile	Asp	Asp 605	Phe	Thr	Ser
Glu	Ser 610	Thr	Gln	Lys	Ser	Thr 615	Ile	Asp	Lys	Val	Ser 620	Asp	Val	Ser	Ile
625					Gly 630					635					640
_				645	Asn				650					655	
			660		Glu			665				_	670		
		675	_		Gly		680					685			
	690		-	-	Arg	695		-	•		700		-	•	
705					Teu 710					715			_		720
-		•		725	Asn				730					735	
-			740	-	Gln	-		745	-				750	-	
Asn	Ile	Asn 755	Ile	Asp	Phe	Asn	760	Ile	Asp	Phe	Lys	165	Asn	Gln	Ser

- Ile Asn Leu Ala Ile Asn Asn Ile Asp Asp Phe Ile Asn Gln Cys Ser 770 785
- Ile Ser Tyr Leu Met Asn Arg Met Ile Pro Leu Ala Val Lys Lys Leu 785 790 795 800
- Lys Asp Phe Asp Asp Asn Leu Lys Arg Asp Leu Leu Glu Tyr Ile Asp 805 810 815
- Thr Asn Glu Leu Tyr Leu Leu Asp Glu Val Asn Ile Leu Lys Ser Lys 820 825 830
- Val Asn Arg His Leu Lys Asp Ser Ile Pro Phe Asp Leu Ser Leu Tyr 835 840 845
- Thr Lys Asp Thr Ile Leu Ile Gln Val Phe Asn Asn Tyr Ile Ser Asn 850 855 860
- Ile Ser Ser Asn Ala Ile Leu Ser Leu Ser Tyr Arg Gly Gly Arg Leu 865 870 880
- Ile Asp Ser Ser Gly Tyr Gly Ala Thr Met Asn Val Gly Ser Asp Val 885 890 895
- Ile Phe Asn Asp Ile Gly Asn Gly Gln Phe Lys Leu Asn Asn Ser Glu 900 905 910
- Asn Ser Asn Ile Thr Ala His Gln Ser Lys Phe Val Val Tyr Asp Ser 915 920 925
- Met Phe Asp Asn Phe Ser Ile Asn Phe Trp Val Arg Thr Pro Lys Tyr 930 935 940
- Asn Asn Asn Asp Ile Gln Thr Tyr Leu Gln Asn Glu Tyr Thr Ile Ile 945 950 955 960
- Ser Cys Ile Lys Asn Asp Ser Gly Trp Lys Val Ser Ile Lys Gly Asn 965 970 975
- Arg Ile Ile Trp Thr Leu Ile Asp Val Asn Ala Lys Ser Lys Ser Ile 980 985 990
- Phe Phe Glu Tyr Ser Ile Lys Asp Asn Ile Ser Asp Tyr Ile Asn Lys 995 1000 1005
- Trp Phe Ser Ile Thr Ile Thr Asn Asp Arg Leu Gly Asn Ala Asn 1010 1015 1020

Ile	Tyr 1025	Ile	Asn	Gly	Ser	Leu 1030		Lys	Ser	Glu	Lys 1035		Leu	Asn
Leu	Asp 1040	Arg	Ile	Asn	Ser	Ser 1045	Asn	Asp	Ile	Asp	Phe 1050	_	Leu	Ile
Asn	Cys 1055	Thr	Asp	Thr		Lys 1060	Phe	Val	Trp	Ile	Lys 1065	_	Phe	Asn
Ile	Phe 1070	Gly	Arg	Glu	Leu	Asn 1075	Ala	Thr	Glu	Val	Ser 1080	Ser	Leu	Tyr
Trp	Ile 1085	Gln	Ser	Ser	Thr	Asn 1090	Thr	Leu	Lys	Asp	Phe 1095	_	Gly	Asn
Pro	Leu 1100	Arg	Tyr	Asp		Gln 1105		Tyr	Leu	Phe	Asn 1110		Gly	Met
Gln	Asn 1115	Ile	Tyr	Ile	-	Tyr 1120	Phe	Ser	Lys	Ala	Ser 1125	Met	Gly	Glu
Thr	Ala 1130	Pro	Arg	Thr		Phe 1135	Asn	Asn	Ala	Ala	Ile 1140	Asn	Tyr	Gln
Asn	Leu 1145	Tyr	Leu	Gly	Leu	Arg 1150	Phe	Ile	Ile	Lys	Lys 1155	Ala	Ser	Asn
Ser	Arg 1160	Asn	Ile	Asn	Asn	Asp 1165	Asn	Ile	Val	Arg	Glu 1170	Gly	Asp	Tyr
Ile	Tyr 1175	Leu	Asn	Ile	Asp	Asn 1180	Ile	Ser	Asp	Glu	Ser 1185		Arg	Val
Tyr	Val 1190	Leu	Val	Asn	Ser	Lys 1195	Glu	Ile	Gln	Thr	Gln 1200	Leu	Phe	Leu
Ala	Pro 1205	Ile	Asn	Asp	Asp	Pro 1210	Thr	Phe	Tyr	Asp	Val 1215	Leu	Gln	Ile
Lys	Lys 1220	Tyr	Tyr	Glu	Lys	Thr 1225	Thr	Tyr	Asn	Cys	Gln 1230	Ile	Leu	Cys
Glu	Lys 1235	Asp	Thr	Lys	Thr	Phe 1240	Gly	Leu	Phe	Gly	Ile 1245	Gly	Lys	Phe
Val	Lys	Asp	Tyr	Gly	Tyr	Val	Trp	Asp	Thr	Tyr	Asp	Asn	Tyr	Phe

1255

1260

1250

<210> 14 <211> 1315 <212> PRT

<400> 14

Cys Ile Ser Gln Trp Tyr Leu Arg Arg Ile Ser Glu Asn Ile Asn 1265 1270 1275 Lys Leu Arg Leu Gly Cys Asn Trp Gln Phe Ile Pro Val Asp Glu 1285 Gly Trp Thr Glu 1295 5 <213> Clostridium tetani Met Pro Ile Thr Ile Asn Asn Phe Arg Tyr Ser Asp Pro Val Asn Asn 10 Asp Thr Ile Ile Met Met Glu Pro Pro Tyr Cys Lys Gly Leu Asp Ile Tyr Tyr Lys Ala Phe Lys Ile Thr Asp Arg Ile Trp Ile Val Pro Glu 35 40 45 Arg Tyr Glu Phe Gly Thr Lys Pro Glu Asp Phe Asn Pro Pro Ser Ser Leu Ile Glu Gly Ala Ser Glu Tyr Tyr Asp Pro Asn Tyr Leu Arg Thr Asp Ser Asp Lys Asp Arg Phe Leu Gln Thr Met Val Lys Leu Phe Asn Arg Ile Lys Asn Asn Val Ala Gly Glu Ala Leu Leu Asp Lys Ile Ile Asn Ala Ile Pro Tyr Leu Gly Asn Ser Tyr Ser Leu Leu Asp Lys Phe Asp Thr Asn Ser Asn Ser Val Ser Phe Asn Leu Leu Glu Gln Asp Pro 130 135 140 Ser Gly Ala Thr Thr Lys Ser Ala Met Leu Thr Asn Leu Ile Ile Phe 145 150 Gly Pro Gly Pro Val Leu Asn Lys Asn Glu Val Arg Gly Ile Val Leu 170

	V		180	-,0		-1-		185	010	9		011	190	013	502
Ile	Met	Gln 195	Met	Ala	Phe	Cys	Pro 200	Glu	Tyr	Val	Pro	Thr 205	Phe	Asp	Asn
Val	Ile 210	Glu	Asn	Ile	Thr	Ser 215	Leu	Thr	Ile	Gly	Lys 220	Ser	Lys	Tyr	Phe
Gln 225	Asp	Pro	Ala	Leu	Leu 230	Leu	Met	His	Glu	Leu 235	Ile	His	Val	Leu	His 240
Gly	Leu	Tyr	Gly	Met 245	Gln	Val	Ser	Ser	His 250	Glu	Ile	Ile	Pro	Ser 255	Lys
Gln	Glu	Ile	Tyr 260	Met	Gln	His	Thr	Tyr 265	Pro	Ile	Ser	Ala	Glu 270	Glu	Leu
Phe	Thr	Phe 275	Gly	Gly	Gln	Asp	Ala 280	Asn	Leu	Ile	Ser	Ile 285	Asp	Ile	Lys
Asn	Asp 290	Leu	Tyr	Glu	Lys	Thr 295	Leu	Asn	Asp	Tyr	Lys 300	Ala	Ile	Ala	Asn
Lys 305	Leu	Ser	Gln	Val	Thr 310	Ser	Cys	Asn	Asp	Pro 315	Asn	Ile	Asp	Ile	Asp 320
Ser	Tyr	Lys	Gln	11e 325	Tyr	Gln	Gln	Lys	Tyr 330	Gln	Phe	Asp	Lys	Asp 335	Ser
Asn	Gly	Gln	Tyr 340	Ile	Val	Asn	Glu	Asp 345	Lys	Phe	Gln	Ile	Leu 350	Tyr	Asn
Ser	Ile	Met 355	Tyr	Gly	Phe	Thr	G1u 360	Ile	Glu	Leu	Gly	Lys 365	Lys	Phe	Asn
Ile	Lys 370	Thr	Arg	Leu	Ser	Tyr 375	Phe	Ser	Met	Asn	His 380	Asp	Pro	Val	Lys
Ile 385	Pro	Asn	Leu	Leu	Asp 390	Asp	Thr	Ile	Tyr	Asn 395	Asp	Thr	Glu	Gly	Phe 400
Asn	Ile	Glu	Ser	Lys 405	Asp	Leu	Lys	Ser	Glu 410	Tyr	Lys	Gly	Gln	Asn 415	Met
Arg	Val	Asn	Thr	Asn	Ala	Phe	Arg	Asn	Val	Asp	Gly	Ser	Gly	Leu	Val

			420					425					430		
Ser	Lys	Leu 435	Ile	Gly	Leu	Суз	Lys 440	Lys	Ile	Ile	Pro	Pro 445	Thr	Asn	Ile
Arg	Glu 450	Asn	Leu	Tyr	Asn	Arg 455	Thr	Ala	Ser	Leu	Thr 460	Asp	Leu	Gly	Gly
Glu 465	Leu	Сув	Ile	Lys	Ile 470	Lys	Asn	Glu	Asp	Leu 475	Thr	Phe	Ile	Ala	Glu 4 80
Lys	Asn	Ser	Phe	Ser 485	Glu	Glu	Pro	Phe	Gln 490	Asp	Glu	Ile	Val	Ser 495	Tyr
Asn	Thr	Lys	Asn 500	Lys	Pro	Leu	Asn	Phe 505	Asn	Tyr	Ser	Leu	Asp 510	Lys	Ile
Ile	Val	Asp 515	Tyr	Asn	Leu	Gln	Ser 520	Lys	Ile	Thr	Leu	Pro 525	Asn	Asp	Arg
Thr	Thr 530	Pro	Val	Thr	Lys	Gly 535	Ile	Pro	Tyr	Ala	Pro 540	Glu	Tyr	Lys	Ser
Asn 545	Ala	Ala	Ser	Thr	Ile 550	Glu	Ile	His	Asn	Ile 555	Asp	Asp	Asn	Thr	Ile 560
Tyr	Gln	Tyr	Leu	Tyr 565	Ala	Gln	Lys	Ser	Pro 570	Thr	Thr	Leu	Gln	Arg 575	Ile
Thr	Met	Thr	Asn 580	Ser	Val	Asp	Asp	Ala 585	Leu	Ile	Asn	Ser	Thr 590	Lys	Ile
Tyr	Ser	Tyr 595	Phe	Pro	Ser	Val	11e 600	Ser	Lys	Val	Asn	Gln 605	Gly	Ala	Gln
Gly	Ile 610	Leu	Phe	Leu	Gln	Trp 615	Val	Arg	Asp	Ile	Ile 620	Asp	Asp	Phe	Thr
Asn 625	Glu	Ser	Ser	Gln	Lys 630	Thr	Thr	Ile	Asp	Lys 635	Ile	Ser	Asp	Val	Ser 640
Thr	Ile	Val	Pro	Tyr 645	Ile	Gly	Pro	Ala	Leu 650	Asn	Ile	Val	Lys	Gln 655	Gly
Tyr	Glu	Gly	Asn 660	Phe	Ile	Gly	Ala	Leu 665	Glu	Thr	Thr	Gly	Val 670	Val	Leu

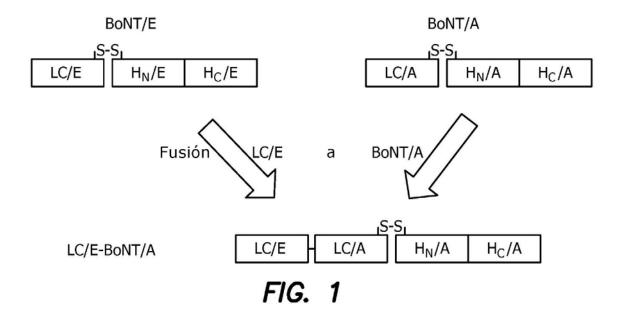
Leu	Leu	Glu 675	Tyr	Ile	Pro	Glu	Ile 680	Thr	Leu	Pro	Val	Ile 685	Ala	Ala	Leu
Ser	Ile 690	Ala	Glu	Ser	Ser	Thr 695	Gln	Lys	Glu	Lys	Ile 700	Ile	Lys	Thr	Ile
A sp 705	Asn	Phe	Leu	Glu	Lys 710	Arg	Туг	Glu	Lys	Trp 715	Ile	Glu	Val	Tyr	Lys 720
Leu	Val	Lys	Ala	Lys 725	Trp	Leu	Gly	Thr	Val 730	Asn	Thr	Gln	Phe	Gln 735	Lys
Arg	Ser	Tyr	Gln 740	Met	Tyr	Arg	Ser	Leu 7 4 5	Glu	Tyr	Gln	Val	Asp 750	Ala	Ile
Lys	Lys	Ile 755	Ile	Asp	Tyr	Glu	Tyr 760	Lys	Ile	Tyr	Ser	Gly 765	Pro	Asp	Lys
Glu	Gln 770	Ile	Ala	Asp	Glu	Ile 775	Asn	Asn	Leu	Lys	Asn 780	Lys	Leu	G1u	Glu
Lys 785	Ala	Asn	Lys	Ala	Met 7 90	Ile	Asn	Ile	Asn	Ile 795	Phe	Met	Arg	Glu	Ser 800
Ser	Arg	Ser	Phe	Leu 805	Val	Asn	Gln	Met	Ile 810	Asn	Glu	Ala	Lys	Lys 815	Gln
Leu	Leu	Glu	Phe 820	Asp	Thr	Gln	Ser	Lys 825	Asn	Ile	Leu	Met	G1n 830	Tyr	Ile
Lys	Ala	As n 835	Ser	Lys	Phe	Ile	Gly 840	Ile	Thr	Glu	Leu	Lys 845	Lys	Leu	Glu
Ser	Lys 850	Ile	Asn	Lys	Val	Phe 855	Ser	Thr	Pro	Ile	Pro 860	Phe	Ser	Tyr	Ser
Lys 865	Asn	Leu	Asp	Cys	Trp 870	Val	Asp	Asn	Glu	Glu 875	Asp	Ile	Asp	Val	Ile 880
Leu	Lys	Lys	Ser	Thr 885	Ile	Leu	Asn	Leu	Asp 890	Ile	Asn	Asn	Asp	Ile 895	Ile
Ser	Asp	Ile	Ser 900	Gly	Phe	Asn	Ser	Ser 905	Val	Ile	Thr	Tyr	Pro 910	Asp	Ala
Gln	Leu	Val 915	Pro	Gly	Ile	Asn	Gly 920	Lys	Ala	Ile	His	Leu 925	Val	Asn	Asn

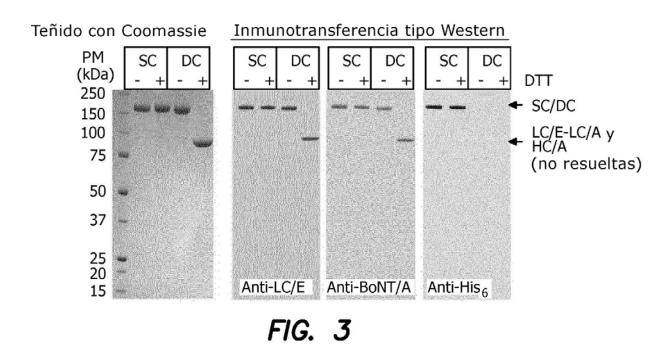
- Glu Ser Ser Glu Val Ile Val His Lys Ala Met Asp Ile Glu Tyr Asn 930 935 940
- Asp Met Phe Asn Asn Phe Thr Val Ser Phe Trp Leu Arg Val Pro Lys 945 950 955 960
- Val Ser Ala Ser His Leu Glu Gln Tyr Gly Thr Asn Glu Tyr Ser Ile 965 970 975
- Ile Ser Ser Met Lys Lys His Ser Leu Ser Ile Gly Ser Gly Trp Ser 980 985 990
- Val Ser Leu Lys Gly Asn Asn Leu Ile Trp Thr Leu Lys Asp Ser Ala 995 1000 1005
- Gly Glu Val Arg Gln Ile Thr Phe Arg Asp Leu Pro Asp Lys Phe 1010 1015 1020
- Asn Ala Tyr Leu Ala Asn Lys Trp Val Phe Ile Thr Ile Thr Asn 1025 1030 1035
- Asp Arg Leu Ser Ser Ala Asn Leu Tyr Ile Asn Gly Val Leu Met 1040 1045 1050
- Gly Ser Ala Glu Ile Thr Gly Leu Gly Ala Ile Arg Glu Asp Asn 1055 1060 1065
- As Ile Thr Leu Lys Leu Asp Arg Cys Asn Asn Asn Asn Gln Tyr 1070 1075 1080
- Val Ser Ile Asp Lys Phe Arg Ile Phe Cys Lys Ala Leu Asn Pro 1085 1090 1095
- Leu Arg Asp Phe Trp Gly Asn Pro Leu Arg Tyr Asp Thr Glu Tyr 1115 1120 1125
- Tyr Leu Ile Pro Val Ala Ser Ser Ser Lys Asp Val Gln Leu Lys 1130 1135 1140
- Asn Ile Thr Asp Tyr Met Tyr Leu Thr Asn Ala Pro Ser Tyr Thr 1145 1150 1155
- Asn Gly Lys Leu Asn Ile Tyr Tyr Arg Arg Leu Tyr Asn Gly Leu 1160 1165 1170

		Lys	Phe 1175	Ile	Ile	Lys	Arg	Tyr 1180	Thr	Pro	Asn	Asn	Glu 1185	Ile	Asp	Ser
		Phe	Val 1190	Lys	Ser	Gly	Asp	Phe 1195	Ile	Lys	Leu	Tyr	Val 1200	Ser	Tyr	Asn
		Asn	Asn 1205	Glu	His	Ile	Val	Gly 1210	Tyr	Pro	Lys	Asp	Gly 1215	Asn	Ala	Phe
		Asn	Asn 1220	Leu	Asp	Arg	Ile	Leu 1225	Arg	Val	Gly	Tyr	Asn 1230	Ala	Pro	Gly
		Ile	Pro 1235	Leu	Tyr	Lys	Lys	Met 1240	Glu	Ala	Val	Lys	Leu 1245	Arg	Asp	Leu
		Lys	Thr 1250	Tyr	Ser	Val	Gln	Leu 1255	Lys	Leu	Tyr	Asp	Asp 1260	Lys	Asn	Ala
		Ser	Leu 1265	Gly	Leu	Val	Gly	Thr 1270	His	Asn	Gly	Gln	Ile 1275	Gly	Asn	Asp
		Pro	Asn 1280	Arg	Asp	Ile	Leu	Ile 1285	Ala	Ser	Asn	Trp	Tyr 1290	Phe	Asn	His
		Leu	Lys 1295		Lys	Ile	Leu	Gly 1300	C ys	Asp	Trp	Tyr	Phe 1305	Val	Pro	Thr
	<210> 15 <211> 6	Asp	Glu 1310	Gly	Trp	Thr	Asn	Asp 1315								
5	<212> PRT <213> Secuencia	artific	cial													
	<220> <223> Descripción de la secuencia artificial: Etiqueta sintética 6xHis															
	<400> 15					H: 1	is H	is Hi	s Hi	s Hi 5	s Hi	s				
10						_				J						

82

REIVINDICACIONES


- 1. Una composición que comprende un derivado de neurotoxina clostrídica, comprendiendo dicho derivado de neurotoxina clostrídica un polipéptido que incluye:
- a) un dominio de unión,


30

- b) un dominio de translocación, y
- c) un primer dominio endopeptidasa derivado de una neurotoxina clostrídica subtipo BoNT/A, y
- d) un segundo dominio endopeptidasa derivado de una neurotoxina clostrídica subtipo BoNT/E;
- 10 en el que cada uno de dicho primer dominio endopeptidasa y de dicho segundo dominio endopeptidasa es proteolíticamente activo.
- 2. La composición de la reivindicación 1, donde dichos dominio de unión, dominio de translocación, primer dominio endopeptidasa y segundo dominio endopeptidasa están comprendidos en una sola cadena 15 polipeptídica.
- 3. La composición de la reivindicación 1 o 2, donde dicho polipéptido comprende además un sitio de escisión de endopeptidasa selectiva localizado entre una primera región que comprende dicho dominio de unión y dicho dominio de translocación, y una segunda región que comprende dichos primer dominio endopeptidasa y 20 segundo dominio endopeptidasa.
- 4. La composición de la reivindicación 1, donde dichos dominio de unión, dominio de translocación, primer dominio endopeptidasa y segundo dominio endopeptidasa están comprendidos en más de una cadena polipeptídica, preferentemente donde al menos dos de dichas cadenas polipeptídicas están unidas mediante un 25 enlace disulfuro.
 - 5. La composición de la reivindicación 1 comprende una primera cadena polipeptídica que comprende dicho dominio de unión y dicho dominio de translocación, y una segunda cadena polipeptídica que comprende dichos primer dominio endopeptidasa y segundo dominio endopeptidasa.
 - 6. La composición de la reivindicación 4 comprende una primera cadena polipeptídica que comprende dicho dominio de unión y dicho dominio de translocación, y una segunda cadena polipeptídica que comprende dichos primer dominio endopeptidasa y segundo dominio endopeptidasa.
- 35 7. La composición de cualquiera de las reivindicaciones precedentes, donde el dominio de unión y el dominio de translocación se derivan de la neurotoxina clostrídica BoNT/A.
- 8. La composición de la reivindicación 7 comprende una primera secuencia de aminoácidos que comprende un primer sitio de escisión de proteasa localizado entre el dominio de translocación y el primer dominio 40 endopeptidasa.
 - 9. La composición de la reivindicación 7 comprende además:
- a) una secuencia de aminoácidos de polihistadina situada en el lado carboxilo terminal del dominio de unión, o en el 45 extremo amino terminal de dicho segundo dominio endopeptidasa;
 - b) una primera secuencia de aminoácidos que comprende una primera secuencia de aminoácidos que comprende un primer sitio de escisión de proteasa localizado entre el dominio de translocación y el primer dominio endopeptidasa; y
- c) una segunda secuencia de aminoácidos que comprende un segundo sitio de escisión de proteasa localizado entre 50 dicho segundo dominio endopeptidasa y la secuencia de aminoácidos de la polihistadina, o entre dicho dominio de unión y la secuencia de aminoácidos de la polihistadina.
- 10. Un ácido nucleico que codifica un polipéptido que comprende un derivado de neurotoxina clostrídica, comprendiendo dicho ácido nucleico una codificación de un único marco de lectura abierto, en la secuencia de 55 carboxi terminal a amino terminal: un dominio de unión, un dominio de translocación, un primer dominio endoeptidasa derivado de una neurotoxina clostrídica subtipo BoNT/A y un segundo dominio endopeptidasa derivado de una neurotoxina clostrídica subtipo BoNT/E, en el que cada uno de dicho primer dominio endopeptidasa y dicho segundo dominio endopeptidasa es proteolíticamente activo, opcionalmente en donde los codones que codifican cada uno del dominio de unión, el dominio de translocación, primer dominio endopeptidasa, y el segundo dominio endopeptidasa, se optimizan para la expresión en un tipo de célula seleccionada de entre un grupo que

consiste en: una célula bacteriana, una célula de mamífero, una célula de levadura y una célula de insecto, preferentemente en donde los codones se eligen para la expresión mejorada en una célula bacteriana de *E. coli*.

- 11. El ácido nucleico de la reivindicación 10, donde el dominio de unión, el dominio de translocación están 5 codificados por secuencias de ácido nucleico derivadas a partir de una neurotoxina clostrídica subtipo BoNT/A, preferentemente en donde dicho marco de lectura abierto codifica al menos seis residuos de histadina entre la secuencia de nucleótidos que codifica un dominio de unión y el codón de terminación.
- 12. Una composición terapéutica que comprende un derivado de neurotoxina clostrídica, comprendiendo dicho derivado de neurotoxina clostrídica un polipéptido que incluye: un dominio de unión, un dominio de translocación, un primer dominio endopeptidasa derivado de una neurotoxina clostrídica subtipo BoNT/A y un segundo dominio endopeptidasa derivado de una neurotoxina clostrídica subtipo BoNT/E, donde cada uno de dicho primer dominio endopeptidasa y dicho segundo dominio endopeptidasa es proteolíticamente activo, para uso en el tratamiento del dolor crónico, preferentemente donde dicho dolor crónico se selecciona de entre el grupo que consiste en dolor nociceptivo inflamatorio y dolor neuropático más preferentemente donde dicho dolor crónico es dolor neuropático, más preferentemente donde el dolor neuropático se selecciona entre el grupo formado por dolor por cáncer, dolor postoperatorio, dolor neuropático, alodinia, neuralgia posherpética, síndrome del colon irritable y otro dolor visceral, dolor óseo, neuropatía periférica, dolor relacionado con el sistema circulatorio, y dolor de cabeza.
- 20 13. Una composición terapéutica para su uso de acuerdo con la reivindicación 12, donde dicho dolor crónico es dolor nociceptivo inflamatorio o dolor artrítico.
- 14. Una composición terapéutica para su uso para el tratamiento de acuerdo con la reivindicación 12, donde el dominio de unión y el dominio de translocación de dicha composición terapéutica se derivan de una 25 neurotoxina clostrídica subtipo BoNT/A.
 - 15. Una composición que comprende un derivado de neurotoxina clostrídica, comprendiendo dicho derivado de neurotoxina clostrídica un polipéptido que incluye:
- 30 un dominio de unión, un dominio de translocación, un primer dominio endopeptidasa derivado de una neurotoxina clostrídica subtipo BoNT/A y un segundo dominio endopeptidasa derivado de una neurotoxina clostrídica subtipo BoNT/E, en el que cada uno de dichos primer dominio endopeptidasa y dicho segundo dominio endopeptidasa es proteolíticamente activo, para uso en la fabricación de un medicamento para el tratamiento del dolor crónico.

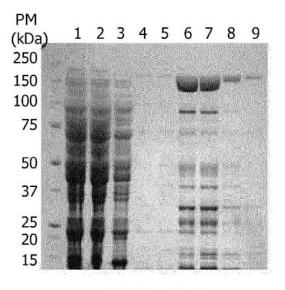
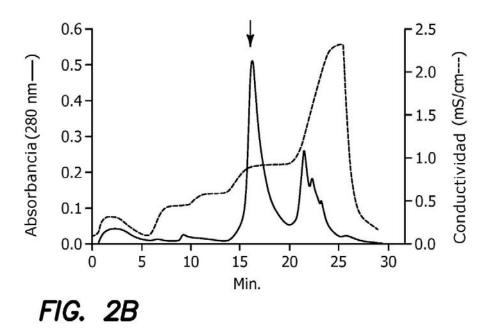
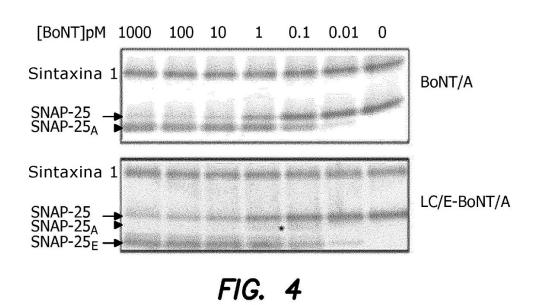
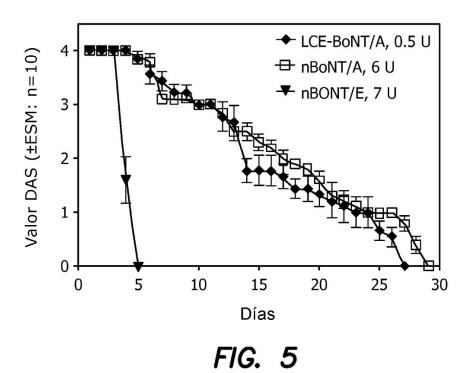





FIG. 2A

86

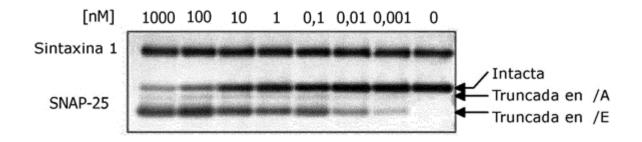


FIG. 6A

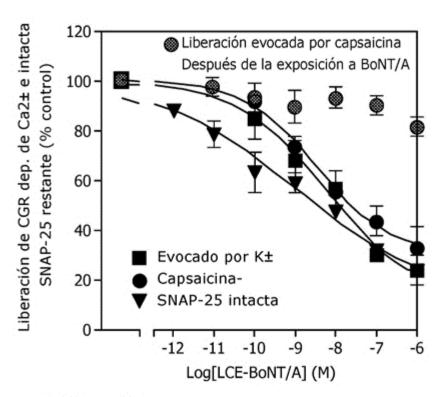
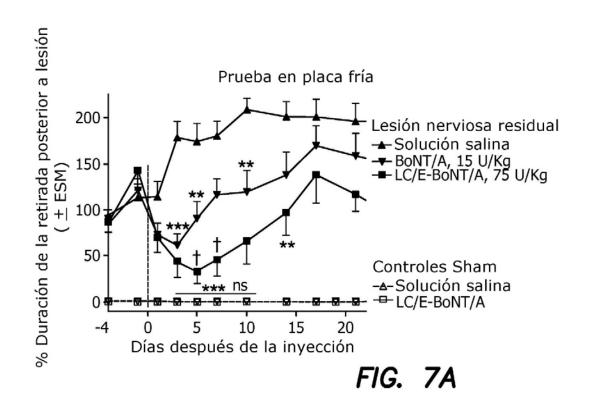
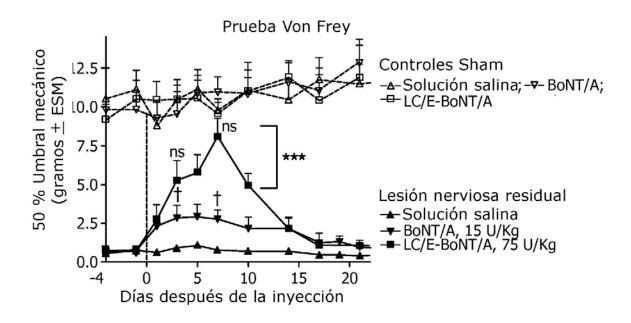
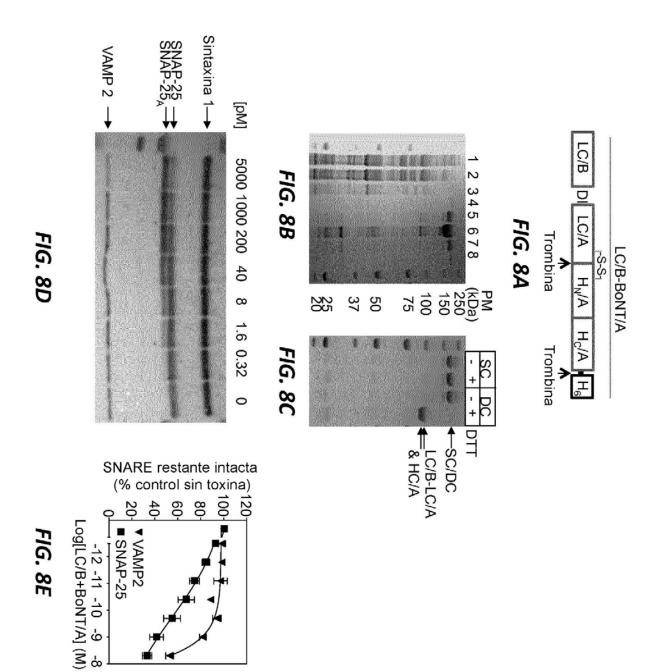
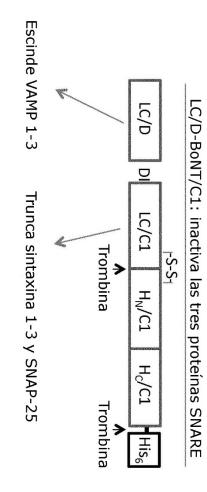
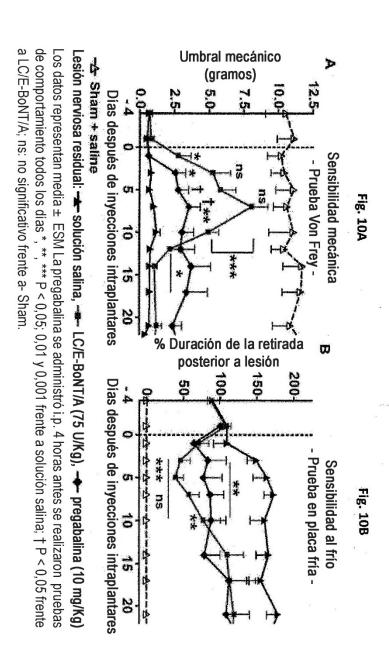
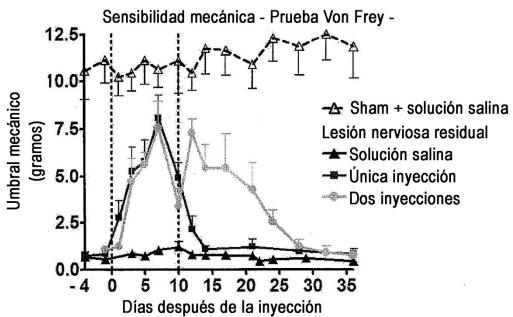



FIG. 6B


FIG. 7B

91

Los datos representan media ± ESM. Las líneas verticales de puntos indican el tiempo de las inyecciones de tratamiento local. La administración de 75 U/Kg de LC/E-BoNT/A se repitió después de 10 días (grupo de "dos inyecciones").

FIG 11