

OFICINA ESPAÑOLA DE PATENTES Y MARCAS

ESPAÑA

11 Número de publicación: 2 671 668

51 Int. Cl.:

G01C 9/18 (2006.01)

(12)

TRADUCCIÓN DE PATENTE EUROPEA

T3

Fecha de presentación y número de la solicitud europea: 31.12.2014 E 14200694 (9)
 Fecha y número de publicación de la concesión europea: 14.03.2018 EP 2990761

(54) Título: Dispositivo de medición de ángulos tipo puntero con suministro de energía inalámbrico para iluminación

(30) Prioridad:

29.08.2014 CN 201410432033

Fecha de publicación y mención en BOPI de la traducción de la patente: **07.06.2018**

(73) Titular/es:

ZHEJIANG RONGSHENG TOOL CO., LTD (100.0%)
No.2 Jinheng Road Xiaoshun Town Jindong District
Jinhua Zhejiang, CN

(72) Inventor/es:

ZHUANG, CHENGRONG

(74) Agente/Representante:

LEHMANN NOVO, María Isabel

DESCRIPCIÓN

Dispositivo de medición de ángulos tipo puntero con suministro de energía inalámbrico para iluminación

Campo Técnico

La invención pertenece al campo de las herramientas de medición, particularmente se refiere a un dispositivo de medición de ángulos tipo puntero con suministro de energía inalámbrico para iluminación para medir y corregir estado de ángulos horizontales, verticales, de 45 grados y otros de un objeto.

Antecedentes

10

El documento WO 88/08115 A1 describe un nivel de burbuja que tiene un miembro rotatorio externo montado rotatoriamente en una abertura circular transversal en una extrusión alargada, y un miembro rotatorio interno montado rotatoriamente en una abertura circular transversal en el miembro rotatorio exterior y coaxial con el mismo. Un tubo de burbujas está asegurado al miembro rotatorio interno en una orientación fija con respecto al mismo, de modo que la rotación del miembro rotatorio interno produce una rotación tosca del tubo de burbujas y la rotación del miembro rotatorio externo (junto con el miembro rotatorio interior) produce una rotación precisa del tubo de burbujas.

El documento EP 2 455 723 A1 describe un instrumento indicador que es capaz de suministrar energía estable a una fuente de luz. El instrumento indicador incluye un miembro de visualización que tiene una parte de visualización, una unidad de accionamiento dispuesta en el lado posterior del miembro de visualización, un miembro indicador montado en un árbol rotatorio de la unidad de accionamiento e incluye una parte base situada en la periferia del árbol rotatorio y una parte indicadora que indica la parte de visualización, y una fuente de luz dispuesta en el miembro indicador para hacer que la parte indicadora emita luz. El instrumento indicador incluye una bobina proporcionada en el lado de la unidad de accionamiento, y un sustrato flexible que tiene una parte de cableado tipo bobina provista en el lado de la parte base para permitir la inducción electromagnética con la bobina y una parte de cableado configurada para conectar la parte de cableado tipo bobina y la fuente de luz en conducción eléctrica, en donde se suministra energía a la fuente de luz a través de la parte de cableado conductora mediante una acción de inducción electromagnética entre la bobina y la parte de cableado tipo bobina.

El documento US 1,590,136 A describe un nivel que comprende un cuerpo, una carcasa montada de forma desmontable en el cuerpo, un disco selector portado por dicha carcasa, un perno pivotante que se extiende desde una parte de la carcasa, un puntero ponderado montado holgadamente en dicho perno, estando formado dicho puntero de chapa y que tiene un cono posicionado centralmente con el extremo abierto colocado de modo que dicho perno se proyecta hacia el interior del cono para soportar el puntero, y un panel transparente de cubierta portado por la carcasa colocado cerca del vértice del cono cuando las partes están en posición operativa, por lo que al puntero se le permite un movimiento de balanceo libre, pero se evita que se mueva fuera de dicho perno.

Es necesario para medir y corregir el estado de ángulos horizontales, verticales y otros de un objeto durante los procesos de operación, como decoración de la casa, mantenimiento, instalación de elementos, etc. El puntero en el dispositivo de medición de ángulos tipo puntero existente no tiene función de iluminación, y lleva a inconvenientes en la medición y corrección de los estados de ángulos horizontales, verticales y otros de los objetos en un entorno con poca luz.

Resumen

35

40

45

Contra las desventajas en cuanto a que el puntero no tiene función de iluminación, el dispositivo de medición de ángulos tipo puntero existente es inconveniente para medir el ángulo en un entorno con poca luz, la invención proporciona un dispositivo de medición de ángulos tipo puntero con suministro de energía inalámbrico para iluminación, y brinda comodidad para que las personas midan y corrijan los estados de ángulos horizontales, verticales y otros de objetos en un entorno con poca luz.

Los esquemas técnicos adoptados en la invención se logran de la siguiente manera: un dispositivo de medición de ángulos tipo puntero incluye una carcasa, un disco selector y un puntero. La carcasa consiste en una cubierta frontal y una cubierta posterior. Una ventana está colocada en la cubierta frontal. Una cubierta transparente está colocada en la ventana de la cubierta frontal. El puntero está colocado en una cavidad interna de la carcasa detrás de la cubierta transparente. El puntero consiste en un cuerpo de puntero y una cabeza de puntero. Un primer extremo de

ES 2 671 668 T3

un árbol principal está fijado en la cubierta trasera. El puntero puede rotar alrededor del árbol principal como el eje. La cabeza de puntero siempre puede apuntar en la dirección vertical por acción de la gravedad de sí misma.

El cuerpo de puntero es una estructura de carcasa con una cavidad interna, en la que la cabeza de puntero está hecha de un material transparente. Un orificio de árbol está configurado en el medio de una base de fijación de la bobina receptora de energía para la comunicación con el cuerpo de puntero. Un cojinete está montado en el orificio de árbol en el medio del cuerpo de puntero y de la base de fijación de la bobina receptora de energía. El árbol principal está montado en un orificio de cojinete del cojinete. Un segundo extremo del árbol principal está fijado en la cubierta transparente.

El dispositivo de medición de ángulos tipo puntero incluye además un circuito electrónico que incluye un circuito de suministro de energía inalámbrico y un circuito de recepción de energía inalámbrico e iluminación. El circuito de recepción de energía inalámbrico e iluminación está dispuesto en el puntero. El circuito de suministro de energía inalámbrico incluye una bobina transmisora de energía y una placa de circuito del circuito de suministro de energía inalámbrico, una base de fijación de bobina transmisora de energía está dispuesta en el lado interno de la cubierta posterior, la bobina transmisora de energía está fijada en la base de fijación de la bobina transmisora de energía, y la bobina transmisora de energía está conectada con la placa de circuito del circuito de suministro de energía inalámbrico a través de un cable.

En el dispositivo de medición de ángulos tipo puntero con suministro de energía inalámbrico para iluminación, el circuito de recepción de energía inalámbrico e iluminación incluye una bobina receptora de energía, un primer diodo emisor de luz configurado para iluminar la cabeza de puntero y una placa de circuito del circuito de recepción de energía inalámbrico e iluminación, una base de fijación de la bobina receptora de energía está dispuesta en la parte posterior del cuerpo de puntero, y la bobina receptora de energía está fijada en la base de fijación de la bobina receptora de energía.

20

25

30

35

Otras realizaciones preferidas de la invención se describen a continuación. En el dispositivo de medición de ángulos tipo puntero con suministro de energía inalámbrico para iluminación, una burbuja de nivel está dispuesta en la cavidad interna del cuerpo de puntero, una ventana de la burbuja de nivel está dispuesta en la superficie frontal del cuerpo de puntero y la ventana de la burbuja de nivel está ubicada, a lo largo del eje de apunte de la cabeza de puntero, encima de la placa de circuito del circuito de recepción de energía inalámbrico e iluminación.

En el dispositivo de medición de ángulos tipo puntero con suministro de energía inalámbrico para iluminación, el disco selector es circular, el disco selector está dispuesto en el borde exterior de la ventana en la cubierta frontal en la cavidad interna de la carcasa dentro de la cubierta transparente, un anillo de fijación del diodo emisor de luz circular está dispuesto en la parte posterior del disco selector, y un segundo diodo emisor de luz está dispuesto en el anillo de fijación del diodo emisor de luz.

En el dispositivo de medición de ángulos tipo puntero con suministro de energía inalámbrico para iluminación, el circuito de suministro de energía inalámbrico incluye un procesador de microordenador IC₁, un circuito de transmisión inalámbrico, un circuito de accionamiento de LED, un circuito de ahorro de energía y un circuito de energía.

En el dispositivo de medición de ángulos tipo puntero con suministro de energía inalámbrico para iluminación, el procesador de microordenador IC₁ es un procesador de microordenador HT48R063B.

En el dispositivo de medición de ángulos tipo puntero con suministro de energía inalámbrico para iluminación, el circuito de transmisión inalámbrico incluye un triodo Q, una bobina transmisora L₁, un condensador 5 C₅, una resistencia 2 R₂ y una resistencia 3 R₃, en donde un extremo de la resistencia 2 R₂ está conectado con la patilla 2 del procesador de microordenador IC₁, el otro extremo de la resistencia 2 R₂ está conectado con un electrodo base del triodo Q, el electrodo colector del triodo Q está conectado en serie con la bobina transmisora L₁ y a su vez con el condensador 5 C₅, el otro extremo del condensador 5 C₅ está conectada a tierra, un nodo entre la bobina transmisora L₁ y el condensador 5 C₅ está conectado al voltaje del suministro de energía VCC del circuito, un electrodo emisor del triodo Q está conectado con un extremo de la resistencia 3 R₃, y el otro extremo de la resistencia 3 R₃ está conectado a tierra.

En el dispositivo de medición de ángulos tipo puntero con suministro de energía inalámbrico para iluminación, el circuito accionamiento de LED incluye una resistencia $7\,R_7$, una resistencia $8\,R_8$, una resistencia $9\,R_9$, una

resistencia 10 R_{10} y un segundo diodo emisor de luz, en donde el segundo diodo emisor de luz consiste en un diodo emisor de luz 1 LED_1 , un diodo emisor de luz 2 LED_2 , un diodo emisor de luz 3 LED_3 y un diodo emisor de luz 4 LED_4 , todos los ánodos del diodo emisor de luz 1 LED_1 , del diodo emisor de luz 2 LED_2 , del diodo emisor de luz 3 LED_3 y del diodo emisor de luz 4 LED_4 están conectados al voltaje del suministro de energía VDD del circuito, los cátodos del diodo emisor de luz 1 LED_1 , del diodo emisor de luz 2 LED_2 , del diodo emisor de luz 3 LED_3 y del diodo emisor de luz 4 LED_4 están conectados respectivamente con un extremo de la resistencia 7 R_7 , de la resistencia 8 R_8 , de la resistencia 9 R_9 y de la resistencia 10 R_{10} , y el otro extremo de la resistencia 7 R_7 , de la resistencia 8 R_8 , de la resistencia 9 R_9 y de la resistencia 10 R_{10} están conectados respectivamente con la patilla 4, con la patilla 3, con la patilla 1 y con la patilla 16 del procesador de microordenador IC_1 .

En el dispositivo de medición de ángulos tipo puntero con suministro de energía inalámbrico para iluminación, el circuito de ahorro de energía incluye un condensador 1 C₁, un condensador 4 C₄, una resistencia 1 R₁, una resistencia 11 R₁₁ y un interruptor de inicio SK, en donde, el condensador 1 C₁ es un condensador electrolítico, el ánodo del condensador 1 C₁ está conectado con un extremo de la resistencia 11 R₁₁ y con el voltaje del suministro de energía VCC del circuito, el cátodo del condensador 1 C₁ está conectado a tierra y está conectado con un extremo de la resistencia 11 R₁₁, con un extremo del condensador 4 C₄ y con un extremo de la resistencia 1 R₁, el otro extremo del interruptor de inicio SK y con la patilla 7 del procesador de microordenador IC₁, el otro extremo del interruptor de inicio SK está conectado con el otro extremo de la resistencia de 1 R₁;

El circuito de energía incluye un circuito paralelo integrado de estabilización de tensión IC₂, un condensador 2 C₂, un condensador 3 C₃, una resistencia de 4 R₄, una resistencia de 5 R₅, una resistencia de 6 R₆ y una resistencia de 12 R₁₂, en donde el condensador 2 C₂ es un condensador electrolítico, el cátodo del condensador 2 C₂ está conectado a tierra y está conectado con la patilla 5 del procesador de microordenador IC₁, con un extremo del condensador 3 C₃, con el ánodo del circuito paralelo integrado de estabilización de tensión IC₂, con un extremo de la resistencia 5 R₅ y con un extremo de la resistencia 6 R₆, el voltaje del suministro de energía VDD en el circuito está conectado con el ánodo del condensador 2 C₂, con la patilla 13 del procesador de microordenador IC₁, con la patilla 12 del procesador de microordenador IC₁, con el otro extremo del condensador 3 C₃, con el cátodo del circuito paralelo integrado de estabilización de tensión IC₂, con un extremo de la resistencia 4 R₄, con un extremo de la resistencia 6 R₆ y con un extremo de la resistencia 12 R₁₂, el otro extremo de la resistencia 4 R₄ está conectado con el otro extremo de la resistencia 5 R₅ y con un electrodo de referencia del circuito paralelo integrado de estabilización de tensión IC₂, y el otro extremo de la resistencia 12 R₁₂ está conectado al suministro de energía VCC en el circuito.

En el dispositivo de medición de ángulos tipo puntero con suministro de energía inalámbrico para iluminación, el circuito de recepción de energía inalámbrico e iluminación incluye una bobina receptora de energía L_2 , un condensador 6 C_6 y un primer diodo emisor de luz, en donde el primer diodo emisor de luz consiste en un diodo emisor de luz 5 LED_5 y un diodo emisor de luz 6 LED_6 , el cátodo del diodo emisor de luz 6 LED_6 , el ánodo del diodo emisor de luz 6 LED_5 está conectado con un extremo de la bobina receptora de energía L_2 y con un extremo del condensador 6 C_6 , el cátodo del diodo emisor de luz 6 LED_6 está conectado con el otro extremo de la bobina receptora de energía L_2 y con el otro extremo del condensador 6 C_6 .

35

40

45

50

55

Los principios de funcionamiento del dispositivo de medición de ángulos tipo puntero con suministro de energía inalámbrico para iluminación de acuerdo con una realización preferida de la invención, son los siguientes: el segundo diodo emisor de luz, que consiste en el diodo emisor de luz 1 LED₁, el diodo emisor de luz 2 LED₂, el diodo emisor de luz 3 LED₃ y el diodo emisor de luz 4 LED₄, está conectado al circuito de accionamiento de LED en el circuito de suministro de energía inalámbrico a través de un cable, para iluminar el disco selector. El circuito de transmisión inalámbrico en el circuito de suministro de energía inalámbrico, el procesador de microordenador IC₁, etc. genera señales de transmisión y transmite las señales a la bobina receptora de energía L2 a través de la bobina transmisora de energía L₁, para permitir que la bobina transmisora de energía L₁ transmita energía hacia el exterior, la bobina receptora de energía L2 es responsable de recibir sin contacto la energía transmitida por la bobina transmisora de energía L₁ e iluminar el primer diodo emisor de luz en la placa de circuito en el circuito de recepción de suministro de energía inalámbrico e iluminación y el primer diodo emisor de luz irradia la cabeza del puntero, logrando así la iluminación sin conexión del cable de alimentación. Independientemente del ángulo en que se incline el nivel de referencia del dispositivo de medición de ángulos tipo puntero con suministro de energía inalámbrico para iluminación, el puntero siempre puede apuntar a la posición justo encima por acción de la gravedad de sí mismo. Debido a que el disco selector está fijado en la cubierta transparente y rota con la rotación del dispositivo de medición de ángulos tipo puntero con iluminación inalámbrica, cuando se determina el ángulo de rotación del dispositivo de medición de ángulos tipo puntero con iluminación inalámbrica, el ángulo en el disco selector al que apuntan el indicador, es el ángulo con el que se inclina el dispositivo de medición de ángulos tipo puntero con iluminación inalámbrica.

En comparación con el dispositivo de medición de ángulo existente, el dispositivo de medición de ángulos tipo puntero con suministro de energía inalámbrico para iluminación de la invención, tiene características en cuanto a que el indicador puede iluminarse, y el dispositivo de medición de ángulos tipo puntero con suministro de energía inalámbrico para iluminación de la invención puede utilizarse solo o en combinación con un dispositivo de medición tradicional, tal como el nivel de burbuja. Es conveniente para las personas utilizar el dispositivo de medición de ángulos tipo puntero con suministro de energía inalámbrico para iluminación de la invención para medir y corregir el estado de ángulos horizontales, verticales y otros de un objeto en un entorno con poca luz.

Breve Descripción de los Dibujos

10

20

25

30

40

45

La Fig. 1 es una representación de la apariencia del dispositivo de medición de ángulos tipo puntero con suministro de energía inalámbrico para iluminación de acuerdo con una realización preferida de la invención.

La Fig. 2 es una representación estructural del dispositivo de medición de ángulos tipo puntero con suministro de energía inalámbrico para iluminación de acuerdo con una realización preferida de la invención.

La Fig. 3 es una representación de la apariencia del puntero.

La Fig. 4 es una representación estructural del puntero.

La Fig. 5 es un diagrama de circuito del circuito electrónico del dispositivo de medición de ángulos tipo puntero con suministro de energía inalámbrico para iluminación de acuerdo con una realización preferida de la invención.

En las Fig. 1 - Fig. 5, en donde:

1: cubierta frontal; 2: disco selector; 3: cuerpo de puntero; 3a1: ventana de la burbuja de nivel; 3b: cabeza de puntero; 3c: burbuja de nivel; 3d: cojinete; 3e: árbol principal; 3f: base de fijación de la bobina receptora de energía; 4: cubierta transparente; 5: anillo de fijación del diodo emisor de luz; 6: cubierta posterior; 7: base de fijación de la bobina transmisora de energía; 8: circuito de suministro de energía inalámbrico; 801: circuito de transmisión inalámbrico; 802: circuito de accionamiento de LED; 803: circuito de ahorro de energía; 804: circuito de energía; 8a: bobina transmisora de energía; 8b: placa de circuito del circuito de suministro de energía inalámbrico; 8c: segundo diodo emisor de luz; 8d: cable; 9: circuito de recepción de energía inalámbrico e iluminación; 9a: bobina receptora de energía; 9b: placa de circuito del circuito de recepción de energía inalámbrico e iluminación; 9c: primer diodo emisor de luz para la iluminación de la cabeza de puntero 3b; 9b: placa de circuito del circuito de recepción de energía inalámbrico e iluminación; y 10: nivel de referencia; IC1: procesador de microordenador; IC2: circuito paralelo integrado de estabilización de tensión; Q: triodo; LED₁: diodo emisor de luz 1; LED₂: diodo emisor de luz 2; LED₃: diodo emisor de luz 3; LED₄: diodo emisor de luz 4; LED₅: diodo emisor de luz 5; LED₆: diodo emisor de luz 6; C₁: condensador 1; C2: condensador 2; C3: condensador 3; C4: condensador 4; C5: condensador 5; C6: condensador 6; L₁: bobina transmisora de energía; L₂: bobina receptora de energía; R₁: resistencia 1; R₂: resistencia 2; R₃: resistencia 3; R₄: resistencia 4; R₅: resistencia 5; R₆: resistencia 6; R₇: resistencia 7; R₈: resistencia 8; R₉: resistencia 9; R₁₀: resistencia 10; R₁₁: resistencia 11; R₁₂: resistencia 12; y SK: interruptor de inicio.

Descripción Detallada

Por referencia a los dibujos, las realizaciones preferidas de la invención se describirán adicionalmente a continuación mediante ejemplos.

Con referencia a las Fig. 1 - Fig. 5, un dispositivo de medición de ángulos tipo puntero con suministro de energía inalámbrico para iluminación, incluye una carcasa, un disco selector 2, un puntero 3 y un circuito electrónico. En donde, el circuito electrónico incluye un circuito de suministro de energía inalámbrico 8 y un circuito de recepción de energía inalámbrico e iluminación 9, y la carcasa consiste en una cubierta frontal 1 y una cubierta posterior 6. Una ventana está dispuesta en la cubierta frontal 1, una cubierta transparente 4 está dispuesta en la ventana de la cubierta frontal 1, y el puntero 3 está dispuesto en una cavidad interna de la carcasa dentro de la cubierta transparente 4, el puntero 3 consiste en un cuerpo de puntero 3a y una cabeza de puntero 3b, y el cuerpo de puntero 3a es una estructura de carcasa con una cavidad interna. Una burbuja de nivel 3c está dispuesta en la cavidad interna del cuerpo de puntero 3a, y una ventana de la burbuja de nivel 3a1 está dispuesta en la superficie frontal del cuerpo de puntero 3a del puntero 3. La cabeza de puntero 3b del puntero 3 está hecha de una material transparente. El circuito de suministro de energía inalámbrico 8 incluye una bobina transmisora de energía 8a y una

placa de circuito 8b del circuito de suministro de energía inalámbrico, en donde, una base de fijación de la bobina transmisora de energía 7 está dispuesta en el lado interno de la cubierta posterior 6, la bobina transmisora de energía 8a está fijada en la base de fijación de la bobina transmisora de energía 7, y la bobina transmisora de energía 8a está conectada con la placa de circuito 8b del circuito de suministro de energía inalámbrico a través de un cable 8d. El circuito de recepción de energía inalámbrico e iluminación 9 incluye una bobina receptora de energía 9a, un primer diodo emisor de luz 9c para iluminar la cabeza de puntero 3b y una placa de circuito 9b del circuito de recepción de energía inalámbrico e iluminación, en donde una base de fijación de la bobina receptora de energía 3f está dispuesta en la parte posterior del cuerpo de puntero 3a, y la bobina receptora de energía 9a está fijada en la base de fijación de la bobina receptora de energía 3f. Un orificio de árbol está dispuesto en el medio de la base de fijación de la bobina receptora de energía 3f para comunicar con el cuerpo de puntero 3a, un cojinete 3d está montado en el orificio de árbol en el medio del cuerpo de puntero 3a y de la base de fijación de la bobina receptora de energía 3f, un árbol principal 3e está montado en un orificio de cojinete del cojinete 3d, un extremo del árbol principal 3e está fijado en la cubierta transparente 4, el otro extremo del árbol principal 3e está fijado en la cubierta posterior 6, y el puntero 3 puede rotar alrededor del árbol principal 3e como el eje. La placa de circuito 9b del circuito de recepción de energía inalámbrico e iluminación está dispuesto debajo de la cabeza de puntero 3b en la cavidad interna del cuerpo de puntero 3a y de la ventana de la burbuja de nivel 3a1. El disco selector 2 es circular, el disco selector 2 está dispuesto en el borde exterior de la ventana en la cubierta frontal 1 en la cavidad interna de la carcasa dentro de la cubierta transparente 4, un anillo de fijación del diodo emisor de luz circular 5 está dispuesto en la parte posterior del disco selector 2, y un segundo diodo emisor de luz 8c está dispuesto en el anillo de fijación del diodo emisor de luz 5. El nivel de referencia 10 del dispositivo de medición de ángulos tipo puntero con suministro de energía inalámbrico para iluminación está dispuesto en la parte inferior.

10

15

20

25

30

35

40

45

50

55

En el dispositivo de medición de ángulos tipo puntero con suministro de energía inalámbrico para iluminación, el circuito de suministro de energía inalámbrico 8 consiste en un procesador de microordenador IC₁, un circuito de transmisión inalámbrico 801, una circuito de accionamiento de LED 802, un circuito de ahorro de energía 803 y un circuito de energía 804, en donde:

El procesador de microordenador IC₁ es el procesador de microordenador HT48R063B. El software de control del dispositivo de medición de ángulos tipo puntero con suministro de energía inalámbrico para iluminación de acuerdo con una realización preferida de la invención, está configurado en el procesador de microordenador IC1 de antemano para controlar el circuito electrónico de esta realización preferida de la invención.

El circuito de transmisión inalámbrico 801 incluye un triodo Q, una bobina transmisora L₁, un condensador 5 C₅, una resistencia 2 R₂ y una resistencia 3 R₃, en donde un extremo de la resistencia 2 R₂ está conectado con la patilla 2 del procesador de microordenador IC₁, el otro extremo de la resistencia 2 R₂ está conectado con un electrodo base del triodo Q. Un electrodo colector del triodo Q está conectado en serie con la bobina transmisora L₁ y a su vez con el condensador 5 C5, el otro extremo del condensador 5 C5 está conectado a tierra. Un nodo entre la bobina transmisora L₁ y el condensador 5 C₅ está conectado al voltaje del suministro de energía VCC del circuito, un electrodo emisor del triodo Q está conectado con un extremo de la resistencia 3 R₃, y el otro extremo de la resistencia 3 R₃ está conectado a tierra. El circuito de accionamiento de LED 802 incluye una resistencia 7 R₇, una resistencia 8 R₈, una resistencia 9 R₉, una resistencia 10 R₁₀ y un segundo diodo emisor de luz 8c, en donde, el segundo diodo emisor de luz 8c consiste en un diodo emisor de luz 1 LED1, un diodo emisor de luz 2 LED2, un diodo emisor de luz 3 LED₃ y un diodo emisor de luz 4 LED₄. Todos los ánodos del diodo emisor de luz 1 LED₁, del diodo emisor de luz 2 LED₂, del diodo emisor de luz 3 LED₃ y del diodo emisor de luz 4 LED₄ están conectados al voltaje del suministro de energía VDD del circuito. Los cátodos del diodo emisor de luz 1 LED1, del diodo emisor de luz 2 LED2, del diodo emisor de luz 3 LED3 y del diodo emisor de luz 4 LED4 están conectados respectivamente con un extremo de la resistencia 7 R₇, de la resistencia 8 R₈, de la resistencia 9 R₉ y de la resistencia 10 R₁₀, y el otro extremo de la resistencia 7 R_7 , de la resistencia 8 R_8 , de la resistencia 9 R_9 y de la resistencia 10 R_{10} están conectados respectivamente con la patilla 4, con la patilla 3, con la patilla 1 y con la patilla 16 del procesador de microordenador IC₁.

El circuito de ahorro de energía 803 incluye un condensador 1 C_1 , un condensador 4 C_4 , una resistencia 1 R_{11} y un interruptor de inicio SK, en donde, el condensador 1 C_1 es un condensador electrolítico, el ánodo del condensador 1 C_1 está conectado con un extremo de la resistencia 11 R_{11} y con el voltaje del suministro de energía VCC del circuito, el cátodo del condensador 1 C_1 está conectado a tierra y está conectado con el otro extremo de la resistencia 11 R_{11} . Un extremo del condensador 4 C_4 y un extremo de la resistencia 1 R_1 , el otro extremo del condensador 4 C_4 está conectado con un extremo del interruptor de inicio SK y con la patilla 7 del procesador de microordenador IC_1 , el otro extremo del interruptor de inicio SK está conectado con el otro extremo de la resistencia 1 R_1 . El circuito de ahorro de energía 803 puede cooperar con el procesador de microordenador IC_1 para lograr la función de ahorro de energía; si los usuarios olvidan apagar el suministro de energía después de utilizar el dispositivo de medición de ángulos tipo puntero con suministro de energía inalámbrico para iluminación de

ES 2 671 668 T3

acuerdo con una realización preferida de la invención, el procesador de microordenador IC_1 puede apagar el suministro de energía para el circuito de accionamiento de LED 802 y para el circuito de transmisión inalámbrico 801, logrando así el objetivo del ahorro de energía.

El circuito de energía 804 incluye un circuito paralelo integrado de estabilización de tensión IC₂, un condensador 2 C₂, un condensador 3 C₃, una resistencia 4 R₄, una resistencia 5 R₅, una resistencia 6 R₆ y una resistencia 12 R₁₂, en donde, el condensador 2 C₂ es un condensador electrolítico, el cátodo del condensador 2 C₂ está conectada a tierra y está conectado con la patilla 5 del procesador de microordenador IC₁, un extremo del condensador 3 C₃, el ánodo del circuito paralelo integrado de estabilización de tensión IC₂, un extremo de la resistencia 5 R₅ y un extremo de la resistencia 6 R₆, el ánodo del condensador 2 C₂, la patilla 13 del procesador de microordenador IC₁, la patilla 12 del procesador de microordenador IC₁, el otro extremo del condensador 3 C₃, el cátodo del circuito paralelo integrado de estabilización de tensión IC₂, un extremo de la resistencia 4 R₄, un extremo de la resistencia 6 R₆ y un extremo de la resistencia 12 R₁₂ están conectados al voltaje del suministro de energía VDD en el circuito, el otro extremo de la resistencia 4 R₄ está conectado con el otro extremo de la resistencia 5 R₅ y con un electrodo de referencia del circuito paralelo integrado de estabilización de tensión IC₂, y el otro extremo de la resistencia 12 R₁₂ está conectado al suministro de energía VCC del circuito.

En el dispositivo de medición de ángulos tipo puntero con suministro de energía inalámbrico para iluminación, el circuito de recepción de energía inalámbrico e iluminación 9 incluye una bobina receptora de energía L_2 , un condensador $6 C_6$ y un primer diodo emisor de luz 9c, en donde, el primer diodo emisor de luz consiste en un diodo emisor de luz $5 LED_5$ y un diodo emisor de luz $6 LED_6$, el cátodo del diodo emisor de luz $6 LED_6$, el ánodo del diodo emisor de luz $6 LED_6$, el ánodo del diodo emisor de luz $6 LED_6$, el ánodo del diodo emisor de luz $6 LED_6$ está conectado con un extremo de la bobina receptora de energía L_2 y con un extremo del condensador $6 C_6$, el cátodo del diodo emisor de luz $6 LED_6$ está conectado con el otro extremo de la bobina receptora de energía L_2 y con el otro extremo del condensador $6 C_6$.

20

REIVINDICACIONES

- 1. Un dispositivo de medición de ángulos tipo puntero que incluye una carcasa, un disco selector (2), un puntero (3), la carcasa que consta de una cubierta frontal (1) y una cubierta posterior (6), en donde una ventana está dispuesta en la cubierta frontal (1), en donde una cubierta transparente (4) está dispuesta en la ventana de la cubierta frontal (1), y el puntero (3) está configurado en una cavidad interna de la carcasa detrás de la cubierta transparente (4), en donde el puntero (3) consiste en un cuerpo de puntero (3a) y una cabeza de puntero (3b), en donde un primer extremo de un árbol principal (3e) está fijado en la cubierta posterior (6), y el puntero (3) puede rotar alrededor del eje del árbol principal (3e), y la cabeza de puntero (3b) siempre puede apuntar en la dirección vertical por acción de la gravedad de sí misma, caracterizado por que
- el cuerpo de puntero (3a) es una estructura de carcasa con una cavidad interna, en donde la cabeza de puntero (3b) del puntero (3) está hecha de un material transparente, en donde un orificio de árbol está dispuesto en el medio de una base de fijación de la bobina receptora de energía (3f) para comunicarse con el cuerpo de puntero (3a), en donde un cojinete (3d) está montado en el orificio de árbol en el medio del cuerpo de puntero (3a) y de la base de fijación de la bobina receptora de energía (3f), en donde el árbol principal (3e) está montado en un orificio de cojinete del cojinete (3d), en donde un segundo extremo del árbol principal (3e) está fijado en la cubierta transparente (4); y en que

10

15

20

25

30

35

40

50

- el dispositivo de medición de ángulos tipo puntero incluye además un circuito electrónico que incluye un circuito de suministro de energía inalámbrico (8) y un circuito de recepción de energía inalámbrico e iluminación (9), en donde el circuito de recepción de energía inalámbrico e iluminación (9) está dispuesto en el puntero (3), en donde el circuito de suministro de energía inalámbrico (8) incluye una bobina transmisora de energía (8a) y una placa de circuito (8b) del circuito de suministro de energía inalámbrico, en donde una base de fijación de la bobina transmisora de energía (7) está dispuesta en lado interior de la cubierta posterior (6), en donde la bobina transmisora de energía (8a) está fijada en una base de fijación de la bobina transmisora de energía (8a) está conectada con la placa de circuito (8b) del circuito de suministro de energía inalámbrico a través de un cable (8d).

En donde el circuito de recepción de energía inalámbrico e iluminación (9) incluye una bobina receptora de energía (9a), un primer diodo emisor de luz (9c) configurado para iluminar la cabeza de puntero (3b) y una placa de circuito (9b) del circuito de recepción de energía inalámbrico e iluminación, en donde una base de fijación de la bobina receptora de energía (3f) está dispuesta en la parte posterior del cuerpo de puntero (3a), y la bobina receptora de energía (9a) está fijada en la base de fijación de la bobina receptora de energía (3f).

- 2. Dispositivo de medición de ángulos tipo puntero de acuerdo con la reivindicación 1, en donde una burbuja de nivel (3c) está dispuesta en la cavidad interior del cuerpo de puntero (3a), una ventana de la burbuja de nivel (3a1) está dispuesta en una superficie frontal del cuerpo de puntero (3a) del puntero (3), y la ventana de la burbuja de nivel (3a1) está situada, a lo largo del eje de apunte de la cabeza de puntero, encima de la placa de circuito (9b) del circuito de recepción de energía inalámbrico e iluminación.
- 3. Dispositivo de medición de ángulos tipo puntero de acuerdo con la reivindicación 2, en donde el disco selector (2) es circular, el disco selector (2) está dispuesto en el borde exterior de la ventana en la cubierta frontal (1) en la cavidad interna de la carcasa de la cubierta transparente (4), un anillo de fijación del diodo emisor de luz circular (5) está dispuesto en la parte posterior del disco selector (2) y un segundo diodo emisor de luz (8c) está dispuesto en el anillo de fijación del diodo emisor de luz (5).
- 4. El dispositivo de medición de ángulos tipo puntero de acuerdo con la reivindicación 3, en donde el circuito de suministro de energía inalámbrico (8) incluye un procesador de microordenador (IC₁), un circuito de transmisión inalámbrico (801), un circuito de accionamiento de LED (802), un circuito ahorro de energía (903) y un circuito de energía (804).
- 45 5. El dispositivo de medición de ángulos tipo puntero de acuerdo con la reivindicación 4, en donde el procesador de microordenador (IC₁) es un procesador de microordenador HT48R063B.
 - 6. Dispositivo de medición de ángulos tipo puntero de acuerdo con la reivindicación 5, en donde el circuito de transmisión inalámbrico (801) incluye un triodo (Q), una bobina transmisora (L_1), un condensador 5 (C_5), una resistencia 2 (R_2) y una resistencia 3 (R_3), en donde un extremo de la resistencia 2 (R_2) está conectado con una patilla 2 del procesador de microordenador (IC_1), el otro extremo de la resistencia 2 (R_2) está conectado con un electrodo base del triodo (Q), un electrodo colector del triodo (Q) está conectado en serie con la bobina transmisora (L_1) y a su vez con el condensador 5 (C_5), el otro extremo del condensador 5 (C_5) está conectado a tierra, un nodo entre la bobina transmisora (L_1) y el condensador 5 (C_5) está conectado al voltaje del suministro de energía VCC del

ES 2 671 668 T3

circuito, un electrodo emisor del triodo (Q) está conectado con un extremo de la resistencia $3 (R_3)$, y el otro extremo de la resistencia $3 (R_3)$ está conectado a tierra.

7. Dispositivo de medición de ángulos tipo puntero de acuerdo con la reivindicación 5, en donde el circuito de accionamiento de LED (802) incluye una resistencia 7 (R_7), una resistencia 8 (R_8), una resistencia 9 (R_9), una resistencia 10 (R_{10}), y el segundo diodo emisor de luz, en donde el segundo diodo emisor de luz consta de un diodo emisor de luz 1 (LED_1), un diodo emisor de luz 2 (LED_2), un diodo emisor de luz 3 (LED_3) y un diodo emisor de luz 4 (LED_4), todos los ánodos del diodo emisor de luz 1 (LED_1), del diodo emisor de luz 2 (LED_2), del diodo emisor de luz 3 (LED_3) y del diodo emisor de luz 4 (LED_4) están conectados al voltaje del suministro de energía VDD del circuito, los cátodos del diodo emisor de luz 1 (LED_1), del diodo emisor de luz 2 (LED_2), del diodo emisor de luz 3 (LED_3) y del diodo emisor de luz 4 (LED_4) están conectados respectivamente con un extremo de la resistencia 7 (R_7), de la resistencia 8 (R_8), de la resistencia 9 (R_9), y de la resistencia 10 (R_{10}), y el otro extremo de la resistencia 7 (R_7), de la resistencia 8 (R_8), de la resistencia 9 (R_9) y de la resistencia 10 (R_{10}) están conectados respectivamente con la patilla 4, con la patilla 3, con la patilla 1 y con la patilla 16 del procesador de microordenador (IC_1).

5

10

40

- 8. Dispositivo de medición de ángulos tipo puntero de acuerdo con la reivindicación 5, en donde el circuito de ahorro de energía (803) incluye un condensador 1 (C₁), un condensador 4 (C₄), una resistencia 1 (R₁), una resistencia 11 (R₁₁), y un interruptor de inicio (SK), en donde el condensador 1 (C₁) es un condensador electrolítico, el ánodo del condensador 1 (C₁) está conectado con un extremo de la resistencia 11 (R₁₁) y con el voltaje del suministro de energía VCC del circuito, el cátodo del condensador 1 (C₁) está conectado a tierra y está conectado con el otro extremo de la resistencia 11 (R₁₁), con un extremo del condensador 4 (C₄) y con un extremo de la resistencia 1 (R₁), el otro extremo del interruptor de inicio (SK) y con la patilla 7 del procesador de microordenador (IC₁), el otro extremo del interruptor de inicio (SK) está conectado con el otro extremo de la resistencia 1 (R₁).
- 9. El dispositivo de medición de ángulos tipo puntero de acuerdo con la reivindicación 5, en donde el circuito de energía (804) incluye un circuito paralelo integrado de estabilización de tensión (IC₂), un condensador 2 (C₂), un condensador 3 (C₃), un resistencia 4 (R₄), una resistencia 5 (R₅), una resistencia 6 (R₆) y una resistencia 12 (R₁₂), en 25 donde el condensador 2 (C2) es un condensador electrolítico, el cátodo del condensador 2 (C2) está conectado a tierra y está conectado con la patilla 5 del procesador de microordenador (IC₁), con un extremo del condensador 3 (C₃), con el ánodo del circuito paralelo integrado de estabilización de tensión (IC₂), con un extremo de la resistencia 5 (R₅) y con un extremo de la resistencia 6 (R₆), el ánodo del condensador 2 (C₂), la patilla 13 del procesador de 30 microordenador (IC₁), la patilla 12 del procesador de microordenador (IC₁), el otro extremo del condensador 3 (C₃), el cátodo del circuito paralelo integrado de estabilización de tensión (IC2), un extremo de la resistencia 4 (R4), un extremo de la resistencia 6 (R₆) y un extremo de la resistencia 12 (R₁₂) están conectados al voltaje del suministro de energía VDD del circuito, el otro extremo de la resistencia 4 (R₄) está conectado con el otro extremo de la resistencia 5 (R₅) y con un electrodo de referencia del circuito paralelo integrado de estabilización de tensión (IC₂), y el otro 35 extremo de la resistencia 12 (R₁₂) está conectado al suministro de energía VCC del circuito.
 - 10. Dispositivo de medición de ángulos tipo puntero de acuerdo con la reivindicación 5, en donde el circuito de recepción de energía inalámbrico e iluminación (9) incluye una bobina receptora de energía (L_2) , un condensador 6 (C_6) y el primer diodo emisor de luz, en donde el primer diodo emisor de luz consta de un diodo emisor de luz 5 (LED_5) y un diodo emisor de luz 6 (LED_6) , el cátodo del diodo emisor de luz 5 (LED_5) está conectado con el ánodo del diodo emisor de luz 5 (LED_5) está conectado con un extremo de la bobina receptora de energía (L_2) y con un extremo del condensador 6 (C_6) , el cátodo del diodo emisor de luz 6 (LED_6) está conectado con el otro extremo del condensador 6 (C_6) .

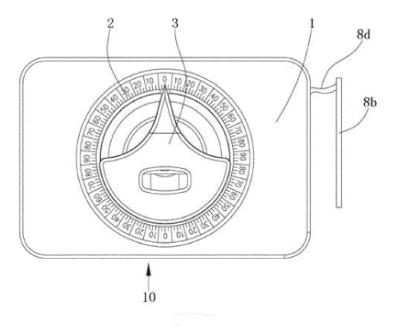
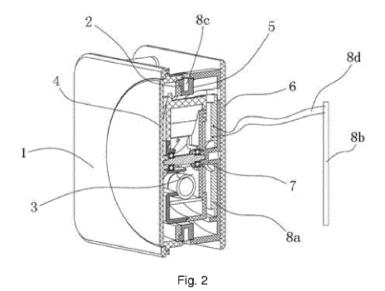



Fig. 1

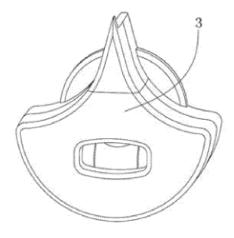
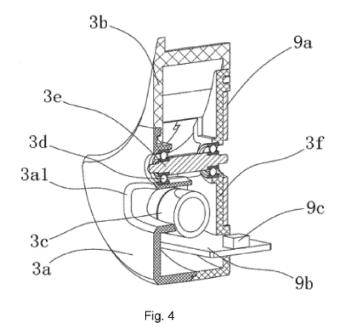



Fig. 3

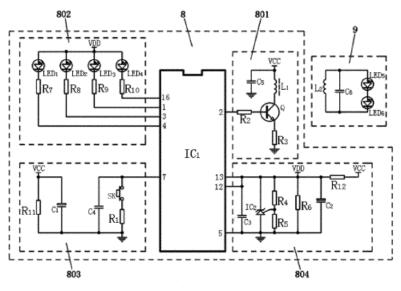


Fig. 5