

OFICINA ESPAÑOLA DE PATENTES Y MARCAS

ESPAÑA

①Número de publicación: 2 671 728

51 Int. Cl.:

A61K 9/00 (2006.01) A61K 38/20 (2006.01) A61K 39/395 (2006.01) A61K 45/06 (2006.01) A61P 35/00 (2006.01)

(12)

TRADUCCIÓN DE PATENTE EUROPEA

T3

86 Fecha de presentación y número de la solicitud internacional: 10.10.2012 PCT/EP2012/070088

(87) Fecha y número de publicación internacional: 18.04.2013 WO13053775

(96) Fecha de presentación y número de la solicitud europea: 10.10.2012 E 12780684 (2)

(97) Fecha y número de publicación de la concesión europea: 28.03.2018 EP 2766035

(54) Título: Medicamento de combinación que comprende IL-12 y un agente para el bloqueo de moléculas inhibidoras de linfocitos T para terapia tumoral

(30) Prioridad:

11.10.2011 EP 11184644 10.11.2011 EP 11188625 19.09.2012 EP 12185108

(45) Fecha de publicación y mención en BOPI de la traducción de la patente: 08.06.2018

(73) Titular/es:

UNIVERSITÄT ZÜRICH PROREKTORAT MNW (100.0%) Rämistrasse 71 8006 Zürich, CH

(72) Inventor/es:

BECHER, BURKHARD. y VOM BERG, JOHANNES.

(74) Agente/Representante:

VALLEJO LÓPEZ, Juan Pedro

DESCRIPCIÓN

Medicamento de combinación que comprende IL-12 y un agente para el bloqueo de moléculas inhibidoras de linfocitos T para terapia tumoral

5

La presente invención, tal como se define en las presentes reivindicaciones, se refiere a composiciones y a métodos para tratar cáncer, en particular, a inmunoterapia de neoplasias malignas tales como glioma, mediante la administración de una dosis eficaz de un polipéptido con actividad biológica de IL-12 y un ligando no agonista de una CTLA-4.

10

15

- El glioblastoma multiforme (GBM) es el tumor astrocítico más maligno. El GBM presenta un patrón de crecimiento invasivo y destructor; es el tumor cerebral primario maligno más común y más agresivo en seres humanos, que representa el 20 % de todos los tumores intracraneales. En la mayoría de los países europeos y en América del Norte, la frecuencia de GBM está en el intervalo de 3-3,5 casos nuevos por 100.000 habitantes al año. La historia clínica de la enfermedad es normalmente corta (menos de 3 meses en más del 50 % de los casos) y los pacientes diagnosticados con GBM presentan una supervivencia media de 14-18 meses, a pesar de la cirugía invasiva, de la radiación y de la quimioterapia. La capacidad de los gliomas para resistir a regímenes de tratamiento convencionales es uno de los mayores retos de la neurooncología moderna.
- La interleucina (IL)-12 es el prototipo de un grupo de citocinas heterodiméricas con propiedades predominantemente inflamatorias. La IL-12 polariza a los linfocitos T colaboradores que no se han expuesto previamente (naive) para que adopte un fenotipo TH1 y estimula a los linfocitos T citotóxicos y a las células NK. La IL-12 se une al receptor de IL-12 (IL-12R) que es un receptor heterodimérico formado por IL-12R-β1 e IL-12R-β2. El complejo del receptor se expresa principalmente por los linfocitos T, pero también se ha descubierto que otras subpoblaciones de linfocitos son sensibles a IL-12.
 - Se ha sugerido la aplicación terapéutica de IL-12 en diversas en diversas entidades tumorales. Los ensayos clínicos en pacientes de cáncer, sin embargo, se tuvieron que detener debido a que la aplicación sistémica provocó diversos acontecimientos adversos a dosis eficaces, incluyendo víctimas mortales. Aunque la investigación en los últimos años se ha centrado principalmente en diversas vías de administración de IL-12, aún permanecen abiertas cuestiones sobre el mecanismo exacto mediante el cual IL-12 ejerce sus propiedades supresoras de tumores.
- CTLA-4 y PD-1 son ambos miembros de la extensa familia CD28/CTLA-4 de linfocitos T reguladores. PD-1 se expresa sobre la superficie de linfocitos B, macrófagos y linfocitos T activados. PD-1(CD279; Uniprot Q15116) tiene dos ligandos, PD-L1 (B7-H1, CD274) y PD-L2 (B7-DC, CD273), que son miembros de la familia B7.
- CTLA-4 (N.º de ID de Uniprot P16410) se expresa sobre la superficie de linfocitos T colaboradores y transmite una señal inhibidora a los linfocitos T. CTLA-4 y CD28 se unen a CD80 (B7-1) y CD86 (B7-2) sobre las células presentadoras de antígeno. CTLA-4 transmite una señal inhibidora para linfocitos T, mientras que CD28 transmite una señal estimuladora. El tratamiento sistémico anti-CTLA-4 se ha aprobado para uso clínico y demuestra un beneficio clínico. Se está ensayando adicionalmente para otros diversos cánceres sólidos (Hodi et al., N Engl J Med 363, 711-723 (2010); Graziani et al., Pharmacol Res (2012) Ene;65(1):9-22). Está disponible un anticuerpo comercial contra CTLA-4 con el nombre genérico de ipilimumab (comercializado como *Yervoy*).
- La glucoproteína inmunoglobulina G (IgG) es una molécula efectora principal de la respuesta inmunitaria humoral en el ser humano. Hay cuatro subgrupos distintos de IgG humana, denominados IgG1, IgG2, IgG3 y IgG4. Las cuatro subclases presentan más del 95 % de homología en las secuencias de aminoácidos de los dominios constantes de las cadenas pesadas, pero difieren con respecto a la estructura y a la flexibilidad de la región bisagra, especialmente en el número de enlaces disulfuro intercatenarios de cadenas pesadas en este dominio. Las diferencias estructurales entre las subclases de IgG también se reflejan en su susceptibilidad a enzimas proteolíticas, tales como papaína, plasmina, tripsina y pepsina.
- Solo se conoce una isoforma de IgG4 humana. Al contrario de la IgG1, la IgG2 y la IgG3 humanas, la IgG4 humana no activa el complemento. Además, la IgG4 es menos susceptible a enzimas proteolíticas en comparación con la IgG2 y la IgG3.
 - El problema subyacente de la presente invención es la provisión de medios mejorados y de métodos para tratar el cáncer sólido, en particular, glioma.
- En el trascurso de un estudio centrado en el potencial terapéutico clínico de IL-12 en GBM de etapa avanzada en un modelo de roedores relevante, sorprendentemente se descubrió que la combinación de IL-12 con un bloqueo de señales co-inhibidoras con anticuerpo anti-CTLA-4 lleva a la erradicación casi completa del tumor y a la cura incluso en etapas avanzadas de la enfermedad.
- De acuerdo con un primer aspecto de la invención, se proporciona un medicamento de combinación para su uso en la terapia de tumores sólidos, en particular, de tumores cerebrales, en particular, glioma, que comprende

- un polipéptido de IL-12, o un vector de expresión de ácido nucleico que comprende una secuencia que codifica dicho polipéptido de IL-12, y
- un ligando no agonista de CTLA-4

5

10

15

30

35

40

45

50

55

en donde el polipéptido de IL-12 o el vector de expresión de ácido nucleico, se proporciona mediante la administración en un tumor, en las proximidades de un tumor, o en el nódulo linfático asociado con un tumor.

En el contexto de la presente invención, un polipéptido de IL-12 es un polipéptido que tiene una secuencia de aminoácidos que comprende la secuencia de p35 (ID de Uniprot 29459, SEQ ID 05) o un homólogo funcional del mismo, y que comprende la secuencia de p40 (ID de Uniprot 29460, SEQ ID 06) o un homólogo funcional del mismo. En una realización, el polipéptido de IL-12 tiene una secuencia de aminoácidos que comprende tanto secuencias de p35 como de p40 u homólogos de los mismos como parte de la misma cadena continua de aminoácidos. En otra realización, el polipéptido de IL-12 comprende dos cadenas de aminoácidos diferentes, una que comprende la secuencia de p35 y la otra que comprende la secuencia de p40. La terminología "polipéptido de IL-12" no excluye la presencia de secuencias que no son de IL-12, por ejemplo, secuencias de inmunoglobulina y fragmentos de la misma, fusionadas con las secuencias de IL-12 descritas en el presente documento.

El polipéptido de IL-12 tiene una actividad biológica de IL-12. Una actividad biológica de IL-12 en el contexto de la presente invención es la estimulación de células NK o de linfocitos T por dicho polipéptido de IL-12, más notoriamente la estimulación de linfocitos T efectores que actúan a través de perforina.

En una realización del medicamento de combinación, dicho polipéptido de IL-12 comprende una secuencia de polipéptido al menos el 95 %, el 96 %, el 97 %, el 98 % o el 99 % idéntica a la secuencia de p35 humana (SEQ ID 05) y una secuencia de polipéptido al menos el 95 %, el 96 %, el 97 %, el 98 % o el 99 % idéntica a la secuencia de p40 humana (SEQ ID 06).

La identidad en el contexto de la presente invención es un único parámetro cuantitativo que representa el resultado de una comparación de secuencia posición por posición. Los métodos de comparación de secuencia son conocidos en la materia; el algoritmo BLAST públicamente disponible es un ejemplo.

En una realización, dicho polipéptido de IL-12 es una IL-12 humana recombinante. En una realización, dicho polipéptido de IL-12 es una IL-12 humana sintética. En una realización, dicho polipéptido de IL-12 es un péptido de fusión que comprende el fragmento cristalizable (región Fc) de una inmunoglobulina humana. De acuerdo con una realización, el polipéptido IL-12 comprende un fragmento cristalizable de inmunoglobulina G humana. Un fragmento cristalizable en el contexto de la presente invención se refiere al segundo y tercer dominio constante de la molécula IgG. La región cristalizable del fragmento (región Fc) es la región de la cola de un anticuerpo de inmunoglobulina que interactúa con los receptores de superficie celular (receptores Fc) y proteínas del sistema del complemento. En isotipos de anticuerpo IgG, la región Fc está compuesta de dos fragmentos de proteína idénticos, que provienen del segundo y tercer dominio constante de las dos cadenas pesadas de anticuerpo.

De acuerdo con una realización, el polipéptido IL-12 comprende un fragmento cristalizable de inmunoglobulina humana G4. De acuerdo con una realización, el polipéptido de IL-12 tiene o comprende la secuencia de la SEQ ID 01. De acuerdo con otra realización, el polipéptido de IL-12 comprende una secuencia al menos el 95 %, el 96 %, el 97 %, el 98 % o el 99 % idéntica a la secuencia de la SEQ ID 01.

Las realizaciones en las que las cadenas del polipéptido de IL-12 están fusionadas a fragmentos Fc de inmunoglobulina muestran diferentes comportamientos farmacocinéticos en comparación con la citocina recombinante, que para algunas aplicaciones puede conferir un beneficio.

En una realización, el componente del polipéptido de IL-12 del medicamento de combinación se proporciona como una forma de dosificación para la administración o el suministro local (intratumoral). Tal forma de dosificación para la administración local (intratumoral) puede ser una forma de liberación lenta o una forma de liberación prolongada, a partir de la cual se libera dicha IL-12 durante una serie de horas a semanas. En una realización, el componente del polipéptido de IL-12 del medicamento de combinación se administra por administración mejorada por convección (CED, del inglés *convection enhaced delivery*) o una variación de la misma, por ejemplo, el dispositivo mostrado en el documento US2011137289 (A1).

En una realización, el polipéptido de IL-12 se administra sistémicamente junto con el bloqueo sistémico de CTLA-4.

La IL-12 recombinante heterodimérica (peprotech) aplicada sistémicamente junto con el bloqueo sistémico de CTLA-4 (i.p.) logró una mejora significativa en la supervivencia en comparación con cualquier agente administrado por sí mismo (véase la Fig. 11).

En el contexto de la presente invención, un ligando no agonista de CTLA-4 es una molécula que se une de manera selectiva a CTLA-4 en condiciones que prevalecen en la sangre periférica, sin desencadenar el efecto biológico de la interacción de CTLA-4 con cualquiera de los ligandos fisiológicos de CTLA-4, en particular, CD80 y/o CD86.

Un ligando no agonista de CTLA-4 en el sentido de la invención se refiere a una molécula que es capaz de unirse a CTLA-4 con una constante de disociación de al menos 10⁻⁷ M⁻¹, 10⁻⁸ M⁻¹ o 10⁻⁹ M⁻¹ y que inhibe la actividad biológica de su respectiva diana.

5 Un ligando no agonista del polipéptido puede ser un anticuerpo, un fragmento de anticuerpo, una molécula de tipo anticuerpo o un oligopéptido, cualquiera de los cuales se une a y por lo tanto inhibe CTLA-4.

10

15

25

30

35

40

45

50

65

Un fragmento de anticuerpo puede ser un dominio Fab o un dominio Fv de un anticuerpo, o un fragmento de anticuerpo de cadena simple, que es una proteína de fusión que consiste en las regiones variables de las cadenas ligeras y pesadas de un anticuerpo conectado mediante un enlazador peptídico. El inhibidor también puede ser un anticuerpo de dominio único, que consiste en un dominio variable aislado de una cadena pesada o ligera. Adicionalmente, un anticuerpo también puede ser un anticuerpo de cadena pesada que consiste solo en cadenas pesadas tales como los anticuerpos hallados en camélidos. Una molécula de tipo anticuerpo puede ser una proteína de repetición, tal como una proteína de repetición de ankyrina diseñada (Molecular Partners, Zurich).

Un oligopéptido de acuerdo con el aspecto anterior de la invención puede ser un péptido que proviene del sitio de reconocimiento de un ligando fisiológico de CTLA-4. Tal ligando de oligopéptido compite con el ligando fisiológico por la unión a CTLA-4.

En particular, un ligando no agonista de CTLA-4 no lleva a una actividad atenuada de linfocitos T cuando se une a CTLA-4 en la superficie de un linfocito T. En determinadas realizaciones, la expresión "ligando no agonista de CTLA-4" abarca tanto antagonistas de CTLA-4 como ligandos que son neutros ante la señalización de CTLA-4. En algunas realizaciones, los ligandos no agonistas de CTLA-4 usados en la presente invención son capaces, cuando se unen a CTLA-4, de bloquear de manera estérica la interacción de CTLA-4 con sus compañeros de unión CD80 y/o CD86.

En una realización, dicho ligando no agonista de CTLA-4 es una gamma inmunoglobulina que se une a CTLA-4, sin desencadenar la respuesta fisiológica de la interacción de CTLA-4 con sus compañeros de unión CD80 y/o CD86.

Los ejemplos no limitantes para un ligando de CTLA-4 son los anticuerpos aprobados clínicamente tremelimumab (CAS 745013-59-6) e ipilimumab (CAS N.º 477202-00-9; Yervoy).

El término "gamma inmunoglobulina" en este contexto pretende abarcar tanto moléculas de inmunoglobulinas completas como fragmentos funcionales de las mismas, en donde la función es la unión a CTLA-4, PD-1 o PD-L1 (PD-L2) tal como se describe anteriormente.

La terapia de combinación comprende dos formas de dosificación diferentes, en donde dicho polipéptido de IL-12 se proporciona como una forma de dosificación para la administración intratumoral o la administración local en las proximidades del tumor, y dicho ligando no agonista de CTLA-4 se proporciona como una forma de dosificación para la administración sistémica, particularmente mediante inyección intravenosa. Sin embargo, dicho ligando no agonista de CTLA-4 también se puede aplicar localmente del mismo modo que el polipéptido de IL-12. De acuerdo con otra realización, el polipéptido de IL-12 se aplica directamente al nódulo linfático que drena el tumor.

De acuerdo con otra realización, la terapia de combinación comprende una forma de dosificación mediante la cual dicho polipéptido de IL-12 se proporciona para la administración intracraneal, por ejemplo, mediante inyección.

De acuerdo con otro aspecto de la invención, se proporciona un medicamento de combinación tal como se expone anteriormente, para su uso en un método de terapia de una neoplasia maligna, en particular, lesiones de cáncer sólido. En una realización, la neoplasia maligna es glioma. En una realización, la neoplasia maligna es un tumor cerebral secundario (metástasis cerebral de una lesión neoplásica que se origina fuera del cerebro). En una realización, la enfermedad es glioblastoma multiforme. En una realización, la neoplasia maligna es meningioma. En una realización, la neoplasia maligna es cáncer de púlmón. En una realización, la neoplasia maligna es cáncer de pulmón. En una realización, la neoplasia maligna es cáncer de pulmón. En una realización, la neoplasia maligna es cáncer de próstata. En una realización, la neoplasia maligna es cáncer de vejiga.

Las lesiones cancerosas son propensas a expandirse en el tejido próximo, así como en distintas localizaciones en el cuerpo, dependiendo de su origen. El 20-40 % de todos los cánceres desarrollan metástasis cerebral; entre ellos, el cáncer de mama y de piel (melanoma) son las fuentes más comunes de metástasis cerebral (Sofietti et al., J Neurol 249, 1357-1369 (2002)). De manera similar a los tumores cerebrales malignos primarios, las metástasis cerebrales tienen un pronóstico malo a pesar del tratamiento y son rápidamente letales. Los linfocitos T son la población de células efectoras cruciales para el rechazo del tumor mediado por IL-12 en el cerebro. El tratamiento de combinación de IL-12 junto con anti-CTLA-4, anti-PD-1, anti-PD-1 o anti-PD-12 se dirige especialmente a los linfocitos T para activarlos y repolarizarlos. Dado que la metástasis cerebral crece en el mismo compartimento inmunológico que los tumores cerebrales primarios, los pacientes que padecen tumores cerebrales secundarios también se benefician del tratamiento de combinación.

En una realización, el medicamento de combinación comprende un polipéptido de IL-12 que tiene una actividad

biológica de IL-12 proporcionada como una proteína de fusión que comprende el aminoácido de la p40 humana, la secuencia de aminoácidos de la p35 humana y el fragmento cristalizable de la IgG4 humana, formulando dicho polipéptido de IL-12 como una forma de dosificación para la administración intratumoral. De acuerdo con esta realización, el medicamento de combinación comprende adicionalmente una inmunoglobulina G generada contra CTLA-4 como un ligando no agonista de CTLA-4 formulado como una forma de dosificación para administración sistémica. De acuerdo con esta realización, el medicamento de combinación se proporciona para el tratamiento de neoplasias malignas, en particular, de glioma, glioblastoma multiforme, meningioma, melanoma, cáncer de páncreas, cáncer de pulmón, cáncer de próstata o cáncer de vejiga.

- De acuerdo con una alternativa de la invención, una terapia de combinación comprende un vector de expresión de ácido nucleico de IL-12 que codifica un polipéptido de IL-12 codificado que tiene una actividad biológica de IL-12 y un ligando no agonista de CTLA-4.
- El ligando de CTLA-4 puede estar realizado por polipéptidos, en particular, por anticuerpos, tal como se expone anteriormente. Un ejemplo no limitante para un polipéptido de IL-12 codificado es un fragmento cristalizable de inmunoglobulina G fusionado a las cadenas de polipéptidos constituyentes de IL-12, IL-12 humana o un equivalente funcional de las mismas. Un ejemplo no limitante es una construcción de fusión que tiene los polipéptidos constituyentes de IL-12 enlazados por una secuencia de aminoácidos corta tal como se representa en la Fig. 1, cuya secuencia de aminoácidos se da como SEQ ID 01 y la secuencia codificante de ácido nucleico se da como SEQ ID 07.

La ventaja de usar proteínas de fusión de citocinas y el fragmento cristalizable de las inmunoglobulinas en lugar de la citocina recombinante es una farmacocinética mejorada (Belladonna et al. J Immunol 168, 5448-5454 (2002); Schmidt, Curr Opin Drug Discov Devel 12, 284-295 (2009); Eisenring et al., Nat Immunol 11, 1030-1038 (2010)).

El vector de expresión de ácido nucleico de IL-12 de acuerdo con este aspecto de la invención puede, a modo de ejemplo no limitante, ser un plásmido de expresión de ADN "desnudo" que comprende una secuencia de ácido nucleico que codifica el polipéptido de IL-12 bajo el control de una secuencia promotora operable en una célula tumoral humana, para la administración en el tumor, por ejemplo, mediante inyección intracraneal. El vector de expresión de ácido nucleico de IL-12 puede ser de manera similar un vector vírico, por ejemplo, un virus adenoasociado, un adenovirus, un lentivirus o un virus herpes.

Tal vector de expresión de ácido nucleico de IL-12 se puede proporcionar como una forma de dosificación para la administración intratumoral en combinación con un ligando proteico no agonista de CTLA-4 y/o un ligando no agonista de PD-1 tal como se expone anteriormente. De manera similar, el alcance de la presente invención abarca el uso de tal vector de expresión de ácido nucleico de IL-12, en combinación con un ligando no agonista de CTLA-4, en un método para preparar un medicamento de combinación para su uso en terapia de neoplasia maligna, en particular, glioma, glioblastoma multiforme, meningioma, melanoma, cáncer de páncreas, cáncer de pulmón, cáncer de próstata o cáncer de vejiga. Asimismo, se proporciona un método para tratar a un paciente que padece de neoplasia maligna, en particular, glioma u otro tumor de tejido sólido, que comprende la administración de un vector de expresión de ácido nucleico de IL-12 que tiene una actividad biológica de IL-12, y un ligando no agonista de CTLA-4 y/o un ligando no agonista de PD-1 para dicho paciente.

Breve descripción de las figuras

25

30

35

40

45

50

55

60

Fig. 1a muestra la estructura y secuencia de la proteína de fusión dada en la SEQ ID 01. Las subunidades p40 y p35 de IL-12 se representan como rectángulos. Estas subunidades se conectan mediante un enlazador (G₄S)₃. Las subunidades CH2, CH3 y los seis últimos aminoácidos de CH1 del fragmento cristalizable de la inmunoglobulina se muestran como círculos oblongos.

Fig. 1b muestra la proteína de fusión dada en la SEQ ID 01, la imagen de la izquierda muestra una inmunotransferencia usando condiciones reductoras, desarrollada con un anticuerpo policional anti-Fc humano acoplado con HRP, la imagen de la derecha muestra una tinción de plata de la proteína de fusión en condiciones no reductoras (DTT -) y en condiciones reductoras (DTT+)

- Fig. 1c muestra la producción de IFN-γ en monocitos de sangre periférica humana (PBMC) tal como se evalúa mediante el ensayo inmunoabsorbente ligado a enzimas (ELISA). Las células se estimularon bien con IL-12 humana recombinante heterodimérica comercialmente disponible (rhIL-12) o con la proteína de fusión purificada dada SEQ ID 01 (hIL-12Fc) en presencia de un anticuerpo dirigido contra CD3 (estimulación de linfocitos T policionales). Sin estímulo: sin estimulación de IL-12 ni estimulación de anti-CD3 (control de valores iniciales). El experimento se realizó por triplicado, las barras de error denotan datos de e.e.m. representativos de tres experimentos independientes
- Fig. 2 muestra la inmunohistoquímica de secciones tumorales fijadas con formalina obtenidas a partir de ratones singénicos C57/Bl6 5 semanas tras la exposición con 2x10⁴ células Gl261 IL-12Fc o Gl261 Fc y teñidas con anticuerpo contra F4/80, tinción de contraste de hematoxilina (ejemplos representativos, n=6 ratones

por grupo). La barra de escala indica 2 mm, la punta de la flecha indica el tumor residual Gl261 IL-12Fc (SEQ ID 02).

- Fig. 3 muestra la obtención de imágenes de bioluminiscencia no invasiva (BLI) de glioma de ratones en ratones C57/BI6 singénicos (n = 5-6 ratones por grupo) tras la implantación de 2x10⁴ células Gl261 que expresan de manera constitutiva luciferasa de *photinuspyralis* y que libera una proteína de fusión de IL-12 y el fragmento cristalizable de inmunoglobulina G3 de ratón (Gl261 IL-12Fc, (SEQ ID 02)) o solo Fc como control (Gl261 Fc). Panel superior: Cuantificación de crecimiento tumoral que se correlaciona con el flujo de fotones (f/s) en la región de interés (RDI) frente a los días tras la inyección de las células de glioma modificadas. Panel inferior: Análisis de supervivencia de Kaplan-Meier. Los datos son representativos de 2 experimentos independientes.
- Fig. 4 muestra la obtención de imágenes de bioluminiscencia no invasiva (BLI) de glioma de ratones en animales de TS y diferentes ratones mutantes (n = 5-7 ratones por grupo) tras la implantación de 2x10⁴ células Gl261 que expresan de manera constitutiva luciferasa de *photinuspyralis* y que libera una proteína de fusión de IL-12 y el fragmento cristalizable de inmunoglobulina G3 de ratón (Gl261 IL-12Fc, (SEQ ID 02)). Panel superior: Cuantificación del crecimiento tumoral mediante obtención de imágenes por BLI frente a los días tras la inyección de las células de glioma modificadas. Panel inferior: Análisis de supervivencia de Kaplan-Meier. A) se implantaron Gl261 IL-12Fc en ratones que carecen de linfocitos T y de linfocitos B (Rag1^{7/-}) o de células NK (II-5ra^{-/-}) o que carecen tanto de linfocitos T como de linfocitos B y de células NK y de células de tipo inductor de tejido linfoide (Rag2^{-/-} II2rg^{-/-}). B) se implantaron Gl261 IL-12Fc en ratones deficientes para el MHCII (Ia(b)^{-/-}) y el MHCI (β2m^{-/-}).(n=5-8 ratones/grupo), que carecen de linfocitos T CD4 o CD8 positivos, respectivamente. Los datos son representativos de 2 experimentos independientes.

- Fig. 5 muestra la formación de linfocitos T de memoria en animales de ts supervivientes que se han expuesto previamente a células 2x10⁴ Gl261 IL-12Fc (SEQ ID 02). Se muestran los ejemplos de bioluminiscencia emitida a partir de los cerebros de animales de ts supervivientes que se han vuelto a exponer a células Gl261 Fc en comparación con los animales de ts sin exposición previa (panel superior, días 1, 7 y 21 tas la reexposición). Además, se muestra la bioluminiscencia de los tumores en fotones por segundo (f/s) en la región de interés (RDI) frente a los días tras la inyección de las células de glioma modificadas (panel inferior). Se observó un rechazo rápido de los tumores de control en los animales de ts supervivientes. Mientras que la luminiscencia medida el día 1 sugirió una metástasis idéntica en los dos grupos, solo los ratones sin exposición previa presentaron una señal medible el día 7 en adelante, lo que sugiere una respuesta de memoria anti-glioma de eliminación rápida y eficaz ahora independiente de citocinas proinflamatorias expresadas ectópicamente(es decir, IL- 12Fc, (SEQ ID 02)).(n=4-6 ratones/grupo). Los datos son representativos de 2 experimentos independientes.
- Fig. 6 muestra la obtención de imágenes de bioluminiscencia no invasiva (BLI) de glioma de ratones en diferentes ratones mutantes (n = 4-8 ratones por grupo) tras la implantación de 2x10⁴ células Gl261 Fc que expresan de manera constitutiva luciferasa de *photinuspyralis* y que libera una proteína de fusión de IL-12 y el fragmento cristalizable de inmunoglobulina G3 de ratón (Gl261 IL-12Fc (SEQ ID 02)). A) animales de ts (círculos blancos) y *IFNy* (círculos negros) B) animales de ts (círculos blancos) y *Perforina* (círculos negros). Se muestra la cuantificación de crecimiento tumoral que se correlaciona con el flujo de fotones (f/s) en la región de interés (RDI) frente a los días tras la inyección de las células de glioma modificadas (panel superior). Panel inferior: Análisis de supervivencia de Kaplan-Meier. Los datos son representativos de 2 experimentos independientes.
- Fig. 7 muestra el crecimiento tumoral en ratones de ts inoculados con 2x10⁴ células Gl261 Fc. El tratamiento comenzó el día 21 (flechas). Se implantaron en los animales portadores de glioma las minibombas osmóticas que administran IL-12Fc (SEQ ID 02) (o PBS). Los animales recibieron inyecciones por vía i.p. de anticuerpos que bloquean αCTLA-4 o de PBS comenzando el día 22, seguido de inyecciones tal como se indica en la figura. Gráfico superior: cuantificación del flujo de protones en la RDI de animales de ts portadores de tumor que recibieron el tratamiento indicado. Gráfico inferior: análisis de supervivencia de Kaplan-Meier de los animales anteriores; PBS/PBS frente a IL-12Fc/αCTLA-4 p=0,0045, PBS/PBS frente a IL-12Fc/PBS p=0,3435, PBS/ αCTLA4 frente a IL-12Fc/αCTLA-4 p=0,0101; Test de Log-rank (Mantel-Cox). Datos representativos de tres experimentos independientes con 2-5 animales por grupo
- Fig. 8 muestra la inmunohistoquímica de secciones tumorales obtenidas de ratones singénicos C57/Bl6 tras la exposición a células Gl261 Fc el día 21 y tras la administración local de IL-12Fc (SEQ ID 02) en combinación con el bloqueo sistémico de CTLA-4 tal como se describe en el Ejemplo 5. Las secciones se tiñeron con hematoxilina y eosina. La barra de escala indica 2 mm.
- Fig. 9 muestra el crecimiento tumoral en ratones de ts inoculados con 2x10⁴ células Gl261 Fc. El tratamiento comenzó el día 21 (flechas). Se implantaron en los animales portadores de glioma las minibombas osmóticas que administran IL-12Fc (SEQ ID 02). Los animales recibieron inyecciones por vía i.p. de

anticuerpos que bloquean αPD-1 o anticuerpos de isotipo de control comenzando el día 22, seguido de inyecciones tal como se indica en la figura. Gráfico superior: cuantificación del flujo de protones en la RDI de animales de ts portadores de tumor que recibieron el tratamiento indicado. Gráfico inferior: análisis de supervivencia de Kaplan-Meier de los animales anteriores; PBS/isotipo frente a IL-12Fc/αPD-1 p=0,0064, Test de Log-rank (Mantel-Cox). Datos representativos de un experimento con 5-6 animales por grupo.

- Fig. 10 muestra el crecimiento en ratones de ts inoculados con células 50 B16-F10. El tratamiento comenzó el día 5 (flecha). Se implantaron en los animales portadores de glioma las minibombas osmóticas que administran IL-12Fc (SEQ ID 02). Los animales recibieron inyecciones por vía i.p. de anticuerpos que bloquean αCTLA-4 o de PBS comenzando el día 6, seguido de inyecciones tal como se indica en la figura. Análisis de supervivencia de Kaplan-Meier PBS/PBS frente a IL-12Fc/αCTLA-4 p=0,0028, Test de Logrank (Mantel-Cox). Datos representativos de un experimento con 6 animales por grupo.
- muestra la administración sistémica de IL-12 heterodimérica recombinante en combinación con el bloqueo Fig. 11 de CTLA4. Se invectaron 2x10⁴ células Gl261 Fc en el cuerpo estriado derecho de ratones de ts y se 15 siguió el tumor durante 90 días. Tratamiento sistémico: en el día 21 (flecha), los animales portadores de tumor se trataron inicialmente con 20 µg de IgG2b de ratón aCTLA-4 (9D9) (triángulos rellenos de gris claro, n=8), 200 ng de IL-12 heterodimérica recombinante (rIL-12) (triángulos rellenos de gris oscuro, n=9) o una combinación de ambos (triángulos rellenos de negro, n=9) por inyección intraperitoneal (i.p.). El grupo de control recibió solución salina tamponada con fosfato (PBS) (triángulos sin relleno, n=7). El 20 tratamiento se mantuvo con 100 μg de αCTLA-4 o 100 ng de rIL-12 o una combinación de ambos 3 veces / semana hasta el final del experimento. Gráfico superior: cuantificación del flujo de protones en la RDI de animales de ts portadores de tumor que recibieron el tratamiento indicado. Gráfico inferior: análisis de supervivencia de Kaplan-Meier de los animales anteriores; Se usó un test Log-rank (Mantel-Cox) para 25 calcular los p-valores indicados; datos agrupados de dos experimentos independientes.

Ejemplos

5

10

Métodos

30

35

40

45

50

55

Animales

Los ratones C57BL/6 se obtuvieron de Janvier; los ratones $b2m^{-/-}$, $la(b)^{-/-}$, $ll2rb2^{-/-}$, $Rag1^{-/-}$, $Rag2^{-/-}$ $ll2rg^{-/-}$, $Prf1^{-/-}$ e Ifng se obtuvieron de Jackson Laboratories. Los ratones II5ra se proporcionaron por S. Bulfone-Paus. Todos los animales se mantuvieron enjaulados en condiciones específicas libres de patógenos con un ciclo de 12 horas de luz/oscuridad y con comida y agua a voluntad. Todos los experimentos con animales se aprobaron por la oficina veterinaria cantonal de Suiza (16/2009).

Líneas de células tumorales de ratón

Las células de glioma de murino C57/BI6 (GI261) (generosamente proporcionadas por A. Fontana, Inmunología Experimental, Universidad de Zurich) se transfectaron con pGI3-ctrl (Promega) y pGK-Puro (generosamente proporcionadas por T. Buch, Universidad Técnica, Munich). Las construcciones linealizadas se electroporaron en una proporción de 10:1 usando un multiporador de eppendorf, después se seleccionaron con 0,8 μg/ml de puromicina (Sigma-Aldrich) para generar células GI261 estables para luciferasa. Se aisló un único clon mediante dilución limitante y se pasó *in vivo* mediante inoculación de tumor intracraneal, seguido por la disociación del tumor tras 4 semanas y la reselección en 0,8 μg/ml de puromicina. Posteriormente, Las células se electroporaron con pCEP4-mIgG3, pCEP4-mII-12mIgG3 (SEQ ID 09) y pCEP4-mII-23mIgG3 (SEQ ID 08) (Eisenring et al, 2010) y se seleccionó la carga con 0,8 μg/ml de puromicina y 0,23 mg/ml de higromicina (Sigma-Aldrich). La producción de citocina se detectó mediante ELISA (OptEIA II-12/23p40, BD Pharmingen) y rt-PCR (IgG3fw: ACACACAGCCTGGACGC (SEQ ID 03) IgG3rev: CATTTGAACTCCTTGCCCCT (SEQ ID 04)). las células GI261 y las líneas celulares derivadas se mantuvieron en medio Eagle modificado de Dulbecco (Gibco, Invitrogen) complementado con suero de ternera fetal al 10 % (FCS, del inglés *fetal calf serum*) en presencia de antibióticos de selección tal como se indica anteriormente a 37 °C y CO₂ al 10 %. Las células de melanoma murino B16-F10 se obtuvieron de ATCC.

Expresión y purificación de IL-12Fc

La IL-12Fc (SEQ ID 02) se expresó en células 293T tras la transfección mediada por fosfato de calcio de acuerdo con los protocolos estándar con 45 µg de ADN vectorial (pCEP4-mIL-12IgG3, SEQ ID 09)/placa de cultivo tisular de 15 cm. El sobrenadante se recolectó 3 días y 6 días tras la transfección, se hizo un filtrado estéril y se diluyó a 1:1 en PBS. La proteína se purificó usando un purificador (ÄktaPrime) sobre una columna de proteína G (1 ml, HiTrap, GE Healthcare) eluida con 0,1 M de glicina a pH 2 y se dializó toda la noche en PBS a pH 7,4. La concentración y la pureza de IL-12Fc (SEQ ID 02) se midió mediante ELISA (OptEIA II-12/23p40, BD Pharmingen) y SDS-PAGE seguido por tinción de plata e inmunotransferencia. La IL-12Fc se detectó con un anticuerpo anti-IL12p40 de ratón en rata (C17.8, BioExpress) y un anticuerpo anti-rata en cabra acoplado a HRP (Jackson). Se usó el mismo

procedimiento para la expresión de IL-12Fc humana (SEQ ID 01,07).

Caracterización de IL-12Fc humana

La concentración y la pureza de la IL-12Fc humana (SEQ ID 01) se midió mediante ELISA (IL-12 (p70) humana, Mabtech, n.º 2455-1H-6) y SDS-PAGE seguido por tinción de plata e inmunotransferencia. El marcador de IgG4 humana se detectó con un anticuerpo anti-IgG humana en cabra acoplado a HRP (n.º A0170, Sigma). Para la caracterización funcional de la IL-12Fc (SEQ ID 01), las PBMC, adquiridas de acuerdo con las directrices éticas de la Universidad de Zurich, se colocaron en placas a 100.000 células por pocillo en medio RPMI complementado con suero de ternera fetal (FCS) al 10 % en placas de 96 pocillos y se estimularon bien con IL-12 humana recombinante (Peprotech) o IL-12Fc humana (SEQ ID 01). Ambas citocinas se normalizaron entre sí de acuerdo con las concentraciones derivadas del ELISA de IL-12p70 humana (Mabtech, n.º 2455-1H-6). Las PBMC se estimularon en presencia de 1 μg/ml de un anticuerpo de IgG2a anti-CD3 humano en ratón (OKT3, Bio-X-cell). Tras dos días de cultivo en CO₂ al 5 % y a 37 °C, el sobrenadante se cultivó y se sometió a un ELISA de anti-IFN-γ humano (Mabtech, n.º 3420-1H-6).

Inoculación de glioma ortotópico

En resumen, los ratones de 6-10 semanas de edad se inyectaron por vía i.p. con Fluniximin (Biokema, 5 mg/kg de 20 peso corporal) antes de anestesiarlos con isoflurano al 3-5 % (Minrad) en una cámara de inducción. Se afeitaron sus cabezas con una maquinilla eléctrica. Tras montarlos en un marco estereotáctico (David Kopf instruments), se desinfectó el cuero cabelludo de los animales con solución de yodo al 10 % y se realizó una incisión en la piel a lo largo de la línea media. La anestesia en el marco estereotáctico se mantuvo al 3 % de isoflurano administrada a través de un adaptador nasal (David Kopf Instruments). Posteriormente, se montó una jeringa de extremo romo 25 (Hamilton, 75N, 26s/2"/2, 5µl) sobre una bomba de microinyección sobre el brazo manipulador y se colocó a 1,5 mm lateral y a 1 mm frontal del bregma. La aguja se bajó al orificio de la fresa perforado manualmente a una profundidad de 4 mm por debajo de la superficie de la duramadre y se retrajo 1 mm para formar un pequeño reservorio. Usando la bomba de microinyección (UMP-3, World Precision Instruments Inc.) se inyectaron 2x10⁴ células en un volumen de 2 µl a 1 µl/min. Tras dejar la aguja en el lugar durante 2 minutos, se retrajo a 1 mm/min. El orificio de la fresa se 30 cerró con cera para huesos (Aesculap, Braun) y la herida del cuero cabelludo se selló con adhesivo tisular (Indermil, Henkel).

Obtención de imágenes bioluminiscentes in vivo

Los ratones que portan el tumor se pesaron cuidadosamente, se anestesiaron con isoflurano (2-3 %) y se inyectaron con D-Luciferina (150 mg/kg de peso corporal, CaliperLifesciences). Los animales se transfirieron a la cámara oscura de un sistema de obtención de imágenes Xenogen IVIS 100 (CaliperLifesciences), la anestesia se mantuvo al 2 % de isoflurano a través de conos nasales. La luminiscencia se registró 10 minutos después de la inyección. Los datos se analizaron posteriormente usando el programa informático Living Image 2.5 (CaliperLifesciences). Una región circular de interés (RDI; 1,46cm Ø) se definió alrededor de la cabeza de los animales y el flujo de protones de esta región se leyó y se representó gráficamente.

Tratamiento de los gliomas establecidos

45 El d21 tras la implantación de las células de glioma, los animales que portan el tumor se distribuyeron de manera uniforme entre los grupos experimentales basándose en su flujo de fotones en RDI. Los animales con un flujo en la RDI de menos de 1x10⁵ f/s se consideraron como no aceptores y se excluyeron. 40-48 horas antes de la implantación (2 días antes del comienzo del tratamiento), las bombas osmóticas (Modelo 2004, 0,25 μl/h; Alzet) se rellenaron con IL-12Fc de murino (SEQ ID 02, 8,33 ng/µl en PBS) o solo PBS y se cebaron a 37 °C en PBS. 50 Inmediatamente antes de la cirugía, se inyectó a los ratones con Fluniximin por vía i.p. (Biokema, 5 mg/kg de peso corporal). Se anestesió a los ratones con isoflurano al 3-5 %, se desinfectó el cuerpo cabelludo y se realizó una incisión en la línea media. Se localizó el orificio de la fresa anterior de la invección de glioma, se retiró la cera para hueso y el periostio y se colocó la bomba en una bolsa de piel formada en la espalda del animal. La cánula de infusión se bajó a través del orificio de la fresa 3 mm hacia el centro putativo del tumor. La cánula se conectó a la 55 bomba (kit de infusión cerebral III 1-3 mm, Alzet) mediante un tubo de silicona y se mantuvo en su lugar con adhesivo de cianoacrilato. La piel se suturó con un hilo de nylon 4-0. Después de la cirugía, los ratones se trataron durante 3 días con Borgal al 0,1 % (v/v) (Intervet) en el agua que bebían. Las bombas se explantaron el día 49. Se inyectaron por vía i.p. cinco dosis de anticuerpos de IgG2b de ratón anti-CTLA-4 de ratón (clon 9D9, bio-X-cell; Peggs et al.; J Exp Med 206, 1717-1725 (2009)) o un volumen equivalente de PBS los días 22 (200 μg), 26 (100 μg), 60 29 (100 μg), 35 (100 μg) y 42 (100 μg).

Como alternativa, los animales recibieron IgG2a de rata anti-PD-1 de ratón (clon RMP1-14, bio-X-cell) o anticuerpos de control de isotipo IgG2a de rata (clon 2A3, bio-X-cell) para el experimento representado en la figura 9. Las pautas de dosificación y la vía de aplicación fue idéntica con el experimento representado en la figura 7. Para el tratamiento de tumores cerebrales derivados de B16-F10, se implantaron las bombas el día 5 tras la inyección, se inyectaron por vía i.p. anticuerpos IgG2b de ratón anti-CTLA-4 de ratón (clon 9D9, bio-X-cell; Peggs et al.; J Exp Med 206, 1717-

1725 (2009)) o un volumen equivalente de PBS en los días 6 (200 μg), 11 (100 μg), 13 (100 μg) y 19 (100 μg).

Análisis de supervivencia de los animales portadores de tumores

Los animales que portaban tumores se controlaron mediante BLI, se revisaron los síntomas neurológicos y se pesaron semanalmente hasta el día 21 tras la inoculación de glioma. Los animales de Gl261 Fc que presentaron un flujo en la RDI de menos de 1x10⁵ f/s en el día 21 se consideraron como no aceptores o aceptores lentos del tumor y se excluyeron del análisis de supervivencia (5-10 %). Desde el día 21 en adelante, los animales se revisaron diariamente. Los animales que presentaban síntomas tales como apatía, una postura encorvada grave y/o pérdida de peso de más del 20 % del peso máximo se sacrificaron. Los ratones que portaban el tumor B16-F10 se puntuaron diariamente comenzando desde el día 5 hasta el final del experimento de acuerdo con el mismo esquema.

Histología

Para la histología, los animales se sacrificaron con CO₂, se perfundieron por vía transcardíaca con PBS enfriado en hielo y se decapitaron. Se aislaron cuidadosamente los cerebros completos, se fijaron en formalina al 4 %, se embebieron en parafina y se generaron secciones de 3 µm para la tinción de HE y/o inmunohistoquímica para detectar F4/80 (BM8; BMA biomedicals). Los anticuerpos primarios se detectaron con anticuerpos secundarios acoplados con peroxidasa de rábano picante. La tinción se visualizó con 3,3'-Diaminobenzidina (DAB) como sustrato de HRP. Las imágenes se generaron usando un microscopio de luz Olympus BX41 equipado con una cámara Olympus ColorViewIllu y un programa informático de adquisición de imágenes Olympus cell^B. Las vistas generales de las secciones de cerebros completos se recortaron usando Adobe Photoshop CS3.

Análisis estadístico

25

30

65

Para el análisis estadístico de las curvas de supervivencia de Kaplan-Meier, se usó un test Log-rank (Mantel-Cox) para calcular los p-valores indicados en las respectivas figuras. Los p-valores de menos de 0,05 se consideraron estadísticamente significativos. El análisis se realizó con GraphPad Prism versión 5.0a para Mac OSX (GraphPad Software Inc).

Ejemplo 1: La expresión intratumoral de IL-12Fc promueve la eliminación de los gliomas experimentales

Los presentes inventores han diseñado y clonado una proteína de fusión que consiste en la subunidad p40 de la IL-12 humana unida mediante un enlazador peptídico flexible a la subunidad p35. Esta construcción de cadena simple se fusionó entonces a la región constante de la cadena pesada de la IgG4. (Fig. 1A). Los presentes inventores 35 denominaron esta proteína de fusión de cadena simple humana IL-12Fc (SEQ ID 01). Los presentes inventores expresaron esta proteína en células embrionarias de riñón humano HEK293 y detectaron una forma dímera así como una forma monómera en condiciones naturales. En condiciones reductoras solo se detectó la forma monómera (Fig. 1B). La IL-12Fc (SEQ ID 01) tiene propiedades funcionales similares a la IL-12 heterodímera comercialmente disponible (obtenido de Peprotech). Para determinar si la IL-12Fc (SEQ ID 01) podría ser adecuada para superar el entorno inmunosupresor local inducido por gliomas y para arrojar luz sobre los mecanismos efectores implicados, los inventores expresaron una versión de murino (Belladonna et al. J Immunol 168, 5448-5454 (2002), IL-12Fc (SEQ ID 02)) de esta citocina en células Gl261 de glioma de ratón. Para medir el crecimiento tumoral intracraneal de manera no invasiva mediante obtención de imágenes de bioluminiscencia (BLI, del inglés bioluminiscence imaging), los presentes inventores generaron en primer lugar una línea de Gl261 que expresa de manera constitutiva luciferasa de 45 Photinus pyralis. Los presentes inventores denominaron a esta línea celular Gl261-luc. A continuación, los presentes inventores modificaron esta línea celular para liberar de manera continua una proteína de fusión de IL-12 y el fragmento cristalizable de inmunoglobulina G3 de ratón (IL-12Fc; SEQ ID 02, 09) o Fc (SEQ ID 08) solo como un control (denominados 'Gl261 IL-12Fc' y 'Gl261 Fc', respectivamente). La secuencia de proteína de murino elegida de 50 la construcción de fusión es homóloga a la variante humana (SEQ ID 01) y consiste en las subunidades p40 y p35 de la IL-12 que están conectadas a través de un enlazador (G4S)₃ y las subunidades CH2, CH3 y los seis últimos aminoácidos de CH1 de IgG3, mientras que CH1 y CH2 están conectadas por una región bisagra. Los vectores para la expresión del fragmento de control y la construcción de fusión de IL-12 se representan en la SEQ ID 08 y 09, respectivamente. La intención de usar proteínas de fusión en lugar de la citocina recombinante fue ver si 55 presentarían una farmacocinética meiorada. Los presentes inventores confirmaron la secreción de IL-12Fc (SEQ ID 02) mediante ELISA para las subunidades p40 y p70. Los presentes inventores confirmaron adicionalmente la expresión de la cola Fc mediante RT-PCR. Cuando se implantó por vía intracraneal en el cuerpo estriado derecho, las lecturas de bioluminiscencia y el volumen tumoral tal como se evalúan mediante métodos estereológicos presentaron una fuerte correlación (datos no mostrados). 60

A continuación, los presentes inventores implantaron GI261 IL-12Fc y Fc en el cuerpo estriado derecho de ratones C57Bl/6 y tras el crecimiento tumoral a través de obtención no invasiva de imágenes por bioluminiscencia (BLI). Tras un aumento inicial en la luminiscencia, todos los grupos presentaron una bajada alrededor del día 14 tras la inyección. Los animales que portan tumores que expresan Fc presentaron un fuerte aumento en BLI y pronto alcanzaron los criterios de exclusión, a veces incluso antes del día 35 tras la inyección. En contraste, las lecturas de BLI para animales que se habían inyectado con tumores de GI261 que expresa IL-12Fc cayeron a niveles cerca del

límite de detección en el día 21 en adelante (datos no mostrados). De acuerdo con esta observación, los presentes inventores solo pudieron detectar un tumor residual en algunos animales en este grupo, mientras que los animales inyectados con Fc de control presentaron una fuerte formación de tumor cuando se analizaron histológicamente (Fig. 2). Cuando los presentes inventores siguieron animales a los que habían implantado células Gl261 IL-12Fc o Gl261 Fc durante hasta 90 días, los presentes inventores observaron rechazo del tumor en una alta proporción de ratones que llevan tumores que secretan IL-12Fc tras un establecimiento inicial (Fig. 3).

Ejemplo 2: Los linfocitos T son el tipo principal de células efectoras del rechazo de glioma mediado por IL-12Fc.

10

15

20

25

30

40

45

50

55

60

Para confirmar que la secreción de IL-12Fc por Gl261 IL-12Fc actúa sobre el hospedador en lugar de en las propias células tumorales, los presentes inventores observaron que el crecimiento de GI261 IL-12Fc y GI261 Fc es el mismo en ratones que carecen del receptor para IL-12. El crecimiento desenfrenado de Gl261 IL-12 en animales IL-12rβ2° demuestra que IL-12Fc actúa específicamente sobre un tipo celular en el ratón receptor (datos no mostrados). Los linfocitos T y las células NK están entre los leucocitos más sensibles a IL-12. Para ensayar de manera sistemática la relevancia funcional del influjo mediado por IL-12Fc de estas células, los presentes inventores expusieron a una serie de ratones mutantes a GI261 IL-12Fc intracraneal. Los presentes inventores implantaron células GI261 IL-12Fc en ratones que carecen de linfocitos T y de linfocitos B (Rag1-/-) o de células NK convencionales (II-15ra-/-) o en ratones que carecen tanto de linfocitos T como de linfocitos B, de células NK y de células de tipo inductor de tejido linfoide (Rag2 / I/2rg /) (Fig. 4A). Tras una fase de retraso inicial hasta el día 14 tras la inyección, todos los grupos presentaron un fuerte aumento en luminiscencia hasta el día 28, reflejando un fuerte crecimiento tumoral. Entre los días 28 y 42, la mayoría de los animales sucumbieron a los tumores. Solo los ratones de ts y II-15ra-/- fueron capaces de controlar el tumor y presentaron una supervivencia prolongada en comparación con los animales Rag2^{-/} Il/2rg^{-/-} y Rag1^{-/-}. Aunque los linfocitos T o los linfocitos B parecieron ser cruciales para el rechazo de glioma mediado por IL-12Fc, la capacidad de los ratones *II-15ra* para rechazar Gl261 IL-12 indica que las células NK eran en gran medida prescindibles.

A continuación, los presentes inventores investigaron la contribución de los linfocitos T CD4 y CD8 positivos usando ratones deficientes en el MHCII $(Ia(b)^{\gamma})$ y en el MHCI $(\beta 2m^{\gamma})$. Al contrario que los ratones de ts, los ratones $Ia(b)^{\gamma}$ que carecen de linfocitos T CD4 no pudieron controlar los tumores GI261 IL-12Fc, y los ratones $\beta 2m^{\gamma}$ sucumbieron al glioma poco después (Fig.4B). La supervivencia en ambos grupos mutantes se acortó en comparación con el grupo de tipo silvestre. Estos datos demuestran claramente que el rechazo del tumor mediado por IL-12Fc depende de la actividad de los linfocitos T, incluyendo los linfocitos T colaboradores y los CTL.

35 Ejemplo 3: La respuesta de memoria antitumoral es independiente de IL-12Fc expresado ectópicamente.

Para investigar adicionalmente el carácter del control tumoral dependiente de linfocitos T, los presentes inventores probaron a los animales de ts supervivientes que se habían expuesto previamente a células Gl261 IL-12Fc para la formación de linfocitos T de memoria (Fig. 5). Los animales se trataron tal como se describe en la Fig. 3 / ejemplo 1. Al contrario de la exposición primaria, los presentes inventores inyectaron en este caso células Gl261 Fc en el hemisferio contralateral de los animales de supervivientes o de los ts sin exposición previa. Los presentes inventores observaron un rechazo rápido de los tumores de control en días. Mientras que la luminiscencia medida el día 1 sugirió una metástasis idéntica en los dos grupos, solo los ratones sin exposición previa presentaron una señal medible el día 7 en adelante, lo que sugiere una respuesta de memoria anti-glioma de eliminación rápida y eficaz ahora independiente de citocinas proinflamatorias expresadas ectópicamente.

Ejemplo 4: Los CTL son las principales células efectoras del rechazo de glioma mediado por IL-12Fc.

Está bien establecido que la IL-12 polariza los linfocitos T sin exposición previa para adoptar un fenotipo de T_H1 (Trinchieri, Nat Rev Immunol 3, 133-146 (2003)). Para arrojar más luz a los fundamentos mecánicos que subyacen al rechazo inducido por IL-12 de glioma experimental, los presentes inventores expusieron ratones deficientes en la citocina IFN-γ distintiva de TH₁ (*Ifing*^{-/-}) con células Gl261 que expresan IL-12Fc (Fig. 6A). Los animales se trataron tal como se describe en la Fig. 3/ Ejemplo 1. Para su sorpresa, los presentes inventores observaron un rechazo tumoral similar al de animales de ts, lo que sugiere que el mecanismo de rechazo es independiente de IFN-γ. Por el contrario, IL-12 también estimula la actividad citotóxica de los CTL. Cuando los presentes inventores analizaron el papel de la perforina, una molécula citolítica expresada principalmente en los CTL CD8⁺ y en células NK, los presentes inventores observaron una clara diferencia en las curvas de supervivencia. (Fig. 6B). La perforina es una molécula citolítica que se expresa principalmente por los CTL CD8⁺ y por las células NK, pero también por los linfocitos T CD4⁺. Para investigar adicionalmente el mecanismo de rechazo de glioma inducido por IL-12Fc, se expusieron ratones deficientes en perforina (*prfr1*^{-/-}) con células Gl261 que expresan IL-12Fc. Al contrario de *Ifing*^{-/-}, los animales deficientes en perforina (*prfr1*^{-/-}) no fueron capaces de controlar el tumor. Esto sostiene la noción de que los CTL son las principales células efectoras del rechazo de glioma mediado por IL-12Fc. Se observó una clara diferencia en las curvas de supervivencia del ts y de prf1-^{/-}.

Ejemplo 5: La administración local de IL-12Fc en combinación con el bloqueo sistémico de CTLA-4 es eficaz contra los gliomas experimentales de etapa avanzada.

Para reforzar adicionalmente y prolongar el fenotipo activado de los linfocitos T, los presentes inventores bloquearon la molécula coinhibidora CTLA-4 mediante anticuerpos neutralizantes en el siguiente conjunto de experimentos. La IL-12 se administró localmente a ratones con tumores en etapas avanzadas. Se administró el tratamiento a animales que se habían expuesto a GI261 Fc 21 días antes y que ya presentaban fuertes señales de bioluminiscencia, lo que indica una etapa avanzada de crecimiento de glioma. Tratamiento local: En el día 21, se implantaron en los animales portadores de glioma las minibombas osmóticas que administran 50 ng de IL-12Fc/día (o PBS). Tras 28 días (día 49 10 tras la inyección tumoral) se explantaron las bombas vacías de los animales que sobrevivieron. Tratamiento sistémico: En el día 22, los animales portadores de tumor recibieron por vía i.p. 200 µg de IgG2b de ratón αCTLA-4 (9D9) o PBS. El tratamiento se mantuvo con 100 μg de αCTLA-4 los días 26, 29, 35 y 42 (Fig. 7). Ni IL-12Fc ni el anti-CTLA-4 solos confirieron ninguna ventaja significativa en la supervivencia. Increíblemente, la combinación de la administración local de IL-12Fc directamente en el sitio del tumor en combinación con el bloqueo sistémico de CTLA-15 4 llevó a una remisión completa del tumor (Fig. 8). 90 días tras la inoculación, la evaluación histológica del tejido cerebral de los animales que sobrevivieron no mostró ningún signo de desmielinización o infiltrados. La administración local de IL-12Fc en combinación con el bloqueo sistémico de PD-1 también llevó a un aumento significativo en los animales que sobrevivieron, la frecuencia, sin embargo, fue menor que con el bloqueo sistémico de CTLA-4 (Fig. 9). La terapia de combinación descrita anteriormente (Fig. 7) confiere una ventaja significativa en la supervivencia incluso en el caso de crecimiento intracraneal de células de melanoma murino singénico B16-F10 (Fig. 10). Este no es un modelo perfecto para tumores cerebrales secundarios dado que se salta diversas etapas de formación de metástasis. Incluso en esta situación más agresiva, el tratamiento de combinación prolonga la supervivencia.

El tratamiento preventivo de tumores en modelos preclínicos puede permitir el estudio de mecanismos inmunológicos y las interacciones entre células tumorales y el microentorno del tumor. Sin embargo, la terapia preventiva es de relevancia clínica limitada en la traducción para tratar pacientes con cáncer. Por lo tanto, los presentes inventores decidieron elegir un punto temporal excepcionalmente tardío para la intervención en un modelo de enfermedad progresiva y agresiva. Para imitar de cerca una situación clínica, los presentes inventores permitieron que el tumor progresase hasta un tamaño que es altamente probable que cause síntomas neurológicos en seres humanos. En el presente caso, la monoterapia con IL-12 aplicada localmente (intratumoral) tuvo un efecto de supervivencia mínimo aunque significativo. Los presentes inventores ya observaron un efecto sinérgico débil cuando combinaron el tratamiento sistémico de IL-12 con el bloqueo sistémico de CTLA-4. Cuando la infusión local de IL-12 se combinó con el bloqueo sistémico de CTLA-4, el efecto anti-glioma fue sorprendente.

LISTADO DE SECUENCIAS

<110> Universitaet Zuerich

40 <120> Medicamento de combinación que comprende IL-12 y un agente para el bloqueo de moléculas inhibidoras de linfocitos T para terapia tumoral

<130> uz117wo

45 <160>9

35

50

<170> PatentIn versión 3.5

<210>1

<211>775

<212> PRT

<213> artificial

<220>

55 <223> fusión entre la IL-12 humana e IgG4 Fc

<400> 1

Met 1	Cys	His	Gln	Gln 5	Leu	Val	Ile	Ser	Trp 10	Phe	Ser	Leu	Val	Phe 15	Leu
Ala	Ser	Pro	Leu 20	Val	Ala	Ile	Trp	Glu 25	Leu	Lys	Lys	Asp	Val 30	Tyr	Val
Val	Glu	Leu 35	Asp	Trp	Tyr	Pro	Asp 40	Ala	Pro	Gly	Glu	Met 45	Val	Val	Leu
Thr	Суs 50	Asp	Thr	Pro	Glu	G1u 55	Asp	Gly	Ile	Thr	Trp 60	Thr	Leu	Asp	Gln
Ser 65	Ser	Glu	Val	Leu	Gly 70	Ser	Gly	Lys	Thr	Leu 75	Thr	Ile	Gln	Val	Lys 80
Glu	Phe	Gly	Asp	Ala 85	Gly	Gln	Tyr	Thr	Cys 90	His	Lys	Gly	Gly	Glu 95	Val
Leu	Ser	His	Ser 100	Leu	Leu	Leu	Leu	His 105	Lys	Lys	Glu	Asp	Gly 110	Ile	Trp
Ser	Thr	Asp 115	Ile	Leu	Lys	Asp	Gln 120	Lys	Glu	Pro	Lys	Asn 125	Lys	Thr	Phe
Leu	Arg 130	Cys	Glu	Ala	Lys	Asn 135	Tyr	Ser	Gly	Arg	Phe 140	Thr	Cys	Trp	Trp
Leu 145	Thr	Thr	Ile	Ser	Thr 150	Asp	Leu	Thr	Phe	Ser 155	Val	Lys	Ser	Ser	Arg 160

Gly	Ser	Ser	Asp	Pro 165	Gln	Gly	Val	Thr	Cys 170	Gly	Ala	Ala	Thr	Leu 175	Ser
Ala	Glu	Arg	Val 180	Arg	Gly	Asp	Asn	Lys 185	Glu	Tyr	Glu	Tyr	Ser 190	Val	Glu
Cys	Gln	Glu 195	Asp	Ser	Ala	Cys	Pro 200	Ala	Ala	Glu	Glu	Ser 205	Leu	Pro	Ile
Glu	Val 210	Met	Val	Asp	Ala	Val 215	His	Lys	Leu	Lys	Tyr 220	Glu	Asn	Tyr	Thr
Ser 225	Ser	Phe	Phe	Ile	Arg 230	Asp	Ile	Ile	Lys	Pro 235	Asp	Pro	Pro	Lys	A sn 240
Leu	Gln	Leu	Lys	Pro 245	Leu	Lys	Asn	Ser	Arg 250	Gln	Val	Glu	Val	Ser 255	Trp
Glu	Tyr	Pro	Asp 260	Thr	Trp	Ser	Thr	Pro 265	His	Ser	Tyr	Phe	Ser 270	Leu	Thr
Phe	Суѕ	Val 275	Gln	Val	Gln	Gly	Lys 280	Ser	Lys	Arg	Glu	Lys 285	Lys	Asp	Arg
Val	Phe 290	Thr	Asp	Lys	Thr	Ser 295	Ala	Thr	Val	Ile	Cys 300	Arg	Lys	Asn	Ala
Ser 305	Ile	Ser	Val	Arg	Ala 310	Gln	Asp	Arg	Tyr	Tyr 315	Ser	Ser	Ser	Trp	Ser 320
Glu	Trp	Ala	Ser	Val 325	Pro	Cys	Ser	Gly	G1y 330	Gly	Gly	Ser	Gly	G1y 335	Gly
			340					345					350	Pro	
	_	355			-		360					365		Arg	
	370					375		-			380			Tyr	
385					390				_	395		-	_	Lys	400
Ser	Thr	Val	Glu	Ala 405	Cys	Leu	Pro	Leu	Glu 410	Leu	Thr	Lys	Asn	Glu 415	Ser

Сув	Leu	Asn	Ser 420	Arg	Glu	Thr	Ser	Phe 425	Ile	Thr	Asn	Gly	Ser 430	Сув	Leu
Ala	Ser	Arg 435	Lys	Thr	Ser	Phe	Met 440	Met	Ala	Leu	Cys	Leu 445	Ser	Ser	Ile
Tyr	Glu 450	Asp	Leu	Lys	Met	Tyr 4 55	Gln	Val	Glu	Phe	Lys 460	Thr	Met	Asn	Ala
Lys 465	Leu	Leu	Met	Asp	Pro 470	Lys	Arg	Gln	Ile	Phe 475	Leu	Asp	Gln	Asn	Met 480
Leu	Ala	Val	Ile	Asp 485	Glu	Leu	Met	Gln	Ala 490	Leu	Asn	Phe	Aşn	Ser 495	Glu
Thr	Val	Pro	Gln 500	Lys	Ser	Ser	Leu	Glu 505	Glu	Pro	Asp	Phe	Tyr 510	Lys	Thr
Lys	Ile	Lys 515	Leu	Сув	Ile	Leu	Leu 520	His	Ala	Phe	Arg	Ile 525	Arg	Ala	Val
Thr	Ile 530	Asp	Arg	Val	Met	Ser 535	Tyr	Leu	Asn	Ala	Ser 540	Lys	Val	Asp	Lys
Arg 545	Val	Glu	Ser	Lys	Tyr 550	Gly	Pro	Pro	Cys	Pro 555	Ser	Cys	Pro	Ala	Pro 560
Glu	Phe	Leu	Gly	Gly 565	Pro	Ser	Val	Phe	Leu 570	Phe	Pro	Pro	Lys	Pro 575	Lys
Asp	Thr	Leu	Met 580	Ile	Ser	Arg	Thr	Pro 585	Glu	Val	Thr	Cys	V al 590	Val	Val
Asp	Val	Ser 595	Gln	Glu	Asp	Pro	Glu 600	Val	Gln	Phe	Asn	Trp 605	Tyr	Val	Asp
Gly	Val 610	Glu	Val	His	Asn	Ala 615	Lys	Thr	Lys	Pro	A rg 620	Glu	Glu	Gln	Phe
Asn 625	Ser	Thr	Tyr	Arg	Val 630	Val	Ser	Val	Leu	Thr 635	Val	Leu	His	Gln	Asp 640
Trp	Leu	Asn	Gly	Lys 645	Glu	Tyr	Lys	Cys	Lys 650	Val	Ser	Aşn	Lys	Gly 655	Leu
Pro	Ser	Ser	Ile 660	Glu	Lys	Thr	Ile	Ser 665	Lys	Ala	Lys	Gly	Gln 670	Pro	Arg

	Glu	Pro	Gln 675	Val	Tyr	Thr	Leu	Pro 680	Pro	Ser	Pro	Glu	Glu 685	Met	Thr	Lys
	Asn	G1n 690	Val	Ser	Leu	Thr	Cys 695	Leu	Val	Lys	Gly	Phe 700	Tyr	Pro	Ser	Asp
	Ile 705	Ala	Val	Glu	Trp	Glu 710	Ser	Asn	Gly	Gln	Pro 715	Glu	Asn	Asn	Tyr	Lys 720
	Thr	Thr	Pro	Pro	Val 725	Leu	Asp	Ser	Asp	Gly 730	Ser	Phe	Phe	Leu	Tyr 735	Ser
	Arg	Leu	Thr	Val 740	Asp	Lys	Ser	Arg	Trp 745	Gln	Glu	Gly	Asn	Val 750	Phe	Ser
	Cys	Ser	Val 755	Met	His	Glu	Ala	Leu 760	His	Asn	His	Tyr	Thr 765	Gln	Lys	Ser
	Leu	Ser 770	Leu	Ser	Leu	Gly	Lys 775									
<210: <211: <212: <213:	>781 > PRT		artific	ial												
<220 <223		trucci	ón de	fusión	de IL-	·12 lg0	33 Fc	de mu	ırino							
<400>	> 2															
	Met 1	Суѕ	Pro	Gln	Lys 5	Leu	Thr	Ile	Ser	Trp 10	Phe	. Ala	. Ile	Val	Leu 15	Leu
	Val	Ser	Pro	Leu 20	Met	Ala	Met	Trp	Glu 25	Leu	ı Glu	Lys	Asp	Val 30	Tyr	Val
	Val	Glu	Val 35	Asp	Trp	Thr	Pro	Asp 40	Ala	Pro	Gly	Glu	Thr 45	Val	Asn	Leu
	Thr	Cys 50	Asp	Thr	Pro	Glu	Glu 55	Asp	Asp	Ile	Thr	Trp 60	Thr	Ser	Asp	Gln
	Arg 65	His	Gly	Val	Ile	Gly 70	Ser	Gly	Lys	Thr	: Leu 75	Thr	Ile	Thr	Val	Lys 80
	Glu	Phe	Leu	Asp	Ala 85	Gly	Gln	Tyr	Thr	Cys	His	Lys	Gly	Gly	Glu 95	Thr

Leu	Ser	His	Ser 100	His	Leu	Leu	Leu	His 105	Lys	Lys	Glu	Asn	Gly 110	Ile	Trp
Ser	Thr	Glu 115	Ile	Leu	Lys	Asn	Phe 120	Lys	Asn	Lys	Thr	Phe 125	Leu	Lys	Сув
Glu	Ala 130	Pro	Asn	Tyr	Ser	Gly 135	Arg	Phe	Thr	Сув	Ser 140	Trp	Leu	Val	Gln
Arg 145	Asn	Met	Asp	Leu	Lys 150	Phe	Asn	Ile	Lys	Ser 155	Ser	Ser	Ser	Ser	Pro 160
Asp	Ser	Arg	Ala	Val 165	Thr	Cys	Gly	Met	Ala 170	Ser	Leu	Ser	Ala	Glu 175	Lys
Val	Thr	Leu	Asp 180	Gln	Arg	Asp	Tyr	Glu 185	Lys	Tyr	Ser	Val	Ser 190	Cys	Gln
Glu	Asp	Val 195	Thr	Cys	Pro	Thr	Ala 200	Glu	Glu	Thr	Leu	Pro 205	Ile	Glu	Leu
Ala	Leu 210	Glu	Ala	Arg	Gln	Gln 215	Asn	Lys	Tyr	Glu	Asn 220	Tyr	Ser	Thr	Ser
Phe 225	Phe	Ile	Arg	Asp	Ile 230	Ile	Lys	Pro	Asp	Pro 235	Pro	Lys	Asn	Leu	G1n 240
Met	Lys	Pro	Leu	Lys 245	Asn	Ser	Gln	Val	Glu 250	Val	Ser	Trp	Glu	Tyr 255	Pro
Asp	Ser	Trp	Ser 260	Thr	Pro	His	Ser	Tyr 265	Phe	Ser	Leu	Lys	Phe 270	Phę	Val
Arg	Ile	G1n 275	Arg	Lys	Lys	Glu	Lys 280	Met	Lys	Glu	Thr	Glu 285	Glu	Gly	Cys
Asn	Gln 290	Lys	Gly	Ala	Phe	Leu 295	Val	Glu	Lys	Thr	Ser 300	Thr	Glu	Val	Gln
C ys 305	Lys	Gly	Gly	Asn	Val 310	Cys	Val	Gln	Ala	Gln 315	Asp	Arg	Tyr	Tyr	Asn 320
Ser	Ser	Cys	Ser	Lys 325	Trp	Ala	Суз	Val	Pro 330	Сув	Arg	Val	Arg	Ser 335	Gly
Gly	Gly	Gly	Ser 340	Gly	Gly	Gly	Gly	Ser 345	Gly	Gly	Gly	Gly	Ser 350	Arg	Val

Ile	Pro	Val 355	Ser	Gly	Pro	Ala	A rg 360	Cys	Leu	Ser	Gln	Ser 365	Arg	Asn	Leu
Leu	Lys 370	Thr	Thr	Asp	Asp	Met 375	Val	Lys	Thr	Ala	A rg 380	Glu	Lys	Leu	Lys
His 385	Tyr	Ser	Cys	Thr	Ala 390	Glu	Asp	Ile	Asp	His 395	Glu	Asp	Ile	Thr	Arg 400
Asp	Gln	Thr	Ser	Thr 405	Leu	Lys	Thr	Cys	Leu 410	Pro	Leu	Glu	Leu	His 415	Lys
Asn	Glu	Ser	Cys 420	Leu	Ala	Thr	Arg	Glu 425	Thr	Ser	Ser	Thr	Thr 430	Arg	Gly
Ser	Сув	Leu 435	Pro	Pro	Gln	Lys	Thr 440	Ser	Leu	Met	Met	Thr 445	Leu	Cys	Leu
Gly	Ser 450	Ile	Tyr	Glu	Asp	Leu 455	Lys	Met	Tyr	Gln	Thr 460	Glu	Phe	Gln	Ala
Ile 465	Asn	Ala	Ala	Leu	Gln 470	Asn	His	Asn	His	Gln 4 75	Gln	Ile	Ile	Leu	Asp 480
Lys	Gly	Met	Leu	Val 485	Ala	Ile	Asp	Glu	Leu 490	Met	Gln	Ser	Leu	As n 495	His
Asn	Gly	Glu	Thr 500	Leu	Arg	Gln	Lys	Pro 505	Pro	Val	Gly	Glu	Ala 510	Asp	Pro
Tyr	Arg	Val 515	Lys	Met	Lys	Leu	Cys 520	Ile	Leu	Leu	His	Ala 525	Phe	Ser	Thr
Arg	Val 530	Val	Thr	Ile	Asn	A rg 535	Val	Met	Gly	Tyr	Leu 540	Ser	Ser	Ala	Leu
Ile 545	Lys	Arg	Ile	Glu	Pro 550	Arg	Ile	Pro	Lys	Pro 555	Ser	Thr	Pro	Pro	Gly 560
Ser	Ser	Cys	Pro	Pro 565	Gly	Asn	Ile	Leu	Gly 570	Gly	Pro	Ser	Val	Phe 575	Ile
Phe	Pro	Pro	Lys 580	Pro	Lys	Asp	Ala	Leu 585	Met	Ile	Ser	Leu	Thr 590	Pro	Lys
Val	Thr	Cys	Val	Val	Val	Asp	Val	Ser	Glu	Asp	Asp	Pro	Asp	Val	His

			595					600					605			
Va		Ser 610	Trp	Phe	Val	Asp	Aşn 615	Lys	Glu	Val	His	Thr 620	Ala	Trp	Thr	Gln
Pr 62		Arg	Gl u	Ala	Gl n	Tyr 630	Asn	Ser	Thr	Phe	Arg 635	Val	Val	Ser	Ala	Leu 640
Pr	ю 1	Ile	Gl n	His	Gln 645	Asp	Trp	Met	Arg	Gly 650	Lys	Gl u	Phe	Lys	Cys 655	Lys
Va	1 2	Asn	Asn	Lys 660	Ala	Leu	Pro	Ala	Pro 665	Ile	Glu	Arg	Thr	Ile 670	Ser	Lys
Pr	ю 1	Lys	Gly 675	Arg	Ala	Gln	Thr	Pro 680	Gln	Val	Tyr	Thr	Ile 685	Pro	Pro	Pro
Ar		31 u 690	Gl n	Met	Ser	Lys	Lys 695	Lys	Val	Ser	Leu	Thr 700	Cys	Leu	Val	Thr
As 70		?he	Phe	Ser	Glu	Ala 710	Ile	Ser	Val	Glu	Trp 715	Glu	Arg	Asn	Gly	Glu 720
Le	u (31u	Gln	Asp	Tyr 725	Lys	Asn	Thr	Pro	Pro 730	Ile	Leu	Asp	Ser	Asp 735	Gly
Th	ır 1	Tyr	Phe	L eu 740	Tyr	Ser	Lys	Leu	Thr 745	Val	Asp	Thr	Asp	Ser 750	Trp	Leu
G1	n (31y	Glu 755	Ile	Phę	Thr	Cys		Val				Ala 765	Leu	His	Asn
Hi		His 770	Thr	Gl n	Lys	Asn	Leu 775	Ser	Arg	Ser	Pro	Gly 780	Lys			
<210>3 <211>17 <212> AI <213> ar		al														
<220> <223> ce	bad	lor de	PCR													
<400> 3 acacacag	gcc t	iggac	gc	1	7											
<210>4 <211>20 <212> AI																

	<213>	artificia	al														
_	<220> <223>	cebad	or de l	PCR													
5	<400> catttgaa	-	tgcccc	rt	20												
10	<210>5 <211>2 <212>	219	213>	homo	sapier	าร											
	<400>	5															
		Met 1	Cys	Pro	Ala	Arg 5	Ser	Leu	Leu	Leu	Val 10	Ala	Thr	Leu	Val	Leu 15	Leu
		Asp	His	Leu	Ser 20	Leu	Ala	Arg	Asn	Leu 25	Pro	Val	Ala	Thr	Pro 30	Asp	Pro
		Gly	Met	Phe 35	Pro	Сув	Leu	His	His 40	Ser	Gln	Asn	Leu	Leu 45	Arg	Ala	Val
		Ser	Asn 50	Met	Leu	Gln	Lys	Ala 55	Arg	Gln	Thr	Leu	Glu 60	Phe	Туг	Pro	Cys
		Thr 65	Ser	Glu	Glu	Ile	Asp 70	His	Glu	Asp	Ile	Thr 75	Lys	Asp	Lys	Thr	Ser 80
		Thr	Val	Glu	Ala	Cys 85	Leu	Pro	Leu	Glu	Leu 90	Thr	Lys	Asn	Glu	Ser 95	Сув
		Leu	Asn	Ser	Arg 100	Glu	Thr	Ser	Phe	Ile 105	Thr	Asn	Gly	Ser	Cys 110	Leu	Ala
		Ser	Arg	Lys 115	Thr	Ser	Phe	Met	Met 120	Ala	Leu	Cys	Leu	Ser 125	Ser	Ile	Tyr
		Glu	Asp 130	Leu	Lys	Met	Tyr	Gln 135	Val	Glu	Phe	Lys	Thr 140	Met	Asn	Ala	Lys

Leu Leu Met Asp Pro Lys Arg Gln Ile Phe Leu Asp Gln Asn Met Leu 145 150 155 160

Ala Val Ile Asp Glu Leu Met Gln Ala Leu Asn Phe Asn Ser Glu Thr 165 170 175

Val Pro Gln Lys Ser Ser Leu Glu Glu Pro Asp Phe Tyr Lys Thr Lys 180 185 190

Ile Lys Leu Cys Ile Leu Leu His Ala Phe Arg Ile Arg Ala Val Thr 195 200 205

Ile Asp Arg Val Met Ser Tyr Leu Asn Ala Ser 210 215

<210>6
 <211>328
5 <212> PRT
 <213> homo sapiens

<400>6

Met 1	Cys	HIS	GIN	5	ren	vaı	116	ser	10	Pne	ser	Leu	vaı	15	ren
Ala	Ser	Pro	Leu 20	Val	Ala	Ile	Trp	Glu 25	Leu	Lys	Lys	Asp	Val 30	Tyr	Val
Val	Glu	Leu 35	Asp	Trp	Tyr	Pro	Asp 40	Ala	Pro	Gly	Glu	Met 45	Val	Val	Leu
Thr	Cys 50	Asp	Thr	Pro	Glu	Glu 55	Asp	Gly	Ile	Thr	Trp 60	Thr	Leu	Asp	Gln
Ser 65	Ser	Glu	Val	Leu	Gly 70	Ser	Gly	Lys	Thr	Leu 75	Thr	Ile	Gln	Val	Lys
Glu	Phe	Gly	Asp	Ala 85	Gly	Gln	Tyr	Thr	Сув 90	His	Lys	Gly	Gly	Glu 95	Val
Leu	Ser	His	Ser 100	Leu	Leu	Leu	Leu	His 105	Lys	Lys	Glu	Asp	Gly 110	Ile	Trp
		115			Lys		120	-			_	125	-		
	130	-			Lys	135	-				140		-		
145					Thr 150					155					160
			-	165	Gln				170	_				175	
Ala	G1u	_	Val 180	Arg	Gly	Asp		Lys 185	G1u	Tyr	GLu	Tyr	Ser	Val	Glu

Сув	Gln	Glu 195	Asp	Ser	Ala	Сув	Pro 200	Ala	Ala	Glu	Glu	Ser 205	Leu	Pro	Ile
Glu	Val 210	Met	Val	Asp	Ala	Val 215	His	Lys	Leu	Lys	Tyr 220	Glu	Asn	Tyr	Thr
Ser 225	Ser	Phe	Phe	Ile	Arg 230	Asp	Ile	Ile	Lys	Pro 235	Asp	Pro	Pro	Lys	Asn 240
Leu	Gln	Leu	Lys	Pro 2 4 5	Leu	Lys	Asn	Ser	Arg 250	Gln	Val	Glu	Val	Ser 255	Trp
Glu	Tyr	Pro	Asp 260	Thr	Trp	Ser	Thr	Pro 265	His	Ser	Tyr	Phe	Ser 270	Leu	Thr
	_	275	Gln				280					285	_		
	290		Asp	-		295					300		_		
305			Val	_	310		_	Arg	Tyr	Tyr 315	Ser	Ser	Ser	Trp	Ser 320
Glu 7	Trp	ΑLa	Ser	Val 325	Pro	Cys	Ser								

<210>7

<211>2328

5 <212> ADN <213> artificial

<220>

<223> construcción de expresión, secuencia codificante para la proteína de fusión IL-12 IgG4 Fc

10 <400> 7

atgtgtcacc	agcagttggt	catctcttgg	ttttccctgg	tttttctggc	atctcccctc	60
gtggccatat	gggaactgaa	gaaagatgtt	tatgtcgtag	aattggattg	gtatccggat	120
gcccctggag	aaatggtggt	cctcacctgt	gacacccctg	aagaagatgg	tatcacctgg	180
accttggacc	agagcagtga	ggtcttaggc	tctggcaaaa	ccctgaccat	ccaagtcaaa	240
gagtttggag	atgctggcca	gtacacctgt	cacaaaggag	gcgaggttct	aagccattcg	300
ctcctgctgc	ttcacaaaaa	ggaagatgga	atttggtcca	ctgatatttt	aaaggaccag	360
aaagaaccca	aaaataagac	ctttctaaga	tgcgaggcca	agaattattc	tggacgtttc	420
acctgctggt	ggctgacgac	aatcagtact	gatttgacat	tcagtgtcaa	aagcagcaga	480
	2000000000	~~+ ~~ ~~+ ~~	~~~~~	~~~+~+~+~~	20202000	E40

agaggggaca	acaaggagta	tgagtactca	gtggagtgcc	aggaggacag	tgcctgccca	600
gctgctgagg	agagtetgee	cattgaggtc	atggtggatg	ccgttcacaa	gctcaagtat	660
gaaaactaca	ccagcagctt	cttcatcagg	gacatcatca	aacctgaccc	acccaagaac	720
ttgcagctga	agccattaaa	gaattctcgg	caggtggagg	tcagctggga	gtaccctgac	780
acctggagta	ctccacattc	ctacttctcc	ctgacattct	gcgttcaggt	ccagggcaag	840
agcaagagag	aaaagaaaga	tagagtcttc	acggacaaga	cctcagccac	ggtcatctgc	900
cgcaaaaatg	ccagcattag	cgtgcgggcc	caggaccgct	actatagctc	atcttggagc	960
gaatgggcat	ctgtgccctg	cagtggaggc	ggtggctcgg	gcggtggtgg	gtcgggtggc	1020
ggcggatcca	gaaacctccc	cgtggccact	ccagacccag	gaatgttccc	atgccttcac	1080
cactcccaaa	acctgctgag	ggccgtcagc	aacatgctcc	agaaggccag	acaaactcta	1140
gaattttacc	cttgcacttc	tgaagagatt	gatcatgaag	atatcacaaa	agataaaacc	1200
agcacagtgg	aggcctgttt	accattggaa	ttaaccaaga	atgagagttg	cctaaattcc	1260
agagagacct	ctttcataac	taatgggagt	tgcctggcct	ccagaaagac	ctcttttatg	1320
atggccctgt	gccttagtag	tatttatgaa	gacttgaaga	tgtaccaggt	ggagttcaag	1380
accatgaatg	caaagcttct	gatggatcct	aagaggcaga	tctttctaga	tcaaaacatg	1440
ctggcagtta	ttgatgagct	gatgcaggcc	ctgaatttca	acagtgagac	tgtgccacaa	1500
aaatcctccc	ttgaagaacc	ggatttttat	aaaactaaaa	tcaagctctg	catacttctt	1560
catgctttca	gaattcgggc	agtgactatt	gatagagtga	tgagctatct	gaatgcttcc	1620
aaggtggaca	agagagttga	gtccaaatat	ggtcccccat	gcccatcatg	cccagcacct	1680
gagttcctgg	ggggaccatc	agtcttcctg	ttccccccaa	aacccaagga	cactctcatg	1740
atctcccgga	cccctgaggt	cacgtgcgtg	gtggtggacg	tgagccagga	agaccccgag	1800
gtccagttca	actggtacgt	ggatggcgtg	gaggtgcata	atgccaagac	aaagccgcgg	1860
gaggagcagt	tcaacagcac	gtaccgtgtg	gtcagcgtcc	tcaccgtcct	gcaccaggac	1920
tggctgaacg	gcaaggagta	caagtgcaag	gtctccaaca	aaggcctccc	gtcctccatc	1980
gagaaaacca	tctccaaagc	caaagggcag	ccccgagagc	cacaggtgta	caccctgccc	2040
ccatccccgg	aggagatgac	caagaaccag	gtcagcctga	cctgcctggt	caaaggcttc	2100
taccccagcg	acatcgccgt	ggagtgggag	agcaatgggc	agccggagaa	caactacaag	2160
accacgcctc	ccgtgctgga	ctccgacggc	teettettee	tctacagcag	gctaaccgtg	2220
gacaagagca	ggtggcagga	ggggaatgtc	ttctcatgct	ccgtgatgca	tgaggctctg	2280
cacaaccact	acacacagaa	gagcctctcc	ctgtctctgg	gtaaatga		2328

<210>8 <211>10994

<212> ADN <213> artificial

<220>

<223> vector de plásmido que codifica el marcador de Fc (murino)

<400>8

ctcgcagcaa	agcaagatgt	gtcctcagaa	gctaaccatc	tcctggtttg	ccatcgtttt	60
gctggtgtct	ccactcatgg	ccatgtggga	gctggagaag	cttatcaaga	gaatcgagcc	120
tagaataccc	aagcccagta	ccccccagg	ttcttcatgc	ccacctggta	acatcttggg	180
tggaccatcc	gtcttcatct	tccccccaaa	gcccaaggat	gcactcatga	tctccctaac	240
ccccaaggtt	acgtgtgtgg	tggtggatgt	gagcgaggat	gacccagatg	tccatgtcag	300
ctggtttgtg	gacaacaaag	aagtacacac	agcctggacg	cagccccgtg	aagctcagta	360
caacagtacc	ttccgagtgg	tcagtgccct	ccccatccag	caccaggact	ggatgagggg	420
caaggagttc	aaatgcaagg	tcaacaacaa	agccctccca	gcccccatcg	agagaaccat	480
ctcaaaaccc	aaaggaagag	cccagacacc	tcaagtatac	accatacccc	cacctcgtga	540
acaaatgtcc	aagaagaagg	ttagtctgac	ctgcctggtc	accaacttct	tetetgaage	600
catcagtgtg	gagtgggaaa	ggaacggaga	actggagcag	gattacaaga	acactccacc	660
catcctggac	tcggatggga	cctacttcct	ctacagcaag	ctcactgtgg	atacagacag	720
ttggttgcaa	ggagaaattt	ttacctgctc	cgtggtgcat	gaggetetee	ataaccacca	780
cacacagaag	aacctgtctc	gctcccctgg	taaatgagaa	cagcatctag	cggccgctcg	840
aggccggcaa	ggccggatcc	agacatgata	agatacattg	atgagtttgg	acaaaccaca	900
actagaatgc	agtgaaaaaa	atgctttatt	tgtgaaattt	gtgatgctat	tgctttattt	960
gtaaccatta	taagctgcaa	taaacaagtt	aacaacaaca	attgcattca	ttttatgttt	1020
caggttcagg	gggaggtgtg	ggaggttttt	taaagcaagt	aaaacctcta	caaatgtggt	1080
atggctgatt	atgateegge	tgaatagaga	gtttcggtga	tgacggtgaa	aacctctgac	1140
acatgcagct	cccggagacg	gtcacagctt	gtctgtaagc	ggatgccggg	agcagacaag	1200
cccgtcaggc	gtcagcgggt	gttggcgggt	gtcggggcgc	agccatgagg	togactotag	1260
aggatcgatg	ccccgccccg	gacgaactaa	acctgactac	gacatetetg	ccccttcttc	1320
gcggggcagt	gcatgtaatc	ccttcagttg	gttggtacaa	cttgccaact	gggccctgtt	1380
ccacatgtga	cacggggggg	gaccaaacac	aaaggggttc	tctgactgta	gttgacatcc	1440
ttataaatgg	atgtgcacat	ttgccaacac	tgagtggctt	tcatcctgga	gcagactttg	1500
cagtctgtgg	actgcaacac	aacattgcct	ttatgtgtaa	ctcttggctg	aagctcttac	1560
accaatgctg	ggggacatgt	acctcccagg	ggcccaggaa	gactacggga	ggctacacca	1620
acgtcaatca	gaggggcctg	tgtagctacc	gataagcgga	ccctcaagag	ggcattagca	1680

atagtgttta	taaggccccc	ttgttaaccc	taaacgggta	gcatatgctt	cccgggtagt	1740
agtatatact	atccagacta	accctaattc	aatagcatat	gttacccaac	gggaagcata	1800
tgctatcgaa	ttagggttag	taaaagggtc	ctaaggaaca	gcgatatctc	ccaccccatg	1860
agctgtcacg	gttttattta	catggggtca	ggattccacg	agggtagtga	accattttag	1920
tcacaagggc	agtggctgaa	gatcaaggag	cgggcagtga	actctcctga	atcttcgcct	1980
gcttcttcat	teteettegt	ttagctaata	gaataactgc	tgagttgtga	acagtaaggt	2040
gtatgtgagg	tgctcgaaaa	caaggtttca	ggtgacgccc	ccagaataaa	atttggacgg	2100
ggggttcagt	ggtggcattg	tgctatgaca	ccaatataac	cctcacaaac	cccttgggca	2160
ataaatacta	gtgtaggaat	gaaacattct	gaatatcttt	aacaatagaa	atccatgggg	2220
tggggacaag	ccgtaaagac	tggatgtcca	tctcacacga	atttatggct	atgggcaaca	2280
cataatccta	gtgcaatatg	atactggggt	tattaagatg	tgtcccaggc	agggaccaag	2340
acaggtgaac	catgttgtta	cactctattt	gtaacaaggg	gaaagagagt	ggacgccgac	2400
agcagcggac	tccactggtt	gtctctaaca	cccccgaaaa	ttaaacgggg	ctccacgcca	2460
atggggccca	taaacaaaga	caagtggcca	ctctttttt	tgaaattgtg	gagtgggggc	2520
acgcgtcagc	ccccacacgc	cgccctgcgg	ttttggactg	taaaataagg	gtgtaataac	2580
ttggctgatt	gtaaccccgc	taaccactgc	ggtcaaacca	cttgcccaca	aaaccactaa	2640
tggcaccccg	gggaatacct	gcataagtag	gtgggcgggc	caagataggg	gcgcgattgc	2700
tgcgatctgg	aggacaaatt	acacacactt	gcgcctgagc	gccaagcaca	gggttgttgg	2760
tcctcatatt	cacgaggtcg	ctgagagcac	ggtgggctaa	tgttgccatg	ggtagcatat	2820
actacccaaa	tatctggata	gcatatgcta	tcctaatcta	tatctgggta	gcataggcta	2880
tcctaatcta	tatctgggta	gcatatgcta	tcctaatcta	tatctgggta	gtatatgcta	2940
tcctaattta	tatctgggta	gcataggcta	tcctaatcta	tatctgggta	gcatatgcta	3000
tcctaatcta	tatctgggta	gtatatgcta	tcctaatctg	tatccgggta	gcatatgcta	3060
tcctaataga	gattagggta	gtatatgcta	tcctaattta	tatctgggta	gcatatacta	3120
cccaaatatc	tggatagcat	atgctatcct	aatctatatc	tgggtagcat	atgctatcct	3180
aatctatatc	tgggtagcat	aggctatcct	aatctatatc	tgggtagcat	atgctatcct	3240
aatctatatc	tgggtagtat	atgctatcct	aatttatatc	tgggtagcat	aggctatcct	3300
aatctatatc	tgggtagcat	atgctatcct	aatctatatc	tgggtagtat	atgctatcct	3360
aatctgtatc	cgggtagcat	atgctatcct	catgcatata	cagtcagcat	atgataccca	3420
gtagtagagt	gggagtgcta	tcctttgcat	atgccgccac	ctcccaaggg	ggcgtgaatt	3480
ttcgctgctt	gtccttttcc	tgctggttgc	tcccattctt	aggtgaattt	aaggaggcca	3540

ggctaaagcc	gtcgcatgtc	tgattgctca	ccaggtaaat	gtcgctaatg	ttttccaacg	3600
cgagaaggtg	ttgagcgcgg	agctgagtga	cgtgacaaca	tgggtatgcc	caattgcccc	3660
atgttgggag	gacgaaaatg	gtgacaagac	agatggccag	aaatacacca	acagcacgca	3720
tgatgtctac	tggggattta	ttctttagtg	cgggggaata	cacggctttt	aatacgattg	3780
agggcgtctc	ctaacaagtt	acatcactcc	tgcccttcct	caccctcatc	tccatcacct	3840
ccttcatctc	cgtcatctcc	gtcatcaccc	teegeggeag	ccccttccac	cataggtgga	3900
aaccagggag	gcaaatctac	tccatcgtca	aagctgcaca	cagtcaccct	gatattgcag	3960
gtaggagcgg	gctttgtcat	aacaaggtcc	ttaatcgcat	ccttcaaaac	ctcagcaaat	4020
atatgagttt	gtaaaaagac	catgaaataa	cagacaatgg	actcccttag	cgggccaggt	4080
tgtgggccgg	gtccaggggc	cattccaaag	gggagacgac	tcaatggtgt	aagacgacat	4140
tgtggaatag	caagggcagt	tectegeett	aggttgtaaa	gggaggtett	actacctcca	4200
tatacgaaca	caccggcgac	ccaagttcct	tcgtcggtag	tcctttctac	gtgactccta	4260
gccaggagag	ctcttaaacc	ttctgcaatg	ttctcaaatt	tcgggttgga	acctccttga	4320
ccacgatgct	ttccaaacca	ccctcctttt	ttgcgcctgc	ctccatcacc	ctgaccccgg	4380
ggtccagtgc	ttgggccttc	tcctgggtca	tctgcggggc	cctgctctat	cgctcccggg	4440
ggcacgtcag	gctcaccatc	tgggccacct	tcttggtggt	attcaaaata	atcggcttcc	4500
cctacagggt	ggaaaaatgg	ccttctacct	ggagggggcc	tgcgcggtgg	agacccggat	4560
gatgatgact	gactactggg	actcctgggc	ctcttttctc	cacgtccacg	acctctcccc	4620
ctggctcttt	cacgacttcc	ccccctggct	ctttcacgtc	ctctaccccg	geggeeteca	4680
ctacctcctc	gaccccggcc	tccactacct	cctcgacccc	ggcctccact	gcctcctcga	4740
ccccggcctc	cacctcctgc	tectgeceet	cctgctcctg	cccctcctcc	tgctcctgcc	4800
cctcctgccc	ctcctgctcc	tgcccctcct	gcccetectg	ctcctgcccc	teetgeeeet	4860
cctgctcctg	cccctcctgc	ccctcctcct	getectgece	ctcctgcccc	tectectget	4920
cctgcccctc	ctgcccctcc	tgctcctgcc	cctcctgccc	ctcctgctcc	tgcccctcct	4980
gecectectg	ctcctgcccc	teetgeteet	gcccetcctg	ctcctgcccc	tectgetect	5040
gaccatactg	cccctcctgc	ccctcctcct	gataatgaaa	ctcctgctcc	tgcccctcct	5100
gcccctcctg	cccctcctgc	teetgeeest	cctcctgctc	ctgcccctcc	tgcccctcct	5160
gecectecte	ctgctcctgc	ccctcctgcc	cctcctcctg	ctcctgcccc	tcctcctgct	5220
catgacacta	ctgcccctcc	tgcccctcct	cctgctcctg	cccctcctgc	ccctcctcct	5280
geteetgeee	ctcctcctgc	teetgeeest	cetgeecete	ctgcccctcc	tcctgctcct	5340
gecectecte	ctgctcctgc	ccctcctgcc	ceteetgeee	ctcctgcccc	tcctcctgct	5400
catgacacta	ctcctgctcc	tgcccctcct	gctcctgccc	ctcccgctcc	tgctcctgct	5460

cctgttccac cgtgggtccc	tttgcagcca	atgcaacttg	gacgtttttg	gggtctccgg	5520
acaccatete tatgtettgg	ccctgatcct	gageegeeeg	gggctcctgg	tattacgaat	5580
cetegteete gteetettee	ccgtcctcgt	ccatggttat	caccccctct	tctttgaggt	5640
ccactgccgc cggagccttc	tggtccagat	gtgtctccct	tetetectag	gccatttcca	5700
ggtcctgtac ctggcccctc	gtcagacatg	attcacacta	aaagagatca	atagacatct	5760
ttattagacg acgctcagtg	aatacaggga	gtgcagactc	ctgccccctc	caacagcccc	5820
cccaccctca tccccttcat	ggtcgctgtc	agacagatcc	aggtctgaaa	attccccatc	5880
ctccgaacca tcctcgtcct	catcaccaat	tactcgcagc	ccggaaaact	cccgctgaac	5940
atcctcaaga tttgcgtcct	gagcctcaag	ccaggcctca	aattcctcgt	ccccttttt	6000
getggaeggt agggatgggg	attctcggga	cccctcctct	tcctcttcaa	ggtcaccaga	6060
cagagatgct actggggcaa	cggaagaaaa	gctgggtgcg	gcctgtgagg	atcagcttat	6120
cgatgataag ctgtcaaaca	tgagaattct	tgaagacgaa	agggcctcgt	gatacgccta	6180
tttttatagg ttaatgtcat	gataataatg	gtttcttaga	cgtcaggtgg	cacttttcgg	6240
ggaaatgtgc gcggaacccc	tatttgttta	tttttctaaa	tacattcaaa	tatgtatccg	6300
ctcatgagac aataaccctg	ataaatgctt	caataatatt	gaaaaaggaa	gagtatgagt	6360
attcaacatt tccgtgtcgc	ccttattccc	ttttttgcgg	cattttgcct	tcctgttttt	6420
gctcacccag aaacgctggt	gaaagtaaaa	gatgctgaag	atcagttggg	tgcacgagtg	6480
ggttacatcg aactggatct	caacagcggt	aagatccttg	agagttttcg	ccccgaagaa	6540
cgttttccaa tgatgagcac	ttttaaagtt	ctgctatgtg	gcgcggtatt	atcccgtgtt	6600
gacgeeggge aagageaact	cggtcgccgc	atacactatt	ctcagaatga	cttggttgag	6660
tactcaccag tcacagaaaa	gcatcttacg	gatggcatga	cagtaagaga	attatgcagt	6720
getgecataa ecatgagtga	taacactgcg	gccaacttac	ttctgacaac	gatcggagga	6780
ccgaaggagc taaccgcttt	tttgcacaac	atgggggatc	atgtaactcg	ccttgatcgt	6840
tgggaaccgg agctgaatga	agccatacca	aacgacgagc	gtgacaccac	gatgcctgca	6900
gcaatggcaa caacgttgcg	caaactatta	actggcgaac	tacttactct	agetteeegg	6960
caacaattaa tagactggat	ggaggcggat	aaagttgcag	gaccacttct	gcgctcggcc	7020
cttccggctg gctggtttat	tgctgataaa	tctggagccg	gtgagcgtgg	gtctcgcggt	7080
atcattgcag cactggggcc	agatggtaag	ccctcccgta	tcgtagttat	ctacacgacg	7140
gggagtcagg caactatgga	tgaacgaaat	agacagatcg	ctgagatagg	tgcctcactg	7200
attaagcatt ggtaactgtc	agaccaagtt	tactcatata	tactttagat	tgatttaaaa	7260
cttcattttt aatttaaaag	gatctaggtg	aagatccttt	ttgataatct	catgaccaaa	7320

atcccttaac gtgagttttc	gttccactga	gegteagace	ccgtagaaaa	gatcaaagga	7380
tcttcttgag atcctttttt	tctgcgcgta	atctgctgct	tgcaaacaaa	aaaaccaccg	7440
ctaccagcgg tggtttgttt	gccggatcaa	gagotaccaa	ctcttttcc	gaaggtaact	7500
ggcttcagca gagcgcagat	accaaatact	gtccttctag	tgtagccgta	gttaggccac	7560
cacttcaaga actctgtagc	accgcctaca	tacctcgctc	tgctaatcct	gttaccagtg	7620
gctgctgcca gtggcgataa	gtcgtgtctt	accgggttg g	actcaagacg	atagttaccg	7680
gataaggcgc agcggtcggg	ctgaacgggg	ggttcgtgca	cacageceag	cttggagcga	7740
acgacctaca ccgaactgag	atacctacag	cgtgagctat	gagaaagcgc	cacgetteee	7800
gaagggagaa aggcggacag	gtatccggta	agcggcaggg	tcggaacagg	agagegeaeg	7860
agggagette cagggggaaa	cgcctggtat	ctttatagtc	ctgtcgggtt	tcgccacctc	7920
tgacttgagc gtcgattttt	gtgatgctcg	tcaggggggc	ggagcctatg	gaaaaacgcc	7980
agcaacgcgg cctttttacg	gtteetggee	ttttgctggc	cttgaagctg	tccctgatgg	8040
togtcatcta cotgootgga	cagcatggcc	tgcaacgcgg	gcatcccgat	gccgccggaa	8100
gcgagaagaa tcataatggg	gaaggccatc	cagcctcgcg	tegegaaege	cagcaagacg	8160
tageceageg egteggeece	gagatgcgcc	gcgtgcggct	gctggagatg	gcggacgcga	8220
tggatatgtt ctgccaaggg	ttggtttgcg	cattcacagt	tctccgcaag	aattgattgg	8280
ctccaattct tggagtggtg	aatccgttag	cgaggtgccg	ccctgcttca	teceegtgge	8340
ecgttgeteg egtttgetgg	cggtgtcccc	ggaagaaata	tatttgcatg	tctttagttc	8400
tatgatgaca caaaccccgc	ccagcgtctt	gtcattggcg	aattcgaaca	cgcagatgca	8460
gtcggggcgg cgcggtccga	ggtccacttc	gcatattaag	gtgacgcgtg	tggcctcgaa	8520
caccgagcga ccctgcagcg	acccgcttaa	cagcgtcaac	agcgtgccgc	agatcccggg	8580
gggcaatgag atatgaaaaa	gcctgaactc	accgcgacgt	ctgtcgagaa	gtttctgatc	8640
gaaaagtteg acagegtete	cgacctgatg	cagetetegg	agggcgaaga	atctcgtgct	8700
ttcagcttcg atgtaggagg	gcgtggatat	gtcctgcggg	taaatagctg	cgccgatggt	8760
ttctacaaag atcgttatgt	ttatcggcac	tttgcatcgg	cegegetece	gattccggaa	8820
gtgcttgaca ttggggaatt	cagcgagagc	ctgacctatt	gcatctcccg	ccgtgcacag	8880
ggtgtcacgt tgcaagacct	gcctgaaacc	gaactgcccg	ctgttctgca	geeggtegeg	8940
gaggccatgg atgcgatcgc	tgcggccgat	cttagccaga	cgagcgggtt	cggcccattc	9000
ggaccgcaag gaatcggtca	atacactaca	tggcgtgatt	tcatatgcgc	gattgctgat	9060
ccccatgtgt atcactggca	aactgtgatg	gacgacaccg	tcagtgcgtc	cgtcgcgcag	9120
gctctcgatg agctgatgct	ttgggccgag	gactgccccg	aagtccggca	cctcgtgcac	9180
geggattteg getecaacaa	tgtcctgacg	gacaatggcc	gcataacagc	ggtcattgac	9240

tggagcgagg cgatgttcgg	ggattcccaa	tacgaggtcg	ccaacatctt	cttctggagg	9300
ccgtggttgg cttgtatgga	gcagcagacg	cgctacttcg	agcggaggca	tccggagctt	9360
gcaggatcgc cgcggctccg	ggcgtatatg	ctccgcattg	gtcttgacca	actctatcag	9420
agcttggttg acggcaattt	cgatgatgca	gcttgggcgc	agggtcgatg	cgacgcaatc	9480
gtccgatccg gagccgggac	tgtcgggcgt	acacaaatcg	cccgcagaag	cgcggccgtc	9540
tggaccgatg gctgtgtaga	agtactcgcc	gatagtggaa	accgacgccc	cagcactcgt	9600
ccggatcggg agatggggga	ggctaactga	aacacggaag	gagacaatac	cggaaggaac	9660
ccgcgctatg acggcaataa	aaagacagaa	taaaacgcac	gggtgttggg	tcgtttgttc	9720
ataaacgcgg ggttcggtcc	cagggctggc	actctgtcga	taccccaccg	agaccccatt	9780
ggggccaata cgcccgcgtt	tetteetttt	ccccacccca	cccccaagt	tcgggtgaag	9840
gcccagggct cgcagccaac	gtcggggcgg	caggecetge	catagccact	ggccccgtgg	9900
gttagggacg gggtccccca	tggggaatgg	tttatggttc	gtgggggtta	ttattttggg	9960
cgttgcgtgg ggtcaggtcc	acgactggac	tgagcagaca	gacccatggt	ttttggatgg	10020
cctgggcatg gaccgcatgt	actggcgcga	cacgaacacc	gggcgtctgt	ggctgccaaa	10080
cacccccgac ccccaaaaac	caccgcgcgg	atttctggcg	tgccaagcta	gtcgaccaat	10140
tctcatgttt gacagcttat	catcgcagat	ccgggcaacg	ttgttgccat	tgctgcaggc	10200
gcagaactgg taggtatgga	agatctatac	attgaatcaa	tattggcaat	tagccatatt	10260
agtcattggt tatatagcat	aaatcaatat	tggctattgg	ccattgcata	cgttgtatct	10320
atatcataat atgtacattt	atattggctc	atgtccaata	tgaccgccat	gttgacattg	10380
attattgact agttattaat	agtaatcaat	tacggggtca	ttagttcata	gcccatatat	10440
ggagttccgc gttacataac	ttacggtaaa	tggcccgcct	ggctgaccgc	ccaacgaccc	10500
ccgcccattg acgtcaataa	tgacgtatgt	tcccatagta	acgccaatag	ggactttcca	10560
ttgacgtcaa tgggtggagt	atttacggta	aactgcccac	ttggcagtac	atcaagtgta	10620
tcatatgcca agtccgcccc	ctattgacgt	caatgacggt	aaatggcccg	cctggcatta	10680
tgcccagtac atgacettac	gggactttcc	tacttggcag	tacatctacg	tattagtcat	10740
cgctattacc atggtgatgc	ggttttggca	gtacaccaat	gggcgtggat	agcggtttga	10800
ctcacgggga tttccaagtc	tccaccccat	tgacgtcaat	gggagtttgt	tttggcacca	10860
aaatcaacgg gactttccaa	aatgtcgtaa	taaccccgcc	ccgttgacgc	aaatgggcgg	10920
taggcgtgta cggtgggagg	tctatataag	cagagetegt	ttagtgaacc	gtcagatctc	10980
tagaagctgg gtac					10994

<210>9 <211>12539

<212> ADN <213> artificial

<220:

5

<223> vector de plásmido que codifica la construcción de fusión Fc-marcador IL-12

<400> 9

gtacctcgca	gcaaagcaag	atgtgtcctc	agaagctaac	cateteetgg	tttgccatcg	60
ttttgctggt	gtctccactc	atggccatgt	gggagctgga	gaaagacgtt	tatgttgtag	120
aggtggactg	gactcccgat	gcccctggag	aaacagtgaa	cctcacctgt	gacacgcctg	180
aagaagatga	catcacctgg	acctcagacc	agagacatgg	agtcataggc	tctggaaaga	240
ccctgaccat	cactgtcaaa	gagtttctag	atgctggcca	gtacacctgc	cacaaaggag	300
gcgagactct	gagccactca	catctgctgc	tccacaagaa	ggaaaatgga	atttggtcca	360
ctgaaatttt	aaaaaatttc	aaaaacaaga	ctttcctgaa	gtgtgaagca	ccaaattact	420
ccggacggtt	cacgtgctca	tggctggtgc	aaagaaacat	ggacttgaag	ttcaacatca	480
agagcagtag	cagttcccct	gactctcggg	cagtgacatg	tggaatggcg	tetetgtetg	540
cagagaaggt	cacactggac	caaagggact	atgagaagta	ttcagtgtcc	tgccaggagg	600
atgtcacctg	cccaactgcc	gaggagaccc	tgcccattga	actggcgttg	gaagcacggc	660
agcagaataa	atatgagaac	tacagcacca	gcttcttcat	cagggacatc	atcaaaccag	720
accegeceaa	gaacttgcag	atgaagcctt	tgaagaactc	acaggtggag	gtcagctggg	7 80
agtaccctga	ctcctggagc	actccccatt	cctacttctc	cctcaagttc	tttgttcgaa	840
tccagcgcaa	gaaagaaaag	atgaaggaga	cagaggaggg	gtgtaaccag	aaaggtgcgt	900
tcctcgtaga	gaagacatct	accgaagtcc	aatgcaaagg	cgggaatgtc	tgcgtgcaag	960
ctcaggatcg	ctattacaat	tcctcgtgca	gcaagtgggc	atgtgttccc	tgcagggtcc	1020
gateeggagg	cggtggctcg	ggcggtggtg	ggtcgggtgg	cggcggatcc	agggtcattc	1080
cagtctctgg	acctgccagg	tgtcttagcc	agtcccgaaa	cctgctgaag	accacagatg	1140
acatggtgaa	gacggccaga	gaaaaactga	aacattattc	ctgcactgct	gaagacatcg	1200
atcatgaaga	catcacacgg	gaccaaacca	gcacattgaa	gacctgttta	ccactggaac	1260
tacacaagaa	cgagagttgc	ctggctacta	gagagacttc	ttccacaaca	agagggagct	1320
gcctgccccc	acagaagacg	tctttgatga	tgaccctgtg	ccttggtagc	atctatgagg	1380
acttgaagat	gtaccagaca	gagttccagg	ccatcaacgc	agcacttcag	aatcacaacc	1440
atcagcagat	cattctagac	aagggcatgc	tggtggccat	cgatgagetg	atgcagtctc	1500
tgaatcataa	tggcgagact	ctgcgccaga	aacctcctgt	gggagaagca	gaccettaca	1560
gagtgaaaat	gaagctctgc	atcctgcttc	acgeetteag	cacccgcgtc	gtgaccatca	1620
acagggtgat	gggctatctg	agctccgcct	tgatcaagag	aatcgagcct	agaataccca	1680

ageccagtae ecceecaggt	tetteatgee	cacctggtaa	catcttgggt	ggaccatccg	1740
tetteatett ecceecaaag	cccaaggatg	cactcatgat	ctccctaacc	cccaaggtta	1800
cgtgtgtggt ggtggatgtg	agcgaggatg	acccagatgt	ccatgtcagc	tggtttgtgg	1860
acaacaaaga agtacacaca	gcctggacgc	agccccgtga	agctcagtac	aacagtacct	1920
tccgagtggt cagtgccctc	cccatccagc	accaggactg	gatgaggggc	aaggagttca	1980
aatgcaaggt caacaacaaa	gccctcccag	cccccatcga	gagaaccatc	tcaaaaccca	2040
aaggaagage eeagaeacet	caagtataca	ccataccccc	acctcgtgaa	caaatgtcca	2100
agaagaaggt tagtctgacc	tgcctggtca	ccaacttctt	ctctgaagcc	atcagtgtgg	2160
agtgggaaag gaacggagaa	ctggagcagg	attacaagaa	cactccaccc	atcctggact	2220
eggatgggae etaetteete	tacagcaagc	tcactgtgga	tacagacagt	tggttgcaag	2280
gagaaatttt tacctgctcc	gtggtgcatg	aggeteteca	taaccaccac	acacagaaga	2340
acctgtctcg ctcccctggt	aaatgagaac	agcatctagc	ggccgctcga	ggccggcaag	2400
gccggatcca gacatgataa	gatacattga	tgagtttgga	caaaccacaa	ctagaatgca	2460
gtgaaaaaaa tgctttattt	gtgaaatttg	tgatgctatt	gctttatttg	taaccattat	2520
aagctgcaat aaacaagtta	acaacaacaa	ttgcattcat	tttatgtttc	aggttcaggg	2580
ggaggtgtgg gaggtttttt	aaagcaagta	aaacctctac	aaatgtggta	tggctgatta	2640
tgatccggct gcctcgcgcg	tttcggtgat	gacggtgaaa	acctctgaca	catgcagctc	2700
ccggagacgg tcacagcttg	tctgtaagcg	gatgccggga	gcagacaagc	ccgtcaggcg	2760
tcagcgggtg ttggcgggtg	tcggggcgca	gccatgaggt	cgactctaga	ggatcgatgc	2820
cccgccccgg acgaactaaa	cctgactacg	acatetetge	cccttcttcg	cggggcagtg	2880
catgtaatcc cttcagttgg	ttggtacaac	ttgccaactg	ggccctgttc	cacatgtgac	2940
acggggggg accaaacaca	aaggggttct	ctgactgtag	ttgacatcct	tataaatgga	3000
tgtgcacatt tgccaacact	gagtggcttt	catcctggag	cagactttgc	agtctgtgga	3060
ctgcaacaca acattgcctt	tatgtgtaac	tcttggctga	agctcttaca	ccaatgctgg	3120
gggacatgta cctcccaggg	gcccaggaag	actacgggag	gctacaccaa	cgtcaatcag	3180
aggggcctgt gtagctaccg	ataagcggac	cctcaagagg	gcattagcaa	tagtgtttat	3240
aaggeeeet tgttaaceet	aaacgggtag	catatgette	ccgggtagta	gtatatacta	3300
tccagactaa ccctaattca	atagcatatg	ttacccaacg	ggaagcatat	gctatcgaat	3360
tagggttagt aaaagggtee	taaggaacag	cgatatetee	caccccatga	gctgtcacgg	3420
ttttatttac atggggtcag	gattccacga	gggtagtgaa	ccattttagt	cacaagggca	3480
gtggctgaag atcaaggagc	gggcagtgaa	ctctcctgaa	tcttcgcctg	cttcttcatt	3540

ctccttcgtt	tagctaatag	aataactgct	gagttgtgaa	cagtaaggtg	tatgtgaggt	3600
gctcgaaaac	aaggtttcag	gtgacgcccc	cagaataaaa	tttggacggg	gggttcagtg	3660
gtggcattgt	gctatgacac	caatataacc	ctcacaaacc	ccttgggcaa	taaatactag	3720
tgtaggaatg	aaacattctg	aatatcttta	acaatagaaa	tccatggggt	ggggacaagc	3780
cgtaaagact	ggatgtccat	ctcacacgaa	tttatggcta	tgggcaacac	ataatcctag	3840
tgcaatatga	tactggggtt	attaagatgt	gtcccaggca	gggaccaaga	caggtgaacc	3900
atgttgttac	actctatttg	taacaagggg	aaagagagtg	gacgccgaca	gcagcggact	3960
ccactggttg	tctctaacac	ccccgaaaat	taaacggggc	tccacgccaa	tggggcccat	4020
aaacaaagac	aagtggccac	tcttttttt	gaaattgtgg	agtgggggca	cgcgtcagcc	4080
cccacacgcc	gccctgcggt	tttggactgt	aaaataaggg	tgtaataact	tggctgattg	4140
taaccccgct	aaccactgcg	gtcaaaccac	ttgcccacaa	aaccactaat	ggcaccccgg	4200
ggaatacctg	cataagtagg	tgggcgggcc	aagatagggg	cgcgattgct	gcgatctgga	4260
ggacaaatta	cacacacttg	cgcctgagcg	ccaagcacag	ggttgttggt	cctcatattc	4320
acgaggtcgc	tgagagcacg	gtgggctaat	gttgccatgg	gtagcatata	ctacccaaat	4380
atctggatag	catatgctat	cctaatctat	atctgggtag	cataggctat	cctaatctat	4440
atctgggtag	catatgctat	cctaatctat	atctgggtag	tatatgetat	cctaatttat	4500
atctgggtag	cataggctat	cctaatctat	atctgggtag	catatgctat	cctaatctat	4560
atctgggtag	tatatgctat	cctaatctgt	atccgggtag	catatgctat	cctaatagag	4620
attagggtag	tatatgctat	cctaatttat	atctgggtag	catatactac	ccaaatatct	4680
ggatagcata	tgctatccta	atctatatct	gggtagcata	tgctatccta	atctatatct	4740
gggtagcata	ggctatccta	atctatatct	gggtagcata	tgctatccta	atctatatct	4800
gggtagtata	tgctatccta	atttatatct	gggtagcata	ggctatccta	atctatatct	4860
gggtagcata	tgctatccta	atctatatct	gggtagtata	tgctatccta	atctgtatcc	4920
gggtagcata	tgctatcctc	atgcatatac	agtcagcata	tgatacccag	tagtagagtg	4980
ggagtgctat	cctttgcata	tgccgccacc	tcccaagggg	gcgtgaattt	tcgctgcttg	5040
teetttteet	getggttget	cccattctta	ggtgaattta	aggaggccag	gctaaagccg	5100
tegeatgtet	gattgctcac	caggtaaatg	tcgctaatgt	tttccaacgc	gagaaggtgt	5160
tgagcgcgga	gctgagtgac	gtgacaacat	gggtatgccc	aattgcccca	tgttgggagg	5220
acgaaaatgg	tgacaagaca	gatggccaga	aatacaccaa	cagcacgcat	gatgtctact	5280
ggggatttat	tetttagtge	gggggaatac	acggctttta	atacgattga	gggcgtetee	5340
taacaagtta	catcactcct	gcccttcctc	acceteatet	ccatcacctc	cttcatctcc	5400
gtcatctccg	tcatcaccct	ccgcggcagc	cccttccacc	ataggtggaa	accagggagg	5460

caaatctact	ccatcgtcaa	agctgcacac	agtcaccctg	atattgcagg	taggagcggg	5520
ctttgtcata	acaaggtcct	taatcgcatc	cttcaaaacc	tcagcaaata	tatgagtttg	5580
taaaaagacc	atgaaataac	agacaatgga	ctcccttagc	gggccaggtt	gtgggccggg	5640
tecaggggee	attccaaagg	ggagacgact	caatggtgta	agacgacatt	gtggaatagc	5700
aagggcagtt	cctcgcctta	ggttgtaaag	ggaggtetta	ctacctccat	atacgaacac	5760
accggcgacc	caagtteett	cgtcggtagt	cctttctacg	tgactcctag	ccaggagagc	5820
tcttaaacct	tctgcaatgt	tctcaaattt	cgggttggaa	cctccttgac	cacgatgctt	5880
tccaaaccac	cctcctttt	tgegeetgee	tecateacec	tgaccccggg	gtccagtgct	5940
tgggccttct	cctgggtcat	ctgcggggcc	ctgctctatc	getecegggg	gcacgtcagg	6000
ctcaccatct	gggccacctt	cttggtggta	ttcaaaataa	teggetteec	ctacagggtg	6060
gaaaaatggc	cttctacctg	gagggggcct	gcgcggtgga	gacccggatg	atgatgactg	6120
actactggga	ctcctgggcc	tetttetee	acgtccacga	cctctccccc	tggctctttc	6180
acgacttccc	cccctggctc	tttcacgtcc	tctaccccgg	cggcctccac	tacctcctcg	6240
accccggcct	ccactacctc	ctcgaccccg	gcctccactg	cctcctcgac	cccggcctcc	6300
acctcctgct	cctgcccctc	ctgctcctgc	ccctcctcct	gataatgaaa	ctcctgcccc	6360
tcctgctcct	gcccctcctg	cccctcctgc	teetgeeest	cctgcccctc	ctgctcctgc	6420
ccctcctgcc	catactactg	ctcctgcccc	tectgeceet	cctcctgctc	atgaccataa	6480
tgcccctcct	gatactgaaa	ctcctgcccc	tectgetect	gcccctcctg	cccctcctgc	6540
tectgecest	catgatactg	cccctcctgc	tectgecect	cctgctcctg	cccctcctgc	6600
ccctcctgcc	cctcctcctg	ctcctgcccc	tectgetect	gcccctcctg	cccctcctgc	6660
ccctcctgct	catgacasta	ctcctgctcc	tgcccctcct	geceetectg	cccctcctcc	6720
tgctcctgcc	cctcctgccc	ctcctcctgc	teetgeeest	cctcctgata	ctgcccctcc	6780
tgcccctcct	gacactacta	ctgctcctgc	acctactgca	cctcctcctg	atcatgacca	6840
tectectget	catgacacta	ctgcccctcc	tgcccctcct	cctgctcctg	cccctcctcc	6900
tgctcctgcc	catactgaca	ctcctgcccc	tectgecect	cctcctgctc	ctgcccctcc	6960
tectgetest	gcccctcctg	ctcctgcccc	tecegeteet	gctcctgctc	ctgttccacc	7020
gtgggtccct	ttgcagccaa	tgcaacttgg	acgtttttgg	ggtctccgga	caccatctct	7080
atgtettgge	cctgatcctg	ageegeeegg	ggctcctggt	cttccgcctc	ctcgtcctcg	7140
tectettece	cgtcctcgtc	catggttatc	accccctctt	ctttgaggtc	cactgccgcc	7200
ggagccttct	ggtccagatg	tgtctccctt	ctctcctagg	ccatttccag	gtcctgtacc	7260
tggcccctcg	tcagacatga	ttcacactaa	aagagatcaa	tagacatctt	tattagacga	7320

cgctcagtga	atacagggag	tgcagactcc	tgececetee	aacagccccc	ccaccctcat	7380
ccccttcatg	gtcgctgtca	gacagatcca	ggtctgaaaa	ttccccatcc	tccgaaccat	7440
cctcgtcctc	atcaccaatt	actcgcagcc	cggaaaactc	ccgctgaaca	tcctcaagat	7500
ttgcgtcctg	agcctcaagc	caggeeteaa	attectegte	ccccttttg	ctggacggta	7560
gggatgggga	ttctcgggac	ccctcctctt	cctcttcaag	gtcaccagac	agagatgcta	7620
ctggggcaac	ggaagaaaag	ctgggtgcgg	cctgtgagga	tcagcttatc	gatgataagc	7680
tgtcaaacat	gagaattett	gaagacgaaa	gggcctcgtg	atacgcctat	ttttataggt	7740
taatgtcatg	ataataatgg	tttcttagac	gtcaggtggc	acttttcggg	gaaatgtgcg	7800
cggaacccct	atttgtttat	ttttctaaat	acattcaaat	atgtatccgc	tcatgagaca	7860
ataaccctga	taaatgcttc	aataatattg	aaaaaggaag	agtatgagta	ttcaacattt	7920
ccgtgtcgcc	cttattccct	tttttgcggc	attttgcctt	cctgtttttg	ctcacccaga	7980
aacgctggtg	aaagtaaaag	atgetgaaga	tcagttgggt	gcacgagtgg	gttacatcga	8040
actggatctc	aacagcggta	agatccttga	gagttttcgc	cccgaagaac	gttttccaat	8100
gatgagcact	tttaaagttc	tgctatgtgg	cgcggtatta	tcccgtgttg	acgccgggca	8160
agagcaactc	ggtcgccgca	tacactattc	tcagaatgac	ttggttgagt	actcaccagt	8220
cacagaaaag	catcttacgg	atggcatgac	agtaagagaa	ttatgcagtg	ctgccataac	8280
catgagtgat	aacactgcgg	ccaacttact	tctgacaacg	atcggaggac	cgaaggagct	8340
aaccgctttt	ttgcacaaca	tgggggatca	tgtaactcgc	cttgatcgtt	gggaaccgga	8400
gctgaatgaa	gccataccaa	acgacgagcg	tgacaccacg	atgcctgcag	caatggcaac	8460
aacgttgcgc	aaactattaa	ctggcgaact	acttactcta	gattacagga	aacaattaat	8520
agactggatg	gaggcggata	aagttgcagg	accacttctg	cgctcggccc	ttccggctgg	8580
ctggtttatt	gctgataaat	ctggagccgg	tgagcgtggg	tctcgcggta	tcattgcagc	8640
actggggcca	gatggtaagc	cctcccgtat	cgtagttatc	tacacgacgg	ggagtcaggc	8700
aactatggat	gaacgaaata	gacagatcgc	tgagataggt	gcctcactga	ttaagcattg	8760
gtaactgtca	gaccaagttt	actcatatat	actttagatt	gatttaaaac	ttcattttta	8820
atttaaaagg	atctaggtga	agateetttt	tgataatctc	atgaccaaaa	tecettaacg	8880
tgagttttcg	ttccactgag	cgtcagaccc	cgtagaaaag	atcaaaggat	cttcttgaga	8940
tcctttttt	ctgcgcgtaa	tctgctgctt	gcaaacaaaa	aaaccaccgc	taccagcggt	9000
ggtttgtttg	ccggatcaag	agctaccaac	tctttttccg	aaggtaactg	gcttcagcag	9060
agcgcagata	ccaaatactg	teettetagt	gtagccgtag	ttaggccacc	acttcaagaa	9120
ctctgtagca	ccgcctacat	acctcgctct	gctaatcctg	ttaccagtgg	ctgctgccag	9180
tggcgataag	togtgtotta	ccgggttgga	ctcaagacga	tagttaccgg	ataaggcgca	9240

gcggtcgggc	tgaacggggg	gttcgtgcac	acagcccagc	ttggagcgaa	cgacctacac	9300
cgaactgaga	tacctacage	gtgagctatg	agaaagcgcc	acgetteecg	aagggagaaa	9360
ggcggacagg	tatccggtaa	geggeagggt	cggaacagga	gagegeaega	gggagcttcc	9420
agggggaaac	gcctggtatc	tttatagtcc	tgtcgggttt	cgccacctct	gacttgagcg	9480
tcgatttttg	tgatgctcgt	caggggggcg	gagcctatgg	aaaaacgcca	gcaacgcggc	9540
ctttttacgg	ttcctggcct	tttgctggcc	ttgaagctgt	ccctgatggt	cgtcatctac	9600
ctgcctggac	agcatggcct	gcaacgcggg	catcccgatg	ccgccggaag	cgagaagaat	9660
cataatgggg	aaggccatcc	agcetegegt	cgcgaacgcc	agcaagacgt	agcccagcgc	9720
gtcggccccg	agatgcgccg	cgtgcggctg	ctggagatgg	cggacgcgat	ggatatgttc	9780
tgccaagggt	tggtttgcgc	attcacagtt	ctccgcaaga	attgattggc	tccaattctt	9840
ggagtggtga	atccgttagc	gaggtgccgc	cctgcttcat	ccccgtggcc	cgttgctcgc	9900
gtttgctggc	ggtgtccccg	gaagaaatat	atttgcatgt	ctttagttct	atgatgacac	9960
aaaccccgcc	cagcgtcttg	tcattggcga	attcgaacac	gcagatgcag	teggggegge	10020
gcggtccgag	gtccacttcg	catattaagg	tgacgcgtgt	ggcctcgaac	accgagcgac	10080
cctgcagcga	cccgcttaac	agcgtcaaca	gcgtgccgca	gatecegggg	ggcaatgaga	10140
tatgaaaaag	cctgaactca	ccgcgacgtc	tgtcgagaag	tttctgatcg	aaaagttcga	10200
cagcgtctcc	gacctgatgc	agctctcgga	gggcgaagaa	tctcgtgctt	tcagcttcga	10260
tgtaggaggg	cgtggatatg	tcctgcgggt	aaatagctgc	gccgatggtt	tctacaaaga	10320
tcgttatgtt	tatcggcact	ttgcatcggc	cgcgctcccg	attccggaag	tgcttgacat	10380
tggggaattc	agcgagagcc	tgacctattg	catctcccgc	cgtgcacagg	gtgtcacgtt	10440
gcaagacctg	cctgaaaccg	aactgcccgc	tgttctgcag	ccggtcgcgg	aggccatgga	10500
tgcgatcgct	gcggccgatc	ttagccagac	gagcgggttc	ggcccattcg	gaccgcaagg	10560
aatcggtcaa	tacactacat	ggcgtgattt	catatgcgcg	attgctgatc	cccatgtgta	10620
tcactggcaa	actgtgatgg	acgacaccgt	cagtgcgtcc	gtcgcgcagg	ctctcgatga	10680
gctgatgctt	tgggccgagg	actgccccga	agtccggcac	ctcgtgcacg	cggatttcgg	10740
ctccaacaat	gtcctgacgg	acaatggccg	cataacagcg	gtcattgact	ggagcgaggc	10800
gatgttcggg	gattcccaat	acgaggtcgc	caacatcttc	ttctggaggc	cgtggttggc	10860
ttgtatggag	cagcagacgc	gctacttcga	gcggaggcat	ccggagcttg	caggatcgcc	10920
geggeteegg	gcgtatatgc	teegeattgg	tcttgaccaa	ctctatcaga	gcttggttga	10980
cggcaatttc	gatgatgcag	cttgggcgca	gggtcgatgc	gacgcaatcg	teegateegg	11040
agccgggact	gtcgggcgta	cacaaatcgc	ccgcagaagc	geggeegtet	ggaccgatgg	11100

ES 2 671 728 T3

ctgtgtagaa	gtactcgccg	atagtggaaa	ccgacgcccc	agcactcgtc	cggatcggga	11160
gatgggggag	gctaactgaa	acacggaagg	agacaatacc	ggaaggaacc	cgcgctatga	11220
cggcaataaa	aagacagaat	aaaacgcacg	ggtgttgggt	cgtttgttca	taaacgcggg	11280
gttcggtccc	agggctggca	ctctgtcgat	accccaccga	gaccccattg	gggccaatac	11340
gcccgcgttt	cttccttttc	cccaccccac	cccccaagtt	cgggtgaagg	cccagggete	11400
gcagccaacg	teggggegge	aggccctgcc	atagccactg	gccccgtggg	ttagggacgg	11460
ggtcccccat	ggggaatggt	ttatggttcg	tgggggttat	tattttgggc	gttgcgtggg	11520
gtcaggtcca	cgactggact	gagcagacag	acccatggtt	tttggatggc	ctgggcatgg	11580
accgcatgta	ctggcgcgac	acgaacaccg	ggcgtctgtg	gctgccaaac	acccccgacc	11640
cccaaaaacc	accgcgcgga	tttctggcgt	gccaagctag	tcgaccaatt	ctcatgtttg	11700
acagettate	atcgcagatc	cgggcaacgt	tgttgccatt	gctgcaggcg	cagaactggt	11760
aggtatggaa	gatctataca	ttgaatcaat	attggcaatt	agccatatta	gtcattggtt	11820
atatagcata	aatcaatatt	ggctattggc	cattgcatac	gttgtatcta	tatcataata	11880
tgtacattta	tattggctca	tgtccaatat	gaccgccatg	ttgacattga	ttattgacta	11940
gttattaata	gtaatcaatt	acggggtcat	tagttcatag	cccatatatg	gagttccgcg	12000
ttacataact	tacggtaaat	ggecegectg	getgaeegee	caacgacccc	cgcccattga	12060
cgtcaataat	gacgtatgtt	cccatagtaa	cgccaatagg	gactttccat	tgacgtcaat	12120
gggtggagta	tttacggtaa	actgcccact	tggcagtaca	tcaagtgtat	catatgccaa	12180
gteegeeeee	tattgacgtc	aatgacggta	aatggcccgc	ctggcattat	gcccagtaca	12240
tgaccttacg	ggactttcct	acttggcagt	acatctacgt	attagtcatc	gctattacca	12300
tggtgatgcg	gttttggcag	tacaccaatg	ggcgtggata	gcggtttgac	tcacggggat	12360
ttccaagtct	ccaccccatt	gacgtcaatg	ggagtttgtt	ttggcaccaa	aatcaacggg	12420
actttccaaa	atgtcgtaat	aaccccgccc	cgttgacgca	aatgggeggt	aggegtgtae	12480
ggtgggaggt	ctatataagc	agagetegtt	tagtgaaccg	tcagatctct	agaagctgg	12539

REIVINDICACIONES

- 1. Un medicamento de combinación, que comprende
- un polipéptido de IL-12, o un vector de expresión de ácido nucleico que comprende una secuencia que codifica dicho polipéptido de IL-12, y
 - un ligando no agonista de CTLA-4 seleccionado del grupo que consiste en un anticuerpo, un fragmento de anticuerpo y una molécula de tipo anticuerpo, en donde dicho ligando no agonista de CTLA-4 es capaz de unirse a CTLA-4 con una constante de disociación de al menos 10⁻⁷ M⁻¹, y en donde dicho ligando no agonista de CTLA-4 se proporciona como una forma de dosificación para una administración sistémica,

para su uso en la terapia de una neoplasia maligna, en donde

- dicho polipéptido de IL-12 o dicho vector de expresión de ácido nucleico se proporcionan mediante la administración en un tumor, en las proximidades de un tumor o en el nódulo linfático asociado a un tumor.
- 2. Un medicamento de combinación para su uso en la terapia de una neoplasia maligna, de acuerdo con la reivindicación 1, en donde dicho polipéptido de IL-12 comprende
- a. una secuencia de polipéptido al menos el 95 % idéntica a la secuencia de la p35 humana (SEQ ID 05), y 20 b. una secuencia de polipéptido al menos el 95 % idéntica a la secuencia de la p40 humana (SEQ ID 06).
 - 3. Un medicamento de combinación para su uso en la terapia de una neoplasia maligna, de acuerdo con la reivindicación 2, en donde dicho polipéptido de IL-12 comprende un fragmento cristalizable de inmunoglobulina G.
 - 4. Un medicamento de combinación para su uso en la terapia de una neoplasia maligna de acuerdo con las reivindicaciones 2 o 3, en donde dicho polipéptido de IL-12 comprende un fragmento cristalizable de inmunoglobulina G humana, subgrupo 4.
- 30 5. Un medicamento de combinación para su uso en la terapia de una neoplasia maligna, de acuerdo con la reivindicación 4, en donde dicho polipéptido de IL-12 comprende
 - a, un fragmento cristalizable de inmunoglobulina G y una secuencia de IL-12 humana recombinante o sintética, o b. una secuencia al menos el 95 % idéntica a la SEQ ID 01.
 - 6. Un medicamento de combinación para su uso en la terapia de una neoplasia maligna de acuerdo con una cualquiera de las reivindicaciones anteriores, en donde dicho ligando no agonista de CTLA-4 es una gamma inmunoglobulina que se une a CTLA-4.
- 7. Un medicamento de combinación para su uso en la terapia de una neoplasia maligna de acuerdo con cualquiera 40 de las reivindicaciones anteriores, en donde dicho polipéptido de IL-12 se proporciona como una forma de dosificación para inyección intratumoral.
- 8. Un medicamento de combinación para su uso en la terapia de una neoplasia maligna de acuerdo con cualquiera 45 de las reivindicaciones anteriores, en donde dicho ligando no agonista de CTLA-4 se proporciona como una forma de dosificación para invección intravenosa o aplicación local.
- 9. Un medicamento de combinación de acuerdo con al menos una de las reivindicaciones 1 a 8 para su uso en un método de terapia de glioma, glioblastoma multiforme, meningioma, cáncer cerebral secundario, metástasis 50 cerebrales, melanoma, cáncer de páncreas, cáncer de pulmón, cáncer de próstata o cáncer de vejiga.
 - 10. Un medicamento de combinación de acuerdo con la reivindicación 1, en donde
 - dicho polipéptido de IL-12 es una proteína de fusión que comprende el aminoácido de p40 humana, la secuencia de aminoácidos de la p35 humana y el fragmento cristalizable de la IgG4 humana,
 - dicho polipéptido de IL-12 se proporciona como una forma de dosificación para administración intratumoral, y en donde
 - dicho ligando no agonista de CTLA-4 es una inmunoglobulina G proporcionada como una forma de dosificación para una administración sistémica,

para su uso en el tratamiento de neoplasia maligna, en particular, glioma, glioblastoma multiforme, meningioma, cáncer cerebral secundario, metástasis cerebrales, melanoma, cáncer de páncreas, cáncer de pulmón, cáncer de próstata o cáncer de vejiga.

65 11. Un medicamento de combinación para su uso en la terapia de una neoplasia maligna de acuerdo con al menos una de las reivindicaciones 1 a 8, en donde dicho vector de expresión de ácido nucleico es un adenovirus, un virus

38

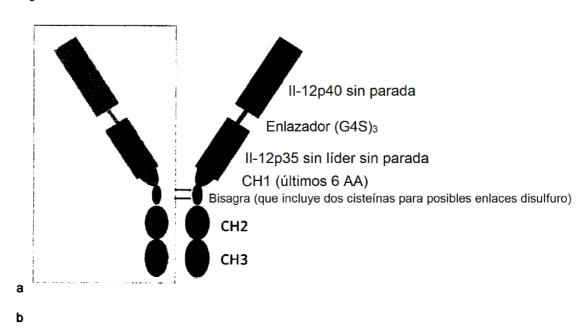
60

55

5

10

15


25

35

ES 2 671 728 T3

adenoasociado, un lentivirus o un herpesvirus.

Fig. 1

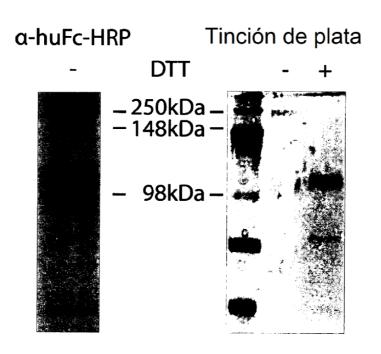


Fig. 1 c

PBMC tratadas con IL-12, IFN-γ en sobrenadante tras 2 días

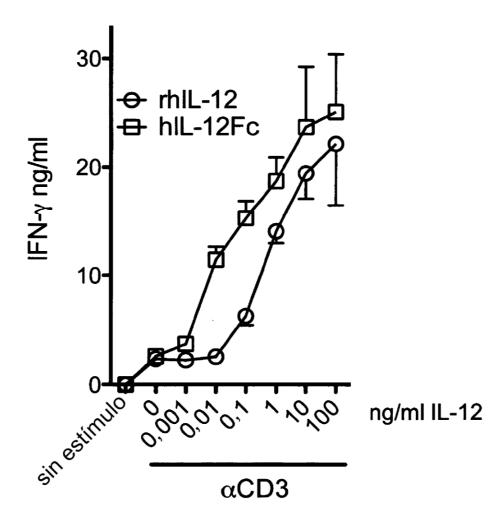


Fig. 2

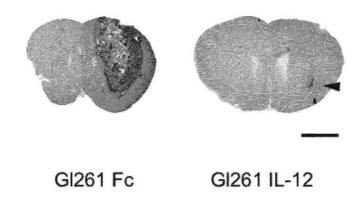
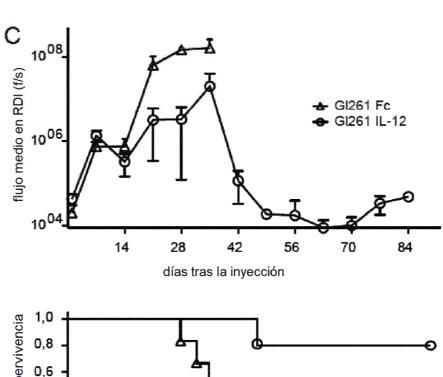



Fig. 3

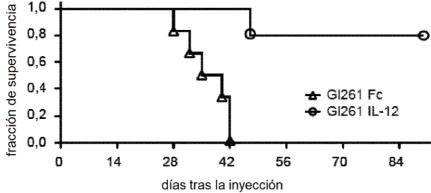


Fig. 4

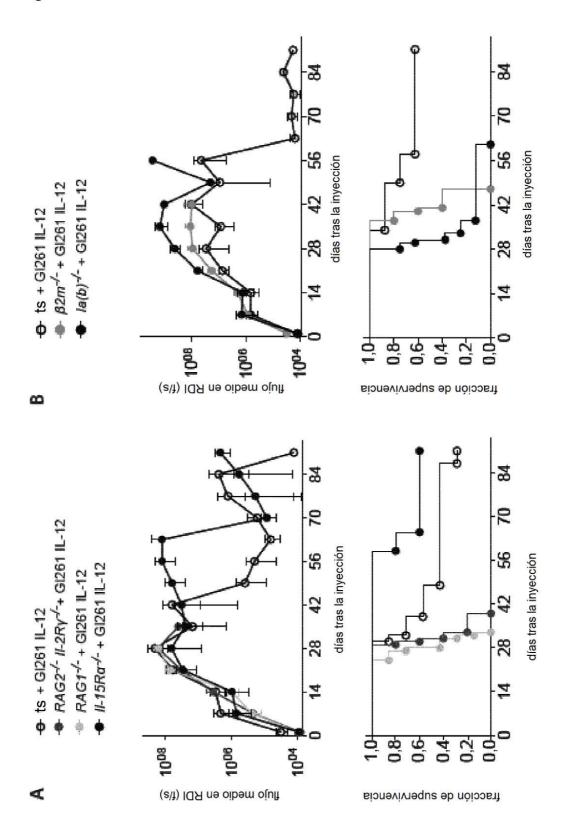


Fig. 5

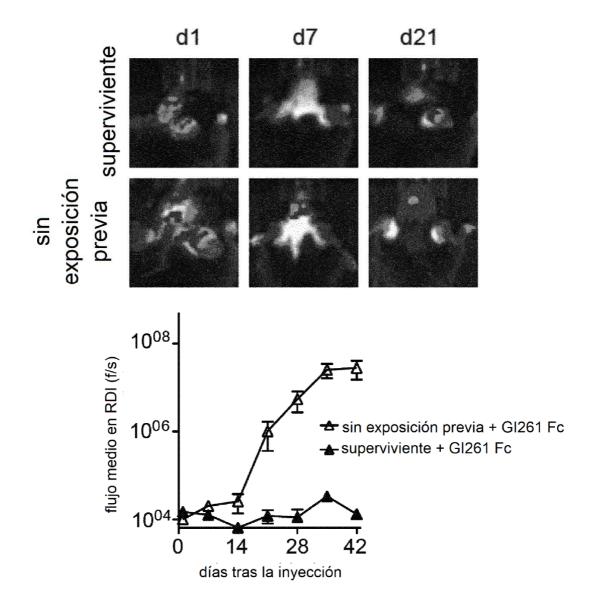


Fig. 6

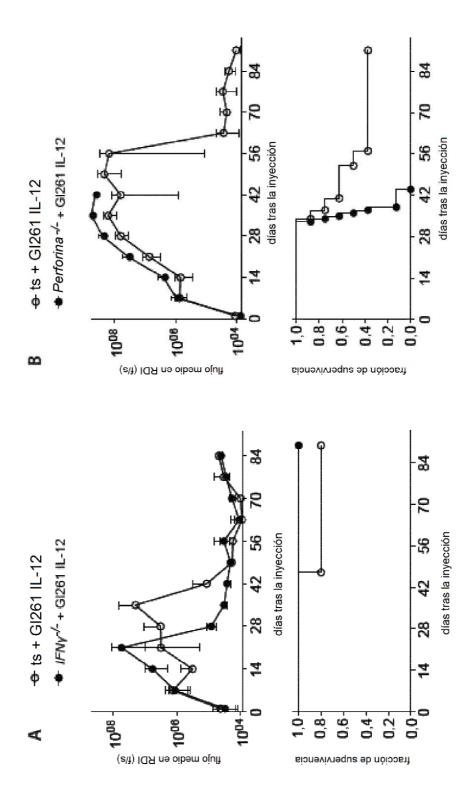


Fig. 7

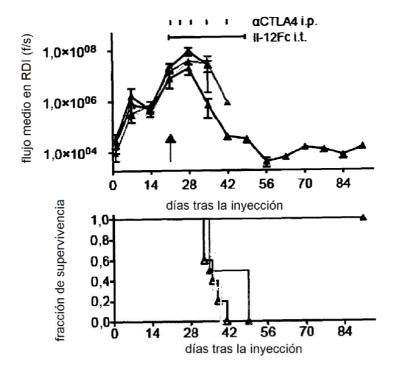
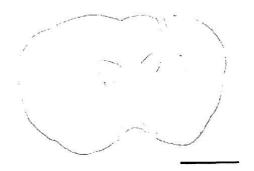
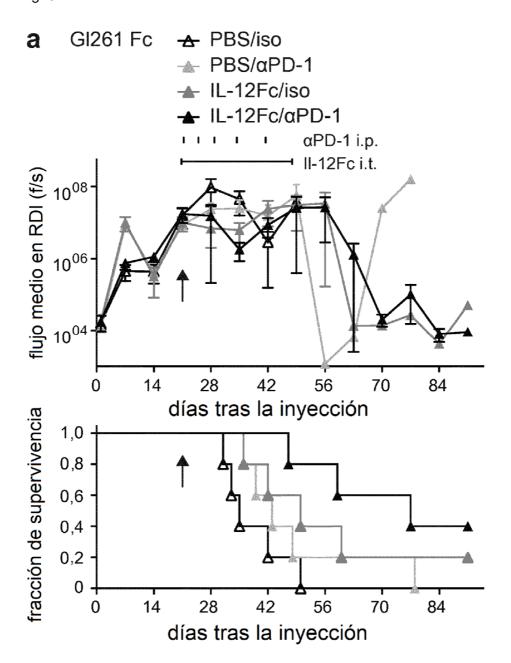



Fig. 8



GI261 Fc d 21

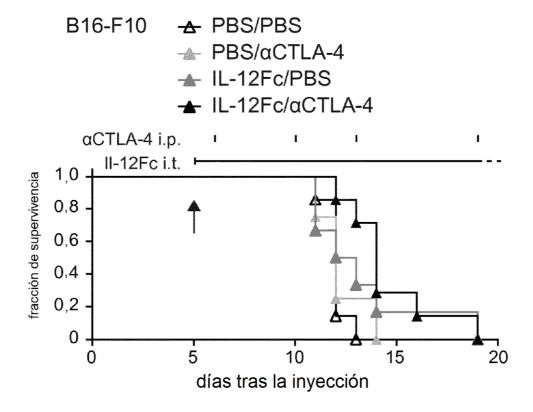

GI261 Fc d 91 tras el tratamiento con IL-12Fc/αCTLA-4

Fig. 9

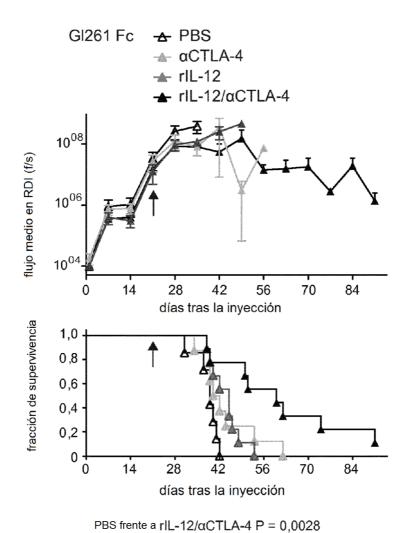

PBS/PBS frente a IL-12Fc/ α PD-1 P = 0,0064

Fig 10

PBS/PBS frente a IL-12Fc/ α CTLA-4 P = 0,0028

Fig. 11

PBS frente a rIL-12 P = 0,0146