

OFICINA ESPAÑOLA DE PATENTES Y MARCAS

ESPAÑA

11) Número de publicación: 2 673 279

(51) Int. CI.:

C07D 403/12 (2006.01) A61P 29/00 (2006.01)

C07D 401/14 (2006.01) C07D 405/14 (2006.01) C07D 231/14 (2006.01) C07D 401/12 (2006.01)

C07D 405/12 (2006.01) C07D 409/12 C07D 417/14 (2006.01) C07D 493/08 (2006.01)

A61K 31/4155 (2006.01)

(12)

TRADUCCIÓN DE PATENTE EUROPEA

T3

27.02.2015 PCT/JP2015/056584 (86) Fecha de presentación y número de la solicitud internacional:

(87) Fecha y número de publicación internacional: 03.09.2015 WO15129926

(96) Fecha de presentación y número de la solicitud europea: 27.02.2015 E 15713244 (0)

02.05.2018 (97) Fecha y número de publicación de la concesión europea: EP 3110810

(54) Título: Derivado de pirazol amida

(30) Prioridad:

28.02.2014 JP 2014039880

(45) Fecha de publicación y mención en BOPI de la traducción de la patente:

21.06.2018

(73) Titular/es:

TEIJIN PHARMA LIMITED (100.0%) Kasumigaseki Common Gate, West Tower, 2-1 Kasumigaseki 3-chome, Chiyoda-ku Tokyo 100-8585, JP

(72) Inventor/es:

BECK, HILARY PLAKE; BOOKER, SHON KEITH;

BREGMAN, HOWARD;

CEE, VICTOR J.;

CHAKKA, NAGASREE;

CUSHING, TIMOTHY D.;

EPSTEIN, OLEG;

FOX, BRIAN M.;

GEUNS-MEYER, STEPHANIE;

HAO, XIAOLIN;

HIBIYA, KENTA;

HIRATA, JUN;

HUA, ZIHAO;

HUMAN, JASON;

KAKUDA, SHINJI;

LOPEZ, PATRICIA;

NAKAJIMA, RYOTA;

OKADA, KAZUHISA;

Aviso:En el plazo de nueve meses a contar desde la fecha de publicación en el Boletín Europeo de Patentes, de la mención de concesión de la patente europea, cualquier persona podrá oponerse ante la Oficina Europea de Patentes a la patente concedida. La oposición deberá formularse por escrito y estar motivada; sólo se considerará como formulada una vez que se haya realizado el pago de la tasa de oposición (art. 99.1 del Convenio sobre Concesión de Patentes Europeas).

OFICINA ESPAÑOLA DE PATENTES Y MARCAS

ESPAÑA

(1) Número de publicación: 2 673 279

(72) Inventor/es:

OLSON, STEVEN H.;
OONO, HIROYUKI;
PENNINGTON, LEWIS D.;
SASAKI, KOSUKE;
SHIMADA, KEIKO;
SHIN, YOUNGSOOK;
WHITE, RYAN D.;
WURZ, RYAN P.;
YI, SHUYAN Y
ZHENG, XIAO MEI

(74) Agente/Representante:

ELZABURU, S.L.P

DESCRIPCIÓN

Derivado de pirazol amida

Campo técnico

5

10

15

20

25

30

35

40

45

La presente invención se refiere a compuestos novedosos que modulan la actividad RORγ, composición farmacéutica y uso en el tratamiento o en la prevención de enfermedades autoinmunitarias, enfermedades inflamatorias, enfermedades metabólicas o enfermedades cancerosas.

Técnica anterior

El receptor huérfano relacionado con retinoides gamma (RORγ) es un receptor nuclear que se une a ADN y regula la transcripción (NPL 1). Se generan dos isoformas de RORγ que difieren únicamente en el extremo N a partir del gen RORC; RORγ1 y RORγt (también mencionada como RORγ2) (NPL 2). RORγ se usa como un término para describir ambas isoformas RORγ1 y RORγt.

RORγ1 se expresa en una diversidad de tejidos incluyendo músculo, riñón, hígado y pulmón y se sabe que regula la adipogénesis (NPL 3). La pérdida del gen RORC en ratones acelera la diferenciación de preadipocitos en adipocitos pequeños y protege contra la resistencia a la insulina inducida por una dieta de alto contenido en grasas. Por consiguiente, inhibiendo la función de RORγ1, podría mejorarse la resistencia a la insulina.

RORyt se expresa exclusivamente en células del sistema inmunitario (NPL 4 y 5) y es un regulador fundamental de una red transcripcional relacionada con células Th17 asociada con patología autoinmunitaria. Las células Th17 son un subconjunto de linfocitos T auxiliares CD4+ implicados como factores clave del proceso inflamatorio en autoinmunidad y se caracterizan por la producción de la citocina proinflamatoria IL-17A. Las células Th17 también expresan CCR6, que media la migración a sitios de inflamación, se mantienen y se expanden por IL-23, a través del receptor de IL-23 (IL23R) y expresan otras citocinas y quimiocinas proinflamatorias, incluyendo IL-17F, IL-21, IL-22, CCL20 y GM-CSF, que juntas promueven el reclutamiento de otros tipos celulares inflamatorios, especialmente neutrófilos, para mediar la patología en el tejido diana. RORyt es necesario para diferenciación de células Th17 y regula directa e indirectamente la expresión de muchos de estos mediadores proinflamatorios (NPL 6). Los ratones con deficiencia de RORy tienen cantidades significativamente reducidas de células Th17 in vivo, carecen de la capacidad de producir IL-17A y otras citocinas relacionadas con Th17 ex vivo, y muestran resistencia a la inducción de diversos modelos de enfermedad tales como EAE, dermatitis, enteritis y nefritis (NPL 6 y de 12 a 14). Por lo tanto, inhibiendo la función de RORy, podría suprimirse el desarrollo de diversas enfermedades autoinmunitarias y enfermedades inflamatorias, en que están implicadas las citocinas relacionadas con células Th17. Además, la expresión de RORyt y la consecuente expresión de la red transcripcional relacionada con células Th17 se ha observado en otros tipos de células inmunitarias que también pueden ser importantes en la patogénesis de la enfermedad, concretamente linfocitos T CD8+, llamados Tc17s, linfocitos T γδ, linfocitos T citolíticos naturales, células linfoides innatas, linfocitos citolíticos naturales y mastocitos (NPL 7 y 8).

Las citocinas y quimiocinas relacionadas con células Th17 se han implicado en la patogénesis de diversas enfermedades autoinmunitarias e inflamatorias humanas incluyendo esclerosis múltiple, artritis reumatoide, psoriasis, artritis psoriásica, espondilitis anquilosante, fibrosis quística, asma, enfermedad pulmonar obstructiva crónica, enfisema, fibrosis pulmonar, eritematosis sistémica, vasculitis, granuloma de Wegener, polimialgia reumática, arteritis de gigantocitos, arteriosclerosis, miositis autoinmunitaria, uveítis, xeroftalmia, enfermedad inflamatoria del intestino, hepatitis inducida por alcohol, esteatohepatitis no alcohólica, cirrosis biliar primaria, hepatitis vírica y diabetes de tipo 1. (NPL 9 a 11).

Se sabe que RORγt posee un efecto inhibidor sobre la actividad antitumorigénica de las células Th9, un subtipo de linfocitos T auxiliares (NPL 15). En los ratones con deficiencia de RORγ, la producción de IL-9 a partir de células Th9 está potenciada y la formación de tumores está retardada en ratones a los que se ha inyectado células de melanoma. Por lo tanto, se cree que, inhibiendo la función de RORγ, se activa la función de células Th9 y puede suprimirse la formación de melanoma y otros tumores malignos.

A partir de las evidencias descritas anteriormente, puede esperarse que un modulador de RORy muestre beneficio terapéutico o preventivo en el tratamiento de; enfermedades metabólicas tales como diabetes; enfermedades autoinmunitarias y enfermedades inflamatorias; y melanoma y otras enfermedades cancerosas.

Se divulgan moduladores heterocíclicos de RORy en el documento WO 2014/023367.

50 Lista de citas

Documentos que no son patentes

NPL 1: Gigure, Endocrine. Reviews. 20: 689-725, 1999

NPL 2: Jetten, Nucl. Recept. Signal. 7: e003, 2009

NPL 3: Meissburger et al., EMBO Mol. Med. 3: 637-651, 2011

NPL 4: Hirose et al., Biochem. Biophys. Res. Commun. 30: 1976-1983, 1994

NPL 5: Eberl y Littman., Science. 9; 248-251, 2004

NPL 6: Ivanov et al., Cell 126: 1121-1133, 2006

5 NPL 7: Sutton et al., Eur. J. Immunol. 42: 2221-2231, 2012

NPL 8: Hueber et al., J. Immunol., 184: 3336-3340, 2010

NPL 9: Miossec et al., Nature Reviews Drug Discovery 11: 763-776,2012

NPL 10: Hammerich et al., Clin. Dev. Immunol. 2011: ID de artículo 345803, 2011

NPL 11: Ferraro et al., Diabetes 60: 2903-2913, 2011

10 NPL 12: Pantelyushin et al., J Clin Invest. 122: 2252-2256, 2012

NPL 13: Buonocore et al., Nature 464: 1371-1375, 2010

NPL 14: Steinmetz et al., J. Am. Soc. Nephrol. 22: 472-483, 2011

NPL 15: Purwar et al., Nat. Med. 18: 1248-1254, 2012

Sumario de la invención

15 Problema técnico

El objetivo de la presente invención es proporcionar un compuesto que tenga una función de inhibición de la actividad de RORy.

Solución al problema

Los autores de la presente invención realizaron una investigación concienzuda para conseguir el objetivo descrito anteriormente y, como resultado, descubrieron un compuesto novedoso representados por la fórmula (I) o una sal farmacéuticamente aceptable del mismo, teniendo el compuesto o una sal farmacéuticamente aceptable del mismo, una función de inhibición de la actividad RORy. Es decir, la presente invención es de la siguiente manera.

(1) Un compuesto representado por la fórmula (I) o una sal farmacéuticamente aceptable del mismo:

25 en donde:

 R^1 se selecciona entre F, Cl, Br, un grupo alquilo C_1 a C_6 sustituido con 0, 1, 2 o 3 grupos R^a y un grupo cicloalquilo C_3 a C_6 sustituido con 0, 1, 2 o 3 grupos R^a :

Y se selecciona entre un grupo cicloalquilo C_4 a C_6 , un grupo bicicloalquilo C_6 a C_9 y un grupo espiroalquilo C_6 a C_9 , todos los cuales están sustituidos con un grupo R^2 , 0 o 1 grupo R^6 y 0, 1, 2 o 3 grupos R^7 ;

R² se selecciona entre -OH, -CO₂H, -SO₃H, -CONH₂, -SO₂NH₂, un grupo (alcoxi C₁ a C₆)carbonilo sustituido con 0, 1, 2 o 3 grupos R^c, un grupo (alquil C₁ a C₆)aminocarbonilo sustituido 0, 1, 2 o 3 grupos R^c, un grupo alquilsulfonilo C₁ a C₆ sustituido con 0, 1, 2 o 3 grupos R^c, un grupo alquilaminosulfonilo C₁ a C₆ sustituido con 0, 1, 2 o 3 grupos R^c, un grupo (hidroxicarbonil)(alquilo C₁ a C₃) sustituido con 0, 1, 2 o 3 grupos R^c, un grupo (alcoxi C₁ a C₆)carbonil (alquilo C₁ a C₃) sustituido con 0, 1, 2 o 3 grupos R^c, un grupo (alquil C₁ a C₆)sulfonil(alquilo C₁ a C₃) sustituido con 0, 1, 2 o 3 grupos R^c;

R⁶ y R⁷ se seleccionan independientemente entre H, F, -OH, -NH₂, -CN, un grupo alquilo C₁ a C₆ sustituido con 0, 1,

2 o 3 grupos R^b y un grupo alcoxi C₁ a C₆ sustituido con 0, 1, 2 o 3 grupos R^b;

R³ se selecciona entre H, F, Cl, -CH₃ y -CF₃;

10

15

20

30

35

40

45

50

55

 R^4 se selecciona entre un grupo alquilo C_1 a C_6 sustituido con 0, 1, 2, 3, 4 o 5 grupos R^e , un grupo (alquenil C_2 a C_6)(alquilo C_1 a C_3) sustituido con 0, 1, 2, 3, 4 o 5 grupos R^e , un grupo (alquinil C_2 a C_6)(alquilo C_1 a C_3) sustituido con 0, 1, 2, 3, 4 o 5 grupos R^e , un grupo (alcoxi C_1 a C_6)(alquilo C_2 a C_4) sustituido con 0, 1, 2, 3, 4 o 5 grupos R^e , un grupo (aril C_6 a C_1)(alquilo C_1 a C_3) sustituido con 0, 1, 2, 3, 4 o 5 grupos R^f , un grupo (heteroarilo de 5 o 10 miembros)(alquilo C_1 a C_3) sustituido con 0, 1, 2, 3, 4 o 5 grupos R^f , un grupo cicloalquilo C_3 a C_8 sustituido con 0, 1, 2, 3, 4 o 5 grupos R^g , un grupo (cicloalquilo C_1 a C_3) sustituido con 0, 1, 2, 3, 4 o 5 grupos R^g , un grupo (cicloalquilo C_1 a C_3) sustituido con 0, 1, 2, 3, 4 o 5 grupos R^g , un grupo (heterocicloalquilo C_1 a C_3) sustituido con 0, 1, 2, 3, 4 o 5 grupos C_1 0 a 8 miembros sustituido con 0, 1, 2, 3, 4 o 5 grupos C_1 1 a C_2 2 sustituido con 0, 1, 2, 3, 4 o 5 grupos C_1 2 a C_3 3 sustituido con 0, 1, 2, 3, 4 o 5 grupos C_1 3 a 8 miembros)(alquilo C_1 4 a C_2 3) sustituido con 0, 1, 2, 3, 4 o 5 grupos C_1 4 a C_2 5 sustituido con 0, 1, 2, 3, 4 o 5 grupos C_2 6 a C_2 7 sustituido con 0, 1, 2, 3, 4 o 5 grupos C_2 8 sustituido con 0, 1, 2, 3, 4 o 5 grupos C_2 8 sustituido con 0, 1, 2, 3, 4 o 5 grupos C_2 9 sustituido con 0, 1, 2, 3, 4 o 5 grupos C_2 9 sustituido con 0, 1, 2, 3, 4 o 5 grupos C_2 9 sustituido con 0, 1, 2, 3, 4 o 5 grupos C_2 9 sustituido con 0, 1, 2, 3, 4 o 5 grupos C_2 9 sustituido con 0, 1, 2, 3, 4 o 5 grupos C_2 9 sustituido con 0, 1, 2, 3, 4 o 5 grupos C_2 9 sustituido con 0, 1, 2, 3, 4 o 5 grupos C_2 9 sustituido con 0, 1, 2, 3, 4 o 5 grupos C_2 9 sustituido con 0, 1, 2, 3, 4 o 5 grupos C_2 9 sustituido con 0, 1, 2, 3, 4 o 5 grupos C_2 9 sustituido con 0, 1, 2, 3, 4 o 5 grupos C_2 9 sustituido con 0, 1, 2, 3, 4 o 5 grupos C_2 9 sustituido con 0, 1, 2, 3, 4 o 5 grupos C_2 9

 R^5 se selecciona entre un grupo arilo C_6 a C_{10} sustituido con 0, 1, 2, 3, 4 o 5 grupos R^i , un grupo heteroarilo de 5 a 10 miembros sustituido con 0, 1, 2, 3 o 4 grupos R^i , un grupo cicloalquilo C_3 a C_8 sustituido con 0, 1, 2, 3, 4 o 5 grupos R^j , un grupo cicloalquenilo C_3 a C_8 sustituido con 0, 1, 2, 3, 4 o 5 grupos R^j y un grupo heterocicloalquilo de 3 a 8 miembros sustituido con 0, 1, 2, 3, 4 o 5 grupos R^j :

 R^8 y R^9 se seleccionan independientemente entre H, F, -OH, -NH₂, un grupo alquilo C₁ a C₃ sustituido con 0, 1, 2 o 3 grupos R^h ; o R^8 y R^9 forman juntos un grupo oxo o un grupo tioxo;

25 R^{12} es H; o R^4 y R^{12} son juntos $-CR^mR^m-CR^{13}R^{14}-CR^mR^m$ - o $-CR^{13}R^{14}-CR^mR^m$ - CR^mR^m - para formar un anillo de pirrolidina;

 R^{13} se selecciona entre H, un grupo alquilo C_1 a C_6 sustituido con 0, 1, 2, 3, 4 o 5 grupos R^e , un grupo arilo C_6 a C_{10} sustituido con 0, 1, 2, 3, 4 o 5 grupos R^f , un grupo arilo C_6 a C_{10} sustituido con 0, 1, 2, 3, 4 o 5 grupos R^f , un grupo (alquenil C_2 a C_6)(alquilo C_1 a C_3) sustituido con 0, 1, 2, 3, 4 o 5 grupos R^e , un grupo (alquinil C_2 a C_6)(alquilo C_1 a C_3) sustituido con 0, 1, 2, 3, 4 o 5 grupos R^e , un grupo (alcoxi C_1 a C_6)(alquilo C_2 a C_4) sustituido con 0, 1, 2, 3, 4 o 5 grupos R^e , un grupo (aril C_6 a C_{10})(alquilo C_1 a C_3) sustituido con 0, 1, 2, 3, 4 o 5 grupos R^f , un grupo (heteroarilo de 5 o 10 miembros)(alquilo C_1 a C_3) sustituido con 0, 1, 2, 3, 4 o 5 grupos R^f , un grupo (cicloalquilo C_3 a C_8) sustituido con 0, 1, 2, 3, 4 o 5 grupos R^g , un grupo (cicloalquilo C_3 a C_8) sustituido con 0, 1, 2, 3, 4 o 5 grupos R^g , un grupo (cicloalquilo C_3 a C_8) sustituido con 0, 1, 2, 3, 4 o 5 grupos R^g , un grupo (cicloalquilo C_3 a C_8) sustituido con 0, 1, 2, 3, 4 o 5 grupos R^g , un grupo (cicloalquilo C_3 a C_8) sustituido con 0, 1, 2, 3, 4 o 5 grupos R^g , un grupo (heterocicloalquilo de 3 a 8 miembros sustituido con 0, 1, 2, 3, 4 o 5 grupos R^g , un grupo (heterocicloalquilo de 3 a 8 miembros)(alquilo C_1 a C_3) sustituido con 0, 1, 2, 3, 4 o 5 grupos R^g , un grupo (heterocicloalquilo C_6 a C_9 sustituido con 0, 1, 2, 3, 4 o 5 grupos R^g , un grupo (pespiroalquilo C_6 a C_9)(alquilo C_1 a C_3) sustituido con 0, 1, 2, 3, 4 o 5 grupos R^g , un grupo heterobicicloalquilo C_6 a C_9 sustituido con 0, 1, 2, 3, 4 o 5 grupos R^g , un grupo heterobicicloalquilo C_6 a C_9 sustituido con 0, 1, 2, 3, 4 o 5 grupos R^g , un grupo heterobicicloalquilo C_6 a C_9 sustituido con 0, 1, 2, 3, 4 o 5 grupos R^g , un grupo heterobicicloalquilo C_6 a C_9 sustituido con 0, 1, 2, 3, 4 o 5 grupos R^g , un grupo heterobicicloalquilo C_1 a C_3) susti

 R^{14} se selecciona independientemente entre H y un grupo alquilo C_1 a C_6 sustituido con 0, 1, 2, 3, 4 o 5 grupos R^e ; o R^{13} y R^{14} forman juntos un anillo cicloalcano C_3 a C_8 sustituido con 0, 1, 2, 3, 4 o 5 grupos R^g , anillo cicloalqueno C_3 a C_8 sustituido con 0, 1, 2, 3, 4 o 5 grupos R^g o un anillo heterocicloalcano de 3 a 8 miembros sustituido con 0, 1, 2, 3, 4 o 5 grupos R^g ;

R^m se selecciona independientemente entre H, F, Cl, -CH₃ y -CF₃;

 R^9 y R^j se seleccionan independientemente entre F, Cl, un grupo alquilo C_1 a C_6 , -OH, -CN, -NH₂, -NO₂, -CO₂H, un grupo alcoxi C_1 a C_6 , un grupo mono(alquil C_1 a C_6)amino, un grupo di(alquil C_1 a C_6)amino, -CF₃, un grupo alquileno C_1 a C_6 sustituido con 0, 1, 2 o 3 grupos R^1 , un grupo alquenileno C_2 a C_6 sustituido con 0, 1, 2 o 3 grupos R^1 y un grupo oxo;

 R^f y R^i se seleccionan independientemente entre F, Cl, Br, -OH, -CN, -NO2, -CO2H, un grupo alquilo C_1 a C_6 sustituido con 0, 1, 2 o 3 grupos R^k , un grupo alquenilo C_2 a C_6 sustituido con 0, 1, 2 o 3 grupos R^k , un grupo alquenilo C_2 a C_6 sustituido con 0, 1, 2 o 3 grupos R^k , un grupo cicloalquilo C_3 a C_8 sustituido con 0, 1, 2 o 3 grupos R^k , un grupo alcoxi C_1 a C_6 sustituido con 0, 1, 2 o 3 grupos R^k , un grupo cicloalquiloxi C_3 a C_8 sustituido con 0, 1, 2 o 3 grupos R^k , un grupo alquiltio C_1 a C_6 sustituido con 0, 1, 2 o 3 grupos R^k , un grupo cicloalquiltio C_3 a C_8 sustituido con 0, 1, 2 o 3 grupos R^k , un grupo cicloalquiltio C_3 a C_8 sustituido con 0, 1, 2 o 3 grupos R^k , un grupo (alquil C_1 a C_6)carbonilo sustituido con 0, 1, 2 o 3 grupos Rolli sustituido con 0, 1, 2 o 3 grupos Rol

- 0, 1, 2 o 3 grupos R^k , un grupo heterocicloalquilo de 3 a 8 miembros sustituido con 0, 1, 2 o 3 grupos R^k , un grupo alquilsulfonilo C_1 a C_6 sustituido con 0, 1, 2 o 3 grupos R^k , -NH₂, un grupo mono(alquil C_1 a C_6)amino sustituido con 0, 1, 2 o 3 grupos R^k y un grupo di(alquil C_1 a C_6)amino sustituido con 0, 1, 2 o 3 grupos R^k ; y
- R^a, R^b, R^c, R^e, R^h, R^k y R^l se seleccionan independientemente entre F, un grupo alquilo C₁ a C₄, -OH, -CN, -NO₂, -5 NH₂, -CO₂H, un grupo alcoxi C₁ a C₆, un grupo mono(alquil C₁ a C₆)amino, un grupo di(alquil C₁ a C₆)amino, -CF₃ y un grupo oxo.
 - (2) El compuesto de acuerdo con la sección 1 o una sal farmacéuticamente aceptable del mismo, en donde Y se selecciona entre la fórmula (II-a), fórmula (II-b), fórmula (II-c) y fórmula (II-d):

10 en donde:

k es 0, 1 o 2; y

n es 1, 2 o 3.

(3) El compuesto de acuerdo con la sección 2 o una sal farmacéuticamente aceptable del mismo, en donde Y es un grupo representado por la fórmula (II-a):

$$R^{2}$$
 ξ ξ $[R^{7}]_{k}$ (II-a).

15

25

(4) El compuesto de acuerdo con la sección 2 o una sal farmacéuticamente aceptable del mismo, en donde Y es un grupo representado por la fórmula (II-d):

$$\mathbb{R}^2$$
 ξ - (II-d)

y n es 2.

- 20 (5) El compuesto según una cualquiera de las secciones 1 a 4 o una sal farmacéuticamente aceptable del mismo, en donde R³ es H.
 - (6) El compuesto según una cualquiera de las secciones 1 a 5 o una sal farmacéuticamente aceptable del mismo, en donde R^2 es $-CO_2H$ o un grupo hidroxicarbonilmetilo sustituido con 0, 1 o 2 grupos R^c .
 - (7) El compuesto según una cualquiera de las secciones 1 a 6 o una sal farmacéuticamente aceptable del mismo, en donde R¹² es H.
 - (8) El compuesto según una cualquiera de las secciones 1 a 7 o una sal farmacéuticamente aceptable del mismo, en donde R⁸ y R⁹ forman juntos un grupo oxo o R⁸ y R⁹ son ambos H.
 - (9) El compuesto según una cualquiera de las secciones 1 a 8 o una sal farmacéuticamente aceptable del mismo, en donde R^I es $-CF_3$, $-CF_2H$ o Cl.
- 30 (10) El compuesto según una cualquiera de las secciones 1 a 9 o una sal farmacéuticamente aceptable del mismo, en donde R⁵ es un grupo arilo C₆ a C₁₀ sustituido con 0, 1, 2, 3, 4 o 5 grupos Rⁱ o un grupo heteroarilo de 5 a 10 miembros sustituido con 0, 1, 2, 3 o 4 grupos Rⁱ.
 - (11) El compuesto según una cualquiera de las secciones 1 a 10 o una sal farmacéuticamente aceptable del mismo, en donde R^4 es un grupo alquilo C_1 a C_6 sustituido con 0, 1, 2 o 3 grupos R^e , un grupo (aril C_6 a C_{10})(alquilo C_1 a C_3)

sustituido con 0, 1, 2, 3, 4 o 5 grupos R^f , un grupo cicloalquilo C_3 a C_8 sustituido con 0, 1, 2, 3, 4 o 5 grupos R^g , un grupo (cicloalquil C_3 a C_8)(alquilo C_1 a C_3) sustituido con 0, 1, 2, 3, 4 o 5 grupos R^g , un grupo espiroalquilo C_6 a C_9 sustituido con 0, 1, 2, 3, 4 o 5 grupos R^g , un grupo bicicloalquilo C_5 a C_9 sustituido con 0, 1, 2, 3, 4 o 5 grupos R^g , un grupo bicicloalquilo C_5 a C_9 sustituido con 0, 1, 2, 3, 4 o 5 grupos R^g , un grupo (bicicloalquilo C_5 a C_9)(alquilo C_1 a C_3) sustituido con 0, 1, 2, 3, 4 o 5 grupos R^g o un grupo (heterobicicloalquil C_6 a C_9)(alquilo C_1 a C_3) sustituido con 0, 1, 2, 3, 4 o 5 grupos R^g .

- (12) Un método de tratamiento o de prevención de una enfermedad usando un compuesto de acuerdo con una cualquiera de las secciones 1 a 11 o sal farmacéuticamente aceptable del mismo, en el que la enfermedad es esclerosis múltiple, artritis reumatoide crónica, espondilitis anquilosante, eritematosis sistémica, psoriasis, artritis psoriásica, enfermedad inflamatoria del intestino o asma.
- (13) Una composición farmacéutica que comprende un compuesto de acuerdo con una cualquiera de las secciones 1 a 11 o sal farmacéuticamente aceptables del mismo.

Efectos ventajosos de la invención

La presente invención proporciona un compuesto novedoso que tiene excelente actividad de inhibición de RORy y un método para producir el mismo. Además, el compuesto de la presente invención o una sal farmacéuticamente aceptable del mismo es útil como agente terapéutico o agente preventivo para enfermedades autoinmunitarias, enfermedades inflamatorias (por ejemplo, esclerosis múltiple, artritis reumatoide crónica, espondilitis anquilosante, eritematosis sistémica, psoriasis, artritis psoriásica, enfermedad inflamatoria del intestino y asma), enfermedades metabólicas (especialmente diabetes), enfermedades cancerosas (especialmente melanoma maligno) o similares.

20 Descripción de las realizaciones

5

10

25

30

35

40

45

55

A continuación, se explicarán términos usados tanto independientemente como en combinación en la presente descripción. A menos que se describa particularmente, la explicación de cada sustituyente será común a cada posición. Además, cuando cualquier sustituyente variable (por ejemplo, Rⁱ y similares) se presenta en elementos constituyentes arbitrarios respectivos (por ejemplo, R^f, R^I y similares), su definición es independiente en los elementos constituyentes respectivos. Además, la combinación de sustituyentes y sustituyentes variables está permitida únicamente cuando tal combinación proporciona un compuesto químicamente estable. Cuando un sustituyente está sustituido en sí mismo con dos o más grupos, estos grupos plurales pueden existir en el mismo carbono o en carbonos diferentes siempre y cuando se forme una estructura estable.

Cada grupo de los compuestos representados por la fórmula (I) de la presente invención se define como se describe a continuación. El orden de escritura en cada grupo indica el orden de los enlaces en la fórmula (I). Por ejemplo, "un grupo (cicloalquil C_3 a C_8)(alquilo C_1 a C_3)" en R^4 se representa mediante un grupo en el que "un grupo alquilo C_1 a C_3 " está enlazado a un nitrógeno en la fórmula (I) y "un grupo cicloalquilo C_3 a C_8 " y "un grupo alquilo C_1 a C_3 " están enlazados. Además, el número situado a la derecha del carbono indica el número del carbono. Por ejemplo, " C_1 a C_6 " significa un grupo que tiene "de 1 a 6 carbonos". Es evidente que, en la presente invención, un número diferente de carbonos significa un grupo que tiene ese número de carbonos. Por ejemplo, "un grupo alquilo C_1 a C_4 " significa grupos alquilo que tiene de 1 a 4 carbonos entre aquellos definidos mediante "grupo alquilo C_1 a C_4 ". El tratamiento del número de carbonos en otros grupos es igual.

En la presente invención, "un grupo alquilo C₁ a C₆" significa un grupo hidrocarburo saturado lineal o ramificado que tiene de 1 a 6 carbonos. Por ejemplo, puede mencionarse un grupo metilo, un grupo etilo, un grupo n-propilo, un grupo n-butilo, un grupo n-pentilo, un grupo n-hexilo, un grupo isopropilo, un grupo isobutilo, un grupo sec-butilo, un grupo terc-butilo, un grupo isopentilo, un grupo 2-metilbutilo, un grupo 3-metilbutilo, un grupo 1-etilpropilo, un grupo 1,1-dimetilpropilo, un grupo 1,2-dimetilpentilo, un grupo 3,3-dimetilbutilo, un grupo 2,2-dimetilbutilo, un grupo 1,1-dimetilbutilo, un grupo 1,2-dimetilbutilo, un grupo 1,3-dimetilbutilo, un grupo 2,3-dimetilbutilo, un grupo 1-etilbutilo, un grupo 2-etilbutilo, y similares.

En la presente invención, "un grupo alquilo C_1 a C_4 " significa un grupo hidrocarburo alifático saturado, lineal o ramificado que tiene de 1 a 4 carbonos. Por ejemplo, puede mencionarse un grupo metilo, un grupo etilo, un grupo n-propilo, un grupo isopropilo, un grupo n-butilo, un grupo isobutilo, un grupo sec-butilo, un grupo terc-butilo y similares.

50 En la presente invención, "un grupo alquilo C_2 a C_4 " significa un grupo hidrocarburo alifático saturado, lineal o ramificado, que tiene de 2 a 4 carbonos. Por ejemplo, puede mencionarse un grupo etilo, un grupo n-propilo, un grupo isopropilo, un grupo n-butilo, un grupo isobutilo, un grupo sec-butilo, un grupo terc-butilo y similares.

En la presente invención, "un grupo alquilo C_1 a C_3 " significa un grupo hidrocarburo alifático saturado, lineal o ramificado que tiene de 1 a 3 carbonos. Por ejemplo, puede mencionarse un grupo metilo, un grupo etilo, un grupo n-propilo, un grupo isopropilo, y similares.

En la presente invención, "un grupo alquenilo C_2 a C_6 " significa un grupo hidrocarburo alifático, lineal o ramificado

que tiene de 2 a 6 carbonos con un doble enlace insaturado. Por ejemplo, puede mencionarse un grupo vinilo, un grupo 1-propenilo, un grupo 2-propenilo, un grupo 2-metil-1-propenilo, un grupo 2-metil-2-propenilo, un grupo 2-buten-1-ilo, un grupo 3-buten-1-ilo, un grupo 3-penten-1-ilo, un grupo 3-penten-1-ilo, un grupo 4-penten-1-ilo, un grupo 3-hexen-1-ilo, un grupo 3-metil-2-buten-1-ilo, un grupo 3-metil-3-penten-1-ilo, un grupo 3-metil-2-penten-1-ilo, un grupo 4-metil-3-penten-1-ilo, un grupo 4-metil-3-penten-1-ilo, un grupo 3-metil-2-penten-1-ilo, un grupo 4-metil-3-penten-1-ilo, un grupo 3-metil-3-penten-1-ilo, un grupo 4-metil-3-penten-1-ilo, un grupo 3-metil-3-penten-1-ilo, un gr

En la presente invención, "un grupo alquinilo C_2 a C_6 " significa un grupo hidrocarburo alifático lineal o ramificado que tiene de 2 a 6 carbonos con un triple enlace insaturado. Por ejemplo, puede mencionarse un grupo etinilo, un grupo 1-propin-1-ilo, un grupo 2-propin-1-ilo, un grupo 2-butin-1-ilo, un grupo 3-butin-1-ilo, un grupo 2-pentin-1-ilo, un grupo 3-pentin-1-ilo, un grupo 4-pentin-1-ilo, un grupo 3-hexin-1-ilo, un grup

10

25

30

35

40

45

50

En la presente invención, "un grupo alquileno C_1 a C_6 " significa un grupo bivalente formado retirando hidrógeno desde "un grupo alquilo C_1 a C_6 ". Por ejemplo, puede mencionarse metileno, etileno, propileno, butileno, pentileno, hexileno, y similares.

El grupo alquileno C₁ a C₆ puede enlazarse a un átomo de carbono o dos átomos de carbono diferentes para formar un anillo.

En la presente invención, "un grupo alquenileno C_2 a C_6 " significa un grupo bivalente que tiene un doble enlace en una posición arbitraria de "un grupo alquileno C_2 a C_6 ". Puede mencionarse vinileno, propenileno, 1-butenileno, 2-butenileno, 1-pentenileno, 2-pentenileno, 1-hexenileno, 2-hexenileno, 3-hexenileno, y similares.

20 En la presente invención, "un grupo cicloalquilo C₃ a C₈" significa un grupo alquilo cíclico que tiene de 3 a 8 carbonos. Por ejemplo, puede mencionarse un grupo ciclopropilo, un grupo ciclobutilo, un grupo ciclopentilo, un grupo ciclohexilo, un grupo ciclohexilo, y similares.

En la presente invención, "un grupo cicloalquilo C₄ a C₆" significa un grupo alquilo cíclico que tiene de 4 a 6 carbonos. Por ejemplo, puede mencionarse un grupo ciclobutilo, un grupo ciclopentilo, un grupo ciclohexilo, y similares.

En la presente invención, "un grupo bicicloalquilo C_6 a C_9 " significa un grupo alquilo bicíclico que tiene de 6 a 9 carbonos. Por ejemplo, puede mencionarse un grupo biciclo[3,1,0]hexanilo, un grupo biciclo[2,2,0]hexanilo, un grupo biciclo[2,2,1]hexanilo, un grupo biciclo[3,2,0]heptanilo, un grupo biciclo[3,1,1]heptanilo, un grupo biciclo[4,1,0]heptanilo, un grupo octahidropentalenilo, un grupo biciclo[4,2,2]octanilo, un grupo biciclo[4,1,0]octanilo, un grupo biciclo[4,2,0]octanilo, un grupo biciclo[4,1,0]octanilo, un grupo biciclo[5,1,0]octanilo, un grupo biciclo[5,1,0]octanilo, un grupo biciclo[5,2,0]nonanilo, un grupo biciclo[4,2,1]nonanilo, un grupo biciclo[5,2,0]nonanilo, y similares.

En la presente invención, "un grupo bicicloalquilo C₅ a C₀" significa un grupo alquilo bicíclico que tiene de 5 a 9 carbonos. Por ejemplo, puede mencionarse un grupo biciclo[1,1,1]pentanilo, un grupo biciclo[3,1,0]hexanilo, un grupo biciclo[2,2,0]hexanilo, un grupo biciclo[2,2,1]hexanilo, un grupo biciclo[3,2,0]heptanilo, un grupo biciclo[2,2,1]heptanilo, un grupo biciclo[4,1,0]heptanilo, un grupo octahidropentalenilo, un grupo biciclo[2,2,2]octanilo, un grupo biciclo[3,2,1]octanilo, un grupo biciclo[4,1,0]heptanilo, un grupo biciclo[4,2,0]octanilo, un grupo biciclo[4,1,1]octanilo, un grupo biciclo[5,1,0]octanilo, un grupo biciclo[4,2,1]nonanilo, un grupo biciclo[5,2,0]nonanilo, y similares.

En la presente invención, "grupo espiroalquilo" significa un grupo que consiste en dos restos cicloalquilo que tienen exactamente un átomo en común. "Un grupo espiroalquilo C_6 a C_9 " significa un grupo espiroalquilo que tiene de 6 a 9 carbonos. Por ejemplo, puede mencionarse un grupo espiro[2,3]hexanilo, un grupo espiro[2,4]heptanilo, un grupo espiro[3,3]heptanilo, un grupo espiro[2,5]octanilo, un grupo espiro[3,4]octanilo, un grupo espiro[2,6]nonanilo, un grupo espiro[3,5]nonanilo, un grupo espiro[4,4]nonanilo, y similares.

En la presente invención, "un grupo (espiroalquil C_6 a C_9)(alquilo C_1 a C_3)" significa un grupo obtenido sustituyendo "un grupo alquilo C_1 a C_3 " con "un grupo (espiroalquilo C_6 a C_9)" en una posición arbitraria. Por ejemplo, puede mencionarse un grupo espiro[2,3]hexanilmetilo, un grupo espiro[2,4]heptanilmetilo, un grupo espiro[3,3]heptanilmetilo, un grupo espiro[2,5]octanilmetilo, un grupo espiro[3,4]octanilmetilo, un grupo espiro[3,6]nonanilmetilo, un grupo espiro[4,4]nonanilmetilo, y similares.

En la presente invención, "un grupo cicloalquenilo C_3 a C_8 " significa un grupo que tiene un doble enlace en una posición arbitraria de "un grupo cicloalquilo C_3 a C_8 " que tiene de 3 a 8 carbonos. Por ejemplo, puede mencionarse un grupo ciclopropenilo, un grupo ciclobutenilo, un grupo ciclopentenilo, un grupo ciclohexenilo, un grupo ciclohexenilo, un grupo ciclohexenilo, y similares.

En la presente invención, "un grupo (cicloalquil C_3 a C_8)(alquilo C_1 a C_3)" significa un grupo obtenido sustituyendo "un grupo alquilo C_1 a C_3 " con "un grupo cicloalquilo C_3 a C_8 " en una posición arbitraria. Por ejemplo, puede

mencionarse un grupo ciclopropilmetilo, un grupo ciclopropiletilo, un grupo ciclopropiletilo, un grupo ciclopentilmetilo, un grupo ciclopentil

- En la presente invención, "un grupo (cicloalquenil C₃ a C₈)(alquilo C₁ a C₃)" significa un grupo obtenido sustituyendo
 "un grupo alquilo C₁ a C₃" con "un grupo cicloalquenilo C₃ a C₈" en una posición arbitraria. Por ejemplo, puede
 mencionarse un grupo ciclopropenilmetilo, un grupo ciclopropeniletilo, un grupo ciclopropeniletilo, un grupo ciclopropeniletilo, un grupo ciclopropenilmetilo, un grupo ciclopropeniletilo, un grupo ciclopropenilmetilo, un grupo ciclopropeni
- En la presente invención, "un grupo (alquenil C₂ a C₆)(alquilo C₁ a C₃)" significa un grupo obtenido sustituyendo "un grupo alquilo C₁ a C₃" con "un grupo alquenilo C₂ a C₆" en una posición arbitraria. Por ejemplo, puede mencionarse un grupo 2-propenilo, un grupo 1-metil-2-propenilo, un grupo 2-metil-2-propenilo, un grupo 2-buten-1-ilo, un grupo 3-buten-1-ilo, un grupo 2-penten-1-ilo, un grupo 3-penten-1-ilo, un grupo 4-penten-1-ilo, un grupo 5-hexen-1-ilo, un grupo 4-hexen-1-ilo, un grupo 3-hexen-1-ilo, un grupo 1-metil-2-buten-1-ilo, un grupo 1-etil-2-buten-1-ilo, un grupo 2-metil-2-buten-1-ilo, un grupo 3-metil-2-penten-1-ilo, un grupo 3-metil-2-penten-
- En la presente invención, "un grupo (alquinil C₂ a C₆)(alquilo C₁ a C₃)" significa un grupo obtenido sustituyendo "un grupo alquilo C₁ a C₃" con "un grupo alquinilo C₂ a C₆" en una posición arbitraria. Por ejemplo, puede mencionarse un grupo 2-propin-1-ilo, un grupo 1-metil-2-propin-1-ilo, un grupo 1-metil-2-propin-1-ilo, un grupo 2-butin-1-ilo, un grupo 1-metil-3-butin-1-ilo, un grupo 1-metil-3-butin-1-ilo, un grupo 1-metil-3-butin-1-ilo, un grupo 1-metil-3-pentin-1-ilo, un grupo 3-pentin-1-ilo, un
- En la presente invención, "un grupo alcoxi C₁ a C₆" significa un grupo obtenido sustituyendo un grupo oxi con "un grupo alquilo C₁ a C₆". Por ejemplo, puede mencionarse un grupo metoxi, un grupo etoxi, un grupo n-propoxi, un grupo isopropoxi, un grupo n-butoxi, un grupo sec-butoxi, un grupo 2-metilpropoxi, un grupo n-pentiloxi, un grupo isopentiloxi, un grupo 2-metilpropoxi, un grupo 1-etilpropoxi, un grupo 2,2-dimetilpropoxi, un grupo n-hexiloxi, un grupo 4-metilpentoxi, un grupo 3- metilpentoxi, un grupo 2-metilpentoxi, un grupo 3,3-dimetilbutoxi, un grupo 2,2-dimetilbutoxi, un grupo 1,1-dimetilbutoxi, un grupo terc-butoxi, y similares.

35

40

45

50

55

60

- En la presente invención, "un grupo (alcoxi C₁ a C₆)(alguilo C₂ a C₄)" significa un grupo obtenido sustituyendo "un grupo alquilo C2 a C4" con "un grupo alcoxi C1 a C6" o, en otras palabras, un grupo obtenido reemplazando un carbono de un grupo alquilo C₄ a C₁₁ con un oxígeno en una posición arbitraria químicamente posible. Por ejemplo, puede mencionarse un grupo metoxietilo, un grupo etoxietilo, un grupo propiloxietilo, un grupo isopropiloxietilo, un grupo butiloxietilo, un grupo isobutiloxietilo, un grupo sec-butiloxietilo, un grupo terc-butiloxietilo, un grupo isopentiloxietilo, un grupo 2-metilbutiloxietilo, un grupo 3-metilbutiloxietilo, un grupo 1-etilpropiloxietilo, un grupo 1,1dimetilpropiloxietilo, un grupo 1,2-dimetilpropiloxietilo, un grupo neopentiloxietilo, un grupo hexiloxietilo, un grupo 4metilpentiloxietilo, un grupo 3-metilpentiloxietilo, un grupo 2-metilpentiloxietilo, un grupo 1-metilpentiloxietilo, un grupo 3,3-dimetilbutiloxietilo, un grupo 2,2-dimetilbutiloxietilo, un grupo 1,1-dimetilbutiloxietilo, un grupo dimetilbutiloxietilo, un grupo 1,3-dimetilbutiloxietilo, un grupo 2,3-dimetilbutiloxietilo, un grupo 1-etilbutiloxietilo, un grupo 2-etilbutiloxietilo, un grupo metoxipropilo, un grupo etoxipropilo, un grupo propiloxipropilo, un grupo isopropiloxipropilo, un grupo butiloxipropilo, un grupo isobutiloxipropilo, un grupo sec-butiloxipropilo, un grupo tercbutiloxipropilo, un grupo isopentiloxipropilo, un grupo 2-metilbutiloxipropilo, un grupo 3-metilbutiloxipropilo, un grupo 1-etilpropiloxipropilo, un grupo 1,1-dimetilpropiloxipropilo, un grupo 1,2-dimetilpropiloxipropilo, un grupo neopentiloxipropilo, un grupo hexiloxipropilo, un grupo 4-metilpentiloxipropilo, un grupo 3-metilpentiloxipropilo, un grupo 2-metilpentiloxipropilo, un grupo 1 -metilpentiloxipropilo, un grupo 3,3-dimetilbutiloxipropilo, un grupo 2,2-dimetilbutiloxipropilo, un grupo 1,1-dimetilbutiloxipropilo, un grupo 1,2-dimetilbutiloxipropilo, un grupo 1,3-dimetilbutiloxipropilo, un grupo 2,3-dimetilbutiloxipropilo, un grupo 2-etilbutiloxipropilo, un grupo 2-etilbutiloxipropilo, un grupo metoxibutilo, un grupo etoxibutilo, un grupo propiloxibutilo, un grupo isopropiloxibutilo, un grupo butiloxibutilo, un grupo isobutiloxibutilo, un grupo sec-butiloxibutilo, un grupo terc-butiloxibutilo, un grupo isopentiloxibutilo, un grupo 2-metilbutiloxibutilo, un grupo 3-metilbutiloxibutilo, un grupo 1-etilpropiloxibutilo, un grupo 1.1-dimetilpropiloxibutilo, un grupo 1,2-dimetilpropiloxibutilo, un grupo neopentiloxibutilo, un grupo hexiloxibutilo, un grupo 4-metilpentiloxibutilo, un grupo 3-metilpentiloxibutilo, un grupo 2-metilpentiloxibutilo, un grupo 1metilpentiloxibutilo, un grupo 3,3-dimetilbutiloxibutilo, un grupo 2,2-dimetilbutiloxibutilo, un grupo 1,1-dimetilbutiloxibutilo, un grupo 1,2-dimetilbutiloxibutilo, un grupo 1,3-dimetilbutiloxibutilo, un grupo 2,3dimetilbutiloxibutilo, un grupo 1-etilbutiloxibutilo, un grupo 2-etilbutiloxibutilo, y similares.
 - En la presente invención, "un grupo alquiltio C_1 a C_6 " significa un grupo obtenido sustituyendo un grupo tio con "un grupo alquilo C_1 a C_6 ". Por ejemplo, puede mencionarse un grupo metiltio, un grupo etiltio, un grupo propiltio, un grupo isopropiltio, un grupo butiltio, un grupo isobutiltio, un grupo sec-butiltio, un grupo terc-butiltio, un grupo pentiltio, un grupo neopentiltio, un grupo terc-pentiltio, un grupo 2-metilbutiltio, un grupo hexiltio, un grupo isohexiltio, y similares.

En la presente invención, "un grupo cicloalquiltio C_3 a C_8 " significa un grupo obtenido sustituyendo un grupo tio con "un grupo cicloalquilo C_3 a C_8 ". Por ejemplo, puede mencionarse un grupo ciclopropiltio, un grupo ciclobutiltio, un grupo ciclohexiltio, un grupo ciclohexiltio ciclohexiltio ciclohexiltio

En la presente invención, "un grupo (alquil C₁ a C₆)carbonilo" significa un grupo obtenido sustituyendo un grupo carbonilo con "un grupo alquilo C₁ a C₆". Por ejemplo, puede mencionarse un grupo acetilo, un grupo propionilo, un grupo butirilo, un grupo isobutirilo, un grupo n-pentilcarbonilo, un grupo sec-butilcarbonilo, un grupo terc-butilcarbonilo, un grupo isopentilcarbonilo, un grupo 2-metilbutilcarbonilo, un grupo 3-metilbutilcarbonilo, un grupo 1-etilpropilcarbonilo, un grupo 1,1-dimetilpropilcarbonilo, un grupo 1,2-dimetilpropilcarbonilo, un grupo 2-metilpentilcarbonilo, un grupo 2-metilpentilcarbonilo, un grupo 2-dimetilbutilcarbonilo, un grupo 1,1-dimetilbutilcarbonilo, un grupo 3,3-dimetilbutilcarbonilo, un grupo 2,2-dimetilbutilcarbonilo, un grupo 1,2-dimetilbutilcarbonilo, un grupo 1,3-dimetilbutilcarbonilo, un grupo 1-etilbutilcarbonilo, un grupo 2-etilbutilcarbonilo, un grupo n-hexilcarbonilo, γ similares.

5

10

15

20

25

30

35

40

En la presente invención, "un grupo (alcoxi C₁ a C₆)carbonilo" significa un grupo obtenido sustituyendo un grupo carbonilo con "un grupo alcoxi C₁ a C₆". Por ejemplo, puede mencionarse un grupo metoxicarbonilo, un grupo etoxicarbonilo, un grupo n-propoxicarbonilo, un grupo isopropoxicarbonilo, un grupo n-butoxicarbonilo un grupo isobutoxicarbonilo, un grupo sec-butoxicarbonilo, un grupo terc-butoxicarbonilo, un grupo n-pentoxicarbonilo, un grupo 1-pentoxicarbonilo, un grupo 2-metilbutoxicarbonilo, un grupo 3-metilbutoxicarbonilo, un grupo 1-etilpropoxicarbonilo, un grupo 4-metilpentoxicarbonilo, un grupo 3-metilpentoxicarbonilo, un grupo 1-metilpentoxicarbonilo, un grupo 3-metilpentoxicarbonilo, un grupo 2-metilpentoxicarbonilo, un grupo 1-metilpentoxicarbonilo, un grupo 3,3-dimetilbutoxicarbonilo, un grupo 2,2-dimetilbutoxicarbonilo, un grupo 1,1-dimetilbutoxicarbonilo, un grupo 1,2-dimetilbutoxicarbonilo, un grupo 1,3-dimetilbutoxicarbonilo, un grupo 2,3-dimetilbutoxicarbonilo, un grupo 1-etilbutoxicarbonilo, un grupo 2-etilbutoxicarbonilo, un grupo n-hexoxicarbonilo, y similares.

En la presente invención, "un grupo cicloalquiloxi C_3 a C_8 " significa un grupo obtenido sustituyendo un grupo oxi con "un grupo cicloalquilo C_3 a C_8 ". Por ejemplo, puede mencionarse un grupo ciclopropiloxi, un grupo ciclobutiloxi, un grupo ciclopentiloxi, un grupo ciclohexiloxi, u

En la presente invención, "un grupo mono(alquil C_1 a C_6)amino" significa un grupo obtenido sustituyendo un grupo amino con "un grupo alquilo C_1 a C_6 ". Por ejemplo, puede mencionarse un grupo metilamino, un grupo etilamino, un grupo propilamino, un grupo isopropilamino, un grupo butilamino, un grupo isobutilamino, un grupo sec-butilamino, un grupo terc-butilamino, un grupo pentilamino, un grupo hexilamino, y similares.

En la presente invención, "un grupo di(alquil C_1 a C_6)amino" significa un grupo obtenido sustituyendo un grupo amino con dos de "un grupo alquilo C_1 a C_6 " iguales o diferentes. Por ejemplo, puede mencionarse un grupo dimetilamino, un grupo dietilamino, un grupo dipropilamino, un grupo diisopropilamino, un grupo diisopropilamino, un grupo dijectilamino, y similares.

En la presente invención, "un grupo (alquil C_1 a C_6)aminocarbonilo" significa un grupo obtenido sustituyendo a grupo carbonilo con "un grupo (alquil C_1 a C_6)amino". Por ejemplo, puede mencionarse un grupo metilaminocarbonilo, un grupo etilaminocarbonilo, un grupo propilaminocarbonilo, un grupo isopropilaminocarbonilo, un grupo butilaminocarbonilo, un grupo isobutilaminocarbonilo, un grupo sec-butilaminocarbonilo, un grupo tercbutilaminocarbonilo, un grupo pentilaminocarbonilo, un grupo hexilaminocarbonilo, y similares.

En la presente invención, "un grupo alquilsulfonilo C_1 a C_6 " significa un grupo obtenido sustituyendo un grupo sulfonilo con "un grupo alquilo C_1 a C_6 ". Por ejemplo, puede mencionarse un grupo metilsulfonilo, un grupo etilsulfonilo, un grupo isopropilsulfonilo, un grupo butilsulfonilo, un grupo isobutilsulfonilo, un grupo betilsulfonilo, un grupo terc-butilsulfonilo, un grupo pentilsulfonilo, un grupo hexilsulfonilo, y similares.

- En la presente invención, "un grupo alquilaminosulfonilo C_1 a C_6 " significa un grupo obtenido sustituyendo un grupo sulfonilo con "un grupo mono(alquil C_1 a C_6)amino". Por ejemplo, puede mencionarse un grupo metilaminosulfonilo, un grupo etilaminosulfonilo, un grupo propilaminosulfonilo, un grupo isopropilaminosulfonilo, un grupo butilaminosulfonilo, un grupo isobutilaminosulfonilo, un grupo sec-butilaminosulfonilo, un grupo tercbutilaminosulfonilo, un grupo pentilaminosulfonilo, un grupo hexilaminosulfonilo, y similares.
- En la presente invención, "un grupo (hidroxicarbonil)(alquil C₁ a C₃)" significa un grupo obtenido sustituyendo "un grupo alquilo C₁ a C₃" con "un grupo (hidroxicarbonilo)" en una posición arbitraria. Por ejemplo, puede mencionarse un grupo hidroxicarbonilmetilo, un grupo (1-hidroxicarbonil)etilo, un grupo (2-hidroxicarbonil)etilo, un grupo (3-hidroxicarbonil)propilo, un grupo (1-hidroxicarbonil)propilo, un grupo (1-hidroxicarbonil)propilo (1-
- En la presente invención, "un grupo (alcoxi C₁ a C₆)carbonil(alquilo C₁ a C₃)" significa un grupo obtenido sustituyendo "un grupo alquilo C₁ a C₃" con "un grupo (alcoxi C₁ a C₆)carbonilo" en una posición arbitraria. Por ejemplo, puede mencionarse un grupo metoxicarbonilmetilo, un grupo metoxicarboniletilo, un grupo (3-metoxicarbonil)propilo, un grupo (2-metoxicarbonil)propilo, un grupo (1-metoxicarbonil)propilo, un grupo (1-metoxicarbonil)propilo (1-metoxicarbonil)propilo (1-metoxicarbonil)propilo (1-metoxicarbonil)propilo (1-metoxicarbonil)propilo (1-metoxicarbonil)propilo (1-metoxicarbonil)propilo (1-metoxicarbonil)propilo (1-metoxicarbonilo (1-metoxicarbonilo (1-metoxicarbonilo (1-metoxicarbonilo (1-metoxicarbonilo (1-metoxicarbonilo (1-metoxicarbonilo (1-metoxicarbonilo (1-metoxicarbonilo (1

ES 2 673 279 T3

metoxicarbonil)(1-metil)etilo, un grupo etoxicarbonilmetilo, un grupo etoxicarboniletilo, un grupo (3-etoxicarbonil)propilo, un grupo (2-etoxicarbonil)propilo, un grupo (1-etoxicarbonil)propilo, un grupo (1-etoxicarbonil)(1-metil)etilo, y similares.

En la presente invención, "un grupo (alquil C₁ a C₆)sulfonil(alquilo C₁ a C₃)" significa un grupo obtenido sustituyendo
"un grupo alquilo C₁ a C₃" con "un grupo (alquil C₁ a C₆)sulfonilo" en una posición arbitraria. Por ejemplo, puede
mencionarse un grupo metilsulfonilmetilo, un grupo metilsulfoniletilo, un grupo (3-metilsulfonil)propilo, un grupo (2metilsulfonil)propilo, un grupo (1-metilsulfonil)propilo, un grupo (1-metilsulfonil)propilo, un grupo (2-etilsulfonil)propilo, un grupo (1-etilsulfonil)propilo, un grupo (1-etilsulfonil)propilo, un grupo (1-etilsulfonil)(1-metil)etilo, y similares.

En la presente invención, "un grupo arilo C₆ a C₁₀" significa un grupo hidrocarburo aromático que tiene de 6 a 10 carbonos. Por ejemplo, puede mencionarse un grupo fenilo, un grupo naftilo, un grupo indenilo, un grupo tetrahidronaftilo, un grupo indanilo, un grupo azulenilo, y similares.

15

55

En la presente invención, "un grupo ariloxi C_6 a C_{10} " significa un grupo obtenido sustituyendo un grupo oxi con "un grupo arilo C_6 a C_{10} ". Por ejemplo, puede mencionarse un grupo feniloxi, un grupo naftiloxi, un grupo indeniloxi, un grupo tetrahidronaftiloxi, un grupo indaniloxi, un grupo azuleniloxi, y similares.

En la presente invención, "un grupo (aril C_6 a C_{10})(alquilo C_1 a C_3)" significa un grupo obtenido sustituyendo "un grupo alquilo C_1 a C_3 " con "un grupo arilo C_6 a C_{10} ". Por ejemplo, puede mencionarse un grupo bencilo, un grupo fenetilo, un grupo fenetilo, un grupo fenetilo, y similares.

En la presente invención, "un grupo heteroarilo de 5 a 10 miembros" significa un grupo heterocíclico monocíclico o bicíclico de 5 a 10 miembros que tiene aromaticidad, en donde el grupo heterocíclico contiene de 1 a 5 heteroátomos 20 seleccionados entre oxígeno, azufre y nitrógeno. Además, en el caso de un grupo heterocíclico aromático bicíclico, si un anillo es un anillo aromático o un anillo heterocíclico aromático, el otro anillo puede ser un anillo no aromático. En tal grupo heterocíclico aromático, el número de heteroátomos respectivos y combinaciones de los mismos no están particularmente limitados, siempre y cuando el anillo que tiene el número de miembros prescrito pueda formarse y pueda existir estabilidad química. Como tal "un grupo heteroarilo de 5 a 10 miembros", por ejemplo, puede 25 mencionarse un grupo piridilo, un grupo pirazilo, un grupo pirimidilo, un grupo piridazinilo, un grupo furilo, un grupo tienilo, un grupo pirrol, un grupo pirazolilo, un grupo 1,3-dioxaindanilo, un grupo isoxazolilo, un grupo isotiazolilo, un grupo benzofuranilo, un grupo isobenzofurilo, un grupo benzofienilo, un grupo indolilo, un grupo isoindolilo, un grupo cromanilo, un grupo benzotiazolilo, un grupo benzoimidazolilo, un grupo benzoxazolilo, un grupo piranilo, un grupo 30 imidazolilo, un grupo oxazolilo, un grupo tiazolilo, un grupo triazinilo, un grupo triazolilo, un grupo furazanilo, un grupo tiadiazolilo, un grupo dihidrobenzofurilo, un grupo dihidroisobenzofurilo, un grupo dihidroquinolilo, un grupo dihidroisoquinolilo, un grupo dihidrobenzoxazolilo, un grupo dihidropteridinilo, un grupo benzoxazolilo, un grupo benzoisoxazolilo, un grupo benzodioxazolilo, un grupo quinolilo, un grupo isoquinolilo, un grupo benzotriazolilo, un grupo pteridinilo, un grupo purinilo, un grupo quinoxalinilo, un grupo quinazolinilo, un grupo cinnolinilo, un grupo 35 tetrazolilo, y similares.

En la presente invención, "un grupo (heteroaril de 5 a 10 miembros)(alquilo C_1 a C_3)" significa un grupo obtenido sustituyendo "un grupo alquilo C_1 a C_3 " con "un grupo heteroarilo de 5 a 10 miembros". Por ejemplo, puede mencionarse un grupo piridilmetilo, un grupo tienilmetilo, un grupo tienilmetilo, un grupo benzotiazolilmetilo, un grupo benzotiazolilmetilo, y similares.

En la presente invención, "un grupo heterocicloalquilo de 3 a 8 miembros" significa un grupo heterocíclico alifático de 3 a 8 miembros que puede estar saturado o parcialmente insaturado, en donde el anillo contiene de 1 a 4 heteroátomos seleccionados entre oxígeno, azufre y nitrógeno.

Por ejemplo, puede mencionarse un grupo piperidilo, un grupo tetrahidrofuranoílo, un grupo tetrahidrotienilo, un grupo morfolilo, y similares.

45 En la presente invención, "un grupo (heterocicloalquil de 3 a 8 miembros)(alquilo C₁ a C₃)" significa un grupo obtenido sustituyendo "un grupo alquilo C₁ a C₃" con "un grupo heterocicloalquilo de 3 a 8 miembros". Por ejemplo, puede mencionarse un grupo piperidilmetilo, un grupo tetrahidrofuranoilmetilo, un grupo tetrahidrotienilmetilo, un grupo morfolinoetilo, un grupo oxetan-3-ilmetilo, y similares.

En la presente invención, "grupo espiroheteroalquilo" significa un grupo espiroalquilo en el que de 1 a 4 átomos de carbono están reemplazados con 1 a 4 heteroátomos seleccionados entre oxígeno, azufre y nitrógeno. "Un grupo espiroheteroalquilo C₆ a C₉" significa un grupo espiroalquilo que tiene de 6 a 9 carbonos. Por ejemplo, puede mencionarse un grupo 4-oxaespiro[2,4]heptanilo, un grupo 4-oxaespiro[2,5]octanoilo, y similares.

En la presente invención, "un grupo (bicicloalquil C_5 a C_9)(alquilo C_1 a C_3)" significa un grupo obtenido sustituyendo "un grupo alquilo C_1 a C_3 " con "un grupo bicicloalquilo C_5 a C_9 " en una posición arbitraria. Por ejemplo, puede mencionarse un grupo biciclo [1,1,1]pentanilmetilo, un grupo biciclo[3,1,0]hexanilmetilo, un grupo biciclo[2,2,0]hexanilmetilo, un grupo biciclo[2,2,0]hexanilmetilo, un grupo biciclo[2,2,0]hexanilmetilo, un grupo biciclo[3,2,0]heptanilmetilo, un grupo

biciclo[3,2,0]heptaniletilo, un grupo biciclo[2,2,1]heptanilmetilo, un grupo biciclo[2,2,1]heptaniletilo, un grupo biciclo[3,1,1]heptanilmetilo, un grupo biciclo[4,1,0]heptanilmetilo, un grupo biciclo[2,2,2]octanilmetilo, un grupo biciclo[3,2,1]octanilmetilo, un grupo biciclo[4,2,0]octanilmetilo, un grupo biciclo[4,1,1]octanilmetilo, un grupo biciclo[5,1,0]octanilmetilo, un grupo biciclo[3,2,2]nonanilmetilo, un grupo biciclo[3,3,1]nonanilmetilo, un grupo biciclo[4,2,1]nonanilmetilo, un grupo biciclo[5,2,0]nonanilmetilo, y similares.

5

10

25

30

35

40

En la presente invención, "grupo heterobicicloalquilo" significa un grupo bicicloalquilo en el que de 1 a 4 átomos de carbono están reemplazados por 1 a 4 heteroátomos seleccionados entre oxígeno, azufre y nitrógeno. "Un grupo heterobicicloalquilo C_6 a C_9 " significa un grupo heterobicicloalquilo que tiene de 6 a 9 carbonos. Por ejemplo, puede mencionarse un grupo 7-oxabiciclo[2,2,1]heptanilo y similares.

En la presente invención, "un grupo (heterobicicloalquil C_6 a C_9)(alquilo C_1 a C_3)" significa un grupo obtenido sustituyendo "un grupo alquilo C_1 a C_3 " con "un grupo heterobicicloalquilo C_6 a C_9 " en una posición arbitraria. Por ejemplo, puede mencionarse un grupo 7-oxabiciclo[2,2,1]heptanilmetilo, un grupo 7-oxabiciclo[2,2,1]heptaniletilo, y similares.

- En la presente invención, en "un grupo alquilo C₁ a C₆ sustituido con 0, 1, 2 o 3 grupos R^a", cuando el grupo alquilo C₁ a C₆ está sustituido con una pluralidad de grupos R^a, cada grupo R^a puede seleccionarse independientemente y el grupo alquilo C₁ a C₆ puede estar sustituido con los mismos grupos R^a o con grupos R^a diferentes. Además, el significado de otras expresiones, tales como "un grupo alquilo C₁ a C₆ sustituido con 0, 1, 2 o 3 grupos R^b" y similares significa situaciones similares.
- 20 La presente invención se refiere a un compuesto representado por la fórmula (I) o una sal farmacéuticamente aceptable del mismo:

En la fórmula (I), R^1 se selecciona entre F, CI, Br, un grupo alquilo C_1 a C_6 sustituido con 0, 1, 2 o 3 grupos R^a y un grupo cicloalquilo C_3 a C_8 sustituido con 0, 1, 2 o 3 grupos R^a ; en donde R^a se selecciona independientemente entre F, un grupo alquilo C_1 a C_4 , -OH, -CN, -NO₂, -NH₂, -CO₂H, un grupo alcoxi C_1 a C_6 , un grupo mono(alquil C_1 a C_6)amino, un grupo di(alquil C_1 a C_6)amino, -CF₃ y un grupo oxo.

El "un grupo alquilo C_1 a C_6 sustituido con 0, 1, 2 o 3 grupos R^a " en R^1 es preferiblemente un grupo alquilo C_1 a C_3 sustituido con 0, 1, 2 o 3 grupos R^a , y es más preferible un grupo trifluorometilo o un grupo difluorometilo.

El "un grupo cicloalquilo C_3 a C_8 sustituido con 0, 1, 2 o 3 grupos R^a " en R^1 es preferiblemente un grupo cicloalquilo C_3 a C_4 sustituido con 0, 1, 2 o 3 grupos R^a , es más preferible un grupo ciclopropilo sustituido con 0, 1, 2 o 3 grupos R^a .

En su conjunto, R^1 es preferiblemente CI, un grupo alquilo C_1 a C_4 sustituido con 0, 1, 2 o 3 grupos R^a o un grupo ciclopropilo sustituido 0, 1, 2 o 3 grupos R^a , y es más preferible un grupo trifluorometilo, un grupo difluorometilo o CI.

En la fórmula (I), Y es un grupo cicloalquilo C_4 a C_6 , un grupo bicicloalquilo C_6 a C_9 o un grupo espiroalquilo C_6 a C_9 , todos los cuales están sustituidos con un grupo R^2 , 0 o 1 grupo R^6 y 0, 1, 2 o 3 grupos R^7 ;

en donde R^2 se selecciona entre -OH, -CO₂H, -SO₃H, -CONH₂, -SO₂NH₂, un grupo (alcoxi C_1 a C_6)carbonilo sustituido con 0, 1, 2 o 3 grupos R^c , un grupo (alquil C_1 a C_6)aminocarbonilo sustituido 0, 1, 2 o 3 grupos R^c , un grupo alquilsulfonilo C_1 a C_6 sustituido con 0, 1, 2 o 3 grupos R^c , un grupo alquilaminosulfonilo C_1 a C_6 sustituido con 0, 1, 2 o 3 grupos R^c , un grupo (hidroxicarbonil)(alquilo C_1 a C_3) sustituido con 0, 1, 2 o 3 grupos R^c , un grupo (alquilo C_1 a C_6)sulfonil(alquilo C_1 a C_3) sustituido con 0, 1, 2 o 3 grupos R^c y un grupo (alquenil C_2 a C_6)(alquilo C_1 a C_3) sustituido con 0, 1, 2 o 3 grupos R^c y un grupo (alquenil C_2 a C_6)(alquilo C_1 a C_3) sustituido con 0, 1, 2 o 3 grupos R^c

 R^6 y R^7 se seleccionan independientemente entre H, F, -OH, -NH₂, -CN, un grupo alquilo C_1 a C_6 sustituido con 0, 1, 2 o 3 grupos R^b y un grupo alcoxi C_1 a C_6 sustituido con 0, 1, 2 o 3 grupos R^b ;

en donde R^b y R^c se seleccionan independientemente entre F, un grupo alquilo C₁ a C₄, -OH, -CN, -NO₂, -NH₂, -

 CO_2H , un grupo alcoxi C_1 a C_6 , un grupo mono(alquil C_1 a C_6)amino, un grupo di(alquil C_1 a C_6)amino, -CF₃ y un grupo oxo;

El "un grupo cicloalquilo C_4 a C_6 , un grupo bicicloalquilo C_6 a C_9 o un grupo espiroalquilo C_6 a C_9 , todos los cuales están sustituidos con un grupo R^2 , 0 o 1 grupo R^6 y 0, 1, 2 o 3 grupos R^7 " en Y es preferiblemente un grupo representado por la fórmula (II-a), fórmula (II-b), fórmula (II-c) o fórmula (II-d):

en donde:

5

k es 0, 1 o 2; y

n es 1, 2 o 3.

10 En el caso del grupo representado por la fórmula (II-a), fórmula (II-b), fórmula (II-c) o fórmula (II-d), Y es preferiblemente un grupo representado por la fórmula (II-a), fórmula (II-c) o fórmula (II-d); y más preferiblemente un grupo representado por la fórmula (II-a) o la fórmula (II-d).

La variable, n, es preferiblemente 2 en un grupo representado por la fórmula (II-d).

R² en Y es preferiblemente -CO₂H, -SO₃H, -CONH₂, -SO₂NH₂, un grupo (alquil C₁ a C₂)aminocarbonilo sustituido con 0 o 1 grupo R^c, un grupo alquilsulfonilo C₁ a C₂ sustituido con 0 o 1 grupo R^c, un grupo alquilaminosulfonilo C₁ a C₂ sustituido con 0 o 1 grupo R^c o un grupo (hidroxicarbonil)(alquilo C₁ a C₃) sustituido con 0, 1, 2 o 3 grupos R^c, y es más preferible -CO₂H o un grupo hidroxicarbonilmetilo sustituido con 0, 1 o 2 grupos R^c.

 R^6 en Y es preferiblemente H o un grupo alquilo C_1 a C_4 sin ningún grupo R^b , y más preferible es H, un grupo metilo o un grupo etilo.

20 R⁷ en Y es preferiblemente H o un grupo alquilo C₁ a C₂ sin ningún grupo R^b, y más preferible es H o un grupo metilo.

En la fórmula (I), R³ se selecciona entre H, F, Cl, -CH₃ y -CF₃; R³ es preferiblemente H.

En la fórmula (I), R⁴ se selecciona entre un grupo alquilo C₁ a C₆ sustituido con 0, 1, 2, 3, 4 o 5 grupos R^e, un grupo (alquenil C₂ a C₆)(alquilo C₁ a C₃) sustituido con 0, 1, 2, 3, 4 o 5 grupos R^e, un grupo (alquenil C₂ a C₆)(alquilo C₁ a C₃) sustituido con 0, 1, 2, 3, 4 o 5 grupos R^e, un grupo (alcoxi C₁ a C₆)(alquilo C₂ a C₄) sustituido con 0, 1, 2, 3, 4 o 5 grupos R^e, un grupo (aril C₆ a C₁₀)(alquilo C₁ a C₃) sustituido con 0, 1, 2, 3, 4 o 5 grupos R^f, un grupo (heteroarilo de 5 o 10 miembros)(alquilo C₁ a C₃) sustituido con 0, 1, 2, 3, 4 o 5 grupos R^f, un grupo (cicloalquilo C₁ a C₃) sustituido con 0, 1, 2, 3, 4 o 5 grupos R^g, un grupo (cicloalquilo C₃ a C₈)(alquilo C₁ a C₃) sustituido con 0, 1, 2, 3, 4 o 5 grupos R^g, un grupo (cicloalquilo C₃ a C₈)(alquilo C₁ a C₃) sustituido con 0, 1, 2, 3, 4 o 5 grupos R^g, un grupo (heterocicloalquil de 3 a 8 miembros)(alquilo C₁ a C₃) sustituido con 0, 1, 2, 3, 4 o 5 grupos R^g, un grupo espiroalquilo C₆ a C₉ sustituido con 0, 1, 2, 3, 4 o 5 grupos R^g, un grupo espiroalquilo C₆ a C₉ sustituido con 0, 1, 2, 3, 4 o 5 grupos R^g, un grupo heterocicloalquilo C₁ a C₃) sustituido con 0, 1, 2, 3, 4 o 5 grupos R^g, un grupo heterobicicloalquilo C₆ a C₉ sustituido con 0, 1, 2, 3, 4 o 5 grupos R^g, un grupo heterobicicloalquilo C₁ a C₃) sustituido con 0, 1, 2, 3, 4 o 5 grupos R^g, un grupo heterobicicloalquilo C₁ a C₃) sustituido con 0, 1, 2, 3, 4 o 5 grupos R^g, un grupo heterobicicloalquilo C₁ a C₃) sustituido con 0, 1, 2, 3, 4 o 5 grupos R^g, un grupo heterobicicloalquilo C₁ a C₃) sustituido con 0, 1, 2, 3, 4 o 5 grupos R^g, un grupo heterobicicloalquilo C₁ a C₃) sustituido con 0, 1, 2, 3, 4 o 5 grupos R^g, un grupo heterobicicloalquilo C₁ a C₃) sustituido con 0, 1, 2, 3, 4 o 5 grupos R^g;

en donde R^e se selecciona independientemente entre F, un grupo alquilo C_1 a C_4 , -OH, -CN, -NO₂, -NH₂, -CO₂H, un grupo alcoxi C_1 a C_6 , un grupo mono(alquil C_1 a C_6)amino, un grupo di(alquil C_1 a C_6)amino, -CF₃ y un grupo oxo;

40 R^f se selecciona independientemente entre F, Cl, Br, -OH, -CN, -NO₂, -CO₂H, un grupo alquilo C₁ a C₆ sustituido con 0, 1, 2 o 3 grupos R^k, un grupo alquenilo C₂ a C₆ sustituido con 0, 1, 2 o 3 grupos R^k, un grupo alquinilo C₂ a C₆ sustituido con 0, 1, 2 o 3 grupos R^k, un grupo cicloalquilo C₃ a C₈ sustituido con 0, 1, 2 o 3 grupos R^k, un grupo alquilo C₁ a C₆ sustituido con 0, 1, 2 o 3 grupos R^k, un grupo cicloalquiloxi C₃ a C₈ sustituido con 0, 1, 2 o 3 grupos R^k, -SH, un grupo alquiltio C₁ a C₆ sustituido con 0, 1, 2 o 3 grupos R^k, un grupo (alquil C₁ a C₆)carbonilo sustituido con 0, 1, 2 o 3 grupos R^k, un grupo (alquil C₁ a C₆)carbonilo sustituido con 0, 1, 2 o 3 grupos R^k, un grupo alquilsulfonilo C₁ a C₆

ES 2 673 279 T3

- sustituido con 0, 1, 2 o 3 grupos R^k , -NH₂, un grupo mono(alquil C_1 a C_6)amino sustituido con 0, 1, 2 o 3 grupos R^k y un grupo di(alquil C_1 a C_6)amino sustituido con 0, 1, 2 o 3 grupos R^k ;
- en donde, R^k se selecciona independientemente entre F, un grupo alquilo C_1 a C_4 , -OH, -CN, -NO₂, -NH₂, -CO₂H, un grupo alcoxi C_1 a C_6 , un grupo mono(alquil C_1 a C_6)amino, un grupo di(alquil C_1 a C_6)amino, -CF₃ y un grupo oxo;
- 5 R⁹ se selecciona independientemente entre F, Cl, un grupo alquilo C₁ a C₆, -OH, -CN, -NH₂, -NO₂, -CO₂H, un grupo alcoxi C₁ a C₆, un grupo mono(alquil C₁ a C₆)amino, un grupo di(alquil C₁ a C₆)amino, -CF₃, un grupo alquileno C₁ a C₆ sustituido con 0, 1, 2 o 3 grupos R¹, un grupo alquenileno C₂ a C₆ sustituido con 0, 1, 2 o 3 grupos R¹ y un grupo oxo:
- en donde R^I se selecciona independientemente entre F, un grupo alquilo C₁ a C₄, -OH, -CN, -NO₂, -NH₂, -CO₂H, un grupo alcoxi C₁ a C₆, un grupo mono(alquil C₁ a C₆)amino, un grupo di(alquil C₁ a C₆)amino, -CF₃ y un grupo oxo.
 - El "un grupo alquilo C_1 a C_6 sustituido con 0, 1, 2, 3, 4 o 5 grupos $R^{e_{II}}$ en R^4 es preferiblemente un grupo alquilo C_2 a C_6 sustituido con 0, 1, 2, 3, 4 o 5 R^e y más preferiblemente un grupo terc-butilmetilo o un grupo 3,3,3-trifluoro-2,2-dimetilpropilo.
- El "un grupo (alquenil C_2 a C_6)(alquilo C_1 a C_3) sustituido con 0, 1, 2, 3, 4 o 5 grupos R^e " en R^4 es preferiblemente uno que tiene de 3 a 6 carbonos en (alquenil C_2 a C_6)(alquilo C_1 a C_3) y más preferiblemente un grupo 3-metil-2-buten-1-ilo.
 - El "un grupo (alquinil C_2 a C_6)(alquilo C_1 a C_3) sustituido con 0, 1, 2, 3, 4 o 5 grupos R^e " en R^4 es preferiblemente uno que tiene de 4 a 8 carbonos en (alquinil C_2 a C_6)(alquilo C_1 a C_3) y más preferiblemente un grupo 4,4-dimetil-2-pentin-1-ilo.
- El "un grupo (alcoxi C₁ a C₆)(alquilo C₂ a C₄) sustituido con 0, 1, 2, 3, 4 o 5 grupos R^e" en R⁴ es preferiblemente uno que tiene de 3 a 7 carbonos en (alcoxi C₁ a C₆)(alquilo C₂ a C₄), más preferiblemente un grupo alcoxietilo C₁ a C₄ sustituido con 0, 1, 2 o 3 grupos alquilo, e incluso más preferiblemente un grupo 2,2-dimetil-2-metoxietilo o un grupo 2-(terc-butoxi)etilo.
- El "un grupo (aril C₆ a C₁₀)(alquilo C₁ a C₃) sustituido con 0, 1, 2, 3, 4 o 5 grupos R^f" en R⁴ es preferiblemente un grupo bencilo sustituido con 0, 1, 2, 3, 4 o 5 de R^f; más preferiblemente un grupo bencilo sustituido 1, 2 o 3 grupos seleccionados entre F y Cl, o un grupo bencilo no sustituido; e incluso es más preferible un grupo 4-fluorobencilo, un grupo 3,5-difluorobencilo o un grupo 4-(trifluorometil)bencilo.
 - El "un grupo (heteroaril de 5 a 10 miembros)(alquilo C_1 a C_3) sustituido con 0, 1, 2, 3, 4 o 5 grupos R^{f_0} en R^4 es preferiblemente un grupo piridilmetilo, un grupo tienilmetilo, un grupo tiazolilmetilo o un grupo furanilmetilo.
- 30 El "un grupo cicloalquilo C_3 a C_8 sustituido con 0, 1, 2, 3, 4 o 5 grupos R^9 " en R^4 es preferiblemente un grupo cicloalquilo C_3 a C_6 sustituido con 0, 1, 2, 3, 4 o 5 grupos R^9 y más preferiblemente un grupo 2,2-dimetilciclobutilo o un grupo 4,4-dimetilciclohexilo.
 - El "un grupo (cicloalquil C_3 a C_8)(alquilo C_1 a C_3) sustituido con 0, 1, 2, 3, 4 o 5 grupos R^9 " en R^4 es preferiblemente un grupo cicloalquilmetilo C_3 a C_6 sustituido con 0, 1, 2, 3 o 4 grupos R^9 ; y es más preferible un grupo (1-fluorociclopentil)metilo, un grupo (3,3-dimetilciclobutil)metilo, un grupo (1-metilciclobutil)metilo, un grupo (1-(trifluorometil)ciclopropil)metilo o un grupo (1-metilciclopropil)metilo.

35

45

50

- El "un grupo heterocicloalquilo de 3 a 8 miembros sustituido con 0, 1, 2, 3, 4 o 5 grupos R^g" en R⁴ es preferiblemente un grupo heterocicloalquilo de 3 a 6 miembros sustituido con 0, 1, 2, 3, 4 o 5 grupos R^g.
- El "un grupo (heterocicloalquil de 3 a 8 miembros)(alquilo C_1 a C_3) sustituido con 0, 1, 2, 3, 4 o 5 grupos R^9 "en R^4 es preferiblemente un heterocicloalquilmetilo de 3 a 6 miembros sustituido con 0, 1, 2, 3, 4 o 5 grupos R^9 ; más preferiblemente un grupo tetrahidrofuranoilmetilo sustituido con 1, 2 o 3 grupos seleccionados entre F, un grupo alquilo C_1 a C_4 y un grupo alquileno C_1 a C_6 sustituido con 0, 1, 2 o 3 grupos R^1 .
 - El "un grupo espiroalquilo C_6 a C_9 sustituido con 0, 1, 2, 3, 4 o 5 grupos R^9 " en R^4 es preferiblemente un anillo espiroalquilo C_7 a C_8 sustituido con 0, 1, 2, 3, 4 o 5 grupos R^9 ; más preferiblemente un grupo espiro[2,5]octan-1-ilo, un grupo espiro[3,5]nonan-1-ilo, un grupo espiro[3,3]heptan-1-ilo o un grupo espiro[3,3]heptan-2-ilo.
 - El "un grupo (espiroalquil C_6 a C_9)(alquilo C_1 a C_3) sustituido con 0, 1, 2, 3, 4 o 5 grupos R^9 " en R^4 es preferiblemente un grupo espiroalquil metilo C_6 a C_8 sustituido con 0, 1, 2, 3, 4 o 5 grupos R^9 ; más preferiblemente un grupo espiro[2,5]octan-6-ilmetilo sustituido con 0, 1, 2 o 3 grupos R^9 o un grupo espiro[2,3]hexan-5-ilmetilo sustituido con 0, 1, 2 o 3 grupos R^9 ; e incluso es más preferible un grupo espiro[2,5]octan-6-ilmetilo, un grupo (5-fluoro-espiro[2,3]hexan)-5-ilmetilo o un grupo espiro[2,3]hexan-5-ilmetilo.
 - El "un grupo espiroheteroalquilo C_6 a C_9 sustituido con 0, 1, 2, 3, 4 o 5 grupos R^9 " en R^4 es preferiblemente un anillo espiroheteroalquilo C_7 a C_8 sustituido con 0, 1, 2, 3, 4 o 5 grupos R^9 .

ES 2 673 279 T3

El "un grupo bicicloalquilo C_5 a C_9 sustituido con 0, 1, 2, 3, 4 o 5 grupos R^9 " en R^4 es preferiblemente un anillo bicicloalquilo C_6 a C_8 sustituido con 0, 1, 2, 3, 4 o 5 grupos R^9 ; más preferiblemente un grupo biciclo[3,1,0]hexan-3-ilo sustituido con 0, 1, 2 o 3 grupos R^9 ; e incluso es más preferible un grupo 6,6-dimetilbiciclo[3,1,0]hexan-3-ilo.

El "un grupo (bicicloalquil C_5 a C_9)(alquilo C_1 a C_3) sustituido con 0, 1, 2, 3, 4 o 5 grupos R^9 " en R^4 es preferiblemente un grupo bicicloalquil metilo C_5 a C_7 sustituido con 0, 1, 2, 3, 4 o 5 grupos R^9 ; más preferiblemente un grupo (biciclo[1,1,1]pentan-1-il)metilo sustituido 0, 1, 2 o 3 grupos R^9 o un grupo (biciclo[2,2,1]heptan-1-il)metilo sustituido con 0, 1, 2 o 3 grupos R^9 ; e incluso es más preferible un grupo (4-metilbiciclo[2,2,1]heptan-1-il)metilo o un grupo (biciclo[1,1,1]pentan-1-il)metilo.

5

15

30

35

40

El "un grupo (heterobicicloalquil C_6 a C_9)(alquilo C_1 a C_3) sustituido con 0, 1, 2, 3, 4 o 5 grupos R^9 " en R^4 es preferiblemente un grupo heterobicicloalquil metilo C_6 a C_7 sustituido con 0, 1, 2, 3, 4 o 5 grupos R^9 ; más preferiblemente un grupo (7-oxabiciclo[2,2,1]heptan-1-il)metilo sustituido con 0, 1, 2 o 3 grupos R^9 ; e incluso es más preferible un grupo (4-metil-7-oxabiciclo[2,2,1]heptan-1-il)metilo o grupo (7-oxabiciclo[2,2,1]heptan-1-il)metilo.

En la fórmula (I), R^5 se selecciona entre un grupo arilo C_6 a C_{10} sustituido con 0, 1, 2, 3, 4 o 5 grupos R^i , un grupo heteroarilo de 5 a 10 miembros sustituido con 0, 1, 2, 3 o 4 grupos R^i , un grupo cicloalquilo C_3 a C_8 sustituido con 0, 1, 2, 3, 4 o 5 grupos R^i , un grupo cicloalquenilo C_3 a C_8 sustituido con 0, 1, 2, 3, 4 o 5 grupos R^i y un grupo heterocicloalquilo de 3 a 8 miembros sustituido con 0, 1, 2, 3, 4 o 5 grupos R^i ;

en donde Rⁱ se selecciona independientemente entre F, Cl, Br, -OH, -CN, -NO₂, -CO₂H, un grupo alquilo C₁ a C₆ sustituido con 0, 1, 2 o 3 grupos R^k, un grupo alquenilo C₂ a C₆ sustituido con 0, 1, 2 o 3 grupos R^k, un grupo alquenilo C₂ a C₆ sustituido con 0, 1, 2 o 3 grupos R^k, un grupo cicloalquilo C₃ a C₈ sustituido con 0, 1, 2 o 3 grupos R^k, un grupo alcoxi C₁ a C₆ sustituido con 0, 1, 2 o 3 grupos R^k, un grupo cicloalquiloxi C₃ a C₈ sustituido con 0, 1, 2 o 3 grupos R^k, -SH, un grupo alquiltio C₁ a C₆ sustituido con 0, 1, 2 o 3 grupos R^k, un grupo cicloalquiltio C₃ a C₈ sustituido con 0, 1, 2 o 3 grupos R^k, un grupo (alquil C₁ a C₆)carbonilo sustituido con 0, 1, 2 o 3 grupos R^k, un grupo (alquil C₁ a C₆)aminocarbonilo sustituido con 0, 1, 2 o 3 grupos R^k, un grupo alquilsulfonilo C₁ a C₆ sustituido con 0, 1, 2 o 3 grupos R^k, un grupo mono(alquil C₁ a C₆)amino sustituido con 0, 1, 2 o 3 grupos R^k, y un grupo di(alquil C₁ a C₆)amino sustituido con 0, 1, 2 o 3 grupos R^k;

 R^{j} se selecciona independientemente entre F, Cl, un grupo alquilo C_{1} a C_{6} , -OH, -CN, -NH₂, -NO₂, -CO₂H, un grupo alcoxi C_{1} a C_{6} , un grupo mono(alquil C_{1} a C_{6})amino, un grupo di(alquil C_{1} a C_{6})amino, -CF₃, un grupo alquileno C_{1} a C_{6} sustituido con 0, 1, 2 o 3 grupos R^{1} , un grupo alquenileno C_{2} a C_{6} sustituido con 0, 1, 2 o 3 grupos R^{1} y un grupo oxo;

en donde, cuando R^{j} es un grupo divalente de un grupo alquileno C_{1} a C_{6} o un grupo alquenileno C_{2} a C_{6} , se pretende que cada grupo forme enlaces con átomos en R^{5} ; en este caso, dos enlaces de cada uno de estos grupos divalentes se forman con el mismo átomo o dos átomos diferentes en R^{5} ; en donde R^{k} y R^{l} se seleccionan independientemente entre F, un grupo alquilo C_{1} a C_{4} , -OH, -CN, -NO₂, -NH₂, -CO₂H, un grupo alcoxi C_{1} a C_{6} , un grupo mono(alquil C_{1} a C_{6})amino, un grupo di(alquil C_{1} a C_{6})amino, -CF₃ y un grupo oxo.

El "un grupo arilo C_6 a C_{10} sustituido con 0,1, 2, 3 o 4 grupos R^{In} en R^5 es preferiblemente un grupo fenilo sustituido con 2 a 4 grupos seleccionados entre -OH, -NH₂, Cl, F, -CN, -CF₃, -OCF₂H, un grupo metilo, un grupo ciclopropilo y un grupo metoxi; y es más preferible un grupo 2,6-diclorofenilo, un grupo 2,6-dicloro-4-fluorofenilo, un grupo 2,6-dicloro-4-metilfenilo, un grupo 2,4,6-triclorofenilo, un grupo 2-cloro-6-fluorofenilo o un grupo 2,6-dicloro-3-fluorofenilo.

El "un grupo heteroarilo de 5 a 10 miembros sustituido con 0, 1, 2, 3 o 4 grupos $R^{i_{II}}$ en R^{5} es preferiblemente un grupo piridilo sustituido con 2 a 3 grupos seleccionados entre -OH, -NH₂, Cl, F, -CN, -CF₃, un grupo metilo y un grupo metoxi; y es más preferible un grupo 3,5-dicloropiridin-4-ilo, un grupo 3-cloro-5-metoxipiridin-4-ilo, un grupo 3-cloro-5-fluoropiridin-4-ilo o un grupo 2,4-dicloro-6-metilpiridin-3-ilo.

En su conjunto, R⁵ es preferiblemente un grupo fenilo opcionalmente sustituido con 2, 3 o 4 grupos Rⁱ o un grupo heteroarilo de 6 miembros opcionalmente sustituido con 2 o 3 grupos Rⁱ.

En la fórmula (I), R^8 y R^9 se seleccionan independientemente entre H, F, -OH, -NH₂, un grupo alquilo C_1 a C_3 sustituido con 0, 1, 2 o 3 grupos R^h y un grupo alcoxi C_1 a C_6 sustituido con 0, 1, 2 o 3 grupos R^h ; o R^8 y R^9 forman juntos un grupo oxo o un grupo tioxo;

50 en donde R^h se selecciona independientemente entre F, un grupo alquilo C_1 a C_4 , -OH, -CN, -NO₂, -NH₂, -CO₂H, un grupo alcoxi C_1 a C_6 , un grupo mono(alquil C_1 a C_6)amino, un grupo di(alquil C_1 a C_6)amino, -CF₃ y un grupo oxo.

El "un grupo alquilo C_1 a C_3 sustituido con 0, 1, 2 o 3 grupos R^h " en R^8 y R^9 es preferiblemente un grupo metilo sustituido con 0, 1, 2 o 3 grupos R^h .

El "un grupo alcoxi C₁ a C₆ sustituido con 0, 1, 2 o 3 grupos R^h" en R⁸ y R⁹ es preferiblemente un grupo metoxi sustituido con 0, 1, 2 o 3 grupos R^h.

En su conjunto, R⁸ y R⁹ son preferiblemente H, F, -OH o un grupo oxo, ya no son preferibles H o un grupo oxo.

En la fórmula (I), R^{12} es H; o R^4 y R^{12} son juntos $-CR^mR^m-CR^{13}R^{14}-CR^mR^m$ o $-CR^{13}R^{14}-CR^mR^m$ para formar un anillo de pirrolidina.

- R¹³ se selecciona entre H, un grupo alquilo C₁ a C₆ sustituido con 0, 1, 2, 3, 4 o 5 grupos R^e, un grupo arilo C₆ a C₁₀ sustituido con 0, 1, 2, 3, 4 o 5 grupos R^f, un grupo (alquenil C₂ a C₆)(alquilo C₁ a C₃) sustituido con 0, 1, 2, 3, 4 o 5 grupos R^e, un grupo (alquenil C₂ a C₆)(alquilo C₁ a C₃) sustituido con 0, 1, 2, 3, 4 o 5 grupos R^e, un grupo (alcoxi C₁ a C₆)(alquilo C₂ a C₄) sustituido con 0, 1, 2, 3, 4 o 5 grupos R^e, un grupo (aril C₆ a C₁₀)(alquilo C₁ a C₃) sustituido con 0, 1, 2, 3, 4 o 5 grupos R^f, un grupo (heteroarilo de 5 o 10 miembros)(alquilo C₁ a C₃) sustituido con 0, 1, 2, 3, 4 o 5 grupos R^f, un grupo cicloalquilo C₃ a C₈ sustituido con 0, 1, 2, 3, 4 o 5 grupos R^g, un grupo (cicloalquilo C₃ a C₈)(alquilo C₁ a C₃) sustituido con 0, 1, 2, 3, 4 o 5 grupos R^g, un grupo (cicloalquenilo C₃ a C₈)(alquilo C₁ a C₃) sustituido con 0, 1, 2, 3, 4 o 5 grupos R^g, un grupo (cicloalquenilo C₃ a C₈)(alquilo C₁ a C₃) sustituido con 0, 1, 2, 3, 4 o 5 grupos R^g, un grupo (heterocicloalquil de 3 a 8 miembros)(alquilo C₁ a C₃) sustituido con 0, 1, 2, 3, 4 o 5 grupos R^g, un grupo espiroalquilo C₆ a C₉ sustituido con 0, 1, 2, 3, 4 o 5 grupos R^g, un grupo (espiroalquil C₆ a C₉)(alquilo C₁ a C₃) sustituido con 0, 1, 2, 3, 4 o 5 grupos R^g, un grupo espiroheteroalquilo C₆ a C₉ sustituido con 0, 1, 2, 3, 4 o 5 grupos R^g, un grupo (heterobicicloalquilo C₁ a C₃) sustituido con 0, 1, 2, 3, 4 o 5 grupos R^g, un grupo (heterobicicloalquilo C₁ a C₃) sustituido con 0, 1, 2, 3, 4 o 5 grupos R^g, un grupo (heterobicicloalquilo C₁ a C₃) sustituido con 0, 1, 2, 3, 4 o 5 grupos R^g, un grupo (heterobicicloalquilo C₁ a C₃) sustituido con 0, 1, 2, 3, 4 o 5 grupos R^g, un grupo (heterobicicloalquilo C₁ a C₃) sustituido con 0, 1, 2, 3, 4 o 5 grupos R^g, un grupo (heterobicicloalquilo C₁ a C₃) sustituido con 0, 1, 2, 3, 4 o 5 grupos R^g;
- 20 R^{14} se selecciona entre H y un grupo alquilo C_1 a C_6 sustituido con 0, 1, 2, 3, 4 o 5 grupos R^e ; o R^{13} y R^{14} forman juntos un anillo cicloalcano C_3 a C_8 sustituido con 0, 1, 2, 3, 4 o 5 grupos R^9 , anillo cicloalqueno C_3 a C_8 sustituido con 0, 1, 2, 3, 4 o 5 grupos R^9 o un anillo heterocicloalcano de 3 a 8 miembros sustituido con 0, 1, 2, 3, 4 o 5 grupos R^9 :

R^m se selecciona independientemente entre H, F, Cl, -CH₃ y -CF₃;

- en donde R^g se selecciona entre F, CI, un grupo alquilo C_1 a C_6 , -OH, -CN, -NH₂, -NO₂, -CO₂H, un grupo alcoxi C_1 a C_6 , un grupo mono(alquil C_1 a C_6)amino, un grupo di(alquil C_1 a C_6)amino, -CF₃, un grupo alquileno C_1 a C_6 sustituido con 0, 1, 2 o 3 grupos R^1 , un grupo alquenileno C_2 a C_6 sustituido con 0, 1, 2 o 3 grupos R^1 y un grupo oxo;
- R^f se selecciona independientemente entre F, Cl, Br, -OH, -CN, -NO₂, -CO₂H, un grupo alquilo C₁ a C₆ sustituido con 0, 1, 2 o 3 grupos R^k, un grupo alquenilo C₂ a C₆ sustituido con 0, 1, 2 o 3 grupos R^k, un grupo alquenilo C₂ a C₆ sustituido con 0, 1, 2 o 3 grupos R^k, un grupo alquenilo C₂ a C₆ sustituido con 0, 1, 2 o 3 grupos R^k, un grupo cicloalquilo C₃ a C₈ sustituido con 0, 1, 2 o 3 grupos R^k, un grupo cicloalquiloxi C₃ a C₈ sustituido con 0, 1, 2 o 3 grupos R^k, -SH, un grupo alquiltio C₁ a C₆ sustituido con 0, 1, 2 o 3 grupos R^k, un grupo (alquil C₁ a C₆)carbonilo sustituido con 0, 1, 2 o 3 grupos R^k, un grupo (alquil C₁ a C₆)carbonilo sustituido con 0, 1, 2 o 3 grupos R^k, un grupo alquilsulfonilo C₁ a C₆ sustituido con 0, 1, 2 o 3 grupos R^k, un grupo alquilsulfonilo C₁ a C₆ sustituido con 0, 1, 2 o 3 grupos R^k, un grupo alquilsulfonilo C₁ a C₆ sustituido con 0, 1, 2 o 3 grupos R^k, un grupo alquilsulfonilo C₁ a C₆ sustituido con 0, 1, 2 o 3 grupos R^k, un grupo alquilsulfonilo C₁ a C₆ sustituido con 0, 1, 2 o 3 grupos R^k, un grupo alquilsulfonilo C₁ a C₆ sustituido con 0, 1, 2 o 3 grupos R^k, un grupo di(alquil C₁ a C₆)amino sustituido con 0, 1, 2 o 3 grupos R^k y un grupo di(alquil C₁ a C₆)amino sustituido con 0, 1, 2 o 3 grupos R^k y un grupo di(alquil C₁ a C₆)amino sustituido con 0, 1, 2 o 3 grupos R^k y un grupo di(alquil C₁ a C₆)amino sustituido con 0, 1, 2 o 3 grupos R^k y un grupo di(alquil C₁ a C₆)amino sustituido con 0, 1, 2 o 3 grupos R^k y un grupo di(alquil C₁ a C₆)amino sustituido con 0, 1, 2 o 3 grupos R^k y un grupo di(alquil C₁ a C₆)amino sustituido con 0, 1, 2 o 3 grupos R^k y un grupo di(alquil C₁ a C₆)amino sustituido con 0, 1, 2 o 3 grupos R^k y un grupo di(alquil C₁ a C₆)amino sustituido con 0, 1, 2 o 3 grupos R^k y un grupo di(alquil C₁ a C₆)amino sustituido con 0, 1, 2 o 3 grupos R^k y un grupo di(alquil C₁ a C₆)amino sustituido con 0,
 - R^e y R^k se seleccionan independientemente entre F, un grupo alquilo C_1 a C_4 , -OH, -CN, -NO₂, -NH₂, -CO₂H, un grupo alcoxi C_1 a C_6 , un grupo mono(alquil C_1 a C_6)amino, un grupo di(alquil C_1 a C_6)amino, -CF₃ y un grupo oxo.
- 40 Preferiblemente R^{12} es H; o R^4 y R^{12} son juntos - CH_2 - $CR^{13}R^{14}$ - CH_2 para formar un anillo de pirrolidina, más preferiblemente R^{12} es H.
 - R^{13} es preferiblemente un grupo alquilo C_1 a C_6 , un grupo arilo C_6 a C_{10} , un grupo ariloxi C_6 a C_{10} , and C_{10} a C_{10} a
- R¹⁴ es preferiblemente H o CH₃; o R¹³ y R¹⁴ forman juntos un anillo cicloalcano C₃ a C₈ o un anillo cicloalqueno C₃ a C₈. En la fórmula (I), una combinación de R¹, R², R³, R⁴, R⁵, R⁶, R⁷, R⁸, R⁹, R¹², R¹³, R¹⁴ y, n, k, R^a, R^b, R^c, R^e, R^f, R^g, R^h, Rⁱ, R^j, R^k, R^j, R^k, R^j, R^k, R^j, R^k, R^j, R^k es preferiblemente uno donde se combinan los componentes preferibles respectivos descritos anteriormente; y más preferiblemente uno donde se combinan los componentes descritos anteriormente son más preferibles.
- En otra realización, junto con cualquiera de las realizaciones anteriores o posteriores, R^I es un grupo alquilo C₁ a C₆ sustituido con 0, 1, 2 o 3 grupos R^a.

En otra realización, junto con cualquiera de las realizaciones anteriores o posteriores, R^I es un grupo alquilo C₁ sustituido con 0, 1, 2 o 3 grupos R^a.

En otra realización, junto con cualquiera de las realizaciones anteriores o posteriores. R¹ es CF₃.

En otra realización, junto con cualquiera de las realizaciones anteriores o posteriores, R² es CO₂H.

En otra realización, junto con cualquiera de las realizaciones anteriores o posteriores, Y se selecciona entre la fórmula (II-a), fórmula (II-b), fórmula (II-c) y fórmula (II-d):

$$\begin{array}{c|c} R^2 & & \\ R^6 & & \\ \hline \begin{bmatrix} R^7 \end{bmatrix}_k & & \\$$

en donde, k es 0, 1 o 2; y n es 1, 2 o 3.

5 En otra realización, junto con cualquiera de las realizaciones anteriores o posteriores, Y se selecciona entre la fórmula (II-a) y la fórmula (II-d);

en donde en k es 0, 1 o 2; y n es 1, 2 o 3.

En otra realización, junto con cualquiera de las realizaciones anteriores o posteriores, Y se selecciona entre la fórmula (II-a) y la fórmula (II-d);

en donde en k es 0; y n 2.

En otra realización, junto con cualquiera de las realizaciones anteriores o posteriores, Y es

15 En otra realización, junto con cualquiera de las realizaciones anteriores o posteriores, Y es

En otra realización, junto con cualquiera de las realizaciones anteriores o posteriores,

 R^6 se selecciona entre F, -OH, -NH₂, -CN, un grupo alquilo C_1 a C_6 sustituido con 0, 1, 2 o 3 grupos R^b y un grupo alcoxi C_1 a C_6 sustituido con 0, 1, 2 o 3 grupos R^b .

20 En otra realización, junto con cualquiera de las realizaciones anteriores o posteriores, R^6 es un grupo alquilo C_1 a C_6 sustituido con 0, 1, 2 o 3 R^b .

En otra realización, junto con cualquiera de las realizaciones anteriores o posteriores, R⁶ es CH₃.

En otra realización, junto con cualquiera de las realizaciones anteriores o posteriores, R^7 se selecciona independientemente entre H, F y un grupo alquilo C_1 a C_6 sustituido con 0, 1, 2 o 3 grupos R^b .

25 En otra realización, junto con cualquiera de las realizaciones anteriores o posteriores, R⁷ es H.

En otra realización, junto con cualquiera de las realizaciones anteriores o posteriores, R^2 se selecciona entre -OH, - CO_2H , - SO_3H , - $CONH_2$ y - SO_2NH_2 .

ES 2 673 279 T3

En otra realización, junto con cualquiera de las realizaciones anteriores o posteriores, R³ es H.

5

15

25

35

En otra realización, junto con cualquiera de las realizaciones anteriores o posteriores, R^4 se selecciona entre un grupo alquilo C_1 a C_6 sustituido con 0, 1, 2 o 3 grupos R^e , un grupo (aril C_6 a C_{10})(alquilo C_1 a C_3) sustituido con 0, 1, 2, 3, 4 o 5 grupos R^f , un grupo cicloalquilo C_3 a C_8 sustituido con 0, 1, 2, 3, 4 o 5 grupos R^g , un grupo (cicloalquil C_3 a C_8)(alquilo C_1 a C_3) sustituido con 0, 1, 2, 3, 4 o 5 grupos R^g , un grupo espiroalquilo C_6 a C_9 sustituido con 0, 1, 2, 3, 4 o 5 grupos R^g , un grupo (espiroalquil C_6 a C_9)(alquilo C_1 a C_3) sustituido con 0, 1, 2, 3, 4 o 5 grupos R^g , un grupo (bicicloalquil C_5 a C_9)(alquilo C_1 a C_3) sustituido con 0, 1, 2, 3, 4 o 5 grupos R^g o un grupo (heterobicicloalquil C_6 a C_9)(alquilo C_1 a C_3) sustituido con 0, 1, 2, 3, 4 o 5 grupos R^g .

En otra realización, junto con cualquiera de las realizaciones anteriores o posteriores, R⁴ es un grupo alquilo C₁ a C₆ sustituido con 0, 1, 2, 3, 4 o 5 grupos R^e.

En otra realización, junto con cualquiera de las realizaciones anteriores o posteriores, R^4 es un grupo (aril C_6 a C_{10})(alquilo C_1 a C_3) sustituido con 0, 1, 2, 3, 4 o 5 grupos R^f .

En otra realización, junto con cualquiera de las realizaciones anteriores o posteriores, R⁴ es un grupo cicloalquilo C₃ a C₈ sustituido con 0, 1, 2 o 3 grupos R⁹.

En otra realización, junto con cualquiera de las realizaciones anteriores o posteriores, R^4 es un grupo (bicicloalquilo C_5 a C_9) sustituido con 0, 1, 2, 3, 4 o 5 grupos R^9 .

En otra realización, junto con cualquiera de las realizaciones anteriores o posteriores, R^4 es un grupo (cicloalquil C_3 a C_8)(alquilo C_1 a C_3) sustituido con 0, 1, 2, 3, 4 o 5 grupos R^9 .

20 En otra realización, junto con cualquiera de las realizaciones anteriores o posteriores, R^4 es un grupo espiroalquilo C_6 a C_9 sustituido con 0, 1, 2, 3, 4 o 5 grupos R^9 .

En otra realización, junto con cualquiera de las realizaciones anteriores o posteriores, R^4 es un grupo (espiroalquil C_6 a C_9)(alquilo C_1 a C_3) sustituido con 0, 1, 2, 3, 4 o 5 grupos R^9 .

En otra realización, junto con cualquiera de las realizaciones anteriores o posteriores, R^4 es un grupo (bicicloalquil C_5 a C_9)(alquilo C_1 a C_3) sustituido con 0, 1, 2, 3, 4 o 5 grupos R^9 .

En otra realización, junto con cualquiera de las realizaciones anteriores o posteriores, R^4 es un grupo (heterobicicloalquil C_6 a C_9)(alquilo C_1 a C_3) sustituido con 0, 1, 2, 3, 4 o 5 grupos R^9 .

En otra realización, junto con cualquiera de las realizaciones anteriores o posteriores, R^8 y R^9 se seleccionan independientemente entre H y F.

30 En otra realización, junto con cualquiera de las realizaciones anteriores o posteriores, R⁸ y R⁹ juntos forman un grupo oxo.

En otra realización, junto con cualquiera de las realizaciones anteriores o posteriores, R^5 es un grupo arilo C_6 a C_{10} sustituido con 0, 1, 2, 3, 4 o 5 grupos R^i .

En otra realización, junto con cualquiera de las realizaciones anteriores o posteriores, R⁵ es un grupo fenilo sustituido con 0, 1, 2, 3, 4 o 5 grupos Rⁱ.

En otra realización, junto con cualquiera de las realizaciones anteriores o posteriores, R⁵ es un grupo heteroarilo de 5 a 10 miembros sustituido con 0, 1, 2, 3 o 4 grupos Rⁱ.

En otra realización, junto con cualquiera de las realizaciones anteriores o posteriores, R^5 es un grupo heteroarilo de 6 miembros sustituido con 0, 1, 2, 3 o 4 grupos R^i .

40 En otra realización, junto con cualquiera de las realizaciones anteriores o posteriores, R⁵ es piridilo sustituido con 0, 1, 2, 3 o 4 grupos R¹.

En otra realización, junto con cualquiera de las realizaciones anteriores o posteriores, R¹² es H.

En otra realización, junto con cualquiera de las realizaciones anteriores o posteriores, R^4 y R^{12} son juntos -CH₂-CR¹³R¹⁴-CH₂- para formar un anillo de pirrolidina.

En otra realización, junto con cualquiera de las realizaciones anteriores o posteriores, R¹⁴ se selecciona entre H y CH₃. En otra realización, junto con cualquiera de las realizaciones anteriores o posteriores, R¹³ y R¹⁴ forman juntos un anillo cicloalcano C₃ a C₈ sustituido con 0, 1, 2, 3, 4 o 5 grupos R⁹, un anillo cicloalqueno C₃ a C₈ sustituido con 0, 1, 2, 3, 4 o 5 grupos R⁹, o un anillo heterocicloalcano de 3 a 8 miembros sustituido con 0, 1, 2, 3, 4 o 5 grupos R⁹.

En otra realización, junto con cualquiera de las realizaciones anteriores o posteriores, R¹³ se selecciona entre un

En otra realización, junto con cualquiera de las realizaciones anteriores o posteriores, R^m es H;

La presente invención también se refiere a una sal farmacéuticamente aceptable de un compuesto representado por la fórmula (I). Por ejemplo, en la presente invención, hay casos donde un compuesto representado por la fórmula (I) forma sales de adición de ácidos. Además, dependiendo de la clase de sustituyentes, hay casos donde el derivado de pirazolamida forma sales con bases. Estas sales no están particularmente limitadas siempre y cuando sean farmacéuticamente aceptables. Específicamente, las sales de adición de ácidos incluyen sales de ácidos minerales, tales como un hidrofluoruro, un hidrocloruro, un hidrobromuro, un hidroyoduro, un fosfato, un nitrato, un sulfato, y similares; sulfonato orgánico, tal como un metanosulfonato, un 1,5-naftalenodisulfonato, un ion naftaleno-2-sulfonato, y similares; y carboxilato orgánico, tal como un acetato, un trifluoroacetato, un propionato, un oxalato, un fumarato, un flalato, un malonato, un succinato, un glutarato, un adipato, un tartrato, un maleato, un maleato, un mandelato, un 1-hidroxi-2-naftoato, y similares. Como las sales con bases, se mencionan sales con bases inorgánicas, tales como una sal de sodio, una sal de potasio, una sal de magnesio, una sal de calcio, una sal de aluminio, y similares; y sales con bases orgánicas, tales como una sal de ornitina, y similares.

Las diversas sales farmacéuticamente aceptables de un compuesto representado por la fórmula (I) pueden producirse adecuadamente en base un conocimiento común en el presente campo técnico.

Un compuesto representado por la fórmula (I) de la presente invención contiene isómeros en algunos casos. Tales isómeros se incluyen en un compuesto representado por la fórmula (I) de la presente invención. Por ejemplo, pueden mencionarse isómeros en el anillo y sistemas de anillos condensados (formas E, Z, cis y trans), isómeros debidos a la presencia de carbonos quirales (formas R y S, configuraciones α y β, enantiómeros y diastereómeros), sustancias ópticamente activas con rotación óptica (formas D, L, d y I), tautómeros, compuestos polares obtenidos mediante separación cromatográfica (un compuesto altamente polar y un compuesto bajamente polar), compuestos en equilibrio, rotámeros, mezclas de estos compuestos en una proporción arbitraria, mezclas racémicas, y similares.

La presente invención también incluye diversas formas deuteradas de los compuestos representados por la fórmula (I). Cada átomo de hidrógeno unido a un átomo de carbono puede estar independientemente reemplazado por un átomo de deuterio.

Método de síntesis general

10

15

20

25

30

35

45

50

El compuesto representado por la fórmula (I) en la presente invención puede producirse aplicando diversos métodos de síntesis conocidos públicamente con el uso de características basadas en tipos de estructuras básicas o sustituyentes. En este caso, puede ser eficaz en términos de tecnología de fabricación que el grupo funcional pueda estar protegido con un grupo protector adecuado o un grupo que pueda convertirse fácilmente en un grupo funcional en el proceso de uso de un material de partida y un intermedio dependiendo de los grupos funcionales. Tal grupo funcional incluye, por ejemplo, un grupo amino, un grupo hidroxilo, un grupo carboxilo, y similares. Los grupos protectores de los mismo incluyen, por ejemplo, grupos protectores descritos en el "Protecting Groups in Organic Synthesis (la tercera adición, 1999)" escrito por T. W. Greene y P. G. M. Wuts. Estos pueden seleccionarse adecuadamente y usarse dependiendo de las condiciones de reacción. En estos métodos, la reacción se realiza introduciendo el grupo protector, seguido de eliminación del grupo protector según sea necesario, o convirtiéndolo en un grupo pretendido para obtener un compuesto pretendido.

Entre los compuestos representados por la fórmula (I) en la presente invención, puede prepararse un compuesto (I-1), por ejemplo, mediante el siguiente método:

$$Y-N$$
 R^{3}
 OH
 $+$
 $R^{4}R^{8}R^{9}$
 R^{5}
 R^{5}
 R^{1}
 O
 (1)
 (2)
 $Etapa 1$
 $Y-N$
 $R^{3}R^{4}R^{8}R^{9}$
 R^{5}
 $(1-1)$

(en donde, R^8 y R^9 son independientemente H; F; un grupo hidroxilo; un grupo amino; a un grupo alquilo C_1 a C_3 sustituido con 0, 1, 2 o 3 grupos R^h ; un grupo alcoxi C_1 a C_6 sustituido con 0, 1, 2 o 3 grupos R^h ; o R^8 y R^9 forman juntos un grupo oxo o grupo tioxo. Otros símbolos tienen los mismos significados que se han descrito anteriormente).

5 (Etapa 1)

10

15

20

25

35

40

45

La presente etapa es un método para producir un compuesto (I-1) haciendo reaccionar un compuesto (1) o un derivado reactivo del mismo con un compuesto (2).

El derivado reactivo del compuesto (1) significa un derivado reactivo de un grupo carboxilo y, por ejemplo, se citan cloruro de ácido, acil azida, anhídrido de ácido mixto, anhídrido de ácido simétrico, amida activada, éster activado, y similares. Estos derivados reactivos pueden seleccionarse opcionalmente dependiendo de los tipos de ácidos carboxílicos utilizados.

La presente reacción puede realizarse de acuerdo con una reacción de formación de amida general por métodos descritos en la bibliografía (por ejemplo, Pepuchido Gousei no Kiso to Jikken de Nobuo Izumiya, etc., Maruzen, 1983, Comprehensive Organic Synthesis, Vol. 6., Pergamon Press, 1991, etc.), métodos equivalentes a los mismos o una combinación de estos métodos y el método convencional. Concretamente, la presente reacción puede realizarse usando un agente de condensación que es bien conocido para una persona experta en la técnica o un método de activación de éster, un método de anhídrido de ácido mixto, un método de cloruro de ácido, un método de carbodiimida y similares, que son bien conocidos en la técnica. Los reactivos usados en tal reacción de formación de amida incluyen, por ejemplo, cloruro de tionilo, cloruro de oxalilo, N,N-diciclohexilcarbodiimida, yoduro de 1-metil-2bromopiridinio, N,N-carbonildiimidazol, cloruro de difenilfosforilo, difenilfosforil azida, carbonato de N,Ndisuccinimidilo, oxalato de N,N'-disuccinimidilo, clorhidrato de 1-etil-3-(3-dimetilaminopropil)carbodiimida, hexafluorofosfato de benzotriazo1-1-il-oxi-tris(pirrolidinol)fosfonio, hexafluorofosfato de 2-(1H-benzotriazo1-1-il)-2-(5-norboneno-2,3-dicarboximido)-1,1,3,3-tetrametiluronio, 1,1,3,3-tetrametiluronio, tetrafluoroborato de tetrafluoroborato de O-(N-succinimidil)-1,1,3,3-tetrametiluronio, hexafluorofosfato de bromo-tris(pirrolidino)fosfonio, cloroformiato de etilo, cloroformiato de isobutilo o hexafluorofosfato de 2-(7-aza-1H-benzotriazo1-1-il)-1,1,3,3tetrametiluronio, y similares. Ante todo, por ejemplo, son preferibles cloruro de tionilo, cloruro de oxalilo, clorhidrato 1-etil-3-(3-dimetilaminopropil)carbodiimida o hexafluorofosfato de 2-(7-aza-1H-benzotriazo1-1-il)-1,1,3,3tetrametiluronio, y similares. En la reacción de formación de amida, puede usarse una base y/o un agente de condensación junto con el agente de formación de amida mencionado anteriormente.

La cantidad del agente de condensación que se consume no está estrictamente limitada, y es generalmente de 0,1 equivalentes a 100 equivalentes con respecto a 1 equivalente del compuesto (1), y preferiblemente de 0,1 equivalentes a 10 equivalentes.

Una base incluye, por ejemplo, amina alifática terciaria, tal como trimetilamina, trietilamina, *N*,*N*-diisopropiletilamina, *N*-metilpirrolidina, *N*-me

La cantidad de la base usada varía dependiendo del compuesto usado, tipos de disolventes y otras condiciones de reacción, sin embargo, esta es generalmente de 0,1 equivalentes a 100 equivalentes con respecto a 1 equivalente del compuesto (1), preferiblemente de 1 equivalente a 5 equivalentes.

El agente de condensación usado incluye, por ejemplo, hidrato de *N*-hidroxibenzotriazol, *N*-hidroxisuccinimida, y similares.

La cantidad del compuesto (2) usado varía dependiendo del compuesto usado, tipos de disolventes y otras condiciones de reacción, sin embargo, esta es generalmente de 1 equivalente a 10 equivalentes con respecto a 1 equivalente del compuesto (1) o un derivado reactivo del mismo, y preferiblemente de 1 equivalente a 3 equivalentes.

La reacción se realiza generalmente en un disolvente inactivo, y los ejemplos del disolvente inactivo incluyen tetrahidrofurano, acetonitrilo, *N,N*-dimetilformamida, 1,4-dioxano, benceno, tolueno, diclorometano, cloroformo, tetracloruro de carbono, 1,2-dicloroetano, piridina, y similares, o mezclas de los mismos.

El tiempo de reacción es generalmente de 0,5 horas a 96 horas, preferiblemente de 1 hora a 24 horas.

La temperatura de reacción es generalmente de 0 °C a la temperatura de punto de ebullición del disolvente, y preferiblemente de temperatura ambiente a 80 °C.

Una base, un reactivo de formación de amida y un agente de condensación usados en la presente reacción pueden usarse como una combinación de uno o más tipos de los mismos.

El compuesto (I-1) obtenido de tal manera puede aislarse y purificarse por un método de aislamiento y purificación que es bien conocido para una persona experta en la técnica (por ejemplo, concentración, concentración a presión reducida, cristalización, extracción de disolventes, reprecipitación, cromatografía, y similares; en la categoría de "método de síntesis general", la expresión "método de aislamiento y purificación que es bien conocido para una persona experta en la técnica" tiene el mismo significado a menos que se especifique particularmente lo contrario).

Además, entre todos los compuestos representados por la fórmula (I) en la presente invención, pueden producirse los compuestos (I-2) y (I-3), por ejemplo, mediante el siguiente método:

$$Y-N$$
 R^{1}
 O
 OH
 $+$
 HN
 R^{5}
 $Etapa 2$
 $Etapa 2$
 $Y-N$
 R^{1}
 O
 R^{5}
 $Etapa 3$
 $Y-N$
 R^{3}
 R^{4}
 OH
 R^{5}
 R^{1}
 OH
 R^{5}
 R^{1}
 OH
 R^{5}
 R^{5}
 R^{1}
 OH
 R^{5}
 R^{5}
 R^{5}
 R^{5}
 R^{5}
 R^{5}
 R^{5}
 R^{6}
 R^{7}
 $R^$

(en donde, otros símbolos tienen los mismos significados que se han descrito anteriormente).

15 (Etapa 2)

5

10

La presente etapa es un método para producir el compuesto (I-2) haciendo reaccionar un compuesto (1) o un derivado reactivo del mismo con un compuesto (3).

La reacción en la presente etapa puede realizarse por el mismo método que en la etapa 1, un método equivalente del mismo, o una combinación de estos métodos y un método convencional.

20 El compuesto (1-2) obtenido de tal manera puede someterse a una siguiente etapa con o sin aislamiento y purificación por un método de aislamiento y purificación que es bien conocido para una persona experta en la técnica.

(Etapa 3)

25

30

35

40

La presente etapa es un método para producir un compuesto (I-3) sometiendo el compuesto (I-2) a una reacción de oxidación.

La presente etapa puede realizarse de acuerdo con un método bien conocido para una persona experta en la técnica. Por ejemplo, se citan la oxidación de PCC, la oxidación de Swern, la oxidación de MnO₂ y la oxidación de Dess-Martin, y similares.

Por ejemplo, la oxidación de Dess-Martin puede realizarse usando el reactivo de Dess-Martin sin disolvente o en un disolvente inerte a la reacción.

La cantidad del reactivo de Dess-Martin usado es generalmente de 1 equivalente a 10 equivalentes con respecto a 1 equivalente del compuesto (1-2), preferiblemente de 1 equivalente a 4 equivalentes.

La reacción en la presente etapa se realiza generalmente en un disolvente inactivo. Como el disolvente inactivo, por ejemplo, se citan tetrahidrofurano, acetonitrilo, *N,N*-dimetilformamida, dimetilsulfóxido, 1,4-dioxano, benceno, tolueno, diclorometano, cloroformo, tetracloruro de carbono, 1,2-dicloroetano, y similares; o mezclas de los mismos.

El tiempo de reacción es generalmente de 0,5 horas a 96 horas, y preferiblemente de 1 hora a 24 horas.

La temperatura de reacción es generalmente de -78 °C a la temperatura de punto de ebullición del disolvente, y preferiblemente de -20 °C a temperatura ambiente.

El compuesto (1-3) obtenido de tal manera puede aislarse y purificarse por un método de aislamiento y purificación que es bien conocido para una persona experta en la técnica.

También, cuando la sustancia reactiva tiene un grupo carboxilo que no está implicado en la reacción en la primera etapa, la segunda etapa y la tercera etapa, el grupo carboxilo se protege preferiblemente de antemano mediante un grupo protector y después el grupo protector se elimina después de la finalización de la reacción. La selección de tal grupo protector y las condiciones de eliminación pueden realizarse refiriéndose al método mencionado previamente

en "Protecting Groups in Organic Synthesis (la tercera edición, 1999)".

Además, entre los compuestos representados por la fórmula (I) en la presente invención, puede prepararse un compuesto (1-3), por ejemplo, mediante el siguiente método:

También, entre los compuestos (1) usados para preparar los compuestos en la presente invención, puede prepararse un compuesto (1) en donde R³ es H, por ejemplo, mediante el siguiente método:

(en donde, R^{pro} es un grupo protector. Otros símbolos tienen los mismos significados que se han descrito anteriormente).

Un compuesto representado por la fórmula (a) puede sintetizarse de acuerdo con un método bien conocido para una persona experta en la técnica.

Un compuesto representado por la fórmula (c) puede sintetizarse de acuerdo con un método bien conocido para una persona experta en la técnica.

(Etapa A)

5

10

15

25

30

35

40

La presente etapa es un método para producir un compuesto (b) haciendo reaccionar un compuesto (a) con N,N-dimetilformamida dimetil acetal en presencia o ausencia de un disolvente.

También, pueden usarse *N,N*-dimetilformamida dietil acetal, *N,N*-dimetilformamida diisopropil acetal, o similares en lugar de *N,N*-dimetilformamida dimetil acetal.

La cantidad de *N,N*-dimetilformamida dimetil acetal usada es generalmente de 1 equivalente a 10 equivalentes con respecto a 1 equivalente del compuesto (a).

El disolvente de reacción usado no está particularmente limitado siempre y cuando este sea inerte para la reacción, e incluye específicamente, por ejemplo, metanol, etanol, benceno, tolueno, xileno, tetrahidrofurano, 1,4-dioxano, *N,N*-dimetilformamida, o mezclas de los mismos.

El tiempo de reacción es generalmente de 0,5 horas a 96 horas, y preferiblemente de 1 hora a 24 horas.

La temperatura de reacción es generalmente de 0 °C a la temperatura del punto de ebullición del disolvente, y preferiblemente de temperatura ambiente a 160 °C.

El compuesto (b) obtenido de tal manera puede someterse a una etapa siguiente con o sin aislamiento y purificación mediante un medio de aislamiento y purificación bien conocido para una persona experta en la técnica.

(Etapa B)

La presente etapa es un método para producir un compuesto (d) haciendo reaccionar el compuesto (b) con un compuesto que tiene un grupo hidrazino representado por la fórmula (c).

La cantidad del compuesto (c) usada es generalmente de 0,5 equivalentes a 10 equivalentes con respecto a 1 equivalente del compuesto (b), y preferiblemente de 0,7 equivalentes a 3 equivalentes.

En la presente etapa, cuando el compuesto (c) es una sal, es necesario usar una base para neutralización. Los ejemplos de tal base incluyen carbonato sódico, carbonato potásico, bicarbonato sódico, bicarbonato potásico, acetato sódico, acetato potásico, hidróxido sódico, hidróxido potásico, hidróxido de litio, trietilamina, *N,N*-diisopropiletilamina, piridina, y similares. La cantidad de la base usada es generalmente de 1 equivalente a 3 equivalentes con respecto a 1 equivalente del compuesto (c).

El disolvente de reacción usado no está limitado en particular siempre y cuando sea inerte para la reacción. Específicamente, los ejemplos incluyen, metanol, etanol, *n*-propanol, *n*-butanol, isopropanol, acetonitrilo, éter dietílico, tetrahidrofurano, 1,4-dioxano, *N*,*N*-dimetilformamida, diclorometano, cloroformo, benceno, tolueno, xileno o mezclas de los mismos.

El tiempo de reacción es generalmente de 0,5 horas a 96 horas, y preferiblemente de 1 hora a 24 horas.

La temperatura de reacción es generalmente de 0 °C a la temperatura del punto de ebullición del disolvente, y preferiblemente de temperatura ambiente a 100 °C.

El compuesto (d) obtenido de tal manera puede someterse a una siguiente etapa con o sin aislamiento y purificación por un método de aislamiento y purificación que es bien conocido para una persona experta en la técnica.

5 (Etapa C)

10

15

20

La presente etapa es un método para producir un compuesto (1-a) eliminando el grupo protector R^{pro} del compuesto (d).

La eliminación del grupo protector puede realizarse por un método descrito en "Protecting Groups in Organic Synthesis (la tercera edición, 1999)" mencionado previamente, un método equivalente al mismo o una combinación de estos métodos y el método convencional. Por ejemplo, cuando el grupo protector es un grupo bencilo, el grupo bencilo puede eliminarse mediante un método de reducción catalítica con el uso de hidrógeno y un agente catalítico de paladio y similares.

El compuesto (1-a) obtenido de tal manera puede someterse a una siguiente etapa con o sin aislamiento y purificación mediante un método de aislamiento y purificación que es bien conocido para una persona experta en la técnica.

Además, entre los compuestos (2) usados para preparar los compuestos de la presente invención, puede sintetizarse un compuesto (2-a) en donde R⁸ y R⁹ son ambos H, por ejemplo, mediante el siguiente método:

Li
$$_{R^5}$$
 $\xrightarrow{(f)}$ HO $_{R^5}$ $\xrightarrow{Etapa E}$ N₃ $\xrightarrow{R^5}$ $\xrightarrow{Etapa F}$ H₂N $\xrightarrow{R^5}$ $\xrightarrow{R^{11}}$ O $\xrightarrow{R^{10}}$ $\xrightarrow{R^{10}}$ HN $\xrightarrow{R^5}$ $\xrightarrow{Etapa G}$ (2-a)

(en donde, R¹⁰ y R¹¹ son cada uno independientemente H, un grupo que tiene un átomo menos de carbono que la cadena de hidrocarburo de R⁴, o R¹⁰ y R¹¹ forman juntos un grupo cicloalquenilo o cicloalquilo inferior. Otros símbolos tienen los mismos significados que se han descrito anteriormente).

El compuesto representado por la fórmula (f) puede sintetizarse de acuerdo con un método bien conocido para una persona experta en la técnica.

(Etapa D)

La presente etapa es un método para producir un compuesto (g) haciendo reaccionar un compuesto de litio orgánico (e) con óxido de etileno (f).

La cantidad de óxido de etileno (f) usada es generalmente de 0,1 equivalentes a 10 equivalentes con respecto a 1 equivalente del compuesto (e), y preferiblemente de 0,5 equivalentes a 3 equivalentes.

El disolvente de reacción no está limitado en particular siempre y cuando sea inerte para la reacción, y los ejemplos incluyen, tetrahidrofurano, 1,4-dioxano, éter dietílico, 1,2-dimetoxietano, *n*-hexano, n-heptano, diclorometano, cloroformo, tetracloruro de carbono, 1,2-dicloroetano, benceno, tolueno, xileno, y similares.

El tiempo de reacción es generalmente de 0,5 horas a 48 horas, y preferiblemente de 1 hora a 24 horas.

La temperatura de reacción es generalmente de -78 °C a la temperatura del punto de ebullición del disolvente, y preferiblemente de -78 °C a temperatura ambiente.

El compuesto (g) obtenido de tal manera puede someterse a una siguiente etapa con o sin aislamiento y purificación por un método de aislamiento y purificación que es bien conocido para una persona experta en la técnica.

(Etapa E)

La presente etapa es un método para producir un compuesto (h) haciendo reaccionar el compuesto (g) con difenilfosforil azida.

40 La reacción en la presente etapa puede realizarse por el mismo método que en la etapa 16, un método equivalente al mismo, o una combinación de estos métodos y el método convencional.

El compuesto (h) obtenido de tal manera puede someterse a una siguiente etapa con o sin aislamiento y purificación por un método de aislamiento y purificación que es bien conocido para una persona experta en la técnica.

(Etapa F)

10

15

20

La presente etapa es un método para producir un compuesto (i) sometiendo el compuesto (h) a una reacción de reducción del grupo azida.

La presente etapa puede realizarse de acuerdo con métodos bien conocidos para una persona experta en la técnica. Estos métodos incluyen, por ejemplo, un método de reducción usando fosfina; un método de reducción catalítica usando H y un catalizador de paladio, y similares; un método de reducción usando borohidruro sódico; y similares.

Por ejemplo, el método de reducción usando fosfina puede realizarse usando trifenilfosfina y agua en un disolvente inerte a la reacción. Específicamente, los ejemplos incluyen tetrahidrofurano, acetonitrilo, *N,N*-dimetilformamida, 1,4-dioxano, benceno, tolueno, diclorometano, cloroformo, tetracloruro de carbono, 1, 2-dicloroetano, agua, y similares; o mezclas de los mismos.

La cantidad de trifenilfosfina usada es generalmente de 1 equivalente a 10 equivalentes con respecto a 1 equivalente del compuesto (15), y preferiblemente de 1 a 4 equivalentes.

El tiempo de reacción es generalmente de 0,5 horas a 96 horas, y preferiblemente de 2 horas a 48 horas.

La temperatura de reacción es generalmente de 0 °C a la temperatura del punto de ebullición del disolvente, y preferiblemente de temperatura ambiente a la temperatura del punto de ebullición del disolvente.

El compuesto (i) obtenido de tal manera puede someterse a una siguiente etapa con o sin aislamiento y purificación por un método de aislamiento y purificación que es bien conocido para una persona experta en la técnica.

(Etapa G)

La presente etapa es un método para producir un compuesto (2-a) haciendo reaccionar el compuesto (i) con un compuesto (j) en presencia de un agente reductor.

La cantidad del compuesto (i) usada en la presente etapa es generalmente de 0,5 equivalentes a 10 equivalentes con respecto a 1 equivalente del compuesto (j), y preferiblemente, de 0,8 equivalentes a 4 equivalentes.

Los agentes de reducción usados incluyen, por ejemplo, borohidruro sódico, triacetoxiborohidruro sódico, cianoborohidruro sódico, y similares.

La cantidad del agente de reducción usada es generalmente de 0,1 equivalentes a 10 equivalentes con respecto a 1 equivalente del compuesto (i), y preferiblemente de 0,3 equivalentes a 5 equivalentes.

El disolvente de reacción usado no está limitado en particular siempre y cuando sea inerte para la reacción, y los ejemplos metanol, etanol, ácido acético, tetrahidrofurano, 1,4-dioxano, diclorometano, cloroformo, 1,2-dicloroetano, benceno, tolueno, xileno, y similares.

30 El tiempo de reacción es generalmente de 0,5 horas a 48 horas, y preferiblemente, de 1 hora a 24 horas.

La temperatura de reacción es generalmente de 0 °C a la temperatura del punto de ebullición del disolvente.

El compuesto (2-a) obtenido de tal manera puede someterse a una siguiente etapa con o sin aislamiento y purificación mediante un método de aislamiento y purificación que es bien conocido para una persona experta en la técnica.

35 Un grupo representado por la fórmula:

(en donde, cada símbolo tiene el mismo significado que se ha descrito anteriormente) corresponde al R⁴. Además, entre los compuestos (2) usados para preparar los compuestos en la presente invención, puede sintetizarse un compuesto (2-b) en donde R⁸ o R⁹ es F y el otro es H, por ejemplo, mediante el siguiente método:

O
H
$$R^5$$
Etapa H
 R^5
 R^5
 R^{10}
 R^{10}
 R^{11}
 R^5
 R^5
 R^{10}
 $R^{$

40

(en donde, cada símbolo tiene el mismo significado que se ha descrito anteriormente.)

Un compuesto representado por la fórmula (k) puede sintetizarse de acuerdo con un método bien conocido para una persona experta en la técnica.

(Etapa H)

5 La presente etapa es un método para producir un compuesto (1) haciendo reaccionar el compuesto (k) con cianuro de trimetilsililo en presencia de un catalizador de cinc y posteriormente haciendo reaccionar con un agente de fluoración.

La cantidad de cianuro de trimetilsililo usada es generalmente de 1 equivalente a 10 equivalentes con respecto a 1 equivalente del compuesto (k), y preferiblemente, de 1 equivalente a 5 equivalentes.

10 El catalizador de cinc usado incluye, por ejemplo, yoduro de cinc, bromuro de cinc, y similares.

El agente de fluoración usado incluye, por ejemplo, trifluoruro de (*N*,*N*-dietilamino)azufre, trifluoruro de bis(2-metoxietil)aminoazufre, 1,1,2,2-tetrafluoroetil-*N*,*N*-dimetilamina, y similares.

La cantidad del agente de fluoración usada es generalmente de 1 equivalente a 10 equivalentes con respecto a 1 equivalente del compuesto (k), y preferiblemente, de 1 equivalente a 5 equivalentes.

El disolvente de reacción que se usa no está particularmente limitada siempre y cuando sea inerte para la reacción, y los ejemplos incluyen tetrahidrofurano, acetonitrilo, 1,4-dioxano, éter dietílico, diclorometano, cloroformo, 1,2-dicloroetano, tetracloruro de carbono, benceno, tolueno, *N.N*-dimetilformamida, y similares.

El tiempo de reacción es generalmente de 30 minutos a 48 horas, y preferiblemente, de 1 hora a 24 horas.

La temperatura de reacción es generalmente de 0 °C a la temperatura del punto de ebullición del disolvente.

20 El compuesto (1) obtenido de tal manera puede someterse a una siguiente etapa con o sin aislamiento y purificación mediante un método de aislamiento y purificación que es bien conocido para una persona experta en la técnica.

(Etapa I)

La presente etapa es un método para producir un compuesto (m) sometiendo el compuesto (1) a una reacción de reducción del grupo ciano.

Los agentes de reducción usados incluyen, por ejemplo, hidruro de litio y aluminio, hidruro de sodio y bis(2-metoxietoxi)aluminio, un complejo de borano-tetrahidrofurano, y similares.

La cantidad del agente de reducción usada es generalmente de 1 a 10 equivalentes con respecto a 1 equivalente del compuesto (1).

El disolvente de reacción que se usa no está particularmente limitada siempre y cuando sea inerte para la reacción, y los ejemplos incluyen tetrahidrofurano, 1,4-dioxano, diclorometano, benceno, tolueno, éter dietílico, y similares.

El tiempo de reacción es generalmente de 1 hora a 24 horas.

La temperatura de reacción es generalmente de 0 °C a la temperatura del punto de ebullición del disolvente.

El compuesto (m) obtenido de tal manera puede someterse a una siguiente etapa con o sin aislamiento y purificación mediante un método de aislamiento y purificación que es bien conocido para una persona experta en la técnica.

35 (Etapa J)

30

45

La presente etapa es un método para producir un compuesto (2-b) haciendo reaccionar el compuesto (m) con un compuesto (j) en presencia de un agente reductor.

La reacción en la presente etapa puede realizarse por el mismo método que en la etapa G, un método equivalente al mismo, o una combinación de estos métodos y el método convencional.

40 El compuesto (2-b) obtenido de tal manera puede someterse a una siguiente etapa con o sin aislamiento y purificación mediante un método de aislamiento y purificación que es bien conocido para una persona experta en la técnica.

Además, entre los compuestos (3) usados para preparar los compuestos de la presente invención, puede sintetizarse un compuesto (3-P) en donde R⁸ o R⁹ es un grupo hidroxilo que está protegido mediante un grupo protector y el otro es H, por ejemplo, mediante el siguiente método:

TBSO O OH TBSO
$$R^5$$
 TBSO R^5 Etapa R^5 TBSO R^5 Etapa R^5 Etapa R^5 OR R^6 OR R^6 Etapa R^6 OR R^6 O

(en donde, R^{pro} es un grupo protector. Otros símbolos tienen los mismos significados que se han descrito anteriormente).

Un compuesto representado por la fórmula (n) puede sintetizarse de acuerdo con un método bien conocido para una persona experta en la técnica.

(Etapa K)

5

10

La presente etapa es un método para producir un compuesto (o) haciendo reaccionar un compuesto de litio orgánico (m) con (terc-butildimetilsililoxi)acetaldehído (n).

La reacción en la presente etapa puede realizarse por el mismo método que en la etapa D, un método equivalente al mismo, o una combinación de estos métodos y el método convencional.

El compuesto (o) obtenido de tal manera puede someterse a una siguiente etapa con o sin aislamiento y purificación mediante un método de aislamiento y purificación que es bien conocido para una persona experta en la técnica.

(Etapa I)

La presente etapa es un método para introducir un grupo protector en el grupo hidroxilo del compuesto (o). La introducción del grupo protector puede realizarse por un método descrito en "Protecting Groups in Organic Synthesis (la tercera edición, 1999)" mencionado previamente, un método equivalente al mismo, o una combinación de estos métodos y el método convencional.

El compuesto (p) obtenido de tal manera puede someterse a una siguiente etapa con o sin aislamiento y purificación mediante un método de aislamiento y purificación que es bien conocido para una persona experta en la técnica.

20 (Etapa M)

La presente etapa es un método para producir un compuesto (q) eliminando el grupo *terc*-butildimetilsililo del compuesto (p).

La eliminación del grupo protector puede realizarse por un método descrito en "Protecting Groups in Organic Synthesis (la tercera edición, 1999)" mencionado previamente, un método equivalente al mismo, o una combinación de estos métodos y el método convencional, y por ejemplo, puede usarse fluoruro de tetrabutilamonio.

El compuesto (q) obtenido de tal manera puede someterse a una siguiente etapa con o sin aislamiento y purificación mediante un método de aislamiento y purificación que es bien conocido para una persona experta en la técnica.

(Etapa N)

La presente etapa es un método para producir un compuesto (r) sometiendo el compuesto (q) a una reacción de oxidación.

La reacción en la presente etapa puede realizarse por el mismo método que en la etapa 3, un método equivalente al mismo, o una combinación de estos métodos y el método convencional.

El compuesto (r) obtenido de tal manera puede someterse a una siguiente etapa con o sin aislamiento y purificación por un método de aislamiento y purificación que es bien conocido para una persona experta en la técnica.

35

25

30

(Etapa O)

5

La presente etapa es un método para producir el compuesto (3-P) haciendo reaccionar el compuesto (r) con un compuesto (s) en presencia de un agente reductor.

La reacción en la presente etapa puede realizarse por el mismo método que en la etapa G, un método equivalente al mismo, o una combinación de estos métodos y el método convencional.

El compuesto (3-P) obtenido de tal manera puede someterse a una siguiente etapa con o sin aislamiento y purificación por un método de aislamiento y purificación que es bien conocido para una persona experta en la técnica.

Además, entre los compuestos (2) usados para preparar los compuestos en la presente invención, puede sintetizarse un compuesto (2-c) en donde R⁸ y R⁹ son ambos F, por ejemplo, mediante el siguiente método:

$$X^{a}_{R^{5}} \xrightarrow{\text{Etapa P}} R^{\text{pro}} \bigcirc \bigvee_{Q} F^{F}_{R^{5}} \xrightarrow{\text{Etapa Q}} H \bigcirc \bigvee_{Q} F^{F}_{R^{5}} \xrightarrow{\text{Etapa R}} H \bigcirc \bigvee_{Q} F^{F}_{R^{5}} \xrightarrow{\text{Etapa S}} H \bigcirc \bigvee_{Q} F^{F}_{R^{5}} \xrightarrow{\text{Eta$$

(en donde, X^a y X^b son cada uno independientemente Br o I. Otros símbolos tienen los mismos significados que se han descrito anteriormente).

Un compuesto representado por la fórmula (u) puede sintetizarse de acuerdo con un método bien conocido para una persona experta en la técnica.

(Etapa P)

15

20

La presente etapa es un método para producir un compuesto (v) haciendo reaccionar el compuesto (t) con un compuesto (u) en presencia de cobre para preparar.

La cantidad del compuesto (t) usada es generalmente de 1 equivalente a 10 equivalentes con respecto a 1 equivalente del compuesto (u), y preferiblemente de 1 equivalente a 3 equivalentes.

La cantidad de cobre usada es generalmente de 1 equivalente a 10 equivalentes con respecto a 1 equivalente del compuesto (t), y preferiblemente de 1 equivalente a 5 equivalentes.

El disolvente de reacción utilizado no está particularmente limitado siempre y cuando sea inerte para la reacción, y los ejemplos incluyen tetrahidrofurano, acetonitrilo, 1,4-dioxano, dimetilsulfóxido, *N,N*-dimetilformamida, y similares.

25 El tiempo de reacción es generalmente de 30 minutos a 48 horas.

La temperatura de reacción es generalmente de temperatura ambiente a la temperatura del punto de ebullición del disolvente.

El compuesto (v) obtenido de tal manera puede someterse a una siguiente etapa con o sin aislamiento y purificación por un método de aislamiento y purificación que es bien conocido para una persona experta en la técnica.

30 (Etapa Q)

La presente etapa es un método para producir un compuesto (w) eliminando el grupo protector R^{pro} del compuesto (v).

La reacción en la presente etapa puede realizarse por el mismo método que en la etapa C, un método equivalente al mismo, o una combinación de estos métodos y el método convencional.

35 El compuesto (w) obtenido de tal manera puede someterse a una etapa siguiente con o sin aislamiento y purificación mediante un medio de aislamiento y purificación bien conocido para una persona experta en la técnica.

(Etapa R)

La presente etapa es un método para producir el compuesto (x) haciendo reaccionar un compuesto (w) o un derivado reactivo del mismo con un compuesto (s).

40 La reacción en la presente etapa puede realizarse por el mismo método que en la etapa 1, un método equivalente al mismo, o una combinación de estos métodos y el método convencional.

El compuesto (x) obtenido de tal manera puede someterse a una siguiente etapa con o sin aislamiento y purificación por un método de aislamiento y purificación que es bien conocido para una persona experta en la técnica.

(Etapa S)

15

20

25

30

35

40

55

La presente etapa es un método para producir un compuesto (2-c) reduciendo el grupo amida del compuesto (x).

La reacción en la presente etapa puede realizarse por el mismo método que en la etapa I, un método equivalente al mismo, o una combinación de estos métodos y el método convencional.

El compuesto (2-c) obtenido de tal manera puede someterse a una siguiente etapa con o sin aislamiento y purificación mediante un método de aislamiento y purificación que es bien conocido para una persona experta en la técnica.

Además, el compuesto representado por la fórmula (I) en la presente invención puede tener un tautómero y/o isómero óptico en algunos casos dependiendo de los tipos de sustituyentes. Sin embargo, la presente invención incluye una mezcla de estos tautómeros e isómeros, y los aislados.

Adicionalmente, la presente invención se refiere a un profármaco farmacéuticamente aceptable del compuesto representado por la fórmula (I). La expresión "profármaco farmacéuticamente aceptable" significa un compuesto que produce un compuesto representado por la fórmula (I) mediante solvólisis o conversión en CO₂H, NH₂, OH, etc. en condiciones fisiológicas. Se encuentra un ejemplo del grupo que produce profármaco, por ejemplo, en Prog. Med., 5, 2157-2161 (1985), "lyakuhin no Kaihatsu" (Hirokawa Shoten, 1990) Vol.7., Bunshi Sekkei 163-198. En la presente invención, algunos de los compuestos dentro del alcance de la fórmula (I) que tienen el grupo que produce un profármaco pueden servir como un profármaco del compuesto correspondiente de fórmula (I) que tiene CO₂H, NH₂, OH, etc. Por ejemplo, un compuesto dentro del alcance de la fórmula (I) que tiene un grupo alcoxicarbonilo puede convertirse en un derivado de ácido carboxílico correspondiente.

La presente invención también se refiere a una sal farmacéuticamente aceptable del compuesto representado por la fórmula (I) y un profármaco farmacéuticamente aceptable del mismo. Tales sales incluyen, por ejemplo, haluros de hidrógeno, tales como ácido clorhídrico, ácido fluorhídrico, ácido bromhídrico, ácido yodhídrico, y similares; ácidos inorgánicos, tales como ácido sulfúrico, ácido nítrico, ácido fosfórico, ácido carbónico, y similares; ácidos alquil sulfónicos inferiores, tales como ácido metanosulfónico, ácido etanosulfónico, y similares; ácidos arilsulfónicos, tales como ácido bencenosulfónico, ácido p-toluenosulfónico y similares; ácidos orgánicos, tales como ácido fórmico, ácido acético, ácido propiónico, ácido oxálico, ácido malónico, ácido succínico, ácido fumárico, ácido maleico, ácido láctico, ácido málico, ácido tartárico, ácido cítrico, y similares; y sales de adición de ácidos con aminoácidos, incluyendo ácido aspártico, ácido glutámico, y similares. Además, dependiendo de los tipos de sustituyentes, la sal en la presente invención puede formar una sal con una base. Los ejemplos incluyen bases inorgánicas incluyendo metales, tales como sodio, potasio, magnesio, calcio, aluminio, litio, y similares; y una sal de amonio, y similares.

Las diversas sales farmacéuticamente aceptables del compuesto representado por la fórmula (I) pueden sintetizarse basándose en el conocimiento general en el campo técnico en la materia.

El compuesto representado por la fórmula (I) y la sal farmacéuticamente aceptable del mismo en la presente invención (a partir de ahora en este documento, el término general para estos se menciona como el compuesto de la presente invención) tiene una excelente actividad inhibidora de RORy y puede usarse como inhibidor de RORy que es clínicamente aplicable para tratar o prevenir enfermedades asociadas con RORy y sus síntomas. Entre las enfermedades relacionadas con RORy, el compuesto de la presente invención es útil como agente terapéutico o agente preventivo para, en particular, enfermedades seleccionadas de enfermedad autoinmunitaria y enfermedad inflamatoria (por ejemplo, esclerosis múltiple, artritis reumatoide crónica, espondilitis anquilosante, eritematosis sistémica, psoriasis, artritis psoriásica, enfermedad inflamatoria del intestino (por ejemplo, enfermedad de Crohn) y asma), enfermedades metabólicas (especialmente diabetes) y cáncer (especialmente, melanoma maligno).

Además, el término "prevención" en la presente invención significa un procedimiento de administración de una composición farmacéutica que incluye el compuesto de la presente invención o la administración de esta a individuos que no han desarrollado enfermedades o síntomas. Además, el término "tratamiento" significa un procedimiento de administración de una composición farmacéutica que incluye el compuesto de la presente invención o administración de esta a individuos que ya han desarrollado enfermedades o síntomas. Por consiguiente, un procedimiento de administración a individuos que ya han desarrollado enfermedades o síntomas para prevenir el agravamiento o los ataques es un aspecto del "tratamiento".

Cuando el compuesto de la presente invención se usa como medicina, el compuesto de la presente invención puede mezclarse con un vehículo farmacéuticamente aceptable (agente diluyente, agente de unión, disgregante, sustancia aromatizante, agente que mejora el olor, agente emulsionante, diluyentes, agente solubilizante y similares) y puede administrarse en forma de una composición farmacéutica o formulación de fármaco (preparación oral, inyecciones y similares) por vía oral o parenteral. La composición farmacéutica puede formularse de acuerdo con un método habitual.

En la presente descripción, la administración parenteral incluye inyección subcutánea, inyección intravenosa, inyección intramuscular, inyección intraperitoneal, técnica de infusión y administración local (administración percutánea, administración oftálmica, administración pulmonar/bronquial, administración nasal, administración rectal y similares. La forma galénica de administración oral incluye, por ejemplo, comprimidos, píldoras, gránulos, polvos, disolvente, suspensiones, jarabes, cápsulas y similares.

La cantidad del compuesto de la presente invención que puede combinarse con un vehículo puede cambiarse dependiendo del individuo específico que recibe el tratamiento y de las formas galénicas específicas. A este respecto, la dosificación específica para el paciente específico se determina dependiendo de diversos factores que incluyen la edad, el peso corporal, el estado global de salud, el género, la dieta, el tiempo de administración, el método de administración, la tasa de excreción y el grado de la enfermedad especificada durante el tratamiento.

La cantidad de dosificación del compuesto de la presente invención se determina dependiendo de la edad, el peso corporal, el estado de salud general, el género, la dieta, el tiempo de administración, el método de administración, la velocidad de excreción, el grado de una enfermedad en un paciente que se está tratando y en vista de otros factores. El compuesto de la presente invención puede administrarse una única vez o múltiples veces al día para un adulto en un intervalo de 0,01 mg a 1000 mg, aunque la dosificación es diferente dependiendo de la afección del paciente, el peso corporal, los tipos del compuesto, la vía de administración y similares.

Abreviaturas

5

10

15

Ac acetilo

20 ac. acuoso

Bn bencilo

Boc terc-butoxicarbonilo

BuOH butanol

Bzl bencilo

25 cat. catalítico

conc. concentrado

DAST trifluoruro de N,N-dietilaminoazufre

DBU 1,8-diazabiciclo[5,4,0]undec-7-eno

DCM diclorometano

30 DIAD azodicarboxilato de diisopropilo

DIPEA N,N-diisopropiletilamina

DMA N,N-dimetilacetoamida

DMAP 4-(N,N-dimetilamino)piridina

DMF N,N-dimetilformamida

35 DMSO dimetilsulfóxido

DPPA difenilfosforil azida

Et₂O éter dietílico

EtOAc acetato de etilo

EtOH etanol

40 HATU Hexafluorofosfato de 3-óxido de 1-[bis(dimetilamino)metileno]-1H-1,2,3-triazolo[4,5-b]piridinio

LDA diisopropilamida de litio

MeOH metanol

Ms metanosulfonilo (mesilo)

MTBE metil terc-butil éter

NBS N-Bromosuccinimida

NMO N-óxido de N-metilmorfolina

cuant. cuantitativo

5 sat. saturado

SEM grupo 2-(trimetilsilil)etoximetilo

TBAF fluoruro de tetrabutilamonio

terc terciario

TES grupo trietilsililo

10 TFA ácido trifluoroacético

THF tetrahidrofurano

TLC cromatografía de capa fina

TMS grupo trimetilsililo

TMSCN cianuro de trimetilsililo

15 TsOH ácido toluenosulfónico

Ejemplos

25

30

En lo sucesivo en el presente documento, la presente invención se explicará en base a ejemplos específicos. Sin embargo, la presente invención no se limita a estos ejemplos.

A menos que se indique lo contrario, los reactivos, materiales de partida y disolventes se adquirieron de proveedores (por ejemplo, Aldrich, Wako Junyaku, Tokyo Kasei, Fluka, Sigma, y similares) y se usaron sin purificación adicional.

La estructura del nuevo compuesto aislado se confirmó por espectrometría de masas usando instrumentación de un solo cuadrupolo equipado con una fuente de nebulización electrónica y otros métodos analíticos adecuados.

Como para los compuestos para los que se midió el espectro (300 MHz, 400 MHz o 500 MHz, MeOH-d4, DMSO-d $_6$, CD3CN o CDCl $_3$), se muestran el desplazamiento químico (δ : ppm) y la constante de acoplamiento (J: Hz). Además, las siguientes abreviaturas representan lo siguiente, respectivamente: s = singlete, d = doblete, t = triplete, c = cuadruplete, s a = singlete ancho, m = multiplete.

Los compuestos sintetizados de acuerdo con los siguientes métodos de ejemplos se analizaron adicionalmente mediante análisis de cromatografía líquida de alto rendimiento espectroscopía de masas (CL/EM). Como para el resultado de espectroscopía de masas, el valor observado de [M+H]+, es decir, el valor observado, se muestra como el valor de la masa molecular del compuesto (M) con un protón (H+).

Condición de medición de CLEM: (UPLC/EM)

Espectrómetro de masas de CL: Waters Corporation AcquityUPLC™-SQD

Columna: Acquity UPLC™ BEH C18, 1,7 µm, 2,1 mm × 50 mm

UV: detección de PDA (254 nm)

35 CAD: deterctor CORONA™ ULTRA

Temperatura de columna: 40 °C

Voltaje EN: 3,0 kV (capilar)

Voltaje de cono: 30 V

Condiciones de gradiente:

40 Disolventes: A: $H_2O/MeCN = 95/5$

TFA al 0,05 %

ES 2 673 279 T3

B: $H_2O/MeCN = 5/95$

TFA al 0,05 %

Caudal: 0,6 ml/min

Gradientes: de 0,01 a 0,20 min, Disolvente B: 2 %, Disolvente A: 98 %

5 de 0,20 a 3,0 min, Disolvente B: de 2 % a 100 %, Disolvente A: de 98 % a 0 %

de 3,0 a 4,2 min, Disolvente B: 100%, Disolvente A: 0%

de 4,2 a 4,21 min, Disolvente B: de 100% a 2%, Disolvente A: de 0% a 98%

de 4,21 a 5,2 min, Disolvente B: 2 %, Disolvente A: 98 %

de 5,2 a 5,5 min, Disolvente B: 2 %, Disolvente A: 98%, Caudal: 0,2 ml/min

10 Condición de medición de CLEM (método de CL/EM A):

Espectrómetro de masas de CL: Agilent Technologies Corporation 1260 INFINITY™ HPLC-6130MSD

Columna: Phenomenex Gemini™ C18 A110, 3 µm, 4,6 mm × 30 mm

UV: detección de PDA (254 nm)
Temperatura de columna: 40 °C

15 Voltaje capilar: 3,5 kV

Voltaje de fragmentador: 70 V

Condiciones de gradiente:

Disolventes: A: $H_2O/MeCN = 95/5$

TFA al 0,05 %

20 B: $H_2O/MeCN = 5/95$

TFA al 0,05 %

Caudal: 1,0 ml/min

Gradientes: de 0,01 a 0,30 min, Disolvente B: de 2 % a 10%, Disolvente A: de 98 % a 90%

de 0,30 a 1,5 min, Disolvente B: de 10% a 100 %, Disolvente A: de 90% a 0 %

25 de 1,5 a 3,5 min, Disolvente B: 100%, Disolvente A: 0%

de 3,5 a 3,51 min, Disolvente B: de 100% a 2%, Disolvente A: de 0% a 98%

de 3,51 a 4,5 min, Disolvente B: 2 %, Disolvente A: 98 %

Condición de medición de CLEM (método de CL/EM B):

Espectrómetro de masas de CL: Shimadzu Corporation CLEM-2010 EV

30 Columna: Shim-pack™ XR-ODII, 2,0 mm × 75 mm

UV: detección de PDA (254 nm)

Caudal: 0.4 ml/min

Temperatura de columna: 40 °C

Voltaje de detección: 1,20 kV

35 Condiciones de gradiente:

Disolventes: A: H₂O/MeCN = 90/5

HCO₂H al 0,1 %

B: $H_2O/MeCN = 10/95$

HCO₂H al 0,1 %

Caudal: 0,4 ml/min

Gradientes: de 0,01 a 0,50 min, Disolvente B: 10%, Disolvente A: 90%

de 0,50 a 2,0 min, Disolvente B: de 10% a 95%, Disolvente A: de 90% a 5%

de 2,0 a 3,8 min, Disolvente B: 95%, Disolvente A: 5%

de 3,8 a 4,0 min, Disolvente B: de 95% a 10%, Disolvente A: de 5% a 90%

d e4,0 a 5,0 min, Disolvente B: 10%, Disolvente A: 90%

[Ejemplo de referencia A1]

5

10

15

Etapa 1: 1-(3,5-dicloropiridin-4-il)-2-nitroetanol (A1-1)

A una solución de 3,5-dicloro-4-piridinacarboxialdehído (2,3 g, 13,3 mmol) en MeOH (25 ml) se añadieron nitrometano (2,2 ml, 39,9 mmol) y metóxido sódico (861 mg, 15,9 mmol). Después de la adición, la mezcla se agitó durante 1 h. La mezcla de reacción se inactivó añadiendo HCl acuoso 2 M (7 ml) y se extrajo con EtOAc. La capa orgánica se lavó con salmuera x 2 y se secó sobre MgSO₄. Después haber retirado el disolvente, el residuo se purificó por cromatografía en columna sobre gel de sílice para dar el compuesto A1-1 (2,8 g, 90 %) en forma de un sólido de color blanco.

Etapa 2: 3,5-dicloro-4-(2-nitro-1-((trietilsilil)oxi)etil)piridina (A1-2)

A una solución del compuesto A1-1 (2,8 g, 11,9 mmol) en DMF (15 ml) se añadieron imidazol (973 mg, 14,3 mmol) y trietilclorosilano (2,2 ml, 13,1 mmol). Después de la adición, la mezcla se agitó durante 1 h. La mezcla de reacción se inactivó con agua y se extrajo con EtOAc. La capa orgánica se lavó con salmuera x 2 y se secó sobre MgSO₄. Después de haber retirado el disolvente, el residuo se purificó por cromatografía en columna sobre gel de sílice para dar el compuesto A1-2 (4,1 g, 98 %) en forma de un aceite incoloro. Etapa 3: 2-(3,5-dicloropiridin-4-il)-2- ((trietilsilil)oxi)etanamina (A1-3)

El compuesto A1-2 (4,1 g, 11,6 mmol) y níquel Raney 2800 (690 mg, en agua) en MeOH (50 ml) se hidrogenó en una atmósfera de H₂ (1 atm) a temperatura ambiente durante 8 h. La mezcla de reacción se filtró a través de una capa de celite y se lavó con EtOAc. Después haber retirado el disolvente, el residuo se purificó por cromatografía en columna sobre gel de sílice para dar el compuesto A1-3 (1,9 g, 50%) en forma de un sólido de color blanco.

Etapa 4: 2-(3,5-dicloropiridin-4-il)-N-(4-fluorobencil)-2-((trietilsilil)oxi)etanamina (A1)

A una solución del compuesto A1-3 (2,8 g, 11,9 mmol) en tolueno (6 ml) y MeOH (6 ml) se añadió 4-fluorobenzaldehído (360 μl, 3,4 mmol) y la mezcla se agitó a 70 °C durante 2 h. La mezcla de reacción se enfrió a 0 °C y se añadió gradualmente NaBH₄. La mezcla de reacción se dejó calentar a temperatura ambiente y se agitó a temperatura ambiente durante 12 h. La mezcla de reacción se inactivó con agua y se extrajo con EtOAc. La capa orgánica se lavó con salmuera x 2 y Na₂SO₄ anhidro. Después haber retirado el disolvente, el residuo se purificó por cromatografía en columna sobre gel de sílice para dar el compuesto A1 (1,2 g, 88%) en forma de un aceite incoloro.

[Ejemplo de referencia A12]

Etapa 1: 4-(metoximetileno)-1,1-dimetilciclohexano (A12-1)

Se añadió gota a gota n-BuLi (2,6 M en hexano, 2,3 ml, 5,94 mmol) a una solución agitada de cloruro de (metoximetil)trifenilfosfonio (2,04 g, 5,94 mmol) en THF (20 ml) a -78 °C y se agitó durante 10 min a la misma temperatura y después se agitó durante 2,5 h a temperatura ambiente. La mezcla de reacción se enfrió a -78 °C, se añadió lentamente una solución de 4,4-dimetilciclohexanona (500 mg, 3,96 mmol) en THF (5 ml) a -78 °C. La mezcla de reacción se dejó calentar a temperatura ambiente y se agitó a temperatura ambiente durante una noche. La mezcla de reacción se inactivó con NaHCO₃ ac. sat. (20 ml) y se extrajo con EtOAc. Las capas orgánicas combinadas se secaron sobre Na₂SO₄ anhidro y se concentraron a presión reducida para proporcionar el compuesto A12-1 (512,2 mg, en bruto) en forma de un aceite de color amarillo pálido. El producto en bruto se usó para la siguiente etapa sin purificación.

Etapa 2: 4,4-dimetilciclohexanocarbaldehído (A12-2)

Se añadió TFA (2 ml) a una solución agitada del compuesto A12-1 (512,2 mg, en bruto) en DCM (1 ml) a temperatura ambiente y se agitó durante 1,5 h a la misma temperatura. La mezcla de reacción se inactivó con NaHCO₃ ac. sat. (10 ml) y se extrajo con EtOAc. La capa orgánica combinada se secó sobre Na₂SO₄ anhidro y se concentró a presión reducida para proporcionar el compuesto en bruto A12-2 en forma de un aceite de color amarillo pálido. El producto en bruto se usó para la siguiente etapa sin purificación.

Etapa 3:

5

10

15

20

25

30

35

40

45

2-(3,5-dicloropiridin-4-il)-N-((4,4-dimetilciclohexil)metil)-2-((trietilsilil)oxi)etanamina (A12)

Se añadió A12-2 en bruto (52 mg) y la amina A1-3 (100 mg, 311,2 mmol) a una solución de MeOH (1 ml) y tolueno (1 ml) y se agitó a 80 °C durante 4 h. La mezcla de reacción se enfrió a temperatura ambiente. Se añadió MeOH (2 ml) a la mezcla de reacción y se añadió NaBH₄ (100 mg) a la mezcla de reacción a temperatura ambiente. La mezcla se agitó a temperatura ambiente durante 1 h. La mezcla de reacción se inactivó con NaHCO₃ ac. sat. (10 ml) y se extrajo con EtOAc (50 ml). La capa orgánica se lavó con NaHCO₃ ac. sat. y salmuera, se secó sobre Na₂SO₄ anhidro y se concentró a presión reducida. El residuo se purificó por cromatografía preparativa de capa fina (Merck KGaA, Gel de sílice de PLC 60 F254, 1 mm, 20 x 20 cm con zona de concentración 20 x 4 cm, EtOAc al 20 %/hexano como eluyente) para proporcionar el compuesto A12 (58,6 mg, 42 %) en forma de un aceite de color amarillo pálido. RMN ¹H (CDCl₃, 400 MHz): δ 8,42 (s, 2H), 5,49 (dd, *J* = 8,8, *J* = 4,4 Hz, 1H), 3,21 (dd, *J* = 12,5, *J* = 8,8 Hz, 1H), 2,77 (dd, *J* = 12,5, *J* = 4,4 Hz, 1H), 2,54-2,47 (m, 2H), 1,54-1,04 (m, 9H), 0,90-0,86 (m, 15H), 0,62-0,49 (m, 6H).

[Ejemplo de referencia A31]

Etapa 1: 1-(2,6-dicloro-4-fluorofenil)-2-nitroetanol (A31-1)

Una mezcla de 2,6-dicloro-4-fluorobenzaldehído (10,0 g, 51,8 mmol), nitrometano (2 ml) y K₂CO₃ (3,57 g, 25,9 mmol) se agitó a temperatura ambiente durante 2 h. La mezcla de reacción se inactivó con agua y se extrajo con EtOAc (2 x 100 ml). Las capas orgánicas combinadas se lavaron con agua (2 x 50 ml) y salmuera (20 ml), se secaron sobre Na₂SO₄ anhidro y se concentraron a presión reducida para proporcionar el compuesto A31-1 (26,0 g, en bruto) en forma de una goma de color amarillo. El producto en bruto se usó en la siguiente etapa sin purificación.

Etapa 2: (1-(2,6-dicloro-4-fluorofenil)-2-nitroetoxi)trietilsilano (A31-2)

A una solución agitada del compuesto A31-1 (26,0 g, 102,3 mmol) en DMF (100 ml) se añadió imidazol (20,9 g, 307,0 mmol) y TES-Cl (25,7 ml, 153,5 mmol) y la mezcla se agitó a temperatura ambiente durante 1 h. Una vez finalizó la reacción, la mezcla se inactivó con agua (50 ml) y se extrajo con EtOAc (2 x 100 ml). Las capas orgánicas combinadas se lavaron con salmuera (2 x 50 ml), se secaron sobre Na₂SO₄ anhidro y se concentraron a presión reducida. El residuo se purificó por cromatografía en columna (gel de sílice, EtOAc al 0-10 %/hexano como eluyente) para proporcionar el compuesto A31-2 (32,8 g, 74 %) en forma de una goma incolora. RMN ¹H (CDCl₃, 400 MHz): δ 7,12 (s, 1H), 7,10 (s, 1H), 6,22 (dd, *J* = 9,2, *J* = 3,2 Hz, 1H), 5,22-5,11 (m, 1H), 4,42 (dd, *J* = 12,2, *J* = 3,6 Hz, 1H), 0,84 (t, *J* = 8,0 Hz, 9H), 0,55-0,50 (m, 6H).

Etapa 3: 2-(2.6-dicloro-4-fluorofenil)-2-((trietilsilil)oxi)etanamina (A31-3)

A una solución agitada del compuesto A31-2 (15,0 g, 40,7 mmol) en EtOH/agua (60 ml, 4:1) se añadió polvo de Fe (22,7 g, 407,6 mmol) y NH_4Cl sólido (21,8 g, 407,6 mmol).

La mezcla se agitó a 70 °C durante 1 h. La mezcla de reacción se filtró a través de una capa de celite, se lavó con EtOAc (3 x 150 ml) y el disolvente se retiró a presión reducida. El residuo se suspendió en agua (100 ml) y se extrajo con EtOAc (3 x 100 ml). Las capas orgánicas combinadas se lavaron con salmuera (100 ml), se secaron sobre Na_2SO_4 anhidro y se concentraron a presión reducida. El residuo se purificó por cromatografía en columna (gel de sílice, MeOH al 5 %/DCM como eluyente) para proporcionar el compuesto A31-3 (13,0 g, 94 %) en forma de un aceite incoloro. RMN 1 H (CDCl₃, 400 MHz): 1 D, 1 D,

Etapa 4: 2-(2,6-dicloro-4-fluorofenil)-N-(3,5-difluorobencil)-2-((trietilsilil)oxi)etanamina (A31)

A una solución agitada del compuesto A31-3 (30,0 g, 88,7 mmol) en MeOH (200 ml) se añadió 3,5-difluorbenzaldehído (12,6 g, 88,7 mmol) y la mezcla se agitó a temperatura ambiente durante 2 h. Una vez finalizada la formación de imina (supervisado por TLC), se añadió en porciones NaBH₄ sólido (4,9 g, 133,1 mmol) a 0 °C. La mezcla se calentó a temperatura ambiente y se agitó durante 2 h. La mezcla de reacción se inactivó con agua (100 ml) y se extrajo con EtOAc (3 x 100 ml). Las capas orgánicas combinadas se lavaron con salmuera (2 x 75 ml), se secaron sobre Na₂SO₄ anhidro y se concentraron a presión reducida. El residuo se purificó por cromatografía en columna (gel de sílice, EtOAc al 10 %/hexano como eluyente) para proporcionar el compuesto A31 (30,0 g, 70 %) en forma de una goma incolora.

[Ejemplo de referencia A35]

5

Etapa 1: 2,6-dicloro-4-yodobenzaldehído (A35-1)

A una solución agitada de 1,3-dicloro-5-yodobenceno (4,0 g, 14,6 mmol) en THF (30 ml), se añadió gota a gota LDA (2,0 M en THF/heptano/etilbenceno, 9,6 ml, 16,9 mmol) a -78 °C y se agitó durante 1 h a la misma temperatura. Se añadió lentamente una solución de DMF (1,7 ml, 22,0 mmol) en THF (5 ml) a -78 °C y se agitó durante 3 h. La mezcla de reacción se inactivó con NH₄Cl saturado (50 ml) y se extrajo con EtOAc (2 x 30 ml). Las capas orgánicas combinadas se lavaron con agua (50 ml) y salmuera (50 ml), se secaron sobre Na₂SO₄ anhidro y se concentraron a presión reducida. El producto en bruto se purificó por cromatografía en columna (gel de sílice, EtOAc al 20 %/hexano como eluyente) para proporcionar el compuesto A35-1 (1,4 g, 32 %) en forma de un aceite incoloro.

Etapa 2: 1-(2,6-dicloro-4-yodofenil)-2-nitroetanol (A35-2)

El compuesto A3 5-2 (1,84 g, en bruto) se obtuvo en forma de una goma incolora a partir de la reacción del compuesto A35-1 (1,4 g, 4,8 mmol) y K_2CO_3 (0,23 g, 2,0 mmol) en CH_3NO_2 (10 ml) usando un procedimiento similar al descrito en el ejemplo de referencia A1, etapa 1:

Etapa 3: (1-(2,6-dicloro-4-yodofenil)-2-nitroetoxi)trietilsilano (A35-3)

El compuesto A35-3 (2,4 g, en bruto) se obtuvo en forma de una goma incolora a partir de la reacción del compuesto A35-2 (1,84 g, 5,08 mmol), TES-CI (1,02 ml, 6,12 mmol) e imidazol (1,03 g, 15,2 mmol) en DMF (10 ml) usando un procedimiento similar al descrito en el ejemplo de referencia A1, etapa 2:

35 Etapa 4: 2-(2,6-dicloro-4-yodofenil)-2-((trietilsilil)oxi)etanamina (A35-4)

El compuesto A35-4 (2,2 g, en bruto) se obtuvo en forma de un aceite de color pardo a partir de la reacción del compuesto A35-3 (2,4 g, 5,0 mmol), Fe (2,83 g, 50,0 mmol) y NH₄Cl (2,68 g, 50,0 mmol) en EtOH/agua (4:1, 20 ml) usando un procedimiento similar al descrito en el ejemplo de referencia A31, etapa 3:

Etapa 5:

30

40 2-(2,6-dicloro-4-yodofenil)-N-((3,5-difluorofenil)((trietilsilil)oxi)metil)etanamina (A35-5)

El compuesto A35-5 (1,87 g, 67 %) se obtuvo en forma de una goma incolora a partir de la reacción del compuesto

A35-4 (2,2 g, 5,0 mmol), 3,5-difluorobenzaldehído (0,55 ml, 5,0 mmol) y NaBFE (0,38 g, 10,0 mmol) en MeOH (15 ml) usando un procedimiento similar al descrito en ejemplo A31, etapa 4,

Etapa 6: (2-(2,6-dicloro-4-yodofenil)-2-((trietilsilil)oxi)etil)(3,5-difluorobencil)carbamato de terc-butilo (A3 5-6)

A una solución agitada del compuesto A35-5 (1,87 g, 3,26 mmol) en DCM/agua (4:1, 20 ml) se añadió NaHCO₃ (0,55 g, 6,5 mmol) y (Boc)₂O (1,07 g, 4,9 mmol) en DCM (8 ml) a 0 °C. La mezcla se agitó a temperatura ambiente durante 2 h. La mezcla de reacción se inactivó en agua (100 ml) y se extrajo con DCM (2 x 30 ml). Las capas orgánicas combinadas se lavaron con agua (50 ml) y salmuera (50 ml), se secaron sobre Na₂SO₄ anhidro y se concentraron a presión reducida para obtener el compuesto A35-6 (2,47 g, en bruto) en forma de una goma incolora.

Etapa 7: (2-(2,6-dicloro-4-cianofenil)-2-((trietilsilil)oxi)etil)(3,5-difluorobencil)carbamato de terc-butilo (A35-7)

A una solución del compuesto A35-6 (2,0 g, 2,9 mmol) en DMA (10 ml) en un tubo cerrado herméticamente, se añadieron Zn(CN) 2 (0,7 g, 5,9 mmol) y Pd(PPh₃) 4 y se agitó durante 2 h a 80 °C. La mezcla de reacción se inactivó con agua (50 ml) y se extrajo con EtOAc (2 x 50 ml). Las capas orgánicas combinadas se lavaron con agua (50 ml) y salmuera (50 ml), se secaron sobre Na₂SO₄ anhidro y se concentraron a presión reducida. El producto en bruto se purificó por cromatografía en columna (gel de sílice, EtOAc al 20 %/hexano como eluyente) para proporcionar el compuesto A35-7 (1,1 g, 61%) en forma de un aceite incoloro.

Etapa 8: 3,5-dicloro-4-(2-((3,5-difluorobencil)amino)-1-hidroxietil)benzonitrilo (A35)

A una solución agitada del compuesto A35-7 (0,2 g, 0,3 mmol) en EtOH (10 ml) se añadió HCl 4 M (5 ml) y la mezcla se agitó a 80 °C durante una noche. La mezcla de reacción se inactivó con agua (50 ml) y se basificó con una solución de NaOH al 10 % hasta un pH 9 y se extrajo con EtOAc (2 x 30 ml). Las capas orgánicas combinadas se lavaron con agua (50 ml) y salmuera (50 ml), se secaron sobre Na₂SO₄ anhidro y se concentraron a presión reducida. El producto en bruto se purificó por cromatografía en columna (gel de sílice, EtOAc al 30%/hexano como eluyente) para proporcionar el compuesto A35 (0,12 g, 99%) en forma de un aceite incoloro.

[Ejemplo de referencia A56]

5

20

30

40

25 Etapa 1: ácido 4-metiltiofeno-3-carboxílico (A56-1)

A una solución agitada de 3-bromo-4-metiltiofeno (2,7 g, 15,6 mmol) en THF (35 ml) se añadió gota a gota n-BuLi (1,6 M en hexano, 14,6 ml, 23,3 mmol) a -78 °C durante un periodo de 15 min y la mezcla se agitó a -78 °C durante 30 min. El $\rm CO_2$ (gaseoso) se pasó a través de la mezcla de reacción durante 10 min y la mezcla se agitó a la misma temperatura durante 20 min. Después de esto, la mezcla de reacción se calentó a 0 °C, se inactivó con NaOH acuoso 1 M (60 ml) y se lavó con EtOAc (2 x 50 ml). La capa acuosa se acidificó a pH \sim 5 y se extrajo con DCM (2x50 ml). Las capas orgánicas combinadas se lavaron con agua (100 ml) y salmuera (100 ml), se secaron sobre $\rm Na_2SO_4$ anhidro y se concentraron a presión reducida. El residuo se purificó por cromatografía en columna (gel de sílice, MeOH al 8 %/DCM como eluyente) para proporcionar el compuesto A56-1 (1,5 g, 70 %) en forma de un sólido de color blanco.

35 Etapa 2: ácido 2.4-dimetiltiofeno-3-carboxílico (A56-2)

A una solución agitada del compuesto A56-1 (390 mg, 2,7 mmol) en THF (4 ml) se añadió n-BuLi (1,6 M en hexano, 3,8 ml, 6,0 mmol) gota a gota a -78 °C durante 10 min. La mezcla se agitó a -78 °C durante 5 min. Se añadió gota a gota una solución de yodometano (0,4 ml, 6,8 mmol) en THF (1 ml) y la mezcla de reacción se agitó a -78 °C durante 30 min. La mezcla se dejó calentar a temperatura ambiente y se agitó a la misma temperatura durante 15 h. La mezcla de reacción se inactivó con NH₄Cl acuoso saturado y se extrajo con EtOAc (2x25 ml). Las capas orgánicas combinadas se lavaron con agua (100 ml) y salmuera (100 ml), se secaron sobre Na₂SO₄ anhidro y se concentraron a presión reducida. El residuo se purificó por cromatografía en columna (gel de sílice, MeOH al 2 %/DCM como eluyente) para proporcionar el compuesto A56-2 (246 mg, 57 %) en forma de un sólido de color blanco.

Etapa 3: (2,4-dimetiltiofen-3-il)metanol (A56-3)

A una solución agitada del compuesto A56-2 (246 mg, 1,5 mmol) en THF (3 ml) se añadió BH₃ THF (1 M en THF, 5,5 ml, 5,5 mmol) gota a gota a 0 °C durante 15 min. La mezcla se dejó calentar a temperatura ambiente y se agitó a la misma temperatura durante 15 h. La mezcla de reacción se inactivó con NaHCO₃ acuoso saturado y se extrajo con EtOAc (2x30 ml). Las capas orgánicas combinadas se lavaron con salmuera (2x10 ml), se secaron sobre Na₂SO₄ anhidro y se concentraron a presión reducida. El residuo se purificó por cromatografía en columna (gel de sílice, EtOAc al 25 %/hexano como eluyente) para proporcionar el compuesto A56-3 (201 mg, 90 %) en forma de una goma incolora.

Etapa 4: 2,4-dimetiltiofeno-3-carbaldehído (A56-4)

A una solución agitada del compuesto A56-3 (740 mg, 5,2 mmol) en DCM (18 ml) se añadió peryodinano de Dess-Martin (4,6 g, 10,9 mmol) a 0 °C y la mezcla se agitó a temperatura ambiente durante 3 h. La mezcla de reacción se inactivó con Na₂S₂O₃ acuoso saturado y NaHCO₃, y se extrajo con EtOAc (2x50 ml). Las capas orgánicas combinadas se lavaron con salmuera (2x20 ml), se secaron sobre Na₂SO₄ anhidro y se concentraron a presión reducida. El residuo se purificó por cromatografía en columna (gel de sílice, EtOAc al 10 %/hexano como eluyente) para proporcionar el compuesto A56-4 (275 mg, 38 %) en forma de un sólido de color amarillo.

Etapa 5: 1-(2,4-dimetiltiofen-3-il)-2-nitroetanol (A56-5)

Una mezcla del compuesto A56-4 (133 mg, 0,95 mmol), nitrometano (2 ml) y K₂CO₃ (50 mg, 0,36 mmol) se agitó a temperatura ambiente durante 60 h. La mezcla de reacción se inactivó con agua y se extrajo con EtOAc (3x20 ml). Las capas orgánicas combinadas se lavaron con agua (2x100 ml) y salmuera (100 ml), se secaron sobre Na₂SO₄ anhidro y se concentraron a presión reducida. El residuo se purificó por cromatografía en columna (gel de sílice, EtOAc al 40 %/hexano como eluyente) para proporcionar el compuesto A56-5 (80 mg, 42 %) en forma de una goma de color amarillo.

Etapa 6: (1-(2,4-dimetiltiofen-3-il)-2-nitroetoxi)trietilsilano (A56-6)

A una solución agitada del compuesto A56-5 (235 mg, 1,17 mmol) en DMF (4 ml) se añadieron imidazol (238 mg, 3,5 mmol) y TES-Cl (0,23 ml, 1,4 mmol) y la mezcla se agitó a temperatura ambiente durante 4 h. Después de que se completara, la mezcla de reacción se inactivó con agua (50 ml) y se extrajo con EtOAc (2 x 50 ml). Las capas orgánicas combinadas se lavaron con salmuera (2x30 ml), se secaron sobre Na₂SO₄ anhidro y se concentraron a presión reducida. El residuo se purificó por cromatografía en columna (gel de sílice, EtOAc al 5%/hexano como eluyente) para proporcionar el compuesto A56-6 (240 mg, 65%) en forma de una goma incolora.

30 Etapa 7: 2-(2,4-dimetiltiofen-3-il)-2-((trietilsilil)oxi)etanamina (A56-7)

A una solución agitada del compuesto A56-6 (240 mg, 0,76 mmol) en EtOH/agua (10 ml, 4:1) se añadieron Fe en polvo (425 mg, 7,6 mmol) y NH₄Cl sólido (407 mg, 7,6 mmol). La mezcla se agitó a 70 °C durante 45 min. Después de que se completara, la mezcla de reacción se filtró a través de una capa de celite y se lavó con MeOH (3x15 ml). El disolvente se retiró a presión reducida. El residuo se suspendió en EtOAc (100 ml) y se lavó con agua (30 ml) y salmuera (30 ml). La capa orgánica se secó sobre Na₂SO₄ anhidro y se concentró a presión reducida. El residuo se purificó por cromatografía en columna (gel de sílice, MeOH al 5 %/DCM como eluyente) para proporcionar el compuesto A56-7 (192 mg, 88 %) en forma de una goma de color amarillo.

Etapa 8:

N-(3,5-difluorobencil)-2-(2,4-dimetiltiofen-3-il)-2-((trietilsilil)oxi)etanamina (A56)

A una solución agitada del compuesto A56-7 (192 mg, 0,67 mmol) en MeOH (5 ml) se añadió 3,5-difluorbenzaldehído (95 mg, 0,67 mmol) y la mezcla se agitó a temperatura ambiente durante 2 h. Una vez finalizada la formación de imina (supervisado por TLC), se añadió en porciones NaBH₄ sólido (51 mg, 1,3 mmol) a 0 °C. La mezcla se calentó a temperatura ambiente y se agitó a la misma temperatura durante 4 h. La mezcla de reacción se inactivó con agua (30 ml) y se extrajo con EtOAc (3 x 30 ml). Las capas orgánicas combinadas se lavaron con salmuera (2 x 30 ml), se secaron sobre Na₂SO₄ anhidro y se concentraron a presión reducida. El residuo se purificó por cromatografía en columna (gel de sílice, EtOAc al 10%/hexano como eluyente) para proporcionar el compuesto A56 (200 mg, 72%) en forma de una goma incolora. RMN ¹H (CDCl₃, 300 MHz): δ 6,90-6,77 (m, 3H), 6,71-6-60 (m, 1H), 5,09 (dd, *J* = 7,8, 4,2 Hz, 1H), 3,78 (s, 2H), 2,87 (dd, *J* = 12,0, 7,8 Hz, 1H), 2,71 (dd, *J* = 12,0, 4,5 Hz, 1H), 2,11 (d, *J* = 0,6, 3H), 2,06 (s, 3H), 1,65 (s a, 1H), 0,89 (t, *J* = 7,8 Hz, 9H), 0,62-0,50 (m, 6H).

50

5

20

35

[Ejemplo de referencia A57]

Etapa 1: 2,6-dicloro-4-(metiltio)benzaldehído (A57-1)

A una solución agitada de (3,5-diclorofenil)(metil)sulfano (1,0 g, 5,1 mmol) en THF (15 ml), se añadió gota a gota n-BuLi (1,6 M en THF, 4,8 ml, 7,7 mmol) a -78 °C

y se agitó durante 1 h a la misma temperatura. Se añadió lentamente una solución de DMF (0,6 ml, 7,7 mmol) en THF (3 ml) a -78 °C y se agitó durante 1 h. La mezcla de reacción se inactivó con NH₄Cl ac. saturado (50 ml) y se extrajo con EtOAc (2x30 ml). Las capas orgánicas combinadas se lavaron con agua (30 ml) y salmuera (30 ml), se secaron sobre Na₂SO₄ anhidro y se concentraron a presión reducida. El producto en bruto se purificó por cromatografía en columna (gel de sílice, EtOAc al 20 %/hexano como eluyente) para proporcionar el compuesto A57-1 (1,4 g, 99%) en forma de un aceite incoloro.

Etapa 2: 1-(2,6-dicloro-4-(metiltio)fenil)-2-nitroetanol (A57-2)

El compuesto A57-2 (0,71 g, en bruto) se obtuvo en forma de una goma incolora a partir de la reacción del compuesto A57-1 (0,5 g, 2,44 mmol) y K₂CO₃ (0,13 g, 0,92 mmol) en CH₃NO₂ (5 ml) usando un procedimiento similar al descrito en el ejemplo de referencia A1, etapa 1:

Etapa 3: (1-(2,6-dicloro-4-(metiltio)fenil)-2-nitroetoxi)trietilsilano (A57-3)

El compuesto A5 7-3 (1,0 g, en bruto) se obtuvo en forma de una goma incolora a partir de la reacción del compuesto A57-2 (0,71 g, 2,5 mmol), TES-Cl (0,5 ml, 3,02 mmol) e imidazol (0,51 g, 7,55 mmol) en DMF (10 ml) usando un procedimiento similar al descrito en el ejemplo de referencia A1, etapa 2:

20 Etapa 4: 2-(2,6-dicloro-4-(metiltio)fenil)-2-((trietilsilil)oxi)etanamina (A57-4)

El compuesto A57-4 (0,98 g, en bruto) se obtuvo en forma de un aceite de color pardo a partir de la reacción del compuesto A57-3 (1,0 g, 2,53 mmol), Fe (1,42 g, 25,3 mmol) y NH₄Cl (1,34 g, 25,3 mmol) en EtOH/agua (4:1, 20 ml) usando un procedimiento similar al descrito en el ejemplo de referencia A31, etapa 3:

Etapa 5:

5

10

15

30

25 2-(2,6-dicloro-4-(metiltio)fenil)-N-(3,5-difluorobencil)-2-((trietilsilil)oxi)etanamina (A57)

El compuesto A57 (0,73 g, 55%) se obtuvo en forma de una goma incolora a partir de la reacción del compuesto A57-4 (0,98 g, 2,69 mmol), 3,5-difluorobenzaldehído (0,29 ml, 2,69 mmol) y NaBH₄ (0,2 g, 5,36 mmol) en MeOH (10 ml) usando un procedimiento similar al descrito en el ejemplo de referencia A31, etapa 4: RMN 1 H (CDCl₃, 300 MHz): δ 7,10 (s, 2H), 6,87-6,61 (m, 3H), 5,53 (dd, J = 8,6, 4,8 Hz, 1H), 3,82 (s, 2H), 3,23 (dd, J = 12,1, 8,6 Hz, 1H), 2,78 (dd, J = 12,1, 4,8 Hz, 1H), 2,49 (s, 3H), 0,90-0,85 (m, 9H), 0,58-0,50 (m, 6H).

[Ejemplo de referencia A58]

3,5-Dicloro-4-(2-((3,5-difluorobencil)amino)-1-hidroxietil)benzamida (A5 8)

A una solución agitada del compuesto A3 5 (0,12 g, 0,29 mmol) en THF/MeOH/agua (2:2:1, 5 ml) se añadió LiOH (solución ac. 4 M, 0,44 ml, 1,76 mmol) gota a gota a 0 °C. La mezcla se dejó calentar a temperatura ambiente mientras se continuaba agitando durante 4 h. La mezcla de reacción se acidificó con HCI (1 M, 6 ml) y se extrajo con EtOAc (3x10 ml). Las capas orgánicas combinadas se lavaron con agua (10 ml) y salmuera (10 ml), se secaron sobre Na_2SO_4 anhidro y se concentraron a presión reducida para proporcionar el compuesto A58 (60 mg, 47 %) en forma de un sólido de color amarillo. CLEM (APCI): 391 (M+H) $^+$.

[Ejemplo de referencia A59]

5

3,5-Dicloro-4-(2-((3,5-difluorobencil)amino)-1-hidroxietil)benzoato de etilo (A59)
 A una solución agitada del compuesto A35-7 (0,2 g, 0,3 mmol) en EtOH (5 ml) se añadió HCl con. (5 ml) y la mezcla se agitó a la temperatura de reflujo durante una noche. La mezcla de reacción se inactivó con agua (50 ml) y se basificó con una solución al 10 % de NaOH hasta pH 9 y se extrajo con EtOAc (2 x 30 ml). Las capas orgánicas combinadas se lavaron con agua (50 ml) y salmuera (50 ml), se secaron sobre Na₂SO₄ anhidro y se concentraron a presión reducida. El producto en bruto se purificó por cromatografía en columna (gel de sílice, EtOAc al 30 %/hexano como eluyente) para proporcionar el compuesto A59 (0,1 g, 92 %) en forma de un sólido de color blanco.

[Ejemplo de referencia A66]

Etapa 1: 4,4-dimetilpent-2-inal (A66-1)

A una solución agitada de 3,3-dimetilbutan-1-ilo (2,45 ml, 20 mmol) en THF (20 ml), se añadió gota a gota n-BuLi (2,6 M en hexano, 8,46 ml, 22 mmol) a -78 °C y se agitó durante 1 h a la misma temperatura. Se añadió lentamente una solución de DMF (3,85 ml, 50,0 mmol) a -78 °C y la mezcla de reacción se dejó calentar a temperatura ambiente durante una noche. La mezcla de reacción se inactivó con NH₄Cl saturado (100 ml) y se extrajo con hexano (2 x 100 ml). Las capas orgánicas recogidas se lavaron con agua (3 x 200 ml) y se concentraron a presión reducida para proporcionar el compuesto A66-1. El producto en bruto se usó para la siguiente etapa sin purificación.

Etapa 2:

30

N-(2-(3,5-dicloropiridin-4-il)-2-((trietilsilil)oxi)etil)-4,4-dimetilpent-2-in-1-amina (A66)

El compuesto A66 (76,1 mg, 36,6 %) se obtuvo en forma de un aceite de color amarillo pálido a partir de la reacción del compuesto A1-3 (160 mg, 0,5 mmol), el compuesto A66-1 (80 mg, 0,726 mmol), NaBH₄ (120 mg) y MgSO₄ (100 mg) en MeOH (6 ml) y DCM (3 ml) usando un procedimiento similar al descrito en el ejemplo de referencia A31, etapa 4: RMN 1 H (CDCl₃, 400 MHz): δ 8,43 (s, 2H), 5,49 (dd, J = 8,5, J = 5,1 Hz, 1H), 3,48 (d, J = 16,4 Hz, 1H), 3,37 (d, J = 16,4 Hz, 1H), 3,32 (dd, J = 12,0, J = 8,5 Hz, 1H), 2,87 (dd, J = 12,0, J = 5,1 Hz, 1H), 1,21 (s, 9H), 0,89 (t, J = 7,8 Hz, 9H), 0,61-0,50 (m, 6H).

[Ejemplo de referencia A75]

5

10

15

Etapa 1: 1-((2-(trimetilsilil)etoxi)metil)-1H-pirazol-3-carbaldehído (A75-1)

A una suspensión agitada de NaH (274 mg, 11,4 mmol) en DMF (20 ml) se añadió gota a gota una solución de 1H-pirazol-3-carbaldehído (1,0 g, 10,4 mmol) en DMF (10 ml) a 0 °C y la mezcla se agitó a temperatura ambiente durante 10 min. La mezcla de reacción se enfrió a 0 °C y se añadió gota a gota SEM-CI (1,90 g, 11,4 mmol). La mezcla se calentó a temperatura ambiente y se agitó a la misma temperatura durante 16 h: La mezcla de reacción se inactivó con agua y se extrajo con EtOAc (3 x 20 ml). Las capas orgánicas combinadas se lavaron agua (20 ml), se secaron sobre Na₂SO₄ anhidro y se concentraron a presión reducida. El residuo se purificó por cromatografía en columna (gel de sílice, EtOAc al 10 %/hexano como eluyente) para proporcionar el compuesto A75-1 (350 mg, 29%) en forma de una goma incolora.

Etapa 2: 2-nitro-1-(1-((2-(trimetilsilil)etoxi)metil)-1H-pirazo1-3-il)etanol (A75-2)

El compuesto A75-2 (428 mg, 64 %) se obtuvo en forma de una goma de color amarillo a partir de la reacción del compuesto A75-1 (350 mg, 1,54 mmol), CH₃NO₂ (1 ml) y K₂CO₃ (85 mg, 0,616 mol) usando un procedimiento similar al descrito en el ejemplo de referencia A1, etapa 2:

Etapa 3: 3-(2-nitro-1-((trietilsilil)oxi)etil)-1-((2-(trimetilsilil)etoxi)metil)-1H-pirazol (A75-3)

El compuesto A75-3 (604 mg, en bruto) se obtuvo en forma de una goma de color amarillo a partir de la reacción del compuesto A75-2 (428 mg, 1,49 mmol), TES-Cl (0,280 ml, 1,78 mmol) e imidazol (303 mg, 4,47 mmol) usando un procedimiento similar al descrito en el ejemplo de referencia A1, etapa 3:

20 Etapa 4: 2-((trietilsilil)oxi)-2-(1-((2-(trimetilsilil)etoxi)metil)-1H-pirazo1-3-il)etanamina (A75-4)

El compuesto A75-4 (600 mg, en bruto) se obtuvo en forma de una goma incolora a partir de la reacción del compuesto A75-3 (604 mg, 1,51 mmol), polvo de Fe (843 mg, 15,1 mmol) y NH₄Cl (806 mg, 15,1 mmol) usando un procedimiento similar al descrito en el ejemplo de referencia A31, etapa 3:

Etapa 5: N-(3,5-difluorobencil)-2-((trietilsilil)oxi)-2-(1-((2-(trimetilsilil)etoxi)metil)-1H-pirazo1-3-il)etanamina (A75)

25 El compuesto A75 (40 mg, 5 %, en 3 etapas) se obtuvo en forma de una goma incolora a partir de la reacción del compuesto A75-4 (600 mg, 1,61 mmol), 3,5-diflurobenzaldehído (206 mg, 1,45 mmol) y NaBH₄ (119 mg, 3,22 mmol) usando un procedimiento similar al descrito en el ejemplo de referencia A31, etapa 4: RMN ¹H (CDCl₃, 300 MHz): δ 7,59 (s, 0.7H), 7,48 (s, 0.3H), 6,39 (s, 1H), 5,38-5,71 (m, 2H), 4,91-5,08 (m, 1H), 3,54-3,61 (m, 2H), 2,95-3,04 (m, 2H), 0,85-0,95 (m, 9H), 0,59-0,62 (m, 6H); CLEM (APCl): 499 (M+H)⁺.

30 [Ejemplo de referencia A84]

Etapa 1: 2-(2-cloro-6-nitrofenil)-2-((trimetilsilil)oxi)acetonitrilo (A84-1)

A una solución agitada de 2-cloro-6-nitrobenzaldehído (1,0~g,5,4~mmol) en DCM (15~ml) se añadieron TMSCN (1,0~ml,8,1~mmol) y NMO (0,19~g,1,6~mmol) a temperatura ambiente y se agitó durante 1 h. La mezcla de reacción se inactivó con agua (50~ml) y se extrajo con DCM (2~x~30~ml). Las capas orgánicas combinadas se lavaron con agua (50~ml) y salmuera (50~ml), se secaron sobre Na₂SO₄ anhidro y se concentraron a presión reducida para obtener el compuesto A84-1 (1,0~g,67~%) en forma de un aceite de color pardo.

Etapa 2: 2-(2-cloro-6-nitrofenil)-2-((trimetilsilil)oxi)etanamina

A una solución agitada del compuesto A84-1 (0,85 g, 3,0 mmol) en THF (15 ml) se añadió BH_3 THF (1,0 M en THF, 17,9 ml, 17,88 mmol) y se agitó a temperatura ambiente durante 16 h. La mezcla de reacción se inactivó con MeOH y se extrajo con EtOAc (2 x 30 ml). Las capas orgánicas combinadas se lavaron con agua (50 ml) y salmuera (50 ml), se secaron sobre Na_2SO_4 anhidro y se concentraron a presión reducida para obtener el compuesto A84-2 (0,65 g, 75 %) en forma de una goma de color pardo.

Etapa 3: 1-(2-cloro-6-nitrofenil)-2-((3,5-difluorobencil)amino)etanol (A84)

El compuesto A84 (0,57 g, 74 %) se obtuvo en forma de un sólido de color amarillo a partir de la reacción del compuesto A84-2 (0,65 g, 2,24 mmol), 3,5-difluorobenzaldehído (0,24 ml, 2,24 mmol) y NaBH₄ (0,17 g, 4,49 mmol) en MeOH (10 ml) usando un procedimiento similar al descrito en el ejemplo de referencia A56, etapa 8: RMN 1 H (CDCl₃, 300 MHz): δ 7,52-7,29 (m, 3H), 6,89-6,66 (m, 3H), 5,22 (dd, J = 10,0, 3,7 Hz, 1H), 3,88 (s, 2H), 3,27-3,19 (m, 1H), 3,07 (dd, J = 12,6, 3,7 Hz, 1H); CLEM (APCI): 343 (M+H) $^+$.

[Ejemplo de referencia A92]

5

10

15

20

25

40

Etapa 1: (5S)-5-(((tetrahidro-2H-piran-2-il)oxi)metil)dihidrofuran-2(3H)-ona (A92-1)

A una solución agitada de (S)-5-(hidroximetil)dihidrofuran-2(3H)-ona (4,0 g, 34,45 mmol) en DCM (20 ml) se añadió 3,4-dihidro-2H-pirano (3,95 ml, 41,34 mmol), seguido de p-toluenosulfonato de piridinio (0,86 g, 3,44 mmol) a temperatura ambiente y la mezcla se agitó durante 16 h. La mezcla de reacción se diluyó con DCM (20 ml), se inactivó con agua (40 ml) y se extrajo con DCM (2 x 50 ml). Las capas orgánicas combinadas se lavaron con salmuera (2 x 20 ml), se secaron sobre Na_2SO_4 anhidro y se concentraron a presión reducida. El residuo se purificó por cromatografía en columna (gel de sílice, EtOAc al 50%/hexano como eluyente) para proporcionar el compuesto A92-1 (5,85 mg, 85%) en forma de una goma incolora.

Etapa 2: (2S)-5-metil-1-((tetrahidro-2H-piran-2-il)oxi)hexano-2,5-diol (A92-2)

A una solución agitada del compuesto A92-1 (5,85 g, 29,1 mmol) en THF (50 ml) se añadió bromuro de metil magnesio (3,0 M en Et₂O, 22,4 ml, 67,2 mmol) gota a gota a 0 °C durante 10 min y la mezcla se agitó a 0 °C durante 4 h. La mezcla se dejó calentar a temperatura ambiente y se agitó durante 15 h. La mezcla de reacción se inactivó con NH₄Cl acuoso saturado y se extrajo con EtOAc (2 x 50 ml). Las capas orgánicas combinadas se lavaron con agua (100 ml) y salmuera (100 ml), se secaron sobre Na₂SO₄ anhidro y se concentraron a presión reducida. El residuo se purificó por cromatografía en columna (gel de sílice, EtOAc al 90%/hexano como eluyente) para proporcionar el compuesto A92-2 (6,09 g, 90 %) en forma de una goma incolora.

Etapa 3: (S)-(5,5-dimetiltetrahidrofurano-2-il)metanol (A92-3)

A una solución agitada del compuesto A92-2 (1,03 g, 4,43 mmol) en MeOH (8 ml) se añadió monohidrato del ácido p-toluenosulfónico (421 mg, 2,2 mmol) a temperatura ambiente y la mezcla se calentó a reflujo durante 5 h. La mezcla de reacción se enfrió a temperatura ambiente, se inactivó con agua (15 ml) y se extrajo con DCM (2 x 25 ml). Las capas orgánicas combinadas se lavaron con salmuera (20 ml), se secaron sobre Na₂SO₄ anhidro y se concentraron a presión reducida. El residuo se purificó por cromatografía en columna (gel de sílice, EtOAc al 35%/hexano como eluyente) para proporcionar el compuesto A92-3 (330 mg, 57%) en forma de una goma incolora.

Etapa 4: metanosulfonato de (S)-(5,5-dimetiltetrahidrofurano-2-il)metilo (A92-4)

A una solución agitada del compuesto A92-3 (300 mg, 2,30 mmol) en DCM (6 ml) se añadió Et_3N (0,64 ml, 4,6 mmol), seguido de cloruro de metanosulfonilo (0,21 ml, 2,76 mmol) a 0 °C. La mezcla se agitó a 0 °C durante 30 min. La mezcla se dejó calentar a temperatura ambiente durante un periodo de 2 h. La mezcla de reacción se inactivó con agua (10 ml) y se extrajo con DCM (2 x 20 ml). Las capas orgánicas combinadas se lavaron con agua (20 ml) y salmuera (20 ml), se secaron sobre Na_2SO_4 anhidro y se concentraron a presión reducida. El residuo se purificó por cromatografía en columna (gel de sílice, EtOAc al 35%/hexano como eluyente) para proporcionar el compuesto A92-4 (310 mg, 64%) en forma de una goma incolora.

Etapa 5: 2-(3,5-dicloropiridin-4-il)-N-(((S)-5,5-dimetiltetrahidrofurano-2-il)metil)-2-((trietilsilil)oxi)etanamina (A92)

Una mezcla del compuesto A92-4 (140 mg, 0,67 mmol), el compuesto A1-3 (216 mg, 0,67 mmol), Na₂CO₃ (710 mg, 6,7 mmol) e isopropanol (4 ml) se recogió en un vial para microondas. El vial se tapó y la mezcla se sometió a irradiación de microondas a 120 °C durante 2 h. La mezcla de reacción se enfrió a temperatura ambiente, se inactivó con agua (15 ml) y se extrajo con DCM (2 x 25 ml). Las capas orgánicas combinadas se lavaron con salmuera (20 ml), se secaron sobre Na₂SO₄ anhidro y se concentraron a presión reducida. El residuo se purificó por cromatografía en columna (gel de sílice, MeOH al 2 %/DCM como eluyente) para proporcionar el compuesto A92 (40 mg, 14 %) en forma de una goma incolora.

[Ejemplo de referencia A93]

5

30

35

Etapa 1: 1-(2-cloro-6-metoxifenil)-2-nitroetanol (A93-1)

20 El compuesto A93-1 (1,35 g, en bruto) se obtuvo en forma de un aceite incoloro a partir de la reacción de 2-cloro-6-metoxibenzaldehído (1,0 g, 5,88 mmol) y K₂CO₃ (0,3 g, 2,2 mmol) en CH₃NO₂ (10 ml) usando un procedimiento similar al descrito en el ejemplo de referencia A1, etapa 1.

Etapa 2: (1-(2-cloro-6-metoxifenil)-2-nitroetoxi)trietilsilano (A93-2)

El compuesto A93-2 (2,14 g, en bruto) se obtuvo en forma de un aceite incoloro a partir de la reacción del compuesto A93-1 (1,35 g, 5,84 mmol), TES-Cl (1,17 ml, 7,01 mmol) e imidazol (1,19 g, 17,53 mmol) en DMF (10 ml) usando un procedimiento similar al descrito en el ejemplo de referencia A1, etapa 2:

Etapa 3: 2-(2-cloro-6-metoxifenil)-2-((trietilsilil)oxi)etanamina (A93-3)

El compuesto A93-3 (1,6 g, 84 %) se obtuvo en forma de un aceite incoloro a partir de la reacción del compuesto A93-2 (2,14 g, 6,2 mmol), Fe (3,48 g, 62,0 mmol) y NH₄Cl (3,3 g, 62,0 mmol) en EtOH/agua (4:1, 20 ml) usando un procedimiento similar al descrito en el ejemplo de referencia A1, etapa 3:

Etapa 4: 2-(2-cloro-6-metoxifenil)-N-(3,5-difluorobencil)-2-((trietilsilil)oxi)etanamina (A93)

El compuesto A93 (1,2 g, 54%) se obtuvo en forma de una goma incolora a partir de la reacción del compuesto A93-3 (1,6 g, 5,16 mmol), 3,5-difluorobenzaldehído (0,56 ml, 5,16 mmol) y NaBH₄ (0,39 g, 10,2 mmol) en MeOH (10 ml) usando un procedimiento similar al descrito en el ejemplo de referencia A1, etapa 4: RMN 1 H (CDCl₃, 300 MHz): δ 7,13 (t, J = 8,1 Hz, 1H), 6,95-6,60 (m, 5H), 5,58 (dd, J = 8,6, 4,7 Hz, 1H), 3,83-3,77 (m, 5H), 3,28 (dd, J = 12,0, 8,7 Hz, 1H), 2,78 (dd, J = 12,0, 4,7 Hz, 1H), 0,87-0,82 (m, 9H), 0,60-0,46 (m, 6H); CLEM (APCI): 442 (M+H) $^{+}$.

[Ejemplo de referencia A94]

Etapa 1: 4-metilbencenosulfonato de (S)-(5-oxotetrahidrofurano-2-il)metilo (A94-1)

A una solución agitada de (S)-5-(hidroximetil)dihidrofuran-2(3H)-ona (2,0 g, 17,2 mmol) en DCM (20 ml) se añadió Et_3N (4,8 ml, 34,44 mmol), seguido de cloruro de p-toluenosulfonilo (3,61 g, 18,94 mmol) a 0 °C. La mezcla se dejó calentar a temperatura ambiente y se agitó a la misma temperatura durante 15 h. La mezcla de reacción se inactivó con agua (100 ml) y se extrajo con DCM (2 x 50 ml). Las capas orgánicas combinadas se lavaron con agua (50 ml) y salmuera (50 ml), se secaron sobre Na_2SO_4 anhidro y se concentraron a presión reducida. El residuo se purificó por cromatografía en columna (gel de sílice, EtOAc al 50 %/hexano como eluyente) para proporcionar el compuesto A94-1 (4,06 g, 87 %) en forma de un sólido de color blanco.

Etapa 2: (R)-(5,5-dimetiltetrahidrofurano-2-il)metanol (A94-2)

A una solución agitada del compuesto A94-1 (1,63 g, 6,03 mmol) en THF (20 ml) se añadió MeLi (3,0 M en dietoximatano, 4,4 ml, 13,26 mmol) gota a gota a -78 °C durante 10 min y la mezcla se agitó a -78 °C durante 1 h. La mezcla se dejó calentar a temperatura ambiente durante un periodo de 4 h. La mezcla de reacción se inactivó con NaCl acuoso saturado, se diluyó con agua (30 ml) y se extrajo con EtOAc (2 x 25 ml). Las capas orgánicas combinadas se lavaron con agua (30 ml) y salmuera (30 ml), se secaron sobre Na₂SO₄ anhidro y se concentraron a presión reducida. El residuo se purificó por cromatografía en columna (gel de sílice, EtOAc al 35%/hexano como eluyente) para proporcionar el compuesto A94-2 (220 mg, 28%) en forma de una goma incolora.

Etapa 3: metanosulfonato de (R)-(5,5-dimetiltetrahidrofurano-2-il)metilo (A94-3)

El compuesto A94-3 (351 mg, 61 %) se obtuvo en forma de una goma incolora a partir de la reacción del compuesto A94-2 (360 mg, 2,76 mmol), Et₃N (0,77 ml, 5,52 mmol) y cloruro de metanosulfonilo (0,25 ml, 3,31 mmol) en DCM (5,0 ml) usando un procedimiento similar al descrito en el ejemplo de referencia A92, etapa 4:

Etapa 4: 2-(3,5-dicloropiridin-4-il)-N-(((R)-5,5-dimetiltetrahidrofurano-2-il)metil)-2-((trietil silil)oxi)etanamina (A94)

El compuesto A94 (32 mg, 8 %) se obtuvo en forma de una goma incolora a partir de la reacción del compuesto A94-3 (200 mg, 0,96 mmol), el compuesto A1-3 (247 mg, 0,77 mmol) y Na₂CO₃ (508 mg, 4,8 mmol) en isopropanol (3,0 ml) usando un procedimiento similar al descrito en el ejemplo de referencia A92, etapa 5:

25 [Ejemplo de referencia A103]

5

20

30

40

45

Etapa 1: N-metoxi-N-metil-1-(trifluorometil)ciclopropanocarboxamida (A103-1)

A una mezcla de ácido 1-(trifluorometil)ciclopropanocarboxílico (150 mg, 0,974 mmol), monohidrato de 1-hidroxibenzotrizol (224 mg, 1,46 mmol), clorhidrato de 1-(3-dimetilaminopropi 1)-3-etilcarbodiimida (280 mg, 1,46 mmol) y clorhidrato de N,O-dimetilhidroxilamina (142 mg, 1,46 mmol) en DMF (5 ml) se añadió DIPEA (0,50 ml, 2,92 mmol) y la mezcla se agitó a temperatura ambiente durante una noche. La mezcla de reacción se inactivó con agua (30 ml) y se extrajo con EtOAc. La capa orgánica recogida se lavó con agua y salmuera, se secó sobre MgSO $_4$ y se concentró a presión reducida para proporcionar el compuesto A103-1 (164 mg, 85 %) en forma de un aceite de color amarillo pálido.

35 Etapa 2: 1-(trifluorometil)ciclopropanocarbaldehído (A103-2)

A una solución agitada del compuesto A103-1 (164 mg, 0,832 mmol) en DCM (2 ml) se añadió hidruro de diisobutilaluminio (1 M en hexano, 1,0 ml, 1,0 mmol) a -78 °C en una atmósfera de nitrógeno. Después de 0,5 h, la mezcla se dejó calentar a 0 °C y se agitó durante 0,5 h. La mezcla de reacción se inactivó con KHSO₄ ac. sat. (10 ml) y se extrajo con DCM (2x4 ml). Las capas orgánicas combinadas se usaron directamente en la siguiente etapa sin purificación adicional.

Etapa 3: 2-(3,5-dicloropiridin-4-il)-2-((trietilsilil)oxi)-N-((1-(trifluorometil)ciclopropil)metil)etanamina (A103)

El compuesto A1-3 (0,20 g, 0,622 mmol) se disolvió en una solución en DCM que contenía el compuesto A103-2. Se añadió MgSO₄ (0,2 g) a esta solución y la mezcla se agitó durante 2 h. Se añadieron MeOH (10 ml) y NaBH₄ (0,2 g) a la mezcla y la mezcla se agitó durante 0,5 h. La mezcla de reacción se inactivó con agua y se extrajo con EtOAc. La capa orgánica recogida se lavó con salmuera, se secó sobre MgSO₄ y se concentró a presión reducida. El material en bruto se purificó por cromatografía en columna de gel de sílice eluyendo con EtOAc al 20 % en heptano para dar el compuesto A103 (87 mg, 32 %) en forma de un aceite incoloro. RMN ¹H (CDCI₃, 400 MHz) δ: 8,43 (2H,

s), 5,45 (1H, dd, J = 8.5, 4,6 Hz), 3,24 (1H, dd, J = 12.2, 8,8 Hz), 2,86 (2H, dd, J = 24.4, 13,2 Hz), 2,76 (1H, dd, J = 12.2, 4,4 Hz), 0,97-0,86 (13H, m), 0,56-0,52 (6H, m).

[Ejemplo de referencia A111]

5 Etapa 1: ácido 2,6-dicloro-4-metilbenzoico (A111-1)

A una solución agitada de 1,3-dicloro-5-metilbenceno (2,0 g, 12,4 mmol) en THF (20 ml) se añadió n-BuLi (2,0 M en hexano, 9,3 ml, 18,6 mmol) a -78 °C gota a gota durante un periodo de 10 min y la mezcla se agitó a -78 °C durante 30 min. Se añadió hielo seco a la mezcla de reacción lentamente y la mezcla se agitó a la misma temperatura durante 20 min.

Posteriormente, la mezcla de reacción se calentó lentamente a temperatura ambiente, se inactivó con HCl 6 M (10 ml) y se extrajo con EtOAc (2x30 ml). Las capas orgánicas combinadas se lavaron con agua (50 ml) y salmuera (50 ml), se secaron sobre Na₂SO₄ anhidro y se concentraron a presión reducida para obtener el compuesto A111-1 (1,1 g, 44 %) en forma de un sólido de color blanco.

Etapa 2: ácido 2,6-dicloro-4-formilbenzoico (A111-2)

A una solución agitada del compuesto Al11-1 (1,1 g, 5,3 mmol) en DCM (20 ml) se añadió NBS (2,3 g, 13,4 mmol) y oxalato de difenilo (65 mg, 0,27 mmol) y se puso a reflujo durante 40 h. La mezcla de reacción se llevó a temperatura ambiente y se evaporó el disolvente. Al residuo, se añadió EtOAc (10 ml) y los sólidos obtenidos se filtraron a través de un embudo Buckner. El filtrado se evaporó y el producto en bruto se disolvió en EtOH (20 ml) y se calentó a 50 °C. Se añadió una solución de nitrato de plata (I) (1,37 g, 8,0 mmol) en agua caliente (3 ml), a la mezcla de reacción gota a gota y continuó a la misma temperatura durante 45 min. La mezcla de reacción se inactivó con HCl 1 M (10 ml) y los sólidos obtenidos se filtraron y se lavaron con EtOH (30 ml). El filtrado se evaporó y la capa acuosa restante se extrajo con EtOAc (2x50 ml). Las capas orgánicas combinadas se lavaron con agua (50 ml) y salmuera (50 ml), se secaron sobre Na₂SO₄ anhidro y se concentraron a presión reducida para obtener el compuesto A111 -2 (1,6 g, en bruto) en forma de un aceite de color pardo.

25 Etapa 3: 2,6-dicloro-4-formilbenzoato de metilo (Al11-3)

30

35

40

A una solución agitada del compuesto A111-2 (1,1 g, 5,0 mmol) en DMF (10 ml) se añadió K_2CO_3 (1,0 g, 7,5 mmol) a 0 °C seguido de la adición lenta de MeI (0,94 ml, 15,0 mmol) y la mezcla de reacción se agitó a la misma temperatura durante 30 min. Después, la mezcla de reacción se inactivó con agua (50 ml) y se extrajo con EtOAc (2x30 ml). Las capas orgánicas combinadas se lavaron con agua (50 ml) y salmuera (50 ml), se secaron sobre Na_2SO_4 anhidro y se concentraron a presión reducida. El residuo se purificó por cromatografía en columna (gel de sílice, EtOAc al 10 %/hexano como eluyente) para proporcionar el compuesto A111-3 (0,59 g, 50 %) en forma de un sólido de color blanco.

Etapa 4: 2,6-dicloro-4-(difluorometil)benzoato de metilo (A111-4)

A una solución agitada del compuesto A111-3 (0,36 g, 1,5 mmol) en DCM (10 ml) se añadió DAST (0,37 ml, 2,8 mmol) a -78 °C gota a gota, seguido de la adición de una gota a de MeOH y la reacción se agitó a la misma temperatura durante 15 min y se llevó a 0 °C. La mezcla de reacción se agitó durante 30 min a la misma temperatura y 16 h a temperatura ambiente. La mezcla de reacción se inactivó con NaHCO₃ saturado (20 ml) a 0 °C y se agitó durante 20 min y se extrajo con DCM (2 x 30 ml). Las capas orgánicas combinadas se lavaron con agua (50 ml) y salmuera (50 ml), se secaron sobre Na₂SO₄ anhidro y se concentraron a presión reducida para obtener el compuesto A111-4 (0,37 g, 94 %) en forma de un aceite incoloro.

Etapa 5: (2,6-dicloro-4-(difluorometil)fenil)metanol (A111-5)

A una solución agitada del compuesto A111-4 (1,44 g, 5,64 mmol) en THF (10 ml) se añadió LiAlH₄ (2,0 M en THF, 4,23 ml, 8,46 mmol) en THF (10 ml) a -78 °C gota a gota durante 15 min y se llevó a 0 °C. La mezcla de reacción se agitó durante 30 min a la misma temperatura y 16 h a temperatura ambiente. La mezcla de reacción se inactivó con HCl 1 M (20 ml) a 0 °C y se agitó durante 20 min y se extrajo con EtOAc (2 x 30 ml). Las capas orgánicas combinadas se lavaron con agua (50 ml) y salmuera (50 ml), se secaron sobre Na₂SO₄ anhidro y se concentraron a presión reducida para obtener el compuesto A111 -5 (0,59 g, 45 %) en forma de un aceite incoloro.

Etapa 6: 2,6-dicloro-4-(difluorometil)benzaldehído (A111-6)

5

15

20

30

35

45

El compuesto A111 -6 (0,38 g, 65 %) se obtuvo en forma de un aceite incoloro a partir de la reacción del compuesto A111-5 (0,59 g, 2,46 mmol) y peryodinano de Dess-Martin (2,1 g, 4,92 mmol) en DCM (10 ml) usando un procedimiento similar al descrito en el ejemplo de referencia A56, etapa 4:

Etapa 7: 2-(2,6-dicloro-4-(difluorometil)fenil)-2-((trimetilsilil)oxi)acetonitrilo (A111-7)

A una solución agitada del compuesto A111-6 (0,38 g, 1,6 mmol) en DCM (15 ml) se añadieron TMSCN (0,31 ml, 2,5 mmol) y NMO (60 mg, 0,5 mmol) a temperatura ambiente y se agitó durante 1 h. La mezcla de reacción se inactivó con agua (50 ml) y se extrajo con DCM (2 x 30 ml). Las capas orgánicas combinadas se lavaron con agua (50 ml) y salmuera (50 ml), se secaron sobre Na₂SO₄ anhidro y se concentraron a presión reducida para obtener el compuesto A111-7 (0,53 g, 97 %) en forma de un sólido de color amarillo.

Etapa 8 2-(2,6-dicloro-4-(difluorometil)fenil)-2-((trimetilsilil)oxi)etanamina (A111-8)

A una solución agitada del compuesto A111-7 (0,53 g, 1,6 mmol) en THF (10 ml) se añadió BH₃ THF (8,2 ml, 8,1 mmol) y se agitó a temperatura ambiente durante 16 h. La mezcla de reacción se inactivó con MeOH y se extrajo con EtOAc (2x30 ml). Las capas orgánicas combinadas se lavaron con agua (50 ml) y salmuera (50 ml), se secaron sobre Na₂SO₄ anhidro y se concentraron a presión reducida para obtener el compuesto A111-8 (0,5 g, en bruto) en forma de un aceite de color amarillo.

Etapa 9: 1-(2,6-dicloro-4-(difluorometil)fenil)-2-((3,5-difluorobencil)amino)etanol (A111)

El compuesto A111 (0,21 g, 36 %) se obtuvo en forma de una goma incolora a partir de la reacción del compuesto A111-8 (0,5 g, 1,52 mmol), 3,5-difluorobenzaldehído (0,16 ml, 1,52 mmol) y NaBH₄ (0,11 g, 3,0 mmol) en MeOH (5 ml) usando un procedimiento similar al descrito en el ejemplo de referencia A56, etapa 8: RMN ¹H (CDCl₃, 400 MHz): δ 7,44 (s, 2H), 6,89-6,42 (m, 4H), 5,56-5,25 (m, 1H), 3,87 (s, 2H), 3,26 (dd, *J* = 12,8, 9,6 Hz, 1H), 2,91- 2,86 (m, 1H).

[Ejemplo de referencia A112]

O OH
$$\rightarrow$$
 HO OH \rightarrow Etapa $\overline{2}$ HO \rightarrow Etapa $\overline{3}$ HO \rightarrow Etapa $\overline{3}$ \rightarrow A112-1 A112-2 A112 CI \rightarrow N

Etapa 1: 4-(hidroximetil)-1-metilciclohexano 1 (A112-1)

A una solución agitada de 4-(hidroximetil)ciclohexanona (1,0 g, 7,8 mmol) en THF (20 ml) se añadió bromuro de metil magnesio (3,0 M en Et_2O , 7,8 ml, 23,4 mmol) gota a gota a 0 °C durante 5 min. La mezcla se dejó calentar a temperatura ambiente y se agitó a la misma temperatura durante 2 h. La mezcla de reacción se inactivó con NH₄Cl acuoso saturado y se extrajo con EtOAc (2 x 20 ml). Las capas orgánicas combinadas se lavaron con agua (20 ml) y salmuera (20 ml), se secaron sobre Na_2SO_4 anhidro y se concentraron a presión reducida. El residuo se purificó por cromatografía en columna (gel de sílice, EtOAc al 80 %/hexano como eluyente) para proporcionar el compuesto A112-1 (300 mg, 27 %) en forma de un sólido de color blanco.

Etapa 2: 4-hidroxi-4-metilciclohexanocarbaldehído (A112-2)

40 El compuesto A112-2 (49 mg, en bruto) se obtuvo en forma de una espuma de color amarillo a partir de la reacción del compuesto A112-1 (50 mg, 0,348 mmol) y peryodinano de Dess-Martin (206 mg, 0,48 mmol) en DCM (5,0 ml) usando un procedimiento similar al descrito en el ejemplo de referencia A56, etapa 4:

Etapa 3: 4-(((2-(3,5-dicloropiridin-4-il)-2-((trietilsilil)oxi)etil)amino)metil)-1- metilciclohexanol (A112)

A una solución agitada del compuesto A112-2 (49 mg, 0,34 mmol) en DCM (15 ml) se añadió el compuesto A1-3 (109 mg, 0,34 mmol) seguido de NaBH(OAc)3 (108 mg, 0,51 mmol) a temperatura ambiente. La mezcla se agitó

durante 4 h a temperatura ambiente. La mezcla de reacción se inactivó con NaHCO $_3$ acuoso saturado (10 ml) y se extrajo con EtOAc (2 x 20 ml). La capa orgánica combinada se lavó con agua (20 ml) y salmuera (20 ml), se secó sobre Na $_2$ SO $_4$ anhidro y se concentró a presión reducida. El residuo se purificó por cromatografía en columna (gel de sílice, MeOH al 5 %/DCM como eluyente) para proporcionar el compuesto A112 (58 mg, 37 % en dos etapas) en forma de una goma de color amarillo.

[Ejemplo de referencia A118]

5

10

15

20

30

N-(2-bromobencil)-2-(3,5-dicloropiridin-4-il)-2-((trietilsilil)oxi)etanamina (A118)

El compuesto A118 (1,2 g, 79 %) se obtuvo en forma de un aceite incoloro a partir de la reacción del compuesto A1-3 (1,0 g, 3,16 mmol), 2-bromobenzaldehído (576 mg, 3,11 mmol) y NaBH₄ (172 mg, 4,67 mmol) en MeOH (40 ml) usando un procedimiento similar al descrito en el ejemplo de referencia A1, etapa 4: RMN 1 H (CDCl₃, 400 MHz): δ 8,41 (s, 2H), 7,53-7,51 (m, 1H), 7,37-7,35 (m, 1H), 7,28-7,25 (m, 1H), 7,13-7,08 (m, 1H), 5,55 (dd, J = 8,2, 5,2 Hz, 1H), 3,94-3,85 (m, 1H), 3,20 (dd, J = 12,1, 8,4 Hz, 1H), 2,88 (d, J = 4,8 Hz, 0,5H), 2,86 (dd, J = 12,1, 5,1 Hz, 0.5H), 0,89-0,86 (m, 9H), 0,58-0,51 (m, 6H).

[Ejemplo de referencia A119]

Etapa 1: 1,3-dibromo-2,2-dimetilpropano (A119-1)

A una solución agitada de trifenilfosfina (26,2 g, 0,1 mol) en CH₃CN (50 ml) se añadió gota a gota una solución de bromo (5,13 ml, 0,10 mol) en CH₃CN (30 ml) a 0 °C. Se añadió en una porción 2,2-dimetilpropano-1,3-diol (5,1 g, 0,05 mol) a la reacción y la mezcla de reacción se agitó a 90 °C durante 16 h. El disolvente se retiró a presión reducida. El residuo se suspendió en MTBE (150 ml) y el sólido resultante se retiró por filtración. El filtrado se concentró a presión reducida y el residuo se disolvió en CH₃CN y se extrajo con hexano (3 x 100 ml). Los extractos de hexano combinados se concentraron a presión reducida para proporcionar el compuesto A119-1 (6,5 g, 59 %) en forma de un aceite de color pardo.

25 Etapa 2: 3,3-dimetilciclobutano-1,1-dicarboxilato de dipentilo (A119-2)

El sodio (0,98 g, 43,0 mmol) se añadió en una porción a pentanol (25 ml) y la mezcla se agitó a 50 °C para obtener una solución transparente. La mezcla de reacción se calentó a 70 °C y después se añadió malonato de dietilo (3,50 g, 26,0 mmol) durante un periodo de 5 min. La mezcla de reacción se calentó a 130 °C y el compuesto A119-1 (5,0 g, 21 mmol) se añadió gota a gota durante un periodo de 10 min. La mezcla de reacción se calentó a 130 °C durante 4 h. El disolvente se retiró al vacío a 100 °C. El residuo se inactivó con agua (100 ml) y se extrajo con EtOAc (2 x 50 ml). Los extractos orgánicos combinados se concentraron a presión reducida para proporcionar el compuesto A119-2 (6 g, en bruto) en forma de un aceite de color pardo. El producto en bruto se usó para la siguiente etapa sin purificación.

Etapa 3: ácido 3,3-dimetilciclobutano-1,1-dicarboxílico (A119-3)

A una solución del compuesto A119-2 (6 g, en bruto) en EtOH/agua (60 ml, 2:1) se añadió una solución de KOH (solución acuosa al 40 %, 10 ml) y la mezcla de reacción se agitó a 100 °C durante 4 h. Después de retirar el disolvente a presión reducida, el residuo se suspendió en agua (100 ml) y se lavó con MTBE. La capa acuosa se acidificó a pH 1 y se extrajo con EtOAc (3x50 ml). Las capas orgánicas combinadas se lavaron con agua (100 ml) y salmuera (100 ml), se secaron sobre Na₂SO₄ anhidro y se concentraron a presión reducida para proporcionar el

compuesto A119-3 (2,5 g, en bruto) en forma de una goma semisólida de color pardo. El producto en bruto se usó para la siguiente etapa sin purificación.

Etapa 4: ácido 3,3-dimetilciclobutanocarboxílico (A119-4)

El compuesto A119-3 (2,5 g, en bruto) se calentó aproximadamente a 200 °C durante 2 h para proporcionar el compuesto A119-4 (900 mg, en bruto) en forma de una goma de color pardo claro.

Etapa 5: (3,3-dimetilciclobutil)metanol (A119-5)

5

10

25

35

40

A una suspensión agitada de LiAlH $_4$ (534 mg, 14,0 mmol) en THF (20 ml) se añadió una solución del compuesto A119-4 (900 mg, 7,0 mmol) en THF (10 ml) a 0 °C y la mezcla se agitó a la misma temperatura durante 3 h. La mezcla de reacción se inactivó con agua (3 ml) y NaOH acuoso al 20 % (3 ml) y se agitó a temperatura ambiente durante 10 min. El sólido se filtró sobre una capa de celite y la capa orgánica se lavó con agua (20 ml) y salmuera (20 ml), se secó sobre Na $_2$ SO $_4$ anhidro y se concentró a presión reducida. El residuo se purificó por cromatografía en columna (gel de sílice, EtOAc al 20 %/hexano como eluyente) para proporcionar el compuesto A119-5 (160 mg, 20 %) en forma de un aceite de color amarillo claro.

Etapa 6: 3,3-dimetilciclobutanocarbaldehído (A119-6)

A una solución agitada del compuesto A119-5 (160 mg, 1,4 mmol) en DCM (10 ml) se añadió peryodinano de Dess-Martin (1,20 g, 2,8 mmol) y la mezcla se agitó a temperatura ambiente durante 2 h. La mezcla de reacción se diluyó con DCM (10 ml) y se inactivó con Na₂S₂O₂ acuoso (5 ml) y una solución de NaHCO₃ (5 ml). La capa orgánica se lavó con agua (10 ml) y salmuera (10 ml), se secó sobre Na₂SO₄ anhidro y se concentró a presión reducida para proporcionar el compuesto A119-6 (150 mg, cuant.) en forma de un aceite de color amarillo. El producto en bruto se usó para la siguiente etapa sin purificación.

Etapa 7: 2-(3,5-dicloropiridin-4-il)-N-((3,3-dimetilciclobutil)metil)-2-((trietilsilil)oxi)etanamina(A119)

La mezcla del compuesto A119-6 (150 mg, 1,33 mmol) y el compuesto A1-3 (300 mg, 0,97 mmol) en MeOH (10 ml) se agitó a temperatura ambiente durante 3 h. Se añadió en porciones NaBH₄ (75 mg, 1,99 mmol) y la mezcla se agitó a temperatura ambiente durante 3 h. La mezcla de reacción se inactivó con agua y se extrajo con EtOAc (2 x 20 ml). Las capas orgánicas combinadas se lavaron con agua (100 ml) y salmuera (100 ml), se secaron sobre Na₂SO₄ anhidro y se concentraron a presión reducida. El residuo se purificó por cromatografía en columna (gel de sílice, EtOAc al 20 %/hexano como eluyente) para proporcionar el compuesto A119 (190 mg, 36 %) en forma de una goma de color amarillo. RMN ¹H (CDCl₃, 400 MHz): δ 8,42 (s, 2H), 5,46-5,52 (m, 1H), 3,16-3,23 (m, 1H), 2,71-2,79 (m, 1H), 2,53-2,69 (m, 2H), 1,42- 1,62 (m, 5H), 1,23-1,38 (m, 6H), 0,84-0,92 (m, 9H), 0,49-0,58 (m, 6H).

30 [Ejemplo de referencia A122]

Etapa 1: 4-metilenociclohexanocarboxilato de etilo (A 122-1)

Se añadió gota a gota bis(trimetilsilil)amida de litio (1,0 M en THF, 15 ml, 15 mmol) a una solución agitada de bromuro de metiltrifenilfosfonio (5,36 g, 15 mmol) en THF (50 ml) a 0 °C y se agitó durante 40 min a la misma temperatura. Una solución de 4-oxociclohexanocarboxilato de etilo (2,04 g, 12 mmol) en THF (20 ml) se añadió lentamente a 0 °C y se agitó durante 2 h de 0 °C a temperatura ambiente. La reacción se interrumpió con NH₄Cl ac. saturado y se extrajo con hexano. La capa orgánica recogida se secó sobre MgSO₄ y se concentró a presión reducida. El disolvente (100 ml, hexano/Et₂O = 5/1) se añadió al residuo y se agitó durante 30 min. La suspensión se filtró. El filtrado se concentró a presión reducida. El residuo se purificó por cromatografía de gel de sílice (EtOAc al 5 %/hexano como eluyente) para proporcionar el compuesto A122-1 (1,478 g, 73 %) en forma de un aceite incoloro.

Etapa 2: 1-(bromometil)-4-metilenociclohexanocarboxilato de etilo (A 122-2)

Se añadió gota a gota n-BuLi (2,6 M en hexano, 2,5 ml, 6,6 mmol) a una solución de diisopropilamina (0,93 ml, 6,6 mmol) en THF (20 ml) a -78 °C y se agitó durante 30 min a la misma temperatura. Se añadió hexametilfosforamida

(4 ml) a la mezcla de reacción y se agitó durante 20 min a la misma temperatura. Se añadió una solución del compuesto A122-1 (1,01 g, 6 mmol) en THF (5 ml) y se agitó durante 1 h a la misma temperatura. Se añadió una solución de dibromometano (2,1 ml, 30 mmol) a la mezcla de reacción y la mezcla se dejó calentar a temperatura ambiente durante 1,5 h. La mezcla de reacción se diluyó hexano (80 ml) y AcOEt (20 ml). La capa orgánica recogida se lavó con agua, NH₄Cl ac. saturado, salmuera, se secó sobre MgSO₄ y se concentró a presión reducida. El residuo se purificó por cromatografía de gel de sílice (EtOAc al 10 %/hexano como eluyente) para proporcionar el compuesto A122-2 (1,39 g, 89 %) en forma de un aceite de color amarillo pálido.

Etapa 3: 4-metilbiciclo[2,2,1]heptano-1-carboxilato de etilo (A122-3)

A una solución agitada del compuesto A122-2 (783 mg, 3 mmol) en tolueno (65 ml) se añadió hidruro de tributilestaño (0,888 ml, 3,3 mmol) y 2,2'-azobis(isobutironitrilo) (25 mg) en tolueno (20 ml) y la mezcla se agitó a 110 °C durante 1 h. La mezcla de reacción se enfrió y se concentró a presión reducida. Se añadieron DCM (20 ml) y una solución de KF (1,0 g) en agua (0,31 ml) al residuo y la mezcla se agitó durante 1 h. La mezcla de reacción se filtró con Na₂SO₄ anhidro y se concentró a presión reducida. El residuo se purificó por cromatografía de gel de sílice (EtOAc al 10 %/hexano como eluyente) para proporcionar el compuesto A122-3 (501 mg, 92 %) en forma de un aceite incoloro.

Etapa 4: ácido 4-metilbiciclo[2,2,1]heptano-1-carboxílico (A122-4)

A una solución agitada del compuesto A122-3 (500 mg, 2,74 mmol) en MeOH/agua (8 ml, 3:1) se añadió una solución de LiOH ac. (4 M, 2 ml, 8 mmol). La mezcla se agitó a temperatura ambiente durante 2,5 h y se agitó a 50 °C durante 1,5 h. El disolvente orgánico se retiró a presión reducida. El residuo se diluyó con agua (10 ml) y hexano (10 ml). La capa acuosa se acidificó con HCl acuoso 6 M a pH 1 y se extrajo con DCM. Las capas orgánicas se secaron sobre MgSO₄ y se concentraron a presión reducida para proporcionar el compuesto A122-4 (313 mg, 74 %) en forma de un sólido de color amarillo pálido.

Etapa 5: N-metoxi-N,4-dimetilbiciclo[2,2,1]heptano-1-carboxamida (A122-5)

A una mezcla del compuesto A122-4 (302 mg, 1,96 mmol), monohidrato de 1-hidroxibenzotrizol (460 mg, 3 mmol), clorhidrato de 1-(3-dimetilaminopropi 1)-3-etilcarbodiimida (466 mg, 3 mmol) y clorhidrato de N,O-dimetilhidroxilamina (293 mg, 3 mmol) en DMF (10 ml) se añadió DIPEA (1,03 ml, 6 mmol) y la mezcla se agitó a temperatura ambiente durante una noche. La mezcla de reacción se inactivó con agua (30 ml) y se extrajo con EtOAc. La capa orgánica recogida se lavó con NH₄Cl ac. saturado, salmuera, se secó sobre MgSO₄ y se concentró a presión reducida. El residuo se purificó por cromatografía de gel de sílice (EtOAc al 30%/hexano como eluyente) para proporcionar el compuesto A122-5 (271,4 mg, 70%) en forma de un aceite incoloro.

Etapa 6: 4-metilbiciclo[2,2,1]heptano-1-carbaldehído (A122-6)

A una solución del compuesto A122-5 (271 mg, 1,37 mmol) en Et_2O (5 ml) se añadió una suspensión de LiAlH $_4$ (52 mg, 1,37 mmol) en Et_2O (2 ml) a 0 °C y se agitó durante 45 min a la misma temperatura. La mezcla de reacción se inactivó con KHSO $_4$ ac. saturado (5 ml) a 0 °C y se agitó durante 30 min a temperatura ambiente y se extrajo con Et_2O . La capa orgánica se secó con MgSO $_4$ y se concentró a presión reducida para proporcionar el compuesto A122-6 (163 mg, 86 %) en forma de un aceite incoloro. El producto en bruto se usó para la siguiente etapa sin purificación.

Etapa 7: 2-(3,5-dicloropiridin-4-il)-N-((4-metilbiciclo[2,2,1]heptan-1-il)metil)-2-((trietilsilil)oxi)etanamina (A122)

El compuesto A122 (177 mg, 80%) se obtuvo en forma de un aceite de color amarillo pálido a partir de la reacción del compuesto A1-3 (160 mg, 0,50 mmol), el compuesto A122-6 (82 mg, 0,59 mmol), NaBH₄ (120 mg) y MgSO₄ (200mg) en MeOH (4 ml) y DCM (3 ml) usando un procedimiento similar al descrito en el ejemplo de referencia A31, etapa 4: RMN ¹H (CDCl₃, 400 MHz): δ 8,42 (s, 2H), 5,50 (dd, *J* = 8,7, *J* = 4,6 Hz, 1H), 3,24 (dd, *J* = 12,6, *J* = 8,7 Hz, 1H), 2,78 (dd, *J* = 12,6, *J* = 4,6Hz, 1H), 2,75 (d, *J* = 11,7 Hz, 1H), 2,67 (d, *J* = 11,7 Hz, 1H), 1,54-1,32 (m, 8H), 1,10-1,08 (m, 5H), 0,89 (t, *J* = 8,0 Hz, 9H), 0,58-0,49 (m, 6H).

45 [Ejemplo de referencia A124]

20

35

Etapa 1: ciclopentanocarboxilato de etilo (A124-1)

A una solución de ciclopentanocarboxilato (1,14 g, 10 mmol) en EtOH (5 ml) se añadió H₂SO₄ (0,1 ml) a temperatura ambiente. La mezcla se dejó calentar a 80 °C y se agitó a la misma temperatura durante 3,5 h. La mezcla de reacción se enfrió a temperatura ambiente y se vertió en NaHCO₃ ac. saturado (40 ml). La mezcla se agitó a temperatura ambiente durante 30 min y se extrajo con EtOAc. La capa orgánica se secó sobre MgSO₄ y se concentró a presión reducida para proporcionar el compuesto A124-1 (1,01 g, 71 %) en forma de un aceite de color amarillo pálido. El producto en bruto se usó para la siguiente etapa sin purificación.

Etapa 2: 1-fluorociclopentanocarboxilato de etilo (A 124-2)

Se añadió gota a gota n-BuLi (2,6 M en hexano, 4,0 ml, 10,5 mmol) a una solución de diisopropilamina (1,55 ml, 11 mmol) en THF (40 ml) a -78 °C y se agitó durante 30 min a la misma temperatura. Se añadió una solución del compuesto A124-1 (1,00 g, 7 mmol) en THF (10 ml) a la mezcla y la mezcla se agitó durante 50 min a la misma temperatura. La mezcla de reacción se dejó calentar a 0 °C durante 1 h. Se añadió una solución de N-fluoro-N-(fenilsulfonil)bencenosulfonamida (3,47 g, 10 mmol) en THF (10 ml) a la mezcla y la mezcla se agitó durante 1 h a la misma temperatura. La mezcla de reacción se dejó calentar a temperatura ambiente durante una noche. La reacción se interrumpió con NH₄Cl ac. saturado y se extrajo con EtOAc. La capa orgánica recogida se concentró a presión reducida. El residuo se purificó por cromatografía de gel de sílice (EtOAc al 10 %/hexano como eluyente) para proporcionar el compuesto A124-2 (911 m g, 81 %) en forma de un aceite de color amarillo.

Etapa 3: ácido 1-fluorociclopentanocarboxílico (A124-3)

A una solución agitada del compuesto A124-2 (910 mg, 5,68 mmol) en EtOH/THF/agua (7 ml, 4:2:1) se añadió una solución de LiOH ac. (4 M, 3 ml, 12 mmol). La mezcla se agitó a temperatura ambiente durante 2,5 h. El disolvente orgánico se retiró a presión reducida. El residuo se acidificó con HCl acuoso 2 M a pH 1 y se extrajo con EtOAc. La capa orgánica se secó sobre MgSO₄ y se concentró a presión reducida para proporcionar el compuesto A124-3 (709 mg, 95 %) en forma de un aceite de color pardo. El producto en bruto se usó para la siguiente etapa sin purificación.

Etapa 4: 1-fluoro-N-metoxi-N-metilciclopentanocarboxamida (A 124-4)

A una mezcla del compuesto A124-3 (709 mg, 5,37 mmol), 1-hidroxibenzotrizol (986 mg, 6,44 mmol), clorhidrato de 1-(3-dimetilaminopropil)-3-etilcarbodiimida (1,0 g, 6,44 mmol) y clorhidrato de N,O-dimetilhidroxilamina (628 mg, 6,44 mmol) en DMF (10 ml) se añadió trietilamina (1,12 ml, 8,05 mmol) y la mezcla se agitó a temperatura ambiente durante una noche. La mezcla de reacción se inactivó con HCl acuoso 2 M (30 ml) y se extrajo con EtOAc. La capa orgánica recogida se lavó con agua, salmuera, se secó sobre MgSO₄ y se concentró a presión reducida. El residuo se purificó por cromatografía de gel de sílice (EtOAc al 20 %/hexano como eluyente) para proporcionar el compuesto A124-4 (543 mg, 58 %) en forma de un aceite de color amarillo.

Etapa 5: 1-fluorociclopentanocarbaldehído (A124-5)

A una solución del compuesto A124-4 (140 mg, 0.8 mmol) en Et₂O (20 ml) se añadió LiAlH₄ (33 mg, 0.88 mmol) a 0 °C y se agitó durante 5 h a la misma temperatura. La mezcla de reacción se inactivó con KHSO₄ ac. saturado (5 ml) a 0 °C y se extrajo con Et₂O. La capa orgánica combinada se secó sobre MgSO₄ y se concentró a presión reducida para proporcionar el compuesto A124-5. El producto en bruto se usó para la siguiente etapa sin purificación.

Etapa 6: 2-(3,5-dicloropiridin-4-il)-N-((1-fluorociclopentil)metil)-2-((trietilsilil)oxi)etanamina (A 124)

El compuesto A124 (207 mg, 68 %) se obtuvo a partir de la reacción del compuesto A1-3

40 (233 mg, 0,73 mmol), el compuesto A124-5 (93 mg, 0,8 mmol), NaBH(OAc)₃ (231 mg, 1,09 mmol), MgSO₄ (93 mg) y AcOH (0,042 ml, 0,73 mmol) en DCM (2 ml) usando un procedimiento similar al descrito en el ejemplo de referencia A31, etapa 4: RMN ¹H (CDCl₃, 400 MHz): δ 8,43 (s, 2H), 5,49 (dd, *J* = 8,5, *J* = 4,5 Hz, 1H), 3,26 (dd, *J* = 12,6, *J* = 8,5 Hz, 1H), 2,87 (d, *J* = 21,0 Hz, 2H), 2,83 (dd, *J* = 12,6, *J* = 4,5 Hz, 1H), 1,93-1,60 (m, 8H), 0,88 (t, *J* = 7,8 Hz, 9H), 0,60-0,49 (m, 6H).

45

35

5

[Ejemplo de referencia A141]

5

10

15

20

25

30

45

Etapa 1: ácido 3-metilenociclobutanocarboxílico (A141-1)

A una solución agitada de KOH (10 g, 178 mmol) en agua (15 ml) y EtOH (15 ml) se añadió 3-metilenociclobutanocarbonitrilo (3,92 g, 42 mmol) a temperatura ambiente durante 10 min. La mezcla se dejó calentar to 90 °C y se agitó a la misma temperatura durante 3,5 h. La mezcla de reacción se concentró a presión reducida. El residuo se disolvió en agua (10 ml) a 0 °C. La mezcla se acidificó con HCl acuoso 6 M a pH 1 y se extrajo con DCM. La capa orgánica se secó sobre MgSO₄ y se concentró a presión reducida para proporcionar el compuesto A141-1 (4,65 g, 98 %) en forma de un aceite incoloro. El producto se usó para la siguiente etapa sin purificación adicional.

Etapa 2: 3-metilenociclobutanocarboxilato de metilo (A141-2)

Se añadió gota a gota trimetilsilildiazometano (2,0 M en hexano, 25 ml, 50 mmol) a una solución agitada del compuesto A141-1 (4,64 g, 41,4 mmol) en DCM (25 ml) y MeOH (5 ml) a 0 °C durante 5 min. La mezcla se dejó calentar a temperatura ambiente y se agitó a la misma temperatura durante 30 min. La mezcla de reacción se inactivó con AcOH (0,45 ml) y se concentró a presión reducida. El residuo se purificó por cromatografía de gel de sílice (DCM al 20 %/hexano como eluyente) para proporcionar el compuesto A141-2 (3,8 g, 73 %) en forma de un aceite incoloro.

Etapa 3: espiro[2,3]hexano-5-carboxilato de metilo (A141-3)

A una solución de dietilcinc (1,0 M en hexano, 46 ml, 46 mmol) en DCM (200 ml) se añadió gota a gota una solución de TFA (3,54 ml, 46 mmol) en DCM (50 ml) a 0 °C durante 30 min. Se añadió gota a gota una solución de diyodometano (3,7 ml, 46 mmol) en DCM (50 ml) a 0 °C durante 45 min. La mezcla se agitó a la misma temperatura durante 1 h. Se añadió una solución del compuesto A141-2 (2,52 g, 20 mmol) en DCM (30 ml) a la mezcla de reacción. La mezcla se dejó calentar a temperatura ambiente durante una noche. La mezcla de reacción se inactivó con NH₄Cl ac. saturado (200 ml) y se extrajo con DCM. La capa orgánica recogida se secó sobre MgSO₄ y se concentró a presión reducida. El residuo se purificó por cromatografía de gel de sílice (EtOAc al 20 %/hexano como eluyente) para proporcionar el compuesto A141 -3 (1,77 g, 63 %) en forma de un aceite incoloro.

Etapa 4: ácido espiro[2,3]hexano-5-carboxílico (A141-4)

A una solución agitada de LiOH (4 M en agua, 10 ml, 40 mmol) en agua (10 ml) y MeOH (20 ml) se añadió el compuesto A141-3 (1,76 g, 12,6 mmol) a temperatura ambiente. La mezcla se agitó a temperatura ambiente durante 40 min. La mezcla de reacción se concentró a presión reducida a aprox. 20 ml de solución. La solución se acidificó con HCl acuoso 6 M a pH 1 y se extrajo con DCM. La capa orgánica se secó sobre MgSO₄ y se concentró a presión reducida para proporcionar el compuesto A141-4 (1,51 g, 95%) en forma de un aceite incoloro. El producto se usó para la siguiente etapa sin purificación adicional.

Etapa 5: N-metoxi-N-metilespiro[2,3]hexano-5-carboxamida (A141-5)

A una mezcla del compuesto A141-4 (1,51 mg, 12,0 mmol), monohidrato de 1-hidroxibenzotrizol (2,30 g, 15 mmol), clorhidrato de 1-(3-dimetilaminopropil)-3-etilcarbodiimida (2,33 g, 15 mmol) y clorhidrato de N,O-dimetilhidroxilamina (1,46 g, 15 mmol) en DMF (20 ml) se añadió DIPEA (3,43 ml, 20 mmol) y la mezcla se agitó a temperatura ambiente durante una noche. La mezcla de reacción se inactivó con agua y se extrajo con hexano y EtOAc. La capa orgánica recogida se lavó con HCl ac. 1 M (100 ml), agua, Na₂CO₃ ac. saturado (2 x 100 ml) y salmuera, se secó sobre MgSO₄ y se concentró a presión reducida. El residuo se purificó por cromatografía de gel de sílice (EtOAc al 75%/hexano como eluyente) para proporcionar el compuesto A141-5 (1,72 g, 84%) en forma de un aceite incoloro.

Etapa 6: espiro[2,3]hexano-5-carbaldehído (A141-6)

A una solución del compuesto A141-5 (677 mg, 4 mmol) en Et_2O (15 ml) se añadió una suspensión de LiAlH₄ (152 mg, 4 mmol) en Et_2O (5 ml) a 0 °C durante 5 min y se agitó durante 2 h a la misma temperatura. La mezcla de reacción se inactivó con KHSO₄ ac. saturado (10 ml) a 0 °C y se extrajo con Et_2O . La capa orgánica combinada se

secó con MgSO₄ y se concentró a presión reducida para proporcionar el compuesto A141-6 (351 mg, 80 %) en forma de un aceite incoloro. El producto en bruto se usó para la siguiente etapa sin purificación.

Etapa 7: 2-(2,4,6-triclorofenil)-N-(spiro[2,3]hexan-5-ilmetil)-2-((trietilsilil)oxi)etanamina (A141)

El compuesto A141 (123 mg, 39 %) se obtuvo en forma de un aceite de color amarillo pálido a partir de la reacción de 2-(2,4,6-triclorofenil)-2-((trietilsilil)oxi)etanamina (248 mg, 0,7 mmol), el compuesto A141-6 (100 mg, 0,91 mmol), NaBH₄ (212 mg) y MgSO₄ (100 mg) en MeOH (1,4 ml) y THF (3,5 ml) usando un procedimiento similar al descrito en el ejemplo de referencia A31, etapa 4: RMN 1 H (CDCl₃, 400 MHz): δ 7,29 (s, 2H), 5,53 (dd, J = 9,0, J = 4,6 Hz, 1H), 3,26 (dd, J = 12,2, J = 8,8 Hz, 1H), 2,85-2,71 (m, 3H), 2,62-2,51 (m, 1H), 2,17-2,10 (m, 2H), 1,86-1,81 (m, 2H), 0,87 (t, J = 7,8 Hz, 9H), 0,57-0,50 (m, 6H), 0,43-0,33 (m, 4H).

10 [Ejemplo de referencia A194]

5

15

20

25

30

35

40

45

1-(2,6-dicloro-3-fluorofenil)-2-(((1-(trifluorometil)ciclopropil)metil)amino)etanol

Etapa 1: 2-(2,6-dicloro-3-fluorofenil)-2-((trimetilsilil)oxi)acetonitrilo

Un matraz de fondo redondo de 200 ml se cargó con una solución de 2,6-dicloro-3-fluorobenzaldehído (2,29 g, 11,87 mmol), DCM (23 ml), TMSCN (1,9 ml, 14,24 mmol) y se añadió yoduro de cinc (0,379 g, 1,187 mmol). La mezcla se agitó a temperatura ambiente durante 4 h. Después, la mezcla se lavó con agua (2x20 ml) y salmuera. La capa orgánica se concentró a presión reducida. El material en bruto se purificó por cromatografía en columna (gel de sílice, eluyente: EtOAc del 0 % al 30 %/heptano) para proporcionar 2-(2,6-dicloro-3-fluorofenil)-2-((trimetilsilil)oxi)acetonitrilo (1,435 g, 4,91 mmol, rendimiento de 41,4 %) en forma de un aceite incoloro. RMN ¹H (400 MHz, CDCl₃) δ 7,32-7,42 (m, 1 H); 7,12-7,24 (m, 1 H); 6,17-6,30 (m, 1 H); 0,12-0,33 (m, 9 H).

Etapa 2: 2-(2,6-dicloro-3-fluorofenil)-2-((trimetilsilil)oxi)acetaldehído

En un matraz de fondo redondo de tres bocas y 100 ml se añadieron 2-(2,6-dicloro-3-fluorofenil)-2-((trimetilsilil)oxi)acetonitrilo (0,50 g, 1,711 mmol) y DCM (9 ml). La mezcla de reacción se purgó con nitrógeno y se enfrió a -64 °C. En una atmósfera de nitrógeno, se añadió gota a gota hidruro de diisobutilaluminio, solución 1,0 M en hexano (2,6 ml, 2,6 mmol). La mezcla se agitó a -64 °C. Después de 2 h, la reacción se interrumpió. Mientras se mantenía la temperatura <-65 °C, se añadió gota a gota con cuidado MeOH (1,4 ml, 34,2 mmol) a la mezcla de reacción seguido de una solución saturada de sal de Rochelle (5 ml). La mezcla se dejó alcanzar temperatura ambiente y se agitó durante 30 min. Se añadieron agua y DCM y la capa acuosa se extrajo con DCM. La capa orgánica combinada se lavó con salmuera, se secó sobre MgSO₄ anhidro, y se concentró para proporcionar 2-(2,6-dicloro-3-fluorofenil)-2-((trimetilsilil)oxi)acetaldehído en forma de un aceite incoloro (0,517 g, en bruto).

Etapa 3: 1-(2,6-dicloro-3-fluorofenil)-2-(((1-(trifluorometil)ciclopropil)metil)amino)etanol

A una solución de 2-(2,6-dicloro-3-fluorofenil)-2-((trimetilsilil)oxi)acetaldehído en bruto (0,258 g, 0,874 mmol) en MeCN (9 ml) se añadió (1-(trifluorometil)ciclopropil)metanamina (0,122 g, 0,874 mmol), seguido de AcOH (0,050 ml, 0,874 mmol). La mezcla de reacción se agitó a temperatura ambiente durante 1 h. Después, se añadió NaBH(OAc)3 (0,370 g, 1,748 mmol). La mezcla de reacción se agitó a temperatura ambiente durante 23 h. Después, se inactivó añadiendo una solución acuosa saturada de NaHCO₃ y se agitó durante 30 min. Se extrajo con DCM (2x5 ml). La capa orgánica combinada se lavó con salmuera, se secó sobre MgSO₄ anhidro y se concentró a presión reducida para proporcionar un aceite de color amarillo. El aceite de color amarillo se disolvió en 2 ml de THF. Después, se añadió TBAF, solución 1,0 M en THF (0,874 ml, 0,874 mmol). La mezcla de reacción se agitó a temperatura ambiente durante 15 min. Después se inactivó con NaHCO₃ acuoso saturado y se extrajo con DCM. La capa orgánica combinada se secó sobre MgSO₄ anhidro y se concentró a presión reducida. El material en bruto se purificó por cromatografía en columna (gel de sílice, eluyente: EtOAc del 0 % al 50 %/heptano) para proporcionar 1-(2,6-dicloro-3-fluorofenil)-2-(((1-(trifluorometil)ciclopropil)metil)amino)etanol (116 mg, 0,335 mmol, rendimiento de 38,3 %) en forma de un aceite de color amarillo. RMN ¹H (400 MHz, CDCl₃) δ 7,25-7,31 (m, 1H), 7,06 (dd, *J* = 8,9, 8,0 Hz, 1H), 5,45 (dd, *J* = 9,7, 4,5 Hz, 1H), 3,45 (s a, 1H), 3,28 (dd, *J* = 12,6, 9,8 Hz, 1H), 2,89-2,92 (m, 3H), 0,99 - 1,04 (m, 2H), 0,69-0,76 (m, 2H); CLEM: 346,0 [M+HI[†].

[Ejemplo de referencia A224]

2-(2,6-dicloro-4-fluorofenil)-N-((1-metilciclopropil)metil)-2-((trietilsilil)oxi)etanamina

Una mezcla de 1 -metilciclopropanocarbaldehído (31,6 mg, 0,375 mmol) y 2-(2,6-dicloro-4-fluorofenil)-2-((trietilsilil)oxi)etanamina (127 mg, 0,375 mmol) en MeOH (1,9 ml) se agitó a temperatura ambiente durante 3 h. Se añadió en porciones NaBH₄ (14,20 mg, 0,375 mmol) y la mezcla se agitó a temperatura ambiente durante 40 min. La mezcla se concentró y se purificó por TLC prep. eluyendo con MeOH al 5 %/DCM para proporcionar 2-(2,6-dicloro-4-fluorofenil)-N-((1-metilciclopropil)metil)-2-((trietilsilil)oxi)etanamina (111 mg, 0,273 mmol, rendimiento 72,8 %). RMN 1 H (500 MHz, CDCl₃) δ 7,29 (s, 1H), 7,06-7,10 (m, 2H), 5,56 (s a, 1H), 3,33 (t, J = 10,51 Hz, 1H), 2,81 (d, J = 9,17 Hz, 1H), 2,60-2,67 (m, 1H), 2,44 (d, J = 11,86 Hz, 1H), 1,46-1,59 (m, 1H), 1,13 (s, 3H), 0,85-0,96 (m, 9H), 0,50-0,63 (m, 6H), 0,36 (s a, 2H), 0,30 (s a, 2H); CLEM (IEN) m/z 406,0 (M+H) † .

[Ejemplo de referencia A258]

5

10

30

2-(2,6-diclorofenil)-N-((1-metilciclopropil)metil)-2-((trietilsilil)oxi)etanamina

A una mezcla de 1-metilciclopropanocarbaldehído (32,8 mg, 0,390 mmol) en DCM (2,0 ml) se añadió 2-(2,6-diclorofenil)-2-((trietilsilil)oxi)etanamina (125 mg, 0,390 mmol) seguido de NaBH(OAc)₃ (124 mg, 0,585 mmol). Después de 45 min, este se inactivó con NaHCO₃ ac. sat. Las capas se separaron. La capa acuosa se extrajo con DCM. Las capas orgánicas combinadas se concentraron, después se purificaron por TLC prep. eluyendo con MeOH al 5 %/DCM para proporcionar 2-(2,6-diclorofenil)-N-((1-metilciclopropil)metil)-2-((trietilsilil)oxi)etanamina (95 mg, 0,245 mmol, rendimiento 62,7 %). RMN ¹H (500 MHz, CDCl₃) δ 7,28-7,30 (m, 2H), 7,12-7,16 (m, 1H), 5,65 (s a, 1H), 3,37-3,44 (m, 1H), 2,82-2,90 (m, 1H), 2,69 (s a, 1H), 2,48 (d, *J* = 11,86 Hz, 1H), 1,60 (s a, 1H), 1,15 (s, 3H), 0,87-0,92 (m, 9H), 0,51-0,63 (m, 6H), 0,28-0,44 (m, 4H); CLEM (IEN) m/z 388,3 (M+H)[†].

[Ejemplo de referencia A259]

25 Etapa 1: 2-(2,6-diclorofenil)-2-((trimetilsilil)oxi)acetonitrilo

Un matraz de fondo redondo de 100 ml se cargó con una solución de 2,6-diclorobenzaldehído (5,08 g, 29,0 mmol) y TMSCN (4,64 ml, 34,8 mmol) en DCM (60 ml). Se añadió yoduro de cinc (0,926 g, 2,90 mmol) y la mezcla se agitó a temperatura ambiente durante 3 h. La mezcla de reacción se diluyó con DCM (200 ml). La capa orgánica se lavó con agua (2 x 20 ml) y salmuera (20 ml), la capa orgánica se filtró a través de celite y se concentró. El residuo se purificó por cromatografía ultrarrápida en un cartucho SNAP Biotage de 100 g usando EtOAc al 0-40 % en heptano para proporcionar 2-(2,6-diclorofenil)-2-((trimetilsilil)oxi)acetonitrilo (3,01 g, 38 %).

Etapa 2: 2-(2,6-diclorofenil)-2-((trimetilsilil)oxi)acetaldehído.

A una solución de 2-(2,6-diclorofenil)-2-((trimetilsilil)oxi)acetonitrilo (1,372 g, 5,00 mmol) en DCM (23,16 ml), se añadió gota a gota una solución 1,0 M de hidruro de diisobutilaluminio en hexano (7,50 ml, 7,50 mmol) a -78 °C durante 20 min. La reacción se interrumpió cuidadosamente en primer lugar con MeOH (1 ml, 24,97 mmol) y después con sal de Rochelle 1,5 M (5,00 ml. 7,50 mmol). El matraz se retiró del baño y se dejó que alcanzara temperatura ambiente y se extrajo con EtOAc (20 ml). La capa orgánica se separó y se lavó con salmuera, se filtró a través de un lecho de celite y se concentró para obtener 2-(2,6-diclorofenil)-2-((trimetilsilil)oxi)acetaldehído (1,34 g, 97 %) en forma de un sólido de color blanco.

Etapa 3: 2-(2,6-diclorofenil)-N-((1-(trifluorometil)ciclopropil)metil)-2-((trimetilsilil)oxi) etanamina.

A una solución de 2-(2,6-diclorofenil)-2-((trimetilsilil)oxi)acetaldehído en bruto (0,35 g. 1,263 mmol) en DCM (6,31 ml) se añadió (1-(trifluorometil)ciclopropil)metanamina (0,176 g, 1,263 mmol) y NaBH(OAc)3 (0,374 ml, 2,53 mmol) y se agitó durante 2 h a temperatura ambiente. La reacción se interrumpió con una solución acuosa sat. de NH₄Cl y se diluyó con DCM (50 ml). La capa orgánica se pasó a través de un separador de fases y se concentró para obtener 2-(2,6-diclorofenil)-N-((1-(trifluorometil)ciclopropil)metil)-2-((trimetilsilil)oxi) etanamina (0,378 g, 70 %) en forma de un aceite de color amarillo claro. Este se usó en la siguiente etapa sin purificación adicional.

[Ejemplo de referencia A260]

5

20

25

30

35

40

2-(2,6-diclorofenil)-N-((1-metilciclobutil)metil)-2-((trietilsilil)oxi)etanamina

A una mezcla de 1-metilciclobutanocarbaldehído (38,3 mg, 0,390 mmol) en DCM (2,0 ml) se añadió 2-(2,6-diclorofenil)-2-((trietilsilil)oxi)etanamina (125 mg, 0,390 mmol) seguido de NaBH(OAc)₃ (124 mg, 0,585 mmol). Después de 45 min, este se inactivó con NaHCO₃ ac. sat. Las capas se separaron. La capa acuosa se extrajo con DCM. Las capas orgánicas combinadas se concentraron y después se purificaron por TLC prep. eluyendo con MeOH al 5 %/DCM para proporcionar 2-(2,6-diclorofenil)-N-((1-metilciclobutil)metil)-2-((trietilsilil)oxi)etanamina (89 mg, 0,221 mmol, rendimiento 56,7 %). RMN ¹H (500 MHz, CDCl₃) δ 7,18-7,22 (m, 2H), 6,98-7,10 (m, 1H), 5,57 (s a, 1H), 3,30 (t, *J* = 10,70 Hz, 1H), 2,74 (s a, 1H), 2,60 (s a, 1H), 2,51 (d, *J* = 10,03 Hz, 1H), 1,68-1,89 (m, 4H), 1,60 (s a, 2H), 1,47 (s a, 1H), 1,03-1,14 (m, 3H), 0,76-0,84 (m, 9H), 0,41-0,54 (m, 6H); CLEM (IEN) m/z 402,4 (M+H)⁺.

[Ejemplo de referencia A262]

2-(2,6-diclorofenil)-N-((5-fluorospiro[2,3]hexan-5-il)metil)-2-((trietilsilil)oxi)etanamina

Se combinaron espiro[2,3]hexano-5-carbaldehído (300 mg, 2,72 mmol) y N-etil-N-isopropilpropan-2-amina (546 μ l, 3,13 mmol) en MeCN (5 ml) y se añadió gota a gota trifluorometanosulfonato de trimetilsililo (517 μ l, 2,86 mmol). La solución se agitó durante 30 min y se añadió selectfluor (1061 mg, 3,00 mmol) en MeCN (5 ml). La solución se agitó y se sometió a ultrasonidos durante 30 min más. Se añadieron 2-(2,6-diclorofenil)-2-((trietilsilil)oxi)etanamina (785 mg, 2,451 mmol) y AcOH (187 μ l, 3,27 mmol). La solución se agitó durante 30 min y se añadió NaBH(OAc)₃ (1154 mg, 5,45 mmol) y la solución se agitó durante 2 h más. La solución se interrumpió con NaHCO₃ saturado, la capa acuosa se extrajo con acetato de etilo y las capas orgánicas combinadas se lavaron con salmuera y se secaron sobre Na₂SO₄ anhidro, se filtraron y se concentraron. El producto se purificó por cromatografía en columna sobre gel de sílice (columna de 40 g) usando EtOAc al 0-100 % en heptano para proporcionar 2-(2,6-diclorofenil)-N-((5-fluorospiro[2,3]hexan-5-il)metil)-2-((trietilsilil)oxi)etanamina (300 mg, 0,694 mmol, rendimiento 25,5 %). EM m/z = 432 [M+H] $^+$.

[Ejemplo de referencia A267]

2-(2,6-diclorofenil)-N-(spiro[2,5]octan-6-ilmetil)-2-((trietilsilil)oxi)etanamina

A una solución de 2-(2,6-diclorofenil)-2-((trietilsilil)oxi)etanamina (248 mg, 0,774 mmol) en DCM (2581 µl) se añadió espiro[2,5]octano-6-carbaldehído (107 mg, 0,774 mmol), AcOH (35,5 µl, 0,619 mmol) y NaBH(OAc)₃ (246 mg, 1,161 mmol). La mezcla de suspensión se agitó a temperatura ambiente durante una noche. La mezcla se inactivó con NaOH 0,5 M y la mezcla se agitó a ta durante 30 min. Se observó desprendimiento de gas. Las capas se separaron. La capa orgánica se secó sobre Na₂SO₄ y se concentró. El residuo se purificó por cromatografía en columna sobre gel de sílice eluyendo con un gradiente de EtOAc del 0 % al 100 % en hexano para dar 2-(2,6-diclorofenil)-N-(spiro[2,5]octan-6-ilmetil)-2-((trietilsilil)oxi)etanamina.

[Ejemplo de referencia A275]

5

10

25

30

N-(2-(3 -cloroquinolin-4-il)-2-((trietilsilil)oxi)etil)-2,2-dimetilpropan-1-amina

Etapa 1: 3-cloroquinolin-4(1H)-ona (A275-1)

Una mezcla de 4-hidroxiquinolina (5,33 g, 36,7 mmol) en AcOH (184 ml) se trató con N-clorosuccinimida (6,37 g, 47,7 mmol) y la mezcla homogénea de color amarillo se agitó y se calentó a 60 °C. Después de 3 h, la mezcla se enfrió a temperatura ambiente y se concentró al vacío. Se añadió una solución acuosa saturada de NaHCO₃ (300 ml) hasta que el pH se hizo ~8;5. El sólido resultante se recogió por filtración, se lavó con agua (300 ml) y se secó a alto vacío para dar 3-cloroquinolin-4(1H)-ona (A275-1) en forma de un sólido de color amarillo. RMN ¹H (400 MHz, DMSO-d₆) δ 12,28 (1H, s. a.), 8,40 (1H, d, *J* = 6,5 Hz), 8,15 (1H, dd, *J* = 8,2, 1,4 Hz), 7,65-7,73 (1H, m), 7,58-7,63 (1H, m), 7,39 (1H, ddd, *J* = 8,1, 6,9, 1,2 Hz); CLEM (IEN) m/z 180,1 (M+H)[†].

Etapa 2: 4-bromo-3-cloroquinolina (A275-2)

A una suspensión enfriada de 3-cloroquinolin-4(1H)-ona (A275-1) (5,15 g, 28,7 mmol) en DMF (43,4 ml) a 0 °C se añadió gota a gota tribromuro de fósforo (2,77 ml, 29,5 mmol) durante 3 min y después la mezcla se volvió una mezcla homogénea de color naranja. Después de 4 min, se formaron precipitados de color amarillo y la mezcla heterogénea de color amarillo se agitó adicionalmente a 0 °C durante 15 min. Después de 15 min, el baño de refrigeración se retiró y la mezcla heterogénea de color amarillo se agitó a temperatura ambiente. Después de 15 h, la mezcla se vertió en agua enfriada con hielo (300 ml) y se agitó a 0 °C durante 20 min. Después, la mezcla se neutralizó mediante la adición de una solución 2 M de NaOH (50 ml) hasta que el pH fue >9 (papel de pH). El precipitado resultante se recogió por filtración, el sólido se lavó con agua (400 ml) y se secó a alto vacío para dar 4-bromo-3-cloroquinolina (A275-2) en forma de un sólido de color blanquecino. RMN 1 H (400 MHz, DMSO-d₆) 5 8,96 (1H, s), 8,20 (1H, dd, 5 = 8,2, 1,6 Hz), 8,12 (1H, dd, 5 = 8,3, 0,9 Hz), 7,81-7,93 (2H, m); CLEM (IEN) m/z 242,0 [M+H (79Br)] 4 y 243,9 [M+H (81Br)] 4 .

Etapa 3: 3-cloroquinolina-4-carbaldehído (A275-3)

Un matraz se cargó con 4-bromo-3-cloroquinolina (A275-2) (1,00 g, 4,12 mmol) y THF (16,5 ml) en una atmósfera de nitrógeno, y la solución se enfrió a -78 °C. A la mezcla enfriada se añadió n-butilitio (solución 2,5 M en hexano, 1,65 ml, 4,12 mmol) y la mezcla se agitó a -78 °C durante 1 hora. A la mezcla se le añadió gota a gota DMF (1,60 ml, 20,6

mmol) y la mezcla se dejó calentar a temperatura ambiente. Después de 4 h, la mezcla se inactivó con NH₄Cl acuoso saturado (20 ml). La mezcla se repartió entre agua (50 ml) y EtOAc (50 ml). La capa acuosa se extrajo con EtOAc (1 x 50 ml). El extracto orgánico se secó sobre MgSO₄. La solución se filtró y se concentró al vacío para dar el material en bruto en forma de un jarabe de color pardo. El material en bruto se absorbió sobre un lecho de gel de sílice y se purificó por cromatografía a través de una columna de gel de sílice preempaquetada REDISEPTM (80 g), eluyendo con un gradiente de EtOAc del 0 % al 20 % en hexano y se secó a alto vacío para dar 3-cloroquinolina-4-carbaldehído (A275-3) en forma de un sólido de color pardo. RMN 1 H (400 MHz, DMSO-d₆) δ 10,74 (1H, s), 9,10 (1H, s), 8,68-8,73 (1H, m), 8,15 (1H, dd, J = 8,5, 0,9 Hz), 7,79-7,92 (2H, m); CLEM (IEN) m/z 192,1 (M+H) $^+$.

Etapas 4: 1-(3-cloroguinolin-4-il)-2-nitroetanol (A275-4)

A una solución clara de color pardo de 3-cloroquinolina-4-carbaldehído (A275-3) (0,362 g, 1,89 mmol) en THF (1,9 ml) a temperatura ambiente se añadió carbonato potásico (0,078 g, 0,566 mmol) y nitrometano (1,420 ml, 26,4 mmol). La mezcla homogénea de color pardo se agitó a temperatura ambiente. Después de 4 h, la mezcla de reacción se inactivó con agua (50 ml) y se extrajo con EtOAc (2 x 50 ml). El extracto orgánico se lavó con NaCl saturado (1 x 50 ml) y se secó sobre Na₂SO₄. La solución se filtró, se concentró al vacío y se secó a alto vacío para dar 1-(3-cloroquinolin-4-il)-2-nitroetanol (A275-4) en forma de un sólido de color pardo. RMN ¹H (400 MHz, DMSO-d₆) δ 8,88-8,93 (1H, m), 8,73 (1H, dd, *J* = 8,6, 0,8 Hz), 8,08 (1H, dd, *J* = 8,4, 1,0 Hz), 7,82 (1H, ddd, *J* = 8,4, 6,9, 1,5 Hz), 7,72 (1H, ddd, *J* = 8,5, 6,9, 1,4 Hz), 6,91 (1H, dd, *J* = 4,5, 1,0 Hz), 6,26 (1H, ddd, *J* = 10,0, 4,6, 3,6 Hz), 5,03-5,12 (1H, m), 4,94-5,01 (1H, m); CL-EM (IEN) m/z 253,1 (M+H)[†].

Etapa 5: 3-cloro-4-(2-nitro-1-((trietilsilil)oxi)etil)quinolina (A275-5)

A una solución clara de color pardo de 1-(3-cloroquinolin-4-il)-2-nitroetanol (A275-4) (0,423 g, 1,68 mmol) en DMF (4,19 ml) a temperatura ambiente se añadió imidazol (0,342 g, 5,03 mmol) y cloruro de trietilsililo (0,341 ml, 2,01 mmol). La mezcla se agitó a temperatura ambiente. Después de 2 h, la mezcla se inactivó con agua (50 ml) y se extrajo con EtOAc (2 x 50 ml). El extracto orgánico se lavó con LiCl 1 M (1 x 50 ml) y salmuera (1 x 50 ml), y se secó sobre Na₂SO₄. La solución se filtró y se concentró al vacío para dar el material en bruto en forma de un jarabe de color amarillo. El material en bruto se absorbió sobre un lecho de gel de sílice y se purificó por cromatografía a través de una columna de gel de sílice preempaquetada REDISEP™ (40 g), eluyendo con un gradiente de EtOAc del 0 % al 10 % en hexano y se secó a alto vacío para dar 3-cloro-4-(2-nitro-1-((trietilsilil)oxi)etil)quinolina (A275-5). RMN ¹H (400 MHz, DMSO-d₀) δ 8,95 (1H, s), 8,67 (1H, d, *J* = 7,4 Hz), 8,10 (1H, dd, *J* = 8,4, 0,8 Hz), 7,84 (1H, td, *J* = 7,6, 1,4 Hz), 7,71-7,79 (1H, m), 6,38 (1H, dd, *J* = 9,8, 2,5 Hz), 5,14-5,23 (1H, m), 5,03-5,11 (1H, m), 0,65-0,74 (9H, m), 0,32-0,51 (6H, m); CLEM (IEN) m/z 367,1 (M+H)⁺.

Etapa 6: 2-(3-cloroquinolin-4-il)-2-((trietilsilil)oxi)etanamina (A275-6)

35

40

A una solución clara de color amarillo de 3-cloro-4-(2-nitro-1-((trietilsilil)oxi)etil)quinolina (0,511 g, 1,39 mmol) en EtOH (7,96 ml) y agua (1,99 ml) a temperatura ambiente se añadió polvo de hierro (0,778 g, 13,9 mmol) y cloruro de amonio (0,745 g, 13,9 mmol). La mezcla de color pardo oscuro se agitó y se calentó a 60 °C. Después de 4 h, la mezcla se enfrió a temperatura ambiente y se filtró a través de una capa de celite y el lecho se lavó con MeOH (3 x 30 ml). Los filtrados combinados se concentraron al vacío. El residuo se repartió entre EtOAc (100 ml) y agua (50 ml). La mezcla (pH ~4,0) se lavó con NaHCO₃ acuoso saturado (1 x 50 ml), agua (1 x 50 ml) y salmuera (1 x 50 ml), se secó sobre Na₂SO₄ anhidro, se concentró al vacío y se secó a alto vacío para dar 2-(3-cloroquiriolin-4-il)-2-((trietilsilil)oxi)etanamina (A275-6) en forma de un jarabe de color amarillo. RMN 1 H (400 MHz, DMSO-d₆) δ 8,84 (1H, s), 8,72 (1H, d, J = 8,2 Hz), 8,04 (1H, dd, J = 8,4, 1,0 Hz), 7,76 (1H, ddd, J = 8,4, 6,9, 1,4 Hz), 7,64 (1H, ddd, J = 8,5, 7,0, 1,3 Hz), 5,52 (1H, dd, J = 7,6, 5,5 Hz), 3,16 (1H, dd, J = 13,0, 7,9 Hz), 2,88 (1H, dd, J = 13,0, 5,4 Hz), 1,74 (1H, s. a.), 0,71-0,80 (1 H, m), 0,71-0,80 (9H, m), 0,37-0,57 (6H, m); CLEM (IEN) m/z 337,1 (M+H) $^+$

Etapa 7: N-(2-(3-cloroquinolin-4-il)-2-((trietilsilil)oxi)etil)-2,2-dimetilpropan-1-amina (A275)

A una solución clara de color amarillo de 2-(3-cloroquinolin-4-il)-2-((trietilsilil)oxi)etanamina (A275-6) (0,217 g, 0,644 mmol) en DCM (2,15 ml) se añadió trimetilacetaldehído (0,077 ml, 0,71 mmol), AcOH (0,045 ml, 0,77 mmol) y 45 NaBH(OAc)₃ (0,205 g, 0,966 mmol). La mezcla homogénea de color amarillo se agitó a temperatura ambiente. Después de 2 h, la mezcla se inactivó con agua (20 ml) y se neutralizó con NaOH 0,5 M (10 ml) a pH ~9,0. La mezcla de reacción se extrajo con DCM (2 x 50 ml). El extracto orgánico se lavó con NaCl saturado (1 x 50 ml) y se secó sobre Na₂SO₄. La solución se filtró y se concentró al vacío para dar el material en bruto en forma de un jarabe de color amarillo. El material en bruto se absorbió sobre un lecho de gel de sílice y se purificó por cromatografía a 50 través de una columna de gel de sílice preempaquetada REDISEP™ (40 g), eluyendo con un gradiente de EtOAc del 0 % al 20 % en hexano y se secó a alto vacío para dar N-(2-(3-cloroquinolin-4-il)-2-((trietilsilil)oxi)etil)-2,2dimetilpropan-1-amina (A275) en forma de un jarabe incoloro. RMN H (400 MHz, DMSO-d₆) δ 8,84 (1H, s), 8,75 (1H, d, J = 7.2 Hz), 8.04 (1H, dd, J = 8.4, 1.0 Hz), 7.77 (1H, ddd, J = 8.4, 6.9, 1.4 Hz), 7.61-7.68 (1H, m), 5.70 (1H, ddd, J = 8.4, 6.9, 1.4 Hz), 7.70 (1H, ddd, J = 8.4, 6.9, 1.4 Hz), 7.70 (1H, ddd, J = 8.4, 6.9, 1.4 Hz), 7.70 (1H, ddd, J = 8.4, 6.9, 1.4 Hz), 7.70 (1H, ddd, J = 8.4, 6.9, 1.4 Hz), 7.70 (1H, ddd, J = 8.4, 6.9, 1.4 Hz), 7.70 (1H, ddd, J = 8.4, 6.9, 1.4 Hz), 7.70 (1H, ddd, J = 8.4, 6.9, 1.4 Hz), 7.70 (1H, ddd, J = 8.4, 6.9, 1.4 Hz), 7.70 (1H, ddd, J = 8.4, 6.9, 1.4 Hz), 7.70 (1H, ddd, J = 8.4, 6.9, 1.4 Hz)55 dd, J = 7.7, 5.0 Hz), 3.26 (1H, dd, J = 12.6, 8.1 Hz), 2.85 (1H, dd, J = 12.6, 5.0 Hz), 2.23-2.39 (2H, m), 1.72 (1H, s. a.), 0.81 (9H, s), 0.72-0.79 (9H, m), 0.36-0.56 (6H, m); CLEM (IEN) m/z $407.1 \text{ (M+H)}^{\dagger}$.

[Ejemplo de referencia A281]

2-(3,5-dicloropiridin-4-il)-N-((5-metiltetrahidrofurano-2-il)metil)-2-((trietilsilil)oxi)etanamina

A una solución transparente de 5-metiltetrahidrofurano-2-metanol en DCM se añadió peryodinano de Dess-Martin (1,2 equiv.). La mezcla se agitó a temperatura ambiente durante una noche. La mezcla en bruto se añadió directamente a una solución de 2-(3,5-dicloropiridin-4-il)-2-((trietilsilil)oxi)etanamina (1 equiv.) en DCM, seguido de AcOH (1,2 equiv.) y NaBH(OAc)3 (1,5 equiv.). La mezcla de reacción se agitó a temperatura ambiente. Después de 2 h, la mezcla se inactivó con Na₂S₂O₃ acuoso saturado y NaHCO₃ saturado. La mezcla de reacción se extrajo con DCM. El extracto orgánico se secó sobre Na₂SO₄. La solución se filtró y se concentró al vacío para dar el material en bruto. El material en bruto se absorbió sobre un lecho de gel de sílice y se purificó por cromatografía en columna sobre gel de sílice eluyendo con un gradiente de EtOAc del 0 % al 25 % en heptano para proporcionar 2-(3,5-dicloropiridin-4-il)-N-((5-metiltetrahidrofurano-2-il)metil)-2-((trietilsilil)oxi)etanamina (A281) en forma de un jarabe de color amarillo claro, RMN 1 H (300 MHz, DMSO-d₆) δ 8,58 (2H, s), 5,34-5,46 (1H, m), 3,71-3,90 (2H, m), 3,10 (1H, dt, J = 12,5, 8,1 Hz), 2,90 (1H, td, J = 12,1, 6,0 Hz), 2,52-2,67 (2H, m), 1,71-2,07 (3H, m), 1,47-1,64 (1H, m), 1,19-1,38 (1H, m), 1,11 (3H, t, J = 6,3 Hz), 0,77-0,89 (9H, m), 0,40-0,62 (6H, m); CLEM (IEN) m/z 419,1 (M+H) $^+$.

[Ejemplo de referencia A294]

5

10

15

35

40

N-(2-(3,5-dicloropiridin-4-il)-2-((trietilsilil)oxi)etil)-3,3,3-trifluoro-2,2-dimetilpropan-1-amina

$$F_3C$$
OH
Etapa 1

 F_3C
N

Etapa 2

 F_3C
HN

 CI
 CI

Etapa 1: 3,3,3-trifluoro-N-metoxi-N,2,2-trimetilpropanamida (A294-1)

A una solución transparente de ácido 3,3,3-trifluoro-2,2-dimetilpropiónico (5,000 g, 32,0 mmol) en MeCN (22,88 ml) se añadió trietilamina (9,82 ml, 70,5 mmol), seguido de HATU (12,79 g, 33,6 mmol) y la mezcla se agitó a temperatura ambiente. Después de 15 min, a la mezcla transparente oscura se añadió clorhidrato de N,O-dimetilhidroxilamina (3,44 g, 35,2 mmol) y la mezcla se agitó a temperatura ambiente. Después de 18 h, la mezcla de reacción se diluyó con EtOAc (100 ml) y se lavó con HCl 1 N (2 x 100 ml) y NaCl sat. (5 x 100 ml) y se secó sobre Na₂SO₄. La solución se filtró y se concentró al vacío para dar el material en bruto en forma de un sólido de color naranja. El sólido de color naranja se absorbió sobre un lecho de gel de sílice y se purificó por cromatografía sobre gel de sílice eluyendo con un gradiente de EtOAc del 0 % al 25 % en heptano para proporcionar 3,3,3-trifluoro-N-metoxi-N,2,2-trimetilpropanamida (5,0503 g, 25,4 mmol, rendimiento 79 %) en forma de un líquido de color amarillo. RMN ¹H (300 MHz, CDCl₃) δ 3,71 (3H, s), 3,22 (3H, s), 1,51 (6H, d, *J* = 0,7 Hz); CLEM (IEN) m/z 200,1 (M+H)[†].

30 Etapa 2: 3,3,3-trifluoro-2,2-dimetilpropanal

En un matraz de fondo redondo de tres bocas y 250 ml equipado con una boca de ganso para nitrógeno y para un termopar se añadió hidruro de litio y aluminio, solución 1 M en Et_2O (25,3 ml, 25,3 mmol) a 0 °C. A la mezcla enfriada se añadió gota a gota una solución de 3,3,3-trifluoro-N-metoxi-N,2,2-trimetilpropanamida (A294-1) (5,0325 g, 25,3 mmol) en Et_2O (47,7 ml) durante 35 min a 0 °C. Después de la finalización de la adición, la mezcla de reacción se agitó adicionalmente a 0 °C. Después de 2 h, la mezcla se inactivó cuidadosamente a 0 °C con agua (0,96 ml), NaOH (15 %, 0,96 ml) y agua (2,88 ml) y la mezcla se agitó vigorosamente durante 40 min. La mezcla de reacción se diluyó con Et_2O (50 ml), se trató con Na_2SO_4 y después se filtró a través de una capa de Celite, se lavó con Et_2O (100 ml). El filtrado se concentró al vacío para proporcionar 3,3,3-trifluoro-2,2-dimetilpropanal (A294-2) (3,2304 g, 23,06 mmol, rendimiento 91 %) en forma de un líquido de color amarillo. RMN 1H (400 MHz, CDCl₃) δ 9,69 (1H,d, J = 1,4 Hz), 1,31 (6H, s).

Etapa 3: N-(2-(3,5-dicloropiridin-4-il)-2-((trietilsilil)oxi)etil)-3,3,3-trifluoro-2,2- dimetilpropan-1-amina (A294)

ES 2 673 279 T3

A una mezcla transparente de color amarillo de 2-(3,5-dicloropiridin-4-il)-2-((trietilsilil)oxi)etanamina (3,57 g, 11,11 mmol) en DCM (37,0 ml) se añadió 3,3,3-trifluoro-2,2-dimetilpropanal (11,11 mmol) en DCM, seguido de AcOH (0,770 ml, 13,33 mmol) y NaBH(OAc)₃ (3,53 g, 16,67 mmol). La mezcla heterogénea de color amarillo se agitó a temperatura ambiente. Después de 8 h, la mezcla se inactivó con NaHCO₃ saturado (100 ml). La mezcla de reacción se extrajo con DCM (2 x 100 ml). El extracto orgánico se secó sobre Na₂SO₄. La solución se filtró y se concentró al vacío para dar el material en bruto en forma de un jarabe de color naranja. El material en bruto se absorbió sobre un lecho de gel de sílice y se purificó por cromatografía en columna sobre gel de sílice eluyendo con un gradiente de EtOAc del 0 % al 20 % en heptano para proporcionar N-(2-(3,5-dicloropiridin-4-il)-2-((trietilsilil)oxi)etil)-3,3,3-trifluoro-2,2-dimetilpro pan-1-amina (A294) (3,4393 g, 7,72 mmol, rendimiento 69,5 %) en forma de un aceite incoloro. RMN 1 H (400 MHz, CDCl₃) δ 8,44 (2H, s), 5,48 (1H, dd, J = 7,7, 4,4 Hz), 3,27 (1H, dd, J = 12,3, 8,4 Hz), 2,58-2,83 (3H, m), 1,25-1,44 (1H, m), 1,10 (6H, s), 0,85-0,94 (9H, m), 0,47-0,64 (6H, m); CLEM (IEN) m/z 445,1 (M+H) $^+$.

5

10

Las siguientes aminas secundarias se prepararon usando un procedimiento similar a los ejemplos de referencia descritos anteriormente:

$$F \downarrow H \stackrel{\circ}{\downarrow} \stackrel{\circ}{\downarrow$$

ejemplo de referencia	estructura	ejemplo de referencia	estructura
A185	D D	A192	CI CI H O-Si
A186	NH OH CC	A193	CI CI O Si

ejemplo de referencia	estructura	ejemplo de referencia	estructura
A187	CI CI HO HN	A194	F F NHCI F
A188	O'SI H N Br	A195	
A189	SG CC CC PHC CC C	A196	Si O CI
A190	Si. _O F	A197	
A191	C C C C C C C C C C C C C C C C C C C	A198	CI NH O CI
A199	мн С С С С С С С С С С С С С С С С С С С	A206	
A200	C C O NH O	A207	O CHO SHO
A201		A208	C C C C C C C C C C C C C C C C C C C

ejemplo de referencia	estructura	ejemplo de referencia	estructura
A202	CIH O O	A209	F CI CI CI
A203	CI NH O Si	A210	F F F F S C C S S C C S S C C S S C C S S C C S S C C S S C C S C C S C C S C C C S C
A204		A211	CI N CI Si
A205		A212	S H S H
A213 ii	NH CI	A220	CCI CCI
A214		A221	
A215		A222	Si O CI N HF
A216	CI NH O Si	A223	

ejemplo de referencia	estructura	ejemplo de referencia	estructura
A217	CI— HCI Si N	A224	NH F OCI
A218	NH CI	A225	NH F
A219	CI NH Si CI	A226	CI F Si CI
A227	Si Ci	A234	O Si
A228	F CI F O CI	A235	L C O O O O O
A229	NH F	A236	O Si CI N F
A230	NH F	A237	N CI O SI
A231	NH F	A238	N CI O Si Fl N

eiemplo de	T	eiemplo de	1
ejemplo de referencia	estructura	ejemplo de referencia	estructura
A232		A239	N CI O Si
A233		A240	N CI O SI
A241		A248	
A242		A249	
A243	CI NH O G	A250	Si O N CI
A244		A251	CI Si-O NHCI
A245	CI— HCI SÍ N	A252	Si O CI HCI
A246		A253	Si-O N E

ejemplo de referencia	estructura	ejemplo de referencia	estructura
A247	Si O NH CI	A254	CI O NH CI NH
A255	CI ^{H N}	A262	CI F N N Si
A256	Si- O N F CI F F	A263	Si o CI
A257	Si-O N H F	A264	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
A258	Si N N N N N N N N N N N N N N N N N N N	A265	CI O HN
A259	-Si- F F CI HCI	A266	
A260	Si- O N Ci HCI	A267	CI————————————————————————————————————
A261	Si O N CI F CI F	A268	Si-O N HCI

ejemplo de referencia	estructura	ejemplo de referencia	estructura
A269		A276	N CI O S
: A270		A277	CCI CCI H N O Si
A271		A278	CI CI O SI
A272		A279	
A273		A280	F F GH CI
A274		A281	
A275		A282	CI CI O O O O O O O O O O O O O O O O O
A283		A290	CIH CI O-si

ejemplo de referencia	estructura	ejemplo de referencia	estructura
A284	CI CI Si	A291	CI CI O Si
A285	CI T N O Si	A292	ÇI O SI
A286	F CI CI O Si	A293	CI H N O Si
A287	CI CI O Si	A294	F CI CI O Si
A288	O CI CI	A295	CI H O Si
: A289		A296	CI O-Si
A297	CI CI H O Si	A304	F H CI
A298	CI CI Si	A305	

ejemplo de referencia	estructura	ejemplo de referencia	estructura
A299	GH CI F F Si	A306	F CI CI Si
A300		A307	
A301		A308	
A302	GH CI	A309	CI CI Si
A303		A310	qi cı
A311	CI CI O Si	A318	O Si
A312	E CI CI O Si		
A313	N CI O Si		

ejemplo de referencia	estructura	ejemplo de referencia	estructura
A314	N CI O Si F		
A315	Si- O N H F		
A316	Si- O N F		
A317	Si O N H F		

[Ejemplo de referencia B1]

5

10

15

Etapa 1: 2-(3,5-dicloropiridin-4-il)etanol (B1-1)

A una solución de 3,5-dicloropiridina (4,0 g, 27,0 mmol) en THF (70 ml) se añadió LDA (1,8 M en THF/heptano/etilbenceno, 22,0 ml, 39,6 mmol) a -78 °C y la mezcla se agitó a la misma temperatura durante 2 h y después se añadió óxido de etileno (1,2 M en THF, 25 ml, 30,0 mmol). La mezcla de reacción se dejó calentar a temperatura ambiente gradualmente y se agitó durante 1 h a temperatura ambiente. La mezcla de reacción se inactivó añadiendo una solución acuosa saturada de NH₄Cl y se extrajo con EtOAc. La capa orgánica se lavó con salmuera (2 veces) y se secó sobre MgSO₄. Después haber retirado el disolvente, el residuo se purificó por cromatografía en columna sobre gel de sílice para dar el compuesto B1-1 (3,1 g, 60 %) en forma de un sólido de color amarillo.

Etapa 2: 4-(2-azidoetil)-3,5-dicloropiridina (B1-2)

A una solución del compuesto B1-1 (3,1 g, 16,2 mmol) en THF (60 ml) se añadieron DIAD (6,3 ml, 32,0 mmol), trifenilfosfina (8,52 g, 32,5 mmol) y DPPA (6,98 ml, 32,5 mmol) a 0 °C. La mezcla de reacción se dejó calentar a temperatura ambiente gradualmente y se agitó a temperatura ambiente durante 4,5 h. La mezcla de reacción se inactivó añadiendo agua y se extrajo con EtOAc. La capa orgánica se lavó con salmuera (x 2) y se secó sobre MgSO₄. Después haber retirado el disolvente, el residuo se purificó por cromatografía en columna sobre gel de sílice para dar el compuesto B1-2 (2,4 g, 68 %) en forma de un aceite de color amarillo.

Etapa 3: 2-(3,5-dicloropiridin-4-il)etanamina (B1-3)

A una solución del compuesto B1-2 (2,4 g, 11,1 mmol) en THF (25 ml) se añadió trifenilfosfina (2,9 g, 22,1 mmol) a 0 °C. La mezcla se agitó a temperatura ambiente durante 2 h y después se añadió agua (2,5 ml). La mezcla de

reacción se dejó calentar a temperatura ambiente gradualmente y se agitó a temperatura ambiente durante 22 h. La mezcla de reacción se inactivó añadiendo HCI acuoso 2 M (10 ml) y se diluyó con EtOAc. La capa acuosa se lavó con EtOAc x 3 y después se basificó con NaOH acuoso 2 M a pH 12. La capa acuosa se extrajo con EtOAc, se lavó con salmuera (x 2) y se secó sobre MgSO₄. El secado de la solución a alto vacío produjo el compuesto B1-3 (1,9 g, 90 %) en forma de un sólido de color blanco.

Etapa 4: 2-(3,5-dicloropiridin-4-il)-N-(4-fluorobencil)etanamina (B1)

A una solución del compuesto B1-3 (2,9 g, 15,2 mmol) en MeOH (30 ml) se añadió 4-fluorobenzaldehído (1,89 g, 15,2 mmol) y la mezcla se agitó a temperatura ambiente durante 3 h. La mezcla de reacción se enfrió a 0 °C y se añadió gradualmente NaBH₄ (1,16 g, 30,4 mmol). La mezcla de reacción se dejó calentar a temperatura ambiente y se agitó a temperatura ambiente durante 4 h. La mezcla de reacción se inactivó con agua y se extrajo con EtOAc. La capa orgánica se lavó con salmuera x 2 y se secó sobre MgSO₄. Después haber retirado el disolvente, el residuo se purificó por cromatografía en columna sobre gel de sílice para dar el compuesto B1 (3,4 g, 75 %) en forma de un sólido de color amarillo pálido.

[Ejemplo de referencia B2]

5

10

15

20

25

30

35

OH CI

$$O_2N$$
 $Etapa\ 1$
 O_2N
 $Etapa\ 2$
 $Etapa\ 2$
 $Etapa\ 2$
 $Etapa\ 3$
 $Etapa\ 4$

Etapa 1: 1,3-dicloro-5-fluoro-2-(2-nitrovinil)benceno (B2-1)

A una solución agitada del compuesto A31-1 (1,3 g, 5,1 mmol) en dioxano (10 ml) se añadió HCl 6 M (20 ml) a temperatura ambiente y la mezcla se agitó a la temperatura de reflujo durante una noche. La mezcla de reacción se neutralizó con una solución al 10 % de NaOH y se extrajo con EtOAc (2 x 30 ml). Las capas orgánicas combinadas se lavaron con agua (50 ml) y salmuera (50 ml), se secaron sobre Na₂SO₄ anhidro y se concentraron a presión reducida. El residuo se purificó por cromatografía en columna (gel de sílice, EtOAc al 10 %/hexano como eluyente) para proporcionar el compuesto B2-1 (0,22 g, 18 %) en forma de un aceite incoloro.

Etapa 2: 2-(2,6-dicloro-4-fluorofenil)etanamina (B2-2)

A una solución agitada de LiBH₄ (3,0 M, 4,2 ml, 12,5 mmol) en THF (5 ml) se añadió gota a gota TMS-Cl (3,2 ml, 25,2 mmol) a temperatura ambiente y la mezcla se agitó a temperatura ambiente durante 30 min. Se burbujeó gas de N₂ a través de la mezcla de reacción durante 5 min para retirar el trimetilsilano restante que se había formado. Se añadió gota a gota una solución del compuesto B2-1 (0,22 g, 3,1 mmol) en THF (2 ml) a la mezcla a temperatura ambiente y más tarde a reflujo durante 1 h. La mezcla de reacción se enfrió a 0 °C y se inactivó cuidadosamente con MeOH (10 ml). El disolvente se evaporó a presión reducida y el residuo se repartió entre KOH al 20 % (10 ml) y DCM (20 ml). La capa orgánica se secó sobre Na₂SO₄ anhidro y se concentró a presión reducida. El residuo se purificó por cromatografía en columna (gel de sílice, EtOAc al 20 %/hexano como eluyente) para dar el compuesto B2-2 (0,21 g, 99 %) en forma de un aceite incoloro.

Etapa 3: 2-(2,6-dicloro-4-fluorofenil)-N-(3,5-difluorobencil)etanamina (B2)

El compuesto B2 (0,21 g, 69%) se obtuvo en forma de una goma incolora a partir de la reacción del compuesto B2-2 (0,19 g, 0,91 mmol), 3,5-difluorobenzaldehído (0,1 ml, 0,91 mmol) y NaBH₄ (70 mg, 1,8 mmol) en MeOH (5 ml) usando un procedimiento similar al descrito en el ejemplo de referencia B1, etapa 4: RMN 1 H (CDCl₃, 300 MHz): δ 7,13-7,05 (m, 2H), 6,87- 6,59 (m, 3H), 3,83 (s, 2H), 3,12-2,80 (m, 4H).

[Ejemplo de referencia B3]

40 Etapa 1: 2-(3,5-dicloropiridin-4-il)acetaldehído (B3-1)

El compuesto B1-1 (1,0 g, 5,21 mmol) se disolvió en DCM (26,0 ml) y se añadió peryodinano de Dess-Martin (2,43 g, 5,73 mmol). La solución se agitó durante 1 h. La mezcla de reacción se inactivó con 50 ml de $Na_2S_2O_3$ al 5 %, la

capa orgánica se lavó con NaHCO $_3$ saturado, se secó con Na $_2$ SO $_4$ anhidro y se concentró. El producto se purificó por cromatografía en columna sobre gel de sílice (columna de 40 g) usando EtOAc al 0-100 % en heptano para proporcionar el compuesto B3-1 (750 mg, 3,95 mmol, rendimiento 76 %). CL/EM (IEN+) m/z = 189,9 (M+H) † .

Etapa 2: N-(2-(3,5-dicloropiridin-4-il)etil)-2,2-dimetilpropan-1-amina (B3)

El compuesto B3-1 (0,65 g, 3,42 mmol) se disolvió en DCM (17 ml) en una atmósfera inerte, después se añadió 2,2-dimetilpropan-1-amina (0,605 ml, 5,13 mmol), seguido de AcOH glacial (0,198 ml, 3,42 mmol). La solución se agitó durante 15 min y después se añadió NaBH(OAc)3 (1,450 g, 6,84 mmol). La solución se inactivó con 15 ml de NaHCO₃ saturado y se agitó durante 45 min. La capa orgánica se separó y se concentró. El producto se purificó por cromatografía en columna sobre gel de sílice (columna de 40 g) usando EtOAc al 0-100 % en heptano para proporcionar el compuesto B3 (775 mg, 2,97 mmol, rendimiento 87 %). CL/EM (IEN+) m/z = 261,0 (M+H)⁺.

[Ejemplo de referencia B13]

Etapa 1: 1-(3,5-dicloropiridin-4-il)-2-((3,5-difluorobencil)amino)etanol (B13-1)

A una solución agitada de 2-(3,5-dicloropiridin-4-il)-N-(3,5-difluorobencil)-2-((trietilsilil)oxi)etanamina (0,2 g, 0,44 mmol) en THF (5 ml) se añadió TBAF (1,0 M en THF, 0,9 ml, 0,88 mmol) gota a gota a 0 °C y la mezcla se dejó calentar de 0 °C a temperatura ambiente mientras se agitaba durante 2 h. La mezcla de reacción se inactivó con NH₄Cl acuoso saturado y se extrajo con EtOAc (2x20 ml). Las capas orgánicas combinadas se lavaron con agua (20 ml) y salmuera (20 ml) y se secaron sobre Na₂SO₄ anhidro. El disolvente se evaporó a presión reducida para proporcionar el compuesto B13-1 (0,2 g, en bruto) en forma de una goma de color pardo.

20 Etapa 2: (2-(3,5-dicloropiridin-4-il)-2-hidroxietil)(3,5-difluorobencil)carbamato de terc-butilo (B13-2)

A una solución agitada del compuesto B13-1 (0,2 g, 0,6 mmol) en DCM/agua (4:1, 5 ml) se añadieron NaHCO₃ (0,1 g, 1,2 mmol) y (Boc)₂O (0,19 g, 0,9 mmol) en DCM (2 ml) a 0 °C. La mezcla se agitó a temperatura ambiente durante 2 h. La mezcla de reacción se inactivó con agua (50 ml) y se extrajo con DCM (2 x30 ml). Las capas orgánicas combinadas se lavaron con agua (50 ml) y salmuera (50 ml), se secaron sobre Na₂SO₄ anhidro y se concentraron a presión reducida. El residuo se purificó por cromatografía en columna (gel de sílice, EtOAc al 20%/hexano como eluyente) para proporcionar el compuesto B13-2 (0,17 g, 65%) en forma de un aceite incoloro.

Etapa 3: (2-(3,5-dicloropiridin-4-il)-2-metoxietil)(3,5-difluorobencil)carbamato de terc-butilo (B13-3)

A una solución agitada del compuesto B13-2 (0,1 g, 0,2 mmol) en THF (5 ml) se añadió NaH (14 mg, 0,5 mmol) seguido de la adición gota a gota de MeI (44 μl, 0,7 mmol) a 0 °C. La mezcla se agitó a temperatura ambiente durante 2 h. La mezcla de reacción se inactivó con agua (50 ml) y se extrajo con EtOAc (2 x 20 ml). Las capas orgánicas combinadas se lavaron con agua (30 ml) y salmuera (30 ml), se secaron sobre Na₂SO₄ anhidro y se concentraron a presión reducida. El residuo se purificó por cromatografía en columna (gel de sílice, EtOAc al 10 %/hexano como eluyente) para proporcionar el compuesto B13-3 (0,11 g, 99%) en forma de un aceite incoloro.

Etapa 4: terc-butil 2-(3,5-dicloropiridin-4-il)-N-(3,5-difluorobencil)-2-metoxietanamina (B13)

A una solución agitada del compuesto B13-3 (0,28 g, 0,6 mmol) en dioxano (5 ml) se añadió HCl 4 M (en dioxano, 1,9 ml, 7,4 mmol) a temperatura ambiente y la mezcla se agitó durante una noche. El disolvente se evaporó a presión reducida para proporcionar el compuesto B13-3 (0,1 g, 48 %) en forma de un sólido de color blanco. RMN ¹H (CDCl₃, 300 MHz): δ 8,45 (s, 2H), 6,90-6,63 (m, 3H), 5,14 (dd, *J* = 8,9, 4,1 Hz, 1H), 3,89-3,77 (m, 2H), 3,30-3,23 (m, 4H), 2,78 (dd, *J* = 12,6, 4,1 Hz, 1H).

40

15

25

30

[Ejemplo de referencia B15]

Etapa 1: 3,5-dicloro-4-yodopiridina (B15-1)

5

10

15

30

A una solución agitada de 3,5-dicloropiridina (3,0 g, 20,4 mmol) en THF (15 ml) se añadió LDA (solución 2,0 M en THF/heptano/etilbenceno, 12,14 ml, 24,4 mmol) gota a gota a 0 °C y la mezcla se agitó a la misma temperatura durante 1 h. Se añadió gota a gota una solución de yodo (2,7 g, 21,4 mmol) en THF (10 ml) a la mezcla anterior. Después de que se completara la adición, la mezcla se agitó a la misma temperatura durante 1 h. La mezcla de reacción se inactivó con agua (40 ml) y se extrajo con EtOAc (4 x 50 ml). Las capas orgánicas combinadas se lavaron con salmuera (50 ml), se secaron sobre Na₂SO₄ anhidro y se concentraron a presión reducida para proporcionar el compuesto B15-1 (3,2 g, 57 %) en forma de una goma de color amarillo.

Etapa 2: 2-(3,5-dicloropiridin-4-il)-2,2-difluoroacetato de etilo (B15-2)

La mezcla del compuesto B15-1 (530 mg, 0,83 mmol), 2-bromo-2,2-difluoroacetato de etilo (0,12 ml, 1,38 mmol) y Cu (800 mg, 12,5 mmol) en DMSO (10 ml) se calentó a 55 °C durante 16 h. La mezcla de reacción se enfrió a temperatura ambiente y se inactivó con una solución saturada de NH₄Cl (100 ml) y se extrajo con EtOAc (2 x 50 ml). Las capas orgánicas combinadas se lavaron con agua (50 ml) y salmuera (50 ml), se secaron sobre Na₂SO₄ anhidro y se concentraron a presión reducida. El residuo se purificó por cromatografía en columna (gel de sílice, EtOAc al 30 %/hexano como eluyente) para proporcionar el compuesto B15-2 (315 mg, 60 %) en forma de una goma de color pardo amarillento.

Etapa 3: 2-(3,5-dicloropiridin-4-il)-2,2-difluoroetanol (B15-3)

A una solución agitada del compuesto B15-2 (315 mg, 1,16 mmol) en EtOH (10 ml) se añadió en porciones NaBH₄ sólido (16,2 mg, 1,74 mmol) a 0 °C. La mezcla se calentó a temperatura ambiente y se agitó a la misma temperatura durante 2 h. La mezcla de reacción se inactivó con agua (30 ml) y se extrajo con EtOAc (3 x 30 ml). Las capas orgánicas combinadas se lavaron con salmuera (2x30 ml), se secaron sobre Na₂SO₄ anhidro y se concentraron a presión reducida. El residuo se purificó por cromatografía en columna (gel de sílice, EtOAc al 55%/hexano como eluyente) para proporcionar el compuesto B15-3 (180 mg, 44%) en forma de una goma incolora.

Etapa 4: 4-(2-azido-1,1-difluoroetil)-3,5-dicloropiridina (B15-4)

A una solución agitada del compuesto B15-3 (140 mg, 0,72 mmol) en THF (5 ml) se añadieron DIAD (0,31 ml, 1,60 mmol), DPPA (0,34 ml, 1,60 mmol) y PPh₃ (420 mg, 1,60 mmol) a 0 °C. La mezcla se calentó a temperatura ambiente y se agitó a la misma temperatura durante 16 h. La mezcla de reacción se inactivó con agua (10 ml) y se extrajo con EtOAc (2 x 20 ml). Las capas orgánicas combinadas se lavaron con salmuera (20 ml), se secaron sobre Na₂SO₄ anhidro y se concentraron a presión reducida. El residuo se purificó por cromatografía en columna (gel de sílice, EtOAc al 20%/hexano como eluyente) para proporcionar el compuesto B15-4 (80 mg, 55%) en forma de una goma de color amarillo.

Etapa 5: 2-(3,5-dicloropiridin-4-il)-2,2-difluoroetanamina (B15-5)

A una solución agitada del compuesto B15-4 (80 mg, 0,31 mmol) en EtOAc (2 ml) se añadieron (CH₃)₃P (0,47 ml, 0,47 mmol) y H₂O (0,5 ml). La mezcla se agitó a temperatura ambiente durante 16 h. La mezcla de reacción se diluyó con EtOAc (10 ml) y se lavó con agua (10 ml). La capa orgánica se lavó con salmuera (10 ml), se secó sobre Na₂SO₄ anhidro y se concentró a presión reducida para proporcionar el compuesto B15-5 (60 mg) en forma de una goma de color amarillo. El residuo en bruto se usó para la siguiente etapa sin purificación.

40 Etapa 6: 2-(3,5-dicloropiridin-4-il)-N-(3,5-difluorobencil)-2,2-difluoroetanamina (B15)

Una mezcla del compuesto B15-5 (113 mg, 0,49 mmol), 3,5-difluorobenzaldehído (70 mg, 0,49 mmol) y NaBH(OAc)₃ (316 mg, 1,49 mmol) en DCM se agitó a temperatura ambiente durante 16 h. La mezcla de reacción se inactivó con agua (20 ml) y se extrajo con DCM (2 x 25 ml). Las capas orgánicas combinadas se lavaron con agua (50 ml) y salmuera (50 ml), se secaron sobre Na₂SO₄ anhidro y se concentraron a presión reducida. El residuo se purificó por

cromatografía en columna (gel de sílice, EtOAc al 20%/hexano como eluyente) para proporcionar el compuesto B15 (66 mg, 38%) en forma de un sólido de color blanco. RMN 1 H (CDCl₃, 300 MHz): δ 8,54-8,53 (m, 2H), 6,73-6,66 (m, 3H), 3,86 (s, 2H), 3,36-3,45 (t, J = 28,7 Hz, 2H); CLEM (APCI): 353 (M+H) $^+$.

[Ejemplo de referencia B19]

5

10

15

20

25

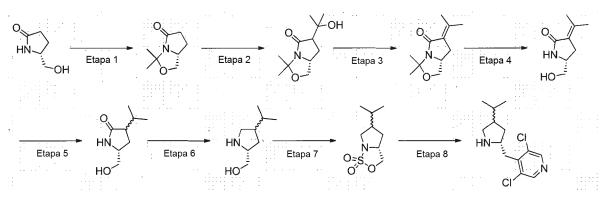
30

35

Etapa 1: (E)-4-cloro-3-(2-nitrovinil)-1H-indol (B19-1)

Una mezcla de 4-cloroindolo-3-carbaldehído (314 mg, 1,75 mmol) y acetato amónico (404 mg, 5,25 mmol) en nitrometano (6 ml) se agitó a 100 °C durante 20 min. La mezcla de reacción se enfrió, se diluyó con agua y se extrajo con EtOAc (2 x 40 ml). Las capas orgánicas combinadas se lavaron con salmuera, se secaron sobre MgSO₄ y se concentraron a presión reducida. El material en bruto se purificó por cromatografía en columna de gel de sílice (50-100 % EtOAc/heptano) para dar el compuesto B19-1 (224 mg, 58 %) en forma de un sólido de color naranja.

Etapa 2: 2-(4-cloro-1H-indol-3-il)etanamina (B19-2)


Una solución del compuesto B19-1 (1,46 g, 6,56 mmol) en THF (25 ml) se añadió a una suspensión agitada de hidruro de litio y aluminio (995 mg, 26,2 mmol) en THF (50 ml) a temperatura ambiente. La mezcla se calentó a reflujo durante 2 h y se dejó enfriar a temperatura ambiente. La reacción se interrumpió mediante la adición gota a gota de agua (1,3 ml), seguido de NaOH ac. al 15 % (1,3 ml), seguido de nuevo por agua (3,25 ml). Después de agitar vigorosamente durante 14 h la mezcla se filtró a través de Celite y el filtrado se concentró. El residuo se disolvió con EtOAc y después se extrajo con HCl ac. 2 N (2 x 20 ml). Las capas acuosas combinadas se basificaron añadiendo NaOH ac. 5 N y se extrajo con EtOAc (2 x 40 ml). Las capas orgánicas combinadas se lavaron con salmuera, se secaron sobre MgSO₄, se filtraron y se concentraron a presión reducida para dar el compuesto B19-2 (1,02 g, 80 %) en forma de un jarabe de color rojo oscuro.

Etapa 3: (1R,3r,5S)-N-(2-(4-cloro-1H-indol-3-il)etil)-6,6-dimetilbiciclo[3,1,0]hexan-3-amina (B19)

El compuesto B19 (22 mg, 14 %) se obtuvo a partir de la reacción del compuesto B19-2 (100 mg, 0,514 mmol), el compuesto C22-5 (128 mg, 1,03 mmol), NaBH(OAc)3 (326 mg, 1,54 mmol) y AcOH (0,108 ml, 2,05 mmol) en DCM (2 ml) usando un procedimiento similar al descrito en el ejemplo de referencia A31, etapa 4, RMN 1 H (CDCl₃, 400 MHz) δ : 8,09 (1H, s. a.), 7,26-7,22 (1H, m), 7,07-7,05 (3H, m), 3,57-3,47 (1H, m), 3,13 (2H, t,J= 7,3 Hz), 2,89 (2H, t,J= 7,3 Hz), 2,17-2,10 (2H, m), 1,03-0,93 (10H, m).

[Ejemplo de referencia B50]

3,5-dicloro-4-(((2R)-4-isopropilpirrolidin-2-il)metil)piridina (B50)

Etapa 1: (R)-3,3-dimetiltetrahidropirrolo[1,2-c]oxazol-5(3H)-ona

La reacción se equipó con un Dean-Stark, después se añadió 2,2-dimetoxipropano (17,09 ml, 139 mmol) a una mezcla agitada de (R)-(-)-5-(hidroximetil)-2-pirrolidinona (5,353 g, 46,5 mmol) y monohidrato del ácido p-toluenosulfónico (0,126 g, 0,662 mmol) en tolueno (100 ml). La mezcla de reacción se calentó a reflujo durante 1,5 h y se dejó en agitación a temperatura ambiente durante una noche. El disolvente se evaporó para proporcionar (R)-3,3-dimetiltetrahidropirrolo[1,2-c]oxazol-5(3H)-ona (7,22 g, rendimiento 100 %) en forma de un sólido de color amarillo claro. RMN 1 H (400 MHz, DMSO-d₆) δ 4,18 (tt, J = 8,8, 6,2 Hz, 1H), 4,00 (dd, J = 8,1, 5,8 Hz, 1H), 3,40 (t, J

= 8,6 Hz, 1H), 2,69 (ddd, J = 16,4, 12,1, 8,6 Hz, 1H), 2,33 (dd, J = 16,3, 9,1 Hz, 1H), 2,02-2,11 (m, 1H), 1,73 (tt, J = 12,1, 8,9 Hz, 1H), 1,53 (s, 3H), 1,33 (s, 3H). m/z (IEN,+ve) 156 (M+H).

Etapa 2: (7aR)-6-(2-hidroxipropan-2-il)-3,3-dimetiltetrahidropirrolo[1,2-c]oxazol-5(3H)-ona

A una solución de (R)-3,3-dimetiltetrahidropirrolo[1,2-c]oxazol-5(3H)-ona (6,68 g, 43,0 mmol) en THF (100 ml) enfriado a -78 °C, se añadió diisopropilamida de litio, solución 2,0 M en THF/heptano/etilbenceno (43,0 ml, 86 mmol) y se agitó a -78 °C durante 1 h. La mezcla resultante se trató con acetona, 99,8 %, extra seca, Acroseal (6,32 ml, 86 mmol) a -78 °C y después se dejó calentar a temperatura ambiente durante 16 h. La reacción se interrumpió con NH₄Cl sat. y se extrajo con EtOAc (2 x 200 ml). Los extractos combinados se lavaron con salmuera, se secaron sobre Na₂SO₄, se filtraron y se concentraron para proporcionar (7aR)-6-(2-hidroxipropan-2-il)-3,3-dimetiltetrahidropirrolo[1,2-c]oxazol-5(3*H*)-ona (6,088 g, 28,5 mmol, rendimiento 66,3 %) en forma de un aceite de color amarillo. RMN ¹H (400 MHz, DMSO-d₆) δ 4,50 (s, 1H), 4,07 - 4,18 (m, 1H), 3,98 (dd, *J* = 8,0, 5,7 Hz, 1H), 3,32 - 3,35 (m, 1H), 2,50 - 2,56 (m, 1H), 2,22 (ddd, *J* = 13,4, 7,2, 2,0 Hz, 1H), 1,83 (ddd, *J* = 13,3, 10,4, 7,6 Hz, 1H), 1,54 (s, 3H), 1,32 (s, 3H), 1,21 (s, 3H), 1,14 (s, 3H). m/z (IEN, +ve) 214 (M+H).

Etapa 3: (R)-3,3-dimetil-6-(propan-2-ilideno)tetrahidropirrolo[1,2-c]oxazol-5(3H)-ona

A una solución de (7aR)-6-(2-hidroxipropan-2-il)-3,3-dimetiltetrahidropirrolo -[1,2-c]oxazol-5(3H)-ona (5,06 g, 23,73 mmol) en DCM (50 ml) a temperatura ambiente se añadió cloruro de metanosulfonilo (2,75 ml, 35,6 mmol), seguido de trietilamina (16,50 ml, 119 mmol) y después se calentó a 55 °C durante 1 h. La mezcla resultante se trató con más cantidad de cloruro de metanosulfonilo (2,75 ml, 35,6 mmol) y se calentó durante 1 h más. La mezcla de reacción se dejó enfriar a temperatura ambiente, se inactivó con agua (50 ml) y se extrajo con DCM (2 x 100 ml). Los extractos combinados se lavaron con salmuera, se secaron sobre MgSO₄, se filtraron y se concentraron para proporcionar (R)-3,3-dimetil-6-(propan-2-ilideno)tetrahidropirrolo[1,2-c]oxazol-5(3H)-ona en bruto en forma de un aceite de color pardo, que se usó en la siguiente etapa sin purificación, m/z (IEN, +ve) 196 (M+H).

Etapa 4: (R)-5-(hidroximetil)-3-(propan-2-ilideno)pirrolidin-2-ona

A una solución de (R)-3,3-dimetil-6-(propan-2-ilideno)tetrahidropirrolo[1,2-c]oxazol-5(3H)-ona (4,63 g, 23,73 mmol) en MeOH (50 ml) a temperatura ambiente se añadió monohidrato del ácido *p*-toluenosulfónico (0,451 g, 2,373 mmol) y después se calentó a 60 °C durante 45 min. El disolvente se evaporó y el material en bruto se absorbió sobre un lecho de gel de sílice y se purificó por cromatografía a través de una columna de gel de sílice preempaquetada REDISEP™ (80 g), eluyendo con un gradiente de MeOH del 0 % al 10 % en DCM para dar (R)-5-(hidroximetil)-3-(propan-2-ilideno)pirrolidin-2-ona (2,223 g, 14,32 mmol, rendimiento 60,4 %) en forma de un sólido de color amarillo.

RMN ¹H (400 MHz, CDCl₃) δ 6,60 (s a, 1H), 3,74 (td, *J* = 8,0, 3,9 Hz, 1H), 3,67 (dd, *J* = 11,1,3,6 Hz, 1H), 3,44 (dd, *J*= 11,1, 7,3 Hz, 1H), 2,75-2,86 (m, 1H), 2,81 (dd, *J* = 16,5, 8,7 Hz, 1H), 2,33-2,43 (m, 1H), 2,23 (s, 3H), 1,77 (s, 3H). m/z (IEN, +ve) 156 (M+H).

Etapa 5: (5R)-5-(hidroximetil)-3-isopropilpirolidin-2-ona

Una mezcla de (R)-5-(hidroximetil)-3-(propan-2-ilideno)pirrolidin-2-ona (2,223 g, 14,32 mmol) y óxido de platino (iv) (0,325 g, 1,432 mmol) en EtOAc (40 ml)/MeOH (4 ml) a temperatura ambiente se agitó en el reactor de frasco a presión en una atmósfera de presión H₂ (de 0,19 MPa a 0,01 MPa (de 28 psi a 2 psi) durante una noche. La mezcla resultante se filtró a través de una capa de Celite, se lavó con EtOAc y se concentró para dar (5R)-5-(hidroximetil)-3-isopropilpirrolidin-2-ona (2,251 g, 14,32 mmol, rendimiento 90 %) en forma de un sólido de color amarillo claro. RMN ¹H (400 MHz, CDCl₃) δ 6,56-6,71 (m, 1H), 3,64-3,80 (m, 2H), 3,37-3,53 (m, 1H), 2,48 (td, *J* = 9,9, 4,5 Hz, 2H), 2,14-2,27 (m, 1H), 1,97-2,13 (m, 1H), 1,50 (ddd, *J* = 12,7, 10,7, 8,3 Hz, 1H), 0,98 (d, *J* = 6,8 Hz, 3H), 0,86 (d, *J* = 6,8 Hz, 3H). m/z (IEN, +ve) 158 (M+H).

Etapa 6: ((2R)-4-isopropilpirrolidin-2-il)metanol

45

50

55

A una solución de (5R)-5-(hidroximetil)-3-isopropilpirrolidin-2-ona (2,251 g, 14,32 mmol) en THF (25 ml) se añadió hidruro de litio y aluminio, solución 1,0 M en THF (20,05 ml, 20,05 mmol) a temperatura ambiente gota a gota lentamente. Después, la mezcla resultante se sometió a reflujo a 75 °C durante 2 h. Se añadió más cantidad de hidruro de litio y aluminio, solución 1,0 M en THF (20,05 ml, 20,05 mmol) y la mezcla se calentó a reflujo durante una noche. Después de 18 h, la mezcla de reacción se dejó enfriar a 0 °C. La reacción se interrumpió añadiendo una solución acuosa saturada de sal de Rochelle. La mezcla de reacción se agitó vigorosamente durante 1 h y las capas se separaron. La capa acuosa se extrajo con EtOAc dos veces y los materiales orgánicos se combinaron, se lavaron con salmuera, se secaron sobre MgSO₄, se filtraron y se concentraron al vacío para proporcionar ((2R)-4-isopropilpirrolidin-2-il)metanol (1,645 g, 11,49 mmol, rendimiento 80 %) en forma de un aceite de color amarillo claro. El material en bruto se usó en la siguiente etapa sin purificación adicional, m/z (IEN,+ve) 144 (M+H).

Etapa 7: 1,1-dióxido de (3aR)-5-isopropiltetrahidro-3H-pirrolo[1,2-c][1,2,3]oxatiazol

Una solución de ((2R)-4-isopropilpirrolidin-2-il)metanol (1,639 g, 11,44 mmol) y trietilamina (3,18 ml, 22,89 mmol) en DCM (100 ml) se enfrió a -78 °C. A esta mezcla se añadió cloruro de sulfurilo, solución 1,0 M en DCM (13,73 ml, 13,73 mmol) gota a gota. La mezcla de reacción se dejó calentar a temperatura ambiente durante una noche. La

mezcla de reacción se concentró en un lecho de gel de sílice y se purificó por ISCO, cromatografía a través de una columna de gel de sílice preempaquetada REDISEP™ (40 g), eluyendo con un gradiente de MeOH del 0 % al 10 % (con NH₃ 2 M) en DCM para dar 1,1-dióxido de (3aR)-5-isopropiltetrahidro-3H-pirrolo[1,2-c][1,2,3]oxatiazol (211,9 mg, 1,032 mmol, rendimiento 9 %) en forma de un aceite de color amarillo claro. m/z (IEN, +ve) 206 (M+H).

5 Etapa 8: 3,5-dicloro-4-(((2R)-4-isopropilpirrolidin-2-il)metil)piridina

A una solución de 3,5-dicloropiridina (228 mg, 1,542 mmol) en THF (2,6 ml) a -78 °C se añadió gota a gota diisopropilamida de litio, heptano 2,0 M/THF/etilbenceno (0,976 ml, 1,953 mmol). Después de agitar durante 45 min, se añadió gota a gota una solución de 1,1-dióxido de (3aR)-5-isopropiltetrahidro-3H-pirrolo[1,2-c][1,2,3]oxatiazol (211 mg, 1,028 mmol) en THF (3,0 ml) a -78 °C. La mezcla resultante se dejó calentar a temperatura ambiente y después se agitó durante 3 h. Después de la evaporación del disolvente, el sólido de color pardo resultante se trató con HCl 2 N (3 ml) y EtOH (3 ml) y se calentó a 80 °C durante 2 h. La mezcla de reacción se concentró para retirar el EtOH. La mezcla resultante se trató con hielo y se basificó con NaOH 2 N a pH~10 y se extrajo con EtOAc (2x10 ml). Los extractos se secaron, se evaporaron y se purificaron por ISCO, cromatografía a través de una columna de gel de sílice preempaquetada REDISEP™ (12 g), eluyendo con un gradiente de MeOH del 0 % al 5 % (con NH₃ 2 M) en DCM para dar 3,5-dicloro-4-(((2R)-4-isopropilpirrolidin-2-il)metil)piridina (102 mg, 0,373 mmol, rendimiento 36,3 %) en forma de un aceite de color naranja. RMN ¹H (400 MHz, DMSO-d₆) δ 8,56 (s, 2H), 3,35-3,51 (m, 1H), 2,84-3,08 (m, 3H), 2,35-2,44 (m, 1H), 1,80-1,93 (m, 1H), 1,55-1,69 (m, 1H), 1,31-1,49 (m, 2H), 1,02-1,17 (m, 1H), 0,85 (t, *J* = 6,7 Hz, 6H). m/z (IEN, +ve) 273 (M+H).

[Ejemplo de referencia B52]

10

15

20

25

30

35

40

(R)-3,5-dicloro-4-((4,4-dialilpirrolidin-2-il)metil)piridina

Etapa 1: (R)-3,3-dimetiltetrahidropirrolo[1,2-c]oxazol-5(3H)-ona

A una suspensión agitada de (R)-(-)-5-(hidroximetil)-2-pirrolidinona (2,20 g, 19,11 mmol) y ácido p-toluenosulfónico (0,018 g, 0,096 mmol) en tolueno (54,6 ml), se añadió 2,2-dimetoxipropano (7,02 ml, 57,3 mmol) y la reacción se calentó a reflujo durante 2 h. La reacción se equipó con un Dean-Stark, después se añadió 2,2-dimetoxipropano (7,02 ml, 57,3 mmol) y la reacción se calentó a reflujo durante una noche. El disolvente se evaporó para proporcionar (R)-3,3-dimetiltetrahidropirrolo[1,2-c]oxazol-5(3H)-ona (3,04 g, 19,59 mmol, rendimiento 103 %) en forma de un aceite de color amarillo. RMN 1 H (400 MHz, CDCl₃) δ 4,27 (tt, J = 6,01, 9,00 Hz, 1H), 4,09 (dd, J = 5,65, 8,24 Hz, 1H), 3,43-3,50 (m, 1H), 2,81 (ddd, J = 8,53, 12,19, 16,65 Hz, 1H), 2,55 (ddd, J = 1,01, 9,15, 16,64 Hz, 1H), 2,13-2,23 (m, 1H), 1,72-1,80 (m, 1H), 1,66-1,72 (m, 3H), 1,48 (s, 3H).

Etapa 2: (R)-6,6-dialil-3,3-dimetiltetrahidropirrolo[1,2-c]oxazol-5(3H)-ona

A una solución de (R)-3,3-dimetiltetrahidropirrolo[1,2-c]oxazol-5(3H)-ona (2,55 g, 16,43 mmol) en THF (54,8 ml) enfriada a -78 °C, se añadió una solución de diisopropilamida de litio (14,79 ml, 29,6 mmol). La solución se agitó a esta temperatura durante 1 h antes de añadir bromuro de alilo (2,133 ml, 24,65 mmol). La mezcla de reacción se calentó a ta (1 h), después se enfrió a -78 °C antes de la adición de diisopropilamida de litio (14,79 ml, 29,6 mmol). La mezcla se agitó a -78 °C durante 1 h antes de añadir bromuro de alilo (2,133 ml, 24,65 mmol). La mezcla se calentó lentamente a ta y se agitó durante una noche. La reacción se interrumpió con NH₄Cl sat. y se extrajo con EtOAc. Los extractos combinados se lavaron con salmuera, se secaron y se concentraron. El material en bruto se absorbió sobre un lecho de gel de sílice y se purificó por cromatografía a través de una columna de gel de sílice preempaquetada REDISEPTM (80 g), eluyendo con un gradiente de EtOAc del 0 % al 25 % en hexano, para proporcionar (R)-6,6-dialil-3,3-dimetiltetrahidropirrolo[1,2-c]oxazol-5(3H)-ona (3,31 g, 14,07 mmol, rendimiento 86 %) en forma de un aceite de color amarillo claro. RMN ¹H (400 MHz, CDCl₃) δ 5,66-5,90 (m, 2H), 5,06-5,19 (m, 4H), 4,01-4,11 (m, 2H), 3,29-3,38 (m, 1H), 2,32-2,48 (m, 2H), 2,20-2,29 (m, 1H), 2,12 (dd, *J* = 8,97, 13,79 Hz, 1H), 1,86-

1,98 (m, 1H), 1,73-1,84 (m, 1H), 1,65 (s, 3H), 1,46 (s, 3H).

Etapa 3: (R)-3,3-dialil-5-(hidroximetil)pirrolidin-2-ona

A una solución de (R)-6,6-dialil-3,3-dimetiltetrahidropirrolo[1,2-c]oxazol-5(3H)-ona (0,75 g, 3,19 mmol) en MeOH (12 ml) se añadió monohidrato del ácido p-toluenosulfónico (0,061 g, 0,319 mmol). La mezcla resultante se calentó a reflujo durante 2 h. La TLC mostró una conversión completa. El disolvente se evaporó y el material en bruto se absorbió sobre un lecho de gel de sílice y se purificó por cromatografía a través de una columna de gel de sílice preempaquetada REDISEPTM (12 g), eluyendo con un gradiente de MeOH del 0 % al 6 % en DCM, para proporcionar (R)-3,3-dialil-5-(hidroximetil)pirrolidin-2-ona (0,62 g, 3,18 mmol, rendimiento 100 %) en forma de un aceite de color blanco. RMN 1 H (400 MHz, CDCl₃) δ 6,68 (s a, 1H), 5,67-5,86 (m, 2H), 5,06-5,20 (m, 4H), 3,62-3,74 (m, 2H), 3,36-3,45 (m, 1H), 2,37 (ddd, J = 6,45, 11,86, 13,15 Hz, 2H), 2,19 (ddd, J = 4,79, 8,40, 13,45 Hz, 2H), 1,99 (dd, J = 7,72, 13,37 Hz, 1H), 1,69 (dd, J = 7,44, 13,40 Hz, 1H).

Etapa 4: (R)-(4,4-dialilpirrolidin-2-il)metanol

10

15

20

25

30

A una solución de (R)-3,3-dialil-5-(hidroximetil)pirrolidin-2-ona (0,43 g, 2,202 mmol) en THF (5,51 ml) enfriada a 0 °C, se añadió hidruro de litio y aluminio, solución 1,0 M en THF (2,86 ml, 2,86 mmol). La mezcla se agitó a temperatura ambiente durante una noche. Se añadió hidruro de litio y aluminio extra, solución 1,0 M en THF (2,86 ml, 2,86 mmol) y se calentó a reflujo durante 6 h. Se añadió más hidruro de litio y aluminio, solución 1,0 M en THF (2,86 ml, 2,86 mmol) y la mezcla se calentó a reflujo durante una noche. La mezcla de reacción se enfrió a 0 °C antes de la adición de sal de Rochelle ac. en la mezcla lentamente. La solución de suspensión resultante se extrajo con EtOAc (10 ml). Los extractos combinados se lavaron con salmuera, se secaron y se concentraron para proporcionar (R)-(4,4-dialilpirrolidin-2-il)metanol (0,34 g, 1,876 mmol, rendimiento 85 %) en forma de un aceite incoloro. RMN 1 H (400 MHz, CDCl₃) δ 5,72-5,88 (m, 2H), 5,00-5,17 (m, 4H), 3,49-3,59 (m, 1H), 3,30-3,46 (m, 2H), 2,79 (d, J = 11,30 Hz, 1H), 2,67 (d, J = 11,35 Hz, 1H), 2,08-2,19 (m, 4H), 1,72 (dd, J = 6,97, 13,04 Hz, 1H), 1,22-1,39 (m, 1H).

Etapa 5: 1,1-dióxido de (R)-5,5-dialiltetrahidro-3H-pirrolo[1,2-c][1,2,3]oxatiazol

Una solución de trietilamina (2,460 ml, 17,65 mmol) y (R)-(4,4-dialilpirrolidin-2-il)metanol (1,60 g, 8,83 mmol) en DCM (44,1 ml) se enfrió a -78 °C. A esta mezcla se añadió gota a gota cloruro de sulfurilo (0,859 ml, 10,59 mmol) en DCM (44 ml) en 1 h. La reacción se mantuvo a esta temperatura durante 3 h, después se dejó calentar a temperatura ambiente y se agitó durante una noche. La mezcla se lavó con HCl ac. 1 N (30 ml x 2) y salmuera (30 ml), se secó, se filtró y se concentró. El material en bruto se absorbió sobre un lecho de gel de sílice y se purificó por cromatografía a través de una columna de gel de sílice preempaquetada REDISEP™ (40 g), eluyendo con un gradiente de EtOAc del 0 % al 30% en hexano, para proporcionar 1,1-dióxido de (R)-5,5-dialiltetrahidro-3H-pirrolo[1,2-c][1,2,3]oxatiazol (0,66 g, 2,71 mmol, rendimiento 30,7 %) en forma de un aceite de color amarillo claro. RMN ¹H (400 MHz, CDCl₃) δ 5,71-5,86 (m, 2H), 5,10-5,20 (m, 4H), 4,57 (dd, *J* = 6,63, 8,76 Hz, 1H), 4,24-4,36 (m, 1H), 4,19 (dd, *J* = 4,66, 8,76 Hz, 1H), 3,21-3,32 (m, 2H), 2,19-2,29 (m, 4H), 2,03-2,18 (m, 1H), 1,57-1,63 (m, 1H).

Etapa 6: (R)-3,5-dicloro-4-((4,4-dialilpirrolidin-2-il)metil)piridina

A una solución de 3,5-dicloropiridina (1,069 g, 7,22 mmol) en THF (12,04 ml) a -78 °C se añadió diisopropilamida de litio, heptano 2,0 M/THF/etilbenceno (4,57 ml, 9,15 mmol) gota a gota. Después de agitar durante 1 h, una solución de 1,1-dióxido de (R)-5,5-dialiltetrahidro-3H-pirrolo[1,2-c][1,2,3]oxatiazol (1,172 g, 4,82 mmol) en THF (10 ml) se añadió gota a gota a -78 °C y la mezcla se dejó calentar a temperatura ambiente con agitación durante 6 h. Después de evaporar el disolvente, la espuma de color beige resultante se trató con HCl 2 N caliente (12 ml) y EtOH (12 ml) durante una noche. La mezcla se enfrió a temperatura ambiente y se basificó con NaOH 1 N y se extrajo con EtOAc. Los extractos se secaron, se evaporaron y se purificaron por cromatografía a través de una columna de gel de sílice preempaquetada REDISEP™ (40 g), eluyendo con un gradiente de MeOH del 1 % al 6 % en DCM, para proporcionar (R)-3,5-dicloro-4-((4,4-dialilpirrolidin-2-il)metil)piridina (0,70 g, 2,249 mmol, rendimiento 46,7 %) en forma de un aceite de color amarillo. RMN ¹H (400 MHz, CDCl₃) δ 8,46 (s, 2H), 5,66-5,86 (m, 2H), 5,03-5,18 (m, 4H), 3,59-3,72 (m, 1H), 3,25 (d, *J* = 7,15 Hz, 1H), 2,97 (d, *J* = 11,51 Hz, 1H), 2,82 (d, *J* = 11,51 Hz, 1H), 2,10-2,28 (m, 4H), 1,78 (dd, *J* = 13,06, 6,95 Hz, 1H), 1,51-1,61 (m, 1H); CLEM (IEN) m/z 311,0 (M+H).

[Ejemplo de referencia B53]

(R)-3-((3,5-dicloropiridin-4-il)metil)-2-azaespiro[4,4]non-7-eno

Una mezcla (R)-3,5-dicloro-4-((4,4-dialilpirrolidin-2-il)metil)piridina (3,1 g, 9,96 mmol) y catalizador de Grubbs de 2^a generación (1,691 g, 1,992 mmol) en DCM (996 ml). La mezcla se agitó a 40 °C durante 20 h. La mezcla se concentró y se absorbió en un lecho de gel de sílice y se purificó por cromatografía a través de una columna Biotage (100 g), eluyendo con un gradiente de NH₃·MeOH 1 M del 1 % al 50 % en DCM, para proporcionar (R)-3-((3,5-dicloropiridin-4-il)metil)-2-azaespiro[4,4]non-7-eno (1,0 g, 3,53 mmol, rendimiento 35,5 %) en forma de un aceite de color pardo. RMN 1 H (400 MHz, CDCl₃) δ 8,45 (s, 2H), 5,61-5,72 (m, 2H), 3,69-3,82 (m, 1H), 3,25 (s a, 2H), 3,05 (d, J = 10,47 Hz, 1H), 2,89-2,97 (m, 1H), 2,47 (s a, 2H), 2,23-2,37 (m, 2H), 1,93 (dd, J = 6,84, 12,59 Hz, 1H), 1,69-1,82 (m, 1H); CLEM (IEN) m/z 283,0 (M+H) † .

[Ejemplo de referencia B54]

5

10

15

20

(R)-3-((3,5-dicloropiridin-4-il)metil)-2-azaespiro [4,4] non-7-eno

Una mezcla de (R)-3-((3,5-dicloropiridin-4-il)metil)-2-azaespiro[4,4]non-7-eno (0,090 g, 0,318 mmol) y paladio al 10 % p. sobre carbono activado (0,034 g, 0,032 mmol) en EtOAc (4 ml) se agitó en una atmósfera de globo de hidrógeno a temperatura ambiente durante 3 h. El material de partida se convirtió en el proyecto deseado con un producto de mono-cloro (~ 4:1). El material en bruto se absorbió sobre un lecho de gel de sílice y se purificó por cromatografía a través de una columna de gel de sílice preempaquetada REDISEP™ (12 g), eluyendo con un gradiente de NH₃ MeOH 1 M del 5 % al 50 % en DCM, para proporcionar (R)-3-((3,5-dicloropiridin-4-il)metil)-2-azaespiro[4,4]nonano (0,053 g, 0,186 mmol, rendimiento 58,5 %) en forma de un aceite de color pardo. RMN ¹H (400 MHz, CDCI₃) δ 8,42-8,50 (m, 2H), 3,63-3,83 (m, 1H), 3,28 (s a, 2H), 3,02 (d, *J* = 10,37 Hz, 1H), 2,87 (s a, 1H), 1,73-1,83 (m, 1H), 1,54-1,72 (m, 9H), 1,42-1,53 (m, 1H); CLEM (IEN) m/z 285,0 (M+H). Las siguientes aminas secundarias se prepararon usando un procedimiento similar a los ejemplos de referencia descritos anteriormente.

ejemplo de referencia	estructura	ejemplo de referencia	estructura
B27	CI NH H N	B34	CI.
B28	TZ ZI	B35	
B29		B36	H CC
B30	H N	B37	H N N N N N N N N N N N N N N N N N N N
B31	CI H H	B38	CI H H N
B32	NH NH	B39	NH NH
B33	NH	B40	CI NH
B41	CI.	B48	NH S Ci Cl

ejemplo de referencia	estructura	ejemplo de referencia	estructura
B42	CI NH	B49	NH CI
B43	H O NH	B50	CI CI
B44	H C	B51	CI CI
B45	, NH CI CI	B52	CI CI
B46	F F CI CI	B53	CI NH _{CI}
B47	G C C	B54	CI NH _{CI}
B55	CI CI	B62	CI HN
B56	CI CI	B63	CI CI

ejemplo de referencia	estructura	ejemplo de referencia	estructura
B57	L C C C C C C C C C C C C C C C C C C C	B64	CI CI
B58	C E E	B65	CI H N
B59	T T T	B66	H Z D
B60	CI CI	B67	CI CI
B61	CI CI	B68	CI H N F F
B69	CI H Z		
B70	CI H N		

[Ejemplo de referencia C1]

N-(2-(2,6-dicloro-4-fluorofenil)-2-((trietilsilil)oxi)etil)-4,4-dimetilciclohexanamina (C1)

A una solución agitada del compuesto A31-3 (107 mg, 0,32 mmol) en DCM (2 ml) se añadieron 4,4-dimetilciclohexanona (40 mg, 0,32 mmol), NaBH(OAc)₃ (83 mg, 0,38 mmol) y AcOH (101 mg, 0,47 mmol). La mezcla resultante se agitó a temperatura ambiente durante 17 h, después se inactivó con NaOH ac. 0,5 M (10 ml) y se extrajo con EtOAc (2 x 20 ml). Las capas orgánicas combinadas se lavaron con salmuera (10 ml), se secaron sobre MgSO₄ y se concentraron a presión reducida. El residuo se purificó por cromatografía en columna de gel de sílice (eluyente: EtOAc del 5 % al 30 %/hexano) para producir el compuesto C1 (122 mg, 86 %) en forma de un jarabe incoloro.

[Ejemplo de referencia C22]

5

10

15

25

30

Etapa 1: (1S,3R,4R,6R)-4-bromo-3,7,7-trimetilbiciclo[4,1,0]heptan-3-ol (C22-1)

Una suspensión de (+)-3-careno (4,09 g, 30 mmol), CaCO₃ (3,90 g, 39 mmol) y NBS (6,94 g, 39 mmol) en agua (15 ml) y 1,4-dioxano (30 ml) se agitó a temperatura ambiente durante 1 h. La mezcla se diluyó con agua (75 ml) y se extrajo con Et₂O (100 ml). La capa orgánica se lavó con agua (3 x 50 ml), Na₂S₂O₃ ac. saturado (50 ml), se secó sobre MgSO₄ y se concentró a presión reducida. El residuo se purificó por cromatografía de gel de sílice (EtOAc al 10 %/hexano como eluyente) para proporcionar el compuesto C22-1 (4,53 g, 65 %) en forma de un sólido de color blanco.

20 Etapa 2: 1-((1R,3r,5S)-6,6-dimetilbiciclo[3,1,0]hexan-3-il)etanona (C22-2)

A una solución del compuesto C22-1 (4,53 g, 19,4 mmol) en agua (9 ml) y 1,4-dioxano (127 ml) se añadió óxido de plata (I) (12,16 g, 52,5 mmol) y se agitó a temperatura ambiente durante 22 h. La mezcla se filtró a través de una capa de celite y el filtrado se concentró a presión reducida. El residuo se diluyó con agua y se extrajo con Et₂O. La capa orgánica se lavó con agua, se secó sobre MgSO₄ y se concentró a presión reducida para proporcionar el compuesto C22-2 (2,86 g, 99 %) en forma de un aceite de color amarillo pálido. El producto en bruto se usó para la siguiente etapa sin purificación.

Etapa 3: acetato de (1R,3r,5S)-6,6-dimetilbiciclo[3,1,0]hexan-3-ilo (C22-3)

A una solución del compuesto C22-2 (2,86 g, 18,8 mmol) en DCM (57 ml) se añadió ácido m-cloroperoxibenzoico (6,02 g, 24,4 mmol) a 0 °C y se agitó a temperatura ambiente durante 15 h. La mezcla de reacción se inactivó con NaOH acuoso 0,2 M y se extrajo con DCM (80 ml y 2 x 50 ml). Las capas orgánicas recogidas se lavaron con NaHCO₃ ac. saturado, agua y salmuera, se secaron sobre MgSO₄ y se concentraron a presión reducida. El residuo se purificó por cromatografía de gel de sílice (EtOAc al 10 %/hexano como eluyente) para proporcionar el compuesto C22-3 (2,35 g, 74 %) en forma de una goma incolora.

Etapa 4: (1R,3r,5S)-6,6-dimetilbiciclo[3,1,0]hexan-3-ol (C22-4)

A una solución del compuesto C22-3 (2,35 g, 14,0 mmol) en EtOH/agua (63 ml, 2:1) se añadió una solución de LiOH ac. (4 M, 21 ml, 84 mmol). La mezcla se agitó a temperatura ambiente durante 2,5 h. La mezcla se diluyó con agua y

se extrajo con EtOAc (2 x 80 ml). Las capas orgánicas combinadas se lavaron con salmuera, se secaron sobre MgSO₄ y se concentraron a presión reducida. El residuo se purificó por cromatografía de gel de sílice (EtOAc al 35%/hexano como eluyente) para proporcionar el compuesto C22-4 (1,54 g, 88%) en forma de un aceite incoloro.

Etapa 5: (1R,5S)-6,6-dimetilbiciclo[3,1,0]hexan-3-ona (C22-5)

- El compuesto C22-4 (240 mg, 1,9 mmol) se disolvió en DCM (5 ml) y se añadió peryodinano de Dess-Martin (968 mg, 2,28 mmol). La mezcla de reacción se agitó durante 3 h. La mezcla de reacción se inactivó con Na₂S₂O₃ al 5 % y se extrajo con Et₂O (30 ml). La capa orgánica se lavó dos veces con NaHCO₃ ac. saturado, se secó sobre MgSO₄ y se concentró a presión reducida para proporcionar el compuesto C22-5 (261 mg, cuant.) en forma de una goma incolora. El producto en bruto se usó para la siguiente etapa sin purificación.
- 10 Etapa 6: (1R,3r,5S)-N-(2-(2,6-dicloro-4-fluorofenil)-2-((trietilsilil)oxi)etil)-6.6-dimetilbiciclo[3,1,0]hexan-3-amina (C22)

El compuesto C22 (75 mg, 74 %) se obtuvo a partir de la reacción del compuesto A31-3 (77 mg, 0,228'mmol), el compuesto C22-5 (31 mg, 0,250 mmol), NaBH(OAc)3 (72 mg, 0,341 mmol) y AcOH (0,013 ml, 0,228 mmol) en DCM (2 ml) usando un procedimiento similar al descrito en el ejemplo de referencia A31, etapa 4: RMN (CDCl₃, 400 MHz): δ 7,04 (d, J = 8,3 Hz, 2H), 5,48 (dd, J = 9,2, J = 4,5 Hz, 1H), 3,60-3,51 (m, 1H), 3,19 (dd, J = 12,2, J = 9,2 Hz, 1H), 2,65 (dd, J = 12,2, J = 4,5 Hz, 1H), 2,17-2,07 (m, 2H), 1,06-0,97 (m, 10H), 0,87 (t, J = 8,0 Hz, 9H), 0,58-0,47 (m, 6H).

[Ejemplo de referencia C45]

15

25

35

Etapa 1: 1-(2,6-dicloro-4-metilfenil)-2-nitroetanol (C45-1)

El compuesto C45-1 (1,25 g, 96 %) en forma de una goma incolora a partir de la reacción de 2,6-dicloro-4-20 metilbenzaldehído (1,0 g, 5,3 mmol) y K₂CO₃ (0,28 g, 2,0 mmol) en CH₃NO₂ (10 ml) usando un procedimiento similar al descrito en el ejemplo A1, etapa 2:

Etapa 2: (1-(2,6-dicloro-4-metilfenil)-2-nitroetoxi)trietilsilano (C45-2)

El compuesto C45-2 (1,8 g, en bruto) se obtuvo en forma de una goma incolora a partir de la reacción del compuesto C45-1 (1,25 g, 1,0 mmol), TES-CI (1,0 ml, 1,2 mmol) e imidazol (1,2 g, 3,0 mmol) en DMF (10 ml) usando un procedimiento similar al descrito en el ejemplo de referencia A1, etapa 3:

Etapa 3: 2-(2,6-dicloro-4-metilfenil)-2-((trietilsilil)oxi)etanamina (C45-3)

El compuesto C45-3 (1,56 g, 94 %) se obtuvo en forma de un aceite de color pardo a partir de la reacción del compuesto C45-2 (1,8 g, 4,9 mmol), Fe (2,76 g, 49,3 mmol) y NH₄Cl (2,62 g, 49,3 mmol) en EtOH/agua (4:1, 20 ml) usando un procedimiento similar al descrito en el ejemplo de referencia A31, etapa 3:

30 Etapa 4: (1R,3r,5S)-N-(2-(2,6-dicloro-4-metilfenil)-2-((trietilsilil)oxi)etil)-6,6-dimetilbiciclo[3,1,0]hexan-3-amina (C45)

El compuesto C45 (75 mg, 44 %) se obtuvo a partir de la reacción de C45-3 (130 mg, 0,389 mmol), la cetona C22-5 (49 mg, 0,394 mmol), NaBH(OAc)3 (125 mg, 0,590 mmol) y AcOH (0,023 ml, 0,402 mmol) en DCM (3 ml) usando un procedimiento similar al descrito en el ejemplo de referencia A31, etapa 4: RMN 1 H (CDCl₃, 400 MHz) δ : 7,07 (2H, s), 5,49 (1H, dd, J= 9,3, 4,4 Hz), 3,61-3,52 (1H, m), 3,20 (1H, dd, J= 12,2, 9,3 Hz), 2,64 (1H, dd, J= 12,2, 4,4 Hz), 2,27 (3H, s), 2,17-2,08 (2H, m), 1,08-0,97 (10H, m), 0,86 (9H, t, J= 7,8 Hz), 0,56-0,49 (6H, m).

[Ejemplo de referencia C46]

Etapa 1: 1-(2,6-diclorofenil)-2-nitroetanol (C46-1)

El compuesto C46-1 (0,67 g, en bruto) se obtuvo en forma de una goma de color amarillo a partir de la reacción de 2,6-diclorobenzaldehído (0,5 g, 2,85 mmol) y K_2CO_3 (0,15 g, 1,08 mmol) en CH_3NO_2 (10 ml) usando un procedimiento similar al descrito en el ejemplo de referencia A1, etapa 2:

5 Etapa 2: (1-(2,6-diclorofenil)-2-nitroetoxi)trietilsilano (C46-2)

El compuesto C46-2 (0,95 g, 52%) se obtuvo en forma de un aceite incoloro a partir de la reacción del compuesto C46-1 (0,67 g, 2,83 mmol), TES-Cl (0,57 ml, 3,4 mmol) e imidazol (0,58 g, 8,5 mmol) en DMF (10 ml) usando un procedimiento similar al descrito en el ejemplo de referencia A1, etapa 3:

Etapa 3: 2-(2,6-diclorofenil)-2-((trietilsilil)oxi)etanamina (C46-3)

El compuesto C46-3 (0,86 g, en bruto) se obtuvo en forma de un aceite incoloro a partir de la reacción del compuesto C46-2 (0,95 g, 2,84 mmol), Fe (1,59 g, 28,4 mmol) y NH₄Cl (1,51 g, 28,4 mmol) en EtOH/agua (4:1, 20 ml) usando un procedimiento similar al descrito en el ejemplo de referencia A31, etapa 3:

Etapa 4: (1R,3r,5S)-N-(2-(2,6-diclorofenil)-2-((trietilsilil)oxi)etil)-6,6-dimetilbiciclo[3,1,0]hexan-3-amina (C46)

El compuesto C46 (94 mg, 78 %) se obtuvo a partir de la reacción del compuesto C46-3 (90 mg, 0,281 mmol), la cetona C22-5 (42 mg, 0,337 mmol), NaBH(OAc)3 (89 mg, 0,421 mmol) y AcOH (0,016 ml, 0,281 mmol) en DCM (2 ml) usando un procedimiento similar al descrito en el ejemplo de referencia A31, etapa 4: RMN ¹H (CDCl₃, 400 MHz) 5: 7,30-7,26 (2H, m), 7,09 (1H, t, *J*= 7,8 Hz), 5,53 (1H, dd, *J*= 9,3, 4,4 Hz), 3,62-3,53 (1H, m), 3,23 (1H, dd, *J*= 12,2, 9,3 Hz), 2,66 (1H, dd, *J*= 12,2, 4,4 Hz), 2,17-2,10 (2H, m), 1,04-0,99 (8H, m), 0,90-0,84 (11H, m), 0,60-0,45 (6H, m).

[Ejemplo de referencia C80]

15

20

25

30

35

40

45

(1R,3r,5S)-N-(2-(2,6-dicloro-3-fluorofenil)-2-((trietilsilil)oxi)etil)-6,6-dimetilbiciclo[3,1,0]hexan-3-amina

Etapa 1: 1-(2.6-dicloro-3-fluorofenil)-2-nitroetanol

En un matraz de fondo redondo de 3 bocas y 100 ml, se añadió carbonato potásico recién molido (0,486 g, 3,51 mmol) a una solución de 2,6-dicloro-3-fluorobenzaldehído (2,26 g, 11,71 mmol) en THF (12 ml) a temperatura ambiente. Después, se añadió nitrometano (8,88 ml, 164 mmol). La mezcla se agitó a temperatura ambiente durante 2 h. La mezcla se inactivó con agua (15 ml) y se extrajo con EtOAc $(3 \times 15 \text{ ml})$. La capa orgánica combinada se lavó con salmuera, se secó sobre Na₂SO₄ anhidro y se concentró a presión reducida para dar 1-(2,6-dicloro-3-fluorofenil)-2-nitroetanol (2,97 g, 11,69 mmol, rendimiento 100 %) en forma de un aceite de color amarillo. RMN 1 H $(400 \text{ MHz}, \text{CDCl}_3)$ δ 7,36 (dd, J = 8,9, 4,8 Hz, 1 H), 7,17 <math>(dd, J = 8,9, 7,8 Hz, 1 H), 6,27 (m, 1 H), 5,19 <math>(dd, J = 13,3, 3,4 Hz, 1 H), 3,20 (s a, 1 H).

Etapa 2: 2-(2,6-dicloro-3-fluorofenil)-2-((trietilsilil)oxi)etanamina

En un matraz de fondo redondo de tres bocas y 100 ml se añadieron (1-(2,6-dicloro-3-fluorofenil)-2-nitroetoxi)trietilsilano (3,64 g, 9,88 mmol) en EtOH (16 ml) y agua (4 ml) a temperatura ambiente, seguido de la adición de hierro (5,52 g, 99 mmol) y cloruro de amonio (5,29 g, 99 mmol). El matraz se purgó con nitrógeno y se calentó a 60 °C en una atmósfera de nitrógeno durante 3 h. La mezcla se enfrió a temperatura ambiente, se diluyó con 40 ml de MeOH, se sometió a ultrasonidos durante 10 min. Después, la solución se decantó a través de una capa de celite. Este proceso se repitió tres veces. El filtrado se concentró a ~30 ml y se diluyó con EtOAc (120 ml). El sólido se retiró por filtración y se descartó. El filtrado se concentró a presión reducida. Se diluyó con 50 ml de EtOAc, se lavó con agua, salmuera, se secó sobre MgSO₄ anhidro y se concentró para dar hidrocloruro de 2-(2,6-dicloro-3-fluorofenil)-2-((trietilsilil)oxi)etanamina en forma de un sólido de color blanquecino. La sal de HCl se disolvió con 50 ml de DCM. La suspensión se basificó con NaHCO₃ ac. sat. (pH = 9). La capa orgánica se separó, se lavó con salmuera, se secó sobre MgSO₄ anhidro y se concentró para dar 2-(2,6-dicloro-3-fluorofenil)-2-((trietilsilil)oxi)etanamina (2,73 g, 8,07 mmol, rendimiento 82 %) en forma de un aceite de color pardo. RMN ¹H (400 MHz, CDCl₃) 6 7,23-7,29 (m, 1H), 6,99-7,06 (m, 1H), 5,35 (dd, *J*= 8,6, 4,9 Hz, 1H), 3,29 (dd, *J*= 13,1, 8,7 Hz, 1H), 2,92 (dd, *J*= 13,2, 4,9 Hz, 1H), 0,83-0,93 (m, 9H), 0,46-0,61 (m, 6H); CLEM: 338,2 [M+H][†].

Etapa 3: (1R,3r,5S)-N-(2-(2,6-dicloro-3-fluorofenil)-2-((trietilsilil)oxi)etil)-6,6-dimetilbiciclo[3,1,0]hexan-3-amina

5

10

15

Se combinaron (1R,5S)-6,6-dimetilbiciclo[3,1,0]hexan-3-ona (0,181 g, 1,457 mmol) y 2-(2,6-dicloro-3-fluorofenil)-2-((trietilsilil)oxi)etanamina (0,493 g, 1,457 mmol) en EtOH se secó (7 ml) en una atmósfera de nitrógeno a temperatura ambiente y se añadió tetraisopropoxititanio (0,86 ml, 2,91 mmol). La mezcla de reacción se agitó a temperatura ambiente durante 2 h. Después, se añadió NaBH₄ (0,083 g, 2,186 mmol). Después de 2 h, la solución de reacción se inactivó con cloruro de amonio acuoso saturado (3 ml) y después se basificó con NaHCO₃ saturado. Después, el EtOH se retiró a presión reducida y la solución se diluyó con agua EtOAc. Se añadió Celite y la solución se mezcló vigorosamente durante 15 min. Después, la solución se filtró a través de una capa de celite. La capa acuosa se extrajo con EtOAc y las capas orgánicas combinadas se lavaron con salmuera y se secaron sobre Na₂SO₄ anhidro, se filtraron y se concentraron para proporcionar un aceite de color amarillo. El material en bruto se purificó por cromatografía en columna (gel de sílice, eluyente: EtOAc del 0 % al 10 %/heptano) para proporcionar (1R,3r,5S)-N-(2-(2,6-dicloro-3-fluorofenil)-2-((trietilsilil)oxi)etil)-6,6-dimetilbiciclo[3,1,0]hexan-3-amina (414 mg, 0,927 mmol, rendimiento 63,6 %) en forma de un aceite incoloro. RMN ¹H (400 MHz, CDCl₃) δ 7,24 (dd, *J* = 8,9, 4,9 Hz, 1H), 6,98-7,04 (m, 1H), 5,54 (s a, 1H), 3,59 (t, *J* = 8,8 Hz, 1H), 3,18-3,31 (m, 1H), 2,71 (d, *J* = 12,3 Hz, 1H), 2,15 (d, *J* = 8,1 Hz, 1H), 1,22-1,34 (m, 4H), 1,06 (d, *J* = 5,8 Hz, 2H), 0,99 (d, *J* = 5,0 Hz, 6H), 0,84-0,93 (m, 9H), 0,47-0,59 (m, 6 H); CLEM: 446,2 [M+H]⁺.

Las siguientes aminas secundarias se prepararon usando un procedimiento similar a los ejemplos de referencia descritos anteriormente.

ejemplo de referencia	estructura	ejemplo de referencia	estructura
C80	CI H H	C87	FH H
C81	CI CI CI Si L	C88	H CIHZ O SI
C82	CI H H CI O SI	C89	N CI O Si H N H
C83	NH CI	C90	
C84	CI O SI H		
C85	CI C		
C86	CI— O—HCI Si—N		

[Ejemplo de referencia D1]

5

10

25

30

Eto
$$Eto$$
 Eto Eto

Etapa 1: 2-(trans4-(etoxicarbonil)ciclohexil)hidrazinacarboxilato de terc-butilo (D1-1)

A una solución de éster etílico del ácido 4-ciclohexanonacarboxílico (5,0 g, 29,0 mmol) y carbazato de terc-butilo (3,9 g, 29,4 mmol) en diclorometano (250 ml) y AcOH (4 ml) se añadió gradualmente NaBH(OAc)₃ (18,7 g, 88,0 mmol) a 0 °C. Después de la adición, la mezcla se agitó a la misma temperatura durante 3 h, después se dejó calentar a temperatura ambiente y se agitó durante 20 h. La mezcla de reacción se vertió en una solución acuosa saturada de Na₂CO₃ y se extrajo con DCM. Los extractos de DCM se lavaron con salmuera x 2 y se secaron sobre MgSO₄. Después haber retirado el disolvente, el residuo se purificó por cromatografía en columna sobre gel de sílice para dar el compuesto D1-1 (3,0 g, 36%) en forma de un sólido de color blanco.

Etapa 2: clorhidrato de trans-4-hidrazinilciclohexanocarboxilato de etilo (D1-2)

A una solución del compuesto D1-1 en EtOH (25 ml) se añadió HCl 4 M (en THF, 25 ml, 100 mmol) y la mezcla se agitó a temperatura ambiente durante 16 h. El secado de la solución a alto vacío produjo el compuesto D1-2 (2,8 g, cuant.) en forma de un sólido de color blanco.

15 Etapa 3: 4,4,4-trifluoro-3-oxobutanoato de bencilo (D1-3)

A una solución de 4,4,4-trifluoro-3-oxobutanoato de etilo (17,0 g, 92,3 mmol) en tolueno (80 ml) se añadió alcohol bencílico (11,4 ml, 109,6 mmol). La mezcla se agitó a 120 °C usando un aparato Dean-Stark durante 5 h y después la mezcla de reacción se enfrió a 0 °C. El secado de la solución a alto vacío produjo el compuesto D1-3 (21,2 g, cuant.) en forma de un aceite incoloro, que se usó para la siguiente etapa sin purificación adicional.

20 Etapa 4: 2-((dimetilamino)metileno)-4,4,4-trifluoro-3-oxobutanoato de bencilo (D1-4)

A una solución del compuesto D1-3 (21,2 g, 92,3 mmol) y AcOH (10,6 ml, 184,7 mmol) en THF (100 ml) se añadió gota a gota *N,N*-dimetilformamida diisopropil acetal (38,6 ml, 184,7 mmol) durante 25 min y la mezcla se agitó a temperatura ambiente durante 16 h. La mezcla de reacción se vertió en una solución acuosa saturada de NaHCO₃ y se extrajo con EtOAc. La capa orgánica se lavó con salmuera x 2 y se secó sobre MgSO₄. Después haber retirado el disolvente, el residuo se purificó por cromatografía en columna sobre gel de sílice para dar el compuesto D1-4 (17,1 g, 91%) en forma de un aceite de color amarillo.

Etapa 5: 1-(trans-4-(etoxicarbonil)ciclohexil)-5-(trifluorometil)-1H-pirazol-4-carboxilato de bencilo (D1-5)

A una solución del compuesto D1-2 (2,8 g, 10,5 mmol) en EtOH (50 ml) se añadieron DIPEA (3,2 ml, 12,6 mmol) y el compuesto D1-4 (3,3 g, 11,0 mmol) y la mezcla se agitó a temperatura ambiente durante 1,5 h. La reacción se interrumpió añadiendo salmuera y se extrajo con EtOAc. La capa orgánica se lavó con salmuera (x 2) y se secó sobre MgSO₄. Después de retirarse el disolvente, el residuo se purificó por cromatografía en columna sobre gel de sílice para dar el compuesto D1-5 (3,5 g, 78%) en forma de un aceite incoloro.

Etapa 6: ácido 1-(trans-4-(etoxicarbonil)ciclohexil)-5-(trifluorometil)-1H-pirazol-4-carboxílico (D1)

El compuesto D1-5 (3,5 g, 8,2 mmol) y Pd al 10 % sobre carbono (300 mg) en EtOAc (40 ml) se hidrogenó en una atmósfera de H₂ (1 atm) a temperatura ambiente durante 25 h. La mezcla de reacción se filtró a través de una capa de celite y se lavó con EtOAc. El secado de la solución a alto vacío produjo el compuesto D1 (2,6 g, 95%) en forma de un sólido de color blanco.

[Ejemplo de referencia D2]

5

15

20

25

Etapa 1: 1,4-dioxaespiro[4,5]decano-8-carboxilato de etilo (D2-1)

La mezcla de 4-oxociclohexanocarboxilato de etilo (10 g, 58,75 mmol), etilenglicol (4,97 ml, 88,13 mmol) y p-TsOH (cat.) en tolueno (80 ml) se calentó a reflujo durante 16 h en un matraz equipado con adaptador Dean-Stark. Una vez finalizada la reacción, la mezcla se enfrió a temperatura ambiente y el disolvente se retiró a presión reducida para proporcionar el compuesto D2-1 (9,6 g, en bruto) en forma de un aceite de color pardo. El producto en bruto se usó en la siguiente etapa sin purificación. RMN ¹H (CDCl₃, 400 MHz): δ 4,15-4,09 (m, 2H), 3,95 (s, 4H), 2,36-2,03 (m, 1H), 1,97-1,91 (m, 2H), 1,85-1,75 (m, 4H), 1,66-1,52 (m, 2H), 1,26-1,27 (m, 3H).

10 Etapa 2: 8-metil-1,4-dioxaespiro[4,5]decano-8-carboxilato de etilo (D2-2)

A una solución agitada del compuesto D2-1 (5,1 g, 23,83 mmol) en THF (15 ml) se añadió LDA (2,0 M en THF/heptano/etilbenceno, 17,8 ml, 35,74 mmol) gota a gota a -78 °C durante un periodo de 15 min. La mezcla se agitó a-78 °C durante 30 min. Se añadió una solución de yodometano (2,23 ml, 35,74 mmol) en THF (1 ml) a la mezcla gota a gota y el conjunto se agitó a -78 °C durante 30 min. La mezcla se dejó calentar a temperatura ambiente y se agitó durante 16 h. La mezcla de reacción se inactivó con NH₄Cl acuoso saturado y se extrajo con EtOAc (2 x 25 ml). Las capas orgánicas combinadas se lavaron con agua (100 ml) y salmuera (100 ml), se secaron sobre Na₂SO₄ anhidro y se concentraron a presión reducida. El residuo se purificó por cromatografía en columna (gel de sílice, EtOAc al 2 %/hexano como eluyente) para proporcionar el compuesto D2-2 (2,7 g, 50 %) en forma de un aceite incoloro. RMN ¹H (CDCl₃, 400 MHz): δ 4,14 (c, *J* = 7,2 Hz, 2H), 3,93 (s, 4H), 2,15-2,10 (m, 2H), 1,65-1,60 (m, 4H), 1,54-1,49 (m, 2H), 1,25 (t, *J* = 7,2 Hz, 3H), 1,18 (s, 3H).

Etapa 3: 1-metil-4-oxociclohexanocarboxilato de etilo (D2-3)

A una solución del compuesto D2-2 (8,4 g, 36,84 mmol) en acetona (100 ml) se añadió gota a gota HCl (3 M en agua, 50 ml) a temperatura ambiente y el conjunto se agitó a temperatura ambiente durante 18 h. La mezcla de reacción se inactivó con agua (100 ml) y se extrajo con EtOAc (2 x 25 ml). Las capas orgánicas combinadas se lavaron con agua (100 ml) y salmuera (100 ml), se secaron sobre Na_2SO_4 anhidro y se concentraron a presión reducida para proporcionar el compuesto D2-3 (6,3 g) en forma de un aceite de color amarillo claro. El producto en bruto se usó en la siguiente etapa sin purificación. RMN 1H (CDCl₃, 400 MHz): δ 4,22 (c, J = 7,0 Hz, 2H), 2,47-2,38 (m, 4H), 2,34-2,30 (m, 2H), 1,72-1,64 (m, 2H), 1,31- 1,29 (m, 6H).

Etapa 4: 2-(trans-4-(etoxicarbonil)-4-metilciclohexil)hidrazinacarboxilato de terc-butilo (D2-4)

A una mezcla del compuesto D2-3 (30 g, 163,0 mmol) y carboxilato de terc-butilhidrazina (21,5 g, 163,0 mmol) en isopropanol (200 ml) se añadió AcOH (cantidad catalítica) y la mezcla se agitó a temperatura ambiente durante 2 h. Una vez finalizada la formación de imina (supervisado por TLC), la mezcla se enfrió a 0 °C y se añadió en porciones NaBH₃CN sólido (30,7 g, 489,1 mmol). El pH de la mezcla de reacción se ajustó a 5-6 usando AcOH y la agitación se continuó durante 3 h a temperatura ambiente. La mezcla se inactivó con agua (100 ml) y se extrajo con EtOAc (2 x 200 ml). Las capas orgánicas combinadas se lavaron con agua (100 ml) y salmuera (100 ml), se secaron sobre Na₂SO₄ anhidro y se concentraron a presión reducida. El residuo se purificó por cromatografía en columna (gel de sílice, EtOAc al 30 %/hexano) (Nota: el punto polar fue el isómero trans) para proporcionar el compuesto D2-4 (12,0 g, 34 %) en forma de un sólido de color blanco.

Etapa 5: clorhidrato de trans-4-hidrazinil-1-metilciclohexanocarboxilato de etilo (D2-5)

40 A una solución del compuesto D2-4 (36,0 g, 120,0 mmol) en EtOH (100 ml) se añadió gota a gota HCl (4 M en 1,4-dioxano, 350 ml) a 0 °C y el conjunto se agitó a temperatura ambiente durante 18 h. El disolvente se retiró a presión reducida y el residuo se trituró con Et₂O para obtener el compuesto D2-5 (31,0 g, 95 %) en forma de un sólido de color blanco. El producto en bruto se usó en la siguiente etapa sin purificación. RMN ¹H (CDCl₃, 400 MHz): δ 7,24-7,00 (s a, 4H), 4,13 (c, *J* = 7,2 Hz, 2H), 3,44 (s a, 1H), 2,08-2,05 (m, 2H), 1,97-1,90 (m, 2H), 1,81-1,80 (m, 4H), 1,30-1,26 (m, 6H).

Etapa 6: 1-(trans-4-(etoxicarbonil)-4-metilciclohexil)-5-(trifluorometil)-1H-pirazol-4-carboxilato de bencilo (D2-6)

A una solución del compuesto D2-5 (31,0 g, 113,9 mmol) en EtOH (150 ml) se añadió gota a gota DIPEA (39,4 ml, 227,9 mmol) y la mezcla se agitó a temperatura ambiente durante 5 min. Se añadió gota a gota una solución del compuesto D1-4 (37,7 g, 125,3 mmol) en EtOH (10 ml) y el total se agitó a temperatura ambiente durante 16 h. La mezcla de reacción se inactivó con agua (200 ml) y se extrajo con EtOAc (2 x 200 ml). La capa orgánica combinada se lavó con agua (100 ml) y salmuera (100 ml), se secó sobre Na₂SO₄ anhidro y se concentró a presión reducida. El residuo se purificó por cromatografía en columna (gel de sílice, EtOAc al 15 %/hexano como eluyente) para proporcionar el compuesto D2-6 (20,0 g, 40 %) en forma de una goma de color pardo. RMN ¹H (CDCl₃, 400 MHz): δ 7,94 (s, 1H), 7,40- 7,35 (m, 5H), 5,30 (s, 2H), 4,36 (m, 1H), 4,15 (c, *J* = 7,2 Hz, 2H), 2,24-2,19 (m, 2H), 1,88-1,87 (m, 6H), 1,3 (s, 3H), 1,26 (t, *J* = 7,2 Hz, 3H).

Etapa 7: ácido trans-4-(etoxicarbonil)-4-metilciclohexil)-5-(trifluorometil)-1H-pirazol-4-carboxílico (D2)

Una mezcla del compuesto D2-6 (20,0 g, 45,6 mmol) y Pd al 5 % sobre carbono (10,0 g, 50 % en peso) en MeOH (200 ml) se agitó en una atmósfera de H_2 (1 atm) durante 4 h. La mezcla se filtró a través de una capa de celite, se lavó con EtOAc (3 x 100 ml) y se concentró a presión reducida. El residuo se trituró con EtOAc al 10 %/hexano (2 x 25 ml) para proporcionar el compuesto D2 (13,0 g, 82 %) en forma de un sólido de color blanco. RMN 1 H (CDCl₃, 300 MHz): δ 8,03 (s, 1H), 4,42-4,41 (m, 1H), 4,15 (c, J = 7,2 Hz, 2H), 2,25-2,21 (m, 2H), 1,92-1,88 (m, 6H), 1,35 (s, 3H), 1,27 (t, J = 7,0 Hz, 3H).

[Ejemplo de referencia D19]

5

10

15

25

30

20 Etapa 1: 1,4-dioxaespiro[4,5]decan-8-ilmetanol (D19-1)

A una suspensión de LiAlH4 (5,69 g, 150 mmol) en THF (100 ml) se añadió gota a gota una solución del compuesto D2-1 (21,4 g, 100 mmol) en THF (100 ml) a 0 °C y la mezcla de reacción se agitó a temperatura ambiente durante 2 h. La mezcla de reacción se enfrió a 0 °C, se inactivó con agua (7 ml) y NaOH 6 M (7 ml) y se agitó a temperatura ambiente durante 20 min. Se añadió Na_2SO_4 (10 g) a la mezcla, se filtró sobre una capa de celite y se lavó con EtOAc (3 x 50 ml). Las capas orgánicas combinadas se lavaron con salmuera (100 ml), agua (100 ml) y se concentraron a presión reducida para proporcionar el compuesto D19-1 (17,0 g, cuant.) en forma de un aceite incoloro. El producto en bruto se usó para la siguiente etapa sin purificación.

Etapa 2: 4-(hidroximetil)ciclohexanona (D19-2)

A una solución agitada del compuesto D19-1 (17,0 g, 9,88 mmol) en acetona (100 ml) se añadió HCl acuoso (2 M, 38 ml) y la mezcla se agitó a temperatura ambiente durante 18 h. El disolvente se retiró a presión reducida y después se diluyó con agua (100 ml) y se extrajo con EtOAc (3 x 100 ml). Las capas orgánicas combinadas se lavaron con agua, se secaron sobre Na₂SO₄ y se concentraron a presión reducida para obtener el compuesto D19-2 (7,5 g, 51 %) en forma de una goma incolora.

Etapa 3: 2-(trans-4-(hidroximetil)ciclohexil)hidrazinacarboxilato de terc-butilo (D19-3)

Una mezcla del compuesto D19-2 (2,0 g, 15,5 mmol) y Boc-hidrazina (2,26 g, 17 mmol) en isopropanol (20 ml) se agitó a temperatura ambiente durante 16 h. Se añadieron Na(CN)BH₃ (2,92 g, 45,6 mmol) y AcOH (1 ml, cat.) y la mezcla se agitó a temperatura ambiente durante 16 h. La mezcla de reacción se inactivó con agua (50 ml) y se extrajo con EtOAc (2 x 50 ml). Las capas orgánicas combinadas se lavaron con agua, se secaron sobre Na₂SO₄ anhidro y se concentraron a presión reducida. El residuo se purificó por cromatografía en columna (gel de sílice, EtOAc al 50 %/hexano como eluyente) para obtener el compuesto D19-3 (820 mg, 22 %) en forma de un semisólido de color blanco.

Etapa 4: clorhidrato de (trans-4-hidrazinilciclohexil)metanol (D19-4)

A una mezcla agitada del compuesto D19-3 (1,8 g, 7,3 mmol) en dioxano (40 ml) se añadió HCl (20 ml, 73 mmol, 4 M en dioxano) y la mezcla se agitó a temperatura ambiente durante 16 h. El disolvente se retiró a presión reducida, se secó en una bomba de alto vacío para proporcionar el compuesto D19-4 (1,7 g, en bruto) en forma de un sólido de color blanquecino.

Etapa 5: 5-amino-1-(trans-4-(hidroximetil)ciclohexil)-1H-pirazol-4-carboxilato de etilo (D19-5)

A una solución del compuesto D19-4 (720 mg, 3,31 mmol) en EtOH (20 ml) se añadieron 2-ciano-3-etoxiacrilato de etilo (448 mg, 2,65 mmol) y NaOAc (571 mg, 6,96 mmol) y la mezcla se agitó a 70 °C durante 18 h. El disolvente se retiró a presión reducida, el residuo se suspendió en agua (20 ml) y se extrajo con EtOAc (3 x 20 ml). Las capas orgánicas combinadas se lavaron con agua, se secaron sobre Na₂SO₄ y se concentraron a presión reducida. El residuo se purificó por reverse cromatografía en columna de fase inversa (gel de sílice C18, CH₃CN al 30 %/agua como eluyente) para proporcionar el compuesto D19-5 (320 mg, 37 %) en forma de un sólido de color pardo rojizo.

Etapa 6: 5-cloro-1-(trans-4-(hidroximetil)ciclohexil)-1H-pirazol-4-carboxilato de etilo (D19-6)

A una suspensión de CuCl (103 mg, 1,04 mmol) en CH₃CN (5 ml) se añadió gota a gota nitrito de terc-butilo (0,134 ml, 1,125 mmol) a 0 °C. Una solución del compuesto D19-5 (200 mg, 0,749 mmol) en CH₃CN (4 ml) se añadió gota a gota a la mezcla anterior a 0 °C y se agitó a la misma temperatura durante 5 min. La mezcla se agitó a temperatura ambiente durante 30 min y a 70 °C durante 30 min. La mezcla de reacción se inactivó con agua (10 ml) y se extrajo con EtOAc (3x10 ml). Las capas orgánicas combinadas se lavaron con agua, se secaron sobre Na₂SO₄ y se concentraron a presión reducida. El residuo se purificó por cromatografía en columna (gel de sílice, EtOAc al 40 %/hexano como eluyente) para proporcionar el compuesto D19-6 (68 mg, 31 %) en forma de un semisólido de color pardo.

Etapa 7: ácido trans-4-(5-cloro-4-(etoxicarbonil)-1H-pirazol-1-il)ciclohexanocarboxílico (D19-7)

A una suspensión de H_5IO_6 (159 mg, 0,698 mmol) en CH_3CN se añadió CrO_3 (0,6 mg, 0,0061 mmol) y la mezcla se agitó a temperatura ambiente durante 30 min. La mezcla se enfrió a 0 °C y se añadió gota a gota una solución del compuesto D19-6 (100 mg, 0,349 mmol). La mezcla de reacción se agitó a la misma temperatura durante 30 min. El disolvente orgánico se retiró a presión reducida, el residuo se suspendió en agua (10 ml) y se extrajo con EVOAC (3 x 10 ml). Las capas orgánicas combinadas se lavaron con agua, se secaron sobre Na_2SO_4 y se concentraron a presión reducida para proporcionar el compuesto D19-7 (105 mg, cuant.) en forma de un sólido de color blanquecino.

30 Etapa 8: 1-(trans-4-(terc-butoxicarbonil)ciclohexil)-5-cloro-1H-pirazol-4-carboxilato de etilo (D19-8)

A una mezcla del compuesto D19-7 (105 mg, 0,35 mmol) y Boc anhídrido (152 mg, 0,70 mmol) en t-BuOH (5 ml) se añadió DMAP (13 mg, 0,105 mmol) y la mezcla se agitó a 35 °C durante 16 h. La mezcla de reacción se inactivó con agua (10 ml) y se extrajo con EtOAc (3x10 ml). Las capas orgánicas combinadas se lavaron con agua, se secaron sobre Na₂SO₄ y se concentraron a presión reducida. El residuo se purificó por reverse cromatografía en columna de fase inversa (C18 gel de sílice, CH₃CN al 90 %/agua como eluyente) para proporcionar el compuesto D19-8 (70 mg, 56 %) en forma de una goma incolora.

Etapa 9: ácido 1-(trans-4-(terc-butoxicarbonil)ciclohexil)-5-cloro-1H-pirazol-4-carboxílico (D19)

A una solución agitada del compuesto D19-8 (70 mg, 0,233 mmol) en THF/MeOH (4 ml, 1:1) se añadió una solución de LiOH (44 mg, 1,86 mmol) en agua (1 ml). La mezcla se agitó a temperatura ambiente durante 4 h. El disolvente orgánico se retiró a presión reducida. El residuo se diluyó con agua (5 ml), se acidificó con KHSO₄ acuoso al 20 % a pH 4 y se extrajo con EtOAc (3x10 ml) para proporcionar el compuesto D19 (62 mg, 90 %) en forma de un sólido de color blanco. RMN 1 H (CDCl₃, 300 MHz): δ 8,01 (s, 1H), 4,29-4,37 (m, 1H), 2,25-2,43 (m, 1H), 2,10-2,19 (m, 2H), 1,99-2,09 (m, 4H), 1,52-1,65 (m, 2H), 1,45 (s, 9H).

[Ejemplo de referencia D20]

45

5

10

25

35

40

Etapa 1: 3-ciclopropil-3-oxopropanoato de bencilo (D20-1)

Una mezcla de 3-ciclopropil-3-oxopropanoato de etilo (5,0 g, 32,0 mmol), alcohol bencílico (8,2 ml, 80,0 mmol) y LiOCI (680 mg, 6,4 mmol) en tolueno (50 ml) se calentó a reflujo durante 48 h en un matraz equipado con un aparato Dean-Stark. La mezcla de reacción se enfrió a temperatura ambiente y el disolvente se retiró a presión reducida para proporcionar el compuesto D20-1 (5,2 g, en bruto) en forma de un aceite de color pardo.

Etapa 2: 2-(ciclopropanocarbonil)-3-(dimetilamino)acrilato de bencilo (D20-2)

Una mezcla del compuesto D20-1 (1,0 g, 4,58 mmol) y dimetilformamida dimetilacetal (0,61 ml, 4,58 mmol) en 1,4-dioxano (25 ml) se agitó a 100 °C durante 13 h. La mezcla de reacción se inactivó con agua (20 ml) y se extrajo con EtOAc (2 x 25 ml). Las capas orgánicas combinadas se lavaron con agua (25 ml) y salmuera (25 ml), se secaron sobre Na₂SO₄ y se concentraron a presión reducida para proporcionar el compuesto D20-2 (1,2 g, en bruto) en forma de una goma de color pardo amarillento.

Etapa 3: 5-ciclopropil-1-(trans-4-(etoxicarbonil)ciclohexil)-1H-pirazol-4-carboxilato de bencilo (D20-3)

A una solución del compuesto D1-2 (809 mg, 2,67 mmol) en EtOH (20 ml) se añadió gota a gota DIPEA (0,45 ml, 2,61 mmol). La mezcla se agitó a temperatura ambiente durante 5 min, posteriormente, se añadió gota a gota una solución del compuesto D20-2 (600 mg, 2,18 mmol) en EtOH (5 ml) y la mezcla de reacción se agitó a temperatura ambiente durante 4 h. La mezcla de reacción se inactivó con agua (200 ml) y se extrajo con EtOAc (2 x 25 ml). Las capas orgánicas combinadas se lavaron con agua (25 ml) y salmuera (25 ml), se secaron sobre Na₂SO₄ anhidro y se concentraron a presión reducida. El residuo se purificó por cromatografía en columna (gel de sílice, EtOAc al 20 %/hexano como eluyente) para proporcionar el compuesto D20-3 (425 mg, impuro) en forma de una goma de color amarillo.

Etapa 4: ácido 5-ciclopropil-1-(trans-4-(etoxicarbonil)ciclohexil)-1H-pirazol-4-carboxílico (D20)

A una solución agitada del compuesto D20-3 (425 mg, 1,07 mmol) en THF/MeOH (20 ml, 1:1) se añadió Pd al 10 % sobre carbono (80 mg, 20 % en peso) y la mezcla se agitó en una atmósfera de H_2 (1 atm) durante 2 h. La mezcla se filtró a través de un lecho de celite y se lavó con EtOAc (3 x 50 ml). El filtrado se concentró a presión reducida. El residuo se trituró con EtOAc al 10 %/hexano (2 x 20 ml) para proporcionar el compuesto D20 (200 mg, en bruto) en forma de un sólido de color blanco.

[Ejemplo de referencia D22]

5

10

15

20

25

40

Etapa 1: 8-etil-1,4-dioxaespiro[4,5]decano-8-carboxilato de etilo (D22-1)

A una solución agitada del compuesto D2-1 (2,1 g, 9,80 mmol) en THF (24 ml) se añadió LDA (2,0 M en THF/heptano/etilbenceno, 7,3 ml, 14,7 mmol) gota a gota a -78 °C durante 5 min. La mezcla se agitó a -78 °C durante 15 min antes de la adición de EtBr (1,09 ml, 14,7 mmol). La mezcla de reacción se agitó a -78 °C durante 1 h. La mezcla se dejó calentar a temperatura ambiente y se agitó a la misma temperatura durante 1 h. La mezcla de reacción se inactivó con NH₄Cl acuoso saturado y se extrajo con EtOAc (2 x 25 ml). Las capas orgánicas combinadas se lavaron con agua (20 ml) y salmuera (20 ml), se secaron sobre Na₂SO₄ anhidro y se concentraron a presión reducida. El residuo se purificó por cromatografía en columna (gel de sílice, EtOAc al 20%/hexano como eluyente) para proporcionar el compuesto D22-1 (2,07 g, 87%) en forma de una goma incolora.

Etapa 2: 1-etil-4-oxociclohexanocarboxilato de etilo (D22-2)

A una solución agitada del compuesto D22-1 (2,07 g, 8,54 mmol) en acetona (60 ml) se añadió HCl acuoso (solución 2 M, 40 ml) a temperatura ambiente. La mezcla se agitó a la misma temperatura durante 16 h. Se retiró acetona a presión reducida. El residuo se basificó con una solución acuosa de NaHCO₃ y se extrajo con DCM (2 x 30 ml). Las capas orgánicas combinadas se lavaron con agua (20 ml) y salmuera (20 ml), se secaron sobre Na₂SO₄ y se concentraron a presión reducida. El residuo se purificó por cromatografía en columna (gel de sílice, EtOAc al 20 %/hexano como eluyente) para dar el compuesto D22-2 (1,85 g, 99 %) en forma de una goma incolora.

Etapa 3: 2-(trans-4-(etoxicarbonil)-4-etilciclohexil)hidrazinacarboxilato de terc-butilo (D22-3)

El compuesto D22-3 (1,57 g, 53 %) se obtuvo en forma de un sólido de color blanco a partir de la reacción del compuesto D22-2 (1,87 g, 9,43 mmol), hidrazinacarboxilato de terc-butilo (1,24 g, 9,4 mmol), AcOH (cat) y NaBH₃CN (1,78 g, 28,29 mmol) en isopropanol (20 ml) usando un procedimiento similar al descrito en el ejemplo de referencia D2, etapa 4:

Etapa 4: clorhidrato de trans-1-etil-4-hidrazinilciclohexanocarboxilato de etilo (D22-4)

El compuesto D22-4 (1,36 g, 100 %) se obtuvo en forma de un sólido de color blanco a partir de la reacción del compuesto D22-3 (1,50 g, 4,78 mmol) y HCl (4 M en 1,4-dioxano, 8,3 ml, 33,4 mmol) usando un procedimiento similar al descrito en el ejemplo de referencia D2, etapa 5,

10 Etapa 5: 1-(trans-4-(etoxicarbonil)-4-etilciclohexil)-5-(trifluorometil)-1H-pirazol-4-carboxilato de bencilo (D22-5)

El compuesto D22-5 (820 mg, 86 %) se obtuvo en forma de una goma incolora a partir de la reacción del compuesto D22-4 (600 mg, 2,1 mmol), el compuesto D1-4 (669 mg, 2,2 mmol) y DIPEA (0,43 ml, 2,52 mmol) en EtOH (12 ml) usando un procedimiento similar al descrito en el ejemplo de referencia D2, etapa 6:

Etapa 6: ácido 1-(trans-4-(etoxicarbonil)-4-etilciclohexil)-5-(trifluorometil)-1H-pirazol-4-carboxílico (D22)

El compuesto D22 (285 mg, 98 %) se obtuvo en forma de un sólido de color blanco a partir de la reacción del compuesto D22-5 (363 mg, 0,80 mmol), Pd al 5 % sobre carbono (85 mg, 30 % en peso) y H₂ (1 atm) en MeOH (6 ml) usando un procedimiento similar al descrito en el ejemplo de referencia D2, etapa 7:

[Ejemplo de referencia D26]

5

35

20 Etapa 1: 4,4-difluoro-3-oxobutanoato de bencilo (D26-1)

El compuesto D26-1 (7,5 mg, en bruto) en forma de un aceite de color amarillo a partir de la reacción de 4,4-difluoro-3-oxobutanoato de etilo (5 g, 0,12 mmol) y BnOH (3,25 g, 30,0 mmol) en tolueno (50 ml) usando un procedimiento similar al descrito en el ejemplo de referencia D1, etapa 3:

Etapa 2: 2-((dimetilamino)metileno)-4,4-difluoro-3-oxobutanoato de bencilo (D26-2)

El compuesto D26-2 (5,8 g, en bruto) se obtuvo en forma de un aceite de color amarillo a partir de la reacción del compuesto D26-1 (5,3 g, 23,2 mmol), dimetil formamida dimetilacetal (6,2 ml, 46,4 mmol) y AcOH (2,05 ml, 46,4 mmol) en THF (50 ml) usando un procedimiento similar al descrito en el ejemplo de referencia D1, etapa 4:

Etapa 3: 5-(difluorometil)-trans-4-(etoxicarbonil)ciclohexil)-1H-pirazol-4-carboxilato de bencilo (D26-3)

El compuesto D26-3 (520 mg, 16 %) se obtuvo en forma de un sólido de color amarillo pálido a partir de la reacción del compuesto D26-2 (1,50 g, 5,28 mmol), el compuesto D1-2 (1,6 g, 5,28 mmol) y DIPEA (1,8 ml, 10,5 mmol) en EtOH (30 ml) usando un procedimiento similar al descrito en el ejemplo de referencia D1, etapa 5:

Etapa 4: ácido 5-(difluorometil)-trans-4-(etoxicarbonil)ciclohexil)-1H-pirazol-4-carboxílico (D26)

El compuesto D26 (255 mg, 63 %) se obtuvo en forma de un sólido de color blanco a partir de la reacción del compuesto D26-3 (520 mg, 1,28 mmol) y Pd al 5 % sobre carbono (70 mg, 30 % en peso) en EtOH (30 ml) usando un procedimiento similar al descrito en el ejemplo de referencia D1, etapa 6: CLEM (APCI): 317 (M+H)⁺.

[Ejemplo de referencia D27]

5

10

15

20

25

30

Etapa 1: 2-((dimetilamino)metileno)-3-oxobutanoato de bencilo (D27-1)

A 3-oxobutanoato de bencilo en agitación (1,1 g, 5,7 mmol), se añadió gota a gota dimetilformamida dimetilacetal (1 ml, 7,4 mmol) a temperatura ambiente. La mezcla se agitó durante 16 h a temperatura ambiente. La mezcla de reacción se concentró a presión reducida y el residuo se destiló azeotrópicamente con tolueno (3x10 ml) para proporcionar el compuesto D27-1 en forma de un aceite de color pardo (1,4 g, cuant.).

Etapa 2: 1-((trans-4-(etoxicarbonil)ciclohexil)-5-metil-1H-pirazol-4-carboxilato de bencilo (D27-2)

A una solución del compuesto D1-2 (1,12 g, 4,3 mmol) en EtOH (10 ml) se añadió gota a gota DIPEA (1,2 ml, 6,7 mmol). La mezcla se agitó a temperatura ambiente durante 5 min. Se añadió gota a gota una solución del compuesto D27-1 (0,97 g, 3,94 mmol) en EtOH (5 ml) y la mezcla de reacción se agitó a temperatura ambiente durante 2 h. La mezcla de reacción se inactivó con agua (20 ml) y se extrajo con EtOAc (2 x 50 ml). Las capas orgánicas combinadas se lavaron con agua (50 ml) y salmuera (50 ml), se secaron sobre Na₂SO₄ y se concentraron a presión reducida. El residuo se purificó por cromatografía en columna (gel de sílice, EtOAc al 20 %/hexano como eluyente) para proporcionar el compuesto D27-2 (0,78 g, 54 %) en forma de un sólido de color blanco.

Etapa 3: ácido 1-((trans-4-(etoxicarbonil)ciclohexil)-5-metil-1H-pirazol-4-carboxílico (D27)

A una solución agitada del compuesto D27-2 (0,78 g, 2,1 mmol) en MeOH (10 ml) se añadió Pd al 5 % sobre carbono (0,19 g, 25 % en peso) y la mezcla se agitó en una atmósfera de H_2 (1 atm) durante 2 h. La mezcla se filtró a través de una capa de celite y se lavó con MeOH (3 x 20 ml). El filtrado se lavó con agua (50 ml) y salmuera (50 ml), se secó sobre Na_2SO_4 anhidro y se concentró a presión reducida. El residuo se trituró con EtOAc al 5 %/hexano (20 ml) para proporcionar el compuesto D27 (0,5 g, 85 %) en forma de un sólido de color blanco. RMN 1 H (300 MHz, DMSO- d_6): δ 1,19 (t, J = 7,2 Hz), 1,56 (m, 2H), 1,88 (m, 4H), 2,00 (m, 2H), 2,35 (m, 1H), 2,50 (s, 3H), 4,07 (c, J = 7,2 Hz, 2H), 4,20 (m, 1H), 7,72 (s, 1H), 12,10 (s, 1H).

[Ejemplo de referencia D28]

Etapa 1: 3-acetilpentano-1,3,5-tricarboxilato de 1,5-di-terc-butil 3-etilo (D28-1)

A una solución agitada de 3-oxobutanoato de etilo (45 g, 345 mmol) y Triton-B (40 %, solución en % en peso en agua, 1,08 mg, 6,90 mmol) en terc-BuOH (54 ml) se añadió gota a gota acrilato de terc-butilo (100,72 g, 691 mmol) durante un periodo de 30 min en una atmósfera de N_2 . La solución se agitó a temperatura ambiente durante 24 h. La mezcla de reacción se repartió entre agua (200 ml) y EtOAc (200 ml). La capa acuosa se lavó con EtOAc (2 x 50 ml). Las capas orgánicas combinadas se lavaron con agua (200 ml) y salmuera (200 ml), se secaron sobre Na_2SO_4 y se concentraron a presión reducida para proporcionar el compuesto D28-1 (140 g, cuant.) en forma de un aceite de color amarillo pálido. RMN 1 H (CDCl $_3$, 400 MHz): δ 4,20 (c, J = 7,2 Hz 2H), 2,24-2,09 (m, 8H), 1,58 (s, 3H), 1,43 (s,

18 Hz), 1,31 (t, J = 7,2 Hz, 3H).

10

20

25

30

Etapa 2: ácido 4-acetil-4-(etoxicarbonil)heptanodioico (D28-2)

A una solución agitada del compuesto D28-1 (140 g, 326 mmol) en DCM (350 ml) se añadió TFA (350 ml) en DCM (350 ml) a 0 °C y la mezcla se agitó a temperatura ambiente durante una noche. El disolvente se retiró a presión reducida y el residuo se co-evaporó con tolueno (3 x 200 ml) para proporcionar el compuesto D28-2 (85 g, cuant.) en forma de un sólido de color blanquecino.

Etapa 3: 1-acetil-4-oxociclohexanocarboxilato de etilo (D28-3)

A una suspensión agitada del compuesto D28-2 (85 g, 310 mmol) en anhídrido acético (255 ml) se añadió piridina (27 ml) y la mezcla se agitó a 145 °C durante 2 h. El disolvente se retiró a presión reducida, el residuo se suspendió en agua (200 ml) y se extrajo con EtOAc (3 x 100 ml). Las capas orgánicas combinadas se lavaron con agua (100 ml) y salmuera (100 ml), se secaron sobre Na_2SO_4 y se concentraron a presión reducida. El residuo se purificó por cromatografía en columna sobre gel de sílice (EtOAc al 14 %/hexano como eluyente) para proporcionar el compuesto D28-3 (11 g, 17 %) en forma de una goma de color pardo. RMN 1 H (CDCl₃, 400 MHz): δ 4,28 (c, J = 7,2 Hz, 2H), 2,44-2,42 (m, 6H), 2,23-2,20 (m, 5H), 1,31 (t, J = 7,2 Hz, 3H).

15 Etapa 4: 4-(bencilamino)-2-oxobiciclo[2,2,2]octano-1-carboxilato de etilo (D28-4)

A una mezcla agitada del compuesto D28-3 (25,0 g, 117 mol) y bencilamina (38,6 ml, 353 mol) en tolueno (250 ml) se añadió p-TsOH (0,22 g, 1,17 mmol) y la mezcla se calentó a reflujo durante 8 h en un matraz equipado con un adaptador Dean-Stark. La mezcla de reacción se enfrió a temperatura ambiente. Se añadió HCl (3 M, 250 ml) a la mezcla de reacción y el total se agitó durante 30 min. La mezcla se neutralizó con una solución acuosa 6 M de NaOH a pH 7. La mezcla de reacción se extrajo con EtOAc (3 x 100 ml). Los extractos orgánicos combinados se lavaron con agua (100 ml) y salmuera (100 ml), se secaron sobre Na₂SO₄ y se concentraron a presión reducida. El residuo se purificó por cromatografía en columna sobre gel de sílice (EtOAc al 50 %/hexano como eluyente) para proporcionar el compuesto D28-4 (30 g, 85 %) en forma de un sólido de color blanquecino. RMN ¹H (CDCl₃, 400 MHz): δ 7,40-7,21 (m, 5H), 6,44-6,32 (m, 2H), 4,20 (c, *J* = 7,2 Hz, 2H), 3,74 (s, 1H), 2,45 (s, 2H), 2,30-2,20 (m, 2H), 2,10-1,95 (m, 2H), 1,89-1,75 (m, 4H), 1,27 (t, *J* = 6,8 Hz, 3H).

Etapa 5: 4-(bencilamino)-2-hidroxibiciclo[2,2,2]octano-1-carboxilato de etilo (D28-5)

A una solución agitada del compuesto D28-4 (30,0 g, 99,0 mmol) en EtOH (300 ml) se añadió NaBH₄ sólido (5,64 g, 148 mmol) en porciones a 0 °C. El total se agitó a temperatura ambiente durante 30 min. La mezcla se inactivó con agua (100 ml) y se extrajo con EtOAc (3 x 200 ml). Las capas orgánicas combinadas se lavaron con agua (150 ml) y salmuera (150 ml), se secaron sobre Na₂SO₄ y se concentraron a presión reducida. El residuo se purificó por cromatografía en columna sobre gel de sílice (EtOAc al 80 %/hexano como eluyente) para proporcionar el compuesto D28-5 (14 g, 46 %) en forma de un sólido de color blanco.

Etapa 6: 4-(bencilamino)-2-((metilsulfonil)oxi)biciclo[2,2,2]octano-1-carboxilato de etilo (D28-6)

A una solución agitada del compuesto D28-5 (14,0 g, 46,0 mmol) y Et₃N (12,8 ml,57,5 mmol) en THF/tolueno (125 ml, 1:4) se añadió MsCl (4,47 ml, 57,5 mmol) a 0 °C y la mezcla se agitó a temperatura ambiente durante 1 h. La mezcla de reacción se inactivó con agua (100 ml) y se extrajo con tolueno (50 ml). La capa orgánica se separó, se secó sobre Na₂SO₄ y se concentró a presión reducida para proporcionar el compuesto D28-6 (14 g, en bruto). El producto en bruto se usó en la siguiente etapa sin purificación.

Etapa 7: 4-(bencilamino)biciclo[2,2,2]oct-2-eno-1-carboxilato de etilo (D28-7)

A una solución agitada del compuesto D28-6 (17,6 g, 46,3 mol) y Nal (1,38 g, 9,25 mmol) en tolueno (170 ml) se añadieron DBU (34,65 ml, 231 mmol) y DMA (50 ml), y el total se agitó a 120 °C durante 43 h. La mezcla de reacción se inactivó con agua (100 ml) y se extrajo con EtOAc (2 x 100 ml). Las capas orgánicas combinadas se lavaron con agua (50 ml) y salmuera (50 ml), se secaron sobre Na₂SO₄ anhidro y se concentraron a presión reducida. El residuo se purificó por cromatografía en columna (gel de sílice, EtOAc al 50 %/hexano como eluyente) para proporcionar el compuesto D28-7 (8 g, 61 %, en dos etapas) en forma de un sólido de color blanquecino. RMN ¹H (CDCl₃, 400 MHz): δ 7,36-7,32 (m, 5H), 6,44 (d, *J* = 8,8 Hz, 1H), 6,32 (d, *J* = 8,8 Hz, 1H), 4,19 (c, *J* = 7,2 Hz, 2H), 3,86 (s, 2H), 2,04-1,97 (m, 2H), 1,65-1,50 (m, 6H), 1,28 (t, *J* = 7,2 Hz, 3H).

Etapa 8: 4-aminobiciclo[2,2,2]octano-1-carboxilato de etilo (D28-8)

A una solución agitada del compuesto D28-7 (8,0 g, 28,0 mmol) en MeOH (80 ml) se añadió Pd al 10 % sobre carbono (1,6 g, 20 % en peso) y el total se agitó durante 5 h en una atmósfera de H₂ (1 atm). La mezcla de reacción se filtró a través de una capa de celite y se lavó con MeOH (2 x 30 ml). El filtrado se concentró a presión reducida para proporcionar el compuesto D28-8 (5,2 g, 94 %) en forma de una goma incolora. RMN ¹H (CDCl₃, 400 MHz): δ 4,00 (c, *J* = 7,2 Hz, 2H), 1,88-1,84 (m, 4H), 1,56-1,55 (m, 8H), 1,15 (t, *J* = 7,2 Hz, 3H).

Etapa 9: 4-cianobencilidenocarbamato de terc-butilo (D28-9)

Una mezcla de 4-formilbenzonitrilo (12,0 g, 9,16 mol) y (trifenilfosforanilideno)carbamato de terc-butilo (36,3 g, 9,61 mol) en tolueno (60 ml) se calentó a reflujo durante 18 h. El sólido precipitado se retiró por filtración. El filtrado se concentró a presión reducida para proporcionar el compuesto D28-9 (13 g, en bruto) en forma de una goma incolora.

5 Etapa 10: 3-(4-cianofenil)-1,2-oxaziridina-2-carboxilato de terc-butilo (D28-10, mezcla de isómero cis y trans)

A una solución agitada del compuesto D28-9 (13 g, 1,67 mmol) en CHCl $_3$ (220 ml) se añadió una solución preenfriada de K $_2$ CO $_3$ (50 g) en agua (400 ml) a 0 °C y la mezcla se agitó vigorosamente. Se añadió una solución preenfriada de Oxone (80 g) en agua (800 ml) y el total se agitó a 0 °C durante 50 min. La mezcla de reacción se sometió a diez de tales ciclos. La capa orgánica combinada se separó, se lavó con agua (200 ml) y salmuera (200 ml), se secó sobre Na $_2$ SO $_4$ anhidro y se concentró a presión reducida. El residuo se purificó por reverse cromatografía en columna de fase inversa (gel de sílice C18, CH $_3$ CN al 45-50 %/agua como eluyente) para proporcionar el compuesto D28-10 (1,3 g, 14 % en dos etapas) en forma de un sólido de color blanco. RMN 1 H (CDCl $_3$, 400 MHz, mezcla de cis y trans): δ 7,73- 7,58 (m, 6,5H), 5,29 (s, 0.3H), 5,06 (s, 1H), 1,57 (s, 3H), 1,55 (s, 9H)

15 Etapa 11: 2-(4-(etoxicarbonil)biciclo[2,2,2]octan-1-il)hidrazinacarboxilato de terc-butilo (D28-11)

Una mezcla del compuesto D28-8 (0,8 g, 4,04 mmol) y el compuesto D28-10 (1,03 g, 4,24 mmol) en DCM (20 ml) se agitó durante 3 h a 0 °C. La mezcla de reacción se inactivó con agua (10 ml) y se extrajo con DCM (2x10 ml). Las capas orgánicas combinadas se lavaron con agua (10 ml) y salmuera (10 ml), se secaron sobre Na_2SO_4 y se concentraron a presión reducida. El residuo se purificó por cromatografía en columna (gel de sílice, EtOAc al 10%/hexano como eluyente) para proporcionar el compuesto D28-11 (0,6 g, 50%) en forma de un sólido de color blanco.

Etapa 12: clorhidrato de 4-hidrazinilbiciclo [2,2,2] octano-1-carboxilato de etilo (D28-12)

Una mezcla del compuesto D28-11 (0,6 g, 1,92 mmol) y HCl 4 M en dioxano (4,80 ml, 19,2 mmol) se agitó a temperatura ambiente durante 18 h. El disolvente se retiró a presión reducida. El residuo se co-evaporó con hexano dos veces para proporcionar el compuesto D28-12 (0,58 g, en bruto) en forma de un sólido de color blanco.

Etapa 13: 1-(4-(etoxicarbonil)biciclo[2,2,2]octan-1-il)-5-(trifluorometil)-1H-pirazol-4-carboxilato de bencilo (D28-13)

A una mezcla agitada del compuesto D28-12 (0,58 g, 2,04 mmol) y DIPEA (0,69 ml, 4,08 mmol) en EtOH (10 ml) se añadió una solución del compuesto D1-4 (0,64 g, 2,15 mmol) en EtOH (10 ml). La mezcla se agitó a temperatura ambiente durante 2 h. La mezcla de reacción se inactivó con agua (20 ml) y se extrajo con EtOAc (2 x 20 ml). Las capas orgánicas combinadas se lavaron con agua (20 ml) y salmuera (20 ml), se secaron sobre Na_2SO_4 y se concentraron a presión reducida. El residuo se purificó por cromatografía en columna (gel de sílice, EtOAc al 10 %/hexano como eluyente) para proporcionar el compuesto D28-13 (0,2 g, 21 %) en forma de una goma de color amarillo claro. RMN 1 H (CDCl₃, 400 MHz): δ 7,81-7,80 (s,1H), 7,39-7,25 (m, 5H), 5,29 (s, 2H), 4,11 (c, J = 7,2 Hz, 2H), 2,27-2,23 (m, 6H), 2,02-1,99 (m, 6H), 1,25 (t, J = 7,2 Hz, 3H).

35 Etapa 14: ácido 1-(4-(etoxicarbonil)biciclo[2,2,2]octan-1-il)-5-(trifluorometil)-1H-pirazol-4-carboxílico (D28)

A una solución agitada del compuesto D28-13 (0,2 g, 0,44 mmol) en MeOH se añadió Pd al 10 % sobre carbono (40 mg, 30 % en peso) y el total se agitó en una atmósfera de H_2 (1 atm) durante 5 h. La mezcla de reacción se filtró a través de una capa de celite, se lavó con MeOH (3 x 30 ml). El filtrado se concentró a presión reducida. El residuo se trituró con hexano (2x10 ml) y el sólido resultante se filtró para proporcionar el compuesto D28 (0,15 g, 93 %) en forma de un sólido de color blanco. RMN 1 H (CDCl₃, 400 MHz): δ 7,90 (s, 1H), 4,14 (c, J = 7,2 Hz, 2H), 2,30-2,26 (m, 6H), 2,04-2,00 (m, 6H), 1,25 (t, J = 7,2 Hz, 3H).

[Ejemplo de referencia D30]

10

20

25

30

40

Etapa 1: 5-(difluorometil)-trans-4-(etoxicarbonil)-4-metilciclohexil)-1H-pirazol-4-carboxilato de bencilo (D30-1)

45 El compuesto D30-1 (1,91 g, 50 %) se obtuvo en forma de un sólido de color amarillo pálido a partir de la reacción del compuesto D26-2 (2,7 g, 9,55 mmol), el compuesto D2-5 (2,6 g, 9,55 mmol) y DIPEA (3,3 ml, 19,1 mmol) en EtOH (50 ml) usando un procedimiento similar al descrito en el ejemplo de referencia D1, etapa 5: RMN ¹H (CDCl₃. 400 MHz): δ 7,94 (s, 1H), 7,40 -7,35 (m, 6H), 5,30 (s, 2H), 4,36 (m, 1H), 4,15 (c, *J* = 7,2 Hz, 2H), 2,24 2,19 (m, 2H), 1,88-1-87 (m, 6H), 1,3 (s, 3H), 1,26 (t, *J* = 7,2 Hz, 3H).

Etapa 2: ácido 1-trans-4-(etoxicarbonil)ciclohexil-5-(trifluorometil)-1H-pirazol-4-carboxílico (D30)

El compuesto D30 (1,19 g, 79%) se obtuvo en forma de un sólido de color blanco a partir de la reacción del compuesto D30-1 (1,91 g, 4,54 mmol) y Pd al 5 % sobre carbono (200 mg, 10% en peso) en EtOH (30 ml) usando un procedimiento similar al descrito en el ejemplo de referencia D1, etapa 6: RMN 1 H (CDCl₃, 300 MHz): δ 8,03 (s, 1H), 7,51 (t, J = 51,6 Hz), 4,4-4,42 (m, 1H). 4,15 (c, J = 7,2 Hz, 2H). 2,2-2,25 (m, 2H), 1,88-1,92 (m, 6H), 1,35 (s, 3H), 1,27 (t, J = 7,0 Hz, 3H).

[Ejemplo de referencia D33]

5

20

30

Etapa 1: 5-Amino-1-(trans-4-(etoxicarbonil)-4-metilciclohexil)-1H-pirazol-4-carboxilato de etilo (D33-1)

A una solución de 2-ciano-3-etoxiacrilato de etilo (19 g, 70 mmol) y el compuesto D2-5 (11,96 g, 70 mmol) en EtOH (100 ml.) se añadió acetato sódico (11,54 g, 140 mmol) y la mezcla se calentó a reflujo durante 6 h. La mezcla de reacción se inactivó con agua y se extrajo con DCM. La capa orgánica se lavó con salmuera, se secó sobre Na₂SO₄ y se concentró a presión reducida. El residuo se purificó por cromatografía en columna (gel de sílice, EtOAc al 30 %/hexano como eluyente) para proporcionar el compuesto D33-1 (16 g, 45 %) en forma de un sólido de color amarillo.

Etapa 2: 5-cloro-1-(trans-4-(etoxicarbonil)-4-metilciclohexil)-1H-pirazol-4-carboxilato de etilo (D33-2)

A una mezcla agitada de cloruro de cobre (I) (0,77 g, 7,8 mmol) en CH₃CN (10 ml) a 0 °C se añadió nitrito de tercbutilo (0,92 ml, 7,8 mmol). Una solución del compuesto D33-1 (1,26 g, 3,9 mmol) en CH₃CN (10 ml) se añadió gota a gota a la mezcla a la misma temperatura. La mezcla de reacción se calentó a temperatura ambiente y se agitó a la misma temperatura durante 1 h y a 60 °C durante 1 h más. La mezcla de reacción se inactivó con HCl 6 M (10 ml) a 0 °C y se extrajo con DCM (3 x 100 ml). Las capas orgánicas combinadas se lavaron con agua (100 ml) y salmuera (100 ml), se secaron sobre Na₂SO₄ y se concentraron a presión reducida. El residuo se purificó por cromatografía en columna (gel de sílice, EtOAc al 30 %/hexano como eluyente) para proporcionar el compuesto D33-2 (0,3 g, 37 %) en forma de una goma incolora.

25 Etapa 3: ácido 5-cloro-1-(trans-4-(etoxicarbonil)-4-metilciclohexil)-1H-pirazol-4-carboxílico (D33)

A una solución del compuesto D33-2 (0,6 g, 1,75 mmol) en EtOH (10 ml) se añadió gota a gota una solución 1 N de NaOH a temperatura ambiente. La mezcla se agitó durante 45 min. El pH de la mezcla de reacción se ajustó a 3 y se extrajo con EtOAc (2 x 200 ml). Las capas orgánicas combinadas se lavaron con agua (100 ml) y salmuera (100 ml), se secaron sobre Na₂SO₄ anhidro y se concentraron a presión reducida. El residuo se purificó por cromatografía en columna de fase inversa (gel de sílice C18, CH₃CN al 80 %/agua como eluyente) para proporcionar el compuesto D33 (0,4 g, 55 %) en forma de un sólido de color blanquecino.

[Ejemplo de referencia D41]

ácido 1-((1S,3R,4S)-4-(etoxicarbonil)-3-metilciclohexil)-5-(trifluorometil)-1H-pirazol-4-carboxílico

Etapa 1: 2-metil-4-oxociclohexanocarboxilato de (1S,2R)-etilo (racémico)

5

10

15

20

25

30

35

En un matraz Parr se añadió paladio al 10 % sobre carbono (húmedo tipo degussa) (4,47 g, 4,20 mmol) en EtOH (378 ml). Después, se añadieron 2-metil-4-oxo-2-ciclohexeno-1-carboxilato de etilo (23,65 ml, 140 mmol) y ácido clorhídrico 5 N (1,679 ml, 8,40 mmol) en la mezcla de reacción. La atmósfera del matraz se desgasificó y después se cargó con hidrógeno (0,34 MPa (50 psi)). La mezcla se dejó en agitación en condiciones de hidrogenación durante 30 min. El progreso de la reacción se controló por CL/EM y TLC (EtOAc al 50 %/hexano; mancha de permanganato potásico), lo que sugirió la finalización de la reacción. La mezcla se filtró a través de una capa de celite y la torta de filtro se aclaró con EtOH. La mezcla se concentró al vacío. El material en bruto se purificó por cromatografía a través de una columna de gel de sílice (220 g) Interchim (15 micrómetros), eluyendo con un gradiente de EtOAc al 0-50 % en hexano, para proporcionar 2-metil-4-oxociclohexanocarboxilato de (1S,2R)-etilo (18,277 g, 99 mmol, rendimiento 70,9 %) (Racémico) en forma de un aceite de color amarillo claro. RMN ¹H (400 MHz, CDCl₃) 5 4,19 (dtt, 2H), 2,85 (td, *J* = 4,25, 8,31 Hz, 1H), 2,43-2,58 (m, 4H), 2,31 (ddd, *J* = 6,06, 8,75, 14,72 Hz, 1H), 2,01-2,21 (m, 2H), 1,29 (t, *J* = 7,14 Hz, 3H), 0,98 (d, *J* = 6,85 Hz, 3H); CLEM (IEN) m/z 185,0 (M+H)⁺.

Etapa 2: 2-metil-4-oxociclohexanocarboxilato de (1S,2R)-etilo (Quiral)

Se separó 2-metil-4-oxociclohexanocarboxilato de (1S,2R)-etilo (racémico) en pico 1 quiral y pico 2 quiral por HPLC de fase normal; Varian Cardinals SD1, sistema de fase normal (10 x 50 cm; columna AS de 20 micrómetros). Método: EtOH al 10 % en Heptano; Caudal: 400 ml/min. Detección: 220 nm, 300 nm. Este método de purificación proporcionó el pico 1, 2-metil-4-oxociclohexanocarboxilato de (1S,2R)-etilo (>98 % ee) en forma de un aceite incoloro. RMN 1 H (400 MHz, CDCl $_3$) δ 4,19 (quin dd, 2H), 2,85 (td, J = 4,25, 8,31 Hz, 1H), 2,43-2,58 (m, 4H), 2,31 (ddd, J = 6,16, 8,66, 14,72 Hz, 1H), 2,01-2,21 (m, 2H), 1,24-1,32 (m, 3H), 0,98 (d, J = 6,85 Hz, 3H); CLEM (IEN) m/z 185,0 (M+H) $^+$. El pico 2, 2-metil-4-oxociclohexanocarboxilato de (1R,2S)-etilo (>95 % ee) en forma de un aceite incoloro. RMN 1 H (400 MHz, CDCl $_3$) δ 4,19 (quin dd, 2H), 2,85 (td, J = 4,13, 8,36 Hz, 1H), 2,43-2,58 (m, 4H), 2,31 (ddd, J = 6,16, 8,66, 14,72 Hz, 1H), 2,01-2,21 (m, 2H), 1,29 (t, J = 7,14 Hz, 3H), 0,98 (d, J = 6,85 Hz, 3H); CLEM (IEN) m/z 185,0 (M+H) $^+$.

Etapa 3: 2-((1S,3R,4S)-4-(etoxicarbonil)-3-metilciclohexil) hidrazinacarboxilato de terc-butilo

En un matraz de fondo redondo de 3 bocas y 500 ml se añadió 2-metil-4-oxociclohexanocarboxilato de (1S,2R)-etilo (10,00 g, 54,3 mmol) en cloroformo (201 ml). Después, se añadió AcOH glacial (3,13 ml, 54,3 mmol) y carbazato de terc-butilo (7,89 g, 59,7 mmol) en la mezcla de reacción. El matraz se puso en un baño precalentado (30 °C) y se dejó en agitación 10 min. Después, se añadió lentamente NaBH(OAc)₃ (34,5 g, 163 mmol) en la mezcla de reacción en pequeñas porciones. El baño se retiró después de la adición y la mezcla total se dejó en agitación en una atmósfera inerte durante 16 h. El progreso de la reacción se controló por CL/EM y TLC (EtOAc al 30 %/DCM; mancha de Ninhidrina) que sugirió la finalización de la reacción. La mezcla se neutralizó con la adición lenta de NaHCO₃ ac. sat. a la mezcla de reacción. Después de neutralizarse el material, las capas se separaron y la capa acuosa se extrajo con DCM (3 x). Los extractos orgánicos combinados se secaron sobre Na₂SO₄, se filtraron y se

concentraron al vacío. La muestra en bruto se analizó por TLC (EtOAc al 30 %/hexano; mancha de ninhidrina; Pico 1: Fr = 0,46 y Pico 2: Fr = 0,38). El material en bruto se dividió en dos porciones y se purificó por cromatografía a través de una columna de gel de sílice (300 g) Interchim (25 micrómetros) *(Se usaron dos columnas 300 Gram), eluyendo con un gradiente de EtOAc al 0-30 % en hexano, para proporcionar 2-((1 R,3R,4S)-4-(etoxicarbonil)-3-metilciclohexil) hidrazinacarboxilato de terc-butilo (8,512 g, 28,3 mmol, rendimiento 52,2 %) (Pico 1; Cis) RMN 1 H (400 MHz, CDCl₃) δ 6,03-6,28 (m, 1H), 4,07-4,16 (m, 2H), 3,59-3,90 (m, 1H), 2,76-2,97 (m, 1H), 2,55 (d, J = 2,74 Hz, 1H), 2,01 (dd, J = 3,03, 13,40 Hz, 1H), 1,59-1,77 (m, 3H), 1,49-1,56 (m, 2H), 1,46 (s, 10H), 1,19-1,31 (m, 3H), 1,02 (d, J = 7,04 Hz, 3H); CLEM (IEN) m/z 301,1 (M+H) $^+$ y 2-((1 S,3R,4S)-4-(etoxicarbonil)-3-metilciclohexil) hidrazinacarboxilato de terc-butilo (5,089 g, 16,94 mmol, rendimiento 31,2 %) (Pico 2; trans) RMN 1 H (400 MHz, DMSO-d₆) δ 7,89-8,27 (m, 1H), 5,75 (s, 1H), 4,08-4,19 (m, 1H), 2,74-2,93 (m, 1H), 2,21-2,46 (m, 2H), 1,99 (s, 1H), 1,66 (d, J = 3,91 Hz, 3H), 1,38 (s, 9H), 1,14-1,26 (m, 5H), 0,79 (d, J = 7,04 Hz, 3H); CLEM (IEN) m/z 301,1 (M+H) $^+$.

Etapa 4: clorhidrato de 4-hidrazinil-2-metilciclohexanocarboxilato de (1S,2R,4S)-etilo

En un matraz de fondo redondo de 250 ml se añadió 2-((1S,3R,4S)-4-(etoxicarbonil)-3-metilciclohexil)hidrazinacarboxilato de terc-butilo (5,089 g, 16,94 mmol) en EtOH (56,5 ml). Después, se añadió cloruro de hidrógeno, solución 4,0 M en 1,4-dioxano (72,0 ml, 288 mmol) en la mezcla de reacción. La mezcla total se dejó en agitación en una atmósfera inerte durante una noche. El progreso de la reacción se controló por TLC (EtOAc al 30 % en hexano; mancha de ninhidrina), lo que sugirió la finalización de la reacción. La mezcla se concentró al vacío. El residuo se diluyó con hexano y se concentró al vacío. Esto dio clorhidrato de 4-hidrazinil-2-metilciclohexanocarboxilato de (1S,2R,4S)-etilo (4,60 g) en forma de un sólido de color blanco. Este material se llevó a la siguiente etapa de la síntesis, sin purificación adicional. CLEM (IEN) m/z 201.2 (M+H)⁺.

Etapa 5: 1-((1S,3R,4S)-4-(etoxicarbonil)-3-metilciclohexil)-5-(trifluorometil)-1H-pirazol-4-carboxilato de bencilo

En un matraz de fondo redondo de 250 ml se añadió clorhidrato de 4-hidrazinil-2-metilciclohexanocarboxilato de (1S,2R,4S)-etilo (4,00 g, 16,90 mmol) y DIPEA (4,43 ml, 25,3 mmol) en EtOH (84 ml). Después, se añadió gota a gota una solución de 2-((dimetilamino)metileno)-4,4,4-trifluoro-3-oxobutanoato de (Z)-bencilo (5,09 g, 16,90 mmol) en EtOH (84 ml) en la mezcla de reacción. La mezcla de reacción total se dejó en agitación en una atmósfera inerte, mientras estaba a temperatura ambiente durante una noche. El progreso de la reacción se controló por CL/EM y TLC (EtOAc al 30 %/hexano) que mostró en su mayoría el material deseado CLEM (IEN) m/z 461,2 (M+Na)⁺, sin ningún material de partida restante. La mezcla de reacción se concentró al vacío. El material en bruto se purificó por cromatografía a través de una columna de gel de sílice (200 g) Interchim (25 micrómetros), eluyendo con un gradiente de EtOAc al 0-30% en hexano, para proporcionar 1-((1 S,3R,4S)-4-(etoxicarbonil)-3-metilciclohexil)-5-(trifluorometil)-1H-pirazol-4-carboxilato de bencilo (5,631 g, 12,84 mmol, rendimiento 76 %) en forma de un aceite de color amarillo claro. RMN ¹H (400 MHz, DMSO-d₆) δ 8,14 (s, 1H), 7,32-7,45 (m, 5H), 5,30 (s, 2H), 4,55-4,65 (m, 1H), 4,02-4,15 (m, 2H), 2,65 (td, *J* = 4,50, 11,54 Hz, 1H), 2,13 (dt, *J* = 4,50, 12,42 Hz, 1H), 1,95-2,04 (m, 2H), 1,73 (d, *J* = 4,89 Hz, 3H), 1,16-1,23 (m, 3H), 0,92 (d, *J* = 7,04 Hz, 3H); CLEM (IEN) m/z 461,2 (M+Na)⁺.

35 Etapa 6: ácido 1-((1 S,3R,4S)-4-(etoxicarbonil)-3-metilciclohexil)-5-(trifluorometil)-1H-pirazol-4-carboxílico

*(La hidrogenación se realizó con un aparato de maleta)

Un vial presurizado se cargó con paladio al 10 % peso (base seca) sobre carbono activado, húmedo (1,367 g, 1,284 mmol) mientras estaba en una corriente de N_2 (gas). Después, se añadió una solución de 1-((1 S,3R,4S)-4-(etoxicarbonil)-3-metilciclohexil)-5-(trifluorometil)-1H-pirazol-4-carboxilato de bencilo (5,631 g, 12,84 mmol) en una mezcla 1:1 de EtOH (32,1 ml)/EtOAc (32,1 ml) en el vial. La atmósfera de la mezcla de reacción se purgó con gas de hidrógeno (3 x). La reacción se agitó vigorosamente en condiciones de hidrogenación (0,34 MPa (35 psi)) durante 2,5 h. El progreso de la reacción se controló por CL/EM, lo que sugirió la finalización de la reacción CLEM (IEN) m/z 371,2 (M+Na) $^{+}$. La mezcla se filtró a través de un lecho de celite y el filtrado se concentró al vacío. El residuo se diluyó con hexano y se agitó. El precipitado se recogió por filtración y los sólidos se enjuagaron con hexano. Esto dio ácido 1-((1 S,3R,4S)-4-(etoxicarbonil)-3-metilciclohexil)-5-(trifluorometil)-1H-pirazol-4-carboxílico (3,810 g, 10,94 mmol, rendimiento 85 %) en forma de un sólido de color blanco. RMN 1 H (400 MHz, DMSO-d₆) $^{-}$ O 7,91-8,21 (m, 1H), 4,47-4,69 (m, 1H), 4,01-4,16 (m, 2H), 2,56-2,70 (m, 1H), 2,12 (dt, $^{-}$ J = 4,21, 12,37 Hz, 1H), 1,93-2,06 (m, 2H), 1,71-1,90 (m, 3H), 1,19 (t, $^{-}$ J = 7,04 Hz, 3H), 0,92 (d, $^{-}$ J = 7,04 Hz, 3H); CLEM (IEN) m/z 371,2 (M+Na) $^{+}$.

[Ejemplo de referencia D43]

10

15

20

25

30

40

45

50 compuestos de ácido 1-((1R,3R,4R)-4-(etoxicarbonil)-3-metilciclohexil)-5-(trifluorometil)-1H-pirazol-4-carboxílico con ácido 1-((1S,3S,4S)-4-(etoxicarbonil)-3-metilciclohexil)-5-(trifluorometil)-1H-pirazol-4-carboxílico (1:1) (D43)

Etapa 1: Compuesto de 2-((1R,3R,4R)-4-(etoxicarbonil)-3-metilciclohexil)hidrazinacarboxilato de terc-butilo con 2-((1 S,3S,4S)-4-(etoxicarbonil)-3-metilciclohexil)hidrazinacarboxilato de terc-butilo (1:1) (D43-1)

A una mezcla racémica homogénea de compuesto de 2-metil-4-oxociclohexanocarboxilato de (1R,2R)-etilo con 2-metil-4-oxociclohexanocarboxilato de (1S,2S)-etilo (1:1) (1,600 g, 8,68 mmol) se añadió carbazato de terc-butilo (1,263 g, 9,55 mmol), AcOH (1,038 ml, 17,98 mmol) y NaBH(OAc)₃ (6,00 g, 28,3 mmol). La mezcla heterogénea de color amarillo claro se agitó a temperatura ambiente. Después de 24 h, la CLEM (IEN) y la TLC indicaron que la reacción estaba completa, dos picos con 323,1 (M+Na).

[TLC]: (30 % de EtOAc en Hexano, manchado con ácido fosfomolíbdico en EtOH)

F_r del reactivo = 0,47, F_r de producto 1,4-cis deseado = 0,42, F_r de producto 1,4-trans deseado = 0,25. La mezcla de reacción se vertió en una solución acuosa saturada de NaHCO₃ (150 ml). La mezcla de reacción se extrajo con DCM (2 x 100 ml). El extracto orgánico se secó sobre Na₂SO₄. La solución se filtró y se concentró al vacío para dar el material en bruto en forma de un aceite incoloro. El material en bruto se absorbió sobre un lecho de gel de sílice y se purificó por cromatografía en columna sobre gel de sílice eluyendo con un gradiente de EtOAc del 0 % al 25 % en hexano para proporcionar dos fracciones:

Primera fracción para punto mayor (1,4-cis): ($F_r = 0,42$ a 30 % de EtOAc en Hexano) compuesto de 2-((1R,3S,4S)-4-(etoxicarbonil)-3-metilciclohexil)hidrazinacarboxilato de terc-butilo con 2-((1 S,3R,4R)-4-(etoxicarbonil)-3-metilciclohexil)hidrazinacarboxilato de terc-butilo (1:1) (1,4418 g, 4,80 mmol, rendimiento 55,3 %) en forma de un jarabe de color amarillo claro: RMN 1 H (300 MHz, CDCl₃) δ 6,05 (1 H, s. a.), 4,14 (2 H, c, J = 7,1 Hz), 3,25 (1 H, s. a.), 1,12 - 2,22 (21 H, m), 0,88 (3 H, d, J = 6,6 Hz); CLEM (IEN) m/z 301,1 (M+H) $^+$ y m/z 323,1 (M+Na) $^+$.

Segunda fracción para punto menor (1,4-cis): Producto deseado (Fr = 0,25 a 30 % de EtOAc en Hexano) compuesto de 2-((1R,3R,4R)-4-(etoxicarbonil)-3-metilciclohexil)hidrazinacarboxilato de terc-butilo con 2-((1 S,3S,4S)-4-(etoxicarbonil)-3-metilciclohexil)hidrazinacarboxilato de terc-butilo (1:1) (D43-1) (0,5467 g, 1,820 mmol, rendimiento 20,96 %) en forma de un sólido meloso de color blanquecino. RMN 1 H (300 MHz, CDCl₃) δ 6,05 (1H, s. a.), 4,06-4,23 (2H, m), 2,81-2,99 (1H, m), 1,65-2,07 (5H, m), 1,39-1,56 (10H, m), 1,20-1,31 (4H, m), 0,99-1,16 (1H, m), 0,79-0,96 (4H, m); CLEM (IEN) m/z 323,1 (M+Na) $^{+}$.

[NOTA]: La segunda fracción se usó en la Etapa 2.

5

20

25

Etapa 2: compuesto de 4-hidrazinil-2-metilciclohexanocarboxilato de (1R,2R,4R)-etilo con diclorhidrato de 4-hidrazinil-2-metilciclohexanocarboxilato de (1S,2S,4S)-etilo (1:1) (D43-2)

A una mezcla de compuesto de 2-((1 R,3R,4R)-4-(etoxicarbonil)-3-metilciclohexil)hidrazinacarboxilato de terc-butilo con 2-((1S,3S,4S)-4-(etoxicarbonil)-3-metilciclohexil)hidrazinacarboxilato de terc-butilo (1:1) (D42-1) (0,5245 g, 1,746 mmol) en EtOH (4,37 ml) se añadió cloruro de hidrógeno, 4 M en 1,4-dioxano (4,37 ml, 17,46 mmol). La mezcla de color amarillo claro transparente se agitó a temperatura ambiente. Después de 42 h (mezcla heterogénea de color blanco), la CL-EM (IEN) mostró que la reacción estaba completa, se formó el producto deseado (m/z 201,2 (M+1)).
 La mezcla se concentró al vacío para proporcionar compuesto de 4-hidrazinil-2-metilciclohexanocarboxilato de (1R,2R,4R)-etilo con diclorhidrato de 4-hidrazinil-2-metilciclohexanocarboxilato de (1S,2S,4S)-etilo (1:1) (D43-2) en forma de un sólido de color amarillo claro. RMN ¹H (300 MHz, DMSO-d₆) δ 4,07 (2H, c, *J* = 7,0 Hz), 2,88-3,05 (1H, m), 2,04 (2H, t, *J* = 11,6 Hz), 1,80-1,96 (2H, m), 1,52-1,73 (1H, m), 1,12-1,46 (5H, m), 0,78-1,08 (4H, m); CLEM (IEN) m/z 201,2 (M+H)⁺.

Etapa 3: compuesto de 1-((1R,3R,4R)-4-(etoxicarbonil)-3-metilciclohexil)-5-(trifluorometil)-1H-pirazol-4-carboxilato de bencilo con 1-((1 S,3S,4S)-4-(etoxicarbonil)-3-metilciclohexil)-5-(trifluorometil)-1H-pirazol-4-carboxilato de bencilo (1:1) (D43-3)

A una mezcla de compuesto de 4-hidrazinil-2-metilciclohexanocarboxilato de (1R,2R,4R)-etilo con diclorhidrato de 4-hidrazinil-2-metilciclohexanocarboxilato de (1S,2S,4S)-etilo (1:1) (D42-2) (0,413 g, 1,745 mmol) en EtOH (13,42 ml) se añadió DIPEA (0,669 ml, 3,84 mmol) seguido de una solución de 2-((dimetilamino)metileno)-4,4,4-trifluoro-3-oxobutanoato de (Z)-bencilo (0,526 g, 1,745 mmol) en EtOH (5 ml). La mezcla de color pardo transparente se agitó a temperatura ambiente. Después de 15 h, la CL-EM (IEN) mostró que la reacción estaba completa, se formó el producto deseado (m/z 439,1 (M+I)). La mezcla de reacción se concentró al vacío. El residuo se diluyó con agua (50 ml) y se extrajo con EtOAc (2 x 100 ml). El extracto orgánico se lavó con NaCl sat. (1 x 100 ml) y se secó sobre Na₂SO₄. La solución se filtró y se concentró al vacío para dar el material en bruto en forma de un jarabe de color pardo. El material en bruto se absorbió sobre un lecho de gel de sílice y se purificó por cromatografía en columna sobre gel de sílice eluyendo con un gradiente de EtOAc del 0 % al 10 % en hexano para dar un compuesto de 1-((1R,3R,4R)-4-(etoxicarbonil)-3-metilciclohexil)-5-(trifluorometil)-1H-pirazol-4-carboxilato de bencilo con 1-((1 S,3 S,4S)-4-(etoxicarbonil)-3-metilciclohexil)-5-(trifluorometil)-1H-pirazol-4-carboxilato de bencilo (1:1) (D43-3) (0,4258 g, 0,971 mmol, rendimiento 55,7 %) en forma de un jarabe de color amarillo: RMN ¹H (300 MHz, DMSO-d₆) δ 8,06-8,17 (1H, m), 7,29-7,50 (5H, m), 5,29 (2H, s), 4,42-4,60 (1H, m), 4,10 (2H, c, *J* = 7,1 Hz), 1,48-2,13 (8H, m), 1,19 (3H, t, *J* = 7,1 Hz), 0,89 (3H, d, *J* = 6,0 Hz); CLEM (IEN) m/z 439,1 (M+H)⁺.

Etapa 4: compuesto de ácido 1-((1 R,3R,4R)-4-(etoxicarbonil)-3-metilciclohexil)-5-(trifluorometil)-1H-pirazol-4-carboxílico con ácido 1-((1S,3S,4S)-4-(etoxicarbonil)-3-metilciclohexil)-5-(trifluorometil)-1H-pirazol-4-carboxílico (1:1) (D43)

Un vial presurizado se cargó con paladio al 10 %p. sobre carbono activado (0,103 g, 0,097 mmol) mientras estaba en una corriente de gas de nitrógeno. Después, se añadió una solución de 1-((1R,3R,4R)-4-(etoxicarbonil)-3-metilciclohexil)-5-(trifluorometil)-1H-pirazol-4-carboxilato de bencilo compuesto con 1-((1S,3S,4S)-4-(etoxicarbonil)-3-metilciclohexil)-5-(trifluorometil)-1H-pirazolec-4-carboxilato de bencilo (1:1) (D43-3) (0,4258 g. 0,971 mmol) en una mezcla 1:1 de EtOH (2,428 ml)/EtOAc (2,428 ml) en el vial. La atmósfera de reacción se purgó con gas de hidrógeno (3 veces). La reacción se agitó vigorosamente en hidrogenación (0,23 MPa (33 psi)) a 21 °C. Después de 3 h, la CLEM (IEN) mostró que la reacción estaba completa. La mezcla de reacción se purgó con gas de nitrógeno durante 30 min. La mezcla se filtró a través de una capa de celite y la torta de filtro se aclaró con EtOAc. El filtrado se concentró al vacío para dar ácido 1-((1R,3R,4R)-4-(etoxicarbonil)-3-metilciclohexil)-5-(trifluorometil)-1H-pirazol-4-carboxílico compuesto con ácido 1-((1 S,3S.4S)-4-(etoxicarbonil)-3-metilciclohexil)-5-(trifluorometil)-1H-pirazol-4-carboxílico (1:1) (D43) (0,3224 g, 0,926 mmol, rendimiento 95 %) en forma de un sólido de color amarillo claro: RMN ¹H (300 MHz. DMSO-d₆) δ 13,14 (1H, s. a.), 8,01 (1H, s), 4,40-4,59 (1H. m), 4,10 (2H, c, , *J* = 7,0 Hz). 1,48-2,16 (8H, m), 1,20 (3H, t, *J* = 7,1 Hz), 0,89 (3H, d, *J* = 6,0 Hz): CLEM (IEN) m/z 349,1 (M+H)[†]

35 [Ejemplo de referencia D48]

5

10

15

25

30

40

ácido 1-(((3aS,5R,7aS)-3a-(metoxicarbonil)octahidro-1H-inden-5-il)-5-(trifluorometil)-1H-pirazol-4-carboxílico

Etapa 1: 2-oxo-1-(3-oxobutil)ciclopentanocarboxilato de metilo

Una solución de 2-oxociclopentanocarboxilato de metilo (2,000 ml, 14,07 mmol), metil vinil cetona (1,381 ml, 16,88 mmol) y trietilamina (2,94 ml, 21,10 mmol) en tolueno (20 ml) se calentó a 40 °C durante 24 h. La reacción se llevó a temperatura ambiente, se diluyó con EtOAc, se lavó con NH₄Cl sat., se secó sobre Na₂SO₄, se filtró, se concentró y se sometió a cromatografía sobre gel de sílice usando heptano al 0-50 %/EtOAc para proporcionar un aceite incoloro como 2-oxo-1-(3-oxobutil)ciclopentanocarboxilato de metilo (2,0 g, 9,42 mmol, rendimiento 67,0 %).

Etapa 2: 5-(pirrolidin-1-il)-2,6,7,7a-tetrahidro-1H-indeno-7a-carboxilato de metilo

45 Una solución de 2-oxo-1-(3-oxobutil)ciclopentanocarboxilato de metilo (2,0 g, 9,42 mmol, rendimiento 67,0 %) y pirrolidina (2,354 ml, 28,1 mmol) en tolueno seco (25 ml) se calentó a reflujo en atmósfera de N₂ en un purgador Dean-Stark durante 16 h. La reacción se llevó a finalización y se concentró. El residuo se disolvió en EtOAc, se lavó

con agua, salmuera, se secó sobre Na_2SO_4 , se filtró y se concentró para proporcionar un aceite de color verdoso como 5-(pirrolidin-1-il)-2,6,7,7a-tetrahidro-1H-indeno-7a-carboxilato de metilo (3,3 g, 13,34 mmol, rendimiento 95 %) para su uso según está.

Etapa 3: 6-oxo-2.3.3a.4.5.6-hexahidro-1H-indeno-3a-carboxilato de metilo

La enamina en bruto de la Etapa 2 se disolvió en tolueno (20 ml) y se añadió una solución de acetato sódico (1,360 ml, 25,3 mmol) en AcOH/agua (4/4 ml) y la mezcla resultante se calentó a reflujo en una atmósfera de N₂ durante 2 h. La reacción se llevó a finalización, se diluyó con EtOAc, se lavó con agua, NH₄Cl sat., NaHCO₃ sat., salmuera, se secó sobre Na₂SO₄, se filtró, se concentró y se sometió a cromatografía sobre gel de sílice usando heptano al 0-30 %/EtOAc para proporcionar 6-oxo-2,3,3a,4,5,6-hexahidro-1H-indeno-3a-carboxilato de metilo (1,32 g, 6,80 mmol, rendimiento 48,3 %) en forma de un aceite de color amarillo brillante. EM *m/z*= 195,2 [M+H]⁺.

Etapa 4: 6-oxooctahidro-1H-indeno-3a-carboxilato de (3aS,7aR)-metilo

A una solución agitada de 6-oxo-2,3,3a,4,5,6-hexahidro-1H-indeno-3a-carboxilato de metilo (1,32 g, 6,80 mmol) en EtOH (30 ml) se añadió paladio, al 10 %p. (base seca) sobre carbono activado, húmedo, tipo degussa e101 ne/p (0,120 ml, 6,80 mmol) y la mezcla resultante se sometió a hidrogenación usando el kit de hidrogenación durante 3 h. La mezcla se filtró a través de celite, se concentró y se sometió a cromatografía sobre gel de sílice usando heptano al 0-25 %/hexano para proporcionar 6-oxooctahidro-1H-indeno-3a-carboxilato de (3aS,7aR)-metilo (0,278 g, 1,417 mmol, rendimiento 20,84 %) y 6-oxooctahidro-1H-indeno-3a-carboxilato de (3aS,7aS)-metilo (0,394 g, 2,008 mmol, rendimiento 29,5 %) en forma de un aceite incoloro. EM m/z = 181,2 [M+H][†].

Etapas 5 a 8.

15

25

30

35

40

Se preparó ácido 1-((3aS,5R,7aS)-3a-(metoxicarbonil)octahidro-1H-inden-5-il)-5-(trifluorometil)-1H-pirazol-4-carboxílicoa partir de 6-oxooctahidro-1H-indeno-3a-carboxilato de (3aS,7aR)-metilo usando procedimientos similares como en el ejemplo D22. EM m/z = 361,2 [M+H]⁺.

[Ejemplo D55]

Ácido trans-1-(4-(etoxicarbonil)-3,3-dimetilciclohexil)-5-(trifluorometil)-1H-pirazol-4-carboxílico (mezcla racémica)

Etapa 1: 2,2-Dimetil-4-oxociclohexanocarboxilato de etilo (mezcla racémica)

Se añadió metillitio (170 ml de una solución 1,6 M con $\rm Et_2O$, 260 mmol) a una mezcla en agitación de yoduro de cobre (I) (25 g, 130 mmol) y $\rm Et_2O$ (130 ml), a -40 °C en una atmósfera de nitrógeno. Después de agitar durante 10 min a -40 °C, se añadió 2-metil-4-oxo-2-ciclohexeno-1-carboxilato de etilo (12 g, 66 mmol). Después de agitar durante 30 min a -40 °C, la mezcla de reacción se dejó calentar a -20 °C. Después de agitar durante 90 min a -20 °C, se añadieron secuencialmente cloruro de amonio acuoso saturado y $\rm EtOAc$, las capas se separaron, el material orgánico se lavó secuencialmente con cloruro de amonio acuoso saturado (2 x) y salmuera, se secó ($\rm Na_2SO_4$), se filtró y el filtrado se concentró. El residuo se disolvió con DCM, se añadió gel de sílice (39 g) a la solución y los volátiles se retiraron a presión reducida. El residuo se sometió a cromatografía ultrarrápida sobre gel de sílice (elusión en gradiente; 19:1 a 9:1 de hexano- $\rm EtOAc$) para dar 2,2-dimetil-4-oxociclohexanocarboxilato de etilo (8,9 g, rendimiento 68 %; mezcla racémica) en forma de un aceite de color amarillo transparente.

Etapa 2: Se añadió *trans*-2-4-(etoxicarbonil)-3,3-dimetilciclohexil)hidrazinacarboxilato de terc-butilo (mezcla racémica) NaBH(OAc)₃ (29 g, 140 mmol) a una solución en agitación de 2,2-dimetil-4-oxociclohexanocarboxilato de etilo (8,9 g, 45 mmol, de la Etapa 1;

material racémico), carbazato de terc-butilo (6,5 g, 49 mmol), AcOH glacial (7,8 ml, 140 mmol) y THF (90 ml). Después de agitar durante 26 h, la mezcla de reacción se añadió a NaHCO₃ acuoso saturado, la mezcla se agitó durante 60 min, se repartió entre EtOAc y más NaHCO₃ acuoso saturado, las capas se separaron, el material

orgánico se lavó secuencialmente con NaHCO₃ acuoso saturado y salmuera, se secó (Na₂SO₄), se filtró y el filtrado se concentró a presión reducida. El residuo se disolvió con DCM, se añadió gel de sílice (42 g) a la solución y los volátiles se retiraron a presión reducida. El residuo se sometió a cromatografía ultrarrápida sobre gel de sílice (elusión en gradiente; 9:1 a 4:1 de hexano-EtOAc) y el material aislado que contenía el producto deseado se sometió de nuevo a cromatografía ultrarrápida sobre gel de sílice (5:1 de hexano-EtOAc) para dar *trans*-2-4-(etoxicarbonil)-3,3-dimetilciclohexil)hidrazinacarboxilato de terc-butilo (0,79 g, rendimiento 5,6 %; mezcla racémica) en forma de un aceite incoloro transparente.

Etapa 3: Clorhidrato de trans-4-hidrazinil-2,2-dimetilciclohexanocarboxilato de etilo (mezcla racémica)

Se añadió cloruro de hidrógeno (3,1 ml de una solución 4,0 M con 1,4-dioxano, 13 mmol) a una solución en agitación de *trans*-2-4-(etoxicarbonil)-3,3-dimetilciclohexil)hidrazinacarboxilato de terc-butilo (0,79 g, 2,5 mmol, de la Etapa 2; material racémico) y EtOH (5,0 ml), y después la mezcla de reacción se calentó a 60 °C. Después de agitar durante 3 h a 60 °C, la mezcla de reacción se dejó enfriar a temperatura ambiente y después se concentró a presión reducida para dar clorhidrato de *trans*-4-hidrazinil-2,2-dimetilciclohexanocarboxilato de etilo (0,63 g, rendimiento 100 %; mezcla racémica) en forma de un sólido de color blanquecino.

Etapa 4: *trans*-1-4-(Etoxicarbonil)-3,3-dimetilciclohexil)-5-(trifluorometil)-1H-pirazol-4-carboxilato de bencilo (mezcla racémica)

Una solución de 2-((dimetilamino)metileno)-4,4,4-trifluoro-3-oxobutanoato de (Z)-bencilo (0,76~g, 2,5~mmol) y EtOH (2,4~ml) se añadió a una solución en agitación de clorhidrato de trans-4-hidrazinil-2,2-dimetilciclohexanocarboxilato de etilo (0,63~g, 2,5~mmol), de la Etapa 3; mezcla racémica), DIPEA (0,96~ml, 5,5~mmol) y EtOH (6,0~ml). Después de agitar durante 20 h, la mezcla de reacción se concentró a presión reducida, el residuo se repartió entre EtOAc y NaHCO3 acuoso saturado, las capas se separaron, el material orgánico se lavó secuencialmente con NaHCO3 acuoso saturado y salmuera, se secó (Na_2SO_4) , se filtró y el filtrado se concentró a presión reducida. El residuo se disolvió con DCM, se añadió gel de sílice (5,0~g) a la solución y los volátiles se retiraron a presión reducida. El residuo se sometió a cromatografía ultrarrápida sobre gel de sílice (19:1~de~hexano-EtOAc) para dar trans-1-4-(etoxicarbonil)-3,3-dimetilciclohexil)-5-(trifluorometil)-1H-pirazol-4-carboxilato de bencilo (0,76~g, rendimiento 67~w; mezcla racémica) en forma de un aceite incoloro transparente. RMN 1 H $(400~MHz, CDCl_3)$ δ 7,94 (s, 1H), 7,46-7,29 (m, 5H), 5,30 (s, 2H), 4,67-4,52 (m, 1H), 4,25-4,05 (m, 2H), 2,35-2,23 (m, 1H), 2,12-1,84 (m, 5H), 1,69 (dd, J=3,2, 12,8~Hz, 1H), 1,27 (t, J=7,1~Hz, 3H), 1,09 (s, 3H), 1,07 (s, 3H). CLEM (IEN): 453,0 (M+H)†.

Etapa 5: Ácido *trans*-1-(4-(etoxicarbonil)-3,3 -dimetil ciclohexil)-5-(trifluorometil)-1H-pirazol-4-carboxílico (mezcla racémica)

Una mezcla en agitación de *trans*-1-4-(etoxicarbonil)-3,3 -dimetilciclohexil)-5-(trifluorometil)-1H-pirazol-4-carboxilato de bencilo (0,76 g, 1,7 mmol, de la Etapa 4; mezcla racémica), paladio (0) (base seca al 10 %p., húmedo) sobre carbono activado (0,18 g, 0,17 mmol), EtOAc (4,2 ml) y EtOH (4,2 ml) se expuso a hidrógeno gaseoso (0,23 MPa (33 psi)). Después de agitar durante 2 h, la mezcla de reacción se filtró y el filtrado se concentró a presión reducida para dar ácido *trans*-1-(4-(etoxicarbonil)-3,3 -dimetilciclohexil)-5-(trifluorometil)-1H-pirazol-4-carboxílico (0,59 g, rendimiento 97 %; mezcla racémica) en forma de un sólido incoloro. CLEM (IEN): 363,0 (M+H)⁺.

[Ejemplo de referencia D60]

5

10

20

25

30

35

40

ácido 1-(((+/-)-cis)-2-alilciclohexil)-5-(trifluorometil)-1H-pirazol-4-carboxílico en forma de un racemato (D60)

Etapa 1: 2-(((+/-)cis)-2-alilciclohexil)hidrazinacarboxilato de terc-butilo en forma de un racemato A una solución de carbazato de terc-butilo (0,966 g, 7,31 mmol), 2-alilciclohexanona (1,00 g, 7,24 mmol) y AcOH (1,00 ml, 17,47 mmol) a 0 °C se añadió NaBH(OAc)3 (4,60 g, 21,71 mmol) y la mezcla se agitó a temperatura ambiente durante una noche. La mezcla de reacción se añadió lentamente a una solución acuosa saturada de Na₂CO₃. Las capas se separaron y la capa acuosa se extrajo con DCM dos veces. Los extractos orgánicos se combinaron, se lavaron con salmuera, se secaron sobre Na₂SO₄, se decantaron y se concentraron al vacío para proporcionar un jarabe incoloro. La RMN indicó una mezcla ~0,16:1 de isómeros. El jarabe se purificó por cromatografía en columna de gel de sílice eluyendo con un gradiente de EtOAc del 0 % al 50 % en hexano. El primer pico de elusión se recogió y se concentró al vacío para proporcionar 2-(((+/-)cis)-2-alilciclohexil)hidrazinacarboxilato de terc-butilo en forma de un racemato.

Etapa 2: Diclorhidrato de (((+/-)cis)-2-alilciclohexil)hidrazina en forma de un racemato

Se añadió HCl 4 M en dioxano (11,79 ml, 47,2 mmol) a una solución de 2-(((+/-)cis)-2-alilciclohexil)hidrazinacarboxilato de terc-butilo en forma de un racemato (1,20 g, 4,72 mmol) en EtOH (11,79 ml) y la mezcla se agitó a temperatura ambiente durante una noche. La mezcla de reacción se concentró al vacío para proporcionar diclorhidrato de (((+/-)cis)-2-alilciclohexil)hidrazina en forma de un sólido racémico de color blanco.

Etapa 3: 1-(((+/-)cis)-2-Alilciclohexil)-5-(trifluorometil)-1H-pirazol-4-carboxilato de etilo en forma de un racemato

Una solución de 2-((dimetilamino)metileno)-4,4,4-trifluoro-3-oxobutanoato de (Z)-etilo (1,073 g, 4,49 mmol) en EtOH (11 ml) se añadió lentamente a una solución de diclorhidrato de (((+/-)cis)-2-alilciclohexil)hidrazina en forma de un racemato (1,07 g, 4,71 mmol) y DIPEA (1,724 ml, 9,87 mmol) en EtOH (22,43 ml) a temperatura ambiente. Después de 6 h, la mezcla de reacción se concentró al vacío, se diluyó con agua y se extrajo con EtOAc dos veces. Las capas orgánicas combinadas se lavaron con salmuera, se secaron sobre Na₂SO₄, se decantaron y se concentraron al vacío para proporcionar un aceite de color naranja. La mezcla se purificó por cromatografía en columna sobre gel de sílice eluyendo con un gradiente de EtOAc 0 % al 35 % hexano para proporcionar 1-(((+/-)cis)-2-alilciclohexil)-5-(trifluorometil)-1H-pirazol-4-carboxilato de etilo como un racemato en forma de un aceite de color amarillo pálido.

Etapa 4: ácido 1-(((+/-)-cis)-2-alilciclohexil)-5-(trifluorometil)-1H-pirazol-4-carboxílico como un racemato

Una solución de hidrato de hidróxido de litio (1,265 g, 30,2 mmol) en agua se añadió a una solución de 1-(((+/-)cis)-2-alilciclohexil)-5-(trifluorometil)-1H-pirazol-4-carboxilato de etilo como un racemato (0,996 g, 3,02 mmol) en THF y MeOH y la mezcla se agitó a temperatura ambiente durante una noche. La mezcla se concentró al vacío. La solución turbia resultante se diluyó con agua para proporcionar una solución transparente. El pH se ajustó a 1 añadiendo HCl 1 M y la mezcla se agitó vigorosamente durante 30 min. El precipitado resultante se recogió por filtración al vacío para proporcionar ácido 1-(((+/-)-cis)-2-alilciclohexil)-5-(trifluorometil)-1H-pirazol-4-carboxílico como un racemato (D60) en forma de un sólido de color blanco.

[Ejemplo de referencia D68 (cis y trans)]

5

25

30

35

ácido 1-((1r,4r)-4-(2-etoxi-2-oxoetil)-4-metilciclohexil)-5-(trifluorometil)-1H-pirazol-4-carboxílico y

ácido 1-((1s.4s)-4-(2-etoxi-2-oxoetil)-4-metilciclohexil)-5-(trifluorometil)-1H-pirazol-4-carboxílico

Etapa 1: 2-(8-metil-1,4-dioxaespiro[4,5]decan-8-il)acetato de etilo

A una solución de CuI (5,8 g, 30 mmol, 3,24 equiv.) en Et_2O (100 ml) mantenido en una atmósfera de N_2 a 0 °C se añadió gota a gota una solución de MeLi 3,0 M (21,3 ml, 64 mmol, 6,8 equiv.) en dimetoxietano. La solución resultante se agitó a 0 °C durante 10 min y el disolvente de éter se retiró de la reacción al vacío (120 torr) a 0 °C.

Después, se añadió DCM (100 ml) al residuo y la reacción se enfrió a -78 °C. Se añadió TMSCI (4,4 ml, 35 mmol, 3,7 equiv.), seguido de 2-(1,4-dioxaespiro[4,5]decan-8-ilideno)acetato de etilo (JW Phar mlab, Levittown, PA; 2,127 g, 9,4 mmol) en DCM (10 ml). La mezcla de reacción se agitó durante una noche y se inactivó con una solución acuosa de NH₄CI. La suspensión de color negro se filtró a través de celite y la capa orgánica se separó, se lavó, se secó y se purificó por cromatografía sobre gel de sílice (EtOAc/hexano, hasta 15 %) en una columna gold de 80 g para dar 2-(8-metil-1,4-dioxaespiro[4,5]decan-8-il)acetato de etilo (1,6 g, 6,60 mmol, rendimiento 70,2 %) en forma de un líquido incoloro: RMN 1 H (500 MHz, CDCl₃) δ 1,07 (s, 3H), 1,19-1,33 (m, 3H), 1,49-1,67 (m, 8H), 2,27 (s, 2H), 3,94 (s, 4H), 4,09-4,16 (m, 2H).

Etapa 2: 2-(1-metil-4-oxociclohexil)acetato de etilo

20

25

35

45

50

55

Se añadió agua (0,5 ml) a una solución en agitación de 2-(8-metil-1,4-dioxaespiro[4,5]decan-8-il)acetato de etilo (1,6 g, 6,60 mmol) y ácido fórmico (10 ml) a temperatura ambiente. El análisis de la mezcla de reacción por CLEM indicó que el material de partida se había consumido y se había formado el producto deseado. La mezcla de reacción se concentró a presión reducida y el residuo se repartió entre EtOAc y salmuera, las capas se separaron, el material orgánico se lavó con salmuera (2 x), se secó (Na₂SO₄), se filtró y el filtrado se concentró a presión reducida para dar un líquido de color amarillo pálido, 2-(1-metil-4-oxociclohexil)acetato de etilo (1,6 g, 8,07 mmol, rendimiento 86 %): RMN ¹H (500 MHz, CDCl₃) δ 1,22-1,31 (m, 6H), 1,77-1,91 (m, 4H), 2,39-2,43 (m, 6H), 4,12-4,23 (m, 2H).

Etapa 3: 2-(4-(2-etoxi-2-oxoetil)-4-metilciclohexil)hidrazinacarboxilato de terc-butilo

Se disolvieron 2-(1-metil-4-oxociclohexil)acetato de etilo (1,5 g, 7,57 mmol) y carbazato de terc-butilo (1,100 g, 8,32 mmol) en cloroformo (30 ml) y se añadieron AcOH (1,0 ml) y NaBH(OAc)₃ (5,65 g) en refrigeración con hielo. La mezcla se dejó volver gradualmente a temperatura ambiente y la mezcla se agitó durante 4 h. La mezcla de reacción se vertió en una solución acuosa saturada de NaHCO₃ y la mezcla se extrajo con EtOAc. La capa orgánica se lavó con agua y salmuera, se secó sobre sulfato de magnesio anhidro y se concentró a presión reducida. El residuo obtenido se purificó por cromatografía en columna sobre gel de sílice (hexano:EtOAc, 100 %-35 %) para dar 2-(4-(2-etoxi-2-oxoetil)-4-metilciclohexil)hidrazinacarboxilato de terc-butilo (1,72 g, 5,47 mmol, rendimiento 72,3 %) en forma de una mezcla de isómeros (aceite incoloro). CLEM = 315,4 (M+H)[†].

Etapa 4: clorhidrato de 2-(4-hidrazinil-1-metilciclohexil)acetato de etilo

Se añadió gota a gota 2-(4-(2-etoxi-2-oxoetil)-4-metilciclohexil)hidrazinacarboxilato de terc-butilo (1,7 g, 5,41 mmol) en EtOH (5 ml) a HCl (4 M en 1,4-dioxano, 10 ml) a 0 °C. La mezcla se agitó a temperatura ambiente durante 4 h y se concentró para dar un sólido de color blanco, que se usó sin purificación adicional en la siguiente etapa.

30 Etapa 5: 1-(4-(2-etoxi-2-oxoetil)-4-metilciclohexil)-5-(trifluorometil)-1H-pirazol-4-carboxilato de bencilo

Una solución de 2-((dimetilamino)metileno)-4,4,4-trifluoro-3-oxobutanoato de (Z)-bencilo (2,018 g, 6,70 mmol) en EtOH (20 ml) se añadió gota a gota a una solución de clorhidrato de 2-(4-hidrazinil-1-metilciclohexil)acetato de etilo (1,6 g, 6,38 mmol) y DIPEA (2,452 ml, 14,04 mmol) en EtOH (31,9 ml) a temperatura ambiente. La reacción se dejó en agitación durante una noche. El disolvente se retiró y el aceite residual se purificó usando una columna de SiO₂ REDISEP™ Gold de 40 g, eluyendo con EtOAc al 0-25 %/hexano usando el método de resolución Gold. Las fracciones que contenían el producto deseado se combinaron y se concentraron al vacío para proporcionar 1-(4-(2-etoxi-2-oxoetil)-4-metilciclohexil)-5-(trifluorometil)-1H-pirazol-4-carboxilato de bencilo (2,12 g, 4,69 mmol, rendimiento 73,4 %) en forma de una mezcla de isómeros (jarabe incoloro). CLEM = 453,4 (M+H)[↑].

Etapa 6: ácido 1-((1r,4r)-4-(2-etoxi-2-oxoetil)-4-metilciclohexil)-5-(trifluorometil)-1H-pirazol-4-carboxílico y

40 ácido 1-((1s,4s)-4-(2-etoxi-2-oxoetil)-4-metilciclohexil)-5-(trifluorometil)-1H-pirazol-4-carboxílico

Se disolvió 1-(4-(2-etoxi-2-oxoetil)-4-metilciclohexil)-5-(trifluorometil)-1H-pirazol-4- carboxilato de bencilo (2,1 g, 4,64 mmol) en EtOH (10 ml) y EtOAc (10 ml) y se añadió Pd húmedo/C (10 %, 210 mg) en un matraz a presión en una atmósfera de N₂. La mezcla de reacción se equipó con una presión manométrica y se conectó un brazo a vacío y el otro a un cilindro de hidrógeno. La presión se ajustó a 0,14 MPa (20 psi) y el sistema de reacción se conectó a hidrógeno y se abrió al vacío dos veces. Después, las válvulas se cerraron y la mezcla de reacción se agitó durante 2 h. La presión de la válvula fue 0,03 MPa (5 psi) y la CLEM mostró la finalización. La filtración a través de celite y la retirada de los disolventes dieron un aceite (1,5 g). El material se separó por SFC prep.: 150 x 50 mm, columna de AD-H con 18 ml/min de MeOH (NH₃ 20 mM) + 162 g/min CO₂, 10 % de codisolvente a 180 g/min. Temp. = 29 °C, Presión de salida = 100 bar; Longitud de onda = 230 nm. Se inyectaron 0,5 ml de 1,500 mg de muestra disueltos en 20 ml de 1:1 de MeOH:DCM; c = 75 mg/ ml y 37,5 mg por inyección. Tiempo de ciclo 11 min, tiempo de ejecución 15 min, para dar el Pico 1: sólido de color blanco

ácido 1-((1r,4r)-4-(2-etoxi-2-oxoetil)-4-metilciclohexil)-5-(trifluorometil)-1H-pirazol-4-carboxílico (600 mg, 1,656 mmol, rendimiento 35,7 %): RMN 1 H (500 MHz, CD₂Cl₂) 5 1,14 (s, 3H), 1,23-1,28 (m, 3H), 1,46-1,58 (m, 2H), 1,67-1,77 (m, 2H), 1,79-1,87 (m, 2H), 2,16-2,28 (m, 4H), 4,08-4,14 (m, 2H), 4,32 (tt, J = 11,7, 4,1 Hz, 1H), 6,76 (s a, 1H), 7,94 (s, 1H). CLEM = 363,3 (M+H) $^+$; Pico 2:

ES 2 673 279 T3

ácido 1-((1s,4s)-4-(2-etoxi-2-oxoetil)-4-metilciclohexil)-5-(trifluorometil)-1H-pirazol-4-carboxílico (700 mg, 1,932 mmol, rendimiento 41,6%): RMN 1 H (500 MHz, CDCl $_3$) δ 1,09 (s, 3H), 1,25-1,28 (m, 3H), 1,33-1,43 (m, 2H), 1,82-1,88 (m, 4H), 2,17-2,32 (m, 2H), 2,47 (s, 2H), 4,12-4,17 (m, 2H), 4,35 (tt, J = 11,7, 3,9 Hz, 1H), 6,72 (s a, 1H), 7,98 (s, 1H). CLEM = 363,4 (M+H) $^+$.

5 Los siguientes ácidos pirazol carboxílicos se prepararon usando un procedimiento similar en los ejemplos referencia descritos anteriormente.

EtO
$$F_{3}C$$
 OH EtO $F_{3}C$ OH EtO $F_{3}C$ OH F_{3

oiomala		oiomple	
ejemplo de referencia	estructura	ejemplo de referencia	estructura
D40	H ₃ C CH ₃ F N O OH	D46	H ₃ C O O O C H ₃
D40b	H ₃ C CH ₃ F N N O O O H	D47	H ₃ C O O O O F O O F
D41	CH ₃ O CH ₃ O CH ₃	D48	O CH ₃
D42	CH ₃ O CH ₃ O CH ₃	D49	H ₃ C O O O O F O O F

ejemplo de referencia	estructura	ejemplo de referencia	estructura
D43	H ₃ C O O CH ₃ CH ₃	D50	H ₃ C O O O O O O O O O O O O O O O O O O O
D44	H ₃ C CHO OHF F	D51	CH ₃ O CH ₃
D45	H ₃ C O O CH ₃	D52	CH ₃ O CH ₃
D53	CH ₃ O CH ₃ O CH ₃	D60	$\begin{array}{c} H_2C \\ N \\ O \\ O \\ H^F \\ F \end{array}$
D54	H ₃ C O O CH ₃ CH ₃ O O F	D61	CH ₃ H O O H F
D55	H ₃ C CH ₃ N O F OHF F	D62	CH ₃ O CH ₃ O CH ₃
D56	H ₃ C O O O O O F O O F O O F	D63	OHF F

ejemplo de referencia	estructura	ejemplo de referencia	estructura
D57	H_3C H_3C O O CH_3 O	D64	O O CH ₃
D58	$ \begin{array}{c c} & & & \\ & & \\ & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\$	D65	OHF F
D59	H ₃ C O O N CH ₃ O O F	D66	
D67	OHF F		
D68	OHF F		
D69	CH ₃		
D70	O H F F		

ejemplo de referencia	estructura
D71	O O O O O O O O O O O O O O O O O O O
D72	CH ₃ O O O O O O O O O O O O O O O O O O O

[Ejemplo 1]

5

10

 ${\it acido} \qquad trans-4-(4-((2-(3,5-dicloropiridin-4-il)-2-oxoetil)(4-fluorobencil)carbamoil)-5-(trifluorometil)-1H-pirazol-1-il)ciclohexanocarboxílico$

Eto
$$F_3$$
C O F_3 C

Etapa 1: trans-4-(4-((2-(3,5-dicloropiridin-4-il)-2-(trietilsililoxi)etil)(4-fluorobencil)carbamoil)-5-(trifluorometil)-1H-pirazol-1-il)ciclohexanocarboxilato de etilo (1-1)

A una mezcla del ácido D1 (6,22 g, 18,6 mmol) y la amina A1 (8,67 g, 20,4 mmol) en DMF (100 ml) se añadieron HATU (8,48 g, 22,3 mmol) y DIPEA (4,74 ml, 27,9 mmol) y la mezcla se agitó a temperatura ambiente durante 5 h. La mezcla de reacción se inactivó con agua (200 ml) y se extrajo con EtOAc (2x100 ml). Las capas orgánicas combinadas se lavaron con agua (100 ml) y salmuera (100 ml), se secaron sobre Na₂SO₄ y se concentraron a presión reducida para proporcionar el compuesto 1-1 (15 g, en bruto) en forma de una goma de color pardo.

 $\label{tapa 2: trans-4-(4-(2-(3,5-dicloropiridin-4-il)-2-hidroxietil)(4-fluorobencil)carbamoil)-5-(trifluorometil)-1H-pirazol-1-il)ciclohexanocarboxilato de etilo (1-2)}\\$

A una solución agitada del compuesto 1-1 (15 g, 20,2 mmol) en THF (20 ml) se añadió TBAF (1,0 M en THF, 40,4 ml, 40,4 mmol) gota a gota a 0 °C y la mezcla se dejó calentar de 0 °C a temperatura ambiente mientras se agitaba durante 2 h. La mezcla de reacción se inactivó con NH₄Cl acuoso saturado (100 ml) y se extrajo con EtOAc (2x150 ml). Las capas orgánicas combinadas se lavaron con agua (100 ml) y salmuera (100 ml), se secaron sobre Na₂SO₄ y se concentraron a presión reducida. El residuo se purificó por cromatografía en columna (gel de sílice, eluyente:
EtOAc al 70 %/hexano) para proporcionar el compuesto 1-2 (9,9 g, 84 % en dos etapas) en forma de una goma de color amarillo-pardo. RMN ¹H (CDCl₃) rotámeros presentes δ 8,42 y 8,38 (2H, 2xs); 7,57 y 7,53 (1H, 2xs); 7,41-7,35 y 7,14-7,09 (4H, 2xm); 5,61-5,45 (1H, m); 5,10-4,50 (3H, m); 4,25-3,90 (4H, m); 3,31-3,15 (1H, m); 2,23-2,16 (6H, m); 1,65-1,51 (2H, m); 1,28-1,23 (3H, m); CLEM: 631 (M+H)[†].

Etapa 3: trans-4-(4-((2-(3,5-dicloropiridin-4-il)-2-oxoetil)(4-fluorobencil)carbamoil)-5-(trifluorometil)-1H-pirazol-1-

il)ciclohexanocarboxilato de etilo (1-3)

A una solución agitada del compuesto 1-2 (9,9 g, 15,6 mmol) en DCM (120 ml) se añadió en porciones peryodinano de Dess-Martin (21,9 g, 21:9 mmol) y la mezcla se agitó a temperatura ambiente durante 3 h. La mezcla de reacción se inactivó con NaHCO $_3$ (50 ml, ac. sat.) y Na $_2$ S $_2$ O $_3$ (50 ml, ac. sat.), después se extrajo con DCM (2 x 150 ml). Las capas orgánicas combinadas se lavaron con agua (100 ml) y salmuera (100 ml), se secaron sobre Na $_2$ SO $_4$ y se concentraron a presión reducida. El residuo se purificó por cromatografía en columna (gel de sílice, eluyente: EtOAc al 10 %/hexano) para producir el compuesto 1-3 (9,12 g, 92 %) en forma de un sólido de color blanco. RMN 1 H (CDCI $_3$) rotámeros presentes δ 8,74 y 8,67 (2H, 2xs); 7,85 y 7,79 (1H, 2xs); 7,30-7,26 (1H, m); 7,41-7,37 y 7,22-7,15 (3H, 2xm); 4,73-1,51 (4H, m); 4,27-4,21 (1H, m); 4,07 (2H, c, J = 7,2 Hz); 2,50-2,48 (1H, m); 2,06-1,93 (6H, m); 1,59-1,54 (2H, m); 1,18 (3H, t, J = 6,9 Hz); CLEM: 629 (M+H) $^+$.

Etapa 4: ácido trans-4-(4-((2-(3,5-dicloropiridin-4-il)-2-oxoetil)(4-fluorobencil)carbamoil)-5-(trifluorometil)-1H-pirazol-1-il)ciclohexanocarboxílico (1)

A una solución agitada del compuesto 1-3 (9,12 g, 14,5 mmol) en una mezcla de THF/agua/EtOH (77 ml, 7:1:7) se añadió LiOH (solución ac. 4,0 M, 4,45 ml, 57,9 mmol) gota a gota a 0 °C. La mezcla se dejó calentar a temperatura ambiente mientras se continuaba agitando durante 4 h. La mezcla de reacción se acidificó con HCl (1 M, 60 ml) y se extrajo con EtOAc (3x100 ml). Las capas orgánicas combinadas se lavaron con agua (100 ml) y salmuera (100 ml), se secaron sobre Na₂SO₄ y se concentraron a presión reducida para proporcionar el compuesto del ejemplo 1 (8,0 g, 94 %) en forma de un sólido de color blanco. RMN 1 H (CDCl₃) rotámeros presentes δ 8,53 y 8,47 (2H, 2xs); 7,69 y 7,60 (1H, 2xs); 7,31-7,28 (1H, m); 7,16-7,12 (1H, m); 7,06-7,02 (2H, m); 4,83 y 4,65 (2H, 2xs); 4,61 y 4,30 (2H, 2xs), 4,27-4,21 (1H, m); 2,78 (1H, m); 2,44-2,40 (2H, m); 2,26-2,15 (2H, m); 1,96-1,86 (2H, m); 1,74-1,67 (2H, m); CLEM (IEN): 601,2 (M+H) † .

[Ejemplo 2]

5

10

15

20

25

30

35

40

ácido trans-4-(4-((2-(2,6-dicloro-4-fluorofenil)-2-oxoetil)(3,5-difluorobencil)carbamoil)-5-(trifluorometil)-1H-pirazol-1-il)-1-metilciclohexanocarboxílico

Etapa 1: trans-4-(4-((2-(2,6-dicloro-4-fluorofenil)-2-((trietilsilil)oxi)etil)(3,5-difluorobencil)carbamoil)-5-(trifluorometil)-1H-pirazol-1-il)-1-metilciclohexanocarboxilato de etilo (2-1)

A una solución del ácido D2 (12,5 g, 35,9 mmol) y (COCl)₂ (4,62 ml, 39,51 mmol) en DCM (150 ml) se añadió DMF (cantidad catalítica) y el conjunto se agitó a temperatura ambiente durante 1 h. La mezcla de reacción se concentró a presión reducida y se secó a alto vacío. El residuo se disolvió en DCM (10 ml) y se añadió gota a gota a una mezcla de amina la A31 (18,3 g, 39,5 mmol) y $\rm Et_3N$ (10,0 ml, 71,8 mmol) en DCM (150 ml) a 0 °C. Una vez completada la reacción (supervisado por TLC), la mezcla se inactivó con agua (50 ml) y se extrajo con DCM (2 x 100 ml). La capa orgánica combinada se lavó con salmuera (20 ml), se secó sobre $\rm Na_2SO_4$ y se concentró a presión reducida. El residuo se purificó por cromatografía en columna (gel de sílice, $\rm EtOAc$ al 0-10 %/hexano como eluyente) para proporcionar el compuesto 2-1 (27,0 g, 91 %) en forma de una goma incolora. $\rm RMN^{1}H$ (CDCl₃) rotámeros presentes $\rm \delta$ 7,54 y 7,47 (1H, 2xs); 7,02-6,98 (2H, m); 6,87-6,86 y 6,56-6,54 (2H, 2xm); 6,73-6,71 (1H, m); 5,90-5,88 y 5,50-5,47 (1H, 2xm); 4,99-4,29 (2H, m); 4,18-4,12 y 3,30-3,26 (4H, 2xm); 3,87-3,81 (1H, m); 2,21-2,16 (2H, m); 1,89-1,88 (6H, m); 1,35-1,24 (6H, m); 0,91-0,84 (9H, m); 0,58-0,48 (6H, m).

Etapa 2: trans-4-(4-((2-(2,6-dicloro-4-fluorofenil)-2-hidroxietil)(3,5-difluorobencil)carbamoil)-5-(trifluorometil)-1H-pirazol-1-il)-1-metilciclohexanocarboxilato de etilo (2-2)

El compuesto 2-2 se preparó usando un procedimiento similar al descrito en el ejemplo 1, etapa 2:

Etapa 3: trans-4-(4-((2-(2,6-dicloro-4-fluorofenil)-2-oxoetil)(3,5-difluorobencil)carbamoil)-5-(trifluorometil)-1H-pirazol-1-

il)-1-metilciclohexanocarboxilato de etilo (2-3)

El compuesto 2-3 se preparó usando un procedimiento similar al descrito en el ejemplo 1, etapa 3:

Etapa 4: ácido trans-4-(4-((2-(2,6-dicloro-4-fluorofenil)-2-oxoetil)(3,5-difluorobencil)carbamoil)-5-(trifluorometil)-1H-pirazol-1-il)-1-metilciclohexanocarboxílico (2)

5 El compuesto del ejemplo 2 se preparó usando un procedimiento similar al descrito en el ejemplo 1, etapa 4: RMN 1 H (CDCl₃) rotámeros presentes δ 8,55 y 8,49 (2H, 2xs); 7,66 y 7,62 (1H, 2xs); 6,85-6,69 (3H, m); 4,83 y 4,70 (2H, 2xs); 4,62 y 4,34 (2H, 2xs); 4,29-4,21 (1H, m); 2,25-2,17 (2H, m); 1,94-1,88 (6H, m); 1,41 y 1,40 (3H, 2xs); CLEM (IEN): 650,2 (M+H) † .

[Ejemplo 3]

30

40

10 ácido trans-4-(4-((3,5-difluorobencil)(2-(2,4-dimetiltiofen-3-il)-2-oxoetil)carbamoil)-5-(trifluorometil)-1H-pirazol-1-il)ciclohexanocarboxílico

Eto
$$F_{3}$$
C OH + F_{3} C OH

Etapa 1 y 2: trans-4-(4-((3,5-difluorobencil)(2-(2,4-dimetiltiofen-3-il)-2-hidroxietil)carbamoil)-5-(trifluorometil)-1H-pirazol-1-il)ciclohexanocarboxilato de etilo (3-2)

- A una mezcla del ácido D1 (162 mg, 0,48 mmol) y la amina A56 (200 mg, 0,48 mmol) en DMF (4 ml) se añadieron DIPEA (0,12 ml, 0,72 mmol) y HATU (221 mg, 0,58 mmol) a temperatura ambiente y se agitó a la misma temperatura durante 4 h. La mezcla de reacción se inactivó con agua (50 ml) y se extrajo con EtOAc (2x20 ml). Las capas orgánicas combinadas se lavaron con salmuera (20 ml), se secaron sobre Na₂SO₄ y se concentraron a presión reducida para proporcionar un residuo de color amarillo.
- A una solución agitada del residuo de color amarillo se añadió TBAF (1 M en THF, 0,96 ml, 0,96 mmol) gota a gota a temperatura ambiente. La mezcla se agitó a la misma temperatura durante 1 h. La mezcla de reacción se inactivó con una solución acuosa saturada de NaHCO₃ y se extrajo con EtOAc (2x20 ml). Las capas orgánicas se lavaron con salmuera (2x10 ml), se secaron sobre Na₂SO₄ y se concentraron a presión reducida. El residuo se purificó por cromatografía en columna (gel de sílice, EtOAc al 10 %/hexano como eluyente) para proporcionar el compuesto 3-2 (290 mg, 97 %) en forma de una goma incolora.
 - Etapa 3: trans-4-(4-((3,5-difluorobencil)(2-(2,4-dimetiltiofen-3-il)-2-oxoetil)carbamoil)-5-(trifluorometil)-1H-pirazol-1-il)cyelohexanocarboxilato de etilo (3-3)

A una solución agitada del compuesto 3-2 (290 mg, 0,47 mmol) en DCM (8 ml) se añadió peryodinano de Dess-Martin (401 mg, 0,94 mmol) a 0 °C y la mezcla se agitó a temperatura ambiente durante 3 h. La mezcla de reacción se inactivó con Na₂S₂O₃ acuoso saturado y NaHCO₃, y se extrajo con EtOAc (2x20 ml). Las capas orgánicas combinadas se lavaron con salmuera (2x10 ml), se secaron sobre Na₂SO₄ y se concentraron a presión reducida. El residuo se purificó por cromatografía en columna (gel de sílice, EtOAc al 30%/hexano como eluyente) para proporcionar el compuesto 3-3 (220 mg, 78%) en forma de una goma incolora.

Etapa 4: ácido trans-4-(4-((3,5-difluorobencil)(2-(2,4-dimetiltiofen-3-il)-2-oxoetil)carbamoil)-5-(trifluorometil)-1H-35 pirazol-1-il)ciclohexanocarboxílico (3)

A una solución del compuesto 3-3 (220 mg, 0,37 mmol) en EtOH (1 ml), THF (1 ml) y H_2O (0,2 ml) se añadió LiOH (solución acuosa 4 M, 0,55 ml, 2,2 mmol) gota a gota y la mezcla se agitó a temperatura ambiente durante 2 h. La mezcla de reacción se inactivó mediante la adición gota a gota de HCl acuoso 1 M (el pH se ajustó a 4,0) y se extrajo con EtOAc (2 x 20 ml). Las capas orgánicas combinadas se lavaron con salmuera (2x10 ml), se secaron sobre Na_2SO_4 y se concentraron a presión reducida. El residuo se purificó por cromatografía en columna de fase

inversa (gel de sílice C18, agua al 56 %/CH $_3$ CN como eluyente) para proporcionar el compuesto del ejemplo 3 (56 mg, 26 %) en forma de un sólido de color blanco. RMN 1 H (DMSO-d $_6$) rotámeros presentes δ 7,63 y 7,50 (1H, 2xs); 7,14 y 7,09 (1H, 2xs); 6,83-6,81 (1H, m); 6,77-6,68 (2H, m); 4,78 y 4,69 (2H, 2xs); 4,59 y 4,28 (2H, 2xs); 4,27-4,18 (1H, m); 2,49-2,38 (4H, m); 2,25-2,18 (5H, m); 2,10-1,97 (4H, m); 1,70-1,57 (2H, m); CLEM (APCI): 584 (M+H) † .

5 [Ejemplo 4]

15

30

ácido trans-4-(4-((2-(2,6-dicloro-4-(metilsulfonil)fenil)-2-oxoetil)(3,5-difluorobencil)carbamoil)-5-(trifluorometil)-1H-pirazol-1-il)ciclohexanocarboxílico

Etapa 1: trans-4-(4-((2-(2,6-dicloro-4-(metiltio)fenil)-2-((trietilsilil)oxi)etil)(3,5-difluorobencil)carbamoil)-5-10 (trifluorometil)-1H-pirazol-1-il)ciclohexanocarboxilato de etilo (4-1)

El compuesto 4-1 (0,44 g, en bruto) se obtuvo como una goma de color pardo a partir de la reacción de la amina A57 (0,26 g, 0,52 mmol), el ácido D1 (0,17 g, 0,52 mmol), HATU (0,24 g, 0,63 mmol) y DIPEA (0,13 ml, 0,79 mmol) en DMF (5 ml) usando un procedimiento similar al descrito en el ejemplo 1.

Etapa 2: trans-4-(4-((2-(2,6-dicloro-4-(metiltio)fenil)-2-hidroxietil)(3,5-difluorobencil)carbamoil)-5-(trifluorometil)-1H-pirazol-1-il)ciclohexanocarboxilato de etilo (4-2)

El compuesto 4-2 (0,38 g, 91 %) se obtuvo en forma de una goma de color pardo a partir de la reacción del compuesto 4-1 (0,44 g, 0,59 mmol) y TBAF (1,0 M en THF, 0,31 ml, 1,19 mmol) en THF (10 ml) usando un procedimiento similar al descrito en el ejemplo 1.

Etapa 3: trans-4-(4-((2-(2,6-dicloro-4-(metiltio)fenil)-2-oxoetil)(3,5-difluorobencil)carbamoil)-5-(trifluorometil)-1H-20 pirazol-1-il)ciclohexanocarboxilato de etilo (4-3)

El compuesto 4-3 (0,1 g, 26 %) se obtuvo en forma de una goma incolora a partir de la reacción del compuesto 4-2 (0,38 g, 0,61 mmol) y peryodinano de Dess-Martin (0,52 g, 1,22 mmol) en DCM (10 ml) usando un procedimiento similar al descrito en el ejemplo 1.

Etapa 4: trans-4-(4-((2-(2,6-dicloro-4-(metilsulfonil)fenil)-2-oxoetil)(3,5-difluorobencil)carbamoil)-5-(trifluorometil)-1H-pirazol-1-il)ciclohexanocarboxilato de etilo (4-4)

A una solución agitada del compuesto 4-3 (0,1 g, 0,1 mmol) en DCM (5 ml) se añadió m-CPBA (84 mg, 0,48 mmol) a temperatura ambiente. La mezcla se agitó a temperatura ambiente durante 2 h. La mezcla de reacción se inactivó con agua (30 ml) y se extrajo con DCM (2 x 20 ml). Las capas orgánicas combinadas se lavaron con una solución al 10 % de NaOH (20 ml), agua (30 ml) y salmuera (30 ml), se secaron sobre Na₂SO₄ y se concentraron a presión reducida. El residuo se purificó por cromatografía en columna (gel de sílice, EtOAc al 20 %/hexano como eluyente) para proporcionar el compuesto 4-4 (0,17 g, 65 %) en forma de un aceite incoloro.

Etapa 5: ácido trans-4-(4-((2-(2,6-dicloro-4-(metilsulfonil)fenil)-2-oxoetil)(3,5-difluorobencil)carbamoil)-5-(trifluorometil)-1H-pirazol-1-il)ciclohexanocarboxílico (4)

El compuesto del ejemplo 4 (50 mg, 52 %) se obtuvo en forma de un sólido de color blanco a partir de la reacción del compuesto 4-4 (0,1 g, 0,13 mmol) y LiOH (20 mg, 0,82 mmol) en THF/MeOH/agua (2:2:1, 5 ml) usando un procedimiento similar al descrito en el ejemplo 1. RMN 1 H (DMSO-d₆) rotámeros presentes δ 12,21 (1H, s a); 8,10 y 8,03 (2H, 2xs); 7,88 y 7,86 (1H, 2xs); 7,20-7,14 (1H, m); 7,11-7,08 y 6,95-6,92 (2H, 2xm); 4,85 y 4,73 (2H, 2xs); 4,69 y 4,57 (2H, 2xs); 4,28-4,17 (1H, m); 3,37 y 3,32 (3H, 2xs); 2,35-2,29 (1H, m); 2,07-2,02 (2H, m); 1,98-1,90 (4H, m); 1,60-1,49 (2H, m); CLEM (APCI): 696 (M+H) $^{+}$.

[Ejemplo 5]

5

N-(2-(3,5-dicloropiridin-4-il)-2-oxoetil)-N-(3,5-difluorobencil)-1-(trans-4-(hidroxicarbamoil)ciclohexil)-5-(trifluorometil)-1H-pirazol-4-carboxamida

Etapa 1: trans-4-(4-((2-(3,5-dicloropiridin-4-il)-2-((trietilsilil)oxi)etil)(3,5-difluorobencil)carbamoil)-5-(trifluorometil)-1H-pirazol-1-il)ciclohexanocarboxilato de etilo (5-1)

El compuesto 5-1 (633 mg, en bruto) se obtuvo en forma de una goma de color pardo a partir de la reacción del ácido D1, la amina A18 (400 mg, 0,89 mmol), HATU (408 mg, 1,07 mmol) y DIPEA (0,23 ml, 1,34 mmol) en DMF (6,0 ml) usando un procedimiento similar al descrito en el ejemplo 1.

Etapa 2: trans-4-(4-((2-(3,5-dicloropiridin-4-il)-2-hidroxietil)(3,5-difluorobencil)carbamoil)-5-(trifluorometil)-1H-pirazol-1-il)ciclohexanocarboxilato de etilo (5-2)

El compuesto 5-2 (410 mg, 71 %) se obtuvo en forma de un sólido de color amarillo a partir de la reacción del compuesto 5-1 (633 mg, 0,83 mmol) y TBAF (1 M en THF, 1,65 ml, 1,65 mmol) en THF (3,0 ml) usando un procedimiento similar al descrito en el ejemplo 1. CLEM: 649 (M+H)⁺.

Etapa 3: ácido trans-4-(4-((2-(3,5-dicloropiridin-4-il)-2-hidroxietil)(3,5-difluorobencil)carbamoil)-5-(trifluorometil)-1H-pirazol-1-il)ciclohexanocarboxílico (5-3)

El compuesto 5-3 (185 mg, 86 %) se obtuvo en forma de un sólido de color blanco a partir de la reacción del compuesto 5-2 (224 mg, 0,34 mmol) y LiOH-H₂O (87 mg, 2,06 mmol) en THF (3,0 ml), EtOH (2,0 ml) y agua (2,0 ml) usando un procedimiento similar al descrito en el ejemplo 1.

Etapa 4: 1-(trans-4-(((terc-butildimetilsilil)oxi)carbamoil)ciclohexil)-N-(2-(3,5-dicloropiridin -4-il)-2-hidroxietil)-N-(3,5 -difluorobencil)-5-(trifluorometil)-1H-pirazol-4-carboxamida (5-4)

30 El compuesto 5-4 (173 mg, 84 %) se obtuvo en forma de un sólido de color blanco a partir de la reacción del compuesto 5-3 (170 mg, 0,27 mmol), O-(terc-butildimetilsilil)hidroxilamina (41 mg, 0,27 mmol), HATU (124 mg, 0,32 mmol) y DIPEA (0,07 ml, 0,41 mmol) en DMF (3,0 ml) usando un procedimiento similar al descrito en el ejemplo 1. CLEM: 750 (M+H)[†].

Etapa 5: 1-(trans-4-(((terc-butildimetilsilil)oxi)carbamoil)ciclohexil)-N-(2-(3,5-dicloropiridin-4-il)-2-oxoetil)-N-(3,5-difluorobencil)-5-(trifluorometil)-1H-pirazol-4-carboxamida (5-5)

El compuesto 5-5 (100 mg, 58 %) se obtuvo en forma de una goma incolora a partir de la reacción del compuesto 5-4 (173 mg, 0,23 mmol) y peryodinano de Dess-Martin (117 mg, 0,27 mmol) en DCM (20,0 ml) usando un procedimiento similar al descrito en el ejemplo 1. CLEM: 748 (M+H)⁺.

Etapa 6: N-(2-(3,5-dicloropiridin-4-il)-2-oxoetil)-N-(3,5-difluorobencil)-1-(trans-4- (hidroxicarbamoil)ciclohexil)-5-(trifluorometil)-1H-pirazol-4-carboxamida (5)

A una solución agitada del compuesto 5-5 (100 mg, 0,13 mmol) en THF (8 ml) se añadió TBAF (1 M en THF, 0,20 ml, 0,20 mmol) gota a gota y la mezcla se agitó a temperatura ambiente durante 1 h. La mezcla de reacción se inactivó con MeOH (2 ml) y se extrajo con EtOAc (2 x 20 ml). Las capas orgánicas combinadas se lavaron con salmuera (2x10 ml), se secaron sobre Na₂SO₄ y se concentraron a presión reducida. El residuo se purificó por cromatografía en columna (gel de sílice, MeOH al 7 %/DCM como eluyente) para proporcionar el compuesto del ejemplo 5 (19 mg, 22 %) en forma de un sólido de color blanco. RMN 1 H (CDCl₃) rotámeros presentes δ 8,54 y 8,48 (2H, 2xs); 7,64 y 7,60 (1H, 2xs); 6,84-6,68 (3H, m); 4,82-4,25 (5H, m); 2,23-2,04 (7H, m); 1,83-1,73 (2H, m); CLEM (APCl): 634 (M+H) † .

[Ejemplo 6]

5

10

15

25

35

N-(2-(3,5-dicloropiridin-4-il)-2-oxoetil)-N-(3,5-difluorobencil)-1-(trans-4-(metoxicarbamoil)ciclohexil)-5-(trifluorometil)-1H-pirazol-4-carboxamida

20 Etapa 1: N-(2-(3,5-dicloropiridin-4-il)-2-hidroxietil)-N-(3,5-difluorobencil)-1-(trans-4-(metoxicarbamoil)ciclohexil)-5-(trifluorometil)-1H-pirazol-4-carboxamida (6-1)

A una mezcla del compuesto 5-3 (75 mg, 0,12 mmol) y clorhidrato de O-metilhidroxilamina (10 mg, 0,12 mmol) en DMF (3 ml) se añadieron HATU (55 mg, 0,14 mmol) y DIPEA (0,05 ml, 0,30 mmol) y la mezcla se agitó a temperatura ambiente durante 5 h. La mezcla de reacción se inactivó con agua y se extrajo con EtOAc. Las capas orgánicas combinadas se lavaron con agua, salmuera, se secaron sobre Na_2SO_4 y se concentraron a presión reducida para proporcionar el compuesto en bruto 6-1 (65 mg, 82 %) en forma de una espuma de color blanco. CLEM: 650 $(M+H)^{\dagger}$.

Etapa 2: N-(2-(3,5-dicloropiridin-4-il)-2-oxoetil)-N-(3,5-difluorobencil)-1-(trans-4-(metoxicarbamoil)ciclohexil)-5-(trifluorometil)-1H-pirazol-4-carboxamida (6)

El compuesto del ejemplo 6 (15 mg, 23 %) se obtuvo en forma de un sólido de color blanco a partir de la reacción del compuesto 6-1 (65 mg, 0,099 mmol) y peryodinano de Dess-Martin (85 mg, 0,19 mmol) en DCM (5,0 ml) usando un procedimiento similar al descrito en el ejemplo 1. RMN 1 H (CDCl₃) rotámeros presentes δ 8,54 y 8,48 (2H, 2xs); 8,07 (1H, s a); 7,64 y 7,60 (1H, 2xs); 6,84-6,68 (3H, m); 4,82-4,25 (5H, m); 3,81 y 3,78 (3H, 2xs); 2,10-2,01 (7H, m); 1,84-1,75 (2H, m); CLEM (APCl): 648 (M+H) † .

[Ejemplo 7]

ácido trans-4-(4-((3,5-difluorobencil)(2-(2-hidroxi-6-metoxifenil)-2-oxoetil)carbamoil)-5-(trifluorometil)-1H-pirazol-1-il)ciclohexanocarboxílico

Etapa 1: trans-4-(4-((3,5-difluorobencil)(2-(2,6-dimetoxifenil)-2-((trietilsilil)oxi)etil)carbamoil)-5-(trifluorometil)-1H-pirazol-1-il)ciclohexanocarboxilato de etilo (7-1)

El compuesto 7-1 (0,23 g, en bruto) se obtuvo como una goma de color pardo a partir de la reacción de la amina A67 (0,13 g, 0,3 mmol), el ácido D1 (0,1 g, 0,3 mmol), HATU (0,13 g, 0,35 mmol) y DIPEA (76 μl, 0,44 mmol) en DMF (5 ml) usando un procedimiento similar al descrito en el ejemplo 1.

Etapa 2: trans-4-(4-((3,5-difluorobencil)(2-(2,6-dimetoxifenil)-2-hidroxietil)carbamoil)-5-(trifluorometil)-1H-pirazol-1-il)ciclohexanocarboxilato de etilo (7-2)

El compuesto 7-2 (0,22 g, en bruto) se obtuvo en forma de una goma de color pardo a partir de la reacción del compuesto 7-1 (0,23 g, 0,3 mmol) y TBAF (1,0 M en THF, 0,61 ml, 0,6 mmol) en THF (5 ml) usando un procedimiento similar al descrito en el ejemplo 1.

Etapa 3: trans-4-(4-((3,5-difluorobencil)(2-(2,6-dimetoxifenil)-2-oxoetil)carbamoil)-5-(trifluorometil)-1H-pirazol-1-il)ciclohexanocarboxilato de etilo (7-3)

El compuesto 7-3 (0,16 g, 73 %) se obtuvo en forma de una goma incolora a partir de la reacción del compuesto 7-2 (0,22 g, 0,34 mmol) y peryodinano de Dess-Martin (0,29 g, 0,69 mmol) en DCM (10 ml.) usando un procedimiento similar al descrito en el ejemplo 1.

Etapa 4: trans-4-(4-((3,5-difluorobencil)(2-(2-hidroxi-6-metoxifenil)-2-oxoetil)carbamoil)-5-(trifluorometil)-1H-pirazol-1-il)ciclohexanocarboxilato de etilo (7-4)

A una solución agitada del compuesto 7-3 (50 mg, 0,07 mmol) en DCM (5 ml) se añadió BBr₃ (1,0 M en DCM, 1,5 ml, 1,4 mmol) a temperatura ambiente y la mezcla se agitó durante 16 h. El disolvente se evaporó a presión reducida y el residuo obtenido se purificó por cromatografía en columna (gel de sílice, EtOAc al 30 %/hexano como eluyente) para proporcionar el compuesto 7-4 (32 mg, 65 %) en forma de una espuma de color pardo.

Etapa 5: ácido trans-4-(4-((3,5-difluorobencil)(2-(2-hidroxi-6-metoxifenil)-2-oxoetil)carbamoil)-5-(trifluorometil)-1H-pirazol-1-il)ciclohexanocarboxílico (7)

25 El compuesto del ejemplo 7(15 mg, 50 %) se obtuvo en forma de un sólido de color blanco a partir de la reacción del compuesto 7-4 (32 mg, 0,05 mmol) y LiOH (6,2 mg, 0,25 mmol) en THF/MeOH/agua (2:2:1, 5 ml) usando un procedimiento similar al descrito en el ejemplo 1. RMN ¹H (DMSO-d₆) rotámeros presentes δ 11,81 (1H, s a); 10,89 (1H, s a); 7,76 y 7,64 (1H, 2xs); 7,42-7,23 (1H, m); 7,18-6,86 (3H, m); 6,61-6,46 (2H, m); 4,82-4,51 (4H, m); 4,25-4,13 (1H, m); 3,84 y 3,65 (3H, 2xs); 2,28-2,21 (1H, m); 2,03-1,89 (6H, m); 1,55-1,44 (2H, m); CLEM (APCI): 596 (M+H)[†].

[Ejemplo 8]

 $\begin{array}{ll} \text{\'acido} & \text{trans-4-(4-((3,5-difluorobencil)(2-oxo-2-(1H-pirazol-3-il)etil)carbamoil)-5-(trifluorometil)-1H-pirazol-1-il)ciclohexanocarboxílico} \end{array}$

Etapa 1: trans-4-(4-((3,5-difluorobencil)(2-((trietilsilil)oxi)-2-(1-((2-(trimetilsilil)etoxi)metil)-1H-pirazol-3-il)etil)carbamoil)-5-(trifluorometil)-1H-pirazol-1-il)ciclohexanocarboxilato de etilo (8-1)

El compuesto 8-1 (34 mg, impuro) se obtuvo en forma de una goma incolora a partir de la reacción de la amina A75 (40 mg, 0,080 mmol), el ácido D1 (26 mg, 0,080 mmol), HATU (36,4 mg, 0,096 mmol) y DIPEA (0,020 ml, 0,120 mmol) en DMF (5 ml) usando un procedimiento similar al descrito en el ejemplo 1.

Etapa 2: trans-4-(4-((3,5-difluorobencil)(2-hidroxi-2-(1-((2-(trimetilsilil)etoxi)metil)-1H-pirazol-3-il)etil)carbamoil)-5-(trifluorometil)-1H-pirazol-1-il)ciclohexanocarboxilato de etilo (8-2)

El compuesto 8-2 (25 mg, en bruto) se obtuvo en forma de una goma incolora a partir de la reacción del compuesto 8-1 (34 mg, 0,048 mmol) y TBAF (1 M en THF, 0,10 ml, 0,10 mmol) en THF (3 ml) usando un procedimiento similar al descrito en el ejemplo 1.

Etapa 3: trans-4-(4-((3,5-difluorobencil)(2-oxo-2-(1-((2-(trimetilsilil)etoxi)metil)-1H-pirazol -3-il)etil)carbamoil)-5-(trifluorometil)-1H-pirazol-1-il)ciclohexanocarboxilato de etilo (8-3)

El compuesto 8-3 (40 mg, 50 %) se obtuvo en forma de un sólido de color blanquecino a partir de la reacción del compuesto 8-2 (80 mg, 0,114 mmol) y peryodinano de Dess-Martin (97 mg, 0,228 mmol) en DCM (5 ml) usando un procedimiento similar al descrito en el ejemplo 1.

Etapa 4: ácido trans-4-(4-((3,5-difluorobencil)(2-oxo-2-(1H-pirazol-3-il)etil)carbamoil)-5-(trifluorometil)-1H-pirazol-1-il)ciclohexanocarboxílico (8)

A una solución agitada del compuesto 8-3 (75 mg, 0,107 mmol) en 1,4-dioxano (2 ml) se añadió HCl (12 M, 0,5 ml). La mezcla se agitó a 80 °C durante 2 h. El disolvente se retiró a presión reducida. El residuo se disolvió en 1,4-dioxano (2 ml) y se añadió NH₄OH (0,5 ml). La mezcla de reacción se agitó a temperatura ambiente durante 2 h. El disolvente se retiró a presión reducida y el residuo se purificó por cromatografía en columna de fase inversa (gel de sílice C18, CH₃CN al 70 %/agua como eluyente) para proporcionar el compuesto del ejemplo 8 (10 mg, 16 %) en forma de un sólido de color blanco. RMN ¹H (CD₃OD) rotámeros presentes δ 7,74-7,50 (2H, m); 6,98-6,95 (1H, m); 6,87-6,78 (3H, m); 5,00 y 4,78 (2H, 2xs); 4,74 y 4,64 (2H, 2xs); 4,28-4,21 (1H, m); 2,36-2,28 (1H, m); 2,17-2,09 (2H, m); 2,02-1,93 (4H, m); 1,62-1,55 (2H, m); CLEM (APCI): 540 (M+H)⁺.

[Ejemplo 9]

5

15

20

25

30

ácido 4-(4-((3,5-difluorobencil)(2-(2,6-dihidroxifenil)-2-oxoetil)carbamoil)-5-(trifluorometil)-1H-pirazol-1-il)ciclohexanocarboxílico

Etapa 1: trans-4-(4-((3,5-difluorobencil)(2-(2-hidroxi-6-metoxifenil)-2-oxoetil)carbamoil)-5-(trifluorometil)-1H-pirazol-1-il)ciclohexanocarboxilato de etilo (9-1)

A una solución del compuesto 7-4 (50 mg, 0,082 mmol) en dicloroetano (3 ml) se añadió gota a gota BBr₃ (0,822 ml, 0,822 mmol, 1 M en DCM) y la mezcla se agitó a temperatura ambiente durante 16 h. La mezcla de reacción se concentró a presión reducida para producir el compuesto 9-1 en forma de un aceite de color pardo (50 mg, cuant.).

Etapa 2: ácido 4-(4-((3,5-difluorobencil)(2-(2,6-dihidroxifenil)-2-oxoetil)carbamoil)-5-(trifluorometil)-1H-pirazol-1-il)ciclohexanocarboxílico (9)

Al compuesto 9-1 (50 mg, 0,082 mmol) se añadió gota a gota exceso de BBr₃ (1 M en DCM) y la mezcla se agitó a temperatura ambiente durante 16 h. La mezcla de reacción se concentró a presión reducida. El residuo se purificó por cromatografía en columna de fase inversa (gel de sílice C18, agua al 55 %/CH₃CN como eluyente) para proporcionar el compuesto del ejemplo 9 (3 mg, 6 %) en forma de un sólido de color blanco. RMN ¹H (DMSO-d₆) rotámeros presentes δ 11,91 (1H, s a); 7,79 y 7,61 (1H, 2xs); 7,28-6,88 (4H, m); 6,36-6,02 (2H, m); 4,89-4,13 (5H, m); 2,29-2,22 (1H, m); 2,05-1,83 (6H, m); 1,55-1,46 (2H, m); CLEM (IEN): 582 (M+H)[†].

[Ejemplo 10]

5

10

15

20

25

30

ácido trans-4-(4-((2-(3,5-dicloropiridin-4-il)-2,2-difluoroetil)(3,5-difluorobencil)carbamoil)-5-(trifluorometil)-1H-pirazol-1-il)ciclohexanocarboxílico

Etapa 1: trans-4-(4-((2-(3,5-dicloropiridin-4-il)-2,2-difluoroetil)(3,5-difluorobencil)carbamoil)-5-(trifluorometil)-1H-pirazol-1-il)ciclohexanocarboxilato de etilo (10-1)

A una mezcla del ácido D1 (56,7 mg, 0,16 mmol) y la amina B15 (60 mg, 0,016 mmol) en piridina (4 ml) se añadió gota a gota POCl₃ (0,02 ml, 0,25 mmol) a 0 °C y se agitó a la misma temperatura durante 1 h. La mezcla de reacción se inactivó con una solución saturada de KHPO₄ (5 ml) y se extrajo con EtOAc (2 x 20 ml). Las capas orgánicas combinadas se lavaron con salmuera (20 ml), se secaron sobre Na₂SO₄ y se concentraron a presión reducida. El residuo se purificó por cromatografía en columna (gel de sílice, EtOAc al 15 %/hexano como eluyente) para proporcionar el compuesto 10-1 (25 mg, 22 %) en forma de un sólido de color amarillo pálido.

Etapa 2: ácido trans-4-(4-((2-(3,5-dicloropiridin-4-il)-2,2-difluoroetil)(3,5-difluorobencil)carbamoil)-5-(trifluorometil)-1H-pirazol-1-il)ciclohexanocarboxílico (10)

El compuesto del ejemplo 10 (11 mg, 46 %) se obtuvo en forma de un sólido de color blanco a partir de la reacción del compuesto 10-1 (25 mg, 0,37 mmol) y LiOH (27 mg, 0,11 mmol) en EtOH (0,5 ml), THF (0,5 ml) y H_2O (0,2 ml) usando un procedimiento similar al descrito en el ejemplo 1. RMN 1H (DMSO- d_6) rotámeros presentes δ 8,75 y 8,69 (2H, 2xs); 7,91 y 7,74 (1H, 2xs); 7,21-6,75 (3H, m); 4,86 y 4,76 (2H, 2xs); 4,63-4,00 (3H, m); 2,34-2,23 (1H, m); 2,09-1,77 (6H, m); 1,61-1,44 (2H, m); CLEM (APCI): 641 (M+H) $^+$.

[Ejemplo 11]

 $\label{eq:continuous} \mbox{acido} \qquad \mbox{trans-4-(4-((2-(2-amino-6-clorofenil)-2-oxoetil)(3,5-difluorobencil)carbamoil)-5-(trifluorometil)-1H-pirazol-1-il)ciclohexanocarboxílico}$

Etapa 1: trans-4-(4-((2-(2-cloro-6-nitrofenil)-2-hidroxietil)(3,5-difluorobencil)carbamoil)-5-(trifluorometil)-1H-pirazol-1-il)ciclohexanocarboxilato de etilo (11 -1)

El compuesto 11-1 (0,40 g, en bruto) se obtuvo en forma de una goma de color amarillo pálido a partir de la reacción de la amina A84 (0,2 g, 0,58 mmol), el ácido D1 (0,19 g, 0,58 mmol), HATU (0,26 g, 0,7 mmol) y DIPEA (0,14 ml, 0,87 mmol) en DMF (10 ml) usando un procedimiento similar al descrito en el ejemplo 1.

Etapa 2: trans-4-(4-((2-(2-cloro-6-nitrofenil)-2-oxoetil)(3,5-difluorobencil)carbamoil)-5-(trifluorometil)-1H-pirazol-1-il)ciclohexanocarboxilato de etilo (11-2)

El compuesto 11-2 (0,28 g, 70%) se obtuvo en forma de una goma incolora a partir de la reacción del compuesto 11-1 (0,40 g, 0,6 mmol) y peryodinano de Dess-Martin (0,51 g, 1,2 mmol) en DCM (10 ml) usando un procedimiento similar al descrito en el ejemplo 1.

Etapa 3: trans-4-(4-((2-(2-amino-6-clorofenil)-2-oxoetil)(3,5-difluorobencil)carbamoil)-5-(trifluorometil)-1H-pirazol-1-il)ciclohexanocarboxilato de etilo (11 -3)

El compuesto 11-3 (70 mg, 74 %) se obtuvo en forma de una goma de color amarillo a partir de la reacción del compuesto 11-2 (0,1 g, 0,15 mmol), Fe (85 mg, 1,52 mmol) y NH₄Cl (81 mg, 1,52 mmol) en EtOH/agua (4:1, 5 ml) usando un procedimiento similar al descrito en el ejemplo de referencia A56, etapa 7:

Etapa 4: ácido trans-4-(4-((2-(2-amino-6-clorofenil)-2-oxoetil)(3,5-difluorobencil)carbamoil)-5-(trifluorometil)-1H-pirazol-1-il)ciclohexanocarboxílico (11)

El compuesto del ejemplo 11 (8 mg, 33 %) se obtuvo en forma de un sólido de color amarillo a partir de la reacción del compuesto 11-3 (20 mg, 0,03 mmol) y LiOH (3,8 mg, 0,16 mmol) en THF/MeOH/agua (2:2:1, 5 ml) usando un procedimiento similar al descrito en el ejemplo 1. RMN 1 H (DMSO-d₆) rotámeros presentes δ 12,17 (1H, s a); 7,79 y 7,79 (1H, 2xs); 7,17-6,93 (4H, m); 6,70-6,54 (2H, m); 5,80 (1H, s a); 5,53 (1H, s a); 4,77-4,59 (4H, m); 4,23-4,16 (1H, m); 2,29-2,22 (1H, m); 2,06-1,88 (6H, m); 1,57-1,46 (2H, m); CLEM (APCI): 599 (M+H) † .

[Ejemplo 12]

5

25 ácido trans-4-(4-((3,5-difluorobencil)(2-oxo-2-(2,4,6-trihidroxipirimidin-5-il)etil)carbamoil)-5-(trifluorometil)-1H-pirazol-1-il)ciclohexanocarboxílico

Etapa 1: trans-4-(4-((3,5-difluorobencil)(2-((trietilsilil)oxi)-2-(2,4,6-tris(benciloxi)pirimidin-5-il)etil)carbamoil)-5-(trifluorometil)-1H-pirazol-1-il)ciclohexanocarboxilato de etilo (12-1)

El compuesto 12-1 se obtuvo (0,45 g, en bruto) en forma de una espuma de color pardo a partir de la reacción de la amina A85 (0,3 g, 0,4 mmol), el ácido D1 (0,14 g, 0,4 mmol), HATU (0,19 g, 0,5 mmol) y DIPEA (0,11 ml, 0,6 mmol) en DMF (5 ml) usando un procedimiento similar al descrito en el ejemplo 1.

Etapa 2: trans-4-(4-((3,5-difluorobencil)(2-hidroxi-2-(2,4,6-tris(benciloxi)pirimidin-5-il)etil)carbamoil)-5-(trifluorometil)-1H-pirazol-1-il)ciclohexanocarboxilato de etilo (12-2)

El compuesto 12-2 se obtuvo (0,31 g, 79 %) en forma de una espuma de color pardo a partir de la reacción del compuesto 12-1 (0,45 g, 0,4 mmol) y TBAF (1 M en THF, 0,9 ml, 0,8 mmol) en THF (10 ml) usando un procedimiento similar al descrito en el ejemplo 1.

Etapa 3: trans-4-(4-((3,5-difluorobencil)(2-oxo-2-(2,4,6-tris(benciloxi)pirimidin-5-il)etil)carbamoil)-5-(trifluorometil)-1H-pirazol-1-il)ciclohexanocarboxilato de etilo (12-3)

El compuesto 12-3 se obtuvo (0,31 g, cuant.) en forma de una goma incolora a partir de la reacción del compuesto 12-2 (0,31 g, 0,3 mmol) y peryodinano de Dess-Martin (0,29 g, 0,7 mmol) en DCM (10 ml) usando un procedimiento similar al descrito en el ejemplo 1.

Etapa 4: ácido trans-4-(4-((3,5-difluorobencil)(2-oxo-2-(2,4,6-trihidroxipirimidin-5-il)etil)carbamoil)-5-(trifluorometil)-1H-pirazol-1-il)ciclohexanocarboxílico (ejemplo 12)

A una solución agitada del compuesto 12-3 (0,1 g, 0,1 mmol) en dioxano (5 ml) se añadió HCl 6 M (5 ml) a temperatura ambiente y la mezcla se agitó a 80 °C durante 2 h. Se añadió una solución al 10 % de NaOH a la mezcla de reacción hasta un pH 5 y se extrajo con EtOAc (2 x 30 ml). Las capas orgánicas combinadas se lavaron con agua (50 ml) y salmuera (50 ml), se secaron sobre Na_2SO_4 y se concentraron a presión reducida. El residuo se purificó por cromatografía en columna de fase inversa (gel de sílice C18, agua al 75%/CH₃CN como eluyente) para proporcionar el compuesto del ejemplo 12 (8 mg, 12%) en forma de un sólido de color blanco. RMN ¹H (DMSO-d₆) rotámeros presentes δ 7,78 y 7,72 (1H, 2xs); 7,18-6,89 (3H, m); 4,92-4,56 (4H, m); 4,22-4,15 (1H, m); 2,33-2,25 (1H, m); 2,05-1,87 (6H, m); 1,57-1,46 (2H, m); CLEM (APCI): 600 (M+H)⁺.

[Ejemplo 13]

5

10

15

20

25

ácido trans-4-(4-((2-(2-acetamido-6-clorofenil)-2-oxoetil)(3,5-difluorobencil)carbamoil)-5-(trifluorometil)-1H-pirazol-1-il)ciclohexanocarboxílico

30 Etapa 1: trans-4-(4-((2-(2-acetamido-6-clorofenil)-2-oxoetil)(3,5-difluorobencil)carbamoil)-5-(trifluorometil)-1H-pirazol-1-il)ciclohexanocarboxilato de etilo (13 -1)

A una solución agitada del compuesto 11-3 (45 mg, 0,07 mmol) en una mezcla 1:1 de piridina y DCM (5 ml) se añadió CH₃COCI (6 μl, 0,08 mmol) a 0 °C y se agitó durante 2 h. La mezcla de reacción se inactivó con agua (20 ml) y se extrajo con DCM (2 x 10 ml). Las capas orgánicas combinadas se lavaron con agua (50 ml) y salmuera (50 ml), se secaron sobre Na₂SO₄ y se concentraron a presión reducida. El residuo se purificó por cromatografía en columna (gel de sílice, EtOAc al 20 %/hexano como eluyente) para proporcionar el compuesto 13-1 (50 mg, cuant.) en forma de un sólido de color amarillo.

Etapa 2: ácido trans-4-(4-((2-(2-acetamido-6-clorofenil)-2-oxoetil)(3,5-difluorobencil)carbamoil)-5-(trifluorometil)-1H-pirazol-1-il)ciclohexanocarboxílico (13)

El compuesto del ejemplo 13 (25 mg, 52 %) se obtuvo en forma de un sólido de color blanco a partir de la reacción del compuesto 13-1 (50 mg, 0,07 mmol) y LiOH (9 mg, 0,37 mmol) en THF/MeOH/agua (2:2:1, 5 ml) usando un procedimiento similar al descrito en el ejemplo 1. RMN ¹H (DMSO-d₆) rotámeros presentes δ 10,10 y 9,74 (1H, 2xs), 7,80 y 7,78 (1H, 2xs); 7,59-6,91 (6H, m); 4,82-4,61 (4H, m); 4,26-4,15 (1H, m); 2,34-2,24 (1H, m); 2,07-1,89 (9H, m); 1,58-1,47 (2H, m); CLEM (APCI): 641 (M+H)[†].

35

[Ejemplo 14]

 $\label{eq:condition} \begin{array}{ll} \text{4cido} & \text{trans-4-(4-((2-(3,5-\text{dicloropiridin-4-il})-2-\text{oxoetil})(((S)-5,5-\text{dimetilTHF-2-il})metil)carbamoil)-5-(trifluorometil)-1H-pirazol-1-il)ciclohexanocarboxílico} \end{array}$

Eto
$$F_3$$
C O F_3 C

5 Etapa 1: trans-4-(4-((2-(3,5-dicloropiridin-4-il)-2-((trietilsilil)oxi)etil)(((S)-5,5-dimetilTHF-2-il)metil)carbamoil)-5-(trifluorometil)-1H-pirazol-1-il)ciclohexanocarboxilato de etilo (14-1)

El compuesto 14-1 (42 mg, 61 %) se obtuvo en forma de una espuma de color amarillo a partir de la reacción del ácido D1 (31 mg, 0,09 mmol), la amina A92 (40 mg, 0,09 mmol), HATU (42 mg, 0,11 mmol) y DIPEA (0,024 ml, 0,138 mmol) en DMF (3,0 ml) usando un procedimiento similar al descrito en el ejemplo 1. CLEM (APCI): 749 (M+H)⁺.

Etapa 2: trans-4-(4-((2-(3,5-dicloropiridin-4-il)-2-hidroxietil)(((S)-5,5-dimetilTHF-2-il)metil)carbamoil)-5-(trifluorometil)-1H-pirazol-1-il)ciclohexanocarboxilato de etilo (14-2)

El compuesto 14-2 (22 mg, 62 %) se obtuvo en forma de una goma incolora a partir de la reacción del compuesto 14-1 (42 mg, 0,056 mmol) y TBAF (1 M en THF, 0,11 ml, 0,11 mmol) en THF (3,0 ml) usando un procedimiento similar al descrito en el ejemplo 1.

CLEM (APCI): 635 (M+H)+.

 $\label{eq:condition} \begin{tabular}{ll} Etapa 3: trans-4-(4-((2-(3,5-dicloropiridin-4-il)-2-oxoetil)(((S)-5,5-dimetilTHF-2-il)metil)carbamoil)-5-(trifluorometil)-1H-pirazol-1-il)ciclohexanocarboxilato de etilo (14-3) \\ \end{tabular}$

El compuesto 14-3 (15 mg, 70%) se obtuvo en forma de una goma incolora a partir de la reacción del compuesto 14-20 2 (22 mg, 0,034 mmol) y peryodinano de Dess-Martin (29 mg, 0,069 mmol) en DCM (4,0 ml) usando un procedimiento similar al descrito en el ejemplo 1.

CLEM (APCI): 633 (M+H)⁺.

Etapa 4: ácido trans-4-(4-((2-(3,5-dicloropiridin-4-il)-2-oxoetil)(((S)-5,5-dimetilTHF-2-il)metil)carbamoil)-5-(trifluorometil)-1H-pirazol-1-il)ciclohexanocarboxílico (14)

El compuesto del ejemplo 14 (7,5 mg, 54 %) se obtuvo en forma de un sólido de color blanco a partir de la reacción del compuesto 14-3 (15 mg, en bruto) y LiOH H_2O (8 mg, 0,19 mmol) en MeOH/THF/ H_2O (4 ml, 1:1:0,5) usando un procedimiento similar al descrito en el ejemplo 1: RMN 1H (DMSO- d_6) rotámeros presentes δ 12,16 (1H, s a), 8,79 y 8,72 (2H, 2xs); 7,84 y 7,69 (1H, 2xs); 5,01-4,76 (2H, m); 4,30-3,81 (3H, m); 2,33-2,26 (1H, m); 2,06-1,45 (13H, m); 1,19-1,04 (6H, m); CLEM (APCI): 605 (M+H) † .

30 **[Ejemplo 15]**

10

15

ácido trans-4-(4-((2-(2-cloro-6-hidroxifenil)-2-oxoetil)(3,5-difluorobencil)carbamoil)-5-(trifluorometil)-1H-pirazol-1-il)ciclohexanocarboxílico

Etapa 1: trans-4-(4-((2-(2-cloro-6-metoxifenil)-2-((trietilsilil)oxi)etil)(3,5-difluorobencil) carbamoil)-5-(trifluorometil)-1H-pirazol-1-il)ciclohexanocarboxilato de etilo (15-1)

El compuesto 15-1 (0,41 g, en bruto) se obtuvo como una goma de color pardo a partir de la reacción de la amina A93 (0,23 g, 0,52 mmol), el ácido D1 (0,17 g, 0,52 mmol), HATU (0,23 g, 0,62 mmol) y DIPEA (0,133 ml, 0,78 mmol) en DMF (10 ml) usando un procedimiento similar al descrito en el ejemplo 1.

Etapa 2: trans-4-(4-((2-(2-cloro-6-metoxifenil)-2-hidroxietil)(3,5-difluorobencil)carbamoil)-5-(trifluorometil)-1H-pirazol-1-il)ciclohexanocarboxilato de etilo (15-2)

El compuesto 15-2 (0,36 g, en bruto) se obtuvo en forma de una goma de color amarillo a partir de la reacción del compuesto 15-1 (0,41 g, 0,54 mmol) y TBAF (1,0 M en THF, 1,1 ml, 1,08 mmol) en THF (10 ml) usando un procedimiento similar al descrito en el ejemplo 1.

Etapa 3: trans-4-(4-((2-(2-cloro-6-metoxifenil)-2-oxoetil)(3,5-difluorobencil)carbamoil)-5-(trifluorometil)-1H-pirazol-1-il)ciclohexanocarboxilato de etilo (15-3)

El compuesto 15-3 (0,25 g, 70 %) se obtuvo en forma de un sólido de color blanco a partir de la reacción del compuesto 15-2 (0,36 g, 0,56 mmol) y peryodinano de Dess-Martin (0,47 g, 1,12 mmol) en DCM (10 ml) usando un procedimiento similar al descrito en el ejemplo 1.

Etapa 4: trans-4-(4-((2-(2-cloro-6-hidroxifenil)-2-oxoetil)(3,5-difluorobencil)carbamoil)-5-(trifluorometil)-1H-pirazol-1-il)ciclohexanocarboxilato de etilo (15-4)

A una solución agitada del compuesto 15-3 (0,25 g, 0,39 mmol) en DCM (10 ml) se añadió BBr₃ (1,0 M en DCM, 3,9 ml, 3,9 mmol) a temperatura ambiente y la mezcla se agitó durante 16 h. El disolvente se evaporó a presión reducida y el residuo obtenido se purificó por cromatografía en columna (gel de sílice, EtOAc al 30 %/hexano como eluyente) para proporcionar el compuesto 15-4 (85 mg, 35 %) en forma de un aceite de color amarillo.

Etapa 5: ácido trans-4-(4-((2-(2-cloro-6-hidroxifenil)-2-oxoetil)(3,5-difluorobencil)carbamoil)-5-(trifluorometil)-1H-pirazol-1-il)ciclohexanocarboxílico (15)

El compuesto del ejemplo 15 (55 mg, 68 %) se obtuvo en forma de un sólido de color blanco a partir de la reacción del compuesto 15-4 (85 mg, 0,13 mmol) y LiOH (16,3 mg, 0,67 mmol) en THF/MeOH/agua (2:2:1, 5 ml.) usando un procedimiento similar al descrito en el ejemplo 1. RMN ¹H (DMSO-d₆) rotámeros presentes 5 7,76 y 7,74 (1H, 2xs); 7,28-6,78 (6H, m); 4,75-4,52 (4H, m); 4,26-4,15 (1H, m); 2,33-2,26 (1H, m); 2,07-1,90 (6H, m); 1,58-1,47 (2H, m); CLEM (APCI): 600 (M+H)⁺.

30 [Ejemplo 16]

5

15

 $\label{eq:condition} \begin{array}{ll} \text{4cido} & \text{trans-4-}(4-((2-(3,5-\text{dicloropiridin-4-il})-2-\text{oxoetil})(((R)-5,5-\text{dimetilTHF-2-il})\text{metil})\text{-5-(trifluorometil})-1\text{H-pirazol-1-il})\text{ciclohexanocarbox}(\text{lico}) \\ \text{4cido} & \text{4cido}$

Eto
$$F_{3}$$
C OH + OH F_{3} C OH F_{3} C

Etapa 1: trans-4-(4-((2-(3,5-dicloropiridin-4-il)-2-((trietilsilil)oxi)etil)(((R)-5,5-dimetilTHF -2-il)metil)carbamoil)-5-(trifluorometil)-1H-pirazol-1-il)ciclohexanocarboxilato de etilo (16-1)

El compuesto 16-1 (29 mg, 52 %) se obtuvo en forma de una goma incolora a partir de la reacción del ácido D1 (25 mg, 0,074 mmol), la amina A94 (32 mg, 0,074 mmol), HATU (34 mg, 0,088 mmol) y DIPEA (0,019 ml, 0,11 mmol) en DMF (3,0 ml) usando un procedimiento similar al descrito en el ejemplo 1. CLEM (APCI): 749 (M+H)⁺.

Etapa 2: trans-4-(4-((2-(3,5-dicloropiridin-4-il)-2-hidroxietil)(((R)-5,5-dimetilTHF-2-il)metil)carbamoil)-5-(trifluorometil)-1H-pirazol-1-il)ciclohexanocarboxilato de etilo (16-2)

El compuesto 16-2 (25 mg, en bruto) se obtuvo en forma de una goma incolora a partir de la reacción del compuesto 16-1 (29 mg, 0,038 mmol) y TBAF (1 M en THF, 0,076 ml, 0,076 mmol) en THF (3,0 ml) usando un procedimiento similar al descrito en el ejemplo 1. CLEM (APCI): 635 (M+H)[†].

Etapa 3: trans-4-(4-((2-(3,5-dicloropiridin-4-il)-2-oxoetil)(((R)-5,5-dimetilTHF-2-il)metil)carbamoil)-5-(trifluorometil)-1H-pirazol-1-il)ciclohexanocarboxilato de etilo (16-3)

El compuesto 16-3 (23 mg, en bruto) se obtuvo en forma de una goma incolora a partir de la reacción del compuesto 16-2 (25 mg, en bruto) y peryodinano de Dess-Martin (33 mg, 0,078 mmol) en DCM (4,0 ml) usando un procedimiento similar al descrito en el ejemplo 1. CLEM (APCI): 633 (M+H)⁺.

Etapa 4: ácido trans-4-(4-((2-(3,5-dicloropiridin-4-il)-2-oxoetil)(((R)-5,5-dimetilTHF-2-il)metil)carbamoil)-5-(trifluorometil)-1H-pirazol-1-il)ciclohexanocarboxílico (16)

El compuesto del ejemplo 16 (8,5 mg, 39 %) se obtuvo en forma de un sólido de color blanco a partir de la reacción del compuesto 16-3 (23 mg, en bruto) y LiOH H_2O (12 mg, 0,29 mmol) en MeOH/THF/ H_2O (4 ml, 1:1:0,5) usando un procedimiento similar al descrito en el ejemplo 1. RMN 1H (DMSO- d_6) rotámeros presentes δ 12,19 (1H, s a), 8,79 y 8,72 (2H, 2xs); 7,84 y 7,69 (1H, 2xs); 5,01-4,76 (2H, m); 4,27-3,80 (3H, m); 2,33-2,26 (1H, m); 2,06-1,45 (13H, m); 1,19-1,04 (6H, m); CLEM (APCI): 605 (M+H) † .

[Ejemplo 17]

5

 $25 \qquad \text{\'acido} \qquad \qquad \text{trans-4-(5-ciclopropil-4-((2-(3,5-dicloropiridin-4-il)-2-oxoetil)(3,5-difluorobencil)carbamoil)-1H-pirazol-1-il)ciclohexanocarbox\'ilico}$

Etapa 1: trans-4-(5-ciclopropil-4-((2-(3,5-dicloropiridin-4-il)-2-((trietilsilil)oxi)etil)(3,5-difluorobencil)carbamoil)-1H-pirazol-1-il)ciclohexanocarboxilato de etilo (17-1)

El compuesto 17-1 (130 mg, en bruto) se obtuvo en forma de una goma incolora a partir de la reacción del ácido D20 (200 mg, 0,56 mmol), la amina A18 (233 mg, 0,52 mmol), HATU (296 mg, 0,78 mmol) y DIPEA (0,165 ml, 0,97 mmol) en DMF (10 ml) usando un procedimiento similar al descrito en el ejemplo 1.

Etapa 2: trans-4-(5-ciclopropil-4-((2-(3,5 -dicloropiridin-4-il)-2-hidroxietil)(3,5 -difluorobencil)carbamoil)-1H-pirazol-1-il)ciclohexanocarboxilato de etilo (17-2)

El compuesto 17-2 (80 mg, impuro) se obtuvo en forma de una goma incolora a partir de la reacción del compuesto 17-1 (80 mg, 0,128 mmol) y TBAF (1 M en THF, 0,190 ml, 0,190 mmol) en THF (4 ml) usando un procedimiento similar al descrito en el ejemplo 1.

Etapa 3: trans-4-(5-ciclopropil-4-((2-(3,5-dicloropiridin-4-il)-2-oxoetil)(3,5-difluorobencil)carbamoil)-1H-pirazol-1-il)ciclohexanocarboxilato de etilo (17-3)

El compuesto 17-3 (60 mg, 75 %) se obtuvo en forma de un sólido de color blanquecino a partir de la reacción del compuesto 17-2 (80 mg, 0,128 mmol) y peryodinano de Dess-Martin (110 mg, 0,250 mmol) en DCM (10 ml) usando un procedimiento similar al descrito en el ejemplo 1.

Etapa 4: ácido trans-4-(5-ciclopropil-4-((2-(3,5-dicloropiridin-4-il)-2-oxoetil)(3,5-difluorobencil)carbamoil)-1H-pirazol-1-il)ciclohexanocarboxílico (17)

El compuesto del ejemplo 17 (8 mg, 12 %) se obtuvo en forma de un sólido de color blanco a partir de la reacción del compuesto 17-3 (70 mg, 0,113 mmol) y LiOH (8,4 mg, 0,330 mmol) en EtOH/THF/agua (5 ml, 2:2:1) usando un procedimiento similar al descrito en el ejemplo 1. RMN 1 H (DMSO-d₆) rotámeros presentes δ 8,76 y 8,69 (2H, 2xs); 7,46 y 7,35 (1H, 2xs); 7,18-7,12 y 6,95-6,91 (3H, m); 4,76-4,62 (4H, m); 4,44-4,36 (1H, m); 2,26-2,17 (1H, m); 2,03-2,00 (2H, m); 1,87-1,83 (5H, m); 1,57-1,47 (2H, m); 0,95-0,90 (2H, m); 0,68-0,64 (2H, m); CLEM (APCI): 591 (M+H) $^{+}$.

[Ejemplo 18]

5

10

15

20

25

30

ácido trans-4-(4-((2-(2,6-dicloro-4-(difluorometil)fenil)-2-oxoetil)(3,5-difluorobpnzil)carbamoil)-5-(trifluorometil)-1H-pirazol-1-il)ciclohexanocarboxílico

$$\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \\ \\ \\ \end{array}\end{array}\end{array} \\ \begin{array}{c} \begin{array}{c} \\ \\ \end{array}\end{array} \\ \begin{array}{c} \\ \end{array} \\ \begin{array}{c} \\ \end{array}$$

Etapa 1: trans-4-(4-((2-(2,6-dicloro-4-(difluorometil)fenil)-2-hidroxietil)(3,5-difluorobencil)carbamoil)-5-(trifluorometil)-1H-pirazol-1-il)ciclohexanocarboxilato de etilo (18-1)

El compuesto 18-1 (0,18 g, en bruto) se obtuvo como una goma de color pardo a partir de la reacción de la amina A111 (0,10 g, 0,26 mmol), el ácido D1 (87 mg, 0,26 mmol), HATU (0,12 g, 0,31 mmol) y DIPEA (67 μl, 0,39 mmol) en DMF (5 ml) usando un procedimiento similar al descrito en el ejemplo 1.

Etapa 2: trans-4-(4-((2-(2,6-dicloro-4-(difluorometil)fenil)-2-oxoetil)(3,5-difluorobencil)carbamoil)-5-(trifluorometil)-1H-pirazol-1-il)ciclohexanocarboxilato de etilo (18-2)

El compuesto 18-2 (0,12 g, 67%) se obtuvo en forma de una goma incolora a partir de la reacción del compuesto 18-35 1 (0,18 g, 0,26 mmol) y peryodinano de Dess-Martin (0,22 g, 0,52 mmol) en DCM (5 ml) usando un procedimiento similar al descrito en el ejemplo 1.

Etapa 3: ácido trans-4-(4-((2-(2,6-dicloro-4-(difluorometil)fenil)-2-oxoetil)(3,5-difluorobencil)carbamoil)-5-(trifluorometil)-1H-pirazol-1-il)ciclohexanocarboxílico (18)

El compuesto del ejemplo 18(15 mg, 26%) se obtuvo en forma de un sólido de color blanco a partir de la reacción del compuesto 18-2 (60 mg, 0,08 mmol) y LiOH (11 mg, 0,43 mmol) en THF/MeOH/agua (2:2:1, 5 ml) usando un procedimiento similar al descrito en el ejemplo 1. RMN 1 H (DMSO-d₆) rotámeros presentes δ 12,20 (1H, s a); 7,87-7,75 (3H, m); 7,21-6,88 (4H, m); 4,84 y 4,72 (2H, 2xs); 4,68 y 4,57 (2H, 2xs); 4,28-4,17 (1H, m); 2,34-2,27 (1H, m); 2,07-1,90 (6H, m); 1,59-1,49 (2H, m); CLEM (APCI): 668 (M+H) $^{+}$.

[Ejemplo 19]

5

ácido trans-4-(4-((2-(3,5-dicloropiridin-4-il)-2-oxoetil)((4-hidroxi-4-metilciclohexil)metil)carbamoil)-5-(trifluorometil)-1H-pirazol-1-il)ciclohexanocarboxílico

10 Etapa 1: trans-4-(4-((2-(3,5-dicloropiridin-4-il)-2-((trietilsilil)oxi)etil)((4-hidroxi-4-metilciclohexil)metil)carbamoil)-5-(trifluorometil)-1H-pirazol-1-il)ciclohexanocarboxilato de etilo (19-1)

El compuesto 19-1 (72 mg, en bruto) se obtuvo en forma de una goma incolora a partir de la reacción del ácido D1 (44 mg, 0,129 mmol), la amina A112 (58 mg, 0,129 mmol), HATU (59 mg, 0,155 mmol) y DIPEA (0,034 ml, 0,194 mmol) en DMF (4,0 ml) usando un procedimiento similar al descrito en el ejemplo 1.

15 Etapa 2: trans-4-(4-((2-(3,5-dicloropiridin-4-il)-2-hidroxietil)((4-hidroxi-4-metilciclohexil) metil)carbamoil)-5-(trifluorometil)-1H-pirazol-1-il)ciclohexanocarboxilato de etilo (19-2)

El compuesto 19-2 (46 mg, 55 % en dos etapas) se obtuvo en forma de una goma incolora a partir de la reacción del compuesto 19-1 (72 mg, en bruto) y TBAF (1 M en THF, 0,18 ml, 0,18 mmol) en THF (4,0 ml) usando un procedimiento similar al descrito en el ejemplo 1.

20 Etapa 3: trans-4-(4-((2-(3,5-dicloropiridin-4-il)-2-oxoetil)((4-hidroxi-4-metilciclohexil)metil)carbamoil)-5-(trifluorometil)-1H-pirazol-1-il)ciclohexanocarboxilato de etilo (19-3)

El compuesto 19-3 (45 mg, en bruto) se obtuvo en forma de una goma incolora a partir de la reacción del compuesto 19-2 (46 mg, 0,071 mmol) y peryodinano de Dess-Martin (60 mg, 0,14 mmol) en DCM (5,0 ml) usando un procedimiento similar al descrito en el ejemplo 1.

Etapa 4: ácido trans-4-(4-((2-(3,5-dicloropiridin-4-il)-2-oxoetil)((4-hidroxi-4-metilciclohexil)metil)carbamoil)-5-(trifluorometil)-1H-pirazol-1-il)ciclohexanocarboxílico (19)

El compuesto del ejemplo 19 (16 mg, 38 %) se obtuvo en forma de un sólido de color blanco a partir de la reacción del compuesto 19-3 (45 mg, 0,069 mmol) y LiOH H_2O (18 mg, 0,41 mmol) en EtOH/THF/ H_2O (4 ml, 1:1:0,5) usando un procedimiento similar al descrito en el ejemplo 1. RMN 1H (DMSO- d_6) rotámeros presentes δ 12,24 (1H, s a); 8,80 y 8,73 (2H, 2xs); 7,80 y 7,70 (1H, 2xs); 4,83 y 4,67 (2H, 2xs); 4,28-4,18 (1H, m); 3,93 y 3,87 (1H, 2xs); 3,49-3,47 y 3,18-3,11 (1H, 2xm); 2,33-2,25 (1H, m); 2,06-1,90 (6H, m); 1,58-1,01 (14H, m); CLEM (APCI): 617 (M-H).

[Ejemplo 20]

30

 $\label{eq:condition} \begin{array}{ll} \text{4cido} & \text{trans-4-(4-(4-(4-(3.5-\text{Dicloropiridin-4-il})-2-\text{oxoetil})(3.5-\text{difluorobencil})\text{-carbamoil})-5-(\text{difluorometil})-1\text{H-pirazol-1-il}) \\ \text{ciclohexanocarbox(lico} & \text{carbanocarbox(lico}) \end{array}$

Etapa 1: trans-4-(4-((2-(3,5-dicloropiridin-4-il)-2-((trietilsilil)oxi)etil)(3,5-difluorobencil)carbamoil)-5-(difluorometil)-1H-pirazol-1-il)ciclohexanocarboxilato de etilo (20-1)

El compuesto 20-1 (130 mg, 55 %) se obtuvo en forma de un sólido de color blanco a partir de la reacción del ácido D26 (100 mg, 0,31 mmol), la amina A18 (105 mg, 0,31 mmol), (COCl)₂ (0,03 ml, 0,37 mmol), Et₃N (0,08 ml, 0,63 mmol) y DMF (cat) en DCM usando un procedimiento similar al descrito en el ejemplo 2.

Etapa 2: trans-4-(4-((2-(3,5-dicloropiridin-4-il)-2-hidroxietil)(3,5-difluorobencil)carbamoil)-5-(difluorometil)-1H-pirazol-1-il)ciclohexanocarboxilato de etilo (20-2)

El compuesto 20-2 (101 mg, 91 %) se obtuvo en forma de un sólido de color blanquecino a partir de la reacción del compuesto 20-1 (130 mg, 0,54 mmol) y TBAF (solución 1,0 M en THF, 0,24 ml, 0,24 mmol) en THF (4 ml) usando un procedimiento similar al descrito en el ejemplo 2.

Etapa 3: trans-4-(4-((2-(3,5-dicloropiridin-4-il)-2-oxoetil)(3,5-difluorobencil)carbamoil)-5-(difluorometil)-1H-pirazol-1-il)ciclohexanocarboxilato de etilo (20-3)

El compuesto 20-3 (30 mg, 33 %) se obtuvo en forma de un sólido de color blanquecino a partir de la reacción del compuesto 20-2 (101 mg, 0,15 mmol) y peryodinano de Dess-Martin (101 mg, 0,23 mmol) en DCM (8 ml) usando un procedimiento similar al descrito en el ejemplo 2.

Etapa 4: ácido trans-4-(4-((2-(3,5-dicloropiridin-4-il)-2-oxoetil)(3,5-difluorobencil)carbamoil)-5-(difluorometil)-1H-pirazol-1-il)ciclohexanocarboxílico (20)

A una solución del compuesto 20-3 (106 mg, 0,17 mmol) en dioxano (6 ml) se añadió HCl 6 M (6 ml) y se calentó a 80 °C durante 16 h. La mezcla de reacción se enfrió a temperatura ambiente, se añadió H₂O y se extrajo con EtOAc (2 x 50 ml). Las capas orgánicas combinadas se lavaron con salmuera (2x10 ml), se secaron sobre Na₂SO₄ y se concentraron a presión reducida. El residuo se purificó por cromatografía en columna de fase inversa (gel de sílice C18, CH₃CN al 75 %/agua como eluyente) para proporcionar el compuesto del ejemplo 20 (36 mg, 62 %) en forma de un sólido de color blanco. RMN ¹H (DMSO-d₆) rotámeros presentes δ 8,76 y 8,69 (2H, 2xs); 7,77 y 7,67 (1H, 2xs); 7,45-7,00 (4H, m); 4,91-4,70 (4H, m); 4,36-4,29 (1H, m); 2,31-2,24 (1H, m); 2,06-2,02 (2H, m); 1,94-1,89 (4H, m); 1,56-1,45 (2H, m); CLEM (IEN): 599 (M+H)⁺.

[Ejemplo 21]

5

15

ácido trans-4-(4-((2-(2-amino-4-cloropiridin-3-il)-2-oxoetil)(3,5-difluorobencil)carbamoil)-5-(trifluorometil)-1H-pirazol-1-il)ciclohexanocarboxílico

Etapa 1: trans-4-(4-((2-(2-azido-4-cloropiridin-3-il)-2-oxoetil)(3,5-difluorobencil)carbamoil)-5-(trifluorometil)-1H-pirazol-1-il)ciclohexanocarboxilato de etilo (21-1)

A una solución agitada de trans-4-(4-((2-(2,4-dicloropiridin-3-il)-2-oxoetil)(3,5-difluorobencil)carbamoil)-5(trifluorometil)-1H-pirazol-1-il)ciclohexanocarboxilato de etilo (100 mg, 0,15 mmol) en DMF (5 ml) se añadió NaN₃ (50 mg, 0,7 mmol) y la mezcla se agitó a temperatura ambiente durante 3 h. La mezcla de reacción se inactivó con agua (20 ml) y se extrajo con EtOAc (2 x 30 ml). Las capas orgánicas combinadas se lavaron con agua (50 ml) y salmuera (50 ml), se secaron sobre Na₂SO₄ y se concentraron a presión reducida. El residuo se purificó por cromatografía en columna (gel de sílice, EtOAc al 30 %/hexano como eluyente) para proporcionar el compuesto 21-1 (60 mg, 59 %) en forma de un aceite de color pardo.

Etapa 2: trans-4-(4-((2-(2-amino-4-cloropiridin-3-il)-2-oxoetil)(3,5-difluorobencil)carbamoil)-5-(trifluorometil)-1H-pirazol-1-il)ciclohexanocarboxilato de etilo (21 -2)

A una solución agitada del compuesto 21-1 (60 mg, 0,09 mmol) en THF (5 ml) se añadió Me₃P (1,0 M en THF, 0,18 ml, 0,18 mmol) a 0 °C y la mezcla se agitó a temperatura ambiente durante 2 h. Se añadió H₂O (0,06 ml) a la mezcla de reacción a 0 °C y la mezcla se agitó a temperatura ambiente durante 16 h. El disolvente se retiró a presión reducida y el residuo se purificó por cromatografía en columna (gel de sílice, EtOAc al 30 %/hexano como eluyente) para proporcionar el compuesto 21-2 (40 mg, 69 %) en forma de un aceite de color amarillo.

Etapa 3: ácido trans-4-(4-((2-(2-amino-4-cloropiridin-3-il)-2-oxoetil)(3,5-difluorobencil)carbamoil)-5-(trifluorometil)-1H-pirazol-1-il)ciclohexanocarboxílico (21)

A una solución agitada del compuesto 21-2 (40 mg, 0,06 mmol) en THF/MeOH (4 ml, 1:1) se añadió una solución de LiOH (7,7 mg, 0,3 mmol) en agua (1 ml). La mezcla de reacción se agitó a temperatura ambiente durante 2 h. La mezcla de reacción se diluyó con agua (10 ml), se acidificó con HCl 0,5 M (a pH 5) y se extrajo con EtOAc (3 x 10 ml). Las capas orgánicas combinadas se lavaron con agua (10 ml) y salmuera (10 ml), se secaron sobre Na₂SO₄ y se concentraron a presión reducida. El residuo se purificó por cromatografía en columna de fase inversa (gel de sílice C18, CH₃CN al 70 %/agua como eluyente) para proporcionar el compuesto del ejemplo 21 (25 mg, 66 %) en forma de un sólido de color blanco. RMN ¹H (DMSO-d₆) rotámeros presentes δ 12,14 (1H, s a); 8,75 y 8,46 (1H, 2xs); 7,91 (2H, s a); 7,73 y 7,49 (1H, 2xs); 7,16-7,01 (2H, m); 6,89-6,85 (1H, m); 6,78 y 6,73 (1H, 2xs); 5,02 y 4,83 (2H, 2xs); 4,65 y 4,55 (2H, 2xs); 4,20-4,12 (1H, m); 2,33-2,21 (1H, m); 2,04-1,79 (6H, m); 1,56-1,43 (2H, m); CLEM (APCI): 600 (M+H)⁺.

[Ejemplo 22]

15

30

 ${\it acido} \qquad trans-4-(4-((2-cianobencil)(2-(3,5-dicloropiridin-4-il)-2-oxoetil) carbamoil)-5-(trifluorometil)-1 H-pirazol-1-il) ciclohexanocarboxílico$

Etapa 1: trans-4-(4-((2-bromobencil)(2-(3,5-dicloropiridin-4-il)-2-((trietilsilil)oxi)etil)carbamoil)-5-(trifluorometil)-1H-pirazol-1-il)cyelohexanocarboxilato de etilo (22-1)

El compuesto 22-1 (310 mg, en bruto) se obtuvo en forma de un aceite de color amarillo a partir de la reacción de la amina A118 (200 mg, 0,40 mmol), el ácido D1 (136 mg, 0,40 mmol), HATU (232 mg, 0,61 mmol) y DIPEA (0,14 ml, 0,81 mmol) en DMF (5 ml) usando un procedimiento similar al descrito en el ejemplo 1.

Etapa 2: trans-4-(4-((2-bromobencil)(2-(3,5-dicloropiridin-4-il)-2-hidroxietil)carbamoil)-5-(trifluorometil)-1H-pirazol-1-il)ciclohexanocarboxilato de etilo (22-2)

El compuesto 22-2 (175 mg, 73%) se obtuvo en forma de un sólido de color blanquecino a partir de la reacción del compuesto 22-1 (310 mg, 0,38 mmol) y TBAF (solución 1,0 M en THF, 0,57 ml, 0,57 mmol) en THF (4 ml) usando un procedimiento similar al descrito en el ejemplo 1.

Etapa 3: trans-4-(4-((2-bromobencil)(2-(3,5-dicloropiridin-4-il)-2-oxoetil)carbamoil)-5-(trifluorometil)-1H-pirazol-1-il)ciclohexanocarboxilato de etilo (22-3)

El compuesto 22-3 (150 mg, 86%) se obtuvo en forma de un sólido de color blanquecino a partir de la reacción del compuesto 22-2 (175 mg, 0,25 mmol) y peryodinano de Dess-Martin (161 mg, 0,37 mmol) en DCM (10 ml) usando un procedimiento similar al descrito en el ejemplo 1.

Etapa 4: trans-4-(4-((2-cianobencil)(2-(3,5-dicloropiridin-4-il)-2-oxoetil)carbamoil)-5-(trifluorometil)-1H-pirazol-1-il)ciclohexanocarboxilato de etilo (22-4)

Una mezcla del compuesto 22-3 (100 mg, 0,14 mmol) y Zn(CN)₂ (34 mg, 0,28 mmol) en DMA (8 ml) se purgó con argón durante 10 min. Se añadió Pd(PPh₃)₄ (33,4 mg, 0,02 mmol) y la mezcla se calentó a 100 °C durante 3 h. La mezcla de reacción se enfrió a temperatura ambiente, se inactivó con agua (10 ml) y se extrajo con EtOAc (2 x 20 ml). Las capas orgánicas combinadas se lavaron con agua (10 ml) y salmuera (10 ml), se secaron sobre Na₂SO₄ y se concentraron a presión reducida. El residuo se purificó por cromatografía en columna (gel de sílice, EtOAc al 30 %/hexano) para proporcionar el compuesto 22-4 (27 mg, 29 %) en forma de un sólido de color blanquecino.

Etapa 5: ácido trans-4-(4-((2-cianobencil)(2-(3,5-dicloropiridin-4-il)-2-oxoetil)carbamoil)-5-(trifluorometil)-1H-pirazol-1-il)ciclohexanocarboxílico (22)

El compuesto del ejemplo 22 (15 mg, 39 %) se obtuvo en forma de un sólido de color blanco a partir de la reacción del compuesto 22-4 (40 mg, 0,06 mmol) y LiOH (4,3 mg, 0,03 mmol) en EtOH (2 ml), THF (2 ml) y H_2O (1 ml) usando un procedimiento similar al descrito en el ejemplo 1. RMN 1H (DMSO- d_6) rotámeros presentes δ 8,56-8,50 (2H, m); 7,91 (2H, s a); 7,94 (1H, s); 7,54-7,42 y 7,17 (3H, m y s); 7,08 (1H, s); 5,62-5,58 y 4,64-4,59 (1H, 2xm); 4,33-4,17 (1H, m); 2,39-2,33 (1H, m); 2,10-1,93 (7H, m); CLEM (APCI): 608 (M+H) $^+$.

[Ejemplo 23]

5

15

20

30

ácido trans-4-(4-((2-(3,5-dicloropiridin-4-il)-2-oxoetil)((3,3-dimetilciclobutil)metil)carb amoil)-5-(trifluorometil)-1H-pirazol-1-il)ciclohexanocarboxílico

Eto
$$P_{3}$$
C P_{3} C P_{4} C P_{4} C P_{5}

Etapa 1: trans-4-(4-((2-(3,5-dicloropiridin-4-il)-2-((trietilsilil)oxi)etil)((3,3-dimetilciclobutil)metil)carbamoil)-5-(trifluorometil)-1H-pirazol-1-il)ciclohexanocarboxilato de etilo (23-1)

El compuesto 23-1 (180 mg, en bruto) se obtuvo en forma de una goma amarilla a partir de la reacción de la amina A119 (190 mg, 0,455 mmol), el ácido D1 (167 mg, 0,50 mmol), cloruro de oxalilo (0,086 ml, 1,0 mmol), Et₃N (0,10 ml, 0,68 mmol) y DMF (cat) en DCM (10 ml) usando un procedimiento similar al descrito en el ejemplo 2.

Etapa 2: trans-4-(4-((2-(3,5-dicloropiridin-4-il)-2-hidroxietil)((3,3-dimetilciclobutil)metil) carbamoil)-5-(trifluorometil)-1H-pirazol-1-il)ciclohexanocarboxilato de etilo (23-2)

El compuesto 23-2 (60 mg, 20 %, en 2 etapas) se obtuvo en forma de una goma incolora a partir de la reacción del compuesto 23-1 (180 mg, 0,245 mmol) y TBAF (0,5 ml, 0,5 mmol, 1 M en THF) en THF (3 ml) usando un procedimiento similar al descrito en el ejemplo 1.

Etapa 3: trans-4-(4-((2-(3,5-dicloropiridin-4-il)-2-oxoetil)((3,3-dimetilciclobutil)metil)carbamoil)-5-(trifluorometil)-1H-pirazol-1-il)ciclohexanocarboxilato de etilo (23 -3)

El compuesto 23-3 (60 mg, cuant.) se obtuvo en forma de un sólido de color blanco a partir de la reacción del compuesto 23-2 (60 mg, 0,096 mmol) y peryodinano de Dess-Martin (83 mg, 0,193 mmol) en DCM (10 ml) usando un procedimiento similar al descrito en el ejemplo 1.

Etapa 4

ácido trans-4-(4-((2-(3,5-dicloropiridin-4-il)-2-oxoetil)((3,3-dimetilciclobutil)metil)carbamoil)-5-(trifluorometil)-1H-pirazol-1-il)ciclohexanocarboxílico (23)

20 El compuesto del ejemplo 23 (30 mg, 52 %) se obtuvo en forma de un sólido de color blanquecino a partir de la reacción del compuesto 23-3 (60 mg, 0,097 mmol) y LiOH (19 mg, 0,048 mmol) en THF/agua/MeOH (5 ml, 2:2:1) usando un procedimiento similar al descrito en el ejemplo 1. RMN ¹H (CD₃OD) rotámeros presentes δ 8,65 y 8,58 (2H, 2xs); 7,74 y 7,57 (1H, 2xs); 4,81 y 4,63 (2H, 2xs); 4,36-4,24 (1H, m); 3,62 y 3,42 (2H, 2xd, *J* = 7,5 Hz); 2,67-2,34 (2H, m); 2,21-2,02 (6H, m); 1,92-1,81 (2H, m); 1,70-1,56 (3H, m); 1,37-1,29 (1H, m); 1,15-0,93 (6H, m); CLEM (APCI): 591 (M+H)⁺.

[Ejemplo 186]

 $\label{eq:condition} \begin{array}{lll} \text{\'acido} & \text{trans-4-(4-((2-(3,5-\text{dicloropiridin-4-il})-2-\text{oxoetil})-(2,2-\text{dimetilpropil})\text{carbamoil})-5- & \text{(trifluorometil)pirazol-1-il})-1-\text{metilciclohexano-1-carboxílico} \end{array}$

Eto
$$F_3$$
C O F_3 C

Etapa 1: trans-4-(4-((2-(3,5-dicloropiridin-4-il)-2-((trietilsilil)oxi)etil)(neopentil)carbamoil)-5-(trifluorometil)-1H-pirazol-1-il)-1-metilciclohexanocarboxilato de etilo (186-1)

El compuesto 186-1 se obtuvo a partir de la reacción de la amina A3 (60 mg, 0,153 mmol), el ácido D2 (56 mg, 0,161 mmol), cloruro de oxalilo (0,028 ml, 0,322 mmol), NaOH 1 N (0,92 ml, 0,920 mmol) y DMF (cat) en DCM (1 ml) usando un procedimiento similar al descrito en el ejemplo 2.

Etapa 2: trans-4-(4-((2-(3,5-dicloropiridin-4-il)-2-hidroxietil)(neopentil)carbamoil)-5-(trifluorometil)-1H-pirazol-1-il)-1-metilciclohexanocarboxilato de etilo (186-2)

El compuesto 186-2 (89 mg, 96 % en 2 etapas) se obtuvo en forma de un jarabe incoloro a partir de la reacción del compuesto 186-1 (en bruto) y TBAF (0,169 ml, 0,169 mmol, 1 M en THF) en THF (1 ml) usando un procedimiento similar al descrito en el ejemplo 1.

Etapa 3: trans-4-(4-((2-(3,5-dicloropiridin-4-il)-2-oxoetil)(neopentil)carbamoil)-5-(trifluorometil)-1H-pirazol-1-il)-1-metilciclohexanocarboxilato de etilo (186-3)

El compuesto 186-3 (69 mg, 78 %) se obtuvo en forma de un sólido de color blanco a partir de la reacción del compuesto 186-2 (89 mg, 0,147 mmol) y peryodinano de Dess-Martin (87 mg, 0,205 mmol) en DCM (2 ml) usando un procedimiento similar al descrito en el ejemplo 1.

Etapa 4: Ácido trans-4-(4-((2-(3,5-dicloropiridin-4-il)-2-oxoetil)-(2,2-dimetilpropil)carbamoil)-5-(trifluorometil)pirazol-1-il)-1-metilciclohexano-1-carboxílico (186)

El compuesto del ejemplo 186 (51 mg, 77 %) se obtuvo en forma de un sólido de color blanco a partir de la reacción del compuesto 186-3 (69 mg, 0,114 mmol) y LiOH 4 N (0,228 ml, 0,912 mmol) en THF/agua/MeOH (1 ml, 2:1:2) usando un procedimiento similar al descrito en el ejemplo 1. RMN 1 H (CDCl₃) rotámeros presentes δ 8,57 y 8,50 (2H, 2xs); 7,71 y 7,57 (1H, 2xs); 4,87 y 4,53 (2H, 2xs); 4,25-4,18 (1H, m); 3,43-3,35 (2H, m); 2,25-2,15 (2H, m); 1,95-1,85 (6H, m); 1,42 y 1,40 (3H, 2xs); 1,01 y 0,85 (9H, 2xs); CLEM (IEN): 577,2 (M+H) $^+$.

[Ejemplo 233]

5

10

15

20

25

30

35

ácido 4-(4-((2-(3,5-dicloropiridin-4-il)-2-oxoetil)-(2,2-dimetilpropil)carbamoil)-5-(trifluorometil)pirazol-1-il)biciclo[2,2,2]octano-1-carboxílico

Etapa 1: 4-(4-((2-(3,5-dicloropiridin-4-il)-2-((trietilsilil)oxi)etil)(neopentil)carbamoil)-5-(trifluorometil)-1H-pirazol-1-il)biciclo[2,2,2]octano-1-carboxilato de etilo (233-1)

El compuesto 233-1 se obtuvo a partir de la reacción de la amina A3 (58 mg, 0,148 mmol), el ácido D28 (50mg, 0,139 mmol), cloruro de oxalilo (0,024 ml, 0,278 mmol), NaOH 1 N (0,833 ml, 0,833 mmol) y DMF (cat) en DCM (1 ml) usando un procedimiento similar al descrito en el ejemplo 2.

Etapa 2: 4-(4-((2-(3,5-dicloropiridin-4-il)-2-hidroxietil)(neopentil)carbamoil)-5-(trifluorometil)-1H-pirazol-1-il)biciclo[2,2,2]octano-1-carboxilato de etilo (233-2)

El compuesto 233-2 (67 mg, 78% en 2 etapas) se obtuvo en forma de un jarabe incoloro a partir de la reacción del compuesto 233-1 (en bruto) y TBAF (0,148 ml, 0,148 mmol, 1 M en THF) en THF (1 ml) usando un procedimiento similar al descrito en el ejemplo 1.

Etapa 3: 4-(4-((2-(3,5-dicloropiridin-4-il)-2-oxoetil)(neopentil)carbamoil)-5-(trifluorometil)-1H-pirazol-1-il)biciclo [2,2,2] octano-1-carboxilato de etilo (233-3)

El compuesto 233-3 (56 mg, 84%) se obtuvo en forma de un sólido de color blanco a partir de la reacción del

compuesto 233-2 (67 mg, 0,108 mmol) y peryodinano de Dess-Martin (64 mg, 0,151 mmol) en DCM (2 ml) usando un procedimiento similar al descrito en el ejemplo 1.

Etapa 4: ácido 4-(4-((2-(3,5-dicloropiridin-4-il)-2-oxoetil)-(2,2-dimetilpropil)carbamoil)-5-(trifluorometil)pirazol-1-il)biciclo[2,2,2]octano-1-carboxílico (233)

El compuesto del ejemplo 233 (27 mg, 51 %) se obtuvo en forma de un sólido de color blanco a partir de la reacción del compuesto 233-3 (56 mg, 0,091 mmol) y LiOH 4 N (0,091 ml, 0,363 mmol) en THF/agua/MeOH (0,7 ml, 3:1:3) usando un procedimiento similar al descrito en el ejemplo 1. RMN ¹H (CDCl₃) rotámeros presentes δ 8,57 y 8,50 (2H, 2xs); 7,64 y 7,49 (1H, 2xs): 4,84 y 4,50 (2H, 2xs); 3,61-3,26 (2H, m); 2,32-2,22 (6H, m); 2,08-2,04 (6H, m): 1,01 y 0.85 (9H, 2xs); CLEM (IEN): 589,2 (M+H)⁺.

10 [Ejemplo 276]

 ${\it acido} \qquad {\it trans-4-(5-cloro-4-((2-(3,5-dicloropiridin-4-il)-2-oxoetil)-(2,2-dimetilpropil)carbamoil)pirazol-1-il)-1-metilciclohexano-1-carboxílico}$

Etapa 1: trans-4-(5-cloro-4-((2-(3,5-dicloropiridin-4-il)-2-((trietilsilil)oxi)etil)(neopentil)carbamoil)-1H-pirazol-1-il)-1-metilciclohexanocarboxilato de etilo (276-1)

El compuesto 276-1 se obtuvo a partir de la reacción de la amina A3 (124 mg, 0,31 mmol), el ácido D33 (100 mg, 0,31 mmol), cloruro de oxalilo (0,082 ml, 0,95 mmol), $\rm Et_3N$ (0,088 ml, 0,66 mmol) y DMF (cat) en DCM (5 ml) usando un procedimiento similar al descrito en el ejemplo 2.

Etapa 2: trans-4-(5-cloro-4-((2-(3,5-dicloropiridin-4-il)-2-hidroxietil)(neopentil)carbamoil)-1H-pirazol-1-il)-1-metilciclohexanocarboxilato de etilo (276-2)

El compuesto 276-2 (160 mg, 88 %, en 2 etapas) se obtuvo en forma de un sólido de color blanco a partir de la reacción del compuesto 276-1 (en bruto) y TBAF (0,5 ml, 0,5 mmol, 1 M en THF) en THF (2 ml) usando un procedimiento similar al descrito en el ejemplo 1.

Etapa 3: trans-4-(5-cloro-4-((2-(3,5-dicloropiridin-4-il)-2-oxoetil)(neopentil)carbamoil)-1H-pirazol-1-il)-1-metilciclohexanocarboxilato de etilo (276-3)

El compuesto 276-3 (130 mg, 81 %) se obtuvo en forma de un sólido de color blanquecino a partir de la reacción del compuesto 276-2 (160 mg, 0,279 mmol) y peryodinano de Dess-Martin (233 mg, 0,56 mmol) en DCM (10 ml) usando un procedimiento similar al descrito en el ejemplo 1.

Etapa 4: ácido trans 4-(5-cloro-4-((2-(3,5-dicloropiridin-4-il)-2-oxoetil)-(2,2-dimetilpropil)carbamoil)pirazol-1-il)-1-metilciclohexano-1-carboxílico (276)

El compuesto del ejemplo 276 (60 mg, 47 %) se obtuvo en forma de un sólido de color blanco a partir de la reacción del compuesto 276-3 (130 mg, 0,224 mmol) y LiOH (26,9 mg, 1,123 mmol) en THF/EtOH/agua (11 ml, 5:5:1) usando un procedimiento similar al descrito en el ejemplo 1. RMN 1 H (DMSO-d₆) rotámeros presentes δ 12,25 (1H, s a); 8,77 y 8,72 (2H, 2xs); 7,79 y 7,73 (1H, 2xs); 4,84 y 4,77 (2H, 2xs); 4,36-4,28 (1H, m); 2,02-1,72 (8H, m); 1,21 (3H, s); 0,95 y 0,74 (9H, 2xs); CLEM (APCI): 545 (M+H) $^{+}$.

[Ejemplo 277]

20

25

30

35

ácido trans-4-(4-((2-(2,6-dicloro-4-metilfenil)-2-oxoetil)((1R,3r,5S)-6,6-dimetilbiciclo[3,1,0]hexan-3-il)carbamoil)-5-(trifluorometil)-1H-pirazol-1-il)-1-metilciclohexanocarboxílico

Etapa 1: trans-4-(4-((2-(2,6-dicloro-4-metilfenil)-2-((trietilsilil)oxi)etil)((1R,3r,5S)-6,6-dimetilbiciclo[3,1,0]hexan-3-il)carbamoil)-5-(trifluorometil)-1H-pirazol-1-il)-1-metilciclohcxanecarboxilato de etilo (277-1)

El compuesto 277-1 se obtuvo a partir de la reacción de la amina C45 (74 mg, 0,167 mmol), el ácido D2 (55 mg, 0,158 mmol), HATU (72 mg. 0,190 mmol) y DIPEA (0,055 ml., 0,320 mmol) en DMF (2 ml) usando un procedimiento similar al descrito en el ejemplo 1.

Etapa 2: trans-4-(4-((2-(2,6-dicloro-4-metilfenil)-2-hidroxietil)((1R,3r,5S)-6,6-dimetilbiciclo[3,1,0]hexan-3-il)carbamoil)-5-(trifluorometil)-1H-pirazol-1-il)-1-metilciclohexanccarboxilato de etilo (277-2)

El compuesto 277-2 (85 mg, 82 % en 2 etapas) se obtuvo en forma de un semi-sólido de color amarillo a partir de la reacción del compuesto 277-1 (en bruto) y TBAF (0,3 ml, 0,3 mmol, 1 M en THF) en THF (2 ml) usando un procedimiento similar al descrito en el ejemplo 1.

Etapa 3: trans-4-(4-((2-(2,6-dicloro-4-metilfenil)-2-oxoetil)((1R,3r,5S)-6,6-dimetilbiciclo[3,1,0]hexan-3-il)carbamoil)-5-(trifluorometil)-1H-pirazol-1-il)-1-metilciclohexanocarboxilato de etilo (277-3)

El compuesto 277-3 (80 mg, 95 %) se obtuvo en forma de un semisólido de color amarillo pálido a partir de la reacción del compuesto 277-2 (85 mg, 0,129 mmol) y peryodinano de Dess-Martin (66 mg, 0,155 mmol) en DCM (2 ml) usando un procedimiento similar al descrito en el ejemplo 1.

Etapa 4: trans-4-(4-((2-(2,6-dicloro-4-metilfenil)-2-((trietilsilil)oxi)etil)((1R,3r,5S)-6,6-dimetilbiciclo[3,1,0]hexan-3-il)carbamoil)-5-(trifluorometil)-1H-pirazol-1-il)-1-metilciclohexanocarboxilato (277)

El compuesto del ejemplo 277 (58 mg, 75 %) se obtuvo en forma de un sólido de color blanco a partir de la reacción del compuesto 277-3 (80 mg, 0,122 mmol) y LiOH 4 N (0,31 ml, 1,22 mmol) en THF/agua/MeOH (1,5 ml, 2:1:2) usando un procedimiento similar al descrito en el ejemplo 1. RMN 1 H (CDCl $_3$) rotámeros presentes δ 7,69 y 7,54 (1H, 2xs); 7,16 y 7,08 (2H, 2xs); 5,10-5,00 y 4,36-4,14 (2H, 2xm); 4,59 y 4,39 (2H, 2xs); 2,35 y 2,31 (3H, 2xs); 2,31-1,85 (10H, m); 1,42 y 1,39 (3H, 2xs); 1,39-1,23 (2H, m); 1,09-0,95 (8H, m); CLEM (IEN): 628,3 (M+H) $^+$.

[Ejemplo 278]

5

15

25 ácido trans-4-(4-((2-(2,6-diclorofenil)-2-oxoetil)((1R,3r,5S)-6,6-dimetilbiciclo[3,1,0]hexan-3-il)carbamoil)-5-(trifluorometil)-1H-pirazol-1-il)-1-metilciclohexanocarboxílico

Etapa 1: trans-4-(4-((2-(2,6-diclorofenil)-2-((trietilsilil)oxi)etil)((1R.3r,5S)-6,6-dimetilbiciclo [3,1,0]hexan-3-il)carbamoil)-5-(trifluorometil)-1H-pirazol-1-il)-1-metilciclohexanocarboxilato de etilo (278-1)

El compuesto 278-1 se obtuvo a partir de la reacción de la amina C46 (94 mg, 0,219 mmol), el ácido D2 (76 mg, 0,219 mmol), cloruro de oxalilo (0,038 ml, 0,438 mmol), DIPEA (0,114 ml, 0,657 mmol) y DMF (cat) en DCM (1 ml) usando un procedimiento similar al descrito en el ejemplo 2.

Etapa 2: trans-4-(4-((2-(2,6-diclorofenil)-2-hidroxietil)((1R,3r,5S)-6,6-dimetilbiciclo[3,1,0]hexan-3-il)carbamoil)-5 (trifluorometil)-1H-pirazol-1-il)-1-metilciclohexanocarboxilato de etilo (278-2)

El compuesto 278-2 (102 mg, 72 % en 2 etapas) se obtuvo en forma de un aceite incoloro a partir de la reacción del compuesto 278-1 (en bruto) y TBAF (0,22 ml, 0,22 mmol, 1 M en THF) en THF (1 ml) usando un procedimiento similar al descrito en el ejemplo 1.

Etapa 3: trans-4-(4-((2-(2,6-diclorofenil)-2-oxoetil)((1R,3r,5S)-6,6-dimetilbiciclo[3,1,0]hexan-3-il)carbamoil)-5-(trifluorometil)-1H-pirazol-1-il)-1-metilciclohexanocarboxilato de etilo (278-3)

El compuesto 278-3 (84 mg, 83%) se obtuvo en forma de un sólido de color blanco a partir de la reacción del compuesto 278-2 (102 mg, 0,158 mmol) y peryodinano de Dess-Martin (100 mg, 0,237 mmol) en DCM (1 ml) usando un procedimiento similar al descrito en el ejemplo 1.

Etapa 4: ácido trans-4-(4-((2-(2,6-diclorofenil)-2-oxoetil)((1R,3r,5S)-6,6-dimetilbiciclo[3,1,0]hexan-3-il)carbamoil)-5-(trifluorometil)-1H-pirazol-1-il)-1-metilciclohexanocarboxílico (278)

El compuesto del ejemplo 278 (35 mg, 44%) se obtuvo en forma de un sólido de color blanco a partir de la reacción del compuesto 278-3 (84 mg, 0,131 mmol) y LiOH 4 N (0,33 ml, 1,31 mmol) en THF/agua/MeOH (1,5 ml, 2:1:2) usando un procedimiento similar al descrito en el ejemplo 1. RMN 1 H (CDCl₃) rotámeros presentes δ 7,70 y 7,55 (1H, 2xs); 7,36-7,26 (3H, m); 5,10-5,00 y 4,37-4,15 (2H, 2xm); 4,61 y 4,42 (2H, 2xs); 2,31-1,87 (10H, m); 1,42 y 1,39 (3H, 2xs); 1,39-1,23 (2H, m); 1,09-0,95 (8H, m); CLEM (IEN): 614,2 (M+H) $^+$.

[Ejemplo 330]

5

10

15

20

25

30

35

ácido trans-4-(4-((2-(3,5-dicloropiridin-4-il)-2-oxoetil)-((1-(trifluorometil)ciclopropil)metil)carbamoil)-5-(trifluorometil)pirazol-1-il)-1-metilciclohexano-1-carboxílico

Eto
$$F_3$$
C O F_3 C O F_3 C O F_3 C F_3 C O F_3 C $F_$

Etapa 1: trans-4-(4-((2-(3,5-dicloropiridin-4-il)-2-((trietilsilil)oxi)etil)(((1-(trifluorometil)ciclopropil)metil)carbamoil)-5-(trifluorometil)-1H-pirazol-1-il)-1-metilciclohexanocarboxilato de etilo (330-1)

El compuesto 330-1 se obtuvo a partir de la reacción de la amina A103 (44 mg, 0,098 mmol), el ácido D2 (34 mg, 0,098 mmol), cloruro de oxalilo (0,017 ml, 0,196 mmol), NaOH 1 N (0,49 ml, 0,491 mmol) y DMF (cat) en DCM (1 ml) usando un procedimiento similar al descrito en el ejemplo 2.

Etapa 2: trans-4-(4-((2-(3,5-dicloropiridin-4-il)-2-hidroxietil)((1-(trifluorometil)ciclopropil) metil)carbamoil)-5-(trifluorometil)-1H-pirazol-1-il)-1-metilciclohexanocarboxilato de etilo (330-2)

El compuesto 330-2 (37 mg, 58% en 2 etapas) se obtuvo en forma de un aceite incoloro a partir de la reacción del compuesto 330-1 (en bruto) y TBAF (0,098 ml, 0,098 mmol, 1 M en THF) en THF (1 ml) usando un procedimiento similar al descrito en el ejemplo 1.

Etapa 3: trans-4-(4-((2-(3,5-dicloropiridin-4-il)-2-oxoetil)((1-(trifluorometil)ciclopropil)metil)carbamoil)-5-(trifluorometil)-1+-pirazol-1-il)-1-metilciclohexanocarboxilato de etilo (330-3)

El compuesto 330-3 (31 mg, 83 %) se obtuvo en forma de un aceite incoloro a partir de la reacción de 330-2 (37 mg,

0,056 mmol) y peryodinano de Dess-Martin (36 mg, 0,085 mmol) en DCM (1 ml) usando un procedimiento similar al descrito en el ejemplo 1.

Etapa 4: ácido trans-4-(4-((2-(3,5-dicloropiridin-4-il)-2-oxoetil)-((1-(trifluorometil)ciclopropil)metil)carbamoil)-5-(trifluorometil)pirazol-1-il)-1-metilciclohexano-1-carbox(lico (330):

El compuesto del ejemplo 330 (17 mg, 58%) se obtuvo en forma de un sólido de color blanco a partir de la reacción del compuesto 330-3 (31 mg, 0,047 mmol) y LiOH 4 N (0,12 ml, 0,467 mmol) en THF/agua/MeOH (0,75 ml, 2:1:2) usando un procedimiento similar al descrito en el ejemplo 1. RMN 1 H (CDCl₃) rotámeros presentes δ 8,59 y 8,52 (2H, 2xs); 7,65 y 7,54 (1H, 2xs); 4,95 y 4,58 (2H, 2xs); 4,28-4,20 (1H, m); 3,84 y 3,74 (2H, 2xs): 2,26-2,16 (2H, m); 1,95-1,85 (6H, m); 1,42 y 1,41 (3H, 2xs); 1,12-1,06 (4H, m); CLEM (IEN): 629,2 (M+H) $^+$.

10 [Ejemplo 343]

15

20

25

ácido trans-4-(4-((2-(4-cloro-1H-indol-3-il)etil)((1R,3r,5S)-6,6-dimetilbiciclo[3,1,0]hexan-3-il)carbamoil)-5-(trifluorometil)-1H-pirazol-1-il)-1-metilciclohexanocarboxílico

Etapa 1: trans-4-(4-((2-(4-cloro-1H-indol-3-il)etil)((1R,3r,5S)-6,6-dimetilbiciclo[3,1,0]hexan-3-il)carbamoil)-5-(trifluorometil)-1H-pirazol-1-il)-1-metilciclohexanocarboxilato de etilo (343-1)

El compuesto 343-1 (42 mg, 91 %) se obtuvo en forma de una goma amarilla a partir de la reacción de la amina B19 (22 mg, 0,073 mmol), el ácido D2 (25 mg, 0,073 mmol), HATU (33 mg, 0,087 mmol) y DIPEA (0,037 ml, 0,218 mmol) en DMF (1 ml) usando un procedimiento similar al descrito en el ejemplo 1.

Etapa 2: ácido trans-4-(4-((2-(4-cloro-1H-indol-3-il)etil)((1R,3r,5S)-6,6-dimetilbiciclo[3,1,0]hexan-3-il)carbamoil)-5-(trifluorometil)-1H-pirazol-1-il)-1-metilciclohexanocarboxílico (343)

El compuesto del ejemplo 343 (31 mg. 78 %) se obtuvo en forma de un sólido de color blanco a partir de la reacción del compuesto 343-1 (42 mg, 0,066 mmol) y LiOH 4 N (0,066 ml, 0,265 mmol) en THF/agua/MeOH (0,5 ml, 2:1:2) usando un procedimiento similar al descrito en el ejemplo 1. RMN 1H (CDCl3) rotámeros presentes δ 8,20 (1H, s a); 7,53-6,90 (5H, m); 4,68-4,61 y 4,29-4,02 (2H, 2xm); 3,64-3,61 y 3,53-3,49 (2H, 2xm); 3,35-3,32 y 3,04-3,00 (2H, 2xm); 2,28-1,86 (8H, m); 1,70-1,60 (2H, m); 1,41 y 1,39 (3H, 2xs); 1,28-0,85 (10H, m): CLEM (IEN): 606,0 (M+H) † .

[Ejemplos 361 y 362]

ácido trans-4-(4-(((2R)-2-(2,6-dicloro-4-fluorofenil)-2-hidroxietil)-(4,4-dimetilciclohexil)carbamoil)-5-(trifluorometil)pirazol-1-il)-1-metilciclohexano-1-carboxílico o

ácido trans-4-(4-(((2S)-2-(2,6-dicloro-4-fluorofenil)-2-hidroxietil)-(4,4-dimetilciclohexil)carbamoil)-5-30 (trifluorometil)pirazol-1-il)-1-metilciclohexano-1-carboxílico

Etapa 1: trans-4-(4-((2-(2,6-dicloro-4-fluorofenil)-2-((trietilsilil)oxi)etil)(4,4-dimetilciclo hexil)carbamoil)-5-(trifluorometil)-1H-pirazol-1-il)-1-metilciclohexanocarboxilato de etilo (361-1)

El compuesto 361-1 se obtuvo a partir de la reacción de la amina C1 (89 mg, 0,199 mmol), el ácido D2 (60 mg, 0,172 mmol), cloruro de oxalilo (0,044 ml, 0,517 mmol), DIPEA (0,090 ml. 0,517 mmol) y DMF (cat) en DCM (2 ml) usando un procedimiento similar al descrito en el ejemplo 2.

Etapa 2: trans-4-(4-((2-(2,6-dicloro-4-metilfenil)-2-hidroxietil)(4,4-dimetilciclohexil)carbamoil)-5-(trifluorometil)-1H-pirazol-1-il)-1-metilciclohexanocarboxilato de etilo (377-2)

El compuesto 361-2 (100 mg, 88 % en 2 etapas) se obtuvo a partir de la reacción de 361-1 (en bruto) y TBAF (0,26 ml, 0,258 mmol, 1 M en THF) en THF (2 ml) usando un procedimiento similar al descrito en el ejemplo 1.

Etapa 3: trans-4-(4-(((S)-2-(2,6-dicloro-4-metilfenil)-2-hidroxietil)(4,4-dimetilciclohexil) carbamoil)-5-(trifluorometil)-1H-pirazol-1-il)-1-metilciclohexariecarboxilato de etilo y trans-4-(4-(((R)-2-(2,6-dicloro-4-metilfenil)-2-hidroxietil)(4,4-dimetilciclohexil)carbamoil)-5-(trifluorometil)-1H-pirazol-1-il)-1-metilciclohexanocarboxilato de etilo (361-3 y 362-1)

El compuesto 361-2 (100 mg, 0,151 mmol) se purificó por HPLC quiral (250 x 20 mm, columna DAICEL CHIRALPAK™ IA 5 μm con 16 ml/min de n-hexano/IPA (96/4)) para dar 361-3 (49 mg, 49 %) como el primero isómero de elusión y el compuesto 362-1 (48 mg, 48 %) como el segundo isómero de elusión.

Etapa 4: ácido trans-4-(4-(((2R)-2-(2,6-dicloro-4-fluorofenil)-2-hidroxietil)-(4,4-dimetilciclohexil)carbamoil)-5-(trifluorometil)pirazol-1-il)-1-metilciclohexano-1-carboxílico o

ácido trans-4-(4-(((2S)-2-(2,6-dicloro-4-fluorofenil)-2-hidroxietil)-(4,4-dimetilciclohexil)carbamoil)-5-(trifluorometil)pirazol-1-il)-1-metilciclohexano-1-carboxílico (361)

El compuesto del ejemplo 361 (37 mg, 79 %) se obtuvo en forma de un sólido de color blanco a partir de la reacción del compuesto 361-3 (49 mg, 0,074 mmol) y LiOH 4 N (0,25 ml, 1,00 mmol) en EtOH/agua (1,5 ml, 2:1) usando un procedimiento similar al descrito en el ejemplo 1.

CLEM (IEN): 636,3 (M+H)⁺.

5

20

Etapa 5: ácido trans-4-(4-(((2R)-2-(2,6-dicloro-4-fluorofenil)-2-hidroxietil)-(4,4-dimetilciclohexil)carbamoil)-5-(trifluorometil)pirazol-1-il)-1-metilciclohexano-1-carboxílico o ácido trans-4-(4-(((2S)-2-(2,6-dicloro-4-fluorofenil)-2-hidroxietil)-(4,4-dimetilciclohexil)carbamoil)-5-(trifluorometil)pirazol-1-il)-1-metilciclohexano-1-carboxílico (362)

El compuesto del ejemplo 362 (39 mg, 85%) se obtuvo en forma de un sólido de color blanco a partir de la reacción del compuesto 362-1 (48 mg, 0,073 mmol) y LiOH 4 N (0,25 ml, 1,00 mmol) en EtOH/agua (1,5 ml, 2:1) usando un procedimiento similar al descrito en el ejemplo 1. RMN 1 H (CDCl₃) rotámeros presentes δ 7,57 y 7,56 (1H, 2xs); 7,11 y 7,05 (2H, 2xd, J = 7,8 Hz); 5,62-5,47 (1H, m); 4,86 (1H, s a); 4,70-4,64 y 4,09-4,02 (1H, 2xm); 4,30-4,20 (1H, m); 3,46-3,26 (2H, m); 2,31-2,18 (2H, m); 1,99-1,66 (8H, m); 1,47-1,26 (7H, m); 1,12-0,86 (8H, m); CLEM (IEN): 636,0 (M+H) $^{+}$.

[Ejemplo 569]

10

15

20

25

30

ácido trans-4-(4-((2-(2,6-diclorofenil)-2-oxoetil)(espiro[25]oct-6-ilmetil)carbamoil)-5-(trifluorometil)-1H-pirazol-1-il)-1-metilciclohexanocarboxílico

5 Etapa 1 y Etapa 2: trans-4-(4-((2-(2,6-diclorofenil)-2-hidroxietil)(espiro[2,5]octan-6-ilmetil)carbamoil)-5-(trifluorometil)-1H-pirazol-1-il)-1-metilciclohexanocarboxilato de etilo

A una solución de ácido 1-((trans)-4-(etoxicarbonil)-4-metilciclohexil)-5-(trifluorometil)-1H-pirazol-4-carboxílico (0,157 g, 0,452 mmol) y cloruro de oxalilo (0,049 ml, 0,565 mmol) en DCM (4,52 ml) se añadió DMF (1 gota) y la mezcla se agitó a temperatura ambiente. Después de 1 h, la mezcla de reacción se concentró al vacío. Al residuo se añadió una solución de 2-(2,6-diclorofenil)-N-(espiro[2,5]octan-6-ilmetil)-2-((trietilsilil)oxi)etanamina (0,200 g, 0,452 mmol) en THF (4,5 ml), seguido de DIPEA (0,158 ml, 0,904 mmol) y la mezcla se agitó a temperatura ambiente. Después de 17 h, a la mezcla de reacción se añadió una solución de TBAF, 1,0 M en THF (0,904 ml, 0,904 mmol) y la mezcla se agitó a temperatura ambiente. Después de 7 h, la mezcla de reacción se diluyó con agua (50 ml) y salmuera (50 ml). La mezcla de reacción se extrajo con EtOAc (2 x 50 ml). El extracto orgánico se lavó con NaCl sat. (1 x 50 ml) y se secó sobre Na₂SO₄. La solución se filtró y se concentró al vacío para dar el material en bruto en forma de un jarabe de color amarillo claro. El material en bruto se absorbió sobre un lecho de gel de sílice y se purificó por cromatografía en columna sobre gel de sílice eluyendo con un gradiente de EtOAc del 0 % al 50 % en heptano para proporcionar trans-4-(4-((2-(2,6-diclorofenil)-2-hidroxietil)(espiro[2,5]octan-6-ilmetil)carbamoil)-5-(trifluorometil)-1H-pirazol-1-il)-1-metilciclohexanocarboxilato de etilo (0,0815 g, 0,124 mmol, rendimiento 27,4 %) en forma de una goma incolora.

Etapa 3: trans-4-(4-((2-(2,6-diclorofenil)-2-oxoetil)(espiro[2,5]octan-6-ilmetil)carbamoil)-5-(trifluorometil)-1H-pirazol-1-il)-1-metilciclohexanocarboxilato de etilo

A una solución de trans-4-(4-((2-(2,6-diclorofenil)-2-hidroxietil)(espiro[2,5]octan-6-ilmetil)carbamoil)-5-(trifluorometil)-1H-pirazol-1-il)-1-metilciclohexanocarboxilato de etilo (0,0815 g, 0,124 mmol) en DCM (1,238 ml) se añadió peryodinano de Dess-Martin (0,079 g, 0,186 mmol) y la mezcla se agitó a temperatura ambiente. Después de 6 h, la mezcla se inactivó con $Na_2S_2O_3$ acuoso saturado (50 ml) y $NaHCO_3$ acuoso saturado (50 ml). La mezcla de reacción se extrajo con DCM (2 x 100 ml). El extracto orgánico se secó sobre Na_2SO_4 . La solución se filtró y se concentró al vacío para dar el material en bruto en forma de un sólido de color blanco. El material en bruto se absorbió sobre un lecho de gel de sílice y se purificó por cromatografía en columna sobre gel de sílice eluyendo con un gradiente de EtOAc del 0 % al 35 % en heptano para proporcionar trans-4-(4-((2-(2,6-diclorofenil)-2-oxoetil)(espiro[2,5]octan-6-ilmetil)carbamoil)-5-(trifluorometil)-1H-pirazol-1-il)-1-metilciclohexanocarboxilato de etilo (0,0685 g, 0,104 mmol, rendimiento 84 %) en forma de un jarabe incoloro.

Etapa 4: ácido trans-4-(4-((2-(2,6-diclorofenil)-2-oxoetil)(espiro[25]oct-6-ilmetil)carbamoil)-5-(trifluorometil)-1H-pirazol-1-il)-1-metilciclohexanocarboxílico

A una solución de trans-4-(4-((2-(2,6-diclorofenil)-2-oxoetil)(espiro[2,5]octan-6-ilmetil)carbamoil)-5-(trifluorometil)-1H-pirazol-1-il)-1-metilciclohexanocarboxilato de etilo (0,0685 g, 0,104 mmol) en THF (0,750 ml) se añadió una solución de hidrato de hidróxido de litio (0,044 g, 1,043 mmol) en agua (0,500 ml) y la mezcla se agitó y se calentó a 50 °C durante una noche. El THF y el MeOH se retiraron al vacío y la solución turbia se diluyó con agua (3 ml) para proporcionar una solución transparente. Se añadió HCl 1 M para ajustar el pH a 1. La mezcla se agitó durante 30 min antes de recoger el precipitado por filtración al vacío para proporcionar un sólido de color blanco. El sólido se purificó por cromatografía en columna sobre gel de sílice eluyendo con un gradiente de MeOH del 0 % al 5 % en DCM para proporcionar el Ejemplo 569 (0,0457 g, 0,073 mmol, rendimiento 69,7 %) en forma de un sólido de color blanco. RMN ¹H (400 MHz, CD₃OD) δ 7,40-7,79 (4H, m), 5,30-5,54 (1H, m), 4,87 (1H, s), 4,64 (1H, s), 4,22-4,36 (1H, m), 3,50 (2H, d, *J* = 7,2 Hz), 2,12-2,30 (2H, m), 1,54-1,98 (10H, m), 1,27-1,41 (5H, m), 0,78-1,05 (3H, m), 0,07-0,37

(4H, m), (rotámeros presentes); CLEM (IEN) m/z 628,2 (M+H)⁺.

[Ejemplo 688]

5

10

15

20

35

ácido trans-4-(4-(((2R)-2-((3,5-dicloro-4-piridinil)metil)-4,4-dimetil-1-pirrolidinil)carbonil)-5-(trifluorometil)-1H-pirazol-1-il)-1-metilciclohexanocarboxílico

Etapa 1: Preparado de acuerdo con la patente WO: 2013004290A1. A una suspensión agitada de (R)-(-)-5-(hidroximetil)-2-pirrolidinona (Sigma Aldrich Chemical Company, St. Louis, MO, 5,36 g, 46,5 mmol) y ácido *p*-toluenosulfónico (44 mg, 0,233 mmol) en tolueno (100 ml), se añadió 2,2-dimetoxipropano (17,1 ml, 140 mmol) y la reacción se calentó a reflujo durante 1,5 h. La reacción se equipó con un aparato Dean-Stark, después se añadió más cantidad de 2,2-dimetoxipropano (17,1 ml, 140 mmol) y la reacción se calentó a reflujo durante 36 h. El disolvente se evaporó para proporcionar (R)-3,3-dimetiltetrahidropirrolo[1,2-c]oxazol-5(3H)-ona en forma de un sólido ceroso de color naranja. EM (IEN) 156,1 [M + H]⁺. El material en bruto se llevó a la siguiente etapa sin purificación adicional.

Etapa 2: Preparado de acuerdo con la patente WO: WO2013004290A1. A una solución de (R)-3,3-dimetiltetrahidropirrolo[1,2-c]oxazol-5(3H)-ona (3,50 g, 22,55 mmol) en THF (75 ml) enfriada a -78 °C, se añadió una solución de diisopropilamida de litio (heptano 2,0 M/THF/etilbenceno, 20,30 ml, 40,6 mmol). La solución se agitó a esta temperatura durante 1 h antes de añadir yodometano (2,12 ml, 33,8 mmol). La mezcla de reacción se calentó a temperatura ambiente y se agitó durante 1 h, después se enfrió a -78 °C antes de la adición de diisopropilamida de litio (2,0 M heptano/THF/etilbenceno, 20,30 ml, 40,6 mmol). La mezcla se agitó a -78 °C durante 1 h antes de añadir más cantidad de yodometano (2,12 ml, 33,8 mmol). La mezcla se calentó lentamente a temperatura ambiente y se agitó durante una noche (16 h). La reacción se interrumpió con una solución saturada de cloruro de amonio y se extrajo con EtOAc (2 x 75 ml). Los extractos orgánicos combinados se lavaron con salmuera, se secaron sobre MgSO₄, se filtraron y se concentraron para proporcionar (*R*)-3,3,6,6 tetrametiltetrahidropirrolo[1,2-c]oxazol-5(3H)-ona en bruto en forma de un alquitrán de color naranja. EM (IEN) 184,1 [M + H]⁺.

Etapa 3: Preparado de acuerdo con la patente WO: 2013004290. A una solución de (R)-3,3,6,6-tetrametiltetrahidropirrolo[1,2-c]oxazol-5(3H)-ona (4,13 g, 22,54 mmol) en MeOH (90 ml) se añadió monohidrato del ácido p-toluenosulfónico (0,429 g, 2,254 mmol). La mezcla resultante se calentó a reflujo durante 2 h. El disolvente se retiró a presión reducida (evaporador rotatorio) y el material en bruto se absorbió sobre un lecho de gel de sílice y se purificó por cromatografía sobre un sistema ISCO Combiflash™ RF (40 g, columna Grace Reverlis, usando un gradiente de MeOH al 0-20 % en DCM), proporcionando (R)-5-(hidroximetil)-3,3-dimetilpirrolidin-2-ona (2,91 g, 20,31 mmol, rendimiento 90 %) en forma de un semi-sólido de color blanco. EM (IEN) 144,1 [M + H]⁺.

Etapa 4: Preparado de acuerdo con la patente US: 20070032433A1. A una solución de (R)-5-(hidroximetil)-3,3-dimetilpirrolidin-2-ona (2,91 g, 20,30 mmol) en THF (50,8 ml) enfriada a 0 °C, se añadió hidruro de litio y aluminio (solución 2,0 M en THF, 12,18 ml, 24,36 mmol). La mezcla se agitó a temperatura ambiente durante una noche (16 h). Se añadió más cantidad de hidruro de litio y aluminio (solución 2,0 M en THF, 12,18 ml, 24,36 mmol) y la solución se calentó a reflujo durante 6 h. La mezcla de reacción se enfrió y se añadió más cantidad de hidruro de litio y aluminio (solución 2,0 M en THF, 12,18 ml, 24,36 mmol) y la mezcla se calentó a reflujo durante una noche. La mezcla de reacción se enfrió a 0 °C en un baño de hielo antes de la adición de agua (3,67 ml), seguido de NaOH

acuoso al 15 % (3,67 ml) y agua (10,9 ml). Después, se agitó vigorosamente a temperatura ambiente durante 1 h y se filtró en una frita de vidrio sintetizado de porosidad media con algodón y celite lavando con EtOAc. Después, la solución se concentró, proporcionando (R)-(4,4-dimetilpirrolidin-2-il)metanol en bruto (2,29 g, 17,73 mmol, rendimiento 87 %) en forma de un aceite viscoso de color amarillo. EM (IEN) 130,1 [M + H] † .

- 5 Etapa 5: Una solución de trietilamina (4,94 ml, 35,4 mmol) y (R)-(4,4-dimetilpirrolidin-2-il)metanol (2,29 g, 17,72 mmol) en DCM (89 ml) se enfrió a -78 °C. A esta mezcla se añadió cloruro de sulfurilo (1,0 M en DCM, 21,27 ml, 21,27 mmol) durante 15 segundos. La reacción se mantuvo a esta temperatura durante ~ 3 h, se dejó calentar a temperatura ambiente y se agitó durante una noche (16 h). La mezcla se lavó con HCl acuoso 1 N (30 ml x 2) y salmuera (40 ml), se secó sobre MgSO₄, se filtró y se concentró, proporcionando el producto en bruto en forma de un aceite de color pardo-naranja que se cristalizó después de un periodo de reposo. El material en bruto se absorbió sobre un lecho de gel de sílice y se purificó por cromatografía sobre un sistema ISCO Combiflash™ RF (40 g, columna Grace Reverlis, usando un gradiente de EtOAc al 0-60 % en heptano), proporcionando 1,1-dióxido de (R)-5,5-dimetiltetrahidro-3H-pirrolo[1,2-c][1,2,3]oxatiazol (708 mg, 3,70 mmol, rendimiento 21 %) en forma de un sólido cristalino de color blanco. EM (IEN) 192,1 [M + H]⁺.
- Etapa 6: A una solución de 3,5-dicloropiridina (796 mg, 5,38 mmol) en THF (9,0 ml) a -78 °C se añadió gota a gota diisopropilamida de litio (2,0 M heptano/THF/etilbenceno, 3,41 ml, 6,82 mmol). Después de agitar durante 1 h a esta temperatura, se añadió gota a gota una solución de 1,1-dióxido de (R)-5,5-dimetiltetrahidro-3H-pirrolo[1,2-c][1,2,3]oxatiazol (686 mg, 3,59 mmol) en THF (9,0 ml) a -78 °C y la mezcla se dejó calentar a temperatura ambiente durante 3 h y después se agitó a temperatura ambiente durante 4 h. Después de la evaporación del disolvente, la espuma de color beige resultante con HCl 2 N (8 ml) caliente (80 °C) y EtOH (8 ml) durante una noche. La mezcla de reacción se concentró a presión reducida (evaporador rotatorio) y la mezcla se trató con hielo y se basificó con NaOH 5 N (8 ml) y se extrajo con EtOAc (2 x 75 ml). Los extractos orgánicos se secaron, se evaporaron y se purificaron por cromatografía sobre un sistema ISCO Combiflash™ RF (25 g, columna Thomson SingleStep, usando un gradiente de MeOH al 0-10 % en DCM), proporcionando (R)-3,5-dicloro-4-((4,4-dimetilpirrolidin-2-il)metil)piridina (748 mg, 2,89 mmol, rendimiento 80 %) en forma de un aceite de color naranja. EM (IEN) 259,1, 261,0. [M + H]⁺.
 - Etapa 7: Se trató ácido 1-((1 r,4r)-4-(etoxicarbonil)-4-metilciclohexil)-5-(trifluorometil)-1H-pirazol-4-carboxílico (445 mg, 1,28 mmol) con DCM (8 ml) y tres gotas de DMF, se enfrió a 0 °C en un baño de hielo y se trató lentamente gota a gota con cloruro de oxalilo (0,16 ml, 1,82 mmol). La mezcla de reacción se retiró del baño de hielo y se dejó en agitación a temperatura ambiente durante 1,5 h. Los volátiles se retiraron a presión reducida (evaporador rotatorio) y el cloruro de ácido en bruto se trató con DCM (10 ml), se enfrió en un baño de hielo y se trató lentamente gota a gota con (R)-3,5-dicloro-4-((4,4-dimetilpirrolidin-2-il)metil)piridina (315 mg, 1,22 mmol) (en DCM 5 ml), seguido de DIPEA (0,64 ml, 3,65 mmol). La solución se retiró del baño de hielo y se dejó calentar a ta y se agitó durante 1 h. El disolvente se evaporó y el material en bruto se absorbió sobre un lecho de gel de sílice y se purificó por cromatografía sobre un sistema ISCO Combiflash™ RF (40 g, columna Thomson SingleStep, usando un gradiente de EtOAc al 0-40 % en heptano) para proporcionar 4-(4-((R)-2-((3,5-dicloropiridin-4-il)metil)-4,4-dimetilpirrolidin-1-carbonil)-5-(trifluorometil)-1H-pirazol-1-il)-1-metilciclohexanocarboxilato de (1R,4r)-etilo (489 mg, 0,83 mmol, rendimiento 68 %) en forma de un sólido amorfo de color amarillo claro después de secar en un horno de vacío durante 48 h a 40 °C. EM (IEN) 589,3/591,2 [M+ H]⁺.
- Etapa 8: A una mezcla de 4-(4-((R)-2-((3,5-dicloropiridin-4-il)metil)-4,4-dimetilpirrolidin-1-carbonil)-5-(trifluorometil)-40

 1H-pirazol-1-il)-1-metilciclohexanocarboxilato de (1R,4r)-etilo (464 mg, 0,787 mmol) en THF (3,9 ml) y MeOH (3,9 ml) se añadió monohidrato de hidróxido de litio (solución acuosa 1,0 M, 3,9 ml, 3,94 mmol). La mezcla se agitó a temperatura ambiente durante una noche (16 h). Los extractos orgánicos se retiraron a presión reducida (evaporador rotatorio) y la solución acuosa se acidificó con HCl 1 N, llevando a la formación de un precipitado. La mezcla se extrajo con EtOAc (2 x 40 ml). Los extractos combinados se lavaron con salmuera, se secaron sobre MgSO₄ anhidro, se filtraron y se concentraron. El material en bruto se absorbió sobre un lecho de gel de sílice y se purificó por cromatografía sobre un sistema ISCO Combiflash™ RF (40 g, columna Thomson SingleStep, usando un gradiente de MeOH al 0-8 % en DCM), proporcionando ácido (1R,4r)-4-(4-((R)-2-((3,5-dicloropiridin-4-il)metil)-4,4-dimetilpirrolidin-1-carbonil)-5-(trifluorometil)-1H-pirazol-1-il)-1-metilciclohexanocarboxílico (258 mg, 0,46 mmol, rendimiento 59 %) en forma de una espuma amorfa de color blanco. EM (IEN) 561,0, 563,1 [M + H][†].

50 **[Ejemplo 692]**

30

35

ácido trans-4-(4-((2-(3,5-dicloro-4-piridinil)-2-oxoetil)(3,3,3-trifluoro-2,2-dimetilpropil)carbamoil)-5-(trifluorometil)-1H-pirazol-1-il)-1-metilciclohexanocarboxílico

Etapa 1 y Etapa 2: trans-4-(4-((2-(3,5-dicloropiridin-4-il)-2-hidroxietil)(3,3,3-trifluoro-2,2-dimetilpropil)carbamoil)-5-(trifluorometil)-1H-pirazol-1-il)-1-metilciclohexanocarboxilato de etilo

A una solución ligeramente turbia de ácido 1-((1r,4r)-4-(etoxicarbonil)-4-metilciclohexil)-5-(trifluorometil)-1H-pirazol-4-carboxílico (1,0102 g, 2,90 mmol) en DCM (29,0 ml) se añadió cloruro de oxalilo (0,307 ml, 3,63 mmol) seguido de DMF (1 gota) y la mezcla de reacción ligeramente turbia de color amarillo claro se agitó a temperatura ambiente. Después de 3 h, la mezcla se concentró al vacío para dar trans-4-(4-(clorocarbonil)-5-(trifluorometil)-1H-pirazol-1-il)-1-metilciclohexanocarboxilato de etilo en forma de un jarabe de color amarillo claro. Al residuo se añadió una solución de N-(2-(3,5-dicloropiridin-4-il)-2-((trietilsilil)oxi)etil)-3,3,3-trifluoro-2,2-dimetilpro pan-1-amina (1,292 g, 2,90 mmol) en THF (29,0 ml), seguido de DIPEA (2,021 ml, 11,60 mmol) y la mezcla se agitó a temperatura ambiente. Después de 19 h, la CLEM (IEN) mostró que se había formado trans-4-(4-((2-(3,5-dicloropiridin-4-il)-2-((trietilsilil)oxi)etil)(3,3,3-trifluoro-2,2-dimetilpropil)carbamoil)-5-(trifluorometil)-1H-pirazol-1-il)-1-metilciclohexanocarboxilato de etilo: CLEM (IEN) m/z 775,1 (M+H)[†].

5

10

15

20

25

30

35

40

45

A la mezcla de reacción se añadió una solución de TBAF, 1,0 M en THF (11,60 ml, 11,60 mmol) y la mezcla se agitó a temperatura ambiente. Después de 30 min, la CL-EM (IEN) mostró que la reacción se había completado. La mezcla de reacción se diluyó con agua (100 ml) y salmuera (100 ml). La mezcla de reacción se extrajo con EtOAc (2 x 100 ml). El extracto orgánico se lavó con NaCl sat. (1 x 100 ml) y se secó sobre Na₂SO₄. La solución se filtró y se concentró al vacío para dar el material en bruto en forma de un jarabe de color amarillo claro. El material en bruto se absorbió sobre un lecho de gel de sílice y se purificó por cromatografía en columna sobre gel de sílice eluyendo con un gradiente de EtOAc del 0 % al 50 % en heptano para proporcionar trans-4-(4-((2-(3,5-dicloropiridin-4-il)-2-hidroxietil)(3,3,3-trifluoro-2,2-dimetilpropil)carbamoil)-5-(trifluorometil)-1H-pirazol-1-il)-1-metilciclohexanocarboxilato de etilo (1,6938 g, 2,56 mmol, rendimiento 88 %) en forma de una goma de color blanco. RMN ¹H (400 MHz, DMSO-d₆) δ 8,46-8,63 (2H, m), 7,71-7,83 (1H, m), 6,11 (1H, d, J = 4,1 Hz), 5,19-5,33 (1H, m), 4,27 (1H, t, J = 11,0 Hz), 4,09 (2H, c, J = 7,2 Hz), 3,39-3,97 (4H, m), 2,02-2,19 (2H, m), 1,66-1,97 (6H, m), 1,14-1,30 (12H, m), La RMN mostró varios conjuntos de picos debido a diastereómeros y rotámeros; CLEM (IEN) m/z 661,1 (M+H)[†].

Etapa 3: trans-4-(4-((2-(3,5-dicloropiridin-4-il)-2-oxoetil)(3,3,3-trifluoro-2,2-dimetilpropil)carbamoil)-5-(trifluorometil)-1H-pirazol-1-il)-1-metilciclohexanocarboxilato de etilo

de trans-4-(4-((2-(3,5-dicloropiridin-4-il)-2-hidroxietil)(3,3,3-trifluoro-2,2solución transparente dimetilpropil)carbamoil)-5-(trifluorometil)-1H-pirazol-1-il)-1-metilciclohexanocarboxilato de etilo (1,6826 g, 2,54 mmol) en DCM (25,4 ml) se añadió peryodinano de Dess-Martin (1,618 g, 3,82 mmol). La mezcla turbia de color blanco se agitó a temperatura ambiente. Después de 1 h, la mezcla se inactivó con Na₂S₂O₃ acuoso saturado (50 ml) y NaHCO₃ acuoso saturado (50 ml). La mezcla de reacción se extrajo con DCM (2 x 100 ml). El extracto orgánico se secó sobre Na₂SO₄. La solución se filtró y se concentró al vacío para dar el material en bruto en forma de un sólido de color blanco. El material en bruto se absorbió sobre un lecho de gel de sílice y se purificó por cromatografía en columna sobre gel de sílice eluyendo con un gradiente de EtOAc del 0 % al 30 % en heptano para proporcionar trans-4-(4-((2-(3.5-dicloropiridin-4-il)-2-oxoetil)(3.3.3-trifluoro-2.2-dimetilpropil)carbamoil)-5-(trifluorometil)-1H-pirazol-1-il)-1-metilciclohexanocarboxilato de etilo (1,5825 g, 2,400 mmol, rendimiento 94 %) en forma de una goma de color blanco. RMN ¹H (400 MHz, CDCl₃) δ 8,45-8,64 (2H, m), 7,51-7,78 (1H, m), 4,52 (2H, s), 4,09-4,30 (3H, m), 3,70 (2H, s. a.), 2,12-2,32 (2H, m), 1,79-2,00 (6H, m), 1,02-1,46 (12H, m), rotámeros presentes; CLEM (IEN) m/z 659,0 $(M+H)^{+}$.

Etapa 4: ácido trans-4-(4-((2-(3,5-dicloro-4-piridinil)-2-oxoetil)(3,3,3-trifluoro-2,2-dimetilpropil)carbamoil)-5-(trifluorometil)-1H-pirazol-1-il)-1-metilciclohexanocarboxílico

A una mezcla transparente de trans-4-(4-((2-(3,5-dicloropiridin-4-il)-2-oxoetil)(3,3,3-trifluoro-2,2-dimetilpropil)carbamoil)-5-(trifluorometil)-1H-pirazol-1-il)-1-metilciclohexanocarboxilato de etilo (1,5739 g, 2,387 mmol) en THF (9,55 ml), EtOH (9,55 ml) y agua (4,77 ml) se añadió LiOH 2 M en agua (11,93 ml, 23,87 mmol). Después de añadir una solución 2 M de LiOH, la mezcla heterogénea de color blanco se volvió una mezcla turbia de

color amarillo. La mezcla turbia de color amarillo se agitó y se calentó a 60 °C. Después de 15 h, la mezcla de reacción se concentró al vacío para retirar THF y EtOH. La solución acuosa resultante se diluyó con agua (30 ml). El pH de la solución se ajustó a ~3,0 con HCl 1 N y el precipitado resultante se recogió por filtración al vacío, se lavó con agua y se criodesecó en un liofilizador durante una noche para proporcionar el ejemplo 692 (1,3955 g, 2,210 mmol, rendimiento del 93 %) en forma de un sólido de color blanco. RMN 1 H (400 MHz, DMSO-d $_6$) δ 12,27 (1H, s. a.), 8,58-8,83 (2H, m), 7,75-8,02 (1H, m), 4,68-5,43 (2H, m), 4,26 (1H, t, J = 11,0 Hz), 3,46-3,90 (2H, m), 1,97-2,17 (2H, m), 1,69-1,92 (6H, m), 1,00-1,39 (9H, m), rotámeros presentes; CLEM (IEN) m/z 631,0 (M+H) $^+$.

[Ejemplo 713]

5

10

15

20

30

ácido (1r,4r)-4-(4-((2-(2,6-diclorofenil)-2-oxoetil)((5-fluoroespiro[2,3]hexan-5-il)metil)carbamoil)-5-(trifluorometil)-1H-pirazol-1-il)-1-metilciclohexanocarboxílico

Eto
$$F_3$$
C O F_3 C O O F_3 C O O F_3 C O O F_3 C O O O O O O O O O O O O O O O

Etapa 1: trans-4-(4-((2-(2,6-dicloro-4-fluorofenil)-2-((trietilsilil)oxi)etil)(3,5-difluorobencil)carbamoil)-5-(trifluorometil)-1H-pirazol-1-il)-1-metilciclohexanocarboxilato de etilo

Se disolvió ácido 1-((1r,4r)-4-(etoxicarbonil)-4-metilciclohexil)-5-(trifluororrietil)-1H-pirazol-4-carboxílico (3,48 g, 9,99 mmol) en DCM (30 ml) y se añadió cloruro de tionilo (0,875 ml, 11,99 mmol), seguido de 1 gota de DMF. La reacción se sometió a reflujo durante 2,5 h. Los disolventes se retiraron al vacío y el residuo se puso en el congelador durante una noche. Después, el material solidificado se secó al vacío durante 1 h para proporcionar 4-(4-(clorocarbonil)-5-(trifluorometil)-1H-pirazol-1-il)-1-metilciclohexanocarboxilato de (1s,4s)-etilo.

Se disolvió 2-(2,6-diclorofenil)-N-((5-fluoroespiro[2,3]hexan-5-il)metil)-2-((trietilsilil)oxi)etanamina (150 mg, 0,347 mmol) en 2 ml de DCM y se añadió 4-(4-(clorocarbonil)-5-(trifluorometil)-1H-pirazol-1-il)-1-metilciclohexanocarboxilato de (1s,4s)-etilo (127 mg, 0,347 mmol) disuelto en 2 ml de DCM, seguido de trietilamina (242 µl, 1,734 mmol). La solución se agitó durante 1 h y se concentró para proporcionar 4-(4-((2-(2,6-diclorofenil)-2-((trietilsilil)oxi)etil)((5-fluoroespiro[2,3]hexan-5-il)metil)carbamoil)-5-(trifluorometil)-1H-pirazol-1-il)-1-metilciclohexanocarboxilato de (1r,4r)-etilo en bruto (265 mg, 0,347 mmol, rendimiento 100 %).

Etapa 2: 4-(4-((2-(2,6-diclorofenil)-2-hidroxietil)((5-fluoroespiro[2,3]hexan-5-il)metil)carbamoil)-5-(trifluorometil)-1H-pirazol-1-il)-1-metilciclohexanocarboxilato de (1r,4r)-etilo

A una solución agitada de 4-(4-((2-(2,6-diclorofenil)-2-((trietilsilil)oxi)etil)((5-fluoroespiro[2,3]hexan-5-il)metil)carbamoil)-5-(trifluorometil)-1H-pirazol-1-il)-1-metilciclohexanocarboxilato de (1r,4r)-etilo (265 mg, 0,347 mmol) en 2 ml de THF se añadió TBAF (695 μ l, 0,695 mmol) y la mezcla se agitó durante 1 h. La mezcla de reacción se inactivó con NH₄Cl acuoso saturado y se extrajo con EtOAc. Las capas orgánicas combinadas se lavaron con agua y salmuera, se secaron sobre Na₂SO₄ anhidro y se concentraron a presión reducida para proporcionar 4-(4-((2-(2,6-diclorofenil)-2-hidroxietil)((5-fluoroespiro[2,3]hexan-5-il)metil)carbamoil)-5-(trifluorometil)-1H-pirazol-1-il)-1-metilciclohexanocarboxilato de (1r,4r)-etilo en bruto (225 mg, 0,347 mmol, rendimiento 100 %). EM m/z = 648 [M+H][†].

35 Etapa 3: 4-(4-((2-(2,6-diclorofenil)-2-oxoetil)((5-fluoroespiro[2,3]hexan-5-il)metil)carbamoil)-5-(trifluorometil)-1H-pirazol-1-il)-1-metilciclohexanocarboxilato de (1r,4r)-etilo Se disolvió 4-(4-((2-(2,6-diclorofenil)-2-hidroxietil)((5-fluoroespiro[2,3]hexan-5-il)metil)carbamoil)-5-(trifluorometil)-1H-pirazol-1-il)-1-metilciclohexanocarboxilato de (1r,4r)-etilo (225 mg, 0,347 mmol) en 10 ml de DCM y se añadió peryodinano de Dess-Martin (184 mg, 0,434 mmol). La solución se agitó durante 1 h. La solución se inactivó con Na₂S₂O₃ al 5 %, se lavó con NaHCO₃ saturado, se secó con Na₂SO₄ y se concentró. El producto se purificó por cromatografía en columna sobre gel de sílice (columna de 40 g) usando EtOAc al 0-100 % en heptano para proporcionar 4-(4-((2-(2,6-diclorofenil)-2-oxoetil)((5-fluoroespiro[2,3]hexan-5-il)metil)carbamoil)-5-(trifluorometil)-1H-pirazol-1-il)-1-metilciclohexanocarboxilato de (1r,4r)-etilo (140 mg, 0,217 mmol, rendimiento 62,4 %). EM m/z = 646 [M+H]⁺.

Etapa 4: Ácido (1r,4r)-4-(4-((2-(2,6-diclorofenil)-2-oxoetil)((5-fluoroespiro[2,3]hexan-5-il)metil)carbamoil)-5-(trifluorometil)-1H-pirazol-1-il)-1-metilciclohexanocarboxílico.

Se combinaron 4-(4-((2-(2,6-diclorofenil)-2-oxoetil)((5-fluoroespiro[2,3]hexan-5-il)metil)carbamoil)-5-(trifluorometil)-1H-pirazol-1-il)-1-metilciclohexanocarboxilato de (1r,4r)-etilo (140 mg, 0,217 mmol) e hidróxido de litio (100 mg, 4,18 mmol) en 5 ml de MeOH, 5 ml de THF y 2 ml de agua. La solución se calentó a 50 °C durante 3 h. La solución se hizo ácida con HCl 6 N y se diluyó con agua. El producto se extrajo con EtOAc, se secó con Na₂SO₄, se filtró y se concentró para proporcionar ácido (1r,4r)-4-(4-((2-(2,6-diclorofenil)-2-oxoetil)((5-fluoroespiro[2,3]hexan-5-il)metil)carbamoil)-5-(trifluorometil)-1H-pirazol-1-il)-1-metilciclohexanocarboxílico (115 mg, 0,186 mmol, rendimiento del 86 %). RMN 1 H (400 MHz, CD3OD mezcla de rotámeros) δ 7,88 (s, 0,2H), 7,66 (s, 0,8H), 7,40-7,50 (m, 3H), 4,11 (m, 3H), 2,43-2,61 (m, 2H), 2,15-2,32 (m, 3H), 1,81-2,05 (m, 7H), 1,17-1,43 (m, 5H), 0,42 - 0,70 (m, 4H); CL/EM (IEN $^+$) m/z = 618 (M+H) $^+$.

[Ejemplo 716]

5

10

15

25

30

35

ácido trans-4-(4-((2-(2,6-dicloro-4-fluorofenil)-2-oxoetil)((1-metilciclopropil)metil) carbamoil)-5-(trifluorometil)-1H-pirazol-1-il)-1-metilciclohexanocarboxílico

Etapa 1: trans-4-(4-((2-(2,6-dicloro-4-fluorofenil)-2-((trietilsilil)oxi)etil)((1-metilciclopropil)metil)carbamoil)-5-(trifluorometil)-1H-pirazol-1-il)-1-metilciclohexanocarboxilato de etilo

Este compuesto se preparó usando un procedimiento similar descrito para los ejemplos 1, etapa 1 sin purificación por cromatografía. CLEM (IEN) m/z 735,8 $(M+H)^{+}$.

20 Etapa 2: trans-4-(4-((2-(2,6-dicloro-4-fluorofenil)-2-hidroxietil)(((1-metilciclopropil)metil)carbamoil)-5-(trifluorometil)-1H-pirazol-1-il)-1-metilciclohexanocarboxilato de etilo

Este compuesto se preparó usando un procedimiento similar descrito para los ejemplos 1, etapa 2 sin purificación por cromatografía. CLEM (IEN) m/z 623,9 (M+H)⁺.

Etapa 3: trans-4-(4-((2-(2,6-dicloro-4-fluorofenil)-2-oxoetil)(((1-metilciclopropil)metil)carbamoil)-5-(trifluorometil)-1H-pirazol-1-il)-1-metilciclohexanocarboxilato de etilo

Este compuesto se preparó usando un procedimiento similar descrito para los ejemplos 1, etapa 3: RMN 1 H (500 MHz, CDCl₃) rotámeros presentes δ 7,65 y 7,58 (2xs, 1H), 7,16 y 7,15 (2xs, 1H), 7,09 y 7,08 (2xs, 1H), 4,98 (s, 1H), 4,60 (s, 1H), 4,22-4,33 (m, 1H), 4,15-4,22 (m, 2H), 3,36 (s, 1H), 2,15-2,31 (m, 2H), 1,84-1,99 (m, 6H), 1,39 y 1,37 (2xs, 3H), 1,30 (td, J = 7,09, 2,32 Hz, 3H), 1,12 y 0,98 (2xs, 3H), 0,48-0,56 (m, 1H), 0,34-0,43 (m, 3H); CLEM (IEN) m/z 619,8 (M+H) † .

Etapa 4: ácido trans-4-(4-((2-(2,6-dicloro-4-fluorofenil)-2-oxoetil)(((1-metilciclopropil)metil) carbamoil)-5-(trifluorometil)-1H-pirazol-1-il)-1-metilciclohexanocarboxílico

Este compuesto se obtuvo en forma de un sólido de color blanco usando procedimientos similares a los descritos para el ejemplo 1, etapa 4: RMN 1 H (500 MHz, DMSO-d $_6$) rotámeros presentes δ 12,29 (s, 1H), 7,52-7,82 (m, 3H), 5,17 y 4,87 (2xs, 1H), 4,69 (s, 1H), 4,18-4,32 (m, 1H), 3,52 y 3,38 (2xs, 1H), 3,32 y 3,22 (2xs, 1H), 2,00-2,16 (m, 2H), 1,73-1,91 (m, 6H), 1,24 y 1,08 (2xs, 3H), 1,05 y 0,91 (2xs, 3H), 0,44-0,57 (m, 1H), 0,23-0,38 (m, 3H); CLEM (IEN) m/z 592,1 (M+H) $^+$.

[Ejemplo 729]

Etapa 1: 4-(4-((2-(2,6-diclorofenil)-2-((trimetilsilil)oxi)etil)((1-(trifluorometil)ciclopropil)metil)carbamoil)-5-(trifluorometil)-1H-pirazol-1-il)-1-metilciclohexanocarboxilato de (1r,4r)-etilo.

A una solución de 2-(2,6-diclorofenil)-N-((1-(trifluorometil)ciclopropil)metil)-2-((trimetilsilil)oxi) etanamina (0,15 g, 5 añadió 4-(4-(clorocarbonil)-5-(trifluorometil)-1H-pirazol-1-il)-1-0,375 mmol) DCM ml) en (3 se metilciclohexanocarboxilato de etilo (0,137 g, 0,375 mmol), seguido de trietilamina (0,104 ml, 0,749 mmol) y se agitó a temperatura ambiente durante 15 min. La mezcla de reacción se cargó en una columna de 25 g (MPLC) y se eluyó para 4-(4-((2-(2,6-diclorofenil)-2-((trimetilsilil)oxi)etil)((1-Hex:EtOAc (0-50%)obtener 10 (trifluorometil)ciclopropil)metil)carbamoil)-5-(trifluorometil)-1H-pirazol-1-il)-1-metilciclohexanocarboxilato de (1r,4r)etilo (0,177 g, 0,242 mmol, 65 %) en forma de un aceite transparente.

Etapa 2: 4-(4-((2-(2,6-diclorofenil)-2-hidroxietil)((1-(trifluorometil)ciclopropil)metil)carbamoil)-5-(trifluorometil)-1H-pirazol-1-il)-1-metilciclohexanocarboxilato de (1r,4r)-etilo

A una solución de 4-(4-((2-(2,6-diclorofenil)-2-((trimetilsilil)oxi)etil)((1-(trifluorometil)ciclopropil)metil)carbamoil)-5-(trifluorometil)-1H-pirazol-1-il)-1-metilciclohexanocarboxilato de (1r,4r)-etilo (0,177 g, 0,242 mmol) en 2-Me-THF (0,808 ml) se añadió fluoruro de tetra-n-butilamonio (0,291 ml, 0,291 mmol). La mezcla se agitó a temperatura ambiente durante 1 h. La mezcla de reacción se inactivó con NH₄Cl acuoso saturado (1 ml) y se diluyó con EtOAc (50 ml) y agua (20 ml). La capa orgánica se concentró a presión reducida para proporcionar 4-(4-((2-(2,6-diclorofenil)-2-hidroxietil))((1-(trifluorometil)ciclopropil)metil)carbamoil)-5-(trifluorometil)-1H-pirazol-1-il)-1-

metilciclohexanocarboxilato de (1r,4r)-etilo en forma de un sólido de color blanquecino. Éste se disolvió en DCM (3 ml) y se añadió peryodinano de Dess-Martin (0,134 g, 0,315 mmol) y la mezcla de reacción se agitó a temperatura ambiente durante 16 h. Después, a esto se añadió Na₂S₂O₃ (5 ml), seguido de NaHCO₃ saturado (2 ml) y DCM (20 ml) y se agitó durante 15 min. La capa orgánica se pasó a través de un separador de fases y se concentró. La mezcla en bruto se purificó por MPLC (25 g columna) y se eluyó con Hex.EtOAc (10-40 %) para obtener 4-(4-((2-(2-diclorofenil)-2-oxoetil)((1-(trifluorometil)ciclopropil)metil)carbamoil)-5-(trifluorometil)-1H-pirazol-1-il)-1-metilciclohexanocarboxilato de (1r,4r)-etilo (0,13 g, 82 %) en forma de un sólido amorfo de color blanco.

Etapa 3: ácido (1r,4r)-4-(4-((2-(2,6-diclorofenil)-2-oxoetil)((1-(trifluorometil)ciclopropil)metil) carbamoil)-5-(trifluorometil)-1H-pirazol-1-il)-1-metilciclohexanocarboxílico.

A una solución de 4-(4-((2-(2,6-diclorofenil)-2-oxoetil)((1-(trifluorometil)ciclopropil)metil)carbamoil)-5-(trifluorometil)-1H-pirazol-1-il)-1-metilciclohexanocarboxilato de (1r,4r)-etilo (0,13 g, 0,198 mmol) en 2Me-THF (0,660 ml), MeOH (0,660 ml) y agua (0,660 ml) se añadió hidróxido de litio (0,047 g. 1,980 mmol), y se agitó a 40 °C durante 1 h. La mezcla de reacción se acidificó con HCl 2 N a pH 2 y se extrajo con EtOAc (2 x 30 ml). La capa orgánica se secó sobre Na₂SO₄ anhidro, se filtró y se concentró para obtener ácido (1r,4r)-4-(4-((2-(2,6-diclorofenil)-2-oxoetil)((1-(trifluorometil)ciclopropil)metil) carbamoil)-5-(trifluorometil)-1H-pirazol-1-il)-1-metilciclohexanocarboxílico (0,1 g, 75 %)
 en forma de un sólido amorfo de color blanco. RMN ¹H δ (DMSO-d₆) rotámeros presentes 12,22 (1H, s a): 9,79 (1H, 2xs); 7,69 y 7,67 (1H, 2xs); 7,55 y 7,54(1H, 2xs): 7,46 y 7,44 (1H, 2xs); 5,19 (1H, m); 4,30-4,20 (2H, m); 3,78 (2H, m); 2,28-2,20 (2H, m); 2,18-1,98 (3H, m); 1,88-1,47 (8H, m); 1,24 y 1,23 (3H, 2xs); CLEM (IEN): 628,0 (M+H)[†].

[Ejemplo 759]

40

ácido trans-4-(4-((2-(2,6-diclorofenil)-2-oxoetil)((1-metilciclopropil)metil)carbamoil)-5-(trifluorometil)-1H-pirazol-1-il)-1-metilciclohexanocarboxílico

Etapa 1: 4-(4-((2-(2,6-diclorofenil)-2-hidroxietil)((1-metilciclopropil)metil)carbamoil)-5-(trifluorometil)-1H-pirazol-1-il)-1-metilciclohexanocarboxilato de trans-etilo

A una solución de ácido 1-(trans-4-(etoxicarbonil)-4-metilciclohexil)-5-(trifluorometil)-1H-pirazol-4-carboxílico (2,88 g, 5 8,27 mmol) en DCM se añadió cloruro de tionilo (0,663 ml, 9,10 mmol), seguido de 1 gota de DMF. Después, el matraz se equipó con un condensador de reflujo y después la mezcla se agitó durante 4 h a 40 °C y después se agitó durante una noche a ta. Los disolventes se retiraron al vacío y el residuo se secó al vacío para proporcionar 4-(4-(clorocarbonil)-5-(trifluorometil)-1H-pirazol-1-il)-1-metilciclohexanocarboxilato de trans-etilo (2,87 g, rendimiento 95 %) que se usó sin purificación adicional. Á una solución de 2-(2,6-diclorofenil)-N-((1-metilciclopropil)metil)-2-((trietilsilil)oxi)etanamina (95 mg, 0,245 mmol) en DCM (1,2 ml) se añadió DIPEA (85 μl, 0,489 mmol) y 4-(4-10 (clorocarbonil)-5-(trifluorometil)-1H-pirazol-1-il)-1-metilciclohexanocarboxilato de trans-etilo (90 mg, 0,245 mmol). Después de 45 min, se añadió TBAF (solución 1 M en THF) (905 μl, 0,905 mmol). Después de 2 h, se añadió HCl ac. 1 M a la mezcla de reacción. La capa orgánica se separó y la capa acuosa se extrajo con DCM. Las capas orgánicas combinadas se lavaron con NaHCO3 ac. sat., se secaron con Na2SO4 y se concentraron para proporcionar -metilciclopropil)metil)carbamoil)-5-(trifluorometil)-1H-pirazol-1-il)-1-15 4-(4-((2-(2,6-diclorofenil)-2-hidroxietil)((I metiliciclohexanocarboxilato de trans-etilo en bruto (206 mg) que se usó sin purificación en la siguiente etapa.

Etapa 2: 4-(4-((2-(2,6-diclorofenil)-2-oxoetil)((1-metilciclopropil)metil)carbamoil)-5-(trifluorometil)-1H-pirazol-1-il)-1-metilciclohexanocarboxilato de trans-etilo

A una solución de 4-(4-((2-(2,6-diclorofenil)-2-hidroxietil)((1-metilciclopropil)metil)carbamoil)-5-(trifluorometil)-1H-pirazol-1-il)-1-metilciclohexanocarboxilato de trans-etilo (206 mg, 0,341 mmol) en DCM (3,5 ml) se añadió peryodinano de Dess-Martin (217 mg, 0,511 mmol). Después de 40 min, se añadieron Na₂S₂O₃ ac. 1 M y NaHCO₃ ac. sat. La mezcla se agitó durante 1 h, la capa orgánica se separó, la capa acuosa se extrajo con DCM. Las capas orgánicas combinadas se concentraron. El residuo se purificó por TLC preparativa eluyendo con EtOAc al 30 %/hexano para proporcionar 4-(4-((2-(2,6-diclorofenil)-2-oxoetil)((1-metilciclopropil)metil)carbamoil)-5- (trifluorometil)-1H-pirazol-1-il)-1-metilciclohexanocarboxilato de trans-etilo (100 mg, 0,166 mmol, rendimiento 48,7 %).

Etapa 3: ácido trans-4-(4-((2-(2,6-diclorofenil)-2-oxoetil)((1-metilciclopropil)metil)carbamoil)-5-(trifluorometil)-1H-pirazol-1-il)-1-metilciclohexanocarboxílico

A una mezcla de 4-(4-((2-(2,6-diclorofenil)-2-oxoetil)((1-metilciclopropil)metil)carbamoil)-5-(trifluorometil)-1H-pirazol-1-il)-1-metilciclohexanocarboxilato de trans-etilo (100 mg, 0,166 mmol) en MeOH (1,5 ml), THF (1,5 ml), y agua (1 ml) se añadió monohidrato de hidróxido de litio (69 mg, 1,66 mmol). La mezcla se calentó a 50 °C durante 90 min. La mayoría del MeOH y THF se retiraron al vacío. La mezcla se llevó a pH 1 con HCl ac. 1 M. La mezcla se agitó durante 15 min, el sólido precipitado se filtró, se lavó con agua y se secó al vacío para proporcionar ácido trans-4-(4-((2-(2,6-diclorofenil)-2-oxoetil)((1-metilciclopropil)metil)carbamoil)-5-(trifluorometil)-1H-pirazol-1-il)-1-

metilciclohexanocarboxílico (82 mg, 0,143 mmol, rendimiento 86 %). RMN 1 H (400 MHz, DMSO-d₆) mezcla de rotámeros y tautómeros ceto-enol δ 12,24 (s a, 1H), 9,59 (s, 0.2H), 7,80 (s, 0.2H), 7,73 (s, 0.55H), 7,72 (s, 0.25H), 7,32-7,63 (m, 3H), 5,15 (s, 0.2H), 4,88 (s a, 0.5H), 4,70 (s a, 1.1H), 4,15-4,35 (m, 1H), 3,52 (s, 0.4H), 3,32 (s, 1.1H), 3,22 (s, 0.5H), 1,99-2,16 (m, 2H), 1,70-1,93 (m, 6H), 1,21-1,28 (m, 3H), 0,88-1,11 (m, 3H), 0,45-0,58 (m, 2H), 0,23-0,35 (m, 2H). CLEM (APCI): 574,3 (M+H) $^{+}$.

40 [Ejemplo 760]

 $\label{eq:continuous} \begin{tabular}{ll} $acido & trans-4-(4-((2-(2,6-diclorofenil)-2-oxoetil)((1-metilciclobutil)metil)carbamoil)-5-(trifluorometil)-1H-pirazol-1-il)-1-metilciclohexanocarboxílico \\ \end{tabular}$

Etapa 1: trans-4-(4-((2-(2,6-diclorofenil)-2-((trietilsilil)oxi)etil)((1-metilciclobutil)metil)carbamoil)-5-(trifluorometil)-1H-pirazol-1-il)-1-metil ciclohexanocarboxilato de etilo

Este compuesto se preparó usando un procedimiento similar al descrito para el ejemplo 1, etapa 1 sin purificación por cromatografía.

Etapa 2: trans-4-(4-((2-(2,6-diclorofenil)-2-hidroxietil)((1-metilciclobutil)metil)carbamo il)-5-(trifluorometil)-1H-pirazol-1-il)-1-metilciclohexanocarboxilato de etilo

Este compuesto se preparó usando un procedimiento similar al descrito para el ejemplo 1, etapa 2 sin purificación por cromatografía. CLEM (IEN) m/z 618,3 (M+H)⁺.

10 Etapa 3: trans-4-(4-((2-(2,6-diclorofenil)-2-oxoetil)((1-metilciclobutil)metil)carbamoil)-5-(trifluorometil)-1H-pirazol-1-il)-1-metilciclohexanocarboxilato de etilo

Este compuesto se preparó usando un procedimiento similar al descrito para el ejemplo 1, etapa 3: RMN 1 H (500 MHz, DMSO-d₆) rotámeros presentes δ 7,44-7,77 (m, 4H), 4,63 (2xs, 2H), 4,26 (m, 1H), 4,09 (c, J = 7,13 Hz, 2H), 3,48 (s a, 2H), 1,98-2,13 (m, 4H), 1,82-1,96 (m, 3H), 1,74-1,82 (m, 5H), 1,58-1,67 (m, 2H), 1,14-1,28 (m, 9H); CLEM (IEN) m/z 616,3 (M+H) $^+$.

Etapa 4:

15

25

ácido trans-4-(4-((2-(2,6-diclorofenil)-2-oxoetil)((1-metilciclobutil)metil)carbamoil)-5-(trifluorometil)-1H-pirazol-1-il)-1-metilciclohexanocarboxílico

Este compuesto se obtuvo en forma de un sólido de color blanco usando un procedimiento similar al descrito para el ejemplo 1, etapa 4: RMN 1 H (500 MHz, DMSO-d₆) rotámeros presentes δ 12,18 (s a, 1H), 9,58 (d, J = 1,10 Hz, 1H), 7,66 (s, 1 H), 7,27-7,48 (m, 3H), 5,05 (d, J = 1,22 Hz, 1H), 4,09-4,22 (m, 1H), 3,55-3,61 (m, 1H), 1,91-2,05 (m, 4H), 1,67-1,85 (m, 8H), 1,44-1,61 (m, 2H), 1,16 (s, 3H), 1,10 (s, 3H); CLEM (IEN) m/z 588,3 (M+H) † .

[Ejemplo 785]

ácido (1S,4S)-4-(4-((2-(3,5-dicloro-4-piridinil)-2-oxoetil)(2,2-dimetilpropil)carbamoil)-5-(trifluorometil)-1H-pirazol-1-il)-2,2-dimetilciclohexanocarboxílico

Eto
$$F_3$$
C O F_3 C

Etapa 1: trans-4-(4-((2-(3,5-Dicloro-4-piridinil)-2-oxoetil)(2,2-dimetilpropil)carbamoil)-5-(tr ifluorometil)-1H-pirazol-1-il)-2,2-dimetilciclohexanocarboxilato de etilo (mezcla racémica).

5

10

15

20

Se añadieron secuencialmente cloruro de oxalilo (64 µl, 0,72 mmol) y DMF (1 gota) a una solución en agitación de ácido trans-1-(4-(etoxicarbonil)-3,3-dimetilciclohexil)-5-(trifluorometil)-1H-pirazol-4-carboxílico (0,20 g, 0,55 mmol; mezcla racémica) y DCM (5,5 ml). Después de agitar durante 2 h, la mezcla de reacción se concentró a presión reducida. El residuo se disolvió con THF (4,5 ml) y después se añadió una solución de N-(2-(3,5-dicloropiridin-4-il)-2-((trietilsilil)oxi)etil)-2,2-dimetilpropan-1-amina (0,22 g, 0,55 mmol) y THF (1,0 ml), seguido de DIPEA (0,29 ml, 1,7 mmol). Después de agitar durante 30 min, se añadió TBAF (1,7 ml de una solución 1,0 M con THF, 1,7 mmol). Después de agitar durante 1 h, la mezcla de reacción se repartió entre EtOAc y NaHCO3 acuoso saturado, las capas se separaron, el material orgánico se lavó secuencialmente con NaHCO3 acuoso saturado (2 x) y salmuera, se secó (Na₂SO₄), se filtró y el filtrado se concentró a presión reducida. El residuo se disolvió con DCM (5,5 ml) y la solución resultante se trató con peryodinano de Dess-Martin (0,26 g, 0,60 mmol). Después de agitar durante 10 min, la mezcla de reacción se concentró a presión reducida, el residuo se repartió entre THF-EtOAc (1:1 vol/vol) y NaHCO₃ acuoso saturado, las capas se separaron, el material orgánico se lavó secuencialmente con NaHCO3 acuoso saturado y salmuera, se secó (Na₂SO₄), se filtró y el filtrado se concentró a presión reducida. El residuo se disolvió con DCM, se añadió gel de sílice (1,0 g) a la solución y los volátiles se retiraron a presión reducida. El residuo se sometió a cromatografía ultrarrápida sobre gel de sílice (elusión en gradiente; 9:1 a 4:1 de hexano-EtOAc) para dar trans-4-(4-((2-(3,5-dicloro-4-piridinil)-2-oxoetil)(2,2-dimetilpropil)carbamoil)-5-(trifluorometil)-1H-pirazol-1-il)-2,2dimetil ciclohexanocarboxilato de etilo (0,27 g, rendimiento total 80 %; mezcla racémica) en forma de un sólido incoloro.

Etapa 2: (1S,4S)-4-(4-((2-(3,5-Dicloro-4-piridinil)-2-oxoetil)(2,2-dimetilpropil)carbamoil)-5-(trifluorometil)-1H-pirazol-1-il)-2,2-dimetilciclohexanocarboxilato de etilo.

Se resolvió trans-4-(4-((2-(3,5-dicloro-4-piridinil)-2-oxoetil)(2,2-dimetilpropil)carbamoil)-5-(trifluorometil)-1H-pirazol-1-il)-2,2-dimetilciclohexanocarboxilato de etilo (0,22 g, de la Etapa 1; mezcla racémica) usando cromatografía líquida preparativa de alta resolución (columna CHIRALPAK™ AD-H de Chiral Technologies, Inc., West Chester, PA (columna 250 mm x 30 mm, 5 μm) eluyendo con una mezcla de heptano/EtOH (90:10 v/v) a un caudal de 50 ml/min) para dar dos productos con un exceso enantiomérico de más del 97 %.

Pico 1: (1R,4R)-4-(4-((2-(3,5-Dicloro-4-piridinil)-2-oxoetil)(2,2-dimetilpropil)carbamoil)-5-(trifluorometil)-1H-pirazol-1-il)-2,2-dimetil ciclohexanocarboxilato de etilo (0,10 g) en forma de un sólido incoloro. Pico 2: (1S,4S)-4-(4-((2-(3,5-Dicloro-4-piridinil)-2-oxoetil)(2,2-dimetilpropil)carbamoil)-5-(trifluorometil)-1H-pirazol-1-il)-2,2-dimetil ciclohexanocarboxilato de etilo (0,098 g) en forma de un sólido incoloro.

Etapa 3: ácido (1S,4S)-4-(4-((2-(3,5-dicloro-4-piridinil)-2-oxoetil)(2,2-dimetilpropil)carbamoil)-5-(trifluorometil)-1H-pirazol-1-il)-2,2-dimetilciclohexanocarboxílico.

Se añadió NaOH (1,6 ml de una solución acuosa 1,0 M, 1,6 mmol) a una solución en agitación de (1S,4S)-4-(4-((2-(3,5-dicloro-4-piridinil)-2-oxoetil)(2,2-dimetilpropil)carbamoil)-5-(trifluorometil)-1H-pirazol-1-il)-2,2-dimetilciclohexanocarboxilato de etilo (0,098 g, 0,16 mmol, de la Etapa 2), THF (1,6 ml) y EtOH (1,6 ml), y después la mezcla de reacción se calentó a 60 °C. Después de agitar durante 40 h, la mezcla de reacción se dejó enfriar a temperatura ambiente y después se concentró a presión reducida. El residuo se disolvió con agua (10 ml), se añadió ácido clorhídrico concentrado (10 gotas) a la solución, la mezcla homogénea resultante se filtró, la torta de filtro se lavó con agua, se disolvió con Et₂O, la solución se filtró y el filtrado se concentró a presión reducida. El residuo se disolvió con DCM, la solución se filtró y el filtrado se concentró a presión reducida para dar ácido (1S,4S)-4-(4-((2-(3,5-dicloro-4-piridinil)-2-oxoetil)(2,2-dimetilpropil)carbamoil)-5-(trifluorometil)-1H-pirazol-1-il)-2,2-

dimetilciclohexanocarboxílico (0,082 g, rendimiento 88 %) en forma de un sólido incoloro.

RMN 1 H (400 MHz, CDCl₃) rotámero principal/tautómero (protón de ácido carboxílico no observado) δ 8,50 (s, 2H), 7,55 (s, 1H), 4,61-4,35 (m, 3H), 3,70-3,16 (m, 2H), 2,47-2,31 (m, 1H), 2,16-1,86 (m, 5H), 1,81-1,57 (m, 1H), 1,17 (s a, 3H), 1,10 (s a, 3H), 1,01 (s a, 9H); CLEM (IEN): 591,0 (M+H) $^{+}$.

5 [Ejemplo 754]: preparado a partir del éster etílico racémico de la Etapa 1 del ejemplo 785.

[Ejemplo 784]: preparado a partir del éster (1R,4R)-etílico de la Etapa 2, ejemplo 785.

[Ejemplo 807]: preparado de la misma manera que el ejemplo 754.

[Ejemplo 791]

10

ácido (trans-4-(4-((2-(3,5-dicloro-4-piridinil)-2-oxoetil)(2,2-dimetilpropil)carbamoil)-5-(trifluorometil)-1H-pirazol-1-il)-1-metilciclohexil)acético

Etapas 1 y 2:

 $2-((1r,4r)-4-(4-((2-(3,5-\text{dicloropiridin-}4-\text{il})-2-\text{hidroxietil})\\ (\text{neopentil})\text{carbamoil})-5-(\text{trifluorometil})-1\text{H-pirazol-}1-\text{il})-1-\text{metilciclohexil})\\ \text{acetato}$

Las Etapas 1 y 2 se realizaron de una manera similar al Ejemplo 1 para dar 2-((1r,4r)-4-(4-((2-(3,5-dicloropiridin-4-il)-2-hidroxietil)(neopentil)carbamoil)-5-(trifluorometil)-1H-pirazol-1-il)-1-metilciclohexil)acetato de etilo.

Etapa 3: 2-((1r,4r)-4-(4-((2-(3,5-dicloropiridin-4-il)-2-oxoetil)(neopentil)carbamoil)-5-(trifluorometil)-1H-pirazol-1-il)-1-metilciclohexil)acetato de etilo

A una solución de 2-((1r,4r)-4-(4-((2-(3,5-dicloropiridin-4-il)-2-hidroxietil)(neopentil)carbamoil)-5-(trifluorometil)-1H-pirazol-1-il)-1-metilciclohexil)acetato de etilo (134,7 mg, 0,217 mmol) en DCM (2 ml) se añadió peryodinano de Dess-Martin (129 mg, 0,303 mmol). La mezcla resultante se agitó a temperatura ambiente durante 30 min. La mezcla de reacción se inactivó con NaHCO₃ (5 ml, ac. sat.) y Na₂S₂O₃ (5 ml, ac. sat.), después se extrajo con CH₂Cl₂ (2x15 ml). Las capas orgánicas combinadas se lavaron con agua (10 ml) y salmuera (10 ml), se secaron sobre Na₂SO₄ anhidro y se concentraron a presión reducida. El residuo se purificó por cromatografía en columna (24 g Gold, EtOAc al 0 % - 50 %/Hexano) para producir un sólido puro de color blanco como 2-((1 r,4r)-4-(4-((2-(3,5-dicloropiridin-4-il)-2-oxoetil)(neopentil)carbamoil)-5-(trifluorometil)-1H-pirazol-1-il)-1-metilciclohexil)acetato de etilo (85,5 mg, 0,138 mmol, rendimiento 63,7 %). CLEM = 618 (M+H)[†].

Etapa 4: ácido (trans-4-(4-((2-(3,5-dicloro-4-piridinil)-2-oxoetil)(2,2-dimetilpropil)carbamoil)-5-(tr ifluorometil)-1H-pirazol-1-il)-1-metilciclohexil)acético.

A una solución de 2-((1r,4r)-4-(4-((2-(3,5-dicloropiridin-4-il)-2-oxoetil)(neopentil)carbamoil)-5-(trifluorometil)-1H-pirazol-1-il)-1-metilciclohexil)acetato de etilo (85,5 mg, 0,138 mmol) en THF (2 ml)/EtOH (0,500 ml) se añadió LiOH, acuoso 1 M (0,552 ml, 0,552 mmol). La mezcla de reacción se agitó a temperatura ambiente durante una noche. El disolvente se retiró parcialmente. La solución acuosa se acidificó a pH 2. El precipitado resultante se filtró, se lavó con agua y se dejó secar al aire libre para proporcionar un sólido puro de color blanco como ácido 2-((1r,4r)-4-(4-((2-(3,5-dicloropiridin-4-il)-2-oxoetil)(neopentil)carbamoil)-5-(trifluorometil)-1H-pirazol-1-il)-1-metilciclohexil)acético (82 mg, 0,139 mmol, rendimiento 100 %) como una mezcla de tautómeros. RMN ¹H (500 MHz, DMSO-d₆) δ 0,90-1,01 (m, 9H) 1,05- 1,14 (m, 3H), 1,46-1,59 (m, 2H), 1,61-1,83 (m, 4H), 2,00-2,21 (m, 2H), 3,49 (s, 2H), 4,05- 4,23 (m, 1H), 5,34 (s, 1H), 7,75 (s, 1H), 8,62 (s, 2H), 9,88 (s, 1H). CLEM = 590,0 (M+H)⁺.

[Ejemplo 795]

$$F_3C$$

ácido *trans*-4-(4-(((2S,4S)-2-((3,5-dicloro-4-piridinil)carbonil)-4-fenoxi-1-pirrolidinil) carbonil)-5-(trifluorometil)-1H-pirazol-1-il)-1-metilciclohexanocarboxílico.

El compuesto del título se preparó de acuerdo con ejemplo 822 usando ácido (2S,4S)-Boc-4-fenoxi-pirrolidin-2-carboxílico (Chem Impex Int'I, Wood Dale, IL, 2,07 g, 6,74 mmol). La mezcla de epímeros se separó usando SFC preparativa en las siguientes condiciones.

Etapa 1: SFC preparativa: OX-H (5 um, 21 mm x 25 cm), Modificador orgánico: MeOH al 15 %. F = 70 ml/min, T = 40 °C, BPR = 100 bar, 220 nm. P = 151 bar. Toda la muestra (605 mg) disuelta en MeOH (10 ml) ~ 60 mg/ml, iny. de 0.5 ml.

Etapa 2: SFC preparativa: Pico de reprocesado 2. OX-H (5 um, 21 mm x 25 cm), Modificador orgánico: MeOH al 25%. F = 70 ml/min, T = 40 °C, BPR = 100 bar, 220 nm. P = 165 bar. Toda la muestra disuelta en MeOH (10 ml), ~ 60 mg/ ml), iny. de 1,0 ml.

Etapa 3: SFC preparativa: Recogida de Pico de reciclaje 1. OX-H (5 um, 21 mm x 25 cm), Modificador orgánico: MeOH al 25%. F = 70 ml/min, T = 40 °C, BPR = 100 bar, 220 nm. P = 165 bar. Toda la muestra disuelta en MeOH (10 ml), iny. de 1,0 ml. EM (IEN) 639,0, 641,0 [M + H]⁺. Nota: el epímero fue el segundo pico de elusión en las condiciones de separación descritas anteriormente.

[Ejemplo 796]

10

25

20 ácido *trans*-4-(4-(((2R,4S)-2-((3,5-dicloro-4-piridinil)carbonil)-4-fenoxi-1-pirrolidinil) carbonil)-5-(trifluorometil)-1H-pirazol-1-il)-1-metilciclohexanocarboxílico.

El compuesto del título se aisló (107 mg, 0,17 mmol, rendimiento 11 %) en forma de un sólido amorfo de color amarillo, siguiendo separación de SFC preparativa de la mezcla de epímeros (en la posición C2 de la pirrolidina) del Ejemplo 712. EM (IEN) 639,0, 641,0 [M + H][†]. Nota: este epímero fue el tercer pico de elusión en las condiciones de separación descritas anteriormente para el ejemplo 795.

[Ejemplo 797]

$$F_3$$
C O CI

ácido *trans*-4-(4-(((2S,4R)-2-((3,5-dicloro-4-piridinil)carbonil)-4-fenoxi-1-pirrolidinil) carbonil)-5-(trifluorometil)-1H-pirazol-1-il)-1-metilciclohexanocarboxílico.

5 El compuesto del título se aisló (6,7 mg, 10,48 μmol, rendimiento 0,7%) en forma de un sólido amorfo de color amarillo, siguiendo separación de SFC preparativa de la mezcla de epímeros (en la posición C2 de la pirrolidina) del ejemplo 795. EM (IEN) 639,0, 641,0 [M + H]⁺. Nota: el epímero fue el primer pico de elusión en las condiciones de separación descritas anteriormente para el ejemplo 795.

[Ejemplo 798]

40 ácido (1r,4r)-4-(4-((2-(2,6-dicloro-3-fluorofenil)-2-oxoetil)((1-(trifluorometil)ciclopropil)metil)carbamoil)-5-(trifluorometil)-1H-pirazol-1-il)-1-metilciclohexanocarboxílico

Etapa 1: 4-(4-((2-(2,6-dicloro-3-fluorofenil)-2-hidroxietil)((1-(trifluorometil)ciclopropil)metil)carbamoil)-5-(trifluorometil)-1H-pirazol-1-il)-1-metilciclohexanocarboxilato de (1r,4r)-etilo

- A una solución de 1-(2,6-dicloro-3-fluorofenil)-2-(((1-(trifluorometil)ciclopropil)metil)amino)etanol (116 mg, 0,335 mmol) y 4-(4-(clorocarbonil)-5-(trifluorometil)-1H-pirazol-1-il)-1-metilciclohexanocarboxilato de (1r,4r)-etilo (147 mg, 0,402 mmol) en DCM (2,3 ml) se añadió DIPEA (117 µl, 0,670 mmol). La mezcla de reacción se agitó a temperatura ambiente. Después de 1,5 h, la mezcla de reacción se inactivó con NaHCO₃ acuoso saturado y se extrajo con DCM. Las capas orgánicas combinadas se lavaron con agua, salmuera, se secaron sobre Na₂SO₄ anhidro y se concentraron a presión reducida para proporcionar un aceite de color amarillo claro. El material en bruto se purificó por cromatografía en columna (gel de sílice, eluyente: EtOAc del 10 % al 70 %/heptano), para proporcionar 4-(4-((2-(2,6-dicloro-3-fluorofenil)-2-hidroxietil)((1-(trifluorometil)ciclopropil)metil)carbamoil)-5-(trifluorometil)-1H-pirazol-1-il)-1-metilciclohexanocarboxilato de (1r,4r)-etilo (150 mg, 0,222 mmol, rendimiento 66,2 %) en forma de un sólido de color blanco. CLEM: 675,9 (M+H)⁺.
- Etapa 2: 4-(4-((2-(2,6-dicloro-3-fluorofenil)-2-oxoetil)((1-(trifluorometil)ciclopropil)metil)carbamoil)-5-(trifluorometil)-1H-pirazol-1-il)-1-metilciclohexanocarboxilato de (1r,4r)-etilo

Una mezcla de 4-(4-((2-(2,6-dicloro-3-fluorofenil)-2-hidroxietil)((1-(trifluorometil)ciclopropil)metil)carbamoil)-5-(trifluorometil)-1H-pirazol-1-il)-1-metilciclohexanocarboxilato de (1r,4r)-etilo (150 mg, 0,222 mmol), TEMPO (3,46 mg, 0,022 mmol), DCM (2,2 ml) y NaHCO $_3$ ac. 1 M (554 μ l, 0,554 mmol) se agitó a 0 °C. Después, se añadió lentamente

hipoclorito sódico, 5,65-6 % (1,5 ml, 1,1 mmol). Después de 1 h, la reacción se interrumpió con $Na_2S_2O_3$ acuoso saturado a 0 °C y se extrajo con DCM (10 ml). La capa orgánica se secó sobre MgSO₄ anhidro y se concentró a presión reducida para proporcionar un residuo incoloro. El material en bruto se purificó por cromatografía en columna (gel de sílice, eluyente: EtOAc del 0 % al 40 %/heptano) para proporcionar 4-(4-((2-(2,6-dicloro-3-fluorofenil)-2-oxoetil)((1-(trifluorometil)ciclopropil)metil)carbamoil)-5-(trifluorometil)-1H-pirazol-1-il)-1-metilciclohexanocarboxilato de (1r,4r)-etilo (113 mg, 0,168 mmol, rendimiento 76 %) en forma de un sólido de color blanco. RMN 1 H (400 MHz, CDCl₃) δ 7,54 (s, 1H), 7,25-7,30 (m, 1H), 7,15-7,21 (m, 1H), 4,57 (s, 2H), 4,12-4,20 (m, 3H), 3,86 y 3,75 (2H, 2xs), 2,12-2,29 (m, 2H), 1,81-1,97 (m, 6H), 1,34-1,39 (m, 3H), 1,25-1,31 (m, 3H), 1,07 (d, J = 6,4 Hz, 4H); CLEM: 674,1 [M+H] $^+$.

10 Etapa 3: ácido (1r,4r)-4-(4-((2-(2,6-dicloro-3-fluorofenil)-2-oxoetil)((1-(trifluorometil)ciclopropil)metil)carbamoil)-5-(trifluorometil)-1H-pirazol-1-il)-1-metilciclohexanocarboxílico

A una mezcla de $4-(4-((2-(2,6-\text{dicloro-}3-\text{fluorofenil})-2-\text{oxoetil})((1-(\text{trifluorometil})\text{ciclopropil})\text{metil})\text{carbamoil})-5-(\text{trifluorometil})-1H-pirazol-1-il})-1-metilciclohexanocarboxilato de <math>(1r,4r)$ -etilo (113 mg, 0,168 mmol) en MeOH (0,4 ml) y THF (0,4 ml) (1:1 ratio) se añadió NaOH acuoso 2 N (0,42 µl, 0,838 mmol). La mezcla de reacción se calentó a 50 °C durante 2 h. Se concentró, se enfrió a 0 °C y se acidificó con una solución acuosa 1 N de HCl. El sólido de color blanco se recogió, se lavó con agua y se secó a presión reducida para proporcionar ácido (1r,4r)-4- $(4-((2-(2,6-\text{dicloro-}3-\text{fluorofenil})-2-\text{oxoetil})((1-(\text{trifluorometil})\text{ciclopropil})\text{metil})\text{carbamoil})-5-(\text{trifluorometil})-1H-pirazol-1-il})-1-metilciclohexanocarboxílico <math>(86 \text{ mg}, 0,133 \text{ mmol}, \text{ rendimiento } 79 \%)$. RMN 1 H $(400 \text{ MHz}, \text{DMSO-d}_6)$ δ 12,26 (s a, 1H), 7,68 (s, 1H), 7,62 (d, J = 6,5 Hz, 2H), 4,88 y 4,71 (2H, 2xs), 4,27 (m, 1H), 3,77 y 3,67 (2H, 2xm), 1,98-2,16 (m, 2H), 1,69-1,90 (m, 6H), 1,20-1,27 (m, 3H), 1,01 (s a, 4H); CLEM: 645,9 [M+H]^+.

[Ejemplo 813]

5

15

20

30

35

40

45

ácido (1S,2S,4S)-4-(4-((2-(3,5-dicloro-4-piridinil)-2-oxoetil)(2,2-dimetilpropil)carbamoil)-5-(trifluorometil)-1H-pirazol-1-il)-2-metilciclohexanocarboxílico

Etapa 1 y Etapa 2: 4-(4-((2-(3,5-dicloropiridin-4-il)-2-hidroxietil)(neopentil)carbamoil)-5-(trifluorometil)-1H-pirazol-1-il)-2-metilciclohexanocarboxilato de (1S,2S,4S)-etilo con su isómero (1R,2R,4R)

A una solución transparente de color amarillo claro de ácido 1-((1S,3S,4S)-4-(etoxicarbonil)-3-metilciclohexil)-5-(trifluorometil)-1H-pirazol-4-carboxílico con su isómero (1R,3R,4R) (0,3128 g, 0,898 mmol) en DCM (8,98 ml) se añadió cloruro de oxalilo (0,095 ml, 1,123 mmol), seguido de DMF (1 gota) y la mezcla de reacción transparente de color amarillo claro se agitó a temperatura ambiente. Después de 2 h, la mezcla se concentró al vacío para dar 4-(4-(clorocarbonil)-5-(trifluorometil)-1H-pirazol-1-il)-2-metilciclohexanocarboxilato de (1S,2S,4S)-etilo con su isómero (1R,2R,4R) en forma de un sólido meloso de color pardo. Al residuo se añadió una solución de N-(2-(3,5-dicloropiridin-4-il)-2-((trietilsilil)oxi)etil)-2,2-dimetilpropan-1-amina (0,352 g, 0,898 mmol) en THF (8,98 ml) seguido de DIPEA (0,626 ml, 3,59 mmol). La mezcla heterogénea de color pardo se agitó a temperatura ambiente. Después de 3 h, la CL-EM (IEN) mostró que se había formado el intermedio 4-(4-((2-(3,5-dicloropiridin-4-il)-2-((trietilsilil)oxi)etil)(neopentil)carbamoil)-5-(trifluorometil)-1H-pirazol-1-il)-2-metilciclohexanocarboxilato de (1S,2S,4S)-etilo con su isómero (1R,2R,4R): CLEM (IEN) m/z 721,1 (M+H)⁺.

A la mezcla de reacción se añadió una solución de TBAF, 1,0 M en THF (3,59 ml, 3,59 mmol). Después de 1 hora, la mezcla de reacción se diluyó con agua (30 ml) y salmuera (30 ml). La mezcla de reacción se extrajo con EtOAc (2x50 ml). El extracto orgánico se lavó con NaCl sat. (1 x 100 ml) y se secó sobre Na₂SO₄. La solución se filtró y se concentró al vacío para dar el material en bruto en forma de un jarabe de color naranja. El material en bruto se absorbió sobre un lecho de gel de sílice y se purificó por cromatografía en columna sobre gel de sílice eluyendo con un gradiente de EtOAc del 0 % al 50 % en hexano para proporcionar 4-(4-((2-(3,5-dicloropiridin-4-il)-2-hidroxietil)(neopentil)carbamoil)-5-(trifluorometil)-1H-pirazol-1-il)-2-metilciclohexanocarboxilato de (1S,2S,4S)-etilo con su isómero (1R,2R,4R) (0,4742 g, 0,781 mmol, rendimiento 87 %) en forma de un sólido meloso de color

blanquecino: RMN 1 H (300 MHz, DMSO-d₆) δ 8,44-8,63 (2H, m), 7,57-7,71 (1H, m), 6,01 (1H, d, J = 4,4 Hz), 5,28 (1H, dt, J= 9,0, 4,5 Hz), 4,32 (1H, d, J = 7,2 Hz), 4,11 (2H, c, J = 7,1 Hz), 3,85 (1H, dd, J = 14,6, 9,2 Hz), 3,53 (2H, d, J = 13,0 Hz), 3,32-3,41 (1H, m), 1,49-2,16 (8H, m), 1,21 (3H, t, J = 7,1 Hz), 0,63-0,98 (12H, m), (varios conjuntos de picos debido a diastereómeros y rotámeros); CLEM (IEN) m/z 607,1 (M+H) $^{+}$.

5 Etapa 3: 4-(4-((2-(3,5-dicloropiridin-4-il)-2-oxoetil)(neopentil)carbamoil)-5-(trifluorometil)-1H-pirazol-1-il)-2-metilciclohexanocarboxilato de (1S,2S,4S)-etilo

una solución transparente de color amarillo claro de 4-(4-((2-(3,5-dicloropiridin-4-il)-2hidroxietil)(neopentil)carbamoil)-5-(trifluorometil)-1H-pirazol-1-il)-2-metilciclohexanocarboxilato de (1S,2S,4S)-etilo con su isómero (1R,2R,4R) (0,4702 g, 0,774 mmol) en DCM (12,90 ml) se añadió peryodinano de Dess-Martin (0,492 g, 1,161 mmol). La mezcla turbia de color blanco se agitó a temperatura ambiente. Después de 2 h, la mezcla se inactivó con NaHCO₃ acuoso saturado (30 ml) y Na₂S₂O₃ acuoso saturado (30 ml). La mezcla de reacción se extrajo con DCM (2 x 50 ml). El extracto orgánico se secó sobre Na₂SO₄. La solución se filtró y se concentró al vacío para dar el material en bruto en forma de un jarabe incoloro. El material en bruto se absorbió sobre un lecho de gel de sílice y se purificó por cromatografía en columna sobre gel de sílice eluyendo con un gradiente de EtOAc del 0 % al 50 % en hexano para dar 4-(4-((2-(3,5-dicloropiridin-4-il)-2-oxoetil)(neopentil)carbamoil)-5-(trifluorometil)-1Hpirazol-1-il)-2-metilciclohexanocarboxilato de (1S,2S,4S)-etilo con su isómero (1R,2R,4R) (0,437 g, 0,722 mmol, rendimiento 93 %): RMN ¹H (400 MHz, CDCl₃) δ 8,46-8,61 (2H, m), 7,51-7,74 (1H, m), 4,49-4,92 (2H, m), 4,25-4,39 (1H, m), 4,18 (2H, c, J = 7,1 Hz), 3,29-3,61 (2H, m), 1,63-2,18 (8H, m), 1,29 (3H, t, J = 7,1 Hz), 0,81-1,06 (12H, m), rotámeros presentes; CLEM (IEN) m/z 605,0 (M+H)⁺

20 La mezcla racémica se separó por SFC para dar dos fracciones:

La estereoquímica de cada fracción se asignó arbitrariamente.

Primer pico en la columna SFC IA: 4-(4-((2-(3,5-dicloropiridin-4-il)-2-oxoetil)(neopentil)carbamoil)-5-(trifluorometil)-1H-pirazol-1-il)-2-metilciclohexanocarboxilato de (1R,2R,4R)-etilo (0,1588 g, 0,262 mmol, rendimiento 33,9 %) en forma de un sólido de color blanco: RMN 1 H (300 MHz, DMSO-d₆) δ 8,68-8,87 (2H, m), 7,71-7,89 (1H, m), 4,65-4,92 (2H, m), 4,33 (1H, s. a.), 4,10 (2H, c, J = 7,0 Hz), 3,24-3,30 (2H, m), 1,49-2,17 (8H, m), 1,20 (3H, t, J = 7,1 Hz), 0,73-1,00 (12H, m); CLEM (IEN) m/z 605,0 (M+H) $^+$.

Segundo pico en la columna SFC IA: $4-(4-((2-(3,5-\text{dicloropiridin}-4-\text{il})-2-\text{oxoetil})(\text{neopentil})\text{carbamoil})-5-(\text{trifluorometil})-1H-pirazol-1-il})-2-metilciclohexanocarboxilato de (1S,2S,4S)-etilo (0,1526 g, 0,252 mmol, rendimiento 32,6%) en forma de un sólido de color blanco: RMN <math>^1$ H (300 MHz, DMSO-d₆) δ 8,70-8,87 (2H, m), 7,72-7,89 (1H, m), 4,64-4,93 (2H, m), 4,34 (1H, d, J= 5,1 Hz), 4,10 (2H, c, J= 7,0 Hz), 3,27 (2H, s. a.), 1,50-2,18 (8H, m), 1,20 (3H, t, J= 7,1 Hz), 0,72-1,01 (12H, m); CLEM (IEN) m/z 605,0 (M+H) $^+$.

Etapa 4: ácido (1S,2S,4S)-4-(4-((2-(3,5-dicloro-4-piridinil)-2-oxoetil)(2,2-dimetilpropil)carbamoil)-5-(trifluorometil)-1H-pirazol-1-il)-2-metilciclohexanocarboxílico.

A una mezcla de la mezcla racémica de 4-(4-((2-(3,5-dicloropiridin-4-il)-2-oxoetil)(neopentil)carbamoil)-5-(trifluorometil)-1H-pirazol-1-il)-2-metilciclohexanocarboxilato de (1 S,2S,4S)-etilo (0,1245 g, 0,206 mmol) en THF (1,645 ml), EtOH (1,645 ml) y agua (0,822 ml) se añadió LiOH 2 M en agua (1,028 ml, 2,056 mmol). La mezcla homogénea de color amarillo se agitó y se calentó a 60 °C. Después de 17 h, la mezcla de reacción se concentró al vacío para retirar THF y EtOH. La solución acuosa resultante se diluyó con agua (10 ml). El pH de la solución se ajustó a ~3,0 con HCl 2 N y el precipitado resultante se recogió por filtración al vacío y se criodesecó en un liofilizador durante una noche para proporcionar el ejemplo 813 (0,0939 g, 0,163 mmol, rendimiento 79 %) en forma de un sólido de color blanco. RMN 1 H (300 MHz, DMSO-d₆) 5 D 12,19 (1H, s. a.), 8,57-9,91 (2H, m), 7,72-7,88 (1H, m), 4,65-5,39 (2H, m), 4,32 (1H, d, 7 J = 4,5 Hz), 3,22-3,53 (2H, m), 1,46-2,10 (8H, m), 0,72-1,03 (12H, m), rotámeros presentes; CL-EM (IEN) m/z 577,1 (M+H) $^+$. La estereoquímica se asignó arbitrariamente como (1S,2S,4S).

[Ejemplo 822]

10

15

25

30

35

40

45

ácido *trans*-4-(4-(((2R,4S)-4-ciclohexil-2-((3,5-dicloro-4-piridinil)carbonil)-1-pirrolidinil) carbonil)-5-(trifluorometil)-1H-pirazol-1-il)-1-metilciclohexanocarboxílico

Etapa 1: Se trató ácido (2S,4S)-boc-4-ciclohexil-pirrolidin-2-carboxílico (Chem Impex Int'I, Wood Dale, IL, 997 mg, 3,35 mmol) con DCM (25 ml), seguido de 1,1'-carbonildiimidazol (598 mg, 3,69 mmol). La solución se dejó en agitación a temperatura ambiente durante 1,5 h, después la mezcla de reacción se trató con clorhidrato de N,O-dimetil hidroxilamina (360 mg, 3,69 mmol) y se dejó en agitación durante el fin de semana a temperatura ambiente. La mezcla de reacción se diluyó con EtOAc (50 ml), se lavó con una solución saturada de NaHCO₃ (30 ml) y salmuera (30 ml), se secó sobre MgSO₄, se filtró y se concentró, proporcionando 4-ciclohexil-2-(metoxi(metil)carbamoil)pirrolidin-1-carboxilato de (2S,4S)-terc-butilo en bruto (1,14 g, 3,35 mmol, rendimiento 99 %) en forma de un aceite viscoso e incoloro, transparente. EM (IEN) 363,2 [M + Na]⁺. El material en bruto se usó en la siguiente Etapa sin purificación adicional.

5

10

15

30

35

Etapa 2: Se trató 4-ciclohexil-2-(metoxi(metil)carbamoil)pirrolidin-1-carboxilato de (2S,4S)-terc-butilo (1,14 g, 3,35 mmol) se trató con THF (20 ml), enfriado 0 °C en un baño de hielo y después se trató con hidruro de litio y aluminio (solución 1,0 M en THF, 3,35 ml, 3,35 mmol) lentamente gota a gota durante 3 min. Después, la solución se agitó a 0 °C durante 45 min. La mezcla de reacción se inactivó con una solución de tartrato de sodio y potasio, se agitó a temperatura ambiente durante 20 min, después se extrajo con EtOAc (3 x 50 ml), se lavó con salmuera y se secó sobre MgSO₄, se filtró y se concentró, proporcionando 4-ciclohexil-2-formilpirrolidin-1-carboxilato de (2S,4S)-tercbutilo en forma de un aceite viscoso y transparente. EM (IEN) 304,1 [M + Na]⁺. El material en bruto se usó en la siguiente etapa sin purificación adicional.

Etapa 3: Se trató 4-ciclohexil-2-formilpirrolidin-1-carboxilato de (2S,4S)-terc-butilo (943 mg, 3,35 mmol) con THF (20 ml) y DBU (1,0 ml, 6,70 mmol) y se dejó agitar a temperatura ambiente durante una noche. La mezcla de reacción se concentró a sequedad en el rotovapor, se trató con DCM y una solución saturada de NH₄Cl y se extrajo, se lavó con salmuera, se secó sobre MgSO₄, se filtró y se concentró, proporcionando una mezcla de 4-ciclohexil-2-formilpirrolidin-1-carboxilato de (2S,4S)-terc-butilo en bruto y 4-ciclohexil-2-formilpirrolidin-1-carboxilato de (2R,4S)-terc-butilo (470 mg, 1,67 mmol, rendimiento 99 %) en forma de un aceite viscoso incoloro y transparente. EM (IEN) 304,1 [M + Na]⁺.

Etapa 4: Se añadió diisopropilamida de litio (solución 2,0 M en heptano/THF/etilbenceno, 3,51 ml, 7,02 mmol) a 3,5-dicloropiridina (820 mg, 5,54 mmol) disuelta en THF (15 ml) enfriado a -78 °C y se agitó a esta temperatura durante 1 h. Se añadió 4-ciclohexil-2-formilpirrolidin-1-carboxilato de (2S,4S)-terc-butilo (1,04 g, 3,70 mmol) y su epímero en C2 de la pirrolidina en THF (11 ml) y la solución se retiró del baño de refrigeración y se dejó calentar a temperatura ambiente y se agitó durante 2 h. La solución se inactivó con cloruro de amonio saturado, la capa acuosa se extrajo con EtOAc (2 x 50 ml) y la capa orgánica se lavó con salmuera (30 ml) y se secó sobre sulfato de magnesio anhidro, se filtró y se concentró. El producto en bruto se purificó en un sistema ISCO Combiflash™ RF (40 g, columna Grace Reverlis, usando un gradiente de EtOAc al 0-80 % en heptano), proporcionando 4-ciclohexil-2-((S)-(3,5-dicloropiridin-4-il)(hidroxi)metil)pirrolidin-1-carboxilato de (2S,4S)-terc-butilo (1,20 g, 2,79 mmol, rendimiento 76 %) en forma de una mezcla de epímeros. EM (IEN) 451,1,453,1 [M + Na]⁺.

Etapa 5: Se trató 4-ciclohexil-2-((S)-(3,5 -dicloropiridin-4-il)(hidroxi)metil)pirrolidin-1-carboxilato de (2S,4S)-terc-butilo (1,20 g, 2,79 mmol) y su epímero en C2 de la pirrolidina con DCM (10 ml) y TFA (7 ml, 91 mmol) y se dejó en agitación a temperatura ambiente durante 1,5 h. La mezcla de reacción se concentró en el rotovapor y el residuo en bruto se purificó en un sistema ISCO Combiflash™ RF (40 g, columna Grace Reveleris, usando un gradiente de NH₃

2 M al 0-20 %/MeOH en DCM), proporcionando 2,2,2-trifluoroacetato de (S)-((2S,4S)-4-ciclohexilpirrolidin-2-il)(3,5-dicloropiridin-4-il)metanol (755 mg, 1,705 mmol, rendimiento 61 %) junto con su epímero en C2 de la pirrolidina en forma de una espuma de color castaño claro. EM (IEN) 329,0, 331,1 [M+H][†].

Etapa 6: Se añadió cloruro de oxalilo (0,22 ml, 2,55 mmol) a una solución de ácido 1-((1r,4r)-4-(etoxicarbonil)-4-metilciclohexi 1)-5-(trifluorometil)-1H-pirazol-4-carboxílico (593 mg, 1,70 mmol) en DCM (10,0 ml), seguido de 2 gotas de DMF mientras se enfriaba en un baño de hielo. Después, la solución se retiró del baño de hielo y se dejó en agitación a temperatura ambiente durante 1 h. La mezcla de reacción se concentró a sequedad en el rotavapor y el residuo en bruto se trató con DCM (10,0 ml) y se enfrió a 0 °C. Después, la solución en agitación se trató con 2,2,2-trifluoroacetato de (*S*)-((2*S*,4*S*)-4-ciclohexilpirrolidin-2-il)(3,5-dicloropiridin-4-il)metanol (755 mg, 1,70 mmol) y DIPEA (0,89 ml, 5,11 mmol) en DCM (10 ml) y se dejó calentar a temperatura ambiente y se agitó durante 1 h. La mezcla de reacción se concentró a sequedad a presión reducida (evaporador rotatorio) y el residuo en bruto se purificó en un sistema ISCO Combiflash™ RF (40 g, columna Grace Reveleris, usando un gradiente de EtOAc al 0-100 % en heptano), proporcionando 4-(4-((2S,4S)-4-ciclohexil-2-((S)-(3,5-dicloropiridin-4-il)(hidroxi)metil)pirrolidin-1-carbonil)-5-(trifluorometil)-1H-pirazol-1-il)-1-metilciclohexanocarboxilato de (1 S,4r)-etilo (640 mg, 0,970 mmol, rendimiento 57 %) junto con su epímero en C2 de la pirrolidina en forma de una espuma de color castaño claro. EM (IEN) 659,2, 661,1 [M + H][†].

Etapa 7: Se trataron peryodinano de Dess-Martin (823 mg, 1,94 mmol) y 4-(4-((2R,4S)-4-ciclohexil-2-((R)-(3,5-dicloropiridin-4-il)(hidroxi)metil)pirrolidin-1-carbonil)-5-(trifluorometil)-1H-pirazol-1-il)-1-metilciclohexanocarboxilato de (1R,4r)-etilo (640 mg, 0,97 mmol) como una mezcla con su epímero en C2 de la pirrolidina con DCM (10 ml) y se dejaron en agitación a temperatura ambiente durante 3 h. La reacción se trató con una solución saturada de NaHCO₃ y metabisulfito sódico sólido. Después, la mezcla de reacción se extrajo con DCM (2 x 75 ml), se secó sobre MgSO₄, se filtró y se concentró, proporcionando un producto en bruto en forma de una espuma de color naranja claro. Este residuo se purificó en un sistema ISCO Combiflash™ RF (25 g, columna Grace Reverlis, usando un gradiente de EtOAc al 0-70 % en heptano), proporcionando 4-(4-((2R,4S)-4-ciclohexil-2-(3,5-dicloroisonicotinoil)pirrolidin-1-carbonil)-5-(trifluorometil)-1H-pirazol-1-il)-1-metilciclohexanocarboxilato de (1R,4r)-etilo (605 mg, 95 %) junto con su epímero en C2 de la pirrolidina en forma de una espuma de color amarillo claro. EM (IEN) 657.0, 659.0 IM + HI⁺.

Etapa 8: Se trató 4-(4-((2S,4S)-4-ciclohexil-2-(3,5-dicloroisonicotinoil)pirrolidin-1-carbonil)-5-(trifluorometil)-1Hpirazol-1-il)-1-metilciclohexanocarboxilato de (1S,4r)-etilo (454 mg, 0,69 mmol) y su epímero en C2 de la pirrolidina en THF (3,5 ml) y MeOH (3,5 ml) se trató con monohidrato de hidróxido de litio (solución 1,0 M, 3,5 ml, 3,45 mmol). La mezcla se agitó a temperatura ambiente durante una noche (16 h), los extractos orgánicos se retiraron a presión reducida (evaporador rotatorio) y la solución acuosa resultante se acidificó con HCl 1 N, llevando a la formación de un precipitado. La mezcla se extrajo con EtOAc (2 x 40 ml). Los extractos combinados se lavaron con salmuera, se secaron sobre MgSO₄ anhidro, se filtraron y se concentraron. El material en bruto se absorbió sobre un lecho de gel de sílice y se purificó por cromatografía en un sistema ISCO Combiflash™ RF (25 g, columna Thomson SingleStep, usando un gradiente de [MeOH al 10 % en DCM] al 0-100 % en DCM) proporcionando una mezcla de dos productos epiméricos en C2 de la pirrolidina. Este material se sometió a separación en una SFC preparativa usando las siguientes condiciones: columna OX (SN=2121, 5 urn, 21 mm x 25 cm, 50/50/50 p=172), Modificador orgánico: MeOH al 25 % con NH₃ 20 mM. F = 70 ml/min, T = 40 °C, BPR = 100 bar, 220 nm. P = 165 bar, toda la muestra (416 mg) disuelta en 8 ml de MeOH, ~52 mg/ml), inv. de 1,0 ml, proporcionando ácido trans-4-(4-(((2R,4S)-4-ciclohexil-2-((3,5-dicloro-4-piridinil)carbonil)-1-pirrolidinil)carbonil)-5-(trifluorometil)-1H-pirazol-1-il)-1-metilciciohexanocarboxílico (55.3 mg, 0.088 mmol, rendimiento 13 %) en forma de un sólido amorfo de color amarillo claro. EM (IEN) 629.1, 631,1 [M + H]⁺. Nota: el epímero fue el primer pico de elusión en las condiciones de separación descritas anteriormente.

45 **[Ejemplo 823]**

5

10

15

20

25

30

35

40

50

ácido *trans*-4-(4-(((2S,4S)-4-ciclohexil-2-((3,5-dicloro-4-piridinil)carbonil)-1-pirrolidinil) carbonil)-5-(trifluorometil)-1H-pirazol-1-il)-1-metilciclohexanocarboxílico.

El compuesto del título se aisló (291 mg, 0,46 mmol, rendimiento 67%) en forma de un sólido amorfo de color amarillo, siguiendo separación de SFC preparativa de la mezcla de epímeros (en la posición C2 de la pirrolidina) del Ejemplo 739. EM (IEN) 629,1, 631,1 [M + H]⁺. Nota: el epímero fue el segundo pico de elusión en las condiciones de

separación descritas anteriormente.

[Ejemplo 827]

ácido *trans*-4-(4-(((2S,4R)-2-((3,5-dicloro-4-piridinil)carbonil)-4-fenil-1-pirrolidinil) carbonil)-5-(trifluorometil)-1H-pirazol-1-il)-1-metilciclohexanocarboxílico

El compuesto del título se preparó de acuerdo con ejemplo 822 usando ácido (2S,4R)-1-(terc-butoxicarbonil)-4-fenilpirrolidin-2-carboxílico (Frontier Scientific, Newark, DE, 1,00 g, 3,43 mmol) y se aisló (63,7 mg, 0,10 mmol, rendimiento 18 %) en forma de un sólido de color blanco amorfo. La mezcla de epímeros se separó usando SFC preparativa en las siguientes condiciones. Columna: CHIRALPAK™ AZ-H (Invertida) (250 x 21 mm, 5 μm), Fase móvil: 82:18 (A:B), A: CO₂ líquido, B: EtOH. Caudal: 70 ml/min. Temp. de Columna/Horno: 40 °C, presión de entrada 186 - 193 bar. SN: 403121. EM (IEN) 623,0, 625,0 [M + H][†]. Nota: el epímero fue el segundo pico de elusión en las condiciones de separación descritas anteriormente.

[Ejemplo 828]

5

10

20

$$F_3C$$
 O CI

4-(4-(((2R,4R)-2-((3,5-dicloro-4-piridinil)carbonil)-4-fenil-1-pirrolidinil) carbonil)-5-(trifluorometil)-1H-pirazol-1-il)-1-metilciclohexanocarboxílico.

El compuesto del título se aisló (135 mg, 0,217 mmol, rendimiento 39 %) en forma de una espuma de color blanco, siguiendo separación de SFC preparativa de la mezcla de epímeros (en la posición C2 de la pirrolidina) del ejemplo 827. EM (IEN) 623,0, 625,0 [M + H]⁺. Nota: este epímero fue el tercer pico de elusión en las condiciones de separación descritas anteriormente para el ejemplo 827.

[Ejemplo 845]:

ácido (1S,2R,4S)-4-(4-((2-(2,6-dicloro-3-fluorofenil)-2-oxoetil)((1R,3r,5S)-6,6-dimetilbiciclo[3,1,0]hexan-3-il)carbamoil)-5-(trifluorometil)-1H-pirazol-1-il)-2-metilciclohexanocarboxílico.

Etapa 1: 4-(4-((2-(2,6-dicloro-3-fluorofenil)-2-hidroxietil)((1R,3r,5S)-6,6-dimetilbiciclo[3,1,0]hexan-3-il)carbamoil)-5-(trifluorometil)-1H-pirazol-1-il)-2-metilciclohexanocarboxilato de (1S,2R,4S)-etilo.

A una solución de (1R,3r,5S)-N-(2-(2,6-dicloro-3-fluorofenil)-2-((trietilsilil)oxi)etil)-6,6-dimetilbiciclo[3,1,0]hexan-3-amina (97 mg, 0,217 mmol) y 4-(4-(clorocarbonil)-5-(trifluorometil)-1H-pirazol-1-il)-2-metilciclohexanocarboxilato de (1S,2R,4S)-etilo (96 mg, 0,261 mmol) en DCM (0,8 ml) se añadió DIPEA (76 μl, 0,434 mmol). La mezcla de reacción se agitó a temperatura ambiente durante 2 h. La mezcla de reacción se inactivó con una solución acuosa saturada de NaHCO₃ y se extrajo con DCM (3x10 ml). La capa orgánica se combinó, se secó sobre MgSO₄ anhidro, se filtró y se concentró para proporcionar un producto en forma de un residuo de color amarillo. El residuo se disolvió con THF (0,75 ml), después se añadió una solución de TBAF, 1,0 M en THF (434 μl, 0,434 mmol). La mezcla se agitó a temperatura ambiente durante 0,5 h. Esta se inactivó con NaHCO₃ acuoso saturado y se extrajo con DCM. La capa orgánica combinada se lavó con agua, salmuera, se secaron sobre Na₂SO₄ anhidro y se concentraron a presión reducida para proporcionar un aceite de color amarillo claro. El material en bruto se purificó por cromatografía en columna (gel de sílice, eluyente: EtOAc del 0 % al 40 %/heptano) para proporcionar 4-(4-((2-(2,6-dicloro-3-fluorofenil)-2-hidroxietil)((1R,3r,5S)-6,6-dimetilbiciclo[3,1,0] hexan-3-il)carbamoil)-5-(trifluorometil)-1H-pirazol-1-il)-2-metilciclohexanocarboxilato de (1S,2R,4S)-etilo (96 mg, 0,145 mmol, rendimiento 66,7 %) en forma de un sólido de color blanco. CLEM: 662,1 [M+H]⁺

Etapa 2: 4-(4-((2-(2,6-dicloro-3-fluorofenil)-2-oxoetil)((1R,3r,5S)-6,6-dimetilbiciclo[3,1,0]hexan-3-il)carbamoil)-5-(trifluorometil)-1H-pirazol-1-il)-2-metilciclohexanocarboxilato de (1S,2R,4S)-etilo

Se disolvió 4-(4-((2-(2,6-dicloro-3-fluorofenil)-2-hidroxietil)((1R,3r,5S)-6,6-dimetilbiciclo[3,1,0] hexan-3-il)carbamoil)-5-(trifluorometil)-1H-pirazol-1-il)-2-metilciclohexanocarboxilato de (1S,2R,4S)-etilo (96 mg, 0,145 mmol) en DCM (3 ml) y se añadió peryodinano de Dess-Martin (77 mg, 0,181 mmol). Se agitó a temperatura ambiente durante 3 h. La mezcla de reacción se inactivó con Na₂S₂O₃ al 5 %, se lavó con NaHCO₃ saturado, se secó con Na₂SO₄ anhidro y se concentró. El producto en bruto se purificó por cromatografía en columna (gel de sílice, eluyente: EtOAc al 0-40 %/heptano) para proporcionar 4-(4-((2-(2,6-dicloro-3-fluorofenil)-2-oxoetil)((1R,3r,5S)-6,6-dimetilbiciclo[3,1,0]h exan-3-il)carbamoil)-5-(trifluorometil)-1H-pirazol-1-il)-2-metilciclohexanocarboxilato de (1S,2R,4S)-etilo (90 mg, 0,136 mmol, rendimiento 94 %) en forma de un aceite viscoso de color blanco.

CLEM 660,0 [M+H]+.

5

10

15

30

35

Etapa 3: ácido (1S,2R,4S)-4-(4-((2-(2,6-dicloro-3-fluorofenil)-2-oxoetil)((1R,3r,5S)-6,6-dimetilbiciclo[3,1,0]hexan-3-il)carbamoil)-5-(trifluorometil)-1H-pirazol-1-il)-2-metilciclohexanocarboxílico.

A una mezcla de 4-(4-((2-(2,6-dicloro-3-fluorofenil)-2-oxoetil)((1R,3r,5S)-6,6-dimetilbiciclo[3,1,0]h exan-3-il)carbamoil)-5-(trifluorometil)-1H-pirazol-1-il)-2-metilciclohexanocarboxilato de (1S,2R,4S)-etilo (90 mg, 0,136 mmol) en MeOH (0,34 ml) y THF (0,34 ml) (1:1 ratio) se añadió NaOH ac. 2 N (0,34 ml, 0,68 mmol). La mezcla de reacción se calentó a 50 °C durante 3 h. Se concentró, se enfrió a 0 °C y se acidificó con HCl acuoso 1 N. El sólido de color blanco se recogió, se lavó con agua y se secó a presión reducida para proporcionar ácido (1S,2R,4S)-4-(4-((2-(2,6-dicloro-3-fluorofenil)-2-oxoetil)((1R,3r,5S)-6,6-dimetilbiciclo[3,1,0]hexan-3-il)carbamoil)-5-(trifluorometil)-1H-pirazol-1-il)-2-metilciclohexanocarboxílico (58 mg, 0,092 mmol, rendimiento 67,3 %). RMN ¹H (500 MHz, DMSO-d₆) δ 12,18 (s

a, 1H), 7,87-7,56 (m, 2H), 7,40-7,51 (m, 1H), 4,96-5,10 (m, 1H), 4,53-4,77 (m, 1H), 4,11-4,52 (m, 2H), 2,54-2,64 (m, 1H), 1,66-2,24 (m, 10H), 1,35-1,59 (m, 2H), 1,19-1,29 (m, 1H), 0,82-1,14 (m, 15H); CLEM: 632,2 [M+H]⁺

[Ejemplo 853]

5

10

15

20

25

30

35

40

ácido trans-4-(4-((2-(3,5-dicloro-4-piridinil)-2-oxoetil)((1s,4s)-7-oxabiciclo[2,2,1]hept-(trifluorometil)-1H-pirazol-1-il)-1-metilciclohexanocarboxílico

Etapa 1 y Etapa 2: trans-4-(4-(((1s,4S)-7-oxabiciclo[2,2,1]heptan-1-ilmetil)(2-(3,5-dicloropiridin-4-il)-2-hidroxietil)carbamoil)-5-(trifluorometil)-1H-pirazol-1-il)-1-metilciclohexanocarboxilato de etilo.

A una solución transparente de ácido 1-((1r,4r)-4-(etoxicarbonil)-4-metilciclohexil)-5-(trifluorometil)-1H-pirazol-4carboxílico (0,121 g, 0,348 mmol) en DCM (3,48 ml) se añadió cloruro de oxalilo (0,037 ml, 0,435 mmol) seguido de DMF (1 gota) y la mezcla de reacción transparente se agitó a temperatura ambiente. Después de 5 h, la mezcla se concentró al vacío para dar 4-(4-(clorocarbonil)-5-(trifluorometil)-1H-pirazol-1-il)-1-metilciclohexanocarboxilato de (1r,4r)-etilo en forma de un jarabe de color amarillo claro. Al residuo se añadió una solución de N-((1s,4s)-7oxabiciclo[2,2,1]heptan-1-ilmetil)-2-(3,5-dicloropiridin-4-il)-2-((trietil silil)oxi)etanamina (0,150 g, 0,348 mmol) en THF (3,48 ml), seguido de DIPEA (0,242 ml, 1,391 mmol). La mezcla heterogénea de color amarillo se agitó a temperatura ambiente. Después de 13 h, la CLEM mostró que se formó el intermedio trans-4-(4-(((1s,4S)-7oxabiciclo[2,2,1]heptan-1-ilmetil)(2-(3,5-dicloropiridin-4-il)-2-((trietilsilil)oxi)etil)carbamoil)-5-(trifluorometil)-1H-pirazol-1-il)-1- metilciclohexanocarboxilato de etilo: CLEM (IEN) m/z 761,2 (M+H)⁺. A la mezcla de reacción se añadió una solución de TBAF, 1,0 M en THF (1,391 ml, 1,391 mmol). Después de 4 h, la mezcla de reacción se diluyó con agua (30 ml) y salmuera (30 ml). La mezcla de reacción se extrajo con EtOAc (2 x 50 ml). El extracto orgánico se lavó con NaCl sat. (1 x 100 ml) y se secó sobre Na₂SO₄. La solución se filtró y se concentró al vacío para dar el material en bruto en forma de un jarabe de color amarillo claro. El material en bruto se absorbió sobre un lecho de gel de sílice y se purificó por cromatografía en columna sobre gel de sílice eluyendo con un gradiente de EtOAc del 0 % al 50 % en heptano para proporcionar trans-4-(4-(((1s,4S)-7-oxabiciclo[2,2,1]heptan-1-ilmetil)(2-(3,5-dicloropiridin-4-il)-2-hidroxietil)carbamoil)-5-(trifluorometil)-1H-pirazol-1-il)-1-metilciclohexanocarboxilato de etilo (0,1083 g, 0,167 mmol, rendimiento 48,1 %) en forma de un sólido meloso e incoloro: RMN ¹H (400 MHz, DMSO-d₆) δ 8,43-8,59 (2H, m), 7.49-7.84 (1H, m), 5.95-6.04 (1H, m), 5.32-5.63 (1H, m), 3.51-4.54 (8H, m), 1.11-2.22 (22H, m), (diastereomeros v rotámeros presentes); CLEM (IEN) m/z 647,2 (M+H)⁺.

Etapa 3: trans-4-(4-(((1s,4S)-7-oxabiciclo[2,2,1]heptan-1-ilmetil)(2-(3,5-dicloropiridin-4-il)-2-oxoetil)carbamoil)-5-(trifluorometil)-1H-pirazol-1-il)-1-metilciclohexanocarboxilato de etilo

A una solución transparente de trans-4-(4-(((1s,4S)-7-oxabiciclo[2,2,1]heptan-1-ilmetil)(2-(3,5-dicloropiridin-4-il)-2-hidroxietil)carbamoil)-5-(trifluorometil)-1H-pirazol-1-il)-1-metilciclohexanocarboxilato de etilo (0,1015 g, 0,157 mmol) en DCM (2,61 ml) se añadió peryodinano de Dess-Martin (0,100 g, 0,235 mmol). La mezcla turbia se agitó a temperatura ambiente. Después de 2 h, la mezcla se inactivó con Na₂S₂O₃ acuoso saturado (30 ml) y NaHCO₃ acuoso saturado (30 ml). La mezcla de reacción se extrajo con DCM (2 x 50 ml). El extracto orgánico se secó sobre Na₂SO₄. La solución se filtró y se concentró al vacío para dar el material en bruto en forma de un jarabe de color amarillo claro. El material en bruto se absorbió sobre un lecho de gel de sílice y se purificó por cromatografía en columna sobre gel de sílice eluyendo con un gradiente de EtOAc del 0 % al 50 % en heptano para proporcionar trans-4-(4-(((1s,4S)-7-oxabiciclo[2,2,1]heptan-1-ilmetil)(2-(3,5-dicloropiridin-4-il)-2-oxoetil)carbamoil)-5-(trifluorometil)-1H-pirazol-1-il)-1-metilciclohexanocarboxilato de etilo (0,0841 g, 0,130 mmol, rendimiento 83 %) en forma de un jarabe incoloro. RMN ¹H (400 MHz, CDCl₃) δ 8,43-8,60 (2H, m), 7,51-7,68 (1H, m), 3,71-5,12 (8H, m), 1,21-2,36 (22H, m), rotámeros presentes; CL-EM (IEN) m/z 645,0 (M+H)⁺.

Etapa 4: ácido trans-4-(4-((2-(3,5 -dicloro-4-piridinil)-2-oxoetil)((1s,4s)-7-oxabiciclo [2,2,1]hept-1-ilmetil)carbamoil)-5-(trifluorometil)-1H-pirazol-1-il)-1-metilciclohexanocarboxílico

A una solución transparente de trans-4-(4-(((1s,4s)-7-oxabiciclo[2,2,1]heptan-1-ilmetil)(2-(3,5-dicloropiridin-4-il)-2-oxoetil)carbamoil)-5-(trifluorometil)-1H-pirazol-1-il)-1-metilciclohexanocarboxilato de etilo (0,0786 g, 0,122 mmol) en THF (0,974 ml), EtOH (0,974 ml) y agua (0,487 ml) se añadió LiOH 2 M en agua (0,609 ml, 1,218 mmol). La mezcla homogénea de color amarillo se agitó y se calentó a 60 °C. Después de 10 h, la mezcla de reacción se concentró al vacío para retirar THF y EtOH. La solución acuosa resultante se diluyó con agua (10 ml). El pH de la solución se ajustó a ~3,0 con HCl 2 N y el precipitado resultante se recogió por filtración al vacío, se lavó con agua y se criodesecó en el liofilizador durante una noche para proporcionar el ejemplo 853 en forma de un sólido de color blanco. RMN 1 H (400 MHz, DMSO-d₆) δ 12,25 (1H, s. a.), 8,57-8,84 (2H, m), 7,69-7,86 (1H, m), 4,77-5,00 (2H, m), 4,40-4,53 (1H, m), 4,25 (1H, t, J= 11,3 Hz), 3,64-4,06 (2H, m), 1,10-2,20 (19H, m), rotámeros presentes; CLEM (IEN) m/z 617,0 (M+H) $^+$.

[Ejemplo 872]

5

10

20

25

30

$$F_3$$
C O CI O

ácido *trans-*4-(4-((2-(3,5-dicloro-2-metoxi-4-piridinil)etil)(2,2-dimetilpropil) carbamoil)-5-(trifluorometil)-1H-pirazol-1-il)-1-metilciclohexanocarboxílico.

El compuesto del título se preparó a partir de N-(2-(3,5-dicloro-2-metoxipiridin-4-il)etil)-2,2-dimetilpropan-1-amina y ácido 1-((1r,4r)-4-(etoxicarbonil)-4-metilciclohexil)-5-(trifluorometil)-1H-pirazol-4-carboxílico por procedimientos similares a los descritos en el ejemplo 545. EM (IEN) 593,2, 595,1 [M + H]⁺.

[Ejemplo 879]

ácido (1S,2S,4S)-4-(4-((2-(3,5-dicloro-4-piridinil)-2-oxoetil)(3,3,3-trifluoro-2,2-dimetilpropil)carbamoil)-5-(trifluorometil)-1H-pirazol-1-il)-2-metilciclohexanocarboxílico

Etapa 1 y Etapa 2: 4-(4-((2-(3,5-dicloropiridin-4-il)-2-hidroxietil)(3,3,3-trifluoro-2,2-dimetilpropil)carbamoil)-5-(trifluorometil)-1H-pirazol-1-il)-2-metilciclohexanocarboxilato de (1R,2R,4R)-etilo compuesto con 4-(4-((2-(3,5-dicloropiridin-4-il)-2-hidroxietil)(3,3,3-trifluoro-2,2-dimetilpropil)carbamoil)-5-(trifluorometil)-1H-pirazol-1-il)-2-metilciclohexanocarboxilato de (1S,2S,4S)-etilo (1:1)

A una mezcla ligeramente turbia de ácido 1-((1R,3R,4R)-4-(etoxicarbonil)-3-metilciclohexil)-5-(trifluorometil)-1H-pirazol-4-carboxílico compuesto con ácido 1-((1S,3S,4S)-4-(etoxicarbonil)-3-metilciclohexil)-5-(trifluorometil)-1H-pirazol-4-carboxílico (1:1) (0,300 g, 0,431 mmol) en DCM (17,23 ml) se añadió cloruro de oxalilo (0,091 ml, 1,077 mmol), seguido de DMF (1 gota) y la mezcla de reacción ligeramente turbia de color amarillo claro se agitó a temperatura ambiente. Después de 1,5 h, la mezcla se concentró al vacío para dar 4-(4-(clorocarbonil)-5-(trifluorometil)-1H-pirazol-1-il)-2-metilciclohexanocarboxilato de (1R,2R,4R)-etilo compuesto con 4-(4-(clorocarbonil)-5-(trifluorometil)-1H-pirazol-1-il)-2-metilciclohexanocarboxilato de (1S,2S,4S)-etilo (1:1) en forma de un jarabe de color amarillo claro.

Al jarabe de color amarillo se añadió una solución de N-(2-(3,5-dicloropiridin-4-il)-2-((trietilsilil)oxi)etil)-3,3,3-trifluoro-

2,2-dimetilpro pan-1-amina (0,384 g, 0,862 mmol) en THF (17,23 ml), seguido de DIPEA (0,600 ml, 3,45 mmol). La mezcla homogénea de color amarillo se agitó a temperatura ambiente. Después de 4 h, la CLEM (IEN) mostró que se había formado el intermedio 4-(4-((2-(3,5-dicloropiridin-4-il)-2-((trietilsilil)oxi)etil)(3,3,3-trifluoro-2,2-dimetil propil)carbamoil)-5-(trifluorometil)-1H-pirazol-1-il)-2-metilciclohexanocarboxilato de (1S,2S,4S)-etilo, incluyendo su isómero (1R,2R,4R): CLEM (IEN) m/z 775,1 (M+H)⁺.

5

10

15

20

25

30

35

50

55

A la mezcla de reacción se añadió una solución de TBAF, 1,0 M en THF (3,45 ml, 3,45 mmol) y la mezcla homogénea de color amarillo se agitó a temperatura ambiente. Después de 20 min, la mezcla de reacción se diluyó con agua (50 ml) y salmuera (50 ml). La mezcla de reacción se extrajo con EtOAc (2 x 50 ml). El extracto orgánico se lavó con NaCl sat. (1 x 100 ml) y se secó sobre Na_2SO_4 . La solución se filtró y se concentró al vacío para dar el material en bruto en forma de un jarabe de color amarillo claro. El material en bruto se absorbió sobre un lecho de gel de sílice y se purificó por cromatografía en columna sobre gel de sílice eluyendo con un gradiente de EtOAc del 0 % al 50 % en heptano para proporcionar 4-(4-((2-(3,5-dicloropiridin-4-il)-2-hidroxietil)(3,3,3-trifluoro-2,2-dimetilpropil)carbamoil)-5-(trifluorometil)-1H-pirazol-1-il)-2-metilciclohexanocarboxilato de (1R,2R,4R)-etilo compuesto con 4-(4-((2-(3,5 -dicloropiridin-4-il)-2-hidroxiethy 1)(3,3,3 -trifluoro-2,2-dimetilpropil)carbamoil)-5-(trifluorometil)-1H-pirazol-1-il)-2-metilciclohexanocarboxilato de (1S,2S,4S)-etilo (1:1) (0,4648 g, 0,351 mmol, rendimiento 82 %) en forma de un jarabe incoloro: RMN 1 H (400 MHz, DMSO-d₆) 5 8,46-8,63 (2H, m), 7,70-7,82 (1H, m), 6,11 (1H, d, 5 = 3,3 Hz), 5,20-5,32 (1H, m), 4,34 (1H, d, 5 = 8,0 Hz), 4,06-4,16 (2H, m), 3,43-3,97 (4H, m), 1,53-2,15 (8H, m), 0,82-1,31 (12H, m), (diastereómeros y rotámeros); CLEM (IEN) m/z 661,1 (M+H) $^+$.

Etapa 3: 4-(4-((2-(3,5-dicloropiridin-4-il)-2-oxoetil)(3,3,3-trifluoro-2,2-dimetilpropil)carbamoil)-5-(trifluorometil)-1H-pirazol-1-il)-2-metilciclohexanocarboxilato de (1S,2S,4S)-etilo

solución transparente 4-(4-((2-(3.5-dicloropiridin-4-il)-2-hidroxietil)(3.3.3-trifluoro-2.2dimetilpropil)carbamoil)-5-(trifluorometil)-1H-pirazol-1-il)-2-metilciclohexanocarboxilato (1R,2R,4R)-etilo de 4-(4-((2-(3,5-dicloropiridin-4-il)-2-hidroxietil)(3,3,3-trifluoro-2,2-dimetilpropil)carbamoil)-5compuesto con (trifluorometil)-1H-pirazol-1-il)-2-metilciclohexanocarboxilato de (1S,2S,4S)-etilo (1:1) (0,458 g, 0,346 mmol) en DCM (11,54 ml) se añadió peryodinano de Dess-Martin (0,441 g, 1,039 mmol). La mezcla turbia de color blanco se agitó a temperatura ambiente. Después de 14 h, la mezcla se inactivó con Na₂S₂O₃ acuoso saturado (50 ml) y NaHCO₃ acuoso saturado (50 ml). La mezcla de reacción se extrajo con DCM (2 x 50 ml). El extracto orgánico se secó sobre Na₂SO₄. La solución se filtró y se concentró al vacío para dar el material en bruto en forma de un sólido de color blanco. El material en bruto se absorbió sobre un lecho de gel de sílice y se purificó por cromatografía en columna sobre gel de sílice eluyendo con un gradiente de EtOAc del 0 % al 50 % en hexano para proporcionar 4-(4-((2-(3.5dicloropiridin-4-il)-2-oxoetil)(3,3,3-trifluoro-2,2-dimetilpropil)carbamoil)-5-(trifluorometil)-1H-pirazol-1-il)-2metilciclohexanocarboxilato de (1R,2R,4R)-etilo compuesto con 4-(4-((2-(3,5-dicloropiridin-4-il)-2-oxoetil)(3,3,3trifluoro-2,2-dimetilpropil)carbamoil)r5-(trifluorometil)-1H-pirazol-1-il)-2-metilciclohexanocarboxilato de (1S,2S,4S)etilo (1:1) (0,3795 g, 0,288 mmol, rendimiento 83 %) en forma de un sólido de color blanco. RMN ¹H (400 MHz. DMSO-d₆) δ 8,70-8,85 (2H, m), 7,73-7,99 (1H, m), 4,69-4,93 (2H, m), 4,35 (1H, d, J = 3,7 Hz), 4,10 (2H, c, J = 7,0 Hz) Hz), 3,51- 3,87 (2H, m), 1,51-2,15 (8H, m), 0,87-1,23 (12H, m), rotámeros presentes; CLEM (IEN) m/z 659,0 (M+H)⁺.

La mezcla racémica se separó por SFC para dar dos fracciones donde la estereoquímica de cada fracción se asignó arbitrariamente.

Primer pico en la columna SFC IA: 4-(4-((2-(3,5-dicloropiridin-4-il)-2-oxoethy 1)(3,3,3-trifluoro-2,2-dimetilpropil)carbamoil)-5-(trifluorometil)-1H-pirazol-1-il)-2-metilciclohexanocarboxilato de (1R,2R,4R)-etilo (0,1371 g, 0,208 mmol, rendimiento 43,4 %) en forma de un sólido de color blanco: RMN 1 H (400 MHz, CDCl₃) δ 8,47-8,63 (2H, m), 7,51- 7,77 (1H, m), 4,52 (2H, s), 4,26-4,39 (1H, m), 4,18 (2H, c, J = 7,1 Hz), 3,70 (2H, s. a.), 1,62-2,17 (8H, m), 1,29 (3H, t, J = 7,1 Hz), 1,24 (6H, s), 1,00 (3H, d, J = 6,1 Hz), rotámeros presentes; CLEM (IEN) m/z 659,0 (M+H) $^+$.

Segundo pico en la columna SFC IA: $4-(4-((2-(3,5-\text{dicloropiridin}-4-\text{il})-2-\text{oxoetil})(3,3,3-\text{trifluoro}-2,2-\text{dimetilpropil})\text{carbamoil})-5-(\text{trifluorometil})-1H-pirazol-1-il})-2-metilciclohexanocarboxilato de (1S,2S,4S)-etilo (0,1447 g, 0,219 mmol, rendimiento 45,8 %) en forma de un polvo de color blanco: RMN <math>^1$ H (400 MHz, CDCl₃) $\bar{0}$ 8,44-8,64 (2H, m), 7,51-7,77 (1H, m), 4,52 (2H, s), 4,25-4,38 (1H, m), 4,18 (2H, c, J = 7,1 Hz), 3,57-3,98 (2H, m), 1,63-2,14 (8H, m), 1,29 (3H, t, J = 7,1 Hz), 1,24 (6H, s), 1,00 (3H, d, J=6,1 Hz), rotámeros presentes; CLEM (IEN) m/z 659,0 (M+H) † .

Etapa 4: ácido (1S,2S,4S)-4-(4-((2-(3,5-dicloro-4-piridinil)-2-oxoetil)(3,3,3-trifluoro-2,2- dimetilpropil)carbamoil)-5-(trifluorometil)-1H-pirazol-1-il)-2-metilciclohexanocarboxílico

A una solución transparente de 4-(4-((2-(3,5-dicloropiridin-4-il)-2-oxoetil)(3,3,3-trifluoro-2,2-dimetilpropil)carbamoil)-5-(trifluorometil)-1H-pirazol-1-il)-2-metilciclohexanocarboxilato de (1S,2S,4S)-etilo (0,1345 g, 0,204 mmol) en THF (1,632 ml), EtOH (1,632 ml) y agua (0,816 ml) se añadió LiOH 2 M en agua (1,020 ml, 2,040 mmol). La mezcla ligeramente turbia de color amarillo claro se agitó y se calentó a 60 °C. Después de 4 h, la mezcla de reacción se concentró al vacío para retirar THF y EtOH. La solución acuosa resultante se diluyó con agua (10 ml). El pH de la solución se ajustó a ~3,0 con HCl 1 N y el precipitado resultante se recogió por filtración al vacío, se lavó con agua y se criodesecó en un liofilizador durante una noche para proporcionar el ejemplo 879 (0,1151 g, 0,182 mmol, rendimiento 89 %) en forma de un sólido de color blanco: RMN 1 H (400 MHz, DMSO-d₆) δ 12,18 (1H, s. a.), 8,59-8,86 (2H, m), 7,73-8,02 (1H, m), 4,65-5,49 (2H, m), 4,33 (1H, d, J = 8,4 Hz), 3,44-3,94 (2H, m), 1,48-2,10 (8H, m),

0.85-1.36 (9H, m), rotámeros presentes; CLEM (IEN) m/z 631.1 (M+H) $^+$. La estereoquímica se asignó arbitrariamente como (15.25.45).

[Ejemplo 885]

5 ácido *trans*-4-(4-((2-(3,5-dicloro-2-oxo-1,2-dihidro-4-piridinil)etil)(2,2-dimetilpropil) carbamoil)-5-(trifluorometil)-1H-pirazol-1-il)-1-metilciclohexanocarboxílico.

El compuesto del título se preparó de una manera análoga al ejemplo 886 y se aisló (36,7 mg, 0,063 mmol, rendimiento 54 %) en forma de un sólido de color blanco amorfo. EM (IEN) 579,0, 581,0 [M + H]⁺.

[Ejemplo 886]

ácido (15,2R,4S)-4-(4-((2-(3,5-dicloro-2-oxo-1,2-dihidro-4-piridinil)etil)(2,2-dimetilpropil)carbamoil)-5-(trifluorometil)-1H-pirazol-1-il)-2-metilciclohexanocarboxílico

Etapa 1: Se añadió cloruro de oxalilo (2,0 M en DCM, 0,52 ml, 1,03 mmol) a una solución de ácido 1-((1S,3R,4S)-4-(etoxicarbonil)-3-metilciclohexil)-5-(trifluorometil)-1H-pirazol-4-carboxílico (239 mg, 0,687 mmol) en DCM (2,0 ml), seguido de 1 gota de DMF mientras se enfriaba en un baño de hielo. La solución se retiró del baño de hielo y se dejó en agitación a temperatura ambiente durante 1 h. La mezcla de reacción se concentró a sequedad a presión reducida (evaporador rotatorio) y el residuo en bruto se trató con DCM (2,0 ml) y se enfrió con 0 °C. Después, la solución en agitación se trató con N-(2-(3,5-dicloro-2-metoxipiridin-4-il)etil)-2,2-dimetilpropan-1-amina (200 mg, 0,687 mmol) en DCM (2 ml), seguido de la adición de DIPEA (0,36 ml, 2,06 mmol) y se dejó calentar a temperatura ambiente y se agitó durante una noche (16 h). La mezcla de reacción se concentró a sequedad a presión reducida (evaporador rotatorio) y el residuo en bruto se purificó en un sistema ISCO Combiflash™ RF (25 g, columna Grace Reveleris, usando un gradiente de 0-50 % EtOAc en heptano), proporcionando 4-(4-((2-(3,5-dicloro-2-metoxipiridin-4-il)etil)(neopentil)carbamoil)-5-(trifluorometil)-1H-pirazol-1-il)-2-metilciclohexanocarboxilato de (1S,2R,4S)-etilo (350 mg, 0,56 mmol, rendimiento 82 %) en forma de un sólido cristalino de color blanco. EM (IEN) 621,2, 623,2 [M + H][†].

Etapa 2: Se trató 4-(4-((2-(3,5-dicloro-2-metoxipiridin-4-il)etil)(neopentil)carbamoil)-5-(trifluorometil)-1H-pirazol-1-il)-2-metilciclohexanocarboxilato de (1S,2R,4S)-etilo (109 mg, 0,175 mmol) con ácido clorhídrico acuoso (5,0 N, 3,00 ml, 15,00 mmol) y ácido clorhídrico (4,0 N en 1,4-dioxano, 3,00 ml, 12,00 mmol), equipado con un condensador de reflujo y se calentó a 120 °C durante 3 h. La mezcla de reacción se concentró a sequedad a presión reducida (evaporador rotatorio) y el residuo en bruto se purificó en un sistema Gilson (Gemini™ Phenomenex; 30 x 150 mm, 5

15

20

25

30

u, usando un gradiente de 10-95 % de TFA al 0,1 %/CH $_3$ CN en TFA al 0,1 %/agua), se concentró en un Genevac durante una noche, proporcionando ácido (1S,2R,4S)-4-(4-((2-(3,5-dicloro-2-oxo-1,2-dihidropiridin-4-il)etil)(neopentil)carbamo il)-5-(trifluorometil)-1H-pirazol-1-il)-2-metilciclohexanocarboxílico (57 mg, 0,098 mmol, rendimiento 56 %) en forma de un sólido de color blanco amorfo. EM (IEN) 579,0, 581,2 [M + H] $^+$.

5 [Ejemplo 887]

10

ácido (1S,2R,4S)-4-(4-((2-(3,5-dicloro-2-metoxi-4-piridinil)etil)(2,2-dimetilpropil) carbamoil)-5-(trifluorometil)-1H-pirazol-1-il)-2-metilciclohexanocarboxílico

El compuesto del título se preparó a partir de N-(2-(3,5-dicloro-2-metoxipiridin-4-il)etil)-2,2-dimetilpropan-1-amina y ácido 1-((1S,3R,4S)-4-(etoxicarbonil)-3-metilciclohexil)-5-(trifluorometil)-1H-pirazol-4-carboxílico por procedimientos similares a los descritos en el ejemplo 872. EM (IEN) 593,2, 595,1 [M+H]⁺.

Los siguientes ejemplos se sintetizaron mediante procedimientos similares a los descritos anteriormente.

ejemplo	estructura	nombre
24	F C -	ácido 4-(4-((2-(3,5-dicloropiridin-4-il)etil)(4-fluorobencil)carbamoil)-5-(trifluorometil)-1H-pirazol-1-il)ciclohexanocarboxílico
25	L C C C C C C C C C C C C C C C C C C C	ácido cis-4-(4-((2-(3,5-dicloropiridin-4-il)-2-oxoetil)(4-fluorobencil)carbamoil)-5-(trifluorometil)-1H-pirazol-1-il)ciclohexanocarboxílico
26	HO H F F F O CI	ácido trans-4-(4-((2-(3,5-dicloropiridin-4-il)-2-oxoetil)(isobutil)carbamoil)-5-(trifluorometil)-1H-pirazol-1-il)ciclohexanocarboxílico
27		ácido trans-4-(4-((2-(3,5-dicloropiridin-4-il)-2-oxoetil)(neopentil)carbamoil)-5-(trifluorometil)-1H-pirazol-1-il)ciclohexanocarboxílico

ejemplo	estructura	nombre
28	N N C C N C C C N C C C N C C C C C C C	ácido trans-4-(4-((ciclobutilmetil)(2-(3,5-dicloropiridin-4-il)-2-oxoetil)carbamoil)-5-(trifluorometil)-1H-pirazol-1-il)ciclohexanocarboxílico
29	N H F F O O O	ácido trans-4-(4-((ciclopentilmetil)(2-(3;5-dicloropiridin-4-il)-2-oxoetil)carbamoil)-5-(trifluorometil)-1H-pirazol-1-il)ciclohexanocarboxílico
30	O H F F	ácido trans-4-(4-((ciclohexilmetil)(2-(3,5-dicloropiridin-4-il)-2-oxoetil)carbamoil)-5-(trifluorometil)-1H-pirazol-1-il)ciclohexanocarboxílico
31	D HO CI	ácido trans-4-(4-((2-(3,5-dicloropiridin-4-il)-2-oxoetil)((1-metilciclopropil)metil)carbamoil)-5-(trifluorometil)-1H-pirazol-1-il)ciclohexanocarboxílico
32	HO HO CI	ácido trans-4-(4-((2-(3,5-dicloropiridin-4-il)-2-oxoetil)(isopentil)carbamoil)-5-(trifluorometil)-1H-pirazol-1-il)ciclohexanocarboxílico
33	HO HO CO	ácido trans-4-(4-((2-(3,5-dicloropiridin-4-il)-2-oxoetil)(3,3-dimetilbutil)carbamoil)-5-(trifluorometil)-1H-pirazol-1-il)ciclohexanocarboxílico
34	HO H F F F O CI	ácido trans-4-(4-((2-ciclopropiletil)(2-(3,5-dicloropiridin-4-il)-2-oxoetil)carbamoil)-5-(trifluorometil)-1H-pirazol-1-il)ciclohexanocarboxílico
35		ácido trans-4-(4-((2-(3,5-dicloropiridin-4-il)-2-oxoetil)(3-metilbut-2-en-1-il)carbamoil)-5-(trifluorometil)-1H-pirazol-1-il)ciclohexanocarboxílico

ejemplo	estructura	nombre
36	HO HO CO	ácido trans-4-(4-((2-(3,5-dicloropiridin-4-il)-2-oxoetil)((4,4-dimetilciclohexil)metil)carbamoil)-5-(trifluorometil)-1H-pirazol-1-il)ciclohexanocarboxílico
37	PO HO TO	ácido trans-4-(4-((2-(3,5-dicloropiridin-4-il)-2-oxoetil)(espiro[2,5]octan-6-ilmetil)carbamoil)-5-(trifluorometil)-1H-pirazol-1-il)ciclohexanocarboxílico
38	HO H H CI CI N	ácido trans-4-(4-((2-(3,5-dicloropiridin-4-il)-2-oxoetil) (((S)-tetra hidrofuran-3-il)metil)carbamoil)-5- (trifluorometil)-1H-pirazol-1-il)ciclohexanocarboxílico
39	HO HO TO	ácido trans-4-(4-((2-(3,5-dicloropiridin-4-il)-2-oxoetil)(((R)-tetrahidrofurano-3-il)metil)carbamoil)-5-(trifluorometil)-1H-pirazol-1-il)ciclohexanocarboxílico
40	HO H F F C	ácido trans-4-(4-(bencil(2-(3,5-dicloropiridin-4-il)-2-oxoetil)carbamoil)-5-(trifluorometil)-1H-pirazol-1-il)ciclohexanocarboxílico
41	HO HO HO CI	ácido trans-4-(4-((4-clorobencil)(2-(3,5-dicloropiridin-4-il)-2-oxoetil)carbamoil)-5-(trifluorometil)-1H-pirazol-1-il)ciclohexanocarboxílico
42		ácido trans-4-(4-((2-(3,5-dicloropiridin-4-il)-2-oxoetil)(3,5-difluorobencil)carbamoil)-5-(trifluorometil)-1H-pirazol-1-il)ciclohexanocarboxílico

ejemplo	estructura	nombre
43	HO HO HO CI	ácido trans-4-(4-((2-(3,5-dicloropiridin-4-il)-2-oxoetil)(2/3-difluorobencil)carbamoil)-5-(trifluorometil)-1H-pirazol-1-il)ciclohexanocarboxílico
44	HO HO TO	ácido trans-4-(4-((2-(3,5-dicloropiridin-4-il)-2-oxoetil)(3,4-difluorobencil)carbamoil)-5-(trifluorometil)-1H-pirazol-1-il)ciclohexanocarboxílico
45	HO H F F CI	ácido trans-4-(4-((2-(3,5-dicloropiridin-4-il)-2-oxoetil)(2,5-difluorobencil)carbamoil)-5-(trifluorometil)-1H-pirazol-1-il)ciclohexanocarboxílico
46	HO H F F F	ácido trans-4-(4-((2-(3,5-dicloropiridin-4-il)-2-oxoetil)(furan-2-ilmetil)carbamoil)-5-(trifluorometil)-1H-pirazol-1-il)ciclohexanocarboxílico
47	HO H F F F CI	ácido trans-4-(4-((2-(3,5-dicloropiridin-4-il)-2-oxoetil)(furan-3-ilmetil)carbamoil)-5-(trifluorometil)-1H-pirazol-1-il)ciclohexanocarboxílico
48	HO HO LO CI	ácido trans-4-(4-((2-(3,5-dicloropiridin-4-il)-2-oxoetil) (pirazin-2-ilmetil)carbamoil)-5-(trifluorometil)-1H-pirazol-1-il)ciclohexanocarboxílico
49	HO H FFF O CI	ácido trans-4-(4-((2-(3-cloro-5-metilpiridin-4-il)-2-oxoetil)(3,5-difluorobencil)carbamoil)-5-(trifluorometil)-1H-pirazol-1-il)ciclohexanocarboxílico

ejemplo	estructura	nombre
50	H H H N N N N N N N N N N N N N N N N N	ácido trans-4-(4-((2-(3-cloro-5-fluoropiridin-4-il)-2-oxoetil)(3,5-difluorobencil)carbamoil)-5-(trifluorometil)-1H-pirazol-1-il)ciclohexanocarboxílico
51		ácido trans-4-(4-((3,5-difluorobencil)(2-(3,5-difluoropiridin-4-il)-2-oxoetil)carbamoil)-5-(trifluorometil)-1H-pirazol-1-il)ciclohexanocarboxílico
52		ácido trans-4-(4-((3,5-difluorobencil)(2-(3,5-dimetilpiridin-4-il)-2-oxoetil)carbamoil)-5-(trifluorometil)-1H-pirazol-1-il)ciclohexanocarboxílico
53	HO H	ácido trans-4-(4-((2-(2/6-diclorofenil)-2-oxoetil)(3,5-difluorobencil)carbamoil)-5-(trifluorometil)-1H-pirazol-1-il)ciclohexanocarboxílico
54	HZ F	ácido trans-4-(4-((2-(2-cloro-6-metoxifenil)-2- oxoetil)(3,5-difluorobencil)carbamoil)-5-(trifluorometil)- 1H-pirazol-1-il)ciclohexanocarboxílico
55	HO H F F C C C F	ácido trans-4-(4-((2-(2,6-dicloro-4-fluorofenil)-2-oxoetil)(3,5-difluorobencil)carbamoil)-5-(trifluorometil)-1H-pirazol-1-il)ciclohexanocarboxílico
56	F C C C C C C C C C C C C C C C C C C C	ácido trans-4-(4-((3,5-difluorobencil)(2-oxo-2-(2,4,6-triclorofenil)etil)carbamoil)-5-(trifluorometil)-1H-pirazol-1-il)ciclohexanocarboxílico

ejemplo	estructura	nombre
57	HO H FFF OCI FFF	ácido trans-4-(4-((2-(2,6-dicloro-4-(trifluorometil)fenil)-2-oxoetil)(3,5-difluorobencil)carbamoil)-5-(trifluorometil)-1H-pirazol 1-il)ciclohexanocarboxílico
58	HO H F F CI CN	ácido trans-4-(4-((2-(2,6-dicloro-4-cianofenil)-2-oxoetil)(3,5-difluorobencil)carbamoil)-5-(trifluorometil)-1H-pirazol-1-il)ciclohexanocarboxílico
59	HO H F F O CI	ácido trans-4-(4-((2-(3,5-diclorofenil)-2-oxoetil)(3,5-difluorobencil)carbamoil)-5-(trifluorometil)-1H-pirazol-1-il)ciclohexanocarboxílico
60	HO H F F F	ácido trans-4-(4-((3,5-difluorobencil)(2-(3,5-difluorofenil)-2-oxoetil)carbamoil)-5-(trifluorometil)-1H-pirazol-1-il)ciclohexanocarboxílico
61	HO H F F O CI	ácido trans-4-(4-((2-(2-cloro-4-fluorofenil)-2-oxoetil)(3,5-difluorobencil)carbamoil)-5-(trifluorometil)-1H-pirazol-1-il)ciclohexanocarboxílico
62	HO H F F F F O N	ácido trans-4-(4-((3,5-difluorobencil)(2-oxo-2-(piridin-4-il)etil)carbamoil)-5-(trifluorometil)-1H-pirazol-1-il)ciclohexanocarboxílico
63	HO H F F F O	ácido trans-4-(4-((3,5-difluorobencil)(2-(2,4-dimetilfuran-3-il)-2-oxoetil)carbamoil)-5-(trifluorometil)-1H-pirazol-1-il)ciclohexanocarboxílico

ejemplo	estructura	nombre
64	HO H FEF O	ácido trans-4-(4-((3,5-difluorobencil)(2-(3,5-dimetilisoxazol-4-il)-2-oxoetil)carbamoil)-5-(trifluorometil)-1H-pirazol-1-il)ciclohexanocarboxílico
65	HO H	ácido trans-4-(4-((2-ciclohexil-2-oxoetil)(3,5-difluorobencil)carbamoil)-5-(trifluorometil)-1H-pirazol-1-il)ciclohexanocarboxílico
66	HO H F F O CI	ácido trans-4-(4-((2-(2,6-dicloro-4-ciclopropilfenil)-2-oxoetil)(3,5-difluorobencil)carbamoil)-5-(trifluorometil)-1H-pirazol-1-il)ciclohexanocarboxílico
67		ácido trans-4-(4-((2-(2,6-dicloro-4-metoxifenil)-2-oxoetil)(3,5-difluorobencil)carbamoil)-5-(trifluorometil)-1H-pirazol-1-il)ciclohexanocarboxílico
68	HO HO FF	ácido trans-4-(4-((2-(2-cloro-6-etinilfenil)-2-oxoetil)(3,5-difluorobencil)carbamoil)-5-(trifluorometil)-1H-pirazol-1-il)ciclohexanocarboxílico
69	HO H	ácido trans-4-(4-((3,5-difluorobencil)(2-(4-hidroxifenil)-2-oxoetil)carbamoil)-5-(trifluorometil)-1H-pirazol-1-il]ciclohexanocarboxílico
70	HO H F F O CI OH	ácido trans-4-(4-((2-(2,6-dicloro-4-hidroxifenil)-2-oxoetil)(3,5-difluorobencil)carbamoil)-5-(trifluorometil)-1H-pirazol-1-il]ciclohexanocarboxílico

ejemplo	estructura	nombre
71	O D D Z D D D D D D D D D D D D D D D D	ácido trans-4-(4-((2-(3,5-dicloropiridin-4-il)-2-oxoetil) ((tetrahidro-2 H-piran-4-il)metil)carbamoil)-5- (trifluorometil)-1H-pirazol-1-il)ciclohexanocarboxílico
72	HO H F F	ácido trans-4-(4-((ciclopropilmetil)(2-(3,5-dicloropiridin-4-il)-2-oxoetil)carbamoil)-5-(trifluorometil)-1H-pirazol-1-il)ciclohexanocarboxílico
73	THE FEET OF THE PROPERTY OF TH	ácido trans-4-(4-((2-(3,5-dicloropiridin-4-il)-2-oxoetil)(2-fluoro-2-metilpropil)carbamoil)-5-(trifluorometil)-1H-pirazol-1-il)ciclohexanocarboxílico
74	D D D D D D D D D D D D D D D D D D D	ácido trans-4-(4-((2-(3,5-dicloropiridin-4-il)-2-oxoetil)(2-metoxi-2-metilpropil)carbamoil)-5-(trifluorometil)-1H-pirazol-1-il)ciclohexanocarboxílico
75	PO 10 20 00 00 00 00 00 00 00 00 00 00 00 00	ácido trans-4-(4-((2-(3,5-dicloropiridin-4-il)-2-oxoetil)(2,2,2-trifluoroetil)carbamoil)-5-(trifluorometil)-1H-pirazol-1-il)ciclohexanocarboxílico
76		ácido trans-4-(4-((2-(3,5-dicloropiridin-4-il)-2-oxoetil)(piridin-4-ilmetil)carbamoil)-5-(trifluorometil)-1H-pirazol-1-il)ciclohexanocarboxílico
77	THE	ácido trans-4-(4-((2-(3,5-dicloropiridin-4-il)-2-oxoetil)(4-fluorobencil)carbamoil)-5-(trifluorometil)-1H-pirazol-1-il)-1-metilciclohexanocarboxílico

ejemplo	estructura	nombre
78	HO HO CI	ácido trans-4-(4-((2-(3,5-dicloropiridin-4-il)-2-oxoetil)(3,5-difluorobencil)carbamoil)-5-(trifluorometil)-1H-pirazol-1-il)-1-metilciclohexanocarboxílico
79	HO HO CI	ácido trans-4-(4-((2-(3,5-dicloropiridin-4-il)-2-oxoetil)(4-fluorobencil)carbamoil)-5-(trifluorometil)-1H-pirazol-1-il)-1-metilciclohexanocarboxílico
80	HO F H N CI	ácido trans-4-(4-((2-(3,5-dicloropiridin-4-il)-2-oxoetil)(4-fluorobencil)carbamoil)-5-(trifluorometil)-1H-pirazol-1-il)-1-fluorociclohexanocarboxílico
81	HO F P P CI N	ácido cis-4-(4-((2-(3,5-dicloropiridin-4-il)-2-oxoetil)(4-fluorobencil)carbamoil)-5-(trifluorometil)-1H-pirazol-1-il)-1-fluorociclohexanocarboxílico
82	HO H F F O CI	ácido trans-3-(4-((2-(3,5-dicloropiridin-4-il)-2-oxoetil)(4-fluorobencil)carbamoil)-5-(trifluorometil)-1H-pirazol-1-il]ciclobutanocarboxílico
83	HO H H CI	ácido cis-3-(4-((2-(3,5-dicloropiridin-4-il)-2-oxoetil)(4-fluorobencil)carbamoil)-5-(trifluorometil)-1H-pirazol-1-il)ciclobutanocarboxílico
84	HO H H H CI	ácido trans-4-(4-((2-(3,5-dicloropiridin-4-il)-2-oxoetil)(4-fluorobencil)carbamoil)-5-(1,1-difluoroetil)-1H-pirazol-1-il]ciclohexanocarboxílico

ejemplo	estructura	nombre
85	HO H L C C C C C C C C C C C C C C C C C C	N-(2-(3,5-dicloropiridin-4-il)-2-oxoetil)-N-(3,5-difluorobencil)-1-(trans-4-hidroxiciclohexil)-5-(trifluorometil)-1H-pirazol-4-carboxamida
86		N-(2-(3,5-dicloropiridin-4-il)-2-oxoetil)-N-(4-fluorobencil)-1-(cis-4-(metilsulfonil)ciclohexil)-5-(trifluorometil)-1H-pirazol-4-carboxamida
87	0.5% H FF	N-(2-(3,5-dicloropiridin-4-il)-2-oxoetil)-N-(4-fluorobencil)-1-(trans-4-(metilsulfonil)ciclohexil)-5-(trifluorometil)-1H-pirazol-4-carboxamida
88	H ₂ N H F F F C C C C C C C C C C C C C C C C	1-(trans-4-carbamoilciclohexil)-N-(2-(3,5-dicloropiridin-4-il)-2-oxoetil)-N-(4-fluorobencil)-5-(trifluorometil)-1H-pirazol-4-carboxamida
89	HO — H F F F O CI	N-(2-(3,5-dicloropiridin-4-il)-2-oxoetil)-N-(4-fluorobencil)-1-(trans-4-((2-hidroxietil)carbamoil)ciclohexil)-5-(trifluorometil)-1H-pirazol-4-carboxamida
90	HO H H CI	ácido trans-4-(4-((2-(3,5-dicloropiridin-4-il)-2-hidroxietil)(4-fluorobencil)carbamoil)-5-(trifluorometil)-1H-pirazol-1-il)ciclohexanocarboxílico
91	HO H H CI	ácido trans-4-(4-((2-(2,6-diclorofenil)-2-fluoroetil)(4-fluorobencil)carbamoil)-5-(trifluorometil)-1H-pirazol-1-il)ciclohexanocarboxílico

ejemplo	estructura	nombre
92	HO HO HO NO CI	ácido (1S,3S)-3-(4-((2-(3,5-dicloropiridin-4-il)-2-oxoetil)- ((4-fluorofenil)metil)carbamoil)-5-(trifluorometil)pirazol- 1-il)ciclopentano-1-carboxílico
93	HO H	ácido (1R,3S)-3-(4-((2-(3<5-dicloropiridin-4-il)-2-oxoetil)-((4-fluorofenil)metil)carbamoil)-5-(trifluorometil)pirazol-1-il)ciclopentano-1-carboxílico
94	HO F F F	ácido trans-4-(4-((2-(2,6-dicloro-4-fluorofenil)-2-oxoetil)-(2,2-dimetilpropil)carbamoil)-5-(trifluorometil)pirazol-1-il)-1-metilciclohexano-1-carboxílico
95	D D D D D D D D D D D D D D D D D D D	ácido trans-4-(4-((2-(3,5-dicloropiridin-4-il)-2-oxoetil)-(2- ((2-metilpropan-2-il)oxi)etil)carbamoil)-5- (trifluorometil)pirazol-1-il)ciclohexano-1-carboxílico
96	L Z L L L L L L L L L L L L L	ácido trans-4-(4-((2-(2,6-diclorofenil)-2,2-difluoroetil)- ((4-fluorofenil)metil)carbamoil)-5-(trifluorometil)pirazol- 1-il)ciclohexano-1-carboxílico
97	O HN F CI NH 2	ácido trans-4-(4-((2-(4-carbamoil-2,6-diclorofenil)-2-oxoetil)-((3,5-difluorofenil)metil)carbamoil)-5-(trifluorometil)pirazol-1-il)ciclohexano-1-carboxílico
98	HZ F CI OH	ácido trans-4-(2-((1-(4-carboxiciclohexil)-5- (trifluorometil)pirazol-4-carbonil)-((3,5- difluorofenil)metil)amino)acetil)-3,5-diclorobenzoico

ejemplo	estructura	nombre
99	HO H F F F O CI	ácido trans-4-(4-((2-(2-clorofenil)-2-oxoetil)-((3,5-difluorofenil)metil)carbamoil)-5-(trifluorometil)pirazol-1-il)ciclohexano-1-carboxílico
100		ácido trans-4-(4-(2-(2,6-diclorofenil)propil-((4-fluorofenil)metil)carbamoil)-5-(trifluorometil)pirazol-1-il)ciclohexano-1-carboxílico
101		ácido trans-4-(4-((2-(3,5-dicloropiridin-4-il)-2-oxoetil)- ((4,4-difluorociclohexil)metil)carbamoil)-5- (trifluorometil)pirazol-1-il)ciclohexano-1-carboxílico
102	H H H H H H H H H H H H H H H H H H H	ácido trans-4-(4-((2-(3,5-dicloropiridin-4-il)-2-oxoetil)- ((1-metilciclohexil)metil)carbamoil)-5- (trifluorometil)pirazol-1-il)ciclohexano-1-carboxílico
103		ácido trans-4-(4-((2-(3,5-dicloropiridin-4-il)-2-oxoetil)-(piridin-2-ilmetil)carbamoil)-5-(trifluorometil)pirazol-1-il)ciclohexano-1-carboxílico
104	Z U Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z	ácido trans-4-(4-((2-(3,5-dicloropiridin-4-il)-2-oxoetil)-(piridin-3-ilmetil)carbamoil)-5-(trifluorometil)pirazol-1-il)ciclohexano-1-carboxílico
105	HCHO HCHO CI	ácido cis-4-(4-((2-(3,5-dicloropiridin-4-il)-2-oxoetil)-((4-fluorofenil)metil)carbamoil)-5-(trifluorometil)pirazol-1-il)-1-hidroxiciclohexano-1-carboxílico

ejemplo	estructura	nombre
106	HCHO, H E E E C C C C C C C C C C C C C C C C	ácido trans-4-(4-((2-(3,5-dicloropiridin-4-il)-2-oxoetil)- ((4-fluorofenil)metil)carbamoil)-5-(trifluorometil)pirazol- 1-il)-1-hidroxiciclohexano-1-carboxílico
107	HO HO FE	ácido trans-4-(4-((2-(2,5 diclorofenil)-2-oxoetil)-((3,5-difluorofenil)metil)carbamoil)-5-(trifluorometil)pirazol-1-il)ciclohexano-1-carboxílico
108	HO H FFF	ácido trans-4-(4-(2-(2,6-diclorofenil)propil-((3,5-difluorofenil)metil)carbamoil)-5-(trifluorometil)pirazol-1-il)ciclohexano-1-carboxílico
109	HO HO PER COLUMN TO THE PER CO	ácido trans-4-(4-((2-(3,5-dicloropiridin-4-il)-2-metoxietil)-((3,5-difluorofenil)metil)carbamoil)-5-(trifluorometil)pirazol-1-il)ciclohexano-1-carboxílico
110	H H F F C C C C C C C C C C C C C C C C	ácido trans-4-(4-((2-(3,5-dicloropiridin-4-il)-2-oxoetil)-(4,4 dimetilpent-2-inil)carbamoil)-5-(trifluorometil)pirazol-1-il)ciclohexano-1-carboxílico
111	HO H F F F	ácido trans-4-(4-((3,5-difluorofenil)metil-(2-(2,6-dimetoxifenil)-2-oxoetil)carbamoil)-5-(trifluorometil)pirazol-1-il)ciclohexano-1-carboxílico
112	HO HO TO CO	ácido trans-4-(4-((2-(2,4-dicloro-6-metoxifenil)-2-oxoetil)-((3,5-difluorofenil)metil)carbamoil)-5-(trifluorometil)pirazol-1-il)ciclohexano-1-carboxílico

ejemplo	estructura	nombre
113	HO H	ácido trans-4-(4-((2-ciclopentil-2-oxoetil)-((3,5-difluorofenil)metil)carbamoil)-5-(trifluorometil)pirazol-1-il)ciclohexano-1-carboxílico
114		ácido trans-4-(4-((2-(3,5-dicloropiridin-4-il)-2-oxoetil)- ((2S)-3,3-dimetilbutan-2-il)carbamoil)-5- (trifluorometil)pirazol-1-il)ciclohexano-1-carboxílico
115	THE TO THE TOTAL	ácido trans-4-(4-((2-(3,5-dicloropiridin-4-il)-2-oxoetil)- ((2R) 3,3-dimetilbutan-2-il)carbamoil)-5- (trifluorometil)pirazol-1-il)ciclohexano-1-carboxílico
116	HOH 2N F F F O O CI	ácido cis-4-(4-((2-(3,5-dicloropiridin-4-il)-2-oxoetil)-((4-fluorofenil)metil)carbamoil)-5-(trifluorometil)pirazol-1-il)-1-aminociclohexano-1-carboxílico
117	HCH ₂ N CI	ácido cis-4-(4-((2-(3,5-dicloropiridin-4-il)-2-oxoetil)-((4-fluorofenil)metil)carbamoil)-5-(trifluorometil)pirazol-1-il)-1-aminociclohexano-1-carboxílico
118	HO HO HO	ácido trans-4-(4-((2-(2,6-diclorofenil)-2-metilpropil)- ((3,5-difluorofenil)metil)carbamoil)-5- (trifluorometil)pirazol-1-il)ciclohexano-1-carboxílico
119	HO HO NO	ácido trans-4-(4-((3;5-difluorofenil)metil-(2-(3,5-dimetoxipiridin-4-il)-2-oxoetil)carbamoil)-5-(trifluorometil)pirazol-1-il)ciclohexano-1-carboxílico

ejemplo	estructura	nombre
120	HO H F F CI	ácido trans-4-(4-(2-(2,6-dicloro-4-fluorofenil)etil-((3,5-difluorofenil)metil)carbamoil)-5-(trifluorometil)pirazol-1-il)ciclohexano-1-carboxílico
121	ZH FF	ácido trans-4-(4-((2-(3,5-dicloropiridin-4-il)-2-oxoetil)- (piperidin-2-ilmetil)carbamoil)-5-(trifluorometil)pirazol-1- il)ciclohexano-1-carboxílico
122	HO H	ácido trans-4-(4-((3,5-difluorofenil)metil-(2-(2,4-dimetil-6-oxo-1H-piridin-3-il)-2-oxoetil)carbamoil)-5-(trifluorometil)pirazol-1-il)ciclohexano-1-carboxílico
123	HO HO LO CO	ácido trans-4-(4-(1-adamantilmetil-(2-(3,5-dicloropiridin-4-il)-2-oxoetil)carbamoil)-5-(trifluorometil)pirazol-1-il)ciclohexano-1-carboxílico
124	HO H F F F F F F F F F F F F F F F F F F	ácido trans-4-(4-((2-(2-cloro-6-(trifluorometil)fenil)-2- oxoetil)-((3,5-difluorofenil)metil)carbamoil)-5- (trifluorometil)pirazol-1-il)ciclohexano-1-carboxílico
125	HO H CI N CI	ácido trans-4'-(4-((3-terc-butilciclobutil)metil-(2' (3,5-dicloropiridin-4-il)-2-oxoetil)carbamoil)-5-(trifluorometil)pirazol-1-il)ciclohexano-1-carboxílico
126	HO HO HO HO CI	ácido trans-4-(4-((3-terc-butilciclobutil)metil-(2-(3,5-dicloropiridin-4-il)-2-oxoetil)carbamoil)-5-(trifluorometil)pirazol-1-il)ciclohexano-1-carboxílico

ejemplo	estructura	nombre
127	HO H FFF CI FFF	ácido trans-4-(4-((2-(2,6-dicloro-4-(trifluorometoxi)fenil)-2-oxoetil)-((3,5-difluorofenil)metil)carbamoil)-5-(trifluorometil)pirazol-1-il)ciclohexano-1-carboxílico
128	HO HO CI	ácido trans-4-(4-((2-(3,5 dicloropiridin-4-il)-2-oxoetil)- ((4-fluorofenil)metil)carbamoil)-5-(trifluorometil)pirazol- 1-il)-1-cianociclohexano-1-carboxílico
129	HO HO CO	ácido trans-4-(4-((2-(3,5-dicloropiridin-4-il)-2-oxoetil)- ((4-fluorofenil)metil)carbamoil)-5-(trifluorometil)pirazol- 1-il)-1-cianociclohexano-1-carboxílico
130	HO HO TO TO	ácido trans-4-(4-((2-(3,5-dicloropiridin-4-il)-2-oxoetil)- ((6,6-dimetiloxan-3-il)metil)carbamoil)-5- (trifluorometil)pirazol-1-il)ciclohexano-1-carboxílico
131	HO H HN CI	ácido trans-4-(4-((3-terc-butilciclobutil)-(2-(3,5-dicloropiri din-4-il)-2-oxoetil)carbamoil)- 5-(trifluorometil)pirazol-1-il)ciclohexano-1-carboxílico
132	D H C C C C C C C C C C C C C C C C C C	ácido trans-4-(4-((3-terc-butilciclobutil)-(2-(3,5-dicloropiridin-4-il)-2-oxoetil)carbamoil)-5-(trifluorometil)pirazol-1-il)ciclohexano-1-carboxílico
133	HO H F F F O N N	ácido trans-4-(4-((3,5-difluorofenil)metil-(2-(4,6-dimetilpirimidin-5-il)-2-oxoetil)carbamoil)-5-(trifluorometil)pirazol-1-il)ciclohexano-1-carboxílico

ejemplo	estructura	nombre
134		ácido trans-4-(4-((3,5-difluorofenil)metil-(2-(2,4-dimetilpiridin-3-il)-2-oxoetil)carbamoil)-5-(trifluorometil)pirazol-1-il)ciclohexano-1-carboxílico
135		ácido trans-4-(5-cloro-4-((2-(3,5-dicloropiridin-4-il)-2-oxoetil)-((3,5-difluorofenil)metil)carbamoil)pirazol-1-il)ciclohexano-1-carboxílico
136	HO HO CI	ácido trans-4-(4-((2-(2-cloro-4-(trifluorometil)fenil)-2-oxoetil)-((3,5-difluorofenil)metil)carbamoil)-5-(trifluorometil)pirazol-1-il)ciclohexano-1-carboxílico
137	H 2 4 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	ácido trans-4-(4-((2-(2,6-dicloro-4-metilfenil)-2-oxoetil)- ((3,5-difluorofenil)metil)carbamoil)-5- (trifluorometil)pirazol-1-il)ciclohexano-1-carboxílico
138		ácido trans-4-(4-(((2R)-2-(2,6-diclorofenil)-2-fluoroetil)-((3,5-difluorofenil)metil)carbamoil)-5-(trifluorometil)pirazol-1-il)-1-metilciclohexano-1-carboxílico
139	HO N CI	ácido trans-4-(4-(((2S)-2-(2,6-diclorofenil)-2-fluoroetil)- ((3,5-difluorofenil)metil)carbamoil)-5- (trifluorometil)pirazol-1-il)-1-metilciclohexano-1- carboxílico
140	HO H P CI	ácido trans-4-(4-((2-(3,5-dicloropiridin-4-il)-2-oxoetil)- ((3-(2,2-dimetilpropil)ciclobutil)metil)carbamoil)-5- (trifluorometil)pirazol-1-il)ciclohexano-1-carboxílico

ejemplo	estructura	nombre
141	HO HO F F F O CI	ácido trans-4-(4-((2-(3,5-dicloropiridin-4-il)-2-oxoetil)- ((4-hidroxifenil)metil)carbamoil)-5-(trifluorometil)pirazol- 1-il)ciclohexano-1-carboxílico
142	HO H	ácido trans-4-(4-((2-(2-aminofenil)-2-oxoetil)-((3,5-difluorofenil)metil)carbamoil)-5-(trifluorometil)pirazol-1-il)ciclohexano-1-carboxílico
143	HO HO H	ácido trans-4-(4-((2-(2-amino-5-metilfenil)-2-oxoetil)- ((3,5-difluorofenil)metil)carbamoil)-5- (trifluorometil)pirazol-1-il)ciclohexano-1-carboxílico
144	HO HO HO CO	ácido trans-4-(4-((2-(2,6-dicloro-4-(trifluorometil)fenil)-2-oxoetil)-(2-((2-metilpropan-2-il)oxi)etil)carbamoil)-5-(trifluorometil)pirazol-1-il)ciclohexano-1-carboxílico
145	O HO OH	ácido trans-4-(4-((2-(3-cloro-5-hidroxipiridin-4-il)-2-oxoetil)-((4-fluorofenil)metil)carbamoil)-5-(trifluorometil)pirazol-1-il)ciclohexano-1-carboxílico
146	2	ácido trans-4-(4-((2-(2,6-diclorofenil)-2-oxoetil)- (pirimidin-5-ilmetil)carbamoil)-5-(trifluorometil)pirazol-1- il)ciclohexano-1-carboxílico
147	HO HO CI	ácido trans-4-(4-((2-(3,5-dicloropiridin-4-il)-2-oxoetil)- ((2-hidroxifenil)metil)carbamoil)-5-(trifluorometil)pirazol- 1-il)ciclohexano-1-carboxílico

ejemplo	estructura	nombre
148	H N CI	ácido trans-4-(5-terc-butil-4-((2-(3,5-dicloropiridin-4-il)-2-oxoetil)-((3,5-difluorofenil)metil)carbamoil)pirazol-1-il)ciclohexano-1-carboxílico
149	HO CO	ácido trans-4-(4-((2-(2,6-dicloro-4-(trifluorometil)fenil)-2-oxoetil)-(2-((2-metilpropan-2-il)oxi)etil)carbamoil)-5-(trifluorometil)pirazol-1-il)-1-metilciclohexano-1-carboxílico
150	HO HO TO NOT THE PERSON OF THE	ácido trans-4-(4-((2-(3,5-dicloropiridin-4-il)-2-oxoetil)- ((1-(trifluorometil)ciclopropil)metil)carbamo il)-5- (trifluorometil)pirazol-1-il)ciclohexano-1-carboxílico
151	P P P P P P P P P P P P P P P P P P P	ácido trans-4-(4-((2-(2,6-diclorofenil)-2-oxoetil)- (piridazin-4-ilmetil)carbamoil)-5-(trifluorometil)pirazol-1- il)ciclohexano-1-carboxílico
152	H H H H H H H H H H H H H H H H H H H	ácido trans-4-(4-((2-(3-cloro-5-(trifluorometil)piridin-2-il)-2-oxoetil)-((3,5-difluorofenil)metil)carbamoil)-5-(trifluorometil)pirazol-1-il)ciclohexano-1-carboxílico
153	HO H F F F CI	ácido trans-4-(4-((2-(3,5-dicloropiridin-4-il)-2-oxoetil)- ((3-hidroxifenil)metil)carbamoil)-5-(trifluorometil)pirazol- 1-il)ciclohexano-1-carboxílico
154	HO H F F F O CI	ácido trans-4-(4-((2-(3,5-dicloropiridin-4-il)-2-oxoetil)- ((1-metilpiperidin-4-il)metil)carbamoil)-5- (trifluorometil)pirazol-1-il)ciclohexano-1-carboxílico

ejemplo	estructura	nombre
155	HO H F F F CI	ácido trans-4-(4-((2-(3,5-dicloropiridin-4-il)-2-oxoetil)-(3- ((2-metilpropan-2~ il)oxi)ciclobutil)carbamoil)-5- (trifluorometil)pirazol-1-il)ciclohexano-1-carboxílico
156	HO CI NO CI	ácido trans-4-(4-((2-(3,5-dicloropiridin-4-il)-2-oxoetil)-(3,5-difluorofenil)metil)carbamoil)-5-(trifluorometil)pirazol-1-il)-1-etilciclohexano-1-carboxílico
157	O H U V V V V V V V V V V V V V V V V V V	ácido trans-4-(4-((2-(3,5-dicloropiridin-4-il)-2-oxoetil)-(((2S)-5-oxopirrolidin-2-il)metil)carbamoil)-5-(trifluorometil)pirazol-1-il)ciclohexano-1-carboxílico
158	H H C C C C C C C C C C C C C C C C C C	ácido trans-4-(4-((2-(3,5-dicloropiridin-4-il)-2-oxoetil)- (((2R)-5-oxopirrolidin-2-il)metil)carbamoil)-5- (trifluorometil)pirazol-1-il)ciclohexano-1-carboxílico
159		ácido trans-4-(4-((2-(3,5-dicloropiridin-4-il)-2-oxoetil)- ((3,5-difluorofenil)metil)carbamoil)-5- (hidroximetil)pirazol-1-il)ciclohexano-1-carboxílico
160	PO CO	ácido trans-4-(4-((2-(3,5-dicloropiridin-4-il)-2-oxoetil)- ((1-metil-7-oxabiciclo[2,2,1]heptan-4-il)metil)carbamoil)- 5-(trifluorometil)pirazol-1-il)ciclohexano-1-carboxílico
161	H	ácido trans-4-(4-((2-(3,5-dicloropiridin-4-il)-2-oxoetil)-((1S,2R)-2-fenilciclopropil)carbamoil)-5-(trifluorometil)pirazol-1-il)ciclohexano-1-carboxílico

ejemplo	estructura	nombre
162		ácido trans-4-(4-((2-(3,5-dicloropiridin-4-il)-2-oxoetil)- ((3,5-difluorofenil)metil)carbamoil)-5-propan-2-ilpirazol- 1-il)ciclohexano-1-carboxílico
163	HO H H N O CI	ácido trans-4-(5-(aminometil)-4-((2-(3,5-dicloropiridin-4-il)-2-oxoetil)-((3,5-difluorofenil)metil)carbamoil)pirazol-1-il)ciclohexano-1-carboxílico
164		ácido trans-4-(4-((2-(3,5-dicloropiridin-4-il)-2-oxoetil)- ((3,5-difluorofenil)metil)carbamoil)-5-metilpirazol-1- il)ciclohexano-1-carboxílico
165	HO H F F F O O CI	ácido trans-4-(4-((4-cloro-1,3-tiazol-2-il)metil-(2-(3,5-dicloropiridin-4-il)-2-oxoetil)carbamoil)-5-(trifluorometil)pirazol-1-il)ciclohexano-1-carboxílico
166	HO F F F O O CI	ácido 4-(4-((2-(3,5-dicloropiridin-4-il)-2-oxoetil)-((4-fluorofenil)metil)carbamoil)-5-(trifluorometil)pirazol-1-il) biciclo[2,2,2]octano-1-carboxílico
167	HO HO HO CI	ácido trans-4-(4-((2-cloro-1,3-tiazol-4-il)metil-(2-(3,5-dicloropiridin-4-il)-2-oxoetil)carbamoil)-5-(trifluorometil)pirazol-1-il)ciclohexano-1-carboxílico
168	HO HO F F F O CI	ácido trans-4-(4-((5-cloro-1,3-tiazol-2-il)metil-(2-(3,5-dicloropiridin-4-il)-2-oxoetil)carbamoil)-5-(trifluorometil)pirazol-1-il)ciclohexano-1-carboxílico

ejemplo	estructura	nombre
169	No Hold Fee	ácido trans-4-(4-((2-(3,5-dicloropiridin-4-il)-2-oxoetil)-(4,4-dimetilciclohexil)carbamoil)-5-(trifluorometil)pirazol-1-il)ciclohexano-1-carboxílico
170	HO H P F F O CI	ácido trans-4-(4-((3-cianofenil)metil-(2-(3,5-dicloropiridin-4-il)-2-oxoetil)carbamoil)-5-(trifluorometil)pirazol-1-il)ciclohexano-1-carboxílico
171	Z	ácido trans-4-(4-((4-cianofenil)metil-(2-(3,5-dicloropiridin-4-il)-2-oxoetil)carbamoil)-5-(trifluorometil)pirazol-1-il)ciclohexano-1-carboxílico
172		ácido trans-4-(4-((1-acetilazetidin-3-il)-(2-(3,5-dicloropiridin-4-il)-2-oxoetil)carbamoil)-5-(trifluorometil)pirazol-1-il)ciclohexano-1-carboxílico
173	HO H F F F O CI	ácido trans-4-(4-((2-(3,5-dicloropiridin-4-il)-2-oxoetil)-(1-(2,2-dimetilpropanoil)azetidin-3-il)carbamoil)-5-(trifluorometil)pirazol-1-il)ciclohexano-1-carboxílico
174	HO H H H CI CI N	ácido trans-4-(4-(ciclohexil-(2-(3,5-dicloropiridin-4-il)-2-oxoetil)carbamoil)-5-(trifluorometil)pirazol-1-il)ciclohexano-1-carboxílico
175	HO H H CI CI N	ácido trans-4-(4-((2-(3,5-dicloropiridin-4-il)-2-oxoetil)-(4,4-difluorociclohexil)carbamoil)-5-(trifluorometil)pirazol-1-il)ciclohexano-1-carboxílico

ejemplo	estructura	nombre
176		ácido trans-4-(4-((2-(3;5-dicloropiridin-4-il)-2-oxoetil)-(3- ((2-metilpropan-2-il)oxi)ciclobutil)carbamoil)-5- (trifluorometil)pirazol-1-il)ciclohexano-1-carboxílico
177		ácido 4-(4-((2-(3,5-dicloropiridin-4-il)-2-oxoetil)-((4-fluorofenil)metil)carbamoil)-5-(trifluorometil)pirazol-1-il)biciclo[2,2,1]heptano-1-carboxílico
178		ácido trans-4-(4-((2-(3,5-dicloropiridin-4-il)-2-oxoetil)- ((3,5-difluorofenil)metil)carbamoil)-5- (difluorometil)pirazol-1-il)-1-metilciclohexano-1- carboxílico
179	H 0 H 0 H	ácido trans-4-(4-((2-(2-cloro-4,6-difluorofenil)-2-oxoetil)-((3,5-difluorofenil)metil)carbamoil)-5-(trifluorometil)pirazol-1-il)ciclohexano-1-carboxílico
180	D C C C C C C C C C C C C C C C C C C C	ácido trans-4-(4-((2-(3,5-dicloropiridin-4-il)-2-oxoetil)-(2,3-dihidro-1H-inden-2-il)carbamoil)-5-(trifluorometil)pirazol-1-il)ciclohexano-1-carboxílico
181		ácido trans-4-(4-((2-(3,5-dicloropiridin-4-il)-2-oxoetil)- (oxan-4-il)carbamoil)-5-(trifluorometil)pirazol-1- il)ciclohexano-1-carboxílico
182		ácido trans-4-(4-((2-(3,5-dicloropiridin-4-il)-2-oxoetil)- espiro[2,5]octan-6-ilcarbamoil) 5-(trifluorometil)pirazol- 1-il)ciclohexano-1-carboxílico

ejemplo	estructura	nombre
183	HO HO HO HO CI	ácido trans-4-(4-((2-(3,5-dicloropiridin-4-il)-2-oxoetil)- ((1S)-3,3-dimetilciclopentil)carbamoil)-5- (trifluorometil)pirazol-1-il)ciclohexano-1-carboxílico
184	HO HO HO HO CI	ácido trans-4-(4-((2-(3,5-dicloropiridin-4-il)-2-oxoetil)- ((1S)-3,3-dimetilciclopentil)carbamoil)-5- (trifluorometil)pirazol-1-il)ciclohexano-1-carboxílico
185	HO H H N CI	ácido trans-4-(4-(ciclopentil-(2-(3,5-dicloropiridin-4-il)-2-oxoetil)carbamoil)-5-(trifluorometil)pirazol-1-il)ciclohexano-1-carboxílico
187	HO HO HO HO CI	ácido trans-4-(4-(1-ciclopentiletil-(2-(3,5-dicloropiridin-4-il)-2-oxoetil)carbamoil)-5-(trifluorometil)pirazol-1-il)ciclohexano-1-carboxílico
188	HO H H H CI	ácido trans-4-(4-((2-(3-cloro-5-metoxipiridin-4-il)-2-oxoetil)-((4-fluorofenil)metil)carbamoil)-5-(trifluorometil)pirazol-1-il)ciclohexano-1-carboxílico
189	HO HO HO CI CI CI	ácido trans-4-(4-((4,4-dimetilciclohexil)-(2-oxo-2-(2,4,6-triclorofenil)etil)carbamoil)-5-(trifluorometil)pirazol-1-il)ciclohexano-1-carboxílico
190	HO CI F	ácido trans-4-(4-((2-(2,6-dicloro-4-fluorofenil)-2-oxoetil)-(4,4-dimetilciclohexil)carbamoil)-5-(trifluorometil)pirazol-1-il)-1-metilciclohexano-1-carboxílico

ejemplo	estructura	nombre
191	HO HO CI CI CI	ácido trans-4-(4-((4,4-dimetilciclohexil)-(2-oxo-2-(2,4,6-triclorofenil)etil)carbamoil)-5-(trifluorometil)pirazol-1-il)-1-metilciclohexano-1-carboxílico
192		ácido trans-4-(4-((2-(3,5-dicloropiridin-4-il)-2-oxoetil)- ((1-metil-4-biciclo[2,2,1]heptanil)metil)carbamoil)-5- (trifluorometil)pirazol-1-il)ciclohexano-1-carboxílico
193	N C C C C C C C C C C C C C C C C C C C	ácido trans-4-(4-((2-(2,6-dicloro-4-fluorofenil)-2-oxoetil)- ((1-metil-4-biciclo[2,2,1]heptanil)metil)carbamoil)-5- (trifluorometil)pirazol- 1-il)ciclohexano-1-carboxílico
194	HO H F F CI	ácido trans-4-(4-((2-(3,5-dicloropiridin-4-il)-2-oxoetil)- ((1-fluorociclopentil)metil)carbamoil)-5- (trifluorometil)pirazol-1-il)ciclohexano-1-carboxílico
195	HO H H N O NH	ácido trans-4-(4-((2-(4-cloro-2-oxo-1H-piridin-3-il)-2-oxoetil)-((4-fluorofenil)metil)carbamoil)-5-(trifluorometil)pirazol-1-il)ciclohexano-1-carboxílico
196	HO HO CI	ácido trans-4-(4-((2-(3,5-dicloropiridin-4-il)-2-oxoetil)-(4,4-dimetilciclohexil)carbamoil)-5-(difluorometil)pirazol-1-il)-1-metilciclohexano-1-carboxílico
197	HO HO CI	ácido trans-4-(4-((2-(2,6-dicloro-4-fluorofenil)-2-oxoetil)- ((3,5-difluorofenil)metil)carbamoil)-5- (difluorometil)pirazol-1-il)-1-metilciclohexano-1- carboxílico

ejemplo	estructura	nombre
198	HO H H N CI	ácido trans-4-(4-((2-(3,5-dicloropiridin-4-il)-2-oxoetil)-(oxolan-3-il)carbamoil)-5-(trifluorometil)pirazol-1-il)ciclohexano-1-carboxílico
199	H, M, H, CI F F F O CI F	ácido trans-4-(4-((2-(2,6-dicloro-4-fluorofenil)-2-oxoetil)- ((1R,3r,5S)-6,6-dimetil-3- biciclo[3,1,0]hexanil)carbamoil)-5-(trifluorometil)pirazol- 1-il)-1-metilciclohexano-1-carboxílico
200	HO H H CI F F F CI N	ácido trans-4-(4-((2-(3,5-dicloropiridin-4-il)-2-oxoetil)-(espiro[2,3]hexan-5-ilmetil)carbamoil)-5-(trifluorometil)pirazol-1-il)ciclohexano-1-carboxílico
201	HO H H H CI	ácido trans-4-(4-((2-(3,5-dicloro-1-metilpirazol-4-il)-2-oxoetil)-((3,5-difluorofenil)metil)carbamoil)-5-(trifluorometil)pirazol-1-il)ciclohexano-1-carboxílico
202	HO CI F	ácido trans-4-(4-((2-(2,6-dicloro-4-fluorofenil)-2-oxoetil)-(espiro[2,3]hexan-5-ilmetil)carbamoil)-5-(trifluorometil)pirazol-1-il)-1-metilciclohexano-1-carboxílico
203	HO HO CI	ácido trans-4-(4-((2-(2,6-dicloro-4-fluorofenil)-2-oxoetil)-(3-(2,2-dimetilpropil)ciclobutil)carbamoil)-5-(trifluorometil)pirazol-1-il)-1-metilciclohexano-1-carboxílico
204	HO H H H CI	ácido trans-4-(4-((2-(3,5-dicloropiridin-4-il)-2-oxoetil)-(1-espiro[2,3]hexan-5-iletil)carbamoil)-5- (trifluorometil)pirazol-1-il)ciclohexano-1-carboxílico

ejemplo	estructura	nombre
205		ácido trans-4-(4-((2-(3,5-dicloropiridin-4-il)-2-oxoetil)-(3,3-dimetilciclohexil)carbamoil)-5-(trifluorometil)pirazol-1-il)ciclohexano-1-carboxílico
206	HO TO CI	ácido trans-4-(4-((2-(2,6-dicloro-4-metilfenil)-2-oxoetil)-(4,4-dimetilpent-2-inil)carbamoil)-5-(trifluorometil)pirazol-1-il)-1-metilciclohexano-1-carboxílico
207	HO CO CO	ácido trans-4-(4-(4,4-dimetilpent-2-inil-(2-oxo-2-(2,4,6-triclorofenil)etil)carbamoil)-5-(trifluorometil)pirazol-1-il)-1-metilciclohexano-1-carboxílico
208	0 HO H C C C C C C C C C C C C C C C C C	ácido trans-4-(4-((2-(3,5-dicloropiridin-4-il)-2-oxoetil)-(5,5-dimetiloxolan-3-il)carbamoil)-5-(trifluorometil)pirazol-1-il)ciclohexano-1-carboxílico
209		ácido trans-4-(4-((2-(3,5-dicloro-1H-pirazol-4-il)-2-oxoetil)-((3,5-difluorofenil)metil)carbamoil)-5-(trifluorometil)pirazol-1-il)ciclohexano-1-carboxílico
210	N O C C C C C C C C C C C C C C C C C C	ácido trans-4-(4-((3-ciano-3-metilciclopentil)-(2-(3,5-dicloropiridin-4-il)-2-oxoetil)carbamoil)-5-(trifluorometil)pirazol-1-il)ciclohexano-1-carboxílico
211	HO HO CO	ácido trans-4-(4-((2-(3,5-dicloropiridin-4-il)-2-oxoetil)- ((1R,3r,5S)-6,6-dimetil-3- biciclo[3,1,0]hexanil)carbamoil)-5-(trifluorometil)pirazol- 1-il)ciclohexano-1-carboxílico

ejemplo	estructura	nombre
212	HO HO HO HO TO	ácido trans-4-(4-((2-(3,5-dicloropiridin-4-il)-2-oxoetil)-(4-(trifluorometil)ciclohexil)carbamoil)-5-(trifluorometil)pirazol-1-il)ciclohexano-1-carboxílico
213		ácido trans-4-(4-((2-(3;5-dicloropiridin-4-il)-2-oxoetil)-(4-(trifluorometil)ciclohexil)carbamoil)-5-(trifluorometil)pirazol-1-il)ciclohexano-1-carboxílico
214	HO FF F O CI	ácido trans-4-(4-((2-(2-cloro-6-metoxifenil)-2-oxoetil)-(4,4-dimetilpent-2-inil)carbamoil)-5-(trifluorometil)pirazol-1-il)-1-metilciclohexano-1-carboxílico
215	HO HO CO	ácido trans-4-(4-(3-biciclo[2,2,1]heptanil-(2-(3,5-dicloropiridin-4-il)-2-oxoetil)carbamoil)-5-(trifluorometil)pirazol-1-il)ciclohexano-1-carboxílico
216	F 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	ácido trans-4-(4-((2-(3,5-dicloro-1,2-tiazol-4-il)-2-oxoetil)-((3,5-difluorofenil)metil)carbamoil)-5-(trifluorometil)pirazol-1-il)ciclohexano-1-carboxílico
217	HO HO DI	ácido trans-4-(4-((2-(2-cloro-6-(trifluorometil)fenil)-2-oxoetil)-(4,4-dimetilpent-2-inil)carbamoil)-5-(trifluorometil)pirazol-1-il)-1-metilciclohexano-1-carboxílico
218	HO SHIN O CI	ácido trans-4-(4-((2-(2,6-dicloro-4-fluorofenil)-2-oxoetil)-(4,4-dimetilpent-2-inil)carbamoil)-5- (trifluorometil)pirazol-1-il)-1-metilciclohexano-1-carboxílico

ejemplo	estructura	nombre
219	HO HO CI CI CI	ácido trans-4-(4-(((1R,3r,5S)-6,6-dimetil-3-biciclo[3,1,0]hexanil)-(2-oxo-2-(2,4,6-triclorofenil)etil)carbamoil)-5-(trifluorometil)pirazol-1-il)-1-metilciclohexano-1-carboxílico
220	HO HO CI	ácido trans-4-(4-((2-(2,6-dicloro-4-fluorofenil)-2-oxoetil)- ((4,4-dimetilciclohexil)metil)carbamoil)-5- (trifluorometil)pirazol-1-il)-1-metilciclohexano-1- carboxílico
221	N CI CI CI	ácido trans-4-(4-(2,2-dimetilpropil-(2-oxo-2-(2,4,6-triclorofenil)etil)carbamoil)-5-(trifluorometil)pirazol-1-il)-1-metilciclohexano-1-carboxílico
222	HO HO CO	ácido trans-4-(4-((2-(2-cloro-6-(trifluorometil)fenil)-2-oxoetil)-((1R,3r,5S)-6,6-dimetil-3-biciclo[3,1,0]hexanil)carbamoil)-5-(trifluorometil)pirazol-1-il)-1-metilciclohexano-1-carboxílico
223		ácido trans-4-(4-((2-(3;5-dicloropiridin-4-il)-2-oxoetil)- ((1R)-3,3-dimetilciclopentil)carbamoil)-5- (trifluorometil)pirazol-1-il)ciclohexano-1-carboxílico
224	HO FF CI FF	ácido trans-4-(4-((2-(2/6-dicloro-4-fluorofenil)-2-oxoetil)- ((1-fluorociclopentil)metil)carbamoil)-5- (trifluorometil)pirazol-1-il)-1-metilciclohexano-1- carboxílico
225	HO HO CI CI CI	ácido trans-4-(4-((1-fluorociclopentil)metil-(2-oxo-2-(2,4,6-triclorofenil)etil)carbamoil)-5-(trifluorometil)pirazol-1-il)-1-metilciclohexano-1-carboxílico

ejemplo	estructura	nombre
226	HO FFF OCI	ácido trans-4-(4-((2-(2,6-dicloro-4-metilfenil)-2-oxoetil)- ((1-metil-7-oxabiciclo[2,2,1]heptan-4-il)metil)carbamoil)- 5-(trifluorometil)pirazol-1-il)-1-metilciclohexano-1- carboxílico
227	D C C C C C C C C C C C C C C C C C C C	ácido trans-4-(4-((2-(2,6 dicloro-4-metilfenil)-2-oxoetil)-(4,4-dimetilciclohexil)carbamoil)-5-(trifluorometil)pirazol-1-il)-1-metilciclohexano-1-carboxílico
228	HO H F F F CI N	ácido trans-4-(4-((2-(3,5-dicloropiridin-4-il)-2-oxoetil)- ((4-fluorofenil)metil)carbamoil)-5-(2,2,2- trifluoroetil)pirazol-1-il)ciclohexano-1-carboxílico
229	HO HO U	ácido trans-4-(4-((2-(3,5-dicloropiridin-4-il)-2-oxoetil)-(4,4-dimetilciclohexil)carbamoil)-5-(trifluorometil)pirazol-1-il)-1-metilciclohexano-1-carboxílico
230	HO F F O CI F	ácido 4-(4-((2-(2,6-dicloro-4-fluorofenil)-2-oxoetil)-(4,4-dimetilciclohexil)carbamoil)-5-(trifluorometil)pirazol-1-il)biciclo[2,2,2]octano-1-carboxílico
231	HO F F F O CI	ácido 4-(4-((4,4-dimetilciclohexil)-(2-oxo-2-(2,4,6-triclorofenil)etil)carbamoil)-5-(trifluorometil)pirazol-1-il)biciclo(2,2,2]octano-1-carboxílico
232	HO HAN O	ácido trans-4-(4-((2-(2-cloro-6-metoxifenil)-2-oxoetil)- ((1R,3r,5S)-6,6-dimetil-3- biciclo(3,1,0)hexanil)carbamoil)-5-(trifluorometil)pirazol- 1-il)-1-metilciclohexano-1-carboxílico

ejemplo	estructura	nombre
234	HO DO CO	ácido trans-4-(4-((2-oxo-2-(2,4,6-triclorofenil)etil)- (espiro[2,3]hexan-5-ilmetil)carbamoil)-5- (trifluorometil)pirazol-1-il)-1-metilciclohexano-1- carboxílico
235	HO N F F	ácido trans-4-(4-((2-(2-cloro-6-(trifluorometil)fenil)-2-oxoetil)-(espiro[2,3]hexan-5-ilmetil)carbamoil)-5-(trifluorometil)pirazol-1-il)-1-metilciclohexano-1-carboxílico
236	HO F F O CI	ácido 4-(4-((2-(2,6-dicloro-4-metilfenil)-2-oxoetil)-(4,4-dimetilciclohexil)carbamoil)-5-(trifluorometil)pirazol-1-il)biciclo[2,2,2]octano-1-carboxílico
237	10 HE FE	ácido 4-(4-((2-(2,6-dicloro-4-metilfenil)-2-oxoetil)-((3,3-dimetilciclobutil)metil)carbamoil)-5- (trifluorometil)pirazol-1-il)biciclo[2,2,2]octano-1-carboxílico
238	H H N F F CI	ácido trans-4-(4-((2-(2,6-dicloro-4-metilfenil)-2-oxoetil)- ((3,3-dimetilciclobutil)metil)carbamoil)-5- (trifluorometil)pirazol-1-il)-1-metilciclohexano-1- carboxílico
239	HO HO CI	ácido trans-4-(4-((4,4-dimetilciclohexil) metil-(2-oxo-2-(2,4,6-triclorofenil)etil)carbamoil)-5-(trifluorometil)pirazol-1-il)-1-metilciclohexano-1-carboxílico
240	HO HO CI	ácido 4-(4-((2-(2,6-dicloro-4-fluorofenil)-2-oxoetil)- ((1R,3r,5S)-6,6-dimetil-3- biciclo[3,1,0]hexanil)carbamoil)-5-(trifluorometil)pirazol- 1-il)biciclo(2,2,2)octano-1-carboxílico

ejemplo	estructura	nombre
241	HO HO CI	ácido 4-(4-(((1R,3r,5S)-6,6-dimetil-3-biciclo[3,1,0]hexanil)-(2-oxo-2-(2,4,6-triclorofenil)etil)carbamoil)-5-(trifluorometil)pirazol-1-il)biciclo(2,2,2)octano-1-carboxílico
242	N N CI	ácido 4-(4-((2-(2-cloro-6-(trifluorometil)fenil)-2-oxoetil)-(4,4-dimetilciclohexil)carbamoil)-5-(trifluorometil)pirazol-1-il)biciclo[2,2,2]octano-1-carboxílico
243	N N F F	ácido 4-(4-((2-(2-cloro-6-metoxifenil)-2-oxoetil)-(4,4-dimetilciclohexil)carbamoil)-5-(trifluorometil)pirazol-1-il)biciclo[2,2,2]octano-1-carboxílico
244	N D D D D D D D D D D D D D D D D D D D	ácido trans-4-(4-((2-(2,6-dicloro-4-fluorofenil)-2-oxoetil)- ((1-metil-7-oxabiciclo[2,2,1]heptan-4-il)metil)carbamoil)- 5-(trifluorometil)pirazol-1-il)-1-metilciclohexano-1- carboxílico
245	N F F C	ácido 4-(4-((2-(2,6-dicloro-4-fluorofenil)-2-oxoetil)-(2/2-dimetilpropil)carbamoil)-5-(trifluorometil)pirazol-1-il)biciclo[2,2,2]octano-1-carboxílico
246	N CI CI CI	ácido 4-(4-(2,2-dimetilpropil-(2-oxo-2-(2,4,6-triclorofenil)etil)carbamoil)-5-(trifluorometil)pirazol-1-il)biciclo[2,2,2]octano-1-carboxílico
247	HO HO CO	ácido 4-(4-((2-(2-cloro-6-(trifluorometil)fenil)-2-oxoetil)- ((1R,3r,5S)-6,6-dimetil-3- biciclo[3,1,0]hexanil)carbamoil)-5-(trifluorometil)pirazol- 1-il)biciclo[2,2,2]octano-1-carboxílico

ejemplo	estructura	nombre
248	HO F F CO	ácido 4-(4-((2-(2-cloro-6-metoxifenil)-2-oxoetil)- ((1R,3r,5S)-6,6-dimetil-3- biciclo[3,1,0]hexanil)carbamoil)-5-(trifluorometil)pirazol- 1-il)biciclo[2,2,2]octano-1-carboxílico
249	HO JAN CI CI CI F	ácido trans-4-(4-((2-(2,6-dicloro-4-fluorofenil)-2-oxoetil)-((3,3-dimetilciclobutil)metil)carbamoil)-5-(trifluorometil)pirazol-1-il)-1-metilciclohexano-1-carboxílico
250	HO P F F C C C	ácido trans-4-(4-((3,3-dimetilciclobutil)metil-(2-oxo-2-(2,4,6-triclorofenil)etil)carbamoil)-5-(trifluorometil)pirazol-1-il)-1-metilciclohexano-1-carboxílico
251	HO FEE	ácido trans-4-(4-((2-(2-cloro-6-(trifluorometil)fenil)-2-oxoetil)-((3,3-dimetilciclobutil)metil)carbamoil)-5-(trifluorometil)pirazol-1-il)-1-metilciclohexano-1-carboxílico
252	HO F F F O CI	ácido trans-4-(4-((2-(2-cloro-6-metoxifenil)-2-oxoetil)- ((3,3-dimetilciclobutil)metil)carbamoil)-5- (trifluorometil)pirazol-1-il)-1-metilciclohexano-1- carboxílico
253	HO F F F O O CI	ácido trans-4-(4-((2*(2-cloro-6-metoxifenil)-2-oxoetil)-(2,2-dimetilpropil)carbamoil)-5-(trifluorometil)pirazol-1-il)-1-metilciclohexano-1-carboxílico
254	HO JUNE FEE	ácido trans-4-(4-((2-(2-cloro-6-(trifluorometil)fenil)-2-oxoetil)-(4,4-dimetilciclohexil)carbamoil)-5-(trifluorometil)pirazol-1-il)-1-metilciclohexano-1-carboxílico

ejemplo	estructura	nombre
255	H Z F F C	ácido trans-4-(4-((2-(2-cloro-6-metoxifenil)-2-oxoetil)-(4,4-dimetilciclohexil)carbamoil)-5-(trifluorometil)pirazol-1-il)-1-metilciclohexano-1-carboxílico
256	O HO LE E	ácido 4-(4-((3/3-dimetilciclobutil)metil-(2-oxo-2-(2,4,6-triclorofenil)etil)carbamoil)-5-(trifluorometil)pirazol-1-il)biciclo[2,2,2]octano-1-carboxílico
257	HO HO CI	ácido 4-(4-((2-(2-cloro-6-metoxifenil)-2-oxoetil)-((3,3-dimetilciclobutil)metil)carbamoil)-5-(trifluorometil)pirazol-1-il)biciclo[2,2,2]octano-1-carboxílico
258	HO FFF O CI	ácido 4-(4-((2-(2-cloro-6-(trifluorometil)fenil)-2-oxoetil)- ((3,3-dimetilciclobutil)metil)carbamoil)-5- (trifluorometil)pirazol-1-il)biciclo[2,2,2]octano-1- carboxílico
259	HO HO	ácido trans-4-(4-((2-(2-cloro-6-metoxifenil)-2-oxoetil)- ((4,4-dimetilciclohexil)metil)carbamoil)-5- (trifluorometil)pirazol-1-il)-1-metilciclohexano-1- carboxílico
260	HO HO CI CI CI	ácido trans-4-(4-((1-metil-7-oxabiciclo[2,2,1] heptan-4-il) metil-(2-oxo-2-(2,4,6-triclorofenil)etil)carbamoil)-5-(trifluorometil)pirazol-1-il)-1-metilciclohexano-1-carboxílico
261	O CI	ácido 4-(4-((2-(2,6-dicloro-4-metilfenil)-2-oxoetil)-((1-metil-7-oxabiciclo[2,2,1]heptan-4-il)metil)carbamoil)-5-(trifluorometil)pirazol-1-il)biciclo[2,2,2]octano-1-carboxílico

ejemplo	estructura	nombre
262	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	ácido trans-4-(4-((2-(3,5-dicloropiridin-4-il)-2-oxoetil)-(7-oxabiciclo[2,2,1]heptan-4-il metil) carbamoil)-5-(trifluorometil)pirazol-1-il)ciclohexano-1-carboxílico
263	HO FF	ácido 4-(4-((2-(2-cloro-6-(trifluorometil)fenil)-2-oxoetil)-(2,2-dimetilpropil)carbamoil)-5-(trifluorometil)pirazol-1-il)biciclo[2,2,2]octano-1-carboxílico
264	H	ácido trans-4-(4-((2-(3,5-dicloropiridin-4-il)-2-oxoetil)- ((1R,3r,5S)-6,6-dimetil-3- biciclo[3,1,0]hexanil)carbamoil)-5-(trifluorometil)pirazol- 1-il)ciclohexano-1-carboxílico
265	HO O CI	ácido trans-4-(4-((2-(2-cloro-6-(trifluorometil)fenil)-2-oxoetil)-(2,2-dimetilpropil)carbamoil)-5-(trifluorometil)pirazol-1-il)-1-metilciclohexano-1-carboxílico
266	HO FF F CI	ácido 4-(4-((2-(2,6-dicloro-4-fluorofenil)-2-oxoetil)-((3,3-dimetilciclobutil)metil)carbamoil)-5- (trifluorometil)pirazol-1-il)biciclo[2,2,2]octano-1-carboxílico
267	7	ácido trans-4-(4-((2-(3,5-dicloropiridin-4-il)-2-oxoetil)- ((1-metil-4-biciclo[2,2,1]heptanil)metil)carbamoil)-5- (trifluorometil)pirazol-1-il)-1-metilciclohexano-1- carboxílico
268	HO HO FE	ácido trans-4-(4-((2-(4-cloro-2,6-dimetilfenil)-2-oxoetil)- ((3,5-difluorofenil)metil)carbamoil)-5- (trifluorometil)pirazol-1-il)ciclohexano-1-carboxílico

ejemplo	estructura	nombre
269	HO HO F F F CI	ácido trans-4-(4-((2-(2-cloro-4,6-dimetilfenil)-2-oxoetil)- ((3,5-difluorofenil)metil)carbamoil)-5- (trifluorometil)pirazol-1-il)ciclohexano-1-carboxílico
270	HO HO CI	ácido trans-4-(4-((2-(2-cloro-6-(trifluorometil)fenil)-2-oxoetil)-((1-fluorociclopentil)metil)carbamoil)-5-(trifluorometil)pirazol-1-il)-1-metilciclohexano-1-carboxílico
271	HO F F F O CI F	ácido 4-(4-((2-(2,6-dicloro-4-fluorofenil)-2-oxoetil)-((1-fluorociclopentil)metil)carbamoil)-5-(trifluorometil)pirazol-1-il)biciclo[2,2,2]octano-1-carboxílico
272	HO HO CI	ácido trans-4-(4-((2-(3,5-dicloropiridin-4-il)-2-oxoetil)- ((1-fluorociclopentil)metil)carbamoil)-5- (trifluorometil)pirazol-1-il)-1-metilciclohexano-1- carboxílico
273	D-U-U-U-U-U-U-U-U-U-U-U-U-U-U-U-U-U-U-U	ácido 4-(4-((2-(2,6-dicloro-4-fluorofenil)-2-oxoetil)-(4,4-dimetilciclohexil)carbamoil)-5-(difluorometil)pirazol-1-il)biciclo[2,2,2]octano-1-carboxílico
274	HO HO CI F	ácido trans-4-(4-((2-(2,6-dicloro-4-fluorofenil)-2-oxoetil)- ((1-metil-4-biciclo[2,2,1]heptanil)metil)carbamoil)-5- (trifluorometil)pirazol-1-il)-1-metilciclohexano-1- carboxílico
275	HO HO CI	ácido trans-4-(4-((1-metil-4-biciclo[2,2,1]heptanil)metil-(2-oxo-2-(2,4,6-triclorofenil)etil)carbamoil)-5-(trifluorometil)pirazol-1-il)-1-metilciclohexano-1-carboxílico

ejemplo	estructura	nombre
279	HO CI	ácido trans-4-(4-((2-(2-cloro-4,6-dimetilfenil)-2-oxoetil)-(4,4-dimetilciclohexil)carbamoil)-5-(trifluorometil)pirazol-1-il)-1-metilciclohexano-1-carboxílico
280	D HO HO	ácido trans-4-(4-((2-(4-cloro-2,6-dimetilfenil)-2-oxoetil)-(4,4-dimetilciclohexil)carbamoil)-5-(trifluorometil)pirazol-1-il)-1-metilciclohexano-1-carboxílico
281	HO F F O CI	ácido trans-4-(4-((2-(2,6-diclorofenil)-2-oxoetil)-((1-fluorociclopentil)metil)carbamoil)-5-(trifluorometil)pirazol-1-il)-1-metilciclohexano-1-carboxílico
282	P CI	ácido trans-4-(4-((2-(2,6-dicloro-4-metilfenil)-2-oxoetil)- ((1-fluorociclopentil)metil)carbamoil)-5- (trifluorometil)pirazol-1-il)-1-metilciclohexano-1- carboxílico
283	HO LI	ácido trans-4-(4-((2-(2,6-diclorofenil)-2-oxoetil)-(4,4-dimetilciclohexil)carbamoil)-5-(trifluorometil)pirazol-1-il)-1-metilciclohexano-1-carboxílico
284	Z F F F F F F F F F F F F F F F F F F F	ácido trans-4-(4-((2-(2,6-diclorofenil)-2-oxoetil)-(2,2-dimetilpropil)carbamoil)-5-(trifluorometil)pirazol-1-il)-1-metilciclohexano-1-carboxílico
285	DO D	ácido trans-4-(4-((2-(3,5-dicloropiridin-4-il)-2-oxoetil)- ((1-metil-7-oxabiciclo[2,2,1]heptan-4-il)metil)carbamoil)- 5-(trifluorometil)pirazol-1-il)-1-metilciclohexano-1- carboxílico

ejemplo	estructura	nombre
286	HO FF	ácido trans-4-(4-((2-(3,5-dicloropiridin-4-il)-2-oxoetil)-(2,2-dimetilbutil)carbamoil)-5-(trifluorometil)pirazol-1-il)-1-metilciclohexano-1-carboxílico
287	HO CI	ácido trans-4-(4-((2-(3,5-dicloropiridin-4-il)-2-oxoetil)-pentan-3-ilcarbamoil)-5-(trifluorometil)pirazol-1-il)-1-metilciclohexano-1-carboxílico
288	O HO CO	ácido 4-(4-((2-(3,5-dicloropiridin-4-il)-2-oxoetil)-(2,2-dimetilbutil)carbamoil)-5-(trifluorometil)pirazol-1-il)biciclo[2,2,2]octano-1-carboxílico
289	HO FFF CI CI	ácido trans-1-metil-4-(4-(2-oxaespiro[3,5]nonan-7-il-(2-oxo-2-(2,4,6-triclorofenil)etil)carbamoil)-5- (trifluorometil)pirazol-1-il)ciclohexano-1-carboxílico
290	H H L L L L L L L L L L L L L L L L L L	ácido trans-3-(4-((2-(2,6-dicloro-4-fluorofenil)-2-oxoetil)-(4,4-dimetilciclohexil)carbamoil)-5-(trifluorometil)pirazol-1-il)ciclobutano-1-carboxílico
291	HO H F F F CI	ácido cis-3-(4-((2-(2,6-dicloro-4-fluorofenil)-2-oxoetil)-(4,4-dimetilciclohexil)carbamoil)-5-(trifluorometil)pirazol-1-il)ciclobutano-1-carboxílico
292	0 2 0 U	ácido trans-4-(4-((2-(2,6-dicloro-4-fluorofenil)-2-oxoetil)-(2-((2-metilpropan-2-il)oxi)etil)carbamoil)-5-(trifluorometil)pirazol-1-il)-1-metilciclohexano-1-carboxílico

ejemplo	estructura	nombre
293	HO PFF	ácido trans-1-metil-4-(4-(2-((2-metilpropan-2-il)oxi)etil- (2-oxo-2-(2,4,6-triclorofenil)etil)carbamoil)-5- (trifluorometil)pirazol-1-il)ciclohexano-1-carboxílico
294	HO HO LE	ácido trans-4-(4-((2-(3-cloro-5-fluoropiridin-4-il)-2-oxoetil)-(2,2-dimetilpropil)carbamoil)-5-(trifluorometil)pirazol-1-il)-1-metilciclohexano-1-carboxílico
295	D CI	ácido trans-4-(4-((2-(2,6-dicloro-4-fluorofenil)-2-oxoetil)-(1-metilpiperidin-4-il)carbamoil)-5-(trifluorometil)pirazol-1-il)-1-metilciclohexano-1-carboxílico
296	H. J. F. CI	ácido trans-4-(4-((2-(2,6-dicloro-4-fluorofenil)-2-oxoetil)-(1-propan-2-ilpiperidin-4-il)carbamoil)-5-(trifluorometil)pirazol-1-il)-1-metilciclohexano-1-carboxílico
297	HO HO CI	ácido trans-4-(4-((2-(2-cloro-6-fluorofenil)-2-oxoetil)-(2,2-dimetilpropil)carbamoil)-5-(trifluorometil)pirazol-1-il)-1-metilciclohexano-1-carboxílico
298	HO F F F O CI	ácido 4-(4-((1-fluorociclopentil)metil-(2-oxo-2-(2,4,6-triclorofenil)etil)carbamoil)-5-(trifluorometil)pirazol-1-il)biciclo[2,2,2]octano-1-carboxílico
299	F U Z U U U U U U U U U U U U U U U U U	ácido 4-(4-((2-(3,5-dicloropiridin-4-il)-2-oxoetil)-((1-fluorociclo pentil) metil)carbamoil)-5- (trifluorometil)pirazol-1-il)biciclo[2,2,2]octano-1-carboxílico

ejemplo	estructura	nombre
300	PF U C C C C C C C C C C C C C C C C C C	ácido 4-(4-((2-(2,6-dicloro-4-metilfenil)-2-oxoetil)-((1-fluorociclopentil)metil)carbamoil)-5-(trifluorometil)pirazol-1-il)biciclo[2,2,2]octano-1-carboxílico
301		ácido cis-4-(4-((2-(2,6-dicloro-4-fluorofenil)-2-oxoetil)-(4,4-dimetilciclohexil)carbamoil)-5-(trifluorometil)pirazol-1-il)-1-metilciclohexano-1-carboxílico
302	N CI PF	ácido trans-4-(4-((2-(2,6-dicloro-4-fluorofenil)-2-oxoetil)-(2,2-dimetilbutil)carbamoil)-5-(trifluorometil)pirazol-1-il)-1-metilciclohexano-1-carboxílico
303	D He Care	ácido trans-4-(4-((2-(2,6-dicloro-4-fluorofenil)-2-oxoetil)-(8-metil-8-azabiciclo[3,2,1]octan-3-il)carbamoil)-5-(trifluorometil)pirazol-1-il)-1-metilciclohexano-1-carboxílico
304	HZ Z F CI	ácido trans-4-(4-(8-azabiciclo[3,2,1]octan-3-il-(2-(2,6-dicloro-4-fluorofenil)-2-oxoetil)carbamoil)-5-(trifluorometil)pirazol-1-il)-1-metilciclohexano-1-carboxílico
305	HO FFF OCI	ácido trans-4-(4-((2-(2,6-dicloro-4-fluorofenil)-2-oxoetil)-(8-propan-2-il-8-azabiciclo[3,2,1]octan-3-il)carbamoil)-5-(trifluorometil)pirazol-1-il)-1-metilciclohexano-1-carboxílico
306	HO CI CI	ácido trans-4-(4-(2,2-dimetil butil-(2-oxo-2-(2,4,6-triclorofenil)etil)carbamoil)-5-(trifluorometil)pirazol-1-il)-1-metilciclohexano-1-carboxílico

ejemplo	estructura	nombre
307		ácido trans-4-(4-((2-(2-cloro-6-ciano-4-metilfenil)-2-oxoetil)-((3,5-difluorofenil)metil)carbamoil)-5-(trifluorometil)pirazol-1-il)ciclohexano-1-carboxílico
308	O HO CI	ácido 4-(4-(2/2-dimetilbutil-(2-oxo-2-(2,4,6-triclorofenil)etil)carbamoil)-5-(trifluorometil)pirazol-1-il)biciclo[2,2,2]octano-1-carboxílico
309	HO HO CI F	ácido 4-(4-((2-(2,6-dicloro-4-fluorofenil)-2-oxoetil)-(2,2-dimetilbutil)carbamoil)-5-(trifluorometil)pirazol-1-il)biciclo[2,2,2]octano-1-carboxílico
310	H. H	ácido trans-4-(5-ciano-4-((2-(3,5-dicloropiridin-4-il)-2-oxoetil)-(2,2-dimetilpropil)carbamoil)pirazol-l il)-1-metilciclohexano-1-carboxílico
311	-Z Z L L L L L L L L L L L L L L L L L L	ácido trans-4-(4-((2-(3,5-dicloropiridin-4-il)-2-oxoetil)-(1,2,2,6,6-pentametilpiperidin-4-il)carbamoil)-5-(trifluorometil)pirazol-1-il)-1-metilciclohexano-1-carboxílico
312	HO FFF OCI N	ácido trans-4-(4-((2-(3,5-dicloropiridin-4-il)-2-oxoetil)-(4-metilpentan-2-il)carbamoil)-5-(trifluorometil)pirazol-1-il)-1-metilciclohexano-1-carboxílico
313	HO HO	ácido trans-4-(4-((2-(3,5-dicloropiridin-4-il)-2-oxoetil)-(1-metoxipropan-2-il)carbamoil)-5-(trifluorometil)pirazol-1-il)-1-metilciclohexano-1-carboxílico

ejemplo	estructura	nombre
314	HO HO	ácido trans-4-(4-((2-(3,5-dicloropiridin-4-il)-2-oxoetil)-(3-metilbut-2-enil)carbamoil)-5-(trifluorometil)pirazol-1-il)-1-metilciclohexano-1-carboxílico
315	N N N O CI	ácido trans-4-(4-((2-(3-cloro-5-metoxipiridin-4-il)-2-oxoetil)-(2,2-dimetilpropil)carbamoil)-5-(trifluorometil)pirazol-1-il)-1-metilciclohexano-1-carboxílico
316	HO F F O CI	ácido 4-(4-((2-(3,5-dicloropiridin-4-il)-2-oxoetil)-((1-metilciclopropil)metil)carbamoil)-5-(trifluorometil)pirazol-1-il)biciclo[2,2,2]octano-1-carboxílico
317	D C C C C C C C C C C C C C C C C C C C	ácido 4-(4-((2-(2,6-diclorofenil)-2-oxoetil)-(2,2-dimetilpropil)carbamoil)-5-(trifluorometil)pirazol-1-il)biciclo[2,2,2]octano-1-carboxílico
318		ácido trans-4-(4-((2-(3,5-dicloropiridin-4-il)-2-oxoetil)-(2- ((2-metilpropan-2-il)oxi)etil)carbamoil)-5- (trifluorometil)pirazol-1-il)-1-metilciclohexano-1- carboxílico
319	HO HO	ácido trans-4-(4-((2-(3,5-dicloropiridin-4-il)-2-oxoetil)-(1-(2-metilpropil)ciclopropil)carbamoil)-5-(trifluorometil)pirazol-1-il)-1-metilciclohexano-1-carboxílico
320	H 2 2 4 4 10 10 10 10 10 10 10 10 10 10 10 10 10	ácido 4-(4-((2-(2,6-diclorofenil)-2-oxoetil)((1R,3r,5S)-6,6-dimetilbiciclo[3,1,0]hexan-3-il)carbamoil)-5-(trifluorometil)-1H-pirazol-1-il)biciclo[2,2,2]octano-1-carboxílico

ejemplo	estructura	nombre
321	HO HO CI	ácido 4-(4-((2-(2,6-dicloro-4-metilfenil)-2-oxoetil)((1R,3r,5S)-6,6-dimetilbiciclo[3,1,0]hexan-3-il)carbamoil)-5-(trifluorometil)-1H-pirazol-1-il)biciclo[2,2,2]octano-1-carboxílico
322	0 - 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	ácido 4-(4-((2-(3,5-dicloropiridin-4-il)-2-oxoetil)- ((2,2,3,3-tetrametilciclopropil)metil)carbamoil)-5- (trifluorometil)pirazol-1-il)biciclo[2,2,2]octano-1- carboxílico
323		ácido trans-4-(4-((2-(3,5-dicloropiridin-4-il)-2-oxoetil)- (6,6-dimetiloxan-3-il)carbamoil)-5-(trifluorometil)pirazol- 1-il)-1-metilciclohexano-1-carboxílico
324	O HO CO	ácido trans-4-(4-((2-(3,5-dicloropiridin-4-il)-2-oxoetil)- ((1-hidroxi ciclopentil)metil)carbamoil)-5- (trifluorometil)pirazol-1-il)-1-metilciclohexano-1- carboxílico
325	D D D D D D D D D D D D D D D D D D D	ácido trans-4-(4-((2-(3,5-dicloropiridin-4-il)-2-oxoetil)- ((2,2,3,3-tetrametilciclopropil)metil)carbamoil)-5- (trifluorometil)pirazol-1-il)-1-metilciclohexano-1- carboxílico
326	HO FFF O CI	ácido trans-4-(4-((2-(3;5-dicloropiridin-4-il)-2-oxoetil)-(2-fluoro-2-metilpropil)carbamoil)-5-(trifluorometil)pirazol-1-il)-1-metilciclohexano-1-carboxílico
327	F C C C C C C C C C C C C C C C C C C C	ácido 4-(4-((2-(3,5-dicloropiridin-4-il)-2-oxoetil)-(2-fluoro-2-metilpropil)carbamoil)-5-(trifluorometil)pirazol-1-il)biciclo[2,2,2]octano-1-carboxílico

ejemplo	estructura	nombre
328	P F F F F F F F F F F F F F F F F F F F	ácido trans-4-(4-(2,2-dimetilpropil-(2-(1H-indol-3-il)etil)carbamoil)-5-(trifluorometil)pirazol-1-il)-1-metilciclohexano-1-carboxílico
329		ácido 4-(4-((2-(3,5-dicloropiridin-4-il)-2-oxoetil)-((1-(trifluorometil)ciclopropil)metil)carbamo il)-5-(trifluorometil)pirazol-1-il)biciclo[2,2,2]octano-1-carboxílico
331		ácido trans-4-(4-(((1R,2S)-2-terc-butilciclopropil)-(2-(3,5-dicloropiridin-4-il)-2-oxoetil)carbamoil)-5-(trifluorometil)pirazol- 1-il)-1-metilciclohexano-1-carboxílico
332		ácido trans-4-(4-((2-(3,5-dicloropiridin-4-il)-2-oxoetil)-(1-((2-metilpropan-2-il)oxi)propan-2-il)carbamoil)-5-(trifluorometil)pirazol-1-il)-1-metilciclohexano-1-carboxílico
333	H H L C C C C C C C C C C C C C C C C C	ácido trans-4-(4-((2-(3-cloro-5-fluoropiridin-4-il)-2-oxoetil)((1R,3r,5S)-6,6-dimetilbiciclo[3,1,0]hexan-3-il)carbamoil)-5-(trifluorometil)-1H-pirazol-1-il)-1-metilciclohexanocarboxílico
334	HO F F O N H	ácido trans-4-(4-(2-(4-cloro-1H-indol-3-il)etil-(2,2-dimetilpropil)carbamoil)-5-(trifluorometil)pirazol-1-il)-1-metilciclohexano-1-carboxílico
335	H H H L CI	ácido 4-(4-((2-(3-cloro-5-fluoropiridin-4-il)-2-oxoetil)((1R,3r,5S)-6,6-dimetilbiciclo[3,1,0]hexan-3-il)carbamoil)-5-(trifluorometil)-1H-pirazol-1-il)biciclo(2,2,2)octano-1-carboxílico

ejemplo	estructura	nombre
336	H N HO O-	ácido trans-4-(4-((2-(2-cloro-6-metoxifenil)-2-hidroxietil)-(4,4-dimetilciclohexil)carbamoil)-5-(trifluorometil)pirazol-1-il)-1-metilciclohexano-1-carboxílico
337	HO HO CI	ácido trans-4-(4-((2-(3-cloro-5-fluoropiridin-4-il)-2-oxoetil)-(2,2-dimetilbutil)carbamoil)-5-(trifluorometil)pirazol-1-il)-1-metilciclohexano-1-carboxílico
338	2 2 4 4 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	ácido trans-4-(4-((4,4-dimetilciclohexil)-(2-(3,5-dimetil-1H-pirazol-4-il)etil)carbamoil)-5-(trifluorometil)pirazol-1-il)-1-metilciclohexano-1-carboxílico
339	HO P F F O CI	ácido trans-3-(4-((2-(2,6-dicloro-4-fluorofenil)-2-oxoetil)-(4,4-dimetilciclohexil)carbamoil)-5-(trifluorometil)pirazol-1-il)-1-metilciclobutano-1-carboxílico
340	H H H H H H H H H H H H H H H H H H H	ácido trans-4-(4-((2-(3,5-dicloropiridin-4-il)-2-oxoetil)-((1S,2S)-2-propan-2-ilciclopropil)carbamoil)-5-(trifluorometil)pirazol-1-il)-1-metilciclohexano-1-carboxílico
341	HO HO HO CI	ácido trans-4-(4-((2-(2-cloro-6-metoxifenil)-2-hidroxietil) ((1R, 3 r, 5S)-6,6-dimetilbiciclo[3,1,0]hexan-3-il)carbamoil)-5-(trifluorometil)-1H-pirazol-1-il)-1-metilciclohexanocarboxílico
342	H CH	ácido trans-4-(4-((2-(2-cloro-6-metoxifenil)-2-hidroxietil)((1R,3r,5S)-6,6-dimetilbiciclo[3,1,0]hexan-3-il)carbamoil)-5-(trifluorometil)-1H-pirazol-i-il)-1-metilciclohexanocarboxílico

ejemplo	estructura	nombre
344	HO CO	ácido trans-4-(4-((2-(3,5-dicloropiridin-4-il)-2-oxoetil)-((3 ((2-metilpropan-2-il)oxi)ciclobutil)metil)carbamoil)-5-(trifluorometil)pirazol-1-il)-1-metilciclohexano-1-carboxílico
345		ácido trans-4-(5-cloro-4-((2-(2,6-dicloro-4-fluorofenil)-2-oxoetil)-(4,4-dimetilciclohexil)carbamoil)pirazol-1-il)-1-metilciclohexano-1-carboxílico
346	1	ácido trans-4-(4-((2-(3,5-dicloropiridin-4-il)-2-oxoetil)- ((1S,2R)-2-propan-2-ilciclopropil)carbamoil)-5- (trifluorometil)pirazol-1-il)-1-metilciclohexano-1- carboxílico
347	D-W-D-D-D-D-D-D-D-D-D-D-D-D-D-D-D-D-D-D	ácido trans-4-(4-((2-(2,6-dicloro-4-fluorofenil)-2-oxoetil)-(4,4-dimetilciclohexil)carbamoil)-5-propan-2-ilpirazol-1-il)-1-metilciclohexano-1-carboxílico
348	H N C C F	ácido trans-4-(4-(2-terc-butilsulfaniletil-(2-(2,6-dicloro-4-fluorofenil)-2-oxoetil)carbamoil)-5-(trifluorometil)pirazol-1-il)-1-metilciclohexano-1-carboxílico
349	H N CI N H	ácido trans-4-(4-(2-(4-cloro-1H-indol-3-il)etil-(4,4-dimetilciclohexil)carbamoil)-5-(trifluorometil)pirazol-1-il)-1-metilciclohexano-1-carboxílico
350	F F F CI	ácido trans-4-(4-(2-terc-butilsulfoniletil-(2-(2,6-dicloro-4-fluorofenil)-2-oxoetil)carbamoil)-5-(trifluorometil)pirazol-1-il)-1-metilciclohexano-1-carboxílico

ejemplo	estructura	nombre
351	HO HO CI	ácido trans-4-(4-(2-terc-butilsulfiniletil-(2-(2,6-dicloro-4-fluorofenil)-2-oxoetil)carbamoil)-5-(trifluorometil)pirazol-1-il)-1-metilciclohexano-1-carboxílico
352	HO FE	ácido trans-4-(4-((2-(4-cloro-1H-indol-3-il)-2-oxoetil)-(2,2-dimetilpropil)carbamoil)-5-(trifluorometil)pirazol-1-il)-1-metilciclohexano-1-carboxílico
353	HO HO CI	ácido trans-4-(4-((2-(2,6-dicloro-4-fluorofenil)-2-oxoetil)-(2-(3-fluoropiperidin-1-il)etil)carbamoil)-5- (trifluorometil)pirazol-1-il)-1-metilciclohexano-1-carboxílico
354	HO HO HAN CI	ácido trans-4-(4-((2-(2-cloro-6-fluorofenil)-2-hidroxietil)((1R,3r,5S)-6,6-dimetilbiciclo[3,1,0]hexan-3-il)carbamoil)-5-(trifluorometil)-1H-pirazol-1-il)-1-metilciclohexanocarboxílico
355	HO HO HAN CI	ácido trans-4-(4-((2-(2-cloro-6-fluorofenil)-2-hidroxietil)((1R,3r, 5S)-6,6-dimetilbiciclo[3,1,0]hexan-3-il)carbamoil)-5-(trifluorometil)-1H-pirazol-1-il)-1-metilciclohexanocarboxílico
356	HO HO LA CHO TO	ácido trans-4-(4-(((2R)-2-(2-cloro-6-metoxifenil)-2-hidroxietil)-(2,2-dimetilpropil)carbamoil)-5-(trifluorometil)pirazol-1-il)-1-metilciclohexano-1-carboxílico
357	HO HO CI	ácido trans-4-(4-(((2S)-2-(2-cloro-6-metoxifenil)-2-hidroxietil)-(2,2-dimetilpropil)carbamoil)-5-(trifluorometil)pirazol-1-il)-1-metilciclohexano-1-carboxílico

ejemplo	estructura	nombre
358	HO HO CI	ácido trans-4-(5-cloro-4-((2-(2,6-diclorofenil)-2-oxoetil)-(2,2-dimetilpropil)carbamoil)pirazol-1-il)-1-metilciclohexano-1-carboxílico
359	HO HO	ácido trans-4-(5-cloro-4-((2-(2,6-dicloro-4-metilfenil)-2-oxoetil)-(2,2-dimetilpropil)carbamoil)pirazol-1-il)-1-metilciclohexano-1-carboxílico
360	HO HO LE	ácido trans-4-(4-(2-(4-cloro-2-metil-1H-indol-3-il)etil- (2,2-dimetil propil)carbamoil)-5-(trifluorometil)pirazol-1- il)-1-metilciclohexano-1-carboxílico
363	HO HO CI	ácido trans-4-(5-cloro-4-((2-(2,6-diclorofenil)-2-oxoetil)((1R,3r,5S)-6,6-dimetilbiciclo[3,1,0]hexan-3-il)carbamoil)-1H-pirazol-1-il)-1-metilciclohexanocarboxílico
364	HO HO CI	ácido trans-4-(4-((2-(2,6-diclorofenil)-2- oxoetil)((1R,3r,5S)-6,6-dimetilbiciclo[3,1,0]hexan-3- il)carbamoil)-5-metil-1H-pirazol-1-il)-1- metilciclohexanocarboxílico
365	HO HO CI	ácido trans-4-(4-((2-(2,6-dicloro-4-metilfenil)-2-oxoetil)((1R/3r,5S)-6,6-dimetilbiciclo[3,1,0]hexan-3-il)carbamoil)-5-metil-1H-pirazol-1-il)-1-metilciclohexanocarboxílico
366	HO HO CI	ácido trans-4-(5-cloro-4-((2-(2,6-dicloro-4-metilfenil)-2-oxoetil)((1R/3r,5S)-6,6-dimetilbiciclo[3,1,0]hexan-3-il)carbamoil)-1H-pirazol-1-il)-1-metilciclohexanocarboxílico

ejemplo	estructura	nombre
367	H C C C C C C C C C C C C C C C C C C C	ácido trans-4-(5-cloro-4-((2-(3,5-dicloropiridin-4-il)-2-oxoetil)((1R;3r,5S)-6,6-dimetilbiciclo[3,1,0]hexan-3-il)carbamoil)-1H-pirazol-1-il)-1-metilciclohexanocarboxílico
368	H	ácido trans-4-(4-((2-(2-clorofenil)-2-hidroxietil) ((1R,3r, 5S)-6,6-dimetilbiciclo[3,1,0]hexan-3-il)carbamoil)-5-(trifluorometil)-1H-pirazol-1-il)-1-metilciclohexanocarboxílico
369	HO H HO H	ácido trans-4-(4-((2-(2-clorofenil)-2-hidroxietil)((1R,3r,5S)-6,6-dimetilbiciclo[3,1,0]hexan-3-il)carbamoil)-5-(trifluorometil)-1H-pirazol-1-il)-1-metilciclohexanocarboxílico
370	HO H	ácido trans-4-(4-(((1R,3r,5S)-6,6-dimetilbiciclo[3,1,0]hexan-3-il)(2-hidroxi-2-(2-metoxifenil)etil)carbamoil)-5-(trifluorometil)-1H-pirazol-1-il)-1-metilciclohexanocarboxílico
371	H	ácido trans-4-(4-(((1R,3r,5S)-6,6-dimetilbiciclo[3,1,0]hexan-3-il)(2-hidroxi-2-(2-metoxifenil)etil)carbamoil)-5-(trifluorometil)-1H-pirazol-1-il)-1-metilciclohexanocarboxílico
372	HO H	ácido trans-4-(4-(((1R,3r,5S)-6,6-dimetilbiciclo[3,1,0]hexan-3-il)(2-hidroxi-2-(2-(trifluorometil)fenil)etil)carbamoil)-5-(trifluorometil)-1H-pirazol-1-il)-1-metilciclohexanocarboxílico
373	HO H	ácido trans-4-(4-(((1R,3r,5S)-6,6-dimetilbiciclo[3,1,0]hexan-3-il)(2-hidroxi-2-(2-(trifluorometil)fenil)etil)carbamoil)-5-(trifluorometil)-1H-pirazol-1-il)-1-metilciclohexanocarboxílico

ejemplo	estructura	nombre
374		ácido trans-4-(5-cloro-4-((2-(2-cloro-6-metoxifenil)-2-hidroxietil)((1R,3r,5S)-6,6-dimetilbiCiclo[3,1,0]hexan-3-il)carbamoil)-1H-pirazol-1-il)-1-metilciclohexanocarboxílico
375	H O H O H O H O H O H O H O H O H O H O	ácido trans-4-(5-cloro-4-((2-(2-cloro-6-metoxifenil)-2-hidroxietil) ((1R, 3 r,5S)-6,6-dimetilbiciclo[3,1,0]hexan-3-il)carbamoil)-1H-pirazol-1-il)-1-metilciclohexanocarboxílico
376	H 2 H 2 N H	ácido trans-4-(4-((2-(4-cloro-1H-indazol-3-il)etil)((1R,3r,5S)-6,6-dimetilbiciclo[3,1,0]hexan-3-il)carbamoil)-5-(trifluorometil)-1H-pirazol-1-il)-1-metilciclohexanocarboxílico
377	HO FFF	ácido trans-4-(4-((2-(4-cloro-1H-indol-3-il)propil)((1R,3r,5S)-6,6-dimetilbiciclo[3,1,0]hexan-3-il)carbamoil)-5-(trifluorometil)-1H-pirazol-1-il)-1-metilciclohexanocarboxílico
378	U V U U	ácido trans-4-(5-cloro-4-((2-(3,5-dicloropiridin-4-il)-2-oxoetil)-((1-metilciclopropil)metil)carbamoil)pirazol-1-il)-1-metilciclohexano-1-carboxílico
379	HO HO	ácido trans-4-(4-((2-(3-cloro-5-metilpiridin-4-il)-2-oxoetil)-(2,2-dimetilpropil)carbamoil)-5-(trifluorometil)pirazol-1-il)-1-metilciclohexano-1-carboxílico
380	H, AH HO HO H N H N H N H N H N H N H N H N H H	ácido trans-4-(4-((2-(4-cloro-1H-pirrolo(2,3-c)piridin-3-il)etil)((1R,3r,5S)-6,6-dimetilbiciclo[3,1,0]hexan-3-il)carbamoil)-5-(trifluorometil)-1H-pirazol-1-il)-1-metilciclohexanocarboxílico

ejemplo	estructura	nombre
381	HO HO CI	ácido trans-4-(5-cloro-4-((2-(3,5-dicloropiridin-4-il)-2-oxoetil)-((3,3-dimetilciclobutil)metil)carbamoil)pirazol-1-il)-1-metilciclohexano-1-carboxílico
382	To T	ácido trans-4-(4-((2-(3,5-dicloropiridin-4-il)-2-oxoetil)- ((3,3-dimetilciclobutil)metil)carbamoil)-5-metilpirazol-1- il)-1-metilciclohexano-1-carboxílico
383	H N H CI	ácido trans-4-(4-((2-(3-cloro-5-fluoropiridin-4-il)-2-hidroxietil)((1R,3r,5S)-6,6-dimetilbiciclo[3,1,0]hexan-3-il)carbamoil)-5-(trifluorometil)-1H-pirazol-1-il)-1-metilciclohexanocarboxílico
384	H H L Z L C H C H C L C H C L C L C L C L C L C	ácido trans-4-(4-((2-(3-cloro-5-fluoropiridin-4-il)-2-hidroxietil)((1R,3 r,5S)-6,6-dimetilbiciclo[3,1,0]hexan-3-il)carbamoil)-5-(trifluorometil)-1H-pirazol-1-il)-1-metilciclohexanocarboxílico
385	H	ácido trans-4-(5-ciclopropil-4-((2-(2,6-diclorofenil)-2-oxoetil)((1R,3r,5S)-6,6-dimetilbiciclo[3,1,0]hexan-3-il)carbamoil)-1H-pirazol-1-il)-1-metilciclohexanocarboxílico
386	HO CI CI N	ácido trans-4-(5-cloro-4-((2-(3,5-dicloropiridin-4-il)-2-oxoetil)-((1-metil-7-oxabiciclo[2,2,1]heptan-4-il)metil)carbamoil)pirazol-1-il)-1-metilciclohexano-1-carboxílico
387	H H C C C C C C C C C C C C C C C C C C	ácido trans-4-(4-((2-(3-cloro-5-metilpiridin-4-il)-2-oxoetil)((1 R,3r,5S)-6,6-dimetilbiciclo[31,0]hexan-3-il)carbamoil)-5-(trifluorometil)-1H-pirazol-i-il)-1-metilciclohexanocarboxílico

ejemplo	estructura	nombre
388	HO HO CI	ácido trans-4-(5-cloro-4-((2-(3,5-dicloropiridin-4-il)-2-oxoetil)-((1-(trifluorometil)ciclopropil)metil)carbamo il)pirazol-1-il)-1-metilciclohexano-1-carboxílico
389	HO CI	ácido trans-4-(5-cloro-4-((2-(2,6-diclorofenil)-2-oxoetil)-(4,4-dimetilciclohexil)carbamoil)pirazol-1-il)-1-metilciclohexano-1-carboxílico
390	H, H CI H N CI H	ácido trans-4-(4-((2-(3-cloropiridin-2-il)-2-hidroxietil)((1R,3r,5S)-6,6-dimetilbiciclo[3,1,0]hexan-3-il)carbamoil)-5-(trifluorometil)-1H-pirazol-1-il)-1-metilciclohexanocarboxílico
391	HO F F F CHO H N CI	ácido trans-4-(4-((2-(3-cloropiridin-2-il)-2-hidroxietil)((1R, 3 r, 5S)-6,6-dimetilbiciclo[3,1,0]hexan-3-il)carbamoil)-5-(trifluorometil)-1H-pirazol-1-il)-1-metilciclohexanocarboxílico
392	H N H CI N H	ácido trans-4-(4-((2-(4-cloro-2-metil-1H-indol-3-il)etil)((1R,3r,5S)-6,6-dimetilbiciclo[3,1,0]hexan-3-il)carbamoil)-5-(trifluorometil)-1H-pirazol-1-il)-1-metilciclohexanocarboxílico
393	HO F F HO CI	ácido trans-4-(4-((2-(2-clorofenil)-2-hidroxipropil) ((1R, 3 r, 5S)-6,6-dimetilbiciclo[3,1,0]hexan-3-il)carbamoil)-5-(trifluorometil)-1H-pirazol-1-il)-1-metilciclohexanocarboxílico
394	HO HO CI	ácido trans-4-(4-((2-(3,5-dicloropiridin-4-il)-2-oxoetil)-(2-etil-2-fluorobutil)carbamoil)-5-(trifluorometil)pirazol-1-il)-1-metilciclohexano-1-carboxílico

ejemplo	estructura	nombre
395	FF U Z U U U U U U U U U U U U U U U U U	ácido trans-4-(5-cloro-4-((2-(3,5-dicloropiridin-4-il)-2-oxoetil)-(2-etil-2-fluorobutil)carbamoil)pirazol-1-il)-1-metilciclohexano-1-carboxílico
396	H C HO HO HO HO	ácido trans-4-(4-((2-(3-clorotiofen-2-il)-2-hidroxietil)((1R,3r,5S)-6,6-dimetilbiciclo[3,1,0]hexan-3-il)carbamoil)-5-(trifluorometil)-1H-pirazol-1-il)-1-metilciclohexanocarboxílico
397	H N H CI	ácido trans-4-(4-((2-(3-clorotiofen-2-il)-2-hidroxietil)((1R,3r,5S)-6,6-dimetilbiciclo[3,1,0]hexan-3-il)carbamoil)-5-(trifluorometil)-1H-pirazol-1-il)-1-metilciclohexanocarboxílico
398	H H H H H H H H H H H H H H H H H H H	ácido trans-4-(4-((2-(3-cloropiridin-2-il)-2-oxoetil)((1R,3r,5S)-6,6-dimetilbiciclo[3,1,0]hexan-3-il)carbamoil)-5-(trifluorometil)-1H-pirazol-1-il)-1-metilciclohexanocarboxílico
399	H P P P P P P P P P P P P P P P P P P P	ácido trans-4-(4-((2-(2-cloro-6-(difluorometoxi)fenil)-2-hidroxietil)((1R,3r,5S)-6,6-dimetilbiciclo[3,1,0]hexan-3-il)carbamoil)-5-(trifluorometil)-1H-pirazol-1-il)-1-metilciclohexanocarboxílico
400	H Z F C C F	ácido trans-4-(4-((2-(2-cloro-6-(difluorometoxi)fenil)-2-oxoetil)((1R,3r,5S)-6,6-dimetilbiciclo[3,1,0]hexan-3-il)carbamoil)-5-(trifluorometil)-1H-pirazol-1-il)-1-metilciclohexanocarboxílico
401	HO HO HO	ácido trans-4-(4-(((1R,3r,5S)-6,6-dimetilbiciclo[3,1,0]hexan-3-il)(2-hidroxi-2-(piridin-2-il)etil)carbamoil)-5-(trifluorometil)-1H-pirazol-1-il)-1-metilciclohexanocarboxílico

ejemplo	estructura	nombre
402	HO FFF HO H	ácido trans-4-(4-((2-(3-cloropiridin-2-il)-2-hidroxietil)-(2,2-dimetilpropil)carbamoil)-5-(trifluorometil)pirazol-1-il)-1-metilciclohexano-1-carboxílico
403	HO HO CI CHO H	ácido trans-4-(4-((2-(3-cloropiridin-2-il)-2-hidroxietil)-(2,2-dimetilpropil)carbamoil)-5-(trifluorometil)pirazol-1-il)-1-metilciclohexano-1-carboxílico
404	H Z L C C C C C C C C C C C C C C C C C C	ácido trans-4-(4-((2-(2,6-diclorofenil)-2-oxoetil)((1R,3r,5S)-6,6-dimetilbiciclo[3,1,0]hexan-3-il)carbamoil)-5-(1-fluorociclopropil)-1H-pirazol-1-il)-1-metilciclohexanocarboxílico
405	HO FEE ON NOT THE COLUMN THE COLU	ácido trans-4-(4-((2-(7-cloro-1H-benzo(d)imidazol-1-il)etil)((1R,3r,5S)-6,6-dimetilbiciclo[3,1,0]hexan-3-il)carbamoil)-5-(trifluorometil)-1H-pirazol-1-il)-1-metilciclohexanocarboxílico
406	DH LE CO LE	ácido trans-4-(4-((2-(2-cloro-6-(difluorometoxi)fenil)-2-oxoetil)-(2,2-dimetilpropil)carbamoil)-5-(trifluorometil)pirazol-1-il)-1-metilciclohexano-1-carboxílico
407	HO HO LE	ácido trans-4-(4-((2-(5-cloro-2-metilpirimidin-4-il)-2-hidroxietil)((1R,3r,5S)-6,6-dimetilbiciclo[3,1,0]hexan-3-il)carbamoil)-5-(trifluorometil)-1H-pirazol-1-il)-1-metilciclohexanocarboxílico
408	HO HO NON	ácido trans-4-(4-((2-(5-cloropirimidin-4-il)-2-hidroxietil)((1R, 3r,5S)-6,6-dimetilbiciclo[3,1,0]hexan-3-il)carbamoil)-5-(trifluorometil)-1H-pirazol-1-il)-1-metilciclohexanocarboxílico

ejemplo	estructura	nombre
409	HO F F H 2N CI	ácido trans-4-(4-((2-amino-2-(2-cloro-6-fluorofenil)etil)((1R,3r,5S)-6,6-dimetilbiciclo[3,1,0]hexan-3-il)carbamoil)-5-(trifluorometil)-1H-pirazol-1-il)-1-metilciclohexanocarboxílico
410	H H P P P P P P P P P P P P P P P P P P	ácido trans-4-(4-(((1R,3r,5S)-6,6-dimetilbiciclo[3,1,0]hexan-3-il)(2-hidroxi-2-(3-metilpirazin-2-il)etil)carbamoil)-5-(trifluorometil)-1H-pirazol-1-il)-1-metilciclohexanocarboxílico
411	H. A. H.	ácido trans-4-(4-((2-(2-clorotiofen-3-il)-2-hidroxietil)((1R,3r,5S)-6,6-dimetilbiciclo[3,1,0]hexan-3-il)carbamoil)-5-(trifluorometil)-1H-pirazol-1-il)-1-metilciclohexanocarboxílico
412	HO HO HO	ácido trans-4-(4-(2-(3,5-dicloropiridin-4-il)etil-((4-fluorofenil)metil)carbamoil)-3,5-bis(trifluorometil)pirazol-1-il)ciclohexano-1-carboxílico
500	HO O CI	ácido trans-4-(4-((4-clorobencil)(2-(2-clorofenil)etil)carbamoil)-5-(trifluorometil)-1H-pirazol-1-il)ciclohexanocarboxílico
501	HO O CI	ácido trans-4-(4-((4-clorobencil)(2-(2,6-diclorofenil)etil)carbamoil)-5-(trifluorometil)-1H-pirazol-1-il)ciclohexanocarboxílico
502	HO O O O O O O O O O O O O O O O O O O	ácido trans-4-(4-((4-clorobencil)(2-feniletil)carbamoil)-5-(trifluorometil)-1H-pirazol-1-il)ciclohexanocarboxílico

ejemplo	estructura	nombre
503	CL CL HZ	ácido trans-4-(4-((4-clorobencil)(2-(1 H-indol-6-il)etil)carbamoil)-5-(trifluorometil)-1H-pirazol-1-il)ciclohexanocarboxílico
504	HO O CI CI CI	ácido trans-4-(4-((4-clorobencil)(2-(2,4-diclorofenil)etil)carbamoil)-5-(trifluorometil)-1H-pirazol-1-il)ciclohexanocarboxílico
505	HO O F N N CI N	ácido trans-4-(4-((4-clorobencil)(2-(2,4-dimetilfenil)etil)carbamoil)-5-(trifluorometil)-1H-pirazol-1-il)ciclohexanocarboxílico
506	HNN OH OH	ácido trans-4-(4-((4-clorobencil)(2-(1 H-indol-4-il)etil)carbamoil)-5-(trifluorometil)-1H-pirazol-1-il)ciclohexanocarboxílico
507	H N O H	ácido trans-4-(4-((4-clorobencil)(2-(1 H-indol-3-il)etil)carbamoil)-5-(trifluorometil)-1H-pirazol-1-il)ciclohexanocarboxílico
508	HOO HZ	ácido trans-4-(4-((4-clorobencil)(2-(1H-indol-7-il)etil)carbamoil)-5-(trifluorometil)-1H-pirazol-1-il)ciclohexanocarboxílico
509	HOOO FFNN O	ácido trans-4-(4-((4-clorobencil)(2-(2-metilfenil)etil)carbamoil)-5-(trifluorometil)-1H-pirazol-1-il)ciclohexanocarboxílico

ejemplo	estructura	nombre
510	HO O F N O CI	ácido trans-4-(4-((ciclohexilmetil)(2-(2,6-dicloro-4-metilfenil)etil)carbamoil)-5-(trifluorometil)-1H-pirazol-1-il)ciclohexanocarboxílico
511	H O C C C C C C C C C C C C C C C C C C	ácido trans-4-(4-((2-(2,6-dicloro-4-metilfenil)etil)((1-metilciclohexil)metil)carbamoil)-5-(trifluorometil)-1H-pirazol-1-il)ciclohexanocarboxílico
512	O C C C C C C C C C C C C C C C C C C C	ácido trans-4-(4-((2-(2,6-dicloro-4-metilfenil)etil)(2,2-dimetilpropil)carbamoil)-5-(trifluorometil)-1H-pirazol-1-il)ciclohexanocarboxílico
513	H N P F F F	ácido trans-4-(4-((4-clorobencil)(2-(2-metil-1H-indol-3-il)etil)carbamoil-5-(trifluorometil)-1H-pirazol-1-il)ciclohexanocarboxílico
514	H O O CI	ácido trans-4-(4-((ciclohexilmetil)(2-(2,6-dicloro-4-metilfenil)etil)carbamoil)-5-(trifluorometil)-1H-pirazol-1-il)-1-metilciclohexanocarboxílico
515	HO CI	ácido trans-4-(4-((2-(2,6-dicloro-4-metilfenil)etil)(2,2-dimetilpropil)carbamoil)-5-(trifluorometil)-1H-pirazol-1-il)-1-metilciclohexanocarboxílico
516	HO CI	ácido trans-4-(4-((2-(2,6-dicloro-4-metilfenil)-2-oxoetil)(4,4-dimetilciclohexil)carbamoil)-5-(trifluorometil)-1H-pirazol-1-il)ciclohexanocarboxílico

ejemplo	estructura	nombre
517	HO O CI	ácido trans-4-(4-((2-(2,6-dicloro-4-metilfenil)-2-oxoetil)(2,2-dimetilpropil)carbamoil)-5-(trifluorometil)-1H-pirazol-1-il)ciclohexanocarboxílico
518	HO O CI	ácido trans-4-(4-((2-(2,6-dicloro-4-metilfenil)-2-oxoetil)(espiro[2,5]oct-6-ilmetil)carbamoil)-5-(trifluorometil)-1H-pirazol-1-il)ciclohexanocarboxílico
519	HOO CO	ácido trans-4-(4-((2-(2,6-dicloro-4-metilfenil)-2-oxoetil)((1-metilciclohexil)metil)carbamoil)-5-(trifluorometil)-1H-pirazol-1-il)ciclohexanocarboxílico
520	HO O CI	ácido trans-4-(4-((2-(2,6-dicloro-4-metilfenil)-2-oxoetil)((3,3-dimetilciclobutil)metil)carbamoil) 5-(trifluorometil)-1H-pirazol-1-il)ciclohexanocarboxílico
521	HO O F N N CI CI	ácido trans-4-(4-((2-(2,6-diclorofenil)-2-oxoetil) ((3,3-dimetilciclobutil)metil)carbamoil) 5-(trifluorometil)-1H-pirazol-1-il)ciclohexanocarboxílico
522	HO O F F O CI CI CI	ácido trans-4-(4-((2-(2,6-dicloro-4-metilfenil)-2-oxoetil)(3,5-difluoro-4-(trifluorometil)bencil)carbamoil)-5-(trifluorometil)-1H-pirazol-1-il)ciclohexanocarboxílico
523	F N CI	ácido trans-4-(4-((2-(2,6-diclorofenil)etil)(2,2-dimetilpropil)carbamoil)-5- (trifluorometil)-1H-pirazol-1-il)ciclohexanocarboxílico

ejemplo	estructura	nombre
524	O H O F CI O H CI O H	ácido trans-4-(4-(((2R)-2-(2,6-diclorofenil)-2-hidroxietil)(2,2-dimetilpropil)carbamoil)-5-(trifluorometil)-1H-pirazol-1-il)ciclohexanocarboxílico
525	HO O O O O O O O O O O O O O O O O O O	ácido trans-4-(4-((2-(2,6-diclorofenil)-2-oxoetil)(4,4-dimetilciclohexil)carbamoil)-5-(trifluorometil)-1H-pirazol-1-il)ciclohexanocarboxílico
526	H L L L L L L L L L L L L L L L L L L L	ácido trans-4-(4-((2-(2,6-diclorofenil)etil)(4- (trifluorometil)bencil)carbamoil)-5-(trifluorometil)-1H- pirazol-1-il)ciclohexanocarboxílico
527	HO O CI	ácido trans-4-(4-((2-(2,6-diclorofenil)-2-oxoetil)(4- (trifluorometil)bencil)carbamoil)-5-(trifluorometil)-1H- pirazol-1-il)ciclohexanocarboxílico
528	HO O CI	ácido trans-4-(4-((2-(2,6-dicloro-4-metilfenil)-2-oxoetil)(4-(trifluorometil)bencil)carbamoil)-5-(trifluorometil)-1H-pirazol-1-il)ciclohexanocarboxílico
529	HO O CI	ácido trans-4-(4-(((2R/S)-2-(2,6-dicloro-4-metilfenil)-2-metoxietil)(2,2-dimetilpropil)carbamoil)-5-(trifluorometil)-1H-pirazol-1-il)ciclohexanocarboxílico
530	HOOO CI	ácido trans-4-(4-(((2S)-2-(2,6-dicloro-4-metilfenil)-2-metoxietil)(2,2-dimetilpropil)carbamoil)-5-(trifluorometil)-1H-pirazol-1-il)ciclohexanocarboxílico

ejemplo	estructura	nombre
531	HOOO F NN OO CI	ácido trans-4-(4-(((2R)-2-(2,6-dicloro-4-metilfenil)-2-metoxietil)(2,2-dimetilpropil)carbamoil)-5-(trifluorometil)-1H-pirazol-1-il)ciclohexanocarboxílico
532	H O O O CI	ácido trans-4-(4-((2-(2,6-dicloro-4-metilfenil)-2-oxoetil)((4,4-dimetilciclohexil)metil)carbamoil)-5-(trifluorometil)-1H-pirazol-1-il)-1-metilciclohexanocarboxílico
533	HO G G G G G G G G G G G G G G G G G G G	ácido trans-4-(4-((ciclohexilmetil)(2-(2,6-dicloro-4-metilfenil)-2-oxoetil)carbamoil)-5-(trifluorometil)-1H-pirazol-1-il)-1-metilciclohexanocarboxílico
534	OH OO F F	ácido trans-4-(4-((2-(2,6-diclorofenil)etil)(4,4-dimetilciclohexil)carbamoil)-5-(trifluorometil)-1H-pirazol-1-il)ciclohexanocarboxílico
535	CI O F F	ácido trans-4-(4-((2-(2,6-dicloro-4-metilfenil)-2-oxoetil)((4,4-dimetilciclo hexil)metil)carbamoil)-5-(trifluorometil)-1H-pirazol-1-il)ciclohexanocarboxílico
536	OH ON F OF F	ácido trans-4-(4-((2-(2,6-dicloro-4-metilfenil)-2-oxoetil)(trans-3-(2-metil-2-propanil)ciclobutil)carbamoil)-5-(trifluorometil)-1H-pirazol-1-il)ciclohexanocarboxílico
537	CI N N F F	ácido trans-4-(4-((ciclohexilmetil)(2-(2,6-dicloro-4-metilfenil)-2-oxoetil)carbamoil)-5-(trifluorometil)-1H-pirazol-1-il)ciclohexanocarboxílico

ejemplo	estructura	nombre
538	CI ODNA F F N-N HOO	ácido trans-4-(4-((2-(3-cloro-4-quinolinil)-2-oxoetil)(2,2-dimetilpropil)carbamoil)-5-(trifluorometil)-1H-pirazol-1-il)-1-metilciclohexanocarboxílico
539	CI ON FFNNN ON OH	ácido trans-4-(4-((2-(3-cloro-4-quinolinil)-2-oxoetil)(4-fluorobencil)carbamoil)-5-(trifluorometil)-1H-pirazol-1-il)ciclohexanocarboxílico
541	CI OF F	ácido trans-4-(4-((4-clorobencil)(2-(2,6-dicloro-3-fluorofenil)-2-oxoetil)carbamoil)-5-(trifluorometil)-1H-pirazol-1-il)ciclohexanocarboxílico
542	CI N N N N N N N N N N N N N N N N N N N	ácido trans-4-(4-((2-(2,4-dicloro-6-metil-3-piridinil)-2-oxoetil)(2,2-dimetilpropil)carbamoil)-5-(trifluorometil)-1H-pirazol-1-il)ciclohexanocarboxílico
543		ácido trans-4-(4-((4-clorobencil)(2-(2,4-dicloro-6-metil-3-piridinil)-2-oxoetil)carbamoil)-5-(trifluorometil)-1H-pirazol-1-il)ciclohexanocarboxílico
544	F F N N N N N N N N N N N N N N N N N N	ácido trans-4-(4-((4-clorobencil)(2-(4,6-dimetil-2-oxo-1 (2H)-piridinil)etil)carbamoil)-5-(trifluorometil)-1H-pirazol-1-il)ciclohexanocarboxílico
545	HO O CI	ácido trans-4-(4-((2-(2,6-diclorofenil)-2-oxoetil)(2,2-dimetilpropil)carbamoil)-5-(trifluorometil)-1H-pirazol-1-il)ciclohexanocarboxílico

ejemplo	estructura	nombre
546	Cr Cl OH	ácido trans-4-(4-((2-(3,5-dicloro-4-piridinil)etil)((4-dimetilciclohexil)metil)carbamoil)-5-(trifluorometil)-1H-pirazol-1-il)ciclohexanocarboxílico
547	CI CI CI N N N N N N N N N N N N N N N N	ácido trans-4-(4-((2-(3,5-dicloro-4-piridinil)etil)(2,2-dimetilpropil)carbamoil)-5-(trifluorometil)-1H-pirazol-1-il)ciclohexanocarboxílico
548	CI CI N N N N N N N N N N N N N N N N N	ácido trans-4-(4-((2-(3,5-dicloro-4-piridinil)etil)(4,4-dimetil-2-pentin-1-il)carbamoil)-5-(trifluorometil)-1H-pirazol-1-il)ciclohexanocarboxílico
549	CI CI N N N N N N N N N N N N N N N N N	ácido trans-4-(4-((2-(3,5-dicloro-4-piridinil)etil)((1-metilciclohexil)metil)carbamoil)-i 5-(trifluorometil)-1H-pirazol-1-il)ciclohexanocarboxílico
550	CI CI N N N N N N N N N N N N N N N N N	ácido trans-4-(4-((2-(3,5-dicloro-4-piridinil)etil)(4,4-dimetilciclo hexil)carbamoil)-5-(trifluorometil)-1H-pirazol-1-il)ciclohexanocarboxílico
552	CI CI N N N O F F O O	ácido trans-4-(4-((2-(3,5-dicloro-4-piridinil)etil)(((2S)-2-metiltetrahidro-2-furanil)metil)carbamoil)-5-(trifluorometil)-1H-pirazol-1-il)ciclohexanocarboxílico
553	CI CI O O O O O O O O O O O O O O O O O	ácido trans-4-(4-((2-(3,5-dicloro-4-piridinil)etil)((3,3-dimetilciclobutil)metil)carbamoil)-5-(trifluorometil)-1H-pirazol-1-il)ciclohexanocarboxílico

ejemplo	estructura	nombre
554	Cr Cl OH OH	ácido trans-4-(4-((2-(3,5-dicloro-4-piridinil)etil)(((1 R)-2,2-dimetilciclopropil)metil)carbamo il)-5-(trifluorometil)-1H-pirazol-1-il)ciclohexanocarboxílico
555	CI CI O F F F N N F F O H	ácido trans-4-(4-((2-(3,5-dicloro-4-piridinil)-2-oxoetil)((1R,3s,5S)-6,6-dimetilbiciclo[3,1,0]hex-3-il)carbamoil)-5-(trifluorometil)-1H-pirazol-1-il)ciclohexanocarboxílico
556	CI CI O O H	ácido trans-4-(4-((2-(3,5-dicloro-4-piridinil)etil)((3,3-dimetilciclobutil)metil)carbamoil) 5-(trifluorometil)-1H-pirazol-1-il)-1-metilciclohexanocarboxílico
557	O HO F O F	ácido trans-4-(4-((2-(3,5-dicloro-4-piridinil)etil)((1-metilciclopentil)metil)carbamoil)-5-(trifluorometil)-1H-pirazol-1-il)ciclohexanocarboxílico
558	CI CI OH	ácido trans~4-(4-((2-(3,5-dicloro-4-piridinil)-2-oxoetil)((1 R,3r,5S)-6,6-dimetilbiciclo[3,1,0]hex-3-il)carbamoil)-5-(trifluorometil)-1H-pirazol-1-il)-1-metilciclohexanocarboxílico
559	CI CI O N N N N N N N N N N N N N N N N N N	ácido trans-4-(4-((2-(3,5-dicloro-4-piridinil)-2-oxoetil)((3,3-dimetilciclobutil)metil)carbamoil) 5-(trifluorometil)-1H-pirazol-1-il)-1-metilciclohexanocarboxílico
560	CI CI N N N N N N N N N N N N N N N N N	ácido cis-4-(4-((2-(3,5-dicloro-4-piridinil)etil)((1-metilciclobutil)metil)carbamoil)-5-(trifluorometil)-1H-pirazol-1-il)ciclohexanocarboxílico

ejemplo	estructura	nombre
561	CC CI OH OH	ácido trans-4-(4-((2-(3,5-dicloro-4-piridinil)-2-oxoetil)((4,4-dimetilciclohexil)metil)carbamoil)-5-(trifluorometil)-1H-pirazol-1-il)-1-metilciclohexanocarboxílico
562	CI CI N N N N N N N N N N N N N N N N N	ácido trans-4-(4-((2-(3,5-dicloro-4-piridinil)etil)((1-metilciclobutil)metil)carbamoil)-5-(trifluorometil)-1H-pirazol-1-il)-1-metilciclohexanocarboxílico
563	HO N N N N N N N N N N N N N N N N N N N	ácido cis-4-(4-((2-(3,5-dicloro-4-piridinil)etil)((1-metilciclopropil)metil)carbamoil)-5-(trifluorometil)-1H-pirazol-1-il)ciclohexanocarboxílico
564	HO F F O	ácido trans-4-(4-((2-(3,5-dicloro-4-piridinil)etil)((1-metilciclopropil)metil)carbamoil)-5-(trifluorometil)-1H-pirazol-1-il)-1-metilciclohexanocarboxílico
565	HO O CI	ácido cis-4-(4-((2-(2,6-dicloro-4-metilfenil)-2-oxoetil)(espiro[2,3]hex-5-ilmetil)carbamoil)-5-(trifluorometil)-1H-pirazol-1-il)ciclohexanocarboxílico
566	HO HO CI	ácido trans-4-(4-((2-(2,6-diclorofenil)-2-oxoetil)(espiro[2,3]hex-5-ilmetil)carbamoil)-5-(trifluorometil)-1H-pirazol-1-il)-1-metilciclohexanocarboxílico
567	H O O CI	ácido trans-4-(4-((2-(2,6-diclorofenil)-2-oxoetil)(espiro[2,3]hex-5-ilmetil)carbamoil)-5-(trifluorometil)-1H-pirazol-1-il)ciclohexanocarboxílico

ejemplo	estructura	nombre
568	HO O CI	ácido trans-4-(4-((2-(2,6-dicloro-4-metilfenil)-2- oxoetil)(2,2-dimetilpropil)carbamoil)-5-(trifluorometil)- 1H-pirazol-1-il)-1-metilciclohexanocarboxílico
569	HO O CI	ácido trans-4-(4-((2-(2,6-diclorofenil)-2- oxoetil)(espiro[2,5]oct-6-ilmetil)carbamoil)-5- (trifluorometil)-1H-pirazol-1-il)-1- metilciclohexanocarboxílico
570	HO O F N N O CI O CI	ácido (1S,2R,4R)-(4-((2-(2,6-diclorofenil)-2-oxoetil)((3,3-dimetilciclobutil)metil)carbamoil) 5-(trifluorometil)-1H-pirazol-1-il)-2-metilciclohexanocarboxílico
571	HO O C C C C C C C C C C C C C C C C C C	ácido trans-4-(4-((2-(2,6-dicloro-4-metilfenil)-2-oxoetil)((1-metilciclohexil)metil)carbamoil)-5-(trifluorometil)-1H-pirazol-1-il)-1-metilciclohexanocarboxílico
572	HO O CI	ácido (1S.2R,4S)-4-(4-((2-(2,6-diclorofenil)-2-oxoetil)((3,3-dimetilciclobutil)metil)carbamoil) 5-(trifluorometil)-1H-pirazol-1-il)-2-metilciclohexanocarboxílico
573	OH O F F	ácido trans-4-(4-(((2R)-2-(2,6-diclorofenil)-2-hidroxietil)(2,2-dimetilpropil)carbamoil)-5-(trifluorometil)-1H-pirazol-1-il)ciclohexanocarboxílico
574	O H O O F CI OH CI	ácido trans-4-(4-(((2S)-2-(2,6-diclorofenil)-2-hidroxietil)(2,2-dimetilpropil)carbamoil)-5-(trifluorometil)-1H-pirazol-1-il)ciclohexanocarboxílico

ejemplo	estructura	nombre
575	H O O O O O O O O O O O O O O O O O O O	ácido trans-4-(4-((2-(2,6-dicloro-4-metoxifenil)-2-oxoetil)(4,4-dimetilciclohexil)carbamoil)-5-(trifluorometil)-1H-pirazol-1-il)ciclohexanocarboxílico
576	CI C	ácido trans-4-(4-(((3R)-3-((3,5-dicloro-4-piridinil)metil)-2-azaespiro[4,4]non-7-en-2-il)carbonil)-5-(trifluorometil)-1H-pirazol-1-il)-1-metilciclohexanocarboxílico
577	CI CI O N N N O O F F HO	ácido trans-4-(4-((2-(3,5-dicloro-4-piridinil)-2-oxoetil)((1-metilciclopropil)metil)carbamoil)-5-(trifluorometil)-1H-pirazol-1-il)-1-metilciclohexanocarboxílico
578	CI O H O H	ácido trans-4-(4-((2-(3,5-dicloro-4-piridinil)-2-oxoetil)((1S)-2,2-dimetilciclobutil)carbamoil)-5-(trifluorometil)-1H-pirazol-1-il)-1-metilciclohexanocarboxílico
579	HO O	ácido trans-4-(4-((2-(2,6-dicloro-4-metoxifenil)-2-oxoetil)(4,4-dimetilciclohexil)carbamoil)-5-(trifluorometil)-1H-pirazol-1-il)-1-metilciclohexanocarboxílico
580	HO O O CI	ácido trans-4-(4-((2-(2,6-dicloro-4-metoxifenil)-2-oxoetil)((3,3-dimetilciclobutil)metil)carbamoil) 5-(trifluorometil)-1H-pirazol-1-il)ciclohexanocarboxílico
581	H Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q	ácido trans-4-(4-((2-(2,6-dicloro-4-metoxifenil)-2-oxoetil)((3,3-dimetilciclobutil)metil)carbamoil) 5-(trifluorometil)-1H-pirazol-1-il)-1-metilciclohexanocarboxílico

ejemplo	estructura	nombre
582	CI C	ácido trans-4-(4-(((3R)-3-((3,5-dicloro-4-piridinil)metil)-2-azaespiro[4,4]non-2-il)carbonil)-5-(trifluorometil)-1H-pirazol-1-il)-1-metilciclohexanocarboxílico
583	H O CI	ácido trans-4-(4-((2-(2,6-dicloro-4-metilfenil)-2-oxoetil)(espiro[2,3]hex-5-ilmetil)carbamoil)-5-(trifluorometil)-1H-pirazol-1-il)-1-metilciclohexanocarboxílico
584	HO O CI	ácido trans-4-(4-((2-(2,6-dicloro-4-metoxifenil)-2-oxoetil)((1-fluorociclopentil)metil)carbamoil)-5-(trifluorometil)-1H-pirazol-1-il)-1-metilciclohexanocarboxílico
585	H O O F N N O Br	ácido cis-4-(4-((2-(2-bromofenil)-2-oxoetil)((3,3-dimetilciclobutil)metil)carbamoil)-5-(trifluorometil)-1H-pirazol-1-il)ciclohexanocarboxílico
586	CI CI ON N	N-(2-(3,5-dicloro-4-piridinil)-2-oxoetil)-N-(2,2-dimetilpropil)-1- ((1 S,2S)-2-(2-propen-1-il)ciclohexil) 5-(trifluorometil)-1H-pirazol-4-carboxamida
587	CI C	ácido trans-4-(4-((2-(3,5-dicloro-4-piridinil)-2-oxoetil)(3,3-dimetilciclobutil)carbamoil)-5-(trifluorometil)-1H-pirazol-1-il)-1-metilciclohexanocarboxílico
588		ácido trans-4-(4-((2-(3,5-dicloro-4-piridinil)-2-oxoetil)((1-metilciclohexil)metil)carbamoil)-5-(trifluorometil)-1H-pirazol-1-il)-1-metilciclohexanocarboxílico

ejemplo	estructura	nombre
589	HO P N N O Br	ácido trans-4-(4-((2-(2-bromofenil)-2-oxoetil)((3,3-dimetilciclobutil)metil)carbamoil) 5-(trifluorometil)-1H-pirazol-1-il)-1-metilciclohexanocarboxílico
590	HO O CI	ácido cis-4-(4-((2-(2,6-dicloro-4-metoxifenil)-2-oxoetil)((1-fluorociclopentil)metil)carbamoil)-5-(trifluorometil)-1H-pirazol-1-il)ciclohexanocarboxílico
591	CI CI N N N N N N N N N N N N N N N N N	ácido trans-4-(4-((2-(3,5-dicloro-4-piridinil)etil)((1-metilciclopentil)metil)carbamoil)-5-(trifluorometil)-1H-pirazol-1-il)-1-metilciclohexanocarboxílico
592		ácido trans-4-(4-((ciclopentilmetil)(2-(3,5 dicloro-4-piridinil)-2-oxoetil)carbamoil)-5-(trifluorometil)-1H-pirazol-1-il)-1-metilciclohexanocarboxílico
593		ácido trans-4-(4-((2-(3,5-dicloro-4-piridinil)-2-oxoetil)((1-fluorociclopropil)metil)carbamoil)-5-(trifluorometil)-1H-pirazol-1-il)-1-metilciclohexanocarboxílico
594	CI CI O O O F F F F	ácido trans-4-(4-((2-(3,5-dicloro-4-piridinil)-2-oxoetil)((3,3-difluorociclobutil)metil)carbamoil)-5-(trifluorometil)-1H-pirazol-1-il)-1-metilciclohexanocarboxílico
595	H O O O CI	ácido trans-4-(4-((2-(2-cloro-6-fluorofenil)-2- oxoetil)((3,3-dimetilciclobutil)metil)carbamoil) 5- (trifluorometil)-1H-pirazol-1-il)-1- metilciclohexanocarboxílico

ejemplo	estructura	nombre
596	HO O CI	ácido cis-4-(4-((2-(2-cloro-6-fluorofenil)-2-oxoetil)((3,3-dimetilciclobutil)metil)carbamoil) 5-(trifluorometil)-1H-pirazol-1-il)ciclohexanocarboxílico
597	H 0 0 0 F N N N N N N N N N N N N N N N N	ácido cis-4-(4-((2-(2,6-difluorofenil)-2-oxoetil)((3,3-dimetilciclobutil)metil)carbamoil) 5-(trifluorometil)-1H-pirazo 1-1-il)ciclohexanocarboxílico
598	F N N N	ácido trans-4-(4-((2-(2,6-difluorofenil)-2-oxoetil)((3,3-dimetilciclobutil)metil)carbamoil) 5-(trifluorometil)-1H-pirazol-1-il)-1-metilciclohexanocarboxílico
599	HO CO	ácido trans-4-(4-((2-(2,6-diclorofenil)-2-oxoetil)(3,3-dimetilciclobutil)carbamoil)-5-(trifluorometil)-1H-pirazol-1-il)-1-metilciclohexanocarboxílico
600	HO O F N N C O C C C C C C C C C C C	ácido cis-4-(4-((2-(2,6-diclorofenil)-2-oxoetil)(3,3-dimetilciclobutil)carbamoil)-5-(trifluorometil)-1H-pirazol-1-il)ciclohexanocarboxílico
601	F N N C C C C C C C C C C C C C C C C C	ácido trans-4-(4-((2-(2,6-diclorofenil)-2-oxoetil)(((2 R)-4,4-dimetil-2-oxetanil)metil)carbamoil)-5-(trifluorometil)-1H-pirazol-1-il)-1-metilciclohexanocarboxílico
602	HO HO NO P	ácido trans-4-(4-(((3,3-dimetilciclobutil)metil)(2-(2-fluoro-6-metoxifenil)-2-oxoetil)carbamoil)-5-(trifluorometil)-1H-pirazol-1-il)-1-metilciclohexanocarboxílico

ejemplo	estructura	nombre
603	HO O CI	ácido cis-4-(4-((2-(2,6-diclorofenil)-2-oxoetil)((1-fluorociclopentil)metil)carbamoil)-5-(trifluorometil)-1H-pirazol-1-il)ciclohexanocarboxílico
604	HO N	ácido trans-4-(4-((2-(2-cianofenil)-2-oxoetil)((3,3-dimetilciclobutil)metil)carbamoil) 5-(trifluorometil)-1H-pirazol-1-il)-1-metilciclohexanocarboxílico
605	F N N O O O O H	ácido trans-4-(4-((2-(2,6-diclorofenil)etil)((2R)-1-hidroxi-4,4-dimetil-2-pentanil)carbamoil)-5-(trifluorometil)-1H-pirazol-1-il)-1-metilciclohexanocarboxílico
606	CI CI N F N F N F N F N F N F N F N F N F N	ácido trans-4-(4-((2-(3,5-dicloro-4-piridinil)etil)((1-fluorociclopentil)metil)carbamoil)-5-(trifluorometil)-1H-pirazol-1-il)-1-metilciclohexanocarboxílico
607		ácido trans-4-(4-((4,4-dimetilciclohexil)(2-(2-fluoro-6-metoxifenil)-2-oxoetil)carbamoil)-5-(trifluorometil)-1H-pirazol-1-il)-1-metilciclohexanocarboxílico
608	HO N E	ácido trans-4-(4-(((1-fluorociclopentil)metil)(2-(2-fluoro-6-metoxifenil)-2-oxoetil)carbamoil)-5-(trifluorometil)-1H-pirazol- 1-il)-1-metilciclohexanocarboxílico
609	CI CI CI N F N F N F N F N F N F N F N F N F N	ácido cis-4-(4-((2-(3,5-dicloro-4-piridinil)etil)((1-fluorociclopentil)metil)carbamoil)-5-(trifluorometil)-1H-pirazol-1-il)ciclohexanocarboxílico

ejemplo	estructura	nombre
610	HO O O O O O O O O O O O O O O O O O O	ácido cis-4-(4-((2-(2,6-diclorofenil)-2-oxoetil)((1 R,3r,5S)-6,6-dimetilbiciclo[3,1,0]hex-3-il)carbamoil)-5-(trifluorometil)-1H-pirazol-1-il)ciclohexanocarboxílico
611	F CI CI	ácido trans-4-(4-((2-(2,6-diclorofenil)-2-oxoetil)((1-fluorociclopropil)metil)carbamoil)-5-(trifluorometil)-1H-pirazol-1-il)-1-metilciclohexanocarboxílico
612	CI N N F O H	ácido trans-4-(4-((2-(2,6-diclorofenil)-2-oxoetil)(((1r,4r)-4-metilbiciclo[2,2,1]hept-1-il)metil)carbamoil)-5-(trifluorometil)-1H-pirazol-1-il)-1-metilciclohexanocarboxílico
613	F N.N	ácido cis-4-(4-((2-(2,6-diclorofenil)-2- oxoetil)(espiro[3,3]hept-2-il)carbamoil)-5-(trifluorometil)- 1H-pirazol-1-il)ciclohexanocarboxílico
614		ácido trans-4-(4-((2-(3,5-dicloro-4-piridinil)-2-oxoetil)(((2R,5R)-5-metiltetrahidro-2-furanil)metil)carbamoil)-5-(trifluorometil)-1H-pirazol-1-il)-1-metilciclohexanocarboxílico
615		ácido cis-4-(4-((2-(2,6-diclorofenil)-2-oxoetil)(((1r,4r)-4-metilbiciclo[2,2,1]hept-1-il)metil)carbamoil)-5-(trifluorometil)-1H-pirazol-1-il)ciclohexanocarboxílico
616		ácido trans-4-(4-((2-(3,5-dicloro-4-piridinil)-2-oxoetil)((1 R)-2,2-dimetilciclobutil)carbamoil)-5-(trifluorometil)-1H-pirazol-1-il)-1-metilciclohexanocarboxílico

ejemplo	estructura	nombre
617	CI O H O H	ácido trans-4-(4-((2-(3,5-dicloro-4-piridinil)-2-oxoetil)((1 S)-2,2-dimetilciclobutil)carbamoil)-5-(trifluorometil)-1H-pirazol-1-il)-1-metilciclohexanocarboxílico
618	CT CI	ácido trans-4-(4-(((2R)-2-((3,5-dicloro-4-piridinil)metil)-4,4-di(2-propen-1-il)-1-pirrolidinil)carbonil)-5- (trifluorometil)-1H-pirazol-1-il)-1- metilciclohexanocarboxílico
619	HO O CI	ácido trans-4-(4-((2-(2,6-diclorofenil)-2-oxoetil)((1S)-espiro[2,4]hept-1-il)carbamoil)-5-(trifluorometil)-1H-pirazol-1-il)-1-metilciclohexanocarboxílico
620	H O O C C C C C	ácido trans-4-(4-((2-(2,6-diclorofenil)-2-oxoetil)((1S)-espiro[2,4]hept-1-il)carbamoil)-5-(trifluorometil)-1H-pirazol-1-il)-1-metilciclohexanocarboxílico
621	CI C	ácido cis-4-(4-((2-(3,5-dicloro-4-piridinil)etil)((1R)-espiro[3,3]hept-1-il)carbamoil)-5-(trifluorometil)-1H-pirazol-1-il)ciclohexanocarboxílico
622	O HO N N N O CI	ácido trans-4-(4-((3-ciano-3-metilbutil)(2-(2,6-diclorofenil)-2-oxoetil)carbamoil)-5-(trifluorometil)-1H-pirazol-1-il)-1-metilciclohexanocarboxílico
623	CI O H O H	ácido trans-4-(4-((2-(3,5-dicloro-4-piridinil)-2-oxoetil)((1S)-2,2-dimetilciclopropil)carbamoil)-5-(trifluorometil)-1H-pirazol-1-il)-1-metilciclohexanocarboxílico

ejemplo	estructura	nombre
624	HO O F N N C O N C C I	ácido cis-4-(4-((2-(2,6-diclorofenil)-2-oxoetil)((1 S)-espiro[2,4]hept-1-il)carbamoil)-5-(trifluorometil)-1H-pirazol-1-il)ciclohexanocarboxílico
625	HO F N N O O O O	ácido trans-4-(4-((2-(2,6-diclorofenil)-2-oxoetil)((1S)-espiro[2,4]hept-1-il)carbamoil)-5-(trifluorometil)-1H-pirazol-1-il)-1-metilciclohexanocarboxílico
626	HO F N N C	ácido trans-4-(4-((2-(2,6-diclorofenil)-2-oxoetil)((1 S)-espiro[3,4]oct-1-il)carbamoil)-5-(trifluorometil)-1H-pirazo 1-1-il)-1-metilciclohexanocarboxílico
627	HOOO CI	ácido cis-4-(4-((2-(2,6-diclorofenil)-2-oxoetil)((1 R)-espiro[3,4]oct-1-il)carbamoil)-5-(trifluorometil)-1H-pirazol-1-il)ciclohexanocarboxílico
628	HO CI	ácido trans-4-(4-((2-(2,6-diclorofenil)-2-oxoetil)(((2R)-4,4-dimetil-2-oxetanil)metil)carbamoil)-5-(trifluorometil)-1H-pirazol-1-il)-1-metilciclohexanocarboxílico
629	HO CI	ácido trans-4-(4-((2-(2,6-dicloropbenil)-2-oxoetil)(((2SH,4-dimetil-2-oxetanil)metil)carbamoil)-5-(trifluorometil)-1H-pirazol-1-il)-1-metilciclohexanocarboxílico
630	F N F F O CI CI	ácido trans-4-(4-((2-(2,6-dicloro-4-metilfenil)-2-oxoetil)((1-fluorociclopropil)metil)carbamoil)-5-(trifluorometil)-1H-pirazol-1-il)-1-metilciclohexanocarboxílico

ejemplo	estructura	nombre
631	HO O F N O CI O CI	ácido cis-4-(4-((2-(2,6-dicloro-4-metilfenil)-2-oxoetil)((1-fluorociclopentil)metil)carbamoil)-5-(trifluorometil)-1H-pirazol-1-il)ciclohexanocarboxílico
632	I N O CI	ácido trans-4-(4-((2-(2,6-diclorofenil)-2-oxoetil)(espiro[3,3]hept-2-il)carbamoil)-5-(trifluorometil)-1H-pirazol-1-il)-1-metilciclohexanocarboxílico
633	CI OFF F	ácido trans-4-(4-((2-(3,5-dicloro-4-piridinil)-2-oxoetil)(espiro[3,3]hept-2 il)carbamoil)-5-(trifluorometil)-1H-pirazol-1-il)-1-metilciclohexanocarboxílico
634	CI CI OH	ácido cis-4-(4-((2-(3,5-dicloro-4-piridinil)-2-oxoetil)((1 R)-2,2-dimetilciclobutil)carbamoil)-5-(trifluorometil)-1H-pirazol-1-il)ciclohexanocarboxílico
635	CT CI O H	ácido cis-4-(4-((2-(3,5-dicloro-4-piridinil)-2-oxoetil)((1 S)-2,2-dimetilciclobutil)carbamoil)-5-(trifluorometil)-1H-pirazol-1-il)ciclohexanocarboxílico
636	HOOO CI	ácido cis-4-(4-((2-(2,6-diclorofenil)-2-oxoetil)((1 R)-2,2-dimetilciclobutil)carbamoil)-5-(trifluorometil)-1H-pirazol-1-il)ciclohexanocarboxílico
637	HO O CI	ácido cis-4-(4-((2-(2,6-diclorofenil)-2-oxoetil)((1S)-2,2-dimetilciclobutil)carbamoil)-5-(trifluorometil)-1H-pirazol-1-il)ciclohexanocarboxílico

ejemplo	estructura	nombre
638	CI CI O N N O N N N N N N N N N N N N N N N	ácido trans-4-(4-((2-(3,5-dicloro-4-piridinil)-2-oxoetil)((1-metoxiciclopentil)metil)carbamo il)-5-(trifluorometil)-1H-pirazol-1-il)-1-metilciclohexanocarboxílico
639	F N N CI	ácido trans-4-(4-((2-(2,6-diclorofenil)-2-oxoetil)((1 R)-espiro[3,3]hept-1-il)carbamoil)-5-(trifluorometil)-1H-pirazol-1-il)-1-metilciclohexanocarboxílico
640	HO O F N N C O C O	ácido cis-4-(4-((2-(2,6-diclorofenil)-2-oxoetil)((1 R)-espiro[3,3]hept-1-il)carbamoil)-5-(trifluorometil)-1H-pirazol-1-il)ciclohexanocarboxílico
641	HO F N N O CI	ácido trans-4-(4-((2-(2,6-diclorofenil)-2-oxoetil)((1S)-espiro[3,3]hept-1-il)carbamoil)-5-(trifluorometil)-1H-pirazol-1-il)-1-metilciclohexanocarboxílico
642	HO O F N N O CI CI	ácido cis-4-(4-((2-(2,6-diclorofenil)-2-oxoetil)((1 S)-espiro[3,3]hept-1-il)carbamoil)-5-(trifluorometil)-1H-pirazol-1-il)ciclohexanocarboxílico
643	HO O F N N O GI	ácido trans-4-(4-((2-(2-cloro-6-fluorofenil)-2-oxoetil)((1-fluorociclopentil)metil)carbamoil)-5-(trifluorometil)-1H-pirazol-1-il)-1-metilciclohexanocarboxílico
644	CI CI	ácido trans-4-(4-((2-(3,5-dicloro-4-piridinil)-2-oxoetil)(2,2-dietilbutil)carbamoil)-5-(trifluorometil)-1H-pirazol-1-il)-1-metilciclohexanocarboxílico

ejemplo	estructura	nombre
645	CC CI	ácido trans-4-(4-((2-(3,5-dicloro-4-piridinil)-2-oxoetil)((1-metoxiciclohexil)metil)carbamoil)-5-(trifluorometil)-1H-pirazol-1-il)-1-metilciclohexanocarboxílico
646	CI CI O N N O F N N N N N N N N N N N N N N N	ácido cis-4-(4-((2-(3,5-dicloro-4-piridinil)-2-oxoetil)((1-metoxiciclopentil)metil)carbamo il)-5-(trifluorometil)-1H-pirazol-1-il)ciclohexanocarboxílico
647	CI CI O O H	ácido trans-4-(4-((2-(3,5-dicloro-4-piridinil)-2-oxoetil)((1 S)-2,2-dimetilciclopropil)carbamoil)-5-(trifluorometil)-1H-pirazol-1-il)-1- metilciclohexanocarboxílico
648	CI CI O O H	ácido trans-4-(4-((2-(3,5-dicloro-4-piridinil)-2-oxoetil)((1 R)-2,2-dimetilciclopropil)carbamoil)-5-(trifluorometil)-1H-pirazol-1-il)-1-metilciclohexanocarboxílico
649	H O O O CI O CI	ácido trans-4-(4-((2-(2,6-diclorofenil)-2-oxoetil)((1 S)-espiro[3,4]oct-1-il)carbamoil)-5-(trifluorometil)-1H-pirazol-1-il)-1-metilciclohexanocarboxílico
650	HO O CI	ácido trans-4-(4-((2-(2,6-diclorofenil)-2-oxoetil)((1 R)-espiro[3,4]oct-1-il)carbamoil)-5-(trifluorometil)-1H-pirazol-1-il)-1-metilciclohexanocarboxílico
651	HO O F N N O CI	ácido trans-4-(4-((2-(2,6-diclorofenil)-2-oxoetil)((1S)-espiro[2,4]hept-1-il)carbamoil)-5-(trifluorometil)-1H-pirazol-1-il)-1-metilciclohexanocarboxílico

ejemplo	estructura	nombre
652	F N N CI	ácido trans-4-(4-((2-(2,6-diclorofenil)-2-oxoetil)((1 R)-espiro[2,4]hept-1-il)carbamoil)-5-(trifluorometil)-1H-pirazol-1-il)-1-metilciclohexanocarboxílico
653	HO. O	ácido trans-4-(4-((2-(2,6-diclorofenil)-2-oxoetil)((8S)-5-oxaespiro[3,5]non-8-il)carbamoil)-5-(trifluorometil)-1H-pirazol-1-il)-1-metilciclohexanocarboxílico
654	HO O N O Cl	ácido trans-4-(4-((2-(2,6-diclorofenil)-2-oxoetil)((8R)-5-oxaespiro[3,5]non-8-il)carbamoil)-5-(trifluorometil)-1H-pirazol-1-il)-1-metilciclohexanocarboxílico
655		ácido trans-4-(4-((2-(3,5-dicloro-4-piridinil)-2-oxoetil)(((2R)-5,5-dimetiltetrahidro-2-furanil)metil)carbamoil)-5-(trifluorometil)-1H-pirazol-1-il)-1-metilciclohexanocarboxílico
656		ácido trans-4-(4-((2-(3,5-dicloro-4-piridinil)-2-oxoetil)((1S)-2,2-dimetilciclopropil)carbamoil)-5-(trifluorometil)-1H-pirazol-1-il)ciclohexanocarboxílico
657	HO O CI	ácido trans-4-(4-((2-(2-cloro-6-fluorofenil)-2-oxoetil)(2,2-dimetilbutil)carbamoil)-5-(trifluorometil)-1H-pirazol-1-il)-1-metilciclohexanocarboxílico
658	HO O O O O O O O O O O O O O O O O O O	ácido trans-4-(4-((2-(2-cloro-6-fluorofenil)-2-oxoetil)((1R,3r,5S)-6,6-dimetilbiciclo[3,1,0]hex-3-il)carbamoil)-5-(trifluorometil)-1H-pirazol-1-il)-1-metilciclohexanocarboxílico

ejemplo	estructura	nombre
659	HO CI CI CI CI F F	ácido ((1S,2R)-2-(4-((2-(3,5-dicloro-4-piridinil)-2-oxoetil)(2,2-dimetilpropil)carbamoil)-5-(trifluorometil)-1H-pirazol-1-il)ciclohexil)acético
660	CI CI O O H	ácido trans-4-(4-((2-(3,5-dicloro-4-piridinil)-2-oxoetil)(((2S)-2-metiltetrahidro-2-furanil)metil)carbamoil)-5-(trifluorometil)-1H-pirazol-1-il)-1-metilciclohexanocarboxílico
661	CI CI O O H	ácido trans-4-(4-((2-(3,5-dicloro-4-piridinil)-2-oxoetil)(((2R)-2-metiltetrahidro-2-furanil)metil)carbamoil)-5-(trifluorometil)-1H-pirazol-1-il)-1-metilciclohexanocarboxílico
662	HO O G G	ácido (1R,2S,4R)-4-(4-((2-(2,6-diclorofenil)-2-oxoetil)((3,3-dimetilciclobutil)metil)carbamoil-5-(trifluorometil)-1H-pirazol-1-il)-2-metilciclohexanocarboxílico
663	HO O C	ácido (1S,2R,4S)-4-(4-((2-(2,6-diclorofenil)-2-oxoetil)((3,3-dimetilciclobutil)metil)carbamoil) 5-(trifluorometil)-1H-pirazol-1-il)-2-metilciclohexanocarboxílico
664	H O CI	ácido trans-4-(4-((ciclohexilmetil)(2-(2,6-dicloro-4-fluorofenil)-2-oxoetil)carbamoil)-5-(trifluorometil)-1H-pirazol-1-il)-1-metilciclohexanocarboxílico
665	HO O CI	ácido trans-4-(4-((2-(2,6-dicloro-4-metilfenil)-2-oxoetil)((1-fluorociclohexil)metil)carbamoil)-5-(trifluorometil)-1H-pirazol-1-il)-1-metilciclohexanocarboxílico

ejemplo	estructura	nombre
666	CI CI OH	ácido trans-4-(4-((2-(3,5-dicloro-4-piridinil)-2-oxoetil)((1-fluorociclohexil)metil)carbamoil)-5-(trifluorometil)-1H-pirazol-1-il)-1-metilciclohexanocarboxílico
667	CI CI OH OH	ácido cis-4-(4-((2-(3,5-dicloro-4-piridinil)-2-oxoetil)((1-fluorociclopentil)metil)carbamoil)-5-(trifluorometil)-1H-pirazol-1-il)ciclohexanocarboxílico
668	O OH	ácido (trans-3-(4-((2-(2,6-diclorofenil)-2-oxoetil)((3,3-dimetilciclobutil)metil)carbamoil) 5-(trifluorometil)-1H-pirazol-1-il)ciclobutil)acético
669	O OH N N F CI O F F	ácido (cis-3-(4-((2-(2,6-diclorofenil)-2-oxoetil) ((3,3-dimetilciclobutil)metil)carbamoil) 5-(trifluorometil)-1H-pirazol-1-il)ciclobutil)acético
670	HOOO CO	ácido cis-4-(4-((2-(2,6-diclorofenil)-2-oxoetil)(2,2-dimetilpropil)carbamoil)-5-(trifluorometil)-1H-pirazol-1-il)ciclohexanocarboxílico
671	HOO CI	ácido trans-4-(4-((2-(2,6-dicloro-4-fluorofenil)-2-oxoetil)((1-metilciclopentil)metil)carbamoil-5-(trifluorometil)-1H-pirazol-1-il)-1-metilciclohexanocarboxílico
672	HO O CI	ácido trans-4-(4-((2-(2,6-diclorofenil)-2-oxoetil)((3,3-dimetilciclobutil)metil)carbamoil) 5-(trifluorometil)-1H-pirazol-1-il)-1-metilciclohexanocarboxílico

ejemplo	estructura	nombre
673	CI CI O N N N N N N N N N N N N N N N N N N	ácido trans-4-(4-((2-(3,5-dicloro-4-piridinil)-2-oxoetil)(((2S)-5,5-dimetiltetrahidro-2-furanil)metil)carbamoil)-5-(trifluorometil)-1H-pirazol-1-il)-1-metilciclohexanocarboxílico
674		ácido trans-4-(4-((2-(3,5-dicloro-4-piridinil)-2-oxoetil)(((2S)-5,5-dimetiltetrahidro-2-furanil)metil)carbamoil)-5-(trifluorometil)-1H-pirazol-1-il)-1-metilciclohexanocarboxílico
675	CI O H O H	ácido trans-4-(4-((2-(3,5-dicloro-4-piridinil)-2-oxoetil)((3-metil-3-oxetanil)metil)carbamoil)-5-(trifluorometil)-1H-pirazol-1-il)-1-metilciclohexanocarboxílico
676	CI N OH O	ácido trans-4-(4-((2-(2,6-dicloro-4-metilfenil)-2-oxoetil)((3-metil-3-oxetanil)metil)carbamoil)-5-(trifluorometil)-1H-pirazol-1-il)-1-metilciclohexanocarboxílico
677		ácido trans-4-(4-((1S,2R,4R)-biciclo[2,2,1]hept-2-il(2-(3,5-dicloro-4-piridinil)-2-oxoetil)carbamoil)-5-(trifluorometil)-1H-pirazol-1-il)-1-metilciclohexanocarboxílico
678	CI N OH OH	ácido trans-4-(4-((1 S,2S,4R)-biciclo[2,2,1]hept-2-il(2-(2,6-dicloro-4-metilfenil)-2-oxoetil)carbamoil)-5-(trifluorometil)-1H-pirazol-1-il)-1-metilciclohexanocarboxílico
679	CI CI O OH	ácido trans-4-(4-((2-(3,5-dicloro-4-piridinil)etil)(((2 R)-5,5-dimetiltetrahidro-2-furanil)metil)carbamoil)-5-(trifluorometil)-1H-pirazol-1-il)-1-metilciclohexanocarboxílico

ejemplo	estructura	nombre
680	CI CI OOH	ácido trans-4-(4-((2-(3,5-dicloro-4-piridinil)etil)(((2S)-5,5-dimetiltetrahidro-2-furanil)metil)carbamoil)-5-(trifluorometil)-1H-pirazol-1-il)-1-metilciclohexanocarboxílico
681	CI N N N N N N N N N N N N N N N N N N N	ácido trans-4-(4-((2-(3,5-dicloro-4-piridinil)etil)(((2 R)-2-metiltetrahidro-2-furanil)metil)carbamoil)-5-(trifluorometil)-1H-pirazol-1-il)-1-metilciclohexanocarboxílico
682		ácido trans-4-(4-((2-(3,5-dicloro-4-piridinil)etil)(((2S)-2-metiltetrahidro-2-furanil)metil)carbamoil)-5-(trifluorometil)-1H-pirazol-1-il)-1-metilciclohexanocarboxílico
683	HO O CI	ácido (1S,2R,4R)-4-(4-((2-(2,6-diclorofenil)-2-oxoetil)((3,3-dimetilciclobutil)metil)carbamoil) 5-(trifluorometil)-1H-pirazol-1-il)-2-metilciclohexanocarboxílico
684	H N N C C C C C C C C C C C C C C C C C	ácido (1R,2S,4S)-4-(4-((2-(2,6-diclorofenil)-2-oxoetil)((3,3-dimetilciclobutil)metil)carbamoil) 5-(trifluorometil)-1H-pirazol-1-il)-2-metilciclohexanocarboxílico
685	CI O H	ácido trans-4-(4-((2-(3,5-dicloro-4-piridinil)-2-oxoetil)(((2R)-4,4-dimetil-2-oxetanil)metil)carbamoil)-5-(trifluorometil)-1H-pirazol-1-il)-1-metilciclohexanocarboxílico
686	CI CI O O H	ácido trans-4-(4-((2-(3,5-dicloro-4-piridinil)-2-oxoetil)(((2S)-4,4-dimetil-2-oxetanil)metil)carbamoil)-5-(trifluorometil)-1H-pirazol-1-il)-1-metilciclohexanocarboxílico

ejemplo	estructura	nombre
687	CI O O F F F O O O H	ácido trans-4-(4-((2-(2,4-dicloro-6-metil-3-piridinil)-2-oxoetil)(2,2-dimetilpropil)carbamoil)-5-(trifluorometil)-1H-pirazol-1-il)-1-metilciclohexanocarboxílico
688	C C C C C C C C C C C C C C C C C C C	ácido trans-4-(4-(((2R)-2-((3,5-dicloro-4-piridinil)metil)-4,4-dimetil-1-pirrolidinil)carbonil)-5-(trifluorometil)-1H-pirazol-1-il)-1-metilciclohexanocarboxílico
689	O H O CI	ácido trans-4-(4-((2-(2,6-dicloro-4-metilfenil)-2-oxoetil)(cis-3-(2-metil-2-propanil)ciclobutil)carbamoil)-5-(trifluorometil)-1H-pirazol-1-il)-1-metilciclohexanocarboxílico
690	N N F CI O F F	ácido trans-4-(4-((2-(2,6-dicloro-4-fluorofenil)-2-oxoetil)((1-fluorociclopropil)metil)carbamoil)-5-(trifluorometil)-1H-pirazol-1-il)-1-metilciclohexanocarboxílico
691	D D D D D D D D D D D D D D D D D D D	ácido trans-4-(4-((2-(2,6-dicloro-4-fluorofenil)-2-oxoetil)((1-metilciclobutil)metil)carbamoil)-5-(trifluorometil)-1H-pirazol-1-il)-1-metilciclohexanocarboxílico
692	CI FF F F F F F F F F F F F F F F F F F	ácido trans-4-(4-((2-(3,5-dicloro-4-piridinil)-2-oxoetil)(3,3,3-trifluoro-2,2-dimetilpropil)carbamoil)-5-(trifluorometil)-1H-pirazol-1-il)-1-metilciclohexanocarboxílico
693	N CI N N N N N N N N N N N N N N N N N N	ácido trans-4-(4-((2-(2-cloro-4,6-dimetil-3-piridinil)-2-oxoetil)(2,2-dimetilpropil)carbamoil)-5-(trifluorometil)-1H-pirazol-1-il)-1-metilciclohexanocarboxílico

ejemplo	estructura	nombre
694	HO O F N N O CI	ácido trans-4-(4-((ciclobutilmetil)(2-(2,6-dicloro-4-fluorofenil)-2-oxoetil)carbamoil)-5-(trifluorometil)-1H-pirazol-1-il)-1-metilciclohexanocarboxílico
695	HO O CI	ácido trans-4-(4-((ciclopropilmetil)(2-(2,6 dicloro-4-fluorofenil)-2-oxoetil)carbamoil)-5-(trifluorometil)-1H-pirazol-1-il)-1-metilciclohexanocarboxílico
696	HO O F N O CI	ácido trans-4-(4-((2-(2,6-dicloro-4-fluorofenil)-2-oxoetil)((1-metilciclohexil)metil)carbamoil)-5-(trifluorometil)-1H-pirazol-1-il)-1-metilciclohexanocarboxílico
697	CI CI CI CI O N N N N N N N N N N N N N N N N N N	ácido trans-4-(4-((2,2-dimetilpropil)(2-oxo-2-(2,3,5-tricloro-4-piridinil)etil)carbamoil)-5-(trifluorometil)-1H-pirazol-1-il)-1-metilciclohexanocarboxílico
698	HOOO CI	ácido trans-4-(4-((ciclopentilmetil)(2-(2,6-dicloro-4-fluorofenil)-2-oxoetil)carbamoil)-5-(trifluorometil)-1H-pirazol-1-il)-1-metilciclohexanocarboxílico
699	CI CI O H	ácido trans-4-(4-((2-(3,5-dicloro-4-piridinil)-2-oxoetil)(cis-3-(2-metil-2-propanil)ciclobutil)carbamoil)-5-(trifluorometil)-1H-pirazol-1-il)-1-metilciclohexanocarboxílico
700	CI O F F F F O H	ácido trans-4-(4-((2-(3,5-dicloro-4-piridinil)-2-oxoetil)(3-metilbutil)carbamoil)-5-(trifluorometil)-1H-pirazol-1-il)-1-metilciclohexanocarboxílico

ejemplo	estructura	nombre
701	CT CI	ácido trans-4-(4-(((2R,4R)-2-((3,5-dicloro-4-piridinil)metil)-4-(2-propanil)-1-pirrolidinil)carbonil)-5-(trifluorometil)-1H-pirazol-1-il)-1-metilciclohexanocarboxílico
702	F F O O O H	ácido trans-4-(4-((2-(2-cloro-4,6-dimetil-3-piridinil)-2-oxoetil)(3,5-difluorobencil)carbamoil)-5-(trifluorometil)-1H-pirazol-1-il)-1-metilciclohexanocarboxílico
703	CI O O O O H	ácido trans-4-(4-((2-(2,4-dicloro-6-metil-3-piridinil)-2-oxoetil)((1-fluorociclopropil)metil)carbamoil)-5-(trifluorometil)-1H-pirazol-1-il)-1-metilciclohexanocarboxílico
704	H O O O O O O O O O O O O O O O O O O O	ácido trans-4-(4-((2-(2,6-dicloro-4-metilfenil)-2-oxoetil)(3-metilbutil)carbamoil)-5-(trifluorometil)-1H-pirazol-1-il)-1-metilciclohexanocarboxílico
705	CI CI O O O O O O O O O O O O O O O O O	ácido trans-4-(4-((2-(3,5-dicloro-4-piridinil)-2-oxoetil)(((2R,5S)-5-metiltetrahidro-2-furanil)metil)carbamoil)-5-(trifluorometil)-1H-pirazol-1-il)-1-metilciclohexanocarboxílico
706	CI CI O O O O O O O O O O O O O O O O O	ácido trans-4-(4-((2-(3,5-dicloro-4-piridinil)-2-oxoetil)(((2S,5R)-5-metiltetrahidro-2-furanil)metil)carbamoil)-5-(trifluorometil)-1H-pirazol-1-il)-1-metilciclohexanocarboxílico
707	HO CI	ácido trans-4-(4-((ciclopropilmetil)(2-(2,6-dicloro-4-metilfenil)-2-oxoetil)carbamoil)-5-(trifluorometil)-1H-pirazol-1-il)-1-metilciclohexanocarboxílico

ejemplo	estructura	nombre
708	CI N N F F	ácido (1R,3r,5S,6s)-3-(4-((2-(2,6-diclorofenil)-2-oxoetil)((1R,3r,5S)-6,6-dimetilbiciclo[3,1,0] hex-3-il) carbamoil)-3-(trifluorometil)-1H-pirazol-1-il)biciclo[3,1,0]hexano-6-carboxílico
709	HO F CO	ácido trans-4-(4-((2-(2,6-dicloro-4-metilfenil)-2-oxoetil)((1-metilciclopentil)metil)carbamoil)-5-(trifluorometil)-1H-pirazol-1-il)-1-metilciclohexanocarboxílico
710	CI O N N N HO	ácido trans-4-(4-((ciclopropilmetil)(2-(3,5-dicloro-4-piridinil)-2-oxoetil)carbamoil)-5-(trifluorometil)-1H-pirazol-1-il)-1-metilciclohexanocarboxílico
711	CI O N N N HO O HO	ácido trans-4-(4-((2-(3,5-dicloro-4-piridinil)-2-oxoetil)((1-metilciclopentil)metil)carbamoil)-5-(trifluorometil)-1H-pirazol-1-il)-1-metilciclohexanocarboxílico
712	CI O H O H	ácido trans-4-(4-((2-(3,5-dicloro-4-piridinil)-2-oxoetil)((5-fluoroespiro[2,3]hex-5-il)metil)carbamoil)-5-(trifluorometil)-1H-pirazol-1-il)-1-metilciclohexanocarboxílico
713	HO O C C C C C C C C C C C C C C C C C C	ácido trans-4-(4-((2-(2,6-diclorofenil)-2-oxoetil)((5-fluoroespiro[2,3]hex-5-il)metil)carbamoil)-5-(trifluorometil)-1H-pirazol-1-il)-1-metilciclohexanocarboxílico
714	CI O F F O H	ácido trans-4-(4-((2-(2,4-dicloro-6-metil-3-piridinil)-2-oxoetil)((1R,3r,5S)-6,6-dimetilbiciclo[3,1,0]hex-3-il)carbamoil)-5-(trifluorometil)-1H-pirazol-1-il)-1-metilciclohexanocarboxílico

ejemplo	estructura	nombre
715	CI ON NO	ácido trans-4-(4-((2-(3,5-dicloro-2-metil-4-piridinil)-2-oxoetil)(2,2-dimetilpropil)carbamoil)-5- (trifluorometil)-1H-pirazol-1-il)-1-metilciclohexanocarboxílico
716	OH OH OH OH OH OH OH OH OH OH OH OH OH O	ácido trans-4-(4-((2-(2,6-dicloro-4-fluorofenil)-2-oxoetil)((1-metilciclopropil)metil)carbamoil)-5-(trifluorometil)-1H-pirazol-1-il)-1-metilciclohexanocarboxílico
717	OH O O O O O	ácido trans-4-(4-((2-(2,6-dicloro-4-metilfenil)-2-oxoetil)((1-metilciclopropil)metil)carbamoil)-5-(trifluorometil)-1H-pirazol-1-il)-1-metilciclohexanocarboxílico
718	H A D C C C C C C C C C C C C C C C C C C	ácido trans-4-(4-((ciclopentilmetil)(2-(2,6-dicloro-4-metilfenil)-2-oxoetil)carbamoil)-5-(trifluorometil)-1H-pirazol-1-il)-1-metilciclohexanocarboxílico
719	CI CI N N N O O H	ácido (trans-4-(4-((2-(3,5-dicloro-4-piridinil)-2-oxoetil)(2,2-dimetilpropil)carbamoil)-5-(trifluorometil)-1H-pirazol-1-il)ciclohexil)acético
720	CI CI N N N O H	ácido (cis-4-(4-((2-(3,5-dicloro-4-piridinil)-2-oxoetil)(2,2-dimetilpropil)carbamoil)-5-(trifluorometil)-1H-pirazol-1-il)ciclohexil)acético
721	H O O F F	ácido trans-4-(4-((2-(2,6-dicloro-4-metilfenil)-2-oxoetil)((1 S)-espiro[3,3]hept-1-il)carbamoil)-5-(trifluorometil)-1H-pirazol-1-il)-1-metilciclohexanocarboxílico

ejemplo	estructura	nombre
722	H O O F F	ácido trans-4-(4-((2-(2,6-dicloro-4-metilfenil)-2-oxoetil)((1 R)-espiro[3,3]hept-1-il)carbamoil)-5-(trifluorometil)-1H-pirazol-1-il)-1-metilciclohexanocarboxílico
723	HO O O O O O O O O O O O O O O O O O O	ácido trans-4-(4-((2-(2,6-dicloro-4-metilfenil)-2-oxoetil)(((2S)-4,4-dimetil-2-oxetanil)metil)carbamoil)-5-(trifluorometil)-1H-pirazol-1-il)-1-metilciclohexanocarboxílico
724	CI N N F F	ácido trans-4-(4-((2-(2,6-dicloro-4-metilfenil)-2-oxoetil)(((2R)-4,4-dimetil-2-oxetanil)metil)carbamoil)-5-(trifluorometil)-1H-pirazol-1-il)-1-metilciclohexanocarboxílico
725	CI N N F F	ácido trans-4-(4-((2-(2,6-dicloro-4-metilfenil)-2-oxoetil)(((2S)-2-metiltetrahidro-2-furanil)metil)carbamoil)-5-(trifluorometil)-1H-pirazol-1-il)-1-metilciclohexanocarboxílico
726	HOOO OF F	ácido trans-4-(4-((2-(2,6-dicloro-4-metilfenil)-2-oxoetil)(((2R)-2-metiltetrahidro-2-furanil)metil)carbamoil)-5-(trifluorometil)-1H-pirazol-1-il)-1-metilciclohexanocarboxílico
727	CI N N F F O F F	ácido trans-4-(4-((2-(2,6-diclorofenil)-2-oxoetil)(((2S)-2-metiltetrahidro-2-furanil)metil)carbamoil)-5-(trifluorometil)-1H-pirazol-1-il)-1-metilciclohexanocarboxílico
728	CI N F F	ácido trans-4-(4-((2-(2,6-diclorofenil)-2-oxoetil)(((2R)-2-metiltetrahidro-2-furanil)metil)carbamoil)-5-(trifluorometil)-1H-pirazol-1-il)-1-metilciclohexanocarboxílico

ejemplo	estructura	nombre
729	CI N N O O H	ácido trans-4-(4-((2-(2,6-diclorofenil)-2-oxoetil)((1- (trifluorometil)ciclopropil)metil)carbamoil)-3- (trifluorometil)-1H-pirazol-1-il)-1- metilciclohexanocarboxílico
730	CT CI O O H	ácido trans-4-(4-((2-(3,5-dicloro-4-piridinil)-2-oxoetil)((1-metilciclobutil)metil)carbamoil)-5-(trifluorometil)-1H-pirazol-1-il)-1-metilciclohexanocarboxílico
731	CI O N F F	ácido trans-4-(4-((2-(2,6-dicloro-4-metilfenil)-2-oxoetil)((1-metilciolobutil)metil)carbamoil)-5-(trifluorometil)-1H-pirazol-1-il)-1-metilciclohexanocarboxílico
732	CI O H	ácido trans-4-(4-((2-(2,4-dicloro-6-metil-3-piridinil)-2-oxoetil)(4,4-dimetilciclohexil)carbamoil)-5-(trifluorometil)-1H-pirazol-1-il)-1-metilciclohexanocarboxílico
733	OH CO	ácido trans-4-(4-((ciclobutilmetil)(2-(2,6-dicloro-4-metilfenil)-2-oxoetil)carbamoil)-5-(trifluorometil)-1H-pirazol-1-il)-1-metilciclohexanocarboxílico
734	CI O H O H	ácido trans-4-(4-((ciclobutilmetil)(2-(3,5-dicloro-4-piridinil)-2-oxoetil)carbamoil)-5-(trifluorometil)-1H-pirazol-1-il)-1-metilciclohexanocarboxílico
735	CI O H O H	ácido trans-4-(4-((ciclohexilmetil)(2-(3,5-dicloro-4-piridinil)-2-oxoetil)carbamoil)-5-(trifluorometil)-1H-pirazol-1-il)-1-metilciclohexanocarboxílico

ejemplo	estructura	nombre
736	CI CI OH OH	ácido (1S,2R,4S)-4-(4-((2-(3,5-dicloro-4-piridinil)-2-oxoetil)((1-fluorociclopropil)metil)carbamoil)-5-(trifluorometil)-1H-pirazol-1-il)-2-metilciclohexanocarboxílico
737	CI CI OH OH	ácido (1R,2S,4R)-4-(4-((2-(3,5-dicloro-4-piridinil)-2-oxoetil)((1-fluorociclopropil)metil)carbamoil)-5-(trifluorometil)-1H-pirazol-1-il)-2-metilciclohexanocarboxílico
738	CI O H F O O O O O O O O O O O O O O O O O	ácido (1S,2R,4S)-4-(4-((2-(3,5-dicloro-4-piridinil)-2-oxoetil)(2,2-dimetilpropil)carbamoil)-5-(trifluorometil)-1H-pirazol-1-il)-2-metilciclohexanocarboxílico
739	CI CI O H	ácido (1R,2S,4R)-4-(4-((2-(3,5-dicloro-4-piridinil)-2-oxoetil)(2,2-dimetilpropil)carbamoil)-5-(trifluorometil)-1H-pirazol-1-il)-2-metilciclohexanocarboxílico
740	CI O F F O O H	ácido (trans-4-(4-((2-(2,4-dicloro-6-metil-3-piridinil)-2-oxoetil)(2,2-dimetilpropil)carbamoil)-5-(trifluorometil)-1H-pirazol-1-il)ciclohexil)acético
741	CI O F F	ácido trans-4-(4-((2-(2-cloro-6-fluorofenil)-2-oxoetil)((1-(trifluorometil)ciclopropil)metil)carbamoil)-3-(trifluorometil)-1H-pirazol-1-il)-1-metilciclohexanocarboxílico
742	CI CI OH	ácido trans-4-(4-((2-(3,5-dicloro-4-piridinil)-2-oxoetil)((1-etilciclobutil)metil)carbamoil)-5-(trifluorometil)-1H-pirazol-1-il)-1-metilciclohexanocarboxílico

ejemplo	estructura	nombre
743	CI CI OH OH	ácido trans-4-(4-((2-(3,5-dicloro-4-piridinil)-2-oxoetil)(((1S)-2,2-dimetilciclopropil)metil)carbamo il)-5-(trifluorometil)-1H-pirazol-1-il)-1-metilciclohexanocarboxílico
744	CI N O H	ácido trans-4-(4-((2-(2,6-dicloro-4-metilfenil)-2-oxoetil)((1-etilciclobutil)metil)carbamoil)-5-(trifluorometil)-1H-pirazol-1-il)-1-metilciclohexanocarboxílico
745	CI N O H	ácido trans-4-(4-((2-(2,6-dicloro-4-metilfenil)-2-oxoetil)(((1R)-2,2-dimetilciclopropil)metil)carbamo il)-5-(trifluorometil)-1H-pirazol-1-il)-1-metilciclohexanocarboxílico
746	CC CI OFF N N F OH OH	ácido trans-4-(4-(((2R,4S)-2-((3,5-dicloro-4-piridinil)metil)-4-(2-propanil)-1-pirrolidinil)carbonil)-5-(trifluorometil)-1H-pirazol-1-il)-1-metilciclohexanocarboxílico
747	CC P F F OH	ácido trans-4-(4-(((2R,4R)-2-((3,5-dicloro-4-piridinil)metil)-4-(2-propanil)-1-pirrolidinil)carbonil)-5-(trifluorometil)-1H-pirazol-1-il)-1-metilciclohexanocarboxílico
748	CI C	ácido trans-4-(4-((2-(3,5-dicloro-4-piridinil)-2-oxoetil)((1 S)-espiro[3,3]hept-1-il)carbamoil)-5-(trifluorometil)-1H-pirazol-1-il)-1-metilciclohexanocarboxílico
749	CI C	ácido trans-4-(4-((2-(3,5-dicloro-4-piridinil)-2-oxoetil)((1 R)-espiro[3,3]hept-1-il)carbamoil)-5-(trifluorometil)-1H-pirazol-1-il)-1-metilciclohexanocarboxílico

ejemplo	estructura	nombre
750	H N N F F F CI	ácido (trans-4-(4-((2-(2,6-dicloro-4-metilfenil)-2-oxoetil)((1R,3r,5S)-6,6-dimetilbiciclo[3,1,0]hex-3-il)carbamoil)-5-(trifluorometil)-1H-pirazol-1-il)ciclohexil)acético
751	OH O	ácido trans-4-(4-((2-(2,4-dicloro-6-metil-3-piridinil)-2-oxoetil)((1-fluorociclopentil)metil)carbamoil)-5-(trifluorometil)-1H-pirazol-1-il)-1-metilciclohexanocarboxílico
752	CI O N N O O F F	ácido trans-4-(4-((2-(2,6-diclorofenil)-2-oxoetil)(3-metilbutil)carbamoil)-5-(trifluorometil)-1H-pirazol-1-il)-1-metilciclohexanocarboxílico
753		ácido trans-4-(4-((2-(3,5-dicloro-2-metoxi-4-piridinil)-2-oxoetil)(2,2-dimetilpropil)carbamoil)-5-(trifluorometil)-1H-pirazol-1-il)-1-metilciclohexanocarboxílico
754	O H O O H	ácido (1R,4R)-4-(4-((2-(3,5-dicloro-4-piridinil)-2-oxoetil)(2,2-dimetilpropil)carbamoil)-5-(trifluorometil)-1H-pirazol-1-il)-2,2-dimetilciclohexanocarboxílico
755	CI CI O O H	ácido (trans-4-(4-((2-(3,5-dicloro-4-piridinil)-2-oxoetil)(3,5-difluorobencil)carbamoil)-5-(trifluorometil)-1H-pirazol-1-il)ciclohexil)acético
756	CI CI O O O O O O O O O O O O O O O O O	ácido (1S,2R,4S)-4-(4-((2-(3,5-dicloro-4-piridinil)-2-oxoetil)((3,3-dimetilciclobutil)metil)carbamoil) 5-(trifluorometil)-1H-pirazol-1-il)-2-metilciclohexanocarboxílico

ejemplo	estructura	nombre
757	O F F O OH	ácido trans-4-(4-((2-(2-cloro-4,6-dimetil-3-piridinil)-2-oxoetil)((1R,3r,5S)-6,6-dimetilbiciclo[3,1,0]hex-3-il)carbamoil)-5-(trifluorometil)-1H-pirazol-1-il)-1-metilciclohexanocarboxílico
758	CI CI OF F F F O O O O H	ácido trans-4-(4-((2-(3,5-dicloro-2-metil-4-piridinil)-2-oxoetil)((1R,3r,5S)-6,6-dimetilbiciclo[3,1,0]hex-3-il)carbamoil)-5-(trifluorometil)-1H-pirazol-1-il)-1-metilciclohexanocarboxílico
759	H Z Z G G G G G G G G G G G G G G G G G	ácido trans-4-(4-((2-(2,6-diclorofenil)-2-oxoetil)((1-metilciclopropil)metil)carbamoil)-5-(trifluorometil)-1H-pirazol-1-il)-1-metilciclohexanocarboxílico
760	H Z G G G G G G G G G G G G G G G G G G	ácido trans-4-(4-((2-(2,6-diclorofenil)-2-oxoetil)((1-metilciclobutil)metil)carbamoil)-5-(trifluorometil)-1H-pirazol-1-il)-1-metilciclohexanocarboxílico
761	O H P F F C O F F	ácido cis-4-(4-((2-(2,4-dicloro-6-metil-3-piridinil)-2-oxoetil)(3,5-difluorobencil)carbamoil)-5-(trifluorometil)-1H-pirazol-1-il)ciclohexanocarboxílico
762	T F F F F F F F F F F F F F F F F F F F	ácido trans-4-(4-((2-(2,4-dicloro-6-metil-3-piridinil)-2-oxoetil)(3,5-difluorobencil)carbamoil)-5-(trifluorometil)-1H-pirazol-1-il)-1-metilciclohexanocarboxílico
763	F CI O H O H O H O H O H O H O H O H O H O	ácido trans-4-(4-((2-(2,6-dicloro-3-fluorofenil)-2-oxoetil)((1R,3r,5S)-6,6-dimetilbiciclo[3,1,0]hex-3-il)carbamoil)-5-(trifluorometil)-1H-pirazol-1-il)-1-metilciclohexanocarboxílico

ejemplo	estructura	nombre
764	F CI N N O O O O O O O O O O O O O O O O O	ácido trans-4-(4-((2-(2,6-dicloro-3-fluorofenil)-2-oxoetil)(2,2-dimetilpropil)carbamoil)-5-(trifluorometil)-1H-pirazol-1-il)-1-metilciclohexanocarboxílico
765	CI O H OH OH	ácido (1R,3r,5S,6r)-3-(4-((2-(3,5-dicloro-4-piridinil)-2-oxoetil)(3-metilbutil)carbamoil)-5-(trifluorometil)-1H-pirazol-1-il)biciclo[3,1,0]hexano-6-carboxílico
766	CI O F F F F N-N F O H	ácido (1S,2R,4S)-4-(4-((2-(3,5-dicloro-4-piridinil)-2-oxoetil)(3,3,3-trifluoropropil)carbamoil)-5-(trifluorometil)-1H-pirazol-1-il)-2-metilciclohexanocarboxílico
767	CI O F F F F N O H	ácido (1R,2S,4R)-4-(4-((2-(3,5-dicloro-4-piridinil)-2-oxoetil)(3,3,3-trifluoropropil)carbamoil)-5-(frifluorometil)-1H-pirazol-1-il)-2-metilciclohexanocarboxílico
768	CI CI OH OH	ácido trans-4-(4-((2-(3,5-dicloro-2-metil-4-piridinil)-2-oxoetil)(3,5-difluorobencil)carbamoil)-5-(trifluorometil)-1H-pirazol-1-il)-1-metilciclohexanocarboxílico
769	CI N F F	ácido (1R,3r,5S,6s)-3-(4-((2-(2,6-diclorofenil)-2-oxoetil)((1-fluorociclopentil)metil)carbamoil)-5-(trifluorometil)-1H-pirazol-1-il)biciclo[3,1,0]hexano-6-carboxílico
770	CI O H O H	ácido (1R,3r,5S,6s)-3-(4-((2-(3,5-dicloro-4-piridinil)-2-oxoetil)(2,2-dimetilpropil)carbamoil)-5-(trifluorometil)-1H-pirazol-1-il)biciclo[3,1,0]hexano-6-carboxílico

ejemplo	estructura	nombre
771	CI CI O H	ácido (4r)-6-(4-((2-(3,5-dicloro-4-piridinil)-2-oxoetil)(2,2-dimetilpropil)carbamoil)-5-(trifluorometil)-1H-pirazol-1-il)espiro[3,3]heptano-2-carboxílico
772	H N N F F CI CI CI	ácido (S)-2-((1R,3S)-3-(4-((2-(2,6-diclorofenil)-2-oxoetil)((1R,3r,5S)-6,6-dimetilbiciclo[3,1,0]hexan-3-il) carbamoil)-5-(trifluorometil)-1H-pirazol-1-il)ciclobutil)propanoico
773	G O O O O O O O O O O O O O O O O O O O	ácido (1R,2S,4R)-4-(4-((2-(3,5-dicloro-4-piridinil)-2-oxoetil)(((2S)-5,5-dimetiltetrahidro-2-furanil)metil)carbamoil)-5-(trifluorometil)-1H-pirazol-1-il)-2-metilciclohexanocarboxílico
774	DO ON NO	ácido (1S,2R,4S)-4-(4-((2-(3,5-dicloro-4-piridinil)-2-oxoetil)(((2S)-5,5-dimetiltetrahidro-2-furanil)metil)carbamoil)-5-(trifluorometil)-1H-pirazol-1-il)-2-metilciclohexanocarboxílico
775	CI CI CI CI N N N N N N N N N N N N N N	ácido (trans-4-(4-((2-(3,5-dicloro-4-piridinil)-2oxoetil)((1-metilciclobutil)metil)carbamoil)-5-(trifluorometil)-1H-pirazol-1-il)ciclohexil)acético
776	CI OF F F N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-	ácido trans-4-(4-((2-ciclopropiletil)(2-(3,5-dicloro-4-piridinil)-2-oxoetil)carbamoil)-5-(trifluorometil)-1H-pirazol-1-il)-1-metilciclohexanocarboxílico
777	HO O CI	ácido trans-4-(4-((2-ciclopropiletil)(2-(2,6 dicloro-4-metilfenil)-2-oxoetil)carbamoil)-5-(trifluorometil)-1H-pirazol-1-il)-1-metilciclohexanocarboxílico

ejemplo	estructura	nombre
778	H O O O O O O O O O O O O O O O O O O O	ácido trans-4-(4-((2-(2-cloro-6-fluoro-4-metilfenil)-2-oxoetil)((1-metilciclobutil)metil)carbamoil)-5-(trifluorometil)-1H-pirazol-1-il)-1-metilciclohexanocarboxílico
779	CI O O H	ácido trans-4-(4-((2-(2,4-dicloro-6-metil-3-piridinil)-2-oxoetil)(2-((2-metil-2-propanil)oxi)etil)carbamoil)-5-(trifluorometil)-1H-pirazol-1-il)-1-metilciclohexanocarboxílico
780	CI F CI F F N-N	ácido 2-(trans-4-(4-((2-(3,5-dicloro-4-piridinil)-2-oxoetil)(3,5-difluorobencil)carbamoil)-5-(trifluorometil)-1H-pirazol-1-il)ciclohexil)propanoico
781	HO O CI	ácido (1S,2R,4S)-4-(4-((2-(2,6-diclorofenil)-2-oxoetil)((1-metilciclobutil)metil)carbamoil)-5-(trifluorometil)-1H-pirazol-1-il)-2-metilciclohexanocarboxílico
782	Cr Cl OH OH	ácido (1S,2R,4S)-4-(4-((2-(3,5-dicloro-4-piridinil)-2-oxoetil)((1-metilciclobutil)metil)carbamoil)-5-(trifluorometil)-1H-pirazol-1-il)-2-metilciclohexanocarboxílico
783	O N F F CI	ácido trans-4-(4-((2-(2,6-dicloro-4-metilfenil)-2-oxoetil)(((2S)-5,5-dimetiltetrahidro-2-furanil)metil)carbamoil)-5-(trifluorometil)-1H-pirazol-1-il)-1-metilciclohexanocarboxílico
784	CI CI OH	ácido (1R,4R)-4-(4-((2-(3,5-dicloro-4-piridinil)-2-oxoetil)(2,2-dimetilpropil)carbamoil)-5-(trifluorometil)-1H-pirazol-1-il)-2,2-dimetilciclohexanocarboxílico

ejemplo	estructura	nombre
785	O O H	ácido (1S,4S)-4-(4-((2-(3,5-dicloro-4-piridinil)-2-oxoetil)(2,2-dimetilpropil)carbamoil)-5-(trifluorometil)-1H-pirazol-1-il)-2,2-dimetilciclohexanocarboxílico
786	F F F F F F F F F F F F F F F F F F F	ácido 2-(cis-4-(4-((2-(3,5-dicloro-4-piridinil)-2-oxoetil)(3,5-difluorobencil)carbamoil)-5-(trifluorometil)-1H-pirazol-1-il)ciclohexil)propanoico
787	H P P O G	ácido (1 S,2R,4S)-4-(4-((2-(2,6-diclorofenil)-2-oxoetil)((1 R,3r,5S)-6,6-dimetilbiciclo[3,1,0]hex-3-il)carbamoil)-5-(trifluorometil)-1H-pirazol-1-il)-2-metilciclohexanocarboxílico
788	CI CI OH OH	ácido (1S,2R,4S)-4-(4-((2-(3,5-dicloro-4-piridinil)-2-oxoetil)((1-metilciclopropil)metil)carbamoil)-5-(trifluorometil)-1H-pirazol-1-il)-2-metilciclohexanocarboxílico
789		ácido (trans-4-(4-((2-(3,5-dicloro-4-piridinil)-2-oxoetil)(3,5-difluorobencil)carbamoil)-5-(trifluorometil)-1H-pirazol-1-il)-1-metilciclohexil)acético
790	CI F CI F OO N N OH	ácido (cis-4-(4-((2-(3,5-dicloro-4-piridinil)-2-oxoetil)(3,5-difluorobencil)carbamoil)-5-(trifluorometil)-1H-pirazol-1-il)-1-metilciclohexil)acético
791	CI CI O N N F N N N O O H	ácido (trans-4-(4-((2-(3,5-dicloro-4-piridinil)-2-oxoetil)(2,2-dimetilpropil)carbamoil)-5-(trifluorometil)-1H-pirazol-1-il)-1-metilciclohexil)acético

ejemplo	estructura	nombre
792	CI CI O N N F N N N N N N N N N N N N N N N N	ácido (cis-4-(4-((2-(3,5-dicloro-4-piridinil)-2-oxoetil)(2,2-dimetilpropil)carbamoil)-5-(trifluorometil)-1H-pirazol-1-il)-1-metilciclohexil)acético
793	CI CI CI O N N N N N N N N N N N N N N N N N N	ácido (1R,2R,4R)-4-(4-((2-(3,5-dicloro-4-piridinil)-2-oxoetil)(2,2-dimetilpropil)carbamoil)-5-(trifluorometil)-1H-pirazol-1-il)-2-metilciclohexanocarboxílico
794	HO O F N N CI O CI	ácido (1S,2R,4S)-4-(4-((2-(2,6-diclorofenil)-2-oxoetil)(2,2-dimetilpropil)carbamoil)-5-(trifluorometil)-1H-pirazol-1-il)-2-metilciclohexanocarboxílico
795	CT CI O O O F F F N-N F	ácido trans-4-(4-(((2S,4S)-2-((3,5-dicloro-4-piridinil)carbonil)-4-fenoxi-1-pirrolidinil)carbonil)-5-(trifluorometil)-1H-pirazol-1-il)-1-metilciclohexanocarboxílico
796	CT C	ácido trans-4-(4-(((2R,4S)-2-((3,5-dicloro-4-piridinil)carbonil)-4-fenoxi-1-pirrolidinil)carbonil)-5-(trifluorometil)-1H-pirazol-1-il)-1-metilciclohexanocarboxílico
797	C C C C C C C C C C C C C C C C C C C	ácido trans-4-(4-(((2S,4R)-2-((3,5-dicloro-4-piridinil)carbonil)-4-fenoxi-1-pirrolidinil)carbonil)-5-(trifluorometil)-1H-pirazol-1-il)-1-metilciclohexanocarboxílico
798	CI O N F F	ácido trans-4-(4-((2-(2,6-dicloro-3-fluorofenil)-2-oxoetil)((1-(trifluorometil)ciclopropil)metil)carbamoil)-5-(trifluorometil)-1H-pirazol-1-il)-1-metilciclohexanocarboxílico

ejemplo	estructura	nombre
799	CI CI O H O H F F O	ácido trans-4-(4-((2-(3,5-dicloro-4-piridinil)-2-oxoetil)((1-(trifluorometil)ciclobutil)metil)carbamoil)-5-(trifluorometil)-1H-pirazol-1-il)-1-metilciclohexanocarboxílico
800	CI O H O H	ácido trans-4-(4-((2-(3,5-dicloro-4-piridinil)-2-oxoetil)((1-(fluorometil)ciclobutil)metil)carbamoil)-5-(trifluorometil)-1H-pirazol- 1-il)-1-metilciclohexanocarboxílico
801	OH OH O N N N CI CI CI CI	ácido trans-4-(4-((ciclohexilmetil)(2-(2,4-dicloro-6-metil-3-piridinil)-2-oxoetil)carbamoil)-5-(trifluorometil)-1H-pirazol-1-il)-1-metilciclohexanocarboxílico
802	CI CI O O O O O O O O O O O O O O O O O	ácido (1S,2R,4S)-4-(4-((2-(3,5-dicloro-4-piridinil)-2-oxoetil)(3,3,3-trifluoro-2,2-dimetilpropil)carbamoil)-5-(trifluorometil)-1H-pirazol-1-il)-2-metilciclohexanocarboxílico
803		ácido (1S,2R,4S)-4-(4-((2-(3,5-dicloro-4-piridinil)-2-oxoetil)(3-metilbutil)carbamoil)-5-(trifluorometil)-1H-pirazol-1-il)-2-metilciclohexanocarboxílico
804	HO O O O O O O O O O O O O O O O O O O	ácido (1S,2R,4S)-4-(4-((2-(2,6-diclorofenil)-2-oxoetil)(3-metilbutil)carbamoil)-5-(trifluorometil)-1H-pirazol-1-il)-2-metilciclohexanocarboxílico
805	HO F NN O CI	ácido trans-4-(4-((2-(2-cloro-6-fluoro-4-metilfenil)-2-oxoetil)(((2S)-2-metiltetrahidro-2-furanil)metil)carbamoil)-5-(trifluorometil)-1H-pirazol-1-il)-1-metilciclohexanocarboxílico

ejemplo	estructura	nombre
806	HO O O C	ácido trans-4-(4-((2-(2-cloro-6-fluoro-4-metilfenil)-2-oxoetil)(((2R)-2-metiltetrahidro-2-furanil)metil)carbamoil)-5-(trifluorometil)-1H-pirazol-1-il)-1-metilciclohexanocarboxílico
807	CI OH OH	ácido (1R,4R)-4-(4-((2-(3,5-dicloro-4-piridinil)-2-oxoetil)((1-metilciclobutil)metil)carbamoil)-5-(trifluorometil)-1H-pirazol-1-il)-2,2-dimetilciclohexanocarboxílico
808	CI C	ácido trans-4-(4-((2-(3,5-dicloro-4-piridinil)-2-oxoetil)((2R)-tetrahidro-2-furanilmetil)carbamoil)-5-(trifluorometil)-1H-pirazol-1-il)-1-metilciclohexanocarboxílico
809		ácido (1S,2R,4S)-4-(4-(((3R)-3-((3,5-dicloro-4-piridinil)metil)-2-azaespiro[4,4]non-7-en-2-il)carbonil)-5-(trifluorometil)-1H-pirazol-1-il)-2-metilciclohexanocarboxílico
810	CI CI O H	ácido (1S,2R,4S)-4-(4-((2-(3,5-dicloro-4-piridinil)-2-oxoetil)((1-fluorociclopentil)metil)carbamoil)-5-(trifluorometil)-1H-pirazol-1-il)-2-metilciclohexanocarboxílico
811	HOOO CI	ácido (1S,2R,4S)-4-(4-((2-(2,6-diclorofenil)-2-oxoetil)((1-(trifluorometil)ciclopropil)metil)carbamoil)-5-(trifluorometil)-1H-pirazol-1-il)-2-metilciclohexanocarboxílico
812	CI CI CI ON NOTE OF THE PROPERTY OF THE PROPER	ácido (1R,2R,4R)-4-(4-((2-(3,5-dicloro-4-piridinil)-2-oxoetil)(2,2-dimetilpropil)carbamoil)-5-(trifluorometil)-1H-pirazol-1-il)-2-metilciclohexanocarboxílico

ejemplo	estructura	nombre
813	CI CI O N N N N N N N N N N N N N N N N N N	ácido (1S,2S,4S)-4-(4-((2-(3,5-dicloro-4-piridinil)-2-oxoetil)(2,2-dimetilpropil)carbamoil)-5-(trifluorometil)-1H-pirazol-1-il)-2-metilciclohexanocarboxílico
814	CI N N O H	ácido trans-4-(4-((2-(2,6-dicloro-3-fluorofenil)-2-oxoetil)(((2R)-2-metiltetrahidro-2-furanil)metil)carbamoil)-5-(trifluorometil)-1H-pirazol-1-il)-1-metilciclohexanocarboxílico
815	CI O F F	ácido trans-4-(4-((2-(2,6-dicloro-3-fluorofenil)-2-oxoetil)(((2S)-2-metiltetrahidro-2-furanil)metil)carbamoil)-5-(trifluorometil)-1H-pirazol-1-il)-1-metilciclohexanocarboxílico
816	CI CI CI O N. I	ácido (1S,2R,4S)-4-(4-((2-(3,5-dicloro-4-piridinil)-2-oxoetil)((1 S)-espiro[3,3]hept-1-il)carbamoil)-5-(trifluorometil)-1H-pirazol-1-il)-2-metilciclohexanocarboxílico
817	CI CI CI O N N N N N N N N N N N N N N N N N N	ácido (1S,2R,4S)-4-(4-((2-(3,5-dicloro-4-piridinil)-2-oxoetil)((1R)-espiro[3,3]hept-1-il)carbamoil)-5-(trifluorometil)-1H-pirazol-1-il)-2-metilciclohexanocarboxílico
818	CI CI O H O H O H	ácido trans-4-(4-((2-(3,5-dicloro-4-piridinil)-2-oxoetil)(((1S)-2,2-difluorociclopropil)metil)carbamoil)-5-(trifluorometil)-1H-pirazol-1-il)-1-metilciclohexanocarboxílico
819	CI CI O H	ácido trans-4-(4-((2-(3,5-dicloro-4-piridinil)-2-oxoetil)(((1 R)-2,2-difluorociclopropil)metil)carbamoil)-5-(trifluorometil)-1H-pirazol-1-il)-1-metilciclohexanocarboxílico

ejemplo	estructura	nombre
820	CI CI OO NOO NOO NOO NOO NOO NOO NOO NOO NOO	ácido (1S,2R,4S)-4-(4-((2-(3,5-dicloro-4-piridinil)-2-oxoetil)((2 R)-tetrahidro-2-furanilmetil)carbamoil)-5-(trifluorometil)-1H-pirazol-1-il)-2-metilciclohexanocarboxílico
821	O F F	ácido trans-4-(4-((2-(2,6-diclorofenil)-2-oxoetil)(((2 R)-5,5-dimetiltetrahidro-2-furanil)metil)carbamoil)-5-(trifluorometil)-1H-pirazol-1-il)-1-metilciclohexanocarboxílico
822	O O O O O O O O O O O O O O O O O O O	ácido trans-4-(4-(((2R,4S)-4-ciclohexil-2-((3,5-dicloro-4-piridinil)carbonil)-1-pirrolidinil)carbonil)-5-(trifluorometil)-1H-pirazol-1-il)-1-metilciclohexanocarboxílico
823	CI CI OO F F F N N F F OOH	ácido trans-4-(4-(((2S,4S)-4-ciclohexil-2-((3,5-dicloro-4-piridinil)carbonil)-1-pirrolidinil)carbonil)-5-(trifluorometil)-1H-pirazol-1-il)-1-metilciclohexanocarboxílico
824	CI O H	ácido (1R,4R)-4-(4-((2-(3,5-dicloro-4-piridinil)-2-oxoetil)((1-metilciclobutil)metil)carbamoil)-5-(trifluorometil)-1H-pirazol-1-il)-2,2-dimetilciclohexanocarboxílico
825	Cr Cl OH OH	ácido (1S,4S)-4-(4-((2-(3,5-dicloro-4-piridinil)-2-oxoetil)((1-metilciclobutil)metil)carbamoil)-5-(trifluorometil)-1H-pirazol-1-il)-2,2-dimetilciclohexanocarboxílico
826	CI O O O O O O O O O O O O O O O O O O O	ácido (1S,2R,4S)-4-(4-((2-(3,5-dicloro-4-piridinil)-2-oxoetil)(((2 R)-5,5 -dimetiltetrahidro-2-furanil)metil)carbamoil)-5-(trifluorometil)-1H-pirazol-1-il)-2-metilciclohexanocarboxílico

ejemplo	estructura	nombre
827	CT CI O O N F F O O O O O	ácido trans-4-(4-(((2S,4R)-2-((3,5-dicloro-4-piridinil)carbonil)-4-fenil-1-pirrolidinil)carbonil)-5-(trifluorometil)-1H-pirazol-1-il)-1-metilciclohexanocarboxílico
828	CT O O O O O O O O O O O O O O O O O O O	ácido trans-4-(4-(((2R,4R)-2-((3,5-dicloro-4-piridinil)carbonil)-4-fenil-1-pirrolidinil)carbonil)-5-(trifluorometil)-1H-pirazol-1-il)-1-metilciclohexanocarboxílico
829	CI CI O H O H	ácido (1S,2R,4S)-4-(4-((2-(3,5-dicloro-4-piridinil)-2-oxoetil)(2-fluoro-2-metilpropil)carbamoil)-5-(trifluorometil)-1H-pirazol-1-il)-2-metilciclohexanocarboxílico
830	C C O H O H	ácido (1S,2R,4S)-4-(4-((2-(3,5-dicloro-4-piridinil)-2-oxoetil)((1-(trifluorometil)ciclopropil)metil)carbamoil)-5-(trifluorometil)-1H-pirazol-1-il)-2-metilciclohexanocarboxílico
831	HO CO	ácido (1S,2R,4S)-4-(4-((2-(2,6-diclorofenil)-2-oxoetil)(2-fluoro-2-metilpropil)carbamoil)-5-(trifluorometil)-1H-pirazol-1-il)-2-metilciclohexanocarboxílico
832	CI O F F	ácido trans-4-(4-((2-(2,6-diclorofenil)-2-oxoetil)(2-fluoro-2-metilpropil)carbamoil)-5-(trifluorometil)-1H-pirazol-1-il)-1-metilciclohexanocarboxílico
833	CI O O H	ácido cis-4-(4-((2-(2,4-dicloro-6-metil-3-piridinil)-2-oxoetil)((4,4-dimetilciclohexil)metil)carbamoil)-5-(trifluorometil)-1H-pirazol-1-il)ciclohexanocarboxílico

ejemplo	estructura	nombre
834	CI C	ácido cis-4-(4-((ciclohexilmetil)(2-(2,4-dicloro-6-metil-3-piridinil)-2-oxoetil)carbamoil)-5-(trifluorometil)-1H-pirazol-1-il)ciclohexanocarboxílico
835	CI O F L	ácido trans-4-(4-((2-(2,4-dicloro-6-metil-3-piridinil)-2-oxoetil)((4,4-dimetilciclohexil)metil)carbamoil)-5-(trifluorometil)-1H-pirazol-1-il)-1-metilciclohexanocarboxílico
836	CI O H O H	ácido (4R/S)-6-(4-((2-(3,5-dicloro-4-piridinil)-2-oxoetil)(2,2-dimetilpropil)carbamoil)-5-(trifluorometil)-1H-pirazol-1-il)espiro[3,3]heptano-2-carboxílico
837	CI O O H O O H	ácido (4R)-6-(4-((2-(3,5-dicloro-4-piridinil)-2-oxoetil)(2,2-dimetilpropil)carbamoil)-5-(trifluorometil)-1H-pirazol-1-il)espiro[3,3]heptano-2-carboxílico
838	OH OF F	ácido trans-4-(4-((2-(2,6-diclorofenil)-2-oxoetil)(((2S)-5,5-dimetiltetrahidro-2-furanil)metil)carbamoil)-5-(trifluorometil)-1H-pirazol-1-il)-1-metilciclohexanocarboxílico
839	O F F	ácido trans-4-(4-((2-(2,6-diclorofenil)-2-oxoetil)(((2 R)-5,5-dimetiltetrahidro-2-furanil)metil)carbamoil)-5-(trifluorometil)-1H-pirazol-1-il)-1-metilciclohexanocarboxílico
840	CI HOON F	ácido trans-4-(4-(((2R)-2-(3,5-dicloro-4-piridinil)-2-hidroxietil)((1-fluorociclopropil)metil)carbamoil)-5-(trifluorometil)-1H-pirazol-1-il)-1-metilciclohexanocarboxílico

ejemplo	estructura	nombre
841	Cr Cl O N F N-N Cl O S O	N-(2-(3,5-dicloro-4-piridinil)-2-oxoetil)-N-(2,2-dimetilpropil)-1- (cis-4-((metilsulfonil)metil)ciclohexil)-5-(trifluorometil)-1H-pirazol-4-carboxamida
842	CI CI O H O H	ácido (1R,3S,4R)-4-(4-((2-(3,5-dicloro-4-piridinil)-2-oxoetil)(2,2-dimetilpropil)carbamoil)-5-(trifluorometil)-1H-pirazol-1-il)-1,3-dimetilciclohexanocarboxílico
843	CI O H O H	ácido (1S,3S,4S)-4-(4-((2-(3,5-dicloro-4-piridinil)-2-oxoetil)(2,2-dimetilpropil)carbamoil)-5-(trifluorometil)-1H-pirazol-1-il)-1,3-dimetilciclohexanocarboxílico
844		ácido trans-4-(4-((2-(3,5-dicloro-4-piridinil)-2-oxoetil)((1-metoxiciclopropil)metil)carbamo il)-5-(trifluorometil)-1H-pirazol-1-il)-1-metilciclohexanocarboxílico
845	OH OO F F	ácido (1S,2R,4S)-4-(4-((2-(2,6-dicloro-3-fluorofenil)-2-oxoetil)((1R,3r,5S)-6,6-dimetilbiciclo[3,1,0]hex-3-il)carbamoil)-5-(trifluorometil)-1H-pirazol-1-il)-2-metilciclohexanocarboxílico
846	O OH H N F F CI	ácido (cis-3-(4-((2-(2,6-diclorofenil)-2-oxoetil)((1 R,3r,5S)-6,6-dimetilbiciclo[3,1,0]hex-3-il)carbamoil)-5-(trifluorometil)-1H-pirazol-1-il)ciclobutil)acético
847	CI CI OH OH	ácido (4s)-6-(4-((2-(3,5-dicloro-4-piridinil)-2-oxoetil)(2-fluoro-2-metilpropil)carbamoil)-5-(trifluorometil)-1H-pirazol-1-il)espiro[3,3]heptano-2-carboxílico

ejemplo	estructura	nombre
848	HO O F N N CI CI	ácido (1S,2R,4S)-4-(4-((2-(2,6-diclorofenil)-2-oxoetil)((1S)-espiro[3,3]hept-1-il)carbamoil)-5-(trifluorometil)-1H-pirazol-1-il)-2-metilciclohexanocarboxílico
849	HO O F N N CI CI	ácido (1S,2R,4S)-4-(4-((2-(2,6-diclorofenil)-2-oxoetil)((1R)-espiro[3,3]hept-1-il)carbamoil)-5-(trifluorometil)-1H-pirazol-1-il)-2-metilciclohexanocarboxílico
850	CI C	ácido trans-4-(4-((2-(3,5-dicloro-4-piridinil)-2-oxoetil)(2-etoxi-2-metilpropil)carbamoil)-5-(trifluorometil)-1H-pirazol-1-il)-1-metilciclohexanocarboxílico
851	CT CI O O H	ácido trans-4-(4-((2-(3,5-dicloro-4-piridinil)-2-oxoetil)(espiro[2,5]oct-6-ilmetil)carbamoil)-5-(trifluorometil)-1H-pirazol-1-il)-1-metilciclohexanocarboxílico
852	Cr CI OH	ácido (1S,2R,4S)-4-(4-((2-(3,5-dicloro-4-piridinil)-2-oxoetil)(espiro[2,5]oct-6-ilmetil)carbamoil)-5-(trifluorometil)-1H-pirazol-1-il)-2-metilciclohexanocarboxílico
853		ácido trans-4-(4-((2-(3,5-dicloro-4-piridinil)-2-oxoetil)((1 s,4s)-7-oxabiciclo[2,2,1]hept-1-ilmetil)carbamoil)-5-(trifluorometil)-1H-pirazol-1-il)-1-metilciclohexanocarboxílico
854	CI CI H	ácido trans-4-(4-((biciclo[1,1,1]pent-1-ilmetil)(2-(3,5-dicloro-4-piridinil)-2-oxoetil)carbamoil)-5-(trifluorometil)-1H-pirazol-1-il)-1-metilciclohexanocarboxílico

ejemplo	estructura	nombre
855	CI O N O H O F F O	ácido (1R,3R,4R)-4-(4-((2-(3,5-dicloro-4-piridinil)-2-oxoetil)(2,2-dimetilpropil)carbamoil)-5-(trifluorometil)-1H-pirazol-1-il)-1,3-dimetilciclohexanocarboxílico
856		ácido (1S,3S,4R)-4-(4-((2-(3,5-dicloro-4-piridinil)-2-oxoetil)(2,2-dimetilpropil)carbamoil)-5-(trifluorometil)-1H-pirazol-1-il)-1,3-dimetilciclohexanocarboxílico
857	C N N N N N N N N N N N N N N N N N N N	ácido (1R,3R,4S)-4-(4-((2-(3,5-dicloro-4-piridinil)-2-oxoetil)(2,2-dimetilpropil)carbamoil)-5-(trifluorometil)-1H-pirazol-1-il)-1,3-dimetilciclohexanocarboxílico
858	O O F F	ácido (trans-3-(4-((2-(2,6-diclorofenil)-2-oxoetil)((1 R,3r,5S)-6,6-dimetilbiciclo[3,1,0]hex-3-il)carbamoil)-5-(trifluorometil)-1H-pirazol-1-il)ciclobutil)acético
859	H F F CI	ácido (cis-3-(4-((2-(2,6-diclorofenil)-2-oxoetil)((1 R,3r,5S)-6,6-dimetilbiciclo[3,1,0]hex-3-il)carbamoil)-5-(trifluorometil)-1H-pirazol-1-il)ciclobutil)acético
860	CI HO O F F	ácido (1R,3r,6R)-6-(4-((2-(3,5-dicloro-4-piridinil)-2-oxoetil)(2,2-dimetilpropil)carbamoil)-5-(trifluorometil)-1H-pirazol-1-il)espiro[2,5]octano-1-carboxílico
861	CI CI O N N N N N N N N N N N N N N N N N N	ácido (1S,2S,4S)-4-(4-((2-(3,5-dicloro-4-piridinil)-2-oxoetil)(2,2-dimetilpropil)carbamoil)-5-(trifluorometil)-1H-pirazol-1-il)-1,2-dimetilciclohexanocarboxílico

ejemplo	estructura	nombre
862	CI CI ON N	ácido (1S,2S,4R)-4-(4-((2-(3,5-dicloro-4-piridinil)-2-oxoetil)(2,2-dimetilpropil)carbamoil)-5-(trifluorometil)-1H-pirazol-1-il)-1,2-dimetilciclohexanocarboxílico
863	Cr Cl O F F O OH	ácido trans-4-(4-((2-(3,5-dicloro-4-piridinil)-2-oxoetil)((3,3-difluoro-1-metilciclobutil)metil)carbamoil)-5-(trifluorometil)-1H-pirazol-1-il)-1-metilciclohexanocarboxílico
864	CI CI F F F F F N N N N N N N N N N N N N N	ácido (1S,2S,4S)-4-(4-((2-(3,5-dicloro-4-piridinil)-2-oxoetil)(3,3,3-trifluoro-2,2-dimetilpropil)carbamoil)-5-(trifluorometil)-1H-pirazol-1-il)-2-metilciclohexanocarboxílico
865	HO O CI	ácido (1R,4R)-4-(4-((2-(2,6-diclorofenil)-2-oxoetil)((1-metilciclobutil)metil)carbamoil)-5-(trifluorometil)-1H-pirazol-1-il)-2,2-dimetilciclohexanocarboxílico
866	HO O F N N C C CI	ácido (1S,4S)-4-(4-((2-(2,6-diclorofenil)-2-oxoetil)((1-metilciclobutil)metil)carbamoil)-5-(trifluorometil)-1H-pirazol-1-il)-2,2-dimetilciclohexanocarboxílico
867	CI CI O H	ácido (1S,2S,4S)-4-(4-((2-(3,5-dicloro-4-piridinil)-2-oxoetil)((1s,4s)-7- oxabiciclo[2,2,1]hept-1-ilmetil)carbamoil)-5- (trifluorometil)-1H-pirazol-1-il)-2 -metilciclohexanocarboxílico
868	CT CI F O H	ácido (1 S,3R,4S)-4-(4-((2-(3,5-dicloro-4-piridinil)-2-oxoetil)(2,2-dimetilpropil)carbamoil)-5-(trifluorometil)-1H-pirazol-1-il)-3-fluoro-1-metilciclohexanocarboxílico

ejemplo	estructura	nombre
869	CI CI P O H	ácido (1R,3S,4 R)-4-(4-((2-(3,5-dicloro-4-piridinil)-2-oxoetil)(2,2-dimetilpropil)carbamoil)-5-(trifluorometil)-1H-pirazol-1-il)-3-fluoro-1-metilciclohexanocarboxílico
870	CI CI F OH	ácido (1R,3S,4S)-4-(4-((2-(3,5-dicloro-4-piridinil)-2-oxoetil)(2,2-dimetilpropil)carbamoil)-5-(trifluorometil)-1H-pirazol-1-il)-3-fluoro-1-metilciclohexanocarboxílico
871		ácido (3aR,6R,7aR)-6-(4-((2-(3,5-dicloropiridin-4-il)-2-oxoetil)((2,2-dimetilpropil)carbamoil)-5-(trifluorometil)-1H-pirazol-1-il)octahidro-1H-indeno-3a-carboxílico
872	OH N N N N N N N N N N N N N N N N N N N	ácido trans-4-(4-((2-(3,5-dicloro-2-metoxi-4-piridinil)etil)(2,2-dimetilpropil)carbamoil)-5-(trifluorometil)-1H-pirazol-1-il)-1-metilciclohexanocarboxílico
873	CI CI O N N N N N N N N N N N N N N N N N N	ácido (1S,2S,4S)-4-(4-((2-(3,5-dicloro-4-piridinil)-2-oxoetil)(2,2-dimetilpropil)carbamoil)-5-(trifluorometil)-1H-pirazol-1-il)-1,2-dimetilciclohexanocarboxílico
874	CI CI O N F F N-N H O	ácido (1R,2R,4R)-4-(4-((2-(3,5-dicloro-4-piridinil)-2-oxoetil)(2,2-dimetilpropil)carbamoil)-5-(trifluorometil)-1H-pirazol-1-il)-1,2-dimetilciclohexanocarboxílico
875	CI CI O H O H	ácido (1R,2S,4R)-4-(4-((2-(3,5-dicloro-4-piridinil)-2-oxoetil)(3,3,3-trifluoro-2,2-dimetilpropil)carbamoil)-5-(trifluorometil)-1H-pirazol-1-il)-2-metilciclohexanocarboxílico

ejemplo	estructura	nombre
876	CI CI O N. H. N. N. N. H. N. N. N. H. N. N. N. N. H. N.	ácido (3aS,6S,7 aS)-6-(4-((2-(3,5-dicloropiridin-4-il)-2-oxoetil)(neopentil)carbamoil)-5-(trifluorometil)-1H-pirazol-1-il)octahidro-1H-indeno-3a-carboxílico
877	CI CI O N N F N N N N N N N N N N N N N N N N	ácido (3aR,6R,7aR)-6-(4-((2-(3,5-dicloropiridin-4-il)-2-oxoetil)(neopentil)carbamoil)-5-(trifluorometil)-1H-pirazol-1-il)octahidro-1H-indeno-3a-carboxílico
878	CI CI CI ON F F F ON N F F N N N	ácido (1R,2R,4R)-4-(4-((2-(3,5-dicloro-4-piridinil)-2-oxoetil)(3,3,3-trifluoro-2,2-dimetilpropil)carbamoil)-5-(trifluorometil)-1H-pirazol-1-il)-2-metilciclohexanocarboxílico
879	CI CI CI F F F N-N	ácido (1S,2S,4S)-4-(4-((2-(3,5-dicloro-4-piridinil)-2-oxoetil)(3,3,3-trifluoro-2,2-dimetilpropil)carbamoil)-5-(trifluorometil)-1H-pirazol-1-il)-2-metilciclohexanocarboxílico
880	CI C	ácido (1R,2R,4R)-4-(4-((2-(3,5-dicloro-4-piridinil)-2-oxoetil)((1s,4s)-7-oxabiciclo[2,2,1]hept-1-ilmetil)carbamoil)-5-(trifluorometil)-1H-pirazol-1-il)-2-metilciclohexanocarboxílico
881	CI C	ácido (1 S,2S,4S)-4-(4-((2-(3,5-dicloro-4-piridinil)-2-oxoetil)((1s,4s)-7-oxabiciclo[2,2,1] hept-1-ilmetil)carbamoil)-5-(trifluorometil)-1H-pirazol-1-il)-2-metilciclohexanocarboxílico
882	CI CI OH OH	ácido (1S,3R,4S)-4-(4-((2-(3,5-dicloro-4-piridinil)-2-oxoetil)(2,2-dimetilpropil)carbamoil)-5-(trifluorometil)-1H-pirazol-1-il)-1,3-dimetilciclohexanocarboxílico

ejemplo	estructura	nombre
883	CT CI O H O H	ácido (1R,3S,4R)-4-(4-((2-(3,5-dicloro-4-piridinil)-2-oxoetil)(2,2-dimetilpropil)carbamoil)-5-(trifluorometil)-1H-pirazol-1-il)-1,3-dimetilciclohexanocarboxílico
884	CI CI CI F F F F F F F F F F F F F F F F	ácido (trans-4-(4-((2-(3,5-dicloro-4-piridinil)-2-oxoetil)(3,3,3-trifluoro-2,2-dimetilpropil)carbamoil)-5-(trifluorometil)-1H-pirazol-1-il)ciclohexil)acético
885	O CI N N N N N N N N N N N N N N N N N N	ácido trans-4-(4-((2-(3,5-dicloro-2-oxo-1,2-dihidro-4-piridinil)etil)(2,2-dimetilpropil)carbamoil)-5-(trifluorometil)-1H-pirazol-1-il)-1-metilciclohexanocarboxílico
886	O C V V V V V V V V V V V V V V V V V V	ácido (1S,2R,4S)-4-(4-((2-(3,5-dicloro-2-oxo-1,2-dihidro-4-piridinil)etil)(2,2-dimetilpropil)carbamoil)-5-(trifluorometil)-1H-pirazol-1-il)-2-metilciclohexanocarboxílico
887	O CI N N F F O CI N N F F F O	ácido (1S,2R,4S)-4-(4-((2-(3,5-dicloro-2-metoxi-4-piridinil)etil)(2,2-dimetilpropil)carbamoil)-5-(trifluorometil)-1H-pirazol-1-il)-2-metilciclohexanocarboxílico
888	OH OH OON F F CI	ácido (trans-4-(4-((2-(2,6-dicloro-4-metoxifenil)-2-oxoetil)((1-fluorociclopentil)metil)carbamoil)-5-(trifluorometil)-1H-pirazol-1-il)ciclohexil)acético
889	OH O O CI CI F	ácido (trans-4-(4-((2-(2,6-dicloro-4-metoxifenil)-2-oxoetil)(4-fluorobencil)carbamoil)-5-(trifluorometil)-1H-pirazol-1-il)ciclohexil)acético

ejemplo	estructura	nombre
890	OH O F F F C C	ácido (trans-4-(4-((2-(2,6-dicloro-4-metilfenil)-2-oxoetil)((1-metilciclobutil)metil)carbamoil)-5-(trifluorometil)-1H-pirazol-1-il)ciclohexil)acético
891	H O N N CI	ácido trans-4-(4-((2-(2,6-dicloro-4-metoxifenil)-2-oxoetil)(espiro [3,5]non-7-ilmetil)carbamoil)-5-(trifluorometil)-1H-pirazol-1-il)-1-metilciclohexanocarboxílico
892	O H F F N O N CI N N N N N N N N N N N N N	ácido trans-4-(4-((2-(6,8-dicloro[1,2,4]triazolo[1,5-a]piridin-7-il)etil)(2,2-dimetilpropil)carbamoil)-5-(trifluorometil)-1H-pirazol-1-il)-1-metilciclohexanocarboxílico
893	HO O CI	ácido trans-4-(4-((2-(2,6-diclorofenil)-2-oxoetil)(3,3,3-trifluoro-2,2-dimetilpropil)carbamoil)-5-(trifluorometil)-1H-pirazol-1-il)-1-metilciclohexanocarboxílico

Los resultados de los análisis de cromatografía líquida de alto rendimiento - espectroscopía de masas (CL/EM) para los ejemplos anteriores se muestran en las siguientes tablas.

ejemplo	Masa exacta	Masa Obs.	ejemplo	Masa exacta	Masa Obs.
24	586,1	587,1	60	585,1	586
25	600,1	601,2	61	601,1	602
26	548,1	549,0	62	550,2	551
27	562,1	563,1	63	567,2	568
28	560,1	561,1	64	568,2	569
29	574,1	575,1	65	555,2	554
30	588,2	569,1	66	657,1	658
31	560,1	561,0	67	647,1	648
32	562,1	563,0	68	607,1	608
33	576,2	579,1	69	565,2	566
34	560,1	561,2	70	633,1	634
35	560,1	561,2	71	590,1	593,0
36	616,2	617,1	72	546,1	547,0
37	614,2	615,1	73	566,1	567,0
38	576,1	577,0	74	578,1	579,1
39	576,1	577,0	75	574,1	575,0
40	582,1	583,0	76	583,1	584,0

ejemplo	Masa exacta	Masa Obs.	ejemplo	Masa exacta	Masa Obs.
41	616,1	617,0	77	614,1	615,0
42	618,1	619,0	78	632,1	633,0
43	618,1	619,0	79	614,1	615,0
44	618,1	619,0	80	618,1	619,0
45	618,1	619,0	81	618,1	619,0
46	572,1	573,0	82	572,1	573,0
47	572,1	573,0	83	572,1	573,0
48	584,1	585,0	84	596,1	597,1
49	598,1	599	85	590,1	591
50	602,1	603	86	634,1	635,0
51	586,1	587	87	634,1	635,0
52	578,2	579	88	599,1	600,0
53	617,1	618	89	643,1	644,1
54	613,1	614	90	602,1	603,0
55	635,1	636	91	603,1	604,0
56	651,1	652	92	586,1	587,0
57	685,1	686	93	586,1	587,0
58	642,1	643	94	593,1	594,2
59	617,1	618	95	592,1	593,1
96	621,1	622,0	132	602,2	603,1
97	660,1	661	133	579,2	580
98	661,1	662	134	578,2	579
99	583,1	584	135	584,1	587
100	599,1	600,1	136	651,1	652
101	624,1	625,1	137	631,1	632
102	602,2	603,1	138	635,1	636,2
103	583,1	584,0	139	635,1	636,2
104	583,1	584,0	140	630,2	631
105	616,1	617,0	141	598,1	599
106	616,1	617,0	142	564,2	565
107	617,1	618	143	578,2	579
108	617,1	618	144	659,1	660,1
109	634,1	635	145	582,1	583,1
110	586,1	587,1	146	583,1	584
111	609,2	610	147	598,1	599
112	647,1	649	148	606,2	607
113	541,2	542	149	673,2	674,1
114	576,2	577,1	150	614,1	615,0
115	576,2	577,1	151	583,1	585
116	615,1	616,2	152	652,1	653
117	615,1	616,2	153	598,1	599
118	631,1	632	154	603,2	604,3
119	610,2	611	155	618,2	619,1
120	621,1	622	156	646,1	647
121	589,1	590,0	157	589,1	590

ejemplo	Masa exacta	Masa Obs.	ejemplo	Masa exacta	Masa Obs.
122	594,2	595	158	589,1	590
123	640,2	641,1	159	580,1	581,0
124	651,1	652	160	616,1	617,1
125	616,2	617,1	161	608,1	609,0
126	616,2	617,1	162	592,1	593
127	701,1	702	163	579,1	580,0
128	625,1	626,2	164	564,1	565
129	625,1	626,0	165	623,0	624
130	618,2	619,1	166	626,1	627,0
131	602,2	603,1	167	623,0	624
168	623,0	624	205	602,2	603,3
169	602,2	603,1	206	613,2	614,2
170	607,1	608	207	633,1	634,2
171	607,1	608	208	590,1	591,2
172	589,1	590,0	209	607,1	608,2
173	631,2	632,1	210	599,1	600,2
174	574,1	575,1	211	600,2	601,3
175	610,1	611,0	212	642,1	643,2
176	618,2	619,1	213	642,1	643,2
177	612,1	613,0	214	595,2	596,3
178	614,1	615	215	586,1	587
179	619,1	620	216	624,0	625
180	608,1	609,0	217	633,2	634,3
181	576,1	577,0	218	617,1	618,3
182	600,2	601,1	219	647,1	648,2
183	588,2	589	220	647,2	648,3
184	588,2	589,2	221	609,1	610,2
185	560,1	561,2	222	647,2	648,3
187	588,2	589,2	223	588,2	589,3
188	596,1	597,1	224	623,1	624,2
189	635,1	636,0	225	639,1	640,2
190	633,2	634,3	226	643,2	645
191	649,1	650,2	227	629,2	630
192	614,2	615,3	228	614,1	615
193	631,2	632,2	229	616,2	617,3
194	592,1	593,2	230	645,2	646,3
195	582,1	583,2	231	661,1	662,2
196	598,2	597	232	609,2	610,3
197	631,1	632,2	234	633,1	634,2
198		563,2	235		634,2
	562,1 631,2	· ·	236	633,2 641,2	642
199		632,3			
200	586,1	587,2	237	627,2	628
201	621,1	622,2	238	615,2	616
202	617,1	618,2	239	663,2	664,3
203	647,2	648,3	240	643,2	644,3

ejemplo	Masa exacta	Masa Obs.	ejemplo	Masa exacta	Masa Obs.
204	600,2	601,3	241	659,1	660,2
242	661,2	662,3	281	605,1	606,2
243	623,2	624,3	282	619,2	620,2
244	647,2	648,3	283	615,2	616,3
245	605,1	606,3	284	575,2	576,2
246	621,1	622,2	285	630,2	631,3
247	659,2	660,3	286	590,2	591,3
248	621,2	622,3	287	576,2	579,2
249	619,2	620,3	288	602,2	603,2
250	635,1	636,2	289	663,1	664
251	635,2	636,3	290	591,1	592
252	597,2	598,3	291	591,1	592
253	571,2	572,3	292	623,2	624
254	649,2	650,3	293	639,1	642
255	611,2	612,3	294	560,2	561,2
256	647,1	648,3	295	620,2	621
257	609,2	610,3	296	648,2	649
258	647,2	648,3	297	559,2	560,3
259	625,3	626,4	298	651,1	652,2
260	663,1	664,2	299	618,1	619,2
261	655,2	656	300	631,2	632,2
262	602,1	603	301	633,2	634
263	621,2	622,3	302	607,2	608,3
264	600,2	601,2	303	646,2	647
265	609,2	610,2	304	632,2	633
266	631,2	632,2	305	674,2	675
267	628,2	629,3	306	623,1	626,1
268	611,2	612	307	622,1	623
269	611,2	612	308	635,1	636,1
270	639,2	640,3	309	619,2	620,1
271	635,1	636,2	310	533,2	534,5
272	606,1	607,2	311	659,2	660
273	627,2	628,3	312	590,2	591
274	645,2	646,2	313	578,1	579
275	661,1	662,2	314	574,1	575
279	609,3	610	315	572,2	573,3
280	609,3	610	316	586,1	587,2
317	587,2	588,2	355	599,2	600,3
318	606,2	606,6	356	573,2	574,3
319	602,2	603,6	357	573,2	574,3
320	625,2	626,2	358	541,1	544
321	639,2	640,3	359	555,1	558
322	628,2	629,2	360	580,2	581
323	618,2	619,8	363	579,1	580
324	604,1	605,2	364	559,2	560

ejemplo	Masa exacta	Masa Obs.	ejemplo	Masa exacta	Masa Obs.
325	616,2	617,3	365	573,2	574
326	580,1	581,2	366	593,2	594
327	592,1	593,2	367	580,1	581
328	532,3	533,7	368	581,2	583,0
329	640,1	641,2	369	581,2	582,9
331	602,2	603	370	577,3	578,9
332	620,2	619	371	577,3	579,0
333	598,2	599,3	372	615,3	616,9
334	566,2	567,7	373	615,3	617,0
335	610,2	611,3	374	577,2	578,9
336	613,3	614,3	375	577,2	578,9
337	574,2	575,2	376	605,2	607,0
338	551,3	552	377	618,3	620,0
339	605,1	606	378	540,1	541,2
340	588,2	589	379	556,2	557,3
341	611,2	612,3	380	605,2	606,3
342	611,2	612,9	381	568,1	569,2
344	646,2	645	382	548,2	549,3
345	599,2	600	383	600,2	601
346	588,2	589	384	600,2	601
347	607,2	606	385	585,2	586
348	639,1	640	386	596,1	597,8
349	606,3	608	387	594,2	595,9
350	671,1	672	388	594,1	595,1
351	655,1	656	389	581,2	582,3
352	580,2	581,8	390	582,2	583
353	652,2	653	391	582,2	583
354	599,2	600,3	392	618,3	619
393	595,2	596,3	410	563,3	564
394	608,2	609,3	411	587,2	588
395	574,1	575,2	412	654,1	655,2
396	587,2	588			
397	587,2	588			
398	580,2	581,3			
399	647,2	648			
400	645,2	646			
401	548,3	549			
402	544,2	545			
403	544,2	545			
404	603,2	604			
405	605,2	606			
406	607,2	608			
407	507.2	E00			

597,2

583,2

598,2

ejemplo	Masa exacta	Masa Obs.	ejemplo	Masa exacta	Masa Obs.
500	567,1	568,1	535	629,2	629,8
501	601,1	602,0, 604,0	536	615,2	616
502	533,2	534,2	536	615,2	615,7
503	572,2	573,2	537	601,2	601,7
504	601,1	602,0, 604,1	537	601,2	602
505	561,2	562,2	538	592,2	593
506	572,2	573,2	539	616,1	617,2
507	572,2	573,1	541	633,1	634,0
508	572,2	573,2	542	576,2	577,1
509	547,2	548	543	630,1	629,0, 631,0
510	587,2	588	544	578,2	579
511	601,2	602,2	545	561,1	562
512	561,2	562,1	546	602,2	603,0
513	586,2	587,2	547	548,2	549,0
514	601,2	602,2	548	572,2	573
515	575,2	576,2	549	588,2	589
516	615,2	616	550	588,2	589,2
517	575,2	575,8	552	576,2	577
518	627,2	628	553	574,2	575,0
519	615,2	615,7	554	560,2	561
520	601,2	601,7	555	600,2	601,0
521	587,2	587,8	556	588,2	589
522	699,1	699,5	557	574,2	575,2
523	547,2	547,7	558	614,2	615,1
524	563,2	564	559	602,2	603,0, 605,0
525	601,2	601,7	560	560,2	561,2
526	635,1	635,6	561	630,2	631,0
527	649,1	649,5	562	574,2	575
528	663,1	664	563	546,1	547
529	591,2	591,7	564	560,2	561,2
530	591,2	592	565	599,2	600
531	591,2	591,7	566	599,2	600,1
532	643,2	644,2	567	585,1	586,0
533	615,2	616,1	568	589,2	590
534	587,2	587,7	569	627,2	628,2
534	587,2	587,7	570	601,2	604,3
535	629,2	629,8			
571	629,2	630,2	608	585,2	586,1
572	601,2	602,2	609	578,1	579
573	563,2	564,2	610	599,2	600,2
574	563,2	564,0	611	577,1	577,8
575	631,2	632,2	612	627,2	628,2
576	584,2	585	612	627,2	628,2
577	574,1	577	613	585,1	586,1
578	588,2	589,0	614	604,1	604,8

ejemplo	Masa exacta	Masa Obs.	ejemplo	Masa exacta	Masa Obs.
579	645,2	648	615	613,2	614
580	617,2	618	615	613,2	614,1
581	631,2	632,2	616	588,2	589,0
582	586,2	587,0	617	588,2	589,0
583	613,2	614,0	618	612,2	613,1
584	635,2	636,0	619	615,2	588,0
585	597,1	598,2	620	615,2	588,0
586	558,2	559,1	621	572,2	573,2
587	588,2	589	622	600,2	601
588	616,2	617	623	574,1	575,2
589	611,2	612	624	585,1	586,2
590	621,1	622	625	599,2	600,2
591	588,2	589	626	613,2	614
592	588,2	589,0	627	599,2	600
593	578,1	578,9	628	603,2	604,0
594	610,1	611	629	603,2	604
595	585,2	586	630	591,1	592,0
596	571,2	572	631	605,1	606
597	555,2	556	632	599,2	600,2
598	569,2	570	633	600,2	601,1
599	587,2	588,1	634	574,1	575
600	573,1	574	634	574,1	575
601	603,2	604	635	574,1	575,0
602	581,3	582	635	574,1	575,0
603	591,1	592,0	636	573,1	574,0
604	558,2	587,2	636	573,1	574,0
605	605,2027	606,1	637	573,1403	574
606	592,1625	593	637	573,1403	574
607	595,266	596,2	638	618,1617	619
639	599,2	600,2	675	590,1	591
640	585,1	586	676	603,2	604
641	599,2	600	677	600,2	601,1
642	585,1	586	678	613,2	614,1
643	589,2	590,2	679	604,2	605,2
644	618,2	619,2	680	604,2	605,2
645	632,2	632,9	681	590,2	591,2
646	604,1	604,8	682	590,2	591,2
647	574,1	575,1	683	601,2	602,2
648	574,1	575	684	601,2	602,2
649	613,2	614,2	685	604,1	605,1
650	613,2	614,2	686	604,1	605,2
651	599,2	600,2	687	590,2	590,9
652	599,2	600,2	688	560,2	561,0, 563,1
653	629,2	630,2	689	629,2	630,2
654	629,2	630,2	690	595,1	596,0

ejemplo	Masa exacta	Masa Obs.	ejemplo	Masa exacta	Masa Obs.
655	618,2	619,0	691	605,1	606,1
656	560,1	561,2	692	630,1	631,0
657	573,2	574,2	693	570,2	570,8
658	597,2	598,2	694	591,1	591,8
659	576,2	577,1	694	591,1	591,8
660	604,1	605,2	695	577,1	577,8
661	604,1	605,2	695	577,1	577,8
662	601,2	602,2	696	633,2	633,8
663	601,2	603	696	633,2	633,8
664	619,2	620,2	697	610,1	611,2
665	633,2	634,2	698	605,1	605,8
666	620,2	621,2	698	605,1	605,8
667	592,1	593	699	616,2	617,2
667	592,1	593	700	576,2	577,2
668	573,1	574	701	574,2	574,9
669	573,1	573,9	702	626,2	627,3
670	561,1	562, 562	703	592,1	592,8
671	619,2	620,2	704	589,2	590,2
672	601,2	604	705	604,1	605,0
673	618,2	619,1	706	604,1	605,0
674	618,2	619,1	707	573,1	574,0
708	597,1	598,2	737	578,1	580
709	615,2	616,2	738	576,2	578
710	560,1	561,0	739	576,2	578
711	602,2	603,0	740	590,2	591
712	618,1	619	741	611,1	612,2
712	618,1	619	742	602,2	603
713	617,1	618	743	588,2	589,2
713	617,1	618	744	615,2	616,2
714	628,2	629,2	745	601,2	602,1
715	590,2	591	746	574,2	574,9
716	591,1	592,1	747	574,2	574,9
716	591,1	592,1	748	600,2	601,2
717	587,2	588,1	749	600,2	601,2
717	587,2	588,1	750	627,2	628,4
718	601,2	602,2	751	620,2	621,3
718	601,2	602,2	752	575,2	612,2
719	576,2	577,3	753	606,2	607,3
720	576,2	577,3	754	590,2	591
721	613,2	614,2	755	632,1	633,2
722	613,2	614,2	756	602,2	604
723	617,2	618,2	757	608,2	609,3
724	617,2	618,2	758	628,2	629,3
725	617,2	618,2	759	573,1	574,3
726	617,2	618,2	759	573,1	574,3

ejemplo	Masa exacta	Masa Obs.	ejemplo	Masa exacta	Masa Obs.
727	603,2	604,2	760	587,2	588,3
728	603,2	604,2	760	587,2	588,3
729	627,1	628	761	632,1	632,2 (M-H) ⁻
730	588,2	589,1	762	646,1	646,2 (M-H) ⁻
731	601,2	602,1	763	631,2	632,2
732	630,2	631,3	764	593,1	594,2
733	587,2	588,1	765	560,1	561,2
733	587,2	588,1	766	602,1	604
734	574,1	575	767	602,1	604
734	574,1	575	768	646,1	647,3
735	602,2	603	769	589,1	570,2
735	602,2	603	770	560,1	561,2
736	578,1	580	771	574,1	575,2
772	599,2	600	809	584,2	585,2
773	618,2	619,1	810	606,1	607
774	618,2	619,1	810	606,1	607
775	588,2	587,9	811	627,1	628
776	574,1	575,2	812	576,2	577,1
777	587,2	588	813	576,2	577,1
778	585,2	586,2	814	621,1	622,2
779	620,2	619,8	815	621,1	622,2
780	646,1	645,7	816	600,2	601,2
781	587,2	589	817	600,2	601,2
782	588,2	590	818	596,1	597
783	631,2	632,0	819	596,1	597
784	590,2	591	820	590,1	591,2
785	590,2	591	821	617,2	618,2
786	646,1	646,3	822	628,2	629,1, 631,1
787	613,2	614,2	823	628,2	629,1, 631,1
788	574,1	575,2	824	602,2	604
789	646,1	646,3	825	602,2	604
790	646,1	645,5	826	618,2	619,1
791	590,2	590	827	622,1	623,0, 625,0
792	590,2	590	828	622,1	623,0, 625,0
793	576,2	577,1	829	580,1	581,2
794	575,2	577	830	628,1	629,2, 631,2
795	638,1	639,0, 641,0	831	579,1	580,2
796	638,1	639,0, 641,0	832	579,1	580,2
797	638,1	639,0, 641,0	833	630,2	631,2
798	645,1	645,9	834	602,2	605,2
799	642,1	642,9	835	644,2	647,2
800	606,1	606,9	836	574,1	575,2
801	616,2	619,0	837	574,1	575,2
802	630,1	632	838	617,2	618,2
803	576,2	577,2	839	617,2	618,2

ES 2 673 279 T3

ejemplo	Masa exacta	Masa Obs.	ejemplo	Masa exacta	Masa Obs.
804	575,2	576,2	840	580,1	581,2
805	601,2	602,2	841	610,1	611,0
806	601,2	602,2	842	590,2	591,2
807	602,2	602,9	843	590,2	591,2
808	590,1	591,0	844	590,1	591,0
845	631,2	632,2	876	602,2	603
846	585,1	586,2	876	602,2	603
847	578,1	579	877	602,2	603
848	599,2	600	877	602,2	603
849	599,2	600	878	630,1	631,1
850	606,2	607,1	879	630,1	631,1
851	628,2	629,2, 631,2	880	616,1	617,2
852	628,2	629,2, 631,2	881	616,1	617,2
853	616,1	617,0	882	590,2	591,2
854	586,1	587,2	883	590,2	591,2
855	590,2	591,2	884	630,1	631,0
856	590,2	591,2	885	578,2	579,0, 581,0
857	590,2	591,2	886	578,2	579,0, 581,2
858	585,1	586,2	887	592,2	593,2, 595,1
859	585,1	586,2	888	635,2	636
860	588,2	589,2	888	635,2	636
861	590,2	591	889	643,1	644
861	590,2	591	889	643,1	644
862	590,2	591	890	601,2	602
862	590,2	591	890	601,2	602
863	624,1	625	891	671,2	672
863	624,1	625	891	671,2	672
864	630,1	631,1	892	602,2	603,2
865	601,2	603	893	629,1	630,2
866	601,2	603			
867	616,1	617,2			
868	594,1	595,2			
869	594,1	595,2			
870	594,1	595,2			
871	602,2	603			
871	602,2	603			
872	592,2	593,2, 595,1			
873	590,2	591			
873	590,2	591			
874	590,2	591			
874	590,2	591			
875	630,1	632			

ES 2 673 279 T3

Como para los ejemplos, los resultados del espectro se muestran en las siguientes tablas.

ejemplo	
0,0p.0	δ (400 MHz, CDCl ₃) rotámeros presentes 8,53 y 8,47 (2H, 2xs); 7,69 y 7,59 (1H, 2xs); 7,31-7,28 (1H,
25	m); 7,16-7,12 (1H, m); 7,06-7,02 (2H, m); 4,83 y 4,65 (2H, 2xs); 4,61 y 4,30 (2H, 2xs), 4,27-4,21 (1H, m); 2,78 (1H, m); 2,44-2,40 (2H, m); 2,26-2,15 (2H, m); 1,96-1,86 (2H, m); 1,74-1,67 (2H, m)
26	δ (400 MHz, CDCl ₃) rotámeros presentes 8,58 y 8,51 (2H, 2xs); 7,63 y 7,55 (2H, 2xs); 4,77 y 4,44 (2H, 2xs); 4,28-4,19 (1H, m); 3,44 (1H, d, J = 6,8 Hz) y 3,21 (1H, d, J = 7,6 Hz); 2,52-2,42 (1H, m); 2,26-2,23 (2H, m); 2,14-2,03 (4H, m); 1,88-1,59 (1H, m); 0,99 y 0,84 (6H, 2xd, J = 6,6 Hz)
27	δ (400 MHz, CDCl3) rotámeros presentes 8,57 y 8,50 (2H, 2xs); 7,71 y 7,56 (2H, 2xs); 4,87 y 4,53 (2H, 2xs); 4,25-4,19 (1H, m); 3,43-3,34 (2H, m); 2,49-2,43 (1H, m); 2,26-2,23 (2H, m); 2,10-2,03 (4H, m); 1,70-1,59 (2H, m); 1,01 y 0,85 (9H, 2xs)
28	δ (400 MHz, CDCl ₃) rotámeros presentes 8,58 y 8,50 (2H, 2xs); 7,64 y 7,54 (2H, 2xs); 4,71 y 4,40 (2H, 2xs); 4,28-4,17 (1H, m); 3,66 y 3,40 (2H, 2xd, J = 7,3Hz); 2,71-2,42 (2H, m); 2,27-2,22 (2H, m); 2,15-1,99 (6H, m); 1,94-1,52 (6H, m)
29	δ (400 MHz, CDCl ₃) rotámeros presentes 8,58 y 8,51 (2H, 2xs); 7,63 y 7,55 (1H, 2xs); 4,79 y 4,46 (2H, 2xs); 4,30-4,18 (1H, m); 3,57 y 3,32 (2H, 2xd, J = 7,8Hz); 2,50-2,42 (1H, m); 2,27-2,22 (2H, m); 2,13-2,04 (4H, m); 1,78-1,49 (9H, m); 1,31-1,27 (1H, m); 1,07-1,03 (1H, m)
30	δ (400 MHz, CDCl ₃) rotámeros presentes 8,58 y 8,51 (2H, 2xs); 7,62 y 7,55 (1H, 2xs); 4,76 y 4,44 (2H, 2xs); 4,28-4,19 (1H, m); 3,45 y 3,22 (2H, 2xd, J = 7,8Hz); 2,51-2,42 (1H, m); 2,27-2,23 (2H, m); 2,14-2,03 (4H, m); 1,75-1,64 (9H, m); 1,54-1,46 (1H, m); 1,16-1,10 (1H, m); 1,07-1,01 (1H, m); 0,77-0,71 (1H, m)
31	$\begin{array}{c} \delta \ (400 \ MHz, \ CDCl_3) \ rotámeros \ presentes \ 8,58 \ y \ 8,51 \ (2H, \ 2xs); \ 7,62 \ y \ 7,55 \ (1H, \ 2xs); \ 4,95 \ y \ 4,60 \\ (2H, \ 2xs); \ 4,30-4,22 \ (1H, \ m); \ 3,57 \ y \ 3,34 \ (2H, \ 2xs); \ 2,52-2,43 \ (1H, \ m); \ 2,27-2,24 \ (2H, \ m); \ 2,15-2,04 \\ (4H, \ m); \ 1,72-1,62 \ (2H, \ m); \ 1,09 \ y \ 0,97 \ (3H, \ 2xs); \ 0,51-0,32 \ (4H, \ m) \end{array}$
32	δ (400 MHz, CDCl ₃) rotámeros presentes 8,58 y 8,51 (2H, 2xs); 7,65 y 7,55 (1H, 2xs); 4,74 y 4,42 (2H, 2xs); 4,30-4,17 (1H, m); 3,61 y 3,34 (2H, 2xt, J = 7,7Hz); 2,50-2,43 (1H, m); 2,27-2,24 (2H, m); 2,12-2,03 (4H, m); 1,72-1,38 (5H, m); 0,96 (3H, d, J = 6,6Hz); 0,77 (3H, d, J = 6,3Hz)
33	$\begin{array}{c} \delta \ (400 \ MHz, \ CDCl_3) \ rotámeros \ presentes \ 8,58 \ y \ 8,52 \ (2H, \ 2xs); \ 7,65 \ y \ 7,54 \ (1H, \ 2xs); \ 4,74 \ y \ 4,41 \ (2H, \ 2xs); \ 4,30-4,20 \ (1H, \ m); \ 3,62-3,58 \ y \ 3,33-3,29 \ (2H, \ 2xm); \ 2,50-2,43 \ (1H, \ m); \ 2,26-2,23 \ (2H, \ m); \ 2,12-2,04 \ (4H, \ m); \ 1,72-1,62 \ (2H, \ m); \ 1,56-1,51 \ y \ 1,42-1,38 \ (2H, \ 2xm); \ 0,97 \ y \ 0,76 \ (9H, \ 2xs) \end{array}$
35	δ (400 MHz, CDCl3) rotámeros presentes 8,56 y 8,49 (2H, 2xs); 7,63 y 7,55 (1H, 2xs); 5,19-5,16 y 5,10-5,06 (1H, 1xm); 4,29-4,27 y 3,99-3,97 (2H, 2xm); 2,50-2,43 (1H, m); 2,26-2,23 (2H, m); 2,13-2,03 (4H, m); 1,72 y 1,52 (3H, 2xs); 1,70-1,63 (2H, m)
36	δ (400 MHz, CDCl ₃) rotámeros presentes 8,58 y 8,51 (2H, 2xs); 7,63 y 7,55 (1H, 2xs); 4,76 y 4,44 (2H, 2xs); 4,28-4,17 (1H, m); 3,49 y 3,26 (2H, 2xd, J = 6,8Hz); 2,51-2,42 (1H, m); 2,27-2,23 (2H, m); 2,14-2,03 (4H, m); 1,71-0,97 (11H, m); 0,90-0,78 (6H, m)
37	δ (400 MHz, CDCl ₃) rotámeros presentes 8,58 y 8,51 (2H, 2xs); 7,64 y 7,55 (1H, 2xs); 4,77 y 4,45 (2H, 2xs); 4,29-4,19 (1H, m); 3,51 y 3,28 (2H, 2xd, J = 6,8Hz); 2,51-2,43 (1H, m); 2,27-2,23 (2H, m); 2,14-2,03 (4H, m); 1,73-1,54 (7H, m); 1,27-1,18 (1H, m); 0,98-0,84 (3H, m), 0,30-0,10 (4H, m)
40	δ (400 MHz, CDCl ₃) rotámeros presentes 8,52 y 8,45 (2H, 2xs); 7,69 y 7,60 (1H, 2xs); 7,37-7,29 (4H, m); 7,17-7,15 (1H, m); 4,87 y 4,66 (2H, 2xs); 4,64 y 4,30 (2H, 2xs); 4,30-4,21 (1H, m); 2,49-2,42 (1H, m); 2,25-2,22 (2H, m); 2,09-2,04 (4H, m); 1,71-1,64 (2H, m)
41	δ (400 MHz, CDCl ₃) rotámeros presentes 8,53 y 8,47 (2H, 2xs); 7,68 y 7,60 (1H, 2xs); 7,33 (2H, d, J = 8,3Hz); 7,25 y 7,10 (2H, d, J = 8,3Hz); 4,82 y 4,65 (2H, 2xs); 4,61 y 4,29 (2H, 2xs); 4,29-4,20 (1H, m); 2,50-2,42 (1H, m); 2,27-2,23 (2H, m); 2,11-2,03 (4H, m); 1,70-1,59 (2H, m)
42	δ (400 MHz, CDCl ₃) rotámeros presentes 8,55 y 8,49 (2H, 2xs); 7,66 y 7,61 (1H, 2xs); 6,85-6,69 (3H, m); 4,83 y 4,70 (2H, 2xs); 4,62 y 4,34 (2H, 2xs); 4,28-4,21 (1H, m); 2,49-2,43 (1H, m); 2,27-2,23 (2H, m); 2,10-2,04 (4H, m); 1,71-1,60 (2H, m)
43	δ (400 MHz, CDCl ₃) rotámeros presentes 8,54 y 8,48 (2H, 2xs); 7,67 y 7,59 (1H, 2xs); 7,26-7,21, 7,15-7,70 y 6,93-6,89 (3H, 3xm); 4,92 y 4,71 (2H, 2xs); 4,71 y 4,42 (2H, 2xs); 4,28-4,18 (1H, m); 2,50-2,43 (1H, m); 2,26-2,23 (2H, m); 2,12-2,03 (4H, m); 1,71-1,59 (2H, m)
44	δ (400 MHz, CDCl ₃) rotámeros presentes 8,54 y 8,48 (2H, 2xs); 7,67 y 7,60 (1H, 2xs); 7,19-7,12 y 7,05-6,89 (3H, 2xm); 4,80 y 4,67 (2H, 2xs); 4,60 y 4,32 (2H, 2xs); 4,27-4,19 (1H, m); 2,49-2,42 (1H, m); 2,26-2,23 (2H, m); 2,11-2,04 (4H, m); 1,70-1,63 (2H, m)
45	δ (400 MHz, CDCl ₃) rotámeros presentes 8,55 y 8,48 (2H, 2xs); 7,68 y 7,60 (1H, 2xs); 7,19-7,14, 7,06-6,95 y 6,82-6,78 (3H, 3xm); 4,87 y 4,73 (2H, 2xs); 4,66 y 4,42 (2H, 2xs); 4,28-4,19 (1H, m); 2,50-2,43 (1H, m); 2,26-2,23 (2H, m); 2,13-2,03 (4H, m); 1,70-1,60 (2H, m)
46	δ (400 MHz, CDCl ₃) rotámeros presentes 8,56 y 8,49 (2H, 2xs); 7,78 y 7,75 (1H, 2xs); 7,39 (1H, m);

ejemplo	
	6,35 (1H, m); 6,33-6,32 y 6,22-6,21 (1H, 2xm); 4,84 y 4,73 (2H, 2xs); 4,56 y 4,44 (2H, 2xs); 4,33-4,19 (1H, m); 2,50-2,42 (1H, m); 2,27-2,23 (2H, m); 2,14-2,03 (4H, m); 1,73-1,62 (2H, m)
47	δ (400 MHz, CDCl3) rotámeros presentes 8,55 y 8,49 (2H, 2xs); 7,70 y 7,58 (1H, 2xs); 7,41-7,33 (2H, m); 6,40 y 6,26 (1H, 2xs); 4,70 (2H, s); 4,46 y 4,35 (2H, 2xs); 4,32-4,18 (1H, m); 2,50-2,42 (1H, m); 2,27-2,23 (2H, m); 2,14-2,03 (4H, m); 1,72-1,59 (2H, m)
48	δ (400 MHz, CDCl ₃) rotámeros presentes 8,76-8,36 (5H, m); 7,71 y 7,60 (1H, 2xs); 4,94 y 4,85 (2H, 2xs); 4,74 y 4,66 (2H, 2xs); 4,26-4,18 (1H, m); 2,49-2,42 (1H, m); 2,25-2,22 (2H, m); 2,11-2,03 (4H, m); 1,70-1,59 (2H, m)
49	δ (400 MHz, DMSO-d ₆) rotámeros presentes 12,16 (1H, s a); 8,56-8,51 y 8,49-8,43 (2H, 2xm); 7,88 y 7,82 (1H, 2xs); 7,16-6,92 (3H, m); 4,78 y 4,77 (2H, 2xs); 4,72 y 4,60 (2H, 2xs); 4,28-4,17 (1H, m); 2,33-2,29 (1H, m); 2,28 y 1,83 (3H, 2xs)- 2,07-2,03 (2H, m); 1,94-1,91 (4H, m); 1,60-1,49 (2H, m)
50	δ (400 MHz, DMSO-d ₆) rotámeros presentes 8,78 y 8,71 (1H, 2xs); 8,69 y 8,62 (1H, 2xs); 7,81 y 7,78 (1H, 2xs); 7,18-6,90 (3H, m); 4,84 y 4,81 (2H, 2xs); 4,70 y 4,59 (2H, 2xs); 4,23-4,14 (1H, m); 2,33-2,26 (1H, m); 2,09-2,02 (2H, m); 1,99-1,90 (4H, m); 1,58-1,46 (2H, m)
51	δ (400 MHz, DMSO-d ₆) rotámeros presentes 12,20 (1H, s a); 8,72 y 8,66 (2H, 2xs); 7,74 y 7,72 (1H, 2xs); 7,18-7,10 (1H, m); 7,07 y 6,90 (2H, 2xd, J = 6,4 Hz); 4,84 y 4,82 (2H, 2xs); 4,71 y 4,60 (2H, 2xs); 4,22-4,17 (1H, m); 2,33-2,27 (1H, m); 2,09-1,92 (6H, m); 1,55-1,49 (2H, m)
52.	δ (400 MHz, CDCl ₃) rotámeros presentes 8,31 y 8,24 (2H, 2xs); 7,67 y 7,63 (1H, 2xs); 6,83-6,72 (3H, m); 4,84 y 4,63 (2H, 2xs); 4,47 y 4,20 (2H, 2xs); 4,27-4,25 (1H, m); 2,49-2,43 (1H, m); 2,27-2,23 (2H, m); 2,23 y 1,86 (6H, 2xs); 2,11-2,06 (4H, m); 1,68-1,64 (2H, m)
53	δ (400 MHz, DMSO-d ₆) rotámeros presentes 12,20 (1H, s a); 7,86 y 7,84 (1H, 2xs); 7,57-7,49 (3H, m); 7,19-7,13 (1H, m); 7,11-7,08 y 6,93-6,91 (2H, 2xm); 4,81 y 4,72 (2H, 2xs); 4,67 y 4,56 (2H, 2xs); 4,27-4,19 (1H, m); 2,34-2,27 (1H, m); 2,06-2,03 (2H, m); 1,98-1,92 (4H, m); 1,58-1,50 (2H, m)
54	δ (400 MHz, DMSO-d ₆) rotámeros presentes 12,20 (1H, s a); 7,75 (1H, s); 7,47-7,38 (1H, m); 7,18-6,88 (5H, m); 4,71 y 4,67 (2H, 2xs); 4,53 y 4,52 (2H, 2xs); 4,25-4,23 (1H, m); 3,77 y 3,67 (3H, 2xs); 2,34-2,28 (1H, m); 2,06-1,90 (6H, m); 1,59-1,49 (2H, m)
55	δ (400 MHz, DMSO-d ₆) rotámeros presentes 12,20 (1H, s a); 7,86 y 7,84 (1H, 2xs); 7,68 y 7,62 (2H, 2xd, J = 8,4 Hz); 7,19-6,91 (3H, m); 4,80 y 4,71 (2H, 2xs); 4,65 y 4,55 (2H, 2xs); 4,26-4,21 (1H, m); 2,35-2,28 (1H, m); 2,07-2,06 (2H, m); 1,97-1,92 (4H, m); 1,60-1,49 (2H, m)
56	δ (400 MHz, DMSO-d ₆) rotámeros presentes 7,86 y 7,84 (1H, 2xs); 7,84 y 7,76 (2H, 2xs); 7,19-6,91 (3H, m); 4,80 y 4,71 (2H, 2xs); 4,65 y 4,56 (2H, 2xs); 4,27-4,17 (1H, m); 2,34-2,27 (1H, m); 2,06-2,02 (2H, m); 1,97-1,91 (4H, m); 1,59-1,49 (2H, m)
57	δ (400 MHz, DMSO-d ₆) rotámeros presentes 12,18 (1H, s a); 8,08 y 8,02 (2H, 2xs); 7,88 y 7,85 (1H, 2xs); 7,19-6,92 (3H, m); 4,84 y 4,72 (2H, 2xs); 4,68 y 4,57 (2H, 2xs); 4,27-4,18 (1H, m); 2,35-2,27 (1H, m); 2,07-2,03 (2H, m); 1,98-1,93 (4H, m); 1,60-1,51 (2H, m)
58	δ (400 MHz, CD3CN) rotámeros presentes 7,88-7,68 (3H, m); 7,02-6,86 (3H, m); 4,79 y 4,76 (2H, 2xs); 4,62 y 4,56 (2H, 2xs); 4,35-4,29 (1H, m); 2,47-2,40 (1H, m); 2,17-2,12 (2H, m); 2,08-2,02 (4H, m); 1,67-1,62 (2H, m)
59	δ (400 MHz, DMSO-d ₆) rotámeros presentes 12,20 (1H, s a); 8,04-7,87 (3H, m); 7,75 y 7,52 (1H, 2xs); 7,17-7,10 (1H, m); 7,06-7,05 y 6,89-6,88 (2H, 2xm); 5,08 y 4,96 (2H, 2xs); 4,67 y 4,57 (2H, 2xs); 4,18-4,17 (1H, m); 2,32-2,25 (1H, m); 2,04-1,98 (2H, m); 1,95-1,81 (4H, m); 1,55-1,47 (2H, m)
60	δ (400 MHz, DMSO-d ₆) rotámeros presentes 12,20 (1H, s a); 7,77-7,51 (4H, m); 7,17-7,07 (1H, m); 7,05 y 6,89 (2H, 2xd, J = 1,6 Hz); 5,07 y 4,93 (2H, 2xs); 4,68 y 4,57 (2H, 2xs); 4,18-4,17 (1H, m); 2,29-2,25 (1H, m); 2,05-1,98 (2H, m); 1,95-1,81 (4H, m); 1,53-1,47 (2H, m)
61	δ (400 MHz, CDCl ₃) rotámeros presentes 7,76-7,72 y 7,38-7,34 (1H, 2xm); 7,58 y 7,50 (1H, 2xs); 7,18-7,02 (2H, m); 6,83-6,71 (3H, m); 4,78 y 4,71 (2H, 2xs); 4,62 y 4,51 (2H, 2xs); 4,25-4,22 (1H, m); 2,45-2,41 (1H, m); 2,24-2,21 (2H, m); 2,10-2,02 (4H, m); 1,66-1,62 (2H, m);
62	δ (400 MHz, DMSO-d ₆) rotámeros presentes 8,84 y 8,77 (2H, 2xdd, J = 4,8, 1,6 Hz); 7,89 y 7,71 (2H, 2xdd, J = 4,8, 1,6 Hz); 7,76 y 7,55 (1H, 2xs); 7,15-7,10 (1H, m); 7,08-7,06 y 6,91-6,89 (2H, 2xm); 5,08 y 4,95 (2H, 2xs); 4,70 y 4,59 (2H, 2xs); 4,18-4,15 (1H, m); 2,33-2,21 (1H, m); 2,04-1,79 (6H, m); 1,53-1,45 (2H, m)
63	δ (400 MHz, DMSO-d ₆) rotámeros presentes 12,10 (1H, s a); 7,74 y 7,61 (1H, 2xs); 7,40 y 7,34 (1H, 2xs); 7,16-6,88 (3H, m); 4,74 y 4,68 (2H, 2xs); 4,55 y 4,53 (2H, 2xs); 4,21-4,12 (1H, m); 2,56 y 2,39 (3H, 2xs); 2,33-2,21 (1H, m); 2,14 y 1,97 (3H, 2xs); 2,01-1,99 (2H, m); 1,93-1,85 (4H, m); 1,55-1,47 (2H, m)
64	δ (400 MHz, DMSO-d ₆) rotámeros presentes 12,20 (1H, s a); 7,73 y 7,62 (1H, 2xs); 7,16-6,89 (3H, m); 4,81 y 4,67 (2H, 2xs); 4,61 y 4,55 (2H, 2xs); 4,20-4,11 (1H, m); 2,73 y 2,49 (3H, 2xs); 2,39 y 2,28 (3H, 2xs); 2,26-2,17 (1H, m); 2,02-1,99 (2H, m); 1,96-1,85 (4H, m); 1,53-1,43 (2H, m)

ejemplo	
65	δ (400 MHz, CDCl3) rotámeros presentes 7,57 y 7,40 (1H, 2xs); 6,78-6,65 (3H, m); 4,69 y 4,49,(2H, 2xs); 4,27 y 3,95 (2H, 2xs); 4,25-4,21 (1H, m); 2,47-2,37 (2H, m); 2,24-2,21 (2H, m); 2,09-2,03 (4H, m); 1,86-1,77 (2H, m); 1,68-1,60 (4H, m); 1,51-1,26 (6H, m)
66	$ \begin{array}{l} \delta \ (400 \ MHz, \ DMSO-d_6) \ rotámeros \ presentes \ 7,83 \ y \ 7,82 \ (1H, \ 2xs); \ 7,28 \ y \ 7,21 \ (2H, \ 2xs); \ 7,18-7,12 \\ (1H, \ m); \ 7,07 \ y \ 6,90 \ (2H, \ 2xd, \ J=1,6 \ Hz); \ 4,78 \ y \ 4,70 \ (2H, \ 2xs); \ 4,61 \ y \ 4,54 \ (2H, \ 2xs); \ 4,26-4,20 \ (1H, \ m); \ 2,28-2,21 \ (1H, \ m); \ 2,04-2,01 \ (2H, \ m); \ 1,99-1,89 \ (5H, \ m); \ 1,54-1,50 \ (2H, \ m); \ 1,04-0,96 \ (2H, \ m); \ 0,82-0,74 \ (2H, \ m) \end{array} $
67	δ (400 MHz, DMSO-d ₆) rotámeros presentes 12,20 (1H, s a); 7,84 y 7,82 (1H, 2xs); 7,18-7,09 (3H, m); 7,08 y 6,91 (2H, 2xd, J = 1,6 Hz); 4,78 y 4,70 (2H, 2xs); 4,61 y 4,54 (2H, 2xs); 4,26-4,20 (1H, m); 3,83 y 3,78 (3H, 2xs); 2,33-2,27 (1H, m); 2,05-2,02 (2H, m); 1,97-1,91 (4H, m); 1,58-1,50 (2H, m)
68	δ (400 MHz, DMSO-d ₆) rotámeros presentes 7,98 (1H, s); 7,76-7,74 (1H, m); 7,52-7,50 (1H, m); 7,45-7,41 (1H, m); 7,12-7,05 (3H, m); 6,70 (1H, s); 5,10-4,76 (4H, m); 4,23-4,19 (1H, m); 2,27-2,21 (1H, m); 2,01-1,98 (2H, m); 1,91-1,85 (4H, m); 1,55-1,44 (2H, m)
69	δ (400 MHz, DMSO-d ₆) rotámeros presentes 7,92-7,90 y 7,75-7,73 (2H, 2xm); 7,75 y 7,49 (1H, 2xs); 7,15-7,08 (1H, m); 7,06 y 6,89 (2H, 2xd, \textit{J} = 1,6 Hz); 6,88-6,86 y 6,81-6,78 (2H, 2xm); 4,96 y 4,76 (2H, 2xs); 4,66 y 4,55 (2H, 2xs); 4,17-4,14 (1H, m); 2,29-2,23 (1H, m); 2,04-1,96 (2H, m); 1,91-1,83 (4H, m); 1,53-1,45 (2H, m)
70	δ (400 MHz, DMSO-d ₆) rotámeros presentes 7,82 (1H, s); 7,18-7,12 (1H, m); 7,07 y 6,90 (2H, 2xd, J = 1,6 Hz); 6,85 y 6,75 (2H, 2xs); 4,75 y 4,68 (2H, 2xs); 4,58 y 4,53 (2H, 2xs); 4,25-4,19 (1H, m); 2,30-2,26 (1H, m); 2,07-2,02 (2H, m); 1,96-1,90 (4H, m); 1,58-1,48 (2H, m)
71	δ (400 MHz, CDCl3) rotámeros presentes 8,59 y 8,52 (2H, 2xs); 7,64 y 7,55 (1H, 2xs); 4,76 y 4,45 (2H, 2xs); 4,28-4,19 (1H, m); 4,02-3,93 (2H, m); 3,50-3,28 (4H, m); 2,26-2,23 (2H, m); 2,13-2,03 (5H, m); 1,76-1,59 (5H, m); 1,46-1,36 (1H, m); 1,16-1,06 (1H, m)
72	δ (400 MHz, CDCl ₃) rotámeros presentes 8,58 y 8,51 (2H, 2xs); 7,64 y 7,56 (1H, 2xs); 4,91 y 4,57 (2H, 2xs); 4,31-4,18 (1H, m); 3,54 y 3,26 (2H, d, J = 6,9 Hz); 2,50-2,43 (1H, m); 2,27-2,23 (2H, m); 2,14-2,04 (4H, m); 1,72-1,60 (2H, m); 1,09-1,01 y 0,91-0,85 (1H, 2xm); 0,61-0,56 (2H, m); 0,36-0,32 (1H, m); 0,15-0,10 (1H, m)
73	δ (400 MHz, CDCl ₃) rotámeros presentes 8,57 y 8,50 (2H, 2xs); 7,66 y 7,56 (1H, 2xs); 5,00 y 4,68 (2H, 2xs); 4,27-4,19 (1H, m); 3,83-3,57 (2H, m); 2,50-2,42 (1H, m); 2,27-2,23 (2H, m); 2,13-2,04 (4H, m); 1,71-1,60 (2H, m); 1,43 y 1,28 (6H, d, J = 21,6Hz)
74	δ (400 MHz, CDCl ₃) rotámeros presentes 8,56 y 8,48 (2H, 2xs); 7,66 y 7,54 (1H, 2xs); 5,12 y 4,82 (2H, 2xs); 4,27-4,18 (1H, m); 3,46 y 3,13 (2H, 2xs); 3,17 (3H, s); 2,49-2,43 (1H, m); 2,26-2,23 (2H, m); 2,12-2,03 (4H, m); 1,70-1,59 (2H, m); 1,22 y 1,04 (6H, 2xs)
75	δ (400 MHz, CDCl ₃) rotámeros presentes 8,60 y 8,53 (2H, 2xs); 7,66 y 7,57 (1H, 2xs); 4,94 y 4,62 (2H, 2xs); 4,30-4,22 (2H, m); 4,04-3,98 (1H, m); 2,51-2,43 (1H, m); 2,27-2,24 (2H, m); 2,14-2,05 (4H, m); 1,71-1,62 (2H, m)
76	δ (400 MHz, CDCl ₃) rotámeros presentes 8,62 (2J, d, J = 5,2 Hz); 8,54 y 8,48 (2H, 2xs); 7,65 y 7,62 (1H, 2xs); 7,25 y 7,13 (2H, 2xd, J = 5,2 Hz); 4,86 y 4,70 (2H, 2xs); 4,66 y 4,34 (2H, 2xs); 4,27-4,22 (1H, m); 2,49-2,42 (1H, m); 2,27-2,24 (2H, m); 2,10-2,05 (4H, m); 1,71-1,61 (2H, m)
77	δ (400 MHz, CDCl ₃) rotámeros presentes 8,53 y 8,47 (2H, 2xs); 7,70 y 7,61 (1H, 2xs); 7,31-7,25 (1H, m); 7,16-7,13 (1H, m), 7,07-7,03 (2H, m); 4,83 y 4,65 (2H, 2xs); 4 62 y 4,30 (2H, 2xs); 4,30-4,19 (1H, m); 2,26-2,16 (2H, m); 1,94-1,86 (6H, m); 1,40 (3H, s)
78	δ (400 MHz, CDCl ₃) rotámeros presentes 8,55 y 8,49 (2H, 2xs); 7,66 y 7,62 (1H, 2xs); 6,85-6,69 (3H, m); 4,83 y 4,70 (2H, 2xs); 4,62 y 4,34 (2H, 2xs); 4,29-4,21 (1H, m); 2,25-2,17 (2H, m); 1,94-1,88 (6H, m); 1,41 y 1,40 (3H, 2xs)
79	δ (400 MHz, CDCl ₃) rotámeros presentes 8,53 y 8,47 (2H, 2xs); 7,68 y 7,59 (1H, 2xs); 7,31-7,26 (1H, m); 7,15-7,12 (1H, m); 7,06-7,02 (2H, m); 4,83 y 4,65 (2H, 2xs); 4,61 y 4,30 (2H, 2xs); 4,25-4,17 (1H, m); 2,43-2,40 (2H, m); 2,19-2,11 (2H, m); 1,97-1,88 (2H, m); 1,41-1,34 (2H, m); 1,31 (3H, s)
80	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$
81	δ (400 MHz, CDCl ₃) rotámeros presentes 8,54 y 8,48 (2H, 2xs); 7,72 y 7,63 (1H, 2xs); 7,31-7,27 (1H, m); 7,17-7,13 (1H, m); 7,07-7,03 (2H, m); 4,83 y 4,65 (2H, 2xs); 4,62 y 4,30 (2H, 2xs); 4,41-4,34 (1H, m); 2,46-2,38 (2H, m); 2,33-2,27 (2H, m); 2,18-1,94 (4H, m)
82	δ (400 MHz, CDCl ₃) rotámeros presentes 8,53 y 8,47 (2H, 2xs); 7,74 y 7,66 (1H, 2xs); 7,30-7,27 (1H, m); 7,16-7,13 (1H, m); 7,07-7,02 (2H, m); 5,26-5,14 (1H, m); 4,83 y 4,64 (2H, 2xs); 4,61 y 4,29 (2H, 2xs); 3,34-3,27 (1H, m); 3,10-2,98 (2H, m); 2,86-2,77 (2H, m)
83	δ (400 MHz, CDCl ₃) rotámeros presentes 8,53 y 8,47 (2H, 2xs); 7,74 y 7,65 (1H, 2xs); 7,30-7,26 (1H,

ejemplo	
•	m); 7,16-7,12 (1H, m); 7,07-7,02 (2H, m); 4,90-4,82 (1H, m); 4,82 y 4,64 (2H, 2xs); 4,61 y 4,30 (2H, 2xs); 3,12-3,04 (3H, m); 2,82-2,76 (2H, m)
84	δ (400 MHz, CDCl ₃) rotámeros presentes 8,53 y 8,47 (2H, 2xs); 7,58 y 7,48 (1H, 2xs); 7,31-7,28 (1H, m); 7,19-7,15 (1H, m); 7,07-7,02 (2H, m); 4,82 y 4,66 (2H, 2xs); 4,64 y 4,40 (2H, 2xs); 4,36-4,30 (1H, m); 2,50-2,42 (1H, m); 2,24-2,03 (9H, m), 1,71-1,59 (2H, m)
85	$ \begin{array}{l} \delta \ (400 \ \text{MHz}, \ \text{DMSO-d}_6) \ \text{rotámeros presentes } 8,77 \ y \ 8,70 \ (2\text{H}, \ 2\text{xs}); \ 7,87 \ y \ 7,83 \ (1\text{H}, \ 2\text{xs}); \ 7,20\text{-}7,14 \\ (1\text{H}, \ \text{m}); \ 7,10 \ y \ 6,92 \ (2\text{H}, \ 2\text{xd}, \ \textit{J} = 1,6 \ \text{Hz}); \ 4,86 \ y \ 4,72 \ (2\text{H}, \ 2\text{xs}); \ 4,72 \ y \ 4,57 \ (2\text{H}, \ 2\text{xs}); \ 4,51\text{-}4,49 \ (1\text{H}, \ \text{m}); \ 4,26\text{-}4,21 \ (1\text{H}, \ \text{m}); \ 3,87 \ (1\text{H}, \ \text{s} \ \text{a}); \ 2,32\text{-}2,29 \ (2\text{H}, \ \text{m}); \ 1,81\text{-}1,78 \ (2\text{H}, \ \text{m}); \ 1,60\text{-}1,58 \ (4\text{H}, \ \text{m}) \\ \end{array}$
86	δ (400 MHz, CDCl ₃) rotámeros presentes 8,53 y 8,48 (2H, 2xs); 7,69 y 7,60 (1H, 2xs); 7,31-7,26 (1H, m); 7,16-7,13 (1H, m); 7,07-7,02 (2H, m); 4,83 y 4,65 (2H, 2xs); 4,61 y 4,29 (2H, 2xs); 4,60-4,52 (1H, m); 3,04-2,97 (1H, m); 2,91 y 2,90 (3H, 2xs); 2,54-2,34 (4H, m); 2,13-2,06 (2H, m); 2,01-1,91 (2H, m)
87	δ (400 MHz, CDCl ₃) rotámeros presentes 8,53 y 8,47 (2H, 2xs); 7,70 y 7,61 (1H, 2xs); 7,30-7,26 (1H, m); 7,16-7,12 (1H, m); 7,07-7,03 (2H, m); 4,82 y 4,65 (2H, 2xs); 4,60 y 4,29 (2H, 2xs); 4,33-4,23 (1H, m); 3,01-2,93 (1H, m); 2,90 (3H, s); 2,44-2,41 (2H, m); 2,26-2,09 (4H, m); 1,87-1,76 (2H, m)
88	δ (400 MHz, CDCl ₃) rotámeros presentes 8,53 y 8,47 (2H, 2xs); 7,69 y 7,60 (1H, 2xs); 7,30-7,26 (1H, m); 7,16-7,12 (1H, m); 7,07-7,02 (2H, m); 5,45 y 5,29 (2H, 2xs); 4,83 y 4,64 (2H, 2xs); 4,61 y 4,29 (2H, 2xs); 4,29-4,21 (1H, m); 2,30-2,24 (1H, m); 2,14 -2,03 (6H, m); 1,77-1,67 (2H, m)
89	δ (400 MHz, CDCl ₃) rotámeros presentes 8,52 y 8,47 (2H, 2xs); 7,68 y 7,59 (1H, 2xs); 7,30-7,26 (1H, m); 7,16-7,12 (1H, m); 7,06-7,02 (2H, m); 5,93 (1H, t, J = 5,9Hz); 4,82 y 4,64 (2H, 2xs); 4,60 y 4,29 (2H, 2xs); 4,29-4,23 (1H, m); 3,77-3,73 (2H, m); 2,30-2,17 (2H, m); 2,10 -2,03 (6H, m); 1,78-1,71 (2H, m)
90	δ (400 MHz, CDCl ₃) rotámeros presentes 8,43 y 8,39 (2H, 2xs); 7,59 y 7,55 (1H, 2xs); 7,38-7,35 y 7,16-7,12 (2H, 2xm); 7,07-7,02 (2H, m); 5,60-5,45 (1H, m); 5,08-5,04, 4,75-4,71 y 3,98-3,88 (1H, 3xm); 4,60-4,54 (2H, m); 4,29-4,21 (1H, m); 3,32-3,20 (1H, m); 2,48-2,42 (1H, m); 2,25 -2,22 (2H, m); 2,10-2,04 (4H, m); 1,70-1,60 (2H, m)
91	δ ,(400 MHz, CDCl ₃) rotámeros presentes 7,58 y 7,52 (1H, 2xs); 7,38-7,31 (2H, m); 7,26-7,17 (2H, m); 7,12-7,00 (3H, m); 6,53 y 6,13 (1H, 2xddd, J = 47,5, 9,8, 3,2 Hz); 5,40, 4,80, 4,63 y 4,58 (2H, 4xd J = 15,1 Hz); 4,25-3,92 y 3,34-3,22 (3H, 2xm); 2,49-2,43 (1H, m); 2,26-2,22 (2H, m); 1,70-1,59 (2H, m)
92	δ (400 MHz, CDCl ₃) rotámeros presentes 8,53 y 8,47 (2H, 2xs); 7,67 y 7,59 (1H, 2xs); 7,30-7,26 (1H, m); 7,16-7,13 (1H, m); 7,07-7,02 (2H, m); 5,05-4,93 (1H, m); 4,83 y 4,64 (2H, 2xs); 4,61 y 4,29 (2H, 2xs), 3,35-3,27 (1H, m); 2,50-2,25 (4H, m); 2,23-2,09 (1H, m); 2,04-1,95 (1H, m)
93	δ (400 MHz, CDCl ₃) rotámeros presentes 8,53 y 8,48 (2H, 2xs); 7,71 y 7,62 (1H, 2xs); 7,31-7,26 (1H, m); 7,16-7,13 (1H, m); 7,07-7,02 (2H, m); 4,94-4,78 (2H, m); 4,65 (1H, s); 4,61 y 4,30 (2H, 2xs), 3,08-3,00 (1H, m); 2,58-2,50 (2H, m); 2,26-2,12 (4H, m)
94	δ (400 MHz, CDCl ₃) rotámeros presentes 7,73 y 7,57 (1H, 2xs); 7,13 y 7,06 (2H, 2xd, J = 7,8 Hz); 4,88 y 4,51 (2H, 2xs); 4,24-4,16 (1H, m); 3,52-3,32 (2H, m); 2,25-2,15 (2H, m); 1,94-1,84 (6H, m); 1,42 y 1,40 (3H, 2xs); 1,01 y 0,83 (9H, 2xs)
95	δ (400 MHz, CDCl ₃) rotámeros presentes 8,57 y 8,50 (2H, 2xs); 7,68 y 7,54 (1H, 2xs); 4,94 y 4,74 (2H, 2xs); 4,28-4,19 (1H, m); 3,77-3,74 (1H, m); 3,63 (1H, t, J = 4,9 Hz); 3,53 (1H, t, J = 5,4 Hz); 3,41 (1H, t, J = 5,4 Hz); 2,50-2,42 (1H, m); 2,26-2,23 (2H, m); 2,13-2,03 (4H, m); 1,72-1,60 (2H, m); 1,16 y 1,15 (9H, 2xs)
96	δ (400 MHz, CDCl ₃) rotámeros presentes 7,39-7,22 (5H, m); 7,10-7,01 (3H, m); 5,03 y 4,74 (2H, 2xs); 4,32 y 3,85 (2H, 2xt, J = 13,6 Hz); 4,20-4,16 (1H, m); 2,49-2,42 (1H, m); 2,25-2,23 (2H, m); 2,09-2,04 (4H, m); 1,69-1,59 (2H, m)
97	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$
98	δ (400 MHz, DMSO-d ₆) rotámeros presentes 12,16 (1H, s a); 7,95-7,85 (3H, m); 7,19-7,13 (1H, m); 7,12-7,08 y 6,94-6,91 (2H, m); 4,84 y 4,72 (2H, 2xs); 4,69 y 4,57 (2H, 2xs); 4,28-4,17 (1H, m); 2,37-2,28 (1H, m); 2,07-2,02 (2H, m); 1,98-1,90 (4H, m); 1,60-1,49 (2H, m)
99	δ (400 MHz, DMSO-d ₆) rotámeros presentes 12,17 (1H, s a); 7,81-7,41 (5H, m); 7,17-6,88 (3H, m); 4,88 y 4,83 (2H, 2xs); 4,72 y 4,60 (2H, 2xs); 4,25-4,12 (1H, m); 2,30-2,23 (1H, m); 2,05-2,00 (2H, m); 1,97-1,88 (4H, m); 1,56-1,46 (2H, m)
100	δ (400 MHz, CDCl ₃) rotámeros presentes 7,39-7,30 (3H, m); 7,14-6,97 (5H, m); 4,89-3,46 (6H, m); 2,49-2,40 (1H, m); 2,26-2,20 (2H, m); 2,12-2,03 (4H, m); 1,70-1,60 (2H, m); 1,46 y 1,28 (3H, 2xd, J = 7,3 Hz)
101	δ (400 MHz, CDCl ₃) rotámeros presentes 8,59 y 8,52 (2H, 2xs); 7,63 y 7,55 (1H, 2xs); 4,74 y 4,44

ejemplo	
	(2H, 2xs); 4,28-4,17 (1H, m); 3,49 y 3,30 (2H, 2xd, $J = 6,7$ Hz); 2,50-2,43 (1H, m); 2,26-2,23 (2H, m); 2,13-1,35 (15H, m)
102	δ (400 MHz, CDCl3) rotámeros presentes 8,57 y 8,50 (2H, 2xs); 7,72 y 7,56 (1H, 2xs); 4,86 y 4,54 (2H, 2xs); 4,27-4,17 (1H, m); 3,45-3,35 (2H, m); 2,50-2,42 (1H, m); 2,26-2,23 (2H, m); 2,11-2,02 (4H, m); 1,70-1,12 (12H, m); 0,99 y 0,83 (3H, 2xs)
103	$ \begin{array}{c} \delta \ (400 \ MHz, \ CDCl_3) \ rotámeros \ presentes \ 8,58-8,47 \ (3H, \ m); \ 7,76-7,47 \ (2H, \ m); \ 7,26-7,11 \ (2H, \ m); \\ 4,94 \ y \ 4,82 \ (2H, 2xs); \ 4,71 \ y \ 4,65 \ (2H, 2xs); \ 4,27-4,18 \ (1H, \ m); \ 2,48-2,42 \ (1H, \ m); \ 2,25-2,22 \ (2H, \ m); \\ 2,09-2,05 \ (4H, \ m); \ 1,71-1,57 \ (2H, \ m) \end{array} $
104	δ (400 MHz, CDCl ₃) rotámeros presentes 8,63-8,44 (2H, m); 8,54 y 8,49 (2H, 2xs); 7,97-7,93 (1H, m); 7,71 y 7,61 (1H, 2xs); 7,52-7,34 (1H, m); 4,89 y 4,68 (2H, 2xs); 4,68 y 4,39 (2H, 2xs); 4,28-4,18 (1H, m); 2,49-2,43 (1H, m); 2,26-2,23 (2H, m); 2,12-2,03 (4H, m); 1,71-1,60 (2H, m)
105	δ (400 MHz, CDCl ₃) rotámeros presentes 8,53 y 8,47 (2H, 2xs); 7,71 y 7,62 (1H, 2xs); 7,31-7,26 (1H, m); 7,16-7,13 (1H, m); 7,07-7,02 (2H, m); 4,83 y 4,65 (2H, 2xs); 4,62 y 4,30 (2H, 2xs); 4,36-4,28 (1H, m); 2,50-2,46 (2H, m); 2,10-1,88 (6H, m)
106	δ (400 MHz, CDCl ₃) rotámeros presentes 8,53 y 8,47 (2H, 2xs); 7,92 y 7,80 (1H, 2xs); 7,31-7,26 (1H, m); 7,17-7,14 (1H, m); 7,07-7,03 (2H, m); 4,84 y 4,65 (2H, 2xs); 4,62 y 4,31 (2H, 2xs); 4,49-4,39 (1H, m); 2,43-2,31 (4H, m); 2,11-2,03 (2H, m); 1,84-1,75 (2H, m)
107	δ (400 MHz, DMSO-d ₆) rotámeros presentes 12,14 (1H, s a); 7,90-7,53 (4H, m); 7,17-6,86 (3H, m); 4,90 y 4,86 (2H, 2xs); 4,72 y 4,60 (2H, 2xs); 4,26-4,12 (1H, m); 2,34-2,26 (1H, m); 2,05-2,01 (2H, m); 1,98-1,89 (4H, m); 1,58-1,46 (2H, m)
108	δ (400 MHz, DMSO-d ₆) rotámeros presentes 12,15 (1H, s a); 7,58-6,70 (7H, m); 4,88-3,62 (6H, m); 2,35-2,29 (1H, m); 2,09-1,86 (6H, m); 1,59-1,45 (2H, m); 1,40 y 1,22 (3H, 2xd, <i>J</i> = 7,0 Hz)
109	δ (400 MHz, DMSO-d ₆) rotámeros presentes 8,62 y 8,53 (2H, 2xs); 7,81 y 7,68 (1H, 2xs); 7,21-6,81 (3H, m); 5,32-3,40 (6H, m); 3,18 y 2,93 (3H, 2xs); 2,34-2,26 (1H, m); 2,08-1,90 (6H, m); 1,60-1,47 (2H, m)
110	δ (400 MHz, CDCl ₃) rotámeros presentes 8,58 y 8,52 (2H, 2xs); 7,73 y 7,56 (1H, 2xs); 4,89 y 4,63 (2H, 2xs); 4,49 y 4,14 (2H, 2xs); 4,32-4,20 (1H, m); 2,50-2,43 (1H, m); 2,27-2,24 (2H, m); 2,14-2,04 (4H, m); 1,72-1,62 (2H, m); 1,20 (9H, s)
111	δ (400 MHz, DMSO-d ₆) rotámeros presentes 7,73 y 7,63 (1H, 2xs); 7,39-7,30 (1H, m); 7,19-6,85 (3H, m); 6,71 y 6,64 (2H, 2xd, J = 8,4 Hz); 4,64-4,38 (4H, m); 4,27-4,15 (1H, m); 3,70 y 3,62 (6H, 2xs); 2,35-2,23 (1H, m); 2,09-1,90 (6H, m); 1,58-1,47 (2H, m)
112	δ (400 MHz, CD ₃ OD) rotámeros presentes 7,71 y 7,62 (1H, 2xs); 7,12-6,80 (5H, m); 4,76-4,47 (4H, m); 4,34-4,26 (1H, m); 3,82 y 3,74 (3H, 2xs); 2,42-2,35 (1H, m); 2,19-2,03 (6H, m); 1,67-1,56 (2H, m)
113	δ (400 MHz, CDCl ₃) rotámeros presentes 7,57 y 7,41 (1H, 2xs); 6,79-6,65 (3H, m); 4,70 y 4,50 (2H, 2xs); 4,28-3,95 (3H, m); 2,92-2,84 y 2,66-2,58 (1H, 2xm); 2,47-2,40 (1H, m); 2,24-2,21 (2H, m); 2,09-2,03 (4H, m); 1,85-1,42 (10H, m)
114	δ (400 MHz, CDCl ₃) rotámeros presentes 8,57 y 8,49 (2H, 2xs); 7,68 y 7,54 (1H, 2xs); 5,02 y 4,62 (1H, 2xd, J = 19,0 Hz); 4,48 y 4,33 (1H, 2xd, J = 19,0 Hz); 4,31-4,19 (1H, m); 3,80 (1H, c, J = 7,0 Hz); 2,51-2,42 (1H, m); 2,27-2,24 (2H, m); 2,12-2,04 (4H, m); 1,72-1,62 (2H, m); 1,30 y 1,22 (3H, 2xd, J = 7,0 Hz); 0,99 y 0,88 (9H, 2xs)
115	δ (400 MHz, CDCl ₃) rotámeros presentes 8,57 y 8,49 (2H, 2xs); 7,68 y 7,54 (1H, 2xs); 5,02 y 4,62 (1H, 2xd, J = 19,0 Hz); 4,48 y 4,33 (1H, 2xd, J = 19,0 Hz); 4,31-4,20 (1H, m); 3,80 (1H, c, J = 7,0 Hz); 2,50-2,43 (1H, m); 2,27-2,23 (2H, m); 2,12-2,04 (4H, m); 1,69-1,63 (2H, m); 1,30 y 1,22 (3H, 2xd, J = 7,0 Hz); 0,99 y 0,88 (9H, 2xs)
116	δ (400 MHz, DMSO-d ₆) rotámeros presentes 8,74 y 8,67 (2H, 2xs); 7,83 y 7,77 (1H, 2xs); 7,40-7,11 (4H, m); 6,80 (2H, s a); 4,73 y 4,67 (2H, 2xs); 4,59 y 4,50 (2H, 2xs); 4,15-4,09 (1H, m); 2,56-2,49 (2H, m); 2,14-2,11 (2H, m); 1,76-1,72 (2H, m); 1,48-1,42 (2H, m)
117	δ (400 MHz, DMSO-d ₆) rotámeros presentes 8,74 y 8,67 (2H, 2xs); 7,87 y 7,81 (1H, 2xs); 7,65 (2H, s a); 7,40-7,13 (4H, m); 4,72 y 4,68 (2H, 2xs); 4,59 y 4,51 (2H, 2xs); 4,27-4,21 (1H, m); 2,18-2,07 (4H, m); 1,81-1,78 (4H, m)
118	δ (400 MHz, CD ₃ OD) rotámeros presentes 7,59 (1H, s); 7,38 y 7,33 (2H, 2xd, J = 8,0 Hz); 7,17 (1H, t, J =8,0 Hz); 6,83-6,78 (1H, m); 6,49 y 6,35 (2H, 2xd, J = 6,0 Hz); 4,57 y 4,34 (2H, 2xs); 4,25 y 4,10 (2H, 2xs); 4,25-4,17 (1H, m); 2,17-1,84 (9H, m); 1,65-1,54 (4H, m); 1,30-1,28 (2H, m)
119	δ (400 MHz, CDCl3) rotámeros presentes 8,07 y 8,02 (2H, 2xs); 7,63 y 7,53 (1H, 2xs); 6,85-6,67 (3H, m); 4,81-4,21 (5H, m); 3,89 y 3,83 (6H, 2xs); 2,48-2,42 (1H, m); 2,25-2,22 (2H, m); 2,11-2,06 (4H, m); 1,71-1,60 (2H, m)
120	δ (400 MHz, DMSO-d ₆) rotámeros presentes 7,81 y 7,79 (1H, 2xs); 7,50 y 7,44 (2H, 2xd, J = 8,6 Hz); 7,21-6,83 (3H, m); 4,80 y 4,52 (2H, 2xs); 4,27-4,15 (1H, m); 3,62-2,89 (4H, m); 2,34-2,24 (1H, m);

ejemplo	
	2,07-1,88 (6H, m); 1,60-1,49 (2H, m)
121	δ (400 MHz, DMSO-d ₆) rotámeros presentes 9,33-8,95 (2H, m); 8,81-8,64 (2H, m); 8,11 y 7,91 (1H, 2xs); 5,32-4,59 (4H, m); 4,26-4,18 (1H, m); 3,67-3,25 (3H, m); 2,87-2,79 (1H, m); 2,34-2,28 (1H, m); 2,05-1,43 (13H, m)
122	δ (400 MHz, DMSO-d ₆) rotámeros presentes 11,61 (1H, s a); 7,79 y 7,75 (1H, 2xs); 7,16-7,07 (2H, m); 6,89 (1H, d, J = 6,4 Hz); 6,04 y 5,97 (1H, 2xs); 4,67 y 4,62 (2H, 2xs); 4,59 y 4,58 (2H, 2xs); 4,24-4,13 (1H, m); 2,26-2,18 (1H, m); 2,20 y 2,03 (3H, 2xs); 2,03-2,00 (2H, m); 1,90-1,88 (4H, m); 1,71 y 1,61 (3H, 2xs); 1,56-1,47 (2H, m)
123	δ (400 MHz, CDCl ₃) rotámeros presentes 8,57 y 8,50 (2H, 2xs); 7,70 y 7,56 (1H, 2xs); 4,84 y 4,50 (2H, 2xs); 4,29-4,19 (1H, m); 3,40-3,12 (2H, m); 2,49-2,42 (1H, m); 2,26-2,23 (2H, m); 2,13-1,94 (6H, m); 1,74-1,36 (15H, m)
124	$ \delta \ (400 \ MHz, DMSO-d_6) \ rotámeros \ presentes \ 7,93-7,68 \ (4H, \ m); \ 7,18-6,90 \ (3H, \ m); \ 4,88-4,14 \ (5H, \ m); \ 2,34-2,26 \ (1H, \ m); \ 2,09-1,88 \ (6H, \ m); \ 1,59-1,49 \ (2H, \ m) $
125	δ (400 MHz, CDCl ₃) rotámeros presentes 8,57-8,50 (2H, m); 7,65-7,53 (1H, m); 4,72-4,42 (2H, m); 4,30-4,18 (1H, m); 3,78-3,32 (2H, m); 2,51-1,19 (15H, m); 0,82-0,69 (9H, m)
126	δ (400 MHz, CDCl ₃) rotámeros presentes 8,57-8,50 (2H, m); 7,66-7,53 (1H, m); 4,73-4,42 (2H, m); 4,30-4,19 (1H, m); 3,78-3,32 (2H, m); 2,48-1,19 (15H, m); 0,82-0,69 (9H, m)
127	δ (400 MHz, DMSO-d $_6$) rotámeros presentes 12,16 (1H, s a); 7,86-7,74 (3H, m); 7,19-6,91 (3H, m); 4,82-4,56 (4H, m); 4,28-4,17 (1H, m); 2,35-2,27 (1H, m); 2,07-1,92 (6H, m); 1,60-1,49 (2H, m)
129	δ (400 MHz, CDCl ₃) rotámeros presentes 8,54 y 8,48 (2H, 2xs); 7,73 y 7,63 (1H, 2xs); 7,31-7,26 (1H, m); 7,14-7,03 (3H, m); 4,83 y 4,65 (2H, 2xs); 4,62 y 4,31 (2H, 2xs); 4,31-4,23 (1H, m); 2,60-2,41 (4H, m); 2,17-2,01 (4H, m)
130	δ (400 MHz, CDCl ₃) rotámeros presentes 8,58 y 8,51 (2H, 2xs); 7,66 y 7,54 (1H, 2xs); 4,83-4,45 (2H, m); 4,29-4,17 (1H, m); 3,73-3,21 (4H, m); 2,50-2,41 (1H, m); 2,26-2,22 (2H, m); 2,13-1,94 (4H, m); 1,74-1,34 (7H, m); 1,23-1,06 (6H, m)
131	δ (400 MHz, CDCl ₃) rotámeros presentes 8,60-8,50 (2H, m); 7,65-7,54 (1H, m); 4,80- 4,46 (2H, m); 4,31-3,99 (2H, m); 2,51-2,43 (1H, m); 2,27-1,93 (9H, m); 1,81- 1,56 (4H, m); 0,89-0,76 (9H, m)
132	δ (400 MHz, CDCl3) rotámeros presentes 8,60-8,50 (2H, m); 7,65-7,54 (1H, m); 4,86-4,46 (2H, m); 4,31-3,98 (2H, m); 2,50-2,44 (1H, m); 2,27-1,99 (9H, m); 1,82-1,62 (4H, m); 0,89-0,76 (9H, m)
133	δ (400 MHz, CDCl3) rotámeros presentes 8,98 y 8,93 (1H, 2xs); 7,66 y 7,63 (1H, 2xs); 6,84-6,74 (3H, m); 4,84-4,23 (5H, m); 2,45 y 2,04 (6H, 2xs); 2,28-2,02 (7H, m); 1,71-1,60 (2H, m)
134	δ (400 MHz, DMSO-d ₆) rotámeros presentes 8,37 y 8,31 (1H, 2xd, \textit{J} = 5,1 Hz); 7,89 y 7,81 (1H, 2xs); 7,18-6,92 (4H, m); 4,75-4,61 (4H, m); 4,27-4,14 (1H, m); 2,37 y 2,22 (3H, 2xs); 2,33-2,25 (1H, m); 2,06-1,87 (6H, m); 1,89 y 1,73 (3H, 2xs); 1,58-1,46 (2H, m)
135	δ (400 MHz, CDCl ₃) rotámeros presentes 8,52 (2H, s); 7,62 (1H, s); 6,86-6,74 (3H, m); 4,79 (2H, s); 4,67 y 4,49 (2H, 2xs); 4,35-4,30 (1H, m); 2,47-2,41 (1H, m); 2,26-2,23 (2H, m); 2,07-1,93 (4H, m); 1,72-1,62 (2H, m)
136	δ (400 MHz, DMSO-d ₆) rotámeros presentes 8,02-7,72 (4H, m); 7,17-6,87 (3H, m); 4,88-4,62 (4H, m); 4,26-4,12 (1H, m); 2,33-2,24 (1H, m); 2,05-1,89 (6H, m); 1,57-1,47 (2H, m)
137	δ (400 MHz, DMSO-d ₆) rotámeros presentes 7,85 y 7,83 (1H, 2xs); 7,42 y 7,25 (2H, 2xd, \textit{J} = 0,7 Hz); 7,18-6,90 (3H, m); 4,79-4,55 (4H, m); 4,27-4,16 (1H, m); 2,34-2,28 (4H, m); 2,07-1,90 (6H, m); 1,59-1,48 (2H, m)
138	δ (400 MHz, CDCl ₃) rotámeros presentes 7,57 y 7,55 (1H, 2xs); 7,35-7,18 (3H, m); 6,92 y 6,65 (2H, 2xd, J = 5,7 Hz); 6,78-6,72 (1H, m); 6,61-6,46 y 6,19-6,04 (1H, 2xm); 5,01-4,62 (2H, m); 4,27-4,15 (2H, m); 4,02-3,93 y 3,39-3,26 (1H, 2xm); 2,28-2,18 (2H, m); 1,96-1,90 (6H, m); 1,42 y 1,39 (3H, 2xs)
139	δ (400 MHz, CDCl ₃) rotámeros presentes 7,57 y 7,55 (1H, 2xs); 7,35-7,18 (3H, m); 6,92 y 6,65 (2H, 2xd, J = 6,1 Hz); 6,78-6,72 (1H, m); 6,61-6,46 y 6,19-6,04 (1H, 2xm); 5,01-4,62 (2H, m); 4,27-4,15 (2H, m); 4,02-3,93 y 3,39-3,26 (1H, 2xm); 2,26-2,19 (2H, m); 1,96-1,90 (6H, m); 1,42 y 1,39 (3H, 2xs)
141	δ (400 MHz, DMSO-d ₆) rotámeros presentes 9,45 (1H, s a); 8,74 y 8,68 (2H, 2xs); 7,86 y 7,74 (1H, 2xs); 7,13 y 6,98 (2H, 2xd, J = 8,5 Hz); 6,75-6,69 (2H, m); 4,66 y 4,58 (2H, 2xs); 4,50 y 4,39 (2H, 2xs); 4,27-4,19 (1H, m); 2,34-2,27 (1H, m); 2,07-1,90 (6H, m); 1,59-1,48 (2H, m)
142	$\overline{\delta}$ (400 MHz, DMSO-d ₆) rotámeros presentes 12,16 (1H, s a); 7,82-7,79 y 7,52-7,50 (1H, 2xm); 7,75 y 7,50 (1H, 2xs); 7,30-6,87 (6H, m); 6,80-6,74 (1H, m); 6,57-6,52 y 6,45-6,41 (1H, 2xm); 4,98 y 4,76 (2H, 2xs); 4,66 y 4,55 (2H, 2xs); 4,21-4,12 (1H, 2xm); 2,33-2,19 (1H, m); 2,05-1,77 (6H, m); 1,56-1,42 (2H, m)
143	$ \begin{array}{l} \delta \ (400 \ MHz, \ DMSO-d_6) \ rot\'ameros \ presentes \ 12,16 \ (1H, \ s \ a); \ 7,75 \ y \ 7,48 \ (1H, \ 2xs); \ 7,62 \ y \ 7,32 \ (1H, \ 2xs); \ 7,16-6,86 \ (6H, \ m); \ 6,73-6,67 \ (1H, \ m); \ 4,97 \ y \ 4,75 \ (2H, \ 2xs); \ 4,65 \ y \ 4,55 \ (2H, \ 2xs); \ 4,22-4,11 \end{array} $

ejemplo	
	(1H, m); 2,33-2,22 (1H, m); 2,19 y 2,09 (3H, 2xs); 2,05-1,78 (6H, m); 1,56-1,42 (2H, m)
144	δ (400 MHz, CDCl ₃) rotámeros presentes 7,69-7,52 (3H, m); 4,97 y 4,73 (2H, 2xs); 4,28-4,18 (1H, m); 3,94-3,40 (4H, m); 2,49-2,43 (1H, m); 2,25-2,22 (2H, m); 2,13-2,03 (4H, m); 1,70-1,62 (2H, m); 1,31-1,14 (9H, m)
145	δ (400 MHz, CDCl ₃) rotámeros presentes 8,36 (1H, s); 8,18 (1H, s); 7,63 (1H, s), 7,26- 7,06 (4H, m); 4,76-4,54 (4H, m); 4,30-4,25 (1H, m); 2,49-2,42 (1H, m); 2,26- 2,23 (2H, m); 2,12-2,05 (4H, m); 1,68-1,58 (2H, m)
146	δ (400 MHz, DMSO-d ₆) rotámeros presentes 9,11 y 9,08 (1H, 2xs); 8,82 y 8,60 (2H, 2xs); 7,94 y 7,88 (1H, 2xs); 7,59-7,46 (3H, m); 4,87 y 4,78 (2H, 2xs); 4,74 y 4,61 (2H, 2xs); 4,26-4,19 (1H, m); 2,35-2,27 (1H, m); 2,07-1,88 (6H, m); 1,59-1,48 (2H, m)
147	δ (400 MHz, DMSO-d ₆) rotámeros presentes 12,17 (1H, s a); 9,68 (1H, s a); 8,74 y 8,68 (2H, 2xs); 7,76 y 7,75 (1H, 2xs); 7,20-7,08 y 6,92-6,71 (4H, m); 4,73-4,45 (4H, m); 4,27-4,19 (1H, m); 2,34-2,26 (1H, m); 2,07-1,90 (6H, m); 1,59- 1,49 (2H, m)
148	δ (400 MHz, DMSO-d ₆) rotámeros presentes 12,11 (1H, s a); 8,75 y 8,70 (2H, 2xs); 7,36 y 7,26 (1H, 2xs); 7,20-7,14 (1H, m); 7,08-7,06 y 6,98-6,95 (2H, 2xm); 5,00-4,50 (4H, m); 4,37-4,31 (1H, m); 2,24 (1H, m); 2,03-1,91 (4H, m); 1,87-1,78 (2H, m); 1,63-1,53 (2H, m); 1,38 y 1,33 (9H, 2xs)
149	δ (400 MHz, CDCl ₃) rotámeros presentes 7,69-7,52 (3H, m); 4,97 y 4,74 (2H, 2xs); 4,29-4,19 (1H, m); 3,94-3,37 (4H, m); 2,25-2,15 (2H, m); 1,95-1,86 (6H, m); 1,41 y 1,40 (3H, 2xs); 1,16 y 1,14 (9H, 2xs)
150	δ (400 MHz, CDCl ₃) rotámeros presentes 8,59 y 8,52 (2H, 2xs); 7,64 y 7,52 (1H, 2xs); 4,94 y 4,57 (2H, 2xs); 4,28-4,19 (1H, m); 3,84 y 3,73 (2H, 2xs); 2,49-2,43 (1H, m); 2,26-2,23 (2H, m); 2,14-2,03 (4H, m); 1,73-1,60 (2H, m); 1,10-1,06 (4H, m)
151	δ (400 MHz, DMSO-d ₆) rotámeros presentes 12,12 (1H, s a); 9,26-9,25 y 9,05-9,04 (1H, 2xm); 9,21-9,20 y 9,16-9,15 (1H, 2xm); 7,92 y 7,85 (1H, 2xs); 7,66-7,46 (4H, m); 4,85 y 4,78 (2H, 2xs); 4,63 (2H, 2xs); 4,28-4,17 (1H, m); 2,33-2,26 (1H, m); 2,06-2,02 (2H, m); 1,97-1,90 (4H, m); 1,59-1,48 (2H, m)
152	δ (400 MHz, DMSO-d ₆) rotámeros presentes 12,18 (1H, s a); 9,09-8,98 (1H, m); 8,68-8,63 (1H, m); 7,75 y 7,70 (1H, 2xs); 7,18-7,10 (1H, m); 7,08-7,06 (1H, m); 6,94-6,91 (1H, m); 5,02 y 4,96 (2H, 2xs); 4,73 y 4,60 (2H, 2xs); 4,24-4,13 (1H, m); 2,33-2,22 (1H, m); 2,05-1,99 (2H, m); 1,94-1,86 (4H, m); 1,56-1,45 (2H, m)
153	δ (400 MHz, DMSO-d ₆) rotámeros presentes 12,07 (1H, s a); 9,50 (1H, s a); 8,74 y 8,68 (2H, 2xs); 7,82 y 7,75 (1H, 2xs); 7,17-7,10 (1H, m); 6,79-6,58 (3H, m); 4,70 y 4,61 (2H, 2xs); 4,53 y 4,43 (2H, 2xs); 4,28-4,21 (1H, m); 2,35-2,26 (1H, m); 2,07-2,03 (2H, m); 1,98-1,91 (4H, m); 1,60-1,48 (2H, m)
155	δ (400 MHz, CDCl ₃) rotámeros presentes 8,59 y 8,50 (2H, 2xs); 7,65 y 7,54 (1H, 2xs); 4,83 y 4,54 (2H, 2xs); 4,54-4,46 y 3,75-3,68 (1H, 2xm); 4,30-4,21 (1H, m); 3,96-3,87 (1H, m); 2,74-2,72 y 2,51-2,40 (3H, m); 2,27-2,24 (2H, m); 2,14-2,00 (6H, m); 1,72-1,61 (2H, m); 1,18 y 1,12 (9H, 2xs)
156	δ (400 MHz, DMSO-d ₆) rotámeros presentes 12,40 (1H, s a); 8,77 y 8,70 (2H, 2xs); 7,84 y 7,80 (1H, 2xs); 7,19-7,08 y 6,92-6,90 (3H, m); 4,85-4,56 (4H, m); 4,27-4,14 (1H, m); 2,20-2,17 (2H, m); 2,04-1,95 (2H, m); 1,78-1,75 (2H, m); 1,48-1,43 (2H, m); 1,33-1,24 (2H, m); 0,80 (3H, t, J = 7,5 Hz)
157	δ (400 MHz, DMSO-d ₆) rotámeros presentes 12,15 (1H, s a); 8,81 y 8,74 (2H, 2xs); 7,85-7,74 (2H, m); 4,95-4,76 (2H, m); 4,26-4,19 (1H, m); 3,88-3,25 (3H, m); 2,34-1,73 (11H, m); 1,59-1,49 (2H, m)
158	δ (400 MHz, DMSO-d ₆) rotámeros presentes 12,17 (1H, s a); 8,81 y 8,74 (2H, 2xs); 7,85-7,74 (2H, m); 4,93-4,76 (2H, m); 4,26-4,19 (1H, m); 3,86-3,25 (3H, m); 2,35-1,73 (11H, m); 1,59-1,49 (2H, m)
159	δ (400 MHz, CDCl ₃) rotámeros presentes 8,55 y 8,52 (2H, 2xs); 7,56 y 7,43 (1H, 2xs); 6,86-6,77 (3H, m); 4,91-4,67 (6H, m); 4,32-4,23 (1H, m); 2,48-2,42 (1H, m); 2,25-2,22 (2H, m); 2,07-1,99 (4H, m); 1,72-1,61 (2H, m)
160	δ (400 MHz, CDCl ₃) rotámeros presentes 8,55 y 8,48 (2H, 2xs); 7,64 y 7,56 (1H, 2xs); 5,09 y 4,80 (2H, 2xs); 4,28-4,18 (1H, m); 3,96 y 3,75 (2H, 2xs); 2,50-2,42 (1H, m); 2,26-2,23 (2H, m); 2,13-2,03 (4H, m); 1,69-1,42 (10H, m); 1,40 y 1,39 (3H, 2xs)
161	δ (400 MHz, CDCl ₃) rotámeros presentes 8,58 y 8,48 (2H, 2xs); 7,67 y 7,59 (1H, 2xs); 7,19-7,13 (3H, m); 6,73 (2H, d, J = 6,8 Hz); 4,93 y 4,72 (2H, 2xd, J = 18,8 Hz); 4,12-4,04 (1H, m); 3,50 (1H, s a); 3,18-3,14 (1H, m); 2,43-2,37 (1H, m); 2,21-2,07 (4H, m); 1,92-1,52 (4H, m); 1,35-1,30 (1H, m); 1,14-1,09 (1H, m)
162	δ (400 MHz, CDCl3) rotámeros presentes 8,50 (2H, s a); 7,43 (1H, s); 6,90-6,72 (3H, m); 4,79-4,72 (2H, m); 4,68 y 4,59 (2H, 2xs); 4,15-4,08 (1H, m); 3,35-3,25 (1H, m); 2,50-2,43 (1H, m); 2,25-2,22 (2H, m); 2,10-1,90 (6H, m); 1,40-1,38 (6H, m)
164	δ (400 MHz, DMSO-d ₆) rotámeros presentes 12,17 (1H, s a); 8,71 (2H, s); 7,57-6,99 (4H, m); 5,00-4,68 (4H, m); 4,20-4,12 (1H, m); 2,38-2,21 (4H, m); 2,02-1,95 (2H, m); 1,86-1,80 (4H, m); 1,59-1,48 (2H, m)

-:	
ejemplo	
165	δ (400 MHz, DMSO-d ₆) rotámeros presentes 12,16 (1H, s a); 9,12 (1H, s); 8,78 y 8,72 (2H, 2xs); 7,86 y 7,77 (1H, 2xs); 4,97 y 4,84 (2H, 2xs); 4,77 y 4,74 (2H, 2xs); 4,25-4,18 (1H, m); 2,28-2,22 (1H, m); 2,05-1,90 (6H, m); 1,57-1,48 (2H, m)
166	δ (400 MHz, CDCl ₃) rotámeros presentes 8,52 y 8,47 (2H, 2xs); 7,63 y 7,54 (1H, 2xs); 7,30-7,26 (1H, m); 7,16-7,13 (1H, m); 7,07-7,00 (2H, m); 4,82 y 4,63 (2H, 2xs); 4,57 y 4,26 (2H, 2xs); 2,31-2,22 (6H, m); 2,07-2,04 (6H, m)
167	δ (400 MHz, DMSO-d ₆) rotámeros presentes 12,19 (1H, s a); 8,77 y 8,71 (2H, 2xs); 7,88 y 7,80 (1H, 2xs); 7,62 y 7,54 (1H, 2xs); 4,80-4,52 (4H, m); 4,28-4,20 (1H, m); 2,34-2,28 (1H, m); 2,07-1,92 (6H, m); 1,59-1,49 (2H, m)
168	$\begin{array}{c} \delta \ (400 \ \text{MHz}, \ \text{DMSO-d}_6) \ \text{rot\'ameros presentes 12,25 (1H, s a); 8,78 y 8,71 (2H, 2xs); 7,81-7,77 (2H, m); 5,03-4,81 (4H, m); 4,26-4,19 (1H, m); 2,32-2,24 (1H, m); 2,06-1,93 (6H, m); 1,57-1,48 (2H, m) \end{array}$
169	δ (400 MHz, CDCl ₃) rotámeros presentes 8,58 y 8,50 (2H, 2xs); 7,65 y 7,55 (1H, 2xs); 4,66-4,18 (4H, m); 2,51-2,42 (1H, m); 2,27-2,24 (2H, m); 2,15-2,03 (4H, m); 1,73-1,42 (9H, m); 1,14-1,07 (1H, m); 0,94-0,87 (6H, m)
170	δ (400 MHz, DMSO-d ₆) rotámeros presentes 12,10 (1H, s a); 8,76 y 8,69 (2H, 2xs); 7,87-7,52 (5H, m); 4,84 y 4,75 (2H, 2xs); 4,72 y 4,60 (2H, 2xs); 4,28-4,17 (1H, m); 2,36-2,26 (1H, m); 2,07-2,02 (2H, m); 1,98-1,91 (4H, m); 1,60-1,49 (2H, m)
171	δ (400 MHz, DMSO-d ₆) rotámeros presentes 12,14 (1H, s a); 8,75 y 8,69 (2H, 2xs); 7,87-7,80 (3H, m); 7,56 y 7,41 (2H, 2xd, J = 8,3 Hz); 4,80 y 4,78-(2H, 2xs); 4,69 y 4,63 (2H, 2xs); 4,28-4,18 (1H, m); 2,36-2,26 (1H, m); 2,07-2,02 (2H, m); 1,98-1,90 (4H, m); 1,60-1,49 (2H, m)
172	δ (400 MHz, CDCl ₃) rotámeros presentes 8,61 y 8,53 (2H, 2xs); 7,66 y 7,57 (1H, 2xs); 5,03-4,93 (1H, m); 4,80-4,72 (1H, m); 4,63-3,99 (6H, m); 2,51-2,43 (1H, m); 2,28-2,24 (2H, m); 2,14-2,04 (4H, m); 1,91 y 1,87 (3H, 2xs); 1,72-1,59 (2H, m)
173	δ (400 MHz, CDCl ₃) rotámeros presentes 8,61 y 8,52 (2H, 2xs); 7,65 y 7,57 (1H, 2xs); 5,00-4,19 (8H, m); 2,50-2,43 (1H, m); 2,27-2,24 (2H, m); 2,14-2,04 (4H, m); 1,72-1,61 (2H, m); 1,23-1,17 (9H, m)
174	δ (400 MHz, CDCl3) rotámeros presentes 8,58 y 8,50 (2H, 2xs); 7,65 y 7,55 (1H, 2xs); 4,62 y 4,42 (2H, 2xs); 4,31-4,18 (1H, m); 3,55-3,50 (1H, m); 2,52-2,41 (1H, m); 2,27-2,23 (2H, m); 2,15-2,03 (4H, m); 1,88-1,30 (10H, m); 1,19-0,97 (2H, m)
175	$\begin{array}{c} \delta \text{ (400 MHz, CDCl}_3) \text{ rotámeros presentes 8,59 y 8,51 (2H, 2xs); 7,67 y 7,56 (1H, 2xs); 4,86-4,78 y } \\ 3,74-3,66 \text{ (1H, 2xm); 4,63 y 4,43 (2H, 2xs); 4,32-4,17 (1H, m); 2,53-2,42 (1H, m); 2,28-1,59 (16H, m) } \end{array}$
177	δ (400 MHz, CDCl ₃) rotámeros presentes 8,53 y 8,47 (2H, 2xs); 7,64 y 7,55 (1H, 2xs); 7,32-7,26 (1H, m); 7,17-7,13 (1H, m); 7,07-7,02 (2H, m); 4,83 y 4,64 (2H, 2xs); 4,60 y 4,29 (2H, 2xs); 2,57 y 2,53 (2H, 2xs); 2,33-2,25 (4H, m); 2,21-1,99 (2H, m); 1,95-1,88 (2H, m)
178	δ (400 MHz, CDCl ₃) rotámeros presentes 8,56-8,51 (2H, m); 7,56-7,46 (1H, m); 7,12-6,76 (4H, m); 4,82-4,78 (2H, m); 4,67-4,57 (2H, m); 4,53-4,38 (1H, m); 2,41-2,38 (2H, m); 2,18-2,08 (2H, m); 1,99-1,93 (2H, m); 1,43-1,36 (2H, m); 1,30 (3H, s)
179	δ (400 MHz, DMSO-d ₆) rotámeros presentes 12,16 (1H, s a); 7,79 y 7,78 (1H, 2xs); 7,56-7,45 (2H, m); 7,18-6,88 (3H, m); 4,78 y 4,73 (2H, 2xs); 4,69 y 4,56 (2H, 2xs); 4,26-4,14 (1H, m); 2,33-2,26 (1H, m); 2,09-1,90 (6H, m); 1,58-1,46 (2H, m)
180	δ (400 MHz, CDCl ₃) rotámeros presentes 8,50 y 8,42 (2H, 2xs); 7,72 y 7,58 (1H, 2xs); 7,23-7,15 (4H, m); 5,62-5,54 y 4,80-4,72 (1H, 2xm); 4,58 y 4,42 (2H, 2xs); 4,31-4,23 (1H, m); 3,42-3,02 (m, 4H); 2,50-2,43 (1H, m); 2,26-2,23 (2H, m); 2,14-2,03 (4H, m); 1,71-1,61 (2H, m)
181	δ (400 MHz, CDCl ₃) rotámeros presentes 8,59 y 8,51 (2H, 2xs); 7,66 y 7,56 (1H, 2xs); 4,99-4,91 y 3,84-3,76 (1H, 2xm); 4,65 y 4,45 (2H, 2xs); 4,33-4,17 (1H, m); 4,08-3,98 (2H, m); 3,59-3,53 y 3,28-3,22 (2H, 2xm); 2,52-2,41 (1H, m); 2,28-2,22 (2H, m); 2,16-2,03 (4H, m); 1,82-1,59 (6H, m)
182	δ (400 MHz, CDCl ₃) rotámeros presentes 8,58 y 8,50 (2H, 2xs); 7,66 y 7,56 (1H, 2xs); 4,76-4,67 y 3,62-3,56 (1H, 2xm); 4,67 y 4,46 (2H, 2xs); 4,31-4,19 (1H, m); 2,51-2,42 (1H, m); 2,27-2,23 (2H, m); 2,17-1,96 (4H, m); 1,83-1,55 (8H, m); 0,94-0,86 (2H, m); 0,38-0,29 (2H, m); 0,19-0,15 (2H, m)
183	δ (400 MHz, CDCl ₃) rotámeros presentes 8,58 y 8,50 (2H, 2xs); 7,66 y 7,55 (1H, 2xs); 5,23-5,14 y 4,31-4,18 (2H, m); 4,65-4,42 (2H, m); 2,51-2,43 (1H, m); 2,27-2,24 (2H, m); 2,14-2,03 (4H, m); 1,97-1,32 (8H, m); 1,08-0,87 (6H, m)
185	δ (400 MHz, CDCl ₃) rotámeros presentes 8,58 y 8,50 (2H, 2xs); 7,66 y 7,56 (1H, 2xs); 5,01-4,95 y 4,17-4,09 (1H, 2xm); 4,58 y 4,42 (2H, 2xs); 4,30-4,17 (1H, m); 2,51-2,42 (1H, m); 2,27-2,23 (2H, m); 2,14-1,50 (14H, m)
187	δ (400 MHz, CDCl ₃) rotámeros presentes 8,58 y 8,50 (2H, 2xs); 7,65 y 7,56 (1H, 2xs); 4,95-4,17 y 3,57-3,50 (4H, m), 2,51-2,43 (1H, m); 2,27-2,24 (2H, m); 2,15-2,03 (4H, m); 1,94-0,98 (14H, m)
189	$\begin{array}{c} \delta \ (400 \ \text{MHz}, \ \text{CDCl}_3) \ \text{rotámeros presentes} \ 7,65 \ \text{y} \ 7,55 \ (1\text{H}, \ 2\text{xs}); \ 7,39 \ \text{y} \ 7,31 \ (2\text{H}, \ 2\text{xs}); \ 4,66 \ \text{y} \ 4,42 \\ (2\text{H}, \ 2\text{xs}); \ 4,61\text{-}4,52 \ \text{y} \ 3,49\text{-}3,43 \ (1\text{H}, \ 2\text{xm}); \ 4,31\text{-}4,14 \ (1\text{H}, \ m); \ 2,51\text{-}2,42 \ (1\text{H}, \ m); \ 2,27\text{-}2,22 \ (2\text{H}, \ m); \end{array}$

ejemplo	
-7- 1	2,15-2,02 (4H, m); 1,72-1,40 (9H, m); 1,13-1,05 (1H, m); 0,94-0,87 (6H, m)
190	δ (400 MHz, CDCl ₃) rotámeros presentes 7,67 y 7,56 (1H, 2xs); 7,14 y 7,06 (2H, 2xd, J = 8,1 Hz); 4,67 y 4,43 (2H, 2xs); 4,61-4,53 y 3,52-3,44 (1H, 2xm); 4,30-4,15 (1H, m); 2,29-2,14 (2H, m); 1,99-1,85 (6H, m); 1,65-1,39 (10H, m); 1,13-1,06 (1H, m); 0,94-0,87 (6H, m)
191	$ \begin{array}{c} \delta \ (400 \ \text{MHz}, \ \text{CDCl}_3) \ \text{rotámeros presentes 7,66 y 7,56 (1H, 2xs); 7,39 y 7,31 (2H, 2xs); 4,66 y 4,43 \\ (2H, 2xs); 4,61-4,53 y 3,52-3,44 (1H, 2xm); 4,30-4,15 (1H, m); 2,29-2,14 (2H, m); 1,99-1,86 (6H, m); 1,65-1,40 (10H, m); 1,13-1,02 (1H, m); 0,94-0,87 (6H, m) \\ \end{array} $
192	δ (400 MHz, CDCl ₃) rotámeros presentes 8,57 y 8,50 (2H, 2xs); 7,66 y 7,55 (1H, 2xs); 4,81 y 4,47 (2H, 2xs); 4,28-4,17 (1H, m); 3,71-3,59 (2H, m); 2,50-2,42 (1H, m); 2,26-2,23 (2H, m); 2,12-2,03 (4H, m); 1,72-1,06 (15H, m)
193	$ \begin{array}{c} \delta \ (400 \ MHz, \ CDCl_3) \ rotámeros \ presentes \ 7,68 \ y \ 7,52 \ (1H, \ 2xs); \ 7,14-7,05 \ (2H, \ m); \ 4,82 \ y \ 4,45 \ (2H, \ 2xs); \ 4,27-4,17 \ (1H, \ m); \ 3,70-3,57 \ (2H, \ m); \ 2,46-2,42 \ (1H, \ m); \ 2,25-2,22 \ (2H, \ m); \ 2,12-2,02 \ (4H, \ m); \ 1,78-1,05 \ (15H, \ m) \end{array} $
194	δ (400 MHz, CDCl ₃) rotámeros presentes 8,57 y 8,49 (2H, 2xs); 7,67 y 7,56 (1H, 2xs); 5,00 y 4,69 (2H, 2xs); 4,29-4,19 (1H, m); 3,98-3,70 (2H, m); 2,50-2,42 (1H, m); 2,27-2,23 (2H, m); 2,13-2,03 (4H, m); 1,94-1,52 (10H, m)
195	δ (400 MHz, CDCl ₃) 12,80 (1H, s a); 7,52 (1H, s); 7,33 (1H, d, J = 7,1 Hz); 7,26-7,23 (2H, m); 7,03-7,00 (2H, m); 6,46 (1H, d, J = 7,1 Hz); 4,79 (2H, s); 4,43 (2H, s); 4,26-4,19 (1H, m); 2,39-2,32 (1H, m); 2,23-2,19 (2H, m); 2,14-2,09 (4H, m); 1,60-1,53 (2H, m)
196	$\begin{array}{c} \delta \ (400 \ MHz, DMSO-d_6) \ 8,80 \ y \ 8,73 \ (2H, \ 2xs); \ 7,72 \ y \ 7,59 \ (1H, \ 2xs); \ 7,37-7,04 \ (1H, \ m); \ 4,78 \ (2H, \ s); \\ 4,39-4,24 \ y \ 3,72-3,64 \ (2H, \ m); \ 2,21-2,15 \ (2H, \ m); \ 2,04-1,91 \ (2H, \ m); \ 1,83-1,23 \ (11H, \ m); \ 1,15-1,10 \ (4H, \ m); \ 0,91-0,84 \ (6H, \ m) \end{array}$
197	$\begin{array}{c} \delta \ (400 \ \text{MHz}, \ \text{CDCl}_3) \ \text{rotámeros presentes} \ 7,57\text{-}6,77 \ (7\text{H}, \ m); \ 4,82\text{-}4,38 \ (5\text{H}, \ m); \ 2,41\text{-}2,37 \ (2\text{H}, \ m); \ 2,17\text{-}2,09 \ (2\text{H}, \ m); \ 1,98\text{-}1,91 \ (2\text{H}, \ m); \ 1,43\text{-}1,35 \ (2\text{H}, \ m); \ 1,30 \ (3\text{H}, \ s) \end{array}$
198	δ (400 MHz, CDCl ₃) rotámeros presentes 8,58 y 8,50 (2H, 2xs); 7,67 y 7,55 (1H, 2xs); 5,38-5,33 y 4,52-4,47 (1H, 2xm); 4,73 y 4,58 (2H, 2xs); 4,31-4,17 (1H, m); 4,10-4,03 (1H, m); 3,91-3,84 (1H, m); 3,79-3,52 (2H, m); 2,51-2,43 (1H, m); 2,28-1,91 (6H, m); 1,73-1,59 (4H, m)
199	δ (400 MHz, CDCl ₃) rotámeros presentes 7,68 y 7,53 (1H, 2xs); 7,12 y 7,05 (2H, 2xd, J = 8,0 Hz); 5,09-4,99 y 4,58-4,15 (4H, m); 2,31-1,89 (10H, m); 1,42 y 1,39 (3H, 2xs); 1,30-1,24 (2H, m); 1,07-0,96 (8H, m)
200	δ (400 MHz, CDCl ₃) rotámeros presentes 8,58 y 8,51 (2H, 2xs); 7,67 y 7,54 (1H, 2xs); 4,73 y 4,43 (2H, 2xs); 4,32-4,16 (1H, m); 3,79 y 3,59 (2H, 2xd, J = 7,7 Hz); 2,85-2,77 y 2,64-2,57 (1H, 2xm); 2,51-2,42 (1H, m); 2,28-2,23 (2H, m); 2,19-1,97 (7H, m); 1,73-1,59 (3H, m); 0,42-0,17 (4H, m)
201	δ (400 MHz, CDCl ₃) rotámeros presentes 7,63 y 7,44 (1H, 2xs); 6,82-6,69 (3H, m); 4,78 y 4,75 (2H, 2xs); 4,57 y 4,41 (2H, 2xs); 4,28-4,19 (1H, m); 3,85 y 3,83 (3H, 2xs); 2,49-2,38 (1H, m); 2,24-2,21 (2H, m); 2,09-1,97 (4H, m); 1,69-1,59 (2H, m)
202	δ (400 MHz, CDCl ₃) rotámeros presentes 7,69 y 7,55 (1H, 2xs); 7,14-7,06 (2H, m); 4,75 y 4,41 (2H, 2xs); 4,30-4,16 (1H, m); 3,79 y 3,58 (2H, 2xd, J = 7,6 Hz); 2,86-2,78 y 2,65-2,57 (1H, 2xm); 2,54-2,12 (4H, m); 2,05-1,84 (7H, m); 1,66-1,58 (1H, m); 1,42 y 1,40 (3H, 2xs); 0,42-0,16 (4H, m)
204	δ (400 MHz, CDCl ₃) rotámeros presentes 8,58 y 8,50 (2H, 2xs); 7,70-7,55 (1H, 2xs); 5,01-4,94 y 3,96-3,88 (1H, 2xm); 4,78-4,73 y 4,39-4,15 (3H, m); 2,55-2,40 (2H, m); 2,28-2,23 (2H, m); 2,16-1,94 (7H, m); 1,82-1,78 y 1,71-1,67 (3H, m); 1,18-1,15 (3 H, m); 0,43-0,22 (4H, m)
205	δ (400 MHz, CDCl ₃) rotámeros presentes 8,58 y 8,50 (2H, 2xs); 7,65 y 7,55 (1H, 2xs); 4,88-4,81 y 3,76-3,69 (1H, 2xm); 4,65-4,40 (2H, m); 4,30-4,20 (1H, m); 2,51-2,44 (1H, m); 2,27-2,24 (2H, m); 2,13-2,04 (4H, m); 1,87-0,65 (16H, m)
206	δ (400 MHz, CDCl ₃) rotámeros presentes 7,74 y 7,58 (1H, 2xs); 7,17 y 7,10 (2H, 2xs); 4,91 y 4,60 (2H, 2xs); 4,48 y 4,13 (2H, 2xs); 4,31-4,18 (1H, m); 2,37 y 2,33 (3H, 2xs); 2,28-2,17 (2H, m); 1,97-1,83 (6H, m); 1,41 y 1,40 (3H, 2xs); 1,20 y 1,19 (9H, 2xs)
207	δ (400 MHz, CDCl ₃) rotámeros presentes 7,73 y 7,57 (1H, 2xs); 7,39 y 7,32 (2H, 2xs); 4,90 y 4,60 (2H, 2xs); 4,48 y 4,13 (2H, 2xs); 4,31-4,18 (1H, m); 2,28-2,15 (2H, m); 1,98-1,86 (6H, m); 1,41 y 1,39 (3H, 2xs); 1,20 y 1,19 (9H, 2xs)
208	δ (400 MHz, CDCl ₃) rotámeros presentes 8,58 y 8,50 (2H, 2xs); 7,65 y 7,54 (1H, 2xs); 4,70-4,47 (3H, m); 4,31-4,18 (1H, m); 4,07-3,76 (2H, m); 2,51-2,45 (1H, m); 2,28-2,05 (7H, m); 1,75-1,62 (3H, m); 1,36-1,13 (6H,m)
210	δ (400 MHz, CDCl ₃) rotámeros presentes 8,59 y 8,51 (2H, 2xs); 7,65 y 7,55 (1H, 2xs); 4,77-4,19 (4H, m); 2,48-1,89 (13H, m); 1,75-1,39 (5H, m) (mezcla de cis, trans en el área B)
211	$\begin{array}{c} \delta \text{ (400 MHz, CDCl}_3\text{) rot\'ameros presentes 8,59 y 8,51 (2H, 2xs); 7,63 y 7,53 (1H, 2xs); 5,13-5,05 y 4,19-4,11 (1H, 2xm); 4,60 y 4,43 (2H, 2xs); 4,29-4,21 (1H, m); 2,50-2,43 (1H, m); 2,26-2,23 (2H, m); } \end{array}$

ejemplo	
Сјетири	2,11-2,02 (4H, m); 1,87-1,84 (4H, m); 1,72-1,59 (2H, m); 1,25-1,19 (2H, m); 0,98-0,68 (6H, m)
212	δ (400 MHz, CDCl ₃) rotámeros presentes 8,58 y 8,49 (2H, 2xs); 7,66 y 7,55 (1H, 2xs); 4,81-4,75 y 3,65-3,56 (1H, 2xm); 4,63 y 4,42 (2H, 2xs); 4,31-4,16 (1H, m); 2,51-2,03 (8H, m); 1,84-1,43 (10H, m)
213	δ (400 MHz, CDCl ₃) rotámeros presentes 8,59 y 8,51 (2H, 2xs); 7,65 y 7,55 (1H, 2xs); 4,60 y 4,41 (2H, 2xs); 4,60-4,54 y 3,62-3,55 (1H, 2xm); 4,32-4,16 (1H, m); 2,52-2,42 (1H, m); 2,28-2,24 (2H, m); 2,18-1,91 (6H, m); 1,73-1,21 (9H, m)
214	δ (400 MHz, CDCl3) rotámeros presentes 7,70 y 7,55 (1H, 2xs); 7,34-7,23 (1H, m); 7,03-6,79 (2H, m); 4,86 y 4,54 (2H, 2xs); 4,45 y 4,10 (2H, 2xs); 4,27-4,23 (1H, m); 3,87 y 3,75 (3H, 2xs); 2,27-2,17 (2H, m); 1,98-1,87 (6H, m); 1,41-1,40 (3H, m); 1,19 (9H, s)
215	δ (400 MHz, DMSO-d ₆) 12,22 (1H, s a); 8,79-8,60 (2H, m); 7,85-7,69 (1H, m); 5,19-4,78 (2H, m); 4,50-4,39 y 4,09-4,02 (1H, 2xm); 4,27-4,18 (1H, m); 2,67-2,57 (1H, m); 2,33-2,26 (1H, m); 2,23-2,19 (1H, m); 2,07-1,90 (6H, m); 1,59-1,16 (10H, m)
216	δ (400 MHz, CDCl ₃) rotámeros presentes 7,61 y 7,50 (1H, 2xs); 6,84-6,71 (3H, m); 4,80 y 4,73 (2H, 2xs); 4,60 y 4,48 (2H, 2xs); 4,29-4,19 (1H, m); 2,49-2,42 (1H, m); 2,25-2,22 (2H, m); 2,10-2,02 (4H, m); 1,70-1,59 (2H, m)
217	δ (400 MHz, CDCl ₃) rotámeros presentes 7,75-7,49 (4H, m); 4,98 y 4,66 (2H, 2xs); 4,47 y 4,13 (2H, 2xs); 4,31-4,20 (1H, m); 2,29-2,18 (2H, m); 1,99-1,89 (6H, m); 1,42 y 1,41 (3H, 2xs); 1,20 y 1,19 (9H, 2xs)
218	δ (400 MHz, CDCl ₃) rotámeros presentes 7,74 y 7,58 (1H, 2xs); 7,14 y 7,07 (2H, 2xd, J = 8,0 Hz); 4,90 y 4,61 (2H, 2xs); 4,48 y 4,14 (2H, 2xs); 4,31-4,19 (1H, m); 2,28-2,16 (2H, m); 1,99-1,86 (6H, m); 1,41 y 1,40 (3H, 2xs); 1,20 y 1,20 (9H, 2xs)
219	δ (400 MHz, CDCl ₃) rotámeros presentes 7,68 y 7,53 (1H, 2xs); 7,38 y 7,30 (2H, 2xs); 5,08-4,98 y 4,36-4,14 (2H, m); 4,57 y 4,38 (2H, 2xs); 2,31-1,84 (10H, m); 1,42 y 1,39 (3H, 2xs); 1,35-1,24 (2H, m); 1,10-0,95 (8H, m)
220	δ (400 MHz, CDCl ₃) rotámeros presentes 7,65 y 7,56 (1H, 2xs); 7,13 y 7,07 (2H, 2xd, J = 8,1 Hz); 4,77 y 4,42 (2H, 2xs); 4,29-4,17 (1H, m); 3,50-3,47 y 3,26-3,25 (2H, 2xm); 2,28-2,14 (2H, m); 1,96-1,85 (6H, m); 1,57-1,05 (11H, m); 0,96-0,78 (7H, m)
221	δ (400 MHz, CDCl ₃) rotámeros presentes 7,73 y 7,57 (1H, 2xs); 7,38 y 7,31 (2H, 2xs); 4,87 y 4,50 (2H, 2xs); 4,25-4,15 (1H, m); 3,49-3,31 (2H, m); 2,25-2,14 (2H, m); 1,94-1,83 (6H, m); 1,41 y 1,40 (3H, 2xs); 1,00 y 0,83 (9H, 2xs)
222	δ (400 MHz, CDCl ₃) rotámeros presentes 7,69-7,49 (4H, m); 4,61-4,15 (4H, m); 2,31-2,17 (2H, m); 1,99-1,87 (8H, m); 1,42 y 1,40 (3H, 2xs); 1,30-1,19 (2H, m); 1,07-0,95 (8H, m)
224	δ (400 MHz, CDCl ₃) rotámeros presentes 7,69 y 7,57 (1H, 2xs); 7,12 y 7,05 (2H, 2xd, J = 8,0 Hz); 5,01 y 4,67 (2H, 2xs); 4,25-4,17 (1H, m); 4,07-3,70 (2H, m); 2,25-2,15 (2H, m); 1,94-1,71 (14H, m); 1,41 y 1,40 (3H, 2xs)
225	δ (400 MHz, CDCl ₃) rotámeros presentes 7,68 y 7,56 (1H, 2xs); 7,37 y 7,30 (2H, 2xs); 5,01 y 4,66 (2H, 2xs); 4,25-4,17 (1H, m); 4,01-3,88 y 3,77-3,70 (2H, m); 2,25-2,15 (2H, m); 1,94-1,71 (14H, m); 1,41 y 1,40 (3H, 2xs)
226	δ (400 MHz, CD ₃ CN) rotámeros presentes 7,55 y 7,46 (1H, 2xs); 7,20 y 7,12 (2H, 2xs); 4,91 y 4,67 (2H, 2xs); 4,22-4,16 (1H, m); 3,80 y 3,62 (2H, 2xs); 2,26 y 2,21 (3H, 2xs); 1,82-1,33 (16H, m); 1,27 y 1,25 (3H, 2xs); 1,23 y 1,21 (3H, 2xs)
227	δ (400 MHz, CD ₃ OD) rotámeros presentes 7,76 y 7,59 (1H, 2xs); 7,33 y 7,25 (2H, 2xs); 4,75 y 4,63 (2H, 2xs), 4,43-4,28 (1H, m); 4,30-4,23 y 3,52-3,47 (1H, 2xm); 2,38 y 2,33 (3H, 2xs); 2,30-2,15 (2H, m); 1,98-1,38 (13H, m); 1,36 y 1,34 (3H, 2xs); 1,16-1,05 (1H, m); 0,95-0,86 (6H, m)
228	δ (400 MHz, DMSO-d ₆) rotámeros presentes 12,07 (1H, s a); 8,72 y 8,61 (2H, 2xs); 7,66 y 7,63 (1H, 2xs); 7,38-7,17 (4H, m); 4,73-4,67 (4H, m); 4,43-4,36 (1H, m); 4,26-4,08 (2H, m); 2,33-2,25 (1H, m); 2,03-1,76 (6H, m); 1,61-1,51 (2H, m)
229	δ (400 MHz, CDCl ₃) rotámeros presentes 8,59 y 8,50 (2H, 2xs); 7,66 y 7,56 (1H, 2xs); 4,66 y 4,45 (2H, 2xs); 4,64-4,56 y 3,54-3,46 (1H, 2xm); 4,31-4,17 (1H, m); 2,29-2,16 (2H, m); 1,99-1,86 (6H, m); 1,63-1,27 (10H, m); 1,15-1,07 (1H, m); 0,95-0,88 (6H, m)
230	δ (400 MHz, CDCl ₃) rotámeros presentes 7,59 y 7,50 (1H, 2xs); 7,14 y 7,06 (2H, 2xd, J = 8,0 Hz); 4,65 y 4,40 (2H, 2xs); 4,61-4,53 y 3,46-3,38 (1H, 2xm); 2,33-2,18 (6H, m); 2,09-2,03 (6H, m); 1,64-1,39 (7H, m); 1,12-1,02 (1H, m); 0,93-0,86 (6H, m)
231	δ (400 MHz, CDCl ₃) rotámeros presentes 7,59 y 7,50 (1H, 2xs); 7,39 y 7,31 (2H, 2xs); 4,64 y 4,39 (2H, 2xs); 4,61-4,53 y 3,46-3,38 (1H, 2xm); 2,33-2,21 (6H, m); 2,09-2,02 (6H, m); 1,63-1,39 (7H, m); 1,12-1,04 (1H, m); 0,93-0,86 (6H, m)
234	δ (400 MHz, CDCl ₃) rotámeros presentes 7,68 y 7,55 (1H, 2xs); 7,38 y 7,32 (2H, 2xs); 4,74 y 4,41 (2H, 2xs); 4,30-4,16 (1H, m); 3,78 y 3,58 (2H, 2xd, J = 7,8 Hz); 2,85-2,78 y 2,64-2,57 (1H, 2xm); 2,28-

ejemplo	
, ,	2,12 (4H, m); 2,02-1,85 (7H, m); 1,66-1,61 (1H, m); 1,42 y 1,39 (3H, 2xs); 0,43-0,16 (4H, m)
235	δ (400 MHz, CDCl ₃) rotámeros presentes 7,71-7,48 (4H, m); 4,84 y 4,49 (2H, 2xs); 4,31-4,17 (1H, m); 3,83-3,59 (2H, m); 2,86-2,78 y 2,62-2,55 (1H, 2xm); 2,28-2,10 (4H, m); 2,01-1,87 (7H, m); 1,64-1,59 (1H, m); 1,42 y 1,41 (3H, 2xs); 0,43-0,16 (4H, m)
236	δ (400 MHz, DMSO-d ₆) rotámeros presentes 12,30 (1H, s a); 7,77 y 7,54 (1H, 2xs); 7,45 y 7,38 (2H, 2xs); 4,68 y 4,58 (2H, 2xs); 4,32-4,26 (1H, m); 2,36 y 2,30 (3H, 2xs); 2,21-2,18 (2H, m); 2,14-2,10 (4H, m); 1,94-1,88 (6H, m); 1,72-1,59 (2H, m); 1,47-1,24 (m, 5H); 1,00-0,92 (1H, m); 0,98-0,80 (6H, m)
237	δ (400 MHz, DMSO-d ₆) rotámeros presentes 12,25 (1H, s a); 7,76 y 7,54 (1H, 2xs); 7,44 y 7,38 (2H, 2xs); 4,70 y 4,50 (2H, 2xs); 3,50-3,25 (2H, m); 2,59-2,53 y 2,45-2,37 (1H, 2xm); 2,35 y 2,31 (3H, 2xs); 2,21-2,10 (6H, m); 1,94-1,88 (6H, m); 1,82-1,70 (2H, m); 1,59-1,54 y 1,27-1,22 (2H, 2xm); 1,10-0,87 (6H, m)
238	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$
239	δ (400 MHz, CDCl ₃) rotámeros presentes 7,65 y 7,56 (1H, 2xs); 7,38 y 7,31 (2H, 2xs); 4,77 y 4,41 (2H, 2xs); 4,30-4,16 (1H, m); 3,48 y 3,25 (2H, 2xd, J = 7,0 Hz); 2,28-2,14 (2H, m); 1,96-1,84 (6H, m); 1,57-1,05 (11H, m); 0,96-0,78 (7H, m)
240	δ (400 MHz, CDCl ₃) rotámeros presentes 7,61 y 7,46 (1H, 2xs); 7,12 y 7,05 (2H, 2xd, J = 7,6 Hz); 5,09-4,99 y 4,31-4,21 (1H, 2xm); 4,57 y 4,35 (2H, 2xs); 2,34-2,21 (6H, m); 2,09-2,03 (6H, m); 1,94-1,87 y 1,40-1,33 (2H, m); 1,29-1,22 (2H, m); 1,09-0,95 (8H, m)
241	δ (400 MHz, CDCl ₃) rotámeros presentes 7,60 y 7,46 (1H, 2xs); 7,37 y 7,30 (2H, 2xs); 5,08-4,99 y 4,30-4,21 (1H, 2xm); 4,56 y 4,35 (2H, 2xs); 2,33-2,20 (6H, m); 2,09-2,02 (6H, m); 1,93-1,86 y 1,39-1,33 (2H, m); 1,28-1,21 (2H, m); 1,10-0,95 (8H, m)
242	δ (400 MHz, CDCl ₃) rotámeros presentes 7,68-7,47 (4H, m); 4,71 y 4,48 (2H, 2xs); 4,31-4,22 y 3,46-3,39 (1H, 2xm); 2,33-2,24 (6H, m); 2,11-2,03 (6H, m); 1,87-1,77 (1H, m); 1,67-1,34 (6H, m); 1,11-1,03 (1H, m); 0,93-0,86 (6H, m)
243	δ (400 MHz, CDCl ₃) rotámeros presentes 7,61 y 7,52 (1H, 2xs); 7,32-7,23 (1H, m); 7,04-6,80 (2H, m); 4,64 y 4,33 (2H, 2xs); 4,63-4,56 y 3,43-3,35 (1H, 2xm); 3,86 y 3,76 (3H, 2xs); 2,33-2,22 (6H, m); 2,09-2,02 (6H, m); 1,62-1,38 (7H, m); 1,11-1,04 (1H, m); 0,94-0,86 (6H, m)
244	δ (400 MHz, CDCl ₃) rotámeros presentes 7,66 y 7,57 (1H, 2xs); 7,11 y 7,04 (2H, 2xd, J = 8,1 Hz); 5,09 y 4,77 (2H, 2xs); 4,29-4,18 (1H, m); 3,96-3,76 (2H, m); 2,21-2,14 (2H, m); 1,96-1,84 (6H, m); 1,68-1,39 (14H, m)
245	δ (400 MHz, CDCl ₃) rotámeros presentes 7,66 y 7,49 (1H, 2xs); 7,13 y 7,06 (2H, 2xd, J = 8,1 Hz); 4,86 y 4,48 (2H, 2xs); 3,79-3,25 (2H, m); 2,31-2,21 (6H, m); 2,07-2,03 (6H, m); 1,01 y 0,84 (9H, 2xs)
246	δ (400 MHz, CDCl ₃) rotámeros presentes 7,66 y 7,49 (1H, 2xs); 7,38 y 7,31 (2H, 2xs); 4,86 y 4,48 (2H, 2xs); 3,75-3,25 (2H, m); 2,32-2,21 (6H, m); 2,07-2,03 (6H, m); 1,00 y 0,84 (9H, 2xs)
247	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$
248	δ (400 MHz, CDCl3) rotámeros presentes 7,62 y 7,47 (1H, 2xs); 7,31-7,23 (1H, m); 7,03-6,78 (2H, m); 5,19-5,09 y 4,28-4,19 (1H, 2xm); 4,56 y 4,30 (2H, 2xs); 3,84 y 3,73 (3H, 2xs); 2,33-2,21 (6H, m); 2,09-2,01 (7H, m); 1,91-1,84 (1H, m); 1,33-1,24 (2H, m); 1,10-0,93 (8H, m)
249	δ (400 MHz, CDCl ₃) rotámeros presentes 7,66 y 7,54 (1H, 2xs); 7,13 y 7,07 (2H, 2xd, J = 8,0 Hz); 4,72 y 4,39 (2H, 2xs); 4,29-4,16 (1H, m); 3,64 y 3,40 (2H, 2xd, J = 7,6 Hz); 2,63-2,55 y 2,44-2,36 (1H, 2xm); 2,25-2,14 (2H, m); 1,95-1,80 (8H, m); 1,64-1,58 y 1,35-1,30 (2H, 2xm); 1,42 y 1,39 (3H, 2xs); 1,14-0,93 (6H, m)
250	δ (400 MHz, CDCl ₃) rotámeros presentes 7,65 y 7,54 (1H, 2xs); 7,38 y 7,31 (2H, 2xs); 4,71 y 4,38 (2H, 2xs); 4,29-4,17 (1H, m); 3,64 y 3,40 (2H, 2xd, J = 7,6 Hz); 2,62-2,54 y 2,43-2,35 (1H, 2xm); 2,28-1,79 (10H, m); 1,63-1,58 y 1,34-1,29 (2H, 2xm); 1,41 y 1,39 (3H, 2xs); 1,14-0,93 (6H, m)
251	δ (400 MHz, CDCl ₃) rotámeros presentes 7,68-7,48 (4H, m); 4,82 y 4,46 (2H, 2xs); 4,27-4,17 (1H, m); 3,66-3,39 (2H, m); 2,63-2,55 y 2,41-2,33 (1H, 2xm); 2,29-2,17 (2H, m); 1,95-1,76 (8H, m); 1,63-1,58 y 1,33-1,27 (2H, 2xm); 1,42 y 1,41 (3H, 2xs); 1,14-0,93 (6H, m)
252	δ (400 MHz, CDCl ₃) rotámeros presentes 7,62 y 7,53 (1H, 2xs); 7,33-7,26 (1H, m); 7,03-6,79 (2H, m); 4,71 y 4,35 (2H, 2xs); 4,29-4,18 (1H, m); 3,86 y 3,76 (3H, 2xs); 3,64 y 3,37 (2H, 2xd, J = 7,3 Hz); 2,63-2,55 y 2,44-2,36 (1H, 2xm); 2,26-2,14 (2H, m); 1,94-1,79 (8H, m); 1,63-1,58 y 1,35-1,30 (2H, 2xm); 1,41 y 1,39 (3H, 2xs); 1,14-0,94 (6H, m)
253	$\begin{array}{c} \delta \ (400 \ MHz, \ CDCl_3) \ rot\'ameros \ presentes \ 7,70 \ y \ 7,55 \ (1H, \ 2xs); \ 7,33-7,25 \ (1H, \ m); \ 7,03-6,78 \ (2H, \ m); \\ 4,86 \ y \ 4,46 \ (2H, \ 2xs); \ 4,24-4,18 \ (1H, \ m); \ 3,85 \ y \ 3,75 \ (3H, \ 2xs); \ 3,42 \ y \ 3,33 \ (2H, \ 2xs); \ 2,26-2,18 \ (2H, \ 2xs); \ 4,24-4,18 \ (2H, \ 2xs);$

ejemplo	
, p. 1	m); 1,93-1,87 (6H, m); 1,41 y 1,39 (3H, 2xs); 1,01 y 0,83 (9H, 2xs)
254	δ (400 MHz, CDCl ₃) rotámeros presentes 7,68-7,47 (4H, m); 4,73 y 4,51 (2H, 2xs); 4,27-4,17 y 3,52-3,44 (2H, 2xm); 2,26-2,21 (2H, m); 1,98-1,78 (7H, m); 1,68-1,40 (9H, m); 1,12-1,04 (1H, m); 0,94-0,86 (6H, m)
255	δ (400 MHz, CDCl ₃) rotámeros presentes 7,68 y 7,58 (1H, 2xs); 7,32-7,25 (1H, m); 7,04-6,80 (2H, m); 4,66 y 4,36 (2H, 2xs); 4,62-4,58 y 3,48-3,42 (1H, 2xm); 4,29-4,15 (1H, m); 3,87 y 3,77 (3H, 2xs); 2,28-2,16 (2H, m); 1,98-1,86 (6H, m); 1,66-1,39 (10H, m); 1,13-1,05 (1H, m); 0,94-0,87 (6H, m)
256	δ (400 MHz, CDCl ₃) rotámeros presentes 7,57 y 7,47 (1H, 2xs); 7,38 y 7,31 (2H, 2xs); 4,70 y 4,35 (2H, 2xs); 3,62-3,34 (2H, m); 2,62-2,54 y 2,43-2,35 (1H, 2xm); 2,32-2,21 (6H, m); 2,08-2,02 (6H, m); 1,89-1,79 (2H, m); 1,63-1,58 y 1,35-1,30 (2H, 2xm); 1,14-0,94 (6H, m)
257	δ (400 MHz, CDCl3) rotámeros presentes 7,54 y 7,45 (1H, 2xs); 7,32-7,26 (1H, m); 7,03-6,78 (2H, m); 4,70 y 4,32 (2H, 2xs); 3,86 y 3,75 (3H, 2xs); 3,63-3,32 (2H, m); 2,63-2,55 y 2,44-2,36 (1H, 2xm); 2,32-2,22 (6H, m); 2,08-2,02 (6H, m); 1,90-1,79 (2H, m); 1,63-1,58 y 1,36-1,31 (2H, 2xm); 1,14-0,95 (6H, m)
258	δ (400 MHz, CDCl3) rotámeros presentes 7,67-7,48 (4H, m); 4,81 y 4,44 (2H, 2xs); 3,93-3,13 (2H, m); 2,63-2,23 (7H, m); 2,09-2,03 (6H, m); 1,88-1,76 (2H, m); 1,63-1,58 y 1,33-1,28 (2H, 2xm); 1,14-0,94 (6H, m)
259	δ (400 MHz, CDCl ₃) rotámeros presentes 7,61 y 7,55 (1H, 2xs); 7,33-7,26 (1H, m); 7,03-6,78 (2H, m); 4,76 y 4,38 (2H, 2xs); 4,28-4,18 (1H, m); 3,86 y 3,75 (3H, 2xs); 3,48 y 3,23 (2H, 2xd, J = 7,1 Hz); 2,27-2,16 (2H, m); 1,95-1,87 (6H, m); 1,67-1,05 (11H, m); 0,96-0,78 (7H, m)
260	δ (400 MHz, CDCl ₃) rotámeros presentes 7,65 y 7,57 (1H, 2xs); 7,36 y 7,29 (2H, 2xs); 5,08 y 4,76 (2H, 2xs); 4,29-4,17 (1H, m); 3,96 y 3,75 (2H, 2xs); 2,25-2,14 (2H, m); 1,95-1,84 (6H, m); 1,68-1,39 (14H, m)
261	δ (400 MHz, DMSO-d ₆) rotámeros presentes 12,20 (1H, s a); 7,71 y 7,61 (1H, 2xs); 7,42 y 7,37 (2H, 2xs); 4,92 y 4,70 (2H, 2xs); 3,83 y 3,61 (2H, 2xs); 2,35 y 2,30 (3H, 2xs); 2,21-2,12 (6H, m); 1,93-1,89 (6H, m); 1,69-1,50 (6H, m); 1,45-1,38 (2H, m); 1,34 y 1,31 (3H, 2xs)
262	δ (400 MHz, DMSO-d ₆) rotámeros presentes 11,97 (1H, s a); 8,77 y 8,70 (2H, 2xs); 7,81 y 7,71 (1H, 2xs); 4,95 y 4,82 (2H, 2xs); 4,48-4,42 (1H, m); 4,27-4,19 (1H, m); 3,87 y 3,71 (2H, 2xs); 2,34-2,26 (1H, m); 2,07-1,90 (6H, m); 1,67-1,30 (10H, m)
264	δ (400 MHz, CDCl ₃) rotámeros presentes 8,57 y 8,49 (2H, 2xs); 7,66 y 7,52 (1H, 2xs); 5,14-5,04 y 4,37-4,16 (2H, m); 4,57 y 4,40 (2H, 2xs); 2,52-2,44 (1H, m); 2,28-2,25 (2H, m); 2,17-2,02 (4H, m); 1,96-1,89 (1H, m); 1,73-1,62 (2H, m); 1,36-0,96 (11H, m)
265	δ (400 MHz, CDCl ₃) rotámeros presentes 7,78 y 7,48 (4H, m); 4,97 y 4,60 (2H, 2xs); 4,24-4,18 (1H, m); 3,72-3,12 (2H, m); 2,27-2,19 (2H, m); 1,94-1,88 (6H, m); 1,41 y 1,25 (3H, 2xs); 1,00 y 0,82 (9H, 2xs)
266	δ (400 MHz, CDCl ₃) rotámeros presentes 7,58 y 7,47 (1H, 2xs); 7,13 y 7,06 (2H, 2xd, J = 8,0 Hz); 4,71 y 4,36 (2H, 2xs); 3,70-3,35 (2H, m); 2,63-2,55 y 2,43-2,35 (1H, 2xm); 2,32-2,21 (6H, m); 2,08-2,02 (6H, m); 1,89-1,79 (2H, m); 1,63-1,58 y 1,36-1,30 (2H, 2xm); 1,14-0,94 (6H, m)
267	δ (400 MHz, CDCl ₃) rotámeros presentes 8,57 y 8,50 (2H, 2xs); 7,67 y 7,56 (1H, 2xs); 4,81 y 4,47 (2H, 2xs); 4,29-4,18 (1H, m); 3,72 y 3,59 (2H, 2xs); 2,28-2,15 (2H, m); 1,95-1,85 (6H, m); 1,67-1,06 (16H, m)
268	δ (400 MHz, DMSO-d ₆) rotámeros presentes 12,23 (1H, s a); 7,90 y 7,81 (1H, 2xs); 7,19-7,09 (4H, m); 6,93-6,91 (1H, m); 4,72-4,59 (4H, m); 4,27-4,13 (1H, m); 2,33-2,29 (1H, m); 2,19 (3H, s); 2,05-2,02 (2H, m); 1,96-1,90 (4H, m); 1,70 (3H, s); 1,58-1,46 (2H, m)
269	δ (300 MHz, DMSO-d ₆) rotámeros presentes 12,15 (1H, s a); 7,85 y 7,81 (1H, 2xs); 7,17-6,91 (5H, m); 4,71-4,58 (4H, m); 4,28-4,13 (1H, m); 2,34-2,23 (4H, m); 2,22 y 1,77 (3H, 2xs); 2,08-1,90 (6H, m); 1,60-1,47 (2H, m)
270	δ (400 MHz, CDCl ₃) rotámeros presentes 7,65-7,47 (4H, m); 5,11 y 4,75 (2H, 2xs); 4,25-4,19 (1H, m); 4,02-3,70 (2H, m); 2,28-2,18 (2H, m); 1,95-1,73 (14H, m); 1,41 (3 H, s)
272	δ (400 MHz, CDCl ₃) rotámeros presentes 8,57 y 8,49 (2H, 2xs); 7,67 y 7,56 (1H, 2xs); 5,00 y 4,69 (2H, 2xs); 4,26-4,19 (1H, m); 3,98-3,92 (2H, m); 2,28-2,16 (2H, m); 1,95-1,74 (14H, m); 1,41 (3H, s)
275	δ (400 MHz, CDCl ₃) rotámeros presentes 7,68 y 7,56 (1H, 2xs); 7,38 y 7,31 (2H, 2xs); 4,82 y 4,44 (2H, 2xs); 4,29-4,17 (1H, m); 3,71 y 3,58 (2H, m); 2,24-2,14 (2H, m); 1,96-1,84 (6H, m); 1,66-1,05 (16H, s)
279	δ (300 MHz, DMSO-d ₆) rotámeros presentes 12,22 (1H, s a); 7,85 y 7,68 (1H, 2xs); 7,22 y 7,15 (1H, 2xs); 7,11 y 7,05 (1H, 2xs); 4,61 y 4,59 (2H, 2xs); 4,32-4,17 y 3,39-3,30 (2H, 2xm); 2,30-1,98 (7H, m); 1,90-1,58 (9H, m); 1,50-1,31 (4H, m); 1,25 y 1,22 (3H, 2xs); 1,04-0,82 (8H, m)
280	δ (400 MHz, CD ₃ OD) rotámeros presentes 7,76 y 7,62 (1H, 2xs); 7,13 y 7,07 (2H, 2xs); 4,61 y 4,54

مامسمام	
ejemplo	(011.0.) (05.4.070.57.0.45 (011.0) 0.00.0.00 (711) (05.4.04 (711) (4.77.4.07 (411)
	(2H, 2xs); 4,35-4,27 y 3,57-3,45 (2H, 2xm); 2,36-2,20 (7H, m); 1,95-1,81 (7H, m); 1,77-1,07 (11H, m); 0,95-0,86 (6H, m)
281	δ (400 MHz, CDCl ₃) rotámeros presentes 7,70 y 7,58 (1H, 2xs); 7,36-7,23 (3H, m); 5,05 y 4,69 (2H, 2xs); 4,25-4,18 (1H, m); 4,00-3,95 (2H, m); 2,26-2,16 (2H, m); 1,94-1,73 (14H, m); 1,40 (3H, s)
282	δ (400 MHz, CDCl ₃) rotámeros presentes 7,69 y 7,58 (1H, 2xs); 7,15 y 7,07 (2H, 2xs); 5,02 y 4,66 (2H, 2xs); 4,25-4,17 (1H, m); 3,98-3,70 (2H, m); 2,35 y 2,32 (3H, 2xs); 2,25-2,15 (2H, m); 1,94-1,73 (14H, m); 1,41 y 1,40 (3H, 2xs)
283	δ (400 MHz, CDCl ₃) rotámeros presentes 7,68 y 7,58 (1H, 2xs); 7,38-7,23 (3H, m); 4,70 y 4,46 (2H, 2xs); 4,61-4,53 y 3,52-3,44 (1H, 2xm); 4,30-4,15 (1H, m); 2,29-2,16 (2H, m); 1,98-1,86 (6H, m); 1,68-1,40 (10H, m); 1,13-1,06 (1H, m); 0,94-0,87 (6H, m)
284	δ (400 MHz, CDCl ₃) rotámeros presentes 7,75 y 7,59 (1H, 2xs); 7,36-7,23 (3H, m); 4,92 y 4,53 (2H, 2xs); 4,24-4,16 (1H, m); 3,44-3,36 (2H, m); 2,25-2,15 (2H, m); 1,94-1,85 (6H, m); 1,42 y 1,40 (3H, 2xs); 1,01 y 0,84 (9H, 2xs)
287	δ (400 MHz, CDCl ₃) rotámeros presentes 8,58 y 8,50 (2H, 2xs); 7,65 y 7,57 (1H, 2xs); 4,64-4,57 y 3,55-3,48 (1H, 2xm); 4,54 y 4,35 (2H, 2xs); 4,30-4,21 (1H, m); 2,28-2,18 (2H, m); 1,97-1,87 (6H, m); 1,62-1,49 (4H, m); 1,42 y 1,40 (3H, 2xs); 0,99 y 0,90 (6H, 2xt, <i>J</i> = 7,5 Hz)
288	δ (400 MHz, DMSO-d ₆) rotámeros presentes 12,24 (1H, s a); 8,78 y 8,72 (2H, 2xs); 7,65 y 7,62 (1H, 2xs); 4,82 y 4,66 (2H, 2xs); 3,49-3,22 (2H, m); 2,15-2,11 (6H, m); 1,93-1,89 (6H, m); 1,30-1,24 (2H, m); 0,89-0,72 (9H, m)
289	δ (400 MHz, CDCl ₃) rotámeros presentes 7,66 y 7,55 (1H, 2xs); 7,39 y 7,31 (2H, 2xs); 4,57-4,52 (1.5H, m); 4,39-4,15 (6H, m); 3,53-3,48 (0.5H, m); 2,27-2,13 (4H, m); 1,95-1,75 (8H, m); 1,65-1,58 (1H, m); 1,45-1,28 (6H, m).
290	δ (400 MHz, DMSO-d ₆) rotámeros presentes 12,47 (1H, s a); 7,91 y 7,76 (1H, 2xs); 7,72 y 7,65 (2H, 2xd, J = 8,6 Hz); 5,14-4,98 (1H, m); 4,73 y 4,65 (2H, 2xs); 4,34-4,28 y 3,43-3,38 (1H, 2xm); 3,17-3,09 (1H, m); 2,92-2,75 (2H, m); 2,71-2,59 (2H, m); 1,71-1,61 (2H, m); 1,48-1,24 (5H, m); 1,06-1,00 (1H, m); 0,91-0,81 (6H, m)
291	δ (400 MHz, DMSO-d ₆) rotámeros presentes 12,38 (1H, s a); 7,89 y 7,75 (1H, 2xs); 7,72 y 7,66 (2H, 2xd, J = 8,6 Hz); 4,98-4,85 (1H, m); 4,72 y 4,64 (2H, 2xs); 4,35-4,28 y 3,43-3,37 (1H, 2xm); 3,02-2,96 (1H, m); 2,81-2,59 (4H, m); 1,70-1,60 (2H, m); 1,48-1,27 (5H, m); 1,07-1,00 (1H, m); 0,91-0,82 (6H, m)
292	δ (400 MHz, CD ₃ OD) rotámeros presentes 7,81 y 7,59 (1H, 2xs); 7,40 y 7,34 (2H, 2xd, J = 8,6 Hz); 4,96 y 4,78 (2H, 2xs); 4,35-4,25 (1H, m); 3,72-3,63 y 3,51-3,46 (4H, 2xm); 2,31-2,13 (2H, m); 1,93-1,84 (6H, m); 1,35 y 1,33 (3H, 2xs); 1,19 y 1,16 (9H, 2xs)
293	δ (400 MHz, CD ₃ OD) rotámeros presentes 7,81 y 7,59 (1H, 2xs); 7,61 y 7,55 (2H, 2xs); 4,96 y 4,78 (2H, 2xs); 4,36-4,26 (1H, m); 3,72-3,63 y 3,52-3,45 (4H, 2xm); 2,35-2,13 (2H, m); 1,94-1,85 (6H, m); 1,36 y 1,34 (3H, 2xs); 1,19 y 1,16 (9H, 2xs)
294	δ (400 MHz, CDCl ₃) rotámeros presentes 8,54-8,44 (2H, m); 7,61 y 7,51 (1H, 2xs); 4,71 y 4,54 (2H, 2xs); 4,27-4,19 (1H, m); 3,40-3,33 (2H, m); 2,27-2,17 (2H, m); 1,94-1,87 (6H, m); 1,41 y 1,40 (3H, 2xs); 1,01 y 0,86 (9H, 2xs)
295	δ (400 MHz, CD ₃ OD) rotámeros presentes 7,81 y 7,63 (1H, 2xs); 7,41 y 7,34 (2H, 2xd, J = 6,3 Hz); 4,79-3,93 (4H, m); 3,31-3,12 (2H, m); 2,99-2,94 (1H, m); 2,80-2,68 (4H, m); 2,46-2,37 (2H, m); 2,28-2,15 (2H, m); 1,95-1,72 (8H, m); 1,32 y 1,30; (3H, 2xs)
296	δ (400 MHz, DMSO-d ₆) rotámeros presentes 7,88-7,69 (3H, m); 4,69-4,19 (4H, m); 3,12-2,73 (4H, m); 2,13-2,02 (3H, m); 1,91-1,65 (10H, m); 1,25 y 1,22 (3H, 2xs); 1,05-0,90 (6H, m)
297	δ (400 MHz, CDCl ₃) rotámeros presentes 7,64 y 7,52 (1H, 2xs); 7,39-6,99 (3H, m); 4,78 y 4,53 (2H, 2xs); 4,25-4,18 (1H, m); 3,41-3,33 (2H, m); 2,26-2,16 (2H, m); 1,94-1,87 (6H, m); 1,41 y 1,40 (3H, 2xs); 1,01 y 0,85 (9H, 2xs)
298	δ (400 MHz, CDCl ₃) rotámeros presentes 7,61 y 7,49 (1H, 2xs); 7,37 y 7,30 (2H, 2xs); 4,99 y 4,64 (2H, 2xs); 3,94-3,66 (2H, m); 2,31-2,22 (6H, m); 2,07-2,03 (6H, m); 1,93-1,73 (8H, m)
299	δ (400 MHz, CDCl ₃) rotámeros presentes 8,56 y 8,49 (2H, 2xs); 7,60 y 7,49 (1H, 2xs); 4,99 y 4,67 (2H, 2xs); 3,94-3,66 (2H, m); 2,31-2,23 (6H, m), 2,08-2,04 (6H,m); 1,99-1,74 (8H, m)
300	δ (400 MHz, CDCl ₃) rotámeros presentes 7,62 y 7,50 (1H, 2xs); 7,15 y 7,07 (2H, 2xs); 5,01 y 4,64 (2H, 2xs); 3,95-3,67 (2H, m); 2,35 y 2,32 (3H, 2xs); 2,26-2,22 (6H, m); 2,07-2,03 (6H, m); 1,94-1,73 (8H, m)
301	δ (400 MHz, DMSO-d ₆) rotámeros presentes 12,40 (1H, s a); 7,80 y 7,63 (1H, 2xs); 7,71 y 7,67 (2H, 2xd, J = 8,6 Hz); 4,72 y 4,65 (2H, 2xs); 4,34-4,17 (2H, m); 2,20-2,14 (2H, m); 2,03-1,62 (6H, m); 1,48-1,24 (7H, m); 1,14 y 1,12 (3H, 2xs); 1,02-0,95 (1H, m); 0,90-0,81 (6H, m)
302	δ (400 MHz, DMSO-d ₆) rotámeros presentes 12,26 (1H, s a); 7,88 y 7,75 (1H, 2xs); 7,70 y 7,65 (2H,

ejemplo	
Сјетиріо	2xd, <i>J</i> = 8,5 Hz); 4,81 y 4,63 (2H, 2xs); 4,25-4,20 (1H, m); 3,82-3,75 y 3,38-3,23 (2H, 2xm); 2,09-1,98 (2H, m); 1,87-1,72 (6H, m); 1,30-1,15 (5H, m); 0,87-0,70 (9H, m)
303	δ (400 MHz, DMSO-d ₆) rotámeros presentes 12,26 (1H, s a); 9,41 y 9,14 (1H, 2xbrs); 7,89 y 7,76 (1H, 2xs); 7,75 y 7,69 (2H, 2xd, J = 8,6 Hz); 4,80-4,73 (2.5H, m); 4,36-4,31 (0.5H, m); 4,26-4,20 (1H, m); 3,90-3,88 y 3,81-3,78 (2H, 2xm); 2,63 y 2,56 (3H, 2xd, J = 4,5 Hz); 2,49-2,42 (2H, m); 2,29-2,27 (2H, m); 2,14-1,63 (12H, m); 1,25 y 1,23 (3H, 2xs)
304	δ (400 MHz, CD ₃ OD) rotámeros presentes 7,82 y 7,62 (1H, 2xs); 7,43 y 7,37 (2H, 2xd, J = 8,0 Hz); 4,79 y 4,70 (2H, 2xs); 4,45-4,36 (1H, m); 4,30-4,25 (1H, m); 4,11-4,02 (2H, m); 2,64-2,48 (2H, m); 2,26-2,06 (8H, m); 1,99-1,74 (7H, m); 1,36 y 1,34 (3H, 2xs)
305	δ (400 MHz, CD ₃ OD) rotámeros presentes 7,66 y 7,63 (1H, 2xs); 7,37 y 7,29 (2H, 2xd, J = 8,2 Hz); 4,77 y 4,72 (2H, 2xs); 4,29-4,17 (4H, m); 3,26-3,20 (1H, m); . 2,79-2,71 (2H, m); 2,33-2,15 (8H, m); 1,95-1,82 (6H, m); 1,47-1,34 (9H, m)
306	δ (400 MHz, DMSO-d ₆) rotámeros presentes 7,94-7,72 (3H, m); 4,80 y 4,63 (2H, 2xs); 4,16-4,09 (1H, m); 3,48-3,20 (2H, m); 2,07-1,96 (2H, m); 1,80-1,63 (6H, m); 1,29-1,22 (2H, m); 1,12 (3H, s); 0,87-0,69 (9H, m)
307	δ (400 MHz, DMSO-d ₆) 12,11 (1H, s a); 8,32 (2H, s); 7,49 (1H, s); 7,37 (1H, s); 7,18-7,13 (2H, m); 7,10-7,03 (2H, m); 5,13 (1H, d, J = 15,7 Hz); 4,30 (1H, d, J = 15,7 Hz); 4,16-4,08 (1H, m); 2,28 (3H, s); 2,24-2,18 (1H, m); 2,00-1,82 (4H, m); 1,75-1,69 (2H, m); 1,52-1,40 (2H, m)
308	δ (400 MHz, DMSO-d ₆) rotámeros presentes 7,84 y 7,79 (2H, 2xs); 7,64 y 7,61 (1H, 2xs); 4,79 y 4,59 (2H, 2xs); 3,50-3,32 (2H, m); 2,19-2,10 (6H, m); 1,92-1,88 (6H, m); 1,29-1,22 (2H, m); 0,88-0,71 (9H, m)
309	δ (400 MHz, DMSO-d ₆) rotámeros presentes 7,80-7,61 (3H, m); 4,79 y 4,59 (2H, 2xs); 3,50-3,22 (2H, m); 2,18-2,10 (6H, m); 1,91-1,88 (6H, m); 1,29-1,23 (2H, m); 0,87-0,71 (9H, m)
310	δ (400 MHz, DMSO-d ₆) rotámeros presentes 12,30 (1H, s a); 8,78 y 8,73 (2H, 2xs); 8,13 y 8,04 (1H, 2xs); 4,86 (2H, s); 4,50-4,43 (1H, m); 3,41-3,28 (2H, m); 2,04-1,95 (2H, m); 1,88-1,83 (4H, m); 1,74-1,71 (2H, m); 1,20 y 1,14 (3H, 2xs); 0,94 y 0,76 (9H, 2xs)
312	δ (400 MHz, CD ₃ OD) rotámeros presentes 8,65 y 8,58 (2H, 2xs); 7,79 y 7,61 (1H, 2xs); 4,95-4,88 y 3,99-3,91 (1H, 2xm); 4,80-4,63 (2H, m); 4,37-4,25 (1H, m); 2,33-2,14 (2H, m); 1,93-1,85 (7H, m); 1,68-1,40 (2H, m); 1,36 y 1,34 (3H, 2xs); 1,32-1,27 (1H, m); 1,23 y 1,21 (3H, 2xs); 0,99-0,93 (3H, m); 0,75 y 0,73 (3H, 2xs)
313	δ (400 MHz, DMSO-d ₆) rotámeros presentes 12,21 (1H, s a); 8,80 y 8,72 (2H, 2xs); 7,81 y 7,70 (1H, 2xs); 4,88-4,57 (2.5H, m); 4,31-4,21 (1H, m); 3,96-3,91 (0.5H, m); 3,54-3,22 (2H, m); 3,25 y 3,16 (3H, 2xs); 2,15-2,01 (2H, m); 1,88-1,76 (6H, m); 1,24 y 1,23 (3H, 2xs); 1,16 y 1,08 (3H, 2xd, J = 6,8 Hz)
314	δ (400 MHz, DMSO-d ₆) rotámeros presentes 12,27 (1H, s a); 8,79 y 8,72 (2H, 2xs); 7,85 y 7,75 (1H, 2xs); 5,17-5,11 (1H, m); 4,75 y 4,60 (2H, 2xs); 4,30-4,22 (1H, m); 4,11 y 3,86 (2H, 2xd, J = 6,7 Hz); 2,14-2,01 (2H, m); 1,88-1,74 (6H, m); 1,70 y 1,66 (3H, 2xs); 1,64 y 1,37 (3H, 2xs); 1,24 y 1,23 (3H, 2xs)
315	δ (400 MHz, CDCl ₃) rotámeros presentes 8,33-8,23 (2H, m); 7,68 y 7,53 (1H, 2xs); 4,80 y 4,47 (2H, 2xs); 4,24-4,19 (1H, m); 3,98 y 3,88 (3H, 2xs); 3,41-3,31 (2H, m); 2,27-2,16 (2H, m); 1,94-1,86 (6H, m); 1,41 y 1,40 (3H, 2xs); 1,01 y 0,85 (9H, 2xs)
316	δ (400 MHz, CDCl ₃) rotámeros presentes 8,58 y 8,51 (2H, 2xs); 7,54 y 7,48 (1H, 2xs); 4,94 y 4,58 (2H, 2xs); 3,55-3,30 (2H, m); 2,33-2,23 (6H, m); 2,09-2,05 (6H, m); 1,09 y 0,98 (3H, 2xs); 0,49-0,34 (4H, m)
317	δ (400 MHz, CDCl ₃) rotámeros presentes 7,68 y 7,51 (2H, 2xs); 7,37-7,25 (3H, m); 4,91 y 4,51 (2H, 2xs); 3,49-3,33 (2H, m); 2,32-2,22 (6H, m); 2,07-2,03 (6H, m); 1,01 y 0,84 (9H, 2xs)
318	δ (400 MHz, CDCl ₃) rotámeros presentes 7,71 y 7,60 (1H, 2xs); 7,37-7,27 (2H, m); 4,96 y 4,72 (2H, 2xs); 4,29-4,18 (1H, m); 3,77-3,40 (4H, m); 2,25-2,17 (2H, m); 1,93-1,87 (6H, m); 1,41 y 1,40 (3H, 2xs); 1,16 y 1,15 (9H, 2xs)
319	δ (400 MHz, CDCl ₃) rotámeros presentes 8,58 y 8,50 (2H, 2xs); 7,71 y 7,52 (1H, 2xs); 5,19-5,15 y 4,53-4,15 (3H, m); 2,28-2,14 (2H, m); 1,95-1,55 (8H, m); 1,42-0,55 (14H, m)
320	δ (400 MHz, CDCl3) rotámeros presentes 7,62 y 7,48 (1H, 2xs); 7,36-7,26 (3H, m); 5,10-5,00 y 4,31-4,22 (1H, 2xm); 4,60 y 4,38 (2H, 2xs); 2,34-2,21 (6H, m); 2,09-1,88 (8H, m); 1,43-1,23 (2H, m); 1,08-0,95 (8H, m)
321	δ (400 MHz, CDCl ₃) rotámeros presentes 7,62 y 7,47 (1H, 2xs); 7,16 y 7,08 (2H, 2xs); 5,11-5,01 y 4,30-4,21 (1H, 2xm); 4,57 y 4,35 (2H, 2xs); 2,35-2,21 (9H, m); 2,09-2,02 (7H, m); 1,93-1,85 (1H, m); 1,40-1,23 (2H, m); 1,10-0,95 (8H, m)
322	δ (400 MHz, CDCl ₃) rotámeros presentes 8,58 y 8,51 (2H, 2xs); 7,55 y 7,48 (1H, 2xs); 4,74 y 4,45 (2H, 2xs); 3,68 (1H, s a); 3,32 (1H, d, J = 5,9 Hz); 2,31-2,23 (6H, m); 2,08-2,05 (6H, m); 1,09 (3H, s);

ejemplo	
, I	1,05 (3H, s); 1,03 (3H, s); 0,80 (3H, s); 0,55-0,51 y 0,31-0,28 (1H, m)
325	δ (400 MHz, CDCl ₃) rotámeros presentes 8,58 y 8,51 (2H, 2xs); 7,64 y 7,55 (1H, 2xs); 4,76 y 4,48 (2H, 2xs); 4,29-4,18 (1H, m); 3,68 y 3,37 (2H, 2xd, J = 6,5 Hz); 2,31-2,16 (2H, m); 1,95-1,86 (6H, m); 1,42 y 1,41 (3H, 2xs); 1,09 (3H, s); 1,06 (3H, s); 1,04 (3H, s); 0,80 (3H, s); 0,53 y 0,31 (1H, 2xt, J = 6,5 Hz)
326	δ (400 MHz, CDCl3) rotámeros presentes 8,57 y 8,50 (2H, 2xs); 7,67 y 7,57 (1H, 2xs); 5,00 y 4,68 (2H, 2xs); 4,26-4,20 (1H, m); 3,83-3,58 (2H, m); 2,26-2,16 (2H, m); 1,95-1,86 (6H, m); 1,46-1,23 (9H, m)
327	δ (400 MHz, CDCl ₃) rotámeros presentes 8,57 y 8,50 (2H, 2xs); 7,59 y 7,50 (1H, 2xs); 4,99 y 4,66 (2H, 2xs); 3,80-3,54 (2H, m); 2,32-2,23 (6H, m); 2,08-2,04 (6H, m); 1,46-1,26 (6H, m)
329	δ (400 MHz, CDCl ₃) rotámeros presentes 8,59 y 8,52 (2H, 2xs); 7,56 y 7,46 (1H, 2xs); 4,94 y 4,55 (2H, 2xs); 3,84 y 3,70 (2H, 2xs); 2,33-2,22 (6H, m); 2,08-2,04 (6H, m); 1,10-1,06 (4H, m)
331	δ (400 MHz, CDCl3) rotámeros presentes 8,57 y 8,50 (2H, 2xs); 7,75 y 7,55 (1H, 2xs); 4,78 y 4,45 (2H, 2xs); 4,29-4,24 (1H, m); 2,83-2,79 (1H, m); 2,28-2,20 (2H, m); 1,95-1,90 (6H, m); 1,42 (3H, s); 1,04-0,99 (1H, m); 0,95 y 0,70 (9H, 2xs); 0,64-0,55 (2H, m)
332	δ (400 MHz, DMSO-d ₆) rotámeros presentes 12,27 (1H, s a); 8,80 y 8,73 (2H, 2xs); 7,81 y 7,66 (1H, 2xs); 4,89-4,57 (2.5H, m); 4,30-4,21 (1H, m); 3,87-3,82 (0.5H, m); 3,50-3,18 (2H, m); 2,13-2,04 (2H, m); 1,88-1,75 (6H, m); 1,24-1,07 (15H, m)
333	δ (400 MHz, CDCl ₃) rotámeros presentes 8,54-8,44 (2H, m); 7,64 y 7,49 (1H, 2xs); 5,26-5,20 y 4,34-4,17 (2H, 2xm); 4,52 y 4,36 (2H, 2xs); 2,31-1,88 (10H, m); 1,42 y 1,40 (3H, 2xs); 1,27-1,12 (2H, m); 1,04-0,97 (8H, m)
337	δ (400 MHz, CDCl ₃) rotámeros presentes 8,54-8,44 (2H, m); 7,62 y 7,50 (1H, 2xs); 4,71 y 4,53 (2H, 2xs); 4,26-4,19 (1H, m); 3,41 y 3,34 (2H, 2xs); 2,26-2,16 (2H, m); 1,94-1,86 (6H, m); 1,40-1,14 (5H, m); 0,95-0,68 (9H, m)
338	δ (400 MHz, DMSO-d ₆) rotámeros presentes 12,11 (2H, s a); 7,89 y 7,80 (1H, 2xs); 4,29-4,23 (1H, m); 4,17-4,09 (1H, m); 3,26-3,16 (1H, m); 3,04-3,00 (1H, m); 2,57-2,53 (1H, m); 2,36-2,32 (1H, m); 2,15 (3H, s); 2,13-2,05 (2H, m); 1,88-1,64 (11H, m); 1,58-1,55 (1H, m); 1,48-1,30 (4H, m); 1,24 (3H, s); 1,00-0,82 (7H, m)
339	δ (400 MHz, CD ₃ OD) rotámeros presentes 7,79 y 7,64 (1H, 2xs); 7,40 y 7,34 (2H, 2xd, J = 8,5 Hz); 5,15-5,00 (1H, m); 4,77 y 4,64 (2H, 2xs); 4,44-4,36 y 3,55-3,47 (1H, 2xm); 2,99-2,87 (2H, m); 2,73-2,58 (2H, m); 1,83-1,70 (2H, m); 1,63-1,37 (8H, m); 1,15-1,08 (1H, m); 0,94-0,86 (6H, m)
340	δ (400 MHz, DMSO-d ₆) rotámeros presentes 12,27 (1H, s a); 8,81 y 8,73 (2H, 2xs); 7,95 y 7,73 (1H, 2xs); 4,88-4,56 (2H, m); 4,31-4,20 (1H, m); 2,71-2,60 (1H, m); 2,15-2,05 (2H, m); 1,90-1,75 (6H, m); 1,24 y 1,22 (3H, 2xs); 1,08-1,07 (1H, m); 0,92-0,76 (2H, m); 0,67-0,59 (6H, m); 0,52-0,48 (1H, m)
341	δ (400 MHz, DMSO-d ₆) rotámeros presentes 12,24 (1H, s a); 7,69 y 7,52 (1H, 2xs); 7,26-6,90 (3H, m); 5,47-4,96 (2H, m); 4,34-3,96 (2H, m); 3,79-3,50 (4H, m); 2,09-0,88 (23H, m)
342	δ (400 MHz, DMSO-d ₆) rotámeros presentes 12,24 (1H, s a); 7,69 y 7,52 (1H, 2xs); 7,26-6,90 (3H, m); 5,47-4,96 (2H, m); 4,34-3,96 (2H, m); 3,79-3,50 (4H, m); 2,09-0,88 (23H, m)
345	δ (400 MHz, DMSO-d ₆) rotámeros presentes 12,25 (1H, s a); 7,77 y 7,65 (3H, m); 4,70 (2H, s); 4,39-4,24 y 3,70-3,62 (2H, 2xm); 2,03-1,64 (10H, m); 1,51-1,09 (10H, m); 0,91-0,85 (6H, m)
346	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
348	δ (400 MHz, DMSO-d ₆) rotámeros presentes 12,29 (1H, s a); 7,96 y 7,73 (1H, 2xs); 7,73 y 7,68 (2H, 2xd, \textit{J} = 8,6 Hz); 4,86 y 4,74 (2H, 2xs); 4,32-4,21 (1H, m); 3,57-3,53 y 3,39-3,35 (2H, 2xm); 2,76-2,72 y 2,63-2,59 (2H, 2xm); 2,13-1,99 (2H, m); 1,88-1,72 (6H, m); 1,30 y 1,09 (9H, 2xs); 1,23 y 1,22 (3H, 2xs)
350	δ (400 MHz, DMSO-d ₆) rotámeros presentes 12,28 (1H, s a); 8,02 y 7,73 (1H, 2xs); 7,74 y 7,68 (2H, 2xd, J = 8,8 Hz); 4,93 y 4,79 (2H, 2xs); 4,32-4,22 (1H, m); 3,89-3,85 y 3,70-3,66 (2H, 2xm); 3,42-3,38 y 3,35-3,31 (2H, 2xm); 2,11-2,00 (2H, m); 1,88-1,73 (6H, m); 1,33-1,22 (12H, m)
351	δ (400 MHz, DMSO-d ₆) rotámeros presentes 12,28 (1H, s a); 7,95 y 7,74 (1H, 2xs); 7,73 y 7,67 (2H, 2xd, J = 8,6 Hz); 4,91-4,70 (2H, m); 4,31-4,21 (1H, m); 3,91-3,64 (2H, m); 2,98-2,64 (2H, m); 2,11-1,99 (2H, m); 1,87-1,72 (6H, m); 1,23 y 1,22 (3H, 2xs); 1,17 y 1,10 (9H, 2xs)
352	δ (400 MHz, DMSO-d ₆) rotámeros presentes 12,28-12,23 (1H, m); 8,56 y 8,23 (1H, 2xd, J = 2,0 Hz); 7,85 y 7,50 (1H, 2xs); 7,46-7,40 y 7,26-7,13 (3H, 2xm); 4,83 y 4,65 (2H, 2xs); 4,27-4,07 (1H, m); 3,41-3,28 (2H, m); 2,11-1,63 (8H, m); 1,23 y 1,13 (3H, 2xs); 0,96 y 0,77 (9H, 2xs)
358	δ (300 MHz, DMSO-d ₆) rotámeros presentes 12,24 (1H, s a); 7,80 y 7,73 (1H, 2xs); 7,58-7,51 (3H, m); 4,84 y 4,72 (2H, 2xs); 4,34-4,27 (1H, m); 1,98-1,72 (8H, m); 1,21 (3H, s); 0,95 y 0,74 (9H, 2xs)

\$ (200 MUL DMCO d) retéreures presentes 42.20 (411 e.e.); 7.70 ; 7.70 (411 9:e.); 7.42 ; 7.20 (911
δ (300 MHz, DMSO-d $_6$) rotámeros presentes 12,30 (1H, s a); 7,79 y 7,72 (1H, 2xs); 7,43 y 7,38 (2H, 2xs); 4,82 y 4,68 (2H, 2xs); 4,36-4,27 (1H, m); 2,31 (3H, s); 2,02-1,72 (8H, m); 1,21 (3H, s); 0,95 y 0,74 (9H, 2xs)
δ (400 MHz, DMSO-d ₆) rotámeros presentes 12,42 (1H, s a); 11,20 y 11,13 (1H, 2xs); 7,77 y 7,63 (1H, 2xs); 7,24-7,17 (1H, m); 6,96-6,85 (2H, m); 4,25-4,20 (1H, m); 3,64-3,42 (4H, m); 3,11-3,07 y 2,91-2,87 (2H, 2xm); 2,10-1,99 (5H, m); 1,87-1,75 (6H, m); 1,24 (3H, s); 0,95 y 0,74 (9H, 2xs)
δ (400 MHz, DMSO-d ₆) rotámeros presentes 12,23 (1H, s a); 7,83-7,29 (4H, m); 4,90-4,34 (4H, m); 1,93-1,76 (10H, m); 1,45-1,41 (2H, m); 1,22 (3H, s); 1,05-0,95 (8H, m)
δ (400 MHz, DMSO-d ₆) rotámeros presentes 12,20 (1H, s a); 7,55-7,28 (4H, m); 4,62-4,55 (3H, m); 4,25-4,15 (1H, m); 2,33-2,30 (3H, m); 2,09-1,81 (6H, m); 1,73-1,71 (4H, m); 1,32-1,27 (2H, m); 1,22 (3H, s); 1,05-0,90 (8H, m)
δ (300 MHz, DMSO-d ₆) rotámeros presentes 12,19 (1H, s a); 7,51-7,33 (3H, m); 4,64-4,57 (3H, m); 4,16-4,05 (1H, m); 2,35-2,26 (5H, m); 2,02-1,81 (6H, m); 1,74-1,71 (4H, m); 1,38-1,31 (2H, m); 1,22 (3H, s); 1,04-0,90 (8H, m)
δ (300 MHz, DMSO-d ₆) rotámeros presentes 12,23 (1H, s a); 7,80-7,41 (3H, m); 4,59-4,34 (4H, m); 2,33 (3H, s); 2,07-1,76 (10H, m); 1,31-1,21 (5H, m); 1,05-0,94 (8H, m)
δ (400 MHz, DMSO-d ₆) rotámeros presentes 12,23 (1H, s a); 8,77 y 8,61 (2H, 2xs); 7,83 y 7,68 (1H, 2xs); 4,65-4,36 (4H, m); 1,97-1,78 (10H, m); 1,30-1,21 (5H, m); 1,05-0,95 (8H, m)
δ (400 MHz, CDCl3) rotámeros presentes 8,57 y 8,51 (2H, 2xs); 7,69 y 7,62 (1H, 2xs); 4,96 y 4,72 (2H, 2xs); 4,35-4,27 (1H, m); 3,57 y 3,48 (2H, 2xs); 2,18-2,12 (2H, m); 1,95-1,84 (6H, m); 1,40 (3H, s); 1,13 y 0,96 (3H, 2xs); 0,49-0,39 (4H, m)
δ (400 MHz, CDCl ₃) rotámeros presentes 8,48-8,35 (2H, m); 7,70 y 7,58 (1H, 2xs); 4,76 y 4,51 (2H, 2xs); 4,28-4,19 (1H, m); 3,43-3,35 (2H, m); 2,40 y 1,90 (3H, 2xs); 2,28-2,16 (2H, m); 1,95-1,85 (6H, m); 1,41 y 1,40 (3H, 2xs); 1,01 y 0,86 (9H, 2xs)
δ (400 MHz, CDCl ₃) rotámeros presentes 8,56 y 8,53 (2H, 2xs); 7,68 y 7,59 (1H, 2xs); 4,70 y 4,54 (2H, 2xs); 4,32-4,27 (1H, m); 3,63-3,56 (2H, m); 2,59-2,45 (1H, m); 2,17-2,11 (2H, m); 1,94-1,88 (8H, m); 1,39-0,96 (11H, m)
δ (400 MHz, CDCl ₃) 8,55 (2H, s); 7,56 (1H, s); 4,68 (2H, s); 4,06-3,99 (1H, m); 3,61 (2H, d, J = 6,8 Hz); 2,57-2,40 (4H, m); 2,22-2,16 (2H, m); 1,94-1,82 (8H, m); 1,40-1,00 (11H, m)
δ (300 MHz, CD3OD) rotámeros presentes 8,43-8,33 (2H, m); 7,65 y 7,52 (2H, 2xs); 5,63-5,59 y 5,23-5,21 (1H, 2xm); 4,54-4,12 (2H, m); 3,90-3,73 y 3,48-3,44 (2H, 2xm); 2,29-1,56 (12H, m); 1,35 (3H, s); 1,26-0,93 (8H, m)
δ (400 MHz, CDCl ₃) 8,53 (1H, s); 8,46 (1H, s); 7,67 (1H, s); 4,51 (2H, s); 4,38-4,26 (2H, m); 2,49 (3H, s); 2,32-2,21 (2H, m); 2,01-1,94 (8H, m); 1,42 (3H, s); 1,30-1,24 (2H, m); 1,06-0,97 (8H, m)
δ (400 MHz, CDCl ₃) rotámeros presentes 8,58 y 8,52 (2H, 2xs); 7,70 y 7,60 (1H, 2xs); 4,93 y 4,70 (2H, 2xs); 4,33-4,25 (1H, m); 3,86 (2H, s); 2,18-2,08 (2H, m); 1,94-1,82 (6H, m); 1,39 (3H, s); 1,09-1,05 (4H, m)
δ (400 MHz, CDCl ₃) rotámeros presentes 7,71 y 7,61 (1H, 2xs); 7,37-7,27 (3H, m); 4,72 y 4,57 (2H, 2xs); 4,57-4,49 y 3,87-3,81 (1H, 2xm); 4,38-4,21 (1H, m); 2,20-2,11 (2H, m); 1,94-1,83 (6H, m); 1,70-1,40 (10H, m); 1,27-1,23 (1H, m); 0,94-0,90 (6H, m)
\bar{o} (300 MHz, DMSO-d ₆) rotámeros presentes 12,19 (1H, s a); 8,56-8,46 (1H, m); 7,91-7,85 (1H, m); 7,74 y 7,63 (1H, 2xs); 7,40-7,35 (1H, m); 5,53-5,44 y 4,98-4,93 (2H, 2xm); 4,29-3,98 (2H, m); 3,61-3,49 (1H, m); 2,13-1,73 (10H, m); 1,56-1,37 (1H, m); 1,23-0,82 (12H, m)
\bar{o} (300 MHz, DMSO-d ₆) rotámeros presentes 12,24 (1H, s a); 11,19 y 11,14 (1H, 2xs); 7,83 y 7,66 (1H, 2xs); 7,24-7,16 (1H, m); 6,95-6,83 (2H, m); 4,47-4,00 (2H, m); 3,41-2,85 (4H, m); 2,50 y 2,41 (3H, 2xs); 2,12-1,66 (11H, m); 1,31-1,10 (6H, m); 0,99-0,88 (6H, m)
δ (400 MHz, CDCl ₃) 8,06 (1H, d, J = 7,3 Hz); 7,52 (1H, s); 7,35-7,20 (3H, m); 5,91 (1H, s); 4,30-4,23 (1H, m); 4,16-4,06 (1H, m); 3,99 (1H, d, J = 14,4 Hz); 3,89 (1H, d, J = 14,4Hz); 2,28-2,17 (2H, m); 1,96-1,22 (14H, m); 1,10-0,83 (10H, m)
δ (400 MHz, CDCl ₃) rotámeros presentes 8,57 y 8,49 (2H, 2xs); 7,69 y 7,57 (1H, 2xs); 5,00 y 4,69 (2H, 2xs); 4,25-4,20 (1H, m); 3,85-3,61 (2H, m); 2,26-2,16 (2H, m); 1,95-1,86 (6H, m); 1,76-1,41 (7H, m); 0,96 y 0,74 (6H, 2xt, J = 7,6 Hz)
δ (400 MHz, CDCl ₃) rotámeros presentes 8,56 y 8,50 (2H, 2xs); 7,71 y 7,64 (1H, 2xs); 5,01 y 4,79 (2H, 2xs); 4,30-4,25 (1H, m); 3,86-3,72 (2H, m); 2,18-2,08 (2H, m); 1,95-1,83 (6H, m); 1,78-1,39 (7H, m); 0,96 y 0,74 (6H, 2xt, J = 7,3 Hz)
δ (400 MHz, DMSO-d ₆) rotámeros presentes 12,26 (1H, s a); 7,75 y 7,60 (1H, 2xs); 7,60 y 7,54 (1H, 2xd, J = 5,1 Hz); 6,99 y 6,93 (1H, 2xd, J = 5,1 Hz); 6,31 y 6,08 (1H, 2xs); 5,40-5,36 y 4,82-4,80 (1H, 2xm); 4,30-4,01 (2H, m); 3,39-3,18 (2H, m); 2,07-1,70 (10H, m); 1,53-1,44 (1H, m); 1,28-0,84 (12H,

ejemplo	
	m)
398	δ (400 MHz, CDCl ₃) rotámeros presentes 8,55 y 8,46 (1H, 2xd, J = 3,2 Hz); 7,84-7,79 (1H, m); 7,66 y 7,50 (1H, 2xs); 7,43-7,40 (1H, m); 4,92 y 4,71 (2H, 2xs); 4,32-4,18 (2H, m); 2,28-1,87 (9H, m); 1,46-1,16 (6H, m); 1,06-0,94 (8H, m)
401	δ (300 MHz, DMSO-d $_6$) rotámeros presentes 12,27 (1H, s a); 8,54-8,52 y 8,41-8,39 (1H, 2xm); 7,83-7,23 (4H, m); 5,75-5,60 (1H, m); 5,00-4,96 y 4,64-4,59 (1H, 2xm); 4,30-3,99 (2H, m); 3,64-3,31 (2H, m); 2,11-2,02 (2H, m); 1,88-1,74 (8H, m); 1,53-1,37 (1H, m); 1,23-0,82 (12H, m)
402	δ (400 MHz, CD ₃ OD) rotámeros presentes 8,55 y 8,48 (1H, 2xdd, J = 4,6, 1,5 Hz); 7,87 y 7,79 (1H, 2xdd, J = 8,1, 1,5 Hz); 7,68 y 7,65 (1H, 2xs); 7,36 y 7,33 (1H, 2xdd, J = 8,1, 4,6 Hz); 5,64-5,61 y 5,17-5,14 (1H, 2xm), 4,32-4,27 (1H, m); 4,07-3,33 (4H, m); 2,30-2,17 (2H, m); 1,91-1,89 (6H, m); 1,35 y 1,34 (3H, 2xs); 1,01 y 0,81 (9H, 2xs)
404	δ (400 MHz, DMSO-d ₆) 12,27 (1H, s a); 7,66-7,37 (4H, m); 4,76-4,37 (4H, m); 2,10-1,74 (10H, m); 1,51-1,45 (3H, m); 1,34-0,91 (14H, m)
406	δ (400 MHz, CD ₃ OD) rotámeros presentes 7,77 y 7,60 (1H, 2xs); 7,53-7,21 (3H, m); 7,15-6,75 (1H, m); 4,83 y 4,63 (2H, 2xs); 4,31-4,26 (1H, m); 3,41-3,36 (2H, m); 2,26-2,14 (2H, m); 1,95-1,84 (6H, m); 1,35 y 1,34 (3H, 2xs); 1,01 y 0,85 (9H, 2xs)
500	$\begin{array}{l} \delta \ (500 \ MHz, \ DMSO\text{-}d_6) \ 12,19 \ (1H, \ s. \ a.), \ 7,75 \ (0.3H, \ s), \ 7,58 \ (0.7H, \ s), \ 7,34\text{-}7,48 \ (4H, \ m), \ 7,13\text{-}7,33 \\ (4H, \ m), \ 4,78 \ (1.4H, \ s), \ 4,42 \ (0,6H, \ s), \ 4,15\text{-}4,28 \ (1H, \ m), \ 3,29\text{-}3,60 \ (2H, \ m), \ 2,94\text{-}3,00 \ (0,6H, \ m), \ 2,78\text{-}2,83 \ (1.4H, \ m), \ 2,25\text{-}2,39 \ (1H, \ m), \ 1,89\text{-}2,10 \ (6H, \ m), \ 1,46\text{-}1,60 \ (2H, \ m) \end{array}$
501	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
502	δ (500 MHz, DMSO-d ₆) 12,17 (1H, s. a.), 7,68 (0.3H, s), 7,53 (0.7H, s), 7,42-7,45 (1H, m), 7,36-7,40 (2H, m), 7,28-7,32 (1H, m), 7,17-7,26 (3H, m), 7,14 (0.7H, d, J = 8,3Hz), 6,93 (1.3H, d, J = 7,1Hz), 4,72 (1.3H, s), 4,38 (0.7H, s), 4,13-4,26 (1H, m), 3,55 (0.7H, dd, J = 8,6, 6,8), 3,27 (1.3H, t, J = 7,6Hz), 2,81-2,86 (0.7H, m), 2,72 (1.3H, t, J = 7,7Hz), 2,24-2,37 (1H, m), 1,86-2,09 (6H, m), 1,46-1,591 (2H, m)
503	$\begin{array}{c} \delta \ (400 \ \text{MHz}, \ DMSO\text{-}d_6) \ 12,18 \ (1\text{H}, \ \text{s. a.}), \ 10,97 \ (1\text{H}, \ \text{s. a.}), \ 7,68 \ (0.4\text{H}, \ \text{s}), \ 7,57 \ (0,6\text{H}, \ \text{s}), \ 7,36\text{-}7,47 \\ (4.4\text{H}, \ \text{m}), \ 7,25\text{-}7,28 \ (1\text{H}, \ \text{m}), \ 7,21 \ (0,4\text{H}, \ \text{s. a.}), \ 7,11\text{-}7,15 \ (0,6\text{H}, \ \text{m}), \ 6,98 \ (0,6\text{H}, \ \text{s}), \ 6,85 \ (0.4\text{H}, \ \text{dd}, \ J = 8,0, \ 1,4\text{Hz}), \ 6,32\text{-}6,38 \ (1\text{H}, \ \text{m}), \ 4,74 \ (1.2\text{H}, \ \text{s}), \ 4,36 \ (0.8\text{H}, \ \text{s}), \ 4,13\text{-}4,29 \ (1\text{H}, \ \text{m}), \ 3,53\text{-}3,60 \ (0.8\text{H}, \ \text{m}), \ 3,23\text{-}3,37 \ (1.2\text{H}, \ \text{m}), \ 2,74\text{-}2,93 \ (2\text{H}, \ \text{m}), \ 2,25\text{-}2,38 \ (1\text{H}, \ \text{m}), \ 1,38\text{-}2,10 \ (6\text{H}, \ \text{m}), \ 1,45\text{-}1,61 \ (2\text{H}, \ \text{m}) \end{array}$
504	$\begin{array}{l} \delta \ (500 \ \text{MHz}, \ \text{DMSO-d}_6) \ 12,18 \ (1\text{H}, \ \text{s. a.}), \ 7,74 \ (0.3\text{H}, \ \text{s}), \ 7,66 \ (0.7\text{H}, \ \text{s}), \ 7,56 \ (0.3\text{H}, \ \text{d}, \ \textit{J} = 1,2\text{Hz}), \ 7,47 \ (0.7\text{H}, \ \text{d}, \ \textit{J} = 2,2\text{Hz}), \ 7,44 \ (1.4\text{H}, \ \text{dt}, \ \textit{J} = 2,4, \ 8,6\text{Hz}), \ 7,33\text{-}7,42 \ (3.6\text{H}, \ \text{m}), \ 7,25 \ (0.7\text{H}, \ \text{d}, \ \textit{J} = 8,3\text{Hz}), \ 7,14 \ (0.3\text{H}, \ \text{d}, \ \textit{J} = 8,3\text{Hz}), \ 4,77 \ (1.3\text{H}, \ \text{s}), \ 4,43 \ (0.7\text{H}, \ \text{s}), \ 4,13\text{-}4,26 \ (1\text{H}, \ \text{m}), \ 3,57 \ (0.7\text{H}, \ \text{t}, \ \textit{J} = 7,5\text{Hz}), \ 3,27\text{-}3,35 \ (1,3\text{H}, \ \text{m}), \ 2,95 \ (0.7\text{H}, \ \text{t}, \ \textit{J} = 7,8\text{Hz}), \ 2,25\text{-}2,38 \ (1\text{H}, \ \text{m}), \ 1,87\text{-}2,09 \ (6\text{H}, \ \text{m}), \ 1,46\text{-}1,59 \ (2\text{H}, \ \text{m}) \end{array}$
505	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$
506	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$
507	$ \begin{array}{l} \delta \ (500 \ \text{MHz}, \ \text{DMSO-d}_6) \ 12,18 \ (1\text{H}, \text{s. a.}), \ 10,82 \ (1\text{H}, \text{s. a.}), \ 7,75 \ (0.7\text{H}, \text{s}), \ 7,70 \ (0.3\text{H}, \text{s}), \ 7,48 \ (0.3\text{H}, \text{d}), \ J = 7,8\text{Hz}), \ 7,36-7,40 \ (3.3\text{H}, \text{m}), \ 7,33 \ (0.3\text{H}, \text{d}, J = 8,1\text{Hz}), \ 7,29 \ (0,7\text{H}, \text{d}, J = 8,1\text{Hz}), \ 7,13-7,17 \ (1\text{H}, \text{m}), \ 6,94-7,08 \ (2\text{H}, \text{m}), \ 6,89 \ (0.7\text{H}, \text{d}, J = 8,3\text{Hz}), \ 6,84 \ (0.7\text{H}, \text{t}, J = 7,6), \ 4,77 \ (1.4\text{H}, \text{s}), \ 4,42 \ (0,6\text{H}, \text{s}), \ 4,16-4,28 \ (1\text{H}, \text{m}), \ 3,59 \ (0,6\text{H}, \text{t}, J = 8,1\text{Hz}), \ 3,28-3,34 \ (1.4\text{H}, \text{m}), \ 2,95 \ (0,6\text{H}, \text{t}, J = 7,8\text{Hz}), \ 2,82 \ (1.4\text{H}, \text{t}, J = 8,1\text{Hz}), \ 2,25-2,37 \ (1\text{H}, \text{m}), \ 1,88-2,10 \ (6\text{H}, \text{m}), \ 1,47-1,59 \ (2\text{H}, \text{m}) \end{array}$
508	$\begin{array}{c} \delta \ (500 \ \text{MHz}, \ DMSO\text{-}d_6) \ 12,16 \ (1\text{H}, \ \text{s. a.}), \ 11,07 \ (0.4\text{H}, \ \text{s}), \ 10,96 \ (0,6\text{H}, \ \text{s}), \ 7,61 \ (0,4\text{H}, \ \text{s}), \ 7,28\text{-}7,44 \\ (5.4\text{H}, \ \text{m}), \ 7,09 \ (0,6\text{H}, \ \text{s}), \ 6,86\text{-}7,02 \ (2\text{H}, \ \text{m}), \ 6,59 \ (0,6\text{H}, \ \text{d}, \ \textit{J} = 7,1\text{Hz}), \ 6,45 \ (0.4\text{H}, \ \text{dd}, \ \textit{J} = 2,8, \ 1,8\text{Hz}), \\ 6,42 \ (0,6\text{H}, \ \text{dd}, \ \textit{J} = 2,8, \ 1,8\text{Hz}), \ 4,73 \ (1.2\text{H}, \ \text{s}), \ 4,32 \ (0.8\text{H}, \ \text{s}), \ 4,12\text{-}4,21 \ (1\text{H}, \ \text{m}), \ 3,65 \ (0.8\text{H}, \ \text{t}, \ \textit{J} = 7,3\text{Hz}), \ 3,30\text{-}3,40 \ (1.2\text{H}, \ \text{m}), \ 3,14 \ (0.8\text{H}, \ \text{t}, \ \textit{J} = 7,3\text{Hz}), \ 3,05 \ (1.2\text{H}, \ \text{t}, \ \textit{J} = 7,1\text{Hz}), \ 2,25\text{-}2,34 \ (1\text{H}, \ \text{m}), \\ 2,00\text{-}2,07 \ (2\text{H}, \ \text{m}), \ 1,85\text{-}1,97 \ (4\text{H}, \ \text{m}), \ 1,46\text{-}1,58 \ (2\text{H}, \ \text{m}) \end{array}$
509	$\begin{array}{c} \delta \ (500 \ MHz, \ DMSO-d_6) \ 12,17 \ (1H, \ s), \ 7,74 \ (0.3H, \ s), \ 7,64 \ (0.7H, \ s), \ 7,36-7,47 \ (3.3H, \ m), \ 7,15-7,19 \\ (0.7H, \ m), \ 7,03-7,15 \ (3.3H, \ m), \ 6,89-6,92 \ (0.7H, \ m), \ 4,78 \ (1.4H, \ s), \ 4,44 \ (0,6H, \ s), \ 4,15-4,28 \ (1H, \ m), \ 3,43-3,49 \ (0,6H, \ m), \ 3,17-3,23 \ (1.4H, \ m), \ 2,79-2,84 \ (0,6H, \ m), \ 2,62-2,69 \ (1.4H, \ m), \ 2,28-2,37 \ (1H, \ m), \ 2,28-2,37$

ejemplo	
	2,25 (1H, s), 1,89-2,092 (6H, m), 1,83 (2H, s), 1,48-1,60 (2H, m)
510	δ (500 MHz, DMSO-d ₆) 12,21 (1H, s. a.), 7,74 (0.2H, s), 7,70 (0.8H, s), 7,32 (0.4H, s), 7,24 (1.6H, s), 4,17-4,27 (1H, m), 3,52-3,57 (0.4H, m), 3,24-3,41 (3.2H, m), 3,12 (0.4H, d, J = 7,1Hz), 3,04 (0.4H, d, J = 6,8Hz), 2,91 (1.6H, t, J = 8,1Hz), 2,21-2,38 (4H, m), 1,90-2,10 (6H, m), 1,45-1,82 (8H, m), 0,90-1,25 (5H, m)
511	δ (500 MHz, DMSO-d ₆) 12,20 (1H, s. a.), 7,79-7,83 (1H, m), 7,24 (2H, s), 4,20-4,28 (1H, m), 3,36-3,47 (2H, m), 2,89 (2H, t, J = 7,8Hz), 2,27-2,37 (1H, m), 2,23 (3H, s), 1,89-2,10 (7H, m), 1,21-1,61 (13H, m), 0,93 (3H, s)
512	δ (500 MHz, DMSO-d ₆) 12,17 (1H, s. a.), 7,78 (1H, s), 7,24 (2H, s), 4,20-4,28 (1H, m), 3,29-3,42 (4H, m), 2,88 (2H, t, J = 8,1Hz), 2,29-2,32 (1H, m), 2,23 (3H, s), 1,90-2,10 (6H, m), 1,55 (2H, cd, J = 12,6, 4,2Hz), 0,95 (9H, s)
513	$\begin{array}{l} \delta\ (500\ \text{MHz},\ \text{DMSO-d}_6)\ 12,18\ (1\text{H},\ \text{s. a.}),\ 10,69\text{-}10,74\ (1\text{H},\ \text{m}),\ 7,79\ (0.75\text{H},\ \text{s}),\ 7,63\ (0.25\text{H},\ \text{s}),\ 7,36\text{-}\\ 7,47\ (4\text{H},\ \text{m}),\ 7,15\text{-}7,23\ (1.25\text{H},\ \text{m}),\ 6,88\text{-}6,99\ (1.25\text{H},\ \text{m}),\ 6,77\text{-}6,84\ (1.5\text{H},\ \text{m}),\ 4,82\ (1.5\text{H},\ \text{s}),\ 4,44\ (0.5\text{H},\ \text{s}),\ 4,15\text{-}4,28\ (1\text{H},\ \text{m}),\ 3,32\text{-}3,47\ (0.5\text{H},\ \text{m}),\ 3,13\text{-}3,19\ (1.5\text{H},\ \text{m}),\ 2,83\text{-}2,88\ (0.5\text{H},\ \text{m}),\ 2,66\text{-}2,71\ (1.5\text{H},\ \text{m}),\ 2,30\text{-}2,38\ (1\text{H},\ \text{m}),\ 2,28\ (0,75,\ \text{s}),\ 1,89\text{-}2,10\ (8.25\text{H},\ \text{m}),\ 1,48\text{-}1,61\ (2\text{H},\ \text{m}) \end{array}$
514	δ (500 MHz, DMSO-d ₆) 12,26 (1H, s. a.), 7,75 (0.2H, s), 7,73 (0.8H, s), 7,32 (0.4H, s), 7,24 (1.6H, s), 4,21-4,28 (1H, m), 3,52-3,57 (0.4H, m), 3,37 (1.6H, d, J = 7,3Hz), 3,25-3,33 (1.6H, m), 3,10-3,15 (0.4H, m), 3,04 (0.4H, d, J = 6,8Hz), 2,87-2,94 (1.6H, m), 2,28 (0,6H, s), 2,23 (2.4H, s), 2,03-2,13 (2H, m), 1,46-1,90 (12H, m), 0,91-1,27 (8H, m)
515	δ (500 MHz, DMSO-d ₆) 12,26 (1H, s. a.), 7,81 (1H, s), 7,24 (2H, s), 4,23-4,30 (1H, m), 3,29-3,40 (2H, m), 2,89 (2H, t, J = 8,1Hz), 2,23 (3H, s), 2,04-2,15 (3H, m), 1,74-1,90 (7H, m), 1,25 (3H, s), 0,95 (9H, s)
516	δ (400 MHz, CDCl ₃) 7,68 (0,4H, s), 7,55 (0,6H, s), 7,18 (0.8H, s), 7,09 (1.2H, s), 4,70 (1H, s. a.), 4,49-4,64 (1H, m), 4,35-4,49 (1H, m), 4,07-4,35 (1H, m), 3,36-3,58 (1H, m), 2,39-2,53 (1H, m), 2,18-2,39 (4H, m), 1,98-2,18 (4H, m), 1,53-1,75 (6H, m), 1,37-1,53 (3H, m), 1,01-1,15 (1H, m), 0,83-0,97 (6H, m)
517	δ (400 MHz, CDCl ₃) 7,57-7,62 (1H, m), 7,09-7,16 (2H, m), 5,48 (0,6H, s), 4,51 (1,4H, s), 4,18-4,24 (1H, m), 4,44-4,58 (1H, m), 2,39-2,54 (1H, m), 2,33 (6H, s), 1,98-2,17 (4H, m), 1,50-1,81 (2H, m), 0,90-1,09 (9H, m)
518	δ (400 MHz, CDCl ₃) 7,66 (0,3H, s), 7,57 (0.7H, s), 7,17 (0.7H, s), 7,08 (1.4H, s), 4,81 (0.7H, s), 4,43 (1.4H, s), 4,12-4,33 (1H, m), 3,50-3,53 (1.3H, m), 3,19-3,34 (0.7H, m), 2,42-2,49 (1H, m), 2,31-2,39 (3H, m), 2,19-2,29 (2H, m), 2,04-2,14 (4H, m), 1,53-1,81 (7H, m), 1,18-1,35 (2H, m), 0,70-1,04 (2H, m), 0,08-0,35 (4H, m)
519	δ (400 MHz, CDCl ₃) 7,54-7,64 (1H, m), 7,19-7,08 (2H, m), 4,52 (2H, s), 4,12-4,30 (1H, m), 3,50 (2H, s), 2,46-2,50 (1H, m), 2,20-2,37 (5H, m), 1,97-2,14 (4H, m), 1,12-1,75 (12H, m), 0,85-1,07 (3H, m)
520	δ (400 MHz, CDCl ₃) 7,64-7,67 (0.3H, m), 7,55 (0.7H, s), 7,15-7,19 (0.7H, m), 7,10 (1.3H, s), 4,70-4,79 (0.8H, m), 4,39 (1.2H, s), 4,12-4,32 (1H, m), 3,60-3,70 (1.3H, m), 3,37-3,44 (0.7H, m), 2,60 (0.3H, dt, J = 16,5, 8,4Hz), 2,40-2,51 (1.7H, m), 2,29-2,39 (3H, m), 2,19-2,29 (2H, m), 1,99-2,17 (4H, m), 1,77-1,93 (2H, m), 1,55-1,74 (4H, m), 1,14-1,11 (6H, m)
521	δ (400 MHz, CDCl3) 7,66 (0,3H, s), 7,55 (0.7H, s), 7,28-7,39 (3H, m), 4,72-4,82 (0.8H, m), 4,42 (1.2H, s), 4,15-4,32 (1H, m), 3,61-3,74 (1.2H, m), 3,33-3,43 (0.8H, m), 2,54-2,68 (0,6H, m), 2,33-2,54 (1.4H, m), 2,19-2,31 (2H, m), 1,98-2,19 (4H, m), 1,76-1,95 (2H, m), 1,54-1,71 (4H, m), 1,26-1,18 (6H, m)
522	δ (400 MHz, CDCl ₃) 7,67 -7,63 (1H, m), 7,16 -7,09 (2H, m), 7,02-6,86 (2H, m), 4,84 (2H, s), 4,35 (2H, s), 4,16-4,30 (1H, m), 2,40-2,52 (1H, m), 2,37-2,23 (5H, m), 2,11-2,05 (4H, m), 1,53-1,74 (2H, m)
523	$ \begin{array}{l} \delta \ (400 \ \text{MHz}, \ \text{DMSO-d}_6) \ 12,16 \ (\text{s a, 1H}), \ 7,75 \ (\text{s, 1H}), \ 7,35\text{-}7,44 \ (\text{m, 2H}), \ 7,21\text{-}7,30 \ (\text{m, 1H}), \ 4,25 \ (\text{d, } \textit{J} \\ = 6,06 \ \text{Hz}, \ 1\text{H}), \ 3,35\text{-}3,44 \ (\text{m, 4H}), \ 2,86\text{-}3,00 \ (\text{m, 2H}), \ 2,24\text{-}2,41 \ (\text{m, 1H}), \ 1,87\text{-}2,12 \ (\text{m,6H}), \ 1,44\text{-}1,65 \\ (\text{m,2H}) \ 0,95 \ (\text{s, 9H}) \end{array} $
524	δ (400 MHz, CDCl ₃) 7,72-7,77 (0.2H, m), 7,58 (0.8H, s), 7,22-7,38 (3H, m), 4,93 (0.4H, s. a.), 4,54 (1.6H, s), 4,25-4,17 (1H, m), 3,30-3,59 (1H, m), 2,37-2,56 (1H, m), 2,25 (2H, d, J = 13,5Hz), 1,94-2,16 (3H, m), 1,52-1,76 (4H, m), 1,02 (8H, s), 0,84 (1H, s)
525	δ (400 MHz, CDCl ₃) 7,68 (1H, s), 7,54-7,60 (1H, m), 7,28 (3H, s), 4,66-4,81 (1H, m), 4,51-4,64 (1H, m), 4,47 (1H, s), 4,17-4,34 (1H, m), 3,36-3,57 (1H, m), 2,36-2,58 (1H, m), 2,08-2,33 (4H, m), 1,53-1,80 (6H, m), 1,36-1,50 (3H, m), 1,03-1,17 (1H, m), 0,78-0,99 (6H, m)
526	$\begin{array}{c} \delta \ (400 \ MHz, \ DMSO\text{-}d_6) \ 12,18 \ (s \ a, \ 1H), \ 7,56\text{-}7,81 \ (m, \ 5H), \ 7,36 \ (s, \ 2H), \ 7,20\text{-}7,30 \ (m, \ 1H), \ 4,88 \ (s, \ 1,6H), \ 4,60 \ (s, \ 0,4H), \ 4,08\text{-}4,33 \ (m, \ 1H), \ 3,50\text{-}3,66 \ (m, \ 0,4H), \ 3,34\text{-}3,30 \ (m, \ 1,6H), \ 3,14\text{-}3,25 \ (m, \ 0,4H), \ 2,87\text{-}3,04 \ (m, \ 1,6H), \ 2,22\text{-}2,41 \ (m, \ 1H), \ 1,64,2,13 \ (m, \ 4H), \ 1,40\text{-}1,63 \ (m, \ 2H), \ 1,20\text{-}1,31 \ (m, \ 2H) \end{array}$
527	δ (400 MHz, CDCl ₃) 7,55-7,74 (m, 2H), 7,45 (d, J =8,22 Hz, 1H), 7,18-7,34 (m, 5H), 4,93 (s a, 1H),

ejemplo	
Сјетиріо	4,72 (d, <i>J</i> =2,74 Hz, 1H), 4,32-4,21 (m, 2H), 2,46 (t, <i>J</i> =12,13 Hz, 1H), 2,24 (d, <i>J</i> =13,11 Hz, 2H), 2,06-
528	2,13 (m, 5H), 1,53-1,78 (m, 2H) δ (400 MHz, CDCl ₃) 7,57-7,72 (3H, m), 7,48-7,55 (0.5H, m), 7,44 (0.9H, d, J = 8,1Hz), 7,27-7,32 (1H, m), 7,10-7,17 (0.7H, m), 7,06 (0.9H, s), 4,87-5,08 (1H, m), 4,71 (1H, s), 4,13-4,34 (2H, m), 2,19-2,54 (5H, m), 1,99-2,15 (4H, m), 1,53-1,73 (4H, m)
529	δ (400 MHz, CDCl ₃) 7,49 (0.2H, s), 7,44 (0.8H, s), 7,16 (0.4H, s), 7,00-7,11 (1.6H, m), 5,14-5,18 (0.2H, m), 5,04-5,07 (0.8H, m), 4,01-4,29 (1H, m), 3,71-3,76 (1H, m), 3,35-3,55 (1H, m), 3,14 (3H, s), 2,39-2,55 (1H, m), 2,20-2,34 (6H, m), 2,00-2,14 (4H, m), 1,57-1,75 (3H, m), 1,02 (8H, s), 0,81 (1H, s)
530	δ (400 MHz, CDCl ₃) 7,39-7,53 (1H, m), 6,97-7,19 (2H, m), 5,42-5,53 (1H, m), 4,94-5,11 (0.9H, m), 4,16-4,31 (1H, m), 4,03-4,15 (1H, m), 3,64-3,81 (1H, m), 3,18-3,54 (2H, m), 3,13 (3H, s), 2,37-2,52 (1H, m), 2,27 (5H, s), 2,00-2,13 (4H, m), 1,46-1,77 (2H, m), 1,01 (8H, s), 0,80 (1H, s)
531	δ (400 MHz, CDCl ₃) 7,48 (0.2H, s), 7,15 (0.8H, s), 7,04 (2H, s. a.), 5,45-5,52 (0.2H, m), 5,04 (0.8H, dd, J = 9,6, 4,1Hz), 4,15-4,29 (1H, m), 4,08 (1H, dd, J = 14,5, 9,4Hz), 3,74 (1H, d, J = 12,1Hz), 3,19-3,48 (2H, m), 3,12 (3H, s), 2,01-2,51 (10H, m), 1,54-1,73 (2H, m), 1,00 (8H, s), 0,79 (1H, s)
532	δ (400 MHz, CDCl ₃) 7,66 (s, 0,4H), 7,57 (s, 0,6H), 7,17 (s, 0.8H). 7,10 (s, 1.2H), 4,80 (s, 0.8H), 4,42 (s, 1.2H), 4,14-4,33 (m, 1H), 3,47-3,55 (m, 1.2H), 3,24-3,29 (m, 0.8H), 2,14-2,40 (m, 5H), 1,85-2,00 (m, 5H), 1,05-1,73 (m, 13H), 0,76-1,00 (m, 6H)
533	δ (400 MHz, DMSO-d ₆) 7,81 (0.3H, s), 7,70 (0.7H, s), 7,45 (0,6H, s), 7,38 (1.4H, s), 4,77 (0,6H, s), 4,37 (1.4H, s), 4,17-4,32 (1H, m), 2,36 (0.9H, s), 2,30 (2.1H, s), 1,98-2,17 (2H, m), 1,46-1,90 (12H, m)
534	δ (400 MHz, DMSO-d ₆) 0,81-1,01 (m, 7H), 1,28-1,42 (m, 2H), 1,43-1,63 (m, 4H), 1,69-1,64 (m, 1H), 1,88-2,11 (m, 6H), 2,27-2,38 (m, 1H), 2,50-2,57 (m, 1H), 2,90-2,98 (m, 1H), 3,18-3,15 (m, 3H), 3,44-3,51 (m, 1H), 4,15-4,29 (m, 2H), 7,24-7,83 (m, 1H), 7,41 (d, J = 7,8Hz, 1.3H), 7,49 (d, J = 7,8Hz, 0.7H), 7,79 (s, 0.3H), 7,86 (s, 0.7H), 12,19 (s a, 1H)
535	δ (400 MHz, DMSO-d ₆) 7,82 (s, 0,2H), 7,69 (s, 0.8H), 7,47 (s, 0.4H). 7,40 (s, 1.6H), 4,78 (s, 0.4H), 4,59 (s, 1.6H), 4,17-4,29 (m, 1H), 3,14-3,39 (m, 2H), 2,26-2,41 (m, 4H), 1,87-2,11 (m, 6H), 1,33-1,66 (m, 7H), 0,97-1,29 (m, 5H), 0,67-0,95 (m, 6H),
536	$\begin{array}{l} \delta \ (400 \ \text{MHz}, \ \text{DMSO-d}_6) \ 0.67\text{-}0.87 \ (\text{m}, \ 9\text{H}), \ 1.45\text{-}1.63 \ (\text{m}, \ 2\text{H}), \ 1.73\text{-}2.14 \ (\text{m}, \ 8\text{H}), \ 2.15\text{-}2.38 \ (\text{m}, \ 5\text{H}), \ 3.87\text{-}3.99 \ (\text{m}, \ 0.5\text{H}), \ 4.06\text{-}4.44 \ (\text{m}, \ 2.5\text{H}), \ 4.58\text{-}4.88 \ (\text{m}, \ 3\text{H}), \ 7.39 \ (\text{d}, \ \textit{\textit{\textit{\textit{J}}}} = 3.9\text{Hz}, \ 1\text{H}), \ 7.47 \ (\text{d}, \ \textit{\textit{\textit{\textit{\textit{J}}}}} = 3.9\text{Hz}, \ 1\text{H}), \ 7.70 \ (\text{s}, \ 0.5\text{H}), \ 7.78 \ (\text{s}, \ 0.25\text{H}), \ 7.80 \ (\text{s}, \ 0.25\text{H}), \ 12.24 \ (\text{s}. \ a., \ 1\text{H}) \end{array}$
537	$\begin{array}{l} \delta \ (400 \ MHz, \ DMSO-d_6) \ 12,17 \ (1H, \ s), \ 7,80 \ (0.3H, \ s), \ 7,68 \ (0.7H, \ s), \ 7,45 \ (0,6H, \ s), \ 7,38 \ (1.4H, \ s), \\ 4,77 \ (0,6H, \ s), \ 4,37 \ (1.4H, \ s), \ 4,16-4,32 \ (1H, \ m), \ 3,07-3,37 \ (1H, \ m), \ 2,43-2,69 \ (1H, \ m), \ 2,24-2,38 \ (4H, \ m), \ 1,85-2,11 \ (6H, \ m), \ 1,45-1,76 \ (7H, \ m), \ 0,85-1,27 \ (5H, \ m) \end{array}$
538	δ (400 MHz, DMSO-d ₆) 12,26 (1H, s), 8,88-9,04 (1H, m), 7,10-8,22 (5H, m), 4,81-4,92 (2H, m), 4,29 (1H, d, J = 3,5Hz), 3,36 (2H, s), 2,05-2,20 (2H, m), 1,70-1,93 (6H, m), 1,22-1,29 (3H, m), 0,78-1,03 (9H, m)
539	$ \begin{array}{l} \delta \ (400 \ \text{MHz}, \ \text{DMSO-d}_6) \ 12,19 \ (1\text{H}, \ \text{s. a.}), \ 8,81-9,01 \ (1\text{H}, \ \text{m}), \ 8,12 \ (1\text{H}, \ \text{dd}, \ \textit{\textit{J}} = 16,7, \ 8,3\text{Hz}), \ 6,78-8,02 \\ (8\text{H}, \ \text{m}), \ 4,56-4,87 \ (4\text{H}, \ \text{m}), \ 4,18-4,33 \ (1\text{H}, \ \text{m}), \ 2,25-2,41 \ (1\text{H}, \ \text{m}), \ 1,88-2,14 \ (6\text{H}, \ \text{m}), \ 1,45-1,66 \ (2\text{H}, \ \text{m}) \\ \text{m} \end{array} $
541	δ (400 MHz, CD ₃ OD) 1,62-1,70 (2H, m), 2,04-2,24 (6H, m), 2,39-2,47 (1H, m), 4,29-4,35 (1H, m), 4,57 (2H, s), 4,62-4,69 (2H, m), 7,24 (1H, d, <i>J</i> = 8,04Hz), 7,35-7,45 (5H, m), 7,71 (1H, s)
542	δ (400 MHz, CD ₃ OD) 1,02-1,08 (9H, m), 1,57-1,69 (2H, m), 2,01-2,23 (6H, m), 2,41 (1H, tt, <i>J</i> = 12,23, 3,52Hz), 2,50-2,56 (3H, m), 4,26-4,35 (1H, m), 4,72 (2H, s), 7,44 (1H, s), 7,61-7,64 (1H, m)
543	δ (500 MHz, CDCl3) 7,61 (s, 1H), 7,53 (s, 1), 7,24-7,27 (m, 2H), 7,17-7,20 (m, 2H), 7,11 (s, 1H), 7,01-7,05 (m, 2H), 4,75 (s. a., 2H), 4,60 (s, 1H), 4,54 (s, 1H), 4,12-4,25 (m, 4H), 2,17-2,47 (m, 5H), 1,63-2,02 (m, 3H), 1,56-1,58 (m, 2H)
544	δ (400 MHz, DMSO-d ₆) 1,89-2,06 (12H, m), 2,27-2,33 (1H, m), 2,27-2,32 (1H, m), 2,36 (1H, s), 3,29-3,34 (1H, m), 3,57 (1H, t, J = 7,04Hz), 3,91-3,95 (1H, m), 4,09-4,14 (1H, m), 4,46 (1H, s), 4,72 (1H, s), 5,89 (1H, s), 5,97 (1H, d, J = 5,67Hz), 6,06 (1H, s), 7,10 (1H, d, J = 7,49Hz), 7,34-7,44 (4H, m), 7,73 (1H, s)
739	δ (400 MHz, DMSO-d ₆) 12,06-12,33 (m, 1H), 8,72 (s, 2H), 7,75 (s, 1H), 4,71 (s, 2H), 4,40 (s a, 1H), 3,28 (s, 2H), 2,13 (d, J = 4,11Hz, 1H), 1,97 (s a, 1H), 1,91 (s a, 1H), 1,69-1,86 (m, 3H), 0,88-1,01 (m, 13H), 0,77 (s, 1H)

[Ejemplo 900]

Ensayo de gen indiciador de ROR gamma

Se usó un ensayo de gen indiciador de luciferasa para evaluar la inhibición de la actividad transcripcional de RORy.

Se preparó el vector de expresión de ROR gamma insertando el dominio de unión a ligando de ROR gamma humano (aminoácidos 247-497 del n.º de acceso a Genbank

NM 001001523) adyacente al dominio de unión a ADN del factor de transcripción de GAL4 de levadura en el vector de expresión pM (Clontech). El vector de expresión resultante pM-ROR gamma se usó en experimentos de transfección junto con el plásmido indicador de luciferasa pGL4 (Promega) que contiene cinco copias del sitio de reconocimiento UAS GAL4 y plásmidos pRL-CMV (Promega) que contiene el promotor constitutivo de CMV y la luciferasa de Renilla.

5

10

Para preparar la mezcla de reactivo de transfección/ADN, se mezcló 1 μg de pM-ROR gamma, 1 μg de pGL4 5xUAS, 625 pg de pRL-CMV y 6,25 μl del reactivo de transfección FuGENE[™] HD (Promega) en 0,25 ml de OPTI-MEM[™] (Life technologies) a temperatura ambiente. Al mismo tiempo, se preparó mezcla de ADN de control negativo usando 1 μg de vector vacío pM en lugar del plásmido pM-ROR gamma. Después de una incubación de quince minutos, se añadieron 0,25 ml de la mezcla de reactivo de transfección/ADN a 1 000 000 de células HEK293T (ATCC) en 5 ml de OPTI-MEM[™] que contenía suero bovino fetal separado en carbón vegetal al 10 %.

Las células transfectadas se sembraron en placa de 384 pocillos (10 μl/pocillo) y los 7,5 nl de los compuestos de ensayo se añadieron a los pocillos en 8 concentraciones que varían de 3,5 nM a 10,5 μM. Los compuestos se disolvieron en DMSO al 100 % y la concentración final de DMSO en el ensayo fue de un 0,075 %.

Después de 24 h de incubación a 37 °C, CO₂ al 5 % en una estufa de incubación de cultivo celular, se usó el sistema de ensayo de luciferasa Dual-Glo™ para detectar la actividad de acuerdo con las instrucciones del fabricante (Promega, Cat. N.º: E2920).

20 Se representaron los datos y se calcularon los valores de pCl50 usando el programa XLfit (ID Business Solutions Ltd.). Los resultados se muestran en las siguientes tablas.

ejemplo	resultado	ejemplo	resultado	ejemplo	resultado	ejemplo	resultado
1	7,62	41	7,53	81	7,03	121	< 5,00
2	8,12	42	7,35	82	7,09	122	< 5,00
3	< 5,00	43	7,47	83	5,78	123	8,31
4	6,42	44	7,83	84	6,97	124	7,75
5	6,68	45	7,23	85	5,83	125	6,49
6	7,06	46	6,40	86	6,79	126	6,04
7	5,34	47	6,99	87	6,85	127	5,69
8	< 5,00	48	< 5,00	88	7,06	128	< 5,00
9	< 5,00	49	7,39	89	5,86	129	5,06
10	7,59	50	7,15	90	6,30	130	6,76
11	7,42	51	5,39	91	8,36	131	7,08
12	5,43	52	6,61	92	6,81	132	7,18
13	7,03	53	7,79	93	6,24	133	5,46
14	7,12	54	7,15	94	8,08	134	6,61
15	7,02	55	8,05	95	6,82	135	5,51
16	6,93	56	7,81	96	7,54	136	7,08
17	7,61	57	7,42	97	6,55	137	8,32
18	7,93	58	6,87	98	< 5,00	138	8,14
19	< 5,00	59	5,23	99	6,98	139	7,76
20	7,15	60	< 5,00	100	6,63	140	6,70
21	< 5,00	61	6,70	101	7,06	141	6,27
22	< 5,00	62	< 5,00	102	7,13	142	5,18
23	7,62	63	5,47	103	5,72	143	5,65
24	6,78	64	< 5,00	104	5,69	144	7,06
25	6,58	65	< 5,00	105	6,69	145	5,46
26	6,55	66	7,08	106	6,42	146	6,83
27	7,25	67	7,25	107	5,55	147	6,46

ejemplo	resultado	ejemplo	resultado	ejemplo	resultado	ejemplo	resultado
28	6,71	68	5,88	108	6,49	148	6,32
29	7,12	69	< 5,00	109	6,20	149	7,22
30	7,33	70	< 5,00	110	6,79	150	7,27
31	7,11	71	5,68	111	6,45	151	5,09
32	7,09	72	5,88	112	7,21	152	5,55
33	6,95	73	6,19	113	5,34	153	6,68
34	5,87	74	6,58	114	5,64	154	< 5,00
35	6,95	75	6,50	115	6,80	155	5,29
36	6,93	76	5,77	116	< 5,00	156	5,99
37	7,73	77	7,47	117	5,45	157	< 5,00
38	5,81	78	8,00	118	5,76	158	< 5,00
39	< 5,00	79	6,68	119	5,82	159	< 5,00
40	7,25	80	6,18	120	7,73	160	7,61

ejemplo	resultado	ejemplo	resultado	ejemplo	resultado	ejemplo	resultado
161	5,66	201	< 5,00	241	8,29	281	8,37
162	5,99	202	8,10	242	7,50	282	8,47
163	< 5,00	203	6,04	243	7,26	283	8,04
164	5,93	204	7,22	244	8,16	284	7,95
165	5,93	205	6,86	245	8,05	285	-
166	7,81	206	7,00	246	7,94	286	8,04
167	6,48	207	7,20	247	7,49	287	5,92
168	6,83	208	6,52	248	7,67	288	7,93
169	7,39	209	< 5,00	249	> 8,46	289	7,03
170	6,75	210	5,99	250	> 8,46	290	6,72
171	6,78	211	7,65	251	8,22	291	5,99
172	< 5,00	212	7,70	252	8,00	292	7,32
173	< 5,00	213	6,95	253	7,34	293	7,48
174	6,18	214	6,49	254	7,73	294	7,31
175	6,22	215	7,49	255	7,26	295	5,25
176	5,59	216	< 5,98	256	8,22	296	< 4,98
177	6,85	217	6,66	257	7,70	297	7,18
178	5,36	218	6,47	258	8,18	298	7,89
179	7,28	219	8,31	259	6,93	299	7,68
180	6,95	220	6,98	260	8,22	300	7,62
181	< 5,00	221	8,53	261	8,34	301	6,73
182	7,18	222	8,38	262	7,39	302	7,83
183	6,76	223	7,30	263	8,23	303	< 5,46
184	6,79	224	8,57	264	8,09	304	< 4,98
185	5,74	225	8,53	265	7,74	305	< 4,98
186	7,57	226	8,47	266	8,27	306	8,08
187	6,65	227	8,40	267	7,87	307	5,08
188	6,56	228	6,71	268	6,97	308	7,78
189	7,52	229	7,89	269	8,09	309	7,95
190	8,08	230	8,18	270	7,79	310	< 4,98
191	8,05	231	7,97	271	8,29	311	< 4,98

ejemplo	resultado	ejemplo	resultado	ejemplo	resultado	ejemplo	resultado
192	7,93	232	7,77	272	7,95	312	7,28
193	8,19	233	7,80	273	7,85	313	5,81
194	7,85	234	8,00	274	8,08	314	7,38
195	< 5,00	235	7,88	275	> 8,46	315	7,26
196	5,46	236	7,98	276	6,91	316	8,04
197	6,29	237	> 8,46	277	8,14	317	8,00
198	< 5,00	238	8,36	278	7,93	318	7,70
199	8,30	239	> 8,46	279	7,42	319	6,85
200	7,80	240	8,26	280	6,61	320	8,01

ejemplo	resultado	ejemplo	resultado	ejemplo	resultado
321	7,93	361	5,92	401	5,55
322	8,09	362	7,24	402	4,98
323	6,42	363	7,88	403	5,76
324	6,42	364	7,34	404	7,65
325	7,97	365	7,51	405	4,98
326	6,99	366	7,82	406	7,30
327	7,01	367	7,52	407	6,32
328	5,53	368	6,72	408	6,48
329	7,83	369	5,91	409	6,11
330	7,62	370	6,27	410	5,67
331	6,99	371	5,27	411	6,65
332	6,29	372	6,48	412	5,95
333	7,77	373	5,47		
334	7,25	374	6,18		
335	7,91	375	6,97		
336	6,84	376	6,51		
337	7,20	377	6,36		
338	6,26	378	7,13		
339	7,08	379	7,10		
340	6,91	380	7,08		
341	6,12	381	7,00		
342	7,34	382	6,59		
343	7,50	383	7,40		
344	5,80	384	6,46		
345	7,58	385	7,73		
346	6,96	386	6,85		
347	6,06	387	7,16		
348	6,81	388	7,14		
349	7,10	389	7,53		
350	5,94	390	6,48		
351	5,14	391	6,85		
352	5,39	392	7,54		
353	6,75	393	5,34		
354	6,29	394	7,69		
355	7,66	395	7,04		

356	6,99	396	6,05	
357	5,00	397	7,21	

ejemplo	resultado	ejemplo	resultado	ejemplo	resultado
358	7,21	398	6,17		
359	7,58	399	7,06		
360	6,75	400	7,54		

[Ejemplo 901]

10

15

20

35

40

5 Ensayo Alphascreen™ de reclutamiento de péptido coactivador de ROR gamma

Alphascreen™ es un ensayo de proximidad luminiscente homogéneo amplificado basado en microesferas que puede usarse para medir el efecto de los compuestos sobre las interacciones de proteína-proteína. Cuando las interacciones biológicas ponen las microesferas donadoras y aceptadoras en cercana proximidad, el oxígeno reactivo, generado tras excitación por láser de las microesferas donadoras, inicia una cascada de luminiscencia/fluorescencia en las microesferas aceptadoras que da lugar a una señal altamente amplificada que puede medirse como luz en el intervalo de 520-620 nm. Cuando las microesferas aceptadoras y donadoras no están en proximidad, el oxígeno reactivo disminuye y se genera únicamente una señal de fondo muy baja.

Se estableció un ensayo *in vitro* para evaluar la inhibición de la unión de RORγ al coactivador GRIP1 usando la tecnología Alphascreen™. La interacción entre los receptores nucleares (NR) y las proteínas coactivadoras es una etapa clave en la transducción de señales desde el receptor hasta la maquinaria transcripcional y puede medirse *in vitro* usando únicamente el dominio de unión a ligando del receptor nuclear y un péptido que contiene un motivo de unión al receptor nuclear de proteína coactivadora LXXLL.

Para la construcción de RORγ usada en el ensayo de reclutamiento de coactivador, se clonaron los nucleótidos correspondientes al dominio de unión a ligando (LBD) de RORγ humano de tipo silvestre (aminoácidos 262-518 del n.º de acceso a Genbank NM_005060.3) en el vector de expresión pET24 (Novagen), posterior a las secuencias en fase del extremo N de marca 6xHis y Flag. La proteína recombinante RORγ-LBD marcado con 6xHis:Flag se expresó en *E. coli* (BL-21) y se purificó por cromatografía de afinidad en una columna de Sepharose de níquel, seguida por cromatografía de intercambio aniónico.

Se preparó una mezcla de ensayo 4x de RORγ humano-LBD marcado con 6xHis:Flag con el ligando agonista 7-β-105 hidroxicolesterol en tampón de ensayo (HEPES 50 mM pH 7,4, BSA al 0,05 %, NaCl 150 mM, MgCl2 5 mM, DTT 1 mM, Tween-20 al 0,01 %). Para los pocillos de control también se preparó una mezcla 4x de ROR gamma humano-LBD marcado con 6xHis:Flag.

Se preparó una solución madre 4x de péptido coactivador biotinilado que contenía el motivo LXXLL a partir de GRIP 1 (Biotina-PKKKQNALLRYLLDKDDTKDI) en tampón de ensayo.

30 Se preparó una mezcla detección 4x de microesferas aceptadoras Alphascreen™ de quelato de níquel (PerkinElmer) y microesferas donadoras Alphascreen™ de estreptavidina (PerkinElmer) en tampón de ensayo.

Los compuestos a ensayarse se distribuyeron en una placa madre de 384 pocillos previa a la dosis diluidos en serie 1 en 2 sobre 22 columnas, en DMSO al 100 %, a 40x la concentración de ensayo final, a partir de una alta concentración de 4 mM. Se colocó DMSO sin compuesto en las columnas de control. Los compuestos se distribuyeron mediante un robot directamente en las placas de ensayo que contenían tampón de ensayo a una concentración de ensayo final 4x.

Después de la adición del compuesto, se añadió la mezcla de ensayo de RORγ humano-LBD marcado con 6xHis:Flag más 7-β-hidroxicolesterol, el péptido coactivador biotinilado y la mezcla de detección. Las condiciones de ensayo finales fueron RORγ humano-LBD marcado con 6xHis:Flag 5 nM, 7-β-hidroxicolesterol 30 nM, péptido coactivador biotinilado 50 nM, 2,5 ug/ml de microesferas aceptadoras de níquel y 10 ug/ml de microesferas donadoras de estreptavidina. La concentración final de DMSO en el ensayo fue de un 2,5 %.

Después de incubación durante una noche a temperatura ambiente las placas se leyeron en un lector de placa Envision™ (PerkinElmer).

Se representaron los datos y se calcularon los valores de pCl50 usando el paquete de análisis de datos Genedata
45 Screener™ (Genedata). Los resultados se muestran en las siguientes tablas.

ejemplo	resultado	ejemplo	resultado	ejemplo	resultado	ejemplo	resultado
500	7,82	539	7,05	579	8,37	618	7,98
501	8,42	541	8,50	580	8,30	619	8,11
502	6,56	542	7,10	581	8,46	620	7,41
503	6,45	543	8,48	582	7,64	621	6,52
504	8,16	544	5,44	583	8,62	622	6,64
505	8,23	545	8,31	584	8,24	623	7,07
506	7,16	546	7,95	585	7,16	624	6,99
507	7,49	547	7,71	586	6,48	625	8,13
508	6,12	548	7,93	587	7,17	626	8,55
509	7,94	549	8,76	588	8,48	627	7,19
510	8,75	550	7,67	589	7,37	628	7,57
511	8,73	552	6,48	590	6,76	629	7,34
512	8,14	553	8,56	591	8,68	630	8,40
513	7,48	554	8,15	592	8,17	631	8,00
514	8,72	555	-	593	7,48	632	8,40
515	8,33	556	8,62	594	7,13	633	8,09
516	8,22	557	8,55	595	8,25	634	6,06
517	7,60	558	8,61	596	6,82	635	6,49
518	8,58	559	8,15	597	5,62	636	6,88
519	8,29	560	6,53	598	6,94	637	6,14
520	8,60	561	-	599	7,86	638	7,81
521	8,73	562	8,43	600	6,10	639	7,24
522	8,68	563	6,69	601	7,37	640	6,11
523	8,06	564	8,38	602	6,76	641	8,67
524	7,11	565	7,74	603	7,31	642	7,62
525	8,23	566	8,51	604	5,18	643	8,37
526	8,23	567	8,62	605	6,82	644	8,40
527	8,08	568	8,47	606	8,35	645	7,86
528	8,38	569	5,17	607	6,98	646	6,53
529	7,20	570	7,73	608	6,91	647	6,44
530	7,29	571	8,90	609	7,02	648	7,49
531	5,97	572	8,33	610	7,91	649	8,74
532	8,13	573	7,10	611	8,22	650	8,10
533	8,83	574	5,59	612	7,40	651	7,27
534	8,10	575	7,77	613	6,96	652	8,36
535	8,88	576	7,46	614	7,27	653	7,15
536	8,02	577	7,93	615	7,31	654	6,45
537	8,65	578	7,00	616	7,47	655	7,57
538	6,95			617	6,93	656	6,73

ejemplo	resultado	ejemplo	resultado	ejemplo	resultado	ejemplo	resultado
657	8,65	696	8,79	735	8,56	774	7,66
658	8,71	697	7,89	736	6,96	775	8,52
659	6,48	698	8,68	737	7,85	776	7,66
660	7,59	699	7,40	738	7,87	777	8,37
661	7,69	700	7,88	739	8,24	778	8,35
662	8,15	701	8,03	740	7,84	779	7,74
663	8,71	702	8,10	741	8,83	780	8,12
664	8,84	703	7,15	742	8,58	781	8,81
665	8,86	704	8,61	743	8,65	782	8,40
666	8,34	705	7,23	744	9,23	783	8,41
667	6,52	706	7,49	745	9,00	784	7,46
668	8,46	707	8,21	746	7,49	785	8,40
669	8,39	708	7,97	747	8,40	786	7,46
670	7,66	709	9,05	748	8,47	787	8,68
671	9,06	710	7,56	749	7,22	788	7,76
672	8,69	711	8,69	750	8,80	789	8,68
673	7,44	712	7,89	751	8,03	790	7,46
674	7,75	713	8,39	752	8,32	791	8,28
675	6,63	714	8,45	753	7,60	792	6,99
676	7,29	715	7,98	754	8,16	793	7,60
677	8,25	716	8,57	755	8,63	794	8,53
678	8,97	717	8,68	756	8,59	795	-
679	7,92	718	8,76	757	8,10	796	4,74
680	7,32	719	8,22	758	8,45	797	-
681	8,02	720	7,13	759	8,43	798	8,50
682	7,30	721	9,08	760	8,62	799	8,41
683	8,05	722	8,02	761	8,10	800	8,52
684	7,86	723	8,00	762	8,27	801	8,07
685	7,01	724	8,22	763	8,79	802	8,52
686	7,04	725	8,35	764	8,36	803	7,20
687	7,83	726	8,56	765	6,61	804	7,27
688	6,96	727	7,93	766	7,49	805	7,95
689	8,38	728	8,32	767	6,43	806	6,99
690	8,17	729	8,62	768	8,40	807	7,34
691	8,78	730	8,45	769	7,73	808	6,73
692	8,49	731	9,03	770	7,37	809	7,75
693	7,36	732	8,04	771	8,20	810	8,51
694	8,40	733	8,60	772	8,43	811	8,75
695	8,00	734	8,00	773	7,09	812	8,03

ejemplo	resultado	ejemplo	resultado	ejemplo	resultado
813	8,22	852	6,05	891	7,81
814	8,04	853	7,77	892	6,52
815	7,89	854	8,33	893	8,65
816	8,35	855	8,24		
817	7,19	856	7,17		
818	8,14	857	7,47		
819	7,30	858	8,70		
820	7,00	859	8,22		
821	8,01	860	7,94		
822	5,23	861	8,32		
823	5,04	862	7,42		
824	7,54	863	8,19		
825	8,86	864	8,53		
826	7,73	865	8,11		
827	-	866	8,65		
828	-	867	7,61		
829	8,02	868	8,34		
830	8,57	869	7,86		
831	8,58	870	6,24		
832	8,41	871	8,30		
833	8,23	872	7,01		
834	8,00	873	8,28		
835	6,60	874	8,11		
836	7,51	875	7,93		
837	8,43	876	8,21		
838	7,86	877	8,21		
839	8,14	878	8,41		
840	6,62	879	8,53		
841	6,71	880	7,79		
842	6,51	881	7,61		
843	8,23	882	6,19		
844	7,52	883	6,15		
845	8,84	884	8,74		
846	8,62	885	6,13		
847	7,66	886	6,33		
848	8,88	887	7,79		
849	8,06	888	8,49		
850	7,89	889	8,69		
851	-	890	9,15		

REIVINDICACIONES

1. Un compuesto representado por la fórmula (I) o una sal farmacéuticamente aceptable del mismo:

$$Y \longrightarrow N \longrightarrow R^3 \qquad R^4 \qquad R^{12} \qquad R^{12} \qquad R^5 \qquad (I)$$

5 en donde:

35

40

 R^1 se selecciona entre F, Cl, Br, un grupo alquilo C_1 a C_6 sustituido con 0, 1, 2 o 3 grupos R^a y un grupo cicloalquilo C_3 a C_8 sustituido con 0, 1, 2 o 3 grupos R^a ;

Y se selecciona entre un grupo cicloalquilo C_4 a C_6 , un grupo bicicloalquilo C_6 a C_9 y un grupo espiroalquilo C_6 a C_9 , todos los cuales están sustituidos con un grupo R^2 , 0 o 1 grupo R^6 y 0,1, 2 o 3 grupos R^7 ;

R² se selecciona entre -OH, -CO₂H, -SO₃H, -CONH₂, -SO₂NH₂, un grupo (alcoxi C₁ a C₆)carbonilo sustituido 0, 1, 2 o 3 grupos R^c, un grupo (alquil C₁ a C₆)aminocarbonilo sustituido 0, 1, 2 o 3 grupos R^c, un grupo alquilsulfonilo C₁ a C₆ sustituido con 0, 1, 2 o 3 grupos R^c, un grupo alquilaminosulfonilo C₁ a C₆ sustituido con 0, 1, 2 o 3 grupos R^c, un grupo (hidroxicarbonil)(alquilo C₁ a C₃) sustituido con 0, 1, 2 o 3 grupos R^c, un grupo (alcoxi C₁ a C₆)carbonil (alquilo C₁ a C₃) sustituido con 0, 1, 2 o 3 grupos R^c, un grupo (alquil C₁ a C₆)sulfonil(alquilo C₁ a C₃) sustituido con 0, 1, 2 o 3 grupos R^c;

 R^6 y R^7 se seleccionan independientemente entre H, F, -OH, -NH₂, -CN, un grupo alquilo C_1 a C_6 sustituido con 0, 1, 2 o 3 grupos R^b y un grupo alcoxi C_1 a C_6 sustituido con 0, 1, 2 o 3 grupos R^b ;

R³ se selecciona entre H. F. Cl. -CH₃ v -CF₃:

R⁴ se selecciona entre un grupo alquilo C₁ a C₆ sustituido con 0, 1, 2, 3, 4 o 5 grupos R^e, un grupo (alquenil C₂ a C₆)(alquilo C₁ a C₃) sustituido con 0, 1, 2, 3, 4 o 5 grupos R^e, un grupo (alquilo C₂ a C₆)(alquilo C₁ a C₃) grupo sustituido con 0, 1, 2, 3, 4 o 5 grupos R^e, un grupo (alcoxi C₁ a C₆)(alquilo C₂ a C₄) sustituido con 0, 1, 2, 3, 4 o 5 grupos R^e, un grupo (aril C₆ a C₁₀)(alquilo C₁ a C₃) sustituido con 0, 1, 2, 3, 4 o 5 grupos R^f, un grupo (heteroarilo de 5 o 10 miembros)(alquilo C₁ a C₃) sustituido con 0, 1, 2, 3, 4 o 5 grupos R^f, un grupo cicloalquilo C₃ a C₈ sustituido con 0, 1, 2, 3, 4 o 5 grupos R^g, un grupo (cicloalquilo C₃ a C₈)(alquilo C₁ a C₃) sustituido con 0, 1, 2, 3, 4 o 5 grupos R^g, un grupo (cicloalquenil C₃ a C₈)(alquilo C₁ a C₃) sustituido con 0, 1, 2, 3, 4 o 5 grupos R^g, un grupo heterocicloalquilo de 3 a 8 miembros sustituido con 0, 1, 2, 3, 4 o 5 grupos R^g, un grupo espiroalquilo C₆ a C₉ sustituido con 0, 1, 2, 3, 4 o 5 grupos R^g, un grupo espiroalquilo C₆ a C₉ sustituido con 0, 1, 2, 3, 4 o 5 grupos R^g, un grupo heterocicloalquilo C₆ a C₉ sustituido con 0, 1, 2, 3, 4 o 5 grupos R^g, un grupo heterocicloalquilo C₆ a C₉ sustituido con 0, 1, 2, 3, 4 o 5 grupos R^g, un grupo heterobicicloalquilo C₆ a C₉ sustituido con 0, 1, 2, 3, 4 o 5 grupos R^g, un grupo heterobicicloalquilo C₆ a C₉ sustituido con 0, 1, 2, 3, 4 o 5 grupos R^g, un grupo heterobicicloalquilo C₆ a C₉ sustituido con 0, 1, 2, 3, 4 o 5 grupos R^g, un grupo heterobicicloalquilo C₁ a C₃) sustituido con 0, 1, 2, 3, 4 o 5 grupos R^g, un grupo heterobicicloalquilo C₁ a C₃) sustituido con 0, 1, 2, 3, 4 o 5 grupos R^g, un grupo heterobicicloalquilo C₁ a C₃) sustituido con 0, 1, 2, 3, 4 o 5 grupos R^g, un grupo heterobicicloalquilo C₁ a C₃) sustituido con 0, 1, 2, 3, 4 o 5 grupos R^g, un grupo heterobicicloalquilo C₁ a C₃) sustituido con 0, 1, 2, 3, 4 o 5 grupos R^g, un grupo heterobici

 R^5 se selecciona entre un grupo arilo C_6 a C_{10} sustituido con 0, 1, 2, 3, 4 o 5 grupos R^i , un grupo heteroarilo de 5 a 10 miembros sustituido con 0, 1, 2, 3 o 4 grupos R^i , un grupo cicloalquilo C_3 a C_8 sustituido con 0, 1, 2, 3, 4 o 5 grupos R^i , un grupo cicloalquenilo C_3 a C_8 sustituido con 0, 1, 2, 3, 4 o 5 grupos R^i y un grupo heterocicloalquilo de 3 a 8 miembros sustituido con 0, 1, 2, 3, 4 o 5 grupos R^i ;

 R^8 y R^9 se seleccionan independientemente entre H, F, -OH, -NH₂, un grupo alquilo C₁ a C₃ sustituido con 0, 1, 2 o 3 grupos R^h y un grupo alcoxi C₁ a C₆ sustituido con 0, 1, 2 o 3 grupos R^h ; o R^8 y R^9 forman juntos un grupo oxo o un grupo tioxo;

 R^{12} es H; o R^4 y R^{12} son juntos $-CR^mR^m-CR^{13}R^{14}-CR^mR^m$ - o $-CR^{13}R^{14}-CR^mR^m-CR^mR^m$ - para formar un anillo de pirrolidina;

 R^{13} se selecciona entre H, un grupo alquilo C_1 a C_6 sustituido con 0, 1, 2, 3, 4 o 5 grupos R^e , un grupo arilo C_6 a C_{10} sustituido con 0, 1, 2, 3, 4 o 5 grupos R^f , un grupo ariloxi C_6 a C_{10} sustituido con 0, 1, 2, 3, 4 o 5 grupos R^f , un grupo

(alquenil C₂ a C₆)(alquilo C₁ a C₃) sustituido con 0, 1, 2, 3, 4 o 5 grupos R^e, un grupo (alquinil C₂ a C₆)(alquilo C₁ a C₃) grupo sustituido con 0, 1, 2, 3, 4 o 5 grupos R^e, un grupo (alcoxi C₁ a C₆)(alquilo C₂ a C₄) sustituido con 0, 1, 2, 3, 4 o 5 grupos R^e, un grupo (aril C₆ a C₁₀)(alquilo C₁ a C₃) sustituido con 0, 1, 2, 3, 4 o 5 grupos R^f, un grupo (heteroarilo de 5 o 10 miembros)(alquilo C₁ a C₃) sustituido con 0, 1, 2, 3, 4 o 5 grupos R^f, un grupo cicloalquilo C₃ a C₈ sustituido con 0, 1, 2, 3, 4 o 5 grupos R^g, un grupo (cicloalquil C₃ a C₈)(alquilo C₁ a C₃) sustituido con 0, 1, 2, 3, 4 o 5 grupos R^g, un grupo (cicloalquil C₃ a C₈)(alquilo C₁ a C₃) sustituido con 0, 1, 2, 3, 4 o 5 grupos R^g, un grupo heterocicloalquilo de 3 a 8 miembros sustituido con 0, 1, 2, 3, 4 o 5 grupos R^g, un grupo (heterocicloalquil de 3 a 8 miembros)(alquilo C₁ a C₃) sustituido con 0, 1, 2, 3, 4 o 5 grupos R^g, un grupo (espiroalquil C₆ a C₉)(alquilo C₁ a C₃) sustituido con 0, 1, 2, 3, 4 o 5 grupos R^g, un grupo espiroheteroalquilo C₆ a C₉ sustituido con 0, 1, 2, 3, 4 o 5 grupos R^g, un grupo (bicicloalquil C₅ a C₉)(alquilo C₁ a C₃) sustituido con 0, 1, 2, 3, 4 o 5 grupos R^g, un grupo heterobicicloalquilo C₆ a C₉ sustituido con 0, 1, 2, 3, 4 o 5 grupos R^g, un grupo heterobicicloalquilo C₆ a C₉ sustituido con 0, 1, 2, 3, 4 o 5 grupos R^g, un grupo heterobicicloalquilo C₆ a C₉ sustituido con 0, 1, 2, 3, 4 o 5 grupos R^g, un grupo heterobicicloalquilo C₆ a C₉ sustituido con 0, 1, 2, 3, 4 o 5 grupos R^g, un grupo (heterobicicloalquil C₆ a C₉)(alquilo C₁ a C₃) sustituido con 0, 1, 2, 3, 4 o 5 grupos R^g;

R¹⁴ se selecciona independientemente entre H y un grupo alquilo C_1 a C_6 sustituido con 0, 1, 2, 3, 4 o 5 grupos R^e ; o R^{13} y R^{14} forman juntos un anillo cicloalcano C_3 a C_8 sustituido con 0, 1, 2, 3, 4 o 5 grupos R^9 , anillo cicloalqueno C_3 a C_8 sustituido con 0, 1, 2, 3, 4 o 5 grupos R^9 o un anillo heterocicloalcano de 3 a 8 miembros sustituido con 0, 1, 2, 3, 4 o 5 grupos R^9 ;

R^m se selecciona independientemente entre H, F, Cl, -CH₃ y -CF₃;

20 R^g y R^j se seleccionan independientemente entre F, Cl, un grupo alquilo C_1 a C_6 , -OH, -CN, -NH₂, -NO₂, -CO₂H, un grupo alcoxi C_1 a C_6 , un grupo mono(alquil C_1 a C_6)amino, un grupo di(alquil C_1 a C_6)amino, -CF₃, un grupo alquileno C_1 a C_6 sustituido con 0, 1, 2 o 3 grupos R^l , un grupo alquenileno C_2 a C_6 sustituido con 0, 1, 2 o 3 grupos R^l y un grupo oxo;

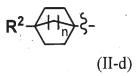
R^f y Rⁱ se seleccionan independientemente entre F, Cl, Br, -OH, -CN, -NO₂, -CO₂H, un grupo alquilo C₁ a C₆ sustituido con 0, 1, 2 o 3 grupos R^k, un grupo alquenilo C₂ a C₆ sustituido con 0, 1, 2 o 3 grupos R^k, un grupo cicloalquilo C₃ a C₈ sustituido con 0, 1, 2 o 3 grupos R^k, un grupo alcoxi C₁ a C₆ sustituido con 0, 1, 2 o 3 grupos R^k, un grupo cicloalquiloxi C₃ a C₈ sustituido con 0, 1, 2 o 3 grupos R^k, un grupo alcoxi C₁ a C₆ sustituido con 0, 1, 2 o 3 grupos R^k, un grupo cicloalquiltio C₃ a C₈ sustituido con 0, 1, 2 o 3 grupos R^k, un grupo cicloalquiltio C₃ a C₈ sustituido con 0, 1, 2 o 3 grupos R^k, un grupo (alquil C₁ a C₆)carbonilo sustituido con 0, 1, 2 o 3 grupos R^k, un grupo (alquil C₁ a C₆)carbonilo sustituido con 0, 1, 2 o 3 grupos R^k, un grupo alquilsulfonilo C₁ a C₆ sustituido con 0, 1, 2 o 3 grupos R^k, un grupo mono(alquil C₁ a C₆)amino sustituido con 0, 1, 2 o 3 grupos R^k, y un grupo di(alquil C₁ a C₆)amino sustituido con 0, 1, 2 o 3 grupos R^k, y un grupo di(alquil C₁ a C₆)amino sustituido con 0, 1, 2 o 3 grupos R^k, y un grupo di(alquil C₁ a C₆)amino sustituido con 0, 1, 2 o 3 grupos R^k, y un grupo di(alquil C₁ a C₆)amino sustituido con 0, 1, 2 o 3 grupos R^k, y un grupo di(alquil C₁ a C₆)amino sustituido con 0, 1, 2 o 3 grupos R^k, y un grupo di(alquil C₁ a C₆)amino sustituido con 0, 1, 2 o 3 grupos R^k, y un grupo di(alquil C₁ a C₆)amino sustituido con 0, 1, 2 o 3 grupos R^k, y un grupo di(alquil C₁ a C₆)amino sustituido con 0, 1, 2 o 3 grupos R^k, y un grupo di(alquil C₁ a C₆)amino sustituido con 0, 1, 2 o 3 grupos R^k, y un grupo di(alquil C₁ a C₆)amino sustituido con 0, 1, 2 o 3 grupos R^k, y un grupo di(alquil C₁ a C₆)amino sustituido con 0, 1, 2 o 3 grupos R^k, y un grupo di(alquil C₁ a C₆)amino sustituido con 0, 1, 2 o 3 grupos R^k, y un grupo di(alquil C₁ a C₆)amino sustituido con 0, 1, 2 o 3 grupos R^k, y un grupo di(alquil C₁ a C₆)amin

R^a, R^b, R^c, R^e, R^h, R^k y R^l se seleccionan independientemente entre F, un grupo alquilo C₁ a C₄, -OH, -CN, -NO₂, -NH₂, -CO₂H, un grupo alcoxi C₁ a C₆, un grupo mono(alquil C₁ a C₆)amino, un grupo di(alquil C₁ a C₆)amino, -CF₃ y un grupo oxo.

2. El compuesto según la reivindicación 1 o una sal farmacéuticamente aceptable del mismo, en donde Y se selecciona entre la fórmula (II-a), fórmula (II-b), fórmula (II-c) y fórmula (II-d):

40 en donde:

k es 0, 1 o 2; y


n es 1, 2 o 3.

3. El compuesto según la reivindicación 2 o una sal farmacéuticamente aceptable del mismo, en donde Y es un grupo representado por la fórmula (II-a):

$$R^{2}$$
 ξ

$$[R^{7}]_{k}$$
(II-a).

4. El compuesto según la reivindicación 2 o una sal farmacéuticamente aceptable del mismo, en donde Y es un grupo representado por la fórmula (II-d):

5 y n es 2.

30

- 5. El compuesto según una cualquiera de las reivindicaciones 1 a 4 o una sal farmacéuticamente aceptable del mismo, en donde R³ es H.
- 6. El compuesto según una cualquiera de las reivindicaciones 1 a 5 o una sal farmacéuticamente aceptable del mismo, en donde R² es -CO₂H o un grupo hidroxicarbonilmetilo sustituido con 0, 1 o 2 grupos R^c.
- 10 7. El compuesto según una cualquiera de las reivindicaciones 1 a 6 o una sal farmacéuticamente aceptable del mismo, en donde R¹² es H.
 - 8. El compuesto según una cualquiera de las reivindicaciones 1 a 7 o una sal farmacéuticamente aceptable del mismo, en donde R⁸ y R⁹ forman juntos un grupo oxo o R⁸ y R⁹ son ambos H.
- 9. El compuesto según una cualquiera de las reivindicaciones 1 a 8 o una sal farmacéuticamente aceptable del mismo, en donde R¹ es -CF₃, -CF₂H o Cl.
 - 10. El compuesto según una cualquiera de las reivindicaciones 1 a 9 o una sal farmacéuticamente aceptable del mismo, en donde R^5 es un grupo arilo C_6 a C_{10} sustituido con 0, 1, 2, 3, 4 o 5 grupos R^i o un grupo heteroarilo de 5 a 10 miembros sustituido con 0, 1, 2, 3 o 4 grupos R^i .
- 11. El compuesto según una cualquiera de las reivindicaciones 1 a 10 o una sal farmacéuticamente aceptable del mismo, en donde R⁴ es un grupo alquilo C₁ a C₆ sustituido con 0, 1, 2 o 3 grupos R^e, un grupo (aril C₆ a C₁₀)(alquilo C₁ a C₃) sustituido con 0, 1, 2, 3, 4 o 5 grupos R^f, un grupo (cicloalquil C₃ a C₈) (alquilo C₁ a C₃) sustituido con 0, 1, 2, 3, 4 o 5 grupos R^g, un grupo (cicloalquil C₃ a C₈)(alquilo C₁ a C₃) sustituido con 0, 1, 2, 3, 4 o 5 grupos R^g, un grupo espiroalquilo C₆ a C₉ sustituido con 0, 1, 2, 3, 4 o 5 grupos R^g, un grupo bicicloalquilo C₅ a C₉ sustituido con 0, 1, 2, 3, 4 o 5 grupos R^g, un grupo (bicicloalquil C₅ a C₉)(alquilo C₁ a C₃) sustituido con 0, 1, 2, 3, 4 o 5 grupos R^g o un grupo (heterobicicloalquil C₆ a C₉)(alquilo C₁ a C₃) sustituido con 0, 1, 2, 3, 4 o 5 grupos R^g.
 - 12. Un compuesto según una cualquiera de las reivindicaciones 1 a 11 o sal farmacéuticamente aceptable del mismo para su uso en un método de tratamiento o prevención de una enfermedad, en el que la enfermedad es esclerosis múltiple, artritis reumatoide crónica, espondilitis anquilosante, eritematosis sistémica, psoriasis, artritis psoriásica, enfermedad inflamatoria del intestino o asma.
 - 13. Una composición farmacéutica que comprende un compuesto según una cualquiera de las reivindicaciones 1 a 11 o sal farmacéuticamente aceptable del mismo.