

OFICINA ESPAÑOLA DE PATENTES Y MARCAS

ESPAÑA

11) Número de publicación: 2 674 226

51 Int. Cl.:

B60G 21/05 (2006.01) B60G 7/00 (2006.01) B62D 17/00 (2006.01) B62D 9/00 (2006.01) B60B 35/00 (2006.01) B60B 35/02 (2006.01)

(12)

TRADUCCIÓN DE PATENTE EUROPEA

T3

- (86) Fecha de presentación y número de la solicitud internacional: 12.05.2016 PCT/SE2016/050431
- (87) Fecha y número de publicación internacional: 17.11.2016 WO16182501
- 96 Fecha de presentación y número de la solicitud europea: 12.05.2016 E 16728418 (1)
- (97) Fecha y número de publicación de la concesión europea: 11.04.2018 EP 3140140
 - (54) Título: Portaruedas
 - (30) Prioridad:

13.05.2015 SE 1550617

Fecha de publicación y mención en BOPI de la traducción de la patente: 28.06.2018

(73) Titular/es:

NINGBO GEELY AUTOMOBILE RESEARCH & DEVELOPMENT CO., LTD. (100.0%)
No. 818, Binhai 2nd Road, Hangzhou Bay New District
Ningbo, 315336, CN

(72) Inventor/es:

ANDERSSON, JOHN-ERIK

74) Agente/Representante:

ELZABURU, S.L.P

DESCRIPCIÓN

Portaruedas

Campo de la técnica

La presente invención se refiere en general a un portaruedas según el preámbulo de la reivindicación 1.

5 Técnica antecedente

De la técnica anterior se conocen suspensiones traseras de barra de torsión, que son ligeras y rentables y que proporcionan ventajas de embalaje geométrico. Tienen inconvenientes tales como la baja rigidez lateral, la fuerza lateral de sobreviraje, la fuerza de frenado de sobreviraje, la baja elasticidad longitudinal y la geometría desfavorable como la del ángulo de la trayectoria y el ángulo anti-elevación.

- Un ejemplo de un eje suspendido con control del ángulo de dirección se describe en el documento US 7.891.674. Los portaruedas de conexión de ejes flexibles se proporcionan en el eje. Cada portaruedas comprende una placa de montaje rígida que soporta dos pivotes sustancialmente verticales. La ubicación de los pivotes dicta el ángulo de dirección. Cada pivote vertical comprende articulaciones elásticas, que se proporcionan en el portaruedas. Se interpone un elemento elásticamente deformable entre la superficie interior de cada alojamiento y la superficie exterior del orificio y un componente rígido. La estructura de la articulación elástica está dimensionada para minimizar el par de dirección. Un inconveniente con el eje, según el documento US 7.891.674, es que los detalles incluidos, tales como las articulaciones de rótula y los casquillos, que están diseñados para mantener la articulación con una geometría preferida, son caros. Otro inconveniente es que las juntas y los casquillos inducen un peso adicional al diseño del eje.
- 20 En la técnica anterior previa, los valores de la fuerza lateral de subviraje y de la fuerza de frenado de subviraje dependen de la rigidez específica del casquillo y de la posición del eje del pivote de orientación de la rueda virtual.

Además, cada uno de los documentos DE 10 2011 052 376 A1, FR 2 926 248 A1, DE10 2008 001 030 A1, EP 1361 084 A2, DE 10 2008 031 123 A1, EP 1 527 911 A1 y EP 1 612 068 A1 describen un eje flexible relevante con un portaruedas que comprende una placa de soporte y una placa de sujeción flexible, por lo que la placa de sujeción flexible está conectada en un lado con la placa de soporte y en el otro lado con un brazo posterior del eje flexible con el fin de proporcionar una conexión que se flexiona durante el frenado, la aceleración y el viraje.

El portaruedas según la invención es capaz de ajustar los valores de rigidez lateral, de rigidez longitudinal, de la fuerza lateral de subviraje y de la fuerza de frenado de subviraje por medio de las propiedades del diseño y el material elegidos para el portaruedas.

30 Compendio de la invención

25

35

40

45

50

Un objeto de la presente invención es crear un portaruedas montado en un cuerpo de eje trasero con un diseño simplificado para reducir los costes de fabricación y al mismo tiempo lograr propiedades de dirección mejoradas por medio de la rigidez lateral deseada, propiedades de manejo mejoradas al lograr fuerza lateral de subviraje, y una mejor estabilidad del freno por medio de la fuerza de frenado de subviraje y el confort de la marcha mejorado mediante el aislamiento transitorio en comparación con el cuerpo del eje trasero según el documento de la técnica anterior.

El portaruedas según la invención, dicho portaruedas que se monta en un cuerpo del eje trasero de un vehículo. El portaruedas comprende una placa de sujeción y una placa de soporte. La placa de sujeción está unida al cuerpo del eje trasero y a la placa de soporte. La placa de sujeción se extiende en una dirección sustancialmente transversal del vehículo, y se proporciona una sección de sujeción flexible en un área en el que la placa de sujeción coincide con un "eje virtual del pivote de orientación de la rueda" del portaruedas. La placa de soporte es paralela o puede ser, en una realización, sustancialmente paralela a un soporte de rueda de una rueda.

Las propiedades de la placa de sujeción son tales que la placa de sujeción puede doblarse alrededor del "eje del pivote de orientación de la rueda" virtual en el área de la sección de sujeción flexible cuando se aplica al portaruedas una fuerza de viraje lateral y una fuerza de frenado en un parche de contacto con el suelo, por ejemplo durante los virajes o el frenado. La placa de soporte comprende una primera sección de la placa de soporte y una segunda sección de la placa de soporte con propiedades tales que la segunda sección de la placa de soporte se puede desviar en una dirección lateral del vehículo, cuando se aplica una fuerza de viraje lateral o una fuerza de frenado a un neumático en el parche de contacto con el suelo, por ejemplo durante el viraje o el frenado. De este modo, las propiedades de la placa de sujeción y de la placa de soporte logran una fuerza lateral de subviraje y una fuerza de frenado de subviraje para la rueda montada en el portaruedas.

La primera sección de soporte se proporciona en un área alrededor del centro del soporte de la rueda y la segunda sección de la placa de soporte se proporciona delante de la primera sección de la placa de soporte. La primera sección de soporte, en una dirección lateral del vehículo, está provista de propiedades de material rígidas y la

segunda sección de soporte está provista de propiedades de material menos rígidas que la primera sección de soporte.

La primera y la segunda secciones de la placa de soporte, en una dirección longitudinal del vehículo, están ambas provistas con propiedades de material rígidas. La segunda sección de la placa de soporte puede estar provista de una o más aberturas, esto para crear propiedades menos rígidas en una dirección lateral del vehículo que la primera sección de la placa de soporte.

La segunda sección de soporte puede fabricarse de un material que está provisto del mismo espesor de pared o de un espesor de pared más delgado que el material de la primera sección de soporte.

La placa de sujeción comprende una primera sección de sujeción y una segunda sección de sujeción, y las propiedades de la primera y la segunda secciones de sujeción son más rígidas que las propiedades de la sección de sujeción flexible.

La sección de sujeción flexible de la placa de sujeción está provista de uno o más rebajos a lo largo del "eje de pivote de orientación de la rueda" virtual. La primera y/o la segunda secciones de sujeción de la sección de sujeción flexible están provistas de uno o más rebajos y/o aberturas.

La primera sección de sujeción de la placa de sujeción está unida a una primera brida de sujeción, y la primera brida de sujeción está unida a la primera sección de sujeción de sujeción, y la segunda sección de sujeción de la placa de sujeción está unida a una segunda brida de sujeción, y la segunda brida de sujeción está unida a la segunda sección de sujeción y al cuerpo del eje trasero.

La primera sección de la placa de soporte está unida a la primera sección de sujeción de la placa de sujeción y la segunda sección de la placa de soporte está unida rígidamente al cuerpo del eje trasero. La placa de sujeción y la placa de soporte se fabrican preferiblemente de chapa metálica, metal forjado o metal fundido a presión. Además, la invención comprende un cuerpo de eje trasero de un vehículo, que comprende portaruedas.

Breve descripción de los dibujos

La invención se describe ahora, a modo de ejemplo, con referencia a los dibujos adjuntos, en los que:

- La Fig. 1 muestra una vista en sección posterior de un portaruedas montado en un cuerpo de eje trasero de un vehículo según la invención,
 - La Fig. 2 muestra una vista superior del portaruedas sobre un cuerpo de eje trasero de un vehículo,
 - La Fig. 3 muestra una vista superior del portaruedas sobre el cuerpo de eje trasero,
 - La Fig. 4 muestra una vista lateral del portaruedas, vista desde el exterior del vehículo, y
- 30 La Fig. 5 muestra una vista lateral del portaruedas, vista desde el interior del vehículo.

En la descripción a continuación, se darán varias direcciones con referencia a un vehículo orientado en una dirección de conducción hacia adelante. El ejemplo de tales direcciones puede ser lateral, longitudinal, transversal, frontal, vertical, horizontal. Debe señalarse particularmente que las direcciones se dan con referencia a un portaruedas montado en un cuerpo de eje trasero de un vehículo.

- A continuación, se dará una descripción detallada del portaruedas 1 adecuado para un cuerpo 2 de eje trasero según la invención descrita en la Fig. 1-5. Además, la Fig. 1 muestra una vista en sección posterior de un eje trasero 3 en dirección contraria que comprende un portaruedas 1 montado en un cuerpo 2 de eje trasero. El cuerpo 2 de eje trasero se extiende en una dirección transversal del vehículo y está firmemente unido al portaruedas 1 con el cual se monta una rueda 4. Un punto de intersección entre un eje horizontal 5 posicionado en el centro entre una superficie superior 6 y una superficie inferior 7 de una rueda 4 montada en el cuerpo 2 del eje trasero y un plano vertical 8 posicionado en el medio entre los lados verticales 9, 10 de la rueda 4 montada en el cuerpo 2 del eje trasero, constituye la posición del centro 11 de la rueda, como se muestra en la Fig. 1. Se muestra un "eje virtual 12 del pivote de orientación de la rueda" que constituye el pivote principal en un mecanismo de dirección del portaruedas en dirección contraria.
- La Fig. 2 muestra una vista superior del portaruedas 1 en un cuerpo 2 de eje trasero. El cuerpo 2 de eje trasero está suspendido alrededor de un eje de suspensión 13, que está posicionado en una porción delantera del cuerpo de eje trasero 2, visto en una dirección de conducción hacia delante del vehículo. El portaruedas 1 se muestra a la izquierda sin una rueda y a la derecha con una rueda 4. El eje horizontal 5 se muestra extendiéndose a través del centro 11 de la rueda. El "eje virtual 12 del pivote de orientación de la rueda" está en ángulo e interseca con el exterior del suelo del centro de la rueda y detrás del eje horizontal 5 y del centro 11 de la rueda, visto en la dirección de conducción del vehículo.

La Fig. 3 muestra una vista superior del portaruedas 1 en el cuerpo 2 de eje trasero, que comprende una placa de sujeción 14 y una placa de soporte 15. La placa de sujeción 14 está unida al cuerpo 2 de eje trasero y a la placa de soporte 15. La placa de sujeción 14 está preferiblemente soldada junto con el cuerpo 2 del eje trasero y la placa de soporte 15. La placa de sujeción 14 se dispone para extenderse preferiblemente en una dirección sustancialmente transversal del vehículo, y comprende una primera sección de sujeción 16 y una segunda sección de sujeción 17. La primera sección de sujeción 16 está unida a la placa de soporte 15 y la segunda sección de sujeción 17 está unida al cuerpo 2 de eje trasero. Se proporciona una sección de sujeción flexible 18 en un área en la que la primera y la segunda secciones de sujeción 16, 17 de la placa de sujeción 14 coinciden, y toda la placa de sujeción 14 se extiende en un plano geométrico virtual común, en un estado neutral natural. La sección de sujeción flexible 18 coincide preferiblemente con un "eje virtual 12 del pivote de orientación de la rueda" del portaruedas 1. Las propiedades de la placa de sujeción 14 son tales que la placa de sujeción 14 se curva alrededor del "eje virtual 12 del pivote de orientación de la rueda" en el área de la sección de sujeción flexible 18 cuando se aplica al portaruedas 1 una fuerza lateral F_{lateral} o una fuerza de frenado F_{frenado} en un parche de contacto con el suelo, por ejemplo, durante los virajes o el frenado.

10

50

55

60

- La Fig. 4 muestra una vista lateral del portaruedas 1, visto desde el exterior del vehículo. En una realización, la placa de soporte 15 es sustancialmente paralela a un soporte de rueda de una rueda 4, y la placa de soporte 15 comprende una primera sección 19 de placa de soporte y una segunda sección 20 de placa de soporte con propiedades tales que se permite a la segunda sección 20 de placa de soporte desviarse o moverse en una dirección lateral al vehículo, cuando se aplica una fuerza lateral F_{lateral} al portaruedas 1, por ejemplo, durante los virajes o el frenado. De este modo, las propiedades de la placa de sujeción 14 y de la placa de soporte 15 son tales que alcanzan una fuerza lateral de subviraje, cuando se aplica una fuerza lateral F_{lateral} al portaruedas 1, por ejemplo durante los virajes, y una fuerza de frenado de subviraje para la rueda 4 montada en el portaruedas 1, cuando se aplica una fuerza de frenado F_{frenado} al portaruedas 1 en un parche de contacto con el suelo, por ejemplo durante el frenado
- La primera sección 19 de la placa de soporte se proporciona en un área en contacto con el centro del soporte de la rueda, área que es continua. La segunda sección 20 de la placa de soporte se proporciona delante de la primera sección 19 de la placa de soporte. La primera sección 19 de la placa de soporte y la segunda sección 20 de la placa de soporte están fabricadas de un material de un grosor uniforme, en una dirección transversal del vehículo. El grosor uniforme de la placa de soporte 15 simplifica y reduce los costes de fabricación.
- La primera sección 19 de la placa de soporte, en una dirección lateral del vehículo, está provista de propiedades de material rígidas y la segunda sección 20 de la placa de soporte está provista de propiedades de material menos rígidas que la primera sección 19 de la placa de soporte. Por lo tanto, el material de la sección (19) de soporte tiene una rigidez que es más alta que la rigidez del material de la segunda sección (20) de soporte.
- En una realización, las propiedades disímiles en la dirección lateral de la primera y la segunda secciones 19, 20 de la placa de soporte se crean por medio de una o más aberturas en la segunda sección 20 de soporte. La primera sección 19 de la placa de soporte está preferiblemente separada de la segunda sección 20 de la placa de soporte en el área en la que se proporciona una abertura 21 de la segunda sección 20 de la placa de soporte. En una realización preferida, la segunda sección 20 de la placa de soporte está provista con una abertura 21. Por lo tanto, la segunda sección 20 de la placa de soporte tiene forma de V, provista con una pata superior y una inferior 22, 23. La anchura W de la primera y segunda patas 22, 23 depende de qué propiedades de deflexión se desean. Dado que la primera y la segunda secciones 19, 20 de la placa de soporte preferiblemente están fabricadas de un material con un grosor similar, la abertura 21 de la segunda sección 20 de la placa de soporte proporciona propiedades menos rígidas en una dirección lateral del vehículo que para la primera sección 19 de la placa de soporte. La segunda sección de la placa de soporte está unida de manera fija al cuerpo 2 del eje trasero, preferiblemente por medio de soldadura.

La segunda sección 20 de la placa de soporte está provista de una o más placas 24 de sujeción del soporte. Preferiblemente, las placas 24 de sujeción del soporte se proporcionan en un extremo frontal de la segunda sección 20 de la placa de soporte. Para crear estabilidad, las placas 24 de sujeción del soporte se proporcionan en una formación en V, y las placas 24 de sujeción del soporte están separadas y unidas al cuerpo 2 del eje trasero. Las placas 24 de sujeción del soporte están preferiblemente soldadas a la segunda sección 20 de la placa de soporte y al cuerpo 2 del eje trasero.

En otra realización, las propiedades disímiles en la dirección lateral de la primera y la segunda secciones 19, 20 de la placa de soporte se crean por medio de un material que se proporciona con un espesor de pared más delgado para la segunda sección 20 de la placa de soporte que el material de la primera sección 19 de la placa de soporte, que crea propiedades menos rígidas en una dirección lateral del vehículo que para la primera sección 19 de la placa de soporte.

La primera y la segunda secciones 19, 20 de la placa de soporte están ambas provistas de propiedades rígidas del material en las direcciones longitudinal y vertical del vehículo, para transmitir la mayor parte de las fuerzas longitudinales y una gran parte de las fuerzas verticales al cuerpo 2 del eje. En una realización preferida la primera y segunda superficies externas 25, 26 de la primera y la segunda secciones 19, 20 de la placa de soporte se

proporcionan en un plano virtual geométrico común. En otra realización, la primera superficie exterior 25 de la primera sección 19 de la placa de soporte y la segunda superficie exterior 26 de la segunda sección 20 de la placa de soporte forman un ángulo entre sí. La segunda superficie exterior 26 puede estar en ángulo hacia el interior del vehículo, y la inclinación de la segunda superficie exterior 26 puede coincidir con el "eje virtual 12 del pivote de orientación de la rueda", visto en una dirección longitudinal del vehículo. Aún más preferiblemente, el "eje virtual 12 del pivote de orientación de la rueda" coincide con un plano geométrico virtual en ángulo que se extiende a través de la segunda sección 20 de la placa de soporte a la mitad del grosor del material, visto en una dirección longitudinal del vehículo.

La Fig. 5 muestra una vista lateral del portaruedas 1, visto desde una vista interior del vehículo. Se muestra la placa de sujeción 14, y las propiedades de la primera y la segunda secciones 16, 17 de sujeción son más rígidas que las propiedades de la sección de sujeción 18 flexible que coinciden con el "eje virtual 12 del pivote de orientación de la rueda". Toda la placa de sujeción 14 está preferiblemente dispuesta en un plano de extensión en una dirección lateral del vehículo que está cerca de la perpendicular o perpendicular al plano vertical 8, mostrado en la Fig. 1. Preferiblemente, la placa de sujeción 14 se fabrica de un material de chapa de acero con propiedades materiales homogéneas.

Para obtener propiedades menos rígidas para la sección de sujeción 18 flexible, se proporcionan uno o más rebajos 28, que se ven en la Fig. 3, a lo largo del "eje virtual 12 del pivote de orientación de la rueda", esto para debilitar el material. Además, la primera y/o la segunda secciones de sujeción 16, 17 pueden estar provistas de uno o más rebajos y/o aberturas, esto para reducir el peso total del portaruedas 1.

La primera y la segunda secciones de sujeción 16, 17 de la placa de sujeción 14 están unidas a las primera y segunda bridas de sujeción 29, 30, respectivamente. La primera pestaña de sujeción 29 está unida a la primera sección 19 de la placa de soporte y a la primera sección de sujeción 16, y la segunda sección de sujeción 17 está unida a la segunda pestaña de sujeción 30, y la segunda pestaña de sujeción 30 está unida a la segunda sección de sujeción 17 y al cuerpo 2 del eje trasero. La primera sección 19 de la placa de soporte está unida a la primera sección de sujeción 16 y la segunda sección 20 de la placa de soporte está unida rígidamente al cuerpo 2 del eje trasero. Además, la placa de sujeción y la placa de soporte están fabricadas de chapa metálica, metal forjado o metal fundido a presión.

30

35

55

En la Fig. 3, se muestran el centro 11 de la rueda y la posición 27 en la que el "eje virtual 12 del pivote de orientación de la rueda" coinciden con el suelo. La posición longitudinal en la que se aplica una fuerza lateral F_{lateral} a un neumático, por ejemplo durante los virajes, y la posición longitudinal en la que el "eje virtual 12 del pivote de orientación de la rueda" coincide con el suelo se colocan ambas detrás y fuera del centro 11 de la rueda. La fuerza de viraje lateral F_{lateral} se aplica a la rueda 4 a una distancia B detrás del eje horizontal 5 a través del centro 11 de la rueda. La posición longitudinal en la que el "eje virtual 12 del pivote de orientación de la rueda" coincide con el suelo se coloca a una distancia longitudinal A o B + C desde el plano vertical virtual 8 a través del centro 11 de la rueda. El valor C es preferiblemente más grande que el valor B. Esto da un valor negativo del recorrido de la rueda. Se crea un "eje virtual 12 del pivote de orientación de la rueda" con un recorrido de la rueda negativo, esto para poder aplicar la fuerza de viraje lateral F_{lateral} en frente de la posición 27 en la que el "eje virtual 12 del pivote de orientación de la rueda" coincide con el suelo. Mediante esta disposición se crea un par de dirección. En combinación con la placa de soporte flexible 15, se crea una fuerza lateral de subviraje.

La fuerza de frenado de sobreviraje para una suspensión del eje trasero con barra de torsión normalmente es el resultado de las elasticidades en la estructura. La estructura de la placa de soporte 15 y de la placa de sujeción 14 están expuestas durante un momento de flexión al frenar. La Fig. 3 muestra el "eje virtual del pivote de orientación de la rueda" 12 que coincide con el suelo detrás del centro 11 de la rueda a una distancia D perpendicular lateral al plano vertical virtual a través del centro 11 de la rueda. La distancia D crea radios de depuración negativos ya que se coloca en el exterior del centro 11 de la rueda. La fuerza de frenado F_{frenado} se aplica en un parche de contacto para una rueda 4 con el suelo en un plano vertical longitudinal 8 que se extiende a través del centro 11 de la rueda, y crea un par de fuerza de frenado. Se crea un "eje virtual del pivote de orientación de la rueda" 12 con un radio de dirección negativo, de modo que la fuerza de frenado F_{frenado} actuará dentro de la posición 27 en la que el "eje virtual del pivote de orientación de la rueda" 12 coincide con el suelo. Mediante esta disposición, se crea un par de dirección. En combinación con la placa de sujeción 14, se crea un momento de flexión en la segunda placa de soporte que crea una fuerza de frenado de subviraje.

De este modo, el valor de las distancias longitudinales B y C junto con las propiedades de deflexión de las patas superior e inferior 22, 23 de la segunda sección 20 de la placa de soporte y de la sección 18 de sujeción flexible y la posición D en la que el "eje virtual del pivote de orientación de la rueda" 12 coinciden con el suelo crea una fuerza lateral de subviraje y una fuerza de frenado de subviraje.

La desviación de la placa de sujeción 14 y de la placa de soporte 15 no es plástica. El valor de contraviraje es el objetivo para la fuerza lateral de subviraje y de la fuerza de frenado de subviraje, junto con el valor del sobreviraje obtenido a partir de la configuración de barra de torsión.

REIVINDICACIONES

- 1. Un portaruedas (1) montado en un cuerpo (2) del eje trasero, dicho portaruedas que comprende una placa de sujeción (14) y una placa de soporte (15),
 - la placa de sujeción (14) está unida al cuerpo (2) del eje trasero y a la placa de soporte (15), y la placa de sujeción (14) se extienden en una dirección sustancialmente transversal del vehículo, y está provista de una sección de soporte flexible (18) en un área en la que la placa de sujeción (14) coincide con un "eje virtual (12) del pivote de orientación de la rueda" del portaruedas (1),

caracterizado por que

5

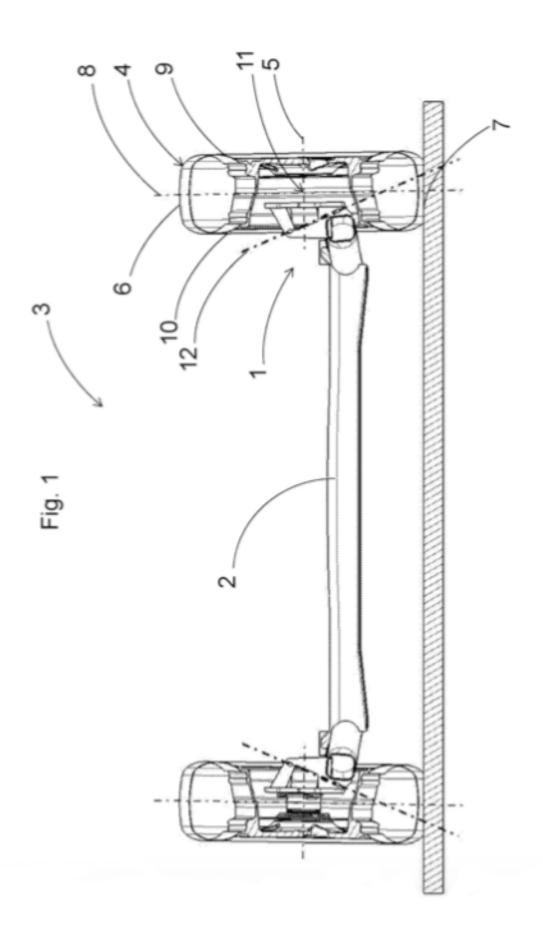
10

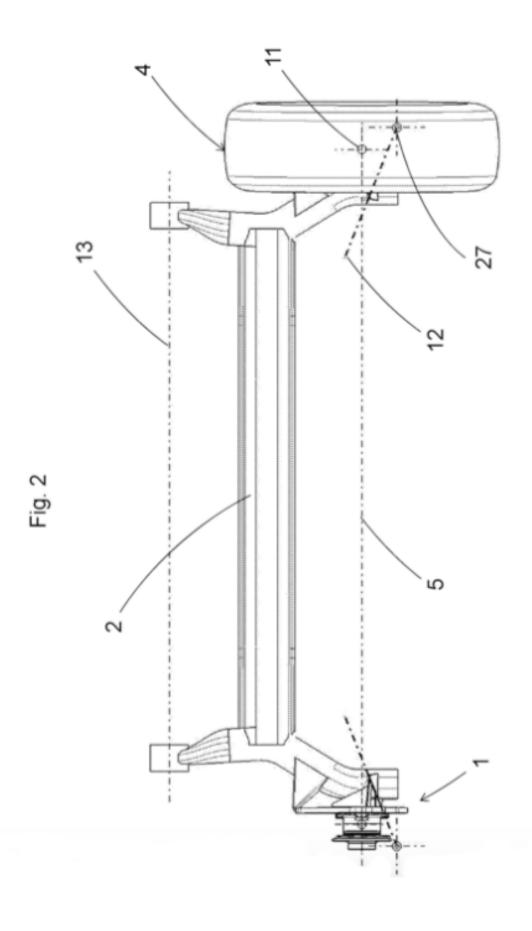
15

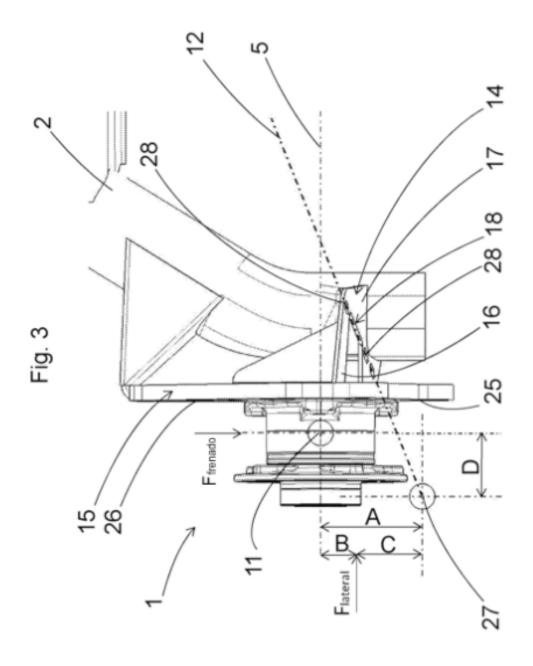
35

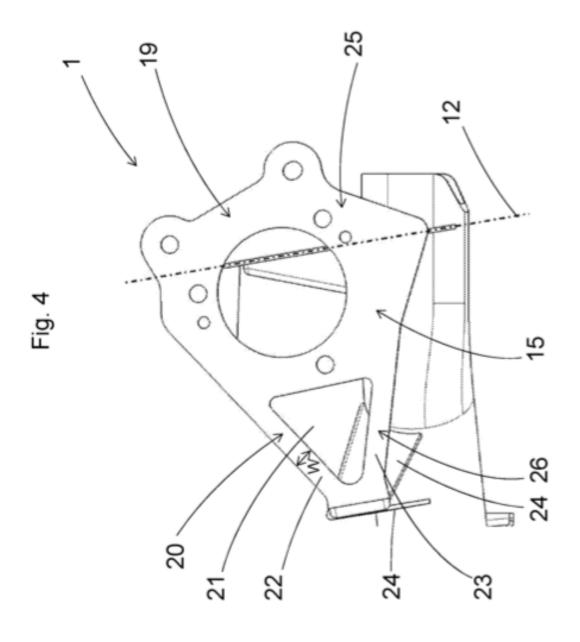
40

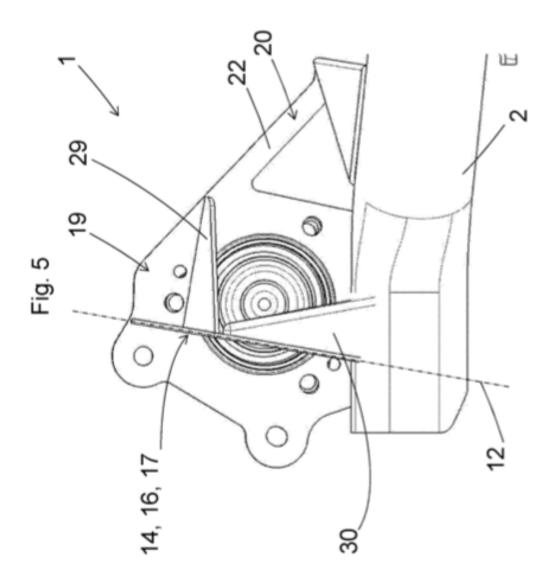
45


50


55


60


65


- las propiedades de la placa de sujeción (14) son tales que la placa de sujeción (14) se dobla alrededor del "eje virtual (12) del pivote de orientación de la rueda" en el área de la sección de sujeción flexible (18) cuando se aplica al portaruedas (1) una fuerza lateral F_{lateral} o una fuerza de frenado F_{frenado} en un parche de contacto con el suelo.
- la placa de soporte (15) comprende una primera sección (19) de la placa de soporte y una segunda sección (20) de la placa de soporte con propiedades tales que la segunda sección (20) de la placa de soporte puede desviarse en una dirección lateral del vehículo, cuando se aplica al transportador una fuerza lateral de viraje $F_{lateral}$ o una fuerza de frenado $F_{frenado}$ en el parche de contacto del neumático con el suelo, por lo que las propiedades de la placa de sujeción (14) y de la placa de soporte (19) logran la fuerza lateral de subviraje y la fuerza de frenado de subviraje para la rueda (4) montada en el portaruedas (1).
- 20 2. El portaruedas según la reivindicación 1, en el que la primera sección (19) de la placa de soporte está provista de un área alrededor del centro del soporte de la rueda y la segunda sección (20) de la placa de soporte se proporciona delante de la primera sección (19) de la placa de soporte, dicha primera sección de soporte (19), en una dirección lateral del vehículo, está provista de propiedades de material rígidas y la segunda sección de soporte (20) está provista de propiedades de material menos rígidas que la primera sección de soporte (19).
 25
 - 3. El portaruedas según cualquiera de las reivindicaciones 1-2, en el que la primera y la segunda secciones (19, 20) de la placa de soporte, en una dirección longitudinal del vehículo, están ambas provistas con propiedades de material rígidas.
- 4. El portaruedas según cualquiera de las reivindicaciones 1-3, en el que la segunda sección (20) de la placa de soporte está provista con una o más aberturas (21), que crean propiedades menos rígidas en una dirección lateral del vehículo que la primera sección (19) de la placa de soporte.
 - 5. El portaruedas según cualquiera de las reivindicaciones 1-4, en el que la segunda sección (20) de la placa de soporte se fabrica de un material que se proporciona con el mismo espesor de pared o un espesor de pared más delgado que el material de la primera sección de soporte (19).
 - 6. El portaruedas según cualquiera de las reivindicaciones 1-5, en el que la placa de sujeción (14) comprende una primera sección (16) de sujeción y una segunda sección (17) de sujeción, y las propiedades de la primera y la segunda secciones (16, 17) de sujeción son más rígidas que las propiedades de la sección de sujeción flexible (18).
 - 7. El portaruedas según cualquiera de las reivindicaciones 1-6, en el que la sección de sujeción flexible (18) de la placa de sujeción (14) está provista con uno o más rebajos (28) a lo largo del "eje virtual (12) del pivote de orientación de la rueda".
 - 8. El portaruedas según la reivindicación 6, en el que la primera y/o la segunda secciones (16, 17) de la placa de sujeción (14) se proporcionan con uno o más rebajos y/o aberturas (28).
 - 9. El portaruedas según cualquiera de las reivindicaciones 6 u 8, en el que la primera sección de sujeción (16) de la placa de sujeción (14) está unida a una primera pestaña (29) de sujeción, y la primera pestaña (29) de sujeción está unida a la primera sección (19) de la placa de soporte y a la primera sección de sujeción (16), y la segunda sección de sujeción (17) de la placa de sujeción (14) está unida a una segunda pestaña (30) de sujeción, y la segunda pestaña (30) de sujeción está unida a la segunda sección de sujeción (17) y al cuerpo (2) del eje trasero.
 - 10. El portaruedas según cualquiera de las reivindicaciones 6, 8 o 9 en el que la primera sección de soporte (19) está unida a la primera sección de sujeción (16) de la placa de sujeción (14) y la segunda sección (20) de la placa de soporte está rígidamente unida al cuerpo (2) del eje trasero.
 - 11. El portaruedas según cualquiera de las reivindicaciones 1-10, en el que la placa de sujeción (14) y la placa de soporte (15) se fabrican de chapa metálica, metal forjado o metal fundido a presión.
 - 12. Un cuerpo (2) del eje trasero, que comprende los portaruedas (1) según cualquiera de las reivindicaciones previas 1-11.

