

OFICINA ESPAÑOLA DE PATENTES Y MARCAS

ESPAÑA

11) Número de publicación: 2 675 049

51 Int. Cl.:

A61M 1/36 B04B 5/04

(2006.01) (2006.01)

(12)

TRADUCCIÓN DE PATENTE EUROPEA

T3

96 Fecha de presentación y número de la solicitud europea: 02.09.2004 E 08075817 (0)

(97) Fecha y número de publicación de la concesión europea: 20.06.2018 EP 2008676

(54) Título: Aparato de separación sanguínea

(30) Prioridad:

03.09.2003 US 654794

(45) Fecha de publicación y mención en BOPI de la traducción de la patente: **06.07.2018**

(73) Titular/es:

THERAKOS, INC. (100.0%) 437 CREAMERY WAY EXTON, PA 19341, US

(72) Inventor/es:

GARA, STEVE y BRIGGS, DENNIS

74 Agente/Representante:

UNGRÍA LÓPEZ, Javier

DESCRIPCIÓN

Aparato de separación sanguínea

Campo técnico de la invención

5

10

15

20

35

La presente invención se refiere en general a aparatos para mover y controlar el movimiento de sangre y componentes sanguíneos, separar componentes sanguíneos, y tratar sangre de pacientes, y específicamente a un aparato para realizar tratamientos extracorporales de la sangre.

Antecedentes de la invención

Varios tratamientos de enfermedades requieren la extracción de sangre de un paciente, procesar el uno o más componentes de la sangre, y devolver los componentes procesados para un efecto terapéutico. Los tratamientos extracorporales requieren sistemas para sacar de forma segura sangre del paciente, separarla en componentes, y devolver la sangre o los componentes sanguíneos al paciente. Con el avance de las ciencias médicas es posible tratar sangre del paciente en procesos en bucle cerrado, devolviendo al paciente su propia sangre tratada en un tratamiento médico. Un ejemplo de tales procesos incluye métodos de tratamiento externo de enfermedades en las que hay un aumento patológico de linfocitos, tal como el linfoma cutáneo de células T u otras enfermedades que afectan a los glóbulos blancos. En tales métodos, la sangre del paciente es irradiada con luz ultravioleta en presencia de una sustancia química o un anticuerpo. La luz ultravioleta afecta a la unión entre los linfocitos y la sustancia química o anticuerpo que inhibe los procesos metabólicos de los linfocitos.

Se han propuesto y usado sistemas y métodos de fotoféresis que implican la separación de la capa leucocitaria de la sangre, la adición de un medicamento fotoactivable, y la irradiación UV de la capa leucocitaria antes de la re-infusión al paciente. La fotoféresis extracorporal puede ser utilizada para tratar numerosas enfermedades incluyendo enfermedad injerto contra huésped, artritis reumatoide, esclerosis sistemática progresiva, inicio de diabetes juvenil, enfermedad inflamatoria del intestino y otras enfermedades que se consideran que los son mediadas por células T o leucocitos, incluyendo cáncer. También se han propuesto y usado sistemas y métodos de aféresis que implican la separación de sangre en varios componentes.

Adicionalmente, también se ha propuesto y usado sistemas y métodos de aféresis que implican la separación de sangre en varios componentes, y también implican sistemas de bombeo y válvulas que son difíciles de fabricar u operar. Los sistemas y métodos anteriores de fotoféresis y aféresis requieren generalmente procesos discontinuos y por lo tanto se tarda varias horas en tratar un paciente o en obtener una cantidad suficiente de componentes sanguíneos separados. Además, los sistemas son muy complejos de fabricar, especialmente los controladores de flujo de fluido y los sistemas de válvulas.

- En los sistemas de fotoféresis conocidos se facilita un kit desechable que se carga en equipo permanente de hardware. El kit desechable contiene tubos complejos que se utilizan para llevar fluidos sanguíneos a y de los varios dispositivos incluidos en el kit, tal como un recipiente de centrífuga, una cámara de irradiación, y varias bolsas para suministrar y/o recoger fluidos sanguíneos. Los kits desechables conocidos a menudo contienen una casete, u otro mecanismo controlador, para controlar el flujo de fluidos sanguíneos en todo el kit desechable, así como su entrada y salida del paciente. Los kits desechables se usan solamente una vez y deben ser sustituidos o desechados después de cada sesión de tratamiento. Al realizar un proceso de tratamiento, el kit se conecta al paciente formando un sistema en bucle cerrado y los varios dispositivos del kit desechable se cargan en un equipo permanente utilizado para mover fluidos sanguíneos a través del kit desechable según sea necesario. Una vez cargado, el sistema permanente de movimiento de sangre mueve los fluidos sanguíneos a través de la circuitería de fluido del kit.
- 50 Se lograría un avance muy real en los sistemas de fotoféresis si se pudiesen reducir el tamaño, la complejidad de la fabricación, los costos de fabricación, y los tubos dentro del kit desechable, incluso al costo de un sistema más complejo de movimiento de sangre. Esto es porque el sistema de movimiento de sangre es equipo de utilización permanente, mientras que hay que usar cada vez un kit desechable estéril nuevo.
- Los kits de fotoféresis desechables conocidos son difíciles y caros de fabricar, especialmente los mecanismos de válvulas y bombeo dentro de la casete. Adicionalmente, los sistemas y métodos de fotoféresis y aféresis anteriores requieren generalmente procesos discontinuos y por lo tanto tardan varias horas en tratar un paciente o en obtener una cantidad suficiente de fragmentos sanguíneos separados. Un objeto constante es reducir el tiempo que se tarda en realizar una sesión completa de tratamiento de fotoféresis. Otro objeto es reducir la cantidad de sangre que se debe extraer de un paciente y procesar en procesos en bucle cerrado por sesión de tratamiento de fotoféresis. Otro objeto es aumentar la cantidad de rendimiento de glóbulos blancos u obtener un corte más limpio de una capa leucocitaria por volumen de sangre entera procesada. Otro objeto es reducir los costos y la complejidad asociados con la fabricación de los kits desechables usados.
- 65 EP1208856A2 describe un aparato de recogida de plaquetas que incluye un separador centrífugo.

US5653887 describe un sistema extracorporal de procesamiento de sangre que tiene un conjunto de casete.

Descripción de la invención

60

65

- Estos y otros objetos se logran con la presente invención. La presente invención se refiere a mejorar el aparato y los métodos para fotoféresis y aféresis con el fin de proporcionar un aparato menos complejo, más fácil de fabricar, y un proceso continuo para separación de suficientes fragmentos para tratamiento con el fin de reducir en gran medida el tiempo de tratamiento.
- 10 La invención incluye un aparato que incluye: una casete para controlar el movimiento de sangre y los componentes separados de la sangre durante una sesión de tratamiento de sangre extracorporal; y un recipiente de centrífuga que incluye un eje rotacional; incluyendo la casete: un alojamiento de plástico rígido que tiene una sección superior y una sección inferior, formando conjuntamente las secciones superior e inferior un espacio interno; un cubo dentro del espacio interno: tubos flexibles conectados al cubo: bucles formados de tubos flexibles, cada uno de los bucles 15 adaptado para enganchar un cabezal de bomba peristáltica; una abertura; y una sección de tubo flexible incluyendo tubos, distintos de los bucles, atravesando la abertura de modo que puede cerrarse el flujo de fluido a través de la sección de tubo flexible mediante la presión ejercida en la sección de tubo flexible; incluyendo el recipiente de centrifuga: un alojamiento exterior, un manguito de conexión, un núcleo superior, un núcleo inferior, y un suelo de alojamiento, donde el alojamiento exterior está fabricado de un material plástico claro biocompatible de modo que los 20 núcleos superior e inferior son visibles a través, donde el alojamiento exterior está conectado al suelo de alojamiento, incluyendo el suelo de alojamiento salientes para bloquear el recipiente en un dispositivo rotacional, donde el núcleo superior y el núcleo inferior son componentes separados y donde una superficie inferior del núcleo superior está en contacto directo con un área superficial superior del núcleo inferior, donde un espacio entre el alojamiento exterior y cada uno del núcleo superior y el núcleo inferior define un volumen de separación, y donde un primer canal de flujo 25 sigue a través del núcleo superior e interconecta fluidamente con al menos un canal que está situado entre el núcleo superior y el núcleo inferior y que se extiende radialmente con relación al eje rotacional y al volumen de separación, incluyendo además el aparato una pluralidad de tubos de entrada y un tubo de salida para acoplar la casete al recipiente de centrífuga, donde uno de los tubos de entrada proporciona componentes de sangre de menos densidad desde el recipiente de centrífuga de vuelta a la casete, y donde el tubo de salida proporciona sangre entera desde la 30 casete al recipiente de centrífuga y es conectable fluidamente con el volumen de separación mediante el primer canal de flujo y al menos un canal. El cubo puede ser moldeado con la sección inferior en realizaciones donde el alojamiento tiene una sección superior y una sección inferior. En las realizaciones más preferidas, el cubo conecta cinco secciones de tubos flexibles. En otras realizaciones, el aloiamiento puede ser una pieza, considerada superior porque el lado inferior está completamente abierto o tiene aquieros o aberturas a través de las que uno o más 35 accionadores pueden ejercer presión contra el tubo flexible para cerrar selectivamente el flujo de fluido en tiempos apropiados durante los procesos de fotoféresis o aféresis, proporcionando el lado inferior del alojamiento, o el alojamiento superior, resistencia contra la presión ejercida por el cabezal accionador, preferiblemente con una barra oclusora moldeada o un borde afilado, cerrando la barra y el accionador juntos el tubo para evitar el flujo de fluido. La barra oclusora atraviesa preferiblemente la sección expuesta de tubo flexible, preferiblemente en un ángulo 40 aproximadamente recto, para el cierre más eficiente del flujo en el tubo. En realizaciones donde el alojamiento de plástico rígido se ha formado de una sección superior e inferior que forman conjuntamente un espacio interno, la sección inferior tendría preferiblemente el agujero o los agujeros para acceder, por el accionador o accionadores, a la sección expuesta de tubo encima del aquiero o aquieros. Una realización preferida tiene cinco bucles de tubo, cinco agujeros para cinco accionadores, y un agujero más ancho para tres accionadores. El alojamiento de casete se 45 puede formar muy eficientemente montando un conjunto de tubos flexibles en una sección inferior, presionando los tubos a guías de enrutamiento en forma de U, incluyendo un conjunto de filtro y cubo si no se moldean en las secciones superior o inferior, y posteriormente encajando simplemente por salto la sección superior en la sección inferior.
- Una realización preferida de la casete tiene una o más aristas moldeadas en la superficie que están dimensionadas para recibir una tarjeta inteligente grabable en la que se registran electrónicamente datos de identificación, y que el operador saca fácilmente cuando el envase estéril conteniendo el kit incluyendo la casete se abre y prepara para instalarse en la torre permanente. La tarjeta inteligente se coloca en un puerto de lectura-escritura en la torre. Los datos de la tarjeta inteligente pueden ser usados para verificar que el kit es el modelo correcto, por ejemplo, y la tarjeta inteligente también puede ser usada para registrar datos específicos del procedimiento, tal como todos los parámetros y pulsaciones del operador, y análogos.
 - Un método preferido de hacer la casete incluye moldear una sección superior de plástico rígido con aristas en un lado inferior, funcionando las aristas como barras oclusoras, por ejemplo, y moldear una sección inferior con agujeros y guías para los tubos flexibles, y dirigir posteriormente el tubo a través de las guías, atravesando las aristas, y uniendo posteriormente las secciones superior e inferior de modo que las secciones de tubo que atraviesan las aristas queden expuestas a través de los agujeros. El cubo se puede moldear en la sección inferior, y las secciones de tubo se pueden unir antes de colocar la sección superior del alojamiento de casete en la sección inferior, y posteriormente se montan preferiblemente por salto.

Un kit, que se considera "desechable" dado que está destinado a un solo uso para un paciente, puede incluir la

casete, un tubo de entrada de bolsa salina; una bolsa de tratamiento; una bolsa de obtención de plasma que tiene un tubo de entrada para que fluya plasma desde la casete y un tubo de salida para que fluya plasma a la casete; un tubo de entrada de anticoagulante para que fluya anticoagulante a la casete; una cámara de irradiación que tiene un tubo de entrada para que fluya capa leucocitaria desde la casete y un tubo de salida para que fluya capa leucocitaria irradiada a la casete; un recipiente de separación que tiene un tubo para que fluya sangre a la cámara de separación y al menos dos tubos para que fluyan fragmentos sanguíneos separados desde la cámara de separación; medios para extraer sangre de un paciente incluyendo un tubo para que fluya sangre a la casete y medios para conectar un aguja; y medios para devolver fracciones de sangre al paciente incluyendo un tubo desde la casete. El tubo de retorno puede combinarse con el tubo de extracción de modo que sólo se necesite una aguja en el paciente, pero es preferible tener agujas separadas para extraer y devolver en el paciente durante el procedimiento.

También se describe una torre no desechable en la que pueden insertarse la casete, la cámara de irradiación, y el recipiente de separación del kit desechable. La torre incluye bombas peristálticas que tienen cabezas de bomba que enganchan los bucles de la casete, una cámara centrífuga para operar el recipiente de separación del kit desechable, una cubierta en la que se inserta la casete y que incluye medios para ejercer presión en secciones de tubo flexibles encima de las aberturas bajo control de un procesador, y una cavidad en la que se inserta la cámara de irradiación UV y que tiene una fuente de radiación UV bajo control del procesador. La cavidad de irradiación UV es preferiblemente diferente de los sistemas anteriores en que es vertical de modo que la entrada está en la parte superior y la salida está en la parte inferior de la cámara UV. La torre puede tener soportes para colgar la bolsa de salina, la bolsa de tratamiento, la bolsa de plasma y la bolsa de anticoagulante. La bolsa de salina y la bolsa de anticoagulante no se suministran con el kit o se suministran vacías y deben rellenarse cuando se lleva a cabo el procedimiento.

Otro ejemplo es un kit desechable dentro de la torre no desechable.

10

15

20

25

30

35

40

45

50

55

60

65

Se describe con más detalle un método de tratar sangre de un paciente usando la casete u otros aspectos del aparato. El aparato puede usarse para aféresis o fotoféresis, donde el proceso incluye preferiblemente los pasos de extracción de sangre completa de un paciente; añadir anticoagulante para formar una mezcla; bombear la mezcla sangre-anticoagulante a través de la casete al recipiente de separación centrífuga; operar el recipiente de separación hasta que el aire en el recipiente se desplace a la bolsa de plasma; recoger plasma separado en la bolsa de plasma mientras se continúa bombeando la mezcla en el recipiente; mezclar el plasma con fluido de cebado; cuando se recoge una cantidad elegida de plasma, devolver plasma al paciente al mismo ritmo que la sangre entera entrante hasta que los glóbulos rojos se detecten en el sensor del recipiente; extraer glóbulos rojos y bombear a una velocidad controlada con el fin de mantener la línea de glóbulos rojos a nivel de la interfaz del sensor; mezclar los glóbulos rojos extraídos con plasma de la bolsa de recogida de plasma y devolver al paciente la mezcla de glóbulos rojos y plasma; en un momento seleccionado, continuar bombeando sangre entera en el recipiente mientras se interrumpe la extracción y bombear glóbulos rojos, provocando por ello que los glóbulos rojos empujen a la serie leucocitaria fuera del recipiente más allá del sensor en la bolsa de recogida de serie leucocitaria hasta que se haya recogido la cantidad seleccionada; interrumpir la recolección y serie leucocitaria cuando se detectan glóbulos rojos; inyectar un producto químico de fotoactivación en la serie leucocitaria en la bolsa de recogida de serie leucocitaria; recircular la serie leucocitaria entre la bolsa de recogida y la cámara de irradiación; irradiar la serie leucocitaria en la cámara de irradiación durante la recirculación; bombear la serie leucocitaria irradiada desde la cámara de irradiación; bombear la serie leucocitaria irradiada desde la bolsa de recogida a través de un filtro en la casete y hacerla volver después al paciente; enjuagar el kit desechable con salina y hacer volver la solución enjuagada al paciente. El fluido de cebado es por lo general una mezcla de anticoagulante y salina, y el controlador de flujo de fluido es por lo general una casete. El fluido de cebado puede usarse para cebar el separador, y puede también usarse en el final del proceso para enjuagar los tubos, devolviendo al paciente la solución enjuagada resultante. El separador es por lo general un recipiente centrífugo que forma parte del kit desechable, que está operado por un sistema rotativo centrífugo en la torre.

El tiempo de tratamiento total para un proceso de fotoféresis que antiguamente requería dos o más horas, puede ser inferior a los 70 minutos con la invención, y puede incluso ser tan corto como 45 minutos en muchos casos.

En lugar de separar solo serie leucocitaria, las células de la capa leucocitaria se pueden separar aún más si se desea en sus componentes, como plaquetas y leucocitos.

Breve descripción de los dibujos

La invención se describe con detalle con respecto a los dibujos acompañantes.

La figura 1 es una representación esquemática de una realización de un kit desechable para uso en terapia de fotoféresis que realiza características de la presente invención.

La figura 2 es una vista en perspectiva elevada de una realización de una casete para controlar el flujo de fluido en el kit de fotoféresis desechable de la figura 1.

La figura 3 es una vista despiezada de la casete de la figura 2.

La figura 4 es una vista superior de la casete de la figura 2 con la cubierta quitada y que representa circuitería tubular interna.

5

- La figura 5 es una vista inferior de una cubierta de casete de la figura 2.
- La figura 6 es una vista en perspectiva elevada de una realización de un conjunto de filtro.
- 10 La figura 7 es una vista en perspectiva inferior del conjunto de filtro de la figura 6.
 - La figura 8 es una vista despiezada del conjunto de filtro de la figura 6.
 - La figura 9 es una vista en perspectiva posterior del conjunto de filtro de la figura 6.

15

- La figura 10 es una representación esquemática del conjunto de filtro de la figura 6 acoplado a sensores de presión y un procesador de datos.
- La figura 11 es una vista frontal de una cámara de irradiación.

20

- La figura 12 es una vista lateral longitudinal de la cámara de irradiación de la figura 11.
- La figura 13 es una vista lateral transversal de la cámara de irradiación de la figura 11.
- La figura 14 es una vista cortada de una sección de la primera placa y la segunda placa antes de unirse conjuntamente para formar la cámara de irradiación de la figura 11.
 - La figura 15 es una vista de extremo dimensional cortada de la cámara de irradiación de la figura 11.
- La figura 16 es una vista en perspectiva de la cámara de irradiación de la figura 11 colocada dentro de un conjunto de luz UVA.
 - La figura 17 es una vista en perspectiva elevada de una realización de un sistema de torre permanente para uso en unión con un kit desechable para facilitar una sesión de terapia de fotoféresis.

35

- La figura 18 es una vista en sección transversal de una realización de la cámara de fotoactivación, sin un conjunto de luz UVA, usada en el sistema de torre de la figura 17.
- La figura 19 es una vista en sección transversal de una realización de la cámara centrífuga usada en el sistema de torre de la figura 17.
 - La figura 20 es un esquema eléctrico del circuito de detección de fugas dispuesto en la cámara de fotoactivación de la figura 18.
- La figura 21 es un esquema eléctrico del circuito de detección de fugas dispuesto en la cámara centrífuga de la figura 19.
 - La figura 22 es una vista en perspectiva elevada de una realización de la cubierta de control de flujo de fluido del sistema de torre de la figura 17.

50

- La figura 23 es una vista en perspectiva inferior de la cubierta de control de la figura 22.
- La figura 24 es una vista despiezada de la cubierta de control de la figura 22.
- La figura 25 es una vista en perspectiva superior de la cubierta de control de la figura 22 con la casete de la figura 2 cargada encima.
 - La figura 26 es un diagrama de flujo de una realización de un proceso de tratamiento por fotoféresis.
- 60 La figura 27 es un esquema de una realización del circuito de flujo de fluido usado al realizar el proceso de tratamiento de la figura 26.
 - La figura 28 es una vista en perspectiva superior de una realización de una bomba peristáltica.
- 65 La figura 29 es una vista lateral en sección transversal de la bomba peristáltica de la figura 28.

- La figura 30 es una vista en perspectiva superior del rotor de la bomba peristáltica de la figura 29.
- La figura 31 es una vista inferior en perspectiva del rotor de la figura 30.
- 5 La figura 32 es una vista superior de la bomba peristáltica de la figura 28.
 - La figura 33 es una vista superior de la bomba peristáltica de la figura 28 en una posición de carga y cerca de la casete de la figura 2.
- 10 La figura 34 es un esquema eléctrico del circuito de puerto de comunicación por infrarrojos.
 - La figura 35 ilustra una realización de un recipiente de centrífuga y un bastidor rotativo.
 - La figura 36 es una vista dimensional del recipiente de la figura 35.
 - La figura 37 es una vista despiezada del recipiente de la figura 36.

15

25

45

65

- La figura 38 representa una vista en sección transversal del recipiente de la figura 36 a lo largo de la línea XIX-XIX.
- La figura 39A representa una vista en sección transversal de un manguito de conexión en posición con un conector de lumen del recipiente de la figura 38 a lo largo de la línea XX.
 - La figura 39B representa otra vista en sección transversal de un manguito de conexión en posición con un conector de lumen del recipiente de la figura 38.
 - La figura 40 representa una vista en sección transversal del núcleo superior del recipiente de la figura 37.
 - La figura 41 representa una vista dimensional del núcleo superior y placa superior de la figura 37.
- 30 La figura 42 representa una vista inferior del núcleo superior de la figura 41.
 - La figura 43A representa una vista dimensional despiezada del núcleo inferior y una placa inferior del recipiente de la figura 37.
- La figura 43B representa una vista en sección transversal dimensional del núcleo inferior y una placa inferior del recipiente de la figura 43A unidos conjuntamente.
 - La figura 44 representa una vista lateral despiezada del núcleo inferior y una placa inferior de la figura 43A.
- 40 La figura 45 representa una vista dimensional de otra realización de un conjunto de conductos.
 - La figura 46 representa una vista dimensional del manguito de conexión de la figura 45.
 - La figura 47 representa una vista dimensional de un extremo del conjunto de conductos de la figura 45.
- La figura 48 representa una vista dimensional de un extremo de anclaje de la presente invención.
 - La figura 49 representa una vista lateral en sección transversal de un extremo de anclaje.
- La figura 50 representa una vista en sección horizontal transversal de un extremo de anclaje tomada a lo largo de la línea XXI.
 - La figura 51 ilustra una vista dimensional del bastidor rotativo de la figura 35.
- La figura 52 es una vista ampliada de un soporte para un conducto externo.
 - La figura 53 representa una realización alternativa de un recipiente, tomándose la sección transversal igual que la representada en la figura 38.
- 60 La figura 54 representa una realización alternativa del núcleo superior.
 - La figura 55 representa una realización alternativa de un manguito de conexión.

Modos de llevar a la práctica la invención

Las características de la presente invención se realizan en el equipamiento permanente de movimiento de sangre, el

kit de fotoféresis desechable, los distintos dispositivos que constituyen el kit desechable, y el proceso de tratamiento correspondiente. El esquema de la descripción escrita es el siguiente:

- I. Kit de fotoféresis desechable
- A. Casete para controlar el flujo de fluido
- 1. Conjunto de filtro
- 10 B. Cámara de irradiación
 - C. Recipiente de centrífuga
 - 1. Tubo de accionamiento
 - - II. El sistema de torre permanente
 - A. Cámara de fotoactivación
- 20 B. Cámara centrífuga
 - C. Cubierta de control de flujo de fluido
 - 1. Mecanismo de fijación de casete
- 25

15

5

- 2. Bombas peristálticas de carga automática
- D. Comunicación por infrarrojos
- 30 III. Proceso de tratamiento por fotoféresis

El esbozo anterior se incluye para facilitar la comprensión de las características de la presente invención. El esbozo no limita la presente invención y no se ha previsto que categorice o limite ningún aspecto de la invención. Las invenciones se describen e ilustran con suficiente detalle para que los expertos en esta técnica puedan hacerlas y usarlas fácilmente. Sin embargo, varias alternativas, modificaciones, y mejoras serán fácilmente evidentes sin apartarse del alcance de la invención definido en la reivindicación. Específicamente, aunque la invención se describe en el contexto de un kit desechable y sistema permanente de movimiento de sangre para uso en terapia de fotoféresis, algunos aspectos de la invención no se limitan a ello y son aplicables a kits y sistemas usados para llevar a cabo otras terapias, tal como aféresis o cualquier otra terapia de tratamiento sanguíneo extracorporal.

40

45

35

1. Kit de fotoféresis desechable

La figura 1 ilustra un kit de fotoféresis desechable 1000 que realiza las características de la presente invención. Hay que usar un kit desechable estéril nuevo para cada sesión de terapia. Con el fin de facilitar la circulación de fluidos a través del kit de fotoféresis 1000, y de tratar fluidos sanguíneos que circulan a su través, el kit de fotoféresis 1000 se instala en sistema de torre permanente 2000 (figura 17). La instalación de kit de fotoféresis 1000 en el sistema de torre 2000 se describe con detalle más adelante.

El kit de fotoféresis 1000 incluye una casete 1100, un recipiente de centrífuga 10, una cámara de irradiación 700, sensor de hematocrito 1125, tarjeta de datos extraíble 1195, bolsa de tratamiento 50, y bolsa de recogida de plasma 51. El kit de fotoféresis 1000 incluye además un pico de conexión de salina 1190 y pico de conexión de anticoagulante 1191 para conectar respectivamente bolsas de salina y fluido anticoagulante (no representadas). El kit de fotoféresis 1000 tiene todos los tubos y conectores necesarios para conectar por fluido todos los dispositivos y enrutar la circulación de fluidos durante una sesión de tratamiento de fotoféresis. Todos los tubos son tubos flexibles estériles de calidad médica. Se disponen conectores tripuerto 1192 en varias posiciones para la introducción de fluidos en los tubos, si es necesario.

Se han dispuesto adaptadores de aguja 1193 y 1194 para conectar respectivamente el kit de fotoféresis 1000 a agujas para aspirar sangre entera de un paciente y hacer volver los fluidos sanguíneos al paciente. Alternativamente, el kit de fotoféresis 1000 puede estar adaptado para usar una sola aguja para tomar sangre entera del paciente y hacer volver los fluidos sanguíneos al paciente. Sin embargo, se prefiere un kit de dos agujas a causa de la capacidad de tomar simultáneamente sangre entera y hacer volver fluidos sanguíneos al paciente. Cuando un paciente está conectado al kit de fotoféresis 1000, se forma un sistema en bucle cerrado.

La casete 1100 actúa como un organizador de tubos y un enrutador de flujo de fluido. La cámara de irradiación 700 se usa para exponer fluidos sanguíneos a luz UV. El recipiente de centrífuga 10 separa la sangre entera en sus

diferentes componentes según densidad. La bolsa de tratamiento 50 es una bolsa de tres orificios y 1000 ml. Se usa un orificio de unión recto 52 para inyectar un compuesto fotoactivable o fotosensible a la bolsa de tratamiento 50. La bolsa de recogida de plasma 51 es una bolsa de dos orificios y 1000 ml. La bolsa de tratamiento 50 y la bolsa de recogida de plasma 51 tienen un tubo de pico obturador articulado 53 que puede ser usado para drenaje, si es necesario. El kit de fotoféresis 1000 incluye además filtros hidrófobos 1555 y 1556 que están adaptados para conectar a transductores de presión 1550 y 1551 al filtro 1500 mediante tubos de ventilación 1552 y 1553 para supervisar y controlar las presiones dentro de los tubos que conectan el paciente (figura 10). Supervisar la presión contribuye a asegurar que el kit opere dentro de límites de presión seguros. Los dispositivos individuales del kit de fotoféresis 1000, y su funcionamiento, se explican en detalle a continuación.

A. Casete para controlar el flujo de fluido

10

15

20

25

50

55

La figura 2 representa una vista en perspectiva superior de una casete desechable 1100 para regular, bombear y controlar el movimiento de fluidos sanguíneos durante una sesión de tratamiento de fotoféresis. La casete 1100 tiene un alojamiento 1101 que forma un espacio interno que actúa como una caja para sus varios componentes internos y circuitería tubular. El alojamiento 1101 se hace preferiblemente de plástico duro, pero se puede hacer de cualquier material adecuadamente rígido. El alojamiento 1101 tiene una pared lateral 1104 y una superficie superior 1105. La pared lateral 1104 del alojamiento 1101 tiene lengüetas 1102 y 1103 que se extienden desde ella. Durante un tratamiento de fotoféresis, hay que fijar la casete 1100 a la cubierta 1200 del sistema de torre 2000, como se ilustra mejor en la figura 25. Las lengüetas 1102 y 1103 ayudan a colocar y fijar la casete 1100 a la cubierta 1200.

La casete 1100 tiene tubos de entrada de fluido 1106, 1107, 1108, 1109, 1110, 1111, y 1112 para recibir fluidos en la casete 1100, tubos de salida de fluido 1114, 1115, 1116, 1117, 1118, y 1119 para expulsar fluidos de la casete 1100, y un tubo de entrada/salida de fluido 1113 que puede ser usado para introducir y expulsar fluidos de la casete 1100. Estos tubos de entrada y salida de fluido acoplan por fluido la casete 1100 a un paciente tratado, así como los varios dispositivos del kit de fotoféresis 1000, tal como el recipiente de centrífuga 10, la cámara de irradiación 700, la bolsa de tratamiento 50, la bolsa de recogida de plasma 51, y las bolsas conteniendo salina, fluido anticoagulante para formar un circuito de fluido extracorporal en bucle cerrado (figura 27).

- Bucles de tubo de bomba 1120, 1121, 1122, 1123, y 1124 sobresalen de la pared lateral 1104 del alojamiento 1101. Los bucles de tubo de bomba 1120, 1121, 1122, 1123, y 1124 se han previsto para facilitar la circulación de fluidos por todo el kit de fotoféresis 1000 durante la terapia. Más específicamente, cuando la casete 1100 está fijada a la cubierta 1200 para operación, cada uno de dichos bucles de tubo de bomba 1120, 1121, 1122, 1123, y 1124 se cargan en una bomba peristáltica correspondiente 1301, 1302, 1303, 1304 y 1305 (figura 4). Las bombas peristálticas 1301, 1302, 1303, 1304, y 1305 mueven el fluido a través de los respectivos bucles de tubo de bomba 1120, 1121, 1122, 1123, y 1124 en una dirección predeterminada, moviendo por ello el fluido a través del kit de fotoféresis 1000 (figura 1) según sea necesario. La operación de carga y descarga automática de las bombas peristálticas 1301, 1302, 1303, 1304, y 1305 se explica con detalle más adelante con respecto a las figuras 28-33.
- Pasando ahora a la figura 3, la casete 1100 se representa con el alojamiento 1101 en un estado despiezado. Para facilitar la ilustración y descripción, la circuitería tubular interna dentro del alojamiento 1101 no se ilustra en la figura 3. La circuitería tubular interna se ilustra en la figura 4 y se explicará en relación a ella. La casete 1100 tiene el conjunto de filtro 1500 colocado en ella y en conexión de fluido con el tubo de entrada 1106, el tubo de salida 1114, y un extremo de cada uno de los bucles de tubo de bomba 1120 y 1121. El conjunto de filtro 1500 incluye cámaras de ventilación 1540 y 1542. El conjunto de filtro 1500, y su funcionamiento, se explican con detalle más adelante con respecto a las figuras 6-10.
 - El alojamiento 1101 incluye la cubierta 1130 y la base 1131. La cubierta 1130 tiene una superficie superior 1105, una superficie inferior 1160 (figura 5), y una pared lateral 1104. La cubierta 1130 tiene agujeros 1132 y 1133 para que cámaras de ventilación 1540 y 1542 del conjunto de filtro 1500 se puedan extender a su través. La pared lateral 1104 tiene una pluralidad de ranuras de tubo 1134 para permitir que los tubos de entrada, tubos de salida, y tubos de bucle de bomba pasen al espacio interno del alojamiento 1101 para conexión con la circuitería tubular interna situada en él. Solamente unas pocas ranuras de tubo 1134 están etiquetadas en la figura 3 para evitar el abigarramiento numérico. Las lengüetas 1102 y 1103 están colocadas en la pared lateral 1104 de manera que no interfieran con las ranuras de tubo 1134. La cubierta 1130 tiene barras de oclusión 1162 y 1162A que se extienden desde la superficie inferior 1160 (figura 5). Las barras de oclusión 1162 y 1162A se moldean preferiblemente en la superficie inferior 1160 de la cubierta 1130 durante su formación.
- La base 1131 tiene una pluralidad de soportes de tubo en forma de U 1135 que se extienden hacia arriba desde la superficie superior 1136. Los soportes de tubo en forma de U 1135 mantienen en posición los tubos de entrada, los tubos de salida, los tubos de bucle de bomba, el conjunto de filtro, y la circuitería tubular interna. Solamente unos pocos soportes en forma de U 1135 están etiquetados en la figura 3 para evitar el abigarramiento numérico. Preferiblemente, un soporte en forma de U 1135 está dispuesto en la base 1131 en cada posición donde un tubo de entrada, un tubo de salida, o un tubo de bucle de bomba pasa a través de una ranura de tubo 1134 en la pared lateral 1104. Salientes macho 1136 sobresalen de la superficie superior 1136 de la base 1131 para acoplamiento con agujeros hembra correspondientes 1161 situados en la superficie inferior 1160 de la cubierta 1130 (figura 5).

Preferiblemente, un saliente macho 1136 está situado en o cerca de cada una de las cuatro esquinas de base 1130 y cerca del filtro 1500. Salientes macho 1136 acoplan con los agujeros hembra 1161 para formar una base segura y de encaje por salto 1131 con la cubierta 1130.

La base 1131 incluye además un cubo 1140. El cubo 1140 es un conector de tubo de cinco vías usado para conectar cinco tubos de la circuitería tubular interna. Preferiblemente, tres agujeros 1137 están situados cerca y rodeando tres tubos que conducen al cubo 1140. El cubo 1140 actúa como una unión centralizada que puede ser usada, en unión con accionadores de compresión 1240-1247 (figura 22), para dirigir fluidos a través del kit de fotoféresis 1000 y a y desde el paciente. Además del cubo 1140, conectores de tubo apropiados, tales como conectores en T 1141 y un conector en Y 1142, se usan para obtener los recorridos deseados de los tubos flexibles.

15

20

25

30

35

40

45

50

55

60

Cinco agujeros 1137 están situados en el suelo de la base 1130. Cada agujero 1137 está rodeado por una pared de agujero 1138 que tiene ranuras 1139 para pasar porciones de la circuitería tubular interna a su través. Un agujero alargado 1157 también está dispuesto en el suelo de base 1131. Unos aquieros 1137 están situados en la base 1131 para alinear con accionadores de compresión correspondientes 1243-1247 de la cubierta 1200 (figura 22). El agujero 1157 está situado en la base 1131 para alineación con accionadores de compresión 1240-1242 de la cubierta 1200 (figura 22). Cada aquiero 1137 está dimensionado de modo que un solo accionador de compresión 1243-1247 se pueda extender a su través. El aqujero 1157 está dimensionado de modo que tres accionadores de compresión 1240-1242 se puedan extender a su través. Los accionadores de compresión 1240-1247 se usan para cerrar/ocluir y abrir ciertos pasos de fluido de la circuitería tubular interna con el fin de facilitar o prohibir el flujo de fluido a lo largo de un recorrido deseado. Cuando se desea tener un cierto paso abierto de modo que pueda fluir fluido a su través, el accionador de compresión 1240-1247 para dicho paso está en una posición bajada. Sin embargo, cuando se desea cerrar un cierto paso de fluido de modo que no pueda fluir fluido a su través, se sube el accionador de compresión apropiado 1240-1247, extendiendo el accionador de compresión 1240-1247 a través del agujero 1137 o 1157 y comprimiendo una porción de la circuitería tubular flexible contra la superficie inferior 1160 (figura 5) de la cubierta 1130, cerrando por ello dicho paso. Preferiblemente, unas barras de oclusión 1163 y 1173 (figura 5) están colocadas en la superficie inferior 1160 para alineación con los accionadores de compresión 1240-1247 de modo que la porción de tubos flexibles ocluidos se comprima contra la barra de oclusión 1163 o 1173. Alternativamente, la barra de oclusión se puede omitir o situar en los accionadores de compresión propiamente dichos.

Es preferible que la casete 1100 tenga un identificador único que puede comunicar y transmitir información al sistema de torre permanente 2000. El identificador único se facilita con el fin de asegurar que el kit de fotoféresis desechable sea compatible con el equipo de movimiento de sangre en el que se está cargando, y de que el kit de fotoféresis sea capaz de llevar a cabo el proceso de tratamiento deseado. El identificador único también puede ser usado como medios para asegurar que el kit de fotoféresis desechable sea de un cierto nombre o marca comercial. En el ejemplo ilustrado, el identificador único se realiza como tarjeta de datos 1195 (figura 2) que se introduce en el puerto de recepción de tarjeta de datos 2001 del sistema de torre permanente 2000 (figura 17). La tarjeta de datos 1195 tiene capacidades de lectura y escritura y puede almacenar datos relativos a la terapia de tratamiento realizada para futuro análisis. El identificador único también puede tomar varias formas, incluyendo, por ejemplo, un microchip que interactúa con el equipo de movimiento de sangre cuando el kit está cargado, un código de barras, o un número de serie.

La cubierta 1130 tiene un soporte de tarjeta de datos 1134 para sujetar la tarjeta de datos 1195 (figura 1). El soporte de tarjeta de datos 1134 incluye cuatro aristas elevadas en una forma rectangular segmentada para recibir y sujetar la tarjeta de datos 1195 a la casete 1100. El soporte de tarjeta de datos 1134 sujeta la tarjeta de datos 1195 en posición mediante encaje por salto (figura 2).

La circuitería tubular interna de casete 1100 se explicará ahora con referencia a las figuras 1 y 4. Al menos una porción de la circuitería tubular interna se hace preferiblemente de tubos de plástico flexible que se pueden cerrar ejerciendo presión sin poner en peligro la integridad hermética del tubo. La base 1131 de la casete 1100 se ilustra en la figura 4 de modo que la circuitería tubular interna se pueda ver. Los tubos de entrada 1107 y 1108 y el tubo de salida 1115 se han previsto para acoplar la casete 1100 al recipiente de centrífuga 10 (figura 1). Más específicamente, el tubo de salida 1115 se ha previsto para suministrar sangre entera desde la casete 1100 al recipiente de centrífuga 10, y los tubos de entrada 1107 y 1108 se han previsto respectivamente para devolver componentes sanguíneos de densidad inferior y componentes sanguíneos de densidad más alta a la casete 1100 para dirigirlos a través del kit de fotoféresis 1000. Los componentes sanguíneos de densidad más baja pueden incluir, por ejemplo, plasma, leucocitos, plaquetas, capa leucocitaria, o cualquier combinación de los mismos. Los componentes de densidad más alta pueden incluir, por ejemplo, glóbulos rojos. El tubo de salida 1117 y el tubo de entrada 1112 acoplan por fluido la casete 1100 a la cámara de irradiación 700. Más específicamente, el tubo de salida 1117 se ha previsto para suministrar un componente sanguíneo de densidad más baja no tratado, por ejemplo, la capa leucocitaria, a la cámara de irradiación 700 para exposición a fotoenergía, mientras que el tubo de entrada 1112 se ha previsto para devolver el componente sanguíneo de densidad más baja tratado a la casete 1100 para dirección adicional.

El tubo de entrada 1111 y el tubo de salida 1116 acoplan la bolsa de tratamiento 50 a la casete 1100. El tubo de salida 1116 se ha previsto para suministrar un componente sanguíneo de baja densidad no tratado, por ejemplo, la

capa leucocitaria, a la bolsa de tratamiento 50. El tubo de salida 1116 tiene un sensor de hematocrito ("HCT") 1125 conectado operativamente a él para supervisar la introducción de un componente sanguíneo de alta densidad, tal como glóbulos rojos. El sensor HCT 1125 es un conjunto fotosensor y está acoplado operativamente a un controlador. El sensor HCT 1125 envía una señal de detección al controlador cuando se detectan glóbulos rojos en el tubo de salida 1116 y el controlador realizará la acción apropiada. El tubo de entrada 1111 se ha previsto para hacer volver el componente sanguíneo de baja densidad no tratado desde la bolsa de tratamiento 50 a la casete 1100 para dirección adicional. Los tubos de entrada 1109 y 1110 están conectados respectivamente a bolsas de almacenamiento de salina y anticoagulante (no representadas) mediante picos 1190 y 1191 y se han previsto para suministrar salina y un fluido anticoagulante a la casete 1100 para dirigirlos adicionalmente al paciente.

10

15

El tubo de entrada/salida 1113 y el tubo de salida 1118 acoplan la bolsa de recogida de plasma 50 a la casete 1100. Más específicamente, el tubo de salida 1118 suministra un componente sanguíneo, tal como plasma, a la bolsa de recogida de plasma 51. El tubo de entrada/salida 1113 puede ser usado para suministrar glóbulos rojos a la bolsa de recogida de plasma 51 desde la casete 1100 o para hacer volver el (los) componente(s) sanguíneo(s) que se acumula(n) en la bolsa de recogida de plasma 51 a la casete 1100 para dirección adicional. El tubo de entrada 1106 y los tubos de salida 1119 y 1114 están acoplados a un paciente. Específicamente, el tubo de salida 1114 se ha previsto para hacer volver sangre tratada, salina, componentes sanguíneos no tratados, componentes sanguíneos tratados, y otros fluidos al paciente. El tubo de entrada 1106 se ha previsto para suministrar sangre entera no tratada (y una cantidad predeterminada de un fluido anticoaqulante) desde el paciente a la casete 1100 para dirección y tratamiento dentro del kit de fotoféresis 1000. El tubo de salida 1119 se ha previsto específicamente para suministrar un fluido anticoagulante al tubo de entrada 1106. Es preferible que todos los tubos sean tubos desechables estériles de calidad médica. Los tubos de plástico flexible son los más preferidos.

20

25

La casete 1100 tiene cinco bucles de tubo de bomba 1120, 1121, 1122, 1123, y 1124 para mover fluidos sanguíneos por toda la casete 1100 y el kit de fotoféresis 1000. Más específicamente, el bucle de tubo de bomba 1121 carga la bomba de sangre entera 1301 e introduce y saca, respectivamente, sangre entera de la casete 1100 mediante el tubo de entrada 1106 y el tubo de salida 1115, pasando a través del filtro 1500 a lo largo de todo el recorrido. El tubo de bucle de bomba 1120 carga la bomba de retorno 1302 y mueve fluidos sanguíneos a través del filtro 1500 y los hace volver al paciente mediante el tubo de salida 1114. El tubo de bucle de bomba 1122 carga la bomba de glóbulos rojos 1305 y toma glóbulos rojos del recipiente de centrífuga 10 y los lleva a la casete 1100 mediante la línea de entrada 1108. El tubo de bucle de bomba 1123 carga la bomba de anticoagulante 1304 y mueve un fluido anticoagulante a la casete 1100 mediante el tubo de entrada 1124 y lo saca de la casete 1100 mediante el tubo de salida 1119, que conecta con el tubo de entrada 1106. El tubo de bucle de bomba 1124 carga la bomba de recirculación 1303 y saca de la casete 1100 fluidos sanquíneos, tales como plasma, a través de la bolsa de tratamiento 50 y la cámara de irradiación 700.

35

30

Cada una de las bombas peristálticas 1301-1305 es activada cuando es necesario para realizar la terapia de tratamiento de fotoféresis según una realización del método de la presente invención que se describe más adelante en relación a las figuras 26-27. Las bombas peristálticas 1301-1305 pueden operar una cada vez o en cualquier

combinación. Las bombas 1301-1305 trabajan en unión con accionadores de compresión 1240-1247 para dirigir fluidos a través de recorridos deseados del kit de fotoféresis 1000. Unos agujeros 1137 y 1157 están situados estratégicamente en la base 1131 a lo largo de la circuitería tubular interna para facilitar la dirección apropiada. Mediante el uso de accionadores de compresión 1240-1247, los fluidos pueden ser dirigidos a lo largo de cualquier

recorrido o su combinación.

45

40

1. El conjunto de filtro

50

El filtro 1500, que está situado dentro de la casete 1100 como se ha descrito anteriormente, se ilustra en detalle en las figuras 6-10. Con referencia primero a las figuras 6 y 7, el filtro 1500 se ilustra completamente montado. El filtro 1500 incluye un alojamiento de filtro 1501. El alojamiento de filtro 1501 se hace preferiblemente de un plástico transparente o translúcido de calidad médica. Sin embargo, la invención no se limita a ello y el alojamiento de filtro 1501 se puede hacer de cualquier material que no contamine la sangre u otros fluidos que fluyan a su través.

55

El alojamiento de filtro 1501 tiene cuatro orificios de conexión de fluido que salen de él, a saber, un orificio de entrada de sangre entera 1502, un orificio de salida de sangre entera 1503, orificio de entrada de fluido tratado 1504. y un orificio de salida de fluido tratado 1505. Los orificios 1502-1505 son orificios de conexión de tubos médicos estándar que permiten conectar por fluido tubos médicos. Los orificios 1502-1505 contienen, respectivamente, agujeros 1506, 1507, 1508 y 1509. Los agujeros 1506, 1507, 1508 y 1509 se extienden a través de los orificios 1502, 1503, 1504 y 1505, formando pasos de fluido al alojamiento de filtro 1501 en las posiciones deseadas.

60

Los orificios 1502, 1503, 1504 y 1505 también se usan para fijar el filtro 1500 dentro de la casete 1100. Al hacerlo, los orificios 1502, 1503, 1504 y 1505 pueden enganchar sujetadores en forma de U 1135 de la casete 1100 (figura 3). El alojamiento de filtro 1501 también tiene un saliente 1510 que se extiende desde la superficie inferior del suelo 1518 del alojamiento. El saliente 1510 encaja en un agujero de guía de la base 1131 de la casete 1100 (figura 3).

65

Con referencia ahora a la figura 8, el filtro 1500 se ilustra en un estado despiezado. El alojamiento de filtro 1501 es

un conjunto de dos piezas incluyendo el techo 1511 y la base 1512. El techo 1511 se conecta a la base 1512 por medios conocidos en la técnica, tal como soldadura ultrasónica, soldadura por calor, aplicación de adhesivo, o diseñando el techo 1511 y la base 1512 de modo que se produzca entre ambos un ajuste estrecho. Aunque el alojamiento de filtro 1501 se ilustra como un conjunto de dos piezas, el alojamiento de filtro 1501 puede ser una estructura de una sola pieza o un conjunto de piezas múltiples.

La base 1512 tiene una pared de separación de cámara 1513 que se extiende hacia arriba desde una superficie superior del suelo 1518 del alojamiento (figura 7). Cuando la base 1512 y el techo 1511 están montados, la superficie superior 1515 de la pared de separación de cámara 1513 contacta la superficie inferior del techo 1511, formando dos cámaras dentro del alojamiento de filtro, la cámara de sangre entera 1516 y la cámara de filtro 1517. No puede pasar directamente fluido entre la cámara de sangre entera 1516 y la cámara de filtro 1517.

10

15

20

25

40

45

La cámara de sangre entera 1516 es una cámara sustancialmente en forma de L que tiene un suelo 1514. La cámara de sangre entera 1516 tiene un agujero de entrada de sangre entera 1519 y un agujero de salida de sangre entera (no ilustrado) en el suelo 1514. El agujero de entrada de sangre entera 1519 y el agujero de salida de sangre entera están situados en o cerca de los extremos de la cámara de sangre entera 1516 sustancialmente en forma de L. El agujero de entrada de sangre entera 1519 forma un paso con el agujero 1506 del orificio de entrada 1502 de modo que pueda fluir un fluido a la cámara de sangre entera 1516. Igualmente, el agujero de salida de sangre entera (no ilustrado) forma un paso con el agujero 1507 del orificio de salida 1503 de modo que pueda salir fluido de la cámara de sangre entera 1516.

La cámara de filtro 1517 tiene un suelo 1520. El suelo 1520 tiene una arista elevada 1521 que se extiende hacia arriba. La arista elevada 1521 es rectangular y forma un perímetro. Aunque la arista elevada 1521 es rectangular en la realización ilustrada, la arista elevada 1521 puede ser de cualquier forma a condición de que forme un perímetro cerrado. La altura de la arista elevada 1521 es menor que la altura de la pared de separación de cámara 1513. Como tal, cuando el techo 1511 y la base 1512 están montados, hay espacio entre la parte superior de la arista elevada 1521 y la superficie inferior del techo 1511. La arista elevada 1521 y la pared de separación de cámara 1513 forman una zanja 1524 entremedio.

Con el fin de facilitar el flujo de fluido a través de la cámara de filtro 1517, el suelo 1520 de la cámara de filtro 1517 tiene un agujero de entrada de fluido tratado 1522 y un agujero de salida de fluido tratado 1523. El agujero de entrada de fluido tratado 1522 está situado fuera del perímetro formado por la arista elevada 1521 y forma un paso con el agujero 1508 del orificio de entrada 1504 de modo que pueda fluir un fluido a la cámara de filtro 1517 desde fuera del alojamiento de filtro 1501. El agujero de salida de fluido tratado 1523 está situado dentro del perímetro formado por la arista elevada 1521 y forma un paso con el agujero 1509 del orificio de salida 1505 de modo que pueda salir un fluido de la cámara de filtro 1517.

El filtro 1500 incluye además un elemento de filtro 1530. El elemento de filtro 1530 incluye un bastidor 1531 que tiene medios de filtro 1532 colocados en él. El bastidor 1531 tiene un cuello 1534 que forma un agujero de entrada del filtro 1533. El elemento de filtro 1530 se coloca en la cámara de filtro 1517 de modo que el bastidor 1531 encaje en la zanja 1524 y el cuello 1534 rodee el agujero de entrada de sangre tratada 1522. El agujero de entrada del filtro 1533 está alineado con el agujero de entrada de fluido tratado 1522 de modo que el fluido entrante pueda fluir libremente a través de los agujeros 1522 y 1533 a la cámara de filtro 1517. El bastidor 1531 del elemento de filtro 1530 forma un ajuste hermético con la arista elevada 1521. Todo el fluido que entra en la cámara de filtro 1517 a través de los agujeros 1522 y 1533 debe pasar a través del medio de filtro 1532 con el fin de salir de la cámara de filtro 1517 por el agujero de salida de fluido tratado 1523. El medio de filtro 1532 tiene preferiblemente un tamaño de poro de aproximadamente 200 micras. El medio de filtro 1532 se puede formar de malla de tejido, tal como poliéster tejido.

La cámara de filtro 1517 incluye además una cámara de ventilación de filtro 1540 dentro del techo 1511. La cámara de ventilación de filtro 1540 tiene ventilación de gas 1541 en forma de un agujero (figura 9). Dado que la ventilación de gas 1541 se abre a la cámara de ventilación de filtro 1540 que a su vez se abre a la cámara de filtro 1517, los gases que se acumulan dentro de la cámara de filtro 1517 pueden escapar a través de la ventilación de gas 1541. Igualmente, la cámara de sangre entera 1516 incluye la cámara de ventilación de sangre 1542 dentro del techo 1511. La cámara de ventilación de sangre 1541 tiene ventilación de gas 1543 en forma de un agujero. Dado que la ventilación de gas 1543 se abre a la cámara de ventilación de sangre 1542 que a su vez se abre a la cámara de sangre entera 1517, los gases que se acumulan en la cámara de sangre entera 1516 pueden escapar por la ventilación de gas 1543.

La figura 10 es una vista superior del filtro 1500 que tiene sensores de presión 1550 y 1551 conectados a agujeros de gas 1541 y 1543. Los sensores de presión 1550 y 1551 son preferiblemente transductores de presión. El sensor de presión 1550 está conectado a la ventilación de gas 1541 mediante tubos de ventilación 1552. Los tubos de ventilación 1552 encajan en la ventilación de gas 1541 con el fin de formar un ajuste estrecho y sellado. Dado que la ventilación de gas 1541 se abre a la cámara de ventilación de filtro 1540 que a su vez se abre a la cámara de filtro 1517, la presión en los tubos de ventilación 1552 es la misma que en la cámara de filtro 1517. Midiendo la presión en los tubos de ventilación 1552, el sensor de presión 1550 también mide la presión dentro de la cámara de filtro 1517.

Igualmente, el sensor de presión 1551 está conectado a la ventilación de gas 1543 mediante el tubo de ventilación 1553. Los tubos de ventilación 1553 encajan en la ventilación de gas 1543 con el fin de formar un ajuste apretado y sellado y el sensor de presión 1551 mide la presión dentro de la cámara de sangre entera 1516. La cámara de ventilación de filtro 1540 y la cámara de ventilación de sangre 1542 se extienden a través de agujeros 1132 y 1133 de la casete 1100 cuando el filtro 1500 está colocado (figura 2). Esto permite supervisar la presión dentro de las cámaras 1516 y 1517 protegiendo al mismo tiempo la cámara de filtro 1500 y las conexiones de fluido con ella.

Los sensores de presión 1550 y 1551 están acoplados al controlador 1554, que es un procesador adecuadamente programado. El controlador 1554 puede ser un procesador principal usado para mover todo el sistema o puede ser un procesador separado acoplado a un procesador principal. Los sensores de presión 1550 y 1551 producen señales eléctricas de salida representativas de las lecturas de presión dentro de las cámaras 1517 y 1516 respectivamente. El controlador 1554 recibe frecuente o continuamente datos que representan la presión dentro de las cámaras 1516 y 1517. El controlador 1554 está programado con valores que representan las presiones deseadas dentro de las cámaras 1516 y 1517. El controlador 1554 analiza de forma continua los datos de presión que recibe de los sensores de presión 1550 y 1551 para determinar si las lecturas de presión están dentro de un rango predeterminado de la presión deseada para las cámaras 1517 y 1516. El controlador 1554 también está acoplado a la bomba de sangre entera 1301 y la bomba de retorno 1302. En respuesta a los datos de presión recibidos de los sensores de presión 1551 y 1550, el controlador 1554 se programa para controlar la velocidad de la bomba de sangre entera 1301 y la bomba de retorno 1302, ajustando por ello las tasas de flujo a través de las bombas 1301 y 1301. A su vez, el ajuste de dichas tasas de flujo ajusta la presión dentro de las cámaras de sangre entera 1516 y la cámara de filtro 1517 respectivamente. De esta forma, la presión dentro de las líneas que toman y devuelven sangre al paciente se mantiene a niveles aceptables.

10

15

20

25

45

50

55

60

65

El funcionamiento del filtro 1500 durante una sesión de terapia de fotoféresis se explicará ahora en relación a las figuras 1, 6 y 10. Aunque el funcionamiento del filtro 1500 se describirá con detalle con respecto a la toma de sangre entera de un paciente y la devolución de un componente de dicha sangre entera al paciente después de ser tratado, la invención no se limita a ello. El filtro 1500 puede ser usado en conexión con casi cualquier fluido, incluyendo glóbulos rojos, glóbulos blancos, capa leucocitaria, plasma, o su combinación.

La bomba de sangre entera 1601 toma sangre entera de un paciente que está conectado al kit de fotoféresis 1000 mediante una aguja conectada al orificio 1193. La velocidad rotacional de la bomba de sangre entera se establece de modo que la presión de la línea que toma la sangre entera del paciente esté a un nivel aceptable. Al ser tomada del paciente, la sangre entera pasa a la casete 1100 mediante el tubo de entrada 1106. El tubo de entrada 1106 está conectado por fluido al orificio de entrada 1502 del filtro 1500. La sangre entera pasa a través del agujero 1506 del orificio de entrada 1502 y a la cámara de sangre entera en forma de L 1516. La sangre entera entra en la cámara 1516 a través del agujero de entrada 1519 que está situado en el suelo 1514. Cuando entra más sangre entera en la cámara 1516, la sangre entera se derrama a lo largo del suelo 1514 hasta que llega al agujero de salida de sangre entera (no ilustrado) en el otro extremo de la cámara de sangre entera en forma de L 1516. Como se ha explicado anteriormente, la salida de sangre entera forma un paso con el agujero 1507 del orificio de salida 1503. La sangre entera que está dentro de la cámara 1516 fluye a través del suelo 1514, a través del agujero de salida de sangre entera, al orificio de salida 1503, y sale del filtro 1500 a través del agujero 1507.

Cuando la sangre entera pasa a través de la cámara de sangre entera 1516, escapan los gases que quedan atrapados en la sangre entera. Estos gases se recogen en la cámara de ventilación de sangre 1542 y posteriormente escapan mediante la ventilación de gas 1543. El sensor de presión 1551 supervisa de forma continua la presión dentro de la cámara de sangre 1516 a través del tubo de ventilación 1553 y transmite datos de presión correspondientes al controlador 1554. El controlador 1554 analiza los datos de presión recibidos y, si es necesario, regula la velocidad de la bomba de sangre entera 1301, ajustando por ello la tasa de flujo y la presión dentro de la cámara 1516 y el tubo de entrada 1106. El controlador 1554 ajusta la velocidad de la bomba para asegurar que la presión esté dentro del rango de presión deseado.

La sangre entera sale entonces del filtro 1500 a través del orificio de salida 1503 y sale de la casete 1100 por el tubo de salida 1115. La sangre entera es separada entonces en componentes y/o tratada como se describe con detalle más adelante. Antes de ser devuelto al paciente, este fluido tratado (es decir, la sangre tratada o los componentes sanguíneos) debe ser filtrado. También se deben filtrar fluidos no tratados, como glóbulos rojos, y se someterán al proceso de filtración posterior. El fluido tratado es alimentado a la cámara de filtro 1517 a través del agujero 1508 del orificio de entrada 1504. El orificio de entrada 1504 está conectado por fluido al tubo de bucle de bomba 1120. El fluido tratado entra en la cámara de filtro 1517 a través del agujero de entrada 1522 y pasa a través del agujero de entrada del filtro 1533 del elemento de filtro 1530. El fluido tratado llena la cámara de filtro 1517 hasta que rebosa sobre el bastidor 1531 del elemento de filtro 1530, que está fijado a la arista elevada 1521. El fluido tratado pasa a través del medio de filtro 1532. El medio de filtro 1532 quita contaminantes y otros materiales indeseados del fluido tratado, facilitando al mismo tiempo la liberación de los gases atrapados del fluido tratado. El fluido tratado que pasa a través del medio de filtro 1532 se recoge en el suelo 1520 de la cámara de filtro 1517 dentro del perímetro formado por la arista elevada 1521. Este fluido tratado pasa entonces al agujero de salida de fluido tratado 1523 y sale del filtro 1500 a través del agujero 1506 del orificio de salida 1502. El fluido tratado es devuelto posteriormente al paciente mediante el tubo de salida 1114, que está conectado por fluido con el orificio de salida 1502. El fluido

tratado es pasado a través de la cámara de filtro 1517 y el tubo de salida 1114 por la bomba de retorno 1302.

Los gases atrapados en el fluido tratado escapan y se recogen en la cámara de ventilación de filtro 1540 cuando el fluido tratado fluye a través de la cámara de filtro 1517. Estos gases escapan entonces del filtro 1500 a través de la ventilación de gas 1541. El sensor de presión 1550 supervisa de forma continua la presión dentro de la cámara de filtro 1517 a través del tubo de ventilación 1552 y transmite datos de presión correspondientes al controlador 1554. El controlador 1554 analiza los datos de presión recibidos y los compara con el valor y rango de presión deseados. Si es necesario, el controlador 1554 regula la velocidad de la bomba de retorno 1302, ajustando por ello la tasa de flujo y la presión dentro de la cámara 1517 y el tubo de salida 1114.

B. Cámara de irradiación

5

10

15

20

25

40

45

50

55

60

65

Las figuras 11-16 ilustran en detalle la cámara de irradiación 700 del kit de fotoféresis 1000. Con referencia primero a la figura 11, la cámara de irradiación 700 se forma uniendo dos placas, una placa delantera y otra trasera que tienen preferiblemente un grosor de aproximadamente 0,06 pulgada a aproximadamente 0,2 pulgada, que se componen preferiblemente de un material idealmente transparente a la longitud de onda de radiación electromagnética. En el caso de radiación ultravioleta A, el policarbonato se considera muy preferido, aunque se pueden emplear otros materiales tales como acrílico. Igualmente, se puede emplear muchos métodos de unión conocidos y no se tienen que explicar aquí.

La primera placa 702 tiene una primera superficie 712 y una segunda superficie 714. En una realización preferida la primera placa 702 tiene un primer orificio 705 en una primera superficie 712, en comunicación de fluido con la segunda superficie 714. La segunda superficie 714 de la primera placa 702 tiene un límite elevado 726A definiendo un recinto. El límite 726A se extiende preferiblemente sustancialmente perpendicular a la segunda superficie 714 (es decir aproximadamente 80-100 grados). De la segunda superficie 714 (preferiblemente de forma sustancialmente perpendicular) se extienden tabiques elevados 720A. El límite 726A rodea los tabiques 720A. Un extremo de cada tabique 720A se extiende y contacta el límite 726A.

La segunda placa 701 tiene una primera superficie 711 y una segunda superficie 713. En una realización preferida, la segunda placa 701 tiene preferiblemente un segundo orificio 730 en una primera superficie 711, en comunicación de fluido con la segunda superficie 713. La segunda superficie 713 de la placa trasera 701 tiene un límite elevado 726B que define un recinto. El límite 726B se extiende preferiblemente de forma sustancialmente perpendicular a la segunda superficie 713 (es decir, aproximadamente 80-100 grados). Desde la segunda superficie 713 (preferiblemente sustancialmente perpendicular) se extienden tabiques elevados (720B). El límite 726B rodea los tabiques 720B. Un extremo de cada tabique 720A se extiende y contacta un lado de límite (726B).

La unión de las segundas superficies de las placas primera y segunda da lugar a una unión estanca a los fluidos entre los límites 726A y 726B formando por ello el límite 726. Los tabiques 720A y 720B también se unen formando una unión estanca a los fluidos formando por ello el tabique 720. El límite 726 forma una cámara de irradiación 700 y conjuntamente con los tabiques 720 proporciona un recorrido 710 que tiene canales 715 para conducir fluido. El recorrido puede ser en serpentín, zigzag, o cola de milano. Actualmente se prefiere un recorrido en serpentín.

Con referencia a la figura 11 y 12, la cámara de irradiación 700 incluye un recorrido en serpentín 710 para conducir fluido del paciente, tal como la capa leucocitaria o los glóbulos blancos, desde el orificio de entrada 705 al orificio de salida 730, es decir, el recorrido en serpentín 710 está en comunicación de fluido con el orificio de entrada 705 de la placa delantera 702 y el orificio de salida 730 de la placa trasera 701. Se suministra fluido del paciente desde la casete 1100 al orificio de entrada 705 mediante el tubo de salida 1117. Después de la fotoactivación y de pasar a través del recorrido en serpentín 710, el fluido tratado del paciente es devuelto a la casete 1100 mediante el tubo de entrada 1112 (figuras 1 y 4). El fluido del paciente es movido por la bomba de recirculación 1303. Los efectos de autoblindaje de las células se reducen al mismo tiempo que las células son fotoactivadas por la irradiación que choca sobre ambos lados de la cámara de irradiación 700.

La figura 11 representa el pasador 740 y el rebaje 735 que alinean las dos placas de la cámara de irradiación antes de unirse conjuntamente en una disposición estanca por soldadura RF, soldadura por impulsos de calor, soldadura por disolvente o unión adhesiva. La unión de las placas por unión adhesiva y soldadura RF es preferible. La unión de las placas delantera y trasera por soldadura RF es muy preferida puesto que el diseño de los tabiques elevados 720 y el perímetro 725 minimiza el parpadeo y permite una aplicación uniforme de energía RF. Las posiciones del pasador 740 y del rebaje 735 pueden estar dentro del recorrido en serpentín 710 o fuera del recorrido en serpentín 710. La figura 2 también representa una vista de una cámara de irradiación con el eje L. La rotación de 180 grados de la cámara 700 alrededor del eje L da la configuración original de la cámara de irradiación. La cámara de irradiación de la presente invención tiene simetría C₂ alrededor del eje L.

Con referencia a las figuras 11, 13, y 16, la sangre enriquecida con leucocito, el plasma, y la solución de cebado son distribuidos a través del orificio de entrada 705 de la placa delantera 702 de la cámara de irradiación 700 al canal 715. El canal 715 en la cámara de irradiación 700 es relativamente "fino" (por ejemplo, del orden de aproximadamente 0,04 pulgadas como distancia entre dos placas) con el fin de presentar un área superficial grande

de sangre rica en leucocito a irradiación y reducir los efectos de autoblindaje propios de las relaciones más bajas de área superficial/volumen. La forma en sección transversal del canal 715 es sustancialmente rectangular (por ejemplo, rectangular, romboide o trapezoidal) que tiene como su lado largo la distancia entre el tabique 720 y la distancia entre las placas como su lado corto. La forma de la sección transversal está diseñada para óptima irradiación de las células que pasan a través del canal 715. Aunque se prefiere un recorrido en serpentín 710 con el fin de evitar o minimizar las zonas de flujo estancado, se contemplan otras disposiciones.

5

10

15

20

30

45

50

55

60

65

La cámara de irradiación 700 permite la eficiente activación de agentes fotoactivables por irradiación desde un conjunto de luces, tal como los dos bancos de lámparas UVA PHOTOSETTE® (758) para activación (figura 16). La placa de irradiación y el conjunto de luz UVA (759) están diseñados para usarse en una posición donde el borde 706 está orientado hacia abajo y el borde 707 apunta hacia arriba. En esta orientación, los fluidos que entran en el orificio de entrada 705 pueden salir del orificio de salida 730 con la ayuda de la gravedad. En la realización más preferida, la irradiación de ambos lados de la cámara de irradiación tiene lugar simultáneamente permitiendo al mismo tiempo la fácil extracción de la cámara. El conjunto de luz UVA 759 está situado dentro de la cámara UV 750 del sistema de torre permanente 2000 (figuras 17 y 18).

El recorrido de fluido de la cámara de irradiación forma bucles para formar dos o más canales donde circula la sangre enriquecida con leucocito durante la fotoactivación por luz UVA. Preferiblemente, la cámara de irradiación 700 tiene entre 4 y 12 canales. Más preferiblemente, la cámara de irradiación tiene de 6 a 8 canales. Muy preferiblemente, la cámara de irradiación tiene 8 canales.

La figura 14 representa vistas cortadas de la cámara de irradiación. Los canales 715 del recorrido en serpentín 710 están formados por la unión del tabique elevado 720 y el perímetro 726 de las placas.

La cámara de irradiación de la presente invención se puede hacer de un material biocompatible y se puede esterilizar por métodos conocidos tales como calentamiento, exposición a radiación o tratamiento con óxido de etileno (ETO).

Ahora se explicará el método de irradiar células usando la cámara de irradiación 700 durante el tratamiento extracorporal de células con radiación electromagnética (UVA) a usar en el tratamiento de un paciente (tal como para inducir apoptosis en las células y suministrar las células al paciente). Preferiblemente las células tratadas serán glóbulos blancos.

En una realización de este método, un compuesto fotoactivable o fotosensible se suministra primero a al menos una porción de la sangre de un receptor antes del tratamiento extracorporal de las células. El compuesto fotoactivable o fotosensible puede ser administrado in vivo (por ejemplo, oralmente o por vía intravenosa). El compuesto fotosensible, cuando se administra in vivo, puede ser administrado oralmente, pero también puede ser administrado por vía intravenosa y/o por otras rutas de administración convencionales. La dosis oral del compuesto fotosensible puede ser del rango de aproximadamente 0,3 a aproximadamente 0,7 mg/kg, más específicamente aproximadamente 0,6 mg/kg.

Cuando se administra oralmente, el compuesto fotosensible puede ser administrado al menos aproximadamente una hora antes del tratamiento de fotoféresis y no más de aproximadamente tres horas antes del tratamiento de fotoféresis. Si se administra por vía intravenosa, los tiempos serían más cortos. Alternativamente, el compuesto fotosensible puede ser administrado antes o simultáneamente con la exposición a la luz ultravioleta. El compuesto fotosensible puede ser administrado a sangre entera o una fracción de la misma a condición de que los glóbulos blancos o componentes sanguíneos reciban el compuesto fotosensible. Una porción de la sangre podría ser procesada primero usando métodos conocidos para quitar sustancialmente los eritrocitos y el compuesto fotoactivo se puede administrar entonces a la fracción enriquecida con leucocitos resultante. En una realización, las células sanguíneas incluyen los glóbulos blancos, específicamente, células T.

El compuesto fotoactivable o fotosensible puede ser capaz, en el caso de algunos psoralenos, de unirse a ácidos nucleicos a la activación por exposición a radiación electromagnética de un espectro preestablecido, por ejemplo, luz ultravioleta.

Los compuestos fotoactivos pueden incluir, aunque sin limitación, compuestos conocidos como psoralenos (o furocoumarinas) así como derivados de psoralenos tales como los descritos, por ejemplo, en la Patente de Estados Unidos número 4.321.919 y la Patente de Estados Unidos número 5.399.719. Los compuestos fotoactivables o fotosensibles que pueden ser usados de acuerdo con la presente invención incluyen, aunque sin limitación, psoraleno y derivados de psoralenos; 8-metoxipsoraleno; 4,5'8-trimetilpsoraleno; 5-metoxi-psoraleno; 4-metilpsoraleno; 4,4-dimetilpsoraleno; 4-5'- dimetilpsoraleno; 4'-aminometil-4,5',8-trimetilpsoraleno; 4'-hidroximetil-4,5',8-trimetilpsoraleno; 4'-,8- metoxipsoraleno; y un 4'-(omega-amino-2-oxa) alquil-4,5',8-trimetilpsoraleno, incluyendo aunque sin limitación 4'-(4- amino-2-oxa)butil-4,5',8-trimetilpsoraleno. En una realización, el compuesto fotosensible que puede ser usado incluye el derivado de psoraleno, amotosaleno (S-59) (Cerus, Corp., Concord, CA). Véase, por ejemplo, las Patentes de Estados Unidos números 6.552.286, 6.469.052 y 6.420.570. En otra realización, el compuesto fotosensible que puede ser usado según la invención incluye 8-metoxipsoraleno.

El metoxsaleno es una sustancia fotoactiva natural que se encuentra en la semilla de Ammi majus (planta umbelífera). Pertenece a una clase de compuestos conocidos como psoralenos o furocoumarinas. El nombre químico es 9-metoxi-7H-furo[3,2-g][1]-benzopiran-7-ona. La formulación del medicamento es un líquido estéril en una concentración de 20 mcg/ml en un vial de 10 ml. Véase http://www.therakos.com/TherakosUS/pdf/uvadexpi.pdf. Se encuentran estudios toxicológicos de la fotoféresis extracorporal y diferentes dosis de UVADEX® y luz ultravioleta en perros beagle en el folleto del investigador.

A continuación, la porción de la sangre del sujeto, sangre del receptor, o la sangre del donante a quien se ha administrado el compuesto fotoactivo, se trata sometiendo la porción de la sangre a fotoféresis usando luz ultravioleta. El tratamiento de fotoféresis se puede llevar a cabo usando luz ultravioleta de longitud de onda larga (UVA) en una longitud de onda dentro del rango de 320 a 400 nm. Sin embargo, tal rango no es limitativo, sino que se ofrece simplemente como un ejemplo. La exposición a luz ultravioleta durante el tratamiento de fotoféresis puede tener una duración de longitud suficiente para administración, por ejemplo, aproximadamente 1-2 J/cm² a la sangre.

El paso de fotoféresis se lleva a cabo in vitro instalando una cámara de irradiación 700 en la cámara de fotoactivación 750 del sistema de torre permanente 2000 (figuras 17 y 18). En una realización, cuando el paso de fotoféresis se lleva a cabo in vitro, al menos una fracción de la sangre tratada es devuelta al sujeto, receptor, o donante. La sangre tratada o la fracción de leucocitos enriquecida tratada (según sea el caso) puede ser administrada posteriormente al sujeto, receptor, o donante.

El proceso de fotoféresis consta de tres fases incluyendo: 1) la recogida de una fracción de la capa leucocitaria (enriquecida con leucocitos), 2) irradiación de la fracción de capa leucocitaria recogida, y 3) reinfusión de los glóbulos blancos tratados. Este proceso se explicará más adelante con más detalle. Generalmente, la sangre entera es centrifugada y separada en el recipiente de centrifuga 10. Un total de aproximadamente 240 ml de capa leucocitaria y 300 ml de plasma se separan y guardan para irradiación UVA.

El plasma y la capa leucocitaria recogidos se mezclan con salina normal heparinizada y UVADEX®. (8-metoxipsoralina soluble en agua). Esta mezcla fluye a una capa de 1,4 mm de grosor a través de la cámara de irradiación de la presente invención. La cámara de irradiación 700 se introduce en la cámara de fotoactivación 750 del sistema de torre 2000 entre dos bancos de lámparas UVA del PHOTOSETTE® (figura 15). Las lámparas UVA de PHOTOSETTE® irradian ambos lados de esta cámara de irradiación transparente a UVA 700, permitiendo la exposición a luz ultravioleta A, produciendo una exposición media por linfocito de 1-2 J/cm². Después del período de fotoactivación, las células se sacan de la cámara de irradiación 700.

En una realización preferida de la presente invención, las células son sacadas por la acción de gravedad y las células que quedan en la cámara son desplazadas de la cámara con fluido adicional seleccionado del grupo que consta de salina, plasma, y sus combinaciones. Para pacientes pequeños, como niños (por ejemplo, de menos de 30 kg) o pacientes cuyo sistema vascular se sobrecarga fácilmente con fluidos, la cantidad de fluido adicional usado para lavar la cámara de irradiación será preferiblemente no superior a 2X el volumen de la cámara, preferiblemente no más de 1X el volumen de la cámara, más preferiblemente no más de 0,5X el volumen de la cámara 0,25X el volumen de la cámara. El volumen de células tratadas es infundido de nuevo al paciente.

Para una descripción de sistemas y métodos de fotoféresis similares, véase la Solicitud de Patente de Estados Unidos número 09/480.893. También son útiles aquí los métodos y sistemas descritos en las Patentes de Estados Unidos números 5.951.509, 5.985.914, 5.984.887, 4.464.166, 4.428.744, 4.398.906 y 4.321.919, y las publicaciones PCT números WO 97/36634 y WO 97/36581.

La cantidad efectiva de energía luminosa suministrada a los fluidos biológicos se puede determinar usando los métodos y sistemas descritos en la Patente de Estados Unidos número 6.219.584. De hecho, la aplicación de ECP a las varias enfermedades descritas aquí puede requerir un ajuste de la cantidad de energía luminosa para optimizar el proceso de tratamiento.

Además, el agente fotosensibilizante usado en el proceso ECP se puede quitar antes de devolver el fluido biológico tratado al paciente. Por ejemplo, se utiliza metoxsaleno (UVADEX®) en el proceso ECP. El metoxsaleno pertenece a un grupo de compuestos conocidos como psoralenos. La exposición a metoxsaleno u otros psoralenos puede producir efectos indeseables en el sujeto, receptor, o donante tal como fototoxicidad u otros efectos tóxicos asociados con el psoraleno y sus productos de descomposición. Por lo tanto, el psoraleno, los derivados de psoralenos, o los productos de descomposición de psoraleno que pueden permanecer en el fluido biológico se pueden quitar después de la exposición a UV. Un proceso para la extracción de fluidos biológicos de psoraleno se describe en la Patente de Estados Unidos número 6.228.995.

C. Recipiente de centrífuga

10

15

20

25

30

35

40

55

60

65 En una realización específica, la presente invención se refiere a métodos y aparatos que separan componentes de fluidos, tales como, por ejemplo, los componentes de un fluido biológico por densidad o peso. Los fluidos biológicos

abarcan fluidos que incluyen, existen, o se usan o administran a organismos vivos. De hecho, los fluidos biológicos pueden incluir fluidos corporales y sus componentes, tales como células sanguíneas, plasma, y otros fluidos que incluyen componentes biológicos, incluyendo organismos vivos tales como bacterias, células, u otros componentes celulares. Los fluidos biológicos también pueden incluir sangre entera o componentes específicos de sangre entera, incluyendo glóbulos rojos, plaquetas, glóbulos blancos, y células precursoras. En particular, puede ser deseable extraer sangre de un paciente para tratamiento, tal como, por ejemplo, tratamiento extracorporal. Se ha de entender, sin embargo, que la presente invención se puede adaptar para usarse con varios aparatos de procesado por centrifugado, y el ejemplo específico dado aquí es simplemente a efectos ilustrativos. Otros usos de las técnicas y aparatos de separación pueden incluir otros procesos médicos tal como diálisis, quimioterapia, separación y extracción de plaquetas, y separación y extracción de otras células específicas. Además, la presente invención puede usarse para separar otros tipos de fluidos que incluyen una amplia variedad de usos no médicos, tales como, por ejemplo, separación de aceite y componentes de fluidos. Todos los componentes usados en la presente invención no deberán afectar adversamente a los fluidos biológicos o hacerlos inadecuados para sus usos previstos, tales como los descritos aquí, y se puede hacer de cualquier material adecuado compatible con los usos aquí descritos incluyendo, aunque sin limitación plástico, policarbonato, metacrilato de metilo, estireno-acrilonitrilo, acrílico, estireno, acrilonitrilo o cualquier otro plástico. Donde se indican partes de la presente invención a unir conjuntamente y formar un cierre estanco a los fluidos, se puede usar cualesquiera medios convencionales apropiados de unir las partes, incluyendo, aunque sin limitación, adhesivos, soldadura ultrasónica o soldadura RF.

10

15

35

40

45

50

55

60

65

La presente invención tiene varias ventajas sobre las centrífugas que usan el recipiente Latham convencional. El recipiente Latham en el sistema UVAR® XTSTM tiene un orificio de entrada que permite que sangre entera entre en el recipiente, y un orificio de salida que permite la salida del plasma y de la capa leucocitaria. Al tener solamente dos orificios, limita el volumen de capa leucocitaria que puede ser recogido por ciclo. Cada ciclo implica llenar el recipiente con sangre entera; 2) centrifugar el recipiente para separar la sangre entera en plasma, capa leucocitaria, y glóbulos rojos; 3) recoger la capa leucocitaria para tratamiento, 4) dejar el recipiente en reposo; y 5) devolver el plasma y los glóbulos rojos recogidos. Este método de recogida de capa leucocitaria se puede caracterizar como "discontinuo" puesto que el volumen de capa leucocitaria requerido para tratamiento de irradiación solamente puede ser recogido después de varios ciclos de recogida de capa leucocitaria. El limitado volumen de capa leucocitaria recogida por ciclo resulta de los glóbulos rojos acumulados que quedan dentro del recipiente. Así los glóbulos rojos acumulados que solamente pueden ser vaciados al final de un ciclo de recogida de capa leucocitaria es una limitación inherente del recipiente Latham.

El recipiente de la presente invención tiene tres conductos de fluidos separados que pueden ser usados como un orificio de entrada y dos orificios de salida. Los conductos de fluido adicionales permiten 1) reducir el tiempo de tratamiento del paciente al tener centrifugado continuo durante todo el proceso de recogida de capa leucocitaria sin tener que parar el centrifugado del recipiente para extracción de glóbulos rojos acumulados; 2) tratar pacientes con un volumen de sangre pequeño; al hacer volver de forma continua los glóbulos rojos recogidos a los pacientes, estos pacientes se pueden prestar más a tratamientos médicos que requieren el uso de la capa leucocitaria o fracciones de ella tales como la fotoféresis extracorporal; 3) mejor separación de diferentes componentes de fracciones de células dentro de la capa leucocitaria debido al mayor tiempo de centrifugado o rotación y 4) la capacidad de separar fracciones de alta densidad de glóbulos rojos de sangre entera. Este recipiente de centrifuga también proporciona la posibilidad de un tiempo de tratamiento reducido para cualquier procedimiento médico que requiera la recogida de fracciones de capa leucocitaria de pacientes que carecen sustancialmente de glóbulos rojos, tal como fotoféresis extracorporal.

Para lograr los objetos según el propósito de la presente invención, tal como se realiza y se describe ampliamente aquí, las figuras 35 y 36 ilustran realizaciones específicas de la presente invención. La realización ilustrada en la figura 35 incluye un recipiente de centrífuga 10A, conjunto de conductos 860A, bastidor 910A y retención estacionaria 918A. El recipiente de centrífuga 10A está en comunicación de fluido con el conducto externo 20A del conjunto de conductos 860A. El extremo de manguito inferior 832A (figura 46) del manguito de conexión 500A está fijado al recipiente 10A. El extremo superior de manguito 831A del manguito de conexión 500A está fijado al conducto externo 20A, conectando el conducto externo 20A al recipiente 10A y realizando comunicaciones de fluido desde el conducto externo 20A al recipiente 10A. Las comunicaciones de fluido permiten suministrar fluido 800 a través del conducto externo 20A al recipiente 10A. Igualmente estas comunicaciones de fluido también permiten sacar del recipiente 10A componentes de fluidos separados 810 y 820 a través del conducto externo 20A. El recipiente 10A y el bastidor 910A están adaptados para girar alrededor del eje central 11A.

Con referencia a la figura 36, el recipiente 10A incluye un alojamiento exterior 100A, manguito de conexión 500A, núcleo superior 200A, núcleo inferior 201A, y suelo de alojamiento 180A. El alojamiento exterior 100A se puede construir de cualquier material biocompatible adecuado como se ha descrito previamente a efectos ilustrativos en la figura 36 el alojamiento exterior 100A se hace de plástico claro de modo que los núcleos 200A y 201A sean visibles a su través. El alojamiento exterior 100A está unido al suelo de alojamiento 180A, que, a su vez, incluye salientes 150A para bloquear el recipiente 10A a un dispositivo rotacional tal como el dispositivo rotacional 900A. El recipiente 10A es preferiblemente de construcción simplificada y es fácil de fabricar por moldeo u otros procesos de fabricación conocidos, de modo que pueda ser desechable o usarse para un número limitado de tratamientos, y muy preferiblemente es capaz de contener aproximadamente 125 ml de fluido, estando posiblemente presurizado dicho

fluido. En realizaciones alternativas, la capacidad volumétrica del recipiente puede variar dependiendo de la salud del paciente y su volumen extracorporal permisible. La capacidad de volumen del recipiente también puede variar dependiendo del uso del recipiente o el tratamiento particular para el que se utilice el recipiente. Además, para evitar la contaminación de fluidos biológicos, o la exposición de personas que participan en la operación de procesado de los fluidos, las operaciones de transferencia se realizan preferiblemente dentro de un sistema de flujo sellado, posiblemente presurizado, formado preferiblemente de plástico flexible o material similar que se pueda desechar después de cada uso.

5

10

15

20

25

30

45

50

55

60

65

Como se ilustra en las figuras 36 y 37, el alojamiento exterior 100A es sustancialmente cónico con un extremo de alojamiento superior 110A, una pared de alojamiento exterior 120A y un extremo de alojamiento inferior 190A. El alojamiento exterior 100A se puede hacer de plástico (tal como los plásticos enumerados previamente), o cualquier otro material adecuado. El extremo de alojamiento superior 110A tiene una superficie exterior 110B, superficie interior 110C y salida de alojamiento 700A que proporciona un paso entre dichas superficies. Preferiblemente el aloiamiento superior también tendrá un cuello 115A formado alrededor de la salida de aloiamiento 700A. La salida de alojamiento 700A y el cuello 115A están dimensionados para permitir que el cuerpo 830A del manguito de conexión 500A pase a su través reteniendo al mismo tiempo la pestaña de manguito 790A, que se extiende desde el cuerpo 830A del manguito de conexión 500A. En una realización de la presente invención se puede insertar una junta tórica 791A entre la pestaña de manquito 790A y la superficie interior 110C del extremo de alojamiento 110A para asegurar un cierre estanco a los fluidos. En una realización alternativa de la presente invención ilustrada en la figura 53, una segunda pestaña de manguito 790B se extiende desde el cuerpo 830A del manguito de conexión 500B distal a la pestaña de manguito 790A. Ambas pestañas de manguito 790A y 790B están adaptadas para ajuste dentro del cuello 115A y retener la junta tórica 791A entremedio. En esta realización se facilita un cierre estanco a los fluidos por el cuerpo de contacto de junta tórica 830A y la superficie interior 110C del extremo de alojamiento 110A adyacente al cuello 115A. Sin embargo, el manguito de conexión 500A se puede fijar al recipiente 10A por cualesquiera medios adecuados, incluyendo, por ejemplo, un labio, ranura, o ajuste apretado y adhesivo con un componente de recipiente 10A. La pared de alojamiento exterior une el extremo de alojamiento superior 110A y el extremo de alojamiento inferior 190A. El extremo de alojamiento inferior 190A está unido a un suelo de alojamiento 180A de diámetro más grande que el extremo superior 110A. El suelo de alojamiento 180A está adaptado para acoplar con el extremo de alojamiento inferior 190A y realizar con él un cierre estanco a los fluidos. Se puede usar cualesquiera medios convencionales para fijar el extremo de alojamiento inferior 190A al suelo de alojamiento 180A, incluyendo, aunque sin limitación, adhesivos, soldadura ultrasónica o soldadura RF. El suelo de alojamiento 180A puede tener una indentación 185A que se usa para recoger fluido más denso 810. El diámetro del alojamiento exterior 100A incrementa desde el extremo de alojamiento superior 110A al extremo de alojamiento inferior 190A.

El alojamiento exterior 100A está adaptado para conectar rotativamente con un dispositivo rotacional 900 (figura 35), tal como, por ejemplo, un sistema de accionamiento de rotor o una ménsula de giro 910. La conexión rotativa puede ser, por ejemplo, un soporte que permite la rotación libre del recipiente 10A. El alojamiento exterior 100A tiene preferiblemente un mecanismo de bloqueo. El mecanismo de bloqueo puede ser uno o más salientes 150A diseñados para interactuar con indentaciones correspondientes en un depósito centrífugo o cualquier otro mecanismo adecuado de interconexión o bloqueo o equivalente conocido en la técnica. El mecanismo de bloqueo también puede incluir una chaveta 160 (figura 51).

Con referencia a la figura 37, el alojamiento exterior 100A y la base 180A definen un volumen interior 710A en el que encajarán los núcleos 200A y 201A cuando el recipiente 10A esté montado. Cuando están completamente montados, los núcleos 200A y 201A están completamente dentro del volumen interior 710A del alojamiento exterior 100A, ocupando un volumen coaxial del volumen interior 710A alrededor del eje 11A.

Con referencia a las figuras 38, 40 y 44, el núcleo superior 200A y el núcleo inferior 201A son sustancialmente cónicos y tienen respectivamente extremos de núcleo superiores 205A, 206A; paredes exteriores de núcleo 210A, 211A; y extremos inferiores de núcleo 295A, 296A. Los núcleos 200A, 201A ocupan volúmenes coaxiales del volumen interior 710A del recipiente 10A y forman el volumen de separación 220A entre el extremo superior 205A y la pared exterior 210A del núcleo superior 200A y la pared exterior 211A y el extremo inferior 296A del núcleo inferior 201A y el alojamiento exterior 100A. El volumen de separación 220A es el espacio de volumen interior 710A que está entre los núcleos 200A y 201A y el alojamiento exterior 100A.

Como se ilustra en las figuras 40 y 41, el núcleo superior 200A incluye el extremo superior de núcleo 205A y un extremo inferior de núcleo 295A que están unidos por una pared exterior de núcleo 210A. La pared exterior de núcleo 210A tiene una superficie exterior 210B y una superficie de pared interior 210C y un borde inferior 210D. El diámetro de núcleo superior 200A aumenta preferiblemente desde el extremo superior de núcleo 205A al extremo inferior de núcleo 295A. El extremo superior de núcleo 205A también incluye una superficie exterior 205B y una superficie interior 205C. En el centro situado alrededor del eje central y que se extiende perpendicularmente desde la superficie superior 205B está el conector de lumen 481A. El conector de lumen 481A tiene una superficie superior 482A y una superficie de pared 482B. La superficie superior 482A tiene dos pasos 303B y 325D que realizan comunicación de fluido a través del extremo superior de núcleo 205A con el segundo canal de recipiente 410A y primer canal de recipiente 420A respectivamente. El segundo canal de recipiente 410A es un conducto que tiene una pared de conducto 325A que se extiende perpendicularmente desde la superficie interior 481C del conector de

lumen 481A.

Como se representa en las figuras 39B, 39A y 40, el segundo canal de recipiente 410 tiene comunicación de fluido con el canal de conducto 760A a través del conducto 321A que tiene un primer extremo 321B y un segundo extremo 321C que está adaptado para encajar en el paso 325D del conector de lumen 481A. En la operación, el canal de conducto 760A del conducto externo 20A tiene comunicación de fluido con el canal de recipiente 410A. El primer canal de recipiente 420A es un segundo conducto que tiene una pared de canal 401A que se extiende de forma sustancialmente perpendicular desde la superficie interior 481C del conector de lumen 481A. Como se representa en las figuras 39A, 39B y 40, el primer canal de recipiente 420A tiene comunicación de fluido con el canal de conducto 780A del conducto externo 20A a través de cilindro hueco 322A que tiene un primer extremo 322B y un segundo extremo 322C adaptado para encajar en la superficie superior 482A del agujero 303B. Como se ilustra en una realización de la presente invención, el segundo canal de recipiente 410A está dispuesto dentro del primer canal de recipiente 420A. En una realización alternativa de la presente invención ilustrada en la figura 53, la pared de conducto 325A puede estar compuesta de la parte superior 325F y la parte inferior 325G y fundirse con las paredes de canal 401A y 402A.

La superficie superior 482A también tiene una indentación 483A que realiza comunicaciones de fluido con la cámara 740A. Cuando está montada, la cámara 740A se define por el rebaje de montaje de lumen 851A menos los volúmenes ocupados por los cilindros huecos 321A y 322A en la unión de conexión del manguito de conexión 500A y el conector de lumen 481A. La cámara 740A tiene comunicación de fluido con el canal de conducto 770A y con el volumen de separación 220A cerca del cuello 115A a través de la indentación 483A. Así, la indentación 483A forma un paso para la extracción de segundo componente de fluido separado 820 a través de la cámara de recipiente 740A. En la superficie exterior 205B están opcionalmente una pluralidad de espaciadores 207A que se extienden desde la superficie exterior y contactan la superficie interior 110C del extremo de alojamiento superior 110A para asegurar comunicaciones de fluido entre el volumen de separación 220A y el paso formado por las indentaciones 483A.

En una realización alternativa ilustrada en las figuras 53, 54 y 55, los conductos 321A y 322A pueden estar fijados a agujeros 325D y 303B en la superficie superior 482A del conector de lumen 481A. Además, las indentaciones 483A pueden formar una pluralidad de canales en el conector de lumen 481A y estar adaptadas para formar la cámara 740B cuando esté conectada al manguito de conexión 500A o 500B. La cámara 740B está adaptada para tener una o más superficies 742A que pueden acoplar con el extremo macho 853A del manguito de conexión 500A (el extremo macho 853A rodea el extremo 861 del conducto externo 20A). Para facilitar la orientación correcta del manguito de conexión 500A al conector de lumen 481A, las formas del extremo macho 853A y la cámara 740B pueden ser no simétricas o, como se ilustra en las figuras 53, 54 y 55, se puede disponer una guía 855A que se extienda desde la superficie superior del conector de lumen 481A y esté adaptada para encajar dentro del agujero 857A de la pestaña de manguito 790A.

Con referencia de nuevo a las figuras 40, el extremo inferior de núcleo 295A incluye una placa superior 299A que tiene una superficie superior 298A, una superficie inferior 297A, y un borde 299B que une y hace contacto directo con el borde inferior 210D de la pared exterior de núcleo 210A. El borde 299B de la placa superior 299A está adaptado para unirse con el borde inferior 210D de la pared exterior de núcleo 210A y formar con ella un cierre estanco a los fluidos. Desde la superficie superior 298A de la placa superior 299A se extiende perpendicularmente una pared de canal 402A, que tiene un extremo superior 402B y un extremo inferior 402C y rodea el agujero 303A que está sustancialmente en el centro de la placa superior 299A. Un número de aletas 403A, unidas a la superficie exterior de pared de canal 402A y la superficie superior 298A, soportan la pared del lumen 402A. La pared de canal 402A está adaptada para acoplar con la pared de canal 401A formando un cierre estanco a los fluidos y proporcionando un lumen 400A. El primer canal de recipiente 420A está en comunicación de fluido con el canal de conducto 780A del conducto externo 20A a través del conducto 322A. El agujero 303A realiza comunicaciones de fluido desde el lumen 400A al volumen de separación 220A como se explicará mejor. El primer canal de recipiente 420A también rodea el segundo canal de recipiente 410A.

Con referencia a las figuras 43A, 43B y 44, el núcleo inferior 201A incluye un extremo superior de núcleo 206A, una pared exterior de núcleo 211A y un extremo inferior de núcleo 296A. La pared exterior de núcleo 211A que tiene una superficie exterior 211B, una pared interior 211C y borde inferior 211D. El diámetro de núcleo inferior 201A aumenta preferiblemente desde el extremo superior de núcleo 206A al extremo inferior de núcleo 296A. El núcleo inferior 201A también tiene una superficie superior 309A y una superficie inferior 309B. La superficie superior 309A tiene una indentación 186A (preferiblemente generalmente circular) sustancial en el centro de la superficie 309A del extremo superior de núcleo 206A. La indentación 186A tiene una superficie superior 186B y una superficie interior 186C. La superficie superior 186B de la indentación 186A tiene un agujero 324D que se extiende a través de la superficie interior 186C. En una realización alternativa de la presente invención ilustrada en la figura 53, la superficie superior 186B también puede tener un rebaje al 86D adaptado para recibir una junta tórica y formar un cierre estanco del tipo de fluido alrededor del extremo inferior 325B de la pared de conducto 325A. Desde la superficie interior 186C alrededor de dicho agujero 324D se extiende perpendicularmente la pared de conducto 324A que tiene un extremo distal 324B. En la superficie superior 309A que se extiende desde la indentación 186A a la superficie exterior 211B de la pared exterior de núcleo 211A hay uno o más canales 305A. La superficie superior 309A puede ser horizontal o

inclinada hacia arriba o hacia abajo de la indentación 186A. Si la superficie superior 309A se inclina hacia arriba o hacia abajo de la indentación 186A al extremo de núcleo 206A, los expertos en la técnica serán capaces de encajar consiguientemente las formas de la placa superior 299A y el extremo superior de núcleo 295A. Los canales 305A pueden tener una profundidad uniforme a través de la longitud del canal 305A. Sin embargo, el canal 305A se puede inclinar hacia abajo o hacia arriba radialmente desde el centro. Los expertos en la técnica observarán que si la superficie superior 309A se inclina hacia arriba o hacia abajo y el canal 305A tiene una profundidad constante, entonces el canal 305A se inclina consiguientemente hacia arriba o hacia abajo.

5

20

25

30

35

40

65

Con referencia a las figuras 38, la superficie inferior 297A de la placa superior 299A está en contacto directo con el área superficial superior 309A del núcleo inferior 201A cuando está completamente montada. Este contacto forma un cierre estanco a los fluidos entre las dos zonas superficiales que forman un agujero 305B desde la indentación 186A al canal 305A. Un segundo agujero 305C del canal 305A está formado en la superficie exterior 211B de pared exterior de núcleo 211A. El agujero 305B realiza comunicaciones de fluido desde la indentación 186A a través de canal 305A y el agujero 305C al volumen de separación 220A (figuras 38 y 40). Así, fluye fluido 800 a través del canal de conducto 780A y posteriormente pasa a través del primer canal de recipiente 420A. Desde el primer canal de recipiente 420A, el fluido 800 pasa entonces a través del canal 305A al volumen de separación 220A.

Con referencia a las figuras 43A y 44, el extremo inferior de núcleo 296A tiene una placa inferior 300A, que tiene una superficie superior 300B, una superficie inferior 300C y un borde exterior 300D. Desde la superficie inferior 300C de la placa inferior 300 se extienden uno o más salientes 301A. El borde exterior 300D está adaptado para unirse al borde inferior 211D de la pared exterior de núcleo 211A y proporcionar un cierre estanco a los fluidos con ella. Colocada encima del suelo de alojamiento 180A, la placa inferior 300A es circular y se curva hacia arriba radialmente desde su centro (ilustrado en la figura 44). Alternativamente, la placa inferior 300A puede ser plana. Como se representa en la figura 38, cuando está encima del suelo de alojamiento 180A, hay un volumen 220C entre la placa inferior 300A y el suelo de alojamiento 180A. Este volumen 220C está en comunicación de fluido con el volumen de separación 220A. La placa inferior 300A se puede hacer de plástico o cualquier otro material adecuado. Adicionalmente, un conducto 320A se extiende de forma sustancialmente perpendicular desde la superficie inferior 300C de la placa inferior 300A. El conducto 320A tiene un primer extremo 320B que se extiende al espacio 220C entre la placa inferior 300A y el suelo de alojamiento 180A, y un segundo extremo 320C que se extiende encima de la superficie superior 300B de la placa inferior 300A. El diámetro de conducto 320A está adaptado para encajar apretadamente con la pared de extremo de conducto 324B. El volumen de las paredes interiores de conducto 324A y 325A incluye un lumen 400B. El volumen definido por la placa inferior 300A, superficie interior 211C y el techo 253A del núcleo inferior 201A, excluyendo el segundo canal de recipiente 410A, puede incluir aire o un material sólido (véanse las figuras 43B y 44).

En una realización alternativa de la presente invención, como se ilustra en la figura 53, puede haber opcionalmente paredes de soporte 405A y 407A. La pared de soporte 405A se extiende perpendicularmente desde la superficie inferior 309B. La pared de soporte 407A se extiende perpendicularmente desde la superficie superior 300B de la placa inferior 300A y conecta con la pared de soporte 405A cuando el núcleo inferior 201A está montado. La pared de conducto 324A puede estar conectada al conducto 320A para formar un cierre estanco a los fluidos, y los conductos 324A, 320A se pueden fundir respectivamente con paredes de soporte 405A y 407A. Además, desde la superficie inferior 300C de la placa inferior 300A se extienden uno o más espaciadores de orientación 409A que acoplan dentro de la indentación 185A.

45 Como será fácilmente evidente a los expertos en la técnica, el recipiente 10A tendrá que estar equilibrado alrededor del eje central 11A. Consiguientemente, se pueden añadir lastres como parte del dispositivo cuando sea apropiado facilitar el equilibrio del recipiente 10A tal como el lastre 408A ilustrado en la figura 53.

Con referencia a la figura 38, el recipiente 10A está adaptado de modo que el alojamiento exterior 100A, los núcleos 200A y 201A, la placa inferior 300A y la placa superior 299A, el suelo de alojamiento 180A, los conductos externos 20A y el manguito de conexión 500A, y los lúmenes 400A y 400B estén en conexión y giren conjuntamente. El suelo de alojamiento 180A del alojamiento exterior 100A incluye rebajes 181A en su superficie superior y estos rebajes están conformados para encajar en el saliente 301A de la placa inferior 300A. Como se representa, la placa inferior 300A tiene un saliente redondo 301A en su superficie inferior 300C para restringir el movimiento de la placa inferior 300A con respecto al suelo de alojamiento 180A. Cuando está montado, cada saliente único 301A en la superficie inferior de la placa inferior 300A forma un ajuste apretado con el rebaje 181A en el suelo de alojamiento 180A. Así, cuando se gire el alojamiento exterior 100A, el conducto externo 20A y el manguito de conexión 500A, el núcleo superior 200A, la placa superior 299A, el núcleo inferior 201A, la placa inferior 300A, el suelo de alojamiento 180A, y los lúmenes 400A y 400B girarán con él.

Como se ilustra en la figura 38, el lumen 400A permite que llegue sangre entera 800 al recipiente 10A mediante un primer canal de recipiente 420A. El primer canal de recipiente 420A proporciona un paso para entrada de fluido 800 a través de lumen 400A a la indentación 186A y posteriormente al volumen de separación 220A a través del canal 305A. El lumen 400A está situado dentro del núcleo superior 200A. El lumen 400A tiene una altura desde el extremo de lumen superior 480A y el extremo de lumen inferior 402C. El lumen 400A está formado por la conexión de la pared de canal 401A que se extiende desde la superficie interior 481C del conector de lumen 481A y la pared de

canal 402A que se extiende desde la superficie superior 298A de la placa superior 299A. La pared de canal 401A es soportada por una pluralidad de aletas 251A que están unidas a la superficie de la pared interior 210C de la pared exterior de núcleo 210A y la superficie interior 205C del extremo superior de núcleo 205A, y la pared de canal 402A es soportada por una pluralidad de aletas 403A (figura 40). Se puede ver fácilmente que la altura de lumen 400A se puede ajustar cambiando los tamaños y las formas de núcleo 200A, la pared de canal 401A, la pared de canal 402A, la pared de conducto 325A, y la altura de la pared de conducto 324A.

Como se ilustra en la figura 38, el lumen 400A, desde el extremo de lumen superior 480A al extremo de lumen inferior 402C, encierra un lumen interior 400B. El extremo de lumen inferior 402C tiene un agujero 303A que está en comunicación de fluido con el volumen de separación 220A a través de varios canales 305A. En la realización ilustrada el lumen 400A incluye un primer canal de recipiente 420A. Un segundo canal de recipiente 410A está situado dentro del primer canal de recipiente 420A del núcleo superior 200A y se encierra en él desde el extremo de lumen 480A y al lumen 402C. Además, el segundo canal de recipiente 410A forma un paso a través del lumen 400B desde debajo de la placa inferior 300A para la extracción de un primer componente fluido separado 810 que se recoge en la indentación 185A del suelo de alojamiento 180A. El segundo canal de recipiente 410A se extiende desde el suelo de alojamiento 180A del alojamiento exterior 100A a través de lumen 400B y al canal de conducto 760A del conducto externo 20A.

Con referencia a la figura 38 (representada sin conducto 321C), el lumen interior 400B permite que salgan glóbulos rojos 810 del recipiente 10A mediante un segundo canal de recipiente 410A que proporciona comunicación de fluido desde el suelo de alojamiento encima de la indentación 185A al agujero 324E. El lumen interior 400B tiene un extremo superior de conducto 325C y un extremo inferior de conducto 324B e incluye dos paredes de conducto 324A y 325A que están conectadas de manera estanca a los fluidos y forman el segundo canal de recipiente 410A que tiene un diámetro más pequeño y está separado y es distinto del primer canal de recipiente 420A. La pared de conducto 325A es soportada por una aleta 251A que se extiende a través de la pared de canal 401A y se une a la pared de conducto 325A. A diferencia del lumen 400A que tiene un extremo cerca de la indentación 186A, el lumen 400B se extiende más allá de la indentación 186A y a través de la placa inferior 300A. La primera pared de conducto 325A tiene un extremo superior 325C que tiene un agujero 325D en la superficie superior 482A del conector de lumen 481A y un extremo inferior 325B que tiene un agujero 325E adaptado para encajar herméticamente con el extremo superior 324C de la pared de conducto 324A. El extremo superior 324C de la pared de conducto 324A es más alto que la indentación 186A y tiene un agujero 324D. La pared de conducto 324A también tiene un extremo inferior 324B y es soportada por una pluralidad de aletas 252A. El extremo inferior 324B que tiene un agujero 325E está adaptado para conectarse al conducto 320A que tiene un agujero 302A situado cerca del centro de la placa inferior 300A. La conexión de los aqujeros 325E y 302A realiza la comunicación de fluido entre el lumen 400B y el espacio 220C entre la placa inferior 300A y el suelo de alojamiento 180A. El espacio 220C entre la placa inferior 300A y el suelo de alojamiento 180A, a su vez, tiene comunicación de fluido con el volumen de separación 220A.

El conducto 320A realiza un ajuste apretado con el extremo inferior 324B, proporcionando soporte al segundo canal de recipiente 410A. Cada canal de recipiente 420A y 410A se puede hacer de cualquier tipo de tubo flexible o rígido (tal como tubos para medicina) u otro dispositivo que proporcione un paso sellado, posiblemente para flujo de fluido presurizado o despresurizado, y que puede ser preferiblemente desechable y esterilizable, es decir, de fabricación simple y eficiente.

1. Tubo de accionamiento

5

10

15

20

25

30

35

40

45

50

55

Como se ilustra en las figuras 39A y 39B, el conjunto de conductos 860A está unido al recipiente 10A mediante el manguito de conexión 500A que está unido sobre el primer extremo 861A del conducto externo 20A que tiene un primer canal de conducto 780A, un segundo canal de conducto 760A, y un tercer canal de conducto 770A. Cada canal de conducto tiene comunicación de fluido con un primer canal de recipiente 420A, un segundo canal de recipiente 410A, y una cámara de recipiente 740A. Los tres canales de conducto están igualmente espaciados 120° y tienen igual diámetro en el conducto externo 20A (véase la figura 50). Cuando conecta por fluido con el conducto externo 20A y recipiente 10A, el canal de conducto 780A conecta por fluido con el primer canal de recipiente 420A para introducir fluido 800 por el conducto externo 20A al recipiente 10A para separación. Igualmente, el segundo canal de conducto 760A conecta por fluido con el segundo canal de recipiente 410A para sacar el primer componente fluido separado 810 desde el recipiente 10A al conducto externo 20A. Finalmente, el tercer canal de conducto 770A conecta con la cámara de recipiente 740A para sacar el segundo componente de fluido separado 820 del recipiente 10A.

Como se ilustra en la figura 45, el conducto externo 20A tiene un manguito de conexión 500A en el primer extremo 861A y un manguito de anclaje 870A en el segundo extremo 862A del conducto externo 20A. Entre el manguito de conexión 500A y el manguito de anclaje 870A en el conducto externo 20A hay opcionalmente un primer saliente 882 y un segundo saliente 884 que se extienden perpendicularmente desde el conducto externo 20A y son de mayor diámetro. Entre el manguito de conexión 500A y el manguito de anclaje 870A (o, si están presentes, el primer y el segundo saliente 882, 884) hay un primer y un segundo aro de soporte 871A y 872A. El conducto externo 20A, el manguito de anclaje 870A y el manguito de conexión se pueden hacer de los mismos o diferentes materiales biocompatibles de adecuada resistencia y flexibilidad para uso en este tipo de tubos en una centrífuga (un material

preferido es HYTREL®). El manguito de conexión 500A y el manguito de anclaje 870A se pueden unir a través de cualesquiera medios adecuados tales como adhesivos, soldadura, etc; sin embargo, para facilitar la fabricación se prefiere que el manguito de conexión 500A y el manguito de anclaje 870A se sobremoldeen al conducto externo 20A.

Con referencia a las figuras 45, 48 y 49, el manguito de anclaje 870A incluye un cuerpo 877B que tiene un primer extremo de anclaje 873A y un segundo extremo de anclaje 874A. El manguito de anclaje 870A está unido al segundo extremo de conducto 862A del conducto externo 20A (preferiblemente por sobremoldeo) e incrementa el diámetro desde el primer aro 873A al aro 874A. Espaciado distalmente del segundo extremo 874A hay un aro 886A, que se extiende perpendicularmente al cuerpo 877B y de mayor diámetro que el cuerpo 877B del manguito de anclaje 870A. 10 Una pluralidad de nervios 877A que tienen un primer extremo de nervio 877B entre el aro 886A y el segundo extremo de anclaje 873A y un segundo extremo de nervio 877C que se extiende más allá del primer extremo de anclaje 873A están unidos al cuerpo 877B. Los segundos extremos de nervio 877C están unidos juntamente por un aro 880A, que también está unido al conducto externo 20A. Los nervios 877A se extienden paralelos al conducto externo 20A y están colocados preferiblemente sobre la región donde los canales de conducto 760A, 770A, y 780A 15 están más próximos a la superficie del conducto externo 20A (figura 50). Las regiones donde los canales de conducto 760A, 770A y 780A están más próximos al diámetro exterior del conducto externo 20A a no ser que se refuercen, tienden a fallar durante la rotación a alta velocidad. La provisión de nervios paralelos con los canales de conducto más allá del extremo de manquito de anclaie 873A proporciona refuerzo a esta región y evita el fallo del conducto a rotación a alta velocidad. En un aspecto, los nervios evitan el pandeo del conducto externo 20A en esta 20 región y actúan como elementos estructurales para transferir el esfuerzo torsional al manguito de anclaje 870A.

El manguito de conexión 500A incluye un cuerpo 830A que tiene un extremo superior de manguito 831A y un extremo inferior de manguito 832A (figuras 46 y 47). El extremo de manguito inferior 832A tiene una pestaña de manguito 790A y una pluralidad de salientes 843A, que están dimensionados para enganchar indentaciones 484A en la superficie de pared 482A del conector de lumen 481A. Cuando el recipiente 10A está montado, se puede obtener un cierre estanco a los fluidos colocando la junta tórica 791A alrededor del cuerpo 830A y comprimiendo la junta tórica 791A entre la pestaña 790A y el alojamiento 100A. El extremo superior de manguito 831A está adaptado para fijarse al conducto externo 20A. Con referencia a las figuras 46, 39A y 39B, el manguito de conexión 500A se fija al recipiente 10A por medio de la pestaña de manguito 790A y está adaptado para conectar por fluido los canales de conducto 780A, 760A, 770A del conducto externo 20A a los canales de recipiente 420A y 410A, y la cámara 740A del recipiente 10A. Cuando está montado, el manguito de conexión 500A se monta en el conector de lumen 481A (figuras 39A y 39B).

25

30

45

50

55

60

65

El manguito de conexión 500A aumenta preferiblemente de diámetro desde el extremo superior de manguito 831A al extremo inferior de manguito 832A y se sobremoldea al primer extremo de conducto 861A del conducto externo 20A. El manguito de conexión 500A conecta el recipiente 10A al conducto externo 20A sin utilizar una junta estanca rotativa, que por lo demás se colocaría normalmente entre el recipiente 10A y el manguito de conexión 500A. La conexión no estanca entre el recipiente 10A y el manguito de conexión 500A se puede producir, como se ha explicado anteriormente, alternativamente mediante el uso, por ejemplo, de una junta tórica, una ranura, o labio, conexión del tipo de arandela de goma, soldadura, o un ajuste apretado con o sin adhesivo en el recipiente 10A o el manguito de conexión 500A.

Como se ilustra en las figuras 46 y 39B, la pestaña de manguito 790A tiene una superficie inferior 847A que contacta con la superficie superior 482A del conector de lumen 481A formando un cierre hermético. Sin embargo, el conector de lumen 481A tiene una pluralidad de indentaciones 483A que realizan comunicación de fluido entre la cámara de separación 220A y la cámara de recipiente 740A, que, a su vez, tiene comunicación de fluido con el canal de conducto 770A. La cámara de recipiente 740A se define por el rebaje de montaje de lumen 851A y la superficie superior 482A del conector de lumen 481A, excluyendo el espacio ocupado por los cilindros huecos 321A y 322A. Una pluralidad de salientes 843A en la superficie inferior 847A de la pestaña de manguito 790A enganchan y deslizan a indentaciones 484A en la superficie de pared 482B del conector de lumen 481A, realizando así un ajuste apretado.

El manguito de conexión 500A ayuda a fijar el conducto externo 20A al recipiente 10A, conectando así por fluido el conducto externo 20A al recipiente 10A. Esta conexión de fluido permite suministrar fluido 800 a través del conducto externo 20A al recipiente 10A. Igualmente, esta conexión de fluido también permite sacar componentes de fluido separados 820 del recipiente 10A a través del conducto externo 20A.

El conducto externo 20A tiene un diámetro aproximadamente constante que ayuda a reducir la rigidez. Un conducto externo excesivamente rígido 20A se calentará y fallará más rápidamente. Además, un conducto de diámetro constante es barato/fácil de fabricar, permite la fácil experimentación con tamaños del manguito de conexión 500A y del manguito de anclaje 870A, y permite deslizar fácilmente aros de soporte 871A, 872A encima. El movimiento de los soportes 871A y 872A será retenido preferiblemente por salientes primero y segundo 882A y 884A. El conducto externo 20A se puede hacer de cualquier tipo de tubos flexibles (tal como tubos para medicina) u otro dispositivo que proporcione un paso sellado para el flujo de fluidos, que puede estar presurizado, a o de un depósito de cualquier especie, y que puede ser preferiblemente desechable y esterilizable.

II. El sistema de torre permanente

5

10

15

20

25

30

35

40

45

50

55

60

La figura 17 ilustra el sistema de torre 2000. El sistema de torre 2000 es el equipo permanente (es decir, no desechable) que recibe los varios dispositivos del kit de fotoféresis 1000, tales como la casete 1100, la cámara de irradiación 700, y el recipiente de centrífuga 10 (figura 1). El sistema de torre 2000 realiza la regulación, el bombeo y el control general y movimiento del flujo de fluido a través del kit de fotoféresis desechable 1000. El sistema de torre 2000 realiza automáticamente todas las funciones de control necesarias mediante la utilización de un controlador adecuadamente programado, por ejemplo, un procesador o circuito CI, acoplado a todos los componentes necesarios. Aunque un nuevo kit desechable debe ser desechado después de cada sesión de terapia de fotoféresis, el sistema de torre 2000 se usa varias veces. El sistema de torre 2000 puede ser modificado para realizar varios tratamientos extracorporales del circuito de sangre, por ejemplo, aféresis, programando adecuadamente el controlador o cambiando algunos de sus componentes.

El sistema de torre 2000 tiene un aloiamiento que tiene una porción superior 2100 y una porción de base 2200. La porción de base 2200 tiene una parte superior 2201 y otra inferior 2202. Se han dispuesto ruedas 2203 en o cerca de la parte inferior 2202 de la porción de base 2200 de modo que el sistema de torre 2000 sea móvil y se pueda pasar fácilmente de una habitación a otra en un hospital. Preferiblemente, las ruedas delanteras 2203 son pivotables alrededor de un eje vertical para facilitar la dirección y el manejo del sistema de torre 2000. La parte superior 2201 de la porción de base 2200 tiene una superficie superior 2204 que tiene una cubierta de control 1200, mejor ilustrada en la figura 22, construida en ella (véase la figura 22). En la figura 17, la casete 1100 se ha cargado sobre la cubierta de control 1200. La porción de base 2200 también tiene ganchos (no ilustrados), u otros conectores, para colgar una bolsa de recogida de plasma 51 y una bolsa de tratamiento 50. Tales ganchos pueden estar situados en cualquier lugar en el sistema de torre 2000 a condición de que su posición no interfiera con el funcionamiento del sistema durante la terapia. La porción de base 2200 tiene una cámara de fotoactivación 750 (figura 18) situada detrás de la puerta 751. Se han dispuesto ganchos adicionales (no ilustrados) en el sistema de torre 2000 para colgar bolsas de salina y anticoagulante. Estos ganchos se colocan preferiblemente en la porción superior 2100.

La cámara de fotoactivación 750 (figura 18) está dispuesta en la porción de base 2200 del sistema de torre 2000 entre la parte superior 2201 y la inferior 2202 detrás de la puerta 751. La puerta 751 está conectada de forma articulada a la porción de base 2200 y se ha previsto para acceder a la cámara de fotoactivación 750 y para que el operador pueda cerrar la cámara de fotoactivación 750 de modo que no escape luz UV al entorno durante el tratamiento. El rebaje 752 se ha previsto para que puedan pasar tubos 1112, 1117 (figura 1) a la cámara de fotoactivación 750 cuando la cámara de irradiación 700 esté cargada y cuando la puerta 751 esté cerrada. La cámara de fotoactivación se explica con detalle a continuación con respecto a las figuras 16 y 18.

La porción superior 2100 está situada encima de la porción de base 2200. La cámara centrífuga 2101 (figura 19) está situada en la porción superior 2100 detrás de la puerta 2102 de la cámara centrífuga. La puerta 2102 de la cámara centrífuga tiene una ventana 2103 de modo que el operador puede ver la cámara centrífuga 2101 y supervisar los problemas. La ventana 2103 es de vidrio suficientemente grueso para resistir las fuerzas que se puedan ejercer en caso de accidente durante la centrifugación que puede girar el recipiente de centrifuga a velocidades superiores a 4800 RPMs. Preferiblemente, la ventana 2103 se hace de vidrio a prueba de golpes. La puerta 2102 está conectada de forma articulada a la porción superior 2100 y tiene un mecanismo de bloqueo automático que es activado por el controlador del sistema durante la operación del sistema. La cámara centrífuga 2101 se explica a continuación con más detalle con respecto a la figura 19.

La cubierta 1200 se coloca preferiblemente en la superficie superior 2204 de la porción de base 2200 en o cerca de la parte delantera del sistema de torre 2000 mientras que la porción superior 2100 se extiende hacia arriba de la porción de base 2200 cerca de la parte trasera del sistema de torre 2000. Esto permite al operador el fácil acceso a la cubierta de control 1200 mientras que le proporciona simultáneamente acceso a la cámara centrífuga 2101. Diseñando el sistema de torre 2000 de manera que tenga la cámara centrífuga 2101 en la porción superior 2100 y la cámara de fotoactivación 750 y la cubierta 1200 en la porción de base 2200, se logra una configuración vertical. Como tal, el sistema de torre 2000 tiene un tamaño que ocupa poco espacio y ocupa un espacio reducido en el suelo valioso del hospital. La altura del sistema de torre 2000 permanece por debajo de las sesenta pulgadas de modo que no se obstruya la vista al transportar la máquina por el hospital desde atrás. Adicionalmente, la provisión de la cubierta 1200 en una posición bastante horizontal proporciona al operador una posición para colocar los dispositivos de kit de fotoféresis 1000 durante la carga de otros dispositivos, facilitando la carga. El sistema de torre 2000 es suficientemente robusto para resistir fuerzas y vibraciones producidas por el proceso de centrifugación.

Se ha dispuesto un monitor 2104 en la puerta 2102 de la cámara centrífuga encima de la ventana 2103. El monitor 2104 tiene una zona de visualización 2105 para presentar visualmente datos al operador, tal como, por ejemplo, interfaces de usuario para entrada de datos, instrucciones de carga, gráficos, avisos, alertas, datos de terapia, o progreso de la terapia. El monitor 2104 está acoplado y es controlado por el controlador de sistema. Un puerto de recepción de tarjeta de datos 2001 está dispuesto en un lado del monitor 2104. El puerto de recepción de tarjeta de datos 2001 se ha previsto para recibir deslizantemente la tarjeta de datos 1195 que se suministra con cada kit de fotoféresis desechable 1000 (figura 1). Como se ha mencionado anteriormente, la tarjeta de datos 1195 puede estar 65 preprogramada para almacenar varios datos a suministrar al controlador del sistema de torre 2000. Por ejemplo, la

tarjeta de datos 1195 puede estar programada para transmitir información de modo que el controlador de sistema pueda asegurar: (1) que el kit de fotoféresis desechable sea compatible con el equipo de movimiento de sangre en el que se carga; (2) que el kit de fotoféresis sea capaz de llevar a cabo el proceso de tratamiento deseado; (3) que el kit de fotoféresis desechable sea de una cierta marca o manufactura. El puerto de recepción de tarjeta de datos 2001 tiene el hardware y la circuitería necesarios para leer y escribir datos en la tarjeta de datos 1195. Preferiblemente, el puerto de recepción de tarjeta de datos 2201 registrará datos de la terapia de tratamiento en la tarjeta de datos 1195. Tal información puede incluir, por ejemplo, horas de recogida, volúmenes de recogida, tiempos de tratamiento, tasas de flujo volumétrico, alarmas, mal funcionamiento, perturbaciones en el proceso, o cualesquiera otros datos deseados. Aunque el puerto de recepción de tarjeta de datos 2001 está dispuesto en el monitor 2104, puede estar situado en cualquier lugar en el sistema de torre 2000 a condición de que esté acoplado al controlador de sistema u otros medios apropiados de control.

A. Cámara de fotoactivación para recibir la cámara de irradiación

10

40

45

50

55

60

65

- Con referencia ahora a las figuras 16 y 18, la cámara de fotoactivación 750 se ilustra en sección transversal. La 15 cámara de fotoactivación 750 está formada por el alojamiento 756. El alojamiento 756 encaja dentro de la porción de base 2200 del sistema de torre 2000 detrás de la puerta 751 (figura 17). La cámara de fotoactivación 750 tiene una pluralidad de orificios de conexión eléctrica 753 dispuestos en la pared trasera 754. Los orificios de conexión eléctrica 753 están acoplados eléctricamente a una fuente de energía eléctrica. La cámara de fotoactivación 750 está diseñada para recibir el conjunto de luz UVA 759 (figura 16). Cuando están completamente cargados en la 20 cámara de fotoactivación 750, los contactos eléctricos (no ilustrado) situados en la pared de contacto 755 del conjunto de luz UVA 759 forman una conexión eléctrica con orificios de conexión eléctrica 753. Esta conexión eléctrica permite suministrar energía eléctrica a las lámparas UVA 758 de modo que se puedan activar. Preferiblemente, se han previsto tres orificios de conexión eléctrica para cada conjunto de lámparas UVA 758. Más preferiblemente, el conjunto de luz UVA 759 tiene dos conjuntos de lámparas UVA 758 formando un espacio en el 25 que se puede introducir la cámara de irradiación 700. El suministro de energía eléctrica a las lámparas UVA 758 es controlado por el controlador del sistema adecuadamente programado usando un interruptor. Las lámparas UVA 758 son activadas y desactivadas cuando sea necesario por el controlador durante la sesión de terapia de fotoféresis.
- 30 El agujero de ventilación 757 está dispuesto en la parte superior del alojamiento 756 cerca de la pared trasera 754 de la cámara de fotoactivación 750. El agujero de ventilación 757 conecta con el conducto de ventilación 760 que sale de la parte trasera del sistema de torre 2000. Cuando el calor generado por las lámparas UVA 758 se acumula en la cámara de fotoactivación 750 durante una terapia de tratamiento, este calor escapa de la cámara de fotoactivación 750 mediante el agujero de ventilación 757 y el conducto de ventilación 760. El calor sale del sistema de torre 2000 a través del agujero de alojamiento de torre 761 situado en la parte trasera del sistema de torre 2000, lejos del paciente y del operador.
 - La cámara de fotoactivación 750 también incluye el tracto 762 para recibir la cámara de irradiación 700 y mantener la irradiación en una posición vertical entre las lámparas UVA 758. El tracto 762 está en o cerca de la parte inferior de la cámara de fotoactivación 750. Preferiblemente, se dispone un circuito de detector de escapes 763 debajo del tracto 762 para detectar escapes de fluido de la cámara de irradiación 700 durante, antes o después de la operación. El circuito de detector de escapes 762 tiene dos electrodos configurados en forma de U situados en un circuito flexible reforzado con adhesivo. Los electrodos están diseñados para permitir la aplicación de un corto circuito para probar si hay discontinuidades. Un extremo de cada electrodo va a un circuito integrado mientras que el otro extremo de cada electrodo está unido a un interruptor de estado sólido. El interruptor de estado sólido puede ser usado para comprobar la continuidad de los electrodos. Cerrando el interruptor, los electrodos se cortocircuitan uno a otro. El circuito integrado detecta entonces el corto. El cierre del interruptor produce una situación equivalente a la humectación de los electrodos (es decir, un escape). Si los electrodos están dañados de alguna forma, fallará la prueba de continuidad. Ésta es una indicación positiva de que los electrodos no están dañados. Esta prueba puede ser realizada cada vez que el sistema se arranque o periódicamente durante la operación normal para asegurar que el circuito de detección de fugas 762 funciona adecuadamente. El circuito de detección de fugas 762 ayuda a asegurar que las fugas no pasen desapercibidas durante una sesión de terapia completa porque el circuito de detección de fugas esté dañado. Un esquema eléctrico del circuito de detector de escapes 762 se ofrece en la figura 20.

B. Cámara centrífuga

La figura 19 ilustra la cámara centrífuga 2101 en sección transversal con el alojamiento de sistema de torre 2000 quitado. El dispositivo rotacional 900 (también en sección transversal) capaz de utilizar tecnología de espín 1-omega 2-omega se coloca dentro de la cámara centrífuga 2101. El dispositivo rotacional 900 incluye un soporte rotativo 910 y una placa de sujeción de recipiente 919 para fijar rotativamente el recipiente de centrífuga 10 (figura 1). El alojamiento 2107 de la cámara centrífuga 2101 se hace preferiblemente de aluminio o algún otro metal ligero y resistente. Alternativamente, se puede usar otros sistemas rotacionales dentro del sistema de torre 2000 tal como el descrito en la Patente de Estados Unidos número 3.986.442.

El circuito de detección de fugas 2106 está dispuesto en la pared trasera 2108 del alojamiento 2107. El circuito de

detección de fugas 2106 se ha previsto para detectar fugas dentro del recipiente de centrífuga 10 o los tubos de conexión durante el procesado. El circuito de detección de fugas 2106 es idéntico al circuito de detector de escapes 762 descrito anteriormente. Un esquema eléctrico del circuito de detección de fugas 2106 se expone en la figura 21.

5 C. Cubierta de control de flujo de fluido

10

35

40

45

50

55

60

65

La figura 22 ilustra la cubierta de control 1200 del sistema de torre 2000 (figura 17) sin una casete 1100 cargada encima. La cubierta de control 1200 realiza la regulación y el bombeo con el fin de accionar y controlar el flujo de fluido en todo kit de fotoféresis 1000. Preferiblemente, la cubierta 1200 es una placa separada 1202 que está fijada a la porción de base 2200 del sistema de torre 2000 mediante tornillos u otros medios de fijación, tales como, por ejemplo, pernos, tuercas, o abrazaderas. La placa 1202 se puede hacer de acero, aluminio, u otro metal o material duradero.

La cubierta 1200 tiene cinco bombas peristálticas, la bomba de sangre entera 1301, la bomba de retorno 1302, la bomba de recirculación 1303, la bomba de anticoagulante 1304, y la bomba de glóbulos rojos 1305 que se extienden a través de la placa 1202. Las bombas 1301-1305 están dispuestas en la placa 1202 de modo que cuando la casete 1100 esté cargada sobre la cubierta 1200 para operación, los tubos de bucle de bomba 1120-1124 se extiendan sobre y alrededor de las bombas 1301-1305 (figura 25).

20 Un conjunto sensor de burbujas de aire 1204 y conjunto sensor HCT 1205 están dispuestos en la placa 1202. El conjunto sensor de burbujas de aire 1204 tiene tres zanjas 1206 para recibir los tubos 1114, 1106, y 1119 (figura 25). El conjunto sensor de burbujas de aire 1204 usa energía ultrasónica para supervisar en los tubos 1114, 1106, y 1119 diferencias de densidad que indicarían la presencia de aire en los fluidos líquidos que pasan normalmente a su través. Los tubos 1114, 1106, y 1119 son supervisados porque estas líneas van al paciente. El conjunto sensor de burbujas de aire 1204 está acoplado operativamente y transmite datos al controlador de sistema para análisis. Si se 25 detecta una burbuja de aire, el controlador de sistema interrumpirá la operación e impedirá el flujo de fluido al paciente cerrando los tubos 1114, 1106, y 1109 moviendo los accionadores de compresión 1240-1242 a una posición subida, comprimiendo por ello los tubos 1114, 1106, y 1119 contra la casete 1100, como se ha explicado anteriormente y/o apagando la bomba apropiada. El conjunto sensor HCT 1205 tiene una zanja 1207 para recibir el 30 componente HCT 1125 del tubo 1116. El conjunto sensor HCT 1205 supervisa en el tubo 1116 la presencia de glóbulos rojos usando un sensor fotoeléctrico. El conjunto sensor HCT 1205 también está acoplado operativamente y transmite datos al controlador de sistema. El conjunto sensor HCT 1205 detecta la presencia de glóbulos rojos en el tubo 1116, el controlador del sistema llevará a cabo la acción apropiada, tal como parar la bomba apropiada o activar uno de los accionadores de compresión 1243-1247, para parar el flujo de fluido a través del tubo 1116.

La cubierta 1200 también tiene cinco accionadores de compresión 1243-1247 y tres accionadores de compresión 1240-1242 estratégicamente colocados en la placa 1202 de modo que cuando la casete 1100 esté cargada en la cubierta 1200 para operación, cada accionador de compresión 1240-1247 esté alineado con agujeros correspondientes 1137 y 1157. Los accionadores de compresión 1240-1247 se pueden mover entre una posición bajada y una posición subida. Como se ilustra en la figura 22, los accionadores de compresión 1243-1247 están en la posición bajada y los accionadores de compresión 1240-1242 están en la posición subida. Cuando estén en una posición subida, y cuando la casete 1100 esté cargada en la cubierta 1200 como se ilustra en la figura 25, los accionadores de compresión 1240-1247 se extenderán a través de los agujeros correspondientes 1137 o 1157 y comprimirán la porción de tubos flexibles alineada con dicho agujero, cerrando por ello por compresión el tubo flexible de modo que no pueda pasar fluido. Cuando están en la posición bajada, los accionadores de compresión 1240-1247 no se extienden a través de los agujeros 1137 y 1157 y así no comprimen los tubos flexibles.

Los accionadores de compresión 1243-1247 son retirados por muelle de modo que su posición por defecto se desplace a la posición bajada a no ser que se activen. Los accionadores de compresión 1243-1247 son controlados independientemente y se pueden subir o bajar independientemente uno de otro. Por otra parte, los accionadores de compresión 1240-1242 están acoplados conjuntamente. Como tal, cuando un accionador de compresión 1240-1242 está bajado o subido, los otros dos accionadores de compresión 1240-1242 también se bajan y suben consiguientemente. Adicionalmente, los accionadores de compresión 1240-1242 son empujados por muelle de modo que su posición por defecto se desplace a la posición subida. Así, si el sistema pierde potencia durante una sesión de terapia, los accionadores de compresión 1240-1242 pasarán automáticamente a la posición subida, cerrarán los tubos 1114, 1106, y 1119 y evitarán que entren o salgan fluidos del paciente.

Con referencia ahora a las figuras 23 y 24, la cubierta 1200 también incluye el controlador de sistema 1210, el conjunto de cilindros 1211, conjuntos de colectores 1213, cable de bomba 1215, cable de motor de bomba 1216, y conjunto de correa temporizadora 1217. El controlador de sistema 1210 es un circuito integrado adecuadamente programado que está acoplado operativamente a los componentes necesarios del sistema para realizar todas las funciones, interacciones, decisiones, y reacción explicadas anteriormente y necesarias para realizar una terapia de fotoféresis según la presente invención. El conjunto de cilindros 1211 acopla cada accionador de compresión 1240-1247 a un cilindro neumático. Se ha dispuesto orificios de aire 1212 en los varios elementos de la cubierta 1200, según sea necesario, para conectar líneas de aire a los dispositivos y el colector apropiado de los colectores 1213. Como tal, se puede suministrar aire a los dispositivos según sea necesario para mover el componente necesario, tal

como las válvulas de compresión 1240-1247. Todas estas funciones y temporización son controladas por el controlador de sistema 1210. El conjunto de correa temporizadora 1217 se usa para coordinar la rotación de abrazaderas rotativas 1203. Finalmente, la placa 1202 incluye una pluralidad de agujeros 1215, 1219, 1220, 1221, y 1218 de modo que los varios componentes de la cubierta 1200 se puedan cargar adecuadamente en ella y de modo que la cubierta 1200 se pueda fijar al sistema de torre 2000. Específicamente, las bombas 1301-1305 encajan en los agujeros 1314, el conjunto sensor HCT 1205 encaja en el agujero 1220, el conjunto detector de burbujas de aire 1204 encaja en el agujero 1219, los accionadores de compresión 1240-1247 se extienden a través de los agujeros 1218, y los pernos se extienden a través de los agujeros 1221 para fijar la cubierta 1200 al conjunto de torre 2000.

1. Mecanismo de fijación de casete

10

15

20

25

30

35

40

45

50

55

60

65

Con referencia ahora a las figuras 22 y 25, a continuación se explicará el método por el que la casete 1100 se carga y fija a la cubierta 1200. Para que el sistema 2000 lleve a cabo una terapia de fotoféresis, la casete 1100 debe estar adecuadamente cargada en la cubierta 1200. A causa del sistema de regulación de accionadores de compresión incorporado en la presente invención, es imperativo que la casete 1100 esté adecuadamente fijada a la cubierta 1200 y no se desplace o desaloje cuando los accionadores de compresión 1240-1247 cierren porciones de los tubos flexibles comprimiendo los tubos flexibles contra la cubierta 1130 de la casete 1100 (figura 3). Sin embargo, este requisito compite con las finalidades deseadas de facilidad de carga de la casete 1100 sobre la cubierta 1200 y de reducir los errores del operador. Todos estos objetivos se logran con el mecanismo de fijación de casete descrito más adelante.

Con el fin de facilitar la fijación de la casete 1100 a la cubierta 1200, la cubierta 1200 está provista de dos retenes 1208 y dos abrazaderas rotativas 1203 y 1223. Los retenes 1208 tienen una ranura 1228 cerca del medio de la placa superior. Los retenes 1208 están fijados a la placa 1202 en posiciones predeterminadas de modo que la espaciación entre ellos sea sustancialmente idéntica a la espaciación entre lengüetas 1102 y 1103 en la casete 1100 (figura 2). Las abrazaderas rotativas 1203 y 1223 se ilustran en una posición cerrada. Sin embargo, las abrazaderas rotativas 1203 y 1223 se pueden girar a una posición abierta (no ilustrada) manualmente o mediante el accionamiento automático de un cilindro neumático. Las abrazaderas rotativas 1203 y 1223 son empujadas por muelle por muelles de par de manera que vuelvan automáticamente a la posición cerrada cuando no se aplique par adicional. Las abrazaderas rotativas 1203 y 1223 están enlazadas conjuntamente por el conjunto de correa temporizadora 1217 (figura 24).

Con referencia ahora a la figura 23, el conjunto de correa temporizadora 1217 incluye la correa temporizadora 1226, alojamientos de muelles de par 1224, y conjunto tensor 1225. El conjunto de correa temporizadora 1217 coordina la rotación de las abrazaderas rotativas 1203 y 1223 de modo que si una gira, la otra también gire en la misma dirección y la misma cantidad. En otros términos, las abrazaderas rotativas 1203 y 1223 están acopladas. El conjunto tensor 1217 asegura que la correa temporizadora 1226 tenga tensión suficiente para enganchar y girar la abrazadera rotativa 1203 o 1223 que esté siendo coordinada. Los alojamientos de muelles de par 1224 proporcionan alojamiento para los muelles de par que mueven las abrazaderas rotativas 1203 y 1223 a la posición cerrada.

Con referencia de nuevo a las figuras 22 y 25, al cargar la casete 1100 sobre la cubierta 1200, la casete 1100 se coloca en un ángulo a la cubierta 1200 y las lengüetas 1102 y 1103 (figura 2) se alinean con los retenes 1208. La casete 1100 es movida de modo que las lengüetas 1102 y 1103 se inserten deslizantemente en los retenes 1208. Las abrazaderas rotativas 1203 y 1223 están entonces en la posición cerrada. La parte trasera de la casete 1100 (es decir, el lado opuesto a las lengüetas 1102 y 1103) contacta las abrazaderas rotativas 1203 y 1223 cuando las lengüetas 1102 y 1103 son insertadas en los retenes 1108. Cuando se aplique fuerza hacia abajo a la casete 1100, las abrazaderas rotativas 1103 y 1123 girarán a la posición abierta, permitiendo que la parte trasera de la casete 1100 se desplace hacia abajo a una posición debajo de los salientes 1231 de las abrazaderas rotativas 1203 y 1223. Una vez que la casete 1100 está en esta posición, las abrazaderas rotativas 1203 y 1223 saltan de nuevo por la fuerza aplicada por los muelles de par y vuelven a la posición cerrada, bloqueando la casete 1100 en posición. Cuando está en la posición bloqueada, la casete 1100 puede resistir fuerzas hacia arriba y laterales.

Para quitar la casete 1110 después de finalizar la sesión de terapia, las abrazaderas rotativas 1203 y 1223 se giran a la posición abierta manual o automáticamente. La rotación automática la facilita un cilindro neumático que está acoplado a una línea de aire y el controlador del sistema 1210. Una vez que las abrazaderas rotativas 1203 y 1223 están en la posición abierta, la casete 1100 se saca elevando y deslizando simplemente las lengüetas 1102 y 1103 sacándolas de los retenes 1208.

2. Bombas peristálticas de carga automática

Con referencia a la figura 24, las bombas peristálticas 1301-1305 están dispuestas en la cubierta 1200 y se usan para mover fluidos a través de kit de fotoféresis 1000 (figura 1) a lo largo de recorridos deseados. La activación, desactivación, temporización, velocidad, coordinación, y todas las demás funciones de las bombas peristálticas 1301-1305 son controladas por el controlador de sistema 1210. Las bombas peristálticas 1301-1305 son de estructura idéntica. Sin embargo, la colocación de cada bomba peristáltica 1301-1305 en la cubierta 1200 dicta la función de cada bomba peristáltica 1301-1305 con respecto a qué fluido se está moviendo y a lo largo de qué

recorrido. Esto es porque la colocación de las bombas peristálticas 1301-1305 dicta qué bucle de bomba 1220-1224 se cargará en ellas.

Con referencia ahora a las figuras 28 y 29, la bomba de sangre entera 1301 se ilustra con detalle. La estructura y el funcionamiento de la bomba de sangre entera se describirán bien entendido que las bombas peristálticas 1302-1305 son idénticas. La bomba de sangre entera 1301 tiene un motor 1310, un sensor de posición 1311, un cilindro neumático 1312, un accionador neumático 1313, un rotor 1314 (mejor ilustrado en la figura 30), y un alojamiento 1315

El rotor 1314 está montado rotativamente dentro del alojamiento 1315 y está en conexión operable con el eje de accionamiento 1316 del motor 1310. Específicamente, el rotor 1314 está montado dentro de la pared curvada 1317 del alojamiento 1315 de manera que se pueda girar con el motor 1310 alrededor del eje A-A. Cuando el rotor 1314 está montado en el alojamiento 1315, hay un espacio 1318 entre el rotor 1314 y la pared curvada 1317. Este espacio 1318 es la región de bombeo de tubo de la bomba de sangre entera 1301 en la que el tubo de bucle de bomba 1121 (figura 33) encaja cuando se carga para bombeo. El sensor de posición 1316 está acoplado al eje de accionamiento 1316 del motor 1310 de modo que la posición rotacional del rotor 1314 pueda ser supervisada supervisando el eje de accionamiento 1316. El sensor de posición 1311 está conectado operativamente y transmite datos al controlador de sistema 1210 (figura 24). Analizando estos datos, el controlador de sistema 1210, que también está acoplado al motor 1310, puede activar el motor 1310 para colocar el rotor 1314 en cualquier posición rotacional deseada.

20

25

30

50

55

60

65

El alojamiento 1315 también incluye una pestaña de alojamiento 1319. La pestaña de alojamiento 1319 se usa para fijar la bomba de sangre entera 1310 a la placa 1202 de la cubierta 1200 (figura 22). Más específicamente, un perno se extiende a través de agujeros de perno 1320 de la pestaña de alojamiento 1319 para enganchar a rosca agujeros dentro de la placa 1202. La pestaña de alojamiento 1319 también incluye un agujero (no representado) para que el accionador neumático 1313 se pueda extender a su través. Este agujero está dimensionado de modo que el accionador neumático 1313 se pueda mover entre una posición subida y otra bajada sin resistencia considerable. El accionador neumático 1313 es activado y desactivado por el cilindro neumático 1312 a modo de pistón mediante la utilización de aire. El cilindro neumático 1312 incluye un agujero de entrada de aire 1321 para conectar una línea de aire de suministro. Cuando se suministra aire al cilindro neumático 1312, el accionador neumático se extiende hacia arriba a través de la pestaña de alojamiento 1319 a una posición subida. Cuando se interrumpe el suministro de aire al cilindro neumático 1312, el accionador neumático 1312, el accionador neumático 1312, volviendo a la posición bajada. El controlador de sistema 1210 (figura 22) controla el suministro de aire al agujero de entrada de aire 1321.

La pared curvada 1317 del alojamiento 1315 contiene dos ranuras 1322 (solamente una es visible). Las ranuras 1322 están situadas en lados sustancialmente opuestos de la pared curvada 1317. Las ranuras 1322 se han previsto para que el tubo de bucle de bomba 1121 (figura 33) pueda pasar a la región de bombeo de tubo 1318. Más específicamente, la porción de entrada de bomba 1150 y las porciones de salida 1151 (figura 33) del tubo de bucle de bomba 1121 pasan a través de las ranuras 1322.

Volviendo ahora a las figuras 30 y 31, el rotor 1314 se ilustra quitado del alojamiento 1315 de modo que sus componentes sean más claramente visibles. El rotor 1314 tiene una superficie superior 1323, guía inclinada 1324, pestaña de rotor 1325, dos rodillos de guía 1326, dos rodillos de accionamiento 1327, y suelo de rotor 1328. Los rodillos de guía 1326 y los rodillos de accionamiento 1327 están fijados rotativamente alrededor de núcleos 1330 entre el suelo de rotor 1328 y una superficie inferior 1329 de la pestaña de rotor 1325. Como se ilustra mejor en la figura 29, los núcleos 1330 encajan en agujeros 1331 del suelo de rotor 1328 y los rebajes 1332 en la superficie inferior 1329. Los rodillos de guía 1326 y los rodillos de accionamiento 1327 encajan alrededor de los núcleos 1330 y pueden girar a su alrededor. Se disponen preferiblemente dos rodillos de guía 1326 y dos rodillos de accionamiento 1327. Más preferiblemente, los rodillos de guía 1326 y los rodillos de accionamiento 1327 están dispuestos en el rotor 1314 de manera que estén en una configuración alterna.

Con referencia a las figuras 29 y 31, los rodillos de accionamiento 1327 se han previsto para comprimir la porción de tubo de bucle de bomba 1121 que se carga en la región de bombeo de tubo 1318 contra la pared curvada interior 1317 cuando el rotor 1314 gira alrededor del eje A-A, deformando por ello el tubo y haciendo que fluyan fluidos a través del tubo. El cambio de la velocidad rotacional del rotor 1314 cambiará correspondientemente la tasa de flujo de fluido a través del tubo. Los rodillos de guía 1326 se han previsto para mantener la porción de tubo de bucle de bomba 1121 que se carga en la a región de bombeo de tubo 1318 adecuadamente alineada durante el bombeo. Adicionalmente, los rodillos de guía 1326 ayudan a cargar adecuadamente el bucle de tubo de bomba 1121 en la región de bombeo de tubo 1318. Aunque los rodillos de guía 1326 se ilustran con sección transversal uniforme, se prefiere que la placa superior de los rodillos de guía esté ahusada de manera que tenga un borde más afilado cerca de su diámetro exterior. El ahusamiento de la placa superior da lugar a un rodillo de guía con un perfil en sección transversal no simétrico. La realización ahusada ayuda a asegurar la carga apropiada de los tubos en la región de bombeo de tubo.

El rotor 1314 incluye además una cavidad 1328 que se extiende a través de su centro. La cavidad 1328 está diseñada para conectar el rotor 1314 al eje de accionamiento 1316 del motor 1310.

Con referencia ahora a las figuras 30 y 32, la pestaña de rotor tiene un agujero 1333. El agujero 1333 se define por un borde delantero 1334 y un borde de salida 1335. Los términos delantero y de salida se usan suponiendo que la rotación del rotor 1314 en la dirección hacia la derecha es la dirección hacia adelante, mientras que la rotación del rotor 1314 en una dirección hacia la izquierda es la dirección hacia atrás. Sin embargo, la invención no se limita a ello y se puede modificar para bombas hacia la izquierda. El borde delantero 1334 está biselado hacia abajo al agujero 1333. El borde de salida 1335 se extiende hacia arriba desde la superficie superior de la pestaña de rotor 1325 más alto que el borde delantero 1334. El borde delantero se ha previsto para que el borde de salida capture y alimente el tubo de bucle de bomba 1121 a la región de bombeo de tubo 1318 al girarse el rotor 1314 en la dirección hacia adelante.

10

15

25

40

50

55

60

65

5

El rotor 1314 también tiene una guía inclinada 1324 que se extiende hacia arriba, en un ángulo invertido, desde la pestaña de rotor 1325. La guía inclinada 1324 se ha previsto para desplazar el tubo de bucle de bomba 1121 hacia la pestaña de rotor 1325 al girar el rotor 1314 en la dirección hacia adelante. Preferiblemente, la guía inclinada 1324 tiene una arista elevada 1336 que se extiende a lo largo de la superficie superior 1323 para enganche manual por el operador, si es necesario. Más preferiblemente, la guía inclinada 1314 está situada hacia adelante del borde delantero 1334.

auto 20 posi cual enci

Con referencia ahora a las figuras 28 y 33, la bomba de sangre entera 1301 puede cargar y descargar automáticamente el tubo de bucle de bomba 1121 a y de la región de bombeo de tubo 1318. Usando el sensor de posición 1311, el rotor 1314 se gira a una posición de carga donde la guía inclinada 1324 mirará a la casete 1100 cuando la casete 1100 esté cargada sobre la cubierta 1200 (figura 25). Más específicamente, el rotor 1314 se encuentra en una posición de modo que la guía inclinada 1324 esté situada entre la porción de entrada 1150 y la porción de salida 1151 del bucle de bomba 1121 cuando la casete 1100 esté fijada a la cubierta, como se ilustra en la figura 13. Cuando la casete 1100 está fijada a la cubierta 1200, el tubo de bucle de bomba 1121 se extiende sobre y alrededor del rotor 1314. El accionador neumático 1313 está entonces en la posición bajada.

Una vez que la casete 1100 está adecuadamente fijada y el sistema está preparado, el rotor 1314 se gira en la dirección hacia la derecha (es decir, la dirección hacia adelante). Cuando el rotor 1314 gira, el bucle de tubo de bomba 1121 es contactado por la guía inclinada 1324 y se desplaza contra la superficie superior de la pestaña de rotor 1325. Las porciones de tubo de bucle de bomba 1121 que son desplazadas contra la pestaña de rotor 1325, son contactadas entonces por el borde de salida 1325 y alimentadas hacia abajo a la región de bombeo de tubo 1318 a través del agujero 1333. Se ha dispuesto un rodillo de guía 1326 directamente después del agujero 1333 para colocar más adecuadamente los tubos dentro de la cámara de bombeo de tubo para bombeo por los rodillos de accionamiento 1327. Cuando está cargada, la porción de entrada 1150 y la porción de salida 1151 del tubo de bucle de bomba 1121 pasan a través de ranuras 1322 de la pared curvada 1317. Se necesita una revolución y media para cargar completamente los tubos.

Para descargar automáticamente el bucle de tubo de bomba 1121 de la bomba de sangre entera 1301 después de finalizar la terapia, el rotor 1314 se gira a una posición donde el agujero 1333 está alineado con la ranura 1322 a través de la que pasa la porción de salida 1151. Una vez que está alineado, el accionador neumático 1313 se activa y extiende a la posición subida, contactando y elevando la porción de salida 1151 a una altura por encima del borde de salida 1335. El rotor 1314 se gira entonces en la dirección hacia la izquierda, haciendo que el borde de salida a 1335 contacte y saque el tubo de bucle de bomba 1121 de la región de bombeo de tubo 1318 por el agujero 1333.

45 D. Comunicación por infrarrojos

Con referencia a la figura 34, el sistema de torre 2000 (figura 17) también incluye preferiblemente una interface de comunicación inalámbrica por infrarrojos ("IR") (no representada). La interface IR inalámbrica consta de tres elementos primarios, el controlador de sistema 1210, el circuito integrado de protocolo IRDA, 1381, y el puerto transceptor IRDA 1382. La interface de comunicación IR es capaz de transmitir y recibir datos mediante señales IR de un ordenador remoto u otro dispositivo que tenga capacidades IR. Al enviar datos, el controlador de sistema 1210 envía datos de comunicaciones serie al chip de protocolo IRDA 1381 para poner los datos en memoria intermedia. El chip de protocolo IRDA 1381 añade datos adicionales y otra información de comunicación a la cadena de transmisión y posteriormente los envía a transceptor IRDA 1382. El transceptor 1382 convierte los datos eléctricos de transmisión a pulsos luminosos codificados y los transmite a un dispositivo remoto mediante un fototransmisor.

Al recibir datos, los pulsos de datos IR son recibidos por un fotodetector situado en el chip transceptor 1382. El chip transceptor 1382 convierte los pulsos ópticos en datos eléctricos y envía la corriente de datos a chip de protocolo IRDA 1381 donde la señal eléctrica es desprovista del control y contenido adicional de protocolo IRDA. Los datos restantes son enviados posteriormente al controlador de sistema 1210 donde la corriente de datos es analizada según el protocolo de comunicaciones.

Incorporando una interface de comunicación IR en el sistema de torre 2000, los datos en tiempo real relativos a una sesión de terapia pueden ser transmitidos a un dispositivo remoto para registro, análisis, o transmisión adicional. Los datos pueden ser enviados mediante señales IR al sistema de torre 2000 para controlar la terapia o poder cambiar los protocolos en un estado ciego. Adicionalmente, las señales IR no interfieren con otro equipo hospitalario, como

otros métodos de transmisión inalámbrica, como radio frecuencia.

III. Proceso de tratamiento de fotoféresis

15

20

25

30

45

65

Con referencia conjuntamente a la figura 26, un diagrama de flujo que ilustra una realización de la invención que incluye fotoactivación de la capa leucocitaria, y la figura 27, una representación esquemática del aparato que se puede emplear en tal realización, el proceso empieza 1400 con un paciente 600 conectado por medio de un adaptador de aguja 1193 que soporta una aguja, para extracción de sangre, y un adaptador de aguja 1194 que soporta otra aguja, para devolver sangre tratada y otros fragmentos. La bolsa de salina 55 está conectada por el conector 1190 y la bolsa de anticoagulante 54 está conectada por el conector 1191. Los accionadores 1240, 1241, y 1242 se abren, la bomba de anticoagulante 1304 gira, y el accionador de salina 1246 se abre de modo que todo el conjunto de tubos desechables se cebe 1401 con salina 55 y anticoagulante 54. La centrífuga 10 gira en 1402, y se bombea 1403 mezcla de sangre-anticoagulante al recipiente de centrífuga 10, con la bomba A/C 1304 y la bomba WB 1301 controladas a una relación de velocidad de 1:10.

Cuando el volumen recogido llega a 150 ml 1404, la bomba de retorno 1302 se pone 1405 a la velocidad de la bomba de recogida 1301 hasta que se detectan 1406 glóbulos rojos en un sensor HCT (no representado) en la cámara centrífuga 1201 (figura 19). Glóbulos rojos empaquetado y capa leucocitaria se han acumulado en este punto en el recipiente de centrífuga y son expulsados lentamente a una tasa, controlada por el procesador, que mantiene la línea de glóbulos rojos al nivel de la interface del sensor.

La bomba de glóbulos rojos 1305 se pone entonces 1407 a 35% de la velocidad de la bomba de entrada, controlando 1408 al mismo tiempo la tasa para mantener la línea de células al nivel de interface hasta que se alcanza 1409 el volumen del ciclo de recogida, punto en el que la bomba de glóbulos rojos 1305 se apaga 1410 y el recorrido de fluido a la bolsa de tratamiento 50 mediante el sensor HCT 1125 se abre bajando el accionador 1244, y se para cuando el sensor HCT 1125 detecta glóbulos rojos 1411. El "volumen de ciclo de recogida" se define como la sangre entera procesada deseada dividida por el número de ciclos de recogida, por ejemplo, un objetivo de proceso de sangre deseado de 1500 ml puede requerir 6 ciclos, y así 1500/6 es un volumen de 250 ml. Continuando en 1410 el suministro de sangre entera del paciente al recipiente y con la bomba de glóbulos rojos apagada, se acumularán glóbulos rojos y expulsarán la capa leucocitaria del interior del recipiente 10. Los glóbulos rojos se usan para expulsar la capa leucocitaria y serán detectados por el sensor de hematocrito efluente (HCT), indicando que la capa leucocitaria ha sido recogida.

Si se necesita otro ciclo 1412, el recorrido de efluente de la centrífuga 10 es devuelto 1413 a la bolsa de plasma 51 y se incrementa 1413 la tasa de la bomba de glóbulos rojos 1305 a la tasa de bombeo de la bomba de entrada 1301 hasta que los glóbulos rojos son detectados 1414, que es el inicio del segundo ciclo. Si no se necesita otro ciclo 1412, la centrífuga 10 se apaga 1415 y la bomba de entrada 1301 y la bomba de anticoagulante 1304 se ponen a una tasa KVO, 10 ml/h en esta realización. El recorrido de efluente es dirigido 1416 a la bolsa de plasma 51, la tasa de la bomba de glóbulos rojos 1305 se pone 1417 a 75 ml/min, la bomba de recirculación 1303 y las lámparas de fotoactivación se activan 1418 durante un período suficiente para tratar la capa leucocitaria, calculada por el controlador dependiendo del volumen y tipo de enfermedad tratado.

Cuando el recipiente 10 está vacío 1419, la bomba de glóbulos rojos 1305 se apaga 1420 y la bolsa de plasma 51 se vacía 1421 abriendo el accionador 1247 y continuando la bomba de retorno 1302. La bomba de retorno 1302 se apaga 1422 cuando la bolsa de plasma 51 está vacía y cuando la fotoactivación ha terminado 1423, las células tratadas son devueltas 1424 al paciente desde la placa 700 por medio de la bomba de retorno 1302. Se usa salina para lavar el sistema y el enjuague es devuelto al paciente, completándose el proceso 1425.

El anticoagulante, la sangre del paciente, y el fluido que vuelve al paciente son supervisados por detectores de aire 1204 y 1202, y el fluido vuelve al paciente a través de la cámara de goteo y el filtro 1500. Las bombas 1304, 1301, 1302, 1303, y 1305, los accionadores 1240, 1241, 1242, 1243, 1244, 1245, 1246, y 1247, y la rotación del recipiente 10 son controlados por el procesador programado en la torre.

El proceso y aparato relacionado tienen ventajas significativas sobre procesos y aparatos anteriores porque la invención permite que la capa leucocitaria esté más tiempo en el recipiente porque los glóbulos rojos son extraídos mientras se recoge la capa leucocitaria en el recipiente durante la centrifugación, manteniendo más capa leucocitaria en el recipiente hasta que se haya recogido la cantidad deseada de células de la capa leucocitaria antes de extraer las células de la capa leucocitaria. También se pueden separar plaquetas, leucocitos, y otras fracciones de la capa leucocitaria, o se pueden recoger glóbulos rojos en vez de hacerlos volver con el plasma al paciente como hace el proceso ilustrado.

Se ha hallado que el aumento del tiempo que la capa leucocitaria 810 se somete a movimiento rotacional en el recipiente de centrífuga 10 produce un "corte limpio" de capa leucocitaria 820. Un "corte más limpio" significa que el recuento de hematocrito (HCT%) ha disminuido. HCT% es la cantidad de glóbulos rojos presentes por volumen de capa leucocitaria. La cantidad de tiempo que la capa leucocitaria 820 se somete a movimiento rotacional en el recipiente de centrífuga 10 se puede maximizar de la siguiente manera. En primer lugar, se alimenta sangre entera

800 al primer canal de recipiente 420 cuando el recipiente de centrífuga 10 está girando. Como se ha explicado anteriormente, la sangre entera 800 se separa en la capa leucocitaria 820 y RBC 810 cuando sale por encima de la placa inferior 300. El segundo canal de recipiente 410 y el tercer canal de recipiente 740 están cerrados entonces. La entrada de sangre entera 800 continúa hasta que el volumen de separación 220 se llena con una combinación de capa leucocitaria 820 cerca de la parte superior y RBC810 cerca de la parte inferior del recipiente de centrífuga 10. Sacando RBC 810 del recipiente de centrífuga 10 por el segundo canal de recipiente 410 solamente, se crea un volumen adicional para la entrada de sangre entera 800 y la capa leucocitaria no extraída 820 se somete a fuerzas rotacionales durante un período de tiempo prolongado. Dado que el recipiente de centrífuga 10 sigue girando, parte de RBC 810 que pueden estar atrapados en la capa leucocitaria 820, son empujados a la parte inferior del recipiente de centrífuga 10 y alejados del tercer canal de recipiente 740 y la capa leucocitaria 820. Así, cuando se abre el tercer canal de recipiente 740, la capa leucocitaria 820 que se ha quitado, tiene un HCT% inferior. Controlando la tasa de entrada de sangre entera 800 y las tasas de salida de la capa leucocitaria 820 y RBC 810, se puede lograr un estado constante que produce una capa leucocitaria 820 con UN HCT% aproximadamente constante.

5

10

15 La eliminación de procesado discontinuo y los mejores rendimientos logrados por la presente invención, han reducido el tiempo de tratamiento necesario para tratar adecuadamente pacientes. Para un adulto de complexión media, hay que capturar 90-100 mililitros de capa leucocitaria/glóbulos blancos con el fin de realizar un tratamiento de fotoféresis completo. Para recoger esta cantidad de capa leucocitaria/glóbulos blancos, la presente invención tiene que procesar alrededor de 1,5 litros de sangre entera. La cantidad necesaria de capa leucocitaria/glóbulos 20 blancos se puede tomar de los 1,5 litros de sangre entera aproximadamente en 30-45 minutos usando la presente invención, recogiendo alrededor del 60% o más de la cantidad total de la capa leucocitaria/glóbulos blancos que se someten al proceso de separación. La capa leucocitaria/glóbulos blancos capturados tienen un HCT de 2% o menos. En comparación, un aparato existente, el UVAR XTS, tarda alrededor de 90 minutos en procesar 1,5 litros de sangre entera para obtener la cantidad suficiente de capa leucocitaria/glóbulos blancos. El UVAR XTS solamente recoge 25 alrededor de 50% de la cantidad total de la capa leucocitaria/glóbulos blancos que se someten al proceso de separación. El HCT de la capa leucocitaria/glóbulos blancos recogidos por el UVAR XTS es de alrededor del 2%, pero no sustancialmente inferior. Otro aparato existente, el Cobe Spectra TM de Gambro, debe procesar 10 litros de sangre entera con el fin de recoger la cantidad suficiente de capa leucocitaria/glóbulos blancos. Esto tarda típicamente alrededor de 150 minutos, recogiendo solamente 10-15% de la cantidad total de la capa 30 leucocitaria/glóbulos blancos que se someten al proceso de separación, y que tiene un HCT de aproximadamente 2%. Así, se ha descubierto que mientras que los aparatos y sistemas existentes requieren de 152 a 225 minutos para separar, procesar, tratar, y reinfundir la cantidad necesaria de los glóbulos blancos o capa leucocitaria, la presente invención puede realizar las mismas funciones en menos de 70 minutos. Estos tiempos no incluyen la preparación del paciente o el tiempo de cebado. Los tiempos indican solamente el tiempo total que el paciente está 35 conectado al sistema.

REIVINDICACIONES

- 1. Un aparato incluyendo:
- 5 una casete (1100) para controlar el movimiento de sangre y componentes sanguíneos separados durante una sesión de tratamiento extracorporal; y un recipiente centrífugo (10A) incluyendo un eje rotacional (11A); incluyendo la casete (1100):
- un alojamiento de plástico rígido (1101) que tiene una sección superior (113) y una sección inferior (1131), formando conjuntamente la sección superior y las secciones inferiores un espacio interior;

un cubo (1140) dentro del espacio interior;

tubos flexibles conectados al cubo (1140);

bucles (1120, 1121, 1122, 1123, 1124) formados de tubos flexibles, estando adaptado cada uno de los bucles para enganchar una cabeza de bomba peristáltica (1301, 1302, 1303, 1304, 1305);

una abertura (1157); y

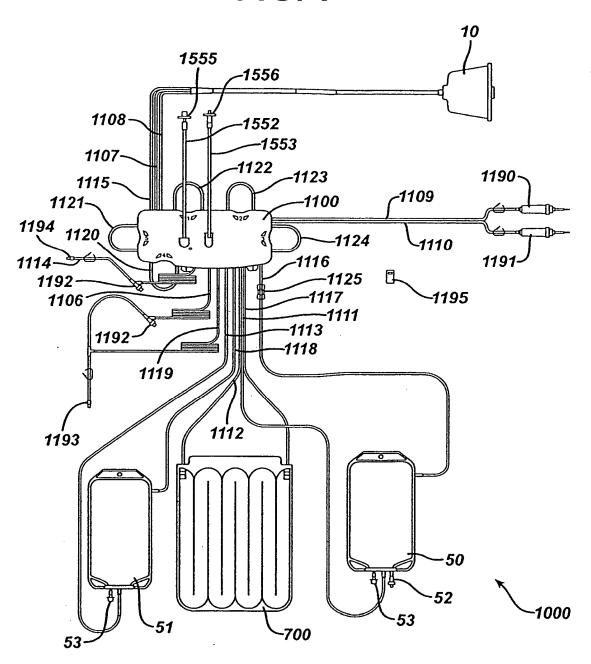
15

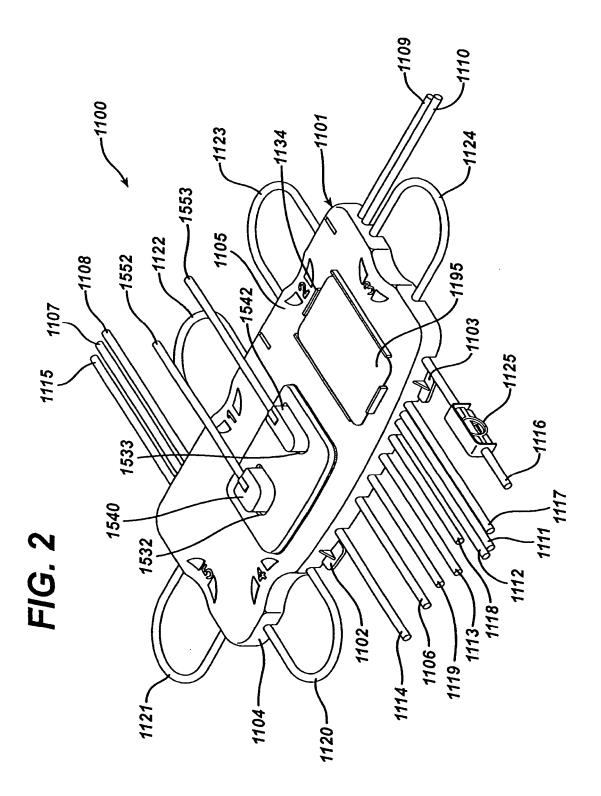
20

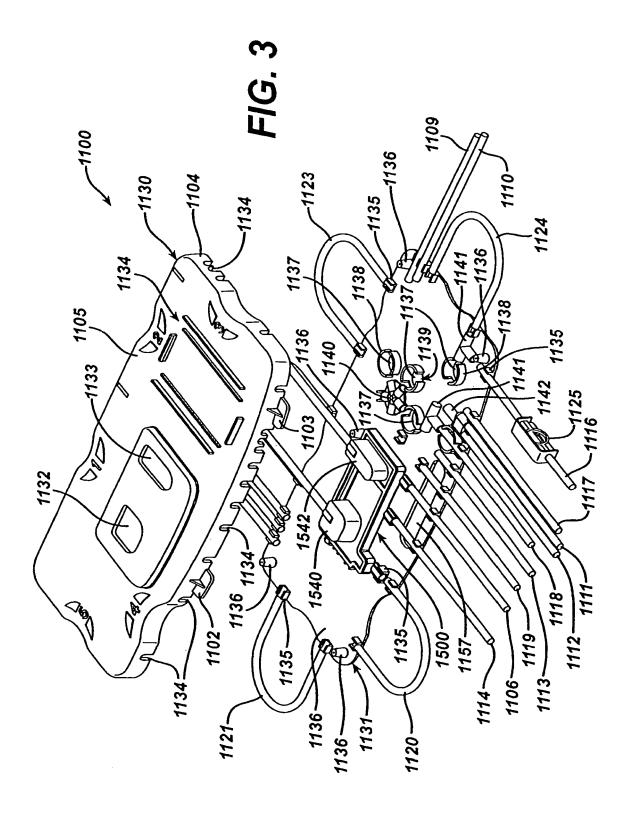
30

35

una sección de tubo flexible incluyendo tubos (1114, 1106, 1109), distintos de los bucles (1120, 1121, 1122, 1123, 1124), atravesando la abertura (1157) de modo que pueda cerrarse el flujo de fluido a través de la sección de tubo flexible (1114, 1106, 1109) por la presión ejercida en la sección de tubo flexible (1114, 1106, 1109);


25 Incluyendo el recipiente centrífugo (10A):


un alojamiento exterior (100A), un manguito de conexión (500A), un núcleo superior (200A), un núcleo inferior (201A), y un suelo de alojamiento (180A), donde el alojamiento exterior (100A) está fabricado de un material plástico transparente biocompatible de modo que los núcleos superior e inferior (200A, 201A) son visibles a través, donde el alojamiento exterior (100A) está conectado al suelo de alojamiento (180A), incluyendo el suelo de alojamiento (180A) salientes (150A) para bloquear el recipiente (10) en un dispositivo rotacional (900A), donde el núcleo superior (200A) y el núcleo inferior (201A) son componentes separados y donde la superficie inferior (297A) del núcleo superior (200A) está en contacto directo con un área de superficie superior (309A) del núcleo inferior (201A), donde un espacio entre el alojamiento exterior (100A) y cada uno del núcleo superior (200A) y el núcleo inferior (201A) define un volumen de separación (220A), y donde un primer canal de flujo (420A) pasa a través del núcleo superior (200A) e interconecta fluidamente con al menos un canal (305A) que está situado entre el núcleo superior (200A) y el núcleo inferior (201A) y que se extiende radialmente en relación al eje rotacional (11A) y al volumen de separación (220A),


incluyendo además el aparato una pluralidad de tubos de entrada (1107, 1108) y un tubo de salida (1115) para acoplar la casete (1100) al recipiente centrífugo (10A), donde uno de los tubos de entrada (1107) devuelve componentes sanguíneos de menor densidad desde el recipiente centrífugo (10) a la casete (1100), donde otro de los tubos de entrada (1108) devuelve componentes sanguíneos de mayor densidad desde el recipiente centrífugo (10A) a la casete (1100), y donde el tubo de salida (1115) suministra sangre entera desde la casete (1100) al recipiente centrífugo (10A) y puede conectarse fluidamente con el volumen de separación (220A) por el primer canal de flujo (420A) y al menos un canal (305A).

30

FIG. 1

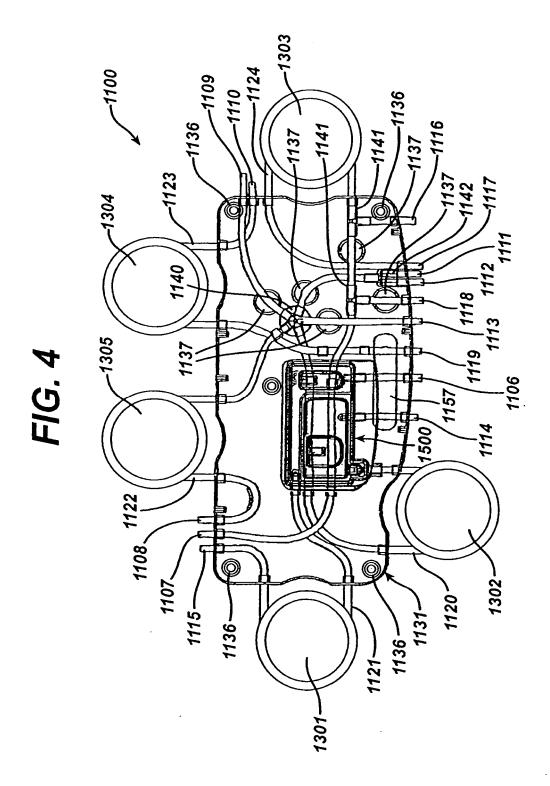
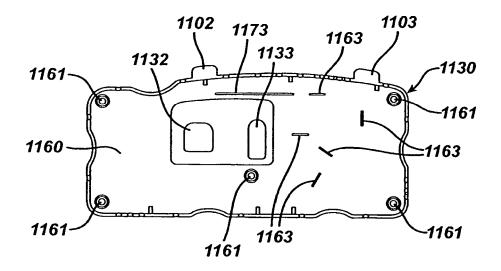
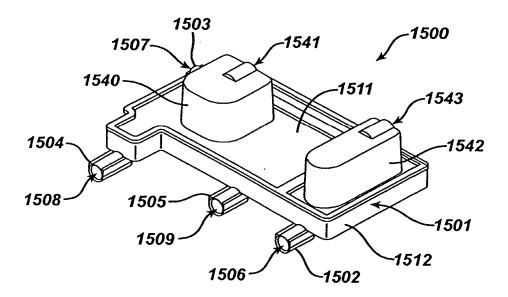
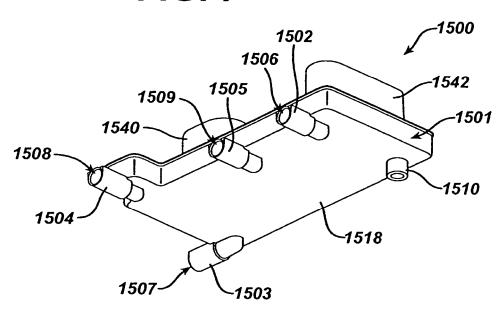


FIG. 5

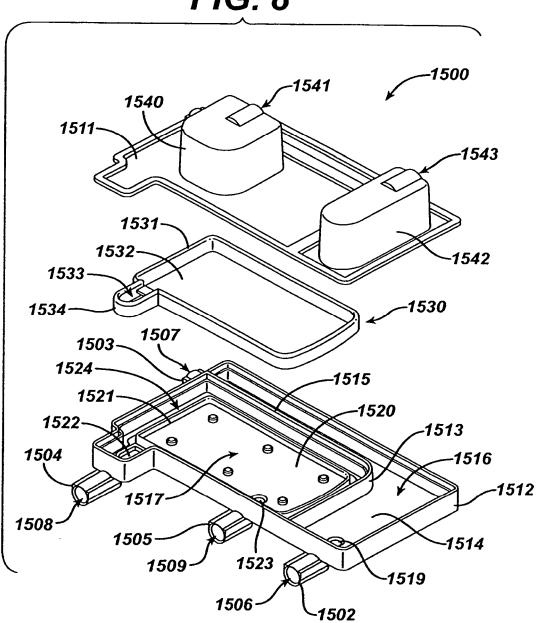

FIG. 6

FIG. 7

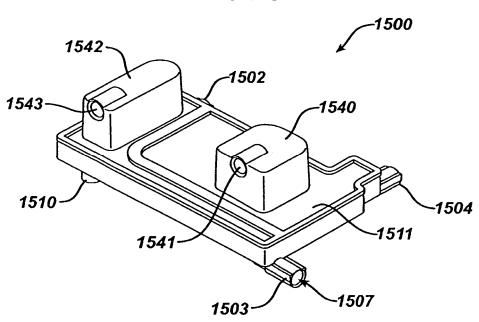


FIG. 10

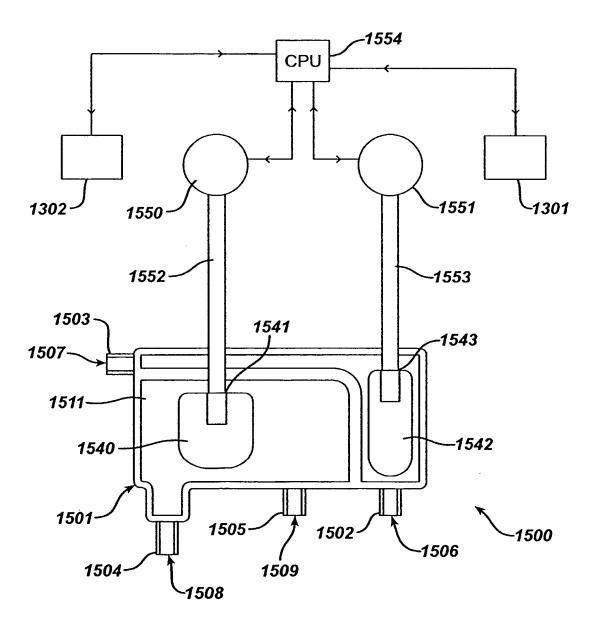


FIG. 11

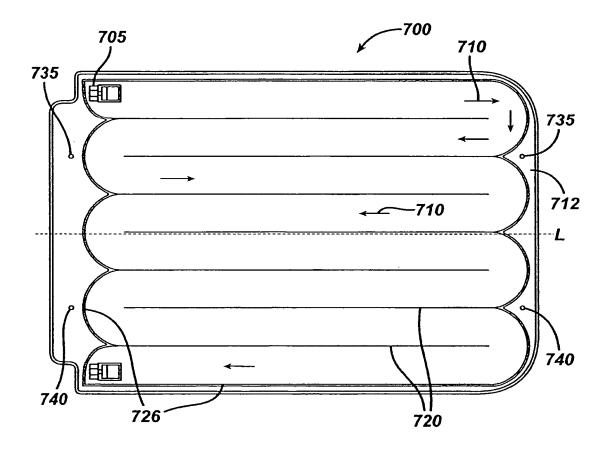
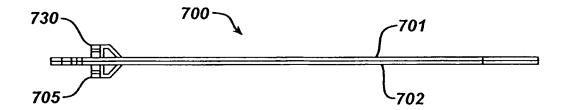
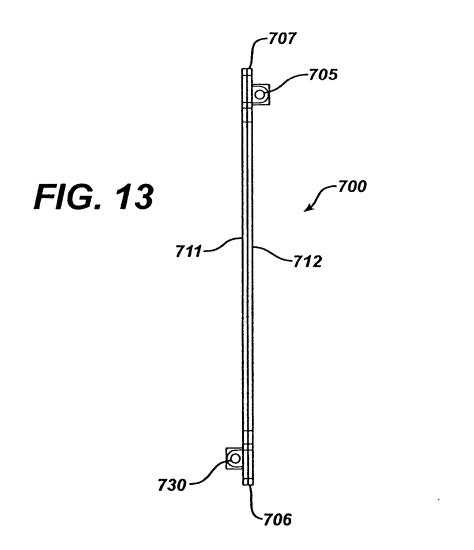




FIG. 12

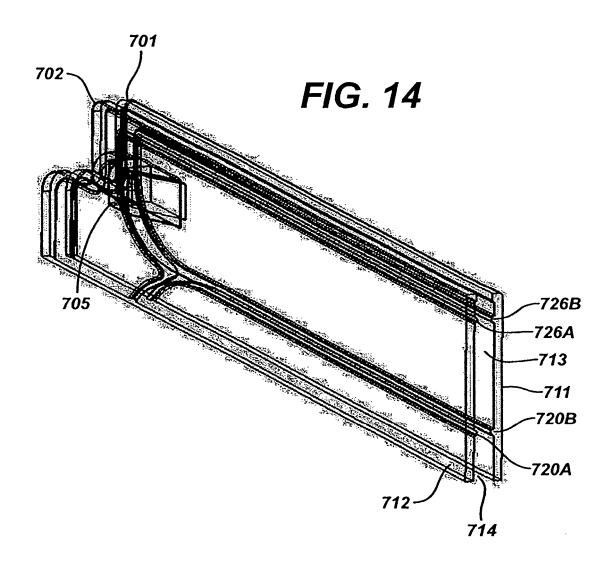
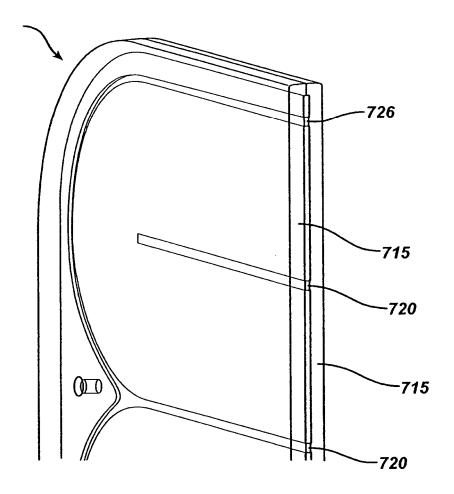



FIG. 15

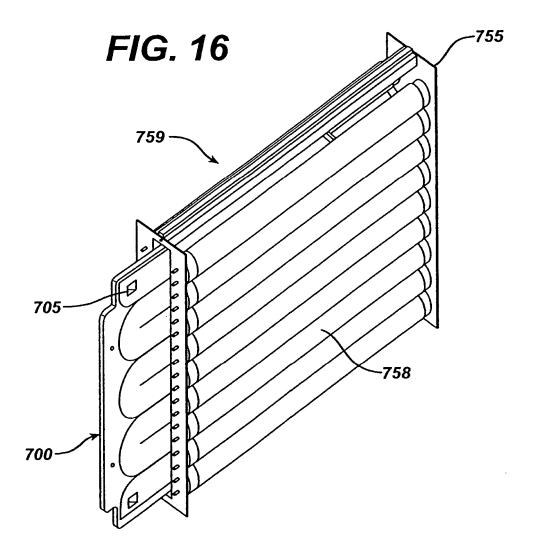
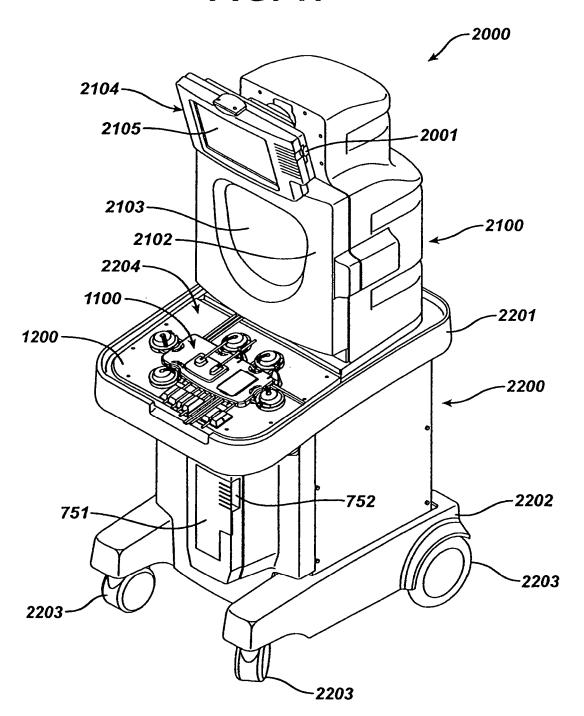
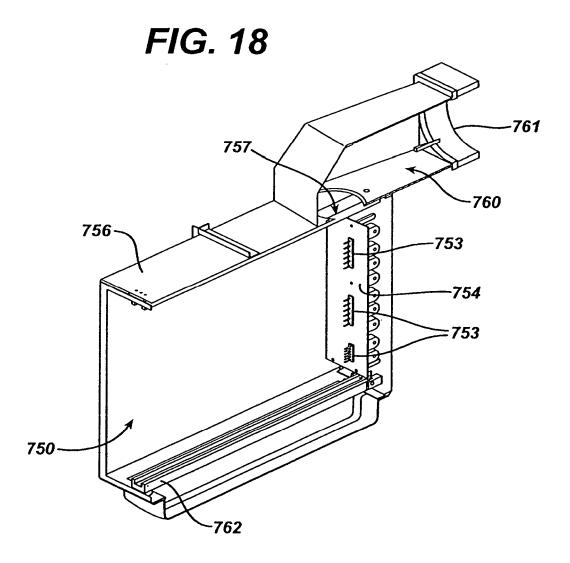
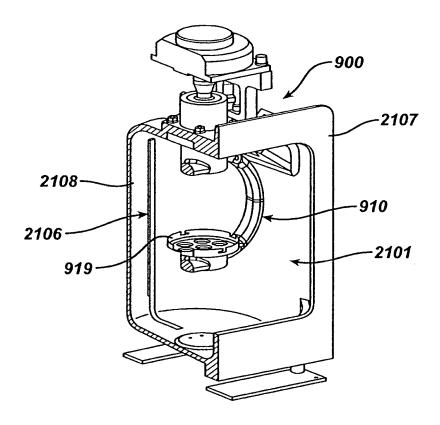
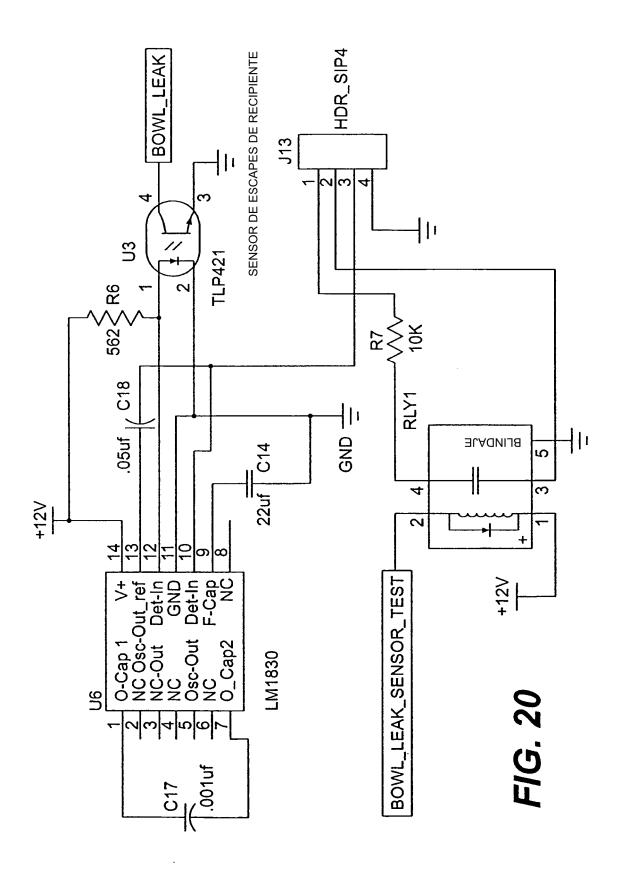
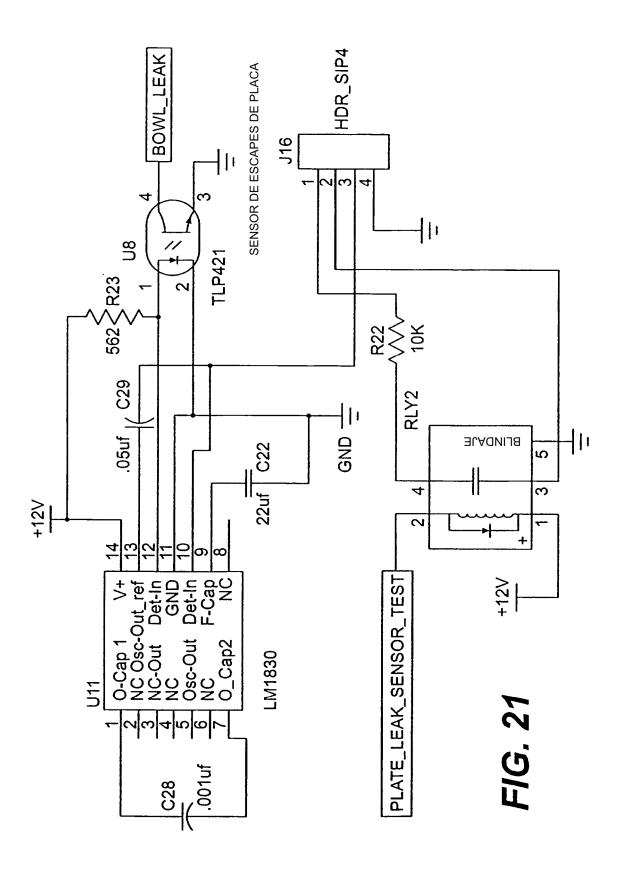
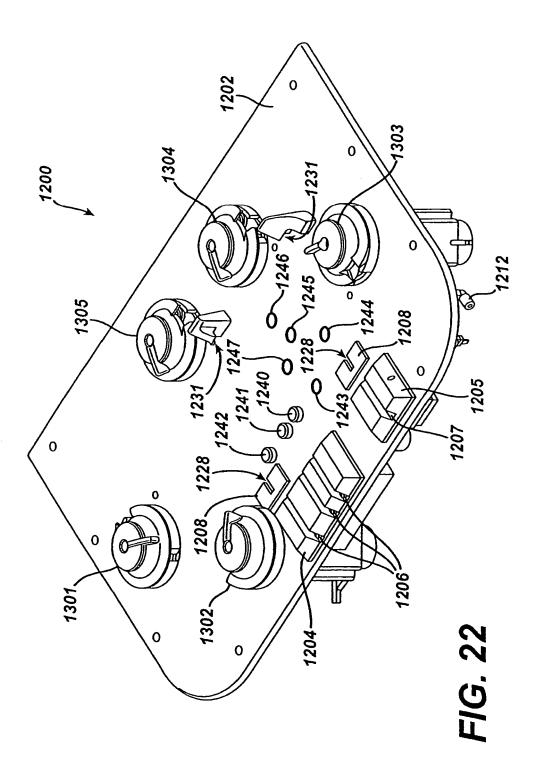
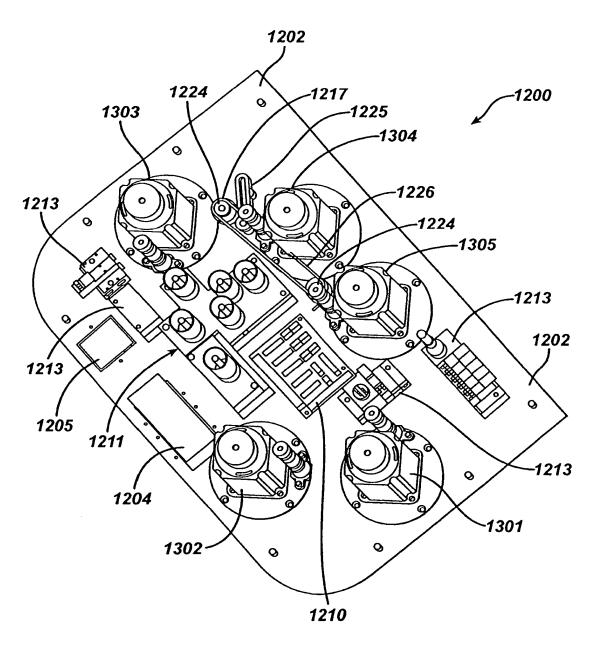
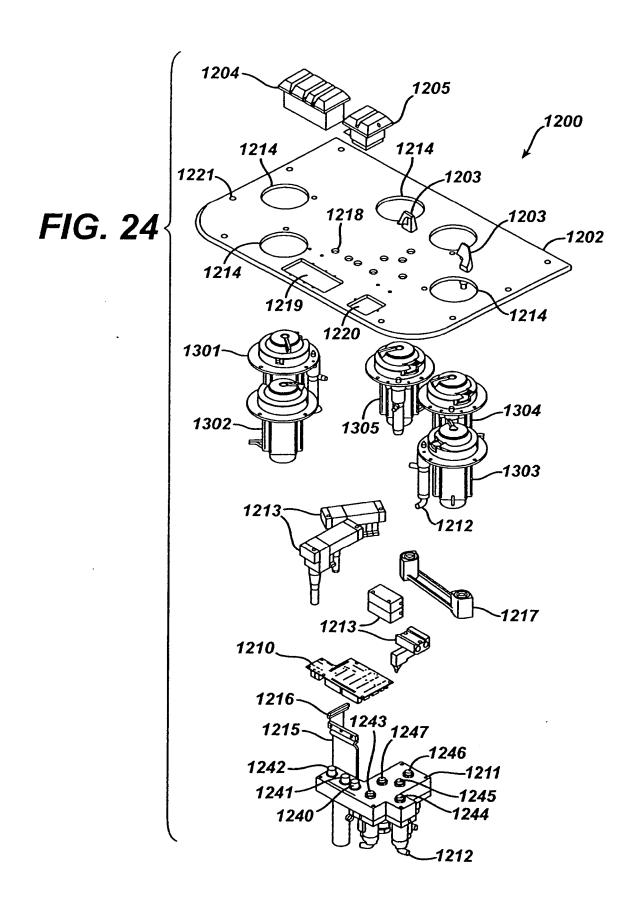



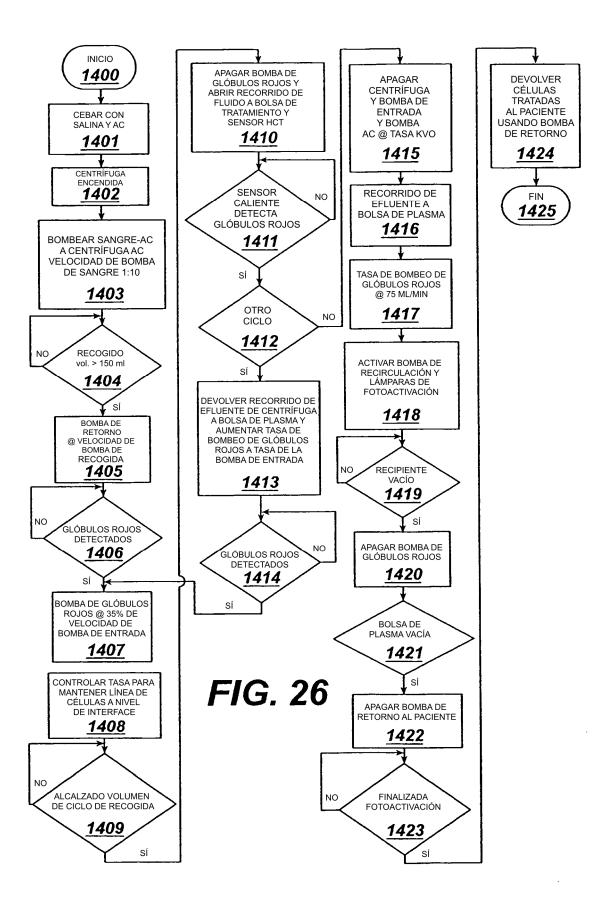
FIG. 17

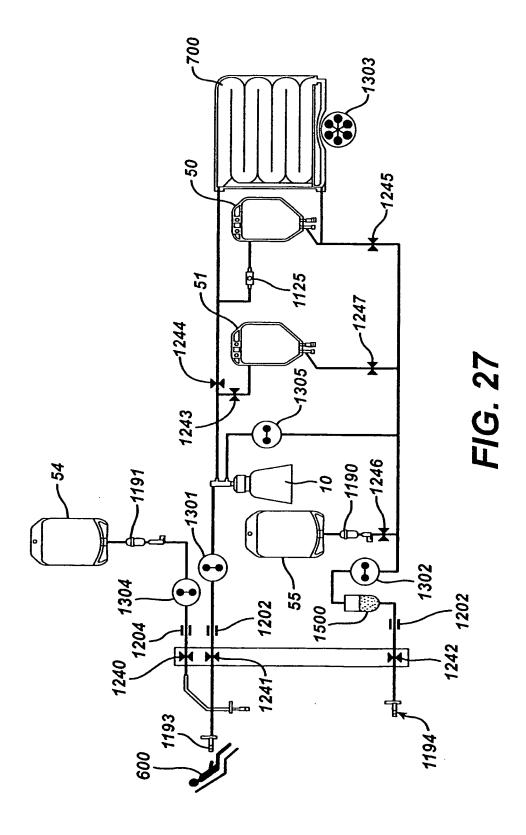






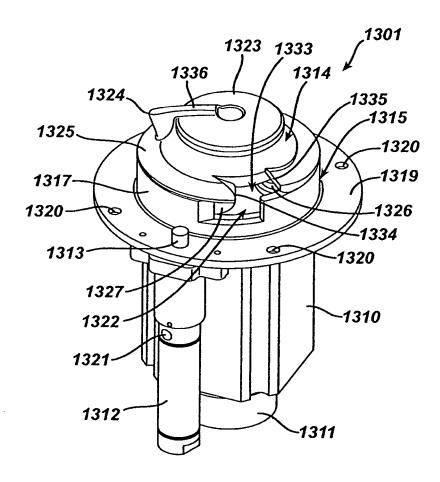

FIG. 19

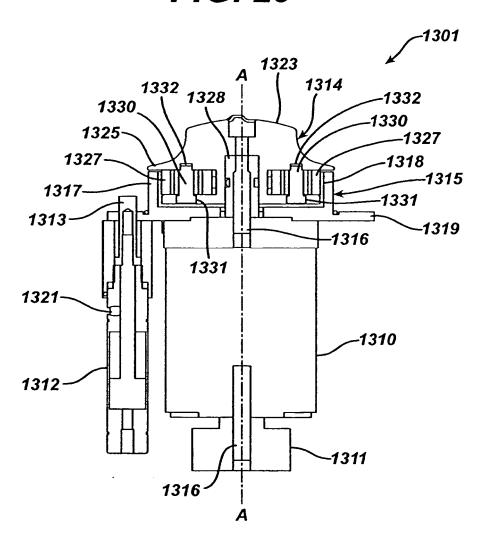


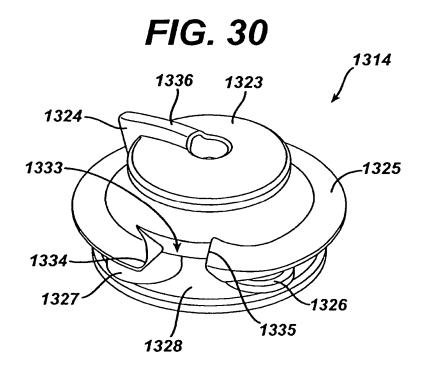


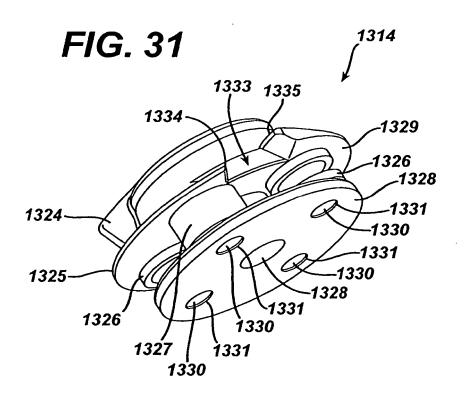












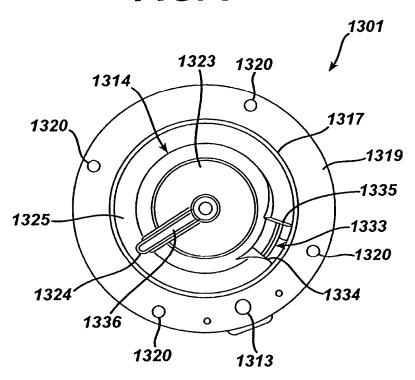
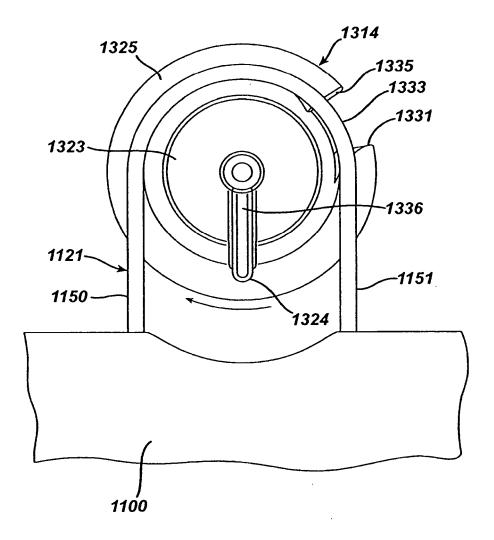



FIG. 33

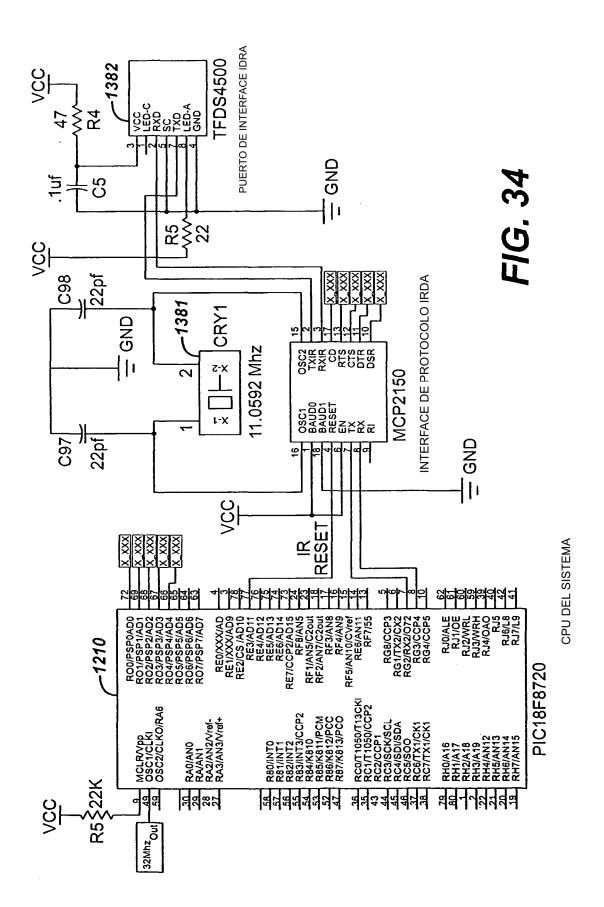


FIG. 35

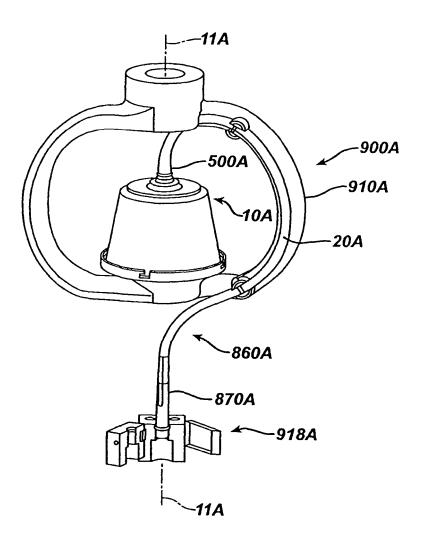
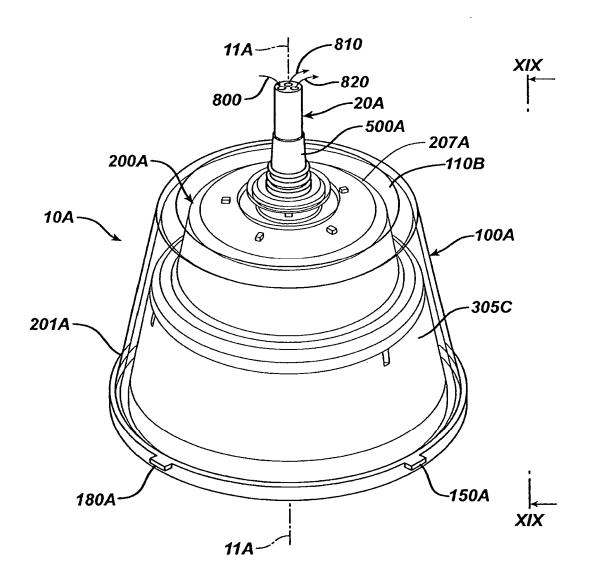
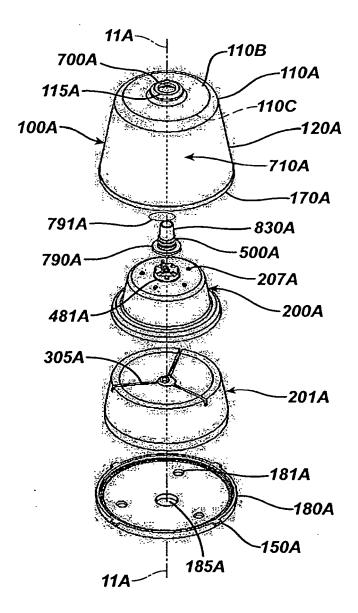
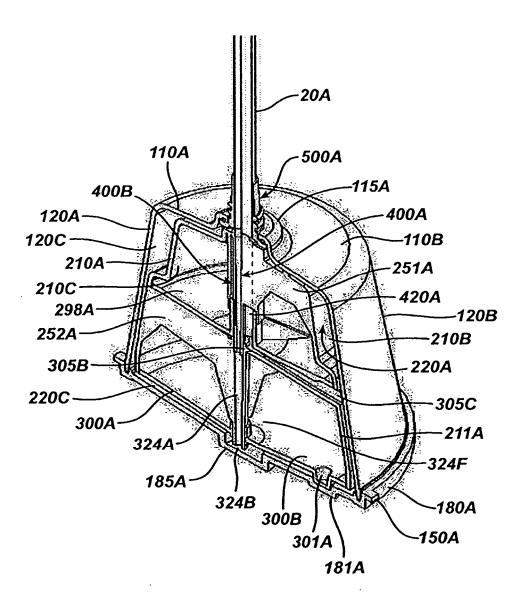
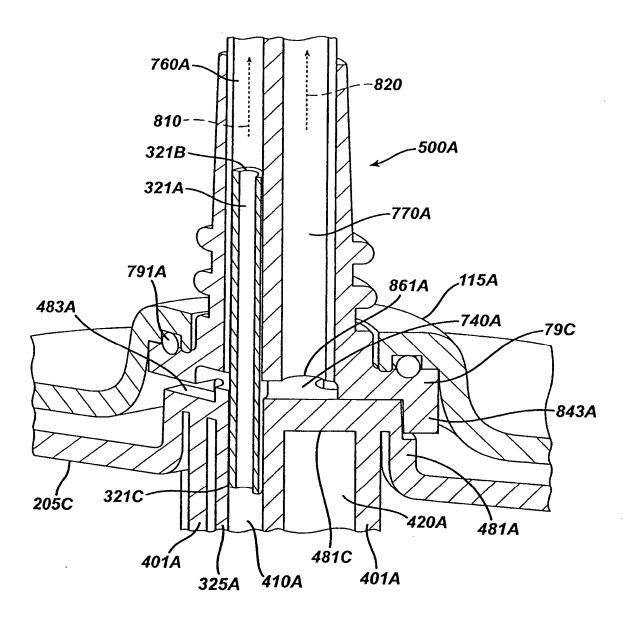



FIG. 36

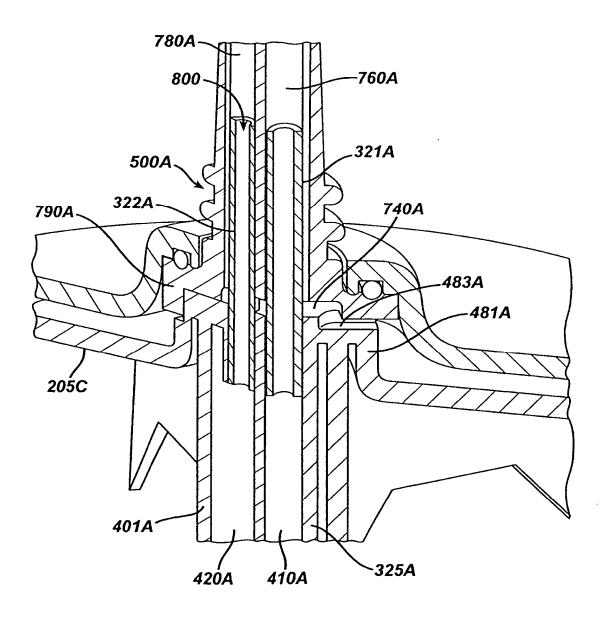

FIG. 38

FIG. 39A

FIG. 39B

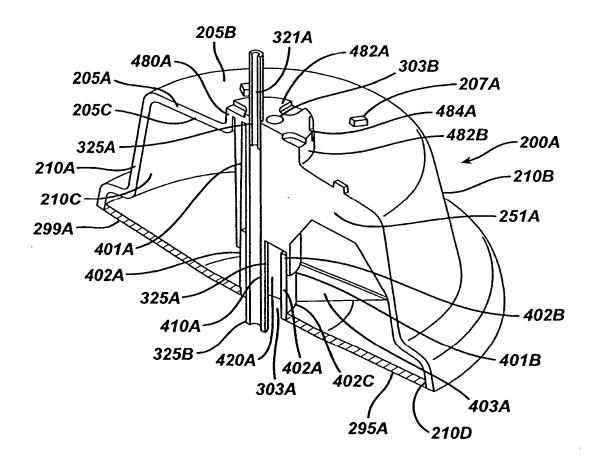


FIG. 41

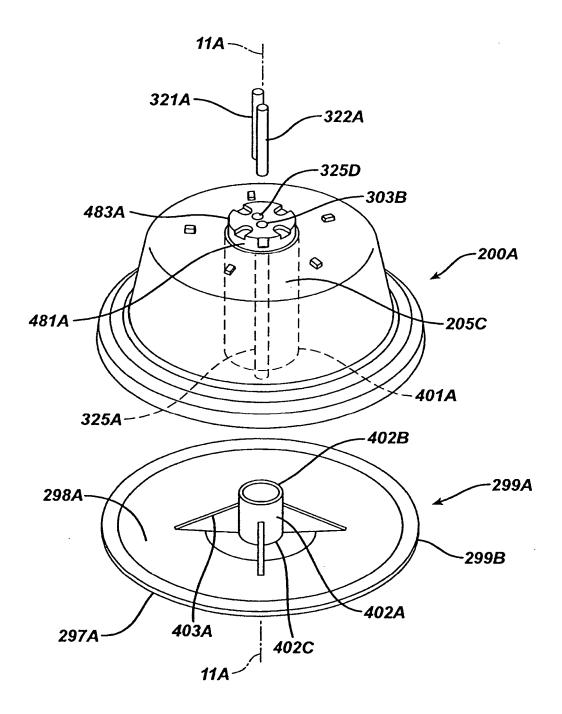
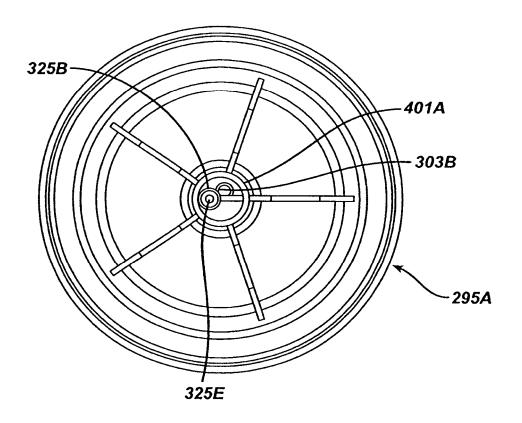
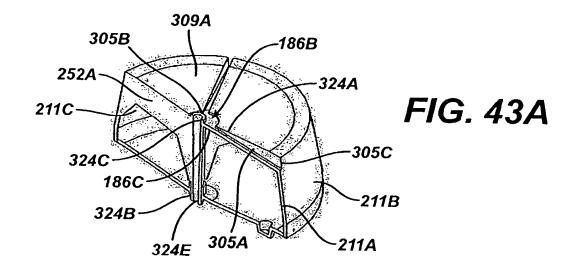




FIG. 42

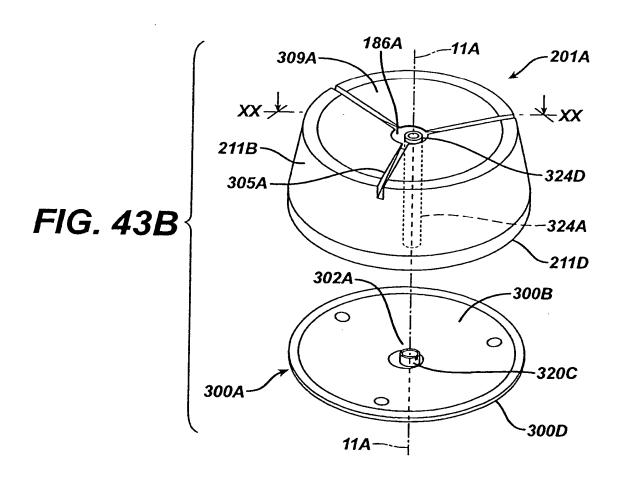
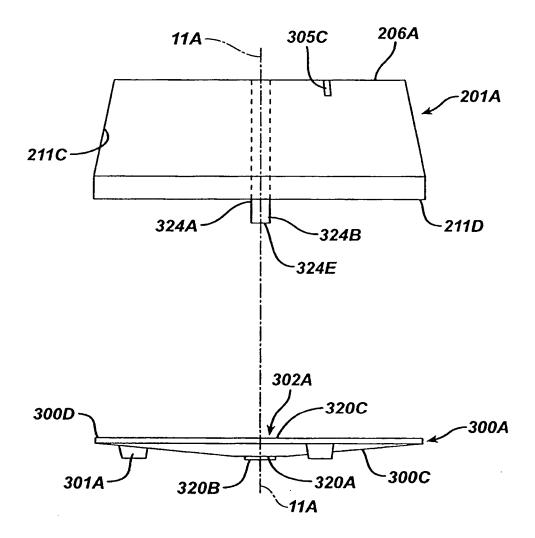



FIG. 44

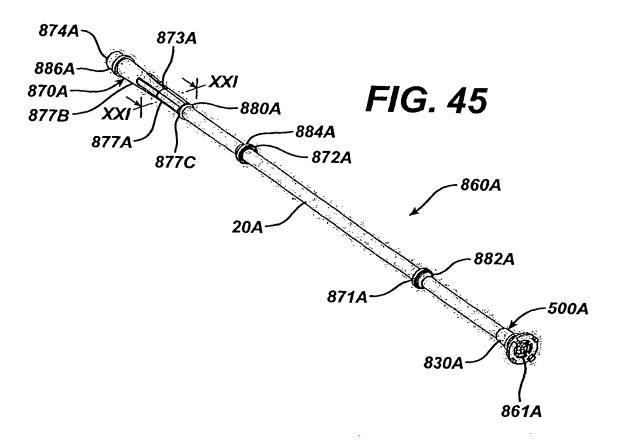
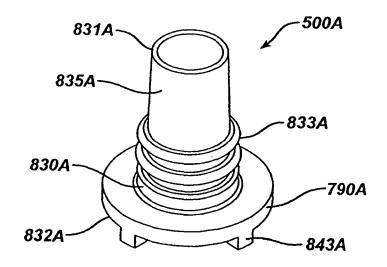



FIG. 46

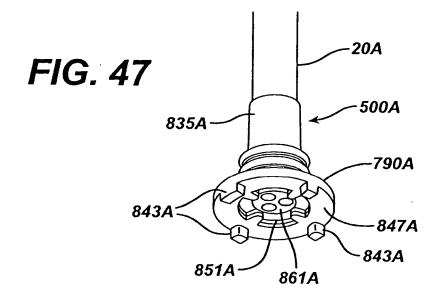


FIG. 48

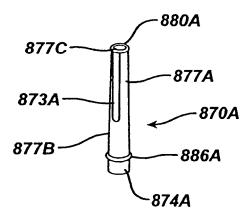


FIG. 49

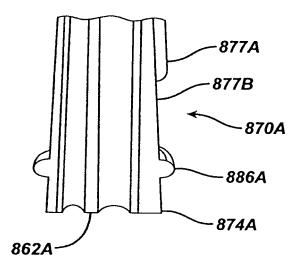


FIG. 50

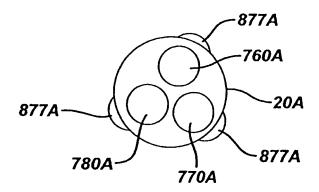


FIG. 51

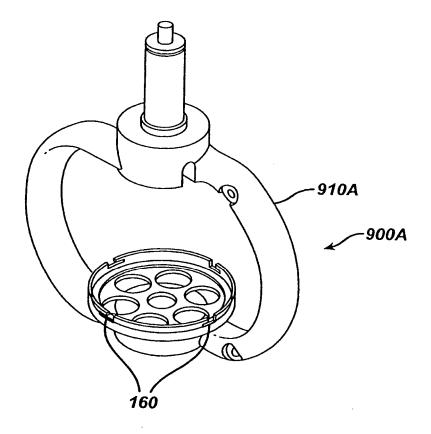


FIG. 52

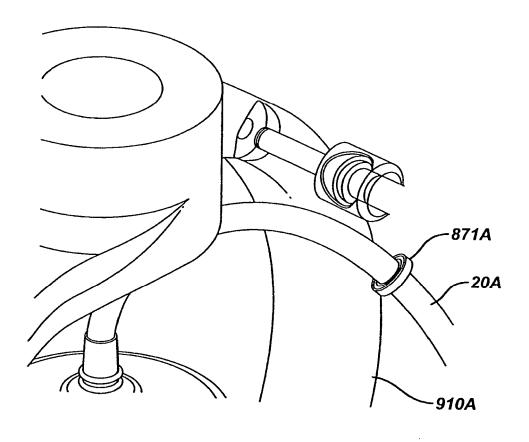
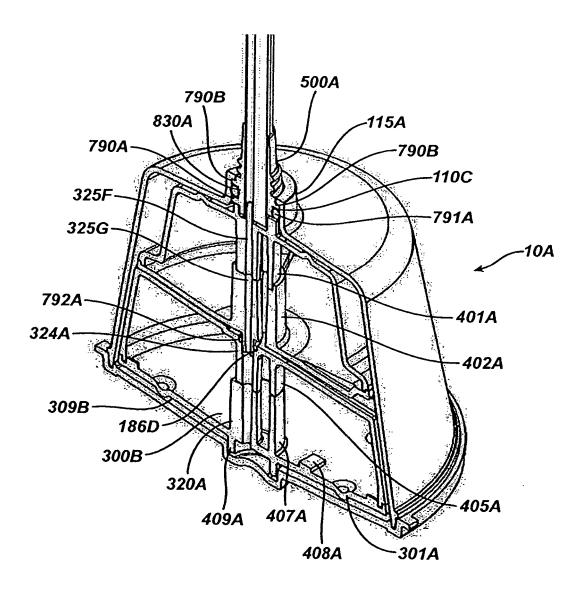



FIG. 53

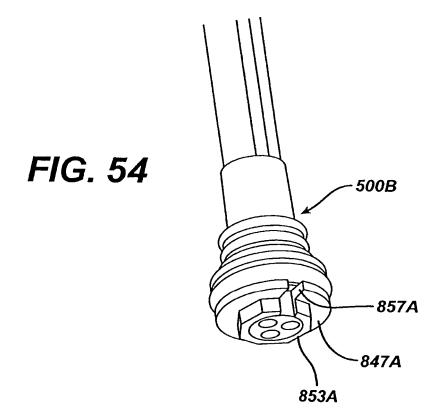
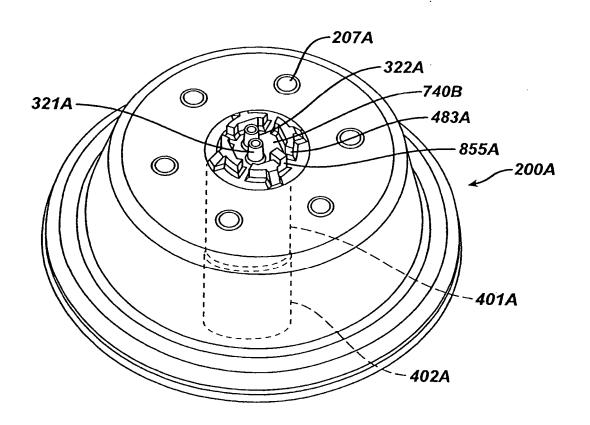



FIG. 55

