

OFICINA ESPAÑOLA DE PATENTES Y MARCAS

ESPAÑA

(1) Número de publicación: 2 676 062

51 Int. CI.:

C12Q 1/68 (2008.01)

(12)

TRADUCCIÓN DE PATENTE EUROPEA

T3

86 Fecha de presentación y número de la solicitud internacional: 25.11.2014 PCT/EP2014/075460

(87) Fecha y número de publicación internacional: 04.06.2015 WO15078831

(96) Fecha de presentación y número de la solicitud europea: 25.11.2014 E 14805538 (7)

(97) Fecha y número de publicación de la concesión europea: 02.05.2018 EP 3074529

(54) Título: Procedimientos para el enriquecimiento de ácido nucleico mutado de una mezcla

(30) Prioridad:

27.11.2013 US 201361909587 P

Fecha de publicación y mención en BOPI de la traducción de la patente: 16.07.2018

(73) Titular/es:

F. HOFFMANN-LA ROCHE AG (100.0%) Grenzacherstrasse 124 4070 Basel, CH

(72) Inventor/es:

SCHOENBRUNNER, NANCY; GUPTA, AMAR y JANSSEN, KEVIN

74) Agente/Representante:

LINAGE GONZÁLEZ, Rafael

DESCRIPCIÓN

Procedimientos para el enriquecimiento de ácido nucleico mutado de una mezcla

5 Campo de la invención

10

15

20

30

35

40

45

50

55

60

65

La invención se refiere a los campos de la química de ácidos nucleicos y de la amplificación de ácidos nucleicos. En particular, la invención se refiere al enriquecimiento de ácidos nucleicos diana mutantes de baja abundancia usando compuestos y procedimientos que pueden detectar emparejamientos erróneos de pares de bases en ácidos nucleicos.

Antecedentes de la invención

Se sabe que la mayoría de las enfermedades hereditarias humanas y cánceres están provocados por mutaciones en genes nucleares. En general, se considera que una mutación es una variante polimórfica particular en un locus genético. La mutación puede ser una diferencia de un único nucleótido, a menudo denominada mutación puntual. A nivel celular y tisular, los polimorfismos en un locus genético específico pueden dar lugar a un comportamiento celular significativamente alterado. Sin embargo, dado que incluso las muestras de células o tejidos relativamente pequeñas pueden contener millones o miles de millones de moléculas de ADN que contienen el locus genético particular, una representación del intervalo y frecuencias de las variantes polimórficas en un locus genético requiere detectar alelos que estén potencialmente presentes a una frecuencia muy baja. En la mayoría de los casos, la detección de la presencia de mutaciones infrecuentes de una muestra biológica presenta enormes complicaciones debido a la presencia simultánea de un gran exceso de ADN natural.

Por tanto, existe una necesidad en la técnica de obtener un procedimiento para enriquecer selectivamente y con precisión ADN mutante de bajo número de copias de tal manera que su presencia pueda ser detectable después de la realización de reacciones de amplificación, tales como PCR.

Sumario de la invención

La presente invención se dirige a los procedimientos para enriquecer alelos de baja abundancia (por ejemplo, ADN mutante) en una muestra que permita la detección posterior de dichos alelos. En un primer aspecto, la invención se refiere a un procedimiento de enriquecimiento de una variante de un ácido nucleico diana en una mezcla de ácidos nucleicos de una muestra, existiendo el ácido nucleico diana en forma de dos secuencias variantes, en el que dichas variantes difieren en una posición de un único nucleótido, comprendiendo el procedimiento, proporcionar la muestra que incluye el ácido nucleico diana en el que la variante que se va a enriquecer está presente en la muestra en baja abundancia entre un gran exceso de la otra variante; proporcionar un oligonucleótido que sea complementario a una cadena del ácido nucleico diana en una concentración que esté en exceso molar con respecto al ácido nucleico diana, en el que el oligonucleótido esté fijado con un marcador de afinidad y esté perfectamente emparejado en la posición de un único nucleótido con la variante que se va a enriquecer y tenga un emparejamiento erróneo en la posición de un único nucleótido con la otra variante; proporcionar las condiciones adecuadas para la hibridación del oligonucleótido con el ácido nucleico diana para generar polinucleótidos de doble hélice que consistan en el oligonucleótido y una cadena de cualquier variante del ácido nucleico diana; poner en contacto los polinucleótidos de doble hélice con un compuesto de intercalación entre emparejamientos erróneos que se una preferentemente solo a los polinucleótidos de doble hélice que contengan un emparejamiento erróneo, en el que dicho compuesto pueda catalizar además la escisión con luz de una cadena del polinucleótido de doble hélice en el sitio de emparejamiento erróneo; someter a los polinucleótidos de doble hélice a la luz, dando como resultado tanto polinucleótidos de doble hélice escindida como no escindida: aplicar tanto los polinucleótidos de doble hélice escindida como no escindida a una matriz de afinidad que reconozca y se una al marcador de afinidad en el oligonucleótido; proporcionar las condiciones mediante las cuales se desnaturalice solo el polinucleótido de doble hélice escindida y eliminar la cadena sencilla desnaturalizada de la matriz de afinidad; y proporcionar un tampón en condiciones para desnaturalizar la doble hélice del polinucleótido no escindida; y obtener el tampón que contiene una cadena de la variante enriquecida del ácido nucleico diana, en el que el compuesto de intercalación entre emparejamientos erróneos es Rh(bpy)₂(chrysi)³⁺, Rh(bpy)₂(phzi)³⁺ o sus análogos, como se muestra en la figura 1, en la que N representa nitrógeno, Rh representa rodio y R₁, R₂ y R₃ se seleccionan independientemente del grupo que consiste en hidrógeno, alquilo, arilo, un soporte sólido y un enlazador fijado con un marcador de afinidad. En otro modo de realización, la invención se refiere a una etapa adicional de amplificar y detectar la variante enriquecida del ácido nucleico diana.

En un segundo aspecto, la invención proporciona un procedimiento para detectar un alelo mutante de un ácido nucleico diana en una mezcla de ácidos nucleicos de una muestra, en el que el alelo mutante difiere de un alelo natural en una posición de un único nucleótido y está presente en la muestra en baja abundancia entre un gran exceso del alelo natural, comprendiendo el procedimiento enriquecer el alelo mutante en la muestra, en el que el enriquecimiento se realiza proporcionando un oligonucleótido que sea complementario a una cadena del ácido nucleico diana en una concentración que esté en exceso molar con respecto al ácido nucleico diana, en el que el oligonucleótido esté fijado con un marcador de afinidad y esté perfectamente emparejado en la posición de un único

nucleótido con el alelo mutante y tenga un emparejamiento erróneo en la posición de un único nucleótido con el alelo natural: proporcionar las condiciones adecuadas para la hibridación del oligonucleótido con el ácido nucleico diana para generar polinucleótidos de doble hélice que consistan en el oligonucleótido y una cadena tanto del alelo mutante como del alelo natural; poner en contacto los polinucleótidos de doble hélice con un compuesto de intercalación entre emparejamientos erróneos que se una preferentemente solo a los polinucleótidos de doble hélice que contengan un emparejamiento erróneo, en el que dicho compuesto pueda catalizar además la escisión con luz de una cadena del polinucleótido de doble hélice en el sitio de emparejamiento erróneo; someter a los polinucleótidos de doble hélice a la luz, dando como resultado tanto polinucleótidos de doble hélice escindida como no escindida; aplicar tanto los polinucleótidos de doble hélice escindida como no escindida a una matriz de afinidad que reconozca y se una al marcador de afinidad en el oligonucleótido; proporcionar las condiciones mediante las cuales se desnaturalice solo el polinucleótido de doble hélice escindida y eliminar la cadena sencilla desnaturalizada del alelo natural de la matriz de afinidad; proporcionar un tampón en condiciones para desnaturalizar la doble hélice del polinucleótido no escindida; y obtener el tampón que contiene una cadena del alelo mutante enriquecido del ácido nucleico diana; amplificar el alelo mutante enriquecido; y detectar el producto del alelo mutante amplificado enriquecido o la señal generada del alelo mutante amplificado enriquecido. En un modo de realización, el compuesto de intercalación entre emparejamientos erróneos es Rh(bpy)2(chrysi)3+, Rh(bpy)2(phzi)3+ o sus análogos, como se muestra en la figura 1, en la que N representa nitrógeno, Rh representa rodio y R₁, R₂ y R₃ se seleccionan independientemente del grupo que consiste en hidrógeno, alquilo, arilo, un soporte sólido y un enlazador fijado con un marcador de afinidad.

20

Además, la invención proporciona una mezcla de reacción y un kit para enriquecer una variante de un ácido nucleico diana como se define en las reivindicaciones.

Breve descripción de los dibujos

25

La **figura 1** muestra las estructuras de los intercaladores basados en rodio, $Rh(bpy)_2(chrysi)^{3+}$ (izquierda) y $Rh(bpy)_2(phzi)^{3+}$ (derecha), donde N representa nitrógeno, $Rh(bpy)_2(phzi)^{3+}$ (derecha), donde N representa nitrógeno, $Rh(bpy)_2(bpzi)^{3+}$ (izquierda) y R_1 , R_2 y R_3 se seleccionan independientemente del grupo que consiste en hidrógeno, alquilo, arilo, un soporte sólido y un enlazador fijado con un marcador de afinidad.

30

35

40

45

La figura 2 muestra una representación gráfica del procedimiento de la presente invención para el enriquecimiento de una cadena sencilla del alelo mutante.

Descripción detallada de la invención

Definiciones

A menos que se definan de otro modo, todos los términos técnicos y científicos usados en el presente documento tienen el significado que entiende comúnmente un experto en la técnica a la que pertenece la presente invención. Las siguientes referencias proporcionan a un experto una definición general de muchos de los términos usados en la presente invención: Singleton et al., Dictionary of Microbiology and Molecular Biology (2.ª ed. 1994); The Cambridge Dictionary of Science and Technology (Walker ed., 1988); The Glossary of Genetics, 5.ª ed., R. Rieger et al. (eds.), Springer Verlag (1991); y Hale & Marham, The Harper Collins Dictionary of Biology (1991). Como se usa en el presente documento, los siguientes términos tienen los significados que se les atribuyen a menos que se especifique de otro modo.

50

55

60

65

El término "ácido nucleico" se refiere a polímeros de nucleótidos (por ejemplo, ribonucleótidos, desoxirribonucleótidos, análogos de nucleótidos, etc.) y que comprenden ácidos desoxirribonucleicos (ADN). ácidos ribonucleicos (ARN), híbridos de ADN-ARN, oligonucleótidos, polinucleótidos, aptámeros, ácidos peptidonucleicos (APN), conjugados de APN-ADN, conjugados de APN-ARN, etc., que comprenden nucleótidos enlazados covalentemente entre sí, de forma lineal o bien ramificada. Un ácido nucleico es típicamente monocatenario o bicatenario y, en general, contendrá enlaces fosfodiéster, aunque, en algunos casos, se incluyen análogos de ácidos nucleicos que pueden tener cadenas principales alternas, incluyendo, por ejemplo, enlaces de fosforamida (Beaucage et al. (1993), Tetrahedron 49(10):1925); fosforotioato (Mag et al. (1991), Nucleic Acids Res. 19:1437; y la pat. de EE. UU. n.º 5.644.048), fosforoditioato (Briu et al. (1989), J. Am. Chem. Soc. 111:2321), Ometilfosforoamidita (véase Eckstein, Oligonucleotides and Analogues: A Practical Approach, Oxford University Press (1992)) y cadenas principales y enlaces de ácido peptidonucleico (véase Egholm (1992), J. Am. Chem. Soc. 114:1895). Otros ácidos nucleicos análogos incluyen aquellos con cadenas principales cargadas positivamente (Denpcy et al. (1995), Proc. Natl. Acad. Sci. USA 92: 6097); cadenas principales no iónicas (pat. de EE. UU. n.ºs 5.386.023, 5.637.684, 5.602.240, 5.216.141 y 4.469.863) y cadenas principales sin ribosa, incluyendo las descritas en las pat. de EE.UU. n.ºs 5.235.033 y 5.034.506. Los ácidos nucleicos que contienen uno o más azúcares carbocíclicos también se incluyen en la definición de ácidos nucleicos (véase Jenkins et al. (1995), Chem. Soc. Rev. pp. 169-176), y los análogos también se describen, por ejemplo, en Rawls, C & E News, 2 de junio de 1997, página 35. Se pueden hacer estas modificaciones de la cadena principal de ribosa-fosfato para facilitar la adición de restos adicionales, tales como marcadores, o para alterar la estabilidad y la semivida de dichas moléculas en entornos fisiológicos.

Además de las bases heterocíclicas naturales que se encuentran típicamente en los ácidos nucleicos (por ejemplo, adenina, guanina, timina, citosina y uracilo), los análogos de nucleótidos también pueden incluir bases heterocíclicas no naturales, tales como las descritas, por ejemplo, en Seek et al. (1999), Helv. Chim. Acta 82:1640. Determinadas bases usadas en análogos de nucleótidos actúan como modificadores de la temperatura de fusión (Tf). Por ejemplo, algunas de estas incluyen 7-desazapurinas (por ejemplo, 7-desazaguanina, 7-desazaadenina, etc.), pirazolo[3,4-d]pirimidinas, propinil-dN (por ejemplo, propinil-dU, propinil-dC, etc.) y similares. Véase, por ejemplo, la pat. de EE. UU. n.º 5.990.303. Otras bases heterocíclicas representativas incluyen, por ejemplo, hipoxantina, inosina y xantina; derivados 8-aza de 2-aminopurina, 2,6-diaminopurina, 2-amino-6-cloropurina, hipoxantina, inosina y xantina; derivados 7-desaza-8-aza de adenina, guanina, 2-aminopurina, 2,6-diaminopurina, 2-amino-6-cloropurina, hipoxantina, inosina y xantina; 6-azacitidina; 5-fluorocitidina; 5-clorocitidina; 5-yodocitidina; 5-bromocitidina; 5-metilcitidina; 5-propinilcitidina; 5-bromoviniluracilo; 5-fluorouracilo; 5-clorouracilo; 5-yodocitidina; 5-bromocitidina; 5-trifluorometiluracilo; 5-metoximetiluracilo; 5-etiniluracilo; 5-propiniluracilo y similares.

5

25

30

35

40

45

55

60

65

Un "nucleósido" se refiere a un componente de ácido nucleico que comprende una base o grupo básico (que comprende al menos un anillo homocíclico, al menos un anillo heterocíclico, al menos un grupo arilo y/o similares) enlazado covalentemente a un resto glucídico (un azúcar ribosa o un azúcar desoxirribosa), un derivado de un resto glucídico o un equivalente funcional de un resto glucídico (por ejemplo, un anillo carbocíclico). Por ejemplo, cuando un nucleósido incluye un resto glucídico, la base se enlaza típicamente a una posición en 1' de ese resto glucídico.

Como se describe anteriormente, una base puede ser una base natural o una base no natural. Los nucleósidos ejemplares incluyen ribonucleósidos, desoxirribonucleósidos, didesoxirribonucleósidos y nucleósidos carbocíclicos.

Un "nucleótido" se refiere a un éster de un nucleósido, por ejemplo, un éster fosfato de un nucleósido, que tiene uno, dos, tres o más grupos fosfato enlazados covalentemente a una posición en 5' de un resto glucídico del nucleósido.

Los términos "polinucleótido" y "oligonucleótido" se usan indistintamente. "Oligonucleótido" es un término usado a veces para describir un polinucleótido más corto. Un oligonucleótido puede comprender al menos 6 nucleótidos, por ejemplo, al menos aproximadamente 10-12 nucleótidos, o al menos aproximadamente 15-30 nucleótidos correspondientes a una región de la secuencia nucleotídica designada.

El término "enriquecer una variante de una secuencia de ácido nucleico diana" se refiere a incrementar la cantidad de la variante deseada de la secuencia de ácido nucleico diana e incrementar la proporción de la variante deseada en relación con la variante no deseada en una muestra. En general, la variante deseada que se va a enriquecer es menos prevalente en una muestra de ácido nucleico que la variante no deseada y representa menos de un 50 % de la cantidad total de todas las variantes de la secuencia de ácido nucleico diana. En muchos casos, la variante deseada se refiere a un alelo mutante y la variante no deseada se refiere a un alelo natural.

El término "natural", como se usa en el presente documento, se refiere a un gen o alelo que tiene las características de ese gen o alelo cuando se aísla de una fuente natural. Un gen natural o un alelo natural es el que se observa con mayor frecuencia en una población y se designa arbitrariamente como la forma "normal" o "natural" del gen o alelo.

En cambio, el término "mutante" o "mutado" se refiere a un gen o alelo que presenta modificaciones en la secuencia en comparación con el gen o alelo natural. El término "mutación" se refiere a un cambio en la secuencia de nucleótidos de una secuencia de ácido nucleico conservada normalmente que da como resultado la formación de un mutante diferenciado de la secuencia normal (no alterada) o natural. Las mutaciones se pueden dividir, en general, en dos clases generales, a saber, sustituciones de pares de bases (por ejemplo, sustituciones de un único nucleótido) y mutaciones con desplazamiento del marco de lectura. Lo último conlleva la inserción o deleción de uno a varios pares de nucleótidos.

50 El término "alelo" se refiere a dos secuencias que son diferentes en solo una o unas pocas de bases.

El término ADN "de emparejamiento erróneo" o ADN "de doble hélice no complementaria" se refiere a ADN que incluye uno o más apareamientos de bases de emparejamiento erróneo. Un apareamiento de bases de emparejamiento erróneo se refiere a un par específico de bases opuestas, en el contexto de una doble hélice del ADN, que no puede formar uno de los pares de bases unidas mediante hidrógeno, T con A o G con C. El ADN de doble hélice no complementaria incluye ADN bicatenario en el que una o más bases en una cadena no se complementa(n) con la base o bases en la cadena opuesta, así como ADN bicatenario en el que una o más bases de cualquier cadena no tiene(n) una base opuesta, debido a una inserción o deleción en una cadena en comparación con la cadena opuesta. En cambio, el ADN de doble hélice complementaria se refiere al ADN bicatenario en el que cada cadena es un complemento completo de la otra cadena y cada base forma un par de bases unidas mediante hidrógeno con una base opuesta.

Los términos "ligandos de unión molecular" y "ligandos de unión específica" se refieren a pares de moléculas, típicamente pares de biomoléculas, que presentan una unión específica. Los ejemplos no limitantes son receptor y ligando, anticuerpo y antígeno, biotina y avidina, y biotina y estreptavidina. Los ligandos de unión molecular también se pueden representar mediante la unión que se produce entre un "marcador de afinidad" y una "matriz de afinidad"

como se define a continuación.

Un marcador de "afinidad" es una molécula que se puede unir específicamente a su ligando de unión molecular. La unión puede ser a través de enlaces covalentes o no covalentes (por ejemplo, iónicos, de hidrógeno, etc.). Como se usa en el presente documento, un marcador de afinidad, tal como biotina, se puede unir selectivamente a una matriz de afinidad, tal como microesferas o partículas recubiertas con estreptavidina. Se puede fijar un marcador de afinidad a un oligonucleótido en su extremo 3', extremo 5' o en una posición interna del oligonucleótido.

Una "matriz de afinidad" como se usa en el presente documento se refiere a una molécula que está fijada a la superficie de un soporte sólido o matriz sólida (por ejemplo, partículas de látex magnéticas, microesferas de vidrio) que se puede unir específicamente a su ligando de unión molecular. La unión puede ser a través de enlaces covalentes o no covalentes. Como se usa en el presente documento, se puede unir selectivamente una matriz de afinidad, tal como partículas de látex magnéticas recubiertas con estreptavidina, a un marcador de afinidad, tal como biotina.

15

20

45

50

55

60

10

5

Un "grupo alquilo" se refiere a un resto hidrocarburo saturado lineal, ramificado o cíclico e incluye todos los isómeros de posición, por ejemplo, metilo, etilo, propilo, butilo, 1-metilpropilo, 2-metilpropilo, 1,1-dimetiletilo, pentilo, 1-metilbutilo, 2-metilbutilo, 3-metilbutilo, 2,2-dimetilpropilo, 1-etilpropilo, hexilo, 1,1-dimetilpropilo, 1,2-dimetilpropilo, 1-metilpentilo, 2-metilpentilo, 3-metilpentilo, 4-metilpentilo, 1,1-dimetilbutilo, 1,2-dimetilbutilo, 1,3-dimetilbutilo, 2,2-dimetilbutilo, 2,3-dimetilbutilo, 3,3-dimetilbutilo, 1-etilbutilo, 2-etilbutilo, 1,1,2-trimetilpropilo, 1,2,2-trimetilpropilo, 1-etil-1-metilpropilo y 1-etil-2-metilpropilo, n-hexilo, ciclohexilo, n-heptilo, n-octilo, 2-etilhexilo, n-nonilo, n-decilo y similares. Un grupo alquilo comprende típicamente aproximadamente 1-20 átomos de carbono y comprende más típicamente aproximadamente 2-15 átomos de carbono. Los grupos alquilo pueden estar sustituidos o no sustituidos.

- Un "grupo arilo" se refiere a un grupo sustituyente de átomos o resto que deriva de un compuesto aromático. Los grupos arilo ejemplares incluyen, por ejemplo, grupos fenilo o similares. Los grupos arilo incluyen opcionalmente anillos aromáticos múltiples (por ejemplo, grupos difenilo, etc.). Además, un grupo arilo puede estar sustituido o no sustituido.
- La "amplificación por PCR" o simplemente "PCR" se refiere a la reacción en cadena de la polimerasa que implica el uso de una secuencia de ácido nucleico como un molde para producir un gran número de complementos con respecto a esa secuencia. El molde se puede hibridar con un cebador que tenga una secuencia complementaria a una porción de la secuencia de molde y se puede poner en contacto con una mezcla de reacción adecuada que incluya dNTP y una enzima polimerasa. El cebador se alarga por la enzima polimerasa, produciendo un ácido nucleico complementario al molde original. Para la amplificación de ambas cadenas de una molécula de ácido nucleico bicatenario, se usan dos cebadores, cada uno de los cuales puede tener una secuencia que sea complementaria a una porción de una de las cadenas de ácido nucleico. Las cadenas de las moléculas de acido nucleico se desnaturalizan, por ejemplo, mediante calentamiento, y el procedimiento se repite, esta vez con las cadenas recién sintetizadas de la etapa precedente que sirven como moldes en las etapas posteriores. Un protocolo de amplificación por PCR puede implicar de pocos a muchos ciclos de reacciones de desnaturalización, hibridación y alargamiento para producir cantidades suficientes del ácido nucleico diana.

El término "cebador específico de alelo" o "cebador AS" se refiere a un cebador que se hibrida con más de una variante de la secuencia diana, pero que puede discriminar entre las variantes de la secuencia diana en que solo con una de las variantes el cebador se extiende eficazmente mediante la ácido nucleico-polimerasa en condiciones adecuadas. Con otras variantes de la secuencia diana, la extensión es menos eficaz, ineficaz o no detectable.

El término "cebador común" se refiere al segundo cebador en el par de cebadores que incluye un cebador específico de alelo. El cebador común no es específico de alelo, es decir, no discrimina entre las variantes de la secuencia diana entre las que discrimina el cebador específico de alelo.

Los términos "complementaria" o "complementariedad" se usan en referencia a las cadenas antiparalelas de polinucleótidos relacionadas mediante las reglas de apareamiento de bases de Watson-Crick. Los términos "perfectamente complementarias" o "100 % complementarias" se refieren a secuencias complementarias que tienen apareamientos de Watson-Crick de todas las bases entre las cadenas antiparalelas, es decir, no hay ningún emparejamiento erróneo entre dos bases cualquiera en la doble hélice del polinucleótido. Sin embargo, se forman dobles hélices entre cadenas antiparalelas incluso en ausencia de complementariedad perfecta. Los términos "parcialmente complementaria" o "incompletamente complementaria" se refieren a cualquier alineación de bases entre cadenas polinucleotídicas antiparalelas que sea menor de un 100 % perfecta (por ejemplo, existe al menos una base de emparejamiento erróneo o sin emparejamiento en la doble hélice del polinucleótido). Las dobles hélices entre cadenas parcialmente complementarias son, en general, menos estables que las dobles hélices entre cadenas perfectamente complementarias.

El término "muestra" se refiere a cualquier composición que contenga o se sospeche que contiene ácido nucleico. Esto incluye una muestra de tejido o líquido aislada de un individuo, por ejemplo, piel, plasma, suero, líquido cefalorraquídeo, líquido linfático, líquido sinovial, orina, lágrimas, glóbulos sanguíneos, órganos y tumores, y también muestras de cultivos *in vitro* establecidos de células obtenidas de un individuo, incluyendo tejidos incluidos en parafina fijados con formalina (FFPET) y ácidos nucleicos aislados de los mismos.

El término "secuencia principal" se refiere a la secuencia de nucleótidos en un polinucleótido u oligonucleótido. Las modificaciones de nucleótidos, tales como modificaciones de bases nitrogenadas, modificaciones de azúcares u otras modificaciones de la cadena principal no son parte de la secuencia principal. Tampoco son parte de la secuencia principal los marcadores, tales como los cromóforos conjugados con los oligonucleótidos. Por tanto, dos oligonucleótidos pueden compartir la misma secuencia principal, pero difieren con respecto a las modificaciones y los marcadores.

5

10

20

25

30

35

40

45

50

55

60

65

El término "cebador" se refiere a un oligonucleótido que se hibrida con una secuencia en el ácido nucleico diana y puede actuar como un punto de iniciación de la síntesis a lo largo de una cadena complementaria de ácido nucleico en condiciones adecuadas para dicha síntesis. Como se usa en el presente documento, el término "sonda" se refiere a un oligonucleótido que se hibrida con una secuencia en el ácido nucleico diana y habitualmente está marcado de manera detectable. La sonda puede tener modificaciones, tales como una modificación en el extremo 3' que hace que la sonda no sea extensible mediante las ácido nucleico-polimerasas y uno o más cromóforos. Un oligonucleótido con la misma secuencia puede servir como un cebador en un ensayo y una sonda en un ensayo diferente.

Como se usa en el presente documento, el término "secuencia diana", "ácido nucleico diana" o "diana" se refiere a una porción de la secuencia de ácido nucleico que se va a amplificar, detectar o bien ambas.

Los términos "hibridada" e "hibridación" se refieren a la interacción por apareamiento de bases entre dos ácidos nucleicos que da como resultado la formación de una doble hélice. No es un requisito que dos ácidos nucleicos tengan un 100 % de complementariedad a lo largo de su longitud completa para lograr la hibridación.

Los términos "hibridación selectiva" e "hibridación específica" se refieren a la hibridación de un ácido nucleico predominantemente (un 50 % o más de la molécula de hibridación) o casi exclusivamente (un 90 % o más de la molécula de hibridación) con un ácido nucleico particular presente en una mezcla con complejo donde también están presentes otros ácidos nucleicos. Por ejemplo, en condiciones de PCR típicas, los cebadores se hibridan específicamente con los ácidos nucleicos diana hasta la exclusión de los ácidos nucleicos no diana también presentes en la solución. Los cebadores hibridados específicamente dirigen la amplificación del ácido nucleico diana para producir un producto de amplificación del ácido nucleico diana que sea al menos el producto de amplificación más predominante y sea preferentemente el producto de amplificación casi exclusivo (por ejemplo, que represente un 90 % o más de todos los productos de amplificación en la muestra). Preferentemente, el producto de amplificación no específico está presente en cantidades tan pequeñas que es no detectable o bien se detecta en cantidades tan pequeñas como para ser distinguible fácilmente del producto de amplificación específico. De manera similar, las sondas se hibridan específicamente con los ácidos nucleicos diana hasta la exclusión de los ácidos nucleicos no diana también presentes en la mezcla de reacción. Las sondas hibridadas específicamente permiten la detección específica del ácido nucleico diana para generar una señal detectable que sea al menos la señal más predominante y sea preferentemente la señal casi exclusiva (por ejemplo, que represente un 90 % o más de todos los productos de amplificación en la muestra).

Existe una continua necesidad de desarrollar nuevos procedimientos que puedan detectar mutaciones somáticas infrecuentes asociadas con diversos tipos de cáncer con precisión y sensibilidad incrementadas. Existe una necesidad particular de obtener procedimientos de detección más sensibles en el campo de la detección de los biomarcadores del cáncer de líquidos periféricos, tales como sangre, esputo y orina. Durante los últimos años, se han publicado muchos estudios que han establecido claramente el valor de la detección de los biomarcadores del cáncer basados en la sangre para el pronóstico del tratamiento, el seguimiento terapéutico del desarrollo de resistencia a fármacos y la dinámica tumoral y la recidiva del cáncer mediante el seguimiento de mutaciones definidas en la sangre. Además, un procedimiento altamente sensible para la detección de mutaciones de líquidos biológicos periféricos algún día podrá hacer realidad la promesa de un enfoque de "biopsia líquida" para el cribado del cáncer y la detección del cáncer en estadio temprano.

Durante años se han desarrollado muchos procedimientos para incrementar la sensibilidad en la detección de mutaciones infrecuentes. La mayoría de los procedimientos se han centrado, en general, en capitalizar las diferencias basadas en la secuencia entre mutante y natural empleando una discriminación basada en cebadores o sondas durante la PCR, comúnmente denominada PCR específica de alelo (AS-PCR). Estos procedimientos tienen éxito hasta un nivel de un 0,1-1 % de niveles de mutantes, pero, entonces, las mejoras adicionales están limitadas por limitaciones basadas en enzimas o errores de PCR. La PCR digital, en la que Bert Vogelstein fue el pionero, hasta la fecha ha sido la técnica más prometedora para potenciar con éxito la sensibilidad en la detección de alelos infrecuentes. Esto se consigue dividiendo la muestra en miles de reacciones de amplificación más pequeñas. Este procedimiento, en efecto, diluye el ADN natural y enriquece la proporción de mutante con respecto a natural. Un enfoque alternativo propuesto actualmente es usar un procedimiento de preparación de muestras por adelantado que enriquezca el ADN mutante y así reduzca la dificultad de detección en el ensayo posterior. Otro enfoque alternativo descrito es el uso de medidas de modo que la variante que se vaya a enriquecer esté presente en baja abundancia entre un gran exceso de la otra variante, la eliminación de los grupos 5'-fosfato, la unión de un enlazador

al grupo 5'-fosfato y la separación del enlazador que comprende fragmentos de las moléculas de ácido nucleico no modificadas (documento WO 02/086169).

La PCR, en sus varias modalidades diferentes, es una poderosa técnica que puede detectar fácil y literalmente una única copia de una secuencia específica en presencia de una gran cantidad de ADN de fondo, siempre que la naturaleza de la secuencia deseada sea suficientemente diferente del ADN de fondo. Este es el caso, por ejemplo, cuando se intenta detectar la presencia de una secuencia patógena exógena de una muestra biológica que también contiene un exceso de ADN genómico humano. Sin embargo, el problema es cada vez más complicado cuando la secuencia de interés es cada vez más similar a las secuencias presentes en el ADN de fondo, como es el caso en la detección de mutaciones somáticas infrecuentes. En general, el estado de la mutación se debe determinar en una muestra que también contenga un gran exceso de la secuencia natural. Esto es complicado dado que, aunque los procedimientos disponibles actualmente para la detección de mutaciones son selectivos para la secuencia mutante, no son absolutos en especificidad, y a medida que se incrementa la proporción de natural con respecto a mutante, es cada vez más difícil distinguir el ADN mutante del natural.

15

20

25

30

5

Los procedimientos descritos en la presente invención se basan en el uso de complejos de rodio (III) voluminosos, como se divulga en la patente de EE. UU. n.º 6.031.098, la patente de EE. UU. n.º 6.306.601, Nature Protocols 2: 357-371, 2007, donde Barton et al. describen la síntesis y la función de dos familias de intercaladores basados en rodio específicos de emparejamiento erróneo basadosen un par de ligandos de intercalación voluminosos, 5,6crisenquinonadiimina (chrysi) y 3,4-benzo[a]fenacinaquinonadiimina (phzi) para generar, respectivamente, Rh(bpy)₂(chrysi)³⁺ o Rh(bpy)₂(phzi)³⁺. Se conocen estos compuestos por su capacidad para insertarse selectivamente por sí mismos en la protuberancia creada por un emparejamiento erróneo de nucleótidos en la doble hélice del ADN. El mecanismo de unión se ha evaluado mediante múltiples investigaciones basadas en RMN y cristalografía y los resultados han sido sorprendentes. A diferencia del modo de unión de intercalación clásico, donde la proteína de unión se introduce en la doble hélice del ADN desde el surco mayor y se intercala entre pares de bases, estos compuestos novedosos se introducen en el surco menor del ADN, insertan el ligando aromático voluminoso y arrojan las bases con emparejamiento erróneo al surco mayor. Tras la activación por fotolisis, el complejo promueve la escisión de cadena directa en los sitios de emparejamiento erróneo de una única base en la doble hélice. La escisión específica de sitio es evidente en concentraciones nanomolares. El principal enfoque hasta el momento en el uso de estos compuestos de rodio ha sido en la detección de polimorfismos mononucleotídicos (SNP) y quimioterápicos novedosos (Boon, EM et al., Methods in Enzymology, 353:506-522, 2002, patente de EE. UU. n.º 6.444.661, patente de EE. UU. n.º 6.777.405).

35

40

En la presente invención, estos compuestos de rodio se han aplicado con el propósito de enriquecer los alelos infrecuentes (por ejemplo, los alelos mutantes infrecuentes). Las estructuras de los compuestos elegidos para este estudio se muestran en la figura 1, donde R_1 , R_2 , R_3 pueden ser H, alquilo, arilo o una fase sólida o un enlazador con un marcador de afinidad (por ejemplo, biotina). Aunque se ha demostrado previamente que los compuestos descritos se pueden unir a las dobles hélices del ADN con emparejamiento erróneo y catalizar la escisión por fotolisis, también se ha demostrado que la escisión por fotolisis solo da como resultado la escisión de solo una de las dos cadenas. Esto es de poca utilidad en la aplicación de enriquecimiento de ADN mutante, dado que todavía estaría presente una cadena natural no escindida y podría funcionar como molde para la amplificación.

45

La estrategia global de la presente invención se representa gráficamente en la figura 2 y se beneficia de la capacidad de estos compuestos de complejo de rodio para unirse a una región de interés con emparejamiento erróneo de bases y provocar la escisión de un enlace de fosfodiéster específico tras la activación por fotolisis. De acuerdo con los procedimientos descritos aquí, se proporciona una muestra en la que el ácido nucleico diana contiene tanto el alelo natural (mostrado en la figura 2 como que tiene un nucleótido "C" en la cadena sentido, "WT-S", y un nucleótido "G" en la cadena antisentido, "WT-AS") como el alelo mutante (mostrado como que tiene un nucleótido "T" en la cadena sentido, "M-S", y un nucleótido "A" en la cadena antisentido, "M-AS").

50

55

60

65

A continuación, se ofrece en exceso un oligonucleótido monocatenario (representado en la figura 2 como M-ASbiotina) correspondiente a una cadena del alelo mutante que se desea enriquecer y que comprende un ligando de afinidad (por ejemplo, biotina) en relación con la cantidad del ácido nucleico diana en la muestra. (Aunque la figura 2 muestra el oligonucleótido correspondiente a la cadena antisentido con el marcador de biotina en su extremo 3', también se podría poner en práctica el procedimiento con un oligonucleótido que tuviera la secuencia de la cadena sentido del alelo mutante con el marcador de biotina fijado en cualquier posición distinta del sitio de la mutación). Entonces, en primer lugar, se calienta la mezcla a fin de desnaturalizar todo el ADN bicatenario de muestra y, entonces, se enfría para permitir la hibridación de las cadenas sencillas complementarias. Dado que el oligonucleótido M-AS-biotina está presente en exceso, prácticamente toda la cadena sentido del ácido nucleico diana (tanto el alelo natural, WT-S, como el alelo mutante, M-S) se hibridará con el oligonucleótido. Mientras que las dobles hélices de cadena sentido mutante estarán perfectamente emparejadas, la cadena sentido natural tendrá un emparejamiento erróneo de una única base en la posición de la mutación. Entonces, se añade el compuesto de complejo de rodio (representado en la figura 2 como "Rh(bpy)2") a la mezcla. Tras la activación por fotolisis, se escindirá la doble hélice que contiene el emparejamiento erróneo, en el oligonucleótido M-AS-biotina (como se muestra en la figura 2) o bien en la cadena sentido natural, WT-S, mientras que las dobles hélices con el oligonucleótido M-AS-biotina unido a la cadena sentido mutante, M-S, no se escindirán debido a un emparejamiento

perfecto en la posición de la mutación. Usando la porción de afinidad (mostrada como biotina en la figura 2) del oligonucleótido, se capturan todas las secuencias unidas a oligonucleótidos (es decir, las cadenas sentido natural y mutante) en una fase sólida (mostrada en la figura 2 como un soporte sólido recubierto con estreptavidina) y se eliminan por lavado todas las cadenas antisentido natural y mutante en exceso. En la siguiente etapa, se dispone la fase sólida en el tampón apropiado y se eleva la temperatura hasta que solo se libere la cadena sentido natural capturada debido a la temperatura de fusión más baja de la doble hélice que contiene la escisión. Entonces, esta se elimina por lavado, dejando solo la cadena sentido mutante en el soporte. Finalmente, la cadena sentido mutante se recupera en el tampón mediante una etapa de temperatura o bien de elución a pH alcalino.

Mientras que la figura 2 muestra el uso de un oligonucleótido de cadena antisentido para el enriquecimiento de la cadena sentido mutante, de manera similar, se puede usar un oligonucleótido de cadena sentido para el enriquecimiento de la cadena antisentido mutante. En general, la elección de qué cadena usar para el oligonucleótido depende de la afinidad de unión del compuesto de complejo de rodio con respecto a la posición de emparejamiento erróneo, teniendo la mayoría de los sitios de emparejamiento erróneo desestabilizados termodinámicamente las afinidades de unión más altas (para obtener más detalles, véase Jackson, B.A. y Barton, J.K., Biochemistry 39: 6176-6182, 2000).

Se proporcionan los siguientes ejemplos y figuras para ayudar al entendimiento de la presente invención, cuyo verdadero alcance se expone en las reivindicaciones adjuntas.

Ejemplos

20

40

Ejemplo 1 Experimento de control usando oligonucleótidos monocatenarios

El siguiente experimento se usa para enriquecer un oligonucleótido mutante de cadena sentido (MU-S) en presencia de un oligonucleótido natural de cadena sentido (WT-S) usando un oligonucleótido de cadena antisentido marcado por afinidad (AL-AS) que está perfectamente emparejado con el oligonucleótido mutante y tiene un emparejamiento erróneo de una base con el oligonucleótido natural. Las secuencias de los oligonucleótidos son como sigue (sitio de emparejamiento erróneo en negrita):

WT-S: 5'-CGTGCAGCTCATCACGCAGCTCATGCCCTT-3' (SEQ ID NO: 1)

MU-S: 5'-CGTGCAGCTCATCATGCAGCTCATGCCCTT-3' (SEQ ID NO: 2)

35 AL-AS: 5'-AAGGGCATGAGCTGCATGATGAGCTGCACG-biotina-3' (SEQ ID NO: 3)

Se prepara una mezcla de reacción con 10 µl de glicina 150 mM, pH 9,5, 2 µl de NaCl 5 M y 55 µl de agua. A esta solución se añaden 10 µl de WT-S 10 µM, 10 µl de MU-S 10 µM y 10 µl de AL-AS 50 µM y 3 µl de Rh(bpy)₂(phzi)³⁺ 100 µM. La solución se mezcla en vórtex y se incuba a temperatura ambiente durante 5 minutos. (Concentraciones finales: glicina 15 µM, pH 9,5, NaCl 100 µM, WT-S 1 µM, MU-S 1 µM, AL-AS 5 µM y Rh(bpy)₂phzi³⁺ 3 µM). Entonces, se irradia la mezcla de reacción en un Stratagene UV Stratalinker 1800 usando bombillas de 365 nm durante 30 minutos para escindir una cadena de la doble hélice sentido-antisentido que contiene el emparejamiento erróneo.

Se lava una solución separada de 25 μl de 10 mg/ml de microesferas magnéticas de estreptavidina Solulink con 1 ml de tampón de glicina 15 μM, pH 9,5, y las microesferas se separan del sobrenadante usando un imán. La mezcla de reacción con las dobles hélices de los oligonucleótidos escindidas y no escindidas se añade al sedimento de microesferas magnéticas y se mezcla. La mezcla resultante se incuba a temperatura ambiente durante 30 minutos. Luego, la solución se calienta a 60 °C o a la temperatura de fusión determinada de la cadena WT-S no escindida unida a la cadena AL-AS secindida (o de la cadena WT-S escindida unida a la cadena AL-AS no escindida), separada de manera magnética, y se elimina el sobrenadante, de tal manera que solo esté unida todavía la cadena MU-S no escindida a la cadena AL-AS no escindida en la microesfera magnética. La cadena MU-S se elimina tratando las microesferas magnéticas con 100 μl de NaOH 20 μM, separando de manera magnética la solución, y decantando el sobrenadante en un tubo de ensayo para su análisis posterior.

Ejemplo 2 Experimento de control usando oligonucleótidos bicatenarios

El siguiente experimento se usa para enriquecer un oligonucleótido mutante de cadena sentido (MU-S) en presencia de un oligonucleótido natural de cadena sentido (WT-AS), un oligonucleótido natural de cadena antisentido (WT-AS) y un oligonucleótido mutante de cadena antisentido (MU-AS) usando un oligonucleótido de cadena antisentido marcado por afinidad (AL-AS) que tiene la secuencia idéntica al oligonucleótido MU-AS y tiene un emparejamiento erróneo de una base con el oligonucleótido WT-AS. Las secuencias de los oligonucleótidos son como sigue (sitio de emparejamiento erróneo en negrita):

WT-S: 5'-CGTGCAGCTCATCACGCAGCTCATGCCCTT-3' (SEQ ID NO: 1)

65

55

60

WT-AS: 5'-AAGGGCATGAGCTGCGTGATGAGCTGCACG-3' (SEQ ID NO: 4)

MU-S: 5'-CGTGCAGCTCATCATGCAGCTCATGCCCTT-3' (SEQ ID NO: 2)

MU-AS: 5'-AAGGGCATGAGCTGCATGATGAGCTGCACG-3' (SEQ ID NO: 5)

AL-AS: 5'-AAGGGCATGAGCTGCATGATGAGCTGCACG-biotina-3' (SEQ ID NO: 3)

Se prepara una mezcla de reacción con 10 μl de glicina 150 mM, pH 9,5, y 57 μl de agua. A esta solución se añaden 10 μl de una mezcla de WT-S y WT-AS 10 μM, 10 μl de una mezcla de MU-S y MU-AS 10 μM y 10 μl de AL-AS 100 μM. La solución resultante se incuba a 95 °C durante 5 minutos para disociar los oligonucleótidos bicatenarios en cadenas sencillas, y, entonces, la solución se enfría a temperatura ambiente para permitir que los oligonucleótidos monocatenarios se hibriden de nuevo. Se añaden 3 μl de Rh(bpy)₂phzi³+ 100 μM a la solución, la solución se mezcla en vórtex y se incuba a temperatura ambiente durante 5 minutos. (Concentraciones finales: glicina 15 μM, pH 9,5, WT-S 1 μM, WT-AS 1 μM, MU-S 1 μM, MU-AS 1 μM, AL-AS 10 μM y Rh(bpy)₂phzi³+ 3 μM). Entonces, se irradia la mezcla de reacción en un Stratagene UV Stratalinker 1800 usando bombillas de 365 nm durante 15 minutos para escindir una cadena de las dobles hélices sentido-antisentido que contiene el emparejamiento erróneo. El exceso de concentración en 10 veces del oligonucleótido AL-AS sirve para incrementar la probabilidad de que la mayor parte de la cadena MU-S se una a AL-AS en lugar de a la cadena MU-AS.

20

25

30

45

50

55

60

65

5

10

15

Se lava una solución separada de 50 μ l de 10 mg/ml de microesferas magnéticas de estreptavidina Solulink con 1 ml de tampón de glicina 15 μ M, pH 9,5, y las microesferas se separan del sobrenadante usando un imán. La mezcla de reacción con las dobles hélices de los oligonucleótidos escindidas y no escindidas se añade al sedimento de microesferas magnéticas y se mezcla. La mezcla resultante se incuba a temperatura ambiente durante 30 minutos. Luego, la solución se calienta a 60 °C o a la temperatura de fusión determinada de la cadena WT-S no escindida unida a la cadena AL-AS escindida (o de la cadena WT-S escindida unida a la cadena AL-AS no escindida), separada de manera magnética. Todas las cadenas WT-AS, MU-AS y WT-S se eliminan con el sobrenadante, de tal manera que solo esté unida todavía la cadena MU-S no escindida a la cadena AL-AS no escindida en la microesfera magnética. La cadena MU-S se elimina tratando las microesferas magnéticas con 100 μ l de NaOH 20 μ M, separando de manera magnética la solución, y decantando el sobrenadante en un tubo de ensayo para su análisis posterior.

Ejemplo 3 Enriquecimiento y detección de ADN mutante de EGFR

Se proporciona una muestra de la cual se puede extraer una mezcla de ácidos nucleicos, por ejemplo, ADN genómico humano. La muestra puede proceder de un tejido, tal como piel, órganos y tumores, o de un líquido, tal como sangre, plasma, suero, orina, o de cualquier composición que contenga o se sospeche que contiene ácido nucleico. De esta mezcla de ácidos nucleicos, un gen diana de interés, por ejemplo, el gen EGFR humano, puede contener una determinada variación tal como una mutación puntual que esté presente en baja abundancia entre un gran exceso de la otra variante del gen, que sería el gen no mutante o natural. Un ejemplo de una mutación del gen EGFR que tiene pertinencia clínica para el desarrollo de cáncer es la mutación T790M.

Para enriquecer el alelo mutante T790M de baja abundancia del gen EGFR, se añade un exceso de un oligonucleótido de cadena antisentido marcado con biotina (BL-AS) que sea complementario a y se empareje perfectamente con la cadena sentido del alelo mutante T790M a una solución que contiene el ADN genómico extraído. Entonces, se calienta la solución a 90 °C o a una temperatura más alta para desnaturalizar el ADN genómico bicatenario y, entonces, se enfría gradualmente a una temperatura para permitir que se produzca la hibridación de nuevo de las cadenas de ADN sencillas. Durante la etapa de hibridación, la cadena BL-AS puede formar dobles hélices tanto con la cadena sentido mutante T790M con la que está perfectamente emparejada como también con la cadena sentido natural que tendrá un emparejamiento erróneo en la posición de la mutación puntual.

Entonces, se añade el quelante de rodio, Rh(bpy)₂(phzi)³+, a la solución y se deja incubar de tal manera que el quelante se pueda unir solo a BL-AS: dobles hélices de cadena sentido natural en la posición del emparejamiento erróneo. Entonces, se irradia la mezcla de reacción en un Stratagene UV Stratalinker 1800 usando bombillas de 365 nm durante 15 minutos para escindir una cadena de BL-AS: dobles hélices de cadena sentido natural. A continuación, se añade una matriz sólida recubierta con estreptavidina. Los ejemplos de dichas matrices sólidas serían partículas magnéticas recubiertas con estreptavidina, tales como Dynabeads® acopladas a estreptavidina de Invitrogen, Streptavidin MagneSphere® Paramagnetic Particles de Promega y microesferas magnéticas de estreptavidina NanoLink™ y MagnaLink™ de Solulink. Después de la incubación (por ejemplo, a 40 °C durante 1 hora), se usa un imán para separar las partículas y eliminar por lavado todo el ácido nucleico que no esté unido a las partículas, lo que incluye tanto las cadenas antisentido mutante como natural y cualquier BL-AS en exceso. Entonces, la cadena sentido natural (que está escindido mutante como natural y cualquier BL-AS en exceso. Entonces, la cadena sentido natural (que está escindida en el sitio de emparejamiento erróneo o bien está unida a un oligonucleótido BL-AS escindido) se eluye de las partículas magnéticas usando un tampón de elución apropiado a una temperatura que corresponde a la temperatura de fusión de la doble hélice de emparejamiento erróneo. Como resultado, solo la cadena sentido T790M permanece fijada a las partículas magnéticas hibridándose con el

oligonucleótido antisentido para T790M marcado con biotina no escindido. Sometiendo, entonces, las partículas a condiciones de temperatura alta o bien de pH alcalino, la cadena sentido T790M se puede disociar del oligonucleótido BL-AS y obtener para su uso en una reacción de amplificación para su detección.

LISTADO DE SECUENCIAS

5	<110> Roche Diagnostics GmbH F. Hoffmann-La Roche AG Roche Molecular Systems, Inc.	
	<120> Procedimientos para el enriquecimiento de ácido nucleico mutado de una mezcla	
	<130> P31873-WO-KOE	
10	<150> USSN 61/909,587 <151> 27-11-2013	
15	<160> 5	
	<170> PatentIn versión 3.5	
20	<210> 1 <211> 30 <212> ADN <213> Secuencia artificial	
25	<220> <223> Oligonucleótido sentido natural	
20	<400>1 cgtgcagctc atcacgcagc tcatgccctt	30
30	<210> 2 <211> 30 <212> ADN <213> Secuencia artificial	
35	<220> <223> Oligonucleótido sentido mutante	
	<400> 2 cgtgcagctc atcatgcagc tcatgccctt	30
40	<210> 3 <211> 30 <212> ADN <213> Secuencia artificial	
45	<220> <223> Oligonucleótido antisentido marcado por afinidad	
50	<220> <221> misc_feature <222> (30)(30) <223> Biotina	
55	<400>3 aagggcatga gctgcatgat gagctgcacg	30
50	<210> 4 <211> 30	
	<212> ADN <213> Secuencia artificial	
60	<220> <223> Oligonucleótido antisentido natural	
65	<400>4 aagggcatga gctgcgtgat gagctgcacg	30

5	<210> 5 <211> 30 <212> ADN <213> Secuencia artificial
	<220> <223> Oligonucleótido antisentido mutante
10	<400> 5

REIVINDICACIONES

Un procedimiento de enriquecimiento de una variante de un ácido nucleico diana en una mezcla de ácidos nucleicos de una muestra, existiendo el ácido nucleico diana en forma de dos secuencias variantes, en el que dichas variantes difieren en una posición de un único nucleótido, comprendiendo el procedimiento:

proporcionar la muestra que incluye el ácido nucleico diana en el que la variante que se va a enriquecer está presente en la muestra en baja abundancia entre un gran exceso de la otra variante;

proporcionar un oligonucleótido que sea complementario a una cadena del ácido nucleico diana en una concentración que esté en exceso molar con respecto al ácido nucleico diana, en el que el oligonucleótido esté fijado con un marcador de afinidad y esté perfectamente emparejado en la posición de un único nucleótido con la variante que se va a enriquecer y tenga un emparejamiento erróneo en la posición de un único nucleótido con la otra variante;

15

20

25

30

35

40

60

65

proporcionar las condiciones adecuadas para la hibridación del oligonucleótido con el ácido nucleico diana para generar polinucleótidos de doble hélice que consistan en el oligonucleótido y una cadena de cualquier variante del ácido nucleico diana;

poner en contacto los polinucleótidos de doble hélice con un compuesto de intercalación entre emparejamientos erróneos que se una preferentemente solo a los polinucleótidos de doble hélice que contengan un emparejamiento erróneo, en el que dicho compuesto pueda catalizar además la escisión con luz de una cadena del polinucleótido de doble hélice en el sitio de emparejamiento erróneo;

someter a los polinucleótidos de doble hélice a la luz, dando como resultado tanto polinucleótidos de doble hélice escindida como no escindida;

aplicar tanto los polinucleótidos de doble hélice escindida como no escindida a una matriz de afinidad que reconozca y se una al marcador de afinidad en el oligonucleótido;

proporcionar las condiciones mediante las cuales se desnaturalice solo el polinucleótido de doble hélice escindida y eliminar la cadena sencilla desnaturalizada de la matriz de afinidad; y

proporcionar un tampón en condiciones para desnaturalizar la doble hélice del polinucleótido no escindida; y obtener el tampón que contiene una cadena de la variante enriquecida del ácido nucleico diana, en el que el compuesto de intercalación entre emparejamientos erróneos es Rh(bpy)₂(chrysi)³⁺, Rh(bpy)₂(phzi)³⁺ o sus análogos, como se muestra en la figura 1, en la que N representa nitrógeno, Rh representa rodio y R₁, R₂ y R₃ se seleccionan independientemente del grupo que consiste en hidrógeno, alquilo, arilo, un soporte sólido y un enlazador fijado con un marcador de afinidad.

- 2. El procedimiento de la reivindicación 1, en el que la variante que se va a enriquecer es un alelo mutante y la otra variante es un alelo natural.
- 3. El procedimiento de la reivindicación 2, en el que el alelo mutante es un alelo de EGFR mutante y el alelo natural es un alelo de EGFR natural.
 - 4. El procedimiento de la reivindicación 2 o 3, que comprende además una etapa de amplificar y detectar el alelo mutante.
- 50 5. Un procedimiento para detectar un alelo mutante de un ácido nucleico diana en una mezcla de ácidos nucleicos de una muestra, en el que el alelo mutante difiere de un alelo natural en una posición de un único nucleótido y está presente en la muestra en baja abundancia entre un gran exceso del alelo natural, comprendiendo el procedimiento:
- 55 enriquecer el alelo mutante en la muestra, en el que el enriquecimiento se realiza:

proporcionando un oligonucleótido que sea complementario a una cadena del ácido nucleico diana en una concentración que esté en exceso molar con respecto al ácido nucleico diana, en el que el oligonucleótido esté fijado con un marcador de afinidad y esté perfectamente emparejado en la posición de un único nucleótido con el alelo mutante y tenga un emparejamiento erróneo en la posición de un único nucleótido con el alelo natural;

proporcionar las condiciones adecuadas para la hibridación del oligonucleótido con el ácido nucleico diana para generar polinucleótidos de doble hélice que consistan en el oligonucleótido y una cadena del alelo mutante o bien del alelo natural;

9.

6.

7.

8.

poner en contacto los polinucleótidos de doble hélice con un compuesto de intercalación entre emparejamientos erróneos que se pueda unir solo a los polinucleótidos de doble hélice que contengan un

emparejamiento erróneo, en el que dicho compuesto pueda catalizar además la escisión con luz de una cadena del polinucleótido de doble hélice en el sitio de emparejamiento erróneo;
someter a los polinucleótidos de doble hélice a la luz, dando como resultado tanto polinucleótidos de doble hélice escindida como no escindida;
aplicar tanto los polinucleótidos de doble hélice escindida como no escindida a una matriz de afinidad que reconozca y se una al marcador de afinidad en el oligonucleótido;
proporcionar las condiciones mediante las cuales se desnaturalice solo el polinucleótido de doble hélice escindida y eliminar la cadena sencilla desnaturalizada del alelo natural de la matriz de afinidad;
proporcionar un tampón en condiciones para desnaturalizar la doble hélice del polinucleótido no escindida; y obtener el tampón que contiene una cadena del alelo mutante enriquecido del ácido nucleico diana;
amplificar el alelo mutante enriquecido; y
detectar el producto del alelo mutante amplificado enriquecido o la señal generada del alelo mutante amplificado enriquecido, en el que el compuesto de intercalación entre emparejamientos erróneos es $Rh(bpy)_2(chrysi)^{3+}$, $Rh(bpy)_2(phzi)^{3+}$ o sus análogos, como se muestra en la figura 1, en la que N representa nitrógeno, Rh representa rodio y R_1 , R_2 y R_3 se seleccionan independientemente del grupo que consiste en hidrógeno, alquilo, arilo, un soporte sólido y un enlazador fijado con un marcador de afinidad.
El procedimiento de la reivindicación 5, en el que el alelo mutante es un alelo de EGFR mutante y el alelo natural es un alelo de EGFR natural.
El procedimiento de la reivindicación 5-6, en el que la etapa de amplificación se realiza con cebadores específicos de alelo.
Una mezcla de reacción para enriquecer una variante de un ácido nucleico diana en una mezcla de ácido nucleico de una muestra, que comprende:
un oligonucleótido que es complementario a una cadena del ácido nucleico diana, en la que el ácido nucleico diana existe en forma de dos secuencias variantes que difieren en una posición de un único nucleótido, en la que el oligonucleótido está fijado con un marcador de afinidad y está perfectamente emparejado en la posición de un único nucleótido con la variante que se va a enriquecer y tiene un emparejamiento erróneo en la posición de un único nucleótido con la otra variante; y
un compuesto de intercalación entre emparejamientos erróneos que se une preferentemente solo a los polinucleótidos de doble hélice que contienen un emparejamiento erróneo, en la que dicho compuesto puede catalizar además la escisión con luz de una cadena del polinucleótido de doble hélice en el sitio de emparejamiento erróneo; en la que el compuesto de intercalación entre emparejamientos erróneos es Rh(bpy) ₂ (chrysi) ³⁺ , Rh(bpy) ₂ (phzi) ³⁺ o sus análogos, como se muestra en la figura 1, en la que N representa nitrógeno, Rh representa rodio y R ₁ , R ₂ y R ₃ se seleccionan independientemente del grupo que consiste en hidrógeno, alquilo, arilo, un soporte sólido y un enlazador fijado con un marcador de afinidad.
Un kit para enriquecer una variante de un ácido nucleico diana en una mezcla de ácido nucleico de una muestra, que comprende:
un oligonucleótido que es complementario a una cadena del ácido nucleico diana, en el que el ácido nucleico diana existe en forma de dos secuencias variantes que difieren en una posición de un único nucleótido, en el que el oligonucleótido está fijado con un marcador de afinidad y está perfectamente emparejado en la posición de un único nucleótido con la variante que se va a enriquecer y tiene un emparejamiento erróneo en la posición de un único nucleótido con la otra variante; y
un compuesto de intercalación entre emparejamientos erróneos que se une preferentemente solo a los polinucleótidos de doble hélice que contienen un emparejamiento erróneo, en el que dicho compuesto puede catalizar además la escisión con luz de una cadena del polinucleótido de doble hélice en el sitio de emparejamiento erróneo; en el que el compuesto de intercalación entre emparejamientos erróneos es

hidrógeno, alquilo, arilo, un soporte sólido y un enlazador fijado con un marcador de afinidad.

 $Rh(bpy)_2(chrysi)^{3+}$, $Rh(bpy)_2(phzi)^{3+}$ o sus análogos, como se muestra en la figura 1, en la que N representa nitrógeno, $Rh(bpy)_2(bpzi)^{3+}$ o sus análogos, como se muestra en la figura 1, en la que N representa nitrógeno, $Rh(bpy)_2(bpzi)^{3+}$ o sus análogos, como se muestra en la figura 1, en la que N representa nitrógeno, $Rh(bpy)_2(bpzi)^{3+}$ o sus análogos, como se muestra en la figura 1, en la que N representa nitrógeno, $Rh(bpzi)_2(bpzi)^{3+}$ o sus análogos, como se muestra en la figura 1, en la que N representa nitrógeno, $Rh(bpzi)_2(bpzi)^{3+}$ o sus análogos, como se muestra en la figura 1, en la que N representa nitrógeno, $Rh(bpzi)_2(bpzi)^{3+}$ o sus análogos, como se muestra en la figura 1, en la que N representa nitrógeno, $Rh(bpzi)_2(bpzi)^{3+}$ o sus análogos, como se muestra en la figura 1, en la que N representa nitrógeno, $Rh(bpzi)_2(bpzi)^{3+}$ o sus análogos, como se muestra en la figura 1, en la que N representa nitrógeno, $Rh(bpzi)_2(bpzi)^{3+}$ o sus análogos, como se muestra en la figura 1, en la que N representa nitrógeno, $Rh(bpzi)_2(bpzi)^{3+}$ o sus análogos, como se muestra en la figura 1, en la que $Rh(bpzi)_2(bpzi)^{3+}$ o sus análogos, como se muestra en la figura 1, en la que $Rh(bpzi)_2(bpzi)^{3+}$ o sus análogos, como se muestra en la figura 1, en la que $Rh(bpzi)_2(bpzi)^{3+}$ o sus análogos, como se muestra en la figura 1, en la que $Rh(bpzi)_2(bpzi)^{3+}$ o sus análogos, como se muestra en la figura 1, en la que $Rh(bpzi)_2(bpzi)^{3+}$ o sus análogos, como se muestra en la figura 1, en la que $Rh(bpzi)_2(bpzi)^{3+}$ o sus análogos, como se muestra en la figura 1, en la que $Rh(bpzi)_2(bpzi)^{3+}$ o sus análogos, como se muestra en la figura 1, en la que $Rh(bpzi)_2(bpzi)^{3+}$ o sus análogos, como se muestra en la figura 1, en la que $Rh(bpzi)_2(bpzi)^{3+}$ o sus análogos, como se muestra en la figura 1, en la que $Rh(bpzi)_2(bpzi)^{3+}$ o sus análogos, como se muestra en la figura 1, en la que $Rh(bpzi)_2(bpzi)^{3+}$ o sus análogos, como se muestra en la

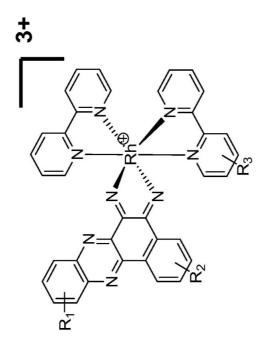
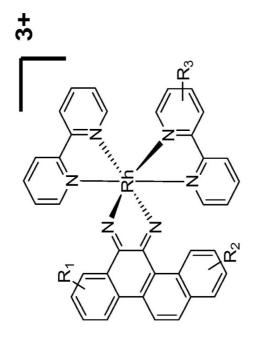
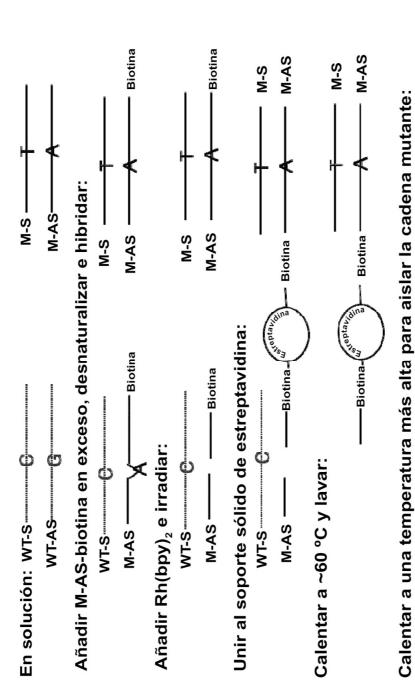




FIG. 1

FIG. 2

S-M