

OFICINA ESPAÑOLA DE PATENTES Y MARCAS

ESPAÑA

11 Número de publicación: 2 676 448

51 Int. Cl.:

B64C 31/036 (2006.01) **B64C 31/06** (2006.01)

(12)

TRADUCCIÓN DE PATENTE EUROPEA

T3

(86) Fecha de presentación y número de la solicitud internacional: 04.09.2014 PCT/IT2014/000233

(87) Fecha y número de publicación internacional: 19.03.2015 WO15037026

Fecha de presentación y número de la solicitud europea: 04.09.2014 E 14790361 (1)

(97) Fecha y número de publicación de la concesión europea: 18.04.2018 EP 3044090

(54) Título: Ala de tipo de arco con hombros mejorados

(30) Prioridad:

13.09.2013 IT TO20130750

Fecha de publicación y mención en BOPI de la traducción de la patente: 19.07.2018

(73) Titular/es:

KITE GEN RESEARCH S.R.L. (100.0%) Corso Lombardia 63/D 10099 San Mauro Torinese (TO), IT

(72) Inventor/es:

MASSIMO, IPPOLITO

(74) Agente/Representante:

IZQUIERDO BLANCO, María Alicia

DESCRIPCIÓN

Ala de tipo de arco con hombros mejorados

25

45

50

60

- 5 [0001] La presente invención se ocupa de un ala de tipo de arco con hombros mejorados.
 - [0002] Un ala de tipo de arco cae dentro de los sistemas de extracción de energía de viento a través de las alas ultra-luz, con una alta eficiencia aerodinámica, sometidas a altas cargas de ala, en el modo de estructura de tensión.
- 10 **[0003]** Un ala de tipo de arco se somete solamente a las fuerzas tensionales puras, generando una sustentación aerodinámica útil, al mismo tiempo, tanto para mantener su propia forma como para la generación de energía.
 - [0004] Los términos utilizados en este documento tienen el siguiente significado.
- [0005] Ángulo de ataque: es el ángulo entre la cuerda del ala de cualquier perfil aerodinámico y el viento aparente. Para un ala de tipo arco, el ángulo de ataque global generalmente se considera como el ángulo entre el viento aparente y la línea media de los perfiles de cuerda aerodinámicos en la sección del compartimiento central.
- [0006] Centro de presión: es el punto en el que todas las fuerzas aerodinámicas generadas por un perfil aerodinámico pueden considerarse operativas. Para las cometas de un ala de tipo arco, el centro de presión es el 10-20% de la cuerda.
 - [0007] Línea de cuerda: es una línea trazada a través de la sección de ala desde el borde frontal hasta el borde de salida.
 - [0008] Relación elevar a arrastrar: es la relación entre las fuerzas de elevación y las fuerzas de resistencia soportadas a una velocidad del viento dada.
- [0009] Línea de carga: para un ala de tipo de arco, es la línea de extremo a extremo que pasa a través del centro de presión de todas las secciones que componen el ala.
 - [0010] Elevación: es la tendencia del ángulo de ataque de un ala de tipo arco para convertirse de repente en negativo.
- 35 **[0011]** Resistencia al estancamiento: es aconsejable que las alas de tipo arco tengan una baja velocidad de estancamiento y que pueden recuperarse de una posible parada con aumento mínimo de viento aparente.
- [0012] Como es conocido, una configuración de fuerzas tensionales puras de un ala de tipo arco necesita una resistencia estructural inferior con respecto al caso en el que hay un momento de flexión. En consecuencia, el perfil del ala aerodinámica se puede diluir para aumentar la eficiencia aerodinámica de L/D, lo que contribuye a aumentar el rendimiento energético de un sistema de gran altura para extraer energía del viento.
 - [0013] Un comportamiento tensión-estructural de alas de tipo arco con resistencia reducida implica, por un lado, un aumento de la productividad de la energía, y por otra parte, una limitación de maniobra y el consiguiente riesgo de hacer que el ala se atasque debido a una distribución asimétrica de la resistencia a lo largo del arco.
 - **[0014]** La forma de estas alas es aproximadamente semicircular en el plano perpendicular a la dirección del viento aparente. La tensión circunferencial implica un componente radial que opera en todos los puntos hacia el centro nominal de la forma del arco. Estas fuerzas radiales causan el colapso de las zonas extremas, es decir, los hombros de las alas, a menos que haya una fuerza aerodinámica resistente o una resistencia estructural intrínseca.
 - [0015] Los límites de la capacidad de un ala de tipo arco para responder a los cambios de las condiciones del viento aparentes tienen una gran incidencia sobre su utilidad funcional, sobre todo de su uso en el campo de energía.
- [0016] Tales límites son: calar, elevar y colapso del hombro de ala.
 - **[0017]** El problema del colapso del hombro de ala se ha tratado en EP1385739, en donde se da a conocer una manera de evitar el colapso hacia dentro, moviendo el área de borde de ataque de hombro del ala hacia delante con respecto al punto de línea de carga.
 - [0018] Los documentos WO-A1-02/096753, WO-A1-2009/035492 y WO-A1-2010/084520 describen alas de acuerdo con el preámbulo de la reivindicación 1.
- [0019] En vista de la técnica anterior, objeto de la presente invención es proporcionar un ala de tipo de arco capaz de hacer uniforme la resistencia distribuida a lo largo del perfil de arco y de la restauración de la reactividad de maniobra.

[0020] De conformidad con la presente invención, dicho objeto se obtiene mediante un ala de tipo arco con alta eficiencia aerodinámica, en forma de una sección de arco central conectada a pares de bridas a través de un par de hombros, apoyando cada hombro un panel equipado con un freno de aire, caracterizado porque el panel aloja sensores a bordo, acumuladores de energía eléctrica, microturbinas y una tarjeta para recoger datos emitidos por dichos sensores.

[0021] Los anteriores y otros objetos y ventajas de la invención, como resultará de la siguiente descripción, se obtienen mediante un ala de tipo de arco con la mejora de los hombros como se reivindica en la reivindicación 1. Las realizaciones preferidas y variaciones no triviales de la presente invención son objeto de las reivindicaciones dependientes.

[0022] Se pretende que todas las reivindicaciones adjuntas sean una parte integral de la presente descripción.

5

10

15

20

25

30

35

40

45

50

55

60

65

[0023] Será inmediatamente obvio que numerosas variaciones y modificaciones (por ejemplo relacionadas con la forma, tamaños, disposiciones y partes con funcionalidad equivalente) podrían ser realizadas a lo que se describe, sin apartarse del alcance de la invención, como se desprende de la declaraciones adjuntas.

[0024] La presente invención se describirá mejor mediante algunas realizaciones preferidas de la misma, proporcionada como un ejemplo no limitativo, con referencia a los dibujos adjuntos, en los que:

la figura 1 muestra una vista axonométrica de un ala de tipo arco equipada con paneles con frenos de aire; la figura 2 muestra un diagrama de conexión de radio de un ala de tipo arco con base de tierra;

la figura 3 y la figura 4 muestran una vista axonométrica de un ala de tipo arco equipada con planos de cola del tipo de fuselaje.

[0025] Un ala de tipo de arco 1 comprende cuatro bridas de control, dos bridas frontales 11 y dos bridas traseras 12.

[0026] El ala de tipo de arco 1 puede comprender otros bridas conectadas en diferentes puntos para permitir una comprobación adicional del ángulo de ataque o para evitar inversiones durante el vuelo elevado.

[0027] El ala 1 está conformada como una sección de arco central 13 conectada a los pares de bridas 11 y 12 a través de dos secciones de arco 14, posiblemente ampliadas con una sección tangente ahusada 15 de tipo arco.

[0028] Cada sección compuesta por el arco 14 y posiblemente por su respectiva sección tangente cónica 15 hace un hombro del ala de tipo de arco 1.

[0029] Cada hombro soporta un panel 2 que comprende un freno de aire 21 compuesto de un deflector de flujo o alerón. Cada freno de aire 21 genera una fuerza de resistencia que permite introducir un momento de guiñada útil para restablecer la reactividad de maniobra del ala de tipo arco 1.

[0030] Con referencia a las figuras 3 y 4, planos de cola servoasistida 3 se colocan en cada sección de ala 15.

[0031] Los planos de cola servoasistida 3 permiten modificar la actitud del ala de tipo arco 1 interviniendo en el ángulo de ataque tanto de la sección 13 del ala central, como de los dos hombros.

[0032] Una medida geométrica se realiza de la distancia y del paralelismo de los hombros, después de lo cual un ángulo de paso se impone para cada plano de cola servoasistida 3 obteniendo el ángulo correcto de ataque de la sección del ala central 13, realizando con ello la misma función del cambio de longitud de las bridas traseras 12.

[0033] Al mismo tiempo, una medida geométrica se realiza de la distancia y del paralelismo de los hombros, después de lo cual se impone un ángulo de balanceo para cada plano de cola servoasistida 3, obteniendo el ángulo correcto de ataque de cada hombro, lo que permite modificar la forma del ala, realizando así la misma función del cambio asimétrico o de forma del ala de tipo arco 1.

[0034] Cada panel 2 aloja sensores a bordo, acumuladores de energía eléctricos, microturbinas, y una tarjeta de recogida de datos emitidos por los sensores.

[0035] La transmisión de dicha información se da a un sistema de doble radio 4 (figura 2). Los sensores MEMS ensamblados a bordo del panel 2, el acelerómetro, el giróscopo, el magnetómetro, el barómetro y el GPS, son consultados periódicamente por los procesadores en la tarjeta y, después de un primer procesamiento, se transmiten a las radios. La tarjeta tiene además la posibilidad de leer hasta 16 señales analógicas útiles para evaluar la velocidad del vuelo, a través de una sonda Pitot, el estado de la batería y otros.

[0036] Los datos recogidos se agregan en un sol paquete enviado a través de los radios. Las radios se dividen en dos tipos, ambas presentes en cada tarjeta, una con banda ancha (WiFi) y de corto alcance (hasta 300 metros), la otra con banda estrecha (915 MHz) y de largo alcance (hasta 20 Km). La primera radio transmite sin procesamiento

adicional el paquete que ha recibido y, a cierta distancia de la tierra, se apaga. La segunda radio procesa aún más los datos, manteniendo solo los datos esenciales, y recibe comandos de la tierra.

[0037] Hay un sistema para gestionar hasta 4 canales (código abierto ESC) útiles para accionar motores sin escobillas sencillos y un sistema para la recarga de las baterías que gestiona la recuperación de energía de la microturbina aplicada en el panel 2.

[0038] En el borde de ataque del ala de tipo arco, cierres pueden estar presentes durante las conexiones magnéticas a los dispositivos de vuelo (multi-helicópteros).

Reivindicaciones

- 1. Ala de tipo arco (1) con alta eficiencia aerodinámica para cometas, compuesta de una sección de arco central (13) conectada a pares de bridas (11, 12) a través de un par de hombros (14, 15), cada hombro (14, 15) soportando un panel (2) equipado con un freno de aire (21), caracterizada porque el panel (2) aloja sensores a bordo, acumuladores de energía eléctrica, micro-turbinas y una tarjeta para recolectar datos emitidos por dichos sensores.
- 2. Ala de tipo arco (1) según la reivindicación 1, caracterizada porque el freno de aire (21) es un alerón.
- 3. Ala de tipo arco (1) según la reivindicación 1, caracterizada porque un sistema de radio doble (4) transmite información respectivamente en banda ancha (WiFi) a corto alcance y en banda estrecha (915 MHz) a gran distancia.
- 4. Ala de tipo arco (1) según cualquiera de las reivindicaciones anteriores, caracterizada porque, en cada hombro (14, 15), se colocan planos de cola servoasistida (3) para modificar una actitud del tipo de arco ala (1) interviniendo tanto en un ángulo de ataque de la sección del ala central (13) como en un ángulo de ataque de los dos hombros (14, 15).
- 5. Ala de tipo arco (1) según la reivindicación 4, caracterizada porque, dependiendo de una medida geométrica de la distancia y del paralelismo de los hombros (14, 15), se impone un ángulo de cabeceo para cada plano de cola servoasistida (3) para obtener el ángulo de ataque correcto de la sección central del ala (13).
 - **6.** Ala de tipo arco (1) según la reivindicación 4, **caracterizada porque**, dependiendo de una medida geométrica de la distancia y del paralelismo de los hombros (14, 15), se impone un ángulo de balanceo para cada plano de cola servoasistida (3) para modificar la forma del ala de tipo arco (3).

30

25

5

35

40

45

50

55

60

65

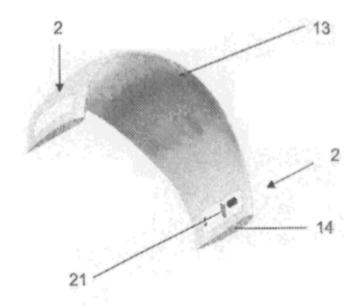


Fig. 1

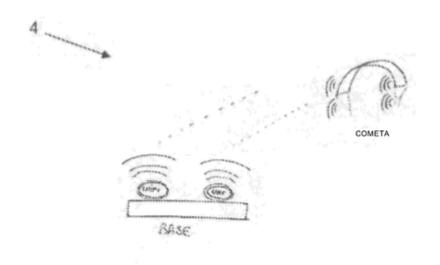


Fig. 2

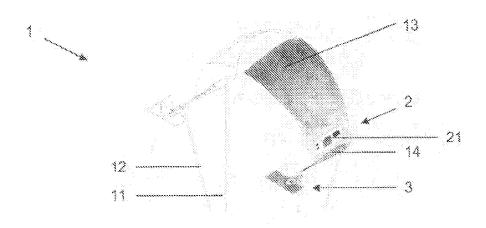


Fig. 3

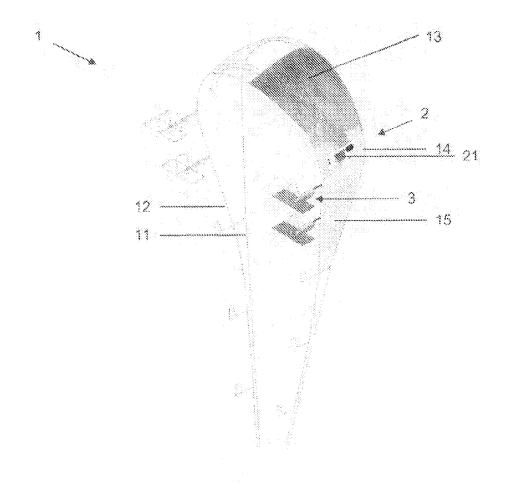


Fig. 4