

OFICINA ESPAÑOLA DE PATENTES Y MARCAS

ESPAÑA

11) Número de publicación: 2 676 836

(51) Int. CI.:

C07D 279/16 (2006.01) **C07D 491/052** A61K 8/44 (2006.01) **C07D 498/04** (2006.01) A61K 8/49 (2006.01) **C07D 513/04** (2006.01) A61Q 17/04 (2006.01)

C07C 229/16 C07D 211/84 (2006.01) C07D 241/44 C07D 265/36 (2006.01) C07D 309/32 (2006.01) C07D 471/04 (2006.01)

(12)

TRADUCCIÓN DE PATENTE EUROPEA

T3

31.05.2013 PCT/CA2013/000536 (86) Fecha de presentación y número de la solicitud internacional:

(87) Fecha y número de publicación internacional: 12.12.2013 WO13181741

(96) Fecha de presentación y número de la solicitud europea: 31.05.2013 E 13801156 (4)

11.04.2018 (97) Fecha y número de publicación de la concesión europea: EP 2855441

(54) Título: Compuestos de imino como agentes de protección contra las radiaciones ultravioleta

(30) Prioridad:

04.06.2012 US 201261655115 P

(45) Fecha de publicación y mención en BOPI de la traducción de la patente: 25.07.2018

(73) Titular/es:

ELKIMIA INC. (100.0%) 354, Place de l'obier Rosemere, QC J7A 4H7, CA

(72) Inventor/es:

ABOU-KHALIL, ELIE; RAEPPEL, STÉPHANE y RAEPPEL, FRANCK

(74) Agente/Representante:

ELZABURU, S.L.P

DESCRIPCIÓN

Compuestos de imino como agentes de protección contra las radiaciones ultravioleta

Tecnología relacionada con el campo

La presente invención se refiere a compuestos que absorben las radiaciones ultravioletas y que protegen los materiales biológicos, así como los materiales no biológicos de la exposición dañina de las radiaciones ultravioleta. La presente invención también se refiere a formulaciones y composiciones que comprende dichos compuestos para uso en la absorción de las radiaciones ultravioleta y en la protección de materiales biológicos, así como materiales no biológicos frente a las radiaciones ultravioleta. La presente invención también se refiere a métodos para proteger los materiales biológicos así como los no biológicos de la exposición dañina a las radiaciones ultravioleta.

10 Antecedentes de la invención

15

20

25

30

55

Los agentes de bloqueo ultravioleta disponibles en el mercado típicamente incluyen compuestos tales como derivados del ácido para-aminobenzoico, benzotriazoles, benzofenonas, metoxicinamatos y salicilatos. Los aminoácidos de tipo micosporina (MAAs) también han sido identificados como agentes de absorción ultravioleta. MAAs son moléculas pequeñas de aproximadamente 400 daltones producidas por organismos que viven en ambientes con altos volúmenes de luz del sol, ambientes típicamente marinos¹. Las estructuras de más de 30 MAAs han sido resueltas y contienen una ciclohexenona central o anillo de ciclohexenimina central así como una amplia variedad de sustituciones. La estructura de anillo se cree que absorbe la luz ultravioleta y acomoda los radicales libres². MAAs absorben la luz ultravioleta, por lo general entre 310 nm y 360 nm. Es esta propiedad de absorber la luz lo que permite que MAAs protejan a las células de la radiación ultravioleta perjudicial. Las vías biosintéticas de MAAs específicos dependen de los MAAs específicos y del organismo que los produce. Estas vías biosintéticas a menudo comparten enzimas y productos intermedios con otras importantes vías biosintéticas.

Moskowitz, H. et al. divulgan la carbociclación de amidinas acetilénicas (Comptes Rendus Des Seances De L'Academie des Sciences, Serie C: Sciences Chimiques, (1980), vol. 291, Nº 13, páginas 299-302). El documento de patente australiana AU 609125 divulga compuestos β-enaminocetiminas que absorben UV. Kim, J. M. et al divulgan la síntesis de p-toluensulfonatos de vinamidinio cíclicos (Buletin of the Corean Chemical Society, (2004), vol. 25, Nº 2, páginas 163-164). Los números de acceso a la base de datos 65695-59-2, 65695-61-6, 19164-90-0, 19164-91-1, 19424-76-1, 5320-85-4 y 5320-86-5 divulgan los compuestos individuales citados frente a la reivindicación 1 original de la solicitud de patente PCT. Daryl L. Ostercamp et al divulgan sales de vinamidinio con un núcleo rígido y sus rotámeros de N,N' (The Journal of Organic Chemistry, vol. 68, Nº 8, páginas 3099-3105). Helmut Simon et al divulgan la reacción de bromodiacetilo y 1-cloro-diona-(2,3) alicíclica con aminas primarias y secundarias a reductonas y algunas propiedades de los productos (Chemische Berichte, vol. 98, Nº 11, páginas 3692-3702). Granik et al divulgan acetales de lactamas y amidas ácidas (Chemistry of Heterocyclic Compounds, 1977, vol 13 (10) páginas 1083-1086, LIRI:

http://download.springer.com/static/pdf/859/art%3A10.1007%2FBF00480142.pdf?originUrl=http://link.Springer.com/a
rticle/10.1007/BF00480142&token2=exp=1442579697~acl=/static/pdf/859/art%253A10.1007%252FBF00480142.pdf
?originUrl=http%3A%2F%2Flink.springer.com%2Farticle%2F10.1007%2FBF00480142*~hmac=35e436). Agentes de
absorción de ultravioleta útiles tales como los mencionados anteriormente deben cumplir varios criterios incluyendo
estabilidad, permanencia aceptable, eficacia, compatibilidad con los medios con los que deben mezclarse o ser
incorporados, no toxicidad, y no ser perjudiciales para la superficie sobre la cual van a aplicarse. Estos criterios limitan
la elección de los agentes protectores de ultravioleta disponibles para utilizarse en diversas aplicaciones. Por lo tanto,
sigue habiendo una necesidad en la técnica de agentes adicionales que cumplan estos criterios, que absorban las
radiaciones ultravioletas y que protejan materiales biológicos y materiales no biológicos contra los nocivos daños
causados por las radiaciones ultravioletas y que sean fáciles de preparar.

Compendio de la invención

45 Según uno de los aspectos, la presente invención se refiere a un compuesto que tiene la fórmula IE, como se revela en las reivindicaciones que se adjuntan al documento presente.

Según otro aspecto, la presente invención se refiere a una composición que absorbe UV que comprende: el compuesto tal como se define en el presente documento; uno o más agentes de bloqueo ultravioleta; y uno o más aditivos adecuados.

Según otro aspecto, la presente divulgación se refiere a la utilización del compuesto tal como se define en el presente, documento en la preparación de una composición para la protección de un material biológico frente a la radiación UV y/o en la preparación de una composición para la protección de un material no biológico frente a la radiación UV.

Según otro aspecto, la presente divulgación se refiere a un método para proteger una superficie de un material biológico y/o de un material no biológico frente a la radiación UV, que comprende la aplicación a la superficie de la composición tal como se define en este documento.

Según otro aspecto, la presente invención se refiere a un compuesto con la fórmula:

para uso en la protección de textiles contra las radiaciones UV.

Según otro aspecto la presente invención se refiere a un compuesto con la fórmula:

para uso en la preparación de composiciones para la protección frente a las radiaciones UV.

Breve descripción de las figuras

- 10 FIG. 1 es una representación esquemática de la estructura general de las moléculas de micosporina.
 - FIG. 2 es una tabla que muestra la transmitancia de UV en la longitud de onda indicada para el compuesto IF₁.
 - FIG. 3 es una tabla que muestra la transmitancia de UV en la longitud de onda indicada para el compuesto IA (de la invención).
- FIG. 4 es una tabla que muestra la transmitancia de UV en la longitud de onda indicada para el compuesto IA₂ (de la invención).
 - FIG. 5 es una tabla que muestra la transmitancia de UV en la longitud de onda indicada para el compuesto IE₄ (de la invención).
 - FIG.6 es una tabla que muestra la transmitancia de UV en la longitud de onda indicada para el compuesto IE (de la invención).
- FIG. 7 es un gráfico que muestra la absobancia de los compuestos IF₁, IA₁, IA₂, IE₄ e IE₁ en las longitudes de onda indicadas.

Descripción

25

30

A) Definiciones

Los términos "que comprenden" y "que incluyen", como se utiliza en el presente documento, salvo que se indique de otro modo, se utilizan en su sentido abierto y no limitativo.

Como se utiliza en el presente documento, los términos "compuesto" y "compuestos" de la invención se usan indistintamente para referirse a uno cualquiera de los compuestos, lo que incluye sales aceptables, hidratos o solvatos de los mismos, divulgados en este documento genéricamente o específicamente. En una forma de realización, los compuestos de la invención son compuestos de fórmula I o variantes de la fórmula I y sales, hidratos o solvatos farmacéuticamente aceptables de los mismos.

5

La expresión "materiales biológicos", según se utiliza en el presente documento, salvo que se indique de otro modo, pretende incluir seres humanos, animales y plantas e incluye, por ejemplo: células, pelo, piel, así como otros tejidos humanos y animales. La expresión "materiales no biológicos", según se utiliza en el presente documento, salvo que se indique lo contrario, pretende incluir todo lo que no entra en la definición de "materiales biológicos".

La expresión "radiación solar", según se utiliza en el presente documento, salvo que se indique de otro modo, pretende incluir el espectro de frecuencias total de radiación electromagnética que desprende el sol, incluyendo ondas de radio, rayos x, infrarrojo, visible y ultravioleta ("UV").

Los términos "ultravioleta" y "UV", según se utiliza en el presente documento, a menos que se indique de otro modo, pretenden significar ultravioleta o luz de ultravioleta UV. UV es una radiación electromagnética con una longitud de onda más corta que la de la luz visible, pero más larga que la de los rayos X, en intervalo de aproximadamente 10 nm a aproximadamente 400 nm y energías de aproximadamente 3 eV a aproximadamente 124 eV (la abreviatura "eV", en este documento se refiere a electronvoltios). Ultravioleta A (UVA) se refiere a la radiación ultravioleta en el espectro de entre 320-400 nm, también referida como rayos "más largos". La banda de rayos UVA se divide además en UVA I (340-400 nm) y UVA II (320-340 nm). Los UVA son la causa principal de daños a la piel a largo término debido al sol y también pueden contribuir a las quemaduras solares. La radiación ultravioleta B (UVB) se refiere a la radiación en el espectro de 290-320 nm, también conocida como rayos "más cortos". Los rayos UVB son la principal causa de quemaduras por exposición al sol.

10

15

20

30

35

40

55

El término "imina" o "imino", como se utiliza en este documento, a menos que se indique de otro modo, incluye un grupo funcional o compuesto químico que contiene un enlace doble de carbono-nitrógeno. La expresión "compuesto de imino", como se utiliza en el presente documento a menos que se indique lo contrario, se refiere a un compuesto que incluye un grupo "imina" o un grupo "imino" como se define en el presente documento.

El término "hidroxi", como se utiliza en el presente documento, a menos que se indique de otro modo, incluye -OH.

Los términos "halógenos" y "halo", como se utilizan en el presente documento, salvo que se indique de otro modo, incluyen un cloro, Cl; flúor, F; bromo, Br; o yodo, I.

El término "arilo", como se utiliza en el presente documento, a menos que se indique de otro modo, incluye un grupo aromático carbocíclico. Ejemplos de grupos arilo incluyen, pero no se limitan a, fenilo, bencilo naftilo y antracenilo.

Los términos "amina" y "amino", como se utilizan en el presente documento, a menos que se indique de otro modo, incluyen un grupo funcional que contiene un átomo de nitrógeno con un par solitario de electrones y en el que uno o más átomos de hidrógeno se han reemplazado por un sustituyente tal como, pero no limitado a, un grupo alquilo o un grupo arilo.

El término "alquilo", como se utiliza en el presente documento, salvo que se indique de otro modo, incluye radicales de hidrocarburos saturados monovalentes que tienen restos de moléculas lineales o ramificadas, tales como pero no limitado a grupos metilo, etilo, propilo, butilo, pentilo, hexilo, optilo, etc. Grupos alquilo inferiores de cadena lineal representativos incluyen pero no están limitados a -metilo, -etilo, -n-propilo, -n-butilo, -n-pentilo, -n-hexilo, -n-heptilo y -n-octilo; mientras que los grupos alquilo inferiores ramificados incluyen, pero no se limitan a -isopropilo, -sec-butilo, -isobutilo, -terc-butilo, -isopentilo, 2-metilbutilo, 2-metilpentilo, 3-metilpentilo, 2,2-dimetilbutilo, 2,3-dimetilbutilo, 2,3-dimetilbutilo, 2,3-dimetilpentilo, 3,3-dimetilpentilo, 2,3-dimetilpentilo, 3-metilhexilo, 2,2-dimetilhexilo, 2,4-dimetilpentilo, 2-metilhexilo, 3,5-dimetilhexilo, 2,4-dimetilpentilo, 2-metilheptilo, 3-metilheptilo, alquilos C₁-C₈ insaturados incluyen, pero no se limitan a, -vinilo, -alilo, -1-butenilo, -2-butenilo, -isobutilenilo, -1-pentenilo, -2-pentenilo, -2-pentenilo, -2-pentinilo, -2-pentinilo, -2-pentinilo, -2-pentinilo, -3-metil-1-butinilo.

El término "carboxilo", como se utiliza en el presente documento a menos que se indique de otro modo, incluye un grupo funcional que consiste en un átomo de carbono unido con un doble enlace a un átomo de oxígeno y un enlace simple unido a un grupo hidroxi (-COOH).

45 El término "alquenilo", como se utiliza en el presente documento, a menos que se indique de otro modo, incluye restos alquilo que tienen al menos un doble enlace carbono-carbono en donde el alquilo es como se definió anteriormente e incluye los isómeros E y Z de dicho resto alquenilo.

El término "alquinilo", como se utiliza en el presente documento, a menos que se indique de otro modo, incluye restos alquilo que tienen al menos un triple enlace carbono-carbono en donde el alquilo es como se definió anteriormente.

50 El término "acilo", como se utiliza en el presente documento, a menos que se indique lo contrario, incluye un grupo funcional derivado de un ácido carboxílico alifático, mediante la eliminación del grupo hidroxi (-OH).

El término "alcoxi", como se utiliza en el presente documento, a menos que se indique de otro modo, incluye grupos de O-alquilo en donde el alquilo es como se definió anteriormente y O representa oxígeno. Grupos alcoxi representativos incluyen, pero no se limitan a, -O-metilo, -O-n-propilo, - O-n-butilo, -O-n-pentilo, -O-n

metilpentilo, -O-3-metilpentilo, -O-2,2-dimetilbutilo, -O-2,3-dimetilbutilo, -O-2,2-dimetilpentilo, -O-2,3-dimetilpentilo, -O-3,3-dimetilpentilo, -O-2,4-dimetilpentilo, -O-2,5-dimetilpentilo, -O-3,5-dimetilpentilo, -O-2,4-dimetilpentilo, -O-2,4-dimetilpentilo, -O-2,5-dimetilpentilo, -O-3,5-dimetilpentilo, -O-2,4-dimetilpentilo, -O-2-metilpentilo, -O-3-metilpentilo, -O-2-metilpentilo, -O-3-metilpentilo, -O-2-metilpentilo, -O-3-metilpentilo, -O-2-metilpentilo, -O-3-metilpentilo, -O-2-metilpentilo, -O-2-m

5

10

15

20

25

40

45

50

55

60

El término "cicloalquilo", como se utiliza en el presente documento, a menos que se indique de otro modo, incluye un hidrocarburo no aromático, saturado o parcialmente saturado, monocíclico o fusionado, espiro o no fusionado bicíclico o tricíclico, referido en este documento como que contienen un total de 3 a 10 átomos de carbono, preferiblemente de 3 a 8 átomos de carbono de anillo. Ejemplos de cicloalquilos incluyen, pero no se limitan a, grupos cicloalquilo C₃-C₈ que incluyen, pero no se limitan a –ciclopropilo, -ciclobutilo,-ciclopentilo, ciclopentadienilo, -ciclohexilo, -ciclohexenilo, -1,3-ciclohexadienilo, -1,4-ciclohexadienilo, -cicloheptilo, -1,3-cicloheptadienilo, -1,3,5-cicloheptatrienilo, -ciclooctilo y ciclooctadienilo. El término "cicloalquilo" también incluye alquilos-cicloalquilos inferiores, en donde el alquilo y cicloalquilo inferior son como se definen en este documento. Ejemplos de grupos alquilo-cicloalquilo inferiores incluyen, pero no se limitan a, -CH₂-ciclopropilo, -CH₂-ciclobutilo, -CH₂-ciclopentilo, -CH₂-ciclopentadienilo, -CH₂-ciclohexilo, -CH₂-ciclohexilo, -CH₂-ciclohexilo, -CH₂-ciclohexilo, -CH₂-ciclohexilo.

El término "heterocíclico", como se utiliza en el presente documento, a menos que se indique de otro modo, incluye un cicloalquilo aromático o no aromático en el que de uno a cuatro de los átomos de carbono del anillo independientemente se sustituyen por un heteroatomo del grupo formado por O, S y N. Ejemplos representativos de un heterociclo incluyen, pero no se limitan a, benzofuranilo, benzotiofeno, indolilo, benzopirazolilo, cumarinilo, isoquinolinilo, pirrolilo, pirrolidinilo, tiofenilo, furanilo, tiazolilo, imidazolilo, pirazolilo, triazolilo, quinolinilo, piridinilo, piridazinilo, piridazinilo, isotiazolilo, isoxazolilo, (1,4)-dioxano, (1,3)-dioxolano, 4,5-dihidro-1H-imidazolilo y tetrazolilo. Los heterociclos pueden ser sustituidos o no sustituidos. Los heterociclos también pueden estar enlazados en cualquier átomo del anillo (es decir, en cualquier átomo de carbono o heteroátomo del anillo heterocíclico).

30 El término "ciano", como se utiliza en el presente documento, a menos que se indique de otro modo, incluye un grupo -CN.

El término "alcohol", como se utiliza en el presente documento, salvo que se indique de otro modo, incluye un compuesto en el que el grupo funcional hidroxi (-OH) está enlazado a un átomo de carbono. En particular, este centro de carbono debería ser saturado, o sea que tiene enlaces sencillos a los otros tres átomos.

El término "solvato" se intenta que signifique una forma de solvato de un determinado compuesto que conserva la eficacia de tal compuesto. Ejemplos de solvatos incluye compuestos de la invención en combinación con, por ejemplo: agua, isopropanol, etanol, metanol, dimetilsulfóxido (DMSO), acetato de etilo, ácido acético o etanolamina.

El término "mmol", como se utiliza en el presente documento, pretende significar milimol. El término "equiv", como se utiliza en el presente documento, pretende significar equivalente. El término "ml", como se utiliza en el presente documento, pretende significar mililitro. El término "g", como se utiliza en el presente documento, pretende significar gramo. El término "kg", como se utiliza en el presente documento, pretende significar kilogramo. El término "µg", como se utiliza en el presente documento, pretende significar microgramo. El término «h», como se utiliza en el presente documento, pretende significar hora. El término "min", como se utiliza en el presente documento, pretende significar minutos. El término "M", como se utiliza en el presente documento, pretende significar molar. El término "µl", como se utiliza en el presente documento, pretende significar microlitro. El término "µM", como se utiliza en el presente documento, pretende significar micromolar. El término "nM", como se utiliza en el presente documento, pretende significar nanomolar. El término "N", como se utiliza en el presente documento, pretende significar normal. El término "uma", como se utiliza en el presente documento, pretende significar unidad de masa atómica. El término "° C", como se utiliza en el presente documento, pretende significar grados Celsius. El término "p/p", como se utiliza en el presente documento, pretende significar: peso/peso. El término "v/v", como se utiliza en el presente documento, pretende significar volumen/volumen. El término "MS", como se utiliza en el presente documento, pretende significar espectroscopía de masas. El término "HPLC", como se utiliza en el presente documento, pretende significar cromatografía líquida de alto rendimiento. El término "TA", como se utiliza en el presente documento, pretende significar temperatura ambiente. El término "por ej.", como se utiliza en el presente documento, pretende significar, por ejemplo. El término "N/A", como se utiliza en el presente documento, pretende significar no probado.

Como se utiliza en el presente documento, la expresión 'sal farmacéuticamente aceptable' se refiere a sales orgánicas o inorgánicas farmacéuticamente aceptables de un compuesto de la invención. Las sales preferidas incluyen, pero no se limitan, a sales de sulfato, citrato, acetato, oxalato, cloruro, bromuro, yoduro, nitrato, bisulfato, fosfato, fosfato ácido, isonicotinato, lactato, salicilato, citrato ácido, tartrato, oleato, tanato, pantotenato, bitartrato, ascorbato, succinato, maleato, gentisinato, fumarato, gluconato, glucuronato, sacarato, formiato, benzoato, glutamato, metanosulfonato,

etanosulfonato, bencenosulfonato, p-toluensulfonato y pamoate (es decir, 1,1'-metilen-bis-)-(2-hidroxi-3-naftoato)). Una sal farmacéuticamente aceptable puede implicar la inclusión de otra molécula como un ion de acetato, un ion de succinato u otros contraiones. El contraión puede ser cualquier resto orgánico o inorgánico que estabiliza la carga en el compuesto de partida. Además, una sal farmacéuticamente aceptable puede tener más de un átomo con carga en su estructura. Los casos donde átomos con cargas múltiples son parte de la sal farmacéuticamente aceptable pueden tener múltiples contraiones. Por lo tanto, una sal farmacéuticamente aceptable puede tener uno o más átomos cargados o uno y/o más contraiones. Como se utiliza en el presente documento, la expresión "solvato farmacéuticamente aceptable" se refiere a una asociación de una o más moléculas de disolvente y un compuesto de la invención. Ejemplos de disolventes que forman solvatos farmacéuticamente aceptables incluyen, pero no se limitan a, agua, isopropanol, etanol, metanol, DMSO, acetato de etilo, ácido acético y etanolamina. Como se utiliza en el presente documento, la expresión "hidrato farmacéuticamente aceptable" se refiere a un compuesto de la invención, o una sal del mismo, que además incluye una cantidad estequiométrica o no estequiométricas de agua ligada por fuerzas intermoleculares no covalentes.

El término «micosporina», como se utiliza en el presente documento, es un término general para compuestos que exhiben la estructura general que se muestra en la FIG. 1. Las micosporinas tienen una estructura de anillo central con varios grupos aminos que modifican esta estructura de anillo (que incluye por ejemplo, un anillo central de ciclohexenona o ciclohexenimina y una amplia variedad de sustituciones). Los aminoácidos tipo micosporina ("MAAs") representan una clase relativamente amplia de ciclohexenos sustituidos solubles en agua que están unidos con aminoácidos e iminoalcoholes y tienen máximos de absorción entre aproximadamente 310 y aproximadamente 360 nm³-6. En algunos organismos marinos los MAAs actúan como filtros de fotoprotección UV y/o como antioxidantes. Estudios *in vitro* han demostrado la elevada fotoestabilidad de MAAs, así como la liberación de calor al medio como resultado de la vía de relajación de moléculas fotoexcitadas. Los resultados de estos estudios proporcionan la evidencia fuerte de que MAAs también funciona como filtros UV y/o antioxidantes *in vitro*7. El término micosporina en esta solicitud incluye tanto una sola especie del compuesto micosporina como una mezcla de varias micosporinas. Todos los compuestos comúnmente referidos como micosporina están incluidos dentro del alcance de la invención. MAAs típicos incluyen, pero no se limitan a: micosporina-glicina, micosporina-taurina, palitina, asterina-330, palitinol, paliteno, porfira-334, micosporina-glicina:valina, sinorina y MAA 357.

B) Compuestos de la invención

5

10

15

20

25

45

50

55

MAAs de organismos marinos son derivados de imina de las micosporinas que contienen un anillo de amino ciclohexenimina vinculado a un grupo aminoácido, amino alcohol o amino⁸. Hemos propuesto que ciertos grupos de compuestos derivados químicos y estructurales de MAAs pueden ser fácilmente sintetizados y pueden demostrar características de absorción de la radiación solar, propiedades de protección UV así como propiedades antioxidantes. Como para MAAs, estos compuestos potencialmente comparten el mecanismo de acción de absorber la luz, más concretamente de absorber las radiaciones UV; más particularmente de absorber las radiaciones UVA y/o UVB. También, como algunos MAAs, estos compuestos potencialmente comparten las propiedades de antioxidantes. Se han obtenido compuestos que comprenden al menos un grupo imino. Estos compuestos son capaces de la deslocalización de electrones y de absorción de las radiaciones UV. Particularmente, se han obtenido compuestos que tienen la propiedad de ser absorbentes de UV (tal como propiedades de absorción de rayos UVA y/o UVB) y/o propiedades antioxidantes.

40 Por consiguiente, en una forma de realización, la presente divulgación se refiere a compuestos de la Fórmula general I:

$$R_2 = \begin{bmatrix} R_6 \\ N \end{bmatrix} \begin{bmatrix} R_7 \\ N \end{bmatrix} \begin{bmatrix} R_7 \\ N \end{bmatrix} \begin{bmatrix} R_1 \\ R_1 \end{bmatrix}$$

Los compuestos que tienen la Fórmula general I, pueden absorber la radiación UV a través de su estructura de anillo. Por lo tanto debería ser la propiedad absorbente de UV lo que permite que los compuestos definidos en este documento protejan de las radiaciones UV. En algunas implementaciones de esta forma de realización, los compuestos de Fórmula I pueden acomodar radicales libres a través de su estructura de anillo (o sea, su capacidad de deslocalización de electrones). En algunas otras implementaciones, los compuestos de Fórmula I puede proteger del daño oxidativo.

En algunas implementaciones de esta divulgación, los compuestos de Fórmula general I pueden comprenden más de un grupo imino.

Los compuestos de la divulgación presente, por tanto, son potencialmente útiles en la absorción de las radiaciones UV y en el bloqueo de las radiaciones UV de penetrar en el interior de la superficie tanto de los materiales biológicos como de los no biológicos. Estos compuestos también son potencialmente útiles en la inhibición o reducción de los efectos de UV en materiales biológicos y no biológicos. Algunos de los efectos de las radiaciones UV que puede ser útil inhibir o reducir son los efectos nocivos de las radiaciones UV. En materiales biológicos tales como en los seres

humanos y animales, algunos efectos nocivos de las radiaciones UV incluyen, pero no se limitan a: quemaduras solares, enfermedades de la piel, agravamiento de enfermedades de la piel, daño a los ojos, dañosindirectos al ADN, melanoma y cáncer. En materiales no biológicos tales como en artículos de fabricación, algunos efectos nocivos de las radiaciones UV incluyen, pero no se limitan a: degradación de polímeros, degradación de pigmentos, degradación del color, de la firmeza de color, degradación de los colorantes, debilitamiento de la estructura, de secado, etcétera.

En algunas implementaciones de la forma de realización presente, los ejemplos de compuestos de Fórmula general I de la invención incluyen, pero no se limitan a, los compuestos que tienen la subfórmula general IA o IE como se explica a continuación.

La subestructura general de compuestos de fórmula IA, como se reivindica en la reivindicación 8 del conjunto de las reivindicaciones adjuntas, se muestra en el presente documento a continuación:

en donde:

n es 1.

5

10

Una persona experta en la técnica podrá apreciar que algunas variaciones estructurales en la fórmula general IA pueden ser consideradas sin apartarse de la invención presente. En algunas implementaciones de esta forma de realización, los compuestos que tienen la subfórmula general IA, incluyen, pero no se limitan a:

Fórmula IA₁:ácido (R,E)-8-(4-metoxifenilimino)-6,6-dimetil-3,4,5,6,7,8-hexahidro-2H-benzo[b][1,4]tiazina-3-carboxílico

Fórmula IA₂: ácido (R,E)-8-(2-carboxi-4-metoxifenilimino)-6,6-dimetil-3,4,5,6,7,8-hexahidro-2H-benzo[b][1,4]tiazina-3-carboxílico

25 Fórmula IA₃: ácido (R,E)-8-(4-metoxifenilimino)-6,6-dimetil-3,4,5,6,7,8-hexahidro-2H-benzo[b][1,4]oxazina-3-carboxílico

Fórmula IA₄: ácido (E)-5-(4-metoxifenilimino)-7,7-dimetil-1,2,3,4,5,6,7,8-octahidroquinoxalina-2-carboxílico

Fórmula IA₅: (S,E)-8-((4-metoxifenil)imino)-3,4,5,6,7,8-hexahidro-2H -benzo [b] [1,4] oxazina-3-carboxilato de etilo

5 Fórmula IA₆: (*R*,*E*)-8-((4-metoxifenil)imino)-3,4,5,6,7,8-hexahidro-2*H*-benzo[*b*][1,4]tiazina-3-carboxilato de etilo

Fórmula IA₇: (S,E)-5-((4-metoxifenil)imino)-1,2,3,4,5,6,7,8-octahidroquinoxalina-2-carboxilato de etilo

Fórmula IA₈: ácido (R,E)-8-(4-(2-etilhexiloxi)-2-hidroxifenilimino)-6,6-dimetil-3,4,5,6,7,8-hexahidro-2H-10 benzo[b][1,4]tiazina-3-carboxílico

La subestructura general de los compuestos de fórmula IE, como reivindican en la reivindicación 1 del conjunto de realizaciones adjuntas, se muestra a continuación:

$$R_{8}$$
 R_{5}
 R_{5}

en donde:

R₃ y R₄ son cada uno independientemente hidrógeno; alquilo; alquenilo; alquinilo; arilo; heterociclo; cicloalquilo; alcoxi; alkanoilo; un grupo sulfo; un grupo fosfono; un grupo éster; un grupo de ácido carboxílico; o un grupo fenilo.

 R_5 es alquilo; alquenilo; alquinilo; arilo; heterociclo; cicloalquilo; alcoxi; alcanoilo; un grupo sulfo; un grupo fosfono; hidroxi; un grupo éster; un grupo de ácido carboxílico; o un grupo fenilo.

R₆ es hidrógeno; alquilo; alquenilo; alquinilo; arilo; heterociclo; cicloalquilo; alcoxi; alcanoilo; hidroxi; un grupo sulfo; un grupo halo; un grupo fosfono; un grupo éster; un grupo de ácido carboxílico; un grupo fenilo; una cadena de ácidos grasos de alquilo o poliéter.

R₈ es hidrógeno; alquilo; alquenilo; alquinilo; arilo; heterociclo; cicloalquilo; alcoxi; alcanoilo; hidroxi; un grupo sulfo; un grupo halo; un grupo fenilo; un grupo éster; un grupo de ácido carboxílico; un grupo fenilo; un grupo amino; una cadena de ácidos grasos de alquilo o poliéter.

Y es oxígeno; azufre; -CH₂-; un grupo amino; o alcanos espirocíclicos.

n es 1.

Una persona experta en la técnica podrá apreciar que algunas variaciones estructurales en la fórmula general IE pueden considerarse sin apartarse de la invención presente. En algunas implementaciones de esta forma de realización los ejemplos de compuestos con la fórmula subgeneral IE, incluyen, pero no se limitan a:

Fórmula IE₁: ácido benzo[b][1,4]tiazina-3-carboxílico

5 Fórmula IE_{2:} ácido (R,E)-8-(fenilimino)-6,6-dimetil-3,4,5,6,7,8-hexahidro-2H-benzo[b][1,4] tiazina-3-carboxílico

Fórmula IE₃: ácido benzo[b][1,4]tiazina-3-carboxílico

15

20

25

30

(R,E)-8-(4-(dietilamino)-2-hidroxifenilimino)-6,6-dimetil-3,4,5,6,7,8-hexahidro-2H-10-2-hidroxifenilimino)-6,6-dimetil-3,4,5,6,7,8-hexahidro-2H-10-2-hidroxifenilimino)-6,6-dimetil-3,4,5,6,7,8-hexahidro-2H-10-2-hidroxifenilimino)-6,6-dimetil-3,4,5,6,7,8-hexahidro-2H-10-2-hidroxifenilimino)-6,6-dimetil-3,4,5,6,7,8-hexahidro-2H-10-2-hidroxifenilimino)-6,6-dimetil-3,4,5,6,7,8-hexahidro-2H-10-2-hidroxifenilimino)-6,6-dimetil-3,4,5,6,7,8-hexahidro-2H-10-2-hidroxifenilimino)-6,8-dimetil-3,4,5,6,7,8-hexahidro-2H-10-2-hidroxifenilimino)-6,8-dimetil-3,4,5,6,7,8-hexahidro-2H-10-2-hidroxifenilimino)-6,8-dimetil-3,4,5,6,7,8-hexahidro-2H-10-2-hidroxifenilimino)-6,8-dimetil-3,4,5,6,7,8-hexahidro-2H-10-2-hidroxifenilimino)-6,8-dimetil-3,4,5,6,7,8-hexahidro-2H-10-2-hidroxifenilimino)-6,8-dimetil-3,4,5,6,7,8-hexahidro-2-hidroxifenilimino)-6,8-dimetil-3,4,5,6,7,8-hexahidroxifenilimino)-6,8-dimetil-3,4,5,6,7,8-hexahidroxifenilimino)-6,8-dimetil-3,4,5,6,7,8-hexahidroxifenilimino)-6,8-dimetil-3,4,5,6,7,8-hexahidroxifenilimino)-6,8-dimetil-3,4,5,6,7,8-hexahidroxifenilimino)-6,8-dimetil-3,4,5,6,7,8-hexahidroxifenilimino)-6,8-dimetil-3,4,5,6,7,8-hexahidroxifenilimino)-6,8-dimetil-3,4,5,6,7,8-hexahidroxifenilimino)-6,8-dimetil-3,4,5,6,7,8-hexahidroxifenilimino)-6,8-dimetil-3,4,5,6,7,8-hexahidroxifenilimino)-6,8-dimetil-3,4,5,6,7,8-hexahidroxifenilimino)-6,8-dimetil-3,4,5,6,7,8-hexahidroxifenilimino)-6,8-dimetil-3,4,5,6,7,8-hexahidroxifenilimino)-6,8-dimetil-3,4,5,6,7,8-hexahidroxifenilimino)-6,8-dimetil-3

$$\mathsf{F} \overset{\circ}{\bigvee} \mathsf{OH}$$

10 Fórmula IE₄: ácido (R,E)-8-(4-fluorofenilimino)-6,6-dimetil-3,4,5,6,7,8-hexahidro-2H-benzo[b][1,4]tiazina-3-carboxílico

Cuando los grupos descritos en este documento se dicen que son "no sustituidos o sustituidos", cuando están sustituidos pueden sustituirse con cualquier sustituyente o sustituyentes deseados que no afecten negativamente a la actividad deseada del compuesto. Ejemplos de sustituyentes preferidos son los que se encuentran en los compuestos de ejemplificación y en las formas de realización divulgadas en este documento, así como halógeno; alquilo; alquenilo; alquinilo; hidroxi; alcoxi; amino; nitro; tiol; tioéter; imina; ciano; amido; fosfonato; fosfina; carboxilo; tiocarbonilo; sulfonilo; sulfonamida; cetona; aldehído; éster; acetilo; acetoxi; carbamoilo; oxígeno (=O); haloalquilo (por ejemplo, trifluorometilo); aminoacilo sustituido y aminoalquilo sustituido; cicloalquilo carbocíclico, que puede ser monocíclico o policíclico fusionado o no fusionado (por ejemplo, ciclopropilo, ciclobutilo, ciclopentilo o ciclohexilo), o un heterocicloalquilo, que puede ser monocíclico o policíclico fusionado o no fusionado (por ejemplo, pirrolidinilo, piperidinilo, piperazinilo, morfolinilo o tiazinilo); arilpolicíclico, fusionado o no fusionado o monociclo o carbociclo o heterocíclico, (por ejemplo, fenilo, naftilo, pirrolilo, indolilo, furanilo, tiofenilo, imidazolilo, oxazolilo, isoxazolilo, tiazolilo, triazolilo, tetrazolilo, pirazolilo, piridinilo, quinolinilo, isoquinolinilo, acridinilo, pirazinilo, piridinilo, benzimidazolilo, benzotiofenilo o benzofuranilo); amino (primario, secundario o terciario); o-alquilo inferior; o-arilo, arilo; arilo-alquilo inferior; -CO₂CH₃; -CONH₂; -OCH₂CONH₂; -NH₂; -SO₂NH₂; -OCHF₂; -CF₃; -OCF₃; y dichos restos también se pueden sustituir opcionalmente por una estructura de anillo fusionado o puente, por ejemplo-OCH₂O- o -O-alquilo inferior-O-. Opcionalmente estos sustituyentes pueden sustituirse más con un sustituyente seleccionado de tales grupos. En una forma de realización, cuando se sustituye un grupo alquilo inferior (por ejemplo, metileno), se sustituye con la cadena lateral de un aminoácido que ocurre naturalmente.

Otros compuestos de la Fórmula general I divulgados en este documento incluyen, pero no se limitan a, compuestos con las siguientes estructuras:

Ácido (R,E)-8-((4-fluorofenil)imino)-6,6-dimetil-3,4,5,6,7,8-hexahidro-2H-benzo [b][1,4]tiazina-3-carboxílico

Ácido (R,E)-8-((3,4-dimetoxifenil)imino)-6,6-dimetil-3,4,5,6,7,8-hexahidro-2H-benzo[b][1,4]tiazina-3-carboxílico

$$\bigvee_{H} \bigvee_{S \longrightarrow V} COOH$$

Ácido (R,E)-6,6-dimetil-8-(fenilimino)-3,4,5,6,7,8-hexahidro-2H- benzo[b][1,4]tiazina-3-carboxílico

(E)-4-metoxi-N-(3-((4-metoxifenil)amino)-5,5-dimetilciclohex-2-en-1-ilideno)anilina

(E)-2-((3-((4-metoxifenil)imino)-5,5-dimetilciclohex-1-en-1-il)amino)acetato de metilo

En una forma de realización adicional de la invención presente, se divulgan métodos y procesos para la preparación de los compuestos definidos en el presente documento. Los compuestos de la invención presente se pueden hacer mediante síntesis orgánica convencional. Una persona experta en la técnica podrá apreciar que algunas variaciones en los métodos y procesos para la preparación de los compuestos definidos en este documento pueden ser consideradas sin apartarse de la invención presente.

Los compuestos de Fórmula general I, pueden generalmente derivarse vía una dicetona, concretamente, vía una dicetona cíclica, incluso más específicamente, vía una dicetona halogenada cíclica. Por ejemplo, el compuesto de la subfórmula general I puedo generalmente derivarse mediante una dicetona cíclica tal como, pero no limitado a, ciclohexanodiona (por ejemplo, 5,5-dimetil-ciclohexano-1,3-diona; 1,3-ciclohexanodiona; 5-fenil-1,3-ciclohexadiona), cicloheptadiona (por ejemplo, 1,3-cicloheptadiona), ciclopentadiona (por ejemplo, 1,3-indandiona).

Por ejemplo, se puede preparar el compuesto de fórmula IA₁ a partir de 5,5-dimetil-ciclohexano-1,3-diona. La preparación del compuesto de fórmula IA₁ a partir de 5,5-dimetil-ciclohexano-1,3-diona puede llevarse a cabo por halogenación de 5,5-dimetil-ciclohexano-1,3-diona en presencia de un disolvente apropiado para rendir una 5,5-dimetil-ciclohexan-1,3-diona halogenada. La 5,5-dimetil-ciclohexan-1,3-diona halogenada entonces puede hacerse reaccionar con un éster de etilo para dar un compuesto intermedio del benzotiazina. El compuesto intermedio de benzotiazina puede después hacerse reaccionar con un compuesto de metoxianilina para producir el compuesto de fórmula IA₁.

Según otra implementación de esta forma de realización, la preparación del compuesto de fórmula IA₁ a partir de 5,5-dimetil-ciclohexan-1,3-diona puede llevarse a cabo como se establece en el siguiente esquema sintético, donde (5,5-dimetil-ciclohexan-1,3-diona (1) se broma en presencia de diclorometano (DCM) para rendir 2-bromo-5,5-dimetil-ciclohexan-1,3-diona (2). La 2-bromo-5,5-dimetil-ciclohexan-1,3-diona (2) entonces se hace reaccionar con el éster etílico de L-cisteína HCl y piridina para dar (*R*)-6,6-dimetil-8-oxo-3,4,5,6,7,8-hexahidro-2*H*-benzo[*b*][1,4]tiazina-3-carboxilato de etilo (3) que después se hace reaccionar con cloruro de malonilo en presencia de DCM y dimetilformamida (DMF) para rendir un compuesto intermedio que luego se hace reaccionar con p-anisidina para producir el compuesto de la fórmula IA₁ (4).

35

30

5

15

Una vez sintetizados, los compuestos de la invención pueden ser aislados de los precursores químicos u otros productos químicos utilizando técnicas de purificación estándar como, por ejemplo, cromatografía (cromatografía de columna flash y HPLC), métodos asimétricos de síntesis, recristalización y solubilidad diferencial. Como se utiliza en el presente documento, el término "aislado" en el contexto de un compuesto, como, por ejemplo, un compuesto de la invención, se refiere a un compuesto que está sustancialmente libre de precursores químicos, otros productos químicos químicamente sintetizados u otros isómeros. En una forma de realización específica, el compuesto está 60%, 65%, 70%, 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98% o 99% libre de otros compuestos diferentes (por ejemplo, otros isómeros). Preferiblemente, los compuestos de la invención se aíslan.

5

20

25

30

35

40

Varios compuestos de la invención contienen uno o más centros quirales y pueden existir como mezcla racémicæ de enantiómeros, mezclas de diastereoisómeros o compuestos enantioméricamente u ópticamente puros. Por ejemplo, pueden usarse en métodos y composiciones de la invención mezclas con cantidades iguales o desiguales de los enantiómeros de un compuesto particular de la invención. Debe señalarse también que los compuestos de la invención incluyen los isómeros E y Z, o una mezcla de los mismos e isómeros cis y trans o una mezcla de los mismos. En
 algunas formas de realización, los compuestos de la invención son aislados como isómero Z o E. En otras formas de realización, los compuestos de la invención son una mezcla de los isómeros E y Z.

Como se usa en el presente documento y a menos que se indique de otro modo, el término "estereoméricamente puro" significa una composición que comprende un estereoisómero de un compuesto y está sustancialmente libre de otros estereoisómeros de este compuesto o un isómero geométrico (por ejemplo, sobre un doble enlace) está sustancialmente libre del otro isómero geométrico. Por ejemplo, un compuesto de la invención estereoméricamente puro, que tiene un centro quiral o una composición del mismo estará sustancialmente libre del enantiómero opuesto del compuesto. Un compuesto estereoméricamente puro de la invención que tiene dos centros quirales, o una composición del mismo, estará sustancialmente libre de otros diastereoisómeros del compuesto. Un compuesto estereoméricamente puro de la invención con un enlace doble capaz de isomería E/Z, o una composición del mismo. estará sustancialmente libre de uno de los isómeros E/Z. Un compuesto estereoméricamente puro típico comprende más de aproximadamente 80% en peso de un estereoisómero o isómero E/Z del compuesto y menos de 20% en peso de otros estereoisómeros o isómero E/Z del compuesto, más preferiblemente mas de aproximadamente 90% en peso de un estereoisómero o isómero E/Z del compuesto y menos de aproximadamente 10% en peso de los otros estereoisómeros o isómero E/Z del compuesto, aún más preferiblemente más de aproximadamente 95% en peso de un estereoisómero o isómero E/Z del compuesto y menos de 5% en peso de otros estereoisómeros o isómero E/Z del compuesto y lo más preferible más de aproximadamente 97% en peso de un estereoisómero o isómero E/Z del compuesto y menos de aproximadamente 3% en peso de los otros estereoisómeros o isómero E/Z del compuesto. Como se usa en el presente documento y a menos que se indique de otro modo, el término "estereoméricamente enriquecido" significa un compuesto de la invención, o una composición del mismo que comprende más del 60% en peso de un estereoisómero o isómero E/Z de un compuesto de la invención, preferiblemente más de aproximadamente el 70% en peso, más preferiblemente más de aproximadamente el 80% en peso de un estereoisómero o isómero E/Z de un compuesto de la invención. Como se usa en este documento y a menos que se indique de otro modo, el término "enantioméricamente puro" significa un compuesto puro estereoméricamente de la invención que tiene un centro quiral o una composición del mismo. Del mismo modo, el término "estereoméricamente enriquecido" significa un compuesto estereoméricamente enriquecido de la invención que tiene un centro guiral o una composición del mismo.

Cabe señalar que, si la estereoquímica de una estructura o una parte de una estructura no está indicada, por ejemplo, negrita o líneas discontinuas, la estructura o parte de la estructura debe ser interpretado como que abarca todos los estereoisómeros de la misma.

En otras formas de realización, la presente divulgación proporciona métodos y técnicas para la determinación de la capacidad de absorción de UV de los compuestos tal como se define en el presente documento. Las propiedades de absorción de UV de los compuestos definidos en este documento se pueden determinar por espectrofotómetro según técnicas y métodos conocidos en la técnica. Por ejemplo, pueden utilizarse espectroscopia ultravioleta-visible o

espectrofotometría ultravioleta-visible (UV-Vis o UV/Vis) para calcular la longitud de onda de máxima absorción ($\lambda_{máx}$) del compuesto.

Una persona experta en la técnica podrá apreciar que las características espectrales de los compuestos de la invención incluyendo el valor de su coeficiente de extinción (ϵ) y el valor de su λ_{max} están influenciadas por los elementos estructurales de los compuestos, por ejemplo, por la naturaleza de los grupos funcionales/sustituyentes presentes en los compuestos. Cuanto más eficiente es la deslocalización de electrones en un compuesto de la invención, mayor debería ser su coeficiente de extinción.

La fotosensibilidad de los compuestos definidos en este documento puede ser indicativa de la eficacia del compuesto en la absorción de las radiaciones UV. La fotosensibilidad de un compuesto puede ser determinada utilizando un analizador de SPF (tal como, por ejemplo, pero no limitado a, Optometrix, SPF 290). Matemáticamente, el SPF se calcula a partir de datos medidos como:

SPF =
$$\frac{\int A(\lambda) E(\lambda) d\lambda}{\int A(\lambda) E(\lambda) / MPF(\lambda) d\lambda}$$

Donde $E(\lambda)$ es el espectro de la irradiación solar, $A(\lambda)$ el espectro de acción eritematógena y MPP(λ) el factor de protección monocromática, todos funciones de la longitud de onda. El MPF es aproximadamente el inverso de la transmitancia en una determinada longitud de onda. Para calcular el valor de SPF de un compuesto de la invención, el compuesto puede ser disuelto en un disolvente adecuado (como, por ejemplo, en metanol o etanol) en una concentración adecuada (como, por ejemplo, desde entre aproximadamente $1,10^{-5}$ a aproximadamente $5,10^{-5}$ M), colocado en una celda de cuarzo e irradiado con una lámpara de haluro de metal (I_{UVB} = 0,4 a 8,0 mW/cm). Para la conversión al espectro solar (luz de día estándar CIE D65, estandarizado a I_{UVB} = 0,127 mW/cm²), se calcula la integral sobre los productos de la intensidad de la lámpara resueltos de longitud de onda y los correspondientes valores de absorción del compuesto entre 290 y 400 nm y se divide por la integral sobre los productos de las intensidades de luz D65 y los valores correspondientes de absorción del compuesto en el intervalo entre 290 y 400 nm. Ese factor se multiplica por el valor de la semivida de la degradación bajo irradiación con la lámpara de haluro de metal con el fin de obtener el correspondiente valor de la semivida bajo irradiación solar. El valor de la semivida para la fotodegradación bajo irradiación de la lámpara se determina por mediciones espectroscópicas de UV de la extinción en la longitud de onda de máxima absorbancia y posterior ajuste exponencial. Los valores de la semivida para la foto degradación de luz D65 se obtienen usando este método.

La determinación o medición de otras propiedades físicas de los compuestos definidos en el presente documento puede ser utilizada para evaluar la eficacia de un compuesto en cuanto a la absorción de las radiaciones UV, tales como, pero no limitado a, la determinación del punto de fusión, actividad óptica, espectroscopia IR, espectroscopia de MS, espectroscopia RMN y medición de la resistencia al agua. Estas y otras técnicas, así como la manera de llevarlas a cabo son bien conocidas en la técnica.

C) FORMULACIONES Y COMPOSICIONES

5

10

15

20

25

30

35

50

55

Los compuestos de la invención pueden ser utilizados para absorber las radiaciones UV. Los compuestos de la invención también pueden proporcionar protección a los materiales biológicos y no biológicos frente a los dañinos efectos de las radiaciones UV, en particular frente a los efectos dañinos de los rayos UVA o UVB o frente a ambas radiaciones. Estas formulaciones y composiciones comprenden los compuestos de la Fórmula general I definidos en este documento.

Los compuestos de la invención pueden formularse en combinación con otros compuestos con el fin de obtener formulaciones y/o composiciones con las características deseadas. Estos otros compuestos pueden incluir una amplia gama de ingredientes y compuestos que no son absorbentes/filtros//bloqueantes de UV per se pero que ayudan a controlar las características de la composición misma tal como el espesor de la película, opacidad, resistencia al roce, resistencia al agua y uniformidad. Por otra parte, estos otros compuestos también pueden incluir una amplia gama de ingredientes que actúan como absorbentes/filtros/bloqueantes de UV, como compuestos que son absorbentes/filtros/bloqueantes de rayos UVB.

Los compuestos de la invención pueden ser incorporados en las formulaciones y/o composiciones en una cantidad de aproximadamente 1% a aproximadamente 99% del peso de las formulaciones y/o las composiciones. Los otros compuestos pueden ser incorporados en las formulaciones y/o composiciones en una cantidad de aproximadamente 99% a aproximadamente 1% del peso de las formulaciones y/o las composiciones. En una implementación preferida, los compuestos de la invención son incorporados en las formulaciones y/o composiciones en una cantidad de aproximadamente 0,2% y aproximadamente el 30% del peso de la formulación y/o las composiciones. Convenientes masas y concentraciones de los compuestos definidos en este documento así como masas y concentraciones de los otros componentes incorporados en las formulaciones y/o composiciones dependen de la naturaleza de las formulaciones y/o composiciones y de los materiales biológicos y/o no biológicos que estén destinados a ser utilizados. Tales elementos serán apreciados por los entendidos en la técnica utilizando técnicas conocidas en la técnica.

Una aplicación potencialmente útil de los compuestos definidos en este documento es su incorporación en composiciones y/o formulaciones para proteger los materiales biológicos de las radiaciones UV. Tales composiciones y/o formulaciones pueden ser composiciones de filtro solar y se pueden formular según procedimientos bien conocidos en la técnica, en particular técnicas para la preparación de emulsiones de aceite en agua o de agua en aceite. Además, los compuestos de la invención pueden formularse en vehículos tales como, agua, líquidos basados en agua, lociones, dispersiones, aceites, soluciones a base de aceite, polvo, geles, emulsiones, dispersiones o mezclas de los mismos. La cantidad apropiada de vehículo puede determinarse fácilmente por los entendidos en la materia según, por ejemplo, el factor de protección solar (SPF) que se desee lograr. La cantidad específica de compuestos definidos en este documento necesaria para obtener un factor de protección solar deseado (SPF) se puede determinar por técnicas conocidas en la técnica. El filtro solar debe proporcionar una protección mínima contra los rayos UVA y/o UVB. Un mayor factor de protección solar (es decir, principalmente protección UVB) debe incluir un aumento en la protección de UVA también. En algunas implementaciones, la protección contra la radiación UVA y UVB estarían relacionadas.

10

15

20

25

30

35

40

45

50

55

La absorbancia de UV de un producto de filtro solar puede ser determinada *in vitro* en todo el espectro UV (290 nm-400 nm) mediante espectrofotometría de sustrato. Por ejemplo, una cantidad y espesor uniforme del filtro solar se aplica a un portaobjetos y se expone a la luz UV; se mide la absorbancia de la radiación UV según procedimientos conocidos en la técnica. La curva de absorbancia UV obtenida muestra la amplitud y la anchura de la protección proporcionada (desde 290 nm-400 nm) en todo el espectro de UV. La "amplitud" de la curva de absorbancia refleja el grado de protección. Cuanto mayor sea la amplitud de la curva, mayor será la absorbancia y mayor la protección a esa longitud de onda. Dentro de la parte UVB del espectro (290 nm-320 nm), esta amplitud se correlaciona con el SPF. Cuanto mayor sea la "amplitud" de la curva, se proporciona mayor protección frente a la radiación UV. En otras palabras, cuanto mayor sea la "anchura" de la curva, más amplio el espectro de protección solar proporcionado. La integración matemática de la absorbancia del espectro medida de 290 nm a 400 nm se realiza para calcular el área bajo la curva. La "longitud de onda crítica" (λc) es la longitud de onda por debajo de la cual reside el 90% del área bajo la curva de la absorbancia. Un valor de SPF de 2 generalmente absorbe 50% de UVB, un valor de SPF de 15 generalmente absorbe el 93,3% de UVB, SPF 30 absorbe el 96,7% de UVB y SPF 50 absorbe el 98% de UVB.

En la preparación de una composición de filtro solar, los compuestos definidos en este documento pueden utilizarse en combinación con otros agentes de absorción de UV conocidos en la técnica, tales como, pero no limitados a, agentes bloqueantes de UV orgánicos lipófilos o hidrófilos agentes de protección solar UV-A y/o UV-B.

Ejemplos de otros agentes absorbentes de UV que se pueden incluir en las formulaciones y/o composiciones de la presente invención incluyen, pero no se limitan a ácido aminobenzoico; padimato O; ácido sulfónico de fenilbencimidazol; cinoxato, dioxibenzona; oxibenzona; homosalato; antranilato de mentilo, octocrileno; metoxicinamato de octilo; salicilato de octilo; sulisobenzona; salicilato de trolamina; avobenzona; ecamsule; dióxido de titanio; 4-metilbencilideno alcanfor; tinosorb M; tinosorb S; neoheliopan AP; mexoril XL; benzofenona-9; uvinul T 150; uvinul A Plus; uasorb HEB; parsol SLX y 4-metoxicinamato de isopentenilo; 2-etilhexiléster del ácido 4dimetilamino benzoico; derivados del ácido salicílico, por ejemplo 2-etilhexil éster del ácido salicílico; derivados de la benzofenona, por ejemplo 2-hidroxi-4-metoxibenzofenona y su derivado de ácido 5-sulfónico; derivados de dibenzoilmetano, por ejemplo 1-(4-terc-butilfenil)-3-(4-metoxifenil)-propano-1,3-diona; difenilacrilatos, por ejemplo 2etilhexil-2-ciano-3,3-difenilacrilato y 3-(benzofuranil)-2-cianoacrilato; ácido 3-imidazol-4-ilacrilico y ésteres; derivados de benzofurano, tales como 2-(p-aminofenil) benzofurano; polímeros absorbentes de UV, tales como derivados de malonato de bencilideno; derivados del ácido cinámico, por ejemplo éster de 2-etilhexilo del ácido 4-metoxicinámico y éster isoamílico o derivados del ácido cinámico; derivados del alcanfor, por ejemplo 3-(4'-metil)benciliden-bornan-2ona, 3-benciliden-bornan-2-ona, polímero de N-[2 (y 4)-2-oxiborn-3-iliden-metil)-bencil]acrilamida, metilsulfato de 3-(4'trimetilammonio)-benciliden-bornan-2-ona, ácido 3,3'-(1,4-fenilendimetina)-bis(7,7-dimetil-2-oxo-biciclo[2,2,1]heptano-1-metanosulfónico) y sus sales, 3-(4'-sulfo)benciliden-bornan-2-ona y sus sales; metosulfato de camforbenzalconio; compuestos de hidroxifeniltriacina, por ejemplo 2-(4'-metoxifenil)-4,6-bis(2'-hidroxi-4'-n-octiloxifenil)-1,3,5-triazina; 2,4bis{[4-(3-(2-propiloxi)-2-hidroxi-propiloxi)-2-hidroxi]-fenil}-6-(4-metoxifenil)-1,3,5-triazina; 2,4-bis{[4-(2-etil-hexiloxi)-2-hidroxi]-fenil}-6-(4-metoxifenil)-1,3,5-triazina; 2,4-bis{[4-(2-etil-hexiloxi)-2-hidroxi]-fenil}-6-(4-metoxifenil)-1,4-bis{[4-(2-etil-hexiloxi)-2-hidroxi]-fenil}-6-(4-metoxifenil)-1,4-bis{[4-(2-etil-hexiloxi)-2-hidroxi]-fenil}-6-(4-metoxi)-6-(4-metoxi hidroxi]-fenil}-6-[4-(2-metoxietil-carboxil)-fenilamino]-1,3,5-triazina; 2,4-bis{[4-(tris(trimetilsililoxi-sililpropiloxi)-2hidroxi]-fenil}-6-(4-metoxifenil)-1,3,5-triazina; 2,4-bis{[4-(2"-metilpropeniloxi)-2-hidroxi]-fenil}-6-(4-metoxifenil)-1,3,5triazina; 2,4-bis{[4-(1',1',1',3',5',5',5'-heptametiltrisilil-2"-metil-propiloxi)-2-hidroxi]-fenil}-6-(4-metoxifenil)-1,3,5-triazina; 2,4-bis{[4-(3-(2-propiloxi)-2-hidroxi-propiloxi)-2-hidroxi]-fenil}-6-[4-etilcarboxi)-fenilamino]-1,3,5-triazina; compuestos de benzotriazol, por ejemplo 2,2'-metilen-bis(6-(2H-benzotriazol-2-il)-4-(1,1,3,3-tetrametilbutil)-fenol; derivados de trianilino-s-triazina, por ejemplo 2,4,6-trianilino-(p-carbo-2'-etil-1'-oxi)-1,3,5-triazina; ácido 2-fenilbenzimidazol-5sulfónico y sus sales; mentil-o-aminobenzoatos; filtros solares físicos recubiertos o no recubiertos, tales como dióxido de titanio, óxido de zinc, óxidos de hierro, mica, MnO, Fe₂O₃, Ce₂O₃, Al₂O₃, ZrO₂ (recubrimientos de la superficie: polimetilmetacrilato, meticona (metilhidrogenopolisiloxano), dimeticona, triisoestearato de isopropil titanio, jabones metálicos tales como estearato de magnesio, fosfato de perfluoroalcohol tal como fosfato de fluoroalcohol C9-15).

Ejemplos de agentes absorbentes de UVA incluyen, pero no se limitan a, avobenzona (Parsol 1789), bisdisulizol disódico (Neo Heliopan AP), dietilamino hidroxibenzoil benzoato de hexilo (Uvinul A Plus), ecamsule (Mexoryl SX) y antranilato de metilo.

Ejemplos de agentes bloqueadores de UVB incluyen, pero no se limitan a, ácido 4-aminobenzoico (PABA), cinoxato, etilhexiltriazona (Uvinul T 150), homosalato, alcanfor de 4-metilbencilideno (Parsol 5000), metoxicinamato de octilo

(octinoxato), salicilato de octilo (Octisalato), padimato O (Escalol 507), ácido sulfónico de fenilbencimidazol (Ensulizol), polisilicona-15 (Parsol SLX) y salicilato de trolamina.

Ejemplos de agentes que bloquean los rayos UVA y UVB incluyen, pero no se limitan a, bemotrizinol (Tinosorb S), 1-12 benzofenonas, ioxibenzona, trisiloxano de drometrizol (Mexoryl XL), iscotrizinol (Uvasorb HEB), octocrileno, oxibenzona (Eusolex 4360), sulisobenzona, híbrido (químico/físico): bisoctrizol (Tinosorb M), dióxido de titanio y óxido de zinc.

5

10

20

25

30

35

40

45

50

55

Además, las composiciones de filtro solar también pueden incluir adyuvantes y aditivos como conservantes, disolventes orgánicos, agentes de color, antioxidantes, estabilizadores, emolientes, siliconas, ácidos alfa-hidroxi, demulcentes, antiespumantes, agentes hidratantes, vitaminas, fragancias, espesantes iónicos o no iónicos, tensioactivos, rellenos, espesantes, secuestrantes, polímeros, propelentes, agentes alcalinizantes o acidificantes, opacificadores, compuestos grasos (por ejemplo, aceite, cera, alcoholes, ésteres, ácidos grasos), colorantes, o mezclas de los mismos o cualquier otro ingrediente que puede ser utilizado para la producción de composiciones de filtro solar.

Las composiciones de filtro solar de la actual invención pueden estar en forma de una solución acuosa, emulsiones (aceite en agua o agua en aceite), un vehículo hidroalcohólico, un bastoncillo, un ungüento, un gel, un aerosol (espumas, bombas de propulsión de aerosoles o similares).

En otra forma de realización de la invención presente, los compuestos definidos en el presente documento pueden formularse en productos cosméticos y/o productos de cuidado personal. Los compuestos pueden ser incorporados en formulaciones o composiciones de productos de cosmética y/o cuidado personal en una cantidad de aproximadamente 0,2% a aproximadamente 30% del peso de la formulación o la composición, más preferiblemente de aproximadamente 1% a aproximadamente 15% del peso de la formulación o la composición.

Los compuestos de la invención presente pueden incluirse en formulaciones utilizadas en la preparación de productos cosméticos como maquillajes, por ejemplo, en maquillaje de crema, preparados para el cuidado de los ojos, preparaciones de sombra de ojos, rimel, delineador de ojos, cremas de ojos o cremas de fijación para los ojos; preparaciones de cuidado de los labios, por ejemplo, barras de labios, brillo para los labios, lápices de contorno de labios, preparaciones para cuidado de las uñas, tal como barniz, eliminadores del barniz, endurecedores de uñas y eliminadores de la cutícula. Estos productos están formulados según métodos conocidos en la técnica.

Los compuestos de la invención presente pueden formularse también en productos de cuidado personal tales como en preparaciones para el lavado de la piel y de limpieza en forma jabones en forma de barra o líquidos, detergentes o pastas de lavado, preparaciones de baño, por ejemplo líquidas (baños de espuma, leches, preparaciones de ducha) o preparados para el baño sólidos, por ejemplo, cubos y sales de baño; preparaciones del cuidado de la piel, por ejemplo, emulsiones para la piel, emulsiones múltiples o aceites de la piel; preparaciones cosméticas para el cuidado personal, por ejemplo maquillaje facial en forma de cremas de día o cremas en polvo, polvo de la cara (suelto o prensado), preparaciones del cuidado de los pies, por ejemplo los baños de pies, polvos, cremas o bálsamos para los pies, desodorantes y antitranspirantes especiales o preparados para la eliminación de callos; preparaciones protectoras para la luz, como leches de sol, lociones, cremas o aceites, preparaciones de prebronceado o preparaciones para después del sol; preparaciones para el bronceado de la piel, por ejemplo cremas autobronceadoras; preparaciones para la despigmentación de la piel, por ejemplo, preparaciones para blanquear la piel o aclarar la piel; repelentes de insectos, por ejemplo, repelente de insectos en aceites, lociones, aerosoles o bastoncillos; desodorantes, como desodorantes en aerosoles, desodorantes en pulverizadores, geles desodorantes, barras o roll-on; antitranspirantes, por ejemplo, antitranspirantes en barra, cremas o roll-on; preparaciones para la limpieza y cuidado de piel manchada, detergentes sintéticos por ejemplo (sólidos o líquidos), preparaciones de peeling o exfoliantes o máscaras de peeling; preparaciones para la eliminación del vello, preparaciones de depilación en forma química (depilación), por ejemplo, polvos de eliminación del vello, preparaciones líquidas de eliminación del vello, preparaciones de eliminación del vello en forma de crema o pasta, preparaciones de eliminación del pelo en forma de gel o espumas de aerosol; preparaciones para afeitarse, por ejemplo jabón de afeitar, cremas de afeitar espumosas, cremas de afeitar no espumosas, espumas y geles, preparaciones para el preafeitado para el afeitado en seco, postafeitado o lociones postafeitado; preparaciones de fragancia, por ejemplo, fragancias, perfumes en aceite o perfumes en crema; preparaciones cosméticos de tratamiento del pelo, por ejemplo preparaciones para el lavado del cabello en forma de champús y acondicionadores, preparaciones de cuidado del cabello, por ejemplo, preparaciones de pretratamiento, tónicos para el pelo, cremas de peinado, geles de peinado, pomadas, enjuagues de cabello, paquetes de tratamiento, tratamientos intensivos del cabello, preparaciones de estructuración del cabello, por ejemplo, preparaciones de ondulación del pelo para ondas permanentes (onda caliente, onda suave, onda fría), preparaciones de alisado del pelo, preparaciones líquidas para peinado, espumas para el pelo, lacas de pelo, preparaciones para blanquear, por ejemplo soluciones de peróxido de hidrógeno, champús suaves, cremas decolorantes, polvos de blanquear, pastas o aceites para blanquear, tintes para el cabello temporales, semi-permanentes o permanentes, preparaciones que contienen tintes que se autooxidan o colorantes del cabello naturales, como la henna o manzanilla. Estos productos se formulan según métodos conocidos en la técnica.

Los compuestos tal como se definen en el presente documento pueden también incorporarse en una formulación que puede utilizarse para proteger el cabello (de los seres humanos o animales) contra daños fotoquímicos para prevenir cambios de matices de color, decoloración o daños de carácter mecánico.

Además de los compuestos definidos en este documento, la formulación cosmética puede comprender varios adyuvantes utilizados en este tipo de composición, tales como agentes tensoactivos, espesantes, polímeros, suavizantes, conservantes, estabilizadores de espuma, electrolitos, disolventes orgánicos, derivados de silicona, agentes antigrasa, tintes y/o pigmentos que colorean la composición misma o el pelo u otros ingredientes comúnmente usados para el cuidado del cabello.

Los compuestos de la invención presente también pueden ser incluidos en formulaciones farmacéuticas y/o composiciones farmacéuticas. Estas formulaciones y/o composiciones son preparadas según métodos conocidos en la técnica.

15

20

25

40

45

50

55

Ungüentos, pastas, cremas y geles que comprenden los compuestos de la invención pueden incluir uno o más vehículos, tales como, pero no limitado a, las grasas animales y vegetales, ceras, parafinas, almidón, tragacanto, derivados de la celulosa, glicoles de polietileno, siliconas, bentonita, sílice, talco y óxido de zinc o mezclas de estas sustancias. Los polvos y aerosoles pueden incluir portadores, tales como, pero no limitados a, la lactosa, talco, sílice, hidróxido de aluminio, silicato de calcio y polvo de poliamida o mezclas de estas sustancias, propelentes, tales como, pero no limitados a los clorofluorocarbonos, propano/butano o dimetil éter. Soluciones y emulsiones pueden incluir vehículos, tales como, pero no limitado a, disolventes, promotores de solubilidad y emulsionantes, por ejemplo aqua, etanol, isopropanol, carbonato de etilo, acetato de etilo, alcohol bencílico, benzoato de bencilo, propilenglicol, 1,3butilglicol, aceites, en particular aceite de semilla de algodón, aceite de cacahuete, aceite de germen de trigo, aceite de oliva, aceite de ricino y aceite de sésamo, ésteres de ácidos grasos de glicerol, glicoles de polietileno y ésteres de sorbitán de ácidos grasos o mezclas de estas sustancias. Los jabones pueden incluir vehículos, tales como pero no limitados a, sales de metales alcalinos de ácidos grasos, sales de monoésteres de ácidos grasos, hidrolizados de proteínas de ácidos grasos, isetionatos, lanolina, alcoholes grasos, aceites vegetales, extractos vegetales, glicerina, azúcares o mezclas de estas sustancias. Los aceites faciales y corporales pueden incluir sustancias portadoras tales como, pero no limitadas a, aceites sintéticos, tales como ésteres de ácidos grasos, alcoholes grasos, aceites de silicona, aceites naturales, tales como aceites vegetales y extractos vegetales aceitosos, aceites de parafina, aceites de lanolina o mezclas de estas sustancias.

Los compuestos de la invención también se pueden formular para administración tópica. El término "tópica" como se usa en el presente documento incluye cualquier vía de administración que permite a los compuestos situarse sobre la piel o los tejidos de la mucosa.

Las formulaciones y las composiciones de la invención presente también ofrecen protección contra procesos de envejecimiento de la piel y el estrés oxidativo de la piel, y contra daños causados por radicales libres, como se producen, por ejemplo, por radiación solar, calor o cualquier otra influencias.

Los compuestos de la invención, así como las formulaciones y las composiciones de la invención pueden usarse en la preparación y fabricación de medicamentos para la prevención de daños a la piel, tales como, pero no limitados a, quemaduras y eritemas causados por el sol.

La formulaciones cosméticas o farmacéuticas y/o las composiciones según la invención pueden también abarcar uno o más compuestos adicionales tales como pero no limitados a: alcoholes, polialcoholes, alcoholes grasos, ésteres de ácidos grasos, triglicéridos naturales o sintéticos que incluyen ésteres de glicerilo y derivados, ceras nacaradas, aceites de hidrocarburo, siliconas o siloxanos, aceites fluorados o perfluorados, emulsionantes, tensoactivos, polímeros, ingredientes activos desodorizantes, antioxidantes, agentes hidrotrópicos, agentes conservantes y agentes inhibidores de bacterias, perfumes, colorantes, conservantes, agentes bactericidas y bacteriostáticos, perfumes, tintes, pigmentos, espesantes, agentes hidratantes, agentes humectantes, grasas, aceites, ceras, polímeros, electrolitos, disolventes orgánicos, derivados de silicio, emolientes, emulsionantes o tensioactivos emulsionantes, tensioactivos, agentes dispersantes, antioxidantes, antiirritantes y agentes antiinflamatorios.

Ejemplos de emulsionantes que se incluyen en las formulaciones o composiciones de la presente invención incluyen, pero no se limitan a, glucósido de cocoilo, glucósido de cocoilo/alcohol cetearílico, glucósido de etilcocoilo, citrato de glucósido de coco disódico, glucósido de laurilo, sulfosuccinato de glicósido de coco disódico, glucósido de etil lauroilo, glucósido de etilmiristoilo, glucósido de etoxi de octildimeticona, glucósido de etiloleoilo, tartrato de coco-glucósido sódico, PVP butilado, alcohol cetílico, copolímero de acriloildimetiltaurato de sodio/acrilato de sodio, naftalato de dietilhexilo, oleato de sorbitano, sesquioleato de sorbitano, isoestearato de sorbitano, trioleato de sorbitano, poligliceril-3-diisostearato, éster de poliglicerol del ácido oleico/isosteárico, hexarricinolato de poligliceril-6, poligliceril-4, poligliceril-4-oleato/cocoato de propilenglicol de PEG 8, oleamida DEA, gliceril oleato fosfato de sodio, fosfatos de glicéridos vegetales hidrogenados, PVP butilado, alcohol cetílico, copolímero de acrilato de sodio/acriloildimetiltaurato de sodio, dietilhexil naftalato, estearoilglutamato de sodio como EUMULGIN® SG, N-estearoil L-glutamato de sodio, dioctildodecil estearoil glutamato, TEA-cocoil glutamato, TEA-lauril glutamato, TEA-estearoil glutamato, estearoil glutamato de sodio, of mezclas de los mismos.

Métodos de prevención o tratamiento de materiales biológicos de efectos nocivos solares son revelados en este documento. En particular, la invención proporciona un método para la prevención de efectos nocivos solares sobre un sujeto tal como un ser humano. Ejemplos de efectos nocivos solares incluyen pero no están limitados a, quemadura, inflamación, melanoma, melanoma maligno, daños en el ADN, daños del ojo, eritema e inmuno-supresión local o sistémica.

5

20

40

45

50

55

60

El método es para la prevención de los efectos nocivos de las radiaciones UV en un sujeto tal como un ser humano; incluye los pasos de la aplicación de una formulación y/o una composición que comprende uno o más de los compuestos de la invención sobre la piel del sujeto humano. El método también puede usarse para proteger la piel de los sujetos animales.

El término "tratamiento" de un sujeto, como se usa en el presente documento, a menos que se indique lo contrario, se refiere tanto a tratamientos terapéuticos como a medidas profilácticas y preventivas. Aquellos que necesitan tratamiento incluyen aquellos que ya tienen la enfermedad o trastorno o afección, así como aquellos en los que la enfermedad, trastorno o afección se debe prevenir. Los sujetos que necesitan tratamiento también son aquellos en los que ha ocurrido el trastorno, la enfermedad o la afección y ha dejado secuelas o cicatrices. El tratamiento también se refiere a la administración de una sustancia terapéutica eficaz para mejorar o paliar los síntomas asociados con una enfermedad, un trastorno o una afección para disminuir la gravedad o cura de la enfermedad, trastorno o afección, o para prevenir la aparición de la enfermedad, trastorno o afección.

Los materiales no biológicos, tales como, pero no limitados a, los artículos de fabricación, pueden ser impregnados con o pueden estar cubiertos con formulaciones y/o composiciones que comprenden los compuestos definidos en el presente documento. Ejemplos de tales materiales no biológicos incluyen, pero no están limitados a, ventanas y otros vidrios, plexiglás, polímeros transparentes, plásticos o productos similares, parabrisas de automóviles, paneles solares, gafas, artículos deportivos, textiles y telas. Las técnicas y el método para impregnar y/o recubrir las formulaciones y/o composiciones de la invención en artículos de fabricación son conocidos en la técnica.

Los compuestos definidos en el presente documento, pueden incorporarse en composiciones que son adecuadas para la aplicación sobre la superficie de materiales no biológicos, tales como artículos de fabricación. Tales composiciones incluyen, pero no se limitan a: revestimientos, pinturas, selladores, adhesivos, colorantes, composiciones para aplicación sobre tejidos, composiciones para aplicación sobre textiles o fibras, barnices, manchas, composiciones colorantes, composiciones de revestimiento ignífugas, adhesivos, lacas y revestimientos similares. Tales composiciones que comprenden los compuestos de la invención previenen el daño solar prematuro y el fotoblanqueo de la superficie de estos artículos de fabricación. Tales composiciones de esta invención se pueden preparar mezclando (o agitando mecánicamente) los compuestos definidos en el presente documento y cualquier componente opcional adicional, para formar una mezcla homogénea. Esto se puede lograr mediante cualquier método de mezclado conveniente conocido en la técnica, ejemplificado por una espátula, agitadores mecánicos, sistemas de mezclado en línea que contienen deflectores y/o cuchillas, mezcladores eléctricos en línea, homogeneizadores, un rodillo de tambor, un molino de tres rodillos, un mezclador de cuchillas sigma, un mezclador de masa de pan y un molino de dos rodillos.

Los compuestos de la invención pueden aplicarse a textiles o tejidos con el fin de proteger estos textiles o tejidos de la exposición a radiaciones UV que causan el envejecimiento de los textiles o tejidos y/o el debilitamiento de su estructura y resistencia. Las composiciones que comprenden los compuestos de la invención se pueden aplicar sobre los textiles o las telas. Alternativamente o en complemento, los textiles o tejidos pueden sumergirse parcial o totalmente en una solución que comprende los compuestos de la invención, así como otros componentes tales como los descritos en el presente documento. Los textiles o tejidos que han sido aplicados con los compuestos de la invención se denominan en el presente documento "textiles tratados" y "tejidos tratados". La resistencia de los textiles tratados o tejidos tratados a la exposición a radiaciones UV puede evaluarse determinando tales propiedades de los textiles tratados y tejidos tratados como, pero no limitadas a, la solidez del color y/o la resistencia a la rotura mediante el método de tira después de la exposición a UV. Las técnicas para la determinación de estas propiedades de un textil tratado o un tejido tratado son bien conocidas en la técnica.

Se describe en el presente documento un método de reducción de la degradación de productos químicos que son sensibles a la luz UV que comprende aplicar una formulación y/o una composición de la invención al producto químico. El producto químico es un herbicida, un pesticida, una auxina, una giberelina, ácido abscísico, una citoquinina, un derivado de un carotenoide, un compuesto polifenólico, un aminoácido de micosporina y/o un derivado de cualquiera de los anteriores (mezclas o preparaciones puras).

Los compuestos de la presente invención se pueden incorporar a un sustrato que constituye la formulación base para la fabricación de un material no biológico. Por ejemplo, los compuestos de la presente invención se pueden incorporar en un sustrato que constituye la formulación base de revestimientos líquidos o revestimientos en polvo, o la resina base de un artículo a fabricar usando procedimientos convencionales de composición, moldeo o extrusión de plástico. Los sustratos en los que pueden incorporarse los compuestos de la presente invención incluyen una amplia variedad de materiales de resina y plástico, por ejemplo, resinas de poliolefinas, polivinilaromáticos, acrílicos, policarbonatos, poliésteres, poliamidas, polimidas, poliarilatos, polisulfonas, polibutenos, polipropenos, epoxis, y de poli (haluro de vinilo) y, en general, cualquier resina que se sepa que es susceptible a la degradación cuando se expone a la radiación de luz ultravioleta. Naturalmente, la elección del compuesto de la presente invención a incorporar en dicho sustrato

debe realizarse de tal manera que, a las temperaturas para procesar las pinturas, revestimientos, acabados o artículos termoplásticos, los compuestos de la presente invención no experimenten una degradación sustancial o reaccionen do forma cruzada con cualquier otro ingrediente de la formulación. Ejemplos representativos, pero no limitantes, de materiales de resina polimérica específicos incluyen resinas de poliolefinas tales como polietileno y polipropileno y similares; resinas polivinilaromáticas tales como de poliestireno y de copolímeros y terpolímeros para esto, tales como de poli(estireno-acrilonitrito) y poli(estireno-butadienoacrilonitrilo) y similares; resinas acrílicas tales como poli(ácido acrílico), poli(ácido metacrílico), poli(acrilato de metilo), poli(metacrilato de metilo) y similares; resinas de policarbonato tales como las obtenidas ya sea mediante la fosgenación de monómeros dihidroxialifáticos y aromáticos tales como etilenglicol, propilenglicol, bisfenol A (es decir, 4,4'-isopropiliden-difenol) y similares, o mediante la transesterificación catalizada con base de bisfenol A con difenilcarbonato para producir policarbonato de bisfenol A; resinas de poliéster tales como poli(tereftalato de etileno), poli(tereftalato de butileno) y similares; resinas de poliamida tales como nilón-6, nilón-6,6 y similares; resinas de epoxi tales como poli(epiclorhidrina/bisfenol A) y similares, y ésteres de las mismas tales como los ésteres de resina de epoxi preparados mediante la esterificación de poli(epiclorhidrina/bisfenol A) con un ácido graso, ácido de colofonia, ácidos altos del aceite o mezclas de los mismos; y resinas fenólicas tales como las preparadas por reacción de formaldehído con fenol, resorcinol, cresol, xilenol, p-terc-butilfenol y similares.

En otras formas de realización, la presente invención proporciona métodos y técnicas para ensayar las formulaciones y/o composiciones de la invención para la protección contra radiaciones solares. Dichos métodos y técnicas incluyen, pero no están limitados a, la medición de la λ_{max} , la medición del SPF, la evaluación de la estabilidad del compuesto, la medición de la resistencia al agua y la medición de la fotosensibilidad de la formulación y/o composición.

D) Ejemplos

5

10

15

20

25

30

35

Las formas de realización de la invención presente se ilustran ahora por, pero en ninguna manera se limitan a, los siguientes ejemplos.

Ejemplo 1

Esquema sintético para la preparación del intermedio 2-bromo-5,5-dimetil-1,3-ciclohexanodiona:

Peso molecular: 140,18 Peso molecular: 219,08

En un matraz de fondo redondo de 250 ml durante 30 minutos se añadió una solución de bromo (28,5 g, 178,3 mmoles) en diclorometano (DCM) (20 ml) a una suspensión de dimedona (25 g, 178,3 mmoles) en DCM (200 ml) a 0° C. La suspensión se convirtió en una solución después de 5 minutos y en una suspensión después de 10 minutos, después se agitó a temperatura ambiente durante 18 horas. La suspensión entonces se filtró, se lavó con DCM (50 ml) y hexano (2 x 150 ml), y despué se secó al vacío durante 2 horas. El sólido se suspendió en agua (500 ml) y se calentó a 80° C durante 1 hora, se enfrió a temperatura ambiente, se filtró, se lavó con agua (2 x 100 ml) y se secó al vacío durante 2 horas y en estufa de vacío a 60° C durante 20 horas.

Ejemplo 2

Esquema sintético para la preparación del intermedio ácido (R)-6,6-dimetil-8-oxo-3,4,5,6,7,8-hexahidro-2H-benzo[b][1,4]tiazina-3-carboxílico:

Peso molecular: 219,08 Peso molecular: 581,54

En un matraz de fondo redondo de 100 ml se añadió L-cisteína (1,21 g, 10,04 mmoles) a una solución de 2-bromo-5,5-dimetil-ciclohexano-1,3-diona (2 g, 9,13 mmoles) y piridina (1,47 ml, 18,25 mmoles) en MeOH (30 ml). La suspensión se agitó a temperatura ambiente durante 18 horas y después se concentró. Se añadió MeOH (20 ml) para

obtener un triturado, luego se filtró y se lavó con MeOH (2 x 5 ml). El filtrado que contenía el producto se concentró. El concentrado filtrado se mezcló azeotrópicamente con acetato de etilo (2 x 25 ml). Se añadió acetato de etilo (20 ml) y se trituró durante 30 minutos, después se filtró, se lavó con acetato de etilo (2 x 15 ml) y se secó al vacío durante 1 hora.

5 Eiemplo 3

10

15

20

25

30

Esquema sintético para la preparación del intermedio 2-bromociclohexano-1,3-diona:

A una suspensión de ciclohexano-1,3-diona (25 g, 0,216 moles) en DCM (70 ml) a 0° C (baño de hielo) y en atmósfera de aire, se añadió lentamente una solución de bromo (34,6 g, 0,216 moles) en DCM (20 ml) durante un período de 30 minutos. Se permitió que la temperatura aumentara a temperatura ambiente y se añadió 50 ml de DCM para crear una mezcla de reacción que era pastosa. La mezcla de reacción se agitó a temperatura ambiente durante 4 horas y el sólido se recogió por filtración, se lavó sucesivamente con DCM (50 ml) y hexanos (3 x 200 ml) y se secó al aire. El sólido se suspendió en agua (500 ml) y la suspensión se agitó y se calentó a 80° C durante 1 hora, luego se dejó a temperatura ambiente durante la noche. Se recogió el sólido por filtración, se lavó con agua (1000 ml), y se secó al aire y al vacío a 55° C durante un día para dar el compuesto deseado (30,53 g, 0,160 moles, 74% de rendimiento). Caracterización: 1 H RMN (400 MHz, CDCl₃): 5 0 (ppm) = 2,62 (t, 5 1 = 6,5 Hz, 4H), 2,62 (quint, 5 2 = 6,5 Hz, 2H). MS (m/z): 5 3 190,9-192,9 [M+H] 4 7.

Eiemplo 4

Esquema sintético para la preparación del intermedio 2-((3-oxociclohex-1-en-1-il)amino)acetato de metilo:

Se calentó una suspensión agitada de ciclohexano-1,3-diona (5 g, 43,25 mmoles) e hidrocloruro del éster metílico de glicina (7,42 g, 58,51 mmoles) en tolueno (100 ml) bajo atmósfera de nitrógeno a 90° C durante 5 horas y y después se dejó a temperatura ambiente. La fase líquida (principalmente 3-metoxiciclohex-2-enona por MS) se eliminó por decantación, el residuo pegajoso (principalmente 2-(3-oxociclohex-1-enilamino)-acetato de metilo por MS) se disolvió en agua y el pH se ajustó a 7-8 con la adición de una solución saturada acuosa de bicarbonato de sodio y se extrajo con DCM (x7). La capa orgánica combinada (DCM) se secó sobre sulfato de magnesio anhidro, se filtró y se concentró. El residuo crudo se purificó por Biotage (cartucho de Snap 100 g, eluido con MeOH/DCM: 1/99 a 10/90, más de 30 volúmenes de columna, longitud de onda de detección 254 nm). Las fracciones deseadas se combinaron, se concentraron y secaron al vacío para producir el producto deseado. Caracterización: 1 H RMN (400 MHz, DMSO- d_6): δ (ppm) = 7,36-7,20 (m, 1H), 4,67 (s, 1H), 3,87 (d, J = 5,9 Hz, 2H), 3,66 (s, 3H), 2,35 (t, J = 6,2 Hz, 2H), 2,07 (t, J = 6,5 Hz, 2H), 1,79 quint, J = 6,2 Hz, 2H), MS (m/z): 183,96 [M+H] $^+$.

Ejemplo 5

Esquema sintético para la preparación del intermedio ácido (*R*)-8-oxo-3,4,5,6,7,8-hexahidro-2*H*-benzo[*b*][1,4]tiazina-3-carboxílico:

$$\begin{array}{c} & & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & \\ & & \\ &$$

35

Se añadió lentamente piridina (847 l, 10,47 mmoles) a una suspensión agitada de 2-bromo-ciclohexano-1,3-diona (1 g, 5,24 mmoles) y L-cisteína (698 mg, 5,76 mmoles) en MeOH anhidro (20 ml) a temperatura ambiente y bajo atmósfera de nitrógeno. La mezcla de reacción se calentó a 60° C durante 1 hora (conversión completa por MS), luego se agitó a temperatura ambiente durante la noche, se concentró, se diluyó con agua y se agitó y ultrasonicó durante un tiempo. El sólido (A) se recogió por filtración, se lavó con agua, y se secó al aire y al vacío. El sólido (A) (177 mg) fue soluble en TFA. El líquido madre se concentró y trituró y sonicó en un mínimo de MeOH. El sólido (B) se recogió por filtración, se lavó con MeOH, y se secó al aire y al vacío para producir el compuesto deseado (580 mg, 2,71 mmoles, 51% de rendimiento) como un sólido de color marfil. Caracterización: 1 H RMN (400 MHz, DMSO- d_6): δ (ppm) = 13,15-12,80 (m, 1H), 7,57 (d, J = 4,3 Hz, 1H), 4,38 (q, J = 4,0 Hz, 1H), 2,99 (dd, J = 12,9, 4,3 Hz, 1H), 2,80 (dd, J = 12,9, 3,3 Hz, 1H), 2,45 (t, J = 6,2 Hz, 2H), 2,25-2,17 (m, 2H), 1,87-1,76 (m, 2H). MS (m/z): 213,9 \cdot [M+H] $^+$.

Eiemplo 6

5

10

Esquema sintético para la preparación del producto intermedio 8-oxo-3,4,5,6,7,8-hexahidro-2*H*-benzo[*b*][1,4]oxazina-3–carboxilato de metilo:

Se añadió a una suspensión agitada de hidruro de sodio (1,466 g, 36,645 mmoles, en aceite mineral) en THF anhidro (30 ml) a 0° C y bajo atmósfera de nitrógeno, hidrocloruro de éster metílico de serina en porciones (1,792 g, 11,52 mmoles) durante 10 minutos. Después de 10 minutos, se añadió una suspensión de 2-bromociclohexano-1,3-diona (2 g, 10,47 mmoles) en THF anhidro (20 ml). Se dejó que la temperatura subiera a temperatura ambiente durante 3 horas, luego se añadió DMF anhidro (10 ml) 2 horas después. La mezcla de reacción se agitó a temperatura ambiente durante la noche, se apagó por la adición de agua, HCl 1N (pH ~ 1) y se extrajo con acetato de etilo Después de la separación, la capa orgánica fue sucesivamente lavada con agua (x3) y salmuera, secada sobre sulfato de magnesio anhidro, filtrada y concentrada para producir el material de partida sin reaccionar contaminado con el aceite mineral. Caracterización: ¹H RMN (400 MHz, DMSO-d₆): δ (ppm) = MS (m/z); [M+H][†]

Ejemplo 7

30

35

Esquema sintético para la preparación de los productos intermedios (*R*)-8-oxo-3,4,5,6,7,8-hexahidro-2*H*-benzo[*b*][1,4]tiazina-3-carboxilato de metilo, (3*R*)-8-oxo-3,4,5,6,7,8-hexahidro-2*H*-benzo[*b*][1,4]tiazina-3-carboxilato de metilo y 1-óxido y 2-bromo-3-metoxiciclohex-2-enona:

Se agitó una solución de 2-bromociclohexano-1,3-diona (3 g, 15,71 mmoles) y L-cisteína (3,07 g, 17,89 mmoles) en MeOH anhidro (50 ml) a temperatura ambiente durante 1 hora (transformación completa en 2-bromo-3-metoxiciclohex2-enona por MS), luego se añadió lentamente piridina (2,54 ml, 31,41 mmoles). La mezcla de reacción se agitó a temperatura ambiente durante la noche (reacción no completa por MS, formación del peso molecular deseado + oxidación). Se añadió 500 mg de hidrocloruro de éster metílico de L-cisteína y la mezcla de reacción se agitó a temperatura ambiente durante la noche (más oxidación por MS). La mezcla de reacción se concentró, se diluyó con agua y se sacudió y ultrasonicó durante un tiempo. El sólido A se recogió por filtración, se enjuagó con agua, se secó al aire (principalmente piridina y 2-bromo-3-metoxiciclohex-2-enona por MS). El líquido madre se basificó con una solución acuosa saturada de bicarbonato de sodio (pH \sim 9) y se extrajo con acetato de etilo. La capa orgánica se lavó sucesivamente con solución de NaHCO $_3$ saturada, solución de NH $_4$ Cl saturada, agua y salmuera, se secó sobre sulfato

de magnesio anhidro, se filtró y se concentró. El residuo crudo se purificó por Biotage (cartucho de SiliaFlash 80 g, se eluyó con MeOH/DCM: 0/100 a 05/95 más de 30 volúmenes de columna). Las fracciones deseadas se combinaron, se concentraron y se secaron bajo alto vacío para producir 2-bromo-3-metoxiciclohex-2-enona (682 mg 3,33 mmoles, 21% de rendimiento). Caracterización: 1 H RMN (400 MHz, DMSO- d_6): δ (ppm) = 3,93 (s, 3H), 2,80 (t, J = 6,2 Hz, 2H), 2,44-2,37 (m, 2H), 1,96-1,87 (m, 2H). MS (m/z): 204,8-206,8 [M+H] $^{+}$.

Ejemplo 8

Ejemplo 9

30

35

5

Esquema sintético para la preparación de los productos intermedios 3-((4-metoxifenil)amino)-5,5-dimetilciclohex-2-enona y (*E*)-4-metoxi-*N*-(3-((4-metoxifenil)amino)-5,5-dimetilciclohex-2-en-1-ilideno)anilina:

10 Se añadió lentamente a una solución agitada de 3-metoxi-5,5-dimetilciclohex-2-enona (1 g, 4,73 mmoles) en DCM anhidro (30 ml) a 0° C y bajo atmósfera de nitrógeno, cloruro de oxalilo (601 μl, 7,10 mmoles) y DMF anhidro (3 gotas). Después de 50 minutos (conversión casi completa por CCF), se añadió más cloruro de oxalilo (50 µl). Después de 20 minutos, la mezcla de reacción se concentró, se disolvió en DCM anhidro (30 minutos), se enfrió a 0° C y se añadieron 4-metoxianilina (612 mg, 4,97 mmoles) y trietilamina (1,98 ml, 14,20 mmoles), respectivamente. La mezcla de reacción se agitó a temperatura ambiente durante la noche, se concentró, se diluyó con etanol (20 ml) y se agitó otra vez 15 durante la noche. El sólido fue recogido por filtración, lavado con etanol y secado al aire [3(4-metoxifenilamino)-5.5dimetilciclohex-2-enona estaba presente en el líquido madre por MS]. El residuo crudo se purificó por Biotage (cartucho de Snap 25 q, eluido con MeOH/DCM: 5/95 a 20/80, más de 30 volúmenes de columna). Las fracciones deseadas se combinaron, se concentraron, se trituraron en un mínimo de DCM, se filtraron, se enjuagaron con DCM, se secaron al 20 aire y se secaron a bajo vacío para proporcionar (E)-N,N'-(5,5-dimetilciclohex-1-en-1-il-3-ilideno)bis(4-metoxianilina) (198 mg, 0,51 mmoles, 7,9% de rendimiento, sal de ácido clorhídrico). Caracterización: 1H RMN (400 MHz, DMSO d_6): δ (ppm) = 11,40-10,65 (m, 2H), sistema de AB (δ_A = 7,19, δ_B = 7,01, J_{AB} = 8,2 Hz, 8H), 5,90-5,44 (m, 1H) 3,76 (s, 6H), 2,60 (s ancho, 4H), 1,08 (s ancho, 6H). MS (m/z): 351,15 [M+H]* HPLC: > 97% UV: $\lambda_{\text{max}} \sim 345$ nm (MeOH/agua).

25 Esquema sintético para la preparación del producto intermedio 2-((3-oxociclohex-1-en-1-il)amino)acetato de metilo:

$$O$$
 H_2SO_4
 O
 $MeOH$
 $T.a. a reflujo$

Se añadió a una suspensión agitada del ácido 2-((3-oxociclohex-1-en-1-il)amino)acético (1,51 g, 8,93 mmoles) en MeOH (30 ml) bajo atmósfera de nitrógeno, ácido sulfúrico concentrado (0,523 ml, 9,82 mmoles). La mezcla de reacción se convirtió en una solución, y después de 30 minutos se calentó bajo reflujo durante 4 horas y después se dejó a temperatura ambiente. La mezcla de reacción se concentró, se neutralizó con una solución acuosa saturada de bicarbonato de sodio (pH 8-9) y se particionó con acetato de etilo. Después de la separación, la capa orgánica se lavó sucesivamente con solución de $NaHCO_3$ saturada (x2), agua y salmuera. La capa acuosa se extrajo con diclorometano (x6) y la capa combinada orgánica se secó sobre sulfato de magnesio anhidro, se filtró y se concentró. El residuo crudo se purificó por Biotage (cartucho de Snap 50 g, se eluyó con MeOH/DCM: 0/100 a 03/97 más de 15 volúmenes de columna, después 3/97 a 10/90, más de 20 volúmenes de columna). Las fracciones deseadas se combinaron, se concentraron y se secaron al vacío para producir el producto deseado (260 mg, 200, 200 mg, 200, 200 mg, 200

Ejemplo 10

Esquema sintético para la preparación del intermedio 2-(bencil(2-oxopropil)amino)acetato de etilo:

Se añadió a un matraz de fondo redondo de 500 ml, cloroacetona (12,97 ml, 163 mmoles) a una suspensión del éster etílico de N-bencilglicina (30 g, 155 mmoles) y NaHCO $_3$ (14,34 g, 170 mmoles) en THF (333 ml)/agua (21 ml) a 50° C. La suspensión se calentó a 50° C durante 4 horas. Se añadió cloroacetona (0,5 equivalentes, 0,65 ml) y NaHCO $_3$ (1,1 equivalentes, 1,43 g) y la solución se calentó a 50° C durante 18 horas y luego se concentró. Se añadió acetato de etilo (100 ml) y agua (100 ml) y las capas se separaron. Una extracción se realizó con acetato de etilo (2 x 50 ml), agua (50 ml), salmuera (50 ml), luego se secó sobre Na $_2$ SO $_4$ y se concentró. 1H RMN mostró la relación de SM/producto de 1/1.

Ejemplo 11

5

10

15

20

25

30

35

Esquema sintético para la preparación del producto intermedio ácido (*E*)-2-((3-((4-metoxifenil)imino)ciclohex-1-en-1-il)amino)acético:

Se añadió lentamente a una solución agitada de 2-((3-oxociclohex-1-en-1-il)amino)acetato de metilo (255 mg, 1,39 mmoles) en DCM anhidro (20 ml) a 0° C y bajo atmósfera de nitrógeno, cloruro de oxalilo (177 µl, 2,09 mmoles) y DMF anhidro (3 gotas). Después de 1 hora, la mezcla de reacción se concentró, se enfrió a 0° C, se disolvió en isopropanol (15 ml), y se añadió una solución de 4-metoxianilina (171 mg, 1,39 mmoles) en isopropanol (5 ml). La mezcla de reacción se agitó a 0° C durante 15 minutos, a temperatura ambiente durante 3 horas, se concentró y se repartió entre acetato de etilo y aqua más algo de solución de NaHCO₃ saturada. Después de la separación, la capa orgánica se lavó sucesivamente con solución de NaHCO₃ saturada, aqua (x2) y salmuera. El producto deseado permaneció en la fase acuosa. La capa acuosa (pH ~ 9) se extrajo con diclorometano (x9), y la capa orgánica combinada (sólo DCM) se concentró. La capa acuosa se concentró, se suspendió en MeOH, se filtró, se combinó con el residuo crudo (de DCM) y se concentró. El residuo crudo fue purificado por Biotage (cartucho de fase reversa C18-Snap 30 g, se eluyó con MeOH/agua: 5/95 a 95/05 más de 50 volúmenes de columna, 254 nm para la detección de longitud de onda). La hidrólisis de los ésteres metílicos se produjo parcialmente durante la purificación. Las fracciones deseadas se combinaron, se concentraron a la mitad a 40° C, se trataron con NaOH 1N (10 ml), se concentraron a 40° C, se suspendieron en MeOH, se filtraron, se concentraron, y el residuo crudo se purificó por Biotage (cartucho de fase reversa C18-Snap 30 g, eluído con MeOH/agua: 5/95 a 95/05 más de 50 volúmenes de columna, 320 nm para la detección de longitud de onda). Las fracciones deseadas se combinaron, se concentraron y se secaron a bajo vacío para producir el producto deseado (114 mg, 0,416 mmoles, 30% de rendimiento en tres pasos) como un polvo amarillento/marrón claro. Caracterización: ¹H RMN (400 MHz, CDCl₃): δ (ppm) = mezcla de tautómeros y/o isómeros, un H falta, 7,14-6,70 (m, 4H) 5,80-5,00 (2 m, 1H), 3,86-3,30 (m, 6H), 2,80-2,10 (m, 4H), 1,93-1,54 (m, 2H). MS (m/z): 275,05 [M+H]* HPLC: > 98% UV: $\lambda_{max} \sim 318$ nm (MeOH/agua ambos con 0,1% de ácido fórmico); Intervalo de 280 a 380 nm.

Ejemplo 12

Esquema sintético para la preparación de los intermedios 2-((5,5-dimetil-3-oxociclohex-1-en-1-il)amino)acetato de metilo y 3-metoxi-5,5-dimetilciclohex-2-enona:

$$\begin{array}{c} & & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\$$

Se calentó una solución agitada de dimedona (5 g, 35,67 mmoles) y del hidrocloruro de éster metílico de glicina (4,926 g, 39,24 mmoles) en metanol (50 ml) bajo atmósfera de nitrógeno a 60-65° C durante la noche, luego se añadió más hidrocloruro de éster metílico de glicina (4,926 g, 39,24 mmoles). La mezcla de reacción se calentó a 70° C durante algunas horas, se concentró, se diluyó con agua, se guardó en el congelador durante el fin de semana, luego se trajo a temperatura abiente y se diluyó con acetato de etilo. Después de la separación, la capa orgánica sucesivamente se lavó con agua, una solución acuosa saturada de bicarbonato de sodio y salmuera. La capa acuosa se extrajo una vez con acetato de etilo y se lavó luego con agua y salmuera. La capa orgánica combinada se secó sobre sulfato de magnesio anhidro, se filtró y se concentró. El producto crudo (3-metoxi-5,5-dimetilciclohex-2-enona, 4,581 g) se utilizó en el paso siguiente sin ningún tipo de purificación adicional. Caracterización: 1 H RMN (400 MHz, DMSO- d_6): δ (ppm) = 5,31 (s, 1H), 3,67 (s, 3H), 2,28 (s, 2H), 2,11 (s, 2H), 0,97 (s, 6H). MS (m/z): 154,93 [M+H]* y 211,97 (trazas).

Ejemplo 13

5

10

20

15 Esquema sintético para la preparación del intermedio (*R*)6,6-dimetil-8-oxo-3,4,5,6,7,8-hexahidro-2*H*-benzo[*b*][1,4]tiazina-3-carboxilato de etilo:

Peso molecular 219,08

Peso molecular 674,11

Se añadió a un matraz de fondo redondo de 500 ml con una solución de 2-bromo-5,5-dimetil-ciclohexano-1,3-diona (11,23 g, 11,23 mmoles) y piridina (12,43 ml, 153,7 mmoles) en MeOH (170 ml), el hidrocloruro del éster etílico de L-cisteína (10,47 g, 56,38 mmoles). La solución se agitó a temperatura ambiente durante 2,5 días y se concentró. Se añadió acetato de etilo (100 ml), agua (100 ml) y ácido clorhídrico 1N (75 ml). Después se separaron las capas. La extracción se realizó con acetato de etilo (2 x 100 ml), salmuera (50 ml), la solución se secó sobre NaSO4 y después se concentró.

Ejemplo 14

Esquema sintético para la preparación del intermedio (R)-8-cloro-6,6-dimetil-3,5,6,7-tetrahidro-2*H*-benzo[*b*][1,4]tiazina-3-carboxilato de etilo:

A un matraz de fondo redondo de 100 ml con una solución de (R)-6,6-dimetil-8-oxo-3,4,5,6,7,8-hexahidro-2H-benzo[b][1,4]tiazina-3-carboxilato de etilo (11,9 g, 44,17 mmoles) en (DCM 100 ml), se añadió (COCl) $_2$ (4,11 ml, 48,59 mmoles). Después de enfriar a -78° C, se añadió DMF (2 gotas) a la solución a -78° C. Después de 1 hora a -78° C, la solución se calentó a 0° C durante 1 hora y se agitó a 0° C durante 2 horas. Se añadió agua (100 ml) y se separaron las capas. La extracción se realizó con DCM (2 x 50 ml), NaHCO $_3$ (50 ml), y salmuera (50 ml), la solución se secó sobre Na $_2$ SO $_4$ y se concentró. El residuo se purificó mediante Biotage (0 a 30% de acetato de etilo en hexano, más de 30 volúmenes de columna; columna de 100 g).

Ejemplo 15 de la invención

5

10

15

25

Esquema sintético para la preparación del intermedio (R)-8-((4-metoxifenil)amino)-6,6-dimetil-3,5,6,7-tetrahidro-2*H*-benzo[*b*][1,4]tiazina-3-carboxilato de etilo:

Peso molecular 123,15 NH2 NH2 NH2 NH2 NHO NH Peso molecular 287,81 Peso molecular 374,50 50

Se añadió a una solución de (R)-8-cloro-6,6-dimetil-3,5,6,7-tetrahidro-2H-benzo[b][1,4]tiazina-3-carboxilato de etilo (1,5 g, 5,21 mmoles) en EtOH (50 ml) en un matraz de fondo redondo de 250 ml, p-anisidina (673 mg, 5,47 mmoles). La solución se agitó a temperatura ambiente durante 20 horas y se concentró. Se añadió DCM (100 ml), agua (100 ml) y NaHCO₃ (50 ml), y se separaron las capas. Se extrajo con DCM (2 x 100 ml), se secó sobre Na₂SO₄ y se concentró. El residuo se purificó mediante Biotage (0% a 5% de MeOH en DCM, más de 20 volúmenes de columna; columna de 100 g).

Ejemplo 16 de la invención

Esquema sintético para la preparación del ácido intermedio (*R*)-8-((4-metoxifenil)amino)-6,6-dimetil-3,5,6,7-tetrahidro-2*H*-benzo[*b*][1,4]tiazina-3-carboxílico:

Se añadió a una solución de (R,E)-8-((4-metoxifenil)imino)-6,6-dimetil-3,4,5,6,7,8-hexahidro-2*H*-benzo[*b*][1,4]tiazina-3-carboxilato de etilo (0,5 g, 1,73 mmoles) en una mezcla de MeOH (20 ml)/THF (20 ml) en un matraz de fondo redondo de 250 ml, NaOH 1M (10 ml, 10 mmoles). La solución se agitó a temperatura ambiente durante 1 hora y se concentró. Se añadió agua (40 ml) y ácido clorhídrico 1M (\sim 30 ml) a pH 7, y se concentró. Se hizo una mezcla azeotrópica con EtOH (2 x 40 ml). Se trituró en EtOH (30 ml) durante 10 minutos, se filtró, y se lavó con EtOH(2 x 10 ml). Se descartó un sólido blanco, sal. El filtrado se concentró. El residuo se purificó mediante Biotage (20 a 95% de MeOH en H_2O , más de 60 volúmenes de columna; columna de 30 g KP-C18-HS).

Ejemplo 17

30 Esquema sintético para la preparación del intermedio ácido 2-((3-oxociclohex-1-en-1-il)amino)acético:

Peso molecular 75,07

Molecular Weight:
$$75.07$$
 $O \longrightarrow O \longrightarrow O$
 $O \longrightarrow O \longrightarrow O$

Peso molecular 112,13

 $O \longrightarrow O \longrightarrow O$
 $O \longrightarrow O \longrightarrow O$

Peso molecular 169,18

A una suspensión de 1,3-ciclohexanodiona (3,10 g, 27,64 mmoles) en MeOH (200 ml) en un matraz de fondo redondo de 500 ml se añadió glicina (2,28 g, 30,41 mmoles)). La suspensión se calentó a 60° C durante 19 horas. Después de enfriar a temperatura ambiente, la suspensión se concentró y trituró en MeOH (40 ml) durante 1 hora, se filtró, se lavó con MeOH (2 x 10 ml) y se secó bajo vacío durante 4 horas resultando en 3,56 g de un sólido amarillo claro, soluble en agua, insoluble en acetona, MeOH y ligeramente soluble en DMSO.

Ejemplo 18

Esquema sintético para la preparación del intermedio 3-((4-metoxifenil)amino)ciclohex-2-enona:

A una suspensión de ácido 2-((3-oxociclohex-1-en-1-il)amino)acético (1,00 g, 5,91 mmoles) en tolueno (100 ml) en un matraz de fondo redondo de 500 ml, se añadió p-anisidina (800 mg, 6,50 mmoles). La suspensión se calentó a reflujo con un aparato de dean stark durante 19 horas. Después de enfriar a temperatura ambiente, la suspensión se filtró, se lavó con tolueno (2 x 10 ml) y se secó al vacío durante 4 horas.

Ejemplo 19

A una suspensión de ácido 2-((3-oxociclohex-1-en-1-il)amino)acético (1,00 g, 5,91 mmoles) y p-TSA.H2O (1,12 g, 5,91 mmoles) en un matraz de fondo redondo de 500 ml, se añadió p-anisidina (800 mg, 6,50 mmoles). La suspensión se calentó a reflujo durante 1 hora. Después de enfriar a temperatura ambiente, se añadió DCM (50 ml), agua (100 ml) y NH₄Cl (25 ml). Se separaron las capas resultantes. Se realizó una extracción con DCM (2 x 50 ml). La parte extraída se secó sobre Na₂SO₄ y se concentró. El residuo se purificó mediante Biotage (0 a 10% de MeOH en DCM, más de 20 volúmenes de columna; columna de 25 g).

Ejemplo 20

Esquema sintético para la preparación de (R)-6,6-dimetil-8-oxo-3,4,5,6,7,8-hexahidro-2H-benzo[b][1,4]tiazina-3-carboxilato de etilo:

A una mezcla de dimedona (43,82 g, 1,0 equivalente) en 392 ml de AcOH (14 vol.) se le añadió mediante goteo bromo (31,96 g, 1,0 equivalente) a 20 a 40° C. Un sólido precipitó durante la adición del bromo. Después de la adición, la suspensión resultante se mantuvo a ~30° C durante otras ~4 horas hasta que no hubo dimedona restante. Se filtró la suspensión por succión, la torta se lavó dos veces con 140 ml de MTBE (2 × 5 vol), luego la torta se recogió y se secó por debajo de 50° C en la estufa de vacío durante ~8 horas para dar 35,1 g de 2-bromo-5,5-dimetil-ciclohexano-1,3diona como un sólido blanco. El rendimiento aislado fue de 80,1%, la pureza fue de 97,4%. A la solución agitada de 2-bromo-5,5-dimetil-ciclohexano-1,3-diona (43,82 g, 1,0 equivalente) y el éster etílico de L-cisteína (32,83 g, 1,1 equivalentes) en 350 ml de THF (8 vol.), se añadió piridina (31,64 g, 2,0 equivalentes) en una porción. Después de la adición, la mezcla de reacción se puso a reflujo (65~70° C) bajo N₂ durante ~4 horas. La mezcla de reacción se enfrió y se concentró a sequedad. El residuo se diluyó con metanol (131 ml, 3 vol.) y la solución se virtió en aqua fría (394 ml, 9 vol.) con agitación. La suspensión resultante se mantuvo à 20~30° C durante 1 hora. La suspensión obtenida se filtró por succión, la torta se recogió y se volvió a disolver en 53 ml de acetato de etilo (53 ml) a 70~80° C. La solución se enfrió a 0~10° C y se mantuvo a esta temperatura durante otra hora. La suspensión se filtró por succión, la torta se lavó con 10 ml de acetato de etilo frío (0,2 vol.). La torta se recogió y se secó por debajo de 45° C en la estufa al vacío durante al menos 4 horas para dar (R)-6,6-dimetil-8-oxo-3,4,5,6,7,8-hexahidro-2H- benzo[b][1,4]tiazina-3-carboxilato de etilo.

Eiemplo 21

5

10

15

20

$$\begin{array}{c} OH \\ NO_2 \\ \hline \\ Br \end{array} \begin{array}{c} OH \\ NO_2 \\ \hline \\ Pd\text{-}C/H_2 \end{array} \begin{array}{c} OH \\ NH_2 \\ \hline \end{array}$$

A una solución de 5-bromo-2-nitrofenol en dietilamina se añadió dióxido de cobre y N-metilpiridina (1 equivalente), y la mezcla se calentó a 110° C durante 20 horas; la elaboración y purificación por cromatografía en columna dio 5-(dietilamino)-2-nitrofenol con 30% de rendimiento. Después se realizó la reducción del 5-(dietilamino)-2-nitrofenol usando hidrógeno sobre Pd/C en etanol para dar en rendimiento cuantitativo 2-amino-5-(dietilamino)fenol.

25 Ejemplo 22 de la invención

Esquema de síntesis para el compuesto de fórmula IE2:

CI
$$\rightarrow$$
 OF1 \rightarrow NH2 \rightarrow EtOH \rightarrow HC1

Se enfrió una mezcla de (R)-6,6-dimetil-8-oxo-3,4,5,6,7,8-hexahidro-2H-benzo[b][1,4]tiazina-3-carboxilato de etilo y 3 gotas de DMF en diclorometano (11 ml, 20 volúmenes) a -10~0° C. Se añadió cloruro de oxalilo (0,51 g, 2,0 equivalentes) mediante goteo a la mezcla a de -10~0° C. La mezcla se mantuvo a -10~0° C durante 1 hora con agitación. La solución se concentró a presión reducida para dar (R)-8-cloro-6,6-dimetil-3,5,6,7-tetrahidro-2H-benzo[b][1,4]tiazina-3-carboxilato de etilo. El residuo se diluyó con etanol (11 ml, 20 vol.), y se añadió anilina (0,37 g, 2,0 equivalentes) a la solución de 8-cloro-6,6-dimetil-3,5,6,7-tetrahidro-2H-benzo[b][1,4]tiazina-3-carboxilato de etilo. La mezcla resultante se mantuvo a 20~30° C durante 20 horas con agitación. La solución se concentró a 40~50° C bajo presión reducida, el residuo se purificó por cromatografía de columna (fase móvil: DCM/MeOH = 100/1~20/1) para dar (E)-6,6-dimetil-8-(fenilimino)-3,4,5,6,7,8-hexahidro-2H-benzo[b][1,4]tiazina-3-carboxilato de etilo. Se añadió a una mezcla del compuesto resultante (0,4 g, 1,0 equivalente) en THF (4 ml) y etanol (4 ml, 3 vol), 3,6 ml de NaOH acuoso 1N con agitación. La mezcla se mantuvo a 20~30° C durante 1~2 horas. La mezcla se neutralizó con HCl acuoso 1N a pH = ~7, y la mezcla se concentró a presión reducida. El residuo se purificó por cromatografía de columna (fase móvil: DCM/MeOH = 50/1~5/1) para dar el ácido (E)-6,6-dimetil-8-(fenilimino)-3,4,5,6,7,8-hexahidro-2H-

20 Ejemplo 23

5

10

15

Esquema de síntesis para el compuesto de fórmula IF₁:

benzo[b][1,4]tiazina-3-carboxílico.

Se enfrió una mezcla de (R)-6,6-dimetil-8-oxo-3,4,5,6,7,8-hexahidro-2H-benzo[b][1,4]tiazina-3-carboxilato de etilo (1,5 g, 1,0 equivalente) y 3 gotas de DMF en diclorometano (15 ml, 10 vol.) a -10~0° C. Se añadió mediante goteo a la mezcla cloruro de oxalilo (1,4 g, 2,0 equivalentes) a -10~0° C, y la mezcla se mantuvo a -10~0° C durante 1 hora con agitación. La solución se concentró a no más de 40° C bajo presión reducida para dar (R)-8-cloro-6,6-dimetil-3,5,6,7-tetrahidro-2H-benzo[b][1,4]tiazina-3-carboxilato de etilo. El residuo se diluyó con etanol (15 ml, 10 vol.), y se añadió EK-B7 (1,7 g, 2,0 equivalentes) a la solución de (R)-8-cloro-6,6-dimetil-3,5,6,7-tetrahidro-2H-benzo[b][1,4]tiazina-3-carboxilato de etilo, la mezcla resultante se mantuvo a 20~30° C durante 20 horas con agitación. La solución se concentró a 40~50° C bajo presión reducida, el residuo se purificó por cromatografía de columna (fase móvil: DCM/MeOH = 100/1~20/1) para dar (E)-8-((3,4-dimetoxifenil)imino)-6,6-dimetil-3,4,5,6,7,8-hexahidro-2H-benzo[b][1,4]tiazina-3-carboxilato de etilo. Se añadió a una mezcla de (E)-8-((3,4-dimetoxifenil)imino)-6,6-dimetil-3,4,5,6,7,8-hexahidro-2H-benzo[b][1,4]tiazina-3-carboxilato de etilo (1,0 g, 1,0 equivalente) en THF (5 ml) y etanol (5 ml, 5 vol.) NaOH acuoso 1N, y la mezcla se mantuvo a 20~30° C durante 1~2 horas. La mezcla se neutralizó con HCl acuoso 1N a pH = ~7 y se concentró a presión reducida. El residuo se purificó por cromatografía de columna (fase móvil: DCM/MeOH = 50/1~5/1) para dar el compuesto IF₁.

Ejemplo 24

5

10

15

Esquema de síntesis para el compuesto de fórmula ID2:

20

TEA/Tolueno

OEt

NH

$$OEt$$
 OEt
 OE

Se añadió TEA (4,0 g, 2,8 equivalentes) a una mezcla de dimedona (2,0 g, 1,0 equivalente), glicina (1,9 g, 1,3 equivalentes) y 60 ml de tolueno (30 vol.) con agitación. La mezcla resultante se mantuvo a reflujo durante la noche. Se añadió agua (20 ml) a la mezcla de reacción, se extrajo dos veces con acetato de etilo (30 mlx2), la capa orgánica combinada se lavó con salmuera (20 ml) y luego se concentró a presión reducida para dar (R)-6,6-dimetil-8-oxo-3,4,5,6,7,8-hexahidro-2*H*-benzo[*b*][1,4]tiazina-3-carboxilato de etilo. El rendimiento aislado fue de 90,6%, la pureza fue de 77,8%. Se enfrió una mezcla de (R)-6,6-dimetil-8-oxo-3,4,5,6,7,8-hexahidro-2H-benzo[b][1,4]tiazina-3-carboxilate de etilo (2,5 g, 1,0 equivalente) y 3 gotas de DMF en diclorometano (50 ml, 20 vol.) a -10~0° C. Se añadió mediante goteo cloruro de oxalilo (2,82 g, 2,0 equivalentes) a la mezcla a -10~0° C, y la mezcla se mantuvo a -10~0° C durante 1 hora con agitación. La solución se concentró a presión reducida para dar 2-((3-cloro-5,5-dimetilciclohexa-1,3-dien-1-il)amino)acetato de etilo. El residuo se diluyó con etanol (50 ml, 20 volúmenes), y se añadió anilina (2,73 g, 2,0 equivalentes) a la solución de 2-((3-cloro-5,5-dimetilciclohexa-1,3-dien-1-il)amino)acetato de etilo, la solución resultante se mantuvo a 20~30° C durante 20 horas sin dejar de agitar. La solución se concentró a presión reducida. El residuo se purificó por cromatografía de columna (fase móvil: DCM/MeOH = 100/1~20/1) para dar (E)-2-((4metoxifenil)imino)-5,5-dimetilciclohex-1-en-1-il)amino)acetato de etilo. Se añadió a una mezcla de (E)-2-((3-((4metoxifenil)imino)-5,5-dimetilciclohex-1-en-1-il)amino)acetato de etilo (1,2 g, 1,0 equivalentes) en THF (12 ml) y etanol (12 ml), 18 ml de NaOH acuoso 1N con agitación, la mezcla se mantuvo a 20~30° C durante 1~2 horas. La mezcla se neutralizó con HCl acuoso 1N a pH = \sim 7 y se concentró a $40\sim50^{\circ}$ C a presión reducida. El residuo se purificó por cromatografía de columna (fase móvil: DCM/MeOH = 50/1~5/1) para dar el compuestos ID₂.

Ejemplo 25

Esquema de síntesis para el compuesto de fórmula ID₃:

5

10

15

20

Se añadió a una mezcla de 1,3-ciclohexanodiona (2,0 g, 1,0 equivalente), éster etílico de glicina (2,4 g, 1,3 equivalentes) y 60 ml de tolueno (30 volúmenes), acetato de etilo (5,0 g, 2,8 equivalentes) con agitación, y la mezcla se sometió a reflujo durante la noche. La reacción se apagó mediante la adición de agua (20 ml) y se extrajo dos veces con acetato de etilo (30 ml x2). La capa orgánica combinada se lavó con salmuera (20 ml) y luego se concentró a presión reducida para dar 2-((3-oxociclohex-1-en-1-il)amino)acetato de etilo. El producto crudo se pudo utilizar directamente en el siguiente paso. Se enfrió una mezcla de 2-((3-oxociclohex-1-en-1-il)amino)acetato de etilo (2,3 g, 1.0 equivalente) y 3 qotas de DMF y diclorometano (46 ml, 20 vol.) a -10~0° C. Se añadió cloruro de oxalilo (3.0 q, 2.0 equivalentes) mediante goteo a la mezcla a -10~0° C, y la mezcla se mantuvo a -10~0° C durante 1 hora con agitación. La solución se concentró a presión reducida para dar 2-((3-clorociclohexa-1,3-dien-1-il)amino)acetato de etilo. El residuo anterior se diluyó con etanol (46 ml, 20 vol.), se añadió 4-metoxianilina (2,9 g, 2,0 equivalentes) a la solución de 2-((3-clorociclohexa-1,3-dien-1-il)amino)acetato de etilo, y la mezcla resultante se mantuvo a 20~30° C durante 20 horas sin dejar de agitar. La solución se concentró a presión reducida. El residuo se purificó por cromatografía de columna (fase móvil: DCM/MeOH = 100/1~20/1) para dar 1,7 g de (E)-2-((3-((4-metoxifenil)imino)ciclohex-1-en-1il)amino)acetato de etilo. Se añadió a una mezcla de (E)-2-((3-((4-metoxifenil)imino)ciclohex-1-en-1-il)amino)acetato de etilo (1,7 g, 1,0 equivalente) en THF (17 ml) y etanol (17 ml), 28 ml de NaOH acuoso 1N con agitación, la mezcla se mantuvo a 20~30° C durante 1~2 horas. La mezcla se neutralizó con HCl acuoso 1N a pH = ~7, y se concentró a presión reducida. El residuo se purificó por cromatografía de columna (fase móvil: DCM/MeOH = 50/1~5/1) para dar el compuesto ID₃.

Ejemplo 26 de la invención

5

10

15

20

Esquema de síntesis para el compuesto de fórmula IE₁:

Se enfrió a -10~0° C una mezcla de 6,6-dimetil-8-oxo-3,4,5,6,7,8-hexahidro-2*H*-benzo[*b*][1,4]tiazina-3-carboxilato (2,0 g, 1,0 equivalente), 3 gotas de DMF y diclorometano (20 ml, 10 vol.). Se añadió mediante goteo a la mezcla cloruro de oxalilo (1,9 g, 2,0 equivalentes) a -10~0° C, y la mezcla resultante se mantuvo a -10~0° C durante 1 hora con agitación. La solución se concentró a presión reducida para dar (R)-8-cloro-6,6-dimetil-3,5,6,7-tetrahidro-2H-benzo[*b*][1,4]tiazina-3-carboxilato de etilo. El residuo se diluyó con etanol (20 ml, 10 vol.), y se añadió 4-amino-N-(terc-butil)benzamida (2,8 g, 2,0 equivalentes) a la solución de (R)-8-cloro-6,6-dimetil-3,5,6,7-tetrahidro-2H-benzo[*b*][1,4]tiazina-3-carboxilato de etilo. La mezcla se mantuvo a 20~30° C bajo N2 durante 20 horas con agitación. La solución se concentró a 40~50° C bajo presión reducida, el residuo se purificó por cromatografía de columna (fase móvil: DCM/MeOH = 100/1~20/1) para dar (E)-8-((4-(terc-butilcarbamoil)fenil)imino)-6,6-dimetil-3,4,5,6,7,8-hexahidro-2H-benzo[*b*][1,4]tiazina-3-carboxilato de etilo. Se añadió a una solución agitada de (E)-8-((4-(terc-butilcarbamoil)fenil)imino)-6,6-dimetil-3,4,5,6,7,8-hexahidro-2H-benzo[*b*][1,4]tiazina-3-carboxilato de etilo (0,8 g, 1,0 equivalente) en THF (4 ml) y etanol (4 ml, 3 vol.), NaOH acuoso 1N a 20~30° C, y la solución resultante se mantuvo a esta temperatura durante otras 1~2 horas. La mezcla se neutralizó con HCl acuoso 1N a pH = ~7, y la solución resultante se concentró a presión reducida. El residuo se purificó por cromatografía de columna (fase móvil: DCM/MeOH = 50/1~5/1) para dar el compuesto IE₁.

Ejemplo 27 de la invención

5

10

15

20

Esquema de síntesis para el compuesto de fórmula IA2

5 Se enfrió una mezcla de 6,6-dimetil-8-oxo-3,4,5,6,7,8-hexahidro-2H-benzo[b][1,4]tiazina-3-carboxilato (0,54 g, 1,0 equivalente) y 3 gotas de DMF en diclorometano (10 ml) a -10~0° C. Se añadió gota a gota a la mezcla cloruro de oxalilo (0,51 g, 2,0 equivalentes) a -10~0° C, y la mezcla se mantuvo a -10~0° C durante 1 hora con agitación. La solución se concentró a presión reducida para dar (R)-8-cloro-6,6-dimetil-3,5,6,7-tetrahidro-2H-benzo[b][1,4]tiazina-3carboxilato de etilo como un aceite amarillo. El residuo se diluyó con etanol (11 ml, 20 vol.), y se añadió 2-amino-5-10 metoxibenzoato de metilo (0,72 g, 2,0 equivalentes) a la solución de (R)-8-cloro-6,6-dimetil-3,5,6,7-tetrahidro-2Hbenzo[b][1,4]tiazina-3-carboxilato de etilo, y la mezcla resultante se mantuvo a 20~30° C durante 20 horas con agitación. La solución se concentró a presión reducida. El residuo se purificó por cromatografía de columna (fase móvil: DCM/MeOH = $100/1\sim20/1$) para dar (E)-2-((3-((2-etoxi-2-oxoetil)amino)-5,5-dimetilciclohex-2-en-1ilideno)amino)-5-metoxibenzoato de metilo. Se añadió a una mezcla de (E)-2-((3-((2-etoxi-2-oxoetil)amino)-5,5dimetilciclohex-2-en-1-ilideno)amino)-5-metoxibenzoato de metilo (0,45 g, 1,0 equivalente) en THF (4,5 ml) y etanol (4,5 ml), NaOH acuoso 1N con agitación, la mezcla se mantuvo a 20~30° C durante 1~2 horas. La mezcla se neutralizó 15 con HCI acuoso 1N a pH = ~7 y se concentró a presión reducida. El residuo se purificó por cromatografía de columna (fase móvil: DCM/MeOH = $50/1 \sim 5/1$) para dar el compuesto IA₂.

Ejemplo 28 de la invención

20 Esquema de síntesis para el compuesto de fórmula IE₄

5 Se enfrió una mezcla de 6,6-dimetil-8-oxo-3,4,5,6,7,8-hexahidro-2H-benzo[b][1,4]tiazina-3-carboxilato (1,5 g, 1,0 equivalente) y 3 gotas de DMF en diclorometano (15 ml, 10 vol.) a -10~0° C. Se añadió mediante goteo cloruro de oxalilo (1,4 g, 2,0 equivalentes) a la mezcla a -10 \sim 0 $^{\circ}$ C, y la mezcla se mantuvo a -10 \sim 0 $^{\circ}$ C durante 1 hora con agitación. La solución se concentró a presión reducida para dar (R)-8-cloro-6,6-dimetil-3,5,6,7-tetrahidro-2Hbenzo[b][1,4]tiazina-3-carboxilato de etilo. El residuo anterior se diluyó con etanol (15 ml, 10 vol.), y se añadió 4-10 fluoroanilina (1,2 g, 2,0 equivalentes) a la solución de (R)-8-cloro-6,6-dimetil-3,5,6,7-tetrahidro-2H-benzo[b][1,4]tiazina-3-carboxilato de etilo, y la solución resultante se mantuvo a 20~30° C durante 20 horas con agitación. La solución se concentró a presión reducida. El residuo se purificó por cromatografía de columna (fase móvil: DCM/MeOH = 100/1~20/1) para dar 1,6 g de (E)-2-((3-((4-fluorofenil)imino)ciclohex-1-en-1-il)amino)acetato de etilo. Se añadió a una mezcla de (E)-2-((3-((4-fluorofenil)imino)ciclohex-1-en-1-il)amino)acetato de etilo (1,6 g, 1,0 equivalente) en THF (8 ml) y etanol (8 ml, 5 vol.), NaOH acuoso 1N con agitación, y la mezcla se mantuvo a 20~30° C durante 1~2 horas. La 15 mezcla se neutralizó con HCl acuoso 1N a pH = ~7 y se concentró a presión reducida. El residuo se purificó por cromatografía de columna (fase móvil: DCM/MeOH = 50/1~5/1) para dar (E)-2-((3-((4-fluorofenil)imino)ciclohex-1-en-1-il)amino)acetate de etilo. El compuesto IE₄ se trató adicionalmente con un nuevo reflujo con 5 ml de MTBE para dar el compuesto, IE₄.

20 Ejemplo 29 de la invención

Esquema de síntesis para el compuesto de fórmula IA₁

Se enfrió una mezcla de 6,6-dimetil-8-oxo-3,4,5,6,7,8-hexahidro-2H-benzo[b][1,4]tiazina-3-carboxilato (260 g, 1,0 equivalente) y 3 gotas de DMF en diclorometano (135 ml, 10 vol.) a -10~0° C. Se añadió mediante goteo cloruro de oxalilo (12,69 g, 2,0 equivalentes) a la mezcla a -10~0° C, y la mezcla se mantuvo a -10~0° C durante otra hora con agitación. La solución se concentró a presión reducida para dar (R)-8-cloro-6,6-dimetil-3,5,6,7-tetrahidro-2Hbenzo[b][1,4]tiazina-3-carboxilate de etilo. El residuo anterior se diluyó con etanol (67 ml, 5 vol.), y se añadió 4metoxianilina (12,31 g, 2,0 equivalentes) a la solución de (R)-8-cloro-6,6-dimetil-3,5,6,7-tetrahidro-2Hbenzo[b][1,4]tiazina-3-carboxilate de etilo, y la mezcla resultante se mantuvo a 20~30° C durante 20 horas con agitación. La solución se concentró a presión reducida, el residuo se purificó por cromatografía de columna (fase móvil: DCM/MeOH = 100/1~20/1) para dar (E)-2-((3-((4-metoxifenil)imino)ciclohex-1-en-1-il)amino)acetato de etilo. A una mezcla de (E)-2-((3-((4-metoxifenil)imino)ciclohex-1-en-1-il)amino)acetato de etilo (15,0 g, 1,0 equivalente) en THF (60 ml) y etanol (60 ml, 3 vol.) se añadió 120 ml de NaOH acuoso 1N con agitación, y la mezcla se mantuvo a 20~30° C durante 1~2 horas. La mezcla se neutralizó con HCl acuoso 1N a pH = ~7 y se concentró a presión reducida. El residuo se purificó por cromatografía de columna (fase móvil: DCM/MeOH = 50/1~5/1) para dar el compuesto IA₁. Se sometió a reflujo el sólido y carbón activo (0,86 g, 10% en peso) en 45 ml de metand bajo N2 durante 2 horas. La suspensión se filtró por succión para quitar el carbón activo, y el filtrado se concentró a seguedad. El residuo se trató por resuspensión con 45 ml de MTBE durante ~2 horas. La suspensión se filtró por succión, la torta se recogió y se secó a 30° C bajo vacío durante al menos 4 horas para dar el compuesto IA₁.

Ejemplo 30 de la invención

5

10

15

20

Esquema de síntesis propuesto para el compuesto de fórmula IA₃:

Esquema de síntesis propuesto para el compuesto de fórmula IA₄:

Ejemplo 31

5 Determinación del rendimiento de la protección UV in vitro de los compuestos divulgados en el presente documento.

Los siguientes compuestos se evaluaron en un estudio *in vitro* en cuanto al Factor de Protección Solar (SPF) *in vitro*, el Factor de protección UVA (UVAPF) y el valor de longitud de onda crítica mediante el método de Colipa UVA *in vitro*.

 $\label{eq:compulsion} Compuesto \quad IE_1: \quad \text{\'acido} \quad (R,E)-8-(4-(terc-butilcarbamoil)fenilimino)-6,6-dimetil-3,4,5,6,7,8-hexahidro-2H-10 \\ \quad benzo[b][1,4]tiazina-3-carboxílico (de la invención)$

Compuesto IF₁: ácido (R,E)-8-(3,4-dimetoxifenilimino)-6,6-dimetil-3,4,5,6,7,8-hexahidro-2H-benzo[b][1,4]tiazina-3-carboxílico

5 Compuesto IA₂: ácido (R,E)-8-(2-carboxi-4-metoxifenilimino)-6,6-dimetil-3,4,5,6,7,8-hexahidro-2H-benzo[b][1,4]tiazina-3-carboxílico (de la invención)

$$\mathbb{F}^{N}$$

Compuesto IE₄: ácido (R,E)-8-(4-fluorofenilimino)-6,6-dimetil-3,4,5,6,7,8-hexahidro-2H-benzo[b][1,4]tiazina-3-carboxílico (de la invención)

10

15

20

25

30

35

Compuesto IA₁: ácido (R,E)-8-(4-metoxifenilimino)-6,6-dimetil-3,4,5,6,7,8-hexahidro-2H-benzo[b][1,4]tiazine-3-carboxílico (de la invención)

Para determinar el valor de SPF in vitro, el rendimiento de la protección de los compuestos frente a la radiación UV eritémicamente efectiva, limitada en gran medida a los rayos UVB (290-320 nm) y la región de onda corta de rayos UVA (320-340), se calculó mediante la medida de la transmitancia in vitro. La UVAPF in vitro, la protección de UVA (320-400 nm) se calculó a partir de la transmitancia medida in vitro después de la irradiación. El valor crítico de la longitud de onda se definió como la longitud de onda a la que la integral de la curva de absorbancia espectral alcanzó el 90% de la integral sobre el espectro de UV de 290 a 400 nm. Se ha establecido que este valor debe ser igual o más de 370 nm con el fin de clasificar el producto como de espectro amplio. El estudio consistió en un ensayo comparativo de placas no tratadas frente a las placas tratadas con cada uno de los compuestos y se basó en la evaluación de la transmitancia UV a través de una fina película de una muestra de protección solar extendida sobre un sustrato rugoso, antes y después de la exposición a una dosis controlada de la radiación UV de una fuente de UV. Se usó un espectrofotómetro de Kontron 933 equipado con una fuente de UV, una esfera de integración y una luz monocromática capaz de suministrar un flujo de energía entre 290 y 400 nm. Los valores de transmitancia se midieron a intervalos de 1 nm. Se usó una balanza de laboratorio de precisión de 10⁻⁴ para el control del peso del producto depositado. La irradiación fue proporcionada por Sunset Atlas CPS+ con un filtro estándar. La regulación de la temperatura del equipo se realizó en el intervalo de 25-35° C. Se entregó una dosis de irradiación previa de 4 veces 200 J/m²-eff (800 J/m²eff). El sustrato fue el material al que se aplicó el producto de protección solar. Se usaron placas de polimetimetacrilato (PMMA) que fueron hechas rugosas de un lado para una topografía tridimensional de la superficie de 5 micrómetros. Cada compuesto se pesó y se aplicó uniformemente a la placa de PMMA con una aplicación de 2 fases para lograr una relación de peso/superficie de 0,75 mg/cm². La difusión se realizó con un ligero movimiento durante aproximadamente 30 segundos seguido de una difusión de mayor presión durante aproximadamente 30 segundos. La muestra resultante se dejó equilibrar durante 15 minutos en la oscuridad a temperatura ambiente para asegurar un autonivelado de la fórmula. Para tener en cuenta la falta de fotoestabilidad, fue necesaria una irradiación previa. La dosis de irradiación previa fue de 4 dosis mínimas eritémicas (MEDs), equivalente a 800 J/m²-eff. Se obtuvieron cinco mediciones de irradiancia espectral transmitida para cada longitud de onda a través de la placa PMMA cubierta con el producto de protección solar después de la irradiación del producto de protección solar [P1(), P2(),P3(), P4() y P5()]. Para cada compuesto, se determinaron valores del promedio de la absorbancia a partir de al menos tres placas de PMMA individuales. Para validar la exactitud de los resultados, se probó simultáneamente un producto con un SPF establecido de 18-20, lote 11T0313 con los compuestos. Se calculó el SPF *in vitro* para cada placa con la siguiente ecuación (Colipa 2011):

SPF
$$_{in\ vitro} =$$

$$\frac{\lambda = 400\ nm}{\int E(\lambda) * I(\lambda) * d\lambda}$$

$$\frac{\lambda = 290\ nm}{\int E(\lambda) * I/(\lambda) * 10^{-\Lambda} {}_{0}^{(\lambda)} * d\lambda}$$

donde:

5

E() = espectro de acción de eritema (CEI-1987)

10 I() = Irradiancia espectral de la fuente de UV

 A_0 () = mediciones promedio de absorbancia monocromática por placa de la capa del compuesto de prueba antes de la exposición al UV, a cada longitud de onda

d = paso de longitud de onda (1 nm)

Cálculo de la UVAPF de cada placa después de la irradiación UV (Colipa 2011)

$$\frac{\lambda = 400 \text{ nm}}{\int_{\lambda = 320 \text{ nm}} P(\lambda) * I(\lambda) * d\lambda}$$

$$\frac{\int_{\lambda = 400 \text{ nm}} P(\lambda) * I(\lambda) * 10^{-A(\lambda)*C} * d\lambda}{\int_{\lambda = 320 \text{ nm}} I(\lambda) * 10^{-A(\lambda)*C} * d\lambda}$$

15

donde:

P() = espectro de acción de PPD

I() = Irradiancia espectral de la fuente de UV

A() = promedio de mediciones de absorbancia monocromática por placa de la capa de compuesto de prueba después de la exposición al ultravioleta, a cada longitud de onda

C = coeficiente de ajuste

d = paso de longitud de onda (1 nm)

Cálculo de la longitud de onda crítica (FDA 2011)

$$\int_{290}^{\lambda c} \lg[1 / T(\lambda)] d\lambda = 0.9 \cdot \int_{290}^{400} [1 / T(\lambda)] d\lambda$$

25 donde:

A() = promedio de mediciones de absorbancia monocromática por placa de la capa de compuesto de prueba después de la exposición al ultravioleta, a cada longitud de onda

d = paso de longitud de onda (1 nm)

Se utilizó una hoja de cálculo de excel proporcionada por el método Colipa para la determinación in vitro de la protección UVA. Este software proporciona los siguientes resultados:

- Validez estadística de las mediciones llevadas a cabo (longitud de onda por longitud de onda);
- Curvas de prueba superpuestas expresadas en densidad óptica y en transmisión;
- Cada cálculo se expresó como una evaluación estadística de por lo menos 4 mediciones y se proporcionó el valor promedio y la dispersión de resultados.

Los datos brutos obtenidos de este estudio se presentan en las figuras 2-6. La FIG. 2 presenta los datos obtenidos con el compuestos IF₁. La FIG. 3 presenta los datos obtenidos con el compuesto IA₁ (de la invención). La FIG. 4 presenta los datos obtenidos con el compuesto IA₂. La FIG. 5 presenta los datos obtenidos con el compuestos IE₄ (de la invención). La FIG. 6 presenta los datos obtenidos con el compuesto IE₁ (de la invención). En la tabla 2 a continuación se presenta un resumen de los resultados para cada uno de los compuestos:

Tabla 2: Resumen de los resultados in vitro para el SPF, UVAPF y longitud de onda crítica para los compuestos probados

Compuestos de prueba	SPF in vitro	UVAPF	Valor λc de longitud de onda crítica
IF ₁	2,1	4,1	390
IA ₁	2,4	8,7	390
IA ₂	5,1	8,1	392
IE ₄	4,5	8,6	390
IE ₁	3,4	13,5	391
Control de PMMA SPF 18-20	21,1	4,7	359

Las mediciones de UVAPF *in vitro* demostraron buena protección frente a los rayos UVA para los compuestos IE₁, IA₂, IE₄ e IA₁. El valor de la longitud de onda crítica λc de cada uno de ellos proporciona una protección de amplio espectro a los rayos UVA y UVB recomendada por la FDA. En la FIG. 7 se muestra la absorbancia de los compuestos probados en las longitudes de onda indicadas.

Eiemplo 32

20 Determinación de las propiedades de absorción de UV para algunos de los compuestos

Se evaluaron los compuestos IE_1 , IF_1 , IA_2 , IE_4 , IA_1 , IE_2 , ID_2 e ID_3 en cuanto a sus propiedades de absorción de UV. Los compuestos IE_1 , IA_2 , IE_4 , IA_1 e IE_2 forman parte de la invención presente. Las muestras se prepararon como sigue: 20 mg de cada uno de los compuestos se disolvieron en 1 ml de metanol para generar soluciones de 20 g/l. Luego se aplicaron las soluciones sobre dos portaobjetos de vidrio. Para cada compuesto, una de los portaobjetos fue envejecido durante 20 horas bajo UV (instrumento de xenón). Las muestras fueron luego analizadas con un espectrofotómetro de rayos UVA-UVB en modo de transmisión T (%) y comparadas con los portaobjetos no envejecidos. La absorción (A) se calculó mediante la siguiente fórmula: $\lambda_{\text{muestra}} = (T_{\text{portaobjetos}} - T_{\text{portaobjetos+muestra}}) / T_{\text{portaobjetos}} \times 100$. La Tabla 3 a continuación muestra los datos de absorción de los rayos UVA y UVB obtenidos para los compuestos probados.

30

25

5

10

ES 2 676 836 T3

	Compuestos probados	Placa solo UVA %	Placa solo UVB %	Placa + compuesto probado UVA %	Placa + compuesto probado UVB %	Compuesto probado UVA %	Compuesto probado UVB %
	Placa	89,26	45,27				
IE ₁	sin envejecimiento			1,00	0,73	98,9	98,4
	envejecimiento de 20 horas			1,63	1,02	98,2	97,7
IF ₁	sin envejecimiento			0,24	0,31	99,7	99,3
	envejecimiento de 20 horas			0,37	0,39	99,6	99,1
IA ₂	sin envejecimiento			4,56	4,04	94,9	91,1
	envejecimiento de 20 horas			12,80	4,98	85,7	89,0
IE ₄	sin envejecimiento			0,49	0,46	99,5	99,0
	envejecimiento de 20 horas			1,46	0,81	98,4	98,2
IA ₁	sin envejecimiento			0,99	1,88	98,9	95,8
	envejecimiento de 20 horas			4,33	0,64	95,1	98,6
IE ₂	sin envejecimiento			3,51	2,12	96,1	95,3
	envejecimiento de 20 horas			4,43	1,97	95,0	95,6
ID ₂	sin envejecimiento			0,44	0,34	99,5	99,2
	envejecimiento de 20 horas			1,00	0,46	98,9	99,0
ID ₃	sin envejecimiento			0,47	0,33	99,5	99,3
.53	envejecimiento de 20 horas			1,28	0,62	98,6	98,6

REFERENCIAS

- 1. Cardozo et al. 2007. Metabolites from algae with economical impact. Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology, Volumen 146, Revistas 1-2: 60-78.
- 2. Bandaranayake WM. 1998. Mycosporines: are they nature's sunscreens? Natural Product Reports. 15(2):159-72.
- 5 3. Garcia-Pichel *et al.*, 1992. Evidence for an ultraviolet sunscreen role of the extracellular pigment scytonemin in the terrestrial cyanobacterium Chlorogloeopsis sp. Photochem Photobiol. 56(1):17-23.
 - 4. Garcia-Pichel et al., 1993. Evidence Regarding the UV Sunscreen Role of a Mycosporine-Like Compound in the Cyanobacterium Gloeocapsa sp. Applied Environ. Microbiol. 59(1):170-176.
- 5. Ehling-Schilz et al.,1997. UV-B-induced synthesis of photoprotective pigments and extracellular polysaccharides in the terrestrial cyanobacterium Nostoc commune. J. Bacteriol. 179(6):1940-5.
 - 6. Carreto et al., 2011. Review: Mycosporine-Like Amino Acids: Relevant Secondary Metabolites. Chemical and Ecological Aspects. Mar. Drugs. 9(3), 387-446.
 - 7. Yoshiki et al., 2009. Production of new antioxidant compound from mycosporine-like amino acid, porphyra-334 by heat treatment. Food Chem. 113,1127-1132.

15

REIVINDICACIONES

1. Un compuesto que tiene la Fórmula IE:

$$\begin{array}{c|c} R_6 & & \\ \hline \\ R_8 & R_4 & Formula \ IE \end{array}$$

en donde,

R₃ y R₄ son cada uno independientemente hidrógeno; alquilo; alquenilo; alquinilo; arilo; heterociclo; cicloalquilo; alcoxi; alcanoilo; un grupo sulfo; un grupo fosfono; un grupo éster; un grupo de ácido carboxílico; hidroxi; o un grupo fenilo;

 R_5 es alquilo; alquenilo; alquinilo; arilo; heterociclo; cicloalquilo; alcoxi; alcanoilo; un grupo sulfo; un grupo fosfono; un grupo éster; un grupo de ácido carboxílico; hidroxi; o un grupo fenilo;

R₆ es hidrógeno; alquilo; alquenilo; alquinilo; arilo; heterociclo; cicloalquilo; alcoxi; alcanoilo; hidroxi; un grupo sulfo; un grupo halo; un grupo fosfono; un grupo éster; un grupo de ácido carboxílico; un grupo fenilo; un grupo amiro; una cadena alquílica de ácido graso o poliéter;

n es 1:

15

R₈ es hidrógeno; alquilo; alquenilo; arquinilo; arilo; heterociclo; cicloalquilo; alcoxi; alcanoilo; hidroxi; un grupo sulfo; un grupo halo; un grupo fosfono; un grupo éster; un grupo de ácido carboxílico; un grupo fenilo; un grupo amino; una cadena alquílica de ácido graso o poliéter; y

Y es oxígeno; azufre; -CH₂-; un grupo amino; o alcanos espirocíclicos; o

una sal aceptable de los mismos.

- 2. El compuesto de la reivindicación 1, en donde Y es S.
- 3. El compuesto de la reivindicación 1 o 2, en donde R₃ y R₄ son cada uno un alquilo;
- 20 en donde, opcionalmente, R₃ y R₄ son cada uno -CH₃.
 - 4. El compuesto de una cualquiera de las reivindicaciones 1 a 3, en donde R_6 es un grupo carboxilo, opcionalmente -COOH.
 - El compuesto de una cualquiera de las reivindicaciones 1 a 4, en donde R₆ es hidrógeno o hidroxi.
- 6. El compuesto de una cualquiera de las reivindicaciones 1 a 5, en donde R₀ es un alcanoilo; hidrógeno, halógeno; o un grupo amino.
 - 7. El compuesto de la reivindicación 1, en donde el compuesto se selecciona de

$$S \longrightarrow OH$$
 ,

0

8. El compuesto de la reivindicación 1, que tiene la Fórmula IA:

Fórmula IA;

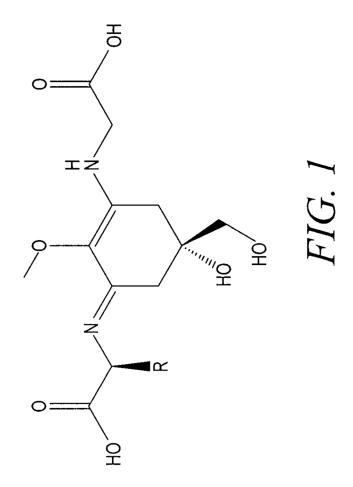
0

5

en donde n es 1.

- 9. El compuesto de la reivindicación 8, que tiene la Fórmula IA en donde R_3 es -C H_3 o hidrógeno; y/o R_4 es -C H_3 o hidrógeno.
 - 10. El compuesto de la reivindicación 8 o 9, que tiene la Fórmula IA en donde R₅ es -COOH.
 - 11. El compuesto de una cualquiera de las reivindicaciones 8 a 10, que tiene la Fórmula IA en donde Y se selecciona del grupo que consiste de O, S y NH.
- 15 12. El compuesto de una cualquiera de las reivindicaciones 8 a 11, que tiene la Fórmula IA en donde R_6 es hidrógeno o -COOH.
 - 13. El compuesto de la reivindicación 8, que tiene la Fórmula IA en donde el compuesto se selecciona de

0


14. Un compuesto que tiene la Fórmula:

para uso en la protección de textiles frente a las radiaciones UV.

15. Un compuesto que tiene la fórmula:

0

para uso en la preparación de composiciones para la protección frente a las radiaciones UV.

	FIG. 2A
FIG. 2	FIG. 2B
	FIG. 2C

Tramitancia de UV a cada longitud de onda (nm) para el compuesto IF1

WL (nm)	Scan 1	Scan 2	Scan 3	Scan 4	Scan 5	Scan 6	Blanco
290	2.084	2.209	2.084	2.209	2.084	2.209	0.332
291	2.081	2.178	2.081	2.178	2.081	2.178	0.328
292	2.025	2.123	2.025	2.123	2.025	2.123	0.317
293	1.997	2.103	1.997	2.103	1.997	2.103	0.312
294	1.972	2.064	1.972	2.064	1.972	2.064	0.305
295	1.963	2.058	1.963	2.058	1.963	2.058	0.303
296	1.943	2.055	1.943	2.055	1.943	2.055	0.301
297	1.933	2.046	1.933	2.046	1.933	2.046	0.299
298	1.917	2.035	1.917	2.035	1.917	2.035	0.296
299	1.898	2.016	1.898	2.016	1.898	2.016	0.291
300	1.903	2.016	1.903	2.016	1.903	2.016	0.292
301	1.921	2.023	1.921	2.023	1.921	2.023	0.295
302	1.921	2.020	1.921	2.020	1.921	2.020	0.294
303	1.914	2.018	1.914	2.018	1.914	2.018	0.293
304	1.915	1.995	1.915	1.995	1.915	1.995	0.291
305	1.917	2.000	1.917	2.000	1.917	2.000	0.292
306	1.907	2.029	1.907	2.029	1.907	2.029	0.294
307	1.913	2.036	1.913	2.036	1.913	2.036	0.295
308	1.923	2.038	1.923	2.038	1.923	2.038	0.297
309	1.951	2.064	1.951	2.064	1.951	2.064	0.303
310	1.965	2.081	1.965	2.081	1.965	2.081	0.306
311	1.960	2.082	1.960	2.082	1.960	2.082	0.305
312	1.969	2.099	1.969	2.099	1.969	2.099	0.308
313	1.996	2.120	1.996	2.120	1.996	2.120	0.313
314	2.001	2.103	2.001	2.103	2.001	2.103	0.312
315	1.994	2.135	1.994	2.135	1.994	2.135	0.315
316	2.004	2.120	2.004	2.120	2.004	2.120	0.314
317	2.014	2.134	2.014	2.134	2.014	2.134	0.317
318	2.028	2.150	2.028	2.150	2.028	2.150	0.320
319	2.034	2.162	2.034	2.162	2.034	2.162	0.322
320	2.041	2.181	2.041	2.181	2.041	2.181	0.324
321	2.063	2.201	2.063	2.201	2.063	2.201	0.329
322	2.086	2.212	2.086	2.212	2.086	2.212	0.332
323	2.108	2.226	2.108	2.226	2.108	2.226	0.336

FIG. 2A

	324	2.131	2.251	2.131	2.251	2.131	2.251	0.340	
	325	2.175	2.292	2.175	2.292	2.175	2.292	0.349	
	326	2.207	2.324	2.207	2.324	2.207	2.324	0.355	
	327	2.254	2.386	2.254	2.386	2.254	2.386	0.365	1
	328	2.297	2.411	2.297	2.411	2.297	2.411	0.372	
	329	2.361	2.458	2.361	2.458	2.361	2.458	0.382	
- 1	330	2.386	2.517	2.386	2.517	2.386	2.517	0.389	
	331	2.456	2.599	2.456	2.599	2.456	2.599	0.403	
	332	2.548	2.641	2.548	2.641	2.548	2.641	0.414	
1	333	2.602	2.731	2.602	2.731	2.602	2.731	0.426	
	334	2.681	2.819	2.681	2.819	2.681	2.819	0.439	
	335	2.755	2.907	2.755	2.907	2.755	2.907	0.452	
	336	2.794	2.965	2.794	2.965	2.794	2.965	0.459	
	337	2.888	3.057	2.888	3.057	2.888	3.057	0.473	
	338	2.996	3.163	2.996	3.163	2.996	3.163	0.488	
	339	3.085	3.266	3.085	3.266	3.085	3.266	0.502	
	340	3.258	3.465	3.258	3.465	3.258	3.465	0.526	
	341	3.299	3.508	3.299	3.508	3.299	3.508	0.532	
	342	3.415	3.639	3.415	3.639	3.415	3.639	0.547	
	343	3.565	3.788	3.565	3.788	3.565	3.788	0.565	
	344	3.668	3.916	3.668	3.916	3.668	3.916	0.579	
	345	3.784	4.067	3.784	4.067	3.784	4.067	0.594	
	346	3.916	4.209	3.916	4.209	3.916	4.209	0.609	
	347	4.035	4.335	4.035	4.335	4.035	4.335	0.621	
	348	4.187	4.474	4.187	4.474	4.187	4.474	0.636	
	349	4.296	4.614	4.296	4.614	4.296	4.614	0.649	
	350	4.398	4.720	4.398	4.720	4.398	4.720	0.659	
	351	4.535	4.873	4.535	4.873	4.535	4.873	0.672	
	352	4.627	4.994	4.627	4.994	4.627	4.994	0.682	
	353	4.748	5.119	4.748	5.119	4.748	5.119	0.693	
	354	4.882	5.241	4.882	5.241	4.882	5.241	0.704	
1	355	4.964	5.335	4.964	5.335	4.964	5.335	0.711	
	356	5.027	5.447	5.027	5.447	5.027	5.447	0.719	
l	357	5.133	5.510	5.133	5.510	5.133	5.510	0.726	
	358	5.197	5.621	5.197	5.621	5.197	5.621	0.733	
	359	5.328	5.742	5.328	5.742	5.328	5.742	0.743	
	360	5.365	5.782	5.365	5.782	5.365	5.782	0.746	
	361	5.422	5.853	5.422	5.853	5.422	5.853	0.751	
	362	5.501	5.959	5.501	5.959	5.501	5.959	0.758	
	363	5.582	5.990	5.582	5.990	5.582	5.990	0.762	
	364	5.628	6.056	5.628	6.056	5.628	6.056	0.766	
	365	5.654	6.097	5.654	6.097	5.654	6.097	0.769	
	366	5.681	6.148	5.681	6.148	5.681	6.148	0.772	

FIG. 2B

367	5.694	6.163	5.694	6.163	5.694	6.163	0.773]
368	5.726	6.144	5.726	6.144	5.726	6.144	0.773	
369	5.732	6.180	5.732	6.180	5.732	6.180	0.775	
370	5.722	6.192	5.722	6.192	5.722	6.192	0.775	
371	5.736	6.134	5.736	6.134	5.736	6.134	0.773	
372	5.674	6.141	5.674	6.141	5.674	6.141	0.771	
373	5.659	6.110	5.659	6.110	5.659	6.110	0.769	
374	5.621	6.063	5.621	6.063	5.621	6.063	0.766	
375	5.615	6.011	5.615	6.011	5.615	6.011	0.764	
376	5.553	6.003	5.553	6.003	5.553	6.003	0.761	
377	5.508	5.965	5.508	5.965	5.508	5.965	0.758	
378	5.447	5.880	5.447	5.880	5.447	5.880	0.753	İ
379	5.421	5.838	5.421	5.838	5.421	5.838	0.750	
380	5.338	5.760	5.338	5.760	5.338	5.760	0.744	
381	5.280	5.713	5.280	5.713	5.280	5.713	0.740	
382	5.195	5.596	5.195	5.596	5.195	5.596	0.732	
383	5.096	5.504	5.096	5.504	5.096	5.504	0.724	
384	5.008	5.419	5.008	5.419	5.008	5.419	0.717	
385	4.922	5.301	4.922	5.301	4.922	5.301	0.708	
386	4.810	5.177	4.810	5.177	4.810	5.177	0.698	
387	4.720	5.052	4.720	5.052	4.720	5.052	0.689	
388	4.605	4.940	4.605	4.940	4.605	4.940	0.678	
389	4.504	4.823	4.504	4.823	4.504	4.823	0.668	
390	4.387	4.698	4.387	4.698	4.387	4.698	0.657	
391	4.295	4.582	4.295	4.582	4.295	4.582	0.647	
392	4.191	4.464	4.191	4.464	4.191	4.464	0.636	
393	4.092	4.359	4.092	4.359	4.092	4.359	0.626	
394	3.985	4.256	3.985	4.256	3.985	4.256	0.615	
395	3.892	4.135	3.892	4.135	3.892	4.135	0.603	
396	3.793	4.026	3.793	4.026	3.793	4.026	0.592	
397	3.685	3.916	3.685	3.916	3.685	3.916	0.580	
398	3.577	3.801	3.577	3.801	3.577	3.801	0.567	
399	3.481	3.700	3.481	3.700	3.481	3.700	0.555	
400	3.349	3.588	3.349	3.588	3.349	3.588	0.540	

FIG. 2C

FIG. 3	FIG. 3A
FIG. 3	FIG. 3B
	FIG. 3C

Tramitancia de UV a cada longitud de onda (nm) para el compuesto IA₁

	Tramitancia de UV a cada longitud de onda (nm) para el compuesto 🗛								
	WL (nm)	Scan 1	Scan 2	Scan 3	Scan 4	Scan 5	Scan 6	Blanco	
	290	3.248	3.066	3.248	3.066	3.248	3.066	0.4991	1
	291	3.137	2.967	3.137	2.967	3.137	2.967	0.4844	
	292	3.048	2.877	3.048	2.877	3.048	2.877	0.4715	
	293	2.966	2.824	2.966	2.824	2.966	2.824	0.4615	
	294	2.862	2.745	2.862	2.745	2.862	2.745	0.4476	l
	295	2.836	2.655	2.836	2.655	2.836	2.655	0.4383	
	296	2.753	2.636	2.753	2.636	2.753	2.636	0.4304	
	297	2.708	2.550	2.708	2.550	2.708	2.550	0.4196	
	298	2.612	2.512	2.612	2.512	2.612	2.512	0.4085	
	299	2.533	2.478	2.533	2.478	2.533	2.478	0.3989	l
	300	2.530	2.406	2.530	2.406	2.530	2.406	0.3922	
	301	2.456	2.390	2.456	2.390	2.456	2.390	0.3843	
	302	2.404	2.350	2.404	2.350	2.404	2.350	0.3760	
	303	2.374	2.301	2.374	2.301	2.374	2.301	0.3687	
	304	2.331	2.213	2.331	2.213	2.331	2.213	0.3563	
	305	2.285	2.212	2.285	2.212	2.285	2.212	0.3519	
	306	2.279	2.196	2.279	2.196	2.279	2.196	0.3497	
	307	2.257	2.171	2.257	2.171	2.257	2.171	0.3451	
	308	2.236	2.153	2.236	2.153	2.236	2.153	0.3412	
	309	2.235	2.140	2.235	2.140	2.235	2.140	0.3399	
	310	2.239	2.146	2.239	2.146	2.239	2.146	0.3408	
	311	2.241	2.123	2.241	2.123	2.241	2.123	0.3387	
	312	2.237	2.159	2.237	2.159	2.237	2.159	0.3419	
	313	2.258	2.179	2.258	2.179	2.258	2.179	0.3460	
	314	2.273	2.191	2.273	2.191	2.273	2.191	0.3487	
	315	2.313	2.229	2.313	2.229	2.313	2.229	0.3561	
	316	2.335	2.231	2.335	2.231	2.335	2.231	0.3584	
	317	2.370	2.279	2.370	2.279	2.370	2.279	0.3662	
	318	2.412	2.309	2.412	2.309	2.412	2.309	0.3729	
	319	2.471	2.373	2.471	2.373	2.471	2.373	0.3841	
	320	2.515	2.428	2.515	2.428	2.515	2.428	0.3929	
	321	2.598	2.497	2.598	2.497	2.598	2.497	0.4061	
	322	2.678	2.562	2.678	2.562	2.678	2.562	0.4182	
\rfloor	323	2.768	2.654	2.768	2.654	2.768	2.654	0.4330	

FIG. 3A

324 2.850 2.742 2.850 2.742 2.850 2.742	0.4464
325 3.004 2.858 3.004 2.858 3.004 2.858	0.4669
326 3.098 2.955 3.098 2.955 3.098 2.955	0.4808
327 3.216 3.091 3.216 3.091 3.216 3.091	0.4987
328 3.376 3.202 3.376 3.202 3.376 3.202	0.5170
329 3.518 3.373 3.518 3.373 3.518 3.373	0.5371
330 3.645 3.453 3.645 3.453 3.645 3.453	0.5500
331 3.847 3.657 3.847 3.657 3.847 3.657	0.5741
332 4.046 3.791 4.046 3.791 4.046 3.791	0.5929
333 4.170 3.939 4.170 3.939 4.170 3.939	0.6078
334 4.391 4.110 4.391 4.110 4.391 4.110	0.6282
335 4.617 4.284 4.617 4.284 4.617 4.284	0.6481
336 4.761 4.434 4.761 4.434 4.761 4.434	0.6622
337 4.975 4.594 4.975 4.594 4.975 4.594	0.6795
338 5.224 4.819 5.224 4.819 5.224 4.819	0.7005
339 5.459 5.049 5.459 5.049 5.459 5.049	0.7201
340 5.795 5.337 5.795 5.337 5.795 5.337	0.7452
341 5.874 5.422 5.874 5.422 5.874 5.422	0.7515
342 6.189 5.728 6.189 5.728 6.189 5.728	0.7748
343 6.521 6.001 6.521 6.001 6.521 6.001	0.7963
344 6.774 6.262 6.774 6.262 6.774 6.262	0.8138
345 7.056 6.504 7.056 6.504 7.056 6.504	0.8309
346 7.439 6.743 7.439 6.743 7.439 6.743	0.8502
347 7.673 7.021 7.673 7.021 7.673 7.021	0.8657
348 7.973 7.287 7.973 7.287 7.973 7.287	0.8821
349 8.344 7.558 8.344 7.558 8.344 7.558	0.8999
350 8.620 7.775 8.620 7.775 8.620 7.775	0.9131
351 8.969 8.108 8.969 8.108 8.969 8.108	0.9308
352 9.258 8.317 9.258 8.317 9.258 8.317	0.9432
353 9.498 8.636 9.498 8.636 9.498 8.636	0.9570
354 9.727 8.855 9.727 8.855 9.727 8.855	0.9676
355 9.992 9.047 9.992 9.047 9.992 9.047	0.9781
356 10.202 9.240 10.202 9.240 10.202 9.240	0.9872
357 10.468 9.460 10.468 9.460 10.468 9.460	0.9979
358 10.655 9.681 10.655 9.681 10.655 9.681	1.0067
359 10.859 9.880 10.859 9.880 10.859 9.880	1.0153
360 11.068 10.036 11.068 10.036 11.068 10.036	1.0228
361 11.255 10.193 11.255 10.193 11.255 10.193	1.0298
362 11.490 10.314 11.490 10.314 11.490 10.314	1.0369
363 11.735 10.532 11.735 10.532 11.735 10.532	1.0460
364 11.775 10.728 11.775 10.728 11.775 10.728	1.0507
365 12.033 10.834 12.033 10.834 12.033 10.834	1.0576
366 12.177 10.938 12.177 10.938 12.177 10.938	1.0622

FIG. 3B

 367	12.192	10.880	12.192	10.880	12.192	10.880	1.0614	
368	12.225	11.005	12.225	11.005	12.225	11.005	1.0644	
369	12.431	11.124	12.431	11.124	12.431	11.124	1.0704	
370	12.416	11.171	12.416	11.171	12.416	11.171	1.0710	
371	12.354	10.997	12.354	10.997	12.354	10.997	1.0665	
372	12.274	11.019	12.274	11.019	12.274	11.019	1.0655	
373	12.220	10.994	12.220	10.994	12.220	10.994	1.0641	
374	12.165	10.950	12.165	10.950	12.165	10.950	1.0623	
375	12.128	10.855	12.128	10.855	12.128	10.855	1.0597	
376	12.024	10.848	12.024	10.848	12.024	10.848	1.0577	
377	11.872	10.722	11.872	10.722	11.872	10.722	1.0524	
378	11.753	10.668	11.753	10.668	11.753	10.668	1.0491	
379	11.613	10.548	11.613	10.548	11.613	10.548	1.0441	
380	11.504	10.403	11.504	10.403	11.504	10.403	1.0390	
381	11.366	10.282	11.366	10.282	11.366	10.282	1.0339	
382	11.142	10.105	11.142	10.105	11.142	10.105	1.0257	
383	10.932	9.893	10.932	9.893	10.932	9.893	1.0170	
384	10.714	9.690	10.714	9.690	10.714	9.690	1.0081	
385	10.544	9.526	10.544	9.526	10.544	9.526	1.0010	
386	10.285	9.339	10.285	9.339	10.285	9.339	0.9913	
387	10.035	9.096	10.035	9.096	10.035	9.096	0.9802	
388	9.821	8.882	9.821	8.882	9.821	8.882	0.9703	
389	9.518	8.653	9.518	8.653	9.518	8.653	0.9578	İ
390	9.270	8.436	9.270	8.436	9.270	8.436	0.9466	
391	9.026	8.207	9.026	8.207	9.026	8.207	0.9348	
392	8.761	7.957	8.761	7.957	8.761	7.957	0.9217	
393	8.520	7.788	8.520	7.788	8.520	7.788	0.9109	
394	8.259	7.584	8.259	7.584	8.259	7.584	0.8984	
395	8.021	7.356	8.021	7.356	8.021	7.356	0.8854	
396	7.786	7.102	7.786	7.102	7.786	7.102	0.8713	
397	7.506	6.900	7.506	6.900	7.506	6.900	0.8571	
398	7.251	6.687	7.251	6.687	7.251	6.687	0.8428	
399	7.007	6.462	7.007	6.462	7.007	6.462	0.8279	
400	6.768	6.223	6.768	6.223	6.768	6.223	0.8122	

FIG. 3C

	FIG. 4A
FIG. 4	FIG. 4B
	FIG. 4C

Tramitancia de UV a cada longitud de onda (nm) para el compuesto IA2

WL (nm)	Scan 1	Scan 2	Scan 3	Scan 4	Scan 5	Scan 6	Blanco
290	5.814	5.694	5.814	5.694	5.814	5.694	0.7599
291	5.671	5.563	5.671	5.563	5.671	5.563	0.7495
292	5.750	5.653	5.750	5.653	5.750	5.653	0.7560
293	5.699	5.640	5.699	5.640	5.699	5.640	0.7535
294	5.607	5.574	5.607	5.574	5.607	5.574	0.7474
295	5.561	5.451	5.561	5.451	5.561	5.451	0.7408
296	5.575	5.436	5.575	5.436	5.575	5.436	0.7408
297	5.543	5.579	5.543	5.579	5.543	5.579	0.7451
298	5.547	5.483	5.547	5.483	5.547	5.483	0.7415
299	5.442	5.484	5.442	5.484	5.442	5.484	0.7374
300	5.406	5.307	5.406	5.307	5.406	5.307	0.7289
301	5.376	5.339	5.376	5.339	5.376	5.339	0.7290
302	5.315	5.251	5.315	5.251	5.315	5.251	0.7229
303	5.344	5.286	5.344	5.286	5.344	5.286	0.7255
304	5.309	5.232	5.309	5.232	5.309	5.232	0.7218
305	5.163	5.147	5.163	5.147	5.163	5.147	0.7122
306	5.209	5.229	5.209	5.229	5.209	5.229	0.7176
307	5.129	5.131	5.129	5.131	5.129	5.131	0.7101
308	5.116	5.063	5.116	5.063	5.116	5.063	0.7067
309	5.095	5.006	5.095	5.006	5.095	5.006	0.7033
310	5.004	4.891	5.004	4.891	5.004	4.891	0.6944
311	4.990	4.923	4.990	4.923	4.990	4.923	0.6951
312	4.886	4.809	4.886	4.809	4.886	4.809	0.6855
313	4.861	4.811	4.861	4.811	4.861	4.811	0.6845
314	4.851	4.802	4.851	4.802	4.851	4.802	0.6836
315	4.781	4.744	4.781	4.744	4.781	4.744	0.6778
316	4.701	4.631	4.701	4.631	4.701	4.631	0.6690
317	4.648	4.604	4.648	4.604	4.648	4.604	0.6652
318	4.542	4.554	4.542	4.554	4.542	4.554	0.6578
319	4.471	4.413	4.471	4.413	4.471	4.413	0.6476
320	4.437	4.401	4.437	4.401	4.437	4.401	0.6453
321	4.317	4.344	4.317	4.344	4.317	4.344	0.6365
322	4.354	4.321	4.354	4.321	4.354	4.321	0.6373
323	4.261	4.184	4.261	4.184	4.261	4.184	0.6255

FIG. 4A

 324	4.152	4.167	4.152	4.167	4.152	4.167	0.6190	
325	4.161	4.046	4.161	4.046	4.161	4.046	0.6131	
326	4.120	4.054	4.120	4.054	4.120	4.054	0.6114	
327	4.058	3.996	4.058	3.996	4.058	3.996	0.6049	
328	4.065	4.025	4.065	4.025	4.065	4.025	0.6069	
329	4.049	4.016	4.049	4.016	4.049	4.016	0.6056	
330	3.992	3.970	3.992	3.970	3.992	3.970	0.6000	
331	3.972	3.909	3.972	3.909	3.972	3.909	0.5956	
332	4.091	4.005	4.091	4.005	4.091	4.005	0.6072	
333	4.105	4.018	4.105	4.018	4.105	4.018	0.6087	
334	4.112	4.083	4.112	4.083	4.112	4.083	0.6125	
335	4.201	4.107	4.201	4.107	4.201	4.107	0.6185	
336	4.143	4.155	4.143	4.155	4.143	4.155	0.6179	
337	4.323	4.244	4.323	4.244	4.323	4.244	0.6318	
338	4.414	4.327	4.414	4.327	4.414	4.327	0.6405	
339	4.450	4.398	4.450	4.398	4.450	4.398	0.6458	
340	4.606	4.577	4.606	4.577	4.606	4.577	0.6619	
341	4.773	4.716	4.773	4.716	4.773	4.716	0.6762	
342	4.956	4.909	4.956	4.909	4.956	4.909	0.6931	
343	5.077	5.066	5.077	5.066	5.077	5.066	0.7051	
344	5.272	5.235	5.272	5.235	5.272	5.235	0.7204	
345	5.497	5.402	5.497	5.402	5.497	5.402	0.7363	
346	5.724	5.681	5.724	5.681	5.724	5.681	0.7560	
347	5.984	5.910	5.984	5.910	5.984	5.910	0.7743	
348	6.274	6.192	6.274	6.192	6.274	6.192	0.7947	
349	6.546	6.462	6.546	6.462	6.546	6.462	0.8132	
350	6.871	6.806	6.871	6.806	6.871	6.806	0.8350	
351	7.224	7.170	7.224	7.170	7.224	7.170	0.8571	
352	7.471	7.451	7.471	7.451	7.471	7.451	0.8728	
353	7.913	7.891	7.913	7.891	7.913	7.891	0.8977	
354	8.281	8.264	8.281	8.264	8.281	8.264	0.9176	
355	8.572	8.525	8.572	8.525	8.572	8.525	0.9319	
356	8.998	8.953	8.998	8.953	8.998	8.953	0.9531	
357	9.428	9.426	9.428	9.426	9.428	9.426	0.9744	
358	9.856	9.789	9.856	9.789	9.856	9.789	0.9922	
359	10.467	10.282	10.467	10.282	10.467	10.282	1.0160	
360	10.940	10.687	10.940	10.687	10.940	10.687	1.0339	
361	11.390	11.214	11.390	11.214	11.390	11.214	1.0531	
362	12.043	11.807	12.043	11.807	12.043	11.807	1.0764	
363	12.516	12.319	12.516	12.319	12.516	12.319	1.0940	
364	13.034	12.953	13.034	12.953	13.034	12.953	1.1137	
365	13.561	13.461	13.561	13.461	13.561	13.461	1.1307	
 366	14.274	14.115	14.274	14.115	14.274	14.115	1.1521	

FIG. 4B

 367	14.887	14.743	14.887	14.743	14.887	14.743	1.1707	
368	15.406	15.349	15.406	15.349	15.406	15.349	1.1869	
369	15.972	15.887	15.972	15.887	15.972	15.887	1.2022	
370	16.847	16.846	16.847	16.846	16.847	16.846	1.2265	
371	17.369	17.169	17.369	17.169	17.369	17.169	1.2373	
372	18.092	17.702	18.092	17.702	18.092	17.702	1.2528	
373	18.622	18.210	18.622	18.210	18.622	18.210	1.2652	
374	19.156	18.967	19.156	18.967	19.156	18.967	1.2802	
375	19.941	19.628	19.941	19.628	19.941	19.628	1.2963	
376	20.389	20.095	20.389	20.095	20.389	20.095	1.3062	
377	20.990	20.537	20.990	20.537	20.990	20.537	1.3173	
378	21.520	21.030	21.520	21.030	21.520	21.030	1.3278	
379	22.065	21.668	22.065	21.668	22.065	21.668	1.3398	
380	22.619	22.232	22.619	22.232	22.619	22.232	1.3507	
381	23.213	22.635	23.213	22.635	23.213	22.635	1.3602	
382	23.642	23.034	23.642	23.034	23.642	23.034	1.3680	
383	24.238	23.382	24.238	23.382	24.238	23.382	1.3767	
384	24.649	23.866	24.649	23.866	24.649	23.866	1.3848	
385	24.919	24.200	24.919	24.200	24.919	24.200	1.3902	
386	25.321	24.608	25.321	24.608	25.321	24.608	1.3973	
387	25.696	25.044	25.696	25.044	25.696	25.044	1.4043	
388	25.997	25.255	25.997	25.255	25.997	25.255	1.4086	
389	26.304	25.600	26.304	25.600	26.304	25.600	1.4141	
390	26.551	25.995	26.551	25.995	26.551	25.995	1.4195	
391	26.897	26.192	26.897	26.192	26.897	26.192	1.4239	
392	27.153	26.321	27.153	26.321	27.153	26.321	1.4271	
393	27.609	26.728	27.609	26.728	27.609	26.728	1.4340	
394	27.627	26.834	27.627	26.834	27.627	26.834	1.4350	
395	27.955	27.323	27.955	27.323	27.955	27.323	1.4415	
396	28.158	27.266	28.158	27.266	28.158	27.266	1.4426	
397	28.252	27.396	28.252	27.396	28.252	27.396	1.4444	
398	28.363	27.484	28.363	27.484	28.363	27.484	1.4459	
399	28.455	27.502	28.455	27.502	28.455	27.502	1.4468	1
400	28.481	27.783	28.481	27.783	28.481	27.783	1.4492]

FIG. 4C

	FIG. 5A
FIG. 5	FIG. 5B
	FIG. 5C

Tramitancia de UV a cada longitud de onda (nm) para el compuesto IE₄

	iicia ue ov	a caua ioi	ilgituu de c	ilua (IIIII) į		ipuesto ie		
WL (nm)	Scan 1	Scan 2	Scan 3	Scan 4	Scan 5	Scan 6	Blanco	
290	6.334	6.019	6.334	6.019	6.334	6.019	0.7906	
291	6.095	5.686	6.095	5.686	6.095	5.686	0.7699	
292	5.887	5.588	5.887	5.588	5.887	5.588	0.7586	
293	5.664	5.375	5.664	5.375	5.664	5.375	0.7418	
294	5.401	5.127	5.401	5.127	5.401	5.127	0.7211	
295	5.147	4.932	5.147	4.932	5.147	4.932	0.7023	
296	5.068	4.789	5.068	4.789	5.068	4.789	0.6926	
297	4.964	4.677	4.964	4.677	4.964	4.677	0.6829	
298	4.887	4.594	4.887	4.594	4.887	4.594	0.6756	
299	4.759	4.488	4.759	4.488	4.759	4.488	0.6648	
300	4.547	4.265	4.547	4.265	4.547	4.265	0.6438	
301	4.549	4.291	4.549	4.291	4.549	4.291	0.6452	
302	4.403	4.151	4.403	4.151	4.403	4.151	0.6310	
303	4.379	4.138	4.379	4.138	4.379	4.138	0.6291	
304	4.369	4.069	4.369	4.069	4.369	4.069	0.6250	
305	4.287	4.011	4.287	4.011	4.287	4.011	0.6177	
306	4.340	4.068	4.340	4.068	4.340	4.068	0.6234	
307	4.296	4.032	4.296	4.032	4.296	4.032	0.6193	
308	4.283	4.036	4.283	4.036	4.283	4.036	0.6189	
309	4.292	4.071	4.292	4.071	4.292	4.071	0.6212	
310	4.287	4.043	4.287	4.043	4.287	4.043	0.6194	
311	4.336	4.105	4.336	4.105	4.336	4.105	0.6252	
312	4.400	4.101	4.400	4.101	4.400	4.101	0.6282	
313	4.425	4.225	4.425	4.225	4.425	4.225	0.6359	
314	4.530	4.300	4.530	4.300	4.530	4.300	0.6448	
315	4.585	4.338	4.585	4.338	4.585	4.338	0.6493	
316	4.618	4.388	4.618	4.388	4.618	4.388	0.6533	
317	4.669	4.403	4.669	4.403	4.669	4.403	0.6565	
318	4.756	4.474	4.756	4.474	4.756	4.474	0.6640	
319	4.820	4.509	4.820	4.509	4.820	4.509	0.6685	
320	4.902	4.620	4.902	4.620	4.902	4.620	0.6775	
321	5.023	4.656	5.023	4.656	5.023	4.656	0.6845	
322	5.089	4.826	5.089	4.826	5.089	4.826	0.6951	
323	5.130	4.836	5.130	4.836	5.130	4.8366	0.6973	
 L -				\				

FIG. 5A

T	324	5.334	4.989	5.334	4.989	5.334	4.989	0.7125	
	325	5.380	5.046	5.380	5.046	5.380	5.046	0.7168	
	326	5.401	5.226	5.401	5.226	5.401	5.226	0.7253	
	327	5.545	5.321	5.545	5.321	5.545	5.321	0.7350	
	328	5.730	5.414	5.730	5.414	5.730	5.414	0.7458	
	329	5.897	5.480	5.897	5.480	5.897	5.480	0.7547	
	330	5.994	5.563	5.994	5.563	5.994	5.563	0.7615	
	331	5.988	5.519	5.988	5.519	5.988	5.519	0.7596	
	332	6.172	5.797	6.172	5.797	6.172	5.797	0.7768	
	333	6.257	5.850	6.257	5.850	6.257	5.850	0.7818	
	334	6.380	6.171	6.380	6.171	6.380	6.171	0.7976	
	335	6.528	6.175	6.528	6.175	6.528	6.175	0.8027	
	336	6.565	6.046	6.565	6.046	6.565	6.046	0.7993	
	337	6.705	6.252	6.705	6.252	6.705	6.252	0.8112	
	338	6.890	6.457	6.890	6.457	6.890	6.457	0.8241	
	339	6.867	6.476	6.867	6.476	6.867	6.476	0.8240	
	340	7.114	6.677	7.114	6.677	7.114	6.677	0.8383	
	341	7.338	6.940	7.338	6.940	7.338	6.940	0.8535	
	342	7.499	7.077	7.499	7.077	7.499	7.077	0.8625	
	343	7.574	7.181	7.574	7.181	7.574	7.181	0.8677	
	344	7.687	7.286	7.687	7.286	7.687	7.286	0.8741	
	345	7.900	7.477	7.900	7.477	7.900	7.477	0.8857	
1	346	8.086	7.612	8.086	7.612	8.086	7.612	0.8946	
	347	8.109	7.669	8.109	7.669	8.109	7.669	0.8969	
	348	8.348	7.882	8.348	7.882	8.348	7.882	0.9091	
	349	8.501	7.981	8.501	7.981	8.501	7.981	0.9158	
	350	8.599	8.151	8.599	8.151	8.599	8.151	0.9228	
	351	8.809	8.288	8.809	8.288	8.809	8.288	0.9317	
	352	8.840	8.359	8.840	8.359	8.840	8.359	0.9343	
	353	9.023	8.522	9.023	8.522	9.023	8.522	0.9429	
	354	9.146	8.630	9.146	8.630	9.146	8.630	0.9486	
	355	9.166	8.676	9.166	8.676	9.166	8.676	0.9502	
	356	9.341	8.769	9.341	8.769	9.341	8.769	0.9567	
	357	9.541	8.913	9.541	8.913	9.541	8.913	0.9648	
	358	9.586	9.091	9.586	9.091	9.586	9.091	0.9701	
	359	9.655	9.159	9.655	9.159	9.655	9.159	0.9733	
	360	9.836	9.270	9.836	9.270	9.836	9.270	0.9799	
	361	9.872	9.300	9.872	9.300	9.872	9.300	0.9814	
	362	10.070	9.416	10.070	9.416	10.070	9.416	0.9884	
	363	10.059	9.519	10.059	9.519	10.059	9.519	0.9906	
	364	10.181	9.546	10.181	9.546	10.181	9.546	0.9938	
	365	10.262	9.661	10.262	9.661	10.262	9.661	0.9981	
	366	10.309	9.725	10.309	9.725	10.309	9.725	1.0005	

FIG. 5B

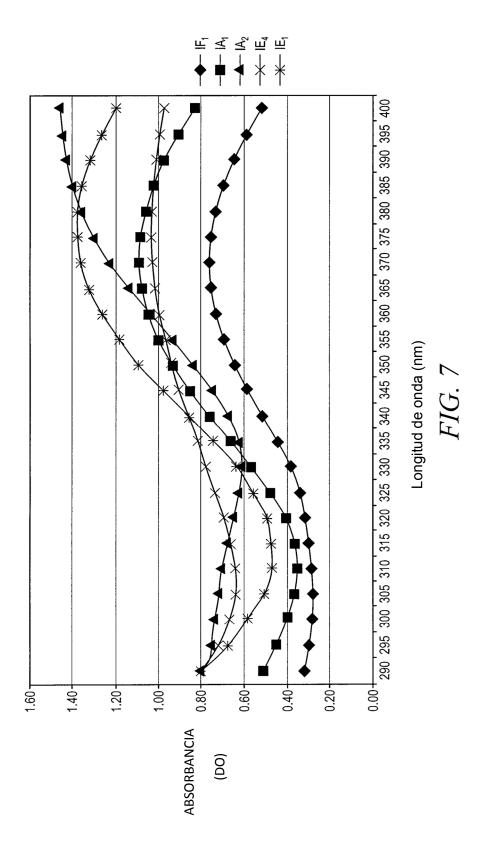
 367	10.316	9.775	10.316	9.775	10.316	9.775	1.0018	
368	10.464	9.935	10.464	9.935	10.464	9.935	1.0084	
369	10.514	9.898	10.514	9.898	10.514	9.898	1.0087	
370	10.547	10.014	10.547	10.014	10.547	10.014	1.0119	
371	10.610	9.925	10.610	9.925	10.610	9.925	1.0112	
372	10.628	9.991	10.628	9.991	10.628	9.991	1.0130	
373	10.609	9.975	10.609	9.975	10.609	9.975	1.0123	
374	10.601	10.044	10.601	10.044	10.601	10.044	1.0136	
375	10.654	10.046	10.654	10.046	10.654	10.046	1.0147	
376	10.694	10.076	10.694	10.076	10.694	10.076	1.0162	
377	10.675	10.035	10.675	10.035	10.675	10.035	1.0149	
378	10.659	10.039	10.659	10.039	10.659	10.039	1.0147	
379	10.690	9.997	10.690	9.997	10.690	9.997	1.0144	
380	10.657	10.036	10.657	10.036	10.657	10.036	1.0146	
381	10.594	10.021	10.594	10.021	10.594	10.021	1.0130	
382	10.570	9.967	10.570	9.967	10.570	9.967	1.0113	
383	10.527	9.939	10.527	9.939	10.527	9.939	1.0098	
384	10.482	9.879	10.482	9.879	10.482	9.879	1.0076	
385	10.429	9.830	10.429	9.830	10.429	9.830	1.0054	
386	10.385	9.811	10.385	9.811	10.385	9.811	1.0041	
387	10.326	9.747	10.326	9.747	10.326	9.747	1.0014	
388	10.311	9.705	10.311	9.705	10.311	9.705	1.0002	
389	10.227	9.650	10.227	9.650	10.227	9.650	0.9972	
390	10.128	9.572	10.128	9.572	10.128	9.572	0.9932	
391	10.050	9.521	10.050	9.521	10.050	9.521	0.9904	
392	10.002	9.478	10.002	9.478	10.002	9.478	0.9884	
393	9.940	9.407	9.940	9.407	9.940	9.407	0.9854	
394	9.875	9.332	9.875	9.332	9.875	9.332	0.9822	
395	9.822	9.306	9.822	9.306	9.822	9.306	0.9805	
396	9.749	9.229	9.749	9.229	9.749	9.229	0.9771	
397	9.650	9.144	9.650	9.144	9.650	9.144	0.9728	
398	9.551	9.064	9.551	9.064	9.551	9.064	0.9687	
399	9.478	8.972	9.478	8.972	9.478	8.972	0.9648	
400	9.385	8.901	9.385	8.901	9.385	8.901	0.9609	

FIG. 5C

	FIG. 6A
FIG. 6	FIG. 6B
	FIG. 6C

Tramitancia de UV a cada longitud de onda (nm) para el compuesto IE₁

290				I a		·	-	
291 5.741 5.984 5.741 5.984 0.7680 292 5.550 5.690 5.550 5.690 5.550 5.690 0.7497 293 5.232 5.484 5.232 5.484 5.232 5.484 0.7289 294 4.918 5.187 4.918 5.187 4.918 5.187 0.7034 295 4.726 4.874 <t< td=""><td>WL (nm)</td><td>Scan 1</td><td>Scan 2</td><td>Scan 3</td><td>Scan 4</td><td>Scan 5</td><td>Scan 6</td><td>Blanco</td></t<>	WL (nm)	Scan 1	Scan 2	Scan 3	Scan 4	Scan 5	Scan 6	Blanco
292 5.550 5.690 5.550 5.690 5.550 5.690 0.7497 293 5.232 5.484 5.232 5.484 5.232 5.484 0.7289 294 4.918 5.187 4.918 5.187 4.918 5.187 0.7034 295 4.726 4.874 4.726 4.874 4.726 4.874 0.6812 296 4.489 4.640 4.489 4.640 4.489 4.640 0.6593 297 4.375 4.498 4.375 4.498 4.375 4.498 0.6470 298 4.152 4.297 4.152 4.297 4.152 4.297 0.6257 299 3.935 4.094 3.935 4.094 3.935 4.094 0.6036 300 3.751 3.889 3.751 3.889 3.751 3.889 0.5820 301 3.656 3.822 3.656 3.822 3.658 3.822 0.5520 303			i .		i			
293 5.232 5.484 5.232 5.484 6.232 5.484 0.7289 294 4.918 5.187 4.918 5.187 4.918 5.187 0.7034 295 4.726 4.874 4.726 4.874 4.726 4.874 0.6812 296 4.489 4.640 4.489 4.640 0.6593 297 4.375 4.498 4.375 4.498 4.375 4.498 0.6470 298 4.152 4.297 4.152 4.297 4.152 4.297 0.6257 299 3.935 4.094 3.935 4.094 3.935 4.094 0.6036 300 3.751 3.889 3.751 3.889 3.751 3.889 0.5820 301 3.656 3.822 3.656 3.822 3.656 3.822 0.5726 302 3.499 3.619 3.499 3.619 3.499 3.619 3.499 3.619 0.5512 303			1		1			
294 4.918 5.187 4.918 5.187 4.918 5.187 0.7034 295 4.726 4.874 4.726 4.874 4.726 4.874 0.6812 296 4.489 4.640 4.489 4.640 4.489 4.640 0.6593 297 4.375 4.498 4.375 4.498 4.375 4.498 0.6470 298 4.152 4.297 4.152 4.297 0.6257 299 3.935 4.094 3.935 4.094 3.935 4.094 0.6036 300 3.751 3.889 3.751 3.889 3.751 3.889 0.5820 301 3.656 3.822 3.656 3.822 3.656 3.822 0.5726 302 3.499 3.619 3.499 3.619 3.499 3.619 3.499 3.619 3.499 3.619 3.499 3.619 3.499 3.619 3.499 3.619 3.499 3.619 3.499			ì	i :	1			1
295 4.726 4.874 4.726 4.874 4.726 4.874 0.6812 296 4.489 4.640 4.489 4.640 0.6593 297 4.375 4.498 4.375 4.498 4.375 4.498 0.6470 298 4.152 4.297 4.152 4.297 4.152 4.297 0.6257 299 3.935 4.094 3.935 4.094 3.935 4.094 0.6036 300 3.751 3.889 3.751 3.889 0.5820 301 3.656 3.822 3.656 3.822 3.656 3.822 0.5726 302 3.499 3.619 3.499 3.619 3.499 3.619 3.499 3.619 0.5512 303 3.433 3.558 3.433 3.558 3.433 3.558 0.5434 304 3.303 3.366 3.303 3.386 3.303 3.386 0.5243 305 3.160 3.262	293	5.232	5.484	5.232	5.484	5.232	5.484	0.7289
296 4.489 4.640 4.489 4.640 0.6593 297 4.375 4.498 4.375 4.498 0.6470 298 4.152 4.297 4.152 4.297 4.152 4.297 0.6257 299 3.935 4.094 3.935 4.094 3.935 4.094 0.6036 300 3.751 3.889 3.751 3.889 3.751 3.889 0.5820 301 3.656 3.822 3.656 3.822 3.656 3.822 0.5726 302 3.499 3.619 3.499 3.619 3.499 3.619 0.5512 303 3.433 3.558 3.433 3.558 3.433 3.558 0.5434 304 3.303 3.386 3.303 3.386 3.303 3.386 0.5243 305 3.160 3.262 3.160 3.262 0.5065 306 3.137 3.220 3.137 3.220 0.5022 <t< td=""><td>294</td><td>4.918</td><td>5.187</td><td>4.918</td><td>5.187</td><td>4.918</td><td>5.187</td><td>0.7034</td></t<>	294	4.918	5.187	4.918	5.187	4.918	5.187	0.7034
297 4.375 4.498 4.375 4.498 4.375 4.498 0.6470 298 4.152 4.297 4.152 4.297 4.152 4.297 0.6257 299 3.935 4.094 3.935 4.094 3.935 4.094 0.6036 300 3.751 3.889 3.751 3.889 0.5820 301 3.656 3.822 3.656 3.822 0.5726 302 3.499 3.619 3.499 3.619 3.499 3.619 0.5512 303 3.433 3.558 3.433 3.558 0.5434 304 3.303 3.386 3.303 3.386 3.303 3.386 0.5243 305 3.160 3.262 3.160 3.262 3.160 3.262 0.5065 306 3.137 3.220 3.137 3.220 0.5022 307 3.053 3.153 3.053 3.153 3.053 3.153 0.4917 <t< td=""><td>295</td><td>4.726</td><td>4.874</td><td>4.726</td><td>4.874</td><td>4.726</td><td>4.874</td><td>0.6812</td></t<>	295	4.726	4.874	4.726	4.874	4.726	4.874	0.6812
298 4.152 4.297 4.152 4.297 4.152 4.297 0.6257 299 3.935 4.094 3.935 4.094 3.935 4.094 0.6036 300 3.751 3.889 3.751 3.889 0.5820 301 3.656 3.822 3.656 3.822 0.5726 302 3.499 3.619 3.499 3.619 0.5512 303 3.433 3.558 3.433 3.558 0.5434 304 3.303 3.386 3.303 3.386 0.5243 305 3.160 3.262 3.160 3.262 3.160 3.262 0.5065 306 3.137 3.220 3.137 3.220 3.137 3.220 0.5022 307 3.053 3.153 3.053 3.153 3.053 3.153 0.4917 308 3.001 3.095 3.001 3.095 3.001 3.095 0.4810 309 2.966	296	4.489	4.640	4.489	4.640	4.489	4.640	0.6593
299 3.935 4.094 3.935 4.094 3.935 4.094 0.6036 300 3.751 3.889 3.751 3.889 0.5820 301 3.656 3.822 3.656 3.822 0.5726 302 3.499 3.619 3.499 3.619 3.499 3.619 0.5512 303 3.433 3.558 3.433 3.558 3.433 3.558 0.5434 304 3.303 3.386 3.303 3.386 3.303 3.386 0.5243 305 3.160 3.262 3.160 3.262 3.160 3.262 0.5065 306 3.137 3.220 3.137 3.220 3.137 3.220 0.5022 307 3.053 3.153 3.053 3.153 3.053 3.153 0.4917 308 3.001 3.095 3.001 3.095 3.001 3.095 0.4840 309 2.966 3.043 2.966 3.043	297	4.375	4.498	4.375	4.498	4.375	4.498	0.6470
300 3.751 3.889 3.751 3.889 3.751 3.889 0.5820 301 3.656 3.822 3.656 3.822 0.5726 302 3.499 3.619 3.499 3.619 0.5512 303 3.433 3.558 3.433 3.558 0.5434 304 3.303 3.386 3.303 3.386 0.5243 305 3.160 3.262 3.160 3.262 3.160 3.262 0.5065 306 3.137 3.220 3.137 3.220 3.153 3.053 3.153 0.4917 308 3.001 3.095 3.001 3.095 3.001 3.095 3.001 3.095 0.4917 310 2.966 3.043 2.966 3.043 2.966 3.043 2.966 3.043 2.946 311 2.930 3.012 2.930 3.012 2.930 3.012 2.984 0.4688 313 2.872 2.960<	298	4.152	4.297	4.152	4.297	4.152	4.297	0.6257
301 3.656 3.822 3.656 3.822 0.5726 302 3.499 3.619 3.499 3.619 0.5512 303 3.433 3.558 3.433 3.558 0.5434 304 3.303 3.386 3.303 3.386 0.5243 305 3.160 3.262 3.160 3.262 3.160 3.262 0.5065 306 3.137 3.220 3.137 3.220 3.153 3.053 3.153 0.4917 308 3.001 3.095 3.001 3.095 3.001 3.095 3.001 3.095 0.4840 309 2.966 3.043 2.966 3.043 2.966 3.043 0.4777 310 2.902 2.984 2.902 2.984 0.4688 311 2.930 3.012 2.930 3.012 2.930 3.012 0.4728 312 2.927 2.960 2.927 2.960 2.927 2.960 0.468	299	3.935	4.094	3.935	4.094	3.935	4.094	0.6036
302 3.499 3.619 3.499 3.619 3.499 3.619 0.5512 303 3.433 3.558 3.433 3.558 0.5434 304 3.303 3.386 3.303 3.386 0.5243 305 3.160 3.262 3.160 3.262 0.5065 306 3.137 3.220 3.137 3.220 0.5022 307 3.053 3.153 3.053 3.153 3.053 3.153 0.4917 308 3.001 3.095 3.001 3.095 3.001 3.095 0.4840 309 2.966 3.043 2.966 3.043 2.966 3.043 0.4777 310 2.902 2.984 2.902 2.984 2.902 2.984 0.4688 311 2.930 3.012 2.930 3.012 2.927 2.960 0.4728 313 2.872 2.986 2.872 2.986 2.872 2.986 0.4688 <t< td=""><td>300</td><td>3.751</td><td>3.889</td><td>3.751</td><td>3.889</td><td>3.751</td><td>3.889</td><td>0.5820</td></t<>	300	3.751	3.889	3.751	3.889	3.751	3.889	0.5820
303 3.433 3.558 3.433 3.558 3.433 3.558 0.5434 304 3.303 3.386 3.303 3.386 3.303 3.386 0.5243 305 3.160 3.262 3.160 3.262 0.5065 0.5065 306 3.137 3.220 3.137 3.220 0.5022 307 3.053 3.153 3.053 3.153 3.053 3.153 0.4917 308 3.001 3.095 3.001 3.095 3.001 3.095 0.4840 309 2.966 3.043 2.966 3.043 2.966 3.043 0.4777 310 2.902 2.984 2.902 2.984 2.902 2.984 0.4688 311 2.930 3.012 2.930 3.012 2.930 3.012 0.4728 312 2.927 2.960 2.927 2.960 2.927 2.960 0.4688 313 2.872 2.986 2.87	301	3.656	3.822	3.656	3.822	3.656	3.822	0.5726
304 3.303 3.386 3.303 3.386 3.303 3.386 0.5243 305 3.160 3.262 3.160 3.262 3.160 3.262 0.5065 306 3.137 3.220 3.137 3.220 0.5022 307 3.053 3.153 3.053 3.153 3.053 3.153 0.4917 308 3.001 3.095 3.001 3.095 3.001 3.095 0.4840 309 2.966 3.043 2.966 3.043 2.966 3.043 0.4777 310 2.902 2.984 2.902 2.984 2.902 2.984 0.4688 311 2.930 3.012 2.930 3.012 2.930 3.012 0.4728 312 2.927 2.960 2.927 2.960 2.927 2.960 0.4688 313 2.872 2.986 2.872 2.986 2.872 2.986 0.4726 314 2.937 3.001	302	3.499	3.619	3.499	3.619	3.499	3.619	0.5512
305 3.160 3.262 3.160 3.262 3.160 3.262 0.5065 306 3.137 3.220 3.137 3.220 3.137 3.220 0.5022 307 3.053 3.153 3.053 3.153 3.053 3.153 0.4917 308 3.001 3.095 3.001 3.095 3.001 3.095 0.4840 309 2.966 3.043 2.966 3.043 2.966 3.043 0.4777 310 2.902 2.984 2.902 2.984 2.902 2.984 0.4688 311 2.930 3.012 2.930 3.012 2.930 3.012 0.4728 312 2.927 2.960 2.927 2.960 2.927 2.960 0.4688 313 2.872 2.986 2.872 2.986 2.872 2.986 0.4666 314 2.937 3.001 2.937 3.001 0.4726 315 2.953 3.028	303	3.433	3.558	3.433	3.558	3.433	3.558	0.5434
306 3.137 3.220 3.137 3.220 3.153 3.053 3.153 3.053 3.153 3.053 3.153 3.053 3.153 0.4917 308 3.001 3.095 3.001 3.095 3.001 3.095 0.4840 309 2.966 3.043 2.966 3.043 2.966 3.043 0.4777 310 2.902 2.984 2.902 2.984 2.902 2.984 0.4688 311 2.930 3.012 2.930 3.012 2.930 3.012 0.4728 312 2.927 2.960 2.927 2.960 2.927 2.960 0.4688 313 2.872 2.986 2.872 2.986 2.872 2.986 0.4666 314 2.937 3.001 2.937 3.001 2.937 3.001 0.4726 315 2.953 3.028 2.953 3.028 2.953 3.028 0.4757 316 2.970	304	3.303	3.386	3.303	3.386	3.303	3.386	0.5243
307 3.053 3.153 3.053 3.153 0.4917 308 3.001 3.095 3.001 3.095 3.001 3.095 0.4840 309 2.966 3.043 2.966 3.043 2.966 3.043 0.4777 310 2.902 2.984 2.902 2.984 2.902 2.984 0.4688 311 2.930 3.012 2.930 3.012 2.930 3.012 0.4728 312 2.927 2.960 2.927 2.960 2.927 2.960 0.4688 313 2.872 2.986 2.872 2.986 2.872 2.986 0.4666 314 2.937 3.001 2.937 3.001 2.937 3.001 0.4726 315 2.953 3.028 2.953 3.028 2.953 3.028 0.4757 316 2.970 3.016 2.970 3.016 0.4761 317 2.963 3.060 2.963 3.060	305	3.160	3.262	3.160	3.262	3.160	3.262	0.5065
308 3.001 3.095 3.001 3.095 3.001 3.095 0.4840 309 2.966 3.043 2.966 3.043 2.966 3.043 0.4777 310 2.902 2.984 2.902 2.984 2.902 2.984 0.4688 311 2.930 3.012 2.930 3.012 2.930 3.012 0.4728 312 2.927 2.960 2.927 2.960 2.927 2.960 0.4688 313 2.872 2.986 2.872 2.986 2.872 2.986 0.4666 314 2.937 3.001 2.937 3.001 0.4726 315 2.953 3.028 2.953 3.028 2.953 3.028 0.4757 316 2.970 3.016 2.970 3.016 2.970 3.016 0.4761 317 2.963 3.060 2.963 3.060 2.963 3.060 0.4788 318 3.045 3.147	306	3.137	3.220	3.137	3.220	3.137	3.220	0.5022
309 2.966 3.043 2.966 3.043 2.966 3.043 0.4777 310 2.902 2.984 2.902 2.984 2.902 2.984 0.4688 311 2.930 3.012 2.930 3.012 2.930 3.012 0.4728 312 2.927 2.960 2.927 2.960 2.927 2.960 0.4688 313 2.872 2.986 2.872 2.986 2.872 2.986 0.4666 314 2.937 3.001 2.937 3.001 0.4726 315 2.953 3.028 2.953 3.028 2.953 3.028 0.4757 316 2.970 3.016 2.970 3.016 2.970 3.016 0.4761 317 2.963 3.060 2.963 3.060 2.963 3.060 0.4788 318 3.045 3.106 3.045 3.106 3.045 3.106 0.4879 320 3.111 3.199	307	3.053	3.153	3.053	3.153	3.053	3.153	0.4917
310 2.902 2.984 2.902 2.984 2.902 2.984 0.4688 311 2.930 3.012 2.930 3.012 2.930 3.012 0.4728 312 2.927 2.960 2.927 2.960 2.927 2.960 0.4688 313 2.872 2.986 2.872 2.986 2.872 2.986 0.4666 314 2.937 3.001 2.937 3.001 2.937 3.001 0.4726 315 2.953 3.028 2.953 3.028 2.953 3.028 0.4757 316 2.970 3.016 2.970 3.016 2.970 3.016 0.4761 317 2.963 3.060 2.963 3.060 2.963 3.060 0.4788 318 3.045 3.106 3.045 3.106 3.045 3.106 0.4879 320 3.111 3.199 3.111 3.199 3.111 3.199 0.4990 321	308	3.001	3.095	3.001	3.095	3.001	3.095	0.4840
311 2.930 3.012 2.930 3.012 2.930 3.012 0.4728 312 2.927 2.960 2.927 2.960 2.927 2.960 0.4688 313 2.872 2.986 2.872 2.986 2.872 2.986 0.4666 314 2.937 3.001 2.937 3.001 0.4726 315 2.953 3.028 2.953 3.028 2.953 3.028 0.4757 316 2.970 3.016 2.970 3.016 2.970 3.016 0.4761 317 2.963 3.060 2.963 3.060 2.963 3.060 0.4788 318 3.045 3.106 3.045 3.106 3.045 3.106 0.4879 319 3.038 3.147 3.038 3.147 3.038 3.147 0.4902 320 3.111 3.199 3.111 3.199 3.111 3.199 0.5058 322 3.278 3.382	309	2.966	3.043	2.966	3.043	2.966	3.043	0.4777
312 2.927 2.960 2.927 2.960 2.927 2.960 0.4688 313 2.872 2.986 2.872 2.986 2.872 2.986 0.4666 314 2.937 3.001 2.937 3.001 0.4726 315 2.953 3.028 2.953 3.028 2.953 3.028 0.4757 316 2.970 3.016 2.970 3.016 2.970 3.016 0.4761 317 2.963 3.060 2.963 3.060 2.963 3.060 0.4788 318 3.045 3.106 3.045 3.106 3.045 3.106 0.4879 319 3.038 3.147 3.038 3.147 3.038 3.147 0.4902 320 3.111 3.199 3.111 3.199 3.111 3.199 0.4990 321 3.278 3.382 3.278 3.382 3.278 3.382 0.5024	310	2.902	2.984	2.902	2.984	2.902	2.984	0.4688
313 2.872 2.986 2.872 2.986 2.872 2.986 0.4666 314 2.937 3.001 2.937 3.001 2.937 3.001 0.4726 315 2.953 3.028 2.953 3.028 2.953 3.028 0.4757 316 2.970 3.016 2.970 3.016 2.970 3.016 0.4761 317 2.963 3.060 2.963 3.060 2.963 3.060 0.4788 318 3.045 3.106 3.045 3.106 3.045 3.106 0.4879 319 3.038 3.147 3.038 3.147 3.038 3.147 0.4902 320 3.111 3.199 3.111 3.199 3.111 3.199 0.4990 321 3.161 3.250 3.161 3.250 3.161 3.250 0.5058 322 3.278 3.382 3.278 3.382 3.278 3.382 0.5224	311	2.930	3.012	2.930	3.012	2.930	3.012	0.4728
314 2.937 3.001 2.937 3.001 2.937 3.001 0.4726 315 2.953 3.028 2.953 3.028 2.953 3.028 0.4757 316 2.970 3.016 2.970 3.016 2.970 3.016 0.4761 317 2.963 3.060 2.963 3.060 2.963 3.060 0.4788 318 3.045 3.106 3.045 3.106 3.045 3.106 0.4879 319 3.038 3.147 3.038 3.147 3.038 3.147 0.4902 320 3.111 3.199 3.111 3.199 3.111 3.199 0.4990 321 3.161 3.250 3.161 3.250 3.161 3.250 0.5058 322 3.278 3.382 3.278 3.382 3.278 3.382 0.5224	312	2.927	2.960	2.927	2.960	2.927	2.960	0.4688
315 2.953 3.028 2.953 3.028 2.953 3.028 0.4757 316 2.970 3.016 2.970 3.016 2.970 3.016 0.4761 317 2.963 3.060 2.963 3.060 2.963 3.060 0.4788 318 3.045 3.106 3.045 3.106 3.045 3.106 0.4879 319 3.038 3.147 3.038 3.147 3.038 3.147 0.4902 320 3.111 3.199 3.111 3.199 3.111 3.199 0.4990 321 3.161 3.250 3.161 3.250 3.161 3.250 0.5058 322 3.278 3.382 3.278 3.382 3.278 3.382 0.5224	313	2.872	2.986	2.872	2.986	2.872	2.986	0.4666
316 2.970 3.016 2.970 3.016 2.970 3.016 0.4761 317 2.963 3.060 2.963 3.060 2.963 3.060 0.4788 318 3.045 3.106 3.045 3.106 3.045 3.106 0.4879 319 3.038 3.147 3.038 3.147 0.4902 320 3.111 3.199 3.111 3.199 3.111 3.199 0.4990 321 3.161 3.250 3.161 3.250 3.161 3.250 0.5058 322 3.278 3.382 3.278 3.382 3.278 3.382 0.5224	314	2.937	3.001	2.937	3.001	2.937	3.001	0.4726
317 2.963 3.060 2.963 3.060 2.963 3.060 0.4788 318 3.045 3.106 3.045 3.106 3.045 3.106 0.4879 319 3.038 3.147 3.038 3.147 3.038 3.147 0.4902 320 3.111 3.199 3.111 3.199 3.111 3.199 0.4990 321 3.161 3.250 3.161 3.250 3.161 3.250 0.5058 322 3.278 3.382 3.278 3.382 3.278 3.382 0.5224	315	2.953	3.028	2.953	3.028	2.953	3.028	0.4757
318 3.045 3.106 3.045 3.106 3.045 3.106 0.4879 319 3.038 3.147 3.038 3.147 3.038 3.147 0.4902 320 3.111 3.199 3.111 3.199 3.111 3.199 0.4990 321 3.161 3.250 3.161 3.250 3.161 3.250 0.5058 322 3.278 3.382 3.278 3.382 3.278 3.382 0.5224	316	2.970	3.016	2.970	3.016	2.970	3.016	0.4761
319 3.038 3.147 3.038 3.147 3.038 3.147 0.4902 320 3.111 3.199 3.111 3.199 3.111 3.199 0.4990 321 3.161 3.250 3.161 3.250 3.161 3.250 0.5058 322 3.278 3.382 3.278 3.382 3.278 3.382 0.5224	317	2.963	3.060	2.963	3.060	2.963	3.060	0.4788
319 3.038 3.147 3.038 3.147 3.038 3.147 0.4902 320 3.111 3.199 3.111 3.199 3.111 3.199 0.4990 321 3.161 3.250 3.161 3.250 3.161 3.250 0.5058 322 3.278 3.382 3.278 3.382 3.278 3.382 0.5224	318	3.045	3.106	3.045	3.106	3.045	3.106	0.4879
320 3.111 3.199 3.111 3.199 3.111 3.199 0.4990 321 3.161 3.250 3.161 3.250 3.161 3.250 0.5058 322 3.278 3.382 3.278 3.382 3.278 3.382 0.5224	319	3.038	3.147	3.038	3.147	3.038	3.147	0.4902
321 3.161 3.250 3.161 3.250 3.161 3.250 0.5058 322 3.278 3.382 3.278 3.382 3.278 3.382 3.278 3.382					3.199	3.111	3.199	0.4990
322 3.278 3.382 3.278 3.382 3.278 3.382 0.5224								0.5058
								1
323 3.295 3.415 3.295 3.415 3.295 3.415 0.5256		1						0.5256


FIG. 6A

324	3.461	3.537	3.461	3.537	3.461	3.537	0.5439	
325	3.551	3.654	3.551	3.654	3.551	3.654	0.5565	
326	3.688	3.828	3.688	3.828	3.688	3.828	0.5749	
327	3.776	3.918	3.776	3.918	3.776	3.918	0.5850	
328	3.956	4.098	3.956	4.098	3.956	4.098	0.6049	
329	4.173	4.320	4.173	4.320	4.173	4.320	0.6280	
330	4.274	4.447	4.274	4.447	4.274	4.447	0.6395	
331	4.442	4.590	4.442	4.590	4.442	4.590	0.6547	
332	4.717	4.876	4.717	4.876	4.717	4.876	0.6808	
333	4.993	5.179	4.993	5.179	4.993	5.179	0.7063	
334	5.142	5.352	5.142	5.352	5.142	5.352	0.7198	
335	5.496	5.676	5.496	5.676	5.496	5.676	0.7470	
336	5.681	5.817	5.681	5.817	5.681	5.817	0.7596	
337	6.021	6.254	6.021	6.254	6.021	6.254	0.7879	
338	6.403	6.562	6.403	6.562	6.403	6.562	0.8117	
339	6.660	6.837	6.660	6.837	6.660	6.837	0.8292	
340	7.015	7.413	7.015	7.413	7.015	7.413	0.8580	
341	7.467	7.816	7.467	7.816	7.467	7.816	0.8831	
342	8.040	8.362	8.040	8.362	8.040	8.362	0.9138	
343	8.403	8.758	8.403	8.758	8.403	8.758	0.9334	
344	8.944	9.242	8.944	9.242	8.944	9.242	0.9586	
345	9.403	9.881	9.403	9.881	9.403	9.881	0.9841	
346	10.046	10.450	10.046	10.450	10.046	10.450	1.0106	
347	10.556	10.943	10.556	10.943	10.556	10.943	1.0313	
348	11.095	11.626	11.095	11.626	11.095	11.626	1.0553	
349	11.747	12.225	11.747	12.225	11.747	12.225	1.0786	
350	12.281	12.935	12.281	12.935	12.281	12.935	1.1005	
351	12.983	13.631	12.983	13.631	12.983	13.631	1.1239	
352	13.487	14.090	13.487	14.090	13.487	14.090	1.1394	
353	14.164	14.852	14.164	14.852	14.164	14.852	1.1615	
354	14.773	15.406	14.773	15.406	14.773	15.406	1.1786	
355	15.180	15.938	15.180	15.938	15.180	15.938	1.1919	
356	15.873	16.695	15.873	16.695	15.873	16.695	1.2116	
357	16.530	17.381	16.530	17.381	16.530	17.381	1.2292	
358	17.005	17.767	17.005	17.767	17.005	17.767	1.2401	
359	17.718	18.572	17.718	18.572	17.718	18.572	1.2586	
360	18.274	19.038	18.274	19.038	18.274	19.038	1.2707	
361	18.786	19.517	18.786	19.517	18.786	19.517	1.2821	
362	19.315	20.375	19.315	20.375	19.315	20.375	1.2975	
363	19.929	20.916	19.929	20.916	19.929	20.916	1.3100	
364	20.417	21.106	20.417	21.106	20.417	21.106	1.3172	
365	20.634	21.826	20.634	21.826	20.634	21.826	1.3268	
366	21.279	22.265	21.279	22.265	21.279	22.265	1.3378	

FIG. 6B

 367	21.632	22.762	21.632	22.762	21.632	22.762	1.3461	
368	21.942	22.904	21.942	22.904	21.942	22.904	1.3506	
369	22.479	23.390	22.479	23.390	22.479	23.390	1.3604	
370	22.832	24.155	22.832	24.155	22.832	24.155	1.3708	
371	22.802	23.876	22.802	23.876	22.802	23.876	1.3680	
372	22.958	24.196	22.958	24.196	22.958	24.196	1.3723	
373	23.130	24.389	23.130	24.389	23.130	24.389	1.3757	
374	23.331	24.460	23.331	24.460	23.331	24.460	1.3782	
375	23.635	24.634	23.635	24.634	23.635	24.634	1.3825	
376	23.461	24.857	23.461	24.857	23.461	24.857	1.3829	
377	23.547	24.658	23.547	24.658	23.547	24.658	1.3819	
378	23.579	24.974	23.579	24.974	23.579	24.974	1.3850	
379	23.614	24.852	23.614	24.852	23.614	24.852	1.3843	
380	23.801	24.880	23.801	24.880	23.801	24.880	1.3862	
381	23.377	24.503	23.377	24.503	23.377	24.503	1.3790	
382	23.193	24.415	23.193	24.415	23.193	24.415	1.3765	
383	23.146	24.229	23.146	24.229	23.146	24.229	1.3744	
384	22.855	23.788	22.855	23.788	22.855	23.788	1.3677	
385	22.435	23.521	22.435	23.521	22.435	23.521	1.3612	
386	22.129	23.241	22.129	23.241	22.129	23.241	1.3556	
387	21.832	22.763	21.832	22.763	21.832	22.763	1.3482	
388	21.346	22.406	21.346	22.406	21.346	22.406	1.3398	
389	20.874	21.951	20.874	21.951	20.874	21.951	1.3305	
390	20.546	21.445	20.546	21.445	20.546	21.445	1.3220	
391	20.006	20.969	20.006	20.969	20.006	20.969	1.3114	
392	19.486	20.488	19.486	20.488	19.486	20.488	1.3006	
393	19.095	19.960	19.095	19.960	19.095	19.960	1.2905	
394	18.524	19.501	18.524	19.501	18.524	19.501	1.2789	
395	18.138	19.054	18.138	19.054	18.138	19.054	1.2693	
396	17.704	18.475	17.704	18.475	17.704	18.475	1.2573	
397	17.042	17.905	17.042	17.905	17.042	17.905	1.2423	
398	16.492	17.283	16.492	17.283	16.492	17.283	1.2275	
399	16.011	16.649	16.011	16.649	16.011	16.649	1.2129	
400	15.443	16.084	15.443	16.084	15.443	16.084	1.1976	

FIG. 6C

60