

OFICINA ESPAÑOLA DE PATENTES Y MARCAS

ESPAÑA

11) Número de publicación: 2 676 893

(51) Int. CI.:

G01N 33/574 (2006.01)

(12)

TRADUCCIÓN DE PATENTE EUROPEA

T3

86) Fecha de presentación y número de la solicitud internacional: 18.12.2013 PCT/JP2013/083915

(87) Fecha y número de publicación internacional: 26.06.2014 WO14098135

(96) Fecha de presentación y número de la solicitud europea: 18.12.2013 E 13865260 (7)

(97) Fecha y número de publicación de la concesión europea: 06.06.2018 EP 2937696

(54) Título: Método para detectar células basales prostáticas

(30) Prioridad:

20.12.2012 JP 2012277980

Fecha de publicación y mención en BOPI de la traducción de la patente: 26.07.2018

(73) Titular/es:

NATIONAL UNIVERSITY CORPORATION HOKKAIDO UNIVERSITY (100.0%) Kita 8-jyo Nishi 5-chome Kita-ku Sapporo-shi, Hokkaido 060-0808, JP

(72) Inventor/es:

HATAKEYAMA, SHIGETSUGU y TANAKA, SHINYA

(74) Agente/Representante:

UNGRÍA LÓPEZ, Javier

DESCRIPCIÓN

Método para detectar células basales prostáticas

Campo técnico

10

20

25

La presente invención se refiere a un método para detectar células basales prostáticas, un método para identificar la presencia, disminución o desaparición de células basales prostáticas. La presente invención permite una detección fiable de células basales prostáticas. La presente invención permite asimismo un diagnóstico definitivo fiable de cáncer de próstata.

Técnica anterior

La próstata normal consiste en células glandulares y células basales y se observa una imagen histológica en la que las células basales están presentes alrededor de las células glandulares.

Los receptores de andrógenos citoqueratina 8 y citoqueratina 18 se expresan específicamente en las células glandulares y la mayoría de los cánceres de próstata expresan receptores de andrógeno citoqueratina 8 o citoqueratina 18, como marcadores de estas células glandulares. Por lo tanto, el cáncer de próstata se considera como derivado de las células glandulares.

Se sabe que las células basales desaparecen en el cáncer de próstata. Por tanto, se realiza un diagnóstico definitivo de cáncer de próstata llevando a cabo una inmunohistotinción de la próstata utilizando un anticuerpo para p63 o citoqueratina expresado en células basales normales e identificando la desaparición de las células basales.

Lista de citas

Bibliografía de patentes

Bibliografía de patente 1: Publicación internacional No. WO 2008/150512
Bibliografía de patente 2: Publicación internacional No. WO 2005/014781
Bibliografía de patente 3: Publicación internacional No. WO 2004/018711
Bibliografía de patente 4: Publicación internacional No. WO 2006/080597
Bibliografía de patente 5: Publicación internacional No. WO 2004/018711

35

40

45

Roy et al (PLOS ONE, 2010, vol. 5, edición 9, páginas 1-2) notifica la expresión génica diferencial de células desde el seno urogenital de embriones murinos de 16 días de vida, principalmente del epitelio del seno urogenital (UGE) frente al epitelio mesénquima del seno urogenital (UGM). Kosaka et al. (Annals de Surgical Oncology, 2007, 14(9): 2543-2549) notifica el aumento de la expresión de ARNm de TRIM29 en tejido de tumor de cáncer gástrico. En la patente internacional WO2006/080597 se notifica asimismo marcadores de diagnóstico de cáncer de pulmón que http://www.archivesofpathology.org/doi/pdf/10.1043/1543comprenden TRIM29. (URL: Paner et al. 2165(2008)132[1388: BPIDIP] 2.0.CO; 2) Rock et al (PNAS, 2009, vol. 106, no 31 pp. 12771-12775) notifica expresión génica diferencial en células basales traqueales murínicas. Asimismo, T. Ernst, et. al. divulga la expresión génica reducida de TRIM29 en cáncer de próstata (American Journal de Pathology, Vol.160(6), junio 2002, páginas 2169-2180).

Sumario de la invención

Problema técnico

50

En relación con la inmunohistotinción de células basales mencionada, a veces resulta difícil determinar si las células basales han desaparecido o no únicamente por inmunohistotinción utilizando un anticuerpo anti-p63 o anticuerpo anti-citoqueratina.

Por tanto, un objeto de la presente invención es proporcionar un método para detectar células basales prostáticas buscando moléculas expresadas específicamente en células basales prostáticas y analizando dichas moléculas.

Solución del problema

60 Como resultado de un exhaustivo estudio sobre moléculas expresadas específicamente en células basales de tejido de próstata normal, los autores de la presente invención han observado de manera sorprendente que la proteína 29 que contiene motivo tripartito (TRIM29) se expresa específicamente en las células basales de tejido de próstata normal. Más adelante, se ha demostrado que las células basales se pueden detectar visualizando la expresión de TRIM29 en tejido de próstata por inmunohistotinción.

65

La presente invención se basa en dichos hallazgos.

Concretamente, la presente invención se refiere a:

5

15

20

30

35

40

45

60

- [1] Un método *in vitro* para detectar células basales prostáticas que comprende visualizar la expresión de proteína 29 que contiene motivo tripartito (TRIM29) en células basales de la próstata por inmunohistotinción;
- [2] El método para detectar células basales prostáticas de acuerdo con [1], que comprende analizar la morfología de la estructura del tejido glandular de la próstata y la expresión de proteína 29 que contiene motivo tripartito (TRIM29) visualizada;
 - [3] El método para detectar células basales prostáticas de acuerdo con [1] o [2], que comprende además visualizar la expresión de citoqueratina y/o proteína p63 por inmunohistotinción;
- 10 [4] El método para detectar células basales prostáticas de acuerdo con [3], que comprende analizar la morfología de la estructura del tejido glandular de la próstata y la expresión de proteína citoqueratina visualizada y/o la expresión de proteína p63 visualizada;
 - [5] El método de cualquiera de los puntos [1] a [4], donde se visualiza la presencia, disminución o desaparición de células basales prostáticas en el tejido de próstata recogido del sujeto en comparación con un tejido de próstata normal.
 - [6] Un método para diagnosticar cáncer de próstata, que comprende una etapa de detección de células basales prostáticas en tejido de próstata recogido de un sujeto por inmunohistotinción utilizando un anticuerpo anti-TRIM29 o un fragmento de unión a antígeno del mismo;
 - [7] El método de diagnóstico de acuerdo con [6], donde la disminución o desaparición de células basales prostáticas en comparación con las de tejido de próstata normal indica la presencia de cáncer de próstata;
 - [8] Uso de un anticuerpo anti-TRIM29 o un fragmento de unión a antígeno del mismo en el diagnóstico *in vitro* de cáncer de próstata a través de la detección de TRIM29 en células basales prostáticas.

Se ha notificado que el gen de TRIM29 está asociado a cáncer de pulmón, adenocarcinoma papilar seroso de ovario y neoplasia intraepitelial cervical (Bibliografía de patentes 1 to 4). Se ha divulgado asimismo un método para predecir un pronóstico de cáncer de próstata examinando 80 ARNm que comprenden TRIM29 (Bibliografía de patente 5). Sin embargo, no se ha notificado que TRIM29 se exprese en células basales de la próstata normal.

Efectos ventajosos de la invención

El método para detectar células basales prostáticas de acuerdo con la presente invención puede detectar de forma fiable células basales prostáticas normales y es útil para realizar estudios histológicos de la próstata. La combinación del método con la inmunohistotinción de citoqueratina y/o p63 expresadas puede detectar con mayor fiabilidad células basales prostáticas.

El método para detectar células basales prostáticas de acuerdo con la presente invención y el método para identificar la presencia, disminución o desaparición de células basales prostáticas de acuerdo con la presente invención permite un diagnóstico definitivo de cáncer de próstata. La combinación de los métodos con la inmunohistotinción de citoqueratina y/o p63 expresadas permite un diagnóstico definitivo más fiable de cáncer de próstata.

Breve descripción de los dibujos

[Figura1] La Figura 1 es una serie de micrografías, en las que se muestra el tejido de próstata normal o tejido de cáncer de próstata sometido a la inmunohistotinción con anticuerpos policlonales anti-TRIM29 o un anticuerpo monoclonal anti-citoqueratina (34βΕ12).

[Figura2] La Figura 2 es un par de micrografías, en las que se muestra tejido de próstata normal sometido a la inmunohistotinición con un anticuerpo monoclonal anti-TRIM29.

[Figura3] La Figura 3 es un par de micrografías, en las que se muestra tejido de próstata normal sometido a la inmunohistotinción con un anticuerpo monoclonal anti-TRIM29 o un anticuerpo monoclonal anti-citoqueratina (34βΕ12).

Descripción de las realizaciones

55 [1] Método para detectar células basales prostáticas

El método para detectar células basales prostáticas de acuerdo con la presente invención comprende visualizar la expresión de proteína 29 que contiene motivo tripartito (TRIM29) en células basales de la próstata por inmunohistotinción. De acuerdo con el método, se puede determinar que células derivadas de la próstata que expresan TRIM29 son células basales sobre la base de su morfología y expresión de proteína. Por otra parte, el método permite la detección de células basales que forman parte de la estructura del tejido glandular identificando la morfología de la estructura del tejido glandular de la próstata y la expresión visualizada de Proteína TRIM29.

La especie animal que tiene células basales prostáticas que se pueden detectar según el método de detección de la presente invención no está limitada siempre y cuando tenga células basales en la próstata; y entre los ejemplos de las especies animales se incluyen mamíferos, como seres humanos, monos, perros, gatos, hurones, vacas,

caballos, cabras, ovejas, cobayas, hámsters, jerbos, ratones o ratas. El método de detección de la presente invención puede utilizarse también en células separadas. Por ejemplo, es posible también aplicar el método a células cultivadas primarias o células de paso que comprenden células basales separadas de cualquiera de los mamíferos mencionados.

<Próstata>

10

25

35

La próstata es una glándula del sistema reproductor masculino y está situada debajo de la vejiga y frente al recto. La próstata se compone de dos tipos de células: las células basales y las células glandulares. Histológicamente, las células basales prostáticas están presentes alrededor de las células glandulares prostáticas.

(Células glandulares prostáticas)

Las células glandulares prostáticas expresan específicamente receptores de andrógeno, citoqueratina 8 y citoqueratina 18, y la mayoría de los cánceres de próstata se derivan de células glandulares prostáticas.

(Células basales prostáticas)

Las células basales prostáticas que se pueden detectar según el método de detección de la presente invención no están limitadas siempre y cuando las células expresen TRIM29. Sin embargo, ello no excluye la presencia de células basales prostáticas que no expresan TRIM29.

Las células basales expresan específicamente p63, citoqueratina 5 y citoqueratina 14 además de TRIM29. Se considera que p63 desempeña un importante papel en el desarrollo de la próstata; se tiñen los núcleos de las células basales por inmunohistotinción con 4A4 que es un anticuerpo monoclonal anti-p63. Citoqueratina 5 y citoqueratina 14 están presentes en el citoplasma y se tiñen por inmunohistotinción con 34βE12 que es un anticuerpo monoclonal anti-citoqueratina. El anticuerpo monoclonal 34βE12 es un anticuerpo que presenta reacciones positivas a citoqueratina 1 y citoqueratina 10 además de a citoqueratina 5 y citoqueratina 14.

30 <TRIM29>

La proteína 29 que contiene motivo tripartito (TRIM29) pertenece a la familia de genes TRIM conocida también como ATDC (proteína asociada a grupo ataxia-telangiectasia D). TRIM29 humana consiste en 588 aminoácidos. TRIM29 tiene una pluralidad de motivos de dedos de zinc y motivos de cremallera de leucina y se une a ADN. Se considera que es posible que TRIM29 funcione como regulador transcripcional en los procesos de diferenciación. Se sabe que TRIM29 está asociado a ataxia-telangiectasia y se ha señalado que está asociada a la función de la supresión de la sensibilidad de radiación.

De acuerdo con la presente divulgación, la secuencia base de un ácido nucleico que codifica proteína TRIM29 40 humana analizable (en adelante, se hace referencia a ella también como gen TRIM29 humano) se presenta en la SEQ ID NO: 1 y la secuencia de aminoácidos de la proteína TRIM29 humana se presenta en la SEQ ID NO: 2. Sin embargo, el gen que se va a analizar no se limita al gen TRIM29 que tiene la secuencia base tal como se presenta en SEQ ID NO: 1 siempre y cuando se exprese en células basales prostáticas y pueda hibridarse con una sonda o un cebador capaz de unirse al gen TRIM29 que tiene la secuencia base de SEQ ID NO: 1. La proteína para su 45 análisis no está limitada a la proteína TRIM29 que tiene la secuencia de aminoácidos presentada en SEQ ID NO: 2 siempre y cuando se exprese en células basales prostáticas y se pueda unir a un anticuerpo capaz de unirse a la proteína que tiene la secuencia de aminoácidos de SEQ ID NO: 2. Es decir, de acuerdo con la presente invención, el TRIM29 que se va a analizar puede ser TRIM29 que tiene mutación o mutaciones, siempre y cuando se exprese en células basales prostáticas. Tampoco se limita a TRIM29 humano y puede ser TRIM29 de mamífero, incluyendo por 50 ejemplo TRIM29 de seres humanos, monos, perros, gatos, hurones, vacas, caballos, cabras, ovejas cobayas, hámster, jerbos, ratones o ratas. Entre los ejemplos de Proteína TRIM29 que tienen una mutación o mutaciones se incluyen, cuando se toma por ejemplo TRIM29 humano, una proteína que consiste en una secuencia de aminoácidos en la que de 1 a varios aminoácidos, p.ej., 1, 2, 3, 4, 5, 6, 7, 8 o 9, están sustituidos, suprimidos, insertados a añadidos en la secuencia de aminoácidos de SEQ ID NO: 2 y una proteína que consiste en una 55 secuencia de aminoácidos que tiene 80 % o más de identidad de secuencia, p.ej., 80 % o más, 85 % o más, 90 % o más, 95 % o más o 98 % o más identidad de secuencia, con la secuencia de aminoácidos de SEQ ID NO: 2.

<Análisis de expresión de proteína TRIM29>

El análisis de expresión de TRIM29 por inmunohistotinción de acuerdo con el método de detección de la presente invención implica, pero no se limita a ello, visualizar la expresión de Proteína TRIM29. Mediante la visualización de la expresión de proteína TRIM29, se pueden identificar morfológicamente células basales prostáticas en las mismas células basales y las morfologías de células basales prostáticas y la estructura del tejido glandular de la próstata se puede identificar sobre la base de la expresión de proteína TRIM29. Es decir, el método de detección de la presente invención implica preferentemente analizar, en células basales que forman parte de la estructura del tejido glandular, la morfología de la estructura del tejido glandular de la próstata y la expresión visualizada de Proteína TRIM29.

Tal como se emplea en el presente documento, la "visualización" no significa solamente la identificación total de la coloración o fluorescencia que resultan de la inmunohistotinción a través de un microscopio óptico o un microscopio de fluorescencia, sino que incluye, por ejemplo, la detección mecánica de coloración, fluorescencia, luminiscencia o radiación (es decir, una señal) seguido de la identificación de una imagen o similar obtenida por representación en imagen de la señal.

Tal como se emplea en el presente documento, el "análisis de la morfología de la estructura del tejido glandular de la próstata y la expresión de la proteína 29 que contiene motivo tripartito (TRIM29) visualizada" incluye no solo la observación simultánea de la morfología de la estructura del tejido glandular de la próstata y la expresión de proteína TRIM29, sino también, por ejemplo, la observación de la morfología de la estructura del tejido glandular de la próstata en comparación con la imagen o similar obtenida por representación en imagen de la señal.

El análisis de la proteína TRIM29 en células basales prostáticas se lleva a cabo por inmunohistotinción, ya que pueden identificarse por inmunohistotinción la posición de células basales en el tejido de próstata o la morfología de células basales.

(Inmunohistotinción)

10

15

35

40

45

60

65

La inmunohistotinción es una técnica establecida y se puede llevar a cabo basándose en un método conocido, excepto por el uso de un anticuerpo específico para TRIM29. Es decir, la inmunohistotinción es un método que implica detectar un antígeno específico expresado en células de cortes de tejido utilizando un anticuerpo que reconoce específicamente el antígeno.

Concretamente, la inmunohistotinción puede llevarse a cabo por ejemplo del siguiente modo. Se congela y se corta tejido de próstata o se corta un bloque de tejido embebido en parafina y fijado para preparar cortes de tejido. Se hace reaccionar un anticuerpo que reconoce TRIM29 con la superficie del corte de tejido. El anticuerpo anti-TRIM29 puede marcarse con una sustancia que emite una señal para detectar proteína TIRM29 en cada corte de tejido. Alternativamente, se puede marcar un segundo anticuerpo para el anticuerpo anti-TRIM29 con una sustancia que emite una señal sin marcar el anticuerpo anti-TRIM29. Por otra parte, es posible unir biotina al anticuerpo anti-TRIM29 o el segundo anticuerpo, seguido de marcado con avidina, específicamente, unión a biotina, con una sustancia que emite una señal.

Entre las sustancias que pueden utilizarse para marcar el anticuerpo se incluyen, pero sin limitarse a ellas, un colorante fluorescente (p.ej., rodamina, fluoresceína, isotiocianato (FITC) o un quelato de metal de tierras raras), una sustancia radioactiva (p.ej., ³H, ¹⁴C o ¹²⁵I) o una enzima (p.ej., peroxidasa, fosfatasa alcalina o β-D-galactosidasa). La detección de una señal se puede llevar a cabo utilizando, pero sin limitarse a ellos, fluorescencia, radiación (autorradiografía), luminiscencia y coloración. Por ejemplo, cuando se utiliza rodamina o FITC como colorante fluorescente, la señal puede detectarse utilizando un microscopio de fluorescencia. Por ejemplo, cuando se utiliza fosfatasa alcalina y se lleva a cabo la coloración utilizando NBT/BCIP, puede detectarse la señal con un microscopio óptico y puede observarse simultáneamente la morfología de las células.

Concretamente, entre los métodos utilizados normalmente se incluyen método peroxidasa anti-peroxidasas (método PAP), un método de complejo estreptavidina-biotina (método ABC), un método de reactivo de polímero en el que se unen un anticuerpo secundario y una enzima marcadora con un polímero y un método en el que se utiliza un anticuerpo primario marcado con FITC o utilizando un anticuerpo anti-FITC marcado con HRP como anticuerpo secundario.

(Anticuerpo anti-TRIM29)

El anticuerpo anti-TRIM29 utilizado para la inmunohistotinción de acuerdo con la presente invención puede prepararse a través de un método conocido, excepto por el uso de proteína TRIM29 o un péptido parcial del mismo como inmunógeno. El anticuerpo anti-TRIM29 puede consistir en anticuerpos policionales o un anticuerpo monoclonal; preferentemente, un anticuerpo monoclonal, ya que un anticuerpo monoclonal suele producir menos reacción cruzada con otras proteínas. Es posible utilizar también un anticuerpo conocido o disponible en el mercado.

Por ejemplo, puede prepararse un anticuerpo monoclonal de acuerdo con el método de Koehler y Milstein (Nature 256: 495-497, 1975). Para los anticuerpos policlonales, por ejemplo, puede mezclarse un antígeno unido a BSA o KLH con un adyuvante, como adyuvante completo de Freund, e inmunizarse inoculándolo intracutáneamente a un conejo de forma periódica, seguido de la recogida de sangre una vez que haya aumentado la titulación del anticuerpo en la sangre y se pueda utilizar la sangre recogida como un antisuero o se puedan purificar los anticuerpos a través de un método conocido antes de su uso.

El anticuerpo utilizado en el método de análisis inmunológico también puede ser un fragmento de anticuerpo que contiene un sitio de unión a antígeno para la proteína TRIM29 (fragmento de unión a antígeno). Entre los ejemplos de fragmento de antígeno se incluyen F(ab')2, Fab', Fab y Fv. Estos fragmentos de anticuerpo pueden obtenerse cada uno de ellos, por ejemplo, por digestión de un anticuerpo con una proteinasa (por ejemplo, pepsina o papaína)

a través de un método convencional y, posteriormente, por purificación del producto resultante a través de un método convencional para separar y purificar una proteína.

En el método para detectar células basales prostáticas de acuerdo con la presente invención, preferentemente, se realiza el análisis de expresión de proteína citoqueratina y/o proteína p63 además del análisis de expresión de proteína TRIM29. Es decir, pueden analizarse la proteína TRIM29 y la proteína citoqueratina; pueden analizarse la proteína TRIM29 y la proteína p63; o pueden analizarse las tres proteínas.

De acuerdo con la presente realización, pueden analizarse 2 o más proteínas en el mismo corte de tejido del mismo sujeto (paciente). Asimismo, es posible analizar por separado 2 o más proteínas en cada corte de tejido diferente del mismo sujeto (paciente).

<Análisis de expresión de proteína citoqueratina>

El análisis por inmunohistotinción de expresión de citoqueratina en el método de detección de la presente invención implica, pero no se limita a ello, visualizar la expresión de proteína citoqueratina. Mediante la visualización de la expresión de proteína citoqueratina, se pueden identificar morfológicamente células basales prostáticas en las mismas células basales y se puede identificar las morfologías de células basales prostáticas y la estructura del tejido glandular de la próstata sobre la base de la expresión de proteína citoqueratina. Es decir, el método de detección de la presente invención implica preferentemente analizar la morfología de la estructura del tejido glandular de la próstata y la expresión de proteína citoqueratina visualizada en células basales que forman parte de la estructura del tejido glandular.

El análisis de expresión de proteína citoqueratina puede llevarse a cabo basándose en un método conocido excepto por el uso de un anticuerpo específico para citoqueratina. Concretamente, puede llevarse a cabo el análisis de acuerdo con el método descrito en "Análisis de expresión de proteína TRIM29" excepto por el uso de un anticuerpo específico para citoqueratina. La secuencia de aminoácidos de citoqueratina 5 se presenta en SEQ ID NO: 4 y la secuencia de aminoácidos de citoqueratina 14 se presenta en SEQ ID NO: 6. La secuencia base que codifica citoqueratina 5 se presenta en SEQ ID NO: 3 y la secuencia base que codifica citoqueratina 14 se presenta en SEQ ID NO: 5.

El anticuerpo específico para citoqueratina puede consistir en anticuerpos policionales o un anticuerpo monocional; preferentemente un anticuerpo monocional, ya que un anticuerpo monocional suele producir menos reacción cruzada con otras proteínas. Es posible utilizar también un anticuerpo conocido o disponible en el mercado. Se puede utilizar por ejemplo anticuerpo monocional 34βE12 que es un anticuerpo monocional anti-citoqueratina disponible en el mercado; este anticuerpo reconoce citoqueratinas 1, 5, 10 y 14.

<Análisis de expresión de proteína p63>

35

50

65

El análisis de expresión de proteína p63 en el método de detección de la presente invención implica, pero no se limita a ellos, visualizar la expresión de proteína p63. Mediante la visualización de la expresión de proteína p63, se pueden identificar morfológicamente células basales prostáticas en las mismas células basales y se puede identificar las morfologías de células basales prostáticas y la estructura del tejido glandular de la próstata sobre la base de la expresión de proteína p63. Es decir, el método de detección de la presente invención implica preferentemente analizar la morfología de la estructura del tejido glandular de la próstata y la expresión de proteína p63 visualizada en células basales que forman parte de la estructura del tejido glandular.

El análisis de expresión de proteína p63 puede llevarse a cabo basándose en un método conocido excepto por el uso de un anticuerpo específico para p63. Concretamente, puede llevarse a cabo el análisis de acuerdo con el método descrito en "análisis de expresión de proteína TRIM29", excepto por el uso de un anticuerpo específico para p63. La secuencia de aminoácidos de p63 se presenta en SEQ ID NO: 8 y la secuencia base que codifica p63 se presenta en SEQ ID NO: 7.

El anticuerpo específico para p63 puede consistir en anticuerpos policionales o un anticuerpo monocional; preferentemente un anticuerpo monocional, ya que un anticuerpo monocional suele producir menos reacción cruzada con otras proteínas. Es posible utilizar también un anticuerpo conocido o disponible en el mercado. Por ejemplo, se puede utilizar un anticuerpo monocional 4A4, que es un anticuerpo monocional anti-p63 disponible en el mercado.

60 [2] Método para identificar la presencia, disminución o desaparición de células basales prostáticas

El método para identificar la presencia, disminución o desaparición de células basales prostáticas de acuerdo con la presente invención comprende visualizar la expresión de proteína 29 que contiene motivo tripartito (TRIM29) en el tejido de próstata por inmunohistotinción aplicando el método para detectar células basales prostáticas de acuerdo con la presente invención. En el de método identificación, se detecta la expresión de proteína TRIM29. La detección de la expresión de proteína TRIM29 puede llevarse a cabo de la misma manera que se ha descrito en "Análisis de

expresión de proteína TRIM29" en el método para detectar células basales prostáticas de acuerdo con la presente invención. Una vez detectadas las células basales prostáticas, se identifica la presencia, disminución o desaparición de las células basales prostáticas.

En el método para identificar la presencia, disminución o desaparición de células basales prostáticas de acuerdo con la presente invención, la visualización de la expresión de proteína TRIM29 por inmunohistotinción permite la observación de la relación entre las morfologías de las células basales y la estructura del tejido glandular de la próstata y la expresión de proteína TRIM29, permitiendo una identificación fiable de la presencia, disminución o desaparición de células basales prostáticas que forman parte de la estructura del tejido glandular.

10

15

20

25

Por ejemplo, cuando se identifica la presencia, disminución o desaparición de células basales prostáticas en secciones de tejido, se puede determinar visualmente la "presencia", "disminución," o "desaparición" de proteína TRIM29 en una muestra de ensayo con un microscopio de fluorescencia o un microscopio óptico sobre la base del nivel de expresión visualizada de proteína TRIM29 en comparación con el nivel de expresión de proteína TRIM29 en las células basales del tejido de próstata normal. Se puede visualizar mecánicamente una señal, como pueda ser coloración, luminiscencia, fluorescencia o radiación en una imagen tomada con una cámara o similar para analizar el nivel de expresión de proteína TRIM29. Dicho método permite determinar la "presencia," "disminución," o "desaparición" de proteína TRIM29 en una muestra de ensayo observando la imagen a simple vista y permite también determinar la "presencia," "disminución," o "desaparición" de proteína TRIM29 por digitalización mecánica de la señal.

Por ejemplo, cuando el nivel de proteína TRIM29 en una muestra de ensayo es comparable según se compara con el nivel de expresión de proteína TRIM29 en células basales del tejido de próstata normal, se puede determinar que están "presentas" células basales prostáticas en la muestra de ensayo. Cuando puede detectarse poca proteína TRIM29 en una muestra de ensayo, es posible determinar que las células basales prostáticas han "desaparecido." Cuando el nivel de la proteína TRIM29 en una muestra de ensayo es intermedio entre el de "presencia" y el de desaparición", se puede determinar la "disminución" de las células basales prostáticas.

<Cáncer de próstata>

30

En el cáncer de próstata, las células basales prostáticas desaparecen completamente o se produce una disminución quedando algunas células. Por tanto, el método para detectar células basales prostáticas y el método para identificar la presencia, disminución y desaparición de células basales prostáticas de acuerdo con la presente invención permite un diagnóstico o un diagnóstico definitivo de cáncer de próstata.

35

40

45

50

55

60

[3] Kit de Inmunohistotinción

El kit de inmunohistotinción kit para detectar células basales prostáticas de acuerdo con la presente divulgación comprende un anticuerpo anti-TRIM29. El kit de inmunohistotinción de la presente divulgación se puede utilizar en el método para detectar células basales prostáticas, el método para identificar la presencia, disminución o desaparición de células basales prostáticas y un método para diagnosticar cáncer de próstata.

el kit de inmunohistotinción de la presente divulgación comprende preferentemente un anticuerpo que se une específicamente a TRIM29 o un fragmento que tiene su sitio de unión a antígeno (fragmento de unión a antígeno) en una forma deseada. El anticuerpo anti-TRIM29 utilizado en este caso puede ser un anticuerpo anti-TRIM29 descrito en "[1] Método para detectar células basales prostáticas." Es decir, el anticuerpo puede ser un anticuerpo monoclonal o anticuerpos policlonales. El fragmento de anticuerpo no está limitado en particular siempre y cuando tenga la capacidad de unirse específicamente a TRIM29, es decir, es un fragmento que tiene el sitio de unión a antígeno (fragmento de unión a antígeno). El fragmento de anticuerpo utilizado en este caso puede ser por ejemplo Fab, Fab', F(ab')2 o Fv.

Por otra parte, el kit de inmunohistotinción para detectar células basales prostáticas de acuerdo con la presente divulgación comprende preferentemente un anticuerpo anti-citoqueratina y/o un anticuerpo anti-p63. El anticuerpo anti-citoqueratina y el anticuerpo anti-citoqueratina y el anticuerpo anti-citoqueratina y el anticuerpo anti-p63 descritos en "[1] Método para detectar células basales prostáticas," o fragmentos que tienen sus sitios de unión a antígeno (fragmentos de unión a antígeno).

Por otra parte, el kit de inmunohistotinción para detectar células basales prostáticas de acuerdo con la presente divulgación puede comprender una enzima como peroxidasa, fosfatasa alcalina, β-D-galactosidasa y glucosa oxidase. El kit puede comprender también, por ejemplo, fluoresceína, isotiocianato o un quelato de metal de tierras raras como sustancia fluorescente. El kit puede comprender un isótopo radioactivo como ³H, ¹⁴C y ¹²⁵I. El kit de acuerdo con la presente invención puede utilizar otras sustancias de marcado como biotina, avidina y una sustancia quimioluminiscente. El kit de la presente divulgación puede comprender por ejemplo un sustrato adecuado para la enzima o la sustancia quimioluminiscente.

65

El kit de la presente divulgación puede comprender instrucciones en las que indique que sirve para detectar de

células basales prostáticas. La descripción al efecto de indicar que sirve para detectar células basales prostáticas puede presentarse en un envase para el kit. Se puede indicar que el kit se utiliza para el diagnóstico o diagnóstico definitivo de cáncer de próstata.

El anticuerpo anti-TRIM29 puede utilizarse para fabricar el kit de inmunohistotinción para detectar células basales prostáticas. El anticuerpo anti-citoqueratina puede utilizarse también para la fabricación del kit de inmunohistotinción para detectar células basales prostáticas. Por otra parte, el anticuerpo anti-p63 puede utilizarse para la fabricación del kit de inmunohistotinción para detectar células basales prostáticas.

10 Ejemplos

A continuación, se describe la presente invención haciendo referencia a los ejemplos.

<Eiemplo 1>

15

20

En este Ejemplo, se llevó a cabo la inmunohistotinción de tejidos de próstata (normal y cáncer) utilizando un anticuerpo anti TRIM29. Se llevó a cabo la inmunohistotinción utilizando muestras de próstata de 16 muestras almacenadas y tratadas en el Department of Cancer Pathology, Hokkaido University Graduate School of Medicine. En la Tabla 1 se proporcionan los perfiles de las muestras de próstata proporcionadas para su análisis. Se analizaron 15 muestras con cáncer de próstata y 1 muestra con neoplasia intraepitelial prostática (PIN).

[Tabla 1]

Tabla 1. Observaciones clínico-patológicas en 15 casos con cáncer de próstata

Tabla 1. Observaciones cimico-patolo	gicas en 15 casos con cancer de prostata
	n (%)
Edad (años)	
<65	2 (13,3)
65-75	7 (46,7)
>75	6 (40)
PSA (ng/ml)	
4 <psa<6< td=""><td>5 (33,3)</td></psa<6<>	5 (33,3)
6 %PSA<10	8 (53,3)
10<	2 (13,3)
T (Extensión de tumor primario)	
T1c	12 (80)
T2a	2 (13,3)
T2b	0 (0)
T2c	1 (6,7)
N (Metástasis ganglio linfático)	
N0	15 (100,0)
N1<	0 (0)
M (Metástasis distante)	· ·
M0	15 (100)
M1<	0 (0)
Estadio TNM	
1	0 (0)
II	15 (100)
III	0 (0)
IV	0 (0)

25

30

35

(1) Tinción con anticuerpos policionales de conejo anti-TRIM29

Se diluyeron anticuerpos policionales de conejo anti-TRIM29 (ATDC(H-300)SC-33151 fabricado por Santa Cruz) como anticuerpo primario 200 veces con un diluyente (PBS que contenía BSA al 1 %) y se añadieron a cada corte de tejido. Se llevó a cabo la reacción primaria a 37 °C durante 30 minutos. Se lavaron los cortes de tejido resultantes 3 veces con solución de lavado (PBS) y se añadió un reactivo que contenía anticuerpo anti-conejo marcado con peroxidasa (Dako REAL™ Envision™ Reactivo de detección peroxidasa conejo/ratón) como anticuerpo secundario al corte de tejido. Se llevó a cabo la segunda reacción a temperatura ambiente durante 30 minutos. Se lavó el producto resultante 3 veces con una solución de lavado y después se sometió a reacción de coloración utilizando una solución de coloración (REAL™ DAB + CHROMOGEN de Dako).

(2) Tinción con anticuerpo monoclonal anti-citoqueratina

Por otra parte, se llevó a cabo la inmunohistotinción de tejidos de próstata (normal y cáncer) utilizando un anticuerpo monoclonal anti-citoqueratina, 34βE12, como anticuerpo primario. Se repitieron las etapas descritas en la

subsección (1) anterior, excepto por el uso de 34β E12 (H1205 Nichirei anticuerpo monoclonal anti-polímero citoqueratina) diluido 2 veces con BSA al 1 % en lugar del anticuerpo policional de conejo anti-TRIM29 diluido 200 veces.

5 Los resultados de la inmunohistotinción tal como se han descrito en (1) y (2) se presentan en la Figura 1. Resultó que el anticuerpo anti-TRIKM29 tiñó específicamente las células basales presentes alrededor de las células glandulares en el tejido de próstata normal. Resultó que estas células y tejido teñidos con el anticuerpo anti-TRIM29 disminuyeron o desaparecieron en el tejido de cáncer de próstata. Estos resultados fueron comparables a los obtenidos cuando se llevó a cabo la inmunohistotinción utilizando 34βΕ12. El uso combinado de 34βΕ12 y el anticuerpo anti-TRIM29 puede aumentar la fiabilidad del diagnóstico de cáncer de próstata.

<Ejemplo 2>

En este Ejemplo, se llevó a cabo la inmunohistotinción de próstata normal utilizando un anticuerpo monoclonal anti-15 TRIM29 de ratón (anticuerpo anti-ATDC (A-5)) (sc-166718) como anticuerpo primario.

Se repitieron las etapas descritas en la subsección (1) del Ejemplo 1, a excepción de que se utilizó el anticuerpo monoclonal de ratón anti-TRIM29 A-5 como anticuerpo primario, que se utilizó el anticuerpo IgG anti-ratón como anticuerpo secundario y que se utilizó como muestra solamente tejido de próstata normal.

Tal como se muestra en la Figura 2, no se observó tinción no específica y las células basales se tiñeron claramente.

<Ejemplo 3>

20

30

35

40

25 En este Ejemplo, se llevó a cabo la inmunohistotinción de próstata normal utilizando un anticuerpo monoclonal de ratón anti-TRIM29 (anticuerpo anti-ATDC (A-5)) (sc-166718) y un anticuerpo monoclonal anti-citoqueratina.

Se repitieron las etapas descritas en el Ejemplo 2 para el anticuerpo monoclonal anti-TRIM29 de ratón y las etapas descritas en la subsección (2) del Ejemplo 1 para el anticuerpo monoclonal anti-citoqueratina excepto por el uso de tejido de próstata normal solamente.

Tal como se muestra en la Figura 3, la tinción con el anticuerpo monoclonal de ratón anti-TRIM29 proporcionó un resultado muy similar al de la tinción con anticuerpo monoclonal anti-citoqueratina y la combinación de estas dos inmunohistotinciones permitió una identificación fiable de células basales prostáticas.

Cuando se analizaron los resultados de la inmunohistotinción de los Ejemplos 1 a 3, se observó que había desaparecido la expresión de TRIM29 en las porciones de tejido con cáncer en todos los casos de cáncer de próstata. En cambio, para neoplasia intraepitelial prostática, se observó expresión de TRIM29 en porciones de células basales igual que en la próstata normal. En la Tabla 2, se muestran estos resultados.

[Tabla 2]

Tabla 2. Grado de tinción de TRIM29 en cáncer de próstata

		Porcent	taje de Acinos TRIM29	9-Positivos en	todos los acinos
Puntuación de Gleason		0	0-30	30-60	60-100
Puntuación de Gleason	3 + 3 = 6 (n=8)	8	0	0	0
Puntuación de Gleason	3 + 4 = 7 (n=3)	3	0	0	0
Puntuación de Gleason	4 + 3 = 7 (n=1)	1	0	0	0
Puntuación de Gleason	4 + 4 = 8 (n=2)	2	0	0	0
Puntuación de Gleason	4 + 5 = 9 (n=1)	1	0	0	0
PIN (n=1)	, ,	0	0	0	1
Sitio normal (n=15)		0	0	0	15

Susceptibilidad de aplicación industrial

El método para detectar células basales prostáticas de acuerdo con la presente invención puede emplearse para el estudio histológico de próstata. El método para identificar la presencia, disminución o desaparición de células basales prostáticas de acuerdo con la presente invención permite un diagnóstico definitivo de cáncer de próstata. Asimismo, la combinación de los métodos con el análisis de expresión de citoqueratina permite un diagnóstico definitivo más fiable de cáncer de próstata.

LISTADO DE SECUENCIAS

55

45

50

<110> NATIONAL UNIVERSITY CORPORATION HOKKAIDO UNIVERSITY

	<120> Un método para detectar células basales de glándula próstata
	<130> 671812/P2012-103-WO01/LP0056
5	<150> JP 2012-277980 <151> 20-12-2012
	<160> 8
10	<170> Patentln versión 3.1
15	<210> 1 <211> 1767 <212> ADN <213> Homo sapiens
	<400> 1

60	ggatgcccgg	cagaagccag	gggtcgagcc	caggagcaac	cagatgcctc	atggaagctg
120	caaggatgcc	aggctgacgg	aatggcacca	cagcctggag	gccccagtgg	agcccgtcgg
180	cagcgccctg	agagcetggg	gctgagggca	cggggaggca	acgggcacgg	aagaccacca
240	acccatcatc	agtggcggcg	gcgggcaatg	cgccctgttc	aaggtaggag	aagccagggg
300	ctctatggaa	tcagcatgga	tccaactact	cgacaagaac	agtccgggga	cagtttgtcg
360	acccgttacc	ccaagaagcc	ctgggggctg	agggctccag	cgccgtacgc	ggcaagaggt
420	gcccacggtg	agtcccggaa	attttctcgg	gcgcaagtcc	agggcgagct	tttgccgaaa
480	cacgggcctt	cccgggccga	aacagctacc	gacccggcgg	agcccgggga	tccatcatgg
540	cggcaacaag	actcctgcat	gtgctgtgcg	ctccgaggag	ccaagteegg	ttttcacggt
600	gcatctcaag	tetgegaget	caggeeteet	cctggtgtgc	tcaagtcctg	cagaaggegg
660	ccgggacttt	tegageceat	caccagetge	cttccgagac	agggegeege	ccccacctgg
720	gaccgaccag	tcttctgcca	acgatggagc	gcatggcaag	agtgtcccgt	gaggcccgca
780	cgtgacagtg	atcatagcac	gagcacaaga	catgttccag	gctacctttg	acctgcatct
840	gctgcagctc	aaaaggagca	ctgtcattgc	ggagacggag	aggccgagaa	gaggaggcca
900	ccgcatcaag	aggagaagga	aagtggcaga	tgaagetgag	agattgagga	aagatcattg
960	ggtgcgggac	teegggaeet	gagcagaact	ggccatcctg	ccaatgagaa	agcttcacca
1020	ggatgctgtg	agcgggagca	gcgctggagc	agtgagggct	aaaaggagga	ctggagaagc
1080	gcatgaggac	ccaaggtgct	gatgagagag	ggatgctctg	aggtgatcat	gaccaagtga
1140	gcaggaattt	tgttgtttct	agcgactctg	gcatagcatc	gggagcagct	aagcagaccc
1200	tgtcctgctg	ccacctatca	ccacccctgc	ctctctcccc	tgagcaatta	ggtgcattga
1260	caatgtatgc	acgacetget	aacttcaagg	gtcactaggc	gcctgggaca	gagggggagg
1320	taaaaaaaa	gtaacttcat	gacctgagcc	gtgcaaggcg	ttgagaagat	atococcaco
1380				ccatcgctat		
1440				catgaagaga		
1500		_	_	ctcgtctcct		
	ggagtactcc			-		
	ctccttctcc				-	_
1767	caaaggcaac	cecaegteaa	caceggeeat			
T/0/				CCCALGA	ccaacgaage	UUGALEGGGE.

<210> 2

5

<211> 588 <212> PRT <213> Homo sapiens

<400> 2

Met	Glu	Ala	Ala	Asp	Ala	Ser	Arg	Ser	Asn	Gly	Ser	Ser	Pro	Glu	Ala
1				5					10					15	

- Arg Asp Ala Arg Ser Pro Ser Gly Pro Ser Gly Ser Leu Glu Asn Gly 20 25 30
- Thr Lys Ala Asp Gly Lys Asp Ala Lys Thr Thr Asn Gly His Gly Gly 35 40 45
- Glu Ala Ala Glu Gly Lys Ser Leu Gly Ser Ala Leu Lys Pro Gly Glu 50 55 60
- Gly Arg Ser Ala Leu Phe Ala Gly Asn Glu Trp Arg Arg Pro Ile Ile 65 70 75 80
- Gln Phe Val Glu Ser Gly Asp Asp Lys Asn Ser Asn Tyr Phe Ser Met 85 90 95
- Asp Ser Met Glu Gly Lys Arg Ser Pro Tyr Ala Gly Leu Gln Leu Gly 100 105 110
- Ala Ala Lys Lys Pro Pro Val Thr Phe Ala Glu Lys Gly Glu Leu Arg 115 120 125
- Lys Ser Ile Phe Ser Glu Ser Arg Lys Pro Thr Val Ser Ile Met Glu 130 135 140
- Pro Gly Glu Thr Arg Arg Asn Ser Tyr Pro Arg Ala Asp Thr Gly Leu

145					150					155					160
Phe	Ser	Arg	Ser	Lys 165	Ser	Gly	Ser	Glu	Glu 170	Val	Leu	Cys	Asp	Ser 175	Cys
Ile	Gly	Asn	Lys 180	Gl n	Lys	Ala	Val	Lys 185	Ser	Cys	Leu	Val	Cys 190	Gln	Ala
Ser	Phę	Cys 195	Glu	Leu	His	Leu	Lys 200	Pro	His	Leu	Glu	Gly 205	Ala	Ala	Phę
Arg	Asp 210	His	Gln	Leu	Leu	G1u 215	Pro	Ile	Arg	Asp	Phe 220	Glu	Ala	Arg	Lys
Cys 225	Pro	Val	His	Gly	Lys 230	Thr	Met	Glu	Leu	Phe 235	Cys	Gln	Thr	Asp	Gln 240
Thr	Cys	Ile	Cys	Tyr 245	Leu	Cys	Met	Phe	Gln 250	Glu	His	Lys	Asn	His 255	Ser
Thr	Val	Thr	Val 260	Glu	Glu	Ala	Lys	Ala 265	Glu	Lys	Glu	Thr	Glu 270	Leu	Ser
Leu	Gln	Lys 275	Glu	Gln	Leu	Gln	Leu 280	Lys	Ile	Ile	Glu	Ile 285	Glu	Asp	Glu
Ala	Glu 290	Lys	Trp	Gln	Lys	Glu 295	Lys	Asp	Arg	Ile	Lys 300	Ser	Phe	Thr	Thr
Asn 305		Lys	Ala	Ile					Phe	_	_		Val	Arg	Asp 320
Leu	Glu	Lys	Gln	Lys 325	Glu	Glu	Val	Arg	Ala 330	Ala	Leu	Glu	Gln	Arg 335	Glu
Gln	Asp	Ala	Val 340	Asp	Gln	Val	Lys	Val 3 4 5	Ile	Met	Asp	Ala	Le u 350	Asp	Glu
Arg	Ala	Lys 355	Val	Leu	His	Glu	Asp 360	Lys	Gln	Thr	Arg	Glu 365	Gln	Leu	His
Ser	Ile 370	Ser	Asp	Ser	Val	L eu 375	Phe	Leu	Gln	Glu	Phe 380	Gly	Ala	Leu	Met
Ser 385	Asn	Tyr	Ser	Leu	Pro 390	Pro	Pro	Leu	Pro	Thr 395	Tyr	His	Val	Leu	Leu 400

Glu	Gly	Glu	Gly	Leu 405	Gly	Gln	Ser	Leu	Gly 410	Asn	Phe	Lys	Asp	Asp 415	Leu
Leu	Asn	Val	Cys 420	Met	Arg	His	Val	Glu 425	Lys	Met	Cys	Lys	Ala 430	Asp	Leu
Ser	Arg	Asn 435	Phe	Ile	Glu	Arg	Asn 440	His	Met	Glu	Asn	Gly 445	Gly	Asp	His
Arg	Tyr 450	Val	Aşn	Aşn	Tyr	Thr 455	Asn	Ser	Phe	Gly	Gly 460	Glu	Trp	Ser	Ala
Pro 465	Asp	Thr	Met	Lys	Arg 470	Tyr	Ser	Met	Tyr	Leu 475	Thr	Pro	Lys	Gly	Gly 480
Val	Arg	Thr	Ser	Tyr 485	Gln	Pro	Ser	Ser	Pro 490	Gly	Arg	Phe	Thr	Lys 495	Glu
Thr	Thr	Gln	Lys 500	Asn	Phe	Asn	Asn	Leu 505	Tyr	Gly	Thr	Lys	Gly 510	Asn	Tyr
Thr	Ser	Arg 515	Val	Trp	Glu	Tyr	Ser 520	Ser	Ser	Ile	Gln	Asn 525	Ser	Asp	Asn
Asp	Leu 530	Pro	Val	Val	Gln	Gly 535	Ser	Ser	Ser	Phe	Ser 540	Leu	Lys	Gly	Tyr
Pro 545	Ser	Leu	Met	Arg	Ser 550	Gln	Ser	Pro	Lys	Al a 555	Gln	Pro	Gln	Thr	Trp 560

Lys Ser Gly Lys Gln Thr Met Leu Ser His Tyr Arg Pro Phe Tyr Val

570

575

Asn Lys Gly Asn Gly Ile Gly Ser Asn Glu Ala Pro 580 585

565

<210> 3

<211> 1773

<212> ADN

5

<213> Homo sapiens

<400> 3

at	gtetegee	agtcaagtgt	gtecttecgg	agcgggggca	gtcgtagctt	cagcaccgcc	60
to	tgccatca	ccccgtctgt	ctcccgcacc	agcttcacct	ccgtgtcccg	gtccgggggt	120
gç	jeggtggtg	gtggcttcgg	cagggtcagc	cttgcgggtg	cttgtggagt	gggtggctat	180
gg	gcagccgga	gcctctacaa	cctggggggc	tccaagagga	tatccatcag	cactagtggt	240
ĝ	gcagcttca	ggaaccggtt	tggtgctggt	gctggaggcg	gctatggctt	tggaggtggt	300
gc	cggtagtg	gatttggttt	cggcggtgga	gctggtggtg	gctttgggct	cggtggcgga	360
gc	tggctttg	gaggtggctt	cggtggccct	ggctttcctg	tetgecetec	tggaggtatc	420
Ca	agaggtca	ctgtcaacca	gagtctcctg	actcccctca	acctgcaaat	cgaccccagc	480
at	ccagaggg	tgaggaccga	ggagcgcgag	cagatcaaga	ccctcaacaa	taagtttgcc	540
to	cttcatcg	acaaggtgcg	gttcctggag	cagcagaaca	aggttctgga	caccaagtgg	600
ac	cctgctgc	aggagcaggg	caccaagact	gtgaggcaga	acctggagcc	gttgttcgag	660
Ca	igtacatca	acaacctcag	gaggcagctg	gacagcatcg	tgggggaacg	gggccgcctg	720
ga	ıctcagagc	tgagaaacat	gcaggacctg	gtggaagact	tcaagaacaa	gtatgaggat	780
ga	aatcaaca	agogtaccac	tgctgagaat	gagtttgtga	tgctgaagaa	ggatgtagat	840
go	tgcctaca	tgaacaaggt	ggagctggag	gccaaggttg	atgcactgat	ggatgagatt	900
aa	cttcatga	agatgttctt	tgatgcggag	ctgtcccaga	tgcagacgca	tgtctctgac	960
ac	ctcagtgg	tectetecat	ggacaacaac	cgcaacctgg	acctggatag	catcatcgct	1020
ga	ıggtcaagg	cccagtatga	ggagattgcc	aaccgcagcc	ggacagaagc	cgagtcctgg	1080
ta	tcagacca	agtatgagga	gctgcagcag	acagetggee	ggcatggcga	tgacctccgc	1140
aa	caccaagc	atgagatctc	tgagatgaac	cggatgatcc	agaggctgag	agccgagatt	1200
ga	caatgtca	agaaacagtg	cgccaatctg	cagaacgcca	ttgcggatgc	cgagcagcgt	1260
gç	ggagetgg	ccctcaagga	tgccaggaac	aagctggccg	agctggagga	ggccctgcag	1320
aa	ıggccaagc	aggacatggc	ccggctgctg	cgtgagtacc	aggagctcat	gaacaccaag	1380
ct	ggecetgg	acgtggagat	cgccacttac	cgcaagctgc	tggagggcga	ggaatgcaga	1440
ct	cagtggag	aaggagttgg	accagtcaac	atctctgttg	tcacaagcag	tgtttcctct	1500
ĝ	gatatggca	gtggcagtgg	ctatggcggt	ggcctcggtg	gaggtcttgg	cggcggcctc	1560
gç	gtggaggtc	ttgccggagg	tagcagtgga	agctactact	ccagcagcag	tgggggtgtc	1620
gç	jectaggtg	gtgggctcag	tgtgggggc	tctggcttca	gtgcaagcag	tggccgaggg	1680
ct	gggggtgg	gctttggcag	tggcgggggt	agcageteca	gcgtcaaatt	tgtctccacc	1740
ac	ctcctcct	cccggaagag	cttcaagagc	taa			1773

<210> 4 <211> 590 <212> PRT

5

<213> Homo sapiens

<400> 4

let L	Ser	Arg	Gln	Ser 5	Ser	Val	Ser	Phe	10	g Se	r Gl	.y G	Ly \$∢		rg Ser 5
Phe	Ser	Thr	Ala 20	Ser	Ala	Ile	Thr	Pro 25	Ser	Val	Ser	Arg	Thr 30	Ser	Phe
Thr	Ser	Val 35	Ser	Arg	Ser	Gly	Gly 40	Gly	Gly	Gly	Gly	Gly 45	Phe	Gly	Arg
Val	Ser 50	Leu	Ala	Gly	Ala	С уз 55	G1y	Val	G1y	Gly	Tyr 60	Gly	Ser	Arg	Ser
Leu 65	Tyr	Asn	Leu	Gly	Gly 70	Ser	Lys	Arg	Ile	Ser 75	Ile	Ser	Thr	Ser	Gly 80
Gly	Ser	Phe	Arg	Asn 85	Arg	Phe	Gly	Ala	Gly 90	Ala	Gly	Gly	Gly	Tyr 95	Gly
Phe	Gly	Gly	Gly 100	Ala	Gly	Ser	G1y	Phe 105	G1y	Phe	G1y	Gly	Gly 110	Ala	Gly
Gly	Gly	Phe 115	Gly	Leu	Gly	Gly	Gly 120	Ala	Gly	Phe	Gly	Gly 125	Gly	Phe	Gly
Gly	Pro 130	Gly	Phe	Pro	Val	Cys 135	Pro	Pro	Gly	Gly	Ile 140	Gln	Glu	Val	Thr
Val 145		Gln	Ser	Leu	Leu 150	Thr	Pro	Leu	Asn	Leu 155	Gln	Ile	Asp	Pro	Ser 160
Ile	Gln	Arg	Val	Arg 165	Thr	Glu	Glu	Arg	Glu 170	Gln	Ile	Lys	Thr	Leu 175	Asn
Asn	Lys	Phe	Ala 180	Ser	Phe	Ile	Asp	Lys 185	Val	Arg	Phe	Leu	Glu 190	Gln	Gln
Asn	Lys	Val 195	Leu	Asp	Thr	Lys	Trp 200	Thr	Leu	Leu	Gln	Glu 205	Gln	Gly	Thr
Lys	Thr 210	Val	Arg	Gln	Asn	Leu 215	Glu	Pro	Leu	Phe	Glu 220	Gln	Tyr	Ile	Asn
Asn 225		Arg	Arg	Gln	Le u 230	Asp	Ser	Ile	Val	Gly 235	Glu	Arg	Gly	Arg	Leu 240
Asp	Ser	Glu	Leu	Arg 245	Asn	Met	Gln	Asp	Leu 250	Val	Glu	Asp	Phe	Lys 255	Asn
Lys	Tyr	Glu	Asp 260	Glu	Ile	Asn	Lys	Arg 265	Thr	Thr	Ala	Glu	Asn 270	Glu	Phe

Val Met Leu Lys Lys Asp Val Asp Ala Ala Tyr Met Asn Lys Val Glu Leu Glu Ala Lys Val Asp Ala Leu Met Asp Glu Ile Asn Phe Met Lys Met Phe Phe Asp Ala Glu Leu Ser Gln Met Gln Thr His Val Ser Asp Thr Ser Val Val Leu Ser Met Asp Asn Asn Arg Asn Leu Asp Leu Asp Ser Ile Ile Ala Glu Val Lys Ala Gln Tyr Glu Glu Ile Ala Asn Arg Ser Arg Thr Glu Ala Glu Ser Trp Tyr Gln Thr Lys Tyr Glu Glu Leu Gln Gln Thr Ala Gly Arg His Gly Asp Asp Leu Arg Asn Thr Lys His Glu Ile Ser Glu Met Asn Arg Met Ile Gln Arg Leu Arg Ala Glu Ile Asp Asn Val Lys Lys Gln Cys Ala Asn Leu Gln Asn Ala Ile Ala Asp Ala Glu Gln Arg Gly Glu Leu Ala Leu Lys Asp Ala Arg Asn Lys Leu Ala Glu Leu Glu Glu Ala Leu Gln Lys Ala Lys Gln Asp Met Ala Arg Leu Leu Arg Glu Tyr Gln Glu Leu Met Asn Thr Lys Leu Ala Leu Asp Val Glu Ile Ala Thr Tyr Arg Lys Leu Leu Glu Gly Glu Glu Cys Arg Leu Ser Gly Glu Gly Val Gly Pro Val Asn Ile Ser Val Val Thr Ser Ser Val Ser Ser Gly Tyr Gly Ser Gly Ser Gly Tyr Gly Gly Leu Gly Gly Leu Gly Gly Leu Gly Gly Gly Leu Ala Gly Gly Ser

Ser Gly Ser Tyr Tyr Ser Ser Ser Ser Gly Gly Val Gly Leu Gly Gly 530 535 540

Gly Leu Ser Val Gly Gly Ser Gly Phe Ser Ala Ser Ser Gly Arg Gly 545 550 555 560

Leu Gly Val Gly Phe Gly Ser Gly Gly Gly Ser Ser Ser Ser Val Lys 565 570 575

Phe Val Ser Thr Thr Ser Ser Ser Arg Lys Ser Phe Lys Ser 580 585 590

<210>5

5

<211> 1419

<212> ADN

<213> Homo sapiens

<400> 5

atgaccacct	gcagccgcca	gttcacctcc	tccagctcca	tgaagggete	ctgcggcatc	60
gggggcggca	tcgggggcgg	ctccagccgc	atctcctccg	teetggeegg	agggtcctgc	120
cgcgccccca	gcacctacgg	gggcggcctg	tctgtctcat	cctcccgctt	ctcctctggg	180
ggagcctacg	ggctgggggg	cggctatggc	ggtggcttca	gcagcagcag	cagcagcttt	240
ggtagtggct	ttgggggagg	atatggtggt	ggccttggtg	ctggcttggg	tggtggcttt	300
ggtggtggct	ttgctggtgg	tgatgggctt	ctggtgggca	gtgagaaggt	gaccatgcag	360
aacctcaatg	accgcctggc	ctcctacctg	gacaaggtgc	gtgctctgga	ggaggccaac	420
gccgacctgg	aagtgaagat	ccgtgactgg	taccagaggc	ageggeetge	tgagatcaaa	480
gactacagtc	cctacttcaa	gaccattgag	gacctgagga	acaagattct	cacagccaca	540
gtggacaatg	ccaatgtcct	tctgcagatt	gacaatgccc	gtetggeege	ggatgacttc	600
cgcaccaagt	atgagacaga	gttgaacctg	cgcatgagtg	tggaageega	catcaatggc	660
ctgcgcaggg	tgctggacga	actgaccctg	gecagagetg	acctggagat	gcagattgag	720
agcctgaagg	aggagetgge	ctacctgaag	aagaaccacg	aggaggagat	gaatgccctg	780
agaggccagg	tgggtggaga	tgtcaatgtg	gagatggacg	ctgcacctgg	cgtggacctg	840
agccgcattc	tgaacgagat	gcgtgaccag	tatgagaaga	tggcagagaa	gaaccgcaag	900
gatgccgagg	aatggttctt	caccaagaca	gaggagctga	accgcgaggt	ggccaccaac	960
agegagetgg	tgcagagcgg	caagagcgag	atctcggagc	tccggcgcac	catgcagaac	1020
ctggagattg	agctgcagtc	ccageteage	atgaaagcat	ccctggagaa	cagcctggag	1080
gagaccaaag	gtcgctactg	catgcagctg	gcccagatcc	aggagatgat	tggcagcgtg	1140
gaggagcagc	tggcccagct	ccgctgcgag	atggagcagc	agaaccagga	gtacaagatc	1200
ctgctggacg	tgaagacgcg	gctggagcag	gagategeea	cctaccgccg	cctgctggag	1260
ggcgaggacg	cccacctctc	ctcctcccag	ttctcctctg	gatcgcagtc	atccagagat	1320
gtgacctcct	ccagccgcca	aatccgcacc	aaggtcatgg	atgtgcacga	tggcaaggtg	1380
gtgtccaccc	acgagcaggt	ccttcgcacc	aagaactga			1419

<210> 6

5

<211> 472

<212> PRT

<213> Homo sapiens

<400>6

Met 1	Thr	Thr	Cys	Ser 5	Arg	Gln	Phe	Thr	Ser 10	Ser	Ser	Ser	Met	Lys 15	Gly
Ser	Cys	Gly	Ile 20	Gly	Gly	Gly	Ile	Gly 25	Gly	Gly	Ser	Ser	Arg 30	Ile	Ser
Ser	Val	Leu 35	Ala	Gly	Gly	Ser	Cys 40	Arg	Ala	Pro	Ser	Thr 45	Tyr	Gly	Gly
Gly	Leu 50	Ser	Val	Ser	Ser	Ser 55	Arg	Phe	Ser	Ser	Gly 60	Gly	Ala	Tyr	Gly
Leu 65	Gly	Gly	Gly	Tyr	Gly 70	Gly	Gly	Phe	Ser	Ser 75	Ser	Ser	Ser	Ser	Phe 80
Gly	Ser	Gly	Phe	Gly 85	Gly	Gly	Tyr	Gly	Gly 90	Gly	Leu	Gly	Ala	Gly 95	Leu
Gly	Gly	Gly	Phe 100	Gly	Gly	Gly	Phe	Ala 105	Gly	Gly	Asp	Gly	Leu 110	Leu	Val
Gly	Ser	Glu 115	Lys	Val	Thr	Met	Gln 120	Asn	Leu	Asn	Asp	Arg 125	Leu	Ala	Ser
Tyr	Leu 130	Asp	Lys	Val	Arg	Ala 135	Leu	Glu	Glu	Ala	Asn 140	Ala	Asp	Leu	Glu
145			Arg		150					155					160
			Pro	165		-			170					175	
Leu	Thr	Ala	Thr 180	Val	Asp	Asn	Ala	Asn 185	Val	Leu	Leu	Gln	11e 190	Asp	Asn

Ala	Arg	Leu 195	Ala	Ala	Asp	Asp	Phe 200	Arg	Thr	Lys	Tyr	Glu 205	Thr	Glu	Leu
Asn	Leu 210	Arg	Met	Ser	Val	Glu 215	Ala	Asp	Ile	Asn	Gly 220	Leu	Arg	Arg	Val
Leu 225	Asp	Glu	Leu	Thr	Leu 230	Ala	Arg	Ala	Asp	Leu 235	Glu	Met	Gln	Ile	Glu 240
Ser	Leu	Lys	Glu	Glu 245	Leu	Ala	Tyr	Leu	Lys 250	Lys	Asn	His	Glu	Glu 2 55	Glu
Met	Asn	Ala	Leu 260	Arg	Gly	Gln	Val	Gly 265	Gly	Asp	Val	Asn	Val 270	Glu	Met
Asp	Ala	Ala 275	Pro	Gly	Val	Asp	L eu 280	Ser	Arg	Ile	Leu	Asn 285	Glu	Met	Arg
Asp	Gl n 290	Tyr	Glu	Lys	Met	Ala 295	Glu	Lys	Asn	Arg	Lys 300	Asp	Ala	Glu	Glu
Trp 305	Phe	Phe	Thr	Lys	Thr 310	Glu	Glu	Leu	Asn	Arg 315	Glu	Val	Ala	Thr	Asn 320
Ser	Glu	Leu	Val	Gln 325	Ser	Gly	Lys	Ser	Glu 330	Ile	Ser	Glu	Leu	A rg 335	Arg
Thr	Met	Gln	Asn 340	Leu	Glu	Ile	Glu	Leu 345	Gln	Ser	Gln	Leu	Ser 350	Met	Lys
Ala	Ser	Leu 355	Glu	Asn	Ser	Leu	Glu 360	Glu	Thr	Lys	Gly	Arg 365	Tyr	Cys	Met
Gln	Le u 370	Ala	Gln	Ile	Gln	Glu 375	Met	Ile	Gly	Ser	Val 380	Glu	Glu	Gln	Leu
Ala 385	Gln	Leu	Arg	Суз	Glu 390	Met	Glu	Gln	Gln	Asn 395	Gln	Glu	Tyr	Lys	Ile 400
Leu	Leu	Asp	Val	Lys 405	Thr	Arg	Leu	Glu	Gln 41 0	Glu	Ile	Ala	Thr	Tyr 41 5	Arg
Arg	Leu	Leu	Glu 420	Gly	Glu	Asp	Ala	His 425	Leu	Ser	Ser	Ser	Gln 430	Phe	Ser
Ser	Gly	Ser	Gln	Ser	Ser	Arg	Asp	Val	Thr	Ser	Ser	Ser	Arg	Gln	Ile

435 440 445

Arg Thr Lys Val Met Asp Val His Asp Gly Lys Val Val Ser Thr His 450 455 460

Glu Gln Val Leu Arg Thr Lys Asn 465 470

<210> 7

5

<211> 2043

<212> ADN

<213> Homo sapiens

<400> 7

atgaattttg aaacttcacg gtgtgccacc ctacagtact gccctgaccc ttacatccag 60 cgtttcgtag aaaccccagc tcatttctct tggaaagaaa gttattaccg atccaccatg 120 teccagagea cacagacaaa tgaatteete agtecagagg ttttecagea tatetgggat 180 tttctggaac agoctatatg ttcagttcag cccattgact tgaactttgt ggatgaacca 240 tcagaagatg gtgcgacaaa caagattgag attagcatgg actgtatccg catgcaggac 300 teggaeetga gtgaeeceat gtggeeacag tacaegaace tggggeteet gaacageatg 360 gaccagcaga ttcagaacgg ctcctcgtcc accagtccct ataacacaga ccacgcgcag 420 aacagogtca oggogoocto gooctacgca cagoocagot coacettoga tgotototot 480 ccatcacccg ccatcccctc caacaccgac tacccaggcc cgcacagttt cgacgtgtcc 540 600 ttccaqcagt cgagcaccgc caagtcggcc acctggacgt attccactga actgaagaaa ctctactgcc aaattgcaaa gacatgcccc atccagatca aggtgatgac cccacctcct 660 cagggagctg ttatccgcgc catgcctgtc tacaaaaaag ctgagcacgt cacggaggtg 720 gtgaageggt geceeaacea tgagetgage egtgaattea aegagggaea gattgeeeet 780 840 cctagtcatt tgattcgagt agaggggaac agccatgccc agtatgtaga agatcccatc acaggaagac agagtgtgct ggtaccttat gagccacccc aggttggcac tgaattcacg 900 960 acagtettgt acaattteat gtgtaacage agttgtgttg gagggatgaa eegeegteea attttaatca ttgttactct ggaaaccaga gatgggcaag tcctgggccg acgctgcttt 1020 gaggecegga tetgtgettg eecaggaaga gacaggaagg eggatgaaga tageateaga 1080 aagcagcaag tttcggacag tacaaagaac ggtgatggta cgaagcgccc gtttcgtcag 1140 aacacacatg gtatccagat gacatccate aagaaacgaa gatccccaga tgatgaactg 1200 ttatacttac cagtgagggg ccgtgagact tatgaaatgc tgttgaagat caaagagtcc 1260 ctggaactca tgcagtacct tcctcagcac acaattgaaa cgtacaggca acagcaacag 1320 cagcageace ageacttact teagaaacag aceteaatae agtetecate tteatatggt 1380

10

aacagctccc	cacetetgaa	caaaatgaac	agcatgaaca	agetgeette	tgtgagccag	1440
cttatcaacc	ctcagcagcg	caacgccctc	actcctacaa	ccattcctga	tggcatggga	1500
gccaacattc	ccatgatggg	cacccacatg	ccaatggctg	gagacatgaa	tggactcagc	1560
cccacccagg	cactccctcc	cccactctcc	atgccatcca	cctcccactg	cacaccccca	1620
cctccgtatc	ccacagattg	cagcattgtc	agtttcttag	cgaggttggg	ctgttcatca	1680
tgtctggact	atttcacgac	ccaggggctg	accaccatct	atcagattga	gcattactcc	1740
atggatgatc	tggcaagtct	gaaaatccct	gagcaatttc	gacatgcgat	ctggaagggc	1800
atcctggacc	accggcagct	ccacgaattc	tecteceett	ctcatctcct	geggaeeeea	1860
agcagtgcct	ctacagtcag	tgtgggctcc	agtgagaccc	ggggtgagcg	tgttattgat	1920
gctgtgcgat	tcaccctccg	ccagaccatc	tctttcccac	cccgagatga	gtggaatgac	1980
ttcaactttg	acatggatgc	togocgcaat	aagcaacagc	gcatcaaaga	ggaggggag	2040
tga						2043

5

<210>8 <211>680

<212> PRT

<213> Homo sapiens

<400> 8

Met Asn Phe Glu Thr Ser Arg Cys Ala Thr Leu Gln Tyr Cys Pro Asp 10

Pro Tyr Ile Gln Arg Phe Val Glu Thr Pro Ala His Phe Ser Trp Lys 20 25

Glu Ser Tyr Tyr Arg Ser Thr Met Ser Gln Ser Thr Gln Thr Asn Glu 40

Phe Leu Ser Pro Glu Val Phe Gln His Ile Trp Asp Phe Leu Glu Gln

Pro Ile Cys Ser Val Gln Pro Ile Asp Leu Asn Phe Val Asp Glu Pro

Ser Glu Asp Gly Ala Thr Asn Lys Ile Glu Ile Ser Met Asp Cys Ile

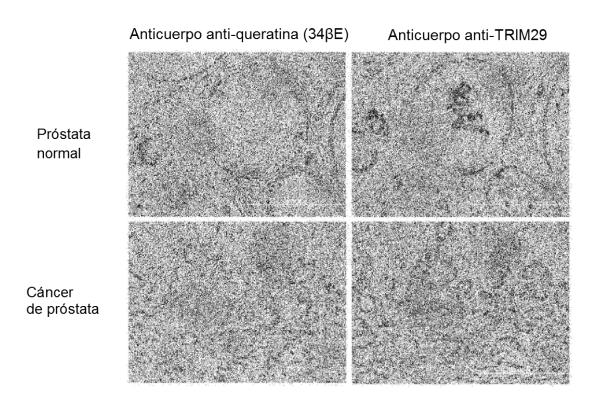
Arg Met Gln Asp Ser Asp Leu Ser Asp Pro Met Trp Pro Gln Tyr Thr 100 105

Asn Leu Gly Leu Leu Asn Ser Met Asp Gln Gln Ile Gln Asn Gly Ser 115 120 125

Ser	Ser 130	Thr	Ser	Pro	Tyr	Asn 135	Thr	Asp	His	Ala	Gln 140	Asn	Ser	Val	Thr
Ala 145	Pro	Ser	Pro	Tyr	Ala 150	Gln	Pro	Ser	Ser	Thr 155	Phe	Asp	Ala	Leu	Ser 160
Pro	Ser	Pro	Ala	Ile 165	Pro	Ser	Asn	Thr	Asp 170	Tyr	Pro	Gly	Pro	His 175	Ser
Phe	Asp	Val	Ser 180	Phe	Gln	Gln	Ser	Ser 185	Thr	Ala	Lys	Ser	Ala 190	Thr	Trp
Thr	Tyr	Ser 195	Thr	G l u	Leu	Lys	Lys 200	Leu	Tyr	Cys	Gln	Ile 205	Ala	Lys	Thr
Суз	Pro 210	Ile	Gln	Ile	Lys	Val 215	Met	Thr	Pro	Pro	Pro 220	Gln	Gly	Ala	Val
Ile 225	Arg	Ala	Met	Pro	Val 230	Tyr	Lys	Lys	Ala	Glu 235	His	Val	Thr	Glu	Val 240
Val	Lys	Arg	Cys	Pro 245	Asn	His	G1u	Leu	Ser 250	Arg	Gl u	Phe	Asn	Glu 255	Gly
Gln	Ile	Ala	Pro 260	Pro	Ser	His	Leu	11e 265	Arg	Val	Glu	Gly	As n 270	Ser	His
Ala	Gln	Tyr 275	Val	Glu	Asp	Pro	Ile 280	Thr	Gly	Arg	Gln	Ser 285	Val	Leu	Val
Pro	Tyr 290	G1u	Pro	Pro	Gln	Val 295	Gly	Thr	Glu	Phe	Thr 300	Thr	Val	Leu	Tyr
Asn 305	Phe	Met	Cys	Asn	Ser 310	Ser	Cys	Val	Gly	Gly 315	Met	Asn	Arg	Arg	Pro 320
Ile	Leu	Ile	Ile	Val 325	Thr	Leu	Glu	Thr	Arg 330	Asp	Gly	Gln	Val	L eu 335	Gly
Arg	Arg	Cys	Phe 340	Glu	Ala	Arg	Ile	Cys 3 4 5	Ala	Cys	Pro	Gly	Arg 350	Asp	Arg
Lys	Ala	Asp 355	Glu	Asp	Ser	Ile	Arg 360	Lys	Gln	Gln	Val	Ser 365	Asp	Ser	Thr
Lys	Asn 370	Gly	Asp	Gly	Thr	Lys 375	Arg	Pro	Phe	Arg	Gln 380	Asn	Thr	His	Gly

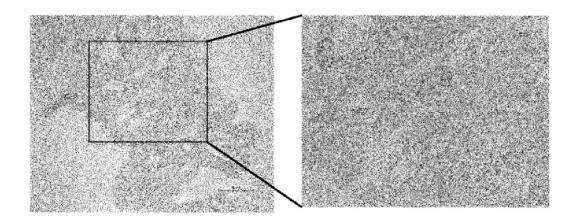
11e 385	Gln	Met	Thr	Ser	Ile 390	Lys	Lys	Arg	Arg	Ser 395	Pro	Asp	Asp	Glu	Leu 400
Let	Tyr	Leu	Pro	Val 405	Arg	Gly	Arg	Glu	Thr 410	Tyr	Glu	Met	Leu	Leu 415	Lys
Ile	. Lys	Glu	Ser 420	Leu	Glu	Leu	Met	Gln 425	Tyr	Leu	Pro	Gln	His 430	Thr	Ile
G l u	Thr	Tyr 435	Arg	Gln	Gln	Gln	Gln 440	Gln	Gln	His	Gln	His 445	Leu	Leu	Gln
Lys	Gln 450	Thr	Ser	Ile	Gln	Ser 455	Pro	Ser	Ser	Tyr	Gly 460	Asn	Ser	Ser	Pro
Pro 465	Leu	Asn	Lys	Met	Asn 470	Ser	Met	Asn	Lys	Leu 475	Pro	Ser	Val	Ser	Gln 480
Leu	ı Ile	Asn	Pro	Gln 485	Gln	Arg	Asn	Ala	Leu 490	Thr	Pro	Thr	Thr	11e 495	Pro
Asp	Gly	Met	Gly 500	Ala	Asn	Ile	Pro	Met 505	Met	Gly	Thr	His	Met 510	Pro	Met
Ala	Gly	Asp 515	Met	Asn	Gly	Leu	Ser 520	Pro	Thr	Gln	Ala	Leu 525	Pro	Pro	Pro
Let	Ser 530	Met	Pro	Ser	Thr	Ser 535	His	Суз	Thr	Pro	Pro 540	Pro	Pro	Tyr	Pro
Th: 545	: Asp	Cys	Ser	Ile	Val 550	Ser	Phe	Leu	Ala	Arg 555	Leu	Gly	Cys	Ser	Ser 560
Cys	: Leu	Asp	Tyr	Phe 565	Thr	Thr	Gln	Gly	Leu 570	Thr	Thr	Ile	Tyr	Gln 575	Ile
Glu	His	Tyr	Ser 580	Met	Asp	Asp	Leu	Ala 585	Ser	Leu	Lys	Ile	Pro 590	Glu	Gln
Phe	Arg	His 595	Ala	Ile	Trp	Lys	Gly 600	Ile	Leu	Asp	His	Arg 605	Gln	Leu	His
Glu	Phe 610	Ser	Ser	Pro	Ser	His 615	Leu	Leu	Arg	Thr	Pro 620	Ser	Ser	Ala	Ser
Thi	. Val	Ser	Val	Gly	Ser	Ser	Glu	Thr	Arg	Gly	Glu	Arg	Val	Ile	Asp

625					630					635					640
Ala	Val	Arg	Phe	Thr 645	Leu	Arg	Gln	Thr	Ile 650	Ser	Phe	Pro	Pro	Arg 655	Asp
Glu	Trp	Aşn	Asp 660	Phe	Asn	Phe	Asp	Met 665	Asp	Ala	Arg	Arg	Asn 670	Lys	Gln
Gln	Arg	Ile 675	Lys	Glu	Glu	Gly	Glu 680								

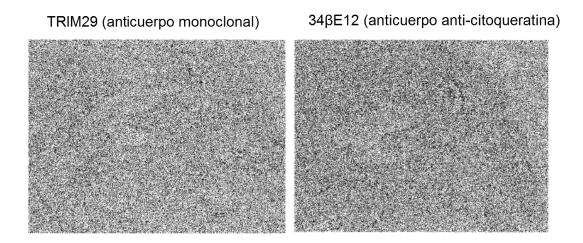

REIVINDICACIONES

- 1. Un método *in vitro* para detectar células basales prostáticas, que comprende visualizar la expresión de proteína 29 que contiene motivo tripartito proteína (TRIM29) en células basales de una próstata por inmunohistotinción.
- 2. El método para detectar células basales prostáticas de acuerdo con la reivindicación 1, que comprende analizar la morfología de la estructura del tejido glandular de la próstata y la expresión de proteína 29 que contiene motivo tripartito (TRIM29) visualizada.
- 10 3. El método para detectar células basales prostáticas de acuerdo con la reivindicación 1 o 2, que comprende además visualizar la expresión de citoqueratina y/o proteína p63 por inmunohistotinción.
- 4. El método para detectar células basales prostáticas de acuerdo con la reivindicación 3, que comprende analizar la morfología de la estructura del tejido glandular de la próstata y la expresión de proteína citoqueratina visualizada y/o
 15 la expresión de proteína p63 visualizada.
 - 5. El método de una cualquiera de las reivindicaciones 1 a 4, donde se visualiza la presencia, disminución o desaparición de células basales prostáticas en el tejido de próstata recogido del sujeto en comparación con un tejido de próstata normal.
 - 6. Un método para diagnosticar cáncer de próstata, que comprende una etapa de detección de células basales prostáticas en tejido de próstata recogido de un sujeto por inmunohistotinción utilizando un anticuerpo anti-TRIM29 o un fragmento de unión a antígeno del mismo.
- 7. El método de diagnóstico de acuerdo con la reivindicación 6, donde la disminución o desaparición de células basales prostáticas en comparación con las de tejido de próstata normal indica la presencia de cáncer de próstata.
 - 8. Uso de un anticuerpo anti-TRIM29 o un fragmento de unión a antígeno del mismo en el diagnóstico *in vitro* de cáncer de próstata a través de la detección de TRIM29 en células basales prostáticas.

20


5

[Figura 1]



[Figura 2]

Anticuerpo monoclonal anti ratón ATDC(A-5) SC-166718 x 100

[Figura 3]

