

OFICINA ESPAÑOLA DE PATENTES Y MARCAS

ESPAÑA

11) Número de publicación: 2 677 329

61 Int. Cl.:

C07K 16/38 (2006.01) C12P 21/08 (2006.01) A61K 39/395 (2006.01)

(12)

TRADUCCIÓN DE PATENTE EUROPEA

T3

(86) Fecha de presentación y número de la solicitud internacional: 04.08.2009 PCT/US2009/052702

(87) Fecha y número de publicación internacional: 11.02.2010 WO10017196

(96) Fecha de presentación y número de la solicitud europea: 04.08.2009 E 09805438 (0)

(97) Fecha y número de publicación de la concesión europea: 11.04.2018 EP 2321356

(54) Título: Anticuerpos monoclonales contra el inhibidor de la ruta del factor tisular (TFPI)

(30) Prioridad:

04.08.2008 US 85980 P

Fecha de publicación y mención en BOPI de la traducción de la patente: 01.08.2018

(73) Titular/es:

BAYER HEALTHCARE, LLC (100.0%) 100 Bayer Boulevard Whippany, New Jersey 07981-0915, US

(72) Inventor/es:

WANG, ZHUOZHI; MURPHY, JOHN, E.; PAN, JUNLIANG; JIANG, HAIYAN y LIU, BING

(74) Agente/Representante:

CARPINTERO LÓPEZ, Mario

DESCRIPCIÓN

Anticuerpos monoclonales contra el inhibidor de la ruta del factor tisular (TFPI)

Presentación del listado de secuencias

El listado de secuencias asociado con esta solicitud se presenta en formato electrónico *mediante* la página Web y se incorpora por tanto por referencia en la memoria descriptiva en su totalidad. El nombre del archivo de texto que contiene el listado de secuencias es MSB7329PCT Sequence Listing ST25.

Campo de las realizaciones

Se proporcionan anticuerpos monoclonales aislados y fragmentos de los mismos que se unen al inhibidor de la ruta del factor tisular humano (TFPI) e invenciones relacionadas.

10 Antecedentes

5

15

20

35

40

45

La coagulación de la sangre es un proceso por el cual la sangre forma coágulos estables para detener el sangrado. El proceso implica numerosas enzimas y procofactores (o "factores de coagulación") que están en circulación en la sangre. Aquellas enzimas y procofactores interactúan mediante diversas rutas a través de las cuales se conviertes, tanto secuencial como simultáneamente, en la forma activada. Finalmente, el proceso da como resultado la activación de la protrombina en trombina mediante el Factor X activado (FXa) en presencia de Factor Va, ion calcio, y plaquetas. La trombina activada induce a su vez la agregación plaquetaria y convierte el fibrinógeno en fibrina, que a continuación se reticula mediante el Factor XIII (FXIIIa) para formar un coágulo.

El proceso que conduce a la activación del Factor X se puede llevar a cabo mediante dos rutas distintas: la ruta de activación por contacto (anteriormente conocida como la ruta intrínseca) y la ruta del factor tisular (anteriormente conocida como la ruta extrínseca). Se pensaba anteriormente que la cascada de coagulación consistía en dos rutas de igual importancia vinculadas a una ruta común. Se sabe ahora que la ruta primaria para el inicio de la cascada de coagulación es la ruta del factor tisular.

El Factor X se puede activar mediante el factor tisular (TF) en combinación con el Factor VII activado (FVIIa). El complejo del Factor VIIa y su cofactor esencial, TF, es un potente iniciador de la cascada de coagulación.

La ruta de coagulación del factor tisular está controlada negativamente por el inhibidor de la ruta del factor tisular ("TFPI"). TFPI es un inhibidor natural de la retroalimentación dependiente de FXa del complejo FVIIa/TF. Es un miembro de los inhibidores de la serina proteasa de tipo Kunitz multivalente. Fisiológicamente, TFPI se une el Factor X activado (FXa) para formar un complejo heterodimérico, que interactúa posteriormente con el complejo FVIIa/TF para inhibir su actividad, cerrando así la ruta del factor tisular de la coagulación. En principio, el bloqueo de la actividad del TFPI puede restaurar la actividad de FXa y FVIIa/TF, prolongando de esta manera la duración de la acción de la ruta del factor tisular y amplificando la generación de FXa, que es un defecto común en la hemofilia A y

De hecho, alguna evidencia experimental preliminar ha indicado que el bloqueo de la actividad de TFPI por los anticuerpos contra TFPI normaliza el tiempo de coagulación prolongada o acorta el tiempo de sangrado. Por ejemplo, Nordfang y col. mostraron que el tiempo de protrombina diluida prolongado del plasma de hemofilia se normalizó tras el tratamiento del plasma con anticuerpos contra TFPI (Thromb. Haemost., 1991, 66(4): 464-467). De forma similar, Erhardtsen y col. mostraron que el tiempo de sangrado en el modelo de conejo con hemofilia A se acortó significativamente mediante los anticuerpos dirigidos contra TFPI (Blood Coagulation and Fibrinolysis, 1995, 6: 388-394). Estos estudios sugieren que la inhibición de TFPI por anticuerpos dirigidos contra TFPI puede ser útil para el tratamiento de la hemofilia A o B. Solo se utilizó un anticuerpo policional dirigido contra TFPI en estos estudios.

Utilizando técnicas de hibridoma, Se prepararon e identificaron anticuerpos monoclonales contra TFPI humano recombinante (rhTFPI). Véase Yang y col., Chin. Med. J., 1998, 111(8): 718-721. Se ensayó el efecto del anticuerpo monoclonal sobre el tiempo de protrombina diluida (PT) y el tiempo de tromboplastina parcial activada (APTT). Los experimentos mostraron que el anticuerpo monoclonal dirigido contra TFPI acortó el tiempo de coagulación de tromboplastina diluido del plasma deficiente en factor IX. Esto sugirió que la ruta del factor tisular juega un importante papel no solo en la coagulación fisiológica, sino también en la hemorragia de la hemofilia (Yang y col., Hunan Yi Ke Da Xue Xue Bao, 1997, 22(4): 297-300).

La patente de Estados Unidos n.º 7.015.194 de Kjalke y col. desvela composiciones que comprende FVIIa y un inhibidor de TFPI, incluyendo anticuerpos policlonales o monoclonales, o un fragmento de los mismos, para el tratamiento o la profilaxis de los episodios de sangrado o un tratamiento coagulativo. Se desvela también el uso de dicha composición para reducir el tiempo de coagulación en plasma normal de mamífero. Se sugirió además que un Factor VIII o una variante del mismo puede estar incluido en la composición desvelada de FVIIa y el inhibidor de TFPI. No se sugirió una combinación de FVIII o Factor IX con anticuerpo monoclonal TFPI.

Welsch, D. J. y col., "Effect of lipoprotein-associated coagulation inhibitor (LACI) on thromboplastin-induced coagulation of normal and hemophiliac plasmas", Thrombosis Res., 64(2): 213-222(1991), desvelan el efecto curativo sobre el tiempo de coagulación de los pacientes con hemofilia tras la administración de Ab policional y monoclonal unido a LACI (TFPI), pero no desvela un mAb dirigido contra TFPI completamente humano o un mAb caracterizado por (cualesquiera) CDR específicas.

Además del tratamiento para la hemofilia, se ha sugerido también que los inhibidores de TFPI, incluyendo anticuerpos policlonales o monoclonales, se pueden usar para el tratamiento del cáncer (véase la patente de Estados Unidos n.º 5.902.582 de Hung).

Por consiguiente, se necesitan anticuerpos específicos de TFPI para tratar las enfermedades hematológicas y el cáncer.

Generalmente, los anticuerpos terapéuticos para enfermedades humanas se han producido utilizando ingeniería genética para crear anticuerpos murinos, quiméricos, humanizados o completamente humanos. Se mostró que los anticuerpos monoclonales de murino tenían uso limitado como agentes terapéuticos debido a una semivida en suero corta, una incapacidad para estimular funciones efectoras humanas, y la producción de anticuerpos humanos dirigidos contra Ig de ratón. Brekke y Sandlie, "Therapeutic Antibodies for Human Diseases at the Dawn of the Twenty-first Century", Nature 2, 53, 52-62 (Ene. 2003). Los anticuerpos quiméricos han mostrado proporcionar un aumento de la humanas contra anticuerpos quiméricos. Los anticuerpos humanizados minimizan además el componente de ratón de los anticuerpos. Sin embargo, un anticuerpo completamente humano evita la inmunogenicidad asociada con elementos de murino completamente. Por tanto, existe una necesidad de desarrollar anticuerpos completamente humanos para evitar la inmunogenicidad asociada con otras formas de anticuerpos monoclonales diseñados mediante ingeniería genética. En particular, el tratamiento profiláctico crónico tal como se requeriría para el tratamiento de la hemofilia con un anticuerpo monoclonal dirigido contra TFPI tiene un alto riesgo de desarrollar una respuesta inmunitaria al tratamiento si se usa un anticuerpo con un componente de murino o de origen murino debido a la dosificación frecuente requerida y a la larga duración del tratamiento. Por ejemplo, el tratamiento del anticuerpo para la hemofilia A puede requerir la dosificación semanal para el tiempo de vida de un paciente. esto sería un estímulo continuo. Por tanto, existe la necesidad de un anticuerpo completamente humano para el tratamiento de anticuerpos para la hemofilia y las deficiencias o defectos genéticos y adquiridos en la coagulación.

Se han preparado anticuerpos terapéuticos mediante la tecnología del hibridoma descrita por Koehler and Milstein en "Continuous Cultures of Fused Cells Secreting Antibody of Predefined Specificity", *Nature* 256, 495-497 (1975). Pueden prepararse también anticuerpos completamente humanos de forma recombinante en procariotas y eucariotas. Se prefiere la producción recombinante de un anticuerpo en una célula hospedadora más bien que la producción de hibridomas para un anticuerpo terapéuticos. La producción recombinante tiene las ventajas de una mayor consistencia del producto, un nivel de producción posiblemente más alto, y una fabricación controlada que minimiza o elimina la presencia de proteínas obtenidas de animales. Por estos motivos, es deseable tener un anticuerpo monoclonal dirigido contra TFPI producido de manera recombinante.

Sumario

5

10

15

20

25

40

45

50

55

Se proporcionan anticuerpos monoclonales contra el inhibidor de la ruta del factor tisular humano (TFPI). Se proporcionan además moléculas de ácido nucleico aislado que codifican el mismo. Se desvelan también composiciones farmacéuticas que comprenden los anticuerpos monoclonales dirigidos contra TFPI y su uso para el tratamiento de las deficiencias o defectos genéticos y adquiridas en la coagulación tales como hemofilia A y B. Se desvelan también los usos de estos anticuerpos para el acotamiento del tiempo de sangrado administrando dicho anticuerpo monoclonal dirigido contra TFPI a un paciente que lo necesita. Se desvelan también los procedimientos para producir un anticuerpo monoclonal que se une a TFPI humano de acuerdo con la presente invención.

Breve descripción de los dibujos

Fig. 1: La actividad de unión de los ejemplos representativos de los Fab, se selecciona entre la clasificación por inmunoprecipitación y el cribado de TFPI humano ("h-TFPI") y TFPI de ratón ("m-TFPI"). Se ensayaron un Fab del control contra Estradiol-BSA ("EsB") y 12 Fab (1-4 y 6-13) seleccionados entre TFPI clasificados mediante inmunoprecipitación. El eje Y denota los resultados de las unidades de fluorescencia de ELISA.

- Fig. 2: La actividad funcional in vitro dependiente de la dosis de cuatro anticuerpos representativos dirigidos contra TFPI (4B7: TP-4B7, 2A8: TP-2A8, 2G6: TP-2G6, 2G7: TP-2G7) obtenidos a partir de la clasificación mediante inmunoprecipitación y cribado de una biblioteca de anticuerpos humanos como se muestra por su acortamiento dPT. El experimento implicó 0,5 ug/ml de mTFPI enriquecido en plasma con TFPI agotado.
- Fig. 3: La actividad funcional in vitro de Fab dirigido contra TFPI, Fab-2A8 (procedente de TP-2A8), como se analizó en el ensayo ROTEM.
 - Fig. 4: La actividad de unión a TFPI humano y TFPI de ratón de los clones TP-2G6 ("2G6") tras la conversión en IgG. Δ: unión de IgG-2G6 a TFPI de ratón; □: unión de IgG-2G6 a TFPI humano; ▲: Unión de IgG del control a

TFPI de ratón; ■: unión de IgG del control a IgG humana.

- Fig. 5: Los anticuerpos TP-2A8 ("2A8") dirigidos contra TFPI, TP-3G1 ("3G1"), y TP-3C2 ("3C2") acortaron el tiempo de coagulación de la sangre completa en ratones con hemofilia A como se ensayó en el ensayo ROTEM. Cada punto representa un ratón individual con hemofilia A.
- Fig. 6: El alineamiento de la secuencia de aminoácidos entre las cadenas ligeras variables de los anticuerpos monoclonales TP-2A10 dirigidos contra TFPI (SEQ ID NO: 18), TP-2B1 (SEQ ID NO: 22), TP-2A2 (SEQ ID NO: 2), TP-2G2 (SEQ ID NO: 66), TP-2A5.1 (SEQ ID NO: 6), TP-3A3 (SEQ ID NO: 98), TP-2A8 (SEQ ID NO: 14), TP-2B8 (SEQ ID NO: 34), TP-2G7 (SEQ ID NO: 82), TP-4H8 (SEQ ID NO: 170), TP-2G4 (SEQ ID NO: 70), TP-3F2 (SEQ ID NO: 134), TP-2A6 (SEQ ID NO: 10), TP-3A2 (SEQ ID NO: 94), TP-2C1 (SEQ ID NO: 42), TP-3E1 (SEQ ID NO: 126), TP-3F1 (SEQ ID NO: 130), TP-3D3 (SEQ ID NO: 122), TP-4A7 (SEQ ID NO: 150), TP-4G8 (SEQ ID NO: 166), TP-2B3 (SEQ ID NO: 26), TP-2F9 (SEQ ID NO: 62), TP-2G5 (SEQ ID NO: 74), TP-2G6 (SEQ ID NO: 78), TP-2H10 (SEQ ID NO: 90), TP-2B9 (SEQ ID NO: 38), TP-2C7 (SEQ ID NO: 46), TP-3G3 (SEQ ID NO: 142), TP-3C2 (SEQ ID NO: 114), TP-3B4 (SEQ ID NO: 110), TP-2E5 (SEQ ID NO: 58), TP-3C3 (SEQ ID NO: 118), TP-3G1 (SEQ ID NO: 138), TP-2D7 (SEQ ID NO: 50), TP-4B7 (SEQ ID NO: 158), TP-2E3 (SEQ ID NO: 54), TP-2G9 (SEQ ID NO: 86), TP-3C1 (SEQ ID NO: 86), TP-3A4 (SEQ ID NO: 102), TP-2B4 (SEQ ID NO: 30), TP-3H2 (SEQ ID NO: 146), TP-4A9 (SEQ ID NO: 154), TP-4E8 (SEQ ID NO: 162) y TP-3B3 (SEQ ID NO: 106).
 - Fig. 7: El alineamiento de las secuencias de aminoácidos entre las cadenas pesadas variables de anticuerpos monoclonales TP-2A10 dirigidos contra TFPI (SEQ ID NO: 20), TP-3B3 (SEQ ID NO: 108), TP-2G4 (SEQ ID NO: 72), TP-2A5.1 (SEQ ID NO: 8), TP-4A9 (SEQ ID NO: 156), TP-2A8 (SEQ ID NO: 16), TP-2B3 (SEQ ID NO: 28), TP-2B9 (SEQ ID NO: 40), TP-2H10 (SEQ ID NO: 92), TP-3B4 (SEQ ID NO: 112), TP-2C7 (SEQ ID NO: 48), TP-2E3 (SEQ ID NO: 56), TP-3C3 (SEQ ID NO: 120), TP-2G5 (SEQ ID NO: 76), TP-4B7 (SEQ ID NO: 160), TP-2G6 (SEQ ID NO: 80), TP-3C2 (SEQ ID NO: 116), TP-2D7 (SEQ ID NO: 52), TP-3G1 (SEQ ID NO: 140), TP-2E5 (SEQ ID NO: 60), TP-2B8 (SEQ ID NO: 36), TP-3F1 (SEQ ID NO: 132), TP-3A3 (SEQ ID NO: 100), TP-4E8 (SEQ ID NO: 164), TP-4A7 (SEQ ID NO: 152), TP-4H8 (SEQ ID NO: 172), TP-2A6 (SEQ ID NO: 12), TP-2C1 (SEQ ID NO: 44), TP-3G3 (SEQ ID NO: 144), TP-2B1 (SEQ ID NO: 24), TP-2G7 (SEQ ID NO: 84), TP-3H2 (SEQ ID NO: 148), TP-2A2 (SEQ ID NO: 4), TP-3E1 (SEQ ID NO: 128), TP-2G2 (SEQ ID NO: 68), TP-3D3 (SEQ ID NO: 64), TP-3A4 (SEQ ID NO: 104), TP-3C1 (SEQ ID NO: 136), TP-3F2 (SEQ ID NO: 136) y TP-4G8 (SEQ ID NO: 168).
- Fig. 8: Gráfico que muestra la tasa de supervivencia en 24 horas tras un corte transversal de la vena de la cola en ratones tratados con (1) el pepticuerpo TP-2A8 ("2A8") dirigido contra TFPI, (2) 2A8 y el factor VIII recombinante, (3) IgG de ratón, y (4) el factor VIII recombinante.
 - Fig. 9: Gráficos que muestra los ensayos del tiempo de coagulación y el tiempo de formación de coágulos en ratones tratados con el anticuerpo TP-2A8 ("2A8") dirigido contra TFPI, el factor VIIa, y la combinación de 2A8 y el factor VIIa.
- Fig. 10: Gráfico que muestra el tiempo de coagulación de la sangre humana normal tratada con un inhibidor de FVIII con el anticuerpo TP-2A8 ("2A8") dirigido contra TFPI y el anticuerpo TP-4B7 ("4B7") dirigido contra TFPI en comparación con el inhibidor de FVIII solo.

Descripción detallada

Definiciones

20

- La expresión "inhibidor de la ruta del factor tisular" o "TFPI" como se usa en el presente documento se refiere a cualquier variante, isoforma y especie homóloga de TFPI humano que se expresa naturalmente por las células. En una realización preferida de la invención, la unión de un anticuerpo de la invención a TFPI reduce el tiempo de coagulación de la sangre.
- Como se usa en el presente documento, un "anticuerpo" se refiere a un anticuerpo entero y a cualquier fragmento de 45 unión a antígeno (es decir, "porción de unión a antígeno") o a una única cadena del mismo. El término incluye una molécula de inmunoglobulina de longitud completa (por ejemplo, un anticuerpo de IgG) que se produce o forma de manera natural gracias a procesos de recombinación de fragmentos génicos normales de la inmunoglobulina, o una porción inmunitariamente activa de una molécula de inmunoglobulina, tal como un fragmento de anticuerpo, que retiene la actividad de unión específica. Con respecto a la estructura, un fragmento de anticuerpo se une con el mismo antígeno que es reconocido por el anticuerpo de longitud completa. Por ejemplo, un fragmento de anticuerpo 50 monoclonal dirigido contra TFPI se une a un epítopo de TFPI. La función de unión a antígeno de un anticuerpo puede llevarse a cabo por fragmentos de un anticuerpo de longitud completa. Los ejemplos de fragmentos de unión abarcados en la expresión "porción de unión a antígeno" de un anticuerpo incluyen (i) un fragmento Fab, un fragmento monovalente consistente en los dominios V_L, V_H, C_L y C_{H1}; (ii) un fragmento F(ab')₂, un fragmento bivalente que comprende dos fragmentos Fab unidos por un puente disulfuro en la región bisagra; (iii) un fragmento 55 Fd que consiste en los dominios V_L y C_{H1}; (iv) un fragmento Fv que consiste en los dominios V_L y V_H de un único brazo de un anticuerpo, v) un fragmento dAb (Ward y col. (1989) *Nature*, 341:544-546), que consiste en un dominio V_H; y (vi) una región determinante de la complementariedad aislada (CDR). Además, aunque los dos dominios del

fragmento Fv, V_L y V_H , están codificados por genes separados, se pueden unir, usando procedimientos recombinantes, mediante un enlazador sintético que les permite ser preparados como una proteína monocatenaria en la que la pareja de regiones V_L y V_H forman moléculas monovalentes (conocidas como Fv monocatenario (scFv); véanse, por ejemplo, Bird y col. (1988) Science, 242:423-426; y Huston y col. (1988) Proc. Natl. Acad. Sci. USA, 85:5879-5883). Se pretende también que dichos anticuerpos monocatenarios estén abarcados en la expresión "porción de unión a antígeno" de un anticuerpo. Estos fragmentos de anticuerpos se obtienen utilizando técnicas convencionales conocidas por los expertos en la materia, y los fragmentos se criban para su utilidad de la misma manera que los anticuerpos intactos.

Como se usa en el presente documento, las expresiones "inhibe la unión" y "bloquea la unión" (por ejemplo, refiriéndose a la inhibición/bloqueo de la unión del ligando de TFPI al TFPI) se utilizan indistintamente e incluyen la inhibición o bloqueo tanto parcial como completa. Se pretende también que la inhibición y el bloqueo incluyan cualquier disminución medible en la afinidad de unión de TFPI a un sustrato fisiológico cuando está en contacto con un anticuerpo dirigido contra TFPI en comparación con TFPI que no está en contacto con un anticuerpo dirigido contra TFPI, por ejemplo, el bloqueo de la interacción de TFPI con el factor Xa o el bloqueo de la interacción de un complejo TFPI-factor Xa con factor tisular, factor VIIa o el complejo de factor tisular/factor VIIa en al menos aproximadamente 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90%, 95%, 96%, 97%, 98%, 99%, o 100%.

Las expresiones "anticuerpo monoclonal" o "composición de anticuerpo monoclonal", como se usa en el presente documento, se refiere a una preparación de moléculas de anticuerpo de una única composición molecular. Una composición de anticuerpo monoclonal muestra una única especifidad y afinidad de unión para un epítopo concreto. Por consiguiente, la expresión "anticuerpo monoclonal humano" se refiere a anticuerpos que muestran una única especificidad de unión que tiene regiones variables y constantes derivadas de secuencias de inmunoglobulina de línea germinal humana. Los anticuerpos humanos de la invención pueden incluir restos de aminoácidos no codificados por las secuencias de inmunoglobulina de la estirpe germinal humana (por ejemplo, mutaciones introducidas por mutagénesis *in vitro* aleatoria o específica de un sitio, o mediante mutación somática *in vivo*).

20

35

50

55

60

Se pretende que un "anticuerpo aislado", tal como se usa en el presente documento, se refiera a un anticuerpo que está sustancialmente exento de otros anticuerpos que tienen diferentes especificidades antigénicas (por ejemplo, un anticuerpo aislado que se une a TFPI está sustancialmente exento de anticuerpos que se unen a antígenos diferentes de TFPI). Un anticuerpo aislado que se une a un epítopo, isoforma o variante de TFPI humano puede, sin embargo, tener reactividad cruzada con otros antígenos relacionados, por ejemplo, de otras especies (por ejemplo, homólogos de especies de TFPI). Por otra parte, un anticuerpo aislado puede estar sustancialmente exento de otros materiales celulares y/o químicos.

Como se usa en el presente documento, "unión específica" se refiere a la unión de un anticuerpo a un antígeno predeterminado. Normalmente, el anticuerpo se une con una afinidad de al menos aproximadamente 10⁵ M⁻¹ y se une a un antígeno predeterminado con una afinidad que es mayor, por ejemplo, al menos dos veces mayor, que su afinidad por la unión a un antígeno irrelevante (por ejemplo, BSA, caseína) diferente del antígeno predeterminado o un antígeno estrechamente relacionado. Las frases "un anticuerpo que reconoce un antígeno" y "un anticuerpo específico de un antígeno" se usan de manera indistinta en el presente documento con la expresión "un anticuerpo que se une específicamente a un antígeno".

Como se usa en el presente documento, la expresión "alta afinidad" por un anticuerpo IgG se refiere a una afinidad de unión de al menos aproximadamente $10^7 M^{-1}$, en algunas realizaciones, al menos aproximadamente $10^8 M^{-1}$, en algunas realizaciones, al menos aproximadamente $10^9 M^{-1}$, $10^{10} M^{-1}$, $10^{11} M^{-1}$ o más, por ejemplo, hasta $10^{13} M^{-1}$ o más. Sin embargo, la unión de "alta afinidad" puede variar para otros isotipos de anticuerpos. Por ejemplo, unión de "alta afinidad" por un isotipo de IgM se refiere a una afinidad de unión de al menos aproximadamente $1,0 \times 10^7 M^{-1}$. Como se usa en el presente documento, el término "isotipo" se refiere a la clase de anticuerpo (por ejemplo, IgM o IgG1) que codifica los genes de la región constante de la cadena pesada.

"Región determinante de la complementariedad" o "CDR" se refiere a una de tres regiones hipervariables en la región variable de la cadena pesada o la región variable de la cadena ligera de una molécula de anticuerpo que forma la superficie de unión a antígeno en el extremo N que es complementaria a la estructura tridimensional del antígeno unido. Procediendo del extremo N de una cadena pesada o ligera, estas regiones determinantes de la complementariedad se denotan como "CDR1", "CDR2", y "CDR3", respectivamente. Las CDR están involucradas en la unión de antígeno-anticuerpo y la CDR3 comprende una región única específica para la unión de un antígeno con un anticuerpo. Un sitio de unión a antígeno, por lo tanto, puede incluir seis CDR, que comprenden las regiones CDR de cada región V de una cadena pesada y una cadena ligera.

Como se usa en el presente documento, "sustituciones conservativas" se refiere a las modificaciones de un polipéptido que implican la sustitución de uno o más aminoácidos que tienen propiedades bioquímicas similares que no dan resultado la pérdida de una función biológica o bioquímica del polipéptido. Una "sustitución de aminoácido conservativa" es aquella donde el resto de aminoácido se sustituye por un resto de aminoácido que tiene una cadena secundaria similar. Las familias de restos de aminoácidos que tienen cadenas secundarias similares se han definido en la técnica. Estas familias incluyen aminoácidos con cadenas secundarias básicas (por ejemplo, lisina, arginina, histidina), cadenas secundarias ácidas (por ejemplo, ácido aspártico, ácido glutámico), cadenas

secundarias polares no cargadas (por ejemplo, glicina, asparagina, glutamina, serina, treonina, tirosina, cisteína), cadenas secundarias no polares (por ejemplo, alanina, valina, leucina, isoleucina, prolina, fenilalanina, metionina, triptófano), cadenas secundarias beta-ramificadas (por ejemplo, treonina, valina, isoleucina) y cadenas laterales aromáticas (por ejemplo, tirosina, fenilalanina, triptófano, histidina). Se prevé que los anticuerpos de la presente invención puedan tener sustituciones de aminoácidos conservativas y retener todavía la actividad.

Para los ácidos nucleicos y polipéptidos, la expresión "homología sustancial" indica que dos ácidos nucleicos o dos polipéptidos, o las secuencias designadas de los mismos, cuando se alinean y se comparan de forma óptima, son idénticos, con las inserciones o deleciones de aminoácidos adecuadas, en al menos aproximadamente 80% de los nucleótidos o aminoácidos, usualmente al menos aproximadamente 85%, preferentemente aproximadamente 90%, 91 %, 92%, 93%, 94%, o 95%, más preferentemente al menos aproximadamente 96%, 97%, 98%, 99%, 99,1%, 99,2%, 99,3%, 99,4%, o 99,5% de los nucleótidos o aminoácidos. Como alternativa, existe una homología sustancial de los ácidos nucleicos cuando los segmentos se hibriden en condiciones de hibridación selectivas para el complemento de la hebra. La invención incluye secuencias de ácidos nucleicos y secuencias de polipéptidos que tienen una homología sustancial con las secuencias de ácidos nucleicos específicas y las secuencias de ácidos nucleicos enumeradas en el presente documento.

El porcentaje de identidad entre las dos secuencias es una función del número de posiciones idénticas compartidas por las secuencias (es decir, % de homología = n.º de posiciones idénticas / n.º total de posiciones x 100), teniendo en cuenta el número de huecos, y la longitud de cada hueco, cuya necesidad se va a introducir para el alineamiento óptimo de las dos secuencias. Se puede llevar a cabo la comparación de secuencias y la determinación del porcentaje de identidad entre dos secuencias utilizando un algoritmo matemático, tal como, sin limitación, el módulo AlignX™ del VectorNTI™ (Invitrogen Corp., Carlsbad, CA). Para AlignX™, los parámetros por defecto del alineamiento múltiple son: penalización por abertura de hueco: 10; penalización por extensión de hueco: 0,05; intervalo de penalización por separación de hueco: 8; % de identidad para el retraso del alineamiento: 40. (se encuentran detalles adicionales en http://www.invitrogen.com/site/us/en/home/LINNEA-Online-Guides/LINNEA-Communities/Vector-NTI-Community/Sequence-analysis-and-data-management-software-for-PCs/AlignX-Module-for-Vector-NTI-Advance.reg.us.html).

Otro procedimiento para determinar la mejor correspondencia global entre una secuencia solicitada (una secuencia de la presente invención) y una secuencia sujeto, denominado también alineamiento global de secuencia, puede determinarse utilizando el programa informático CLUSTALW (Thompson y col., Nucleic Acids Research, 1994, 2(22): 4673-4680), que se basa en el algoritmo de Higgins y col., (Computer Applications in the Biosciences (CABIOS), 1992, 8(2): 189-191). En un alineamiento de secuencias las secuencias solicitada y sujeto son ambas secuencias de ADN. El resultado de dicho alineamiento de secuencias global es el porcentaje de identidad. Los parámetros preferidos utilizados en un alineamiento CLUSTALW de secuencias de ADN para calcular el porcentaje de identidad mediante alineamientos por parejas son: Matriz = IUB, k-tupla = 1, Número de diagonales superiores = 5, Penalización por hueco = 3, Penalización por apertura de hueco = 10, Penalización por extensión de hueco = 0,1. Para múltiples alineamientos, se prefieren los siguientes parámetros CLUSTALW: Penalización por apertura de hueco = 10, Parámetro de extensión de hueco = 0,05; Intervalo de penalización por separación de hueco = 8; % de identidad para el retraso del alineamiento= 40.

Los ácidos nucleicos pueden estar presentes en células completas, en un lisado celular, o en una forma parcialmente purificada o sustancialmente pura. Un ácido nucleico está "aislado" o "se ha vuelto sustancialmente puro" cuando se purifica por separado de otros componentes celulares con los que se asocia normalmente en el entorno natural. Para aislar un ácido nucleico, se pueden usar técnicas normalizadas tales como las siguientes: tratamiento alcalino/SDS, formación de bandas de CsCl, cromatografía en columna, electroforesis en gel de agarosa y otros bien conocidos en la técnica.

45 Anticuerpos monoclonales

Se identificaron cuarenta y cuatro anticuerpos de unión a TFPI y se cribaron mediante inmunoprecipitación y se cribaron de bibliotecas de anticuerpos humanos contra TFPI humano. La región variable de la cadena pesada y la región variable de la cadena ligera de cada anticuerpo monoclonal se secuenciaron y se identificaron sus regiones CDR. Los números identificadores de secuencias ("SEQ ID NO") que corresponden a estas regiones de cada anticuerpo monoclonal se resumen en la Tabla 1.

Tabla 1. Sumario de los números identificadores de secuencias ("SEQ ID NO") de la región variable de la cadena pesada ("VH") y la región variable de la cadena ligera ("VL") de cada uno de los anticuerpos monoclonales de unión a TFPI. Se proporcionan también los números identificadores de secuencias de las regiones CDR ("CDR1," "CDR2," y "CDR3") de cada cadena pesada y ligera. N.A.: secuencia de ácido nucleico; A.A.: secuencia de aminoácidos.

Clon	V	L	V	Н		VL			VH	
Cion	N.A.	A.A.	N.A.	A.A.	CDR1	CDR2	CDR3	CDR1	CDR2	CDR3
TP-2A2	1	2	3	4	173	216	259	302	345	388

5

10

15

20

25

30

35

40

	V	'L	V	H	(continual	, VL			VH	
Clon	N.A.	A.A.	N.A.	A.A.	CDR1	CDR2	CDR3	CDR1	CDR2	CDR3
TP-2A5.1	5	6	7	8	174	217	260	303	346	389
TP-2A6	9	10	11	12	175	218	261	304	347	390
TP-2A8	13	14	15	16	176	219	262	305	348	391
TP-2A10	17	18	19	20	177	220	263	306	349	392
TP-2B1	21	22	23	24	178	221	264	307	350	393
TP-2B3	25	26	27	28	179	222	265	308	351	394
TP-2B4	29	30	31	32	180	223	266	309	352	395
TP-2B8	33	34	35	36	181	224	267	310	353	396
TP-2B9	37	38	39	40	182	225	268	311	354	397
TP-2C1	41	42	43	44	183	226	269	312	355	398
TP-2C7	45	46	47	48	184	227	270	313	356	399
TP-2D7	49	50	51	52	185	228	271	314	357	400
TP-2E3	53	54	55	56	186	229	272	315	358	401
TP-2E5	57	58	59	60	187	230	273	316	359	402
TP-2F9	61	62	63	64	188	231	274	317	360	403
TP-2G2	65	66	67	68	189	232	275	318	361	404
TP-2G4	69	70	71	72	190	233	276	319	362	405
TP-2G5	73	74	75	76	191	234	277	320	363	406
TP-2G6	77	78	79	80	192	235	278	321	364	407
TP-2G7	81	82	83	84	193	236	279	322	365	408
TP-2G9	85	86	87	88	194	237	280	323	366	409
TP-2H10	89	90	91	92	195	238	281	324	367	410
TP-3A2	93	94	95	96	196	239	282	325	368	411
TP-3A3	97	98	99	100	197	240	283	326	369	412
TP-3A4	101	102	103	104	198	241	284	327	370	413
TP-3B3	105	106	107	108	199	242	285	328	371	414
TP-3B4	109	110	111	112	200	243	286	329	372	415
TP-3C2	113	114	115	116	201	244	287	330	373	416
TP-3C3	117	118	119	120	202	245	288	331	374	417
TP-3D3	121	122	123	124	203	246	289	332	375	418
TP-3E1	125	126	127	128	204	247	290	333	376	419
TP-3F1	129	130	131	132	205	248	291	334	377	420
TP-3F2	133	134	135	136	206	249	292	335	378	421
TP-3G1	137	138	139	140	207	250	293	336	379	422
TP-3G3	141	142	143	144	208	251	294	337	380	423

Clon	V	Ľ	V	Н		VL			VH	
Cion	N.A.	A.A.	N.A.	A.A.	CDR1	CDR2	CDR3	CDR1	CDR2	CDR3
TP-3H2	145	146	147	148	209	252	295	338	381	424
TP-4A7	149	150	151	152	210	253	296	339	382	425
TP-4A9	153	154	155	156	211	254	297	340	383	426
TP-4B7	157	158	159	160	212	255	298	341	384	427
TP-4E8	161	162	163	164	213	256	299	342	385	428
TP-4G8	165	166	167	168	214	257	300	343	386	429
TP-4H8	169	170	171	172	215	258	301	344	387	430
TP-3C1	85	86	135	136	194	237	280	335	378	421

Se desvelan anticuerpos monoclonales aislados que se unen a un inhibidor de la ruta del factor tisular humano, en el que los anticuerpos comprenden una CDR3 de una secuencia de aminoácidos seleccionada entre el grupo que consiste en las SEQ ID NOS: 388-430. Estas CDR3 se identifican a partir de las cadenas pesadas de los anticuerpos identificados durante el cribado por inmunoprecipitación y el cribado. se desvelan además anticuerpos que comprenden adicionalmente (a) una CDR1 que comprende una secuencia de aminoácidos seleccionada entre el grupo que consiste en las SEQ ID NOS: 302-344, (b) una CDR2 que comprende una secuencia de aminoácidos seleccionada entre el grupo que consiste en las SEQ ID NOS: 345-387, o (c) ambas de una CDR1 que comprende una secuencia de aminoácidos seleccionada entre el grupo que consiste en las SEQ ID NOS: 302-344 y una CDR2 que comprende una secuencia de aminoácidos seleccionada entre el grupo que consiste en las SEQ ID NOS: 345-387

5

10

15

20

25

30

35

40

Se desvelan además anticuerpos que comparten una CDR3 de una de las cadenas ligeras de los anticuerpos identificado durante el cribado por inmunoprecipitación y el cribado. Por tanto, la presente desvelación se dirige a un anticuerpo monoclonal aislado que se une a un inhibidor de la ruta del factor tisular humano, en el que el anticuerpo comprende una CDR3 que comprende una secuencia de aminoácidos seleccionada entre el grupo que consiste en las SEQ ID NOS: 259-301. se desvelan además anticuerpos que comprenden adicionalmente (a) una CDR1 que comprende una secuencia de aminoácidos seleccionada entre el grupo que consiste en las SEQ ID NOS: 173-215, (b) una CDR2 que comprende una secuencia de aminoácidos seleccionada entre el grupo que consiste en las SEQ ID NOS: 216-258, o (c) ambas de una CDR1 que comprende una secuencia de aminoácidos seleccionada entre el grupo que consiste en las SEQ ID NOS: 173-215 y una CDR2 que comprende una secuencia de aminoácidos seleccionada entre el grupo que consiste en las SEQ ID NOS: 216-258.

Se desvelan además anticuerpos que comprenden una CDR3 procedente de una cadena pesada y una CDR3 procedente de una cadena ligera de los anticuerpos identificados a partir del cribado y del cribado por inmunoprecipitación. Por tanto, se desvela un anticuerpo que se una a un inhibidor de la ruta del factor tisular humano, en el que el anticuerpo comprende una CDR3 que comprende una secuencia de aminoácidos seleccionada entre el grupo que consiste en las SEQ ID NOS: 388-430 y una CDR3 que comprende una secuencia de aminoácidos seleccionada entre el grupo que consiste en las SEQ ID NOS: 259-301. El anticuerpo desvelado comprende además (a) una CDR1 que comprende una secuencia de aminoácidos seleccionada entre el grupo que consiste en las SEQ ID NOS: 302-344, (b) una CDR2 que comprende una secuencia de aminoácidos seleccionada entre el grupo que consiste en las SEQ ID NOS: 345-387, (c) una CDR1 que comprende una secuencia de aminoácidos seleccionada entre el grupo que consiste en las SEQ ID NOS: 173-215, y/o (d) una CDR2 que comprende una secuencia de aminoácidos seleccionada entre el grupo que consiste en las SEQ ID NOS: 216-258.

El anticuerpo desvelado comprende regiones variables de la cadena pesada y ligera que comprenden:

- (a) una región variable de la cadena ligera que comprende una secuencia de aminoácidos que comprende las SEQ ID NOS: 173, 216 y 259 y una región variable de la cadena pesada que comprende una secuencia de aminoácidos que comprende las SEQ ID NOS: 302, 345 y 388;
- (b) una región variable de la cadena ligera que comprende una secuencia de aminoácidos que comprende las SEQ ID NOS: 174, 217 y 260 y una región variable de la cadena pesada que comprende una secuencia de aminoácidos que comprende las SEQ ID NOS: 303, 346 y 389;
- (c) una región variable de la cadena ligera que comprende una secuencia de aminoácidos que comprende las SEQ ID NOS: 175, 218 y 261 y una región variable de la cadena pesada que comprende una secuencia de aminoácidos que comprende las SEQ ID NOS: 304, 347 y 390;

- (d) una región variable de la cadena ligera que comprende una secuencia de aminoácidos que comprende las SEQ ID NOS: 176, 219 y 262 y una región variable de la cadena pesada que comprende una secuencia de aminoácidos que comprende las SEQ ID NOS: 305, 348 y 391;
- (e) una región variable de la cadena ligera que comprende una secuencia de aminoácidos que comprende las SEQ ID NOS: 177, 220 y 263 y una región variable de la cadena pesada que comprende una secuencia de aminoácidos que comprende las SEQ ID NOS: 306, 349 y 392;
 - (f) una región variable de la cadena ligera que comprende una secuencia de aminoácidos que comprende las SEQ ID NOS: 178, 221 y 264 y una región variable de la cadena pesada que comprende una secuencia de aminoácidos que comprende las SEQ ID NOS: 307, 350 y 393;
- (g) una región variable de la cadena ligera que comprende una secuencia de aminoácidos que comprende las SEQ ID NOS: 179, 222 y 265 y una región variable de la cadena pesada que comprende una secuencia de aminoácidos que comprende las SEQ ID NOS: 308, 351 y 394;

15

30

- (h) una región variable de la cadena ligera que comprende una secuencia de aminoácidos que comprende las SEQ ID NOS: 180, 223 y 266 y una región variable de la cadena pesada que comprende una secuencia de aminoácidos que comprende las SEQ ID NOS: 309, 352 y 395;
- (i) una región variable de la cadena ligera que comprende una secuencia de aminoácidos que comprende las SEQ ID NOS: 181, 224 y 267 y una región variable de la cadena pesada que comprende una secuencia de aminoácidos que comprende las SEQ ID NOS: 310, 353 y 396;
- (j) una región variable de la cadena ligera que comprende una secuencia de aminoácidos que comprende las
 SEQ ID NOS: 182, 225 y 268 y una región variable de la cadena pesada que comprende una secuencia de aminoácidos que comprende las SEQ ID NOS: 311, 354 y 397;
 - (k) una región variable de la cadena ligera que comprende una secuencia de aminoácidos que comprende las SEQ ID NOS: 183, 226 y 269 y una región variable de la cadena pesada que comprende una secuencia de aminoácidos que comprende las SEQ ID NOS: 312, 355 y 398;
- 25 (I) una región variable de la cadena ligera que comprende una secuencia de aminoácidos que comprende las SEQ ID NOS: 184, 227 y 270 y una región variable de la cadena pesada que comprende una secuencia de aminoácidos que comprende las SEQ ID NOS: 313, 356 y 399;
 - (m) una región variable de la cadena ligera que comprende una secuencia de aminoácidos que comprende las SEQ ID NOS: 185, 228 y 271 y una región variable de la cadena pesada que comprende una secuencia de aminoácidos que comprende las SEQ ID NOS: 314, 357 y 400;
 - (n) una región variable de la cadena ligera que comprende una secuencia de aminoácidos que comprende las SEQ ID NOS: 186, 229 y 272 y una región variable de la cadena pesada que comprende una secuencia de aminoácidos que comprende las SEQ ID NOS: 315, 358 y 401;
- (o) una región variable de la cadena ligera que comprende una secuencia de aminoácidos que comprende las SEQ ID NOS: 187, 230 y 273 y una región variable de la cadena pesada que comprende una secuencia de aminoácidos que comprende las SEQ ID NOS: 316, 359 y 402;
 - (p) una región variable de la cadena ligera que comprende una secuencia de aminoácidos que comprende las SEQ ID NOS: 188, 231 y 274 y una región variable de la cadena pesada que comprende una secuencia de aminoácidos que comprende las SEQ ID NOS: 317, 360 y 403;
- (q) una región variable de la cadena ligera que comprende una secuencia de aminoácidos que comprende las SEQ ID NOS: 189, 232 y 275 y una región variable de la cadena pesada que comprende una secuencia de aminoácidos que comprende las SEQ ID NOS: 318, 361 y 404;
 - (r) una región variable de la cadena ligera que comprende una secuencia de aminoácidos que comprende las SEQ ID NOS: 190, 233 y 276 y una región variable de la cadena pesada que comprende una secuencia de aminoácidos que comprende las SEQ ID NOS: 319, 362 y 405;
 - (s) una región variable de la cadena ligera que comprende una secuencia de aminoácidos que comprende las SEQ ID NOS: 191, 234 y 277 y una región variable de la cadena pesada que comprende una secuencia de aminoácidos que comprende las SEQ ID NOS: 320, 363 y 406;
- (t) una región variable de la cadena ligera que comprende una secuencia de aminoácidos que comprende las SEQ ID NOS: 192, 235 y 278 y una región variable de la cadena pesada que comprende una secuencia de aminoácidos que comprende las SEQ ID NOS: 321, 364 y 407;

- (u) una región variable de la cadena ligera que comprende una secuencia de aminoácidos que comprende las SEQ ID NOS: 193, 236 y 279 y una región variable de la cadena pesada que comprende una secuencia de aminoácidos que comprende las SEQ ID NOS: 322, 365 y 408;
- (v) una región variable de la cadena ligera que comprende una secuencia de aminoácidos que comprende las
 5 SEQ ID NOS: 194, 237 y 280 y una región variable de la cadena pesada que comprende una secuencia de aminoácidos que comprende las SEQ ID NOS: 323, 366 y 409;
 - (w) una región variable de la cadena ligera que comprende una secuencia de aminoácidos que comprende las SEQ ID NOS: 195, 238 y 281 y una región variable de la cadena pesada que comprende una secuencia de aminoácidos que comprende las SEQ ID NOS: 324, 367 y 410;
- (x) una región variable de la cadena ligera que comprende una secuencia de aminoácidos que comprende las SEQ ID NOS: 196, 239 y 282 y una región variable de la cadena pesada que comprende una secuencia de aminoácidos que comprende las SEQ ID NOS: 325, 368 y 411;

15

30

- (y) una región variable de la cadena ligera que comprende una secuencia de aminoácidos que comprende las SEQ ID NOS: 197, 240 y 283 y una región variable de la cadena pesada que comprende una secuencia de aminoácidos que comprende las SEQ ID NOS: 326, 369 y 412;
- (z) una región variable de la cadena ligera que comprende una secuencia de aminoácidos que comprende las SEQ ID NOS: 198, 241 y 284 y una región variable de la cadena pesada que comprende una secuencia de aminoácidos que comprende las SEQ ID NOS: 327, 370 y 413;
- (aa) una región variable de la cadena ligera que comprende una secuencia de aminoácidos que comprende las
 SEQ ID NOS: 199, 242 y 285 y una región variable de la cadena pesada que comprende una secuencia de aminoácidos que comprende las SEQ ID NOS: 328, 371 y 414;
 - (bb) una región variable de la cadena ligera que comprende una secuencia de aminoácidos que comprende las SEQ ID NOS: 200, 243 y 286 y una región variable de la cadena pesada que comprende una secuencia de aminoácidos que comprende las SEQ ID NOS: 329, 372 y 415;
- (cc) una región variable de la cadena ligera que comprende una secuencia de aminoácidos que comprende las SEQ ID NOS: 201, 244 y 287 y una región variable de la cadena pesada que comprende una secuencia de aminoácidos que comprende las SEQ ID NOS: 330, 373 y;
 - (dd) una región variable de la cadena ligera que comprende una secuencia de aminoácidos que comprende las SEQ ID NOS: 202, 245 y 288 y una región variable de la cadena pesada que comprende una secuencia de aminoácidos que comprende las SEQ ID NOS: 331, 374 y 417;
 - (ee) una región variable de la cadena ligera que comprende una secuencia de aminoácidos que comprende las SEQ ID NOS: 203, 246 y 289 y una región variable de la cadena pesada que comprende una secuencia de aminoácidos que comprende las SEQ ID NOS: 332, 375 y 418;
- (ff) una región variable de la cadena ligera que comprende una secuencia de aminoácidos que comprende las SEQ ID NOS: 204, 247 y 290 y una región variable de la cadena pesada que comprende una secuencia de aminoácidos que comprende las SEQ ID NOS: 333, 376 y 419;
 - (gg) una región variable de la cadena ligera que comprende una secuencia de aminoácidos que comprende las SEQ ID NOS: 205, 248 y 291 y una región variable de la cadena pesada que comprende una secuencia de aminoácidos que comprende las SEQ ID NOS: 334, 377 y 420;
- (hh) una región variable de la cadena ligera que comprende una secuencia de aminoácidos que comprende las SEQ ID NOS: 206, 249 y 292 y una región variable de la cadena pesada que comprende una secuencia de aminoácidos que comprende las SEQ ID NOS: 335, 378 y 421;
 - (ii) una región variable de la cadena ligera que comprende una secuencia de aminoácidos que comprende las SEQ ID NOS: 207, 250 y 293 y una región variable de la cadena pesada que comprende una secuencia de aminoácidos que comprende las SEQ ID NOS: 336, 379 y 422;
 - (jj) una región variable de la cadena ligera que comprende una secuencia de aminoácidos que comprende las SEQ ID NOS: 208, 251 y 294 y una región variable de la cadena pesada que comprende una secuencia de aminoácidos que comprende las SEQ ID NOS: 337, 380 y 423;
- (kk) una región variable de la cadena ligera que comprende una secuencia de aminoácidos que comprende las SEQ ID NOS: 209, 252 y 295 y una región variable de la cadena pesada que comprende una secuencia de aminoácidos que comprende las SEQ ID NOS: 338, 381 y 424;

- (11) una región variable de la cadena ligera que comprende una secuencia de aminoácidos que comprende las SEQ ID NOS: 210, 253 y 296 y una región variable de la cadena pesada que comprende una secuencia de aminoácidos que comprende las SEQ ID NOS: 339, 382 y 425;
- (mm) una región variable de la cadena ligera que comprende una secuencia de aminoácidos que comprende las SEQ ID NOS: 211, 254 y 297 y una región variable de la cadena pesada que comprende una secuencia de aminoácidos que comprende las SEQ ID NOS: 340, 383 y 426;
 - (nn) una región variable de la cadena ligera que comprende una secuencia de aminoácidos que comprende las SEQ ID NOS: 212, 255 y 298 y una región variable de la cadena pesada que comprende una secuencia de aminoácidos que comprende las SEQ ID NOS: 341, 384 y 427;
- (oo) una región variable de la cadena ligera que comprende una secuencia de aminoácidos que comprende las SEQ ID NOS: 213, 256 y 299 y una región variable de la cadena pesada que comprende una secuencia de aminoácidos que comprende las SEQ ID NOS: 342, 385 y 428;
 - (pp) una región variable de la cadena ligera que comprende una secuencia de aminoácidos que comprende las SEQ ID NOS: 214, 257 y 300 y una región variable de la cadena pesada que comprende una secuencia de aminoácidos que comprende las SEQ ID NOS: 343, 386 y 429;
 - (qq) una región variable de la cadena ligera que comprende una secuencia de aminoácidos que comprende las SEQ ID NOS: 215, 258 y 301 y una región variable de la cadena pesada que comprende una secuencia de aminoácidos que comprende las SEQ ID NOS: 344, 387 y 430; o
- (rr) una región variable de la cadena ligera que comprende una secuencia de aminoácidos que comprende las SEQ ID NOS: 194, 237 y 280 y una región variable de la cadena pesada que comprende una secuencia de aminoácidos que comprende las SEQ ID NOS: 335, 378 y 421.

Se desvelan además anticuerpos que comprenden:

15

30

- (a) una región variable de la cadena ligera que tiene la secuencia polipeptídica de SEQ ID NO: 2 y una región variable de la cadena pesada que tiene la secuencia polipeptídica de SEQ ID NO: 4;
- (b) una región variable de la cadena ligera que tiene la secuencia polipeptídica de SEQ ID NO: 6 y una región variable de la cadena pesada que tiene la secuencia polipeptídica de SEQ ID NO: 8;
 - (c) una región variable de la cadena ligera que tiene la secuencia polipeptídica de SEQ ID NO: 10 y una región variable de la cadena pesada que tiene la secuencia polipeptídica de SEQ ID NO: 12;
 - (d) una región variable de la cadena ligera que tiene la secuencia polipeptídica de SEQ ID NO: 14 y una región variable de la cadena pesada que tiene la secuencia polipeptídica de SEQ ID NO: 16;
 - (e) una región variable de la cadena ligera que tiene la secuencia polipeptídica de SEQ ID NO: 18 y una región variable de la cadena pesada que tiene la secuencia polipeptídica de SEQ ID NO: 20;
 - (f) una región variable de la cadena ligera que tiene la secuencia polipeptídica de SEQ ID NO: 22 y una región variable de la cadena pesada que tiene la secuencia polipeptídica de SEQ ID NO: 24;
- 35 (g) una región variable de la cadena ligera que tiene la secuencia polipeptídica de SEQ ID NO: 26 y una región variable de la cadena pesada que tiene la secuencia polipeptídica de SEQ ID NO: 28:
 - (h) una región variable de la cadena ligera que tiene la secuencia polipeptídica de SEQ ID NO: 30 y una región variable de la cadena pesada que tiene la secuencia polipeptídica de SEQ ID NO: 32;
 - (i) una región variable de la cadena ligera que tiene la secuencia polipeptídica de SEQ ID NO: 34 y una región variable de la cadena pesada que tiene la secuencia polipeptídica de SEQ ID NO: 36;
 - (j) una región variable de la cadena ligera que tiene la secuencia polipeptídica de SEQ ID NO: 38 y una región variable de la cadena pesada que tiene la secuencia polipeptídica de SEQ ID NO: 40;
 - (k) una región variable de la cadena ligera que tiene la secuencia polipeptídica de SEQ ID NO: 42 y una región variable de la cadena pesada que tiene la secuencia polipeptídica de SEQ ID NO: 44;
- 45 (1) una región variable de la cadena ligera que tiene la secuencia polipeptídica de SEQ ID NO: 46 y una región variable de la cadena pesada que tiene la secuencia polipeptídica de SEQ ID NO: 48;
 - (m) una región variable de la cadena ligera que tiene la secuencia polipeptídica de SEQ ID NO: 50 y una región variable de la cadena pesada que tiene la secuencia polipeptídica de SEQ ID NO: 52;

- (n) una región variable de la cadena ligera que tiene la secuencia polipeptídica de SEQ ID NO: 54 y una región variable de la cadena pesada que tiene la secuencia polipeptídica de SEQ ID NO: 56;
- (o) una región variable de la cadena ligera que tiene la secuencia polipeptídica de SEQ ID NO: 58 y una región variable de la cadena pesada que tiene la secuencia polipeptídica de SEQ ID NO: 60:
- 5 (p) una región variable de la cadena ligera que tiene la secuencia polipeptídica de SEQ ID NO: 62 y una región variable de la cadena pesada que tiene la secuencia polipeptídica de SEQ ID NO: 64;
 - (q) una región variable de la cadena ligera que tiene la secuencia polipeptídica de SEQ ID NO: 66 y una región variable de la cadena pesada que tiene la secuencia polipeptídica de SEQ ID NO: 68;
 - (r) una región variable de la cadena ligera que tiene la secuencia polipeptídica de SEQ ID NO: 70 y una región variable de la cadena pesada que tiene la secuencia polipeptídica de SEQ ID NO: 72:

10

20

30

- (s) una región variable de la cadena ligera que tiene la secuencia polipeptídica de SEQ ID NO: 74 y una región variable de la cadena pesada que tiene la secuencia polipeptídica de SEQ ID NO: 76;
- (t) una región variable de la cadena ligera que tiene la secuencia polipeptídica de SEQ ID NO: 78 y una región variable de la cadena pesada que tiene la secuencia polipeptídica de SEQ ID NO: 80;
- (u) una región variable de la cadena ligera que tiene la secuencia polipeptídica de SEQ ID NO: 82 y una región variable de la cadena pesada que tiene la secuencia polipeptídica de SEQ ID NO: 84;
 - (v) una región variable de la cadena ligera que tiene la secuencia polipeptídica de SEQ ID NO: 86 y una región variable de la cadena pesada que tiene la secuencia polipeptídica de SEQ ID NO: 88;
 - (w) una región variable de la cadena ligera que tiene la secuencia polipeptídica de SEQ ID NO: 90 y una región variable de la cadena pesada que tiene la secuencia polipeptídica de SEQ ID NO: 92;
 - (x) una región variable de la cadena ligera que tiene la secuencia polipeptídica de SEQ ID NO: 94 y una región variable de la cadena pesada que tiene la secuencia polipeptídica de SEQ ID NO: 96;
 - (y) una región variable de la cadena ligera que tiene la secuencia polipeptídica de SEQ ID NO: 98 y una región variable de la cadena pesada que tiene la secuencia polipeptídica de SEQ ID NO: 100;
- 25 (z) una región variable de la cadena ligera que tiene la secuencia polipeptídica de SEQ ID NO: 102 y una región variable de la cadena pesada que tiene la secuencia polipeptídica de SEQ ID NO: 104;
 - (aa) una región variable de la cadena ligera que tiene la secuencia polipeptídica de SEQ ID NO: 106 y una región variable de la cadena pesada que tiene la secuencia polipeptídica de SEQ ID NO: 108;
 - (bb) una región variable de la cadena ligera que tiene la secuencia polipeptídica de SEQ ID NO: 110 y una región variable de la cadena pesada que tiene la secuencia polipeptídica de SEQ ID NO: 112;
 - (cc) una región variable de la cadena ligera que tiene la secuencia polipeptídica de SEQ ID NO: 114 y una región variable de la cadena pesada que tiene la secuencia polipeptídica de SEQ ID NO: 116;
 - (dd) una región variable de la cadena ligera que tiene la secuencia polipeptídica de SEQ ID NO: 118 y una región variable de la cadena pesada que tiene la secuencia polipeptídica de SEQ ID NO: 120;
- (ee) una región variable de la cadena ligera que tiene la secuencia polipeptídica de SEQ ID NO: 122 y una región variable de la cadena pesada que tiene la secuencia polipeptídica de SEQ ID NO: 124;
 - (ff) una región variable de la cadena ligera que tiene la secuencia polipeptídica de SEQ ID NO: 126 y una región variable de la cadena pesada que tiene la secuencia polipeptídica de SEQ ID NO: 128;
 - (gg) una región variable de la cadena ligera que tiene la secuencia polipeptídica de SEQ ID NO: 130 y una región variable de la cadena pesada que tiene la secuencia polipeptídica de SEQ ID NO: 132;
 - (hh) una región variable de la cadena ligera que tiene la secuencia polipeptídica de SEQ ID NO: 134 y una región variable de la cadena pesada que tiene la secuencia polipeptídica de SEQ ID NO: 136:
 - (ii) una región variable de la cadena ligera que tiene la secuencia polipeptídica de SEQ ID NO: 138 y una región variable de la cadena pesada que tiene la secuencia polipeptídica de SEQ ID NO: 140;
- (jj) una región variable de la cadena ligera que tiene la secuencia polipeptídica de SEQ ID NO: 142 y una región variable de la cadena pesada que tiene la secuencia polipeptídica de SEQ ID NO: 144;

- (kk) una región variable de la cadena ligera que tiene la secuencia polipeptídica de SEQ ID NO: 146 y una región variable de la cadena pesada que tiene la secuencia polipeptídica de SEQ ID NO: 148;
- (11) una región variable de la cadena ligera que tiene la secuencia polipeptídica de SEQ ID NO: 150 y una región variable de la cadena pesada que tiene la secuencia polipeptídica de SEQ ID NO: 152;
- 5 (mm) una región variable de la cadena ligera que tiene la secuencia polipeptídica de SEQ ID NO: 154 y una región variable de la cadena pesada que tiene la secuencia polipeptídica de SEQ ID NO: 156;

10

20

- (nn) una región variable de la cadena ligera que tiene la secuencia polipeptídica de SEQ ID NO: 158 y una región variable de la cadena pesada que tiene la secuencia polipeptídica de SEQ ID NO: 160;
- (oo) una región variable de la cadena ligera que tiene la secuencia polipeptídica de SEQ ID NO: 162 y una región variable de la cadena pesada que tiene la secuencia polipeptídica de SEQ ID NO: 164;
 - (pp) una región variable de la cadena ligera que tiene la secuencia polipeptídica de SEQ ID NO: 166 y una región variable de la cadena pesada que tiene la secuencia polipeptídica de SEQ ID NO: 168;
 - (qq) una región variable de la cadena ligera que tiene la secuencia polipeptídica de SEQ ID NO: 170 y una región variable de la cadena pesada que tiene la secuencia polipeptídica de SEQ ID NO: 172; o
- 15 (rr) una región variable de la cadena ligera que tiene la secuencia polipeptídica de SEQ ID NO: 86 y una región variable de la cadena pesada que tiene la secuencia polipeptídica de SEQ ID NO: 136.
 - Se desvela también un anticuerpo monoclonal aislado que se une a un inhibidor de la ruta del factor tisular humano, en el que el anticuerpo comprende una región variable de la cadena pesada humana que comprende una secuencia de aminoácidos que tiene al menos 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% o 99,5% de identidad con una secuencia de aminoácidos seleccionada entre el grupo que consiste en las secuencias de aminoácidos que se muestran en la SEQ ID NO: 4, SEQ ID NO: 8, SEQ ID NO: 12, SEQ ID NO: 16, SEQ ID NO: 20, SEQ ID NO: 24, SEQ ID NO: 28, SEQ ID NO: 32, SEQ ID NO: 36, SEQ ID NO: 40, SEQ ID NO: 44, SEQ ID NO: 48, SEQ ID NO: 52, SEQ ID NO: 56, SEQ ID NO: 60, SEQ ID NO: 64, SEQ ID NO: 68, SEQ ID NO: 72, SEQ ID NO: 76, SEQ ID NO: 80, SEQ ID NO: 84, SEQ ID NO: 88, SEQ ID NO: 92, SEQ ID NO: 96, SEQ ID NO: 100, SEQ ID NO:104 SEQ ID NO:108 SEQ ID NO:112, SEQ ID NO: 116, SEQ ID NO: 120, SEQ ID NO: 124, SEQ ID NO: 128, SEQ ID NO: 132, SEQ ID NO: 136, SEQ ID NO: 144, SEQ ID NO: 148, SEQ ID NO: 152, SEQ ID NO: 156, SEQ ID NO: 160, SEQ ID NO: 164, SEQ ID NO: 168 y SEQ ID NO: 172.
- Se desvela también un anticuerpo monoclonal aislado que se une a un inhibidor de la ruta del factor tisular humano, en el que el anticuerpo comprende una región variable de la cadena ligera humana que comprende una secuencia de aminoácidos que tiene al menos 93%, 94%, 95%, 96%, 97%, 98%, 99% o 99,5 % de identidad con una secuencia de aminoácidos seleccionada entre el grupo que consiste en las secuencias de aminoácidos que se muestran en la SEQ ID NO: 2, SEQ ID NO: 6, SEQ ID NO: 10, SEQ ID NO: 14, SEQ ID NO: 18, SEQ ID NO: 22, SEQ ID NO: 26, SEQ ID NO: 30, SEQ ID NO: 34, SEQ ID NO: 38, SEQ ID NO: 42, SEQ ID NO: 46, SEQ ID NO: 50, SEQ ID NO: 54, SEQ ID NO: 58, SEQ ID NO: 62, SEQ ID NO: 66, SEQ ID NO: 70, SEQ ID NO: 74, SEQ ID NO: 78, SEQ ID NO: 82, SEQ ID NO: 86, SEQ ID NO: 90, SEQ ID NO: 94, SEQ ID NO: 98, SEQ ID NO: 102, SEQ ID NO:106 SEQ ID NO:110, SEQ ID NO: 114, SEQ ID NO: 118, SEQ ID NO: 122, SEQ ID NO: 126, SEQ ID NO: 130, SEQ ID NO: 134, SEQ ID NO: 138, SEQ ID NO: 142, SEQ ID NO: 146, SEQ ID NO: 150, SEQ ID NO: 154, SEQ ID NO: 158, SEQ ID NO: 162, SEQ ID NO:166, y SEQ ID NO: 170.
- Además de confiar en las descripciones de anticuerpos que utilizan los identificadores de secuencias descritos anteriormente, algunos pueden también describirse por referencia a los clones Fab aislados en los experimentos descritos en el presente documento. En algunos casos, los anticuerpos recombinantes comprenden las CDR3 de la cadena pesada y/o ligera de los siguientes clones: TP-2A2, TP-2A5.1, TP-2A6, TP-2A8, TP-2A10, TP-2B1, TP-2B3, TP-2B4, TP-2B8, TP-2B9, TP-2C1, TP-2C7, TP-2D7, TP-2E3, TP-2E5, TP-2F9, TP-2G2, TP-2G4, TP-2G5, TP-2G6, TP-2G7, TP-2G9, TP-2H10, TP-3A2, TP-3A3, TP-3A4, TP-3B3, TP-3B4, TP-3C1, TP-3C2, TP-3C3, TP-3D3, TP-3E1, TP-3F1, TP-3F2, TP-3G1, TP-3G3, TP-3H2, TP-4A7, TP-4A9, TP-4B7, TP-4E8, TP-4G8 o TP-4H8. En algunos casos, los anticuerpos pueden comprender además las CDR2 de estos anticuerpos y comprender además adicionalmente las CDR1 de estos anticuerpos. En otros casos, los anticuerpos pueden comprender además algunas combinaciones de las CDR.
- Por consiguiente, se desvelan anticuerpos dirigidos contra TFPI que comprenden: (1) regiones marco de la cadena pesada humana, una región CDR1 de la cadena pesada humana, y una región CDR2 de la cadena pesada humana, una región CDR3 de la cadena pesada humana, en la que la región CDR3 de la cadena pesada humana es la CDR3 de la cadena pesada de TP-2A2, TP-2A5.1, TP-2A6, TP-2A8, TP-2A10, TP-2B1, TP-2B3, TP-2B4, TP-2B8, TP-2B9, TP-2C1, TP-2C7, TP-2D7, TP-2E3, TP-2E5, TP-2F9, TP-2G2, TP-2G4, TP-2G5, TP-2G6, TP-2G7, TP-2G9, TP-2H10, TP-3A2, TP-3A3, TP-3A4, TP-3B3, TP-3B4, TP-3C1, TP-3C2, TP-3C3, TP-3D3, TP-3E1, TP-3F1, TP-3F2, TP-3G1, TP-3G3, TP-3H2, TP-4A7, TP-4A9, TP-4B7, TP-4E8, TP-4G8 o TP-4H8; y (2) regiones marco de la cadena ligera humana, una región CDR3 de la cadena ligera humana es la CDR3 de la cadena ligera humana es la CDR3 de la

cadena ligera de TP-2A2, TP-2A5.1, TP-2A6, TP-2A8, TP-2A10, TP-2B1, TP-2B3, TP-2B4, TP-2B8, TP-2B9, TP-2C1, TP-2C7, TP-2D7, TP-2E3, TP-2E5, TP-2F9, TP-2G2, TP-2G4, TP-2G5, TP-2G6, TP-2G7, TP-2G9, TP-2H10, TP-3A2, TP-3A3, TP-3A4, TP-3B3, TP-3B4, TP-3C1, TP-3C2, TP-3C3, TP-3D3, TP-3E1, TP-3F1, TP-3F2, TP-3G1, TP-3G3, TP-3H2, TP-4A7, TP-4A9, TP-4B7, TP-4E8, TP-4G8, o TP-4H8, en la que el anticuerpo se une a TFPI. El anticuerpo puede comprender además la CDR2 de la cadena pesada y/o la CDR2 de la cadena ligera de TP-2A2, TP-2A5.1, TP-2A6, TP-2A8, TP-2A10, TP-2B1, TP-2B3, TP-2B4, TP-2B8, TP-2B9, TP-2C1, TP-2C7, TP-2D7, TP-2E3, TP-2E5, TP-2F9, TP-2G2, TP-2G4, TP-2G5, TP-2G6, TP-2G7, TP-2G9, TP-2H10, TP-3A2, TP-3A3, TP-3A4, TP-3B3, TP-3B4, TP-3C1, TP-3C2, TP-3C3, TP-3D3, TP-3E1, TP-3F1, TP-3F2, TP-3G1, TP-3G3, TP-3H2, TP-4A7, TP-4A9, TP-4B7, TP-4E8, TP-4B8, TP-2B7, TP-2B3, TP-2B4, TP-2B8, TP-2B9, TP-2C1, TP-2C7, TP-2D7, TP-2E3, TP-2A6, TP-2A8, TP-2A9, TP-2B1, TP-2B1, TP-2B3, TP-2B4, TP-2B9, TP-2B9, TP-2C1, TP-2C7, TP-2D7, TP-2E3, TP-2E5, TP-2F9, TP-2G2, TP-2G4, TP-2G5, TP-2G6, TP-2G7, TP-2B9, TP-2B1, TP-3A2, TP-3A4, TP-3B3, TP-3B4, TP-3C2, TP-3C3, TP-3D3, TP-3E1, TP-3F1, TP-3F2, TP-3G1, TP-3G3, TP-3A4, TP-3B3, TP-3B4, TP-3C1, TP-3C2, TP-3C3, TP-3D3, TP-3E1, TP-3F1, TP-3F2, TP-3G1, TP-3G3, TP-3H2, TP-4A7, TP-4A9, TP-4B7, TP-4E8, TP-4G8 o TP-4H8.

Las regiones CDR1, 2, y/o 3 de los anticuerpos diseñados mediante ingeniería genética descritos anteriormente pueden comprender la(s) secuencia(s) de aminoácidos exactas de TP-2A2, TP-2A5.1, TP-2A6, TP-2A8, TP-2A10, TP-2B1, TP-2B3, TP-2B4, TP-2B9, TP-2B9, TP-2C1, TP-2C7, TP-2D7, TP-2E3, TP-2E5, TP-2F9, TP-2G2, TP-2G4, TP-2G5, TP-2G6, TP-2G7, TP-2G9, TP-2H10, TP-3A2, TP-3A3, TP-3A4, TP-3B3, TP-3B4, TP-3C1, TP-3C2, TP-3C3, TP-3D3, TP-3B1, TP-3F1, TP-3F2, TP-3G1, TP-3G3, TP-3H2, TP-4A7, TP-4A9, TP-4B7, TP-4E8, TP-4G8, o TP-4H8 desveladas en el presente documento.

Sin embargo, la persona normalmente experta en la materia apreciará que alguna desviación de las secuencias exactas de la CDR de TP-2A2, TP-2A5.1, TP-2A6, TP-2A8, TP-2A10, TP-2B1, TP-2B3, TP-2B4, TP-2B8, TP-2B9, TP-2C1, TP-2C7, TP-2D7, TP-2E3, TP-2E5, TP-2F9, TP-2G2, TP-2G4, TP-2G5, TP-2G6, TP-2G7, TP-2G9, TP-2H10, TP-3A2, TP-3A3, TP-3A4, TP-3B3, TP-3B4, TP-3C1, TP-3C2, TP-3C3, TP-3D3, TP-3E1, TP-3F1, TP-3F2, TP-3G1, TP-3G3, TP-3H2, TP-4A7, TP-4A9, TP-4B7, TP-4E8, TP-4G8, o TP-4H8 puede ser posible reteniendo aún a la vez la capacidad del anticuerpo de unirse eficazmente a TFPI. Por consiguiente, el anticuerpo diseñado mediante ingeniería genética puede estar compuesto de una o más CDR que son, por ejemplo, al menos 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% o 99,5% idénticas a una o más CDR de TP-2A2, TP-2A5.1, TP-2A6, TP-2A8, TP-2A10, TP-2B1, TP-2B3, TP-2B4, TP-2B8, TP-2B9, TP-2C1, TP-2C7, TP-2D7, TP-2E3, TP-2E5, TP-2F9, TP-2G2, TP-2G4, TP-2G5, TP-2G6, TP-2G7, TP-2G9, TP-2H10, TP-3A2, TP-3A3, TP-3A4, TP-3B3, TP-3B4, TP-3C1, TP-3C2, TP-3C3, TP-3D3, TP-3E1, TP-3F1, TP-3F2, TP-3G1, TP-3G3, TP-3H2, TP-4A7, TP-4A9, TP-4B7, TP-4E8, TP-4G8 o TP-4H8.

El anticuerpo puede ser de cualquiera de las diversas clases de anticuerpos, tales como, sin limitación, una IgG1, una IgG2, una IgG3, una IgG4, una IgG4, una IgA1, una IgA2, una IgA secretoria, una IgD, y un anticuerpo IgE.

En una realización, se proporciona un anticuerpo monoclonal humano completamente aislado que se une a un inhibidor de la ruta del factor tisular humano.

Se desvela también un anticuerpo monoclonal humano completamente aislado que se une al dominio 2 de Kunitz de un inhibidor de la ruta del factor tisular humano.

Ácidos nucleicos

10

35

40

45

55

Se proporcionan también moléculas de ácidos nucleicos aislados que codifican algunos de los anticuerpos monoclonales descritos anteriormente. *Procedimientos de preparar anticuerpos contra TFPI*

El anticuerpo monoclonal puede producirse de manera recombinante expresando una secuencia de nucleótidos que codifica las regiones variables del anticuerpo monoclonal de acuerdo con la invención en una célula hospedadora. Con la ayuda de un vector de expresión, se puede transfectar un ácido nucleico que contiene la secuencia de nucleótidos y expresarse en una célula hospedadora adecuada para la producción. Por consiguiente, se desvela también un procedimiento para producir un anticuerpo monoclonal que se una a un TFPI humano que comprende:

- (a) transfectar una molécula de ácido nucleico que codifica un anticuerpo monoclonal de la invención en una célula hospedadora,
- (b) cultivar la célula hospedadora con el fin de expresar el anticuerpo monoclonal en la célula hospedadora, y opcionalmente
- (c) aislar y purificar el anticuerpo monoclonal producido,

en el que la molécula de ácido nucleico comprende una secuencia de nucleótidos que codifica un anticuerpo monoclonal de la presente invención.

En un ejemplo, para expresar los anticuerpos, o fragmentos de anticuerpos de los mismos, los ADN que codifican las cadenas ligera y pesada parciales o de longitud completa obtenidos mediante técnicas de biología molecular se insertan en vectores de expresión de tal manera que los genes están unidos operativamente a secuencias de control

de la transcripción y la traducción. En este contexto, se pretende que la expresión "unido operativamente" signifique que un gen de un anticuerpo está ligado en un vector de tal manera que las secuencias de control de la transcripción y la traducción en el vector sirven a su función prevista de regular la transcripción y la traducción del gen del anticuerpo. El vector de expresión y las secuencias de control de la expresión se seleccionan para ser compatibles con la expresión de la célula hospedadora utilizada. El gen de la cadena ligera del anticuerpo y el gen de la cadena pesada del anticuerpo se pueden insertar en vectores separados o, de forma más típica, ambos genes se insertan en el mismo vector de expresión. Los genes del anticuerpo se insertan en el vector de expresión mediante procedimientos normalizados (por ejemplo, ligadura de sitios de restricción complementarios en el fragmento del gen del anticuerpo y el vector, o ligadura del extremo enromado si no están presentes sitios de restricción). Las regiones variables de la cadena ligera y pesada de los anticuerpos descritos en el presente documento se pueden usar para crear los genes de un anticuerpo de longitud completa de cualquier isotipo de anticuerpo insertándolos en los vectores de expresión que codifican ya las regiones constantes de la cadena pesada y las regiones constantes de la cadena ligera del isotipo deseado de tal manera que el segmento V_H está unido operativamente al(a los) segmento(s) C_H en el vector y el segmento V_L está unido operativamente al segmento C_L en el vector. De manera adicional o como alternativa, el vector de expresión recombinante puede codificar un péptido de señalización que facilita la secreción de la cadena de anticuerpo a partir de una célula hospedadora. El gen de la cadena del anticuerpo puede clonarse en el vector de tal manera que el péptido de señalización está unido en marco al extremo amino del gen de la cadena del anticuerpo. El péptido de señalización puede ser un péptido de señalización de la inmunoglobulina o un péptido de señalización heterólogo (es decir, un péptido de señalización procedente de una proteína no de inmunoglobulina).

10

15

20

25

30

45

50

55

60

Además de los genes que codifican la cadena del anticuerpo, Los vectores de expresión recombinantes de la invención transportan secuencias reguladoras que controlan la expresión de los genes de la cadena del anticuerpo en una célula hospedadora. Se pretende que la expresión "secuencia reguladora" incluya promotores, potenciadores y otros elementos de control de la expresión (por ejemplo, señales de poliadenilación) que controlan la transcripción o la traducción de los genes de la cadena del anticuerpo. Dichas secuencias reguladoras se describen, por ejemplo, en Goeddel; Gene Expression Technology. Methods in Enzymology 185, Academic Press, San Diego, Calif. (1990). Se apreciará por los expertos en la materia que el diseño del vector de expresión, incluyendo la selección de las secuencias reguladoras puede depender de dichos factores como la elección de la célula hospedadora que se va a transformar, el nivel de expresión de la proteína deseada, etc. Los ejemplos de secuencias reguladoras de la expresión de células hospedadoras de mamíferos incluyen elementos víricos que dirigen altos niveles de expresión de proteínas en células de mamíferos, tales como promotores y/o potenciadores derivados de citomegalovirus (CMV), virus 40 de simio (SV40), adenovirus, (por ejemplo, el promotor tardío mayor de adenovirus (AdMLP)) y polioma. Como alternativa, se pueden usar secuencias reguladoras no víricas, tales como el promotor de la ubiquitina o el promotor de la p

Además de los genes de la cadena del anticuerpo y las secuencias reguladoras, los vectores de expresión recombinantes pueden transportar secuencias adicionales, tales como secuencias que regulan la replicación del vector en las células hospedadoras (por ejemplo, orígenes de replicación) y genes marcadores seleccionables. El gen marcador seleccionable facilita la selección de células hospedadoras en las que se ha introducido el vector (véase, por ejemplo, las patentes de Estados Unidos números 4.399.216, 4.634.665, y 5.179.017, todas de Axel y col.). Por ejemplo, normalmente, el gen marcador seleccionable confiere resistencia a los fármacos, tales como G418, higromicina o metotrexato, en una célula hospedadora en la que se ha introducido dicho vector. Los ejemplos de genes marcadores seleccionables incluyen el gen de la dihidrofolato reductasa (DHFR) (para uso en células hospedadoras dhfr- con selección/amplificación de metotrexato) y el gen neo (para la selección de G418).

Para la expresión de las cadenas ligera y pesada, el(los) vector(es) de expresión que codifican las cadenas pesada y ligera se transfecta(n) en una célula hospedadora mediante técnicas normalizadas. Se pretende que las diversas formas del término "transfección" abarquen una amplia variedad de técnicas comúnmente utilizadas para la introducción de ADN exógeno en una célula hospedadora procariota o eucariota, por ejemplo, electroporación, precipitación con fosfato de calcio, transfección con DEAE-dextrano y similares. aunque es teóricamente posible expresar los anticuerpos de la invención tanto en células hospedadoras procariotas como en células hospedadoras eucariotas, expresión de anticuerpos en células eucariotas, y lo más preferente, células hospedadoras de mamíferos, es lo más preferido debido a que dichas células eucariotas, y en particular las células de mamíferos, son más propensas que las células eucariotas para ensamblar y secretar un anticuerpo inmunológicamente activo y plegado adecuadamente.

Los ejemplos de células hospedadoras de mamíferos para expresar los anticuerpos recombinantes incluyen células de ovario de hámster chino (células CHO) (incluyendo células CHO dhfr-, descritas en Urlaub y Chasin, (1980) Proc. Natl. Acad. Sci. USA 77:4216-4220, utilizadas con un marcador DHFR seleccionable, por ejemplo, como se describe en R. J. Kaufman y P. A. Sharp (1982) Mol. Biol. 159:601-621), células NSO de mieloma, células COS, células HKB11 y células SP2. Cuando los vectores de expresión recombinantes que codifican genes de anticuerpos se introducen en células hospedadoras de mamíferos, los anticuerpos se producen cultivando las células hospedadoras durante un periodo de tiempo suficiente para permitir la expresión del anticuerpo en las células hospedadoras o la secreción del anticuerpo en el medio de cultivo en el cual se hacen crecer las células hospedadoras. Los anticuerpos se pueden recuperar del medio de cultivo utilizando procedimientos de purificación de proteínas normalizados, tales como ultrafiltración, cromatografía de exclusión molecular, cromatografía de intercambio iónico y centrifugación.

Uso de secuencias de anticuerpos parciales para expresar anticuerpos intactos

5

10

15

20

25

40

45

50

55

Los anticuerpos interactúan con antígenos diana predominantemente a través de restos de aminoácidos que se localizan en las seis CDR de la cadena pesada y la cadena ligera. Por este motivo, las secuencias de aminoácidos en las CDR son más diversas entre anticuerpos individuales que las secuencias fuera de las CDR. Véanse, por ejemplo, las Figs. 6 y 7, en las que se identifican las regiones CDR en las cadenas variables ligera y pesada, respectivamente, del anticuerpo monoclonal de acuerdo con la presente invención. Debido a que las secuencias de las CDR son responsables de la mayoría de interacciones antígeno-anticuerpo, es posible expresar anticuerpos recombinantes que imitan las propiedades de los anticuerpos específicos que se producen naturalmente mediante la construcción de vectores de expresión que incluyen secuencias de la CDR procedentes del anticuerpo específico que se produce naturalmente injertado sobre secuencias marco procedentes de un anticuerpo diferente con propiedades diferentes (véase, por ejemplo, Riechmann, L. y col., 1998, Nature 332:323-327; Jones, P. y col., 1986, Nature 321:522-525; y Queen, C. y col., 1989, Proc. Natl. Acad. Sci. U.S.A. 86:10029-10033). Dichas secuencias marco se pueden obtener de bases de datos de ADN públicas que incluyen secuencias génicas del anticuerpo de la línea germinal. Estas secuencias génicas de la línea germinal diferirán de las secuencias génicas del anticuerpo maduro debido a que no incluirán genes variables completamente ensamblados, que se forman mediante la unión V(D)J durante la maduración de los linfocitos B. No es necesario obtener la secuencia de ADN completa de un anticuerpo concreto a fin de recrear un anticuerpo recombinante intacto que tiene propiedades de unión similares a las del anticuerpo original (véase, documento WO 99/45962). La de la cadena pesada y ligera parcial que abarca las regiones de la CDR es normalmente suficiente para este fin. La secuencia parcial se usa para determinar que segmentos génicos variables y de unión de la línea germinal contribuyeron a los genes variables del anticuerpo recombinado. La secuencia de la línea germinal se usa a continuación para rellenar las porciones desaparecidas de las regiones variables. Las secuencias líder de la cadena pesada y ligera se escinden durante la maduración de la proteína y no contribuyen a las propiedades del anticuerpo final. Por este motivo, es necesario utilizar la secuencia líder de la línea germinal correspondiente para las construcciones de expresión. Para añadir secuencias desaparecidas, las secuencias de ADNc clonadas pueden combinarse con oligonucleótidos sintéticos mediante ligadura o amplificación de la PCR. Como alternativa, la región variable completa puede sintetizarse como un conjunto de oligonucleótidos cortos, solapantes, y combinarse mediante amplificación de la PCR para crear un clon de la región variable enteramente sintético. Este proceso tiene determinadas ventajas tales como la eliminación o la inclusión o sitios de restricción concretos, o la optimización de codones concretos.

Las secuencias de nucleótidos de los transcritos de la cadena pesada y ligera se usan para diseñar un conjunto de oligonucleótidos sintéticos solapantes para crear secuencias V sintéticas con capacidades de codificación de aminoácidos idénticas como las secuencias naturales. Las secuencias de la cadena pesada y kappa sintéticas pueden diferir de las secuencias naturales de tres maneras: anillos de bases nucleotídicas repetidas están interrumpidos para facilitar la síntesis de oligonucleótidos y la amplificación de la PCR; se incorporan sitios de inicio de la traducción óptimos de acuerdo con las reglas de Kozak (Kozak, 1991, J. Biol. Chem. 266:19867-19870); y se diseñan sitios HindIII en la dirección 5' de los sitios de inicio de la traducción.

Para las regiones variables de la cadena pesada y ligera, las secuencias de las hebras con codificación optimizada y sin la codificación correspondiente se rompen en secciones de 30-50 nucleótidos en aproximadamente el punto medio del oligonucleótido sin codificación. Por tanto, para cada cadena, los oligonucleótidos pueden ensamblarse en conjuntos bicatenarios solapantes que abarcan segmentos de 150-400 nucleótidos. Los combinados se usan a continuación como moldes para producir los productos de amplificación de la PCR de 150-400 nucleótidos. Normalmente, un único conjunto de oligonucleótidos de la región variable se romperá en dos combinados que se amplifican por separado para generar dos productos de la PCR solapantes. Estos productos solapantes se combinan a continuación mediante la amplificación de la PCR para formar la región variable completa. Puede ser también deseable incluir un fragmento solapante de la región constante de la cadena pesada o ligera en la amplificación de la PCR para generar fragmentos que pueden clonarse fácilmente en las construcciones del vector de expresión.

Las regiones variables de la cadena pesada y ligera reconstruidas se combinan a continuación con el promotor clonado, el inicio de la traducción, la región constante, las secuencias de poliadenilación y terminación de la transcripción 3' no traducidas para formar las construcciones de vector de expresión. Las construcciones de expresión de la cadena pesada y ligera pueden combinarse en un único vector, cotransfectarse, transfectarse en serie, o transfectarse por separado en células hospedadoras que a continuación se fusionan para formar una célula hospedadora que expresa ambas cadenas.

Por tanto, en otro aspecto, las características estructurales de un anticuerpo humano dirigido contra TFPI, por ejemplo, TP2A8, TP2G6, TP2G7, TP4B7, etc., se utilizan para crear anticuerpos humanos dirigidos contra TFPI relacionados estructuralmente que retienen la función de unión a TFPI. De manera más específica, una o más CDR de las regiones de la cadena pesad y ligera identificadas específicamente de los anticuerpos monoclonales de la invención se pueden combinar de forma recombinante con regiones marco humanas conocidas y CDR para crear anticuerpos humanos dirigidos contra TFPI adicionales diseñados mediante ingeniería genética recombinante de la invención.

Por consiguiente, en otro aspecto, se desvela un procedimiento para preparar un anticuerpo dirigido contra TFPI que comprende: preparar un anticuerpo que comprende (1) regiones marco de la cadena pesada humana y CDR de la

cadena pesada humana, en el que el la CDR3 de la cadena pesada humana comprende una secuencia de aminoácidos seleccionada entre las secuencias de aminoácidos de las SEQ ID NOS: 388-430 y/o (2) las regiones marco de la cadena ligera humana y las CDR de la cadena ligera humana, en el que la CDR3 de la cadena ligera comprende una secuencia de aminoácidos seleccionada entre las secuencias de aminoácidos de SEQ ID NOS: 259-301; en el que el anticuerpo retiene la capacidad de unirse a TFPI. En otras realizaciones, el procedimiento se practica usando otras CDR de la invención.

Composiciones farmacéuticas

10

15

20

35

40

45

50

55

Se proporcionan también composiciones farmacéuticas que comprenden cantidades terapéuticamente eficaces de anticuerpos monoclonales dirigidos contra TFPI y un transportador farmacéuticamente aceptable. "transportador farmacéuticamente aceptable" es una sustancia que se puede añadir al principio activo para ayudar a formular o estabilizar la preparación y no produce efectos toxicológicos adversos significativos al paciente. Los ejemplos de dichos transportadores son bien conocidos por los expertos en la materia e incluyen agua, azúcares tales como maltosa o sacarosa, albúmina, sales tales como cloruro de sodio, etc. Se describen otros transportadores por ejemplo en Remington's Pharmaceutical Sciences por E. W. Martin. Dichas composiciones contendrán una cantidad terapéuticamente eficaz de al menos un anticuerpo monoclonal dirigido contra TFPI.

Los transportadores farmacéuticamente aceptables incluyen soluciones o dispersiones acuosas estériles y polvos estériles para las preparación extemporánea de soluciones o dispersiones inyectables estériles. El uso de dichos medios y agentes para sustancias farmacéuticamente activas es bien conocido en la técnica. La composición se formula preferentemente para inyección parenteral. La composición puede formularse como una solución, microemulsión, liposoma, u otra estructura ordenada adecuada para proporcionar una alta concentración de fármaco. El transportador puede ser un disolvente o medio de dispersión que contiene, por ejemplo, agua, etanol, poliol (por ejemplo, glicerol, propilenglicol y polietilenglicol líquido, y similares), y mezclas adecuadas de los mismos. En algunos casos, incluirá agentes isotónicos, por ejemplo, azúcares, polialcoholes tales como manitol, sorbitol o cloruro sódico en la composición.

Se pueden preparar soluciones inyectables estériles incorporando el compuesto activo en la cantidad necesaria en un disolvente adecuado con uno o una combinación de ingredientes enumerados anteriormente, según sea necesario, seguido por esterilización mediante microfiltración. Generalmente, las dispersiones se preparan incorporando el compuesto activo en un vehículo estéril, que contiene un medio de dispersión básico, y los otros principios requeridos que se han enumerado anteriormente. En el caso de polvos estériles para la preparación de soluciones inyectables estériles, algunos procedimientos de preparación son el secado a vacío y la criodesecación (liofilización) que da como resultado un polvo del principio activo más cualquier ingrediente deseado adicional de una de sus soluciones anteriormente filtrada en estéril.

Usos farmacéuticos

El anticuerpo monoclonal puede utilizarse para fines terapéuticos para tratar deficiencias o defectos genéticos y adquiridos en la coagulación. Por ejemplo, los anticuerpos monoclonales descritos anteriormente se pueden utilizar para bloquear la interacción de TFPI con FXa, o para prevenir la inhibición dependiente de TFPI de la actividad TF/FVIIa. Adicionalmente, el anticuerpo monoclonal puede utilizarse también para restaurar la generación de FXa impulsada por TF/FVIIa para derivar la insuficiencia de FVIII o la amplificación de FXa dependiente de FIX.

Los anticuerpos monoclonales tienen uso terapéutico en el tratamiento de trastornos de la hemostasia tales como trombocitopenia, trastornos plaquetarios y trastornos de sangrado (por ejemplo, hemofilia A y hemofilia B). Dichos trastornos pueden tratarse administrando una cantidad terapéuticamente eficaz del anticuerpo monoclonal dirigido contra TFPI a un paciente que lo necesita. Los anticuerpos monoclonales tienen también uso terapéutico en el tratamiento de sangrados incontrolados en indicaciones tales como trauma e ictus hemorrágico. Por tanto, se proporciona también un procedimiento para acortar el tiempo de sangrado que comprende administrar una cantidad terapéuticamente eficaz de un anticuerpo monoclonal dirigido contra TFPI de la invención a un paciente que lo necesita.

Los anticuerpos se pueden usar como monoterapia o en combinación con otras terapias para abordar un trastorno hemostático. Por ejemplo, la administración simultánea de uno o más anticuerpos de la invención con un factor de coagulación tal como el factor VIIa, factor VIII o factor IX se cree que es útil para tratar la hemofilia. Los anticuerpos pueden utilizarse en el tratamiento de deficiencias o defectos genéticos y adquiridos en la coagulación administrando (a) una primera cantidad de un anticuerpo monoclonal que se une al inhibidor de la ruta del factor tisular humano y (b) una segunda cantidad de factor VIII o factor IX, en el que dicha primera y segunda cantidades juntas son eficaces para tratar dichas deficiencias o defectos. Los anticuerpos pueden utilizarse también en el tratamiento de deficiencias o defectos genéticos y adquiridos en la coagulación administrando (a) una primera cantidad de un anticuerpo monoclonal que se une a un inhibidor de la ruta del factor tisular humano y (b) una segunda cantidad de factor VIII o factor IX, en el que dichas primera y segunda cantidades combinadas son eficaces para tratar dichas deficiencias o defectos, y en el que además el factor VII no se administra de manera conjunta. Se desvela también una composición farmacéutica que comprende una cantidad terapéuticamente eficaz de la combinación de un anticuerpo monoclonal de la invención y factor VIII o factor IX, en el que la composición no contiene factor VII.

"Factor VII" incluye factor VII y factor VIIa. Estas terapias combinadas es probable que reduzcan la frecuencia de infusión necesaria del factor de coagulación. Por administración simultánea o terapia combinada se entiende la administración de los dos fármacos terapéuticos formulados cada uno por separado o formulados juntos en una composición, y, cuando se formulan por separado, administrados ya sea en aproximadamente el mismo momento o en diferentes momentos, pero durante el mismo periodo terapéutico.

Las composiciones farmacéuticas pueden administrarse por vía parenteral a sujetos que padecen de hemofilia A o B a una dosificación y frecuencia que pueden variar con la gravedad del episodio de sangrado, o, en el caso de terapia profiláctica, pueden variar con la gravedad de la deficiencia de coagulación del paciente.

Las composiciones pueden administrarse a pacientes que lo necesitan como un bolo o mediante infusión continua.

Por ejemplo, una administración en bolo de un anticuerpo inventivo presente como un fragmento Fab puede ser en una cantidad de entre 0,0025 a 100 mg/kg de peso corporal, 0,025-a 0,25 mg/kg, 0,010 a 0,10 mg/kg o 0,10-0,50 mg/kg. para la infusión continua, un anticuerpo inventivo presente como un fragmento Fab puede administrarse de 0,001 a 100 mg/kg de peso corporal/minuto, 0,0125 a 1,25 mg/kg/min., 0,010 a 0,75 mg/kg/min., de 0,010 a 1,0 mg/kg/min, o de 0,10-0,50 mg/kg/min durante un período de 1-24 horas, 1-12 horas, 2-12 horas, 6-12 horas, 2-8 horas o 1-2 horas. Para la administración de un anticuerpo inventivo presente como un anticuerpo de longitud completa (con regiones constantes completas), las cantidades de la dosificación pueden ser de aproximadamente 1-10 mg/kg de peso corporal, 2-8 mg/kg o de 5-6 mg/kg. Dichos anticuerpos de longitud completa se administrarían normalmente mediante infusión extendiéndose durante un periodo de treinta minutos a tres horas. La frecuencia de la administración dependerá de la gravedad de la dolencia. La frecuencia podría variar desde las tres veces por semana a una vez cada dos o tres semanas.

Adicionalmente, las composiciones pueden administrarse a pacientes mediante inyección subcutánea. Por ejemplo, se puede administrar una dosis de 10 a 100 mg de anticuerpo dirigido contra TFPI a pacientes mediante inyección subcutánea semanalmente, quincenalmente o mensualmente.

Como se usa en el presente documento, "cantidad terapéuticamente eficaz" significa una cantidad de un anticuerpo monoclonal dirigido contra TFPI o de una combinación de dicho anticuerpo y factor VIII o factor IX que es necesaria para aumentar eficazmente el tiempo de coagulación in vivo o producir de otra forma un beneficio medible in vivo a un paciente que lo necesita. La cantidad precisa dependerá de numerosos factores, incluyendo, aunque no de forma limitativa, los componentes y características físicas de la composición terapéutica, la población de pacientes prevista, de las consideraciones individuales de cada paciente, y similares, y un experto en la materia puede determinarla fácilmente.

Ejemplos

50

55

5

Materiales y Procedimientos generales

Ejemplo 1 Cribado por inmunoprotección y cribado de una biblioteca de anticuerpos humanos contra TFPI humano Cribado por inmunoprotección de biblioteca de anticuerpos humanos contra TFPI

Se seleccionaron anticuerpos dirigidos contra TFPI mediante cribado por inmunoprotección de una biblioteca combinatoria de anticuerpos humanos expresada en fagos HuCal Gold (Rothe y col., J. Mol. Biol., 2008, 376:1182-1200) contra TFPI humano (American Diagnostica). En resumen, 200 µl de TFPI (5 µg/ml) se revistieron en placas Maxisorp de 96 pocillos durante la noche a 4°C y las placas se bloquearon a continuación con un tampón PBS que contiene leche al 5%. Después, las placas se lavaron con PBS que contenía Tween-20 al 0,01% (PBST), se añadió una alícuota de una biblioteca combinatoria de anticuerpos humanos a los pocillos revestidos de TFPI y se incubó durante 2 horas. El fago no unido se lavó por separado con PBST, y el fago unido a antígeno se eluyó con ditiotreitol, se infectó y se amplificó en la cepa TG1 de E. coli. El fago se rescató mediante el fago auxiliar para el siguiente ciclo de cribado por inmunoprecipitación. Se llevaron a cabo un total de tres ciclos de cribado por inmunoprecipitación y los clones de los dos últimos ciclos se cribaron contra TFPI humano en un ensayo ELISA.

45 Cribado de clones de anticuerpos mediante unión a antígeno en un ELISA

Para seleccionar los clones de anticuerpos que se unen a TFPI humano, Los genes Fab de los clones de fagos del segundo y tercer ciclo de cribado por inmunoprecipitación se subclonaron en un vector de expresión bacteriano y se expresaron en E. coli, cepa TG1. Se añadió el lisado bacteriano a los pocillos de las placas Maxisorp revestidas de TFPI. Tras el lavado, Se usó un anticuerpo de cabra conjugado con HRP dirigido contra Fab humano como un anticuerpo de detección y se desarrollaron las placas añadiendo AmplexRed (Invitrogen) con peróxido de hidrógeno. Una señal de al menos cinco veces mayor que el fondo se consideró como positiva. Se determinó la reactividad cruzada de los anticuerpos dirigidos contra TFPI humano para TFPI de ratón mediante un ELISA de unión a TFPI de ratón similar. Las placas se revistieron con TFPI de ratón (R&D System), BSA y lisozima. Los últimos dos antígenos se usaron como controles negativos. En la Fig 1 se muestra un conjunto de datos representativos.

Secuencias de anticuerpos humanos dirigidos contra TFPI

Tras el cribado por inmunoprotección y la selección de la biblioteca de anticuerpos humanos HuCal Gold contra TFPI, se llevó a cabo la secuenciación del ADN sobre los clones de anticuerpos positivos, dando como resultado 44 secuencias de anticuerpos únicas (Tabla 2). Entre estas secuencias de anticuerpos, 29 eran cadenas ligeras lambda y 15 eran cadenas ligeras kappa. El análisis de las cadenas pesadas de la región variable desvela 28 de VH3, 14 de VH6, 1 de VH1 y 1 de VH5.

	Tabla 2. Secuencia peptídica de la región variable de 44 anticuerpos dirigidos contra TFP	de 44 anticuerpos dirigidos contra TFPI
Clon	۸r	Ν
TP-2A2	DIELTQPPSVSVAPGQTARISCSGDNIRTYYVHWYQQKPGQ APVVVIYGDSKRPSGIPERFSGSNSGNTATLTISCTQAEDE ADYYCQSYDSEADSEVFGGGTKLTVLGQ (SEQ ID NO: 2)	QVQLVESGGGLVQPGGSLRLSCAASGFTFSNNAMNWVRQAP GKGLEWWVSTISYDGSNTYYAADSVKGRFTISRDNSKNTLYLQ MNSLRAEDTAVYYCARQAGGWTYSYTDVWGQGTLVTVSS (SEQ ID NO: 4)
TP-2A5.1	DIELTQPPSVSVAPGQTARISCSGDNIPEKYVHWYQQKPGQ APVLVIHGDNNRPSGIPERFSGSNSGNTATLTISGTQAEDE ADYYCQSFDAGSYFVFGGGTKLTVLGQ (SEQ ID NO: 6)	QVQLVESGGGLVQPGGSLRLSCAASGFTFSSYGSWVRQAPG KGLEWVSVISGGSSTYYALSVKGRFTISRDNSKWTLYLQM NSLRAEDTAVYYCARVNISTHFDVWGQGTLVTVSS (SEQ ID NO: 8)
TP-2A6	DIELTQPPSVSVAPGQTARISCSGDKIGSKYVWWQQKPGQ APVLVIYDSWRPSGIPPRRPSGSNSGWTATLTISGTQAEDEA DYYCASYDSIYSYWVFGGGTKLTVLGQ (SEQ ID NO: 10)	QVQLVESGGGLVQPGGSLRLSCAASGFTFSRYAMSWVRQAP GKGLEWVSSIISSSETYYADSVKGRFTISRDNSKYTLYLQ MNSLRAEDTAVYYCARLMGYGHYYFFDYWGQGTLVTVSS (SEQ ID NO: 12)
TP-2A8	DIELTQPPSVSVAPGQTARISCSGDNIRNYYAHWYOQKPGQ ARVVVIYYDNNRRSGIPERRSGSNSGWTATLTISGTQAEDE ADYYCQSWDDGVPVFGGGTKLTVLGQ (SEQ ID NO: 14)	QVQLVESGGGIVQPGGSLRLSCAASGFTFRSYGMSWVRQAP GKGLEWVSSIRGSSSSTYYADSVKGRFTISRDNSKNTLYLQ MNSLRAEDTAVYYCARKYRYWFDYWGQGTLVTVSS (SEQ ID NO: 16)
TP-2A10	DIELTQPPSVSVAPGQTARISCSGDKLGKKYVHWYOQKPGQ APVLVIYGDDKRPSGIPERFSGSNSGNTATLTISGTQAEDE ADYYCQAMGSISRFVFGGGTKLTVLGQ (SEQ ID NO: 18)	QVQLVESGGGIVQPGGSLRLSCAASGFTFTSYSMNWVRQAP GKGLEWVSAISYTGSNTHYAASVKGRFTISRDNSKNTLYLQ MNSLRAEDTAVYYCARAFIGYKESYFDIWGQGTLVTVSS (SEQ ID NO: 20)
TP-2B1	DIELTQPPSVSVAPGQTARISCSGDNLGNKYAHWYOQKPGQ APVLVIYYDNKRPSGIPERFSGSNSGNYATLTISGTQAEDE ADYYCQSWTPGSNTMVFGGGTRLTVLGQ (SEQ ID NO: 22)	QVQLVESGGGLVQPGGSLRLSCAASGFTFSSYSMSWVRQAS GKGLEWVSSIKGSGSNTYYAADSVKGRFTISRDNSKYTLYLQ MNSLRAEDTAVYYCARNGGLIDVWGQGTLVTVSS (SEQ ID NO: 24)
TP-2B3	DIVITÜSBATLSLSPGERATLSCRASONIGSNYLAWYOOKP GOAPRLLIYGASTRATGVPARFNGSGSGTDFTLTISSLEPE DFAVYYCQQINSIPVTFGQGTKVEIKRT (SEQ ID NO: 26)	QVQLQQSGPGIVKPSQTLSITCAISGDSVSSNSAAMGWIRQ SPGRGLEWLGMIYYRSKWYNSYAVSVKSRITINPDTSKNQF SLQLNSVTPEDTAVYXCARIMSKYGGPGMDVWGQGTLVTVS S (SEQ ID NO: 28)
TP-284	DIELTQPPSVSVAPGQTARISCSGDALGTYYAYWYQQRPGQ APVLVIYGDWNRPSGIPERFSGSNSGWTATLTISGTQAEDE ADYYCQSYDAGVKPAVFGGGTKLTVLGQ (SEQ ID NO: 30)	QVQLVESGGGLVQPGGSIRLSCAASGFTFSNYSMTWVRQAP GKGLEWWYSGISYNGSNTYYADSVKGRFTISRDNSKNTLYLQ MNSLRAEDTAVYYCARIYYMNLLAGWGQGTLVTVSS (SEQ ID NO: 32)
TP-2B8	DIELTOPPSVSVAPGQTARISCSGDNIRGYYASWYOQKPGQ APVLVIYEDNNRPSGIPERFSGSNSGNTATLTISGTQAEDE ADYYCQSWDSPYVHVFGGGTKLTVLGQ (SEQ ID NO: 34)	DVOLVQSGABVKKPGASVKVSCKASGYTFTGNSMHWVRQAP GQGLEWMGTIFPYDGTTKYAQKFQGRVTMTRDTSISTAYME LSSLRSEDTAVYYCARGVHSYFDYWGQGTLVTVSS (SEQ ID NO: 36)
TP-2B9	DIQMTQSPSSLSASVGDRVTITCRASQSIRSYLAWYQQKPG KAPKLLIYKASNLQSGVPSRRSGSGSGTDFTLTISSLQPED FAVYYCHQYSDSPVTFGQGTKVEIKRT (SEQ ID NO: 38)	DVOLODSGPGIVKPSQTLSITCAISGDSVSSNSAAMGWIRQ SPGRGLEWLGMIYHRSKWYNDYAVSVKSRITINPDISKNQF SLQINSVTPEDTAVYYCARYSSIGHMDYWGQGTLVTVSS (SEQ ID NO: 40)

HA	QVQLVESGGGLVQPGGSLRLSCAASGFTFSPYVMSWVRQAP GKGLEWVSSISSSSSNTYYADSYKGRFTISRDNSKNTLYLQ MNSLRAEDTAVYCARGDSYMYDVWGGGTLVTVSS (SEQ ID NO: 44)	QVQLQQSGPGLVKPSQTLSLTCAISGDSVSSNSAAWGWIRQ SPGRGLEWLGIIYYRGKWYNHYANSVKSRITINPDTSKNQF SLQLNSVTPEDTAVYYCARSNWSGYFDYWGQGTLVTVSS (SEQ ID NO: 48)	QVQLQQSGPGLVKPSQTLSLTCALSGDSVSSNSAAWGWIRQ SPGRGLEWIGLIYYRSKWYNDYAVSVKSRITINPDTSKNQF SLQLNSVTPEDTAVYYCARFGDTNRNGTDVWGQGTLVTVSS (SEQ ID NO: 52)	QVQLQQSGPGLVKPSQTLSLTCAISGDSVSSNSAAWGWIRQ SPGRGLEWIGMIYYRSKWYNDYAVSVKSRITINPDTSKNQF SLQLNSVTPEDTAVYYCARVNQYTSSDYWGQGTLVTVSS (SEQ ID NO: 56)	QVQLQQSGPGLVKPSQTLSLTCAISGDSVSSNSAAWSWIRQ SPGRGLEWIGMIFYRSKWNNDYAVSVKSRITINPDTSKNQF SLQLNSVTPEDTAVYYCARVNANGYYAYVDLWGGGTLVTVS S (SEQ ID NO: 60)	QVQLVESGGGLVQPGGSLRLSCAASGFTFYKYAMHWVRQAP GKGLEWVSGLQYDGSYTYYADSVKRFTISRDNSKNTLYLQ MNSLRAEDTAVYCARYYCKCVDLWGQGTLVTVSS (SEQ ID NO: 64)	QVQLVESGGGLVQPGGSLRLSCAASGFTFSSYAMNWVRQAP GKGLEWVSAILSDGSGTSYADSVKCRFTISRDNSKNTLYLQ MNSLRAEDTAVYYCARYPDWGWYTDVWGQGTLVTVSS (SEQ ID NO: 68)	QVQLVESGGGLVQPGGSLRLSCAASGFTFSSYAMTWVRQAP GKGLEWVSNISYSGSNTYYADSVKCRFTISRONSKNTLYLQ MNSLRAEDTAVYCARVGYYYGFDYWGQGTLVTVSS (SEQ ID NO: 72)	QVQLQQSGPGLVKPSQTLSLTCAISGDSVSSNSAAWSWIRQ SPGRGLEWLGFIYYRSKWYNDYAVSVKSRITINPDTSKNQF SLQLNSVTPEDTAVYYCARHNPDLGFDYWGQGTLVTVSS
NL	DIELTQPPSVSVAPGQTARISCSGDSIGSYYAHWYQQKPGQ APVLVIYYDSKRPSGTPERFSGSNSGNTATLTISGTQAEDE ADYYCQAYTGQSISRVFGGGTKLTVLGQ (SEQ ID NO: 42)	DIQMTQSPSSLSASVGDRVTITCRASQDIRNNLAWYQQKPG KARKLIYAASSLQSGVPSRFSGSGSGTDFTLTISSLQPED FAVYCQQRNGFPLTFGQGTKVEIKRT (SEQ ID NO: 46)	DIVMTQSPLSLPVTPGEPASISCRSSQSLLHSNGYTYLSWY LOKPGOSPOLLIYLGSURASGYPDRFSGSGSGTDPTLKISR VEAEDVGYYCQQYDNAPITFGQGTKVEIKRT (SEQ ID NO: 50)	DIALTQPASVSGSPGQSITISCTGTSSDIGGYNYVSWYQQH PGRAPKLMIYGVNYRPSGGSKSGNTASLTISGLQA EDEADYYGSSADKFTMSIVFGGGTKLTVLGQ (SEQ ID NO: 54)	DIQMTQSPSSLSASVGDRVTITCRASQPIYNSLSWYQQKPG KARKLIYGYSNLQSGYPSRFSGSGSGTDFTLTISSLQPED FAVYYCLQVDNLPITFGQGTKVEIKRT (SEQ ID NO: 58)	DIVLTGSPATLSLSPGERATLSCRASGSVSSGYLAWYQQKP GQAPRLLIYAASSRATGVPARRSGSGSGTDFTLTTSSLEPE DFAVYCQQDSNLPATFGQGTKVEIKRT (SEQ ID NO: 62)	DIELTQPPSVSVAPGQTARISCSGDNIRKFYVHWYQQKPGQ APVLVIYGTWKRPSG1PERFSGSNSGNTATLTISGTQAEDE ADYYCQSYDSKFNTVFGGGTKLTVLGQ (SEQ ID NO: 66)	DIELTQPPSVSVAPGQTARISCSGDALRKHYVYWYQQKPGQ APVLVIYGDNNNRPSGIPERFSGSNSGNTATLTISGTQAEDE ADYYCQSYDKPYPILVFGGGTKLTVLGQ (SEQ ID NO: 70)	DIVLTGSPATLSLSPGERATLSCRASQNVSSNYLAWYQQKP GQAPRLLIYDASNRATGVPARFSGSGSGTDFTLTISSLEPE DFAVYYCQQFYDSPQTFGGGGTKVEIKRT (SEQ ID NO:
Clon	TP-2C1	TP-2C7	TP-2D7	TP-2E3	TP-2E5	TP-2F9	TP-2G2	TP-2G4	TP-2G5

Clon	۸۲	H/V
TP-2G6	DIVLTQSPATLSLSPGERATLSCRASQYVTSSYLAWYQQKP GQAPKLLIYGSSRATGVPARFSGSGSGTDFTLTISSLEPED FATYYCQQYSSSPITFGQGTKVEIKRT (SEQ ID NO: 78)	QVQLQQSGPGLVKPSQTLSLTCAISGDSVSSSAAWSWIRQ SPGRGLEWLGIIYYRSKWYNDYAVSVKSRITINPDTSKNCF SLQINSVTPEDTAVYYCARHSMVGFDVWGQGTLVTVSS (SEQ ID NO: 80)
TP-2G7	DIELTQPPSVSVAPGQTARISCSGDNLGTYYVHWYQQKPGQ APVLVIYGDNNRRSGIPERFSGSNSGNTATLITISGTQAEDE ADYXCQTYDSNNESIVFGGGTKLTVLGQ (SEQ ID NO: 82)	QVQLVESGGGLVQPGGSLRLSCAASGFTFNSYAMSWVRQAP GKGLEWVSNISSNSSNTYYAADSVKGRFTISRDNSKNTLY1Q MNSLRAEDTAVYYCARKGGGEHGFFPSDIWGQGTLVTVSS (SEQ ID NO: 84)
TP-2G9	DIALTQPASVSGSPGGSITISCTGTSSDLGGFNTVSWYQQH PGKAPKLMIYSVSSRPSGFVSNRFSGSKSGNTASLTISGLQA EDBADYYCQSYDLNNLVFGGGTKLTVLGQ (SEQ ID NO:	QVQLVESGGGLVQPGGSLRLSCAASGFTFNSYAMTWVRQAP GKGLEWVSAIKSDGSNTYYADSVKGRFTISRDNSKNTLYLQ MNSIRAEDTAVYYCARNDSGWFDVWGQGTLVTVSS (SEQ ID NO: 88)
TP-2H10	DIVLTQSPATLSLSPGERATLSCRASQSVSSFYLAWYQQKP GQAPRLLIYGSSSRATGVPARFSGSGSGTDFTLTISSLEPE DFATYYCQQYDSTPSTFGQGTKVEIKRT (SEQ ID NO: 90)	QVQLQQSGPGLVKPSQTLSLTCAISGDSVSSNGAAWGWIRQ SPGRGLEWLGFIYRRSKWYNSYAVSVKSRITINPDTSKNQF SLQLNSVTPEDTAVYYCARQDGMGGMDSWGQGTLVTVSS (SEQ ID NO: 92)
TP-3A2	DIELTQPPSVSVAPGQTARISCSGDNIGSRYAYWYQQKPGQ APVVVIYDDSDRPSGIPERFSGSNSGNTATLTISGTQAEDE ADYYCAAYTFYARTVFGGTKLTVLGQ (SEQ ID NO: 94)	QVQIVESGGGLVQPGGSIRLSCAASGFTFSNYYLSWVRQAP GRGLEWYSGISYNGSSTNYADSVRGRFTISRDNSKNTLYIQ MNSLRAEDTAVYYCARMWRYSLGADSWGQGTLVTVSS (SEQ ID NO: 96)
TP-3A3	DIELTQPPSVSVAPGQTARISCSGDNIGSKYVHWYQQKPGQ APVVVIYEDSDRPSGIPERFSGSNSGNTATLTISGTQAEDE ADYYCQSWDKSEGYVFGGGTKLTVLGQ (SEQ ID NO:	QVQLVESGGGLVQPGGSLRLSCAASGFTFNNNALSWVRQAP GKGLEWVSAINSSSSTSYADSVKGRFTISRDNSKNTLYLQ MNSLRAEDTAVYYCARGHHRGHSWASFIDYWGQGTLVTVSS (SEQ ID NO: 100)
TP-3A4	DIELTQPPSVSVAPGQTARISCSGDNIRDKYASWYQQKPGQ APVLVIYSKSERPSGIPERFSGSNSGNTATLTISGTQAEDE ADYYCSSYTLNPNLNYVFGGGTKLTVLGQ (SEQ ID NO: 102)	QVQIVESGGGLVQPGGSIRLSCAASGFTFSSYWMHWVRQAP GKGLEWYSSISYDSSNTYYADSVKGRFTISRDNSKNTLY1Q MNSLRAEDTAVYYCARYGGMDYWGQGTLVTVSS (SEQ ID NO: 104)
TP-3B3	DIELTQPASVSVAPGQTARISCSGDNLRSKYAHWYQQKPGQ APVLVIYGDNNRPSGIPERFSGSNSGNTATLTISGTQAEDE ADYYCSAYAMGSSPVFGGGTKLTVLGQ (SEQ ID NO:	QVQLVESGGGLVQPGGSLRLSCAASGFTFSSYGMHWVRQAP GKGLEWVSNISYMGSNTNYADSVKGRFTISRDNSKNTLYLQ MNSLRAEDTAVYYCARGLFPGYFDYWGQGTLVTVSS (SEQ ID NO: 108)
TP-384	DIQMTQSPSSLSASVGDRVTITCRASQNISNYLNWYQQKPG KAPKLLIYGTSSLQSGVPSRFSGSGSGTDFTLTISSLQPED FAVYYCQQYGNNPTTFGQGTKVEIKRT (SEQ ID NO: 110)	QVQLQQSGPGLVKPSQTLSLTCAISGDSVSSNGAAWGWIRQ SPGRGLEWLGHIYYRSKWYNSYAVSVKSRITINPDTSKNÇF SLQLNSVTPEDTAVYYCARWGGIHDGDIYFDYWGQGTLVTV SS (SEQ ID NO: 112)

Clon	۸۲	НΛ
IP-3C1	DIALTOPASVSGSPGOSITISCTGTSSDLGGFNTVSWYQQH PGKAPKLMIYSVSSRPSGVSNRFSGSKSGNTASLTISGLQA EDEADYYCQSYDINNLVFGGGTKLTVLGQ (SEQ ID NO: 86)	QVQLVESGGGLVQPGGSLRLSCAASGFTFSSYSMHWVRQAP GKGLEWVSGISYSSSFTYYADSVKGRFTISRDNSKNTLYLQ MNSLRAEDTAVYYCARALGGGVDYWGQGTLVTVSS (SEQ ID NO: 136)
TP-3C2	DIQMTQSPSSLSASVGDRVTITCRASQSITNYLNWYQQKPG KAPKLLIYDVSNLQSGVPSRFSGSGSGTDFTLTISSLQPED FAVYYCQQYSGYPLTFGQGTKVEIKRT (SEQ ID NO:	QVOLOQSGPGLVKPSQTLSLTCAISGDSVSSSSAAMSWIRQ SPGRGLEWLGMIYYRSKWYNHYAVSVKSRITINPDTSKNÇF SLQLNSVTPEDTAVYYCARGGSGVMDVWGQGTLVTVSS (SEQ ID NO: 116)
TP-3C3	DIQMTQSPSSLSASVGDRVTITCRASQSINPYLNWYQQKPG KAPKLLIYAASNLQSGVPSRFSGSGSGTDFTLTISSLQPED FAVYYCQQLDNRSITFGQGTKVEIKRT (SEQ ID NO: 118)	QVQLQQSGPGLVKPSQTLSLTCAISGDSVSSNSAAWGWIRQ SPGRGLEWLGVIYYRSKWYNDYAVSVKSRITINPDTSKNÇF SLQINSVTPEDTAVYYCARARAKKSGGFDYWGQGTLVTVSS (SEQ ID NO: 120)
TP-3D3	DIELTOPPSVSVAPGGTARISCSGDSLGSKFAHWYOOKPGO APVLVIYDDSNRPSGIPPRFSGSNSGNTATLTISGTOAEDE ADYYCSTYTSRSHSYVFGGGTKLTVLGQ (SEQ ID NO: 122)	QVQLVESGGGIVQPGGSLRLSCAASGFTFSSYASWVRQAFG KGLEWVSGISGDGSNTHYADSVKGRFTISRDNSKNTLYLCM NSLRAEDTAVYYCARYDNFYFDVWGQGTLVTVSS (SEQ ID NO: 124)
TP-3E1	DIELTQPPSVSVAPGQTARISCSGDNIGSYYAYWYQQKPGQ APVLVIYDDSNRPSGIPERFSGSNSGNTATLTISGTQAEDE ADYYCQSYDSTGLLVFGGGTKLTVLGQ (SEQ ID NO:	QVQLVESGGGLVQPGGSLRLSCAASGFTFSNYAMTWVRQAP GKGLEWVSVISSVGSNTYYADSVKGRFTISRDNSKNTLYIQ MNSLRAEDTAVYYCARPTKAGRTWWWGPYMDVWGQGTLVTV SS (SEQ ID NO: 128)
TP-3F1	DIELTQPPSVSVAPGQTARISCSGDNIGSYFASWYQQKPGQ APVLVIYDDSNRPSGIPERFSGSNSGNTATLTISGTQAEDE ADYYCEGSNVFGGGTKLTVLGQ (SEQ ID NO: 130)	QVQLVQSGAEVKKPGESLKISCKGSGYSFTDYWIGWVRQMP GKGLEWMGIIQPSDSDTNYSPSFQGQYTISADKSISTAYIQ WSSLKASDTAMYYCARFWWWGKYDSGFDVWGQGTLVTVSS (SEQ ID NO: 132)
TP-3F2	DIELTQPPSVSVAPGQTARISCSGDNLPSKSVYWYQQKPGQ APVLVIYGDNNRPSGIPERRSGSNSGNTATLTISGTQAEDE ADYYCQSWTSRPMVVFGGGTKLTVLGQ (SEQ ID NO: 134)	QVQLVESGGGLVQPGGSLRLSCAASGFTFSSYSMHWVRQAP GRGLEWYSGISYSSSFTYYADSVRGRFTISRDNSKNTTYLQ MNSLRAEDTAVYYCARALGGGVDYWGQGTLVTVSS (SEQ ID NO: 136)
TP-3G1	DIQMIQSPSSLSASVGDRVIITCRASQGISSYLHWYQQKPG KAPKLLIYGASTLQSGVPSRFSGSGSGTDFTLTISSLQPED FATYYCQQQNGYPFTFGQGTKVEIKRT (SEQ ID NO: 138)	QVQLQQSGPGLVKPSQTLSLTCAISGDSVSSNSGGWGWIRQ SPGRGLEWLGLIYYRSKWYNAYAVSVKSRITINPDTSKNÇF SLQLNSVTPEDTAVYYCARYLGSNFYVYSDVWGQGTLVTVS S (SEQ ID NO: 140)
TP-3G3	DIQMTQSPSSLSASVGDRVTITCRASQNIHSHLNWYQQKPG KAPKLLIYDASSLQSGVPSRFSGSGSGTDFTLTISSLQPED FAVYYCQQYYDYPLTFGQGTKVEIKRT (SEQ ID NO: 142)	QVQLVESGGGLVQPGGSLRLSCAASGFTFSSYSMSWVRQAP GKGLEWVSSISSSSNTYYGDSVKGRFTISRDNSKNTLYLQ MNSLRAEDTAVYYCARMHYKGMDIWGQGTLVTVSS (SEQ ID NO: 144)

	HA	QVQLVESGGGLVQPGGSLRLSCAASGFTFNSYYMSWVRQAP GKGLEWVSNISSSGSNTNYADSVKGRFTISRDNSKNTLYLQ MNSLRAEDTAVYYCARVHYGFDFWGQGTLVTVSS (SEQ ID NO: 148)	QVQLVESGGGLVQPGGSLRLSCAASGFTFRNYAMNWVRQAP GKGLEWVSYLSGSSSYTYYADSVKGRFTISRDNSKYTLYLQ MNSLRAEDTAVYXCARADLPYMVFDYWGGGTLVTVSS (SEQ ID NO: 152)	QVQLVESGGGLVQPGGSLRLSCAASGFTFSSYGMSWVRQAP GKGLEWVSLLSGVSSSTYYYADSVKGRFTISRDNSKNTLYLQ MNSLRAEDTAVYYCARSYLGYFDVWGQGTLVTVSS (SEQ ID NO: 156)	QVQLQQSGPGLVKPSQTLSLTCALSGDSVSSNSAAWSWIRQ SPGRGLEWLGIIYKRSKWYNDYAVSYKSRITINPDTSKNQF SLQLNSVTPEDTAVYYCARWHSDKHWGFDYWGQGTLVTVSS (SEQ ID NO: 160)	QVQLVESGGGLVQPGGSLRLSCAASGFTFNDYAMSWVRQAP GKGLEWVSTIESVSSSTYYYADSVKGRFTISRDNSKNTLYLQ MNSLRAEDTAVYCARFIGVLWDDVWGQGTLVTVSS (SEQ ID NO: 164)	QVQLVESGGGLVQPGGSLRLSCAASGFTFSTYAMHWVRQAP GKGLEWVSTISGYGSFTYYADSVKGRFTISRDNSKNTLYLQ MNSLRAEDTAVYYCARNGRKYGQMDNWGQGTLVTVSS (SEQ ID NO: 168)	QVQLVESGGGLVQPGGSLRLSCAASGFTFSDHAMHWVRQAP GKGLEWVSVIEYSGSKTNYADSVKGRFTISRDNSKNTLYLQ MNSLRAEDTAVYYCARGDYYPYLVFALWGQGTLVTVSS
	J/V	DIELTQPPSVSVAPGQTARISCSGDKLGKYYAYWYQQKPGQ APVLVIYGDSKRPSGIPERFSGSNSGNTATLTISGTQAEDE ADYXCSSAAFGSTVFGGGTKLTVLGQ (SEQ ID NO:	DIELTQPPSVSVAPGQTARISCSGDALGSKFAHWYQQKPGQ APVLVIYDDSERPSGIPPRFSGSNSGWTATLTISGTQAEDE ADYYCQAYDSGLLYVFGGGTKLTVLGQ (SEQ ID NO: 150)	DIELTQPPSVSVAPGQTARISCSGDALGKYYASWYQQKPGQ APVLVIYGDNKRPSGIPDRPSGSNSGMTATLTISGTQAEDE ADYXCQSYTTRSLVFGGGTKLTVLGQ (SEQ ID NO: 154)	DIVMTQSPLSLPVTPGEPASISCRSSQSLVFSDGNTYLNWY LQKPGQSPQLLIYKGSNTASGVPDRFSGSGSGSTDFTLKISR VEAEDVGVYYCQQYDSYPLTFGQGTKVBIKRI (SEQ ID NO: 158)	DIELTQPPSVSVAPGQTARISCSGDALGSKYVSWYQQKPGQ APVLVIYGDNKRPSGIPPRFSGSNSGNYATLTISGTQAEDE ADYXCQSYTYSLNQVFGGGTKLTVLGQ (SEQ ID NO:	DIELTQPPSVSVAPGQTARISCSGDKLGSKSVHWYQQKPGQ APVLVIYROTDRPSGIPBRFSGSNSGWTATLTISGTQAEDE ADYYCQTYDYILNVFGGGTKLTVLGQ (SEQ ID NO: 166)	DIELTQPPSVSVAPGQTARISCSGDSIGKKYVHWYQQKPGQ APVLVIYGDNNRPSGIPERFSGSNSGNTATLIISGTQAEDE ADYYCSTADSVITYKNVFGGGTKLTVLGQ (SEQ ID NO:
ō	Clon	TP-3H2	TP-4A7	TP-4A9	TP-487	TP-4E8	TP-4G8	TP-4H8

Reactividad cruzada con TFPI de ratón

5

10

15

20

25

30

Los anteriores 44 clones de unión a TFPI humano se ensayaron también para la unión a TFPI de ratón en ELISA. Se encontró que diecinueve anticuerpos tenían reactividad cruzada con TFPI de ratón. Para facilitar el estudio utilizando el modelo de hemofilia de ratón, los inventores caracterizaron además estos 19 anticuerpos así como cinco anticuerpos que eran específicos de TFPI humano. En la Fig. 1 se muestra un conjunto de datos representativo. Ninguno de estos anticuerpos se unen a BSA o lisozima en ELISA.

Ejemplo 2 Expresión y purificación de anticuerpos dirigidos contra TFPI

Los anticuerpos dirigidos contra TFPI (como fragmentos Fab) se expresaron y purificaron a partir de la cepa bacteriana TG1. En resumen, una única colonia de la cepa bacteriana TG1 que contenía el plásmido de expresión del anticuerpo se repicó y se hizo crecer durante la noche en 8 ml de medio 2xYT en presencia de 34 µg/ml de cloranfenicol y glucosa al 1%. Un volumen de 7 ml de cultivo se transfirió a 250 ml de medio 2xYT reciente que contenía 34 µg/ml de cloranfenicol y glucosa al 0,1%. Tras 3 horas de incubación, se añadió IPTG 0,5 mM para inducir la expresión de Fab. Se continuó el cultivo durante la noche a 25 °C. El cultivo se centrifugó para aglomerar las células bacterianas. A continuación, se volvió a suspender el aglomerado en un tampón de lisis Bug Buster (Novagen). Tras la centrifugación, se filtró el sobrenadante de la lisis bacteriana. Los fragmentos Fab se purificaron por afinidad a través de una columna Ni-NTA (Qiagen) de acuerdo con las instrucciones del fabricante.

Ejemplo 3 Determinación de CE50 y afinidad de unión de anticuerpos dirigidos contra-TFPI

se utilizaron anticuerpos Fab purificados para determinar la CE₅₀ de anticuerpos dirigidos contra TFPI de ser humano o TFPI de ratón. Se evaluó la CE₅₀ en un ELISA, de forma similar a la descrita anteriormente. Los resultados se analizaron utilizando SoftMax. Se determinó la afinidad de unión de los anticuerpos dirigidos contra TFPI en un ensayo Biacore. En resumen, el antígeno, tanto TFPI humano como TFPI de ratón, se inmovilizó en los chips CM5 utilizando el kit de acoplamiento de la amina (GE HealthCare) de acuerdo con las instrucciones del fabricante. La cantidad de TFPI inmovilizado se ajustó a la masa del antígeno para dar 300 UR aproximadas. Se analizaron los Fab del anticuerpo en fase móvil y al menos cinco diferentes concentraciones (0,1, 0,4, 1,6, 6,4 y 25 nM) de los anticuerpos purificados se usaron en el ensayo Biacore. Se calcularon la cinética y la afinidad de unión usando el software de evaluación Biacore T100.

Tal como se muestra en la Tabla 3, los 24 Fab dirigidos contra TFPI mostraron diferentes CE50 para el TFPI humano (0,09 a 792 nM) y TFPI de ratón (0,06 a 1035 nM), y la afinidad determinada mediante Biacore fue, por consiguiente, diferente para el TFPI humano (1,25 a 1140 nM). En el estudio Biacore de los Fab para TFPI de ratón, la variación de la afinidad fue más pequeña (3,08 a 51,8 nM).

Tabla 3. La afinidad de unión de 24 anticuerpos contra TFPI humano o de ratón como se determinó mediante ELISA y Biacore (hTFPI: TFPI humano; mTFPI: TFPI de ratón; Neg: la señal fue menor de dos veces del fondo; ND, no realizado).

	CE ₅₀ de unión (nM)		Afinidad (nM)	
Clones de anticuerpos	hTFPI	mTFPI	hTFPI	mTFPI
TP-2A2	0,62	1035,88	6,57	29,8
TP-2A5	28,64	14,54	35,4	19,6
TP-2A8	0,09	0,06	1,25	3,08
TP-2B11	11,52	0,52	21,5	16,3
TP-2B3	0,84	20,18	7,40	27,0
TP-2C1	0,40	Neg	2,64	Neg
TP-2C7	0,60	0,60	2,01	9,33
TP-2E5	791,60	202,28	115	25,2
TP-2G5	342,52	871,34	42,1	16,1
TP-2G6	0,48	5,18	5,06	46,1
TP-2G7	23,48	Neg	26,9	Neg
TP-2G9	10,80	194,42	48,5	35,7
TP-2H10	2,18	32,40	10,2	11,5
TP-3A4	42,84	326,58	21,6	23,7

	CE ₅₀ de unión (nM)		Afinidad (nM)	
Clones de anticuerpos	hTFPI	mTFPI	hTFPI	mTFPI
TP-3B4	35,76	34,62	14,1	20,4
TP-3C1	32,80	108,40	21,6	33,6
TP-3C2	59,00	956,68	17,1	28,5
TP-3G1	74,40	8,68	1140	49,1
TP-3G3	33,60	47,06	16,0	25,7
TP-4A9	0,17	117,68	7,60	Neg
TP-4B7	0,74	2,64	15,8	51,8
TP-4E8	36,94	Neg	35,9	ND
TP-4G8	846,92	Neg	25,2	ND
TP-4H8	72,50	Neg	32,2	ND

Ejemplo 4 Conversión de Fab dirigido contra TFPI en IgG

5

10

15

20

25

Todos los anticuerpos dirigidos contra TFPI identificados son Fab completamente humanos que se pueden convertir de forma factible en IgG humana como agente terapéutico. En este ejemplo, sin embargo, los Fab seleccionados se convirtieron en un anticuerpo quimérico que contenía una región constante de IgG de ratón, de tal manera que son más adecuados para el ensayo en un modelo de ratón. La región variable de los anticuerpos seleccionados se injertó en un vector de expresión de mamífero que contenía regiones constantes de ratón. La molécula de IgG completamente ensamblada se transfectó a continuación y se expresó en células HKB11 (Mei y col., Mol. Biotechnol., 2006, 34: 165-178). El sobrenadante del cultivo se recogió y se concentró. Las moléculas de IgG dirigidas contra TFPI se purificaron mediante afinidad a través de una columna de Proteína G Hitrap (GE Healthcare) siquiendo las instrucciones del fabricante.

Ejemplo 5 Selección de anticuerpos neutralizantes dirigidos contra TFPI

Se seleccionaron anticuerpos neutralizantes dirigidos contra TFPI basándose en su inhibición de la actividad de TFPI bajo tres condiciones experimentales. Se midió la actividad de TFPI utilizando el ensayo de actividad del TFPI ACTICHROME® (American Diagnostica Inc., Stamford, CT), un ensayo cromógeno en tres etapas mide la capacidad de TFPI de inhibir la actividad catalítica del complejo TF/FVIIa para activar el factor X a factor Xa. La actividad neutralizante del anticuerpo dirigido contra TFPI es proporcional a la cantidad de generación de FXa restaurada. En el primer escenario, los anticuerpos dirigidos contra TFPI purificados se incubaron con TFPI recombinante humano o de ratón (R&D System) en las concentraciones indicadas. Tras la incubación, las muestras se mezclaron con TF/FVIIa y FX, y a continuación se midió la actividad residual del complejo TF/FVIIa utilizando SPECTROZYME® FXa, un sustrato cromógeno muy específico de FXa. Este sustrato se escindió solo mediante el FXa generado en el ensayo, liberando una p-nitroanilina (pNa) cromófora, que se midió a 405 nm. La actividad de TFPI presente en la muestra se interpoló a partir de una curva patrón construida utilizando niveles de actividad de TFPI conocidos. El ensayo se llevó a cabo en modo de criterio de valoración. En los otros dos escenarios, los anticuerpos dirigidos contra TFPI se añadieron en plasma humano normal o plasma de hemofilia A, y a continuación se midió la generación de FXa restaurada.

Ejemplo 6 Los anticuerpos dirigidos contra TFPI acortaron el tiempo de coagulación en el ensayo del tiempo de protrombina diluida (dPT)

El ensayo dPT se llevó a cabo esencialmente como se describe en Welsch y col., Thrombosis Res., 1991, 64(2): 213-222. En resumen, plasma normal humano (FACT, George King Biomedical), plasma agotado de TPFI humano (American Diagnostica) o plasma de hemofilia A (George King Biomedical) se prepararon mezclando plasma con 0,1 volúmenes de tampón de control o anticuerpos dirigidos contra TFPI humano. Tras la incubación durante 30 min a 25 °C, se combinaron muestras de sangre (100 μl) con 200 μl de Simplastin (Biomerieux) diluido adecuadamente (dilución 1:500) como fuente de tromboplastina y se determinó el tiempo de coagulación utilizando un fibrómetro STA4 (Stago). Se diluyó tromboplastina con PBS o tampón basado en Tris 0,05 M (pH 7,5) que contiene cloruro de sodio 0,1 M, albúmina de suero de bovino al 0,1 % y cloruro de calcio 20 μM.

Ejemplo 7 Anticuerpos neutralizantes dirigidos contra TFPI, solos o en combinación con factor VIII o factor IX recombinante, acortaron el tiempo de coagulación en un ensayo ROTEM

El sistema ROTEM (Pentapharm GmbH) incluyó un instrumento de cuatro canales, un ordenador, patrones de

plasma, activadores y copas y pinzas desechables. Los parámetros trombelastográficos de los sistemas de hemostasia ROTEM incluyeron: Tiempo de coagulación (CT), que refleja el tiempo de reacción (el tiempo requerido para obtener una amplitud de 2 mm tras el inicio de la recogida de datos) para iniciar la coagulación de la sangre; Tiempo de formación del coágulo (CFT) y el ángulo alfa para reflejar la propagación de la coagulación, y la amplitud máxima y el módulo elástico máximo para reflejar la firmeza del coágulo. En el ensayo ROTEM, se evaluaron 300 µl de sangre o plasma completo citrado reciente. Todos los constituyentes se reconstituyeron y mezclaron de acuerdo con las instrucciones del fabricante, con la recogida de datos durante el periodo de tiempo requerido para cada sistema. En resumen, las muestras se mezclaron mediante retirada/dispensación de 300 µl de sangre o plasma con una pipeta automatizada en copas ROTEM con 20 µl of CaCl₂ (200 mmol) añadidos, seguido inmediatamente por la mezcla de la muestra e inicio de la recogida de datos. Se recogieron los datos durante 2 h utilizando un sistema ROTEM controlado por ordenador (software versión 2.96).

Un resultado ilustrativo del ensayo ROTEM en la detección del efecto de los anticuerpos dirigidos contra TFPI en el acortamiento del tiempo de coagulación de la sangre se muestra en la Fig. 3 y 5. La Fig. 3 muestra que TP-2A8-Fab acortó el tiempo de coagulación en plasma de la hemofilia A humana o en sangre completa de hemofilia A de ratón, solo o combinado con FVIII recombinante, cuando se inició el sistema ROTEM con NATEM. La Fig. 5 muestra que los anticuerpos dirigidos contra TFPI en el formato de IgG (TP-2A8, TP-3G1, y TP-3C2) acortaron los tiempos de coagulación en comparación con un anticuerpo IgG de ratón del control negativo. Basándose en estos resultados y en la comprensión en el campo, la persona experta esperaría que estos anticuerpos dirigidos contra TFPI acorten también el tiempo de coagulación en combinación con el FIX recombinante en comparación con estos anticuerpos solo.

Ejemplo 8 actividad funcional in vitro de anticuerpos dirigido contra TFPI

5

10

15

20

25

30

35

Para investigar los anticuerpos contra TFPI en el bloqueo de la función de TFPI, se utilizaron el ensayo cromógeno ACTICHROME y el tiempo de la protrombina diluida (dPT) para ensayar la actividad funcional de los anticuerpos obtenidos del cribado por inmunoprotección y la selección. En ambos ensayos, se utilizó un anticuerpo monoclonal de rata dirigido contra TFPI (R&D System) como control positivo y se usó un Fab policional humano como control negativo. En el ensayo cromógeno, ocho de los anticuerpos inhibieron más del 50% de actividad de TFPI en comparación con el anticuerpo monoclonal de rata (Tabla 4). En el ensayo del dPT, todos de estos ocho Fab dirigidos contra TFPI mostraron un efecto inhibidor muy alto, acortando el tiempo de coagulación por debajo de 80 segundos, y cuatro de los ocho Fab acortaron el dPT por debajo de 70 segundos. En la Fig.2 se muestra la dependencia de la dosis de cuatro clones representativos en el acortamiento del dPT. Sin embargo, Otros Fab humanos dirigidos contra TFPI con bajo o ningún efecto inhibidor acortaron también el tiempo de coagulación en dPT. Por ejemplo, TP-3B4 y TP-2C7, aunque mostrando menos del 25% de actividad inhibidora, podría acortar el dPT a menos de 70 segundos. Un análisis de regresión lineal simple de la actividad inhibidora y el dPT sugiere una correlación significativa (p=0,0095) pero una varianza grande (R cuadrada = 0,258).

Tabla 4. La actividad funcional in vitro de los anticuerpos dirigidos contra TFPI como se determinó por su actividad de inhibición en el ensavo de TFPI y el ensavo del dPT humanos

clon	% de inhibición de la actividad de hTFPI	dPT en plasma de hemoA (s)
anti-TFPI	100%	63,5
TP-2B3	100%	74,0
TP-4B7	100%	53,9
TP-3G1	93%	75,1
TP-3C2	92%	68,9
TP-2G6	86%	62,8
TP-2A8	100%	57,9
TP-2H10	63%	79,5
TP-2G7	55%	72,2
TP-4G8	39%	73,9
TP-2G5	36%	73,2
TP-2A5	30%	70,8
TP-4E8	29%	71,9
TP-4H8	28%	76,5

clon	% de inhibición de la actividad de hTFPI	dPT en plasma de hemoA (s)
TP-3B4	25%	69,1
TP-2A2	23%	70,9
TP-2C1	21%	70,9
TP-3G3	15%	70,7
TP-2E5	0%	79,0
TP-3A4	0%	72,3
TP-3C1	0%	72,3
TP-2B11	0%	82,6
TP-2C7	0%	62,5
TP-2G9	0%	82,7
Sin tratar	0%	92,9

Uno de los Fab dirigidos contra TFPI, Fab-2A8, se ensayó también en el ensayo ROTEM en el que se usó tanto el plasma de la hemofilia A humana con un bajo nivel de factor VIII o sangre completa de la hemofilia A de ratón. Tal y como se muestra en la Figura 3, en comparación con un anticuerpo policlonal de conejo dirigido contra TFPI, Fab-2A8 mostró una actividad similar en el plasma de la hemofilia A human, disminuyendo el tiempo de coagulación (CT) desde los 2200 segundos a aproximadamente 1700 segundos. cuando se utilizó sangre completa de hemofilia A de ratón, el anticuerpo del control, el anticuerpo de conejo dirigido contra TFPI acortó el CT desde 2700 segundos a 1000 segundos, mientras que Fab-2A8 acortó el CT desde 2650 segundos a 1700 segundos. Estos resultados indican que Fab-2A8 puede acortar significativamente el tiempo de coagulación en plasma humano y sangre de ratón (p = 0,03).

Ejemplo 9 Función de los anticuerpos dirigidos contra TFPI tras la conversión a la IgG quimérica

10

15

25

30

35

Los ensayos in vitro de generación del factor Xa y del tiempo de protrombina diluida indican que al menos seis de los 24 Fab dirigidos contra TFPI, TP-2A8, TP-2B3, TP-2G6, TP-3C2, TP-3G1 y TP-4B7, podrían bloquear la función de TPFI. Para facilitar el estudio in vivo usando ratones con hemofilia A, los inventores convirtieron estos seis Fab humanos dirigidos contra TFPI en IgG quimérica, utilizando el isotipo IgG1 de murino. El vector de expresión de IgG se transfectó en células HKB 11, y el anticuerpo expresado se recogió en el sobrenadante del cultivo y se purificó en una columna de Proteína G. Cuando un clon 2G6-Fab representativo se convirtió en IgG, La 2G6-IgG mostró el aumento de dos veces de la CE₅₀ de unión a TFPI humano (de 0,48 nM a 0,22 nM) y 10 veces de aumento para la TFPI de ratón (de 5,18 nM a 0,51 nM). En la Fig. 4 se muestra la unión de IgG-2G6 a TFPI humano y de ratón.

20 Ejemplo 10 Efecto sobre la tasa de supervivencia en el modelo de corte transversal de la vena de la cola de la hemofilia A de ratón

Se ha establecido un modelo de corte transversal de la vena de la cola de ratón para la evaluación farmacológica. Este modelo simula el amplio intervalo de fenotipos de sangrado observado entre individuos normales y hemofílicos graves. Para estos estudios, se utilizaron ratones macho con hemofilia A (8 semanas de edad y 20 a 26 gramos). Se dosificaron los ratones mediante infusión de la vena de la cola con un anticuerpo monoclonal dirigido contra TFPI (40 µg/ratón), solo o junto con un factor de coagulación tal como FVIII (0,1 Ul/ratón) antes de la lesión. A las 24 horas después de la dosificación, se cortó transversalmente la vena de la cola a 2,7 mm de la punta (de diámetro). Se observó la supervivencia 24 horas después del corte transversal. Se demostró que la tasa de supervivencia era dependiente de la dosis cuando se proporcionó con FVIII recombinante (no se muestran los datos. Los datos que se muestra en la Fig. 8 procedían de dos estudios separados (n = 15 y n = 10, respectivamente). Los resultados mostraron que TP-2A8-IgG prolongó significativamente la supervivencia de ratones con hemofilia A en comparación con la IgG del control; y, en combinación con FVIII recombinante, presentó una mejor tasa de supervivencia que cualquier agente solo.

Ejemplo 11 La combinación del anticuerpo dirigido contra TFPI con el factor VIIa recombinante acortó el tiempo de coagulación y el tiempo de formación del coágulo

Se evaluó el efecto combinado del anticuerpo dirigido contra TFPI y el FVIIa recombinante (Novo Nordisk) en un sistema ROTEM usando EXTEM (dilución 1:1000) y sangre completa de hemofilia A de ratón. Las cantidades indicadas de anticuerpo dirigido contra TFPI, TP-2A8-IgG ("2A8"), y FVIIa recombinante ("FVIIa"), se añadieron a 300 µI de sangre completa citrada de hemofilia A de ratón, y se inició la coagulación de la sangre utilizando el

sistema EXTEM. La Fig. 9 muestra que la adición de TP-2A8-IgG o FVIIa recombinante en sangre completa de hemofilia A de ratón acortó el tiempo de coagulación y el tiempo de formación del coágulo, respectivamente. La combinación de TP-2A8-IgG y FVIIa recombinante ("2A8 + FVIIa") acortó además el tiempo de coagulación y el tiempo de formación del coágulo, indicando que la combinación del anticuerpo dirigido contra TFPI con FVIIA recombinante es útil en el tratamiento de los pacientes de hemofilia con o sin inhibidores.

Ejemplo 12 Los anticuerpos dirigidos contra TFPI acortaron el tiempo de coagulación en sangre hemofílica humana inducida por el inhibidor de FVIII

Anticuerpos dirigidos contra TFPI seleccionados, se ensayaron también 2A8 y 4B7 en un ensayo ROTEM utilizando anticuerpos neutralizantes de FVIII para inducir la hemofilia en sangre completa extraída de pacientes no hemofílicos. La Figura 10 muestra que la sangre humana normal tiene un tiempo de coagulación de aproximadamente 1000 segundos. En presencia de anticuerpos neutralizantes de FVIII (PAH, 100 microgramos/ml), el tiempo de coagulación se prolongó hasta aproximadamente 5200 segundos. El tiempo de coagulación prolongado se acortó significativamente mediante la adición de un anticuerpo dirigido contra TFPI, 2A8 o 4B7, indicando que el anticuerpo dirigido contra TFPI es útil en el tratamiento de pacientes con hemofilia con inhibidores.

15 Ejemplo 13 Los anticuerpos inhibidores dirigidos contra TFPI se unen al dominio 2 de Kunitz del TFPI humano

Se utilizaron las transferencias Western y ELISA para determinar que dominio(s) de TFPI de los anticuerpos inhibidores se unen. Los dominios TFPI humano de longitud completa recombinante o TFPI se utilizaron para estos estudios. ELISA fue similar al Ejemplo 3. En la transferencia Western, TFPI humano o los dominios se analizaron en tampón de análisis Bis-Tris SDS PAGE al 4-12% MES (Invitrogen, Carlsbad, CA) y a continuación se transfirió a una membrana de celulosa. Tras la incubación con anticuerpos inhibidores durante 10 min, la membrana se lavó tres veces usando el sistema SNAPid (Millipore, Billerica, MA). Un anticuerpo de burro conjugado con HRP dirigido contra un anticuerpo de ratón (Pierce, Rockford, IL) a una dilución de 1 a 10.000 se incubó con la membrana durante 10 min. Tras una etapa de lavado similar, se desarrolló la membrana usando el sustrato SuperSignal (Pierce, Rockford, IL). Mientras que el anticuerpo dirigido contra el dominio 1 de Kunitz se une al TFPI de longitud completa, al TFPI truncado y a los dominios, los anticuerpos inhibidores dirigidos contra TFPI se unen solo al dominio 2 de Kunitz que contiene TFPI. Esto indica que la unión del dominio 2 de Kunitz es necesario para la función inhibidora del anticuerpo.

Tabla 5. Los dominios se unen mediante anticuerpos como se determina mediante las transferencias Western y

ELISA													
	Anti-K1	mlgG	TP-2A8	TP-2B3	TP-2G6	TP-3C2	TP-3G1	TP-4B7					
Longitud completa	+	-	+	+	+	+	+	+					
K1+K2+K3	+	-	+	+	+	+	+	+					
K1+K2	+	-	+	+	+	+	+	+					
K1	+							-					

LISTADO DE SECUENCIAS

<110> Bayer HealthCare LLC Wang, zhuozhi Murphy, John

Pan, Junliang Jiang, Haiyan Liu, Bing

5

10

20

25

30

35

45

<120> Anticuerpos monoclonales contra el inhibidor de la ruta del factor tisular (TFPI)

<130> MSB-7329 PCT

40 <150> US 61/085.980

<151> 04/08/2008

<160> 430

<170> PatentIn versión 3.5

<210> 1 <211> 330 <212> ADN

<213> Homo sapiens

	<400> 1	
	gatatcgaac tgacccagcc gccttcagtg agcgttgcac caggtcagac cgcgcgtatc	60
	tcgtgtagcg gcgataatat tcgtacttat tatgttcatt ggtaccagca gaaacccggg	120
	caggcgccag ttgttgtgat ttatggtgat tctaagcgtc cctcaggcat cccggaacgc	180
	tttagcggat ccaacagcgg caacaccgcg accctgacca ttagcggcac tcaggcggaa	240
	gacgaagcgg attattattg ccagtcttat gattctgagg ctgattctga ggtgtttggc	300
	ggcggcacga agttaaccgt tcttggccag	330
5	<210> 2 <211> 110 <212> PRT <213> Homo sapiens	
	<400> 2	
	Asp Ile Glu Leu Thr Gln Pro Pro Ser Val Ser Val Ala Pro Gly Gln 1 5 10 15	
	Thr Ala Arg Ile Ser Cys Ser Gly Asp Asn Ile Arg Thr Tyr Tyr Val 20 25 30	
	His Trp Tyr Gln Gln Lys Pro Gly Gln Ala Pro Val Val Ile Tyr 35 40 45	
	Gly Asp Ser Lys Arg Pro Ser Gly Ile Pro Glu Arg Phe Ser Gly Ser 50 55 60	
	Asn Ser Gly Asn Thr Ala Thr Leu Thr Ile Ser Gly Thr Gln Ala Glu 65 70 75 80	
	Asp Glu Ala Asp Tyr Tyr Cys Gln Ser Tyr Asp Ser Glu Ala Asp Ser	
	85 90 - 95	
	Glu Val Phe Gly Gly Gly Thr Lys Leu Thr Val Leu Gly Gln 100 105 110	
10	<210> 3 <211> 365 <212> ADN <213> Homo sapiens	
	<400> 3	

aggtgcaat tggtggaaag cggcggcggc ctggtgcaac cgggcggcag cctgcgtctg													
gctgcgcgg cctccggatt taccttttct aataatgcta tgaattgggt gcgccaagcc													
tgggaagg gtctcgagtg ggtgagcact atctcttatg atggtagcaa tacctattat													
ggatagcg tgaaaggccg ttttaccatt tcacgtgata attcgaaaaa caccctgtat													
gcaaatga acagcctgcg tgcggaagat acggccgtgt attattgcgc gcgtcaggct													
gtggttgga cttattctta tactgatgtt tggggccaag gcaccctggt gacggttagc													
tcagc													
<210> 4 <211> 121 <212> PRT <213> Homo sapiens													
100> 4													
Gln Val Gln Leu Val Glu Ser Gly Gly Gly Leu Val Gln Pro Gly Gly 1 5 10 15													
Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Thr Phe Ser Asn Asn 20 25 30													
Ala Met Asn Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp Val 35 40 45													
Ser Thr Ile Ser Tyr Asp Gly Ser Asn Thr Tyr Tyr Ala Asp Ser Val 50 60													
Lys Gly Arg Phe Thr Ile Ser Arg Asp Asn Ser Lys Asn Thr Leu Tyr 65 70 75 80													
Leu Gln Met Asn Ser Leu Arg Ala Glu Asp Thr Ala Val Tyr Tyr Cys 85 90 95													
Ala Arg Gln Ala Gly Gly Trp Thr Tyr Ser Tyr Thr Asp Val Trp Gly 100 105 110													
Gln Gly Thr Leu Val Thr Val Ser Ser 115 120													
210> 5 211> 327 212> ADN 213> Homo saniens													

<400> 5

gatatcgaac tgacccagcc gccttcagtg agcgttgcac caggtcagac cgcgcgtatc 6	0												
tcgtgtagcg gcgataatat tcctgagaag tatgttcatt ggtaccagca gaaacccggg 12	0												
caggcgccag ttcttgtgat tcatggtgat aataatcgtc cctcaggcat cccggaacgc 18	0												
tttagcggat ccaacagcgg caacaccgcg accctgacca ttagcggcac tcaggcggaa 24	0												
gacgaagcgg attattattg ccagtctttt gatgctggtt cttattttgt gtttggcggc 30	0												
ggcacgaagt taaccgttct tggccag 32	7												
<210> 6 <211> 109 <212> PRT <213> Homo sapiens													
<400> 6													
Asp Ile Glu Leu Thr Gln Pro Pro Ser Val Ser Val Ala Pro Gly Gln 1 5 10 15													
Thr Ala Arg Ile Ser Cys Ser Gly Asp Asn Ile Pro Glu Lys Tyr Val 20 25 30													
His Trp Tyr Gln Gln Lys Pro Gly Gln Ala Pro Val Leu Val Ile His 35 40 45													
Gly Asp Asn Asn Arg Pro Ser Gly Ile Pro Glu Arg Phe Ser Gly Ser 50 55 60													
Asn Ser Gly Asn Thr Ala Thr Leu Thr Ile Ser Gly Thr Gln Ala Glu 65 70 75 80													
Asp Glu Ala Asp Tyr Tyr Cys Gln Ser Phe Asp Ala Gly Ser Tyr Phe 85 90 95													
Val Phe Gly Gly Gly Thr Lys Leu Thr Val Leu Gly Gln 100 105													
<210> 7 <211> 353 <212> ADN <213> Homo sapiens													
<400> 7													
caggtgcaat tggtggaaag cggcggcggc ctggtgcaac cgggcggcag cctgcgtctg 6	0												
agctgcgcgg cctccggatt taccttttct tcttatggtt cttgggtgcg ccaagcccct 12	0												
gggaagggtc tcgagtgggt gagcgttatc tctggttctg gtagctctac ctattatgcg 18	0												
gatagcgtga aaggccgttt taccatttca cgtgataatt cgaaaaacac cctgtatctg 24	0												
caaatgaaca gcctgcgtgc ggaagatacg gccgtgtatt attgcgcgcg tgttaatatt 30	0												
tctactcatt ttgatgtttg gggccaaggc accctggtga cggttagctc agc 35	3												
<210> 8 <211> 117 <212> PRT													

<213> Homo sapiens

	<400>	8																
		Gln 1	Val	Gln	Leu	Val 5	Glu	Ser	Gly	Gly	Gly 10	Leu	Val	Gln	Pro	Gly 15	Gly	
		Ser	Leu	Arg	Leu 20	Ser	Cys	Ala	Ala	Ser 25	Gly	Phe	Thr	Phe	Ser 30	Ser	Tyr	
		Gly	Ser	Trp 35	Val	Arg	Gln	Ala	Pro 40	Gly	Lys	Gly	Leu	Glu 45	Trp	Val	Ser	
		Val	Ile 50	Ser	Gly	Ser	Gly	Ser 55	Ser	Thr	Tyr	Tyr	Ala 60	Asp	Ser	Val	Lys	
		Gly 65	Arg	Phe	Thr	Ile	Ser 70	Arg	Asp	Asn	Ser	Lys 75	Asn	Thr	Leu	Tyr	Leu 80	
		Gln	Met	Asn	Ser	Leu 85	Arg	Ala	Glu	Asp	Thr 90	Ala	Val	Tyr	Tyr	Cys 95	Ala	
		Arg	Val	Asn	Ile 100	Ser	Thr	His	Phe	Asp 105	Val	Trp	Gly	Gln	Gly 110	Thr	Leu	
		Val	Thr	Val 115	Ser	Ser												
5	<210><211><211><212><213>	327 ADN	sapie	ns														
	<400>		·															
	gatat	cgaa	c tg	accc	agcc	gcc	ttca	gtg	agcg	ttgc	ac c	aggt	caga	c cg	cgcg	tatc		60
	tcgtg	tagc	g gc	gata	agat	tgg	ttct	aag	tatg	ttta	tt g	gtac	cagc	a ga	aacc	cggg		120
	caggo	gcca	g tt	cttg	tgat	tta	tgat	tct	aatc	gtcc	ct c	aggc	atcc	c gg	aacg	cttt		180
	agcgg	atcc	a ac	agcg	gcaa	cac	cgcg	acc	ctga	ccat	ta g	cggc	actc	a gg	cgga	agac		240
	gaago	ggat	t at	tatt	gcgc	ttc	ttat	gat	tcta	ttta	tt c	ttat	tggg	t gt	ttgg	cggc		300
	ggcac	gaag	t ta	accg	ttct	tgg	ccag											327
10	<210> <211> <212> <213> <400>	109 PRT Homo	sapie	ns														

	Asp 1	Ile	Glu	Leu	Thr 5	Gln	Pro	Pro	Ser	va1 10	Ser	Val	Ala	Pro	Gly 15	Gln	
	Thr	Ala	Arg	Ile 20	Ser	Cys	Ser	Gly	Asp 25	Lys	Ile	Gly	Ser	Lys 30	Tyr	Val	
	Tyr	Тгр	Tyr 35	Gln	Gln	Lys	Pro	Gly 40	Gln	Ala	Pro	Val	Leu 45	Val	Ile	Tyr	
	Asp	Ser 50	Asn	Arg	Pro	Ser	Gly 55	Ile	Pro	Glu	Arg	Phe 60	Ser	Gly	Ser	Asn	
	Ser 65	Gly	Asn	Thr	Ala	Thr 70	Leu	Thr	Ile	Ser	Gly 75	Thr	Gln	Ala	Glu	Asp 80	
1	Glu	Ala	Asp	Tyr	Tyr 85	Cys	Ala	Ser	Tyr	Asp 90	Ser	Ile	Tyr	Ser	Tyr 95	Trp	
,	Val	Phe	Gly	Gly 100	Gly	Thr	Lys	Leu	Thr 105	Val	Leu	Gly	Gln				
<210> 11 <211> 365 <212> ADN <213> Homo sapiens																	
<400> 1	1																
caggt	gcaa	t tg	gtgg	aaag	cgg	cggc	ggc	ctgg	tgca	ac c	gggc	ggca	g cc	tgcg	tctg		60
agctgo	gcg	g cc	tccg	gatt	tac	cttt	tct	cgtt	atgc	ta t	gtct	tggg	t gc	gcca	agcc		120
cctggg	gaag	g gt	ctcg	agtg	ggt	gagc	tct	atca	tttc	tt c	ttct	agcg	a ga	ccta	ttat		180
gcggat	agc	g tg	aaag	gccg	ttt	tacc	att	tcac	gtga	ta a	ttcg	aaaa	а са	ccct	gtat		240
ctgcaa	aatg	a ac	agcc	tgcg	tgc	ggaa	gat	acgg	ccgt	gt a	ttat	tgcg	c gc	gtct	tatg		300
ggttat	ggt	c at	tatt	atcc	ttt	tgat	tat	tggg	gcca	ag g	cacc	ctgg	t ga	cggt	tagc		360
tcagc																	365
<210> 1 <211> 1 <212> F <213> F	21 PRT	sapie	ns														
<400> 1	2																

	Gln 1	Val	Gln	Leu	Val 5	Glu	Ser	Gly	Gly	Gly 10	Leu	Val	Gln	Pro	Gly 15	Gly	
	Ser	Leu	Arg	Leu 20	Ser	Cys	Ala	Ala	Ser 25	Gly	Phe	Thr	Phe	Ser 30	Arg	Tyr	
	Ala	Met	Ser 35	Trp	val	Arg	Gln	Ala 40	Pro	Gly	Lys	Gly	Leu 45	Glu	Trp	Val	
	Ser	Ser 50	Ile	Ile	Ser	Ser	Ser 55	Ser	Glu	Thr	Tyr	Tyr 60	- Ala	Asp	Ser	Val	
	Lys 65	Gly	Arg	Phe	Thr	11e 70	Ser	Arg	Asp	Asn	Ser 75	Lys	Asn	Thr	Leu	Tyr 80	
	Leu	Gln	Met	Asn	Ser 85	Leu	Arg	Ala	Glu	Asp 90	Thr	Ala	Val	Tyr	Tyr 95	Cys	
	Ala	Arg	Leu	Met 100	Gly	Tyr	Gly	His	Tyr 105	Tyr	Pro	Phe	Asp	Tyr 110	Trp	Gly	
	Gln	Gly	Thr 115	Leu	Val	Thr	Val	Ser 120	Ser								
<210> 1 <211> 3 <212> / <213> H	324 ADN	sapie	ns														
<400> 1	13																
gatato	gaa	c tg	accc	agcc	gcc	ttca	gtg	agcg	ttgc	ac c	aggt	caga	c cg	cgcg	tatc		60
tcgtgt	tagc	g gc	gata	atct	tcg	taat	tat	tatg	ctca	tt g	gtac	cagc	a ga	aacc	cggg		120
caggcg	gcca	g tt	gttg	tgat	tta	ttat	gat	aata	atcg	tc c	ctca	ggca	t cc	cgga	acgc		180
tttago	gga	t cc	aaca	gcgg	caa	cacc	gcg	accc	tgac	ca t	tagc	ggca	c tc	aggc	ggaa		240
gacgaa	agcg	g at	tatt	attg	cca	gtct	tgg	gatg	atgg	tg t	tcct	gtgt	t tg	gcgg	cggc		300
acgaag	gtta	а сс	gttc	ttgg	cca	g											324
<210> 1 <211> 1 <212> F <213> F	108 PRT	sapie	ns														
<400> 1	14																

	Asp 1	Ile	Glu	Leu	Thr 5	Gln	Pro	Pro	Ser	Val 10	Ser	Val	Ala	Pro	Gly 15	Gln		
	Thr	Ala	Arg	Ile 20	Ser	Cys	Ser	Gly	Asp 25	Asn	Leu	Arg	Asn	Tyr 30	Tyr	Ala		
	His	Trp	Tyr 35	Gln	Gln	Lys	Pro	Gly 40	Gln	Ala	Pro	Val	Val 45	Val	Ile	Tyr		
	Tyr	Asp 50	Asn	Asn	Arg	Pro	Ser 55	Gly	Ile	Pro	Glu	Arg 60	Phe	Ser	Gly	Ser		
	Asn 65	Ser	Gly	Asn	Thr	Ala 70	Thr	Leu	Thr	Ile	Ser 75	Gly	Thr	Gln	Ala	Glu 80		
	Asp	Glu	Ala	Asp	Tyr	Tyr	Cys	Gln	Ser	Trp	Asp	Asp	Gly	Val	Pro	Val		
					8	5			90					95				
Phe Gly Gly Ghr Lys Leu Thr Val Leu Gly Gln 100 105																		
<210> 15 <211> 353 <212> ADN <213> Homo sapiens																		
<400>	15																	
caggt	gcaa	t tg	gtgg	aaag	cgg	cggc	ggc	ctgg	tgca	ac c	gggc	ggca	g cc	tgcg	ıtctg		60	
agctg	cgcg	g cc	tccg	gatt	tac	cttt	cgt	tctt	atgg	ta t	gtct	tggg	t gc	gcca	agcc		120	
cctgg	gaag	g gt	ctcg	agtg	ggt	gagc	tct	atcc	gtgg	tt c	ttct	agct	c ta	.ccta	ttat		180	

gcggatagcg tgaaaggccg ttttaccatt tcacgtgata attcgaaaaa caccctgtat

ctgcaaatga acagcctgcg tgcggaagat acggccgtgt attattgcgc gcgtaagtat

cgttattggt ttgattattg gggccaaggc accctggtga cggttagctc agc

240

300353

<210> 16

5

10

<211> 117

<212> PRT

<213> Homo sapiens

<400> 16

1		Val	Gln	Leu	Val 5	Glu	Ser	Gly	Gly	Gly 10	Leu	Val	Gln	Pro	Gly 15	Gly	
S	Ser	Leu	Arg	Leu 20	Ser	Cys	Ala	Ala	Ser 25	Gly	Phe	Thr	Phe	Arg 30	Ser	Tyr	
G	Зly	Met	Ser 35	Trp	Val	Arg	Gln	Ala 40	Pro	Gly	Lys	Gly	Leu 45	Glu	Trp	Val	
S	Ser	Ser 50	Ile	Arg	Gly	Ser	Ser 55	Ser	Ser	Thr	Tyr	Tyr 60	Ala	Asp	Ser	Val	
	_ys 55	Gly	Arg	Phe	Thr	11e 70	Ser	Arg	Asp	Asn	Ser 75	Lys	Asn	Thr	Leu	Tyr 80	
L	₋eu	Gln	Met	Asn	Ser 85	Leu	Arg	Ala	Glu	Asp 90	Thr	Ala	Val	Tyr	Tyr 95	Cys	
Д	Ala	Arg	Lys	Tyr 100	Arg	Tyr	Trp	Phe	Asp 105	Tyr	Trp	Gly	Gln	Gly 110	Thr	Leu	
٧	/al	Thr	Val 115	Ser	Ser												
<210> 17 <211> 32 <212> Al <213> He	27 .DN	sapie	ns														
<400> 17	7																
gatato	gaa	c tg	accc	agcc	gcc	ttca	gtg	agcg	ttgc	ac c	aggt	caga	.c cg	cgcg	tatc		60
tcgtgt	agc	g gc	gata	agct	tgg	taag	aag	tatg	ttca	tt g	gtac	cagc	a ga	.aacc	cggg		120
caggcg	cca	g tt	cttg	tgat	tta	tggt	gat	gata	agcg	tc c	ctca	ggca	t cc	cgga	acgc		180
tttagc	gga [.]	t cc	aaca	gcgg	caa	cacc	gcg	accc	tgac	ca t	tagc	ggca	c to	aggc	ggaa		240
gacgaa	gcg	g at	tatt	attg	cca	ggct	tgg	ggtt	ctat	tt c	tcgt	tttg	t gt	ttgg	cggc		300
ggcacg	aag [.]	t ta	accg	ttct	tgg	ccag											327
<210> 18 <211> 10 <212> Pl <213> He	09 RT	sapie	ns														
<400> 18	8																

	Asp 1	Ile	Glu	Leu	Thr 5	Gln	Pro	Pro	Ser	Val 10	Ser	Val	Ala	Pro	Gly 15	Gln	
	Thr	Ala	Arg	Ile 20	Ser	Cys	Ser	Gly	Asp 25	Lys	Leu	Gly	Lys	Lys 30	Tyr	Val	
	His	Trp	Tyr 35	Gln	Gln	Lys	Pro	Gly 40	Gln	Ala	Pro	Val	Leu 45	Val	Ile	Tyr	
	Gly	Asp 50	Asp	Lys	Arg	Pro	Ser 55	Gly	Ile	Pro	Glu	Arg 60	Phe	Ser	Gly	Ser	
	Asn 65	Ser	Gly	Asn	Thr	Ala 70	Thr	Leu	Thr	Ile	Ser 75	Gly	Thr	Gln	Ala	Glu 80	
	Asp	Glu	Ala	Asp	Tyr 85	Tyr	Cys	Gln	Ala	Trp 90	Gly	Ser	Ile	Ser	Arg 95	Phe	
	Val	Phe	Gly	Gly 100	Gly	Thr	Lys	Leu	Thr 105	Val	Leu	Gly	Gln				
<210> <211> <212> <213>	365 ADN	sapie	ns														
<400>	19																
caggt	gcaa	t tg	gtgg	aaag	cgg	cggc	ggc	ctgg	tgca	ac c	gggc	ggca	g cc	tgcg	tctg		60
agctg	cgcg	g cc	tccg	gatt	tac	cttt	act	tctt	attc	ta t	gaat	tggg	t gc	gcca	agcc		120
cctgg	gaag	g gt	ctcg	agtg	ggt	gagc	gct	atct	ctta	ta c	tggt	agca	a ta	ccca	ttat		180
gcgga	tagc	g tg	aaag	gccg	ttt	tacc	att	tcac	gtga	ta a	ttcg	aaaa	a ca	ccct	gtat		240
ctgca	aatg	a ac	agcc	tgcg	tgc	ggaa	gat	acgg	ccgt	gt a	ttat	tgcg	c gc	gtgc	tttt		300
cttgg	ttat	a ag	gagt	ctta	ttt	tgat	att	tggg	gcca	ag g	cacc	ctgg	t ga	cggt	tagc		360
											-	-					
tcagc																	365
<210> <211> <212> <213>	121 PRT	sapie	ns														

5

10

	GIN 1	Val	GIn	Leu	Val 5	Glu	Ser	Gly	Gly	G I y 10	Leu	Val	GIn	Pro	GIY 15	Gly	
	Ser	Leu	Arg	Leu 20	Ser	Cys	Ala	Ala	Ser 25	Gly	Phe	Thr	Phe	Thr 30	Ser	Tyr	
	Ser	Met	Asn 35	Trp	val	Arg	Gln	Ala 40	Pro	Gly	Lys	Gly	Leu 45	Glu	Trp	Val	
	Ser	Ala 50	Ile	Ser	Tyr	Thr	Gly 55	Ser	Asn	Thr	His	Tyr 60	Ala	Asp	Ser	Val	
	Lys 65	Gly	Arg	Phe	Thr	11e 70	Ser	Arg	Asp	Asn	Ser 75	Lys	Asn	Thr	Leu	Tyr 80	
	Leu	Gln	Met	Asn	Ser 85	Leu	Arg	Ala	Glu	Asp 90	Thr	Ala	Val	Tyr	Tyr 95	Cys	
	Ala	Arg	Ala	Phe 100	Leu	Gly	Tyr	Lys	Glu 105	Ser	Tyr	Phe	Asp	Ile 110	Trp	Gly	
	Gln	Gly	Thr 115	Leu	Val	Thr	Val	Ser 120	Ser								
<210> <211> <212> <213>	330 ADN	sapie	ns														
<400>	21																
gatat	cgaa	c tg	accc	agcc	gcc	ttca	gtg	agcg	ttgc	ac c	aggt	caga	c cg	cgcg	tatc		60
tcgtg	tagc	g gc	gata	atct	tgg	taat	aag	tatg	ctca	tt g	gtac	cagc	a ga	.aacc	cggg		120
caggc	gcca	g tt	cttg	tgat	tta	ttat	gat	aata	agcg	tc c	ctca	.ggca	t cc	cgga	acgo		180
tttag	cgga	t cc	aaca	gcgg	caa	cacc	gcg	accc	tgac	ca t	tago	ggca	c to	aggo	ggaa		240

<210> 22

5

10

<211> 110

<212> PRT

<213> Homo sapiens

ggcggcacga ggttaaccgt tcttggccag

<400> 22

gacgaagcgg attattattg ccagtcttgg actcctggtt ctaatactat ggtgtttggc

	Asp 1	Ile	Glu	Leu	Thr 5	Gln	Pro	Pro	Ser	Val 10	Ser	Val	Ala	Pro	Gly 15	Gln	
	Thr	Ala	Arg	Ile 20	Ser	Cys	Ser	Gly	Asp 25	Asn	Leu	Gly	Asn	Lys 30	Tyr	Ala	
	His	Trp	Tyr 35	Gln	Gln	Lys	Pro	Gly 40	Gln	Ala	Pro	Val	Leu 45	Val	Ile	Tyr	
	Tyr	Asp 50	Asn	Lys	Arg	Pro	Ser 55	Gly	Ile	Pro	Glu	Arg 60	Phe	Ser	Gly	Ser	
	Asn 65	Ser	Gly	Asn	Thr	Ala 70	Thr	Leu	Thr	Ile	Ser 75	Gly	Thr	Gln	Ala	Glu 80	
	Asp	Glu	Ala	Asp	Tyr 85	Tyr	Cys	Gln	Ser	Trp 90	Thr	Pro	Gly	Ser	Asn 95	Thr	
	Met	Val	Phe	Gly 100	Gly	Gly	Thr	Arg	Leu 105	Thr	Val	Leu	Gly	Gln 110			
<210><211><211><212><213>	350 ADN	sapie	ens														
<400>	23																
caggt	gcaa	t tg	ıgtgg	aaag	cgg	ıcggc	ggc	ctgg	tgca	ac c	gggc	ggca	ıg cc	tgcg	ıtctg	I	60
agctg	ıcgcg	g cc	tccg	gatt	tac	cttt	tct	tctt	atto	ta t	gtct	tggg	ıt go	gcca	agcc	:	120
tctgg	gaag	g gt	ctcg	agtg	ggt	gagc	tct	atca	.aggg	itt c	tggt	agca	a ta	ıccta	ittat	:	180
gcgga	tago	g tg	jaaag	gccg	ttt	tacc	att	tcac	gtga	ıta a	ittcg	jaaaa	ıa ca	ccct	gtat		240
ctgca	aatg	a ac	agco	tgcg	tgc	ggaa	gat	acgg	ccgt	gt a	ittat	tgcg	jc gc	gtaa	tggt	:	300
ggtct	tatt	g at	gttt	gggg	сса	aggc	acc	ctgg	tgac	gg t	tago	tcag	JC				350
<210> <211> <212>	116																

<400> 24

<213> Homo sapiens

5

G 1		Val	Gln	Leu	Val 5	Glu	Ser	Gly	Gly	Gly 10	Leu	Val	Gln	Pro	Gly 15	Gly	
S	Ser	Leu	Arg	Leu 20	Ser	Cys	Ala	Ala	Ser 25	Gly	Phe	Thr	Phe	Ser 30	Ser	Tyr	
S	Ser	Met	Ser 35	Trp	Val	Arg	Gln	Ala 40	Ser	Gly	Lys	Gly	Leu 45	Glu	Trp	Val	
S	Ser	Ser	Ile	Lys	Gly	Ser	Gly	Ser	Asn	Thr	Tyr	Tyr	Ala	Asp	Ser	Val	
		50					55					60	-				
	_ys 55	Gly	Arg	Phe	Thr	11e 70	Ser	Arg	Asp	Asn	Ser 75	Lys	Asn	Thr	Leu	Tyr 80	
L	_eu	Gln	Met	Asn	Ser 85	Leu	Arg	Ala	Glu	Asp 90	Thr	Ala	Val	Tyr	Tyr 95	Cys	
Д	Ala	Arg	Asn	Gly 100	Gly	Leu	Ile	Asp	Val 105	Trp	Gly	Gln	Gly	Thr 110	Leu	Val	
Т	Γhr	Val	Ser 115	Ser													
<210> 25 <211> 33 <212> AI <213> Ho	30 DN	sapie	ns														
<400> 25	5																
gatatc	gtg	c tg	accc	agag	ccc	ggcg	acc	ctga	gcct	gt c	tccg	ggcg	a ac	gtgc	gacc		60
ctgagct	tgca	a ga	gcga	gcca	gaa	tatt	ggt	tcta	atta	tc t	ggct	tggt	a cc	agca	gaaa		120
ccaggto	caa	g ca	ccgc	gtct	att	aatt	tat	ggtg	cttc	ta c	tcgt	gcaa	c tg	gggt	cccg		180
gcgcgtt	ttta	a ac	ggct	ctgg	atc	cggc	acg	gatt	ttac	cc t	gacc	atta	g ca	gcct	ggaa		240
cctgaag	gact	t tt	gcgg	ttta	tta	ttgc	cag	cagc	ttaa	tt c	tatt	cctg	t ta	cctt	tggc		300
cagggta	acga	a aa	gttg	aaat	taa	acgt	acg										330
<210> 26 <211> 11 <212> PI <213> Ho	10 RT	sapie	ns														

5

10

	Asp 1	Ile	Val	Leu	Thr 5	Gln	Ser	Pro	Ala	Thr 10	Leu	Ser	Leu	Ser	Pro 15	Gly	
	Glu	Arg	Ala	Thr 20	Leu	Ser	Cys	Arg	Ala 25	Ser	Gln	Asn	Ile	Gly 30	Ser	Asn	
	Tyr	Leu	Ala 35	Trp	Tyr	Gln	Gln	Lys 40	Pro	Gly	Gln	Ala	Pro 45	Arg	Leu	Leu	
	Ile	Tyr 50	Gly	Ala	Ser	Thr	Arg 55	Ala	Thr	Gly	Val	Pro 60	Ala	Arg	Phe	Asn	
	Gly 65	Ser	Gly	Ser	Gly	Thr 70	Asp	Phe	Thr	Leu	Thr 75	Ile	Ser	Ser	Leu	Glu 80	
	Pro	Glu	Asp	Phe	Ala 85	Val	Tyr	Tyr	Cys	G1n 90	Gln	Leu	Asn	Ser	11e 95	Pro	
		Val	Thr	Phe	Gly 100	Gln	Gly	Thr	Lys	Val 105	Glu	Ile	Lys	- Arg	Thr 110		
<210> <211> <212> <213>	374 ADN	sapie	ns														
<400>		•															
caggt	gcaa	t tg	caac	agtc	tgg	tccg	ggc	ctgg	tgaa	ac c	gagc	caaa	с сс	tgag	cctg		60
acctg	tgcg	a tt	tccg	gaga	tag	cgtg	agc	tcta	attc	tg c	tgct	tggg	g tt	ggat	tcgc		120
cagtc	tcct	g gg	cgtg	gcct	cga	gtgg	ctg	ggca	tgat	ct a	ttat	cgta	g ca	agtg	gtat		180
aactc	ttat	g cg	gtga	gcgt	gaa	aagc	cgg	atta	ccat	ca a	cccg	gata	c tt	cgaa	aaac		240
cagtt	tagc	c tg	caac	tgaa	cag	cgtg	acc	ccgg	aaga	ta c	ggcc	gtgt	a tt	attg	cgcg		300
cgtac	tatg	t ct	aagt	atgg	tgg	tcct	ggt	atgg	atgt	tt g	gggc	caag	g ca	ccct	ggtg		360
acggt	tagc	t ca	gc														374
<210> <211> <212> <213>	124 PRT	sapie	ns														

5

10

_	31n 1	Val	Gln	Leu	Gln 5	Gln	Ser	Gly	Pro	Gly 10	Leu	Val	Lys	Pro	Ser 15	Gln	
Т	Γhr	Leu	Ser	Leu 20	Thr	Cys	Ala	Ile	Ser 25	Gly	Asp	Ser	Val	Ser 30	Ser	Asn	
S	Ser	Ala	Ala 35	Trp	Gly	Trp	Ile	Arg 40	Gln	Ser	Pro	Gly	Arg 45	Gly	Leu	Glu	
Т	Ггр	Leu 50	Gly	Met	Ile	Tyr	Tyr 55	Arg	Ser	Lys	Trp	Tyr 60	Asn	Ser	Tyr	Ala	
	/al 65	Ser	Val	Lys	Ser	Arg 70	Ile	Thr	Ile	Asn	Pro 75	Asp	Thr	Ser	Lys	Asn 80	
(Gln	Phe	Ser	Leu	G]n 85	Leu	Asn	Ser	Val	Thr 90	Pro	Glu	Asp	Thr	Ala 95	Val	
1	Гуr	Tyr	Cys	Ala 100	Arg	Thr	Met	Ser	Lys 105	Tyr	Gly	Gly	Pro	Gly 110	Met	Asp	
\	/al	Trp	Gly 115	Gln	Gly	Thr	Leu	Val 120	Thr	Val	Ser	Ser					
<210> 29 <211> 33 <212> A <213> H	30 .DN	sanie	ns														
<400> 29																	
gatatc	gaa	c tg	accc	agcc	gcc	ttca	gtg	agcg	ttgc	ac c	aggt	caga	c cg	cgcg	tatc		60
tcgtgt	agc	g gc	gatg	ctct	tgg	tact	tat	tatg	ctta	tt g	gtac	cagc	a ga	aacc	cggg		120
caggcg	cca	g tt	cttg	tgat	tta	tggt	gat	atga	atcg	tc c	ctca	ggca	t cc	cgga	acgc		180
tttagc	gga [.]	t cc	aaca	gcgg	caa	cacc	gcg	accc	tgac	ca t	tagc	ggca	c tc	aggc	ggaa		240
gacgaa	gcg	g at	tatt	attg	cca	gtct	tat	gatg	ctgg	tg t	taag	cctg	c tg	tgtt	tggc		300
ggcggc	acga	a ag	ttaa	ccgt	tct	tggc	cag										330
<210> 30 <211> 1 <212> P <213> H	10 RT	sapie	ns														
<400> 30	0																

	Asp 1	Ile	Glu	Leu	Thr 5	Gln	Pro	Pro	Ser	va1 10	Ser	Val	Ala	Pro	Gly 15	Gln	
	Thr	Ala	Arg	Ile 20	Ser	Cys	Ser	Gly	Asp 25	Ala	Leu	Gly	Thr	Tyr 30	Tyr	Ala	
	Tyr	Trp	Tyr 35	Gln	Gln	Lys	Pro	Gly 40	Gln	Ala	Pro	Val	Leu 45	Val	Ile	Tyr	
	Gly	Asp 50	Met	Asn	Arg	Pro	Ser 55	Gly	Ile	Pro	Glu	Arg 60	Phe	Ser	Gly	Ser	
	Asn 65	Ser	Gly	Asn	Thr	Ala 70	Thr	Leu	Thr	Ile	Ser 75	Gly	Thr	Gln	Ala	Glu 80	
	Asp	Glu	Ala	Asp	Tyr 85	Tyr	Cys	Gln	Ser	Tyr 90	Asp	Ala	Gly	Val	Lys 95	Pro	
	Ala	Val	Phe	Gly 100	Gly	Gly	Thr	Lys	Leu 105	Thr	Val	Leu	Gly	Gln 110			
<210><211><211><212><213>	355 ADN	sapie	ns														
<400>	31																
caggt	gcaa	t tg	gtgg	aaag	cgg	cggc	ggc	ctgg	tgca	cc g	ggcg	gcag	c ct	gcgt	ctga		60
gctgc	gcgg	c ct	ccgg	attt	acc	tttt	cta	atta	ttct	at g	actt	gggt	g cg	ccaa	gccc		120
ctggg	aagg	g tc	tcga	gtgg	gtg	agcg	gta	tctc	ttat	aa t	ggta	gcaa	t ac	ctat	tatg		180
cggat	agcg	t ga	aagg	ccgt	ttt	acca	ttt	cacg	tgat	aa t	tcga	aaaa	с ас	cctg	tatc		240
tgcaa	atga	a ca	gcct	gcgt	gcg	gaag	ata	cggc	cgtg	ta t	tatt	gcgc	g cg	tatt	tatt		300
atatg	aatc	t tc	ttgc	tggt	tgg	ggcc	aag	gcac	cctg	gt g	acgg	ttag	c tc	agc			355
<210> <211> <212> <213>	118 PRT	sapie	ns														
<400>	32																

Gln 1	Val	Gln	Leu	val 5	Glu	Ser	Gly	Gly	Gly 10	Leu	val	Gln	Pro	Gly 15	Gly
Ser	Leu	Arg	Leu 20	Ser	Cys	Ala	Ala	Ser 25	Gly	Phe	Thr	Phe	Ser 30	Asn	Tyr
Ser	Met	Thr 35	Trp	Val	Arg	Gln	Ala 40	Pro	Gly	Lys	Gly	Leu 45	Glu	Trp	۷al
Ser	G]y 50	Ile	Ser	Tyr	Asn	G]y 55	Ser	Asn	Thr	Tyr	Tyr 60	Ala	Asp	Ser	۷al
Lys 65	Gly	Arg	Phe	Thr	11e 70	Ser	Arg	Asp	Asn	Ser 75	Lys	Asn	⊤hr	Leu	Tyr 80
Leu	Gln	Met	Asn	Ser 85	Leu	Arg	Ala	Glu	Asp 90	Thr	Ala	val	Tyr	Tyr 95	Cys
Ala	Arg	Ile	Tyr 100	Tyr	Met	Asn	Leu	Leu 105	Ala	Gly	Trp	Gly	Gln 110	Gly	Thr
Leu	Val	Thr 115	Val	Ser	Ser										

<210> 33

<211> 327

<212> ADN

<213> Homo sapiens

<400> 33

5

10

gatatcgaac tgacccagcc gccttcagtg agcgttgcac caggtcagac cgcgcgtatc 60 tcgtgtagcg gcgataatct tcgtggttat tatgcttctt ggtaccagca gaaacccggg 120 caggcgcag ttcttgtgat ttatgaggat aataatcgtc cctcaggcat cccggaacgc 180 tttagcggat ccaacagcgg caacaccgcg accctgacca ttagcggcac tcaggcggaa 240 gacgaagcgg attattattg ccagtcttgg gattctcctt atgttcatgt gtttggcggc 300 ggcacgaagt taaccgttct tggccag 327

<210> 34

<211> 109

<212> PRT

<213> Homo sapiens

<400> 34

Asp Ile Glu Leu Thr Gln Pro Pro Ser Val Ser Val Ala Pro Gly Gln

	1				5					10			-		15		
	Thr	Ala	Arg	Ile 20	Ser	Cys	Ser	Gly	Asp 25	Asn	Leu	Arg	Gly	Tyr 30	Tyr	Ala	
	Ser	Trp	Tyr 35	Gln	Gln	Lys	Pro	Gly 40	Gln	Ala	Pro	Val	Leu 45	Val	Ile	Tyr	
	Glu	Asp 50	Asn	Asn	Arg	Pro	Ser 55	Gly	Ile	Pro	Glu	Arg 60	Phe	Ser	Gly	Ser	
	Asn 65	Ser	Gly	Asn	Thr	Ala 70	Thr	Leu	Thr	Ile	Ser 75	Gly	Thr	Gln	Ala	Glu 80	
	Asp	Glu	Ala	Asp	Tyr 85	Tyr	Cys	Gln	Ser	Trp 90	Asp	Ser	Pro	Tyr	va1 95	His	
	Val	Phe	Gly	Gly 100	Gly	Thr	Lys	Leu	Thr 105	Val	Leu	Gly	Gln				
<210> <211> <212> <213>	353 ADN	sapie	ens														
<400>																	
caggt	gcaa	t tg	gttc	agag	cgg	cgcg	gaa	gtga	aaaa	ac c	gggc	gcga	g cg	tgaa	agtg		60
agctg	caaa	g cc	tccg	gata	tac	cttt	act	ggta	attc	ta t	gcat	tggg	t cc	gcca	agcc		120
cctgg	gcag	g gt	ctcg	agtg	gat	gggc	act	atct	ttcc	gt a	tgat	ggca	c ta	cgaa	gtac		180
gcgca	gaag	t tt	cagg	gccg	ggt	gacc	atg	accc	gtga	ta c	cagc	atta	g ca	ccgc	gtat		240
atgga	actg	a gc	agcc	tgcg	tag	cgaa	gat	acgg	ccgt	gt a	ttat	tgcg	c gc	gtgg	tgtt		300
cattc	ttat	t tt	gatt	attg	ggg	ccaa	ggc	accc	tggt	ga c	ggtt	agct	c ag	С			353
<210><211><211><212><213>	117 PRT	sapie	ns														
<400>	36																

Gln 1	Val	Gln	Leu	Val 5	Gln	Ser	Gly	Ala	Glu 10	Val	Lys	Lys	Pro	Gly 15	Ala	
Ser	Val	Lys	va1 20	Ser	Cys	Lys	Ala	Ser 25	Gly	Tyr	Thr	Phe	Thr 30	Gly	Asn	
Ser	Met	His 35	Trp	Val	Arg	Gln	Ala 40	Pro	Gly	Gln	Gly	Leu 45	Glu	Trp	Met	
Gly	Thr 50	Ile	Phe	Pro	Tyr	Asp 55	Gly	Thr	Thr	Lys	Tyr 60	Ala	Gln	Lys	Phe	
Gln 65	Gly	Arg	Val	Thr	Met 70	Thr	Arg	Asp	Thr	Ser 75	Ile	Ser	Thr	Ala	Tyr 80	
Met	Glu	Leu	Ser	Ser 85	Leu	Arg	Ser	Glu	Asp 90	Thr	Ala	Val	Tyr	Tyr 95	Cys	
Ala	Arg	Gly	Val 100	His	Ser	Tyr	Phe	Asp 105	Tyr	Trp	Gly	Gln	Gly 110	Thr	Leu	
Val	Thr	Val 115	Ser	Ser												
<210> 37 <211> 327 <212> ADN <213> Homo	o sapie	ens														
<400> 37																
gatatccag	ja tg	jacco	agag	ссс	gtct	agc	ctga	gcgc	ga g	cgtg	ggtg	a to	gtgt	gacc		60
attacctgo	a ga	ıgcga	.gcca	gtc	tatt	cgt	tctt	atct	gg c	ttgg	tacc	a gc	agaa	.acca		120
ggtaaagca	ıc cg	jaaac	tatt	aat	ttat	aag	gctt	ctaa	tt t	gcaa	agcg	g gg	tccc	gtcc		180
cgttttag	g gc	tctg	gato	cgg	cact	gat	ttta	ccct	ga c	catt	agca	g cc	tgca	.acct		240
gaagactti	g cg	gttt	atta	ttg	ccat	cag	tatt	ctga	tt c	tcct	gtta	c ct	ttgg	ccag		300
ggtacgaaa	ıg tt	gaaa	ttaa	acg	tacg											327
<210> 38 <211> 109 <212> PRT <213> Homo	sapie	ens														
<400> 38																

	Asp 1	Ile	Gln	Met	Thr 5	Gln	Ser	Pro	Ser	Ser 10	Leu	Ser	Ala	Ser	val 15	Gly	
	Asp	Arg	Val	Thr 20	Ile	Thr	Cys	Arg	Ala 25	Ser	Gln	Ser	Ile	Arg 30	Ser	Tyr	
	Leu	Ala	Trp 35	Tyr	Gln	Gln	Lys	Pro 40	Gly	Lys	Ala	Pro	Lys 45	Leu	Leu	Ile	
	Tyr	Lys 50	Ala	Ser	Asn	Leu	Gln 55	Ser	Gly	Val	Pro	Ser 60	Arg	Phe	Ser	Gly	
	Ser 65	Gly	Ser	Gly	Thr	Asp 70	Phe	Thr	Leu	Thr	Ile 75	Ser	Ser	Leu	Gln	Pro 80	
	Glu	Asp	Phe	Ala	val 85	Tyr	Tyr	Cys	His	G1n 90	Tyr	Ser	Asp	Ser	Pro 95	Val	
	Thr	Phe	Gly	Gln	Gly	Thr	Lys	Val	Glu	Ile	Lys	Arg	Thr				
						100					105	=					
<210><211><211><212><213>	365 ADN	sapie	ns														
<400>	39																
caggt	gcaa	t tg	caac	agtc	tgg	tccg	ggc	ctgg	tgaa	ac c	gagc	caaa	с сс	tgag	cctg		60
acctg	tgcg	a tt	tccg	gaga	tag	cgtg	agc	tcta	attc	tg c	tgct	tggg	g tt	ggat	tcgc		120
cagtc	tcct	g gg	cgtg	gcct	cga	gtgg	ctg	ggca	tgat	ct a	tcat	cgta	g ca	agtg	gtat		180
aacga	ttat	g cg	gtga	gcgt	gaa	aagc	cgg	atta	ccat	ca a	.cccg	gata	c tt	cgaa	aaac		240
cagtt	tagc	c tg	caac	tgaa	cag	cgtg	acc	ccgg	aaga	ta c	ggcc	gtgt	a tt	attg	cgcg		300
cgtta	ttct	t ct	attg	gtca	tat	ggat	tat	tggg	gcca	ag g	cacc	ctgg	t ga	cggt	tagc		360
tcagc																	365
<210><211><211><212><213>	121 PRT	sapie	ns														

5

10

	Gln 1	Val	Gln	Leu	Gln 5	Gln	Ser	Gly	Pro	Gly 10	Leu	Val	Lys	Pro	Ser 15	Gln	
	Thr	Leu	Ser	Leu 20	Thr	Cys	Ala	Ile	Ser 25	Gly	Asp	Ser	Val	Ser 30	Ser	Asn	
	Ser	Ala	Ala 35	Trp	Gly	Trp	Ile	Arg 40	Gln	Ser	Pro	Gly	Arg 45	Gly	Leu	Glu	
	Trp	Leu 50	Gly	Met	Ile	Tyr	His 55	Arg	Ser	Lys	Trp	Tyr 60	Asn	Asp	Tyr	Ala	
	val 65	Ser	Val	Lys	Ser	Arg 70	Ile	Thr	Ile	Asn	Pro 75	Asp	Thr	Ser	Lys	Asn 80	
	Gln	Phe	Ser	Leu	Gln 85	Leu	Asn	Ser	Val	Thr 90	Pro	Glu	Asp	Thr	Ala 95	Val	
	Tyr	Tyr	Cys	Ala 100	Arg	Tyr	Ser	Ser	Ile 105	Gly	His	Met	Asp	Tyr 110	Trp	Gly	
	Gln	Gly	Thr 115	Leu	Val	Thr	Val	Ser 120	Ser								
<210><211><211><212><213>	330 ADN	sapie	ns														
<400>	41																
gatat	cgaa	c tg	accc	agcc	gcc	ttca	.gtg	agcg	ttgc	ac c	aggt	caga	.c cg	cgcg	tato		60
tcgtg	tagc	g gc	gatt	ctat	tgg	ttct	tat	tatg	ctca	tt g	gtac	cago	a ga	.aacc	cggg		120
caggo	gcca	g tt	cttg	tgat	tta	ttat	gat	tcta	agcg	tc c	ctca	.ggca	t cc	cgga	.acgc		180
tttag	cgga	t cc	aaca	gcgg	caa	cacc	gcg	accc	tgac	ca t	tago	ggca	c to	aggc	ggaa		240
gacga	.agcg	g at	tatt	attg	сса	ggct	tat	actg	gtca	gt c	tatt	tctc	g tg	tgtt	tggc		300
ggcgg	cacg	a ag	ttaa	ccgt	tct	tggc	cag										330
<210> <211> <212> <213>	110 PRT	sapie	ns														
<400>	42																

	Asp 1	TIE	GIU	Leu	Inr 5	GIN	Pro	Pro	Ser	va i 10	Ser	vai	Ala	Pro	15	GIN	
	Thr	Ala	Arg	11e 20	Ser	Cys	Ser	Gly	Asp 25	Ser	Ile	Gly	Ser	Tyr 30	Tyr	Ala	
	His	Trp	Tyr 35	Gln	Gln	Lys	Pro	Gly 40	Gln	Ala	Pro	Val	Leu 45	Val	Ile	Tyr	
	Tyr	Asp 50	Ser	Lys	Arg	Pro	Ser 55	Gly	Ile	Pro	Glu	Arg 60	Phe	Ser	Gly	Ser	
	Asn 65	Ser	Gly	Asn	Thr	Ala 70	Thr	Leu	Thr	Ile	Ser 75	Gly	Thr	Gln	Ala	Glu 80	
	Asp	Glu	Ala	Asp	Tyr 85	Tyr	Cys	Gln	Ala	Tyr 90	Thr	Gly	Gln	Ser	Ile 95	Ser	
	Arg	Val	Phe	Gly 100	Gly	Gly	Thr	Lys	Leu 105	Thr	Val	Leu	Gly	Gln 110			
<210> <211> <212> <213>	353 ADN	sapie	ns														
<400>	43																
caggt	gcaa	t tg	gtgg	aaag	cgg	cggc	ggc	ctgg	tgca	ac c	gggc	ggca	g cc	tgcg	ıtctg		60
agctg	cgcg	g cc	tccg	gatt	tac	cttt	tct	cctt	atgt	ta t	gtct	tggg	ıt gc	gcca	agcc		120
cctgg	gaag	g gt	ctcg	agtg	ggt	gagc	tct	atct	cttc	tt c	ttct	agca	a ta	ccta	ttat		180
gcgga	tagc	g tg	aaag	gccg	ttt	tacc	att	tcac	gtga	ta a	ittcg	aaaa	a ca	ccct	gtat		240

ctgcaaatga acagcctgcg tgcggaagat acggccgtgt attattgcgc gcgtggtgat

tcttatatgt atgatgtttg gggccaaggc accctggtga cggttagctc agc

300

353

<210> 44

5

10

<211> 117 <212> PRT

<213> Homo sapiens

Gli 1	ı Val	Gln	Leu	Val 5	Glu	Ser	Gly	Gly	Gly 10	Leu	Val	Gln	Pro	Gly 15	Gly	
Se	r Leu	Arg	Leu 20	Ser	Cys	Ala	Ala	Ser 25	Gly	Phe	Thr	Phe	Ser 30	Pro	Tyr	
Va	l Met	Ser 35	Trp	Val	Arg	Gln	Ala 40	Pro	Gly	Lys	Gly	Leu 45	Glu	Trp	Val	
Se	r Ser 50	Ile	Ser	Ser	Ser	Ser 55	Ser	Asn	Thr	Tyr	Tyr 60	Ala	Asp	Ser	Val	
Ly: 65	s Gly	Arg	Phe	Thr	Ile 70	Ser	Arg	Asp	Asn	Ser 75	Lys	Asn	Thr	Leu	Tyr 80	
Le	u Gln	Met	Asn	Ser 85	Leu	Arg	Ala	Glu	Asp 90	Thr	Ala	Val	Tyr	Tyr 95	Cys	
Ala	a Arg	Gly	Asp 100	Ser	Tyr	Met	Tyr	Asp 105	Val	Trp	Gly	Gln	Gly 110	Thr	Leu	
Va	l Thr	Val 115	Ser	Ser												
<210> 45 <211> 327 <212> ADN <213> Hon		ens														
<400> 45																
gatatcca	iga t	gacco	agag	ccc	gtct	agc	ctga	gcgc	ga g	cgtg	ggtg	a to	gtgt	gacc		60
attacctg	ıca g	agcga	ıgcca	gga	tatt	cgt	aata	atct	gg c	ttgg	tacc	a gc	agaa	acca		120
ggtaaagc	ac c	gaaac	tatt	aat	ttat	gct	gctt	cttc	tt t	gcaa	.agcg	g gg	tccc	gtcc		180
cgttttag	ıcg g	ctctg	gato	cgg	ıcact	gat	ttta	.ccct	ga c	catt	agca	g cc	tgca	acct		240
gaagactt	tg c	ggttt	atta	ttg	ıccag	cag	cgta	atgg	tt t	tcct	ctta	.c ct	ttgg	ıccag		300
ggtacgaa	ag t	tgaaa	ıttaa	acg	jtacg	l										327
<210> 46 <211> 109 <212> PRT <213> Hon		ens														
<400> 46																
As	o Ile	Gln	Met	Thr 5	Gln	Ser	Pro	Ser	Ser 10	Leu	Ser	Ala	Ser	val 15	Gly	

	Asp	Arg	Val	Thr 20	Ile	Thr	Cys	Arg	Ala 25	Ser	Gln	Asp	Ile	Arg 30	Asn	Asn	
	Leu	Ala	Trp 35	Tyr	Gln	Gln	Lys	Pro 40	Gly	Lys	Ala	Pro	Lys 45	Leu	Leu	Ile	
	Tyr	Ala 50	Ala	Ser	Ser	Leu	G]n 55	Ser	Gly	Val	Pro	Ser 60	Arg	Phe	Ser	Gly	
	Ser 65	Gly	Ser	Gly	Thr	Asp 70	Phe	Thr	Leu	Thr	Ile 75	Ser	Ser	Leu	Gln	Pro 80	
	Glu	Asp	Phe	Ala	Va1 85	Tyr	Tyr	Cys	Gln	G]n 90	Arg	Asn	Gly	Phe	Pro 95	Leu	
	Thr	Phe	Gly	Gln 100	Gly	Thr	Lys	Val	Glu 105	Ile	Lys	Arg	Thr				
<210><211><212><212><213>	365 ADN	sapie	ens														
<400>	47																
caggt	gcaa	t tg	caac	agtc	tgg	tccg	ggc	ctgg	tgaa	ac c	gagc	caaa	с сс	tgag	cctg		60
acctg	itgcg	a tt	tccg	gaga	tag	cgtg	agc	tcta	atto	tg c	tgct	tggg	g tt	ggat	tcgc		120
cagto	tcct	g gg	cgtg	gcct	cga	gtgg	ctg	ggca	ttat	ct a	ttat	cgta	g ca	agtg	gtat		180
aacca	ttat	g cg	gtga	gcgt	gaa	aagc	cgg	atta	ccat	ca a	.cccg	gata	c tt	cgaa	.aaac		240
cagtt	tagc	c tg	caac	tgaa	cag	cgtg	acc	ccgg	aaga	ta c	ggcc	gtgt	a tt	attg	cgcg		300
cgttc	taat	t gg	tctg	gtta	ttt	tgat	tat	tggg	gcca	ag g	cacc	ctgg	t ga	cggt	tagc		360
tcago																	365
<210><211><211><212><213>	121 PRT	sapie	ens														

5

10

G 1		Val	Gln	Leu	Gln 5	Gln	Ser	Gly	Pro	Gly 10	Leu	Val	Lys	Pro	Ser 15	Gln	
Т	Γhr	Leu	Ser	Leu 20	Thr	Cys	Ala	Ile	Ser 25	Gly	Asp	Ser	Val	Ser 30	Ser	Asn	
S	Ser	Ala	Ala 35	Trp	Gly	Trp	Ile	Arg 40	Gln	Ser	Pro	Gly	Arg 45	Gly	Leu	Glu	
Т	Ггр	Leu 50	Gly	Ile	Ile	Tyr	Tyr 55	Arg	Ser	Lys	Trp	Tyr 60	Asn	His	Tyr	Ala	
	/al 65	Ser	Val	Lys	Ser	Arg 70	Ile	Thr	Ile	Asn	Pro 75	Asp	- Thr	Ser	Lys	Asn 80	
G	Gln	Phe	Ser	Leu	G]n 85	Leu	Asn	Ser	Val	Thr 90	Pro	Glu	Asp	Thr	Ala 95	Val	
Т	Гуr	Tyr	Cys	Ala 100	Arg	Ser	Asn	Trp	Ser 105	Gly	Tyr	Phe	Asp	Tyr 110	Trp	Gly	
G	Gln	Gly	Thr 115	Leu	Val	Thr	Val	Ser 120	Ser								
<210> 49 <211> 34 <212> Al <213> He	42 .DN	sapie	ns														
<400> 49	9																
gatato	gtg	a tg	accc	agag	ссс	actg	agc	ctgc	cagt	ga c	tccg	ggcg	a gc	ctgc	gagc		60
attagc	tgc	a ga	agca	gcca	aag	cctg	ctt	catt	ctaa	tg g	ctat	actt	a to	tgtc	ttgg		120
tacctt	caa	a aa	ccag	gtca	aag	cccg	cag	ctat	taat	tt a	tctt	ggtt	c ta	.atcg	tgcc		180
agtggg	gtc	c cg	gatc	gttt	tag	cggc	tct	ggat	ccgg	ca c	cgat	ttta	.c cc	tgaa	aatt		240
agccgt	gtg	g aa	gctg	aaga	cgt	gggc	gtg	tatt	attg	сс а	.gcag	tatg	a ta	.atgc	tcct		300
attacc	ttt	g gc	cagg	gtac	gaa	agtt	gaa	atta	aacg	ta c	g						342
<210> 50 <211> 11 <212> Pl <213> He	14 RT	sapie	ns														
<400> 50	0																

Asp 1	Ile	Val	Met	Thr 5	Gln	Ser	Pro	Leu	Ser 10	Leu	Pro	Val	Thr	Pro 15	Gly
Glu	Pro	Ala	Ser 20	Ile	Ser	Cys	Arg	Ser 25	Ser	Gln	Ser	Leu	Leu 30	His	Ser
Asn	Gly	Tyr 35	Thr	Tyr	Leu	Ser	Trp 40	Tyr	Leu	Gln	Lys	Pro 45	Gly	Gln	Ser
Pro	G1n 50	Leu	Leu	Ile	Tyr	Leu 55	Gly	Ser	Asn	Arg	Ala 60	Ser	Gly	Val	Pro
Asp 65	Arg	Phe	Ser	Gly	Ser 70	Gly	Ser	Gly	Thr	Asp 75	Phe	Thr	Leu	Lys	Ile 80
Ser	Arg	Val	Glu	Ala 85	Glu	Asp	Val	Gly	va1 90	Tyr	Tyr	Cys	Gln	G1n 95	Tyr
Asp	Asn	Ala	Pro	Ile	Thr	Phe	Gly	Gln	Gly	Thr	Lys	Val	Glu	Ile	Lys
				100					105	-			-	110	

Arg Thr

<210> 51

<211> 371

<212> ADN

<213> Homo sapiens

<400> 51

5

10

caggtgcaat tgcaacagtc tggtccgggc ctggtgaaac cgagccaaac cctgagcctg 60
acctgtgcga tttccggaga tagcgtgagc tctaattctg ctgcttgggg ttggattcgc 120
cagtctcctg ggcgtggcct cgagtggctg ggccttatct attatcgtag caagtggtat 180
aacgattatg cggtgagcgt gaaaagccgg attaccatca acccggatac ttcgaaaaac 240
cagtttagcc tgcaactgaa cagcgtgacc ccggaagata cggccgtgta ttattgcgcg 300
cgttttggtg atactaatcg taatggtact gatgtttggg gccaaggcac cctggtgacg 360
gttagctcag c 371

<210> 52

<211> 123

<212> PRT

<213> Homo sapiens

	Gln 1	Val	Gln	Leu	Gln 5	Gln	Ser	Gly	Pro	Gly 10	Leu	Val	Lys	Pro	Ser 15	Gln	
	Thr	Leu	Ser	Leu 20	Thr	Cys	Ala	Ile	Ser 25	Gly	Asp	Ser	Val	Ser 30	Ser	Asn	
	Ser	Ala	Ala 35	Trp	Gly	Trp	Ile	Arg 40	Gln	Ser	Pro	Gly	Arg 45	Gly	Leu	Glu	
	Trp	Leu 50	Gly	Leu	Ile	Tyr	Tyr 55	Arg	Ser	Lys	Trp	Tyr 60	Asn	Asp	Tyr	Ala	
	val 65	Ser	Val	Lys	Ser	Arg 70	Ile	Thr	Ile	Asn	Pro 75	Asp	Thr	Ser	Lys	Asn 80	
	Gln	Phe	Ser	Leu	G1n 85	Leu	Asn	Ser	Val	Thr 90	Pro	Glu	Asp	Thr	Ala 95	Val	
	Tyr	Tyr	Cys	Ala 100	Arg	Phe	Gly	Asp	Thr 105	Asn	Arg	Asn	Gly	Thr 110	Asp	Val	
	Trp	Gly	Gln 115	Gly	Thr	Leu	Val	Thr 120	Val	Ser	Ser						
<210> 5 <211> 3 <212> 4 <213> H	339 ADN	sapie	ns														
<400> 5	53																
gatato	cgca	c tg	accc	agcc	agc	ttca	gtg	agcg	gctc	ac c	aggt	caga	g ca	.ttac	cato		60
tcgtgt	tacg	g gt	acta	gcag	cga	tatt	ggt	ggtt	ataa	tt a	tgtg	tctt	g gt	acca	gcag		120
catcco	ggg	a ag	gcgc	cgaa	act	tatg	att	tatg	gtgt	ta a	ttat	cgtc	c ct	cagg	cgtg		180
agcaad	cgt	t tt	agcg	gatc	caa	aagc	ggc	aaca	ccgc	ga g	cctg	acca	t ta	.gcgg	cctg		240
caagc	ggaa	g ac	gaag	cgga	tta	ttat	tgc	tctt	ctgc	tg a	.taag	ttta	c ta	tgtc	tatt		300
gtgttt	tggc	g gc	ggca	cgaa	gtt	aacc	gtt	cttg	gcca	g							339
<210> 5 <211> 1 <212> F <213> F	113 PRT	sapie	ns														
<400> 5	54																

Asp 1	IIe	Ala	Leu	Thr 5	GIN	Pro	Ala	Ser	Va I 10	Ser	GIY	Ser	Pro	15	GIn	
Ser	Ile	Thr	Ile 20	Ser	Cys	Thr	Gly	Thr 25	Ser	Ser	Asp	Ile	Gly 30	Gly	Tyr	
Asn	Tyr	val 35	Ser	Trp	Tyr	Gln	G]n 40	His	Pro	Gly	Lys	Ala 45	Pro	Lys	Leu	
Met	Ile 50	Tyr	Gly	Val	Asn	Tyr 55	Arg	Pro	Ser	Gly	Val 60	Ser	Asn	Arg	Phe	
Ser 65	Gly	Ser	Lys	Ser	Gly 70	Asn	Thr	Ala	Ser	Leu 75	Thr	Ile	Ser	Gly	Leu 80	
Gln	Ala	Glu	Asp	Glu 85	Ala	Asp	Tyr	Tyr	Cys 90	Ser	Ser	Ala	Asp	Lys 95	Phe	
Thr	Met	Ser	Ile 100	Val	Phe	Gly	Gly	Gly 105	Thr	Lys	Leu	Thr	Val 110	Leu	Gly	
Gln																
<210> 55 <211> 306 <212> ADN <213> Homo	o sapie	ens														
<400> 55																
gacctgtgc	g at	ttcc	ggag	, ata	ıgcgt	gag	ctct	aatt	ct g	ıctgc	ttgg	g gt	tgga	ttcg		60
ccagtctcc	t gg	gcgt	ggcc	tcg	jagtg	gct	gggc	atga	tc t	atta	tcgt	a gc	aagt	ggta		120
taacgatta	ıt go	ggtg	Jagcg	j tga	ıaaag	ıccg	gatt	acca	tc a	accc	ggat	a ct	tcga	.aaaa		180
ccagtttag	jc ct	gcaa	ıctga	aca	ıgcgt	gac	cccg	gaag	at a	cggc	cgtg	t at	tatt	gcgc		240
gcgtgttaa	ıt ca	igtat	actt	ctt	ctga	tta	ttgg	ggcc	aa g	ıgcac	cctg	g tg	acgg	ttag		300
ctcagc																306
<210> 56 <211> 121 <212> PRT <213> Homo	o sapie	ens														
<400> 56																

	Gln 1	Val	Gln	Leu	G1n 5	Gln	Ser	Gly	Pro	Gly 10	Leu	Val	Lys	Pro	Ser 15	Gln	
	Thr	Leu	Ser	Leu 20	Thr	Cys	Ala	Ile	Ser 25	Gly	Asp	Ser	Val	Ser 30	Ser	Asn	
	Ser	Ala	Ala 35	Trp	Gly	Trp	Ile	Arg 40	Gln	Ser	Pro	Gly	Arg 45	Gly	Leu	Glu	
	Trp	Leu 50	Gly	Met	Ile	Tyr	Tyr 55	Arg	Ser	Lys	Trp	Tyr 60	Asn	Asp	Tyr	Ala	
	va1 65	Ser	Val	Lys	Ser	Arg 70	Ile	Thr	Ile	Asn	Pro 75	Asp	Thr	Ser	Lys	Asn 80	
	Gln	Phe	Ser	Leu	G]n 85	Leu	Asn	Ser	Val	Thr 90	Pro	Glu	Asp	Thr	Ala 95	Val	
	Tyr	Tyr	Cys	Ala 100	Arg	Val	Asn	Gln	Tyr 105	Thr	Ser	Ser	Asp	Tyr 110	Trp	Gly	
	Gln	Gly	Thr 115	Leu	Val	Thr	Val	Ser 120	Ser								
<210><211><211><212><213>	327 ADN	sapie	ns														
<400>	57																
gatat	ccag	a tg	accc	agag	ссс	gtct	agc	ctga	gcgc	ga g	cgtg	ggtg	a tc	gtgt	gacc		60
attac	ctgc	a ga	gcga	gcca	gcc	tatt	tat	aatt	ctct	gt c	ttgg	tacc	a gc	agaa	acca		120
ggtaa	agca	c cg	aaac	tatt	aat	ttat	ggt	gttt	ctaa	tt t	gcaa	agcg	g gg	tccc	gtcc		180
cgttt	tagc	g gc	tctg	gatc	cgg	cact	gat	ttta	ccct	ga c	catt	agca	g cc	tgca	acct		240
gaaga	cttt	g cg	gttt	atta	ttg	cctt	cag	gttg	ataa	tc t	tcct	atta	c ct	ttgg	ccag		300
ggtac	gaaa	g tt	gaaa	ttaa	acg	tacg											327
<210> <211> <212> <213>	109 PRT	sapie	ens														
<400>	58																

	Asp 1	Ile	Gln	Met	Thr 5	Gln	Ser	Pro	Ser	Ser 10	Leu	Ser	Ala	Ser	val 15	Gly	
	Asp	Arg	Val	Thr 20	Ile	Thr	Cys	Arg	Ala 25	Ser	Gln	Pro	Ile	Tyr 30	Asn	Ser	
	Leu	Ser	Trp 35	Tyr	Gln	Gln	Lys	Pro 40	Gly	Lys	Ala	Pro	Lys 45	Leu	Leu	Ile	
	Tyr	Gly 50	Val	Ser	Asn	Leu	G1n 55	Ser	Gly	Val	Pro	Ser 60	Arg	Phe	Ser	Gly	
	Ser 65	Gly	Ser	Gly	Thr	Asp 70	Phe	Thr	Leu	Thr	Ile 75	Ser	Ser	Leu	Gln	Pro 80	
	Glu	Asp	Phe	Ala	Val 85	Tyr	Tyr	Cys	Leu	G]n 90	Val	Asp	Asn	Leu	Pro 95	Ile	
	Thr	Phe	Gly	Gln 100	Gly	Thr	Lys	Val	Glu 105	Ile	Lys	Arg	Thr				
<210><211><211><212><213>	374 ADN	sapie	ns														
<400>	59																
caggt	gcaa	t tg	caac	agto	tgg	tccg	ggc	ctgg	tgaa	ac c	gagc	caaa	c cc	tgag	cctg		60
acctg	ıtgcg	a tt	tccg	gaga	tag	cgtg	agc	tcta	attc	tg c	tgct	tggt	c tt	ggat	tcgc		120
cagtc	tcct	g gg	cgtg	gcct	cga	gtgg	ctg	ggca	tgat	ct t	ttat	cgta	g ca	.agtg	gaat		180
aacga	ttat	g cg	gtga	.gcgt	gaa	aagc	cgg	atta	ccat	ca a	.cccg	gata	c tt	cgaa	aaac		240
cagtt	tagc	c tg	caac	tgaa	cag	cgtg	acc	ccgg	aaga	ta c	ggcc	gtgt	a tt	attg	cgcg		300
cgtgt	taat	g ct	aatg	gtta	tta	tgct	tat	gttg	atct	tt g	gggc	caag	g ca	.ccct	ggtg		360
acggt	tagc	t ca	.gc														374
<210><211><211><212><213>	124 PRT	sapie	ens														
<400>	60																
	Gln 1	Val	Gln	Leu	Gln 5	Gln	Ser	G1y	Pro	Gly 10	Leu	Val	Lys	Pro	Ser 15	Gln	
	Thr	Leu	Ser	Leu 20	Thr	Cys	Ala	Ile	Ser 25	Gly	Asp	Ser	Val	Ser 30	Ser	Asn	

	Ser	Ala	Ala 35	Trp	Ser	Trp	Ile	Arg 40	Gln	Ser	Pro	Gly	Arg 45	Gly	Leu	Glu	
	Trp	Leu 50	Gly	Met	Ile	Phe	Tyr 55	Arg	Ser	Lys	Trp	Asn 60	Asn	Asp	Tyr	Ala	
	Va1 65	Ser	Val	Lys	Ser	Arg 70	Ile	Thr	Ile	Asn	Pro 75	Asp	Thr	Ser	Lys	Asn 80	
	Gln	Phe	Ser	Leu	G1n 85	Leu	Asn	Ser	Val	Thr 90	Pro	Glu	Asp	Thr	Ala 95	Val	
	Tyr	Tyr	Cys	Ala 100	Arg	Val	Asn	Ala	Asn 105	Gly	Tyr	Tyr	Ala	Tyr 110	Val	Asp	
	Leu	Trp	Gly 115	Gln	Gly	Thr	Leu	Val 120	Thr	Val	Ser	Ser					
<210><211><211><212><213>	330 ADN	sapie	ns														
<400>	61																
gatat	cgtg	c tg	accc	agag	ccc	ggcg	acc	ctga	gcct	gt c	tccg	ggcg	a ac	gtgc	gacc		60
ctgag	ctgc	a ga	.gcga	gcca	gtc	tgtt	tct	tctc	agta	tc t	ggct	tggt	асс	agca	gaaa		120
ccagg	tcaa	g ca	.ccgc	gtct	att	aatt	tat	gctg	cttc	tt c	tcgt	gcaa	.c tg	gggt	cccg		180
gcgcg	tttt	a gc	ggct	ctgg	atc	cggc	acg	gatt	ttac	cc t	gacc	atta	g ca	.gcct	ggaa	_	240
cctga	.agac	t tt	gcgg	ttta	tta	ttgc	cag	cagg	atto	ta a	tctt	cctg	c ta	.cctt	tggc		300
caggg	tacg	a aa	.gttg	aaat	taa	acgt	acg										330
<210> <211> <212> <213>	110 PRT	sapie	ns														

5

10

	Asp 1	Ile	Val	Leu	Thr 5	Gln	Ser	Pro	Ala	Thr 10	Leu	Ser	Leu	Ser	Pro 15	Gly	
(Glu	Arg	Ala	Thr 20	Leu	Ser	Cys	Arg	Ala 25	Ser	Gln	Ser	Val	Ser 30	Ser	Gln	
-	Tyr	Leu	Ala 35	Trp	Tyr	Gln	Gln	Lys 40	Pro	Gly	Gln	Ala	Pro 45	Arg	Leu	Leu	
:	Ile	Tyr 50	Ala	Ala	Ser	Ser	Arg 55	Ala	Thr	Gly	val	Pro 60	Ala	Arg	Phe	Ser	
(Gly	Ser	Gly	Ser	Gly	Thr	Asp	Phe	Thr	Leu	Thr	Ile	Ser	Ser	Leu	Glu	
(65					70				-	7 5		-			80	
ı	Pro	Glu	Asp	Phe	Ala 85	Val	Tyr	Tyr	Cys	G]n 90	Gln	Asp	Ser	Asn	Leu 95	Pro	
,	Ala	Thr	Phe	Gly 100	Gln	Gly	Thr	Lys	Val 105	Glu	Ile	Lys	Arg	Thr 110			
<210> 6 <211> 3 <212> A <213> H	51 NDN	sapie	ns														
<400> 6	3																
caggtg	jcaa	t tg	gtgg	aaag	cgg	cggc	ggc	ctgg	tgca	ac c	gggc	ggca	g cc	tgcg	tctg		60
agctgc	gcg	g cc	tccg	gatt	tac	cttt	tat	aagt	atgc	ta t	gcat	tggg	t gc	gcca	agcc		120
cctggg	gaag	g gt	ctcg	agtg	ggt	gagc	ggt	atcc	agta	tg a	tggt	agct	a ta	ccta	ttat		180
gcggat	agc	g tg	aaag	gccg	ttt	tacc	att	tcac	gtga	ta a	ttcg	aaaa	a ca	ccct	gtat		240
ctgcaa	atg	a ac	agcc	tgcg	tgc	ggaa	gat	acgg	ccgt	gt a	ttat	tgcg	c gc	gtta	ttat		300
tgtaag	gtgt	g tt	gatc	tttg	ggg	ccaa	ggc	accc	tggt	ga c	ggtt	agct	са				351
<210> 6 <211> 1 <212> P <213> H	17 PRT	sapie	ns														
<400> 6	4																

	Gln 1	Val	Gln	Leu	Val 5	Glu	Ser	Gly	Gly	Gly 10	Leu	Val	Gln	Pro	Gly 15	Gly	
:	Ser	Leu	Arg	Leu 20	Ser	Cys	Ala	Ala	Ser 25	Gly	Phe	Thr	Phe	Tyr 30	Lys	Tyr	
,	Ala	Met	нis 35	Trp	Val	Arg	Gln	Ala 40	Pro	Gly	Lys	Gly	Leu 45	Glu	Trp	Val	
:	Ser	G]y 50	Ile	Gln	Tyr	Asp	Gly 55	Ser	Tyr	Thr	Tyr	Tyr 60	Ala	Asp	Ser	Val	
	Lys 65	Gly	Arg	Phe	Thr	11e 70	Ser	Arg	Asp	Asn	Ser 75	Lys	Asn	Thr	Leu	Tyr 80	
١	Leu	Gln	Met	Asn	Ser 85	Leu	Arg	Ala	Glu	Asp 90	Thr	Ala	Val	Tyr	Tyr 95	Cys	
,	Ala	Arg	Tyr	Tyr 100	Cys	Lys	Cys	Val	Asp 105	Leu	Trp	Gly	Gln	Gly 110	Thr	Leu	
,	Val	Thr	Val 115	Ser	Ser												
<210> 6 <211> 3 <212> A <213> F	327 ADN	sapie	ns														
<400> 6	65																
gatato	gaa	c tg	accc	agcc	gcc	ttca	gtg	agcg	ttgc	ac c	aggt	caga	c cg	cgcg	tatc		60
tcgtgt	agc	g gc	gata	atat	tcg	taag	ttt	tatg	ttca	tt g	gtac	cagc	a ga	aacc	cggg		120
caggcg	jcca	g tt	cttg	tgat	tta	tggt	act	aata	agcg	tc c	ctca	ggca	t cc	cgga	acgc		180
tttagc	gga	t cc	aaca	gcgg	caa	cacc	gcg	accc	tgac	ca t	tagc	ggca	c tc	aggc	ggaa		240
gacgaa	ıgcg	g at	tatt	attg	cca	gtct	tat	gatt	ctaa	gt t	taat	actg	t gt	ttgg	cggc		300
ggcacg	gaag	t ta	accg	ttct	tgg	ccag											327
<210> 6 <211> 1 <212> F <213> F	109 PRT	sapie	ens														
<400> 6	66																

A 1	•	Ile	Glu	Leu	Thr 5	Gln	Pro	Pro	Ser	va1 10	Ser	Val	Ala	Pro	Gly 15	Gln	
Т	hr	Ala	Arg	11e 20	Ser	Cys	Ser	Gly	Asp 25	Asn	Ile	Arg	Lys	Phe 30	Tyr	Val	
Н	is	Trp	Tyr 35	Gln	Gln	Lys	Pro	Gly 40	Gln	Ala	Pro	Val	Leu 45	Val	Ile	Tyr	
G	lу	Thr 50	Asn	Lys	Arg	Pro	Ser 55	Gly	Ile	Pro	Glu	Arg 60	Phe	Ser	Gly	Ser	
	sn 5	Ser	Gly	Asn	Thr	Ala 70	Thr	Leu	Thr	Ile	Ser 75	Gly	Thr	Gln	Ala	Glu 80	
А	sp	Glu	Ala	Asp	Tyr 85	Tyr	Cys	Gln	Ser	Tyr 90	Asp	Ser	Lys	Phe	Asn 95	Thr	
V	al	Phe	Gly	Gly 100	Gly	Thr	Lys	Leu	Thr 105	Val	Leu	Gly	Gln				
<210> 67 <211> 35 <212> AE <213> Ho	59 ON	sapie	ns														
<400> 67	,																
caggtg	caat	t tg	gtgg	aaag	cgg	cggc	ggc	ctgg	tgca	ac c	gggc	ggca	g cc	tgcg	tctg		60
agctgcg	gcg	g cc	tccg	gatt	tac	cttt	tct	tctt	atgc	ta t	gaat	tggg	t gc	gcca	agcc		120
cctggga	aag	g gt	ctcg	agtg	ggt	gagc	gct	atcc	tttc	tg a	tggt	agct	c ta	cctc	ttat		180
gcggata	agc	g tg	aaag	gccg	ttt	tacc	att	tcac	gtga	ta a	ttcg	aaaa	a ca	ccct	gtat		240
ctgcaaa	atga	a ac	agcc	tgcg	tgc	ggaa	gat	acgg	ccgt	gt a	ttat	tgcg	c gc	gtta	tcct		300
gattggg	ggt	t gg	tata	ctga	tgt	ttgg	ggc	caag	gcac	cc t	ggtg	acgg	t ta	gctc	agc		359
<210> 68 <211> 11 <212> PF <213> Ho	9 RT	sapie	ns														
<400> 68	3																

G1 1	n Val	Gln	Leu	val 5	Glu	Ser	Gly	Gly	Gly 10	Leu	Val	Gln	Pro	Gly 15	Gly	
Se	r Leu	Arg	Leu 20	Ser	Cys	Ala	Ala	Ser 25	Gly	Phe	Thr	Phe	Ser 30	Ser	Tyr	
Al	a Met	Asn 35	Trp	Val	Arg	Gln	Ala 40	Pro	Gly	Lys	Gly	Leu 45	Glu	Trp	Val	
Se	r Ala 50	Ile	Leu	Ser	Asp	Gly 55	Ser	Ser	Thr	Ser	Tyr 60	Ala	Asp	Ser	Val	
Ly 65	s Gly	Arg	Phe	Thr	11e 70	Ser	Arg	Asp	Asn	Ser 75	Lys	Asn	Thr	Leu	Tyr 80	
Le	u Gln	Met	Asn	Ser 85	Leu	Arg	Ala	Glu	Asp 90	Thr	Ala	Val	Tyr	Tyr 95	Cys	
Αl	a Arg	Tyr	Pro 100	Asp	Trp	Gly	Trp	Tyr 105	Thr	Asp	Val	Trp	Gly 110	Gln	Gly	
Th	r Leu	Val 115	Thr	Val	Ser	Ser										
<210> 69 <211> 330 <212> ADN <213> Hon		ens														
<400> 69																
gatatcga	ac t	gacco	agcc	gcc	ttca	.gtg	agcg	ttgc	ac c	aggt	caga	.c cg	cgcg	tato		60
tcgtgtag	jcg g	gatg	ıctct	tcg	taag	cat	tatg	ttta	tt g	gtac	cago	a ga	.aacc	cggg		120
caggcgcd	ag t	tcttg	jtgat	tta	tggt	gat	aata	atcg	itc c	ctca	.ggca	t cc	cgga	acgo		180
tttagcgg	jat c	caaca	ıgcgg	caa	.cacc	gcg	accc	tgac	ca t	tago	ggca	c to	aggc	ggaa		240
gacgaago	gg a	ttatt	attg	сса	.gtct	tat	gata	agcc	tt a	tcct	atto	t tg	tgtt	tggc		300
ggcggcad	ga a	gttaa	ıccgt	tct	tggc	cag										330
<210> 70 <211> 110 <212> PRT <213> Hon		ens														
<400> 70																

	Asp 1	Ile	Glu	Leu	Thr 5	Gln	Pro	Pro	Ser	val 10	Ser	Val	Ala	Pro	Gly 15	Gln	
	Thr	Ala	Arg	Ile 20	Ser	Cys	Ser	Gly	Asp 25	Ala	Leu	Arg	Lys	His 30	Tyr	Val	
	Tyr	Trp	Tyr 35	Gln	Gln	Lys	Pro	Gly 40	Gln	Ala	Pro	Val	Leu 45	Val	Ile	Tyr	
	Gly	Asp 50	Asn	Asn	Arg	Pro	Ser 55	Gly	Ile	Pro	Glu	Arg 60	Phe	Ser	Gly	Ser	
	Asn 65	Ser	Gly	Asn	Thr	Ala 70	Thr	Leu	Thr	Ile	Ser 75	Gly	Thr	Gln	Ala	Glu 80	
	Asp	Glu	Ala	Asp	Tyr 85	Tyr	Cys	Gln	Ser	Tyr 90	Asp	Lys	Pro	Tyr	Pro 95	Ile	
	Leu	۷al	Phe	Gly 100	Gly	Gly	Thr	Lys	Leu 105	Thr	Val	Leu	Gly	Gln 110			
<210> <211> <212> <213>	356 ADN	sapie	ns														
<400>	71																
caggt	gcaa	t tg	gtgg	aaag	cgg	cggc	ggc	ctgg	tgca	ас с	gggc	ggca	g cc	tgcg	tctg		60
agctg	ıcgcg	g cc	tccg	gatt	tac	cttt	tct	tctt	atgc	ta t	gact	tggg	t gc	gcca	.agcc		120
cctgg	ıgaag	g gt	ctcg	agtg	ggt	gagc	aat	atct	ctta	tt c	tggt	agca	a ta	ccta	ttat		180
gcgga	tagc	g tg	aaag	gccg	ttt	tacc	att	tcac	gtga	ta a	ttcg	aaaa	a ca	ccct	gtat		240
ctgca	aatg	a ac	agcc	tgcg	tgc	ggaa	gat	acgg	ccgt	gt a	ttat	tgcg	c gc	gtgt	tggt		300
tatta	ttat	g gt	tttg	atta	ttg	gggc	caa	ggca	ccct	gg t	gacg	gtta	g ct	cagc			356
<210> <211> <212> <213>	118 PRT	sapie	ns														
<400>	72																
	Gln 1	Val	Gln	Leu	Val 5	Glu	Ser	Gly	Gly	Gly 10	Leu	Val	Gln	Pro	Gly 15	Gly	
	Ser	Leu	Arg	Leu 20	Ser	Cys	Ala	Ala	Ser 25	Gly	Phe	Thr	Phe	Ser 30	Ser	Tyr	
	Ala	Met	Thr	Trp	Val	Arg	Gln	Ala 40	Pro	Gly	Lys	Gly	Leu 45	Glu	Trp	Val	

Ser Asn Ile Ser Tyr Ser Gly Ser Asn Thr Tyr Tyr Ala Asp Ser Val 50 60 Lys Gly Arg Phe Thr Ile Ser Arg Asp Asn Ser Lys Asn Thr Leu Tyr 65 75 80 Leu Gln Met Asn Ser Leu Arg Ala Glu Asp Thr Ala Val Tyr Tyr Cys 85 90 95 Ala Arg Val Gly Tyr Tyr Gly Phe Asp Tyr Trp Gly Gln Gly Thr 100 105 110 Leu Val Thr Val Ser Ser <210> 73 <211> 330 <212> ADN <213> Homo sapiens <400> 73 60 gatatcgtgc tgacccagag cccggcgacc ctgagcctgt ctccgggcga acgtgcgacc ctgagctgca gagcgagcca gaatgtttct tctaattatc tggcttggta ccagcagaaa 120 180 ccaggtcaag caccgcgtct attaatttat gatgcttcta atcgtgcaac tggggtcccg 240 gcgcgtttta gcggctctgg atccggcacg gattttaccc tgaccattag cagcctggaa cctgaagact ttgcggttta ttattgccag cagttttatg attctcctca gacctttggc 300 330 cagggtacga aagttgaaat taaacgtacg

<210> 74

5

10

<211> 110

<212> PRT

<213> Homo sapiens

Asp 1	Ile	Val	Leu	Thr 5	Gln	Ser	Pro	Ala	Thr 10	Leu	Ser	Leu	Ser	Pro 15	Gly	
Glu	Arg	Ala	Thr 20	Leu	Ser	Cys	Arg	Ala 25	Ser	Gln	Asn	Val	Ser 30	Ser	Asn	
Tyr	Leu	Ala 35	Trp	Tyr	Gln	Gln	Lys 40	Pro	Gly	Gln	Ala	Pro 45	Arg	Leu	Leu	
Ile	Tyr 50	Asp	Ala	Ser	Asn	Arg 55	Ala	Thr	Gly	Val	Pro 60	Ala	Arg	Phe	Ser	
Gly 65	Ser	Gly	Ser	Gly	Thr 70	Asp	Phe	Thr	Leu	Thr 75	Ile	Ser	Ser	Leu	Glu 80	
Pro	Glu	Asp	Phe	Ala	Val	Tyr	Tyr	Cys	Gln	Gln	Phe	Tyr	Asp	Ser	Pro	
				8	5				9	0		-	-	9	5	
(Gln T	hr P		ly G 00	ln G	1у т	hr L		al G 05	lu I	le L	ys A		hr 10		
<210> 75 <211> 365 <212> ADN <213> Home	o sapie	ens														
<400> 75																
caggtgcaa	ıt tg	caac	agtc	tgg	tccg	ggc	ctgg	tgaa	ac c	gagc	caaa	c cc	tgag	cctg		60
acctgtgcg	ja tt	tccg	gaga	tag	cgtg	agc	tcta	attc	tg c	tgct	tggt	c tt	ggat	tcgc		120
cagtctcct	g gg	cgtg	gcct	cga	gtgg	ctg	ggct	ttat	ct a	ttat	cgta	g ca	agtg	gtat		180
aacgatta	g cg	gtga	gcgt	gaa	aagc	cgg	atta	ccat	ca a	.cccg	gata	c tt	cgaa	aaac		240
cagtttag	c tg	caac	tgaa	cag	cgtg	acc	ccgg	aaga	ta c	ggcc	gtgt	a tt	attg	cgcg		300
cgtcataat	c ct	gatc	ttgg	ttt	tgat	tat	tggg	gcca	ag g	cacc	ctgg	t ga	cggt	tagc		360
tcagc																365
<210> 76 <211> 121 <212> PRT <213> Home	o sapie	ens														
<400> 76																

	Gln 1	Val	Gln	Leu	Gln 5	Gln	Ser	Gly	Pro	Gly 10	Leu	Val	Lys	Pro	Ser 15	Gln	
	Thr	Leu	Ser	Leu 20	Thr	Cys	Ala	Ile	Ser 25	Gly	Asp	Ser	Val	Ser 30	Ser	Asn	
	Ser	Ala	Ala 35	Trp	Ser	Trp	Ile	Arg 40	Gln	Ser	Pro	Gly	Arg 45	Gly	Leu	Glu	
	Trp	Leu 50	Gly	Phe	Ile	Tyr	Tyr 55	Arg	Ser	Lys	Trp	Tyr 60	Asn	Asp	Tyr	Ala	
	Val 65	Ser	Val	Lys	Ser	Arg 70	Ile	Thr	Ile	Asn	Pro 75	Asp	Thr	Ser	Lys	Asn 80	
	Gln	Phe	Ser	Leu	G]n 85	Leu	Asn	Ser	Val	Thr 90	Pro	Glu	Asp	Thr	Ala 95	val	
	Tyr	Tyr	Cys	Ala 100	Arg	His	Asn	Pro	Asp 105	Leu	Gly	Phe	Asp	Tyr 110	Trp	Gly	
	Gln	Gly	Thr 115	Leu	Val	Thr	Val	Ser 120	Ser								
<210> 7 <211> 3 <212> 7 <213> 8	327 ADN	sapie	ns														
<400> 7	77																
gatato	cgtg	c tg	accc	agag	ссс	ggcg	acc	ctga	gcct	gt c	tccg	ggcg	a ac	gtgc	gacc		60
ctgag	ctgc	a ga	gcga	gcca	gta	tgtt	act	tctt	ctta	tc t	ggct	tggt	a cc	agca	gaaa		120
ccagg	tcaa	g ca	ccgc	gtct	att	aatt	tat	ggtt	cttc	tc g	tgca	actg	g gg	tccc	ggcg		180
cgttt	tagc	g gc	tctg	gatc	cgg	cacg	gat	ttta	ccct	ga c	catt	agca	g cc	tgga	acct		240
gaaga	cttt	g cg	actt	atta	ttg	ccag	cag	tatt	cttc	tt c	tcct	atta	.c ct	ttgg	ccag		300
ggtac	gaaa	g tt	gaaa	ttaa	acg	tacg											327
<210> 7 <211> 7 <212> F <213> F	109 PRT	sapie	ns														
<400> 7	78																

	Asp 1	Ile	Val	Leu	Thr 5	Gln	Ser	Pro	Ala	Thr 10	Leu	Ser	Leu	Ser	Pro 15	Gly	
	Glu	Arg	Ala	Thr 20	Leu	Ser	Cys	Arg	Ala 25	Ser	Gln	Tyr	Val	Thr 30	Ser	Ser	
	Tyr	Leu	Ala 35	Trp	Tyr	Gln	Gln	Lys 40	Pro	Gly	Gln	Ala	Pro 45	Arg	Leu	Leu	
	Ile	Tyr 50	Gly	Ser	Ser	Arg	Ala 55	Thr	Gly	Val	Pro	Ala 60	Arg	Phe	Ser	Gly	
	Ser 65	Gly	Ser	Gly	Thr	Asp 70	Phe	Thr	Leu	Thr	Ile 75	Ser	Ser	Leu	Glu	Pro 80	
	Glu	Asp	Phe	Ala	Thr 85	Tyr	Tyr	Cys	Gln	Gln 90	Tyr	Ser	Ser	Ser	Pro 95	Ile	
	Thr	Phe	Gly	Gln 100	Gly	Thr	Lys	Val	Glu 105	Ile	Lys	Arg	Thr				
<210><211><211><212><213>	362 ADN	sapie	ens														
<400>	79																
caggt	gcaa	t tg	caac	agtc	tgg	tccg	ggc	ctgg	tgaa	ac c	gagc	caaa	.c cc	tgag	cctg		60
acctg	tgcg	a tt	tccg	gaga	tag	cgtg	agc	tctt	cttc	tg c	tgct	tggt	c tt	ggat	tcgc		120
cagtc	tcct	g gg	cgtg	gcct	cga	gtgg	ctg	ggca	ttat	ct a	ttat	cgta	g ca	agtg	gtat		180
aacga	ttat	g cg	gtga	.gcgt	gaa	aagc	cgg	atta	ccat	ca a	ıcccg	gata	c tt	cgaa	.aaac		240
cagtt	tagc	c tg	caac	tgaa	cag	cgtg	acc	ccgg	aaga	ta c	ggcc	gtgt	a tt	attg	cgcg		300
cgtca	ttct	a tg	gttg	gttt	tga	tgtt	tgg	ggcc	aagg	ca c	cctg	gtga	.c gg	ttag	ctca		360
gc																	362
<210><211><211><212><213>	120 PRT	sapie	ens														
<400>	80																

5

10

	Gln 1	Val	Gln	Leu	Gln 5	Gln	Ser	Gly	Pro	Gly 10	Leu	Val	Lys	Pro	Ser 15	Gln	
	Thr	Leu	Ser	Leu 20	Thr	Cys	Ala	Ile	Ser 25	Gly	Asp	Ser	Val	Ser 30	Ser	Ser	
	Ser	Ala	Ala 35	Trp	Ser	Trp	Ile	Arg 40	Gln	Ser	Pro	Gly	Arg 45	Gly	Leu	Glu	
	Trp	Leu 50	Gly	Ile	Ile	Tyr	Tyr 55	Arg	Ser	Lys	Trp	Tyr 60	Asn	Asp	Tyr	Ala	
	Va1 65	Ser	Val	Lys	Ser	Arg 70	Ile	Thr	Ile	Asn	Pro 75	Asp	Thr	Ser	Lys	Asn 80	
	Gln	Phe	Ser	Leu	G]n 85	Leu	Asn	Ser	Val	Thr 90	Pro	Glu	Asp	Thr	Ala 95	Val	
	Tyr	Tyr	Cys	Ala 100	Arg	His	Ser	Met	Val 105	Gly	Phe	Asp	Val	Trp 110	Gly	Gln	
	Gly	Thr	Leu 115	Val	Thr	Val	Ser	Ser 120									
<210> <211> <212> <213>	330 ADN	sapie	ens														
<400>		ос.р.с															
gatat	cgaa	c tg	accc	agcc	gcc	ttca	gtg	agcg	ttgc	ac c	aggt	caga	c cg	cgcg	tatc		60
tcgtg	tagc	g gc	gata	atct	tgg	tact	tat	tatg	ttca	tt g	gtac	cagc	a ga	aacc	cggg		120
caggc	gcca	g tt	cttg	tgat	tta	tggt	gat	aata	atcg	tc c	ctca	ggca	t cc	cgga	acgc		180
tttag	cgga	t cc	aaca	gcgg	caa	cacc	gcg	accc	tgac	ca t	tagc	ggca	c tc	aggc	ggaa		240
gacga	agcg	g at	tatt	attg	cca	gact	tat	gatt	ctaa	ta a	tgag	tcta	t tg	tgtt	tggc		300
ggcgg	cacg	a ag	ttaa	ccgt	tct	tggc	cag										330
<210><211><212><212><213>	110 PRT	sapie	ens														
<400>	82																

	Asp 1	Ile	Glu	Leu	Thr 5	Gln	Pro	Pro	Ser	va1 10	Ser	Val	Ala	Pro	Gly 15	Gln	
	Thr	Ala	Arg	11e 20	Ser	Cys	Ser	Gly	Asp 25	Asn	Leu	Gly	Thr	Tyr 30	Tyr	Val	
	His	Trp	Tyr 35	Gln	Gln	Lys	Pro	Gly 40	Gln	Ala	Pro	Val	Leu 45	Val	Ile	Tyr	
	Gly	Asp 50	Asn	Asn	Arg	Pro	Ser 55	Gly	Ile	Pro	Glu	Arg 60	Phe	Ser	Gly	Ser	
	Asn 65	Ser	Gly	Asn	Thr	Ala 70	Thr	Leu	Thr	Ile	Ser 75	Gly	Thr	Gln	Ala	Glu 80	
	Asp	Glu	Ala	Asp	Tyr 85	Tyr	Cys	Gln	Thr	Tyr 90	Asp	Ser	Asn	Asn	Glu 95	Ser	
	Ile	Val	Phe	Gly 100	Gly	Gly	Thr	Lys	Leu 105	Thr	Val	Leu	Gly	Gln 110			
<210><211><211><212><213>	368 ADN	sapie	ns														
<400>	83	·															
caggt	gcaa	t tg	ıgtgg	aaag	cgg	cggc	ggc	ctgg	tgca	ac c	gggc	ggca	g cc	tgcg	tctg		60
agctg	ıcgcg	g cc	tccg	gatt	tac	cttt	aat	tctt	atgc	ta t	gtct	tggg	t gc	gcca	.agcc		120
cctgg	gaag	ıg gt	ctcg	agtg	ggt	gagc	aat	atct	cttc	ta a	ittct	agca	a ta	.ccta	ttat		180
gcgga	tago	g tg	aaag	gccg	ttt	tacc	att	tcac	gtga	ta a	ittcg	aaaa	.a ca	.ccct	gtat		240
ctgca	aatg	a ac	agcc	tgcg	tgc	ggaa	.gat	acgg	ccgt	gt a	ittat	tgcg	c gc	gtaa	.gggt		300
ggtgg	tgag	ıc at	ggtt	tttt	tcc	ttct	gat	attt	gggg	сс а	aggc	acco	t gg	tgac	ggtt		360
agctc	agc																368
<210><211><211><212><213>	122 PRT	sapie	ns														

5

10

Gln 1	Val	Gln	Leu	Val 5	Glu	Ser	Gly	Gly	Gly 10	Leu	Val	Gln	Pro	Gly 15	Gly
Ser	Leu	Arg	Leu 20	Ser	Cys	Ala	Ala	Ser 25	Gly	Phe	Thr	Phe	Asn 30	Ser	Tyr
Ala	Met	Ser	Trp	Val	Arg	Gln	Ala	Pro	Gly	Lys	Gly	Leu	Glu	Trp	Val
		35					40		-			45			
Ser	Asn 50	Ile	Ser	Ser	Asn	Ser 55	Ser	Asn	Thr	Tyr	Tyr 60	Ala	Asp	Ser	Val
Lys 65	Gly	Arg	Phe	Thr	11e 70	Ser	Arg	Asp	Asn	Ser 75	Lys	Asn	Thr	Leu	Tyr 80
Leu	Gln	Met	Asn	Ser 85	Leu	Arg	Ala	Glu	Asp 90	Thr	Ala	Val	Tyr	Tyr 95	Cys
Ala	Arg	Lys	Gly 100	Gly	Gly	Glu	His	Gly 105	Phe	Phe	Pro	Ser	Asp 110	Ile	Trp
Gly	Gln	Gly 115	Thr	Leu	Val	Thr	Val 120	Ser	Ser						
85 222															

<210>85

<211> 333

<212> ADN

<213> Homo sapiens

<400> 85

5

10

gatatcgcac tgacccagcc agcttcagtg agcggctcac caggtcagag cattaccatc 60 tcgtgtacgg gtactagcag cgatcttggt ggttttaata ctgtgtcttg gtaccagcag 120 catcccggga aggcgccgaa acttatgatt tattctgttt cttctcgtcc ctcaggcgtg 180 agcaaccgtt ttagcggatc caaaagcggc aacaccgcga gcctgaccat tagcggcctg 240 caagcggaag acgaagcgga ttattattgc cagtcttatg atcttaataa tcttgtgttt 300 ggcggcggca cgaagttaac cgttcttggc cag 333

<210> 86

<211> 111

<212> PRT

<213> Homo sapiens

	Asp 1	Ile	Ala	Leu	Thr 5	Gln	Pro	Ala	Ser	Va1 10	Ser	Gly	Ser	Pro	Gly 15	Gln	
	Ser	Ile	Thr	Ile 20	Ser	Cys	Thr	Gly	Thr 25	Ser	Ser	Asp	Leu	Gly 30	Gly	Phe	
	Asn	Thr	Va1 35	Ser	Trp	Tyr	Gln	Gln 40	His	Pro	Gly	Lys	Ala 45	Pro	Lys	Leu	
	Met	Ile 50	Tyr	Ser	Val	Ser	Ser 55	Arg	Pro	Ser	Gly	Va1 60	Ser	Asn	Arg	Phe	
	Ser 65	Gly	Ser	Lys	Ser	Gly 70	Asn	Thr	Ala	Ser	Leu 75	Thr	Ile	Ser	Gly	Leu 80	
	Gln	Ala	Glu	Asp	Glu 85	Ala	Asp	Tyr	Tyr	Cys 90	Gln	Ser	- Tyr	Asp	Leu 95	Asn	
	Asn	Leu	Val	Phe 100	Gly	Gly	Gly	Thr	Lys 105	Leu	Thr	Val	Leu	Gly 110	Gln		
<210><211><211><212><213>	353 ADN	sapie	ens														
<400>	87																
caggt	gcaa	t tg	gtgg	aaag	cgg	cggc	ggc	ctgg	tgca	ac c	gggc	ggca	g cc	tgcg	tctg		60
agctg	ıcgcg	ıg cc	tccg	gatt	tac	cttt	aat	tctt	atgc	ta t	gact	tggg	t gc	gcca	agcc		120
cctgg	gaag	ıg gt	ctcg	agtg	ggt	gagc	gct	atca	agto	tg a	tggt	agca	a ta	.ccta	ttat		180
gcgga	tagc	g tg	aaag	gccg	ttt	tacc	att	tcac	gtga	ta a	ttcg	aaaa	a ca	.ccct	gtat		240

300

353

<210> 88

<211> 117

10 <212> PRT

5

<213> Homo sapiens

<400> 88

ctgcaaatga acagcctgcg tgcggaagat acggccgtgt attattgcgc gcgtaatgat

tctggttggt ttgatgtttg gggccaaggc accctggtga cggttagctc agc

	Gln 1	Val	Gln	Leu	Val 5	Glu	Ser	Gly	Gly	Gly 10	Leu	Val	Gln	Pro	Gly 15	Gly	
	Ser	Leu	Arg	Leu 20	Ser	Cys	Ala	Ala	Ser 25	Gly	Phe	Thr	Phe	Asn 30	Ser	Tyr	
	Ala	Met	Thr 35	Trp	Val	Arg	Gln	Ala 40	Pro	Gly	Lys	Gly	Leu 45	Glu	Trp	Val	
	Ser	Ala 50	Ile	Lys	Ser	Asp	Gly 55	Ser	Asn	Thr	Tyr	Tyr 60	Ala	Asp	Ser	Val	
	Lys 65	Gly	Arg	Phe	Thr	11e 70	Ser	Arg	Asp	Asn	Ser 75	Lys	Asn	Thr	Leu	Tyr 80	
	Leu	Gln	Met	Asn	Ser 85	Leu	Arg	Ala	Glu	Asp 90	Thr	Ala	Val	Tyr	Tyr 95	Cys	
	Ala	Arg	Asn	Asp 100	Ser	Gly	Trp	Phe	Asp 105	Val	Trp	Gly	Gln	Gly 110	Thr	Leu	
	Val	Thr	Val 115	Ser	Ser												
<210><211><211><212><213>	330 ADN	sapie	ns														
<400>	89																
gatat	cgtg	c tg	accc	agag	ccc	ggcg	acc	ctga	gcct	gt c	tccg	ggcg	a ac	gtgc	gacc		60
ctgag	ıctgc	a ga	.gcga	.gcca	gtc	tgtt	tct	tctt	ttta	tc t	ggct	tggt	a cc	agca	.gaaa		120
ccagg	ıtcaa	g ca	.ccgc	gtct	att	aatt	tat	ggtt	cttc	tt c	tcgt	gcaa	c tg	gggt	cccg		180
gcgcg	itttt	a gc	ggct	ctgg	atc	cggc	acg	gatt	ttac	cc t	gacc	atta	g ca	.gcct	ggaa		240
cctga	agac	t tt	gcga	.ctta	tta	ttgc	cag	cagt	atga	tt c	tact	cctt	c ta	.cctt	tggc		300

330

<210> 90

5

10

<211> 110

<212> PRT

<213> Homo sapiens

cagggtacga aagttgaaat taaacgtacg

	Asp 1	Ile	Val	Leu	Thr 5	Gln	Ser	Pro	Ala	Thr 10	Leu	Ser	Leu	Ser	Pro 15	Gly	
	Glu	Arg	Ala	Thr 20	Leu	Ser	Cys	Arg	Ala 25	Ser	Gln	Ser	Val	Ser 30	Ser	Phe	
	Tyr	Leu	Ala 35	Trp	Tyr	Gln	Gln	Lys 40	Pro	Gly	Gln	Ala	Pro 45	Arg	Leu	Leu	
	Ile	Tyr 50	Gly	Ser	Ser	Ser	Arg 55	Ala	Thr	Gly	Val	Pro 60	Ala	Arg	Phe	Ser	
	G]y 65	Ser	Gly	Ser	Gly	Thr 70	Asp	Phe	Thr	Leu	Thr 75	Ile	Ser	Ser	Leu	Glu 80	
	Pro	Glu	Asp	Phe	Ala 85	Thr	Tyr	Tyr	Cys	G1n 90	Gln	Tyr	Asp	Ser	Thr 95	Pro	
	Ser	Thr	Phe	Gly 100	Gln	Gly	Thr	Lys	Val 105	Glu	Ile	Lys	Arg	Thr 110			
<210><211><211><212><213>	365 ADN	sapie	ns														
<400>	91																
caggt	gcaa	t tg	caac	agtc	tgg	tccg	ggc	ctgg	tgaa	ac c	gagc	caaa	с сс	tgag	cctg		60
acctg	tgcg	a tt	tccg	gaga	tag	cgtg	agc	tcta	atgg	tg c	tgct	tggg	g tt	ggat	tcgc		120
cagtc	tcct	g gg	cgtg	gcct	cga	gtgg	ctg	ggct	ttat	ct a	tcgt	cgta	g ca	agtg	gtat		180
aactc	ttat	g cg	gtga	gcgt	gaa	aagc	cgg	atta	ccat	ca a	cccg	gata	c tt	cgaa	aaac		240
cagtt	tagc	c tg	caac	tgaa	cag	cgtg	acc	ccgg	aaga	ta c	ggcc	gtgt	a tt	attg	cgcg		300
cgtca	ggat	g gt	atgg	gtgg	tat	ggat	tct	tggg	gcca	ag g	cacc	- ctgg	t ga	cggt	tagc		360
tcagc																	365
<210> <211> <212> <213>	121 PRT	sapie	ns														
<400>	92																

	Gln 1	Val	Gln	Leu	Gln 5	Gln	Ser	Gly	Pro	Gly 10	Leu	Val	Lys	Pro	Ser 15	Gln	
	Thr	Leu	Ser	Leu 20	Thr	Cys	Ala	Ile	Ser 25	Gly	Asp	Ser	Val	Ser 30	Ser	Asn	
	Gly	Ala	Ala 35	Trp	Gly	Trp	Ile	Arg 40	Gln	Ser	Pro	Gly	Arg 45	Gly	Leu	Glu	
	Trp	Leu 50	Gly	Phe	Ile	Tyr	Arg 55	Arg	Ser	Lys	Trp	Tyr 60	Asn	Ser	Tyr	Ala	
	va1 65	Ser	Val	Lys	Ser	Arg 70	Ile	Thr	Ile	Asn	Pro 75	Asp	Thr	Ser	Lys	Asn 80	
	Gln	Phe	Ser	Leu	G]n 85	Leu	Asn	Ser	Val	Thr 90	Pro	Glu	Asp	Thr	Ala 95	Val	
	Tyr	Tyr	Cys	Ala 100	Arg	Gln	Asp	Gly	Met 105	Gly	Gly	Met	Asp	Ser 110	Trp	Gly	
	Gln	Gly	Thr 115	Leu	Val	Thr	Val	Ser 120	Ser								
<210><211><211><212><213>	327 ADN	sapie	ns														
<400>	93																
gatat	cgaa	c tg	accc	agcc	gcc	ttca	gtg	agcg	ttgc	ac c	aggt	caga	.c cg	cgcg	tatc		60
tcgtg	tagc	g gc	gata	atat	tgg	ttct	cgt	tatg	ctta	tt g	gtac	cago	a ga	.aacc	cggg		120
caggo	gcca	g tt	gttg	tgat	tta	tgat	gat	tctg	atcg	tc c	ctca	ggca	t cc	cgga	acgc		180
tttag	cgga	t cc	aaca	gcgg	caa	cacc	gcg	acco	tgac	ca t	tagc	ggca	c to	aggc	ggaa		240
gacga	.agcg	g at	tatt	attg	cgc	tgct	tat	actt	ttta	tg c	tcgt	actg	t gt	ttgg	cggc		300
ggcac	gaag	t ta	.accg	ttct	tgg	ccag											327
<210><211><211><212><213>	109 PRT	sapie	ens														
<400>	94																

	Asp 1	Ile	Glu	Leu	Thr 5	Gln	Pro	Pro	Ser	Val 10	Ser	Val	Ala	Pro	Gly 15	Gln	
	Thr	Ala	Arg	Ile 20	Ser	Cys	Ser	Gly	Asp 25	Asn	Ile	Gly	Ser	Arg 30	Tyr	Ala	
	Tyr	Trp	Tyr 35	Gln	Gln	Lys	Pro	Gly 40	Gln	Ala	Pro	Val	Val 45	Val	Ile	Tyr	
	Asp	Asp 50	Ser	Asp	Arg	Pro	Ser 55	Gly	Ile	Pro	Glu	Arg 60	Phe	Ser	Gly	Ser	
	Asn 65	Ser	Gly	Asn	Thr	Ala 70	Thr	Leu	Thr	Ile	Ser 75	Gly	Thr	Gln	Ala	Glu 80	
	Asp	Glu	Ala	Asp	Tyr 85	Tyr	Cys	Ala	Ala	Tyr 90	Thr	Phe	Tyr	Ala	Arg 95	Thr	
	Val	Phe	Gly	Gly 100	Gly	Thr	Lys	Leu	Thr 105	Val	Leu	Gly	Gln				
<210><211><211><212><213>	359 ADN	sapie	ens														
<400>	95																
caggt	gcaa	t tg	ıgtgg	aaag	cgg	cggc	ggc	ctgg	tgca	ac c	gggc	ggca	g cc	tgcg	ıtctg	l	60
agctg	cgcg	g cc	tccg	gatt	tac	cttt	tct	aatt	atta	tc t	ttct	tggg	t gc	gcca	agcc		120
cctgg	gaag	g gt	ctcg	agtg	ggt	gago	ggt	atct	ctta	ta a	tggt	agct	c ta	ıccaa	ttat	:	180
gcgga	tagc	g tg	jaaag	ıgccg	ttt	tacc	att	tcac	gtga	ta a	ttcg	aaaa	a ca	ıccct	gtat	:	240
ctgca	.aatg	a ac	agcc	tgcg	tgc	ggaa	.gat	acgg	ccgt	gt a	ttat	tgcg	c gc	gtat	gtgg	l	300
cgtta	ttct	c tt	ggtg	ıctga	ttc	ttgg	ggc	caag	gcac	cc t	ggtg	acgg	t ta	gctc	agc		359
<210><211><211><212><213>	119 PRT	sapie	ens														
<400>	96																
	Gln 1	Val	Gln	Leu	Val 5	Glu	Ser	Gly	Gly	Gly 10	Leu	Val	Gln	Pro	Gly 15	Gly	
	Ser	Leu	Arg	Leu 20	Ser	Cys	Ala	Ala	Ser 25	Gly	Phe	Thr	Phe	Ser 30	Asn	Tyr	
	Tyr	Leu	Ser 35	Тгр	Val	Arg	Gln	Ala 40	Pro	Gly	Lys	Gly	Leu 45	Glu	Тгр	Val	

	Ser	Gly 50	Ile	Ser	Tyr	Asn	Gly 55	Ser	Ser	Thr	Asn	Tyr 60	Ala	Asp	Ser	Val	
	Lys 65	Gly	Arg	Phe	Thr	Ile 70	Ser	Arg	Asp	Asn	Ser 75	Lys	Asn	Thr	Leu	Tyr 80	
	Leu	Gln	Met	Asn	Ser 85	Leu	Arg	Ala	Glu	Asp 90	Thr	Ala	Val	Tyr	Tyr 95	Cys	
	Ala	Arg	Met	Trp 100	Arg	Tyr	Ser	Leu	Gly 105	Ala	Asp	Ser	Trp	Gly 110	Gln	Gly	
	Thr	Leu	Val 115	Thr	Val	Ser	Ser										
<210><211><211><212><213>	327 ADN	sapie	ens														
<400>	97																
gatat	cgaa	c tg	accc	agcc	gcc	ttca	gtg	agcg	ttgc	ac c	aggt	caga	c cg	cgcg	tatc		60
tcgtg	tagc	g gc	gata	atat	tgg	ttct	aag	tatg	ttca	tt g	gtac	cagc	a ga	aacc	cggg		120
caggo	gcca	g tt	gttg	tgat	tta	tgag	gat	tctg	atcg	tc c	ctca	ggca	t cc	cgga	acgc		180
tttag	cgga	t cc	aaca	gcgg	caa	cacc	gcg	accc	tgac	ca t	tagc	ggca	c tc	aggc	ggaa		240
gacga	.agcg	g at	tatt	attg	cca	gtct	tgg	gata	agtc	tg a	gggt	tatg	t gt	ttgg	cggc		300
ggcac	gaag	t ta	.accg	ttct	tgg	ccag											327
<210><211><212><212><213>	109 PRT	sapie	ens														
<400>	98																

	Asp 1	Ile	Glu	Leu	Thr 5	Gln	Pro	Pro	Ser	Val 10	Ser	Val	Ala	Pro	Gly 15	Gln	
	Thr	Ala	Arg	11e 20	Ser	Cys	Ser	Gly	Asp 25	Asn	Ile	Gly	Ser	Lys 30	Tyr	Val	
	His	Trp	Tyr 35	Gln	Gln	Lys	Pro	Gly 40	Gln	Ala	Pro	Val	Val 45	Val	Ile	Tyr	
	Glu	Asp 50	Ser	Asp	Arg	Pro	Ser 55	Gly	Ile	Pro	Glu	Arg 60	Phe	Ser	Gly	Ser	
	Asn 65	Ser	Gly	Asn	Thr	Ala 70	Thr	Leu	Thr	Ile	Ser 75	Gly	Thr	Gln	Ala	Glu 80	
	Asp	Glu	Ala	Asp	Tyr	Tyr	Cys	Gln	Ser	Тгр	Asp	Lys	Ser	Glu	Gly	Tyr	
					8	5				9	0		-	-	9	5	
	٧	al P	he G		ly G 00	1у т	hr ∟	ys L		hr V 05	al L	eu G	ly G	ln			
<210><211><211><212><213>	371 ADN	sapie	ns														
<400>	99																
caggt	gcaa [.]	t tg	gtgg	aaag	cgg	cggc	ggc	ctgg	tgca	ac c	gggc	ggca	g cc	tgcg	tctg		60
agctg	cgcg	g cc	tccg	gatt	tac	cttt	aat	aata	atgc	ta t	ttct	tggg	t gc	gcca	agcc		120
cctgg	gaag	g gt	ctcg	agtg	ggt	gagc	gct	atca	attc	tt c	ttct	agct	c ta	cctc	ttat		180
gcgga	tagc	g tg	aaag	gccg	ttt	tacc	att	tcac	gtga	ta a	ttcg	aaaa	a ca	ccct	gtat		240
ctgca	aatg	a ac	agcc	tgcg	tgc	ggaa	gat	acgg	ccgt	gt a	ttat	tgcg	c gc	gtgg	tcat		300
catcg	tggt	c at	tctt	gggc	ttc	tttt	att	gatt	attg	gg g	ccaa	ggca	с сс	tggt	gacg		360

<210> 100 <211> 123 <212> PRT

5

10

<213> Homo sapiens

gttagctcag c

<400> 100

	Gln 1	Val	Gln	Leu	Val 5	Glu	Ser	Gly	Gly	Gly 10	Leu	Val	Gln	Pro	Gly 15	Gly	
:	Ser	Leu	Arg	Leu 20	Ser	Cys	Ala	Ala	Ser 25	Gly	Phe	Thr	Phe	Asn 30	Asn	Asn	
,	Ala	Ile	Ser 35	Trp	Val	Arg	Gln	Ala 40	Pro	Gly	Lys	Gly	Leu 45	Glu	Trp	Val	
:	Ser	Ala 50	Ile	Asn	Ser	Ser	Ser 55	Ser	Ser	Thr	Ser	Tyr 60	Ala	Asp	Ser	Val	
	Lys 65	Gly	Arg	Phe	Thr	11e 70	Ser	Arg	Asp	Asn	Ser 75	Lys	Asn	Thr	Leu	Tyr 80	
I	Leu	Gln	Met	Asn	Ser 85	Leu	Arg	Ala	Glu	Asp 90	Thr	Ala	Val	Tyr	Tyr 95	Cys	
,	Ala	Arg	Gly	Ніs 100	His	Arg	Gly	His	Ser 105	Trp	Ala	Ser	Phe	Ile 110	Asp	Tyr	
-	Trp	Gly	Gln 115	Gly	Thr	Leu	Val	Thr 120	۷al	Ser	Ser						
<210> 1 <211> 3 <212> A <213> F	33 ADN	sapie	ns														
<400> 1	01																
gatato	gaa	c tg	accc	agcc	gcc	ttca	gtg	agcg	ttgc	ac c	aggt	caga	c cg	cgcg	tato		60
tcgtgt	agc	g gc	gata	atct	tcg	tgat	aag	tatg	cttc	tt g	gtac	cagc	a ga	aacc	cggg		120
caggcg	jcca	g tt	cttg	tgat	tta	ttct	aag	tctg	agcg	tc c	ctca	ggca	t cc	cgga	acgc		180
tttago	gga	t cc	aaca	gcgg	caa	cacc	gcg	accc	tgac	ca t	tagc	ggca	c tc	aggc	ggaa		240
gacgaa	ıgcg	g at	tatt	attg	ctc	ttct	tat	actc	ttaa	tc c	taat	ctta	a tt	atgt	gttt		300
ggcggc	ggc	a cg	aagt	taac	cgt	tctt	ggc	cag									333
<210> 1 <211> 1 <212> F <213> F	11 PRT	sapie	ns														
<400> 1	02																

1	o Ile	Glu	Leu	Thr 5	Gln	Pro	Pro	Ser	Va1 10	Ser	Val	Ala	Pro	Gly 15	Gln	
Th	^ Ala	Arg	Ile 20	Ser	Cys	Ser	Gly	Asp 25	Asn	Leu	Arg	Asp	Lys 30	Tyr	Ala	
Se	r Trp	Tyr 35	Gln	Gln	Lys	Pro	Gly 40	Gln	Ala	Pro	Val	Leu 45	Val	Ile	Tyr	
Se	Lys 50	Ser	Glu	Arg	Pro	Ser 55	Gly	Ile	Pro	Glu	Arg 60	Phe	Ser	Gly	Ser	
Ası 65	ı Ser	Gly	Asn	Thr	Ala 70	Thr	Leu	Thr	Ile	Ser 75	Gly	Thr	Gln	Ala	Glu 80	
Ası	o Glu	Ala	Asp	Tyr 85	Tyr	Cys	Ser	Ser	Tyr 90	Thr	Leu	Asn	Pro	Asn 95	Leu	
Ası	ı Tyr	Val	Phe 100	Gly	Gly	Gly	Thr	Lys 105	Leu	Thr	Val	Leu	Gly 110	Gln		
<210> 103 <211> 347 <212> ADN <213> Hon		ens														
<400> 103																
caggtgca	at to	ggtgg	jaaag	cgg	cggc	ggc	ctgg	tgca	ac c	gggc	ggca	g cc	tgcg	tctg		60
agctgcgc	gg co	ctccg	gatt	tac	cttt	tct	tctt	attg	ga t	gcat	tggg	t gc	gcca	agcc		120
cctgggaa	.gg gt	tctcg	jagtg	ggt	gagc	tct	atct	ctta	tg a	ttct	agca	a ta	ccta	ttat		180
gcggatag	cg tg	gaaag	gccg	ttt	tacc	att	tcac	gtga	ta a	ttcg	aaaa	a ca	ccct	gtat		240
ctgcaaat	ga ad	cagco	tgcg	tgc	ggaa	gat.	acgg	ccgt	gt a	ttat	tgcg	c gc	gtta	tggt		300
ggtatgga <210> 104	tt at	ttggg	ıgcca	agg	cacc	ctg	gtga	.cggt	ta g	ıctca	gc					347
<211> 115 <212> PR7 <213> Hon		ens														
<400> 104																

	Gln 1	Val	Gln	Leu	val 5	Glu	Ser	Gly	Gly	Gly 10	Leu	Val	Gln	Pro	Gly 15	Gly	
9	Ser	Leu	Arg	Leu 20	Ser	Cys	Ala	Ala	Ser 25	Gly	Phe	Thr	Phe	Ser 30	Ser	Tyr	
-	Trp	Met	His 35	Trp	Val	Arg	Gln	Ala 40	Pro	Gly	Lys	Gly	Leu 45	Glu	Trp	Val	
9	Ser	Ser 50	Ile	Ser	Tyr	Asp	Ser 55	Ser	Asn	Thr	Tyr	Tyr 60	Ala	Asp	Ser	Val	
	Lys 65	Gly	Arg	Phe	Thr	11e 70	Ser	Arg	Asp	Asn	Ser 75	Lys	Asn	Thr	Leu	Tyr 80	
I	Leu	Gln	Met	Asn	Ser 85	Leu	Arg	Ala	Glu	Asp 90	Thr	Ala	Val	Tyr	Tyr 95	Cys	
,	Ala	Arg	Tyr	Gly 100	Gly	Met	Asp	Tyr	Trp 105	Gly	Gln	Gly	Thr	Leu 110	Val	Thr	
`	۷al	Ser	Ser 115														
<210> 1 <211> 3 <212> A <213> H	27 ADN	sapie	ns														
<400> 1		•															
gatato	gaa	c tg	accc	agcc	ggc	ttca	gtg	agcg	ttgc	ac c	aggt	caga	c cg	cgcg	tatc		60
tcgtgt	agc	g gc	gata	atct	tcg	ttct	aag	tatg	ctca	tt g	gtac	cagc	a ga	aacc	cggg		120
caggcg	jcca	g tt	cttg	tgat	tta	tggt	gat	aata	atcg	tc c	ctca	ggca	t cc	cgga	acgc		180
tttagc	gga	t cc	aaca	gcgg	caa	cacc	gcg	accc	tgac	ca t	tagc	ggca	c tc	aggc	ggaa		240
gacgaa	ıgcg	g at	tatt	attg	ctc	tgct	tat	gcta	tggg	tt c	ttct	cctg	t gt	ttgg	cggc		300
ggcacg	jaag [.]	t ta	accg	ttct	tgg	ccag											327
<210> 1 <211> 1 <212> F <213> F	09 PRT	sapie	ns														
<400> 1	06																

	Asp 1	Ile	Glu	Leu	Thr 5	Gln	Pro	Ala	Ser	Va1 10	Ser	Val	Ala	Pro	Gly 15	Gln	
	Thr	Ala	Arg	Ile 20	Ser	Cys	Ser	Gly	Asp 25	Asn	Leu	Arg	Ser	Lys 30	Tyr	Ala	
	His	Trp	Tyr 35	Gln	Gln	Lys	Pro	Gly 40	Gln	Ala	Pro	Val	Leu 45	Val	Ile	Tyr	
	Gly	Asp 50	Asn	Asn	Arg	Pro	Ser 55	Gly	Ile	Pro	Glu	Arg 60	Phe	Ser	Gly	Ser	
	Asn 65	Ser	Gly	Asn	Thr	Ala 70	Thr	Leu	Thr	Ile	Ser 75	Gly	Thr	Gln	Ala	Glu 80	
	Asp	Glu	Ala	Asp	Tyr 85	Tyr	Cys	Ser	Ala	Tyr 90	Ala	Met	Gly	Ser	Ser 95	Pro	
	Val	Phe	Gly	Gly 100	Gly	Thr	Lys	Leu	Thr 105	Val	Leu	Gly	Gln				
<210> <211> <212> <213>	356 ADN	sapie	ns														
<400>	107																
caggt	gcaa	t tg	gtgg	aaag	cgg	cggc	ggc	ctgg	tgca	ac c	gggc	ggca	g cc	tgcg	tctg		60
agctg	ıcgcg	g cc	tccg	gatt	tac	cttt	tct	tctt	atgg	ta t	gcat	tggg	t gc	gcca	.agcc		120
cctgg	ıgaag	g gt	ctcg	agtg	ggt	gagc	aat	atct	ctta	ta t	gggt	agca	a ta	ccaa	ttat		180
gcgga	tagc	g tg	aaag	gccg	ttt	tacc	att	tcac	gtga	ta a	ttcg	aaaa	a ca	ccct	gtat		240
ctgca	aatg	a ac	agcc	tgcg	tgc	ggaa	gat	acgg	ccgt	gt a	ttat	tgcg	c gc	gtgg	tctt		300
tttcc	tggt	t at	tttg	atta	ttg	gggc	caa	ggca	ccct	gg t	gacg	gtta	g ct	cago			356

5

10

<210> 108 <211> 118 <212> PRT

<213> Homo sapiens

	Gln 1	Val	Gln	Leu	Val 5	Glu	Ser	Gly	Gly	Gly 10	Leu	Val	Gln	Pro	Gly 15	Gly	
	Ser	Leu	Arg	Leu 20	Ser	Cys	Ala	Ala	Ser 25	Gly	Phe	Thr	Phe	Ser 30	Ser	Tyr	
	Gly	Met	His 35	Trp	Val	Arg	Gln	Ala 40	Pro	Gly	Lys	Gly	Leu 45	Glu	Trp	Val	
	Ser	Asn	Ile	Ser	Tyr	Met	Gly	Ser	Asn	Thr	Asn	Tyr	Ala	Asp	Ser	Val	
		50					55			-		60	-				
	Lys 65	Gly	Arg	Phe	Thr	Ile 70	Ser	Arg	Asp	Asn	Ser 75	Lys	Asn	Thr	Leu	Tyr 80	
	Leu	Gln	Met	Asn	Ser 85	Leu	Arg	Ala	Glu	Asp 90	Thr	Ala	Val	Tyr	Tyr 95	Cys	
	Ala	Arg	Gly	Leu 100	Phe	Pro	Gly	Tyr	Phe 105	Asp	Tyr	Trp	Gly	Gln 110	Gly	Thr	
	Leu	Val	Thr 115	Val	Ser	Ser											
<210><211><212><213>	327 ADN	sapie	ens														
<400>	109																
gatat	ccag	a tg	accc	agag	ccc	gtct	agc	ctga	gcgc	ga g	cgtg	ggtg	a tc	gtgt	gacc		60
attac	ctgc	a ga	gcga	gcca	gaa	tatt	tct	aatt	atct	ga a	ttgg	tacc	a gc	agaa	acca		120
ggtaa	agca	c cg	aaac	tatt	aat	ttat	ggt	actt	cttc	tt t	gcaa	agcg	g gg	tccc	gtcc		180
cgttt	tagc	g gc	tctg	gatc	cgg	cact	gat	ttta	ccct	ga c	catt	agca	g cc	tgca	acct		240
gaaga	cttt	g cg	gttt	atta	ttg	ccag	cag	tatg	gtaa	ta a	tcct	acta	c ct	ttgg	ccag		300
ggtac	gaaa	g tt	gaaa	ttaa	acg	tacg											327

5

10

<210> 110 <211> 109

<212> PRT

<213> Homo sapiens

	Asp 1	Ile	Gln	Met	Thr 5	Gln	Ser	Pro	Ser	Ser 10	Leu	Ser	Ala	Ser	Val 15	Gly	
	Asp	Arg	Val	Thr 20	Ile	Thr	Cys	Arg	Ala 25	Ser	Gln	Asn	Ile	Ser 30	Asn	Tyr	
	Leu	Asn	Trp 35	Tyr	Gln	Gln	Lys	Pro 40	Gly	Lys	Ala	Pro	Lys 45	Leu	Leu	Ile	
	Tyr	Gly 50	Thr	Ser	Ser	Leu	G]n 55	Ser	Gly	Val	Pro	Ser 60	Arg	Phe	Ser	Gly	
	Ser 65	Gly	Ser	Gly	Thr	Asp 70	Phe	Thr	Leu	Thr	11e 75	Ser	Ser	Leu	Gln	Pro 80	
	Glu	Asp	Phe	Ala	Val 85	Tyr	Tyr	Cys	Gln	Gln 90	Tyr	Gly	Asn	Asn	Pro 95	Thr	
		Τŀ	ır Ph	ne Gl		In G1 00	ly Tł	ır Ly	/s Vā	al Gl 10		le Ly	/s Aı	- ≏g Tl	nr		
<210> < <211> 3 <212> 7 <213> 1	377 ADN	sapie	ns														
<400>	111																
caggt	gcaa	t tg	caac	agtc	tgg	tccg	ggc	ctgg	tgaa	ac c	gagc	caaa	с сс	tgag	cctg		60
acctg	tgcg	a tt	tccg	gaga	tag	cgtg	agc	tcta	atgg	tg c	tgct	tggg	g tt	ggat	tcgc		120
cagtc	tcct	g gg	cgtg	gcct	cga	gtgg	ctg	ggcc	atat	ct a	ttat	cgta	g ca	agtg	gtat		180

aactcttatg cggtgagcgt gaaaagccgg attaccatca acccggatac ttcgaaaaac

cagtttagcc tgcaactgaa cagcgtgacc ccggaagata cggccgtgta ttattgcgcg

cgttggggtg gtattcatga tggtgatatt tattttgatt attggggcca aggcaccctg

240

300

360

377

<210> 112 <211> 125 10

5

<212> PRT

<213> Homo sapiens

gtgacggtta gctcagc

	Gln 1	Val	Gln	Leu	Gln 5	Gln	Ser	Gly	Pro	Gly 10	Leu	Val	Lys	Pro	Ser 15	Gln	
	Thr	Leu	Ser	Leu 20	Thr	Cys	Ala	Ile	Ser 25	Gly	Asp	Ser	Val	Ser 30	Ser	Asn	
(Gly	Ala	Ala 35	Trp	Gly	Trp	Ile	Arg 40	Gln	Ser	Pro	Gly	Arg 45	Gly	Leu	Glu	
-	Trp	Leu 50	Gly	His	Ile	Tyr	Tyr 55	Arg	Ser	Lys	Trp	Tyr 60	Asn	Ser	Tyr	Ala	
	Va1 65	Ser	Val	Lys	Ser	Arg 70	Ile	Thr	Ile	Asn	Pro 75	Asp	Thr	Ser	Lys	Asn 80	
(Gln	Phe	Ser	Leu	G]n 85	Leu	Asn	Ser	Val	Thr 90	Pro	Glu	Asp	Thr	Ala 95	Val	
-	Tyr	Tyr	Cys	Ala 100	Arg	Trp	Gly	Gly	Ile 105	His	Asp	Gly	Asp	Ile 110	Tyr	Phe	
,	Asp	Tyr	Trp 115	Gly	Gln	Gly	Thr	Leu 120	Val	Thr	Val	Ser	Ser 125				
<210> 1 <211> 3 <212> A <213> F	327 ADN	sapie	ns														
<400> 1	13																
gatato	cag	a tg	accc	agag	ссс	gtct	agc	ctga	gcgc	ga g	cgtg	ggtg	a tc	gtgt	gacc		60
attacc	tgc	a ga	gcga	gcca	gtc	tatt	act	aatt	atct	ga a	ttgg	tacc	a gc	agaa	acca		120
ggtaaa	agca	c cg	aaac	tatt	aat	ttat	gat	gttt	ctaa	tt t	gcaa	agcg	g gg	tccc	gtcc		180
cgtttt	agc	g gc	tctg	gatc	cgg	cact	gat	ttta	ccct	ga c	catt	agca	g cc	tgca	acct		240
gaagac	ttt	g cg	gttt	atta	ttg	ccag	cag	tatt	ctgg	tt a	tcct	ctta	c ct	ttgg	ccag		300
ggtacg	jaaa	g tt	gaaa	ttaa	acg	tacg											327
<210> 1 <211> 1 <212> F <213> F	09 PRT	sapie	ns														
<400> 1	14																

	Asp 1	Ile	Gln	Met	Thr 5	Gln	Ser	Pro	Ser	Ser 10	Leu	Ser	Ala	Ser	val 15	Gly	
	Asp	Arg	Val	Thr 20	Ile	Thr	Cys	Arg	Ala 25	Ser	Gln	Ser	Ile	Thr 30	Asn	Tyr	
	Leu	Asn	Trp 35	Tyr	Gln	Gln	Lys	Pro 40	Gly	Lys	Ala	Pro	Lys 45	Leu	Leu	Ile	
	Tyr	Asp 50	Val	Ser	Asn	Leu	Gln 55	Ser	Gly	Val	Pro	Ser 60	Arg	Phe	Ser	Gly	
	Ser 65	Gly	Ser	Gly	Thr	Asp 70	Phe	Thr	Leu	Thr	Ile 75	Ser	Ser	Leu	Gln	Pro 80	
	Glu	Asp	Phe	Ala	va1 85	Tyr	Tyr	Cys	Gln	G1n 90	Tyr	Ser	Gly	Tyr	Pro 95	Leu	
	Thr	Phe	Gly	Gln 100	Gly	Thr	Lys	Val	Glu 105	Ile	Lys	Arg	Thr				
<210> <211> <212> <213>	362 ADN	sapie	ens														
<400>	115																
caggt	gcaa	t tg	caac	agtc	tgg	tccg	ggc	ctgg	tgaa	ac c	gagc	caaa	с сс	tgag	cctg		60
acctg	tgcg	a tt	tccg	gaga	tag	cgtg	agc	tctt	cttc	tg c	tgct	tggt	c tt	ggat	tcgc		120
cagtc	tcct	g gg	cgtg	gcct	cga	gtgg	ctg	ggca	tgat	ct a	ttat	cgta	g ca	agtg	gtat		180
aacca	ttat	g cg	gtga	gcgt	gaa	aagc	cgg	atta	ccat	ca a	.cccg	gata	c tt	cgaa	aaac		240
cagtt	tagc	c tg	caac	tgaa	cag	cgtg	acc	ccgg	aaga	ta c	ggcc	gtgt	a tt	attg	cgcg		300
cgtgg	tggt	t ct	ggtg	ttat	gga	tgtt	tgg	ggcc	aagg	ca c	cctg	gtga	c gg	ttag	ctca		360
												-					
gc																	362
<210><211><212><212><213>	120 PRT	sapie	ens														

5

10

	Gln 1	Val	Gln	Leu	Gln 5	Gln	Ser	Gly	Pro	Gly 10	Leu	Val	Lys	Pro	Ser 15	Gln	
	Thr	Leu	Ser	Leu 20	Thr	Cys	Ala	Ile	Ser 25	Gly	Asp	Ser	Val	Ser 30	Ser	Ser	
	Ser	Ala	Ala 35	Trp	Ser	Trp	Ile	Arg 40	Gln	Ser	Pro	Gly	Arg 45	Gly	Leu	Glu	
	Trp	Leu 50	Gly	Met	Ile	Tyr	Tyr 55	Arg	Ser	Lys	Trp	Tyr 60	Asn	His	Tyr	Ala	
	val 65	Ser	Val	Lys	Ser	Arg 70	Ile	Thr	Ile	Asn	Pro 75	Asp	Thr	Ser	Lys	Asn 80	
	Gln	Phe	Ser	Leu	G]n 85	Leu	Asn	Ser	Val	Thr 90	Pro	Glu	Asp	Thr	Ala 95	Val	
	Tyr	Tyr	Cys	Ala 100	Arg	Gly	Gly	Ser	Gly 105	Val	Met	Asp	Val	Trp 110	Gly	Gln	
	Gly	Thr	Leu 115	Val	Thr	Val	Ser	Ser 120									
<210> <211> 3 <212> 4 <213>	327 ADN	sapie	ns														
<400>	117																
gatat	ccag	a tg	acco	agag	ссс	gtct	agc	ctga	gcgc	ga g	cgtg	ıggtg	a to	gtgt	gacc		60
attac	ctgc	a ga	.gcga	.gcca	gtc	tatt	aat	cctt	atct	ga a	ttgg	tacc	a gc	agaa	acca		120
ggtaa	agca	c cg	aaac	tatt	aat	ttat	gct	gctt	ctaa	tt t	gcaa	.agcg	ıg gg	itccc	gtcc		180
cgttt	tagc	g gc	tctg	gato	cgg	cact	gat	ttta	.ccct	ga c	catt	agca	g cc	tgca	acct		240
gaaga	cttt	g cg	gttt	atta	ttg	ccag	cag	cttg	ataa	tc g	ttct	atta	.c ct	ttgg	ıccag		300
ggtac	gaaa	g tt	gaaa	ttaa.	acg	tacg											327
<210> <211> <212> <213>	109 PRT	sapie	ens														
<400>	118																

	Asp 1	Ile	Gln	Met	Thr 5	Gln	Ser	Pro	Ser	Ser 10	Leu	Ser	Ala	Ser	val 15	Gly	
	Asp	Arg	Val	Thr 20	Ile	Thr	Cys	Arg	Ala 25	Ser	Gln	Ser	Ile	Asn 30	Pro	Tyr	
	Leu	Asn	Trp 35	Tyr	Gln	Gln	Lys	Pro 40	Gly	Lys	Ala	Pro	Lys 45	Leu	Leu	Ile	
	Tyr	Ala 50	Ala	Ser	Asn	Leu	G1n 55	Ser	Gly	Val	Pro	Ser 60	Arg	Phe	Ser	Gly	
	Ser 65	Gly	Ser	Gly	Thr	Asp 70	Phe	Thr	Leu	Thr	Ile 75	Ser	Ser	Leu	Gln	Pro 80	
	Glu	Asp	Phe	Ala	val 85	Tyr	Tyr	Cys	Gln	G1n 90	Leu	Asp	Asn	Arg	Ser 95	Ile	
	Thr	Phe	Gly	Gln 100	Gly	Thr	Lys	Val	Glu 105	Ile	Lys	Arg	Thr				
<210><211><211><212><213>	371 ADN	sapie	ns														
<400>	119																
caggt	gcaa	t tg	caac	agtc	tgg	tccg	ggc	ctgg	tgaa	ac c	gagc	caaa	с сс	tgag	cctg		60
acctg	tgcg	a tt	tccg	gaga	tag	cgtg	agc	tcta	attc	tg c	tgct	tggg	g tt	ggat	tcgc		120
cagtc	tcct	g gg	cgtg	gcct	cga	gtgg	ctg	ggcg	ttat	ct a	ttat	cgta	g ca	agtg	gtat		180
aacga	ttat	g cg	gtga	gcgt	gaa	aagc	cgg	atta	ccat	ca a	cccg	gata	c tt	cgaa	aaac		240
cagtt	tagc	c tg	caac	tgaa	cag	cgtg	acc	ccgg	aaga	ta c	ggcc	gtgt	a tt	attg	cgcg		300
cgtgc	tcgt	g ct	aaga	agtc	tgg	tggt	ttt	gatt	attg	gg g	ccaa	ggca	с сс	tggt	gacg		360
gttag	ctca	g c															371
<210><211><211><212><213>	123 PRT	sapie	ens														

5

10

	Gln 1	Val	Gln	Leu	Gln 5	Gln	Ser	Gly	Pro	Gly 10	Leu	Val	Lys	Pro	Ser 15	Gln	
-	Thr	Leu	Ser	Leu 20	Thr	Cys	Ala	Ile	Ser 25	Gly	Asp	Ser	Val	Ser 30	Ser	Asn	
9	Ser	Ala	Ala 35	Trp	Gly	Trp	Ile	Arg 40	Gln	Ser	Pro	Gly	Arg 45	Gly	Leu	Glu	
7	Тгр	Leu 50	Gly	Val	Ile	Tyr	Tyr 55	Arg	Ser	Lys	Trp	Tyr 60	Asn	Asp	Tyr	Ala	
	va1 65	Ser	Val	Lys	Ser	Arg 70	Ile	Thr	Ile	Asn	Pro 75	Asp	Thr	Ser	Lys	Asn 80	
(Gln	Phe	Ser	Leu	G1n 85	Leu	Asn	Ser	Val	Thr 90	Pro	Glu	Asp	Thr	Ala 95	Val	
-	Tyr	Tyr	Cys	Ala 100	Arg	Ala	Arg	Ala	Lys 105	Lys	Ser	Gly	Gly	Phe 110	Asp	Tyr	
7	Trp	Gly	Gln 115	Gly	Thr	Leu	Val	Thr 120	Val	Ser	Ser						
<210> 1 <211> 3 <212> A <213> H	30 NDN	sapie	ns														
<400> 1	21																
gatatc	gaa	c tg	accc	agcc	gcc	ttca	gtg	agcg	ttgc	ac c	aggt	caga	c cg	cgcg	tatc		60
tcgtgt	agc	g gc	gatt	ctct	tgg	ttct	aag	tttg	ctca	tt g	gtac	cagc	a ga	aacc	cggg		120
caggcg	ıcca	g tt	cttg	tgat	tta	tgat	gat	tcta	atcg	tc c	ctca	ggca	t cc	cgga	acgc		180
tttagc	gga	t cc	aaca	gcgg	caa	cacc	gcg	accc	tgac	ca t	tagc	ggca	c tc	aggc	ggaa		240
gacgaa	gcg	g at	tatt	attg	ctc	tact	tat	actt	ctcg	tt c	tcat	tctt	a tg	tgtt	tggc		300
ggcggc	acg	a ag	ttaa	ccgt	tct	tggc	cag										330
<210> 1 <211> 1 <212> P <213> H	10 PRT	sapie	ns														
<400> 1	22																

A 1		Ile	Glu	Leu	Thr 5	Gln	Pro	Pro	Ser	Val 10	Ser	Val	Ala	Pro	Gly 15	Gln	
Т	hr .	Ala	Arg	11e 20	Ser	Cys	Ser	Gly	Asp 25	Ser	Leu	Gly	Ser	Lys 30	Phe	Ala	
Н	is	Trp	Tyr 35	Gln	Gln	Lys	Pro	Gly 40	Gln	Ala	Pro	Val	Leu 45	Val	Ile	Tyr	
А		Asp 50	Ser	Asn	Arg	Pro	Ser 55	Gly	Ile	Pro	Glu	Arg 60	Phe	Ser	Gly	Ser	
A 6		Ser	Gly	Asn	Thr	Ala 70	Thr	Leu	Thr	Ile	Ser 75	Gly	Thr	Gln	Ala	Glu 80	
А	sp ·	Glu	Ala	Asp	Tyr	Tyr	Cys	Ser	Thr	Tyr	Thr	Ser	Arg	Ser	His	Ser	
					8	5				9	0		-	-	9	5	
	Ту	/r V	al P		ly G 00	ly G	1у т	hr L		eu T 05	hr V	al L	eu G		ln 10		
<210> 12 <211> 35 <212> AE <213> Ho	50 ON	sapie	ns														
<400> 12	23																
caggtgo	caat	t tg	gtgg	aaag	cgg	cggc	ggc	ctgg	tgca	ac c	gggc	ggca	g cc	tgcg	tctg		60
agctgcg	gcgg	ј сс	tccg	gatt	tac	cttt	tct	tctt	atgc	tt c	ttgg	gtgc	g cc	aagc	ccct		120
gggaagg	ggto	tc	gagt	gggt	gag	cggt	atc	tctg	gtga	tg g	tagc	aata	с сс	atta	tgcg		180
gatagco	gtga	a aa	ggcc	gttt	tac	catt	tca	cgtg	ataa	tt c	gaaa	aaca	с сс	tgta	tctg		240
caaatga	aaca	a gc	ctgc	gtgc	gga	agat	acg	gccg	tgta	tt a	ttgc	gcgc	g tt	atga	taat		300
ttttatt	tttg	g at	gttt	gggg	cca	aggc	acc	ctgg	tgac	gg t	tagc	tcag	С				350

<210> 124

5

10

<211> 116 <212> PRT

<213> Homo sapiens

	Gln 1	Val	Gln	Leu	Val 5	Glu	Ser	Gly	Gly	Gly 10	Leu	Val	Gln	Pro	Gly 15	Gly	
	Ser	Leu	Arg	Leu 20	Ser	Cys	Ala	Ala	Ser 25	Gly	Phe	Thr	Phe	Ser 30	Ser	Tyr	
	Ala	Ser	Trp 35	Val	Arg	Gln	Ala	Pro 40	Gly	Lys	Gly	Leu	Glu 45	Trp	Val	Ser	
	Gly	11e 50	Ser	Gly	Asp	Gly	Ser 55	Asn	Thr	His	Tyr	Ala 60	Asp	Ser	Val	Lys	
	Gly 65	Arg	Phe	Thr	Ile	Ser 70	Arg	Asp	Asn	Ser	Lys 75	Asn	Thr	Leu	Tyr	Leu 80	
	Gln	Met	Asn	Ser	Leu 85	Arg	Ala	Glu	Asp	Thr 90	Ala	Val	Tyr	Tyr	Cys 95	Ala	
	Arg	Tyr	Asp	Asn 100	Phe	Tyr	Phe	Asp	Val 105	Trp	Gly	Gln	Gly	Thr 110	Leu	Val	
	Thr	Val	Ser 115	Ser													
<210> <211> <212> <213>	327 ADN	sapie	ns														
<400>	125																
gatat	cgaa	c tg	accc	agcc	gcc	ttca	gtg	agcg	ttgc	ac c	aggt	caga	c cg	cgcg	tatc		60
tcgtg	tagc	g gc	gata	atat	tgg	ttct	tat	tatg	ctta	tt g	gtac	cagc	a ga	aacc	cggg		120
caggc	gcca	g tt	cttg	tgat	tta	tgat	gat	tcta	atcg	tc c	ctca	ggca	t cc	cgga	acgc		180
tttag	cgga	t cc	aaca	gcgg	caa	cacc	gcg	accc	tgac	ca t	tagc	ggca	c tc	aggc	ggaa		240
gacga	agcg	g at	tatt	attg	cca	gtct	tat	gatt	ctac	tg g	tctt	cttg	t gt	ttgg	cggc		300
ggcac	gaag	t ta	accg	ttct	tgg	ccag											327
<210> <211> <212> <213>	109 PRT	sapie	ens														
<400>	126																

	Asp 1	Ile	Glu	Leu	Thr 5	Gln	Pro	Pro	Ser	Va1 10	Ser	Val	Ala	Pro	Gly 15	Gln	
	Thr	Ala	Arg	Ile 20	Ser	Cys	Ser	Gly	Asp 25	Asn	Ile	Gly	Ser	Tyr 30	Tyr	Ala	
	Tyr	Trp	Tyr 35	Gln	Gln	Lys	Pro	Gly 40	Gln	Ala	Pro	Val	Leu 45	val	Ile	Tyr	
	Asp	Asp 50	Ser	Asn	Arg	Pro	Ser 55	Gly	Ile	Pro	Glu	Arg 60	Phe	Ser	Gly	Ser	
	Asn 65	Ser	Gly	Asn	Thr	Ala 70	Thr	Leu	Thr	Ile	Ser 75	Gly	Thr	Gln	Ala	Glu 80	
	Asp	Glu	Ala	Asp	Tyr 85	Tyr	Cys	Gln	Ser	Туг 90	Asp	Ser	Thr	Gly	Leu 95	Leu	
	Val	Phe	Gly	Gly 100	Gly	Thr	Lys	Leu	Thr 105	Val	Leu	Gly	Gln				
<210> <211> <212> <213>	377 ADN	sapie	ens														
<400>	127																
caggt	gcaa	t tg	gtgg	aaag	cgg	cggc	ggc	ctgg	tgca	ac c	gggc	ggca	g cc	tgcg	tctg		60
agctg	cgcg	g cc	tccg	gatt	tac	cttt	tct	aatt	atgc	ta t	gact	tggg	t gc	gcca	agcc		120
cctgg	gaag	g gt	ctcg	agtg	ggt	gagc	gtt	atct	cttc	tg t	tggt	agca	a ta	ccta	ttat		180
gcgga	tagc	g tg	aaag	gccg	ttt	tacc	att	tcac	gtga	ta a	ttcg	aaaa	a ca	ccct	gtat		240
ctgca	aatg	a ac	agcc	tgcg	tgc	ggaa	gat	acgg	ccgt	gt a	ttat	tgcg	c gc	gtcc	tact		300
aaggc	tggt	c gt	actt	ggtg	gtg	gggt	cct	tata	tgga	tg t	ttgg	ggcc	a ag	gcac	cctg		360
												_					
gtgac	ggtt	a gc	tcag	С													377
<210><211><211><212><213>	125 PRT	sapie	ns														

5

10

	Gln 1	Val	Gln	Leu	Val 5	Glu	Ser	Gly	Gly	Gly 10	Leu	Val	Gln	Pro	Gly 15	Gly	
	Ser	Leu	Arg	Leu 20	Ser	Cys	Ala	Ala	Ser 25	Gly	Phe	Thr	Phe	Ser 30	Asn	Tyr	
	Ala	Met	Thr 35	Trp	Val	Arg	Gln	Ala 40	Pro	Gly	Lys	Gly	Leu 45	Glu	Trp	Val	
	Ser	va1 50	Ile	Ser	Ser	Val	Gly 55	Ser	Asn	Thr	Tyr	Tyr 60	Ala	Asp	Ser	Val	
	Lys 65	Gly	Arg	Phe	Thr	11e 70	Ser	Arg	Asp	Asn	Ser 75	Lys	Asn	Thr	Leu	Tyr 80	
	Leu	Gln	Met	Asn	Ser 85	Leu	Arg	Ala	Glu	Asp 90	Thr	Ala	Val	Tyr	Tyr 95	Cys	
	Ala	Arg	Pro	Thr 100	Lys	Ala	Gly	Arg	Thr 105	Trp	Trp	Trp	Gly	Pro 110	Tyr	Met	
	Asp	Val	Trp 115	Gly	Gln	Gly	Thr	Leu 120	Val	Thr	Val	Ser	Ser 125				
<210><211><211><212><213>	312 ADN	sapie	ens														
<400>		•															
gatat	cgaa	c tg	accc	agcc	gcc	ttca	gtg	agcg	ttgc	ac c	aggt	caga	c cg	cgcg	tatc		60
tcgtg	tagc	g gc	gata	atat	tgg	ttct	tat	tttg	cttc	tt g	gtac	cagc	a ga	aacc	cggg		120
caggo	gcca	g tt	cttg	tgat	tta	tgat	gat	tcta	atcg	tc c	ctca	ggca	t cc	cgga	acgc		180
tttag	ıcgga	t cc	aaca	gcgg	caa	cacc	gcg	accc	tgac	ca t	tagc	ggca	c tc	aggc	ggaa		240
gacga	agcg	g at	tatt	attg	cga	gggt	tct	aatg	tgtt	tg g	cggc	ggca	c ga	agtt	aacc		300
gttct	tggc	c ag															312
<210><211><212><212><213>	104 PRT	sapie	ns														
<400>	130																

Asp Ile Glu Leu Thr Gln Pro Pro Ser Val Ser Val Ala Pro Gly Gln 1 5 10 15
Thr Ala Arg Ile Ser Cys Ser Gly Asp Asn Ile Gly Ser Tyr Phe Ala 20 25 30
Ser Trp Tyr Gln Gln Lys Pro Gly Gln Ala Pro Val Leu Val Ile Tyr 35 40 45
Asp Asp Ser Asn Arg Pro Ser Gly Ile Pro Glu Arg Phe Ser Gly Ser 50 60
Asn Ser Gly Asn Thr Ala Thr Leu Thr Ile Ser Gly Thr Gln Ala Glu 65 70 75 80
Asp Glu Ala Asp Tyr Tyr Cys Glu Gly Ser Asn Val Phe Gly Gly Gly 85 90 95
Thr Lys Leu Thr Val Leu Gly Gln 100
<210> 131 <211> 368 <212> ADN <213> Homo sapiens
<400> 131
caggtgcaat tggttcagag cggcgcggaa gtgaaaaaac cgggcgaaag cctgaaaatt 60
ngctgcaaag gttccggata ttcctttact gattattgga ttggttgggt gcgccagatg 120
cctgggaagg gtctcgagtg gatgggcatt atccagccgt ctgatagcga taccaattat 180
ctccgagct ttcagggcca ggtgaccatt agcgcggata aaagcattag caccgcgtat 240
ttcaatgga gcagcctgaa agcgagcgat acggccatgt attattgcgc gcgttttatg 300
ggtggggta agtatgattc tggttttgat gtttggggcc aaggcaccct ggtgacggtt 360
agctcagc 368
<210> 132 <211> 122 <212> PRT <213> Homo sapiens

5

10

	Gln 1	Val	Gln	Leu	val 5	Gln	Ser	Gly	Ala	Glu 10	Val	Lys	Lys	Pro	Gly 15	Glu	
	Ser	Leu	Lys	Ile 20	Ser	Cys	Lys	Gly	Ser 25	Gly	Tyr	Ser	Phe	Thr 30	Asp	Tyr	
	Trp	Ile	Gly 35	Trp	Val	Arg	Gln	Met 40	Pro	Gly	Lys	Gly	Leu 45	Glu	Trp	Met	
	Gly	Ile 50	Ile	Gln	Pro	Ser	Asp 55	Ser	Asp	Thr	Asn	Tyr 60	Ser	Pro	Ser	Phe	
	Gln 65	Gly	Gln	Val	Thr	Ile 70	Ser	Ala	Asp	Lys	Ser 75	Ile	Ser	Thr	Ala	Tyr 80	
	Leu	Gln	Trp	Ser	Ser 85	Leu	Lys	Ala	Ser	Asp 90	Thr	Ala	Met	Tyr	Tyr 95	Cys	
	Ala	Arg	Phe	Met 100	Trp	Trp	Gly	Lys	Tyr 105	Asp	Ser	Gly	Phe	Asp 110	Val	Trp	
	Gly	Gln	Gly 115	Thr	Leu	Val	Thr	Val 120	Ser	Ser							
<210><211><211><212><213>	327 ADN	sapie	ns														
<400>	133																
gatat	cgaa	c tg	accc	agcc	gcc	ttca	gtg	agcg	ttgc	ac c	aggt	caga	c cg	cgcg [.]	tatc		60
tcgtg	tagc	g gc	gata	atct	tcc	ttct	aag	tctg	ttta	tt g	gtac	cagc	a ga	aacc	cggg		120
caggc	gcca	g tt	cttg	tgat	tta	tggt	gat	aata	atcg	tc c	ctca	ggca	t cc	cgga	acgc		180
tttag	cgga	t cc	aaca	gcgg	caa	cacc	gcg	accc	tgac	ca t	tagc	ggca	c tc	aggc	ggaa		240
gacga	agcg	g at	tatt	attg	cca	gtct	tgg	actt	ctcg	tc c	tatg	gttg	t gt	ttgg	cggc		300
ggcac	gaag	t ta	accg	ttct	tgg	ccag											327
<210><211><211><212><213>	109 PRT	sapie	ns														

5

10

<400> 134

		1	тıе	GIU	Leu	5	GIN	Pro	Pro	ser	10	Ser	vai	Ald	Pro	15	GIN	
		Thr	Ala	Arg	Ile 20	Ser	Cys	Ser	Gly	Asp 25	Asn	Leu	Pro	Ser	Lys 30	Ser	Val	
		Tyr	Trp	Tyr 35	Gln	Gln	Lys	Pro	Gly 40	Gln	Ala	Pro	Val	Leu 45	Val	Ile	Tyr	
		Gly	Asp 50	Asn	Asn	Arg	Pro	Ser 55	Gly	Ile	Pro	Glu	Arg 60	Phe	Ser	Gly	Ser	
		Asn 65	Ser	Gly	Asn	Thr	Ala 70	Thr	Leu	Thr	Ile	Ser 75	Gly	Thr	Gln	Ala	Glu 80	
		Asp	Glu	Ala	Asp	Tyr	Tyr	Cys	Gln	Ser	Trp	Thr	Ser	Arg	Pro	Met	Val	
						8	5				9	0			-	9	5	
		٧	al P	he G		ly G 00	ју т	hr L	ys L	eu T 1	hr V 05	al L	eu G	ly G	ln			
5	<210> (211>) (211>) (212>) (213>)	353 ADN	sapie	ens														
	<220> <221> (<222> (<223>n	(156)	.(156)															
10	<400>	135																
	caggt	gcaa	t tg	gtgg	aaag	cgg	cggc	ggc	ctgg	tgca	ac c	gggc	ggca	g cc	tgcg	tctg		60
	agctg	cgcg	g cc	tccg	gatt	tac	cttt	tct	tctt	attc	ta t	gcat	tggg	t gc	gcca	agcc		120
	cctgg	gaag	g gt	ctcg	agtg	ggt	gagc	ggt	atct	cnta [.]	tt c	ttct	agct	t ta	ccta	ttat		180
	gcgga [.]	tagc	g tg	aaag	gccg	ttt	tacc	att	tcac	gtga [.]	ta a	ttcg	aaaa	a ca	ccct	gtat		240
	ctgca	aatg	a ac	agcc	tgcg	tgc	ggaa	gat	acgg	ccgt	gt a	ttat	tgcg	c gc	gtgc	tctt		300
	ggtgg [.]	tggt	g tt	gatt	attg	ggg	ccaa	ggc	accc	tggt	ga c	ggtt	agct	c ag	С			353
15	<210> < <211> < <212> <213>	117 PRT	sapie	ens														
	<400>	136																

Gln 1	Val	Gln	Leu	Val 5	Glu	Ser	Gly	Gly	Gly 10	Leu	Val	Gln	Pro	Gly 15	Gly
Ser	Leu	Arg	Leu 20	Ser	Cys	Ala	Ala	Ser 25	Gly	Phe	Thr	Phe	Ser 30	Ser	Tyr
Ser	Met	His 35	Trp	Val	Arg	Gln	Ala 40	Pro	Gly	Lys	Gly	Leu 45	Glu	Trp	Val
Ser	Gly 50	Ile	Ser	Tyr	Ser	Ser 55	Ser	Phe	Thr	Tyr	Tyr 60	Ala	Asp	Ser	Val
Lys 65	Gly	Arg	Phe	Thr	Ile 70	Ser	Arg	Asp	Asn	Ser 75	Lys	Asn	Thr	Leu	Tyr 80
Leu	Gln	Met	Asn	Ser 85	Leu	Arg	Ala	Glu	Asp 90	Thr	Ala	Val	Tyr	Tyr 95	Cys
Ala	Arg	Ala	Leu 100	Gly	Gly	Gly	val	Asp 105	Tyr	Trp	Gly	Gln	Gly 110	Thr	Leu
val	Thr	Val	Ser	Ser											

115

<210> 137 <211> 327 <212> ADN <213> Homo sapiens

<400> 137

5

10

gatatccaga tgacccagag cccgtctagc ctgagcgcga gcgtgggtga tcgtgtgacc 60
attacctgca gagcgagcca gggtatttct tcttatctgc attggtacca gcagaaacca 120
ggtaaagcac cgaaactatt aatttatggt gcttctactt tgcaaagcgg ggtcccgtcc 180
cgttttagcg gctctggatc cggcactgat tttaccctga ccattagcag cctgcaacct 240
gaagactttg cgacttatta ttgccagcag cagaatggtt atcctttac ctttggccag 300
ggtacgaaag ttgaaattaa acgtacg 327

<210> 138 <211> 109

<212> PRT

<213> Homo sapiens

	Asp 1	Ile	Gln	Met	Thr 5	Gln	Ser	Pro	Ser	Ser 10	Leu	Ser	Ala	Ser	val 15	Gly	
	Asp	Arg	Val	Thr 20	Ile	Thr	Cys	Arg	Ala 25	Ser	Gln	Gly	Ile	Ser 30	Ser	Tyr	
	Leu	His	Trp 35	Tyr	Gln	Gln	Lys	Pro 40	Gly	Lys	Ala	Pro	Lys 45	Leu	Leu	Ile	
	Tyr	Gly 50	Ala	Ser	Thr	Leu	Gln 55	Ser	Gly	Val	Pro	Ser 60	Arg	Phe	Ser	Gly	
	Ser 65	Gly	Ser	Gly	Thr	Asp 70	Phe	Thr	Leu	Thr	Ile 75	Ser	Ser	Leu	Gln	Pro 80	
	Glu	Asp	Phe	Ala	Thr 85	Tyr	Tyr	Cys	Gln	G]n 90	Gln	Asn	Gly	Tyr	Pro 95	Phe	
	Thr	Phe	Gly	Gln 100	Gly	Thr	Lys	Val	Glu 105	Ile	Lys	Arg	Thr				
<210><211><211><212><213>	374 ADN	sapie	ens														
<400>	139																
caggt	gcaa	t tg	caac	agtc	tgg	tccg	ggc	ctgg	tgaa	ac c	gagc	caaa	с сс	tgag	cctg		60
acctg	tgcg	a tt	tccg	gaga	tag	cgtg	agc	tcta	attc	tg g	tggt	tggg	g tt	ggat	tcgc		120
cagtc	tcct	g gg	cgtg	gcct	cga	gtgg	ctg	ggcc	ttat	ct a	ttat	cgta	g ca	agtg	gtat		180
																	240
aacgc					-	_					_	_		_			240
cagtt																	300
cgtta				attt	ττα	τgττ	τατ	tctg	atgt	tt g	gggc	caag	g ca	CCCT	ggtg		360
acggt	_	t ca	gc														374
<210><211><211><212><213>	124 PRT	sapie	ns														
<400>	140																

	Gln 1	Val	Gln	Leu	Gln 5	Gln	Ser	Gly	Pro	Gly 10	Leu	Val	Lys	Pro	Ser 15	Gln	
	Thr	Leu	Ser	Leu 20	Thr	Cys	Ala	Ile	Ser 25	Gly	Asp	Ser	Val	Ser 30	Ser	Asn	
	Ser	Gly	Gly 35	Trp	Gly	Trp	Ile	Arg 40	Gln	Ser	Pro	Gly	Arg 45	Gly	Leu	Glu	
	Trp	Leu 50	Gly	Leu	Ile	Tyr	Tyr 55	Arg	Ser	Lys	Trp	Tyr 60	Asn	Ala	Tyr	Ala	
	Va1 65	Ser	Val	Lys	Ser	Arg 70	Ile	Thr	Ile	Asn	Pro 75	Asp	Thr	Ser	Lys	Asn 80	
	Gln	Phe	Ser	Leu	Gln 85	Leu	Asn	Ser	Val	Thr 90	Pro	Glu	Asp	Thr	Ala 95	Val	
	Tyr	Tyr	Cys	Ala 100	Arg	Tyr	Leu	Gly	Ser 105	Asn	Phe	Tyr	Val	Tyr 110	Ser	Asp	
	Val	Trp	Gly 115	Gln	Gly	Thr	Leu	Val 120	Thr	۷al	Ser	Ser					
<210><211><211><212><213>	327 ADN	sapie	ns														
<400>	141																
gatat	ccag	a tg	accc	agag	ccc	gtct	agc	ctga	gcgc	ga g	cgtg	ıggtg	a to	gtgt	gacc		60
attac	ctgc	a ga	.gcga	gcca	gaa	.tatt	cat	tctc	atct	ga a	ttgg	tacc	a gc	agaa	acca		120
ggtaa	.agca	.c cg	aaac	tatt	aat	ttat	gat	gctt	cttc	tt t	gcaa	agcg	g gg	itccc	gtcc		180
cgttt	tago	g gc	tctg	gato	cgg	cact	gat	ttta	.ccct	ga c	catt	agca	g cc	tgca	acct		240
gaaga	cttt	g cg	gttt	atta	ttg	ccag	cag	tatt	atga	tt a	tcct	ctta	.c ct	ttgg	ccag	l	300
ggtac	gaaa	g tt	gaaa	ttaa	acg	tacg											327
<210> <211> <212> <213>	109 PRT	sapie	ens														
<400>	142																

	Asp 1	Ile	Gln	Met	Thr 5	Gln	Ser	Pro	Ser	Ser 10	Leu	Ser	Ala	Ser	Val 15	Gly	
	Asp	Arg	Val	Thr 20	Ile	Thr	Cys	Arg	Ala 25	Ser	Gln	Asn	Ile	His 30	Ser	His	
	Leu	Asn	Trp 35	Tyr	Gln	Gln	Lys	Pro 40	Gly	Lys	Ala	Pro	Lys 45	Leu	Leu	Ile	
	Tyr	Asp 50	Ala	Ser	Ser	Leu	G]n 55	Ser	Gly	Val	Pro	Ser 60	Arg	Phe	Ser	Gly	
	Ser 65	Gly	Ser	Gly	Thr	Asp 70	Phe	Thr	Leu	Thr	11e 75	Ser	Ser	Leu	Gln	Pro 80	
	Glu	Asp	Phe	Ala	val 85	Tyr	Tyr	Cys	Gln	Gln 90	Tyr	Tyr	Asp	Tyr	Pro 95	Leu	
	Thr	Phe	Gly	Gln 100	Gly	Thr	Lys	Val	Glu 105	Ile	Lys	Arg	Thr				
<210><211><211><212><213>	353 ADN	sapie	ns														
<400>	143																
caggt	gcaa	t tg	ıgtgg	aaag	cgg	cggc	ggc	ctgg	tgca	ac c	gggc	ggca	g cc	tgcg	tctg		60
agctg	cgcg	g cc	tccg	gatt	tac	cttt	tct	tctt	attc	ta t	gtct	tggg	t gc	gcca	agcc		120
cctgg	gaag	g gt	ctcg	agtg	ggt	gagc	tct	atct	cttc	tt c	ttct	agca	a ta	ccta	ttat		180
gggga	tagc	g tg	aaag	gccg	ttt	tacc	att	tcac	gtga	ta a	ttcg	aaaa	a ca	ccct	gtat		240
ctgca	.aatg	a ac	agcc	tgcg	tgc	ggaa	gat	acgg	ccgt	gt a	ttat	tgcg	c gc	gtat	gcat		300
tataa	gggt	a tg	gata	tttg	ggg	ccaa	ggc	accc	tggt	ga c	ggtt	agct	c ag	С			353
<210><211><211><212><213>	117 PRT	sapie	ns														
<400>	144																
	Gln 1	Val	Gln	Leu	Val 5	Glu	Ser	Gly	Gly	Gly 10	Leu	Val	Gln	Pro	Gly 15	Gly	
	Ser	Leu	Arg	Leu 20	Ser	Cys	Ala	Ala	Ser 25	Gly	Phe	Thr	Phe	Ser 30	Ser	Tyr	

	Ser	Met	Ser 35	Trp	Val	Arg	Gln	Ala 40	Pro	Gly	Lys	Gly	Leu 45	Glu	Trp	Val	
	Ser	Ser 50	Ile	Ser	Ser	Ser	Ser 55	Ser	Asn	Thr	Tyr	Tyr 60	Gly	Asp	Ser	Val	
	Lys 65	Gly	Arg	Phe	Thr	11e 70	Ser	Arg	Asp	Asn	Ser 75	Lys	Asn	Thr	Leu	Tyr 80	
	Leu	Gln	Met	Asn	Ser 85	Leu	Arg	Ala	Glu	Asp 90	Thr	Ala	Val	Tyr	Tyr 95	Cys	
	Ala	Arg	Met	ніs 100	Tyr	Lys	Gly	Met	Asp 105	Ile	Trp	Gly	Gln	Gly 110	Thr	Leu	
	Val	Thr	Val 115	Ser	Ser												
<210><211><211><212><213>	324 ADN	sapie	ns														
<400>	145	-															
gatat	cgaa	c tg	accc	agcc	gcc	ttca	gtg	agcg	ttgc	ac c	aggt	caga	c cg	cgcg	tatc		60
tcgtg	tagc	g gc	gata	agct	tgg	taag	tat	tatg	ctta	tt g	gtac	cagc	a ga	aacc	cggg		120
caggc	gcca	g tt	cttg	tgat	tta	tggt	gat	tcta	agcg	tc c	ctca	ggca	t cc	cgga	acgc		180
tttag	cgga	t cc	aaca	gcgg	caa	cacc	gcg	accc	tgac	ca t	tagc	ggca	c tc	aggc	ggaa		240
gacga	agcg	g at	tatt	attg	ctc	ttct	gct	gctt	ttgg	tt c	tact	gtgt	t tg	gcgg	cggc		300
acgaa	gtta	а сс	gttc	ttgg	cca	g											324
<210><211><212><212><213>	108 PRT	sapie	ns														

5

10

Asp 1	Ile	Glu	Leu	Thr 5	Gln	Pro	Pro	Ser	Val 10	Ser	Val	Ala	Pro	Gly 15	Gln
Thr	Ala	Arg	Ile 20	Ser	Cys	Ser	Gly	Asp 25	Lys	Leu	Gly	Lys	Tyr 30	Tyr	Ala
Tyr	Trp	Tyr 35	Gln	Gln	Lys	Pro	Gly 40	Gln	Ala	Pro	Val	Leu 45	Val	Ile	Tyr
Gly	Asp 50	Ser	Lys	Arg	Pro	Ser 55	Gly	Ile	Pro	Glu	Arg 60	Phe	Ser	Gly	Ser
Asn	Ser	Gly	Asn	Thr	Ala	Thr	Leu	Thr	Ile	Ser	Gly	Thr	Gln	Ala	Glu
65					70				-	75		-			80
Asp	Glu	Ala	Asp	Tyr 85	Tyr	Cys	Ser	Ser	Ala 90	Ala	Phe	Gly	Ser	Thr 95	Val
Phe	Gly	Gly	Gly 100	Thr	Lys	Leu	Thr	Val 105	Leu	Gly	Gln				

<210> 147

<211> 350

<212> ADN

5

10

<213> Homo sapiens

<400> 147

caggtgcaat tggtggaaag cggcggcgc ctggtgcaac cgggcggcag cctgcgtctg 60
agctgcgcgg cctccggatt tacctttaat tcttattata tgtcttgggt gcgccaagcc 120
cctgggaagg gtctcgagtg ggtgagcaat atctcttctt ctggtagcaa taccaattat 180
gcggatagcg tgaaaggccg ttttaccatt tcacgtgata attcgaaaaa caccctgtat 240
ctgcaaatga acagcctgcg tgcggaagat acggccgtgt attattgcgc gcgtgttcat 300
tatggttttg attttgggg ccaaggcacc ctggtgacgg ttagctcagc 350

<210> 148

<211> 116

<212> PRT

<213> Homo sapiens

	Gln 1	Val	Gln	Leu	Val 5	Glu	Ser	Gly	Gly	Gly 10	Leu	Val	Gln	Pro	Gly 15	Gly	
	Ser	Leu	Arg	Leu 20	Ser	Cys	Ala	Ala	Ser 25	Gly	Phe	Thr	Phe	Asn 30	Ser	Tyr	
	Tyr	Met	Ser 35	Trp	Val	Arg	Gln	Ala 40	Pro	Gly	Lys	Gly	Leu 45	Glu	Trp	Val	
	Ser	Asn 50	Ile	Ser	Ser	Ser	Gly 55	Ser	Asn	Thr	Asn	Tyr 60	Ala	Asp	Ser	Val	
	Lys 65	Gly	Arg	Phe	Thr	11e 70	Ser	Arg	Asp	Asn	Ser 75	Lys	Asn	Thr	Leu	Tyr 80	
	Leu	Gln	Met	Asn	Ser 85	Leu	Arg	Ala	Glu	Asp 90	Thr	Ala	Val	Tyr	Tyr 95	Cys	
	Ala	Arg	Val	ніs 100	Tyr	Gly	Phe	Asp	Phe 105	Trp	Gly	Gln	Gly	Thr 110	Leu	Val	
	Thr	Val	Ser 115	Ser													
<210> 1 <211> 3 <212> / <213> H	327 ADN	sapie	ns														
<400> 1	149																
gatato	gaa	c tg	accc	agcc	gcc	ttca	gtg	agcg	ttgc	ac c	aggt	caga	c cg	cgcg	tatc		60
tcgtgt	tagc	g gc	gatg	ctct	tgg	ttct	aag	tttg	ctca	tt g	gtac	cagc	a ga	aacc	cggg		120
caggcg	gcca	g tt	cttg	tgat	tta	tgat	gat	tctg	agcg	tc c	ctca	ggca	t cc	cgga	acgc		180
tttago	gga	t cc	aaca	gcgg	caa	cacc	gcg	accc	tgac	ca t	tagc	ggca	c tc	aggc	ggaa		240
gacgaa	agcg	g at	tatt	attg	cca	ggct	tat	gatt	ctgg	tc t	tctt	tatg	t gt	ttgg	cggc		300
ggcacg	gaag	t ta	accg	ttct	tgg	ccag											327
<210> 1 <211> 1 <212> F <213> H	109 PRT	sapie	ns														
<400> 1	150																

As 1	sp :	Ile	Glu	Leu	Thr 5	Gln	Pro	Pro	Ser	va1 10	Ser	Val	Ala	Pro	Gly 15	Gln	
Τŀ	ır /	Ala	Arg	Ile 20	Ser	Cys	Ser	Gly	Asp 25	Ala	Leu	Gly	Ser	Lys 30	Phe	Ala	
Hi	is ⁻	Тгр	Tyr 35	Gln	Gln	Lys	Pro	Gly 40	Gln	Ala	Pro	Val	Leu 45	Val	Ile	Tyr	
As	-	Asp 50	Ser	Glu	Arg	Pro	Ser 55	Gly	Ile	Pro	Glu	Arg 60	Phe	Ser	Gly	Ser	
As 65		Ser	Gly	Asn	Thr	Ala 70	Thr	Leu	Thr	Ile	Ser 75	Gly	Thr	Gln	Ala	Glu 80	
As	sp (Glu	Ala	Asp	Tyr 85	Tyr	Cys	Gln	Ala	Tyr 90	Asp	Ser	Gly	Leu	Leu 95	Tyr	
Vā	al I	Phe	Gly	Gly 100	Gly	Thr	Lys	Leu	Thr 105	Val	Leu	Gly	Gln				
<210> 157 <211> 359 <212> AD <213> Ho	9 N	sapie	ns														
<400> 15	1																
caggtgc	aat	: tg	gtgg	aaag	cgg	cggc	ggc	ctgg	tgca	ac c	gggc	ggca	g cc	tgcg	tctg		60
agctgcg	cgg	, cc	tccg	gatt	tac	cttt	cgt	aatt	atgo	ta t	gaat	tggg	t gc	gcca	agcc		120
cctggga	agg	j gt	ctcg	agtg	ggt	gagc	gtt	atct	ctgg	tt c	ttct	agct	a ta	ccta	ttat		180
gcggata	gcg	j tg	aaag	gccg	ttt	tacc	att	tcac	gtga	ta a	ttcg	aaaa -	a ca	ccct	gtat		240
ctgcaaa	tga	ı ac	agcc	tgcg	tgc	ggaa	gat	acgg	ccgt	gt a	ttat	tgcg	c gc	gtgc	tgat		300
cttcctt	ata	ιtg	gttt	ttga	tta	ttgg	ggc	caag	gcac	cc t	ggtg	acgg	t ta	gctc	agc		359
<210> 152 <211> 119 <212> PR <213> Ho	9 !T	sapie	ns														
<400> 152	2																

G1 1	n '	Val	Gln	Leu	val 5	Glu	Ser	Gly	Gly	Gly 10	Leu	Val	Gln	Pro	Gly 15	Gly	
Se	r	Leu	Arg	Leu 20	Ser	Cys	Ala	Ala	Ser 25	Gly	Phe	Thr	Phe	Arg 30	Asn	Tyr	
ΑΊ	a I	Met	Asn 35	Trp	Val	Arg	Gln	Ala 40	Pro	Gly	Lys	Gly	Leu 45	Glu	Trp	Val	
Se		Val 50	Ile	Ser	Gly	Ser	Ser 55	Ser	Tyr	Thr	Tyr	Tyr 60	Ala	Asp	Ser	Val	
Ly 65		Gly	Arg	Phe	Thr	11e 70	Ser	Arg	Asp	Asn	Ser 75	Lys	Asn	Thr	Leu	туr 80	
Le	u	Gln	Met	Asn	Ser 85	Leu	Arg	Ala	Glu	Asp 90	Thr	Ala	Val	Tyr	Tyr 95	Cys	
ΑΊ	a .	Arg	Ala	Asp 100	Leu	Pro	Tyr	Met	Val 105	Phe	Asp	Tyr	Trp	Gly 110	Gln	Gly	
Th	r	Leu	Va1 115	Thr	۷al	Ser	Ser										
<210> 153 <211> 324 <212> ADI <213> Hor	N	sapie	ns														
<400> 153	i																
gatatcga	aac	t tg	accc	agcc	gcc	ttca	gtg	agcg	ttgc	ac c	aggt	caga	c cg	cgcg	tatc		60
tcgtgtag	gcg	g gc	gatg	ctct	tgg	taag	tat	tatg	cttc	tt g	gtac	cagc	a ga	.aacc	cggg		120
caggcgc	cag	j tt	cttg	tgat	tta	tggt	gat	aata	agcg	tc c	ctca	ggca	t cc	cgga	acgc		180
tttagcgg	gat	с сс	aaca	gcgg	caa	cacc	gcg	accc	tgac	ca t	tagc	ggca	c tc	aggc	ggaa		240
gacgaag	cgg	g at	tatt	attg	cca	gtct	tat	acta	ctcg	tt c	tctt	gtgt	t tg	gcgg	cggc		300
acgaagt	taa	а сс	gttc	ttgg	cca	g											324
<210> 154 <211> 108 <212> PR <213> Hor	Г	sapie	ns														

5

10

	Asp 1	Ile	Glu	Leu	Thr 5	Gln	Pro	Pro	Ser	Val 10	Ser	Val	Ala	Pro	Gly 15	Gln	
	Thr	Ala	Arg	Ile 20	Ser	Cys	Ser	Gly	Asp 25	Ala	Leu	Gly	Lys	Tyr 30	Tyr	Ala	
	Ser	Trp	Tyr 35	Gln	Gln	Lys	Pro	Gly 40	Gln	Ala	Pro	Val	Leu 45	Val	Ile	Tyr	
	Gly	Asp 50	Asn	Lys	Arg	Pro	Ser 55	Gly	Ile	Pro	Glu	Arg 60	Phe	Ser	Gly	Ser	
	Asn 65	Ser	Gly	Asn	Thr	Ala 70	Thr	Leu	Thr	Ile	Ser 75	Gly	Thr	Gln	Ala	Glu 80	
	Asp	Glu	Ala	Asp	Tyr 85	Tyr	Cys	Gln	Ser	Tyr 90	Thr	Thr	Arg	Ser	Leu 95	Val	
	Phe	Gly	Gly	Gly 100	Thr	Lys	Leu	Thr	Val 105	Leu	Gly	Gln					
<210><211><211><212><213>	353 ADN	sapie	ens														
<400>	155																
caggt	gcaa	t tg	ıgtgg	aaag	cgg	cggc	ggc	ctgg	tgca	ac c	gggc	ggca	g cc	tgcg	ıtctg	l	60
agctg	cgcg	g cc	tccg	gatt	tac	cttt	tct	tctt	atgg	ta t	gtct	tggg	ıt gc	gcca	agcc		120
cctgg	gaag	g gt	ctcg	agtg	ggt	gagc	ctt	atct	ctgg	tg t	ttct	agct	c ta	ıccta	ittat	:	180
gcgga	.tagc	g tg	jaaag	gccg	ttt	tacc	att	tcac	gtga	ta a	ttcg	aaaa	a ca	ccct	gtat		240
ctgca	aatg	a ac	agcc	tgcg	tgc	ggaa	.gat	acgg	ccgt	gt a	ttat	tgcg	ıc gc	gttc	ttat		300
cttgg	ttat	t tt	gatg	itttg	ggg	ccaa	.ggc	acco	tggt	ga c	ggtt	agct	c ag	JC			353
<210><211><211><212><213>	117 PRT	sapie	ens														
<400>	156																
	Gln 1	Val	Gln	Leu	val 5	Glu	Ser	Gly	Gly	Gly 10	Leu	Val	Gln	Pro	Gly 15	Gly	
	Ser	Leu	Arg	Leu 20	Ser	Cys	Ala	Ala	Ser 25	Gly	Phe	Thr	Phe	Ser 30	Ser	Tyr	
	Gly	Met	Ser 35	Trp	Val	Arg	Gln	Ala 40	Pro	Gly	Lys	Gly	Leu 45	Glu	Trp	Val	

Ser Leu Ile Ser Gly Val Ser Ser Ser Thr Tyr Tyr Ala Asp Ser Val Lys Gly Arg Phe Thr Ile Ser Arg Asp Asn Ser Lys Asn Thr Leu Tyr 75 Leu Gln Met Asn Ser Leu Arg Ala Glu Asp Thr Ala Val Tyr Tyr Gys 95 Cys Ala Arg Ser Tyr Leu Gly Tyr Phe Asp Val Trp Gly Gln Gly Thr Leu 167 115 Ser Ser 1157 342 ADN

<210> 157

<211> 342

<212> ADN

5

10

<213> Homo sapiens

<400> 157

gatatcgtga tgacccagag cccactgagc ctgccagtga ctccgggcga gcctgcgagc 60
attagctgca gaagcagcca aagcctggtt ttttctgatg gcaatactta tctgaattgg 120
taccttcaaa aaccaggtca aagcccgcag ctattaattt ataagggttc taatcgtgcc 180
agtggggtcc cggatcgttt tagcggctct ggatccggca ccgattttac cctgaaaatt 240
agccgtgtgg aagctgaaga cgtgggcgtg tattattgcc agcagtatga ttcttatcct 300
cttacctttg gccagggtac gaaagttgaa attaaacgta cg 342

<210> 158

<211> 114

<212> PRT

<213> Homo sapiens

	Asp 1	Ile	Val	Met	Thr 5	Gln	Ser	Pro	Leu	Ser 10	Leu	Pro	Val	Thr	Pro 15	Gly	
	Glu	Pro	Ala	Ser 20	Ile	Ser	Cys	Arg	Ser 25	Ser	Gln	Ser	Leu	Va1 30	Phe	Ser	
	Asp	Gly	Asn 35	Thr	Tyr	Leu	Asn	Trp 40	Tyr	Leu	Gln	Lys	Pro 45	Gly	Gln	Ser	
	Pro	G1n 50	Leu	Leu	Ile	Tyr	Lys 55	Gly	Ser	Asn	Arg	Ala 60	Ser	Gly	Val	Pro	
	Asp 65	Arg	Phe	Ser	Gly	Ser 70	Gly	Ser	Gly	Thr	Asp 75	Phe	Thr	Leu	Lys	Ile 80	
	Ser	Arg	Val	Glu	Ala	Glu	Asp	Val	Gly	Val	Tyr	Tyr	Cys	Gln	Gln	Tyr	
					85					90			-		95		
	Asp	Ser	Tyr	Pro 100	Leu	Thr	Phe	Gly	Gln 105	Gly	Thr	Lys	Val	Glu 110	Ile	Lys	
	Arg	Thr															
<210> 1 <211> 3 <212> 7 <213> 1	371 ADN	sapie	ns														
<400>	159																
caggt	gcaa	t tg	caac	agto	tgg	tccg	ggc	ctgg	tgaa	ac c	gagc	caaa	.c cc	tgag	cctg		60
acctg	tgcg	a tt	tccg	gaga	. tag	cgtg	agc	tcta	atto	tg c	tgct	tggt	c tt	ggat	tcgc		120
cagtc	tcct	g gg	cgtg	gcct	cga	gtgg	ctg	ggca	ttat	ct a	taag	cgta	g ca	agtg	gtat		180
aacga [.]	ttat	g cg	gtga	gcgt	gaa	.aagc	cgg	atta	ccat	ca a	.cccg	gata	c tt	cgaa	.aaac		240
cagtt [.]	tagc	c tg	caac	tgaa	cag	cgtg	acc	ccgg	aaga	ta c	ggcc	gtgt	a tt	attg	cgcg		300
cgttg	gcat	t ct	gata	agca	ttg	gggt	ttt	gatt	attg	gg g	ccaa	.ggca	.c cc	tggt	gacg		360
gttag	ctca	g c															371
<210> 7 <211> 7 <212> I <213> I	123 PRT	sapie	ns														
<400>	160																

	Gln 1	Val	Gln	Leu	Gln 5	Gln	Ser	Gly	Pro	Gly 10	Leu	Val	Lys	Pro	Ser 15	Gln	
	Thr	Leu	Ser	Leu 20	Thr	Cys	Ala	Ile	Ser 25	Gly	Asp	Ser	Val	Ser 30	Ser	Asn	
	Ser	Ala	Ala 35	Trp	Ser	Trp	Ile	Arg 40	Gln	Ser	Pro	Gly	Arg 45	Gly	Leu	Glu	
	Trp	Leu 50	Gly	Ile	Ile	Tyr	Lys 55	Arg	Ser	Lys	Trp	Tyr 60	Asn	Asp	Tyr	Ala	
	val 65	Ser	Val	Lys	Ser	Arg 70	Ile	Thr	Ile	Asn	Pro 75	Asp	Thr	Ser	Lys	Asn 80	
	Gln	Phe	Ser	Leu	G]n 85	Leu	Asn	Ser	Val	Thr 90	Pro	Glu	Asp	Thr	Ala 95	Val	
	Tyr	Tyr	Cys	Ala 100	Arg	Trp	His	Ser	Asp 105	Lys	His	Trp	Gly	Phe 110	Asp	Tyr	
	Trp	Gly	Gln	Gly	Thr	Leu	Val	Thr	۷al	Ser	Ser						
						115					120						
<210> <211> <212> <213>	327 ADN	sapie	ens														
<400>	161																
gatat	cgaa	c tg	accc	agcc	gcc	ttca	gtg	agcg	ttgc	ac c	aggt	caga	c cg	cgcg	tatc		60
tcgtg	tagc	g gc	gatg	ctct	tgg	ttct	aag	tatg	tttc	tt g	gtac	cagc	a ga	aacc	cggg		120
caggc	gcca	g tt	cttg	tgat	tta	tggt	gat	aata	agcg	tc c	ctca	ggca	t cc	cgga	acgc		180
tttag	cgga	t cc	aaca	gcgg	caa	cacc	gcg	accc	tgac	ca t	tagc	ggca	c tc	aggc	ggaa		240
gacga	agcg	g at	tatt	attg	cca	gtct	tat	actt	attc	tc t	taat	cagg	t gt	ttgg	cggc		300
ggcac	gaag	t ta	accg	ttct	tgg	ccag											327
<210><211><211><212><213>	109 PRT	sapie	ens														
<400>	162																

	Asp 1	Ile	Glu	Leu	Thr 5	Gln	Pro	Pro	Ser	Val 10	Ser	Val	Ala	Pro	Gly 15	Gln	
	Thr	Ala	Arg	11e 20	Ser	Cys	Ser	Gly	Asp 25	Ala	Leu	Gly	Ser	Lys 30	Tyr	Val	
	Ser	Тгр	Tyr 35	Gln	Gln	Lys	Pro	Gly 40	Gln	Ala	Pro	Val	Leu 45	Val	Ile	Tyr	
	Gly	Asp 50	Asn	Lys	Arg	Pro	Ser 55	Gly	Ile	Pro	Glu	Arg 60	Phe	Ser	Gly	Ser	
	Asn 65	Ser	Gly	Asn	Thr	Ala 70	Thr	Leu	Thr	Ile	Ser 75	Gly	Thr	Gln	Ala	Glu 80	
	Asp	Glu	Ala	Asp	Tyr 85	Tyr	Cys	Gln	Ser	Tyr 90	Thr	Tyr	Ser	Leu	Asn 95	Gln	
	Val	Phe	Gly	Gly 100	Gly	Thr	Lys	Leu	Thr 105	Val	Leu	Gly	Gln				
<210> 7 <211> 3 <212> 7 <213> 1	356 ADN	sapie	ns														
<400>	163																
caggt	gcaa	t tg	gtgg	aaag	cgg	cggc	ggc	ctgg	tgca	ac c	gggc	ggca	g cc	tgcg	tctg		60
agctg	cgcg	g cc	tccg	gatt	tac	cttt	aat	gatt	atgc	ta t	gtct	tggg	t gc	gcca	agcc		120
cctgg	gaag	g gt	ctcg	agtg	ggt	gagc	ctt	atcg	agtc	tg t	ttct	agct	c ta	ccta	ttat		180
gcgga [.]	tagc	g tg	aaag	gccg	ttt	tacc	att	tcac	gtga	ta a	ttcg	aaaa	a ca	ccct	gtat		240
ctgca	aatg	a ac	agcc	tgcg	tgc	ggaa	gat	acgg	ccgt	gt a	ttat	tgcg	c gc	gtac	tatt		300
ggtgt	tctt	t gg	gatg	atgt	ttg	gggc	caa	ggca	ccct	gg t	gacg	gtta	g ct	cagc			356
<210> ° <211> ° <212> I <213> I	118 PRT	sapie	ns														

5

10

<400> 164

G 1		Val	Gln	Leu	Val 5	Glu	Ser	Gly	Gly	Gly 10	Leu	Val	Gln	Pro	Gly 15	Gly	
S	Ser	Leu	Arg	Leu 20	Ser	Cys	Ala	Ala	Ser 25	Gly	Phe	Thr	Phe	Asn 30	Asp	Tyr	
А	Ala	Met	Ser 35	Trp	Val	Arg	Gln	Ala 40	Pro	Gly	Lys	Gly	Leu 45	Glu	Trp	Val	
S	Ser	Leu 50	Ile	Glu	Ser	Val	Ser 55	Ser	Ser	Thr	Tyr	Tyr 60	Ala	Asp	Ser	Val	
	_ys 55	Gly	Arg	Phe	Thr	11e 70	Ser	Arg	Asp	Asn	Ser 75	Lys	Asn	Thr	Leu	Tyr 80	
L	_eu	Gln	Met	Asn	Ser 85	Leu	Arg	Ala	Glu	Asp 90	Thr	Ala	Val	Tyr	Tyr 95	Cys	
А	Ala	Arg	Thr	Ile 100	Gly	Val	Leu	Trp	Asp 105	Asp	Val	Trp	Gly	Gln 110	Gly	Thr	
L	-eu	۷al	Thr 115	Val	Ser	Ser											
<210> 16 <211> 32 <212> Al <213> Ho	24 DN	sapie	ns														
<400> 16	65																
gatato	gaa	c tg	accc	agcc	gcc	ttca	.gtg	agcg	ttgc	ac c	aggt	caga	.c cg	cgcg	tatc		60
tcgtgt	agc	g gc	gata	agct	tgg	ttct	aag	tctg	ttca	tt g	gtac	cago	a ga	.aacc	cggg		120
caggcg	cca	g tt	cttg	tgat	tta	tcgt	gat	actg	atcg	tc c	ctca	.ggca	t cc	cgga	acgc		180
tttagc	gga [.]	t cc	aaca	gcgg	caa	cacc	gcg	accc	tgac	ca t	tago	ggca	c to	aggc	ggaa		240
gacgaa	gcg	g at	tatt	attg	cca	gact	tat	gatt	atat	tc t	taat	gtgt	t tg	gcgg	ıcggc		300
acgaag	tta	а сс	gttc	ttgg	cca	g											324
<210> 16 <211> 10 <212> PI <213> He	08 RT	sapie	ns														
<400> 16	66																

	Asp 1	Ile	Glu	Leu	Thr 5	Gln	Pro	Pro	Ser	val 10	Ser	Val	Ala	Pro	Gly 15	Gln	
	Thr	Ala	Arg	11e 20	Ser	Cys	Ser	Gly	Asp 25	Lys	Leu	Gly	Ser	Lys 30	Ser	Val	
	His	Trp	Tyr 35	Gln	Gln	Lys	Pro	G]y 40	Gln	Ala	Pro	Val	Leu 45	Val	Ile	Tyr	
	Arg	Asp 50	Thr	Asp	Arg	Pro	Ser 55	Gly	Ile	Pro	Glu	Arg 60	Phe	Ser	Gly	Ser	
	Asn 65	Ser	Gly	Asn	Thr	Ala 70	Thr	Leu	Thr	Ile	Ser 75	Gly	Thr	Gln	Ala	Glu 80	
	Asp	Glu	Ala	Asp	Tyr 85	Tyr	Cys	Gln	Thr	Tyr 90	Asp	Tyr	Ile	Leu	Asn 95	Val	
	Phe	Gly	Gly	Gly 100	Thr	Lys	Leu	Thr	Val 105	Leu	Gly	Gln					
<210><211><211><212><213>	359 ADN	sapie	ns														
<400>	167	·															
caggt	gcaa	t tg	gtgg	aaag	cgg	cggc	ggc	ctgg	tgca	ac c	gggc	ggca	g cc	tgcg	tctg		60
agctg	cgcg	g cc	tccg	gatt	tac	cttt	tct	actt	atgc	ta t	gcat	tggg	t gc	gcca	.agcc		120
cctgg	gaag	g gt	ctcg	agtg	ggt	gagc	act	atct	ctgg	tt a	tggt	agct	t ta	.ccta	.ttat		180
gcgga	tagc	g tg	aaag	gccg	ttt	tacc	att	tcac	gtga	ta a	ttcg	aaaa	а са	.ccct	gtat		240
ctgca	aatg	a ac	agcc	tgcg	tgc	ggaa	gat	acgg	ccgt	gt a	ttat	tgcg	c gc	gtaa	.tggt		300
cgtaa	gtat	g gt	caga	tgga	taa	ttgg	ggc	caag	gcac	cc t	ggtg	acgg	t ta	.gctc	agc		359
<210> <211> <212> <213>	119 PRT	sapie	ns														
<400>	168																
	Gln 1	Val	Gln	Leu	Val 5	Glu	Ser	Gly	Gly	Gly 10	Leu	Val	Gln	Pro	Gly 15	Gly	
	Ser	Leu	Arg	Leu 20	Ser	Cys	Ala	Ala	Ser 25	Gly	Phe	Thr	Phe	Ser 30	Thr	Tyr	
	Ala	Met	His	Trp	۷al	Ara	Gln	Ala	Pro	Glv	LVS	Glv	Leu	Glu	Trp	Val	

			35					40		-			45				
	Ser	Thr 50	Ile	Ser	Gly	Tyr	Gly 55	Ser	Phe	Thr	Tyr	Туг 60	Ala	Asp	Ser	Val	
	Lys 65	Gly	Arg	Phe	Thr	11e 70	Ser	Arg	Asp	Asn	Ser 75	Lys	Asn	Thr	Leu	Tyr 80	
	Leu	Gln	Met	Asn	Ser 85	Leu	Arg	Ala	Glu	Asp 90	Thr	Ala	Val	Tyr	Tyr 95	Cys	
	Ala	Arg	Asn	Gly 100	Arg	Lys	Tyr	Gly	Gln 105	Met	Asp	Asn	Trp	Gly 110	Gln	Gly	
	Thr	Leu	Val 115	Thr	Val	Ser	Ser										
<210><211><211><212><213>	333 ADN	sapie	ens														
<400>	169																
gatat	cgaa	c tg	accc	agcc	gcc	ttca	gtg	agcg	ttgc	ac c	aggt	caga	c cg	cgcg	tato		60
tcgtg	tagc	g gc	gatt	ctat	tgg	taag	aag	tatg	ttca	tt g	gtac	cago	a ga	.aacc	cggg		120
caggc	gcca	g tt	cttg	tgat	tta	tggt	gat	aata	atcg	tc c	ctca	.ggca	t cc	cgga	.acgc		180
tttag	cgga	t cc	aaca	.gcgg	caa	cacc	gcg	accc	tgac	ca t	tago	ggca	c to	aggc	ggaa		240
gacga	agcg	g at	tatt	attg	ctc	tact	gct	gatt	ctgt	ta t	tact	tata	a ga	atgt	gttt		300
ggcgg	cggc	a cg	aagt	taac	cgt	tctt	ggc	cag									333
<210><211><211><212><213>	111 PRT	sapie	ens														

5

10

<400> 170

Asp 1	Ile	Glu	Leu	Thr 5	Gln	Pro	Pro	Ser	val 10	Ser	Val	Ala	Pro	Gly 15	Gln	
Thr	Ala	Arg	11e 20	Ser	Cys	Ser	Gly	Asp 25	Ser	Ile	Gly	Lys	Lys 30	Tyr	Val	
His	Trp	Tyr 35	Gln	Gln	Lys	Pro	Gly 40	Gln	Ala	Pro	Val	Leu 45	Val	Ile	Tyr	
Gly	Asp 50	Asn	Asn	Arg	Pro	Ser 55	Gly	Ile	Pro	Glu	Arg 60	Phe	Ser	Gly	Ser	
Asn 65	Ser	Gly	Asn	Thr	Ala 70	Thr	Leu	Thr	Ile	Ser 75	Gly	Thr	Gln	Ala	Glu 80	
Asp	Glu	Ala	Asp	Tyr 85	Tyr	Cys	Ser	Thr	Ala 90	Asp	Ser	- Val	Ile	Thr 95	Tyr	
Lys	Asn	Val	Phe 100	Gly	Gly	Gly	Thr	Lys 105	Leu	Thr	Val	Leu	Gly 110	Gln		
<210> 171 <211> 362 <212> ADN <213> Homo	sapie	ns														
<400> 171																
caggtgcaa	t tg	gtgg	aaag	cgg	cggc	ggc	ctgg	tgca	ac c	gggc	ggca	g cc	tgcg	tctg		60
agctgcgcg	g cc	tccg	gatt	tac	cttt	tct	gatc	atgc	ta t	gcat	tggg	t gc	gcca	agcc		120
cctgggaag	g gt	ctcg	agtg	ggt	gagc	gtt	atcg	agta	tt c	tggt	agca	a ga	.ccaa	ttat		180
gcggatagc	g tg	aaag	gccg	ttt	tacc	att	tcac	gtga	ta a	ttcg	aaaa	a ca	.ccct	gtat		240
ctgcaaatg	a ac	agcc	tgcg	tgc	ggaa	gat	acgg	ccgt	gt a	ttat	tgcg	c gc	gtgg	tgat		300
tattatcct	t at	cttg	tttt	tgc	tatt	tgg	ggcc	aagg	ca c	cctg	gtga	c gg	ttag	ctca		360
gc																362
<210> 172 <211> 120 <212> PRT <213> Homo	sapie	ns														

5

10

<400> 172

```
Gln Val Gln Leu Val Glu Ser Gly Gly Gly Leu Val Gln Pro Gly Gly 1 5 10 15
              Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Thr Phe Ser Asp His 20 25 30
              Ala Met His Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp Val
35 40 45
              Ser Val Ile Glu Tyr Ser Gly Ser Lys Thr Asn Tyr Ala Asp Ser Val 50 60
              Lys Gly Arg Phe Thr Ile Ser Arg Asp Asn Ser Lys Asn Thr Leu Tyr 65 75 80
              Leu Gln Met Asn Ser Leu Arg Ala Glu Asp Thr Ala Val Tyr Tyr Cys 85 90 95
              Ala Arg Gly Asp Tyr Tyr Pro Tyr Leu Val Phe Ala Ile Trp Gly Gln 100 105 110
              Gly Thr Leu Val Thr Val Ser Ser
115 120
        <210> 173
        <211> 11
        <212> PRT
 5
        <213> Homo sapiens
        <400> 173
                          Ser Gly Asp Asn Ile Arg Thr Tyr Tyr Val His 1 10
        <210> 174
        <211> 11
10
        <212> PRT
        <213> Homo sapiens
        <400> 174
                          Ser Gly Asp Asn Ile Pro Glu Lys Tyr Val His 1 10
        <210> 175
        <211> 11
15
        <212> PRT
        <213> Homo sapiens
        <400> 175
                          Ser Gly Asp Lys Ile Gly Ser Lys Tyr Val Tyr 1 5 10
20
        <210> 176
        <211> 11
        <212> PRT
        <213> Homo sapiens
        <400> 176
```

```
Ser Gly Asp Asn Leu Arg Asn Tyr Tyr Ala His
       <210> 177
       <211> 11
       <212> PRT
 5
       <213> Homo sapiens
       <400> 177
                       Ser Gly Asp Lys Leu Gly Lys Lys Tyr Val His 1 5 10
       <210> 178
       <211> 11
       <212> PRT
10
       <213> Homo sapiens
       <400> 178
                       Ser Gly Asp Asn Leu Gly Asn Lys Tyr Ala His
1 10
       <210> 179
       <211> 12
15
       <212> PRT
       <213> Homo sapiens
       <400> 179
                    <210> 180
20
       <211> 11
       <212> PRT
       <213> Homo sapiens
       <400> 180
                       Ser Gly Asp Ala Leu Gly Thr Tyr Tyr Ala Tyr
1 5 10
25
       <210> 181
       <211> 11
       <212> PRT
       <213> Homo sapiens
       <400> 181
30
                       Ser Gly Asp Asn Leu Arg Gly Tyr Tyr Ala Ser
       <210> 182
       <211> 11
       <212> PRT
35
       <213> Homo sapiens
       <400> 182
                       <210> 183
       <211> 11
40
       <212> PRT
       <213> Homo sapiens
       <400> 183
```

```
Ser Gly Asp Ser Ile Gly Ser Tyr Tyr Ala His 1 10
        <210> 184
        <211> 11
        <212> PRT
        <213> Homo sapiens
 5
        <400> 184
                          Arg Ala Ser Gln Asp Ile Arg Asn Asn Leu Ala
        <210> 185
        <211> 16
10
        <212> PRT
        <213> Homo sapiens
        <400> 185
              Arg Ser Ser Gln Ser Leu Leu His Ser Asn Gly Tyr Thr Tyr Leu Ser 10 15
        <210> 186
15
        <211> 14
        <212> PRT
        <213> Homo sapiens
        <400> 186
                   Thr Gly Thr Ser Ser Asp Ile Gly Gly Tyr Asn Tyr Val Ser 10
20
        <210> 187
        <211> 11
        <212> PRT
        <213> Homo sapiens
        <400> 187
                          Arg Ala Ser Gln Pro Ile Tyr Asn Ser Leu Ser
1 10
25
        <210> 188
        <211> 12
        <212> PRT
        <213> Homo sapiens
30
        <400> 188
                        Arg Ala Ser Gln Ser Val Ser Ser Gln Tyr Leu Ala 1 	 5 	 10
        <210> 189
        <211> 11
        <212> PRT
35
        <213> Homo sapiens
        <400> 189
                          Ser Gly Asp Asn Ile Arg Lys Phe Tyr Val His 1 10
        <210> 190
        <211> 11
40
        <212> PRT
        <213> Homo sapiens
```

```
<400> 190
                          Ser Gly Asp Ala Leu Arg Lys His Tyr Val Tyr
        <210> 191
        <211> 12
 5
        <212> PRT
        <213> Homo sapiens
        <400> 191
                       <210> 192
10
        <211> 12
        <212> PRT
        <213> Homo sapiens
        <400> 192
                       Arg Ala Ser Gln Tyr Val Thr Ser Ser Tyr Leu Ala
1 5 10
15
        <210> 193
        <211> 11
        <212> PRT
        <213> Homo sapiens
        <400> 193
                          Ser Gly Asp Asn Leu Gly Thr Tyr Tyr Val His 1 10
20
        <210> 194
        <211> 14
        <212> PRT
        <213> Homo sapiens
        <400> 194
25
                  Thr Gly Thr Ser Ser Asp Leu Gly Gly Phe Asn Thr Val Ser 1 5 10
        <210> 195
        <211> 12
        <212> PRT
30
        <213> Homo sapiens
        <400> 195
                       Arg Ala Ser Gln Ser Val Ser Ser Phe Tyr Leu Ala 1 	 5 	 10
        <210> 196
        <211> 11
35
        <212> PRT
        <213> Homo sapiens
        <400> 196
                         Ser Gly Asp Asn Ile Gly Ser Arg Tyr Ala Tyr 1 \hspace{1cm} 5 \hspace{1cm} 10
        <210> 197
40
        <211> 11
        <212> PRT
        <213> Homo sapiens
```

```
<400> 197
                         Ser Gly Asp Asn Ile Gly Ser Lys Tyr Val His
        <210> 198
        <211> 11
 5
        <212> PRT
        <213> Homo sapiens
        <400> 198
                         Ser Gly Asp Asn Leu Arg Asp Lys Tyr Ala Ser 1 5 10
        <210> 199
10
        <211> 11
        <212> PRT
        <213> Homo sapiens
        <400> 199
                        Ser Gly Asp Asn Leu Arg Ser Lys Tyr Ala His
1 10
15
        <210> 200
        <211> 11
        <212> PRT
        <213> Homo sapiens
        <400> 200
                        Arg Ala Ser Gln Asn Ile Ser Asn Tyr Leu Asn 1 10
20
        <210> 201
        <211> 11
        <212> PRT
        <213> Homo sapiens
25
        <400> 201
                        <210> 202
        <211> 11
        <212> PRT
30
        <213> Homo sapiens
        <400> 202
                        Arg Ala Ser Gln Ser Ile Asn Pro Tyr Leu Asn 1 	 5
        <210> 203
        <211> 11
        <212> PRT
35
        <213> Homo sapiens
        <400> 203
                        Ser Gly Asp Ser Leu Gly Ser Lys Phe Ala His 1
        <210> 204
40
        <211> 11
        <212> PRT
```

```
<213> Homo sapiens
        <400> 204
                          Ser Gly Asp Asn Ile Gly Ser Tyr Tyr Ala Tyr 1 10
        <210> 205
 5
        <211> 11
        <212> PRT
        <213> Homo sapiens
        <400> 205
                          Ser Gly Asp Asn Ile Gly Ser Tyr Phe Ala Ser 1 10
        <210> 206
10
        <211> 11
        <212> PRT
        <213> Homo sapiens
        <400> 206
                          Ser Gly Asp Asn Leu Pro Ser Lys Ser Val Tyr 1 5 10
15
        <210> 207
        <211> 11
        <212> PRT
        <213> Homo sapiens
        <400> 207
20
                          <210> 208
        <211> 11
        <212> PRT
25
        <213> Homo sapiens
        <400> 208
                          Arg Ala Ser Gln Asn Ile His Ser His Leu Asn 1 5 10
        <210> 209
        <211> 11
30
        <212> PRT
        <213> Homo sapiens
        <400> 209
                          Ser Gly Asp Lys Leu Gly Lys Tyr Tyr Ala Tyr 1 	 5 	 10
        <210> 210
35
        <211> 11
        <212> PRT
        <213> Homo sapiens
        <400> 210
                          Ser Gly Asp Ala Leu Gly Ser Lys Phe Ala His 1 \hspace{1cm} 5 \hspace{1cm} 10
40
        <210> 211
        <211> 11
```

```
<212> PRT
         <213> Homo sapiens
         <400> 211
                            Ser Gly Asp Ala Leu Gly Lys Tyr Tyr Ala Ser 1 5 10
         <210> 212
 5
         <211> 16
         <212> PRT
         <213> Homo sapiens
         <400> 212
               Arg Ser Ser Gln Ser Leu Val Phe Ser Asp Gly Asn Thr Tyr Leu Asn 1 10 15
10
         <210> 213
         <211> 11
         <212> PRT
         <213> Homo sapiens
         <400> 213
15
                            Ser Gly Asp Ala Leu Gly Ser Lys Tyr Val Ser 1 5 10
         <210> 214
         <211> 11
         <212> PRT
20
         <213> Homo sapiens
         <400> 214
                           Ser Gly Asp Lys Leu Gly Ser Lys Ser Val His 1 10
         <210> 215
         <211> 11
         <212> PRT
25
         <213> Homo sapiens
         <400> 215
                            Ser Gly Asp Ser Ile Gly Lys Lys Tyr Val His 1 \hspace{1cm} 5 \hspace{1cm} 10
         <210> 216
30
         <211> 7
         <212> PRT
         <213> Homo sapiens
         <400> 216
                                      Gly Asp Ser Lys Arg Pro Ser 1
35
         <210> 217
         <211> 7
         <212> PRT
         <213> Homo sapiens
         <400> 217
                                      Gly Asp Asn Asn Arg Pro Ser 5
40
         <210> 218
```

```
<211>6
        <212> PRT
        <213> Homo sapiens
        <400> 218
                                       Asp Ser Asn Arg Pro Ser
 5
        <210> 219
        <211> 7
        <212> PRT
        <213> Homo sapiens
10
        <400> 219
                                    Tyr Asp Asn Asn Arg Pro Ser 1 5
        <210> 220
        <211>7
        <212> PRT
15
        <213> Homo sapiens
        <400> 220
                                    Gly Asp Asp Lys Arg Pro Ser 5
        <210> 221
        <211> 7
20
        <212> PRT
        <213> Homo sapiens
        <400> 221
                                    Tyr Asp Asn Lys Arg Pro Ser 1 5
        <210> 222
25
        <211> 7
        <212> PRT
        <213> Homo sapiens
        <400> 222
                                    Gly Ala Ser Thr Arg Ala Thr 1
        <210> 223
30
        <211> 7
        <212> PRT
        <213> Homo sapiens
        <400> 223
                                    Gly Asp Met Asn Arg Pro Ser 1
35
        <210> 224
        <211> 7
        <212> PRT
        <213> Homo sapiens
40
        <400> 224
                                    Glu Asp Asn Asn Arg Pro Ser
```

```
<210> 225
        <211> 7
        <212> PRT
        <213> Homo sapiens
 5
        <400> 225
                                     Lys Ala Ser Asn Leu Gln Ser
1 5
        <210> 226
        <211> 7
         <212> PRT
         <213> Homo sapiens
10
        <400> 226
                                     Tyr Asp Ser Lys Arg Pro Ser 1
        <210> 227
         <211> 7
15
         <212> PRT
         <213> Homo sapiens
        <400> 227
                                     Ala Ala Ser Ser Leu Gln Ser
1 5
        <210> 228
20
        <211> 7
        <212> PRT
         <213> Homo sapiens
        <400> 228
                                     Leu Gly Ser Asn Arg Ala Ser
1 5
25
        <210> 229
         <211> 7
        <212> PRT
         <213> Homo sapiens
         <400> 229
                                     Gly Val Asn Tyr Arg Pro Ser
1 5
30
        <210> 230
        <211> 7
         <212> PRT
         <213> Homo sapiens
        <400> 230
35
                                     Gly Val Ser Asn Leu Gln Ser
1 5
         <210> 231
        <211> 7
        <212> PRT
        <213> Homo sapiens <400> 231
40
                                     Ala Ala Ser Ser Arg Ala Thr
1 5
```

```
<210> 232
        <211> 7
        <212> PRT
        <213> Homo sapiens
        <400> 232
 5
                                    Gly Thr Asn Lys Arg Pro Ser 5
        <210> 233
        <211> 7
        <212> PRT
10
        <213> Homo sapiens
        <400> 233
                                    Gly Asp Asn Asn Arg Pro Ser 5
        <210> 234
        <211> 7
        <212> PRT
15
        <213> Homo sapiens
        <400> 234
                                    Asp Ala Ser Asn Arg Ala Thr
                                           1
                                                               5
        <210> 235
20
        <211> 6
        <212> PRT
        <213> Homo sapiens
        <400> 235
                                       Gly Ser Ser Arg Ala Thr
1 5
        <210> 236
25
        <211> 7
        <212> PRT
        <213> Homo sapiens
        <400> 236
                                    Gly Asp Asn Asn Arg Pro Ser 5
30
        <210> 237
        <211> 7
        <212> PRT
        <213> Homo sapiens
35
        <400> 237
                                     Ser Val Ser Ser Arg Pro Ser
1 5
        <210> 238
        <211> 7
        <212> PRT
40
        <213> Homo sapiens
        <400> 238
```

		Gly 1	Ser	Ser	Ser	Arg 5	Ala	Thr
5	<210> 239 <211> 7 <212> PRT <213> Homo sapiens							
	<400> 239							
		Asp 1	Asp	Ser	Asp	Arg 5	Pro	Ser
10	<210> 240 <211> 7 <212> PRT <213> Homo sapiens							
	<400> 240							
		Glu 1	Asp	Ser	Asp	Arg 5	Pro	Ser
15	<210> 241 <211> 7 <212> PRT <213> Homo sapiens							
	<400> 241							
		Ser 1	Lys	Ser	Glu	Arg 5	Pro	Ser
20	<210> 242 <211> 7 <212> PRT <213> Homo sapiens							
	<400> 242							
25		Gly 1	Asp	Asn	Asn	Arg 5	Pro	Ser
	<210> 243 <211> 7 <212> PRT <213> Homo sapiens							
30	<400> 243							
		Gly 1	Thr	Ser	Ser	Leu 5	Gln	Ser
35	<210> 244 <211> 7 <212> PRT <213> Homo sapiens							
	<400> 244							
		Asp 1	Val	Ser	Asn	Leu 5	Gln	Ser
40	<210> 245 <211> 7 <212> PRT <213> Homo sapiens							
	<400> 245							

		Ala 1	Ala	Ser	Asn	Leu 5	Gln	Ser
5	<210> 246 <211> 7 <212> PRT <213> Homo sapiens							
	<400> 246							
		Asp 1	Asp	Ser	Asn	Arg 5	Pro	Ser
10	<210> 247 <211> 7 <212> PRT <213> Homo sapiens							
	<400> 247							
		Asp 1	Asp	Ser	Asn	Arg 5	Pro	Ser
15	<210> 248 <211> 7 <212> PRT <213> Homo sapiens							
	<400> 248							
		Asp 1	Asp	Ser	Asn	Arg 5	Pro	Ser
20	<210> 249 <211> 7 <212> PRT <213> Homo sapiens							
	<400> 249							
25		Gly 1	Asp	Asn	Asn	Arg 5	Pro	Ser
	<210> 250 <211> 7 <212> PRT <213> Homo sapiens							
30	<400> 250							
		Gly 1	Ala	Ser	Thr	Leu 5	Gln	Ser
35	<210> 251 <211> 7 <212> PRT <213> Homo sapiens							
	<400> 251							
		Asp 1	Ala	Ser	Ser	Leu 5	Gln	Ser
40	<210> 252 <211> 7 <212> PRT <213> Homo sapiens							
	<400> 252							

		Gly Asp Ser Lys Arg Pro Ser 1 5
5	<210> 253 <211> 7 <212> PRT <213> Homo sapiens	
	<400> 253	
		Asp Asp Ser Glu Arg Pro Ser 1
10	<210> 254 <211> 7 <212> PRT <213> Homo sapiens	
	<400> 254	
		Gly Asp Asn Lys Arg Pro Ser 1 5
15	<210> 255 <211> 7 <212> PRT <213> Homo sapiens	
	<400> 255	
		Lys Gly Ser Asn Arg Ala Ser 1
20	<210> 256 <211> 7 <212> PRT <213> Homo sapiens	
	<400> 256	
25		Gly Asp Asn Lys Arg Pro Ser 1 5
	<210> 257 <211> 7 <212> PRT <213> Homo sapiens	
30	<400> 257	
		Arg Asp Thr Asp Arg Pro Ser 1 5
35	<210> 258 <211> 7 <212> PRT <213> Homo sapiens	
	<400> 258	
		Gly Asp Asn Asn Arg Pro Ser 1 5
40	<210> 259 <211> 11 <212> PRT <213> Homo sapiens	
	<400> 259	

```
Gln Ser Tyr Asp Ser Glu Ala Asp Ser Glu Val
1 5 10
        <210> 260
        <211> 10
        <212> PRT
 5
         <213> Homo sapiens
        <400> 260
                             Gln Ser Phe Asp Ala Gly Ser Tyr Phe Val
1 5 10
        <210> 261
        <211> 11
10
        <212> PRT
        <213> Homo sapiens
        <400> 261
                           Ala Ser Tyr Asp Ser Ile Tyr Ser Tyr Trp Val
1 5 10
        <210> 262
15
        <211>9
        <212> PRT
        <213> Homo sapiens
        <400> 262
                                Gln Ser Trp Asp Asp Gly Val Pro Val 5
20
        <210> 263
        <211> 10
        <212> PRT
        <213> Homo sapiens
        <400> 263
                              Gln Ala Trp Gly Ser Ile Ser Arg Phe Val
1 5 10
25
        <210> 264
        <211> 11
        <212> PRT
        <213> Homo sapiens
        <400> 264
30
                           Gln Ser Trp Thr Pro Gly Ser Asn Thr Met Val 1 	 5 	 10
        <210> 265
        <211> 9
        <212> PRT
35
        <213> Homo sapiens
        <400> 265
                                Gln Gln Leu Asn Ser Ile Pro Val Thr
5
        <210> 266
        <211> 11
40
        <212> PRT
        <213> Homo sapiens
```

```
<400> 266
                            Gln Ser Tyr Asp Ala Gly Val Lys Pro Ala Val 1 5 10
        <210> 267
         <211> 10
 5
        <212> PRT
         <213> Homo sapiens
         <400> 267
                              Gln Ser Trp Asp Ser Pro Tyr Val His Val 1 5 10
         <210> 268
         <211>9
10
         <212> PRT
         <213> Homo sapiens
         <400> 268
                                His Gln Tyr Ser Asp Ser Pro Val Thr 5
        <210> 269
15
        <211> 10
         <212> PRT
         <213> Homo sapiens
         <400> 269
                              Gln Ala Tyr Thr Gly Gln Ser Ile Ser Arg 10
20
        <210> 270
        <211>9
         <212> PRT
         <213> Homo sapiens
        <400> 270
25
                                Gln Gln Arg Asn Gly Phe Pro Leu Thr 5
        <210> 271
         <211> 9
         <212> PRT
         <213> Homo sapiens
30
         <400> 271
                                Gln Gln Tyr Asp Asn Ala Pro Ile Thr
1
        <210> 272
        <211> 11
35
         <212> PRT
         <213> Homo sapiens
        <400> 272
                            Ser Ser Ala Asp Lys Phe Thr Met Ser Ile Val 1 \hspace{1cm} 5 \hspace{1cm} 10
        <210> 273
         <211>9
40
         <212> PRT
        <213> Homo sapiens
```

```
<400> 273
                               Leu Gln Val Asp Asn Leu Pro Ile Thr 1
        <210> 274
        <211> 9
        <212> PRT
 5
        <213> Homo sapiens
        <400> 274
                               Gln Gln Asp Ser Asn Leu Pro Ala Thr
        <210> 275
10
        <211> 10
        <212> PRT
        <213> Homo sapiens
        <400> 275
                             Gln Ser Tyr Asp Ser Lys Phe Asn Thr Val
1 5 10
15
        <210> 276
        <211> 11
        <212> PRT
        <213> Homo sapiens
        <400> 276
                          Gln Ser Tyr Asp Lys Pro Tyr Pro Ile Leu Val
1 5 10
20
        <210> 277
        <211> 9
        <212> PRT
        <213> Homo sapiens
        <400> 277
25
                               Gln Gln Phe Tyr Asp Ser Pro Gln Thr
5
        <210> 278
        <211>9
        <212> PRT
        <213> Homo sapiens
30
        <400> 278
                               Gln Gln Tyr Ser Ser Ser Pro Ile Thr 5
        <210> 279
        <211> 11
        <212> PRT
35
        <213> Homo sapiens
        <400> 279
                          Gln Thr Tyr Asp Ser Asn Asn Glu Ser Ile Val
1 5 10
        <210> 280
40
        <211>9
        <212> PRT
```

```
<213> Homo sapiens
         <400> 280
                                Gln Ser Tyr Asp Leu Asn Asn Leu Val
1 5
        <210> 281
 5
        <211> 9
        <212> PRT
         <213> Homo sapiens
        <400> 281
                                Gln Gln Tyr Asp Ser Thr Pro Ser Thr 5
        <210> 282
10
        <211> 10
        <212> PRT
        <213> Homo sapiens
        <400> 282
                             Ala Ala Tyr Thr Phe Tyr Ala Arg Thr Val
1 5 10
15
        <210> 283
        <211> 10
        <212> PRT
        <213> Homo sapiens
        <400> 283
20
                              Gln Ser Trp Asp Lys Ser Glu Gly Tyr Val
1 5 10
        <210> 284
        <211> 12
        <212> PRT
25
        <213> Homo sapiens
        <400> 284
                        Ser Ser Tyr Thr Leu Asn Pro Asn Leu Asn Tyr Val
1 5 10
        <210> 285
        <211> 10
        <212> PRT
30
        <213> Homo sapiens
        <400> 285
                              Ser Ala Tyr Ala Met Gly Ser Ser Pro Val
1 5 10
        <210> 286
35
        <211>9
        <212> PRT
        <213> Homo sapiens
        <400> 286
                                Gln Gln Tyr Gly Asn Asn Pro Thr Thr 5
40
        <210> 287
        <211>9
```

```
<212> PRT
         <213> Homo sapiens
         <400> 287
                                Gln Gln Tyr Ser Gly Tyr Pro Leu Thr 5
 5
        <210> 288
         <211> 9
         <212> PRT
         <213> Homo sapiens
         <400> 288
                                Gln Gln Leu Asp Asn Arg Ser Ile Thr
1 5
10
         <210> 289
        <211> 11
         <212> PRT
         <213> Homo sapiens
15
         <400> 289
                           Ser Thr Tyr Thr Ser Arg Ser His Ser Tyr Val
1 5 10
        <210> 290
         <211> 10
         <212> PRT
20
         <213> Homo sapiens
        <400> 290
                              Gln Ser Tyr Asp Ser Thr Gly Leu Leu Val
1 5 10
         <210> 291
         <211> 5
25
         <212> PRT
         <213> Homo sapiens
         <400> 291
                                          Glu Gly Ser Asn Val
1 5
         <210> 292
30
         <211> 10
         <212> PRT
         <213> Homo sapiens
         <400> 292
                              Gln Ser Trp Thr Ser Arg Pro Met Val Val 1 	 5 	 10
         <210> 293
35
         <211> 9
         <212> PRT
         <213> Homo sapiens
         <400> 293
                                Gln Gln Gln Asn Gly Tyr Pro Phe Thr 5
40
```

```
<210> 294
        <211>9
        <212> PRT
        <213> Homo sapiens
 5
        <400> 294
                               Gln Gln Tyr Tyr Asp Tyr Pro Leu Thr 5
        <210> 295
        <211> 9
        <212> PRT
        <213> Homo sapiens
10
        <400> 295
                                Ser Ser Ala Ala Phe Gly Ser Thr Val \frac{1}{5}
        <210> 296
        <211> 10
        <212> PRT
15
        <213> Homo sapiens
        <400> 296
                             Gln Ala Tyr Asp Ser Gly Leu Leu Tyr Val
1 5 10
        <210> 297
20
        <211>9
        <212> PRT
        <213> Homo sapiens
        <400> 297
                                Gln Ser Tyr Thr Thr Arg Ser Leu Val
1 5
25
        <210> 298
        <211>9
        <212> PRT
        <213> Homo sapiens
        <400> 298
                               Gln Gln Tyr Asp Ser Tyr Pro Leu Thr 1
30
        <210> 299
        <211> 10
        <212> PRT
        <213> Homo sapiens
35
        <400> 299
                             Gln Ser Tyr Thr Tyr Ser Leu Asn Gln Val
1 5 10
        <210> 300
        <211>9
        <212> PRT
40
        <213> Homo sapiens
        <400> 300
                                Gln Thr Tyr Asp Tyr Ile Leu Asn Val
5
```

```
<210> 301
         <211> 12
         <212> PRT
         <213> Homo sapiens
 5
         <400> 301
                         Ser Thr Ala Asp Ser Val Ile Thr Tyr Lys Asn Val 1 	 5 	 10
         <210> 302
         <211> 5
         <212> PRT
10
         <213> Homo sapiens
         <400> 302
                                           Asn Asn Ala Met Asn
                                                                5
                                            1
         <210> 303
         <211> 4
15
         <212> PRT
         <213> Homo sapiens
         <400> 303
                                             Ser Tyr Gly Ser
1
         <210> 304
         <211> 5
20
         <212> PRT
         <213> Homo sapiens
         <400> 304
                                           Arg Tyr Ala Met Ser
1 5
         <210> 305
25
         <211> 5
         <212> PRT
         <213> Homo sapiens
         <400> 305
                                           Ser Tyr Gly Met Ser
1 5
30
         <210> 306
         <211> 5
         <212> PRT
         <213> Homo sapiens
35
         <400> 306
                                           Ser Tyr Ser Met Asn 1 5
         <210> 307
         <211> 5
         <212> PRT
40
         <213> Homo sapiens
         <400> 307
```

```
Ser Tyr Ser Met Ser
1 5
        <210> 308
        <211>7
        <212> PRT
 5
        <213> Homo sapiens
        <400> 308
                                     Ser Asn Ser Ala Ala Trp Gly
1 5
        <210> 309
        <211> 5
10
        <212> PRT
         <213> Homo sapiens
         <400> 309
                                          Asn Tyr Ser Met Thr
        <210> 310
15
        <211> 5
        <212> PRT
         <213> Homo sapiens
         <400> 310
                                          Gly Asn Ser Met His
1 5
20
        <210> 311
         <211> 7
        <212> PRT
         <213> Homo sapiens
         <400> 311
                                     Ser Asn Ser Ala Ala Trp Gly 5
25
        <210> 312
        <211> 5
        <212> PRT
         <213> Homo sapiens
30
        <400> 312
                                          Pro Tyr Val Met Ser
1 5
        <210> 313
         <211> 7
         <212> PRT
35
        <213> Homo sapiens
         <400> 313
                                     Ser Asn Ser Ala Ala Trp Gly
1 5
        <210> 314
         <211> 7
40
         <212> PRT
         <213> Homo sapiens
        <400> 314
```

```
Ser Asn Ser Ala Ala Trp Gly 5
        <210> 315
        <211> 7
         <212> PRT
 5
         <213> Homo sapiens
        <400> 315
                                     Ser Asn Ser Ala Ala Trp Gly
1 5
        <210> 316
        <211>7
         <212> PRT
10
         <213> Homo sapiens
         <400> 316
                                     Ser Asn Ser Ala Ala Trp Ser
1 5
        <210> 317
15
        <211> 5
         <212> PRT
         <213> Homo sapiens
        <400> 317
                                          Lys Tyr Ala Met His
1 5
         <210> 318
20
         <211> 5
        <212> PRT
        <213> Homo sapiens
        <400> 318
                                          Ser Tyr Ala Met Asn 1 5
25
        <210> 319
        <211> 5
        <212> PRT
         <213> Homo sapiens
30
        <400> 319
                                          Ser Tyr Ala Met Thr 1 5
        <210> 320
         <211> 7
         <212> PRT
35
         <213> Homo sapiens
         <400> 320
                                     Ser Asn Ser Ala Ala Trp Ser
1 5
        <210> 321
        <211> 7
        <212> PRT
40
         <213> Homo sapiens
```

<400> 321 Ser Ser Ser Ala Ala Trp Ser 1 <210> 322 <211> 5 5 <212> PRT <213> Homo sapiens <400> 322 Ser Tyr Ala Met Ser 1 5 <210> 323 10 <211> 5 <212> PRT <213> Homo sapiens <400> 323 Ser Tyr Ala Met Thr 15 <210> 324 <211> 7 <212> PRT <213> Homo sapiens <400> 324 Ser Asn Gly Ala Ala Trp Gly 5 20 <210> 325 <211> 5 <212> PRT <213> Homo sapiens <400> 325 25 Asn Tyr Tyr Leu Ser 1 5 <210> 326 <211> 5 <212> PRT <213> Homo sapiens 30 <400> 326 Asn Asn Ala Ile Ser 1 5 <210> 327 <211> 5 <212> PRT 35 <213> Homo sapiens <400> 327 Ser Tyr Trp Met His 1 5 <210> 328 40 <211> 5 <212> PRT <213> Homo sapiens

<400> 328 Ser Tyr Gly Met His <210> 329 <211> 7 <212> PRT 5 <213> Homo sapiens <400> 329 Ser Asn Gly Ala Ala Trp Gly 1 5 <210> 330 <211> 7 10 <212> PRT <213> Homo sapiens <400> 330 Ser Ser Ser Ala Ala Trp Ser 1 5 <210> 331 15 <211> 7 <212> PRT <213> Homo sapiens <400> 331 Ser Asn Ser Ala Ala Trp Gly 5 20 <210> 332 <211> 4 <212> PRT <213> Homo sapiens 25 <400> 332 Ser Tyr Ala Ser 1 <210> 333 <211>5 <212> PRT 30 <213> Homo sapiens <400> 333 Asn Tyr Ala Met Thr 1 5 <210> 334 <211> 5 <212> PRT 35 <213> Homo sapiens <400> 334 Asp Tyr Trp Ile Gly
1 5 <210> 335 40 <211> 5 <212> PRT

```
<213> Homo sapiens
         <400> 335
                                          Ser Tyr Ser Met His
1 5
        <210> 336
 5
        <211> 7
        <212> PRT
        <213> Homo sapiens
         <400> 336
                                     Ser Asn Ser Gly Gly Trp Gly 1
10
        <210> 337
        <211> 5
        <212> PRT
         <213> Homo sapiens
        <400> 337
                                          Ser Tyr Ser Met Ser
1 5
15
        <210> 338
        <211> 5
        <212> PRT
        <213> Homo sapiens
20
        <400> 338
                                          Ser Tyr Tyr Met Ser
1 5
        <210> 339
        <211> 5
        <212> PRT
25
        <213> Homo sapiens
        <400> 339
                                          Asn Tyr Ala Met Asn 1 5
        <210> 340
         <211> 5
        <212> PRT
30
        <213> Homo sapiens
        <400> 340
                                          Ser Tyr Gly Met Ser
1 5
        <210> 341
35
        <211> 7
        <212> PRT
         <213> Homo sapiens
        <400> 341
                                      Ser Asn Ser Ala Ala Trp Ser
1 5
        <210> 342
40
        <211> 5
         <212> PRT
```

```
<213> Homo sapiens
          <400> 342
                                               Asp Tyr Ala Met Ser
1 5
          <210> 343
 5
          <211> 5
          <212> PRT
          <213> Homo sapiens
          <400> 343
                                               Thr Tyr Ala Met His
1 5
10
         <210> 344
          <211> 5
          <212> PRT
          <213> Homo sapiens
          <400> 344
                                               Asp His Ala Met His
1 5
15
         <210> 345
         <211> 17
         <212> PRT
          <213> Homo sapiens
20
         <400> 345
                Thr Ile Ser Tyr Asp Gly Ser Asn Thr Tyr Tyr Ala Asp Ser Val Lys 1 \hspace{1cm} 10 \hspace{1cm} 15
                                                          Gly
         <210> 346
          <211> 17
          <212> PRT
25
          <213> Homo sapiens
          <400> 346
                Val Ile Ser Gly Ser Gly Ser Ser Thr Tyr Tyr Ala Asp Ser Val Lys 1 \hspace{1cm} 10 \hspace{1cm} 15
                Gly
          <210> 347
          <211> 17
30
          <212> PRT
          <213> Homo sapiens
         <400> 347
                Ser Ile Ile Ser Ser Ser Ser Glu Thr Tyr Tyr Ala Asp Ser Val Lys 1 \hspace{1cm} 10 \hspace{1cm} 15
                Gly
          <210> 348
35
         <211> 17
```

```
<212> PRT
          <213> Homo sapiens
          <400> 348
                 Ser Ile Arg Gly Ser Ser Ser Ser Thr Tyr Tyr Ala Asp Ser Val Lys 1 \hspace{1cm} 10 \hspace{1cm} 15
                 Gly
 5
          <210> 349
          <211> 17
          <212> PRT
          <213> Homo sapiens
          <400> 349
                  Ala Ile Ser Tyr Thr Gly Ser Asn Thr His Tyr Ala Asp Ser Val Lys 1 \hspace{1cm} 10 \hspace{1cm} 15
                  Gly
10
          <210> 350
          <211> 17
          <212> PRT
          <213> Homo sapiens
15
          <400> 350
                 Ser Ile Lys Gly Ser Gly Ser Asn Thr Tyr Tyr Ala Asp Ser Val Lys 1 \hspace{1cm} 5 \hspace{1cm} 10 \hspace{1cm} 15
                 Gly
          <210> 351
          <211> 18
          <212> PRT
20
          <213> Homo sapiens
          <400> 351
                 Met Ile Tyr Tyr Arg Ser Lys Trp Tyr Asn Ser Tyr Ala Val Ser Val 1 	 5 	 10 	 15
                 Lys Ser
          <210> 352
          <211> 17
          <212> PRT
25
          <213> Homo sapiens
          <400> 352
                 Gly Ile Ser Tyr Asn Gly Ser Asn Thr Tyr Tyr Ala Asp Ser Val Lys 1 \hspace{1cm} 10 \hspace{1cm} 15
                 Gly
          <210> 353
30
          <211> 17
          <212> PRT
          <213> Homo sapiens
```

```
<400> 353
                Thr Ile Phe Pro Tyr Asp Gly Thr Thr Lys Tyr Ala Gln Lys Phe Gln 10 15
                Gly
         <210> 354
          <211> 18
          <212> PRT
 5
          <213> Homo sapiens
          <400> 354
                Met Ile Tyr His Arg Ser Lys Trp Tyr Asn Asp Tyr Ala Val Ser Val 1 5 10 15
                 Lys Ser
          <210> 355
          <211> 17
10
          <212> PRT
          <213> Homo sapiens
          <400> 355
                Ser Ile Ser Ser Ser Ser Ser Asn Thr Tyr Tyr Ala Asp Ser Val Lys 1 \hspace{1cm} 10 \hspace{1cm} 15
                Gly
15
         <210> 356
          <211> 18
          <212> PRT
          <213> Homo sapiens
          <400> 356
                Ile Ile Tyr Tyr Arg Ser Lys Trp Tyr Asn His Tyr Ala Val Ser Val 1 \hspace{1cm} 5 \hspace{1cm} 10 \hspace{1cm} 15
                Lys Ser
20
          <210> 357
          <211> 18
          <212> PRT
          <213> Homo sapiens
25
          <400> 357
                Leu Ile Tyr Tyr Arg Ser Lys Trp Tyr Asn Asp Tyr Ala Val Ser Val 1 \hspace{1cm} 5 \hspace{1cm} 10 \hspace{1cm} 15
                Lys Ser
         <210> 358
          <211> 18
          <212> PRT
30
          <213> Homo sapiens
          <400> 358
```

```
Met Ile Tyr Tyr Arg Ser Lys Trp Tyr Asn Asp Tyr Ala Val Ser Val
                Lys Ser
         <210> 359
         <211> 18
         <212> PRT
 5
         <213> Homo sapiens
         <400> 359
                Met Ile Phe Tyr Arg Ser Lys Trp Asn Asn Asp Tyr Ala Val Ser Val 1 \hspace{1cm} 10 \hspace{1cm} 15
                Lys Ser
         <210> 360
         <211> 17
         <212> PRT
10
         <213> Homo sapiens
         <400> 360
                Gly Ile Gln Tyr Asp Gly Ser Tyr Thr Tyr Tyr Ala Asp Ser Val Lys
1 10 15
                Gly
         <210> 361
15
         <211> 17
         <212> PRT
         <213> Homo sapiens
         <400> 361
                Ala Ile Leu Ser Asp Gly Ser Ser Thr Ser Tyr Ala Asp Ser Val Lys 1 \hspace{1cm} 10 \hspace{1cm} 15
                Gly
20
         <210> 362
         <211> 17
         <212> PRT
         <213> Homo sapiens
         <400> 362
                Asn Ile Ser Tyr Ser Gly Ser Asn Thr Tyr Tyr Ala Asp Ser Val Lys 1 \hspace{1cm} 10 \hspace{1cm} 15
                Gly
25
         <210> 363
         <211> 18
         <212> PRT
         <213> Homo sapiens
30
         <400> 363
```

```
Phe Ile Tyr Tyr Arg Ser Lys Trp Tyr Asn Asp Tyr Ala Val Ser Val 10 15
                 Lys Ser
          <210> 364
          <211> 18
          <212> PRT
 5
          <213> Homo sapiens
          <400> 364
                 Ile Ile Tyr Tyr Arg Ser Lys Trp Tyr Asn Asp Tyr Ala Val Ser Val 1 \hspace{1cm} 5 \hspace{1cm} 10 \hspace{1cm} 15
                 Lys Ser
          <210> 365
          <211> 17
          <212> PRT
10
          <213> Homo sapiens
          <400> 365
                 Asn Ile Ser Ser Asn Ser Ser Asn Thr Tyr Tyr Ala Asp Ser Val Lys 1 \hspace{1cm} 10 \hspace{1cm} 15
                 Gly
          <210> 366
15
          <211> 17
          <212> PRT
          <213> Homo sapiens
          <400> 366
                 Ala Ile Lys Ser Asp Gly Ser Asn Thr Tyr Tyr Ala Asp Ser Val Lys 1 \hspace{1cm} 10 \hspace{1cm} 15
                 Gly
20
          <210> 367
          <211> 18
          <212> PRT
          <213> Homo sapiens
          <400> 367
                 Phe Ile Tyr Arg Arg Ser Lys Trp Tyr Asn Ser Tyr Ala Val Ser Val 1 \hspace{1cm} 5 \hspace{1cm} 10 \hspace{1cm} 15
                 Lys Ser
25
          <210> 368
          <211> 17
          <212> PRT
          <213> Homo sapiens
30
          <400> 368
```

```
Gly Ile Ser Tyr Asn Gly Ser Ser Thr Asn Tyr Ala Asp Ser Val Lys 1 \hspace{1cm} 10 \hspace{1cm} 15
                  Gly
          <210> 369
          <211> 17
          <212> PRT
 5
          <213> Homo sapiens
          <400> 369
                  Ala Ile Asn Ser Ser Ser Ser Ser Thr Ser Tyr Ala Asp Ser Val Lys 1 \hspace{1cm} 10 \hspace{1cm} 15
                  Gly
          <210> 370
          <211> 17
10
          <212> PRT
          <213> Homo sapiens
          <400> 370
                 Ser Ile Ser Tyr Asp Ser Ser Asn Thr Tyr Tyr Ala Asp Ser Val Lys 1 \hspace{1cm} 10 \hspace{1cm} 15
                  Gly
          <210> 371
15
          <211> 17
          <212> PRT
          <213> Homo sapiens
          <400> 371
                 Asn Ile Ser Tyr Met Gly Ser Asn Thr Asn Tyr Ala Asp Ser Val Lys 1 \hspace{1cm} 5 \hspace{1cm} 10 \hspace{1cm} 15
                  Gly
20
          <210> 372
          <211> 18
          <212> PRT
          <213> Homo sapiens
          <400> 372
                  His Ile Tyr Tyr Arg Ser Lys Trp Tyr Asn Ser Tyr Ala Val Ser Val 1 \hspace{1cm} 5 \hspace{1cm} 10 \hspace{1cm} 15
                  Lys Ser
25
          <210> 373
          <211> 18
          <212> PRT
          <213> Homo sapiens
30
          <400> 373
```

```
Met Ile Tyr Tyr Arg Ser Lys Trp Tyr Asn His Tyr Ala Val Ser Val 1 \hspace{1cm} 5 \hspace{1cm} 10 \hspace{1cm} 15
              Lys Ser
        <210> 374
        <211> 18
        <212> PRT
 5
        <213> Homo sapiens
        <400> 374
              Lys Ser
        <210> 375
        <211> 17
10
        <212> PRT
        <213> Homo sapiens
        <400> 375
              Gly Ile Ser Gly Asp Gly Ser Asn Thr His Tyr Ala Asp Ser Val Lys 1 \hspace{1cm} 10 \hspace{1cm} 15
              Gly
        <210> 376
15
        <211> 17
        <212> PRT
        <213> Homo sapiens
        <400> 376
              Val Ile Ser Ser Val Gly Ser Asn Thr Tyr Tyr Ala Asp Ser Val Lys
1 10 15
              Gly
20
        <210> 377
        <211> 17
        <212> PRT
        <213> Homo sapiens
        <400> 377
              Ile Ile Gln Pro Ser Asp Ser Asp Thr Asn Tyr Ser Pro Ser Phe Gln 10 15
              Gly
25
        <210> 378
        <211> 17
        <212> PRT
        <213> Homo sapiens
30
        <400> 378
```

```
Gly Ile Ser Tyr Ser Ser Ser Phe Thr Tyr Tyr Ala Asp Ser Val Lys 1 \hspace{1cm} 10 \hspace{1cm} 15
                 Gly
          <210> 379
          <211> 18
          <212> PRT
 5
          <213> Homo sapiens
          <400> 379
                 Leu Ile Tyr Tyr Arg Ser Lys Trp Tyr Asn Ala Tyr Ala Val Ser Val 1 \hspace{1cm} 5 \hspace{1cm} 10 \hspace{1cm} 15
                 Lys Ser
          <210> 380
          <211> 17
          <212> PRT
10
          <213> Homo sapiens
          <400> 380
                 Ser Ile Ser Ser Ser Ser Ser Asn Thr Tyr Tyr Gly Asp Ser Val Lys 1 \hspace{1cm} 10 \hspace{1cm} 15
                 Gly
          <210> 381
15
          <211> 17
          <212> PRT
          <213> Homo sapiens
          <400> 381
                 Asn Ile Ser Ser Ser Gly Ser Asn Thr Asn Tyr Ala Asp Ser Val Lys 1 \hspace{1cm} 10 \hspace{1cm} 15
                 Gly
20
          <210> 382
          <211> 17
          <212> PRT
          <213> Homo sapiens
          <400> 382
                 Val Ile Ser Gly Ser Ser Ser Tyr Thr Tyr Tyr Ala Asp Ser Val Lys 1 \hspace{1cm} 10 \hspace{1cm} 15
                 Gly
25
          <210> 383
          <211> 17
          <212> PRT
          <213> Homo sapiens
30
          <400> 383
```

```
Leu Ile Ser Gly Val Ser Ser Ser Thr Tyr Tyr Ala Asp Ser Val Lys 1 \hspace{1cm} 5 \hspace{1cm} 10 \hspace{1cm} 15
                Gly
         <210> 384
         <211> 18
         <212> PRT
 5
         <213> Homo sapiens
         <400> 384
                Ile Ile Tyr Lys Arg Ser Lys Trp Tyr Asn Asp Tyr Ala Val Ser Val 1 	 10 	 15
                Lys Ser
         <210> 385
         <211> 17
10
         <212> PRT
         <213> Homo sapiens
         <400> 385
                Leu Ile Glu Ser Val Ser Ser Ser Thr Tyr Tyr Ala Asp Ser Val Lys 1 \hspace{1cm} 10 \hspace{1cm} 15
                Gly
         <210> 386
15
         <211> 17
         <212> PRT
         <213> Homo sapiens
         <400> 386
                Thr Ile Ser Gly Tyr Gly Ser Phe Thr Tyr Tyr Ala Asp Ser Val Lys
                   1
                                        5
                                                                  10
                                                                                             15
                   Gly
20
         <210> 387
         <211> 17
         <212> PRT
         <213> Homo sapiens
         <400> 387
                Val Ile Glu Tyr Ser Gly Ser Lys Thr Asn Tyr Ala Asp Ser Val Lys 1 10 15
                Gly
25
         <210> 388
         <211> 12
         <212> PRT
         <213> Homo sapiens
30
         <400> 388
```

```
Gln Ala Gly Gly Trp Thr Tyr Ser Tyr Thr Asp Val
1 5 10
        <210> 389
        <211>9
         <212> PRT
         <213> Homo sapiens
 5
         <400> 389
                                Val Asn Ile Ser Thr His Phe Asp Val
1
         <210> 390
         <211> 12
         <212> PRT
10
         <213> Homo sapiens
         <400> 390
                         Leu Met Gly Tyr Gly His Tyr Tyr Pro Phe Asp Tyr 1 \hspace{1cm} 10
        <210> 391
15
        <211>8
         <212> PRT
         <213> Homo sapiens
         <400> 391
                                  Lys Tyr Arg Tyr Trp Phe Asp Tyr 5
20
         <210> 392
         <211> 12
         <212> PRT
         <213> Homo sapiens
         <400> 392
                         Ala Phe Leu Gly Tyr Lys Glu Ser Tyr Phe Asp Ile 1 	 10
25
         <210> 393
        <211> 7
         <212> PRT
         <213> Homo sapiens
         <400> 393
30
                                     Asn Gly Gly Leu Ile Asp Val 1
         <210> 394
         <211> 12
         <212> PRT
         <213> Homo sapiens
35
         <400> 394
                         Thr Met Ser Lys Tyr Gly Gly Pro Gly Met Asp Val 1 	 5 	 10
         <210> 395
         <211> 9
40
         <212> PRT
         <213> Homo sapiens
         <400> 395
```

```
Ile Tyr Tyr Met Asn Leu Leu Ala Gly 5
        <210> 396
        <211>8
        <212> PRT
 5
        <213> Homo sapiens
        <400> 396
                                 Gly Val His Ser Tyr Phe Asp Tyr
1
        <210> 397
        <211>9
10
        <212> PRT
        <213> Homo sapiens
        <400> 397
                               Tyr Ser Ser Ile Gly His Met Asp Tyr 5
        <210> 398
15
        <211>8
        <212> PRT
        <213> Homo sapiens
        <400> 398
                                 Gly Asp Ser Tyr Met Tyr Asp Val
1 5
20
        <210> 399
        <211> 9
        <212> PRT
        <213> Homo sapiens
        <400> 399
                               25
        <210> 400
        <211> 11
        <212> PRT
        <213> Homo sapiens
30
        <400> 400
                          Phe Gly Asp Thr Asn Arg Asn Gly Thr Asp Val 1 \hspace{1cm} 5 \hspace{1cm} 10
        <210> 401
        <211> 9
        <212> PRT
        <213> Homo sapiens
35
        <400> 401
                               Val Asn Gln Tyr Thr Ser Ser Asp Tyr
1 5
        <210> 402
        <211> 12
40
        <212> PRT
        <213> Homo sapiens
```

```
<400> 402
                        Val Asn Ala Asn Gly Tyr Tyr Ala Tyr Val Asp Leu
1 5 10
        <210> 403
        <211>8
 5
        <212> PRT
        <213> Homo sapiens
        <400> 403
                                 Tyr Tyr Cys Lys Cys Val Asp Leu
1 5
        <210> 404
        <211> 10
10
        <212> PRT
        <213> Homo sapiens
        <400> 404
                             Tyr Pro Asp Trp Gly Trp Tyr Thr Asp Val 1 5 10
15
        <210> 405
        <211>9
        <212> PRT
        <213> Homo sapiens
        <400> 405
                               Val Gly Tyr Tyr Gly Phe Asp Tyr
1 5
20
        <210> 406
        <211>9
        <212> PRT
        <213> Homo sapiens
25
        <400> 406
                               His Asn Pro Asp Leu Gly Phe Asp Tyr 5
        <210> 407
        <211> 8
        <212> PRT
30
        <213> Homo sapiens
        <400> 407
                                 His Ser Met Val Gly Phe Asp Val
1 5
        <210> 408
        <211> 13
35
        <212> PRT
        <213> Homo sapiens
        <400> 408
                     Lys Gly Gly Glu His Gly Phe Phe Pro Ser Asp Ile 1 10
        <210> 409
40
        <211>8
        <212> PRT
```

```
<213> Homo sapiens
        <400> 409
                                Asn Asp Ser Gly Trp Phe Asp Val 5
        <210>410
 5
        <211>9
        <212> PRT
        <213> Homo sapiens
        <400> 410
                              Gln Asp Gly Met Gly Gly Met Asp Ser
                                         1
                                                           5
10
        <210> 411
        <211> 10
        <212> PRT
        <213> Homo sapiens
        <400> 411
                            15
        <210> 412
        <211> 14
        <212> PRT
        <213> Homo sapiens
20
        <400> 412
                  Gly His His Arg Gly His Ser Trp Ala Ser Phe Ile Asp Tyr 1 \hspace{1cm} 5 \hspace{1cm} 10
        <210> 413
        <211>6
        <212> PRT
25
        <213> Homo sapiens
        <400> 413
                                     Tyr Gly Gly Met Asp Tyr 5
        <210> 414
        <211>9
        <212> PRT
30
        <213> Homo sapiens
        <400> 414
                              Gly Leu Phe Pro Gly Tyr Phe Asp Tyr 5
        <210>415
35
        <211> 13
        <212> PRT
        <213> Homo sapiens
        <400> 415
                    Trp Gly Gly Ile His Asp Gly Asp Ile Tyr Phe Asp Tyr 1 10
```

```
<210>416
         <211>8
         <212> PRT
         <213> Homo sapiens
 5
         <400> 416
                                    Gly Gly Ser Gly Val Met Asp Val 1
         <210> 417
         <211> 11
         <212> PRT
10
         <213> Homo sapiens
         <400> 417
                            Ala Arg Ala Lys Lys Ser Gly Gly Phe Asp Tyr 1 5 10
         <210> 418
         <211> 8
         <212> PRT
15
         <213> Homo sapiens
         <400> 418
                                    Tyr Asp Asn Phe Tyr Phe Asp Val 1
         <210> 419
20
         <211> 16
         <212> PRT
         <213> Homo sapiens
         <400> 419
               Pro Thr Lys Ala Gly Arg Thr Trp Trp Trp Gly Pro Tyr Met Asp Val 1 \hspace{1cm} 5 \hspace{1cm} 10 \hspace{1cm} 15
         <210> 420
25
         <211> 13
         <212> PRT
         <213> Homo sapiens
         <400> 420
                       Phe Met Trp Trp Gly Lys Tyr Asp Ser Gly Phe Asp Val 1 	 5 	 10
30
         <210> 421
         <211>8
         <212> PRT
         <213> Homo sapiens
35
         <400> 421
                                    Ala Leu Gly Gly Gly Val Asp Tyr
1 5
         <210> 422
         <211> 12
         <212> PRT
         <213> Homo sapiens
40
         <400> 422
                          Tyr Leu Gly Ser Asn Phe Tyr Val Tyr Ser Asp Val 1 5 10
```

```
<210> 423
        <211>8
        <212> PRT
        <213> Homo sapiens
 5
        <400> 423
                                <210> 424
        <211> 7
        <212> PRT
10
        <213> Homo sapiens
        <400> 424
                                  Val His Tyr Gly Phe Asp Phe 1
        <210> 425
        <211> 10
15
        <212> PRT
        <213> Homo sapiens
        <400> 425
                           Ala Asp Leu Pro Tyr Met Val Phe Asp Tyr 1 10
        <210> 426
20
        <211>8
        <212> PRT
        <213> Homo sapiens
        <400> 426
                                Ser Tyr Leu Gly Tyr Phe Asp Val
25
        <210> 427
        <211> 11
        <212> PRT
        <213> Homo sapiens
        <400> 427
                         Trp His Ser Asp Lys His Trp Gly Phe Asp Tyr 1 5 10
30
        <210> 428
        <211>9
        <212> PRT
        <213> Homo sapiens
35
        <400> 428
                              Thr Ile Gly Val Leu Trp Asp Asp Val
        <210> 429
        <211> 10
        <212> PRT
40
        <213> Homo sapiens
        <400> 429
```

Asn Gly Arg Lys Tyr Gly Gln Met Asp Asn $1 \hspace{1cm} 5 \hspace{1cm} 10$

<210> 430

<211> 11 <212> PRT

5 <213> Homo sapiens

<400> 430

Gly Asp Tyr Tyr Pro Tyr Leu Val Phe Ala Ile 1 5 10

REIVINDICACIONES

- 1. Un anticuerpo monoclonal humano aislado que se une a un inhibidor de la ruta del factor tisular humano, en el que anticuerpo comprende regiones variables de la cadena pesada y ligera que comprenden:
- (a) una región variable de la cadena ligera que comprende una secuencia de aminoácidos que comprende las SEQ ID NOS: 173, 216 y 259 y una región variable de la cadena pesada que comprende una secuencia de aminoácidos que comprende las SEQ ID NOS: 302, 345 y 388; o
 - (b) una región variable de la cadena ligera que comprende una secuencia de aminoácidos que comprende las SEQ ID NOS: 174, 217 y 260 y una región variable de la cadena pesada que comprende una secuencia de aminoácidos que comprende las SEQ ID NOS: 303, 346 y 389; o
- (c) una región variable de la cadena ligera que comprende una secuencia de aminoácidos que comprende las SEQ ID NOS: 176, 219 y 262 y una región variable de la cadena pesada que comprende una secuencia de aminoácidos que comprende las SEQ ID NOS: 305, 348 y 391; o

15

30

35

45

50

- (d) una región variable de la cadena ligera que comprende una secuencia de aminoácidos que comprende las SEQ ID NOS: 178, 221 y 264 y una región variable de la cadena pesada que comprende una secuencia de aminoácidos que comprende las SEQ ID NOS: 307, 350 y 393; o
- (e) una región variable de la cadena ligera que comprende una secuencia de aminoácidos que comprende las SEQ ID NOS: 179, 222 y 265 y una región variable de la cadena pesada que comprende una secuencia de aminoácidos que comprende las SEQ ID NOS: 308, 351 y 394; o
- (f) una región variable de la cadena ligera que comprende una secuencia de aminoácidos que comprende las SEQ ID NOS: 184, 227 y 270 y una región variable de la cadena pesada que comprende una secuencia de aminoácidos que comprende las SEQ ID NOS: 313, 356 y 399; o
 - (g) una región variable de la cadena ligera que comprende una secuencia de aminoácidos que comprende las SEQ ID NOS: 187, 230 y 273 y una región variable de la cadena pesada que comprende una secuencia de aminoácidos que comprende las SEQ ID NOS: 316, 359 y 402; o
- 25 (h) una región variable de la cadena ligera que comprende una secuencia de aminoácidos que comprende las SEQ ID NOS: 191, 234 y 277 y una región variable de la cadena pesada que comprende una secuencia de aminoácidos que comprende las SEQ ID NOS: 320, 363 y 406; o
 - (i) una región variable de la cadena ligera que comprende una secuencia de aminoácidos que comprende las SEQ ID NOS: 192, 235 y 278 y una región variable de la cadena pesada que comprende una secuencia de aminoácidos que comprende las SEQ ID NOS: 321, 364 y 407; o
 - (j) una región variable de la cadena ligera que comprende una secuencia de aminoácidos que comprende las SEQ ID NOS: 194, 237 y 280 y una región variable de la cadena pesada que comprende una secuencia de aminoácidos que comprende las SEQ ID NOS: 323, 366 y 409; o
 - (k) una región variable de la cadena ligera que comprende una secuencia de aminoácidos que comprende las SEQ ID NOS: 195, 238 y 281 y una región variable de la cadena pesada que comprende una secuencia de aminoácidos que comprende las SEQ ID NOS: 324, 367 y 410; o
 - (I) una región variable de la cadena ligera que comprende una secuencia de aminoácidos que comprende las SEQ ID NOS: 198, 241 y 284 y una región variable de la cadena pesada que comprende una secuencia de aminoácidos que comprende las SEQ ID NOS: 327, 370 y 413; o
- 40 (m) una región variable de la cadena ligera que comprende una secuencia de aminoácidos que comprende las SEQ ID NOS: 200, 243 y 286 y una región variable de la cadena pesada que comprende una secuencia de aminoácidos que comprende las SEQ ID NOS: 329, 372 y 415; o
 - (n) una región variable de la cadena ligera que comprende una secuencia de aminoácidos que comprende las SEQ ID NOS: 201, 244 y 287 y una región variable de la cadena pesada que comprende una secuencia de aminoácidos que comprende las SEQ ID NOS: 330, 373 y 416; o
 - (o) una región variable de la cadena ligera que comprende una secuencia de aminoácidos que comprende las SEQ ID NOS: 207, 250 y 293 y una región variable de la cadena pesada que comprende una secuencia de aminoácidos que comprende las SEQ ID NOS: 336, 379 y 422; o
 - (p) una región variable de la cadena ligera que comprende una secuencia de aminoácidos que comprende las SEQ ID NOS: 208, 251 y 294 y una región variable de la cadena pesada que comprende una secuencia de aminoácidos que comprende las SEQ ID NOS: 337, 380 y 423; o
 - (q) una región variable de la cadena ligera que comprende una secuencia de aminoácidos que comprende las SEQ ID NOS: 211, 254 y 297 y una región variable de la cadena pesada que comprende una secuencia de aminoácidos que comprende las SEQ ID NOS: 340, 383 y 426; o
- (r) una región variable de la cadena ligera que comprende una secuencia de aminoácidos que comprende las SEQ ID NOS: 212, 255 y 298 y una región variable de la cadena pesada que comprende una secuencia de aminoácidos que comprende las SEQ ID NOS: 341, 384 y 427; o
- (s) una región variable de la cadena ligera que comprende una secuencia de aminoácidos que comprende las SEQ ID NOS: 194, 237 y 280 y una región variable de la cadena pesada que comprende una secuencia de aminoácidos que comprende las SEQ ID NOS: 335, 378 y 421.

2. El anticuerpo monoclonal humano de la reivindicación 1, que comprende:

5

10

15

25

30

35

- (a) una región variable de la cadena ligera que tiene la secuencia polipeptídica de SEQ ID NO: 2 y una región variable de la cadena pesada que tiene la secuencia polipeptídica de SEQ ID NO: 4; o
- (b) una región variable de la cadena ligera que tiene la secuencia polipeptídica de SEQ ID NO: 6 y una región variable de la cadena pesada que tiene la secuencia polipeptídica de SEQ ID NO: 8; o
- (c) una región variable de la cadena ligera que tiene la secuencia polipeptídica de SEQ ID NO: 14 y una región variable de la cadena pesada que tiene la secuencia polipeptídica de SEQ ID NO: 16; o
- (d) una región variable de la cadena ligera que tiene la secuencia polipeptídica de SEQ ID NO: 22 y una región variable de la cadena pesada que tiene la secuencia polipeptídica de SEQ ID NO: 24; o
- (e) una región variable de la cadena ligera que tiene la secuencia polipeptídica de SEQ ID NO: 26 y una región variable de la cadena pesada que tiene la secuencia polipeptídica de SEQ ID NO: 28; o
 - (f) una región variable de la cadena ligera que tiene la secuencia polipeptídica de SEQ ID NO: 46 y una región variable de la cadena pesada que tiene la secuencia polipeptídica de SEQ ID NO: 48; o
 - (g) una región variable de la cadena ligera que tiene la secuencia polipeptídica de SEQ ID NO: 58 y una región variable de la cadena pesada que tiene la secuencia polipeptídica de SEQ ID NO: 60; o
 - (h) una región variable de la cadena ligera que tiene la secuencia polipeptídica de SEQ ID NO: 74 y una región variable de la cadena pesada que tiene la secuencia polipeptídica de SEQ ID NO: 76; o
 - (i) una región variable de la cadena ligera que tiene la secuencia polipeptídica de SEQ ID NO: 78 y una región variable de la cadena pesada que tiene la secuencia polipeptídica de SEQ ID NO: 80; o
- 20 (j) una región variable de la cadena ligera que tiene la secuencia polipeptídica de SEQ ID NO: 86 y una región variable de la cadena pesada que tiene la secuencia polipeptídica de SEQ ID NO: 88; o
 - (k) una región variable de la cadena ligera que tiene la secuencia polipeptídica de SEQ ID NO: 90 y una región variable de la cadena pesada que tiene la secuencia polipeptídica de SEQ ID NO: 92; o
 - (l) una región variable de la cadena ligera que tiene la secuencia polipeptídica de SEQ ID NO: 102 y una región variable de la cadena pesada que tiene la secuencia polipeptídica de SEQ ID NO: 104; o
 - (m) una región variable de la cadena ligera que tiene la secuencia polipeptídica de SEQ ID NO: 110 y una región variable de la cadena pesada que tiene la secuencia polipeptídica de SEQ ID NO: 112; o
 - (n) una región variable de la cadena ligera que tiene la secuencia polipeptídica de SEQ ID NO: 114 y una región variable de la cadena pesada que tiene la secuencia polipeptídica de SEQ ID NO: 116; o
 - (o) una región variable de la cadena ligera que tiene la secuencia polipeptídica de SEQ ID NO: 138 y una región variable de la cadena pesada que tiene la secuencia polipeptídica de SEQ ID NO: 140; o
 - (p) una región variable de la cadena ligera que tiene la secuencia polipeptídica de SEQ ID NO: 142 y una región variable de la cadena pesada que tiene la secuencia polipeptídica de SEQ ID NO: 144; o
 - (q) una región variable de la cadena ligera que tiene la secuencia polipeptídica de SEQ ID NO: 154 y una región variable de la cadena pesada que tiene la secuencia polipeptídica de SEQ ID NO: 156; o
 - (r) una región variable de la cadena ligera que tiene la secuencia polipeptídica de SEQ ID NO: 158 y una región variable de la cadena pesada que tiene la secuencia polipeptídica de SEQ ID NO: 160; o
 - (s) una región variable de la cadena ligera que tiene la secuencia polipeptídica de SEQ ID NO: 86 y una región variable de la cadena pesada que tiene la secuencia polipeptídica de SEQ ID NO: 136.
- 40 3. Una composición farmacéutica que comprende una cantidad terapéuticamente eficaz del anticuerpo monoclonal de la reivindicación 1 o 2 y un transportador farmacéuticamente aceptable.
 - 4. Una composición farmacéutica que comprende una cantidad terapéuticamente eficaz de la combinación de (a) un anticuerpo monoclonal de la reivindicación 1 o 2 y (b), factor VIII o factor IX, en el que la composición no contiene factor VII.
- 45 5. Una molécula de ácido nucleico aislado que codifica un anticuerpo monoclonal de la reivindicación 1.

Figura 1

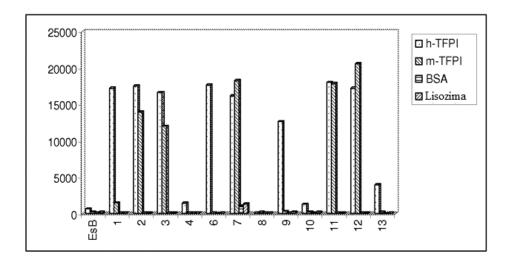


Figura 2

Actividad de Fab inhibidora de mTFPI

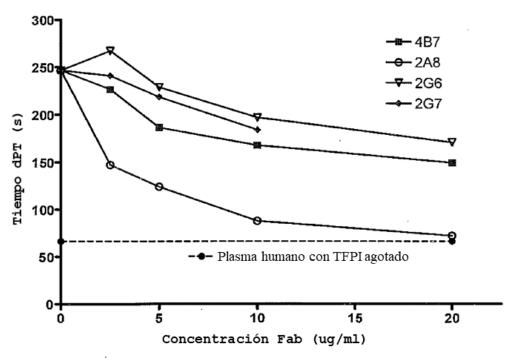
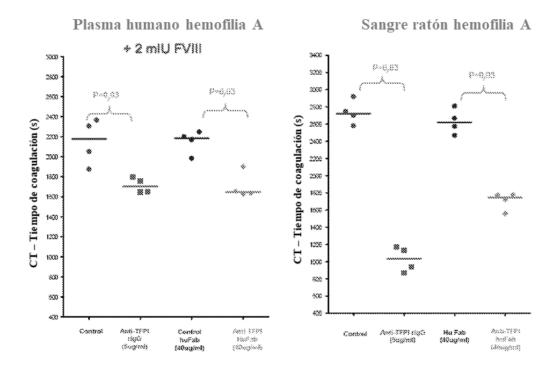



Figura 3

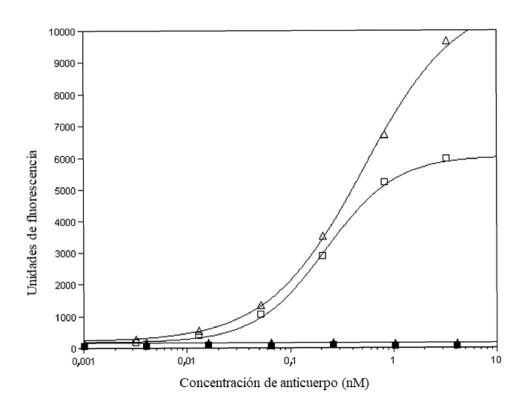
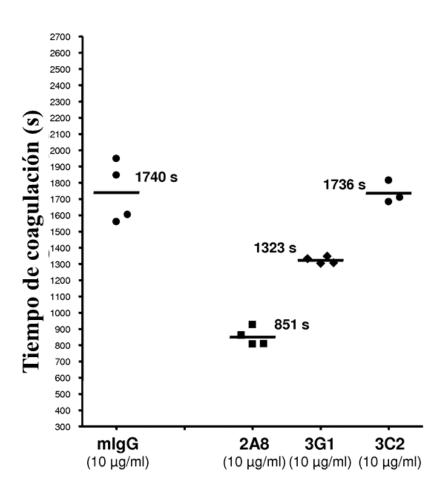



Figura 5

Figura 6

	CDI	R1 COR2	033
TP-2A13	DIELTO-PPSVSVAPGOTARISCSGDKLGK-		ETPERPSGSNSGNTATLTISGTQAEDRADYYCQANGSISRFVFGGGTKLTVLGQ
	~ ~		ELPERPSGSNSGNTATLTISGFQAEDRADYYCOSWTPGS-NTMVPGGGTRLTVLGQ
		*** **	FIPERPSGSNSGNTATLTISGFQAEDEADYYOQSYDSEA-DSEVFGGGTKLIVLGQ
			EFFERPSGSNSGNTATLTISGTÇAEDRADYYOQSYDSKF-N-TVPGGGTKLTVLGQ
IP-2A5.1	DIELIC-PPSVSVAPGQTARISCSGDNIPE-	KYVHWYQQKPGQAFVLVIHGDNNRPS	FIPERPSGSNSGNTATLTISGFQAEDEADYYOQSFDAGSYFVFGGGTKLTVLGQ
			FIPERPSGSNSGNTAILTISGIQAEDRADYYOQSUDKSEGYVPGGGTKLIVLGQ
			ETPERPSGSNSGNTATLTISGTQAEDBADYYCQSWDDGVPVPGGGTKLTVLGQ
TP-2B3	DIELTQ-PPSVSVAPGQTARISCSGDNLRG-	YYASWYQQXPGQAPVLVIYEDNNRPS	FIPERESCSNSGNTAILTISCTQAEDRADYYOQSWDSPYVHVPGGGTKLIVLGQ
TP-2G7	DIELIÇ-PPSVSVAPGQTARISCSGDNLGT-	YYVHWYQQKPGQAPVLVIYGDNNRPS:	SIPERPSGSNSGNTAILTISGIQAEDRADYYOQTYDSNN-ESIVPGGGTKLIVLGQ
TP-4H3	DIELTQ-PPSVSVAPGQTARISCSGDSIGK-	KYVHWYQQXPGQAPVLVIYGDNNRPS	SEPERPSGSNSGNTAILTISGIQAEDBADYYCSTADSVITYKNVFGGGTKLIVLGQ
TP-2G4	DIELIQ-PPSVSVAPGQTARISCSGDALRK-	HYVYWYQQXPGQAPVLVIYGDNNRPS	GEPERPSGSNSONTATLTISGIQAEDRADYYCQSYDKP-YPILVFGGGTKLTVLGQ
TP-3F2	DIELIÇ-PPSVSVAPGQTARISCSGDNLPS-	KSVYWYQQKPGQAPVLVIYGDNNRPSI	EEPERPSGSNSGNTAILTISGTQAEDRADYYOQSWTSRPMVVFGGGTKLIVLGQ
			ETPERPSGSNSGNTATLTISCTQAEDRADYYCASYDSTYSYN-VPGGGTKLTVLGQ
TP-3A2	DIELTQ-PPSVSVAPGQTARISCSGDNIGS-	RYAYWYQQXPGQAPVVVIYDDSDRPS	FIPERPSGSNSONTAILTISGIQAEDRADYYCAAYT-PY-ARTVFGGGTKLIVLGQ
TP-2C1	DIELTQ-PPSVSVAPGQTARISCSGDSIGS-	YYAHWYQQXPGQAFVLVIYYDSXRPS	FIPERPSGSNSGNTAILTISGTQAEDRADYYCQAYTGQS-ISRVFGGGTKLIVLGQ
TP-3E1	DIELTQ-PPSVSVAPGQTARISCSGDNIGS-	YYAYWYQQXPGQAPVLVIYDDSNRPS	PEPERPSGSNSGNTAILTISGTQAEDBADYYCQSYD-ST-GLLVFGGGTKLIVLGQ
TP-3F1	DIELIÇ-PPSVSVAPGQTARISCSGDNIGS-	YFASWYQQXPGQAPVLVIYDDSNRPS	FIPERPSGSNSGNTAILTISGTQAEDRADYYCEGSNVPGGGTKLIVLGQ
			FIPERPSGSNSGNTAILTISGIQAEDBADYYCSTYTSRS-ESYVPGGGTKLIVLGQ
TP-4A7	DIELIQ-PPSVSVAPGQTARISCSGDALGS-	KPAHWYQQKPGQAPVLVIYDDSERPS!	PEPPRPSGSNSGNTATLTISGFQAEDRADYYCQAYDS-G-LLYVPGGGTKLTVLGQ
			FIPERPSGSNSGNTAILTISGTQAEDRADYYCQTYDYILN-VPGGGTKLIVLGQ
	-		CVPARPNOSGSGTDFILTISSLEPEDPAVYYCQQLNSIPVIPGQGTKVELKRT
			EVPARPSGSGSGTDFILTISSLEPEDFAVYYCQQDSNLPAlfGQGTKVELKRT
			EVPARPSGSGSGTDFILTISSLEPEDPAVYYCQQFYDSPQDFGQGTKVELKRT
			SVPARPSGSGSGTDFILTISSIEPEDPATYYCQQYSSSPIIFGQGTKVEIKRT
		nn a	EVPARPSGSGSGTDFILTISSIEPEDPATYYCQQYDSIPSIFGQGTKVEIKRT
			FVPSRPSGSGSGTDFILTISSLQPEDPAVYYCEQYSDSPVIPGQGTKVELKRT
			EVPSRPSGSGSGTDFILTISS_QPEDPAVYYCQQRNGPPIPFGQGTKVEIKRT
			SVPSRFSGSGSGTDFILTISSLQPEOPAVYYCQQYYDYPLTFGQGTKVELKRT
			VPSRPSGSGSGTDFILTISSLQPEDPAVYYCQQYSGYPLTPGQGTKVELKRT
			evpsrpscsgsgtdfiltissiqpedpavyycqqqcnn2tipcqctkveikrt
			PYSRFSGSGTDFILTISSIQFEDFAVYYCLQVDNL2IFGQGTKVEIKRT
			PYSRESGSGIDFILTISSIQEDFRVYYCQQLDNRSIFGQGTKVEIKET
			EVESRESGSGTDFILTISSLØPEDFATYYODQQNCYEFIFGQGTKVBLKRT EVEDRESGSGTDFILKISRVEAEDWSVYYODQYDNAEITFGQGTKVBLKRT
			PPENRESSSSSIDF_LKISRVBAEDVEVYTOQQYDSYPTPGQSIKVBERRI PVPDRFSSSSSGTDF_LKISRVBAEDVEVYYOQQYDSYPTPGQSIKVBERRI
			VSNRFSGSKSGNTASLTISG_CAEDEADYYCSSADKFI-MSIVFGGGTK_TVLGD
			SYSTEM SESSESSES TO SELL TO SE
			EVSNPFSGSKSGNTASLTISGLCAEDBADYYCOSYDLNNLVFGGGTKLTVLGD
			::Perfsgsnsgnta:Ltisgiqa=DBaDYYCssYtinPNLnYvFgggtK.IVLgQ
			ETPERFSGSNSGNTATLTISGTÇAEDBADYYOQSYDAG-VKPAVFGGGTK.TVLGQ
		*** **	ETPERFSESNSONTATLTISETQAEDBADYYCSSAAFGSTVFGGGTKTVLGQ
			STREETS SYSTEM TO THE STREET STREETS S
		** *	EPERPSGSSSGNTAILTISGTÇAEDEADYYCQSYT-YSLNQVFGGGTKLIVLGQ
		*** **	ETPERFSGSNSGNTAILTISGTÇAEDEADYYCSAYAMGS—SPVFGGGTKLIVLGQ
11 000	ATTENTION OF THE OFFICE AND ADDRESS OF THE OFFICE OFFICE OF THE OFFICE OF THE OFFICE OFFICE OF THE OFFICE OFFICE OFFICE OF THE OFFICE OFFICE OFFICE OFFICE OFFICE OFFICE OFFICE OFFICE O	THE PERSON OF THE PROPERTY OF	

Figura 7

	CDR1 _	CC332	CCR3
IP-2A10	QVQLVESGGGLVQPGGSLRISCNASGETFTSYSN:WVRQAPGXGLEW	VSAISY-IGSNTHYADSVKGRFTISRDNSKNTLY.	.CYNSLRAECTAVYYCARAFLGYKESYFDIWGQGTLVTVSS
IP-3B3	QVQLVESGGGLVQPGGSLRLSCAASGPTFSSYGM:WVRQAPGXGLEW	VSNISY-MGSNTNYADSVKGRFTISRDNSKNTLY:	QYYSLRAEDIAVYYCARCLEPGYFDYWGQGILVTVSS
IP-234	QVQLVESGGGLVQPGGSLRISCAASGFTFSSYAMTWVRQAPGXGLEW	VSNISY-SGSNTYYADSVKGRFTISRDNSKNTLY:	.QYNSLRAECTAVYYCARVGYYYGFDYWGQGTLVTVSS
TP-2A5.1	QVQLVESGGGLVQPGGSLRISCAASGETFSSYGS-WVRQAPGXGLEW	VSVISG-SGSSTYYADSVKGRFTISRDNSKNTLY	QYNSLRAECTAVYYCARVNISTHFDVWGQGTLVTVSS
IP-4A9	QVQLVESGGGLVQPGGSLRISCAASGPTFSSYGMSWVRQAPGXGLEW	VSLISG-VSSSTYYADSVKGRFTISRDNSKNTLY:	_CYNSLRAEDTAVYYCARSYLGYFDVWGQGTLVTVSS
IP-2A8	QVQLVESGGGLVQPGGSLRLSCAASGFTFRSYGMSWVRQAPGKGLEW	VSSIRG-SSSSTYYADSVKGRFTISRDNSKNTLY.	.QYNSLRABDIAVYYCARKYRYNFDYWGQGILVTVSS
TP-2B3	QVQLQQSGPGLVKPSQTLSLTCAISGDSVSSNSAAMGWIRQSPGRGLEW	LGMIYYRSXWYNSYAVSVKSRITINPDISKNQFS:	.QLNSVTPEDTAVYYCARIMSKYGG-PGKDVMGQGTLVTVSS
TP-2B9	QVQLQQSGPGLVKPSQTLSLTCAISGDSVSSNSAAMGWIRQSPGRGLEW	LGMIYHRSXWYNDYAVSVKSRITINPDISXXQFS:	QLNSVTPEDIAVYYCARYSSIGHYDYWGQGTLVTVSS
TP-2E10	QVQLQQSGPGLVKPSQTLS:TCAISGDSVSSNGAAMGWIRQSPGRGLEW	LGFTYRRSXWYNSYAVSVKSRITINPDTSKNQFSI	.QLNSVTPECTAVYYCARQDGMCGKDSWGQGTLVTVSS
TP-3B4	QVQLQQSGPGLVKPSQTLS:TCAISGDSVSSNGAAMGWIRQSPGRGLEW	LGETYYRSXWYNSYAVSVKSRII INPDISKNQFS:	.QLNSVTPEDIAVYYCARMGGIHDGDIY?DYWGQGTLVTVSS
IB-207	QVQLQQSGPGLVKPSQTLS:TCAISGDSVSSNSAAMGWIRQSPGRGLEW	LGI IYYRSXWYNHYAVSVKSRITINPDISXXQFS:	.QLNSVTPECTAVYYCARSNMSGYRDYMGQGTLVTVSS
TP-2E3	QVQLQQSGPGLVKPSQTLSITCAISGDSVSSNSAAMGWIRQSPGRGLEW	LGMIYYRSXWYNDYAVSVKSRITINPDISXXQFS:	.QLNSVTPECTAVYYCARVNQYTSSDYWGQGTLVTVSS
IB-303	QVQLQQSGPGLVKPSQTLS:TCAISGDSVSSNSAAWGWIRQSPGRGLEW	LGVIYYRSXWYNDYAVSVKSRITINPDISKNQFS:	.QLNSVTPECTAVYYCARARAKKSGGF)YWGQGTLVTVSS
IP-295	QVQLQQSGPGLVKPSQTLS:TCAISGDSVSSNSAANSWIRQSPGRGLEW	LGFTYYRSXMYNDYAVSVKSRICTNPDTSXXQFSI	SSVTVJIDQDWYCSDID9NESACYYVAIDB9TVSKJQ.
IP-4B7	QVQLQQSGPGLVKFSQTLS1TCAISGDSVSSNSAAMSWIRQSPGRGLEW	LGIIYKRSXWYNDYAVSVKSRITINPDISXXQFSI	.QLNSVTPECTAVYYCARMESDKHNGFDYWGQGTLVTVSS
TP-236	QVQLQQSGPGLVKPSQTLS:TCAISGDSVSSSSAAMSWIRQSPGRGLEW	LGIIYYRSXWYNDYAVSVKSRITINPDISXNQFS:	.CLNSVTPECTAVYYCARHSMVGFDVWCQGTLVTVSS
IB-302	QVQLQQSGPGLVKPSQTLS:TCAISGDSVSSSSAAMSWIRQSPGRGLEW	LGMIYYRSXWYNHYAVSVKSRITINPDISXWQPSI	.QLNSVTPECTAVYYCARGGS-GVYDVWGQGTLVTVSS
IP-2D7	QVQLQQSGPGLVKPSQTLS:TCAISGDSVSSNSAAWGWIRQSPGRGLEW	LGLIYYRSXWYNDYAVSVKSRITINPDISKNQFS:	.QLNSVTPBDTAVYYCAREGDTNRNGCOVWQQGTLVTVSS
TP-3G1	QVQLQQSGPGLVKPSQTLS_TCAISGDSVSSNSGGWGWIRQSPGRGLEW	LGLIYYRSXWYNAYAVSVKSRITINPDISKNQFS:	.QLNSVTPEDTAVYYCARYLGSXPYVYSDVWGQGTLVTVSS
TP-2B5	QVQLQQSGPGLVKPSQTLSITCAISGDSVSSNSAAMSWIRQSPGRGLEW	4	
TP-2B8	QVQLVQSGAEVKKPGASVKVSCKASGYTFTGNSKHWVRQAPGQGLEW	MGTIFP-YDGTTKYAÇKPQGRVINTRDISISTAYN	ELSSLRSEDTAVYYCARGVESY7DYWGQGTLVTVSS
□-3F1	QVQLVQSGABVKKPGESLKISCKGSGYSPTDYWIGWVRQYPGKGLEW	MGI IQP-SOSDTKYSPSFQQQVT ISADKS ISTAY.	.QNSSLKASDTAMYYCAR?MMGKYDSGFDVWQQGTLVTVSS
IP−3A3	QVQLVESGGGLVQPGGSLRLSCAASGFTENNNALSWVRQAPGKGLEW	VSAINS-SSSSTSYADSVKGRFTISRDNSKNTLY.	.QYNSLRAEDTAVYYCARGHERGHSWASFIDYWGQGILVTVSS
IP-4E8	QVQLVESGGGLVQPGGSLRLSCAASGETFNDYAMSWVRQAPGKGLEW		-
D-4A7	QVQLVESGGGLVQPGGSLRLSCAASGFTERNYAMWVRQAPGKGLEN	VSVISG-SSSYTYYADSVKGRFTISRDNSKNTLY.	.QYMSLRAEDTAVYYCARADLPYYVFDYWGQGILVTVSS
IP-4E8	QVQLVESGGGLVQPGGSLRISCAASGPTFSDHAMHWYRQAPGKGLEW		~
□-2A6	QVQLVESGGGLVQPGGSLRISCAASGETFSRYAMSWVRQAPGKGLEW		
IP-201	QVQLVESGGGLVQPGGSLRLSCAASGETFSPYVKSWVRQAPGKGLEW		
IP-393	QVQLVESGGGLVQPGGSLRLSCAASGETFSSYSMSWVRQAPGXGLEW		
□2-2B1	QVQLVESGGGLVQPGGSLRISCAASGFTFSSYSMSWVRQASGXGLEW		
IB-297	QVQLVESGGGLVQPGGSLRLSCAASGFTFNSYAMSWVRQAPGKGLEW		
TP-3E2	QVQLVESCCGLVQPCCSLRLSCAASCFTFNSYYMSWVRQAPCKGLEW		
IP-2A2	QVQLVESGG3LVQPGGSLRLSCAASGFTFSNNAAMWVRQAPGXGLEW		
TP-3E1	QVQLVESGG3LVQPGGSLRLSCRASGFTFSKYAMTWVRQAPGK3LEW		
TP-2G2	QVQLVESGG3LVQPGGSLRISCAASGFTESSYAMAWVRQAPGK3LEW		
T2-3D3	QVQLVESGGGLVQPGGSLR1SCAASGFTFSSYAS-WVRQAPGKGLEW		-
IP-2G9	QVQLVESGGGLVQPGGSLRLSCAASGETFNSYAMTWVRQAPGKGLEW		
T3-2B4	QVQLVESGGGLVQPGGSLRLSCAASGETFSNYSMTWVRQAPGKGLEW		
T2-3A2	QVQLVESGGGLVQPGGSLRISCAASGFTFSNYYLSWVRQAPGXGLEW		-
IP-2E9	QVQLVESOGGLVQPGGSLRLSCAASGFTFYKYAMHWVRQAPGKGLEW		
IP-3A4	QVQLVESOGGLVQPGGSLRISCAASGFTFSSYWMHWVRQAPGKGLEW		
IP-301	QVQLVESGGGLVQPGGSLRISCAASGFTFSSYSMHWVRQAPGKGLEW		-
□-3F2	QVQLVESOGGLVQPGGSLRLSCAASG—FTFSSYSMHWVRQAPGKGLEW		-
IP-4G8	QVQLVESGGLVQPGGSLRISCAASGFTFSTYAMHWVRQAPGKGLEW	VSTISE-IGSFTYIAJSVKGRFTISRDASXNTLY.	.gxnblkabutavitca.cogrKYeçkDNWeQG.LVTVSS

Figura 8

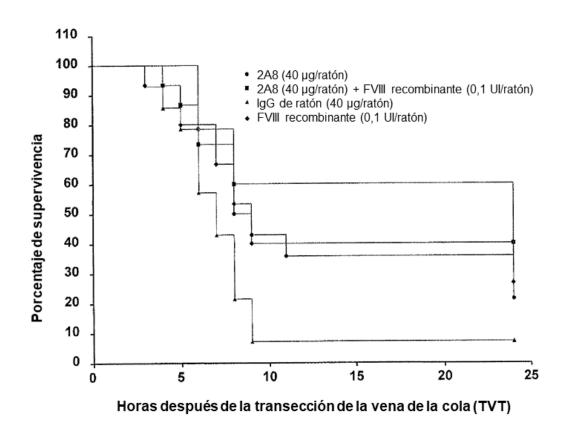
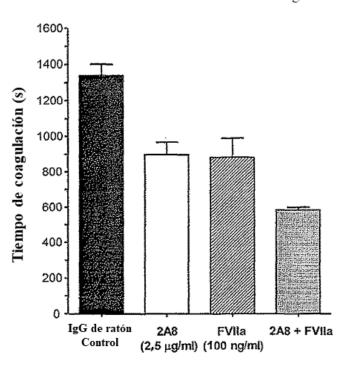



Figura 9

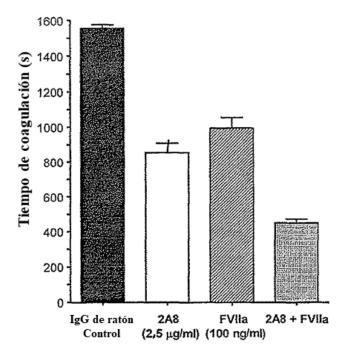
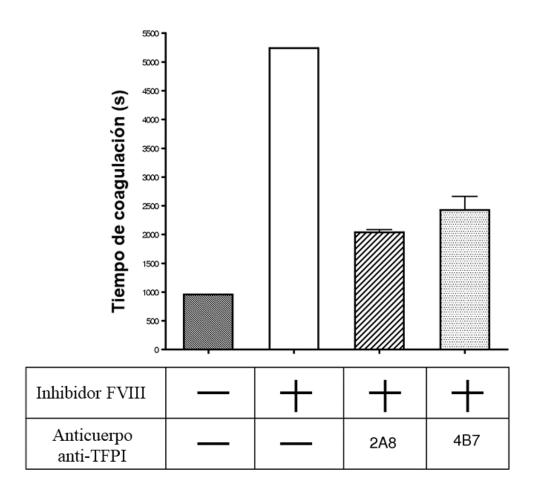



Figura 10

