

OFICINA ESPAÑOLA DE PATENTES Y MARCAS

ESPAÑA

11) Número de publicación: 2 679 419

51 Int. Cl.:

G06K 7/00 (2006.01) H04W 4/00 (2008.01) G06K 7/10 (2006.01)

(12)

TRADUCCIÓN DE PATENTE EUROPEA

T3

(86) Fecha de presentación y número de la solicitud internacional: 26.07.2013 PCT/CN2013/080225

(87) Fecha y número de publicación internacional: 29.01.2015 WO15010335

(96) Fecha de presentación y número de la solicitud europea: 26.07.2013 E 13889989 (3)

(97) Fecha y número de publicación de la concesión europea: 18.04.2018 EP 2921987

(54) Título: Método y aparato de reconocimiento de etiquetas

45) Fecha de publicación y mención en BOPI de la traducción de la patente: 27.08.2018

(73) Titular/es:

HUAWEI DEVICE (DONGGUAN) CO., LTD. (100.0%)
B2-5 of Nanfang Factory, No.2 of Xincheng Road,

Songshan Lake Science and Technology
Industrial Zone

Dongguan, Guangdong 523808, CN

(72) Inventor/es:

JIN, ZHIHAO y CHANG, XINMIAO

(74) Agente/Representante:

LEHMANN NOVO, María Isabel

DESCRIPCIÓN

Método y aparato de reconocimiento de etiquetas

5 Campo técnico

La presente invención se refiere al campo de las tecnologías de comunicaciones, y en particular, a un método y un aparato de identificación de etiquetas.

10 Antecedentes

15

20

30

40

45

55

60

La comunicación de campo cercano (NFC, *Near Field Communication*) es una tecnología de conexión inalámbrica de corto alcance, que puede implementar la comunicación entre dispositivos electrónicos a corta distancia por medio de inducción de campo magnético, donde dos dispositivos implementan el intercambio de datos mediante acercamiento o choque.

En la técnica anterior, después de que un terminal NFC detecte una etiqueta NFC, un controlador de comunicación de campo cercano (controlador NFC, *Near Field Communication Controller*) del terminal NFC lee todo el contenido de la etiqueta NFC, y a continuación envía todo el contenido de la etiqueta NFC a un anfitrión del dispositivo del terminal NFC; el anfitrión del dispositivo procesa la etiqueta NFC. En general, el anfitrión del dispositivo determina, de acuerdo con todo el contenido de la etiqueta NFC, si un formato de la etiqueta NFC está conforme a un formato de intercambio de datos NFC (NDEF, *NFC Data Exchange Format*).

No obstante, en la técnica anterior, el anfitrión del dispositivo puede determinar el formato de la etiqueta NFC únicamente mediante la adquisición de todo el contenido de la etiqueta NFC, lo que provoca que el anfitrión del dispositivo lea una gran cantidad de datos de la etiqueta NFC y lleve a cabo operaciones relativamente complejas.

El documento EP2458899 proporciona una interfaz que incluye un CLF (extremo frontal sin contacto, *Contactless front end*) y un AP (procesador de aplicaciones, *Application Processor*), para comunicación de campo cercano. El CLF lleva a cabo el procesamiento que debe realizar el AP, en lugar del AP, de acuerdo con el nivel de interfaz designado para un protocolo RF predeterminado en el procesamiento de intercambio de datos entre el objetivo y el AP. Si el dispositivo NFC está en un modo de lectura/escritura, y el nivel de interfaz activado por el CLF es el nivel alto, el CLF lleva a cabo el procesamiento para acceder a los datos NDEF en lugar del AP.

35 Compendio

La presente invención proporciona un método y un aparato de identificación de etiquetas, que puede implementar una reducción de los pasos para determinar un formato de una etiqueta mediante un anfitrión del dispositivo en un terminal NFC, de modo que se pueda procesar una etiqueta NFC.

De acuerdo con un primer aspecto, la presente invención proporciona un método de identificación de etiquetas, que incluye:

leer, mediante un controlador de comunicación de campo cercano, NFC, un tipo de una etiqueta;

determinar, mediante el controlador NFC, si un formato de la etiqueta es un formato de intercambio de datos NFC, NDEF, de acuerdo con el tipo de la etiqueta; y

enviar, mediante el controlador NFC, un mensaje de notificación a un anfitrión del dispositivo, cuando el controlador NFC determina que el formato de la etiqueta es el NDEF, donde el mensaje de notificación incluye que el formato de la etiqueta es el NDEF;

donde después del paso de enviar, mediante el controlador NFC, el mensaje de notificación al anfitrión del dispositivo, el método comprende, además:

recibir, mediante el controlador NFC utilizando una interfaz por radiofrecuencia NDEF, una orden de lectura/escritura enviada por el anfitrión del dispositivo;

convertir, mediante el controlador NFC, la orden de lectura/escritura en una orden de lectura/escritura NDEF; y

realizar, mediante el controlador NFC, la lectura/escritura de datos en la etiqueta de acuerdo con la orden de lectura/escritura NDEF.

En una primera implementación posible, haciendo referencia al primer aspecto, antes de la lectura, mediante el controlador de comunicación de campo cercano, NFC, del tipo de la etiqueta, el método incluye, además:

recibir, mediante el controlador NFC, una orden de configuración enviada por el anfitrión del dispositivo, donde la orden de configuración se utiliza para indicar si el controlador NFC realiza la detección NDEF en la etiqueta.

- En una segunda implementación posible, haciendo referencia al primer aspecto o a la primera implementación posible del primer aspecto, la determinación, mediante el controlador NFC, de si el formato de la etiqueta es el formato de intercambio de datos NFC, NDEF, de acuerdo con el tipo de la etiqueta, incluye:
 - cuando el tipo de la etiqueta es el Tipo 1, determinar, mediante el controlador NFC, si el formato de la etiqueta es el NDEF de acuerdo con la memoria de solo lectura de cabecera HR0 en la etiqueta;
 - cuando el tipo de la etiqueta es el Tipo 2, determinar, mediante el controlador NFC, si el formato de la etiqueta es el NDEF de acuerdo con un contenedor de capacidad CC en la etiqueta;
- cuando el tipo de la etiqueta es el Tipo 3, determinar, mediante el controlador NFC, si el formato de la etiqueta es el NDEF de acuerdo con el código del sistema, *System Code*, en la etiqueta; y
 - cuando el tipo de la etiqueta es el Tipo 4, determinar, mediante el controlador NFC, si el formato de la etiqueta es el NDEF de acuerdo con un identificador de archivo de un archivo del contenedor de capacidad CC en la etiqueta;
- 20 En una tercera implementación posible, haciendo referencia al primer aspecto o a cualquiera de las implementaciones posibles anteriores del primer aspecto, antes de la recepción, mediante el controlador NFC, de la orden de configuración enviada por el anfitrión del dispositivo, el método incluye, además:
- enviar, mediante el controlador NFC, un mensaje de función de formato al anfitrión del dispositivo, donde el mensaje de función de formato contiene información sobre si el controlador NFC tiene una capacidad de realizar la detección NDEF en la etiqueta.
 - En una cuarta implementación posible, haciendo referencia a la tercera implementación posible del primer aspecto, antes del envío, mediante el controlador NFC, del mensaje de función de formato al anfitrión del dispositivo, el método incluye, además:
 - recibir, mediante el controlador NFC, una orden de inicialización enviada por el anfitrión del dispositivo; y
 - el envío, mediante el controlador NFC, del mensaje de función de formato al anfitrión del dispositivo incluye:
- enviar, mediante el controlador NFC, una respuesta a la inicialización al anfitrión del dispositivo, donde la respuesta de inicialización contiene la información sobre si el controlador NFC tiene una capacidad de realizar la detección NDEF en la etiqueta.
- En una quinta implementación posible, haciendo referencia a la primera implementación posible del primer aspecto, la orden de configuración se utiliza además para indicar que el controlador NFC realiza la detección de tipo de datos en la etiqueta.
- De acuerdo con un segundo aspecto, la presente invención proporciona un aparato de identificación de etiquetas, donde el aparato incluye un controlador de comunicación de campo cercano NFC y un anfitrión del dispositivo, y el controlador NFC está conectado al anfitrión del dispositivo, donde:
 - el controlador NFC se configura de modo que lea un tipo de una etiqueta; y determine si un formato de la etiqueta es un formato de intercambio de datos NFC, NDEF, de acuerdo con el tipo de la etiqueta; y el controlador NFC envía un mensaje de notificación al anfitrión del dispositivo, cuando el controlador NFC determina que el formato de la etiqueta es el NDEF, donde el mensaje de notificación incluye que el formato de la etiqueta es el NDEF; y
 - el anfitrión del dispositivo se configura de modo que reciba el mensaje de notificación enviado por el controlador NFC;
 - donde el anfitrión del dispositivo se configura además de modo que envíe, utilizando una interfaz por radiofrecuencia NDEF, una orden de lectura/escritura al controlador NFC; y
 - el controlador NFC se configura además de modo que:

10

30

35

50

55

60

65

- reciba, utilizando una interfaz por radiofrecuencia NDEF, una orden de lectura/escritura enviada por el anfitrión del dispositivo;
- convierta la orden de lectura/escritura en una orden de lectura/escritura NDEF; y
- realice la lectura/escritura de datos en la etiqueta de acuerdo con la orden de lectura/escritura NDEF.

en una primera implementación posible, haciendo referencia al segundo aspecto, el anfitrión del dispositivo se configura además de modo que envíe una orden de configuración al controlador NFC, donde la orden de configuración se utiliza para indicar si el controlador NFC realiza la detección NDEF en la etiqueta; y

el controlador NFC se configura además de modo que reciba la orden de configuración enviada por el anfitrión del dispositivo.

En una segunda implementación posible, haciendo referencia al segundo aspecto o a la primera implementación posible del segundo aspecto, el controlador NFC se configura de manera específica de modo que:

cuando el tipo de la etiqueta es el Tipo 1, determine si el formato de la etiqueta es el NDEF de acuerdo con la memoria de solo lectura de cabecera HR0 en la etiqueta; cuando el tipo de la etiqueta es el Tipo 2, determine si el formato de la etiqueta es el NDEF de acuerdo con un contenedor de capacidad CC en la etiqueta; cuando el tipo de la etiqueta es el Tipo 3, determine si el formato de la etiqueta es el NDEF de acuerdo con el código del sistema, *System Code*, en la etiqueta; y cuando el tipo de la etiqueta es el Tipo 4, determine si el formato de la etiqueta es el NDEF de acuerdo con un identificador de archivo de un archivo del contenedor de capacidad CC en la etiqueta.

En una tercera implementación posible, haciendo referencia al segundo aspecto o a cualquiera de las implementaciones posibles anteriores del segundo aspecto, el controlador NFC se configura además de modo que envíe un mensaje de función de formato al anfitrión del dispositivo, donde el mensaje de función de formato contiene la información sobre si el controlador NFC tiene una capacidad de realizar la detección NDEF en la etiqueta.

En una cuarta implementación posible, haciendo referencia a la tercera implementación posible del segundo aspecto, el anfitrión del dispositivo se configura además de modo que envíe una orden de inicialización al controlador NFC; y

el controlador NFC se configura además de modo que envíe una respuesta de inicialización al anfitrión del dispositivo después de recibir la orden de inicialización enviada por el anfitrión del dispositivo, donde la respuesta de inicialización contiene la información sobre si el controlador NFC tiene una capacidad de realizar la detección NDEF en la etiqueta.

En una quinta implementación posible, haciendo referencia a la primera implementación posible del segundo aspecto, la orden de configuración se utiliza además para indicar que el controlador NFC realiza la detección de tipo de datos en la etiqueta.

En una sexta implementación posible, haciendo referencia al segundo aspecto o a cualquiera de las implementaciones posibles anteriores del segundo aspecto, el anfitrión del dispositivo se configura además de modo que establezca una interfaz por radiofrecuencia NDEF para realizar la transmisión de datos con el controlador NFC, después de recibir el mensaje de notificación enviado por el controlador NFC.

De acuerdo con el método y el aparato de identificación de etiquetas proporcionados por la presente invención, un controlador NFC lee un tipo de una etiqueta; y determina si un formato de la etiqueta es un formato de intercambio de datos NFC de acuerdo con el tipo de la etiqueta; y el controlador NFC envía un mensaje de notificación a un anfitrión del dispositivo, cuando el controlador NFC determina que el formato de la etiqueta es el formato de intercambio de datos NFC, donde el mensaje de notificación incluye la información de que el formato de la etiqueta es el formato de intercambio de datos NFC. Comparado con la técnica anterior en la que un anfitrión del dispositivo puede determinar un formato de una etiqueta NFC únicamente mediante la adquisición de todo el contenido de la etiqueta NFC, lo que provoca que el anfitrión del dispositivo lea una gran cantidad de datos de la etiqueta NFC y realice operaciones relativamente complejas, la presente invención puede implementar una reducción de los pasos para determinar un formato de una etiqueta mediante un anfitrión del dispositivo en un terminal NFC, de modo que se pueda procesar la etiqueta NFC.

Breve descripción de los dibujos

5

15

25

30

35

40

45

50

55

60

65

Para describir las soluciones técnicas de la presente invención de manera más clara, a continuación, se presentan brevemente los dibujos anexos que describen algunas realizaciones de la presente invención o de la técnica anterior. Obviamente, los dibujos anexos de la siguiente descripción muestran simplemente una selección de realizaciones de la presente invención.

La figura 1 es un diagrama de flujo de un método de identificación de etiquetas, de acuerdo con una realización de la presente invención;

la figura 2 es un diagrama de flujo de otro método de identificación de etiquetas, de acuerdo con una realización de la presente invención;

la figura 3 es un diagrama esquemático de una estructura de transmisión, entre un anfitrión del dispositivo y un controlador NFC y entre el controlador NFC y una etiqueta, en un método de identificación de etiquetas de acuerdo con una realización de la presente invención;

5 la figura 4 es un diagrama estructural esquemático de un aparato de identificación de etiquetas, de acuerdo con una realización de la presente invención;

la figura 5 es un diagrama estructural esquemático de otro aparato de identificación de etiquetas, de acuerdo con una realización de la presente invención; y

la figura 6 es un diagrama estructural esquemático de otro aparato de identificación de etiquetas más, de acuerdo con una realización de la presente invención.

Descripción de las realizaciones

10

15

35

40

45

50

55

60

65

Lo que sigue a continuación describe de manera clara y completa las soluciones técnicas de la presente invención haciendo referencia a los dibujos anexos que muestran las realizaciones de la presente invención. Obviamente, las realizaciones descritas son simplemente algunas, pero no todas las realizaciones de la presente invención.

Tal como se muestra en la figura 1, una realización de la presente invención proporciona un método de identificación de etiquetas, y el método incluye:

101: Un controlador NFC lee un tipo de etiqueta.

El controlador NFC es un controlador en un terminal NFC. El terminal NFC puede ser un terminal que tiene una función NFC, tal como un teléfono móvil, una tableta o una cámara. Para mayor simplicidad de la descripción, la realización se describe utilizando un teléfono móvil que tiene una función NFC a modo de ejemplo. El controlador NFC es una entidad lógica responsable de la transmisión de datos en una interfaz por radiofrecuencia NFC. En un ejemplo de un teléfono móvil que tiene una función NFC, un controlador NFC hace referencia a un chip NFC en el teléfono móvil.

En esta realización, la etiqueta es una etiqueta NFC. Los tipos de la etiqueta NFC son Tipo 1, Tipo 2, Tipo 3, Tipo 4. Para una manera en la que el controlador NFC lee el tipo de la etiqueta, se puede hacer referencia a la norma analógica del foro NFC, la norma digital del foro NFC y la norma de actividad del foro NFC.

El controlador NFC puede descubrir la etiqueta y adquirir un atributo de la etiqueta por medio del descubrimiento por radiofrecuencia. Para procesos de cómo el controlador NFC descubre la etiqueta y adquiere el atributo de la etiqueta por medio del descubrimiento por radiofrecuencia, se puede hacer referencia a la norma analógica del foro NFC, la norma digital del foro NFC y la norma de actividad del foro NFC. El atributo de la etiqueta puede incluir un formato de la etiqueta, un tipo de datos de la etiqueta, una función soportada por la etiqueta y similares. La función soportada por la etiqueta en la presente hace referencia a una capacidad que se requiere en un proceso de establecimiento de la comunicación entre el controlador NFC y la etiqueta.

102: El controlador NFC determina si un formato de la etiqueta es un NDEF de acuerdo con el tipo de la etiqueta.

El NDEF define un formato de encapsulación de la información durante el intercambio de información, donde la información se transmite entre los terminales NFC o entre un terminal NFC y una etiqueta NFC. El NDEF puede ser un formato de mensaje binario ligero, y se puede utilizar para encapsular uno o más datos definidos por el usuario de cualquier tipo y de cualquier tamaño.

Cuando el tipo de la etiqueta es el Tipo 1, el controlador NFC determina si el formato de la etiqueta es el NDEF de acuerdo con la memoria de solo lectura de cabecera (HR0, Header Read-Only Memory) en la etiqueta. De manera específica, una longitud de HR0 es un byte, y cuando cuatro bits de orden alto de HR0 son 0001b, el controlador NFC determina que el formato de la etiqueta es el NDEF. Cuando el tipo de la etiqueta es el Tipo 2, el controlador NFC determina si el formato de la etiqueta es el NDEF de acuerdo con un contenedor de capacidad (CC, Capability Container) en la etiqueta. De manera específica, una longitud del CC es cuatro bytes, y cuando un valor del primer byte es E1h (donde E1 está en formato hexadecimal), el controlador NFC determina que el formato de la etiqueta es el NDEF. Cuando el tipo de la etiqueta es el Tipo 3, el controlador NFC determina si el formato de la etiqueta es el NDEF de acuerdo con el código del sistema en la etiqueta. De manera específica, una longitud del código del sistema es dos bytes, y cuando un valor del código del sistema es 12FCh (donde 12FC está en formato hexadecimal), el controlador NFC determina que el formato de la etiqueta es el NDEF. Cuando el tipo de la etiqueta es el Tipo 4, el controlador NFC determina si el formato de la etiqueta es el NDEF de acuerdo con un identificador de archivo de un archivo del contenedor de capacidad (CC, Capability Container) en la etiqueta. De manera específica, una longitud del identificador de archivo del CC es dos bytes, y cuando un valor del identificador de archivo del archivo del CC es E103h (donde E103 es en formato hexadecimal), el controlador NFC determina que el formato de la etiqueta es el NDEF.

De manera opcional, cuando el controlador NFC determina que el formato de la etiqueta es el NDEF, el controlador NFC puede determinar además un tipo de datos de la etiqueta. La etiqueta tiene ocho tipos de datos. De manera específica, el controlador NFC adquiere la información del tipo de datos de un campo TNF de la etiqueta (Tipo 1, Tipo 2, Tipo 3 y Tipo 4), y determina el tipo de datos de la etiqueta de acuerdo con el contenido de la información del tipo de datos. Un valor del campo TNF puede ser 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06 o 0x07, y el controlador NFC puede determinar la información del tipo de datos de la etiqueta de acuerdo con el valor del campo TNF. De manera específica, el tipo de datos de la etiqueta es un tipo de un mensaje NDEF. 0X00 representa que el mensaje NDEF es un mensaje vacío; 0x01 representa que el mensaje NDEF almacena un tipo de datos interno definido en la norma RTD (definición de tipo de registro, Record Type Define) de la organización de normas del foro NFC; 0x02 representa que el mensaje NDEF almacena un tipo de medio de difusión definido en la norma RFC 2046 (petición de comentarios, Request For Comments), tal como una imagen y voz; 0x03 representa que el mensaje NDEF almacena un identificador de recurso uniforme (URI, Uniform Resource Identifier) definido en la norma RFC 3986; 0x04 representa que el mensaie NDEF almacena un tipo de datos externo definido en la norma RTD (definición de tipo de registro) de la organización de normas del foro NFC; 0x05 representa que el mensaje NDEF almacena un fragmento de datos de un tipo desconocido; 0x06 representa que el mensaje NDEF es una etiqueta intermedia entre una serie de etiquetas NDEF consecutivas, donde un tipo de datos de la etiqueta es el mismo que el de la etiqueta NDEF anterior; y 0x07 representa que el mensaje NDEF está reservado y no se utiliza temporalmente.

- 103: El controlador NFC envía un mensaje de notificación a un anfitrión del dispositivo, cuando el controlador NFC determina que el formato de la etiqueta es el NDEF, donde el mensaje de notificación incluye información de que el formato de la etiqueta es el NDEF.
- El anfitrión del dispositivo es responsable de la gestión de un entorno de ejecución del terminal NFC y un periférico, que incluye la gestión del controlador NFC, tal como la inicialización, configuración y gestión de la alimentación. En un ejemplo de un teléfono móvil que tiene una función NFC, el anfitrión del dispositivo puede hacer referencia a una CPU del teléfono móvil.
- En esta realización, por ejemplo, el controlador NFC envía el mensaje de notificación al anfitrión del dispositivo; por ejemplo, el mensaje de notificación es una notificación de descubrimiento por radiofrecuencia RF_DISCOVER_NFT. En la Tabla 1 se muestra una forma específica de la notificación RF_DISCOVER_NFT.

Tabla 1

5

10

15

40

45

50

RF_DISCOVER_NTF						
Inf. NDEF	1 octeto	x	Un valor distinto de cero indica que un formato de una etiqueta es un NDEF, y cero indica que el formato de la etiqueta no es el NDEF			

35 En la Tabla 1, los ejemplos de los significados o valores indicados por los campos son tal como sigue:

Inf. NDEF indica la información NDEF, que ocupa un byte (1 octeto);

X indica si un formato de una etiqueta es un NDEF; y

Cuando X≠0000 0000, esto indica que el formato de la etiqueta es el NDEF.

De manera opcional, cuando el controlador NFC determina que el formato de la etiqueta no es el formato de intercambio de datos NFC, el controlador NFC aún puede enviar un mensaje de notificación al anfitrión del dispositivo. Cuando X en el mensaje de notificación (RF_DISCOVER_NFT) cumple X=0000 0000, esto indica que el formato de la etiqueta no es el NDEF.

De manera opcional, el mensaje de notificación enviado por el controlador NFC al anfitrión del dispositivo puede incluir además el tipo de datos de la etiqueta. Por ejemplo, el controlador NFC envía la notificación RF_DISCOVER_NFT al anfitrión del dispositivo, y en la Tabla 2 se muestra una forma específica de la notificación RF_DISCOVER_NFT.

Tabla 2

RF_DISCOVER_NTF					
Inf. NDEF	1 octeto	x	Un valor distinto de cero indica que un formato de una etiqueta es un NDEF, y cero indica del formato de la etiqueta no es el NDEF		
TNF	1 octeto	x	X indica un tipo de datos de una etiqueta		

55 En la Tabla 2, los ejemplos de los significados o valores indicados por los campos son tal como sigue:

para descripciones detalladas de la Inf. NDEF, se puede hacer referencia a las descripciones en la Tabla 1, y estos detalles no se vuelven a describir en la presente;

el formato de nombre del tipo (TNF, *Type Name Format*) indica la información sobre un tipo de datos de una etiqueta y ocupa un byte (1 octeto);

cuando X=0x00, esto indica que un mensaje NDEF es un mensaje vacío (la etiqueta incluye el mensaje NDEF); y

cuando X=0x01, esto indica que el mensaje NDEF almacena un tipo de datos interno definido en la norma RTD (definición de tipo de registro) de la organización de normas del foro NFC, y similares.

Cabe destacar que X no está limitado a indicar un tipo de datos específico de una etiqueta en esta realización. Por ejemplo, cuando X=0x07, esto indica que el mensaje NDEF está reservado y no se utiliza temporalmente.

De acuerdo con el método de identificación de etiquetas que se proporciona en esta realización de la presente invención, el controlador NFC lee el tipo de una etiqueta; y determina si el formato de la etiqueta es el formato de intercambio de datos NFC de acuerdo con el tipo de la etiqueta; y el controlador NFC envía el mensaje de notificación al anfitrión del dispositivo, cuando el controlador NFC determina que el formato de la etiqueta es el formato de intercambio de datos NFC, donde el mensaje de notificación incluye la información de que el formato de la etiqueta es el formato de intercambio de datos NFC. Comparado con la técnica anterior en la que el anfitrión del dispositivo puede determinar el formato de la etiqueta NFC únicamente mediante la adquisición de todo el contenido de la etiqueta NFC, lo que provoca que el anfitrión del dispositivo lea una gran cantidad de datos de la etiqueta NFC y realice operaciones relativamente complejas, esta realización de la presente invención puede implementar una reducción de los pasos para determinar el formato de la etiqueta mediante el anfitrión del dispositivo en el terminal NFC, de modo que se pueda procesar la etiqueta NFC.

En otra realización de la presente invención, se proporciona un método de identificación de etiquetas. Tal como se muestra en la figura 2, el método incluye:

201: Un controlador NFC envía un mensaje de función de formato a un anfitrión del dispositivo, donde el mensaje de función de formato contiene información sobre si el controlador NFC tiene una capacidad de realizar la detección NDEF en una etiqueta.

35 De manera opcional, el controlador NFC envía el mensaje de función de formato al anfitrión del dispositivo de las siguientes dos maneras:

Manera 1: El anfitrión del dispositivo envía una orden de inicialización al controlador NFC; el controlador NFC envía una respuesta de inicialización al anfitrión del dispositivo después de recibir la orden de inicialización, es decir, el mensaje de función de formato es de manera específica la respuesta de inicialización, donde la orden de inicialización se utiliza para inicializar el controlador NFC. Por ejemplo, el anfitrión del dispositivo envía una orden CORE_INIT_CMD (una orden de inicialización) al controlador NFC, es decir, el anfitrión del dispositivo inicializa el controlador NFC; y a continuación el controlador NFC devuelve la respuesta CORE_INIT_RSP (una respuesta de inicialización) al anfitrión del dispositivo después de recibir la orden CORE_INIT_CMD. En la respuesta CORE_INIT_RSP, cuando un campo de interfaz RF soportada incluye 0x04, es decir, una interfaz RF de acceso NDEF, esto indica que el controlador NFC tiene una capacidad de detectar el NDEF.

Manera 2: El anfitrión del dispositivo envía una orden de consulta de formato al controlador NFC; el controlador NFC envía una respuesta de consulta de formato al anfitrión del dispositivo después de recibir la orden de consulta de formato, es decir, el mensaje de función de formato es de manera específica la respuesta de consulta de formato. Por ejemplo, el anfitrión del dispositivo envía una orden FORMAT_INQ_CMD (una orden de consulta de formato) al controlador NFC, y a continuación el controlador NFC devuelve una respuesta FORMAT_INQ_RSP (una respuesta de consulta de formato) al anfitrión del dispositivo después de recibir la orden FORMAT_INQ_CMD.

Evidentemente, esta realización no está limitada a las dos maneras anteriores que se utilizan como ejemplos. El controlador NFC puede añadir, además, a un mensaje enviado al anfitrión del dispositivo, la información sobre si el controlador NFC tiene una capacidad de realizar la detección NDEF en la etiqueta.

202: El anfitrión del dispositivo envía una orden de configuración al controlador NFC, donde la orden de configuración se utiliza para indicar si el controlador NFC realiza la detección NDEF en la etiqueta.

Por ejemplo, el anfitrión del dispositivo envía una orden CORE_SET_CONFIG_CMD al controlador NFC, donde la orden CORE_SET_CONFIG_CMD incluye un parámetro de formato. En la Tabla 3 se muestra una forma específica del parámetro de formato.

65

50

15

20

25

Tabla 3

5

CORE_SET_CONFIG_CMD					
Parámetro 1		ID	1 octeto	0xA0	
	3 octetos	Len	1 octeto	1	
		Val	1 octeto	Cero indica que no se realiza la detección NDEF, y un valor distinto de cero indica que se realiza la detección NDEF	

En la Tabla 3, los ejemplos de los significados o valores indicados por los campos son tal como sigue:

Parámetro 1 indica un parámetro de formato, y el parámetro de formato tiene tres bytes (3 octetos);

ID (identificador) ocupa un byte (1 octeto), y 0xA0 indica un identificador del parámetro de formato;

Len (longitud) ocupa un byte (1 octeto), y 1 indica que una longitud de Val es un byte; y

- Val (valor) ocupa 1 byte (1 octeto), y cuando un valor de Val es 0000 0000, esto indica que la orden de configuración da instrucciones al controlador NFC de que no realice la detección NDEF en una etiqueta; cuando un valor de Val es distinto de cero (por ejemplo, 0000 0001), esto indica que la orden de configuración da instrucciones al controlador NFC de que realice la detección NDEF en la etiqueta.
- 15 Cabe destacar que, en esta realización, no está limitado un valor de un byte ocupado por el Parámetro 1; cuando cambia un byte ocupado por ID, Len o Val incluidos en el Parámetro 1, también puede cambiar el valor del byte ocupado por el Parámetro 1.
- De manera opcional, la orden de configuración se utiliza además para indicar que el controlador NFC realiza una detección de tipo de datos en la etiqueta. Cuando la orden CORE_SET_CONFIG_CMD enviada por el anfitrión del dispositivo al controlador NFC se utiliza además para indicar que el controlador NFC realiza una detección de tipo de datos en la etiqueta, la orden CORE_SET_CONFIG_CMD incluye un parámetro de formato y un parámetro de tipo de datos, donde hay dos maneras de representación de la orden CORE_SET_CONFIG_CMD, y las formas específicas se muestran en la Tabla 4 y la Tabla 5.

Tabla 4

25

30

CORE_SET_CONFIG_CMD				
	3	ID	1 octeto	0xA0
Parámetro 1		Len	1 octeto	1
	octetos	Val	1 octeto	Cero indica que no se realiza la detección NDEF, y un valor distinto de cero indica que se realiza la detección NDEF
		ID	1 octeto	0xA1
Parámetro 2	3 octetos	Len	1 octeto	1
		Val	1 octeto	X indica un tipo de datos de una etiqueta que es necesario detectar

Para descripciones detalladas del parámetro de formato Parámetro 1, se puede hacer referencia a las descripciones en la Tabla 3, y estos detalles no se vuelven a describir en la presente.

En la Tabla 4, los ejemplos de los significados o valores indicados por los campos son tal como sigue:

Parámetro 2 indica un parámetro de tipo de datos, y el parámetro de tipo de datos tiene tres bytes (3 octetos);

35 ID (identificador) ocupa un byte (1 octeto), y 0xA1 indica un identificador del parámetro de tipo de datos;

Len (longitud) ocupa un byte (1 octeto), y 1 indica que una longitud de Val es un byte; y

Val (valor) ocupa un byte (1 octeto), y cuando un valor X de Val es 0101 0000, esto indica que la orden de configuración da instrucciones al controlador NFC para realizar una detección del segundo y cuarto tipo de datos. Se puede sobreentender que la etiqueta tiene ocho tipos de datos; el anfitrión del dispositivo dispone los ocho tipos de datos en una secuencia específica, y hace que cada bit de un valor de Val se corresponda con un tipo de datos. Cuando un bit en X es 1, esto indica que es necesario detectar un tipo de datos correspondiente al bit; cuando el bit es 0, esto indica que no es necesario detectar un tipo de datos correspondiente al bit. Por ejemplo, una secuencia,

del primer tipo al octavo tipo, de los ocho tipos de datos es como sigue: 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06 y 0x07. En consecuencia, el primer bit se corresponde con 0x00, el segundo bit se corresponde con 0x01, el tercer bit se corresponde con 0x02, el cuarto bit se corresponde con 0x03, y por analogía, el octavo bit se corresponde con 0x07. De acuerdo con un requisito de la orden de configuración en la Tabla 4, el controlador NFC detecta si el tipo de datos de la etiqueta es cualquiera de los dos tipos de datos: 0x01 o 0x03.

Tabla 5

10

15

35

40

45

CORE_SET_CONFIG_CMD				
Parámetro 1	3 octetos	ID	1 octeto	0xA0
		Len	1 octeto	1
		Val	1 octeto	Cero indica que no se realiza la detección NDEF, y un valor distinto de cero indica que se realiza la detección NDEF
Parámetro 2	3 octetos	ID	1 octeto	0xA1
		Len	1 octeto	1
		Val	1 octeto	Cero indica que no se realiza la detección de tipo de datos, y un valor distinto de cero indica que se realiza la detección de tipo de datos

En la Tabla 5, los ejemplos de los significados o valores indicados por los campos son tal como sigue:

para descripciones detalladas del parámetro de formato Parámetro 1, se puede hacer referencia a las descripciones en la Tabla 3, y estos detalles no se vuelven a describir en la presente;

Parámetro 2 indica un parámetro de tipo de datos, y el parámetro de tipo de datos tiene tres bytes (3 octetos);

ID (identificador) ocupa un byte (1 octeto), y 0xA1 indica un identificador del parámetro de tipo de datos;

Len (longitud) ocupa un byte (1 octeto), y 1 indica que una longitud de Val es un byte; y

- Val (valor) ocupa 1 byte (1 octeto), y cuando un valor de Val es 0000 0000, esto indica que la orden de configuración da instrucciones al controlador NFC de que no realice la detección de tipo de datos en una etiqueta; cuando un valor de Val es distinto de cero (por ejemplo, 0000 0001), esto indica que la orden de configuración da instrucciones al controlador NFC de que realice la detección de tipo de datos en la etiqueta.
- 25 En este paso, para las descripciones del anfitrión del dispositivo, el controlador NFC y el NDEF, se puede hacer referencia al paso 102 en la figura 1.
 - 203: El controlador NFC envía un mensaje de respuesta de orden de configuración al anfitrión del dispositivo.
- Después de recibir la orden de configuración enviada por el anfitrión del dispositivo, el controlador NFC envía el mensaje de respuesta de orden de configuración al anfitrión del dispositivo, donde el mensaje de respuesta de orden de configuración puede ser CORE_SET_CONFIG_RSP.
 - 204: El anfitrión del dispositivo envía una orden de inicio del descubrimiento por radiofrecuencia al controlador NFC.
 - Después de recibir el mensaje de respuesta de orden de configuración enviado por el controlador NFC, el anfitrión del dispositivo envía la orden de inicio del descubrimiento por radiofrecuencia al controlador NFC; o el anfitrión del dispositivo espera, después de enviar la orden de configuración, durante un tiempo predeterminado para iniciar el envío de la orden de inicio del descubrimiento por radiofrecuencia al controlador NFC. Por ejemplo, el anfitrión del dispositivo envía la orden RF_DIS_CMD (una orden de inicio del descubrimiento por radiofrecuencia) al controlador NFC.
 - En esta realización no está limitado un rango del tiempo predeterminado. Por ejemplo, cuando el tiempo predeterminado es 200 ms, el anfitrión del dispositivo inicia el envío de la orden de inicio del descubrimiento por radiofrecuencia al controlador NFC 200 ms después de enviar la orden de configuración al controlador NFC.
 - 205: El controlador NFC envía un mensaje de respuesta de descubrimiento por radiofrecuencia al anfitrión del dispositivo, e inicia el descubrimiento por radiofrecuencia para leer un tipo de la etiqueta.
- 50 El mensaje de respuesta de descubrimiento por radiofrecuencia incluye la información de notificación de que el controlador NFC ha recibido la orden de inicio del descubrimiento por radiofrecuencia. Por ejemplo, el controlador

NFC envía una respuesta RF_DIS_RSP (un mensaje de respuesta de descubrimiento por radiofrecuencia) al anfitrión del dispositivo.

206: El controlador NFC determina si un formato de la etiqueta es un NDEF de acuerdo con el tipo de la etiqueta.

5

- Para una manera en la que el controlador NFC determina si un formato de la etiqueta es un NDEF se puede hacer referencia al paso 102 en la figura 1, y estos detalles no se vuelven a describir en la presente.
- 207: Cuando se determina que el formato de la etiqueta es el NDEF, el controlador NFC determina el tipo de datos de la etiqueta.

Cabe destacar que, este paso es un paso opcional, y el controlador NFC solo necesita ejecutar el paso 207 cuando la orden de configuración incluye además información que indica que el controlador NFC detecta el tipo de datos de la etiqueta. Por lo tanto, en la figura 2, el paso 207 se representa en un recuadro con línea a trazos.

15

- Para una manera en la que el controlador NFC determina un tipo de datos de la etiqueta, aún se puede hacer referencia al paso 102 en la figura 1.
- 208: El controlador NFC envía un mensaje de notificación al anfitrión del dispositivo.

20

- Para descripciones detalladas del mensaje de notificación, se puede hacer referencia al paso 103 en la figura 1.
- 209: Cuando el formato de la etiqueta es el NDEF, el anfitrión del dispositivo establece una interfaz por radiofrecuencia NDEF.

25

30

35

La interfaz por radiofrecuencia NDEF es una interfaz entre el anfitrión del dispositivo y el controlador NFC. El controlador NFC envía los datos transmitidos entre el controlador NFC y la etiqueta (donde el formato de la etiqueta es el NDEF) al anfitrión del dispositivo mediante la utilización de la interfaz por radiofrecuencia NDEF; o el anfitrión del dispositivo envía en primer lugar, al controlador NFC utilizando la interfaz por radiofrecuencia NDEF, los datos que se deben enviar a la etiqueta, y a continuación el controlador NFC reenvía los datos a la etiqueta.

De manera específica, el anfitrión del dispositivo envía una orden RF_DISCOVER_SELECT_CMD (una orden de selección del descubrimiento por radiofrecuencia) al controlador NFC, donde la orden RF_DISCOVER_SELECT_CMD incluye la información de que el anfitrión del dispositivo ha establecido la interfaz por radiofrecuencia NDEF. En la Tabla 6 se muestra una forma específica de la orden RF_DISCOVER_SELECT_CMD.

Tabla 6

Tabla V					
RF_DISCOVER_SELECT_CMD					
RF Discovery ID	XX				
RF Protocol	Protocolo de la etiqueta				
RF Interface	Interfaz RF NDEF				

40

- En la Tabla 6, los ejemplos de los significados o valores indicados por los campos son tal como sigue:
- RF Discovery ID indica un identificador de descubrimiento por radiofrecuencia, y se utiliza para identificar una etiqueta correspondiente al descubrimiento por radiofrecuencia;

45

- XX indica un identificador de la etiqueta;
- RF Protocol indica una manera de comunicación entre el controlador NFC y la etiqueta (por ejemplo, el protocolo de la etiqueta); y

- RF Interface indica una interfaz entre el anfitrión del dispositivo y el controlador NFC (por ejemplo, la interfaz por radiofrecuencia NDEF).
- Después de que se establece la interfaz por radiofrecuencia NDEF entre el anfitrión del dispositivo y el controlador NFC, y después de que el controlador NFC recibe los datos enviados por el anfitrión del dispositivo, el controlador NFC puede convertir los datos en datos en un formato que la etiqueta puede recibir. La etiqueta es una etiqueta que se identifica mediante un RF Discover ID correspondiente a la interfaz por radiofrecuencia NDEF.

Se puede sobreentender que, del paso 201 al paso 209, una interfaz utilizada por el controlador NFC para realizar la interacción con el anfitrión del dispositivo puede ser una interfaz del controlador NFC (NCI, *NFC Controller Interface*). La NCI es una interfaz lógica entre el anfitrión del dispositivo y el controlador NFC, y la NCI se configura de modo que transmita diversas órdenes entre el anfitrión del dispositivo y el controlador NFC.

5

210: El anfitrión del dispositivo envía una orden de lectura/escritura al controlador NFC utilizando la interfaz por radiofrecuencia NDEF.

La orden de lectura/escritura se utiliza para adquirir los datos en la etiqueta, o la orden de lectura/escritura se utiliza para modificar los datos en la etiqueta.

- 211: El controlador NFC convierte la orden de lectura/escritura en una orden de lectura/escritura NDEF, y a continuación realiza la lectura/escritura de datos en la etiqueta de acuerdo con la orden de lectura/escritura NDEF.
- El contenido de las órdenes de lectura/escritura recibidas por diferentes tipos de etiquetas NFC es diferente. Por ejemplo, una orden de lectura/escritura recibida mediante el Tipo 1 es *Read*, y una orden de lectura/escritura recibida mediante el Tipo 2 es R. El controlador NFC convierte, utilizando la interfaz por radiofrecuencia NDEF, la orden de lectura/escritura enviada por el anfitrión del dispositivo en las órdenes de lectura/escritura NDEF correspondientes a diferentes tipos de etiquetas. La orden de lectura/escritura NDEF puede ser una orden de lectura NDEF.

Por ejemplo, el controlador NFC envía una orden de lectura NDEF a la etiqueta, donde la orden de lectura NDEF da instrucciones a la etiqueta NFC para enviar los datos en la etiqueta. Después de recibir la orden de lectura NDEF, la etiqueta NFC envía los datos en la etiqueta al controlador NFC.

25

- 212: El controlador NFC envía los datos en la etiqueta al anfitrión del dispositivo.
- 213: El anfitrión del dispositivo envía los datos recibidos en la etiqueta a una aplicación NFC.

Cabe destacar que, antes del paso 213, el anfitrión del dispositivo puede recibir un mensaje de registro enviado por la aplicación NFC. De manera específica, después de ser instalado o cuando se ejecuta por primera vez, la aplicación NFC realiza un registro, con el anfitrión del dispositivo de acuerdo con una capacidad, de procesamiento de un tipo de datos de una etiqueta, de la aplicación NFC. Por ejemplo, un programa de aplicación del navegador que soporte el escaneo NFC puede registrar un tipo de datos, en concreto URI (0x03), con el anfitrión del dispositivo.

35

Cuando el mensaje de notificación incluye que el formato de la etiqueta es el NDEF, el anfitrión del dispositivo envía los datos en la etiqueta a una aplicación que se ejecuta. Por ejemplo, aplicaciones que se ejecutan incluyen un navegador que soporte el escaneo NFC, un reproductor de vídeo que soporte el escaneo NFC y una galería de fotos que soporte el escaneo NFC. El anfitrión del dispositivo envía los datos en la etiqueta a las tres aplicaciones anteriores que se ejecutan procesan la etiqueta de acuerdo con una situación real (una capacidad, de procesamiento de un tipo de datos de una etiqueta, de una aplicación).

40

45

Cuando el mensaje de notificación incluye que el formato de la etiqueta es el NDEF e incluye el tipo de datos de la etiqueta, el anfitrión del dispositivo envía los datos en la etiqueta a una aplicación correspondiente a los tipos de datos. Por ejemplo, aplicaciones que se ejecutan incluyen un navegador que soporte el escaneo NFC, un reproductor de vídeo que soporte el escaneo NFC y una galería de fotos que soporte el escaneo NFC. Si el tipo de datos de la etiqueta es URI (0x03), el anfitrión del dispositivo envía, de acuerdo con el tipo de datos de la etiqueta, los datos en la etiqueta al navegador que soporta el escaneo NFC.

50

55

De acuerdo con el método de identificación de etiquetas que se proporciona en esta realización de la presente invención, se puede implementar que el anfitrión del dispositivo en el terminal NFC determine el formato de la etiqueta y el tipo de datos de la etiqueta utilizando el controlador NFC. Después de obtener el formato de la etiqueta y el tipo de datos de la etiqueta, el anfitrión del dispositivo envía, de acuerdo con el tipo de datos de la etiqueta, los datos en la etiqueta a una aplicación correspondiente al tipo de datos de la etiqueta para su procesamiento, de modo que el anfitrión del dispositivo pueda determinar el formato de la etiqueta y el tipo de datos de la etiqueta sin requerir el análisis de todo el contenido de la etiqueta; además, la interfaz por radiofrecuencia NDEF establecida por el anfitrión del dispositivo puede facilitar que los datos en la etiqueta NFC se transmitan entre el anfitrión del dispositivo y el controlador NFC, logrando de ese modo un objetivo de que el anfitrión del dispositivo pueda procesar la etiqueta

60

65

En una manera de implementación de esta realización de la presente invención, se describe con claridad una interfaz de transmisión entre un anfitrión del dispositivo y un controlador NFC. Tal como se muestra en la figura 3, antes de que el anfitrión del dispositivo reciba un mensaje de notificación enviado por el controlador NFC (es decir, antes de que el anfitrión del dispositivo establezca una interfaz por radiofrecuencia NDEF), se ejecuta una orden de una transmisión entre el anfitrión del dispositivo y el controlador NFC utilizando una NCI; y posteriormente el anfitrión del dispositivo recibe el mensaje de notificación enviado por el controlador NFC, el anfitrión del dispositivo establece

la interfaz por radiofrecuencia NDEF, y la transmisión de datos NDEF entre el anfitrión del dispositivo y el controlador NFC se realiza utilizando la interfaz por radiofrecuencia NDEF.

Tal como se muestra en la figura 4, una realización de la presente invención proporciona un aparato de identificación de etiquetas 40, que incluye: un módulo de lectura 401, un módulo de determinación 402 y un módulo de envío 403. El aparato puede ser una unidad de un terminal NFC, por ejemplo, un controlador NFC.

El módulo de lectura 401 se configura de modo que lea un tipo de una etiqueta.

15

25

30

35

45

55

60

10 El módulo de determinación 402 se configura de modo que determine si un formato de la etiqueta es un NDEF, de acuerdo con el tipo de la etiqueta, y envíe un resultado de la determinación al módulo de envío 403.

El módulo de envío 403 se configura de modo que envíe un mensaje de notificación a un anfitrión del dispositivo, cuando el módulo de determinación 402 establece que el formato de la etiqueta es el NDEF, donde el mensaje de notificación incluye que el formato de la etiqueta es el NDEF.

Para descripciones detalladas del mensaje de notificación, se puede hacer referencia al paso 103 en la figura 1.

Asimismo, tal como se muestra en la figura 5, en un aparato de identificación de etiquetas 50, el aparato de identificación de etiquetas 50 incluye, además: un módulo de recepción 404, un módulo de conversión 405 y un módulo de procesamiento 406.

De manera específica, antes de que el módulo de lectura 401 lea el tipo de la etiqueta, el módulo de envío 403 envía un mensaje de función de formato al anfitrión del dispositivo, donde el mensaje de función de formato contiene información sobre si el controlador NFC tiene una capacidad de realizar la detección NDEF en la etiqueta. De manera específica, el mensaje de formato de función puede ser una respuesta de inicialización. Por ejemplo, el módulo de recepción 404 recibe una orden de inicialización enviada por el anfitrión del dispositivo; a continuación, el módulo de envío 403 envía la respuesta de inicialización al controlador NFC, donde la respuesta de inicialización contiene la información sobre si el controlador NFC tiene una capacidad de realizar la detección NDEF en la etiqueta.

Cuando la respuesta de inicialización contiene la información sobre si el controlador NFC tiene una capacidad de realizar la detección NDEF en la etiqueta, el módulo de recepción 404 recibe una orden de configuración enviada por el anfitrión del dispositivo, donde la orden de configuración se utiliza para indicar si el controlador NFC realiza la detección NDEF en la etiqueta. Se puede sobreentender que, cuando la orden de configuración indica que el controlador NFC necesita realizar la detección NDEF en la etiqueta, el módulo de lectura 401 lee el tipo de la etiqueta.

De manera opcional, la orden de configuración se utiliza además para indicar que el controlador NFC realiza una detección de tipo de datos en la etiqueta.

Asimismo, cuando el tipo de la etiqueta es el Tipo 1, el módulo de determinación 402 determina si el formato de la etiqueta es el NDEF de acuerdo con HR0 en la etiqueta; cuando el tipo de la etiqueta es el Tipo 2, el módulo de determinación 402 determina si el formato de la etiqueta es el NDEF de acuerdo con un CC en la etiqueta; cuando el tipo de la etiqueta es el Tipo 3, el módulo de determinación 402 determina si el formato de la etiqueta es el NDEF de acuerdo con el código del sistema en la etiqueta; y cuando el tipo de la etiqueta es el Tipo 4, el módulo de determinación 402 determina si el formato de la etiqueta es el NDEF de acuerdo con un identificador de archivo de un archivo CC en la etiqueta.

Asimismo, después de que el módulo de envío 403 envía el mensaje de notificación al anfitrión del dispositivo, el módulo de recepción 404 recibe, utilizando una interfaz por radiofrecuencia NDEF, una orden de lectura/escritura enviada por el anfitrión del dispositivo, el módulo de conversión 405 convierte la orden de lectura/escritura en una orden en una orden de lectura/escritura NDEF, y a continuación el módulo de procesamiento 406 realiza la lectura/escritura de datos en la etiqueta de acuerdo con la orden de lectura/escritura NDEF.

De acuerdo con el aparato de identificación de etiquetas que se proporciona en esta realización de la presente invención, se puede implementar que el anfitrión del dispositivo en el terminal NFC determine el formato de la etiqueta y el tipo de datos de la etiqueta utilizando el controlador NFC. Después de obtener el formato de la etiqueta y el tipo de datos de la etiqueta, el anfitrión del dispositivo envía, de acuerdo con el tipo de datos de la etiqueta, los datos en la etiqueta NFC a una aplicación correspondiente al tipo de datos de la etiqueta para su procesamiento, de modo que el anfitrión del dispositivo pueda determinar el formato de la etiqueta y el tipo de datos de la etiqueta sin ser necesario analizar todo el contenido de la etiqueta NFC.

Tal como se muestra en la figura 6, una realización de la presente invención proporciona un aparato de identificación de etiquetas 60, que incluye: un controlador NFC 601 y un anfitrión del dispositivo 602, donde el controlador NFC 601 está conectado al anfitrión del dispositivo 602.

El controlador NFC 601 se configura de modo que lea un tipo de una etiqueta; y determine si un formato de la etiqueta es un formato de intercambio de datos NFC, NDEF, de acuerdo con el tipo de la etiqueta; y el controlador NFC 601 envía un mensaje de notificación al anfitrión del dispositivo 602, cuando el controlador NFC 601 determina que el formato de la etiqueta es el NDEF, donde el mensaje de notificación incluye que el formato de la etiqueta es el NDEF.

Cuando el tipo de la etiqueta es el Tipo 1, el controlador NFC 601 determina si el formato de la etiqueta es el NDEF de acuerdo con la HR0 en la etiqueta; cuando el tipo de la etiqueta es el Tipo 2, el controlador NFC 601 determina si el formato de la etiqueta es el NDEF de acuerdo con un CC en la etiqueta; cuando el tipo de la etiqueta es el Tipo 3, el controlador NFC 601 determina si el formato de la etiqueta es el NDEF de acuerdo con el código del sistema en la etiqueta; y cuando el tipo de la etiqueta es el Tipo 4, el controlador NFC 601 determina si el formato de la etiqueta es el NDEF de acuerdo con un identificador de archivo de un archivo CC en la etiqueta.

15 Para descripciones detalladas del mensaje de notificación, se puede hacer referencia al paso 103 en la figura 1.

5

10

35

45

50

El anfitrión del dispositivo 602 se configura de modo que reciba el mensaje de notificación enviado por el controlador NFC;

Asimismo, el controlador NFC 601 se configura además de modo que envíe un mensaje de función de formato al anfitrión del dispositivo 602, donde el mensaje de función de formato contiene información sobre si el controlador NFC 601 tiene una capacidad de realizar la detección NDEF en la etiqueta. De manera específica, el mensaje de formato de función puede ser una respuesta de inicialización. Por ejemplo, el anfitrión del dispositivo 602 envía en primer lugar una orden de inicialización al controlador NFC 601. Después de recibir la orden de inicialización enviada por el anfitrión del dispositivo 602; el controlador NFC 601 envía la respuesta de inicialización al anfitrión del dispositivo 602, donde la respuesta de inicialización contiene la información sobre si el controlador NFC tiene una capacidad de realizar la detección NDEF en la etiqueta.

Asimismo, el anfitrión del dispositivo 602 se configura además de modo que envíe una orden de configuración al controlador NFC, donde la orden de configuración se utiliza para indicar si el controlador NFC 601 realiza la detección NDEF en la etiqueta.

El controlador NFC 601 se configura además de modo que reciba la orden de configuración enviada por el anfitrión del dispositivo 602.

De manera opcional, la orden de configuración se utiliza además para indicar que el controlador NFC 601 realiza una detección de tipo de datos en la etiqueta.

Asimismo, el anfitrión del dispositivo 602 se configura además de modo que establezca una interfaz por radiofrecuencia NDEF para realizar la transmisión de datos con el controlador NFC 601, después de recibir el mensaje de notificación enviado por el controlador NFC 601.

Asimismo, el anfitrión del dispositivo 602 se configura además de modo que envíe una orden de lectura/escritura al controlador NFC 601 utilizando la interfaz por radiofrecuencia NDEF.

El controlador NFC 601 se configura además de modo que reciba, utilizando la interfaz por radiofrecuencia NDEF, la orden de lectura/escritura enviada por el anfitrión del dispositivo 602; convierta la orden de lectura/escritura en una orden de lectura/escritura NDEF; y a continuación realice la lectura/escritura de datos en la etiqueta de acuerdo con la orden de lectura/escritura NDEF.

El aparato mostrado en la figura 6 puede ser un terminal NFC, donde el terminal NFC puede ser un terminal que tiene una función NFC, tal como un teléfono móvil, una tableta y una cámara.

Cabe destacar que, debido a que el contenido, tal como los procesos de implementación específica de los módulos y el intercambio de información entre los módulos en el aparato 60 mostrado en la figura 6, se basa en un mismo concepto de la invención que las realizaciones del método de la presente invención, se puede hacer referencia a las realizaciones del método y estos detalles no se vuelven a describir en la presente.

De acuerdo con el aparato de identificación de etiquetas que se proporciona en esta realización de la presente invención, se puede implementar que el anfitrión del dispositivo en el terminal NFC determine el formato de la etiqueta y el tipo de datos de la etiqueta utilizando un controlador NFC. Después de obtener el formato de la etiqueta y el tipo de datos de la etiqueta, el anfitrión del dispositivo envía, de acuerdo con el tipo de datos de la etiqueta, los datos en la etiqueta NFC a una aplicación correspondiente al tipo de datos de la etiqueta para su procesamiento, de modo que el anfitrión del dispositivo pueda determinar el formato de la etiqueta y el tipo de datos de la etiqueta sin ser necesario analizar todo el contenido de la etiqueta NFC.

Un experto en la técnica puede entender con claridad, con el propósito de tener una descripción breve y adecuada, que la división de los módulos funcionales anteriores se toma a modo de ejemplos con fines ilustrativos. En la aplicación real, las funciones anteriores se pueden asignar a diferentes módulos funcionales e implementar de acuerdo con un requisito, es decir, una estructura interna de un aparato se divide en diferentes módulos funcionales para implementar todas o algunas de las funciones descritas anteriormente. Para un proceso de funcionamiento detallado del sistema, aparato y unidad anteriores se puede hacer referencia a un proceso correspondiente en las realizaciones del método anteriores, y estos detalles no se vuelven a describir en la presente.

5

25

30

35

40

En las diversas realizaciones que se proporcionan en la presente solicitud, se debería sobreentender que el aparato y el método expuestos se pueden implementar de otras maneras. Por ejemplo, la realización del aparato descrita se da simplemente a modo de ejemplo. Por ejemplo, la división en módulos o unidades es simplemente una división lógica de funciones y en una implementación real puede haber otra división. Por ejemplo, se puede combinar una pluralidad de unidades o componentes o integrar en otro sistema, o se pueden ignorar o no realizarse algunas características. Además, los acoplamientos o acoplamientos directos o conexiones de comunicación mutuos analizados o mostrados se pueden implementar utilizando algunas interfaces. Los acoplamientos o conexiones de comunicación indirectos entre los aparatos o las unidades se pueden implementar de forma electrónica, mecánica o de otras formas.

Las unidades descritas como partes independientes pueden ser o no físicamente independientes, y las partes mostradas como unidades pueden ser o no unidades físicas, pueden estar situadas en una posición o pueden estar distribuidas en una pluralidad de unidades de red. Se pueden seleccionar algunas de, o todas, las unidades de acuerdo con las necesidades reales para lograr los objetivos de las soluciones de las realizaciones.

Además, las unidades funcionales en las realizaciones de la presente invención se pueden integrar en una unidad de procesamiento, o cada una de las unidades se puede disponer físicamente de manera individual, o dos o más unidades se integran en una unidad. La unidad integrada se puede implementar en forma de hardware, o se puede implementar en forma de una unidad funcional de software.

Cuando la unidad integrada se implementa en forma de una unidad funcional de software y se vende o utiliza como un producto independiente, la unidad integrada se puede almacenar en un soporte de almacenamiento legible por ordenador. En función de dicha interpretación, las soluciones técnicas de la presente invención, o la parte que contribuye a la técnica anterior, o todas o algunas de las soluciones técnicas se pueden implementar en forma de un producto de software. El producto de software de ordenador se almacena en un soporte de almacenamiento e incluye diversas instrucciones con el fin de ordenar a un dispositivo informático (que puede ser un ordenador personal, un servidor o un dispositivo de red) o a un procesador para que realice algunos de, o todos, los pasos de los métodos descritos en las realizaciones de la presente invención. El soporte de almacenamiento anterior incluye: cualquier soporte que pueda almacenar código de programa, tal como una unidad flash USB, un disco duro extraíble, una memoria de solo lectura (ROM, Read-Only Memory), una memoria de acceso aleatorio (RAM, Random Access Memory), un disco magnético o un disco óptico.

Las descripciones anteriores son simplemente maneras específicas de implementación de la presente invención, y no pretenden limitar la presente invención.

REIVINDICACIONES

1. Un método de identificación de etiquetas, que comprende:

10

45

55

- 5 leer (101), mediante un controlador de comunicación de campo cercano, NFC, (601), un tipo de etiqueta; caracterizado por que el método comprende, además:
 - realizar (102), mediante el controlador NFC (601), la detección del formato de intercambio de datos NFC, NDEF, en la etiqueta de acuerdo con el tipo de la etiqueta; y
 - enviar (103), mediante el controlador NFC (601), un mensaje de notificación a un anfitrión del dispositivo (602), cuando un resultado de la detección NDEF es que un formato de la etiqueta es un NDEF, donde el mensaje de notificación comprende que el formato de la etiqueta es el NDEF;
- donde después del paso de enviar (103), mediante el controlador NFC (601), el mensaje de notificación al anfitrión del dispositivo (602), el método comprende, además:
 - recibir, mediante el controlador NFC (601) utilizando una interfaz por radiofrecuencia NDEF, una orden de lectura/escritura enviada por el anfitrión del dispositivo (602);
- 20 convertir (211), mediante el controlador NFC (601), la orden de lectura/escritura en una orden de lectura/escritura NDEF; y
- realizar, mediante el controlador NFC (601), la lectura/escritura de datos en la etiqueta de acuerdo con la orden de lectura/escritura NDEF.
 - 2. El método de acuerdo con la reivindicación 1, donde antes del paso de leer (101) mediante el controlador de comunicación de campo cercano, NFC, (601), el tipo de la etiqueta, el método comprende, además:
- recibir, mediante el controlador NFC (601), una orden de configuración (202) enviada por el anfitrión del dispositivo (602), donde la orden de configuración se utiliza para indicar si el controlador NFC (601) realiza la detección NDEF en la etiqueta.
- 3. El método de acuerdo con la reivindicación 1 o 2, donde el paso de realizar, mediante el controlador NFC (601), la detección NDEF en la etiqueta de acuerdo con el tipo de la etiqueta comprende:
 - cuando el tipo de la etiqueta es el Tipo 1, realizar, mediante el controlador NFC (601), la detección NDEF en la etiqueta de acuerdo con la memoria de solo lectura de cabecera HR0 en la etiqueta;
- 40 cuando el tipo de la etiqueta es el Tipo 2, realizar, mediante el controlador NFC (601), la detección NDEF en la etiqueta de acuerdo con un contenedor de capacidad CC en la etiqueta;
 - cuando el tipo de la etiqueta es el Tipo 3, realizar, mediante el controlador NFC (601), la detección NDEF en la etiqueta de acuerdo con el código del sistema, *System Code*, en la etiqueta; y
 - cuando el tipo de la etiqueta es el Tipo 4, realizar, mediante el controlador NFC (601), la detección NDEF en la etiqueta de acuerdo con un identificador de archivo de un archivo del contenedor de capacidad CC en la etiqueta.
- 4. El método de acuerdo con la reivindicación 2 o 3, donde antes del paso de recibir (101), mediante el controlador NFC (601), la orden de configuración enviada por el anfitrión del dispositivo (602), el método comprende, además:
 - enviar (201), mediante el controlador NFC (601), un mensaje de función de formato al anfitrión del dispositivo (602), donde el mensaje de función de formato contiene información sobre si el controlador NFC (601) tiene una capacidad de realizar la detección NDEF en la etiqueta.
 - 5. El método de acuerdo con la reivindicación 4, donde antes del paso de enviar (201), mediante el controlador NFC (601), el mensaje de función de formato al anfitrión del dispositivo (602), el método comprende, además:
 - recibir, mediante el controlador NFC (601), una orden de inicialización enviada por el anfitrión del dispositivo (602); y
 - el paso de enviar (201), mediante el controlador NFC (601), el mensaje de función de formato al anfitrión del dispositivo (602) comprende:
- enviar, mediante el controlador NFC (601), una respuesta de inicialización al anfitrión del dispositivo (602), donde la respuesta de inicialización contiene la información sobre si el controlador NFC (601) tiene la capacidad de realizar la detección NDEF en la etiqueta.

- 6. El método de acuerdo con la reivindicación 2, donde la orden de configuración se utiliza además para indicar que el controlador NFC (601) realiza una detección de tipo de datos en la etiqueta.
- 5 7. Un aparato de identificación de etiquetas (60), donde el aparato comprende un controlador de comunicación de campo cercano, NFC, (601), y un anfitrión del dispositivo (602), y el controlador NFC (601) está conectado el anfitrión del dispositivo (602), caracterizado por que:

el controlador NFC (601) se configura de modo que:

lea un tipo de una etiqueta:

10

15

25

30

40

45

realice la detección del formato de intercambio de datos NFC, NDEF, en la etiqueta de acuerdo con el tipo de la etiqueta: v

envíe un mensaje de notificación al anfitrión del dispositivo, cuando un resultado de la detección NDEF es que un formato de la etiqueta es un NDEF, donde el mensaje de notificación comprende que el formato de la etiqueta es el NDEF; y

20 el anfitrión del dispositivo (602) se configura de modo que reciba el mensaje de notificación enviado por el controlador NFC (601);

donde el anfitrión del dispositivo (602) se configura además de modo que envíe, utilizando una interfaz por radiofrecuencia NDEF, una orden de lectura/escritura al controlador NFC (601); y

el controlador NFC (601) se configura además de modo que:

reciba, utilizando la interfaz por radiofrecuencia NDEF, la orden de lectura/escritura enviada por el anfitrión del dispositivo (602);

convierta la orden de lectura/escritura en una orden de lectura/escritura NDEF; y

realice la lectura/escritura de datos en la etiqueta de acuerdo con la orden de lectura/escritura NDEF.

35 8. El aparato de acuerdo con la reivindicación 7, donde:

> el anfitrión del dispositivo (602) se configura además de modo que envíe una orden de configuración al controlador NFC (601), donde la orden de configuración se utiliza para indicar si el controlador NFC (601) realiza la detección NDEF en la etiqueta; y

> el controlador NFC (601) se configura además de modo que reciba la orden de configuración enviada por el anfitrión del dispositivo (602).

9. El aparato de acuerdo con la reivindicación 7 u 8, donde:

el controlador NFC (601) se configura de modo que:

cuando el tipo de la etiqueta es el Tipo 1, realice la detección NDEF en la etiqueta de acuerdo con una memoria de solo lectura de cabecera HR0 en la etiqueta;

cuando el tipo de la etiqueta es el Tipo 2, realice la detección NDEF en la etiqueta de acuerdo con un contenedor de capacidad CC en la etiqueta:

cuando el tipo de la etiqueta es el Tipo 3, realice la detección NDEF en la etiqueta de acuerdo con el código del sistema, System Code, en la etiqueta; y

cuando el tipo de la etiqueta es el Tipo 4, realice la detección NDEF en la etiqueta de acuerdo con un identificador de archivo de un archivo del contenedor de capacidad CC en la etiqueta.

10. El aparato de acuerdo con cualquiera de las reivindicaciones 7 a 9, donde:

el controlador NFC (601) se configura además de modo que envíe un mensaje de función de formato al anfitrión del dispositivo (602), donde el mensaje de función de formato contiene información sobre si el controlador NFC (601) tiene una capacidad de realizar la detección NDEF en la etiqueta.

11. El aparato de acuerdo con la reivindicación 10, donde:

16

50

55

60

- el anfitrión del dispositivo (602) se configura además de modo que envíe una orden de inicialización al controlador NFC (601); y
- el controlador NFC (601) se configura además de modo que envíe una respuesta de inicialización al anfitrión del dispositivo (602) después de recibir la orden de inicialización enviada por el anfitrión del dispositivo (602), donde la respuesta de inicialización contiene la información sobre si el controlador NFC (601) tiene la capacidad de realizar la detección NDEF en la etiqueta.
- 10 12. El aparato de acuerdo con la reivindicación 8, donde la orden de configuración se utiliza además para indicar que el controlador NFC (601) realiza una detección de tipo de datos en la etiqueta.
 - 13. El aparato de acuerdo con cualquiera de las reivindicaciones 7 a 12, donde:
- el anfitrión del dispositivo (602) se configura además de modo que establezca una interfaz por radiofrecuencia NDEF para realizar la transmisión de datos con el controlador NFC (601), después de recibir el mensaje de notificación enviado por el controlador NFC (601).

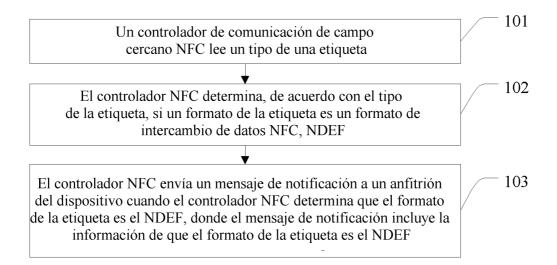


FIG. 1

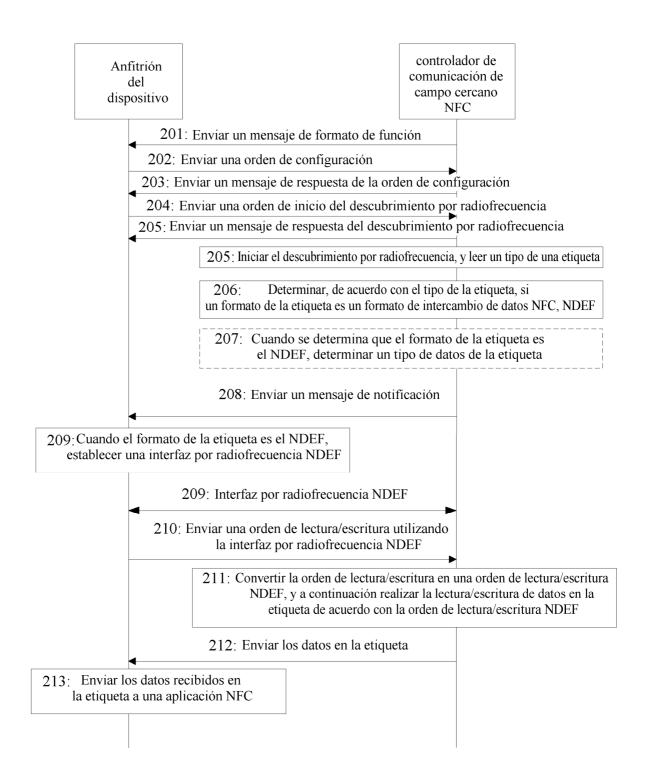


FIG. 2

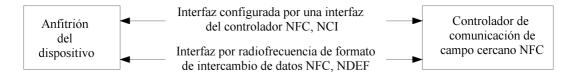


FIG. 3

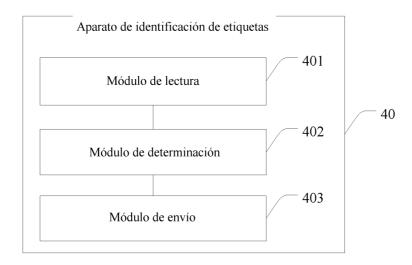


FIG. 4

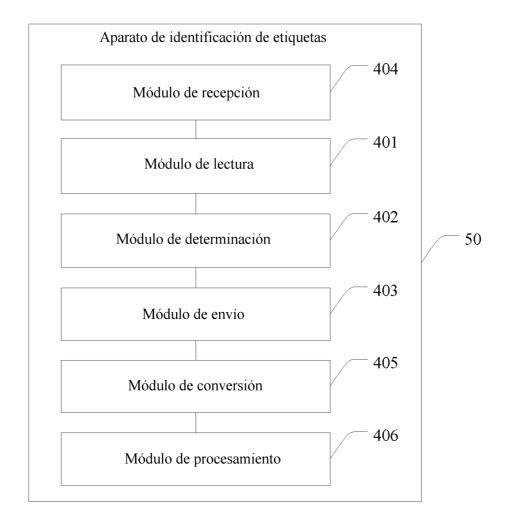


FIG. 5

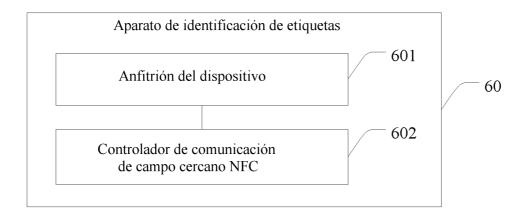


FIG. 6