

OFICINA ESPAÑOLA DE PATENTES Y MARCAS

ESPAÑA

11) Número de publicación: 2 680 581

51 Int. Cl.:

C10G 19/02 (2006.01)
B01J 23/755 (2006.01)
C07C 1/32 (2006.01)
C10G 75/00 (2006.01)
C10G 29/04 (2006.01)
C10G 32/02 (2006.01)
C10G 75/02 (2006.01)

(12)

TRADUCCIÓN DE PATENTE EUROPEA

T3

(86) Fecha de presentación y número de la solicitud internacional: 19.02.2013 PCT/US2013/026698

(87) Fecha y número de publicación internacional: 22.05.2014 WO14077872

(96) Fecha de presentación y número de la solicitud europea: 19.02.2013 E 13855801 (0)

(97) Fecha y número de publicación de la concesión europea: 04.07.2018 EP 2920275

(54) Título: Método para prevenir la corrosión en oleoductos, estructuras de almacenamiento y tuberías

(30) Prioridad:

16.11.2012 US 201213679696

(45) Fecha de publicación y mención en BOPI de la traducción de la patente: 10.09.2018 (73) Titular/es:

FIELD UPGRADING LIMITED (100.0%) Suite 201, 1100 1st Street SE Calgary, AB T2G 1B1, CA

(72) Inventor/es:

GORDON, JOHN HOWARD

(74) Agente/Representante:

SÁEZ MAESO, Ana

DESCRIPCIÓN

Método para prevenir la corrosión en oleoductos, estructuras de almacenamiento y tuberías

5 Campo técnico

10

15

45

50

55

60

65

La presente invención se refiere a un método para prevenir la corrosión en tuberías, tales como tuberías de acero. Más particularmente, la invención se refiere a un método para prevenir la corrosión en tubos de acero y equipos de acero usados para transportar y/o procesar esquisto bituminoso, bitumen, materiales de petróleo pesados o corrientes de refinería de petróleo.

Antecedentes

La solicitud de patente de Estados Unidos con número de serie 12/916,984 ha sido publicada como la publicación de solicitud de patente de Estados Unidos núm. 2011/0100874.Se presume que el lector estará familiarizado con la descripción de esta solicitud publicada. Esta solicitud publicada se menciona en la presente descripción como la "solicitud 874".

La demanda de energía (y los hidrocarburos a partir de los cuales se deriva) está en continuo aumento. Sin embargo, las materias primas de hidrocarburos usadas para proporcionar esta energía a menudo contienen azufre y metales difíciles de eliminar. Por ejemplo, el azufre puede causar contaminación del aire y puede envenenar los catalizadores diseñados para eliminar los hidrocarburos y óxidos de nitrógeno de gases de escape de los vehículos a motor, por lo que son necesarios procesos costosos que se usan para eliminar el azufre de las materias primas de hidrocarburos antes de que se le permita su uso como un combustible. Además, a menudo en las materias primas de hidrocarburos se encuentran metales (tales como metales pesados). Estos metales pesados pueden envenenar los catalizadores que se usan normalmente para eliminar el azufre de los hidrocarburos. Para eliminar estos metales, se requiere más procesamiento de los hidrocarburos, lo que aumenta aún más los gastos.

Actualmente, existe una búsqueda continua de nuevas fuentes de energía para reducir la dependencia de los Estados
Unidos del petróleo extranjero. Se ha planteado la hipótesis de que las reservas extensas de petróleo de esquisto
bituminoso, que constituye el petróleo replicado a partir de minerales de esquisto bituminoso, desempeñarán un papel
cada vez más importante en el cumplimiento de las futuras necesidades energéticas de dicho país. En los Estados
Unidos, más de 1 billón de barriles de petróleo de esquisto bituminoso de reserva utilizables se encuentran en un área
relativamente pequeña conocida como la Formación del Rio Verde ubicada en Colorado, Utah y Wyoming. A medida
que sube el precio del petróleo crudo, estos recursos de petróleo de esquisto se vuelven más atractivos como fuente de
energía alternativa. Para poder usar este recurso, deben resolverse aspectos técnicos específicos para permitir que
dichas reservas de petróleo de esquisto puedan usarse, de una manera rentable, como combustible de hidrocarburo. Un
problema asociado con estos materiales es que contienen un nivel relativamente alto de nitrógeno, azufre y metales,
que debe ser eliminado para permitir que este petróleo de esquisto bituminoso funcione correctamente como un
combustible de hidrocarburo.

Otros ejemplos de combustibles de hidrocarburos potenciales que igualmente requieren la eliminación de azufre, nitrógeno, o metales pesados son bitumen (que existe en cantidades abundantes en Alberta, Canadá) y aceites pesados (tales como los que se encuentran en Venezuela).

El alto nivel de nitrógeno, azufre y metales pesados en el petróleo de esquisto bituminoso, bitumen y aceite pesado (que pueden mencionarse colectivamente o individualmente como "materia prima de petróleo") hace difícil el procesamiento de estos materiales. Típicamente, estos materiales de alimentación de aceite se refinan para eliminar el azufre, nitrógeno y metales pesados a través de un proceso conocido como "hidrotratamiento". El proceso de hidrotratamiento, así como los problemas potenciales del proceso de hidrotratamiento, se describen en la solicitud '874.

Además, los ácidos nafténicos deben ser eliminados de muchas corrientes orgánicas producidas por las refinerías. Ácidos nafténicos ("NAP") son ácidos carboxílicos presentes en el crudo de petróleo o de diversas corrientes de refinería. Estos ácidos son los responsables de la corrosión en las refinerías. Una medida común de la acidez del petróleo se llama valor del Número de Ácido Total ("TAN") y se define como los miligramos (mg) de hidróxido de potasio necesarios para neutralizar el ácido en un gramo de material de petróleo. Otros ácidos que se encuentran en la materia prima de petróleo también pueden contribuir al valor TAN. Todas las corrientes de petróleo con TAN > 1 se denominan de alto TAN. Los NAP son una mezcla de muchos compuestos diferentes y no pueden separarse por destilación. Además, crudos de TAN alto se descuentan sobre los precios de crudo Brent. Por ejemplo, el crudo Doba con un TAN de 4,7 se descuenta por \$19 dólares por barril en un precio base de \$80 dólares de crudo Brent.

Los NAP hierven en el mismo intervalo que el queroseno/combustible para aviones.(Sin embargo, el queroseno/combustible para aviones tienen especificaciones TAN muy estrictas). En el intento de neutralizar estos ácidos se usan bases acuosas cáusticas u otras bases forma sales. Estas sales en presencia de agua, conducen a la formación de emulsiones estables. Metodologías adicionales de reducción del NAP incluyen hidrotratamiento o descarboxilación que son ambas metodologías destructivas y los NAP no pueden recuperarse usando estos métodos.

Las metodologías de extracción o adsorción de solventes conducen a altos costos y consumo de energía para la regeneración del sorbente o ebullición del solvente.

Los NAP en la materia prima de petróleo también pueden causar la corrosión de los tubos que se usan para el transporte de la materia prima de petróleo. En consecuencia, se necesita un método para prevenir la corrosión de las tuberías que se usan para procesar materiales de transporte de petróleo que tienen altos valores de NAP.

La corrosión de material ferroso tal como acero o acero inoxidable es un problema en oleoductos, tanques de almacenamiento de petróleo, y el equipo de proceso y tuberías en las refinerías de petróleo, especialmente si tales tuberías se usan con materiales que tienen un alto valor TAN. Operadores de la refinería de petróleo a menudo limitan la cantidad de petróleo alimentado permitido en la refinería que tenga un alto valor de TAN porque saben que sus equipos ferrosos de proceso y tuberías corroen más fácilmente si el número TAN es demasiado alto. Como resultado, el precio pagado por las materias primas de petróleo con mayor TAN será más bajo que el precio pagado con menor TAN. Para los fines de este documento, el término "acero inoxidable" se refiere a material ferroso distinto del acero dulce.

Breve descripción de la invención

5

10

15

20

25

30

35

40

50

La solicitud '874 describe un proceso donde se usa un metal alcalino para reducir el contenido de azufre, nitrógeno y metales de materias primas de petróleo. Mientras el contenido de azufre, nitrógeno y de metales se reduce, por ejemplo, cuando los metales son níquel, vanadio y hierro entre otros, experimentalmente, se ha encontrado que el TAN también tiende a caer desde cualquier punto de partida a un valor de "0 mg de KOH/g". Para los propósitos de esta invención, una "reserva de petróleo" o una "materia prima de petróleo" incluyen bitumen, petróleo, petróleo pesado, petróleo de esquisto bituminoso, esquisto bituminoso, diesel, diesel de redestilación, nafta y otros hidrocarburos líquidos y semilíquidos, y gases de hidrocarburos y mezclas de los mismos.

Por ejemplo, tres materias primas diferentes de bitumen de Salt Lake City en Alberta, Canadá, tenían un TAN inicial de 2.3 mg de KOH/g, otra muestra de bitumen de Rio McKay en Alberta, Canadá, tenía un TAN inicial de 5.2 mg de KOH/g, y una muestra de aceite crudo pesado de California tenía un TAN inicial de 4.2 mg de KOH/g. Cada una de estas materias primas, después del tratamiento con el proceso descrito en la solicitud '874 (usando gas hidrógeno o metano como parte de la reacción), tenían un valor de TAN resultante de "0 mg de KOH/g". Estos resultados experimentales pueden explicarse por el hecho de que se conoce que el sodio reduce los protones a gas hidrógeno. Por lo tanto, cualquier ácido en las materias primas de alimentación de petróleo (en forma orgánica o mineral) reacciona para formar la sal de sodio e hidrógeno como se muestra en las siguientes ecuaciones:

$$R^-H^+ + Na \rightarrow R^-Na^+ + \frac{1}{2}H_2$$

donde R representa un anión orgánico tal como un anión nafténico

$$R^{-}H^{+} + M \rightarrow R^{-}M^{+} + \frac{1}{2}H_{2}$$

donde R representa un anión orgánico tal como un anión nafténico y M representa un metal alcalino

Igualmente, la misma reacción se produciría si se usa el metal de litio en lugar de sodio metálico.

- Los siguientes artículos indican que los materiales de materia prima de petróleo que tienen altos valores de TAN pueden tener un efecto adverso sobre la corrosión del acero y acero inoxidable, que pueden usarse en las tuberías de construcción, recipientes de almacenamiento, equipo de procesamiento, bombas y tuberías usadas para procesar/refinar la materia prima:
 - Jianfei Yu; L Jiang; Fuxing Gan, "Corrosión del acero por ácidos nafténicos de alta temperatura en medios de refinación de alto TAN", Métodos y Materiales Anticorrosión, vol.55 número 5, págs. 257-263;
 - Chen Wang, Yinpei Wang, Jin Chen, Xiaoming Sun, Zengdian liu, Qian Wan, Yanxia Dai, Wenbing Zheng, "CORROSIÓN DE ACEROS TÍPICOS POR ÁCIDOS NAFTÉNICOS DE ALTA TEMPERATURA", Revista Canadiense de Ciencias Mecánicas e Ingeniería Vol.2, núm., 2, febrero 2011.
- En consecuencia, el procesamiento de la materia prima de petróleo con un metal alcalino (y con hidrógeno o gases de hidrocarburos) reducirá las tasas de corrosión del acero inoxidable usado en las tuberías de petróleo, recipientes de reacción, tuberías, etc., porque el valor de TAN de la materia prima de petróleo se ha reducido. Por ejemplo, si el TAN se reduce a menos que "1 mg de KOH/g", entonces la velocidad de corrosión del acero en los tubos se reduce drásticamente y se hace insignificante a medida que el valor de TAN se aproxima a 0 mg de KOH/g.

Además, la corrosión puede evitarse aún más mediante la introducción de un exceso de metal alcalino en el aceite de manera que después de la reacción con el azufre orgánico, nitrógeno orgánico, metales orgánicos y ácidos nafténicos, todavía haya una cantidad de gotitas de sodio metálico libres en la materia prima de petróleo. Estas gotitas o partículas presentes en la materia prima de petróleo sirven como ánodos y proporcionan protección catódica en donde el metal alcalino se oxida preferentemente al metal ferroso. Este fenómeno se debe a los potenciales electroquímicos relativos

de metales alcalinos con respecto a las sustancias ferrosas. Por ejemplo, el potencial de reducción para el hierro es -0.447 V pero el potencial de reducción para el litio es -3.04V y para el sodio es -2.71 V. Por lo tanto, siempre que haya un metal alcalino metálico libre que fluya con la materia prima del aceite o que resida en una estructura de almacenamiento, el metal alcalino se oxidará antes que el material ferroso.

Breve descripción de las figuras

5

10

15

20

25

30

35

40

45

50

55

60

65

La Figura 1 muestra un dibujo esquemático de un dispositivo que puede usarse para desacidificar una cantidad de una materia prima de petróleo;

La Figura 2 muestra un dibujo esquemático de un dispositivo que puede usarse para desacidificar una cantidad de una materia prima de petróleo;

La Figura 3 es un diagrama de flujo de una modalidad de un método para reducir o prevenir la corrosión de los materiales ferrosos;

La Figura 4 es un diagrama de flujo de otra modalidad de un método para reducir o prevenir la corrosión de materiales ferrosos; v

La Figura 5 muestra un dibujo esquemático de un dispositivo que puede usarse para desacidificar una cantidad de una materia prima de petróleo.

Descripción detallada de la invención

Las presentes modalidades se refieren a un método para desacidificar materias primas del petróleo (que se mencionan algunas veces como "materias primas de petróleo") y corrientes de refinería. Tal desacidificación es beneficiosa ya que puede funcionar para reducir la corrosión de tuberías y puede convertir los ácidos nafténicos an una forma de sal. Las presentes modalidades implican la adición de metales alcalinos (tales como sodio, potasio, litio o aleaciones de estos) a las materias primas de alimentación como un medio para reaccionar con los ácidos nafténicos, y de esa manera desacidificar estos ácidos. Cuando se produce esta reacción, los ácidos nafténicos pueden convertirse en sales de sodio o litio correspondientes (u otros productos inorgánicos). El gas hidrógeno también se forma en esta reacción. Esta reacción se resume como sigue:

R-COOH + Na \rightarrow (R-COO⁻)Na⁺ + $\frac{1}{2}$ H₂

La reacción con NAP de esta manera podría ser deseable y puede resultar en una reducción del número de acidez total ("TAN") asociado con la materia prima de petróleo. Por ejemplo, la materia prima de petróleo puede tener un valor de TAN (medido en mg de KOH/g) de más de 1 (tales como, por ejemplo, 3, 4, 5, etc.). Sin embargo, después de la reacción con el metal alcalino, el valor de TAN se redujo significativamente, tal como, por ejemplo, a un valor menor que o igual a 1 mg de KOH/g.

Existen varias formas diferentes en las que el metal alcalino puede añadirse a la materia prima. En una modalidad, el sodio o litio metálico se añade directamente a la corriente. Una vez que esto ocurre, los productos inorgánicos pueden filtrarse después a partir de la corriente de aceite. También pueden diseñarse otras modalidades (como se describe en la presente descripción) para proporcionar otros mecanismos para añadir el metal alcalino a la corriente de materia prima de petróleo (tal como, por ejemplo, mediante la formación del metal alcalino in situ).

Cabe señalar que, además de reaccionar con los ácidos (tales como ácidos nafténicos), los metales alcalinos que se añaden a la materia prima también pueden reaccionar para eliminar el azufre, nitrógeno (por ejemplo, heteroátomos), así como metales (tales como metales pesados) de la materia prima de petróleo. Este proceso para la eliminación de estos metales/heteroátomos se discute en la solicitud '874. Por lo tanto, mediante la adición de metales alcalinos a la materia prima de petróleo, los problemas asociados con los metales/heteroátomos en la corriente, así como también los problemas con los ácidos en la corriente, pueden superarse.

Se debe señalar que muchos en la industria de procesamiento de petróleo se encuentran incómodos con la manipulación del sodio o litio metálico debido a su naturaleza reactiva. En otras palabras, estos practicantes se encuentran incómodos usando sodio/litio y no se sienten a gusto con la adición de estos reactivos directamente a sus flujos de materia prima de petróleo. Por consiguiente, las presentes modalidades proporcionan además métodos y dispositivos que operan para producir metales alcalinos electroquímicamente dentro de una cámara de materia prima de petróleo (por ejemplo, in situ), y de este modo poner un metal alcalino tal como el sodio en contacto directo con la materia prima. Una vez que este metal alcalino se produce en la cámara, se consume mediante la reacción con los metales pesados/heteroátomos y/o los ácidos en la materia prima. Estas modalidades pueden ser deseables ya que proporcionan un fuerte poder reductor y reactividad asociadas con los metales alcalinos sin tener una cantidad apreciable de metal presente. En otras palabras, las presentes modalidades desacidifican una materia prima de petróleo usando el metal alcalino (por ejemplo, un agente fuerte) sin que se requiera que el practicante deba manejar, almacenar o transportar el metal alcalino.

Con referencia ahora a la Figura 1, se ilustra un dispositivo 2 que puede usarse para desacidificar una cantidad de una primera materia prima de petróleo 9. Como se muestra en la Figura 1, la materia prima de petróleo 9 es un líquido que se coloca dentro de una cámara 3. La cámara 3 puede ser un recipiente de reacción, una cámara de una celda de

electrólisis (como se describirá en la presente descripción), etc. Los expertos en la técnica apreciarán qué recipientes, envases, etc., pueden usarse como la cámara 3.

La materia prima de petróleo 9 comprende una cantidad de ácidos nafténicos 8.Como se describió anteriormente, los ácidos nafténicos 8 comprenden ácidos carboxílicos presentes en el crudo de petróleo o en diversas corrientes de refinería. Los ácidos nafténicos 8 son una mezcla de muchos compuestos diferentes y no pueden separarse a través de la destilación. Para eliminar los ácidos nafténicos 8 de la materia prima de petróleo 9, se añade una cantidad de un metal alcalino 5 a la cámara 3.El metal alcalino se abrevia como "AM". En algunas modalidades, el metal alcalino puede ser sodio, litio o aleaciones de sodio y litio. La cámara 3 puede mantenerse a una temperatura que está por encima del punto de fusión del metal alcalino 5 de manera que el metal alcalino líquido 5 puede añadirse fácilmente a la materia prima de petróleo líquido. En algunas modalidades, la reacción se produce a una temperatura que está por encima del punto de fusión del metal alcalino (o por encima de una temperatura de aproximadamente 100 °C). En otras modalidades, la temperatura de la reacción es menos de aproximadamente 450 °C.

5

10

35

40

45

50

55

Cuando se añade a la cámara 3, el metal alcalino 5 puede reaccionar con la materia prima de petróleo 9.Más específicamente, el metal alcalino 5 reacciona con la cantidad de los ácidos nafténicos 8 para formar una materia prima desacidificada 12.Como los productos de ácidos inorgánicos 13 también pueden formarse a partir de esta reacción, se puede usar un separador 10 para separar la materia prima de petróleo desacidificado 12 de los productos ácidos inorgánicos 13.Los expertos en la técnica apreciarán cómo se puede producir esta separación. Además, los expertos en la técnica apreciarán las estructuras (tales como una cámara de sedimentación, etc.) que puede usarse como separador 10.El separador 10 puede ser integral con la cámara 3 o puede ser una estructura separada, como se muestra en Figura 1

Como se explica en la presente descripción, la reacción entre el metal alcalino 5 y los ácidos nafténicos 8 se produce para eliminar los ácidos nafténicos 8 de la materia prima de petróleo 9.De este modo, el valor de TAN de la materia prima de petróleo desacidificada 12 será menor que el valor de TAN de la primera materia prima de petróleo 9 original (sin reaccionar).Por ejemplo, en algunas modalidades, el valor de TAN de la materia prima de petróleo 9 original (sin reaccionar) puede ser mayor que o igual a 1 (tal como, por ejemplo, 3, 4, 5, etc.), mientras que el valor de TAN de la materia prima de petróleo desacidificada 12 tiene un valor más bajo, tal como menos de o igual a 1.Como se indicó anteriormente, otros ácidos en la materia prima de petróleo 9 pueden contribuir al valor de TAN de la materia prima 9.Estos ácidos también pueden reaccionar con el metal alcalino de una manera similar, reduciendo aún más el valor TAN.

Esta reducción del valor de TAN puede proporcionar un beneficio económico significativo para el propietario de la materia prima de petróleo. Como se indicó anteriormente, los precios del barril de productos de petróleo que se consideran de alto valor de TAN (por ejemplo, con un valor de TAN mayor que 1) tienen a menudo un descuento significativo en comparación con los barriles de productos de petróleo que tiene bajo valor TAN. Por lo tanto, mediante la reducción del valor de TAN en la materia prima de petróleo, el valor de la materia prima de petróleo puede aumentarse significativamente.

Además, debido a que el valor de TAN se reduce en la materia prima de petróleo desacidificada 12, esta materia prima líquida 12 puede usarse con el material ferroso 7, sin causar la corrosión dentro de las tuberías. Más específicamente, como se indicó anteriormente, tener una materia prima de petróleo con un alto valor de TAN puede causar la corrosión del acero inoxidable u otro material ferroso usado en la tubería. Sin embargo, mediante la reducción del valor TAN, a través de la adición del metal alcalino 5, la materia prima de petróleo desacidificada 12 es menos probable que cause la corrosión a los materiales ferrosos 7. Por esta razón, se evita la corrosión de los materiales ferrosos 7. Por lo tanto, una manera de evitar la corrosión de los materiales ferrosos 7 es reducir el valor TAN, preferentemente a un valor que está en o cerca de 0 mg de KOH/g. Como se muestra en la Figura 1, a modo de ejemplo, los materiales ferrosos 7 pueden incluir tuberías 7a, tanques de almacenamiento de aceite 7b, equipos de refinería 7c, oleoductos 7d, etc. Otros tipos de materiales que pueden ser los "materiales ferrosos" 7 incluyen reactores y/o cualquier otro material que se use para transportar y/o procesar materias primas de aceite.

Con referencia ahora a la Figura 2, se ilustra otra modalidad del dispositivo 2a.Como se indicó anteriormente, el dispositivo 2a es similar al dispositivo 2 que se muestra en la Figura 1. El dispositivo 2a puede diseñarse para desacidificar la materia prima de petróleo 9. Al mismo tiempo, el dispositivo 2a también puede diseñarse para hacer reaccionar después la primera materia prima de petróleo 9 mediante la eliminación de metales pesados 14 y/o uno o más heteroátomos 11 que están presentes en la materia prima de petróleo 9.

Como se describió anteriormente, los metales pesados 14 (tales como níquel, vanadio, hierro, arsénico, etc.) se encuentran frecuentemente en muestras de los materiales de materia prima de petróleo 9.En algunas modalidades, puede ser deseable eliminar estos metales pesados 14, ya que tales metales pueden envenenar los catalizadores que se usan normalmente en el procesamiento de hidrocarburos. Sin embargo, como se muestra en la Figura 2, el dispositivo 2a puede diseñarse de manera que el metal alcalino 5 puede reaccionar con los metales pesados 14 en la materia prima de petróleo 9. Más específicamente, además del metal alcalino 5 que reacciona con los ácidos nafténicos 8 para desacidificar la materia prima (como se describió anteriormente), la cantidad del metal alcalino 5 puede

reaccionar adicionalmente con los metales pesados 14, con lo que se reducen los metales pesados en sus estados metálicos. Esta reacción también se puede producir en la cámara 3.

Como se muestra en la Figura 2, estos metales pesados 16 pueden separarse y recuperar después (con el uso del separador 10). Se debe señalar que los metales pesados 16, en su estado metálico, son materiales inorgánicos y por lo tanto pueden separarse de los materiales orgánicos de materia prima de petróleo. En consecuencia, el separador 10 puede usar esta propiedad como un medio de separación de los metales pesados 16. Los expertos en la técnica apreciarán que también se pueden usar otras técnicas de separación para separar los metales pesados 16. Una vez que los metales 16 han sido separados, pueden ser recuperados, vendidos, usados en procesos posteriores, etc. Como estos metales son generalmente productos caros, el hecho de que dichos metales puedan ser recogidos (y usados/vendidos) puede proporcionar una ventaja comercial significativa para el dueño de la materia prima.

5

10

15

20

30

35

40

45

50

55

60

65

Además de eliminar los metales pesados, el metal alcalino 5 también puede reaccionar con uno o más heteroátomos 11 (tal como N, S) que están presentes en la materia prima de petróleo 9.Estos átomos de N, S pueden estar unidos como grupos de amina y/o grupos de azufre a los átomos de carbono/hidrógeno en la materia prima de petróleo 9 orgánica o pueden estar en estructuras cíclicas tales como piridina, tiofeno, y similares. Sin embargo, como se indicó en la presente descripción, el metal alcalino 5 puede reaccionar con estos uno o más heteroátomos 11 para formar productos inorgánicos de azufre/nitrógeno 17.Por ejemplo, si el metal alcalino es sodio 5, entonces la reacción con los heteroátomos 11 forma productos inorgánicos de azufre/nitrógeno 17 tal como Na₂S, Na₃N y/u otros productos inorgánicos.(De nuevo, se puede usar un separador 10 para separar los productos inorgánicos de azufre/nitrógeno 17 de la materia prima de petróleo).Una vez que los productos inorgánicos de azufre/nitrógeno 17 se eliminaron, la relación de heteroátomo a carbono de la materia prima de petróleo 9 (sin reaccionar).

Se debe señalar que después que la materia prima de petróleo 9 se ha desacidificado, desmetalizado, desulfurado y/o desnitrogenado, esta materia prima de petróleo se menciona como una materia prima de petróleo "desacidificada" 12a en donde este material es más adecuado para su posterior refinación, comercialización, etc. Más significativamente, esta materia prima de petróleo desacidificada 12a tiene un valor de TAN que es bajo, y por lo tanto no será tan probable que corroan los materiales ferrosos 7 (tales como tuberías, tanques de refinería, etc.)

Se debe señalar que en la modalidad mostrada en la Figura 2, se muestra un solo separador 10 separando los metales pesados 16, los productos ácidos inorgánicos 13 y los productos inorgánicos de azufre/nitrógeno 17, eliminando así estos materiales de la materia prima de petróleo 12a. Sin embargo, los expertos en la técnica apreciarán que pueden usarse varios separadores y/o técnicas de separación para llevar a cabo tales separaciones. Además, también puede haber una separación secuencial de los diferentes materiales de la materia prima de petróleo 12a.

Asimismo, se debe señalar que en la modalidad de la Figura 2, se usa una sola cámara 3 para hacer reaccionar la materia prima de petróleo 9 con el metal alcalino 5 (y por lo tanto eliminar los ácidos nafténicos 8, metales pesados y 14 heteroátomos 11 de la materia prima orgánica).Los expertos en la técnica apreciarán que tales reacciones también pueden ocurrir en diferentes cámaras. En otras palabras, las modalidades pueden diseñarse de manera que una primera cámara se usa para hacer reaccionar el metal alcalino 5 con los metales pesados 14 (y los metales pesados 14 se separan posteriormente), una segunda cámara se usa para hacer reaccionar el metal alcalino con 5 el ácido nafténico 8 (y los productos de ácido 13 se separan posteriormente) y luego una tercera cámara se usa para hacer reaccionar el metal alcalino 5 con los heteroátomos 11 (y los productos de azufre/nitrógeno 17 se separan posteriormente).Por supuesto, si se usaron diferentes cámaras para cada una de estas reacciones, las condiciones de reacción tales como la presión, temperatura, régimen de flujo, etc., podrían ajustarse/adaptarse para optimizar cada reacción específica.

En las modalidades mostradas en las Figuras 1 y 2, se muestra que el metal alcalino 5 se añade a la cámara 3.Los expertos en la técnica apreciarán que existe una variedad de diferentes maneras por las cuales el metal alcalino 5 puede añadirse para inducir una reacción. Por ejemplo, una muestra del metal alcalino 5 puede ser simplemente añadida a la cámara 3.Sin embargo, muchos en la industria de procesamiento de petróleo no se sienten cómodos con la manipulación del sodio metálico (u otros metales alcalinos metálicos) debido a su naturaleza reactiva.Por lo tanto, se pueden diseñar otras modalidades en las cuales el metal alcalino 5 se forme in situ dentro de la cámara 3 a partir de iones de metales alcalinos. En otras palabras, los iones de metal alcalino se añaden a la cámara 3 (que son seguros y fáciles de manejar) y luego tales iones se reducen de nuevo al estado metálico a través de una reacción de reducción electroquímica. Una vez que estos iones de metal alcalino se han reducido in situ para formar el metal alcalino metálico 5, estos metales alcalinos formados 5 reaccionan inmediatamente con la materia prima de petróleo 9 (de la forma indicada en la presente descripción) y por lo tanto se consumen casi instantáneamente después de la formación. Las modalidades que forman el metal alcalino inmediatamente in situ pueden ser ventajosas porque proporcionan un fuerte poder reductor y reactividad del metal alcalino a la materia prima de petróleo sin que esté presente una cantidad apreciable de metal. La solicitud de patente de Estados Unidos con número de serie 13/679,696 describe varios métodos para añadir el metal alcalino a la cámara (incluyendo la formación de metal alcalino in situ a partir de iones de metales alcalinos). Los expertos en la técnica apreciarán que estos tipos de modalidades también pueden implementarse en la presente solicitud.

Con referencia ahora a la Figura 3, se ilustra un diagrama de flujo que muestra una modalidad de un método 300 para proteger los materiales ferrosos de la corrosión. Específicamente, el método implica obtener 310 una cantidad de un material de materia prima de petróleo. Como se indicó anteriormente, esta materia prima de petróleo puede comprender bitumen, petróleo, petróleo pesado, petróleo de esquisto, esquisto bituminoso, diesel, diesel de redestilación, nafta y otros hidrocarburos líquidos y semi líquidos, y gases de hidrocarburos y mezclas de estos. Como se describe en la presente descripción, la cantidad de material de materia prima de petróleo puede tener un valor de TAN que es "alto" - por ejemplo, un valor de TAN que es mayor que o igual a 1 mg de KOH/g.

La cantidad de materia prima de petróleo se puede hacer reaccionar 320 con una cantidad de un metal alcalino (en su estado metálico). Este metal alcalino puede ser litio, sodio, potasio y/o aleaciones de estos. Esta reacción funciona para reducir el valor de TAN de la materia prima de petróleo a un valor, por ejemplo, en o cerca de 0 mg de KOH/g. La reducción del valor de TAN significa que después de la reacción, el valor de TAN del material de materia prima de petróleo será inferior a 1 mg de KOH/g. Como se indicó anteriormente, la reacción con el metal alcalino en su estado metálico también funciona para eliminar los heteroátomos que se encuentran en el material de materia prima de petróleo. En consecuencia, después de la reacción con el metal alcalino, la relación del heteroátomo a carbono de la materia prima de petróleo desacidificada es menor que la relación del heteroátomo a carbono del primer material de materia prima de petróleo (sin reaccionar). Como se describe en la solicitud '874, la reacción entre el metal alcalino y la materia prima de petróleo puede ocurrir bajo presión de un gas no oxidante, tal como gas hidrógeno, metano, gas natural, gas de esquisto y/o mezclas de estos. En otras modalidades, el gas no oxidante puede comprender nitrógeno o un gas inerte. Otras modalidades pueden ser diseñadas en las que el gas no oxidante es etano, propano, butano, pentano, sus isómeros, eteno, propeno, buteno, penteno, dienos, y/o sus mezclas.(Gas de la retorta de petróleo, que es una mezcla de gases que se producen en un proceso de refinería que también se pueden usar como el gas no oxidante).

10

15

20

40

45

50

55

60

65

Debido a que el valor de TAN del material de materia prima de petróleo desacidificada se ha reducido (preferentemente a un nivel que está en o cerca de 0 mg de KOH/g), entonces la materia prima de petróleo desacidificada se puede usar 330 en conjunto con los materiales ferrosos, tales como tuberías, tanques de almacenamiento, reactores, etc., que se fabrican de materiales ferrosos. El hecho de que el valor de TAN se haya reducido, significa que la probabilidad de que la materia prima de petróleo corroa los materiales ferrosos se reduce significativamente. Por lo tanto, cuando se usan los materiales ferrosos para procesar y/o transportar la materia prima de petróleo desacidificada, la probabilidad de que los materiales ferrosos se corroan por la acidez de la materia prima de petróleo se reduce. Más específicamente, se conoce que las materias primas de petróleo tienen un valor de TAN alto para corroer el material ferroso usado para procesar y/o transportar estos materiales. Sin embargo, mediante la reducción del valor de TAN a casi cero (por ejemplo, eliminando los ácidos nafténicos en estos materiales), se reduce la posibilidad de corrosión en los materiales ferrosos.

Con referencia ahora a la Figura 4, se describe otro método 400. Este método 400 implica la reacción 410 de un metal alcalino con una cantidad de una materia prima de petróleo. Esta reacción con la materia prima de petróleo puede implicar el uso de un gas no oxidante. Cualquier sólido que se forma en esta reacción puede separarse 420 usando, por ejemplo, un separador. Estos sólidos pueden ser sales de ácidos nafténicos, u otros productos de sulfuro de sodio/nitruro de sodio formados a partir de heteroátomos, o productos formados a partir de metales pesados. Una vez que los sólidos se separan, el líquido resultante es una materia prima de petróleo desacidificada que tiene un valor de TAN de o cerca de 0 mg de KOH/g. Esta materia prima de petróleo desacidificada puede entrar en contacto 430 después con un material ferroso. Debido a que la materia prima de petróleo desacidificada tiene un valor TAN bajo, este contacto con el material ferroso no corroe el material ferroso.

Si se añadieron cantidades en exceso de metal alcalino durante la reacción 410, entonces cantidades adicionales del metal alcalino pueden estar presentes dentro de la materia prima de petróleo desacidificada. Este metal alcalino puede recogerse como "gotitas" en la materia prima de petróleo. Estas gotitas o partículas presentes en el aceite sirven como ánodos y proporcionan protección catódica cuando el metal alcalino se oxida preferentemente al metal ferroso. Este fenómeno se debe a los potenciales electroquímicos relativos de los metales alcalinos con relación a las sustancias ferrosas. Por ejemplo, el potencial de reducción para el hierro es -0,447V pero el potencial de reducción para el litio es -3,04V y para el sodio es -2,71 V. Por lo tanto, siempre y cuando haya metal alcalino metálico libre que fluya con la materia prima de petróleo o que resida en una estructura de almacenamiento, el metal alcalino se oxidará antes que el material ferroso.

Con referencia ahora a la Figura 5, se muestra una modalidad de un dispositivo 100 que puede usarse para desacidificar materias primas de petróleo, así como eliminar los heteroátomos/metales pesados. Específicamente, el dispositivo 100 consta de al menos dos cámaras, a saber, una cámara de materia prima 20 y una cámara de fuente de metal alcalino 30.La cámara de materia prima 20 tiene una pared exterior 21 y puede tener una entrada 22 y una salida 23

La cámara de materia prima 20 puede separarse de la cámara fuente de metal alcalino 30 por un separador conductor de iones de metal alcalino 25.El separador 25 puede estar compuesto por materiales cerámicos generalmente conocidos como Nasicon, beta alúmina sódica, prima beta alúmina sódica o vidrio conductor de iones de sodio si el metal alcalino es sodio; o Lisicon, beta alúmina de litio, prima beta alúmina de litio o vidrio conductor de iones de litio si

el metal alcalino es litio. Los materiales usados para construir el separador 25 están disponibles comercialmente por Ceramatec, Inc., de Salt Lake City, Utah.

Un cátodo 26 que está cargado negativamente y conectado a una fuente de alimentación 40 (por medio de cables 42) puede alojarse, al menos parcialmente, dentro de la cámara de carga de alimentación 20.Preferentemente, el cátodo 26 puede situarse muy cerca del separador 25 para minimizar la resistencia iónica. El cátodo 26 puede ponerse en contacto con el separador 25 (como se muestra en la Figura 5) o imprimirse en la pantalla en el separador 25.En otras modalidades, el cátodo 26 puede integrarse con el separador 25 como se describe en la publicación de patente de Estados Unidos 2010/0297537 titulada "ELECTROCHEMICAL CELL COMPRISING IONICALLY CONDUCTIVE MEMBRANE AND POROUS MULTIPHASE ELECTRODE". Al colocar el cátodo 26 sobre o cerca del separador 25, la materia prima de petróleo no tiene necesariamente que ser iónicamente conductora para transferir iones/cargas.

La cámara fuente de metal alcalino 30 tiene una pared exterior 31 y puede tener una entrada 32 y una salida 33.Un ánodo 36 (que está cargado positivamente) y conectado a la fuente de alimentación 40 (por medio de cables 42) puede alojarse, al menos parcialmente, dentro de la cámara fuente 30.Los materiales adecuados para el cátodo 26 incluyen materiales que comprenden, carbono, grafito, níquel, hierro, que son electrónicamente conductores. Los materiales adecuados para el ánodo 36 incluyen materiales que comprenden titanio, titanio platinado, carbono, grafito. En la modalidad mostrada en la Figura 5, el cátodo 26 y el ánodo 36 están conectados a la misma fuente de alimentación 40.Además, la Figura 5 muestra los cables 42 que salen de las cámaras 20, 30 a través de las entradas 22, 32. Estas representaciones se hacen para mayor claridad y no son limitativas. Los expertos en la técnica apreciarán cómo la fuente de alimentación 40/cables 42 puede disponerse de otro modo para conectar al cátodo 26 y/o al ánodo 36.

A continuación se describirá un modo de funcionamiento para el dispositivo 100. Específicamente, una primera materia prima de petróleo 50 puede entrar en la cámara de materia prima 20 (tal como, por ejemplo, fluyendo a través de la entrada 22). Simultáneamente, una solución disuelta de metales alcalinos 51 fluirá a través de la cámara fuente de metal alcalino 30. Esta solución de metales alcalinos 51 puede ser, por ejemplo, una solución de sulfuro de sodio, sulfuro de litio, cloruro de sodio, hidróxido de sodio, etc. Después se aplica un voltaje al ánodo 36 y al cátodo 26 de la fuente 40. Este voltaje provoca que ocurran reacciones químicas. Estas reacciones producen iones de metal alcalino 52 (abreviado como "iones AM" 52) para pasar a través del separador 25. En otras palabras, los iones de metal alcalino 52 fluyen desde la cámara fuente de metal alcalino 30, a través del separador 25, hacia la cámara de materia prima 20.

Una vez que los iones de metal alcalino 52 (tal como, por ejemplo, iones de sodio o iones de litio) pasan a través del separador 25, los iones 52 se reducen al estado de metal alcalino 55 (por ejemplo, en el metal de sodio o litio metálico) al cátodo 26. Una vez formado, el metal alcalino 55 se entremezcla con la primera materia prima 50 (como se muestra por la flecha 58). Como se describe aquí, la reacción entre la materia prima de petróleo 50 y el metal alcalino 55 puede implicar una reacción entre los ácidos (tal como el ácido nafténico) en la materia prima de petróleo 50. Por lo tanto, la reacción con el metal alcalino 55, que se formó in situ dentro de la cámara 20, opera para reducir el contenido de ácido en la materia prima de petróleo 50, con lo que se reduce el valor de TAN de la materia prima de petróleo 50. El valor de TAN se puede reducir a un valor que es menor que 1 mg de KOH/mg.

Adicionalmente y/o alternativamente, la reacción entre la materia prima de petróleo 50 y el metal alcalino 55 formado dentro de la cámara 20 puede causar una reacción con restos de azufre o nitrógeno dentro de la materia prima de petróleo 50. Esta reacción también puede reducir los metales pesados, tales como vanadio y níquel en la materia prima 50. Además, como se explica en la solicitud '874, a una temperatura y presión elevadas, la reacción entre los metales alcalinos 55 y los heteroátomos (S, N) obliga a los heteroátomos de azufre y nitrógeno a reducirse por los metales alcalinos en sales iónicas (tales como Na₂S, Na₃N, Li₂S, etc.). Estas sales iónicas pueden retirarse después de la materia prima de petróleo 50. Como tal, el contenido de azufre y nitrógeno dentro de la materia prima de petróleo 50 puede reducirse significativamente por la reacción del metal alcalino 55 formado dentro de la cámara 20. En otras palabras, la relación heteroátomo a carbono de la materia prima resultante de petróleo 84 puede ser menor que la relación heteroátomo a carbono de la materia prima de petróleo 50 original (sin reaccionar). Además, la cantidad de metales pesados en la materia prima reaccionada 84 es menor que la proporción de carbono a metales pesados en la materia prima reaccionada 84 es menor que la proporción de carbono a metales pesados en la materia prima reaccionada 84 es menor que la proporción de carbono a metales pesados en la materia prima reaccionada 84 es menor que la proporción de carbono a metales pesados en la materia prima reaccionada 84 es menor que la proporción de carbono a metales pesados en la materia prima reaccionado.

Por otra parte, además de la materia prima de petróleo 50, la cámara 20 también puede incluir una cantidad de un gas no oxidante 60 que reacciona con la materia prima de petróleo 50 (como se muestra por la flecha 74). Específicamente, como se enseña por la solicitud '874, cuando los restos de azufre/nitrógeno de la materia prima de petróleo 50 reaccionan con los metales alcalinos, se forman especies de radicales 55 que pueden reaccionar con el gas no oxidante 60. En algunas modalidades, el gas no oxidante 60 puede ser gas hidrógeno, incluyendo el gas de hidrógeno formado por la reacción con ácido nafténico. Se debe señalar que si se usa hidrógeno como gas 60, la cantidad de hidrógeno necesaria es menor que la cantidad de hidrógeno que se requerirla si se usa un proceso de reformado de metano con vapor para formar el hidrógeno. En otras modalidades, el gas no oxidante 60 comprende gas natural, gas de esquisto y/o mezclas de estos, metano, etano, propano, butano, pentano, sus isómeros, eteno, propeno, buteno, penteno, dienos y/o mezclas de estos. Como se explica en la solicitud '874, esta reacción con el gas no oxidante 60 puede funcionar para producir un hidrocarburo que tiene una proporción de hidrógeno a carbono mayor que la materia prima de petróleo original. La materia prima de petróleo producida en la reacción también puede tener un valor de energía mayor que la

materia prima de petróleo inicial. Típicamente, la presencia de gas no oxidante 60 puede resultar en una reducción de la formación de los sólidos insolubles durante la reacción. Se cree que estos sólidos son polímeros orgánicos grandes que se forman como parte de las reacciones de radicales. Sin embargo, al usar el gas no oxidante 60, este gas 60 actúa como una especie de "bloqueo" que impide la formación de estos polímeros sólidos y orgánicos. Por lo tanto, cuando se usa el gas no oxidante 60, el rendimiento posterior de la materia prima de petróleo líquido (por ejemplo, el producto deseado) puede aumentar.

5

10

20

25

50

55

60

65

Las reacciones descritas en la Figura 5 pueden llevarse a cabo a temperaturas elevadas. Por ejemplo, las reacciones pueden ocurrir a temperaturas por encima de la temperatura de fusión de sodio o a temperaturas más altas que son eficaces para la materia prima particular. El modo de funcionamiento del dispositivo 100 puede consistir adicionalmente en el uso de sodio fundido como la fuente de sodio 51 en la cámara fuente de metal alcalino 30 o metal litio como la fuente de litio. Las reacciones pueden llevarse a cabo adicionalmente a presión elevada, por ejemplo, en el intervalo de 300 - 2000 libras por pulgada cuadrada.

En algunas modalidades, la materia prima de petróleo 50 puede hacerse pasar a través del dispositivo 100 (como la solución de sulfuro de sodio que también se pasa). Una vez que pasa por el dispositivo 100, la materia prima de petróleo puede fluir a otro recipiente que funciona a una temperatura y presión diferentes (por ejemplo, temperaturas y presiones más favorables para las reacciones deseadas y donde el tiempo de residencia de la materia prima en el segundo tamaño de recipiente se hace coincidir con la cinética de reacción y las velocidades de flujo).

Como se describió en la presente descripción, pueden formarse varios sólidos, compuestos inorgánicos, etc., cuando se llevan a cabo las reacciones descritas en la presente descripción. Estos productos inorgánicos pueden comprender Na₂S, NaN₃,metales pesados y polímeros orgánicos sólidos que se forman por las reacciones de radicales. Para hacer frente a estos compuestos inorgánicos, el proceso usado en conjunto con el dispositivo de la Figura 5 puede implicar un filtrado adicional, o separación por fuerzas centrífugas de la materia prima después de que ha sido expuesta al sodio durante un tiempo suficiente para eliminar los sólidos de los líquidos. Esta separación puede implicar el uso de un separador 80, tal como se describe más abajo.

La materia prima de petróleo 50, la solución de metal alcalino 51 y otros componentes del dispositivo 100 se puede disolver en un disolvente polar tal como formamida, metil formamida, dimetil formamida, acetamida, metil acetamida, dimetil acetamida, trietilamina, dietil acetamida, etilenglicol, dietilenglicol, trietilenglicol, tetraetilenglicol, carbonato de etileno, carbonato de propileno, carbonato de butileno, ciclohexanol, 1,3- ciclohexanodiol, 1,2 etanodiol, 1,2-propanodiol, etanolamina, sulfóxido de metilo, sulfóxido de dimetilo, sulfóxido de tetrametileno, sulfolano, gamma-butirolactona, nitrobenceno, acetonitrilo, piridina, quinolina, amoniaco, líquidos iónicos o sales fundidas fusionadas. Por ejemplo, la solución de metal alcalino 51 puede disolverse en uno o más de estos disolventes y luego se deja fluir en la cámara de fuente de metal alcalino 30.(Las sales que se usan para la solución de metal alcalino 51 pueden ser cloruros, hidróxidos, fosfatos, carbonatos, sulfuros metales alcalinos y similares.) Igualmente, estos disolventes se pueden usar con la materia prima de petróleo 50 y/o el gas 60 y después la mezcla se deja fluir en la cámara 20.

Dependiendo de la fuente de metal alcalino (por ejemplo, la solución de metal alcalino 51), la reacción del ánodo en la cámara de fuente de metal alcalino 30 puede variar. Por ejemplo, los sulfuros pueden formar polisulfuros o azufre elemental, los cloruros pueden formar gas cloruro, los hidróxidos pueden formar gas oxígeno, los carbonatos pueden formar gas oxígeno y desarrollar dióxido de carbono y similares. Si la fuente de metal alcalino es un metal alcalino, se formarán simplemente iones metálicos. Estas variaciones constituyen diferentes modalidades. La manipulación y la recuperación de los gases puede ser una parte del proceso general.

Como se muestra en la Figura 5, los productos formados en la cámara de materia prima de petróleo 20 pueden enviarse a un separador 80 (como se muestra por la flecha 82). En este separador 80, los productos inorgánicos pueden formar una fase que es separable de una fase orgánica que comprende la materia prima de petróleo reaccionado y/o materia prima de petróleo sin reaccionar. Para facilitar esta separación, puede añadirse un flujo al separador.(Los expertos en la técnica están familiarizados con los materiales que se pueden usar como el flujo que facilitaría la separación entre los materiales orgánicos de materias primas y los productos inorgánicos). Después de la separación, el metal alcalino de los productos inorgánicos puede regenerarse y volver a utilizarse. En algunas modalidades, el separador 80 puede ser una cámara de sedimentación u otra estructura similar.

Como se muestra en la Figura 5, después de salir del separador 80, la salida puede clasificarse como la materia prima de petróleo desacidificada 84. Como se muestra en la Figura 5, esta materia prima de petróleo desacidificada 84 se diseña de manera que puede usarse con materiales ferrosos 88 sin causar la corrosión. Estos materiales ferrosos 88 pueden comprender tuberías, tanques de almacenamiento, tuberías, equipo de refinería, cámaras de reacción, equipos de procesamiento de petróleo y gas, etc. La materia prima de petróleo desacidificada 84 no provoca la corrosión debido a sus bajos valores de TAN, como se explicó en la presente descripción.

Además, la materia prima de petróleo desacidificada 84 puede comprender una cantidad de metal alcalino 90 que se coagula para formar gotitas, etc. Estas gotitas presentes en la materia prima de petróleo 84 sirven como ánodos y proporcionan protección catódica donde el metal alcalino oxida preferentemente al metal ferroso. Este fenómeno se debe a los potenciales electroquímicos relativos de los metales alcalinos con respecto a las sustancias ferrosas. Por

ejemplo, el potencial de reducción para el hierro es -0,447 V pero el potencial de reducción para el litio es -3,04V y para el sodio es -2,71 V. Por lo tanto, siempre y cuando haya metal alcalino metálico libre que fluya con la materia prima de petróleo (a través de las tuberías) o que resida en una estructura de almacenamiento y/o materiales ferrosos 88, el metal alcalino se oxidará antes que el material ferroso 88, proporcionando de ese modo una mayor protección a los materiales ferrosos 88.En otras palabras, las gotitas 90 pueden estar dentro de los materiales ferrosos 88 como un medio adicional para prevenir la corrosión de los materiales ferrosos 88.

5

Reivindicaciones

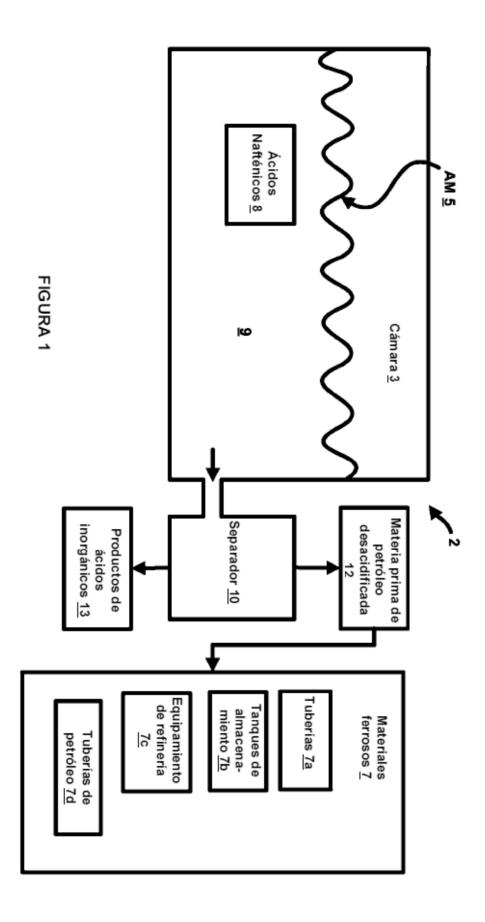
1. Un método para reducir la corrosión de los materiales ferrosos usados para procesar o transportar materias primas de petróleo que comprende:

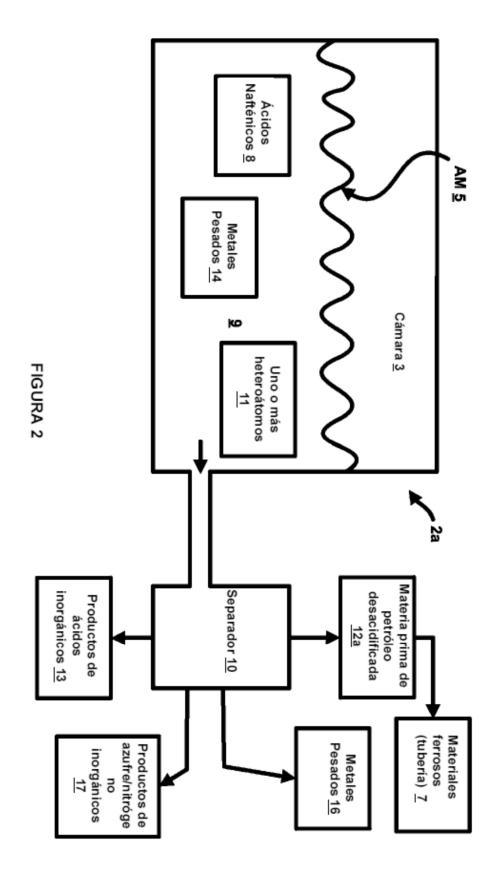
5

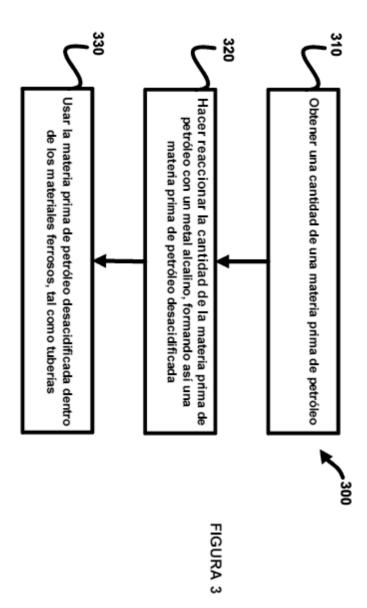
25

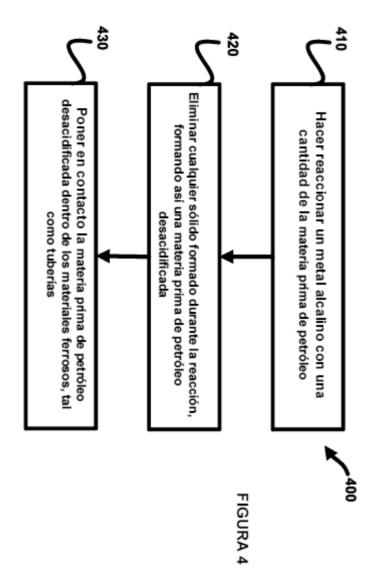
35

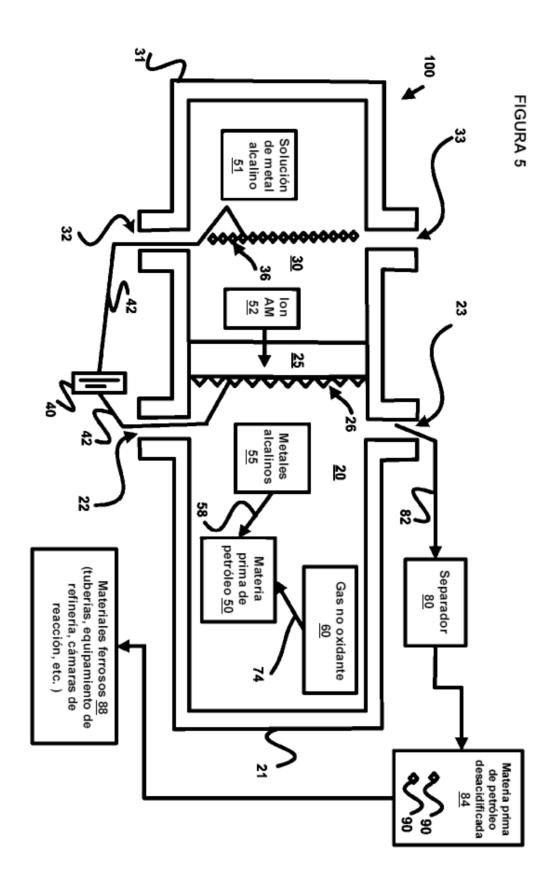
hacer reaccionar un metal alcalino en su estado metálico con una cantidad de una materia prima de petróleo en presencia de un gas no oxidante, en donde la materia prima de petróleo comprende ácidos nafténicos y la materia prima de petróleo tiene un valor de TAN mayor o igual a 1 mg de KOH/g;


retirar los sólidos formados a partir de la reacción, formando de este modo un líquido de materia prima de petróleo desacidificado;


poner en contacto el líquido de materia prima de petróleo desacidificado con un material ferroso;


en donde el metal alcalino en su estado metálico se forma y reduce electroquímicamente los iones de metal alcalino.


15 2. El método de la reivindicación 1, en donde la materia prima de petróleo desacidificada comprende una cantidad del metal alcalino en su estado metálico.


- 3. El método de la reivindicación 1, en donde el gas no oxidante es hidrógeno.
- 20 4. El método como en cualquiera de las reivindicaciones 1 a 2, en donde el gas no oxidante comprende metano, gas natural, gas de esquisto y/o mezclas de estos.
 - El método como en cualquiera de las reivindicaciones 1 a 2, en donde el gas no oxidante comprende metano, etano, propano, butano, pentano, isómeros de los anteriores, eteno, propeno, buteno, penteno, dienos y/o mezclas de estos.
 - 6. El método como en cualquiera de las reivindicaciones 1 a 5, en donde el metal alcalino comprende litio, sodio, potasio y/o aleaciones de estos.
- 30 7. El método como en cualquiera de las reivindicaciones 1 a 5, en donde el metal alcalino es sodio.
 - 8. El método como en cualquiera de las reivindicaciones 1 a 7, en donde la materia prima de petróleo comprende heteroátomos/metales pesados, y el metal alcalino reacciona además con los heteroátomos/metales pesados de manera que una relación heteroátomo a carbón de la materia prima de petróleo desacidificada es menor que una relación heteroátomo a carbón de la primera materia prima de petróleo.

