

OFICINA ESPAÑOLA DE PATENTES Y MARCAS

ESPAÑA

11) Número de publicación: 2 682 520

(51) Int. CI.:

C12N 9/42 (2006.01) D21C 5/00 (2006.01)

(12)

TRADUCCIÓN DE PATENTE EUROPEA

Т3

21.11.2014 PCT/FR2014/052985 (86) Fecha de presentación y número de la solicitud internacional:

(87) Fecha y número de publicación internacional: 28.05.2015 WO15075392

(96) Fecha de presentación y número de la solicitud europea: 21.11.2014 E 14821724 (3)

(97) Fecha y número de publicación de la concesión europea: 02.05.2018 EP 3071693

(54) Título: Variantes de la endoglucanasa con actividad mejorada y sus usos

(30) Prioridad:

22.11.2013 FR 1361511

(45) Fecha de publicación y mención en BOPI de la traducción de la patente: 20.09.2018

(73) Titular/es:

IFP ENERGIES NOUVELLES (33.3%) 1 & 4 avenue de Bois-Préau 92500 Rueil-Malmaison, FR; PROTEUS (33.3%) y **CENTRE NATIONAL DE LA RECHERCHE** SCIENTIFIQUE (C.N.R.S.) (33.3%)

(72) Inventor/es:

MARGEOT, ANTOINE; BLANQUET, SENTA; PERSILLON, CÉCILE; AYRINHAC, CÉLINE; **ULLMANN, CHRISTOPHE;** BONZOM, OLIVIER; FORT, SÉBASTIEN; ARMAND, SYLVIE; LENON, MARINE y PETIT, MAUD

(74) Agente/Representante: **VEIGA SERRANO, Mikel**

Aviso:En el plazo de nueve meses a contar desde la fecha de publicación en el Boletín Europeo de Patentes, de la mención de concesión de la patente europea, cualquier persona podrá oponerse ante la Oficina Europea de Patentes a la patente concedida. La oposición deberá formularse por escrito y estar motivada; sólo se considerará como formulada una vez que se haya realizado el pago de la tasa de oposición (art. 99.1 del Convenio sobre Concesión de Patentes Europeas).

DESCRIPCIÓN

Variantes de la endoglucanasa con actividad mejorada y sus usos

5 Estado de la técnica

10

20

25

35

40

50

55

60

65

La posibilidad de producir etanol a partir de celulosa ha recibido una gran atención debido a la disponibilidad de grandes cantidades de materia prima así como al interés del etanol como combustible. Las materias primas naturales celulósicas para tal procedimiento se denominan con el término "biomasa". Numerosos tipos de biomasa, por ejemplo madera, residuos agrícolas, cultivos herbáceos y desechos sólidos municipales, se han considerado como posibles materias primas para la producción de biocombustibles. Estas materias están constituidas principalmente de celulosa, hemicelulosa y lignina.

La celulosa es un polímero compuesto por moléculas de glucosa unidas por enlaces beta 1-4, que son muy resistentes a la degradación o a la despolimerización. Una vez que la celulosa se convierte en glucosa, ésta se fermenta fácilmente a biocombustible, por ejemplo etanol, utilizando levadura.

Los métodos más antiguos estudiados para convertir celulosa en glucosa se basan en la hidrólisis ácida. Este procedimiento puede realizarse en presencia de ácidos concentrados o diluidos. Sin embargo, varios inconvenientes tales como la escasa recuperación del ácido cuando se utilizan ácidos concentrados y la baja producción de glucosa en el contexto del uso de ácidos diluidos son perjudiciales para la economía del procedimiento de hidrólisis ácida.

Con el fin de superar las desventajas del procedimiento de hidrólisis ácida, los procedimientos de conversión de celulosa han aumentado más recientemente en la hidrólisis enzimática, utilizando enzimas tipo celulasa. Sin embargo, esta hidrólisis enzimática de la biomasa lignocelulósica (por ejemplo, celulosa) presenta el inconveniente de ser un procedimiento industrial costoso. Por lo tanto, es necesario utilizar cepas de microorganismos que secretan celulasa cada vez más eficientes. Como tal, muchos microorganismos constan de enzimas que hidrolizan la celulosa, tales como hongos *Trichoderma*, *Aspergillus*, *Humicola*, *Fusarium*, así como bacterias tales como *Thermomonospora*, *Bacillus*, *Cellulomouas* y *Streptomyces*. Las enzimas secretadas por estos microorganismos poseen tres tipos de actividades útiles en la conversión de celulosa en glucosa y se dividen en tres grupos: las endoglucanasas, que atacan las fibras de celulosas al azar de forma interna, las exoglucanasas que atacarán los extremos de las fibras liberando celobiosa y las β-glucosidasas que hidrolizarán esta celobiosa en glucosa. Otras clases de enzimas tales como hemicelulasas o la clase de enzimas recientemente descubierta de polisacáridos monooxigenasas también pueden desempeñar un papel en la eficacia de la hidrólisis.

Existe un fuerte interés industrial en reducir el costo de la hidrólisis enzimática, y esta reducción implica el uso de una dosis reducida de enzimas y, por lo tanto, cócteles enzimáticos más eficaces. En consecuencia, varias solicitudes de patente describen enzimas naturales con capacidades superiores a las de *Trichoderma reesei*, o variantes mejoradas por ingeniería genética. Se pueden mencionar las solicitudes de patente US2010304464, WO2010066411 y WO2013029176 con respecto a las exoglucanasas, las solicitudes WO2007109441, WO2012149192, WO2008088724, WO2010135836 o WO2010022518 con respecto a las endoglucanasas, las solicitudes WO2010029259, WO2010135836 o WO2010022518 con respecto a las β-glucosidasas, o las solicitudes WO12135659, WO12149344 con respecto a los polisacáridos monoxigenasas.

45 La solicitud WO2011/153516 describe asimismo cepas de levaduras que expresan enzimas sacarolíticas.

Las enzimas que hidrolizan la biomasa lignocelulósica se clasifican en el sistema CAZy (Cantarel, B.L., Coutinho, P. M., Rancurel, C., Bernard, T., Lombard, V., y Henrissat, B. (2009). *The Carbohydrate-Active EnZymes database (CAZy): an expert resource for Glycogenomics. Nucleic acids research*, 37, D233-8) en criterios principalmente estructurales. Las endoglucanasas pueden pertenecer a familias GH 5, 6, 7, 8, 9, 12, 16, 18, 19, 26, 44, 45, 48, 51, 74 y 124.

Para que una hidrólisis de la biomasa lignocelulósica sea eficiente y económicamente rentable, la mezcla enzimática debe tener proporciones equilibradas de actividades enzimáticas diversas (entre otras, pero no exclusivamente, exoglucanasas, endoglucanasas, xilanasas y β-glucosidasas). A modo de ejemplo, en las mezclas nativas de *Trichoderma reesei*, se observa generalmente la presencia de 60-70 % de exoglucanasas, 15-20 % de endoglucanasas, algunos porcentajes de hemicelulasas y aproximadamente 5-10 % de β-glucosidasas. Esta mezcla es adecuada para hidrolizar la mayoría de los sustratos pretratados (p. ej., tipo paja de trigo explotada al vapor en condiciones ácidas) con rendimientos aceptables. En resumen, el aumento en la actividad de la endoglucanasa no debe hacerse a expensas de otras actividades enzimáticas. Las especificidades funcionales de estas enzimas son hoy en día poco conocidas. El genoma de *Trichoderma reesei* consta de al menos 3 enzimas principales, procedentes de las familias 7 (EG1, cel7b), 5 (EG2, cel5a) y 12 (EG3, Ce112a). Las enzimas EG1 y EG2 son las principales endoglucanasas y pueden representar hasta 10-20 % en masa del cóctel de enzimas completo producido por *T. reesei*.

Las endoglucanasas (EC 3.2.1.4), las primeras enzimas que actúan sobre la celulosa, son conocidas por tener un

papel principal en la hidrólisis al aumentar el número de sitios que pueden atacar las exoglucanasas al tiempo que disminuye el grado de polimerización de las microfibrillas atacadas. Trabajos recientes (Szijártó, N., Siika-aho, M., Sontag-Strohm, T., y Viikari, L. (2011). Liquefaction of hydrothermally pretreated wheat straw at high-solids content by purified Trichoderma enzymes. Bioresource technology, 102(2), 1968-74) destacan su papel en la reducción de la viscosidad de la biomasa durante las primeras horas de hidrólisis. Esta disminución en la viscosidad puede tener un impacto muy significativo en los costos operativos del procedimiento.

El problema de la viscosidad se ve agravado en el caso de procedimientos que obligan a utilizar una temperatura baja, tal como sacarificación y fermentación simultáneas (SFS), que involucra tanto a las enzimas que hidrolizan la biomasa como al microorganismo que convierte los monómeros de azúcares en etanol.

La hidrólisis y la fermentación se pueden llevar a cabo de acuerdo con diferentes esquemas. El más común consiste en una hidrólisis y una fermentación separadas (HFS) (*SHF-Separate Hydrolysis and Fermentation*). Este método permite optimizar cada etapa manteniendo condiciones óptimas de reacción. Esta fermentación se efectúa de manera extemporánea, a una temperatura comprendida entre aproximadamente 28 °C y aproximadamente 30 °C, mientras que la hidrólisis tiene lugar generalmente a una temperatura de al menos 45 °C. Sin embargo, en HFS, los azúcares liberados al final de reacción están presentes a una concentración muy alta y causan una inhibición de las enzimas, ralentizando la eficacia del procedimiento. Para evitar estos inconvenientes, se puede prever otro tipo de procedimiento. En SFS, las dos etapas (hidrólisis y fermentación de hexosas) tienen lugar de manera simultánea, evitando la acumulación de azúcares en concentraciones inhibidoras para las enzimas. Los costos de inversión también se reducen mediante el uso de un solo reactor. La tasa de hidrólisis es más elevada como resultado de la ausencia de inhibición ya que los azúcares liberados se utilizan inmediatamente para la fermentación de etanol. En este método, la temperatura del reactor constituye necesariamente un compromiso entre las temperaturas óptimas de hidrólisis y fermentación, normalmente entre aproximadamente 30 °C y aproximadamente 35 °C. Sin embargo, a dicha temperatura, la actividad de las enzimas celulolíticas disminuye aproximadamente un 30 %.

La SFS también permite la expresión de enzimas que degradan la celulosa en el organismo que fermenta los azúcares, lo que permite limitar, o en un caso extremo, suprimir el uso de enzimas producidas en una etapa separada.

En consecuencia, la obtención de enzimas que mantienen una actividad endoglucanasa eficaz a temperaturas óptimas de hidrólisis y fermentación (es decir, entre 30 °C y 50 °C) mientras se mantiene la proporción del conjunto de enzimas de la mezcla sería una ganancia significativa para el procedimiento de conversión de biomasa lignocelulósica en biocombustible.

Objeto de la invención

10

15

20

25

30

35

40

45

50

55

60

Los inventores han desarrollado un polipéptido que tiene una actividad endoglucanasa mejorada, especialmente con respecto a la actividad endoglucanasa de la proteína salvaje EG2 de la secuencia SEQ ID NO: 2. EG2 corresponde a la endoglucanasa 2 de *Trichoderma reesei*.

Con esta intención, los solicitantes han tenido el gran mérito de encontrar, después de numerosas investigaciones, un polipéptido aislado o purificado que tiene una actividad endoglucanasa mejorada con respecto a la actividad endoglucanasa de la proteína salvaje EG2 (SEQ ID NO: 2).

De acuerdo con la descripción, el polipéptido se selecciona entre el grupo que consiste en:

i) una secuencia de aminoácidos seleccionada entre SEQ ID NO: 4, SEQ ID NO: 6, SEQ ID NO: 8, SEQ ID NO: 10, SEQ ID NO: 12; SEQ ID NO: 14, SEQ ID NO: 16, SEQ ID NO: 18, SEQ ID NO: 20, SEQ ID NO: 22, SEQ ID NO: 24, SEQ ID NO: 26, SEQ ID NO: 28, SEQ ID NO: 30, SEQ ID NO: 32 y SEQ ID NO: 34; ii) una secuencia de aminoácidos que presenta un porcentaje de identidad de al menos 70 %, preferentemente 75 %, 80 %, 85 %, 90 %, 95 %, 98 % o 99 %, con respecto a la secuencia SEQ ID NO: 4, SEQ ID NO: 6, SEQ ID NO: 8, SEQ ID NO: 10, SEQ ID NO: 12; SEQ ID NO: 14, SEQ ID NO: 16, SEQ ID NO: 18, SEQ ID NO: 20, SEQ ID NO: 22, SEQ ID NO: 24, SEQ ID NO: 26, SEQ ID NO: 28, SEQ ID NO: 30, SEQ ID NO: 32 o SEQ ID NO: 34.

La invención se define en las reivindicaciones.

El porcentaje de identidad de una secuencia dada con respecto a SEQ ID NO: 4, SEQ ID NO: 6, SEQ ID NO: 8, SEQ ID NO: 10, SEQ ID NO: 12; SEQ ID NO: 14, SEQ ID NO: 16, SEQ ID NO: 18, SEQ ID NO: 20, SEQ ID NO: 22, SEQ ID NO: 24, SEQ ID NO: 26, SEQ ID NO: 28, SEQ ID NO: 30, SEQ ID NO: 32 o SEQ ID NO: 34, corresponde al número de residuos idénticos entre esta secuencia dada y SEQ ID NO: 4, SEQ ID NO: 6, SEQ ID NO: 8, SEQ ID NO: 10, SEQ ID NO: 12; SEQ ID NO: 14 SEQ ID NO: 16, SEQ ID NO: 18, SEQ ID NO: 20, SEQ ID NO: 22, SEQ ID NO: 24, SEQ ID NO: 26, SEQ ID NO: 28, SEQ ID NO: 30, SEQ ID NO: 32 o SEQ ID NO: 34 dividido por el número de residuos en SEQ ID NO: 4, SEQ ID NO: 6, SEQ ID NO: 8, SEQ ID NO: 10, SEQ ID NO: 12; SEQ ID NO: 14, SEQ ID NO: 16, SEQ ID NO: 18, SEQ ID NO: 20, SEQ ID NO: 22, SEQ ID NO: 24, SEQ ID NO: 26, SEQ ID NO: 28, SEQ ID NO: 30, SEQ ID NO: 32 o SEQ ID NO: 34. Cuando se utiliza la base de datos GenomeQuest, dicho porcentaje de

identidad con respecto a SEQ ID NO: 4, SEQ ID NO: 6, SEQ ID NO: 8, SEQ ID NO: 10, SEQ ID NO: 12; SEQ ID NO: 14, SEQ ID NO: 16, SEQ ID NO: 20, SEQ ID NO: 22, SEQ ID NO: 24, SEQ ID NO: 26, SEQ ID NO: 28, SEQ ID NO: 30, SEQ ID NO: 32 o SEQ ID NO: 34 corresponde al porcentaje de identidad de interrogación (*% id Query*), en el que interrogación corresponde a la secuencia SEQ ID NO: 4, SEQ ID NO: 6, SEQ ID NO: 8, SEQ ID NO: 10, SEQ ID NO: 12; SEQ ID NO: 14, SEQ ID NO: 16, SEQ ID NO: 18, SEQ ID NO: 20, SEQ ID NO: 22, SEQ ID NO: 24, SEQ ID NO: 26, SEQ ID NO: 28, SEQ ID NO: 30, SEQ ID NO: 32 o SEQ ID NO: 34.

En otro modo de realización, el polipéptido de la invención como se descrito anteriormente se caracteriza por que su expresión en un organismo fermentativo es al menos igual a la expresión de la proteína salvaje EG2 (SEQ ID NO: 2).

Los expertos en la materia podrán determinar por ejemplo el aumento, o en otras palabras, la mejora de la actividad enzimática utilizando el sustrato de carboximetilcelulosa (CMC) o con un sustrato cromogénico (p-nitrofenil glicósido). La actividad enzimática se revelará, respectivamente, mediante un ensayo colorimétrico de los azúcares reductores o el nitrofenol liberado.

Preferentemente, el polipéptido de la invención tiene una actividad enzimática mejorada de al menos 10 %, preferentemente al menos 20 %, preferentemente al menos 30 %, con respecto a la actividad endoglucanasa de la proteína EG2 de la secuencia de aminoácidos SEQ ID NO: 2.

Un ejemplo de un protocolo, que podrá utilizar un experto en la materia para determinar si un polipéptido de acuerdo con la invención presenta una actividad enzimática mejorada en relación con la de la proteína salvaje EG2 (SEQ ID NO: 2), es el siguiente:

- formación de un cultivo madre de E. coli que expresa un polipéptido de acuerdo con la invención durante toda la noche a 37 °C:
 - siembra de un medio de cultivo LB con 1 % de cultivo madre a 37 °C hasta que se obtenga una densidad óptica de 0.4:
 - cultivo de dichas células a 20 °C durante 18 h;
- 30 centrifugación durante 5 minutos a 7.900 rpm;

10

15

20

45

- resuspensión de residuos celulares con tampón citrato fosfato 100 mM a pH 5 que contiene 1 mg/ml de lisozima (DO₆₀₀ final 100);
- incubación de las células resuspendidas durante 30 minutos en hielo:
- lisis de células en 3 ciclos de congelación/descongelación;
- 35 fraccionamiento de ADN por sometimiento a ultrasonidos;
 - centrifugación durante 30 minutos a 13.000 rpm;
 - incubación de 100 μl de sobrenadante de ruptura diluido 50 veces con 100 μl de tampón citrato fosfato 100 mM a pH 5 que contiene 1 % de CMC durante 1 h a 35 y 50 °C;
 - eliminación de 100 μl de reacción;
- 40 adición de 100 µl de reactivo DNS (Miller, 1959);
 - incubación durante 5 minutos a 100 °C;
 - incubación durante 3 minutos en hielo;
 - centrifugación durante 10 minutos a 3.000 rpm;
 - lectura de la densidad óptica a 540 nm en 150 µl de sobrenadante.

La invención también tiene por objeto un ácido nucleico purificado o aislado que codifica al menos un polipéptido de acuerdo con la invención como se ha descrito anteriormente.

La TABLA 1 a continuación comprende las identificaciones de secuencias nucleicas y peptídicas para los genes 50 EG2, los genes de las endoglucanasas 2 putativas de *Botryotinia fuckeliana* (gen BF) y la endoglucanasa 2 putativa de *Sclerotinia sclerotiorum* (gen SS), así como para las secuencias de ácidos nucleicos y polipéptidos de la invención y la descripción.

De acuerdo con la descripción, dicho ácido nucleico purificado o aislado se puede seleccionar entre las siguientes secuencias: SEQ ID NO: 3, SEQ ID NO: 5, SEQ ID NO: 7, SEQ ID NO: 9, SEQ ID NO: 11; SEQ ID NO: 13, SEQ ID NO: 15, SEQ ID NO: 17, SEQ ID NO: 19, SEQ ID NO: 21, SEQ ID NO: 23, SEQ ID NO: 25, SEQ ID NO: 27, SEQ ID NO: 29, SEQ ID NO: 31 y SEQ ID NO: 33.

TABLA 1

Clones	Ácido nucleico	Polipéptido				
EG2 (salvaje)	SEQ ID NO :1	SEQ ID NO :2				
37D12	SEQ ID NO :3	SEQ ID NO :4				
45A7	SEQ ID NO :5	SEQ ID NO :6				
46H1	SEQ ID NO :7	SEQ ID NO :8				
50F10	SFQ ID NO :9	SEQ ID NO :10				

Clones	Ácido nucleico	Polipéptido
108G5	SEQ ID NO: 11	SEQ ID NO :12
140F7	SEQ ID NO :13	SEQ ID NO :14
146C4	SEQ ID NO :15	SEQ ID NO :16
149E4	SEQ ID NO :17	SEQ ID NO :18
173C6	SEQ ID NO :19	SEQ ID NO :20
191H11	SEQ ID NO :21	SEQ ID NO :22
222E1	SEQ ID NO :23	SEQ ID NO :24
225C7	SEQ ID NO :25	SEQ ID NO :26
227C4	SEQ ID NO :27	SEQ ID NO :28
229D1	SEQ ID NO :29	SEQ ID NO :30
231C9	SEQ ID NO :31	SEQ ID NO :32
330F9	SEQ ID NO :33	SEQ ID NO :34
Gen BF	SEQ ID NO :35	SEQ ID NO :36
Gen SS	SEQ ID NO :37	SEQ ID NO :38

La invención también se refiere a un vector que comprende un ácido nucleico de acuerdo con la invención como se ha descrito anteriormente.

De acuerdo con la invención, se entiende por "vector" cualquier secuencia de ADN en la que es posible insertar fragmentos de ácido nucleico extraño, los vectores permiten introducir ADN extraño en una célula huésped. Se puede citar de manera no exhaustiva como vectores: plásmidos, cósmidos, cromosomas artificiales de levaduras (YAC), cromosomas artificiales de bacterias (BAC), cromosomas artificiales derivados del bacteriófago P1 (PAC) o vectores derivados de virus.

De acuerdo con la invención, el ácido nucleico como se ha descrito anteriormente puede unirse operativamente a un promotor, un terminador o cualquier otra secuencia necesaria para su expresión en la célula huésped.

El vector de acuerdo con la invención también podrá llevar un marcador de selección. Se entiende por "marcador de selección" un gen cuya expresión confiere a las células que lo contienen una característica que les permite ser seleccionadas. Se trata por ejemplo de un gen de resistencia a antibióticos.

La invención tiene también por objeto una célula huésped aislada que comprende al menos uno de los polipéptidos de acuerdo con la invención como se ha descrito previamente, al menos uno de los ácidos nucleicos de acuerdo con la invención como se ha descrito anteriormente o al menos uno de los vectores de acuerdo con la invención como se ha descrito anteriormente.

Los expertos en la materia pueden introducir uno de los polipéptidos, uno de los ácidos nucleicos o uno de los vectores de acuerdo con la invención como se ha descrito previamente en la célula huésped de acuerdo con la invención por métodos convencionales bien conocidos. Por ejemplo, se puede mencionar el tratamiento con cloruro de calcio, la electroporación, el uso de una pistola de partículas.

De acuerdo con un modo de realización, un experto en la materia puede introducir en la célula huésped de acuerdo con la invención y mediante métodos convencionales, varias copias de un ácido nucleico de acuerdo con la invención que codifica un polipéptido de acuerdo con la invención que tiene una actividad endoglucanasa mejorada de acuerdo con la invención.

De acuerdo con un modo de realización, la célula huésped aislada de acuerdo con la invención como se ha descrito anteriormente se selecciona entre *Trichoderma*, *Aspergillus*, *Neurospora*, *Humicola*, *Myceliophthora*, *Chrysosporium*, *Penicillium*, *Fusarium*, *Thermomouspora*, *Bacillus*, *Pseudomouas*, *Escherichia*, *Clostridium*, *Cellulomouas*, *Streptomyces*, *Yarrowia*, *Pichia* y *Saccharomyces*.

De acuerdo con un modo de realización preferente, la célula huésped aislada de acuerdo con la invención como se ha descrito anteriormente se selecciona entre *Trichoderma reesei*, *Trichoderma viridae*, *Trichoderma koningii*, *Aspergillus niger*, *Aspergillus nidulans*, *Aspergillus wentii*, *Aspergillus oryzae*, *Aspergillus phoenicis*, *Myceliophthora thermopila*, *Chrysosporium lucknowense*, *Neurospora crassa*, *Humicola grisae*, *Penicillium pinophilum*, *Penicillium oxalicum*, *Escherichia coli*, *Clostridium acetobutylicum*, *Clostridium saccharolyticum*, *Clostridium benjerinckii*, *Clostridium butylicum*, *Pichia pastoris*, *Yarrowia lipolityca* y *Saccharomyces cerevisiae*.

45 De acuerdo con un modo de realización preferente, la célula huésped aislada de acuerdo con la invención como se ha descrito anteriormente se selecciona entre *Trichoderma reesei* y *Saccharomyces cerevisiae*.

La invención también tiene por objeto el uso de uno cualquiera de los polipéptidos de acuerdo con la invención descritos anteriormente para la hidrólisis de celulosa.

50

10

20

25

30

35

La invención también tiene por objeto el uso de uno cualquiera de los polipéptidos de acuerdo con la invención descritos anteriormente para la producción de biocombustible.

De acuerdo con la invención, el término biocombustible puede definirse como cualquier producto resultante de la transformación de biomasa y puede utilizarse con fines energéticos. Por una parte y sin querer limitarse, se puede hacer citar a modo de ejemplo biogás, productos que pueden incorporarse (posiblemente después de una transformación posterior) en un combustible o ser un combustible exclusivo, como los alcoholes (etanol, butanol y/o isopropanol de acuerdo con el tipo de organismo fermentativo utilizado), disolventes (acetona), ácidos (butírico), lípidos y sus derivados (ácidos grasos de cadenas cortas o largas, ésteres de ácidos grasos), así como hidrógeno.

10 Preferentemente, el biocombustible de acuerdo con la invención es un alcohol, por ejemplo etanol, butanol y/o isopropanol. Más preferentemente, el biocombustible de acuerdo con la invención es etanol.

En otro modo de realización, el biocombustible es biogás.

- 15 En otro modo de realización, el producto es una molécula de interés para la industria química, como por ejemplo, otro alcohol tal como 1,2-propanodiol, 1,3-propanodiol, 1,4-butanodiol. 2,3-butanodiol, ácidos orgánicos como ácido acético, propiónico, acrílico, butírico, succínico, málico, fumárico, cítrico, itacónico o hidroxiácidos como ácido glicólico, hidroxipropiónico o láctico.
- A continuación se describe un modo de realización de producción de un cóctel enzimático útil para la hidrólisis de lignocelulosa. Las cepas de hongos filamentosos, preferentemente *Trichoderma*, más preferentemente *T. reesei*, capaces de expresar al menos un polipéptido de acuerdo con la invención se cultivan en fermentadores, en presencia de un sustrato carbonado, tal como lactosa o glucosa, seleccionado para el crecimiento del microorganismo. En un modo de realización, este sustrato carbonado, de acuerdo con su naturaleza, se introduce en el fermentador antes de la esterilización o se esteriliza por separado y se introduce en el fermentador después de la esterilización de este último para obtener una concentración inicial de 20 a 35 g/l.
- Posteriormente se añade una solución acuosa que contiene el sustrato seleccionado para la producción de las enzimas. Una composición enzimática que actúa sobre la biomasa lignocelulósica producida por los hongos se recupera finalmente por filtración del medio de cultivo. En esta composición, se encuentran, en particular, β-glucosidasa, exoglucanasa y endoglucanasa de acuerdo con la invención. En un modo de realización, la solución acuosa que contiene el sustrato seleccionado para la producción de las enzimas se prepara a una concentración de 200-250 g/l y contiene además un sustrato inductor tal como lactosa. Esta solución acuosa se inyecta después del agotamiento del sustrato carbonado inicial a fin de proporcionar una cantidad optimizada, comprendida entre 35 y 45 mg/g de células ("fed batch" (proceso semicontinuo)). Durante esta fase de "proceso semicontinuo", la concentración residual de azúcar en el medio de cultivo es inferior a 1 g/l y las enzimas que actúan sobre la biomasa lignocelulósica son secretadas por el hongo. Estas últimas pueden recuperarse por filtración del medio de cultivo.
- La invención tiene por objeto una composición enzimática capaz de actuar sobre la biomasa lignocelulósica, siendo dicha composición enzimática es producida preferentemente por hongos filamentosos y comprende al menos un polipéptido que tiene una actividad endoglucanasa mejorada con respecto a la actividad endoglucanasa de la proteína salvaje EG2. Por "hongos filamentosos" se entiende especialmente *Trichoderma*, más preferentemente *T. reesei*.
- Finalmente, la invención tiene por objeto un procedimiento de producción de biocombustible a partir de biomasa que comprende las siguientes etapas sucesivas:
 - poner suspensión en fase acuosa la biomasa que se va a hidrolizar;
 - hidrólisis en presencia de una composición enzimática de la biomasa lignocelulósica como se ha descrito anteriormente para producir un hidrolizado que contiene glucosa;
 - fermentación de la glucosa del hidrolizado para producir un mosto de fermentación;
 - separación del biocombustible del mosto de fermentación.

50

65

En un modo de realización, la biomasa que se va a hidrolizar se pone en suspensión en fase acuosa a razón de 6 a 40 % de materia seca, preferentemente 20 a 30 %. El pH se ajusta entre 4 y 5,5; preferentemente entre 4,8 y 5,2 y la temperatura entre 40 y 60 °C, preferentemente entre 45 y 50 °C. La reacción de hidrólisis se inicia mediante la adición de la composición enzimática que actúa sobre la biomasa lignocelulósica; la cantidad habitualmente utilizada es de 10 a 30 mg de proteínas excretadas por gramo de sustrato pretratado o menos. La reacción dura generalmente de 15 a 48 horas. La reacción se controla determinando los azúcares liberados, especialmente la glucosa. La solución de azúcares se separa de la fracción sólida no hidrolizada, constituida esencialmente de lignina, por filtración o centrifugación y luego se trata en una unidad de fermentación.

En un modo de realización, el biocombustible puede separarse del mosto de fermentación, por ejemplo por destilación.

Otro objeto de la invención es un procedimiento de producción de biocombustible a partir de la biomasa,

caracterizado por que comprende las siguientes etapas sucesivas:

- poner suspensión en fase acuosa la biomasa que se va a hidrolizar;
- adición simultánea de una composición enzimática como se ha definido anteriormente y de un organismo fermentativo, preferentemente a una temperatura comprendida entre 30 °C y 35 °C, para producir un mosto de fermentación:
- separación del biocombustible del mosto de fermentación.

5

15

35

40

45

50

Preferentemente, la composición enzimática y el organismo fermentativo se añaden simultáneamente y luego se incuban a una temperatura comprendida entre 30 °C y 35 °C para producir un mosto de fermentación.

De acuerdo con este modo de realización, la celulosa presente en la biomasa se convierte en glucosa, y al mismo tiempo, en el mismo reactor, el organismo fermentativo (por ejemplo, una levadura) convierte la glucosa en el producto final de acuerdo con un procedimiento de SFS (sacarificación y fermentación simultáneas) (*Simultaneous Saccharification and Fermentation*) conocido por los expertos en la materia. Dependiendo de las capacidades metabólicas e hidrolíticas del organismo fermentativo, el buen progreso de la operación puede requerir la adición de una cantidad mayor o menor de mezcla celulolítica exógena.

En otro modo de realización, el organismo fermentativo también produce el polipéptido objeto de la invención por secreción o en la superficie de su célula, opcionalmente junto con otras enzimas que actúan sobre la biomasa lignocelulósica, limitando o suprimiendo así la necesidad de enzimas producidas por el hongo filamentoso. Preferentemente, el organismo fermentativo es una célula huésped como se ha descrito anteriormente.

Por lo tanto, preferentemente, la invención tiene por objeto un procedimiento de producción de biocombustible a partir de biomasa, que comprende las siguientes etapas sucesivas:

- poner en suspensión en fase acuosa la biomasa que se va a hidrolizar;
- adición de una o más células huésped como se ha descrito anteriormente, con un organismo fermentativo y/o una composición enzimática como se ha descrito anteriormente, para producir un mosto de fermentación;
- 30 separación del biocombustible del mosto de fermentación.

Preferentemente, las células huésped con la composición enzimática y/o el organismo fermentativo se añaden e incuban posteriormente a una temperatura comprendida entre 30 °C y 35 °C para producir un mosto de fermentación.

El uso del polipéptido de acuerdo con la invención que presenta una mejor actividad endoglucanasa de acuerdo con la presente invención presenta así la ventaja de obtener un mejor rendimiento de producción de glucosa. Por lo tanto, la presente invención permite utilizar menos enzima que antes, lo que presenta una ventaja desde el punto de vista económico.

Descripción de las figuras

Otros aspectos, objetos, ventajas y características de la invención se expondrán tras la lectura de la siguiente descripción no restrictiva que describe modos de realización preferentes de la invención proporcionados mediante ejemplos y FIGURAS.

La FIGURA 1 es un gráfico que representa la hidrólisis de *p*-nitrofenil-β-celotriosida (pNPC3) por la endoglucanasa de referencia EG2 (SEQ ID NO: 2) y los mutantes 222E1 y 225C7 (respectivamente SEQ ID NO: 24 y 26) secretados en el medio de cultivo de las cepas Scα-EG2, Scα-222E1 y Scα-225C7, respectivamente.

La FIGURA 2 es un gráfico que representa la hidrólisis de CMC al 1 % por la endoglucanasa de referencia EG2 (SEQ ID: 2) y los mutantes 222E1 y 225C7 (respectivamente SEQ ID NO: 24 y 26) secretados en el medio de cultivo de cepas $Sc\alpha$ -EG2, $Sc\alpha$ -222E1 y $Sc\alpha$ -225C7, respectivamente.

- La FIGURA 3 es un gráfico que representa los resultados de HFS para el cóctel resultante de la cepa 146C4/7, un cóctel de referencia producido por la cepa CL847 ΔEG1 (ΔEG1) suplementado con β-glucosidasa y otro cóctel de referencia producido por la cepa CL847 ΔEG1 retransformada con el gen de referencia EG2 (ΔEG1cEG2) suplementado con β-glucosidasa.
- La FIGURA 4 es un gráfico que presenta los resultados de HFS para el cóctel de la cepa 222E1/1 (SEQ ID NO: 24) y el cóctel resultante de la cepa 225C7/7 (SEQ ID NO: 26), un cóctel de referencia producido por la cepa CL847 ΔEG1 (ΔEG1) suplementado con β-glucosidasa y otro cóctel de referencia producido por la cepa CL847 ΔEG1 retransformada con el gen de referencia EG2 (ΔEG1cEG2) suplementado con β-glucosidasa.
- La FIGURA 5 es un gráfico que presenta los resultados de SFS para el cóctel resultante de la cepa 146C4/7 (SEQ ID NO: 16) y para el cóctel resultante de la cepa 191H11/9 (SEQ ID NO 22), un cóctel de referencia

producido por la cepa CL847 Δ EG1 (Δ EG1) suplementado con β -glucosidasa y otro cóctel de referencia producido por la cepa CL847 Δ EG1 retransformada con el gen de referencia EG2 (Δ EG1cEG2) suplementado con β -glucosidasa.

5 La FIGURA 6 es un gráfico que presenta la media de los resultados de SFS para los 3 cócteles resultantes de las cepas 222E1/1, 222E1/2 y 222E1/7 (SEQ ID NO: 24) y los resultados para el cóctel resultante de la cepa 225C7/7 (SEQ ID NO: 26), un cóctel de referencia producido por la cepa CL847 ΔEG1 (ΔEG1) suplementado con β-glucosidasa y otro cóctel de referencia producido por la cepa CL847 ΔEG1 retransformada con el gen de referencia EG2 (ΔEG1cEG2) suplementado con β-glucosidasa.

Descripción detallada de la invención

Ejemplos

10

20

50

55

60

15 EJEMPLO 1: Evolución por transposición en L

La secuencia del gen de endoglucanasa 2 (EG2) de *Trichoderma reesei* se sometió a un giro de transposición en L de acuerdo con el procedimiento patentado descrito en el documento EP1104457B1 con los genes de endoglucanasa 2 putativa de *Botryotinia fuckeliana* (gen BF) y la endoglucanasa 2 putativa de *Sclerotinia sclerotiorum* (gen SS) que presenta cada uno un 64 % de identidad con el gen de referencia EG2 (SEQ ID NO: 1).

1 - Identificación sistemática de alto rendimiento

Se desarrolló un ensayo de identificación sistemática de alto rendimiento para seleccionar los mejores clones resultantes de la transposición en L, es decir, aquellos con al menos un 20 % de mejora en la actividad endoglucanasa en comparación con la enzima de *T. reesei*.

El ensayo de identificación sistemática de alto rendimiento se realizó de acuerdo con las siguientes etapas:

- aislamiento en agar de clones de E. coli que expresan las variantes de la enzima recombinante de acuerdo con la invención y precultivados en medio LB de dichas colonias durante la noche a 37 °C;
 - inoculación de un medio LB al 6 % con el precultivo y luego incubación durante 5 h a 37 °C y 17 h a 20 °C;
 - centrifugación durante 10 minutos a 3.000 rpm;
- lisis de las células por adición de 80 μl de una solución de lisozima a 1 mg/ml en tampón citrato fosfato 0,1 M a pH 5;
 - incubación durante 4 h a temperatura ambiente;
 - adición de 80 µl de tampón citrato fosfato 0,1 M pH 5 que contiene 1 % de carboximetilcelulosa;
 - incubación durante 3 h a 35 °C;
 - centrifugación durante 10 minutos a 3.000 rpm;
- 40 eliminación de 100 μl de sobrenadante;
 - adición de 100 µl de reactivo DNS;
 - incubación durante 10 minutos a 100 °C y luego durante 5 minutos en hielo;
 - lectura de la DO a 540 nm en 120 μl.
- En estas condiciones de identificación sistemática, se ha descubierto una mejora de la actividad endoglucanasa (aumento de la DO a 540 nm) con respecto a la enzima de referencia EG2 (SEQ ID NO: 2) en los clones 37D12, 45A7, 46H1, 50F10, 108G5, 140F7, 146C4, 149E4, 173C6, 191H11, 222E1, 225C7, 227C4, 229D1, 231C9 y 330F9.

2 - Determinación de la mejora de la actividad endoglucanasa

2-1/Sobre el sustrato de carboximetilcelulosa (CMC)

Para estimar el kcat de los clones 37D12, 45A7, 46H1, 50F10, 108G5, 140F7, 146C4, 149E4, 173C6, 191H11, 222E1, 225C7, 227C4, 229D1, 231C9 y 330F9 con respecto a las enzimas de referencia, se procede de la siguiente manera:

- preparación de un cultivo madre de E. coli que expresa una enzima recombinante de acuerdo con la invención durante la noche a 37 °C;
- inoculación de un medio de cultivo LB con 1 % de cultivo madre a 37 °C hasta que se obtiene una densidad óptica a 600 nm de 0,4;
- cultivo de dichas células a 20 °C durante 18 h;
- centrifugación durante 5 minutos a 7.900 rpm;
- resuspensión de los residuos celulares con tampón citrato fosfato 0,1 M a pH 5 que contiene 1 mg/ml de lisozima (D0₆₀₀ final 100);
- 65 incubación de células resuspendidas durante 30 minutos en hielo;
 - lisis de las células por tres ciclos de congelación/descongelación;

- fraccionamiento del ADN mediante sometimiento a ultrasonidos durante 3 segundos con una potencia de 5;
- centrifugación durante 30 minutos a 13.000 rpm;
- incubación de 100 μl de sobrenadante de rotura con 100 μl de tampón fosfato citrato 0,1 M a pH 5 que contiene 1 % de CMC durante 1 hora a 35 y 50 °C;
- 5 eliminación de 100 µl de reacción;
 - adición de 100 µ de reactivo DNS;
 - incubación durante 5 minutos a 100 °C;
 - incubación durante 3 minutos en hielo;
 - centrifugación durante 10 minutos a 3.000 rpm;
- 10 lectura de la densidad óptica a 540 nm en 150 μl.

De acuerdo con la invención, el cálculo de kcat se realiza de la siguiente manera:

- expresión de las DO a 540 nm en función de la cantidad de proteína de interés (en nM);
- 15 resta del valor del control negativo;
 - división por el coeficiente del intervalo patrón de glucosa (se revelan diferentes cantidades de glucosa con el DNS);
 - división por el tiempo de reacción.
- 20 La TABLA 2 presenta el valor de los kcat así como el factor de mejora con respecto a la proteína de referencia EG2 (SEQ ID NO: 2) obtenidos para los clones 37D12, 45A7, 46H1, 50E10, 108G5, 140E7, 146C4, 149E4, 173C6, 191H11, 222E1, 225C7, 227C4, 229D1, 231C9 y 330E9 en las condiciones experimentales del ensayo de actividad en CMC.

TABLA 2: Actividad endoglucanasa en CMC

IADLA 2. Actividad eli			5°C	50	D°C
	Clon	Kcat (min ⁻¹)	Factor de mejora	Kcat (min ⁻¹)	Factor de mejora
	37D12	2717,1	2,27	5574,1	2,73
	45A7	3183,8	2,66	6500	3,18
	46H1	1933,1	1,61	3124,6	1,53
	50F10	2864,8	2,39	5284,6	2,59
	108G5	2062,2	1,72	4235,5	2,07
	140F7	2024	1,69	4079,6	2,00
	146C4	1692,3	1,41	3221,5	1,58
Clones de	149E4	3132,9	2,61	5316,8	2,60
transposición en L	173C6	2472,9	2,06	6596,2	3,23
	191H11	3247,8	2,71	5275,3	2,58
	222E1	4484,5	3,74	9036,8	4,43
	225C7	2778,2	2,32	4026	1,97
	227C4	2340,3	1,95	3671,6	1,80
	229D1	2737,3	2,28	6597	3,23
	231C9	2344	1,95	3441,2	1,69
	330F9	2172,8	1,81	4222,8	2,07
Proteína de referencia	EG2	1199,05	1	2041,7	1

Los resultados muestran mejoras en la actividad enzimática significativas en comparación con la enzima de referencia EG2 (SEQ ID NO: 2) para estos clones.

30 2-2/Sobre el sustrato de celulosa hinchada con ácido fosfórico (PASC)

La mejora de la actividad de los clones 37D12, 45A7, 46H1, 50F10, 108G5, 140F7, 146C4, 149E4, 173C6, 191H11, 222E1, 225C7, 227C4, 229D1, 231C9 y 330F9 se confirmó en un segundo sustrato: celulosa hinchada con ácido fosfórico (PASC).

25

La TABLA 3 presenta el valor de los kcat así como los factores de mejora obtenidos para los clones 37D12, 45A7, 46H1, 50F10, 108G5, 140F7, 146C4, 149E4, 173C6, 191H11, 222E1, 225C7, 227C4, 229D1, 231C9 y 330F9 a 50 °C con respecto a la proteína de referencia EG2 (SEQ ID NO: 2) en las condiciones experimentales del ensayo de actividad en PASC.

TABLA 3: Actividad endoglucanasa en PASC

es constalar	יירא יפראי פנטור פטור פטור פטור פטראי פראי פראי פנטור פטור פטור פטור פטראי פראי פראי פראי פראי פראי פראי פראי	50	O°C
	Clon	Kcat (min ⁻¹)	Factor de mejora
	37D12	4,51	1,12
	45A7	5,86	1,45
	46H1	6,56	1,62
	50F10	5,04	1,25
	108G5	8,49	2,10
	140F7	7,82	1,94
	146C4	8,12	2,01
Clones de transposición en L	149E4	5,96	1,48
Ciones de transposición en L	173C6	5,87	1,45
	191H11	8,38	2,07
	222E1	5,14	1,27
	225C7	5,44	1,35
	227C4	4,76	1,18
	229D1	3,91	0,97
	231C9	4,62	1,14
	330F9	4,3	1,06
Proteína de referencia	EG2	4,04	1

Los resultados muestran mejoras en la actividad enzimática significativas con respecto a la enzima de referencia 10 EG2 (SEQ ID NO: 2) para estos clones.

2-3/En el substrato Sigmacell

La mejora de los clones 37D12, 45A7, 46H1, 50F10, 108G5, 140F7, 146C4, 149E4, 173C6, 191H11, 222E1, 225C7, 227C4, 229D1, 231C9 y 330F9 también se evaluó en un tercer sustrato: Sigmacell. El protocolo de ensayo es el mismo que el descrito anteriormente con el sustrato CMC. La incubación con el sustrato tiene lugar durante 24 h a 50 °C.

La TABLA 4 presenta el valor de los kcat así como los factores de mejora obtenidos para los clones 37D12, 45A7, 46H1, 50E10, 108G5, 140E7, 146C4, 149E4, 173C6, 191H11, 222E1, 225C7, 227C4, 229D1, 231C9 y 330E9 a 50 °C con respecto a la proteína de referencia EG2 (SEQ ID NO: 2) en las condiciones experimentales del ensayo de actividad en Sigmacell.

TABLA 4: Actividad endoglucanasa en Sigmacell

***		50)°C
Security of the second	Clon	Kcat (min ⁻¹)	Factor de mejora
	37D12	6,84	1,20
	45A7	6,54	1,15
	46H1	6,04	1,06
	50F10	7,12	1,25
	108G5	5,95	1,05
	140F7	6,9	1,21
	146C4	9,3	1,63
Clones de transposición en L	149E4	5,71	1,00
	173C6	5,85	1,03
	191H11	5,99	1,05
	222E1	9,16	1,61
	225C7	7,16	1,26
	227C4	7,22	1,27
	229D1	6,25	1,10
	231C9	6,46	1,14
	330F9	5,99	1,05
Proteína de referencia	EG2	5,69	1

Los resultados muestran que la mejora de actividad para los clones 37D12, 45A7, 46H1, 50E10, 108G5, 140E7, 146C4, 149E4, 173C6, 191H11, 222E1, 225C7, 227C4, 229D1, 231C9 y 330E9 es visible con respecto a la enzima de referencia EG2 (SEQ ID NO: 2) con el sustrato Sigmacell.

Ejemplo 2:

10

15

20

25

Las variantes 146C4, 191H11, 222E1 y 225C7, así como el gen de referencia EG2 de *T. reesei* (SEQ ID NO: 2) fueron clonados entre el promotor y el terminador *cbh1* en el plásmido pUT1040 que contiene un gen de resistencia a la fleomicina como marcador, utilizando una doble digestión con BamH1/Xhol. Se utilizaron 5 μg de cada vector para la transformación de la cepa *T. reesei* CL847AEG1. Los protoplastos se transformaron de acuerdo con un método convencional conocido por los expertos en la materia, mediante choque cálcico y PEG, con 5 μg de cada construcción. Los transformantes se seleccionaron en medio selectivo PDA/sacarosa que contenía 30 μg/l de fleomicina. Después de tres subcultivos sucesivos que permitieron obtener clones puros, se obtuvieron entre once y quince clones para cada una de las variantes. El conjunto de los clones se cultivó en medio F45 (800 μl de H₃PO₄ 85 %, 4,2 g (NH₄)₂SO₄, 0,3 g de MgSO₄.7H₂O, 0,75 g de maíz macerado, 1 ml de Oligo Ferment, 6 g de potasio ftalato, pH 5,8-6) con 5 g/l de glucosa y 10 g/l de sorbosa como sustrato de carbono e inductor. Después de 7 días de cultivo a 30 °C, se elimina el sobrenadante y se utiliza el equivalente de 10 mg/l de proteínas medidas por el método Lowry para un ensayo de actividad en carboximetilcelulosa.

Para las mediciones de actividad, se mezclaron 150 µl de una solución de CMC al 2 % en tampón citrato 50 mM, pH 4,8, con 150 µl de tampón citrato que contenía 10 mg/l de proteínas. La reacción se incuba a 50 °C y 35 °C durante 10 min y luego se inactiva al baño maría hirviendo. Después de la centrifugación durante 5 minutos, se eliminan 20 µl para realizar una determinación de azúcares reductores utilizando ácido 3,5-dinitrosalicílico (DNS). La reducción de DNS y la formación de ácido 3-amino-5-nitrosalicílico se controlan mediante la lectura de absorción a 540 nm, y los azúcares reductores se cuantifican utilizando un intervalo de glucosa.

La TABLA 5 resume las actividades (expresadas en μmol equivalente glucosa/mg de proteína/min) obtenidas para los mejores clones para cada variante. El valor para la cepa ΔEG1 transformada con el gen EG2 nativo (ΔEG1cEG2) es una media de los cuatro mejores clones.

TABLA 5: Actividad endoglucanasa en CMC

clon	actividad específica a 50 °C (µmol/mg/min)	relación variante/AEG2cEG2 a 50 °C	actividad específica a 30 °C (µmol/mg/min)	relación variante/ΔEG2cEG2 a 35 °C
∆EG2cEG 2	10,8 ± 1,8		8,6 ± 2,2	
191H11/2	23,1 ± 1,8	2,1	9,9 ± 2,8	1,2
191H11/9	21,9 ±4,0	2,0	10,8 ± 1,6	1,3
191H11/12	17,4 ± 0,4	1,6	9,7 ± 2,0	1,1
146C4/1	12,0 ±1,1	1,1	$8,5 \pm 0,7$	1,0
146C4/6	11,7 ± 0,4	1,1	8,6 ± 1,2	1,0
146C4/7	16,1 ± 1,1	1,5	11,9 ± 3,2	1,4
222E1/1	21,4 ± 0,8	2,0	13,9 ± 3,3	1,6
222E1/2	18,3 ± 1,3	1,7	13,7 ± 1,4	1,6
222E1/4	13,5 ± 0,6	1,3	10,4 ± 0,8	1,2
222E1/7	16,2 ± 1,3	1,5	11,4 ± 0,3	1,3
225C7/7	11,4 ± 0,1	1,1	10,3 ± 3,3	1,2
225C7/9	$14,7 \pm 0,4$	1,4	8,1 ± 1,4	0,9

Para cada variante, al menos un clon posee una actividad de CMCasa superior a la cepa Δ EG1cEG2 a 35 °C o a 50 °C, los mejores clones muestran dos veces más actividad que la cepa Δ EG1cEG2.

Ejemplo 3: Expresión recombinante de endoglucanasa de referencia EG2 y variantes 222E1 y 225C7 en Saccharomyces cerevisiae

1- Producción de la proteína de referencia endoglucanasa de referencia EG2 y su variante 222E1 en el medio extracelular

El gen de endoglucanasa de referencia EG2 de *Trichoderma reesei* (SEQ ID NO: 1) y los genes de las variantes 222E1 y 225C7 (SEQ ID NO: 23 y 25, respectivamente) se clonaron sin su péptido señal en el vector pESC-LeuαAmyc (CNRS-CERMAV). Esta construcción permite la expresión de las proteínas en el medio de cultivo de la cepa *Saccharomyces cerevisiae* EBY100, auxótrofa para leucina y triptófano (Boder ET y Wittrup KD, Biotechnol Prog, 1998, 14: 55-62). Este plásmido permite colocar la expresión de genes bajo el control del promotor GAL1 inducible a galactosa, y posee el gen marcador de selección de la auxotrofia (Leu2) que permite la selección de transformantes.

20 La transformación de *Saccharomyces cerevisiae* EBY100 se llevó a cabo de acuerdo con los métodos convencionales conocidos por los expertos en la materia (transformación de levaduras por choque térmico y acetato de litio). Los transformantes se seleccionaron en medio YNB 0,67 %-Glc 2 %-Trp 0,01 %.

Se utilizó un transformante para cada gen (Scα-EG2, Scα-222E1 y Scα-225C7) para sembrar 15 ml de un medio mínimo YNB 0,67 %-Glc 2 %-SD-Trp 0,01 %. SD es una mezcla de aminoácidos (40 mg/l de adenina sulfato, 20 mg/l de L-arginina, 100 mg/l de ácido L-aspártico, 100 mg/l de ácido L-glutámico, 20 mg/l de L-histidina, 30 mg/l de L-lisina, 20 mg/l de L-metionina, 50 mg/l de L-fenilalanina, 375 mg/l de L-serina, 200 mg/l de L-treonina, 30 mg/l de L-tirosina, 150 mg/l de L-valina y 20 mg/l de uracilo). Después de 24 h de precultivo a 30 °C con agitación a 220 rpm, se inocularon las tres cepas Scα-EG2, Scα-222E1 y Scα-225C7 (DO600 de 0,5) 150 ml de medio YNB 0,67 %-Gal 2 %-SD-Trp 0,01 %. Los cultivos se incubaron a 25 °C con agitación a 220 rpm. Después de 8 h de incubación, se añadieron 6 ml de citrato de sodio a pH 5,6 a cada cultivo para estabilizar el pH a 5.

Después de 4 días de incubación, se eliminaron 20 ml de cultivo. El sobrenadante del cultivo se obtuvo después de la centrifugación a 3.000 g a 4 °C durante 5 minutos.

2- Determinación de la actividad endoglucanasa en p-nitrofenil-β-celotriosida

La actividad endoglucanasa de los sobrenadantes de cultivo se midió por hidrólisis del sustrato pNPC3 en un volumen de 450 µl en las siguientes condiciones:

- 50 mM de tampón de citrato a pH 5
- 2 mM de pNPC3
- 56,3 μl del sobrenadante de cultivo de las cepas Scα-EG2, Scα-221E1 y Scα-225C7
- incubación a 35 °C durante 6 h.

45

35

40

5

10

La reacción se detuvo mediante la adición de 100 μ l de carbonato de sodio 1 M a 100 μ l de reacción de hidrólisis. La concentración de para-nitrofenol (pNP) liberada por hidrólisis de pNPC3 se determinó midiendo la absorbancia a 415 nm en comparación con un intervalo patrón de para-nitrofenol (lineal de 0,36 μ M a 360 μ M).

Los resultados de la FIGURA 1 muestran que la cepa $Sc\alpha$ -222E1 posee una actividad endoglucanasa mejorada con un factor 1,6 en comparación con la cepa $Sc\alpha$ -EG2 que expresa la enzima de referencia EG2 (SEQ ID NO: 2). La cepa $Sc\alpha$ -225C7 demuestra, por su parte, menos eficacia para la hidrólisis de este sustrato.

3- Determinación de la actividad endoglucanasa en carboximetilcelulosa

La actividad endoglucanasa de los sobrenadantes de cultivo se midió por hidrólisis de carboximetilcelulosa (CMC) en un volumen de 700 µl en las siguientes condiciones:

- 10 50 mM de tampón citrato a pH 5
 - 1 % de CMC
 - 210 μl de sobrenadante de cultivo de cepas Scα-EG2, Scα-222E1 y Scα-225C7 dializadas contra el tampón citrato 50 mM pH 5 en membrana de 10 kDa y concentrados dos veces
 - incubación a 35 °C durante 24 h.

15

La reacción se detuvo mediante la adición de 150 µl de reactivo DNS a 100 µl de reacción de hidrólisis. Después de un calentamiento durante 5 minutos a 100 °C y enfriamiento en hielo, la cantidad de azúcares reductores liberados se determinó midiendo la absorbancia a 550 nm en comparación con un intervalo patrón preparado con glucosa.

20 Los resultados de la FIGURA 2 indican que la cantidad de azúcares reductores liberados por la acción de las variantes de las cepas Scα-222E1 y Scα-225C7 es mayor que con la cepa Scα-EG2. Por lo tanto, después de 1 h de hidrólisis de la CMC, el factor de mejora a 35 °C en este sustrato es de 3,5 para Scα-222E1 y 2,6 para Scα-225C7 con respecto a Scα-EG2. Más allá de este tiempo de incubación, la CMC continúa hidrolizándose por las dos variantes mientras que la velocidad de reacción se vuelve prácticamente cero en presencia de la proteína de referencia EG2 (SEQ ID NO: 2).

Ejemplo 4: Producción de enzimas por *T. reesei* en matraces alimentados

Las cepas de referencia y las que presentan la mejor actividad en CMC (CL847, AEG1, ΔEG1cEG2, 146C4/7, 191H11/9, 222E1/1, 222E1/2, 222E1/7, 225C7/7) se cultivaron en matraces Erlenmeyer de 250 ml. 55 ml de medio F45 (10 g/l de tampón dipotasio ftalato pH 6, 4,2 g/l (NH₄)₂SO₄, 300 mg/l de MgSO₄.7H₂O, 150 mg/l de CaCl₂.2H₂O, 1,5 g/l de maceración del maíz, 0,07 % de ácido ortofosfórico, 5 mg/l de FeSO₄, 1,4 mg/l de MnSO₄, 1,4 mg/l de ZnSO₄, 3,7 mg/l de CoCl₂ y 12,5 g/l de glucosa) se siembran y agitan a 150 rpm y 30 °C. La producción se realiza en dos fases: una fase continua en glucosa y una fase discontinua en lactosa. Los muestreos regulares permiten determinar el momento en el que la concentración de glucosa cae por debajo de 3 g/l. En este estadio, se inicia un suministro semicontinuo con una bomba de jeringa (6 vías). Los cultivos se suministran con una solución de 50 g/l de lactosa y 0,3 % de NH₃ a un caudal de 40 mg de azúcar/g de biomasa por hora. Se toman muestras diarias para determinar el pH, el peso en seco y la concentración de proteínas en el sobrenadante. Después de 5 días de cultivo semicontinuo, el cultivo se filtra a través de un filtro de 0,45 μm y el sobrenadante se congela.

40

35

30

La concentración final de proteínas se encontraba en el orden de 3 a 4 g/l. Si la concentración era inferior a 3 g/l, los sobrenadantes se concentraron en una columna (Vivaspin MWC05, Sartorius).

Ejemplo 5: Eficacia de las enzimas resultantes de la transposición en L en la hidrólisis de la biomasa lignocelulósica de acuerdo con un procedimiento HFS

El sustrato de referencia utilizado es una paja de trigo que se ha sometido a un pretratamiento por explosión de vapor (19 bar - 3 minutos) después de la impregnación ácida al 0,01 % de H₂SO₄ durante 10 horas, que se ha lavado, neutralizado a pH 5, prensado, secado. Sus características se presentan en la Tabla 9.

50

Tabla 6: Composición de la paja utilizada para el ensayo de hidrólisis

Composición	% m/m
SIA	97,52
Contenido en cenizas	5
Celulosa	51,7
Xilanos corregidos	3,57
Hemicelulosa	4,14
Lignina de Klason (sobreestimada)	36,49
Acetil	0.6

Las hidrólisis se llevaron a cabo al 10 % de materia seca m/m, o en un equivalente al 5,4 % de celulosa m/m.

La tasa de proteínas se fija a 10 mg/g de materia seca o aproximadamente 19 mg/g de celulosa. La concentración de cócteles enzimáticos se midió por el método Lowry utilizando ASB como referencia. Cada cóctel se suplementó con actividad β-glucosidasa con un máximo de 120 ± 2 IU/g de celulosa, añadiendo β-glucosidasa SP188 (Novozymes).

Los ensayos se llevan a cabo en tubos Eppendorf de 2 ml útiles (1g de reacción) que contienen:

- 0,11 ± 0,001 g de sustrato de paja lavada
- 5 0,9 ± 0,02 ml de medio de reacción de hidrólisis compuesto de tampón acetato 50 mM pH 4,8 y cloranfenicol (0,05 g/l)
 - entre 0,1 y 0,2 ± 0,02 g de cóctel enzimático en función de su tasa de proteínas.
- 10 Las hidrólisis enzimáticas se llevan a cabo a 45 ± 2 °C bajo agitación tipo vórtex a 900 rotaciones por minuto en un Thermomixer Comfort Eppendorf.

Todas los ensayos se llevan a cabo por duplicado con tiempos de muestreo fijados a t 24, 48 y 96 horas, algunos de los cuales se muestrean a t 72 horas.

En cada tiempo de muestreo, los hidrolizados se escaldan durante 5 minutos en los tubos Eppendorf sacrificados. Estos tubos se enfrían y centrifugan. La determinación de glucosa se realiza por HPLC. Paralelamente, los residuos sólidos de cada tubo Eppendorf se lavan y se centrifugan 3 veces antes de secarse a 105 °C durante 24 horas para evaluar los SIA (sólidos insolubles en agua). El cálculo del rendimiento de la hidrólisis se realiza teniendo en cuenta los SIA.

Los cócteles resultantes del ejemplo 4 fueron evaluados. Se llevan a cabo dos ensayos de control con cócteles de referencia también suplementados con β -glucosidasa para comparación: un cóctel producido por la cepa CL847 AEG1 (Δ EG1) y un cóctel producido por la cepa CL847 Δ EG1 retransformada con el gen de referencia EG2 (Δ EG1cEG2).

La FIGURA 3 presenta los resultados de HFS para el cóctel resultante de la cepa 146C4/7 (SEQ ID NO: 16).

Los resultados presentados en la FIGURA 3 muestran que la velocidad inicial de hidrólisis del cóctel producido por la variante 146C4 es superior a la de los cócteles de referencia ΔEG1 y AEG1cEG2. El rendimiento final de la hidrólisis también es superior al de los cócteles de referencia ΔEG1 y AEG1cEG2.

La FIGURA 4 presenta los resultados de HFS para el cóctel resultante de la cepa 222E1/1 (SEQ ID NO: 24) y el cóctel resultante de la cepa 225C7/7 (SEQ ID NO: 26).

Los resultados presentados en la FIGURA 4 muestran que las velocidades iniciales de hidrólisis de los cócteles producidos por la variante 222E1 y la variante 225C7 son superiores a las de los cócteles de referencia ΔEG1 y AEG1cEG2. Los rendimientos finales de hidrólisis también son superiores a los de los cócteles de referencia ΔEG1 y AEG1cEG2.

Ejemplo 6: Eficacia de las enzimas en la hidrólisis de biomasa lignocelulósica de acuerdo con un procedimiento SFS

El sustrato utilizado es el mismo que el descrito en la TABLA 6 (Ejemplo 4).

Las SFS se realizan por triplicado en reactores de laboratorio. Se constituyen de los siguientes elementos:

- un frasco de vidrio de 30 ml de volumen útil;
- un tapón de seguridad de poliéter éter cetona (Peek);
- una válvula unidireccional DV-118 comercializada por la sociedad Vaplock fijada a través del tapón. La válvula está configurada para abrirse cuando la presión relativa en la botella es superior a 70 mbar;
 - un tubo hueco de polipropileno, unido a través de un segundo que atraviesa el tapón y equipado en el extremo inferior de dicho tubo con un septo;
 - una junta plana dispuesta entre el cuello del frasco y el tapón.

El principio de implementación de los biorreactores es el siguiente: el CO₂ producido durante la fermentación etanólica se acumula en el cielo sobre el medio de reacción que causa por acumulación un aumento en la presión en el biorreactor (P_G). Cuando P_G es superior a la presión de apertura de la válvula unidireccional (P_S), ésta se abre para liberar una cantidad de gas que por ejemplo se determina mediante pesaje. Cuando P_G < P_S, la válvula se cierra hasta que P_G sea superior a P_S. Por lo tanto, el biorreactor en funcionamiento todavía está bajo presión para proporcionar un medio anaeróbico estable para la fermentación. La cantidad de etanol producida se evalúa por la producción de CO₂ estimada por la pérdida de peso a partir de la siguiente ecuación estequiométrica de fermentación de glucosa en etanol:

C₆H₁₂O₆ (glucosa)→ 2 CO₂ + 2 CH₃CH₂OH (etanol) + energía

15

20

25

35

40

45

55

El medio de cultivo utilizado para SFS es un medio acuoso que comprende:

- un tampón acetato 50 mM para pH 5;
- cloranfenicol a 0.1 g/l;

5

10

15

25

30

35

40

50

- medio nutritivo con 3 g/l de KH₂PO₄, 2 g/l de (NH₄)₂SO₄, 0,4 g/l de MgSO₄, 7H₂O y 1 g/l de extracto de levadura.

Las SFS se prepararon con $10 \pm 0,01$ % m/m de materia seca o un equivalente de 5,4 % de celulosa m/m para una masa de reacción total de $15 \pm 0,003$ g. La tasa de proteínas se fija en $10 \pm 0,01$ mg de celulasas por gramo de materia seca, o aproximadamente 19 mg/g de celulosa. La concentración de cócteles enzimáticos se midió por el método de Lowry utilizando ASB (albúmina sérica bovina) como referencia. Cada cóctel se suplementó con actividad de β -glucosidasa a un máximo de 120 ± 2 IU/g de celulosa, añadiendo β -glucosidasa SP188 (Novozymes).

La levadura de fermentación de azúcares (*Saccharomyces cerevisiae*, cepa de etanol rojo, Fermentis, Francia) se añade al medio para obtener un contenido de 2 ± 0,1 g/kg.

Se añaden enzimas y levaduras a los biorreactores después de una hora de acondicionamiento de la paja de trigo pretratada a 35 °C con el tampón, cloranfenicol y medio de cultivo.

La reacción de SFS se realiza a una temperatura de aproximadamente 35 °C, colocando el biorreactor de laboratorio en una incubadora tipo INFORS Multitron HT Standard con una velocidad de rotación orbital de 150 rpm.

Con el tiempo, la pérdida de masa se controló mediante el pesaje de los biorreactores. Al final de la reacción, el mosto de fermentación se calienta a 100 °C durante 5 minutos, se enfría y se centrifuga para separar las materias sólidas no hidrolizadas del zumo de fermentación. Este último se analiza luego por cromatografía en fase gaseosa para determinar su concentración de etanol.

Se evaluaron los cócteles del ejemplo 4. Dos ensayos de control se llevan a cabo con cócteles de referencia también suplementados con β-glucosidasa para la comparación: un producto con la cepa CL847 AEG1 (ΔEG1) y uno con la cepa CL847 AEG1 retransformada con el gen de referencia EG2 (ΔEG1cEG2).

La FIGURA 5 presenta los resultados de SFS para el cóctel resultante de la cepa 146C4/7 y para el cóctel resultante de la cepa 191H11/9 (SEQ ID NO 22):

Los resultados presentados en la FIGURA 5 muestran que los progresos (producciones de etanol para la misma dosis de enzimas) de SFS en 100 horas para el cóctel que expresa endoglucanasa 146C4 y el cóctel que expresa endoglucanasa 191H11 son superiores a los de los cócteles de referencia ΔEG1 y ΔEG1cEG2.

La FIGURA 6 presenta los resultados de SFS para los 3 cócteles resultantes de las cepas 222E1/1, 222E1/2 y 222E1/7 (media de los resultados obtenidos con las 2 variantes) y para el cóctel resultante de la cepa 225C7/7.

Los resultados presentados en la FIGURA 6 muestran que los progresos de SFS en 100 horas para el cóctel que expresa la endoglucanasa 222E1 y el cóctel que expresa la endoglucanasa 225C7 son equivalentes y superiores a los de los cócteles de referencia ΔEG1 y ΔEG1cEG2.

45 LISTADO DE SECUENCIAS

<110> IFPEN

<120> VARIANTES DE LA ENDOGLUCANASA CON ACTIVIDAD MEJORADA Y SUS USOS

<130> BFF130

<160> 38

55 <170> Patentln versión 3.5

<210> 1 <211> 1257 <212> ADN

60 <213> Trichoderma reesei

atgaacaagt ccgtggctcc	attgctgctt	gcagcgtcca	tactatatgg	cggcgccgct	60
gcacagcaga ctgtctgggg	ccagtgtgga	ggtattggtt	ggagcggacc	tacgaattgt	120
gctcctggct cagcttgttc	gaccctcaat	ccttattatg	cgcaatgtat	teegggagee	180
actactatca ccacttcgac	ccggccacca	teeggteeaa	ccaccaccac	cagggctacc	240
tcaacaagct catcaactcc	acccacgage	tetggggtee	gatttgccgg	cgttaacatc	300
gcgggttttg actttggctg	taccacagat	ggcacttgcg	ttacctcgaa	ggtttatcct	360
ccgttgaaga acttcaccgg	ctcaaacaac	taccccgatg	gcatcggcca	gatgcagcac	420
ttcgtcaacg acgacgggat	gactattttc	cgcttacctg	teggatggea	gtacctcgtc	480
aacaacaatt tgggcggcaa	tcttgattcc	acgagcattt	ccaagtatga	tcagcttgtt	540
caggggtgcc tgtctctggg	cgcatactgc	atcgtcgaca	tccacaatta	tgctcgatgg	600
aacggtggga tcattggtca	gggcggccct	actaatgctc	aattcacgag	cctttggtcg	660
cagttggcat caaagtacgc	atctcagtcg	agggtgtggt	tcggcatcat	gaatgagece	720
cacgacgtga acatcaacac	ctgggctgcc	acggtccaag	aggttgtaac	cgcaatccgc	780
aacgctggtg ctacgtcgca	attcatctct	ttgcctggaa	atgattggca	atctgctggg	840
gctttcatat ccgatggcag	tgcagccgcc	ctgtctcaag	tcacgaaccc	ggatgggtca	900
acaacgaatc tgatttttga	cgtgcacaaa	tacttggact	cagacaactc	cggtactcac	960
gccgaatgta ctacaaataa	cattgacggc	gccttttctc	cgcttgccac	ttggctccga	1020
cagaacaatc gccaggctat	cctgacagaa	accggtggtg	gcaacgttca	gtcctgcata	1080
caagacatgt gccagcaaat	ccaatatctc	aaccagaact	cagatgtcta	tcttggctat	1140
gttggttggg gtgccggatc	atttgatagc	acgtatgtcc	tgacggaaac	accgactggc	1200
agtggtaact catggacgga	cacatccttg	gtcagctcgt	gtctagcaag	aaagtag	1257

<210> 2

<211> 418

<212> PRT

<213> Trichoderma reesei

Met 1	Aşn	Lys	Ser	Val 5	ALA	Pro	Lęu	Leu	Leu 10	ATA	ATA	Ser	IIŧ	Leu 15	Tyr
Gly	Gly	Ala	Ala 20	Ala	Gln	Gln	Thr	Val 25	Trp	Gly	Gln	Cys	Gly 30	Gly	Ile
Gly	Trp	Ser 35	Gly	Pro	Thr	Asn	Cys 40	Ala	Pro	Gly	Ser	Ala 45	Cys	Ser	Thr
Leu	Asn 50	Pro	Tyr	Tyr	Ala	Gln 55	Cys	Ile	Pro	Gly	Ala 60	Thr	Thr	Ile	Thr
Thr 65	Ser	Thr	Arg	Pro	Pro 70	Ser	Gly	Pro	Thr	Thr 75	Thr	Thr	Arg	Ala	Thr 80
Ser	Thr	Ser	Ser	Ser 85	Thr	Pro	Pro	Thr	Ser 90	Ser	Gly	Val	Arg	Phe 95	Ala
Gly	Val	Asn	Ile 100	Ala	Gly	Phe	Asp	Phe 105	Gly	Cys	Thr	Thr	Asp 110	Gly	Thr
Cys	Val	Thr 115	Ser	Lys	Val	Tyr	Pro 120	Pro	Leu	Lys	Asn	Phe 125	Thr	Gly	Ser
Asn	Asn 130	Tyr	Pro	Asp	Gly	Ile 135	Gly	Gl n	Met	G l n	His 140	Phe	Val	Asn	Asp
Asp 145	Gly	Met	Thr	Ile	Phe 150	Arg	Leu	Pro	Val	Gly 155	Trp	Gln	Tyr	Leu	Val 160
Asn	Asn	Asn	Leu	Gly 165	Gly	Asn	Leu	Asp	Ser 170	Thr	Ser	Ilę	Ser	Lys 175	Tyr
Asp	Gln	Leu	Val 180	Gln	Gly	Cys	Leu	Ser 185	Leu	Gly	Ala	Tyr	Cys 190	Ile	Val
Asp	Ile	His 195	Asn	Tyr	Ala	Arg	Trp 200	Asn	Gly	Gly	Ile	Ile 205	Gly	Gln	Gly
Gly	Pro 210	Thr	Asn	Ala	Gln	Phe 215	Thr	Ser	Leu	Trp	Ser 220	Gln	Leu	Ala	Ser
Lvs	Tvr	Ala	Ser	Gln	Ser	Ara	Val	Trp	Phe	Glv	Ile	Met.	Asn	Glu	Pro

225					230					235					240
His	Asp	Val	Asn	Ile 245	Asn	Thr	Trp	Ala	Ala 250	Thr	Val	Gln	Glu	Val 255	Val
Thr	Ala	Ile	Ar g 260	Asn	Ala	Gly	Ala	Thr 265	Ser	Gln	Phe	Ile	Ser 270	Leu	Pro
Gly	Asn	Asp 275	Trp	Gln	Ser	Ala	Gly 280	Ala	Phe	Ile	Ser	Asp 285	Gly	Ser	Ala
Ala	Ala 290	Leu	Ser	Gln	Val	Thr 295	Asn	Pro	Asp	Gly	Ser 300	Thr	Thr	Asn	Leu
Ile 305	Phe	Asp	Val	His	Lys 310	Tyr	Leu	Asp	Ser	Asp 315	Asn	Ser	Gly	Thr	His 320
Ala	Glu	Cys	Thr	Thr 325	Asn	Asn	Ile	Asp	Gly 330	Ala	Phe	Ser	Pro	Leu 335	Ala
Thr	Trp	Leu	Arg 340	Gln	Asn	Asn	Arg	Gln 3 4 5	Ala	Ile	Leu	Thr	G1u 350	Thr	Gly
Gly	Gly	Asn 355	Val	Gln	Ser	Cys	Ile 360	Gln	Asp	Met	Cys	Gln 365	Gln	Ile	Gln
Tyr	Leu 370	Aşn	Gln	Asn	Ser	Asp 375	Val	Tyr	Leu	Gly	Tyr 380	Val	Gly	Trp	Gly
Ala 385	Gly	Ser		Asp			_		Leu			Thr	Pro		Gly 400
Ser	Gly	Asn	Ser	Trp 405	Thr	Asp	Thr	Ser	Leu 410	Val	Ser	Ser	Сув	Leu 415	Ala
Arg	Lys														
<210> 3 <211> 1257 <212> ADN <213> Secuer	ıcia ar	tificial													
<220> <223> 37D12															

5

10

atgaacaagt	cegtggctce	attgctgctt	gcagcgtcca	tactatatgg	cggcgccgct	60
gcacagcaga	ctgtctgggg	ccagtgtgga	ggtattggtt	ggageggaee	tacgaattgt	120
gctcctggct	cagcttgttc	gaccctcaat	ccttattatg	cgcaatgtat	teegggagee	180
actactatca	ccacttcgac	ccggccacca	teeggteeaa	ccaccaccac	cagggetace	240
tcaacaagct	catcaactcc	acccacgage	tctggggtcc	gatttgccgg	cgttaacatc	300
gcgggttttg	actttggctg	taccacagat	ggcacttgcg	ttacctcgaa	ggtttatcct	360
ccgttgaaga	acttcaccgg	ctcaaacaac	taccccgatg	gcatcggcca	gatgcagcac	420
ttcgtcaacg	acgacgggat	gactattttc	cgcttacctg	toggatggca	gtacctcgtc	480
aacaacaatt	tgggcggcaa	tcttgattcc	acgagcattt	ccaagtatga	tcagcttgtt	540
caggggtgcc	tgtctctggg	cgcatactgc	atcgtcgaca	tccacaatta	tgctcgatgg	600
aacggtggga	tcattggtca	gggcggccct	actaatgctc	aattcacgag	cctttggtcg	660
cagttggcat	caaagtacgc	atctcagtcg	agggtgtggt	toggcatcat	gaatgagccc	720
cacgacgtga	acatcaacac	ctgggctgcc	acggtccaag	aggttgtaac	cgcaatccgc	780
aacgctggtg	ctacgtcgca	attcatctct	ttgcctggaa	atgattggca	atctgctggg	840
gctttcatat	ccgatggcag	tgcagccgcc	ctgtctcaag	tcacgaaccc	ggatgggtca	900
acaacgaatc	tgatttttga	cgtgcacaaa	tacttggact	cagacaactc	cggtactcac	960
gccgaatgtg	taacaaataa	cattgacgcc	gcctttgcac	cgcttgccac	ttggctccga	1020
gcaaacggtc	gccaggctat	cctgagcgaa	accggtggtg	gcaacaccgc	gtcctgccag	1080
acatatttgt	gccagcaagt	tgcttatctc	aacgcaaact	cagatgtcta	tcttggctat	1140
attggttggt	ctgccggatc	atttgatagc	acgtatattc	tgacggaaac	accgaatggc	1200
agtggtaact	catggacgga	cacatccttq	gtcagctcgt	gtctagcaag	aaaqtaq	1257

<210> 4

<211> 418 <212> PRT

<213> Secuencia artificial

<220>

<223> 37D12

10

5

Met Asn Lys Ser Val Ala Pro Leu Leu Leu Ala Ala Ser Ile Leu Tyr 1 5 10 15

Gly Gly Ala Ala Gln Gln Thr Val Trp Gly Gln Cys Gly Gly Ile 20 25 30

Gly Trp Ser Gly Pro Thr Asn Cys Ala Pro Gly Ser Ala Cys Ser Thr 35 40 45

Leu Asn Pro Tyr Tyr Ala Gln Cys Ile Pro Gly Ala Thr Thr Ile Thr

	50					55					60				
Thr 65	Ser	Thr	Arg	Pro	Pro 70	Ser	Gly	Pro	Thr	Thr 75	Thr	Thr	Arg	Ala	Thr 80
Ser	Thr	Ser	Ser	Ser 85	Thr	Pro	Pro	Thr	Ser 90	Ser	Gly	Val	Arg	Phe 95	Ala
Gly	Val	Asn	Ile 100	Ala	Gly	Phe	Asp	Phe 105	Gly	Cys	Thr	Thr	Asp 110	Gly	Thr
Cys	Val	Thr 115	Ser	Lys	Val	Tyr	Pro 120	Pro	Leu	Lys	Asn	Phe 125	Thr	Gly	Ser
Asn	Asn 130	Tyr	Pro	Asp	Gly	Ile 135	Gly	Gln	Met	Gln	His 140	Phe	Val	Asn	Asp
Asp 145	Gly	Met	Thr	Ile	Phe 150	Arg	Leu	Pro	Val	Gly 155	Trp	Gln	Tyr	Leu	Val 160
Asn	Asn	Asn	Leu	Gly 165	Gly	Asn	Leu	Asp	Ser 170	Thr	Ser	Ile	Ser	Lys 175	Tyr
Asp	Gln	Leu	Val 180	Gln	Gly	Cys	Leu	Ser 185	Leu	Gly	Ala	Tyr	Cys 190	Ile	Val
Asp	Ile	His 195	Asn	Tyr	Ala	Arg	Trp 200	Asn	Gly	Gly	Ile	Ile 205	Gly	Gln	Gly
Gly	Pro 210	Thr	Asn	Ala	Gln	Phe 215	Thr	Ser	Leu	Trp	Ser 220	Gln	Leu	Ala	Ser
Lys 225	Tyr	Ala	Ser	Gln	Ser 230	Arg	Val	Trp	Phe	Gly 235	Ile	Met	Asn	Glu	Pro 240
His	Asp	Val	Asn	Ile 245	Asn	Thr	Trp	Ala	Ala 250	Thr	Val	Gln	Glu	Val 255	Val
Thr	Ala	Ile	Arg 260	Asn	Ala	Gly	Ala	Thr 265	Ser	Gln	Phe	Ile	Ser 270	Leu	Pro
Gly	Asn	Asp 275	Trp	Gln	Ser	Ala	Gly 280	Ala	Phe	Ile	Ser	Asp 285	Gly	Ser	Ala
Ala	Ala 290	Leu	Ser	Gln	Val	Thr 295	Asn	Pro	Asp	Gly	Ser 300	Thr	Thr	Asn	Leu

Ile 305	Phe	Asp	Val	His	Lys 310	Tyr	Leu	Asp	Ser	Asp 315	Asn	Ser	Gly	Thr	His 320
Ala	Glu	Cys	Val	Thr 325	Asn	Asn	Ile	Asp	Ala 330	Ala	Phe	Ala	Pro	Leu 335	Ala
Thr	Trp	Leu	Arg 340	Ala	Asn	Gly	Arg	Gln 345	Ala	Ile	Leu	Ser	Glu 350	Thr	Gly
Gly	Gly	Asn 355	Thr	Ala	Ser	Cys	Gln 360	Thr	Tyr	Leu	Cys	Gln 365	Gln	Val	Ala
Tyr	L eu 370	Asn	Ala	Asn	Ser	Asp 375	Val	Tyr	Leu	Gly	Tyr 380	Ile	Gly	Trp	Ser
Ala 385	Gly	Ser	Phe	Asp	Ser 390	Thr	Tyr	Ile	Leu	Thr 395	Glu	Thr	Pro	Asn	Gly 400
Ser	Gly	Asn	Ser	Trp 405	Thr	Asp	Thr	Ser	Leu 410	Val	Ser	Ser	Cys	Leu 415	Ala
Arg	Lys														

5

<210> 5 <211> 1260 <212> ADN <213> Secuencia artificial

<220>

<223> 45A7

10

atgaacaagt	cegtggctce	attgctgctt	gcagcgtcca	tactatatgg	cggcgccgct	60
gcacagcaga	ctgtctgggg	ccagtgtgga	ggtattggtt	ggagcggacc	tacgaattgt	120
gctcctggct	cagcttgttc	gaccctcaat	ccttattatg	cgcaatgtat	teegggagee	180
actactatca	ccacttcgac	coggcoacca	tccggtccaa	ccaccaccac	cagggctacc	240
tcaacaagct	catcaactcc	acccacgage	tctggggtcc	gatttgccgg	cgttaacatc	300
gcgggttttg	actttggctg	taccacagat	ggcacttgcg	ttacctcgaa	ggtttatcct	360
ccgttgaaga	acttcaccgg	ctcaaacaac	taccccgatg	gcateggeea	gatgcagcac	420
ttcgtcaacg	acgacgggat	gactattttc	cgcttacctg	teggatggea	gtacctcgtc	480
aacaacaatt	tgggcggcaa	tcttgattcc	acgagcattt	ccaagtatga	tcagcttgtt	540
caggggtgcc	tgtctctggg	cgcatactgc	atcgtcgaca	tccacaatta	tgctcgatgg	600
aacggtggga	tcattggtca	gggcggccct	actaatgete	aattcacgag	cctttggtcg	660
cagttggcat	caaagtacgc	atctcagtcg	agggtgtggt	toggcatcat	gaatgagccc	720
cacgacgtga	acatcaacac	ctgggctgcc	acggtccaag	aggttgtaac	cgcaatccgc	780
aacgctggtg	ctacgtcgca	attcatctct	ttgcctggaa	atgattggca	atctgctggg	840
gctttcatat	ccgatggcag	tgcagccgcc	ctgtctcaag	tcacgaaccc	ggatgggtca	900
acaacgaatc	tgatttttga	cgtgcacaaa	tacttggact	cagacaactc	cggtactcac	960
gccgaatgtg	taacaaataa	cattgacgcc	gcctttgcac	cgcttgccac	ttggctccga	1020
gcaaacggac	gccaggctat	cctgacagaa	accggtggtg	gcaacaccgc	gtcctgccag	1080
acatatttgt	gccagcaagt	tgcttatctc	aacgcaaact	cagatgtcta	tcttggctat	1140
attggttggt	ctgccggatc	atttgatagc	acgtatattc	tgacggaaac	accgaatggc	1200
agtggttctt	caatgacgga	ccaagcotto	atcacaactt	otetaaetao	aacatcotao	1260

<210> 6 <211> 419 <212> PRT

<213> Secuencia artificial

<220>

<223> 45A7

10

5

Met	Asn	Lys	Ser	Val	Ala	Pro	Leu	Leu	Leu	Ala	Ala	Ser	Ile	Leu	Tyr
1				5					10					15	

- Gly Gly Ala Ala Gln Gln Thr Val Trp Gly Gln Cys Gly Gly Ile 20 25 30
- Gly Trp Ser Gly Pro Thr Asn Cys Ala Pro Gly Ser Ala Cys Ser Thr 35 40 45
- Leu Asn Pro Tyr Tyr Ala Gln Cys Ile Pro Gly Ala Thr Thr Ile Thr 50 55 60
- Thr Ser Thr Arg Pro Pro Ser Gly Pro Thr Thr Thr Thr Arg Ala Thr 65 70 75 80
- Ser Thr Ser Ser Ser Thr Pro Pro Thr Ser Ser Gly Val Arg Phe Ala 85 90 95
- Gly Val Asn Ile Ala Gly Phe Asp Phe Gly Cys Thr Thr Asp Gly Thr 100 105 110
- Cys Val Thr Ser Lys Val Tyr Pro Pro Leu Lys Asn Phe Thr Gly Ser 115 120 125

Asn	Asn 130	Tyr	Pro	Asp	Gly	Ile 135	Gly	Gln	Met	Gln	His 1 4 0	Phe	Val	Asn	Asp
Asp 145	Gly	Met	Thr	Ile	Phe 150	Arg	Leu	Pro	Val	Gly 155	Trp	Gln	Tyr	Leu	Val 160
Asn	Asn	Aşn	Leu	Gly 165	Gly	Aşn	Leu	Asp	Ser 170	Thr	Ser	Ile	Ser	Lys 175	Туг
Asp	Gln	Leu	Val 180	Gln	Gly	Cys	Leu	Ser 185	Leu	Gly	Ala	Tyr	Cys 190	Ile	Val
Asp	Ile	His 195	Aşn	Tyr	Ala	Arg	Trp 200	Aşn	Gly	Gly	Ile	11e 205	Gly	Gln	Gly
Gly	Pro 210	Thr	Aşn	Ala	Gln	Phe 215	Thr	Ser	Leu	Trp	Ser 220	Gln	Leu	Ala	Ser
Lys 225	Tyr	Ala	Ser	Gln	Ser 230	Arg	Val	Trp	Phę	Gly 235	Ile	Met	Asn	Glu	Pro 240
His	Asp	Val	Asn	Ile 245	Asn	Thr	Trp	Ala	Ala 250	Thr	Val	Gln	Glu	Val 255	Val
Thr	Ala	Ile	A rg 260	Asn	Ala	Gly	Ala	Thr 265	Ser	Gln	Phe	Ile	Ser 270	Leu	Pro
Gly	Asn	Asp 275	Trp	Gln	Ser	Ala	Gly 280	Ala	Phe	Ile	Ser	Asp 285	Gly	Ser	Ala
Ala	Ala 290	Leu	Ser	Gln	Val	Thr 295	Asn	Pro	Asp	Gly	Ser 300	Thr	Thr	Asn	Leu
Ile 305	Phe	Asp	Val	His	Lys 310	Tyr	Leu	Asp	Ser	Asp 315	Asn	Ser	Gly	Thr	His 320
Ala	G l u	Cys	Val	Thr	Asn	Asn	Ile	asp	Ala	Ala	Phe	Ala	Pro	Leu	Ala
				325					330					335	
Thr	Trp	Leu		325					330				Glu 350		
	Trp Gly		Arg 340	325	Asn	Gly	Arg	Gln 345	330	Ile	Leu	Thr	350	Thr	Gly

Ala Gly Ser Phe Asp Ser Thr Tyr Ile Leu Thr Glu Thr Pro Asn Gly 385 390 395

Ser Gly Ser Ser Met Thr Asp Gln Ala Leu Val Ala Ala Cys Leu Thr 405 410 415

Arg Thr Ser

<210>7

<211> 1257

<212> ADN

<213> Secuencia artificial

<220>

<223> 46H1

10

5

<400> 7

atgaacaagt cogtggctcc attgctgctt gcagcgtcca tactatatgg cggcgccgct 60 gcacagcaga ctgtctgggg ccagtgtgga ggtattggtt ggagcggacc tacgaattgt 120 geteetgget cagettgtte gacceteaat cettattatg egeaatgtat teegggagee 180 actactatea ceaettegae eeggeeacea teeggteeaa eeaecaceae eagggetace 240 toaacaaget catcaactec acceaegage tetggggtee gatttgeegg egttaacate 300 360 gcgggttttg actttggctg taccacagat ggcacttgcg ttacctcgaa ggtttatcct 420 ccqttgaaga acttcaccgg ctcaaacaac taccccgatg gcatcggcca gatgcagcac 480 ttegtcaacg acgacgggat gactattttc cgcttacctg tcggatggca gtacctcgtc aacaacaatt tgggcggcaa tettgattee acgagcattt ecaagtatga teagettgtt 540 caggggtgcc tgtctctggg cgcatactgc atcgtcgaca tccacaatta tgctcgatgg 600 aacggtggga tcattggtca gggcggccct actaatgctc aattcacgag cctttggtcg 660 cagttggcat caaagtacgc atctcagtcg agggtgtggt tcggcatcat gaatgagccc 720 cacgacgtga acatcaacac ctgggctgcc acggtccaag aggttgtaac cgcaatccgc 780 840 aacgctggtg ctacgtcgca attcatctct ttgcctggaa atgattggca atctgctggg gettteataa eegatggeag tgeageegee etgteteaag teaegaacee ggatgggtea 900 acaacgaatc tgatttttga cgtgcacaaa tacttggact cagacaactc cggtactcac 960 1020 geogaatgtg tgacaaataa cattgacacc geetttgcac egettgecac ttggeteega 1080 cagaacaatc gccaggctat cctgacagaa accggtggtg gcaacgttca gtcctgcata caagacatgt gccagcaaat ccaatatctc aaccagaact cagatgtcta tcttggctat 1140 gttggttggg gtgccggatc atttgatagc acgtatgtcc tgacggaaac accgactggc 1200 agtggtaact catggacgga cacatecttg gtcagetegt gtctagcaag aaagtag 1257

```
<211> 418
```

<212> PRT

<213> Secuencia artificial

5 <220>

<223> 46H1

<400>8

Met Asn Lys Ser Val Ala Pro Leu Leu Leu Ala Ala Ser Ile Leu Tyr 1 5 10 15

Gly Gly Ala Ala Ala Gln Gln Thr Val Trp Gly Gln Cys Gly Gly Ile 20 25 30

Gly Trp Ser Gly Pro Thr Asn Cys Ala Pro Gly Ser Ala Cys Ser Thr 35 40 45

Leu Asn Pro Tyr Tyr Ala Gln Cys Ile Pro Gly Ala Thr Thr Ile Thr 50 55 60

Thr Ser Thr Arg Pro Pro Ser Gly Pro Thr Thr Thr Thr Arg Ala Thr 65 70 75 80

Ser Thr Ser Ser Ser Thr Pro Pro Thr Ser Ser Gly Val Arg Phe Ala 85 90 95

Gly Val Asn Ile Ala Gly Phe Asp Phe Gly Cys Thr Thr Asp Gly Thr 100 105 110

Cys Val Thr Ser Lys Val Tyr Pro Pro Leu Lys Asn Phe Thr Gly Ser 115 120 125

Asn Asn Tyr Pro Asp Gly Ile Gly Gln Met Gln His Phe Val Asn Asp 130 135 140

Asp Gly Met Thr Ile Phe Arg Leu Pro Val Gly Trp Gln Tyr Leu Val 145 150 155 160

Asn Asn Asn Leu Gly Gly Asn Leu Asp Ser Thr Ser Ile Ser Lys Tyr 165 170 175

Asp Gln Leu Val Gln Gly Cys Leu Ser Leu Gly Ala Tyr Cys Ile Val 180 185 190

Asp Ile His Asn Tyr Ala Arg Trp Asn Gly Gly Ile Ile Gly Gln Gly 195 200 205

•	Gly	Pro 210	Thr	Asn	Ala	Gln	Phe 215	Thr	Ser	Leu	Trp	Ser 220	Gln	Leu	Ala	Ser
	Lys 225	Tyr	Ala	Ser	Gln	Ser 230	Arg	Val	Trp	Phe	Gly 235	Ile	Met	Aşn	Glu	Pro 240
;	His	Asp	Val	Asn	Ile 245	Asn	Thr	Trp	Ala	Ala 250	Thr	Val	G l n	Glu	Val 255	Val
1	Thr	Ala	Ile	Arg 260	Asn	Ala	Gly	Ala	Thr 265	Ser	Gln	Phe	Ile	Ser 270	Leu	Pro
,	Gly	Asn	Asp 275	Trp	Gln	Ser	Ala	Gly 280	Ala	Phe	Ile	Thr	Asp 285	Gly	Ser	Ala
;	Ala	Ala 290	Leu	Ser	Gln	Val	Thr 295	Asn	Pro	Asp	Gly	Ser 300	Thr	Thr	Asn	Leu
	Ile 305	Phe	Asp	Val	His	Lys 310	Tyr	Leu	Asp	Ser	Asp 315	Asn	Ser	Gly	Thr	His 320
	Ala	Glu	Cys	Val	Thr 325	Asn	Asn	Ilę	Asp	Thr 330	Ala	Phe	Ala	Pro	Leu 335	Ala
ı	Thr	Trp	Leu	Arg 340	Gln	Asn	Asn	Arg	Gln 345	Ala	Ile	Leu	Thr	Glu 350	Thr	Gly
•	Gly	Gly	Asn 355	Val	Gln	Ser	Cys	I1 e 360	Gln	Asp	Met	Cys	G1n 365	Gln	Ilę	Gln
ı	Tyr	Leu 370	Asn	Gln	Asn	Ser	Asp 375	Val	Tyr	Leu	Gly	Туг 380	Val	Gly	Trp	Gly
	Ala 385	Gly	Ser	Phe	Asp	Ser 390	Thr	Tyr	Val	Leu	Thr 395	Glu	Thr	Pro	Thr	Gly 400
ı	Ser	Gly	Asn	Ser	Trp 405	Thr	Asp	Thr	Ser	Leu 410	Val	Ser	Ser	Cys	Leu 415	Ala
	Arg	Lys														
<210> 9 <211> 12	257															

10

5

<220> <223> 50F10

<212> ADN

<213> Secuencia artificial

<400> 9

60	cggcgccgct	tactatatgg	gcagcgtcca	attgctgctt	ccgtggctcc	atgaacaagt
120	tacgaattgt	ggagcggacc	ggtattggtt	ccagtgtgga	ctgtctgggg	gcacagcaga
180	tccgggagcc	cgcaatgtat	ccttattatg	gaccctcaat	cagcttgttc	gatactggat
240	cagggctacc	ccaccaccac	teeggteeaa	ccggccacca	ccacttcgac	actactatca
300	cgttaacatc	gatttgccgg	totggggtco	acccacgage	catcaactcc	tcaacaagct
360	ggtttatcct	ttacctcgaa	ggcacttgcg	taccacagat	actttggctg	gcgggttttg
420	gatgcagcac	gcatcggcca	taccccgatg	ctcaaacaac	acttcaccgg	ccgttgaaga
480	gtacctcgtc	teggatggea	cgcttacctg	gactattttc	acgacgggat	ttcgtcaacg
540	tcagcttgtt	ccaagtatga	acgagcattt	tettgattee	tgggcggcaa	aacaacaatt
600	tgctcgatgg	tccacaatta	atcgtcgaca	cgcatactgc	tgtctctggg	caggggtgcc
660	cctttggtcg	aattcacgag	actaatgctc	gggcggccct	tcattggtca	aacggtggga
720	gaatgagccc	teggeateat	agggtgtggt	atctcagtcg	caaagtacgc	cagttggcat
780	cgcaatccgc	aggttgtaac	acggtccaag	ctgggctgcc	acatcaacac	cacgacgtga
840	atctgctggg	atgattggca	ttgcctggaa	attcatctct	ctacgtcgca	aacgctggtg
900	ggatgggtca	tcacgaaccc	ctgtctcaag	tgcagccgcc	ccgatggcag	gctttcatat
960	cggtactcac	cagacaactc	tacttggact	cgtgcacaaa	tgatttttga	acaacgaatc
1020	ttggctccga	cgcttgccac	gccttttctc	cattgacggc	ctacaaataa	gccgaatgta
1080	gtcctgccag	gcaacgttca	accggtggtg	cctgacagaa	gccaggctat	cagaacaatc
1140	tcttggctat	cagatgtcta	aacgcaaact	tgcttatctc	gccagcaagt	acatatttgt
1200	accgactggc	tgacggaaac	acgtatgtcc	atttgatagc	ctgccggatc	attggttggt
1257	aaagtag	gtctagcaag	gtcagctcgt	cacatccttg	catggacgga	agtggtaact

5 <210> 10

<211> 418

<212> PRT

<213> Secuencia artificial

10 <220>

<223> 50F10

<400> 10

Met Asn Lys Ser Val Ala Pro Leu Leu Leu Ala Ala Ser Ile Leu Tyr 1 5 10 15

Gly Gly Ala Ala Gln Gln Thr Val Trp Gly Gln Cys Gly Gly Ile 20 25 30

15

Gly	Trp	Ser 35	Gly	Pro	Thr	Asn	Cys 40	Ala	Pro	Gly	Ser	Ala 45	Cys	Ser	Thr
Leu	Asn 50	Pro	Tyr	Tyr	Ala	G l n 55	Cys	Ile	Pro	Gly	Ala 60	Thr	Thr	Ile	Thr
Thr 65	Ser	Thr	Arg	Pro	Pro 70	Ser	Gly	Pro	Thr	Thr 75	Thr	Thr	Arg	Ala	Thr 80
Ser	Thr	Ser	Ser	Ser 85	Thr	Pro	Pro	Thr	Ser 90	Ser	Gly	Val	Arg	Phe 95	Ala
Gly	Val	Asn	Ile 100	Ala	Gly	Phe	Asp	Phe 105	Gly	Cys	Thr	Thr	Asp 110	Gly	Thr
Суз	Val	Thr 115	Ser	Lys	Val	Tyr	Pro 120	Pro	Leu	Lys	Asn	Phe 125	Thr	Gly	Ser
Asn	Asn 1 30	Tyr	Pro	Asp	Gly	11e 135	Gly	Gln	Met	Gln	His 140	Phe	Val	Asn	Asp
Asp 145	Gly	Met	Thr	Ile	Phe 150	Arg	Leu	Pro	Val	Gly 15 5	Trp	Gln	Tyr	Leu	V al
Asn	Asn	Asn	Leu	Gly 165	Gly	Asn	Leu	Asp	Ser 170	Thr	Ser	Ile	Ser	Lys 175	Tyr
Asp	Gln	Leu	Val 180	Gln	Gly	Cys	Leu	Ser 185	Leu	Gly	Ala	Tyr	Cys 190	Il€	Val
Asp	Ile	His 195		Tyr	Ala	Arg	Trp 200		Gly	Gly	Ile	Ile 205	_	Gln	Gly
Gly	Pro 210	Thr	Asn	Ala	Gln	Phe 215	Thr	Ser	Leu	Trp	Ser 220	Gln	Leu	Ala	Ser
Lys 225	Tyr	Ala	Ser	Gln	Ser 230	Arg	Val	Trp	Phe	Gly 235	Ile	Met	Asn	Glu	Pro 240
His	Asp	Val	Asn	Ile 245	Asn	Thr	Trp	Ala	Ala 250	Thr	Val	Gln	Glu	Val 255	Val
Thr	Ala	Ile	Arg 260	Asn	Ala	Gly	Ala	Thr 265	Ser	Gln	Phe	Ile	Ser 270	Leu	Pro
Gly	Asn	Asp 275	Trp	Gln	Ser	Ala	Gly 280	Ala	Phe	Ile	Ser	Asp 285	Gly	Ser	Ala

Ala	Ala 290	Leu	Ser	Gln	Val	Thr 295	Asn	Pro	Asp	Gly	Ser 300	Thr	Thr	Asn	Leu
11 e 305	Phe	Asp	Val	His	Lys 310	Tyr	Leu	Asp	Ser	Asp 315	Asn	Ser	Gly	Thr	His 320
Ala	Glu	Cys	Thr	Thr 325	Asn	Asn	Ile	Asp	Gly 330	Ala	Phe	Ser	Pro	Leu 335	Ala
Thr	Trp	Leu	Arg 340	Gln	Asn	Asn	Arg	Gln 345	Ala	Ile	Leu	Thr	Glu 350	Thr	Gly
Gly	Gly	Asn 355	Val	Gln	Ser	Cys	Gln 360	Thr	Tyr	Leu	Cys	Gln 365	Gln	Val	Ala
Tyr	Leu 370	Asn	Ala	Asn	Ser	Asp 375	Val	Tyr	Leu	Gly	Tyr 380	Ile	Gly	Trp	Ser
Ala 385	Gly	Ser	Phe	Asp	Ser 390	Thr	Tyr	Val	Leu	Thr 395	Glu	Thr	Pro	Thr	Gly 400
Ser	Gly	Asn	Ser	Trp 405	Thr	Asp	Thr	Ser	Leu 410	Val	Ser	Ser	Cys	Leu 415	Ala
Ara	Lvs														

Arg Lys

<210> 11 <211> 1257

<212> ADN 5

<213> Secuencia artificial

<220>

<223> 108G5

10

atgaacaagt	ccgtggctcc	attgctgctt	gcagcgtcca	tactatatgg	cggcgccgct	60
gcacagcaga	ctgtctgggg	ccagtgtgga	ggtattggtt	ggagcggacc	tacgaattgt	120
gctcctggct	cagcttgttc	gaccctcaat	ccttattatg	cgcaatgtat	teegggagee	180
actactatca	ccacttcgac	ccggccacca	teeggteeaa	ccaccaccac	cagggctacc	240
tcaacaagct	catcaactcc	acccacgage	tctggggtcc	gatttgccgg	cgttaacatc	300
gcgggttttg	actttggctg	taccacagat	ggcacttgcg	ttacctcgaa	ggtttatcct	360
ccgttgaaga	acttcaccgg	ctcaaacaac	taccccgatg	gcatcggcca	gatgcagcac	420
ttcgtcaacg	acgacgggat	gactattttc	cgcttacctg	tcggatggca	gtacctcgtc	480
aacaacaatt	tgggcggcaa	tcttgattcc	acgagcattt	ccaagtatga	tcagcttgtt	540
caggggtgcc	tgtctctggg	cgcatactgc	atcgtcgaca	tccacaatta	tgctcgatgg	600
aacggtggga	tcattggtca	gggcggccct	actaatgctc	aattcacgag	cctttggtcg	660
cagttggcat	caaagtacgc	atctcagtcg	agggtgtggt	tcggcatcat	gaatgagccc	720
cacgacgtga	acatcaacac	ctgggctgcc	acggtccaag	aggttgtaac	cgcaatccgc	780
aacgctggtg	ctacgtcgca	attcatctct	ttgcctggaa	atgattggca	atctgctggg	840
gctttcatat	ccgatggcag	tgcagccgcc	ctgtctcaag	tcacgaaccc	ggatgggtca	900
acaacgaatc	tgatttttga	cgtgcacaaa	tacttggact	cagacaactc	cggtactcac	960
gccgaatgta	ctacaaataa	cattgacggc	gccttttctc	cgcttgccac	ttggctccga	1020
gcaaacggtc	gccaggctat	cctgacagaa	accggtggtg	gcaacgttca	gtcctgcata	1080
caagacatgt	gccagcaaat	ccaatatctc	aaccagaact	cagatgtcta	tcttggctat	1140
gttggttggg	gtgccggatc	atttgatagc	acgtatgtcc	tgacggaaac	accgactggc	1200
agtggtaact	catggacgga	cacatccttg	gtcagctcgt	gtctagcaag	aaagtag	1257

<210> 12

<211> 418

<212> PRT <213> Secuencia artificial

<220>

<223> 108G5

10

5

Met	Asn	Lys	Ser	Val	Ala	Pro	Lęu	Lęu	Lęu	Ala	Ala	Ser	Ile	Leu	Tyr
1				5					10					15	

- Gly Gly Ala Ala Gln Gln Thr Val Trp Gly Gln Cys Gly Gly Ile 20 25 30
- Gly Trp Ser Gly Pro Thr Asn Cys Ala Pro Gly Ser Ala Cys Ser Thr 35 40 45
- Leu Asn Pro Tyr Tyr Ala Gln Cys Ile Pro Gly Ala Thr Thr Ile Thr 50 55 60
- Thr Ser Thr Arg Pro Pro Ser Gly Pro Thr Thr Thr Thr Arg Ala Thr 65 70 75 80
- Ser Thr Ser Ser Ser Thr Pro Pro Thr Ser Ser Gly Val Arg Phe Ala 85 90 95
- Gly Val Asn Ile Ala Gly Phe Asp Phe Gly Cys Thr Thr Asp Gly Thr 100 105 110

Cys	Val	Thr 115	Ser	Lys	Val	Tyr	Pro 120	Pro	Leu	Lys	Asn	Phe 125	Thr	Gly	Ser
Aşn	Asn 130	Tyr	Pro	Asp	Gly	Ile 135	Gly	Gln	Met	Gln	His 140	Phe	Val	Asn	Asp
Asp 145	Gly	Met	Thr	Ile	Phe 150	Arg	Leu	Pro	Val	Gly 155	Trp	Gln	Tyr	Leu	Val 160
Asn	Asn	Asn	Leu	Gly 165	Gly	Aşn	Leu	Asp	Ser 170	Thr	Ser	Ile	Ser	Lys 175	Tyr
Asp	Gln	Leu	Val 180	Gl n	Gly	Cys	Leu	Ser 185	Leu	Gly	Ala	Tyr	Cys 190	Ile	Val
Asp	Ile	His 195	Aşn	Туг	Ala	Arg	Trp 200	Aşn	Gly	Gly	Ile	I1e 205	Gly	G1n	Gly
Gly	Pro 210	Thr	Asn	Ala	Gln	Phe 215	Thr	Ser	Leu	Trp	Ser 220	Gln	Leu	Ala	Ser
Lys 225	Tyr	Ala	Ser	Gln	Ser 230	Arg	Val	Trp	Phe	Gly 235	Ile	Met	Aşn	G1u	Pro 240
His	Asp	Val	Aşn	Ile 245	Aşn	Thr	Trp	Ala	Ala 250	Thr	Val	Gln	Glu	Val 255	Val
Thr	Ala	Ile	Arg 260	Asn	Ala	Gly	Ala	Thr 265	Ser	Gln	Phe	Ile	Ser 270	Leu	Pro
Gly	Asn	Asp 275	Trp	Gln	Ser	Ala	Gly 280	Ala	Phe	Ile	Ser	As p 285	Gly	Ser	Ala
Ala	Ala 290	Leu	Ser	Gln	Val	Thr 295	Asn	Pro	Asp	Gly	Ser 300	Thr	Thr	Asn	Leu
Ile 305	Phe	Asp	Val	His	Lys 310	Tyr	Leu	Asp	Ser	Asp 315	Asn	Ser	Gly	Thr	His 320
Ala	Glu	Cys	Thr	Thr 325	Asn	Asn	Ile	Asp	Gly 330	Ala	Phe	Ser	Pro	Leu 335	Ala
Thr	Trp	Leu	Arg 340	Ala	Asn	Gly	Arg	Gln 345	Ala	Ile	Leu	Thr	Glu 350	Thr	Gly
Gly	Gly	Asn 355	Val	Gl n	Ser	Cys	Ile 360	Gln	Asp	Met	Cys	G1n 365	Gln	Ile	Gln

Tyr Leu Asn Gln Asn Ser Asp Val Tyr Leu Gly Tyr Val Gly Trp Gly 370 375 380

Ala Gly Ser Phe Asp Ser Thr Tyr Val Leu Thr Glu Thr Pro Thr Gly 385 390 395 400

Ser Gly Asn Ser Trp Thr Asp Thr Ser Leu Val Ser Ser Cys Leu Ala 405 410 415

Arg Lys

<210> 13

<211> 1257

<212> ADN

<213> Secuencia artificial

<220>

<223> 140F7

10

5

atgaacaagt ccgtggctcc	attgctgctt	gcagcgtcca	tactatatgg	cggcgccgct	60
gcacagcaga ctgtctgggg	ccagtgtgga	ggtattggtt	ggagcggacc	tacgaattgt	120
gctcctggct cagcttgttc	gaccctcaat	ccttattatg	cgcaatgtat	teegggagee	180
actactatca ccacttcgac	ccggccacca	teeggteeaa	ccaccaccac	cagggetace	240
tcaacaaget catcaacte	acccacgage	tetggggtee	gatttgccgg	cgttaacatc	300
gegggttttg actttggetg	taccacagat	ggcacttgcg	ttacctcgaa	ggtttatcct	360
ccgttgaaga acttcaccgg	ctcaaacaac	taccccgatg	gcatcggcca	gatgcagcac	420
ttcgtcaacg acgacgggat	gactattttc	cgcttacctg	teggatggea	gtacctcgtc	480
aacaacgttt tgggcggcac	acttgattcc	aacaatttcg	caacctatga	ttcacttgtt	540
caggggtgcc tggcaacagg	cgcaagttgc	atcattgaca	tccacaatta	tgctcgatgg	600
aacggtggga tcattggtca	gggcggccct	actaatgctc	aattcacgag	cctttggtcg	660
cagttggcat caaagtacgc	atctcagtcg	agggtgtggt	teggeateat	gaatgagccc	720
cacgacgtga acatcaacac	: ctgggctgcc	acggtccaag	aggttgtaac	cgcaatccgc	780
aacgctggtg ctacgtcgca	attcatctct	ttgcctggaa	atgattggca	atctgctggg	840
gctttcatat ccgatggcac	tgcagccgcc	ctgtctcaag	tcacgaaccc	ggatgggtca	900
acaacgaatc tgatttttga	cgtgcacaaa	tacttggact	cagacaactc	cggtactcac	960
gccgaatgta ctacaaataa	cattgacggc	gccttttctc	cgcttgccac	ttggctccga	1020
cagaacaatc gccaggctat	cctgacagaa	accggtggtg	gcaacgttca	gtcctgcata	1080

caagacatgt gccagcaaat ccaatatctc aaccagaact cagatgtcta tcttggctat

1140

	gttggttggg	gtgccggatc	atttgatagc	acgtatgtcc	tgacggaaac	accgactggc	1200
	agtggtaact	catggacgga	cacatccttg	gtcagctcgt	gtctagcaag	aaagtag	1257
5	<210> 14 <211> 418 <212> PRT <213> Secuencia	ı artificial					
10	<220> <223> 140F7						
	<400> 14						

Met 1	Asn	Lys	Ser	Val 5	Ala	Pro	Leu	Leu	Leu 10	Ala	Ala	Ser	Ile	Leu 15	Tyr
Gly	Gly	Ala	Ala 20	Ala	Gln	Gln	Thr	Val 25	Trp	Gly	Gln	Cys	Gly 30	Gly	Ile
Gly	Trp	Ser 35	Gly	Pro	Thr	Asn	Cys 40	Ala	Pro	Gly	Ser	Ala 45	Cys	Ser	Thr
Leu	Asn 50	Pro	Tyr	Tyr	Ala	Gln 55	Cys	Ile	Pro	Gly	Ala 60	Thr	Thr	Ile	Thr
Thr 65	Ser	Thr	Arg	Pro	Pro 70	Ser	Gly	Pro	Thr	Thr 75	Thr	Thr	Arg	Ala	Thr 80
Ser	Thr	Ser	Ser	Ser 85	Thr	Pro	Pro	Thr	Ser 90	Ser	Gly	Val	Arg	Phe 95	Ala
Gly	Val	Asn	Ile 100	Ala	Gly	Phe	Asp	Phe 105	Gly	Cys	Thr	Thr	Asp 110	Gly	Thr
Cys	Val	Thr 115	Ser	Lys	Val	Tyr	Pro 120	Pro	Leu	Lys	Asn	Phe 125	Thr	Gly	Ser
Asn	Asn 130	Tyr	Pro	Asp	Gly	Ile 135	Gly	Gln	Met	Gln	His 140	Phe	Val	Asn	Asp
Asp 145	Gly	Met	Thr	Ile	Phe 150	Arg	Leu	Pro	Val	Gly 155	Trp	Gln	Tyr	Leu	Val 160
Asn	Asn	Val	Leu	Gly 165	Gly	Thr	Leu	Asp	Ser 170	Asn	Asn	Phe	Ala	Thr 175	Tyr
Asp	Ser		Val		Gly	Cys		Ala		Gly	Ala		Cys	Ile	Ile

Asp	Ile	His 195	Asn	Tyr	Ala	Arg	Trp 200	Asn	Gly	Gly	Ile	Ile 205	Gly	Gln	Gly
Gly	Pro 210	Thr	Asn	Ala	Gln	Phe 215	Thr	Ser	Leu	Trp	Ser 220	Gln	Leu	Ala	Ser
Lys 225	Tyr	Ala	Ser	Gln	Ser 230	Arg	Val	Trp	Phe	Gly 235	Ile	Met	Asn	Glu	Pro 240
His	Asp	Val	Asn	Ile 245	Asn	Thr	Trp	Ala	Ala 250	Thr	Val	Gln	Glu	Val 255	Val
Thr	Ala	Ile	Arg 260	Asn	Ala	Gly	Ala	Thr 265	Ser	Gln	Phe	Ile	Ser 270	Leu	Pro
Gly	Asn	Asp 275	Trp	Gln	Ser	Ala	Gly 280	Ala	Phe	Ile	Ser	Asp 285	Gly	Ser	Ala
Ala	Ala 290	Leu	Ser	Gln	Val	Thr 295	Asn	Pro	Asp	Gly	Ser 300	Thr	Thr	Asn	Leu
Ile 305	Phe	Asp	Val	His	Lys 310	Tyr	Leu	Asp	Ser	Asp 315	Asn	Ser	Gly	Thr	His 320
Ala	Glu	Cys	Thr	Thr 325	Asn	Asn	Ile	Asp	Gly 330	Ala	Phe	Ser	Pro	Leu 335	Ala
Thr	Trp	Leu	Arg 340	Gln	Asn	Asn	Arg	Gln 3 4 5	Ala	Ile	Leu	Thr	Glu 350	Thr	Gly
Gly	Gly	Asn 355	Val	Gln	Ser	Cys	11e 360	Gln	Asp	Met	Cys	Gln 365	Gln	Ile	Gln
Tyr	Leu 370	Asn	Gln	Asn	Ser	Asp 375	Val	Tyr	Leu	Gly	Tyr 380	Val	Gly	Trp	Gly
Ala 385	Gly	Ser	Phe	Asp	Ser 390	Thr	Tyr	Val	Leu	Thr 395	Glu	Thr	Pro	Thr	Gly 400
Ser	Gly	Asn	Ser	Trp 405	Thr	Asp	Thr	Ser	Leu 410	Val	Ser	Ser	Cys	Leu 415	Ala
Arg	Lys														

<210> 15 <211> 1257 <212> ADN

<213> Secuencia artificial
<220>
<223> 146C4
<400> 15

5

atgaacaagt ccgtggctcc attgctgctt gcagcgtcca tactatatgg cggcgccgct 60 gcacagcaga ctgtctgggg ccagtgtgga ggtattggtt ggagcggacc tacgaattgt 120 gctcctggct cagcttgttc gaccctcaat ccttattatg cgcaatgtat tccgggagcc 180 actactatea ceaettegae eeggeeacea teeggteeaa eeaceaceae eagggetace 240 300 tcaacaagct catcaactcc acccacgagc tctggggtcc gatttgccgg cgttaacatc gegggttttg actttggetg taccacagat ggeacttgeg ttacctegaa ggtttatect 360 cogttgaaga acttcaccgg ctcaaacaac taccccgatg gcatcggcca gatgcagcac 420 ttcgtcaacg acgacgggat gactattttc cgcttacctg tcggatggca gtacctcgtc 480 aacaacaatt tgggcggcaa tcttgattcc acgagcattt ccaagtatga tcagcttgtt 540 600 caggggtgcc tgtctctggg cgcatactgc atcgtcgaca tccacaatta tgctcgatgg aacggtggga tcattggtca gggcggccct actaatgctc aattcacgag cctttggtcg 660 cagttggcat caaagtacgc atctcagtcg agggtgtggt tcggcatcat gaatgagccc 720 cacqacqtqa acatcaacac ctqqqctqcc acqqtccaaq aqqttqtaac cqcaatccqc 780 aacgetggtg ctacgtcgca atteatetet ttgcctggaa atgattggca atetgctggg 840 900 gctttcatat ccgatggcag tgcagccgcc ctgtctaaag tcacgaaccc ggatgggaca 960 atcacgaatc tgatttttga cgtgcacaaa tacttggact cagacaactc cggtactaat cttgaatgtg tgacaaataa cattgacggc gccttttctc cgcttgccac ttggctccga 1020 cagaacaatc gccaggctat cctgacagaa accggtggtg gcaacgttca gtcctgcata 1080 caagacatgt gccagcaaat ccaatatctc aaccagaact cagatgtcta tcttggctat 1140 gttggttggg gtgccggatc atttgatagc acgtatgtcc tgacggaaac accgactggc 1200 1257 agtggtaact catggacgga cacatcettg gtcagetegt gtctagcaag aaagtag

10 <210> 16 <211> 418 <212> PRT <213> Secuencia artificial 15 <220> <223> 146C4 <400> 16

Gly	Gly	Ala	Ala 20	Ala	Gln	Gln	Thr	Val 25	Trp	Gly	Gln	Cys	Gly 30	Gly	Ile
Gly	Trp	Ser 35	Gly	Pro	Thr	Asn	Cys 40	Ala	Pro	Gly	Ser	Ala 45	Cys	Ser	Thr
Leu	Asn 50	Pro	Tyr	Tyr	Ala	Gln 55	Суз	Ile	Pro	Gly	Ala 60	Thr	Thr	Ile	Thr
Thr 65	Ser	Thr	Arg	Pro	Pro 70	Ser	Gly	Pro	Thr	Thr 75	Thr	Thr	Arg	Ala	Thr 80
Ser	Thr	Ser	Ser	Ser 85	Thr	Pro	Pro	Thr	Ser 90	Ser	Gly	Val	Arg	Phe 95	Ala
Gly	Val	Asn	Ile 100	Ala	Gly	Phe	Asp	Phe 105	Gly	Суз	Thr	Thr	Asp 110	Gly	Thr
Cys	Val	Thr 115	Ser	Lys	Val	Tyr	Pro 120	Pro	Leu	Lys	Asn	Phe 125	Thr	Gly	Ser
Asn	Asn 130	Tyr	Pro	Asp	Gly	Ile 135	Gly	Gln	Met	Gln	His 140	Phe	Val	Asn	Asp
Asp 145	Gly	Met	Thr	Ile	Phe 150	Arg	Leu	Pro	Val	Gly 155	Trp	Gln	Tyr	Leu	Val 160
Asn	Asn	Asn	Leu	Gly 165	Gly	Asn	Leu	Asp	Ser 170	Thr	Ser	Ile	Ser	Lys 175	Tyr
Asp	Gln		Val 180		Gly	Cys		Ser 185		Gly	Ala	_	Cys 190		Val
Asp	Ile	His 195	Asn	Tyr	Ala	Arg	Trp 200	Asn	Gly	Gly	Ile	Ile 205	Gly	Gln	Gly
Gly	Pro 210	Thr	Asn	Ala	Gln	Phe 215	Thr	Ser	Leu	Trp	Ser 220	Gln	Leu	Ala	Ser
Lys 225	Tyr	Ala	Ser	Gln	Ser 230	Arg	Val	Trp	Phe	Gly 235	Ile	Met	Asn	Glu	Pro 240
His	Asp	Val	Asn	11e 245	Asn	Thr	Trp	Ala	Ala 250	Thr	Val	Gln	Glu	Val 255	Val
Thr	Ala	Ile	Arg	Asn	Ala	Gly	Ala	Thr	Ser	Gln	Phe	Ile	Ser	Leu	Pro

			260					265					270		
Gly	Asn	Asp 275	Trp	Gln	Ser	Ala	Gly 280	Ala	Phe	Ile	Ser	Asp 285	Gly	Ser	Ala
Ala	Ala 290	Leu	Ser	Lys	Val	Thr 295	Asn	Pro	Asp	Gly	Thr 300	Ile	Thr	Asn	Leu
Ile 305	Phe	Asp	Val	His	Lys 310	Tyr	Leu	Asp	Ser	Asp 315	Asn	Ser	Gly	Thr	Asn 320
Leu	Glu	Cys	Val	Thr 325	Asn	Asn	Ile	Asp	Gly 330	Ala	Phe	Ser	Pro	Leu 335	Ala
Thr	Trp	Leu	Arg 340	Gln	Aşn	Aşn	Arg	Gln 345	Ala	Ile	Leu	Thr	Glu 350	Thr	Gly
Gly	Gly	Asn 355	Val	Gln	Ser	Cys	Ile 360	Gln	Asp	Met	Cys	Gln 365	Gln	Ile	Gln
Tyr	Leu 370	Asn	Gln	Asn	Ser	Asp 375	Val	Tyr	Leu	Gly	Tyr 380	Val	Gly	Trp	Gly
Ala 385	Gly	Ser	Phe	Asp	Ser 390	Thr	Tyr	Val	Leu	Thr 395	Glu	Thr	Pro	Thr	Gly 400
Ser	Gly	Asn	Ser	Trp 405	Thr	Asp	Thr	Ser	Leu 410	Val	Ser	Ser	Cys	Leu 415	Ala
Arg	Lys														
<210> 17 <211> 1257 <212> ADN <213> Secuer	ncia ar	tificial													
<220> <223> 149E4															
<400> 17															

atgaacaagt	ccgtggctcc	attgctgctt	gcagcgtcca	tactatatgg	cggcgccgct	60
gcacagcaga	ctgtctgggg	ccagtgtgga	ggtattggtt	ggageggaee	tacgaattgt	120
gctcctggct	cagettgtte	gaccctcaat	ccttattatg	cgcaatgtat	teegggagee	180
actactatca	ccacttcgac	ccggccacca	tccggtccaa	ccaccaccac	cagggetace	240
tcaacaagct	catcaactcc	acccacgage	tctggggtcc	gatttgccgg	cgttaacatc	300
gcgggttttg	actttggctg	taccacagat	ggcacttgcg	ttacctcgaa	ggtttatcct	360
ccgttgaaga	acttcaccgg	ctcaaacaac	taccccgatg	gcatcggcca	gatgtcccac	420
ttcgtcaacg	acgacgggat	gactattttc	cgcttacctg	tcggatggca	gtacctcgtc	480
aacaacaatt	tgggcggcaa	tottgattcc	acgagcattt	ccaagtatga	tcagcttgtt	540
caggggtgcc	tgtetetggg	cgcatactgc	atcgtcgaca	tccacaatta	tgctcgatgg	600
aacggtggga	tcattggtca	gggcggccct	actaatgctc	aattcacgag	cctttggtcg	660
cagttggcat	caaagtacgc	atctcagtcg	agggtgtggt	tcggcatcat	gaatgagccc	720
cacgacgtga	acatcaacac	ctgggctgcc	acggtccaag	aggttgtaac	cgcaatccgc	780
aacgctggtg	ctacgtcgca	attcatctct	ttgcctggaa	atgattggca	atctgctggg	840
gctttcatat	ccgatggcag	tgcagccgcc	ctgtctcaag	tcacgaaccc	ggatgggtca	900
acaacgaatc	tgatttttga	cgtgcacaaa	tacttggact	cagacaactc	cggtactcac	960
gccgaatgtg	taacaaataa	cattgacgcc	gcctttgcac	cgcttgccac	ttggctccga	1020
gcaaacggtc	gccaggctat	cctgagcgaa	accggtggtg	gcaacaccgc	gtcctgccag	1080
acatatttgt	gccagcaagt	tgcttatctc	aacgcaaact	cagatgtcta	tcttggctat	1140
attggttggt	ctgccggatc	atttgatagc	acgtatgtcc	tgacggaaac	accgactggc	1200
agtggtaact	catggacgga	cacatccttg	gtcagctcgt	gtctagcaag	aaagtag	1257

<210> 18

<211> 418 <212> PRT

<213> Secuencia artificial

<220>

<223> 149E4

10

5

Met	Asn	Lys	Şer	Val	Ala	Pro	Leu	Leu	Leu	Ala	Ala	Ser	Il∉	Leu	Tyr
1				5					10					15	

Gly Gly Ala Ala Gln Gln Thr Val Trp Gly Gln Cys Gly Gly Ile 20 25 30

Gly Trp Ser Gly Pro Thr Asn Cys Ala Pro Gly Ser Ala Cys Ser Thr 35 40 45

Leu Asn Pro Tyr Tyr Ala Gln Cys Ile Pro Gly Ala Thr Thr Ile Thr 50 60

Thr Ser Thr Arg Pro Pro Ser Gly Pro Thr Thr Thr Thr Arg Ala Thr 65 70 75 80

Ser Thr Ser Ser Ser Thr Pro Pro Thr Ser Ser Gly Val Arg Phe Ala

				85					90					95	
Gly	Val	Asn	Ile 100	Ala	Gly	Phe	Asp	Phe 105	Gly	Cys	Thr	Thr	Asp 110	Gly	Thr
Cys	Val	Thr 115	Ser	Lys	Val	Tyr	Pro 120	Pro	Leu	Lys	Asn	Phe 125	Thr	Gly	Ser
Asn	Asn 130	Tyr	Pro	Asp	Gly	Ile 135	Gly	Gln	Met	Ser	His 140	Phe	Val	Asn	Asp
Asp 145	Gly	Met	Thr	Ile	Phe 150	Arg	Leu	Pro	Val	G ly 155	Trp	Gl n	Tyr	Leu	Val 160
Asn	Asn	Asn	Leu	Gly 165	Gly	Asn	Leu	Asp	Ser 170	Thr	Ser	Ile	Ser	Lys 175	Tyr
Asp	Gln	Leu	Val 180	Gln	Gly	Cys	Leu	Ser 185	Leu	Gly	Ala	Tyr	Cys 190	Ile	Val
Asp	Ile	His 195	Asn	Tyr	Ala	Arg	Trp 200	Asn	Gly	Gly	Ile	11e 205	Gly	Gln	Gly
Gly	Pro 210	Thr	Asn	Ala	Gln	Phe 215	Thr	Ser	Leu	Trp	Ser 220	Gln	Leu	Ala	Ser
Lys 225	Tyr	Ala	Ser	Gln	Ser 230	Arg	Val	Trp	Phe	Gly 235	Ile	Met	Asn	Glu	Pro 240
His	Asp	Val	Asn	11e 2 4 5	Asn	Thr	Trp	Ala	Ala 250	Thr	Val	Gln	Glu	Val 255	Val
			260		Ala	_		265					270		
		275			Ser		280					285			
	290				Val	295					300				
305					1ys 310					315					320
Ala	Glu	Суз	val	Thr 325	Asn	Aşn	Ile	Asp	Ala 330	Ala	Phe	Ala	Pro	Leu 335	Ala

Thr	Trp	Leu	Arg 340	Ala	Asn	Gly	Arg	Gln 345	Ala	Ile	Leu	Ser	Glu 350	Thr	Gly
Gly	Gly	Asn 355	Thr	Ala	Ser	Cys	Gl n 360	Thr	Tyr	Leu	Cys	Gln 365	Gl n	Val	Ala
Tyr	Leu 370	Asn	Ala	Asn	Ser	Asp 375	Val	Tyr	Leu	Gly	Tyr 380	Ile	Gly	Trp	Ser
Ala 385	Gly	Ser	Phe	Asp	Ser 390	Thr	Tyr	Val	Leu	Thr 395	Glu	Thr	Pro	Thr	Gly 400
Ser	Gly	Asn	Ser	Trp 405	Thr	Asp	Thr	Ser	Leu 410	Val	Ser	Ser	Cys	Leu 415	Ala

Arg Lys

<210> 19

<211> 1257 <212> ADN

5

<213> Secuencia artificial

<220>

<223> 173C6

10

atgaacaagt	cegtggetee	attgctgctt	gcagcgtcca	tactatatgg	cggcgccgct	60
gcacagcaga	ctgtctgggg	ccagtgtgga	ggtattggtt	ggageggaee	tacgaattgt	120
gctcctggct	cagcttgttc	gaccctcaat	ccttattatg	cgcaatgtat	tccgggagcc	180
actactatca	ccacttcgac	ccggccacca	tccggtccaa	ccaccaccac	cagggctacc	240
tcaacaagct	catcaactcc	acccacgage	tctggggtcc	gatttgccgg	cgttaacatc	300
gcgggttttg	actttggctg	taccacagat	ggcacttgcg	ttacctcgaa	ggtttatcct	360
ccgttgaaga	acttcaccgg	ctcaaacaac	taccccgatg	gcatcggcca	gatgcagcac	420
ttcgtcaacg	acgacgggat	gactattttc	cgcttacctg	tcggatggca	gtacctcgtc	480
aacaacaatt	tgggcggcaa	tottgattco	acgagcattt	ccaagtatga	tcagcttgtt	540
caggggtgcc	tgtctctggg	cgcatactgc	atogtogaca	tccacaatta	tgctcgatgg	600
aacggtggga	tcattggtca	gggcggccct	actaatgctc	aattcacgag	cctttggtcg	660
cagttggcat	caaagtacgc	atctcagtcg	agggtgtggt	tcggcatcat	gaatgageee	720
cacgacgtga	acatcaacac	ctgggctgcc	acggtccaag	aggttgtaac	cgcaatccgc	780
aacgctggtg	ctacgtcgca	attcatctct	ttgcctggaa	atgattggca	atctgctggg	840
gctttcatat	ccgatggcag	tgcagccgcc	ctgtctcaag	tcacgaaccc	ggatgggtca	900
acaaccaatc	+a=++++a=	cgtgcacaaa	tacttogact	cagacaactc	contactors	960
						1020
geegaatgta	Clacaaalaa	cattgacacc	geeccigeae	egettgeeae	ccggeceega	
gcaaacggac	gccaggctat	cctgacagaa	accggtggtg	gcaacgttgc	ttcctgcgag	1080
acatatttgt	gccaggaagt	tgcttatctc	aacgccaact	cagatgtcta	tcttggctat	1140
gttggttggg	gtgccggatc	atttgatagc	acgtatgtcc	tgacggaaac	accgactggc	1200
agtggtaact	catogacoga	cacatoctto	gtcagetegt	gtctagcaag	aaagtag	1257

<210> 20

<211> 418

<212> PRT

<213> Secuencia artificial

<220>

<223> 173C6

10

5

Met 1	Asn	Lys	Ser	Val 5	Ala	Pro	Leu	Leu	Leu 10	Ala	Ala	Ser	Ile	Leu 15	Tyr
Gly	Gly	Ala	Ala 20	Ala	Gl n	Gl n	Thr	Val 25	Trp	Gly	Gln	Cys	Gly 30	Gly	Ile
Gly	Trp	Ser 35	Gly	Pro	Thr	Asn	Cys 40	Ala	Pro	Gly	Ser	Ala 45	Cys	Ser	Thr
Leu	Asn 50	Pro	Tyr	Tyr	Ala	Gln 55	Cys	Ile	Pro	Gly	Ala 60	Thr	Thr	Ile	Thr
Thr 65	Ser	Thr	Arg	Pro	Pro 70	Ser	Gly	Pro	Thr	Thr 75	Thr	Thr	Arg	Ala	Thr 80
Ser	Thr	Ser	Ser	Ser 85	Thr	Pro	Pro	Thr	Ser 90	Ser	Gly	Val	Arg	Phe 95	Ala
Gly	Val	Asn	Ile 100	Ala	Gly	Phe	Asp	Phe 105	Gly	Cys	Thr	Thr	Asp 110	Gly	Thr
Cys	Val	Thr 115	Ser	Lys	Val	Tyr	Pro 120	Pro	Leu	Lys	Asn	Phe 125	Thr	Gly	Ser
Asn	Asn 130	Tyr	Pro	Asp	Gly	Ile 135	Gly	Gln	Met	Gln	His 140	Phe	Val	Asn	Asp
Asp 145	Gly	Met	Thr	Ilę	Phe 150	Arg	Leu	Pro	Val	Gly 155	Trp	Gln	Tyr	Leu	Val 160

Gly Ala	Asn Ala 290	Asp 275 Leu	260 Trp Ser	Gln	Val	Thr 295	280 Asn	Pro	Asp	Gly	Ser 300	285	Thr	Ser Asn Thr	Leu
Gly Ala	Asn Ala 290	Asp 275 Leu	260 Trp Ser	Gln	Val	Thr 295	280 Asn	Pro	Asp	Gly	Ser 300	285	Thr	Asn	Leu
Gly	Aşn	Asp 275	260 Trp				280					285			
Thr	Ala	Ile	_												
				Asn	Ala	Gly	Ala	Thr 265	Ser	Gln	Phe	Ile	Ser 270	Leu	Pro
His	Asp	Val	Asn	11e 245	Asn	Thr	Trp	Ala	Ala 250	Thr	Val	Gln	Glu	Val 255	Val
Lys 225	Tyr	Ala	Ser	Gln	Ser 230	Arg	Val	Trp	Phe	Gly 235	Ile	Met	Asn	Glu	Pro 240
Gly	Pro 210	Thr	Asn	Ala	Gln	Phe 215	Thr	Ser	Leu	Trp	Ser 220	Gln	Leu	Ala	Ser
Asp	Ile	His 195	180 Asn	Tyr	Ala	Arg	Trp 200	185 Asn	Gly	Gly	Ile	Ile 205	190	Gln	Gly
Asp				165					170					Lys 175	_
ASII	7	7	T 4	C1	C1	7	т	7		m14	e	T1.	e	T	ш

<210> 21 <211> 1257 <212> ADN <213> Secuencia artificial 5 <220> <223> 191H11 <400> 21

10

atgaacaagt cogtggctcc attgctgctt gcagcgtcca tactatatgg cggcgccgct 60 120 gcacagcaga ctgtctgggg ccagtgtgga ggtattggtt ggagcggacc tacgaattgt getectgget cagettgtte gacceteaat cettattatg egeaatgtat teegggagee 180 240 actactatca ccacttegae eeggeeacca teeggteeaa ccaccaceae eagggetace teaacaaget cateaactee acceaegage tetggggtee gatttgeegg egttaacate 300 360 gcgggttttg actttggctg taccacagat ggcacttgcg ttacctcgaa ggtttatcct ccgttgaaga acttcaccgg ctcaaacaac taccccgatg gcatcggcca gatgcagcac 420 480 ttogtcaacg acgacgggat gactattttc cgcttacctg tcggatggca gtacctcgtc aacaacaatt tgggcggcaa tettgattee acgagcattt ecaagtatga teagettgtt 540 caggggtgcc tgtctctggg cgcatactgc atcgtcgaca tccacaatta tgctcgatgg 600 660 aacggtggga tcattggtca gggcggccct actaatgctc aattcacgag cctttggtcg cagttggcat caaagtacgc atctcagtcg agggtgtggt tcggcatcat gaatgagccc 720 cacgacgtga acatcaacac ctgggctgcc acggtccaag aggttgtaac cgcaatccgc 780 840 aacgetggtg ctacgtegea atteatetet ttgeetggaa atgattggea atetgetggg gettteatat eegatggeag tgeageegee etgteteaag teaegaacee ggatgggtea 900 acaacgaatc tgatttttga cgtgcacaaa tacttggact cagacaactc cggtactcac 960 geogaatgta etacaaataa cattgaegee geetttgeac egettgeeac ttggeteega 1020 1080 gcaaacggtc gccaggctat cctgagcgaa accggtggtg gcaacaccgc gtcctgccag acatatttgt gccagcaagt tgcttatctc aacgcaaact cagatgtcta tcttggctat 1140 1200 attggttggt ctgccggatc atttgatagc acgtatgtcc tgacggaaac accgactggc agtggtaact catggacgga cacatecttg gtcagctcgt gtctagcaag aaagtag 1257

<210> 22

<211> 418

<212> PRT

<213> Secuencia artificial

<220>

<223> 191H11

20

15

Met 1	Asn	Lys	Ser	Val 5	Ala	Pro	Leu	Leu	Leu 10	Ala	Ala	Ser	Ile	Leu 15	Tyr
Gly	Gly	Ala	Ala 20	Ala	Gln	Gln	Thr	Val 25	Trp	Gly	Gln	Cys	Gly 30	Gly	Ile
Gly	Trp	Ser 35	Gly	Pro	Thr	Asn	Cys 40	Ala	Pro	Gly	Ser	Ala 45	Cys	Ser	Thr
Leu	Asn 50	Pro	Tyr	Tyr	Ala	Gl n 55	Cys	Ile	Pro	Gly	Ala 60	Thr	Thr	Ile	Thr
Thr 65	Ser	Thr	Arg	Pro	Pro 70	Ser	Gly	Pro	Thr	Thr 75	Thr	Thr	Arg	Ala	Thr 80
Ser	Thr	Ser	Ser	Ser 85	Thr	Pro	Pro	Thr	Ser 90	Ser	Gly	Val	Arg	Phe 95	Ala
Gly	Val	Asn	Ile 100	Ala	Gly	Phe	Asp	Phe 105	Gly	Cys	Thr	Thr	Asp 110	Gly	Thr
Cys	Val	Thr 115	Ser	Lys	Val	Tyr	Pro 120	Pro	Leu	Lys	Aşn	Phe 125	Thr	Gly	Ser
Asn	Asn 130	Tyr	Pro	Asp	Gly	Ile 135	Gly	Gln	Met	Gl n	His 140	Phe	Val	Asn	Asp
Asp 145	Gly	Met	Thr	Ile	Phe 150	Arg	Leu	Pro	Val	Gly 155	Trp	Gln	Tyr	Leu	Val 160
Asn	Asn	Asn	Leu	Gly 165	Gly	Asn	Leu	Asp	Ser 170	Thr	Ser	Il∉	Ser	Lys 175	Tyr
Asp	Gln	Leu	Val 180	Gln	Gly	Cys	Leu	Ser 185	Leu	Gly	Ala	Tyr	Cys 190	Ile	Val
Asp	Ile	His 195	Asn	Tyr	Ala	Arg	Trp 200	Asn	Gly	Gly	Ile	Ile 205	Gly	Gln	Gly
Gly	Pro 210	Thr	Aşn	Ala	Gln	Phe 215	Thr	Ser	Leu	Trp	Ser 220	Gln	Leu	Ala	Ser
Lys 225	Tyr	Ala	Ser	Gl n	Ser 230	Arg	Val	Trp	Phe	Gly 235	Ile	Met	Asn	Glu	Pro 240

	His	Asp	Val	Aşn	Ile 245	Aşn	Thr	Trp	Ala	Ala 250	Thr	Val	Gln	Glu	Val 255	Val
	Thr	Ala	Ile	Arg 260	Asn	Ala	Gly	Ala	Thr 265	Ser	Gln	Phe	Ile	Ser 270	Leu	Pro
	Gly	Asn	Asp 275	Trp	Gln	Ser	Ala	Gly 280	Ala	Phe	Ile	Ser	Asp 285	Gly	Ser	Ala
	Ala	Ala 290	Leu	Ser	Gln	Val	Thr 295	Asn	Pro	Asp	Gly	Ser 300	Thr	Thr	Asn	Leu
	Ile 305	Phe	Asp	Val	His	Lys 310	Tyr	Leu	Asp	Ser	Asp 315	Asn	Ser	Gly	Thr	His 320
	Ala	Glu	Cys	Thr	Thr 325	Asn	Asn	Ile	Asp	Ala 330	Ala	Phe	Ala	Pro	Leu 335	Ala
	Thr	Trp	Leu	Arg 340	Ala	Aşn	Gly	Arg	Gln 345	Ala	Ile	Leu	Ser	Glu 350	Thr	Gly
	Gly	Gly	Asn 355	Thr	Ala	Ser	Cys	Gln 360	Thr	Tyr	Leu	Cys	G1n 365	Gln	Val	Ala
	Tyr	Leu 370	Asn	Ala	Asn	Ser	Asp 375	Val	Tyr	Leu	Gly	Tyr 380	Ile	Gly	Trp	Ser
	Ala 385	Gly	Ser	Phe	Asp	Ser 390	Thr	Tyr	Val	Leu	Thr 395	Glu	Thr	Pro	Thr	Gly 400
	Ser	Gly	Aşn	Ser	Trp 405	Thr	Asp	Thr	Ser	Leu 410	Val	Ser	Ser	Cys	Leu 415	Ala
	Arg	Lys														
<210> 2 <211> 3 <212> 4 <213> 3	1260 ADN	ıcia ar	tificial													
<220>																

5

10

<223> 222E1

atgaacaagt ccgtggctcc	attgctgctt	gcagcgtcca	tactatatgg	cggcgccgct	60
gcacagcaga ctgtctgggg	ccagtgtgga	ggtattggtt	ggagcggacc	tacgaattgt	120
geteetgget cagettgtte	gaccctcaat	ccttattatg	cgcaatgtat	tccgggagcc	180
actactatca ccacttcgac	ccggccacca	tccggtccaa	ccaccaccac	cagggctacc	240
tcaacaagct catcaactcc	acccacgage	tetggggtee	gatttgccgg	cgttaacatc	300
gcgggttttg actttggctg	taccacagat	ggcacttgcg	ttacctcgaa	ggtttatcct	360
ccgttgaaga acttcaccgg	ctcaaacaac	taccccgatg	gcatcggcca	gatgcagcac	420
ttcgtcaacg acgacgggat	gactattttc	cgcttacctg	tcggatggca	gtacctcgtc	480
aacaacaatt tgggcggcaa	tcttgattcc	acgagcattt	ccaagtatga	tcagcttgtt	540
caggggtgcc tgtctctggg	cgcatactgc	atcgtcgaca	tccacaatta	tgctcgatgg	600
aacggtggga tcattggtca	gggcggccct	actaatgctc	aattcacgag	cctttggtcg	660
cagttggcat caaagtacgc	atctcagtcg	agggtgtggt	toggcatcat	gaatgagccc	720
cacgacgtga acatcaacac	ctgggctgcc	acggtccaag	aggttgtaac	cgcaatcege	780
aacgctggtg ctacgtcgca	attcatctct	ttgcctggaa	atgattggca	atctgctggg	840
gctttcatat ccgatggcag	tgcagccgcc	ctgtctcaag	tcacgaaccc	ggatgggtca	900
acaacgaatc tgatttttga	cgtgcacaaa	tacttggact	cagacaactc	cggtactcac	960
gccgaatgtg taacaaataa	cattgacgcc	gcctttgcac	cgcttgccac	ttggctccga	1020
gcaaacggac gccaggctat	cctgacagaa	accggtggtg	gcaacgttgc	ttcctgcgag	1080
acatatttgt gccaggaagt	tgcttatctc	aacgcaaact	cagatgtcta	tcttggctat	1140
gttggttggg ctgccggatc	atttgatacg	aattatacac	tgacggaaac	accgaatggc	1200
agtggttcat caatgacgga	ccaaccattg	gtcgcggctt	gtctaactag	atcgaattag	1260

<210> 24

<211> 419 <212> PRT

<213> Secuencia artificial

<220>

<223> 222E1

10

5

Met Asn Lys Ser Val Ala Pro Leu Leu Leu Ala Ala Ser Ile Leu Tyr 1 5 10 15

Gly Gly Ala Ala Gln Gln Thr Val Trp Gly Gln Cys Gly Gly Ile 20 25 30

Gly Trp Ser Gly Pro Thr Asn Cys Ala Pro Gly Ser Ala Cys Ser Thr 35 40 45

Leu Asn Pro Tyr Tyr Ala Gln Cys Ile Pro Gly Ala Thr Thr Ile Thr 50 60

Thr 65	Ser	Thr	Arg	Pro	Pro 70	Ser	Gly	Pro	Thr	Thr 75	Thr	Thr	Arg	Ala	Thr 80
Ser	Thr	Ser	Ser	Ser 85	Thr	Pro	Pro	Thr	Ser 90	Ser	Gly	Val	Arg	Phe 95	Ala
Gly	Val	Asn	Ile 100	Ala	Gly	Phe	Asp	Phe 105	Gly	Сув	Thr	Thr	Asp 110	Gly	Thr
Cys	Val	Thr 115	Ser	Lys	Val	Туг	Pro 120	Pro	Leu	Lys	Asn	Phe 125	Thr	Gly	Ser
Asn	Asn 130	Tyr	Pro	Asp	Gly	Ile 135	Gly	Gln	Met	Gln	His 140	Phe	Val	Aşn	Asp
Asp 145	Gly	Met	Thr	Ile	Phe 150	Arg	Leu	Pro	Val	Gly 155	Trp	Gln	Туг	Leu	V al 160
Asn	Aşn	Asn	Leu	Gly 165	Gly	Asn	Leu	Asp	Ser 170	Thr	Ser	Ile	Ser	Lys 175	Tyr
Asp	Gln	Leu	Val 180	Gln	Gly	Сув	Leu	Ser 185	Leu	Gly	Ala	Tyr	Cys 190	Ile	Val
Asp	Ile	His 195	Aşn	Tyr	Ala	Arg	Trp 200	Aşn	Gly	Gly	Ile	I1e 205	Gly	Gln	Gly
Gly	Pro 210	Thr	Asn	Ala	Gln	Phe 215	Thr	Ser	Leu	Trp	Ser 220	Gln	Leu	Ala	Ser
Lys 225	Tyr	Ala	Ser	Gln	Ser 230	Arg	Val	Trp	Phe	Gly 235	Ile	Met	Asn	Glu	Pro 240
His	Asp	Val	Asn	11e 245	Asn	Thr	Trp	Ala	Ala 250	Thr	Val	Gln	Glu	Val 255	Val
Thr	Ala	Ile	Arg 260	Asn	Ala	Gly	Ala	Thr 265	Ser	Gln	Phe	Ile	Ser 270	Leu	Pro
Gly	Asn	Asp 275	Trp	Gln	Ser	Ala	Gly 280	Ala	Phe	Ile	Ser	Asp 285	Gly	Ser	Ala
Ala	Ala 290	Leu	Ser	Gln	Val	Thr 295	Asn	Pro	Asp	Gly	Ser 300	Thr	Thr	Asn	Leu
Ile 305	Phe	Asp	Val	His	Lys 310	Tyr	Leu	Asp	Ser	Asp 315	Asn	Ser	Gly	Thr	His

	Ala	Glu	Cys	Val	Thr 325	Asn	Asn	Ile	Asp	Ala 330	Ala	Phe	Ala	Pro	Leu 335	Ala	
	Thr	Trp	Leu	Arg 340	Ala	Asn	Gly	Arg	Gln 345	Ala	Ile	Leu	Thr	Glu 350	Thr	Gly	
	Gly	Gly	Asn 355	Val	Ala	Ser	Суз	Glu 360	Thr	Tyr	Leu	Суз	Gln 365	Glu	Val	Ala	
	Tyr	Leu 370	Asn	Ala	Asn	Ser	Asp 375	Val	Tyr	Leu	Gly	Tyr 380	Val	Gly	Trp	Ala	
	Ala 385	_	Ser	Phe	Asp	Thr 390	Asn	Tyr	Thr	Leu	Thr 395	Glu	Thr	Pro	Asn	Gly 400	
	Ser	Gly	Ser	Ser	Met 405	Thr	Asp	Gln	Pro	Leu 410	Val	Ala	Ala	Cys	Leu 415	Thr	
	Arg	Ser	Asn														
<211 <212)> 25 I> 1260 2> ADN 3> Secuer	ncia ar	tificial														
<220 <223)> 3> 225C7																
<400)> 25																
;	atgaaca	agt (ccgt	gata	c at	tgct	gctt	gcaç	jegte	ca t	acta	tatgo	g cgg	leđec	gct		60
	gcacago	_	_		_					_				-	-		120
	geteetg	_		_	_					_		_			_		180
•	actacta	tca	ccact	tcga	c cc	ggcc	acca	tecç	gtcc	aa c	cacc	accac	cag	ggct	acc		240

5

10

cacgacgtga	acatcaacac	ctgggctgcc	acggtccaag	aggttgtaac	cgcaatccgc	780
aacgctggtg	ctacgtcgca	attcatctct	ttgcctggaa	atgattggca	atctgctggg	840
gctttcatat	ccgatggcag	tgcagccgcc	ctgtctcaag	tcacgaacec	ggatgggtca	900
acaacgaatc	tgatttttga	cgtgcacaaa	tacttggact	cagacaactc	cggtactcac	960
gccgaatgta	ctacaaataa	cattgacggc	gccttttctc	cgcttgccac	ttggctccga	1020
gcaaacggac	gccaggctat	cctgagcgaa	accggtggtg	gcaacaccgc	gtcctgccag	1080
acatatttgt	gccagcaagt	tgcttatctc	aacgcaaact	cagatgtcta	tcttggctat	1140
attggttggt	ctgccggatc	atttgatagc	acgtatattc	tgacggaaac	accgaatggc	1200
agtggttctt	caatgacgga	ccaagcgttg	gtcgcggctt	gtctaactag	aacatcgtag	1260

<210> 26

<211> 419

5 <212> PRT

<213> Secuencia artificial

<220>

<223> 225C7

10

	Lys			Leu	Ala	Ala	Ser	Leu 15	Tyr

- Gly Gly Ala Ala Gln Gln Thr Val Trp Gly Gln Cys Gly Gly Ile 20 25 30
- Gly Trp Ser Gly Pro Thr Asn Cys Ala Pro Gly Ser Ala Cys Ser Thr 35 40 45
- Leu Asn Pro Tyr Tyr Ala Gln Cys Ile Pro Gly Ala Thr Thr Ile Thr 50 60
- Thr Ser Thr Arg Pro Pro Ser Gly Pro Thr Thr Thr Thr Arg Ala Thr 65 70 75 80
- Ser Thr Ser Ser Ser Thr Pro Pro Thr Ser Ser Gly Val Arg Phe Ala 85 90 95
- Gly Val Asn Ile Ala Gly Phe Asp Phe Gly Cys Thr Thr Asp Gly Thr 100 105 110
- Cys Val Thr Ser Lys Val Tyr Pro Pro Leu Lys Asn Phe Thr Gly Ser 115 120 125
- Asn Asn Tyr Pro Asp Gly Leu Gly Gln Met Ser His Phe Val Lys Ser 130 135 140

Thr 145	Gly	His	Asn	Ile	Phe 150	Arg	Leu	Pro	Val	Gly 155	Trp	Gln	Tyr	Leu	Val 160
Asn	Asn	Val	Leu	Gly 165	Gly	Thr	Leu	Asp	Ser 170	Asn	Asn	Phe	Ala	Thr 175	Tyr
Asp	Ser	Leu	Val 180	Gln	Gly	Cys	Leu	Ala 185	Thr	Gly	Ala	Ser	Cys 190	Ile	Ile
Asp	Ile	His 195	Asn	Tyr	Ala	Arg	Trp 200	Asn	Gly	Gly	Ile	Ile 205	Gly	Gln	Gly
Gly	Pro 210	Thr	Asn	Ala	Gln	Phe 215	Thr	Ser	Leu	Trp	Ser 220	Gln	Leu	Ala	Ser
Lys 225	Tyr	Ala	Ser	Gln	Ser 230	Arg	Val	Trp	Phę	Gly 235	Ile	Met	Aşn	Glu	Pro 240
His	Asp	Val	Asn	Ile 245	Asn	Thr	Trp	Ala	Ala 250	Thr	Val	Gln	Glu	Val 255	Val
Thr	Ala	Ile	Arg 260	Asn	Ala	Gly	Ala	Thr 265	Ser	Gln	Phe	Ile	Ser 270	Leu	Pro
Gly	Asn	Asp 275	Trp	Gln	Ser	Ala	Gly 280	Ala	Phe	Ile	Ser	Asp 285	Gly	Ser	Ala
Ala	Ala 290	Leu	Ser	Gln	Val	Thr 295	Asn	Pro	Asp	Gly	Ser 300	Thr	Thr	Asn	Leu
Ile 305	Phe	Asp	Val	His	Lys 310	Tyr	Leu	Asp	Ser	Asp 315	Asn	Ser	Gly	Thr	His 320
Ala	Glu	Cys	Thr	Thr 325	Asn	Asn	Ile	Asp	G1y 330	Ala	Phe	Ser	Pro	Leu 335	Ala
Thr	Trp	Leu	Arg 340	Ala	Asn	Gly	Arg	Gln 345	Ala	Ile	Leu	Ser	Glu 350	Thr	Gly
Gly	Gly	Asn 355	Thr	Ala	Ser	Cys	Gln 360	Thr	Tyr	Leu	Cys	Gln 365	Gln	Val	Ala
Tyr	Leu 370	Asn	Ala	Asn	Ser	Asp 375	Val	Tyr	Leu	Gly	Tyr 380	Ile	Gly	Trp	Ser
Ala	Gly	Ser	Phe	Asp	Ser	Thr	Tyr	Ile	Leu	Thr	Glu	Thr	Pro	Asn	Gly

385 390 395 400

Ser Gly Ser Ser Met Thr Asp Gln Ala Leu Val Ala Ala Cys Leu Thr 405 410 415

Arg Thr Ser

<210> 27 <211> 1248 <212> ADN

<213> Secuencia artificial

<220> <223> 227C4

<400> 27

5

10

atgaacaagt cogtggctcc attgctgctt gcagcgtcca tactatatgg cggcgccgct 60 120 gcacagcaga ctgtctgggg ccagtgtgga ggtattggtt ggagcggacc tacgaattgt 180 getectgget cagettgtte gacceteaat cettattatg egeaatgtat teegggagee actactatca ccacttegae ceggeeacea teeggteeaa ceaceaceae cagggetace 240 tcaacaagct catcaactcc acccacgagc tctggggtcc gatttgccgg cgttaacatc 300 360 gegggttttg aetttggetg taccacagat ggeaettgee taaccaataa ggtttateet gctttgagtt ccctcaacaa cggccccgat ggcctgggcc agatggccca cttcgtctcc 420 480 aaaactgggc ataatatttt ccgcttacct gtcggatggc agtacctcgt caacaacaat ttgggeggea eacttgatte etecaacett gegaeetatg atttgettgt teaggggtge 540 600 ctgtctctgg gcgcatactg catcgtcgac atccacaatt atgctcgatg gaacggtggg atcattggtc agggcgccc tactaatgct caattcacga gcctttggtc gcagttggca 660 tcaaagtacg catctcagtc gagggtgtgg ttcggcatca tgaatgagcc ccacgacgtg 720 aacatcaaca cotgggctgo cacggtocaa gaggttgtaa cogcaatcog caacgotggt 780 gctacgtcgc aattcatctc tttgcctgga aatgattggc aatctgctgg ggctttcata 840 tecgatggca gtgcagecge cetgteteaa gteaegaaee eggatgggte aacaaegaat 900 960 ctgatttttg acgtgcacaa atacttggac tcagacaact ccggtactca cgccgaatgt gtaacaaata acattgacge egeetttgea eegettgeea ettggeteeg ageaaaeggt 1020 1080 cgccaggcta toctgacaga aaccggtggt ggcaacgttc agtcctgcat acaagacatg tgccagcaaa tccaatatct caaccagaac tcagatgtct atcttggcta tgttggttgg 1140 ggtgccggat catttgatag cacgtatgtc ctgacggaaa caccgactgg cagtggtaac 1200 tcatggacgg acacatectt ggtcageteg tgtctageaa gaaagtag 1248

15 <210> 28

<211> 415

<212> PRT

<213> Secuencia artificial

<220>

<223> 227C4

Met 1	Asn	Lys	Ser	Val 5	Ala	Pro	Leu	Leu	Leu 10	Ala	Ala	Ser	Ile	Leu 15	Tyr
Gly	Gly	Ala	Ala 20	Ala	Gln	Gln	Thr	Val 25	Trp	Gly	Gln	Cys	G ly 30	Gly	Ile
Gly	Trp	Ser 35	Gly	Pro	Thr	Asn	Cys 40	Ala	Pro	Gly	Ser	Ala 45	Сув	Ser	Thr
Leu	Asn 50	Pro	Tyr	Tyr	Ala	Gln 55	Cys	Ile	Pro	Gly	Ala 60	Thr	Thr	Ile	Thr
Thr 65	Ser	Thr	Arg	Pro	Pro 70	Ser	Gly	Pro	Thr	Thr 75	Thr	Thr	Arg	Ala	Thr 80
Ser	Thr	Ser	Ser	Ser 85	Thr	Pro	Pro	Thr	Ser 90	Ser	Gly	Val	Arg	Phe 95	Ala
Gly	Val	Aşn	Ile 100	Ala	Gly	Phe	Asp	Phe 105	Gly	Cys	Thr	Thr	Asp 110	Gly	Thr
C ys	Leu	Thr 115	Asn	Lys	Val	Tyr	Pro 120	Ala	Leu	Ser	Ser	Leu 125	Asn	Asn	Gly
Pro	Asp 130	Gly	Leu	Gly	Gln	Met 135	Ala	His	Phe	Val	Ser 140	Lys	Thr	Gly	His
Asn 145	Ile	Phe	Arg	Leu	Pro 150	Val	Gly	Trp	Gln	Tyr 155	Leu	Val	Asn	Asn	Asn 160
Leu	Gly	Gly	Thr	Leu 165	Asp	Ser	Ser	Asn	Leu 170	Ala	Thr	Tyr	Asp	Leu 175	Leu
Val	Gln	Gly	Cys 180	Leu	Ser	Leu	Gly	Ala 185	Tyr	Cys	Ile	Val	Asp 190	Ile	His
Asn	Tyr	Ala 195	Arg	Trp	Asn	Gly	Gly 200	Ile	Ile	Gly	Gln	Gly 205	Gly	Pro	Thr
Asn	Ala	Gln	Phe	Thr	Ser	Leu	Trp	Ser	Gln	Leu	Ala	Ser	Lys	Tyr	Ala

		210					215					220				
	Ser 225	Gln	Ser	Arg	Val	Trp 230	Phe	Gly	Ile	Met	Asn 235	Glu	Pro	His	Asp	Val 240
	Asn	Ile	Asn	Thr	Trp 245	Ala	Ala	Thr	Val	Gln 250	Glu	Val	Val	Thr	Ala 255	Ile
	Arg	Asn	Ala	Gly 260	Ala	Thr	Ser	Gln	Phe 265	Ile	Ser	Leu	Pro	Gly 270	Asn	Asp
	Trp	Gln	Ser 275	Ala	Gly	Ala	Phe	Ile 280	Ser	Asp	Gly	Ser	Ala 285	Ala	Ala	Leu
	Ser	Gln 290	Val	Thr	Asn	Pro	Asp 295	Gly	Ser	Thr	Thr	Asn 300	Leu	Ile	Phe	Asp
	Val 305	His	Lys	туг	Leu	Asp 310	Ser	Asp	Asn	Ser	Gly 315	Thr	His	Ala	Glu	Cys 320
	Val	Thr	Asn	Asn	Ile 325	Asp	Ala	Ala	Phe	Ala 330	Pro	Leu	Ala	Thr	Trp 335	Leu
	Arg	Ala	Asn	Gly 340	Arg	Gln	Ala	Ile	Leu 345	Thr	Glu	Thr	Gly	Gly 350	Gly	Asn
	Val	Gln	Ser 355	Cys	Ile	Gln	Asp	Met 360	Cys	Gln	Gln	Ile	Gln 365	Tyr	Leu	Asn
	Gln	Asn 370	Ser	Asp	Val	Tyr	Leu 375	Gly	Tyr	Val	Gly	Trp 380	Gly	Ala	Gly	Ser
	Phe 385	Asp	Ser	Thr	Tyr	Val 390	Leu	Thr	Glu	Thr	Pro 395	Thr	Gly	Ser	Gly	Asn 400
	Ser	Trp	Thr	Asp	Thr 405	Ser	Leu	Val	Ser	Ser 410	Cys	Leu	Ala	Arg	Lys 415	
<210> <211> <212> <213>	1257 ADN	ncia a	rtificia	I												
<220> <223>	229D1															

5

10

atgaacaagt	ccgtggctcc	attgctgctt	gcagcgtcca	tactatatgg	cggcgccgct	60
gcacagcaga	ctgtctgggg	ccagtgtgga	ggtattggtt	ggagcggacc	tacgaattgt	120
gctcctggct	cagcttgttc	gaccctcaat	ccttattatg	cgcaatgtat	tocgggagcc	180
actactatca	ccacttcgac	ccggccacca	tccggtccaa	ccaccaccac	cagggctacc	240
tcaacaagct	catcaactcc	acccacgagc	totggggtco	gatttgccgg	cgttaacatc	300
gcgggttttg	actttggctg	taccacagat	ggcacttgcg	ttacctcgaa	ggtttatcct	360
ccgttgaaga	acttcaccgg	ctcaaacaac	taccccgatg	gcatcggcca	gatgcagcac	420
ttcgtcaacg	acgacgggat	gactattttc	cgcttacctg	teggatggea	gtacctcgtc	480
aacaacaatt	tgggcggcaa	tcttgattcc	acgagcattt	ccaagtatga	tcagcttgtt	540
caggggtgcc	tgtctctggg	cgcatactgc	atcgtcgaca	tccacaatta	tgctcgatgg	600
aacggtggga	tcattggtca	gggcggccct	actaatgctc	aattcacgag	cctttggtcg	660
cagttggcat	caaagtacgc	atctcagtcg	agggtgtggt	tcggcatcat	gaatgagccc	720
cacgacgtga	acatcaacac	ctgggctgcc	acggtccaag	aggttgtaac	cgcaatccgc	780
aacgctggtg	ctacgtcgca	attcatctct	ttgcctggaa	atgattggca	atctgctggg	840
gctttcatat	ccgatggcag	tgcagccgcc	ctgtctcaag	tcacgaaccc	ggatgggtca	900
acaacgaatc	tgatttttga	cgtgcacaaa	tacttggact	cagacaactc	cggtactcac	960
gccgaatgta	ctacaaataa	cattgacggc	gccttttctc	cgcttgccac	ttggctccga	1020
cagaacaatc	gccaggctat	cctgacagaa	accggtggtg	gcaacaccgc	gtcctgccag	1080
acatatttgt	gccagcaagt	tgcttatctc	aacgcaaact	cagatgtcta	tcttggctat	1140
attggttggt	ctgccggatc	atttgatagc	acgtatattc	tgacggaaac	accgactggc	1200
agtggtaact	catggacgga	cacatccttg	gtcagctcgt	gtctagcaag	aaagtag	1257

<210> 30

<211> 418

<212> PRT

<213> Secuencia artificial

<220>

<223> 229D1

10

5

Met Asn Lys Ser Val Ala Pro Leu Leu Leu Ala Ala Ser Ile Leu Tyr 1 5 10 15

Gly Gly Ala Ala Gln Gln Thr Val Trp Gly Gln Cys Gly Gly Ile 20 25 30

Gly Trp Ser Gly Pro Thr Asn Cys Ala Pro Gly Ser Ala Cys Ser Thr 35 40 45

Leu Asn Pro Tyr Tyr Ala Gln Cys Ile Pro Gly Ala Thr Thr Ile Thr

	50					55					60				
Thr 65	Ser	Thr	Arg	Pro	Pro 70	Ser	Gly	Pro	Thr	Thr 75	Thr	Thr	Arg	Ala	Thr 80
Ser	Thr	Ser	Ser	Ser 85	Thr	Pro	Pro	Thr	Ser 90	Ser	Gly	Val	Arg	Phe 95	Ala
Gly	Val	Asn	Ile 100	Ala	Gly	Phe	Asp	Phe 105	Gly	Cys	Thr	Thr	Asp 110	Gly	Thr
Cys	Val	Thr 115	Ser	Lys	Val	Tyr	Pro 120	Pro	Leu	Lys	Asn	Phe 125	Thr	Gly	Ser
Asn	Asn 130	Tyr	Pro	Asp	Gly	Ile 135	Gly	Gln	Met	Gln	His 140	Phe	Val	Asn	Asp
Asp 145	Gly	Met	Thr	Ile	Phe 150	Arg	Leu	Pro	Val	Gly 155	Trp	Gln	Tyr	Leu	Val 160
Asn	Asn	Asn	Leu	Gly 165	Gly	Asn	Leu	Asp	Ser 170	Thr	Ser	Ile	Ser	Lys 175	Туг
Asp	Gln	Leu	Val 180	Gl n	Gly	Cys	Leu	Ser 185	Leu	Gly	Ala	Tyr	Cys 190	Ile	Val
Asp	Ile	His 195	Asn	Tyr	Ala	Arg	Trp 200	Asn	Gly	Gly	Ile	Ile 205	Gly	Gln	Gly
Gly	Pro 210	Thr	Asn	Ala	Gln	Phe 215	Thr	Ser	Leu	Trp	Ser 220	Gln	Leu	Ala	Ser
Lys 225	Tyr	Ala	Ser	Gln	Ser 230	Arg	Val	Trp	Phe	Gly 235	Ile	Met	Asn	Glu	Pro 240
His	Asp	Val	Asn	Ile 245	Asn	Thr	Trp	Ala	Ala 250	Thr	Val	Gln	Glu	Val 255	Val
Thr	Ala	Ile	Ar g 260	Asn	Ala	Gly	Ala	Thr 265	Ser	Gln	Phe	Ile	Ser 270	Leu	Pro
Gly	Asn	Asp 275	Trp	Gl n	Ser	Ala	Gly 280	Ala	Phe	Ile	Ser	Asp 285	Gly	Ser	Ala
Ala	Al a 290	Leu	Ser	Gln	Val	Thr 295	Asn	Pro	Asp	Gly	Ser 300	Thr	Thr	Asn	Leu

11e 305	Phe	Asp	Val	His	Lys 310	Tyr	Leu	Asp	Ser	Asp 315	Asn	Ser	Gly	Thr	His 320
Ala	Glu	Cys	Thr	Thr 325	Asn	Asn	Ile	Asp	Gly 330	Ala	Phe	Ser	Pro	Leu 335	Ala
Thr	Trp	Leu	Arg 340	Gln	Asn	Asn	Arg	Gln 345	Ala	Ile	Leu	Thr	Glu 350	Thr	Gly
Gly	Gly	Asn 355	Thr	Ala	Ser	Cys	Gln 360	Thr	Tyr	Leu	Cys	Gln 365	Gln	Val	Ala
Tyr	Leu 370	Asn	Ala	Asn	Ser	Asp 375	Val	Tyr	Leu	Gly	Tyr 380	Ile	Gly	Trp	Ser
Ala 385	Gly	Ser	Phe	Asp	Ser 390	Thr	Tyr	Ile	Leu	Thr 395	Glu	Thr	Pro	Thr	Gly 400
Ser	Gly	Asn	Ser	Trp 405	Thr	Asp	Thr	Ser	Leu 410	Val	Ser	Ser	Cys	Leu 415	Ala
Ara	Lvs														

Arg Lys

<210> 31

<211> 1257 <211> ADN <213> Secuencia artificial

<220>

<223> 231C9

10

5

atgaacaagt	ccgtggctcc	attgctgctt	gcagcgtcca	tactatatgg	cggcgccgct	60
gcacagcaga	ctgtctgggg	ccagtgtgga	ggtattggtt	ggagcggacc	tacgaattgt	120
gctcctggct	cagcttgttc	gaccctcaat	ccttattatg	cgcaatgtat	tccgggagcc	180
actactatca	ccacttcgac	ccggccacca	tccggtccaa	ccaccaccac	cagggctacc	240
tcaacaagct	catcaactcc	acccacgagc	totggggtco	gatttgccgg	cgttaacatc	300
gcgggttttg	actttggctg	taccacagat	ggcacttgcg	ttacctcgaa	ggtttatcct	360
ccgttgaaga	acttcaccgg	ctcaaacaac	taccccgatg	gcatcggcca	gatgcagcac	420
ttcgtcaacg	acgacgggat	gactattttc	cgcttacctg	tcggatggca	gtacctcgtc	480
aacaacaatt	tgggcggcaa	tcttgattcc	acgagcattt	ccaagtatga	tcagcttgtt	540
caggggtgcc	tgtctctggg	cgcatactgc	atcgtcgaca	tccacaatta	tgctcgatgg	600
aacggtggga	tcattggtca	gggcggccct	actaatgctc	aattcacgag	cctttggtcg	660
cagttggcat	caaagtacgc	atctcagtcg	agggtgtggt	teggeateat	gaatgagccc	720
cacgacgtga	acatcaacac	ctgggctgcc	acggtccaag	aggttgtaac	cgcaatccgc	780
aacgctggtg	ctacgtcgca	attcatctct	ttgcctggaa	atgattggca	atctgctggg	840
gctttcatat	ccgatggcag	tgcagccgcc	ctgtctcaag	tcacgaaccc	ggatgggtca	900
acaacgaatc	tgatttttga	cgtgcacaaa	tacttggact	cagacaactc	cggtactcac	960
gccgaatgtg	taacaaataa	cattgacgcc	gcctttgcac	cgcttgccac	ttggctccga	1020
gcaaacggtc	gccaggctat	cctgagcgaa	accggtggtg	gcaacaccgc	gtectgecag	1080
acatatttgt	gccagcaagt	tgcttatctc	aacgcaaact	cagatgtcta	tcttggctat	1140
attggttggg	gtgccggatc	atttgatagc	acgtatgtcc	tgacggaaac	accgactggc	1200
agtggtaact	catggacgga	cacatccttg	gtcagctcgt	gtctagcaag	aaagtag	1257

<210> 32 <211> 418

<212> PRT

<213> Secuencia artificial

<220>

<223> 231C9

10

5

Met	Asn	Lys	Ser	Val	Ala	Pro	Leu	Leu	Lęu	Ala	Ala	Şer	Ilę	Leu	Tyr
1				5					10					15	

- Gly Gly Ala Ala Gln Gln Thr Val Trp Gly Gln Cys Gly Gly Ile 20 25 30
- Gly Trp Ser Gly Pro Thr Asn Cys Ala Pro Gly Ser Ala Cys Ser Thr 35 40 45
- Leu Asn Pro Tyr Tyr Ala Gln Cys Ile Pro Gly Ala Thr Thr Ile Thr 50 60
- Thr Ser Thr Arg Pro Pro Ser Gly Pro Thr Thr Thr Thr Arg Ala Thr 65 70 75 80
- Ser Thr Ser Ser Ser Thr Pro Pro Thr Ser Ser Gly Val Arg Phe Ala 85 90 95
- Gly Val Asn Ile Ala Gly Phe Asp Phe Gly Cys Thr Thr Asp Gly Thr 100 105 110
- Cys Val Thr Ser Lys Val Tyr Pro Pro Leu Lys Asn Phe Thr Gly Ser 115 120 125

Asn	Asn 130	Tyr	Pro	Asp	Gly	Ile 135	Gly	Gln	Met	Gln	His 140	Phę	Val	Asn	Asp
As p 145	Gly	Met	Thr	Ile	Phe 150	Arg	Leu	Pro	Val	Gly 15 5	Trp	Gln	Tyr	Leu	Val 160
Aşn	Asn	Asn	Leu	Gly 165	Gly	Aşn	Leu	Asp	Ser 170	Thr	Ser	Ile	Ser	Lys 175	Туг
Asp	Gln	Leu	Val 180	Gln	Gly	Cys	Leu	Ser 185	Leu	Gly	Ala	Tyr	Cys 190	Ile	Val
Asp	Ile	His 195	Asn	Tyr	Ala	Arg	Trp 200	Aşn	Gly	Gly	Ile	11e 205	Gly	Gln	Gly
Gly	Pro 210	Thr	Asn	Ala	Gln	Phe 215	Thr	Ser	Leu	Trp	Ser 220	Gln	Leu	Ala	Ser
Lys 225	Tyr	Ala	Ser	Gln	Ser 230	Arg	Val	Trp	Phe	Gly 235	Ile	Met	Asn	Glu	Pro 240
His	Asp	Val	Asn	Ile 245	Asn	Thr	Trp	Ala	Ala 250	Thr	Val	Gln	Glu	Val 255	Val
Thr	Ala	Ile	Arg 260	Aşn	Ala	Gly	Ala	Thr 265	Ser	Gln	Phe	Ile	Ser 270	Leu	Pro
Gly	Asn	Asp 275	Trp	Gln	Ser	Ala	Gly 280	Ala	Phe	Ile	Ser	Asp 285	Gly	Ser	Ala
Ala	Ala 290	Leu	Ser	Gln	Val	Thr 295	Asn	Pro	Asp	Gly	Ser 300	Thr	Thr	Asn	Leu
Ile 305	Phe	Asp	Val	His	Lys 310	Tyr	Leu	Asp	Ser	Asp 315	Asn	Ser	Gly	Thr	His 320
Ala	Glu	Суз	Val	Thr 325	Asn	Asn	Ile	Asp	Ala 330	Ala	Phe	Ala	Pro	L eu 335	Ala
Thr	Trp	Leu	Arg 340	Ala	Asn	Gly	Arg	Gln 345	Ala	Ile	Leu	Ser	Glu 350	Thr	Gly
Gly	Gly	Asn 355	Thr	Ala	Ser	Сув	Gln 360	Thr	Tyr	Leu	Cys	Gln 365	Gln	Val	Ala
Tyr	Leu 370	Asn	Ala	Asn	Ser	Asp 375	Val	Tyr	Leu	Gly	Tyr 380	Ile	Gly	Trp	Gly

Ala Gly Ser Phe Asp Ser Thr Tyr Val Leu Thr Glu Thr Pro Thr Gly 385 390 395 400

Ser Gly Asn Ser Trp Thr Asp Thr Ser Leu Val Ser Ser Cys Leu Ala 405 410 415

Arg Lys

<210> 33

<211> 1260

<212> ADN

<213> Secuencia artificial

<220>

<223> 330F9

10

5

<400> 33

60 atgaacaagt ccgtggctcc attgctgctt gcagcgtcca tactatatgg cggcgccgct gcacagcaga ctgtctgggg ccagtgtgga ggtattggtt ggagcggacc tacgaattgt 120 180 gctcctggct cagcttgttc gaccctcaat ccttattatg cgcaatgtat tccgggagcc actactatea ceaettegae eeggeeacea teeggteeaa ceaecaceae eagggetace 240 toaacaagct catcaactcc acccacgagc totggggtcc gatttgccgg cgttaacatc 300 gegggttttg actttggetg taccacagat ggcacttgeg ttacctegaa ggtttateet 360 cogttgaaga acttcaccgg ctcaaacaac taccccgatg gcatcggcca gatgcagcac 420 ttegteaacg acgaegggat gactatttte egettacetg teggatggea gtacetegte 480 aacaacaatt tgggcggcaa tcttgattcc acgagcattt ccaagtatga tcagcttgtt 540 caggggtgcc tgtctctggg cgcatactgc atcgtcgaca tccacaatta tgctcgatgg 600 aacggtggga tcattggtca gggcggccct actaatgctc aattcacgag cctttggtcg 660 cagttggcat caaagtacgc atctcagtcg agggtgtggt tcggcatcat gaatgagccc 720 780 cacgacgtga acatcaacac ctgggctgcc acggtccaag aggttgtaac cgcaatccgc aacgctggtg ctacgtcgca attcatctct ttgcctggaa atgattggca atctgctggg 840 900 gettteatat cegatggeag tgeageegee etgteteaag teaegaacee ggatgggtea 960 acaacgaatc tgatttttga cgtgcacaaa tacttggact cagacaactc cggtactcac gccgaatgtg taacaaataa cattgacgcc gcctttgcac cgcttgccac ttggctccga 1020 gcaaacggtc gccaggctat cctgagcgaa accggtggtg gcaacaccgc gtcctgccag 1080 acatatttgt gccagcaagt tgcttatctc aacgcaaact cagatgtcta tcttggctat 1140 gttggttggg ctgccggatc atttgatacg aattatacac tgacggaaac accgaatggc 1200 1260 agtggttett caatgacgga ccaagegttg gtegeggett gtetaactag ategaattag

15 <210> 34 <211> 419

<212> PRT

<213> Secuencia artificial

<220>

5

<223> 330F9

<400> 34

Met Asn Lys Ser Val Ala Pro Leu Leu Leu Ala Ala Ser Ile Leu Tyr 5 Gly Gly Ala Ala Gln Gln Thr Val Trp Gly Gln Cys Gly Gly Ile Gly Trp Ser Gly Pro Thr Asn Cys Ala Pro Gly Ser Ala Cys Ser Thr Leu Asn Pro Tyr Tyr Ala Gln Cys Ile Pro Gly Ala Thr Thr Ile Thr Thr Ser Thr Arg Pro Pro Ser Gly Pro Thr Thr Thr Arg Ala Thr Ser Thr Ser Ser Ser Thr Pro Pro Thr Ser Ser Gly Val Arg Phe Ala Gly Val Asn Ile Ala Gly Phe Asp Phe Gly Cys Thr Thr Asp Gly Thr Cys Val Thr Ser Lys Val Tyr Pro Pro Leu Lys Asn Phe Thr Gly Ser 120 115 Asn Asn Tyr Pro Asp Gly Ile Gly Gln Met Gln His Phe Val Asn Asp 130 Asp Gly Met Thr Ile Phe Arg Leu Pro Val Gly Trp Gln Tyr Leu Val 145 150 160 Asn Asn Asn Leu Gly Gly Asn Leu Asp Ser Thr Ser Ile Ser Lys Tyr Asp Gln Leu Val Gln Gly Cys Leu Ser Leu Gly Ala Tyr Cys Ile Val 180 185 Asp Ile His Asn Tyr Ala Arg Trp Asn Gly Gly Ile Ile Gly Gln Gly 195 200

Gly	Pro 210	Thr	Aşn	Ala	Gln	Phe 215	Thr	Ser	Leu	Trp	Ser 220	Gln	Leu	Ala	Ser
Lys 225	Tyr	Ala	Ser	Gln	Ser 230	Arg	Val	Trp	Phe	Gly 235	Ile	Met	Asn	Glu	Pro 240
His	Asp	Val	Asn	Ile 245	Asn	Thr	Trp	Ala	Ala 250	Thr	Val	Gln	Glu	Val 255	Val
Thr	Ala	Ile	Arg 260	Asn	Ala	Gly	Ala	Thr 265	Ser	Gln	Phe	Ile	Ser 270	Leu	Pro
Gly	Asn	Asp 275	Trp	Gln	Ser	Ala	Gly 280	Ala	Phe	Ile	Ser	Asp 285	Gly	Ser	Ala
Ala	Ala 290	Leu	Ser	Gln	Val	Thr 295	Asn	Pro	Asp	Gly	Ser 300	Thr	Thr	Asn	Leu
Ile 305	Phe	Asp	Val	His	Lys 310	Tyr	Leu	Asp	Ser	Asp 315	Asn	Ser	Gly	Thr	His 320
Ala	Glu	Cys	Val	Thr 325	Asn	Asn	Ile	Asp	Ala 330	Ala	Phe	Ala	Pro	Leu 335	Ala
Thr	Trp	Leu	Arg 340	Ala	Asn	Gly	Arg	Gln 345	Ala	Ile	Leu	Ser	Glu 350	Thr	Gly
Gly	Gly	Asn 355	Thr	Ala	Ser	Cys	Gln 360	Thr	Tyr	Leu	Cys	G1n 365	Gln	Val	Ala
Tyr	Leu 370	Asn	Ala	Asn		Asp 375		Tyr	Leu	Gly	Tyr 380	Val	Gly	Trp	Ala
Ala 385	Gly	Ser	Phe	Asp	Thr 390	Asn	Tyr	Thr	Leu	Thr 395	Glu	Thr	Pro	Asn	Gly 400
Ser	Gly	Ser	Ser	Met 405	Thr	Asp	Gln	Ala	Leu 410	Val	Ala	Ala	Cys	Leu 415	Thr

Arg Ser Asn

atgaagctct	ccaccaccgt	atacacagtt	gttcctttcc	tgtctaccgc	caccgcacag	60
ggcgttgctt	acgcacagtg	tggaggtaat	ggttggactg	gatctacggc	ttgtgtgtca	120
ggctatgctt	gttcgtatgt	gaatgcgtat	tattcgcaat	gtttgccggg	aactgcaact	180
ttaaccactg	ttaccagtgc	aaccaccagt	gctagttcga	aaacaagcac	ageegeagea	240
cccaatagca	cggggaagac	aaaatatatc	ggcaccaaca	tcgcgggttt	tgactttggc	300
tgtaccacag	atggcacttg	cctaaccaat	aaggtttatc	ctgctttgag	ttccctcaac	360
aacggccccg	atggcctggg	ccagatggcc	cacttcgtct	ccaaaactgg	gcataatatt	420
ttccgcttac	ctgtcggatg	gcagtacctc	gtcaacaaca	atttgggcgg	cacacttgat	480
tcctccaacc	ttgcgaccta	tgatttgctt	gttcaggggt	gcctggcaac	gggcgcaact	540
tgcgtgattg	acatccacaa	ttatgctcga	tggaacggtg	caatcattgg	tcagggcggc	600
cctactgatg	ctcaattcgc	tageetttgg	tcgcagttgg	caacgaagta	caagtctaat	660
acgaaggtgg	tetteggett	gatgaatgag	ccccacgact	tgaacagcat	caccacctgg	720
gctgccacgc	ttcaaacagt	tgtaaccgca	atccgccagg	ctggtgctac	gtcgaccatg	780
cttctattgc	ctggaagtga	ttacacatct	gctggggctt	tcataaccga	tggcagtgca	840
gccgccctgt	ctaagatcac	gaacctcgat	gggactacaa	cgaatctgat	ttttgacgtg	900
cacaaatact	tggactcaga	caactccggt	actcacgccg	aatgtgtaac	aaataacatt	960
gacgccgcct	ttgcaccgct	tgccacttgg	ctccgagcaa	acggtcgcca	ggctatcctg	1020
agcgaaaccg	gtggtggcaa	cacegegtee	tgccagacat	atttgtgcca	gcaagttgct	1080
tatctcaacg	caaactcaga	tgtctatctt	ggctatattg	gttggtctgc	cggatcattt	1140
gatagcacgt	atattctgac	ggaaacaccg	aatggcagtg	gttcttcaat	gacggaccaa	1200
gcgttggtcg	cggcttgtct	aactagaaca	togtag			1236

<210> 36

<211> 411

<212> PRT

<213> Botryotinia fuckeliana

<400> 36

Met Lys Leu Ser Thr Thr Val Tyr Thr Val Val Pro Phe Leu Ser Thr 1 5 10 15

Ala Thr Ala Gln Gly Val Ala Tyr Ala Gln Cys Gly Gly Asn Gly Trp 20 25 30

Thr Gly Ser Thr Ala Cys Val Ser Gly Tyr Ala Cys Ser Tyr Val Asn 35 40 45

Ala Tyr Tyr Ser Gln Cys Leu Pro Gly Thr Ala Thr Leu Thr Thr Val

10

5

	50					55					00				
Thr 65	Ser	Ala	Thr	Thr	Ser 70	Ala	Ser	Ser	Lys	Thr 75	Ser	Thr	Ala	Ala	Ala 80
Pro	Asn	Ser	Thr	Gly 85	Lys	Thr	Lys	Tyr	Ile 90	Gly	Thr	Asn	Ile	Ala 95	Gly
Phe	Asp	Phe	Gly 100	Cys	Thr	Thr	Asp	Gly 105	Thr	Cys	Leu	Thr	Asn 110	Lys	Val
Tyr	Pro	Ala 115	Leu	Ser	Ser	Leu	Asn 120	Asn	Gly	Pro	Asp	Gly 125	Leu	Gly	Gln
Met	Ala 130	His	Phe	Val	Ser	Lys 135	Thr	Gly	His	Asn	Ile 140	Phe	Arg	Leu	Pro
Val 145	Gly	Trp	Gln	Tyr	Leu 150	Val	Asn	Aşn	Aşn	Leu 155	Gly	Gly	Thr	Leu	Asp 160
Ser	Ser	Aşn	Leu	Ala 165	Thr	Tyr	Asp	Leu	Leu 170	Val	Gln	Gly	Сув	Leu 175	Ala
Thr	Gly	Ala	Thr 180	Cys	Val	Ile	Asp	Ile 185	His	Asn	Tyr	Ala	Arg 190	Trp	Asn
Gly	Ala	Ile 195	Ile	Gly	Gln	Gly	Gly 200	Pro	Thr	Asp	Ala	G1n 205	Ph⊕	Ala	Ser
Leu	Trp 210	Ser	Gln	Leu	Ala	Thr 215	Lys	Tyr	Lys	Ser	Asn 220	Thr	Lys	Val	Val
Phe 225	Gly	Leu	Met	Asn	Glu 230	Pro	His	Asp	Leu	Asn 235	Ser	Ile	Thr	Thr	Trp 240
Ala	Ala	Thr	Leu	Gln 245	Thr	Val	Val	Thr	Ala 250	Ile	Arg	Gl n	Ala	Gly 255	Ala
Thr	Ser	Thr	Met 260	Leu	Leu	Leu	Pro	Gly 265	Ser	Asp	Tyr	Thr	Ser 270	Ala	Gly
Ala	Phe	Ile 275	Thr	Asp	Gly	Ser	Ala 280	Ala	Ala	Leu	Ser	Lys 285	Ile	Thr	Asn
Leu	Asp 290	Gly	Thr	Thr	Thr	Asn 295	Leu	Ile	Phe	Asp	Val 300	His	Lys	Tyr	Leu

Asp	$\operatorname{\mathtt{Ser}}$	Asp	Asn	$\operatorname{\mathtt{Ser}}$	Gly	Thr	His	Ala	Glu	Cys	Val	Thr	Asn	Asn	Ile
305					310					315					320

Asp Ala Ala Phe Ala Pro Leu Ala Thr Trp Leu Arg Ala Asn Gly Arg 325 330 335

Gln Ala Ile Leu Ser Glu Thr Gly Gly Gly Asn Thr Ala Ser Cys Gln 340 345 350

Thr Tyr Leu Cys Gln Gln Val Ala Tyr Leu Asn Ala Asn Ser Asp Val 355 360 365

Tyr Leu Gly Tyr Ile Gly Trp Ser Ala Gly Ser Phe Asp Ser Thr Tyr 370 375 380

Ile Leu Thr Glu Thr Pro Asn Gly Ser Gly Ser Ser Met Thr Asp Gln 385 390 395

Ala Leu Val Ala Ala Cys Leu Thr Arg Thr Ser 405 410

<210> 37

<211> 1242

<212> ADN

5

<213> Sclerotinia sclerotiorum

atgaaggtgc	caactcctct	gtacactatc	cttccgctag	tatccagcgc	cacagcacag	60
ggcgctgcct	atgcacagtg	tggaggtaaa	ggttggacgg	gagcaacgac	ttgtgttgga	120
ggctatgtgt	gtacttattc	gagtgaatat	tattcgcaat	gtttaccggg	aactgcgact	180
ctaaccactg	ttaccagttc	gtccaaacca	tcaagctcta	gtaccaagac	ctcatcaagc	240
gcagcttcaa	gctcaacggg	aaaaacgaaa	tatattggca	ccaacatcgc	gggttttgac	300
tttggctgta	ccacagatgg	cacttgcata	acctcggaga	tctatcctcc	gttgagcagc	360
atagccaacc	atcccgatgg	cctcggccag	atgtcccact	tcgtcaaaag	cacagggcac	420
aatattttcc	gcttacctgt	cggatggcag	tacctcgtca	acaacgtttt	gggcggcaca	480
cttgattcca	acaatttcgc	aacctatgat	tcacttgttc	aggggtgcct	ggcaacaggc	540
gcaagttgca	tcattgacat	ccacaattat	gctcgatgga	acggtgggat	cattggtcag	600
ggcggcccta	ctaatgctca	attcgtgagc	ctttggactc	agttggcaaa	taagtacaag	660
gggaatgcga	aggtgatttt	cggcttgatg	aatgagcccc	acgacatgcc	aaacatcacc	720
acctgggctg	cctcagtcca	agcagttgta	accgcaatcc	gccaagctgg	tgctacgtcg	780
accacgette	tettgeetgg	aaatgattac	acctctgctg	ggtctttcat	atccgatggc	840
agtgcagccg	ccctgtctaa	agtcacgaac	ccggatggga	caatcacgaa	tctgattttt	900
as aat aas as	******	at as as as as	t accept a at a	>+a++a>+a	+~+~~~	960
	aatacttgga					1020
	ccgcctttgc					
atcctgacag	aaaccggtgg	tggcaacgtt	getteetgeg	agacatattt	gtgccaggaa	1080
gttgcttatc	tcaacgccaa	ctcagatgtc	tatcttggct	atgttggttg	ggctgccgga	1140
tcatttgata	cgaattatac	actgacggaa	acaccgaatg	gcagtggttc	atcaatgacg	1200
gaccaaccat	tggtcgcggc	ttgtctaact	agatcgaatt	ag		1242

<210> 38 <211> 413 <212> PRT

5

<213> Sclerotinia sclerotiorum

Met 1	Lys	Val	Pro	Thr 5	Pro	Leu	Tyr	Thr	Ile 10	Leu	Pro	Leu	Val	Ser 15	Ser
Ala	Thr	Ala	Gln 20	Gly	Ala	Ala	Tyr	Ala 25	Gln	Cys	Gly	Gly	Lys 30	Gly	Trp
Thr	Gly	Ala 35	Thr	Thr	Cys	Val	Gly 40	Gly	Tyr	Val	Cys	Thr 45	Tyr	Ser	Ser
Glu	Tyr 50	Tyr	Ser	Gln	Cys	Leu 55	Pro	Gly	Thr	Ala	Thr 60	Leu	Thr	Thr	Val
Thr 65	Ser	Ser	Ser	Lys	Pro 70	Ser	Ser	Ser	Ser	Thr 75	Lys	Thr	Ser	Ser	Ser 80
Ala	Ala	Ser	Ser	Ser 85	Thr	Gly	Lys	Thr	Lys 90	Tyr	Ile	Gly	Thr	Asn 95	Ile
Ala	Gly	Phe	Asp 100	Phe	Gly	Cys	Thr	Thr 105	Asp	Gly	Thr	Cys	Ile 110	Thr	Ser
Glu	Ile	Tyr 115	Pro	Pro	Leu	Ser	Ser 120	Ile	Ala	Asn	His	Pro 125	Asp	Gly	Leu
Gly	Gln 130	Met	Ser	His	Phe	Val 135	Lys	Ser	Thr	Gly	His 140	Asn	Ile	Phe	Arg
Leu 145	Pro	Val	Gly	Trp	Gln 150	Tyr	Leu	Val	Asn	Asn 155	Val	Leu	Gly	Gly	Thr 160
Lęu	Asp	Ser	Asn	Asn 165	Phe	Ala	Thr	Tyr	Asp 170	Ser	Leu	Val	Gln	Gly 175	Cys

Leu	Ala	Thr	Gly 180	Ala	Ser	Суз	Ile	Ile 185	Asp	Ile	His	Asn	Туг 190	Ala	Arg
Trp	Asn	Gly 195	Gly	Ile	Ile	Gly	Gln 200	Gly	Gly	Pro	Thr	Asn 205	Ala	G l n	Phe
Val	Ser 210	Leu	Trp	Thr	Gl n	Leu 215	Ala	Asn	Lys	Tyr	Lys 220	Gly	Asn	Ala	Lys
Val 225	Ile	Phe	Gly	Leu	Met 230	Asn	Glu	Pro	His	Asp 235	Met	Pro	Asn	Ile	Thr 240
Thr	Trp	Ala	Ala	Ser 245	Val	Gln	Ala	Val	Val 250	Thr	Ala	Ile	Arg	Gln 255	Ala
Gly	Ala	Thr	Ser 260	Thr	Thr	Leu	Leu	Leu 265	Pro	Gly	Asn	Asp	Tyr 270	Thr	Ser
Ala	Gly	Ser 275	Ph€	Ilę	Ser	Asp	Gly 280	Ser	Ala	Ala	Ala	Leu 285	Ser	Lys	Val
Thr	Asn 290	Pro	Asp	Gly	Thr	Ile 295	Thr	Asn	Leu	Ile	Phe 300	Asp	Val	His	Lys
Tyr 305	Leu	Asp	Ser	Asp	Asn 310	Ser	Gly	Thr	Asn	Leu 315	Glu	Cys	Val	Thr	Asn 320
Asn	Ile	Asp	Thr	Ala 325	Phe	Ala	Pro	Leu	Ala 330	Thr	Trp	Leu	Arg	Ala 335	Asn
Gly	Arg	Gln	Ala 340	Ile	Leu	Thr	Glu	Thr 345	Gly	Gly	Gly	Asn	Val 350	Ala	Ser
Cys	Glu	Thr 355	Tyr	Leu	Cys	Gln	Glu 360	Val	Ala	Tyr	Leu	Asn 365	Ala	Asn	Ser
Asp	Val 370	Tyr	Leu	Gly	Tyr	Val 375	Gly	Trp	Ala	Ala	Gly 380	Ser	Phe	Asp	Thr
Asn 385	Tyr	Thr	Leu	Thr	Gl u 390	Thr	Pro	Asn	Gly	Ser 395	Gly	Ser	Ser	Met	Thr 400
Asp	Gln	Pro	Leu	Val 405	Ala	Ala	Cys	Leu	Thr	Arg	Ser	Asn			

REIVINDICACIONES

- 1. Polipéptido aislado o purificado **caracterizado por que** tiene una actividad endoglucanasa mejorada con respecto a la actividad endoglucanasa de la proteína de referencia EG2, dicho polipéptido se selecciona entre el grupo que consiste en:
 - i) una secuencia de aminoácidos seleccionada entre SEQ ID NO: 4, SEQ ID NO: 8, SEQ ID NO: 10, SEQ ID NO: 12; SEQ ID NO: 14 SEQ ID NO: 16, SEQ ID NO: 18, SEQ ID NO: 20, SEQ ID NO: 22, SEQ ID NO: 24, SEQ ID NO: 26, SEQ ID NO: 28, SEQ ID NO: 30, SEQ ID NO: 32 y SEQ ID NO: 34;
- ii) una secuencia de aminoácidos que presenta un porcentaje de identidad de al menos 98 %, preferentemente 99 %, con respecto a la secuencia SEQ ID NO: 4, SEQ ID NO: 14, SEQ ID NO: 18, SEQ ID NO: 20, SEQ ID NO: 22, SEQ ID NO: 24, SEQ ID NO: 26, SEQ ID NO: 28, SEQ ID NO: 30, SEQ ID NO: 32 o SEQ ID NO: 34.
- 2. Ácido nucleico purificado o aislado, **caracterizado por que** codifica al menos un polipéptido de acuerdo con la reivindicación 1.
 - 3. Ácido nucleico purificado o aislado de acuerdo con la reivindicación 2 seleccionado entre las siguientes secuencias: SEQ ID NO: 3, SEQ ID NO: 7, SEQ ID NO: 9, SEQ ID NO: 11; SEQ ID NO: 13, SEQ ID NO: 15, SEQ ID NO: 17, SEQ ID NO: 19, SEQ ID NO: 21, SEQ ID NO: 23, SEQ ID NO: 25, SEQ ID NO: 27, SEQ ID NO: 29, SEQ ID NO: 31 y SEQ ID NO: 33.
 - 4. Vector caracterizado por que comprende un ácido nucleico de acuerdo con una de las reivindicaciones 2 o 3.
- 5. Célula huésped aislada **caracterizada por que** comprende el ácido nucleico de acuerdo con una de las reivindicaciones 2 o 3 o el vector de acuerdo con la reivindicación 4.
 - 6. Célula huésped aislada de acuerdo con la reivindicación 5, **caracterizada por que** se selecciona entre *Trichoderma*, *Aspergillus*, *Neurospora*, *Humicola*, *Penicillium*, *Fusarium*, *Thermomonospora*, *Myceliophthora*, *Chrysosporium*, *Bacillus*, *Pseudomonas*, *Escherichia*, *Clostridium*, *Cellulomonas*, *Streptomyces*, *Yarrowia*, *Pichia* y *Saccharomyces*.
 - 7.Célula huésped aislada de acuerdo con la reivindicación 5 o 6, caracterizada por que se selecciona entre Trichoderma reesei, Trichoderma viridae, Trichoderma koningii, Aspergillus niger, Aspergillus nidulans, Aspergillus wentii, Aspergillus oryzae, Aspergillus phoenicis, Neurospora crassa, Humicola grisae, Myceliophthora thermopila, Chrysosporium lucknowense, Penicillium pinophilum, Penicillium oxalicum, Escherichia coli, Clostridium acetobutylicum, Clostridium saccharolyticum, Clostridium benjerinckii, Clostridium butylicum, Pichia pastoris, Yarrowia lipolityca y Saccharomyces cerevisiae.
 - 8. Uso de dicho polipéptido de acuerdo con la reivindicación 1 para la hidrólisis de celulosa.
 - 9. Uso de dicho polipéptido de acuerdo con la reivindicación 1 para la producción de biocombustible.
 - 10. Composición enzimática capaz de actuar sobre la biomasa lignocelulósica que comprende al menos un polipéptido de acuerdo con la reivindicación 1.
 - 11. Procedimiento de producción de biocombustible a partir de biomasa, **caracterizado por que** comprende las siguientes etapas sucesivas:
 - poner en suspensión en fase acuosa la biomasa que se va a hidrolizar;
 - hidrólisis en presencia de una composición enzimática de acuerdo con la reivindicación 10 de la biomasa lignocelulósica a fin de producir un hidrolizado que contiene glucosa;
 - fermentación de la glucosa del hidrolizado a fin de producir un mosto de fermentación;
 - separación del biocombustible del mosto de fermentación.

20

30

35

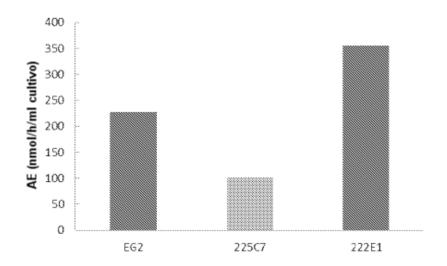
40

45

50

60

65


- 55 12. Procedimiento de producción de biocombustible a partir de biomasa, **caracterizado por que** comprende las siguientes etapas sucesivas:
 - poner en suspensión en fase acuosa la biomasa que se va a hidrolizar;
 - adición simultánea de una composición enzimática de acuerdo con la reivindicación 10 y de un organismo fermentativo a fin de producir un mosto de fermentación;
 - separación del biocombustible del mosto de fermentación.
 - 13. Procedimiento de acuerdo con la reivindicación 12, en el que el organismo fermentativo se selecciona entre una célula huésped de acuerdo con una de las reivindicaciones 6 o 7.
 - 14. Procedimiento de producción de biocombustible a partir de biomasa, caracterizado por que comprende las

78

siguientes etapas sucesivas:

5

- poner en suspensión en fase acuosa la biomasa que se va a hidrolizar;
- adición de una o más células huésped de acuerdo con una de las reivindicaciones 5 a 7 con un organismo fermentativo y/o una composición enzimática de acuerdo con la reivindicación 10, a fin de producir un mosto de fermentación;
- separación del biocombustible del mosto de fermentación.

FIGURA 1

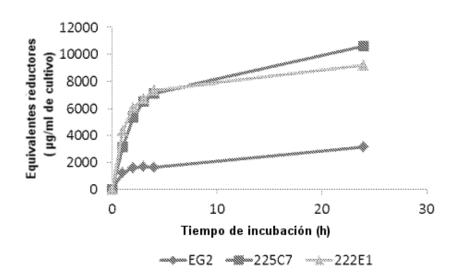


FIGURA 2

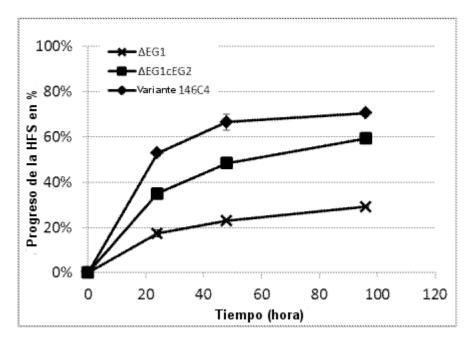


FIGURA 3

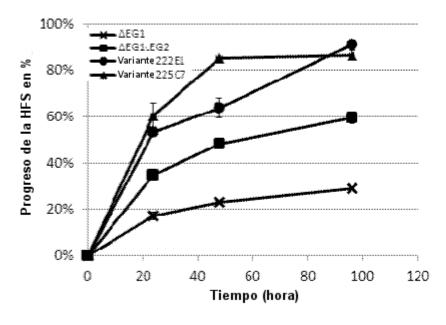


FIGURA 4

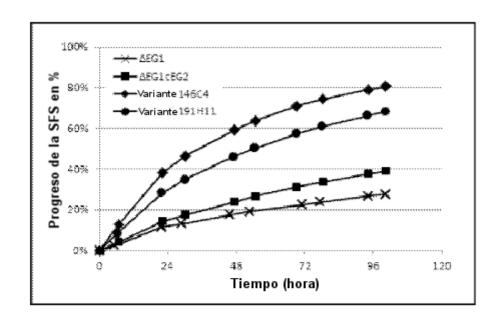


FIGURA 5

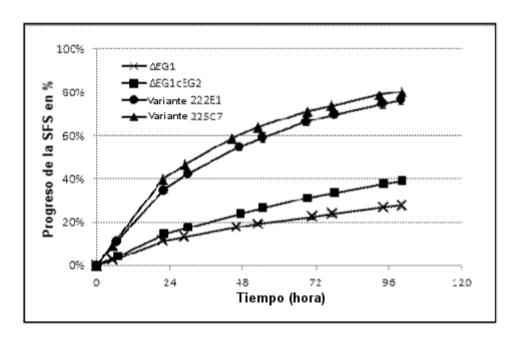


FIGURA 6