

OFICINA ESPAÑOLA DE PATENTES Y MARCAS

ESPAÑA

① Número de publicación: 2 683 268

(51) Int. CI.:

C07K 16/28 (2006.01)

(12)

TRADUCCIÓN DE PATENTE EUROPEA

T3

(86) Fecha de presentación y número de la solicitud internacional: 25.07.2014 PCT/US2014/048289

(87) Fecha y número de publicación internacional: 29.01.2015 WO15013671

96) Fecha de presentación y número de la solicitud europea: 25.07.2014 E 14748461 (2)

(97) Fecha y número de publicación de la concesión europea: 09.05.2018 EP 3024851

(54) Título: Anticuerpos multiespecíficos, anticuerpos activables multiespecíficos y métodos para usar los mismos

(30) Prioridad:

25.07.2013 US 201361858402 P

Fecha de publicación y mención en BOPI de la traducción de la patente: 25.09.2018 (73) Titular/es:

CYTOMX THERAPEUTICS, INC. (100.0%) 151 Oyster Point Blvd, Suite 400 South San Francisco, CA 94080, US

(72) Inventor/es:

IRVING, BRYAN ALLEN; HOSTETTER, DANIEL ROBERT; WONG, CHIHONG; LOWMAN, HENRY BERNARD; WEST, JAMES WILLIAM y LA PORTE, SHERRY LYNN

74 Agente/Representante:

SÁEZ MAESO, Ana

Observaciones:

Véase nota informativa (Remarks, Remarques o Bemerkungen) en el folleto original publicado por la Oficina Europea de Patentes

DESCRIPCIÓN

Anticuerpos multiespecíficos, anticuerpos activables multiespecíficos y métodos para usar los mismos.

5 Campo de la invención

10

15

20

25

30

35

40

45

50

55

60

65

La presente invención se refiere generalmente a anticuerpos multiespecíficos y a anticuerpos activables multiespecíficos que se unen específicamente a dos o más dianas o epítopos diferentes, así como a métodos para producir y usar estos anticuerpos multiespecíficos y/o anticuerpos activables multiespecíficos en una variedad de indicaciones terapéuticas, de diagnósticos y profilácticas.

Antecedentes de la invención

Los anticuerpos monoclonales han surgido como moléculas para la intervención terapéutica en una variedad de trastornos. Sin embargo, dirigir o neutralizar una proteína única no siempre es suficiente para el tratamiento eficaz de ciertos trastornos, lo que limita el uso terapéutico de anticuerpos monoclonales monoespecíficos. Además, las terapias basadas en anticuerpos han demostrado tratamientos efectivos para algunas enfermedades, pero en algunos casos, las toxicidades debidas a la amplia expresión de la diana han limitado su efectividad terapéutica. Además, las terapias basadas en anticuerpos han mostrado otras limitaciones tales como el rápido aclaramiento de la circulación después de la administración.

El documento de patente núm. WO2010/081173 proporciona anticuerpos modificados que contienen un anticuerpo o fragmento de anticuerpo (AB) modificado con una entidad enmascarante (MM). Tales anticuerpos modificados pueden acoplarse adicionalmente a una entidad escindible (CM), que resulta en anticuerpos activables (AA), en donde la CM es capaz de escindirse, reducirse, fotolizarse o de cualquier otra forma modificarse. Reusche y otros. Clinical Cancer Research, The American Association for Cancer Research, 12:1, págs 183-190, investigaron el direccionamiento de anticuerpos contra EGFR combinado con citotoxicidad mediada por células T. El documento de patente núm. WO2010/037838proporcionó una molécula de anticuerpo de cadena sencilla biespecífico que comprende un primer dominio de unión que consiste en un dominio variable de anticuerpo capaz de unirse a un epítopo de la cadena épsilon CD3 de primate humano y no de chimpancé, y un segundo dominio de unión capaz de unirse a un epítopo de un antígeno diana de un tumor de primate humano y uno no chimpancé.

Como consecuencia, existe una necesidad de anticuerpos y productos terapéuticos que permitan el direccionamiento de dianas múltiples y/o epítopos múltiples con una molécula única y además proporcionar una mayor selectividad para las dianas pretendidas y para una reducción de los efectos adversos tras la administración.

Resumen de la invención

La invención se define por el conjunto de reivindicaciones adjuntas.

La presente descripción proporciona anticuerpos multiespecíficos y anticuerpos activables multiespecíficos. Los anticuerpos multiespecíficos proporcionados en la presente descripción son anticuerpos que reconocen dos o más antígenos o epítopos diferentes. Los anticuerpos activables multiespecíficos proporcionados en la presente descripción son anticuerpos multiespecíficos que incluyen al menos una entidad enmascarante (MM) enlazada a al menos un dominio de unión a antígeno o epítopo del anticuerpo multiespecífico de manera que el acoplamiento de la MM reduce la capacidad del antígeno o dominio de unión al epítopo para unirse a su diana. En algunas modalidades, la MM se acopla al dominio de unión a antígeno o epítopo del anticuerpo multiespecífico a través de una entidad escindible (CM) que funciona como un sustrato para una proteasa. Los anticuerpos activables multiespecíficos proporcionados en la presente descripción son estables en circulación, se activan en sitios de terapia y/o diagnóstico previstos, pero no en tejido normal, *es decir*, sano, y, cuando se activan, muestran unión a una diana que es al menos comparable con el anticuerpo multiespecífico no modificado correspondiente.

En algunas modalidades, los anticuerpos multiespecíficos y/o anticuerpos activables multiespecíficos se diseñan para acoplarse a células efectoras inmunes, además denominadas en la presente descripción anticuerpos multiespecíficos que se acoplan a efectores inmunes y/o anticuerpos activables multiespecíficos que se acoplan a efectores inmunes. En algunas modalidades, los anticuerpos multiespecíficos y/o anticuerpos activables multiespecíficos se diseñan para acoplarse a los leucocitos, además denominados en la presente descripción anticuerpos multiespecíficos que se acoplan a leucocitos y/o anticuerpos activables multiespecíficos que se acoplan a leucocitos. En algunas modalidades, los anticuerpos multiespecíficos y/o anticuerpos activables multiespecíficos se diseñan para acoplarse a las células T, además denominadas en la presente descripción anticuerpos multiespecíficos que se unen a las células T y/o anticuerpos activables multiespecíficos que se unen a las células T. En algunas modalidades, los anticuerpos multiespecíficos y/o anticuerpos activables multiespecíficos acoplan un antígeno de superficie en un leucocito, tal como en una célula T, en una célula asesina natural (NK), en una célula mononuclear mieloide, en un macrófago, y/o en otra célula efectora inmune. En algunas modalidades, la célula efectora inmune es una célula NK. En algunas modalidades, la célula efectora inmune es una célula NK. En algunas modalidades, la célula efectora inmune es una célula mononuclear, tal como una célula mononuclear mieloide. En algunas modalidades, los

anticuerpos multiespecíficos y/o anticuerpos activables multiespecíficos se diseñan para unirse o interactuar de cualquier otra forma con más de una diana y/o más de un epítopo, además denominado en la presente descripción como anticuerpos dirigidos a múltiples antígenos y/o anticuerpos activables dirigidos a múltiples antígenos. Como se usa en la presente descripción, los términos "diana" y "antígeno" se usan de manera intercambiable.

5

10

15

20

25

30

35

40

45

50

55

60

65

En algunas modalidades, los anticuerpos multiespecíficos que se acoplan a la célula efectora inmune incluyen un anticuerpo de dirigido o un fragmento de unión a antígeno de este y un anticuerpo que se acopla a la célula efectora inmune o una porción de unión a antígeno de este. En algunas modalidades, los anticuerpos multiespecíficos que se acoplan a la célula efectora inmune incluyen un anticuerpo dirigido a cáncer o un fragmento de unión a antígeno de este y un anticuerpo que se acopla a una célula efectora inmune o una porción de unión a antígeno de este. En algunas modalidades, los anticuerpos multiespecíficos que se acoplan a la célula efectora inmune incluyen un anticuerpo IgG dirigido a cáncer o un fragmento de unión a antígeno de este y un scFv que se acopla a la célula efectora inmune. En algunas modalidades, la célula efectora inmune es un leucocito. En algunas modalidades, la célula efectora inmune es una célula T. En algunas modalidades, la célula efectora inmune es una célula NK. En algunas modalidades, la célula efectora inmune es una célula mononuclear mieloide.

En algunas modalidades, los anticuerpos multiespecíficos que se acoplan a la célula T incluyen un anticuerpo dirigido o fragmento de unión a antígeno de este y anticuerpo que se acopla a la célula T o una porción de unión a antígeno. En alguna modalidad, los anticuerpos multiespecíficos que se acoplan a las células T incluyen un anticuerpo dirigido a cáncer o un fragmento de unión a antígeno de este y un anticuerpo que se acopla a la célula T o porción de unión a antígeno. En algunas modalidades, los anticuerpos multiespecíficos que se acoplan a la célula T incluyen un anticuerpo IgG dirigido a cáncer o un fragmento de unión a antígeno de este y un scFv que se acopla a la célula T. En algunas modalidades, el anticuerpo multiespecífico que se acopla a la célula T incluye un scFv anti-CD3 épsilon (CD3ε, además referido en la presente descripción como CD3e y CD3) y un anticuerpo dirigido o fragmento de unión a antígeno de este. En algunas modalidades, el anticuerpo multiespecífico que se acopla a la célula T incluye un scFv anti-CD3ε y un anticuerpo dirigido a cáncer o un fragmento de unión a antígeno de este. En algunas modalidades, el anticuerpo multiespecífico que se acopla a la célula T incluye un scFv anti-CD3 épsilon (CD3ε) que se deriva de OKT3. En algunas modalidades, el anticuerpo multiespecífico que se acopla a la célula T incluye un scFv anti-CD3 épsilon (CD3ε) que se deriva de OKT3. En algunas modalidades, el anticuerpo multiespecífico que se acopla a la célula T incluye un scFv anti-CTLA-4.

En algunas modalidades, los anticuerpos activables multiespecíficos que se acoplan a las células efectoras inmunes de la descripción incluyen un anticuerpo dirigido o fragmento de unión a antígeno de este y un anticuerpo que se acopla a célula efectora inmune o porción de unión a antígeno de este, donde se enmascara al menos uno de los anticuerpos dirigidos o el fragmento de unión a antígeno de este y/o el anticuerpo que se acopla a la célula efectora inmune o la porción de unión a antígeno de este. En algunas modalidades, el anticuerpo que se acopla a la célula efectora inmune o fragmento de unión a antígeno de este incluye un primer anticuerpo o fragmento de unión a antígeno de este (AB1) que se une a una primera diana que se acopla a la célula efectora inmune, donde el AB1 se une a una entidad enmascarante (MM1) de manera que el acoplamiento de la MM1 reduce la capacidad del AB1 para unir la primera diana. En algunas modalidades, el anticuerpo dirigido o fragmento de unión a antígeno de este incluye un segundo anticuerpo o fragmento de este que incluye un segundo anticuerpo o fragmento de unión a antígeno de este (AB2) que se une a una segunda diana, donde el AB2 se une a una entidad enmascarante (MM2) de manera que el acoplamiento de la MM2 reduce la capacidad del AB2 para unir la segunda diana. En algunas modalidades, el anticuerpo que se acopla a la célula efectora inmune o fragmento de unión a antígeno de este incluye un primer anticuerpo o fragmento de unión a antígeno de este (AB1) que se une a una primera, diana que se acopla a la célula efectora inmune, donde el AB1 se une a una entidad enmascarante (MM1) de manera que el acoplamiento de la MM1 reduce la capacidad del AB1 para unirse a la primera diana, y el anticuerpo dirigido o fragmento de unión a antígeno de este incluye un segundo anticuerpo o fragmento de este que incluye un segundo anticuerpo o fragmento de unión a antígeno de este (AB2) que se une a una segunda diana, donde el AB2 se une a una entidad enmascarante (MM2) de manera que el acoplamiento de MM2 reduce la capacidad de AB2 para unirse a la segunda diana. En algunas modalidades, el anticuerpo que se acopla a la célula efectora no inmune es un anticuerpo dirigido a cáncer. En algunas modalidades, el anticuerpo efector de célula no inmune es una IgG. En algunas modalidades, el anticuerpo que se acopla a la célula efectora inmune es un scFv. En algunas modalidades, el anticuerpo dirigido (por ejemplo, anticuerpo efector de célula no inmune) es una IgG y el anticuerpo que se acopla a la célula efectora inmune es un scFv. En algunas modalidades, la célula efectora inmune es un leucocito. En algunas modalidades, la célula efectora inmune es una célula T. En algunas modalidades, la célula efectora inmune es una célula NK. En algunas modalidades, la célula efectora inmune es una célula mononuclear mieloide.

En algunas modalidades, los anticuerpos activables multiespecíficos que se acoplan a las células T de la descripción incluyen un anticuerpo dirigido o fragmento de unión a antígeno de este y un anticuerpo que se acopla a la célula T o porción de unión a antígeno de este, donde se enmascara al menos uno de anticuerpo dirigido o fragmento de unión a antígeno de este y/o el anticuerpo que se acopla a la célula T o la porción de unión a antígeno de este. En algunas modalidades, el anticuerpo que se acopla a la célula T o fragmento de unión a antígeno de este incluye un primer anticuerpo o fragmento de unión a antígeno de este (AB 1) que se une a una primera diana que se acopla a la célula T, donde el AB1 se une a una entidad enmascarante (MM1) de manera que el acoplamiento de la MM1 reduce la capacidad del AB1 para unir la primera diana. En algunas modalidades, el anticuerpo dirigido o fragmento de unión a antígeno de este incluye un segundo anticuerpo o fragmento de unión a

antígeno de este (AB2) que se une a una segunda diana, donde el AB2 se une a una entidad enmascarante (MM2) de manera que el acoplamiento de la MM2 reduce la capacidad del AB2 para unir la segunda diana. En algunas modalidades, el anticuerpo de unión a células T o fragmento de unión a antígeno de este incluye un primer anticuerpo o fragmento de unión a antígeno de este (AB1) que se une a una primera diana que se acopla a la célula T, donde el AB1 se une a una entidad enmascarante (MM1) de manera que el acoplamiento de MM1 reduce la capacidad del AB1 para unirse a la primera diana, y el anticuerpo a la primera diana o fragmento de unión a antígeno de este incluye un segundo anticuerpo o fragmento de este que incluye un segundo anticuerpo o fragmento de unión a antígeno de este (AB2) que se une a una segunda diana, donde el AB2 se une a una entidad enmascarante (MM2) de manera que el acoplamiento de la MM2 reduce la capacidad del AB2 para unirse a la segunda diana.

10

15

20

25

En algunas modalidades, los anticuerpos activables multiespecíficos que se acoplan a las células T incluyen un anticuerpo dirigido a cáncer o un fragmento de unión a antígeno de este y un anticuerpo que se acopla a la célula T o porción de unión a antígeno de este, donde se enmascara al menos uno de los anticuerpos dirigidos a cáncer o el fragmento de unión a antígeno de este y/o el anticuerpo que se acopla a la célula T o la porción de unión a antígeno de este. En algunas modalidades, el anticuerpo que se acopla a la célula T o fragmento de unión a antígeno de este incluye un primer anticuerpo o fragmento de unión a antígeno de este (AB1) que se une a una primera diana que se acopla a la célula T, donde el AB1 se une a una entidad enmascarante (MM1) de manera que el acoplamiento de la MM1 reduce la capacidad del AB1 para unir la primera diana. En algunas modalidades, el anticuerpo dirigido a cáncer o fragmento de unión a antígeno de este incluye un segundo anticuerpo o fragmento de este que incluye un segundo anticuerpo o fragmento de unión a antígeno de este (AB2) que se une a una segunda diana relacionada con el cáncer, donde AB2 se une a una entidad enmascarante (MM2) de manera que el acoplamiento de MM2 reduce la capacidad del AB2 para unirse a la segunda diana relacionada con el cáncer. En algunas modalidades, el anticuerpo que se acopla a la célula T o fragmento de unión a antígeno de este incluye un primer anticuerpo o fragmento de unión a antígeno de este (AB 1) que se une a una primera diana que se acopla a la célula T, donde el AB1 se une a una entidad enmascarante (MM1)de manera que el acoplamiento de MM1 reduce la capacidad del AB1 para unirse a la primera diana, y el anticuerpo dirigido a cáncer o fragmento de unión a antígeno de este incluye un segundo anticuerpo o fragmento de este que incluye un segundo anticuerpo o fragmento de unión al antígeno de este (AB2) que se une a una segunda diana relacionada con el cáncer, donde el AB2 se une a una entidad enmascarante (MM2) de manera que el acoplamiento de la MM2 reduce la capacidad del AB2 para unirse a la segunda diana relacionada con el cáncer.

30

35

40

45

En algunas modalidades, los anticuerpos activables multiespecíficos que se acoplan a las células T incluyen un anticuerpo IgG dirigido a cáncer o un fragmento de unión a antígeno de este y un scFv que se acopla a la célula T, donde se enmascara al menos uno de los anticuerpos IgG dirigidos a cáncer o fragmento de unión a antígeno de este y/o el anticuerpo que se acopla con la célula T o la porción de unión a antígeno de este. En algunas modalidades, el anticuerpo que se acopla a la célula T o fragmento de unión a antígeno de este incluye un primer anticuerpo o fragmento de unión a antígeno de este (AB1) que se une a una primera diana que se acopla a la célula T, donde el AB1 se une a una entidad enmascarante (MM1) de manera que el acoplamiento de la MM1 reduce la capacidad del AB1 para unir la primera diana. En algunas modalidades, el anticuerpo IgG dirigido a cáncer o fragmento de unión a antígeno de este incluye un segundo anticuerpo o fragmento de este que incluye un segundo anticuerpo o fragmento de unión a antígeno de este (AB2) que se une a una segunda diana relacionada con el cáncer, donde el AB2 se une a una entidad enmascarante (MM2) de manera que el acoplamiento de la MM2 reduce la capacidad del AB2 para unirse a la segunda diana relacionada con el cáncer. En algunas modalidades, el anticuerpo que se acopla a la célula T o fragmento de unión a antígeno de este incluye un primer anticuerpo o fragmento de unión a antígeno de este (AB1) que se une a una primera diana que se acopla a la célula T, donde el AB1 se une a una entidad enmascarante (MM1) de manera que el acoplamiento de MM1 reduce la capacidad del AB1 para unirse a la primera diana, y el anticuerpo IgG dirigido a cáncer o fragmento de unión a antígeno de este incluye un segundo anticuerpo o fragmento de este que incluye un segundo anticuerpo o fragmento de unión a antígeno de este (AB2) que se une a una segunda diana relacionada con el cáncer, donde el AB2 se une a una entidad enmascarante (MM2) de manera que el acoplamiento de la MM2 reduce la capacidad del AB2 para unirse a la segunda diana relacionada con el cáncer.

50

55

60

65

En algunas modalidades de un anticuerpo activable multiespecífico que se acopla con células efectoras inmunes, un antígeno es típicamente un antígeno presente en la superficie de una célula tumoral u otro tipo de célula asociada con la enfermedad, tal como, pero no se limita a, cualquier diana enumerada en la Tabla 1, tales como, pero no se limita a, EGFR, erbB2, EpCAM, Jagged, PD-L1, B7H3 o CD71 (receptor de transferrina), y otro antígeno es típicamente un receptor estimulante o inhibidor presente en la superficie de una célula T, célula asesina natural (NK), célula mononuclear mieloide, macrófago y/u otras células efectoras inmunes, tales como, pero no se limita a, B7-H4, BTLA, CD3, CD4, CD8, CD16a, CD25, CD27, CD28, CD32, CD56, CD137, CTLA-4, GITR, HVEM, ICOS, LAG3, NKG2D, OX40, PD-1, TIGIT, TIM3, o VISTA. En algunas modalidades, el antígeno es un receptor estimulante presente en la superficie de una célula T o célula NK; ejemplos de tales receptores estimuladores incluyen, pero no se limitan a, CD3, CD27, CD28, CD137 (además denominado 4-1BB), GITR, HVEM, ICOS, NKG2D y OX40. En algunas modalidades, el antígeno es un receptor inhibidor presente en la superficie de una célula T; ejemplos de tales receptores inhibidores incluyen, pero no se limitan a, BTLA, CTLA-4, LAG3, PD-1, TIGIT, TIM3, y los KIR expresados en NK. El dominio de anticuerpo que confiere especificidad al antígeno de superficie de la célula T además puede sustituirse por un ligando o dominio de ligando que se une a un receptor de la célula T, un receptor de célula NK, un receptor de macrófago y/o de otro receptor de célula efectora inmune, tales como, pero no se limita a, B7-1, B7-2, B7H3, PD-L1, PD-L2, o TNFSF9.

Una modalidad de la descripción es un anticuerpo activable multiespecífico que es activable en un microambiente cancerígeno y que incluye un anticuerpo, por ejemplo una IgG o scFv, dirigido a una diana tumoral y un anticuerpo agonista, por ejemplo una IgG o scFv, dirigido a un receptor coestimulador expresado en la superficie de una célula T o célula NK activada, en donde se enmascara al menos uno de anticuerpo dirigido del cáncer y/o anticuerpo agonista. Los ejemplos de receptores coestimuladores incluyen, pero no se limitan a, CD27, CD 13 7, GITR, HVEM, NKG2D, y OX40. En esta modalidad, el anticuerpo activable multiespecífico, una vez activado por las proteasas asociadas al tumor, reticularía y activaría eficazmente los receptores coestimulatorios expresados en células T o NK de una manera dependiente del tumor para potenciar la actividad de las células T que son respondedoras a cualquier antígeno tumoral a través de su antígeno de célula T endógeno o receptores activadores de NK. La naturaleza dependiente de la activación de estos receptores coestimuladores de células T o NK enfocaría la actividad del anticuerpo activable multiespecífico activado a células T específicas de tumor, sin activar todas las células T independientemente de su especificidad de antígeno. En una modalidad, al menos el anticuerpo del receptor coestimulador del anticuerpo activable multiespecífico se enmascara para prevenir la activación de células T autorreactivas que pueden estar presentes en tejidos que además expresan el antígeno reconocido por el anticuerpo dirigido a la diana tumoral en el anticuerpo activable multiespecífico, pero cuya actividad se restringe por la falta de acoplamiento del correceptor.

10

15

20

25

30

Una modalidad de la descripción es un anticuerpo activable multiespecífico que es activable en una enfermedad caracterizada por la sobreestimulación de células T, tal como, pero sin no se limita a, una enfermedad autoinmune o microambiente de enfermedad inflamatoria. Un anticuerpo activable multiespecífico de ese tipo incluye un anticuerpo, por ejemplo una IgG o scFv, dirigido a una diana que comprende un antígeno de superficie expresado en un tejido dirigido por una célula T en la enfermedad autoinmune o inflamatoria y un anticuerpo, por ejemplo una IgG o scFv, dirigido a un receptor inhibidor expresado en la superficie de una célula T o célula NK, en donde se enmascara al menos uno de los anticuerpos diana del tejido de enfermedad y/o anticuerpo del receptor inhibidor de células T. Los ejemplos de receptores inhibidores incluyen, pero no se limitan a, BTLA, CTLA-4, LAG3, PD-1, TIGIT, TIM3, y los KIR expresados en NK. Ejemplos de un antígeno tisular dirigido por células T en la enfermedad autoinmune incluyen, pero no se limitan a, un antígeno de superficie expresado en mielina o células nerviosas en la esclerosis múltiple o un antígeno de superficie expresado en células de islotes pancreáticos en la diabetes tipo 1. En esta modalidad, el anticuerpo activable multiespecífico cuando se localiza en el tejido bajo el ataque autoinmune o inflamación se activa y coacopla al receptor inhibidor de células T o NK para suprimir la actividad de células T autorreactivas respondedoras a cualquier antígeno dirigido a tejido de la enfermedad a través de sus TCR endógenos o receptores activadores. En una modalidad, al menos uno o múltiples anticuerpos se enmascaran para evitar la supresión de las respuestas de células T deseadas en tejidos que no son de la enfermedad donde además puede expresarse el antígeno diana.

En algunas modalidades, el anticuerpo activable multiespecífico que se acopla a células T incluye un scFv anti-CD3 35 épsilon (CD3ε, además denominado en la presente descripción CD3e y CD3) y un anticuerpo dirigido o fragmento de unión a antígeno de este, donde se enmascara al menos uno del scFv anti-CD3ε y/o el anticuerpo dirigido o la porción de unión al antígeno de este. En algunas modalidades, el scFv CD3ɛ incluve un primer anticuerpo o fragmento de unión a antígeno de este (AB1) que se une a CD3ɛ, donde el AB1 se une a una entidad enmascarante (MM1) de manera que el acoplamiento de la MM1 reduce la capacidad del AB1 para unir CD3s. En algunas modalidades, el anticuerpo dirigido o 40 fragmento de unión a antígeno de este incluye un segundo anticuerpo o fragmento de este que incluye un segundo anticuerpo o fragmento de unión a antígeno de este (AB2) que se une a una segunda diana, donde el AB2 se une a una entidad enmascarante (MM2) de manera que el acoplamiento de la MM2 reduce la capacidad del AB2 para unir la segunda diana. En algunas modalidades, el scFv CD3ɛ incluye un primer anticuerpo o fragmento de unión a antígeno de este (AB1) que se une a CD3ε, donde el AB1 se une a una entidad enmascarante (MM1) de manera que el acoplamiento de la MM1 45 reduce la capacidad del AB1 para unirse a CD3ε, y el anticuerpo dirigido o fragmento de unión a antígeno de este incluye un segundo anticuerpo o fragmento de este que incluye un segundo anticuerpo o fragmento de unión a antígeno de este (AB2) que se une a una segunda diana, donde el AB2 se une a una entidad enmascarante (MM2) de manera que el acoplamiento de la MM2 reduce la capacidad del AB2 para unir la segunda diana.

50 En algunas modalidades, el anticuerpo activable multiespecífico que se acopla con la célula T incluye un scFv anti-CD3ε y un anticuerpo dirigido a cáncer o fragmento de unión a antígeno de este, donde se enmascara al menos uno de los scFv anti-CD3ɛ y/o el anticuerpo dirigido de cáncer o porción de unión a antígeno de este. En algunas modalidades, el scFv CD3ɛ incluye un primer anticuerpo o fragmento de unión a antígeno de este (AB1) que se une a CD3ɛ, donde el AB1 se une a una entidad enmascarante (MM1) de manera que el acoplamiento de la MM1 reduce la capacidad del AB1 para 55 unir CD3ɛ. En algunas modalidades, el anticuerpo dirigido a cáncer o fragmento de unión a antígeno de este incluye un segundo anticuerpo o fragmento de este que incluye un segundo anticuerpo o fragmento de unión a antígeno de este (AB2) que se une a una segunda diana relacionada con el cáncer, donde AB2 se une a una entidad enmascarante (MM2) de manera que el acoplamiento de MM2 reduce la capacidad del AB2 para unirse a la segunda diana relacionada con el cáncer. En algunas modalidades, el scFv CD3ɛ incluye un primer anticuerpo o fragmento de unión a antígeno de este 60 (AB1) que se une a CD3ɛ, donde el AB1 se une a una entidad enmascarante (MM1) de manera que el acoplamiento de la MM1 reduce la capacidad del AB1 para unirse a CD3ε, y el anticuerpo dirigido al cáncer o fragmento de unión a antígeno de este incluye un segundo anticuerpo o fragmento de este que incluye un segundo anticuerpo o fragmento de unión a antígeno de este (AB2) que se une a una segunda diana relacionada con cáncer, donde se une el AB2 a una entidad enmascarante (MM2) de manera que el acoplamiento de la MM2 reduce la capacidad del AB2 para unirse a la segunda diana relacionada con el cáncer. 65

En algunas modalidades, el anticuerpo activable multiespecífico que se acopla a células T incluye un scFv anti-CD3ɛ y un anticuerpo IgG dirigido a cáncer o fragmento de unión a antígeno de este, donde se enmascara al menos uno de scFv anti-CD3ɛ y/o el anticuerpo IgG dirigido a cáncer o la porción de unión a antígeno de este. En algunas modalidades, el scFv CD3ε incluye un primer anticuerpo o fragmento de unión a antígeno de este (AB1) que se une a CD3ε, donde el AB1 se une a una entidad enmascarante (MM1) de manera que el acoplamiento de la MM1 reduce la capacidad del AB1 para unir CD3ε. En algunas modalidades, el anticuerpo IgG dirigido a cáncer o fragmento de unión a antígeno de este incluye un segundo anticuerpo o fragmento de este que incluye un segundo anticuerpo o fragmento de unión a antígeno de este (AB2) que se une a una segunda diana relacionada con el cáncer, donde el AB2 se une a una entidad enmascarante (MM2) de manera que el acoplamiento de la MM2 reduce la capacidad del AB2 para unirse a la segunda diana relacionada con el cáncer. En algunas modalidades, el scFv CD3ε incluye un primer anticuerpo o fragmento de unión a antígeno de este (AB1) que se une a CD3ε, donde el AB1 se une a una entidad enmascarante (MM1) de manera que el acoplamiento de la MM1 reduce la capacidad del AB1 para unirse a CD3ɛ, y anticuerpo IgG dirigido a cáncer o fragmento de unión a antígeno de este incluye un segundo anticuerpo o fragmento de este que incluye un segundo anticuerpo o fragmento de unión a antígeno de este (AB2) que se une a una segunda diana relacionada con cáncer, donde AB2 se une a una entidad enmascarante (MM2) de manera que el acoplamiento de la MM2 reduce la capacidad del AB2 para unirse a la segunda diana relacionada con el cáncer.

10

15

20

25

30

40

55

60

65

En algunas modalidades, el anticuerpo activable multiespecífico que se acopla con la célula T incluye un scFv anti-CD3 épsilon (CD3ε) que se deriva de OKT3, donde se enmascara al menos uno del anticuerpo dirigido o fragmento de unión a antígeno de este y/o scFv OKT3 o scFv derivado de OKT3. En algunas modalidades, el scFv OKT3 o scFv derivado de OKT3 incluye un primer anticuerpo o fragmento de unión a antígeno de este (AB1) que se une a CD3ɛ, donde el AB1 se une a una entidad enmascarante (MM1) de manera que el acoplamiento de la MM1 reduce la capacidad del AB1 para unir CD3ɛ. En algunas modalidades, el anticuerpo dirigido o fragmento de unión a antígeno de este incluye un segundo anticuerpo o fragmento de este que incluye un segundo anticuerpo o fragmento de unión a antígeno de este (AB2) que se une a una segunda diana, donde el AB2 se une a una entidad enmascarante (MM2) de manera que el acoplamiento de la MM2 reduce la capacidad del AB2 para unir la segunda diana. En algunas modalidades, el scFv OKT3 o scFv derivado de OKT3 incluye un primer anticuerpo o fragmento de unión a antígeno de este (AB1) que se une a CD3ɛ, donde el AB1 se une a una entidad enmascarante (MM1) de manera que el acoplamiento de la MM1 reduce la capacidad del AB1 para unirse a CD3ε, y el anticuerpo dirigido o fragmento de unión a antígeno de este incluye un segundo anticuerpo o fragmento de este que incluye un segundo anticuerpo o fragmento de unión a antígeno de este (AB2) que se une a una segunda diana, donde se une el AB2 a una entidad enmascarante (MM2) de manera que el acoplamiento de la MM2 reduce la capacidad del AB2 para unirse a la segunda diana.

En algunas modalidades, el anticuerpo activable multiespecífico que se acopla a la célula T incluye un scFv OKT3 o scFv 35 derivado de OKT3 y un anticuerpo dirigido a cáncer o fragmento de unión a antígeno de este, donde se enmascara al menos uno de los scFv OKT3 o scFv derivado de OKT3 y/o el anticuerpo dirigido a cáncer o la porción de unión a antígeno de este. En algunas modalidades, el scFv OKT3 o scFv derivado de OKT3 incluye un primer anticuerpo o fragmento de unión a antígeno de este (AB1) que se une a CD3ε, donde el AB1 se une a una entidad enmascarante (MM1) de manera que el acoplamiento de la MM1 reduce la capacidad del AB1 para unir CD3s. En algunas modalidades, el anticuerpo dirigido a cáncer o fragmento de unión a antígeno de este incluye un segundo anticuerpo o fragmento de este que incluye un segundo anticuerpo o fragmento de unión a antígeno de este (AB2) que se une a una segunda diana relacionada con el cáncer, donde AB2 se une a una entidad enmascarante (MM2) de manera que el acoplamiento de MM2 reduce la capacidad del AB2 para unirse a la segunda diana relacionada con el cáncer. En algunas modalidades, el scFv OKT3 o scFv derivado de OKT3 incluye un primer anticuerpo o fragmento de unión a antígeno de este (AB1) que se une a CD3ɛ, 45 donde el AB1 se une a una entidad enmascarante (MM1) de manera que el acoplamiento de la MM1 reduce la capacidad del AB1 para unirse a CD3ɛ, y el anticuerpo dirigido al cáncer o fragmento de unión a antígeno de este incluye un segundo anticuerpo o fragmento de este que incluye un segundo anticuerpo o fragmento de unión al antígeno de este (AB2) que se une a una segunda diana relacionada con el cáncer donde el AB2 se une a una entidad enmascarante (MM2) de manera que el acoplamiento de la MM2 reduce la capacidad del AB2 para unirse a la segunda diana relacionada con el 50 cáncer.

En algunas modalidades, el anticuerpo activable multiespecífico que se acopla a la célula T incluye un scFv OKT3 o scFv derivado de OKT3 y un anticuerpo IgG dirigido a cáncer o un fragmento de unión a antígeno de este, donde se enmascara al menos uno de scFv OKT3 o scFv derivado de OKT3 y/o el anticuerpo IgG dirigido a cáncer o la porción de unión a antígeno de este. En algunas modalidades, el scFv OKT3 o scFv derivado de OKT3 incluye un primer anticuerpo o fragmento de unión a antígeno de este (AB1) que se une a CD3ε, donde el AB1 se une a una entidad enmascarante (MM1) de manera que el acoplamiento de la MM1 reduce la capacidad del AB1 para unir CD3ɛ. En algunas modalidades, el anticuerpo IgG dirigido a cáncer o fragmento de unión a antígeno de este incluye un segundo anticuerpo o fragmento de este que incluye un segundo anticuerpo o fragmento de unión a antígeno de este (AB2) que se une a una segunda diana relacionada con el cáncer, donde el AB2 se une a una entidad enmascarante (MM2) de manera que el acoplamiento de la MM2 reduce la capacidad del AB2 para unirse a la segunda diana relacionada con el cáncer. En algunas modalidades, el scFv OKT3 o scFv derivado de OKT3 incluye un primer anticuerpo o fragmento de unión a antígeno de este (AB1) que se une a CD3ε, donde el AB1 se une a una entidad enmascarante (MM1) de manera que el acoplamiento de la MM1 reduce la capacidad del AB1 para unirse a CD3ɛ, y el anticuerpo IgG dirigido a cáncer o su fragmento de unión a antígeno incluye un segundo anticuerpo o fragmento de este que incluye un segundo anticuerpo o fragmento de unión a antígeno de este (AB2) que se une a una segunda diana relacionada con cáncer, donde el AB2 se une a una entidad enmascarante (MM2) de manera que el acoplamiento de la MM2 reduce la capacidad del AB2 para unirse a la segunda diana relacionada con el cáncer.

En algunas modalidades, el anticuerpo activable multiespecífico que se acopla a la célula T incluye un scFv anti-CTLA-4, donde se enmascara al menos uno de los anticuerpos dirigidos o fragmento de unión a antígeno de este y/o el scFv anti-CTLA-4. En algunas modalidades, el scFv anti-CTLA-4 incluye un primer anticuerpo o fragmento de unión a antígeno de este (AB1) que se une a CTLA-4, donde el AB1 se une a una entidad enmascarante (MM1) de manera que el acoplamiento de la MM1 reduce la capacidad del AB1 para unir CTLA-4. En algunas modalidades, el anticuerpo dirigido o fragmento de unión a antígeno de este incluye un segundo anticuerpo o fragmento de este que incluye un segundo anticuerpo o fragmento de unión a antígeno de este (AB2) que se une a una segunda diana, donde el AB2 se une a una entidad enmascarante (MM2) de manera que el acoplamiento de la MM2 reduce la capacidad del AB2 para unir la segunda diana. En algunas modalidades, el scFv anti-CTLA-4 incluye un primer anticuerpo o fragmento de unión a antígeno de este (AB1) que se une a CTLA-4, donde el AB1 se une a una entidad enmascarante (MM1) de manera que el acoplamiento de la MM1 reduce la capacidad del AB1 para unir CTLA-4, y el anticuerpo dirigido o fragmento de unión a antígeno de este incluye un segundo anticuerpo o fragmento de unión al antígeno de este (AB2) que se une a una segunda diana, donde el AB2 se une a una entidad enmascarante (MM2) de manera que el acoplamiento de la MM2 reduce la capacidad del AB2 para unirse a la segunda diana.

5

10

15

65

En algunas modalidades, el anticuerpo activable multiespecífico que se acopla a las células T incluye un scFv anti-CTLA-20 4 y un anticuerpo IgG dirigido o fragmento de unión a antígeno de este, donde al menos uno de los scFv anti-CTLA-4 y/o se enmascara el anticuerpo IgG dirigido o la porción de unión a antígeno de este. En algunas modalidades, el scFv anti-CTLA-4 incluye un primer anticuerpo o fragmento de unión a antígeno de este (AB1) que se une a CTLA-4, donde el AB1 se une a una entidad enmascarante (MM1) de manera que el acoplamiento de la MM1 reduce la capacidad del AB1 para unirse a CTLA-4. En algunas modalidades, el anticuerpo IgG dirigido o fragmento de unión a antígeno de este incluye un 25 segundo anticuerpo o fragmento de este que incluye un segundo anticuerpo o fragmento de unión a antígeno de este (AB2) que se une a una segunda diana, donde el AB2 se une a una entidad enmascarante (MM2) de manera que el acoplamiento de la MM2 reduce la capacidad del AB2 para unirse a la segunda diana. En algunas modalidades, el scFv anti-CTLA-4 incluye un primer anticuerpo o fragmento de unión a antígeno de este (AB1) que se une a CTLA-4, donde el AB1 se une a una entidad enmascarante (MM1) de manera que el acoplamiento de la MM1 reduce la capacidad del AB1 30 para unirse a CTLA-4, y la IgG de anticuerpo dirigido o fragmento de unión a antígeno de este incluye un segundo anticuerpo o fragmento de este que incluye un segundo anticuerpo o fragmento de unión a antígeno de este (AB2) que se une a una segunda diana, donde el AB2 se une a una entidad enmascarante (MM2) de manera que el acoplamiento de la MM2 reduce la capacidad del AB2 para unirse a la segunda diana.

En algunas modalidades, los anticuerpos que se dirigen a múltiples antígenos y/o anticuerpos activables que se dirigen a múltiples antígenos incluyen al menos un primer anticuerpo o fragmento de unión a antígeno de este que se une a una primera diana y/o primer epítopo y a un segundo anticuerpo o un fragmento de unión a antígeno de este que se une a una segunda diana y/o un segundo epítopo. En algunas modalidades, los anticuerpos que se dirigen a múltiples antígenos y/o los anticuerpos activables que se dirigen a múltiples antígenos se unen a dos o más dianas diferentes. En algunas modalidades, los anticuerpos que se dirigen a múltiples antígenos unen dos o más epítopos diferentes en la misma diana. En algunas modalidades, los anticuerpos que se dirigen a múltiples antígenos y/o los anticuerpos activables que se dirigen a múltiples antígenos se unen a una combinación de dos o más dianas diferentes y dos o más epítopos diferentes en la misma diana.

Se muestran diversas modalidades de anticuerpos activables multiespecíficos de la descripción en las Figuras 3A, y 5-9. 45 En algunas modalidades, un anticuerpo activable multiespecífico que comprende una IgG tiene los dominios variables IgG enmascarados. En algunas modalidades, un anticuerpo activable multiespecífico que comprende un scFv tiene los dominios scFv enmascarados. En algunas modalidades, un anticuerpo activable multiespecífico tiene dominios variables IgG y dominios scFv, donde al menos uno de los dominios variables IgG se acopla a una entidad enmascarante. En 50 algunas modalidades, un anticuerpo activable multiespecífico tiene dominios variables IgG y dominios scFv, donde al menos uno de los dominios de scFv se acopla a una entidad enmascarante. En algunas modalidades, un anticuerpo activable multiespecífico tiene tanto dominios variables IgG como dominios scFv, donde al menos uno de los dominios variables IgG se acopla a una entidad enmascarante y al menos uno de los dominios scFv se acopla a una entidad enmascarante. En algunas modalidades, un anticuerpo activable multiespecífico tiene tanto dominios variables IgG como 55 dominios scFv, donde cada uno de los dominios variables IgG y los dominios scFv se acopla a su propia entidad enmascarante. En algunas modalidades, un dominio de anticuerpo de un anticuerpo activable multiespecífico tiene especificidad para un antígeno diana y otro dominio de anticuerpo tiene especificidad para un antígeno de superficie de célula T. En algunas modalidades, un dominio de anticuerpo de un anticuerpo activable multiespecífico tiene especificidad para un antígeno diana y otro dominio de anticuerpo tiene especificidad para otro antígeno diana. En algunas modalidades, 60 un dominio de anticuerpo de un anticuerpo activable multiespecífico tiene especificidad por un epítopo de un antígeno diana y otro dominio de anticuerpo tiene especificidad por otro epítopo del antígeno diana.

En un anticuerpo activable multiespecífico, un scFv puede fusionarse al extremo carboxilo de la cadena pesada de un anticuerpo activable IgG, al extremo carboxilo de la cadena ligera de un anticuerpo activable IgG, o a los extremos carboxilo tanto de las cadenas pesada como ligera de un anticuerpo activable IgG. En un anticuerpo activable multiespecífico, un scFv puede fusionarse al extremo amino de la cadena pesada de un anticuerpo activable IgG, al

extremo amino de la cadena ligera de un anticuerpo activable IgG, o a los extremos amino tanto de las cadenas pesada como ligera de un anticuerpo activable IgG. En un anticuerpo activable multiespecífico, un scFv puede fusionarse a cualquier combinación de uno o más extremos carboxilo y uno o más extremos amino de un anticuerpo activable IgG. En algunas modalidades, una entidad enmascarante (MM) enlazada a una entidad escindible (CM) se une y enmascara un dominio de unión a antígeno de la IgG. En algunas modalidades, una entidad enmascarante (MM) enlazada a una entidad escindible (CM) se une y enmascara un dominio de unión a antígeno de al menos un scFv. En algunas modalidades, una entidad enmascarante (MM) enlazada a una entidad escindible (CM) se une y enmascara un dominio de unión a antígeno de una IgG y una entidad enmascarante (MM) enlazada a una entidad escindible (CM) se une a y enmascara un dominio de unión a antígeno de al menos un scFv.

10

15

20

25

30

La descripción proporciona ejemplos de estructuras de anticuerpos activables multiespecíficos que incluyen, pero no se limitan a, las siguientes: (VL-CL)₂:(VH-CH1-CH2-CH3-L4-VH*-L3-VL*-L2-CM-L1-MM)₂; (VL-CL)₂:(VH-CH1-CH2-CH3-L4-(MM-L1-CM-L2-VL-CL)₂:(VH-CH1-CH2-CH3-L4-VH*-L3-VL*)₂; $VL^*-L3-VH^*-L2-CM-L1-MM)_2$; (MM-L1-CM-L2-VL-CM-L2-VL-CL)₂:(VH*-L3-VL*-L4-VH-CH1-CH2-CH3)₂; (VL-CL-L4-VH*-L3-VL*-L2-CM-L1-MM)₂:(VH-CH1-CH2-CH3)₂; (VL-CL-L4-VL*-L3-VH*-L2-CM-L1-MM)₂:(VH-CH1-CH2-CH3)₂; (MM-L1-CM-L2-VL*-L3-VH*-L4-VL-CL)₂:(VH-CH1-CH2-CH3)₂; (MM-L1-CM-L2-VH*-L3-VL*-L4-VL-CL)₂:(VH-CH1-CH2-CH3)₂; (VL-CL-L4-VH*-L3-VL*-L2-CM-L1-MM)₂: (MM-L1-CM-L2-VL*-L3-VH*-L4-VH-CH1-CH2-CH3)₂; (VL-CL-L4-VH*-L3-VL*-L2-CM-L1-MM)₂: (MM-L1-CM-L2-VH*-L3-VL*-L4-VH-CH1-CH2-CH3)₂; (VL-CL-L4-VL*-L3-VH*-L2-CM-L1-MM)₂: (MM-L1-CM-L2-VL*-L3-VH*-L4-VH-CH1-CH2-CH3)₂; (VL-CL-L4-VL*-L3-VH*-L2-CM-L1-MM)₂: (MM-L1-CM-L2-VL*-L3-VH*-L4-VH-CH1-CH2-CH3)₂; (VL-CL-L4-VL*-L3-VH*-L3-VH*-L4-VH-CH1-CH2-CH3)₂; (VL-CL-L4-VL*-L3-VH*-L3-VH*-L3-VL*-L3-VH*-L4-VH-CH1-CH2-CH3)₂; (VL-CL-L4-VL*-L3-VH*-L3-VL*-L3-VL*-L3-VH*-L4-VH-CH1-CH2-CH3)₂; (VL-CL-L4-VL*-L3-VH*-L3-VL*-L3-VH*-L3-VL*-L3-VH*-L3-VL*-L3-VH*-L3-VL*-L3-VH*-L3-VL*-L3-VH*-L3-VL*-L3-VH*-L3-VL*-L3-VH*-L3-VL*-L3-VH*-L3-VH*-L3-VL*-L3-VH*-L3-VL*-L3-VH*-L3-VL*-L3-VH*-L3-VL*-L3-VH*-L3-VL*-L3-VH*-L3-VL*-L3-VH*-L3-VL*-L3-VH*-L3-VH*-L3-VH*-L3-VL*-L3-VH*-L3-VL*-L3-VH*-L3-VL*-L3-VH*-L3-VH*-L3-VH*-L3-VL*-L3-VH*-L3-VH*-L3-VH*-L3-VH*-L3-VH*-L3-VL*-L3-VH*-L3 CL-L4-VL*-L3-VH*-L2-CM-L1-MM)2: (MM-L1-CM-L2-VH*-L3-VL*-L4-VH-CH1-CH2-CH3)2; (VL-CL-L4-VH*-L3-VL*)2: (MM-L1-CM-L2-VH*-L3-VL*-L4-VH-CH1-CH2-CH3)2; (VL-CL-L4-VH*-L3-VL*)2: (MM-L1-CM-L2-VH*-L3-VL*-L4-VH-CH1-CH2-CH3)2; (VL-CL-L4-VH*-L3-VL*)2: (MM-L1-CM-L2-VH*-L3-VL*-L4-VH-CH1-CH2-CH3)2; (VL-CL-L4-VH*-L3-VL*)2: (MM-L1-CM-L2-VH*-L3-VL*-L4-VH-CH1-CH2-CH3)2; (VL-CL-L4-VH*-L3-VL*-L4-VL*-L4-VH*-L3-VL*-L4-VL* L1-CM-L2-VL*-L3-VH*-L4-VH-CH1-CH2-CH3)₂; (VL-CL-L4-VH*-L3-VL*)₂: (MM-L1-CM-L2-VH*-L3-VL*-L4-VH-CH1-CH2-CH3)₂; CH3)2, en donde: VL y VH representan los dominios variables ligeros y pesados de la primera especificidad, contenidos en la IgG; VL* y VH* representan los dominios variables de la segunda especificidad, contenidos en el scFv; L1 es un péptido enlazador que conecta la entidad enmascarante (MM) y la entidad escindible (CM); L2 es un péptido enlazador que conecta la entidad escindible (CM) y el anticuerpo; L3 es un péptido enlazador que conecta los dominios variables del scFv; L4 es un péptido enlazador que conecta el anticuerpo de la primera especificidad con el anticuerpo de la segunda especificidad; CL es el dominio constante de la cadena ligera; y CH1, CH2, CH3 son los dominios constantes de la cadena pesada. La primera y segunda especificidades pueden ser hacia cualquier antígeno o epítopo.

35

40

45

un antígeno presente en la superficie de una célula tumoral u otro tipo de célula asociado con la enfermedad, tal como, pero se no limita a, cualquier diana enumerada en la Tabla 1, tal como, pero no se limita a, EGFR, erbB2, EpCAM, Jagged, PD-L1, B7H3 o CD71 (receptor de transferrina), y otro antígeno es típicamente un receptor estimulante (además denominado en la presente descripción como activador) o inhibidor presente en la superficie de una célula T, célula asesina natural (NK), célula mononuclear mieloide, macrófago y/o de otra célula efectora inmune, tal como, pero no se limita a, B7-H4, BTLA, CD3, CD4, CD8, CD16a, CD25, CD27, CD28, CD32, CD56, CD137 (además denominado TNFRSF9), CTLA-4, GITR, HVEM, ICOS, LAG3, NKG2D, OX40, PD-1, TIGIT, TIM3 o VISTA. El dominio de anticuerpo que confiere especificidad al antígeno de superficie de la célula T además puede sustituirse por un ligando o dominio de ligando que se une a un receptor de la célula T, un receptor de célula NK, un receptor de macrófago y/o de otro receptor de célula efectora inmune, tales como, pero no se limita a, B7-1, B7-2, B7H3, PD-L1, PD-L2, o TNFSF9. En algunas modalidades de un anticuerpo activable dirigido a múltiples antígenos, se selecciona un antígeno del grupo de dianas enumeradas en la Tabla 1, y se selecciona otro antígeno del grupo de dianas enumeradas en la Tabla 1.

En algunas modalidades de un anticuerpo activable multiespecífico que se acopla a la célula T, un antígeno es típicamente

50

En algunas modalidades, el anticuerpo dirigido es un anticuerpo anti-EGFR. En algunas modalidades, el anticuerpo dirigido es C225v5, que es específico para la unión a EGFR. En algunas modalidades, el anticuerpo dirigido es C225v4, que es específico para la unión a EGFR. En algunas modalidades, el anticuerpo dirigido es C225v6, que es específico para la unión a EGFR. En algunas modalidades, el anticuerpo dirigido es C225v6, que es específico para la unión a EGFR. En algunas modalidades, el anticuerpo dirigido es un anticuerpo anti-Jagged. En algunas modalidades, el anticuerpo dirigido es 4D11, que es específico para la unión a Jagged 1 y Jagged 2 humano y de ratón. En algunas modalidades, el anticuerpo dirigido es 4D11v2, que es específico para la unión a Jagged 1 y Jagged 2 humano y de ratón.

55

En algunas modalidades, el anticuerpo dirigido puede estar en forma de un anticuerpo activable. En algunas modalidades, los scFv(s) pueden tener la forma de un Pro-scFv (ver, por ejemplo, documentos de patente núms. WO 2009/025846, WO 2010/081173).

60

En algunas modalidades, el scFv es específico para la unión a CD3ε, y es o se deriva de un anticuerpo o fragmento de este que se une a CD3ε, por ejemplo, CH2527, FN18, H2C, OKT3, 2C11, UCHT1 o V9. En algunas modalidades, el scFv es específico para la unión a CTLA-4 (además denominado en la presente descripción CTLA y CTLA4).

65

En algunas modalidades, el scFv anti-CD3e incluye una secuencia seleccionada del grupo que consiste en las secuencias que se muestran en la Tabla 7 y/o en el Ejemplo 5. En algunas modalidades, el scFv anti-CD3ε incluye una secuencia de

ES 2 683 268 T3

aminoácidos que es al menos 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% o más idéntico a una secuencia de aminoácidos seleccionada del grupo que consiste en las secuencias que se muestran en la Tabla 7 y/o en el Ejemplo 5.

- En algunas modalidades, el scFv es específico para la unión de una o más células T, una o más células NK y/o uno o más macrófagos. En algunas modalidades, el scFv es específico para la unión de un blanco seleccionado del grupo que consiste en B7-H4, BTLA, CD3, CD4, CD8, CD16a, CD25, CD27, CD28, CD32, CD56, CD137, CTLA-4, GITR, HVEM, ICOS, LAG3, NKG2D, OX40, PD-1, TIGIT, TIM3, o VISTA.
- En algunas modalidades, los anticuerpos multiespecíficos, anticuerpos activables multiespecíficos conjugados y/o anticuerpos activables multiespecíficos conjugados proporcionados en la presente descripción incluyen al menos un primer anticuerpo o fragmento de unión a antígeno de este (AB1) que se une específicamente a una diana Jagged, por ejemplo, Jagged 1 y/o Jagged 2, y que contiene una combinación de una secuencia VH CDR1, una secuencia VH CDR2 y una secuencia VH CDR3, en donde al menos una de las secuencias VH CDR1, VH CDR2 y VH CDR3 se selecciona a partir de VH CDR1 esa secuencia incluye al menos la secuencia de aminoácidos SYAMS (sec. con núm. de ident.: 6); una secuencia VH CD2 que incluye al menos la secuencia de aminoácidos SIDPEGRQTYYADSVKG (sec. con núm. de ident.: 7); una secuencia de VH CDR3 que incluye al menos la secuencia de aminoácidos DIGGRSAFDY (sec. con núm. de ident.: 8) y sus combinaciones.
- En algunas modalidades, los anticuerpos multiespecíficos, anticuerpos activables multiespecíficos conjugados y/o anticuerpos activables multiespecíficos conjugados proporcionados en la presente incluyen al menos un primer anticuerpo o fragmento de unión a antígeno de este (AB1) que se une específicamente a una diana Jagged, por ejemplo, Jagged 1 y/o Jagged 2, y que contiene una combinación de una secuencia VL CDR1, una secuencia VL CDR2 y una secuencia VL CDR3, en donde al menos una de las secuencias VL CDR1, VL CDR2 y VL CDR3 se selecciona de una secuencia VL CDR1 que incluye al menos la secuencia de aminoácidos RASQSISSY (sec. con núm. de ident.: 9); una secuencia VL CDR3 que incluye al menos la secuencia de aminoácidos QQTVVAPPL (sec. con núm. de ident.: 10); una secuencia VL CDR3 que incluye al menos la secuencia de aminoácidos QQTVVAPPL (sec. con núm. de ident.: 11) y sus combinaciones.
- En algunas modalidades, los anticuerpos multiespecíficos, anticuerpos activables multiespecíficos conjugados y/o anticuerpos activables multiespecíficos conjugados proporcionados en la presente descripción incluyen al menos un primer anticuerpo o fragmento de unión a antígeno de este (AB1) que se une específicamente a una diana Jagged, por ejemplo, Jagged 1 y/o Jagged 2, y que contiene una combinación de una secuencia VH CDR1, una secuencia VH CDR2 y una secuencia VH CDR3, en donde al menos una de las secuencias VH CDR1, VH CDR2 y VH CDR3 se selecciona de una secuencia VH CDR1 que incluye una secuencia que es al menos 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% o más idéntica a la secuencia de aminoácidos SYAMS (sec. con núm. de ident.: 6); una secuencia de VH CD2 que incluye una secuencia que es al menos 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% o más idéntica a la secuencia de aminoácidos SIDPEGRQTYYADSVKG (sec. con núm. de ident.: 7); una secuencia VH CDR3 que incluye una secuencia que es al menos 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% o más idéntica a la secuencia de aminoácidos DIGGRSAFDY (sec. con núm. de ident.: 8), y sus combinaciones.
- En algunas modalidades, los anticuerpos multiespecíficos, anticuerpos activables multiespecíficos conjugados y/o anticuerpos activables multiespecíficos conjugados proporcionados en la presente descripción incluyen al menos un primer anticuerpo o fragmento de unión a antígeno de este (AB1) que se une específicamente a una diana Jagged, por ejemplo, Jagged 1 y/o Jagged 2, y que contiene una combinación de una secuencia VL CDR1, una secuencia VL CDR2 y una secuencia VL CDR3, en donde al menos una de las secuencias VL CDR1, VL CDR2 y VL CDR3 se selecciona de una secuencia VL CDR1 que incluye una secuencia que es al menos 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% o más idéntica a la secuencia de aminoácidos RASQSISSY (sec. con núm. de ident.: 9); una secuencia VL CDR2 que incluye una secuencia que es al menos 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% o más idéntica a la secuencia de aminoácidos AASSLQS (sec. con núm. de ident.: 10); y una secuencia VL CDR3 que incluye una secuencia que es al menos 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% o más idéntica a la secuencia de aminoácidos QQTVVAPPL (sec. con núm. de ident.: 11), y sus combinaciones.
- En algunas modalidades, los anticuerpos multiespecíficos, anticuerpos activables multiespecíficos conjugados y/o anticuerpos activables multiespecíficos conjugados proporcionados en la presente descripción incluyen al menos un primer anticuerpo o fragmento de unión a antígeno de este (AB1) que se une específicamente a una diana Jagged, por ejemplo, Jagged 1 y/o Jagged 2, y que contiene una combinación de una secuencia VH CDR1, una secuencia VH CDR2, una secuencia VH CDR3, una secuencia VL CDR1, una secuencia VL CDR2, y una secuencia VL CDR3, en donde la secuencia VH CDR1 incluye al menos la secuencia de aminoácidos SYAMS (sec. con núm. de ident.: 6); la secuencia VH CD2 incluye al menos la secuencia de aminoácidos SIDPEGRQTYYADSVKG (sec. con núm. de ident.: 8); la secuencia VL CDR1 incluye al menos la secuencia de aminoácidos RASQSISSY (sec. con núm. de ident.: 9); la secuencia VL CDR2 incluye al menos la secuencia de aminoácidos AASSLQS (sec. con núm. de ident.: 10); y la secuencia VL CDR3 incluye al menos la secuencia de aminoácidos QQTVVAPPL (sec. con núm. de ident.: 11).

En algunas modalidades, los anticuerpos multiespecíficos, anticuerpos activables multiespecíficos, anticuerpos multiespecíficos conjugados y/o anticuerpos activables multiespecíficos conjugados proporcionados en la presente descripción incluyen al menos un primer anticuerpo o fragmento de unión a antígeno de este (AB1) que se une específicamente a una diana Jagged, por ejemplo, Jagged 1 y/o Jagged 2, y que contiene una combinación de una secuencia VH CDR1, una secuencia VH CDR2, una secuencia VH CDR3, una secuencia VL CDR1, una secuencia VL CDR2, y una secuencia VL CDR3, en donde la secuencia VH CDR1 incluye una secuencia que es al menos 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% o más idéntica a la secuencia de aminoácidos SYAMS (sec. con núm. de ident.: 6); la secuencia VH CD2 incluye una secuencia que es al menos 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% o más idéntica a la secuencia de aminoácidos SIDPEGRQTYYADSVKG (sec. con núm. de ident.: 7); la secuencia VH CDR3 incluye una secuencia que es al menos 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% o más idéntica a la secuencia de aminoácidos DIGGRSAFDY (sec. con núm. de ident.: 8); la secuencia VL CDR1 incluye una secuencia que es al menos 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% o más idéntica a la secuencia de aminoácidos RASQSISSY (sec. con núm. de ident.: 9); la secuencia VL CDR2 incluye una secuencia que es al menos 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% o más idéntica a la secuencia de aminoácidos AASSLQS (sec. con núm. de ident.: 10); y la secuencia VL CDR3 incluye una secuencia que es al menos 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% o más idéntica a la secuencia de aminoácidos QQTVVAPPL (sec. con núm. de ident.: 11).

10

15

20

25

40

45

50

55

60

65

En algunas modalidades, los anticuerpos multiespecíficos, anticuerpos activables multiespecíficos conjugados y/o anticuerpos activables multiespecíficos conjugados proporcionados en la presente descripción incluyen al menos un primer anticuerpo o fragmento de unión a antígeno de este (AB1) que se une específicamente al Receptor de Factor de Crecimiento Epidérmico (EGFR) y que contiene una combinación de una secuencia VH CDR1, una secuencia VH CDR2, y una secuencia VH CDR3, en donde al menos una de la secuencia VH CDR1, la secuencia VH CDR2, y la secuencia VH CDR3 se selecciona de una secuencia VH CDR1 que incluye al menos la secuencia de aminoácidos NYGVH (sec. con núm. de ident.: 12); una secuencia VH CDR3 que incluye al menos la secuencia de aminoácidos VIWSGGNTDYNTPFTS (sec. con núm. de ident.: 13); una secuencia de VH CDR3 que incluye al menos la secuencia de aminoácidos ALTYYDYEFAY (sec. con núm. de ident.: 14); y sus combinaciones.

En algunas modalidades, los anticuerpos multiespecíficos, anticuerpos activables multiespecíficos conjugados y/o anticuerpos activables multiespecíficos conjugados proporcionados en la presente descripción incluyen al menos un primer anticuerpo o fragmento de unión a antígeno de este (AB1) que se une específicamente a EGFR y que contiene una combinación de una secuencia VL CDR1, una secuencia VL CDR2, y una secuencia VL CDR3, en donde al menos una de la secuencia VL CDR1, la secuencia VL CDR2, y la secuencia VL CDR3 se selecciona de una secuencia VL CDR1 que incluye al menos la secuencia de aminoácidos RASQSIGTNIH (sec. con núm. de ident.: 15); una secuencia VL CDR2 que incluye al menos la secuencia de aminoácidos KYASESIS (sec. con núm. de ident.: 16); y una secuencia VL CDR3 que incluye al menos la secuencia de aminoácidos QQNNNWPTT (sec. con núm. de ident.: 17), y sus combinaciones.

En algunas modalidades, los anticuerpos multiespecíficos, anticuerpos activables multiespecíficos conjugados y/o anticuerpos activables multiespecíficos conjugados proporcionados en la presente descripción incluyen al menos un primer anticuerpo o fragmento de unión a antígeno de este (AB1) que se une específicamente a EGFR y que contiene una combinación de una secuencia VH CDR1, una secuencia VH CDR2, y una secuencia VH CDR3, en donde al menos una de la secuencia VH CDR1, la secuencia VH CDR2 y la secuencia VH CDR3 se selecciona de una secuencia VH CDR1 que incluye una secuencia que es al menos 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% o más idéntica a la secuencia de aminoácidos NYGVH (sec. con núm. de ident.: 12); una secuencia VH CD2 que incluye una secuencia que es al menos 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% o más idéntica a la secuencia de aminoácidos VIWSGGNTDYNTPFTS (sec. con núm. de ident.: 13); una secuencia VH CDR3 que incluye una secuencia que es al menos 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% o más idéntica a la secuencia de aminoácidos ALTYYDYEFAY (sec. con núm. de ident.: 14); y sus combinaciones.

En algunas modalidades, los anticuerpos multiespecíficos, anticuerpos activables multiespecíficos conjugados y/o anticuerpos activables multiespecíficos conjugados proporcionados en la presente descripción incluyen al menos un primer anticuerpo o fragmento de unión a antígeno de este (AB1) que se une específicamente al EGFR y que contiene una combinación de una secuencia VL CDR1, una secuencia VL CDR2, y una secuencia VL CDR3, en donde al menos una de la secuencia VL CDR1, la secuencia VL CDR2 y la secuencia VL CDR3 se selecciona de una secuencia VL CDR1 que incluye una secuencia que es al menos 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% o más idéntica a la secuencia de aminoácidos RASQSIGTNIH (sec. con núm. de ident.: 15); una secuencia VL CDR2 que incluye una secuencia que es al menos 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% o más idéntica a la secuencia de aminoácidos KYASESIS (sec. con núm. de ident.: 16); y una secuencia VL CDR3 que incluye una secuencia que es al menos 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% o más idéntica a la secuencia de aminoácidos QQNNNWPTT (sec. con núm. de ident.: 17), y sus combinaciones.

En algunas modalidades, los anticuerpos multiespecíficos, anticuerpos activables multiespecíficos, anticuerpos multiespecíficos conjugados y/o anticuerpos activables multiespecíficos conjugados proporcionados en la presente descripción incluyen al menos un primer anticuerpo o fragmento de unión a antígeno de este (AB1) que se une específicamente al EGFR y que contiene una combinación de una secuencia VH CDR1, una secuencia VH CDR2, una

secuencia VH CDR3, una secuencia VL CDR1, una secuencia VL CDR2, y una secuencia VL CDR3, en donde la secuencia VH CDR1 incluye al menos la secuencia de aminoácidos NYGVH (sec. con núm. de ident.: 12); la secuencia VH CD2 incluye al menos la secuencia de aminoácidos VIWSGGNTDYNTPFTS (sec. con núm. de ident.: 13); la secuencia de VH CDR3 incluye al menos la secuencia de aminoácidos ALTYYDYEFAY (sec. con núm. de ident.: 14); la secuencia VL CDR1 incluye al menos la secuencia de aminoácidos RASQSIGTNIH (sec. con núm. de ident.: 15); la secuencia VL CDR2 incluye al menos la secuencia de aminoácidos KYASESIS (sec. con núm. de ident.: 16); y la secuencia VL CDR3 incluye al menos la secuencia de aminoácidos QQNNNWPTT (sec. con núm. de ident.: 17).

10

15

20

25

30

35

40

45

50

55

En algunas modalidades, los anticuerpos multiespecíficos, anticuerpos activables multiespecíficos, anticuerpos multiespecíficos conjugados y/o anticuerpos activables multiespecíficos conjugados proporcionados en la presente descripción incluyen al menos un primer anticuerpo o fragmento de unión a antígeno de este (AB1) que se une específicamente al EGFR y que contiene una combinación de una secuencia VH CDR1, una secuencia VH CDR2, una secuencia VH CDR3, una secuencia VL CDR1, una secuencia VL CDR2, y una secuencia VL CDR3, en donde la secuencia VH CDR1 incluye una secuencia que es al menos 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% o más idéntica a la secuencia de aminoácidos NYGVH (sec. con núm de ident.: 12); la secuencia VH CD2 incluye una secuencia que es al menos 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% o más idéntica a la secuencia de aminoácidos VIWSGGNTDYNTPFTS (sec. con núm. de ident.: 13); la secuencia VH CDR3 incluye una secuencia que es al menos 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% o más idéntica a la secuencia de aminoácidos ALTYYDYEFAY (sec. con núm. de ident.: 14); la secuencia VL CDR1 incluye una secuencia que es al menos 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% o más idéntica a la secuencia de aminoácidos RASQSIGTNIH (sec. con núm. de ident.: 15); la secuencia VL CDR2 incluye una secuencia que es al menos 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% o más idéntica a la secuencia de aminoácidos KYASESIS (sec. con núm. de ident.: 16); y la secuencia VL CDR3 incluye una secuencia que es al menos 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% o más idéntica a la secuencia de aminoácidos QQNNNWPTT (sec. con núm. de ident.: 17).

En algunas modalidades, los anticuerpos multiespecíficos, anticuerpos activables multiespecíficos conjugados y/o anticuerpos activables multiespecíficos conjugados proporcionados en la presente descripción incluyen al menos una secuencia de aminoácidos de cadena pesada seleccionada del grupo que consiste en las secuencias que se muestran en la Tabla 7 y/o en el Ejemplo 5, que incluye la Tabla 11 en el mismo. En algunas modalidades, los anticuerpos multiespecíficos, anticuerpos activables multiespecíficos conjugados y/o anticuerpos activables multiespecíficos conjugados proporcionados en la presente descripción incluyen al menos una secuencia de aminoácidos de cadena ligera seleccionada del grupo que consiste en las secuencias que se muestran en la Tabla 7 y/o en Ejemplo 5, que incluye la Tabla 11 en el mismo. En algunas modalidades, los anticuerpos multiespecíficos, anticuerpos activables multiespecíficos, anticuerpos multiespecíficos conjugados y/o anticuerpos activables multiespecíficos conjugados proporcionados en la presente descripción incluyen al menos una secuencia de aminoácidos de cadena pesada seleccionada del grupo que consiste en las secuencias que se muestran en la Tabla 7 y/o en el Ejemplo 5, que incluye la Tabla 11 en el mismo, y una secuencia de aminoácidos de cadena ligera seleccionada del grupo que consiste en las secuencias que se muestran en la Tabla 11 en el mismo.

En algunas modalidades, los anticuerpos multiespecíficos, anticuerpos activables multiespecíficos, anticuerpos multiespecíficos conjugados y/o anticuerpos activables multiespecíficos conjugados proporcionados en la presente descripción incluyen al menos una secuencia de aminoácidos de cadena pesada que es al menos 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% o más idéntica a una secuencia de aminoácidos seleccionada del grupo que consiste en las secuencias que se muestran en la Tabla 7 y/o en el Ejemplo 5, que incluye la Tabla 11 en el mismo. En algunas modalidades, los anticuerpos multiespecíficos, anticuerpos activables multiespecíficos, anticuerpos multiespecíficos conjugados y/o anticuerpos activables multiespecíficos conjugados proporcionados en la presente descripción incluyen al menos una secuencia de aminoácidos de cadena ligera que es al menos 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% o más idéntica a una secuencia de aminoácidos seleccionada del grupo que consiste en las secuencias que se muestran en la Tabla 7 y/o en el Ejemplo 5, que incluye la Tabla 11 en el mismo. En algunas modalidades, los anticuerpos multiespecíficos, anticuerpos activables multiespecíficos, anticuerpos multiespecíficos conjugados y/o anticuerpos activables multiespecíficos conjugados proporcionados en la presente descripción incluyen al menos una secuencia de aminoácidos de cadena pesada que es al menos 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% o más idéntica a una secuencia de aminoácidos seleccionada del grupo que consiste en las secuencias que se muestran en la Tabla 7 y/o en el Ejemplo 5, que incluye la Tabla 11 en el mismo, y una secuencia de aminoácidos de cadena ligera que es al menos 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% o más idéntica a una secuencia de aminoácidos seleccionada del grupo que consiste en las secuencias que se muestran en la Tabla 7 y/o en el Ejemplo 5, que incluye la Tabla 11 en el mismo.

En algunas modalidades, el anticuerpo multiespecífico y/o el anticuerpo activable multiespecífico además incluye un agente conjugado con el AB. En algunas modalidades, el agente es un agente terapéutico. En algunas modalidades, el agente es un atoxina o fragmento de esta. En algunas modalidades, el agente es un enlazador. En algunas modalidades, el enlazador es un enlazador no escindible. En algunas modalidades, el agente es un inhibidor de microtúbulos. En algunas modalidades, el agente es un agente es un agente que daña los ácidos nucleicos, tal como un alquilante de ADN o un intercalador de ADN, u otro agente que daña el ADN. En algunas modalidades, el enlazador es un enlazador escindible. En algunas

modalidades, el agente es un agente seleccionado del grupo enumerado en la Tabla 4. En algunas modalidades, el agente es una dolastatina. En algunas modalidades, el agente es una auristatina o derivado de esta. En algunas modalidades, el agente es auristatina E o un derivado de esta. En algunas modalidades, el agente es monometilauristatina E (MMAE). En algunas modalidades, el agente es monometilauristatina D (MMAD). En algunas modalidades, el agente es un maitansinoide o derivado de maitansinoide. En algunas modalidades, el agente es DM1 o DM4. En algunas modalidades, el agente es una duocarmicina o un derivado de esta. En algunas modalidades, el agente es una calicheamicina o derivado de esta. En algunas modalidades, el agente es una calicheamicina o derivado de esta. En algunas modalidades, el agente es una pirrolobenzodiazepina.

En algunas modalidades, el anticuerpo multiespecífico y/o el anticuerpo activable multiespecífico además incluye una entidad detectable. En algunas modalidades, la entidad detectable es un agente de diagnóstico.

15

20

25

30

35

40

45

60

En algunas modalidades, el anticuerpo multiespecífico y/o el anticuerpo activable multiespecífico contiene naturalmente uno o más enlaces disulfuro. En algunas modalidades, el anticuerpo multiespecífico y/o el anticuerpo activable multiespecífico pueden diseñarse para incluir uno o más enlaces disulfuro.

La descripción proporciona además una molécula de ácido nucleico aislada que codifica un anticuerpo multiespecífico y/o anticuerpo activable multiespecífico descrito en la presente descripción, así como vectores que incluyen estas secuencias de ácido nucleico aisladas. La descripción proporciona métodos para producir un anticuerpo multiespecífico cultivando una célula en condiciones que conducen a la expresión del anticuerpo, en donde la célula comprende una molécula de ácido nucleico de ese tipo. En algunas modalidades, la célula comprende un vector de ese tipo.

La descripción proporciona además anticuerpos activables multiespecíficos y/o composiciones de anticuerpos activables multiespecíficos que incluyen al menos un primer anticuerpo o fragmento de unión a antígeno de este (AB1) que se une específicamente a una primera diana o primer epítopo y un segundo anticuerpo o fragmento de unión a antígeno de este (AB2) que se une a una segunda diana o un segundo epítopo, donde al menos AB1 se acopla o une a una entidad enmascarante (MM1), de manera que el acoplamiento de la MM1 reduce la capacidad de AB1 para unir su diana. En algunas modalidades, el MM1 se acopla a AB1 a través de una primera entidad escindible (CM1) que incluye un sustrato para una proteasa, por ejemplo, una proteasa que se colocaliza con la diana de AB1 en un sitio de tratamiento o un sitio diagnóstico en un sujeto. Los anticuerpos activables multiespecíficos proporcionados en la presente descripción son estables en la circulación, activados en los sitios de terapia y/o diagnóstico previstos, pero no en tejido normal, es decir, sano, y, cuando se activan, muestran unión a la diana de AB1 que es al menos comparable al anticuerpo multiespecífico no modificado correspondiente.

En algunas modalidades, el anticuerpo activable multiespecífico comprende un péptido de enlace entre el MM1 y la CM1.

En algunas modalidades, el anticuerpo activable multiespecífico comprende un péptido de enlace entre la CM1 y el AB1.

En algunas modalidades, el anticuerpo activable comprende un primer péptido enlazador (LP1) y un segundo péptido enlazador (LP2), y al menos una porción del anticuerpo activable multiespecífico tiene la disposición estructural desde el extremo N hasta el extremo C como sigue en el estado no escindido: MM1-LP1-CM1-LP2-AB1 o AB1-LP2-CM1-LP1-MM1. En algunas modalidades, los dos péptidos enlazadores no necesitan ser idénticos entre sí.

En algunas modalidades, al menos uno de LP1 o LP2 incluye una secuencia de aminoácidos seleccionada del grupo que consiste en (GS)_n, (GGS)_n, (sec. con núm. de ident.: 18) y (GGGS)_n (sec. con núm. de ident.: 19), donde n es un número entero de al menos uno. En algunas modalidades, al menos uno de LP1 o LP2 incluye una secuencia de aminoácidos seleccionada del grupo que consiste en GGSG (sec. con núm. de ident.: 20), GGSGG (sec. con núm. de ident.: 21), GSGSG (sec. con núm. de ident.: 22), GSGGG (sec. con núm. de ident.: 24), y GSSSG (sec. con núm. de ident.: 25).

En algunas modalidades, el anticuerpo activable multiespecífico incluye al menos un primer anticuerpo o fragmento de unión a antígeno de este (AB1) que se une específicamente a una primera diana o primer epítopo y un segundo anticuerpo o fragmento de unión a antígeno de este (AB2) que se une específicamente a una segunda diana o segundo epítopo. En algunas modalidades, cada uno de los AB en el anticuerpo activable multiespecífico se selecciona independientemente del grupo que consiste en un anticuerpo monoclonal, anticuerpo de dominio, cadena sencilla, fragmento Fab, un fragmento F(ab')2, un scFv, un scAb, un dAb, un anticuerpo de cadena pesada de un solo dominio y un anticuerpo de cadena ligera de un solo dominio. En algunas modalidades, cada uno de los AB en el anticuerpo activable multiespecífico es un anticuerpo monoclonal de roedor (por ejemplo, de ratón o rata), quimérico, humanizado o totalmente humano.

En algunas modalidades, cada uno de los AB en el anticuerpo activable multiespecífico tiene una constante de disociación de equilibrio de aproximadamente 100 nM o menos para unirse a su diana o epítopo correspondiente.

En algunas modalidades, MM1 tiene una constante de disociación de equilibrio para unirse a su AB correspondiente que es mayor que la constante de disociación de equilibrio del AB a su diana o epítopo correspondiente.

En algunas modalidades, MM1 tiene una constante de disociación de equilibrio para unirse a su AB correspondiente que no es más que la constante de disociación de equilibrio del AB a su diana o epítopo correspondiente.

ES 2 683 268 T3

En algunas modalidades, MM1 no interfiere ni compite con su AB correspondiente para unirse a la diana o epítopo correspondiente cuando el anticuerpo activable multiespecífico está en un estado escindido.

En algunas modalidades, MM1 es un polipéptido de aproximadamente 2 a 40 aminoácidos de longitud. En algunas modalidades, cada una de las MM en el anticuerpo activable multiespecífico es un polipéptido de no más de 40 aminoácidos de longitud.

En algunas modalidades, MM1 tiene una secuencia polipeptídica que es diferente de la diana del AB correspondiente.

- En algunas modalidades, MM1 tiene una secuencia polipeptídica que no es más del 50% idéntica a cualquier pareja de unión natural del AB correspondiente. En algunas modalidades, MM1 tiene una secuencia polipeptídica que no es más de un 25% idéntica a cualquier pareja de unión natural del AB correspondiente. En algunas modalidades, MM1 tiene una secuencia polipeptídica que no es más del 10% idéntica a cualquier pareja de unión natural del AB correspondiente.
- En algunas modalidades, el acoplamiento de MM1 reduce la capacidad del AB correspondiente para unir su diana o epítopo de manera que la constante de disociación (K_d) del AB cuando se acopla a la MM1 hacia su diana o epítopo correspondiente es al menos 20 veces mayor que la K_d del AB cuando no se acopla a la MM1 hacia su correspondiente diana o epítopo.
- 20 En algunas modalidades, el acoplamiento de MM1 reduce la capacidad del AB correspondiente para unir su diana o epítopo de manera que la constante de disociación (K_d) del AB cuando se acopla a la MM1 hacia su diana o epítopo correspondiente es al menos 40 veces mayor que la K_d del AB cuando no se acopla a la MM1 hacia su diana o epítopo correspondiente.
- En algunas modalidades, el acoplamiento de MM1 reduce la capacidad del AB correspondiente para unir su diana o epítopo de manera que la constante de disociación (K_d) del AB cuando se acopla a la MM1 hacia su diana o epítopo correspondiente es al menos 100 veces mayor que la K_d del AB cuando no se acopla a la MM1 hacia su diana o epítopo correspondiente.
- 30 En algunas modalidades, el acoplamiento de MM1 reduce la capacidad del AB correspondiente para unir su diana o epítopo de manera que la constante de disociación (K_d) del AB cuando se acopla a la MM1 hacia su diana o epítopo correspondiente es al menos 1000 veces mayor que la K_d del AB cuando no se acopla a la MM1 hacia su correspondiente diana o epítopo.
- En algunas modalidades, el acoplamiento de MM1 reduce la capacidad del AB correspondiente para unir su diana o epítopo de manera que la constante de disociación (K_d) del AB cuando se acopla a la MM1 hacia su diana o epítopo correspondiente es al menos 10.000 veces mayor que la K_d del AB cuando no se acopla a la MM1 hacia su correspondiente diana o epítopo.
- 40 En algunas modalidades, MM1 es una secuencia de aminoácidos seleccionada de una MM que se muestra en los Ejemplos proporcionados en la presente descripción.
- En algunas modalidades, el anticuerpo activable multiespecífico incluye al menos una segunda entidad enmascarante (MM2) que inhibe la unión del AB2 a su diana cuando el anticuerpo activable multiespecífico está en un estado no escindido, y una segunda entidad escindible (CM2) acoplado al AB2, en donde la CM2 es un polipéptido que funciona 45 como un sustrato para una segunda proteasa. En algunas modalidades, CM2 es un polipéptido de no más de 15 aminoácidos de longitud. En algunas modalidades, la segunda proteasa se colocaliza con la segunda diana o epítopo en un tejido, y en donde la segunda proteasa escinde la CM2 en el anticuerpo activable multiespecífico cuando el anticuerpo activable multiespecífico se expone a la segunda proteasa. En algunas modalidades, la primera proteasa y la segunda 50 proteasa se colocalizan con la primer diana o epítopo y la segunda diana o epítopo en un tejido. En algunas modalidades, la primera proteasa y la segunda proteasa son la misma proteasa. En algunas modalidades, CM1 y CM2 son sustratos diferentes para la misma proteasa. En algunas modalidades, la proteasa se selecciona del grupo que consiste en las que se muestran en la Tabla 3. En algunas modalidades, la primera proteasa y la segunda proteasa son proteasas diferentes. En algunas modalidades, la primera proteasa y la segunda proteasa son proteasas diferentes seleccionadas del grupo 55 que consiste en las que se muestran en la Tabla 3.

En algunas modalidades, cada una de las MM en el anticuerpo activable multiespecífico, por ejemplo, MM1 y al menos MM2, tiene una constante de disociación de equilibrio para unirse a su AB correspondiente que es mayor que la constante de disociación de equilibrio del AB a su diana correspondiente o epítopo.

En algunas modalidades, cada una de las MM en el anticuerpo activable multiespecífico tiene una constante de disociación de equilibrio para unirse a su AB correspondiente que no es más que la constante de disociación de equilibrio del AB a su diana o epítopo correspondiente.

65

ES 2 683 268 T3

En algunas modalidades, cada una de las MM en el anticuerpo activable multiespecífico no interfiere ni compite con su AB correspondiente para unirse a la diana o epítopo correspondiente cuando el anticuerpo activable multiespecífico está en un estado escindido.

- 5 En algunas modalidades, cada una de las MM en el anticuerpo activable multiespecífico es un polipéptido de aproximadamente 2 a 40 aminoácidos de longitud. En algunas modalidades, cada una de las MM en el anticuerpo activable multiespecífico es un polipéptido de no más de 40 aminoácidos de longitud.
- En algunas modalidades, cada una de las MM en el anticuerpo activable multiespecífico tiene una secuencia polipeptídica que es diferente de la diana del AB correspondiente.

En algunas modalidades, cada una de las MM en el anticuerpo activable multiespecífico tiene una secuencia polipeptídica que no es más del 50% idéntica a cualquier pareja de unión natural del AB correspondiente. En algunas modalidades, cada una de las MM en el anticuerpo activable multiespecífico tiene una secuencia polipeptídica que no es más de un 25% idéntica a cualquier pareja de unión natural del AB correspondiente. En algunas modalidades, cada una de las MM en el anticuerpo activable multiespecífico tiene una secuencia polipeptídica que no es más del 10% idéntica a cualquier pareja de unión natural del AB correspondiente.

15

50

55

60

- En algunas modalidades, el acoplamiento de cada una de las MM reduce la capacidad del AB correspondiente para unir su diana o epítopo de manera que la constante de disociación (K_d) del AB cuando se acopla a la MM hacia su diana o epítopo correspondiente es al menos 20 veces mayor que la K_d del AB cuando no se acopla a la MM hacia su diana o epítopo correspondiente.
- En algunas modalidades, el acoplamiento de cada una de las MM reduce la capacidad del AB correspondiente para unir su diana o epítopo de manera que la constante de disociación (K_d) del AB cuando se acopla a la MM hacia su diana o epítopo correspondiente es al menos 40 veces mayor que la K_d del AB cuando no se acopla a la MM hacia su diana o epítopo correspondiente.
- En algunas modalidades, el acoplamiento de cada una de las MM reduce la capacidad del AB correspondiente para unir su diana o epítopo de manera que la constante de disociación (K_d) del AB cuando se acopla a la MM hacia su diana o epítopo correspondiente es al menos 100 veces mayor que la K_d del AB cuando no se acopla a la MM hacia su diana o epítopo correspondiente.
- En algunas modalidades, el acoplamiento de cada una de las MM reduce la capacidad del AB correspondiente para unir su diana o epítopo de manera que la constante de disociación (K_d) del AB cuando se acopla a la MM hacia su diana o epítopo correspondiente es al menos 1000 veces mayor que la K_d del AB cuando no se acopla a la MM hacia su diana o epítopo correspondiente.
- En algunas modalidades, el acoplamiento de cada una de las MM reduce la capacidad del AB correspondiente para unir su diana o epítopo de manera que la constante de disociación (K_d) del AB cuando se acopla a la MM hacia su diana o epítopo correspondiente es al menos 10.000 veces mayor que la K_d del AB cuando no se acopla a la MM hacia su diana o epítopo correspondiente.
- En algunas modalidades, cada una de las MM es una secuencia de aminoácidos seleccionada de una MM que se muestra 45 en los Ejemplos proporcionados en la presente descripción.
 - En algunas modalidades, la proteasa que escinde la primera secuencia de la entidad escindible (CM1) se colocaliza con la diana de AB1 en el anticuerpo multiespecífico activable en un tejido, y la proteasa escinde la CM1 en el anticuerpo activable multiespecífico se expone a la proteasa.
 - En algunas modalidades, el anticuerpo activable multiespecífico incluye más de una secuencia de entidad escindible, y la proteasa que escinde al menos una secuencia de la entidad escindible se colocaliza con la diana de al menos una de las regiones de AB en el anticuerpo activable multiespecífico en un tejido, y la proteasa escinde la CM en el anticuerpo activable multiespecífico se expone a las proteasas.
 - En algunas modalidades, cada CM, por ejemplo, CM1 y al menos CM2, se coloca en el anticuerpo activable multiespecífico de manera que en el estado no escindido, se reduce para producir la unión del anticuerpo activable multiespecífico a una diana de una de las regiones del AB con una constante de disociación de equilibrio que es al menos 20 veces mayor que la constante de disociación de equilibrio de AB no modificado que une a su diana, y mientras que en el estado escindido, el AB se une a su diana.
 - En algunas modalidades, cada CM se coloca en el anticuerpo activable multiespecífico de manera que en el estado no escindido, la unión del anticuerpo activable multiespecífico a una diana de una de las regiones de AB se reduce para producirse con una constante de disociación de equilibrio que es al menos 40 veces mayor que la constante de disociación de equilibrio de un AB no modificado que se une a su diana, y mientras que en el estado escindido, el AB se une a su diana.

En algunas modalidades, cada CM se coloca en el anticuerpo activable multiespecífico de manera que en el estado no escindido, la unión del anticuerpo activable multiespecífico a una diana de una de las regiones de AB se reduce para producirse con una constante de disociación de equilibrio que es al menos 50 veces mayor que la constante de disociación de equilibrio de un AB no modificado que se une a su diana, y mientras que en el estado escindido, el AB se une a su diana

5

10

15

25

30

35

40

45

50

55

60

65

En algunas modalidades, cada CM se coloca en el anticuerpo activable multiespecífico de tal manera que en el estado no escindido, la unión del anticuerpo activable multiespecífico a una diana de una de las regiones de AB se reduce para producirse con una constante de disociación de equilibrio que es al menos 100 veces mayor que la constante de disociación de equilibrio de un AB no modificado que se une a su diana, y mientras que en el estado escindido, el AB se une a su diana.

En algunas modalidades, cada CM se coloca en el anticuerpo activable multiespecífico de manera que en el estado no escindido, la unión del anticuerpo activable multiespecífico a una diana de una de las regiones de AB se reduce para producirse con una constante de disociación de equilibrio que es al menos 200 veces mayor que la constante de disociación de equilibrio de un AB no modificado que se une a su diana, y mientras que en el estado escindido, el AB se une a su diana.

En algunas modalidades, cada CM en el anticuerpo activable multiespecífico es un polipéptido de hasta 15 aminoácidos de longitud.

En algunas modalidades, al menos una CM en el anticuerpo activable multiespecífico incluye la secuencia de aminoácidos LSGRSDNH (sec. con núm. de ident.: 26). En algunas modalidades, se selecciona al menos una entidad escindible para uso con una proteasa específica, por ejemplo, una proteasa que se conoce que se colocaliza conjuntamente con al menos una diana del anticuerpo activable multiespecífico. Por ejemplo, las pociones escindibles adecuadas para su uso en los anticuerpos activables multiespecíficos de la descripción se escinden mediante al menos una proteasa tal como uroquinasa, legumaína y/o matriptasa (además denominada en la presente descripción MT-SP1 o MTSP1). En algunas modalidades, una entidad escindible adecuada incluye al menos una de las siguientes secuencias: TGRGPSWV (sec. con núm. de ident.: 27); SARGPSRW (sec. con núm. de ident.: 28); TARGPSFK (sec. con núm. de ident.: 29); LSGRSDNH (sec. con núm. de ident.: 26); GGWHTGRN (sec. con núm. de ident.: 30); HTGRSGAL (sec. con núm. de ident.: 31); PLTGRSGG (sec. con núm. de ident.: 32); AARGPAIH (sec. con núm. de ident.: 33); RGPAFNPM (sec. con núm. de ident.: 37); GGQPSGMWGW (sec. con núm. de ident.: 38); FPRPLGITGL (sec. con núm. de ident.: 39); VHMPLGFLGP (sec. con núm. de ident.: 40); SPLTGRSG (sec. con núm. de ident.: 41); SAGFSLPA (sec. con núm. de ident.: 42); LAPLGLQRR (sec. con núm. de ident.: 43); SGGPLGVR (sec. con núm. de ident.: 44); y/o PLGL (sec. con núm. de ident.: 45).

En algunas modalidades, cada CM en el anticuerpo activable multiespecífico es un sustrato para una proteasa seleccionada del grupo que consiste en los que se muestran en la Tabla 3. En algunas modalidades, la proteasa se selecciona del grupo que consiste en uPA, legumaína, MT-SP1, ADAM17, BMP-1, TMPRSS3, TMPRSS4, elastasa de neutrófilos, MMP-7, MMP-9, MMP-12, MMP-13 y MMP-14. En algunas modalidades, la proteasa es una catepsina, tal como, pero no se limita a, catepsina S. En algunas modalidades, cada CM en el anticuerpo activable multiespecífico es un sustrato para una proteasa seleccionada del grupo que consiste en uPA (activador de plasminógeno uroquinasa), legumaína y MT-SP1 (matriptasa). En algunas modalidades, la proteasa comprende uPA. En algunas modalidades, la proteasa comprende legumaína. En algunas modalidades, la proteasa comprende una metaloproteinasa de matriz (MMP).

En algunas modalidades, al menos una CM en el anticuerpo activable multiespecífico es un sustrato para al menos dos proteasas. En algunas modalidades, cada proteasa se selecciona del grupo que consiste en las que se muestran en la Tabla 3. En algunas modalidades, al menos una CM en el anticuerpo activable multiespecífico es un sustrato para al menos dos proteasas, en donde una de las proteasas se selecciona del grupo que consiste en uPA, legumaína y MT-SP1 y la otra proteasa se selecciona del grupo que consiste en las que se muestran en la Tabla 3. En algunas modalidades, al menos una CM en el anticuerpo activable multiespecífico es un sustrato para al menos dos proteasas seleccionadas del grupo que consiste en uPA, legumaína y MT-SP1.

En algunas modalidades, el anticuerpo activable multiespecífico incluye al menos una primera CM (CM1) y una segunda CM (CM2). En algunas modalidades, CM1 y CM2 son parte de un único enlazador escindible que une una MM a un AB. En algunas modalidades, CM1 es parte de un enlazador escindible que une MM1 a AB1, y CM2 es parte de un enlazador escindible por separado que une una MM2 a AB2. En algunas modalidades, un anticuerpo activable multiespecífico comprende más de dos CM. En algunas modalidades, un anticuerpo activable multiespecífico de ese tipo comprende más de dos CM y más de dos MM. En algunas modalidades, CM1 y CM2 son cada una polipéptidos de no más de 15 aminoácidos de longitud. En algunas modalidades, al menos una de las primeras CM y la segunda CM es un polipéptido que funciona como un sustrato para una proteasa seleccionada del grupo que consiste en los enumerados en la Tabla 3. En algunas modalidades, al menos una de las primeras CM y la segunda CM es un polipéptido que funciona como un sustrato para una proteasa seleccionada del grupo que consiste en uPA, legumaína y MT-SP1. En algunas modalidades, la primera CM se escinde mediante un primer agente de escisión seleccionado del grupo que consiste en uPA, legumaína

y MT-SP1 en un tejido diana y la segunda CM se escinde mediante un segundo agente de escisión en un tejido diana. En algunas modalidades, la otra proteasa se selecciona del grupo que consiste en las que se muestran en la Tabla 3. En algunas modalidades, el primer agente de escisión y el segundo agente de escisión son la misma proteasa seleccionada del grupo que consiste en las enumeradas en la Tabla 3, y la primera CM y la segunda CM son sustratos diferentes para la enzima. En algunas modalidades, el primer agente de escisión y el segundo agente de escisión son la misma proteasa seleccionada del grupo que consiste en uPA, legumaína y MT-SP1, y la primera CM y la segundo CM son sustratos diferentes para la enzima. En algunas modalidades, el primer agente de escisión y el segundo agente de escisión son la misma proteasa seleccionada del grupo enumerado en la Tabla 3, y la primera CM y la segunda CM son el mismo sustrato. En algunas modalidades, el primer agente de escisión y el segundo agente de escisión son proteasas diferentes. En algunas modalidades, el primer agente de escisión y el segundo agente de escisión son proteasas diferentes seleccionadas del grupo que consiste en las que se muestran en la Tabla 3. En algunas modalidades, la primera CM y la segundo CM se escinden por al menos un agente de escisión en el tejido diana. En algunas modalidades, la primera CM y la segunda CM se escinden por al menos un agente de escisión en el tejido diana.

En algunas modalidades, el anticuerpo activable multiespecífico se expone a y se escinde mediante una proteasa de manera que, en el estado activado o escindible, el anticuerpo activable multiespecífico activado incluye una secuencia de aminoácidos de cadena ligera que incluye al menos una porción de LP2 y/o secuencia de CM después de que la proteasa haya escindido la CM.

10

30

65

- 20 En algunas modalidades, el anticuerpo activable multiespecífico además incluye un péptido señal. En algunas modalidades, el péptido señal se conjuga con el anticuerpo activable multiespecífico a través de un espaciador. En algunas modalidades, el espaciador se conjuga con el anticuerpo activable multiespecífico en ausencia de un péptido señal. En algunas modalidades, el espaciador se une directamente a al menos uno de las MM del anticuerpo activable multiespecífico.
 25
 - En algunas modalidades, el anticuerpo activable multiespecífico en un estado no escindido comprende un espaciador que se une directamente a una primera MM y tiene la disposición estructural desde el extremo N hasta el extremo C del espaciador-MM1-CM-AB1. En algunas modalidades, el espaciador incluye al menos la secuencia de aminoácidos QGQSGQ (sec. con núm. de ident.: 46).

En algunas modalidades, la media vida en suero del anticuerpo activable multiespecífico es más larga que la del anticuerpo multiespecífico correspondiente; por ejemplo, el pK del anticuerpo activable multiespecífico es más largo que el del anticuerpo multiespecífico correspondiente. En algunas modalidades, la media vida en suero del anticuerpo activable multiespecífico es similar a la del anticuerpo multiespecífico correspondiente. En algunas modalidades, la media 35 vida en suero del anticuerpo activable multiespecífico es de al menos 15 días cuando se administra a un organismo. En algunas modalidades, la media vida en suero del anticuerpo activable multiespecífico es de al menos 12 días cuando se administra a un organismo. En algunas modalidades, la media vida en suero del anticuerpo activable multiespecífico es de al menos 11 días cuando se administra a un organismo. En algunas modalidades, la media vida en suero del anticuerpo activable multiespecífico es de al menos 10 días cuando se administra a un organismo. En algunas modalidades, la media 40 vida en suero del anticuerpo activable multiespecífico es de al menos 9 días cuando se administra a un organismo. En algunas modalidades, la media vida en suero del anticuerpo activable multiespecífico es de al menos 8 días cuando se administra a un organismo. En algunas modalidades, la media vida en suero del anticuerpo activable multiespecífico es de al menos 7 días cuando se administra a un organismo. En algunas modalidades, la media vida en suero del anticuerpo activable multiespecífico es de al menos 6 días cuando se administra a un organismo. En algunas modalidades, la media 45 vida en suero del anticuerpo activable multiespecífico es de al menos 5 días cuando se administra a un organismo. En algunas modalidades, la media vida en suero del anticuerpo activable multiespecífico es de al menos 4 días cuando se administra a un organismo. En algunas modalidades, la media vida en suero del anticuerpo activable multiespecífico es de al menos 3 días cuando se administra a un organismo. En algunas modalidades, la media vida en suero del anticuerpo activable multiespecífico es de al menos 2 días cuando se administra a un organismo. En algunas modalidades, la media 50 vida en suero del anticuerpo activable multiespecífico es de al menos 24 horas cuando se administra a un organismo. En algunas modalidades, la media vida en suero del anticuerpo activable multiespecífico es de al menos 20 horas cuando se administra a un organismo. En algunas modalidades, la media vida en suero del anticuerpo activable multiespecífico es de al menos 18 horas cuando se administra a un organismo. En algunas modalidades, la media vida en suero del anticuerpo activable multiespecífico es de al menos 16 horas cuando se administra a un organismo. En algunas 55 modalidades, la media vida en suero del anticuerpo activable multiespecífico es de al menos 14 horas cuando se administra a un organismo. En algunas modalidades, la media vida en suero del anticuerpo activable multiespecífico es de al menos 12 horas cuando se administra a un organismo. En algunas modalidades, la media vida en suero del anticuerpo activable multiespecífico es de al menos 10 horas cuando se administra a un organismo. En algunas modalidades, la media vida en suero del anticuerpo activable multiespecífico es de al menos 8 horas cuando se administra 60 a un organismo. En algunas modalidades, la media vida en suero del anticuerpo activable multiespecífico es de al menos 6 horas cuando se administra a un organismo. En algunas modalidades, la media vida en suero del anticuerpo activable multiespecífico es de al menos 4 horas cuando se administra a un organismo. En algunas modalidades, la media vida en suero del anticuerpo activable multiespecífico es de al menos 3 horas cuando se administra a un organismo.

La descripción proporciona además composiciones y métodos que incluyen un anticuerpo activable multiespecífico que incluye al menos un primer anticuerpo o fragmento de anticuerpo (AB1) que se une específicamente a una diana y un

segundo anticuerpo o fragmento de anticuerpo (AB2), donde al menos el primer AB en el anticuerpo activable multiespecífico se acopla a una entidad enmascarante (MM1) que disminuye la capacidad de AB1 para unirse a su diana. En algunas modalidades, cada AB se acopla a una MM que disminuye la capacidad de su AB correspondiente para cada diana. Por ejemplo, en modalidades de anticuerpos activables biespecíficos, AB1 se acopla a una primera entidad enmascarante (MM1) que disminuye la capacidad de AB1 para unirse a su diana, y AB2 se acopla a una segunda entidad enmascarante (MM2) que disminuye la capacidad de AB2 para unir su diana. En algunas modalidades, el anticuerpo activable multiespecífico comprende más de dos regiones de AB; en tales modalidades, AB1 se acopla a una primera entidad enmascarante (MM1) que disminuye la capacidad de AB1 para unirse a su diana, AB2 se acopla a una segunda entidad enmascarante (MM2) que disminuye la capacidad de AB2 para unirse a su diana, AB3 se acopla a una tercera entidad enmascarante (MM3) que disminuye la capacidad de AB3 para unirse a su diana, y así sucesivamente para cada AB en el anticuerpo activable multiespecífico.

En algunas modalidades, el anticuerpo activable multiespecífico incluye además al menos una entidad escindible (CM) que es un sustrato para una proteasa, donde la CM une una MM a un AB. Por ejemplo, en algunas modalidades, el anticuerpo activable multiespecífico incluye al menos un primer anticuerpo o fragmento de anticuerpo (AB1) que se une específicamente a una diana y un segundo anticuerpo o fragmento de anticuerpo (AB2), donde al menos el primer AB en el anticuerpo activable multiespecífico se acopla a través de una primera entidad escindible (CM1) a una entidad enmascarante (MM1) que disminuye la capacidad de AB1 para unirse a su diana. En algunas modalidades el anticuerpo activable biespecífico, AB1 se acopla a través de CM1 a MM1, y AB2 se acopla a través de una segunda entidad escindible (CM2) a una segunda entidad enmascarante (MM2) que disminuye la capacidad de AB2 para unir su diana. En algunas modalidades, el anticuerpo activable multiespecífico comprende más de dos regiones de AB; en algunas de estas modalidades, AB1 se acopla a través de CM1 a MM1, AB2 se acopla a través de CM2 a MM2, y AB3 se acopla mediante una tercera entidad escindible (CM3) a una tercera entidad enmascarante (MM3) que disminuye la capacidad de AB3 para unirse a su diana, y así sucesivamente para cada AB en el anticuerpo activable multiespecífico.

Las composiciones y métodos proporcionados en la presente descripción permiten la fijación de uno o más agentes a uno o más residuos de cisteína en cualquiera de las regiones de AB sin comprometer la actividad (por ejemplo, la actividad de enmascaramiento, activación o unión) del anticuerpo activable multiespecífico. En algunas modalidades, las composiciones y métodos proporcionados en la presente descripción permiten la fijación de uno o más agentes a uno o más residuos de cisteína en cualquiera de las regiones de AB sin reducir o alterar de cualquier otra forma uno o más enlaces disulfuro dentro de cualquiera de las MM. Las composiciones y métodos proporcionados en la presente descripción producen un anticuerpo activable multiespecífico que se conjuga con uno o más agentes, por ejemplo, cualquiera de una variedad de agentes terapéuticos, de diagnóstico y/o profilácticos, preferentemente sin que ninguno de los agentes se conjugue con ninguno de la MM del anticuerpo activable multiespecífico. Las composiciones y métodos proporcionados en la presente descripción producen anticuerpos activables multiespecíficos conjugados en los que cada una de las MM conserva la capacidad de enmascarar eficaz y eficientemente su AB correspondiente del anticuerpo activable multiespecífico en un estado no escindido. Las composiciones y métodos proporcionados en la presente descripción producen anticuerpos activables multiespecíficos conjugados en los que el anticuerpo activable todavía se activa, es decir, escinde, en presencia de una proteasa que puede escindir la CM.

Los anticuerpos activables multiespecíficos tienen al menos un punto de conjugación para un agente, pero en los métodos y composiciones proporcionadas en la presente descripción están disponibles menos de todos los puntos posibles de conjugación para la conjugación con un agente. En algunas modalidades, uno o más puntos de conjugación son átomos de azufre implicados en enlaces disulfuro. En algunas modalidades, uno o más puntos de conjugación son átomos de azufre implicados en enlaces disulfuro intercatenarios. En algunas modalidades, uno o más puntos de conjugación son átomos de azufre implicados en enlaces de sulfuro intercatenarios, pero no átomos de azufre implicados en enlaces disulfuro intracatenarios. En algunas modalidades, uno o más puntos de conjugación son átomos de azufre de cisteína u otros residuos de aminoácidos que contienen un átomo de azufre. Tales residuos pueden originarse naturalmente en la estructura del anticuerpo o pueden incorporarse en el anticuerpo mediante mutagénesis dirigida al sitio, conversión química o incorporación errónea de aminoácidos no naturales.

Además se proporcionan métodos para preparar un conjugado de un anticuerpo activable multiespecífico que tiene uno o más enlaces disulfuro intercatenarios en uno o más de los AB y uno o más enlaces disulfuro intracatenarios en la MM correspondiente, y se proporciona un fármaco reactivo con tioles libres. El método generalmente incluye enlaces disulfuro intercatenarios parcialmente reductores en el anticuerpo activable con un agente reductor, tal como, por ejemplo, TCEP; y que conjuga el fármaco reactivo con tioles libres con el anticuerpo activable parcialmente reducido. Como se usa en la presente descripción, el término reducción parcial se refiere a situaciones donde un anticuerpo activable multiespecífico se pone en contacto con un agente reductor y se reducen menos de todos los enlaces disulfuro, *por ejemplo*, menos de todos los sitios posibles de conjugación. En algunas modalidades, se reducen menos de 99%, 98%, 97%, 96%, 95%, 90%, 85%, 80%, 75%, 70%, 65%, 60%, 55%, 50%, 45%, 40%, 35%, 30%, 25%, 20%, 15%, 10% o menos del 5% de todos los posibles sitios de conjugación.

Aun en otras modalidades, se proporciona un método para reducir y conjugar un agente, por ejemplo, un fármaco, con un anticuerpo activable multiespecífico que resulta en la selectividad en la colocación del agente. El método generalmente incluye reducir parcialmente el anticuerpo activable multiespecífico con un agente reductor de manera que cualquier sitio de conjugación en cualquiera de las entidades de enmascaramiento u otra porción no AB del anticuerpo activable no se

reduzcan, y conjugar el agente a tioles intercatenarios en uno o más de las regiones de AB del anticuerpo activable multiespecífico. Los sitios de conjugación se seleccionan para permitir la colocación deseada de un agente para permitir que se produzca la conjugación en un sitio deseado. El agente reductor es, por ejemplo, TCEP. Las condiciones de reacción de reducción tales como, por ejemplo, la relación de agente reductor a anticuerpo activable, la duración de la incubación, la temperatura durante la incubación, el pH de la solución de reacción de reducción, etc., se determinan identificando las condiciones que producen un anticuerpo activable conjugado en el que la MM conserva la capacidad de enmascarar eficaz y eficientemente el AB del anticuerpo activable en un estado no escindido. La relación de agente de reducción a anticuerpo activable multiespecífico variará en dependencia del anticuerpo activable. En algunas modalidades, la relación de agente reductor a anticuerpo activable multiespecífico estará en un intervalo de aproximadamente 20:1 a 1:1, de aproximadamente 10:1 a 1:1, de aproximadamente 9:1 a 1:1, de aproximadamente 8:1 a 1:1, de aproximadamente 7:1 a 1:1, de aproximadamente 6:1 a 1:1, de aproximadamente 5:1 a 1:1, de aproximadamente 4:1 a 1:1, de aproximadamente 3:1 a 1:1, de aproximadamente 2:1 a 1:1, de aproximadamente 20:1 a 1:1,5, de aproximadamente 10:1 a 1:1,5, de aproximadamente 9:1 a 1:1,5, de aproximadamente 8:1 a 1:1,5, de aproximadamente 7:1 a 1:1,5, de aproximadamente 6:1 a 1:1,5, de aproximadamente 5:1 a 1:1,5, de aproximadamente 4:1 a 1:1,5, de aproximadamente 3:1 a 1:1,5, de aproximadamente 2:1 a 1:1,5, de aproximadamente 1,5:1 a 1:1,5, o de aproximadamente 1:1 a 1:1,5. En algunas modalidades, la relación está en el intervalo de aproximadamente 5:1 a 1:1. En algunas modalidades, la relación está en el intervalo de aproximadamente 5:1 a 1,5:1. En algunas modalidades, la relación está en el intervalo de aproximadamente 4:1 a 1:1. En algunas modalidades, la relación está en el intervalo de aproximadamente 4:1 a 1,5:1. En algunas modalidades, la relación está en el intervalo de aproximadamente 8:1 a aproximadamente 1:1. En algunas modalidades, la relación está en el intervalo de aproximadamente 2,5:1 a 1:1.

10

15

20

25

30

35

40

45

50

55

60

65

En algunas modalidades, se proporciona un método para reducir enlaces disulfuro intercatenarios en una o más de las regiones del AB de un anticuerpo activable multiespecífico y conjugar un agente, por ejemplo, un agente que contiene tiol tal como un fármaco, con los tioles intercatenarios resultantes para localizar selectivamente agente(s) en el AB. El método generalmente incluye reducir parcialmente una o más de las regiones de AB con un agente reductor para formar al menos dos tioles intercatenarios sin formar todos los posibles tioles entre cadenas en el anticuerpo activable; y conjugar el agente con los tioles intercatenarios del AB parcialmente reducido. Por ejemplo, una o más de las regiones de AB del anticuerpo activable multiespecífico se reducen parcialmente durante aproximadamente 1 hora a aproximadamente 37°C a una relación deseada de agente reductor: anticuerpo activable. En algunas modalidades, la relación de agente reductor a anticuerpo activable estará en un intervalo de aproximadamente 20:1 a 1:1, de aproximadamente 10:1 a 1:1, de aproximadamente 9:1 a 1:1, de aproximadamente 8:1 a 1:1, de aproximadamente 7:1 a 1:1, de aproximadamente 6:1 a 1:1, de aproximadamente 5:1 a 1:1, de aproximadamente 4:1 a 1:1, de aproximadamente 3:1 a 1:1, de aproximadamente 2:1 a 1:1, de aproximadamente 20:1 a 1:1,5, de aproximadamente 10:1 a 1:1,5, de aproximadamente 9:1 a 1:1,5, de aproximadamente 8:1 a 1:1,5, de aproximadamente 7:1 a 1:1,5, de aproximadamente 6:1 a 1:1,5, de aproximadamente 5:1 a 1:1,5, de aproximadamente 4:1 a 1:1,5, de aproximadamente 3:1 a 1:1,5, de aproximadamente 2:1 a 1:1,5, de aproximadamente 1,5:1 a 1:1,5, o de aproximadamente 1:1 a 1:1,5. En algunas modalidades, la relación está en el intervalo de aproximadamente 5:1 a 1:1. En algunas modalidades, la relación está en el intervalo de aproximadamente 5:1 a 1,5:1. En algunas modalidades, la relación está en el intervalo de aproximadamente 4:1 a 1:1. En algunas modalidades, la relación está en el intervalo de aproximadamente 4:1 a 1,5:1. En algunas modalidades, la relación está en el intervalo de aproximadamente 8:1 a aproximadamente 1:1. En algunas modalidades, la relación está en el intervalo de aproximadamente 2,5:1 a 1:1.

El reactivo que contiene tiol puede ser, por ejemplo, cisteína o N-acetil cisteína. El agente reductor puede ser, por ejemplo, TCEP. En algunas modalidades, el anticuerpo activable reducido puede purificarse antes de la conjugación, mediante el uso de, por ejemplo, cromatografía en columna, diálisis o diafiltración. Alternativamente, el anticuerpo reducido no se purifica después de una reducción parcial y antes de la conjugación.

La descripción proporciona además anticuerpos activables multiespecíficos parcialmente reducidos en los que al menos un enlace disulfuro intercatenario en el anticuerpo activable multiespecífico se ha reducido con un agente reductor sin alterar ningún enlace disulfuro intracatenario en el anticuerpo activable multiespecífico, en donde el anticuerpo activable multiespecífico incluye al menos un primer anticuerpo o un fragmento de unión a antígeno de este (AB1) que se une específicamente a una diana, una primera entidad enmascarante (MM1) que inhibe la unión del AB1 del anticuerpo activable multiespecífico en un estado no escindido a la diana, una primera entidad escindible (CM1) acoplada al AB1, en donde la CM1 es un polipéptido que funciona como un sustrato para una proteasa, y un segundo anticuerpo o un fragmento de unión al antígeno de este (AB2) que se une específicamente a una segunda diana. En algunas modalidades, la MM1 se acopla al AB1 a través de la CM1. En algunas modalidades, uno o más enlaces disulfuro intracatenario del anticuerpo activable multiespecífico no se altera por el agente reductor. En algunas modalidades, uno o más enlaces disulfuro intracatenario de la MM1 dentro del anticuerpo activable multiespecífico no se altera por el agente reductor. En algunas modalidades, el agente reductor es TCEP.

En algunas modalidades, los anticuerpos multiespecíficos y/o anticuerpos activables multiespecíficos descritos en la presente descripción se usan junto con uno o más agentes adicionales o una combinación de agentes adicionales. Los agentes adicionales adecuados incluyen terapias farmacéuticas y/o quirúrgicas actuales para una aplicación pretendida, tal como, por ejemplo, cáncer. Por ejemplo, los anticuerpos multiespecíficos y/o anticuerpos activables multiespecíficos pueden usarse junto con un agente quimioterapéutico o antineoplásico adicional

En algunas modalidades, el anticuerpo multiespecífico y/o el anticuerpo activable multiespecífico y el agente adicional se formulan en una única composición terapéutica, y el anticuerpo multiespecífico y/o el anticuerpo activable multiespecífico y el agente adicional se administran de manera simultánea. Alternativamente, el anticuerpo multiespecífico y/o el anticuerpo activable multiespecífico y el agente adicional se separan entre sí, por ejemplo, cada uno se formula en una composición terapéutica separada, y el anticuerpo multiespecífico y/o el anticuerpo multiespecífico activable y el agente adicional se administran de manera simultánea, o el anticuerpo multiespecífico y/o el anticuerpo activable multiespecífico y el agente adicional se administran en diferentes momentos durante un régimen de tratamiento. Por ejemplo, el anticuerpo multiespecífico y/o anticuerpo activable multiespecífico se administra antes de la administración del agente adicional, el anticuerpo multiespecífico y/o el anticuerpo activable multiespecífico y el agente adicional se administran de forma alternativa. Como se describe en la presente descripción, el antianticuerpo multiespecífico y/o el anticuerpo activable multiespecífico y el agente adicional se administran en dosis únicas o en dosis múltiples.

10

15

20

25

30

35

40

45

50

55

La descripción proporciona además una molécula de ácido nucleico aislada que codifica un anticuerpo multiespecífico y/o anticuerpo activable multiespecífico descrito en la presente descripción, así como vectores que incluyen estas secuencias de ácido nucleico aisladas. La descripción proporciona métodos para producir un anticuerpo multiespecífico y/o un anticuerpo activable multiespecífico al cultivar una célula en condiciones que conducen a la expresión del anticuerpo multiespecífico y/o anticuerpo activable multiespecífico, donde la célula comprende una molécula de ácido nucleico de ese tipo. En algunas modalidades, la célula comprende un vector de ese tipo.

La descripción proporciona además un método para fabricar anticuerpos multiespecíficos de la descripción y/o anticuerpos activables multiespecíficos de la descripción al (a) cultivar una célula que comprende una construcción de ácido nucleico que codifica el anticuerpo multiespecífico y/o anticuerpo activable multiespecífico en condiciones que conducen a la expresión del anticuerpo multiespecífico y/o multiespecífico activable, y (b) recuperar el anticuerpo multiespecífico y/o anticuerpo activable multiespecífico.

La presente descripción proporciona además métodos para tratar, prevenir, retrasar la progresión de, o mejorar de cualquier otra forma, un síntoma de una o más patologías o aliviar un síntoma asociado con tales patologías, al administrar un anticuerpo multiespecífico y/o anticuerpo activable multiespecífico de la descripción a un sujeto en el que se desea tal tratamiento o prevención. El sujeto que se trata es, *por ejemplo*, humano u otro mamífero. En algunas modalidades, el sujeto es un mamífero no humano, tal como un primate no humano, un animal de compañía (por ejemplo, gato, perro, caballo), animal de granja, animal de trabajo o animal de zoológico. En algunas modalidades, el sujeto es un roedor.

La presente descripción además proporciona métodos para inducir la activación de células T dependientes de diana y destrucción de una célula diana al administrar un anticuerpo activable multiespecífico de la descripción a un sujeto en el que se desea tal inducción, en donde cuando el anticuerpo activable multiespecífico está en estado escindido, por ejemplo, cada entidad enmascarante en el anticuerpo activable multiespecífico ya no se une o asocia de cualquier otra forma con el dominio AB correspondiente, la activación de células T dependiente de la diana y se produce la destrucción de la célula diana, y cuando el anticuerpo activable multiespecífico está en el estado no escindido, por ejemplo al menos un entidad enmascarante del anticuerpo activable multiespecífico se une o asocia de cualquier otra forma con el dominio AB correspondiente, la activación de células T dependientes de la diana y la destrucción de la célula diana se reduce o se inhibe de cualquier otra forma. Cualquiera de los anticuerpos activables multiespecíficos descritos en la presente descripción es adecuado para su uso en tales métodos. El sujeto que se trata es, por ejemplo, humano u otro mamífero. En algunas modalidades, el sujeto es un mamífero no humano, tal como un primate no humano, un animal de compañía (por ejemplo, gato, perro, caballo), animal de granja, animal de trabajo o animal de zoológico. En algunas modalidades, el sujeto es un roedor.

Un anticuerpo multiespecífico y/o anticuerpo activable multiespecífico usado en cualquiera de las modalidades de estos métodos y usos puede administrarse en cualquier etapa de la enfermedad y/o en cualquier etapa en la que se desea la activación y destrucción de células T de una célula diana. Por ejemplo, un anticuerpo multiespecífico de ese tipo y/o anticuerpo activable multiespecífico puede administrarse a un paciente que padece cáncer de cualquier estadio, desde temprano hasta metastásico. Los términos sujeto y paciente se usan de manera intercambiable en la presente descripción. Un anticuerpo multiespecífico y/o anticuerpo activable multiespecífico usado en cualquiera de las modalidades de estos métodos y usos puede usarse en un régimen de tratamiento que comprende terapia neoadyuvante. Un anticuerpo multiespecífico y/o anticuerpo activable multiespecífico usado en cualquiera de las modalidades de estos métodos y usos puede administrarse solo o en combinación con uno o más agentes adicionales, que incluyen inhibidores de molécula pequeña, otras terapias basadas en anticuerpos, terapias basadas en polipéptido o péptido, terapias basadas en ácidos nucleicos y/o de otros productos biológicos.

La descripción además proporciona métodos y kits para usar el anticuerpo multiespecífico y/o anticuerpos activables multiespecíficos en una variedad de indicaciones de diagnóstico y/o profilácticas. Por ejemplo, la descripción proporciona métodos y kits para detectar la presencia o ausencia de un agente de escisión y una diana de interés en un sujeto o una muestra al (i) poner en contacto un sujeto o muestra con un anticuerpo activable multiespecífico que incluye al menos una primera entidad enmascarante (MM1), una primera entidad escindible (CM1) que se escinde por el agente de escisión y al menos un primer dominio de unión a antígeno o fragmento de este (AB1) que se une específicamente a la diana de interés y un segundo dominio o fragmento de unión a antígeno de este (AB2) que se une específicamente a una segunda

diana y/o un segundo epítopo, (a) en donde la MM1 es un péptido que inhibe la unión del AB1 a la diana, y en donde la MM1 no tiene una secuencia de aminoácidos de una pareja de unión natural de AB1 y no es una forma modificada de una pareja de unión natural del AB1; y (b) en donde, en un estado no activado, no escindible, la MM1 interfiere con la unión específica de AB1 a la diana, y en un estado activado y escindible, la MM1 no interfiere ni compite con la unión específica del AB1 a la diana; y (ii) medir un nivel de anticuerpo activable multiespecífico activado en el sujeto o muestra, en donde un nivel detectable de anticuerpo activable multiespecífico activado en el sujeto o muestra indica que el agente de escisión y la diana están presentes en el sujeto o muestra y en donde el nivel no detectable de anticuerpo activable multiespecífico activado en el sujeto o muestra indica que el agente de escisión, la diana o tanto el agente de escisión como la diana están ausentes y/o no están suficientemente presentes en el sujeto o la muestra.

10

15

En algunas modalidades, el anticuerpo activable multiespecífico activable es un anticuerpo activable multiespecífico activable al que se conjuga un agente terapéutico. En algunas modalidades, el anticuerpo activable multiespecífico activable no se conjuga con un agente. En algunas modalidades, el anticuerpo activable multiespecífico activable comprende un marcador detectable. En algunas modalidades, la etiqueta detectable se coloca en el AB1. En algunas modalidades, medir el nivel de anticuerpo activable multiespecífico activable en el sujeto o muestra se logra mediante el uso de un reactivo secundario que se une específicamente al anticuerpo activable multiespecífico activado, donde el reactivo comprende una etiqueta detectable. En algunas modalidades, el reactivo secundario es un anticuerpo que comprende una etiqueta detectable.

20 En algunas modalidades de estos métodos y kits, el anticuerpo activable multiespecífico activable incluye una etiqueta 25

detectable. En algunas modalidades de estos métodos y kits, la etiqueta detectable incluye un agente de formación de imágenes, un agente de contraste, una enzima, un marcador fluorescente, un cromóforo, un colorante, uno o más iones metálicos o una etiqueta basada en ligando. En algunas modalidades de estos métodos y kits, el agente de formación de imágenes comprende un radioisótopo. En algunas modalidades de estos métodos y kits, el radioisótopo es indio o tecnecio. En algunas modalidades de estos métodos y kits, el agente de contraste comprende yodo, gadolinio u óxido de hierro. En algunas modalidades de estos métodos y kits, la enzima comprende peroxidasa de rábano picante, fosfatasa alcalina o β-galactosidasa. En algunas modalidades de estos métodos y kits, la etiqueta fluorescente comprende proteína fluorescente amarilla (YFP), proteína fluorescente cian (CFP), proteína fluorescente verde (GFP), proteína fluorescente roja modificada (mRFP), proteína fluorescente roja tdimer2 (RFP tdimer2), HCRED, o un derivado de europio. En algunas modalidades de estos métodos y kits, la etiqueta luminiscente comprende un derivado de N-metilacridio. En algunas modalidades de estos métodos, la etiqueta comprende una etiqueta Alexa Fluor®, tal como Alex Fluor® 680 o Alexa Fluor® 750. En algunas modalidades de estos métodos y kits, la etiqueta basada en ligando comprende biotina, avidina, estreptavidina o uno o más haptenos.

35

30

En algunas modalidades de estos métodos y kits, el sujeto es un mamífero. En algunas modalidades de estos métodos y kits, el sujeto es un ser humano. En algunas modalidades, el sujeto es un mamífero no humano, tal como un primate no humano, un animal de compañía (por ejemplo, gato, perro, caballo), animal de granja, animal de trabajo o animal de zoológico. En algunas modalidades, el sujeto es un roedor.

40

En algunas modalidades de estos métodos, el método es un método in vivo. En algunas modalidades de estos métodos, el método es un método in situ. En algunas modalidades de estos métodos, el método es un método ex vivo. En algunas modalidades de estos métodos, el método es un método in vitro.

45

50

población de pacientes adecuada para el tratamiento con un anticuerpo activable multiespecífico de la descripción. Por ejemplo, los pacientes que dan positivo tanto para la diana como una proteasa que escinde el sustrato en la primera entidad escindible (CM1) del anticuerpo activable multiespecífico que se prueba en estos métodos se identifican como candidatos adecuados para el tratamiento con un anticuerpo activable multiespecífico de ese tipo que comprende una CM1 de ese tipo. Similarmente, los pacientes que dan negativo tanto para la diana como para la proteasa que escinde el sustrato en la CM1 en el anticuerpo activable multiespecífico que se prueba mediante el uso de estos métodos podrían

En algunas modalidades de los métodos y kits, el método o kit se usa para identificar o refinar de cualquier otra forma una

identificarse como candidatos adecuados para otra forma de terapia.

55 60

65

En algunas modalidades, se usa un método o kit para identificar o refinar de cualquier otra forma una población de pacientes adecuada para el tratamiento con un anticuerpo activable multiespecífico y/o anticuerpo activable multiespecífico conjugado (por ejemplo, anticuerpo activable multiespecífico con el que se conjuga un agente terapéutico) de la descripción, seguido de tratamiento administrando ese anticuerpo multiespecífico y/o anticuerpo activable multiespecífico y/o anticuerpo activable multiespecífico conjugado a un sujeto que lo necesita. Por ejemplo, los pacientes que dan positivo tanto para la diana como una proteasa que escinde el sustrato en la primera entidad escindible (CM1) del anticuerpo activable multiespecífico y/o anticuerpo activable multiespecífico conjugado que se prueba en estos métodos se identifican como candidatos adecuados para tratamiento con un anticuerpo activable multiespecífico que comprende una CM1 de ese tipo y/o anticuerpo activable multiespecífico conjugado que comprende una CM1 de ese tipo, y se administra después al paciente una cantidad terapéuticamente eficaz del anticuerpo activable multiespecífico y/o anticuerpo activable multiespecífico conjugado que se probó. Similarmente, los pacientes que dan negativo para uno o ambos la diana y la proteasa que escinde el sustrato en la CM1 en el anticuerpo activable multiespecífico y/o el anticuerpo conjugado multiespecífico activable que se prueba mediante el uso de estos métodos podrían identificarse como candidatos adecuados para otra forma de terapia.

ES 2 683 268 T3

En algunas modalidades, tales pacientes pueden probarse con otros anticuerpos multiespecíficos y/o anticuerpos activables multiespecíficos conjugados hasta que se identifique un anticuerpo activable multiespecífico adecuado y/o anticuerpo activable multiespecífico conjugado para el tratamiento, por ejemplo, un anticuerpo activable multiespecífico y/o anticuerpo activable multiespecífico conjugado que comprende una CM que se escinde por el paciente en el sitio de la enfermedad. En algunas modalidades, se administra después al paciente una cantidad terapéuticamente eficaz del anticuerpo activable multiespecífico y/o anticuerpo activable multiespecífico conjugado para el que el paciente dio positivo.

Las composiciones farmacéuticas de acuerdo con la descripción pueden incluir un anticuerpo multiespecífico y/o un anticuerpo activable multiespecífico de la descripción y un portador. Estas composiciones farmacéuticas pueden incluirse en kits, tales como, por ejemplo, kits de diagnóstico.

Un experto en la materia apreciará que los anticuerpos de la descripción tienen una variedad de usos. Por ejemplo, las proteínas de la descripción se usan como agentes terapéuticos para una variedad de trastornos. Los anticuerpos de la descripción además se usan como reactivos en kits de diagnóstico o como herramientas de diagnóstico, o estos anticuerpos pueden usarse en ensayos de competición para generar reactivos terapéuticos.

Breve descripción de las figuras

15

35

40

45

- La Figura 1 es una ilustración que representa varios formatos de anticuerpos biespecíficos (adaptado de Chan y Carter, Nat. Rev. Immunol. 2010).
- Las Figuras 2A-2C son una serie de ilustraciones que representan varios formatos de anticuerpos multiespecíficos adecuados para su uso en las composiciones y métodos de la descripción. En un anticuerpo biespecífico, un scFv puede fusionarse al extremo carboxilo de la cadena pesada (Hc) de un anticuerpo IgG (Figura 2A); al extremo carboxilo de la cadena ligera (Lc) (Figura 2B); o al extremo carboxilo de ambas cadenas pesada y ligera (Figura 2C). La Figura 2D es un diagrama de una única construcción genética para la expresión de fusiones de anticuerpos multiespecíficos.
- La Figura 3A es una serie de ilustraciones que representan varios formatos de anticuerpos activables multiespecíficos adecuados para su uso en las composiciones y métodos de la descripción. La Figura 3B es un diagrama de constructos genéticos para la expresión de fusiones de anticuerpos activables multiespecíficos.
 - La Figura 4, paneles A-J, son una serie de diagramas esquemáticos de un conjunto seleccionado de las posibles permutaciones de anticuerpos multiespecíficos de la descripción. Cajas sombreadas en gris cubren las configuraciones representadas en la Figura 2 y se incluyen en aquí para completar y comparar.
 - La Figura 5, paneles A-J, son una serie de diagramas esquemáticos de un conjunto seleccionado de las posibles permutaciones de anticuerpos activables multiespecíficos de la descripción. Cajas sombreadas en gris cubren las configuraciones representadas en la Figura 3 y se incluyen aquí para completar y comparar. En particular, esta figura muestra los anticuerpos activables multiespecíficos en los que el sitio de unión al antígeno primario se enmascara (es decir, activable) y el(los) dominio(s) de unión a antígeno adicional(es) no se enmascaran.
 - La Figura 6, Paneles A-J, son una serie de diagramas esquemáticos de una matriz de anticuerpos activables multiespecíficos en los que se enmascaran todos los dominios de unión a antígeno.
 - Figura 7, Paneles A-J, son una serie de diagramas esquemáticos de una matriz de anticuerpos activables multiespecíficos en los que el dominio de unión a antígeno secundario se enmascara y el dominio o dominios de unión a antígeno adicionales no se enmascaran.
- Figura 8, Paneles A-J, son una serie de diagramas esquemáticos de una matriz de anticuerpos activables multiespecíficos en los que la mayoría, pero no todos los dominios de unión a antígeno se enmascaran y al menos no se enmascara un dominio adicional de unión a antígeno.
- Figura 9, Paneles A-D, son una serie de diagramas esquemáticos de una matriz de anticuerpos activables multiespecíficos en los que se enmascaran el dominio de unión a antígeno primario y otro dominio de unión a antígeno, y el dominio o dominios de unión a antígeno restantes no se enmascaran.
 - La Figura 10 es una fotografía que representa el análisis PAGE de los anticuerpos multiespecíficos y anticuerpos activables multiespecíficos que demuestran los pesos moleculares de las cadenas pesadas fusionadas scFv, muestras 1-8, en comparación con los respectivos anticuerpos monoespecíficos o anticuerpos activables, muestras 9-11.
 - La Figura 11 es un gráfico que representa la capacidad de los anticuerpos multiespecíficos para unirse específicamente a sus antígenos afines.

ES 2 683 268 T3

Las Figuras 12A-12B son una serie de gráficos que representan la capacidad de los anticuerpos multiespecíficos y anticuerpos activables multiespecíficos que incluyen los scFv de CTLA-4 antihumano para unirse específicamente a (A) ratón y (B) CTLA-4 humano.

- 5 La Figura 13 es un gráfico que representa la capacidad de los anticuerpos activables multiespecíficos que contienen OKT3 referidos en la presente descripción como anticuerpo activable multiespecífico anti-EGFR 3954-1204-C225v5-OKT3 y anticuerpo activable multiespecífico anti-Jagged 5342-1204-4D1 lv2-OKT3 para unirse específicamente a CD3ε humanos en experimentos de unión ELISA.
- La Figura 14 es una serie de fotografías que representa el análisis PAGE de digestiones de uPA que demuestran la activación de anticuerpos activables multiespecíficos sin escisión de fusiones de scFv de cadena pesada.
 - La Figura 15 es una serie de gráficos que representan la capacidad de anticuerpos activables multiespecíficos activados para unir diversos dianas.
 - La Figura 16A es un gráfico que representa la unión de anticuerpos multiespecíficos de la descripción a células T Jurkat positivas para CD3ɛ.
- La Figura 16B es un gráfico que representa la unión conjunta de anticuerpos multiespecíficos de la descripción a células T Jurkat positivas para CD3ε y EGFR.

15

30

55

60

- La Figura 17 es una serie de gráficos que representan la activación dependiente de EGFR de células T Jurkat mediante anticuerpos multiespecíficos de la descripción.
- La Figura 18A es un gráfico que representa la activación dependiente de EGFR de células CD8⁺ T primarias por anticuerpos multiespecíficos de la descripción.
 - La Figura 18B es un gráfico que representa la destrucción de células diana dependiente de EGFR por anticuerpos multiespecíficos de la descripción.
 - La Figura 18C es una serie de gráficos que representan la activación de CD69 de células T primarias mediante el anticuerpo multiespecífico C225v5-OKT3m-H-N en células SW480 que expresan EGFR en comparación con la activación mínima en células U266 negativas para EGFR.
- La Figura 18D es una serie de gráficos que representan la destrucción dependiente de EGFR de células diana por el anticuerpo multiespecífico C225v5-OKT3m-H-N en células SW480 que expresan EGFR en comparación con la destrucción despreciable en células U266 negativas para EGFR.
- La Figura 19 es una serie de gráficos que representan la lisis de células T primarias de un panel de líneas celulares que expresan EGFR mediante el anticuerpo multiespecífico C225v5-OKT3m-H-N en comparación con la ausencia de lisis de la línea celular U266 negativa para EGFR.
- La Figura 20A y la Figura 20B son una serie de gráficos que representan la disminución de la unión del anticuerpo activable multiespecífico 3954-1204-C225v5-OKT3m-H-N a células que expresan EGFR en comparación con la unión a EGFR por el anticuerpo multiespecífico C225v5-OKT3m-H-N. Además, las Figuras 20A y 20B demuestran que la activación de la proteasa del anticuerpo activable multiespecífico 3954-1204-C225v5-OKT3m-HN por matriptasa (además denominado en la presente descripción MTSP1 o MT-SP1) restaura la unión de EGFR a un nivel equivalente al exhibido por el anticuerpo multiespecífico C225v5-OKT3m-HN. Las Figuras 20A y 20B además demuestran que tal anticuerpo multiespecífico activable y el anticuerpo multiespecífico se unen a EGFR de una manera similar a la del anticuerpo monoespecífico respectivo activable y anticuerpo monoespecífico.
 - La Figura 21A y la Figura 21B son una serie de gráficos que representan la unión del anticuerpo activable multiespecífico 3954-1204-C225v5-OKT3m-HN, el anticuerpo activable multiespecífico activado 3954-1204-C225v5-OKT3m-HN, y el anticuerpo multiespecífico C225v5-OKT3m-HN para células T Jurkat positivas para CD3ε.
 - La Figura 22 es un gráfico que representa la activación dependiente de EGFR dependiente de células T Jurkat mediante el anticuerpo activable multiespecífico 3954-1204-C225v5-OKT3m-H-N en comparación con la activación por el anticuerpo multiespecífico C225v5-OKT3m-H-N. Además, la figura demuestra que la activación de la proteasa del anticuerpo activable multiespecífico 3954-1204-C225v5-OKT3m-H-N por matriptasa restaura la activación dependiente de EGFR a un nivel equivalente al exhibido por el anticuerpo multiespecífico C225v5-OKT3m-H-N.
 - La Figura 23A es un gráfico que representa la disminución de la activación dependiente de EGFR de las células T CD8+ primarias mediante el anticuerpo activable multiespecífico 3954-1204-C225v5-OKT3m-H-N en comparación con la activación por el anticuerpo multiespecífico C225v5-OKT3m-H-N. Además, la figura demuestra que la activación de la proteasa del anticuerpo activable multiespecífico 3954-1204-C225v5-OKT3m-H-N por matriptasa restaura la activación dependiente de EGFR a un nivel equivalente al exhibido por el anticuerpo multiespecífico C225v5-OKT3m-H-N.

La Figura 23B es un gráfico que representa la disminución de la destrucción dependiente de EGFR de células diana mediante el anticuerpo activable multiespecífico 3954-1204-C225v5-OKT3m-H-N en comparación con la destrucción por el anticuerpo multiespecífico C225v5-OKT3m-H-N. Además, la figura demuestra que la activación de la proteasa del anticuerpo activable multiespecífico 3954-1204-C225v5-OKT3m-H-N por matriptasa restaura la destrucción de células diana dependiente de EGFR a un nivel equivalente al exhibido por el anticuerpo multiespecífico C225v5-OKT3m-H-N.

Descripción detallada

5

10

15

30

35

40

45

50

55

60

65

La presente descripción proporciona anticuerpos multiespecíficos y/o anticuerpos activables multiespecíficos. Como se usa en la presente descripción, un anticuerpo multiespecífico es un anticuerpo que reconoce dos o más antígenos o epítopos diferentes, y un anticuerpo multiespecífico activable es un anticuerpo multiespecífico que incluye al menos una entidad enmascarante (MM) enlazada a al menos un dominio de unión al antígeno o epítopo del anticuerpo multiespecífico de manera que el acoplamiento de la MM reduce la capacidad del dominio de unión al antígeno o epítopo para unirse a su objetivo. Los anticuerpos activables multiespecíficos proporcionados en la presente descripción son estables en circulación, se activan en sitios de terapia y/o diagnóstico previstos, pero no en tejido normal, es decir, sano, y, cuando se activan, muestran unión a una diana que es al menos comparable con el anticuerpo multiespecífico no modificado correspondiente.

Los ejemplos no limitantes de anticuerpos multiespecíficos incluyen anticuerpos biespecíficos, anticuerpos triespecíficos, anticuerpos tetraspecíficos y otros anticuerpos multiespecíficos. Los anticuerpos multiespecíficos proporcionados en la presente descripción además son multivalentes; como se usa en la presente descripción, la multivalencia se refiere al número total de sitios de unión en el anticuerpo, independientemente de si los sitios de unión reconocen los mismos o diferentes antígenos o epítopos. Ejemplos no limitantes de anticuerpos activables multiespecíficos incluyen anticuerpos activables biespecíficos, anticuerpos activables triespecíficos, anticuerpos activables multiespecíficos. Los anticuerpos activables multiespecíficos proporcionados en la presente descripción además son multivalentes.

En algunas modalidades, los anticuerpos multiespecíficos o fragmentos de estos y/o anticuerpos activables multiespecíficos o fragmentos de estos se diseñan para acoplarse a células T y/o de otras células efectoras inmunes. Los anticuerpos activables multiespecíficos o fragmentos de estos que se acoplan a las células T además se denominan en la presente descripción como anticuerpos multiespecíficos que se acoplan a las células T o fragmentos de estos y/o anticuerpos activables multiespecíficos que se acoplan a células T o fragmentos de estos. Los anticuerpos activables multiespecíficos o fragmentos de estos que se acoplan a células efectoras inmunes además se denominan en la presente descripción como anticuerpos multiespecíficos que se acoplan a células efectoras inmunes o fragmentos de estos y/o anticuerpos activables multiespecíficos o gragmentos de estos y/o anticuerpos activables multiespecíficos o fragmentos de estos y/o anticuerpos activables dirigidos en la presente descripción anticuerpos dirigidos contra antígenos múltiples o fragmentos de estos y/o anticuerpos activables dirigidos a múltiples antígenos o fragmentos de estos.

En algunas modalidades, un anticuerpo multiespecífico o fragmento de este incluye un dominio de IgG y un dominio de scFv. En algunas modalidades, un anticuerpo multiespecífico o fragmento de este incluye un dominio variable de IgG y un dominio de scFv. En algunas modalidades, un dominio de anticuerpo de un anticuerpo multiespecífico o fragmento de este tiene especificidad para un antígeno diana y otro dominio de anticuerpo tiene especificidad para un antígeno de superficie de la célula T. En algunas modalidades, un dominio de anticuerpo de un anticuerpo multiespecífico o fragmento de este tiene especificidad para un antígeno diana y otro dominio de anticuerpo tiene especificidad para otro antígeno diana. En algunas modalidades, un dominio de anticuerpo de un anticuerpo multiespecífico o fragmento de este tiene especificidad para un epítopo de un antígeno diana y otro dominio de anticuerpo tiene especificidad para otro epítopo de este antígeno diana.

Se muestran varias modalidades de anticuerpos activables multiespecíficos o fragmentos de estos de la descripción en las Figuras 3A y 5-9. En algunas modalidades, un anticuerpo activable multiespecífico o fragmento de este que comprende una IgG tiene los dominios variables de IgG enmascarados. En algunas modalidades, un anticuerpo activable multiespecífico o fragmento de este que comprende un scFv tiene los dominios de scFv enmascarados. En algunas modalidades, un anticuerpo activable multiespecífico o fragmento de este tiene tantos dominios variables de IgG como dominios de scFv, donde al menos uno de los dominios variables de IgG se acopla a una entidad enmascarante. En algunas modalidades, un anticuerpo activable multiespecífico o un fragmento de este tiene tanto dominios variables de IgG como dominios de scFv, donde al menos uno de los dominios de scFv se acopla a una entidad enmascarante. En algunas modalidades, un anticuerpo activable multiespecífico o fragmento de este tiene tanto dominios variables de IgG como dominios de scFv, donde al menos uno de los dominios variables de IgG se acopla a una entidad enmascarante y al menos uno de los dominios de scFv se acopla a una entidad enmascarante. En algunas modalidades, un anticuerpo activable multiespecífico o uno de sus fragmentos tiene dominios variables de IgG y dominios de scFv, donde cada uno de los dominios variables de IgG y los dominios de scFv se acopla a su propia entidad enmascarante. En algunas modalidades, un dominio de anticuerpo de un anticuerpo activable multiespecífico o fragmento de este tiene especificidad para un antígeno objetivo y otro dominio de anticuerpo tiene especificidad para un antígeno de superficie de célula T. En algunas modalidades, un dominio de anticuerpo de un anticuerpo activable multiespecífico o fragmento de este tiene especificidad para un antígeno diana y otro dominio de anticuerpo tiene especificidad para otro antígeno diana. En algunas modalidades, un dominio de anticuerpo de un anticuerpo activable multiespecífico o fragmento de este tiene especificidad para un epítopo de un antígeno diana y otro dominio de anticuerpo tiene especificidad para otro epítopo del mismo antígeno diana.

5

10

15

20

En algunas modalidades, los anticuerpos multiespecíficos o fragmentos de estos de la descripción incluyen al menos (i) un anticuerpo o fragmento de este que se acopla a la célula T que incluye un primer anticuerpo o fragmento de unión a antígeno de este (AB 1) que se une a una primera, diana que se acopla a la célula T que es un antígeno de superficie en una célula T y (ii) un segundo anticuerpo o fragmento de este que incluye un segundo anticuerpo o fragmento de unión a antígeno de este (AB2) que se une a una segunda diana. En algunas modalidades, las dianas primera y segunda son el mismo antígeno. En algunas modalidades, las dianas primera y segunda son antígenos diferentes. En algunas modalidades, las dianas primera y segunda son epítopos diferentes en el mismo antígeno. En algunas modalidades, el anticuerpo que se acopla a la célula T o fragmento de este se fija al extremo N de la cadena pesada del anticuerpo específico a la diana. En algunas modalidades, el anticuerpo que se acopla a la célula T o fragmento de este se fija al extremo C de la cadena pesada del anticuerpo específico a la diana. En algunas modalidades, el anticuerpo gue se acopla a la célula T o fragmento de este se fija al extremo N de la cadena ligera del anticuerpo específico a la diana. En algunas modalidades, el anticuerpo que se acopla a la célula T o fragmento de este se fija al extremo C de la cadena ligera del anticuerpo específico a la diana. En algunas modalidades, el anticuerpo multiespecífico comprende anticuerpos que se acoplan a células T o fragmentos de estos fijados a una combinación de uno o más extremos N y/o uno o más extremos C del anticuerpo multiespecífico. La descripción además incluye anticuerpos multiespecíficos que comprenden otro anticuerpo que se acopla a la célula efectora inmune o fragmento de este, tal como uno que se une a un antígeno de superficie de una célula asesina natural (NK), una célula mononuclear, tal como una célula mononuclear mieloide, un macrófago, y/o a otras células efectoras inmunes.

25 En algunas modalidades, el anticuerpo multiespecífico o fragmento de este de la descripción incluye al menos dos anticuerpos que se acoplan a células T o fragmentos de estos que acoplan uno o más receptores activadores de la célula T, tales como, por ejemplo, fragmentos scFv que se acoplan a las células T, que incluyen, pero no se limitan a, OX40/GITR, CD137/ GITR, CD137/OX40, CD27/NKG2D, y una combinación adicional de receptores de activación, y un anticuerpo de unión a la diana de manera que los fragmentos scFv que se acoplan a las células T se enlazan a ambos brazos del anticuerpo de unión a la diana. En algunas modalidades, el anticuerpo multiespecífico o fragmento de este de la 30 descripción incluye dos anticuerpos que se acoplan a células T o fragmentos de estos que se acoplan a uno o más receptores inhibidores de células T, y un anticuerpo de unión a la diana de manera que los fragmentos scFv que se acoplan a células T se enlazan a ambos brazos del anticuerpo de unión a la diana. En algunas modalidades, los dos fragmentos de anticuerpo que se acoplan a las células T se unen a la misma diana que se acopla a la célula T. En algunas 35 modalidades, los dos fragmentos de anticuerpo que se acoplan a las células T se unen a diferentes dianas que se acoplan a las células T. En algunas modalidades, los dos fragmentos de anticuerpo que se acoplan a las células T se unen a diferentes epítopos en la misma diana que se acopla a la célula T.

En algunas modalidades, el anticuerpo multiespecífico o fragmento de este de la descripción incluye al menos (i) un primer brazo que comprende un fragmento de unión a antígeno de un anticuerpo que se acopla a la célula T que incluye un primer anticuerpo o fragmento de unión a antígeno de este (AB1) que se une a una primera diana que se acopla a la célula T y (ii) un segundo brazo que comprende un fragmento de unión a antígeno de un anticuerpo de unión a la diana que incluye un segundo anticuerpo o fragmento de unión a antígeno de este (AB2) que se une a una segunda diana En algunas modalidades, el anticuerpo multiespecífico o fragmento de este incluye (iii) al menos un tercer fragmento de unión a antígeno de un anticuerpo de unión a la diana que incluye un tercer anticuerpo o fragmento de unión a antígeno de este (AB3) que se une a una tercera diana. En algunas modalidades, las dianas segunda y tercera o más son antígenos diferentes. En algunas modalidades, las dianas segunda y tercera o más son antígeno.

50 En algunas modalidades, los anticuerpos activables multiespecíficos o fragmentos de estos de la descripción incluyen al menos (i) un anticuerpo o fragmento que se acopla a la célula T que incluye un primer anticuerpo o fragmento de unión a antígeno de este (AB1) que se une a una primera, diana que se acopla a la célula T que es un antígeno de superficie en una célula T. donde el AB1 se fija a una entidad enmascarante (MM) de manera que el acoplamiento de la MM reduce la capacidad del AB1 para unir la primera diana y (ii) un segundo anticuerpo o fragmento de este que incluye un segundo 55 anticuerpo o fragmento de unión a antígeno de este (AB2) que se une a una segunda diana. En algunas modalidades, las dianas primera y segunda son el mismo antígeno. En algunas modalidades, las dianas primera y segunda son antígenos diferentes. En algunas modalidades, las dianas primera y segunda son epítopos diferentes en el mismo antígeno. En algunas modalidades, el anticuerpo que se acopla a la célula T o fragmento de este se fija al extremo N de la cadena pesada del anticuerpo específico a la diana. En algunas modalidades, el anticuerpo que se acopla a la célula T o fragmento 60 de este se fija al extremo C de la cadena pesada del anticuerpo específico a la diana. En algunas modalidades, el anticuerpo que se acopla a la célula T o fragmento de este se fija al extremo N de la cadena ligera del anticuerpo específico a la diana. En algunas modalidades, el anticuerpo que se acopla a la célula T o fragmento de este se fija al extremo C de la cadena ligera del anticuerpo específico a la diana. En algunas modalidades, el anticuerpo activable multiespecífico comprende anticuerpos que se acoplan a las células T o fragmentos de estos fijados a una combinación de uno o más extremos N y/o uno o más extremos C del anticuerpo activable multiespecífico. La descripción además incluye anticuerpos 65 activables multiespecíficos que comprenden otro anticuerpo que se acopla a la célula efectora inmune o fragmento de este, tal como uno que se une a un antígeno de superficie de una célula asesina natural (NK), una célula mononuclear, tal como una célula mononuclear mieloide, un macrófago y/o a otras células efectoras inmunes.

5

10

15

40

45

En algunas modalidades, el anticuerpo activable multiespecífico o fragmento de este de la descripción incluye al menos (i) dos anticuerpos que se acoplan a células T o fragmentos de anticuerpo de estos que se acoplan a uno o más receptores activadores de células T, tales como, por ejemplo, fragmentos scFv que se acoplan a células T, que incluyen, pero no se limitan a, OX40/GITR, CD 13 7/ GITR, CD137/OX40, CD27/NKG2D, y una combinación adicional de receptores activadores, donde el AB1 de uno de los fragmentos de anticuerpos que se acoplan a las células T se fija a una entidad enmascarante (MM) de manera que el acoplamiento de la MM reduce la capacidad de ese AB1 para unirse a su respectiva diana que se acopla a la célula T, y (ii) un anticuerpo de unión a la diana de manera que los fragmentos scFv que se acoplan a la célula T se enlazan a ambos brazos del anticuerpo de unión a la diana. En algunas modalidades, el anticuerpo multiespecífico o fragmento de este de la descripción incluye dos anticuerpos que se acoplan a células T o fragmentos de estos que se acoplan a uno o más receptores inhibidores de células T, y un anticuerpo de unión a la diana de manera que los fragmentos scFv que se acoplan a células T se enlazan a ambos brazos del anticuerpo de unión a la diana. En algunas modalidades, los dos fragmentos de anticuerpo que se acoplan a las células T se unen a la misma diana que se acopla a la célula T. En algunas modalidades, los dos fragmentos de anticuerpo que se acoplan a las células T se unen a diferentes dianas que se acoplan a las células T. En algunas modalidades, los dos fragmentos de anticuerpo que se acoplan a las células T se unen a diferentes epítopos en la misma diana que se acopla a la célula T.

20 En algunas modalidades, el anticuerpo activable multiespecífico o fragmento de este de la descripción incluye al menos (i) dos anticuerpos de que se acoplan a células T o fragmentos de anticuerpo de estos que se acoplan a uno o más receptores activadores de células T, tales como, por ejemplo, los fragmentos scFv que se acoplan a las células T, que incluyen, pero no se limitan a, OX40/GITR, CD137/ GITR, CD137/OX40, CD27/NKG2D y una combinación adicional de receptores activadores, donde se une cada uno de AB1 de los fragmentos de anticuerpos que se acoplan a las células T 25 a su propia entidad enmascarante (MM) de manera que el acoplamiento de cada MM a su AB1 respectivo reduce la capacidad de ese AB1 para unirse a su diana que se acopla a la respectiva célula T, y (ii) un anticuerpo de unión a la diana de manera que los fragmentos scFv se enlazan a ambos brazos del anticuerpo de unión a la diana. En algunas modalidades, el anticuerpo multiespecífico o fragmento de este de la descripción incluye dos anticuerpos que se acoplan a células T o fragmentos de estos que se acoplan a uno o más receptores inhibidores de células T, y un anticuerpo de 30 unión a la diana de manera que los fragmentos scFv que se acoplan a células T se enlazan a ambos brazos del anticuerpo de unión a la diana. En algunas modalidades, los dos fragmentos de anticuerpo que se acoplan a las células T se unen a la misma diana que se acopla a la célula T. En algunas modalidades, los dos fragmentos de anticuerpo que se acoplan a las células T se unen a diferentes dianas que se acoplan a las células T. En algunas modalidades, los dos fragmentos de anticuerpo que se acoplan a las células T se unen a diferentes epítopos en la misma diana que se acopla a la célula T. 35 En algunas modalidades, los anticuerpos que se acoplan a las células T o fragmentos de estos se acoplan a uno o más receptores inhibidores de células T en lugar de uno o más receptores activadores de células T.

En algunas modalidades, el anticuerpo activable multiespecífico o fragmento de este de la descripción incluye al menos (i) un primer brazo que comprende un fragmento de unión a antígeno de un anticuerpo que se acopla a la célula T que incluye un primer anticuerpo o fragmento de unión a antígeno de este (AB1) que se une a una primera diana que se acopla a la célula T, donde el AB1 se fija a una entidad enmascarante (MM) de manera que el acoplamiento de la MM reduce la capacidad del AB1 para unir la primera diana y (ii) un segundo brazo que comprende un fragmento de unión a antígeno de un anticuerpo de unión a la diana que incluye un segundo anticuerpo o fragmento de unión a antígeno de este (AB2) que se une a una segunda diana. En algunas modalidades, las dianas primera y segunda son el mismo antígeno. En algunas modalidades, las dianas primera y segunda son epítopos diferentes en el mismo antígeno. En algunas modalidades, los anticuerpos que se acoplan a las células T o fragmentos de estos se acoplan a uno o más receptores inhibidores de células T en lugar de uno o más receptores activadores de células T.

50 En algunas modalidades, los anticuerpos activables multiespecíficos o fragmentos de estos de la descripción incluyen al menos (i) un anticuerpo que se acopla a la célula T o fragmento de este que incluye un primer anticuerpo o fragmento de unión a antígeno de este (AB1) que se une una diana que se acopla a la célula T que es un antígeno de superficie en una célula T y (ii) un segundo anticuerpo o fragmento de este que incluye un segundo anticuerpo o fragmento de unión a antígeno de este (AB2) que se une a una segunda diana, donde se fija el AB2 a una entidad enmascarante (MM) de 55 manera que el acoplamiento del MM reduce la capacidad del AB2 para unirse a la segunda diana. En algunas modalidades, las dianas primera y segunda son el mismo antígeno. En algunas modalidades, las dianas primera y segunda son antígenos diferentes. En algunas modalidades, las dianas primera y segunda son epítopos diferentes en el mismo antígeno. En algunas modalidades, el anticuerpo que se acopla a la célula T o fragmento de este se fija al extremo N de la cadena pesada del anticuerpo específico a la diana. En algunas modalidades, el anticuerpo que se acopla a la 60 célula T o fragmento de este se fija al extremo C de la cadena pesada del anticuerpo específico a la diana. En algunas modalidades, el anticuerpo que se acopla a la célula T o fragmento de este se fija al extremo N de la cadena ligera del anticuerpo específico a la diana. En algunas modalidades, el anticuerpo que se acopla a la célula T o fragmento de este se fija al extremo C de la cadena ligera del anticuerpo específico a la diana. En algunas modalidades, el anticuerpo activable multiespecífico comprende anticuerpos que se acoplan a las células T o fragmentos de estos fijados a una combinación de uno o más extremos N y/o uno o más extremos C del anticuerpo activable multiespecífico. La descripción 65 además incluye anticuerpos activables multiespecíficos que comprenden otro anticuerpo que se acopla a la célula efectora inmune o fragmento de este, tal como uno que se une a un antígeno de superficie de una célula asesina natural (NK), una célula mononuclear, tal como una célula mononuclear mieloide, un macrófago y/o a otras células efectoras inmunes.

5

10

15

20

25

30

35

40

45

50

55

60

65

En algunas modalidades, el anticuerpo activable multiespecífico o fragmento de este de la descripción incluye al menos (i) dos anticuerpos que se acoplan a células T o fragmentos de anticuerpo de estos que se acoplan a uno o más receptores activadores de células T, tales como, por ejemplo, fragmentos scFv que se acoplan a células T, que incluyen pero no se limitan a OX40/GITR, CD137/GITR, CD137/OX40, CD27/NKG2D, y una combinación adicional de receptores activadores y (ii) un anticuerpo de unión a la diana que incluye un segundo anticuerpo o fragmento de unión a antígeno de este (AB2) que se une a una segunda diana, donde el AB2 se fija a una entidad enmascarante (MM) de manera que el acoplamiento de la MM reduce la capacidad del AB2 para unir la segunda diana, donde los fragmentos scFv que se acoplan a la célula T se enlazan a ambos brazos del anticuerpo de unión a la diana. En algunas modalidades, el anticuerpo multiespecífico o fragmento de este de la descripción incluye dos anticuerpos que se acoplan a células T o fragmentos de estos que se acoplan a uno o más receptores inhibidores de células T, y un anticuerpo de unión a la diana de manera que los fragmentos scFv que se acoplan a células T se enlazan a ambos brazos del anticuerpo de unión a la diana. En algunas modalidades, los dos fragmentos de anticuerpo que se acoplan a las células T se unen a la misma diana que se acopla a la célula T. En algunas modalidades, los dos fragmentos de anticuerpo que se acoplan a las células T se unen a diferentes dianas que se acoplan a las células T. En algunas modalidades, los dos fragmentos de anticuerpo que se acoplan a las células T se unen a diferentes epítopos en la misma diana que se acopla a la célula T. En algunas modalidades, los anticuerpos que se acoplan a las células T o fragmentos de estos se acoplan a uno o más receptores inhibidores de células T en lugar de uno o más receptores activadores de células T.

En algunas modalidades, el anticuerpo activable multiespecífico o fragmento de este de la descripción incluye al menos (i) un primer brazo que comprende un fragmento de unión a antígeno de un anticuerpo que se acopla a la célula T y (ii) un segundo brazo que comprende un fragmento de unión a antígeno de un anticuerpo de unión a la diana que incluye un segundo anticuerpo o fragmento de unión a antígeno de este (AB2) que se une a una segunda diana, donde el AB2 se fija a una entidad enmascarante (MM) de manera que el acoplamiento de la MM reduce la capacidad del AB2 para unir la segunda diana. En algunas modalidades, las dianas primera y segunda son el mismo antígeno. En algunas modalidades, las dianas primera y segunda son epítopos diferentes en el mismo antígeno. En algunas modalidades, los anticuerpos que se acoplan a las células T o fragmentos de estos se acoplan a uno o más receptores inhibidores de células T en lugar de uno o más receptores activadores de células T.

En algunas modalidades, los anticuerpos activables multiespecíficos o fragmentos de estos de la descripción incluyen al menos (i) un anticuerpo que se acopla a la célula T o fragmento de este que incluye un primer anticuerpo o fragmento de unión a antígeno de este (AB1) que se une a una primera, diana que se acopla a la célula T que es un antígeno de superficie en una célula T, donde el AB1 se fija a una entidad enmascarante (MM1) de manera que el acoplamiento de la MM 1 reduce la capacidad del AB1 para unir la primera diana y (ii) un segundo anticuerpo o fragmento de este que incluye un segundo anticuerpo o fragmento de unión a antígeno de este (AB2) que se une a una segunda diana, donde el AB2 se fija a una entidad enmascarante (MM2) de manera que el acoplamiento de la MM2 reduce la capacidad del AB2 para unir la segunda diana. En algunas modalidades, las dianas primera y segunda son el mismo antígeno. En algunas modalidades, las dianas primera y segunda son antígenos diferentes. En algunas modalidades, las dianas primera y segunda son epítopos diferentes en el mismo antígeno. En algunas modalidades, el anticuerpo que se acopla a la célula T o fragmento de este se fija al extremo N de la cadena pesada del anticuerpo específico a la diana. En algunas modalidades, el anticuerpo que se acopla a la célula T o fragmento de este se fija al extremo C de la cadena pesada del anticuerpo específico a la diana. En algunas modalidades, el anticuerpo que se acopla a la célula T o fragmento de este se fija al extremo N de la cadena ligera del anticuerpo específico a la diana. En algunas modalidades, el anticuerpo que se acopla a la célula T o fragmento de este se fija al extremo C de la cadena ligera del anticuerpo específico a la diana. En algunas modalidades, el anticuerpo activable multiespecífico comprende anticuerpos que se acoplan a las células T o fragmentos de estos fijados a una combinación de uno o más extremos N y/o uno o más extremos C del anticuerpo activable multiespecífico. La descripción además incluye anticuerpos activables multiespecíficos que comprenden otro anticuerpo que se acopla a la célula efectora inmune o fragmento de este, tal como uno que se une a un antígeno de superficie de una célula asesina natural (NK), una célula mononuclear, tal como una célula mononuclear mieloide, un macrófago y/o a otras células efectoras inmunes.

En algunas modalidades, el anticuerpo activable multiespecífico o fragmento de este de la descripción incluye al menos (i) dos anticuerpos que se acoplan a células T o fragmentos de anticuerpo de estos que se acoplan a uno o más receptores activadores de células T, tales como, por ejemplo, fragmentos scFv que se acoplan a células T, que incluyen, pero no se limitan a, OX40/GITR, CD137/ GITR, CD137/OX40, CD27/NKG2D, y una combinación adicional de receptores activadores, donde el AB1 de uno de los fragmentos de anticuerpo que se acopla a la célula T se fija a una entidad enmascarante (MM) de manera que el acoplamiento de la MM reduce la capacidad de ese AB1 para unirse a su respectiva diana que se acopla a la célula T, y (ii) un anticuerpo de unión a la diana que incluye un segundo anticuerpo o fragmento de unión a antígeno de este (AB2) que se une a una segunda diana, donde el AB2 se fija a una entidad enmascarante (MM2) de manera que el acoplamiento de la MM2 reduce la capacidad del AB2 para unirse a la segunda diana, donde los fragmentos scFv que se acoplan a las células T se enlazan a ambos brazos del anticuerpo de unión a la diana. En algunas modalidades, el anticuerpo multiespecífico o fragmento de este de la descripción incluye dos anticuerpos que se acoplan a células T o fragmentos de estos que se acoplan a uno o más receptores inhibidores de células T, y un anticuerpo de

unión a la diana de manera que los fragmentos scFv que se acoplan a células T se enlazan a ambos brazos del anticuerpo de unión a la diana. En algunas modalidades, los dos fragmentos de anticuerpo que se acoplan a las células T se unen a la misma diana que se acopla a la célula T. En algunas modalidades, los dos fragmentos de anticuerpo que se acoplan a las células T se unen a diferentes dianas que se acoplan a las células T. En algunas modalidades, los dos fragmentos de anticuerpo que se acoplan a las células T se unen a diferentes epítopos en la misma diana que se acopla a la célula T. En algunas modalidades, los anticuerpos que se acoplan a las células T o fragmentos de estos se acoplan a uno o más receptores inhibidores de células T en lugar de uno o más receptores activadores de células T.

10

15

20

25

45

50

55

En algunas modalidades, el anticuerpo activable multiespecífico o fragmento de este de la descripción incluye al menos (i) dos anticuerpos que se acoplan a células T o fragmentos de anticuerpo de estos que acoplan uno o más receptores activadores de células T, tales como, por ejemplo, fragmentos scFv que se acoplan a las células T, que incluyen, pero no se limitan a, OX40/GITR, CD137/ GITR, CD137/OX40, CD27/NKG2D, y una combinación adicional de receptores activadores, donde cada uno de AB1 de los fragmentos de anticuerpos que se acoplan a las células T se fija a su propia entidad enmascarante (MM1) de manera que el acoplamiento de cada MM1 con su AB1 respectivo reduce la capacidad de ese AB1 para unirse a su diana que se acopla a la respectiva célula T, y (ii) un anticuerpo de unión a la diana que incluye un segundo anticuerpo o fragmento de unión a antígeno de este (AB2) que se une a una segunda diana, donde el AB2 se fija a una entidad enmascarante (MM2) de manera que el acoplamiento de la MM2 reduce la capacidad del AB2 para unir a la segunda diana, donde los fragmentos scFv que se acoplan a las células T se enlazan a ambos brazos del anticuerpo de unión a la diana. En algunas modalidades, el anticuerpo multiespecífico o fragmento de este de la descripción incluye dos anticuerpos que se acoplan a células T o fragmentos de estos que se acoplan a uno o más receptores inhibidores de células T, y un anticuerpo de unión a la diana de manera que los fragmentos scFv que se acoplan a células T se enlazan a ambos brazos del anticuerpo de unión a la diana. En algunas modalidades, los dos fragmentos de anticuerpo que se acoplan a las células T se unen a la misma diana que se acopla a la célula T. En algunas modalidades, los dos fragmentos de anticuerpo que se acoplan a las células T se unen a diferentes dianas que se acoplan a las células T. En algunas modalidades, los dos fragmentos de anticuerpo que se acoplan a las células T se unen a diferentes epítopos en la misma diana que se acopla a la célula T. En algunas modalidades, los anticuerpos que se acoplan a las células T o fragmentos de estos se acoplan a uno o más receptores inhibidores de células T en lugar de uno o más receptores activadores de células T.

En algunas modalidades, el anticuerpo activable multiespecífico o fragmento de este de la descripción incluye al menos (i) un primer brazo que comprende un fragmento de unión a antígeno de un anticuerpo que se acopla a células T que incluye un primer anticuerpo o fragmento de unión a antígeno de este (AB1) que se une a una primera diana que se acopla a la célula T, donde el AB 1 se fija a una entidad enmascarante (MM1) de manera que el acoplamiento de la MM reduce la capacidad del AB1 para unir la primera diana y (ii) un segundo brazo que comprende un fragmento de unión a antígeno de un anticuerpo de unión a la diana que incluye un segundo anticuerpo o fragmento de unión a antígeno de este (AB2) que se une a una segunda diana, donde el AB2 se fija a una entidad enmascarante (MM2) de manera que el acoplamiento de la MM reduce la capacidad del AB2 para unir la segunda diana. En algunas modalidades, las dianas primera y segunda son el mismo antígeno. En algunas modalidades, las dianas primera y segunda son antígenos diferentes. En algunas modalidades, las dianas primera y segunda son epítopos diferentes en el mismo antígeno. En algunas modalidades, los anticuerpos que se acoplan a las células T o fragmentos de estos se acoplan a uno o más receptores inhibidores de células T en lugar de uno o más receptores activadores de células T.

En algunas modalidades, el antígeno diana es un antígeno que se expresa altamente tanto en tejido sano normal como en tejido enfermo. En algunas modalidades, el antígeno diana es un antígeno de la Tabla 1 que se expresa altamente tanto en tejido sano normal como en tejido enfermo.

En algunas modalidades, el antígeno diana es un antígeno que se expresa altamente en tejido enfermo, pero no se expresa altamente en tejido sano normal. En algunas modalidades, el antígeno diana es un antígeno de la Tabla 1 que se expresa altamente en tejido enfermo, pero que no se expresa altamente en tejido sano normal. El antígeno diana puede expresarse en tejido sano normal, pero no se expresa altamente o de cualquier otra manera se sobreexpresa en el tejido sano normal.

En algunas modalidades, la entidad enmascarante (MM) se acopla al anticuerpo o fragmento de unión a antígeno de este (AB) a través de una entidad escindible (CM) que funciona como un sustrato para una proteasa. Las proteasas adecuadas para su uso en los anticuerpos activables multiespecíficos de la descripción se determinan basándose en la expresión de proteasa en el sitio previsto de tratamiento y/o diagnóstico. En algunas modalidades, la proteasa es activador de plasminógeno tipo u (uPA, además denominado uroquinasa), legumaína y/o matriptasa (además denominado MT-SP1 o MTSP 1). En algunas modalidades, las proteasas son una metaloproteasa de matriz (MMP).

En algunas modalidades, los anticuerpos activables multiespecíficos se modifican genéticamente para incluir una entidad enmascarante (MM) que se acopla a un anticuerpo o fragmento de unión a antígeno de este (AB) a través de un enlazador no escindible. Por ejemplo, en algunas modalidades, el anticuerpo activable multiespecífico es un anticuerpo activable multiespecífico que se acopla a la célula T que incluye un anticuerpo dirigido o fragmento de unión a antígeno de este y un anticuerpo que se acopla a la célula T o porción de unión a antígeno de este, donde el anticuerpo que se acopla a la célula T o fragmento de unión a antígeno de este incluye un primer anticuerpo o fragmento de unión a antígeno de este (AB1) que se une a una primera diana que se acopla a la célula T, donde el AB1 se fija mediante un enlazador no escindible

a una entidad enmascarante (MM1) de manera que el acoplamiento de la MM reduce la capacidad del AB1 para unirse a la primera diana, y el anticuerpo dirigido o el fragmento de unión al antígeno de este no se enmascara.

En algunas modalidades, el anticuerpo activable multiespecífico es un anticuerpo activable multiespecífico que se acopla a la célula T que incluye un anticuerpo dirigido o fragmento de unión a antígeno de este y un anticuerpo que se acopla a la célula T o porción de unión a antígeno de este, donde el anticuerpo que se acopla a la célula T o fragmento de unión a antígeno de este incluye un primer anticuerpo o fragmento de unión a antígeno de este (AB1) que se une a una primera diana que se acopla a la célula T, donde el AB1 1 se fija mediante un enlazador no escindible a una entidad enmascarante (MM1) de manera que el acoplamiento de la MM reduce la capacidad del AB1 para unirse a la primera diana, y el anticuerpo dirigido o fragmento de unión a antígeno de este incluye un segundo anticuerpo o fragmento de unión al antígeno de este (AB2) que se une a una segunda diana, donde se une el AB2 a través de un enlazador escindible a una entidad enmascarante (MM2) de manera que el acoplamiento de la MM reduce la capacidad del AB2 para unirse a la segunda diana.

El concepto general de anticuerpos biespecíficos se introdujo por primera vez hace al menos 50 años (Nisonoff, A. y Mandy, W.J., Nature 194, 355-359 (1962), como se cita en Chan, A.C. y Carter, P.J., Nature Reviews Immunol. 10,301-316 (2010)).

Se han descrito una variedad de plataformas de biespecíficos (ver por ejemplo, Figura 1; Liu, M.A., y otros, Proc. Natl. 20 Acad. Sci. USA 82, 8648-8652 (1985); revisado por Kroesen, B.J., y otros Adv. Drug Delivery Rev. 31, 105-129 (1998); Marvin, J.S. y Zhu, Z., Acta Pharm. Sinica 26, 649-658 (2005); Chan y Carter, Nat. Rev. Immunol. 2010; Fitzgerald y Lugovsky, MAbs. 3(3):299-309 (2011); Riethmuller, G., Cancer Immunity 12, 12-18 (2012)). El concepto general para la construcción de anticuerpos biespecíficos es unir dominios de unión a proteínas, por lo general basados en dominios de inmunoglobulinas múltiples, para construir una molécula que sea capaz de unirse a dos o más antígenos diana y que 25 demuestre una distribución fisiológica, farmacocinética y función efectora similar a IgG. El último puede incluir citotoxicidad dependiente de anticuerpo (ADCC), citotoxicidad dependiente del complemento (CDC), reclutamiento de células (BiTEs™) (ver por ejemplo, Baeuerle, P.A. y Reinhardt, C., Cancer Res. 69,4941-4944 (2009), y TandAbs™ (ver Cochlovius y otros, Cancer Res. 60, 4336-4341 (2000)),y/o suministro de una carga citotóxica en la forma de una entidad químicamente conjugada, tal como un inhibidor de microtúbulos, un alquilante de ADN, u otra toxina, en forma de un conjugado de anticuerpo-fármaco (ADC). Se están estudiando muchos formatos de anticuerpos biespecíficos, con IgG heterodiméricas convencionales y BiTEs™ que representan los más avanzados clínicamente a pesar de su producción 30 subóptima y sus propiedades farmacológicas Chan y Carter, Nat. Rev. Immunol. 2010). Los anticuerpos biespecíficos tienen muchos usos potenciales, basados en características específicas de formatos particulares y los antígenos diana elegidos; no todos los formatos biespecíficos son apropiados para todas las aplicaciones. Por ejemplo, el formato Fab Dos-en-uno (Bostrom, J., y otros, Science 323, 1610-1614 (2009)) consiste en un único dominio de unión para unir a los 35 antígenos A y B de una u otra manera; así, este tipo de biespecífico puede acoplar dos copias del antígeno A, dos copias del antígeno B o una copia de cada antígeno. Por otro lado, el formato de DVD (Wu, C., y otros, Nature Biotechnol. 25, 1290-1297 (2007)) proporciona el acoplamiento de dos copias del antígeno A, además de dos copias del antígeno B. El espaciamiento y la orientación relativa de cada uno de los dominios de unión además pueden ser importantes para el 40 acoplamiento de múltiples antígenos de tal manera que confieren la actividad pretendida, por ejemplo, receptores de entrecruzamiento (Jackman, J., y otros, J. Biol. Chem. 285, 20850-20859 (2010)), donde se requiere el acoplamiento de una copia de cada receptor, que puede necesitar una interacción monovalente con cada uno de dos antígenos distintos.

Un área mecanísticamente distinta de la aplicación de anticuerpos biespecíficos implica el reclutamiento de células efectoras inmunes (tales como linfocitos T citotóxicos, células NK y/o células efectoras mieloides) para atacar las células tumorales mediante la construcción de un compuesto biespecífico que activa tanto un antígeno en la superficie de una célula dirigida a la citotoxicidad (por ejemplo, una célula tumoral) y un antígeno en la superficie de una célula inmunitaria citotóxica (por ejemplo, una célula T). Catumaxomab es un ejemplo de un anticuerpo biespecífico clínicamente validado que se dirige al antígeno tumoral EpCAM en células cancerosas y recluta células T citotóxicas a través de la unión a CD3 en la superficie de las células T (Linke, R, Klein, A., y Seimetz, D., mAbs 2, 129-136 (2010)); sin embargo, su uso ha sido limitado y requiere administración intraperitoneal. Los anticuerpos BiTE™ son anticuerpos biespecíficos que logran el reclutamiento de células T en un formato diferente con diferentes propiedades farmacológicas (Baeuerle, P.A. y Reinhardt, C., Anti-Cancer Res. 69,4941-4944 (2009))-en particular, los anticuerpos BiTE están compuestos por dos fragmentos variables monocatenarios (scFv) y tienen media vidas farmacológicas muy cortas in vivo; así requieren la administración por infusión continua. Un formato similar, denominado TandAb™, es un constructo de diacuerpo biespecífico tetravalente en el que dos dominios variables se unen a un antígeno diana y dos dominios variables se unen a CD3 en la superficie de células T (Cochlovius y otros, Cancer Res. 60, 4336-4341 (2000)). Este formato ilustra que el acoplamiento bivalente tanto del antígeno diana como del antígeno de superficie de la célula T puede usarse para el acoplamiento de la célula T y la citotoxicidad dirigida al antígeno. Sin embargo, el formato TandAb además tiene una media vida in vivo muy corta.

45

50

55

60

65

Una limitación general de los anticuerpos biespecíficos que se acoplan a células T se relaciona con el hecho de que la citotoxicidad de células T puede ser extremadamente potente y puede activarse por niveles relativamente bajos de antígeno diana en la superficie de las células. Por lo tanto, incluso niveles modestos de expresión de antígeno diana, tales como EGFR, en tejidos sanos pueden conducir a una toxicidad significativa, limitando o previniendo aplicaciones terapéuticas clínicas (Lutterbuese, R y otros, Proc. Natl. Acad. Sci. USA 107, 12605-12610 (2010)). Por lo tanto, sigue

ES 2 683 268 T3

existiendo la necesidad de agentes terapéuticos eficaces basados en anticuerpos que exhiban seguridad mejorada, por ejemplo, toxicidad reducida.

Los anticuerpos activables multiespecíficos de la descripción son más seguros que los anticuerpos multiespecíficos (por ejemplo, biespecíficos) debido a que la actividad de anticuerpos activables multiespecíficos se restringe a un entorno localizado de la enfermedad. En algunas modalidades, un anticuerpo activable multiespecífico que se acopla a la célula efectora inmune. En algunas modalidades, un anticuerpo activable multiespecífico es un anticuerpo activable multiespecífico que se acopla a la célula T. En algunas modalidades, un anticuerpo activable multiespecífico reconoce dos o más dianas. En algunas modalidades, un anticuerpo activable multiespecífico comprende un formato de IgG-scFv que confiere las propiedades de media vida larga de una IgG. En algunas modalidades, un anticuerpo activable multiespecífico de ese tipo se modula adicionalmente por el uso de mutaciones Fc en el sitio de unión de FcRn (Petkova, S. B. y otros, Intl. Immunol. 18, 1759-1769 (2006)); Deng, R. y otros, mAbs 4, 101-109 (2012)); Olafson, T Methods Mol. Biol. 907, 537-556 (2012)). En algunas modalidades, un anticuerpo activable multiespecífico de ese tipo incluye mutaciones en el dominio Fc, tal como una mutación N297A (Lund, J. y otros, Mol. Immunol. 29, 53-39 (1992)) que reduce las funciones efectoras de IgG (ADCC y CDC) para reducir las toxicidades fuera de la diana.

Los anticuerpos activables multiespecíficos aprovechan la regulación positiva de la actividad de la proteasa ampliamente reconocida como un sello distintivo de múltiples estados de enfermedad para lograr el direccionamiento específico del tejido con la enfermedad de tales terapéuticos. El anticuerpo activable se basa en el uso de un anticuerpo IgG, o fragmento de este, tal como una región scFv, región Fab, dominio VH o VL único que se ha modificado para incluir una entidad enmascarante (MM), enlazada al anticuerpo mediante una entidad escindible (CM), tal como una entidad escindible por proteasa (ver, por ejemplo, Publicación Internacional PCT número WO 2009/025846, publicado el 26 de febrero de 2009; Publicación Internacional PCT número WO 2010/081173, publicado, 15 de Julio de 2010). Alternativamente, un dominio de proteína no anticuerpo (ver, por ejemplo, Publicación Internacional PCT número WO 2010/096838, publicado el 26 de Agosto, 2010; Boersma, Y.L. y otros, J. Biol. Chem. 286,41273-41285 (2011)) puede usarse para lograr una o más especificidades de unión. Un anticuerpo multiespecífico, como IgG convencional, puede usarse como punto de partida para producir un anticuerpo activable multiespecífico. Un anticuerpo activable multiespecífico de ese tipo permitiría el direccionamiento con alta afinidad de todos los antígenos reconocidos por el anticuerpo multiespecífico parental, pero con especificidad de tejido dictada por el enlazador escindible activado selectivamente. Dependiendo del formato multiespecífico usado, la MM y CM podrían colocarse en el extremo N o C del dominio apropiado.

Un anticuerpo activable multiespecífico comprende al menos un dominio derivado de IgG con especificidad hacia un primer antígeno, enlazado sintéticamente o biosintéticamente a otro dominio (que puede derivarse de una IgG o de otra proteína) con especificidad para unir un segundo antígeno. Pueden añadirse especificidades adicionales mediante el enlazamiento de un anticuerpo activable multiespecífico de ese tipo a uno o más dominios adicionales que confieren especificidades de unión adicionales para el primer antígeno, el segundo antígeno, o antígenos adicionales. En algunas modalidades, un anticuerpo activable multiespecífico tiene uno o más de estos dominios enmascarados por una entidad enmascarante (MM) apropiada. Cada uno de los formatos multiespecíficos descritos en la Figura 1 puede convertirse potencialmente en un anticuerpo activable multiespecífico enmascarando uno o más de las entidades de unión a antígeno de uno o más de los dominios de inmunoglobulina. Los ejemplos de formatos de anticuerpos activables multiespecíficos adecuados se muestran en las Figuras 3A y 5-9.

El uso de un dominio scFv para conferir especificidad a un antígeno específico permite una construcción modular de anticuerpos multiespecíficos y anticuerpos activables multiespecíficos. El uso de dominio(s) de scFv fusionado(s) al extremo de cadenas pesadas o ligeras de IgG para la construcción de anticuerpos biespecíficos se ha descrito previamente (ver, por ejemplo, Orcutt, K.D. y otros, Prot. Eng. Design Select. 23, 221-228 (2010)); Dong y otros, (2011)). Este formato ("IgG-scFv") permite convertir una IgG convencional en un anticuerpo biespecífico en donde una primera especificidad se codifica en los dominios variables de la IgG y una segunda especificidad se codifica en los dominios scFv fijados a través de una región enlazadora flexible. Las variaciones de este formato incluyen la fusión de dominios scFv en los extremos N o C de las cadenas pesada o ligera; los scFv pueden tener las mismas o diferentes especificidades de unión a antígeno (Spangler, J. B. y otros, J. Mol. Biol. 422, 532-544 (2012)). Además, mediante el uso de heterodímeros de cadena pesada (por ejemplo, mediante el uso de constructos similares o de perilla), pueden fijarse scFv de especificidades diferentes al extremo N o C de cada cadena pesada.

En algunas modalidades, un anticuerpo activable multiespecífico tiene los dominios variables IgG enmascarados. En algunas modalidades, un anticuerpo activable multiespecífico tiene enmascarados tanto los dominios variables IgG como los dominios scFv. En algunas modalidades, un dominio de anticuerpo de un anticuerpo activable multiespecífico tiene especificidad para un antígeno diana y otro dominio de anticuerpo tiene especificidad para un antígeno de superficie de célula T. En algunas modalidades, un dominio de anticuerpo de un anticuerpo activable multiespecífico tiene especificidad para un antígeno diana y otro dominio de anticuerpo tiene especificidad para otro antígeno diana. En algunas modalidades, un dominio de anticuerpo de un antígeno diana y otro dominio de anticuerpo activable multiespecífico tiene especificidad por un epítopo de un antígeno diana y otro dominio de anticuerpo tiene especificidad por otro epítopo del antígeno diana.

La descripción proporciona ejemplos de estructuras de anticuerpos activables multiespecíficos que incluyen, pero no se limitan a, las siguientes: (VL-CL)2:(VH-CH1-CH2-CH3-L4-VH*-L3-VL*-L2-CM-L1-MM)2; (VL-CL)2:(VH-CH1-CH2-CH3-L4-VH*-L3-VL (MM-L1-CM-L2-VL-CL)₂:(VH-CH1-CH2-CH3-L4-VH*-L3-VL*)₂; VL*-L3-VH*-L2-CM-L1-MM)2; (MM-L1-CM-L2-VL-CM-L2-VL-CL)₂:(VH*-L3-VL*-L4-VH-CH1-CH2-CH3)₂; (VL-CL-L4-VH*-L3-VL*-L2-CM-L1-MM)2:(VH-CH1-CH2-CH3)2; (VL-CL-L4-VL*-L3-VH*-L2-CM-L1-MM)₂:(VH-CH1-CH2-CH3)₂; (MM-L1-CM-L2-VL*-L3-VH*-L4-VL-CL)₂:(VH-CH1-CH2-CH3)₂; CH3)₂; (MM-L1-CM-L2-VH*-L3-VL*-L4-VL-CL)₂:(VH-CH1-CH2-CH3)₂; (VL-CL-L4-VH*-L3-VL*-L2-CM-L1-MM)₂: (MM-L1-CL-L4-VL*-L3-VH*-L2-CM-L1-MM)₂: (MM-L1-CM-L2-VH*-L3-VL*-L4-VH-CH1-CH2-CH3)₂; (VL-CL-L4-VH*-L3-VL*)₂: (MM-L1-CM-L2-VH*-L3-VL*-L4-VH-CH1-CH2-CH3)₂; (VL-CL-L4-VH*-L3-VL*)₂: (MM-L1-CM-L2-VH*-L3-VL*-L4-VH-CH1-CH2-CH3)₂; (VL-CL-L4-VH*-L3-VL*)₂: (MM-L1-CM-L2-VH*-L3-VL*-L4-VH-CH1-CH2-CH3)₂; (VL-CL-L4-VH*-L3-VL*)₂: (MM-L1-CM-L2-VH*-L3-VL*-L4-VH-CH1-CH2-CH3)₂; (VL-CL-L4-VH*-L3-VL*-L4-VL*-L4-VH*- $L1-CM-L2-VL^*-L3-VH^*-L4-VH-CH1-CH2-CH3)_2; \ (VL-CL-L4-VH^*-L3-VL^*)_2: \ (MM-L1-CM-L2-VH^*-L3-VL^*-L4-VH-CH1-CH2-CH3)_2; \ (VL-CL-L4-VL^*-L3-VH^*)_2: \ (MM-L1-CM-L2-VL^*-L3-VH^*-L4-VH-CH1-CH2-CH3)_2; \ (VL-CL-L4-VL^*-L3-VH^*)_2: \ (MM-L1-CM-L2-VL^*-L3-VH^*-L4-VH-CH1-CH2-CH3)_2; \ (VL-CL-L4-VL^*-L3-VH^*)_2: \ (MM-L1-CM-L2-VL^*-L3-VH^*-L4-VH-CH1-CH2-CH3)_2; \ (VL-CL-L4-VL^*-L3-VH^*-L3$ CM-L2-VH*-L3-VL*-L4-VH-CH1-CH2-CH3)₂; (VL-CL-L4-VH*-L3-VL*-L2-CM-L1-MM)₂: (VL*-L3-VH*-L4-VH-CH1-CH2-CH3)₂; (VL-CL-L4-VH*-L3-VL*-L2-CM-L1-MM)₂: (VL-CL-L4-VH*-L3-VL*-L2-CM-L1-MM)₂: (VH*-L3-VL*-L3-VH*-L3-V MM)₂: (VL*-L3-VH*-L4-VH-CH1-CH2-CH3)₂; o (VL-CL-L4-VL*-L3-VH*-L2-CM-L1-MM)₂: (VH*-L3-VL*-L4-VH-CH1-CH2-CH3)2, en donde: VL y VH representan los dominios variables ligeros y pesados de la primera especificidad, contenidos en la lqG; VL* y VH* representan los dominios variables de la segunda especificidad, contenidos en el scFv; L1 es un péptido enlazador que conecta la entidad enmascarante (MM) y la entidad escindible (CM); L2 es un péptido enlazador que conecta la entidad escindible (CM) y el anticuerpo; L3 es un péptido enlazador que conecta los dominios variables del scFv; L4 es un péptido enlazador que conecta el anticuerpo de la primera especificidad con el anticuerpo de la segunda especificidad; CL es el dominio constante de la cadena ligera; y CH1, CH2, CH3 son los dominios constantes de la cadena pesada. La primera y segunda especificidades pueden ser hacia cualquier antígeno o epítopo. Las estructuras adicionales incluyen, pero no se limita a, las siguientes: (VL-CL-L4-VH*-L3-VL*-L2-CM-L1-MM)2:(VH-CH1-CH2-CH3)2; (VL-CL-L4-VH*-L3-VL VL*-L3-VH*-L2-CM-L1-MM)₂:(VH-CH1-CH2-CH3)₂; (MM-L1-CM-L2-VL-CL-L4-VH*-L3-VL*)₂:(VH-CH1-CH2-CH3)₂; MM-L4-VH*-L3-VL*-L2-CM-L1-MM)₂; (VL-CL-L4-VL*-L3-VH*-L2-CM-L1-MM)₂:(VH-CH1-CH2-CH3-L4-VL*-L3-VH*-L2-CM-L1-MM)₂:(VH-CH1-CH2-CH3-L4-VL*-L3-VH*-L2-CM-L1-MM)₂:(VH-CH1-CH2-CH3-L4-VL*-L3-VH*-L2-CM-L1-MM)₂:(VH-CH1-CH2-CH3-L4-VL*-L3-VH*-L2-CM-L1-MM)₂:(VH-CH1-CH2-CH3-L4-VL*-L3-VH*-L2-CM-L1-MM)₂:(VH-CH1-CH2-CH3-L4-VL*-L3-VH*-L2-CM-L1-MM)₂:(VH-CH1-CH2-CH3-L4-VL*-L3-VH*-L2-CM-L1-MM)₂:(VH-CH1-CH2-CH3-L4-VL*-L3-VH*-L2-CM-L1-MM)₂:(VH-CH1-CH2-CH3-L4-VL*-L3-VH*-L2-CM-L1-MM)₂:(VH-CH1-CH2-CH3-L4-VL*-L3-VH*-L2-CM-L1-MM)₂:(VH-CH1-CH2-CH3-L4-VL*-L3-VH*-L2-CM-L1-MM)₂:(VH-CH1-CH2-CH3-L4-VL*-L3-VH*-L2-CM-L1-MM)₂:(VH-CH1-CH2-CH3-L4-VL*-L3-VH*-L2-CM-L1-MM)₂:(VH-CH1-CH2-CH3-L4-VL*-L3-VH*-L2-CM-L1-MM)₂:(VH-CH1-CH2-CH3-L4-VL*-L3-VH*-L2-CM-L1-MM)₂:(VH-CH1-CH2-CH3-L4-VL*-L3-VH*-L2-CM-L1-MM)₂:(VH-CH1-CH2-CH3-L4-VL*-L3-VH*-L MM)₂; (MM-L1-CM-L2-VL-CL-L4-VH*-L3-VL*)₂:(VH-CH1-CH2-CH3)₂; o (MM-L1-CM-L2-VL-CL--L4-VL*-L3-VH*)₂:(VH-CH1-CH2-CH3)₂; o (MM-L1-CM-L2-VL-CL--L4-VL*-L3-VH*)₂:(VH-CH1-CM-L3-VL*-L3-VH*)₂:(VH-CH1-CM-L3-VL*-L3-VH*)₂:(VH1-CM1-CM-L3-VL*-L CH1-CH2-CH3)2.

10

15

20

25

30

35

40

45

50

55

60

65

En algunas modalidades, un anticuerpo activable multiespecífico que comprende una IgG tiene los dominios variables IgG enmascarados. En algunas modalidades, un anticuerpo activable multiespecífico que comprende un scFv tiene los dominios scFv enmascarados. En algunas modalidades, un anticuerpo activable multiespecífico tiene dominios variables lqG y dominios scFv, donde al menos uno de los dominios variables lqG se acopla a una entidad enmascarante. En algunas modalidades, un anticuerpo activable multiespecífico tiene dominios variables IgG y dominios scFv, donde al menos uno de los dominios de scFv se acopla a una entidad enmascarante. En algunas modalidades, un anticuerpo activable multiespecífico tiene tanto dominios variables IgG como dominios scFv, donde al menos uno de los dominios variables IgG se acopla a una entidad enmascarante y al menos uno de los dominios scFv se acopla a una entidad enmascarante. En algunas modalidades, un anticuerpo activable multiespecífico tiene tanto dominios variables IgG como dominios scFv, donde cada uno de los dominios variables IgG y los dominios scFv se acopla a su propia entidad enmascarante. En algunas modalidades, un dominio de anticuerpo de un anticuerpo activable multiespecífico tiene especificidad para un antígeno diana y otro dominio de anticuerpo tiene especificidad para un antígeno de superficie de célula T. En algunas modalidades, un dominio de anticuerpo de un anticuerpo activable multiespecífico tiene especificidad para un antígeno diana y otro dominio de anticuerpo tiene especificidad para otro antígeno diana. En algunas modalidades, un dominio de anticuerpo de un anticuerpo activable multiespecífico tiene especificidad por un epítopo de un antígeno diana y otro dominio de anticuerpo tiene especificidad por otro epítopo del antígeno diana.

En algunas modalidades de un anticuerpo activable multiespecífico que se acopla con la células efectora inmune tal como un anticuerpo activable multiespecífico que se acopla a la célula T, un antígeno es típicamente un antígeno presente en la superficie de una célula tumoral u otro tipo de célula asociada con la enfermedad, tal como, pero no se limita a, cualquier diana enumerada en la Tabla 1, tal como, pero no se limita a, EGFR, erbB2, EpCAM, Jagged, PD-L1, B7H3 o CD71 (receptor de transferrina), y típicamente otro antígeno es un estimulante o inhibidor presente en la superficie de una célula T, célula asesina natural (NK), célula mononuclear mieloide, macrófago y/o de otra célula efectora inmune, tal como, pero no se limita a, B7-H4, BTLA, CD3, CD4, CD8, CD16a, CD25, CD27, CD28, CD32, CD56, CD137, CTLA-4, GITR, HVEM, ICOS, LAG3, NKG2D, OX40, PD-1, TIGIT, TIM3, o VISTA. El dominio de anticuerpo que confiere especificidad al antígeno de superficie de la célula T además puede sustituirse por un ligando o dominio de ligando que se une a un receptor de la célula T, un receptor de célula NK, un receptor de macrófago y/o de otro receptor de célula efectora inmune, tales como, pero no se limita a, B7-1, B7-2, B7H3, PD-L1, PD-L2, o TNFSF9. En algunas modalidades de un anticuerpo activable dirigido a múltiples antígenos, se selecciona un antígeno del grupo de dianas enumeradas en la Tabla 1, y se selecciona otro antígeno del grupo de dianas enumeradas en la Tabla 1.

En algunas modalidades, un dominio variable monocatenario, específico para unir una diana mostrada en la superficie de la célula T se fusiona al extremo carboxilo de un anticuerpo IgG1 completamente humano (anticuerpo dirigido) que se une a un antígeno de superficie celular. La fusión del scFv puede ser al término carboxilo de la cadena pesada, al extremo carboxilo de la cadena ligera o a ambas cadenas (Figura 2). En algunas modalidades, un dominio variable monocatenario, específico para unir una diana mostrada en la superficie de la célula T se fusiona al extremo amino de un anticuerpo IgG1

completamente humano (anticuerpo dirigido) que se une a un antígeno de superficie celular. La fusión del scFv puede ser al extremo amino de la cadena pesada, al extremo amino de la cadena ligera o a ambas cadenas. Las fusiones se construyen como una construcción genética única y se expresan en células en cultivo. El anticuerpo dirigido puede ser específico para unirse a uno o más antígenos de la superficie tumoral, o a cualquier célula dirigida a la disminución. El scFv puede ser específico para antígenos iguales o diferentes.

En algunas modalidades, el anticuerpo dirigido es un anticuerpo anti-EGFR. En algunas modalidades, el anticuerpo dirigido es C225v5, que es específico para la unión a EGFR. En algunas modalidades, el anticuerpo dirigido es C225v4, que es específico para la unión a EGFR. En algunas modalidades, el anticuerpo dirigido es C225v4, que es específico para la unión a EGFR. En algunas modalidades, el anticuerpo dirigido es C225v6, que es específico para la unión a EGFR. En algunas modalidades, el anticuerpo dirigido es un anticuerpo anti-Jagged. En algunas modalidades, el anticuerpo dirigido es 4D11, que es específico para la unión a Jagged 1 y Jagged 2 humano y de ratón. En algunas modalidades, el anticuerpo dirigido es 4D11v2, que es específico para la unión a Jagged 1 y Jagged 2 humano y de ratón.

- En algunas modalidades, el anticuerpo dirigido puede estar en forma de un anticuerpo activable. En algunas modalidades, los scFv(s) pueden tener la forma de un Pro-scFv (ver, por ejemplo, documentos de patente núms. WO 2009/025846, WO 2010/081173).
- En algunas modalidades, el scFv es específico para la unión CD3ε, por ejemplo, OKT3. En algunas modalidades, el scFv es específico para la unión a CTLA-4 (además denominado en la presente descripción CTLA y CTLA4).

En algunas modalidades, el scFv es específico para la unión de una o más células T, una o más células NK y/o uno o más macrófagos. En algunas modalidades, el scFv es específico para la unión de un blanco seleccionado del grupo que consiste en B7-H4, BTLA, CD3, CD4, CD8, CD16a, CD25, CD27, CD28, CD32, CD56, CD137, CTLA-4, GITR, HVEM, ICOS, LAG3, NKG2D, OX40, PD-1, TIGIT, TIM3, o VISTA, y sus combinaciones.

Definiciones

10

25

A menos que se defina de cualquier otra manera, los términos científicos y técnicos usados en relación con la presente 30 descripción tendrán el significado que se entienden comúnmente por aquellos con experiencia ordinaria en la materia. Además, a menos que de cualquier otra manera sea requerido por el contexto, los términos singulares incluirán pluralidades y los términos en plural incluirán el singular. Generalmente, las nomenclaturas utilizadas en relación con, y técnicas de, cultivo de tejidos y células, biología molecular, y la química e hibridación de proteínas y oligo- o polinucleótidos descritas en la presente descripción son las bien conocidas y usadas comúnmente en la materia. Las técnicas estándar se usan para el ADN recombinante, síntesis de oligonucleótidos, y cultivo de tejido y transformación (por ejemplo, 35 electroporación, lipofección). Las reacciones enzimáticas y técnicas de purificación se realizan de acuerdo con las especificaciones del fabricante o como comúnmente se realizan en la materia o como se describen en la presente descripción. Las técnicas y procedimientos anteriores se realizan generalmente de acuerdo con los métodos convencionales bien conocidos en la materia y como se describen en diversas referencias generales y más específicas que se citan y discuten a lo largo de la presente especificación. Ver por ejemplo, Sambrook y otros. Molecular cloning: A 40 Laboratory Manual (2da ed., Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y., (1989)). Las nomenclaturas utilizadas respecto a, y los procedimientos y técnicas de laboratorio de, química analítica, química orgánica sintética, y química medicinal y farmacéutica descritas en la presente descripción son las bien conocidas y usadas comúnmente en la materia. Las técnicas estándar se usan para las síntesis químicas, análisis químicos, preparación farmacéutica, 45 formulación, y suministro, y tratamiento de los pacientes.

Como se utiliza de acuerdo con la presente descripción los siguientes términos, a menos que se indique de cualquier otra manera, se entenderán que tienen los siguientes significados:

- Como se usa en la presente descripción, el término "anticuerpo" se refiere a las moléculas de inmunoglobulina y porciones inmunológicamente activas de moléculas de inmunoglobulina (Ig), es decir, moléculas que contienen un sitio de unión al antígeno que se unen (inmunorreacciona con) específicamente a un antígeno. Por "se une específicamente" o "inmunorreacciona con" o "se une inmunoespecíficamente" se entiende que el anticuerpo reacciona con uno o más determinantes antigénicos del antígeno deseado y no reacciona con otros polipéptidos o se une a afinidad mucho menor (K_d > 10⁻⁶). Los anticuerpos incluyen, pero no se limitan a anticuerpo policional, monoclonal, quimérico, humano completo, de dominio, cadena sencilla, fragmentos Fab y F(ab')₂, los scFv, y bibliotecas de expresión de Fab.
- Se conoce que la unidad estructural básica de anticuerpos comprende un tetrámero. Cada tetrámero se compone de dos pares idénticos de cadenas polipeptídicas, teniendo cada par una cadena "ligera" (aproximadamente 25 kDa) y una "pesada" (aproximadamente 50-70 kDa). La porción amino-terminal de cada cadena incluye una región variable de aproximadamente 100 a 110 o más aminoácidos responsables primariamente del reconocimiento del antígeno. La porción carboxi terminal de cada cadena define una región constante que es primariamente responsable de la función efectora. Generalmente, las moléculas de anticuerpos obtenidas de los humanos se refieren a cualquiera de las clases IgG, IgM, IgA, IgE e IgD, que difieren entre sí por la naturaleza de la cadena pesada presente en la molécula. Ciertas clases también tienen subclases, tales como IgG1, IgG2, IgG3, IgG4, y otros. Además, en los humanos, la cadena ligera puede ser una cadena kappa o una cadena lambda.

El término "anticuerpo monoclonal" (mAb) o "composición de anticuerpo monoclonal", como se usa en la presente descripción, se refiere a una población de moléculas de anticuerpo que contienen solo una especie molecular de molécula de anticuerpo que consiste en un producto génico único de cadena ligera y un producto génico único de cadena pesada. En particular, las regiones determinantes de complementariedad (CDR) del anticuerpo monoclonal son idénticas en todas las moléculas de la población. Los MAb contienen un sitio de unión al antígeno capaz de inmunorreaccionar con un epítopo particular del antígeno caracterizado por una afinidad de unión única por él

El término "sitio de unión al antígeno" o "porción de unión" se refiere a la parte de la molécula de inmunoglobulina que participa en la unión al antígeno. El sitio de unión al antígeno se forma por residuos de aminoácidos de las regiones variables N-terminales ("V") de las cadenas pesada ("H") y ligera ("L"). Tres tramos altamente divergentes dentro de las regiones V de las cadenas pesada y ligera, denominadas "regiones hipervariables", se interponen entre tramos flanqueantes más conservados conocidos como "regiones marco" o "FR". Así, el término "FR" se refiere a secuencias de aminoácidos que se encuentran naturalmente entre, y adyacentes a, las regiones hipervariables en las inmunoglobulinas. En una molécula de anticuerpo, las tres regiones hipervariables de una cadena ligera y las tres regiones hipervariables de una cadena pesada se disponen una respecto de la otra en un espacio tridimensional para formar una superficie de unión a antígeno. La superficie de unión a antígeno es complementaria a la superficie tridimensional de un antígeno unido, y las tres regiones hipervariables de cada una de las cadenas pesada y ligera se denominan "regiones determinantes de complementariedad," o "CDR." La asignación de aminoácidos a cada dominio está de acuerdo con las definiciones de Kabat Sequences of Proteins of Immunological Interest (National Institutes of Health, Bethesda, Md. (1987 y 1991)), oChothia & Lesk J. Mol. Biol. 196:901-917 (1987), Chothia y otros. Nature 342:878-883 (1989).

10

15

20

25

30

35

40

45

50

55

60

65

Como se usa en la presente descripción, el término "epítopo" incluye cualquier determinante de proteína capaz de la unión específica a una inmunoglobulina, un scFv, o un receptor de células T. El término "epítopo" incluye cualquier proteína determinante capaz de la unión específica a una inmunoglobulina o receptor de células T. Los determinantes epitópicos por lo general consisten en agrupaciones de moléculas de superficie químicamente activa tales como los aminoácidos o cadenas laterales de azúcares y por lo general tienen características específicas de estructura tridimensional, así como las características específicas de carga. Por ejemplo, pueden generarse anticuerpos contra péptidos N-terminales o C-terminales de un polipéptido. Se dice que un anticuerpo se une específicamente a un antígeno cuando la constante de disociación es ≤ 1 μM; por ejemplo, en algunas modalidades ≤ 100 nM y en algunas modalidades ≤ 10 nM.

Como se usa en la presente descripción, los términos "unión específica", "unión inmunológica" y "propiedades de unión inmunológicas" se refieren a las interacciones no covalentes del tipo que se produce entre una molécula de inmunoglobulina y un antígeno para el que la inmunoglobulina es específica. La fuerza, o afinidad de las interacciones de unión inmunológica puede expresarse en términos de la constante de disociación (K_d) de la interacción, en donde una K_d más pequeña representa una afinidad mayor. Las propiedades de unión inmunológica de los polipéptidos seleccionados pueden cuantificarse mediante el uso de métodos bien conocidos en la materia. Uno de tales métodos implica medir las velocidades de formación y disociación del complejo de unión a antígeno/sitio antígeno, en donde esas velocidades dependen de las concentraciones de las parejas complejas, la afinidad de la interacción y los parámetros geométricos que igualmente influyen en la velocidad en ambas direcciones. Así, tanto la "constante de velocidad de asociación" (Kon) como la "constante de velocidad de disociación" (Koff) pueden determinarse mediante el cálculo de las concentraciones y las velocidades reales de asociación y disociación. (Ver Nature 361:186-87 (1993)). La relación de Koff/Kon permite la cancelación de todos los parámetros no relacionados con la afinidad, y es igual a la constante de disociación K_d. (Ver, generalmente, Davies y otros (1990) Annual Rev Biochem 59:439-473). Se dice que un anticuerpo de la presente descripción se une específicamente a EGFR, cuando la constante de unión en equilibrio (K_d) es $\leq 1 \mu M$, por ejemplo en algunas modalidades ≤ 100 nM, en algunas modalidades ≤ 10 nM, y en algunas modalidades ≤ 100 pM a aproximadamente 1 pM, según lo medido por ensayos tales como ensayos de unión de radioligando o ensayos similares conocidos por los expertos en la materia.

El término "polinucleótido aislado" como se usa en la presente descripción significará un polinucleótido de origen genómico, ADNc o sintético o alguna combinación de estos, que en virtud de su origen el "polinucleótido aislado" (1) no se asocia con todos o una porción de un polinucleótido en el que el "polinucleótido aislado" se encuentra en la naturaleza, (2) está operativamente enlazado a un polinucleótido al que no se enlaza en la naturaleza, o (3) no se produce en la naturaleza como parte de una secuencia mayor. Los polinucleótidos de acuerdo con la descripción incluyen las moléculas de ácido nucleico que codifican las moléculas de inmunoglobulina de cadena pesada que se muestran en la presente descripción, y las moléculas de ácido nucleico que codifican las moléculas de inmunoglobulina de cadena ligera que se muestran en la presente descripción.

El término "proteína aislada" denominado en la presente descripción significa una proteína de ADNc, ARN recombinante, o de origen sintético o alguna de sus combinaciones, que en virtud de su origen, o fuente de derivación, la "proteína aislada" (1) no se asocia con proteínas que se encuentran en la naturaleza, (2) está libre de otras proteínas de esta fuente, por ejemplo, libre de proteínas murinas, (3) se expresa por una célula de una especie diferente, o (4) no aparece en naturaleza.

El término "polipéptido" se usa en la presente descripción como un término genérico para referirse a la proteína nativa, fragmentos, o análogos de una secuencia de polipéptido. Por lo tanto, fragmentos de proteína nativa, y análogos son especies del género polipéptido. Los polipéptidos de acuerdo con la descripción comprenden las moléculas de

ES 2 683 268 T3

inmunoglobulina de la cadena pesada que se muestran en la presente descripción y las moléculas de inmunoglobulina de la cadena ligera que se muestran en la presente descripción, así como moléculas de anticuerpo formadas por combinaciones que comprenden las moléculas de inmunoglobulina de la cadena pesada con las moléculas de inmunoglobulina de la cadena ligera, tales como las moléculas de inmunoglobulina de la cadena ligera kappa, y viceversa, así como fragmentos y análogos de estas.

El término "de origen natural" como se usa en la presente descripción como se aplica a un objeto se refiere al hecho de que un objeto puede encontrarse en la naturaleza. Por ejemplo, una secuencia de un polipéptido o polinucleótido que está presente en un organismo (se incluyen virus) que puede aislarse a partir de una fuente en la naturaleza y que no se ha modificado intencionalmente por el hombre en el laboratorio o de otra manera es de origen natural.

El término "enlazado operativamente" como se usa en la presente descripción se refiere a posiciones de los componentes que están descritos en una relación que les permite funcionar de la manera prevista. Una secuencia control "enlazada operativamente" a una secuencia codificante está ligada de manera que la expresión de la secuencia codificante se logra en condiciones compatibles con las secuencias control.

El término "secuencia control" como se usa en la presente descripción se refiere a secuencias de polinucleótidos que son necesarias para llevar a cabo la expresión y procesamiento de secuencias codificantes a las cuales están ligadas. La naturaleza de tales secuencias de control difiere en dependencia del organismo huésped en procariotas, tales secuencias control generalmente incluyen promotor, sitio de unión al ribosoma, y secuencias de terminación de la transcripción en eucariotas, generalmente, tales secuencias control incluyen promotores y secuencias de terminación de la transcripción. El término "secuencias control" está destinado a incluir en un mínimo, todos los componentes cuya presencia es esencial para la expresión y el procesamiento, y puede incluir, además, componentes adicionales cuya presencia es ventajosa, por ejemplo, secuencias líder y secuencias de parejas de fusión. El término "polinucleótido" como se refiere en la presente descripción significa nucleótidos de al menos 10 bases de longitud, ya sea ribonucleótidos o desoxinucleótidos o una forma modificada de cualquier tipo de nucleótido. El término incluye formas de ADN de cadena doble y sencilla.

El término oligonucleótido referido en la presente descripción incluye los nucleótidos de origen natural, y modificados unidos entre sí mediante enlaces de origen natural, y de origen no natural. Los oligonucleótidos son un subconjunto de polinucleótidos que comprenden generalmente una longitud de 200 bases o menos. En algunas modalidades, los oligonucleótidos tienen una longitud de 10 a 60 bases de longitud, por ejemplo en algunas modalidades 12, 13, 14, 15, 16, 17, 18, 19, o 20 a 40 bases de longitud. Los oligonucleótidos son generalmente de cadena sencilla, *por ejemplo*, para sondas; aunque los oligonucleótidos pueden ser de cadena doble, *por ejemplo*, para usar en la construcción de un mutante génico. Los oligonucleótidos de la descripción pueden ser ya sea oligonucleótidos sentido o antisentido.

El término "nucleótidos de origen natural" denominado en la presente descripción incluye desoxirribonucleótidos y ribonucleótidos. El término "nucleótidos modificados" denominado en la presente descripción incluye nucleótidos con grupos de azúcares modificados o sustituidos y similares. El término "enlaces de oligonucleótidos" denominados en la presente descripción incluye enlaces de oligonucleótidos tales como fosforotioato, fosforoditioato, fosforoselerloato, fosforodiselenoato, fosforoanilotioato, fosforaniladato, fosforonmidato y similares. *Ver* por *ejemplo*, LaPlanche y otros. Nucl. Acids Res. 14:9081 (1986); Stec y otros. J. Am. Chem. Soc. 106:6077 (1984), Stein y otros. Nucl. Acids Res. 16:3209 (1988), Zon y otros. Anti Cancer Drug Design 6:539 (1991); Zon y otros. Oligonucleotides and Analogues: A Practical Approach, págs. 87-108 (F. Eckstein, Edición, Oxford University Press, Oxford England (1991)); Stec *y otros*. Patente de Estados Unidos núm. 5,151,510; Uhlmann y Peyman Chemical Reviews 90:543 (1990). Un oligonucleótido puede incluir una etiqueta para detección, si se desea.

Como se usa en la presente descripción, los veinte aminoácidos convencionales y sus abreviaturas siguen el uso convencional. Ver Immunology - A Synthesis (2da Edición, E.S. Golub y D.R. Gren, Eds., Sinauer Associates, Sunderland7 Mass. (1991)). Los estereoisómeros (por ejemplo, los D-aminoácidos) de los veinte aminoácidos convencionales, los aminoácidos no naturales tales como α -, α -aminoácidos disustituidos, N-alquil aminoácidos, ácido láctico, y otros aminoácidos no convencionales podrían ser además componentes adecuados para los polipéptidos de la presente descripción. Los ejemplos de aminoácidos no convencionales incluyen: 4-hidroxiprolina, γ -carboxiglutamato, ϵ -N,N,N-trimetillisina, ϵ -N-acetillisina, O-fosfoserina, N- acetilserina, N-formilmetionina, 3-metilhistidina, 5-hidroxilisina, σ -N-metilarginina, y otros aminoácidos e iminoácidos similares (por ejemplo, 4- hidroxiprolina). En la anotación de polipéptido que se usa en la presente descripción, la dirección a la izquierda es la dirección del amino terminal y la dirección a la derecha es la dirección carboxi-terminal, de acuerdo con el uso y convención estándar.

Similarmente, a menos que se especifique de cualquier otra manera, el extremo de la izquierda de secuencias de polinucleótidos de cadena sencilla es el extremo 5'; la dirección hacia la izquierda de secuencias de polinucleótidos de doble cadena se conoce como dirección 5'. La dirección de adición 5' a 3' de transcritos de ARN nacientes se refiere a la dirección de transcripción de las regiones de secuencia en la cadena de ADN que tienen la misma secuencia que el ARN y que son 5' al extremo 5' del transcrito de ARN se refieren como "secuencias corriente arriba", las regiones de secuencias en la cadena de ADN que tienen las mismas secuencias que el ARN y que son 3' al extremo 3' del transcrito de ARN se refieren como "secuencias corriente abajo".

Aplicado a polipéptidos, el término "identidad sustancial" significa que dos secuencias peptídicas, cuando se alinean óptimamente, tal como mediante los programas GAP o BESTFIT mediante el uso de pesos de hueco predeterminados, comparten al menos 80 por ciento de identidad de secuencia, por ejemplo en algunas modalidades, en al menos 90 por ciento de identidad de secuencia, en algunas modalidades al menos 95 por ciento de identidad de secuencia, y en algunas modalidades al menos 99 por ciento de identidad de secuencia.

5

En algunas modalidades, las posiciones de los residuos que no son idénticas difieren por sustituciones conservadoras de aminoácidos.

- Como se discute en la presente descripción, se contemplan variaciones menores en las secuencias de aminoácidos de 10 anticuerpos o moléculas de inmunoglobulina que se incluyen en la presente descripción, siempre y cuando las variaciones en la secuencia de aminoácidos mantengan al menos 75%, por ejemplo en algunas modalidades al menos 80%, 90%, 95% y en algunas modalidades 99%. Particularmente, se contemplan las sustituciones conservadoras de aminoácidos. Las sustituciones conservadoras son aquellas que tienen lugar dentro de una familia de aminoácidos que se relacionan 15 en sus cadenas laterales. Los aminoácidos genéticamente codificados generalmente se dividen en familias: (1) aminoácidos ácidos son aspartato, glutamato; (2) aminoácidos básicos son lisina, arginina, histidina; (3) aminoácidos no polares son alanina, valina, leucina, isoleucina, prolina, fenilalanina, metionina, triptófano, y (4) aminoácidos polares no cargados son glicina, asparagina, glutamina, cisteína, serina, treonina, tirosina. Los aminoácidos hidrofílicos incluyen arginina, asparagina, aspartato, glutamina, glutamato, histidina, lisina, serina y treonina. Los aminoácidos hidrofóbicos 20 incluyen alanina, cisteína, isoleucina, leucina, metionina, fenilalanina, prolina, triptófano, tirosina y valina. Otras familias de aminoácidos incluyen (i) serina y treonina, que son la familia hidroxialifática; (ii) asparagina y glutamina, que son la familia que contiene amida; (iii) alanina, valina, leucina e isoleucina, que son la familia alifática; y (iv) fenilalanina, triptófano y tirosina, que son la familia aromática. Por ejemplo, es razonable esperar que una sustitución aislada de una leucina con una isoleucina o valina, un aspartato con un glutamato, una treonina con una serina, o una sustitución similar de un 25 aminoácido con un aminoácido estructuralmente relacionado no tendrá un efecto importante en la función de unión o las propiedades de la molécula resultante, especialmente si la sustitución no implica un aminoácido dentro de un sitio marco. Si un cambio de aminoácido resulta en un péptido funcional puede determinarse fácilmente mediante el ensayo de la actividad específica del polipéptido derivado. En la presente descripción se describen los ensayos en detalle. Aquellos con experiencia ordinaria en la materia pueden preparar fácilmente los fragmentos o los análogos de los anticuerpos o 30 las moléculas de inmunoglobulinas. En algunas modalidades, los amino y carboxi terminal de los fragmentos o análogos se producen cerca de los límites de los dominios funcionales. Los dominios estructurales y funcionales pueden identificarse mediante la comparación de los datos de las secuencias de nucleótido y/o aminoácido con las bases de datos de secuencias públicas o privadas. Se usan métodos de comparación computarizados para identificar motivos de secuencia o dominios de conformación de la proteína predicha que se producen en otras proteínas de estructura y/o 35 función conocidas. Se conocen métodos para identificar las secuencias de proteínas que se pliegan en una estructura tridimensional conocida. Bowie y otros, Science 253:164 (1991). Por lo tanto, los ejemplos anteriores demuestran que aquellos con experiencia en la materia pueden reconocer los motivos de secuencias y las conformaciones estructurales que pueden usarse para definir dominios estructurales y funcionales de acuerdo con la presente descripción.
- 40 En algunas modalidades, las sustituciones de aminoácidos son aquellas que: (1) reducen la susceptibilidad a la proteolisis, (2) reducen la susceptibilidad a la oxidación, (3) alteran la afinidad de unión para formar complejos de proteínas, (4) alteran las afinidades de unión, y (4) confieren o modifican otras propiedades fisicoquímicas o funcionales de tales análogos. Los análogos pueden incluir diversas muteínas de una secuencia distinta a la secuencia del péptido de origen natural. Por ejemplo, pueden realizarse sustituciones de aminoácidos únicas o múltiples (por ejemplo, sustituciones de aminoácidos conservativas) en la secuencia de origen natural (por ejemplo, en la porción del polipéptido fuera del(de los) dominio(s) 45 que forman contactos intermoleculares). Una sustitución de aminoácido conservadora no debería cambiar sustancialmente las características estructurales de la secuencia parental (por ejemplo, un aminoácido de sustitución no debería tender a romper una hélice que se produce en la secuencia parental, o alterar otros tipos de estructura secundaria que caracterizan la secuencia parental). Los ejemplos de estructuras secundarias y terciarias de polipéptidos reconocidos 50 en la materia se describen en Proteins, Structures and Molecular Principles (Creighton, Edición, W. H. Freeman y Compañía, Nueva York (1984)); Introduction to Protein Structure (C. Branden y J. Tooze, eds., Garland Publishing, Nueva York, N.Y. (1991)); y Thornton y otros, (Nature 354:105 (1991).
- El término "fragmento de polipéptido" como se usa en la presente descripción se refiere a un polipéptido que tiene una 55 deleción amino-terminal y/o carboxi-terminal y/o una o más deleción(es), pero donde la secuencia de aminoácidos restante es idéntica a las posiciones correspondientes en la secuencia de origen natural deducida, por ejemplo, a partir de una secuencia de ADNc de longitud completa. Los fragmentos tienen típicamente al menos 5, 6, 8 o 10 aminoácidos de longitud, por ejemplo en algunas modalidades de al menos 14 aminoácidos de longitud, en algunas modalidades de al menos 20 aminoácidos de longitud, generalmente de al menos 50 aminoácidos de longitud, y en algunos modalidades de 60 al menos 70 aminoácidos de longitud. El término "análogo" como se usa en la presente descripción se refiere a polipéptidos que están compuestos por un segmento de al menos 25 aminoácidos que tiene identidad sustancial con una porción de una secuencia de aminoácidos deducida y que tiene unión específica a EGFR, bajo condiciones de unión adecuadas. Típicamente, los análogos polipeptídicos comprenden una sustitución de aminoácido conservadora (o adición o deleción) con respecto a la secuencia de origen natural. Los análogos típicamente son de al menos 20 aminoácidos de longitud, preferentemente al menos 50 aminoácidos de longitud o más largo, y frecuentemente pueden ser tan largos 65 como un polipéptido de origen natural de longitud completa.

El término "agente" se usa en la presente descripción para denotar un compuesto químico, una mezcla de compuestos químicos, una macromolécula biológica, o un extracto hecho de materiales biológicos.

Como se usa en la presente descripción, los términos "etiqueta" o "marcado" se refieren a la incorporación de un marcador detectable, por ejemplo, mediante la incorporación de un aminoácido radiomarcado o unión a polipéptido de entidades biotinilo que puede detectarse mediante avidina marcada (*por ejemplo*, estreptavidina que contiene un marcador fluorescente o actividad enzimática que puede detectarse mediante métodos ópticos o calorimétricos). En ciertas situaciones, la etiqueta o marcador puede ser además terapéutico. Diversos métodos para marcar polipéptidos y glicoproteínas se conocen en la materia y pueden usarse. Ejemplos de marcadores para polipéptidos incluyen, pero no se limitan a, los siguientes: radioisótopos o radionúclidos (*por ejemplo*, ³H, ¹⁴C, ¹⁵N, ³⁵S, ⁹⁰Y, ⁹⁹Tc, ¹¹¹In, ¹²⁵I, ¹³¹I), marcadores fluorescentes (por ejemplo, un fluoróforo, rodamina, fósforos lantánidos), marcadores enzimáticos (por ejemplo, peroxidasa de rábano picante, p-galactosidasa, luciferasa, fosfatasa alcalina), quimioluminiscentes, grupos biotinilos, epítopos polipeptídicos predeterminados reconocidos por un reportero secundario (*por ejemplo*, secuencias de pares de cremallera de leucina, sitios de unión para anticuerpos secundarios, dominios de unión a metal, etiquetas de epítopo). En algunas modalidades, las etiquetas se unen mediante brazos espaciadores de varias longitudes para reducir el impedimento estérico potencial. El término "agente farmacéutico o fármaco" como se usa en la presente descripción se refiere a un compuesto químico o composición capaz de inducir un efecto terapéutico deseado cuando se administra adecuadamente a un paciente.

Como se usa en la presente descripción, "sustancialmente puro" significa que una especie objeto es la especie predominante presente (es decir, sobre una base molar es más abundante que cualquier otra especie individual en la composición), y una fracción esencialmente purificada es una composición en donde la especie objeto comprende al menos aproximadamente 50 por ciento (sobre una base molar) de todas las especies macromoleculares presentes.

Generalmente, una composición esencialmente pura comprenderá más de aproximadamente 80 por ciento de todas las especies macromoleculares presentes en la composición, por ejemplo, en algunas modalidades, más de aproximadamente 85%, 90%, 95% y 99%. En algunas modalidades, la especie objeto se purifica para homogeneidad esencial (las especies contaminantes no pueden detectarse en la composición mediante métodos de detección convencionales) en donde la composición consiste esencialmente en una única especie macromolecular.

El término paciente incluye a sujetos humanos o veterinarios.

Otros términos químicos en la presente descripción se usan de acuerdo con el uso convencional en la materia, como se ejemplifica por The McGraw-Hill Dictionary of Chemical Terms (Parker, S., Edición, McGraw-Hill, San Francisco (1985)).

Anticuerpos Multiespecíficos y Anticuerpos Multiespecíficos Activables

Los anticuerpos multiespecíficos ilustrativos y/o anticuerpos activables multiespecíficos de la descripción incluyen, por ejemplo, los mostrados en los Ejemplos proporcionados en la presente descripción, y sus variantes.

En algunas modalidades no limitantes, al menos uno de los AB en el anticuerpo multiespecífico es una pareja de unión para cualquier diana enumerada en la Tabla 1.

Tabla 1: Objetivos ilustrativos

50	
55	

5

10

15

30

35

40

45

1-92-LFA-3	CD52	DL44	HVEM	LAG-3	STEAP1
Integrina alfa-4	CD56	DLK1	Hialuronidasa	LIF-R	STEAP2
Integrina alfa-V	CD64	DLL4	ICOS	Lewis X	TAG-72
integrina alfa4betal	CD70	DPP-4	IFNalfa	Ligera	TAPA1
integrina alfa4beta7	CD71	DSG1	IFNbeta	LRP4	TGFbeta
AGR2	CD74	EGFR	IFNgamma	LRRC26	TIGIT
Anti-Lewis-Y		EGFRviii	IgE	MCSP	TIM-3
Receptor Apelina J	CD80	Receptor de endotelina B (ETBR)	Receptor de IgE (FceRI)	Mesotelina	TLR2
APRIL	CD81	ENPP3	IGF	MRP4	TLR4
B7-H4	CD86	EpCAM	IGF1R	MUC1	TLR6

BAFF	CD95	EPHA2	IL1B	Mucina-16 (MUC16, CA-125)	TLR7
BTLA	CD117	EPHB2	IL1R	ATPasa Na/K	TLR8
Complemento C5	CD125	ERBB3	IL2	Elastasa de neutrófilos	TLR9
C-242	CD132 (IL-2RG)	Proteína F de RSV	IL11	NGF	TMEM31
CA9	CD133	FAP	IL12	Nicastrina	TNFalfa
CA19-9 (Lewis a)	CD137	FGF-2	IL12p40	Receptores Notch	TNFR
Anhidrasa carbónica 9	CD138	FGF8	IL-12R, I 12Rbeta1	L- Notch 1	TNFRS12 A
CD2	CD166	FGFR1	IL13	Notch 2	TRAIL-R1
CD3	CD172A	FGFR2	IL13R	Notch 3	TRAIL-R2
CD6	CD248	FGFR3	IL15	Notch 4	Transferrina
CD9	CDH6	FGFR4	IL17	Nov	Receptor de transferrina
CD11a	CEACAM5 (CEA)	Receptor de folato	IL18	OSM-R	TRK-A
CD19	CEACAM6 (NCA-90)	GAL3ST1	IL21	OX-40	TRK-B
CD20	CLAUDINA-3	G-CSF	IL23	PAR2	uPAR
CD22	CLAUDINA-4	G-CSFR	IL23R	PDGF-AA	VAP1
CD24	cMet	GD2	IL27/IL27R (wsx1)	PDGF-BB	VCAM 1
CD25	Colágeno	GITR	IL29	PDGFRalfa	VEGF
CD27	Cripto	GLUT1	IL-31R	PDGFRbeta	VEGF-A
CD28	CSFR	GLUT4	IL31/IL31R	PD-1	VEGF-B
CD30	CSFR-1	GM-CSF	IL2R	PD-L1	VEGF-C
CD33	CTLA-4	GM-CSFR	IL4	PD-L2	VEGF-D
CD38	CTGF	Receptores de GP IIb/IIIa	IL4R	Fosfatidilserina	VEGFR1
CD40	CXCL10	Gp130	IL6, IL6R	P1GF	VEGFR2
CD40L	CXCL13	GPIIB/IIIA	Receptor of insulina	de PSCA	VEGFR3
CD41	CXCR1	GPNMB	Ligandos Jagged	PSMA	VISTA
CD44	CXCR2	GRP78	Jagged 1	RAAG12	WISP-1
CD44v6		HER2/neu	Jagged 2	RAGE	WISP-2
CD47	CXCR4	HGF		SLC44A4	WISP-3
CD51	CYR61	hGH		Fosfato de esfingosina 1	

En algunas modalidades no limitantes, al menos uno de los AB del anticuerpo multiespecífico es o se deriva de una secuencia expuesta en la Tabla 7 en los Ejemplos proporcionados en la presente descripción.

En algunas modalidades no limitantes, al menos uno de los AB del anticuerpo multiespecífico es o se deriva de un anticuerpo enumerado en la Tabla 2.

Tabla 2: Fuentes ilustrativas para los Ab

	Nombre comercial del anticuerpo (nombre del anticuerpo)	Diana
	Avastin™ (bevacizumab)	VEGF
	Lucentis™ (ranibizumab)	VEGF
5	Erbitux™ (cetuximab)	EGFR
	Vectibix™ (panitumumab)	EGFR
	Remicade™ (infliximab)	TNFα
10	Humira™ (adalimumab)	TNFα
10	Tysabri™ (natalizumab)	Integrinaα4
	Simulect™ (basiliximab)	IL2R
	Soliris™ (eculizumab)	Complemento C5
15	Raptiva™ (efalizumab)	CD11a
	Tositumomab (Bexxar);	CD20
	Zevalin™ (ibritumomab tiuxetan)	CD20
20	Rituxan™ (rituximab)	CD20
	Ocrelizumab	CD20
	Arzerra™ (ofatumumab)	CD20
25	Obinutuzumab	CD20
20	Zenapax™ (daclizumab)	CD25
	Adcentris™ (brentuximab vedotin)	CD30
00	Myelotarg™ (gemtuzumab)	CD33
30	Mylotarg™ (gemtuzumab ozogamicin)	CD33
	Campath (alemtuzumab)	CD52
	ReoPro™ (abiciximab)	Receptor de glicoproteína IIb/IIIa
35	Xolair™ (omalizumab)	IgE
	Herceptin™ (trastuzumab)	Her2
	Kadcyla™ (trastuzumab emtansina)	Her2
40	Synagis™ (palivizumab)	Proteína F de RSV
	(ipilimumab)	CTLA-4
	(tremelimumab)	CTLA-4
45	Hu5c8	CD40L
.0	(pertuzumab)	Her2-neu
	(ertumaxomab)	CD3/Her2-neu
50	Orencia™ (abatacept)	CTLA-4
50	(tanezumab)	NGF
	(bavituximab)	Fosfatidilserina
	(zalutumumab)	EGFR
55	(mapatumumab)	EGFR
	(matuzumab)	EGFR
	(nimotuzumab)	EGFR
60	ICR62	EGFR
	mAb 528	EGFR
	CH806	EGFR
65	MDX-447	EGFR/CD64

(edrecolomab)	EpCAM
RAV12	RAAG12
huJ591	PSMA
Enbrel™ (etanercept)	TNF-R
Amevive™ (alefacept)	1-92-LFA-3
Antril™, Kineret™ (ankinra)	IL-1Ra
GC1008	TGFbeta
	Notch, por ejemplo, Notch 1
	Jagged 1 o Jagged 2
(adecatumumab)	EpCAM
(figitumumab)	IGF1R
(tocilizumab)	Receptor de IL-6
Stelara™ (ustekinumab)	IL-12/IL-23
Prolia™ (denosumab) RANKL	

5

10

15

20

25

30

60

65

Se incluyen además en la descripción anticuerpos multiespecíficos y/o anticuerpos activables multiespecíficos que se unen al mismo epítopo que los anticuerpos multiespecíficos y/o anticuerpos activables multiespecíficos descritos en la presente descripción.

Los expertos en la materia reconocerán que es posible determinar, sin experimentación excesiva, si un anticuerpo multiespecífico y/o un anticuerpo activable multiespecífico tienen la misma especificidad o similar que un anticuerpo multiespecífico y/o un anticuerpo activable multiespecífico de la descripción al determinar si el primero impide al último que se una a una diana. Si el anticuerpo multiespecífico y/o un anticuerpo activable multiespecífico que se prueba compite con el anticuerpo multiespecífico y/o un anticuerpo activable multiespecífico de la descripción, como se muestra mediante una disminución en la unión por el anticuerpo multiespecífico y/o un anticuerpo activable multiespecífico de la descripción, entonces los dos anticuerpos multiespecíficos y/o anticuerpos activables multiespecíficos se unen al mismo epítopo, o a uno estrechamente relacionado.

Una modalidad para determinar si un anticuerpo multiespecífico y/o un anticuerpo activable multiespecífico tiene la misma especificidad o similar que un anticuerpo multiespecífico y/o un anticuerpo activable multiespecífico de la descripción es preincubar el anticuerpo multiespecífico y/o un anticuerpo activable multiespecífico de la descripción con una diana soluble con la que normalmente es reactivo, y después se agrega el anticuerpo multiespecífico y/o un anticuerpo activable multiespecífico que se está probando para determinar si el anticuerpo multiespecífico y/o un anticuerpo activable multiespecífico que se está probando se inhibe para su capacidad para unirse a la diana. Si el anticuerpo multiespecífico y/o un anticuerpo activable multiespecífico que se está probando se inhibe entonces, con toda probabilidad, tiene la misma especificidad epitópica, o funcionalmente equivalente, que el anticuerpo multiespecífico y/o un anticuerpo activable multiespecífico de la descripción.

Se genera un anticuerpo multiespecífico y/o un anticuerpo activable multiespecífico, por ejemplo, con el uso de los procedimientos descritos en los Ejemplos proporcionados más abajo. Puede generarse además un anticuerpo multiespecífico y/o un anticuerpo activable multiespecífico con el uso de cualquiera de una serie de técnicas reconocidas en la materia para la producción y/o purificación de anticuerpos.

Los fragmentos de anticuerpo, tales como Fv, F(ab')₂ y Fab, para su uso en un anticuerpo multiespecífico y/o un anticuerpo activable multiespecífico pueden prepararse por escisión de la proteína intacta, *por ejemplo*, mediante escisión química o por proteasas. Alternativamente, puede diseñarse un gen truncado. Por ejemplo, un gen quimérico que codifica una porción del fragmento F(ab')₂ puede incluir secuencias de ADN que codifican el dominio CH1 y la región bisagra de la cadena H, seguido de un codón de terminación traduccional para producir la molécula truncada.

Los vectores de expresión incluyen los plásmidos, retrovirus, YAC, episomas derivados de EBV y similares. Un vector conveniente es uno que codifica una secuencia de inmunoglobulina humana funcionalmente completa de CH o CL, con sitios de restricción apropiados diseñados de manera que cualquier secuencia de VH o VL puede fácilmente insertarse y expresarse. En tales vectores, normalmente el empalme se produce entre el sitio donador del empalme en la región J insertada y el sitio aceptor del empalme sitio aceptor que precede a la región C humana, y además en las regiones de empalme que se producen dentro de los exones CH humanos. La poliadenilación y terminación de la transcripción se producen en sitios cromosómicos nativos corriente abajo de las regiones codificantes. El anticuerpo resultante puede unirse a cualquier promotor fuerte, incluyendo las LTR retrovirales, por ejemplo, el promotor temprano de SV-40, (Okayama y otros, Mol. Cell. Bio. 3:280 (1983)), virus LTR del sarcoma de Rous (Gorman y otros, P.N.A.S. 79:6777 (1982)), y virus LTR de la leucemia murina de moloney (Grosschedl y otros, Cell 41:885 (1985)). Además, como se apreciará, pueden usarse promotores de lg nativos y similares.

Además, los anticuerpos multiespecíficos y/o anticuerpos activables multiespecíficos pueden generarse a través de tecnologías de tipo exhibición, que incluyen, sin limitarse a, exhibición de fagos, exhibición retroviral, exhibición ribosomal, y otras técnicas, con el uso de procedimientos bien conocidos en la materia y las moléculas resultantes pueden someterse a la maduración adicional, tal como maduración de afinidad, como dichos procedimientos que se conocen bien en la materia. Wright y otros, Crit, Reviews in Immunol. 12125-168 (1992), Hanes y Plückthun PNAS USA 94:4937-4942 (1997) (exhibición ribosomal), Parmley y Smith Gene 73:305-318 (1988) (exhibición de fagos), Scott, TIBS, vol. 17:241-245 (1992), Cwirla y otros, PNAS USA 87:6378-6382 (1990), Russel y otros, Nucl. Acids Research 21:1081-1085 (1993), Hoganboom y otros, Immunol. Reviews 130:43-68 (1992), Chiswell y McCafferty TIBTECH; 10:80-8A (1992), y patente de los Estados Unidos núm. 5,733,743.

Puede ser deseable modificar el anticuerpo multiespecífico y/o anticuerpo activable multiespecífico de la descripción con respecto a la función efectora, para potenciar o reducir dicha función para mejorar la eficacia del anticuerpo en el tratamiento de enfermedades y trastornos. Por ejemplo el(los) residuo(s) de cisteína(s) puede(n) introducirse en la región Fc, permitiendo de ese modo la formación de enlaces disulfuro intercatenarios en esta región. El anticuerpo homodimérico así generado puede haber mejorado la capacidad de internalización y/o aumentado la destrucción celular mediada por el complemento y la citotoxicidad celular dependiente de anticuerpos (ADCC). (*Ver* Caron y otros, J. Exp Med., 176: 1191-1195 (1992) y Shopes, J. Immunol., 148: 2918-2922 (1992)). Alternativamente, puede modificarse genéticamente un anticuerpo que tenga dos regiones de Fc y puede tener de ese modo las capacidades de lisis de complemento y de la ADCC mejoradas. (*Ver* Stevenson y otros, Anti-Cancer Drug Design, 3: 219-230 (1989)). En algunas modalidades, las mutaciones Fc se preparan para eliminar los sitios de glicosilación, reduciendo así la función de Fc.

Anticuerpos multiespecíficos activables

10

15

20

35

40

45

50

55

60

65

Los anticuerpos activables multiespecíficos y las composiciones de anticuerpos activables multiespecíficos proporcionados en la presente descripción contienen al menos un primer anticuerpo o fragmento de anticuerpo de este (referido colectivamente como AB1 a lo largo de la descripción) que se une específicamente a una primera diana y/o un primer epítopo y un segundo anticuerpo o fragmento de anticuerpo de este (referido colectivamente como AB2 a lo largo de la descripción) que se une específicamente a una segunda diana y/o un segundo epítopo, en donde al menos uno de los AB se modifica por una entidad enmascarante (MM). En algunas modalidades, cada AB en un anticuerpo activable multiespecífico se modifica por su propia entidad enmascarante.

Cuando al menos uno de los AB en un anticuerpo activable multiespecífico se modifica con un MM y está en presencia de su diana, se reduce o inhibe la unión específica de AB a su diana, en comparación con la unión específica del AB no modificado con un MM o el enlace específico del AB parental a la diana.

La K_d del AB modificada con un MM hacia la diana es al menos 5, 10, 20, 25, 40, 50, 100, 250, 500, 1000, 2500, 5000, 10000, 50 000, 100 000, 50 000, 100 000, 50 000 000, 10 000 000, 50 000 000 o mayor, o entre 5-10,10-100,10-1000, 10-10 000, 10-100 000, 10-10 000, 10-10 000, 100-10 000, 100-10 000, 00-1 000 000, 100-10 000 000, 1000-10 000, 10 000, 50 000, 10 000, 50 000, 10 000, 50 000, 10 000, 50 000, 10 000, 10-10 000, 10-10 000, 100-10 000, 100-10 000, 100-10 000, 100-10 000, 10 000-10 000, 10 000-10 000, 10 000-10 000, 10 000-10 000, 10 000-10 000, 10 000-10 000, 10 000-10 000, 10 000-10 000, 10 000-10 000, 10 000-10 000, 10 000-10 000, 10 000-10 000 000, 10 000

La constante de disociación (K_d) (Kd) del MM hacia al menos uno de AB en el anticuerpo activable multiespecífico es generalmente mayor que la K_d del AB hacia la diana. La K_d del MM hacia el AB puede ser al menos 5, 10, 25, 50, 100, 250, 500, 1000, 2500, 5000, 10 000, 10 000, 10 000 000 o incluso 10 000 000 veces mayor que la K_d del AB hacia la diana. Por el contrario, la afinidad de unión del MM hacia el AB es generalmente inferior que la afinidad de unión del AB hacia la diana. La afinidad de unión de MM hacia AB puede ser de al menos 5, 10, 25, 50, 100, 250, 500, 1000, 2500, 5000, 10 000, 10 000, 10 000 000 o incluso 10 000 000 veces inferior que la afinidad de unión de AB hacia la diana.

Cuando al menos uno de los AB en el anticuerpo activable multiespecífico se modifica con un MM y está en presencia de la diana, se reduce o inhibe la unión específica de AB a su diana, en comparación con la unión específica del AB no modificado con un MM o el enlace específico del AB parental a la diana. Cuando se compara con la unión del AB no modificado a un MM o la unión del AB parental a la diana, la capacidad del AB para unir la diana cuando se modifica con un MM se puede reducir al menos en un 50%, 60%, 70%, 80%, 90%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% e incluso 100% durante al menos 2, 4, 6, 8, 12, 28, 24, 30, 36, 48, 60, 72, 84, o 96 horas, o 5, 10, 15, 30, 45, 60, 90, 120, 150, o 180 días, o 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, o 12 meses o más cuando se mide *in vivo* o en un ensayo *in vitro*.

El MM inhibe la unión de al menos uno de los AB en el anticuerpo activable multiespecífico a su diana. El MM se une al dominio de unión de antígeno del AB e inhibe la unión del AB a su diana. El MM puede inhibir estéricamente la unión del AB a la diana. El MM puede inhibir alostéricamente la unión del AB a su diana. En estas modalidades cuando el AB se

modifica o acopla a un MM y en presencia de la diana, no hay unión o esencialmente ninguna unión del AB a la diana, o no más de 0,001%, 0,01%, 0,1%, 1%, 2%, 3%, 4%, 5%, 6%, 7%, 8%, 9%, 10%, 15%, 20%, 25%, 30%, 35%, 40%, o 50% de unión del AB a la diana, en comparación con la unión del AB no modificado con un MM, el AB parental, o el AB no acoplado con un MM a la diana, durante al menos 2, 4, 6, 8, 12, 28, 24, 30, 36, 48, 60, 72, 84, o 96 horas, o 5, 10, 15, 30, 45, 60, 90, 120, 150, o 180 días, o 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, o 12 meses o más cuando se mide *in vivo* o en un ensayo *in vitro*.

Cuando al menos uno de los AB en un anticuerpo activable multiespecífico se acopla o modifica por un MM, el MM 'enmascara' o reduce o de cualquier otra manera inhibe la unión específica del AB a su diana. Cuando al menos uno de los AB en un anticuerpo activable multiespecífico se acopla o modifica por un MM, dicho acoplamiento o modificación puede afectar un cambio estructural que reduce o inhibe la capacidad del AB para unirse específicamente a su diana.

En un anticuerpo activable multiespecífico, cuando al menos un AB se acopla o se modifica con un MM, al menos una porción del anticuerpo activable multiespecífico puede representarse por las siguientes fórmulas (en orden de una región amino (N) terminal a la región carboxilo (C) terminal:

(MM)-(AB) (AB)-(MM) (MM)-L-(AB) (AB)-L-(MM)

10

15

20

25

30

35

40

45

65

donde MM es una entidad enmascarante, el AB es un anticuerpo o fragmento de anticuerpo de este, y el L es un enlazador. En muchas modalidades, puede ser deseable insertar uno o más enlazadores, *por ejemplo*, enlazadores flexibles, en la composición para proporcionar flexibilidad.

En ciertas modalidades, el MM no es una pareja de unión natural del AB. En algunas modalidades, el MM no contiene o esencialmente no presenta homología con ninguna pareja de unión natural del AB. En otras modalidades, el MM no es más de 5%, 10%, 15%, 20%, 25%, 30%, 35%, 40%, 45%, 50%, 55%, 60%, 65%, 70 %, 75% u 80% similar a cualquier pareja de unión natural del AB. En algunas modalidades, el MM no es más de 5%, 10%, 15%, 20%, 25%, 30%, 35%, 40%, 45%, 50%, 55%, 60%, 65%, 70%, 75%, o 80% idéntico a cualquier parea de unión natural del AB. En algunas modalidades, el MM no es más del 25% idéntico a cualquier pareja de unión natural del AB. En algunas modalidades, el MM no es más del 20% idéntico a cualquier pareja de unión natural del AB. En algunas modalidades, el MM no es más del 20% idéntico a cualquier pareja de unión natural del AB. En algunas modalidades, el MM no es más del 10% idéntico a cualquier pareja de unión natural del AB.

En algunas modalidades, los anticuerpos activables multiespecíficos incluyen un AB que se modifica por un MM e incluye además, una o más entidades escindibles (CM). Tales anticuerpos activables multiespecíficos exhiben unión activable/conmutable, a la diana de AB. Los anticuerpos activables multiespecíficos generalmente incluyen al menos un anticuerpo o fragmento de anticuerpo (AB), modificado por o acoplado a una entidad enmascarante (MM) y una entidad modificable o escindible (CM). En algunas modalidades, el CM contiene una secuencia de aminoácidos que sirve como un sustrato para una proteasa de interés.

Los elementos de los anticuerpos activables multiespecíficos están dispuestos de manera que cada MM y CM se colocan de manera que en un estado escindido (o relativamente activo) y en presencia de una diana, el AB correspondiente se une a una diana, mientras que en un estado no escindido, la unión específica del AB a su diana, se reduce o se inhibe. La unión específica del AB a su diana puede reducirse debido a la inhibición o enmascaramiento de la capacidad del AB para unir específicamente su diana con el MM.

Cuando al menos un AB se modifica con un MM y un CM y está en presencia de la diana, pero no en presencia de un agente modificador (por ejemplo, una proteasa), la unión específica de ese AB a su diana, se reduce o se inhibe, en comparación con la unión específica del AB no modificado con un MM y un CM o el AB parental a la diana. Cuando se compara con la unión del AB parental o la unión de un AB no modificado con un MM y un CM a su diana, la capacidad del AB para unirse a la diana cuando se modifica con un MM y un CM puede reducirse en al menos 50%, 60%, 70%, 80%,

90%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% e incluso 100% durante al menos 2, 4, 6, 8, 12, 28, 24, 30, 36, 48, 60, 72, 84, o 96 horas o 5, 10, 15, 30, 45, 60, 90, 120, 150, o 180 días, o 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, o 12 meses o más cuando se mide *in vivo* o en un ensayo *in vitro*.

- Como se usa en la presente descripción, el término estado escindido se refiere a la condición de los anticuerpos activables multiespecíficos después de la modificación del CM por una proteasa. El término estado no escindido, como se usa en la presente descripción, se refiere a la condición de los anticuerpos activables multiespecíficos en ausencia de la escisión del CM por una proteasa. Como se discutió anteriormente, la expresión "anticuerpos activables multiespecíficos" se usa en la presente descripción para referirse a un anticuerpo activable multiespecífico tanto en su estado no escindido (nativo), así como en su estado escindido. Será evidente para el experto en la materia que, en algunas modalidades, un anticuerpo activable escindible multiespecífico puede carecer de un MM debido a la escisión del CM por la proteasa, dando como resultado la liberación de al menos el MM (por ejemplo, cuando el MM no está unido a los anticuerpos activables multiespecíficos mediante un enlace covalente (por ejemplo, un enlace disulfuro entre residuos de cisteína).
- Por activable o conmutable se entiende que el anticuerpo activable multiespecífico exhibe un primer nivel de unión a una diana cuando está en un estado de inhibición, enmascaramiento o no escindible (es decir, una primera conformación) y un segundo nivel de unión a la diana, en el estado de desinhibición, desenmascaramiento y/o escindible (es decir, una segunda conformación), donde el segundo nivel de unión a la diana es mayor que el primer nivel de unión. En general, el acceso de la diana al AB correspondiente del anticuerpo activable multiespecífico es mayor en presencia de un agente de escisión capaz de escindir el CM que en ausencia del agente de escisión de ese tipo. Por lo tanto, cuando el anticuerpo activable multiespecífico está en el estado no escindido, al menos un AB se inhibe de la unión a la diana y puede enmascararse de la unión a la diana (es decir, la primera conformación es tal que AB no puede unirse a la diana), y en el estado escindido el AB no se inhibe o se desenmascara para la unión a la diana.
- El CM y AB de los anticuerpos activables multiespecíficos se seleccionan de modo que el primer AB represente una entidad de unión para una primera diana y/o epítopo, y el CM representa un sustrato para una proteasa que está colocalizada con la diana en un sitio de tratamiento o sitio de diagnóstico en un sujeto. Los anticuerpos activables multiespecíficos descritos en la presente invención encuentran un uso particular cuando, por ejemplo, una proteasa capaz de escindir un sitio en el CM está presente en niveles relativamente más altos en el tejido que contiene la diana de un sitio de tratamiento o sitio de diagnóstico que en el tejido de sitios sin (por ejemplo, en tejido sano).

35

40

45

50

55

60

- En algunas modalidades, los anticuerpos activables multiespecíficos proporcionan toxicidad reducida y/o efectos secundarios adversos que de cualquier otra forma pueden resultar de la unión del primer AB en los sitios sin tratamiento si el AB no estuviera enmascarado o de cualquier otra manera inhibido para la unión a su diana.
- En general, puede diseñarse un anticuerpo activable multiespecífico seleccionando primero el AB de interés y construyendo el resto del anticuerpo activable de manera que, cuando se restrinja conformacionalmente, el MM proporcione el enmascaramiento del AB o la reducción de la unión del AB a su diana. Los criterios de diseño estructural pueden tenerse en cuenta para proporcionar esta característica funcional.
- Se proporcionan los anticuerpos activables multiespecíficos que exhiben un fenotipo conmutable de un intervalo dinámico deseado para la unión a la diana en una conformación inhibida frente a una no inhibida. El intervalo dinámico se refiere, generalmente, a una relación de (a) un nivel máximo detectado de un parámetro bajo un primer conjunto de condiciones para (b) un valor mínimo detectado de ese parámetro bajo un segundo conjunto de condiciones. Por ejemplo, en el contexto de un anticuerpo activable multiespecífico, el intervalo dinámico se refiere a la relación de (a) un nivel máximo detectado de proteína diana, que se une a un anticuerpo activable multiespecífico en presencia de la proteasa capaz de escindir el CM de los anticuerpos activables para (b) un nivel mínimo detectado de la proteína diana, que se une a un anticuerpo activable multiespecífico en ausencia de la proteasa. El intervalo dinámico de un anticuerpo activable multiespecífico puede calcularse como la relación de la constante de disociación de equilibrio de un tratamiento con un agente de escisión (por ejemplo, enzima) del anticuerpo activable multiespecífico con la constante de disociación de equilibrio del tratamiento con agente de escisión de los anticuerpos activables. Cuanto mayor sea el intervalo dinámico de un anticuerpo activable multiespecífico, mejor será el fenotipo conmutable del anticuerpo activable. Los anticuerpos activables que tienen valores de intervalo dinámico relativamente más altos (por ejemplo, mayores que 1) presentan fenotipos de conmutación más deseables de manera que la unión a proteínas diana por los anticuerpos activables ocurre en mayor medida (por ejemplo, ocurre predominantemente) en presencia de un agente de escisión (por ejemplo, enzima) capaz de escindir el CM de los anticuerpos activables que en ausencia de un agente de escisión.
- Pueden proporcionarse anticuerpos activables multiespecíficos en una variedad de configuraciones estructurales. Se proporcionan más abajo las fórmulas ilustrativas para al menos una porción de un anticuerpo activable multiespecífico. Se contempla específicamente que el orden N- a C-terminal del primer AB, el MM y el CM correspondientes pueden invertirse dentro de un anticuerpo activable. Se contempla además específicamente que el CM y el MM pueden solaparse en la secuencia de aminoácidos, *por ejemplo*, de manera que el CM esté contenido dentro del MM.
- Por ejemplo, al menos una porción de los anticuerpos activables multiespecíficos puede representarse mediante la siguiente fórmula (en orden de una región amino (N) terminal a carboxilo (C) terminal:

(MM)-(CM)-(AB) (AB)-(CM)-(MM)

donde MM es una entidad enmascarante, CM es una entidad escindible, y AB es un primer anticuerpo o fragmento de este. Debe observarse que aunque MM y CM están indicados como componentes distintos en las fórmulas anteriores, en todas las modalidades ilustrativas (que incluyen fórmulas) descritas en la presente descripción se contempla que las secuencias de aminoácidos del MM y el CM podrían superponerse, *por ejemplo*, de manera que el CM está total o parcialmente contenido dentro del MM. Además, las fórmulas anteriores proporcionan las secuencias de aminoácidos adicionales que pueden colocarse en el N terminal o en el C terminal de los elementos de anticuerpos activables.

10

15

5

En ciertas modalidades, el MM no es una pareja de unión natural del AB. En algunas modalidades, el MM no contiene o esencialmente no presenta homología con ninguna pareja de unión natural del AB. En otras modalidades, el MM no es más de 5%, 10%, 15%, 20%, 25%, 30%, 35%, 40%, 45%, 50%, 55%, 60%, 65%, 70 %, 75% u 80% similar a cualquier pareja de unión natural del AB. En algunas modalidades, el MM no es más de 5%, 10%, 15%, 20%, 25%, 30%, 35%, 40%, 45%, 50%, 55%, 60%, 65%, 70%, 75%, o 80% idéntico a cualquier parea de unión natural del AB. En algunas modalidades, el MM no es más del 50% idéntico a cualquier pareja de unión natural del AB. En algunas modalidades, el MM no es más del 20% idéntico a cualquier pareja de unión natural del AB. En algunas modalidades, el MM no es más del 20% idéntico a cualquier pareja de unión natural del AB. En algunas modalidades, el MM no es más del 20% idéntico a cualquier pareja de unión natural del AB. En algunas modalidades, el MM no es más del 20% idéntico a cualquier pareja de unión natural del AB. En algunas modalidades, el MM no es más del 20% idéntico a cualquier pareja de unión natural del AB.

20

25

En muchas modalidades, puede ser deseable insertar uno o más enlazadores, *por ejemplo*, enlazadores flexibles, en el constructo de anticuerpo activable multiespecífico para proporcionar flexibilidad en una o más de la unión MM-CM, la unión CM-AB, o ambos. Por ejemplo, AB, MM y/o CM pueden no contener un número suficiente de residuos (*por ejemplo*, Gly, Ser, Asp, Asn, especialmente Gly y Ser, particularmente Gly) para proporcionar la flexibilidad deseada. Como tal, el fenotipo conmutable de tales constructos de anticuerpos activables multiespecíficos puede beneficiarse de la introducción de uno o más aminoácidos para proporcionar un enlazador flexible. Además, como se describe más abajo, cuando el anticuerpo activable multiespecífico se proporciona como un constructo conformacionalmente restringido, se puede insertar operativamente un enlazador flexible para facilitar la formación y el mantenimiento de una estructura cíclica en el anticuerpo activable multiespecífico no escindible.

30

Por ejemplo, en ciertas modalidades, un anticuerpo activable multiespecífico comprende una de las siguientes fórmulas (en donde la siguiente fórmula representa una secuencia de aminoácidos ya sea en la dirección N a C terminal o dirección C a N terminal):

35

(MM)-L1-(CM)-(AB) (MM)-(CM)-L2-(AB) (MM)-L1-(CM)-L2-(AB)

en donde MM, CM y AB son como se definieron anteriormente; en donde L1 y L2 están cada uno independientemente y opcionalmente presentes o ausentes, son los enlazadores flexibles idénticos o diferentes que incluyen al menos 1 aminoácido flexible (por ejemplo, Gly). Además, las fórmulas anteriores proporcionan secuencias de aminoácidos adicionales que pueden posicionarse en N-terminal o C-terminal a los elementos de anticuerpos activables multiespecíficos. Los ejemplos incluyen, pero sin limitación, entidades dirigidas (por ejemplo, un ligando para un receptor de una célula presente en un tejido diana) y entidades de semivida extendida en suero (por ejemplo, polipéptidos que unen proteínas séricas, tales como inmunoglobulina (por ejemplo, IgG) o seroalbúmina (por ejemplo, seroalbúmina humana (HAS)).

En algunas modalidades no limitantes, al menos uno de los AB en el anticuerpo activable multiespecífico es una pareja de unión para cualquier diana enumerada en la Tabla 1.

50

En algunas modalidades no limitantes, al menos uno de los AB en el anticuerpo activable multiespecífico comprende, es o se deriva de una secuencia expuesta en la Tabla 7 en los Ejemplos proporcionados en la presente descripción.

55

En algunas modalidades no limitantes, al menos uno de los AB en el anticuerpo activable multiespecífico comprende, es o se deriva de una secuencia expuesta en el Ejemplo 5 en los Ejemplos proporcionados en la presente descripción. En algunas modalidades no limitantes, al menos uno de los AB en el anticuerpo activable multiespecífico comprende, es o se deriva de una secuencia expuesta en la Tabla 11 en los Ejemplos proporcionados en la presente descripción.

60

65

En algunas modalidades no limitantes, al menos uno de los AB en el anticuerpo activable multiespecífico es o se deriva de un anticuerpo enumerado en la Tabla 2.

60

En algunas modalidades, la entidad enmascarante se selecciona para su uso con un anticuerpo o fragmento del anticuerpo específico. Por ejemplo, entidades de enmascaramiento adecuadas para su uso con anticuerpos que se unen a EGFR incluyen los MM que abarcan la secuencia CISPRG (sec. con núm. de ident.: 75). A modo de ejemplos no limitantes, el MM puede incluir una secuencia tal como CISPRGC (sec. con núm. de ident.: 339), CISPRGCG (sec. con núm. de ident.: 76); CISPRGCPDGPYVMY (sec. con núm. de ident.: 78),

CISPRGCEPGTYVPT (sec. con núm. de ident.: 79) y CISPRGCPGQIWHPP (sec. con núm. de ident.: 80). Otras entidades de enmascaramiento adecuadas incluyen cualquiera de las máscaras específicas de EGFR descritas en la publicación PCT núm. WO 2010/081173, tal como, a modo de ejemplo no limitativo, GSHCLIPINMGAPSC (sec. con núm. de ident.: 81); CISPRGCGGSSASQSGQGSHCLIPINMGAPSC (sec. con núm. de ident.: 82); CNHHYFYTCGCISPRGCPG (sec. con núm. de ident.: 83); ADHVFWGSYGCISPRGCPG (sec. con núm. de ident.: 84); CHHVYWGHCGCISPRGCPG (sec. con núm. de ident.: 85); CPHFTTTSCGCISPRGCPG (sec. con núm. de ident.: 86); CNHHYHYYCGCISPRGCPG (sec. con núm. de ident.: 87); CPHVSFGSCGCISPRGCPG (sec. con núm. de ident.: 88); CPYYTLSYCGCISPRGCPG (sec. con núm. de ident.: 89); CNHVYFGTCGCISPRGCPG (sec. con núm. de ident.: 90); CNHFTLTTCGCISPRGCPG (sec. con núm. de ident.: 91); CHHFTLTTCGCISPRGCPG (sec. con núm. de ident.: 92); YNPCATPMCCISPRGCPG (sec. con núm. de ident.: 93); CNHHYFYTCGCISPRGCG (sec. con núm. de ident.: 94); CNHHYHYYCGCISPRGCG (sec. con núm. de ident.: 95); CNHVYFGTCGCISPRGCG (sec. con núm. de ident.: 96); CHHVYWGHCGCISPRGCG (sec. con núm. de ident.: 97); CPHFTTTSCGCISPRGCG (sec. con núm. de ident.: 98); CNHFTLTTCGCISPRGCG (sec. con núm. de ident.: 99); CHHFTLTTCGCISPRGCG (sec. con núm. de ident.: 100); CPYYTLSYCGCISPRGCG (sec. con núm. de ident.: 101); CPHVSFGSCGCISPRGCG (sec. con núm. de ident.: 102); ADHVFWGSYGCISPRGCG (sec. con núm. de ident.: 103); YNPCATPMCCISPRGCG (sec. con núm. de ident.: 104); CHHVYWGHCGCISPRGCG (sec. con núm. de ident.: 105); C(N/P)H(H/V/F)(Y/T)(F/W/T/L)(Y/G/T/S)(T/S/Y/H)CGCISPRGCG (sec. con núm. de ident.: 106); CISPRGCGQPIPSVK (sec. con núm. de ident.: 107); CISPRGCTQPYHVSR (sec. con núm. de ident.: 108); y/o CISPRGCNAVSGLGS (sec. con núm. de ident.: 109).

10

15

20 Entidades de enmascaramiento adecuadas para su uso con anticuerpos que se unen a una diana Jagged, por ejemplo, Jagged 1 y/o Jagged 2, incluyen, a modo de ejemplo no limitante, entidades de enmascaramiento que incluyen una como QGQSGQCNIWLVGGDCRGWQG (sec. con núm. de ident.: QGQSGQGQQWCNIWINGGDCRGWNG (sec. con núm. de ident.: 110); PWCMQRQDFLRCPQP (sec. con núm. de ident.: 111); QLGLPAYMCTFECLR (sec. con núm. de ident.: 112); CNLWVSGGDCGGLQG (sec. con núm. de ident.: 113); SCSLWTSGSCLPHSP (sec. con núm. de ident.: 114); YCLQLPHYMQAMCGR (sec. con núm. de ident.: 115); 25 CFLYSCTDVSYWNNT (sec. con núm. de ident.: 116); PWCMQRQDYLRCPQP (sec. con núm. de ident.: 117); CNLWISGGDCRGLAG (sec. con núm. de ident.: 118); CNLWVSGGDCRGVQG (sec. con núm. de ident.: 119); CNLWVSGGDCRGLRG (sec. con núm. de ident.: 120); CNLWISGGDCRGLPG (sec. con núm. de ident.: 121); CNLWVSGGDCRDAPW (sec. con núm. de ident.: 122); CNLWVSGGDCRDLLG (sec. con núm. de ident.: 123); CNLWVSGGDCRGLQG (sec. con núm. de ident.: 124); CNLWLHGGDCRGWQG (sec. con núm. de ident.: 125); CNIWLVGGDCRGWQG (sec. con núm. de ident.: 126); CTTWFCGGDCGVMRG (sec. con núm. de ident.: 127); CNIWGPSVDCGALLG (sec. con núm. de ident.: 128); CNIWVNGGDCRSFEG (sec. con núm. de ident.: 129); 30 YCLNLPRYMQDMCWA (sec. con núm. de ident.: 130); YCLALPHYMQADCAR (sec. con núm. de ident.: 131); CFLYSCGDVSYWGSA (sec. con núm. de ident.: 132); CYLYSCTDSAFWNNR (sec. con núm. de ident.: 133); CYLYSCNDVSYWSNT (sec. con núm. de ident.: 134); CFLYSCTDVSYW (sec. con núm. de ident.: 135); 35 CFLYSCTDVSYWGNT (sec. con núm. de ident.: 136); CFLYSCTDVSYWGDT (sec. con núm. de ident.: 137); CFLYSCTDVSYWGNS (sec. con núm. de ident.: 138); CFLYSCTDVSYWGNT (sec. con núm. de ident.: 139); CFLYSCGDVSYWGNPGLS (sec. con núm. de ident.: 140); CFLYSCTDVAYWSGL (sec. con núm. de ident.: 141); CYLYSCTDGSYWNST (sec. con núm. de ident.: 142); CFLYSCSDVSYWGNI (sec. con núm. de ident.: 143); CFLYSCTDVAYW (sec. con núm. de ident.: 144); CFLYSCTDVSYWGST (sec. con núm. de ident.: 145); 40 CFLYSCTDVAYWGDT (sec. con núm. de ident.: 146); GCNIWLNGGDCRGWVDPLQG (sec. con núm. de ident.: 147); GCNIWLVGGDCRGWIGDTNG (sec. con núm. de ident.: 148); GCNIWLVGGDCRGWIEDSNG (sec. con núm. de ident.: 149); GCNIWANGGDCRGWIDNIDG (sec. con núm. de ident.: 150); GCNIWLVGGDCRGWLGEAVG (sec. con núm. de ident.: 151); GCNIWLVGGDCRGWLEEAVG (sec. con núm. de ident.: 152); GGPALCNIWLNGGDCRGWSG (sec. con núm. de ident.: 153); GAPVFCNIWLNGGDCRGWMG (sec. con núm. de ident.: 154); GQQQWCNIWINGGDCRGWNG 45 (sec. con núm. de ident.: 155); GKSEFCNÌWLNGGDCRGWIG (sec. con núm. de ident.: 156); GTPGGCNIWANGGDCRGWEG (sec. con núm. de ident.: 157); GASQYCNLWINGGDCRGWRG (sec. con núm. de ident.: 158); GCNIWLVGGDCRPWVEGG (sec. con núm. de ident.: 159); GCNIWAVGGDCRPFVDGG (sec. con núm. de ident.: 160); GCNIWLNGGDCRAWVDTG (sec. con núm. de ident.: 161); GCNIWIVGGDCRPFINDG (sec. con núm. de ident.: 50 162); GCNIWLNGGDCRPVVFGG (sec. con núm. de ident.: 163); GCNIWLSGGDCRMFMNEG (sec. con núm. de ident.: 164); GCNIWVNGGDCRSFVYSG (sec. con núm. de ident.: 165); GCNIWLNGGDCRGWEASG (sec. con núm. de ident.: 166); GCNIWAHGGDCRGFIEPG (sec. con núm. de ident.: 167); GCNIWLNGGDCRTFVASG (sec. con núm. de ident.: 168): GCNIWAHGGDCRGFIEPG (sec. con núm. de ident.: 169): GFLENCNIWLNGGDCRTG (sec. con núm. de ident.: 170); GIYENCNIWLNGGDCRMG (sec. con núm. de ident.: 171); y/o GIPDNCNIWINGGDCRYG (sec. con núm. de ident.: 55

Las entidades de enmascaramiento adecuadas para el uso con anticuerpos que se unen a una diana de interleuquina 6, por ejemplo, receptor de interleuquina 6 (IL-6R), incluyen, a modo de ejemplo no limitante, entidades de enmascaramiento que incluyen una secuencia tal como QGQSGQYGSCSWNYVHIFMDC (sec. con núm. de ident.: 174); QGQSGQMGVPAGCVWNYAHIFMDC (sec. con núm. de ident.: 175); QGQSGQMGVPAGCVWNYAHIFMDC (sec. con núm. de ident.: 177); PGAFDIPFPAHWVPNT (sec. con núm. de ident.: 178); ESSCVWNYVHIYMDC (sec. con núm. de ident.: 179); YPGCKWNYDRIFLDC (sec. con núm. de ident.: 180); YRTCSWNYVGIFLDC (sec. con núm. de ident.: 181); YGSCSWNYVHIFMDC (sec. con núm. de ident.: 182); YGSCSWNYVHIFLDC (sec. con núm. de ident.: 184); YTSCNWNYVHIFMDC (sec. con núm. de ident.: 185); YPGCKWNYDRIFLDC (sec. con núm. de ident.: 186); WRSCNWNYVHIFLDC (sec. con núm. de ident.: 187); WSNCHWNYVHIFLDC (sec. con núm. de ident.: 188);

```
DRSCTWNYVRISYDC (sec. con núm. de ident.: 189); SGSCKWDYVHIFLDC (sec. con núm. de ident.: 190);
       SRSCIWNYAHIHLDC (sec. con núm. de ident.: 191); SMSCYWQYERIFLDC (sec. con núm. de ident.: 192);
       YRSCNWNYVSIFLDC (sec. con núm. de ident.: 193); YGSCSWNYVHIFMDC (sec. con núm. de ident.: 194);
       SGSCKWDYVHIFLDC (sec. con núm. de ident.: 195); YKSCHWDYVHIFLDC (sec. con núm. de ident.: 196);
       YGSCTWNYVHIFMEC (sec. con núm. de ident.: 197); FSSCNWNYVHIFLDC (sec. con núm. de ident.: 198); WRSCNWNYAHIFLDC (sec. con núm. de ident.: 199); YGSCQWNYVHIFLDC (sec. con núm. de ident.: 200);
       YRSCNWNYVHIFLDC (sec. con núm. de ident.: 201); NMSCHWDYVHIFLDC (sec. con núm. de ident.: 202);
       FGPCTWNYARISWDC (sec. con núm. de ident.: 203); XXsCXWXYvhlfXdC (sec. con núm. de ident.: 204);
       MGVPAGCVWNYAHIFMDC (sec. con núm. de ident.: 205); RDTGGQCRWDYVHIFMDC (sec. con núm. de ident.: 206);
       AGVPAGCTWNYVHIFMEC (sec. con núm. de ident.: 207); VGVPNGCVWNYAHIFMEC (sec. con núm. de ident.: 208);
10
      DGGPAGCSWNYVHIFMEC (sec. con núm. de ident.: 209); AVGPAGCWWNYVHIFMEC (sec. con núm. de ident.: 210); CTWNYVHIFMDCGEGEGP (sec. con núm. de ident.: 211); GGVPEGCTWNYAHIFMEC (sec. con núm. de ident.: 212); AEVFAGCWWNYVHIFMEC (sec. con núm. de ident.: 213); AGVPAGCTWNYVHIFMEC (sec. con núm. de ident.: 214);
       SGASGGCKWNYVHIFMDC (sec. con núm. de ident.: 215); MGVPAGCVWNYAHIFMDC (sec. con núm. de ident.: 216);
15
       TPGCRWNYVHIFMECEAL (sec. con núm. de ident.: 217); VGVPNGCVWNYAHIFMEC (sec. con núm. de ident.: 218);
       PGAFDIPFPAHWVPNT (sec. con núm. de ident.: 219); RGACDIPFPAHWIPNT (sec. con núm. de ident.: 220);
       QGDFDIPFPAHWVPIT (sec. con núm. de ident.: 221); XGafDIPFPAHWVPNT (sec. con núm. de ident.: 222); RGDGNDSDIPFPAHWVPRT (sec. con núm. de ident.: 223); SGVGRDRDIPFPAHWVPRT (sec. con núm. de ident.: 224);
       WAGGNDCDIPFPAHWIPNT (sec. con núm. de ident.: 225); WGDGMDVDIPFPAHWVPVT (sec. con núm. de ident.: 226);
       AGSGNDSDIPFPAHWVPRT (sec. con núm. de ident.: 227); ESRSGYADIPFPAHWVPRT (sec. con núm. de ident.: 228);
20
       y/o RECGRCGDIFFPAHWVPRT (sec. con núm. de ident.: 173).
```

En algunas modalidades, la entidad escindible (CM) del anticuerpo activable multiespecífico incluye una secuencia de aminoácidos que puede servir como un sustrato para una proteasa, usualmente una proteasa extracelular. El CM puede seleccionarse en base a una proteasa que está colocalizada en el tejido con la diana deseada de al menos un AB del anticuerpo activable multiespecífico. Se conocen una variedad de afecciones diferentes en las que una diana de interés se colocaliza con una proteasa, donde el sustrato de la proteasa es conocido en la materia. En el Ejemplo de cáncer, el tejido diana puede ser un tejido canceroso, particularmente, tejido canceroso de un tumor sólido. En la bibliografía existen informes del incremento de niveles de proteasas que tienen sustratos conocidos en una serie cánceres por ejemplo, tumores sólidos. Ver, por ejemplo, La Rocca y otros, (2004) British J. of Cancer 90(7): 1414-1421. Ejemplos no limitantes de enfermedad incluyen: todos los tipos de cáncer (mama, pulmón, colorrectal, próstata, melanoma, cabeza y cuello, pancreático, etc.), artritis reumatoide, enfermedad de Crohn, SLE, daño cardiovascular, isquemia, etc. Por ejemplo, las indicaciones pueden incluir leucemias, que incluye la leucemia linfoblástica aguda de células T (T-ALL), enfermedades linfoblásticas que incluyen mieloma múltiple y tumores sólidos, incluyendo pulmón, colorrectal, próstata, páncreas y mama, incluyendo el cáncer de mama triple negativo. Por ejemplo, las indicaciones incluyen enfermedad ósea o metástasis en el cáncer, independientemente del origen del tumor primario; cáncer de mama, incluyendo, a modo de ejemplo no limitativo, cáncer de mama ER/PR+, cáncer de mama Her2+, cáncer de mama triple negativo; cáncer colorrectal; cáncer endometrial; cáncer gástrico; glioblastoma; cáncer de cabeza y cuello, tales como cáncer de esófago; cáncer de pulmón, tal como a modo de ejemplo no limitante, cáncer de pulmón de células no pequeñas; cáncer de ovario de mieloma múltiple; cáncer de páncreas; cáncer de próstata; sarcoma, tal como osteosarcoma; cáncer renal, tal como a modo de ejemplo no limitante, carcinoma de células renales; y/o cáncer de piel, tal como a modo de ejemplo no limitante, cáncer de células escamosas, carcinoma de células basales o melanoma. En algunas modalidades, el cáncer es un cáncer de células escamosas. En algunas modalidades, el cáncer es un carcinoma de células escamosas de la piel. En algunas modalidades, el cáncer es un carcinoma de células escamosas esofágicas. En algunas modalidades, el cáncer es un carcinoma de células escamosas de cabeza y cuello. En algunas modalidades, el cáncer es un carcinoma de células escamosas de pulmón.

El CM se escinde específicamente por una enzima a una velocidad de aproximadamente $0,001-1500 \times 10^4 \text{ M}^{-1}\text{S}^{-1}$ o al menos $0,001,\,0,005,\,0,01,\,0,05,\,0,1,\,0,5,\,1,\,2,5,\,5,\,7,5,\,10,\,15,\,20,\,25,\,50,\,75,\,100,\,125,\,150,\,200,\,250,\,500,\,750,\,1000,\,1250,\,0\,1500 \times 10^4 \text{ M}^{-1}\text{S}^{-1}$.

Para la escisión específica por una enzima, se establece el contacto entre la enzima y el CM. Cuando el anticuerpo activable multiespecífico que comprende al menos un primer AB acoplado a un MM y un CM está en presencia de una diana y suficiente actividad de la enzima, el CM puede escindirse. La actividad enzimática suficiente puede referirse a la capacidad de la enzima para entrar en contacto con el CM y efectuar la escisión. Puede fácilmente imaginarse que una enzima puede estar en las proximidades del CM pero no puede romperse debido a otros factores celulares o a la modificación proteínica de la enzima.

Los sustratos ilustrativos incluyen, pero no se limitan a, sustratos escindibles por una o más de las siguientes enzimas o proteasas enumeradas en la Tabla 3:

Tabla 3: Proteasas y/o enzimas ilustrativas

25

30

35

40

45

50

	ADAMS, ADAMS, por ejemplo,	Cisteína proteinasas, <i>por ejemplo</i> ,	Serina proteasas, <i>por ejemplo</i> .,
_	ADAM8	Cruzipaína	proteína C activada
5	ADAM9	Legumaina	Catepsina A
	ADAM10	Otubaína 2	Catepsina G
	ADAM12		Chimasa
10	ADAM15	KLKs, por ejemplo,	proteasas del factor de la coagulación
	ADAM17/TACE	KLK4	(<i>por ejemplo,</i> FVIIa, FIXa, FXa, FXIa,
15	ADAMDEC1	KLK5	FXIIa)
	ADAMTS1	KLK6	Elastasa
	ADAMTS4	KLK7	Granzima B
20	ADAMTS5	KLK8	Guanidinobenzoatasa
20		KLK10	HtrA1
	Aspartato proteasas, por ejemplo,	KLK11	Elastasa de neutrófilos humanos
25	BACE	KLK13	Lactoferrina
	Renina	KLK14	Marapsina
			NS3/4A
30	Aspártico catepsinas, por ejemplo.,	Metalo proteinasas, por ejemplo.,	PACE4
	Catepsina D	Meprina	Plasmina
	Catepsina E	Neprilisina	PSA
35		PSMA	tPA
	Caspasas, por ejemplo,	BMP-1	Trombina
	Caspasa 1		Triptasa
40	Caspasa 2	MMPs, por ejemplo,	uPA
10	Caspasa 3	MMP1	
	Caspasa 4	MMP2	Transmembrana tipo II
45	Caspasa 5	MMP3	Serina Proteasas (TTSP), por ejemplo,
	Caspasa 6	MMP7	DESC1
	Caspasa 7	MMP8	DPP-4
50	Caspasa 8	MMP9	FAP
50	Caspasa 9	MMP10	Hepsina
	Caspasa 10	MMP11	Matriptasa 2
	Caspasa 14	MMP12	MT-SP1/Matriptasa
55		MMP13	TMPRSS2
	Cisteína catepsinas, <i>por ejemplo</i> ,	MMP14	TMPRSS3
	Catepsina B	MMP15	TMPRSS4
60	Catepsina C	MMP16	
	Catepsina K	MMP17	
	Catepsina L	MMP19	

Catepsina S	MMP20	
Catepsina V/L2	MMP23	
Catepsina X/Z/P	MMP24	
	MMP26	
	MMP27	

Por ejemplo, en algunas modalidades, el sustrato es escindible por una o más de las siguientes enzimas o proteasas: uPA, legumaína, MT-SP1, ADAM 17, BMP-1, TMPRSS3, TMPRSS4, MMP-9, MMP-12, MMP-13, y/o MMP-14. En algunas modalidades, la proteasa se selecciona del grupo de uPA, legumaína, y MT-SP1. En algunas modalidades, la proteasa es una metaloproteinasa de matriz. En algunas modalidades, la proteasa comprende uPA. En algunas modalidades, la proteasa comprende MT-SP1.

En algunas modalidades, el CM se selecciona para su uso con una proteasa específica. En algunas modalidades, el CM es un sustrato para al menos una proteasa seleccionada del grupo que consiste en una ADAM 17, una BMP-1, una cisteína proteasa tal como una catepsina, una HtrA1, una legumaína, una matriptasa (MT-SP1), una metaloproteasa de matriz (MMP), una elastasa de neutrófilos, una TMPRSS, tal como TMPRSS3 o TMPRSS4, una trombina y un activador de plasminógeno de tipo u (uPA, también denominado como uroquinasa).

En algunas modalidades, el CM es un sustrato para un ADAM17. En algunas modalidades, el CM es un sustrato para un BMP-1. En algunas modalidades, el CM es un sustrato para una catepsina. En algunas modalidades, el CM es un sustrato para una cisteína proteasa. En algunas modalidades, el CM es un sustrato para un HtrA1. En algunas modalidades, el CM es un sustrato para un MT-SP1. En algunas modalidades, el CM es un sustrato para un MMP. En algunas modalidades, el CM es un sustrato para una elastasa de neutrófilos. En algunas modalidades, el CM es un sustrato para una trombina. En algunas modalidades, el CM es un sustrato para un TMPRSS. En algunas modalidades, el CM es un sustrato para un TMPRSS. En algunas modalidades, el CM es un sustrato para uPA.

En algunas modalidades, la entidad escindible se selecciona para su uso con una proteasa específica, por ejemplo, una proteasa que se conoce que está colocalizada con la diana del anticuerpo activable. Por ejemplo, las entidades escindibles adecuadas para su uso en los anticuerpos activables de la descripción incluyen la secuencia TGRGPSWV (sec. con núm. de ident.: 27); SARGPSRW (sec. con núm. de ident.: 28); TARGPSFK (sec. con núm. de ident.: 29); LSGRSDNH (sec. con núm. de ident.: 26); GGWHTGRN (sec. con núm. de ident.: 30); HTGRSGAL (sec. con núm. de ident.: 31); PLTGRSGG (sec. con núm. de ident.: 32); AARGPAIH (sec. con núm. de ident.: 33); RGPAFNPM (sec. con núm. de ident.: 34); SSRGPAYL (sec. con núm. de ident.: 35); RGPATPIM (sec. con núm. de ident.: 36); RGPA (sec. con núm. de ident.: 37); GGQPSGMWGW (sec. con núm. de ident.: 38); FPRPLGITGL (sec. con núm. de ident.: 39); VHMPLGFLGP (sec. con núm. de ident.: 40); SPLTGRSG (sec. con núm. de ident.: 41); SAGFSLPA (sec. con núm. de ident.: 42); LAPLGLQRR (sec. con núm. de ident.: 43); SGGPLGVR (sec. con núm. de ident.: 44); y/o PLGL (sec. con núm. de ident.: 45).

En algunas modalidades, el CM es un sustrato para al menos una metaloproteasa de matriz (MMP). Ejemplos de los MMP incluyen MMP1; MMP2; MMP3; MMP7; MMP8; MMP9; MMP10; MMP11; MMP12; MMP13; MMP14; MMP15; MMP16; MMP 17; MMP 19; MMP20; MMP23; MMP24; MMP26; y MMP27. En algunas modalidades, el CM es un sustrato para MMP9, MMP14, MMP 1, MMP3, MMP13, MMP 17, MMP 11, y MMP 19. En algunas modalidades, el CM es un sustrato para MMP9. En algunas modalidades, el CM es un sustrato para MMP14. En algunas modalidades, el CM es un sustrato para dos o más MMP. En algunas modalidades, el CM es un sustrato para dos o más sustrato para dos o más sustratos para el mismo MMP. En algunas modalidades, el CM es un sustrato para dos o más sustratos de MMP9. En algunas modalidades, el CM es un sustrato para dos o más sustratos de MMP9. En algunas modalidades, el CM es un sustrato para dos o más sustratos de MMP9. En algunas modalidades, el CM es un sustrato para dos o más sustratos de MMP9.

En algunas modalidades, el CM es un sustrato para un MMP e incluye la secuencia ISSGLLSS (sec. con núm. de ident.: 316); QNQALRMA (sec. con núm. de ident.: 317); AQNLLGMV (sec. con núm. de ident.: 318); STFPFGMF (sec. con núm. de ident.: 319); PVGYTSSL (sec. con núm. de ident.: 320); DWLYWPGI (sec. con núm. de ident.: 321); MIAPVAYR (sec. con núm. de ident.: 322); RPSPMWAY (sec. con núm. de ident.: 21); WATPRPMR (sec. con núm. de ident.: 323); FRLLDWQW (sec. con núm. de ident.: 324); LKAAPRWA (sec. con núm. de ident.: 325); GPSHLVLT (sec. con núm. de ident.: 326); LPGGLSPW (sec. con núm. de ident.: 327); MGLFSEAG (sec. con núm. de ident.: 328); SPLPLRVP (sec. con núm. de ident.: 329); RMHLRSLG (sec. con núm. de ident.: 330); LAAPLGLL (sec. con núm. de ident.: 331); AVGLLAPP (sec. con núm. de ident.: 332); LLAPSHRA (sec. con núm. de ident.: 333); PAGLWLDP (sec. con núm. de ident.: 334); y/o ISSGLSS (sec. con núm. de ident.: 335).

En algunas modalidades, los anticuerpos multiespecíficos y/o anticuerpos activables multiespecíficos de la descripción pueden elaborarse de forma biosintética con el uso de tecnología de ADN recombinante y expresión en especies eucarióticas o procariotas. Para los anticuerpos activables multiespecíficos, los ADNc que codifican la entidad de enmascaramiento, la secuencia enlazadora (que puede incluir una entidad escindible (CM) y cadena de anticuerpo

(pesada o ligera)) se pueden unir en una secuencia 5' a 3' (N- a C-terminal en el producto traducido) para crear el constructo de ácido nucleico, que se expresa como la proteína del anticuerpo activable multiespecífico después de un proceso de expresión del anticuerpo convencional. En algunas modalidades, el anticuerpo activable multiespecífico puede producirse semisintéticamente al expresar un anticuerpo CM y después acoplarse químicamente a la máscara en o cerca del N terminal de la proteína. En algunas modalidades, el anticuerpo activable multiespecífico puede producirse expresando un anticuerpo y después acoplarse químicamente a la máscara y al CM en o cerca del N-terminal de la proteína de manera que el anticuerpo activable multiespecífico en el estado no escindido tiene la disposición estructural de N-terminal al C-terminal de la siguiente manera: MM-CM-AB o AB-CM-MM.

- Los enlazadores adecuados para su uso en las composiciones descritas en la presente descripción son generalmente los que proporcionan flexibilidad del AB modificado o los anticuerpos activables multiespecíficos para facilitar la inhibición de la unión de al menos el primer AB a la diana. Tales enlazadores generalmente se denominan enlazadores flexibles. Los enlazadores adecuados pueden seleccionarse fácilmente y pueden ser de cualquier una de las diferentes longitudes, tales como de 1 aminoácido (*por ejemplo*, Gly) a 20 aminoácidos, de 2 aminoácidos a 15 aminoácidos, de 3 aminoácidos a 12 aminoácidos, que incluyen 4 aminoácidos a 10 aminoácidos, 5 aminoácidos a 9 aminoácidos, 6 aminoácidos a 8 aminoácidos, o 7 aminoácidos a 8 aminoácidos, y pueden ser 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, o 20 aminoácidos de longitud.
- Enlazadores flexibles ilustrativos incluyen polímeros de glicina (G)n, polímeros de glicina-serina (que incluyen, por ejemplo, (GS)n, (GSGGS)n (sec. con núm. de ident.: 18) y (GGGS)n (sec. con núm. de ident.: 19), donde n es un número 20 entero de al menos uno), polímeros de glicina-alanina, polímeros de alanina-serina y otros enlazadores flexibles conocidos en la materia. Los polímeros de glicina-serina son relativamente no estructurados, y por lo tanto pueden ser capaces de servir como un enlace neutral entre componentes. La glicina permite significativamente más espacio phi-psi que incluso la alanina, y está mucho menos restringido que los residuos con cadenas laterales más largas (ver Scheraga, Rev. 25 Computational Chem. 11173-142 (1992)). Enlazadores flexibles ilustrativos incluyen, pero no se limitan a Gly-Gly-Ser-Gly (sec. con núm. de ident.: 20), Gly-Gly-Ser-Gly-Gly (sec. con núm. de ident.: 21), Gly-Ser-Gly-Ser-Gly (sec. con núm. de ident.: 22), Gly-Ser-Gly-Gly-Gly (sec. con núm. de ident.: 23), Gly-Gly-Gly-Ser-Gly (sec. con núm. de ident.: 24), Gly-Ser-Gly Ser-Ser-Gly (sec. con núm. de ident.: 25), y similares. El experto en la materia reconocerá que el diseño de anticuerpos activables puede incluir enlazadores que son todos o parcialmente flexibles, de modo que el enlazador puede incluir un 30 enlazador flexible así como una o más porciones que confieren una estructura menos flexible para proporcionar una estructura de anticuerpos activables multiespecíficos deseados.
- Además de los elementos descritos anteriormente, los anticuerpos activables multiespecíficos pueden contener elementos adicionales tales como, por ejemplo, la secuencia de aminoácidos N- o C-terminal de los anticuerpos activables multiespecíficos. Por ejemplo, los anticuerpos activables multiespecíficos pueden incluir una entidad de direccionamiento para facilitar la administración a una célula o tejido de interés. Los anticuerpos activables multiespecíficos pueden conjugarse con un agente, tal como un agente terapéutico, un agente antineoplásico, una toxina o fragmento de este, una entidad detectable o un agente de diagnóstico. Se describen en la presente descripción ejemplos de agentes.
- Los anticuerpos activables multiespecíficos pueden incluir además cualquiera de los agentes conjugados, enlazadores y otros componentes descritos en la presente en relación con un anticuerpo multiespecífico de la descripción, que incluye, a modo de ejemplo no limitante, cualquiera de los agentes enumerados en la Tabla 4 y/o cualquiera de los enlazadores enumerados en la Tabla 5 y/o la Tabla 6.
- 45 Anticuerpos Multiespecíficos Conjugados y Anticuerpos Activables Multiespecíficos Conjugados
- La descripción se refiere además a los inmunoconjugados que comprenden un anticuerpo multiespecífico y/o anticuerpo activable multiespecífico conjugado con un agente citotóxico tal como una toxina (por ejemplo, una toxina enzimáticamente activa de origen bacteriano, fúngico, vegetal o animal, o fragmentos de esta), o un isótopo radioactivo (es decir, un radioconjugado). Los agentes citotóxicos adecuados incluyen, por ejemplo, dolastatinas y sus derivados (por ejemplo, auristatina E, AFP, MMAD, MMAF, MMAE). Por ejemplo, el agente citotóxico es monometilauristatina E (MMAE). En algunas modalidades, el agente es un agente seleccionado del grupo enumerado en la Tabla 4. En algunas modalidades, el agente es una dolastatina. En algunas modalidades, el agente es una auristatina o derivado de esta. En algunas modalidades, el agente es auristatina E o un derivado de esta. En algunas modalidades, el agente es DM1 o DM4. En algunas modalidades, el agente es una duocarmicina o un derivado de esta. En algunas modalidades, el agente es una calicheamicina o derivado de esta. En algunas modalidades, el agente es una calicheamicina o derivado de esta. En algunas modalidades, el agente es una calicheamicina o derivado de esta. En algunas modalidades, el agente es una pirrolobenzodiazepina.
- Las toxinas enzimáticamente activas y fragmentos de estas que pueden usarse incluyen la cadena A de la difteria, fragmentos activos no enlazantes de la toxina de la difteria, cadena A de la exotoxina (de Pseudomonas aeruginosa), cadena A de la ricina, cadena A de la abrina, cadena A de la modeccina, alfa-sarcina, proteínas de Aleurites fordii, proteínas de diantina, proteínas de Phytolaca americana (PAPI, PAPII, y PAP-S), inhibidor de momordica charantia, curcina, crotina, inhibidor de sapaonaria officinalis, gelonina, mitogelina, restrictocina, fenomicina, enomicina y los tricotecenos. Una variedad de radionúclidos están disponibles para la producción de anticuerpos radioconjugados. Los ejemplos incluyen ²¹²Bi, ⁶⁴Cu, ¹²⁵I, ¹³¹I, ¹³¹In, ^{99m}Tc, ⁹⁰Y, ¹⁸⁶Re, y ⁸⁹Zr.

Los conjugados del anticuerpo y agente citotóxico se preparan con el uso de una variedad de agentes bifuncionales de acoplamiento de proteína tales como N-succinimidil-3-(2-piridilditiol) propionato (SPDP), iminotiolano (IT), derivados bifuncionales de imidoésteres (tal como dimetiladipimidato HCL), ésteres activos (tal como disuccinimidil suberato), aldehídos (tal como glutaraldehído), compuestos bis-azido (tal como bis (p-azidobenzoil) hexanodiamina), derivados de bis-diazonio (tal como bis-(p-diazoniobenzoil)-etilendiamina), diisocianatos (tal como tolueno 2,6-diisocianato), y compuestos de flúor bis-activos (tal como 1,5-difluoro-2,4-dinitrobenceno). Por ejemplo, una inmunotoxina de ricina puede prepararse como se describe en Vitetta y otros, Science 238: 1098 (1987). El ácido 1-isotiocianatobencil-3-metildietileno triaminapentaacético marcado con carbono 14 (MX-DTPA) es un agente quelante ilustrativo para la conjugación del radionucleótido al anticuerpo. (*Ver documento de patente núm.*, WO 94/11026).

La Tabla 4 enumera algunos de los ejemplos de agentes farmacéuticos que pueden emplearse en la invención descrita en la presente descripción, pero de ninguna manera pretende ser una lista exhaustiva.

Tabla 4: Agentes farmacéuticos ilustrativos para la conjugación

	Agentes citotóxicos				
	Auristatinas	Turbostatina			
20	Auristatina E	Fenstatinas			
	Monometilauristatina D (MMAD)	Hidroxifenstatina			
	Monometilauristatina E (MMAE)	Espongistatina 5			
	Desmetilauristatina E (DMAE)	Espongistatina 7			
25	Auristatina F	Halistatina 1			
	Monometilauristatina F (MMAF)	Halistatina 2			
	Desmetilauristatina F (DMAF)	Halistatina 3			
30	Derivados de auristatina, <i>por ejemplo</i> ., amidas de esta	Briostatinas modificadas			
	Auristatina tiramina	Halocomstatinas			
	Auristatina quinolina	Pirrolobenzimidazoles (PBI)			
35	Dolastatinas	Cibrostatina 6			
	Derivados de dolastatina	Doxaliform			
	Dolastatina 16 DmJ	Análogos de Antraciclinas			
40	Dolastatina 16 Dpv				
40	Maitansinoides, por ejemplo DM-1; DM-4				
	Derivados de Maitansinoides	Análogo de cemadotina (CemCH2-SH)			
45	Duocarmicina	Variante de la toxina A de Pseudomonas (PE38)			
	Derivados de duocarmicina	Variante de la toxina A de Pseudomonas (ZZ-PE38)			
	Alfa-amanitina	ZJ-101			
50	Antraciclinas	OSW-1			
	Doxorubicina	Derivado de 4-nitrobenziloxicarbonilo de O6-Bencilguanina			
	Daunorubicina	Inhibidores de la topoisomerasa			
55	Briostatinas	Hemiasterlina			
	Camptotecina	Cefalotaxina			
	Derivados de camptotecina	Homoharringtonina			
60	Camptotecina 7-substituida	Dímeros de pirrolobenzodiazepina (PBDs)			
00	10,11-	Pirrolobenzodiazepina funcionales			
	Difluorometilenodioxicamptotecina				

65

5

10

	Combretastatinas	Calicheamicinas
	Debromoaplisiatoxina	Podofilotoxinas
_	Kahalalido-F	Taxanos
5	Discodermolido	Alcaloides vinca
	Ecteinascidinas	
		Reactivos de detección de conjugables
10	<u>Antivirales</u>	Fluoresceína y sus derivados
	Aciclovir	Isotiocianato de fluoresceína (FITC)
	Vira A	,
4.5	Simmetrel	Radiofarmacéuticos
15		125
	<u>Antifúngicos</u>	131
	Nistatina	⁸⁹ Zr
20		¹¹¹ ln
	Antineoplásicos adicionales	123
	Adriamicina	131
25	Cerubidina	⁹⁹ mTc
25	Bleomicina	²⁰¹ TI
	Alkeran	¹³³ Xe
	Velban	¹¹ C
30	Oncovin	⁶² Cu
	Fluorouracilo	¹⁸ F
	Metotrexato	⁶⁸ Ga
35	Tiotepa	¹³ N
33	Bisantreno	¹⁵ O
	Novantrona	³⁸ K
	Tioguanina	⁸² Rb
40	Procarabizina	⁹⁹ <i>m</i> Tc (Technetio)
	Citarabina	
		Metales pesados
45	<u>Antibacterianos</u>	Bario
10	Aminoglicósidos	Oro
	Estreptomicina	Platino
	Neomicina	
50	Kanamicina	<u>Antimicoplasmales</u>
	Amikacina	Tilosina
	Gentamicina	Espectinomicina
55	Tobramicina	
	Estreptomicina B	
	Espectinomicina	
	Ampicillina	
60	Sulfanilamida	
	Polimixina	
	Clorafenicol	

Los expertos en la materia reconocerán que una gran variedad de entidades posibles pueden acoplarse a los anticuerpos multiespecíficos y/o anticuerpos activables multiespecíficos resultantes de la descripción. (*Ver, por ejemplo,* "Conjugate Vaccines", Contributions to Microbiology and Immunology, J. M. Cruse y R. E. Lewis, Jr (eds), Carger Press, Nueva York, (1989)).

El acoplamiento puede lograrse mediante cualquier reacción química que unirá a las dos moléculas siempre que el anticuerpo y la otra entidad retengan sus respectivas actividades. Este enlace puede incluir muchos mecanismos químicos, por ejemplo unión covalente, unión por afinidad, intercalación, unión coordinada y complejación. En algunas modalidades, la unión preferida es, sin embargo, unión covalente. La unión covalente puede lograrse ya sea mediante condensación directa de cadenas laterales existentes o mediante la incorporación de moléculas de puentes externos. Muchos agentes de enlace bivalentes o polivalentes son útiles en el acoplamiento de moléculas de proteína, tales como los anticuerpos de la presente invención, a otras moléculas. Por ejemplo, los agentes de acoplamiento representativos pueden incluir compuestos orgánicos tales como tioésteres, carbodiimidas, ésteres de succinimida, diisocianatos, glutaraldehído, diazobencenos y hexametilendiaminas. Esta lista no pretende ser exhaustiva de las diversas clases de agentes de acoplamiento conocidos en la materia, sino más bien, es ilustrativa de los agentes de acoplamiento más comunes. (*Ver* Killen y Lindstrom, Jour. Immun. 133:1335-2549 (1984); Jansen y otros, Immunological Reviews 62:185-216 (1982); y Vitetta y otros, Science 238:1098 (1987).

En algunas modalidades, además de las composiciones y métodos proporcionados en la presente descripción, el anticuerpo activable conjugado puede modificarse también para la conjugación específica de sitio a través de las secuencias de aminoácidos modificadas insertadas o de cualquier otra manera incluidas en la secuencia del anticuerpo activable. Estas secuencias de aminoácidos modificadas se diseñan para permitir la colocación y/o la dosificación controlada del agente conjugado dentro de un anticuerpo activable conjugado. Por ejemplo, el anticuerpo activable puede diseñarse para incluir sustituciones de cisteína en posiciones sobre las cadenas ligeras y pesadas que proporcionan grupos tiol reactivos y no afectan negativamente el plegamiento y ensamblaje de proteínas, ni alteran la unión al antígeno. En algunas modalidades, el anticuerpo activable puede diseñarse para incluir o introducir de cualquier otra manera uno o más residuos de aminoácidos no naturales dentro del anticuerpo activable para proporcionar sitios adecuados para la conjugación. En algunas modalidades, el anticuerpo activable puede modificarse para incluir o de cualquier otra manera introducir secuencias de péptidos enzimáticamente activables dentro de la secuencia de anticuerpo activable.

Los enlazadores preferidos se describen en la literatura. (*Ver, por ejemplo*, Ramakrishnan, S. y otros, Cancer Res. 44:201-208 (1984) que describe el uso de MBS (éster de M-maleimidobenzoil-N-hidroxisuccinimida). *Ver además*, el documento de patente de los Estados Unidos núm. 5,030,719, que describe el uso del derivado de acetilhidrazida halogenada acoplado a un anticuerpo por medio de un enlazador oligopeptídico. Enlazadores particularmente adecuados incluyen: (i) SMPT (4-succinimidiloxicarbonil-alfa-metil-alfa-(2-pridil-ditio)-tolueno (Pierce Chem. Co., núm. de catálogo. (21558G); (ii) SPDP (succinimidil-6 [3-(2-piridilditio) propionamido]hexanoato (Pierce Chem. Co., núm. de catálogo 21651G); y (iii) Sulfo-LC-SPDP (sulfosuccinimidil 6 [3-(2-piridilditio)-propianamida] hexanoato (Pierce Chem. Co. núm. de catálogo. 2165-G. Los enlazadores adicionales incluyen, pero no se limitan a, SMCC, sulfo-SMCC, SPDB o sulfo-SPDB.

Los enlazadores descritos anteriormente contienen componentes que tienen diferentes atributos, lo que conduce así a conjugados con diferentes propiedades fisicoquímicas. Además, el enlazador SMPT contiene un enlace disulfuro estéricamente impedido, y puede formar conjugados con la estabilidad aumentada. Los enlaces disulfuro, en general, son menos estables que otros enlaces debido a que el enlace disulfuro se escinde *in vitro*, lo que resulta en un conjugado con menor disponibilidad.

El reactivo hidrocloruro de EDC (1-etil-3-(3-dimetilaminopropil)carbodiimida es útil para crear una carboxamida que comienza con un ácido carboxílico y una amina primaria o secundaria. Por lo tanto, EDC puede usarse para unir los residuos de lisina en un anticuerpo con un ácido carboxílico en un enlazador o toxina, o para unir residuos de aspartato o glutamato en un anticuerpo con una amina en un enlazador o toxina. Dichas reacciones de conjugación que utilizan EDC pueden potenciarse mediante la adición de NHS (N-hidroxisuccinimida) o sulfo-NHS (N-hidroxi-3-oxisulfonilsuccinimida). La adición de NHS o sulfo-NHS a dichas reacciones de conjugación pueden potenciar la velocidad, integridad, selectividad, y/o reproducibilidad de las reacciones de conjugación.

En algunas modalidades, los enlazadores son escindibles. En algunas modalidades, los enlazadores son no escindibles. En algunas modalidades, están presentes dos o más enlazadores. Los dos o más enlazadores son todos iguales, *por ejemplo*, escindibles o no escindibles, o los dos o más enlazadores son diferentes, *por ejemplo*, al menos uno escindible y al menos uno no escindible.

La presente descripción utiliza diversos métodos para unir agentes a los Ab de los anticuerpos multiespecíficos y/o anticuerpos activables multiespecíficos: (a) unión a las entidades de carbohidrato del AB, o (b) unión a grupos sulfhidrilo del AB, o (c) unión a grupos amino del AB, o (d) unión a grupos carboxilato del AB. De acuerdo con la descripción, los AB pueden unirse covalentemente a un agente a través de un enlazador intermedio que tiene al menos dos grupos reactivos, uno para reaccionar con AB y el otro para reaccionar con el agente. El enlazador, que puede incluir cualquier compuesto orgánico compatible, puede elegirse de manera que la reacción con AB (o agente) no afecte adversamente la reactividad y selectividad de AB. Además, la unión del enlazador al agente puede no destruir la actividad del agente. Los enlazadores adecuados para la reacción con los anticuerpos oxidados o fragmentos de anticuerpos oxidados incluyen los que

contienen una amina seleccionada del grupo que consiste en grupos de amina primaria, amina secundaria, hidrazina, hidrazida, hidroxilamina, fenilhidrazina, semicarbazida y tiosemicarbazida. Tales grupos funcionales reactivos pueden existir como parte de la estructura del enlazador, o pueden introducirse por modificación química adecuada de enlazadores que no contienen tales grupos.

5

10

De acuerdo con la presente descripción, los enlazadores adecuados para la unión a AB reducidas de los anticuerpos multiespecíficos y/o anticuerpos activables multiespecíficos incluyen los que tienen ciertos grupos reactivos capaces de reaccionar con un grupo sulfhidrilo de un anticuerpo o fragmento reducido. Tales grupos reactivos incluyen, pero no se limitan a: grupos haloalquilo reactivos (que incluyen, por ejemplo, grupos haloacetilo), grupos p-mercuribenzoato y grupos capaces de reacciones de adición de tipo Michael (que incluyen, por ejemplo, maleimidas y grupos del tipo descrito por Mitra y Lawton, 1979, J. Amer. Chem. Soc. 101: 3097-3110).

15

De acuerdo con la presente descripción, los enlazadores adecuados para la unión a AB oxidados o reducidos de los anticuerpos multiespecíficos y/o anticuerpos activables multiespecíficos incluyen los que tienen ciertos grupos funcionales capaces de reaccionar con los grupos amino primarios presentes en los residuos de lisina sin modificar en el AB. Tales grupos reactivos incluyen, pero no se limitan a, ésteres de NHS carboxílico o carbónico, ésteres de sulfo-NHS carboxílico o carbónico, ésteres de 4-nitrofenil carboxílico o carbónico, ésteres de pentafluorofenil carboxílico o carbónico, acil imidazoles, isocianatos e isotiocianatos.

20

De acuerdo con la presente descripción, los enlazadores adecuados para la unión a los AB ni oxidados ni reducidos incluyen los que tienen ciertos grupos funcionales capaces de reaccionar con los grupos del ácido carboxílico presentes en los residuos de aspartato o glutamato en el AB, que se han activado con reactivos adecuados. Los reactivos de activación adecuados incluyen EDC, con o sin NHS o sulfo-NHS añadido, y otros agentes deshidratantes utilizados para la formación de carboxamida. En estos casos, los grupos funcionales presentes en los enlazadores adecuados pueden incluir aminas primarias y secundarias, hidrazinas, hidroxilaminas e hidrazidas.

25

30

El agente puede unirse al enlazador antes o después de que el enlazador esté unido al AB. En ciertas aplicaciones, puede ser deseable producir primero un intermedio de enlazador-AB en el cual el enlazador esté libre de un agente asociado. En dependencia de la aplicación particular, un agente específico después puede unirse covalentemente al enlazador. En otras modalidades, el AB se une primero al MM, CM y enlazadores asociados y luego se une al enlazador para fines de conjugación.

Enlazadores ramificados: En modalidades específicas, se utilizan enlazadores ramificados que tienen múltiples sitios para la unión de los agentes. Para los enlazadores de múltiples sitios, una unión covalente única a un AB puede resultar en un intermedio AB-enlazador capaz de unir un agente en varios sitios. Los sitios pueden ser grupos aldehído o sulfhidrilo o cualquier sitio químico al que puedan unirse los agentes.

35

40

Alternativamente, puede lograrse una actividad específica más alta (o una relación más alta de agentes a AB) mediante la unión de un enlazador de sitio único a una pluralidad de sitios en el AB. Esta pluralidad de sitios puede introducirse en el AB mediante cualquiera de los dos métodos. Primero, uno puede generar múltiples grupos aldehídos y/o grupos sulfhidrilos en el mismo AB. En segundo lugar, puede unirse a un aldehído o sulfhidrilo del AB un "enlazador ramificado" que tiene múltiples sitios funcionales para su posterior unión a los enlazadores. Los sitios funcionales del enlazador ramificado o del enlazador de múltiples sitios pueden ser grupos aldehídos o sulfhidrilos, o pueden ser cualquier sitio químico al que pueden unirse los enlazadores. Pueden obtenerse actividades específicas aún más altas combinando estos dos enfoques, es decir, unir enlazadores de sitio múltiple en varios sitios del AB.

45

Enlazadores escindibles: Los enlazadores peptídicos que son susceptibles de escisión por enzimas del sistema del complemento, tales como, pero sin limitarse a, uroquinasa, activador del plasminógeno tisular, tripsina, plasmina u otra enzima que tiene actividad proteolítica pueden usarse en una modalidad de la presente descripción. De acuerdo con un método de la presente descripción, un agente se une a través de un enlazador susceptible de escisión por el complemento.

50

El anticuerpo se selecciona de una clase que puede activar el complemento. El conjugado anticuerpo-agente, por lo tanto, activa la cascada del complemento y libera el agente en el sitio diana. De acuerdo con otro método de la presente descripción, un agente se une a través de un enlazador susceptible de escisión por enzimas que tienen una actividad proteolítica tales como una uroquinasa, un activador del plasminógeno tisular, plasmina o tripsina. Estos enlazadores escindibles son útiles en anticuerpos activables conjugados que incluyen una toxina extracelular, *por ejemplo*, a modo de ejemplo no limitante, cualquiera de las toxinas extracelulares mostradas en la Tabla 4.

55

Ejemplos no limitantes de secuencias enlazadoras escindibles se proporcionan en la Tabla 5.

60

Tabla 5: Secuencias ilustrativas de enlace para la conjugación

	Tipos de secuencias escindibles	Secuencia de a	minoácidos
	Secuencias escindibles de plasmina		
5	Pro-uroquinasa	PRFKIIGG (sec	c. con núm. de ident.: 47)
Ü		PRFRIIGG (sec	c. con núm. de ident.: 48)
	TGFβ	SSRHRRALD (sec. con núm. de ident.: 49)
	Plasminógeno	RKSSIIIRMRD	VVL (sec. con núm. de ident.: 50)
10	Estafiloquinasa	SSSFDKGKYK	KGDDA (sec. con núm. de ident.: 51)
		SSSFDKGKYK	RGDDA (sec. con núm. de ident.: 52)
	Secuencias Factor Xa escindibles	IEGR (sec. con	núm. de ident.: 53)
15		IDGR (sec. con	núm. de ident.: 54)
		GGSIDGR (sec	c. con núm. de ident.: 55)
	Secuencias escindibles de MMP		
	Gelatinasa A	PLGLWA (sec.	con núm. de ident.: 56)
20	Secuencias escindibles de colagenasa		
	Colágeno de piel de ternero (cadena α	1(I))	GPQGIAGQ (sec. con núm. de ident.: 57)
25	Colágeno de piel de ternero (cadena α	2(I))	GPQGLLGA (sec. con núm. de ident.: 58)
	Colágeno de cartílago bovino (cadena	α1(II))	GIAGQ (sec. con núm. de ident.: 59)
	Colágeno de hígado humano (cadena o	a1(III))	GPLGIAGI (sec. con núm. de ident.: 60)
30	α₂M humano		GPEGLRVG (sec. con núm. de ident.: 61)
	PZP humano		YGAGLGVV (sec. con núm. de ident.: 62)
35			AGLGVVER (sec. con núm. de ident.: 63)
			AGLGISST (sec. con núm. de ident.: 64)
40	α₁M de rata		EPQALAMS (sec. con núm. de ident.: 65)
			QALAMSAI (sec. con núm. de ident.: 66)
45	α₂M de rata		AAYHLVSQ (sec. con núm. de ident.: 67)
			MDAFLESS (sec. con núm. de ident.: 68)
50	α ₁ I ₃ (2J) de rata		ESLPVVAV (sec. con núm. de ident.: 69)
	α ₁ I ₃ (27J) de rata		SAPAVESE (sec. con núm. de ident.: 70)
55	Colagenasa de fibroblasto humar autolíticas)	no <u>(escisiones</u>	DVAQFVLT (sec. con núm. de ident.: 71)
			VAQFVLTE (sec. con núm. de ident.: 72)
60			AQFVLTEG (sec. con núm. de ident.: 73)
			PVQPIGPQ (sec. con núm. de ident.: 74)

Además, los agentes pueden unirse mediante enlaces disulfuro (por ejemplo, los enlaces disulfuro en una molécula de cisteína) al AB. Dado que muchos tumores liberan naturalmente altos niveles de glutatión (un agente reductor), esto puede reducir los enlaces disulfuro con la posterior liberación del agente en el sitio de la administración. En ciertas modalidades

específicas, el agente reductor que puede modificar un CM también puede modificaría el enlazador del anticuerpo activable conjugado.

Espaciadores y elementos escindibles: En aun otra modalidad, puede ser necesario construir el enlazador de manera que se optimice la separación entre el agente y el AB del anticuerpo activable. Esto puede lograrse mediante el uso de un enlazador de la estructura general:

W-(CH₂)n-Q

10 en donde
W es ya sea -NH-CH₂- o -CH₂-;
Q es un aminoácido, péptido; y
n es un número entero de 0 a 20.

5

40

45

50

55

60

65

- 15 En aun otras modalidades, el enlazador puede comprender un elemento separador y un elemento escindible. El elemento separador sirve para posicionar el elemento escindible lejos del núcleo del AB de manera que el elemento de escisión sea más accesible a la enzima responsable de la escisión. Ciertos enlazadores ramificados descritos anteriormente pueden servir como elementos espaciadores.
- A lo largo de esta discusión, debe entenderse que la unión del enlazador al agente (o del elemento espaciador al elemento de escisión, o elemento de escisión al agente) no necesita ser un modo particular de unión o reacción. Cualquier reacción que proporcione un producto de estabilidad adecuada y compatibilidad biológica es aceptable.
- Complemento sérico y selección de los enlazadores: De acuerdo con un método de la presente descripción, cuando se desea la liberación de un agente, se usa un AB que es un anticuerpo de una clase que puede activar el complemento. El conjugado resultante conserva tanto la capacidad de unirse al antígeno como la activación de la cascada del complemento. Por lo tanto, de acuerdo con esta modalidad de la presente descripción, un agente se une a un extremo del enlazador escindible o elemento escindible y el otro extremo del grupo del enlazador se une a un sitio específico en el AB. Por ejemplo, si el agente tiene un grupo hidroxi o un grupo amino, puede estar unido al extremo carboxi de un péptido, aminoácido u otro enlazador adecuadamente seleccionado mediante un enlace éster o amida, respectivamente. Por ejemplo, tales agentes pueden unirse al péptido enlazador a través de una reacción de carbodimida. Si el agente contiene grupos funcionales que pueden interferir con la unión al enlazador, estos grupos funcionales interferentes pueden bloquearse antes de la unión y desbloquearse una vez que se produzca el producto conjugado o intermedio. El terminal opuesto o amino del enlazador se usa luego ya sea directamente o después de una modificación adicional para unirse a un AB que es capaz de activar el complemento.

Los enlazadores (o elementos espaciadores de los enlazadores) pueden ser de cualquier longitud deseada, uno de cuyos extremos puede unirse covalentemente a sitios específicos en el AB del anticuerpo activable. El otro extremo del elemento enlazador o espaciador puede unirse a un aminoácido o péptido enlazador.

Por lo tanto, cuando estos conjugados se unen al antígeno en presencia del complemento, se escindirá el enlace de amida o éster que une el agente al enlazador, lo que resulta en la liberación del agente en su forma activa. Estos conjugados, cuando se administran a un sujeto, lograrán la administración y liberación del agente en el sitio diana, y son particularmente eficaces para la administración in vivo de agentes farmacéuticos, antibióticos, antimetabolitos, agentes antiproliferativos y similares, tal como se presentan, pero no limitados a los de la Tabla 4.

Enlazadores para liberación sin activación del complemento: En aun otra solicitud de administración dirigida, se desea la liberación del agente sin activación del complemento ya que la activación de la cascada del complemento finalmente lisará la célula diana. Por lo tanto, este enfoque es útil cuando la administración y la liberación del agente deben realizarse sin destruir a la célula diana. Tal objetivo es cuando se desea la administración de mediadores celulares tales como hormonas, enzimas, corticosteroides, neurotransmisores, genes o enzimas a las células diana. Estos conjugados pueden prepararse uniendo el agente a un AB que no es capaz de activar el complemento a través de un enlazador que es ligeramente susceptible a la escisión por proteasas séricas. Cuando este conjugado se administra a un individuo, se formarán complejos antígeno-anticuerpo rápidamente, mientras que la escisión del agente se producirá lentamente, dando como resultado así a la liberación del compuesto en el sitio diana.

Agentes bioquímicos de reticulación: En otras modalidades, el anticuerpo activable puede conjugarse con uno o más agentes terapéuticos mediante el uso de ciertos agentes bioquímicos de reticulación. Los reactivos de reticulación forman puentes moleculares que unen grupos funcionales de dos moléculas diferentes. Para unir dos proteínas diferentes de manera escalonada, pueden usarse agentes reticuladores heterobifuncionales que eliminan la formación de homopolímeros no deseados.

Los enlazadores de peptidilo escindibles por las proteasas lisosómicas también son útiles, por ejemplo, Val-Cit, Val-Ala u otros dipéptidos. Además, pueden usarse enlazadores lábiles a ácidos escindibles en el entorno de pH bajo del lisosoma, por ejemplo: éter bis sialilo. Otros enlazadores adecuados incluyen sustratos lábiles a la catepsina, particularmente aquellos que muestran una función óptima a un pH ácido.

Los agentes reticuladores heterobifuncionales ilustrativos se enumeran en la Tabla 6.

Tabla 6: Agentes reticuladores heterobifuncionales ilustrativos

5

5				
5		<u>Agente</u>	s reticuladores heterobifunciona	l <u>es</u>
40	Enlazador	Reactivo a	Ventajas y aplicaciones	Longitud del brazo espaciador después de la reticulación (Angstroms)
10	SMPT	Aminas primarias	Mayor estabilidad	11,2 Å
	SPDP	Aminas primarias sulfhidrilos	Tiolación	6,8 Å
15	LC-SPDP	Aminas primarias sulfhidrilos	Brazo espaciador extendido del agente reticulador escindible	15,6 Å
	Sulfo-LC- SPDP	Aminas primarias sulfhidrilos	Brazo espaciador extensor	15,6 Å
20	SMCC	Aminas primarias sulfhidrilos	Maleimida reactiva estable e hidrosoluble	11,6 Å
		Sulfhidrilos	grupo conjugación enzima- anticuerpo	
25	Sulfo- SMCC	Aminas primarias	Conjugación de proteína portador de hapteno con maleimida reactiva estable	11,6 Å
		Sulfhidrilos	grupo hidrosoluble	
30			Conjugación enzima- anticuerpo	
	MBS	Aminas primarias	Conjugación enzima- anticuerpo	9,9 Å
35		Sulfhidrilos	Conjugación proteína portador de hapteno	
	Sulfo-MBS	Aminas primarias	Hidrosoluble	9,9 Å
40	SIAB	Aminas primarias sulfhidrilos	Conjugación enzima- anticuerpo	10,6 Å
	Sulfo-SIAB	Aminas primarias sulfidrilos	Hidrosoluble	10,6 Å
45	SMPB	Aminas primarias sulfhidrilos	Brazo espaciador extendido	14,5 Å
	Sulfo-SMPB	-	Conjugación enzima anticuerpo con brazo espaciador extendido	14,5 Å
50	EDE/Sulfo- NHS	Aminas primarias sulfhidrilos	Conjugación portador-hapteno hidrosoluble	0
	ABH	Grupos carboxilos de carbohidratos	Reacciona con grupos de azúcar	11,9 Å
55		No selectivo		

Enlazadores no escindibles o unión directa: En aun otras modalidades de la descripción, el conjugado puede diseñarse de manera que el agente se administre a la diana pero no se libere. Esto puede lograrse uniendo un agente a un AB directamente o mediante un enlazador no escindible.

Estos enlazadores no escindibles pueden incluir aminoácidos, péptidos, D-aminoácidos u otros compuestos orgánicos que pueden modificarse para incluir grupos funcionales que pueden utilizarse posteriormente en la unión a AB por los métodos descritos en la presente. Una fórmula general para tal enlazador orgánico puede ser

65 W-(CH₂)n-Q

en donde W es ya sea --NH--CH₂-- o --CH₂--; Q es un aminoácido, péptido; y n es un número entero de 0 a 20.

5

Conjugados no escindibles: Alternativamente, un compuesto puede unirse a los AB que no activan el complemento. Cuando se usan los AB que son incapaces de la activación del complemento, esta unión puede lograrse mediante el uso de enlazadores que son susceptibles a la escisión por el complemento activado o mediante el uso de enlazadores que no son susceptibles a la escisión por el complemento activado.

10

Los anticuerpos descritos en la presente descripción pueden formularse además como inmunoliposomas. Los liposomas que contienen el anticuerpo se preparan mediante métodos conocidos en la materia, tales como los descritos en Epstein y otros, Proc. Natl. Acad. Sci. USA, 82: 3688 (1985); Hwang y otros, Proc. Natl Acad. Sci. USA, 77: 4030 (1980); y Patente de los Estados Unidos Núms. 4,485,045 y 4,544,545. Los liposomas con un tiempo de circulación mejorado se describen en la Patente de los Estados Unidos núm. 5,013,556.

20

15

Particularmente, los liposomas útiles pueden generarse por el método de evaporación de fase inversa con una composición de lípidos que comprende fosfatidilcolina, colesterol y fosfatidiletanolamina derivatizada con PEG (PEG-PE). Los liposomas son extrudidos a través de filtros de tamaño de poro definido para producir liposomas con el diámetro deseado. Los fragmentos Fab' del anticuerpo de la presente descripción pueden conjugarse a los liposomas como se describe en Martin y otros, J. Biol. Chem., 257: 286-288 (1982) a través de una reacción de intercambio de disulfuro.

Anticuerpos activables multiespecíficos que tienen entidades estéricas no enlazantes o parejas de unión para entidades estéricas no enlazantes

25

30

35

La descripción proporciona además anticuerpos activables multiespecíficos que incluyen entidades estéricas no enlazantes (NB) o parejas de unión (BP) para entidades estéricas no enlazantes, donde la BP recluta o de cualquier otra manera atrae el NB al anticuerpo activable multiespecífico. Los anticuerpos activables multiespecíficos proporcionados en la presente descripción incluyen, por ejemplo, un anticuerpo activable multiespecífico que incluye una entidad estérica no enlazante (NB), un enlazador escindible (CL) y al menos un primer anticuerpo o fragmento de anticuerpo (AB1) que se une a una primera diana o epítopo; un anticuerpo activable multiespecífico que incluye una pareja de unión para una entidad estérica (BP) no enlazante, un CL y un AB1; y un anticuerpo activable multiespecífico que incluye un BP al que se reclutó un NB, un CL y AB1 que se une a una primera diana o epítopo. Los anticuerpos activables multiespecíficos en los que se une covalentemente el NB al CL y AB1 o se asocian por interacción con una BP que se une covalentemente a CL y AB1 se denominan en la presente "anticuerpos activables multiespecíficos que contienen NB." Por activable o conmutable se entiende que el anticuerpo activable exhibe un primer nivel de unión a una diana cuando el anticuerpo activable está en un estado de inhibición, enmascaramiento o no escindible (es decir., una primera conformación) y un segundo nivel de unión a la diana cuando el anticuerpo activable está en un estado de no inhibición, desenmascarado y/o escindible (es decir., una segunda conformación, es decir., una segunda conformación, es decir, anticuerpo activado), donde el segundo nivel de unión a la diana es mayor que el primer nivel de unión a la diana. Las composiciones de anticuerpos activables multiespecíficos pueden exhibir una biodisponibilidad aumentada y una biodistribución más favorable en comparación con los agentes terapéuticos de anticuerpos convencionales.

40

45

En algunas modalidades, los anticuerpos activables multiespecíficos proporcionan toxicidad reducida y/o efectos secundarios adversos que de cualquier otra manera pueden resultar de la unión del anticuerpo activable multiespecífico en sitios sin tratamiento y/o sitios no diagnósticos si el anticuerpo multiespecífico activable no fuera enmascarado o de cualquier otra manera inhibido de unirse a dicho sitio.

50

55

En una modalidad, el anticuerpo activable multiespecífico incluye una entidad estérica no enlazante (NB); un enlazador escindible (CL); y al menos un primer anticuerpo o fragmento de anticuerpo (AB1) que se une específicamente a una primera diana o epítopo, en donde el NB es un polipéptido que no se une específicamente al AB1; el CL es un polipéptido que incluye un sustrato (S) para una enzima; el CL está posicionado de manera que en un estado no escindido, el NB interfiere con la unión del AB1 a su diana y en un estado escindido, el NB no interfiere con la unión del AB 1 a su diana; y el NB no inhibe la escisión de CL por la enzima. Como se usa en la presente descripción y a lo largo del documento, el término polipéptido se refiere a cualquier polipéptido que incluye al menos dos residuos de aminoácidos, incluyendo polipéptidos más grandes, proteínas de longitud completa y fragmentos de estos, y el término polipéptido no se limita a polipéptidos de cadena sencilla y puede incluir polipéptidos de múltiples unidades, por ejemplo, polipéptidos multicadenas. En los casos en que el polipéptido es de una longitud más corta, por ejemplo, menos de 50 aminoácidos totales, los términos péptido y polipéptido se usan indistintamente en la presente descripción, y en los casos en que el polipéptido es de una longitud más larga, por ejemplo, 50 aminoácidos o más, los términos polipéptido y proteína se usan de forma intercambiable en la presente descripción.

60

65

En una modalidad, el anticuerpo activable multiespecífico incluye una entidad estérica no enlazante (NB); un enlazador escindible (CL); y al menos un primer anticuerpo o fragmento de anticuerpo (AB1) que se une específicamente a una primera diana o epítopo, en donde (i) el NB incluye un polipéptido que no se une específicamente al AB1; (ii) CL es un polipéptido de hasta 50 aminoácidos de longitud que incluye un sustrato (S) para una enzima; (iii) el CL está posicionado

de manera que en un estado no escindido, el NB interfiere con la unión del AB1 a su diana y en un estado escindido, el NB no interfiere con la unión del AB1 a su diana; y (iv) el NB no inhibe la escisión del CL por la enzima. Por ejemplo, el CL tiene una longitud de hasta 15 aminoácidos, una longitud de hasta 20 aminoácidos, una longitud de hasta 25 aminoácidos, una longitud de hasta 30 aminoácidos, una longitud de hasta 35 aminoácidos, una longitud de hasta 40 aminoácidos, una longitud de hasta 45 aminoácidos, una longitud de hasta 50 aminoácidos, una longitud en el intervalo de 10-50 aminoácidos, una longitud en el intervalo de 20-50 aminoácidos, una longitud en el intervalo de 25-50 aminoácidos, una longitud en el intervalo de 30-50 aminoácidos, una longitud en el intervalo de 45-50 aminoácidos, una longitud en el intervalo de 45-50 aminoácidos, una longitud en el intervalo de 10-40 aminoácidos, una longitud en el intervalo de 25-40 aminoácidos, una longitud en el intervalo de 25-40 aminoácidos, una longitud en el intervalo de 35-40 aminoácidos, una longitud en el intervalo de 35-40 aminoácidos, una longitud en el intervalo de 10-30 aminoácidos, una longitud en el intervalo de 25-30 aminoácidos, una longitud en el intervalo de 10-20 aminoácidos, o una longitud en el intervalo de 10-15 aminoácidos.

En una modalidad, el anticuerpo activable multiespecífico incluye una entidad estérica no enlazante (NB); un enlazador escindible (CL); y al menos un primer anticuerpo o fragmento de anticuerpo (AB1) que se une específicamente a una primera diana o epítopo, en donde (i) el NB incluye un polipéptido que no se une específicamente al AB1; (ii) el CL es un polipéptido que incluye un sustrato (S) para una enzima; (iii) el CL está posicionado de manera que en un estado no escindido, el NB interfiere con la unión del AB1 a su diana y en un estado escindido, el NB no interfiere con la unión del AB1 a su diana; (iv) el NB no inhibe la escisión del CL por la enzima; y (v) al menos una parte del anticuerpo activable multiespecífico tiene la disposición estructural desde el extremo N al extremo C de la siguiente manera en el estado no escindido: NB-CL-AB1 o AB1-CL-NB.

En una modalidad, el anticuerpo activable multiespecífico incluye una entidad estérica no enlazante (NB); un enlazador escindible (CL); y al menos un primer anticuerpo o fragmento de anticuerpo (AB1) que se une específicamente a una primera diana o epítopo, en donde (i) el NB incluye un polipéptido que no se une específicamente al AB1; (ii) el CL es un polipéptido que incluye un sustrato (S) para una enzima; (iii) el CL está posicionado de manera que en un estado no cortado, el NB interfiere con la unión del AB1 a su diana y, en un estado escindido, el NB no interfiere con la unión del AB 1 a su diana, y en el que el NB en el anticuerpo activable no escindible reduce la capacidad del AB 1 para unirse a su diana en al menos un 50%, por ejemplo, en al menos un 60%, en al menos un 70%, en al menos un 75%, en al menos un 80%, en al menos el 85%, al menos el 90%, al menos el 95%, al menos el 96%, al menos el 97%, al menos el 98%, al menos el 99%, al menos el 100% con respecto al capacidad del AB1 escindible para unirse a su diana; y (iv) el NB no inhibe la escisión del CL por la enzima. La reducción en la capacidad del AB para unirse a su objetivo se determina, por ejemplo, mediante el uso de un ensayo como se describe en la presente descripción o un ensayo de desplazamiento de diana *in vitro* tal como, por ejemplo, el ensayo descrito en los documentos de las publicaciones PCT núms. WO 2009/025846 y WO 2010/081173.

En una modalidad, el anticuerpo activable multiespecífico incluye una pareja de unión (BP) para una entidad estérica no enlazante (NB); un enlazador escindible (CL); y al menos un primer anticuerpo o fragmento de anticuerpo (AB1) que se une específicamente a una primera diana y/o epítopo, en donde el BP es un polipéptido que se une al NB cuando se expone a este; el NB no se une específicamente al AB1; el CL es un polipéptido que incluye un sustrato (S) para una enzima; el CL está posicionado de manera que en un estado no escindido en la presencia del NB, el NB interfiere con la unión del AB a la diana y en un estado escindido, el NB no interfiere con la unión del AB a la diana; y el NB y el BP no inhiben la escisión de CL por la enzima. En algunos ejemplos de esta modalidad, el BP del anticuerpo activable se une opcionalmente a NB. En una modalidad, el NB se recluta por el BP del anticuerpo activable *in vivo*.

En algunos ejemplos de cualquiera de estas modalidades de anticuerpos activables multiespecíficos, el anticuerpo activable multiespecífico se formula como una composición. En algunas de estas modalidades, la composición incluye además el NB, donde el NB se coformula con el anticuerpo activable multiespecífico que incluye el BP, el CL y el AB. En algunos ejemplos de esta modalidad, el BP se selecciona del grupo que consiste en un péptido de unión a la albúmina, un péptido de unión al fibrinógeno, un péptido de unión a la fibronectina, un péptido de unión a la hemoglobina, un péptido de unión a la transferrina, un péptido de unión al dominio de la inmunoglobulina y otros péptidos de unión a proteínas séricas.

En algunos ejemplos de cualquiera de estas modalidades de anticuerpos activables multiespecíficos, el NB es una proteína globular soluble. En algunos ejemplos de cualquiera de estas modalidades de anticuerpos activables multiespecíficos, el NB es una proteína que circula en el torrente sanguíneo. En algunos ejemplos de cualquiera de estas modalidades de anticuerpos activables multiespecíficos, el NB se selecciona del grupo que consiste en albúmina, fibrinógeno, fibronectina, hemoglobina, transferrina, un dominio de la inmunoglobulina y otras proteínas séricas.

En algunos ejemplos de cualquiera de estas modalidades de anticuerpos activables multiespecíficos, el CL es un polipéptido que incluye un sustrato (S) para una proteasa. En algunos ejemplos de cualquiera de estas modalidades de anticuerpos activables multiespecíficos, la proteasa se colocaliza con su diana en un tejido, y la proteasa escinde el CL en el anticuerpo activable multiespecífico cuando el anticuerpo activable multiespecífico se expone a la proteasa. En

algunos ejemplos de cualquiera de estas modalidades de anticuerpos activables multiespecíficos, el CL es un polipéptido de hasta 50 aminoácidos de longitud. En algunos ejemplos de cualquiera de estas modalidades de anticuerpos activables multiespecíficos, el CL es un polipéptido que incluye un sustrato (S) que tiene una longitud de hasta 15 aminoácidos, *por ejemplo,* 3 aminoácidos de longitud, 4 aminoácidos de longitud, 5 aminoácidos de longitud, 6 aminoácidos de longitud, 7 aminoácidos de longitud, 8 aminoácidos de longitud, 9 aminoácidos de longitud, 10 aminoácidos de longitud, 11 aminoácidos de longitud, 12 aminoácidos de longitud, 13 aminoácidos de longitud, 14 aminoácidos de longitud.

En algunos ejemplos de cualquiera de estas modalidades de anticuerpo activable al menos una porción del anticuerpo activable multiespecífico tiene la disposición estructural desde el extremo N hasta el extremo C como sigue en el estado no escindido: NB-CL-AB, AB-CL-NB, BP-CL-AB o AB-CL-BP. En modalidades donde el anticuerpo activable multiespecífico incluye un BP y el anticuerpo activable multiespecífico está en presencia del NB correspondiente, al menos una porción del anticuerpo activable multiespecífico tiene la disposición estructural desde el extremo N hasta el extremo C como sigue en el estado no escindido: NB:BP-CM-AB o AB-CM-BP:NB, donde ":" representa una interacción, por ejemplo, unión, entre el NB y BP.

10

15

20

25

30

35

40

45

50

55

60

65

En algunos ejemplos de cualquiera de estas modalidades de anticuerpos activables multiespecíficos, el anticuerpo activable multiespecífico incluye un anticuerpo o fragmento de unión al antígeno de este que se une específicamente a su diana y es un anticuerpo monoclonal, anticuerpo de dominio, cadena sencilla, fragmento Fab, un fragmento F(ab')₂, un scFv, un scab, un dAb, un anticuerpo de cadena pesada de un dominio simple, y un anticuerpo de cadena ligera de un dominio simple. En algunas modalidades, dicho anticuerpo o fragmento inmunológicamente activo de este que se une a su diana es un anticuerpo monoclonal murino, quimérico, humanizado o completamente humano.

En algunos ejemplos de cualquiera de estas modalidades de anticuerpos activables multiespecíficos, el anticuerpo activable multiespecífico también incluye un agente conjugado al AB. En algunas modalidades, el agente es un agente terapéutico. En algunas modalidades, el agente es un agente antineoplásico. En algunas modalidades, el agente es una toxina o fragmento de esta. En algunas modalidades, el agente se conjuga con el AB a través de un enlazador. En algunas modalidades, el enlazador es un enlazador escindible. En algunas modalidades, el agente es un agente seleccionado del grupo enumerado en la Tabla 4. En algunas modalidades, el agente es una dolastatina. En algunas modalidades, el agente es una auristatina o derivado de esta. En algunas modalidades, el agente es auristatina E o un derivado de esta. En algunas modalidades, el agente es monometilauristatina E (MMAE). En algunas modalidades, el agente es monometilauristatina D (MMAD). En algunas modalidades, el agente es una duocarmicina o un derivado de esta. En algunas modalidades, el agente es una duocarmicina o un derivado de esta. En algunas modalidades, el agente es una pirrolobenzodiazepina.

En algunos ejemplos de cualquiera de estas modalidades de anticuerpos activables multiespecíficos, el anticuerpo activable multiespecífico incluye también una entidad detectable. En algunas modalidades, la entidad detectable es un agente de diagnóstico.

En algunos ejemplos de cualquiera de estas modalidades de anticuerpos activables multiespecíficos, el anticuerpo activable multiespecífico incluye también un espaciador. En algunos ejemplos de cualquiera de estas modalidades de anticuerpos activables multiespecíficos, el anticuerpo activable multiespecífico incluye también un péptido señal. En algunas modalidades, el péptido señal se conjuga con el anticuerpo activable multiespecífico a través de un espaciador. En algunos ejemplos de cualquiera de estas modalidades de anticuerpos activables multiespecíficos, el espaciador se une directamente al MM del anticuerpo activable multiespecífico.

En algunas modalidades, la media vida en suero del anticuerpo activable multiespecífico es más larga que la del anticuerpo multiespecífico correspondiente; por ejemplo, el pK del anticuerpo activable multiespecífico es más largo que el del anticuerpo multiespecífico correspondiente. En algunas modalidades, la media vida en suero del anticuerpo activable multiespecífico es similar a la del anticuerpo multiespecífico correspondiente. En algunas modalidades, la media vida en suero del anticuerpo activable multiespecífico es de al menos 15 días cuando se administra a un organismo. En algunas modalidades. la media vida en suero del anticuerpo activable multiespecífico es de al menos 12 días cuando se administra a un organismo. En algunas modalidades, la media vida en suero del anticuerpo activable multiespecífico es de al menos 11 días cuando se administra a un organismo. En algunas modalidades, la media vida en suero del anticuerpo activable multiespecífico es de al menos 10 días cuando se administra a un organismo. En algunas modalidades, la media vida en suero del anticuerpo activable multiespecífico es de al menos 9 días cuando se administra a un organismo. En algunas modalidades, la media vida en suero del anticuerpo activable multiespecífico es de al menos 8 días cuando se administra a un organismo. En algunas modalidades, la media vida en suero del anticuerpo activable multiespecífico es de al menos 7 días cuando se administra a un organismo. En algunas modalidades, la media vida en suero del anticuerpo activable multiespecífico es de al menos 6 días cuando se administra a un organismo. En algunos ejemplos de cualquiera de estas modalidades de anticuerpo activable multiespecífico, la media vida en suero del anticuerpo activable multiespecífico es de al menos 5 días cuando se administra a un organismo. En algunas modalidades, la media vida en suero del anticuerpo activable multiespecífico es de al menos 4 días cuando se administra a un organismo. En algunas modalidades, la media vida en suero del anticuerpo activable multiespecífico es de al menos 3 días cuando se administra a un organismo. En algunas modalidades, la media vida en suero del anticuerpo activable multiespecífico es de al menos 2 días cuando se administra a un organismo. En algunas modalidades, la media vida en suero del anticuerpo activable multiespecífico es de al menos 24 horas cuando se administra a un organismo. En algunas modalidades, la media vida en suero del anticuerpo activable multiespecífico es de al menos 20 horas cuando se administra a un organismo. En algunas modalidades, la media vida en suero del anticuerpo activable multiespecífico es de al menos 18 horas cuando se administra a un organismo. En algunas modalidades, la media vida en suero del anticuerpo activable multiespecífico es de al menos 16 horas cuando se administra a un organismo. En algunas modalidades, la media vida en suero del anticuerpo activable multiespecífico es de al menos 14 horas cuando se administra a un organismo. En algunas modalidades, la media vida en suero del anticuerpo activable multiespecífico es de al menos 10 horas cuando se administra a un organismo. En algunas modalidades, la media vida en suero del anticuerpo activable multiespecífico es de al menos 6 horas cuando se administra a un organismo. En algunas modalidades, la media vida en suero del anticuerpo activable multiespecífico es de al menos 6 horas cuando se administra a un organismo. En algunas modalidades, la media vida en suero del anticuerpo activable multiespecífico es de al menos 4 horas cuando se administra a un organismo. En algunas modalidades, la media vida en suero del anticuerpo activable multiespecífico es de al menos 4 horas cuando se administra a un organismo. En algunas modalidades, la media vida en suero del anticuerpo activable multiespecífico es de al menos 3 horas cuando se administra a un organismo.

10

15

20

25

30

35

40

45

50

55

60

65

La descripción proporciona además una molécula de ácido nucleico aislada que codifica cualquiera de estos anticuerpos activables multiespecíficos, así como los vectores que incluyen estas secuencias de ácido nucleico aisladas. La descripción proporciona los métodos para producir un anticuerpo activable multiespecífico cultivando una célula en condiciones que conducen a la expresión del anticuerpo activable multiespecífico, en donde la célula comprende una molécula de ácido nucleico de ese tipo. En algunas modalidades, la célula comprende un vector de ese tipo.

La constante de disociación (K_d) del anticuerpo activable multiespecífico que contiene NB hacia la diana es mayor que la Kd del AB hacia la diana cuando no está asociada con el NB o NB:BP. La constante de disociación (Kd) del anticuerpo activable multiespecífico que contiene NB hacia la diana es mayor que la K_d del AB parental hacia la diana. Por ejemplo, la K_d del anticuerpo activable multiespecífico que contiene NB hacia la diana es al menos 5, 10, 25, 50, 100, 250, 500, 1000, 2500, 5000, 10 000, 50 000, 100 000, 500 000, 1 000 000, 5 000 000, 10 000 000, 50 000 000 o mayor, o entre 5-10, 10-100, 10-1000, 10-10 000, 10-100 000, 10-1 000 000, 10-10 000 000, 100-1000, 100-10 000, 100-10 000, 100-1 000 000, 100-10 000 000, 1000-10 000, 1000-100 000, 1000-1 000 000, 1000-10 000 000, 10 000-100 000, 10 000-1 000 000, 10 000-10 000 000, 100 000-1 000 000, o 100 000-10 000 000 veces mayor que la K_d del AB no cuando no se asocia con el NB o NB:BP o la Kd del AB parental hacia la diana. Por el contrario, la afinidad de unión del anticuerpo activable multiespecífico que contiene NB hacia la diana es menor que la afinidad de unión del AB cuando no se asocia con el NB o NB:BP o menor que la afinidad de unión del AB parental hacia la diana. Por ejemplo, la afinidad de unión del anticuerpo activable multiespecífico que contiene NB hacia la diana es al menos 5, 10, 25, 50, 100, 250, 500, 1000, 2500, 5000, 10 000, 50 000, 100 000, 500 000, 1 000 000, 5 000 000, 10 000 000, 50 000 000 o mayor, o entre 5-10, 10-100, 10-1000, 10-10 000, 10-100 000, 10-1 000 000, 10-10 000 000, 100-1000, 100-10 000, 100-100 000, 100-1 000 000, 100-10 000 000, 1000-10 000, 1,000-100 000, 1000-1 000 000, 1000-10 000 000, 10 000-100 000, 10 000-1 000 000, 10 000-10 000 000, 100 000-1 000 000, o 100 000-10 000 000 veces menor que la afinidad de unión del AB no cuando no se asocia con el NB o NB:BP o menor la afinidad de unión del AB parental hacia la diana.

Cuando el anticuerpo activable multiespecífico que contiene NB está en presencia de su diana, se reduce o inhibe la unión específica del AB a su diana, en comparación con la unión específica del AB cuando no está asociado con el NB o NB:BP. Cuando el anticuerpo activable multiespecífico que contiene NB está en presencia de su diana, la unión específica del AB a su diana se reduce o se inhibe, en comparación con la unión específica del AB parental a su diana. Cuando se compara con la unión del AB no asociada con un NB o NB:BP o la unión del AB parental a su diana, la capacidad del anticuerpo activable multiespecífico que contiene NB para unirse a su diana se reduce, por ejemplo, en al menos 50%, 60%, 70%, 80%, 90%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% o incluso 100% para al menos 2, 4, 6, 8, 12, 28, 24, 30, 36, 48, 60, 72, 84 o 96 horas o 5, 10, 15, 30, 45, 60, 90, 120, 150 o 180 días, o 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, o 12 meses o más cuando se mide *in vitro* y/o *in vivo*.

Cuando el anticuerpo activable multiespecífico que contiene NB está en presencia de su diana pero no en presencia de un agente modificador (por ejemplo, una proteasa u otra enzima), se reduce o inhibe la unión específica del AB a su diana, en comparación con la unión específica del AB cuando no se asocia con el NB o NB:BP. Cuando el anticuerpo activable multiespecífico que contiene NB está en presencia de su diana pero no en presencia de un agente modificador (por ejemplo, una proteasa, otra enzima, agente de reducción, o luz), la unión específica del AB a su diana se reduce o inhibe, en comparación con la unión específica del AB parental a su diana. Cuando se compara con la unión del AB no asociada con un NB o NB:BP o la unión del AB parental a su diana, la capacidad del anticuerpo activable multiespecífico que contiene NB para unirse a su diana se reduce, por ejemplo, en al menos 50%, 60%, 70%, 80%, 90%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% o incluso 100% para al menos 2, 4, 6, 8, 12, 28, 24, 30, 36, 48, 60, 72, 84 o 96 horas o 5, 10, 15, 30, 45, 60, 90, 120, 150 o 180 días , o 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, o 12 meses o más cuando se mide *in vitro* y/o *in vivo*.

En algunos ejemplos de cualquiera de estas modalidades de anticuerpos activables multiespecíficos, el anticuerpo activable multiespecífico incluye además un agente conjugado al AB para producir un conjugado de anticuerpo activable multiespecífico. En algunas modalidades del conjugado de anticuerpo activable multiespecífico, el agente es un agente terapéutico. En algunas modalidades, el agente es un agente de diagnóstico. En algunas modalidades, el agente es un

marcador detectable. En algunas modalidades del conjugado de anticuerpo activable multiespecífico, el agente es un agente antineoplásico. En algunas modalidades del conjugado de anticuerpo activable multiespecífico, el agente es una toxina o fragmento de esta. En algunas modalidades del conjugado de anticuerpo activable multiespecífico, el agente se conjuga al AB a través de un enlazador. En algunas modalidades del conjugado de anticuerpo activable multiespecífico, el enlazador es un enlazador escindible. En algunas modalidades, el agente es un agente seleccionado del grupo enumerado en la Tabla 4. En algunas modalidades, el agente es una dolastatina. En algunas modalidades, el agente es una auristatina o derivado de esta. En algunas modalidades, el agente es auristatina E o un derivado de esta. En algunas modalidades, el agente es monometilauristatina D (MMAD). En algunas modalidades, el agente es un maitansinoide o derivado de maitansinoide. En algunas modalidades, el agente es DM1 o DM4. En algunas modalidades, el agente es una duocarmicina o un derivado de esta. En algunas modalidades, el agente es una calicheamicina o derivado de esta. En algunas modalidades, el agente es una pirrolobenzodiazepina.

10

15

30

35

40

45

50

55

En algunos ejemplos de cualquiera de estas modalidades de anticuerpos activables multiespecíficos, los anticuerpos activables multiespecíficos son anticuerpos activables multiespecíficos de unión a doble diana. Tales anticuerpos activables multiespecíficos de unión a doble diana contienen dos Ab que pueden unirse a las mismas o diferentes dianas. En modalidades específicas, los anticuerpos activables multiespecíficos de doble diana contienen anticuerpos biespecíficos o fragmentos de anticuerpos.

Los anticuerpos activables multiespecíficos de unión a doble diana se diseñan para tener un CL escindido por un agente escindible que se localiza en un tejido diana con una o ambas dianas capaces de unirse a los AB de los anticuerpos activables multiespecíficos. Pueden diseñarse anticuerpos activables multiespecíficos de unión a doble diana con más de un AB a las mismas o diferentes dianas para tener más de un CL, en donde el primer CL es escindible por un agente de escisión en un primer tejido diana y en donde el segundo CL es escindible por un agente de escisión en un segundo tejido diana, con una o más de las dianas que se unen a los AB de los anticuerpos activables multiespecíficos. En una modalidad, los tejidos diana primero y segundo están espacialmente separados, por ejemplo, en sitios diferentes en el organismo. En una modalidad, el primer y segundo tejidos diana son el mismo tejido temporalmente separado, por ejemplo, el mismo tejido en dos intervalos de tiempo diferentes, por ejemplo, el primer intervalo de tiempo es cuando el tejido es un tumor en etapa temprana, y el segundo intervalo es cuando el tejido es un tumor de etapa tardía.

La descripción proporciona además moléculas de ácido nucleico que codifican los anticuerpos activables multiespecíficos descritos en la presente descripción. La descripción proporciona además vectores que incluyen estos ácidos nucleicos. Los anticuerpos activables multiespecíficos descritos en la presente descripción se producen cultivando una célula en condiciones que conducen a la expresión del anticuerpo activable multiespecífico, en donde la célula incluye estas moléculas o vectores de ácido nucleico.

La descripción proporciona además los métodos de fabricación de anticuerpos activables multiespecíficos. En una modalidad, el método incluye las etapas de (a) cultivar una célula que incluye un constructo de ácido nucleico que codifica el anticuerpo activable multiespecífico en condiciones que conducen a la expresión del anticuerpo activable multiespecífico, en donde el anticuerpo activable multiespecífico incluye (i) una entidad estérica no enlazante (NB); (ii) un enlazador escindible (CL); y (iii) un anticuerpo o un fragmento de unión al antígeno de este (AB) que se une específicamente a una diana, en donde (1) el NB no se une específicamente al AB; (2) el CL es un polipéptido que incluye un sustrato (S) para una enzima; (3) el CL se posiciona de manera que en un estado no escindido, el NB interfiere con la unión del AB a la diana; y (4) el NB no inhibe la escisión del CL por la enzima; y (b) recuperar el anticuerpo activable multiespecífico.

En otra modalidad, el método incluye las etapas de (a) cultivar una célula que incluye un constructo de ácido nucleico que codifica el anticuerpo activable multiespecífico en condiciones que conducen a la expresión del anticuerpo activable multiespecífico, en donde el anticuerpo activable multiespecífico incluye (i) una pareja de unión (BP) para una entidad estérica no enlazante (NB); (ii) un enlazador escindible (CL); y (iii) un anticuerpo o un fragmento de unión al antígeno de este (AB) que se une específicamente a una diana, en donde (1) el NB no se une específicamente al AB; (2) el CL es un polipéptido que incluye un sustrato (S) para una enzima; (3) el CL se posiciona de manera que en un estado no escindido en la presencia de NB, el NB interfiere con la unión del AB a la diana y en un estado escindido, el NB no interfiere con la unión del AB a la diana; y (4) el NB y el BP no inhiben la escisión del CL por la enzima; y (b) recuperar el anticuerpo activable multiespecífico. En algunos ejemplos de esta modalidad, el BP del anticuerpo activable multiespecífico se une al NB.

Uso de anticuerpos multiespecíficos y anticuerpos activables multiespecíficos

Se apreciará que la administración de entidades terapéuticas de acuerdo con las composiciones y métodos en la presente descripción se administrarán con portadores, excipientes, y otros agentes adecuados que se incorporan en las formulaciones para proporcionar transferencia mejorada, administración, tolerancia, y similares. Puede encontrarse una multitud de formulaciones apropiadas en el formulario conocido por todos los químicos farmacéuticos: Remington's Pharmaceutical Sciences (15ta ed, Mack Publishing Company, Easton, PA (1975)), particularmente Capítulo 87 por Blaug, Seymour, en el mismo. Estas formulaciones incluyen, por ejemplo, polvos, pastas, ungüentos, jaleas, ceras, aceites, lípidos, vesículas (tales como LipofectinTM) que contienen lípido (catiónico o aniónico), conjugados de ADN, pastas de

absorción anhidras, emulsiones de aceite en agua y agua en aceite, emulsiones de carbocera (polietilenglicoles de varios pesos moleculares), geles semisólidos, y mezclas semisólidas que contienen carbocera. Cualquiera de las mezclas anteriores puede ser adecuada en los tratamientos y terapias de acuerdo con la presente descripción, siempre que el ingrediente activo en la formulación no esté inactivado por la formulación y la formulación sea fisiológicamente compatible y tolerable con la vía de administración. *Ver* además Baldrick P. "Pharmaceutical excipient development: the need for preclinical guidance." Regul. Toxicol Pharmacol. 32(2):210-8 (2000), Wang W. "Lyophilization and development of solid protein pharmaceuticals." Int. J. Pharm. 203(1-2):1-60 (2000), Charman WN "Lipids, lipophilic drugs, and oral drug delivery-some emerging concepts." J Pharm Sci.89(8):967-78 (2000), Powell y otros, "Compendium of excipients for parenteral formulations" PDA J Pharm Sci Technol. 52:238-311 (1998) y las citas en la misma para información adicional relacionada con las formulaciones, excipientes y portadores bien conocidos por los químicos farmacéuticos.

10

15

20

50

55

60

65

En una modalidad, puede usarse un anticuerpo multiespecífico y/o un anticuerpo activable multiespecífico de la descripción como agentes terapéuticos. Tales agentes se emplearán generalmente para diagnosticar, pronosticar, controlar, tratar, aliviar y/o prevenir una enfermedad o patología en un sujeto. Se lleva a cabo un régimen terapéutico mediante la identificación de un sujeto, *por ejemplo.*, un paciente humano u otro mamífero que padece (o en riesgo de desarrollar) un trastorno con el uso de métodos estándar. Un anticuerpo multiespecífico y/o una preparación de anticuerpos activables multiespecíficos, por ejemplo en algunas modalidades, uno que tiene alta especificidad y alta afinidad por sus dos o más antígenos diana, se administra al sujeto y tendrá generalmente un efecto debido a su unión con las dianas. La administración del anticuerpo multiespecífico y/o un anticuerpo activable multiespecífico puede abrogar o inhibir o interferir con la función de señalización de uno o más de las dianas. La administración del anticuerpo multiespecífico puede abrogar o inhibir o interferir con la unión de uno o más de las dianas con un ligando endógeno con el que se une naturalmente.

Generalmente, el alivio o el tratamiento de una enfermedad o trastorno implica la disminución de uno o más síntomas o problemas médicos asociados con la enfermedad o trastorno. Por ejemplo, en el caso de cáncer, la cantidad terapéuticamente eficaz del fármaco puede realizarse con uno o una combinación de los siguientes: reducir el número de células de cáncer, reducir el tamaño del tumor; inhibir (es decir, disminuir en alguna medida y/o detener) la infiltración de células cancerígenas en órganos periféricos; inhibir la metástasis del tumor; inhibir, en alguna medida, el crecimiento del tumor, y/o aliviar en alguna medida uno o más de los síntomas asociados con el cáncer. En algunas modalidades, una composición de esta descripción puede usarse para prevenir la aparición o reaparición de la enfermedad o trastorno en un sujeto, por ejemplo, un ser humano u otro mamífero, tales como un animal de compañía primate no humano, (por ejemplo, gato, perro, caballo), animal de granja, animal de trabajo o animal de zoológico. Los términos sujeto y paciente se usan de manera intercambiable en la presente descripción.

Una cantidad terapéuticamente eficaz de un anticuerpo multiespecífico y/o un anticuerpo activable multiespecífico de la descripción se refiere generalmente a la cantidad necesaria para lograr un objetivo terapéutico. Como se indicó anteriormente, esta puede ser una interacción de unión entre el anticuerpo multiespecífico y/o un anticuerpo activable multiespecífico y sus antígenos diana que, en ciertos casos, interfiere con el funcionamiento de las dianas. La cantidad requerida a administrar dependerá además de la afinidad de unión del anticuerpo multiespecífico y/o un anticuerpo activable multiespecífico por su antígeno específico, y también dependerá de la velocidad a la que se administra un anticuerpo multiespecífico y/o se agota un anticuerpo activable multiespecífico del volumen libre del otro sujeto al que se administra. Los intervalos comunes para la dosificación terapéuticamente efectiva de un anticuerpo multiespecífico y/o fragmento de anticuerpo y/o un anticuerpo activable multiespecífico de la descripción pueden ser, a modo de ejemplo no limitante, de aproximadamente 0,1 mg/kg de peso corporal a aproximadamente 50 mg/kg de peso corporal. Las frecuencias de dosificación comunes pueden encontrarse en el intervalo, por ejemplo, de dos veces al día a una vez a la semana.

La eficacia del tratamiento se determina en asociación con cualquier método conocido para diagnosticar o tratar el trastorno en particular. Los métodos para el tamizaje de anticuerpos multiespecíficos y/o anticuerpos activables multiespecíficos que poseen la especificidad deseada incluyen, pero no se limitan al, ensayo inmunoabsorbente ligado a enzimas (ELISA) y otras técnicas inmunológicas conocidas en la materia.

En otra modalidad, un anticuerpo multiespecífico y/o un anticuerpo activable multiespecífico dirigido a dos o más dianas se usan en métodos conocidos en la materia relacionados con la localización y/o cuantificación de las dianas (por ejemplo, para usar en niveles de medición de una o más de las dianas dentro de las muestras fisiológicas apropiadas, para uso en métodos de diagnóstico, para uso en la formación de imágenes de la proteína, y similares). En una modalidad dada, un anticuerpo multiespecífico y/o un anticuerpo activable multiespecífico dirigido a dos o más dianas, o un derivado, fragmento, análogo u homólogo de este, que contiene el dominio de unión al antígeno derivado de anticuerpo, se utilizan como compuestos farmacológicamente activos (referencia de aquí en lo adelante como "Terapéutica").

En otra modalidad, un anticuerpo multiespecífico y/o un anticuerpo activable multiespecífico dirigido a dos o más dianas se usa para aislar una o más de las dianas mediante técnicas estándar, tales como inmunoafinidad, cromatografía o inmunoprecipitación. Un anticuerpo multiespecífico y/o un anticuerpo activable multiespecífico dirigido a dos o más dianas (o un fragmento de este) se usan diagnósticamente para controlar los niveles de proteína en tejido como parte de un procedimiento de prueba clínica, por ejemplo, para determinar la eficacia de un régimen de tratamiento dado. La detección puede facilitarse acoplando (es decir, enlazando físicamente) el anticuerpo a una sustancia detectable. Los ejemplos de sustancias detectables incluyen diversas enzimas, grupos prostéticos, materiales fluorescentes, materiales luminiscentes,

materiales bioluminiscentes, y materiales radiactivos. Los ejemplos de enzimas adecuadas incluyen peroxidasa de rábano picante, fosfatasa alcalina, β-galactosidasa o acetilcolinesterasa; ejemplos de complejos de grupos prostéticos adecuados incluyen estreptavidina/biotina y avidina/biotina; ejemplos de materiales fluorescentes adecuados incluyen umbeliferona, fluoresceína, isotiocianato de fluoresceína, rodamina, diclorotriazinilamina de fluoresceína, cloruro de dansilo o ficoeritrina; un ejemplo de un material luminiscente incluye luminol; ejemplos de materiales bioluminiscentes incluyen luciferasa, luciferina y aecuorina, y ejemplos de materiales radiactivos adecuados incluyen ¹²⁵l, ¹³¹l, ³⁵S o ³H.

5

10

15

20

25

30

35

40

45

50

55

60

65

En aun otra modalidad, un anticuerpo multiespecífico y/o un anticuerpo activable multiespecífico dirigido a dos o más dianas puede usarse como un agente para detectar la presencia de una o más de las dianas (o un fragmento del mismo) en una muestra. En algunas modalidades, el anticuerpo contiene un marcador detectable. Los anticuerpos son policionales, o en algunas modalidades, monocionales. Se usa un anticuerpo intacto, o un fragmento de este (por ejemplo., F_{ab}, scFv, o F_{(ab)2}). El término "marcado", con respecto a la sonda o anticuerpo, pretende abarcar el marcaje directo de la sonda o anticuerpo acoplando (es decir, enlazando físicamente) una sustancia detectable a la sonda o anticuerpo, así como el marce indirecto de la sonda o anticuerpo por reactividad con otro reactivo que está directamente marcado. Los ejemplos de marcaje indirecto incluyen la detección de un anticuerpo primario con el uso de un anticuerpo secundario marcado fluorescentemente y el marcaje final de un anticuerpo con biotina de manera que pueda detectarse con estreptavidina fluorescentemente marcada. El término "muestra biológica" pretende incluir tejidos, células y fluidos biológicos aislados de un sujeto, así como también tejidos, células y fluidos presentes en un sujeto. Incluido dentro del uso del término "muestra biológica", por lo tanto, se encuentra la sangre y una fracción o componente de la sangre que incluye suero sanguíneo, plasma sanguíneo o linfa. Es decir, el método de detección de la descripción puede usarse para detectar una proteína en una muestra biológica in vitro así como in vivo. Por ejemplo, las técnicas in vitro para la detección de una proteína analito incluyen ensayos inmunoabsorbentes ligados a enzimas (ELISA), transferencias de membranas de tipo Western, inmunoprecipitaciones e inmunofluorescencia. Se describen procedimientos para realizar inmunoensayos, por ejemplo en "ELISA: Theory and Practice: Methods in Molecular Biology", Vol. 42, J. R. Crowther (Edición) Human Press, Totowa, NJ, 1995; "Immunoassay", E. Diamandis y T. Christopoulus, Academic Press, Inc., San Diego, CA, 1996; y "Practice and Theory of Enzyme Immunoassays", P. Tijssen, Elsevier Science Publishers, Amsterdam, 1985. Además, las técnicas in vivo para la detección de una proteína de analito incluyen introducir en un sujeto un anticuerpo anti-proteína analito marcado. Por ejemplo, el anticuerpo puede marcarse con un marcador radioactivo cuya presencia y ubicación en un sujeto pueden detectarse mediante técnicas de imagen estándar.

Los anticuerpos multiespecíficos y/o anticuerpos activables multiespecíficos de la descripción son útiles también en una diversidad de formulaciones profilácticas y de diagnóstico. En una modalidad, se administra un anticuerpo multiespecífico y/o anticuerpo activable multiespecífico a pacientes que están en riesgo de desarrollar uno o más de los trastornos anteriormente mencionados. La predisposición de un paciente u órgano a uno o más de los trastornos puede determinarse con el uso de marcadores genotípicos, serológicos o bioquímicos.

En otra modalidad de la descripción, se administra un anticuerpo multiespecífico y/o anticuerpo activable multiespecífico a individuos humanos diagnosticados con una indicación clínica asociada con uno o más de los trastornos anteriormente mencionados. Tras el diagnóstico, se administra un anticuerpo multiespecífico y/o anticuerpo activable multiespecífico para mitigar o revertir los efectos de la indicación clínica.

Los anticuerpos multiespecíficos y/o anticuerpos activables multiespecíficos son útiles además en la detección de una o más dianas en muestras de pacientes y, por consiguiente, son útiles como diagnóstico. Por ejemplo, los anticuerpos multiespecíficos y/o anticuerpos activables multiespecíficos de la descripción se usan en *ensayos* in vitro, *por ejemplo*, ELISA, para detectar uno o más niveles de la diana en una muestra de paciente.

En una modalidad, un anticuerpo multiespecífico y/o un anticuerpo activable multiespecífico se inmoviliza sobre un soporte sólido (por ejemplo, el(los) pocillo(s) de una placa de microtitulación). En una modalidad, un anticuerpo inmovilizado y/o un anticuerpo activable sirve como un anticuerpo de captura para cualquier diana o dianas que pueda(n) estar presente(s) en una muestra de prueba. Antes de poner en contacto el anticuerpo multiespecífico inmovilizado y/o el anticuerpo activable multiespecífico inmovilizado con una muestra de paciente, el soporte sólido se enjuaga y se trata con un agente bloqueador tal como proteína de leche o albúmina para evitar la adsorción inespecífica del analito.

Posteriormente, los pocillos se tratan con una muestra de prueba sospechosa que contiene el antígeno, o con una solución que contiene una cantidad estándar del antígeno. Dicha muestra es, *por ejemplo*, una muestra de suero de un sujeto del que se sospecha que tiene niveles de antígeno circulante que se consideran diagnóstico de una patología. Después de enjuagar la muestra o estándar de prueba, el soporte sólido se trata con un segundo anticuerpo que está marcado detectablemente. El segundo anticuerpo marcado sirve como un anticuerpo de detección. Se mide el nivel de marcador detectable y se determina la concentración de antígeno(s) diana(s) en la muestra de prueba por comparación con una curva estándar desarrollada a partir de las muestras estándar.

Se apreciará que en base a los resultados obtenidos con el uso del anticuerpo multiespecífico y/o el anticuerpo activable multiespecífico en un ensayo de diagnóstico *in vitro* es posible establecer una enfermedad en un sujeto basándose en los niveles de expresión del(de los) antígeno(s) diana(s). Para una enfermedad dada, se toman muestras de sangre de los sujetos diagnosticados en diversas etapas en la progresión de la enfermedad, y/o en diversos momentos del tratamiento terapéutico de la enfermedad. Con el uso de una población de muestras que proporciona resultados estadísticamente

significativos para cada etapa de progresión o terapia, se designa un intervalo de concentraciones del antígeno que pueden considerarse características de cada etapa.

5

10

15

20

25

30

55

60

65

Los anticuerpos multiespecíficos y/o anticuerpos activables multiespecíficos pueden usarse además en métodos de diagnóstico y/o de formación de imágenes. En algunas modalidades, dichos métodos son métodos *in vitro*. En algunas modalidades, dichos métodos son métodos *in vitro*. En algunas modalidades, dichos métodos son métodos *in vitro*. En algunas modalidades, dichos métodos son métodos *ex vivo*. Por ejemplo, pueden usarse anticuerpos multiespecíficos y/o anticuerpos activables multiespecíficos que tienen un CM enzimáticamente escindible para detectar la presencia o ausencia de una enzima que es capaz de escindir el CM. Tales anticuerpos multiespecíficos y/o anticuerpos activables multiespecíficos pueden usarse en diagnósticos, que pueden incluir la detección *in vivo* (*por ejemplo*, cualitativa o cuantitativa) de la actividad enzimática (o, en algunas modalidades, un entorno de potencial de reducción incrementado tal como el que puede proporcionar la reducción de un enlace disulfuro) mediante la acumulación medida de anticuerpos activados multiespecíficos (es decir, anticuerpos resultantes de la escisión de un anticuerpo activable multiespecífico) en una célula o tejido dados de un organismo huésped dado. Tal acumulación de anticuerpos multiespecíficos activados indica no solo que el tejido expresa actividad enzimática (o un potencial de reducción incrementado en dependencia de la naturaleza del CM) sino también que el tejido expresa al menos una diana al que se une el anticuerpo activado.

Por ejemplo, el CM puede seleccionarse para que sea un sustrato de proteasa para una proteasa que se encuentra en el sitio de un tumor, en el sitio de una infección viral o bacteriana en un sitio biológicamente confinado (por ejemplo, tales como en un absceso, en un órgano y similares) y similares. Al menos uno de los AB puede ser uno que se une a un antígeno diana. Con el uso de los métodos familiares para un experto en la materia (por ejemplo, un marcador detectable (por ejemplo, un marcador fluorescente o marcador radiactivo o radiotrazador) puede conjugarse con un AB u otra región de un anticuerpo multiespecífico y/o un anticuerpo activable multiespecífico. Los marcadores detectables adecuados se discuten en el contexto de los métodos de tamizaje anteriores y más abajo se proporcionan ejemplos específicos adicionales. Con el uso de al menos un AB específico para una proteína o péptido del estado de enfermedad, junto con una proteasa cuya actividad es elevada en la enfermedad de interés, los anticuerpos activables exhibirán una mayor tasa de unión al tejido de enfermedad en relación con los tejidos donde la enzima específica a CM no está presente a un nivel detectable o está presente en un nivel más bajo que en el tejido enfermo o está inactiva (por ejemplo, en forma de zimógeno o en complejo con un inhibidor). Dado que las proteínas pequeñas y los péptidos se eliminan rápidamente de la sangre por el sistema de filtración renal, y debido a que la enzima específica para el CM no está presente a un nivel detectable (o está presente en niveles inferiores en tejidos no enfermos o está presente en conformación inactiva), la acumulación de anticuerpos activados multiespecíficos en el tejido enfermo se mejora en relación con los tejidos no enfermos.

35 En otro ejemplo, pueden usarse anticuerpos activables multiespecíficos para detectar la presencia o ausencia de un agente de escisión en una muestra. Por ejemplo, cuando los anticuerpos activables multiespecíficos contienen un CM susceptible de escisión por una enzima, los anticuerpos activables multiespecíficos pueden usarse para detectar (cualitativa o cuantitativamente) la presencia de una enzima en la muestra. En otro ejemplo, cuando los anticuerpos activables multiespecíficos contienen un CM susceptible de escisión por un agente reductor, los anticuerpos activables 40 multiespecíficos pueden usarse para detectar (cualitativa o cuantitativamente) la presencia de condiciones reductoras en una muestra. Para facilitar el análisis en estos métodos, los anticuerpos activables multiespecíficos se pueden marcar de forma detectable y se pueden unir a un soporte (por ejemplo, un soporte sólido, tales como un portaobjetos o perla). El marcador detectable puede colocarse en una porción del anticuerpo activable que no se libera después de la escisión, por ejemplo, el marcador detectable puede ser un marcador fluorescente inactivado u otro marcador que no sea detectable 45 hasta que se haya producido la escisión. El ensayo puede realizarse, por ejemplo, poniendo en contacto los anticuerpos activables multiespecíficos detectablemente marcados e inmovilizados con una muestra sospechosa de contener una enzima y/o agente reductor durante un tiempo suficiente para que se produzca la escisión, luego lavando para eliminar el exceso de muestra y contaminantes. La presencia o ausencia del agente de escisión (por ejemplo, enzima o agente reductor) en la muestra se evalúa mediante un cambio en la señal detectable de los anticuerpos activables multiespecíficos 50 antes de contactar con la muestra, por ejemplo, la presencia y/o un aumento en señal detectable debido a la escisión del anticuerpo activable multiespecífico por el agente de escisión en la muestra.

Dichos métodos de detección pueden adaptarse para proporcionar también la detección de la presencia o ausencia de una diana que sea capaz de unir al menos un AB de los anticuerpos activables multiespecíficos cuando se escinde. Por lo tanto, los ensayos pueden adaptarse para evaluar la presencia o ausencia de un agente de escisión y la presencia o ausencia de una diana de interés. La presencia o ausencia del agente de escisión puede detectarse mediante la presencia y/o un aumento en el marcador detectable de los anticuerpos activables multiespecíficos como se describió anteriormente, y la presencia o ausencia de la diana puede detectarse mediante la detección de un complejo AB diana *por ejemplo*, mediante el uso de un anticuerpo anti-diana detectablemente marcado.

Los anticuerpos activables multiespecíficos también son útiles en la formación de imágenes *in situ* para la validación de la activación de anticuerpos activables, *por ejemplo*, por escisión de proteasas, y la unión a una diana en particular. *La formación de imágenes in situ* de imágenes es una técnica que permite la localización de la actividad proteolítica y la diana en muestras biológicas tales como cultivos celulares o secciones de tejidos. Con el uso de esta técnica, es posible confirmar tanto la unión a una diana dada como la actividad proteolítica basándose en la presencia de un marcador detectable (por ejemplo, un marcador fluorescente).

Estas técnicas son útiles con cualquier célula congelada o tejido derivado de un sitio de la enfermedad (por ejemplo tejido tumoral) o tejidos sanos. Estas técnicas son útiles también con células frescas o muestras de tejidos.

En estas técnicas, un anticuerpo activable se marca con un marcador detectable. La etiqueta detectable puede ser un colorante fluorescente (por ejemplo, un fluoróforo, isotiocianato de fluoresceína (FITC), isotiocianato de rodamina (TRITC), un marcador Alexa Fluor®), un colorante de infrarrojo cercano (NIR) (por ejemplo, nanocristales de Qdot®), metal coloidal, un hapteno, un marcador radiactivo, biotina y un reactivo de amplificación, tales como estreptavidina, o una enzima (por ejemplo, peroxidasa de rábano picante o fosfatasa alcalina).

5

10

15

20

30

55

60

65

La detección del marcador en una muestra que se ha incubado con el anticuerpo activable multiespecífico marcado indica que la muestra contiene la diana y contiene una proteasa que es específica para el CM del anticuerpo activable multiespecífico. En algunas modalidades, la presencia de la proteasa puede confirmarse con el uso de inhibidores de proteasa de amplio espectro tales como los descritos en la presente descripción, y/o con el uso de un agente que es específico para la proteasa, por ejemplo, un anticuerpo tal como A11, que es específico para la proteasa matriptasa (MT-SP1) e inhibe la actividad proteolítica de MT-SP1; ver, por ejemplo, el documento de la publicación internacional núm. WO 2010/129609, publicado el 11 de Noviembre de 2010. El mismo enfoque de usar inhibidores de proteasa de amplio espectro tales como los descritos en la presente descripción, y/o con el uso de un agente inhibidor más selectivo puede usarse para identificar una proteasa o clase de proteasas específicas para el CM del anticuerpo activable. En algunas modalidades, la presencia de la diana puede confirmarse con el uso de un agente que es específico para la diana o el marcador detectable puede competir con una diana sin marcaje. En algunas modalidades, puede usarse anticuerpo activable no marcado, con detección por un anticuerpo secundario marcado o un sistema de detección más complejo.

Técnicas similares son útiles además para la obtención de imágenes *in vivo* donde la detección de la señal fluorescente en un sujeto, por ejemplo, un mamífero, incluyendo un ser humano, indica que el sitio de la enfermedad contiene la diana y contiene una proteasa que es específica para el CM del anticuerpo activable multiespecífico.

Estas técnicas son útiles además en estuches y/o como reactivos para la detección, identificación o caracterización de la actividad de la proteasa en una variedad de células, tejidos y organismos basados en el CM específico de proteasa en el anticuerpo activable multiespecífico.

Administración Terapéutica y Formulaciones de Anticuerpos Multiespecíficos y/o Anticuerpos Activables Multiespecíficos

Se apreciará que la administración de entidades terapéuticas de acuerdo con las composiciones y métodos en la presente 35 descripción se administrarán con portadores, excipientes, y otros agentes adecuados que se incorporan en las formulaciones para proporcionar transferencia mejorada, administración, tolerancia, y similares. Puede encontrarse una multitud de formulaciones apropiadas en el formulario conocido por todos los químicos farmacéuticos: Remington's Pharmaceutical Sciences (15ta ed, Mack Publishing Company, Easton, PA (1975)), particularmente Capítulo 87 por Blaug, Seymour, en el mismo. Estas formulaciones incluyen, por ejemplo, polvos, pastas, ungüentos, jaleas, ceras, aceites, 40 lípidos, vesículas (tales como Lipofectin™) que contienen lípido (catiónico o aniónico), conjugados de ADN, pastas de absorción anhidras, emulsiones de aceite en agua y agua en aceite, emulsiones de carbocera (polietilenglicoles de varios pesos moleculares), geles semisólidos, y mezclas semisólidas que contienen carbocera. Cualquiera de las mezclas anteriores puede ser adecuada en los tratamientos y terapias de acuerdo con la presente descripción, siempre que el ingrediente activo en la formulación no esté inactivado por la formulación y la formulación sea fisiológicamente compatible y tolerable con la vía de administración. Ver además Baldrick P. "Pharmaceutical excipient development: the need for 45 preclinical guidance." Regul. Toxicol Pharmacol. 32(2):210-8 (2000), Wang W. "Lyophilization and development of solid protein pharmaceuticals." Int. J. Pharm. 203(1-2):1-60 (2000), Charman WN "Lipids, lipophilic drugs, and oral drug deliverysome emerging concepts." J Pharm Sci.89(8):967-78 (2000), Powell y otros, "Compendium of excipients for parenteral formulations" PDA J Pharm Sci Technol. 52:238-311 (1998) y las citas en la misma para información adicional relacionada 50 con las formulaciones, excipientes y portadores bien conocidos por los químicos farmacéuticos.

En algunas modalidades, los anticuerpos multiespecíficos, anticuerpos activables multiespecíficos y/o las composiciones anticuerpos activables multiespecíficos conjugados se administran junto con uno o más agentes adicionales o una combinación de agentes adicionales. Los agentes adicionales adecuados incluyen terapias farmacéuticas y/o quirúrgicas actuales para una aplicación pretendida. Por ejemplo, los anticuerpos multiespecíficos, los anticuerpos activables multiespecíficos y/o las composiciones de anticuerpos activables multiespecíficos conjugados pueden usarse junto con un agente quimioterapéutico o antineoplásico adicional. Por ejemplo, los anticuerpos multiespecíficos, los anticuerpos activables multiespecíficos y/o las composiciones de anticuerpos activables multiespecíficos, los anticuerpos activables multiespecíficos y/o las composiciones de anticuerpos activables multiespecíficos, los anticuerpos activables multiespecíficos y/o las composiciones de anticuerpos activables multiespecíficos, los anticuerpos activables multiespecíficos, los anticuerpos activables multiespecíficos, los anticuerpos activables multiespecíficos, los anticuerpos activables multiespecíficos conjugados y el agente adicional se administran simultáneamente, o los anticuerpos multiespecíficos, los anticuerpos activables multiespecíficos conjugados y el agente adicional se administran simultáneamente, o los anticuerpos multiespecíficos, los anticuerpos activables multiespecíficos conjugados y el agente adicional se administran simultáneamente, o los anticuerpos multiespecíficos, los anticuerpos activables multiespecíficos conjugados y el agente adicional se administran simultáneamente, o los anticuerpos multiespecíficos conjugados y el agente adicional se administran simultáneamente, o los anticuerpos multiespecíficos conjugados y el agente adicional se administran simultáneamente, o los anticuerpos multiespecíficos conjugados y el agente adicional se administran simultáneamente, o los anticuerpos multiespecíficos conjugados y el a

agente adicional se administran en diferentes momentos durante un régimen de tratamiento. Por ejemplo, los anticuerpos multiespecíficos, los anticuerpos activables multiespecíficos conjugados se administran antes de la administración del agente adicional, los anticuerpos multiespecíficos, los anticuerpos activables multiespecíficos conjugados se administran después de la administración del agente adicional, o los anticuerpos multiespecíficos conjugados se administran después de la administración del agente adicional, o los anticuerpos multiespecíficos, los anticuerpos activables multiespecíficos y/o las composiciones de anticuerpos activables multiespecíficos conjugados y el agente adicional se administran de forma alternativa. Como se describe en la presente descripción, los anticuerpos multiespecíficos, los anticuerpos activables multiespecíficos y/o las composiciones de anticuerpos activables multiespecíficos conjugados y el agente adicional se administran en dosis únicas o en dosis múltiples.

En algunas modalidades, el agente adicional está acoplado o de cualquier otra manera unido a los anticuerpos multiespecíficos, los anticuerpos activables multiespecíficos y/o las composiciones de anticuerpos activables multiespecíficos conjugados.

Los agentes adicionales adecuados se seleccionan de acuerdo con el propósito de la aplicación prevista (es decir, destruir, prevención de la proliferación celular, terapia hormonal o terapia génica). Tales agentes pueden incluir, pero no se limitan a, por ejemplo, agentes farmacéuticos, toxinas, fragmentos de toxinas, agentes alquilantes, enzimas, antibióticos, antimetabolitos, agentes antiproliferativos, hormonas, neurotransmisores, ADN, ARN, ARNip, oligonucleótidos, ARN antisentido, aptámeros, diagnósticos, colorantes radioopacos, isótopos radiactivos, compuestos fluorogénicos, marcadores magnéticos, nanopartículas, compuestos marcadores, lectinas, compuestos que alteran la permeabilidad de la membrana celular, compuestos fotoquímicos, moléculas pequeñas, liposomas, micelas, vectores de terapia génica, vectores virales y similares. Finalmente, pueden usarse combinaciones de agentes o combinaciones de diferentes clases de agentes.

Los anticuerpos multiespecíficos, los anticuerpos activables multiespecíficos y/o las composiciones de anticuerpos activables multiespecíficos conjugados de la descripción (también denominados en la presente descripción "compuestos activos"), y derivados, fragmentos, análogos y homólogos de estos, pueden incorporarse a composiciones farmacéuticas adecuadas para administración. Los principios y consideraciones implicados en la preparación de tales composiciones, así como la orientación en la elección de los componentes, se proporcionan, por ejemplo, en Remington's Pharmaceutical Sciences: The Science and Practice of Pharmacy, 19na Ed. (Alfonso R. Gennaro, y otros, editors) Mack Pub. Co., Easton, Pa.: 1995; Drug Absorption Enhancement: Concepts, Possibilities, Limitations, And Trends, Harwood Academic Publishers, Langhorne, Pa., 1994; y Peptide And Protein Drug Delivery (Advances In Parenteral Sciences, Vol. 4), 1991, M. Dekker, New York.

Tales composiciones comprenden típicamente el anticuerpo multiespecífico y/o el anticuerpo activable multiespecífico y un portador farmacéuticamente aceptable. Cuando un anticuerpo multiespecífico y/o un anticuerpo activable multiespecífico incluyen un fragmento del dominio AB, puede usarse el fragmento más pequeño de AB que se une específicamente al dominio de unión de la proteína diana. Por ejemplo, basado en las secuencias de la región variable de un anticuerpo, pueden diseñarse moléculas peptídicas que retienen la capacidad del AB para unir la secuencia de la proteína diana. Tales péptidos pueden sintetizarse químicamente y/o producirse por tecnología de ADN recombinante. (*Ver, por ejemplo, Marasco y otros, Proc. Natl. Acad. Sci. USA, 90: 7889-7893 (1993)*).

Como se usa en la presente descripción, el término "portador farmacéuticamente aceptable" se pretende que incluya cualquiera y todos los solventes, medio de dispersión, revestimientos, agentes antibacterianos y antimicóticos, agentes isotónicos y de retardo de la absorción, y similares, compatibles con la administración farmacéutica. Los portadores adecuados se describen en la edición más reciente de Remington's Pharmaceutical Sciences, un texto de referencia estándar en el campo. Los ejemplos preferidos de tales portadores o diluyentes incluyen, pero no se limitan a, agua, solución salina, soluciones de Ringer, solución de dextrosa, y albúmina de suero humano al 5%. Pueden usarse liposomas y vehículos no acuosos tales como aceites fijos. El uso de tales medios y agentes para las sustancias farmacéuticamente activas es bien conocido en la materia. Excepto en la medida en que cualquiera de los medios o agente convencional sea incompatible con el compuesto activo, se contempla su uso en las composiciones.

Las formulaciones que se usan para la administración *in vivo* deben ser estériles. Esto se realiza fácilmente, mediante la filtración a través de membranas de filtración estériles.

Una composición farmacéutica de la invención se formula para ser compatible con su vía de administración prevista. Los ejemplos de vías de administración incluyen la administración parenteral, *por ejemplo*, intravenosa, intradérmica, subcutánea, oral (*por ejemplo*, inhalación), transdérmica (*es decir*, tópica), transmucosal y rectal. Las soluciones o suspensiones que se usan para aplicación parenteral, intradérmica o subcutánea pueden incluir los siguientes componentes: un diluyente estéril tal como agua para inyección, solución salina, aceites fijos, polietilenglicoles, glicerina, propilenglicol u otros disolventes sintéticos; agentes antibacterianos tales como alcohol bencílico o metilparabenos; antioxidantes tales como ácido ascórbico o bisulfito de sodio; agentes quelantes, tal como ácido etilendiaminotetraacético (EDTA); tampones tales como acetatos, citratos o fosfatos, y agentes para el ajuste de la tonicidad, tales como cloruro de sodio o dextrosa. El pH puede ajustarse con ácidos o bases, tales como ácido clorhídrico o hidróxido sódico. La

preparación parenteral puede encerrarse en ampollas, jeringas desechables o viales de dosis múltiples hechos de vidrio o plástico.

Las composiciones farmacéuticas adecuadas para uso inyectable pueden incluir dispersiones o soluciones acuosas estériles (solubles en agua) y polvos estériles para la preparación extemporánea de dispersiones o soluciones inyectables estériles. Para la administración intravenosa, los portadores adecuados incluyen solución salina fisiológica, agua bacteriostática, Cremophor EL™ (BASF, Parsippany, N.J.) o solución salina regulada con fosfato (PBS). En todos los casos, la composición debe ser estéril y debe ser fluida hasta el punto que sea fácilmente inyectable. Debe ser estable bajo las condiciones de fabricación y almacenamiento y debe preservarse contra la acción de la contaminación de los microorganismos tales como bacteria y hongos. El portador puede ser un medio de dispersión o solvente que contenga, por ejemplo, agua, etanol, poliol (por ejemplo, glicerol, propilenglicol, y polietilenglicol líquido, y similares), y sus mezclas adecuadas. La fluidez apropiada puede mantenerse, por ejemplo, por medio del uso de un revestimiento tal como lecitina, mediante el mantenimiento del tamaño de partícula requerido en el caso de dispersión y por medio del uso de tensioactivos. La prevención de la acción de los microorganismos puede lograrse por varios agentes antibacterianos y antimicóticos, por ejemplo, parabenos, clorobutanol, fenol, ácido ascórbico, timerosal, y similares. En muchos casos, será preferible incluir en la composición agentes isotónicos, por ejemplo, azúcares, polialcoholes tales como manitol, sorbitol, cloruro de sodio. La absorción prolongada de las composiciones inyectables puede producirse incluyendo en la composición un agente que retarda la absorción, por ejemplo, monoestearato de aluminio y gelatina.

Las soluciones inyectables estériles pueden prepararse mediante la incorporación del compuesto activo en la cantidad requerida en un disolvente adecuado con uno o una combinación de ingredientes enumerados anteriormente, según se requiera, seguido por la esterilización con filtración. Generalmente, las dispersiones se preparan incorporando el compuesto activo en un portador estéril que contiene un medio de dispersión básico y otros ingredientes requeridos a partir de los enumerados anteriormente. En el caso de polvos estériles para la preparación de soluciones inyectables estériles, los métodos de preparación son el secado al vacío y liofilización que producen un polvo del ingrediente activo más cualquier ingrediente adicional deseado a partir de una solución estéril de este previamente filtrada.

Las composiciones orales incluyen generalmente un diluyente inerte o un portador comestible. Pueden encerrarse en cápsulas de gelatina o comprimirse en tabletas. Para el propósito de la administración terapéutica oral, el compuesto activo puede incorporarse con excipientes y usarse en forma de tabletas, trociscos, o cápsulas. Las composiciones orales pueden prepararse además mediante el uso de un portador fluido para su uso como un enjuague bucal, en donde el compuesto en el portador fluido se aplica por vía oral. Los agentes de unión farmacéuticamente compatibles, y/o materiales adyuvantes pueden incluirse como parte de la composición. Las tabletas, píldoras, cápsulas, trociscos y similares pueden contener cualquiera de los siguientes ingredientes, o compuestos de una naturaleza similar: un aglutinante tales como celulosa microcristalina, goma de tragacanto o gelatina; un excipiente tales como almidón o lactosa, un agente desintegrante tales como ácido algínico, Primogel o almidón de maíz; un lubricante tales como estearato de magnesio o esterotes; un agente de deslizamiento tal como dióxido de silicio coloidal; un agente edulcorante tales como sacarosa o sacarina; o un agente saborizante tales como yerbabuena, salicilato de metilo, o sabor de naranja.

Para la administración por inhalación, los compuestos se suministran en la forma de una atomización de aerosol a partir de un dispersador o contenedor presurizado que contiene un propelente adecuado *por ejemplo*, un gas tal como dióxido de carbono, o un nebulizador.

La administración sistémica puede ser además por medios transmucosales o transdérmicos. Para la administración transmucosal o transdérmica, se usan en la formulación penetrantes adecuados para la barrera que se penetra. Tales penetrantes son generalmente conocidos en la materia e incluyen, por ejemplo, para administración transmucosal, detergentes, sales biliares y derivados de ácido fusídico. La administración transmucosal puede lograrse a través del uso de atomizadores nasales o supositorios. Para la administración transdérmica, los compuestos activos se formulan en pomadas, ungüentos, geles, o cremas que se conocen generalmente en la materia.

Los compuestos pueden prepararse además en la forma de supositorios (*por ejemplo*, con bases de supositorios convencionales tales como manteca de cacao y otros glicéridos) o enemas de retención para el suministro rectal.

En una modalidad, los compuestos activos se preparan con portadores que protegerán el compuesto contra la eliminación rápida del cuerpo, tal como una formulación de liberación controlada, que incluyen sistemas de suministro microencapsulados e implantes. Pueden usarse polímeros biodegradables, biocompatibles, tales como etileno y acetato de vinilo, polianhídridos, ácido poliglicólico, colágeno, poliortoésteres, y ácido poliláctico. Los métodos para la preparación de tales formulaciones serán evidentes para los expertos en la materia.

Por ejemplo, los ingredientes activos pueden encerrarse en microcápsulas preparadas, por ejemplo, por técnicas de coacervación o por polimerización interfacial, por ejemplo, hidroximetilcelulosa o microcápsulas de gelatina y microcápsulas de poli-(metilmetacilato), respectivamente, en sistemas de administración de fármacos coloidales (por ejemplo, liposomas, microesferas de albúmina, microemulsiones, nano-partículas y nanocápsulas), o en macroemulsiones.

65

10

15

30

35

45

Las preparaciones de liberación sostenida pueden prepararse. Los ejemplos adecuados de preparaciones de liberación sostenida incluyen matrices semipermeables de polímeros hidrófobos sólidos que contienen el anticuerpo, dichas matrices son en forma de artículos conformados, *por ejemplo*, películas, o microcápsulas. Los ejemplos de matrices de liberación sostenida incluyen poliésteres, hidrogeles (por ejemplo, poli(2-hidroxietilo-metacrilato), o poli(vinilalcohol)), poliláctidos (patente de los Estados Unidos núm. 3,773,919), copolímeros de ácido L-glutámico y gamma-etil-L-glutamato, acetato de etileno-vinilo no-degradable, copolímeros de ácido láctico-ácido glicólico degradables tales como el LUPRON DEPOT™. (microesferas inyectables compuestas de copolímero de ácido láctico-ácido glicólico y acetato de leuprolida), y ácido poli-D-(-)-3-hidroxibutírico. Aunque los polímeros tales como acetato de etileno-vinilo y ácido láctico-ácido glicólico permiten la liberación de las moléculas durante más de 100 días, determinados hidrogeles liberan las proteínas durante períodos de tiempo más corto.

10

15

20

25

30

35

40

45

50

55

60

65

Los materiales pueden obtenerse además comercialmente de Alza Corporation y Nova Pharmaceuticals, Inc. Las suspensiones liposómicas (que incluyen liposomas dirigidos a células infectadas con anticuerpos monoclonales para antígenos virales) pueden usarse además como portadores farmacéuticamente aceptables. Estos pueden prepararse de conformidad con los métodos conocidos por los expertos en la materia, por ejemplo, como se describe en la Patente de los Estados Unidos núm. 4,522,811.

Es especialmente ventajoso formular las composiciones orales o parenterales en forma de dosis unitaria para facilitar la administración y uniformidad de la dosis. La forma de dosis unitaria como se usa en la presente descripción se refiere a unidades físicamente discretas adecuadas como dosis unitarias para el sujeto a tratar; cada unidad contiene una cantidad predeterminada del compuesto activo calculada para producir el efecto terapéutico deseado en asociación con el portador farmacéutico requerido. La especificación para las formas de dosis unitarias de la invención se dictan por, y dependen directamente de, las características únicas del compuesto activo y el efecto terapéutico particular que se desea, y las limitaciones inherentes en la materia de la composición tal como un compuesto activo para el tratamiento de los individuos.

Las composiciones farmacéuticas pueden incluirse en un contenedor, paquete o dispensador junto con instrucciones para su administración.

La formulación de la presente descripción puede contener además más de un ingrediente activo según sea necesario para la indicación particular que se trata, preferentemente aquellas con actividades complementarias que no se afectan adversamente entre sí. Alternativamente, o además, la composición puede comprender un agente que mejora su función, tales como, por ejemplo, un agente citotóxico, citoquina, agente quimioterapéutico o agente inhibidor del crecimiento. Tales moléculas se presentan adecuadamente en combinación en cantidades que son efectivas para el propósito que se pretende.

En una modalidad, los compuestos activos se administran en terapia de combinación, es decir, combinados con otros agentes, por ejemplo, agentes terapéuticos, que son útiles para tratar afecciones o trastornos patológicos, tales como trastornos autoinmunes y enfermedades inflamatorias. El término "en combinación" en este contexto significa que los agentes se administran de forma sustancialmente simultánea, ya sea de manera simultánea o secuencial. Si se administra secuencialmente, al inicio de la administración del segundo compuesto, el primero de los dos compuestos todavía es detectable a concentraciones efectivas en el sitio de tratamiento.

Por ejemplo, la terapia de combinación puede incluir uno o más anticuerpos de la descripción coformulados con, o coadministrados con, uno o más agentes terapéuticos adicionales, *por ejemplo*, uno o más inhibidores de citoquinas e inhibidores del factor de crecimiento, inmunosupresores, agentes antiinflamatorios, inhibidores metabólicos, inhibidores de enzimas y/o agentes citotóxicos o citostáticos, como se describe detalladamente más abajo. Además, uno o más anticuerpos descritos en la presente descripción pueden usarse en combinación con dos o más de los agentes terapéuticos descritos en la presente descripción. Tales terapias de combinación pueden usar de manera favorable dosificaciones inferiores de los agentes terapéuticos administrados, evitando así posibles toxicidades o complicaciones asociadas con varias monoterapias.

En otras modalidades, uno o más anticuerpos de la descripción pueden coformularse con, y/o coadministrarse con, uno o más fármacos antiinflamatorios, inmunosupresores o inhibidores metabólicos o enzimáticos. Los ejemplos no limitantes de los fármacos o inhibidores que pueden usarse en combinación con los anticuerpos descritos en la presente descripción incluyen, entre otros, uno o más de: fármacos antiinflamatorios no esteroideos (AINE), por ejemplo, ibuprofeno, tenidap, naproxeno, meloxicam, piroxicam, diclofenaco e indometacina; sulfasalazina; corticosteroides tales como prednisolona; fármacos antiinflamatorios supresores de citoquinas (CSAID); inhibidores de la biosíntesis de nucleótidos, *por ejemplo*, inhibidores de la biosíntesis de purina, antagonistas de folato (*por ejemplo*, metotrexato ácido (N-[4-[[(2,4-diamino-6-pteridinil))metil] metilamino] benzoil]-L-glutámico);); e inhibidores de la biosíntesis de pirimidina, *por ejemplo*,, inhibidores de la dihidroorotato deshidrogenasa (DHODH). Los agentes terapéuticos adecuados para uso en combinación con los anticuerpos de la descripción incluyen inhibidores de los NSAID, CSAID, (DHODH) (*por ejemplo*, leflunomida), y antagonistas del folato (*por ejemplo*, metotrexato).

Ejemplos de inhibidores adicionales incluyen uno o más de: corticosteroides (inyección oral, inhalada y local); inmunosupresores, *por ejemplo*, ciclosporina, tacrolimus (FK-506); e inhibidores de mTOR, *por ejemplo*, sirolimus (rapamicina - RAPAMUNE™ o derivados de rapamicina, *por ejemplo*, derivados de rapamicina soluble (*por ejemplo*,

derivados de éster de rapamicina, *por ejemplo*,CCI-779); agentes que interfieren con la señalización por citoquinas proinflamatorias tales como TNFα o IL-1 (*por ejemplo* inhibidores de quinasa de IRAK, NIK, IKK, p38 o MAP); inhibidores de COX2, *por ejemplo*, celecoxib, rofecoxib, y sus variantes; inhibidores de fosfodiesterasa, *por ejemplo*, R973401 (inhibidor de fosfodiesterasa Tipo IV); inhibidores de la fosfolipasa, *por ejemplo*, inhibidores de fosfolipasa citosólica 2 (cPLA2) (*por ejemplo*, análogos de la trifluorometilcetona), inhibidores del factor de crecimiento de células endoteliales vasculares o del receptor del factor de crecimiento, *por ejemplo*, inhibidor de VEGF y/o inhibidor de VEGF-R e inhibidores de la angiogénesis. Los agentes terapéuticos adecuados para uso en combinación con los anticuerpos de la descripción son inmunosupresores, *por ejemplo*, ciclosporina, tacrolimus (FK-506); inhibidores de mTOR, *por ejemplo*, sirolimus (rapamicina) o derivados de la rapamicina, *por ejemplo*, derivados de la rapamicina soluble (*por ejemplo*, derivados del éster de la rapamicina, *por ejemplo*, CCI-779); inhibidores de COX2, *por ejemplo*, celecoxib y sus variantes; e inhibidores de la fosfolipasa, *por ejemplo*, inhibidores de la fosfolipasa citosólica 2 (cPLA2), *por ejemplo*, análogos de trifluorometilcetona.

Ejemplos adicionales de agentes terapéuticos que pueden combinarse con un anticuerpo de la descripción incluyen uno o más de: 6-mercaptopurinas (6-MP); azatioprina sulfasalazina; mesalazina; olsalazina; cloroquina/hidroxicloroquina (PLAQUENIL®); pencillamina; aurotiornalato (intramuscular y oral); azatioprina; coicicina; agonistas del beta-2 adrenoreceptor (salbutamol, terbutalina, salmeteral); xantinas (teofilina, aminofilina); cromoglicato; nedocromil; ketotifeno; ipratropio y oxitropio; micofenolato mofetil; agonistas de adenosina; agentes antitrombóticos; inhibidores del complemento; y agentes adrenérgicos.

EJEMPLOS

10

15

20

25

Las siguientes secuencias que se muestran en la Tabla 7 incluyen secuencias que se usaron a lo largo de los Ejemplos proporcionados en la presente descripción:

Tabla 7: Secuencias ilustrativas

Anticuerpo anti-CTLA-4 scFv humano

GGAGGTGGATCTGGAGGTGGCGGTTCAGGCTCTGGCGGAGGCTCAGGTGGTGGAGGATCAG 30 GCGGAGGTGAAATTGTGTTGACACAGTCTCCAGGCACCCTGTCTTTGTCTCCAGGGGAAAG AGCCACCTCTCCTGCAGGGCCAGTCAGAGTGTTAGCAGCAGCTACTTAGCCTGGTACCAG CAGAAACCTGGCCAGGCTCCCAGGCTCCTCATCTATGGTGCATCCAGCAGGGCCACTGGCA 35 TCCCAGACAGGTTCAGTGGCAGTGGGTCTGGGACAGACTTCACTCTCACCATCAGCAGACT GGAGCCTGAAGATTTTGCAGTGTATTACTGTCAGCAGTATGGTAGCTCACCGCTCACTTTC GGCGGAGGGACCAAGGTGGAAATCAAACGTTCCGGAGGGTCGACCATAACTTCGTATAATG 40 TATACTATACGAAGTTATCCTCGAGCGGTACCCAGGTGCAGCTGGTGCAGACTGGGGGAGG CGTGGTCCAGCCTGGGAGGTCCCTGAGACTCTCCTGTGCAGCCTCTGGATCCACCTTTAGC AGCTATGCCATGAGCTGGGTCCGCCAGGCTCCAGGGAAGGGGCTGGAGTGGGTCTCAGCTA 45 TTAGTGGTAGTGGTAGCACATACTACGCAGACTCCGTGAAGGGCCGGTTCACCATCTC CAGAGACAATTCCAAGAACACGCTGTATCTGCAAATGAACAGCCTGAGAGCCGAGGACACG GCCGTATATTACTGTGCGACAAACTCCCTTTACTGGTACTTCGATCTCTGGGGCCGTGGCA 50 QKPGQAPRLLIYGASSRATGIPDRFSGSGSGTDFTLTISRLEPEDFAVYYCQQYGSSPLTF 55 GGGTKVEIKRSGGSTITSYNVYYTKLSSSGTOVOLVOTGGGVVOPGRSLRLSCAASGSTFS SYAMSWVRQAPGKGLEWVSAISGSGGSTYYADSVKGRFTISRDNSKNTLYLQMNSLRAEDT AVYYCATNSLYWYFDLWGRGTLVTVSSAS (sec. con núm. de ident.:230)

60

(continuación)

5	GGAGGTGGATCTGGAGGTGGCGGTTCAGGCTCTGGCGGAGGCTCAGGTGGTGGAGGATCAG
Ü	GCGGAGGTCAGGTTCAGCTGCAGCAGAGCGGTGCAGAACTGGCACGTCCGGGTGCAAGCGT
	TAAAATGAGCTGTAAAGCAAGCGGTTATACCTTTACCCGTTATACCATGCATTGGGTTAAA
10	CAGCGTCCGGGTCAGGGTCTGGAATGGATTGGTTATATCAATCCGAGCCGTGGTTATACCA
10	ACTACAACCAGAAATTCAAAGATAAAGCAACCCTGACCACCGATAAAAGCAGCAGCACCGC
	CTATATGCAGCTGAGCATGACCTCAGAGGATAGCGCAGTTTATTACTGTGCACGCTAT
	TATGATGATCACTATTGCCTGGATTATTGGGGTCAGGGCACCACCCTGACCGTTAGCAGCG
15	GTGGTGGTGGTGGTGGCGGTGGTGGCGGTAGCCAGATTGTTCTGACCCA
	GAGTCCGGCAATTATGAGCGCAAGTCCGGGTGAAAAAGTTACCATGACCTGTAGCGCCAGC
	AGCAGCGTTAGCTATATGAATTGGTATCAGCAGAAAAGCGGCACCAGCCCGAAACGTTGGA
20	TTTATGATACCAGCAAACTGGCAAGCGGTGTTCCGGCACATTTTCGTGGTAGCGGTAGCGG
	CACCTCATATAGCCTGACCATTAGCGGTATGGAAGCAGAAGATGCAGCAACCTATTATTGT
	CAGCAGTGGTCAAGCAATCCGTTTACCTTTGGTAGTGGCACCAAACTGGAAATTAATCGT
25	(sec. con núm. de ident.:231)
	GGGSGGGGSGGGGGGGGQVQLQQSGAELARPGASVKMSCKASGYTFTRYTMHWVK
	QRPGQGLEWIGYINPSRGYTNYNQKFKDKATLTTDKSSSTAYMQLSSLTSEDSAVYYCARY
30	YDDHYCLDYWGQGTTLTVSSGGGGSGGGGGGGGGQIVLTQSPAIMSASPGEKVTMTCSAS
	SSVSYMNWYQQKSGTSPKRWIYDTSKLASGVPAHFRGSGSGTSYSLTISGMEAEDAATYYC
	QQWSSNPFTFGSGTKLEINR (sec. con núm. de ident.:232)
35	Anticuerpo anti-Jagged 4D11v2 humano: Cadena pesada

(continuación)

gaggtgcacetgttggagtctggggggggcttggtacagectggggggtccctgagactc
cetgtgcagectetggattcacetttageagetatgccatgagetgggtecgccaggetc
agggaaggggctggagtgggtgtcaagtattgacccggaaggtcggcagacatattacgca
gactccgtgaagggccggttcaccatctccagagacaattccaagaacacgctgtatctg
aaatgaacagcctgagagccgaggacacggccgtatattactgtgcgaaagacatcggcg
caggteggcetttgactactggggccagggaaccetggtcaccgtetectcagetagcac
aagggeceateggtetteeceetggeaceeteeteeaagageacetetgggggeacageg
ccctgggctgcctggtcaaggactacttccccgaaccggtgacggtgtcgtggaactcag
cgccctgaccagcggcgtgcacaccttcccggctgtcctacagtcctcaggactctactcc
ctcagcagcgtggtgaccgtgccctccagcagcttgggcacccagacctacatctgcaac
tgaatcacaagcccagcaacaccaaggtggacaagaaagttgagcccaaatcttgtgacaa
aactcacacatgcccaccgtgcccagcacctgaactcctggggggaccgtcagtcttcct
ttccccccaaaacccaaggacaccctcatgatctcccggacccctgaggtcacatgcgtg
tggtggacgtgagccacgaagaccctgaggtcaagttcaactggtacgtggacggcgtgga
ggtgcataatgccaagacaaagccgcgggaggagcagtacaacagcacgtaccgtgtggt
agcgtcctcaccgtcctgcaccaggactggctgaatggcaaggagtacaagtgcaaggtc1
ccaacaaageceteecagececeategagaaaaecatetecaaagecaaagggeageeeg
agaaccacaggtgtacaccctgcccccatcccgggaggagatgaccaagaaccaggtcag
ctgacctgcctggtcaaaggcttctatcccagcgacatcgccgtggagtgggagagcaat
ggcagecggagaacaactacaagaecacgceteecgtgetggaeteegaeggeteettet
cctctacagcaagctcaccgtggacaagagcaggtggcagcaggggaacgtcttctcatg
tecgtgatgeatgaggetetgeacaaccactacaegeagaagageeteteeetgteteeg
gtaaa (sec. con núm. de ident.:233)
EVHLLESGGGLVQPGGSLRLSCAASGFTFSSYAMSWVRQAPGKGLEWVSSIDPEGRQTYYA
DSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCAKDIGGRSAFDYWGQGTLVTVSSAS
KGPSVFPLAPSSKSTSGGTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYS
LSSVVTVPSSSLGTQTYICNVNHKPSNTKVDKKVEPKSCDKTHTCPPCPAPELLGGPSVFI
FPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVV
SVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSREEMTKNQV
LTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFS
SVMHEALHNHYTQKSLSLSPGK (sec. con núm. de ident.:234)
Anticuerno anti- lagged AD11v2 humano: Cadena ligera

(continuación)

Gacatecagatgacceagtetecatectecetgtetgeatetgtaggagacagagteaeea teaettgeeggeaagteagageattageagetatttaaattggtateageagaaaeeagg gaaageeeetaageteetgatetatgeggeateeagtttgeaaagtggggteeeateaagg tteagtggeagtggatetgggacagattteaeteteaeeageagtetgeaaeetgaag attttgeaaettaetaetgteaaeagaggttgtggegeeteegttatteggeeaagggae eaaggtggaaateaaaegtaeggtggetgeaeeatetgtetteatetteeegeeatetgat gageagttgaaatetggaaetgeetetgttgtgtgeetgeataaeetetgat gageagttgaaateetggaaetgeetetgttgtgtgeetgeaataaettetateeeagag aggeeaaagtaeagtggaaggtggataaeegeeteeaategggtaaeteeeaggagagtgt cacagageaggaeaggaaggaggagaeeetaeageeteageageaeetgaegetgaeeaaa geagaetaeggaaagaeeetaeageeteageageaeetgaegetege eegteacaaaaggetteaaeaagggagagtgt (see. con núm. de ident.:235)
DIQMTQSPSSLSASVGDRVTITCRASQSISSYLNWYQQKPGKAPKLLIYAASSLQSGVPSR FSGSGSGTDFTLTISSLQPEDFATYYCQQTVVAPPLFGQGTKVEIKRTVAAPSVFIFPPSD EQLKSGTASVVCLLNNFYPREAKVQWKVDNALQSGNSQESVTEQDSKDSTYSLSSTLTLXK ADYEKHKVYACEVTHQGLSSPVTKSFNRGEC (sec. con núm. de ident.:236)

Anticuerpo anti-Jagged 4D11 humano: Cadena pesada

gaggtgcagetgttggagtctgggggaggcttggtacagectggggggtecetgagactct cctqtqcaqcctctqqattcacctttaqcaqctatqccatqaqctqqqtccqccaqqctcc agggaaggggctggagtgggtgtcaagtattgacccggaaggtcggcagacatattacgca qactccqtqaaqqqccqqttcaccatctccaqaqacaattccaaqaacacqctqtatctqc aaatgaacagcctgagagccgaggacacggccgtatattactgtgcgaaagacatcggcgg caqqteqqcetttqactactqqqqecaqqqaaccctqqtcaccqtetectcaqctaqcace aaqqqcccatcqqtcttccccctqqcaccctcctccaaqaqcacctctqqqqqcacaqcqq ccctgggctgcctggtcaaggactacttccccgaaccggtgacggtgtcgtggaactcagg cqccctqaccaqcqqcqtqcacaccttcccqqctqtcctacaqtcctcaqqactctactcc ctcagcagcgtggtgaccgtgccctccagcagcttgggcacccagacctacatctgcaacg tgaatcacaaqcccaqcaacaccaaqqtqqacaaqaaqttqaqcccaaatcttqtqacaa aactcacacatgcccaccqtgcccaqcacctqaactcctqqqqqqqaccqtcaqtcttcctc ttccccccaaaacccaaggacaccetcatgatctcccggacccctgaggtcacatgcgtgg tggtggacgtgagccacgaagaccctgaggtcaagttcaactggtacgtggacggcgtgga ggtgcataatgccaagacaaagecgcgggaggagcagtacaacageacgtaccgtgtggte agcgtcctcaccgtcctgcaccaggactggctgaatggcaaggagtacaagtgcaaggtct ccaacaaaqccctcccaqcccccatcqaqaaaaccatctccaaaqccaaaqqqcaqcccq agaaccacaggtgtacaccctgccccatcccgggaggagatgaccaagaaccaggtcagc ctgacetgcetggtcaaaggettetateecagegacategcegtggagtgggagagcaatg ggcagecggagaacaactacaagaecacgectecegtgetggaetecgaeggetecttett cetetacageaageteacegtggaeaagageaggtggeaggagggaacgtetteteatge tecqtqatqcatqaqqctctqcacaaccactacacqcaqaaqaqcctctccctqtctccqq qtaaa (sec. con núm. de ident.:237)

65

5

10

15

20

25

30

35

40

45

50

55

(continuación)

EVQLLESGGGLVQPGGSLRLSCAASGFTFSSYAMSWVRQAPGKGLEWVSSIDPEGRQTYYA
DSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCAKDIGGRSAFDYWGQGTLVTVSSAST
KGPSVFPLAPSSKSTSGGTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYS
LSSVVTVPSSSLGTQTYICNVNHKPSNTKVDKKVEPKSCDKTHTCPPCPAPELLGGPSVFL
FPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVV
SVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSREEMTKNQVS
LTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSC
SVMHEALHNHYTQKSLSLSPGK (sec. con núm. de ident.:238)

Anticuerpo activable anti-Jagged 5342-1204-4D11v2: Cadena ligera

LSSPVTKSFNRGEC (sec. con núm. de ident.:240)

Anticuerpo multiespecífico anti-Jagged 4D11v2 - anti-CD3 OKT3: Cadena pesada

caaggecagtctggecagtgeaatatttggetegtaggtggtgattgeaggggetggeagg ggggctcgagcggtggcagcggtggctctggtggtctgagcggccgttccgataatcatgg cggcqgttctqacatccagatqacccaqtctccatcctccctqtctqcatctqtaqqaqac agagteaceateacttgeegggeaagteagageattageagetatttaaattggtateage aqaaaccaqqqaaaqcccctaaqctcctqatctatqcqqcatccaqtttqcaaaqtqqqqt cccatcaaggttcagtggcagtggatctgggacagatttcactctcaccatcagcagtctg caacctgaagattttgcaacttactactgtcaacagacggttgtggcgcctccgttattcg gccaagggaccaaggtggaaatcaaacgtacggtggctgcaccatctgtcttcatcttccc gccatctgatgagcagttgaaatctggaactgcctctgttgtgtgcctgctgaataacttc tateceagagaggeeaaagtacagtggaaggtggataacgceeteeaategggtaacteee aggagagtgtcacagagcaggacagcaaggacagcacctacagcctcagcagcaccctgac getgagcaaagcagactacgagaaacacaaagtetacgcetgcgaagtcacccatcaggge ctgagetegeegteacaaagagetteaacagggagagtgt (sec. con núm. de ident.:239) OGOSGOCNIWLVGGDCRGWQGGSSGGSGGSGGLSGRSDNHGGGSDIQMTQSPSSLSASVGD RVTITCRASOSISSYLNWYOOKPGKAPKLLIYAASSLQSGVPSRFSGSGSGTDFTLTISSL OPEDFATYYCOQTVVAPPLFGQGTKVEIKRTVAAPSVFIFPPSDEQLKSGTASVVCLLNNF YPREAKVOWKVDNALOSGNSOESVTEODSKDSTYSLSSTLTLXKADYEKHKVYACEVTHQG

50

5

10

15

20

25

30

35

40

45

55

60

(continuación)

5

10

15

20

25

30

35

40

45

50

55

60

65

GAGGTGCACCTGTTGGAGTCTGGGGGGGGGGCTTGGTACAGCCTGGGGGGGTCCCTGAGACTCT $\tt CCTGTGCAGCCTCTGGATTCACCTTTAGCAGCTATGCCATGAGCTGGGTCCGCCAGGCTCC$ AGGGAAGGGCTGGAGTGGTTCAAGTATTGACCCGGAAGGTCGGCAGACATATTACGCA GACTCCGTGAAGGGCCGGTTCACCATCTCCAGAGACAATTCCAAGAACACGCTGTATCTGC AA ATGA CAGCCTGAGAGCCGAGGACACGGCCGTATATTACTGTGCGAAAGACATCGGCGG CAGGTCGGCCTTTGACTACTGGGGCCAGGGAACCCTGGTCACCGTCTCCTCAGCTAGCACC AAGGGCCCATCGGTCTTCCCCCTGGCACCCTCCTCCAAGAGCACCTCTGGGGGCACAGCGG CCCTGGGCTGCCTGGTCAAGGACTACTTCCCCGAACCGGTGACGGTGTCGTGGAACTCAGG CGCCCTGACCAGCGGCGTGCACACCTTCCCGGCTGTCCTACAGTCCTCAGGACTCTACTCC CTCAGCAGCGTGGTGACCGTGCCCTCCAGCAGCTTGGGCACCCAGACCTACATCTGCAACG TGAATCACAAGCCCAGCAACACCAAGGTGGACAAGAAAGTTGAGCCCAAATCTTGTGACAA AACTCACACATGCCCACCGTGCCCAGCACCTGAACTCCTGGGGGGACCGTCAGTCTTCCTC TTCCCCCCAAAACCCAAGGACACCCTCATGATCTCCCGGACCCCTGAGGTCACATGCGTGG TGGTGGACGTGAGCCACGAAGACCCTGAGGTCAAGTTCAACTGGTACGTGGACGGCGTGGA GGTGCATAATGCCAAGACAAAGCCGCGGGAGGAGCAGTACAACAGCACGTACCGTGTGGTC AGCGTCCTCACCGTCCTGCACCAGGACTGGCTGAATGGCAAGGAGTACAAGTGCAAGGTCT CCAACAAAGCCCTCCCAGCCCCCATCGAGAAAACCATCTCCAAAGCCAAAGGGCAGCCCCG AGAACCACAGGTGTACACCCTGCCCCCATCCCGGGAGGAGATGACCAAGAACCAGGTCAGC CTGACCTGCCTGGTCAAAGGCTTCTATCCCAGCGACATCGCCGTGGAGTGGGAGAGCAATG GGCAGCCGGAGACCACCTACAAGACCACGCCTCCCGTGCTGGACTCCGACGGCTCCTTCTT CCTCTACAGCAAGCTCACCGTGGACAAGAGCAGGTGGCAGCAGGGGAACGTCTTCTCATGC TCCGTGATGCATGAGGCTCTGCACAACCACTACACGCAGAAGAGCCTCTCCCTGTCTCCGG GTAAAGGAGGTGGATCTGGAGGTGGCGGTTCAGGCTCTGGCGGAGGCTCAGGTGGTGGAGG ATCAGGCGGAGGTCAGGTTCAGCTGCAGCAGAGCGGTGCAGAACTGGCACGTCCGGGTGCA AGCGTTAAAATGAGCTGTAAAGCAAGCGGTTATACCTTTACCCGTTATACCATGCATTGGG TTAAACAGCGTCCGGGTCAGGGTCTGGAATGGATTGGTTATATCAATCCGAGCCGTGGTTA TACCAACTACAACCAGAAATTCAAAGATAAAGCAACCCTGACCACCGATAAAAGCAGCAGC ACCGCCTATATGCAGCTGAGCAGCCTGACCTCAGAGGATAGCGCAGTTTATTACTGTGCAC GCTATTATGATGATCACTATTGCCTGGATTATTGGGGTCAGGGCACCACCCTGACCGTTAG CAGCGGTGGTGGTGGTGGTGGCGGTGGTCAGGCGGTGGCGGTAGCCAGATTGTTCTG ACCCAGAGTCCGGCAATTATGAGCGCAAGTCCGGGTGAAAAAGTTACCATGACCTGTAGCG CCAGCAGCAGCGTTAGCTATATGAATTGGTATCAGCAGAAAAGCGGCACCAGCCCGAAACG TTGGATTTATGATACCAGCAAACTGGCAAGCGGTGTTCCGGCACATTTTCGTGGTAGCGGT AGCGGCACCTCATATAGCCTGACCATTAGCGGTATGGAAGCAGAAGATGCAGCAACCTATT ATTGTCAGCAGTGGTCAAGCAATCCGTTTACCTTTGGTAGTGGCACCAAACTGGAAATTAA TCGT (sec. con núm. de ident.:241)

Anticuerpo multiespecífico anti-Jagged 4D11v2 - anti-CD3 OKT3: Cadena pesada

EVHLLESGGLVQPGGSLRLSCAASGFTFSSYAMSWVRQAPGKGLEWVSSIDPEGRQTYYA
DSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCAKDIGGRSAFDYWGQGTLVTVSSAST
KGPSVFPLAPSSKSTSGGTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYS
LSSVVTVPSSSLGTQTYICNVNHKPSNTKVDKKVEPKSCDKTHTCPPCPAPELLGGPSVFL
FPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVV
SVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSREEMTKNQVS
LTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSC
SVMHEALHNHYTQKSLSLSPGKGGGSGGGGSGGGGGGGGGGGGGGGQVQLQQSGAELARPGA
SVKMSCKASGYTFTRYTMHWVKQRPGQGLEWIGYINPSRGYTNYNQKFKDKATLTTDKSSS
TAYMQLSSLTSEDSAVYYCARYYDDHYCLDYWGQGTTLTVSSGGGGSGGGGGGGGQVVL
TQSPAIMSASPGEKVTMTCSASSSVSYMNWYQQKSGTSPKRWIYDTSKLASGVPAHFRGSG
SGTSYSLTISGMEAEDAATYYCQQWSSNPFTFGSGTKLEINR (sec. con núm. de ident:242)

Anticuerpo multiespecífico anti-Jagged 4D11v2 - anti-CD3 OKT3: Cadena ligera

GACATCCAGATGACCCAGTCTCCATCCTCCCTGTCTGCATCTGTAGGAGACAGAGTCACCA TCACTTGCCGGGCAAGTCAGAGCATTAGCAGCTATTTAAATTGGTATCAGCAGAAACCAGG GAAAGCCCCTAAGCTCCTGATCTATGCGGCATCCAGTTTGCAAAGTGGGGTCCCATCAAGG TTCAGTGGCAGTGGATCTGGGACAGATTTCACTCTCACCATCAGCAGTCTGCAACCTGAAG ATTTTGCAACTTACTACTGTCAACAGACGGTTGTGGCGCCTCCGTTATTCGGCCAAGGGAC CAAGGTGGAAATCAAACGTACGGTGGCTGCACCATCTGTCTTCATCTTCCCGCCATCTGAT GAGCAGTTGAAATCTGGAACTGCCTCTGTTGTGTGCCTGCTGAATAACTTCTATCCCAGAG AGGCCAAAGTACAGTGGAAGGTGGATAACGCCCTCCAATCGGGTAACTCCCAGGAGAGTGT CACAGAGCAGGACAGCAAGGACACCTACAGCCTCAGCAGCACCCTGACGCTGANCAAA GCAGACTACGAGAAACACAAAGTCTACGCCTGCGAAGTCACCCATCAGGGCCTGAGCTCGC CCGTCACAAAGAGCTTCAACAGGGGAGAGTGTGGAGGTGGATCTGGAGGTGGCGGTTCAGG CTCTGGCGGAGGCTCAGGTGGAGGATCAGGCGGAGGTCAGGTTCAGCTGCAGCAGAGC CCTTTACCCGTTATACCATGCATTGGGTTAAACAGCGTCCGGGTCAGGGTCTGGAATGGAT TGGTTATATCAATCCGAGCCGTGGTTATACCAACTACAACCAGAAATTCAAAGATAAAGCA ACCCTGACCACCGATAAAAGCAGCAGCACCGCCTATATGCAGCTGAGCAGCCTGACCTCAG AGGATAGCGCAGTTTATTACTGTGCACGCTATTATGATGATCACTATTGCCTGGATTATTG GGGTCAGGGCACCACCCTGACCGTTAGCAGCGGTGGTGGTGGTAGTGGTGGCGGTGGTTCA GGCGGTGGCGGTAGCCAGATTGTTCTGACCCAGAGTCCGGCAATTATGAGCGCAAGTCCGG GTGAAAAAGTTACCATGACCTGTAGCGCCAGCAGCAGCGTTAGCTATATGAATTGGTATCA GCAGAAAAGCGGCACCAGCCCGAAACGTTGGATTTATGATACCAGCAAACTGGCAAGCGGT GTTCCGGCACATTTTCGTGGTAGCGGTAGCGGCACCTCATATAGCCTGACCATTAGCGGTA TGGAAGCAGAAGATGCAGCAACCTATTATTGTCAGCAGTGGTCAAGCAATCCGTTTACCTT TGGTAGTGGCACCAAACTGGAAATTAATCGT (sec. con núm. de ident.:243)

65

5

10

15

20

25

30

35

40

45

50

55

(continuación)

DIQMTQSPSSLSASVGDRVTITCRASQSISSYLNWYQQKPGKAPKLLIYAASSLQSGVPSR
FSGSGSGTDFTLTISSLQPEDFATYYCQQTVVAPPLFGQGTKVEIKRTVAAPSVFIFPPSD
EQLKSGTASVVCLLNNFYPREAKVQWKVDNALQSGNSQESVTEQDSKDSTYSLSSTLTLXK
ADYEKHKVYACEVTHQGLSSPVTKSFNRGECGGGSGGGGSGSGGGGGGGGGGGQVQLQQS
GAELARPGASVKMSCKASGYTFTRYTMHWVKQRPGQGLEWICYINPSRGYTNYNQKFKDKA
TLTTDKSSSTAYMQLSSLTSEDSAVYYCARYYDDHYCLDYWGQGTTLTVSSGGGGSGGGS
GGGGSQIVLTQSPAIMSASPGEKVTMTCSASSSVSYMNWYQQKSGTSPKRWIYDTSKLASG
VPAHFRGSGSGTSYSLTISGMEAEDAATYYCQQWSSNPFTFGSGTKLEINR (sec. con núm.

de ident. 244)

5

10

15

20

25

30

35

40

45

50

55

Anticuerpo activable multiespecífico anti-Jagged-anti-CD3 5342-1204-4D11v2-CD3 OKT3: Cadena ligera

CAAGGCCAGTCTGGCCAGTGCAATATTTGGCTCGTAGGTGGTGATTGCAGGGGCTGGCAGG GGGGCTCGAGCGGTGGCAGCGGTGGCTCTGGTGGTCTGAGCGGCCGTTCCGATAATCATGG CGGCGGTTCTGACATCCAGATGACCCAGTCTCCATCCTCCCTGTCTGCATCTGTAGGAGAC AGAGTCACCATCACTTGCCGGGCAAGTCAGAGCATTAGCAGCTATTTAAATTGGTATCAGC AGAAACCAGGGAAAGCCCCTAAGCTCCTGATCTATGCGGCATCCAGTTTGCAAAGTGGGGT CCCATCAAGGTTCAGTGGCAGTGGATCTGGGACAGATTTCACTCTCACCATCAGCAGTCTG CAACCTGAAGATTTTGCAACTTACTACTGTCAACAGACGGTTGTGGCGCCTCCGTTATTCG GCCAAGGGACCAAGGTGGAAATCAAACGTACGGTGGCTGCACCATCTGTCTTCATCTTCCC GCCATCTGATGAGCAGTTGAAATCTGGAACTGCCTCTGTTGTGTGCCTGCTGAATAACTTC TATCCCAGAGAGGCCAAAGTACAGTGGAAGGTGGATAACGCCCTCCAATCGGGTAACTCCC AGGAGAGTGTCACAGAGCAGGACAGCAAGGACACCTACAGCCTCAGCAGCACCCTGAC GCTGANCAAAGCAGACTACGAGAAACACAAAGTCTACGCCTGCGAAGTCACCCATCAGGGC CTGAGCTCGCCCGTCACAAAGAGCTTCAACAGGGGAGAGTGTGGAGGTGGATCTGGAGGTG GCGGTTCAGGCTCTGGCGGAGGCTCAGGTGGTGGAGGATCAGGCGGAGGTCAGGTTCAGCT GCAGCAGAGCGGTGCAGAACTGGCACGTCCGGGTGCAAGCGTTAAAATGAGCTGTAAAGCA AGCGGTTATACCTTTACCCGTTATACCATGCATTGGGTTAAACAGCGTCCGGGTCAGGGTC TGGAATGGATTGGTTATATCAATCCGAGCCGTGGTTATACCAACTACAACCAGAAATTCAA AGATAAAGCAACCTGACCACCGATAAAAGCAGCACCGCCTATATGCAGCTGAGCAGC CTGACCTCAGAGGATAGCGCAGTTTATTACTGTGCACGCTATTATGATGATCACTATTGCC TGGATTATTGGGGTCAGGGCACCACCCTGACCGTTAGCAGCGGTGGTGGTGGTAGTGGTGG CGGTGGTTCAGGCGGTGGCGGTAGCCAGATTGTTCTGACCCAGAGTCCGGCAATTATGAGC GCAAGTCCGGGTGAAAAAGTTACCATGACCTGTAGCGCCAGCAGCAGCGTTAGCTATATGA ATTGGTATCAGCAGAAAAGCGGCACCAGCCCGAAACGTTGGATTTATGATACCAGCAAACT GGCAAGCGGTGTTCCGGCACATTTTCGTGGTAGCGGTAGCGGCACCTCATATAGCCTGACC ATTAGCGGTATGGAAGCAGAAGATCCAGCAACCTATTATTGTCAGCAGTGGTCAAGCAATC CGTTTACCTTTGGTAGTGGCACCAAACTGGAAATTAATCGT (sec. con núm. de ident.:245)

60

(contiuación)

Anticuerpo multiespecífico anti-Jagged 4D11v2-anti-CTLA-4: Cadena pesada

5

10

15

20

25

30

35

40

45

50

55

60

65

GAGGTGCACCTGTTGGAGTCTGGGGGGGGCTTGGTACAGCCTGGGGGGTCCCTGAGACTCT CCTGTGCAGCCTCTGGATTCACCTTTAGCAGCTATGCCATGAGCTGGGTCCGCCAGGCTCC AGGGAAGGGGCTGGAGTGGGTGTCAAGTATTGACCCGGAAGGTCGGCAGACATATTACGCA GACTCCGTGAAGGGCCGGTTCACCATCTCCAGAGACAATTCCAAGAACACGCTGTATCTGC AAATGAACAGCCTGAGAGCCGAGGACACGGCCGTATATTACTGTGCGAAAGACATCGGCGG CAGGTCGGCCTTTGACTACTGGGGCCAGGGAACCCTGGTCACCGTCTCCTCAGCTAGCACC AAGGGCCCATCGGTCTTCCCCCTGGCACCCTCCTCCAAGAGCACCTCTGGGGGGCACAGCGG CCCTGGGCTGCCTGGTCAAGGACTACTTCCCCGAACCGGTGACGGTGTCGTGGAACTCAGG CGCCCTGACCAGCGGCGTGCACACCTTCCCGGCTGTCCTACAGTCCTCAGGACTCTACTCC CTCAGCAGCGTGGTGACCGTGCCCTCCAGCAGCTTGGGCACCCAGACCTACATCTGCAACG TGAATCACAAGCCCAGCAACACCAAGGTGGACAAGAAAGTTGAGCCCAAATCTTGTGACAA AACTCACACATGCCCACCGTGCCCAGCACCTGAACTCCTGGGGGGACCGTCAGTCTTCCTC TTCCCCCAAAACCCAAGGACACCCTCATGATCTCCCGGACCCCTGAGGTCACATGCGTGG TGGTGGACGTGAGCCACGAAGACCCTGAGGTCAAGTTCAACTGGTACGTGGACGGCGTGGA GGTGCATAATGCCAAGACAAAGCCGCGGGAGGAGCAGTACAACAGCACGTACCGTGTGGTC AGCGTCCTCACCGTCCTGCACCAGGACTGGCTGAATGGCAAGGAGTACAAGTGCAAGGTCT CCAACAAAGCCCTCCCAGCCCCCATCGAGAAAACCATCTCCAAAGCCAAAGGGCAGCCCCG AGAACCACAGGTGTACACCCTGCCCCCATCCCGGGAGGAGATGACCAAGAACCAGGTCAGC CTGACCTGCTGGTCAAAGGCTTCTATCCCAGCGACATCGCCGTGGAGTGGGAGAGCAATG GGCAGCCGGAGAACAACTACAAGACCACGCCTCCCGTGCTGGACTCCGACGGCTCCTTCTT CCTCTACAGCAAGCTCACCGTGGACAAGAGCAGGTGGCAGCAGGGGAACGTCTTCTCATGC TCCGTGATGCATGAGGCTCTGCACAACCACTACACGCAGAAGAGCCTCTCCCTGTCTCCGG GTAAAGGAGGTGGATCTGGAGGTGGCGGTTCAGGCTCTGGCGGAGGCTCAGGTGGTGGAGG ATCAGGCGGAGGTGAAATTGTGTTGACACAGTCTCCAGGCACCCTGTCTTTGTCTCCAGGG GAAGAGCCCCCCCCCCGCAGGGCCAGTCAGAGTGTTAGCAGCAGCTACTTAGCCTGGT ACCAGCAGAAACCTGGCCAGGCTCCCAGGCTCCTCATCTATGGTGCATCCAGCAGGGCCAC TGGCATCCCAGACAGGTTCAGTGGCAGTGGGTCTGGGACAGACTTCACTCTCACCATCAGC AGACTGGAGCCTGAAGATTTTGCAGTGTATTACTGTCAGCAGTATGGTAGCTCACCGCTCA CTTTCGGCGGAGGACCAAGGTGGAAATCAAACGTTCCGGAGGGTCGACCATAACTTCGTA TAATGTATACTATACGAAGTTATCCTCGAGCGGTACCCAGGTGCAGCTGGTGCAGACTGGG GGAGGCGTGGTCCAGCCTGGGAGGTCCCTGAGACTCTCCTGTGCAGCCTCTGGATCCACCT

(continuación)

TTAGCAGCTATGCCATGAGCTGGGTCCGCCAGGCTCCAGGGAAGGGGCTGGAGTGGGTCTC AGCTATTAGTGGTAGTGGTGGTAGCACATACTACGCAGACTCCGTGAAGGGCCGGTTCACC ATCTCCAGAGACAATTCCAAGAACACGCTGTATCTGCAAATGAACAGCCTGAGAGCCGAGG ACACGCCGTATATTACTGTGCGACAAACTCCCTTTACTGGTACTTCGATCTCTGGGGCCG TGGCACCCTGGTCACTGTCTTCAGC (sec. con núm. de ident.:247) EVHLLESGGGLVQPGGSLRLSCAASGFTFSSYAMSWVRQAPGKGLEWVSSIDPEGRQTYYA DSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCAKDIGGRSAFDYWGQGTLVTVSSAST KGPSVFPLAPSSKSTSGGTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYS LSSVVTVPSSSLGTQTYICNVNHKPSNTKVDKKVEPKSCDKTHTCPPCPAPELLGGPSVFL FPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVV SVLTVLHODWLNGKEYKCKVSNKALPAPIEKTISKAKGOPREPOVYTLPPSREEMTKNOVS $\verb|LTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSC|$ ERATLSCRASQSVSSSYLAWYQQKPGQAPRLLIYGASSRATGIPDRFSGSGSGTDFTLTIS RLEPEDFAVYYCOOYGSSPLTFGGGTKVEIKRSGGSTITSYNVYYTKLSSSGTOVOLVOTG GGVVOPGRSLRLSCAASGSTFSSYAMSWVROAPGKGLEWVSAISGSGGSTYYADSVKGRFT ISRDNSKNTLYLOMNSLRAEDTAVYYCATNSLYWYFDLWGRGTLVTVSSAS sec. con núm.

de ident.:248)

Anticuerpo multiespecífico anti-Jagged 4D11v2-anti-CTLA-4: Cadena ligera

GACATCCAGATGACCCAGTCTCCATCCTCCTGTCTGCATCTGTAGGAGACAGAGTCACCA
TCACTTGCCGGGCAAGTCAGAGCATTAGCAGCTATTTAAATTGGTATCAGCAGAAACCAGG
GAAAGCCCCTAAGCTCCTGATCTATGCGGCATCCAGTTTGCAAAGTGGGGTCCCATCAAGG
TTCAGTGGCAGTGGATCTGGGACAGATTTCACTCTCACCATCAGCAGTCTGCAACCTGAAG
ATTTTGCAACTTACTACTGTCAACAGACGGTTGTGGCGCCTCCGTTATTCGGCCAAGGGAC
CAAGGTGGAAATCAAACGTACGGTGGCTGCACCATCTGTCTTCATCTTCCCGCCATCTGAT
GAGCAGATGAAATCTGGAACTGCCTCTGTTGTGTGCCTGCAATAACTTCTATCCCAGAG
AGGCCAAAGTACAGTGGAAGGACACCCTCCAATCGGGTAACTCCCAGGAGAGTGT
CACAGAGCAGGACAGCAAGGACACCTACAGCCTCCAATCAGGCCTGACGCTGANCAAA
GCAGACTACGAGAAACCAAAAGTCTACGCCTGCGAAGTCACCCATCAGGGCCTGAGCTCGC
CCGTCACAAAGAGCTTCAACAGGGGAGGAGGTGAAATTGTGTTTGACACAGTCT

55

5

10

15

20

25

30

35

40

45

50

60

(continuación)

CCAGGCACCCTGTCTTTGTCTCCAGGGGAAAGAGCCACCCTCTCCTGCAGGGCCAGTCAGA
GTGTTAGCAGCAGCTACTTAGCCTGGTACCAGCAGAAACCTGGCCAGGCTCCCAGGCTCCT
CATCTATGGTGCATCCAGCAGGGCCACTGGCATCCCAGACAGGTTCAGTGGCAGTGGGTCT
GGGACAGACTTCACTCTCACCATCAGCAGACTGGAGCCTGAAGATTTTGCAGTGTATTACT
GTCAGCAGTATGGTAGCTCACCGCTCACTTTCGGCGGAGGGACCAAGGTGGAAATCAAACG
TTCCGGAGGGTCGACCATAACTTCGTATAATGTATACTATACGAAGTTATCCTCGAGCGGT
ACCCAGGTGCAGCTCTGGATCCACCTTTAGCAGCTTGGCAGCTGGGAGCTCCCCAGGC
TCCAGGGAAGGGGCTGGAGTGGGTCTCAGCTATTAGTGGTAGTGGTAGCACATACTAC
GCAGACTCCGTGAAGGGCCGGTTCACCATCTCCAGAGACAATTCCAAGAACACGCTGTATC
TGCAAATGAACAGCCTGAGAGCCGAGGACACGCCGTTATATTACTGTGCGACAAACTCCCT
TTACTGGTACTTCGATCTCTGGGGCCGTGGCACCCTTGTCACTTCTCAGCTAGC

(sec. con núm. de ident.:249)

(sec. con núm. de ident.:250)

Anticuerpo activable multiespecífico anti-Jagged-anti-CTLA-4 5342-1204-4D11v2-CTLA-4: Cadena ligera

CAAGGCCAGTCTGGCCAGTGCAATATTTGGCTCGTAGGTGGTGATTGCAGGGGCTGGCAGG
GGGGCTCGAGCGGTGGCAGCGGTGGCTCTGGTGGTCTGAGCGGCCGTTCCGATAATCATGG
CGGCGGTTCTGACATCCAGATGACCCAGTCTCCATCCTCCTGTCTGCATCTGTAGGAGAC
AGAGCCCATCACTTGCCGGGCAAGTCAGAGCATTAGCAGCTATTTAAATTGGTATCAGC
AGAAACCAGGGAAAGCCCCTAAGCTCCTGATCTATGCGGCATCCAGTTTGCAAAGTGGGGT
CCCATCAAGGTTCAGTGGCAGTGGATCTGGGACAGATTTCACTCTCACCATCAGCAGTCTG
CAACCTGAAGATTTTGCAACTTACTACTGTCAACAGACGGTTGTGGCGCCTCCGTTATTCG
GCCAAGGGACCAAGGTGGAAATCAAACGTACGGTGGCTGCACCATCTGTCTTCATCTTCCC

(continuación)

CAAGGCCAGTCTGGCCAGTGCAATATTTGGCTCGTAGGTGGTGATTGCAGGGGCTGGCAGG GGGGCTCGAGCGGTGGCAGCGGTGGCTCTGGTGGTCTGAGCGGCCGTTCCGATAATCATGG CGGCGGTTCTGACATCCAGATGACCCAGTCTCCATCCTCCCTGTCTGCATCTGTAGGAGAC AGAGTCACCATCACTTGCCGGGCAAGTCAGAGCATTAGCAGCTATTTAAATTGGTATCAGC AGAAACCAGGGAAAGCCCCTAAGCTCCTGATCTATGCGGCATCCAGTTTGCAAAGTGGGGT CCCATCAAGGTTCAGTGGCAGTGGATCTGGGACAGATTTCACTCTCACCATCAGCAGTCTG CAACCTGAAGATTTTGCAACTTACTACTGTCAACAGACGGTTGTGGCGCCTCCGTTATTCG GCCAAGGGACCAAGGTGGAAATCAAACGTACGGTGGCTGCACCATCTGTCTTCATCTTCCC GCCATCTGATGAGCAGTTGAAATCTGGAACTGCCTCTGTTGTGTGCCTGCTGAATAACTTC TATCCCAGAGAGGCCAAAGTACAGTGGAAGGTGGATAACGCCCTCCAATCGGGTAACTCCC AGGAGAGTGTCACAGAGCAGGACAGCAAGGACACCTACAGCCTCAGCAGCACCCTGAC GCTGANCAAAGCAGACTACGAGAAACACAAAGTCTACGCCTGCGAAGTCACCCATCAGGGC CTGAGCTCGCCGTCACAAAGAGCTTCAACAGGGGAGAGTGTGGAGGTGGATCTGGAGGTG GCGGTTCAGGCTCTGGCGGAGGCTCAGGTGGTGGAGGATCAGGCGGAGGTGAAATTGTGTT GACACAGTCTCCAGGCACCCTGTCTTTGTCTCCAGGGGAAAGAGCCACCCTCTCCTGCAGG GCCAGTCAGAGTGTTAGCAGCAGCTACTTAGCCTGGTACCAGCAGAAACCTGGCCAGGCTC CCAGGCTCCTCATCTATGGTGCATCCAGCAGGCCACTGGCATCCCAGACAGGTTCAGTGG CAGTGGGTCTGGGACAGACTTCACTCTCACCATCAGCAGACTGGAGCCTGAAGATTTTGCA GTGTATTACTGTCAGCAGTATGGTAGCTCACCGCTCACTTTCGGCGGAGGGACCAAGGTGG AAATCAAACGTTCCGGAGGGTCGACCATAACTTCGTATAATGTATACGAAGTTATC CTCGAGCGGTACCCAGCTGCAGCTGGTGCAGACTGGGGGAGGCGTGGTCCAGCCTGGGAGG TCCCTGAGACTCTCCTGTGCAGCCTCTGGATCCACCTTTAGCAGCTATGCCATGAGCTGGG TCCGCCAGGCTCCAGGGAAGGGGCTGGAGTGGGTCTCAGCTATTAGTGGTAGTGGTAG CACATACTACGCAGACTCCGTGAAGGGCCGGTTCACCATCTCCAGAGACAATTCCAAGAAC ACGCTGTATCTGCAAATGAACAGCCTGAGAGCCGAGGACACGGCCGTATATTACTGTGCGA CAAACTCCCTTTACTGGTACTTCGATCTCTGGGGCCGTGGCACCCTGGTCACTGTCTCTTC AGCTAGC (sec. con núm. de ident.:251) QGQSGQCNIWLVGGDCRGWQGGSSGGSGGSGGLSGRSDNHGGGSDIQMTQSPSSLSASVGD RVTITCRASQSISSYLNWYQQKPGKAPKLLIYAASSLQSGVPSRFSGSGSGTDFTLTISSL OPEDFATYYCOOTVVAPPLFGGGTKVEIKRTVAAPSVFIFPPSDEOLKSGTASVVCLLNNF YPREAKVQWKVDNALQSGNSQESVTEQDSKDSTYSLSSTLTLXKADYEKHKVYACEVTHQG LSSPVTKSFNRGECGGGSGGGGGGGGGGGGGGGGGGGGGGUVLTOSPGTLSLSPGERATLSCR ASOSVSSSYLAWYOOKPGOAPRLLIYGASSRATGIPDRFSGSGSGTDFTLTISRLEPEDFA VYYCOOYGSSPLTFGGGTKVEIKRSGGSTITSYNVYYTKLSSSGTOVOLVOTGGGVVOPGR SLRLSCAASGSTFSSYAMSWVRQAPGKGLEWVSAISGSGGSTYYADSVKGRFTISRDNSKN TLYLQMNSLRAEDTAVYYCATNSLYWYFDLWGRGTLVTVSSAS (sec. con núm. de ident.:252)

Anticuerpo anti-EGFR C225v5: Cadena pesada

5

10

15

20

25

30

35

40

45

50

55

60

65

caggtgcagctgaaacagagcggcccgggcctggtgcagccgagccagagcctgagcatta cctgcaccgtgagcggctttagcctgaccaactatggcgtgcattgggtgcgccagagccc gggcaaaggcctggaatggctgggcgtgatttggagcggcggcaacaccgattataacacc

(continuación)

ccgtttaccagccgcctgagcattaacaaagataacagcaaaagccaggtgtttttaaaa tgattatgaatttgcgtattggggccagggcaccctggtgaccgtgagcgcggctagcacc aaqqqeccatcqqtcttccccctqqcaccctcctccaaqaqeaectctqqqqqcacaqcqq ccctqqqctqcctqqtcaaqqactacttccccqaaccqqtqacqqtqtcqtqqaactcaqq egcectgaceageggegtgcacacettceeggetgtcetacagtceteaggactctactce ctcaqeaqcqtqqtqaecqtqcectceaqcaqettqqqcacecaqacetacatetqcaacq tgaatcacaagcccagcaacaccaaggtggacaagaaagttgagcccaaatcttgtgacaa aactcacacatgcccaccgtgcccagcacctgaactcctggggggaccgtcagtcttcctc ttcccccaaaacccaaggacaccetcatgatetcccggacccetgaggtcacatgcgtgg tggtggacgtgagccacgaagaccetgaggtcaagttcaactggtacgtggacggcgtgga qqtqcataatqccaaqacaaaqecqcqqqaqqaqcaqtacaacaqcacqtaccqtqtqqtc ageqtectcaccqtcctqcaccaqqactqqctqaatqqcaaqqaqtacaaqtqcaaqqtct ccaacaaaqeceteccaqeeecateqaqaaaaceatetecaaaqeeaaaqqqeaqeeecq agaaccacaggtgtacaccctqccccatcccgggatgaactgaccaagaaccaggtcagc ctgacctgcctggtcaaaggcttctatcccagcgacatcgccgtggagtgggagagcaatg ggcagecggagaacaactacaagaecacgcetecegtgetggaetecgaeggetecttett cctetacageaageteacegtggaeaagageaggtggeageaggggaaegtetteteatge tecgtgatgeatgaggetetgcacaaccactacacgcagaagagcetetecctgtetecgg gtaaatga (sec. con núm. de ident.:253) QVQLKQSGPGLVQPSQSLSITCTVSGFSLTNYGVHWVRQSPGKGLEWLGVIWSGGNTDYNT PFTSRLS INKDNSKSOVFFKMNSLOSODTA I YYCARALTYYDYEFAYWGOGTLVTVSAAST KGPSVFPLAPSSKSTSGGTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLOSSGLYS LSSVVTVPSSSLGTOTYICNVNHKPSNTKVDKKVEPKSCDKTHTCPPCPAPELLGGPSVFL FPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEOYNSTYRVV SVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSRDELTKNQVS LTCLVKGFYPSDIAVEWESNGOPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWOOGNVFSC SVMHEALHNHYTQKSLSLSPGK (sec. con núm. de ident.:254)

Anticuerpo anti-EGFR C225v5: Cadena ligera

5

10

15

20

25

30

35

40

45

50

55

60

65

(continuación)

QILLTQSPVILSVSPGERVSFSCRASQSIGTNIHWYQQRTNGSPRLLIKYASESISGIPSR FSGSGSGTDFTLSINSVESEDIADYYCQQNNNWPTTFGAGTKLELKRTVAAPSVFIFPPSD EQLKSGTASVVCLLNNFYPREAKVQWKVDNALQSGNSQESVTEQDSKDSTYSLSSTLTLSK ADYEKHKVYACEVTHOGLSSPVTKSFNRGEC (sec. con núm. de ident.:256)

Anticuerpo anti-EGFR C225v5: Cadena pesada

caggtgcagetgaaacagageggceegggcetggtgcageegggceagageetgageatta cctgcaccgtgagcggctttagcctgaccaactatggcgtgcattgggtgcgccagagccc gggcaaaggcctggaatggctgggcgtgatttggagcggcggcaacaccgattataacacc ccqtttaccaqccqcctqaqcattaacaaaqataacaqcaaaaqccaqqtqttttttaaaa tgaacageetgeaaageaacgataecgegatttattattgcgcgcgcgcgctgaectatta tgattatgaatttgcgtattggggccagggcaccctggtgaccgtgagcgcggctagcacc aagggeccateggtetteeeeetggeaceeteeteeaagageaeetetgggggeacagegg ccctgggctgcctggtcaaggactacttccccgaaccggtgacggtgtcgtggaactcagg cqccctqaccaqcqqcqtqcacaccttcccqqctqtcctacaqtcctcaqqactctactcc ctcagcagcgtggtgaccgtgccctccagcagcttgggcacccagacctacatctgcaacg tgaatcacaagcccagcaacaccaaggtggacaagcgcgttgagcccaaatcttgtgacaa aactcacacatgcccaccgtgcccagcacctgaactcctggggggaccgtcagtcttcctc ttccccccaaaacccaaqqacaccctcatqatctcccqqacccctqaqqtcacatqcqtqq tggtggacgtgagccacgaagaccctgaggtcaagttcaactggtacgtggacggcgtgga ggtgcataatgccaagacaaagccgcgggaggagcagtacaacagcacgtaccgtgtggtc ageqtectcaccqtcctqcaccaqqactqqctqaatqqcaaqqaqtacaaqtqcaaqqtct ccaacaaaqccctcccaqccccatcqaqaaaaccatctccaaaqccaaaqqqcaqcccq agaaccacaggtgtacaccctgcccccatcccgggatgaactgaccaagaaccaggtcagc ctgacetgcctggtcaaaggcttctatcccagegacatcgccgtggagtgggagagcaatg ggcagecggagaacaactacaagaccacgcctcccgtgctggactccgacggctccttctt cetetacageaageteacegtqqaeaagageaggtqqeaqeaqgqqaacgtetteteatqe tecgtgatgeatgaggetetgcacaaccactacacgcagaagagcetetecetgtetecgg gtaaa (sec. con núm. de ident.:257) OVOLKOSGPGLVOPSOSLSITCTVSGFSLTNYGVHWVROSPGKGLEWLGVIWSGGNTDYNT PFTSRLSINKDNSKSQVFFKMNSLQSNDTAIYYCARALTYYDYEFAYWGQGTLVTVSAAST KGPSVFPLAPSSKSTSGGTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYS LSSVVTVPSSSLGTOTYICNVNHKPSNTKVDKKVEPKSCDKTHTCPPCPAPELLGGPSVFL FPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEOYNSTYRVV SVLTVLHODWLNGKEYKCKVSNKALPAPIEKTISKAKGOPREPOVYTLPPSRDELTKNOVS LTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSC

Anticuerpo anti-EGFR C225v5: Cadena ligera

SVMHEALHNHYTOKSLSLSPGK (sec. con núm. de ident.:258)

5

10

15

20

25

30

35

40

45

50

55

(continuación)

Anticuerpo anti-EGFR C225v4: Cadena pesada

caggtgcagctgaaacagagcggcccgggcctggtgcagccgagccagagcctgagcatta cctgcaccgtgagcggctttagcctgaccaactatggcgtgcattgggtgcgccagagccc gggcaaaggcctggaatggctgggcgtgatttggagcggcggcaacaccgattataacacc ccgtttaccagccgcctgagcattaacaaagataacagcaaaagccaggtgttttttaaaa tgattatgaatttgcgtattggggccagggcaccctggtgaccgtgagcgcggctagcacc aagggeeeateggtetteeeectggeaceeteeteeaagageaectetgggggeacagegg ccctqqqctqcctqqtcaaqqactacttccccqaaccqqtqacqqtqtcqtqqaactcaqq cgccctqaccagcggcgtgcacacettcccggctgtcctacagtcctcaggactctactcc ctcagcagcgtggtgaccgtgccctccagcagcttgggcacccagacctacatctgcaacg tgaatcacaagcccagcaacaccaaggtggacaagaaagttgagcccaaatcttgtgacaa aactcacacatgcccaccgtgcccagcacctgaactcctggggggaccgtcagtcttcctc ttccccccaaaacccaaggacaccctcatgatctcccggacccctgaggtcacatgcgtgg tggtggacgtgagccacgaagaccctgaggtcaagttcaactggtacgtggacggcgtgga ggtgcataatgccaagacaaagccgcgggaggagcagtacaacagcacgtaccgtgtggtc agcgtcctcaccgtcctgcaccaggactggctgaatggcaaggagtacaagtgcaaggtct ccaacaaaqccctcccaqccccatcqaqaaaaccatctccaaaqccaaaqqqcaqcccq agaaccacaggtgtacaccctgcccccatcccgggatgaactgaccaagaaccaggtcagc ctgacctgcctggtcaaaggcttctatcccagcgacatcgccgtggagtgggagagcaatg ggcagccggagaacaactacaagaccacgcctcccgtgctggactccgacggctccttctt cctetacageaageteacegtggacaagageaggtggcagcagggggaacgtetteteatge toogtgatgoatgaggototgcacaaccactacacgcagaagagcototocctgtotoogg gtaaatga (sec. con núm. de ident.:261)

65

5

10

15

20

25

30

35

40

45

50

55

(continuación)

QVQLKQSGPGLVQPSQSLSITCTVSGFSLTNYGVHWVRQSPGKGLEWLGVIWSGGNTDYNT PFTSRLSINKDNSKSQVFFKMNSLQS**N**DTAIYYCARALTYYDYEFAYWGQGTLVTVSAAST KGPSVFPLAPSSKSTSGGTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYS LSSVVTVPSSSLGTQTYICNVNHKPSNTKVDKKVEPKSCDKTHTCPPCPAPELLGGPSVFL FPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVV SVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSRDELTKNQVS LTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSC SVMHEALHNHYTQKSLSLSPGK (sec. con núm. de ident.:262)

Anticuerpo anti-EGFR C225v4: Cadena ligera

Anticuerpo anti-EGFR C225v6: Cadena pesada

agcgtectcacegtectgeaccaggaetggetgaatggeaaggagtacaagtgeaaggtet ceaacaaageceteceageeeceatcgagaaaaccatetecaaagecaaagggeageeeg agaaccacaggtgtacacectgeeeceatceegggatgaactgaceaagaaccaggteage etgacetgeetggteaaaggettetateecagegacategeegtggagtgggagageaatg ggeageeggagaacaactacaagaecacgceteeegtgetggaeteegaeggeteettett eetetacageaageteacegtggaeaagageaggtggeageaggggaacgtetteteatge teegtgatgeatgaggetetgcacaaccactacaegcagaagageeteteeetgteteegg gtaaatga (sec. con núm. de ident.:265)

Anticuerpo anti-EGFR C225v6: Cadena ligera

QVQLKQSGPGLVQPSQSLSITCTVSGFSLTNYGVHWVRQSPGKGLEWLGVIWSGGNTDYNT
PFTSRLSINKDNSKSQVFFKMNSLQSQDTAIYYCARALTYYDYEFAYWGQGTLVTVSAAST
KGPSVFPLAPSSKSTSGGTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYS
LSSVVTVPSSSLGTQTYICNVNHKPSNTKVDKKVEPKSCDKTHTCPPCPAPELLGGPSVFL
FPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQYASTYRVV
SVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSRDELTKNQVS
LTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSC
SVMHEALHNHYTQKSLSLSPGK (sec. con núm. de ident.:266)

5

10

15

20

25

30

35

40

45

50

55

60

65

	(continuación)
Caga	tettgetgacccagagcceggtgattetgagegtgagecegggegaacgtgtgaget
ttag	ctgccgcgcgagccagagcattggcaccaacattcattggtatcagcagcgcaccaa
cggc	agcccgcgcctgctgattaaatatgcgagcgaaagcattagcggcattccgagccg
ttta	igeggeageggeageggeaeegattttaceetgageattaaeagegtggaaagegaag
atat	tgcggattattattgccagcagaacaacaactggccgaccacctttggcgcgggcac
caaa	ctggaactgaaacgtacggtggctgcaccatctgtcttcatcttcccgccatctgat
gago	agttgaaatctggaactgcctctgttgtgtgcctgctgaataacttctatcccagac
aggo	caaagtacagtggaaggtggataacgccctccaatcgggtaactcccaggagagtgt
caca	igageaggacagcaaggacagcacctacagcctcagcagcaccctgacgctgagcaaa
gcag	actacgagaaacacaaagtctacgcctgcgaagtcacccatcagggcctgagctcgc
aagt	cacaaagagcttcaacaggggagagtgttag (sec. con núm. de ident.:267)
QIL	LTQSPVILSVSPGERVSFSCRASQSIGTNIHWYQQRTNGSPRLLIKYASESISGIPSR
FSG	SGSGTDFTLSINSVESEDIADYYCQQNNNWPTTFGAGTKLELKRTVAAPSVFIFPPSD
EQLE	KSGTASVVCLLNNFYPREAKVQWKVDNALQSGNSQESVTEQDSKDSTYSLSSTLTLSF
ADYE	KHKVYACEVTHQGLSSPVTKSFNRGEC (sec. con núm. de ident.:238)
	rpo activable anti-EGFR 3954-1204-C225v5: Cadena ligera

tgtacggctcgagcggtggcagcggtggctctggtggatccggt][ctgagcggccgttcc gataatcat] [ggcagtagcggtacc] [cagatcttgctgacccagagcccggtgattctg ageqtgagcecqggcgaacqtgtgagetttagetgccgcgcgagccagagcattggcacca acatteattggtatcagcagcgcaccaacggcagcccgcgcctgctgattaaatatgcgag cgaaagcattagcggcattccgagccgctttagcggcagcggcagcggcaccgattttacc ctgageattaacagegtggaaagegaagatattgeggattattattgecageagaacaaca $\verb"actggccgaccacctttggcgcgggcaccaaactggaactgaaacgtacggtggctgcacc"$ atctgtcttcatcttcccgccatctgatgagcagttgaaatctggaactgcctctgttgtg tgcctgctgaataacttctatcccagagaggccaaagtacagtggaaggtggataacgccc tocaatcgggtaactcccaggagagtgtcacagagcaggacagcaaggacagcacctacag cctcagcagcaccctgacgctgagcaaagcagactacgagaaacacaaagtctacgcctgc gaagteacceatcagggcetgagetcgcecgtcacaaagagettcaacaggggagagtgtt ag] (sec. con núm. de ident.:269)

[Espaciador (sec. con núm. de ident.: 46)][Máscara (sec. con núm. de ident.: 77)][Enlazador 1 (sec. con núm. de ident.: 288)][Sustrato 1204 (sec. con núm. de ident.: 26)][Enlazador 2 (sec. con núm. de ident.: 289)][C225v5 (sec. con núm. de ident.: 256)]

[QGQSGQ] [CISPRGCPDGPYVMY] [GSSGSGGSGSGSG] [LSGRSDNH] [GSSGT] [QIL LTQSPVILSVSPGERVSFSCRASQSIGTNIHWYQQRTNGSPRLLIKYASESISGIPSRFSG SGSGTDFTLSINSVESEDIADYYCQQNNNWPTTFGAGTKLELKRTVAAPSVFIFPPSDEQL KSGTASVVCLLNNFYPREAKVQWKVDNALQSGNSQESVTEQDSKDSTYSLSSTLTLSKADY EKHKVYACEVTHQGLSSPVTKSFNRGEC*] (sec. con núm. de ident.:270)

Anticuerpo multiespecífico anti-EGFR C225v5 - Anti-CD3 OKT3: Cadena pesada

(continuación)

5

10

15

20

25

30

35

40

45

50

55

60

65

CAGGTGCAGCTGAAACAGAGCGGCCCGGGCCTGGTGCAGCCGAGCCAGAGCCTGAGCATTA $\tt CCTGCACCGTGAGCGGCTTTAGCCTGACCAACTATGGCGTGCATTGGGTGCGCCAGAGCCC$ GGGCAAAGGCCTGGAATGGCTGGGCGTGATTTGGAGCGGCGCAACACCGATTATAACACC CCGTTTACCAGCCGCCTGAGCATTAACAAAGATAACAGCAAAAGCCAGGTGTTTTTTAAAA TGATTATGAATTTGCGTATTGGGGCCAGGGCACCCTGGTGACCGTGAGCGCGGCTAGCACC AAGGGCCCATCGGTCTTCCCCCTGGCACCCTCCTCCAAGAGCACCTCTGGGGGCACAGCGG ${\tt CCCTGGGCTGCTGGTCAAGGACTACTTCCCCGAACCGGTGACGGTGTCGTGGAACTCAGG}$ CGCCCTGACCAGCGGGTGCACACCTTCCCGGCTGTCCTACAGTCCTCAGGACTCTACTCC CTCAGCAGCGTGGTGACCGTGCCCTCCAGCAGCTTGGGCACCCAGACCTACATCTGCAACG TGAATCACAAGCCCAGCAACACCAAGGTGGACAAGAAAGTTGAGCCCAAATCTTGTGACAA AACTCACACATGCCCACCGTGCCCAGCACCTGAACTCCTGGGGGGACCGTCAGTCTTCCTC TTCCCCCAAAACCCAAGGACACCCTCATGATCTCCCGGACCCCTGAGGTCACATGCGTGG TGGTGGACGTGAGCCACGAAGACCCTGAGGTCAAGTTCAACTGGTACGTGGACGGCGTGGA GGTGCATAATGCCAAGACAAGCCGCGGGAGGAGCAGTACAACAGCACGTACCGTGTGGTC AGCGTCCTCACCGTCCTGCACCAGGACTGGCTGAATGGCAAGGAGTACAAGTGCAAGGTCT CCAACAAAGCCCTCCCAGCCCCCATCGAGAAAACCATCTCCAAAGCCAAAGGGCAGCCCCG AGAACCACAGGTGTACACCCTGCCCCCATCCCGGGATGAACTGACCAAGAACCAGGTCAGC CTGACCTGCCTGGTCAAAGGCTTCTATCCCAGCGACATCGCCGTGGAGTGGGAGAGCAATG GGCAGCCGGAGAACAACTACAAGACCACGCCTCCCGTGCTGGACTCCGACGGCTCCTTCTT $\tt CCTCTACAGCAAGCTCACCGTGGACAAGAGCAGGTGGCAGCAGGGGAACGTCTTCTCATGC$ TCCGTGATGCATGAGGCTCTGCACAACCACTACACGCAGAAGAGCCTCTCCCTGTCTCCGG GTAAAGGAGGTGGATCTGGAGGTGGCGGTTCAGGCTCTGGCGGAGGCTCAGGTGGTGGAGG ATCAGGCGGAGGTCAGGTTCAGCTGCAGCAGAGCGGTGCAGAACTGGCACGTCCGGGTGCA AGCGTTAAAATGAGCTGTAAAGCAAGCGGTTATACCTTTACCCGTTATACCATGCATTGGG TTAAACAGCGTCCGGGTCAGGGTCTGGAATGGATTGGTTATATCAATCCGAGCCGTGGTTA TACCAACTACAACCAGAAATTCAAAGATAAAGCAACCCTGACCACCGATAAAAGCAGCAGC ACCGCCTATATGCAGCTGAGCAGCCTGACCTCAGAGGATAGCGCAGTTTATTACTGTGCAC GCTATTATGATGATCACTATTGCCTGGATTATTGGGGTCAGGGCACCACCCTGACCGTTAG ${\tt CAGCGGTGGTGGTAGTGGTGGCGGTGGTTCAGGCGGTGGCGGTAGCCAGATTGTTCTG}$ ACCCAGAGTCCGGCAATTATGAGCGCAAGTCCGGGTGAAAAAGTTACCATGACCTGTAGCG CCAGCAGCAGCGTTAGCTATATGAATTGGTATCAGCAGAAAAGCGGCACCAGCCCGAAACG

(continuación) TTGGATTTATGATACCAGCAAACTGGCAAGCGGTGTTCCGGCACATTTTCGTGGTAGCGGT

AGCGGCACCTCATATAGCCTGACCATTAGCGGTATGGAAGCAGAAGATGCAGCAACCTATT
ATTGTCAGCAGTGGTCAAGCAATCCGTTTACCTTTGGTAGTGGCACCAAACTGGAAATTAA
TCGT (sec. con núm. de ident.:271)
QVQLKQSGPGLVQPSQSLSITCTVSGFSLTNYGVHWVRQSPGKGLEWLGVIWSGGNTDYNT
PFTSRLSINKDNSKSQVFFKMNSLQSQDTAIYYCARALTYYDYEFAYWGQGTLVTVSAAST
KGPSVFPLAPSSKSTSGGTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYS
LSSVVTVPSSSLGTQTYICNVNHKPSNTKVDKKVEPKSCDKTHTCPPCPAPELLGGPSVFL
FPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVV
SVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSRDELTKNQVS
LTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSC
SVMHEALHNHYTQKSLSLSPGKGGGSGGGGSGGGGSGGGGGGGGGQVQLQQSGAELARPGA
SVKMSCKASGYTFTRYTMHWVKQRPGQGLEWIGYINPSRGYTNYNQKFKDKATLTTDKSSS
TAYMQLSSLTSEDSAVYYCARYYDDHYCLDYWGQGTTLTVSSGGGGSGGGGGGGGGGQVUL
TQSPAIMSASPGEKVTMTCSASSSVSYMNWYQQKSGTSPKRWIYDTSKLASGVPAHFRGSG
SGTSYSLTISGMEAEDAATYYCQQWSSNPFTFGSGTKLEINR (sec. con núm. de ident.:272)

Anticuerpo multiespecífico anti-EGFR C225v5 - Anti-CD3 OKT3: Cadena ligera

5

10

15

20

25

30

35

40

45

50

55

60

65

CAGATCTTGCTGACCCAGAGCCCGGTGATTCTGAGCGTGAGCCCGGGCGAACGTGTGAGCT CGGCAGCCGCCTGCTGATTAAATATGCGAGCGAAAGCATTAGCGGCATTCCGAGCCGC TTTAGCGGCAGCGGCACCGATTTTACCCTGAGCATTAACAGCGTGGAAAGCGAAG ATATTGCGGATTATTATTGCCAGCAGAACAACAGCTGGCCGACCACCTTTGGCGGGGCAC CAAACTGGAACTGAAACGTACGGTGGCTGCACCATCTGTCTTCATCTTCCCGCCATCTGAT GAGCAGTTGAAATCTGGAACTGCCTCTGTTGTGTGCCTGCTGAATAACTTCTATCCCAGAG AGGCCAAAGTACAGTGGAAGGTGGATAACGCCCTCCAATCGGGTAACTCCCAGGAGAGTGT CACAGAGCAGGACAGCACGGACACCTACAGCCTCAGCAGCACCCTGACGCTGAGCAAA GCAGACTACGAGAAACACAAAGTCTACGCCTGCGAAGTCACCCATCAGGGCCTGAGCTCGC CCGTCACAAAGAGCTTCAACAGGGGAGAGTGTGGAGGTGGATCTGGAGGTGGCGGTTCAGG CTCTGCCGGAGGCTCAGGTGGTGGAGGATCAGCGGAGGTCAGGTTCAGCTGCAGCAGAGC CCTTTACCCGTTATACCATGCATTGGGTTAAACAGCGTCCGGGTCAGGGTCTGGAATGGAT TGGTTATATCAATCCGAGCCGTGGTTATACCAACTACAACCAGAAATTCAAAGATAAAGCA ACCCTGACCACCGATAAAAGCAGCAGCACCGCCTATATGCAGCTGAGCAGCCTGACCTCAG AGGATAGCGCAGTTTATTACTGTGCACGCTATTATGATGATCACTATTGCCTGGATTATTG GGGTCAGGGCACCACCCTGACCGTTAGCAGCGGTGGTGGTGGTAGTGGTGGCGGTGGTTCA GGCGGTGGCGGTAGCCAGATTGTTCTGACCCAGAGTCCGGCAATTATGAGCGCAAGTCCGG GTGAAAAGTTACCATGACCTGTAGCGCCAGCAGCGCTTAGCTATATGAATTGGTATCA GCAGAAAAGCGGCACCAGCCCGAAACGTTGGATTTATGATACCAGCAAACTGGCAAGCGGT GTTCCGGCACATTTTCGTGGTAGCGGTAGCGGCACCTCATATAGCCTGACCATTAGCGGTA TGGAAGCAGAAGATGCAGCAACCTATTATTGTCAGCAGTGGTCAAGCAATCCGTTTACCTT TGGTAGTGGCACCAAACTGGAAATTAATCGT (sec. con núm. de ident.:273)

(continuación)

QILLTQSPVILSVSPGERVSFSCRASQSIGTNIHWYQQRTNGSPRLLIKYASESISGIPSR
FSGSGSGTDFTLSINSVESEDIADYYCQQNNNWPTTFGAGTKLELKRTVAAPSVFIFPPSD
EQLKSGTASVVCLLNNFYPREAKVQWKVDNALQSGNSQESVTEQDSKDSTYSLSSTLTLSK
ADYEKHKVYACEVTHQGLSSPVTKSFNRGECGGGSGGGGGGGGGGGGGGGGGGQVQLQQS
GAELARPGASVKMSCKASGYTFTRYTMHWVKQRPGQGLEWIGYINPSRGYTNYNQKFKDKA
TLTTDKSSSTAYMQLSSLTSEDSAVYYCARYYDDHYCLDYWGQGTTLTVSSGGGGSGGGS
GGGGSQIVLTQSPAIMSASPGEKVTMTCSASSSVSYMNWYQQKSGTSPKRWIYDTSKLASG
VPAHFRGSGSGTSYSLTISGMEAEDAATYYCOOWSSNPFTFGSGTKLEINR

(sec. con núm. de ident.:274)

Anticuerpo activable multiespecífico anti-EGFR - anti-CD3 3954-1204-C225v5-OKT3: Cadena ligera

CAAGGCCAGTCTGGCCAGTGCATCTCACCTCGTGGTTGTCCGGACGGCCCATACGTCATGT ACGGCTCGAGCGGTGGCAGCGGTGGCTCTGGTGGATCCGGTCTGAGCGGCCGTTCCGATAA TCATGGCAGTAGCGGTACCCAGATCTTGCTGACCCAGAGCCCGGTGATTCTGAGCGTGAGC TAGCGGCATTCCGAGCCGCTTTAGCGGCAGCGGCAGCGGCACCGATTTTACCCTGAGCATT AACAGCGTGGAAAGCGAAGATATTGCGGATTATTATTGCCAGCAGAACAACAACTGGCCGA CCACCTTTGGCGCGGCACCAAACTGGAACTGAAACGTACGGTGGCTGCACCATCTGTCTT CATCTTCCCGCCATCTGATGAGCAGTTGAAATCTGGAACTGCCTCTGTTGTGTGCCTGCTG AATAACTTCTATCCCAGAGAGGCCAAAGTACAGTGGAAGGTGGATAACGCCCTCCAATCGG GTAACTCCCAGGAGAGTGTCACAGAGCAGGACAGCAAGGACAGCACCTACAGCCTCAGCAG CACCCTGACGCTGAGCAAAGCAGACTACGAGAAACACAAAGTCTACGCCTGCGAAGTCACC CATCAGGGCCTGAGCTCGCCCGTCACAAAGAGCTTCAACAGGGGAGAGTGTGGAGGTGGAT CTGGAGGTGGCGGTTCAGGCTCTGGCGGAGGCTCAGGTGGTGGAGGATCAGGCGGAGGTCA GGTTCAGCTGCAGCAGAGCGGTGCAGAACTGGCACGTCCGGGTGCAAGCGTTAAAATGAGC TGTAAAGCAAGCGGTTATACCTTTACCCGTTATACCATGCATTGGGTTAAACAGCGTCCGG GTCAGGGTCTGGAATGGATTGGTTATATCAATCCGAGCCGTGGTTATACCAACTACAACCA GAAATTCAAAGATAAAGCAACCTGACCACCGATAAAAGCAGCAGCACCGCCTATATGCAG CTGAGCAGCCTGACCTCAGAGGATAGCGCAGTTTATTACTGTGCACGCTATTATGATGATC ACTATTGCCTGGATTATTGGGGTCAGGGCACCACCCTGACCGTTAGCAGCGGTGGTGGTG TAGTGGTGGCGGTGGTCAGCCGGTGGCGGTAGCCAGATTGTTCTGACCCAGAGTCCGGCA ATTATGAGCGCAAGTCCGGGTGAAAAAGTTACCATGACCTGTAGCGCCAGCAGCAGCGTTA GCTATATGAATTGGTATCAGCAGAAAAGCGGCACCAGCCCGAAACGTTGGATTTATGATAC CAGCAAACTGGCAAGCGGTGTTCCGGCACATTTTCGTGGTAGCGGTAGCGGCACCTCATAT AGCCTGACCATTAGCGGTATGGAAGCAGAAGATGCAGCAACCTATTATTGTCAGCAGTGGT CAAGCAATCCGTTTACCTTTGGTAGTGGCACCAAACTGGAAATTAATCGT

60 (sec. con núm. de ident.:275)

5

10

15

20

25

30

35

40

45

50

(continuación)

	QGQSGQCISPRGCPDGPYVMYGSSGGSGGSGGSGLSGRSDNHGSSGTQILLTQSPVILSVS
5	PGERVSFSCRASQSIGTNIHWYQQRTNGSPRLLIKYASESISGIPSRFSGSGSGTDFTLSI
	NSVESEDIADYYCQQNNNWPTTFGAGTKLELKRTVAAPSVFIFPPSDEQLKSGTASVVCLL
	NNFYPREAKVQWKVDNALQSGNSQESVTEQDSKDSTYSLSSTLTLSKADYEKHKVYACEVT
10	HQGLSSPVTKSFNRGECGGGSGGGGGGGGGGGGGGGQVQLQQSGAELARPGASVKMS
	CKASGYTFTRYTMHWVKQRPGQGLEWIGYINPSRGYTNYNQKFKDKATLTTDKSSSTAYMQ
	LSSLTSEDSAVYYCARYYDDHYCLDYWGQGTTLTVSSGGGGSGGGGGGGGGGQUVLTQSPA
15	IMSASPGEKVTMTCSASSSVSYMNWYQQKSGTSPKRWIYDTSKLASGVPAHFRGSGSGTSY
	SLTISGMEAEDAATYYCQQWSSNPFTFGSGTKLEINR (sec. con núm. de ident.:276)
	Anticuerpo multiespecífico anti-EGFR C225v5-Anti-CTLA-4: Cadena pesada
20	CAGGTGCAGCTGAAACAGAGCGGCCCGGGCCTGGTGCAGCCGAGCCAGAGCCTGAGCATTA
20	CCTGCACCGTGAGCGGCTTTAGCCTGACCAACTATGGCGTGCATTGGGTGCGCCAGAGCCC
	GGGCAAAGGCCTGGAATGGCTGGGCGTGATTTGGAGCGGCGGCAACACCGATTATAACACC
	CCGTTTACCAGCCGCCTGAGCATTAACAAAGATAACAGCAAAAGCCAGGTGTTTTTTAAAA
25	TGAACAGCCTGCAAAGCCAGGATACCGCGATTTATTATTGCGCGCGC
30	
35	
10	
! 5	
50	
JU	
55	
,,	

60

(continuación)

TGATTATGAATTTGCGTATTGGGGCCAGGGCACCCTGGTGACCGTGAGCGCGGCTAGCACC
AAGGGCCCATCGGTCTTCCCCCTGGCACCCTCCTCCAAGAGCACCTCTGGGGGCACAGCGG
$\verb CCCTGGGCTGCCTGGTCAAGGACTACTTCCCCGAACCGGTGACGGTGTCGTGGAACTCAGGGGTGTCGTGGAACTCAGGGGTGTCGTGGAACTCAGGGTGTCGTGAACGGGTGTCGTGGAACTCAGGGTGAACTGAACAACTGAACAACTGAAACTGAACAACAACAACAACAACAACAACAACAAACA$
CGCCCTGACCAGCGGCGTGCACACCTTCCCGGCTGTCCTACAGTCCTCAGGACTCTACTCC
CTCAGCAGCGTGGTGACCGTGCCCTCCAGCAGCTTGGGCACCCAGACCTACATCTGCAACG
TGAATCACAAGCCCAGCAACACCAAGGTGGACAAGAAGTTGAGCCCAAATCTTGTGACAA
AACTCACACATGCCCACCGTGCCCAGCACCTGAACTCCTGGGGGGACCGTCAGTCTTCCTC
TTCCCCCCAAAACCCAAGGACACCCTCATGATCTCCCGGACCCCTGAGGTCACATGCGTGG
TGGTGGACGTGAGCCACGAAGACCCTGAGGTCAAGTTCAACTGGTACGTGGACGGCGTGGA
GGTGCATAATGCCAAGACAAAGCCGCGGGAGGAGCAGTACAACAGCACGTACCGTGTGGTC
AGCGTCCTCACCGTCCTGCACCAGGACTGGCTGAATGGCAAGGAGTACAAGTGCAAGGTCT
CCAACAAAGCCCTCCCAGCCCCCATCGAGAAAACCATCTCCAAAGCCAAAGGGCAGCCCCG
AGAACCACAGGTGTACACCCTGCCCCCATCCCGGGATGAACTGACCAAGAACCAGGTCAGC
CTGACCTGCCTGGTCAAAGGCTTCTATCCCAGCGACATCGCCGTGGAGTGGGAGAGCAATG
GGCAGCCGGAGAACAACTACAAGACCACGCCTCCCGTGCTGGACTCCGACGGCTCCTTCTT
CCTCTACAGCAAGCTCACCGTGGACAAGAGCAGGTGGCAGCAGGGGAACGTCTTCTCATGC
TCCGTGATGCATGAGGCTCTGCACAACCACTACACGCAGAAGAGCCTCTCCCTGTCTCCGG
GTAAAGGAGGTGGATCTGGAGGTGGCGGTTCAGGCTCTGGCGGAGGCTCAGGTGGTGGAGG
ATCAGGCGGAGGTGAAATTGTGTTGACACAGTCTCCAGGCACCCTGTCTTTGTCTCCAGGG
GAAAGAGCCACCTCTCCTGCAGGGCCAGTCAGAGTGTTAGCAGCAGCTACTTAGCCTGGT
ACCAGCAGAAACCTGGCCAGGCTCCCAGGCTCCTCATCTATGGTGCATCCAGCAGGGCCAC
TGGCATCCCAGACAGGTTCAGTGGCAGTGGGTCTGGGACAGACTTCACTCTCACCATCAGC
AGACTGGAGCCTGAAGATTTTGCAGTGTATTACTGTCAGCAGTATGGTAGCTCACCGCTCA
CTTTCGGCGGAGGACCAAGGTGGAAATCAAACGTTCCGGAGGGTCGACCATAACTTCGTA
TAATGTATACTATACGAAGTTATCCTCGAGCGGTACCCAGGTGCAGCTGGTGCAGACTGGG
GGAGGCGTGGTCCAGCCTGGGAGGTCCCTGAGACTCTCCTGTGCAGCCTCTGGATCCACCT
TTAGCAGCTATGCCATGAGCTGGGTCCGCCAGGCTCCAGGGAAGGGGCTGGAGTGGGTCTC
AGCTATTAGTGGTAGTGGTAGCACATACTACGCAGACTCCGTGAAGGGCCGGTTCACC
ATCTCCAGAGACAATTCCAAGAACACGCTGTATCTGCAAATGAACAGCCTGAGAGCCGAGG
ACACGGCCGTATATTACTGTGCGACAAACTCCCTTTACTGGTACTTCGATCTCTGGGGCCG
TGGCACCCTGGTCACTGTCTCAGCTAGC (sec. con núm. de ident.:277)
QVQLKQSGPGLVQPSQSLSITCTVSGFSLTNYGVHWVRQSPGKGLEWLGVIWSGGNTDYNT
PFTSRLSINKDNSKSQVFFKMNSLQSQDTAIYYCARALTYYDYEFAYWGQGTLVTVSAAST

(continuación)

(sec. con núm. de ident.:278)

5

10

15

20

25

30

35

40

45

50

55

60

65

Anticuerpo multiespecífico anti-EGFR C225v5-Anti-CTLA-4: Cadena ligera

CAGATCTTGCTGACCCAGAGCCCGGTGATTCTGAGCGTGAGCCCGGGCGAACGTGTGAGCT CGGCAGCCGCGCCTGCTGATTAAATATGCGAGCGAAAGCATTAGCGGCATTCCGAGCCGC ATATTGCGGATTATTATTGCCAGCAGAACAACAGCTGGCCGACCACCTTTGGCGCGGGCAC CAAACTGGAACTGAAACGTACGGTGGCTGCACCATCTGTCTTCATCTTCCCGCCATCTGAT GAGCAGTTGAAATCTGGAACTGCCTCTGTTGTGTGTGCCTGCTGAATAACTTCTATCCCAGAG AGGCCAAAGTACAGTGGAAGGTGGATAACGCCCTCCAATCGGGTAACTCCCAGGAGAGTGT CACAGAGCAGGACAGGACAGCACCTACAGCCTCAGCAGCACCCTGACGCTGAGCAAA GCAGACTACGAGAAACACAAAGTCTACGCCTGCGAAGTCACCCATCAGGGCCTGAGCTCGC CCGTCACAAAGAGCTTCAACAGGGGAGAGTGTGGAGGTGGAGGTGGCGGTTCAGG CTCTGGCGGAGGCTCAGGTGGTGGAGGATCAGGCGGAGGTGAAATTGTGTTGACACAGTCT CCAGGCACCCTGTCTTTGTCTCCAGGGGAAAGAGCCACCCTCTCCTGCAGGGCCAGTCAGA GTGTTAGCAGCAGCTACTTAGCCTGGTACCAGCAGAAACCTGGCCAGGCTCCCAGGCTCCT CATCTATGGTGCATCCAGCAGGGCCACTGGCATCCCAGACAGGTTCAGTGGCAGTGGGTCT GGGACAGACTTCACCATCAGCAGACTGGAGCCTGAAGATTTTGCAGTGTATTACT GTCAGCAGTATGGTAGCTCACCGCTCACTTTCGGCGGAGGGACCAAGGTGGAAATCAAACG TTCCGGAGGGTCGACCATAACTTCGTATAATGTATACTATACGAAGTTATCCTCGAGCGGT ACCCAGGTGCAGCTGGTGCAGACTGGGGGGGGGGGTGGTCCAGCCTGGGAGGTCCCTGAGAC TCTCCTGTGCAGCCTCTGGATCCACCTTTAGCAGCTATGCCATGAGCTGGGTCCGCCAGGC TCCAGGGAAGGGGCTGGAGTGGGTCTCAGCTATTAGTGGTAGTGGTGGTAGCACATACTAC GCAGACTCCGTGAAGGGCCGGTTCACCATCTCCAGAGACAATTCCAAGAACACGCTGTATC TGCAAATGAACAGCCTGAGAGCCGAGGACACGGCCGTATATTACTGTGCGACAAACTCCCT TTACTGGTACTTCGATCTCTGGGGCCGTGGCACCCTGGTCACTGTCTCTTCAGCTAGC (sec. con núm. de ident.:279)

(continuación)

Anticuerpo activable multiespecífico anti-EGFR - Anti-CTLA-4 3954-1204-C225v5-CTLA-4: Cadena ligera

CAAGGCCAGTCTGGCCAGTGCATCTCACCTCGTGGTTGTCCGGACGGCCCATACGTCATGT ACGGCTCGAGCGGTGGCAGCGGTGGCTCTGGTGGATCCGGTCTGAGCGGCCGTTCCGATAA TCATGCAGTAGCGGTACCCAGATCTTGCTGACCCAGAGCCCGGTGATTCTGAGCGTGAGC TAGCGGCATTCCGAGCCGCTTTAGCGGCAGCGGCAGCGGCACCGATTTTACCCTGAGCATT AACAGCGTGGAAAGCGAAGATATTGCGGATTATTATTGCCAGCAGAACAACAACTGGCCGA CCACCTTTGGCGCGGCACCAAACTGGAACTGAAACGTACGGTGGCTGCACCATCTGTCTT CATCTTCCCGCCATCTGATGAGCAGTTGAAATCTGGAACTGCCTCTGTTGTGTGCCTGCTG AATAACTTCTATCCCAGAGAGGCCAAAGTACAGTGGAAGGTGGATAACGCCCTCCAATCGG CACCCTGACGCTGAGCAAAGCAGACTACGAGAAACACAAAGTCTACGCCTGCGAAGTCACC CATCAGGGCCTGAGCTCGCCCGTCACAAAGAGCTTCAACAGGGGAGAGTGTGGAGGTGGAT CTGGAGGTGGCGGTTCAGGCTCTGGCGGAGGCTCAGGTGGTGGAGGATCAGGCGGAGGTGA AATTGTGTTGACACAGTCTCCAGGCACCCTGTCTTTGTCTCCAGGGGAAAGAGCCACCCTC TCCTGCAGGGCCAGTCAGAGTGTTAGCAGCAGCTACTTAGCCTGGTACCAGCAGAAACCTG GCCAGGCTCCCAGGCTCCTCATCTATGGTGCATCCAGCAGGGCCACTGGCATCCCAGACAG GTTCAGTGGCAGTGGGTCTGGGACAGACTTCACTCTCACCATCAGCAGACTGGAGCCTGAA GATTTTGCAGTGTATTACTGTCAGCAGTATGGTAGCTCACCGCTCACTTTCGGCGGAGGGA CCAAGGTGGAAATCAAACGTTCCGGAGGGTCGACCATAACTTCGTATAATGTATACTATAC GAAGTTATCCTCGAGCGGTACCCAGGTGCAGCTGGTGCAGACTGGGGGAGGCGTGGTCCAG CCTGGGAGGTCCCTGAGACTCTCCTGTGCAGCCTCTGGATCCACCTTTAGCAGCTATGCCA TGAGCTGGGTCCGCCAGGCTCCAGGGAAGGGGCTGGAGTGGGTCTCAGCTATTAGTGGTAG TGGTGGTAGCACATACTACGCAGACTCCGTGAAGGGCCGGTTCACCATCTCCAGAGACAAT TCCAAGAACACGCTGTATCTGCAAATGAACAGCCTGAGAGCCGAGGACACGGCCGTATATT ACTGTGCGACAACTCCCTTTACTGGTACTTCGATCTCTGGGGCCGTGGCACCCTGGTCAC TGTCTCTTCAGCTAGC (sec. con núm. de ident.:281)

60

5

10

15

20

25

30

35

40

45

50

55

(continuación)

Ejemplo 1: Preparación de anticuerpos multiespecíficos

5

10

15

25

35

40

45

50

55

60

65

20 Este ejemplo demuestra la construcción, expresión y purificación de anticuerpos multiespecíficos anti-Jagged - CD3, anti-Jagged - CTLA-4, anti-EGFR - CD3 y anti-EGFR - CTLA-4.

Se usaron vectores para expresar la cadena pesada anti-Jagged (4D11v2), la cadena ligera 5342-1204-4D11v2, la cadena pesada anti-EGFR C225v5 y las secuencias de la cadena ligera 3954-1204-C225v5 mostradas anteriormente. Tales vectores se describen en las solicitudes pendientes de los documentos de la patente núm. WO 2013/163631, presentada el 26 de abril de 2013 (titulada "Activatable Antibodies That Bind Epidermal Growth Factor Receptor And Methods Of Use Thereon") y el documento WO 2013/192550, presentao el 21 de Junio de 2013 (titulada "Anti-Jagged Antibodies, Activatable

30 Anti-Jagged Antibodies and Methods of Use Thereof), cuyos contenidos se incorporan en la presente descripción como referencia en su totalidad.

Los Vectores se digirieron con las enzimas de restricción Nhel y Notl y el fragmento del vector se aisló mediante electroforesis en gel. Los insertos se prepararon de la siguiente manera. El fragmento de IgG CH2CH3 humano se amplificó en la reacción 1, a partir de Pop Hygro 4D11v2 con el uso del cebador HCForNhe (Tabla 8, sec. con núm. de ident.: 3) y el cebador HCRevOL (Tabla 8, sec. con núm. de ident.: 4), CTLA-4 scFv se amplificó en la reacción 2, a partir de CTLA-4 scFv cDNA (sec. con núm. de ident.: 229) con el uso del cebador CTRevNot (Tabla 8, sec. con núm. de ident.: 1) y el cebador CTForOL (Tabla 8, sec. con núm. de ident.: 2), OKT3 scFv se amplificó en la reacción 3, a partir de OKT3 scFv cDNA (sec. con núm. de ident.: 231) con el uso del cebador OKRevNot (Tabla 8, sec. con núm. de ident.: 5) y el cebador CTForOL (Tabla 8, sec. con núm. de ident.: 2). Se prepararon las fusiones de IgG, CH2CH3/CTLA-4 scFv humano combinando 10% de la reacción 1, 10% de la reacción 2, y amplificando con los cebadores, HCForNhe y CTRevNot.

Tabla 8. Secuencias del cebador

Cebador	Secuencia de ácido nucleico	Sec. con núm. de ident.
CTRevNot	TCGAGCGGCCGCTCAACTAGCTGAAGAGACAGTG	Sec. con núm. de ident.:
CTForOL	GCCCTCTAGACTCGATCTAGCTAGCTGAAGAGAC AGTGACCAGG	Sec. con núm. de ident.: 2
HCForNhe	CTCAGCTAGCACCAGGGCCCATCGGTC	Sec. con núm. de ident.:
HCRevOL	CTTTACCCGGAGACAGGGAGAGGCTCTTCTGC	Sec. con núm. de ident.:
OKRevNot	CTCGAGCGGCCGCTCAACGATTAATTTCCAGTTTG	Sec. con núm. de ident.: 5

Después de la amplificación, el ADN resultante se digirió con las enzimas de restricción Nhel y Notl y el ADN de fusión CH2CH3/CTLA-4 scFv se aisló mediante electroforesis en gel. Se prepararon las fusiones de IgG, CH2CH3/OKT3 scFv humano combinando 10% de la reacción 1, 10% de la reacción 3, y amplificando con los cebadores, HCForNhe y CTRevNot. Después de la amplificación, el ADN resultante se digirió con las enzimas de restricción Nhel y Notl y el ADN de fusión CH2CH3/CTLA-4 scFv se aisló mediante electroforesis en gel.

Para insertar los fragmentos CH2CH3/scFv en los vectores de expresión, las siguientes combinaciones mostradas en la Tabla 9 se ligaron durante la noche con ADN T4 ligasa (Invitrogen Inc., Carlsbad, CA). Después de la ligación, el ADN se transformó en la cepa MC106 de E. coli y se seleccionó para la resistencia a la ampicilina. La secuencia de ADN identificó clones que contienen inserciones de ADN que codifican los anticuerpos multiespecíficos o anticuerpos activables multiespecíficos correctos, y se preparó el ADN para la transfección de células de mamíferos.

Tabla 9: Reacciones de ligación

5

30

35

40

45

50

10	1 μl de cadena pesada de anti-Jagged (4D11ν2) digerido con Nhe/Notl	10 μl de lgG humana digerido con Nhe/Notl, ADN de fusión CH2CH3/CTLA scFv
	1 μl de cadena pesada de anti-Jagged (4D11ν2) digerido con Nhe/Notl	10 μl de lgG humana digerido con Nhe/Notl, ADN de fusión CH2CH3/OKT3 scFv
15	1 μl de cadena pesada 5342-1204-4D11v2 digerida con Nhe/Notl	10 μ l de lgG humana digerido con Nhe/Notl, ADN de fusión CH2CH3/CTLA scFv
	1 μl de cadena pesada 5342-1204-4D11v2 digerida con Nhe/Notl	10 μl de lgG humana digerido con Nhe/Notl, ADN de fusión CH2CH3/OKT3 scFv
20	1 μl de cadena pesada de anti-EGFR (C225v5) digerido con Nhe/Notl	10 μl de lgG humana digerido con Nhe/Notl, ADN de fusión CH2CH3/CTLA scFv
	1 μl de cadena pesada de anti-EGFR (C225v5) digerido con Nhe/Notl	10 μl de lgG humana digerido con Nhe/Notl, ADN de fusión CH2CH3/OKT3 scFv
25	1 μl 3954-1204-C225v5 digerido con Nhe/NotI	10 μl de lgG humana digerido con Nhe/Notl, ADN de fusión CH2CH3/CTLA scFv
	1 μl 3954-1204-C225v5 digerido con Nhe/Notl	10 μl de lgG humana digerido con Nhe/Notl, ADN de fusión CH2CH3/OKT3 scFv

Ejemplo 2: Producción de anticuerpos multiespecíficos y anticuerpos activables multiespecíficos

Se expresaron IgG completamente humanas a partir de células HEK-293 transfectadas transitoriamente. La cotransfección con vectores de expresión de cadena pesada y cadena ligera distintas, mostrados en la Tabla 10, permitió la expresión de los anticuerpos activables multiespecíficos.

Tabla 10

Número de Transfección	Vector de cadena ligera	Vector de cadena pesada
1	anti-EGFR C225v5 LC	C225v5-OKT3 HC
2	3954-1204-C225v5 LC	C225v5-OKT3 HC
3	C225v5 LC	C225v5-CTLA HC
4	3954-1204-C225v5 LC	C225v5-CTLA HC
5	anti-Jagged 4D11v2 LC	4D11v2-OKT3 HC
6	5342-1204-4D11v2 LC	4D11v2-OKT3 HC
7	4D11v2 LC	4D11v2-CTLA HC
8	5342-1204-4D11v2 LC	4D11v2-CTLA HC

Los anticuerpos multiespecíficos y los anticuerpos activables multiespecíficos expresados en las células HEK-293 se purificaron mediante cromatografía de Proteína A.

- 55 Ensayos de Unión: Como se muestra en la Figura 11, los experimentos de unión por ELISA revelaron que los anticuerpos multiespecíficos anti-Jagged-CTLA-4 y anti-Jagged-OKT3 y los anticuerpos multiespecíficos activables se unen a Jagged 1 humano, y los anticuerpos multiespecíficos anti-EGFR-CTLA-4 y anti-EGFR-OKT3 y los anticuerpos activables multiespecíficos se unen específicamente a EGFR humano.
- Jagged 1-Fc humano (R&D Systems; núm. de catálogo 1277-JG-050) y EGFR humano (R&D Systems, núm. de catálogo 60 344-ER-050) se adsorbieron en diferentes pocillos de una placa de ELISA de 96 pocillos. Se aplicaron a la placa los anticuerpos anti-Jagged-CTLA y anti-Jagged-OKT3, anti-EGFR-CTLA o anti-EGFR-OKT3 purificados y se dejaron unir. El anticuerpo unido se visualizó con un conjugado de anti-IgG humano con HRP (Fab specific, Sigma, St Louis, MO; núm. de catálogo A0293-1ML) y se desarrolló con el sustrato cromogénico TMB.

Como se muestra en las Figuras 12A y 12B, los experimentos de unión por ELISA revelaron que anti-Jagged-CTLA-4 y anti-EGFR-CTLA-4 se unen específicamente tanto a CTLA-4 humano como de ratón (el anti-CTLA-4 humano reacciona de forma cruzada tanto con CTLA-4 de ratón como humano): Ya sea CTLA-4 humano (R&D Systems; núm. de catálogo 325-CT-200/CF) o CTLA-4 de ratón (R&D Systems, núm. de catálogo 434-CT-200/CF) se adsorbieron en los pocillos de las placas de ELISA de 96 pocillos por separado. El anti-Jagged 4D11v2-CTLA-4 purificado, el anticuerpo activable anti-Jagged 5342-1204-4D11v2-CTLA-4, el anti-EGFR C225v5-CTLA-4 o anticuerpo activable 3954-1204-C225v5-CTLA-4 se aplicaron a la placa y dejaron unir. El anticuerpo unido se visualizó con un conjugado de anti-IgG humano con HRP (Fab specific, Sigma, St Louis, MO; núm. de catálogo A0293-1ML) y se desarrolló con el sustrato cromogénico TMB. La especificidad de la unión se demostró por la incapacidad de las fusiones del anticuerpo-OKT3, específicas para CD3ɛ humano, de unirse.

Ejemplo 3: OWT3 que se une a CD3 E

Como se muestra en la Figura 13, los experimentos de unión por ELISA revelaron que el anticuerpo activable multiespecífico anti-EGFR 3954-1204-C225v5-OKT3 y el anticuerpo activable multiespecífico anti-Jagged 5342-1204-4D11v2-OKT3 se unen específicamente a CD3ε humano. CD3ε humano (NovoProtein, núm. de catálogo C578) se absorbió en los pocillos de una placa ELISA de 96 pocillos. Anticuerpo activable multiespecífico purificado anti-EGFR 3954-1204-C225v5-OKT3, anticuerpo activable multiespecífico anti-Jagged 5342-1204-4D11v2-CTLA-4 o anticuerpo activable multiespecífico anti-Jagged 5342-1204-4D11v2-OKT3 se aplicó a la placa y se dejó unir. El anticuerpo unido se visualizó con un conjugado de anti-IgG humano con HRP (Fab specific, Sigma, St Louis, MO; núm. de catálogo A0293-1ML) y se desarrolló con el sustrato cromogénico TMB.

Ejemplo 4: Activación de la proteasa de los anticuerpos activables mutiespecíficos.

Activación

10

15

20

25

30

45

50

55

60

65

Anticuerpos multiespecíficos y anticuerpos activables multiespecíficos se diluyeron en PBS hasta una concentración final de 0,8 mg/ml. Se añadió uPA humana recombinante (R&D Systems, catálogo 1310-SE) a una concentración final de 700 nM y se incubó a 37°C durante ~20 h. Las alícuotas digeridas se eliminaron y se prepararon para el análisis por SDS-PAGE como se describe más abajo, y se diluyeron en PBS 100 nM; Tween20 al 0,05% y albúmina de suero bovino 10 mg/mL para su análisis en ensayos de ELISA de unión.

Para el PAGE, las muestras se desnaturalizaron a 70°C durante 10 min en tampón de muestra LDS 1 x y se añadió TCEP hasta una concentración final de 40 mM antes de la electroforesis. Se cargaron seis µg de anticuerpo en un gel Bis-Tris NuPAGE al 10% (Invitrogen) y las proteínas se separaron por tamaño con el uso del tampón de electroforesis MOPS. Después de la electroforesis, el gel se tiñó con azul de Coomassie y los resultados se muestran en la Figura 14. El cambio en la movilidad de las cadenas ligeras del anticuerpo activable anti-EGFR 3954-1204-C225v5, anticuerpo activable multiespecífico anti-EGFR 3954-1204-C225v5-CTLA-4, anticuerpo activable anti-Jagged 5342-1204-4D11v2 y anticuerpo activable multiespecífico anti-Jagged 5342-1204-4D11v2-CTLA-4, en presencia de uPA, demuestran la activación proteolítica de los anticuerpos activables multiespecíficos. La carencia de cualquier cambio en la movilidad de las fusiones de cadena pesada demuestra la resistencia a la escisión de la proteasa.

Ensayos de Unión

El Panel A en la Figura 15 muestra que el anticuerpo activable multiespecífico anti-EGFR 3954-1204-C225v5-CTLA-4 se unió a EGFR, mediante ELISA, con menor afinidad (Kd = 12,8 nM) en comparación con C225v5 (3 nM) o con C225v5-CTLA-4 (0,33 nM). Sin embargo, una vez activado por uPA, el anticuerpo activable multiespecífico anti-EGFR 3954-1204-C225v5-CTLA-4 se unió a EGFR con afinidad similar (0,45 nM) en comparación con C225v5 (0,21 nM) y C225v5-CTLA4 (0,33 nM). Es importante destacar que uPA no escindió el anti-CTLA4 scFv fusionado al extremo carboxilo de la cadena pesada: Como se ilustra en el panel B de la Figura 15, el tratamiento con uPA no tuvo ningún efecto de unión a CTLA4 humano.

De manera similar, el anticuerpo multiespecífico activable anti-Jagged 5342-1204-4D11v2-CTLA-4 se unió a Jagged 1 humano, mediante ELISA, con menor afinidad (15 nM) en comparación con 4D11v2 (0,44 nM) o 4D11v2-CTLA4 (0,77 nM). Una vez activado, el anticuerpo activable multiespecífico anti-Jagged 5342-1204-4D11v2-CTLA-4 se unió a Jagged 1 humano con afinidad similar a 4D11v2 (0,54 nM) y 4D11v2-CTLA4 (0,92 nM) (Figura 15, panel C). El tratamiento con uPA no tuvo efecto sobre la unión a CTLA4 (Figura 15, panel D). Las mediciones de unión a ELISA se realizaron de la siguiente manera. Jagged 1-Fc humano (R&D Systems; núm. de catálogo 1277-JG-050), EGFR humano (R&D Systems, núm. de catálogo 344-ER-050) o CTLA4 humano (R&D Systems; núm. de catálogo 325-CT-200/CF) se adsorbieron en los pocillos de una placa de ELISA de 96 pocillos. Se aplicaron a la placa diluciones triples, comenzando a 100 nM, de anticuerpos no tratados y tratados con uPA, anticuerpos multiespecíficos o anticuerpos activables multiespecíficos y se les dejó asociarse con el antígeno unido a la placa durante 1 hora. Tras la unión, el anticuerpo unido se visualizó con un conjugado de anti-lgG humano con HRP (Fab specific, Sigma, St Louis, MO; núm. de catálogo A0293-1ML) y se desarrolló con el sustrato cromogénico TMB.

Ejemplo 5: Secuencias de anticuerpos multiespecíficos y anticuerpos activables multiespecíficos adicionales

Este ejemplo proporciona las secuencias de anticuerpos multiespecíficos adicionales y anticuerpos activables multiespecíficos.

5 Anticuerpo OKT3m scFv

10

15

20

25

30

35

45

50

55

60

Secuencia de aminoácidos

QVQLQQSGAELARPGASVKMSCKASGYTFTRYTMHWVKQRPGQGLEWIGYINPSRGYTNYN QKFKDKATLTTDKSSSTAYMQLSSLTSEDSAVYYCARYYDDHYSLDYWGQGTTLTVSSGGG GSGGGGGGGGQIVLTQSPAIMSASPGEKVTMTCSASSSVSYMNWYQQKSGTSPKRWIYD TSKLASGVPAHFRGSGSGTSYSLTISGMEAEDAATYYCQQWSSNPFTFGSGTKLEINR

(sec. con núm. de ident.:306)

Secuencia de nucleótidos

CAGGTTCAGCTGCAGCAGAGCGGTGCAGAACTGGCACGTCCGGGTGCAAGCGTTAAAATGA
GCTGTAAAGCAAGCGGTTATACCTTTACCCGTTATACCATGCATTGGGTTAAACAGCGTCC
GGGTCAGGGTCTGGAATGGATTGGTTATATCAATCCGAGCCGTGGTTATACCAACTACAAC
CAGAAATTCAAAGATAAAGCAACCCTGACCACCGATAAAAGCAGCAGCACCGCCTATATGC
AGCTGAGCAGCCTGACCTCAGAGGATAGCGCAGTTTATTACTGTGCACGCTATTATGATGA
TCACTATAGCCTGGATTATTGGGGTCAGGGCACCACCCTGACCGTTAGCAGCGGTGGTGGT
GGTAGTGGTGGCGGTGGTTCAGGCGGTGGCGGTAGCCAGATTGTTCTGACCCAGAGTCCGG
CAATTATGAGCGCAAGTCCGGGTGAAAAAGTTACCATGACCTGTAGCGCCAGCAGCAGCGT
TAGCTATATGAATTGGTATCAGCAGAAAAAGCTGCACCCGAAACGTTGGATTTATGAT
ACCAGCAAACTGGCAAGCGGTGTTCCGGCACATTTTCGTGGTAGCGGTAGCGGCACCTCAT
ATAGCCTGACCATTAGCGGTATGGAAGCAGAAGATGCAGCAACCTATTATTGTCAGCAGTG
GTCAAGCAATCCGTTTACCTTTGGTAGTGGCACCAAACTGGAAATTAATCGT
(sec. con núm. de ident.:307)

40 Anticuerpo OKT3m scFv Lv

Secuencia de aminoácidos

QIVLTQSPAIMSASPGEKVTMTCSASSSVSYMNWYQQKSGTSPKRWIYDTSKLASGVPAHF RGSGSGTSYSLTISGMEAEDAATYYCQQWSSNPFTFGSGTKLEINR +

(sec. con núm. de ident.:308)

Secuencia de nucleótidos

CAGATTGTTCTGACCCAGAGTCCGGCAATTATGAGCGCAAGTCCGGGTGAAAAAGTTACCA
TGACCTGTAGCGCCAGCAGCAGCGTTAGCTATATGAATTGGTATCAGCAGAAAAGCGGCAC
CAGCCCGAAACGTTGGATTTATGATACCAGCAAACTGGCAAGCGGTGTTCCGGCACATTTT
CGTGGTAGCGGTAGCGGCACCTCATATAGCCTGACCATTAGCGGTATGGAAGCAGAAGATG
CAGCAACCTATTATTGTCAGCAGTGGTCAAGCAATCCGTTTACCTTTGGTAGTGGCACCAA
ACTGGAAATTAATCGT (sec. con núm. de ident.:309)

Anticuerpo OKT3m scFv Hv

Secuencia de aminoácidos

QVQLQQSGAELARPGASVKMSCKASGYTFTRYTMHWVKQRPGQGLEWIGYINPSRGYTNYN
QKFKDKATLTTDKSSSTAYMQLSSLTSEDSAVYYCARYYDDHYSLDYWGQGTTLTVSS

(sec. con núm. de ident.:310)

Secuencia de nucleótidos

5

10

15

25

30

35

40

45

50

55

CAGGTTCAGCTGCAGCAGAGCGGTGCAGAACTGGCACGTCCGGGTGCAAGCGTTAAAATGA
GCTGTAAAGCAAGCGGTTATACCTTTACCCGTTATACCATTGCATTGGGTTAAACAGCGTCC
GGGTCAGGGTCTGGAATGGATTGGTTATATCAATCCGAGCCGTGGTTATACCAACTACAAC
CAGAAATTCAAAGATAAAGCAACCCTGACCACCGATAAAAGCAGCAGCACCGCCTATATGC
AGCTGAGCAGCCTGACCTCAGAGGATAGCGCAGTTTATTACTGTGCACGCTATTATGATGA
TCACTATAGCCTGGATTATTGGGGTCAGGGCACCACCCTGACCGTTAGCAGC

(sec. con núm. de ident.:311)

GA (sec. con núm. de ident.:291)

20 El anticuerpo OKT3m scFv con enlazador largo para unirse al extremo C ya sea de la cadena pesada (HC) o de la cadena ligera (LC) de un anticuerpo o anticuerpo activable para producir un anticuerpo multiespecífico o un anticuerpo activable, respectivamente

Secuencia de aminoácidos

GGGSGGGGSGGGGGGGGGQVQLQQSGAELARPGASVKMSCKASGYTFTRYTMHWVK QRPGQGLEWIGYINPSRGYTNYNQKFKDKATLTTDKSSSTAYMQLSSLTSEDSAVYYCARY YDDHYSLDYWGQGTTLTVSSGGGGSGGGGGGGGGGGQIVLTQSPAIMSASPGEKVTMTCSAS SSVSYMNWYQQKSGTSPKRWIYDTSKLASGVPAHFRGSGSGTSYSLTISGMEAEDAATYYC QQWSSNPFTFGSGTKLEINR* (sec. con núm. de ident.:290)

Secuencia de nucleótidos

GGAGGTGGATCTGGAGGTGGCGGTTCAGGCTCTGGCGGAGGCTCAGGTGGAGGATCAG
GCGGAGGTCAGGTTCAGCTGCAGCAGAGCGGTGCAGAACTGGCACGTCCGGGTGCAAGCGT
TAAAATGAGCTGTAAAGCAAGCGGTTATACCTTTACCCGTTATACCATTGGGTTAAA
CAGCGTCCGGGTCAGGGTCTGGAATGGATTGGTTATATCAATCCGAGCCGTGGTTATACCA
ACTACAACCAGAAATTCAAAGATAAAGCAACCCTGACCACCGATAAAAAGCAGCAGCACCGC
CTATATGCAGCTGAGCAGCCTGACCTCAGAGGATAGCGCAGTTTATTACTGTGCACGCTAT
TATGATGATCACTATAGCCTGGATTATTGGGGTCAGGGCACCACCCTGACCGTTAGCAGCG
GTGGTGGTGGTAGTGGTGGCGGTGGTTCAGGCGGTAGCCAGATTGTTCTGACCCA
GAGTCCGGCAATTATGAGCGCAAGTCCGGGTGAAAAAGTTACCATGACCTGTAGCGCCAGC
AGCAGCGTTAGCTATATGAATTGGTATCAGCAGAAAAAGCGCCCCGAAACGTTGGA
TTTATGATACCAGCAAACTGGCAAGCGGTGTTCCGGCACATTTTCGTGGTAGCGGTAGCGG
CACCTCATATAGCCTGACCATTAGCGGTATGGAAGCAGAACGTATTATTGT
CAGCAGTGGTCAAGCAAATCCGTTTACCTTTGGTAGTGGCACCAAACTGGAAATTAATCGTT

El anticuerpo OKT3m scFv con/ enlazador corto para unirse al extremo N del HC de un anticuerpo o anticuerpo activable para producir un anticuerpo multiespecífico o un anticuerpo activable respectivamente

Secuencia de aminoácidos

65

QVQLQQSGAELARPGASVKMSCKASGYTFTRYTMHWVKQRPGQGLEWIGYINPSRGYTNYN QKFKDKATLTTDKSSSTAYMQLSSLTSEDSAVYYCARYYDDHYSLDYWGQGTTLTVSSGGG GSGGGGGGGGGQUVLTQSPAIMSASPGEKVTMTCSASSSVSYMNWYQQKSGTSPKRWIYD TSKLASGVPAHFRGSGSGTSYSLTISGMEAEDAATYYCQQWSSNPFTFGSGTKLEINRGGG GS (sec. con núm. de ident.:292)

Secuencia de nucleótidos

CAGGTTCAGCTGCAGCAGAGCGGTGCAGAACTGGCACGTCCGGGTGCAAGCGTTAAAATGA
GCTGTAAAGCAAGCGGTTATACCTTTACCCGTTATACCATGCATTGGGTTAAACAGCGTCC
GGGTCAGGGTCTGGAATGGATTGGTTATATCAATCCGAGCCGTGGTTATACCAACTACAAC
CAGAAATTCAAAGATAAAGCAACCCTGACCACCGATAAAAGCAGCAGCACCGCCTATATGC
AGCTGAGCAGCCTGACCTCAGAGGATAGCGCAGTTTATTACTGTGCACGCTATTATGATGA
TCACTATAGCCTGGATTATTGGGGTCAGGGCACCACCCTGACCGTTAGCAGCGGTGGTGGT
GGTAGTGGTGGCGGTGGTTCAGGCGGTGGCGGTAGCCAGATTGTTCTGACCCAGAGTCCGG
CAATTATGAGCGCAAGTCCGGGTGAAAAAGTTACCATGACCTGTAGCGCCAGCAGCAGCT
TAGCTATATGAATTGGTATCAGCAGAAAAAGCTTCGTGGTAGCGGTAGCGGCACCTCAT
ACCAGCAAACTGGCAAGCGGTGTTCCGGCACATTTTCGTGGTAGCGGTAGCGGCACCTCAT
ATAGCCTGACCATTAGCGGTATGGAAGCAGAAGATGCAGCAACCTATTATTGTCAGCAGTG
GTCAAGCAATCCGTTTACCTTTGGTAGTGGCACCAAACTGGAAATTAATCGTGGAGGTGGT
GGATCC (sec. con núm. de ident.:293)

Cadena pesada del anticuerpo multiespecífico C225v5-OKT3m-H-N (anticuerpo OKT3m unido al extremo N del anticuerpo C225v5 HC)

Secuencia de aminoácidos

QVQLQQSGAELARPGASVKMSCKASGYTFTRYTMHWVKQRPGQGLEWIGYINPSRGYTNYN QKFKDKATLTTDKSSSTAYMQLSSLTSEDSAVYYCARYYDDHYSLDYWGQGTTLTVSSGGG GSGGGGGGGGGGVULTQSPAIMSASPGEKVTMTCSASSSVSYMNWYQQKSGTSPKRWIYD TSKLASGVPAHFRGSGSGTSYSLTISGMEAEDAATYYCQQWSSNPFTFGSGTKLEINRGGG GSQVQLKQSGPGLVQPSQSLSITCTVSGFSLTNYGVHWVRQSPGKGLEWLGVIWSGGNTDY NTPFTSRLSINKDNSKSQVFFKMNSLQSQDTAIYYCARALTYYDYEFAYWGQGTLVTVSAA STKGPSVFPLAPSSKSTSGGTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGL YSLSSVVTVPSSSLGTQTYICNVNHKPSNTKVDKKVEPKSCDKTHTCPPCPAPELLGGPSV FLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTYR VVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSREEMTKNQ VSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVF SCSVMHEALHNHYTQKSLSLSPGK* (sec. con núm. de ident.:294)

Secuencia de nucleótidos

	CAGGTTCAGCTGCAGCAGAGCGGTGCAGAACTGGCACGTCCGGGTGCAAGCGTTAAAATGA
	GCTGTAAAGCAAGCGGTTATACCTTTACCCGTTATACCATGCATTGGGTTAAACAGCGTCC
5	GGGTCAGGGTCTGGAATGGATTGGTTATATCAATCCGAGCCGTGGTTATACCAACTACAAC
	CAGAAATTCAAAGATAAAGCAACCCTGACCACCGATAAAAGCAGCAGCACCGCCTATATGC
	AGCTGAGCAGCCTGACCTCAGAGGATAGCGCAGTTTATTACTGTGCACGCTATTATGATGA
10	TCACTATAGCCTGGATTATTGGGGTCAGGGCACCCCTGACCGTTAGCAGCGGTGGTGGT
10	GGTAGTGGTGGCGGTTCAGGCGGTGGCGGTAGCCAGATTGTTCTGACCCAGAGTCCGG
	CAATTATGAGCGCAAGTCCGGGTGAAAAAGTTACCATGACCTGTAGCGCCAGCAGCAGCGT
	TAGCTATATGAATTGGTATCAGCAGAAAAGCGGCACCAGCCCGAAACGTTGGATTTATGAT
15	ACCAGCAAACTGGCAAGCGGTGTTCCGGCACATTTTCGTGGTAGCGGTAGCGGCACCTCAI
	ATAGCCTGACCATTAGCGGTATGGAAGCAGAAGATGCAGCAACCTATTATTGTCAGCAGTG
	GTCAAGCAATCCGTTTACCTTTGGTAGTGGCACCAAACTGGAAATTAATCGTGGAGGTGGI
20	GGATCCCAGGTGCAGCTGAAACAGAGCGGCCCGGGCCTGGTGCAGCCGAGCCAGAGCCTGA
	GCATTACCTGCACCGTGAGCGGCTTTAGCCTGACCAACTATGGCGTGCATTGGGTGCGCCA
	GAGCCCGGGCAAAGGCCTGGAATGGCTGGGCGTGATTTGGAGCGGCGGCAACACCGATTAT
25	AACACCCGTTTACCAGCCGCCTGAGCATTAACAAAGATAACAGCAAAAGCCAGGTGTTTT
	TTAAAATGAACAGCCTGCAAAGCCAGGATACCGCGATTTATTATTGCGCGCGC
	CTATTATGATTATGAATTTGCGTATTGGGGCCAGGGCACCCTGGTGACCGTGAGCGCGGCT
30	AGCACCAAGGGCCCATCGGTCTTCCCCCTGGCACCCTCCTAAGAGCACCTCTGGGGGCA
	CAGCGGCCCTGGGCTGCCTGGTCAAGGACTACTTCCCCGAACCGGTGACGGTGTCGTGGAA
	CTCAGGCGCCCTGACCAGCGGCGTGCACACCTTCCCGGCTGTCCTACAGTCCTCAGGACTC
35	TACTCCCTCAGCAGCGTGGTGACCGTGCCCTCCAGCAGCTTGGGCACCCAGACCTACATCT
	GCAACGTGAATCACAAGCCCAGCAACACCAAGGTGGACAAGAAAGTTGAGCCCAAATCTTG
	TGACAAAACTCACACATGCCCACCGTGCCCAGCACCTGAACTCCTGGGGGGACCGTCAGTC
40	TTCCTCTTCCCCCCAAAACCCAAGGACACCCTCATGATCTCCCGGACCCCTGAGGTCACAT
	GCGTGGTGGTGGACGTGAGCCACGAAGACCCTGAGGTCAAGTTCAACTGGTACGTGGACGG
	CGTGGAGGTGCATAATGCCAAGACAAAGCCGCGGGAGGAGCAGTACAACAGCACGTACCGT
45	GTGGTCAGCGTCCTGCACCAGGACTGGCTGAATGGCAAGGAGTACAAGTGCA
40	AGGTCTCCAACAAAGCCCTCCCAGCCCCCATCGAGAAAACCATCTCCAAAGCCAAAGGGCA
	GCCCGAGAACCACAGGTGTACACCCTGCCCCCATCCCGGGAGGAGATGACCAAGAACCAG
50	GTCAGCCTGACCTGCCTGGTCAAAGGCTTCTATCCCAGCGACATCGCCGTGGAGTGGGAGA
30	GCAATGGGCAGCCGGAGAACAACTACAAGACCACGCCTCCCGTGCTGGACTCCGACGGCTC
	CTTCTTCCTCTACAGCAAGCTCACCGTGGACAAGAGCAGGTGGCAGCAGGGGAACGTCTTC
	TCATGCTCCGTGATGCATGAGGCTCTGCACAACCACTACACGCAGAAGAGCCTCTCCCTGT
55	CTCCGGGTAAATGA (sec. con núm. de ident.:295)

Cadena pesada del anticuerpo multiespecífico C225v5-OKT3m-H-C (anticuerpo OKT3m unido al extremo C del anticuerpo C225v5 HC)

60 Secuencia de aminoácidos

	QVQLKQSGPGLVQPSQSLSITCTVSGFSLTNYGVHWVRQSPGKGLEWLGVIWSGGNTDYNT
	PFTSRLSINKDNSKSQVFFKMNSLQSQDTAIYYCARALTYYDYEFAYWGQGTLVTVSAAST
5	KGPSVFPLAPSSKSTSGGTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYS
	LSSVVTVPSSSLGTQTYICNVNHKPSNTKVDKKVEPKSCDKTHTCPPCPAPELLGGPSVFL
	FPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVV
10	SVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSREEMTKNQVS
	LTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSC
	SVMHEALHNHYTQKSLSLSPGKGGGSGGGGGGGGGGGGGGGGQVQLQQSGAELARPGA
15	SVKMSCKASGYTFTRYTMHWVKQRPGQGLEWIGYINPSRGYTNYNQKFKDKATLTTDKSSS
	TAYMQLSSLTSEDSAVYYCARYYDDHYSLDYWGQGTTLTVSSGGGGSGGGGGGGGGGQIVL
	TQSPAIMSASPGEKVTMTCSASSSVSYMNWYQQKSGTSPKRWIYDTSKLASGVPAHFRGSG
20	SGTSYSLTISGMEAEDAATYYCQQWSSNPFTFGSGTKLEINR*(sec. con núm. de ident.:296
	Secuencia de nucleótidos
25	
30	

	CAGGTGCAGCTGAAACAGAGCGGCCCGGGCCTGGTGCAGCCCAGAGCCTGAGCATTA
	CCTGCACCGTGAGCGGCTTTAGCCTGACCAACTATGGCGTGCATTGGGTGCGCCAGAGCCC
5	GGGCAAAGGCCTGGAATGGCTGGGCGTGATTTGGAGCGGCGGCAACACCGATTATAACACC
	CCGTTTACCAGCCGCCTGAGCATTAACAAAGATAACAGCAAAAGCCAGGTGTTTTTTAAAA
	TGAACAGCCTGCAAAGCCAGGATACCGCGATTTATTATTGCGCGCGC
10	TGATTATGAATTTGCGTATTGGGGCCAGGGCACCCTGGTGACCGTGAGCGCGGCTAGCAC
10	AAGGGCCCATCGGTCTTCCCCCTGGCACCCTCCTCCAAGAGCACCTCTGGGGGCACAGCGC
	CCCTGGGCTGCCTGGTCAAGGACTACTTCCCCGAACCGGTGACGGTGTCGTGGAACTCAG
45	CGCCCTGACCAGCGGCGTGCACACCTTCCCGGCTGTCCTACAGTCCTCAGGACTCTACTCC
15	CTCAGCAGCGTGGTGACCGTGCCCTCCAGCAGCTTGGGCACCCAGACCTACATCTGCAACC
	TGAATCACAAGCCCAGCAACACCAAGGTGGACAAGAAGTTGAGCCCAAATCTTGTGACAA
	AACTCACACATGCCCACCGTGCCCAGCACCTGAACTCCTGGGGGGACCGTCAGTCTTCCTC
20	TTCCCCCAAAACCCAAGGACACCCTCATGATCTCCCGGACCCCTGAGGTCACATGCGTGC
	$\tt TGGTGGACGTGAGCCACGAAGACCCTGAGGTCAAGTTCAACTGGTACGTGGACGGCGTGGACGGCGTGGAGGGGGGGG$
	GGTGCATAATGCCAAGACAAAGCCGCGGGAGGAGCAGTACAACAGCACGTACCGTGTGGTC
25	AGCGTCCTCACCGTCCTGCACCAGGACTGGCTGAATGGCAAGGAGTACAAGTGCAAGGTCT
	CCAACAAAGCCCTCCCAGCCCCCATCGAGAAAACCATCTCCAAAGCCAAAGGGCAGCCCC
	AGAACCACAGGTGTACACCCTGCCCCCATCCCGGGAGGAGATGACCAAGAACCAGGTCAG
30	CTGACCTGCCTGGTCAAAGGCTTCTATCCCAGCGACATCGCCGTGGAGTGGGAGAGCAATC
	GGCAGCCGGAGAACAACTACAAGACCACGCCTCCCGTGCTGGACTCCGACGGCTCCTTCTT
	CCTCTACAGCAAGCTCACCGTGGACAAGAGCAGGTGGCAGCAGGGGAACGTCTTCTCATGC
35	TCCGTGATGCATGAGGCTCTGCACAACCACTACACGCAGAAGAGCCTCTCCCTGTCTCCGC
	GTAAAGGAGGTGGATCTGGAGGTGGCGGTTCAGGCTCTGGCGGAGGCTCAGGTGGTGGAGC
	ATCAGGCGGAGGTCAGGTTCAGCTGCAGCAGAGCGGTGCAGAACTGGCACGTCCGGGTGCA
40	AGCGTTAAAATGAGCTGTAAAGCAAGCGGTTATACCTTTACCCGTTATACCATGCATTGGC
	$\tt TTAAACAGCGTCCGGGTCAGGGTCTGGAATGGATTGGTTATATCAATCCGAGCCGTGGTTATATCAATCA$
	TACCAACTACAACCAGAAATTCAAAGATAAAGCAACCCTGACCACCGATAAAAGCAGCAG
45	ACCGCCTATATGCAGCTGAGCCTGACCTCAGAGGATAGCGCAGTTTATTACTGTGCAG
40	GCTATTATGATGATCACTATAGCCTGGATTATTGGGGTCAGGGCACCACCCTGACCGTTAC
	CAGCGGTGGTGGTAGTGGTGGCGGTGGTTCAGGCGGTGGCGGTAGCCAGATTGTTCTC
E0	ACCCAGAGTCCGGCAATTATGAGCGCAAGTCCGGGTGAAAAAGTTACCATGACCTGTAGCG
50	CCAGCAGCGCTTAGCTATATGAATTGGTATCAGCAGAAAAGCGGCACCAGCCCGAAACG
	TTGGATTTATGATACCAGCAAACTGGCAAGCGGTGTTCCGGCACATTTTCGTGGTAGCGGT
	AGCGGCACCTCATATAGCCTGACCATTAGCGGTATGGAAGCAGAAGATGCAGCAACCTATT
55	AGCGGCACCTCATATAGCCTGACCATTAGCGGTATGGAAGCAGAAGATGCAGCAACCTATT ATTGTCAGCAGTGGTCAAGCAATCCGTTTACCTTTGGTAGTGGCACCAAACTGGAAATTAA
	TCGTTGA (sec. con núm. de ident.:297)

Cadena ligera del anticuerpo multiespecífico C225v5-OKT3m-L-C (anticuerpo OKT3m unido al C-terminal del anticuerpo C225v5 LC)

Secuencia de aminoácidos

DILLTQSPVILSVSPGERVSFSCRASQSIGTNIHWYQQRTNGSPRLLIKYASESISGIPSR
PSGSGSGTDFTLSINSVESEDIADYYCQQNNNWPTTFGAGTKLELKRTVAAPSVFIFPPSD
EQLKSGTASVVCLLNNFYPREAKVQWKVDNALQSGNSQESVTEQDSKDSTYSLSSTLTLSK
ADYEKHKVYACEVTHQGLSSPVTKSFNRGECGGGSGGGGSGGGGGGGGGGGGQVQLQQS
GAELARPGASVKMSCKASGYTFTRYTMHWVKQRPGQGLEWIGYINPSRGYTNYNQKFKDKA
TLTTDKSSSTAYMQLSSLTSEDSAVYYCARYYDDHYSLDYWGQGTTLTVSSGGGGSGGGS
GGGGSQIVLTQSPAIMSASPGEKVTMTCSASSSVSYMNWYQQKSGTSPKRWIYDTSKLASG
VPAHFRGSGSGTSYSLTISGMEAEDAATYYCQQWSSNPFTFGSGTKLEINR*

(sec. con núm. de ident.:298)

Secuencia de nucleótidos

5

10

15

20

25

30

35

40

45

50

55

GACATCTTGCTGACCCAGAGCCCGGTGATTCTGAGCGTGAGCCCGGGCGAACGTGTGAGCT CGGCAGCCCGCGCCTGCTGATTAAATATGCGAGCGAAAGCATTAGCGGCATTCCGAGCCGC TTTAGCGGCAGCGGCAGCGGCACCGATTTTACCCTGAGCATTAACAGCGTGGAAAGCGAAG ATATTGCGGATTATTATTGCCAGCAGAACAACAGCTGGCCGACCACCTTTGGCGCGGGCAC CAAACTGGAACTGAAACGTACGGTGGCTGCACCATCTGTCTTCATCTTCCCGCCATCTGAT GAGCAGTTGAAATCTGGAACTGCCTCTGTTGTGTGCCTGCTGAATAACTTCTATCCCAGAG AGGCCAAAGTACAGTGGAAGGTGGATAACGCCCTCCAATCGGGTAACTCCCAGGAGAGTGT CACAGAGCAGGACAGCAAGGACACCTACAGCCTCAGCAGCACCCTGACGCTGAGCAAA GCAGACTACGAGAAACACAAAGTCTACGCCTGCGAAGTCACCCATCAGGGCCTGAGCTCGC CCGTCACAAAGAGCTTCAACAGGGGAGAGTGTGGAGGTGGATCTGGAGGTGGCGGTTCAGG CTCTGGCGGAGGCTCAGGTGGTGGAGGATCAGGCGGAGGTCAGGTTCAGCTGCAGCAGAGC CCTTTACCCGTTATACCATGCATTGGGTTAAACAGCGTCCGGGTCAGGGTCTGGAATGGAT TGGTTATATCAATCCGAGCCGTGGTTATACCAACTACAACCAGAAATTCAAAGATAAAGCA ACCCTGACCACCGATAAAAGCAGCAGCACCGCCTATATGCAGCTGAGCAGCCTGACCTCAG AGGATAGCGCAGTTTATTACTGTGCACGCTATTATGATGATCACTATAGCCTGGATTATTG GGGTCAGGGCACCACCCTGACCGTTAGCAGCGGTGGTGGTGGTAGTGGTGGCGGTGGTTCA GGCGGTGGCGGTAGCCAGATTGTTCTGACCCAGAGTCCGGCAATTATGAGCGCAAGTCCGG GTGAAAAAGTTACCATGACCTGTAGCGCCAGCAGCGGTTAGCTATATGAATTGGTATCA GCAGAAAAGCGGCACCAGCCCGAAACGTTGGATTTATGATACCAGCAAACTGGCAAGCGGT GTTCCGGCACATTTTCGTGGTAGCGGTAGCGGCACCTCATATAGCCTGACCATTAGCGGTA TGGAAGCAGAAGATGCAGCAACCTATTATTGTCAGCAGTGGTCAAGCAATCCGTTTACCTT TGGTAGTGGCACCAAACTGGAAATTAATCGTTAG (sec. con núm. de ident.:299)

Cadena pesada del anticuerpo multiespecífico C225v5 (N297Q)-OKT3m-H-N

Secuencia de aminoácidos

60

	QVQLQQSGAELARPGASVKMSCKASGYTFTRYTMHWVKQRPGQGLEWIGYINPSRGYTNYN
	QKFKDKATLTTDKSSSTAYMQLSSLTSEDSAVYYCARYYDDHYSLDYWGQGTTLTVSSGGG
5	GSGGGGSGGGSQIVLTQSPAIMSASPGEKVTMTCSASSSVSYMNWYQQKSGTSPKRWIYD
	TSKLASGVPAHFRGSGSGTSYSLTISGMEAEDAATYYCQQWSSNPFTFGSGTKLEINRGGG
	GSQVQLKQSGPGLVQPSQSLSITCTVSGFSLTNYGVHWVRQSPGKGLEWLGVIWSGGNTDY
10	NTPFTSRLSINKDNSKSQVFFKMNSLQSQDTAIYYCARALTYYDYEFAYWGQGTLVTVSAA
.0	STKGPSVFPLAPSSKSTSGGTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGL
	YSLSSVVTVPSSSLGTQTYICNVNHKPSNTKVDKKVEPKSCDKTHTCPPCPAPELLGGPSV
15	FLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQYQSTYR
13	VVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSREEMTKNQ
	VSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVF
00	SCSVMHEALHNHYTQKSLSLSPGK* (sec. con núm. de ident.:300)
20	Secuencia de nucleótidos
	CAGGTTCAGCTGCAGCAGAGCGGTGCAGAACTGGCACGTCCGGGTGCAAGCGTTAAAATGA

CAGGTTCAGCTGCAGCAGAGCGGTGCAGAACTGGCACGTCCGGGTGCAAGCGTTAAAATGA
GCTGTAAAGCAAGCGGTTATACCTTTACCCGTTATACCATGCATTGGGTTAAACAGCGTCC
GGGTCAGGGTCTGGAATGGATTGGTTATATCAATCCGAGCCGTGGTTATACCAACTACAAC
CAGAAATTCAAAGATAAAGCAACCCTGACCACCGATAAAAGCAGCAGCACCGCCTATATGC
AGCTGAGCAGCCTGACCTCAGAGGATAGCGCAGCTTTATTACTGTGCACGCTATTATGATGA
TCACTATAGCCTGGATTATTGGGGTCAGGGCACCACCCTGACCGTTAGCAGCGGTGGTGGT

GGTAGTGGTGGCGGTGGTTCAGGCGGTGGCGGTAGCCAGATTGTTCTGACCCAGAGTCCGG CAATTATGAGCGCAAGTCCGGGTGAAAAAGTTACCATGACCTGTAGCGCCAGCAGCAGCGT TAGCTATATGAATTGGTATCAGCAGAAAAGCGGCACCAGCCCGAAACGTTGGATTTATGAT ACCAGCAAACTGGCAAGCGGTGTTCCGGCACATTTTCGTGGTAGCGGTAGCGGCACCTCAT ATAGCCTGACCATTAGCGGTATGGAAGCAGAAGATGCAGCAACCTATTATTGTCAGCAGTG GTCAAGCAATCCGTTTACCTTTGGTAGTGGCACCAAACTGGAAATTAATCGTGGAGGTGGT GGATCCCAGGTGCAGCTGAAACAGAGCGGCCCGGGCCTGGTGCAGCCGAGCCAGAGCCTGA GCATTACCTGCACCGTGAGCGGCTTTAGCCTGACCAACTATGGCGTGCATTGGGTGCGCCA GAGCCCGGCCAAAGGCCTGGAATGGCTGGCGTGATTTGGAGCGGCGGCAACACCGATTAT AACACCCGTTTACCAGCCGCCTGAGCATTAACAAAGATAACAGCAAAAGCCAGGTGTTTT CTATTATGATTATGAATTTGCGTATTGGGGCCAGGGCACCCTGGTGACCGTGAGCGCGGCT AGCACCAAGGGCCCATCGGTCTTCCCCCTGGCACCCTCCTCCAAGAGCACCTCTGGGGGCA CAGCGGCCCTGGGCTGGTCAAGGACTACTTCCCCGAACCGGTGACGGTGTCGTGGAA CTCAGGCGCCTGACCAGCGCGTGCACACCTTCCCGGCTGTCCTACAGTCCTCAGGACTC TACTCCCTCAGCAGCGTGGTGACCGTGCCCTCCAGCAGCTTGGGCACCCAGACCTACATCT GCAACGTGAATCACAAGCCCAGCAACACCAAGGTGGACAAGAAAGTTGAGCCCAAATCTTG TGACAAAACTCACACGTGCCCACCGTGCCCAGCACCTGAACTCCTGGGGGGACCGTCAGTC TTCCTCTTCCCCCAAAACCCAAGGACACCCTCATGATCTCCCGGACCCCTGAGGTCACAT GCGTGGTGGACGTGAGCCACGAAGACCCTGAGGTCAAGTTCAACTGGTACGTGGACGG CGTGGAGGTGCATAATGCCAAGACAAAGCCGCGGGAGGAGCAGTACCAGAGCACGTACCGT GTGGTCAGCGTCCTCACCGTCCTGCACCAGGACTGGCTGAATGGCAAGGAGTACAAGTGCA AGGTCTCCAACAAGCCCTCCCAGCCCCCATCGAGAAAACCATCTCCAAAGCCAAAGGGCA GCCCGAGAACCACAGGTGTACACCCTGCCCCATCCGGGAGGAGATGACCAAGAACCAG GTCAGCCTGACCTGCCTGGTCAAAGGCTTCTATCCCAGCGACATCGCCGTGGAGTGGGAGA GCAATGGGCAGCCGGAGAACAACTACAAGACCACGCCTCCCGTGCTGGACTCCGACGGCTC CTTCTTCCTCTACAGCAAGCTCACCGTGGACAAGAGCAGGTGGCAGCAGGGGAACGTCTTC TCATGCTCCGTGATGCATGAGGCTCTGCACAACCACTACACGCAGAAGAGCCTCTCCCTGT CTCCGGGTAAATGA (sec. con núm. de ident.:301)

Cadena pesada del anticuerpo multiespecífico C225v5(N297Q)-OKT3m-H-C

Secuencia de aminoácidos

QVQLKQSGPGLVQPSQSLSITCTVSGFSLTNYGVHWVRQSPGKGLEWLGVIWSGGNTDYNT PFTSRLSINKDNSKSOVFFKMNSLOSODTAIYYCARALTYYDYEFAYWGOGTLVTVSAAST

60

5

10

15

20

25

30

35

40

45

50

55

Secuencia de nucleótidos

5

10

15

20

25

30

35

40

45

50

CAGGTGCAGCTGAAACAGAGCGGCCCGGGCCTGGTGCAGCCGAGCCAGAGCCTGAGCATTA CCTGCACCGTGAGCGGCTTTAGCCTGACCAACTATGGCGTGCATTGGGTGCGCCAGAGCCC GGGCAAAGGCCTGGAATGGCTGGGCGTGATTTGGAGCGGCGGCAACACCGATTATAACACC CCGTTTACCAGCCGCCTGAGCATTAACAAGATAACAGCAAAAGCCAGGTGTTTTTTAAAA TGATTATGAATTTGCGTATTGGGGCCAGGGCACCCTGGTGACCGTGAGCGCGGCTAGCACC AAGGGCCCATCGGTCTTCCCCCTGGCACCCTCCTCCAAGAGCACCTCTGGGGGCACAGCGG CCCTGGGCTGCCTGGTCAAGGACTACTTCCCCGAACCGGTGACGGTGTCGTGGAACTCAGG CGCCTGACCAGCGGCGTGCACACCTTCCCGGCTGTCCTACAGTCCTCAGGACTCTACTCC $\tt CTCAGCAGCGTGGTGACCGTGCCCTCCAGCAGCTTGGGCACCCAGACCTACATCTGCAACG$ TGAATCACAAGCCCAGCAACACCAAGGTGGACAAGAAAGTTGAGCCCAAATCTTGTGACAA AACTCACACATGCCCACCGTGCCCAGCACCTGAACTCCTGGGGGGACCGTCAGTCTTCCTC TTCCCCCCAAAACCCAAGGACACCCTCATGATCTCCCGGACCCCTGAGGTCACATGCGTGG TGGTGGACGTGAGCCACGAAGACCCTGAGGTCAAGTTCAACTGGTACGTGGACGGCGTGGA GGTGCATAATGCCAAGACAAAGCCGCGGGAGGAGCAGTACCAGAGCACGTACCGTGTGGTC AGCGTCCTCACCGTCCTGCACCAGGACTGGCTGAATGGCAAGGAGTACAAGTGCAAGGTCT CCAACAAAGCCTCCCAGCCCCCATCGAGAAAACCATCTCCAAAGCCAAAGGGCAGCCCCG AGAACCACAGGTGTACACCCTGCCCCCATCCCGGGAGGAGATGACCAAGAACCAGGTCAGC CTGACCTGCCTGGTCAAAGGCTTCTATCCCAGCGACATCGCCGTGGAGTGGGAGAGCAATG GGCAGCCGGAGACAACTACAAGACCACGCCTCCCGTGCTGGACTCCGACGGCTCCTTCTT CCTCTACAGCAAGCTCACCGTGGACAAGAGCAGGTGGCAGCAGGGGAACGTCTTCTCATGC TCCGTGATGCATGAGGCTCTGCACACCACTACACGCAGAAGAGCCTCTCCCTGTCTCCGG

55

60

GTAAAGGAGGTGGATCTGGAGGTGGCGGTTCAGGCTCTGGCGGAGGCTCAGGTGGTGGAGG ATCAGGCGGAGGTCAGGTTCAGCTGCAGCAGAGCGGTGCAGAACTGGCACGTCCGGGTGCA AGCGTTAAAATGAGCTGTAAAGCAAGCGGTTATACCTTTACCCGTTATACCATGCATTGGG TTAAACAGCGTCCGGGTCAGGGTCTGGAATGGATTGGTTATATCAATCCGAGCCGTGGTTA 5 TACCAACTACAACCAGAAATTCAAAGATAAAGCAACCCTGACCACCGATAAAAGCAGCAGC ACCGCCTATATGCAGCTGAGCAGCCTGACCTCAGAGGATAGCGCAGTTTATTACTGTGCAC GCTATTATGATGATCACTATAGCCTGGATTATTGGGGTCAGGGCACCACCCTGACCGTTAG 10 CAGCGGTGGTGGTGGTGGTGGCGGTGGTTCAGGCGGTGGCGGTAGCCAGATTGTTCTG ACCCAGAGTCCGGCAATTATGAGCGCAAGTCCGGGTGAAAAAGTTACCATGACCTGTAGCG CCAGCAGCAGCGTTAGCTATATGAATTGGTATCAGCAGAAAAGCGGCACCAGCCCGAAACG 15 TTGGATTTATGATACCAGCAAACTGGCAAGCGGTGTTCCGGCACATTTTCGTGGTAGCGGT AGCGGCACCTCATATAGCCTGACCATTAGCGGTATGGAAGCAGAAGATGCAGCAACCTATT ATTGTCAGCAGTGGTCAAGCAATCCGTTTACCTTTGGTAGTGGCACCAAACTGGAAATTAA TCGTTGA (sec. con núm. de ident.:303) 20 Cadena ligera de anticuerpo multiespecífico C225v5 (N297Q)-OKT3m-L-C Secuencia de aminoácidos DILLTQSPVILSVSPGERVSFSCRASQSIGTNIHWYQQRTNGSPRLLIKYASESISGIPSR 25 FSGSGSGTDFTLSINSVESEDIADYYCQQNNNWPTTFGAGTKLELKRTVAAPSVFIFPPSD EQLKSGTASVVCLLNNFYPREAKVQWKVDNALQSGNSQESVTEQDSKDSTYSLSSTLTLSK ADYEKHKVYACEVTHQGLSSPVTKSFNRGECGGGSGGGGSGGGGGGGGGGGQVQLQQS 30 GAELARPGASVKMSCKASGYTFTRYTMHWVKQRPGQGLEWIGYINPSRGYTNYNQKFKDKA TLTTDKSSSTAYMQLSSLTSEDSAVYYCARYYDDHYSLDYWGQGTTLTVSSGGGGSGGGGS GGGGSQIVLTQSPAIMSASPGEKVTMTCSASSSVSYMNWYQQKSGTSPKRWIYDTSKLASG 35 VPAHFRGSGSGTSYSLTISGMEAEDAATYYCQQWSSNPFTFGSGTKLEINR*

Secuencia de nucleótidos

(sec. con núm. de ident.:298)

55

40

45

50

60

GAGCAGTTGAAATCTGGAACTGCCTCTGTTGTTGTGCCTGCTGAATAACTTCTATCCCAGAG AGGCCAAAGTACAGTGGAAGGTGGATAACGCCCTCCAATCGGGTAACTCCCAGGAGAGTGT CACAGAGCAGGACAGGACAGCACCTACAGCCTCAGCAGCACCCTGACGCTGAGCAAA GCAGACTACGAGAAACACAAAGTCTACGCCTGCGAAGTCACCCATCAGGGCCTGAGCTCGC CCGTCACAAAGAGCTTCAACAGGGGAGAGTGTGGAGGTGGATCTGGAGGTGGCGGTTCAGG CTCTGGCGGAGGCTCAGGTGGTGGAGGATCAGGCGGAGGTCAGCTTCAGCTGCAGCAGAGC CCTTTACCCGTTATACCATGCATTGGGTTAAACAGCGTCCGGGTCAGGGTCTGGAATGGAT TGGTTATATCAATCCGAGCCGTGGTTATACCAACTACAACCAGAAATTCAAAGATAAAGCA ACCCTGACCACCGATAAAAGCAGCAGCACCGCCTATATGCAGCTGAGCAGCCTGACCTCAG AGGATAGCGCAGTTTATTACTGTGCACGCTATTATGATGATCACTATAGCCTGGATTATTG GGGTCAGGGCACCACCCTGACCGTTAGCAGCGGTGGTGGTGGTAGTGGTGGCGGTGGTTCA GGCGGTGGCGGTAGCCAGATTGTTCTGACCCAGAGTCCGGCAATTATGAGCGCAAGTCCGG GTGAAAAAGTTACCATGACCTGTAGCGCCAGCAGCGGTTAGCTATATGAATTGGTATCA GCAGAAAAGCGGCACCAGCCCGAAACGTTGGATTTATGATACCAGCAAACTGGCAAGCGGT GTTCCGGCACATTTTCGTGGTAGCGGTAGCGGCACCTCATATAGCCTGACCATTAGCGGTA TGGAAGCAGAAGATGCAGCAACCTATTATTGTCAGCAGTGGTCAAGCAATCCGTTTACCTT TGGTAGTGGCACCAAACTGGAAATTAATCGTTAG (sec. con núm. de ident.:299)

Cadena pesada del anticuerpo C225v5(N297Q)

Secuencia de aminoácidos

QVQLKQSGPGLVQPSQSLSITCTVSGFSLTNYGVHWVRQSPGKGLEWLGVIWSGGNTDYNT PFTSRLSINKDNSKSQVFFKMNSLQSQDTAIYYCARALTYYDYEFAYWGQGTLVTVSAAST KGPSVFPLAPSSKSTSGGTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYS LSSVVTVPSSSLGTQTYICNVNHKPSNTKVDKKVEPKSCDKTHTCPPCPAPELLGGPSVFL FPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQYQSTYRVV SVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSREEMTKNQVS LTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSC SVMHEALHNHYTQKSLSLSPGK* (sec. con núm. de ident.:336)

Secuencia de nucleótidos

CAGGTGCAGCTGAAACAGAGCGGCCCGGGCCTGGTGCAGCCGAGCCAGAGCCTGAGCATTA CCTGCACCGTGAGCGGCTTTAGCCTGACCAACTATGGCGTGCATTGGGTGCGCCAGAGCCC GGGCAAAGGCCTGGAATGGCTGGGCGTGATTTGGAGCGGCGGCAACACCGATTATAACACC

60

55

5

10

15

20

25

30

35

40

45

50

CCGTTTACCAGCCGCCTGAGCATTAACAAAGATAACAGCAAAAGCCAGGTGTTTTTTAAAA TGATTATGAATTTGCGTATTGGGGCCAGGGCACCCTGGTGACCGTGAGCGCGGCTAGCACC AAGGGCCCATCGGTCTTCCCCCTGGCACCCTCCTCCAAGAGCACCTCTGGGGGCACAGCGG CCCTGGGCTGCCTGGTCAAGGACTACTTCCCCGAACCGGTGACGGTGTCGTGGAACTCAGG CGCCCTGACCAGCGGCGTGCACACCTTCCCGGCTGTCCTACAGTCCTCAGGACTCTACTCC CTCAGCAGCGTGGTGACCGTGCCCTCCAGCAGCTTGGGCACCCAGACCTACATCTGCAACG TGAATCACAAGCCCAGCAACACCAAGGTGGACAAGAAGTTGAGCCCAAATCTTGTGACAA AACTCACACATGCCCACCGTGCCCAGCACCTGAACTCCTGGGGGGACCGTCAGTCTTCCTC TTCCCCCAAAACCCAAGGACACCTCATGATCTCCCGGACCCCTGAGGTCACATGCGTGG TGGTGGACGTGAGCCACGAAGACCCTGAGGTCAAGTTCAACTGGTACGTGGACGGCGTGGA GGTGCATAATGCCAAGACAAAGCCGCGGGAGGAGCAGTACCAGAGCACGTACCGTGTGGTC AGCGTCCTCACCGTCCTGCACCAGGACTGGCTGAATGGCAAGGAGTACAAGTGCAAGGTCT CCAACAAAGCCCTCCCAGCCCCCATCGAGAAAACCATCTCCAAAGCCAAAGGGCAGCCCCG AGAACCACAGGTGTACACCCTGCCCCCATCCCGGGAGGAGATGACCAAGAACCAGGTCAGC CTGACCTGCCTGGTCAAAGGCTTCTATCCCAGCGACATCGCCGTGGAGTGGGAGAGCAATG GGCAGCCGGAGAACAACTACAAGACCACGCCTCCCGTGCTGGACTCCGACGGCTCCTTCTT CCTCTACAGCAAGCTCACCGTGGACAAGAGCAGGTGGCAGCAGGGGAACGTCTTCTCATGC TCCGTGATGCATGAGGCTCTGCACAACCACTACACGCAGAAGAGCCTCTCCCTGTCTCCGG GTAAATGA (sec. con núm. de ident.:337)

Cadena ligera del anticuerpo activable 3954-1204-C225v5

Secuencia de aminoácidos

QGQSGQCISPRGCPDGPYVMYGSSGGSGGSGGSGLSGRSDNHGSSGTQILLTQSPVILSVS PGERVSFSCRASQSIGTNIHWYQQRTNGSPRLLIKYASESISGIPSRFSGSGSGTDFTLSI NSVESEDIADYYCQQNNNWPTTFGAGTKLELKRTVAAPSVFIFPPSDEQLKSGTASVVCLL NNFYPREAKVQWKVDNALQSGNSQESVTEQDSKDSTYSLSSTLTLSKADYEKHKVYACEVT HQGLSSPVTKSFNRGEC* (sec. con núm. de ident.:304)

45 Secuencia de nucleótidos

55

50

5

10

15

20

25

30

35

40

60

TAGCGGCATTCCGAGCCGCTTTAGCGGCAGCGGCAGCGGCACCGATTTTACCCTGAGCATT AACAGCGTGGAAAGCGAAGATATTGCGGATTATTATTGCCAGCAGAACAACAGCTGGCCGA 5 CCACCTTTGGCGCGGGCACCAAACTGGAACTGAAACGTACGGTGGCTGCACCATCTGTCTT CATCTTCCCGCCATCTGATGAGCAGTTGAAATCTGGAACTGCCTCTGTTGTGTGCCTGCTG AATAACTTCTATCCCAGAGAGGCCAAAGTACAGTGGAAGGTGGATAACGCCCTCCAATCGG 10 GTAACTCCCAGGAGAGTGTCACAGAGCAGGACAGCAAGGACACCTACAGCCTCAGCAG CACCCTGACGCTGAGCAAAGCAGACTACGAGAAACACAAAGTCTACGCCTGCGAAGTCACC CATCAGGGCCTGAGCTCGCCCGTCACAAAGAGCTTCAACAGGGGAGAGTGTGGAGGTGGAT 15 CTGGAGGTGGCGGTTCAGGCTCTGGCGGAGGCTCAGGTGGTGGAGGATCAGGCGGAGGTCA GGTTCAGCTGCAGCAGAGCGGTGCAGAACTGGCACGTCCGGGTGCAAGCGTTAAAATGAGC TGTAAAGCAAGCGGTTATACCTTTACCCGTTATACCATGCATTGGGTTAAACAGCGTCCGG 20 GTCAGGGTCTGGAATGGTTATATCAATCCGAGCCGTGGTTATACCAACTACAACCA GAAATTCAAAGATAAAGCAACCCTGACCACCGATAAAAGCAGCACCGCCTATATGCAG CTGAGCAGCCTGACCTCAGAGGATAGCGCAGTTTATTACTGTGCACGCTATTATGATGATC 25 ACTATAGCCTGGATTATTGGGGTCAGGGCACCACCCTGACCGTTAGCAGCGGTGGTGGTGG TAGTGGTGGCGGTGCTTCAGGCGGTGGCGGTAGCCAGATTGTTCTGACCCAGAGTCCGGCA ATTATGAGCGCAAGTCCGGGTGAAAAAGTTACCATGACCTGTAGCGCCAGCAGCAGCGTTA 30 GCTATATGAATTGGTATCAGCAGAAAAGCGGCACCAGCCCGAAACGTTGGATTTATGATAC CAGCAAACTGGCAAGCGGTGTTCCGGCACATTTTCGTGGTAGCGGTAGCGGCACCTCATAT AGCCTGACCATTAGCGGTATGGAAGCAGAAGATGCAGCAACCTATTATTGTCAGCAGTGGT CAAGCAATCCGTTTACCTTTGGTAGTGGCACCAAACTGGAAATTAATCGTTAG 35 (sec. con núm. de ident.:305)

Anticuerpo activable multiespecífico 3954-1204-C225v5-OKT3m-H-N, que comprende el plásmido de cadena ligera 3954-1204-C225 y el plásmido de cadena pesada C225v5-OKT3m-H-N.

Cadena ligera del anticuerpo C225v5

Secuencia de aminoácidos

DILLTQSPVILSVSPGERVSFSCRASQSIGTNIHWYQQRTNGSPRLLIKYASESISGIPSR FSGSGSGTDFTLSINSVESEDIADYYCQQNNNWPTTFGAGTKLELKRTVAAPSVFIFPPSD EQLKSGTASVVCLLNNFYPREAKVQWKVDNALQSGNSQESVTEQDSKDSTYSLSSTLTLSK ADYEKHKVYACEVTHQGLSSPVTKSFNRGEC* (sec. con núm. de ident.:314)

50 Secuencia de nucleótidos

55

40

45

60

GACATCTTGCTGACCCAGAGCCCGGTGATTCTGAGCGTGAGCCCGGGCGAACGTGTGAGCT 5 CGGCAGCCGCGCCTGCTGATTAAATATGCGAGCGAAAGCATTAGCGGCATTCCGAGCCGC TTTAGCGGCAGCGGCACCGATTTTACCCTGAGCATTAACAGCGTGGAAAGCGAAG 10 ATATTGCGGATTATTATTGCCAGCAGAACAACAGCCGACCACCTTTGGCGGGGCAC CAAACTGGAACTGAAACGTACGGTGGCTGCACCATCTGTCTTCATCTTCCCGCCATCTGAT GAGCAGTTGAAATCTGGAACTGCCTCTGTTGTGTGCCTGCTGAATAACTTCTATCCCAGAG 15 AGGCCAAAGTACAGTGGAAGGTGGATAACGCCCTCCAATCGGGTAACTCCCAGGAGAGTGT CACAGAGCAGGACAGCACGCACCTACAGCCTCAGCACCCTGACGCTGAGCAAA GCAGACTACGAGAAACACAAAGTCTACGCCTGCGAAGTCACCCATCAGGGCCTGAGCTCGC 20 CCGTCACAAAGAGCTTCAACAGGGGAGAGTGTGGAGGTGGATCTGGAGGTGGCGGTTCAGG CTCTGGCGGAGGCTCAGGTGGTGGAGGATCAGGCGGAGGTCAGGTTCAGCTGCAGCAGAGC 25 TGGTTATATCAATCCGAGCCGTGGTTATACCAACTACAACCAGAAATTCAAAGATAAAGCA ACCCTGACCACCGATAAAAGCAGCAGCACCGCCTATATGCAGCTGAGCAGCCTGACCTCAG 30 AGGATAGCGCAGTTTATTACTGTGCACGCTATTATGATGATCACTATAGCCTGGATTATTG GGGTCAGGGCACCACCCTGACCGTTAGCAGCGGTGGTGGTGGTAGTGGTGGCGGTGGTTCA GGCGGTGGCGGTAGCCAGATTGTTCTGACCCAGAGTCCGGCAATTATGAGCGCAAGTCCGG GTGAAAAAGTTACCATGACCTGTAGCGCCAGCAGCAGCGTTAGCTATATGAATTGGTATCA 35 GCAGAAAAGCGGCACCAGCCCGAAACGTTGGATTTATGATACCAGCAAACTGGCAAGCGGT GTTCCGGCACATTTTCGTGGTAGCGGTAGCGGCACCTCATATAGCCTGACCATTAGCGGTA TGGAAGCAGAAGATGCAGCAACCTATTATTGTCAGCAGTGGTCAAGCAATCCGTTTACCTT 40 TGGTAGTGGCACCAAACTGGAAATTAATCGTTAG (sec. con núm. de ident.:315)

La Tabla 11 muestra ejemplos de apareamiento de secuencias de cadena pesada (HC) y cadena ligera (LC) para producir un anticuerpo multiespecífico o anticuerpo activable multiespecífico de la descripción. Como se usa en la presente descripción cuando se hace referencia a cadenas ligeras, las cadenas ligeras de anticuerpos que comprenden C225v5 se denominan también cadenas ligeras que comprenden C225.

65

60

45

50

Tabla 11. Anticuerpos multiespecíficos y anticuerpos activables multiespecíficos de la descripción

Nombre de la proteína	Pares de Plásmidos (nucleótidos) para la transfección
C225v5-OKT3m-H-N	HC C225v5-OKT3m-H-N
	LC C225
G225v5-OKT3m-H-C	HC C225v5-OKT3m-H-C
	LC C225
C225v5-OKT3m-L-C	HC C225v5
	LC C225-OKT3m-L-C
3954-1204-C225v5-OKT3m-H-N	HC C225v5-OKT3m-H-N
	LC C225-3954-1204
3954-1204-C225v5-OKT3m-H-C	HC C225v5-OKT3m-H-C
	LC C225-3954-1204
C225v5-N297Q-OKT3m-H-N	HC C225v5-N297Q-OKT3m-H-N
	LC C225
C225v5-N297Q-OKT3m-H-C	HC C225y5-N297Q-OKT3m-H-C
	LC C225
C225v5-N297Q-OKT3m-L-C	HC C225v5-N297Q
	LC C225-OKT3m-L-C
3954-1204-C225v5-N297Q-OKT3m-H-N	HC C225v5-N297O-OKT3m-H-N
	LC C225-3954-1204
3954-1204-C225v5-N297Q-OKT3m-H-C	HC C225v5-N297Q-OKT3m-H-C
	LC C225-3954-1204
3954-1204-C225v5-N297CI-OKT3m-L-C	HC C225v5-N297Q
	LC C225-3954-1204-OKT3m-L-C

vS se refiere a la versión 5 de C225

Ejemplo 6: Unión de anticuerpos multiespecíficos a CD3ε en células T Jurkat

Este ejemplo demuestra la capacidad de los anticuerpos multiespecíficos de la descripción para unirse a las células T.

Se probaron tres formatos de anticuerpos multiespecíficos: (1) C225v5-OKT3m-HN, un anticuerpo multiespecífico en el que un OKT3m scFv (que se une a CD3ɛ (también denominado en la presente descripción CD3e y CD3) en células T) se unió al extremo N-terminal de la cadena pesada del anticuerpo anti-EGFR C225v5; (2) C225v5-OKT3m-H-C, un anticuerpo multiespecífico al que se unió un OKT3m scFv al extremo C de la cadena pesada del anticuerpo anti-EGFR C225v5; y (3) C225v5-OKT3m-L-C, un anticuerpo multiespecífico al que se unió un OKT3m scFv al extremo C de la cadena ligera del anticuerpo anti-EGFR C225v5. Las secuencias de aminoácidos de estos anticuerpos multiespecíficos se proporcionan en la presente descripción, al igual que las secuencias de aminoácidos de los anticuerpos C225v5 y OKT3. También se probó un control de isotipo, a saber, control de isotipo IgG₁ humano, Enzo, catálogo ALX-804-133-C100.

Para determinar si los tres formatos de anticuerpos multiespecíficos pueden unirse a las células T Jurkat positivas a CD3ε (también denominadas en la presente descripción células Jurkat y Jurkats), se realizó un ensayo de unión basado en citometría de flujo. Se cultivaron las células T Jurkat (Clon E6-1, ATCC, TIB-152) en RPMI-1640 con GlutaMAX™ (Life Technologies, Catálogo 72400-120), suero Bovino Fetal Inactivado con Calor al 10% (HI-FBS, Life Technologies, Catálogo 10438-026), penicilina 100 U/ml y estreptomicina 100 μg/ml(Life Technologies, Catálogo 15140-122) (también referido en la presente como medio completo) de acuerdo con las directrices de la ATCC. Las células se recogieron por centrifugación (200xg, 4°C, 5 min) y se resuspendieron en PBS con HI-FBS al 2% (tampón FACS). Aproximadamente 250,000 células Jurkat por pocillo se transfirieron a una placa con fondo en U de 96 pocillos, se recogieron y se resuspendieron en 50 microlitros (también denominados en la presente descripción como μL o ul) de los anticuerpos a ser probados. La concentración de partida de los anticuerpos fue 100 nM para los anticuerpos multiespecíficos y 166,7 nM para el control de isotipo, seguido de diluciones en serie de 5 veces para un total de 8 concentraciones para cada anticuerpo.

Las células y los anticuerpos se incubaron a 4°C con agitación durante aproximadamente 1 hora, se recogieron y se lavaron 3 veces con 200 µL de tampón FACS. Las células Jurkat resultantes se resuspendieron en 50 µl de anti-IgG humana conjugada con AlexaFluor® 647 (H+L) (Jackson ImmunoResearch, Catálogo 709-606-149) y se incubaron a 4°C con agitación durante aproximadamente 30 min. Las células Jurkat resultantes se recogieron, se lavaron 3 veces con 200 μL de tampón FACS y se resuspendieron en un volumen final de 150 μL de tampón FACS con 7-AAD 2,5 μg/ml (BD Pharmigen, catálogo 559925). Se analizaron las muestras en un citómetro de flujo BD Accuri C6 (BD Biosciences), y se calculó la intensidad de fluorescencia media (MFI) de células viables con el uso de FlowJo V10 (Treestar). La tinción 7-AAD mostró que un portal de dispersión lateral frontal fue suficiente para identificar las células viables. Valores de EC50 se calcularon en GraphPad Prism 6 ajustando la curva de los datos al log(agonista) frente la respuesta (tres parámetros).

10

La Figura 16A demuestra que los tres formatos de anticuerpos multiespecíficos se unieron a las células T Jurkat con valores EC₅₀ que varían de un solo dígito en nM a sub-nM.

15

Ejemplo 7: Anticuerpos multiespecíficos se unen a las células T que expresan CD3ε γ al EGFR humano recombinante

Este ejemplo demuestra la capacidad de los anticuerpos multiespecíficos de la descripción para unirse tanto a células T (también denominadas en la presente descripción como co-unión) como a las células que contienen el antígeno diana.

20

Para determinar si el anticuerpo multiespecífico C225v5-OKT3m-H-N, C225v5-OKT3m-H-C o C225v5-OKT3m-L-C podría unirse a las células T Jurkat positivas para CD3ɛ y EGFR, se realizó un ensayo de counión basado en citometría de flujo. Se pretrataron las células Jurkat con una concentración saturante de cada uno de los anticuerpos multiespecíficos seguido de titulación con EGFR biotinilado y la detección con el conjugado R-ficoeritrina estreptavidina (SAPE). También se probó un control de isotipo, a saber, control de isotipo IgG₁ humano, Enzo, catálogo ALX-804-133-C100.

25

30

Las células Jurkat se cultivaron y recogieron como se describe en la presente descripción. Se transfirieron aproximadamente 500,000 células Jurkat por pocillo a una placa de fondo en U, se recogieron y se resuspendieron en 50 µl de anticuerpo multiespecífico 40 nM o anticuerpo de isotipo 67 nM. Las células se incubaron a 4°C con agitación durante aproximadamente 1 hora, se recogieron y se lavaron 3 veces con 200 µL de tampón FACS. Las células Jurkat resultantes (que unen un anticuerpo multiespecífico de la descripción) se resuspendieron en 50 µl de proteína EGFR humana recombinante biotinilada (Abcam, Catálogo ab168702) comenzando a aproximadamente 290 nM seguido de diluciones en serie de 5 veces para un total de 8 concentraciones. Las células se incubaron a 4°C con agitación durante aproximadamente 1 hora, se recogieron y se lavaron 3 veces con 200 µL de tampón FACS. Las células Jurkat resultantes se resuspendieron en 50 µl del conjugado de R-ficoeritrina estreptavidina 10 µg/ml, (Life Technologies, S866) y se incubaron a 4°C con agitación durante aproximadamente 1 hora. Se recogieron las células, se lavaron una vez con 200 μL de tampón FACS y se resuspendieron en 150 μL de tampón FACS. Las muestras se analizaron en un BD Accuri C6 y se calcularon las MFI como se describe en la presente descripción. Los valores de EC50 se calcularon en GraphPad Prism

35

40

La Figura 16B demuestra que los tres formatos de anticuerpos multiespecíficos mostraron unión dependiente de la concentración de EGFR que requería la unión concomitante a CD3s en células T. Los valores de EC50 estuvieron en el intervalo de sub-nM a un solo dígito nM.

6 como se describió en la presente descripción.

Ejemplo 8: Activación dependiente de células T diana mediante anticuerpos multiespecíficos

45

Este ejemplo demuestra la capacidad de los anticuerpos multiespecíficos de la descripción para activar las células T de una manera dependiente de la diana.

50

Para determinar si la participación conjunta de células T Jurkat y células diana EGFR-positivas mediante los anticuerpos multiespecíficos C225v5-OKT3m-HN, C225v5-OKT3m-HC o C225v5-OKT3m-LC podría inducir la activación de células Jurkat, se utilizó un ensayo basado en citometría de flujo. Se cocultivaron las células Jurkat y células diana marcadas con CFSE durante aproximadamente 15 h y se evaluó la activación de las células T mediante tinción para la expresión superficial del marcador de activación temprana de células T, CD69.

Se cultivaron las células SW480 positivas para EGFR, también denominadas células SW480, (ATCC, Catálogo CCL-228)

55

60

y células U266 negativas para EGFR, también denominadas células U266, (ATCC, catálogo TIB-196) en RPMI-1640 con GlutaMAX™, HI-FBS al 10%, penicilina 100 U/ml y estreptomicina 100 U/ml (referido como medio completo) de acuerdo con las directrices de la ATCC. Estas células diana se recogieron, se lavaron una vez con PBS y se resuspendieron en PBS a 2x10⁶ células/ml. Se preparó una solución de CFSE 5 mM (Life Technologies, CellTrace™ CFSE Cell Proliferation Kit, Catálogo C34554) en DMSO y después se diluyó en PBS 30 nM. La solución de reserva de trabajo de PBS/CFSE se usó inmediatamente. Se combinaron volúmenes iguales de las células diana y la reserva de CFSE para una concentración final de CFSE de 15 nM y una densidad celular final de 1x106 células/ml. Las células se incubaron durante 15 minutos a 37°C. El marcaje se apagó añadiendo un volumen igual de HI-FBS. Las células diana incubadas se recogieron, se lavaron una vez con medio completo, y se resuspendieron en medio completo a 5x10⁵ células/ml. Se añadieron 50 μL de suspensión celular por pocillo a una placa de fondo plano de 96 pocillos para un total de 25,000 células diana por pocillo.

65

Las células T Jurkat se cultivaron como se describe en la presente descripción. Las células Jurkat se recogieron, se resuspendieron en medio completo a 1x106 células/ml, y se añadieron 50 µL de suspensión celular por pocillo a la placa de fondo plano que contenía células diana para un total de aproximadamente 50,000 células Jurkat por pocillo. La relación de células T efectoras por células diana fue de 2:1.

5

10

Tres reservas de anticuerpos concentrados se prepararon en medios completos. Las concentraciones más altas usadas fueron 1,2 nM para cada uno de los formatos de anticuerpos multiespecíficos y 1,5 nM para OKT3 (BioLegend, Catálogo 317304), C225v5 (cuya secuencia de aminoácidos se proporciona en la presente descripción) y anticuerpos de control de isotipo. Se prepararon diluciones en serie de cinco veces en medio completo para un total de 8 concentraciones para cada anticuerpo. Se añadieron cincuenta µL de anticuerpo por pocillo a la placa de fondo plano que contiene las células T y las células diana, diluyendo todas las cepas 3 veces para una concentración inicial de 400 pM para cada formato de anticuerpo multiespecífico o 500 pM para cada uno de los anticuerpos OKT3, C225v5 e isotipo.

15

maximizar la recuperación, la placa de cultivo celular se lavó con 150 µL de tampón FACS, y el lavado se transfirió a la placa de fondo en U. Las células se recogieron, se resuspendieron en 50 µL de anticuerpo anti-CD69 conjugado con PE (BD Biosciences, Catálogo 555531, usado en la concentración recomendada por el fabricante), y se tiñeron durante 1 h a 4°C con agitación. Las células se lavaron una vez con 200 µL de tampón FACS y después se volvieron a suspender en un volumen final de 150 µL. Se usaron controles de un único color para establecer la compensación en el BD Accuri C6. Se recogieron 10,000 células en un portal CFSE negativo de dispersión lateral delantera y una MFI calculada con el uso de FlowJo. Los valores de EC₅₀ se calcularon en GraphPad Prism 6 como se describió en la presente descripción.

Después de aproximadamente 15 h, las células se transfirieron a una placa con fondo en U y se cosecharon. Para

25

20

La Figura 17 demuestra que la activación de CD69 más potente, evidente comenzando en las concentraciones sub-pM, dependió de que cada formato de anticuerpo multiespecífico se cocultivara en presencia tanto de células T Jurkat como de células SW480 positivas para EGFR. Por el contrario, la activación de células T inducida por el cocultivo con células U266 EGFR-negativas fue significativamente menos eficiente, mostrando valores de EC50 sub-nM y una reducción del 75% en la inducción máxima de CD69 en relación con la activación inducida por células EGFR-positivas. La activación independiente de EGFR de los anticuerpos multiespecíficos, como se observó cuando se usaron células U266, fue similar a la del anticuerpo OKT3, y se observó una tinción insignificante de CD69 con C225v5 y anticuerpos de control de isotipo.

30

Ejemplo 9: Activación de células T CD8+ primarias dependiente de la diana mediante anticuerpos multiespecíficos

Este ejemplo demuestra la capacidad de los anticuerpos multiespecíficos de la descripción para activar las células T CD8 positivas primarias (CD8+).

35

Para determinar si el anticuerpo multiespecífico C225v5-OKT3m-H-N, C225v5-OKT3m-H-C o C225v5-OKT3m-L-C puede mediar la activación dependiente de EGFR de células T CD8+ primarias humanas, se realizó un ensayo basado en citometría de flujo. Las células T CD8+ derivadas de células mononucleares de sangre periférica humana (PBMC) y células diana marcadas con DDAO-SE se cocultivaron durante la noche, y se evaluó la activación mediante tinción para el marcador de activación temprana, CD69.

40

Se cultivaron las células SW480 positivas para EGFR y se marcaron como se describe en la presente descripción con las siguientes excepciones: (1) Se marcaron las células diana SW480 con CellTrace™ FarRed DDAO-SE (Life Technologies, Catálogo C34553) y (2) se suplementó el medio completo con IL-2 25 U/ml (R&D Systems, Catálogo 202-IL-050/CF). Se añadieron cincuenta µL de suspensión de células diana (a 5x10⁵ células/ml) por pocillo a una placa de fondo plano de 96 pocillos para un total de 25,000 células diana por pocillo.

45

Células T citotóxicas CD8+ de sangre periférica fresca normal (AllCells, catálogo PB009-3) se obtuvieron de AllCells (Alameda, CA), se recogieron por centrifugación (200xg, RT, 15 min) y se resuspendieron en medio completo suplementado con IL-2 25U/ml a 1,5x106 células/ml. Se añadieron cincuenta µl de suspensión celular por pocillo a la placa de fondo plano que contenía células diana para un total de aproximadamente 75,000 de células T citotóxicas CD8+ por pocillo y una relación de 3:1 de células T por células diana.

55

50

Se prepararon reservas de anticuerpos concentrados tres veces en medio completo suplementado con IL-2 25 U/ml. La concentración más alta fue de 600 pM seguido de diluciones en serie de 5 veces para un total de ocho concentraciones para cada anticuerpo. Se añadieron cincuenta µL de anticuerpo por pocillo a la placa de fondo plano que contenía células CD8⁺ y las células diana, diluyendo todas las reservas 3 veces para una concentración inicial de 200 pM.

60

65

Después de una incubación durante la noche, la placa de fondo plano se centrifugó y se eliminaron 100 µL de sobrenadante para el ensayo de citotoxicidad luminiscente descrito en la presente descripción. El sobrenadante restante se transfirió a una placa de fondo en U, y las células en la placa de fondo plano se separaron con tripsina al 0,25% (Life Technologies, Catálogo 25200-056). La actividad de la tripsina se inactivó mediante la adición de 3 volúmenes de tampón FACS, y la suspensión celular se transfirió a la placa con fondo en U. Después de la recolección, las células se resuspendieron en 50 µL de un cóctel anti-CD69 PE/Anti-CD8 FITC (anti-CD8 FITC, BD BioSciences, catálogo 561948), control de isotipo de FITC (BD BioSciences, catálogo 340755), o control de isotipo de PE (BD BioSciences, catálogo 340761). Todos los anticuerpos se usaron en las concentraciones recomendadas por el fabricante. Las células se tiñeron

durante 1 h a 4°C con agitación, se recogieron y se resuspendieron en un volumen final de 150 μ L de tampón FACS con 7-AAD 2,5 μ g/ml. Se usaron controles de color único para establecer la compensación en un BD Accuri C6, y se recolectó un volumen fijo de suspensión celular. La activación de células CD8 $^+$ fue suficiente para distinguir entre las células diana y las células T viables. La activación se cuantificó como el porcentaje de células T con expresión de CD69 por encima del control del isotipo PE.

La Figura 18A demuestra que los tres formatos de anticuerpos multiespecíficos demostraron la activación dependiente de la concentración de las células T CD8⁺ primarias con valores de EC₅₀ de pM de un solo dígito. El tratamiento con anticuerpos de control de isotipo OKT3, C225v5 o IgG1 humano (Enzo) resultó en una inducción de CD69 despreciable.

Ejemplo 10: Destrucción dependiente de la diana de células diana mediante anticuerpos multiespecíficos

Este ejemplo demuestra la capacidad de los anticuerpos multiespecíficos de la descripción para inducir lisis celular dependiente de la diana dirigida a células T.

Para determinar si el anticuerpo multiespecífico C225v5-OKT3m-HN, C225v5-OKT3m-HC o C225v5-OKT3m-LC fue capaz de inducir lisis celular dependiente de la diana dirigida a células T, las células SW480 se cocultivaron con células T CD8⁺ en una relación de células efectoras a diana de 3:1 como se describe en la presente descripción. Después de una incubación durante la noche, se analizaron 100 μL del sobrenadante en placas de 96 pocillos de pared blanca (Greiner Bio One catálogo 655098) para la actividad de la proteasa distinta asociada con la citotoxicidad siguiendo el protocolo del fabricante (CytoTox-Glo™ Cytotoxicity Assay, Catálogo G9292, Promega), que utiliza un sustrato de péptido luminogénico para medir la actividad de las proteasas liberadas por las células que perdieron la integridad de la membrana y que posteriormente se han sometido a citólisis. La citotoxicidad dependiente del anticuerpo multiespecífico de las células diana se expresó en la luminiscencia después de la sustracción del fondo de los valores no tratados y se representó en Prism con el registro de análisis de ajuste de la curva (agonista) frente a la respuesta (tres parámetros).

La Figura 18B demuestra que los tres formatos de anticuerpos multiespecíficos indujeron la destrucción mediada por células T de las células SW480. Como se esperaba, el anticuerpo OKT3 solo no mostró destrucción detectable de las células SW480, lo que sugiere que es un requisito de coacoplamiento tanto para CD3 como la diana tumoral para una citotoxicidad efectiva por los anticuerpos multiespecíficos.

Ejemplo 11: Activación de células T dependientes de la diana y destrucción de las células diana mediante anticuerpos multiespecíficos

Este ejemplo demuestra la capacidad de los anticuerpos multiespecíficos de la descripción para inducir la activación dependiente de la diana dirigida a las células T de las células T CD8⁺ y la destrucción de las células diana.

Para determinar si la activación de las células T observadas dependió de la expresión de EGFR por la célula diana, las células SW480 positivas para EGFR marcadas con CFSE o las células U266 negativas para EGFR se cocultivaron con células T CD8⁺ humanas en presencia de anticuerpo multiespecífico C225v5-OKT3m-HN u OKT3, cada uno en una serie de dilución de 5 veces comenzando a 200 pM como se describió anteriormente. El marcaje con CFSE de las células diana (30 nM) se utilizó para distinguir las células diana de las células T con el uso de un método descrito en la presente descripción. Las células T citotóxicas CD8⁺ citotóxicas de sangre periférica normal congelada (AllCells, catálogo PB009-3F) se descongelaron de acuerdo con lo especificado por el fabricante. Después de una incubación durante la noche, las células T (células CFSE negativas) se ensayaron para la expresión superficial del marcador de activación temprana, CD69 como se describe en la presente descripción. Brevemente, las células se eliminaron de la placa de ensayo, las células adherentes se despegaron con el uso de tripsina (Life Technologies), y las células se lavaron una vez con tampón FACS. Las células se tiñeron durante 1 hora con anti-CD69-PE (BD Bioscience). Las células se lavaron y se analizaron en BD Accuri C6 para la expresión de CD69 en la superficie celular. Se calcularon los valores de MFI como se describió en la presente descripción. Los resultados se expresaron como el porcentaje de células T con expresión de CD69 por encima del control de isotipo con el uso del software de análisis FCS Express y se representaron en Prism con el análisis de ajuste de curva log(agonista) frente a respuesta (tres parámetros).

Como se muestra en la Figura 18C, el anticuerpo multiespecífico C225v5-OKT3m-HN mostró una potente activación de células T a concentraciones sub-pM en presencia de células SW480 y solo una activación mínima de células T por células U266, incluso a concentraciones que eran 3 logs mayores que las concentraciones usadas con las células SW480. El anticuerpo OKT3 mostró una activación de células T mínima. Estos resultados demostraron que la activación efectiva de células T depende de la expresión de EGFR en la célula diana.

Para determinar la dependencia de la expresión de EGFR para la destrucción de células diana, se midieron 100 µl del sobrenadante del cocultivo de células T con células SW480 o U266 para actividad de proteasa asociada con citotoxicidad (CytoTox-Glo, Promega). Los resultados se expresaron en luminiscencia sin sustracción de fondo para mostrar la respuesta de U266 y se representaron en Prism con el análisis de ajuste de curva log(agonista) frente a la respuesta (tres parámetros).

10

15

20

25

30

40

45

50

La Figura 18D ilustra que el anticuerpo multiespecífico C225v5-OKT3m-H-N provoca citotoxicidad de células SW480 que expresan EGFR a concentraciones sub-pM mientras que no se detecta la destrucción discernible de células U266 negativas para EGFR. El anticuerpo OKT3 tampoco mostró ninguna destrucción discernible de células SW480 o U266.

5 Ejemplo 12: Capacidad de anticuerpos multiespecíficos para acoplarse a las células T para destruir un panel de líneas celulares que expresan EGFR

Este ejemplo demuestra la capacidad de los anticuerpos multiespecíficos de la descripción para acoplarse a las células T para destruir un panel de líneas celulares que expresan EGFR.

Para determinar si el anticuerpo multiespecífico C225v5-OKT3m-HN fue capaz de inducir citotoxicidad de las líneas celulares que expresan EGFR adicionales, se cocultivaron las células T CD8⁺ humanas en RPMI-1640, suero humano al 2% en placas de 96 pocillos de pared blanca con las siguientes líneas celulares que expresan EGFR en una relación efector a diana de 5:1 (con la excepción de las células U266, que se usaron en una relación de 3:1 cultivadas en placas de fondo plano de 96 pocillos) y una titulación del anticuerpo multiespecífico C225v5-OKT3m-HN: HEK-293, HCT-15, HCT 116, Hs 766T, HT-29, NCI-H2405, SW480, SK-OV-3, y una línea celular negativa para EGFR, U266 (todas las líneas celulares de ATCC). El anticuerpo anti-EGFR C225v5 (a 200 pM) se usó como control negativo. Después de una incubación durante la noche, el sustrato peptídico luminogénico del ensayo de citotoxicidad CytoTox-Glo™ (Promega) se añadió directamente a las placas (150 μl de sobrenadante) para medir la actividad proteasa liberada, con la excepción de las muestras U266, donde 100 μl del sobrenadante U266 se usó para ensayar la actividad de proteasa. Los resultados se expresaron en luminiscencia después de la sustracción de fondo de valores no tratados y se representaron en Prism con el análisis de ajuste de curva log(agonista) frente a la respuesta (tres parámetros).

La Figura 19 demuestra que todas las líneas celulares que expresan EGFR tratadas con el anticuerpo multiespecífico C225v5-OKT3m-H-N en presencia de células T CD8+ exhibieron citotoxicidad dependiente de la dosis. Por el contrario, las células U266 negativas para EGFR no se vieron afectadas por el anticuerpo multiespecífico C225v5-OKT3m-H-N. Ninguna de las líneas celulares tratadas con el anticuerpo anti-EGFR C225v5 a 200 pM mostró ninguna evidencia de citotoxicidad, independientemente de su expresión de EGFR.

30 Ejemplo 13: Atenuación de la unión de EGFR por anticuerpos activables multiespecíficos

10

15

20

35

40

45

50

55

60

Este ejemplo demuestra que la unión de EGFR por un anticuerpo activable multiespecífico de la descripción es atenuada en comparación con la unión a EGFR por un anticuerpo multiespecífico de la descripción. Este Ejemplo demuestra además que la unión de EGFR del anticuerpo activable multiespecífico, que incluye una entidad escindible por proteasa, se restablece tras la escisión del anticuerpo activable multiespecífico por dicha proteasa.

El anticuerpo activable multiespecífico 3954-1204-C225v5-OKT3m-H-N, anticuerpo activable multiespecífico activado 3954-1204-C225v5-OKT3m-H-N, y anticuerpo multiespecífico C225v5-OKT3m-H-N se ensayaron para su capacidad de unirse a células SW480 que expresan EGFR.

La activación del anticuerpo activable multiespecífico se realizó de la siguiente manera: 825 µg de anticuerpo multiespecífico activable 3954-1204-C225v5-OKT3m-HN en PBS se escindió mediante la adición de matriptasa titulada en el sitio activo (también denominado en la presente descripción MT-SP1 y MTSP1, disponible en R&D Systems, Catálogo 3946-SE-010) hasta una concentración final de 100 nM. El producto de digestión se incubó a 37°C durante la noche, y la escisión se confirmó mediante la eliminación de una alícuota para el análisis de electroforesis capilar (Electroforesis capilar GX-II, Perkin Elmer). La proteasa y la entidad enmascaradora escindible se eliminaron mediante la purificación en Proteína A. En resumen, la muestra digerida se diluyó a 2 ml con PBS y se cargó en perlas MabSelect SuRe™ equilibradas (GE Healthcare Life Sciences, Producto 11-0026-01 AD). Se lavaron las perlas con 5 volúmenes de columna (CV) de 1xPBS, seguido de 5 CV de 5xPBS suplementado con alcohol isopropílico al 5% (IPA), y finalmente con 5 CV de 1xPBS. El anticuerpo se eluyó con 10 CV de glicina 0,1 M, pH 3,0, y las fracciones se neutralizaron con Tris 1 M, pH 8,0, se mezclaron, concentraron e intercambiaron el tampón por PBS.

Las células SW480, que expresan EGFR, se despegaron con tampón de disociación celular (Sigma, catálogo C5789), se lavaron e incubaron durante 1 hora con una dilución 5 veces de 1000 nM de anticuerpo activable multiespecífico 3954-1204-C225v5-OKT3m-HN, anticuerpo activable multiespecífico activado 3954-1204-C225v5-OKT3m-HN, anticuerpo multiespecífico C225v5-OKT3m-HN, anticuerpo activable 3954-1204-C225v5 o anticuerpo C225v5 en tampón FACS en hielo. Las células se lavaron 3 veces con tampón FACS e incubaron con 1:400 de un anticuerpo secundario, concretamente AF488 específico de FcGamma antihumano (Jackson ImmunoResearch Catalog 109-546-098) en tampón FACS en hielo. Las células se lavaron 3 veces con tampón FACS, y la MFI de AF488 se leyó en el citómetro de flujo BD Accuri (BD Biosciences). La MFI de una muestra que comprende solo el control de anticuerpo secundario se sustrajo de la MFI experimental y se representó gráficamente en Prism con el análisis de ajuste de la curva log(agonista) frente a la respuesta (tres parámetros).

La Figura 20A demuestra que la unión de EGFR por anticuerpo activable multiespecífico 3954-1204-C225v5-OKT3m-HN se atenuó en comparación con la unión de EGFR por el anticuerpo multiespecífico C225v5-OKT3m-HN, pero la unión de EGFR del anticuerpo activable multiespecífico se restauró completamente con escisión por proteasa del anticuerpo

activable multiespecífico por matriptasa. La Figura 20B muestra que la unión de EGFR por el anticuerpo C225v5 y por el anticuerpo activable 3954-1204-C225v5 fue comparable con la unión de EGFR por el anticuerpo multiespecífico C225v5-OKT3m-HN y el anticuerpo activable multiespecífico 3954-1204-C225v5-OKT3m-HN, respectivamente, demostrando que la entidad anti-CD3ɛ presente en el formato multiespecífico no alteró el perfil de unión a EGFR del anticuerpo multiespecífico o el anticuerpo activable multiespecífico.

Ejemplo 14: Capacidad de anticuerpos activables multiespecíficos para unirse a CD3⁺ células T

15

20

25

30

35

45

50

55

60

65

Este Ejemplo demuestra que un anticuerpo activable multiespecífico, un anticuerpo activable multiespecífico activado y un anticuerpo multiespecífico, todas las modalidades, son cada uno capaces de unirse a células T CD3⁺.

Para determinar si la unión a CD3ε se afectada por el enmascaramiento del sitio de unión a EGFR de un anticuerpo activable multiespecífico anti-EGFR, se realizó un ensayo de unión de células T Jurkat como se describe en la presente con el anticuerpo 3954-1204-C225v5 multiespecífico activable OKT3m-HN, anticuerpo activable multiespecífico activado 3954-1204-C225v5-OKT3m-HN, y anticuerpo multiespecífico C225v5-OKT3m-HN. Las células Jurkat se incubaron con una dilución de 5 veces de 1000 nM de multiespecífico anticuerpo activable 3954-1204-C225v5-OKT3m-HN, anticuerpo activable multiespecífico activado por matriptasa 3954-1204-C225v5-OKT3m-HN, o anticuerpo multiespecífico C225v5-OKT3m-HN en tampón FACS durante 1 hora a 4°C. Las células se lavaron 3 veces y se incubaron con un anticuerpo secundario, concretamente 1: 400 de AF488 específico de FcGamma antihumano (Jackson ImmunoResearch). Las células se lavaron 3 veces, y la MFI de AF488 se leyó en el citómetro de flujo BD Accuri (BD Biosciences). La MFI de una muestra que comprende solo el control de anticuerpo secundario se sustrajo de la MFI experimental y se representó gráficamente en Prism con el análisis de ajuste de la curva log(agonista) frente a la respuesta (tres parámetros).

La Figura 21A demuestra que el anticuerpo activable multiespecífico 3954-1204-C225v5-OKT3m-H-N y el anticuerpo multiespecífico C225v5-OKT3m-H-N muestran unión equivalente a las células T Jurkat. La Figura 21B demuestra que el anticuerpo activable multiespecífico 3954-1204-C225v5-OKT3m-H-N y el anticuerpo activable multiespecífico activado 3954-1204-C225v5-OKT3m-H-N muestran unión equivalente a células T Jurkat. Estos resultados indican que el enmascaramiento de la entidad de unión a EGFR del anticuerpo activable multiespecífico no afecta la capacidad del anticuerpo activable multiespecífico para acoplarse a las células T.

Ejemplo 15: Activación de células T dependientes de la diana mediante anticuerpos activables multiespecíficos

Este ejemplo demuestra que la activación de células T dependiente de la diana mediante un anticuerpo activable multiespecífico de la descripción es atenuada en comparación con la activación mostrada por un anticuerpo multiespecífico de la descripción. Este Ejemplo también demuestra que la activación de células T dependiente de la diana mediante el anticuerpo activable multiespecífico, que incluye una entidad escindible por proteasa, se restaura tras la escisión del anticuerpo activable multiespecífico por dicha proteasa.

Para determinar si el enmascaramiento del sitio de unión a EGFR de un anticuerpo activable multiespecífico anti-EGFR atenúa la activación de células T dependientes de objetivo y para determinar si la activación de proteasa del anticuerpo activable multiespecífico restaura la activación, se realizó un ensayo de activación Jurkat, como se describe en la presente descripción, probando el anticuerpo activable multiespecífico 3954-1204-C225v5-OKT3m-HN, anticuerpo multiespecífico activable activado 3954-1204-C225v5-OKT3m-HN, anticuerpo multiespecífico C225v5-OKT3m-HN, anti-EGFR anticuerpo C225v5, y una Synagis (Medimmune) isotipo control como se describe en la presente descripción.

La Figura 22 demuestra que la activación dependiente de EGFR, determinada por la inducción de CD69 de células T Jurkat cocultivadas con células SW480 que expresan EGFR, mediante anticuerpo activable multiespecífico 3954-1204-C225v5-OKT3m-HN se atenuó en comparación con la actividad dependiente de EGFR mostrada por el anticuerpo multiespecífico C225v5-OKT3m-HN. La figura también indica que la activación dependiente de EGFR por el anticuerpo activable multiespecífico se restauró completamente después de la escisión por proteasa del anticuerpo activable multiespecífico por matriptasa. Ni el C225v5 anti-EGFR ni el anticuerpo de control de isotipo mostraron activación de las células T.

Ejemplo 16: Activación de células T dependientes de la diana y destrucción de las células diana por anticuerpos activables multiespecíficos

Este ejemplo demuestra que la activación de células T dependiente de la diana y la destrucción de células diana mediante un anticuerpo activable multiespecífico de la descripción es atenuada en comparación con la activación mostrada por un anticuerpo multiespecífico de la descripción. Este Ejemplo también demuestra que la activación de células T dependiente de la diana y la destrucción de células diana mediante el anticuerpo activable multiespecífico, que incluye una entidad escindible por proteasa, se restablece tras la escisión del anticuerpo activable multiespecífico por dicha proteasa.

Para determinar si el enmascaramiento del sitio de unión a EGFR de un anticuerpo activable multiespecífico anti-EGFR atenúa la activación dependiente de objetivo y para determinar si la activación de proteasa del anticuerpo activable multiespecífico restaura la activación, se realizó un ensayo de activación de Jurkat, como se describe en la presente, probando multiespecífico anticuerpo activable 3954-1204-C225v5-OKT3m-HN, anticuerpo activable multiespecífico

activado 3954-1204-C225v5-OKT3m-HN, anticuerpo multiespecífico C225v5-OKT3m-HN, anticuerpo anti-CD3ε OKT3, anticuerpo anti-EGFR C225v5 y un control de isotipo como se describe en la presente descripción.

Para determinar el impacto del enmascaramiento del sitio de unión a EGFR de un anticuerpo activable multiespecífico anti-EGFR sobre la citotoxicidad y la capacidad de activación de proteasa para restablecer la actividad citotóxica del anticuerpo activado multiespecífico activado, se cocultivaron las células SW480 que expresaban EGFR con células T en una relación de células efectoras por diana de 5:1 con una serie de dilución de 5 veces, comenzando a 200 pM, de anticuerpo activable multiespecífico 3954-1204-C225v5-OKT3m-HN, anticuerpo activable multiespecífico activado 3954-1204-C225v5-OKT3m-HN, o anticuerpo multiespecífico C225v5-OKT3m-HN. 200 pM de anticuerpos IgG1 OKT3, C225v5, y control de isotipo Synagis (Medimmune) se utilizaron como controles. Después de una incubación durante la noche, se ensayaron 100 µL del sobrenadante en placas de 96 pocillos de pared blanca con actividad de proteasa distinta asociada con citotoxicidad (CytoTox-Glo, Promega). Los resultados se expresaron en luminiscencia después de la sustracción de fondo de valores no tratados y se representaron en Prism con el análisis de ajuste de curva log(agonista) frente a la respuesta (tres parámetros).

5

10

15

20

30

La Figura 23A demuestra que la activación dependiente de EGFR, determinada por la inducción de CD69 de células T primarias cocultivadas con células SW480 que expresan EGFR, mediante el anticuerpo activable multiespecífico 3954-1204-C225v5-OKT3m-HN se atenuó en comparación con la actividad dependiente de EGFR mostrada por el anticuerpo multiespecífico C225v5-OKT3m-HN. La figura también indica que la activación dependiente de EGFR por el anticuerpo activable multiespecífico se restauró completamente después de la escisión por proteasa del anticuerpo activable multiespecífico por matriptasa. Los anticuerpos control de isotipo IgG1 de OKT3, anti-EGFR C225v5, y Synagis mostraron una activación insignificante de las células T.

La Figura 23B demuestra que la lisis dependiente de EGFR de las células SW480 mediante el anticuerpo activable multiespecífico 3954-1204-C225v5-OKT3m-H-N se atenuó en comparación con la citotoxicidad dependiente de EGFR mostrada por el anticuerpo multiespecífico C225v5-OKT3m-H-N. La figura indica además que la citotoxicidad dependiente de EGFR por el anticuerpo activable multiespecífico se restauró completamente tras la escisión por proteasa del anticuerpo activable multiespecífico por matriptasa. Los anticuerpos IgG1 de control de isotipo C225v5 y OKT3 y Synagis exhibieron citotoxicidad despreciable.

Reivindicaciones

5

10

60

65

- 1. Un anticuerpo activable multiespecífico que en un estado activado se une a dos o más dianas o dos o más epítopos o una combinación de estos, el anticuerpo activable multiespecífico que comprende:
 - al menos un anticuerpo (AB1) que se une específicamente a una primera diana o epítopo, en donde AB1 comprende un anticuerpo IgG que comprende una cadena pesada y una cadena ligera;
 - al menos un scFv (AB2) que se une específicamente a una segunda diana o epítopo, en donde un AB2 se fusiona al extremo amino de cada cadena pesada de AB1;
 - al menos una primera entidad enmascarante (MM1) acoplada a AB1 que inhibe la unión del AB1 a su diana cuando el anticuerpo activable multiespecífico está en un estado no escindido;
 - al menos una primera entidad escindible (CM1) acoplada a AB1, en donde el CM1 es un polipéptido que funciona como un sustrato para una primera proteasa, y en donde el CM1 se une al MM1;
 - al menos una primera entidad enmascarante (MM2) acoplada a AB2 que inhibe la unión del AB2 a su diana cuando el anticuerpo activable multiespecífico está en un estado no escindido; y
- al menos un segundo resto escindible (CM2) acoplado al AB2, en el que el CM2 es un polipéptido que funciona como un sustrato para una segunda proteasa, y en el que el CM2 está unido al MM2.
- 2. El anticuerpo activable multiespecífico de la reivindicación 1, en donde el MM1 tiene una constante de disociación de equilibrio para unirse al AB 1 que es mayor que la constante de disociación de equilibrio del AB1 a su diana o epítopo, en donde el CM1 se posiciona en el anticuerpo activable de manera que, en un estado no escindido, el MM1 interfiere con la unión específica del AB1 a la primera diana o primer epítopo, en donde el MM1 no interfiere ni compite con el AB1 para unirse a la primera diana cuando el anticuerpo activable multiespecífico está en un estado escindido, en donde la secuencia polipeptídica MM1 es diferente de la de la primera diana, en donde la secuencia polipeptídica MM1 no es más del 50% idéntica a cualquier pareja de unión natural del AB1, y/o en donde el MM1 es un polipéptido de no más de 40 aminoácidos de longitud.
- 3. El anticuerpo activable multiespecífico de cualquiera de las reivindicaciones 1-2, en donde el MM2 tiene una constante de disociación de equilibrio para unirse al AB2 que es mayor que la constante de disociación de equilibrio del AB2 a su diana o epítopo, en donde el CM2 se posiciona en el anticuerpo activable de manera que, en un estado no escindido, el MM2 interfiere con la unión específica del AB2 a la segunda diana o segundo epítopo, en donde el MM2 no interfiere ni compite con el AB2 para unirse a la segunda diana cuando el anticuerpo activable multiespecífico está en un estado escindido, en donde la secuencia polipeptídica MM2 es diferente de la de la segunda diana, en donde la secuencia polipeptídica MM2 no es más del 50% idéntica a cualquier pareja de unión natural del AB2, y/o en donde el MM2 es un polipéptido de no más de 40 aminoácidos de longitud.
 - 4. El anticuerpo activable multiespecífico de cualquiera de las reivindicaciones 1-3, en donde la proteasa que escinde CM1 se colocaliza con la primera diana o epítopo en un tejido, y en donde la proteasa escinde el CM1 en el anticuerpo activable multiespecífico cuando el activable multiespecífico el anticuerpo se expone a la proteasa.
- 5. El anticuerpo activable multiespecífico de cualquiera de las reivindicaciones 1-4, en donde al menos una porción del anticuerpo activable multiespecífico en el estado no escindido tiene la disposición estructural desde el extremo N al extremo C de la siguiente manera: MM1-CM1-AB1 o AB1-CM1-MM1.
- 6. El anticuerpo activable multiespecífico de cualquiera de las reivindicaciones 1-5, en donde el anticuerpo activable multiespecífico comprende:
 - un péptido de enlace entre MM1 y CM1; o
 - un péptido de enlace entre el CM1 y el AB1; o
- un primer péptido de unión (LP1) y un segundo péptido de unión (LP2), en donde el anticuerpo activable multiespecífico en el estado no escindido tiene la disposición estructural desde el extremo N al extremo C de la siguiente manera: MM1-LP1-CM1-LP2-AB1 o AB1-LP2-CM1-LP1-MM1, opcionalmente en donde los dos péptidos de enlace no necesitan ser idénticos entre sí, opcionalmente en donde cada uno de LP1 y LP2 es un péptido de aproximadamente 1 a 20 aminoácidos de longitud.
- 7. El anticuerpo activable multiespecífico de cualquiera de las reivindicaciones 1-6, en donde el CM1 es un sustrato para una proteasa seleccionada entre las proteasas enumeradas en la Tabla 3, y/o en donde el CM1 es un polipéptido de hasta 15 aminoácidos de longitud.
 - 8. El anticuerpo activable multiespecífico de cualquiera de las reivindicaciones 1-7, en donde el CM2 es un sustrato para una proteasa seleccionada entre las proteasas enumeradas en la Tabla 3, y/o en donde CM2 es un polipéptido de no más de 15 aminoácidos de longitud.
 - 9. El anticuerpo activable multiespecífico de cualquiera de las reivindicaciones 1 a 8, en donde la segunda proteasa se colocaliza con la segunda diana o epítopo en un tejido, y en donde la segunda proteasa escinde el CM2 en el anticuerpo activable multiespecífico cuando el anticuerpo activable multiespecífico está expuesto a la segunda proteasa, opcionalmente:

en donde la primera proteasa y la segunda proteasa se colocalizan con la primera diana o epítopo y la segunda diana o epítopo en un tejido; y/o

en donde la primera proteasa y la segunda proteasa son la misma proteasa, opcionalmente en donde CM1 y CM2 son sustratos diferentes para la misma proteasa, opcionalmente en donde la proteasa se selecciona del grupo que consiste en los que se muestran en la Tabla 3; o

la primera proteasa y la segunda proteasa son proteasas diferentes, opcionalmente en donde la primera proteasa y la segunda proteasa son proteasas diferentes seleccionadas del grupo que consiste en las mostradas en la Tabla 3.

- 10. El anticuerpo activable multiespecífico de cualquiera de las reivindicaciones 1-9, en donde AB1 es un anticuerpo dirigido.
 - 11. El anticuerpo activable multiespecífico de cualquiera de las reivindicaciones 1-10, en donde AB2 es:

un scFv que se acopla a una célula efectora inmune;

un scFv que se acopla a leucocito;

5

15

20

30

40

50

60

65

un scFv que se acopla a células T;

un scFv que se acopla a células NK;

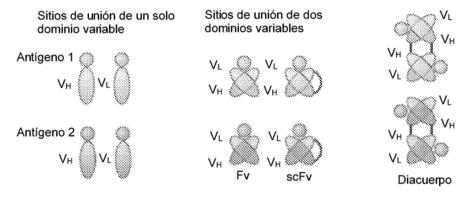
un scFv que se acopla a macrófagos; o

un scFv que se acopla a una célula mononuclear.

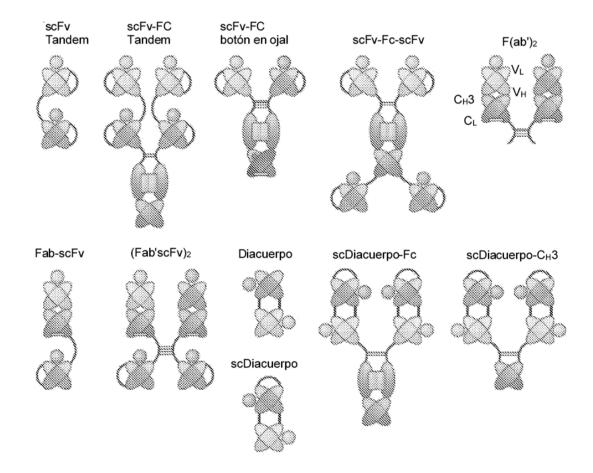
- 12. El anticuerpo activable multiespecífico de cualquiera de las reivindicaciones 1-11, en donde AB2 es un scFv anti-CD3 épsilon scFv o un anti-CTLA-4 scFv, opcionalmente donde el anti-CD3 épsilon scFv se deriva de OKT3.
- El anticuerpo activable multiespecífico de cualquiera de las reivindicaciones 1-12, en donde
 AB1 es o se deriva de un anticuerpo que se une a una diana seleccionada del grupo de dianas en la Tabla 1, o
 AB1 es o se deriva de un anticuerpo anti-Jagged o un anticuerpo anti-EGFR, o

AB1 comprende al menos una porción de una secuencia de aminoácidos que se muestra en la Tabla 7, o

AB1 es o se deriva de un anticuerpo anti-Jagged o un anticuerpo anti-EGFR y en donde AB2 es o se deriva de un anti-CD3 épsilon scFv o un anti-CTLA-4 scFv, o

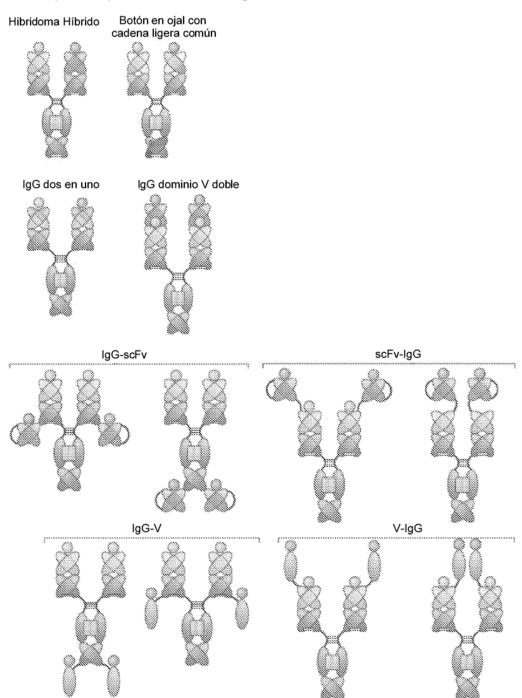

- el anticuerpo activable multiespecífico comprende al menos una porción de una secuencia de aminoácidos como se expone en las sec. con núms. de ident.: 292, 294, 300, 304, 306, 308, 310, 336, o cualquier combinación de estas.
- 14. El anticuerpo activable multiespecífico de cualquiera de las reivindicaciones 1-9, en donde AB1 se une a una primera diana y AB2 se une a una segunda diana, y en donde la primera diana y la segunda diana son diferentes, o en donde AB1 se une a un primer epítopo y AB2 se une un segundo epítopo, opcionalmente en donde el primer epítopo y el segundo epítopo están en la misma diana o en diferentes dianas.
 - 15. Una molécula de ácido nucleico aislada que codifica el anticuerpo activable multiespecífico de la reivindicación 1.
 - 16. Un vector que comprende la molécula de ácido nucleico aislada de la reivindicación 15.
- 17. Un método para producir un anticuerpo activable multiespecífico cultivando una célula en condiciones que conducen a la expresión del anticuerpo activable multiespecífico, en donde la célula comprende una molécula de ácido nucleico de la reivindicación 15.
 - 18. El anticuerpo multiespecífico de cualquiera de las reivindicaciones 1-14, que comprende un agente conjugado con el anticuerpo, opcionalmente en donde el agente es un agente terapéutico, un agente antineoplásico, una toxina o fragmento de estos, una entidad detectable o un agente de diagnóstico, opcionalmente en donde el agente se conjuga con el anticuerpo a través de un enlazador, opcionalmente en donde el enlazador es un enlazador escindible o un enlazador no escindible.
 - 19. Un método para fabricar el anticuerpo activable multiespecífico de la reivindicación 1 que en un estado activado se une a dos o más dianas o dos o más epítopos o una combinación de estos, el método que comprende:
- (a) cultivar una célula que comprende un constructo de ácido nucleico que codifica el anticuerpo activable multiespecífico de la reivindicación 1 en condiciones que conducen a la expresión del anticuerpo activable multiespecífico de la reivindicación 1,
 - (b) recuperar el anticuerpo activable.

20. El anticuerpo activable multiespecífico de cualquiera de las reivindicaciones 1-14 o 18, o el anticuerpo multiespecífico producido por el método de la reivindicación 17 o 19, para su uso en el alivio de un síntoma de una indicación clínica asociada con un trastorno en un sujeto, en donde el anticuerpo se administra a un sujeto que lo necesita en una cantidad suficiente para aliviar el síntoma de la indicación clínica asociada con el trastorno, opcionalmente en donde dicho sujeto es un ser humano, opcionalmente en donde el trastorno es cáncer.


FIGURA 1

De Chan y Carter, Nat. Rev. Immunol. 2010

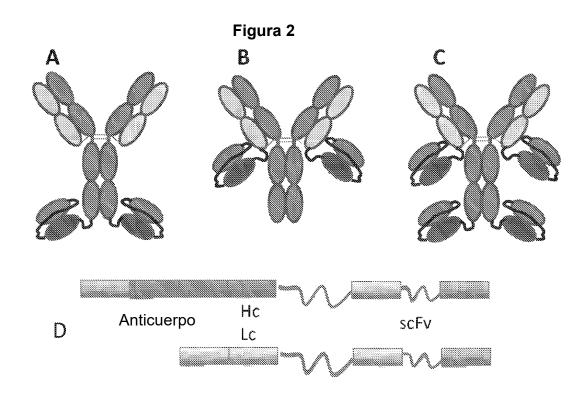
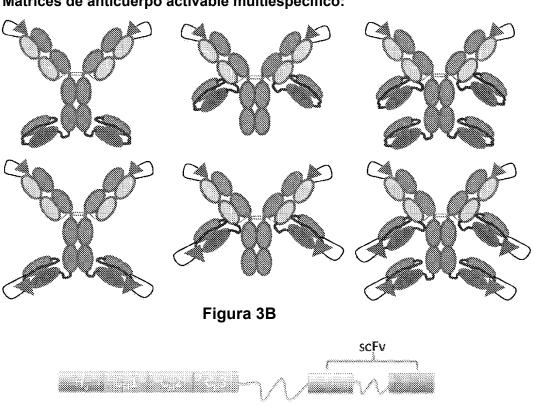
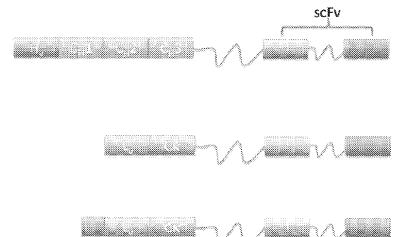
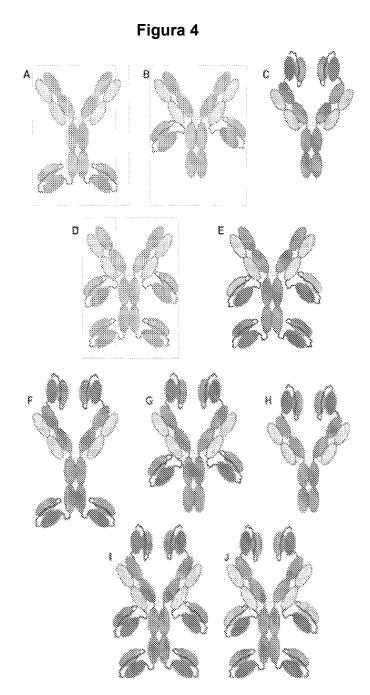
Bloques de construcción de unión a Antígeno:

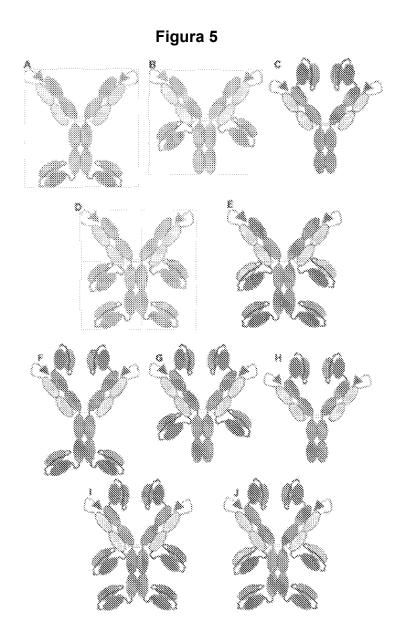


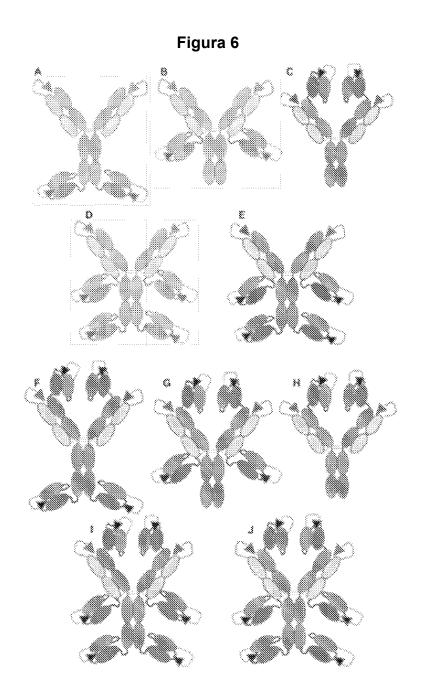
Fragmentos de anticuerpos biespecíficos:

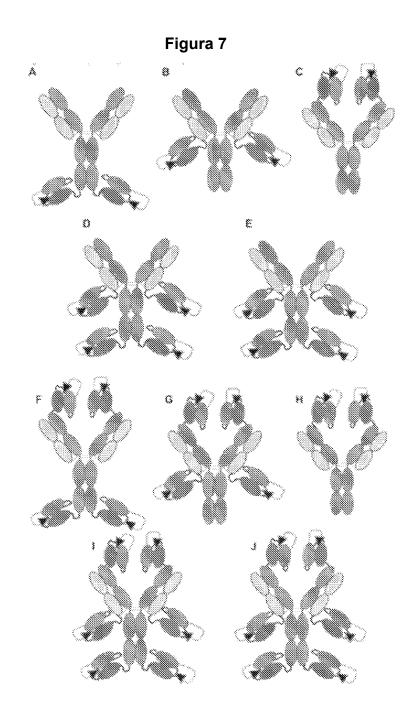
FIGURA 1, cont.

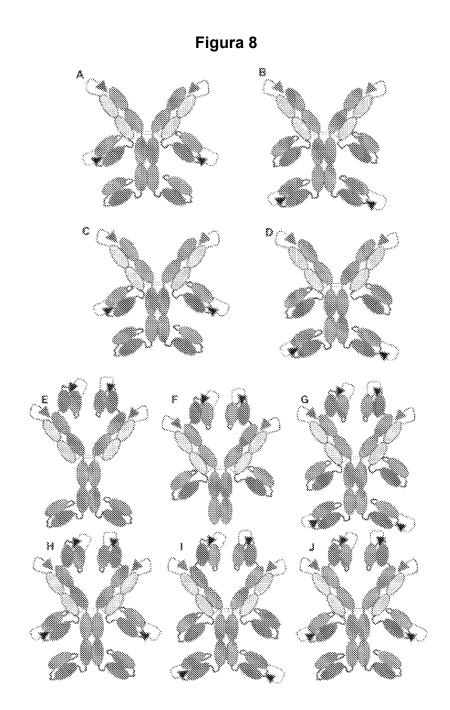
Anticuerpos Biespecíficos basados en IgG:

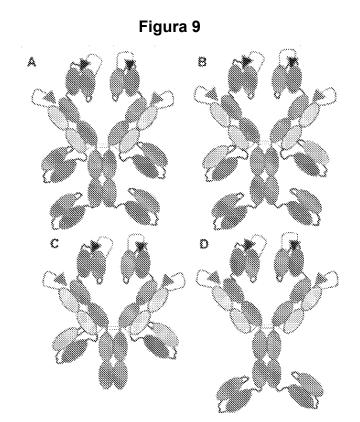





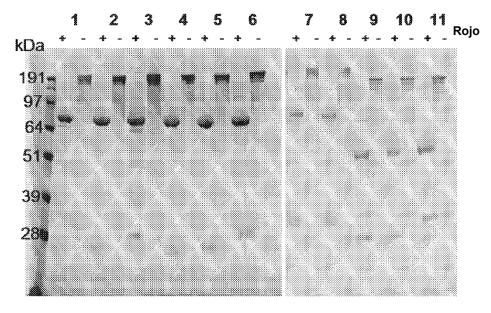

Figura 3A


Matrices de anticuerpo activable multiespecífico:









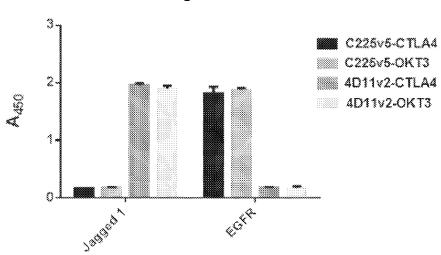


Figura 10

Carril	Nombre	% de Monómero
1	4D11v2 OKT3	70,1%
2.	C225v5 OKT3	68,0%
3	3954-1204-C225v5-OKT3	67,9%
4	4D11v2 CTLA4	100%
5	C225v5 CTLA4	100%
6	3954-1204-C225v5 CTLA4	100%
7	3954-1204-C225v5 CTLA4	100%
8	3954-1204-C225v5 OKT3	66,0%
9	Anticuerpo	
10	Anticuerpo	
11	Anticuerpo Activable	

Figura 12A

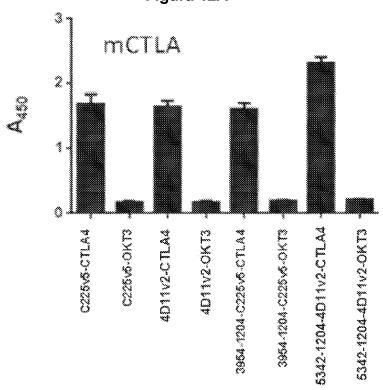


Figura 12B

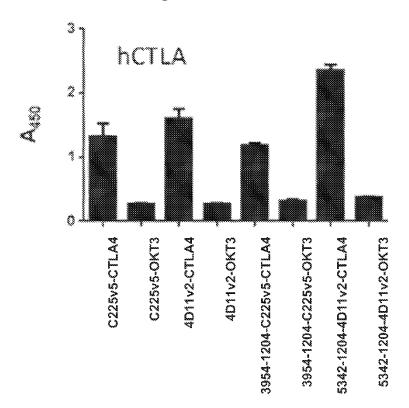


Figura 13

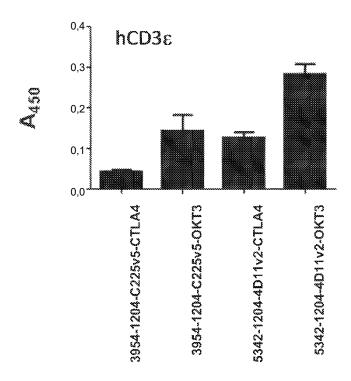


Figura 14

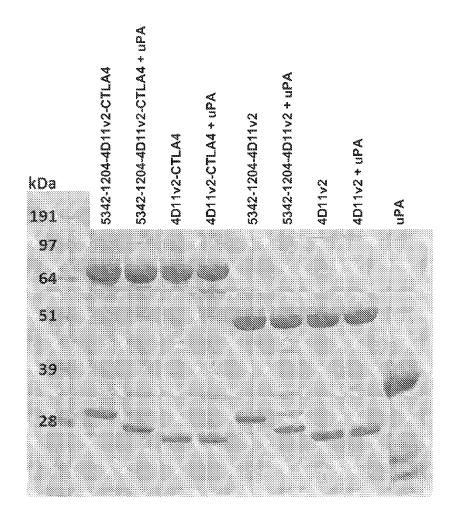
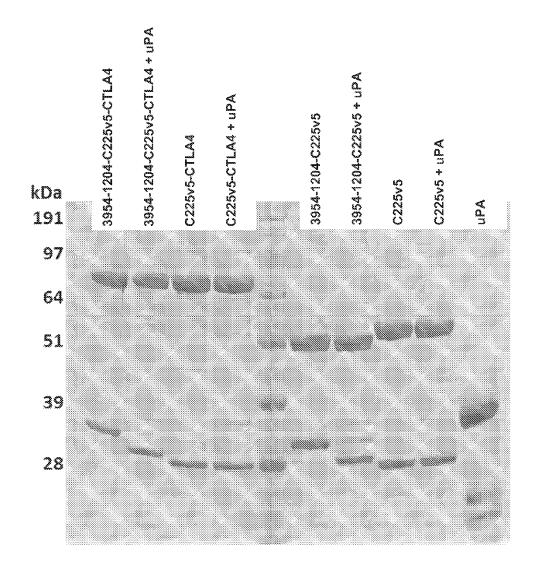
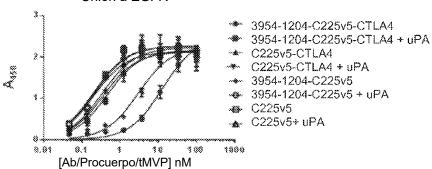
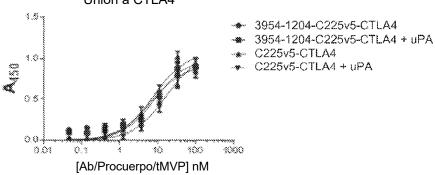
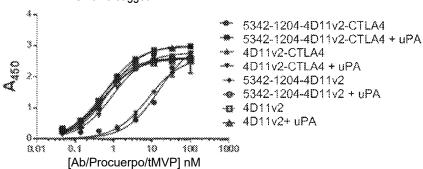



Figura 14, Cont.

Figura 15A

Unión a EGFR


Figura 15B

Unión a CTLA4

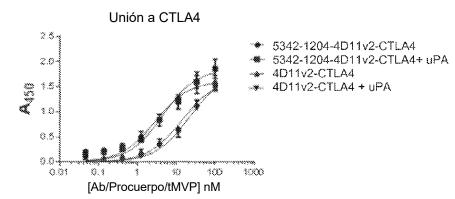
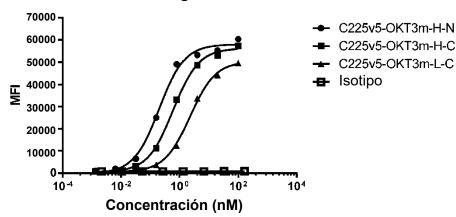


Figura 15C


Unión a Jagged

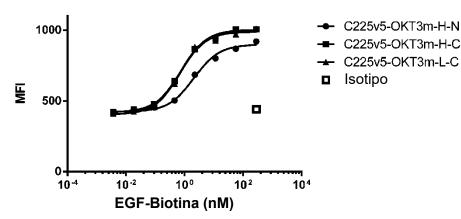

Figura 15D

Figura 16B

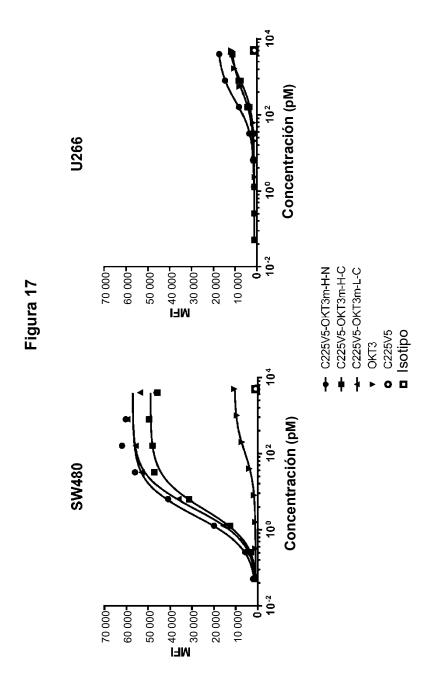
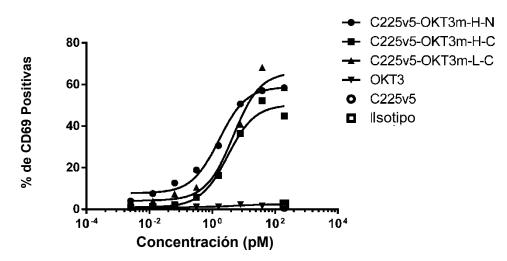
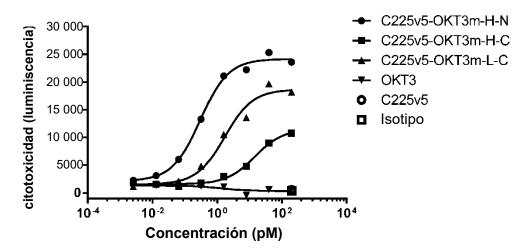
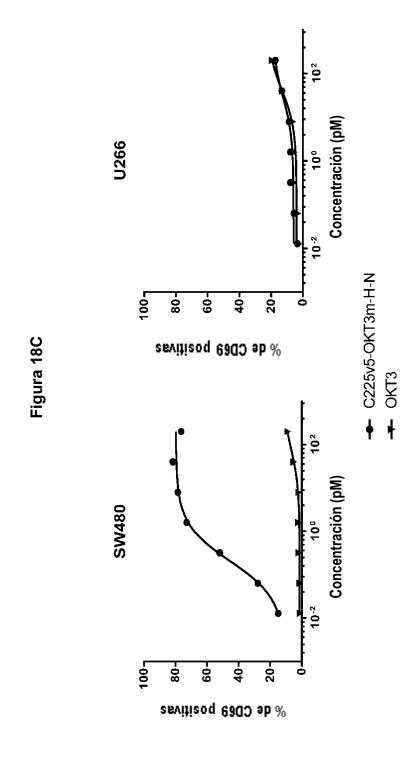
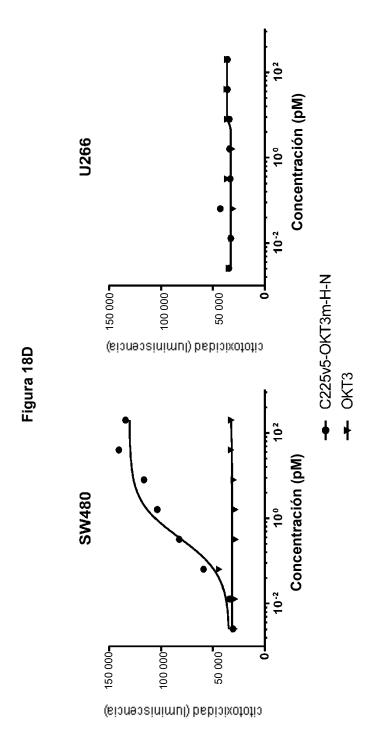
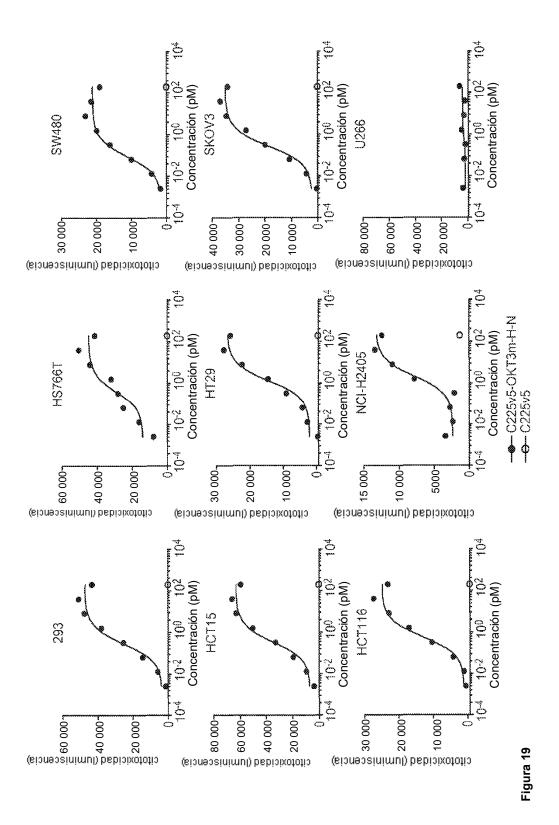
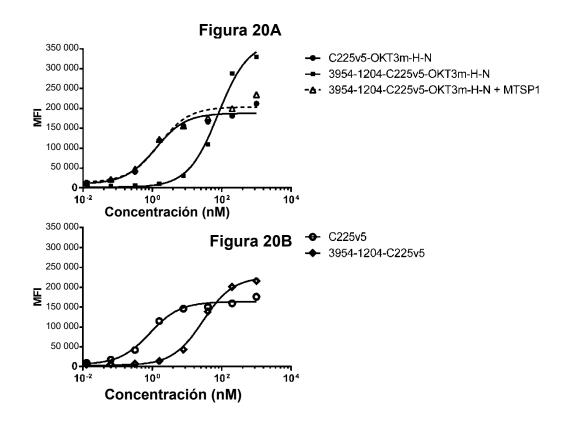


Figura 18A


Figura 18B

