

OFICINA ESPAÑOLA DE PATENTES Y MARCAS

ESPAÑA

11) Número de publicación: 2 683 628

51 Int. Cl.:

G01N 33/569 (2006.01) C07K 16/12 (2006.01) C12Q 1/68 (2008.01)

(12)

TRADUCCIÓN DE PATENTE EUROPEA

T3

(86) Fecha de presentación y número de la solicitud internacional: 13.08.2014 PCT/EP2014/002230

(87) Fecha y número de publicación internacional: 19.02.2015 WO15022075

(96) Fecha de presentación y número de la solicitud europea: 13.08.2014 E 14755023 (0)

(97) Fecha y número de publicación de la concesión europea: 11.07.2018 EP 3033623

(54) Título: Método para la detección de infección por H. pylori

(30) Prioridad:

13.08.2013 EP 13004038

Fecha de publicación y mención en BOPI de la traducción de la patente: 27.09.2018

(73) Titular/es:

TECHNISCHE UNIVERSITÄT MÜNCHEN (100.0%) Arcisstr. 21 80333 München, DE

(72) Inventor/es:

GERHARD, MARKUS; KALALI, BEHNAM; FORMICHELLA, LUCA y KHALIFE-GHOLI, MOHAMMAD

74 Agente/Representante: SÁEZ MAESO, Ana

DESCRIPCIÓN

Método para la detección de infección por H. pylori

15

20

25

30

35

40

45

50

55

La presente invención se refiere a un método de detección de la infección por H. pylori y a un kit para usar en el método de detección de la infección por H. pylori.

Helicobacter pylori (H. pylori), una bacteria microaerófila, Gram-negativa y espiral está colonizando aproximadamente la mitad de la población mundial y se considera que es un patógeno gástrico humano específico (Michetti, et al., 1999). La mayoría de las personas infectadas desarrollan gastritis crónica asintomática. Sin embargo, en algunos sujetos, la infección causa gastritis crónica, ulceración péptica y atrofia, y desempeña un papel importante en el desarrollo de linfoma de tejido linfoide asociado a la mucosa (MALT), adenocarcinoma gástrico y linfoma no Hodgkin gástrico primario (Suganuma, et al., 2001).

La Organización Mundial de la Salud ha categorizado H. pylori como un carcinógeno de clase I (Goto, et al., 1999), y se ha demostrado evidencia directa de carcinogénesis en modelos animales (Honda, et al., 1998; T. Watanabe, et al., 1998). La erradicación de H. pylori puede prevenir el cáncer gástrico en humanos (Uemura, et al., 2001). Las estrategias de prueba y tratamiento se han considerado en poblaciones con alto riesgo de cáncer gástrico (Yamaoka, et al., 1998). Sin embargo, este enfoque se ve obstaculizado por la falta de sistemas de evaluación eficientes y asequibles, especialmente para los países de bajo nivel socioeconómico. En estos países, solo se aplican las pruebas serológicas, la mayoría de las cuales tienen un rendimiento deficiente o no están bien validadas. Para la serología de H. pylori, hay varios marcadores individuales específicos conocidos y descritos. Estos factores se han aplicado en muchos enfoques de diagnóstico, pero casi todos tienen limitaciones significativas que los hacen inadecuados para el diagnóstico de H. pylori. Por ejemplo, la proteína asociada a citotoxina (CagA) es una proteína del H. pylori muy bien caracterizada. Se codifica en el cag-PAI (gen asociado a citotoxina de la isla de patogenicidad y se describe como una proteína oncogénica (Franco, et al., 2005; Murata-Kamiya, et al., 2007). Esta proteína también es un antígeno altamente inmunogénico, por lo que es un marcador frecuentemente usado para las pruebas serológicas. La positividad de CagA se puede usar como un indicador de la virulencia de H. pylori porque los individuos infectados con cepas positivas para CagA tienen un mayor riesgo de desarrollar enfermedades gastroduodenales. Sin embargo, no es apropiado como marcador único, ya que solo un subgrupo de cepas de H. pylori es CagA positivo. Además, la positividad de CagA no es una característica distintiva de la infección activa ya que los pacientes erradicados de H. pylori mantienen anticuerpos contra CagA durante muchos años (Fusconi, et al., 1999). Por lo tanto, siempre se debe combinar con otros antígenos apropiados en las pruebas serológicas para confirmar la positividad. Otra proteína del H. pylori bien caracterizada es la citotoxina vacuolizante (VacA). Se informó que inducía vacuolación en células expuestas a sobrenadantes de H. pylori o proteínas purificadas (Cover & Blaser, 1992). El gen de vacA codifica una protoxina de 140 kDa, en el que la secuencia señal amino terminal y el fragmento carboxi terminal se escinden proteolíticamente durante la secreción, dando lugar a una proteína activa con una masa molecular de 88 kDa que se añade a hexámeros y forma un poro (Montecucco & de Bernard, 2003). Esta proteína consiste en dos regiones diferentes. Una secuencia de señal (s1a, s1b, s2) y una región media (m1, m2), ambas con elevadas variaciones alélicas que parecen regular la actividad citotóxica (Atherton, et al., 1995). La alta diversidad de VacA hace que esta proteína no sea adecuada para las pruebas serológicas.

Otra proteína del H. pylori bien caracterizada, GroEL, pertenece a la familia de chaperonas moleculares, que se requieren para el plegamiento apropiado de muchas proteínas bajo condiciones de estrés (Dunn, et al., 1992). En diferentes estudios se demostró que esta proteína está altamente conservada entre diferentes cepas de H. pylori y que su seropositividad era incluso mayor que para CagA en pacientes infectados (Macchia, et al., 1993; Suerbaum, et al., 1994). También, en estudios realizados por los presentes inventores, se observó que un estado serológico positivo para GroEL se encontraba con mayor frecuencia en pacientes alemanes con cáncer gástrico en comparación con controles emparejados (datos no publicados). También, se sugiere que los anticuerpos contra GroEL pueden persistir por más tiempo después de la pérdida de infección por H. pylori relacionada con la enfermedad. De este modo, GroEL puede ser un marcador apropiado de infección actual o pasada, y puede ser útil para superar la subestimación del riesgo de cáncer gástrico relacionado con H. pylori debido a la eliminación de la infección (Gao et al., 2009).

El documento WO 2004/094467 A2 da a conocer un método de diagnóstico in vitro de infección por H. pylori mediante detección directa de antígenos de H. pylori en el nivel de ácido nucleico o proteína.

El documento WO 98/27432 A1 se refiere a un método serológico para detectar infección por H. pylori usando al menos un antígeno común de tipo H. pylori y al menos un antígeno de tipo I específico de H. pylori.

El documento WO 96/40893 A1 describe secuencias de ácidos nucleicos y de aminoácidos relacionadas con H. pylori para aplicaciones de diagnóstico y terapéuticas.

El problema que subyace a la presente invención fue la provisión de un método de detección de la infección por H. pylori con alta sensibilidad y/o alta especificidad. Otro problema que subyace a la presente invención fue la provisión de un ensayo que, en comparación con los ensayos de la técnica anterior, conduce a resultados menos falsos positivos y menos falsos negativos, particularmente en enfoques basados en la población. Un problema adicional que subyace a la presente invención fue proporcionar medios para llevar a cabo tales métodos y tales ensayos, respectivamente. Un

problema adicional subyacente a la presente invención fue la provisión de un biomarcador para pacientes infectados con *H. pylori*, por lo que el biomarcador preferiblemente no muestra ninguna reactividad cruzada con otras bacterias y proteínas, péptidos o moléculas de ácido nucleico que codifiquen dichas proteínas y péptidos en particular.

- Estos y otros problemas subyacentes a la presente invención se resuelven mediante el contenido de las reivindicaciones independientes adjuntas. Las realizaciones preferidas se pueden tomar de las reivindicaciones dependientes adjuntas. El alcance de la presente invención se define en las reivindicaciones adjuntas.
 - También se describen en este documento los siguientes puntos.
 - Punto 1: Un método de detección de la infección por Helicobacter y más preferiblemente una infección por H. pylori en un sujeto, en el que el método comprende detectar en una muestra del sujeto una respuesta inmune contra FliD.
- Punto 2: El método del punto 1, en el que, si se detecta una respuesta inmune contra FliD en la muestra del sujeto, el sujeto padece una infección por Helicobacter, preferiblemente una infección por H. pylori, o el sujeto ha experimentado una infección por Helicobacter. Infección por Helicobacter, preferiblemente una infección por H. pylori, en el pasado.
 - Punto 3: El método de uno cualquiera de los puntos 1 a 2, en el que, si no se detecta respuesta inmune contra FliD en la muestra del sujeto, el sujeto no sufre una infección por Helicobacter, preferiblemente una infección por H. pylori.
- Punto 4: El método de uno cualquiera de los puntos 1 a 2, en el que, si no se detecta una respuesta inmune contra FliD en la muestra del sujeto, el sujeto ha experimentado una infección por Helicobacter, preferiblemente una infección por H. pylori, en el pasado.
 - Punto 5: El método de uno cualquiera de los puntos 1 a 4, en el que la respuesta inmune contra FliD es una respuesta de anticuerpos contra FliD, preferiblemente una respuesta de anticuerpos anti-FliD.
- Punto 6: El método del punto 5, en el que la respuesta inmune contra FliD es una respuesta de anticuerpos contra FliD y en el que la respuesta del anticuerpo contra FliD comprende al menos un anticuerpo anti-FliD seleccionado del grupo que comprende un anticuerpo IgG y un anticuerpo IgA.
- Punto 7: El método del punto 5, en el que la respuesta inmune contra FliD es una respuesta de anticuerpos anti-FliD y en el que la respuesta del anticuerpo anti-FliD comprende al menos un anticuerpo anti-FliD seleccionado del grupo que comprende un anticuerpo IgG y un anticuerpo IgA.
 - Punto 8: El método de uno cualquiera de los puntos 1 a 7, en el que el sujeto está infectado con *Helicobacter*, preferiblemente *H. pylori*, que expresa FliD.
 - Punto 9: El método de uno cualquiera de los puntos 1 a 8, en el que el sujeto es diferente de un sujeto que está inmunosuprimido, preferiblemente el sujeto es diferente de un sujeto que está bajo terapia inmunosupresora.
- Punto 10: El método de uno cualquiera de los puntos 1 a 9, en el que el método comprende además detectar uno o más antígenos de *Helicobacter*, preferiblemente de H. pylori.
 - Punto 11: El método del punto 10, en el que el uno o más antígenos de Helicobacter, preferiblemente H. pylori, se selecciona del grupo que comprende CagA, VacA, GroEL, Hp 0231, JHp 0940 y HtrA.
- Punto 12: El método de uno cualquiera de los puntos 1 a 11, en el que el método comprende hacer reaccionar la muestra con FliD o un fragmento de la misma.
 - Punto 13: El método del punto 13, en el que el método comprende hacer reaccionar la muestra con una FliD de longitud completa.
- Punto 14: El método de uno cualquiera de los puntos 12 a 13, en el que la respuesta inmune contra FliD comprende al menos uno de un compuesto humoral capaz de interactuar con FliD y un compuesto celular capaz de interactuar con FliD, en el que el al menos un compuesto humoral y/o un compuesto celular interactúa con FliD, preferiblemente el al menos un compuesto humoral y/o el compuesto celular que interactúa con FliD forma un producto de interacción con FliD.
 - Punto 15: El método del punto 14, en el que la respuesta inmune contra FliD es una respuesta de anticuerpos contra FliD y en el que la respuesta del anticuerpo contra FliD forma un producto de interacción con FliD.
- Punto 16: El método del punto 14, en el que la respuesta inmune contra FliD es una respuesta de anticuerpos anti-FliD y en el que la respuesta anti-FliD forma un producto de interacción con FliD.

- Punto 17: El método del punto 14, en el que la respuesta inmune contra FliD comprende al menos un anticuerpo anti-FliD y en el que el anticuerpo anti-FliD forma un producto de interacción con FliD.
- Punto 18: El método de uno cualquiera de los puntos 14 a 17, en el que se detecta el producto de interacción.
- Punto 19: El método del punto 18, en el que el producto de interacción se detecta directamente.
- 5 Punto 20: El método del punto 18, en el que el producto de interacción se detecta indirectamente.
 - Punto 21: El método de uno cualquiera de los puntos 1 a 20, en el que la detección se produce por medio de un ELISA o un inmunoensayo lineal.
 - Punto 22: El método de uno cualquiera de los puntos 1 a 20, en el que la detección se produce por medio de un ensayo de flujo lateral.
- Punto 23: El método de uno cualquiera de los puntos 1 a 22, en el que la muestra se selecciona del grupo que comprende suero, plasma y sangre completa.
 - Punto 24: El método de uno cualquiera de los puntos 1 a 23, en el que el sujeto es un ser humano y la infección por Helicobacter es una infección por H. pylori.
 - Punto 25: El método del punto 24, en el que la FliD reaccionado con la muestra es FliD de H. pylori.
- Punto 26: El método del punto 25, en el que FliD comprende una secuencia de aminoácidos según la SEQ ID NO: 1.
 - Punto 27: El método de uno cualquiera de los puntos 1 a 23, en el que el sujeto es un cerdo y la infección por Helicobacter es la infección por Helicobacter suis.
 - Punto 28: El método del punto 27, en el que la FliD reaccionado con la muestra es FliD de H. suis.
 - Punto 29: El método del punto 28, en el que la FliD comprende una secuencia de aminoácidos según la SEQ ID NO: 3.
- Punto 30: El método de uno cualquiera de los puntos 1 a 23, en el que el sujeto es un gato y la infección por Helicobacter es infección por Helicobacter felis. Preferiblemente, el gato se selecciona del grupo que comprende gato doméstico, gato montés, gato pequeño y gato grande.
 - Punto 31: El método del punto 30, en el que la FliD reaccionado con la muestra es FliD de H. felis.
 - Punto 32: El método del punto 31, en el que FliD comprende una secuencia de aminoácidos según la SEQ ID NO: 5.
- Punto 33: El método de uno cualquiera de los puntos 1 a 32, en el que la sensibilidad del método de detección de una infección por Helicobacter, preferiblemente una infección por H. pylori en el hombre, es más del 90% y/o del 97% o menos.
 - Punto 34: El método de uno cualquiera de los puntos 1 a 33, en el que la especificidad del método de detección de una infección por Helicobacter, preferiblemente una infección por H. pylori en el hombre, es más del 90% y/o 99% o menos.
- Punto 35: Uso de una respuesta inmune contra FliD en un sujeto como biomarcador.
 - Punto 36: El uso del punto 35, en el que el biomarcador es un biomarcador para la infección del sujeto con Helicobacter.
 - Punto 37: El uso de uno cualquiera de los puntos 35 a 36, en el que el biomarcador es un biomarcador para la infección del sujeto con Helicobacter, en el que el sujeto es el hombre y el Helicobacter es H. pylori.
- Punto 38: El uso de uno cualquiera de los puntos 35 a 36, en el que el biomarcador es un biomarcador para la infección del sujeto con Helicobacter, en el que el sujeto es un cerdo y el Helicobacter es H. suis.
 - Punto 39: El uso de uno cualquiera de los puntos 35 a 36, en el que el biomarcador es un biomarcador para la infección del sujeto con Helicobacter, en el que el sujeto es un gato y el Helicobacter es H. felis.
 - Punto 40: El uso según uno cualquiera de los puntos 35 a 39, en el que el biomarcador es un biomarcador predictivo.
- Punto 41: El uso según uno cualquiera de los puntos 35 a 40, en el que la respuesta inmune es una respuesta de 40 anticuerpos contra FliD.

- Punto 42: El uso según uno cualquiera de los puntos 35 a 41, en el que la respuesta inmune es una respuesta de anticuerpos anti-FliD contra FliD.
- Punto 43: Un kit que comprende FliD o un fragmento de la misma y al menos un constituyente adicional.
- Punto 44: El kit del punto 43, en el que el al menos un constituyente adicional se selecciona del grupo que comprende una solución reguladora, una fase sólida y un prospecto de instrucciones.
 - Punto 45: El kit de uno cualquiera de los puntos 43 a 44, en el que FliD es FliD de longitud completa.

10

35

- Punto 46: El kit según uno cualquiera de los puntos 43 a 44, en el que FliD comprende una secuencia de aminoácidos y en el que la secuencia de aminoácidos se selecciona del grupo que comprende una secuencia de aminoácidos según la SEQ ID NO: 1, una secuencia de aminoácidos según la SEQ ID NO: 3 y una secuencia de aminoácidos según la SEQ ID NO: 5.
- Punto 47: El kit según uno cualquiera de los puntos 43 a 46, en el que el kit es apropiado para su uso o se usa en un método de detección de la infección por Helicobacter en un sujeto.
- Punto 48: El kit según el punto 47, en el que el kit es apropiado para su uso o se usa en un método de uno cualquiera de los puntos 1 a 34.
- Punto 49: Un método de detección de la infección por Helicobacter y más preferiblemente una infección por H. pylori en un sujeto, en el que el método comprende detectar FliD en una muestra del sujeto.
 - Punto 50: El método del punto 49, en el que, si se detecta FliD en la muestra del sujeto, el sujeto sufre una infección por Helicobacter, preferiblemente una infección por H. pylori, o el sujeto ha experimentado una infección por Helicobacter, preferiblemente una infección por H. pylori, en el pasado.
- Punto 51: El método de uno cualquiera de los puntos 49 a 50, en el que, si no se detecta FliD en la muestra del sujeto, el sujeto no sufre una infección por Helicobacter, preferiblemente una infección por H. pylori.
 - Punto 52: El método de uno cualquiera de los puntos 49 a 51, en el que, si no se detecta FliD en la muestra del sujeto, el sujeto ha experimentado una infección por Helicobacter, preferiblemente una infección por H. pylori en el pasado.
- Punto 53: El método de uno cualquiera de los puntos 49 a 52, en el que el sujeto está infectado con *Helicobacter*, preferiblemente *H. pylori*, que expresa FliD.
 - Punto 54: El método de uno cualquiera de los puntos 49 a 53, en el que el método comprende además detectar uno o más antígenos de *Helicobacter*, preferiblemente de *H. pylori*.
 - Punto 55: El método del punto 54, en el que el uno o más antígenos de *Helicobacter*, preferiblemente *H. pylori*, se selecciona del grupo que comprende CagA, VacA, GroEL, Hp 0231, JHp 0940 y HtrA.
- Punto 56: El método de uno cualquiera de los puntos 49 a 55, en el que FliD es FliD de longitud completa o un fragmento de la misma.
 - Punto 57: El método de uno cualquiera de los puntos 49 a 56, en el que el método comprende hacer reaccionar la muestra con un agente que interactúa, en el que el agente que interactúa está interactuando con FliD o un fragmento de la misma, preferiblemente el agente que interactúa está específicamente interactuando con FliD o un fragmento de la misma.
 - Punto 58: El método del punto 57, en el que el agente que interactúa está interactuando con FliD de longitud completa o un fragmento de FliD.
 - Punto 59: El método de uno cualquiera de los puntos 57 a 58, en el que el agente de interacción se selecciona del grupo que comprende un anticuerpo, un aptámero y un spiegelmero.
- 40 Punto 60: El método del punto 59, en el que el agente que interactúa es un anticuerpo, en el que el anticuerpo es un anticuerpo monoclonal o un anticuerpo policional.
 - Punto 61: El método de uno cualquiera de los puntos 56 a 60, en el que el agente que interactúa y la FliD presente en la muestra forman un producto de interacción.
 - Punto 62: El método del punto 61, en el que se detecta el producto de interacción.
- 45 Punto 63: El método del punto 62, en el que el producto de interacción se detecta directamente.

- Punto 64: El método del punto 62, en el que el producto de interacción se detecta indirectamente.
- Punto 65: El método de uno cualquiera de los puntos 49 a 64, en el que la detección se produce por medio de un ELISA o un inmunoensayo lineal.
- Punto 66: El método de uno cualquiera de los puntos 49 a 63, en el que la detección se produce por medio de un ensayo de flujo lateral.
 - Punto 67: El método según uno cualquiera de los puntos 49 a 56, en el que FliD se detecta por medio de espectroscopía de masas.
- Punto 68: Método según el punto 67, en el que la espectroscopía de masas se selecciona del grupo que comprende LC-ESI-MS/MS, MALDI-MS, MS en tándem, TOF/TOF, TOF-MS, TOF-MS/MS, MS triple cuádruplo, y MS/MS triple cuádruplo.
 - Punto 69: El método de uno cualquiera de los puntos 49 a 68, en el que el sujeto es un ser humano y la infección por Helicobacter es una infección por H. pylori.
 - Punto 70: El método del punto 69, en el que la FliD es de H. pylori.
 - Punto 71: El método del punto 70, en el que FliD comprende una secuencia de aminoácidos según la SEQ ID NO: 1.
- Punto 72: El método de uno cualquiera de los puntos 49 a 68, en el que el sujeto es un cerdo y la infección por Helicobacter es la infección por Helicobacter suis.
 - Punto 73: El método del punto 72, en el que FliD es de H. suis.
 - Punto 74: El método del punto 73, en el que FliD comprende una secuencia de aminoácidos según la SEQ ID NO: 3.
- Punto 75: El método de uno cualquiera de los puntos 49 a 68, en el que el sujeto es un gato y la infección por Helicobacter felis.
 - Punto 76: El método del punto 75, en el que la FliD es de H. felis.
 - Punto 77: El método del punto 76, en el que FliD comprende una secuencia de aminoácidos según la SEQ ID NO: 5.
 - Punto 78: El método de uno cualquiera de los puntos 49 a 77, en el que la muestra se selecciona del grupo que comprende heces, suero, plasma y sangre completa, preferiblemente la muestra es de heces.
- 25 Punto 79: Uso de FliD como biomarcador.
 - Punto 80: El uso del punto 79, en el que el biomarcador es un biomarcador para la infección de un sujeto con Helicobacter.
 - Punto 81: El uso de uno cualquiera de los puntos 79 a 80, en el que el biomarcador es un biomarcador para la infección del sujeto con Helicobacter, en el que el sujeto es el hombre y el Helicobacter es H. pylori.
- Punto 82: El uso del punto 81, en el que FliD comprende una secuencia de aminoácidos según la SEQ ID NO: 1.
 - Punto 83: El uso de uno cualquiera de los puntos 80 a 81, en el que el biomarcador es un biomarcador para la infección del sujeto con Helicobacter, en el que el sujeto es un cerdo y el Helicobacter es H. suis.
 - Punto 84: El uso del punto 83, en el que FliD comprende una secuencia de aminoácidos según la SEQ ID NO: 3.
- Punto 85: El uso de uno cualquiera de los puntos 80 a 81, en el que el biomarcador es un biomarcador para la infección del sujeto con Helicobacter, en el que el sujeto es un gato y el Helicobacter es H. felis. Punto 86: El uso del punto 85, en el que FliD comprende una secuencia de aminoácidos según la SEQ ID NO: 5.
 - Punto 87: El uso según uno cualquiera de los puntos 79 a 86, en el que el biomarcador es un biomarcador predictivo.
 - Punto 88: Un kit que comprende un agente de interacción capaz de interactuar con FliD o un fragmento de la misma y al menos un constituyente adicional.
- 40 Punto 89: El kit del punto 88, en el que el al menos un constituyente adicional se selecciona del grupo que comprende una solución reguladora, una fase sólida y un prospecto de instrucciones.

- Punto 90: El kit del punto 89, en el que el agente de interacción es capaz de interactuar específicamente con FliD o un fragmento de la misma.
- Punto 91: El kit de uno cualquiera de los puntos 88 a 90, en el que el agente que interactúa se selecciona del grupo que comprende un anticuerpo, un aptámero y un spiegelmero.
- Punto 92: El kit según uno cualquiera de los puntos 88 a 91, en el que el kit es apropiado para su uso o se usa en un método de detección de la infección por Helicobacter en un sujeto.
 - Punto 93: El kit según el punto 92, en el que el kit es apropiado para su uso o se usa en un método de uno cualquiera de los puntos 49 a 78.
- Punto 94: Un método de detección de la infección por Helicobacter y más preferiblemente una infección por H. pylori en un sujeto, en el que el método comprende detectar en una muestra del sujeto un ácido nucleico que codifica FliD.
 - Punto 95: El método del punto 94, en el que el ácido nucleico es un ácido nucleico genómico que codifica FliD, preferiblemente ADN
 - Punto 96: El método del punto 94, en el que el ácido nucleico es un ARNm que codifica FliD.
- Punto 97: El método de uno cualquiera de los puntos 94 a 96, en el que, si se detecta un ácido nucleico que codifica FliD en la muestra del sujeto, el sujeto sufre una infección por Helicobacter, preferiblemente una infección por H. pylori, o el sujeto ha experimentado una infección por Helicobacter, preferiblemente una infección por H. pylori, en el pasado.
 - Punto 98: El método de uno cualquiera del punto 94 a 97, en el que, si no se detecta ácido nucleico que codifica FliD en la muestra del sujeto, el sujeto no sufre una infección por Helicobacter, preferiblemente una infección por H. pylori.
- Punto 99: El método de uno cualquiera de los puntos 94 a 98, en el que, si no se detecta ácido nucleico que codifica FliD en la muestra del sujeto, el sujeto ha experimentado una infección por Helicobacter, preferiblemente una infección por H. pylori en el pasado.
 - Punto 100: El método de uno cualquiera de los puntos 94 a 99, en el que el sujeto está infectado con Helicobacter, preferiblemente H. pylori, que expresa FliD.
- Punto 101: El método de uno cualquiera de los puntos 94 a 100, en el que el método comprende además detectar uno o más antígenos de Helicobacter, preferiblemente de H. pylori, y/o un ácido nucleico que codifica uno o más antígenos de Helicobacter, preferiblemente de H. pylori.
 - Punto 102: El método del punto 101, en el que el uno o más antígenos de Helicobacter, preferiblemente H. pylori, se selecciona del grupo que comprende CagA, VacA, GroEL, Hp 0231, JHp 0940 y HtrA.
- Punto 103: El método de uno cualquiera de los puntos 94 a 102, en el que FliD es FliD de longitud completa o un fragmento de la misma.
 - Punto 104: El método de uno cualquiera de los puntos 94 a 103, en el que el método comprende hacer reaccionar la muestra con un agente que interactúa, en el que el agente que interactúa está interactuando con un ácido nucleico que codifica FliD, preferiblemente el agente que interactúa específicamente interactúa con un ácido nucleico que codifica FliD.
- Punto 105: El método del punto 104, en el que el agente de interacción está interactuando con un ácido nucleico que codifica FliD de longitud completa o un fragmento de FliD.
 - Punto 106: El método de uno cualquiera de los puntos 104 a 105, en el que el agente que interactúa se selecciona del grupo que comprende un cebador y una sonda.
- Punto 107: El método de uno cualquiera de los puntos 104 a 106, en el que el agente de interacción y el ácido nucleico que codifica FliD presente en la muestra forman un producto de interacción.
 - Punto 108: El método del punto 107, en el que se detecta el producto de interacción.
 - Punto 109: El método del punto 108, en el que el producto de interacción se detecta directamente.
 - Punto 110: El método del punto 108, en el que el producto de interacción se detecta indirectamente.
- Punto 111: El método según uno cualquiera de los puntos 94 a 103, en el que una molécula de ácido nucleico que codifica FliD se detecta por medio de espectroscopía de masas, PCR o un ensayo de hibridación.

- Punto 112: El método según el punto 111, en el que la espectroscopía de masas se selecciona del grupo que comprende LC-ESI-MS/MS, MALDI-MS, MS en tándem, TOF/TOF, TOF-MS, TOF-MS/MS, MS triple cuádruplo, y MS/MS triple cuádruplo.
- Punto 113: El método de uno cualquiera de los puntos 94 a 112, en el que el sujeto es un ser humano y la infección por 5 Helicobacter es una infección por H. pylori.
 - Punto 114: El método del punto 113, en el que el ácido nucleico que codifica FliD es de H. pylori.
 - Punto 115: El método del punto 114, en el que el ácido nucleico que codifica FliD comprende una secuencia de nucleótidos según la SEQ ID NO: 2.
- Punto 116: El método de uno cualquiera de los puntos 94 a 112, en el que el sujeto es un cerdo y la infección por Helicobacter es la infección por Helicobacter suis.
 - Punto 117: El método del punto 116, en el que el ácido nucleico que codifica FliD es de H. suis.
 - Punto 118: El método del punto 117, en el que el ácido nucleico que codifica FliD comprende una secuencia de nucleótidos según la SEQ ID NO: 4.
- Punto 119: El método de uno cualquiera de los puntos 94 a 112, en el que el sujeto es un gato y la infección por Helicobacter felis.
 - Punto 120: El método del punto 119, en el que el ácido nucleico que codifica FliD es de H. felis.
 - Punto 121: El método del punto 120, en el que la FliD comprende una secuencia de aminoácidos según la SEQ ID NO: 6
- Punto 122: El método de uno cualquiera de los puntos 94 a 121, en el que la muestra se selecciona del grupo que comprende heces, suero, plasma y sangre completa, preferiblemente la muestra es de heces.
 - Punto 123: Uso de un ácido nucleico que codifica FliD como biomarcador.
 - Punto 124: El uso del punto 123, en el que el biomarcador es un biomarcador para la infección de un sujeto con Helicobacter.
- Punto 125: El uso de uno cualquiera de los puntos 123 a 124, en el que el biomarcador es un biomarcador para la infección del sujeto con Helicobacter, en el que el sujeto es el hombre y el Helicobacter es H. pylori.
 - Punto 126: El uso del punto 125, en el que el ácido nucleico que codifica FliD comprende una secuencia de nucleótidos según la SEQ ID NO: 2.
 - Punto 127: El uso de uno cualquiera de los puntos 124 a 125, en el que el biomarcador es un biomarcador para la infección del sujeto con *Helicobacter*, en el que el sujeto es un cerdo y el Helicobacter es H. suis.
- Punto 128: El uso del punto 127, en el que el ácido nucleico que codifica FliD comprende una secuencia de nucleótidos según la SEQ ID NO: 4.
 - Punto 129: El uso de uno cualquiera de los puntos 124 a 125, en el que el biomarcador es un biomarcador para la infección del sujeto con Helicobacter, en el que el sujeto es un gato y el Helicobacter es H. felis.
- Punto 130: El uso del punto 129, en el que el ácido nucleico que codifica FliD comprende una secuencia de nucleótidos según la SEQ ID NO: 6.
 - Punto 131: El uso según uno cualquiera de los puntos 123 a 130, en el que el biomarcador es un biomarcador predictivo.
 - Punto 132: Un kit que comprende un agente de interacción capaz de interactuar con un ácido nucleico que codifica FliD o un fragmento de la misma y al menos un constituyente adicional.
- 40 Punto 133: El kit del punto 132, en el que el al menos un constituyente adicional se selecciona del grupo que comprende una solución reguladora, una fase sólida y un prospecto de instrucciones.
 - Punto 134: El kit del punto 133, en el que el agente de interacción es capaz de interactuar específicamente con FliD o un fragmento de la misma.

Punto 135: El kit de uno cualquiera de los puntos 132 a 134, en el que el agente de interacción se selecciona del grupo que comprende un cebador y una sonda.

Punto 136: El kit según uno cualquiera de los puntos 132 a 135, en el que el kit es apropiado para su uso o se usa en un método de detección de la infección por Helicobacter en un sujeto.

5 Punto 137: El kit según el punto 136, en el que el kit es apropiado para su uso o se usa en un método de uno cualquiera de los puntos 94 a 122.

10

15

20

40

45

50

55

Los presentes inventores han descubierto sorprendentemente que FliD que es una proteína también denominada "homólogo de proteína 2 asociada al gancho", es un marcador de infección con Helicobacter y H. pylori en particular. Los presentes inventores también han encontrado sorprendentemente que FliD y/o una respuesta inmune contra FliD pueden usarse ventajosamente como marcador en análisis serológicos y, de acuerdo con lo anterior, en cualquier método y ensayo, respectivamente, que se base en o utilice una muestra de un sujeto a analizar para infección por Helicobacter y H. pylori en particular, por lo que la muestra se selecciona preferiblemente del grupo que comprende una muestra de suero, una muestra de plasma, una muestra de sangre y una muestra de heces. Finalmente, los presentes inventores han descubierto sorprendentemente que la infección de un sujeto con Helicobacter y H. pylori en particular se puede detectar basándose en FliD y/o un ácido nucleico que codifica FliD, por lo que se usan FliD y/o el ácido nucleico que codifica FliD, como el único marcador. En otras palabras, una infección de un sujeto con Helicobacter y H. pylori en particular se puede diagnosticar basándose exclusivamente y, respectivamente, dependiendo de FliD y/o un ácido nucleico que codifique para esta. Lo mismo es cierto para una respuesta inmune contra FliD desarrollada por un sujeto infectado con Helicobacter y H. pylori en particular: una infección de un sujeto con Helicobacter y H. pylori en particular se puede diagnosticar basándose exclusivamente y, respectivamente, depender de una respuesta inmune contra FliD, por lo que la respuesta inmune contra FliD fue generada por el sujeto Una ventaja adicional de la presente invención es que la respuesta inmune contra FliD se puede determinar en una muestra que se obtiene por lo general por métodos no invasivos que contrasta con muchos métodos de detección de la técnica anterior en los que la muestra debe tomarse mediante un método invasivo tal como una biopsia.

Se reconocerá por un experto en el arte que la presente descripción puede, en principio, aplicarse a la detección de cualquier infección de un sujeto con Helicobacter, siempre que tal Helicobacter codifique y/o exprese FliD. También será reconocido por una persona experta en el arte que, por lo general, una especie distinta de un sujeto tal como, por ejemplo, el hombre, será infectado por una especie distinta de Helicobacter. En caso de que el sujeto sea el hombre, la especie de Helicobacter es H. pylori. En el caso de que el sujeto sea un cerdo, la especie de Helicobacter es H. suis. En caso de que el sujeto sea un gato, incluidos los grandes felinos, la especie de Helicobacter es H. felis. La memoria descriptiva actual se refiere particularmente a la detección de H. pylori en el hombre. Tal referencia a H. pylori y al hombre, sin embargo, se realiza únicamente por razones de claridad y, dado lo anterior, cualquier realización que se refiera a H. pylori y al hombre, se aplica igualmente a cualquier otro Helicobacter que exprese FliD, o un homólogo del mismo, y cualquiera otra especie del sujeto. Preferiblemente, la otra especie del sujeto es cualquier mamífero que padece o puede sufrir una infección con Helicobacter y un homólogo del mismo.

También se reconocerá por una persona experta en el arte que para cada especie de Helicobacter por lo general existen diversas cepas. La secuencia de aminoácidos y la secuencia de ácido nucleico de FliD de tales cepas de la especie Helicobacter por lo general muestran una identidad muy alta en términos de secuencia de aminoácidos. Más específicamente, el análisis bioinformático reveló que la secuencia de aminoácidos FliD está presente y altamente conservada en todas las cepas de H. pylori (> 200). FliD tiene una homología del 97% en alrededor de 200 cepas de H. pylori que fueron analizadas por los presentes inventores. Curiosamente, a excepción de algunas otras especies de Helicobacter no pylori con homología parcial, no hay otro organismo conocido con una homología genómica o proteómica significativa con FliD de H. pylori. La comparación de la proteína FliD de H. pylori muestra la alta conservación de FliD en especies de Helicobacter, mientras que es distinta de la mayoría de otras bacterias, así como organismos eucarióticos. Este análisis junto con la alta predicción de antigenicidad de esta proteína proporciona el racional de hecho no hay reactividad cruzada.

Además, FliD se expresa de hecho por todas las cepas que infectan o que son capaces de infectar a un sujeto. Esto explica por qué FliD es un marcador de hecho para cada cepa de H. pylori y, respectivamente, cada cepa de la especie de Helicobacter que infecta las especies respectivas. En otras palabras, casi todos los pacientes con H. pylori positivo muestran una respuesta inmune contra FliD.

La proteína del H. pylori FliD es un elemento esencial en el ensamblaje de los flagelos funcionales y una cepa mutante FliD es completamente no móvil. La flagelina desempeña un papel central en la motilidad bacteriana y es necesaria para la colonización y la persistencia de la infección por H. pylori (Eaton, et al., 1996). La motilidad de H. pylori es un factor virulento en la patogenia de la lesión de la mucosa gástrica (S. Watanabe, et al., 1997). El gen H. pylori FliD codifica una proteína de 76 kDa (Kim, et al., 1999). El operón FliD de H. pylori consiste en los genes FlaG, FliD y FliS, en el orden indicado, bajo el control de un promotor dependiente de Sigma (28). Se puede encontrar una entrada para FliD de H. pylori en los bancos de datos UniProtKB/Swiss-Prot como P96786.4 que proporciona, entre otros, la secuencia de aminoácidos de la misma y mutaciones de FliD como se encuentran en diversas cepas de H. pylori.

El método de la invención para detectar infección por H. pylori en un sujeto también se puede caracterizar de manera que comprenda la etapa de determinar si una muestra del sujeto contiene una respuesta inmune contra FliD. Si la muestra del contenido contiene una respuesta de anticuerpos contra FliD, el sujeto padece una infección por H. pylori o ha experimentado una infección por H. pylori en el pasado.

- El método de la invención para detectar una infección por H. pylori en un sujeto también se puede aplicar a un sujeto del que se desconoce si padece una infección por H. pylori, o si tal sujeto ha experimentado una H. infección por pylori. Hasta ahora, la presente divulgación se relaciona en un aspecto adicional con los métodos para determinar si un sujeto padece una infección por Helicobacter, preferiblemente infección por H. pylori, o ha experimentado una infección por Helicobacter, preferiblemente infección por H. pylori en el pasado.
- 10 Como se usa preferiblemente en este documento, la expresión "en el pasado" se refiere a un punto en el tiempo que es anterior al punto en el tiempo cuando una muestra ha sido o es tomada de un sujeto, por lo que dicha muestra es una muestra usada en conexión con los diversos aspectos y/o las diversas realizaciones de la presente invención y en particular en la detección de H. pylori y/o infección por H. pylori en un sujeto y en el diagnóstico de H. pylori y/o infección por H. pylori en un sujeto.
- En relación con los diversos aspectos de la presente invención y el método de la invención en particular, un experto en el arte reconocerá que la respuesta inmune y la respuesta de anticuerpos anti-FliD generada por el sujeto infectado por H. pylori persiste durante algunos años. La prevalencia de dicha respuesta de anticuerpos anti-FliD es por lo general de aproximadamente 50% después de 1 a 5 años después de la erradicación de *H. pylori*, aproximadamente 50% después de 6 a 10 años después de la erradicación de *H. pylori*, aproximadamente 25% después de 11 a 15 años después de la erradicación de *H. pylori*. A la luz de esto, un sujeto que se diagnostica como *H. pylori* positivo puede ser un sujeto que en realidad está sufriendo una infección por H. pylori en el momento en que se tomó la muestra, o un sujeto que había sido infectado por *H. pylori* en el pasado con la respuesta inmune anti-FliD aún prevalece.
- En la medida en que la respuesta inmune contra FliD es una respuesta de anticuerpos contra FliD y más específicamente una respuesta de anticuerpos anti-FliD, los anticuerpos anti-FliD son por lo general IgG o IgA. Esta especificidad de clase se puede usar en la detección de anticuerpos anti-FliD al usar, como anticuerpos de detección o anticuerpos de captura, anticuerpos anti-IgG y/o anti-IgA. En la realización en la que el sujeto es un hombre, los anticuerpos de detección y los anticuerpos de captura son preferiblemente IgG anti-humana y/o IgA anti-humana.
- En relación con los diversos aspectos de la presente invención y el método de la invención en particular, los métodos 30 pueden comprender adicionalmente, en una realización, la detección de uno o más antígenos de Helicobacter o un ácido nucleico que codifica dichos antígenos de Helicobacter. En una realización, tales antígenos de Helicobacter son antígenos de H. pylori. En una realización adicional, los antígenos se seleccionan del grupo que comprende CagA, VacA, GroEL, Hp 0231, JHp 0940 y HtrA que son todos conocidos en la técnica, y se describen, por ejemplo, en Yakoob J et al. (Yakoob J et al., Gut and Liver, Vol. 4, No. 3, September2010, pp. 345-350), Sabarth N et al. (Sabarth N et al., 35 Infection and Immunity, Nov. 2002, p. 6499-6503), Gao L. et al., Cancer Res 2009; 69: (15). August 1, 2009, p. 6164 - 6170), Yamaoka Y (Yamaoka Y, J Med Microbiol. 2008 May; 57 (Pt5): 545-553), Miehlke S et al. (Miehlke S et al., Int. J. Cancer: 87, 322-327 (2000)), y Atherton JC et al. (Atherton JC et al., Current Microbiology, Vol. 39(1999), pp 211-218). Una secuencia de aminoácidos de CagA se describe en este documento como SEQ ID NO: 7, una secuencia de nucleótidos de CaqA se describe en este documento como SEQ ID NO: 8, una secuencia de 40 aminoácidos de VacA se describe en este documento como SEQ ID NO: 9, una secuencia de nucleótidos de VacA se describe en el presente documento como SEQ ID NO: 10, una secuencia de aminoácidos de GroEL se describe en este documento como SEQ ID NO: 11, una secuencia de nucleótidos de GroEL se describe en este documento como SEQ ID NO: 12, una secuencia de aminoácidos de Hp0231 se describe en este documento como SEQ ID NO: 13, una secuencia de nucleótidos de Hp0231 se describe en este documento como SEQ ID NO: 14, una secuencia de 45 aminoácidos de JHp0940 se describe en este documento como SEQ ID NO: 15, una secuencia de nucleótidos de JHp0940 se describe en este documento como SEQ ID NO: 16, una secuencia de aminoácidos de HtrA se describe en este documento como SEQ ID NO: 17, y una secuencia de nucleótidos de HtrA se describe en este documento como SEQ ID NO: 18.
- En una realización del método de la invención en el que se detecta una infección por H. pylori en un sujeto al detectar en una muestra del sujeto una respuesta inmune contra FliD y en particular un anticuerpo anti-FliD en la muestra, la muestra y FliD se hacen reaccionar. En una realización, la muestra se añade a FliD. Preferiblemente, FliD está unido a una fase sólida en dicho método. También está dentro de la presente invención que FliD se añade a la muestra. Preferiblemente, se añade FliD como una solución, más preferiblemente como una solución acuosa tal como una solución regulada. En una realización preferida, FliD se hace reaccionar con la muestra estando FliD unido a una fase sólida. Un experto en el arte reconocerá que FliD y la muestra se hacen reaccionar en condiciones tales que, si la muestra contiene una respuesta inmune contra FliD y anticuerpos anti-FliD en particular, se forma un producto de interacción. Preferiblemente, tal producto de interacción es un complejo de FliD y un anticuerpo anti-FliD contenido en la muestra.

El producto de interacción formado de este modo se puede detectar directa o indirectamente. En la realización en la que el producto de interacción se detecta directamente, la FliD que reaccionó con la muestra comprende un marcador que permite la detección de FliD, particularmente cuando interactúa con un anticuerpo anti-FliD. Los marcadores de este tipo son conocidos para los expertos en el arte y abarcan radiomarcadores, marcadores de fluorescencia, colorantes, nanopartículas como oro y enzimas tales como peroxidasa de rábano picante. Otros marcadores son los descritos en este documento en relación con el marcado de anticuerpos. En la realización en la que el producto de interacción se detecta indirectamente, el producto de interacción se hace reaccionar posteriormente con un agente de detección, por lo que el agente de detección se une específicamente al producto de interacción. Tal agente de detección puede ser un anticuerpo, preferiblemente un anticuerpo anti-IgG o anti-IgA. El propio agente de detección por lo general comprende un marcador que permite la detección del agente de detección, preferiblemente cuando el agente de detección está específicamente unido al producto de interacción.

10

15

20

25

30

35

40

45

50

55

En las realizaciones preferidas del método de la invención, el producto de interacción se detecta por medio de un ensayo inmunoabsorbente ligado a enzimas (ELISA) o un radioinmunoensayo que son conocidos para una persona experta en el arte (Lottspeich F. and Zorbas H (eds.), Bioanalytik, Spektrum Akademischer Verlag Heidelberg, 1998). El ELISA puede ser un ELISA indirecto, un ELISA sándwich, un ELISA competitivo o un ELISA no competitivo.

En una realización preferida alternativa del método de la invención, el producto de interacción se detecta por medio de una prueba de flujo lateral que también se conoce como ensayos inmunocromatográficos de flujo lateral que se describen, por ejemplo, en el documento US 6,485,982. Tal prueba de flujo lateral es, en una realización, usada en cualquier método de la invención en el que se detecta cualquiera un anticuerpo anti-FliD y, respectivamente, anticuerpos anti-FliD en una muestra de un sujeto. La prueba de flujo lateral se describirá con fines ilustrativos para la realización del método de la invención en el que se detectan anticuerpos anti-FliD en una muestra de un sujeto, en el que el sujeto es el hombre.

La tecnología se basa en una serie de lechos capilares, tales como trozos de papel poroso o polímero. Cada uno de estos componentes tiene la capacidad de transportar fluido, por ejemplo, suero, plasma o sangre, precipitadamente. La almohadilla de muestra actúa como una esponja y contiene un exceso de líquido de muestra. Cuando la almohadilla de muestra está saturada, el fluido se mueve a la almohadilla conjugada en la que se encuentran las nanopartículas, preferiblemente nanopartículas de oro, conjugadas con anticuerpo antihumano. Cuando el fluido de muestra migra a este elemento, disuelve las partículas y, en una reacción combinada, la muestra y la mezcla conjugada fluyen a través de la estructura porosa. De esta forma, el anticuerpo inmovilizado en la superficie de las nanopartículas se une a la IgG humana existente en la muestra mientras migra más a través de la siguiente matriz capilar. En este elemento que es por lo general una membrana hidrófoba como antígenos de nitrocelulosa, así como un control (por ejemplo, IgG humana) se inmovilizan como líneas de prueba o de control. Una vez que la IgG humana que ahora está unida a las partículas del conjugado alcanza estas líneas, el antígeno inmovilizado en la membrana capturará específicamente el complejo de anticuerpos. Después de un tiempo, más y más partículas se acumulan en un sitio de antígeno y aparece una banda de color simplemente detectable. En una realización, solo hay un antígeno, a saber, FliD. En otra realización, además de FliD, hay uno o más antígenos. Preferiblemente, el uno o más antígenos se seleccionan del grupo que comprende CagA, VacA, GroEL, Hp 0231, JHp 0940 y HtrA.

En realización preferida alternativa adicional del método de la invención, el producto de interacción se detecta por medio de un ensayo lineal. Tal ensayo lineal comprende por lo general una pluralidad de tiras. En dichas tiras, FliD recombinante altamente purificada se fija en las tiras. Tales tiras están hechas preferiblemente de membrana de nitrocelulosa. Las tiras se incuban con la muestra, preferiblemente con una muestra diluida de suero o plasma, y los anticuerpos anti-FliD se unen a FliD, en caso de que FliD se inmovilice para detectar anticuerpos anti-FliD en la muestra, en las tiras de prueba. En una segunda etapa, las tiras se incuban con anticuerpos inmunoglobulina antihumana (IgG e IgA), que se acoplan a la peroxidasa de rábano picante. Los anticuerpos específicamente unidos se detectan con una reacción de tinción catalizada por la peroxidasa. Si se ha producido una reacción antígeno-anticuerpo formando un producto de interacción, aparecerá una banda oscura en la tira en el punto correspondiente. En una realización, las bandas de control en el extremo superior de las tiras de prueba son:

- a) La banda de control de reacción bajo el número de tira, que debe mostrar una reacción para cada muestra.
- b) Las bandas de control del conjugado (IgG, IgA) se usan para verificar la clase de anticuerpos detectados. Si, por ejemplo, se usa la tira de prueba para la detección de anticuerpos IgG, el conjugado IgG mostrará una banda clara.
- c) "Control de corte": la intensidad de esta banda permite la evaluación de la reactividad de las bandas de antígenos individuales.

Un ensayo que tiene este tipo de diseño, con antígenos diferentes de FliD, está disponible básicamente en Mikrogen GmbH, Neuried, Alemania, como *"recom*Line Helicobacter IgG" o *"recom*Line Helicobacter IgA" (Ref: http://www.mikrogen.de/uploads/tx_oemikrogentables/dokumente/GARLHP001EN.pdf).

También se describe en este documento un método de detección de la infección por Helicobacter y más preferiblemente una infección por H. pylori en un sujeto, en el que el método comprende detectar en una muestra del sujeto FliD, FliD se

detecta por medio de espectrometría de masas que es, por ejemplo, descrito en Lottspeich F. and Zorbas H (eds.), Bioanalytik, Spektrum Akademischer Verlag Heidelberg, 1998.

En métodos donde FliD se detecta en una muestra del sujeto, el agente de interacción que forma junto con FliD el producto de interacción es preferiblemente uno seleccionado del grupo que comprende un anticuerpo, un aptámero y un spiegelmero. La generación de tal agente de interacción está dentro de las habilidades de una persona del arte.

5

10

15

20

25

30

35

40

45

50

55

60

La generación de un anticuerpo que se une y más específicamente se une a FliD, es conocida para el experto en el arte y, por ejemplo, se describe en Harlow, E., and Lane, D., "Antibodies: A Laboratory Manual," Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, (1988). Preferiblemente, se pueden usar anticuerpos monoclonales que se pueden fabricar según el protocolo de Cesar and Milstein y otros desarrollos basados en los mismos. Los anticuerpos como se usan en este documento incluyen, pero no se limitan a, anticuerpos completos, fragmentos de anticuerpos o derivados tales como fragmentos Fab, fragmentos Fc y anticuerpos monocatenarios, siempre que sean apropiados y capaces de unirse a FliD. Además de anticuerpos monoclonales también se pueden usar y/o generar anticuerpos policlonales. La generación de anticuerpos policlonales también es conocida para los expertos en el arte y, por ejemplo, se describe en Harlow, E., and Lane, D., "Antibodies: A Laboratory Manual," Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, (1988).

Los anticuerpos que se pueden usar pueden tener uno o varios marcadores o etiquetas. Tales marcadores o etiquetas pueden ser útiles para detectar el anticuerpo. Preferiblemente, los marcadores y etiquetas se seleccionan del grupo que comprende avidina, estreptavidina, biotina, oro, enzimas como HRP y fluoresceína y se usan, por ejemplo, en métodos de ELISA. Estos y otros marcadores, así como los métodos son, por ejemplo, descrito en Harlow, E., and Lane, D., "Antibodies: A Laboratory Manual," Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, (1988).

Los aptámeros son ácidos D-nucleicos que son ya sea monocatenarios o bicatenarios y que interactúan específicamente con una molécula diana tal como FliD. La fabricación o selección de aptámeros es, por ejemplo, descrito en la Patente Europea EP 0 533 838. Básicamente se realizan las siguientes etapas. Primero, una mezcla de ácidos nucleicos, esto es, potenciales aptámeros, se proporciona por lo que cada ácido nucleico por lo general comprende un segmento de varios, preferiblemente al menos ocho nucleótidos aleatorizados subsiguientes. Posteriormente, esta mezcla se pone en contacto con la molécula diana mediante la cual el (los) ácido (s) nucleico (s) se unen a la molécula diana, tal como se basa en una afinidad incrementada hacia la diana o con una fuerza mayor a la mezcla candidata. El (los) ácido (s) nucleico (s) de unión se separa (n) posteriormente del resto de la mezcla. Opcionalmente, el (los) ácido (s) nucleico (es) obtenido (s) de este modo se amplifican usando, por ejemplo, reacción en cadena de la polimerasa. Estas etapas se pueden repetir varias veces dando al final una mezcla que tiene una proporción incrementada de ácidos nucleicos que se une específicamente a la diana a partir del cual el ácido nucleico de unión final se selecciona entonces opcionalmente. Estos ácidos nucleicos que se unen específicamente se denominan aptámeros. Es obvio que, en cualquier etapa del método para la generación o identificación de los aptámeros, se pueden tomar muestras de la mezcla de ácidos nucleicos individuales para determinar la secuencia de las mismas usando técnicas estándar. Los aptámeros se pueden estabilizar tal como, por ejemplo, introduciendo grupos químicos definidos que son conocidos para los expertos en el arte de generación de aptámeros. Tal modificación puede residir, por ejemplo, en la introducción de un grupo amino en la posición 2' de la unidad estructural de azúcar de los nucleótidos.

La generación o fabricación de spiegelmeros que se unen y se unen más particularmente específicamente a FliD como molécula diana se basa en un principio similar. La fabricación de spiegelmeros se describe en la solicitud de patente internacional WO 98/08856. Los spiegelmeros son ácidos L-nucleicos, lo que significa que están compuestos de Lnucleótidos en lugar de D-nucleótidos como lo son los aptámeros. Los spiegelmeros se caracterizan por el hecho de que tienen una estabilidad muy alta en el sistema biológico y, comparables a los aptámeros, interactúan específicamente con la molécula diana contra la que están dirigidos. Con el fin de generar spiegelmeros, se crea una población heterogénea de ácidos D-nucleicos y esta población se pone en contacto con el antípoda óptico de la molécula diana, en el presente caso por ejemplo con el D-enantiómero del enantiómero L natural de FliD. Posteriormente, esos ácidos D-nucleicos se separan y no interactúan con la antípoda óptica de la molécula diana. Sin embargo, aquellos ácidos Dnucleicos que interactúan con el antípoda óptico de la molécula diana se separan, opcionalmente se determinan y/o se secuencian y posteriormente los ácidos L-nucleicos correspondientes se sintetizan basándose en la información de la secuencia de ácido nucleico obtenida de los ácidos D-nucleicos. Estos ácidos L-nucleicos que son idénticos en términos de secuencia con los ácidos D-nucleicos antes mencionados que interaccionan con el antípoda óptico de la molécula diana, interactuarán específicamente con la molécula diana natural en lugar de con el antípoda óptico de la misma. De forma similar al método para la generación de aptámeros, también es posible repetir varias etapas varias veces y de este modo enriquecer esos ácidos nucleicos que interactúan específicamente con la antípoda óptica de la molécula objetivo.

En el método de detección de la infección por Helicobacter y más preferiblemente una infección por H. pylori en un sujeto, en el que el método comprende detectar en una muestra del sujeto un ácido nucleico que codifica FliD, el agente que interactúa se selecciona del grupo que comprende un cebador y una sonda. Dadas las secuencias de nucleótidos y aminoácidos de FliD descritas en este documento, está dentro de las habilidades de una persona de la técnica diseñar y preparar dicho cebador y sonda (véase, por ejemplo, Lottspeich F. and Zorbas H (eds.), Bioanalytik, Spektrum

Akademischer Verlag Heidelberg, 1998). Tal agente de interacción puede ser etiquetado. Los diversos marcadores y formas de marcar el agente de interacción son conocidas por una persona experta en el arte. En una realización, los marcadores son los mismos que los descritos anteriormente en relación con los anticuerpos.

El producto de interacción que comprende una molécula de ácido nucleico que codifica FliD o un fragmento de la misma y un agente de interacción se puede detectar por medios conocidos para una persona experta en el arte y, por ejemplo, descrito en Lottspeich F. and Zorbas H (eds.), Bioanalytik, Spektrum Akademischer Verlag Heidelberg, 1998.

10

15

20

40

45

En una realización del método de detección de la infección por Helicobacter y más preferiblemente una infección por H. pylori en un sujeto, en el que el método comprende detectar en una muestra del sujeto un ácido nucleico que codifica FliD, el ácido nucleico que codifica FliD es detectado por medio de espectrometría de masas que es, por ejemplo, descrito en Lottspeich F. and Zorbas H (eds.), Bioanalytik, Spektrum Akademischer Verlag Heidelberg, 1998.

En una realización del método de detección de la infección por Helicobacter y más preferiblemente una infección por H. pylori en un sujeto, en el que el método comprende detectar en una muestra del sujeto un ácido nucleico que codifica FliD, el ácido nucleico que codifica FliD es detectado por medio de la reacción en cadena de la polimerasa (PCR) en sus diferentes formas que, por ejemplo, se describen en Lottspeich F. and Zorbas H (eds.), Bioanalytik, Spektrum Akademischer Verlag Heidelberg, 1998. Alternativamente, el ácido nucleico que codifica FliD es detectado por un ensayo de hibridación como, por ejemplo, se describe en Lottspeich F. and Zorbas H (eds.), Bioanalytik, Spektrum Akademischer Verlag Heidelberg, 1998.

En aquellos aspectos de la divulgación que están relacionados con biomarcador, se reconocerá que la respuesta inmune contra FliD como se define en este documento, FliD y un ácido nucleico que codifica FliD cada uno actúan como un biomarcador predictivo como la presencia de dicha respuesta inmune contra FliD como se define en este documento, FliD y/o ácido nucleico que codifica FliD se correlaciona con histología e inflamación en pacientes no tratados.

Se reconocerá por un experto en el arte que, dada la divulgación proporcionada en este documento, el diseño particular del kit de la invención está dentro de las habilidades comunes de una persona experta en el arte. En una realización, el kit es un kit listo para usar.

También se describe en este documento el uso de los agentes que interactúan como se describe en este documento para la detección de FliD como se describe en este documento.

Como se usa preferiblemente en este documento, una muestra es una muestra obtenida inmediatamente de uno o del sujeto, o una muestra que se ha procesado antes de usarse en conexión con la invención y en particular con el método de la invención.

En una realización de los diversos aspectos y realizaciones de la invención, el sujeto es un sujeto que se supone que padece o se sospecha que padece una infección por H. pylori.

En una realización, la infección por Helicobacter es infección con Helicobacter o una infección supuesta o sospechada con Helicobacter.

En una realización de cualquier aspecto de la presente invención donde un primer compuesto interactúa específicamente con o se une específicamente a un segundo compuesto, la interacción o unión entre dicho primer compuesto y dicho segundo compuesto se caracteriza por una KD de 1 μM o menos, más preferiblemente una K_D de 0.25 μM o menos y más preferiblemente una K_D de 0.1 o menos.

Un experto en el arte entenderá que cuando se detecta FliD, FliD puede estar presente ya sea como una FliD de longitud completa o un fragmento de FliD o un fragmento de FliD de longitud completa. Como se usa preferiblemente en este documento, una FliD de longitud completa es una FliD producido por Helicobacter que es activo como factor de virulencia. En una realización, una FliD de longitud completa es preferiblemente una FliD como el producido por Helicobacter. Un fragmento de FliD de longitud completa es un fragmento cuya secuencia de aminoácidos es más corta que la secuencia de aminoácidos de FliD de longitud completa, por lo que el fragmento de FliD todavía está activo como factor de virulencia. Un fragmento de FliD es preferiblemente un fragmento de FliD, preferiblemente de FliD de longitud completa, por lo que el fragmento tiene una secuencia de aminoácidos que es lo suficientemente larga como para permitir que una persona experta en el arte identifique el fragmento como un fragmento de FliD y FliD de longitud completa en particular y para excluir que el fragmento sea un fragmento de una proteína o polipéptido diferente de FliD y FliD de longitud completa en particular. En una realización preferida, FliD de longitud completa comprende una secuencia de aminoácidos según la SEQ ID NO: 1.

Las mismas consideraciones y definiciones se aplican igualmente a un ácido nucleico que codifica FliD. De acuerdo con esto, un experto en el arte entenderá que cuando se detecta un ácido nucleico que codifica FliD, puede estar presente un ácido nucleico que codifica FliD ya sea como un ácido nucleico que codifica una FliD de longitud completa o un ácido nucleico ácido que codifica el fragmento de FliD o un ácido nucleico que codifica el fragmento de FliD de longitud completa. Como se usa preferiblemente en este documento, una FliD de longitud completa es una FliD producido por

Helicobacter que es activo como factor de virulencia. En una realización, una FliD de longitud completa es preferiblemente una FliD como el producido por Helicobacter. Un fragmento de FliD de longitud completa es un fragmento cuya secuencia de aminoácidos es más corta que la secuencia de aminoácidos de FliD de longitud completa, por lo que el fragmento de FliD todavía está activo como factor de virulencia. Un fragmento de FliD es preferiblemente un fragmento de FliD, preferiblemente de FliD de longitud completa, por lo que el fragmento tiene una secuencia de aminoácidos que es lo suficientemente larga como para permitir que una persona experta en el arte identifique el fragmento como un fragmento de FliD y FliD de longitud completa en particular y para excluir que el fragmento sea un fragmento de una proteína o polipéptido diferente de FliD y FliD de longitud completa en particular. En una realización preferida, el ácido nucleico que codifica una FliD de longitud completa comprende una secuencia de nucleótidos según la SEQ ID NO: 2.

10

15

20

25

30

35

40

45

50

55

60

Un fragmento de un ácido nucleico que codifica FliD es preferiblemente un fragmento de un ácido nucleico que codifica FliD, preferiblemente para FliD de longitud completa, por lo que el fragmento del ácido nucleico tiene una secuencia de nucleótidos que es lo suficientemente larga como para permitir que un experto en el arte identifique el fragmento que es un fragmento de un ácido nucleico que codifica FliD y FliD de longitud completa en particular y para excluir que el fragmento del ácido nucleico sea un fragmento de un ácido nucleico que codifica una proteína o polipéptido diferente de FliD y FliD de longitud completa en particular.

También se entenderá por una persona experta en el arte que en aquellas realizaciones del método de la invención donde se detecta una respuesta inmune contra FliD como se define en este documento, FliD que se hace reaccionar con la respuesta inmune contra FliD como se define en este documento memoria descriptiva, puede ser FliD como se produce por la especie de *Helicobacter* que infecta al sujeto o presumiblemente infecta al sujeto, puede ser una FliD de longitud completa como se define en este documento o puede ser un fragmento de FliD como se define en este documento. Además, un fragmento de FliD es, en una realización, un fragmento de FliD que tiene una secuencia de aminoácidos más corta que FliD, en el que el fragmento se puede usar en dichas realizaciones del método de la invención, al tiempo que permite la interacción específica con o la detección específica de la respuesta inmune contra FliD como se define en este documento.

Un cebador dirigido a un ácido nucleico que codifica FliD como se describe en este documento es uno seleccionado del grupo que comprende un cebador que comprende una secuencia de nucleótidos según la SEQ ID NO: 21, un cebador que comprende una secuencia de nucleótidos según la SEQ ID NO: 22, un cebador que comprende una secuencia de nucleótidos según la SEQ ID NO: 23, un cebador que comprende una secuencia de nucleótidos según la SEQ ID NO: 24, un cebador que comprende una secuencia de nucleótidos según la SEQ ID NO: 25, un cebador que comprende una secuencia de nucleótidos según la SEQ ID NO: 26, un cebador que comprende una secuencia de nucleótidos según la SEQ ID NO: 27 y un cebador que comprende una secuencia de nucleótidos según la SEQ ID NO: 28. Preferiblemente, el cebador es una combinación de al menos dos cebadores, por lo que

un primer cebador de los al menos dos cebadores es un cebador que comprende una secuencia de nucleótidos según la SEQ ID NO: 21 y un segundo cebador de los al menos dos cebadores es un cebador que comprende una secuencia de nucleótidos según la SEQ ID NO: 22; un primer cebador de los al menos dos cebadores es un cebador que comprende una secuencia de nucleótidos según la SEQ ID NO: 21 y un segundo cebador de los al menos dos cebadores es un cebador que comprende una secuencia de nucleótidos según la SEQ ID NO: 24; un primer cebador de los al menos dos cebadores es un cebador que comprende una secuencia de nucleótidos según la SEQ ID NO: 21 y un segundo cebador de los al menos dos cebadores es un cebador que comprende una secuencia de nucleótidos según la SEQ ID NO: 26; un primer cebador de los al menos dos cebadores es un cebador que comprende una secuencia de nucleótidos según la SEQ ID NO: 21 y un segundo cebador de los al menos dos cebadores es un cebador que comprende una secuencia de nucleótidos según la SEQ ID NO: 28; un primer cebador de los al menos dos cebadores es un cebador que comprende una secuencia de nucleótidos según la SEQ ID NO: 23 y un segundo cebador de los al menos dos cebadores es un cebador que comprende una secuencia de nucleótidos según la SEQ ID NO: 22; un primer cebador de los al menos dos cebadores es un cebador que comprende una secuencia de nucleótidos según la SEQ ID NO: 23 y un segundo cebador de los al menos dos cebadores es un cebador que comprende una secuencia de nucleótidos según la SEQ ID NO: 24; un primer cebador de los al menos dos cebadores es un cebador que comprende una secuencia de nucleótidos según la SEQ ID NO: 23 y un segundo cebador de los al menos dos cebadores es un cebador que comprende una secuencia de nucleótidos según la SEQ ID NO: 26; un primer cebador de los al menos dos cebadores es un cebador que comprende una secuencia de nucleótidos según la SEQ ID NO: 23 y un segundo cebador de los al menos dos cebadores es un cebador que comprende una secuencia de nucleótidos según la SEQ ID NO: 28; un primer cebador de los al menos dos cebadores es un cebador que comprende una secuencia de nucleótidos según la SEQ ID NO: 25 y un segundo cebador de los al menos dos cebadores es un cebador que comprende una secuencia de nucleótidos según la SEQ ID NO: 22; un primer cebador de los al menos dos cebadores es un cebador que comprende una secuencia de nucleótidos según la SEQ ID NO: 25 y un segundo cebador de los al menos dos cebadores es un cebador que comprende una secuencia de nucleótidos según la SEQ ID NO: 24; un primer cebador de los al menos dos cebadores es un cebador que comprende una secuencia de nucleótidos según la SEQ ID NO: 25 y un segundo cebador de los al menos dos cebadores es un cebador que comprende una secuencia de nucleótidos según la SEQ ID NO: 26; un primer cebador de los al menos dos cebadores es un cebador que comprende una secuencia de nucleótidos según la SEQ ID NO: 25 y un segundo cebador de los al menos dos cebadores es un cebador que comprende una secuencia de nucleótidos según la SEQ ID NO: 28; un primer cebador de los al menos dos cebadores es un cebador que comprende una secuencia de nucleótidos según la SEQ ID NO: 27 y un segundo cebador de los al menos dos cebadores es un cebador que comprende una secuencia de nucleótidos según la SEQ ID NO: 22; un primer cebador de los al menos dos cebadores es un cebador que comprende una secuencia de nucleótidos según la SEQ ID NO: 27 y un segundo cebador de los al menos dos cebadores es un cebador que comprende una secuencia de nucleótidos según la SEQ ID NO: 24; un primer cebador de los al menos dos cebadores es un cebador que comprende una secuencia de nucleótidos según la SEQ ID NO: 27 y un segundo cebador de los al menos dos cebadores es un cebador que comprende una secuencia de nucleótidos según la SEQ ID NO: 26; o un primer cebador de los al menos dos cebadores es un cebador de los al menos dos cebadores es un cebador de los al menos dos cebadores es un cebador de los al menos dos cebadores es un cebador que comprende una secuencia de nucleótidos según la SEQ ID NO: 27 y un segundo cebador de los al menos dos cebadores es un cebador que comprende una secuencia de nucleótidos según la SEQ ID NO: 28.

5

10

20

30

Las diversas SEQ ID NO: a las que se hace referencia en este documento, el compuesto representado por dichas SEQ ID NO:, los organismos de los que se tomaron dichas secuencias y, en algunos casos, una indicación de la entrada correspondiente de la secuencia en los bancos de datos públicamente disponibles se resume en la siguiente tabla 1:

Tabla 1:

15 La SEQ ID NO:1 es la secuencia de aminoácidos de FliD expresada por H. pylori que corresponde a la entrada del GenBank ACI27464.1.

La SEQ ID NO:2 es la secuencia de nucleótidos (ADNc) de FliD expresada por H. pylori que corresponde a la entrada del GenBank CP001173.1.

La SEQ ID NO:3 es la secuencia de aminoácidos de FliD expresada por H. suis que corresponde a la secuencia de referencia NCBI WP 006563874.1.

La SEQ ID NO:4 es la secuencia de nucleótidos (ADNc) de FliD expresada por H. suis que corresponde a la entrada del GenBank ADGY01000008.1.

La SEQ ID NO:5 es la secuencia de aminoácidos de FliD expresada por H. felis que corresponde a la secuencia de referencia NCBI YP 004073770.1.

La SEQ ID NO:6 es la secuencia de nucleótidos (ADNc) de FliD expresada por H. felis que corresponde a la entrada del GenBank FQ670179.2.

La SEQ ID NO:7 es la secuencia de aminoácidos de CagA de H. pylori G27 que corresponde a la secuencia de referencia NCBI YP 002266135.1.

La SEQ ID NO:8 es la secuencia de nucleótidos (ADNc) de CagA de H. pylori G27 que corresponde a la entrada del GenBank JQ318032.1.

La SEQ ID NO:9 es la secuencia de aminoácidos de VacA de H. pylori G27 que corresponde a la secuencia de referencia NCBI YP 002266461.1.

La SEQ ID NO:10 es la secuencia de ácidos nucleicos (ADNc) de VacA de H. pylori G27 que corresponde a la secuencia de referencia NCBI NC_011333.1.

La SEQ ID NO:11 es la secuencia de aminoácidos de GroEL de H. pylori G27 que corresponde a la secuencia de referencia NCBI YP_002265651.1.

La SEQ ID NO:12 es la secuencia de nucleótidos (ADNc) de GroEL de H. pylori G27 que corresponde a la secuencia de referencia NCBI NC 011333.1.

La SEQ ID NO:13 es la secuencia de aminoácidos de Hp0231 de H. pylori 26695 que corresponde a la secuencia de 40 referencia NCBI NP_207029.1.

La SEQ ID NO:14 es la secuencia de nucleótidos (ADNc) de Hp0231 de H. pylori 26695 que corresponde a la secuencia de referencia NCBI NC_000915.1.

La SEQ ID NO:15 es la secuencia de aminoácidos de JHp0940 de H. pylori J99 que corresponde a la secuencia de referencia NCBI NP 223657.1.

La SEQ ID NO:16 es la secuencia de nucleótidos (ADNc) de JHp0940 de H. pylori J99 que corresponde a la secuencia de referencia NCBI NC 000921.1.

La SEQ ID NO:17 es la secuencia de aminoácidos de HtrA de H. pylori G27 que corresponde a la secuencia de referencia NCBI YP_002266040.1.

La SEQ ID NO:18 es la secuencia de nucleótidos (ADNc) de HtrA de H. pylori G27 que corresponde a la secuencia de referencia NCBI NC 011333.1.

- 5 La SEQ ID NO: 19 es un cebador usado en la clonación del gen de FliD a partir de H. pylori.
 - La SEQ ID NO: 20 es un cebador usado en la clonación del gen de FliD a partir de H. pylori.
 - La SEQ ID NO: 21 es un cebador hacia adelante usado en PCR1 del ejemplo 9.
 - La SEQ ID NO: 22 es un cebador reverso usado en PCR1 del ejemplo 9.
 - La SEQ ID NO: 23 es un cebador hacia adelante usado en PCR2 del ejemplo 9.
- 10 La SEQ ID NO: 24 es un cebador reverso usado en PCR2 del ejemplo 9.
 - La SEQ ID NO: 25 es un cebador hacia adelante usado en PCR3 del ejemplo 9.
 - La SEQ ID NO: 26 es un cebador reverso usado en PCR3 del ejemplo 9.
 - La SEQ ID NO: 27 es un cebador hacia adelante usado en PCR4 del ejemplo 9.
 - La SEQ ID NO: 28 es un cebador reverso usado en PCR4 del ejemplo 9.
- Se entenderá por un experto en el arte que en caso de que la secuencia de nucleótidos sea una secuencia de ADN y una secuencia de ADNc en particular, también se describe en este documento una secuencia de ARN que difiere de tal secuencia de ADN y secuencia de ADNc solo en la medida en que el resto de azúcar sea un ribonucleótido en lugar de un desoxirribonucleótido.
- La presente invención se ilustra ahora adicionalmente mediante las siguientes figuras y ejemplos que no están destinados a limitar el alcance de la protección. A partir de dichas figuras y ejemplos, se pueden tomar otras características, realizaciones y ventajas, en las que
 - La figura 1 muestra una realización de un ensayo lineal usado en el método de la invención para detectar anticuerpos anti-FliD en muestras de suero de 20 pacientes humanos diagnosticados histológicamente como positivos para H. pylori;
- La figura 2 muestra una realización de un ensayo de flujo lateral que se puede usar en el método de la presente invención para detectar anticuerpos anti-FliD en una muestra tal como una muestra de sangre completa de un sujeto humano, por lo que la figura 2A ilustra el diseño esquemático del ensayo, y la figura 2B representa un resultado del ensayo:
 - La figura 3 es un diagrama que indica la prevalencia de una respuesta anti-FliD en muestras del hombre como una función de años después de la erradicación de H. pylori;
- 30 La figura 4 muestra curvas ROC para FliD en comparación con dos antígenos bien conocidos;
 - La figura 5 muestra el resultado de un análisis de transferencia de Western que detecta FliD a diversas concentraciones usando suero anti-FliD de ratón, pero no Tig o gGT;
- La figura 6 muestra una serie de transferencias de Southern usando la reacción en cadena de la polimerasa 1 (PCR1), reacción en cadena de la polimerasa 2 (PCR2), reacción en cadena de la polimerasa 3 (PCR3) o reacción en cadena de la polimerasa 4 (PCR4) para la detección del ADN genómico presente en muestras representativas de pacientes que han sido diagnosticados como positivos para H. pylori;
 - La figura 7 muestra el resultado de un análisis de transferencia de Western representativo realizado usando lisados de proteína completa del H. pylori cultivado; y
- La figura 8 muestra el resultado de dos análisis de transferencia de Western para determinar si FliD se expresó por los microorganismos indicados debajo de cada una de las transferencias de Western.
 - Ejemplo 1: clonación del gen FliD de H. pylori

Todas las manipulaciones de ADN se realizaron en condiciones estándar como se describe por Sambrook et al. (Sambrook, et al., 1989). En resumen, el gen FliD se amplificó por PCR usando ADN genómico de la cepa J99 de H.

pylori como plantilla. Los siguientes oligonucleótidos se usaron como cebadores: 5'- CAT ATG GCA ATA GGT TCA TTA A-3' (SEQ ID NO: 19) y 5'- CTC GAG ATT CTT TTT AGC CGC TGC-3' (SEQ ID NO: 20). Usando este enfoque, se introdujo un sitio Ndel en el extremo 5' de los cebadores directos y un sitio Xhol en el extremo 5' de los cebadores inversos. Después de la amplificación por PCR, el producto (2058 pb) se ligó en el vector de clonación pTZ57R/T (InsTAclone™ PCR Cloning Kit, MBI Fermentas, Lithuania). Posteriormente, el inserto se confirmó mediante PCR y secuenciación, y se clonó en un vector de expresión de PET-28a (+) (Qiagen, EE. UU.) usando enzimas de restricción Ndel y Xhol.

Ejemplo 2: expresión, purificación y reconocimiento de FliD recombinante

Las células competentes de E. coli BL21 (Qiagen, EE.UU.) se transformaron con pET-28a(+)-fliD y se inocularon en 10 caldo LB con antibiótico (kanamicina, 50 μg/ml). La expresión se indujo mediante la adición de 1 mmol/l de isopropil β-D-1-tiogalactopiranósido (IPTG) a una densidad óptica (OD600) de 0.6. Después de 4 horas, las células se recogieron y el análisis de proteínas del lisado completo se llevó a cabo mediante electroforesis en gel de dodecilsulfato de sodiopoliacrilamida (SDS-PAGE). Las proteínas etiquetadas con histidina soluble se purificaron usando cromatografía de afinidad (HisTrap crudo, GÉ Healthcare). Como segunda etapa de pulido y para intercambio de solución reguladora, se 15 realizó una cromatografía de exclusión por tamaño (Superdex 75, GÉ Healthcare). Las fracciones relevantes se recogieron y se concentraron con un dispositivo de filtro centrífugo (Millipore) con un corte de 10 kDa y se almacenaron a -80 °C. La proteína recombinante purificada se evaluó mediante transferencia de Western usando un anticuerpo anti-His Tag-HRP y también un anticuerpo anti-H pylori-HRP de ratón. (Pierce, Rockford, EE. UU.) y detectado por el sistema ECL (GE Healthcare, Uppsala, Suecia).

La amplificación del gen FliD del ADN de la cepa J99 de H. pylori reveló un único producto de PCR de 2.05 kb (datos no 20 mostrados) que se confirmó mediante secuenciación y se ligó en el vector de expresión pET-28a(+). Después de la transformación en la cepa de expresión de E. coli BL21 DE3 y la inducción con IPTG, se pudo observar una única banda clara en la transferencia de Western usando un antisuero anti-H pylori policional comercial. La proteína se purificó como se describe en materiales y métodos hasta > 90% de pureza (datos no mostrados) y se confirmó de nuevo mediante 25 transferencia Western (datos no mostrados).

30

35

Ejemplo 3: Producción y purificación de anticuerpo específico para rFliD

Se inmunizó un coneio blanco de Nueva Zelanda maduro con proteína purificada según el protocolo de Hay et al. con ligeras modificaciones (Hay, et al., 2002). En resumen, la inmunización se llevó a cabo por invección i.m. de 250 μg de proteína recombinante purificada (0.5 ml) con el mismo volumen (0.5 ml) de adyuvante completo de Freund. Para las inmunizaciones de recuerdo, el conejo se reforzó con 125 μg de proteína purificada preparada en el mismo volumen (0.5 ml) de adyuvante incompleto de Freund 4, 6, 8 y 10 semanas después. Como control negativo, se tomó una muestra de suero antes de la inmunización. Finalmente, dos semanas después de la última inmunización, se recogió sangre y se separó el suero. El anticuerpo IgG policional se purificó por cromatografía de afinidad con sefarosa-4B usando columnas conjugadas con rFliD preparadas según el protocolo del fabricante (Pharmacia, 1988). La expresión de FliD de H. pylori (J99) se detectó mediante transferencia de Western usando sobrenadante ultrasónico a la concentración de proteína de 50 µg /ml. El anticuerpo IgG policional de conejo producido contra la proteína rFliD se usó como el primer anticuerpo (dilución 1: 5000), anticuerpo ovino marcado con HRP contra IgG de conejo (Avicenna Research Institute, Teherán, Irán) como el segundo anticuerpo (dilución 1: 3000) y el sistema ECL se usó para la detección (Chen, et al., 2001).

40 Además, para probar la antigenicidad de la FliD recombinante y para compararla con la proteína nativa, se produjo antisuero policional de conejo. Los títulos de anticuerpos ya se determinaron después de la tercera inmunización y alcanzaron niveles elevados después del cuarto refuerzo, lo que confirma la buena inmunogenicidad de FliD. El antisuero de conejo fue capaz de reconocer la rFliD y la FliD purificadas en el lisado de H. pylori (datos no mostrados).

Ejemplo 4: Desarrollo de un ELISA

45 Se recubrieron placas de ELISA con 100 μl de proteína rFliD a una concentración de 1 μg/ml en PBS v se incubaron durante la noche a 4 °C. Los pozos revestidos se bloquearon con solución salina regulada con fosfato (PBS) que contenía albúmina de suero bovino al 2.5% (BSA, Sigma) durante dos horas a 37 °C. Todas las muestras serológicas positivas y negativas a H. pylori usadas en este estudio se cribaron de anticuerpos contra FliD usando una dilución óptima del suero de los pacientes (dilución 1:100) como el primer anticuerpo, IgG antihumana conjugada con HRP 50 (Promega, Mannheim, Alemania) (dilución 1:100) como el anticuerpo secundario y TMB (3,3', 5,5'-tetra metil bencidina) como sustrato. Además, los pozos se dejaron sin revestir como control para cada suero. El resultado de ELISA para la muestra de suero de un paciente se consideró positivo si su valor OD450 era superior a la media más 3 SD de muestras de suero negativas (Chen, et al., 2001).

Ejemplo 5: Desarrollo de un ensayo lineal FliD

Se preparó un inmunoensayo lineal basado en proteínas recombinantes de H. pylori inmovilizadas en nitrocelulosa. A diferencia de ELISA, el principio de la prueba permite la identificación de anticuerpos específicos contra diversos antígenos de H. pylori mediante la aplicación por separado de diferentes antígenos individuales.

rFliD se inmovilizó en tiras de membrana de nitrocelulosa junto con otros antígenos de H. pylori recombinantes altamente purificados (CagA, VacA, GroEL, UreA (ureasa A), HcpC (proteína C rica en cisteína) (Mittel et al., 2003) y gGT (gamma glutamil transferasa). Las condiciones de línea apropiadas para rFliD se determinaron empíricamente con una selección de muestras de suero estándar de una población de estudio descrita previamente que comprende 20 muestras definidas H. pylori histológicamente positivas y 20 muestras definidas como negativas histológicamente para H. pylori. La concentración de antígeno óptima y la elección ideal de aditivos como detergente, ditiotreitol y NaCl se ajustaron para cada antígeno mediante ciclos repetidos de revestimiento y cribado. Las condiciones con la mejor presentación de epítopos de antígeno y unión óptima a la membrana, observables por una apariencia de banda perfecta y la mejor discriminación de muestras negativas y positivas, se seleccionaron para las especificaciones ideales del producto de los primeros lotes. Se añadieron bandas de control en el extremo superior de la tira que comprende anticuerpos de IgG/IgM/IgA anti-humano de conejo como controles de incubación e IgG humana, anticuerpos IgM o IgA como control conjugado, así como un control de corte que permite la evaluación de la reactividad de las bandas de antígenos individuales.

Después del escaneo y el análisis densitométrico de las intensidades de la banda, el control se usó como referencia interna para calcular las relaciones para cada banda. Por lo general, las bandas de control de corte se califican entre 20 y 30, mientras que las bandas positivas fuertes pueden obtener hasta 600 puntos. Cada banda que califica por encima del control individual de cada banda se considera positiva (proporción > 1).

El ensayo lineal respectivo se representa en la figura 1

5

10

15

20

30

Ejemplo 6: Prototipo de un ensayo de flujo lateral para el diagnóstico de H. pylori

Usando los materiales definidos anteriormente, se desarrolló un ensayo de flujo lateral basado en los principios descritos en este documento relacionados con el diseño de un ensayo de flujo lateral.

El prototipo de tal ensayo de flujo lateral se representa en la figura 2, por lo que la figura 2A ilustra el diseño esquemático del ensayo, y la figura 2B representa el resultado de un análisis de una muestra obtenida de un ser humano usando el ensayo., en el que se detectaron los anticuerpos anti-FliD.

Como se puede deducir de la figura 2A, el ensayo utilizó nanopartículas de oro recubiertas con anti-hlgG. rFliD, así como también CagA recombinante estaban presentes como antígenos. hlgG también se inmovilizó sirviendo como control. La estructura porosa estaba formada por nitrocelulosa. La banda de control indicó que el sistema funciona correctamente. La banda FliD indicó que el paciente tenía una infección activa o recientemente tratada. La banda CagA, en caso de infección activa (+ banda FliD), indica que esta infección debe ser tratada.

Ejemplo 7: análisis de muestras a partir de un hombre

Un total de seiscientos dieciocho (618) pacientes humanos (308 hombres, 310 mujeres) se inscribieron en el estudio.

Después de recibir una explicación del propósito del estudio, se obtuvo el consentimiento informado de cada paciente y se tomó una muestra de sangre en el momento de la endoscopia, antes de iniciar cualquier terapia. Los sueros se separaron y almacenaron a -20 °C. El diagnóstico de infección se basó en la histopatología como patrón de oro. Los pacientes se consideraron positivos a H. pylori cuando los resultados de la histopatología fueron positivos. Todos los pacientes se cribaron mediante el ensayo lineal de FliD, y se analizó un subconjunto de 246 sueros mediante FliD ELISA como se describió anteriormente y mediante ensayo lineal como se describió anteriormente.

La tabla 2 muestra los resultados de usar dicho FliD ELISA. Más específicamente, la tabla 2 muestra la respuesta serológica FliD en ELISA que compara pacientes humanos positivos y negativos a *H. pylori*.

		Histo	ología	Total
		Negativo	Positivo	
ELISA	Negativo	73	8	81
	Positivo	3	162	165
Total		76	170	246

La tabla 3 muestra los resultados de usar dicho ensayo lineal para un subgrupo del grupo de pacientes. Más específicamente, la tabla 3 muestra la respuesta serológica FliD en el ensayo lineal que compara pacientes positivos y negativos a H. pylori.

		Histo	ología	Total
		Negativo	Positivo	
Ensayo de línea	Negativo	76	14	90
	Positivo	0	156	156
Total		76	170	246

Usando la FliD ELISA, entre 170 muestras positivas informadas, se detectaron 165 muestras positivas, mientras que entre 76 muestras informadas se reconfirmaron negativas 73 como negativas mediante ELISA (Tabla 2). En conjunto, la aplicación de FliD en el diagnóstico de infección por H. pylori basado en ELISA tiene una especificidad del 96% y una sensibilidad del 97%. Curiosamente, los cinco casos que fueron negativos para ELISA también tuvieron puntuaciones bajas, pero apenas positivas en la línea de transferencia que se encontraban justo por encima del punto de corte (proporciones que van desde 1.2 a 2.2). Uno de estos también se consideró H. pylori negativo por transferencia de línea, mientras que los otros cuatro fueron positivos de transferencia de línea, reaccionando con varios otros antígenos (datos no mostrados). Es importante tener en cuenta que solo una muestra fue negativa en ambas pruebas.

El grupo completo de 618 pacientes humanos (parte del cual se había cribado mediante ELISA) se analizó usando el ensayo lineal en cuanto a la respuesta de anticuerpos contra FliD. una alta sensibilidad del 97.4%, con 310 de 318 pacientes evaluados como positivos en histopatología por ensayo lineal, mientras que el ensayo lineal alcanza una especificidad del 99% (Tabla 2). Los resultados de los pacientes en los que se obtuvieron resultados discrepantes, fueron cuidadosamente examinados. 8 sueros fueron negativos para FliD en el ensayo lineal, pero mostraron reactividad con otros antígenos, lo que indica que, en este documento, de hecho, FliD no se reconoció como antígeno. Dentro de estas 8 muestras, una no tenía reactividad contra la banda FliD en absoluto. Siete tenían una reactividad débil que estaba apenas por debajo del punto de corte (proporciones entre 0.6 y 0.95), y cuatro de ellos tenían reactividades débiles contra todos los otros antígenos reconocidos en general (no se muestra). Las tres muestras en las que FliD dio un resultado "falso positivo" también mostraron reactividades con otras bandas. Todas estas bandas, incluida FliD, eran relativamente débiles, pero estaban claramente por encima del límite.

A partir de dichas muestras, se determinó la prevalencia de una respuesta de anticuerpos anti-FliD en función de años después de la erradicación. El resultado se muestra en la figura 3. Como se puede deducir de la figura 3, todavía hay una prevalencia de una respuesta de anticuerpos anti-FliD de aproximadamente el 25% después de 16 a 20 años después de la erradicación de H. pylori.

A partir de dichas muestras, las curvas de características de funcionamiento del receptor (ROC) se prepararon para FliD, CagA y UreA. El resultado se muestra en la figura 4. A partir de dicha figura 4, es evidente que FliD es ventajoso con respecto a los dos antígenos de la técnica anterior usados en la detección de la infección por H. pylori.

Ejemplo 8: análisis bioinformático de secuencias FliD

Usando herramientas bioinformáticas, la proteína FliD de la cepa H. pylori G27 se comparó ampliamente con otros organismos, principalmente procariotas. Este análisis muestra más del 97% de homología entre más de 200 cepas de H. pylori.

35 Los resultados se muestran en la tabla 4.

15

20

30

Entrada	Nombre de la entrada	Nombres de las proteínas	Organismo	Longitud	Identidad	Puntuación
B5Z7B5	B5Z7B5_HELPG	Proteína asociada al gancho flagelar putativa 2	Helicobacter pylori (cepa G27)	685	100.0%	3412
J0KLR1	J0KLR1_HELPX	Proteína asociada al gancho flagelar putativa 2	Helicobacter pylori Hp H-27	685	99.0%	3383

I9RP80	I9RP80_HELPX	Proteína capsular flagelar	Helicobacter pylori Hp A-20	685	99.0%	3381
J0MV71	J0MV71_HELPX	Proteína asociada al gancho flagelar putativa 2	Helicobacter pylori Hp A-27	685	99.0%	3379
J0DL62	J0DL62_HELPX	Proteína capsular flagelar	Helicobacter pylori Hp H-11	685	99.0%	3375
J0A5P7	J0A5P7_HELPX	Proteína capsular flagelar	Helicobacter pylori Hp A-9	685	98.0%	3372
J0IU02	J0IU02_HELPX	Proteína capsular flagelar	Helicobacter pylori NQ4228	685	99.0%	3371
K2L7H4	K2L7H4_HELPX	Proteína asociada al gancho flagelar putativa 2	Helicobacter pylori R036d	685	98.0%	3370
J0TQK4	J0TQK4_HELPX	Proteína asociada al gancho flagelar putativa 2	Helicobacter pylori Hp P-30	685	99.0%	3369
M7RTJ4	M7RTJ4_HELPX	Proteína asociada al gancho flagelar putativa 2	Helicobacter pylori UMB_G1	685	98.0%	3367
K2L537	K2L537 _HELPX	Proteína asociada al gancho flagelar putativa 2	Helicobacter pylori R055a	685	99.0%	3367
J0SAM4	J0SAM4_HELPX	Proteína asociada al gancho flagelar putativa 2	Helicobacter pylori Hp P-15b	685	99.0%	3367
J0M138	J0M138_HELPX	Proteína asociada al gancho flagelar putativa 2	Helicobacter pylori Hp H-45	685	99.0%	3367
I9WVW7	I9WVW7_HELPX	Proteína capsular flagelar	Helicobacter pylori Hp P-15	685	99.0%	3367
K2KUE2	K2KUE2_HELPX	Proteína asociada al gancho flagelar putativa 2	Helicobacter pylori R030b	685	99.0%	3365
I0EHS2	I0EHS2_HELPX	Proteína capsular flagelar	Helicobacter pylori PeCan18	685	98.0%	3365
H8H4E1	H8H4E1_HELPX	Proteína capsular flagelar	Helicobacter pylori ELS37	685	98.0%	3362
K2LNG6	K2LNG6_HELPX	Proteína asociada al gancho flagelar putativa 2	Helicobacter pylori R038b	685	98.0%	3361
D0IS88	D0IS88_HELP1	Proteína asociada al gancho flagelar putativa 2	Helicobacter pylori (cepa 51)	685	98.0%	3360
N4T9B5	N4T9B5_HELPX	Proteína asociada al gancho flagelar putativa	Helicobacter pylori Hp	685	98.0%	3359

		2	A-11			
E1PZL2	E1PZL2_HELPM	Proteína capsular flagelar	Helicobacter pylori (cepa SJM180)	685	98.0%	3358
J0IVU8	J0IVU8_HELPX	Proteína capsular flagelar	Helicobacter pylori NQ4099	685	98.0%	3358
J0FGE4	J0FGE4_HELPX	Proteína asociada al gancho flagelar putativa 2	Helicobacter pylori Hp P-16	685	98.0%	3358
Q1CTB8	Q1CTB8_HELPH	Proteína asociada al gancho flagelar putativa 2	Helicobacter pylori (cepa HPAG1)	685	98.0%	3357
E8QPN8	E8QPN8_HELPR	Proteína capsular flagelar	Helicobacter pylori (cepa Lithuania75)	685	98.0%	3355
K2KUX6	K2KUX6_HELPX	Proteína asociada al gancho flagelar putativa 2	Helicobacter pylori R32b	685	98.0%	3355
K2KMU9	K2KMU9_HELPX	Proteína asociada al gancho flagelar putativa 2	Helicobacter pylori R037c	685	98.0%	3355
J0HQJ3	J0HQJ3_HELPX	Proteína capsular flagelar	Helicobacter pylori CPY1124	685	98.0%	3355
I9XF52	I9XF52_HELPX	Proteína asociada al gancho flagelar putativa 2	Helicobacter pylori Hp P-74	685	98.0%	3355
I9U4H5	I9U4H5_HELPX	Proteína asociada al gancho flagelar putativa 2	Helicobacter pylori Hp A-26	685	98.0%	3355
D7FEA9	D7FEA9_HELP3	Proteína asociada al gancho flagelar putativa 2	Helicobacter pylori (cepa B8)	685	98.0%	3354
19US75	I9US75_HELPX	Proteína asociada al gancho flagelar putativa 2	Helicobacter pylori Hp H-9	685	98.0%	3354
B9XZK1	B9XZK1_HELPX	Proteína no caracterizada putativa	Helicobacter pylori B128	685	98.0%	3354
J0J9Q0	J0J9Q0_HELPX	Proteína capsular flagelar	Helicobacter pylori NQ4076	685	98.0%	3353
I9QZB4	I9QZB4_HELPX	Proteína capsular flagelar	Helicobacter pylori NQ4110	685	98.0%	3353
G2M3P3	G2M3P3_HELPX	Proteína capsular flagelar	Helicobacter pylori Puno120	685	98.0%	3352
E1QBB7	E1QBB7_HELPC	Proteína capsular flagelar	Helicobacter pylori (cepa Cuz20)	685	98.0%	3351
J0LRM5	J0LRM5_HELPX	Proteína capsular flagelar	Helicobacter pylori Hp H-43	685	98.0%	3351

E6NRT1	E6NRT1_HELPQ	Proteína capsular flagelar	Helicobacter pylori (cepa F57)	685	98.0%	3350
M3MVK5	M3MVK5_HELPX	Proteína asociada al gancho flagelar putativa 2	Helicobacter pylori GAM114Ai	685	98.0%	3350
K2KRX5	K2KRX5_HELPX	Proteína asociada al gancho flagelar putativa 2	Helicobacter pylori R018c	685	98.0%	3350
K2KFQ1	K2KFQ1_HELPX	Proteína asociada al gancho flagelar putativa 2	Helicobacter pylori R056a	685	98.0%	3350
J0IGN4	J0IGN4_HELPX	Proteína capsular flagelar	Helicobacter pylori NQ4216	685	98.0%	3349
E6S1Q8	E6S1Q8_HELPF	Proteína asociada al gancho flagelar putativa 2	Helicobacter pylori (cepa 35A)	685	98.0%	3348
I9YJR2	I9YJR2_HELPX	Proteína asociada al gancho flagelar putativa 2	Helicobacter pylori Hp P-13b	685	98.0%	3348
I9WT57	I9WT57_HELPX	Proteína asociada al gancho flagelar putativa 2	Helicobacter pylori Hp P-13	685	98.0%	3348
I9U161	I9U161_HELPX	Proteína capsular flagelar	Helicobacter pylori Hp A-14	685	98.0%	3348
B6JLY6	B6JLY6_HELP2	Proteína asociada al gancho flagelar putativa 2	Helicobacter pylori (cepa P12)	685	98.0%	3347
K2K5F9	K2K5F9_HELPX	Proteína asociada al gancho flagelar putativa 2	Helicobacter pylori R046Wa	685	98.0%	3347
I9XUJ1	I9XUJ1_HELPX	Proteína asociada al gancho flagelar putativa 2	Helicobacter pylori CPY1313	685	98.0%	3347
I9PV13	I9PV13_HELPX	Proteína asociada al gancho flagelar putativa 2	Helicobacter pylori CPY6311	685	98.0%	3347
I9PLR1	I9PLR1_HELPX	Proteína capsular flagelar	Helicobacter pylori CPY6261	685	98.0%	3347
L8VWS3	L8VWS3 HELPX	Proteína capsular flagelar	Helicobacter pylori A45	685	98.0%	3346
K7Y5K8	K7Y5K8 HELPX	Proteína capsular flagelar	Helicobacter pylori Aklavik117	685	98.0%	3346
J0T145	J0T145_HELPX	Proteína asociada al gancho flagelar putativa 2	Helicobacter pylori Hp M2	685	98.0%	3346
I9T4Z9	I9T4Z9_HELPX	Proteína asociada al gancho flagelar putativa	Helicobacter pylori Hp H-44	685	98.0%	3346

-		2				
E8QFQ7	E8QFQ7_HELP7	Proteína capsular flagelar	Helicobacter pylori (cepa India7)	685	98.0%	3345
C7BX84	C7BX84_HELPB	Proteína asociada al gancho flagelar putativa 2 FliD	Helicobacter pylori (cepa B38)	685	98.0%	3345
19W7Z2	I9W7Z2_HELPX	Proteína asociada al gancho flagelar putativa 2	Helicobacter pylori Hp P-2	685	98.0%	3345
I0ZBA9	I0ZBA9_HELPX	Proteína capsular flagelar	Helicobacter pylori P79	685	98.0%	3345
F4D5I7	F4D5I7_HELPX	Proteína asociada al gancho flagelar putativa 2	Helicobacter pylori 83	685	98.0%	3345
B9XUM1	B9XUM1_HELPX	Proteína no caracterizada putativa	Helicobacter pylori 98- 10	685	98.0%	3345
P96786	FLID_HELPY	Proteína asociada al gancho flagelar putativa 2 (HAP2) (Proteína cap filamento)(Proteína cap flagelar)	Helicobacter pylori (cepa ATCC 700392 /26695) (Campylobacter pylori)	685	98.0%	3345
M3SDI9	M3SDI9_HELPX	Proteína asociada al gancho flagelar putativa 2	Helicobacter pylori GAMchJs106B	685	98.0%	3344
I9XAU3	I9XAU3_HELPX	Proteína capsular flagelar	Helicobacter pylori Hp P-23	685	98.0%	3344
I9PTN1	I9PTN1_HELPX	Proteína capsular flagelar	Helicobacter pylori CPY6271	685	98.0%	3344
G2M8C7	G2M8C7_HELPX	Proteína capsular flagelar	Helicobacter pylori Punol35	685	98.0%	3344
E1Q6P5	E1Q6P5_HELPP	Proteína capsular flagelar	Helicobacter pylori (cepa PeCan4)	685	98.0%	3343
M3KWT6	M3KWT6_HELPX	Proteína asociada al gancho flagelar putativa 2	Helicobacter pylori GAM119Bi	685	98.0%	3343
I0ZGY9	I0ZGY9_HELPX	Proteína capsular flagelar	Helicobacter pylori NCTC 11637 = CCUG 17874	685	98.0%	3343
I2DFT2	I2DFT2_HELPX	Proteína capsular flagelar	Helicobacter pylori XZ274	685	98.0%	3342
E6NKD5	E6NKD5_HELPL	Proteína capsular flagelar	Helicobacter pylori (cepa F32)	685	98.0%	3341
E6NIS5	E6NIS5_HELPK	Proteína capsular flagelar	Helicobacter pylori (cepa F30)	685	98.0%	3341
19ZP80	I9ZP80_HELPX	Proteína asociada al gancho flagelar putativa	Helicobacter pylori NQ4161	685	98.0%	3341

		2				
I9RRM1	I9RRM1_HELPX	Proteína asociada al gancho flagelar putativa 2	Helicobacter pylori Hp A-17	685	98.0%	3341
J0A0N9	J0A0N9_HELPX	Proteína asociada al gancho flagelar	Helicobacter pylori Hp P-26	685	97.0%	3340
I9QGH5	I9QGH5_HELPX	Proteína asociada al gancho flagelar putativa 2	Helicobacter pylori NQ4053	685	98.0%	3340
D6XPZ1	D6XPZ1_HELPV	Proteína asociada al gancho flagelar putativa 2	Helicobacter pylori (cepa v225d)	685	98.0%	3339
M5YZL4	M5YZL4_HELPX	Proteína asociada al gancho flagelar putativa 2	Helicobacter pylori GAMchJs124i	685	97.0%	3339
M5YMA1	M5YMA1_HELPX	Proteína asociada al gancho flagelar putativa 2	Helicobacter pylori GAMchJs114i	685	97.0%	3339
M4ZNA5	M4ZNA5_HELPX	Proteína capsular flagelar	Helicobacter pylori OK310	685	97.0%	3339
M3NNS0	M3NNS0_HELPX	Proteína asociada al gancho flagelar putativa 2	Helicobacter pylori GAM246Ai	685	97.0%	3339
M3MBN7	M3MBN7_HELPX	Proteína asociada al gancho flagelar putativa 2	Helicobacter pylori GAM105Ai	685	97.0%	3339
I9S784	I9S784_HELPX	Proteína capsular flagelar	Helicobacter pylori Hp H-28	685	98.0%	3339
I0E4K1	I0E4K1_HELPX	Proteína capsular flagelar	Helicobacter pylori Shi417	685	98.0%	3339
J0P747	J0P747_HELPX	Proteína asociada al gancho flagelar	Helicobacter pylori Hp H-23	685	97.0%	3338
J0N2H0	J0N2H0_HELPX	Proteína asociada al gancho flagelar	Helicobacter pylori Hp H-4	685	97.0%	3338
I0ED42	I0ED42_HELPX	Proteína capsular flagelar	Helicobacter pylori Shi112	685	98.0%	3338
M7SSG1	M7SSG1_HELPX	Proteína asociada al gancho flagelar putativa 2	Helicobacter pylori CPY1662	685	97.0%	3337
M5Y955	M5Y955_HELPX	Proteína asociada al gancho flagelar putativa 2	Helicobacter pylori GAMchJs117Ai	685	97.0%	3337
M4ZKA3	M4ZKA3_HELPX	Proteína capsular flagelar	Helicobacter pylori OK113	685	98.0%	3337
M3LA33	M3LA33_HELPX	Proteína asociada al gancho flagelar putativa	Helicobacter pylori GAM231Ai	685	97.0%	3337

		2				
19Z0G2	I9Z0G2_HELPX	Proteína asociada al gancho flagelar putativa 2	Helicobacter pylori Hp P-28b	685	97.0%	3337
19S3M7	I9S3M7_HELPX	Proteína asociada al gancho flagelar putativa 2	Helicobacter pylori Hp H-24	685	98.0%	3337
I0EWG9	I0EWG9_HELPX	Proteína capsular flagelar	Helicobacter pylori HUP-B 14	685	97.0%	3337
M3PSG4	M3PSG4_HELPX	Proteína asociada al gancho flagelar putativa 2	Helicobacter pylori GAM96Ai	685	97.0%	3336
J0U8I3	J0U8I3_HELPX	Proteína asociada al gancho flagelar putativa 2	Helicobacter pylori Hp P-3b	685	97.0%	3336
J0RUS2	J0RUS2_HELPX	Proteína asociada al gancho flagelar putativa 2	Helicobacter pylori Hp H-5b	685	97.0%	3336
J0Q0D5	J0Q0D5_HELPX	Proteína asociada al gancho flagelar putativa 2	Helicobacter pylori Hp P-4	685	97.0%	3336
J0PSB5	J0PSB5_HELPX	Proteína asociada al gancho flagelar putativa 2	Helicobacter pylori Hp P-3	685	97.0%	3336
19Y932	19Y932_HELPX	Proteína asociada al gancho flagelar putativa 2	Helicobacter pylori Hp P-4c	685	97.0%	3336
I9XWQ4	I9XWQ4_HELPX	Proteína asociada al gancho flagelar putativa 2	Helicobacter pylori Hp P-4d	685	97.0%	3336
E6NDJ6	E6NDJ6_HELPI	Proteína capsular flagelar	Helicobacter pylori (cepa F16)	685	97.0%	3334
M3QDF1	M3QDF1_HELPX	Proteína asociada al gancho flagelar putativa 2	Helicobacter pylori GAM80Ai	685	97.0%	3334
M3Q5B9	M3Q5B9_HELPX	Proteína asociada al gancho flagelar putativa 2	Helicobacter pylori GAM42Ai	685	97.0%	3334
M3P646	M3P646_HELPX	Proteína asociada al gancho flagelar putativa 2	Helicobacter pylori GAM245Ai	685	97.0%	3334
M3LV71	M3LV71_HELPX	Proteína asociada al gancho flagelar putativa 2	Helicobacter pylori GAM112Ai	685	97.0%	3334
M3L655	M3L655_HELPX	Proteína asociada al gancho flagelar putativa 2	Helicobacter pylori GAM101Biv	685	97.0%	3334

E1S8R1	E1S8R1_HELP9	Proteína asociada al gancho flagelar	Helicobacter pylori (cepa 908)	685	97.0%	3333
E1PVI4	E1PVI4_HELPT	Proteína capsular flagelar	Helicobacter pylori (cepa Sat464)	685	98.0%	3333
D0JZC3	D0JZC3_HELP5	Proteína capsular flagelar	Helicobacter pylori (cepa 52)	685	97.0%	3333
M3RS44	M3RS44_HELPX	Proteína asociada al gancho flagelar putativa 2	Helicobacter pylori HP116Bi	685	97.0%	3333
M3R005	M3R005_HELPX	Proteína asociada al gancho flagelar putativa 2	Helicobacter pylori GAM264Ai	685	97.0%	3333
M3MJ19	M3MJ19_HELPX	Proteína asociada al gancho flagelar putativa 2	Helicobacter pylori GAM103Bi	685	97.0%	3333
J0I156	J0I156_HELPX	Proteína capsular flagelar	Helicobacter pylori CPY3281	685	98.0%	3333
J0AJS5	J0AJS5_HELPX	Proteína asociada al gancho flagelar	Helicobacter pylori Hp H-16	685	97.0%	3333
I0E947	I0E947_HELPX	Proteína capsular flagelar	Helicobacter pylori Shi169	685	98.0%	3333
F2JET0	F2JET0_HELP9	Proteína asociada al gancho flagelar	Helicobacter pylori 2018	685	97.0%	3333
F2JAT7	F2JAT7_HELP9	Proteína asociada al gancho flagelar	Helicobacter pylori 2017	685	97.0%	3333
Q9ZL91	FLID_HELPJ	Proteína asociada al gancho flagelar putativa 2 (HAP2) (Proteína cap filamento)(Proteína cap flagelar)	Helicobacter pylori (cepa J99) (Campylobacter pylori J99)	685	97.0%	3333
M3NID0	M3NID0_HELPX	Proteína asociada al gancho flagelar putativa 2	Helicobacter pylori GAM270ASi	685	97.0%	3332
J0DCU5	J0DCU5_HELPX	Proteína asociada al gancho flagelar putativa 2	Helicobacter pylori Hp H-6	685	97.0%	3332
I9V408	I9V408_HELPX	Proteína capsular flagelar	Helicobacter pylori Hp H-10	685	97.0%	3332
J0U3G8	J0U3G8_HELPX	Proteína asociada al gancho flagelar putativa 2	Helicobacter pylori Hp P-62	685	97.0%	3331
19SL37	I9SL37_HELPX	Proteína asociada al gancho flagelar	Helicobacter pylori Hp H-29	685	97.0%	3331
E8QM56	E8QM56_HELP4	Proteína capsular flagelar	Helicobacter pylori (cepa Gambia94/24)	685	97.0%	3330
M5YNV6	M5YNV6_HELPX	Proteína asociada al gancho flagelar putativa	Helicobacter pylori	685	97.0%	3330

		2	GAMchJsl36i			
M3TQ89	M3TQ89_HELPX	Proteína asociada al gancho flagelar putativa 2	Helicobacter pylori HP260Bi	685	97.0%	3330
M3QIV4	M3QIV4_HELPX	Proteína asociada al gancho flagelar putativa 2	Helicobacter pylori GAM260Bi	685	97.0%	3330
M3Q2L5	M3Q2L5_HELPX	Proteína asociada al gancho flagelar putativa 2	Helicobacter pylori GAM263BFi	685	97.0%	3330
M3M583	M3M583_HELPX	Proteína asociada al gancho flagelar putativa 2	Helicobacter pylori GAM115Ai	685	97.0%	3330
JOSFX5	J0SFX5_HELPX	Proteína asociada al gancho flagelar putativa 2	Helicobacter pylori Hp P-25c	685	97.0%	3330
J0HGQ0	J0HGQ0_HELPX	Proteína asociada al gancho flagelar putativa 2	Helicobacter pylori Hp P-25d	685	97.0%	3330
I9X9I1	I9X9I1_HELPX	Proteína asociada al gancho flagelar putativa 2	Helicobacter pylori Hp P-25	685	97.0%	3330
I9VCT9	I9VCT9_HELPX	Proteína asociada al gancho flagelar	Helicobacter pylori Hp H-19	685	97.0%	3330
M3S7G6	M3S7G6_HELPX	Proteína asociada al gancho flagelar putativa 2	Helicobacter pylori GAM83T	685	97.0%	3329
M3PEV1	M3PEV1_HELPX	Proteína asociada al gancho flagelar putativa 2	Helicobacter pylori GAM244Ai	685	97.0%	3329
M3P9F3	M3P9F3_HELPX	Proteína asociada al gancho flagelar putativa 2	Helicobacter pylori GAM83Bi	685	97.0%	3329
M3NFC4	M3NFC4_HELPX	Proteína asociada al gancho flagelar putativa 2	Helicobacter pylori GAM118Bi	685	97.0%	3329
K8GY42	K8GY42_HELPX	Proteína asociada al gancho flagelar putativa 2	Helicobacter pylori GAM100Ai	685	97.0%	3329
J0UFU9	J0UFU9_HELPX	Proteína asociada al gancho flagelar putativa 2	Helicobacter pylori Hp M9	685	97.0%	3329
J0T5P3	J0T5P3_HELPX	Proteína asociada al gancho flagelar putativa 2	Helicobacter pylori Hp M4	685	97.0%	3329
J0REL3	J0REL3_HELPX	Proteína asociada al gancho flagelar putativa 2	Helicobacter pylori Hp H-24c	685	97.0%	3329

J01743	J01743_HELPX	Proteína asociada al gancho flagelar putativa	Helicobacter pylori Hp M5	685	97.0%	3329
J0l1J2	J0I1J2_HELPX	Proteína asociada al gancho flagelar putativa 2	Helicobacter pylori Hp M3	685	97.0%	3329
J0HJK5	J0HJK5_HELPX	Proteína asociada al gancho flagelar putativa 2	Helicobacter pylori Hp M1	685	97.0%	3329
I9ZYP3	I9ZYP3_HELPX	Proteína asociada al gancho flagelar putativa 2	Helicobacter pylori Hp M6	685	97.0%	3329
I9XJ16	I9XJ16_HELPX	Proteína asociada al gancho flagelar putativa 2	Helicobacter pylori Hp H-24b	685	97.0%	3329
M3UI84	M3UI84_HELPX	Proteína asociada al gancho flagelar putativa 2	Helicobacter pylori HP260BFii	685	97.0%	3328
M3U8F0	M3U8F0_HELPX	Proteína asociada al gancho flagelar putativa 2	Helicobacter pylori HP250BSi	685	97.0%	3328
M3T9M6	M3T9M6_HELPX	Proteína asociada al gancho flagelar putativa 2	Helicobacter pylori HP250ASi	685	97.0%	3328
M3T443	M3T443_HELPX	Proteína asociada al gancho flagelar putativa 2	Helicobacter pylori HP250ASii	685	97.0%	3328
M3T0U7	M3T0U7_HELPX	Proteína asociada al gancho flagelar putativa 2	Helicobacter pylori HP250AFiV	685	97.0%	3328
M3SWF6	M3SWF6_HELPX	Proteína asociada al gancho flagelar putativa 2	Helicobacter pylori HP250BFiV	685	97.0%	3328
M3SP57	M3SP57_HELPX	Proteína asociada al gancho flagelar putativa 2	Helicobacter pylori HP250AFiii	685	97.0%	3328
M3S6F4	M3S6F4_HELPX	Proteína asociada al gancho flagelar putativa 2	Helicobacter pylori HP250BFiii	685	97.0%	3328
M3R7T2	M3R7T2_HELPX	Proteína asociada al gancho flagelar putativa 2	Helicobacter pylori HP250AFii	685	97.0%	3328
M3QV83	M3QV83_HELPX	Proteína asociada al gancho flagelar putativa 2	Helicobacter pylori GAM260BSi	685	97.0%	3328
M3QS41	M3QS41_HELPX	Proteína asociada al gancho flagelar putativa 2	Helicobacter pylori HP250BFii	685	97.0%	3328

M3QQ64	M3QQ64_HELPX	Proteína asociada al gancho flagelar putativa 2	Helicobacter pylori HP250BFi	685	97.0%	3328
M3Q6I7	M3Q6I7_HELPX	Proteína asociada al gancho flagelar putativa 2	Helicobacter pylori GAM250T	685	97.0%	3328
M3NV58	M3NV58_HELPX	Proteína asociada al gancho flagelar putativa 2	Helicobacter pylori GAM252Bi	685	97.0%	3328
M3NKC5	M3NKC5_HELPX	Proteína asociada al gancho flagelar putativa 2	Helicobacter pylori GAM252T	685	97.0%	3328
M3LZX8	M3LZX8_HELPX	Proteína asociada al gancho flagelar putativa 2	Helicobacter pylori GAM250AFi	685	97.0%	3328
J0CLQ3	J0CLQ3_HELPX	Proteína asociada al gancho flagelar putativa 2	Helicobacter pylori Hp A-16	685	97.0%	3328
I9XTZ6	I9XTZ6_HELPX	Proteína capsular flagelar	Helicobacter pylori CPY1962	685	98.0%	3328
B2UT80	B2UT80_HELPS	Proteína capsular flagelar	Helicobacter pylori (cepa Shi470)	685	97.0%	3327
M7SW73	M7SW73_HELPX	Proteína asociada al gancho flagelar putativa 2	Helicobacter pylori Hp H-1	685	97.0%	3327
M3P129	M3P129_HELPX	Proteína asociada al gancho flagelar putativa 2	Helicobacter pylori GAM254Ai	685	97.0%	3327
I9P985	I9P985_HELPX	Proteína capsular flagelar	Helicobacter pylori CPY6081	685	97.0%	3326
K7YA88	K7YA88_HELPX	Proteína capsular flagelar	Helicobacter pylori Aklavik86	685	97.0%	3325
M3RIK8	M3RIK8_HELPX	Proteína asociada al gancho flagelar putativa 2	Helicobacter pylori GAM93Bi	685	97.0%	3324
J0M8U8	J0M8U8_HELPX	Proteína asociada al gancho flagelar putativa 2	Helicobacter pylori Hp A-6	685	97.0%	3324
M3NGP1	M3NGP1_HELPX	Proteína asociada al gancho flagelar putativa 2	Helicobacter pylori GAM265BSii	685	97.0%	3323
M3KZM7	M3KZM7_HELPX	Proteína asociada al gancho flagelar putativa 2	Helicobacter pylori GAM120Ai	685	97.0%	3323
M3PUQ6	M3PUQ6_HELPX	Proteína asociada al gancho flagelar putativa 2	Helicobacter pylori GAM249T	685	97.0%	3322

M3PCL7	M3PCL7_HELPX	Proteína asociada al gancho flagelar putativa 2	Helicobacter pylori GAM239Bi	685	97.0%	3322
M3NM23	M3NM23_HELPX	Proteína asociada al gancho flagelar putativa 2	Helicobacter pylori GAM121Aii	685	97.0%	3322
J0IWR3	J0IWR3_HELPX	Proteína asociada al gancho flagelar putativa 2	Helicobacter pylori NQ4200	685	97.0%	3322
J0PFP0	J0PFP0_HELPX	Proteína asociada al gancho flagelar putativa 2	Helicobacter pylori Hp P-1	685	97.0%	3321
I9XPS7	I9XPS7_HELPX	Proteína asociada al gancho flagelar putativa 2	Helicobacter pylori Hp P-1b	685	97.0%	3321
J0N254	J0N254_HELPX	Proteína asociada al gancho flagelar putativa 2	Helicobacter pylori Hp H-3	685	97.0%	3320
M3U8B7	M3U8B7_HELPX	Proteína asociada al gancho flagelar putativa 2	Helicobacter pylori HP260AFii	685	97.0%	3319
M3U287	M3U287_HELPX	Proteína asociada al gancho flagelar putativa 2	Helicobacter pylori HP260AFi	685	97.0%	3319
M3RLI9	M3RLI9_HELPX	Proteína asociada al gancho flagelar putativa 2	Helicobacter pylori HP260ASii	685	97.0%	3319
M3Q751	M3Q751_HELPX	Proteína asociada al gancho flagelar putativa 2	Helicobacter pylori GAM268Bii	685	97.0%	3319
M3P4U3	M3P4U3_HELPX	Proteína asociada al gancho flagelar putativa 2	Helicobacter pylori GAM260ASi	685	97.0%	3319
M3LLE6	M3LLE6_HELPX	Proteína asociada al gancho flagelar putativa 2	Helicobacter pylori GAM201Ai	685	97.0%	3318
J0JT98	J0JT98_HELPX	Proteína asociada al gancho flagelar putativa 2	Helicobacter pylori Hp A-5	680	98.0%	3318
I9SDQ6	I9SDQ6_HELPX	Proteína asociada al gancho flagelar putativa 2	Helicobacter pylori Hp H-30	677	97.0%	3314
J0BNB3	J0BNB3_HELPX	Proteína asociada al gancho flagelar	Helicobacter pylori Hp H-42	680	97.0%	3311
G2MEG6	G2MEG6_HELPX	Proteína capsular flagelar	Helicobacter pylori SNT49	685	97.0%	3311
J0UBP3	J0UBP3_HELPX	Proteína asociada al gancho flagelar putativa	Helicobacter pylori Hp P-2b	677	97.0%	3308
_					_	

		2				
I9QNB9	I9QNB9_HELPX	Proteína asociada al gancho flagelar putativa 2	Helicobacter pylori NQ4044	685	96.0%	3302
I9ZZM5	I9ZZM5_HELPX	Proteína asociada al gancho flagelar putativa 2	Helicobacter pylori Hp A-4	677	97.0%	3300
M7SHH3	M7SHH3_HELPX	Proteína asociada al gancho flagelar putativa 2	Helicobacter pylori CCHI 33	677	97.0%	3297
I9TJA1	I9TJA1_HELPX	Proteína asociada al gancho flagelar putativa 2	Helicobacter pylori Hp A-8	677	97.0%	3297
M3NMW 6	M3NMW6_HELPX	Proteína asociada al gancho flagelar putativa 2	Helicobacter pylori GAM210Bi	685	96.0%	3296
19YL06	I9YL06_HELPX	Proteína asociada al gancho flagelar putativa 2	Helicobacter pylori Hp P-11b	677	97.0%	3293
19WS67	19WS67_HELPX	Proteína asociada al gancho flagelar putativa 2	Helicobacter pylori Hp P-11	677	97.0%	3293
J0PC82	J0PC82_HELPX	Proteína asociada al gancho flagelar	Helicobacter pylori Hp H-34	677	97.0%	3292
I9VJH4	I9VJH4_HELPX	Proteína asociada al gancho flagelar	Helicobacter pylori Hp H-21	677	97.0%	3292
J0PV65	J0PV65_HELPX	Proteína asociada al gancho flagelar putativa 2	Helicobacter pylori Hp P-8	677	97.0%	3291
І9ҮНМ9	I9YHM9_HELPX	Proteína asociada al gancho flagelar putativa 2	Helicobacter pylori Hp P-8b	677	97.0%	3291
J0TUW0	J0TUW0_HELPX	Proteína asociada al gancho flagelar putativa 2	Helicobacter pylori Hp P-41	677	97.0%	3289
J0NSR5	J0NSR5_HELPX	Proteína asociada al gancho flagelar putativa 2	Helicobacter pylori Hp H-18	677	97.0%	3289
J0BAE3	J0BAE3_HELPX	Proteína asociada al gancho flagelar	Helicobacter pylori Hp H-36	677	97.0%	3289
J0LI78	J0LI78_HELPX	Proteína asociada al gancho flagelar putativa 2	Helicobacter pylori Hp H-41	677	96.0%	3278
E8QRV3	E8QRV3_HELPW	Proteína capsular flagelar	Helicobacter pylori (cepa SouthAfrica7)	685	95.0%	3264
Q17Y06	Q17Y06_HELAH	Proteína asociada al gancho flagelar	Helicobacter acinonychis (cepa	685	94.0%	3249

			Sheeba)			
K4NRS2	K4NRS2_HELPY	Proteína capsular flagelar	Helicobacter pylori (cepa ATCC 700392 /26695) (Campylobacter pylori)	674	97.0%	3190
K4NL36	K4NL36_HELPX	Proteína capsular flagelar	Helicobacter pylori Rif2	674	97.0%	3190
K4NJJ9	K4NJJ9_HELPX	Proteína capsular flagelar	Helicobacter pylori Rif1	674	97.0%	3190
M3QVV4	M3QVV4_HELPX	Proteína asociada al gancho flagelar putativa 2 (Fragmento)	Helicobacter pylori GAM71Ai	647	97.0%	3146
I0ETW0	I0ETW0_HELCM	Proteína capsular flagelar	Helicobacter cetorum (cepa ATCC BAA-540 / MIT 99-5656)	685	88.0%	3065
I0EMR1	I0EMR1_HELC0	Proteína capsular flagelar	Helicobacter cetorum (cepa ATCC BAA-429 / MIT 00-7128)	685	81.0%	2861
E7ADC3	E7ADC3_HELFC	Proteína asociada al gancho flagelar	Helicobacter felis (cepa ATCC 49179 / NCTC 12436/CS1)	684	63.0%	2190
E7FYJ6	E7FYJ6_9HELI	Proteína capsular flagelar	Helicobacter suis HS1	689	61.0%	2158
F8KTH3	F8KTH3_HELBC	Proteína asociada al gancho flagelar FliD	Helicobacter bizzozeronii (cepa CIII-1)	694	59.0%	2091
K4RHP3	K4RHP3_HELHE	Proteína asociada al gancho flagelar FliD	Helicobacter heilmannii ASB1.4	691	58.0%	2073
D3UGM5	D3UGM5_HELM1	Proteína asociada al gancho flagelar putativa	Helicobacter mustelae (cepa ATCC 43772 / LMG 18044/NCTC 12198/12198) (Campylobacter mustelae)	674	52.0%	1778
Q7VI19	Q7VI19_HELHP	Proteína capsular del filamento flagelar FliD	Helicobacter hepaticus (cepa ATCC 51449 / 3B1)	682	51.0%	1698
I2FDC5	I2FDC5_HELCP	Proteína capsular flagelar	Helicobacter cinaedi (cepa PAGU611)	682	51.0%	1690
17GZJ0	I7GZJ0_9HELI	Proteína capsular flagelar	Helicobacter cinaedi ATCC BAA-847	682	51.0%	1689
E4VHL6	E4VHL6_9HELI	Proteína gancho flagelar 2	Helicobacter cinaedi CCUG 18818	682	51.0%	1689
N2BQN7	N2BQN7_9HELI	Proteína no caracterizada	<i>Helicobacter</i> bilis WiWa	679	45.0%	1589
C3XDT1	C3XDT1_9HELI	Proteína capsular flagelar	Helicobacter bilis ATCC 43879	679	45.0%	1583

Q7MAM3	Q7MAM3 WOLS U	Proteína asociada al gancho flagelar 2	Wolinella succinogenes (cepa ATCC 29543/DSM 1740/LMG 7466 / NCTC 11488/FDC 602W) (Vibrio succinogenes)	682	45.0%	1479
C5EXF0	C5EXF0_9HELI	Proteína gancho flagelar 2	Helicobacter pullorum MIT 98-5489	685	39.0%	1272
C5ZWT4	C5ZWT4_9HELI	Proteína asociada al gancho flagelar (Proteína gancho flagelar 2)	<i>Helicobacter</i> canadensis MIT 98- 5491	689	39.0%	1262
H5VEC0	H5VEC0_HELBI	Proteína asociada al gancho flagelar FliD	Helicobacter bizzozeronii CCUG 35545	458	53.0%	1185
C3XLS4	C3XLS4_9HELI	Proteína asociada al gancho flagelar putativa 2	Helicobacter winghamensis ATCC BAA-430	689	37.0%	1175
H5VEC1	H5VEC1_HELBI	Proteína asociada al gancho flagelar FliD	Helicobacter bizzozeronii CCUG 35545	231	66.0%	807
H8CS11	H8CS11_CAMJU	Proteína capsular flagelar	Campylobacter jejuni subsp. jejuni LMG 9872	645	27.0%	474
B9KGA6	B9KGA6_CAMLR	Proteína cap del filamento flagelar FliD	Campylobacter lari (cepa RM2100 / D67/ATCC BAA-1060)	766	26.0%	471
C6RGG2	C6RGG2_9PROT	Transportador de eflujo multifármaco tipo SMR	Campylobacter showae RM3277	577	29.0%	465
D2MX77	D2MX77_CAMJU	Proteína asociada al gancho flagelar	Campylobacter jejuni subsp. jejuni 414	642	28.0%	461
M3I083	M3I083_9PROT	Proteína capsular flagelar	Campylobacter showae CC57C	577	28.0%	457
H7SA14	H7SA14_CAMCO	Proteína capsular flagelar	Campylobacter coli 84-2	644	26.0%	452
D2MS44	D2MS44_CAMJU	Proteína asociada al gancho flagelar FliD	Campylobacter jejuni subsp. jejuni 1336	647	26.0%	451
H7XBH0	H7XBH0_CAMJU	Proteína capsular flagelar	Campylobacter jejuni subsp. jejuni LMG 23216	648	26.0%	451
H7YRN9	H7YRN9_CAMJU	Proteína capsular flagelar	Campylobacter jejuni subsp. jejuni LMG 23357	648	27.0%	449
Q30U48	Q30U48SULDN	Proteína del tipo proteína asociada al gancho flagelar putativa 2	Sulfurimonas denitrificans (cepa ATCC 33889/DSM 1251) (Thiomicrospira denitrificans (cepa ATCC 33889/DSM	462	31.0%	441

			1251))			
H8BWB9	H8BWB9_CAMJU	Proteína capsular flagelar	Campylobacter jejuni subsp. jejuni 1213	642	27.0%	447
H8AWN7	H8AWN7_CAMJU	Proteína capsular flagelar	Campylobacter jejuni subsp. jejuni 1997-11	643	26.0%	447
A3ZDR2	A3ZDR2_CAMJU	Proteína asociada al gancho flagelar FliD	Campylobacter jejuni subsp. jejuni HB93-13	643	26.0%	447
A7H4J4	A7H4J4_CAMJD	Proteína asociada al gancho flagelar FliD	Campylobacter jejuni subsp. doylei (cepa ATCC BAA-1458 / RM4099/269.97)	646	26.0%	447
A3YRI3	A3YRD_CAMJU	Proteína asociada al gancho flagelar FliD	Campylobacter jejuni subsp. jejuni 260.94	642	25.0%	442
H7WEH0	H7WEH0_CAMC O	Proteína capsular flagelar	Campylobacter coli H8	637	26.0%	441
E1PLQ8	E1PLQ8_CAMJM	Proteína asociada al gancho flagelar putativa 2	Campylobacter jejuni subsp. jejuni serotype HS21 (cepa M1 /99/308)	643	27.0%	441

Ejemplo 9: Presencia y expresión de FliD en H. pylori

Muestras

5

20

Se inscribieron 81 aislados de *H. pylori* de pacientes humanos en el estudio. Las muestras fueron diagnosticadas como positivas por cultivo bacteriano convencional en placas selectivas. En tales pruebas, se cultivaron bacterias en placas de agar con sangre Wilkins-Chalgren en condiciones microaerobias (10% de CO₂, 5% de O₂, 8.5% de N₂ y 37 °C) durante 36 horas, y la positividad para oxidasa, catalasa y ureasa fue confirmada por pruebas bioquímicas Una parte de las bacterias cultivadas se usó para el aislamiento de ADN y el resto se aplicó para la preparación de lisado de proteínas para el análisis de transferencia de Western.

10 Suero policional anti-FliD de ratón

Se inmunizaron tres ratones C57BL6 3 veces (semanalmente) con 30 mg de H. pylori FliD recombinante como antígeno y 10 μ g de CT (toxina del cólera) como adyuvante se resuspendió en PBS. Una semana después del último refuerzo de inmunización, los ratones se sangraron y los sueros se combinaron. La antigenicidad y la especificidad de los sueros reunidos se probaron en un análisis de transferencia de Western.

15 Análisis de transferencia de Western

Para establecer las condiciones óptimas del ensayo, se generaron y purificaron diferentes concentraciones de la proteína FliD recombinante, así como de otras proteínas de control recombinantes (Tig (factor desencadenante (Tomb et al., 1997)) y gGT) en las mismas condiciones, se aplicaron en geles de SDS al 8%. Después de la transferencia de las proteínas en la membrana de nitrocelulosa (Whatman/GE Healthcare, Freiburg, Alemania), las membranas se bloquearon en leche desnatada al 5% durante 1 h a temperatura ambiente y se incubaron durante la noche con diferentes diluciones de los antisueros como anticuerpos primarios. Después de la incubación de las membranas con IgG anti-ratón marcada con HRP, las bandas se detectaron mediante la adición de reactivos de detección de transferencia Western ECL.

Los resultados se muestran en la figura 5, por lo que en el lado derecho del gel de SDS representado se indica el antígeno y su cantidad aplicada a los carriles individuales. Se usó una dilución óptima (1: 2000) de suero de anti ratón.

Análisis de PCR de la presencia del ORF de FliD en el genoma de H. pylori

Se diseñaron cuatro PCR basadas en la secuencia de ADN de la FliD como sujeto a SEQ ID NO: 2. La especificidad de cada par de cebadores como se indica en la tabla 5 se confirmó mediante análisis de blast contra todas las secuencias

de nucleótidos bacterianas del banco de genes. Las PCR se establecieron usando ADN de H. pylori como control positivo y ADN genómico de otros 10 microorganismos como controles negativos. Las PCR se realizaron usando la mezcla maestra de GoTaq polimerasa (Promega), la temperatura de apareamiento de 56 °C y el tiempo de extensión de 30 segundos.

5

Tabla 5: Cebadores usados por análisis de PCR.

	Cebador hacia adelante	Cebador reverso	Longitud del amplicon (bp)
PCR1	AGC TCA TTA GGG CTT GGC AG (SEQ ID NO: 21)	GCT CGC GCT CAA CGC ATC (SEQ ID NO: 22)	246
PCR2	ATC ACG GAC GCT ACC AAT GG (SEQ ID NO: 23)	AGG GAC TTC ATG CAT GCT CC (SEQ ID NO: 24)	288
PCR3	CAC AGA CGC TAT CAT TCA AGC (SEQ ID NO: 25)	CCC GCT GAT CAC ATC ATT GAC (SEQ ID NO: 26)	300
PCR4	CGC TAA CCT CAT AGA TGG AGG (SEQ ID NO: 27)	TAA GCG GCA AAG CGC TCC G (SEQ ID NO: 28)	150

Resultados

10

El ORF de la FliD se presenta en todos los aislados de pacientes con *H. pylori* (bacterias cultivadas aisladas de biopsias de pacientes). La presencia del ORF de la FliD podría confirmarse con las cuatro PCR usadas para este ensayo. PCR1, PCR2 y PCR3 realizadas por ADN aislado de 81 muestras de *H. pylori* fueron positivas en general. Mientras que la PCR4 fue positiva para 79 muestras (Fig. 6). La especificidad del ensayo se confirmó aplicando ADN aislado de P. aeruginosa (ATCC 27813), Klebsiella oxytoca (ATCC 700324), Candida albicans (ATCC 90028), Entrococcus faecalis (ATCC 29292), Strep. Group A (ATCC 19615), S. thyphimurium (ATCC 13311), S. aureus (ATCC 25923), S. epidermidis (ATCC 18228), H. influensae (ATCC 49247) y E. coli (ATCC 25922).

- Como se puede deducir de la figura 6 que representa los resultados de un análisis PCR representativo realizado usando ADN genómico aislado de H. pylori cultivado aislado de biopsias de pacientes, se presenta el ORF (marco de lectura abierto) de FliD en casi todos los aislados de H. pylori. De este modo, los resultados de PCR confirman la presencia de la FliD en el ADN genómico. En la figura 6, los números arriba de los carriles indican el número de muestra interno.
- En cuanto a la detección de la proteína FliD en muestras de pacientes que han sido diagnosticados como positivos para
 H. pylori, la proteína FliD es detectable en el 97.5% de las muestras. Usando el análisis de transferencia de Western se
 pudo demostrar que la expresión de la proteína FliD es detectable en 79 de los 81 lisados de proteínas de H. pylori. Los
 resultados se muestran en la figura 7. En la figura 7, los números anteriores a los carriles indican el número de muestra
 interno.
- La especificidad del ensayo se confirmó mediante resultados negativos cuando se analizaron los lisados de proteínas de otros microorganismos mediante análisis de transferencia Western. Los resultados de los mismos están indicados en la figura 8. Como se puede tomar de la figura 8 aparte de FliD recombinante con etiqueta de estreptavidina (carriles 2 de ambas transferencias de Western) y lisados de proteína sin etiqueta de estreptavidina (carriles 3 de ambas transferencias de Western) de P. aeruginosa (ATCC 27813) (transferencia western izquierda, carril 4), Klebsiella oxytoca (ATCC 700324) (transferencia western izquierda, carril 5), Candida albicans (ATCC 90024) (transferencia western izquierda, carril 6), Enterococcus faecalis (ATCC 29292) (transferencia western izquierda, carril 7), Streptococcus Gupo A (ATCC 19615) (transferencia western izquierda, carril 8), S. thyphimurium (ATCC 13311) (transferencia western derecha, carril 4), S. aureus (ATCC 25923) (transferencia western derecha, carril 5), S. epidermidis (ATCC 18228)

- (transferencia western derecha, carril 6), H. influensae (ATCC 49247) (transferencia western derecha, carril 7) y E. coli (ATCC 25922) (transferencia western derecha, carril 8).
- En la presente memoria descriptiva se hace referencia a diversos documentos de la técnica anterior cuya referencia completa se lee a continuación.
- Arnold, I. C., Hitzler, I., & Muller, A. (2012). The Immunomodulatory Properties of Helicobacter pylori Confer Protection Against Allergic and Chronic Inflammatory Disorders. Front Cell Infect Microbiol, 2, 10.
 - Atherton, J. C., Cao, P., Peek, R. M., Jr., Tummuru, M. K., Blaser, M. J., & Cover, T. L. (1995). Mosaicism in vacuolating cytotoxin alleles of Helicobacter pylori. Association of specific vacA types with cytotoxin production and peptic ulceration. J Biol Chem, 270(30), 17771-17777.
- 10 Chen, Y., Wang, J., & Shi, L. (2001). [In vitro study of the biological activities and immunogenicity of recombinant adhesin of Heliobacter pylori rHpaA]. Zhonghua Yi Xue Za Zhi, 81(5), 276-279.
 - Cover, T. L., & Blaser, M. J. (1992). Purification and characterization of the vacuolating toxin from Helicobacter pylori. J Biol Chem, 267(15), 10570-10575.
- Dunn, B. E., Roop, R. M., 2nd, Sung, C. C., Sharma, S. A., Perez-Perez, G. I., & Blaser, M. J. (1992). Identification and purification of a cpn60 heat shock protein homolog from Helicobacter pylori. Infect Immun, 60(5), 1946-1951.
 - Eaton, K. A., Suerbaum, S., Josenhans, C., & Krakowka, S. (1996). Colonization of gnotobiotic piglets by Helicobacter pylori deficient in two flagellin genes. Infect Immun, 64(7), 2445-2448.
 - Franco, A. T., Israel, D. A., Washington, M. K., Krishna, U., Fox, J. G., Rogers, A. B., et al. (2005). Activation of beta-catenin by carcinogenic Helicobacter pylori. Proc Natl Acad Sci U S A,102(30), 10646-10651.
- Fusconi, M., Vaira, D., Menegatti, M., Farinelli, S., Figura, N., Holton, J., et al. (1999). Anti-CagA reactivity in Helicobacter pylori-negative subjects: a comparison of three different methods. Dig Dis Sci, 44(8), 1691-1695.
 - Gao, L., Michel, A., Weck, M. N., Arndt, V., Pawlita, M., & Brenner, H. (2009). Helicobacter pylori infection and gastric cancer risk: evaluation of 15 H. pylori proteins determined by novel multiplex serology. Cancer Res, 69(15), 6164-6170.
- Goto, T., Nishizono, A., Fujioka, T., Ikewaki, J., Mifune, K., & Nasu, M. (1999). Local secretory immunoglobulin A and postimmunization gastritis correlate with protection against Helicobacter pylori infection after oral vaccination of mice. Infect Immun, 67(5), 2531-2539.
 - Hay, F. C., Westwood, O. M. R., Nelson, P. N., & Hudson, L. (2002). Practical immunology: Wiley-Blackwell.
 - Honda, S., Fujioka, T., Tokieda, M., Satoh, R., Nishizono, A., & Nasu, M. (1998). Development of Helicobacter pylori-induced gastric carcinoma in Mongolian gerbils. Cancer Res, 58(19), 4255-4259.
- Kim, J. S., Chang, J. H., Chung, S. I., & Yum, J. S. (1999). Molecular cloning and characterization of the Helicobacter pylori fliD gene, an essential factor in flagellar structure and motility. J Bacteriol, 181(22), 6969-6976.
 - Mittel P. R. E., Luethy L., Reinhardt C., Joller H. (2003). Detection of high titers of antibody against Helicobacter cysteine-rich proteins A, B, C, and E in Helicobacter pylori-infected individuals. Clin. Diagn. Lab. Immunol. 10:542-545.
- Macchia, G., Massone, A., Burroni, D., Covacci, A., Censini, S., & Rappuoli, R. (1993). The Hsp60 protein of Helicobacter pylori: structure and immune response in patients with gastroduodenal diseases. Mol Microbiol, 9(3), 645-652.
 - Michetti, P., Kreiss, C., Kotloff, K. L., Porta, N., Blanco, J. L., Bachmann, D., et al. (1999). Oral immunization with urease and Escherichia coli heat-labile enterotoxin is safe and immunogenic in Helicobacter pylori-infected adults. Gastroenterology, 116(4), 804-812.
- 40 Montecucco, C., & de Bernard, M. (2003). Molecular and cellular mechanisms of action of the vacuolating cytotoxin (VacA) and neutrophil-activating protein (HP-NAP) virulence factors of Helicobacter pylori. Microbes Infect, 5(8), 715-721.
- Murata-Kamiya, N., Kurashima, Y., Teishikata, Y., Yamahashi, Y., Saito, Y., Higashi, H., et al. (2007). Helicobacter pylori CagA interacts with E-cadherin and deregulates the beta-catenin signal that promotes intestinal transdifferentiation in gastric epithelial cells. Oncogene, 26(32), 4617-4626.

- Oertli, M., Sundquist, M., Hitzler, I., Engler, D. B., Arnold, I. C., Reuter, S., et al. (2012). DC-derived IL- 18 drives Treg differentiation, murine Helicobacter pylori-specific immune tolerance, and asthma protection. J Clin Invest, 122(3), 1082-1096.
- Opazo, P., Muller, I., Rollan, A., Valenzuela, P., Yudelevich, A., Garcia-de la Guarda, R., et al. (1999). Serological response to Helicobacter pylori recombinant antigens in Chilean infected patients with duodenal ulcer, non-ulcer dyspepsia and gastric cancer. APMIS, 107(12), 1069-1078.
 - Pharmacia. (1988). Affinity chromatography LKB Biotechnology Uppsala, Sweden.
 - Sambrook, J., Fritsch, E., & Maniatis, T. (1989). Moleculer Cloning: A Laboratory Manuel, Book 1: New York: Cold Spring Harbor Laboratory Press.
- Suerbaum, S., Thiberge, J. M., Kansau, I., Ferrero, R. L., & Labigne, A. (1994). Helicobacter pylori hspA-hspB heatshock gene cluster: nucleotide sequence, expression, putative function and immunogenicity. Mol Microbiol, 14(5), 959-974.
 - Suganuma, M., Kurusu, M., Okabe, S., Sueoka, N., Yoshida, M., Wakatsuki, Y., et al. (2001). Helicobacter pylori membrane protein 1: a new carcinogenic factor of Helicobacter pylori. Cancer Res, 61(17), 6356-6359.
- Tomb J. F., et al. 1997. The complete genome sequence of the gastric pathogen Helicobacter pylori. Nature, 7; 388(6642):539-47.
 - Uemura, N., Okamoto, S., Yamamoto, S., Matsumura, N., Yamaguchi, S., Yamakido, M., et al. (2001). Helicobacter pylori infection and the development of gastric cancer. N Engl J Med, 345(11), 784-789.
 - Urita, Y., Hike, K., Torii, N., Kikuchi, Y., Kurakata, H., Kanda, E., et al. (2004). Comparison of serum IgA and IgG antibodies for detecting Helicobacter pylori infection. Intern Med, 43(7), 548-552.
- Watanabe, S., Takagi, A., Tada, U., Kabir, A. M., Koga, Y., Kamiya, S., et al. (1997). Cytotoxicity and motility of Helicobacter pylori. J Clin Gastroenterol, 25 Suppl 1, S169-171.
 - Watanabe, T., Tada, M., Nagai, H., Sasaki, S., & Nakao, M. (1998). Helicobacter pylori infection induces gastric cancer in mongolian gerbils. Gastroenterology, 115(3), 642-648.
- Yamaoka, Y., Kodama, T., Kita, M., Imanishi, J., Kashima, K., & Graham, D. Y. (1998). Relationship of vacA genotypes of Helicobacter pylori to cagA status, cytotoxin production, and clinical outcome. Helicobacter, 3(4), 241-253.
 - Yan, J., Liang, S. H., Mao, Y. F., Li, L. W., & Li, S. P. (2003). Construction of expression systems for flaA and flab genes of Helicobacter pylori and determination of immunoreactivity and antigenicity of recombinant proteins. World J Gastroenterol, 9(10), 2240-2250.
- Yan, J., & Mao, Y. F. (2004). Construction of a prokaryotic expression system of vacA gene and detection of vacA gene, VacA protein in Helicobacter pylori isolates and ant-VacA antibody in patients' sera. World J Gastroenterol, 10(7), 985-

Lista de secuencias

- <110> Technische Universität München
- <120> Método para la detección de la infección por H. pylori
- 35 <130> G 10023 PCT
 - <150> EP 13 004 038.9
 - <151> 2013-08-13
 - <160> 28
 - <170> PatentIn version 3.3
- 40 <210> 1
 - <211> 685
 - <212> PRT

<213> H. pylori

<220>

<221> CARACTERÍSTICA_MISC

<223> cepa H. pylori G27

5 <400>1

Met Ala Ile Gly Ser Leu Ser Ser Leu Gly Leu Gly Ser Lys Val Leu 1 5 10 15

Asn Tyr Asp Val Ile Asp Lys Leu Lys Asp Ala Asp Glu Lys Ala Leu 20 25 30

Ile Ala Pro Leu Asp Lys Lys Met Glu Gln Asn Val Glu Lys Gln Lys 35 40 45

Ala Leu Val Glu Ile Lys Thr Leu Leu Ser Ser Leu Lys Gly Pro Val 50 55 60

Lys Thr Leu Ser Asp Tyr Ser Thr Tyr Ile Ser Arg Lys Ser Asn Val 65 70 75 80

Thr Gly Asp Ala Leu Ser Ala Ser Val Gly Ala Gly Val Pro Ile Gln
85 90 95

Asp Ile Lys Val Asp Val Gln Asn Leu Ala Gln Gly Asp Ile Asn Glu
100 105 110

Leu Gly Ala Lys Phe Ser Ser Arg Asp Asp Ile Phe Ser Gln Val Asp 115 120 125

Thr	Thr 130	Leu	Lys	Phe	Tyr	Thr 135	Gln	Asn	Lys	Asp	Tyr 140	Ala	Val	Asn	Ile
Lys 145	Ala	Gly	Met	Thr	Leu 150	Gly	Asp	Val	Ala	Gln 155	Ser	Ile	Thr	Asp	Ala 160
Thr	Asn	Gly	Glu	Val 165	Met	Gly	Ile	Val	Met 170	Lys	Thr	Gly	Gly	Asn 175	Asp
Pro	Tyr	Gln	Leu 180	Met	Val	Asn	Thr	Lys 185	Asn	Thr	Gly	Glu	Asp 190	Asn	Arg
Ile	Tyr	Phe 195	Gly	Ser	His	Leu	Gln 200	Ser	Thr	Leu	Thr	Asn 205	Lys	Asn	Ala
Leu	Ser 210	Leu	Gly	Val	Asp	Gly 215	Ser	Gly	Lys	Ser	Glu 220	Val	Ser	Leu	Asn
Leu 225	Lys	Gly	Ala	Asp	Gly 230	Asn	Thr	His	Glu	Val 235	Pro	Ile	Met	Leu	Glu 240
Leu	Pro	Glu	Ser	Ala 245	Ser	Ile	Lys	Gln	Lys 250	Asn	Thr	Ala	Ile	Gln 255	Lys
Ala	Ile	Glu	Gln 260	Ala	Leu	Glu	Asn	Asp 265	Pro	Asn	Phe	Lys	Asp 270	Leu	Ile
Ala	Asn	Gly 275	Asp	Ile	Ser	Ile	Asp 280	Thr	Leu	His	Gly	Gly 285	Glu	Ser	Leu
Ile	Ile 290	Asn	Asp	Arg	Arg	Gly 295	Gly	Asn	Ile	Glu	Ile 300	Lys	Gly	Ser	Lys
Ala 305	Lys	Glu	Leu	Gly	Phe 310	Leu	Gln	Thr	Thr	Thr 315	Gln	Glu	Ser	Asp	Leu 320
Leu	Lys	Ser	Ser	Arg 325	Thr	Ile	Lys	Glu	Gly 330	Lys	Leu	Glu	Gly	Val 335	Ile
Ser	Leu	Asn	Gly 340	Gln	Lys	Leu	Asp	Leu 345	Lys	Ala	Leu	Thr	Lys 350	Glu	Gly
Asn	Thr	Ser 355	Glu	Glu	Asn	Thr	Asp 360	Ala	Ile	Ile	Gln	Ala 365	Ile	Asn	Ala

Lys	370	GIY	Leu	ser	Ala	375		Asn	Ala	GIU	380	Lys	Leu	Vai	TTE
Asn 385	Ser	Lys	Thr	Gly	Met 390	Leu	Thr	Ile	Lys	Gly 395	Glu	Asp	Ala	Leu	Gly 400
Lys	Ala	Ser	Leu	Lys 405	Asp	Leu	Gly	Leu	Asn 410	Ala	Gly	Met	Val	Gln 415	Ser
Tyr	Glu	Ala	Ser 420	Gln	Asp	Thr	Leu	Phe 425	Met	Ser	Lys	Asn	Leu 430	Gln	Lys
Ala	Ser	Asp 435	Ser	Gln	Phe	Thr	Tyr 440	Asn	Gly	Val	Ser	Ile 445	Thr	Arg	Pro
Thr	Asn 450	Glu	Val	Asn	Asp	Val 455	Ile	Asn	Gly	Val	Asn 460	Ile	Thr	Leu	Glu
Gln 465	Thr	Thr	Glu	Pro	Asn 470	Lys	Pro	Ala	Ile	Ile 475	Ser	Val	Ser	Arg	Asp 480
Asn	Gln	Ala	Ile	Ile 485	Asp	Ser	Leu	Lys	Glu 490	Phe	Val	Lys	Ala	Tyr 495	Asn
Glu	Leu	Ile	Pro 500	Lys	Leu	Asp	Glu	Asp 505	Thr	Arg	Tyr	Asp	Ala 510	Asp	Thr
Lys	Ile	Ala 515	Gly	Ile	Phe	Asn	Gly 520	Val	Gly	Asp	Ile	Arg 525	Thr	Ile	Arg
Ser	Ser 530	Leu	Asn	Asn	Val	Phe 535	Ser	Tyr	Ser	Val	His 540	Thr	Asp	Asn	Gly
Val 545	Glu	Ser	Leu	Met	Lys 550	Tyr	Gly	Leu	Ser	Leu 555	Asp	Asp	Lys	Gly	Val 560
Met	Ser	Leu	Asp	Glu 565	Ala	Lys	Leu	Ser	Ser 570	Thr	Leu	Asn	Ser	Asn 575	Pro
Lys	Ala	Thr	Gln 580	Asp	Phe	Phe	Tyr	Gly 585	Ser	Asp	Ser	Lys	Asp 590	Met	Gly
Gly	Arg	Glu 595	Ile	His	Gln	Glu	Gly 600	Ile	Phe	Ser	Lys	Phe 605	Asn	Gln	Val

Ile Ala Asn Leu Ile Asp Gly Gly Asn Ala Lys Leu Lys Ile Tyr Glu 610 615 620

Asp Ser Leu Asp Arg Asp Ala Lys Ser Leu Thr Lys Asp Lys Glu Asn 625 630 635 640

Ala Gln Glu Leu Leu Lys Thr Arg Tyr Asn Ile Met Ala Glu Arg Phe 645 650 655

Ala Ala Tyr Asp Ser Gln Ile Ser Lys Ala Asn Gln Lys Phe Asn Ser 660 665 670

Val Gln Met Met Ile Asp Gln Ala Ala Ala Lys Lys Asn 675 680 685

<210> 2

<211> 2058

<212> ADN

5 <213> H. pylori

<220>

<221> misc-feature

<223> cepa H. pylori G27

<400> 2

atggcaatag gttcattaag ctcattaggg cttggcagta aggttttgaa ttacgatgtg 60 attgacaago ttaaggacgo ogatgaaaaa gogttaatog coccottaga caagaaaatg 120 gagcaaaatg ttgaaaagca aaaagccctt gtagaaatta aaacgctcct ttcatctcta 180 aaaggcccgg ttaaaacgct ttcggattat tccacttata tcagccgaaa aagcaatgtt 240 acaggogatg ogttgagtgo gagtgtgggg gotggogtgo otattcaaga cattaaagtg 300 gatgtgcaaa atttagcgca aggcgatatt aacgaactag gggcgaaatt ttcttcaaga 360 gacgatattt ttagccaagt ggataccacg ctcaaatttt acacgcaaaa caaggactac 420 geogttaata ttaaageagg aatgacttta ggegatgtgg etcaaageat caeggaeget 480 540 accaatggcg aagtgatggg cattgtgatg aaaacaggag ggaatgaccc ctaccaatta 600 atggtgaata ccaaaaacac cggcgaagac aaccgcatct attttqqctc acacctccaa 660 tecaegetea etaacaaaaa egecetttet ttgggggttg atggaagegg aaagagtgaa gtgagtttga atttaaaggg ggctgatggg aacacgcatg aagtccccat catgctagag 720 780 ctccctgaaa gcgcttctat caaacaaaaa aacaccgcga tccaaaaagc gatagagcag

10

gctttagaaa	acgaccctaa	ttttaaagac	ttgatcgcta	atggggatat	ttccatagac	840
actcttcatg	ggggggaatc	tttaatcatt	aatgacaggc	gtgggggaaa	cattgaaatt	900
aaagggagca	aggctaaaga	gcttgggttt	ttgcaaacca	ccacccaaga	aagcgatttg	960
ttaaaaagct	ctcgcaccat	taaagagggt	aaattagaag	gggtaattag	cttgaatggc	1020
caaaaactgg	atttaaaagc	cttaaccaaa	gagggcaaca	ccagcgaaga	aaacacagac	1080
gctatcattc	aagcgattaa	cgctaaagaa	ggcttgagtg	cgtttaaaaa	cgccgaaggc	1140
aagcttgtga	tcaattctaa	aaccggaatg	ctaacgatta	agggcgagga	cgctttaggc	1200
aaggccagtt	tgaaggattt	gggtttgaac	gctggcatgg	tgcaatctta	tgaagcttca	1260
caagacacgc	tttttatgtc	taagaatttg	caaaaagcga	gcgattcgca	attcacttat	1320
aatggggtga	gcatcacacg	ccccactaat	gaggtcaatg	atgtgattaa	cggggttaat	1380
atcactttag	agcaaaccac	agagcctaat	aaacctgcga	ttatcagcgt	gagcagggac	1440
aatcaagcca	ttatagacag	ccttaaagaa	tttgtcaaag	cctataatga	gcttatccct	1500
aaactagatg	aagacacgcg	ttatgacgct	gacactaaaa	tegetgggat	ttttaacggc	1560
gtgggcgata	ttcgcaccat	tagatectet	cttaataacg	tgttttctta	tagcgtgcat	1620
acggataacg	gggtagaaag	cttgatgaaa	tacgggctta	gtttagacga	taagggcgtg	1680
atgagtttag	atgaggctaa	attgagtagc	accttaaatt	ctaaccctaa	agcgactcaa	1740
gattttttct	atgggagcga	tagcaaggat	atggggggca	gagaaatcca	ccaagagggc	1800
attttttcta	aattcaatca	agtcatcgct	aatctcatag	atggagggaa	cgctaaatta	1860
aagatttatg	aagattccct	agacagagac	gctaaaagct	tgaccaaaga	caaagaaaac	1920
gctcaagagc	ttttaaaaac	ccgctacaac	atcatggcgg	agcgctttgc	ggcttatgac	1980
agccaaatct	ctaaagccaa	tcaaaaattc	aattccgtgc	aaatgatgat	cgatcaagcg	2040
gcggctaaaa	agaattaa					2058

<210> 3

<211> 689

<212> PRT

5 <213> H. suis

<400> 3

Met Ala Ile Gly Lys Leu Ser Ser Leu Gly Ile Gly Ser Lys Val Leu 1 5 10 15

Asn Tyr Asp Val Ile Asp Lys Leu Lys Ser Ala Asp Glu Lys Thr Met $20 \\ 25 \\ 30$

Val	Ala	Pro 35	Ile	Asp	Arg	Lys	Met 40	Glu	Val	Asn	Leu	Glu 45	Lys	Gln	Lys
Ala	Leu 50	Val	Glu	Ile	Lys	Thr 55	Leu	Leu	Ala	Asn	Leu 60	Lys	Ala	Pro	Val
Ser 65	Ala	Leu	Thr	Asp	Tyr 70	Ser	Thr	Tyr	Thr	Ser 75	Arg	Ser	Ser	Ser	Val 80
Ser	Ser	Gly	Ala	Leu 85	Lys	Ala	Ser	Val	Ser 90	Pro	Gly	Ile	Pro	Val 95	Gln
Asp	Ile	Lys	Val 100	Glu	Val	Glu	Asp	Leu 105	Ala	Gln	Gly	Asp	Ile 110	Asn	Glu
Val	Gly	Thr 115	His	Phe	Arg	Asp	Arg 120	Asp	Asp	Ala	Phe	Ser 125	Gln	Ala	Asn
Thr	Lys 130	Leu	His	Phe	Tyr	Thr 135	Asn	Asn	Lys	Asn	Tyr 140	Thr	Val	Asn	Ile
Lys 145	Ala	Gly	Met	Ser	Val 150	Gly	Asp	Val	Ala	Gln 155	Ala	Ile	Thr	Asp	Ala 160
Thr	Gly	Gly	Glu	Val 165	Met	Gly	Ile	Val	Met 170	Lys	Thr	Gly	Gly	Asp 175	Lys
	-		180					185			Gly		190		
		195					200				Ala	205			
	210					215					Gly 220				
225					230					235	Gly				240
				245					250		Val			255	
Lys	Ala	Leu	Gln	Thr	Ala	Ile	Lys	Lys	Ala	Leu	Glu	Asp	Asn 270	Ala	Gln

Thr	Lys	Asp 275	Leu	Val	Asp	Ser	Gly 280	Gln	Ile	Asn	Ile	Gly 285	Leu	Ile	Asn
Asp	Gly 290	Lys	Ser	Leu	Val	Leu 295	Asn	Asp	Gln	Arg	Gly 300	Leu	Glu	Val	Glu
Val 305	Gly	Gly	Ala	Lys	Ala 310	Ala	Glu	Leu	Gly	Phe 315	Val	Lys	Thr	Lys	Ser 320
Asp	Gln	Glu	Asp	Leu 325	Leu	Lys	Gly	Thr	Ala 330	Gly	Ile	Ala	Ser	Gly 335	Gln
Ile	Lys	Gly	Thr 340	Ile	Asn	Phe	Asn	Gly 345	Gln	Ala	Ile	Asn	Leu 350	Gly	Ala
Ile	Thr	Ala 355	Thr	Gly	Asn	Ser	Ser 360	Asp	Ala	Asn	Ala	Gln 365	Ala	Ile	Val
Lys	Ala 370	Ile	Asn	Gly	Ile	Gln 375	Gly	Leu	His	Ala	Ser 380	Leu	Gly	Thr	Asp
Gly 385	Lys	Leu	Ile	Leu	Asn 390	Ser	Glu	Ser	Gly	Glu 395	Leu	Arg	Ile	Thr	Gly 400
Val	Gly	Ala	Asp	Gly 405	Lys	Ala	Ala	Val	Asn 410	Ser	Leu	Gly	Leu	Ser 415	Glu
Gly	Leu	Ser	Gln 420	Ser	Tyr	Ala	Lys	Leu 425	His	Asp	Leu	Phe	Ala 430	Phe	Lys
Lys	Leu	Gln 435	Ser	Ala	Ser	Asp	Ala 440	Arg	Phe	Thr	Tyr	Asn 445	Gly	Ala	Thr
Ile	Thr 450	Arg	Pro	Thr	Asn	Glu 455	Val	Asn	Asp	Val	Ile 460	Asn	Gly	Val	Ser
Leu 465	Ser	Leu	Leu	Ala	Lys 470	Thr	Glu	Pro	Gly	Lys 475	Pro	Ala	Ile	Ile	Ser 480
Ile	Thr	Arg	Asp	Ser 485	Lys	Ala	Ile	Val	Asp 490	His	Val	Lys	Glu	Phe 495	Val
Lys	Ala	Tyr	Asn	Ala	Leu	Ile	Pro	Lys	Leu	Asp	Glu	Thr	Thr	Arg	Tyr

500 505 510 Asp Pro Asp Thr Lys Ile Ala Gly Val Phe Asn Gly Val Gly Asp Ile 520 Arg Thr Ile Arg Ser Ser Ile Asn Asn Ala Ile Ala Phe Thr Ile Thr 530 535 540 Thr Ala Lys Gly Val Asp Ser Leu Met Lys Tyr Gly Ile Thr Leu Asp Glu His Gly Lys Met Ser Leu Asp Glu Ser Arg Leu Thr Asn Ala Leu Asn Ala Asp Pro Gln Ala Ala Gln Asp Phe Phe Tyr Gly Gly Asp Ile 585 Lys Ser Met Gly Gly Lys Glu Ile His Gln Asp Gly Ile Phe Ile Lys 600 Leu Asp Lys Val Leu Gln Gly Leu Val Asp Gly Gly Asn Ala Arg Leu Lys Leu Tyr Glu Asp Ser Leu Asp Gln Asp Ala Lys Asn Leu Arg Arg 635 625 630 Asp Lys Glu Asn Ala Met Glu Met Leu Lys Thr Arg Tyr Asp Met Met 645 650 Ala Glu Arg Phe Ala Ala Tyr Asp Glu Arg Ile Ser Lys Ala Asn Lys 660 665 670 Ser Phe Asp Ala Val Gln Met Met Ile Asp Gln Ala Ala Ala Lys Lys 675 680 Asn <213> H. suis

<210>4

<211> 2070

<212> ADN

<400> 4

attgataaac	ttaaaagcgc	tgatgaaaaa	actatggtgg	ctcccattga	tcgaaaaatg	120
gaagtcaatc	ttgaaaaaca	aaaggcttta	gttgagatta	aaactttgct	tgccaatctt	180
aaagegeeeg	ttagtgcttt	aacggattat	tcaacttata	cgagccgcag	tagcagtgtg	240
agcagtggag	cgcttaaagc	cagtgtaagc	ccgggtatcc	ctgtgcaaga	tattaaagta	300
gaagttgagg	atttggctca	aggcgatatt	aatgaagtcg	gtacacattt	tagagatcgc	360
gatgatgcct	ttagccaagc	taacaccaaa	ttacactttt	ataccaataa	taaaaactac	420
acagtcaata	ttaaggctgg	tatgagtgta	ggcgatgtcg	cccaagccat	tacagatgct	480
acggggggcg	aggtgatggg	gattgtgatg	aaaaccgggg	gggataaacc	ctatcagtta	540
atgattaata	ctaaaaaccc	cggggctaat	aaccgcttgt	attttggctc	tagtgttatt	600
tctactcttg	ctagtgatgc	gcctattaat	ttagccatag	ggggcactac	tgcagatggg	660
aaaagtacag	aagatgattt	ttttattaaa	gttaaagatg	ataagggcga	agtggttaaa	720
atccctatta	gtcttaatct	tgataaggct	tctgtgcaag	ataaaaataa	agccctgcaa	780
acagctatta	aaaaagccct	agaggataat	gcacaaacca	aagacctagt	agatagcgga	840
cagatcaata	toggtttgat	taatgatggc	aaatctttag	tacttaacga	tcaaagaggg	900
ttagaagttg	aagttggggg	agctaaagca	gctgaactag	gttttgttaa	aactaaatca	960
gatcaagaag	atttactcaa	aggcacagca	gggattgcat	ccggtcaaat	caagggcact	1020
attaatttta	atgggcaagc	cattaattta	ggggctatca	ccgcaacggg	caattctagc	1080
gatgctaacg	ctcaagccat	cgttaaagcc	attaatggca	ttcaagggtt	gcacgcttct	1140
ttaggcacgg	acgggaaatt	aatccttaat	agtgaaagcg	gcgagttgcg	tataaccggt	1200
gtgggggccg	atggtaaagc	ggctgtaaat	agtttaggtt	tgtctgaggg	cttaagccaa	1260
tcctatgcta	aattacacga	tctctttgcc	tttaaaaaac	tacaaagtgc	ctctgatgct	1320
agatttactt	acaatggtgc	gacaatcacc	cgccctacaa	atgaggtaaa	cgatgtgatt	1380
aacggtgtat	ctttgagttt	attagccaaa	actgagccgg	gtaaaccagc	cattattagc	1440
attacccgcg	acagtaaggc	cattgttgat	catgttaaag	aatttgtcaa	agcctataat	1500
gcattaatcc	ctaaactaga	tgaaacaacc	cgttacgatc	cagatactaa	aattgccggc	1560
gtgtttaatg	gcgtggggga	tatccgcaca	attcgctctt	caattaataa	tgccattgct	1620
tttacaatca	caacggctaa	aggtgtggat	agtctcatga	agtatgggat	tacacttgat	1680
gagcatggaa	agatgagctt	agatgagagc	agactcacaa	acgcgcttaa	tgccgatcca	1740
caagccgctc	aagatttctt	ctatggtggc	gatattaaaa	gtatgggggg	taaggagatt	1800
caccaagacg	ggatttttat	caagttagat	aaagttttgc	aaggtttggt	cgatggtggt	1860

aacgcgaggt tgaagttata cgaggattct ttagatcaag acgctaaaaa tttgagaaga 1920 gataaggaga atgcaatgga gatgcttaaa acccgttatg acatgatggc agaacgcttt 1980 gcagcttatg atgagcgtat ttctaaggcg aataaatcct ttgatgcggt gcagatgatg 2040 atcgatcaag cagccgccaa aaagaattaa 2070

<210> 5

<211> 684

<212> PRT

5 <213> H. felis

<400> 5

Met Ala Val Gly Gln Leu Ser Ser Leu Gly Ile Gly Ser Lys Val Leu 1 5 10 15

Asn Tyr Asp Val Ile Asp Lys Leu Lys Lys Ala Asp Glu Asn Thr Met 20 25 30

Val Lys Pro Ile Glu Arg Lys Met Glu Ala Asn Leu Glu Lys Gln Lys 35 40 45

Ala Leu Val Glu Ile Gln Thr Leu Leu Gly Asn Leu Arg Thr Pro Val 50 55 60

Arg Ala Leu Ser Asp Tyr Ser Thr Tyr Thr Ala Arg His Ser Asn Val 65 70 75 80

Thr Gly Asp Ala Leu Lys Val Ser Val Ser Pro Gly Ile Pro Ile Gln 85 90 95

Asn Ile Lys Val Asp Val Glu Ser Leu Ala Gln Gly Asp Ile Asn Glu
100 105 110

Val Gly Thr His Phe Ser Ser Arg Asp Asp Ser Phe Ala Gln Phe Asp 115 120 125

Thr Thr Leu His Phe Tyr Thr Asn His Gln Asp Tyr Ala Val Lys Ile 130 135 140

Lys Ala Gly Met Thr Leu Ser Asp Val Ala Gln Ala Ile Thr Asp Ala 145 150 155 160

Thr Asp Gly Lys Val Met Gly Ile Val Met Lys Thr Gly Gly Asn Lys 165 170 175

Pro	Tyr	Gln	Leu 180	Met	Ile	Asn	Ser	Lys 185	Gly	Thr	Gly	Ala	Asp 190	Asn	Arg
Ile	Phe	Phe 195	Gly	Ser	Ser	Val	Ile 200	Ser	His	Leu	Ser	Asn 205	Asp	Ala	Thr
Ile	Asn 210	Leu	Glu	Ala	Lys	Ser 215	Glu	Thr	Lys	Pro	Glu 220	Asp	Asp	Phe	Phe
Ile 225	Lys	Val	His	Asp	Glu 230	Gln	Asn	Val	Ile	Glu 235	Ile	Pro	Ile	Ala	Leu 240
Lys	Leu	Gln	Gly	Ser 245	Ile	Glu	Ser	Lys	Asn 250	Ala	Ala	Leu	Arg	Ala 255	Ala
Ile	Gln	Lys	Ala 260	Leu	Glu	Asp	Asn	Pro 265	Ala	Thr	Lys	Ser	Leu 270	Ala	Asp
Asn	Gly	Gln 275	Leu	Asn	Val	Gly	Val 280	Ile	Asn	Glu	Gly	Lys 285	Ser	Leu	Val
Ile	Asn 290	Asp	Lys	Arg	Gly	Leu 295	Ser	Val	Glu	Val	Gly 300	Gly	Ala	Lys	Ala
Arg 305	Glu	Leu	Gly	Phe	Ile 310	Gln	Asp	Lys	Ser	Gln 315	Ala	Glu	Gly	Asp	Leu 320
Leu	Lys	Ala	Leu	Thr 325	Ala	Pro	Gln	Ser	Gly 330	Lys	Ile	Lys	Gly	Ile 335	Ile
Ser	Leu	Asn	Gly 340	Gln	Asn	Ile	Asp	Met 345	Gly	Ala	Ile	Thr	Ala 350	Glu	His
Asn	Ser	Ser 355	Gln	Asp	Asn	Ala	Asn 360	Ala	Leu	Ile	Lys	Ala 365	Val	Asn	Gly
Ile	Ala 370	Gly	Leu	Ser	Ala	Ser 375	Val	Gly	Ala	Asp	Gly 380	Lys	Leu	Val	Leu
Asn 385	Ser	Ala	Ser	Gly	Gln 390	Leu	Arg	Leu	Thr	Gly 395	Ala	Asn	Ala	Glu	Gly 400
Lys	Lys	Ala	Leu	Lys	Asp	Leu	Gly	Leu	Ser	Glu	Gly	Phe	Ser	Arg	Ser

	405	410	415	
Tyr Ala Asn Al		Phe Ser Val Ly 425	s Asn Leu Gln Ser A 430	la
Ser Asp Ala Ly 435	s Phe Thr Tyr	Asn Gly Ala Se 440	r Ile Thr Arg Pro T 445	hr
Asn Glu Val As 450	n Asp Val Ile 455		r Leu Ser Leu Leu G 460	ly
Thr Thr Glu Pro	o Gly Lys Gly 470	Ala Val Val Se 47	r Ile Thr Arg Asp A 5 4	ge 80
Lys Ala Ile Ile	e Asp Asn Val 485	Lys Glu Phe Va	l Lys Ala Tyr Asn G 495	lu
Leu Met Pro Lys		Thr Thr Arg Ty	r Asp Pro Asp Thr A 510	rg
Ile Ala Gly Ile 515	e Phe Asn Gly	Val Ser Asp Ile 520	e Arg Thr Ile Arg S 525	er
Ser Leu Ile Se: 530	r Ala Val Thr 535	Phe Thr Ile Th	r Asn Ser Lys Gly V 540	al
Ala Ser Leu Mei 545	Lys Tyr Gly 550	Ile Met Leu Asp	o Asp His Gly Lys M 5	et 60
Ser Leu Asp Gl	ser Arg Leu 565	Ala Ser Ala Ile 570	e Asn Ala Asp Pro G 575	ln
Gly Thr Gln Asp		Gly Ser Asp Vai	l Lys Ser Met Gly G 590	ly
Lys Glu Thr His	s Gln Asp Gly	Ile Phe Glu Arg	g Val Asp Lys Val Lo 605	eu
Ala Asn Leu Va 610	Asp Gly Gly 615	His Ala Arg Let	ı Lys Leu Tyr Glu A 620	sp
Ser Leu Asp Glr 625	n Asp Ala Lys 630	Ser Leu Lys Lys 639	a Asp Lys Glu Asn A 6	la 40

Met Glu Leu Leu Lys Thr Arg Tyr Asp Ile Met Ala Glu Arg Phe Ala 645 650 655

Ala Tyr Asp Glu Gln Ile Ser Lys Ala Asn Arg Ser Phe Asn Ala Val 660 665 670

Gln Met Met Ile Asp Gln Ala Ala Ala Lys Lys Asn 675 680

<210>6

<211> 2055

<212> ADN

5 <213> H. felis

<400> 6

atggcagtag	ggcaattaag	ttctttggga	attggtagca	aagttttaaa	ctacgatgtg	60
atcgataagc	ttaaaaaagc	ggacgaaaac	acgatggtta	aacccatcga	gagaaagatg	120
gaggccaatt	tagaaaaaca	aaaagccctt	gtagaaatcc	aaactttgct	tgggaatttg	180
cgcacacctg	tcagagetet	aagcgattat	tccacttata	cagctagaca	tagcaatgta	240
accggggatg	cgcttaaagt	gagtgtgagt	ccgggtatcc	ccattcaaaa	tatcaaagtg	300
gatgtagaga	gtttagcaca	gggggatatt	aatgaggtgg	gcactcattt	tagctccaga	360
gacgactcgt	ttgcgcagtt	tgatactact	ttgcattttt	ataccaatca	tcaggattac	420
gcggttaaaa	ttaaagctgg	gatgacctta	agcgatgtcg	ctcaggcaat	cacggatgct	480
actgatggca	aggtgatggg	gattgtgatg	aaaaccgggg	ggaataaacc	ctatcagcta	540
atgatcaata	gtaagggcac	gggcgcggat	aatcgtatct	tttttggttc	tagtgtcatc	600
tcccatttga	gcaatgatgc	gaccattaat	ttagaagcca	agagcgagac	aaagcctgag	660
gatgatttt	ttatcaaagt	gcatgacgaa	caaaatgtga	tagaaattcc	tatcgctctc	720
aagttgcagg	gctctattga	gagtaaaaac	geggetetge	gtgcagccat	ccaaaaagcc	780
ttagaggata	atcccgctac	aaaatcttta	gcagacaatg	ggcagttaaa	tgtgggggtc	840
atcaatgagg	gtaaatcttt	ggtgatcaat	gataaacgag	gtttgagcgt	agaggtaggg	900
ggggctaagg	cgcgcgaact	aggtttcatc	caagataaat	cccaagctga	gggtgattta	960
ctaaaagccc	tcaccgcccc	gcaatctggc	aagatcaaag	gcattattag	tctgaatgga	1020
caaaacattg	acatgggggc	gatcacagct	gaacataatt	ctagtcaaga	caacgctaac	1080
gctctgatta	aagctgtcaa	tggcattgca	ggtttgagcg	cgtctgtggg	cgcggatggg	1140
aagttagtgc	tcaatagtgc	cagcgggcaa	ttacgcttaa	ccggagctaa	tgcagagggt	1200
aaaaaggctc	tcaaagattt	aggcctctca	gaggggttta	gccgctctta	tgctaatgct	1260

caagaactct	tttctgttaa	aaacttacag	agtgctagcg	atgctaaatt	tacctacaat	1320
ggggctagta	tcacgcgccc	taccaatgaa	gttaatgatg	taattaatgg	cgtgtcttta	1380
agtttgctag	gcacaacaga	gccgggcaag	ggggctgttg	tgagcatcac	acgagatgac	1440
aaggcgatca	tcgataatgt	caaagagttt	gtcaaagcct	ataatgagtt	gatgccaaaa	1500
ttagatgaga	ccacccgtta	cgatccggac	acaagaattg	ccgggatctt	taatggagtg	1560
agcgatatcc	gcactatccg	ctcttcactt	atcagtgcag	ttacttttac	aatcactaat	1620
agcaagggcg	tggctagctt	gatgaagtat	gggatcatgc	tagatgacca	tggcaagatg	1680
agtttagacg	aaagccgtct	tgctagcgca	atcaacgccg	atccgcaagg	cacccaagac	1740
ttcttttatg	gaagcgatgt	gaagagtatg	gggggcaagg	aaacccacca	agatggaatc	1800
tttgagcgcg	tggataaagt	tttggctaat	ttggtcgatg	gtggtcatgc	gcgtttgaag	1860
ctctatgaag	actctctaga	tcaagatgcc	aaaagcctca	aaaaagataa	agagaacgct	1920
atggagttat	taaaaacccg	ctatgacatc	atggcagagc	gttttgctgc	ctatgacgag	1980
cagatttcta	aggctaaccg	atcatttaac	gctgtgcaga	tgatgatcga	tcaagctgct	2040
gctaagaaaa	actaa					2055

<210> 7

<211> 1230

<212> PRT

5 <213> H. pylori

<220>

<221> CARACTERÍSTICA_MISC

<223> cepa H. pylori G27

<400> 7

Met Thr Asn Glu Thr Ile Asn Gln Gln Pro Gln Thr Glu Ala Ala Phe 1 5 10 15

Asn Pro Gln Gln Phe Ile Asn Asn Leu Gln Val Ala Phe Leu Lys Val 20 25 30

Asp Asn Ala Val Ala Ser Tyr Asp Pro Asp Gln Lys Pro Ile Val Asp 35 40 45

Lys Asn Asp Arg Asp Asn Arg Gln Ala Phe Asn Gly Ile Ser Gln Leu 50 55 60

Arg Glu Glu Tyr Ser Asn Lys Ala Ile Lys Asn Pro Ala Lys Lys Asn

65					70					75					80
Gln	Tyr	Phe	Ser	Asp 85	Phe	Ile	Asp	Lys	Ser 90	Asn	Asn	Leu	Ile	Asn 95	Lys
Asp	Ala	Leu	Ile 100	Asp	Val	Glu	Ser	Ser 105	Thr	Lys	Ser	Phe	Gln 110	Lys	Phe
Gly	Asp	Gln 115	Arg	Tyr	Gln	Ile	Phe 120	Thr	Ser	Trp	Val	Ser 125	His	Gln	Asr
Asp	Pro 130	Ser	Lys	Ile	Asn	Thr 135	Arg	Ser	Ile	Arg	Asn 140	Phe	Met	Glu	Asn
Ile 145	Ile	Gln	Pro	Pro	Ile 150	Pro	qeA	Asp	Lys	Glu 155	Lys	Ala	Glu	Phe	Leu 160
Lys	Ser	Ala	Lys	Gln 165	Ser	Phe	Ala	Gly	Ile 170	Ile	Ile	Gly	Asn	Gln 175	Ile
Arg	Thr	Asp	Gln 180	Lys	Phe	Met	Gly	Val 185	Phe	Asp	Glu	Ser	Leu 190	Lys	Glu
Arg	Gln	Glu 195	Ala	Glu	Lys	Asn	Gly 200	Gly	Pro	Thr	Gly	Gly 205	Asp	Trp	Leu
Asp	Ile 210	Phe	Leu	Ser	Phe	Ile 215	Phe	Asp	Lys	Lys	Gln 220	Ser	Ser	Asp	Val
Lys 225	Glu	Ala	Ile	Asn	Gln 230	Glu	Pro	Val	Pro	His 235	Val	Gln	Pro	Asp	Ile 240
Ala	Thr	Thr	Thr	Thr 245	Asp	Ile	Gln	Gly	Leu 250	Pro	Pro	Glu	Ala	Arg 255	Asp
Leu	Leu	Asp	Glu 260	Arg	Gly	Asn	Phe	Ser 265	Lys	Phe	Thr	Leu	Gly 270	Asp	Met
Glu	Met	Leu 275	Asp	Val	Glu	Gly	Val 280	Ala	Asp	Ile	Asp	Pro 285	Asn	Tyr	Lys
Phe	Asn 290	Gln	Leu	Leu	Ile	His 295	Asn	Asn	Ala	Leu	Ser 300	Ser	Val	Leu	Met

Gly 305	Ser	His	Asn	Gly	Ile 310	Glu	Pro	Glu	Lys	Val 315	Ser	Leu	Leu	Tyr	Gly 320
Gly	Asn	Gly	Gly	Pro 325	Lys	Ala	Lys	His	Asp 330	Trp	Asn	Ala	Thr	Val 335	Gly
Tyr	Lys	Asp	Gln 340	Gln	Gly	Asn	Asn	Val 345	Ala	Thr	Ile	Ile	Asn 350	Val	His
Met	Lys	Asn 355	Gly	Ser	Gly	Leu	Val 360	Ile	Ala	Gly	Gly	Glu 365	Lys	Gly	Ile
Asn	Asn 370	Pro	Ser	Phe	Tyr	Leu 375	Tyr	Lys	Glu	Asp	Gln 380	Leu	Thr	Gly	Ser
Gln 385	Arg	Ala	Leu	Ser	Gln 390	Glu	Glu	Ile	Arg	Asn 395	Lys	Val	Asp	Phe	Met 400
Glu	Phe	Leu	Ala	Gln 405	Asn	Asn	Ala	Lys	Leu 410	Asp	Asn	Leu	Ser	Glu 415	Lys
Glu	Glu	Glu	Lys 420	Phe	Arg	Asn	Glu	Ile 425	Lys	Asp	Phe	Gln	Lys 430	Asp	Ser
Lys	Ala	Tyr 435	Leu	Asp	Ala	Leu	Gly 440	Asn	Asp	Arg	Ile	Ala 445	Phe	Val	Ser
Lys	Lys 450	Asp	Thr	Lys	His	Ser 455	Ala	Leu	Ile	Thr	Glu 460	Phe	Gly	Asn	Gly
Asp 465	Leu	Ser	Tyr	Thr	Leu 470	Lys	Asp	Tyr	Gly	Lys 475	Lys	Ala	Asp	Lys	Ala 480
Leu	Asp	Arg	Glu	Lys 485	Asn	Val	Thr	Leu	Gln 490	Gly	Asn	Leu	Lys	His 495	Asp
Gly	Val	Met	Phe 500	Val	Asp	Tyr	Ser	Asn 505	Phe	Lys	Tyr	Thr	Asn 510	Ala	Ser
Lys	Asn	Pro 515	Asn	Lys	Gly _.	Val	Gly 520	Val	Thr	Asn	Gly	Val 525	Ser	His	Leu
Glu	Ala 530	Gly	Phe	Ser	Lys	Val 535	Ala	Val	Phe	Asn	Leu 540	Pro	Asp	Leu	Asn

Asn 545	Leu	Ala	Ile	Thr	Ser 550	Leu	Val	Arg	Arg	Asp 555	Leu	Glu	Asp	Lys	Leu 560
Ile	Ala	Lys	Gly	Leu 565	Ser	Pro	Gln	Glu	Thr 570	Asn	Lys	Leu	Val	Lys 575	Asp
Phe	Leu	Ser	Ser 580	Asn	Lys	Glu	Leu	Val 585	Gly	Lys	Ala	Leu	Asn 590	Phe	Asn
Lys	Ala	Val 595	Ala	Glu	Ala	Lys	Asn 600	Thr	Gly	Asn	Tyr	Asp 605	Glu	Val	Lys
Gln	Ala 610	Gln	Lys	Asp	Leu	Glu 615	Lys	Ser	Leu	Lys	Lys 620	Arg	Glu	Arg	Leu
Glu 625	Lys	Glu	Val	Ala	Lys 630	Lys	Leu	Glu	Ser	Lys 635	Ser	Gly	Asn	Lys	Asn 640
Lys	Met	Glu	Ala	Lys 645	Ser	Gln	Ala	Asn	Ser 650	Gln	Lys	Asp	Glu	Ile 655	Phe
Ala	Leu	Ile	Asn 660	Lys	Glu	Ala	Asn	Arg 665	Glu	Ala	Arg	Ala	Ile 670	Thr	Tyr
Ala	Gln	Asn 675	Leu	Lys	Gly	Ile	Lys 680	Arg	Glu	Leu	Ser	Asp 685	Lys	Leu	Glu
Asn	Val 690	Asn	Lys	Asn	Leu	Lys 695	Asp	Phe	Ser	Lys	Ser 700	Phe	Asp	Glu	Phe
Lys 705	Asn	Gly	Lys	Asn	Lys 710	Asp	Phe	Ser	Lys	Ser 715	Glu	Glu	Thr	Leu	Lys 720
Ala	Leu	Lys	Gly	Ser 725	Val	Lys	Asp	Leu	Gly 730	Ile	Asn	Pro	Glu	Trp 735	Ile
Ser	Lys	Val	Glu 740	Asn	Leu	Asn	Ala	Ala 745	Leu	Asn	Glu	Phe	Lys 750	Asn	Gly
Lys	Asn	Lys 755	Asp	Phe	Ser	Lys	Val 760	Thr	Gln	Ala	Lys	Ser 765	Asp	Leu	Glu
Asn	Ser 770	Val	Lys	Asp	Val	Ile 775	Ile	Asn	Gln	Lys	Val 780	Thr	Asp	Lys	Val

Asp 785	Asn	Leu	Asn	Gln	Ala 790	Val	Ser	Val	Ala	Lys 795	Ala	Thr	Gly	Asp	Phe 800
Ser	Arg	Val	Glu	Gln 805	Ala	Leu	Ala	Asp	Leu 810	Lys	Asn	Phe	Ser	Lys 815	Glu
Gln	Leu	Ala	Gln 820	Gln	Ala	Gln	Lys	Asn 825	Glu	Asp	Phe	Asn	Thr 830	Gly	Lys
Asn	Ser	Ala 835	Leu	Tyr	Gln	Ser	Val 840	Lys	Asn	Gly	Val	Asn 845	Gly	Thr	Leu
Val	Gly 850	Asn	Gly	Leu	Ser	Lys 855	Ala	Glu	Ala	Thr	Thr 860	Leu	Ser	Lys	Asn
Phe 865	Ser	Asp	Ile	Lys	Lys 870	Glu	Leu	Asn	Ala	Lys 875	Leu	Gly	Asn	Phe	Asn 880
Asn	Asn	Asn	Asn	Asn 885	Gly	Leu	Lys	Asn	Ser 890	Thr	Glu	Pro	Ile	Tyr 895	Ala
Lys	Val	Asn	Lys 900	Lys	Lys	Ala	Gly	Gln 905	Ala	Ala	Ser	Pro	Glu 910	Glu	Pro
Ile	Tyr	Ala 915	Gln	Val	Ala	Lys	Lys 920	Val	Asn	Ala	Lys	Ile 925	Asp	Arg	Leu
Asn	Gln 930	Ile	Ala	Ser	Gly	Leu 935	Gly	Val	Val	Gly	Gln 940	Ala	Val	Gly	Phe
Pro 945	Leu	Lys	Arg	His	Asp 950	Lys	Val	Gly	Asp	Leu 955	Ser	Lys	Val	Gly	Gln 960
Ser	Val	Ser	Pro	Glu 965	Pro	Ile	Tyr	Ala	Thr 970	Ile	Asp	Asp	Leu	Gly 975	Gly
Pro	Phe	Pro	Leu 980	Lys	Arg	His	Asp	Lys 985	Val	Gly	Asp	Leu	Ser 990	Lys	Val
Gly	Leu	Ser 995	Val	Ser	Pro	Glu	Pro 1000		туг	Ala	Thr	100		sp As	p Leu
Gly	Gly	Pro	Phe	Pro	Let	ı Lys	Ar	g Hi	s As	вр Ly	rs Va	1 6	ly A	Asp I	eu

	1010					1015					1020			
Ser	Lys 1025		Gly	Leu	Ser	Arg 1030		Gln	Gln	Leu	Lys 1035	Gln	Lys	Ile
Asp	Asn 1040		Ser	Gln		Val 1045		Glu	Ala	Lys	Ala 1050		Phe	Phe
Gly	Asn 1055		Glu	Gln	Thr	Ile 1060	Asp	Asn	Leu	Lys	Asp 1065		Ala	Lys
Asn	Asn 1070	Pro	Val	Ser	Leu	Trp 1075		Glu	Gly	Ala	Lys 1080		Val	Pro
Ala	Ser 1085	Leu	Ser	Ala	Lys	Leu 1090	Asp	Asn	Tyr	Ala	Thr 1095	Asn	Ser	His
Thr	Arg 1100		Asn	Ser	Asn	Ile 1105		Ser	Gly		Ile 1110		Glu	Lys
Ala	Thr 1115	Gly	Met	Leu	Thr	Gln 1120	Lys	Asn	Pro	Glu	Trp 1125	Leu	Lys	Leu
Val	Asn 1130	_	Lys	Ile		Ala 1135		Asn	Val	_	Ser 1140	Val	Pro	Leu
Leu	Glu 1145	_	Asp	Lys		Gly 1150	Phe	Asn	Gln	Lys	Ser 1155	Met	Lys	Asp
Tyr	Ser 1160	Asp	Ser	Phe	Lys	Phe 1165	Ser	Thr	Glu	Leu	Asn 1170	Asn	Ala	Val
Lys	Asp 1175	Val	Lys	Ser	Gly	Phe 1180	Thr	Gln	Phe	Leu	Ala 1185	Asn	Ala	Phe
Ser	Thr 1190	Gly	Tyr	Tyr	Arg	Leu 1195	Ala	Gly	Glu	Asn	Ala 1200	Glu	His	Gly
Ile	Lys 1205	Asn	Val	Asn	Thr	Lys 1210	Gly	Gly	Ser	Lys	Asn 1215	Leu	Lys	Gly
Leu	Arg 1220	Asn	Thr	Lys	Asn	Ala 1225	Lys	Thr	Thr	Pro	Cys 1230			

<210>8

<211> 3726

<212> ADN

<213> H. pylori

<220>

<221> CARACTERÍSTICA_MISC

<223> cepa H. pylori G27

5 <400> 8

aaggagaaac	aatgactaac	gaaactattg	accaacaacc	acaaaccgaa	gcggctttta	60
acccgcagca	atttatcaat	aatcttcaag	tagcttttct	taagcttgat	aacgctgtcg	120
cttcatttga	tcctgatcaa	aaaccaatcg	ttgataagaa	cgatagggat	aacaggcaag	180
cttttgatgg	aatctcgcaa	ttaagggaag	aatactccaa	taaagcgatc	aaaaatccta	240
ccaaaaagaa	tcagtatttt	tcagacttta	tcaataagag	caatgattta	atcaacaaag	300
acaatctcat	tgatgtggaa	tcttccacaa	agagctttca	gaaatttggg	gatcagcgtt	360
accgaatttt	cacaagttgg	gtgtcccatc	aaaacgatcc	gtctaaaatc	aacacccgat	420
cgatccgaaa	ttttatggaa	aatatcatac	aaccccctat	ccatgatgac	aaagaaaaag	480
cagagttttt	gaaatctgcc	aaacaatctt	ttgcaggaat	tatcataggg	aatcaaatcc	540
gaacggatca	aaagttcatg	ggcgtgtttg	atgaatcctt	gaaagaaagg	caagaagcag	600
aaaaaaatgg	agagcctact	ggtggggatt	ggttggatat	ttttttatca	tttatatttg	660
acaaaaaaca	atcttctgat	gtcaaagaag	caatcaatca	agaaccagtt	cctcatgtcc	720
agccagatat	agccactact	accaccgaca	tacaaggctt	accgcctgaa	tctagggatt	780
tgcttgatga	aaggggtaat	ttttctaaat	tcactcttgg	cgatatggaa	atgttagatg	840
ttgagggtgt	cgctgacatt	gatcctaatt	acaagttcaa	tcaattattg	attcacaata	900
acgctctgtc	ttctgtgtta	atggggagtc	ataatggcat	agaacctgaa	aaagtttcat	960
tattgtatgc	gggcaatggt	ggttttggag	ccaagcacga	ttggaacgcc	accgttggtt	1020
ataaagacca	acaaggtaac	aatgtggcta	caataattaa	tgtgcatatg	aaaaacggca	1080
gtggcttagt	catagcaggt	ggtgagaaag	ggattaacaa	ccctagtttt	tatctctaca	1140
aagaagacca	actcacaggc	tcacaacgag	cattgagtca	agaagagatc	cgaaacaaaa	1200
tagatttcat	ggaatttctt	gcacaaaaca	atgctaaatt	agacaacttg	agcgagaaag	1260
agaaagaaaa	attccgaaat	gagattaagg	atttccaaaa	agactctaag	gcttatttag	1320
acgccctagg	gaatgatcgt	attgcctttg	tttctaaaaa	agacccaaaa	cattcagctt	1380
taattactga	gtttggtaag	ggggatttga	gctacactct	caaagattat	gggaaaaaag	1440

cagataaagc	tttagatagg	gagaaaaatg	tcactcttca	aggtaaccta	aaacatgatg	1500
gcgtgatgtt	tgttgattat	tctaatttca	aatacaccaa	cgcctccaag	aatcccaata	1560
agggtgtagg	cgttacgaat	ggegtttece	atttagacgc	aggctttagc	aaggtagctg	1620
tctttaattt	gcctgattta	aataatctcg	ctatcactag	tttcgtaagg	cggaacttag	1680
aggataaact	aattgctaaa	ggattgaccc	cacaagaagc	taataagctt	atcaaagatt	1740
ttttgagcag	caacaaagaa	ttggttggaa	aagctttaaa	cttcaataaa	gctgtagctg	1800
acgctaaaaa	cacaggcaac	tatgacgagg	tgaaaaaagc	tcagaaagat	cttgaaaaat	1860
ctctaaggaa	acgagagcat	ttagagaaag	aagtagagaa	aaaattggag	agcaaaagcg	1920
gcaacaaaaa	taaaatggaa	gcaaaagctc	aagctaacag	ccaaaaagat	gagatttttg	1980
cgttgatcaa	taaagaggct	aatagagacg	caagagcaat	cacttacgct	caaaatctta	2040
aaggcatcaa	aagggaattg	tctgataaac	ttgaaaatat	caacaagaat	ttgaaagact	2100
ttagtaaatc	ttttgatgaa	ttcaaaaatg	gcaaaaataa	ggatttcagc	aaggcagaag	2160
aaacgctaaa	agcccttaaa	ggctcggtga	aagatttagg	tatcaatccg	gaatggattt	2220
caaaagttga	aaaccttaat	gcagctttga	atgacttcaa	aaatggcaaa	aataaggatt	2280
tcagcaaggt	aacgcaagca	aaaagcgacc	ttgaaaattc	cgttaaagat	gtgatcatca	2340
atcaaaagat	aacggataaa	gttgatgatc	tcaatcaagc	ggtatcagtg	gctaaagcaa	2400
cgggtgattt	cagtagggta	gggcaagcgt	tagccgatct	caaaaatttc	tcaaaggagc	2460
aattggctca	acaaactcaa	aaaaatgaaa	gtttcaatgt	tggaaaaaaa	tctgaaatat	2520
atcaatccgt	taagaatggt	gtgaacggaa	ccctagtcgg	taatgggtta	tctcaagcag	2580
aagccacaac	tctttctaaa	aacttttcgg	acatcaagaa	agagttgaat	gcaaaacttt	2640
ttggaaattt	caataacaat	aacaataatg	ggctcaaaaa	cagcacagaa	cccatttatg	2700
ctaaagttaa	taaaaagaaa	acaggacaag	tagctagccc	tgaagaaccc	atttatgctc	2760
aagttgctaa	aaaggtaaat	gcaaaaattg	accaactcaa	tcaagcagca	agtggtttcg	2820
gtggtgtagg	gcaagcagcg	ggcttccctt	tgaaaaggca	tgataaagtt	gatgatctca	2880
gtaaggtagg	gcgatcggtt	agccctgaac	ccatttatgc	tacaattgat	gatctcggcg	2940
gacctttccc	tttgaaaagg	catgataaag	ttgatgatct	cagtaaggta	gggcgatcgg	3000
ttagccctga	acccatttat	gctacaattg	atgatctcgg	cggacctttc	cctttgaaaa	3060
ggcatgataa	agttgatgat	ctcagtaagg	tagggctttc	aagggagcaa	caattgaaac	3120
agaagattga	caagttcgat	caagcggtat	cagaagctaa	agtaggttat	tttggcaatc	3180
tagagcaaac	gatagacaag	ctcaaagatt	ctgcaaaata	caataccatg	aatctatggg	3240

ctgaaagtgc	aaaaaagtg	cctgctagtt	tgtcagcgaa	attggacaat	tacgctacta	3300
acagccacac	acgcattaat	agcaatatcc	aaaatggagc	aatcaatgaa	aaagcgaccg	3360
gtatgctaac	gcaaaaaaac	cctgagtggc	tcaagctcgt	gaatgataag	atcgttgcac	3420
ataatgtggg	aagcgttcct	ttgtcagagt	atgataaaat	tggcttcaac	cagaagaata	3480
tgaaagatta	ttctgattcg	ttcaagtttt	ccaccaagtt	gaacaatgct	gtaaaagaca	3540
ttaagtctgg	ctttacgcaa	tttttagcca	atgcattttc	tacaggatat	tactgcttgg	3600
cgggggaaaa	tgcggagcat	ggaatcaaaa	atgttaatac	aaaaggtggt	ttccaaaaat	3660
cttaaaggat	taaggaatac	caaaaacgca	aaaaccgccc	cttgctaaaa	gcagggggtt	3720
ttttaa						3726

<210>9

<211> 1294

<212> PRT

5 <213> H. pylori

<220>

<221> CARACTERÍSTICA_MISC

<223> cepa H. pylori G27

<400> 9

Met Glu Ile Gln Gln Thr His Arg Lys Met Asn Arg Pro Leu Val Ser 1 5 10 15

Leu Val Leu Ala Gly Ala Leu Ile Ser Ala Ile Pro Gln Glu Ser His 20 25 30

Ala Ala Phe Phe Thr Thr Val Ile Ile Pro Ala Ile Val Gly Gly Ile

Ala Thr Gly Thr Ala Val Gly Thr Val Ser Gly Leu Leu Ser Trp Gly 50 55 60

Leu Lys Gln Ala Glu Glu Ala Asn Lys Asn Pro Asp Lys Pro Asp Lys 70 75 80

Val Trp Arg Ile Gln Ala Gly Lys Gly Phe Asn Glu Phe Pro Asn Lys 85 90 95

Glu Tyr Asp Leu Tyr Lys Ser Leu Leu Ser Ser Lys Ile Asp Gly Gly
100 105 110

Trp	Asp	Trp 115	Gly	Asn	Ala	Ala	Arg 120	His	Tyr	Trp	Val	Lys 125	Gly	Gly	Gln
Trp	Asn 130	Lys	Leu	Glu	Val	Asp 135	Met	Lys	Asp	Ala	Val 140	Gly	Thr	Tyr	Lys
Leu 145	Ser	Gly	Leu	Arg	Asn 150	Phe	Thr	Gly	Gly	Asp 155	Leu	Asp	Val	Asn	Met 160
Gln	Lys	Ala	Thr	Leu 165	Arg	Leu	Gly	Gln	Phe 170	Asn	Gly	Asn	Ser	Phe 175	Thr
Ser	Tyr	Lys	Asp 180	Ala	Ala	Asp	Arg	Thr 185	Thr	Arg	Val	Asn	Phe 190	Asn	Ala
Lys	Asn	Ile 195	Ser	Ile	Asp	Asn	Phe 200	Val	Glu	Ile	Asn	Asn 205	Arg	Val	Gly
Ser	Gly 210	Ala	Gly	Arg	Lys	Ala 215	Ser	Ser	Thr	Val	Leu 220	Thr	Leu	Gln	Ala
Ser 225	Glu	Gly	Ile	Thr	Ser 230	Asp	Lys	Asn	Ala	Glu 235	Ile	Ser	Leu	Tyr	Asp 240
Gly	Ala	Thr	Leu	Asn 245	Leu	Ala	Ser	Ser	Ser 250	Val	Lys	Leu	Met	Gly 255	Asn
Val	Trp	Met	Gly 260	Arg	Leu	Gln	Tyr	Val 265	Gly	Ala	Tyr	Leu	Ala 270	Pro	Ser
Tyr	Ser	Thr 275	Ile	Asn	Thr	Ser	Lys 280	Val	Thr	Gly	Glu	Val 285	Asn	Phe	Asn
His	Leu 290	Thr	Val	Gly	Asp	Lys 295	Asn	Ala	Ala	Gln	Ala 300	Gly	Ile	Ile	Ala
Ser 305	Asn	Lys	Thr	His	Ile 310	Gly	Thr	Leu	Asp	Leu 315	Trp	Gln	Ser	Ala	Gly 320
Leu	Asn	Ile	Ile	Ala 325	Pro	Pro	Glu	Gly	Gly 330	Tyr	Lys	Asp	Lys	Pro 335	Asn
Asn	Thr	Pro	Ser 340	Gln	Ser	Gly	Thr	Lys 345	Asn	Asp	Lys	Asn	Glu 350	Ser	Ala

Lys	Asn	Asp 355	Lys	Gln	Glu	Ser	Ser 360	Gln	Asn	Asn	Ser	Asn 365	Thr	Gln	Val
Ile	Asn 370	Pro	Pro	Asn	Ser	Thr 375	Gln	Lys	Thr	Glu	Ile 380	Gln	Pro	Thr	Gln
Val 385	Ile	Asp	Gly	Pro	Phe 390	Ala	Gly	Gly	Lys	Asp 395	Thr	Val	Val	Asn	Ile 400
Asn	Arg	Ile	Asn	Thr 405	Asn	Ala	Asp	Gly	Thr 410	Ile	Arg	Val	Gly	Gly 415	Phe
Lys	Ala	Ser	Leu 420	Thr	Thr	Asn	Ala	Ala 425	His	Leu	His	Ile	Gly 430	Lys	Gly
Gly	Val	Asn 435	Leu	Ser	Asn	Gln	Ala 440	Ser	Gly	Arg	Thr	Leu 445	Leu	Val	Glu
Asn	Leu 450	Thr	Gly	Asn	Ile	Thr 455	Val	Asp	Gly	Pro	Leu 460	Arg	Val	Asn	Asn
Gln 465	Val	Gly	Gly	Tyr	Ala 470	Leu	Ala	Gly	Ser	Ser 475	Ala	Asn	Phe	Glu	Phe 480
Lys	Ala	Gly	Val	Asp 485	Thr	Lys	Asn	Gly	Thr 490	Ala	Thr	Phe	Asn	Asn 495	Asp
Ile	Ser	Leu	Gly 500	Arg	Phe	Val	Asn	Leu 505	Lys	Val	Asp	Ala	His 510	Thr	Ala
Asn	Phe	Lys 515	Gly	Ile	Asp	Thr	Gly 520	Asn	Gly	Gly	Phe	Asn 525	Thr	Leu	Asp
Phe	Ser 530	Gly	Val	Thr	Asp	Lys 535	Val	Asn	Ile	Asn	Lys 540	Leu	Ile	Thr	Ala
Ser 545	Thr	Asn	Val	Ala	Val 550	Lys	Asn	Phe	Asn	Ile 555	Asn	Glu	Leu	Ile	Val 560
Lys	Thr	Asn	Gly	Ile 565	Ser	Val	Gly	Glu	Tyr 570	Thr	His	Phe	Ser	Glu 575	Asp
Ile	Gly	Ser	Gln	Ser	Arg	Ile	Asn	Thr	Val	Arg	Leu	Glu	Thr	Gly	Thr

			580					585					590		
Arg	Ser	Ile 595	Phe	Ser	Gly	Gly	Val 600	Lys	Phe	Lys	Ser	Gly 605	Glu	Lys	Leu
Val	Ile 610	Asp	Glu	Phe	Tyr	Tyr 615	Ser	Pro	Trp	Asn	Tyr 620	Phe	Asp	Ala	Arg
Asn 625	Val	Lys	Asn	Val	Glu 630	Ile	Thr	Arg	Lys	Phe 635	Ala	Ser	Ser	Thr	Pro 640
Glu	Asn	Pro	Trp	Gly 645	Thr	Ser	Lys	Leu	Met 650	Phe	Asn	Asn	Leu	Thr 655	Leu
Gly	Gln	Asn	Ala 660	Val	Met	Asp	Tyr	Ser 665	Gln	Phe	Ser	Asn	Leu 670	Thr	Ile
Gln	Gly	Asp 675	Phe	Ile	Asn	Asn	Gln 680	Gly	Thr	Ile	Asn	Tyr 685	Leu	Val	Arg
Gly	Gly 690	Lys	Val	Ala	Thr	Leu 695	Ser	Val	Gly	Asn	Ala 700	Ala	Ala	Met	Met
Phe 705	Asn	Asn	Asp	Ile	Asp 710	Ser	Ala	Thr	Gly	Phe 715	Tyr	Lys	Pro	Leu	Ile 720
Lys	Ile	Asn	Ser	Ala 725	Gln	Asp	Leu	Ile	Lys 730	Asn	Thr	Glu	His	Val 735	Leu
Leu	Lys	Ala	Lys 740	Ile	Ile	Gly	туr	Gly 745	Asn	Val	Ser	Thr	Gly 750	Thr	Asn
Ser	Ile	Ser 755	Asn	Val	Asn	Leu	Glu 760	Glu	Gln	Phe	Lys	Glu 765	Arg	Leu	Ala
Leu	Tyr 770	Asn	Asn	Asn	Asn	Arg 775	Met	Asp	Thr	Cys	Val 780	Val	Arg	Asn	Thr
Asp 785	Asp	Ile	Lys	Ala	Cys 790	Gly	Met	Ala	Ile	Gly 795	Asn	Gln	Ser	Met	Val 800
Asn	Asn	Pro	Asp	Asn 805	Tyr	Lys	Tyr	Leu	Ile 810	Gly	Lys	Ala	Trp	Lys 815	Asn

- Ile Gly Ile Ser Lys Thr Ala Asn Gly Ser Lys Ile Ser Val Tyr Tyr 820 825 830
- Leu Gly Asn Ser Thr Pro Thr Glu Asn Gly Gly Asn Thr Thr Asn Leu 835 840 845
- Pro Thr Asn Thr Thr Asn Asn Ala Arg Ser Ala Asn Tyr Ala Leu Val 850 855 860
- Lys Asn Ala Pro Phe Ala His Ser Ala Thr Pro Asn Leu Val Ala Ile 865 870 875 880
- Asn Gln His Asp Phe Gly Thr Ile Glu Ser Val Phe Glu Leu Ala Asn 885 890 895
- Arg Ser Lys Asp Ile Asp Thr Leu Tyr Thr His Ser Gly Val Gln Gly
 900 905 910
- Arg Asp Leu Leu Gln Thr Leu Leu Ile Asp Ser His Asp Ala Gly Tyr 915 920 925
- Ala Arg Gln Met Ile Asp Asn Thr Ser Thr Gly Glu Ile Thr Lys Gln 930 935 940
- Leu Asn Ala Ala Thr Asp Ala Leu Asn Asn Ile Ala Ser Leu Glu His 945 950 955 960
- Lys Thr Ser Gly Leu Gln Thr Leu Ser Leu Ser Asn Ala Met Ile Leu 965 970 975
- Asn Ser Arg Leu Val Asn Leu Ser Arg Lys His Thr Asn His Ile Asp 980 985 990
- Ser Phe Ala Gln Arg Leu Gln Ala Leu Lys Gly Gln Arg Phe Ala Ser 995 1000 1005
- Leu Glu Ser Ala Ala Glu Val Leu Tyr Gln Phe Ala Pro Lys Tyr 1010 1015 1020
- Glu Lys Pro Thr Asn Val Trp Ala Asn Ala Ile Gly Gly Ala Ser 1025 1030 1035
- Leu Asn Asn Gly Gly Asn Ala Ser Leu Tyr Gly Thr Ser Ala Gly 1040 1045 1050

Val	Asp 1055		Tyr	Leu	Asn	Gly 1060		Val	Glu		Ile 1065		Gly	Gly
Phe	Gly 1070		Tyr	Gly	Tyr	Ser 1075		Phe	Ser	Asn	Arg 1080		Asn	Ser
Leu	Asn 1085		Gly	Ala		Asn 1090		Asn	Phe		Val 1095		Ser	Arg
Ile	Phe 1100		Asn	Gln	His	Glu 1105	Phe	Asp	Phe	Glu	Ala 1110		Gly	Ala
Leu	Gly 1115		Asp	Gln		Ser 1120		Asn	Phe	Lys	Ser 1125		Leu	Leu
Gln	Asp 1130		Asn	Gln	Ser	Tyr 1135	His	Tyr	Leu	Ala	Tyr 1140		Ala	Ala
Thr	Arg 1145		Ser	Tyr	_	Tyr 1150	_	Phe	Ala	Phe	Phe 1155		Asn	Ala
Leu	Val 1160		Lys	Pro	Ser	Val 1165	Gly	Val	Ser	Tyr	Asn 1170	His	Leu	Gly
Ser	Thr 1175		Phe	Lys		Ser 1180		Asn	Gln		Ala 1185		Lys	Asn
Gly	Ser 1190	Ser	Ser	Gln		Leu 1195	Phe	Asn	Ala		Ala 1200	Asn	Val	Glu
Ala	Arg 1205		Tyr	Tyr		Asp 1210	Thr	Ser	Tyr	Phe	Tyr 1215	Met	Asn	Ala
Gly	Val 1220	Leu	Gln	Glu	Phe	Ala 1225	Arg	Phe	Gly	Ser	Asn 1230		Ala	Ala
Ser	Leu 1235	Asn	Thr	Phe	Lys	Val 1240	Asn	Thr	Ala	Arg	Asn 1245	Pro	Leu	Asn
Thr	His 1250	Ala	Arg	Val	Met	Met 1255	Gly	Gly	Glu	Leu	Gln 1260	Leu	Ala	Lys
Glu	Val 1265	Phe	Leu	Asn	Leu	Gly 1270	Val	Val	Tyr	Leu	His 1275	Asn	Leu	Ile

Ser Asn Ile Gly His Phe Ala Ser Asn Leu Gly Met Arg Tyr Ser 1280 1285 1290

Phe

<210> 10

<211> 3885

<212> ADN

5 <213> H. pylori

<220>

<221> CARACTERÍSTICA_MISC

<223> cepa H. pylori G27

<400> 10

atggaaatac	aacaaacaca	ccgcaaaatg	aatcgccctt	tagtttctct	cgttttagca	60
ggagcgttaa	ttagcgccat	accgcaagaa	agtcatgccg	cctttttcac	gaccgtgatc	120
attccagcca	ttgttggggg	tatcgccaca	ggcaccgctg	taggaacggt	ctcagggctt	180
cttagctggg	ggctcaaaca	agccgaagaa	gcgaataaaa	acccggacaa	acccgataaa	240
gtttggcgca	ttcaagcagg	aaaaggcttt	aatgaattcc	ctaacaagga	atacgactta	300
tacaaatccc	ttttatccag	taagattgat	ggaggttggg	actgggggaa	cgccgctagg	360
cattattggg	tcaaaggcgg	gcaatggaac	aagcttgaag	tggatatgaa	agacgctgta	420
gggacttata	aactatcagg	gcttagaaac	tttactggtg	gggatttaga	tgtcaatatg	480
caaaaagcca	ctttacgctt	gggccaattc	aatggcaatt	ctttcacaag	ctataaggat	540
gcggctgatc	gcaccacgag	ggtgaatttc	aacgctaaaa	atatctcaat	tgataatttt	600
gtagaaatca	ataatcgtgt	gggttctgga	gccgggagga	aagccagctc	tacggttttg	660
actttgcaag	cttcagaagg	gatcactagc	gataaaaacg	ctgaaatttc	tctttatgat	720
ggcgccacgc	tcaatttggc	ttcaagcagc	gttaaattaa	tgggtaatgt	gtggatgggc	780
cgtttgcaat	acgtgggagc	gtatttggcc	ccttcataca	gcacgataaa	cacttcaaaa	840
gtaacagggg	aagtgaattt	taaccacctc	actgttggcg	ataaaaacgc	cgctcaagcg	900
ggcattatcg	ctagcaacaa	gactcatatt	ggcacactgg	atttgtggca	aagcgccggg	960
ttaaacatta	tegeteetee	cgaaggtggc	tataaggata	aacctaataa	taccccttct	1020
caaagtggca	ctaaaaacga	caaaaatgaa	agcgctaaaa	acgacaaaca	agagagcagt	1080
caaaataata	gtaacactca	ggtcattaac	ccacccaata	gcacgcaaaa	aacagaaatt	1140

10

caacccacgc	aagtcattga	tgggcctttt	gcgggcggca	aagacacggt	tgtcaatatc	1200
aaccgcatca	acactaacgc	tgatggcacg	attagagtgg	gagggtttaa	agcttctctt	1260
accaccaatg	cggctcattt	gcatatcggc	aaaggcggtg	tcaatctgtc	caatcaagcg	1320
agcgggcgca	cccttttagt	ggaaaatcta	accgggaata	tcaccgttga	tgggccttta	1380
agagtgaata	atcaagtggg	tggctatgct	ttggcaggat	caagcgcgaa	ttttgaattt	1440
aaggctggtg	tggatactaa	aaacggcaca	gccactttca	ataacgatat	tagcctggga	1500
agatttgtga	atttaaaggt	ggatgctcat	acagctaatt	ttaaaggtat	tgatacgggt	1560
aatggtggtt	tcaacacctt	agattttagt	ggtgttacag	acaaagtcaa	tatcaacaag	1620
ctcatcacgg	cttccactaa	tgtggccgtt	aaaaacttca	acattaatga	attgattgtt	1680
aaaaccaatg	ggataagtgt	gggggaatac	actcatttta	gcgaagatat	aggcagtcaa	1740
tegegeatea	ataccgtgcg	tttggaaact	ggcactaggt	caatcttttc	tgggggtgtc	1800
aaatttaaaa	gcggcgaaaa	attggttata	gatgagtttt	actatagccc	ttggaattat	1860
tttgacgcta	ggaatgttaa	aaatgttgaa	atcaccagaa	aattcgcttc	ttcaacccca	1920
gaaaaccctt	ggggcacatc	aaaacttatg	tttaataatc	taaccctggg	tcaaaatgcg	1980
gtcatggact	atagtcaatt	ttcaaattta	accatccaag	gggattttat	caacaatcaa	2040
ggcactatca	actatctggt	ccgaggcggg	aaagtggcaa	ccttaagcgt	aggcaatgca	2100
gcagctatga	tgtttaataa	tgatatagac	agcgcgaccg	gattttacaa	accgctcatc	2160
aagattaaca	gtgctcaaga	tctcattaaa	aatacagagc	atgttttatt	gaaagcgaaa	2220
atcattggtt	atggtaatgt	ttctacaggt	accaatagca	ttagtaatgt	taatctagaa	2280
gagcaattca	aagagcgcct	agccctttat	aacaacaata	accgcatgga	tacttgtgtg	2340
gtgcgaaata	ctgatgacat	taaagcatgc	ggtatggcta	tcggcaatca	aagcatggtg	2400
aataaccctg	acaattacaa	gtatcttatc	ggtaaggcat	ggaaaaatat	aggcatcagt	2460
aaaacggcta	acggctctaa	aatttcggtg	tattatttag	gcaattctac	gcctactgag	2520
aatggtggca	ataccaccaa	cttacccacc	aacaccacta	ataatgcgcg	ttctgctaac	2580
tacgccctcg	tgaagaacgc	tecttteget	cacagtgcca	ctcctaattt	agtcgctatc	2640
aatcagcatg	attttggcac	tattgaaagc	gtgtttgaat	tggctaaccg	ctctaaagat	2700
attgacacgc	tttatactca	ttcaggcgtg	caaggtaggg	atctcttaca	aaccttattg	2760
attgatagcc	atgatgcggg	ttatgccaga	caaatgattg	ataacacaag	caccggtgaa	2820
atcaccaaac	aattgaatgc	ggccactgac	gctttaaaca	acatagccag	tttagagcat	2880
aaaaccagcg	gcttgcaaac	tttgagcttg	agtaatgcga	tgattttaaa	ttctcgttta	2940

```
qtcaatctct ccaqqaaqca caccaaccat attgactcgt tcgctcaacg cttacaagct
                                                                     3000
                                                                    3060
ttaaaaggcc aaagattcgc ttctttagag agcgcggcag aagtgttgta tcaatttgcc
                                                                     3120
cctaaatatq aaaaacctac caatqtttgg gctaacgcta ttgggggagc gagcttgaat
aatggcggca acgcttcatt gtatggcaca agtgccggtg tagacgctta ccttaatggg
                                                                     3180
                                                                     3240
gaagtggaag ccattgtggg cgggtttgga agctatggtt atagctcttt tagtaatcgt
gegaactete ttaactetgg ggetaataac getaattttg gegtgtatag cegtattttt
                                                                     3300
                                                                    3360
gctaaccagc atgaatttga ttttgaagct caaggggggc taggggagtga tcaatcaagc
ttgaatttca aaagtgctct actgcaagat ttgaatcaaa gctatcatta tttagcctat
                                                                    3420
agegetgeaa caagagegag etatggttat gaetttgegt titteaggaa egetttagtg
                                                                     3480
ttaaaaccaa gcgtgggcgt gagctataac catttaggtt caaccaactt taaaagcagc
                                                                    3540
agcaatcaag tggctttgaa aaatggctct agcagtcagc atctattcaa cgctaacgct
                                                                    3600
aatgtggaag cgcgctatta ttatggggac acttcatact tctatatgaa cgctggagtt
                                                                    3660
ttacaagagt tcgctcgctt tggatctaat aacgccgcgt ctttaaacac ctttaaagtg
                                                                    3720
aataccqctc qcaacccttt aaatacccat gccagagtga tgatgggtgg ggaattgcaa
                                                                    3780
ttagctaaag aagtgttttt gaatttgggc gttgtttatt tgcacaattt gatttccaat
                                                                    3840
                                                                    3885
ataggecatt tegettecaa tttaggaatg aggtatagtt tetaa
```

<210> 11

<211> 546

<212> PRT

5 <213> H. pylori

<220>

<221> CARACTERÍSTICA_MISC

<223> cepa H. pylori G27

<400> 11

Met Ala Lys Glu Ile Lys Phe Ser Asp Ser Ala Arg Asn Leu Leu Phe 1 5 10 15

Glu Gly Val Arg Gln Leu His Asp Ala Val Lys Val Thr Met Gly Pro 20 25 30

Arg Gly Arg Asn Val Leu Ile Gln Lys Ser Tyr Gly Ala Pro Ser Ile 35 40 45

Thr Lys Asp Gly Val Ser Val Ala Lys Glu Ile Glu Leu Ser Cys Pro

	50					55					60				
Val 65	Ala	Asn	Met	Gly	Ala 70	Gln	Leu	Val	Lys	Glu 75	Val	Ala	Ser	Lys	Thi 80
Ala	Asp	Ala	Ala	Gly 85	Asp	Gly	Thr	Thr	Thr 90	Ala	Thr	Val	Leu	Ala 95	Туз
Ser	Ile	Phe	Lys 100	Glu	Gly	Leu	Arg	Asn 105	Ile	Thr	Ala	Gly	Ala 110	Asn	Pro
Ile	Glu	Val 115	Lys	Arg	Gly	Met	Asp 120	Lys	Ala	Ala	Glu	Ala 125	Ile	Ile	Asr
Glu	Leu 130	Lys	Lys	Ala	Ser	Lys 135	Lys	Val	Gly	Gly	Lys 140	Glu	Glu	Ile	Thr
Gln 145	Val	Ala	Thr	Ile	Ser 150	Ala	Asn	Ser	Asp	His 155	Asn	Ile	Gly	Lys	Leu 160
Ile	Ala	Asp	Ala	Met 165	Glu	Lys	Val	Gly	Lys 170	Asp	Gly	Val	Ile	Thr 175	Val
Glu	Glu	Ala	Lys 180	Gly	Ile	Glu	Asp	Glu 185	Leu	Asp	Val	Val	Glu 190	Gly	Met
Gln	Phe	Asp 195	Arg	Gly	Tyr	Leu	Ser 200	Pro	Tyr	Phe	Val	Thr 205	Asn	Ala	Glu
Lys	Met 210	Thr	Ala	Gln	Leu	Asp 215	Asn	Ala	Tyr	Ile	Leu 220	Leu	Thr	Asp	Lys
Lys 225	Ile	Ser	Ser	Met	Lys 230	Asp	Ile	Leu	Pro	Leu 235	Leu	Glu	Lys	Thr	Met 240
Lys	Glu	Gly	Lys	Pro 245	Leu	Leu	Ile	Ile	Ala 250	Glu	Asp	Ile	Glu	Gly 255	Glu
Ala	Leu	Thr	Thr 260	Leu	Val	Val	Asn	Lys 265	Leu	Arg	Gly	Val	Leu 270	Asn	Ile
Ala	Ala	Val 275	Lys	Ala	Pro	Gly	Phe 280	Gly	Asp	Arg	Arg	Lys 285	Glu	Met	Leu

Lys	Asp 290	Ile	Ala	Val	Leu	Thr 295	Gly	Gly	Gln	Val	Ile 300	Ser	Glu	Glu	Leu
Gly 305	Leu	Ser	Leu	Glu	Asn 310	Ala	Glu	Val	Glu	Phe 315	Leu	Gly	Lys	Ala	Gly 320
Arg	Ile	Val	Ile	Asp 325		Asp	Asn	Thr	Thr 330	Ile	Val	Asp	Gly	Lys 335	Gly
His	Ser	Asp	Asp 340	Val	Lys	Asp	Arg	Val 345		Gln	Ile	Lys	Thr 350	Gln	Ile
Ala	Ser	Thr 355	Thr	Ser	Asp	Tyr	360	Lys	Glu	Lys	Leu	Gln 365	Glu	Arg	Leu
Ala	Lys 370	Leu	Ser	Gly	Gly	Val 375	Ala	Val	Ile	Lys	Val 380	Gly	Ala	Ala	Ser
Glu 385	Val	Glu	Met	Lys	Glu 390	Lys	Lys	Asp	Arg	Val 395	Asp	Asp	Ala	Leu	Ser 400
Ala	Thr	Lys	Ala	Ala 405	Val	Glu	Glu	Gly	Ile 410	Val	Ile	Gly	Gly	Gly 415	Ala
Ala	Leu	Ile	Arg 420	Ala	Ala	Gln	Lys	Val 425	His	Leu	Asn	Leu	His 430	Asp	Asp
Glu	Lys	Val 435	Gly	Tyr	Glu	Ile	Ile 440	Met	Arg	Ala	Ile	Lys 445	Ala	Pro	Leu
Ala	Gln 450	Ile	Ala	Ile	Asn	Ala 455	Gly	Tyr	Asp	Gly	Gly 460	Val	Val	Val	Asn
Glu 465	Val	Glu	Lys	His	Glu 470	Gly	His	Phe	Gly	Phe 475	Asn	Ala	Ser	Asn	Gly 480
Lys	Tyr	Val	Asp	Met 485	Phe	Lys	Glu	Gly	Ile 490	Ile	Asp	Pro	Leu	Lys 495	Val
Glu	Arg	Ile	Ala 500	Leu	Gln	Asn	Ala	Val 505	Ser	Val	Ser	Ser	Leu 510	Leu	Leu
Thr	Thr	Glu 515	Ala	Thr	Val	His	Glu 520	Ile	Lys	Glu	Glu	Lys 525	Ala	Ala	Pro

Ala Met Pro Asp Met Gly Gly Met Gly Gly Met Gly Gly Met Gly Gly 530 540

Met Met 545

<210> 12

<211> 1641

<212> ADN

5 <213> H. pylori

<220>

<221> CARACTERÍSTICA MISC

<223> cepa H. pylori G27

<400> 12

atggcaaaag aaatcaaatt ttcagatagt gcaagaaacc ttttatttga aggcgtgaga 60 caactccatg atgctgtcaa agtaaccatg gggccaagag gcaggaatgt gttgattcaa 120 180 aaaagetatg gegeteeaag cateaceaaa gatggegtga gegtggetaa agagattgaa 240 ttaagttgcc cggtggctaa catgggcgct caactcgtta aagaggtagc gagcaaaacc gctgatgctg ccggcgatgg cacgaccaca gcgaccgtgc tggcttatag catttttaaa 300 gaaggtttga ggaatatcac ggctggggct aaccctattg aagtgaaacg aggcatggat 360 420 aaagccgctg aagcgatcat caatgagctt aaaaaagcga gcaaaaaagt aggcggtaaa gaagaaatca cccaagtagc gaccatttct gccaactccg atcacaatat cgggaaactc 480 540 atogotgaog otatggaaaa agtgggtaaa gatggogtga toactgttga agaggotaag 600 ggcattgaag acgaattaga tgtcgtagaa ggcatgcaat ttgatagagg ctatctctcc ccttattttg taacgaacgc tgagaaaatg accgctcaat tggataacgc ttacatcctt 660 ttaacggata aaaaaatctc tagcatgaaa gacatcctcc cgctattgga aaaaaccatg 720 aaagagggca aaccgctttt aatcatcgct gaagacattg agggcgaagc tttaacgact 780 ctaqtqqtqa ataaattaag aggcgtgttg aatatcgcag cggttaaagc tccaggcttt 840 900 ggggacagga gaaaagaaat gctcaaagac atcgctgttt taaccggcgg tcaagtcatt 960 agcgaagaat tgggcttgag tctagaaaac gctgaagtgg agtttttagg caaagccgga 1020 aggattgtga ttgacaaaga caacaccacg atcgtagatg gcaaaggcca tagcgatgat gttaaagaca gagtegegea aateaaaace caaattgeaa geaegacaag egattatgae 1080 1140 aaaqaaaaat tqcaaqaaag gttggccaaa ctctctggcg gtgtggctgt gattaaagtg 1200 ggcgctgcga gtgaagtgga aatgaaagag aaaaaagacc gggtggatga cgcgttgagc

gcgactaaag	cggcggttga	agaaggcatt	gtgattggcg	gcggtgcggc	tcttattcgc	1260
gcggctcaaa	aagtgcattt	gaatttacac	gatgatgaaa	aagtgggcta	tgaaatcatc	1320
atgcgcgcca	ttaaagcccc	attagctcaa	atcgctatca	atgccggtta	tgatggcggt	1380
gtggtcgtga	atgaagtaga	aaaacacgaa	gggcattttg	gttttaacgc	tagcaatggc	1440
aagtatgtgg	acatgtttaa	agaaggcatt	attgacccct	taaaagtaga	aaggatcgct	1500
ttgcaaaatg	cggtttcggt	ttcaagcctg	cttttaacca	cagaagccac	cgtgcatgaa	1560
atcaaagaag	aaaaagcggc	cccggcaatg	cctgatatgg	gtggcatggg	cggtatggga	1620
ggcatgggcg	gcatgatgta	a				1641

<210> 13

<211> 265

5 <212> PRT

<213> H. pylori

<220>

<221> CARACTERÍSTICA_MISC

<223> H. pylori 26695

10 <400> 13

Met	Ile	Leu	Arg	Ala	Ser	Val	Leu	Ser	Ala	Leu	Leu	Leu	Val	Gly	Leu
1				5					10					15	

- Gly Ala Ala Pro Lys His Ser Val Ser Ala Asn Asp Lys Arg Met Gln 20 25 30
- Asp Asn Leu Val Ser Val Ile Glu Lys Gln Thr Asn Lys Lys Val Arg 35 40 45
- Ile Leu Glu Ile Lys Pro Leu Lys Ser Ser Gln Asp Leu Lys Met Val 50 55 60
- Val Ile Glu Asp Pro Asp Thr Lys Tyr Asn Ile Pro Leu Val Val Ser 65 70 75 80
- Lys Asp Gly Asn Leu Ile Ile Gly Leu Ser Asn Ile Phe Phe Ser Asn 85 90 95
- Lys Ser Asp Asp Val Gln Leu Val Ala Glu Thr Asn Gln Lys Val Gln
 100 105 110

Ala Leu Asn Ala Thr Gln Gln Asn Ser Ala Lys Leu Asn Ala Ile Phe

125 115 120 Asn Glu Ile Pro Ala Asp Tyr Ala Ile Glu Leu Pro Ser Thr Asn Ala Ala Asn Lys Asp Lys Ile Leu Tyr Ile Val Ser Asp Pro Met Cys Pro His Cys Gln Lys Glu Leu Thr Lys Leu Arg Asp His Leu Lys Glu Asn 170 165 Thr Val Arg Met Val Val Val Gly Trp Leu Gly Val Asn Ser Ala Lys Lys Ala Ala Leu Ile Gln Glu Glu Met Ala Lys Ala Arg Ala Arg Gly Ala Ser Val Glu Asp Lys Ile Ser Ile Leu Glu Lys Ile Tyr Ser Thr 215 Gln Tyr Asp Ile Asn Ala Gln Lys Glu Pro Glu Asp Leu Arg Thr Lys 230 235 Val Glu Asn Thr Thr Lys Lys Ile Phe Glu Ser Gly Val Ile Lys Gly 250 255 Val Pro Phe Leu Tyr His Tyr Lys Ala 260 265 <212> ADN <213> H. pylori <221> CARACTERÍSTICA_MISC <223> H. pylori 26695

<210> 14

<211> 798

<220>

<400> 14

5

atgatattaa	gagcgagtgt	gttgagcgcg	ttacttcttg	taggcttagg	ggcagcccct	60
aaacattcag	tttcagctaa	tgacaaacgg	atgcaggata	atttagtgag	cgtgattgaa	120
aaacagacca	ataaaaaggt	gcgtatttta	gaaatcaaac	ctttaaaatc	tagccaggat	180
ttaaaaatgg	tcgttattga	agatccggac	actaaataca	atatcccgct	tgtggtgagt	240
aaggatggta	atttaatcat	agggettage	aacatattct	ttagcaataa	aagcgatgat	300
gtgcaattag	ttgcagaaac	caatcaaaaa	gttcaagctc	ttaacgccac	ccaacaaaat	360
agcgcgaaat	tgaacgctat	ttttaatgaa	ataccggctg	attatgcgat	agagttgccc	420
tctactaacg	ctgcaaataa	ggataaaatc	ctttatattg	tctctgatcc	catgtgccca	480
cattgccaaa	aagagctcac	taaacttagg	gatcatttaa	aagaaaacac	cgtgagaatg	540
gtcgtggtgg	ggtggcttgg	ggtcaattca	gctaaaaaag	cggctttaat	ccaagaagaa	600
atggcgaaag	ctagggctag	gggagcgagc	gtggaagata	agatctctat	tcttgaaaag	660
atttattcca	cccaatacga	tattaacgct	caaaaagagc	ctgaagattt	acgcactaaa	720
gtggaaaata	ccactaaaaa	gatttttgaa	tctggcgtga	ttaagggtgt	gcctttctta	780
taccattata	aggcatga					798

<210> 15

<211> 325

<212> PRT

5 <213> H. pylori

<220>

<221> CARACTERÍSTICA_MISC

<223> H. pylori J99

<400> 15

Met	Pro	Thr	Ile	Asp	Phe	Thr	Phe	Cys	Glu	Ile	Asn	Pro	Lys	Lys	Gly
1				5					10					15	

- Phe Gly Gly Ala Asn Gly Asn Lys Ile Ser Leu Phe Tyr Asn Asn Glu 20 25 30
- Leu Tyr Met Val Lys Phe Pro Pro Lys Pro Ser Thr His Lys Glu Met 35 40 45
- Ser Tyr Thr Asn Gly Cys Phe Ser Glu Tyr Val Ala Cys His Ile Val 50 55 60
- Asn Ser Leu Gly Leu Lys Val Gln Glu Thr Leu Leu Gly Thr Tyr Lys 70 75 80
- Asn Lys Ile Val Val Ala Cys Lys Asp Phe Thr Thr His Gln Tyr Glu 85 90 95
- Leu Val Asp Phe Leu Ser Leu Lys Asn Thr Met Ile Glu Leu Glu Lys
 100 105 110

Ser	Gly	Lys 115	Asp	Thr	Asn	Leu	Asn 120	Asp	Val	Leu	Tyr	Ala 125	Ile	Asp	As
Gln	His 130	Phe	Ile	Glu	Pro	Lys 135	Val	Leu	Lys	Cys	Phe 140	Phe	Trp	Asp	Ме
Phe 145	Val	Ala	Asp	Thr	Leu 150	Leu	Gly	Asn	Phe	Asp 155	Arg	His	Asn	Gly	Ası 16
Trp	Gly	Phe	Leu	Arg 165	Ala	Ser	Asn	Ser	Lys 170	Glu	Tyr	Gln	Ile	Ala 175	Pro
Ile	Phe	Asp	Суs 180	Gly	Ser	Сув	Leu	Tyr 185	Pro	Gln	Ala	Asp	Asp 190	Val	Va.
Сув	Gln	Lys 195	Val	Leu	Ser	Asn	Ile 200	Asp	Glu	Leu	Asn	Ala 205	Arg	Ile	Туз
Asn	Phe 210	Pro	Gln	Ser	Ile	Leu 215	Lys	Asp	Asp	Asn	Asp 220	Lys	Lys	Ile	Ası
Tyr 225	Tyr	Asp	Phe	Leu	Thr 230	Gln	Thr	Asn	Asn	Lys 235	Asp	Сув	Leu	Asp	Ala 240
Leu	Leu	Arg	Ile	Tyr 245	Pro	Arg	Ile	Asp	Met 250	Asn	Lys	Ile	His	Ser 255	Ile
Ile	Asp	Asn	Thr 260	Pro	Phe	Met	Ser	Glu 265	Ile	His	Lys	Glu	Phe 270	Leu	His
Thr	Met	Leu 275	Asp	Glu	Arg	Lys	Ser 280	Lys	Ile	Ile	Asp	Val 285	Ala	His	Thr
Arg	Ala 290	Ile	Glu	Leu	Ser	Leu 295	Gln	His	Lys	Gln	Ala 300	His	Ser	Asn	Pro
Tyr 305	Asp	Asn	Ala	Asp	Asp 310	Leu	Asp	Asn	Ser	Asn 315	Glu	Tyr	Thr	Pro	Thr 320
Pro	Lys	Arg	Arg	Arg 325											

<210> 16

<211> 978

<212> ADN

5 <213> H. pylori

<220>

<221> CARACTERÍSTICA MISC

<223> H. pylori J99

<400> 16

atgccaacca ttgattttac tttttgtgag attaacccta aaaaaggttt tgggggagca 60 aatggaaata aaattagett attttataat aatgaaetet acatggteaa atteeeeeet 120 aagoottota cacataaaga aatgtootat accaatggtt gttttagtga atatgtagca 180 tgtcatatag tcaatagctt aggcttaaag gttcaagaaa cattgctagg cacttataaa 240 aataaaatcg tggttgcttg taaagatttt accacccatc aatacgagct tgtagatttt 300 ctaagtctaa aaaatactat gattgaatta gaaaaatcag gcaaagacac taatttgaat 360 gatgtgcttt atgccataga taaccagcat tttattgagc caaaagtttt aaaatgtttc 420 ttttgggata tgtttgtagc agatacattg ctaggtaatt ttgataggca taatggtaat 480 tgggggttct taagagcctc aaattcaaaa qaatatcaaa tagctcccat ttttgattgt 540 ggctcttgtc tataccccca agctgatgat gtggtatgcc aaaaagtttt aagtaatatt 600 gatgaactca atgcaaggat ttataatttc ccccaatcta tcttaaaaga tgacaacgat 660 aaaaaaatta actactatga tttcttaact caaaccaata ataaagattg ccttgatgca 720 ctacttagga tatacccacg catagatatg aataaaatcc attcaattat tgataacaca 780 ccctttatga gcgaaataca caaagaattt ttacatacaa tgcttgatga aagaaaatca 840 aagattatag atgtagcaca cactagagct attgagttat ccttacaaca caaacaagct 900 cacteaaace ettatgacaa egeagatgat ttagacaatt ecaatgaata cacceccaca 960 cctaagcgta gacgataa 978

5

<210> 17

<211> 476

<212> PRT

<213> H. pylori

10 <220>

<221> CARACTERÍSTICA_MISC

<223> cepa H. pylori G27

<400> 17

Met Met Lys Lys Thr Leu Phe Ile Ser Leu Ala Leu Ala Leu Ser Leu 1 5 10 15

Asn	Ala	Gly	Asn 20	Ile	Gln	Ile	Gln	Asn 25	Met	Pro	Lys	Val	Lys 30	Glu	Arg
Val	Ser	Val 35	Pro	Ser	Lys	Asp	Asp 40	Thr	Ile	Tyr	Ser	Tyr 45	His	Asp	Ser
Ile	Lys 50	Asp	Ser	Ile	Lys	Ala 55	Val	Val	Asn	Ile	Ser 60	Thr	Glu	Lys	Lys
Ile 65	Lys	Asn	Asn	Phe	Ile 70	Gly	Gly	Gly	Val	Phe 75	Asn	Asp	Pro	Phe	Phe 80
Gln	Gln	Phe	Phe	Gly 85	Asp	Leu	Gly	Gly	Met 90	Ile	Pro	Lys	Glu	Arg 95	Met
Glu	Arg	Ala	Leu 100	Gly	Ser	Gly	Val	Ile 105	Ile	Ser	Lys	Asp	Gly 110	Tyr	Ile
Val	Thr	Asn 115	Asn	His	Val	Ile	Asp 120	Gly	Ala	Asp	Lys	Ile 125	Lys	Val	Thr
Ile	Pro 130	Gly	Ser	Asn	Lys	Glu 135	Tyr	Ser	Ala	Thr	Leu 140	Val	Gly	Thr	Asp
Ser 145	Glu	Ser	Asp	Leu	Ala 150	Val	Ile	Arg	Ile	Thr 155	Lys	qaA	Asn	Leu	Pro 160
Thr	Ile	Lys	Phe	Ser 165	Asp	Ser	Asn	Asp	Ile 170	Ser	Val	Gly	Asp	Leu 175	Val
Phe	Ala	Ile	Gly 180	Asn	Pro	Phe	Gly	Val 185	Gly	Glu	Ser	Val	Thr 190	Gln	Gly
Ile	Val	Ser 195	Ala	Leu	Asn	Lys	Ser 200	Gly	Ile	Gly	Ile	Asn 205	Ser	Tyr	Glu
Asn	Phe 210	Ile	Gln	Thr	Asp	Ala 215	Ser	Ile	Asn	Pro	Gly 220	Asn	Ser	Gly	Gly
Ala 225	Leu	Ile	Asp	Ser	Arg 230	Gly	Gly	Leu	Val	Gly 235	Ile	Asn	Thr	Ala	Ile 240
Ile	Ser	Lys	Thr	Gly	Gly	Asn	His	Gly	Ile	Gly	Phe	Ala	Ile	Pro	Ser

Asn	Met	Val	Lys 260	Asp	Ile	Val	Thr	Gln 265	Leu	Ile	Lys	Thr	Gly 270	Lys	Ile

Glu Arg Gly Tyr Leu Gly Val Gly Leu Gln Asp Leu Ser Gly Asp Leu 275 280 285

Gln Asn Ser Tyr Asp Asn Lys Glu Gly Ala Val Val Ile Ser Val Glu 290 295 300

Lys Asp Ser Pro Ala Lys Lys Val Gly Ile Leu Val Trp Asp Leu Ile 305 310 315 320

Thr Glu Val Asn Gly Lys Lys Val Lys Asn Thr Asn Glu Leu Arg Asn 325 330 335

Leu Ile Gly Ser Met Leu Pro Asn Gln Arg Val Thr Leu Lys Val Ile 340 345 350

Arg Asp Lys Lys Glu Arg Thr Phe Thr Leu Thr Leu Ala Glu Arg Lys 355 360 365

Asn Pro Asn Lys Lys Glu Thr Ile Ser Ala Gln Asn Gly Ala Gln Gly 370 375 380

Gln Leu Asn Gly Leu Gln Val Glu Asp Leu Thr Gln Lys Thr Lys Arg 385 390 395 400

Ser Met Arg Leu Ser Asp Asp Val Gln Gly Val Leu Val Ser Gln Val 405 410 415

Asn Glu Asn Ser Pro Ala Glu Gln Ala Gly Phe Arg Gln Gly Asn Ile 420 425 430

Ile Thr Lys Ile Glu Glu Ile Glu Val Lys Ser Val Ala Asp Phe Asn 435 440 445

His Ala Leu Glu Lys Tyr Lys Gly Lys Pro Lys Arg Phe Leu Val Leu 450 455 460

Asp Leu Asn Gln Gly Tyr Arg Ile Ile Leu Val Lys 465 470 475

<210> 18

<211> 1431

<212> ADN

5 <213> H. pylori

<220>

<221> CARACTERÍSTICA_MISC

<223> H. pylori G27

<400> 18

atgatgaaaa	aaaccctttt	tatctctttg	gctttagcgt	taagcttgaa	tgcgggcaat	60
atccaaatcc	aaaacatgcc	caaagttaaa	gagcgagtga	gtgtcccctc	taaagacgat	120
acgatctatt	cttaccacga	ttctattaag	gattcgatta	aagcggtggt	gaatatctct	180
actgaaaaga	agattaaaaa	caattttata	ggtggcggtg	tgtttaatga	ccccttttc	240
caacaatttt	ttggggattt	gggcggcatg	atccctaaag	aaagaatgga	aagggcttta	300
ggcagcggcg	taatcatttc	taaagatggc	tatattgtaa	ctaacaacca	tgtgattgat	360
ggtgcggata	agattaaagt	taccattcca	gggagcaata	aagagtattc	cgctacttta	420
gtaggcaccg	attctgaaag	cgatttagcc	gtgattcgca	tcactaaaga	caatctgccc	480
accatcaaat	tctctgattc	taacgatatt	tcagtgggcg	atttggtttt	tgcgattggt	540
aacccttttg	gcgtgggtga	aagcgttact	caaggcattg	tttcagcgct	caataaaagc	600
gggattggga	tcaacagcta	tgaaaatttc	attcaaacag	acgcttccat	caatcctgga	660
aattccggcg	gcgctttaat	tgatagccgt	ggagggttag	tggggatcaa	taccgccatt	720
atctctaaaa	ccgggggcaa	ccacggcatt	ggctttgcca	tcccttctaa	catggttaaa	780
gatattgtaa	cccaactcat	caaaaccggt	aagattgaaa	gaggttactt	gggcgtgggc	840
ttgcaagatt	tgagcggcga	tttgcaaaat	tcttatgaca	ataaagaagg	ggcggtagtc	900
attagcgtag	aaaaagactc	tccggctaaa	aaagtaggga	ttttggtgtg	ggatttgatc	960
actgaagtca	atgggaaaaa	ggttaaaaac	acgaatgagt	taagaaatct	aatcggctcc	1020
atgetaceca	atcaaagagt	aaccttaaaa	gtcattagag	acaaaaaaga	acgcactttc	1080
acceteacte	ttgctgaaag	gaaaaaccct	aacaaaaaag	aaaccatttc	tgctcaaaac	1140
ggcgcgcaag	gccaattgaa	cgggcttcaa	gtagaagatt	taacccaaaa	aaccaaaagg	1200
tctatgcgtt	tgagcgatga	tgttcaaggg	gttttagtct	ctcaagtgaa	tgaaaattcc	1260
ccagcagagc	aagctggctt	taggcaaggc	aatatcatca	caaaaattga	agagattgaa	1320
gtgaaaagcg	ttgcggattt	taaccatgct	ttagaaaagt	ataaaggcaa	acccaaacga	1380
ttcttagttt	tagatttgaa	tcaaggttat	aggatcattt	tggtgaaatg	a	1431

5

<210> 19

<211> 22

<212> ADN

<213> Artificial

	<220>	
	<223> Sintética	
	<400> 19	
	catatggcaa taggttcatt aa	22
5	<210> 20	
	<211> 24	
	<212> ADN	
	<213> Artificial	
	<220>	
10	<223> Sintética	
	<400> 20	
	ctcgagattc tttttagccg ctgc	24
	<210> 21	
	<211> 20	
15	<212> ADN	
	<213> Artificial	
	<220>	
	<223> Cebador	
	<400> 21	
20	agctcattag ggcttggcag	20
	<210> 22	
	<211> 18	
	<212> ADN	
	<213> Artificial	
25	<220>	
	<223> Cebador	
	<400> 22	
	gctcgcgctc aacgcatc	18
	<210> 23	
30	<211> 20	
	<212> ADN	
	<213> Artificial	

<220>

	<223> Cebador	
	<400> 23	
	atcacggacg ctaccaatgg	20
	<210> 24	
5	<211> 20	
	<212> ADN	
	<213> Artificial	
	<220>	
	<223> Cebador	
10	<400> 24	
	agggacttca tgcatgctcc	20
	<210> 25	
	<211> 21	
	<212> ADN	
15	<213> Artificial	
	<220>	
	<223> Cebador	
	<400> 25	
	cacagacgct atcattcaag c	21
20	<210> 26	
	<211> 21	
	<212> ADN	
	<213> Artificial	
	<220>	
25	<223> Cebador	
	<400> 26	
	cccgctgatc acatcattga c	21
	<210> 27	
	<211> 21	
30	<212> ADN	
	<213> Artificial	
	<220>	
	<223> Cebador	

	<400> 27	
	cgctaacctc atagatggag g	21
	<210> 28	
	<211> 19	
5	<212> ADN	
	<213> Artificial	
	<220>	
	<223> Cebador	
	<400> 28	
10	taagcggcaa agcgctccg	19

REIVINDICACIONES

- 1. Un método de detección de la infección por *H. pylori* en un sujeto, en el que el método comprende detectar en una muestra del sujeto una respuesta inmune contra FliD, en el que la respuesta inmune comprende un anticuerpo anti-FliD,
- en el que el método comprende hacer reaccionar la muestra con FliD o un fragmento de la misma, en el que el fragmento tiene una secuencia de aminoácidos que es lo suficientemente larga como para identificar el fragmento que es un fragmento de FliD y para excluir que el fragmento es un fragmento de una proteína o polipéptido diferente de FliD.
 - 2. El método de la reivindicación 1, en el que el método comprende hacer reaccionar la muestra con FliD de longitud completa o un fragmento de la misma, en el que el fragmento es un fragmento cuya secuencia de aminoácidos es más corta que la secuencia de aminoácidos de FliD de longitud completa, por lo que el fragmento aún está activo como factor de virulencia.
 - 3. El método de la reivindicación 1 o 2, en el que el anticuerpo anti-FliD es un anticuerpo IgG y/o un anticuerpo IgA.

10

- 4. El método de una cualquiera de las reivindicaciones 1 a 3, en el que la detección se produce por medio de un ELISA, un ensayo de flujo lateral o un ensayo lineal.
- 5. El método de una cualquiera de las reivindicaciones 1 a 4, en el que el método comprende además detectar uno o más antígenos de *Helicobacter*, preferiblemente de *H. pylori*, en el que uno o más antígenos se selecciona (n) del grupo que consiste en CagA, VacA, GroEL, Hp 0231, JHp 0940 y HtrA.
 - 6. El método de una cualquiera de las reivindicaciones 1 a 5, en el que la muestra se selecciona del grupo que consiste en suero sanguíneo, plasma sanguíneo, sangre completa y heces.
- 7. Uso de un kit que comprende FliD o un fragmento de la misma y al menos un constituyente adicional, en un método de cualquiera de las reivindicaciones 1 a 6,
 - en el que el fragmento tiene una secuencia de aminoácidos que es lo suficientemente larga como para identificar el fragmento que es un fragmento de FliD y excluir que el fragmento es un fragmento de una proteína o polipéptido diferente de FliD, y en el que el al menos un constituyente adicional se selecciona del grupo que consiste en una solución reguladora, una fase sólida y un prospecto de instrucciones.
- 8. El uso de la reivindicación 7, en el que el kit comprende FliD de longitud completa o un fragmento de la misma, en el que el fragmento es un fragmento cuya secuencia de aminoácidos es más corta que la secuencia de aminoácidos de FliD de longitud completa, por lo que el fragmento todavía está activo como factor de virulencia
 - 9. Un kit apropiado para su uso en un método de una cualquiera de las reivindicaciones 1 a 6, comprendiendo dicho kit FliD de longitud completa o un fragmento de la misma y al menos un constituyente adicional,
- en el que el fragmento es un fragmento cuya secuencia de aminoácidos es más corta que la secuencia de aminoácidos de FliD de longitud completa, por lo que el fragmento todavía está activo como factor de virulencia,
 - y en el que el al menos un constituyente adicional se selecciona del grupo que consiste en una solución reguladora, una fase sólida y un prospecto de instrucciones.

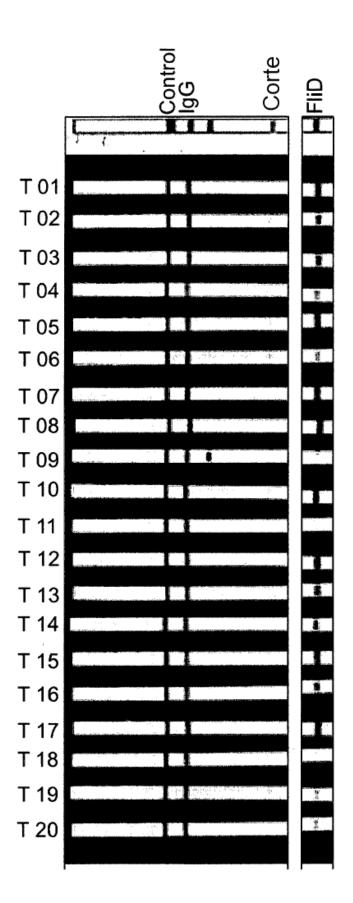


Fig. 1

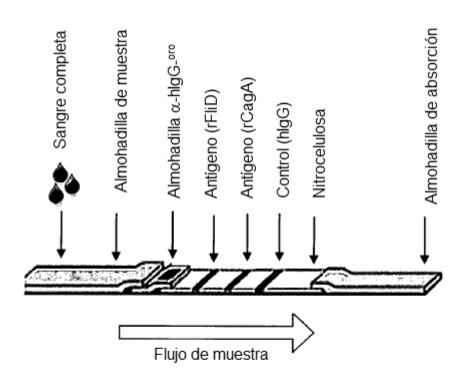
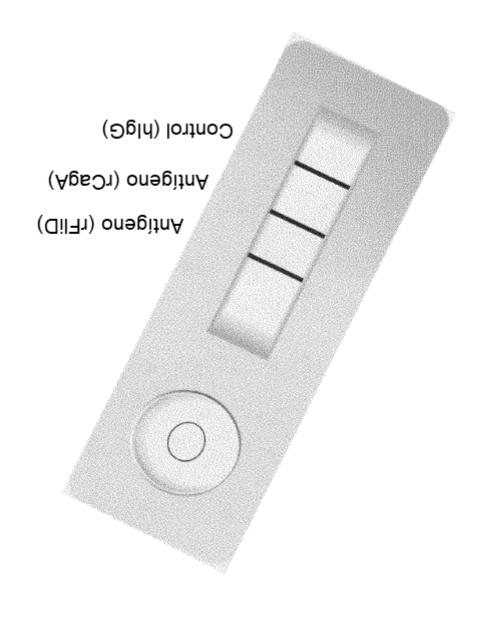



Fig. 2A

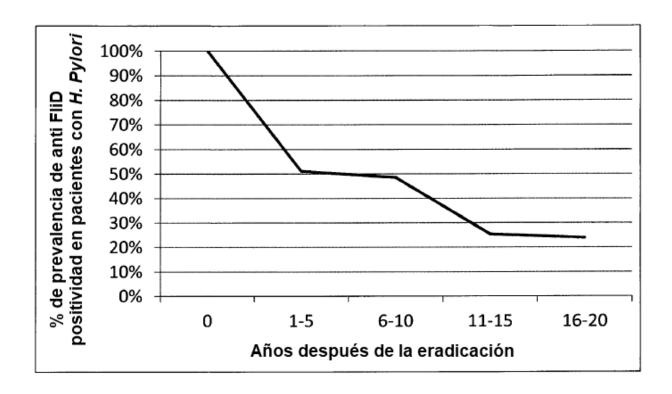


Fig. 3

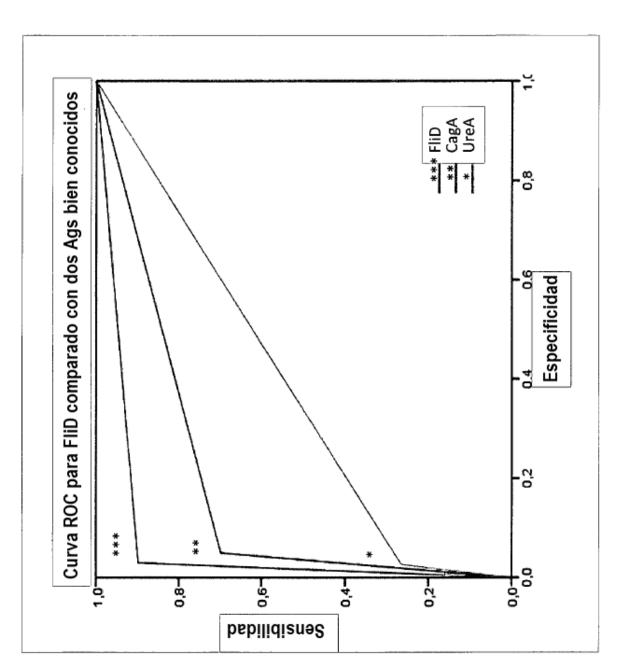
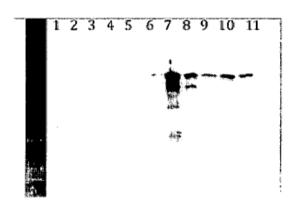



Fig. 4

1. 2. 3. 4. 5. 6. 7. 8. 9.	Tig Tig Tig gGT gGT gGT FliD FliD FliD strep	100 ng 10 ng 1ng 100 ng 10 ng 1ng 100 ng 1 ng 100 ng
	FliDstrep	
11.	FliDstrep	10 ng

Fig. 5

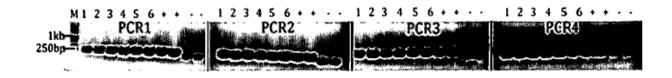


Fig. 6

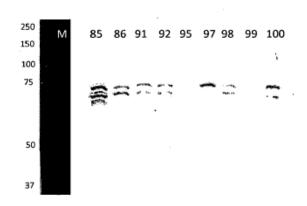
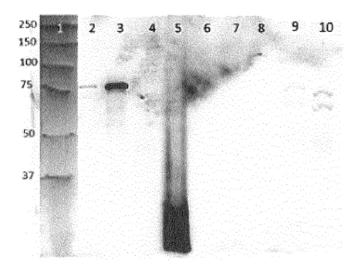
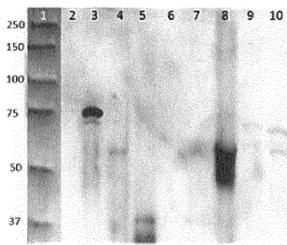




Fig. 7

- 1. Marcador de proteína (KD)
- 2. Rec. FliD (w. strep.tag)
- 3. Rec. FliD
- 4. P.aeruginosa(ATCC 27813)
- 5. Klebsiella oxytoca (ATCC 700324)
- 6. Candida albicans (ATCC 90028)
- 7. Entrococcus faecalis (ATCC 29292)
- 8. Strep. Grupo A (ATCC 19615)
- 9. H. Pylori pos. Ctrl.
- 10. H. Pylori pos. Ctri.

- 1. Marcador de proteína (KD)
- 2. Rec. FliD (w. strep.tag)
- 3. Rec. FliD
- 4. S.thyphimurium (ATCC 13311)
- 5. S. aureus (ATCC 25923)
- 6. S.epidermidis (ATCC 18228)
- 7. H.influensae (ATCC 49247)
- 8. E.coli (ATCC 25922)
- 9. H. Pylori pos. Ctrl.
- 10. H. Pylori pos. Ctrl.

Fig. 8