



# OFICINA ESPAÑOLA DE PATENTES Y MARCAS

ESPAÑA



11) Número de publicación: 2 690 671

51 Int. Cl.:

**C09K 5/04** (2006.01) **C10M 171/00** (2006.01)

(12)

# TRADUCCIÓN DE PATENTE EUROPEA

**T3** 

(96) Fecha de presentación y número de la solicitud europea: 03.03.2006 E 08014611 (1)
 (97) Fecha y número de publicación de la concesión europea: 18.07.2018 EP 1985680

(54) Título: Composición que comprenden un isómero de HFC-1234ze

(30) Prioridad:

04.03.2005 US 658543 P 23.08.2005 US 710439 P 01.11.2005 US 732769 P

(45) Fecha de publicación y mención en BOPI de la traducción de la patente: 21.11.2018

(73) Titular/es:

THE CHEMOURS COMPANY FC, LLC (100.0%) 1007 Market Street Wilmington DE 19801, US

(72) Inventor/es:

MINOR, BARBARA HAVILAND y RAO, VELLIYUR NOTT MALLIKARJUNA

(74) Agente/Representante:

**ELZABURU, S.L.P** 

### **DESCRIPCIÓN**

Composición que comprenden un isómero de HFC-1234ze

#### Referencias cruzadas con la solicitud relacionada

Esta solicitud reivindica el beneficio de prioridad de la solicitud provisional de EE.UU. 60/658.543, presentada el 4 de marzo de 2005, de la solicitud provisional de EE.UU. 60/710.439, presentada el 23 de agosto 2005 y de la solicitud provisional de EE.UU. 60/732.769, presentada el 1 de noviembre de 2005.

#### Antecedentes de la invención

### 1. Campo de la invención

5

10

25

30

40

45

50

La presente invención se refiere a composiciones para uso en sistemas de refrigeración, de acondicionamiento de aire y de bomba de calor en los que la composición comprende una fluoroolefina y al menos otro componente. Las composiciones de la presente invención son útiles en los procesos para producir enfriamiento o calor, como los fluidos de transferencia de calor, los agentes de soplado espumantes, los propulsantes de aerosoles, y los agentes de supresión y de extinción de incendios.

### 2. Descripción de la técnica relacionada

La industria de la refrigeración ha estado trabajando en las últimas décadas para encontrar refrigerantes de sustitución de los clorofluorocarburos (CFC) y de los hidroclorofluorocarburos (HCFC) que agotan la capa de ozono que se van reduciendo como resultado del Protocolo de Montreal. La solución para la mayoría de los productores de refrigerantes ha sido la comercialización de refrigerantes de hidrofluorocarburos (HFC). Los nuevos refrigerantes HFC, siendo el HFC-134a el más ampliamente utilizado en este momento, tienen potencial nulo de agotamiento del ozono y, por ello, no están afectados por la reducción reguladora actual como resultado del Protocolo de Montreal.

Reglamentos medioambientales adicionales pueden causar finalmente una reducción global de ciertos refrigerantes HFC. En la actualidad, la industria automovilística se enfrenta a reglamentos relacionados con el potencial de calentamiento global de los refrigerantes utilizados en sistemas móviles de acondicionamiento de aire. Por lo tanto, existe una gran necesidad actual de identificar nuevos refrigerantes con un potencial de calentamiento global reducido en el mercado del acondicionamiento de aire móvil. Si los reglamentos se aplican de manera más amplia en el futuro, se sentirá una necesidad aún mayor de los refrigerantes que se pueden utilizar en todas las áreas de la industria de la refrigeración y del acondicionamiento del aire.

Refrigerantes de sustitución actualmente propuestos para el HFC-134a incluyen HFC-152a, hidrocarburos puros como butano o propano, o refrigerantes "naturales" como el CO<sub>2</sub>. Muchas de estas sustituciones sugeridas son tóxicas, inflamables y/o tienen baja eficiencia energética. Por lo tanto, se están buscando nuevos refrigerantes alternativos.

El documento US 2004/127383 divulga composiciones azeotrópicas que comprenden pentafluoropropeno (HFO-1225) y uno o más de 3,3,3-trifluoropropeno (HFO-1243zf), 1,1-difluoroetano (HFC-152a), trans-1,3,3,3-tetrafluoropropeno (HFO-1234ze).

35 El documento US 3.723.318 divulga propulsores de aerosol y refrigerantes basados en 3,3,3-trifluoropropeno (HFO-1243zf).

El objeto de la presente invención es proporcionar novedosas composiciones refrigerantes y composiciones de fluidos de transferencia de calor que proporcionen características únicas para satisfacer las demandas de bajo o nulo potencial de agotamiento del ozono y menor potencial de calentamiento global en comparación con los refrigerantes actuales.

## Breve compendio de la invención

La presente invención se refiere a una composición que comprende una composición azeotrópica o casi azeotrópica seleccionada del grupo que consiste en: de aproximadamente el 1 por ciento en peso hasta aproximadamente el 99 por ciento en peso de trans-HFC-1234ze y de aproximadamente el 99 por ciento en peso hasta aproximadamente el 1 por ciento en peso de HFC-134; de aproximadamente el 1 por ciento en peso hasta aproximadamente el 48 por ciento en peso de HFC-161, y de aproximadamente el 87 por ciento en peso hasta aproximadamente el 99 por ciento en peso de trans-HFC-1234ze hasta aproximadamente el 13 por ciento en peso hasta aproximadamente el 1 por ciento en peso de HFC-161; de aproximadamente el 54 por ciento en peso hasta aproximadamente el 99 por ciento en peso de trans-HFC-1234ze y de aproximadamente el 46 por ciento en peso hasta aproximadamente el 1 por ciento en peso de HFC-236ea; de aproximadamente el 44 por ciento en peso hasta aproximadamente el 99 por ciento en peso de trans-HFC-1234ze y de aproximadamente el 56 por ciento en peso hasta aproximadamente el 1 por ciento en peso de HFC-236fa; de aproximadamente el 67 por ciento en peso hasta aproximadamente el 99 por ciento en peso de trans-HFC-1234ze y de aproximadamente el 33 por ciento en peso hasta aproximadamente el 99 por ciento en peso de trans-HFC-1234ze y de aproximadamente el 33 por ciento en peso hasta aproximadamente el 1

por ciento en peso de HFC-245fa; de aproximadamente el 1 por ciento en peso hasta aproximadamente el 99 por ciento en peso de trans-HFC-1234ze y de aproximadamente el 99 por ciento en peso hasta aproximadamente el 1 por ciento en peso de CF<sub>3</sub>I; de aproximadamente el 80 por ciento en peso hasta aproximadamente el 98 por ciento en peso de HFC-125, de aproximadamente el 1 por ciento en peso hasta aproximadamente el 19 por ciento en peso de trans-HFC-1234ze y de aproximadamente el 1 por ciento en peso hasta aproximadamente el 10 por ciento en peso de isobutano; de aproximadamente el 80 por ciento en peso hasta aproximadamente el 98 por ciento en peso de HFC-125, de aproximadamente el 1 por ciento en peso hasta aproximadamente el 19 por ciento en peso de trans-HFC-1234ze y de aproximadamente el 1 por ciento en peso hasta aproximadamente el 10 por ciento en peso de n-butano; de aproximadamente el 1 por ciento en peso hasta aproximadamente el 99 por ciento en peso de cis-HFC-1234ze y de aproximadamente el 99 por ciento en peso hasta aproximadamente el 1 por ciento en peso de HFC-236ea; de aproximadamente el 1 por ciento en peso hasta aproximadamente el 99 por ciento en peso de cis-HFC-1234ze y de aproximadamente el 99 por ciento en peso hasta aproximadamente el 1 por ciento en peso de HFC-236fa; de aproximadamente el 1 por ciento en peso hasta aproximadamente el 99 por ciento en peso de cis-HFC-1234ze y de aproximadamente el 99 por ciento en peso hasta aproximadamente el 1 por ciento en peso de HFC-245fa; de aproximadamente el 1 por ciento en peso hasta aproximadamente el 98 por ciento en peso de trans-HFC-1234ze, de aproximadamente el 1 por ciento en peso hasta aproximadamente el 98 por ciento en peso de HFC-1243zf y de aproximadamente el 1 por ciento en peso hasta aproximadamente el 98 por ciento en peso de HFC-227ea; de aproximadamente el 1 por ciento en peso hasta aproximadamente el 98 por ciento en peso de trans-HFC-1234ze, de aproximadamente el 1 por ciento en peso hasta aproximadamente el 98 por ciento en peso de HFC-134 y de aproximadamente el 1 por ciento en peso hasta aproximadamente el 98 por ciento en peso de HFC-152a; de aproximadamente el 1 por ciento en peso hasta aproximadamente el 98 por ciento en peso de trans-HFC-1234ze, de aproximadamente el 1 por ciento en peso hasta aproximadamente el 98 por ciento en peso de HFC-134 y de aproximadamente el 1 por ciento en peso hasta aproximadamente el 98 por ciento en peso de HFC-227ea; de aproximadamente el 1 por ciento en peso hasta aproximadamente el 98 por ciento en peso de trans-HFC-1234ze, de aproximadamente el 1 por ciento en peso hasta aproximadamente el 98 por ciento en peso de HFC-134 y de aproximadamente el 1 por ciento en peso hasta aproximadamente el 40 por ciento en peso de dimetiléter; de aproximadamente el 1 por ciento en peso hasta aproximadamente el 98 por ciento en peso de trans-HFC-1234ze, de aproximadamente el 1 por ciento en peso hasta aproximadamente el 98 por ciento en peso de HFC-134a y de aproximadamente el 1 por ciento en peso hasta aproximadamente el 98 por ciento en peso de HFC-152a; de aproximadamente el 1 por ciento en peso hasta aproximadamente el 98 por ciento en peso de trans-HFC-1234ze, de aproximadamente el 1 por ciento en peso hasta aproximadamente el 98 por ciento en peso de HFC-152a y de aproximadamente el 1 por ciento en peso hasta aproximadamente el 50 por ciento en peso de n-butano; de aproximadamente el 1 por ciento en peso hasta aproximadamente el 98 por ciento en peso de trans-HFC-1234ze, de aproximadamente el 1 por ciento en peso hasta aproximadamente el 98 por ciento en peso de HFC-152a y de aproximadamente el 1 por ciento en peso hasta aproximadamente el 98 por ciento en peso de dimetiléter; de aproximadamente el 1 por ciento en peso hasta aproximadamente el 98 por ciento en peso de trans-HFC-1234ze, de aproximadamente el 1 por ciento en peso hasta aproximadamente el 98 por ciento en peso de HFC-227ea y de aproximadamente el 1 por ciento en peso hasta aproximadamente el 40 por ciento en peso de n-butano; de aproximadamente el 1 por ciento en peso hasta aproximadamente el 98 por ciento en peso de trans-HFC-1234ze, de aproximadamente el 1 por ciento en peso hasta aproximadamente el 30 por ciento en peso de n-butano y de aproximadamente el 1 por ciento en peso hasta aproximadamente el 98 por ciento en peso de CF3I; y de aproximadamente el 1 por ciento en peso hasta aproximadamente el 98 por ciento en peso de trans-HFC-1234ze, de aproximadamente el 1 por ciento en peso hasta aproximadamente el 40 por ciento en peso de isobutano v de aproximadamente el 1 por ciento en peso hasta aproximadamente el 98 por ciento en peso de CF<sub>3</sub>I;

10

15

20

25

30

35

40

o seleccionado del grupo que consiste en: el 9,5 por ciento en peso de trans-HFC-1234ze y el 90,5 por ciento en peso de HFC-134a que tiene una presión de vapor de aproximadamente 107 kPa (15,5 psia) a una temperatura de aproximadamente -25°C; el 21,6 por ciento en peso de trans-HFC-1234ze y el 78,4 por ciento en peso de HFC-152a que tiene una presión de vapor de aproximadamente 101 kPa (14,6 psia) a una temperatura de aproximadamente -25°C; y el 59,2 por ciento en peso de trans-HFC-1234ze y el 40,8 por ciento en peso de HFC-227ea que tiene una presión de vapor de aproximadamente 81 kPa (11,7 psia) a una temperatura de aproximadamente -25°C.

La presente invención se refiere además a una composición com la definida en las reivindicaciones 2 a 4.

La presente invención se refiere además a una composición como la definida anteriormente, que comprende además al menos un lubricante seleccionado del grupo que consiste en ésteres de poliol, polialquilenglicol, poli(éteres de vinilo), aceites minerales, alquilbencenos, parafinas sintéticas, naftenos sintéticos y poli(alfaolefinas).

La presente invención se refiere además a una composición como la definida anteriormente que comprende además un trazador seleccionado del grupo que consiste en hidrofluorocarburos, hidrocarburos deuterados, hidrofluorocarburos deuterados, perfluorocarburos, fluoroéteres, compuestos bromados, compuestos yodados, alcoholes, aldehidos, cetonas, óxido nitroso (N<sub>2</sub>O) y combinaciones de los mismos.

La presente invención se refiere además a una composición como la definida anteriormente que comprende además al menos un colorante fluorescente ultravioleta seleccionado del grupo que consiste en naftalimidas, perilenos, cumarinas, antracenos, fenantrenos, xantenos, tioxantenos, naftoxantenos, fluoresceínas, derivados de dichos colorantes y combinaciones de los mismos.

La presente invención se refiere además a un procedimiento para la sustitución de un refrigerante con alto PCG en un aparato de refrigeración, de acondicionamiento de aire, o de bomba de calor, en el que dicho refrigerante con alto PCG se selecciona del grupo que consiste en R134a, R22, R123, R11, R245fa, R114, R236fa, R124, R12, R410A, R407C, R417A, R422A, R507A, R502 y R404A, comprendiendo dicho procedimiento proporcionar una composición como la definida anteriormente a dicho aparato de refrigeración, de acondicionamiento de aire o de bomba de calor que utiliza, utilizó o diseñado para utilizar dicho refrigerante con alto PCG.

## Descripción detallada de la invención

5

10

25

La presente invención se refiere a composiciones que comprenden al menos una fluoroolefina. Las composiciones de la presente invención comprenden además al menos un componente adicional que puede ser una segunda fluoroolefina, un hidrofluorocarburo (HFC), un hidrocarburo, dimetiléter, o CF<sub>3</sub>I. Los compuestos fluoroolefinas y otros componentes de las presentes composiciones inventivas se enumeran en la Tabla 1.

Compuesto Nombre químico Fórmula química HFC-1234ze CF<sub>3</sub>CH=CHF 1,3,3,3-tetrafluoropropeno HFC-1243zf 3,3,3-trifluoropropeno CF<sub>3</sub>CH=CH<sub>2</sub> HFC-125 CF<sub>3</sub>CHF<sub>2</sub> pentafluoroetano HFC-134 CHF<sub>2</sub>CHF<sub>2</sub> 1,1,2,2-tetrafluoroetano HFC-134a CH<sub>2</sub>FCF<sub>3</sub> 1,1,1,2-tetrafluoroetano HFC-152a 1,1-difluoroetano CHF<sub>2</sub>CH<sub>3</sub> HFC-161 fluoroetano CH<sub>3</sub>CH<sub>2</sub>F HFC-227ea 1,1,1,2,3,3,3-heptafluoropropano CF<sub>3</sub>CHFCF<sub>3</sub> HFC-236ea 1,1,1,2,3,3-hexafluoropropano CF<sub>3</sub>CHFCHF<sub>2</sub> HFC-236fa 1,1,1,3,3,3-hexafluoroetano CF<sub>3</sub>CH<sub>2</sub>CF<sub>3</sub> HFC-245fa 1,1,1,3,3-pentafluoropropano CF<sub>3</sub>CH<sub>2</sub>CHF<sub>2</sub>

Tabla 1

Los componentes individuales enumerados en la Tabla 1 se pueden preparar por procedimientos conocidos en la técnica.

CH<sub>3</sub>CH<sub>2</sub>CH<sub>2</sub>CH<sub>3</sub>

CH<sub>3</sub>CH(CH<sub>3</sub>)CH<sub>3</sub>

CH<sub>3</sub>OCH<sub>3</sub>

CF<sub>3</sub>I

- El compuesto fluoroolefina utilizado en las composiciones de la presente invención, HFC-1234ze, puede existir como diferentes isómeros o estereoisómeros configuracionales. La presente invención pretende incluir todos los isómeros configuracionales individuales, los estereoisómeros individuales o cualquier combinación o mezcla de los mismos. Por ejemplo, el 1,3,3,3,-tetra-fluoropropeno (HFC-1234ze) se supone que representa el cis-siómero, trans-isómero, o cualquier combinación o mezcla de ambos isómeros en cualquier proporción.
- 20 Las composiciones de la presenta invención con las definidas en la reivindicación 1, 2, 3 o 4.

n-butano

isobutano

dimetiléter

yodotrifluorometano

i-butano

**DME** 

Las composiciones de la presente invención pueden ser generalmente útiles cuando el fluoroolefina está presente desde aproximadamente el 1 por ciento en peso hasta aproximadamente el 99 por ciento en peso, preferiblemente desde aproximadamente el 20 por ciento en peso hasta aproximadamente el 99 por ciento en peso, más preferiblemente desde aproximadamente el 40 por ciento en peso hasta aproximadamente el 99 por ciento en peso y todavía más preferiblemente desde el 50 por ciento en peso hasta aproximadamente el 99 por ciento en peso.

La presente invención proporciona además composiciones como las enumeradas en la Tabla 2.

Tabla 2

| Componentes                                  | Intervalos de concentración (% en peso) |                   |                    |  |
|----------------------------------------------|-----------------------------------------|-------------------|--------------------|--|
|                                              | Preferidos                              | Más preferidos    | Los más preferidos |  |
| HFC-125/trans-HFC-1234ze/n-butano            |                                         |                   | 86.1/11.5/2.4      |  |
| HFC-125/trans-HFC-1234ze/isobutano           |                                         |                   | 86.1/11.5/2.4      |  |
| trans-HFC-1234ze/HFC-1243zf/HFC-227ea        | 1-98/1-98/1-98                          | 10-80/10-80/10-80 |                    |  |
| trans-HFC-1234ze/HFC-134/HFC-152a            | 1-98/1-98/1-98                          | 10-80/10-80/1-50  |                    |  |
| trans-HFC-1234ze/HFC-134/HFC-227ea           | 1-98/1-98/1-98                          | 10-80/10-80/10-80 |                    |  |
| trans-HFC-1234ze/HFC-134/DME                 | 1-98/1-98/1-40                          | 10-80/10-80/1-30  |                    |  |
| trans-HFC-1234ze/HFC-134a/HFC-152a           | 1-98/1-98/1-98                          | 10-80/10-80/1-50  |                    |  |
| trans-HFC-1234ze/HFC-152a/n-butano           | 1-98/1-98/1-50                          | 10-80/10-80/1-30  |                    |  |
| trans-HFC-1234ze/HFC-152a/DME                | 1-98/1-98/1-98                          | 20-90/1-50/1-30   |                    |  |
| trans-HFC-1234ze/HFC-227ea/n-butano          | 1-98/1-98/1-40                          | 10-80/10-80/1-30  |                    |  |
| trans-HFC-1234ze/n-butano/CF <sub>3</sub> I  | 1-98/1-30/1-98                          | 10-80/1-20/10-80  |                    |  |
| trans-HFC-1234ze/isobutano/CF <sub>3</sub> I | 1-98/1-40/1-98                          | 10-80/1-20/10-80  |                    |  |

En general, se espera que las composiciones más preferidas de la presente invención, enumeradas en la Tabla 2, mantengan las propiedades y funcionalidad deseadas cuando los componentes estén presentes en las concentraciones enumeradas ± 2 por ciento en peso.

Las composiciones de la presente invención comprenden composiciones azeotrópicas o casi azeotrópicas. Por composición azeotrópica se quiere indicar una mezcla de temperatura de ebullición constante de dos o más sustancias que se comportan como una sola sustancia. Una manera de caracterizar una composición azeotrópica es que el vapor producido por evaporación o destilación parcial del líquido tiene la misma composición que el líquido desde el cual es evaporado o destilado, es decir, la mezcla se destila/se somete a reflujo sin que se produzca un cambio en su composición. Las composiciones de temperatura de ebullición constante se caracterizan como azeotrópicas porque presentan una temperatura de ebullición máxima o mínima, en comparación con la de la mezcla no azeotrópica de los mismos compuestos. Una composición azeotrópica no se fraccionará dentro de un sistema de refrigeración o de acondicionamiento de aire durante el funcionamiento, lo que puede reducir la eficiencia del sistema. Además, una composición azeotrópica no se fraccionará en una fuga de un sistema de refrigeración o de acondicionamiento de aire. En la situación en la que un componente de una mezcla sea inflamable, el fraccionamiento durante la fuga podría dar lugar a una composición inflamable ya sea dentro del sistema o fuera del sistema.

Una composición casi azeotrópica (normalmente conocida también como una "composición similar a un azeótropo") es una mezcla líquida de temperatura de ebullición sustancialmente constante de dos o más sustancias que se comportan esencialmente como una sola sustancia. Una forma de caracterizar una composición casi azeotrópica es que el vapor producido por evaporación o destilación parcial del líquido tiene sustancialmente la misma composición que el líquido del que se evaporó o destiló, es decir, la mezcla se destila/se somete a reflujo sin un cambio sustancial de su composición. Otra manera de caracterizar una composición casi azeotrópica es que la presión de vapor en el punto de burbuja y la presión de vapor en el punto de rocío de la composición a una temperatura concreta son sustancialmente iguales. En el presente documento, una composición es casi azeotrópica si, después de que se haya retirado el 50 por ciento en peso de la composición original, y la composición que queda después de que se haya retirado el 50 por ciento en peso de la composición original es menor que aproximadamente el 10 por ciento.

Composiciones azeotrópicas de la presente invención a una temperatura especificada se muestran en la Tabla 3.

30 Tabla 3

20

| Componente A     | Componente B | % en peso de A | % en peso de B | psia | kPa | T (°C) |
|------------------|--------------|----------------|----------------|------|-----|--------|
| trans-HFC-1234ze | HFC-134      | 45,7           | 54,3           | 12,5 | 86  | -25    |
| trans-HFC-1234ze | HFC-134a     | 9,5            | 90,5           | 15,5 | 107 | -25    |
| trans-HFC-1234ze | HFC-152a     | 21,6           | 78,4           | 14,6 | 101 | -25    |

| Componente A     | Componente B | % en peso de A | % en peso de B | psia | kPa | T (°C) |
|------------------|--------------|----------------|----------------|------|-----|--------|
| trans-HFC-1234ze | HFC-227ea    | 59,2           | 40,8           | 11,7 | 81  | -25    |
| cis-HFC-1234ze   | HFC-236ea    | 20,9           | 79,1           | 30,3 | 209 | 25     |
| cis-HFC-1234ze   | HFC-245fa    | 76,2           | 23,8           | 26,1 | 180 | 25     |

Además, se han encontrado las composiciones de azeótropos ternarios enumerados en la Tabla 4.

Tabla 4

| Componente A     | Componente<br>B | Componente<br>C   | % en<br>peso de<br>A | % en<br>peso de<br>B | % en<br>peso de<br>C | Presión<br>(psi) | Presión<br>(kPa) | Temp.<br>(°C) |
|------------------|-----------------|-------------------|----------------------|----------------------|----------------------|------------------|------------------|---------------|
| trans-HFC-1234ze | HFC-1243zf      | HFC-227ea         | 7,1                  | 73,7                 | 19,2                 | 13,11            | 90,4             | -25           |
| trans-HFC-1234ze | HFC-134         | HFC-152a          | 52,0                 | 42,9                 | 5,1                  | 12,37            | 85,3             | -25           |
| trans-HFC-1234ze | HFC-134         | HFC-227ea         | 30,0                 | 43,2                 | 26,8                 | 12,61            | 86,9             | -25           |
| trans-HFC-1234ze | HFC-134         | DME               | 27,7                 | 54,7                 | 17,7                 | 9,76             | 67,3             | -25           |
| trans-HFC-1234ze | HFC-134a        | HFC-152a          | 14,4                 | 34,7                 | 51,0                 | 14,42            | 99,4             | -25           |
| trans-HFC-1234ze | HFC-152a        | n-butano          | 5,4                  | 80,5                 | 14,1                 | 15,41            | 106              | -25           |
| trans-HFC-1234ze | HFC-152a        | DME               | 59,1                 | 16,4                 | 24,5                 | 10,80            | 74,5             | -25           |
| trans-HFC-1234ze | HFC-227ea       | n-butano          | 40,1                 | 48,5                 | 11,3                 | 12,61            | 86,9             | -25           |
| trans-HFC-1234ze | n-butano        | CF <sub>3</sub> I | 81,2                 | 9,7                  | 9,1                  | 11,87            | 81,8             | -25           |
| trans-HFC-1234ze | isobutano       | CF <sub>3</sub> I | 34,9                 | 6,1                  | 59,0                 | 12,57            | 86,7             | -25           |

Las composiciones casi azeotrópicas de la presente invención a una temperatura especificada se enumeran en la Tabla 5.

5 Tabla 5

| Componente A     | Componente B | (% en peso de A/% en peso de B) | T(°C) |
|------------------|--------------|---------------------------------|-------|
| trans-HFC-1234ze | HFC-134      | 1-99/99-1                       | -25   |
| trans-HFC-1234ze | HFC-161      | 1-52/99-48, 87-99/13-1          | -25   |
| trans-HFC-1234ze | HFC-236ea    | 54-99/46-1                      | -25   |
| trans-HFC-1234ze | HFC-236fa    | 44-99/56-1                      | -25   |
| trans-HFC-1234ze | HFC-245fa    | 67-99/33-1                      | -25   |
| trans-HFC-1234ze | CF₃I         | 1-99/99-1                       | -25   |
| cis-HFC-1234ze   | HFC-236ea    | 1-99/99-1                       | 25    |
| cis-HFC-1234ze   | HFC-236fa    | 1-99/99-1                       | 25    |
| cis-HFC-1234ze   | HFC-245fa    | 1-99/99-1                       | 25    |

Las composiciones casi azeotrópicas ternarias y de orden superior que comprenden fluoroolefina también han sido identificadas como se enumeran en la Tabla 6.

Tabla 6

| Componentes                           | Intervalo casi azeótropo (porcentaje en peso) | Temp. (°C) |
|---------------------------------------|-----------------------------------------------|------------|
| HFC-125/trans-HFC-1234ze/isobutano    | 80-98/1-19/1-10                               | 25         |
| HFC-125/trans-HFC-1234ze/n-butano     | 80-98/1-19/1-10                               | 25         |
| trans-HFC-1234ze/HFC-1243zf/HFC-227ea | 1-98/1-98/1-98                                | -25        |

| Componentes                                  | Intervalo casi azeótropo (porcentaje en peso) | Temp. (°C) |
|----------------------------------------------|-----------------------------------------------|------------|
| trans-HFC-1234ze/HFC-134/HFC-152a            | 1-98/1-98                                     | -25        |
| trans-HFC-1234ze/HFC-134 /                   | 1-98/1-98                                     | -25        |
| HFC-227ea                                    |                                               |            |
| trans-HFC-1234ze/HFC-134/DME                 | 1-98/1-98/1-40                                | -25        |
| trans-HFC-1234ze/HFC-134a/HFC-152a           | 1-98/1-98                                     | -25        |
| trans-HFC-1234ze/HFC-152a/n-butano           | 1-98/1-98/1-50                                | -25        |
| trans-HFC-1234ze/HFC-152a/DME                | 1-98/1-98                                     | -25        |
| trans-HFC-1234ze/HFC-227ea/n-butano          | 1-98/1-98/1-40                                | -25        |
| trans-HFC-1234ze/n-butano/CF <sub>3</sub> I  | 1-98/1-30/1-98                                | -25        |
| trans-HFC-1234ze/isobutano/CF <sub>3</sub> I | 1-98/1-40/1-98                                | -25        |

Una composición no azeotrópica es una mezcla de dos o más sustancias que se comporta como una mezcla más que como una sola sustancia. Una forma de caracterizar una composición no azeotrópica es que el vapor producido por evaporación o destilación parcial del líquido tiene una composición sustancialmente diferente que el líquido del que se evaporó o destiló, es decir, la mezcla se destila/se somete a reflujo con un cambio sustancial de la composición. Otra manera de caracterizar una composición no azeotrópica es que la presión de vapor en el punto de burbuja y la presión de vapor en el punto de rocío de la composición a una temperatura concreta son sustancialmente diferentes. En el presente documento, una composición es no azeotrópica si, después de que se retira 50 por ciento en peso de la composición, ya sea por evaporación como por ebullición, la diferencia de presión de vapor entre la composición original y la composición que queda después de haber retirado el 50 por ciento en peso de la composición original es mayor que aproximadamente el 10 por ciento.

Las composiciones de la presente invención se pueden preparar por cualquier procedimiento conveniente combinando las cantidades deseadas de los componentes individuales. Un procedimiento preferido es pesar las cantidades deseadas de los componentes y, posteriormente, combinar los componentes en un recipiente apropiado. Si se desea, se puede utilizar agitación.

Un medio alternativo para la fabricación de las composiciones de la presente invención puede ser un procedimiento para fabricar una composición de la mezcla de refrigerante, en el que dicha composición mezcla de refrigerante comprende una composición como se ha descrito en el presente documento, comprendiendo dicho procedimiento (i) recuperar un volumen de uno o más componentes de una composición refrigerante a partir de al menos un recipiente de refrigerante, (ii) eliminar impurezas suficientemente para permitir la reutilización de dichos uno o más de los componentes recuperados, (iii) y, opcionalmente, combinar la totalidad o parte de dicho volumen recuperado de los componentes con al menos una composición o componente refrigerante adicional.

10

25

30

35

40

Un recipiente de refrigerante puede ser cualquier recipiente en el que se almacena una composición mezcla refrigerante que se ha utilizado en un aparato de refrigeración, en un aparato de acondicionamiento de aire o en un aparato de bomba de calor. Dicho recipiente de refrigerante puede ser el aparato de refrigeración, aparato de acondicionamiento de aire o el aparato de bomba de calor en el que se utilizó la mezcla refrigerante. Además, el recipiente de refrigerante puede ser un recipiente de almacenamiento para la recogida de componentes de la mezcla refrigerante recuperada, que incluye pero no se limita a los cilindros de gas a presión.

Refrigerante residual significa cualquier cantidad de mezcla refrigerante o componente de la mezcla refrigerante que se puede sacar del recipiente de refrigerante por cualquier procedimiento conocido para transferir mezclas refrigerantes o componentes de mezclas refrigerantes.

Impurezas pueden ser cualquier componente que se encuentre en la mezcla refrigerante o en el componente de la mezcla refrigerante debido a su uso en un aparato de refrigeración, en un aparato de acondicionamiento de aire o en un aparato de bomba de calor. Las impurezas de este tipo incluyen, pero no se limitan a los lubricantes de refrigeración, que son los descritos anteriormente en el presente documento, partículas que incluyen pero que no se limitan a metales, sales metálicas o partículas de elastómeros, que pueden proceder del aparato de refrigeración, del aparato de acondicionamiento de aire o del aparato de bomba de calor, y cualesquiera otros contaminantes que pueden afectar negativamente al comportamiento de la composición de la mezcla refrigerante.

Estas impurezas se pueden eliminar suficientemente para permitir la reutilización de la mezcla refrigerante o del componente de la mezcla refrigerante sin afectar negativamente al comportamiento o al equipo en el que se utilizarán la mezcla refrigerante o el componente de la mezcla refrigerante.

Puede que sea necesario proporcionar mezcla de refrigerante o componente de la mezcla refrigerante adicionales a

la mezcla refrigerante o componente de la mezcla refrigerante residuales con el fin de producir una composición que satisfaga las especificaciones requeridas para un producto determinado. Por ejemplo, si una mezcla refrigerante tiene 3 componentes en un intervalo de porcentaje en peso particular, puede que sea necesario añadir uno o más de los componentes en una cantidad dada con el fin de restaurar la composición dentro de los límites de la especificación.

5

10

15

20

25

30

55

60

Las composiciones de la presente invención tienen nulo o bajo potencial de agotamiento de ozono y bajo potencial de calentamiento global (PCG). Además, las composiciones de la presente invención tendrán potenciales de calentamiento global que son menores del de muchos refrigerantes de hidrofluorocarburos actualmente en uso. Un aspecto de la presente invención es proporcionar un refrigerante con un potencial de calentamiento global menor de 1.000, menor de 500, menor de 150, menor de 100 o menor de 50. Otro aspecto de la presente invención es reducir el PCG neto de las mezclas refrigerantes añadiendo fluoroolefinas a dichas mezclas.

Las composiciones de la presente invención pueden ser útiles como sustituciones de bajo potencial de calentamiento global (PCG) de los refrigerantes actualmente utilizados, que incluyen pero que no se limitan a R134a (o HFC-134a, 1,1,1,2-tetrafluoroetano), R22 (o HCFC-22, clorodifluorometano), R123 (o HFC-123, 2,2-dicloro-1,1,1trifluoroetano), R11 (CFC-11, fluorotriclorometano), R12 (CFC-12, diclorodifluorometano), R245fa (o HFC-245fa, 1,1,1,3,3-pentafluoropropano), R114 (o CFC-114, 1,2-dicloro-1,1,2,2-tetrafluoroetano), R236fa (o HFC-236fa, 1,1, 1,3,3,3-hexafluoropropano), R124 (o HCFC-124, 2-cloro-1,1,1,2-tetrafluoroetano), R407C (designación ASHRAE para una mezcla de 52 por ciento en peso de R134a, 25 por ciento en peso de R125 (pentafluoroetano), y 23 por ciento en peso de R32 (difluorometano), R410A (designación ASHRAE para una mezcla de 50 por ciento en peso de R125 y 50 por ciento en peso de R32), R417A (designación ASHRAE para una mezcla de 46,6 por ciento en peso de R125, 50.0 por ciento en peso de R134a, y 3.4 por ciento en peso de n-butano), R422A, (designación ASHRAE para una mezcla de 85,1 por ciento en peso de R125, 11,5 por ciento en peso de R134a, y 3,4 por ciento en peso de isobutano), R404A (designación ASHRAE para un mezcla de 44 por ciento en peso de R125, 52 por ciento en peso de R143a (1,1,1-trifluoroetano), y 4,0 por ciento en peso de R134a) y R507A (designación ASHRAE para una mezcla de 50 por ciento en peso de R125 y 50 por ciento en peso de R143a). Además, las composiciones de la presente invención pueden ser útiles como sustituciones de R12 (CFC-12, diclorodifluorometano) o R502 (designación ASHRAE para una mezcla de 51.2 por ciento en peso de CFC-115 (cloropentafluoroetano) y 48.8 por ciento en peso de HCFC-22).

A menudo, los refrigerantes de sustitución son los más útiles si pueden ser utilizados en el equipo de refrigeración original diseñado para un refrigerante diferente. Las composiciones de la presente invención pueden ser útiles como sustitutos de los refrigerantes anteriormente mencionados en el equipo original. Además, las composiciones de la presente invención pueden ser útiles como sustituciones de los refrigerantes anteriormente mencionados en el equipo diseñado para utilizar los refrigerantes anteriormente mencionados.

Las composiciones de la presente invención pueden comprender además un lubricante.

35 Los lubricantes de la presente invención comprenden lubricantes de refrigeración, es decir esos lubricantes adecuados para su uso con un aparato de refrigeración, de acondicionamiento de aire o de bomba de calor. Entre estos lubricantes están los convencionalmente utilizados en aparatos de la refrigeración por compresión que utilizan refrigerantes de clorofluorocarburos. Los lubricantes de este tipo y sus propiedades se comentan en el Manual ASHRAE de 1990, Refrigeration Systems and Applications, Capítulo 8, titulado "Lubricants in Refrigeration Systems", 40 páginas 8.1 a 8.21. Los lubricantes de la presente invención pueden comprender los comúnmente conocidos como aceites minerales" en el campo de la lubricación de la refrigeración por compresión. Los aceites minerales" comprenden parafinas (es decir, hidrocarburos saturados, de cadena lineal y de cadena de carbonos ramificada), naftenos (es decir, parafinas cíclicas) y aromáticos (es decir, hidrocarburos cíclicos, insaturados, que contienen uno o más anillos caracterizados por dobles enlaces alternos). Los lubricantes de la presente invención comprenden además los comúnmente conocidos como "aceites sintéticos" en el campo de la lubricación de la refrigeración por 45 compresión. Los aceites sintéticos comprenden alquilarilos (es decir, alquilbencenos con alquilo lineal y ramificado), parafinas sintéticas y naftenos, y poli(alfa-olefinas). Los lubricantes convencionales representativos de la presente invención son los comercialmente disponibles BVM 100 N (aceite mineral parafínico vendido por BVA Oils), Suniso® 3GS v Suniso® 5GS (aceite mineral nafténico vendido por Crompton Co.), Sontex® 372LT (aceite mineral nafténico 50 vendido por Pennzoil), Calumet® RO-30 (aceite mineral nafténico vendido por Calumet Lubricants), Zerol® 75, Zerol® 150 y Zerol® 500 (alquilbencenos lineales vendidos por Shrieve Chemicals) y HAB 22 (alquilbenceno ramificado vendido por Nippon Oil).

Los lubricantes de la presente invención comprenden además aquellos que han sido diseñados para su uso con refrigerantes de hidrofluorocarburos y son miscibles con los refrigerantes de la presente invención en las condiciones de funcionamiento de un aparato de la refrigeración por compresión, de acondicionamiento de aire o de bomba de calor. Los lubricantes de este tipo y sus propiedades se comentan en "Synthetic Lubricants and High-Performance Fluids", R. L. Shubkin, redactor, Marcel Dekker, 1993. Los lubricantes de este tipo incluyen pero no se limitan a ésteres de poliol (POE) tal como Castrol® 100 (Castrol, Reino Unido), poli(alquilenglicoles) (PAG) tal como RL-488A de Dow (Dow Chemical, Midland, Michigan) y poli(éteres de vinilo) (PVE). Estos lubricantes están fácilmente disponibles de varias fuentes comerciales.

Los lubricantes de la presente invención se seleccionan teniendo en cuenta los requisitos de un compresor dado y el medio ambiente al que estará expuesto el lubricante. Los lubricantes de la presente invención tienen preferiblemente una viscosidad cinemática de al menos aproximadamente 5·10-6 m² s-1 (5 cSt (centistokes)) a 40°C.

Opcionalmente, a las composiciones de la presente invención pueden añadirse aditivos del sistema de refrigeración normalmente utilizados, según se desee, con el fin de mejorar la lubricidad y la estabilidad del sistema. Estos aditivos son generalmente conocidos en el campo de la lubricación de compresores de refrigeración, e incluyen agentes antidesgaste, lubricantes de extrema presión, inhibidores de corrosión y oxidación, desactivadores de las superficies metálicas, eliminadores de radicales libres, espumantes y agentes de control antiespumante, detectores de fugas y similares. En general, estos aditivos están presentes sólo en pequeñas cantidades con respecto a la composición total del lubricante. Se utilizan típicamente en concentraciones de menos de aproximadamente el 0.1% hasta tanto como aproximadamente el 3% de cada aditivo. Estos aditivos se seleccionan sobre la base de los requisitos individuales del sistema. Algunos ejemplos típicos de tales aditivos pueden incluir pero no se limitan a aditivos que mejoren la lubricación, tal como alquil- o aril-ésteres del ácido fosfórico y de tiofosfatos. Además, dialquil-ditiofosfatos metálicos (p. ej., dialquil-ditiofosfato de zinc o ZDDP, Lubrizol 1375) y otros miembros de esta familia de productos químicos se pueden usar en las composiciones de la presente invención. Otros aditivos antidesgaste incluyen aceites de productos naturales y aditivos de lubricación con polihidroxilos asimétricos como Synergol TMS (International Lubricants). De manera similar, se pueden emplear estabilizantes tal como antioxidantes, eliminadores de radicales libres y captadores de agua. Los compuestos de esta categoría pueden incluir pero no se limitan a hidroxitolueno butilado (BHT) y epóxidos.

Las composiciones de la presente invención pueden comprender además desde aproximadamente el 0,01 por ciento en peso hasta aproximadamente el 5 por ciento en peso de un aditivo tal como, por ejemplo, un estabilizante, un eliminador de radicales libres y/o un antioxidante. Tales aditivos incluyen pero no se limitan a nitrometano, fenoles obstaculizados, hidroxilaminas, tioles, fosfitos o lactonas. Se pueden utilizar aditivos individuales o combinaciones.

Las composiciones de la presente invención pueden comprender además desde aproximadamente el 0,01 por ciento en peso hasta aproximadamente el 5 por ciento en peso de un captador de agua (compuesto desecante). Tales captadores de agua pueden comprender orto-ésteres tales como ortoformiato de trimetilo, trietilo o tripropilo.

Las composiciones de la presente invención pueden comprender además un trazador seleccionado del grupo que consiste en hidrofluorocarburos (HFC), hidrocarburos deuterados, hidrofluorocarburos deuterados, perfluorocarburos, éteres fluorados, compuestos bromados, compuestos yodados, alcoholes, aldehídos, cetonas, óxido nitroso (N<sub>2</sub>O) y combinaciones de los mismos. Los compuestos trazadores se añaden a las composiciones en cantidades previamente determinadas para permitir la detección de cualquier dilución, contaminación u otra alteración de la composición, como se describe en la solicitud de patente publicada de EE.UU. Nº de serie 11/062044, presentada el 18 de febrero de 2005.

Compuestos trazadores típicos para uso en las presentes composiciones se enumeran en la Tabla 7.

35 Tabla 7

5

10

15

25

| Compuesto                                      | Estructura                                       |  |  |  |  |
|------------------------------------------------|--------------------------------------------------|--|--|--|--|
| Hidrocarburos e hidrofluorocarburos deuterados |                                                  |  |  |  |  |
| Etano-d6                                       | CD <sub>3</sub> CD <sub>3</sub>                  |  |  |  |  |
| Propano-d8                                     | CD <sub>3</sub> CD <sub>2</sub> CD <sub>3</sub>  |  |  |  |  |
| HFC-32-d2                                      | CD <sub>2</sub> F <sub>2</sub>                   |  |  |  |  |
| HFC-134a-d2                                    | CD <sub>2</sub> FCF <sub>3</sub>                 |  |  |  |  |
| HFC-143a-d3                                    | CD₃CF₃                                           |  |  |  |  |
| HFC-125-d                                      | CDF <sub>2</sub> CF <sub>3</sub>                 |  |  |  |  |
| HFC-227ea-d                                    | CF₃CDFCF₃                                        |  |  |  |  |
| HFC-227ca-d                                    | CF <sub>3</sub> CF <sub>2</sub> CDF <sub>2</sub> |  |  |  |  |
| HFC-134-d2                                     | CDF <sub>2</sub> CDF <sub>2</sub>                |  |  |  |  |
| HFC-236fa-d2                                   | CF <sub>3</sub> CD <sub>2</sub> CF <sub>3</sub>  |  |  |  |  |
| HFC-245cb-d3                                   | CF₃CF₂CD₃                                        |  |  |  |  |
| HFC-263fb-d2*                                  | CF₃CD₂CH₃                                        |  |  |  |  |
| HFC-263fb-d3                                   | CF <sub>2</sub> CH <sub>2</sub> CD <sub>3</sub>  |  |  |  |  |

| Compuesto                     | Estructura                                                                                               |
|-------------------------------|----------------------------------------------------------------------------------------------------------|
| Fluoroéteres                  |                                                                                                          |
| HFOC-125E                     | CHF₂OCF₃                                                                                                 |
| HFOC-134aE                    | CH₂FOCF₃                                                                                                 |
| HFOC-143aE                    | CH₃OCF₃                                                                                                  |
| HFOC-227eaE                   | CF₃OCHFCF₃                                                                                               |
| HFOC-236faE                   | CF <sub>3</sub> OCH <sub>2</sub> CF <sub>3</sub>                                                         |
| HFOC-245faEβγ ο HFOC-245faEαβ | CHF <sub>2</sub> OCH <sub>2</sub> CF <sub>3</sub> (o CHF <sub>2</sub> CH <sub>2</sub> OCF <sub>3</sub> ) |
| HFOC-245cbEβγ ο HFOC-245cbαβ  | CH <sub>3</sub> OCF <sub>2</sub> CF <sub>3</sub> (o CH <sub>3</sub> CF <sub>2</sub> OCF <sub>3</sub> )   |
| HFE-42-11 mcc (o Freon® E1)   | CF <sub>3</sub> CF <sub>2</sub> CF <sub>2</sub> OCHFCF <sub>3</sub>                                      |
| Freon® E2                     | CF <sub>3</sub> CF <sub>2</sub> CF <sub>2</sub> OCF(CF <sub>3</sub> )CF <sub>2</sub> OCHFCF <sub>3</sub> |
| Hidrofluorocarburos           |                                                                                                          |
| HFC-23                        | CHF <sub>3</sub>                                                                                         |
| HFC-161                       | CH₃CH₂F                                                                                                  |
| HFC-152a                      | CH <sub>3</sub> CHF <sub>2</sub>                                                                         |
| HFC-134                       | CHF <sub>2</sub> CHF <sub>2</sub>                                                                        |
| HFC-227ea                     | CF <sub>3</sub> CHFCF <sub>3</sub>                                                                       |
| HFC-227ca                     | CHF <sub>2</sub> CF <sub>2</sub> CF <sub>3</sub>                                                         |
| HFC-236cb                     | CH <sub>2</sub> FCF <sub>2</sub> CF <sub>3</sub>                                                         |
| HFC-236ea                     | CF₃CHFCHF₂                                                                                               |
| HFC-236fa                     | CF₃CH₂CF₃                                                                                                |
| HFC-245cb                     | CF₃CF₂CH₃                                                                                                |
| HFC-245fa                     | CHF₂CH₂CF₃                                                                                               |
| HFC-254cb                     | CHF <sub>2</sub> CF <sub>2</sub> CH <sub>3</sub>                                                         |
| HFC-254eb                     | CF₃CHFCH₃                                                                                                |
| HFC-263fb                     | CF₃CH₂CH₃                                                                                                |
| HFC-272ca                     | CH₃CF₂CH₃                                                                                                |
| HFC-281ea                     | CH₃CHFCH₃                                                                                                |
| HFC-281fa                     | CH₂FCH₂CH₃                                                                                               |
| HFC-329p                      | CHF <sub>2</sub> CF <sub>2</sub> CF <sub>3</sub>                                                         |
| HFC-329mmz                    | (CH <sub>3</sub> )₂CHCF <sub>3</sub>                                                                     |
| HFC-338mf                     | CF <sub>3</sub> CH <sub>2</sub> CF <sub>2</sub> CF <sub>3</sub>                                          |
| HFC-338pcc                    | CHF <sub>2</sub> CF <sub>2</sub> CHF <sub>2</sub>                                                        |
| HFC-347s                      | CH <sub>3</sub> CF <sub>2</sub> CF <sub>2</sub> CF <sub>3</sub>                                          |
| Compuesto                     | Estructura                                                                                               |
| HFC-43-10mee                  | CF <sub>3</sub> CHFCHFCF <sub>2</sub> CF <sub>3</sub>                                                    |
| Perfluorocarburos             | ,                                                                                                        |
| PFC-116                       | CF₃CF₃                                                                                                   |
| PFC-C216                      | Ciclo(-CF <sub>2</sub> CF <sub>2</sub> CF <sub>2</sub> -)                                                |
| PFC-218                       | CF <sub>3</sub> CF <sub>2</sub> CF <sub>3</sub>                                                          |

| Compuesto                                                                      | Estructura                                                                                                                                                  |
|--------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|
| PFC-C318                                                                       | Ciclo(-CF <sub>2</sub> CF <sub>2</sub> CF <sub>2</sub> CF <sub>2</sub> -)                                                                                   |
| PFC-31-10mc                                                                    | CF <sub>3</sub> CF <sub>2</sub> CF <sub>2</sub> CF <sub>3</sub>                                                                                             |
| PFC-31-10my                                                                    | (CF <sub>3</sub> ) <sub>2</sub> CFCF <sub>3</sub>                                                                                                           |
| PFC-C51-12mycm                                                                 | Ciclo(-CF(CF <sub>3</sub> )CF <sub>2</sub> CF(CF <sub>3</sub> )CF <sub>2</sub> -)                                                                           |
| PFC-C51-12mym, trans                                                           | Ciclo(-CF <sub>2</sub> CF(CF <sub>3</sub> )CF(CF <sub>3</sub> CF <sub>2</sub> -)                                                                            |
| PFC-C51-12mym, cis                                                             | Ciclo(-CF <sub>2</sub> CF(CF <sub>3</sub> )CF(CF <sub>3</sub> )CF <sub>2</sub> -)                                                                           |
| •                                                                              |                                                                                                                                                             |
| Perfluorometil-ciclopentano                                                    | Ciclo(-CF <sub>2</sub> CF <sub>2</sub> (CF <sub>3</sub> )CF <sub>2</sub> CF <sub>2</sub> CF <sub>2</sub> -)                                                 |
| Perfluorometil-ciclohexano                                                     | Ciclo(-CF <sub>2</sub> CF <sub>2</sub> (CF <sub>3</sub> )CF <sub>2</sub> CF <sub>2</sub> CF <sub>2</sub> CF <sub>2</sub> -)                                 |
| Perfluorodimetil-ciclohexano (orto, meta, o para)                              | Ciclo(-CF <sub>2</sub> CF <sub>2</sub> (CF <sub>3</sub> )CF <sub>2</sub> CF <sub>2</sub> (CF <sub>3</sub> )CF <sub>2</sub> -)                               |
| Perfluoroetil-ciclohexano                                                      | Ciclo(-CF <sub>2</sub> CF <sub>2</sub> (CF <sub>2</sub> CF <sub>3</sub> )CF <sub>2</sub> CF <sub>2</sub> CF <sub>2</sub> CF <sub>2</sub> -)                 |
| Perfluoroindano                                                                | C <sub>9</sub> F <sub>10</sub> (véase la estructura debajo)                                                                                                 |
| Perfluorotrimetil-ciclohexano (todos los posibles isómeros)                    | Ciclo(-CF <sub>2</sub> (CF <sub>3</sub> )CF <sub>2</sub> (CF <sub>3</sub> )CF <sub>2</sub> CF <sub>2</sub> (CF <sub>3</sub> )CF <sub>2</sub> -)             |
| Perfluoroisopropil-ciclohexano                                                 | Ciclo(-CF <sub>2</sub> CF <sub>2</sub> (CF <sub>2</sub> (CF <sub>3</sub> ) <sub>2</sub> )CF <sub>2</sub> CF <sub>2</sub> CF <sub>2</sub> CF <sub>2</sub> -) |
| Perfluorodecalina (cis o trans, se muestra el trans)                           | C <sub>10</sub> F <sub>18</sub> (véase la estructura debajo)                                                                                                |
| Perfluorometildecalina (cis o trans y todos los posibles isómeros adicionales) | C <sub>11</sub> F <sub>20</sub> (véase la estructura debajo)                                                                                                |
| Compuestos bromados                                                            |                                                                                                                                                             |
| Bromometano                                                                    | CH₃Br                                                                                                                                                       |
| Bromofluorometano                                                              | CH₂FBr                                                                                                                                                      |
| Bromodifluorometano                                                            | CHF <sub>2</sub> Br                                                                                                                                         |
| Dibromofluorometano                                                            | CHFBr <sub>2</sub>                                                                                                                                          |
| Tribromometano                                                                 | CHBr <sub>3</sub>                                                                                                                                           |
| Bromoetano                                                                     | CH₃CH₂Br                                                                                                                                                    |
| Bromoeteno                                                                     | CH <sub>2</sub> =CHBr                                                                                                                                       |
| 1,2-dibromoetano                                                               | CH₂BrCH₂Br                                                                                                                                                  |
| 1-bromo-1,2-difluoroeteno                                                      | CFBr=CHF                                                                                                                                                    |

| Compuesto                           | Estructura                                         |
|-------------------------------------|----------------------------------------------------|
| Compuestos yodados                  |                                                    |
| Yodotrifluorometano                 | CF <sub>3</sub> I                                  |
| Difluoroyodometano                  | CHF <sub>2</sub> I                                 |
| Fluoroyodometano                    | CH₂FI                                              |
| 1,1,2-trifluoro-1-yodoetano         | CF <sub>2</sub> ICH <sub>2</sub> F                 |
| 1,1,2,2-tetrafluoro-1-yodoetano     | CF <sub>2</sub> ICHF <sub>2</sub>                  |
| 1,1,2,2-tetrafluoro-1,2-diyodoetano | CF <sub>2</sub> ICF <sub>2</sub> I                 |
| Yodopentafluorobenceno              | C <sub>6</sub> F <sub>5</sub> I                    |
| Alcoholes                           |                                                    |
| Etanol                              | CH₃CH₂OH                                           |
| n-propanol                          | CH <sub>3</sub> CH <sub>2</sub> CH <sub>2</sub> OH |
| Isopropanol                         | CH <sub>3</sub> CH(OH)CH <sub>3</sub>              |
| Aldehidos y Cetonas                 |                                                    |
| Acetona (2-propanona)               | CH₃C(O)CH₃                                         |
| n-propanal                          | CH <sub>3</sub> CH <sub>2</sub> CHO                |
| n-butanal                           | CH₃CH₂CHO                                          |
| Metil-etil-cetona (2-butanona)      | CH₃C(O)CH₂CH₃                                      |
| Otro                                |                                                    |
| Óxido nitroso                       | N <sub>2</sub> O                                   |

Los compuestos enumerados en la Tabla 7 están disponibles comercialmente (de casas de suministros de productos químicos) o se pueden preparar por procesos conocidos en la técnica.

Se pueden utilizar compuestos trazadores individuales en combinación con un fluido de refrigeración/de calefacción en las composiciones de la presente invención o se pueden combinar múltiples compuestos trazadores en cualquier proporción para servir como una mezcla trazadora. La mezcla trazadora puede contener múltiples compuestos trazadores de la misma clase de compuestos o múltiples compuestos trazadores de diferentes clases de compuestos. Por ejemplo, una mezcla trazadora puede contener 2 o más hidrofluorocarburos deuterados, o un hidrofluorocarburo deuterado en combinación con uno o más perfluorocarburos.

5

Además, algunos de los compuestos de la Tabla 7 existen como isómeros múltiples, estructurales u ópticos. Isómeros individuales o isómeros múltiples del mismo compuesto pueden usarse en cualquier proporción para preparar el compuesto trazador. Además, los isómeros individuales o múltiples de un compuesto dado se pueden combinar en cualquier proporción con cualquier número de otros compuestos para servir como una mezcla trazadora.

El compuesto trazador o la mezcla trazadora pueden estar presentes en las composiciones en una concentración total de aproximadamente 50 partes por millón en peso (ppm) a aproximadamente 1.000 ppm. Preferiblemente, el compuesto trazador o la mezcla trazadora está presente en una concentración total de aproximadamente 50 ppm a aproximadamente 500 ppm y, lo más preferiblemente, el compuesto trazador o la mezcla trazadora está presente en una concentración total de aproximadamente 100 ppm a aproximadamente 300 ppm.

Las composiciones de la presente invención pueden comprender además un compatibilizador seleccionado del grupo que consiste en éteres de polioxialquilenglicol, amidas, nitrilos, cetonas, clorocarburos, ésteres, lactonas, éteres de arilo, fluoroéteres y 1,1,1-trifluoroalcanos. El compatibilizador se utiliza para mejorar la solubilidad de los refrigerantes de hidrofluorocarburos en los lubricantes de refrigeración convencionales. Los lubricantes de refrigeración se necesitan para lubricar el compresor de un aparato de refrigeración, de acondicionamiento de aire o de bomba de calor. El lubricante debe moverse por todo el aparato con el refrigerante, en particular, debe volver desde las zonas no integradas en el compresor hasta el compresor para seguir funcionando como lubricante y evitar el fallo del compresor.

Los refrigerantes de hidrofluorocarburos no son generalmente compatibles con los lubricantes de refrigeración convencionales tal como los aceites minerales, alquilbencenos, parafinas sintéticas, naftenos sintéticos y

poli(alfa)olefinas. Se han propuesto muchos lubricantes de sustitución, sin embargo, los polialquilenglicoles, los ésteres de polioles y los poli(éteres de vinilo), sugeridos para su uso con refrigerantes de hidrofluorocarburos son caros y absorben agua fácilmente. El agua en un sistema de refrigeración, de acondicionamiento de aire o de bomba de calor puede conducir a corrosión y a formación de partículas que pueden obstruir los tubos capilares y otros pequeños orificios en el sistema causando, finalmente, un fallo del sistema. Además, en los equipos existentes, para cambiar a un nuevo lubricante se requieren mucho tiempo y costosos procedimientos de purga. Por lo tanto, si es posible, es deseable continuar utilizando el lubricante original.

Los compatibilizadores de la presente invención mejoran la solubilidad de los refrigerantes de hidrofluorocarburos en los lubricantes de refrigeración convencionales y, por lo tanto, mejoran el retorno del aceite al compresor.

10

15

20

25

30

35

40

45

50

55

60

Los compatibilizadores éteres de polioxialquilenglicol de la presente invención están representados por la fórmula R<sup>1</sup>[(OR<sup>2</sup>)<sub>x</sub>OR<sup>3</sup>]<sub>y</sub>, en donde: x es un número entero de 1-3; y es un número entero de 1-4; R<sup>1</sup> se selecciona de hidrógeno y radicales de hidrocarburos alifáticos que tienen 1 a 6 átomos de carbono y sitios de enlace; R2 se selecciona de radicales hidrocarbileno alifáticos que tienen de 2 a 4 átomos de carbono; R3 se selecciona de hidrógeno y radicales de hidrocarburos alifáticos y alicíclicos que tienen de 1 a 6 átomos de carbono; al menos uno de R<sup>1</sup> y R<sup>3</sup> es dicho radical de hidrocarburo; y en donde dichos éteres de polioxialquilenglicol tienen un peso molecular de aproximadamente 100 a aproximadamente 300 unidades de masa atómica. Como se usa en el presente documento, sitios de enlace significan sitios de radicales disponibles para formar enlaces covalentes con otros radicales. Los radicales hidrocarbileno significan radicales de hidrocarburos divalentes. En la presente invención, compatibilizadores de éter de polioxialquilenglicol preferidos están representados por R<sup>1</sup>[(OR<sup>2</sup>)<sub>x</sub>OR<sup>3</sup>]<sub>y</sub>: x es preferiblemente 1-2; y es preferiblemente 1; R¹ y R³ se seleccionan, preferiblemente, de forma independiente entre hidrógeno y radicales de hidrocarburos alifáticos que tienen 1 a 4 átomos de carbono; R2 se selecciona preferiblemente de radicales hidrocarbileno alifáticos que tienen de 2 o 3 átomos de carbono, lo más preferiblemente 3 átomos de carbono; el peso molecular del éter de polioxialquilenglicol es preferiblemente de aproximadamente 100 a aproximadamente 250 unidades de masa atómica, lo más preferiblemente de aproximadamente 125 a aproximadamente 250 unidades de masa atómica. Los radicales de hidrocarburos R1 y R3 que tienen de 1 a 6 átomos de carbono pueden ser lineales, ramificados o cíclicos. Radicales de hidrocarburos R<sup>1</sup> y R<sup>3</sup> representativos incluyen metilo, etilo, propilo, isopropilo, butilo, isobutilo, sec-butilo, ter-butilo, pentilo, isopentilo, neopentilo, terpentilo, ciclopentilo, y ciclohexilo. Cuando los radicales hidroxilo libres en los presentes compatibilizadores de éter de polioxialquilenglicol pueden ser incompatibles con ciertos materiales de construcción (por ejemplo, Mylar®) del aparato de la refrigeración por compresión, R1 y R3 son, preferiblemente, radicales de hidrocarburos alifáticos que tienen 1 a 4 átomos de carbono, lo más preferiblemente 1 átomo de carbono. Los radicales hidrocarbileno alifáticos R<sup>2</sup> que tienen de 2 a 4 átomos de carbono forman radicales oxialquileno, -(OR<sup>2</sup>)<sub>x</sub>-, que se repiten, que incluyen radicales oxietileno, radicales oxipropileno y radicales oxibutileno. El radical oxialquileno R2 en una molécula de compatibilizador de éter de polioxialquilenglicol puede ser el mismo, o una molécula puede contener grupos R<sup>2</sup> oxialquileno diferentes. Los presentes compatibilizadores de éter de polioxialquilenglicol comprenden, preferiblemente, al menos un radical oxipropileno. Si R1 es un radical hidrocarbonado alifático o alicíclico que tiene de 1 a 6 átomos de carbono e y sitios de enlace, el radical puede ser lineal, ramificado o cíclico. Radicales de hidrocarburos alifáticos R¹ representativos que tienen dos sitios de unión incluyen, por ejemplo, un radical etileno, un radical propileno, un radical butileno, un radical pentileno, un radical hexileno, un radical ciclopentileno y un radical ciclohexileno. Radicales de hidrocarburos alifáticos R1 representativos que tienen tres o cuatro sitios de enlace incluyen restos derivados de polialcoholes, tales como trimetilolpropano, glicerina, pentaeritritol, 1,2,3trihidroxiciclohexano y 1,3,5-trihidroxiciclohexano, mediante la eliminación de sus radicales hidroxilo.

Los compatibilizadores de éteres de polioxialquilenglicol representativos incluyen pero no se limitan a: CH<sub>3</sub>OCH<sub>2</sub>CH(CH<sub>3</sub>)O(H o CH<sub>3</sub>) (éter metílico (o dimetílico) de propilenglicol), CH<sub>3</sub>O[CH<sub>2</sub>CH(CH<sub>3</sub>)O]<sub>2</sub>(H o CH<sub>3</sub>) (éter metílico (o dimetílico) de dipropilenglicol), CH<sub>3</sub>O[CH<sub>2</sub>CH(CH<sub>3</sub>)O]<sub>3</sub>(H o CH<sub>3</sub>) (éter metílico (o dimetílico) de C<sub>2</sub>H<sub>5</sub>OCH<sub>2</sub>CH(CH<sub>3</sub>)O(H o  $C_2H_5$ ) (éter etílico (0 dietílico) C<sub>2</sub>H<sub>5</sub>O[CH<sub>2</sub>CH(CH<sub>3</sub>)O]<sub>2</sub>(H o C<sub>2</sub>H<sub>5</sub>) (éter etílico (o dietílico) de dipropilenglicol), C<sub>2</sub>H<sub>5</sub>O[CH<sub>2</sub>CH(CH<sub>3</sub>)O]<sub>3</sub>(H o C<sub>2</sub>H<sub>5</sub>) (éter etílico (o dietílico) de tripropilenglicol), C<sub>3</sub>H<sub>7</sub>OCH<sub>2</sub>CH(CH<sub>3</sub>)O(H o C<sub>3</sub>H<sub>7</sub>) (éter n-propílico (o di-n-propílico) de propilenglicol), C<sub>3</sub>H<sub>7</sub>O[CH<sub>2</sub>CH(CH<sub>3</sub>)O]<sub>2</sub>(H o C<sub>3</sub>H<sub>7</sub>) (éter n-propílico (o di-n-propílico) de dipropilenglicol), C<sub>3</sub>H<sub>7</sub>O[CH<sub>2</sub>CH(CH<sub>3</sub>)O]<sub>3</sub>(H o C<sub>3</sub>H<sub>7</sub>) (éter n-propílico (o din-propílico) de tripropilenglicol), C<sub>4</sub>H<sub>9</sub>OCH<sub>2</sub>CH(CH<sub>3</sub>)OH (éter n-butílico de propilenglicol), C<sub>4</sub>H<sub>9</sub>O[CH<sub>2</sub>CH(CH<sub>3</sub>)O]<sub>2</sub>(H o C<sub>4</sub>H<sub>9</sub>) (éter n-butílico (o di-n-butílico) de dipropilenglicol), C<sub>4</sub>H<sub>9</sub>O[CH<sub>2</sub>CH(CH<sub>3</sub>)O]<sub>3</sub>(H o C<sub>4</sub>H<sub>9</sub>) (éter n-butílico (o di-n-butílico) de tripropilenglicol), (CH<sub>3</sub>)<sub>3</sub>COCH<sub>2</sub>CH(CH<sub>3</sub>)OH (étér t-butílico de propilenglicol), (CH<sub>3</sub>)<sub>3</sub>CO[CH<sub>2</sub>CH(CH<sub>3</sub>)O]<sub>2</sub>(H o (CH<sub>3</sub>)<sub>3</sub>) (éter t-butílico (o di-t-butílico) de dipropilenglicol), (CH<sub>3</sub>)<sub>3</sub>CO[CH<sub>2</sub>CH(CH<sub>3</sub>)O]<sub>3</sub>(H o (CH<sub>3</sub>)<sub>3</sub>) (éter t-butílico (o di-t-butílico) de tripropilenglicol), C<sub>5</sub>H<sub>11</sub>OCH<sub>2</sub>CH(CH<sub>3</sub>)OH (éter n-pentílico de propilenglicol), C<sub>4</sub>H<sub>9</sub>OCH<sub>2</sub>CH(C<sub>2</sub>H<sub>5</sub>)OH (éter n-butílico de butilenglicol), C<sub>4</sub>H<sub>9</sub>O[CH<sub>2</sub>CH(C<sub>2</sub>H<sub>5</sub>)O]<sub>2</sub>H (éter n-butílico de dibutilenglicol), éter tri-n-butílico de trimetilolpropano (C₂H₅C(CH₂O(CH₂)₃CH₃)₃) y éter di-n-butílico de trimetilolpropano (C<sub>2</sub>H<sub>5</sub>C(CH<sub>2</sub>OC(CH<sub>2</sub>)<sub>3</sub>CH<sub>3</sub>)<sub>2</sub>CH<sub>2</sub>OH).

Los compatibilizadores de amidas de la presente invención comprenden los representados por la fórmulas R¹C(O)NR²R³ y ciclo-[R⁴C(O)N(R⁵)], en las que R¹, R², R³ y R⁵ se seleccionan independientemente de radicales de hidrocarburos alifáticos y alicíclicos que tienen de 1 a 12 átomos de carbono; R⁴ se selecciona de radicales hidrocarbileno alifáticos que tienen de 3 a 12 átomos de carbono; y en donde dichas amidas tienen un peso molecular de aproximadamente 100 a aproximadamente 300 unidades de masa atómica. El peso molecular de dichas amidas es, preferiblemente, de aproximadamente 160 a aproximadamente 250 unidades de masa atómica.

R1, R2, R3 y R5 pueden incluir, opcionalmente, radicales de hidrocarburos sustituidos, es decir, radicales que contienen sustituyentes no hidrocarburos seleccionados de halógenos (p. ej., flúor, cloro) y alcóxidos (p. ej., metoxi). R1, R2, R3 y R5 pueden incluir, opcionalmente, radicales de hidrocarburos sustituidos por heteroátomos, es decir, radicales que contienen átomos de nitrógeno (aza-), oxígeno (oxa-) o de azufre (tia-) en una cadena radical compuesta, por otro lado, de átomos de carbono. En general, no estarán presentes más de tres sustituyentes no hidrocarburos y heteroátomos, y preferiblemente no más de uno, por cada 10 átomos de carbono en R1-3, y la presencia de cualquiera de tales sustituyentes no hidrocarburos y heteroátomos debe ser considerada en la aplicación de las limitaciones antes mencionadas del peso molecular. Los compatibilizadores de amida preferidos consisten en carbono, hidrógeno, nitrógeno y oxígeno. Los radicales de hidrocarburos alifáticos y alicíclicos R1, R2, R<sup>3</sup> y R<sup>5</sup> representativos incluyen metilo, etilo, propilo, isopropilo, butilo, isobutilo, sec-butilo, ter-butilo, pentilo, isopentilo, neopentilo, ter-pentilo, ciclopentilo, ciclohexilo, heptilo, octilo, nonilo, decilo, undecilo, dodecilo y sus isómeros configuracionales. Una realización preferida de compatibilizadores de amida son aquellos en los que R<sup>4</sup> en la fórmula ciclo[-R<sup>4</sup>C(O)N(R<sup>5</sup>)-] antes mencionada puede ser representada por el radical hidrocarbileno (CR<sup>6</sup>R<sup>7</sup>)<sub>n</sub>, en otras palabras, la fórmula:  $ciclo[-(CR^6R^7)_nC(O)N(R^5)-]$  en la que: se aplican los valores indicados previamente para peso molecular; n es un número entero de 3 a 5;  $R^5$  es un radical de hidrocarburo saturado que contiene 1 a 12 átomos de carbono, R<sup>6</sup> y R<sup>7</sup> se seleccionan independientemente (para cada n) por las reglas previamente ofrecidas que definen  $R^{1-3}$ . En las lactamas representadas por la fórmula: ciclo[-( $CR^6R^7$ ) $_nC(O)N(R^5)$ -], todos los  $R^6$  y  $R^7$  son preferiblemente hidrógeno, o contienen un único radical de hidrocarburo saturado entre las n unidades de metileno, y R<sup>5</sup> es un radical de hidrocarburo saturado que contiene 3 a 12 átomos de carbono. Por ejemplo, 1-(radical de hidrocarburo saturado)-5-metilpirrolidin-2-onas.

10

15

20

25

30

35

40

45

50

55

60

Los compatibilizadores de amidas representativos incluyen pero no se limitan a: 1-octilpirrolidin-2-ona, 1-decilpirrolidin-2-ona, 1-butil-5-metilpirrolidin-2-ona, 1-butil-5-metilpiperid-2-ona, 1-pentil-5-metilpiperid-2-ona, 1-hexilcaprolactama, 1-hexil-5-metilpiprolidin-2-ona, 5-metil-1-pentilpiperid-2-ona, 1,3-dimetilpiperid-2-ona, 1-metilcaprolactama, 1-butil-pirrolidin-2-ona, 1,5 dimetilpiperid-2-ona, 1-decil-5-metilpirrolidin-2-ona, 1-dodecilpirrolid-2-ona, N,N-dibutilformamida y N,N-diisopropilacetamida.

Los compatibilizadores de cetonas de la presente invención comprenden las cetonas representadas por la fórmula R¹C(O)R², en la que R¹ y R² se seleccionan independientemente de radicales de hidrocarburos alifáticos, alicíclicos y arílicos que tienen de 1 a 12 átomos de carbono, y en donde dichas cetonas tienen un peso molecular de desde aproximadamente 70 a aproximadamente 300 unidades de masa atómica. R1 y R2 en dicha cetonas se seleccionan, preferiblemente, de forma independiente de radicales de hidrocarburos alifáticos y alicíclicos que tienen de 1 a 9 átomos de carbono. El peso molecular de dichas cetonas es preferiblemente de aproximadamente 100 a 200 unidades de masa atómica. R1 y R2 pueden formar juntos un radical hidrocarbileno conectado y formando una cetona cíclica de anillo de cinco, seis, o siete miembros, por ejemplo, ciclopentanona, ciclohexanona y cicloheptanona. R<sup>1</sup> y R<sup>2</sup> pueden incluir, opcionalmente, radicales de hidrocarburos sustituidos, es decir, radicales que contienen sustituyentes no hidrocarburos seleccionados de halógenos (p. ej., flúor, cloro) y alcóxidos (p. ej., metoxi). R<sup>1</sup> y R<sup>2</sup> pueden incluir, opcionalmente, radicales de hidrocarburos sustituidos por heteroátomos, es decir, radicales que con tienen átomos nitrógeno (aza-), oxígeno (ceto-, oxa-) o azufre (tia-) en una cadena compuesta, por otro lado, de átomos de carbono. En general, no estarán presentes más de tres sustituyentes no hidrocarburos y heteroátomos, y preferiblemente no más de uno, por cada 10 átomos de carbono en R1 y R2, y la presencia de cualquiera de tales sustituyentes no hidrocarburos y heteroátomos debe ser considerada en la aplicación de las limitaciones antes mencionadas del peso molecular. Radicales de hidrocarburos alifáticos, alicíclicos y arílicos R1 y R<sup>2</sup> representativos en la fórmula general R<sup>1</sup>C(O)R<sup>2</sup> incluyen metilo, etilo, propilo, isopropilo, butilo, isobutilo, secbutilo, ter-butilo, pentilo, isopentilo, neopentilo, ter-pentilo, ciclopentilo, ciclopentilo, heptilo, octilo, nonilo, decilo, undecilo, dodecilo y sus isómeros configuracionales, así como fenilo, bencilo, cumenilo, mesitilo, tolilo, xililo y fenetilo.

Los compatibilizadores de cetonas representativos incluyen pero no se limitan a: 2-butanona, 2-pentanona, acetofenona, butirofenona, hexanofenona, ciclohexanona, ciclohexanona, 2-heptanona, 3-heptanona, 5-metil-2-hexanona, 2-octanona, 3-octanona, diisobutilcetona, 4-etilciclohexanona, 2-nonanona, 5-nonanona, 2-decanona, 4-decanona, 2-tridecanona, dihexilcetona y diciclohexilcetona.

Los compatibilizadores de nitrilos de la presente invención comprenden nitrilos representados por la fórmula R¹NC, en donde R¹ se selecciona de radicales de hidrocarburos alifáticos, alicíclicos o arílicos que tienen de 5 a 12 átomos de carbono, y en donde dichos nitrilos tienen un peso molecular de aproximadamente 90 a aproximadamente 200 unidades de masa atómica. R¹ en dichos compatibilizadores de nitrilo se selecciona, preferiblemente, de radicales de hidrocarburos alifáticos y alicíclicos que tienen de 8 a 10 átomos de carbono. El peso molecular de dichos compatibilizadores de nitrilo es, preferiblemente, de aproximadamente 120 a aproximadamente 140 unidades de masa atómica. R¹ puede incluir, opcionalmente, radicales de hidrocarburos sustituidos, es decir, radicales que contienen sustituyentes no hidrocarburos seleccionados de halógenos (p. ej.,flúor, cloro) y alcóxidos (p. ej., metoxi). R¹ puede incluir, opcionalmente, radicales de hidrocarburos sustituidos con heteroátomos, es decir, radicales que contienen átomos de nitrógeno (aza-), oxígeno (ceto-, oxa-) o azufre (tia-) en una cadena radical compuesta, por otro lado, de átomos de carbono. En general, no estarán presentes más de tres sustituyentes no hidrocarbonatos y heteroátomos, y preferiblemente no más de uno, por cada 10 átomos de carbono en R¹, y la presencia de cualquiera de tales sustituyentes no hidrocarburos y heteroátomos debe ser considerada en la aplicación de las limitaciones antes mencionadas del peso molecular. Los radicales de hidrocarburos alifáticos, alicíclicos y arílicos R¹

representativos en la fórmula general R¹CN incluyen pentilo, isopentilo, neopentilo, ter-pentilo, ciclopentilo, ciclopentilo, ciclopentilo, octilo, nonilo, decilo, undecilo, dodecilo y sus isómeros configuracionales, así como fenilo, bencilo, cumenilo, mesitilo, tolilo, xililo y fenetilo.

Los compatibilizadores de nitrilo representativos incluyen pero no se limitan a: 1-cianopentano, 2,2-dimetil-4-cianopentano, 1-cianohexano, 1-cianohexano, 1-cianohexano, 1-cianodecano, 2-cianodecano, 1-cianoundecano y 1-cianododecano.

5

10

20

25

40

Los compatibilizadores de clorocarburos de la presente invención comprenden clorocarburos representados por la fórmula RCI<sub>x</sub>, en donde: x se selecciona de los números enteros 1 o 2; R se selecciona de radicales de hidrocarburos alifáticos y alicíclicos que tienen de 1 a 12 átomos de carbono; y en donde dichos clorocarburos tienen un peso molecular de aproximadamente 100 a aproximadamente 200 unidades de masa atómica. El peso molecular de dichos compatibilizadores de clorocarburos es, preferiblemente, de aproximadamente 120 a 150 unidades de masa atómica. Los radicales de hidrocarburos alifáticos y alicíclicos R representativos en la fórmula general RCI<sub>x</sub> incluyen metilo, etilo, propilo, isopropilo, butilo, isobutilo, sec-butilo, ter-butilo, pentilo, isopentilo, neopentilo, ter-pentilo, ciclohexilo, heptilo, octilo, nonilo, decilo, undecilo, dodecilo y sus isómeros configuracionales.

Los compatibilizadores de clorocarburos representativos incluyen pero no se limitan a: 3-(clorometil) pentano, 3-cloro-3-metilpentano, 1-clorohexano, 1,6-diclorohexano, 1-cloroheptano, 1-clorooctano, 1-clorononano, 1-clorodecano y 1,1,1-triclorodecano.

Los compatibilizadores de ésteres de la presente invención comprenden ésteres representados por la fórmula general R¹CO₂R², en donde R¹ y R² se seleccionan independientemente de radicales alquilo y arilo, saturados e insaturados, lineales y cíclicos. Los esteres preferidos constan, esencialmente, de los elementos C, H y O, teniendo un peso molecular de aproximadamente 80 a aproximadamente 550 unidades de masa atómica.

Ésteres representativos incluyen pero no se limitan a: (CH<sub>3</sub>)<sub>2</sub>CHCH<sub>2</sub>OOC(CH<sub>2</sub>)<sub>2-4</sub>OCOCH<sub>2</sub>CH(CH<sub>3</sub>)<sub>2</sub> (éster diisobutílico dibásico), hexanoato de etilo, heptanoato de etilo, propionato de n-butilo, propionato de n-propilo, benzoato de etilo, ftalato de di-n-propilo, éster etoxietílico de ácido benzoico, carbonato de dipropilo, "Exxate 700" (un acetato comercial de alquilo C<sub>7</sub>), "Exxate 800" (un acetato comercial de alquilo C<sub>8</sub>), ftalato de dibutilo y acetato de ter-butilo.

Los compatibilizadores de lactona de la presente invención comprenden lactonas representadas por las estructuras [A], [B] y [C]:

$$\begin{bmatrix} R_2 \\ R_4 \end{bmatrix} \qquad \begin{bmatrix} R_2 \\ R_3 \end{bmatrix} \qquad \begin{bmatrix} R_3 \\ R_4 \end{bmatrix} \qquad \begin{bmatrix} R_4 \\ R_6 \end{bmatrix} \qquad \begin{bmatrix} R_4 \\ R_6 \end{bmatrix} \qquad \begin{bmatrix} R_4 \\ R_6 \end{bmatrix} \qquad \begin{bmatrix} R_5 \\ R_6 \end{bmatrix}$$

$$\begin{bmatrix} A \end{bmatrix} \qquad \begin{bmatrix} B \end{bmatrix} \qquad \begin{bmatrix} C \end{bmatrix}$$

Estas lactonas contienen el grupo funcional -CO<sub>2</sub>- en un anillo de seis (A), o preferiblemente cinco átomos (B), en donde para las estructuras de [A] y [B], R₁ a R<sub>8</sub> se seleccionan independientemente de hidrógeno o radicales hidrocarbilo lineales, ramificados, cíclicos, bicíclicos, saturados e insaturados. Cada R₁ a R<sub>8</sub> pueden estar conectados formando un anillo con otro R¹ a R<sup>8</sup>. La lactona puede tener un grupo alquilideno exocíclico como en la estructura [C], en la que R₁ a R<sub>6</sub> se seleccionan independientemente de hidrógeno o radicales hidrocarbilo lineales, ramificados, cíclicos, bicíclicos, saturados e insaturados. Cada R₁ a R<sub>6</sub> pueden estar conectados formando un anillo con otro R¹ a R<sup>6</sup>. Los compatibilizadores de lactona tienen un intervalo de peso molecular de aproximadamente 80 a aproximadamente 300 unidades de masa atómica, preferido de aproximadamente 80 a aproximadamente 200 unidades de masa atómica.

Los compatibilizadores de lactona representativos incluyen pero no se limitan a los compuestos enumerados en la Tabla 8.

Tabla 8

| Aditivo                                          | Estructura molecular | Fórmula Molecular                             | Peso Molecular<br>(u.m.a.) |
|--------------------------------------------------|----------------------|-----------------------------------------------|----------------------------|
| (E,Z)-3-etiliden-5-metil-<br>dihidro-furan-2-ona | 2                    | C <sub>7</sub> H <sub>10</sub> O <sub>2</sub> | 126                        |

| Aditivo                                                               | Estructura molecular                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Fórmula Molecular                              | Peso Molecular<br>(u.m.a.) |
|-----------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------|----------------------------|
| (E,Z)-3-propiliden-5-metil-<br>dihidro-furan-2-ona                    | 10 × 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | C <sub>8</sub> H <sub>12</sub> O <sub>2</sub>  | 140                        |
| (E,Z)-3-butiliden-5-metil-<br>dihidro-furan-2-ona                     | 2°0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | C <sub>9</sub> H <sub>14</sub> O <sub>2</sub>  | 154                        |
| (E,Z)-3-pentiliden-5-metil-<br>dihidro-furan-2-ona                    | 1000 mm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | C <sub>10</sub> H <sub>16</sub> O <sub>2</sub> | 168                        |
| (E,Z)-3-hexiliden-5-metil-<br>dihidro-furan-2-ona                     | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | C <sub>11</sub> H <sub>18</sub> O <sub>2</sub> | 182                        |
| (E,Z)-3-heptiliden-5-metil-<br>dihidro-furan-2-ona                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | C <sub>12</sub> H <sub>20</sub> O <sub>2</sub> | 196                        |
| (E,Z)-3-octiliden-5-metil-<br>dihidro-furan-2-ona                     | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | C <sub>13</sub> H <sub>22</sub> O <sub>2</sub> | 210                        |
| (E,Z)-3-noniliden-5- metil-<br>dihidro-furan-2-ona                    | Common Co | C <sub>14</sub> H <sub>24</sub> O <sub>2</sub> | 224                        |
| (E,Z)-3-deciliden-5-metil-<br>dihidro-furan-2-ona                     | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | C <sub>15</sub> H <sub>26</sub> O <sub>2</sub> | 238                        |
| (E,Z)-3-(3,5,5-<br>trimetilhexiliden)-5-metil-<br>dihidro-furan-2-ona | らいく                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | C <sub>14</sub> H <sub>24</sub> O <sub>2</sub> | 224                        |
| (E,Z)-3-ciclohexil-<br>metiliden-5-metil-dihidro-<br>furan-2-ona      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | C <sub>12</sub> H <sub>18</sub> O <sub>2</sub> | 194                        |
| gamma-octalactona                                                     | ~~~                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | C <sub>8</sub> H <sub>14</sub> O <sub>2</sub>  | 142                        |
| gamma-nonalactona                                                     | ~~~~                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | C <sub>9</sub> H <sub>16</sub> O <sub>2</sub>  | 156                        |
| gamma-decalactona                                                     | ~~~~~                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | C <sub>10</sub> H <sub>18</sub> O <sub>2</sub> | 170                        |
| gamma-undecalactona                                                   | ~~~~~                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | C <sub>11</sub> H <sub>20</sub> O <sub>2</sub> | 184                        |

| Aditivo                                                         | Estructura molecular                   | Fórmula Molecular                              | Peso Molecular<br>(u.m.a.) |
|-----------------------------------------------------------------|----------------------------------------|------------------------------------------------|----------------------------|
| gamma-dodecalactona                                             | ~~~~°                                  | C <sub>12</sub> H <sub>22</sub> O <sub>2</sub> | 198                        |
| 3-hexildihidro-furan-2-ona                                      | ~~~                                    | C <sub>10</sub> H <sub>18</sub> O <sub>2</sub> | 170                        |
| 3-heptildihidro-furan-2-<br>ona                                 | ~~~ <b>\</b>                           | C <sub>11</sub> H <sub>20</sub> O <sub>2</sub> | 184                        |
| cis-3-etil-5-metil-dihidro-<br>furan-2-ona                      | ~                                      | C <sub>7</sub> H <sub>12</sub> O <sub>2</sub>  | 128                        |
| cis-(3-propil-5-metil)-<br>dihidro-furan-2-ona                  |                                        | C <sub>8</sub> H <sub>14</sub> O <sub>2</sub>  | 142                        |
| <i>cis</i> -(3-butil-5-metil)-<br>dihidro-furan-2-ona           |                                        | C <sub>9</sub> H <sub>16</sub> O <sub>2</sub>  | 156                        |
| cis-(3-pentil-5-metil)-<br>dihidrofuran-2-ona                   |                                        | C <sub>10</sub> H <sub>18</sub> O <sub>2</sub> | 170                        |
| <i>cis</i> -3-hexil-5-metil-dihidro-furan-2-ona                 | ~~~                                    | C <sub>11</sub> H <sub>20</sub> O <sub>2</sub> | 184                        |
| cis-3-heptil-5-metil-<br>dihidro-furan-2-ona                    | ~~~~¢                                  | C <sub>12</sub> H <sub>22</sub> O <sub>2</sub> | 198                        |
| cis-3-octil-5-metil-dihidro-<br>furan-2-ona                     | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ | C <sub>13</sub> H <sub>24</sub> O <sub>2</sub> | 212                        |
| cis-3-(3,5,5-trimetilhexil)-<br>5-metil-dihidro-furan-2-<br>ona | * Linds                                | C <sub>14</sub> H <sub>26</sub> O <sub>2</sub> | 226                        |
| <i>cis</i> -3-ciclohexilmetil-5-<br>metil-dihidro-furan-2-ona   |                                        | C <sub>12</sub> H <sub>20</sub> O <sub>2</sub> | 196                        |

| Aditivo                                                                     | Estructura molecular                   | Fórmula Molecular                              | Peso Molecular<br>(u.m.a.) |
|-----------------------------------------------------------------------------|----------------------------------------|------------------------------------------------|----------------------------|
| 5-metil-5-hexil-dihidro-<br>furan-2-ona                                     | ١                                      | C <sub>11</sub> H <sub>20</sub> O <sub>2</sub> | 184                        |
| 5-metil-5-octil-dihidro-<br>furan-2-ona                                     | <u> </u>                               | C <sub>13</sub> H <sub>24</sub> O <sub>2</sub> | 212                        |
| Hexahidro-isobenzo-<br>furan-1-ona                                          | H C                                    | C <sub>8</sub> H <sub>12</sub> O <sub>2</sub>  | 140                        |
| delta-decalactona                                                           | ~~~~                                   | C <sub>10</sub> H <sub>18</sub> O <sub>2</sub> | 170                        |
| delta-undecalactona                                                         | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ | C <sub>11</sub> H <sub>20</sub> O <sub>2</sub> | 184                        |
| delta-dodecalactona                                                         | ~~~~~                                  | C <sub>12</sub> H <sub>22</sub> O <sub>2</sub> | 198                        |
| mezcla de 4-hexil-dihidro-<br>furan-2-ona y 3-hexil-<br>dihidro-furan-2-ona | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ | C <sub>10</sub> H <sub>18</sub> O <sub>2</sub> | 170                        |

Los compatibilizadores de lactona generalmente tienen una viscosidad cinemática de menos que aproximadamente  $7 \cdot 10^{-6} \text{ m}^2 \cdot \text{s}^{-1}$  (7 centistokes) a  $40^{\circ}\text{C}$ . Por ejemplo, gamma-undecalactona tiene una viscosidad cinemática de  $5,4 \cdot 10^{-6} \text{ m}^2 \cdot \text{s}^{-1}$  (5,4 centistokes) y cis-(3-hexil-5-metil)dihidrofuran-2-ona tiene una viscosidad de  $4,5 \cdot 10^{-6} \text{ m}^2 \cdot \text{s}^{-1}$  (4,5 centistokes) ambas a  $40^{\circ}\text{C}$ . Los compatibilizadores de lactona pueden estar disponibles comercialmente o preparados por procedimientos como se describe en la solicitud de patente de EE.UU. 10/910.495 presentada el 3 de agosto de 2004.

5

10

15

20

Los compatibilizadores de éteres de arilo de la presente invención comprenden además éteres de arilo representados por la fórmula R¹OR², en la que: R¹ se selecciona de radicales de hidrocarburos de arilo que tienen de 6 a 12 átomos de carbono; R² se selecciona de radicales de hidrocarburos alifáticos que tienen de 1 a 4 átomos de carbono; y en donde dichos éteres de arilo tienen un peso de molecular desde aproximadamente 100 a aproximadamente 150 unidades de masa atómica. Radicales arilo R¹ representativos en la fórmula general R¹OR² incluyen fenilo, bifenilo, cumenilo, mesitilo, tolilo, xililo, naftilo y piridilo. Los radicales hidrocarburos alifáticos R² representativos en la fórmula general R¹OR² incluyen metilo, etilo, propilo, isopropilo, butilo, isobutilo, sec-butilo y ter-butilo. Los compatibilizadores de éteres aromáticos representativos incluyen pero no se limitan a: metilfeniléter (anisol), 1,3-dimetiloxibenceno, etilfeniléter y butilfeniléter.

Los compatibilizadores de fluoroéteres de la presente invención comprenden los representados por la fórmula general  $R^1OCF_2CF_2H$ , en donde  $R^1$  se selecciona de radicales de hidrocarburos alifáticos, alicíclicos y aromáticos que tienen desde aproximadamente 5 a aproximadamente 15 átomos de carbono, preferiblemente radicales alquilo primarios, lineales, saturados. Compatibilizadores de fluoroéteres representativos incluyen pero no se limitan a:  $C_8H_{17}OCF_2CF_2H$  y  $C_6H_{13}OCF_2CF_2H$ . Debe señalarse que si el refrigerante es un fluoroéter, entonces el compatibilizador puede no ser el mismo fluoroéter.

Los compatibilizadores de fluoroéteres pueden comprender además éteres derivados de fluoroelefinas y polioles.

Los compatibilizadores de 1,1,1-trifluoroalcanos de la presente invención comprenden 1,1,1-trifluoroalcanos representados por la fórmula general CF<sub>3</sub>R<sup>1</sup>, en la que R<sup>1</sup> se selecciona de radicales de hidrocarburos alifáticos y alicíclicos que tienen de aproximadamente 5 a aproximadamente 15 átomos de carbono, preferentemente radicales alquilo primarios, lineales, saturados. Los compatibilizadores de 1,1,1-trifluoroalcano representativos incluyen pero no se limitan a: 1,1,1-trifluorohexano y 1,1,1-trifluorododecano.

10

15

20

25

30

35

40

55

Por cantidad eficaz de compatibilizador se entiende la cantidad de compatibilizador que conduce a una eficiente solubilización del lubricante en la composición y, por lo tanto, proporciona un adecuado retorno del aceite para optimizar el funcionamiento del aparato de refrigeración, de acondicionamiento de aire o de bomba de calor.

Las composiciones de la presente invención contendrán, típicamente, de aproximadamente el 0,1 a aproximadamente el 40 por ciento en peso, preferiblemente de aproximadamente el 0,2 a aproximadamente 20 por ciento en peso, y más preferiblemente de aproximadamente el 0,3 a aproximadamente el 10 por ciento en peso de compatibilizador en las composiciones de la presente invención.

La presente invención se refiere además a un procedimiento de solubilización de una composición de refrigerante o de un fluido de transferencia de calor que comprende las composiciones de la presente invención en un lubricante de refrigeración seleccionado del grupo que consiste en aceites minerales, alquilbencenos, parafinas sintéticas, naftenos sintéticos y poli(alfa)olefinas, en donde dicho procedimiento comprende poner en contacto dicho lubricante con dicha composición en presencia de una cantidad eficaz de un compatibilizador, en donde dicho compatibilizador se selecciona del grupo que consiste en éteres de polioxialquilenglicol, amidas, nitrilos, cetonas, clorocarburos, ésteres, lactonas, éteres de arilo, fluoroéteres y 1,1,1-trifluoroalcanos.

La presente invención se refiere además a un procedimiento para mejorar el retorno del aceite al compresor en un aparato de la refrigeración por compresión, de acondicionamiento de aire o de bomba de calor, comprendiendo dicho procedimiento el uso de una composición que comprende un compatibilizador en dicho aparato.

Las composiciones de la presente invención pueden comprender además un colorante ultravioleta (UV) y, opcionalmente, un agente solubilizante. El colorante UV es un componente útil para la detección de fugas de la composición al permitir que se observe la fluorescencia del colorante de la composición en un punto de fuga o en las proximidades del aparato de refrigeración, de acondicionamiento de aire o de bomba de calor. Puede observarse la fluorescencia del colorante bajo una luz ultravioleta. Pueden ser necesarios agentes solubilizantes debido a la pobre solubilidad de tales colorantes UV en algunas composiciones.

Por colorante "ultravioleta" se entiende una composición fluorescente UV que absorbe la luz en la región ultravioleta o ultravioleta "cercana" del espectro electromagnético. Puede detectarse la fluorescencia producida por el colorante fluorescente UV bajo iluminación por una luz UV que emite radiación con una longitud de onda en cualquier lugar desde 10 nanómetros a 750 nanómetros. Por lo tanto, si existe una fuga de una composición que contenga un colorante fluorescente UV de este tipo por un punto dado del aparato de refrigeración, de acondicionamiento de aire o de bomba de calor, la fluorescencia se puede detectar en el punto de la fuga. Los colorantes fluorescentes UV de este tipo incluyen pero no se limitan a naftalimidas, perilenos, cumarinas, antracenos, fenantrenos, xantenos, tioxantenos, naftoxantenos, fluoresceínas y derivados o combinaciones de los mismos.

Agentes solubilizantes de la presente invención comprenden al menos un compuesto seleccionado del grupo que consiste en hidrocarburos, éteres de hidrocarburos, éteres de polioxialquilenglicol, amidas, nitrilos, cetonas, clorocarburos, ésteres, lactonas, éteres de arilo, fluoroéteres y 1,1,1-trifluoroalcanos. Los agentes solubilizantes éteres de polioxialquilenglicol, amidas, nitrilos, cetonas, clorocarburos, ésteres, lactonas, éteres de arilo, fluoroéteres y 1,1,1-trifluoroalcanos se han definido previamente en el presente documento de ser compatibilizadores para uso con lubricantes de refrigeración convencionales.

Agentes solubilizantes de hidrocarburos de la presente invención comprenden hidrocarburos que incluyen alcanos o alquenos de cadena lineal, de cadena ramificada o cíclicos que contienen 5 o menos átomos de carbono y solo hidrógeno con ningún otro grupo funcional. Agentes solubilizantes de hidrocarburos representativos comprenden propano, propileno, ciclopropano, n-butano, isobutano, 2-metilbutano y n-pentano. Debe señalarse que si la composición contiene un hidrocarburo, entonces el agente solubilizante puede no ser el mismo hidrocarburo.

Agentes solubilizantes éteres de hidrocarburos de la presente invención comprenden éteres que contienen sólo carbono, hidrógeno y oxígeno, tal como dimetiléter (DME).

Agentes solubilizantes de la presente invención puede estar presentes como un solo compuesto, o pueden estar presentes como una mezcla de más de un agente solubilizante. Las mezclas de agentes solubilizantes pueden contener dos agentes solubilizantes de la misma clase de compuestos, digamos dos lactonas, o dos agentes solubilizantes de dos clases diferentes, tal como una lactona y un éter de polioxialquilenglicol.

- En las presentes composiciones que comprenden refrigerante y colorante fluorescente UV, o que comprenden fluido de transferencia de calor y colorante fluorescente UV, desde aproximadamente el 0,001 por ciento en peso hasta aproximadamente el 1,0 por ciento en peso de la composición es colorante UV, preferiblemente desde aproximadamente el 0,005 por ciento en peso hasta aproximadamente el 0,5 por ciento en peso, y más preferiblemente desde 0,01 por ciento en peso hasta aproximadamente el 0,25 por ciento en peso.
- Agentes solubilizantes tales como cetonas pueden tener un olor desagradable, que puede enmascararse por la adición de un agente o fragancia que enmascara el olor. Ejemplos típicos de agentes o fragancias que enmascaran el olor pueden incluir Evergreen, Limón Fresco, Cerezas, Canela, Hierbabuena, Floral o Cáscara de Naranja todos disponibles comercialmente, así como d-limoneno y pineno. Tales agentes enmascarantes del olor se pueden utilizar en concentraciones desde aproximadamente el 0,001% a aproximadamente tanto como 15% en peso basado en el peso combinado de agente enmascarante del olor y agente solubilizante.
  - La solubilidad de estos colorantes fluorescentes UV en las composiciones de la presente invención puede ser pobre. Por lo tanto, los procedimientos para introducir estos colorantes en el aparato de refrigeración, de acondicionamiento de aire o de bomba de calor han sido incómodos, costosos y requieren mucho tiempo. La patente de EE.UU. nº RE 36.951 describe un procedimiento, que utiliza un colorante en polvo, gránulos sólidos o suspensión de colorante que puede ser insertado en un componente del aparato de refrigeración, de acondicionamiento de aire o de bomba de calor. A medida que el refrigerante y el lubricante se hacen circular a través del aparato, el colorante se disuelve o dispersa y se lleva por todo el aparato. En la bibliografía se describen otros numerosos procedimientos para introducir el colorante en un aparato de refrigeración o acondicionamiento de aire.

20

- Idealmente, el colorante fluorescente UV podría ser disuelto en el propio refrigerante sin requerir por ello de ningún procedimiento especializado para la introducción en el aparato de refrigeración, de acondicionamiento de aire o de bomba de calor. La presente invención se refiere a composiciones que incluyen colorante fluorescente UV, que se puede introducir en el sistema como una solución en el refrigerante. Las composiciones inventivas permitirán el almacenamiento y transporte de composiciones que contienen colorante incluso a bajas temperaturas mientras se mantiene el colorante en solución.
- En las presentes composiciones que comprenden refrigerante, el colorante fluorescente UV y el agente solubilizante, o que comprenden fluido de transferencia de calor y colorante fluorescente UV y agente solubilizante, desde aproximadamente el 1 a aproximadamente el 50 por ciento en peso, preferiblemente desde aproximadamente el 2 a aproximadamente el 25 ciento en peso, y lo más preferiblemente desde aproximadamente el 5 a aproximadamente el 15 por ciento en peso de la composición combinada es agente solubilizante. En las composiciones de la presente invención, el colorante fluorescente UV está presente en una concentración de aproximadamente el 0,001 por ciento en peso hasta aproximadamente el 1,0 por ciento en peso, preferiblemente desde aproximadamente el 0,005 por ciento en peso hasta aproximadamente el 0,5 por ciento en peso, y lo más preferiblemente desde 0,01 por ciento en peso hasta aproximadamente el 0,25 por ciento en peso.
- La presente invención se refiere además a un procedimiento de usar las composiciones que comprende además colorante fluorescente ultravioleta, y, opcionalmente, agente solubilizante, en un aparato de refrigeración, de acondicionamiento de aire o de bomba de calor. El procedimiento comprende introducir la composición en el aparato de refrigeración, de acondicionamiento de aire o de bomba de calor. Esto puede hacerse disolviendo el colorante fluorescente UV en la composición en presencia de un agente solubilizante e introduciendo la combinación en el aparato. Alternativamente, esto se puede hacer combinando el agente de solubilización y el colorante fluorescente UV e introduciendo dicha combinación en el aparato de refrigeración o de acondicionamiento de aire que contiene refrigerante y/o fluido de transferencia de calor. La composición resultante se puede usar en el aparato de refrigeración, de acondicionamiento de aire o de bomba de calor.
  - La presente invención se refiere además a un procedimiento de usar las composiciones que comprenden colorante fluorescente ultravioleta para detectar fugas. La presencia del colorante en las composiciones permite la detección de una fuga de refrigerante en un aparato de refrigeración, de acondicionamiento de aire o de bomba de calor. La detección de fugas ayuda a abordar, resolver o evitar el funcionamiento ineficiente del aparato o del sistema o el fallo del equipo. La detección de fugas también ayuda a que se retengan los productos químicos utilizados en el funcionamiento del aparato.
- El procedimiento comprende proporcionar la composición que comprende refrigerante, colorante fluorescente ultravioleta, tal como se describió en el presente documento y, opcionalmente, un agente solubilizante como se describió en el presente documento, a un aparato de refrigeración, de acondicionamiento de aire o de bomba de calor y emplear un medio adecuado para detectar el refrigerante que contiene colorante fluorescente en el UV. Medios adecuados para detectar el colorante incluyen pero no se limitan a lámparas ultravioleta, a menudo denominadas "luz negra" o "luz azul". Tales lámparas ultravioletas están disponibles comercialmente de numerosas fuentes

específicamente diseñadas para este propósito. Una vez que se ha introducido en el aparato de refrigeración, de acondicionamiento de aire o de bomba de calor la composición que contiene el colorante fluorescente ultra-violeta, y se ha dejado circular a través de todo el sistema, se puede encontrar una fuga por el resplandor producido por dicha lámpara ultra-violeta en el aparato y la observación de la fluorescencia del colorante en las proximidades de cualquier punto de fuga.

5

10

15

20

25

30

35

45

50

55

La presente invención se refiere además a un procedimiento para sustituir un refrigerante de alto PCG en un aparato de refrigeración, de acondicionamiento de aire o de bomba de calor, en el que dicho refrigerante de alto PCG se selecciona del grupo que consiste en R134a, R22, R245fa, R114, R236fa, R124, R410A, R407C, R417A, R422A, R507A y R404A, comprendiendo dicho procedimiento proporcionar una composición de la presente invención a dicho aparato de refrigeración, de acondicionamiento de aire o de bomba de calor que utiliza, utilizó o está diseñado para utilizar dicho refrigerante con alto PCG.

Los sistemas de la refrigeración por compresión de vapor, acondicionamiento de aire o bomba de calor incluyen un evaporador, un compresor, un condensador y un dispositivo de expansión. Un ciclo de compresión de vapor reutiliza refrigerante en múltiples etapas produciendo un efecto de enfriamiento en una etapa y un efecto de calentamiento en una etapa diferente. El ciclo se puede describir de una forma sencilla como sigue. El refrigerante líquido entra en un evaporador a través de un dispositivo de expansión, y el refrigerante líquido hierve en el evaporador a una baja temperatura para formar un gas y producir enfriamiento. El gas a baja presión entra en un compresor donde el gas es comprimido hasta alcanzar su presión y temperatura. El refrigerante gaseoso a mayor presión (comprimido) entra entonces en el condensador en el que el refrigerante se condensa y descarga su calor al ambiente. El refrigerante vuelve al dispositivo de expansión a través del cual el líquido se expande desde el nivel de mayor presión en el condensador hasta el nivel de baja presión en el evaporador, repitiéndose así el ciclo.

Como se utiliza en el presente documento, aparato móvil de refrigeración o aparato móvil de acondicionamiento de aire se refiere a cualquier aparato de refrigeración o de acondicionamiento de aire incorporado en una unidad de transporte por carretera, ferrocarril, mar o aire. Además, se incluyen en la presente invención los aparatos que se supone que proporcionan refrigeración o acondicionamiento de aire a un sistema independiente con cualquier soporte móvil, conocidos como sistemas "intermodales",. Tales sistemas intermodales incluyen "contenedores" (transporte combinado marítimo/terrestre) así como "cajas móviles" (transporte combinado por carretera y ferrocarril). La presente invención es particularmente útil para un aparato de refrigeración o de acondicionamiento de aire para el transporte por carretera, tal como un aparato de acondicionamiento de aire de un automóvil o de un equipo de transporte por carretera refrigerado.

La presente invención se refiere además a un procedimiento para producir enfriamiento que comprende evaporar las composiciones de la presente invención en las proximidades de un cuerpo que ha de ser enfriado, y después de ello condensar dichas composiciones.

La presente invención se refiere además a un procedimiento para producir calor que comprende condensar las composiciones de la presente invención en las proximidades de un cuerpo que ha de ser calentado, y después de ello evaporar dichas composiciones.

La presente invención se refiere además a un aparato de refrigeración, de acondicionamiento de aire o de bomba de calor que contiene una composición de la presente invención en el que dicha composición comprende al menos una fluoroolefina.

40 La presente invención se refiere además a un aparato móvil de acondicionamiento de aire que contiene una composición de la presente invención en el que dicha composición comprende al menos una fluoroolefina.

La presente invención se refiere además a un procedimiento para la detección temprana de una fuga de refrigerante en un aparato de refrigeración, de acondicionamiento de aire o de bomba de calor comprendiendo dicho procedimiento la utilización de una composición no azeotrópica en dicho aparato, y el seguimiento de una disminución del rendimiento del enfriamiento. Las composiciones no azeotrópicas se fraccionarán en la fuga de un aparato de refrigeración, de acondicionamiento de aire o de bomba de calor, y el componente de menor temperatura de ebullición (mayor presión de vapor) saldrá del aparato en primer lugar. Cuando esto sucede, si el componente de menor temperatura de ebullición en esa composición proporciona la mayoría de la capacidad de refrigeración, habrá una marcada disminución de la capacidad y, por ello, del rendimiento del aparato. En un sistema de acondicionamiento de aire de un automóvil, como ejemplo, los pasajeros en el automóvil detectarán una disminución en la capacidad de enfriar del sistema. Esta disminución de la capacidad de enfriar puede interpretarse de indicar que se está perdiendo refrigerante y que el sistema necesita ser reparado.

La presente invención se refiere además a un procedimiento de usar las composiciones de la presente invención como una composición de fluido de transferencia de calor, comprendiendo dicho proceso el transporte de dicha composición desde una fuente de calor hasta un disipador de calor.

Los fluidos de transferencia de calor se utilizan para transferir, mover o eliminar calor de un espacio, lugar, objeto o cuerpo hasta un espacio, lugar, objeto o cuerpo diferente por radiación, conducción o convección. Un fluido de transferencia de calor puede funcionar como un refrigerante secundario proporcionando medios de transferencia

para el enfriamiento (o calentamiento) desde un sistema de refrigeración (o calentamiento) remoto. En algunos sistemas, el fluido de transferencia de calor puede permanecer en un estado constante durante todo el proceso de transferencia (es decir, sin evaporarse ni condensar). Alternativamente, los procesos de enfriamiento por evaporación pueden utilizar también fluidos de transferencia de calor.

Una fuente de calor se puede definir como cualquier espacio, lugar, objeto o cuerpo del que se desea transferir, mover o eliminar el calor. Ejemplos de fuentes de calor pueden ser espacios (abiertos o cerrados) que requieren refrigeración o enfriamiento, tal como los ejemplos de frigoríficos o congeladores en un supermercado, edificios que requieren el acondicionamiento de aire o el compartimento de pasajeros de un automóvil que requiere acondicionamiento del aire. Un disipador de calor se puede definir como cualquier espacio, lugar, objeto o cuerpo capaz de absorber calor. Un sistema de refrigeración por compresión de vapor es un ejemplo de un disipador de calor de este tipo.

En otra realización, la presente invención se refiere a composiciones de agentes de soplado que comprenden las composiciones que contienen fluoroolefina como se ha descrito en el presente documento para su uso en la preparación de espumas. En otras realizaciones, la invención proporciona composiciones espumables, y preferiblemente composiciones espuma de poliuretano y de poliisocianato, y procedimiento de preparación de espumas. En tales realizaciones de espuma, una o más de las presentes composiciones que contienen fluoroolefina se incluyen como un agente de soplado en las composiciones espumables, cuya composición incluye preferiblemente uno o más componentes adicionales capaces de reaccionar y de formar espuma en condiciones apropiadas para formar una estructura de espuma o celular. Cualquiera de los procedimientos bien conocidos en la técnica, tal como los descritos en "Polyurethanes Chemistry and Technology", Volúmenes I y II, Saunders y Frisch, 1962, John Wiley and Sons, Nueva York, NY, puede utilizarse o adaptarse para uso de acuerdo con las realizaciones de espuma de la presente invención.

15

20

25

30

50

55

La presente invención se refiere además a un procedimiento para formar una espuma que comprende: (a) añadir a una composición espumable una composición de la presente invención que contiene fluoroolefina; y (b) hacer reaccionar la composición espumable en condiciones eficaces para formar una espuma.

Otra realización de la presente invención se refiere al uso de las composiciones que contienen fluoroolefina tal como se ha descrito en el presente documento para usar como propulsantes en composiciones pulverizables. Además, la presente invención se refiere a una composición pulverizable que comprende las composiciones que contienen fluoroolefina tal como se ha descrito en el presente documento. El ingrediente activo que será pulverizado junto con ingredientes, disolventes y otros materiales inertes puede estar presente también en una composición pulverizable. Preferiblemente, la composición pulverizable es un aerosol. Materiales activos adecuados para ser pulverizados incluyen, sin limitaciones, materiales cosméticos, tales como desodorantes, perfumes, lacas para el cabello, limpiadores y agentes de abrillantado, así como materiales medicinales, tales como medicamentos anti-asma y anti-halitosis

La presente invención se refiere además a un procedimiento para la producción de productos en aerosol que comprenden la etapa de añadir una composición que contiene fluoroolefina tal como se ha descrito en el presente documento a ingredientes activos en un envase de aerosol, en el que dicha composición funciona como un propulsor.

Un aspecto adicional proporciona procedimientos para la supresión de una llama, comprendiendo dichos procedimientos poner en contacto una llama con un fluido que comprende una composición de la presente divulgación que contiene fluoroolefina. Para poner en contacto la llama con la presente composición se puede utilizar cualquier procedimiento adecuado. Por ejemplo, una composición de la presente divulgación que contiene fluoroolefina puede ser pulverizada, vertida y similar, sobre la llama, o al menos una parte de la llama se puede sumergir en la composición de supresión de la llama. Ante las enseñanzas del presente documento, los expertos en la técnica podrán fácilmente adaptar diversos aparatos y procedimientos convencionales de supresión de la llama para uso en la presente divulgación.

Una realización adicional proporciona procedimientos de extinción o supresión de un fuego en una aplicación de inundación total que comprende proporcionar un agente que comprende una composición que contiene fluoroolefina de la presente divulgación; disponer el agente en un sistema de descarga a presión; y descargar el agente en un área para extinguir o suprimir el fuego en ese área. Otra realización proporciona procedimientos para la inertización de un área, para prevenir un fuego o una explosión, que comprende proporcionar un agente que comprende una composición de la presente divulgación que contiene fluoroolefina; disponer el agente en un sistema de descarga a presión; y descargar el agente en el área para evitar que se produzca un fuego o una explosión.

El término "extinción" se utiliza normalmente para referirse a la eliminación completa de un fuego; mientras que "supresión" se utiliza a menudo para referirse a la disminución, pero no necesariamente a la eliminación total, de un fuego o de una explosión. Como se utiliza en el presente documento, los términos "extinción" y "supresión" se utilizarán indistintamente. Hay cuatro tipos generales de aplicaciones de halocarburos en la protección contra el fuego y explosiones. (1) En aplicaciones de inundación total para la extinción y/o supresión del fuego, el agente es descargado en un espacio para lograr una concentración suficiente que extinga o suprima un fuego existente. El uso

de inundación total incluye la protección de espacios cerrados y potencialmente ocupados, como salas de ordenadores, así como espacios especializados, a menudo no ocupados como las góndolas de los motores de aeronaves y los compartimentos de los motores en vehículos. (2) En aplicaciones de transmisión, el agente se aplica directamente sobre un fuego o en la zona de un incendio. Esto se logra normalmente utilizando unidades con ruedas o portátiles operadas manualmente. Un segundo procedimiento, incluido como una aplicación de transmisión, utiliza un sistema "localizado", que descarga un agente hacia un fuego desde una o más boquillas difusoras. Sistemas localizados pueden ser activados de forma manual o automáticamente. (3) En la supresión de explosiones, una composición de la presente divulgación que contiene fluoroolefina es descargada para suprimir una explosión que ya se ha iniciado. El término "supresión" se utiliza normalmente en esta aplicación porque la explosión normalmente es autolimitante. Sin embargo, el uso de este término no implica necesariamente que la explosión no sea extinguida por el agente. En esta aplicación, se utiliza normalmente un detector para detectar la expansión de una bola de fuego de una explosión, y el agente es descargado rápidamente para suprimir la explosión. La supresión de una explosión se utiliza principalmente, pero no exclusivamente, en aplicaciones de defensa. (4) En inertización, una composición de la presente divulgación que contiene fluoroolefina es descargada en un espacio para evitar una explosión o que se inicie un incendio. A menudo, se utiliza un sistema similar o idéntico al utilizado para la extinción o supresión de un incendio mediante inundación total. Normalmente, se detecta la presencia de una situación peligrosa (por ejemplo, concentraciones peligrosas de gases inflamables o explosivos), y después se descarga la composición de la presente divulgación que contiene fluoroolefina se descarga entonces para evitar la explosión o que se produzca el incendio hasta que la situación se pueda remediar.

El procedimiento de extinción puede llevarse a cabo mediante la introducción de la composición en un área cerrada que rodea un fuego. Cualquiera de los procedimientos conocidos de introducción se puede utilizar siempre que se midan las cantidades apropiadas de la composición en el área cerrada a intervalos apropiados. Por ejemplo, una composición puede ser introducida mediante transmisión, p. ej., utilizando equipo de extinción de incendios portátil (o fijo) convencional; mediante nebulización; o mediante inundación, p. ej., mediante la liberación (utilizando tuberías, válvulas y controles apropiados) de la composición en el área cerrada que rodea al fuego. La composición se puede combinar, opcionalmente, con un propulsante inerte, p. ej., nitrógeno, argón, productos de descomposición de polímeros glicidilazida o dióxido de carbono, para aumentar la velocidad de descarga de la composición desde el equipo de transmisión o de inundación utilizado.

Preferiblemente, el proceso de extinción implica lanzar una composición de la presente divulgación que contiene fluoroolefina a un fuego o una llama en una cantidad suficiente para extinguir el fuego o la llama. Un experto en este campo comprenderá que la cantidad de supresor de la llama necesaria para extinguir un fuego determinado dependerá de la naturaleza y extensión de la amenaza. Si el supresor de llama va a ser lanzado por inundación, los datos de la prueba del quemador de copa son útiles para determinar la cantidad o concentración de supresor de llama requerida para extinguir un tipo y tamaño particulares de un fuego.

Las pruebas de laboratorio útiles para determinar los intervalos eficaces de concentración de las composiciones que contienen fluoroolefina cuando se utilizan conjuntamente con extinguir o suprimir un fuego en una aplicación de inundación total o inertización de un fuego se describen, por ejemplo, en la patente de EE.UU. Nº 5.759.430.

## **Ejemplos**

5

10

15

30

45

Ejemplo 1

## 40 Impacto de la fuga de vapor

Un recipiente se carga con una composición inicial, a una temperatura de -25°C o, si se especifica, a 25°C, y se mide la presión de vapor inicial de la composición. Se deja que la composición se fugue del recipiente, mientras la temperatura se mantiene constante, hasta que se elimina el 50 por ciento en peso de la composición inicial, en cuyo momento se mide la presión de vapor de la composición que permanece en el recipiente. Los resultados se muestran en la Tabla 9.

Tabla 9

| % en peso de la composición | P. inicial<br>(psia) | P. inicial<br>(kPa) | Después de<br>50% de fuga<br>(psia) | Después de<br>50% de fuga<br>(kPa) | ΔP<br>(%) |
|-----------------------------|----------------------|---------------------|-------------------------------------|------------------------------------|-----------|
| trans-HFC-1234ze            | e/HFC-134            |                     |                                     |                                    |           |
| 45,7/54,3                   | 12,5                 | 86                  | 12,5                                | 86                                 | 0,0%      |
| 60/40                       | 12,4                 | 85                  | 12,4                                | 85                                 | 0,2%      |
| 80/20                       | 12,0                 | 83                  | 11,9                                | 82                                 | 0,7%      |
| 90/10                       | 11,7                 | 80                  | 11,6                                | 80                                 | 0,7%      |
| 99/1                        | 11,2                 | 77                  | 11,2                                | 77                                 | 0,1%      |
|                             |                      |                     |                                     |                                    |           |

| 20/80          | 12,2         | 84         | 12,2         | 84         | 0,4%         |
|----------------|--------------|------------|--------------|------------|--------------|
| 10/90          | 11,9         | 82         | 11,9         | 82         | 0,6%         |
| 1/99           | 11,6         | 80         | 11,6         | 80         | 0,1%         |
| 1799           | 11,0         | 00         | 11,0         | 00         | 0,170        |
| trans-HFC-1234 | ze/HFC-134a  |            |              |            |              |
| 9,5/90,5       | 15,5         | 107        | 15,5         | 107        | 0,0%         |
| 1/99           | 15,5         | 107        | 15,5         | 107        | 0,0%         |
| 40/60          | 15,1         | 104        | 15,0         | 103        | 0,9%         |
| 60/40          | 14,3         | 99         | 14,0         | 96         | 2,5%         |
| 80/20          | 13,1         | 90         | 12,6         | 87         | 4,0%         |
| 90/10          | 12,3         | 85         | 11,9         | 82         | 3,3%         |
| 99/1           | 11,3         | 78         | 11,3         | 78         | 0,5%         |
|                |              |            |              |            |              |
| trans-HFC-1234 | ze/HFC-152a  |            |              |            |              |
| 21,6/78,4      | 14,6         | 101        | 14,6         | 101        | 0,0%         |
| 10/90          | 14,6         | 101        | 14,6         | 101        | 0,0%         |
| 1/99           | 14,5         | 100        | 14,5         | 100        | 0,0%         |
| 40/60          | 14,5         | 100        | 14,5         | 100        | 0,1%         |
| 60/40          | 14,1         | 97         | 13,9         | 96         | 1,1%         |
| 80/20          | 13,2         | 91         | 12,8         | 88         | 2,5%         |
| 90/10          | 12,4         | 85         | 12,0         | 83         | 2,6%         |
| 99/1           | 11,3         | 78         | 11,3         | 78         | 0,4%         |
|                |              |            |              |            |              |
| trans-HFC-1234 |              | 474        | 05.0         | 474        | 0.00/        |
| 1/99<br>10/90  | 25,2         | 174        | 25,2         | 174        | 0,0%         |
|                | 25,0         | 172        | 24,8         | 171<br>165 | 0,6%         |
| 20/80<br>40/60 | 24,5<br>22,8 | 169<br>157 | 24,0<br>21,2 | 146        | 2,1%<br>7,0% |
| 52/48          | 21,3         | 147        | 19,2         | 132        | 9,9%         |
| 53/47          | 21,3         | 146        | 19,0         | 131        | 10,2%        |
| 99/1           | 11,5         | 79         | 11,3         | 78         | 1,2%         |
| 90/10          | 13,8         | 95         | 12,6         | 87         | 8,6%         |
| 88/12          | 14,3         | 99         | 12,9         | 89         | 9,5%         |
| 87/13          | 14,5         | 100        | 13,1         | 90         | 10,0%        |
| 01110          | . 1,0        | 100        | 10,1         |            | 10,070       |
| trans-HFC-1234 | ze/HFC-227ea |            |              |            |              |
| 59,2/40,8      | 11,7         | 81         | 11,7         | 81         | 0,0%         |
| 40/60          | 11,6         | 80         | 11,5         | 79         | 0,3%         |
| 20/80          | 11,1         | 76         | 10,9         | 75         | 1,3%         |
| 10/90          | 10,6         | 73         | 10,5         | 72         | 1,3%         |
| 1/99           | 10,0         | 69         | 10,0         | 69         | 0,2%         |
|                |              |            |              |            |              |

| 80/20            | 11,6                | 80  | 11,5      | 80  | 0,2%    |
|------------------|---------------------|-----|-----------|-----|---------|
| 90/10            | 11,4                | 79  | 11,4      | 78  | 0,3%    |
| 99/1             | 11,2                | 77  | 11,2      | 77  | 0,0%    |
|                  |                     |     |           |     |         |
| trans-HFC-1234ze | e/HFC-236ea         |     |           |     |         |
| 99/1             | 11,2                | 77  | 11,2      | 77  | 0,0%    |
| 90/10            | 11,0                | 76  | 11,0      | 76  | 0,4%    |
| 80/20            | 10,8                | 75  | 10,6      | 73  | 1,6%    |
| 60/40            | 10,2                | 70  | 9,5       | 66  | 6,6%    |
| 54/46            | 9,9                 | 69  | 9,0       | 62  | 9,5%    |
| 53/47            | 9,9                 | 68  | 8,9       | 61  | 10,1%   |
|                  | -,-                 |     | -,-       |     | , . , . |
| trans-HFC-1234ze | e/HFC-236fa         |     |           |     |         |
| 99/1             | 11,2                | 77  | 11,2      | 77  | 0,1%    |
| 90/10            | 10,9                | 75  | 10,8      | 75  | 0,8%    |
| 80/20            | 10,6                | 73  | 10,4      | 71  | 2,0%    |
| 60/40            | 9,8                 | 67  | 9,3       | 64  | 5,4%    |
| 44/56            | 9,0                 | 62  | 8,1       | 56  | 9,7%    |
| 43/57            | 8,9                 | 62  | 8,0       | 55  | 10,1%   |
|                  | ,                   |     | ,         |     | ,       |
| trans-HFC-1234ze | e/HFC-245fa         |     |           |     |         |
| 99/1             | 11,2                | 77  | 11,1      | 77  | 0,2%    |
| 90/10            | 10,7                | 74  | 10,5      | 73  | 2,0%    |
| 80/20            | 10,3                | 71  | 9,8       | 68  | 4,7%    |
| 70/30            | 9,8                 | 68  | 9,0       | 62  | 8,2%    |
| 67/33            | 9,7                 | 67  | 8,7       | 60  | 9,7%    |
| 66/34            | 9,6                 | 66  | 8,7       | 60  | 10,2%   |
|                  | ,                   |     | ,         |     | ,       |
|                  |                     |     |           |     |         |
| trans-HFC-1234ze | e/CF <sub>3</sub> I |     |           |     |         |
| 1/99             | 11,9                | 82  | 11,9      | 82  | 0,0%    |
| 10/90            | 11,9                | 82  | 11,9      | 82  | 0,0%    |
| 20/80            | 11,8                | 81  | 11,8      | 81  | 0,0%    |
| 40/60            | 11,6                | 80  | 11,6      | 80  | 0,1%    |
| 60/40            | 11,4                | 79  | 11,4      | 79  | 0,1%    |
| 80/20            | 11,3                | 78  | 11,3      | 78  | 0,1%    |
| 90/10            | 11,3                | 78  | 11,2      | 77  | 0,1%    |
| 99/1             | 11,2                | 77  | ,<br>11,2 | 77  | 0,0%    |
|                  | ,                   |     | •         |     | ,       |
| cis-HFC-1234ze/H | IFC-236ea (25°C)    |     |           |     |         |
| 20,9/79,1        | 30,3                | 209 | 30,3      | 209 | 0,0%    |
| ,                | 00,0                |     | 00,0      |     | 0,070   |

| 10/90                  | 30,2       | 208 | 30,2 | 208 | 0,0% |
|------------------------|------------|-----|------|-----|------|
| 1/99                   | 29,9       | 206 | 29,9 | 206 | 0,0% |
| 40/60                  | 30,0       | 207 | 30,0 | 207 | 0,2% |
| 60/40                  | 29,2       | 201 | 28,9 | 199 | 0,9% |
| 80/20                  | 27,8       | 191 | 27,4 | 189 | 1,4% |
| 90/10                  | 26,8       | 185 | 26,5 | 183 | 1,1% |
| 99/1                   | 25,9       | 178 | 25,8 | 178 | 0,2% |
|                        |            |     |      |     |      |
| cis-HFC-1234ze/HFC-236 | 6fa (25°C) |     |      |     |      |
| 1/99                   | 39,3       | 271 | 39,3 | 271 | 0,0% |
| 10/90                  | 38,6       | 266 | 38,4 | 265 | 0,3% |
| 20/80                  | 37,6       | 259 | 37,3 | 257 | 0,9% |
| 40/60                  | 35,4       | 244 | 34,5 | 238 | 2,5% |
| 60/40                  | 32,8       | 226 | 31,4 | 216 | 4,3% |
| 78/22                  | 29,6       | 204 | 28,2 | 195 | 4,8% |
| 90/10                  | 27,8       | 192 | 26,9 | 185 | 3,4% |
| 99/1                   | 26,0       | 179 | 25,8 | 178 | 0,5% |
|                        |            |     |      |     |      |
| cis-HFC-1234ze/HFC-24  | 5fa (25°C) |     |      |     |      |
| 76,2/23,7              | 26,2       | 180 | 26,2 | 180 | 0,0% |
| 90/10                  | 26,0       | 179 | 26,0 | 179 | 0,0% |
| 99/1                   | 25,8       | 178 | 25,8 | 178 | 0,0% |
| 60/40                  | 26,0       | 179 | 25,9 | 179 | 0,2% |
| 40/60                  | 25,3       | 174 | 25,0 | 173 | 0,9% |
| 20/80                  | 23,9       | 164 | 23,5 | 162 | 1,7% |
| 10/90                  | 22,8       | 157 | 22,5 | 155 | 1,5% |
| 1/99                   | 21,6       | 149 | 21,5 | 149 | 0,2% |
|                        |            |     |      |     |      |

La diferencia de presión de vapor entre la composición original y la composición que queda después de eliminar el 50 por ciento en peso es menor que aproximadamente el 10 por ciento para composiciones de la presente invención. Esto indica que las composiciones de la presente invención serían azeotrópicas o casi azeotrópicas.

## Ejemplo comparativo 2

10

Datos del comportamiento en refrigeración

La Tabla 10 muestra el comportamiento de varias composiciones refrigerantes en comparación con HFC-134a. En la Tabla 10, Pres. Evap. es la presión del evaporador, Pres. Cond. es la presión del condensador, T. Desc. Comp. es la temperatura de descarga del compresor, COP es la eficiencia energética, y CAP es capacidad. Los datos se basan en las siguientes condiciones.

Temperatura del evaporador

Temperatura del condensador

Temperatura del subenfriamiento

10,0°F (5,4°C)

Temperatura del gas de retorno

La eficiencia del compresor es

40,0°F (4,4°C)

100°F (54,4°C)

60,0°F (5,5°C)

100%

Téngase en cuenta que el sobrecalentamiento está incluido en los cálculos de la capacidad de enfriamiento.

Tabla 10

| Composición (% en peso)               | Pres.<br>Evap.<br>(Psia) | Pres.<br>Evap.<br>(kPa) | Pres.<br>Cond.<br>(Psia) | Pres.<br>Cond.<br>(kPa) | T. Desc. Comp. (F) | T. Desc. Comp. (C) | <u>Cap</u><br>(BTU/min) | Cap<br>(kW) | СОР  |
|---------------------------------------|--------------------------|-------------------------|--------------------------|-------------------------|--------------------|--------------------|-------------------------|-------------|------|
| HFC-134a                              | 50,3                     | 346                     | 214                      | 1476                    | 156                | 68,9               | 213                     | 3,73        | 4,41 |
| trans-HFC-1234ze/HFC-<br>32 (95/5)    | 42,6                     | 294                     | 183                      | 1262                    | 153                | 67,2               | 186                     | 3,26        | 4,51 |
| trans-HFC-1234ze/HFC-<br>134a (90/10) | 38,1                     | 263                     | 166                      | 1145                    | 149                | 65,0               | 165                     | 2,89        | 4,44 |
| trans-HFC-1234ze/HFC-<br>152a (80/20) | 41,0                     | 284                     | 176                      | 1214                    | 154                | 67,8               | 177                     | 3,10        | 4,48 |

Varias composiciones tienen una mayor eficiencia energética (COP) que HFC-134a al tiempo que mantienen menores presiones y temperaturas de descarga. La capacidad de las presentes composiciones es también similar a R134a indicando que éstas podrían ser refrigerantes de sustitución de R134a en refrigeración y acondicionamiento de aire, y en aplicaciones móviles de acondicionamiento de aire en particular. Las composiciones que contienen hidrocarburos pueden también mejorar la solubilidad del aceite con lubricantes de aceite mineral convencional y de alquil benceno.

## Ejemplo 3

## 10 Datos de comportamiento en refrigeración

La Tabla 11 muestra el comportamiento de varias composiciones refrigerantes de la presente invención en comparación con R404A y R422A. En la Tabla 11, Pres. Evap. es presión del evaporador, Pres. Cond. es presión del condensador, T. Desc. Comp. es la temperatura de descarga del compresor, EER es la eficiencia energética, y CAP es capacidad. Los datos se basan en las siguientes condiciones.

| Temperatura del evaporador     | -17.8°C |
|--------------------------------|---------|
| Temperatura del condensador    | 46,1°C  |
| Temperatura de subenfriamiento | 5,5°C   |
| Temperatura del gas de retorno | 15,6°C  |
| La eficiencia del compresor es | 70%     |

15 Téngase en cuenta que el sobrecalentamiento está incluido en los cálculos de la capacidad de enfriamiento.

Tabla 11

|                                    |                  | Pres.<br>Evap. | Pres.<br>Cond. | T. Desc.<br>Compr. | CAP     |      |
|------------------------------------|------------------|----------------|----------------|--------------------|---------|------|
| Producto Refrigerante Existente    |                  | (kPa)          | (kPa)          | (°C)               | (kJ/m³) | EER  |
| R22                                |                  | 267            | 1.774          | 144                | 1.697   | 4,99 |
| R404A                              |                  | 330            | 2.103          | 101,1              | 1.769   | 4,64 |
| R507A                              |                  | 342            | 2.151          | 100,3              | 1.801   | 4,61 |
| R422A                              |                  | 324            | 2.124          | 95,0               | 1.699   | 4,54 |
|                                    |                  |                |                |                    |         |      |
| Sustituto Candidato                | <u>% en peso</u> |                |                |                    |         |      |
| HFC-125/trans-HFC-1234ze/isobutano | 86,1/11,5/2,4    | 319            | 2.096          | 94,4               | 1.669   | 4,52 |
| HFC-125/trans-HFC-1234ze/n-butano  | 86,1/11,5/2,4    | 314            | 2.083          | 94,8               | 1.653   | 4,53 |

Las composiciones tienen la eficiencia energética (COP) comparable a R404A y R422A. Las temperaturas de

descarga son también inferiores a R404A y R507A. La capacidad de las presentes composiciones es también similar a R404A, R507A y R422A indicando que estas composiciones podrían ser refrigerantes de sustitución para los anteriores en refrigeración y acondicionamiento de aire. Las composiciones que contienen hidrocarburos pueden también mejorar la solubilidad de aceite con lubricantes de aceite mineral convencional y de alquil benceno.

#### **REIVINDICACIONES**

10

15

20

25

30

35

40

45

50

55

60

1. Una composición que comprende una composición azeotrópica o casi azeotrópica seleccionada del grupo que consiste en: de aproximadamente el 1 por ciento en peso hasta aproximadamente el 99 por ciento en peso de trans-HFC-1234ze y de aproximadamente el 99 por ciento en peso hasta aproximadamente el 1 por ciento en peso de HFC-134; de aproximadamente el 1 por ciento en peso hastas aproximadamente el 52 por ciento en peso de trans-HFC-1234ze y de aproximadamente el 99 por ciento en peso hasta aproximadamente el 48 por ciento en peso de HFC-161 y de aproximadamente el 87 por ciento en peso hasta aproximadamente el 99 por ciento en peso de trans-HFC-1234ze y de aproximadamente el 13 por ciento en peso hasta aproximadamente el 1 porciento en peso de HFC-161; de aproximadamente el 54 por ciento en peso hasta aproximadamente el 99 por ciento en peso de trans-HFC-1234ze y de aproximadamente el 46 por ciento en peso hasta aproximadamente el 1 por ciento en peso de HFC-236ea; de aproximadamente el 44 por ciento en peso hasta aproximadamente el 99 por ciento en peso de trans-HFC-1234ze y de aproximadamente el 56 por ciento en peso hasta aproximadamente el 1 por ciento en peso de HFC-236fa; de aproximadamente el 67 por ciento en peso hasta aproximadamente el 99 por ciento en peso de trans-HFC-1234ze y de aproximadamente el 33 por ciento en peso hasta aproximadamente el 1 por ciento en peso de HFC-245fa; de aproximadamente el 1 por ciento en peso hasta aproximadamente el 99 por ciento en peso de trans-HFC-1234ze y de aproximadamente el 99 por ciento en peso hasta aproximadamente el 1 por ciento en peso de CF<sub>3</sub>I; de aproximadamente el 80 por ciento en peso hasta aproximadamente el 98 por ciento en peso de HFC-125, aproximadamente el 1 por ciento en peso hasta aproximadamente el 19 por ciento en peso de trans-HFC-1234ze y de aproximadamente el 1 por ciento en peso hasta aproximadamente el 10 por ciento en peso de isobutano; de aproximadamente el 80 por ciento en peso hasta aproximadamente el 98 por ciento en peso de HFC-125, aproximadamente el 1 por ciento en peso hasta aproximadamente el 19 por ciento en peso de trans-HFC-1234ze y de aproximadamente el 1 por ciento en peso hasta aproximadamente el 10 por ciento en peso de nbutano; de aproximadamente el 1 por ciento en peso hasta aproximadamente el 99 por ciento en peso de cis-HFC-1234ze y de aproximadamente el 99 por ciento en peso hasta aproximadamente el 1 por ciento en peso de HFC-236ea; de aproximadamente el 1 por ciento en peso hasta aproximadamente el 99 por ciento en peso de cis-HFC-1234ze y de aproximadamente el 99 por ciento en peso hasta aproximadamente el 1 por ciento en peso de HFC-236fa; de aproximadamente el 1 por ciento en peso hasta aproximadamente el 99 por ciento en peso de cis-HFC-1234ze y de aproximadamente el 99 por ciento en peso hasta aproximadamente el 1 por ciento en peso de HFC-245fa; de aproximadamente el 1 por ciento en peso hasta aproximadamente el 98 por ciento en peso de trans-HFC-1234ze, aproximadamente el 1 por ciento en peso hasta aproximadamente el 98 por ciento en peso de HFC-1243zf y de aproximadamente el 1 por ciento en peso hasta aproximadamente el 98 por ciento en peso de HFC-227ea; de aproximadamente el 1 por ciento en peso hasta aproximadamente el 98 por ciento en peso de trans-HFC-1234ze, aproximadamente el 1 por ciento en peso hasta aproximadamente el 98 por ciento en peso de HFC-134 y de aproximadamente el 1 por ciento en peso hasta aproximadamente el 98 por ciento en peso de HFC-152a; de aproximadamente el 1 por ciento en peso hasta aproximadamente el 98 por ciento en peso de trans-HFC-1234ze, aproximadamente el 1 por ciento en peso hasta aproximadamente el 98 por ciento en peso de HFC-134 y de aproximadamente el 1 por ciento en peso hasta aproximadamente el 98 por ciento en peso de HFC-227ea; de aproximadamente el 1 por ciento en peso hasta aproximadamente el 98 por ciento en peso de trans-HFC-1234ze, aproximadamente el 1 por ciento en peso hasta aproximadamente el 98 por ciento en peso de HFC-134 y de aproximadamente el 1 por ciento en peso hasta aproximadamente el 40 por ciento en peso de dimetiléter; de aproximadamente el 1 por ciento en peso hasta aproximadamente el 98 por ciento en peso de trans-HFC-1234ze, aproximadamente el 1 por ciento en peso hasta aproximadamente el 98 por ciento en peso de HFC-134a y de aproximadamente el 1 por ciento en peso hasta aproximadamente el 98 por ciento en peso de HFC-152a; de aproximadamente el 1 por ciento en peso hasta aproximadamente el 98 por ciento en peso de trans-HFC-1234ze, aproximadamente el 1 por ciento en peso hasta aproximadamente el 98 por ciento en peso de HFC-152a y de aproximadamente el 1 por ciento en peso hasta aproximadamente el 50 por ciento en peso de n-butano; de aproximadamente el 1 por ciento en peso hasta aproximadamente el 98 por ciento en peso de trans-HFC-1234ze, aproximadamente el 1 por ciento en peso hasta aproximadamente el 98 por ciento en peso de HFC-152a y de aproximadamente el 1 por ciento en peso hasta aproximadamente el 98 por ciento en peso de dimetiléter; de aproximadamente el 1 por ciento en peso hasta aproximadamente el 98 por ciento en peso de trans-HFC-1234ze, aproximadamente el 1 por ciento en peso hasta aproximadamente el 98 por ciento en peso de HFC-227ea y de aproximadamente el 1 por ciento en peso hasta aproximadamente el 40 por ciento en peso de n-butano; de aproximadamente el 1 por ciento en peso hasta aproximadamente el 98 por ciento en peso de trans-HFC-1234ze, aproximadamente el 1 por ciento en peso hasta aproximadamente el 30 por ciento en peso de n-butano y de aproximadamente el 1 por ciento en peso hasta aproximadamente el 98 por ciento en peso de CF<sub>3</sub>I; y de aproximadamente el 1 por ciento en peso hasta aproximadamente el 98 por ciento en peso de trans-HFC-1234ze, aproximadamente el 1 por ciento en peso hasta aproximadamente el 40 por ciento en peso de isobutano y de aproximadamente el 1 por ciento en peso hasta aproximadamente el 98 por ciento en peso de CF<sub>3</sub>I;

o seleccionado del grupo que consiste en: el 9,5 por ciento en peso de trans-HFC-1234ze y el 90,5 por ciento en peso de HFC-134a que tiene una presión de vapor de aproximadamente 107 kPa (15,5 psia) a una temperatura de aproximadamente -25°C; el 21,6 por ciento en peso de trans-HFC-1234ze y el 78,4 por ciento en peso de HFC-152a que tiene una presión de vapor de aproximadamente 101 kPa (14,6 psia) a una temperatura de aproximadamente -25°C; y el 59,2 por ciento en peso de trans-HFC-1234ze y el 40,8 por ciento en peso de HFC-227ea que tiene una presión de vapor de aproximadamente 81 kPa (11,7 psia) a una temperatura de aproximadamente -25°C.

- 2. Una composición de la reivindicación 1 seleccionada del grupo que consiste en: de aproximadamente el 10 por ciento en peso hasta aproximadamente el 80 por ciento en peso de trans-HFC-1234ze, de aproximadamente el 10 por ciento en peso hasta aproximadamente el 80 por ciento en peso de HFC-1243zf y de aproximadamente el 10 por ciento en peso hasta aproximadamente el 80 por ciento en peso de HFC-227ea; de aproximadamente el 10 por ciento en peso hasta aproximadamente el 80 por ciento en peso de trans-HFC-1234ze, aproximadamente el 10 por ciento en peso hasta aproximadamente el 80 por ciento en peso de HFC-134 y de aproximadamente el 1 por ciento en peso hasta aproximadamente el 50 por ciento en peso de HFC-152a; de aproximadamente el 10 por ciento en peso hasta aproximadamente el 80 por ciento en peso de trans-HFC-1234ze, aproximadamente el 10 por ciento en peso hasta aproximadamente el 80 por ciento en peso de HFC-134 y de aproximadamente el 10 por ciento en peso 10 hasta aproximadamente el 80 por ciento en peso de HFC-227ea; de aproximadamente el 10 por ciento en peso hasta aproximadamente el 80 por ciento en peso de trans-HFC-1234ze, aproximadamente el 10 por ciento en peso hasta aproximadamente el 80 por ciento en peso de HFC-134 y de aproximadamente el 1 por ciento en peso hasta aproximadamente el 30 por ciento en peso de dimetiléter; de aproximadamente el 10 por ciento en peso hasta aproximadamente el 80 por ciento en peso de trans-HFC-1234ze, aproximadamente el 10 por ciento en peso hasta 15 aproximadamente el 80 por ciento en peso de HFC-134a y de aproximadamente el 1 por ciento en peso hasta aproximadamente el 50 por ciento en peso de HFC-152a; de aproximadamente el 10 por ciento en peso hasta aproximadamente el 80 por ciento en peso de trans-HFC-1234ze, aproximadamente el 10 por ciento en peso hasta aproximadamente el 80 por ciento en peso de HFC-152a y de aproximadamente el 1 por ciento en peso hasta aproximadamente el 30 por ciento en peso de n-butano; de aproximadamente el 20 por ciento en peso hasta aproximadamente el 90 por ciento en peso de trans-HFC-1234ze, aproximadamente el 1 por ciento en peso hasta 20 aproximadamente el 50 por ciento en peso de HFC-152a y de aproximadamente el 1 por ciento en peso hasta aproximadamente el 30 por ciento en peso de dimetiléter; de aproximadamente el 10 por ciento en peso hasta aproximadamente el 80 por ciento en peso de trans-HFC-1234ze, aproximadamente el 10 por ciento en peso hasta aproximadamente el 80 por ciento en peso de HFC-227ea y de aproximadamente el 1 por ciento en peso hasta 25 aproximadamente el 30 por ciento en peso de n-butano; de aproximadamente el 10 por ciento en peso hasta aproximadamente el 80 por ciento en peso de trans-HFC-1234ze, aproximadamente el 1 por ciento en peso hasta aproximadamente el 20 por ciento en peso de n-butano y de aproximadamente el 10 por ciento en peso hasta aproximadamente el 80 por ciento en peso de CF3I; y de aproximadamente el 10 por ciento en peso hasta aproximadamente el 80 por ciento en peso de trans-HFC-1234ze, aproximadamente el 1 por ciento en peso hasta 30 aproximadamente el 20 por ciento en peso de isobutano y de aproximadamente el 10 por ciento en peso hasta aproximadamente el 80 por ciento en peso de CF<sub>3</sub>I.
  - 3. Una composición de la reivindicación 1 que consiste en: aproximadamente el 86,1 por ciento en peso de HFC-125, aproximadamente el 11,5 por ciento en peso de trans-HFC-1234ze, y aproximadamente el 2,4 por ciento en peso de isobutano.
- 4. Una composición de la reivindicación 1 que comprende una composición azeotrópica seleccionada del grupo que consiste en:
  - el 45,7 por ciento en peso de trans-HFC-1234ze y el 54,3 por ciento en peso de HFC-134 que tiene una presión de vapor de aproximadamente 86 kPa (12,5 psia) a una temperatura de aproximadamente -25°C;
- el 9,5 por ciento en peso de trans-HFC-1234ze y el 90,5 por ciento en peso de HFC-134a que tiene una presión de vapor de aproximadamente 107 kPa (15,5 psia) a una temperatura de aproximadamente -25°C;
  - el 21,6 por ciento en peso de trans-HFC-1234ze y el 78,4 por ciento en peso de HFC-152a que tiene una presión de vapor de aproximadamente 101 kPa (14,6 psia) a una temperatura de aproximadamente -25°C;
  - el 59,2 por ciento en peso de trans-HFC-1234ze y el 40,8 por ciento en peso de HFC-227ea que tiene una presión de vapor de aproximadamente 81 kPa (11,7 psia) a una temperatura de aproximadamente -25°C;
- el 7,1 por ciento en peso de trans-HFC-1234ze, el 73,7 por ciento en peso de HFC-1243zf, y el 19,2 por ciento en peso de HFC-227ea con una presión de vapor de aproximadamente 90,4 kPa (13,1 psia) a una temperatura de aproximadamente -25°C;

- el 52,0 por ciento en peso de trans-HFC-1234ze, el 42,9 por ciento en peso de HFC-134 y el 5,1 por ciento en peso de HFC-152a que tiene una presión de vapor de aproximadamente 85,3 kPa (12,4 psia) a una temperatura de aproximadamente -25°C;
  - el 30,0 por ciento en peso de trans-HFC-1234ze, el 43,2 por ciento en peso de HFC-134, y el 26,8 por ciento en peso de HFC-227ea con una presión de vapor de aproximadamente 86,9 kPa (12,6 psia) a una temperatura de aproximadamente -25°C;
- el 27,7 por ciento en peso de trans-HFC-1234ze, el 54,7 por ciento en peso de HFC-134, y el 17,7 por ciento en peso de dimetiléter que tiene una presión de vapor de aproximadamente 67,3 kPa (9,8 psia) a una temperatura de aproximadamente -25°C;

- el 14,4 por ciento en peso de trans-HFC-1234ze, el 34,7 por ciento en peso de HFC-134a, y el 51,0 por ciento en peso de HFC-152a que tiene una presión de vapor de aproximadamente 99,4 kPa (14,4 psia) a una temperatura de aproximadamente -25°C;
- el 5,4 por ciento en peso de trans-HFC-1234ze, el 80,5 por ciento en peso de HFC-152a, y el 14,1 por ciento en peso de n-butano que tiene una presión de vapor de aproximadamente 106 kPa (15,4 psia) a una temperatura de aproximadamente -25°C;
  - el 59,1 por ciento en peso de trans-HFC-1234ze, el 16,4 por ciento en peso de HFC-152a y el 24,5 por ciento en peso de dimetiléter que tiene una presión de vapor de aproximadamente 74,5 kPa (10,8 psia) a una temperatura de aproximadamente -25°C:
- el 40,1 por ciento en peso de trans-HFC-1234ze, el 48,5 por ciento en peso de HFC-227ea y el 11,3 por ciento en peso de n-butano que tiene una presión de vapor de aproximadamente 86,9 kPa (12,6 psia) a una temperatura de aproximadamente -25°C;

15

- el 81,2 por ciento en peso de trans-HFC-1234ze, 9,7 por ciento en peso de n-butano y el 9,1 por ciento en peso de CF<sub>3</sub>I teniendo una presión de vapor de aproximadamente 81,8 kPa (11,9 psia) a una temperatura de aproximadamente -25°C;
  - el 34,9 por ciento en peso de trans-HFC-1234ze, el 6,1 por ciento en peso de isobutano y el 59,0 por ciento en peso de  $CF_3I$  teniendo una presión de vapor de aproximadamente 86,7 kPa (12,6 psia) a una temperatura de aproximadamente -25°C;
- el 20,9 por ciento en peso de cis-HFC-1234ze y el 79,1 por ciento en peso de HFC-236ea que tiene una presión de vapor de aproximadamente 209 kPa (30,3 psia) a una temperatura de aproximadamente 25°C; y
  - el 76,2 por ciento en peso de cis-HFC-1234ze y el 23,8 por ciento en peso de HFC-245fa que tiene una presión de vapor de aproximadamente 180 kPa (26,1 psia) a una temperatura de aproximadamente 25°C.
- La composición según cualquiera de las reivindicaciones 1 a 4, que comprende además un lubricante seleccionado del grupo que consiste en ésteres de poliol, polialquilenglicoles, poli(éteres vinilo), aceite mineral, alquilbencenos, parafinas sintéticas, naftenos sintéticos y poli(alfa)olefinas.
  - 6. La composición según cualquiera de las reivindicaciones 1 a 4, que comprende además un trazador seleccionado del grupo que consiste en hidrofluorocarburos, hidrocarburos deuterados, hidrofluorocarburos deuterados, perfluorocarburos, fluoroéteres, compuestos bromados, compuestos yodados, alcoholes, aldehídos, cetonas, óxido nitroso (N₂O) y combinaciones de los mismos.
- 30 7. La composición de cualquiera de las reivindicaciones 1 a 4, que comprende además al menos un colorante fluorescente ultravioleta seleccionado del grupo que consiste en naftalimidas, perilenos, cumarinas, antracenos, fenantracenos, xantenos, tioxantenos, naftoxantenos, fluoresceínas, derivados de dicho colorante y combinaciones de los mismos.
- 8. Un procedimiento para detectar la composición de la reivindicación 7 en un aparato de refrigeración por compresión, de acondicionamiento de aire o de bomba de calor, comprendiendo dicho procedimiento proporcionar dicha composición a dicho aparato, y proporcionar un medio adecuado para la detección de dicha composición en un punto de fuga o en las proximidades de dicho aparato.
  - 9. Un procedimiento de producción de enfriamiento, comprendiendo dicho procedimiento: evaporar una composición de cualquiera de las reivindicaciones 1 a 4 en las proximidades de un cuerpo que ha de ser enfriado y, después, condensar dicha composición.
    - 10. Un procedimiento para producir calefacción, comprendiendo dicho procedimiento: condensar una composición de cualquiera de las reivindicaciones 1 a 4 en las proximidades de un cuerpo que ha de ser calentado y, después, evaporar dicha composición.
- 11. Un procedimiento para sustituir un refrigerante de alto PCG en un aparato de refrigeración, de acondicionamiento de aire o de bomba de calor, en el que dicho refrigerante de alto PCG se selecciona del grupo que consiste en R134a, R22, R123, R11, R245fa, R114, R236fa, R124, R12, R410A, R407C, R417A, R422A, R507A, R502 y R404A, comprendiendo dicho procedimiento proporcionar la composición de cualquiera de las reivindicaciones 1 a 4 a dicho aparato de refrigeración, de acondicionamiento de aire o de bomba de calor que utiliza, utilizó o está diseñado para utilizar dicho refrigerante con algo PCG.
- 50 12. Un aparato de refrigeración, de acondicionamiento de aire o de bomba de calor que contiene una composición según una cualquiera de las reivindicaciones 1 a 4.