



# OFICINA ESPAÑOLA DE PATENTES Y MARCAS

ESPAÑA



11) Número de publicación: 2 690 762

51 Int. Cl.:

C09B 67/04 (2006.01) C09B 67/48 (2006.01) C09B 45/18 (2006.01) C09B 45/22 (2006.01) C09B 67/22 (2006.01)

(12)

# TRADUCCIÓN DE PATENTE EUROPEA

T3

Fecha de presentación y número de la solicitud europea: 01.03.2017 E 17158626 (6)
 Fecha y número de publicación de la concesión europea: 29.08.2018 EP 3222675

(54) Título: Pigmentos azoicos metálicos

(30) Prioridad:

23.03.2016 EP 16161854

Fecha de publicación y mención en BOPI de la traducción de la patente: 22.11.2018

(73) Titular/es:

LANXESS DEUTSCHLAND GMBH (100.0%) Kennedyplatz 1 50569 Köln, DE

(72) Inventor/es:

BORST, HANS-ULRICH; LINKE, FRANK y ENDERT, SABINE

(74) Agente/Representante:

VALLEJO LÓPEZ, Juan Pedro

#### **DESCRIPCIÓN**

Pigmentos azoicos metálicos

20

25

30

35

- 5 La presente invención se refiere a nuevos pigmentos azoicos metálicos amarillos a base al menos de dos compuestos azoicos metálicos que se diferencian uno de otro al menos en el tipo del metal, a procedimientos para su preparación y a su uso como pigmento amarillo en preparaciones de pigmentos.
- La preparación de complejos metálicos a partir de ácido azobarbitúrico con sales de níquel y su uso como pigmentos amarillos se conoce desde hace tiempo y se ha descrito múltiples veces en la bibliografía (véase por ejemplo W. Herbst, K. Hunger: Industrial Organic Pigments, 3ª edición 2004, pág. 390/397). Se sabe además que estos productos pueden hacerse reaccionar posteriormente, por ejemplo con melamina o derivados de melamina, para mejorar las propiedades técnicas de aplicación de los pigmentos, por ejemplo, en la coloración de plásticos, lacas y filtros de color para LCD.
  - Además se ha descrito en la bibliografía que para la adaptación de propiedades colorísticas a parte de sales de níquel pueden usarse conjuntamente también una o varias sales de distintos metales. La publicación EP A1 591 489 describe complejos metálicos de compuestos azoicos que contienen como metales aquéllos de la serie de los metales alcalinos, metales alcalinotérreos, de los lantanoides así como aluminio, escandio, titanio, vanadio, cromo, manganeso, cobalto, cobre, níquel y cinc y eventualmente hierro. Los pigmentos obtenidos presentan un punto de color distinto en comparación con los complejos de níquel de ácido azobarbitúrico puros.
  - En el documento EP-A1 2682434 se describen pigmentos azoicos metálicos similares que en preparaciones de pigmentos presentan una dispersabilidad especialmente buena y altas intensidades de color y se usan en particular para la preparación de filtros de color.
  - Mediante un revestimiento de superficie dirigido del pigmento azoico metálico puede conseguirse igualmente una mejora de propiedades relacionadas con la aplicación, especialmente la reducción de la dureza de dispersión como medida de las propiedades de dispersión del pigmento. Con este procedimiento para la mejora de la dispersabilidad está unida sin embargo una reducción de la intensidad de color del pigmento, que se encuentra en directa dependencia de la concentración de agente de revestimiento.
  - Otra posibilidad de la adaptación de propiedades relacionadas con la aplicación es calentar lentamente los pigmentos preparados a partir de complejos de níquel de ácido azobarbitúrico con por ejemplo melamina. Con esta etapa de procedimiento está unida una modificación dirigida del tamaño de partícula de los pigmentos y su superficie específica. Este procedimiento se ha descrito, por ejemplo, en el documento EP-A 0 994 162.
  - Sin embargo, los pigmentos azoicos metálicos conocidos por el estado de la técnica aún requieren mejoras en cuanto a sus propiedades de aplicación técnica.
- Además existe también por motivos ecológicos el deseo imperioso de facilitar pigmentos azoicos metálicos con un contenido a ser posible bajo de iones níquel o incluso productos completamente libres de níquel para estas aplicaciones.
- Se encontró que pigmentos azoicos metálicos a base de ácido azobarbitúrico, sales de zinc y de cobre y melamina y/o derivados de melamina y al menos otra sal metálica distinta de sales de zinc y de cobre, presentan de manera sorprendente propiedades de dispersión mejoradas con aumento simultáneo de la intensidad de color. La mejora de estas propiedades permiten el uso mejorado de estos productos entre otras cosas para la coloración de plásticos y lacas, para su uso en la inyección de tinta y como componente de filtros de color para LCD.
- Por tanto, la invención se refiere a pigmentos azoicos metálicos, caracterizados por que éstos contienen los componentes
  - a) al menos dos compuestos azoicos metálicos que se diferencian uno de otro en el tipo del metal y que contienen en cada caso
  - unidades estructurales de fórmula (I), o sus formas tautoméricas,

$$R^{1} \xrightarrow{N} N = N \xrightarrow{-Q} N = R^{2}$$

en la que

5

15

25

30

R<sup>1</sup> y R<sup>2</sup> independientemente entre sí representan OH, NH<sub>2</sub> o NHR<sup>5</sup>,

R<sup>3</sup> y R<sup>4</sup> independientemente entre sí representan = O o = NR<sup>5</sup>,

 $R^5$  representa hidrógeno o alquilo, preferentemente alquilo  $C_1\text{-}C_4$ , e

- iones metálicos Zn²+ o bien Cu²+ y eventualmente al menos otro ión metálico Me, en los que Me representa un ión metálico 2- o 3-valente, distinto de Zn²+ y Cu²+, con la condición de que la cantidad de iones metálicos Zn²+ y Cu²+ juntos asciende a del 95 % al 100 % en moles y la cantidad de iones metálicos 2- o 3-valentes, distintos de Zn²+ y Cu²+ asciende a del 0 % al 5 % en moles, en cada caso con respecto a un mol de todos los iones metálicos en el pigmento azoico metálico,
  - en los que la relación molar de iones metálicos Zn²+ con respecto a Cu²+ en el pigmento azoico metálico asciende a de 199 : 1 a 1 : 15, preferentemente a de 19 : 1 a 1 : 1 y de manera especialmente preferente a de 9 : 1 a 2 : 1,
- b) al menos un compuesto de fórmula (II)

en la que

R<sup>6</sup> representa hidrógeno o alquilo, preferentemente alquilo C<sub>1</sub>-C<sub>4</sub> que eventualmente está mono- o polisustituido con OH.

Preferentemente, en la fórmula (I) R<sup>1</sup> y R<sup>2</sup> independientemente entre sí representan OH, NH<sub>2</sub> o NHR<sup>5</sup>, en la que R<sup>5</sup> representa hidrógeno o alquilo C<sub>1</sub>-C<sub>4</sub>.

Preferentemente, en la fórmula (I)  $R^3$  y  $R^4$  independientemente entre sí representan =0 o =N $R^5$ , en la que  $R^5$  representa hidrógeno o alquilo  $C_1$ - $C_4$ .

De manera especialmente preferente, en la fórmula (I) R<sup>1</sup> y R<sup>2</sup> representan OH y R<sup>3</sup> y R<sup>4</sup> representan =0.

Preferentemente, en la fórmula (II) R<sup>6</sup> representa hidrógeno o alquilo C<sub>1</sub>-C<sub>4</sub> que eventualmente está mono- o polisustituido con OH. De manera especialmente preferente, en la fórmula (II) R<sup>6</sup> representa hidrógeno.

Con respecto a un mol de todos los iones metálicos existentes en el pigmento azoico metálico asciende la cantidad de iones Cu<sup>2+</sup> y Zn<sup>2+</sup> juntos en general a del 95 % al 100 % en moles y la cantidad de iones metálicos Me a del 0 % al 5 % en moles, preferentemente asciende la cantidad de iones Cu<sup>2+</sup> y Zn<sup>2+</sup> juntos a del 98 % al 100 % en moles y la cantidad de iones metálicos Me a del 0 % al 2 % en moles, de manera especialmente preferente asciende la cantidad de iones Cu<sup>2+</sup> y Zn<sup>2+</sup> juntos a del 99,9 % al 100 % en moles y la cantidad de iones metálicos Me a del 0 % al 0,1 % en moles y en particular asciende la cantidad de iones Cu<sup>2+</sup> y Zn<sup>2+</sup> juntos al 100 % en moles.

En general asciende la relación molar de iones metálicos Zn<sup>2+</sup> con respecto a Cu<sup>2+</sup> en el pigmento azoico metálico a de 199 : 1 a 1 : 15, preferentemente a de 19 : 1 a 1 : 1 y de manera especialmente preferente a de 9 : 1 a 2 : 1.

- Los sustituyentes en el significado de alquilo designan por ejemplo alquilo C<sub>1</sub>-C<sub>6</sub> de cadena lineal o ramificado, preferentemente alquilo C<sub>1</sub>-C<sub>4</sub> de cadena lineal o ramificado, que eventualmente puede estar mono- o polisustituido, de manera igual o distinta, por ejemplo con halógeno, tal como cloro, bromo o flúor, así como con -OH, -CN, -NH<sub>2</sub> o alcoxi C<sub>1</sub>-C<sub>6</sub>.
- 55 Los iones metálicos Me se encuentran preferentemente en sus estados de oxidación más estables.

Preferentemente, Me representa un ión metálico seleccionado de la serie de  $Ni^{2+}$ ,  $Al^{3+}$ ,  $Fe^{2+}$ ,  $Fe^{3+}$ ,  $Co^{2+}$ ,  $Co^{3+}$ ,  $La^{3+}$ ,  $Ce^{3+}$ ,  $Pr^{3+}$ ,  $Nd^{2+}$ ,  $Nd^{3+}$ ,  $Sm^{2+}$ ,  $Sm^{3+}$ ,  $Eu^{2+}$ ,  $Eu^{3+}$ ,  $Gd^{3+}$ ,  $Tb^{3+}$ ,  $Dy^{3+}$ ,  $Ho^{3+}$ ,  $Yb^{2+}$ ,  $Yb^{3+}$ ,  $Er^{3+}$ ,  $Tm^{3+}$ ,  $Mg^{2+}$ ,  $Ca^{2+}$ ,  $Sr^{2+}$ ,  $Mn^{2+}$ ,  $Y^{3+}$ ,  $Sc^{3+}$ ,  $Tl^{2+}$ ,  $Tl^{3+}$ ,  $Nb^{3+}$ , N

En el caso de que compuestos azoicos metálicos del componente a) contengan iones metálicos Me 2-valentes, pueden interpretarse las unidades estructurales de fórmula (I) y los iones metálicos Me como compuestos de fórmula (Ia)

$$R^{1} \xrightarrow{N} N = N \xrightarrow{R^{4}} N = R^{2}$$
(Ia)

Sin embargo es también posible que el ión metálico en un modo de escritura tautomérico de fórmula (la) esté unido a través de los átomos de nitrógeno.

La misma representación de acuerdo con la fórmula puede aplicarse a las unidades estructurales de fórmula (I) con los iones Cu<sup>2+</sup> o bien con los iones Zn<sup>2+</sup>. Esta representación sirve sólo para la ilustración y no reivindica una exactitud científica.

En el caso de que Me represente un ión metálico 3-valente se realiza la compensación de carga mediante una cantidad equivalente de unidades estructurales aniónicas de fórmula (I).

Preferentemente se realiza la compensación de carga de las unidades estructurales de fórmula (I) cargadas doblemente de manera negativa en del 80 % al 100 %, de manera especialmente preferente en del 95 % al 100 % y de manera muy especialmente preferente en del 99,9 % al 100 % mediante la suma de todos los iones metálicos Cu<sup>2+</sup>, Zn<sup>2+</sup> y eventualmente otros iones metálicos Me existentes en el pigmento azoico metálico.

Preferentemente, los compuestos azoicos metálicos mencionados de los componentes a) con los componentes b), es decir los compuestos de fórmula (II), forman aductos.

Como aductos ha de entenderse a este respecto generalmente moléculas compuestas. A este respecto puede realizarse la unión entre las moléculas por ejemplo mediante interacciones intermoleculares o interacciones de ácido de Lewis-base o mediante uniones de coordinación.

El término aducto debe comprender en el sentido de la presente invención generalmente todos los tipos de compuestos de almacenamiento y adición.

Por los términos "compuestos de almacenamiento" o "compuesto de adición" en el sentido de la presente invención debe entenderse por ejemplo compuestos que se forman debido a interacciones intermoleculares tal como interacciones de Van-der Waals o también interacciones de ácido de Lewis-base. A este respecto depende tanto de las propiedades químicas del componente que va a depositarse, sin embargo también de la naturaleza química de la red huésped, cómo se desarrolla el almacenamiento. Tales compuestos se designan con frecuencia también como compuestos de intercalación. En el sentido químico se entiende por esto el almacenamiento de moléculas, iones (raras veces también átomos) en compuestos químicos.

Además debe entenderse por esto también compuestos de inclusión, los denominados clatratos. Éstos representan compuestos de dos sustancias, de las cuales una molécula huésped se ha incluido en una rejilla o jaula de una molécula hospedadora.

Por los términos "compuesto de almacenamiento" o "compuesto de adición" en el sentido de la presente invención debe entenderse también cristales mixtos de almacenamiento (también compuesto intersticial). Se trata según esto de compuestos químicos, no estequiométricos, cristalinos de al menos dos elementos.

Además deben entenderse por loe términos "compuesto de almacenamiento" o "compuesto de adición" en el sentido de la presente invención también compuestos que se forman debido a enlaces de coordinación o enlaces de complejo. Como tales compuestos se designan por ejemplo cristal mixto de sustitución o cristal mixto de intercambio, en el que al menos dos sustancias forman un cristal común y los átomos del segundo componente se asientan en sitios de rejilla regulares del primer componente.

60

10

20

30

35

40

45

Se prefieren pigmentos azoicos metálicos que contienen los aductos de

a) al menos dos compuestos azoicos metálicos que se diferencian al menos en el tipo del metal y que contienen en cada caso unidades estructurales de la fórmula (I) indicada anteriormente,

en la que R<sup>1</sup> y R<sup>2</sup> representan OH,

R<sup>3</sup> y R<sup>4</sup> representan =O

iones metálicos Zn<sup>2+</sup> o bien Cu<sup>2+</sup> y eventualmente al menos otro ión metálico Me,

10

5

15

45

55

60

65

en los que Me representa un ión metálico seleccionado de la serie Ni²+, Al³+, Fe²+, Fe³+, Co²+, Co³+, La³+, Ce³+, Pr³+, Nd²+, Nd³+, Sm²+, Sm³+, Eu²+, Eu³+, Gd³+, Tb³+, Dy³+, Ho³+, Yb²+, Yb³+, Er³+, Tm³+, Mg²+, Ca²+, Sr²+, Mn²+, Y³+, Sc³+, Ti²+, Ti³+, Nb³+, Mo²+, Mo³+, V²+, V³+, Zr²+, Zr³+, Cd²+, Cr³+, Pb²+, Ba²+, de manera especialmente preferente de la serie de Al³+, Fe²+, Fe³+, Co²+, Co³+, La³+, Ce³+, Pr³+, Nd³+, Sm³+, Eu³+, Gd³+, Tb³+, Dy³+, Ho³+, Yb³+, Er³+, Tm³+, Mg²+, Ca²+, Sr²+, Mn²+, Y³+, de manera muy especialmente preferente de la serie de Al³+, Fe²+, Fe³+, Co²+, Co³+, La³+, Ce³+, Pr³+, Nd³+, Sm³+, Tb³+, Ho³+, Sr²+ y en particular de la serie de Al³+, Fe²+, Fe³+, Co²+ y Co³, con la condición de que la cantidad de iones metálicos Zn²+ y Cu²+ juntos ascienda a del 95 % al 100 % en moles y la cantidad de iones metálicos Me ascienda a del 0 % al 5 % en moles, en cada caso con respecto a un mol de tadas las inesse metálicos an al nigrepata argino metálicos

todos los iones metálicos en el pigmento azoico metálico,

20 en los que la relación molar de iones metálicos Zn<sup>2+</sup> con respecto a Cu<sup>2+</sup> en el pigmento azoico metálico asciende a de 199 : 1 a 1 : 15, preferentemente a de 19 : 1 a 1 : 1 y de manera especialmente preferente a de 9 : 1 a 2:1,

У 25

b) al menos un compuesto de la fórmula (II) indicada anteriormente

R° representa hidrógeno.

30 Se prefieren especialmente pigmentos azoicos metálicos que contienen los aductos de

> a) al menos dos compuestos azoicos metálicos que se diferencian al menos en el tipo del metal y que contienen en cada caso unidades estructurales de la fórmula (I) indicada anteriormente.

R<sup>1</sup>, R<sup>2</sup>, R<sup>3</sup>, R<sup>4</sup> y R<sup>5</sup> tienen el significado general y preferente indicado anteriormente 35

iones metálicos Zn2+ o bien Cu2+

con la condición de que la cantidad de iones metálicos Cu<sup>2+</sup> y Zn<sup>2+</sup> juntos ascienda al 100 % en moles, con respecto a un mol de todos los iones metálicos en el pigmento azoico metálico,

40 en los que la relación molar de iones metálicos Zn2+ con respecto a Cu2+ en el pigmento azoico metálico asciende a de 199 : 1 a 1 : 15, preferentemente a de 19 : 1 a 1 : 1 y de manera especialmente preferente a de 9 : 1 a 2:1,

b) al menos un compuesto de la fórmula (II) indicada anteriormente en la que R<sup>6</sup> tiene el significado general y preferente indicado anteriormente.

Los compuestos que son adecuados para formar con los compuestos azoicos metálicos del componente a) un 50 aducto en el sentido de la definición anterior pueden ser compuestos tanto orgánicos como también inorgánicos. A continuación se designan estos compuestos como agentes formadores de aductos.

En principio, los agentes formadores de aductos adecuados proceden de los tipos más diversos de clases de compuestos. Por motivos puramente prácticos se prefieren aquéllos compuestos que son líquidos o sólidos en condiciones normales (25 °C, 1 bar).

De las sustancias líquidas se prefieren generalmente aquéllas que presentan un punto de ebullición de 100 ºC o superior, preferentemente superior igual a 150 °C con 1 bar. Los agentes formadores de aductos adecuados son generalmente compuestos orgánicos acíclicos y cíclicos, por ejemplo hidrocarburos alifáticos y aromáticos que pueden estar sustituidos, por ejemplo mediante OH, COOH, NH2, NH2 sustituido, CONH2, CONH2 sustituido, SO<sub>2</sub>NH<sub>2</sub>, SO<sub>2</sub>NH<sub>2</sub> sustituido, SO<sub>3</sub>H, halógeno, NO<sub>2</sub>, CN, -SO<sub>2</sub>-alquilo, -SO<sub>2</sub>-arilo, -O-alquilo, -O-arilo, -O-acilo.

Las amidas de ácido carboxílico y de ácido sulfónico son un grupo preferente de agentes formadores de aductos, en particular son adecuadas también urea y ureas sustituidas tal como fenilurea, dodecilurea y otras así como sus policondensados con aldehídos, en particular formaldehído; heterociclos tal como ácido barbitúrico, benzoimidazolona, ácido benzoimidazolon-5-sulfónico, 2,3-dihidroxiquinoxalina, ácido 2,3-dihidroxiquinoxalin-6-

# ES 2 690 762 T3

sulfónico, carbazol, ácido carbazol-3,6-disulfónico, 2-hidroxiquinolina, 2,4-dihidroxiquinolina, caprolactama, melamina, 6-fenil-1,3,5-triazin-2,4-diamina, 6-metil-1,3,5-triazin-2,4-diamina, ácido cianúrico.

Igualmente como agentes formadores de aductos son adecuados en principio polímeros, preferentemente polímeros solubles en agua, por ejemplo polímeros de bloque de óxido de etileno-óxido de propileno, preferentemente con un M<sub>n</sub> superior igual a 1.000, en particular de 1.000 a 10.000 g/mol, poli(alcohol vinílico), poli(ácidos (met)-acrílicos), celulosa modificada, tal como carboximetilcelulosas, hidroxietil- y –propilcelulosas, metil- y etilhidroxietilcelulosas.

De acuerdo con la invención se usan como agentes formadores de aductos aquéllos de fórmula (II). En particular se prefiere a este respecto melamina.

5

15

20

25

30

45

50

55

60

En general, los pigmentos azoicos metálicos de acuerdo con la invención contienen por mol de unidades estructurales de fórmula (I) de 0,05 a 4 mol, preferentemente de 0,5 a 2,5 mol y de manera muy especialmente preferente de 1,0 a 2,0 mol de compuestos de fórmula (II).

Los pigmentos azoicos metálicos de acuerdo con la invención tienen preferentemente una superficie específica (m²/g) de 20 a 200 m²/g, en particular de 60 a 160 m²/g, de manera muy especialmente preferente de 90 a 150 m²/g. La superficie se determina según la norma DIN 66131: Determinación de la superficie específica de sólidos mediante adsorción de gas según Brunauer, Emmett y Teller (B.E.T).

En el caso de los pigmentos azoicos metálicos de acuerdo con la invención puede tratarse de mezclas físicas o de compuestos mixtos químicos. Preferentemente, en el caso de las mezclas físicas se trata de aductos de los compuestos azoicos metálicos mencionados del componente a) y los compuestos de fórmula (II) del componente b) que se diferencian al menos en cuanto al tipo de los metales. Por ejemplo y preferentemente se trata de la mezcla física de los aductos de a1) el compuesto azoico de Zn puro con b1) melamina y de los aductos de a2) el compuesto azoico de Cu puro con b2) melamina y eventualmente de los aductos de a3) al menos de otro compuesto azoico de Me con b3) melamina. En el caso de los compuestos mixtos químicos se trata por ejemplo y preferentemente de aductos de compuestos azoicos metálicos del componente a) con compuestos de fórmula (II) del componente b), preferentemente melamina, en los que los iones Zn²+ y Cu²+ y eventualmente otro ión metálico Me están incorporados en una red cristalina común.

En el caso de la presente invención no se diferencian los difractogramas de rayos X de las mezclas físicas y de los compuestos mixtos químicos.

Los pigmentos azoicos metálicos de acuerdo con la invención se caracterizan por señales características en el difractograma de rayos X, en particular, debido a que el pigmento azoico metálico presenta en el difractograma de rayos X entre las distancias entre los planos de red de d = 14,7 (± 0,3) Å y d = 11,8 (± 0,3) Å al menos una señal S con la intensidad I que supera el valor de fondo en 3 veces la raíz cuadrada de este valor.

Los pigmentos azoicos metálicos de acuerdo con la invención, en los que la relación molar de iones metálicos  $Zn^{2+}$  con respecto a  $Cu^{2+}$  en un mol de todos los iones metálicos asciende a de 1 : 15 a 4 : 1, se caracterizan por que éstos presentan en el difractograma de rayos X con una distancia entre los planos de red de d = 12,3 ( $\pm$  0,3) Å una señal  $S_1$  con una intensidad  $I_1$  y al mismo tiempo con una distancia entre los planos de red de d = 3,7 ( $\pm$  0,3) Å una señal  $S_2$  con una intensidad  $I_2$ , que en cada caso supera el valor de fondo en 3 veces la raíz cuadrada de este valor.

Los pigmentos azoicos metálicos de acuerdo con la invención pueden prepararse mediante reacción de sales alcalinas de fórmula (III), o sus tautómeros, preferentemente de las sales de sodio o de potasio, en presencia de al menos un compuesto de fórmula (II) con sales de cinc y de cobre y eventualmente una o varias sales metálicas de metales 2- o 3-valentes, distintos de cinc y cobre, preferentemente de la serie de las sales de níquel, aluminio, hierro, cobalto, lantano, cerio, praseodimio, neodimio, samario, europio, gadolinio, terbio, disprosio, holmio, yterbio, erbio, tulio, magnesio, calcio, estroncio, manganeso, itrio, escandio, titanio, niobio, molibdeno, vanadio, zirconio, cadmio, cromo, plomo y sales de bario, de manera especialmente preferente de la serie de níquel, aluminio, hierro, cobalto, lantano, cerio, praseodimio, neodimio, samario, europio, gadolinio, terbio, disprosio, holmio, yterbio, erbio, tulio, magnesio, calcio, estroncio, manganeso, itrio, de manera muy especialmente preferente de la serie de las sales de níquel, aluminio, hierro, cobalto, lantano, cerio, praseodimio, neodimio, samario, terbio, holmio, estroncio y en particular de la serie de las sales de níquel, aluminio, hierro y cobalto.

Los pigmentos azoicos metálicos de acuerdo con la invención pueden prepararse también mediante mezclado de los aductos de a1) compuestos azoicos metálicos que contienen unidades estructurales de fórmula (I) e iones Zn<sup>2+</sup> y b1) compuestos de fórmula (II) con aductos de a2) compuestos azoicos metálicos que contienen unidades estructurales de fórmula (I) e iones Cu<sup>2+</sup> y b2) compuestos de fórmula (II), eventualmente con aductos a3) de compuestos azoicos metálicos que contienen unidades estructurales de fórmula (I) e iones metálicos Me y b3) compuestos de fórmula (II).

Otro objetivo de la presente invención es un procedimiento para la preparación de los pigmentos azoicos metálicos de acuerdo con la invención que está caracterizado por que se hace reaccionar al menos un compuesto de fórmula (III), o sus tautómeros,

$$R^{1} \xrightarrow{N} N = N \xrightarrow{XO} H \\ N \xrightarrow{N} R^{2}$$

$$R^{3} \qquad R^{4} \qquad (III)$$

en la que

5

10

15

20

25

30

40

45

50

X representa un ión de metal alcalino, preferentemente representa un ión sodio o potasio,

R<sup>1</sup> y R<sup>2</sup> independientemente entre sí representan OH, NH<sub>2</sub> o NHR<sup>5</sup>,

 $R^3$  y  $R^4$  independientemente entre sí representan =O o =N $R^5$  y

R<sup>5</sup> representa hidrógeno o alquilo, preferentemente alquilo C<sub>1</sub>-C<sub>4</sub>,

en presencia de al menos un compuesto de fórmula (II) simultáneamente o sucesivamente con al menos una sal de cinc y al menos una sal de cobre y eventualmente con al menos otra sal metálica de un metal 2- o 3-valente, distinto de cinc y cobre, preferentemente de la serie de las sales de Ni²+, Al³+, Fe²+, Fe³+, Co²+, Co³+, La³+, Ce³+, Pr³+, Nd²+, Nd³+, Sm²+, Sm³+, Eu²+, Eu³+, Gd³+, Tb³+, Dy³+, Ho³+, Yb²+, Yb³+, Er³+, Tm³+, Mg²+, Ca²+, Sr²+, Mn²+, Y³+, Sc³+, Ti²+, Ti³+, Nb³+, Mo²+, Mo³+, V²+, V³+, Zr²+, Zr³+, Cd²+, Cr³+, Pb²+ y Ba²+, de manera especialmente preferente de la serie de las sales de Al³+, Fe²+, Fe³+, Co²+, Co³+, La³+, Ce³+, Pr³+, Nd³+, Sm³+, Eu³+, Gd³+, Tb³+, Dy³+, Ho³+, Yb³+, Er³+, Tm³+, Mg²+, Ca²+, Sr²+, Mn²+ y Y³+, de manera muy especialmente preferente de la serie de las sales de Al³+, Fe²+, Fe³+, Co²+, Co³+, La³+, Ce³+, Pr³+, Nd³+, Sr²+ y en particular de la serie de las sales de Al³+, Fe²+, Fe³+, Co²+ y Co³+, usándose por mol de compuesto de fórmula (III) de 0,06 a 0,995 mol al menos de una sal de cinc, de 0,005 a 0,94 mol al menos de una sal de cobre y de 0,05 a 0 mol al menos de otra sal metálica de metales 2- o 3-valentes distintos de cinc y cobre, y ascendiendo la suma de las cantidades molares de todas las sales metálicas en total a un mol.

Preferentemente se usan por mol de compuesto de fórmula (III) de 0,05 a 0,5 mol al menos de una sal de cinc y de 0,49 a 0,95 mol al menos de una sal de cobre y de 0,01 a 0 mol al menos de otra sal metálica de metales 2- o 3-valentes, distintos de cinc y cobre.

De manera muy especialmente preferente se usan por mol de compuesto de fórmula (III) de 0,1 a 0,3 mol al menos de una sal de cinc y de 0,7 a 0,9 mol al menos de una sal de cobre.

En general se usan para la realización del procedimiento de acuerdo con la invención por mol de compuesto de fórmula (III) de 0,05 a 4 mol, preferentemente de 0,5 a 2,5 mol y de manera muy especialmente preferente de 1,0 a 2,0 mol de compuesto de fórmula (II).

Como alternativa puede usarse para la preparación en lugar del compuesto dialcalino de fórmula (III) también un compuesto monoalcalino de fórmula (IIIa), o sus tautómeros,

en la que X, R<sup>1</sup>, R<sup>2</sup>, R<sup>3</sup> y R<sup>4</sup> tienen el significado indicado para la fórmula (III),

o una mezcla de compuestos de fórmula (III) y (IIIa). A este respecto se refieren las cantidades molares indicadas de sales de cinc y de cobre y eventualmente otras sales metálicas distintas de sales de cinc y de cobre, así como de compuestos de fórmula (II) en estos casos a la suma de la cantidad molar de los compuestos (III) y (IIIa) usados.

En particular se prefiere la preparación de aductos binarios de ácido azobarbitúrico de cinc-/cobre-melamina. El procedimiento de acuerdo con la invención se realiza en general a una temperatura de 60 a 95 °C en solución

acuosa con un valor de pH inferior a 7. Las sales de cinc y cobre que van a usarse de acuerdo con la invención y las otras sales metálicas que van a usarse eventualmente pueden usarse individualmente o como mezcla entre sí, preferentemente en forma de una solución acuosa. Los compuestos de fórmula (II) pueden añadirse igualmente de manera individual o como mezcla entre sí, preferentemente en forma de los sólidos.

5

10

En general se realiza el procedimiento de acuerdo con la invención de modo que se dispone el compuesto azoico de fórmula (III), preferentemente como sal de Na o de K, de modo que se añaden uno o varios compuestos de fórmula (II), preferentemente melamina, y después se hace reaccionar simultáneamente o sucesivamente con al menos una sal de cinc y al menos una sal de cobre y eventualmente una o varias sales metálicas de metales 2- o 3-valentes, distintos de cobre y cinc, preferentemente en forma de las soluciones acuosas de estas sales, preferentemente con valores de pH inferiores a 7. Para el ajuste del valor de pH son adecuados solución acuosa de hidróxido de sodio, solución acuosa de hidróxido de potasio, carbonato de sodio, hidrogenocarbonato de sodio, carbonato de potasio y hidrogenocarbonato de potasio.

15 Como sales de cinc y de cobre se tienen en cuenta preferentemente sus sales solubles en agua, en particular cloruros, bromuros, acetatos, formiatos, nitratos, sulfatos etc. Las sales de cinc y de cobre usadas preferentemente tienen una solubilidad en agua de más de 20 g/l, en particular más de 50 g/l a 20 °C.

Como otras sales metálicas de metales 2- o 3-valentes distintos de cobre y cinc, preferentemente de la serie de las sales de níquel, aluminio, hierro, cobalto, lantano, cerio, praseodimio, neodimio, samario, europio, gadolinio, terbio, disprosio, holmio, yterbio, erbio, tulio, magnesio, calcio, estroncio, manganeso, itrio, escandio, titanio, niobio, molibdeno, vanadio, zirconio, cadmio, cromo, plomo y bario, se tienen en cuenta preferentemente sus sales solubles en agua, en particular sus cloruros, bromuros, acetatos, nitratos y sulfatos, preferentemente sus cloruros.

Los pigmentos azoicos metálicos de acuerdo con la invención obtenidos de esta manera pueden aislarse entonces mediante filtración de su suspensión acuosa como torta de filtración a vacío acuosa. Esta torta de filtración a vacío puede secarse, eventualmente tras lavado con agua caliente, por medio de procedimientos de secado habituales.

Como procedimiento de secado se tienen en cuenta por ejemplo el secado con paletas o el secado por pulverización de correspondientes suspensiones acuosas.

A continuación puede molerse posteriormente el pigmento.

Siempre que los pigmentos azoicos metálicos de acuerdo con la invención tengan para la aplicación deseada demasiada dureza del grano o bien demasiada dureza de la dispersión, pueden transformarse éstos por ejemplo de acuerdo con el procedimiento descrito en el documento DE-A 19 847 586 en pigmentos de grano blando.

Otro objetivo de la presente invención es un procedimiento para la preparación de los pigmentos azoicos metálicos de acuerdo con la invención que está caracterizado por que se mezclan entre sí

40

50

30

(i) al menos un aducto de

a1) un compuesto azoico metálico que contiene unidades estructurales de la fórmula (I) indicada anteriormente,

45 en la que

R<sup>1</sup>, R<sup>2</sup>, R<sup>3</sup>, R<sup>4</sup> y R<sup>5</sup> tienen el significado general y preferente indicado anteriormente,

e iones Cu<sup>2+</sup>

b1) al menos un compuesto de la fórmula (II) indicada anteriormente, en la que R<sup>6</sup> tiene los significados generales y preferentes indicados anteriormente,

y la cantidad de iones metálicos Cu<sup>2+</sup> asciende al 100 % en moles, con respecto a un mol de todos los iones metálicos en el aducto a1)/b1),

55 con

(ii) al menos un aducto de

a2) un compuesto azoico metálico que contiene unidades estructurales de la fórmula (I) indicada anteriormente,

en la que

R<sup>1</sup>, R<sup>2</sup>, R<sup>3</sup>, R<sup>4</sup> y R<sup>5</sup> tienen el significado general y preferente indicado anteriormente,

e iones Zn<sup>2+</sup>,

### ES 2 690 762 T3

b2) al menos un compuesto de la fórmula (II) indicada anteriormente, en la que R<sup>6</sup> tiene los significados generales y preferentes indicados anteriormente

y la cantidad de iones metálicos Zn<sup>2+</sup> asciende al 100 % en moles, con respecto a un mol de todos los iones metálicos en el aducto a2)/b2),

y eventualmente con

#### (iii) al menos un aducto de

a3) un compuesto azoico metálico que contiene unidades estructurales de la fórmula (I) indicada anteriormente.

en la que

R<sup>1</sup>, R<sup>2</sup>, R<sup>3</sup>, R<sup>4</sup> y R<sup>5</sup> tienen el significado general y preferente indicado anteriormente,

5

10

25

30

iones metálicos Me.

iones metalicos Me, en el que Me representa un ión metálico 2- o 3-valente, distinto de  $Zn^{2+}$  y  $Cu^{2+}$ , preferentemente representa un ión metálico seleccionado de la serie de  $Ni^{2+}$ ,  $Al^{3+}$ ,  $Fe^{2+}$ ,  $Fe^{3+}$ ,  $Co^{2+}$ ,  $Co^{3+}$ ,  $La^{3+}$ ,  $Ce^{3+}$ ,  $Pr^{3+}$ ,  $Nd^{2+}$ ,  $Nd^{3+}$ ,  $Sm^{2+}$ ,  $Sm^{3+}$ ,  $Eu^{2+}$ ,  $Eu^{3+}$ ,  $Eu^$ 15 20

b3) al menos un compuesto de la fórmula (II) indicada anteriormente, en la que R<sup>6</sup> tiene los significados generales y preferentes indicados anteriormente

y la cantidad de iones metálicos Me asciende al 100 % en moles, con respecto a un mol de todos los iones metálicos en el aducto a3)/b3),

en el que por mol de aducto a1)/b1) se usan de 0,005 a 15 mol de aducto a2)/b2) y se usan de 0 a 0,05 mol de aducto a3)/b3), con respecto a la suma de la cantidad molar de aducto a1/)b1) y a2)/b2).

Se prefiere la preparación de mezclas de aductos binarias, usándose por mol de aducto a1)/b1) de 0,05 a 1 mol de aducto a2)/b2), preferentemente por mol de aducto a1)/b1) de 0,1 a 0,5 mol de aducto a2)/b2).

35 Los pigmentos azoicos metálicos de acuerdo con la invención se caracterizan por dispersabilidad especialmente buena y una alta intensidad de color. La croma y la transparencia pueden ajustarse de manera excelente.

Los pigmentos azoicos metálicos de acuerdo con la invención son adecuados de manera excelente para todos los fines de aplicación de pigmentos, en particular también en forma de sus preparaciones de pigmentos.

40

Otro objeto de la presente invención son preparaciones de pigmentos que contienen al menos un pigmento azoico metálico de acuerdo con la invención y al menos un coadyuvante y/o aditivo.

Como coadyuvantes o aditivos se tienen en cuenta en general todos los aditivos habituales para preparaciones de pigmentos, por ejemplo aquéllos de la serie de los agentes tensioactivos tal como agentes dispersantes, tensioactivos, agentes humectantes, emulsionantes, así como aquéllos de la serie de los agentes de revestimiento de superficie, de las bases y disolventes. En principio, el coadyuvante o aditivo depende del tipo del sistema objetivo. Si el sistema de objetivo es por ejemplo un laca o una tinta de impresión, entonces se selecciona el coadyuvante o aditivo de modo que se consiga una compatibilidad posiblemente alta con el sistema objetivo.

50

65

45

Preferentemente, las preparaciones de pigmentos de acuerdo con la invención contienen al menos un agente tensioactivo.

Por agentes tensioactivos se entiende en el contexto de la presente invención en particular agentes dispersantes 55 que estabilizan las partículas de pigmento en su forma particular fina en medios acuosos. Por particular fina se entiende preferentemente una distribución fina de 0,001 a 5 μm, en particular de 0,005 a 1 μm, de manera especialmente preferente de 0,005 a 0,5 µm. La preparación de pigmentos de acuerdo con la invención preferentemente se encuentra de manera particular fina.

60 Los agentes tensioactivos adecuados son por ejemplo de naturaleza aniónica, catiónica, anfótera o no ionógena.

Los agentes tensioactivos aniónicos (c) adecuados son en particular productos de condensación de ácidos sulfónicos aromáticos con formaldehído, tal como productos de condensación de formaldehído y ácidos alquilnaftalensulfónicos o de formaldehído, ácidos naftalensulfónicos y/o ácidos bencensulfónicos, productos de condensación de fenol eventualmente sustituido con formaldehído y bisulfito de sodio. Además son adecuados agentes tensioactivos del grupo de los ésteres de ácido sulfosuccínico así como alquilbencensulfonatos. Además

alcoholes de ácido graso iónicamente modificados, en particular sulfatados o carboxilados, alcoxilados o sus sales. Como alcoholes de ácido graso alcoxilados se entiende en particular aquellos alcoholes de ácido graso  $C_6$ - $C_{22}$  dotados de 5 a 120, preferentemente de 5 a 60, en particular de 5 a 30 mol de óxido de etileno, que están saturados o insaturados. Además se tienen en consideración sobre todo ligninsulfonatos, por ejemplo aquéllos que se obtienen según el procedimiento de sulfito o Kraft. Preferentemente se trata de productos que en parte se hidrolizan, se oxidan, se propoxilan, se sulfonan, se sulfometilan o se desulfonan y según procedimientos conocidos se fraccionan, por ejemplo según el peso molecular o según el grado de sulfonación. También mezclas de ligninsulfonatos de sulfito y Kraft son muy eficaces. Especialmente son adecuados los ligninsulfonatos con un peso molecular promedio entre 1.000 y 100.000 g/mol, un contenido de ligninsulfonato activo de al menos el 80 % en peso y preferentemente con bajo contenido de cationes polivalentes. El grado de sulfonación puede variar en amplios intervalos.

Como agentes tensioactivos no iónicos se tienen en cuenta por ejemplo: productos de reacción de óxidos de alquileno con compuestos que pueden alquilarse, tal como por ejemplo alcoholes grasos, aminas grasas, ácidos grasos, fenoles, alquilfenoles, arilalquilfenoles, tal como condensados de estireno-fenol, amidas de ácido carboxílico y ácidos resínicos. Según esto se trata por ejemplo de aductos de óxido de etileno de la clase de los productos de reacción de óxido de etileno con:

- 1) alcoholes grasos saturados y/o insaturados con 6 a 22 átomos de C o
- 2) alquilfenoles con 4 a 12 átomos de C en el resto alquilo o
- 3) aminas grasas saturadas y/o insaturadas con 14 a 20 átomos de C o
- 4) ácidos grasos saturados y/o insaturados con 14 a 20 átomos de C o
- 5) ácidos resínicos hidrogenados y/o no hidrogenados.

Como aductos de óxido de etileno se tienen en cuenta en particular los compuestos que pueden alquilarse mencionados en 1) a 5) con 5 a 120, en particular de 5 a 100, en particular de 5 a 60, de manera especialmente preferente de 5 a 30 mol de óxido de etileno.

Como agentes tensioactivos son adecuados igualmente los ésteres del producto de alcoxilación de fórmula (X), conocidos por el documento DE-A 19 712 486 o por el documento DE-A 19 535 246, que corresponden a la fórmula (XI) así como éstos eventualmente en mezcla con los compuestos subyacentes de fórmula (X). El producto de alcoxilación de un condensado de estireno-fenol de fórmula (X) es tal como se define a continuación:

en la que

10

15

20

25

30

35

40

50

55

R<sup>15</sup> significa hidrógeno o alquilo C<sub>1</sub>-C<sub>4</sub>,

R<sup>16</sup> representa hidrógeno o CH<sub>3</sub>,

45 R<sup>17</sup> significa hidrógeno, alquilo C<sub>1</sub>-C<sub>4</sub>, alcoxi C<sub>1</sub>-C<sub>4</sub>, alcoxicarbonilo C<sub>1</sub>-C<sub>4</sub> o fenilo,

m significa un número de 1 a 4,

n significa un número de 6 a 120,

para cada unidad indicada con n es igual o distinto y representa hidrógeno, CH<sub>3</sub> o fenilo, en el que en el caso de la presencia conjunta de CH<sub>3</sub> en los distintos grupos -(-CH<sub>2</sub>-CH(R<sup>18</sup>)-O-)- en del 0 % al 60 % del valor total de n R<sup>18</sup> representa CH<sub>3</sub> y en del 100 % al 40 % del valor total de n R<sup>18</sup> representa hidrógeno y en el que en el caso de la presencia conjunta de fenilo en los distintos grupos -(-CH<sub>2</sub>-CH(R<sup>18</sup>)-O-)- en del 0 al 40 % del valor total de n R<sup>18</sup> representa fenilo y en del 100 % al 60 % del valor total de n R<sup>18</sup> representa hidrógeno.

Los ésteres de los productos de alcoxilación (X) corresponden a la fórmula (XI)

en la que

5 R<sup>15</sup>, R<sup>16</sup>, R<sup>17</sup>, R<sup>18</sup>, m' y n'

adoptan el significado de R<sup>15</sup>, R<sup>16</sup>, R<sup>17</sup>, R<sup>18</sup>, m o bien n, sin embargo independientemente de esto.

Χ

significa el grupo -SO<sub>3</sub>, -SO<sub>2</sub>, -PO<sub>3</sub> o -CO-(R<sup>19</sup>)-COO,

10 Cat

es un catión del grupo de H, Li, Na, K,  $NH_4$  o  $HO-CH_2CH_2-NH_3$ , encontrándose en el caso de  $X = -PO_3$  dos Cat v

 $R^{19}$ 

representa un resto divalente alifático o aromático, preferentemente representa alquileno  $C_1$ - $C_4$ , en particular etileno, restos  $C_2$ - $C_4$  monoinsaturados, en particular acetileno o fenileno eventualmente sustituido, en particular orto-fenileno, teniéndose en cuenta como posibles sustituyentes preferentemente alquilo  $C_1$ - $C_4$ , alcoxi  $C_1$ - $C_4$ , alcoxicarbonilo  $C_1$ - $C_4$  o fenilo.

15

Como un agente tensioactivo preferente se usa el compuesto de fórmula (XI). Preferentemente un compuesto de fórmula (XI), en la que X significa un resto de fórmula -CO-(R<sup>19</sup>)-COO- y R<sup>19</sup> tiene el significado anterior.

Preferentemente puede usarse igualmente como agente tensioactivo un compuesto de fórmula (XI) junto con un compuesto de fórmula (X). Preferentemente contiene el agente de superficie en este caso del 5 % al 99 % en peso del compuesto (XI) y del 1 % al 95 % en peso del compuesto (X).

25

20

El agente tensioactivo del componente (c) se usa preferentemente en la preparación de pigmentos en una cantidad del 0,1 % al 100 % en peso, en particular del 0,5 % al 60 % en peso, con respecto al pigmento azoico metálico de acuerdo con la invención usado.

- Lógicamente puede contener la preparación de pigmentos de acuerdo con la invención aún otros aditivos. Así pueden añadirse por ejemplo aditivos que reducen la viscosidad de una suspensión acuosa y/o elevan el contenido de sólidos, tal como por ejemplo amidas de ácido carboxílico y de ácido sulfónico en una cantidad de hasta el 10 % en peso, con respecto a la preparación de pigmentos.
- Otros aditivos son por ejemplo bases inorgánicas y orgánicas así como aditivos habituales para la preparación de pigmentos.

Como bases pueden mencionarse: hidróxidos alcalinos, tal como por ejemplo NaOH, KOH o aminas orgánicas tal como alquilaminas, en particular alcanolaminas o alquilalcanolaminas.

40

Como especialmente preferente pueden mencionarse metilamina, dimetilamina, trimetilamina, etanolamina, n-propanolamina, n-butanolamina, dietanolamina, trietanolamina, metiletanolamina o dimetiletanolamina.

Como amidas de ácido carboxílico y de ácido sulfónico son adecuadas por ejemplo: urea y ureas sustituidas tal como fenilurea, dodecilurea y otros; heterociclos tal como ácido barbitúrico, benzoimidazolona, ácido benzoimidazolon-5-sulfónico, 2,3-dihidroxiquinoxalina, ácido 2,3-dihidroxiquinoxalin-6-sulfónico, carbazol, ácido carbazol-3,6-disulfónico, 2-hidroxiquinolina, 2,4-dihidroxiquinolina, caprolactama, melamina, 6-fenil-1,3,5-triazin-2,4-diamina, 6-metil-1,3,5-triazin-2,4-diamina, ácido cianúrico.

La base está contenida eventualmente hasta una cantidad del 20 % en peso, preferentemente hasta el 10 % en peso, con respecto al pigmento.

Además, las preparaciones de pigmentos de acuerdo con la invención pueden contener de manera condicionada con la fabricación aún sales inorgánicas y/u orgánicas.

55

Las preparaciones de pigmentos de acuerdo con la invención son preferentemente sólidas a temperatura ambiente. En particular se encuentran las preparaciones de pigmentos de acuerdo con la invención como polvo o granulados.

## ES 2 690 762 T3

Las preparaciones de pigmentos de acuerdo con la invención son adecuadas excelentemente para todos los fines de aplicación de pigmentos.

Otro objetivo de la presente invención es el uso al menos de un pigmento azoico metálico de acuerdo con la invención o de una preparación de pigmentos de acuerdo con la invención para la pigmentación de lacas de todo tipo para la preparación de tintas de impresión, pinturas al temple o pinturas de dispersión, para la coloración de masa de papel, para la coloración de masa de sustancias macromoleculares sintéticas, semisintéticas o naturales, tal como por ejemplo poli(cloruro de vinilo), poliestireno, poliamida, polietileno o polipropileno. Éstos pueden usarse también para la coloración en hilado de fibras naturales, regeneradas o sintéticas, tal como por ejemplo fibras de celulosa, de poliester, de policarbonato, de poliacrilonitrilo o de poliamida, así como para la impresión de materiales textiles y papel. A partir de estos pigmentos pueden prepararse pigmentaciones finamente divididas, estables, acuosas de pinturas y pinturas de dispersión, que pueden usarse para la coloración de papel, para la impresión de pigmentos de materiales textiles, para la impresión de laminado o para la coloración en hilado de viscosa, mediante molienda o amasado en presencia de tensioactivos no ionógenos, aniónicos o catiónicos.

15

5

10

Los pigmentos azoicos metálicos de acuerdo con la invención son adecuados además de manera excelente para aplicaciones de inyección de tinta y para filtros de color para pantallas de cristal líquido.

20

En una forma de realización igualmente preferente contienen las preparaciones de pigmentos de acuerdo con la invención al menos un compuesto orgánico (d) seleccionado del grupo de los terpenos, terpenoides, ácidos grasos, ésteres de ácidos grasos y de los homo- o copolímeros, tal como copolímeros estadísticos o de bloque con una solubilidad en agua de pH neutro a 20 °C inferior a 1 g/l, en particular inferior a 0,1 g/l. El compuesto orgánico (d) es preferentemente sólido o líquido a temperatura ambiente (20 °C) bajo atmósfera normal y presenta en el caso de que sea líquido un punto de ebullición de preferentemente >100 °C, en particular >150 °C.

25

Los polímeros preferentes tienen tanto una parte de molécula hidrófila como también una parte de molécula hidrófoba preferentemente polimérica. Ejemplos de polímeros de este tipo son copolímeros estadísticos a base de ácidos grasos o hidrocarburos C<sub>12</sub>-C<sub>22</sub> de cadena larga y polialquilenglicoles, en particular polietilenglicol. Además copolímeros de bloque a base de ácidos (poli)hidroxigrasos y polialquilenglicol, en particular polietilenglicol, así como copolímeros de injerto a base de poli(met)acrilato y polialquilenglicol, en particular polietilenglicol.

30

Como compuestos preferentes del grupo de los terpenos, terpenoides, ácidos grasos y ésteres de ácidos grasos se mencionan: ocimeno, mirceno, geraniol, nerol, linalool, citronelol, geranial, citronelal, neral, limoneno, mentol, por ejemplo (-)-mentol, mentona o monoterpenos bicíclicos, ácidos grasos saturados e insaturados con 6 a 22 átomos de C, tal como por ejemplo ácido oleico, ácido linoleico y ácido linolénico o mezclas de los mismos.

35

Como compuestos orgánicos del componente (d) se tienen en cuenta además también los agentes formadores de aductos mencionados anteriormente en tanto que éstos obedezcan a los criterios deseados para el compuesto del componente (d).

40

Las preparaciones de pigmentos especialmente preferentes contienen:

del 50 - 99 % en peso de al menos un pigmento azoico metálico de acuerdo con la invención y del 1 - 50 % en peso preferentemente del 2 % al 50 % en peso de al menos un compuesto del componente (d)

45

Eventualmente contiene la preparación de pigmentos de acuerdo con la invención adicionalmente un agente tensioactivo (c).

50

De manera especialmente preferente, las preparaciones de acuerdo con la invención están constituidas en más del 90 % en peso, preferentemente más del 95 % en peso y en particular más del 97 % en peso por al menos un pigmento azoico metálico de acuerdo con la invención, al menos de un compuesto orgánico del componente (d) y eventualmente al menos un agente tensioactivo del componente (c) y eventualmente al menos de una base.

55

Las preparaciones de pigmentos de acuerdo con la invención de esta composición son adecuadas en particular para la pigmentación de tintas para inyección de tinta y de filtros de color para pantallas de cristal líquido.

60

Otro objetivo de la presente invención es un procedimiento para la preparación de las preparaciones de pigmentos de acuerdo con la invención que está caracterizado por que se mezclan entre sí al menos un pigmento azoico metálico de acuerdo con la invención y al menos un coadyuvante o aditivo, en particular al menos un compuesto orgánico del componente (d) y eventualmente al menos un agente tensioactivo del componente (c) y eventualmente al menos una base.

65

Igualmente, objetivo de la presente invención es el uso de los pigmentos azoicos metálicos de acuerdo con la invención o de las preparaciones de pigmentos de acuerdo con la invención para la preparación de filtros de color para pantallas de cristal líquido. A continuación se describe este uso en el ejemplo del procedimiento de dispersión de pigmento según el procedimiento de fotolaca.

# ES 2 690 762 T3

El uso de acuerdo con la invención de las preparaciones de pigmentos de acuerdo con la invención para la preparación de filtros de color está caracterizado por ejemplo por que se homogeneiza al menos un pigmento azoico metálico de acuerdo con la invención o una preparación de pigmentos de acuerdo con la invención, en particular preparación de pigmentos sólida, eventualmente con una resina de aglutinante y un disolvente orgánico, eventualmente con adición de un agente dispersante, y a continuación se tritura en húmedo de manera continua o discontinua hasta obtener un tamaño de partícula según el número (determinación mediante microscopía electrónica) del 99,5 % <1000 nm, preferentemente del 95 % <500 nm y en particular del 90 % <200 nm.

Como procedimiento de trituración en húmedo se tienen en cuenta por ejemplo dispersión en agitador o dispositivo agitador, molienda por medio de molinos de perlas o de bolas agitadores, amasado, molino de cilindros, homogeneización a alta presión o dispersión en ultrasonido.

Durante el tratamiento de dispersión o a continuación de esto se realiza la adición de al menos un monómero que puede fotocurarse y un fotoiniciador. A continuación de la dispersión puede introducirse aún otra resina de aglutinante, disolvente o aditivos habituales para fotolacas, tal como es necesario para el ajuste de agentes de revestimiento fotosensibles deseados (fotolaca) para la preparación de los filtros de color. En el contexto de esta invención se entiende por fotolaca una preparación que contiene al menos un monómero que puede fotocurarse y un fotoiniciador.

El objetivo de la presente invención es también un procedimiento para la preparación de filtros de color para pantallas de cristal líquido, que está caracterizado por que se homogeneiza al menos un pigmento azoico metálico de acuerdo con la invención o una preparación de pigmentos de acuerdo con la invención, eventualmente con una resina de aglutinante y un disolvente orgánico, eventualmente con adición de un agente dispersante, y a continuación se tritura en húmedo de manera continua o discontinua hasta obtener un tamaño de partícula según el número (determinación mediante microscopía electrónica) del 99,5 % <1000 nm, y durante el tratamiento de dispersión o a continuación de esto se añade un monómero que puede fotocurarse y un fotoiniciador.

Como posibles agentes dispersantes se tienen en consideración generalmente agentes dispersantes habituales en el comercio, adecuados para este fin de aplicación tal como por ejemplo agentes dispersantes poliméricos, ionógenos o no ionógenos por ejemplo a base de ácidos policarboxílicos o ácidos polisulfónicos, así como copolímeros de bloque de poli(óxido de etileno)-poli(óxido de propileno).

Además pueden usarse también derivados de colorantes orgánicos como agentes dispersantes o agentes codispersantes.

Por tanto, en la preparación de los filtros de color se producen "preparaciones" que contienen con respecto a la preparación:

- al menos un pigmento azoico metálico de acuerdo con la invención,

- eventualmente una resina de aglutinante,

- al menos un disolvente orgánico así como

45 - eventualmente un agente dispersante.

15

30

35

40

50

55

En una forma de realización preferente contiene la preparación (indicación con respecto a la preparación):

del 1 - 50 % en peso de un pigmento azoico metálico de acuerdo con la invención

del 0 - 20 % en peso de resina aglutinante

del 0 - 20 % en peso de agente dispersante

del 10 - 94 % en peso de disolvente orgánico

La aplicación por revestimiento de la fotolaca sobre una placa para la generación de los patrones de elementos de imagen coloreados puede realizarse o bien mediante descarga directa o indirecta. Como procedimientos de descarga se mencionan por ejemplo: revestimiento por rodillo, revestimiento por rotación, revestimiento por pulverización, revestimiento por inmersión y revestimiento por cuchilla de aire.

Como placas se tienen en cuenta dependiendo del uso por ejemplo: vidrio transparente tal como placa de vidrio blanca o azul, placa de vidrio azul revestida con silicato, placa o película de resina sintética a base de por ejemplo resina de poliéster, de policarbonato, acrílica o de cloruro de vinilo, además placas de metal a base de aluminio, cobre, níquel o acero así como placas de cerámica o placas semiconductoras con elementos de transferencia fotoeléctricos aplicados.

65 La aplicación se realiza en general de modo que el espesor de capa de la capa fotosensible obtenida se encuentra en de 0,1 a 10 μm.

A continuación de la aplicación puede realizarse un secado térmico de la capa.

La iluminación se realiza preferentemente exponiéndose la capa fotosensible a un haz de luz activo preferentemente en forma de un patrón de imagen por medio de la fotomáscara. Mediante esto se cura la capa en los sitios iluminados. Las fuentes de luz adecuadas son por ejemplo: lámpara de vapor de mercurio a alta presión y a ultraalta presión, lámpara de xenón, de haluro metálico, de fluorescencia así como haz láser en la región visible.

Mediante el desarrollo a continuación de la iluminación se separa la parte no iluminada del revestimiento y se obtiene la forma de patrón de imagen deseada de los elementos de color. Los procedimientos de revelado habituales comprenden la pulverización con o inmersión en solución de revelador alcalina acuosa o en un disolvente orgánico que contiene álcali inorgánico tal como por ejemplo hidróxido de sodio o de potasio, metasilicato de sodio o bases orgánicas tal como monoetanolamina, dietanolamina, trietanolamina, trietilamina o sus sales.

Tras el desarrollo se realiza por regla general un secado/curado posterior térmico de los patrones de imagen.

15

25

30

10

5

El uso de acuerdo con la invención de los pigmentos azoicos metálicos está caracterizado preferentemente por que éstos se usan solos o en mezcla con otros pigmentos habituales para la preparación de filtros de color en los filtros de color o bien las preparaciones de pigmentos o preparaciones para filtros de color.

20 Estos "otros pigmentos" pueden ser tanto otras sales metálicas de un compuesto azoico de fórmula (I) o preparaciones de pigmento a base de esto como también otros pigmentos inorgánicos u orgánicos.

En cuanto a la elección de otros pigmentos que van a usarse de manera conjunta eventualmente no existe de acuerdo con la invención ninguna limitación. Se tienen en cuenta tanto pigmentos inorgánicos como también orgánicos.

Los pigmentos orgánicos preferentes son por ejemplo aquéllos de la serie de monoazoicos, disazoicos, azoicos lacados, β-naftol, naftol AS, benzoimidazolona, condensación de disazoicos, complejos azometálicos, isoindolina e isoindolinona, además pigmentos policíclicos tal como por ejemplo de la serie de ftalocianina, quinacridona, perileno, perinona, tioindigo, antraquinona, dioxazina, quinoftalona y dicetopirrolopirrol. Además colorantes lacados tal como lacas de Ca, Mg y Al de colorantes que contienen ácido sulfónico o ácido carboxílico.

Ejemplos de otros pigmentos orgánicos que van a usarse de manera conjunta eventualmente son:

35 Colour Index Pigment Yellow 12, 13, 14, 17, 20, 24, 74, 83, 86, 93, 94, 109, 110, 117, 125, 137, 138, 139, 147, 148, 150, 153, 154, 166, 173, 185, o

Colour Index Pigment Orange 13, 31, 36, 38, 40, 42, 43, 51, 55, 59, 61, 64, 65, 71, 72, 73 o

40 Colour Index Pigment Red 9, 97, 122, 123, 144, 149, 166, 168, 177, 180, 192, 215, 216, 224, 254, 272, o

Colour Index Pigment Green 7, 10, 36, 37, 45, 58 o

Colour Index Pigment Blue 15, 15:1, 15:2, 15:3, 15:4, 15:6, 16 así como

45

50

Colour Index Pigment Violett 19, 23.

Además pueden usarse también colorantes orgánicos solubles en unión con los nuevos pigmentos de acuerdo con la invención.

55

Siempre que se usen "otros pigmentos" adicionalmente, la proporción de pigmento azoico metálico de acuerdo con la invención asciende preferentemente a del 1-99 % en peso, en particular a del 20-80 % en peso, con respecto a la cantidad total usada de todos los pigmentos. Se prefieren especialmente las preparaciones de pigmentos de acuerdo con la invención así como preparaciones que contienen al menos un pigmento azoico metálico de acuerdo con la invención y C.I. Pigment Green 36 y/o C.I. Pigment Green 58 en la relación del 20 % al 80 % en peso de pigmento azoico metálico con respecto a del 80 % al 20 % en peso de C.I. Pigment Green 36 y/o C.I. Pigment Green 58, preferentemente del 40 % al 60 % en peso con respecto a del 60 % al 40 % en peso.

En cuanto a las resinas de aglutinante que pueden usarse junto con el "pigmento" o preparaciones de pigmentos a base de éste en filtros de color o bien en las preparaciones para la preparación de filtros de color por ejemplo según 60 el procedimiento de dispersión de pigmentos, no existe de acuerdo con la invención ninguna limitación especial, en particular se tienen en cuenta para la aplicación en filtros de color resinas formadoras de película en sí conocidas.

Por ejemplo se tienen en cuenta resinas de aglutinante del grupo de las resinas de celulosa tal como carboximetilhidroxietilcelulosa e hidroxietilcelulosa, resinas acrílicas, resinas alquídicas, resinas de melamina, 65 resinas epoxídicas, poli(alcoholes vinílicos), polivinilpirrolidonas, poliamidas, poliamidas, poliamidas,

# ES 2 690 762 T3

precursores de poliimida tal como aquéllos de fórmula (14), divulgados en el documento JP-A 11 217 514 y sus productos de esterificación.

Como tales pueden mencionarse por ejemplo productos de reacción de dianhídrido tetracarboxílico con diaminas.

Como resinas de aglutinante se tienen en cuenta también aquéllas que contienen enlaces insaturados que pueden fotopolimerizarse. Las resinas de aglutinante pueden estar constituidas por ejemplo por aquéllas del grupo de las resinas acrílicas. A este respecto pueden mencionarse en particular homo- y copolímeros de monómeros que pueden polimerizarse tal como por ejemplo éster metílico de ácido (met)acrílico, éster etílico de ácido (met)acrílico, éster propílico de ácido (met)acrílico, éster butílico de ácido (met)acrílico, estireno y derivados de estireno, además copolímeros entre monómeros polimerizables que llevan grupos carboxilo tal como ácido (met)acrílico, ácido itacónico, ácido maleico, anhídrido maleico, éster monoalquílico de ácido maleico, en particular con alquilo de 1 a 12 átomos de C, y monómeros que pueden polimerizarse tal como ácido (met)acrílico, estireno y derivados de estireno, tal como por ejemplo α-metilestireno, m- o p-metoxiestireno, p-hidroxiestireno. Como ejemplos se mencionan productos de reacción de compuestos poliméricos que contienen grupos carboxilo con compuestos que contienen en cada caso un anillo de oxirano y un compuesto etilénicamente insaturado tal como por ejemplo (met)acrilato de glicidilo, acrilglicidiléter y monoalquilglicidiléter de ácido itacónico etc., además productos de reacción de compuestos poliméricos que contienen grupos carboxilo con compuestos que contienen en cada caso un grupo hidroxilo y un compuesto etilénicamente insaturado (alcoholes insaturados) tal como alcohol alílico, 2-buten-4-ol, alcohol oleílico,

(met)acrilato de 2-hidroxietilo, N-metilolacrilamida etc.; además pueden contener las resinas de aglutinante de este tipo también compuestos insaturados que tienen grupos isocianato libres.

En general se encuentra la equivalencia de la insaturación (peso molar de resina de aglutinante por compuesto insaturado) de las resinas de aglutinante mencionadas en de 200 a 3.000, en particular de 230 a 1.000, para conseguir tanto una capacidad de fotopolimerización suficiente y dureza de la película. El índice de acidez se encuentra en general en de 20 a 300, en particular de 40 a 200, para conseguir una capacidad de revelado en álcali suficiente tras la iluminación de la película.

30 El peso molar promedio de las resinas de aglutinante que van a usarse se encuentra entre 1.500 y 200.000, en particular de 10.000 a 50.000 g/mol.

Los disolventes orgánicos usados en el uso de acuerdo con la invención de las preparaciones de pigmentos para filtros de color son por ejemplo cetonas, alquilenglicoléter, alcoholes y compuestos aromáticos. Ejemplos de los grupos de las cetonas son: acetona, metiletilcetona, ciclohexanona etc.; del grupo de los alquilenglicoléteres: metilcelosolve (etilenglicolmonometiléter), butilcelosolve (etilenglicolmonobutiléter) acetato de metilcelosolve, acetato de etilcelosolve, acetato de butilcelosolve, etilenglicolmonopropiléter, etilenglicolmonohexiléter, etilenglicoldimetiléter, dietilenglicoldietiléter, dietilenglicoletiléter, propilenglicolmonometiléter, propilenglicolmonoetiléter, propilenglicolmonopropiléter, propilenglicolmonobutiléter, acetato de propilenglicolmonometiléter, acetato de dietilenglicolmetiléter, acetato de dietilenglicoletiléter, acetato de dietilenglicolpropiléter, acetato dietilenglicolisopropiléter, acetato de dietilenglicolbutiléter, acetato de dietilenglicol-t-butiléter, acetato trietilenglicolmetiléter, acetato de trietilenglicoletiléter, acetato de trietilenglicolpropiléter, trietilenglicolisopropiléter, acetato de trietilenglicolbutiléter, acetato de trietilenglicol-t-butiléter, etc.; del grupo de los alcoholes: alcohol metílico, alcohol etílico, alcohol isopropílico, alcohol n-butílico, 3-metil-3-metoxibutanol, etc.; del grupo de los disolventes aromáticos benceno, tolueno, xileno, N-metil-2-pirrolidona, éster etílico de ácido Nhidroximetil-2-acético, etc.

Otros disolventes son diacetato de 1,2-propanodiol, acetato de 3-metil-3-metoxi-butilo, éster etílico de ácido acético, tetrahidrofurano, etc. Los disolventes pueden usarse individualmente o en mezclas entre sí.

La invención se refiere además a una fotolaca que contiene al menos un pigmento azoico metálico de acuerdo con la invención o al menos una preparación de pigmentos de acuerdo con la invención y al menos un monómero que puede fotocurarse así como al menos un fotoiniciador.

55 Los monómeros que pueden fotocurarse contienen en la molécula al menos un doble enlace reactivo y eventualmente otros grupos reactivos.

Como monómeros que pueden fotocurarse se entiende en este contexto en particular disolventes reactivos o bien los denominados diluyentes reactivos, por ejemplo del grupo de los acrilatos y metacrilatos mono-, di- , tri- y multifuncionales, viniléteres, así como glicidiléteres. Como grupos reactivos contenidos adicionalmente se tienen en cuenta grupos alilo, hidroxi, fosfato, uretano, amina sec. y N-alcoximetilo.

Los monómeros de este tipo se conocen por el experto y por ejemplo están expuestos en [Römpp Lexikon, Lacke und Druckfarben, Dr. Ulrich Zorll, Thieme Verlag Stuttgart-New York, 1998, pág. 491/492].

65

60

5

10

15

20

25

35

40

45

La elección de los monómeros depende en particular del tipo y de la intensidad del tipo de radiación usada de la iluminación, de la reacción deseada con el fotoiniciador y las propiedades de la película. Pueden usarse también combinaciones de monómeros.

Como iniciadores de la fotorreacción o fotoiniciadores se entiende compuestos que a continuación de la absorción de radiación visible o ultravioleta forman productos intermedios reactivos que pueden desencadenar una reacción de polimerización, por ejemplo de los monómeros y/o resinas de aglutinante mencionados anteriormente. Los iniciadores de fotorreacción se conocen igualmente en general y pueden extraerse igualmente de [Römpp Lexikon, Lacke und Druckfarben, Dr. Ulrich Zorll, Thieme Verlag Stuttgart-New York, 1998, pág. 445/446].

De acuerdo con la invención no existe ninguna limitación en cuanto a los monómeros que pueden fotocurarse o fotoiniciadores que van a usarse.

La invención se refiere preferentemente a fotolacas que contienen

15

30

35

10

- A) al menos un pigmento azoico metálico de acuerdo con la invención, en particular en mezcla con otros pigmentos, preferentemente C.I. Pigment Green 36 y/o Pigment Green 58 o una preparación de pigmentos de acuerdo con la invención que se basa en esto,
- B1) al menos un monómero que puede fotocurarse,
- 20 B2) al menos un fotoiniciador,
  - C1) eventualmente un disolvente orgánico,
  - D) eventualmente un agente dispersante,
  - E) eventualmente una resina de aglutinante,
- 25 así como eventualmente otros aditivos.

De acuerdo con la invención tampoco existe ninguna limitación en cuanto a la tecnología para la generación de los patrones de elementos de imagen coloreados a base de los pigmentos que van a usarse de acuerdo con la invención o preparaciones de pigmentos sólidas. Además del procedimiento fotolitográfico descrito anteriormente son adecuados también otros procedimientos tal como impresión offset, corrosión química o impresión por inyección de tinta. La elección de las resinas de aglutinante y disolventes o bien medios de soporte de pigmentos adecuados así como otros aditivos puede adaptarse al respectivo procedimiento. En el procedimiento de inyección de tinta, por el que se entiende tanto la impresión por inyección de tinta térmica como también mecánica y piezo-mecánica, se tienen en cuenta además de medios de soporte puramente orgánicos también medios de soporte acuoso-orgánicos para los pigmentos y eventualmente resinas de aglutinante, prefiriéndose incluso medios de soporte acuoso-orgánicos.

Los ejemplos siguientes explicarán la presente invención, sin embargo sin limitar ésta a éstos.

## 40 Ejemplos

### Preparación del precursor ácido azobarbitúrico (instrucciones 1)

En 1100 g de agua destilada de 85 °C se introdujeron 46,2 g de ácido diazobarbitúrico y 38,4 g de ácido barbitúrico.

45 A continuación se ajustó con solución acuosa de hidróxido de potasio un valor de pH de aproximadamente 5 y se agitó posteriormente durante 90 minutos.

## Ejemplo 1: preparación del pigmento A

Un ácido azobarbitúrico preparado según las instrucciones 1 se mezcló a 82 °C con 1500 g de agua destilada. Después se introdujeron 75,7 g de melamina. A continuación se añadieron gota a gota 0,3 mol de una solución a aprox. el 30 % de cloruro de cobre(II). Tras 3 horas a 82 °C se ajustó con KOH hasta un obtener un valor de pH de aprox. 5,5. Después se diluyó a 90 °C con aprox. 300 g de agua destilada. A continuación se añadieron gota a gota 34 g de ácido clorhídrico al 30 % y se calentó durante 12 horas a 90 °C. Después se ajustó con solución acuosa de hidróxido de potasio un valor de pH de aprox. 5. A continuación se aisló el pigmento en un embudo Büchner, se lavó y se secó a 80 °C en un armario de secado a vacío y se molió en un molino de laboratorio habitual durante aprox. 2 minutos. (= pigmento A)

#### Ejemplo 2: preparación del pigmento B

60

65

Un ácido azobarbitúrico preparado según las instrucciones 1 se mezcló a 82 °C con 1500 g de agua destilada. A continuación se añadieron gota a gota 10 g de ácido clorhídrico al 30 %. Después se introdujeron 79,4 g de melamina. A continuación se añadieron gota a gota 0,3 mol de una solución a aprox. el 25 % de cloruro de cinc. Tras 3 horas a 82 °C se ajustó con KOH hasta un obtener un valor de pH de aprox. 5,5. Después se diluyó a 90 °C con aprox. 100 g de agua destilada. A continuación se añadieron gota a gota 21 g de ácido clorhídrico al 30 % y se calentó durante 12 horas a 90 °C. Después se ajustó con solución acuosa de hidróxido de potasio un valor de pH de

aprox. 5. A continuación se aisló el pigmento en un embudo Büchner, se lavó y se secó a 80 °C en un armario de secado a vacío y se molió en un molino de laboratorio habitual durante aprox. 2 minutos. (= pigmento B)

Ejemplos 3 a 15: preparación de los pigmentos C a O

5

40

50

Los siguientes ejemplos 3 a 15 de acuerdo con la invención se prepararon de manera análoga al ejemplo 2. A este respecto se sustituyó la solución de cloruro de cinc en cada caso por una solución de mezcla de cloruro de cinc y cloruro de cobre(II) tal como se indica.

- Ejemplo 3: 0,3 mol de Zn sustituido por 0,282 mol de Zn + 0,0015 mol de Cu (= pigmento C) 10 Ejemplo 4: 0,3 mol de Zn sustituido por 0,282 mol de Zn + 0,006 mol de Cu (= pigmento D) Ejemplo 5: 0,3 mol de Zn sustituido por 0,282 mol de Zn + 0,018 mol de Cu (= pigmento E) Ejemplo 6: 0,3 mol de Zn sustituido por 0,270 mol de Zn + 0,030 mol de Cu (= pigmento F) Ejemplo 7: 0,3 mol de Zn sustituido por 0,240 mol de Zn + 0,060 mol de Cu (= pigmento G) 15 Ejemplo 8: 0,3 mol de Zn sustituido por 0,210 mol de Zn + 0,090 mol de Cu (= pigmento H) Ejemplo 9: 0,3 mol de Zn sustituido por 0,180 mol de Zn + 0,120 mol de Cu (= pigmento I) Eiemplo 10: 0.3 mol de Zn sustituido por 0.150 mol de Zn + 0.150 mol de Cu (= piamento J) Ejemplo 11: 0,3 mol de Zn sustituido por 0,120 mol de Zn + 0,120 mol de Cu (= pigmento K) Ejemplo 12: 0,3 mol de Zn sustituido por 0,090 mol de Zn + 0,210 mol de Cu (= pigmento L) Ejemplo 13: 0,3 mol de Zn sustituido por 0,060 mol de Zn + 0,240 mol de Cu (= pigmento M) 20 Ejemplo 14: 0,3 mol de Zn sustituido por 0,030 mol de Zn + 0,270 mol de Cu (= pigmento N) Ejemplo 15: 0,3 mol de Zn sustituido por 0,018 mol de Zn + 0,282 mol de Cu (= pigmento O) Ejemplo 16: 0,3 mol de Zn sustituido por 0,270 mol de Zn + 0,015 mol de Cu + 0,015 mol de Ni (= pigmento AA) Ejemplo 17: 0,3 mol de Zn sustituido por 0,270 mol de Zn + 0,015 mol de Cu + 0,015 mol de Cd (= pigmento AB) Ejemplo 18: 0,3 mol de Zn sustituido por 0,270 mol de Zn + 0,015 mol de Cu + 0,0075 mol de Fe + 0,0075 mol 25 de Pb (= pigmento AC)
  - **Ejemplo 19:** 0.3 mol de Zn sustituido por 0.270 mol de Zn + 0.015 mol de Cu + 0.006 mol de Ni + 0.004 mol de Cr + 0.003 mol de Fe (= pigmento AD)
- Ejemplo 20: 0.3 mol de Zn sustituido por 0,150 mol de Zn + 0,135 mol de Cu + 0,015 mol de Cd (= pigmento AE)

  Ejemplo 21: 0.3 mol de Zn sustituido por 0,150 mol de Zn + 0,135 mol de Cu + 0,010 mol de Cr (= pigmento AF)

  Ejemplo 22: 0.3 mol de Zn sustituido por 0,150 mol de Zn + 0,135 mol de Cu + 0,0075 mol de Co + 0,0075 mol de Pb (= pigmento AG)
  - **Ejemplo 23:** 0,3 mol de Zn sustituido por 0,150 mol de Zn + 0,135 mol de Cu + 0,006 mol de Ni + 0,006 mol de Pb + 0,003 mol de Cd (= pigmento AH)
- Ejemplo 24: 0,3 mol de Zn sustituido por 0,015 mol de Zn + 0,270 mol de Cu + 0,015 mol de Fe (= pigmento Al)

  Ejemplo 25: 0,3 mol de Zn sustituido por 0,015 mol de Zn + 0,270 mol de Cu + 0,015 mol de Cd (= pigmento AJ)

  Ejemplo 26: 0,3 mol de Zn sustituido por 0,015 mol de Zn + 0,270 mol de Cu + 0,0075 mol de Ni + 0,0075 mol de Co (= pigmento AK)
  - **Ejemplo 27:** <u>0,3 mol de Zn</u> sustituido por 0,015 mol de Zn + 0,270 mol de Cu + 0,004 mol de Cr + 0,006 mol de Pb + 0,003 mol de Ni (= pigmento AL)
  - **Ejemplo 28:** <u>0,3 mol de Zn</u> sustituido por 0,273 mol de Zn + 0,015 mol de Cu + 0,012 mol de Ni (= pigmento AM) **Ejemplo 29:** <u>0,3 mol de Zn</u> sustituido por 0,273 mol de Zn + 0,015 mol de Cu + 0,012 mol de Co (= pigmento AN) **Ejemplo 30:** <u>0,3 mol de Zn</u> sustituido por 0,273 mol de Zn + 0,015 mol de Cu + 0,004 mol de Cr + 0,006 mol de Cd (= pigmento AO)
- 45 **Ejemplo 30:** <u>0,3 mol de Zn</u> sustituido por 0,273 mol de Zn + 0,015 mol de Cu + 0,0045 mol de Cd + 0,0045 mol de Pb + 0,003 mol de Fe (= pigmento AP)

De los pigmentos preparados según los ejemplos de síntesis 1 a 30 se prepararon las siguientes muestras de acuerdo la tabla 1.

Tabla 1

|             |                    | <u>l abla 1</u> |                             |
|-------------|--------------------|-----------------|-----------------------------|
|             |                    |                 | Relación molar Cu / Zn / Me |
| Muestra 1:  | 10 g de pigmento A |                 | 100 / 0 / 0                 |
| Muestra 2:  | 10 g de pigmento B |                 | 0 / 100 / 0                 |
| Muestra 3:  | 10 g de pigmento C |                 | 0,5 / 99,5 / 0              |
| Muestra 4:  | 10 g de pigmento D |                 | 2/98/0                      |
| Muestra 5:  | 10 g de pigmento E |                 | 6/94/0                      |
| Muestra 6:  | 10 g de pigmento F |                 | 10 / 90 / 0                 |
| Muestra 7:  | 10 g de pigmento G |                 | 20 / 80 / 0                 |
| Muestra 8:  | 10 g de pigmento H |                 | 30 / 70 / 0                 |
| Muestra 9:  | 10 g de pigmento I |                 | 40 / 60 / 0                 |
| Muestra 10: | 10 g de pigmento J |                 | 50 / 50 / 0                 |
| Muestra 11: | 10 g de pigmento K |                 | 60 / 40 / 0                 |
| Muestra 12: | 10 g de pigmento L |                 | 70 / 30 / 0                 |
| Muestra 13: | 10 g de pigmento M |                 | 80 / 20 / 0                 |

| Muestra 14: | 10 g de pigmento N   |                      | 90 / 10 / 0                              |
|-------------|----------------------|----------------------|------------------------------------------|
| Muestra 15: | 10 g de pigmento O   |                      | 94 / 6 / 0                               |
| Muestra 16: | 0,05 g de pigmento A | 9,95 g de pigmento B | 0,5 / 99,5 / 0                           |
| Muestra 17: | 0,2 g de pigmento A  | 9,80 g de pigmento B | 2/98/0                                   |
| Muestra 18: |                      | 9,40 g de pigmento B | 6/94/0                                   |
| Muestra 19: | 1,00 g de pigmento A | 9,00 g de pigmento B | 10 / 90 / 0                              |
| Muestra 20: | 2,00 g de pigmento A | 8,00 g de pigmento B | 20 / 80 / 0                              |
| Muestra 21: | 3,00 g de pigmento A | 7,00 g de pigmento B | 30 / 70 / 0                              |
| Muestra 22: | 4,00 g de pigmento A | 6,00 g de pigmento B | 40 / 60 / 0                              |
| Muestra 23: | 5,00 g de pigmento A | 5,00 g de pigmento B | 50 / 50 / 0                              |
| Muestra 24: | 6,00 g de pigmento A | 4,00 g de pigmento B | 60 / 40 / 0                              |
| Muestra 25: | 7,00 g de pigmento A | 3,00 g de pigmento B | 70 / 30 / 0                              |
| Muestra 26: | 8,00 g de pigmento A | 2,00 g de pigmento B | 80 / 20 / 0                              |
| Muestra 27: | 9,00 g de pigmento A | 1,00 g de pigmento B | 90 / 10 / 0                              |
| Muestra 28: | 9,40 g de pigmento A | 0,06 g de pigmento B | 94 / 6 / 0                               |
| Muestra 29: | 10 g de pigmento AA  |                      | 5 / 90 / 5 de Ni                         |
| Muestra 30: | 10 g de pigmento AB  |                      | 5 / 90 / 5 de Cd                         |
| Muestra 31: | 10 g de pigmento AC  |                      | 5 / 90 / 2,5 de Fe / 2,5 de Pb           |
| Muestra 32: | 10 g de pigmento AD  |                      | 5 / 90 / 2 de Ni / 2 de Cr / 1 de Fe     |
| Muestra 33: | 10 g de pigmento AE  |                      | 45 / 50 / 5 de Cd                        |
| Muestra 34: | 10 g de pigmento AF  |                      | 45 / 50 / 5 de Cr                        |
| Muestra 35: | 10 g de pigmento AG  |                      | 45 / 50 / 2,5 de Co / 2,5 de Pb          |
| Muestra 36: | 10 g de pigmento AH  |                      | 45 / 50 / 2 de Ni / 2 de Fe / 1 de Cd    |
| Muestra 37: | 10 g de pigmento Al  |                      | 90 / 5 / 5 de Fe                         |
| Muestra 38: | 10 g de pigmento AJ  |                      | 90 / 5 / 5 de Cd                         |
| Muestra 39: | 10 g de pigmento AK  |                      | 90 / 5 / 2,5 de Ni / 2,5 de Co           |
| Muestra 40: | 10 g de pigmento AL  |                      | 90 / 5 / 2 de Cr / 2 de Pb / 1 de Ni     |
| Muestra 41: | 10 g de pigmento AM  |                      | 5 / 91 / 4 de Ni                         |
| Muestra 42: | 10 g de pigmento AN  |                      | 5 / 91 / 4 de Co                         |
| Muestra 43: | 10 g de pigmento AO  |                      | 5 / 91 / 2 de Cr / 2 de Cd               |
| Muestra 44: | 10 g de pigmento AP  |                      | 5 / 91 / 1,5 de Cd / 1,5 de Pb / 1 de Fe |

Las muestras 1 a 44 se sometieron en cada caso a una determinación de la dureza de dispersión así como a una determinación de la intensidad de color según los procedimientos descritos a continuación. Los resultados están expuestos en la tabla 2.

#### Determinación de la dureza de dispersión

5

10

20

25

La dureza de dispersión se midió según la norma DIN 53 775, parte 7, ascendiendo la temperatura del laminado en frío a 25  $^{\circ}$ C y la del laminado en caliente a 150  $^{\circ}$ C. Todas las durezas de dispersión indicadas en esta solicitud se determinaron según esta norma DIN modificada.

## Determinación de la intensidad de color en PVC

Como medio de prueba se preparó un material compuesto de PVC blando mediante homogeneización del 67,5 % de Vestolit® E7004 (Vestolit GmbH), el 29,0 % de Hexamoll® Dinch (BASF), el 2,25 % de Baerostab UBZ 770 (Baerlocher GmbH) y el 1,25 % de pasta de pigmento blanca Isocolor (ISL-Chemie) con un dispositivo agitador de laboratorio.

En una laminadora de laboratorio se añadieron 100 g del material compuesto de PVC a 150 °C en dos rodillos que giran con 20 min<sup>-1</sup> y 18 min<sup>-1</sup> de 150 mm de diámetro. Junto con 0,10 g de pigmento se condujo la hoja de caucho homogeneizado producida ocho veces por una abertura entre rodillos de 0,10 mm. Entonces se extrajo la hoja de caucho homogeneizado coloreada de manera uniforme en una abertura entre rodillos de 0,8 mm y se depositó de manera lisa sobre una superficie metálica. La hoja de caucho homogeneizado enfriada se añadió entonces sobre dos rodillos no calentados que giran con 26 min<sup>-1</sup> y 24 min<sup>-1</sup> de 110 mm de diámetro ocho veces por una abertura entre rodillos de 0,2 mm. Para el alisado de la superficie se añadió esta hoja de caucho homogenizado otra vez sobre los rodillos de 150 °C, se extrajo en 0,8 mm y se dejó enfriar sobre superficie lisa. Las muestras de estas hojas sirvieron para la determinación de la intensidad de color relativa.

El cálculo de la intensidad de color relativa se realizó según la medición de remisión de la muestra delante de un fondo blanco por medio de espectrofotómetro con geometría de medición d/8 bajo tipo de luz normalizada D65 y 10 º de observador según la norma DIN 55986 usando la suma de los valores K/S a través del espectro visible (400 nm-700 nm).

Tabla 2:

| _           | <u> Iabi</u>                   |     | T                     |
|-------------|--------------------------------|-----|-----------------------|
|             | Estado                         |     | Intensidad de color % |
| Muestra 1:  | no de acuerdo con la invención | 350 | 80                    |
| Muestra 2:  | no de acuerdo con la invención | 450 | 30                    |
| Muestra 3:  | de acuerdo con la invención    | 140 | 100                   |
| Muestra 4:  | de acuerdo con la invención    | 135 | 102                   |
| Muestra 5:  | de acuerdo con la invención    | 110 | 103                   |
| Muestra 6:  | de acuerdo con la invención    | 105 | 105                   |
| Muestra 7:  | de acuerdo con la invención    | 100 | 107                   |
| Muestra 8:  | de acuerdo con la invención    | 110 | 110                   |
| Muestra 9:  | de acuerdo con la invención    | 95  | 112                   |
| Muestra 10: | de acuerdo con la invención    | 90  | 113                   |
| Muestra 11: | de acuerdo con la invención    | 95  | 110                   |
| Muestra 12: | de acuerdo con la invención    | 90  | 115                   |
| Muestra 13: | de acuerdo con la invención    | 85  | 114                   |
| Muestra 14: | de acuerdo con la invención    | 80  | 119                   |
| Muestra 15: | de acuerdo con la invención    | 80  | 120                   |
| Muestra 16: | de acuerdo con la invención    | 160 | 98                    |
| Muestra 17: | de acuerdo con la invención    | 140 | 100                   |
| Muestra 18: | de acuerdo con la invención    | 115 | 103                   |
| Muestra 19: | de acuerdo con la invención    | 110 | 103                   |
| Muestra 20: | de acuerdo con la invención    | 105 | 105                   |
| Muestra 21: | de acuerdo con la invención    | 115 | 106                   |
| Muestra 22: | de acuerdo con la invención    | 100 | 105                   |
| Muestra 23: | de acuerdo con la invención    | 95  | 109                   |
| Muestra 24: | de acuerdo con la invención    | 100 | 109                   |
| Muestra 25: | de acuerdo con la invención    | 95  | 111                   |
| Muestra 26: | de acuerdo con la invención    | 90  | 112                   |
| Muestra 27: | de acuerdo con la invención    | 90  | 114                   |
| Muestra 28: | de acuerdo con la invención    | 85  | 115                   |
| Muestra 29: | de acuerdo con la invención    | 115 | 107                   |
| Muestra 30: | de acuerdo con la invención    | 120 | 109                   |
| Muestra 31: | de acuerdo con la invención    | 110 | 108                   |
| Muestra 32: | de acuerdo con la invención    | 112 | 110                   |
| Muestra 33: | de acuerdo con la invención    | 90  | 112                   |
| Muestra 34: | de acuerdo con la invención    | 95  | 115                   |
| Muestra 35: | de acuerdo con la invención    | 95  | 114                   |
| Muestra 36: | de acuerdo con la invención    | 90  | 115                   |
| Muestra 37: | de acuerdo con la invención    | 75  | 118                   |
| Muestra 38: | de acuerdo con la invención    | 80  | 119                   |
| Muestra 39: | de acuerdo con la invención    | 85  | 116                   |
| Muestra 40: | de acuerdo con la invención    | 75  | 120                   |
| Muestra 41: | de acuerdo con la invención    | 115 | 107                   |
| Muestra 42: | de acuerdo con la invención    | 110 | 108                   |
| Muestra 43: | de acuerdo con la invención    | 120 | 106                   |
| Muestra 44: | de acuerdo con la invención    | 115 | 109                   |

Conclusión: De la tabla 2 es evidente que las muestras no de acuerdo con la invención presentan todas una dureza de dispersión por encima de 100 y con ello se encuentran claramente más altas que las muestras de acuerdo con la invención. De esto resulta que las muestras no de acuerdo con la invención puedan dispersarse con más dificultad y puedan procesarse peor que las muestras de acuerdo con la invención.

Además presentan todas las muestras de acuerdo con la invención intensidades de color elevadas. Esto significa que estas muestras consiguen, con respecto a peso inicial igual, densidades ópticas más altas que las muestras no de acuerdo con la invención.

#### Estudio mediante difractometría de rayos X

5

10

Las mediciones mediante difractometría de rayos X se realizaron en un difractómetro de reflexión Theta/Theta del tipo PANalytical EMPYREAN con detector PIXcel, que es adecuado para la identificación de fases cristalinas.

#### Ajustes de aparato:

**EMPYREAN** Sistema de difractómetro

Scan 5-40 Standard\_Reflexion VB, 17 mm de longitud irradiada, 15 mm Programa de medición

de máscara

Posición inicial [º2Th.] Posición final [º2Th.] 40 Ancho de paso [º2Th.] 0,0130 Tiempo de paso [s] 48,2 Modo de escaneo continuo Tipo de funcionamiento OED barrido Longitud OED [º2Th.] 3,35 Tipo de diafragma divergente automático Longitud irradiada [mm] 17,00 Longitud de muestra [mm] 10.00 Material de ánodo Cu K-alfa1 [Å] 1,54060 K-alfa2 [Å] 1.54443 K-beta [Å] 1,39225 Relación K-A2 / K-A1 0,50000 Filtro níquel Ajuste de generador 40 mA, 40 kV Radio goniométrico [mm] 240,00 Distancia de foco-diafragma divergente 100,00

Monocromador de haz primario

Giro de muestras

ninguno sí

#### Realización:

5 Las muestras de los ejemplos 1 a 28 tal como se han descrito en la tabla 1 se sometieron a estudio tal como sigue: Para las mediciones de Theta/Theta se incorporó en cada caso una cantidad de la muestra que va a someterse a prueba en la cavidad del soporte de muestra. La superficie de la muestra se alisó por medio de una rasqueta.

Entonces se colocó el soporte de muestra en el cambiador de muestras del difractómetro y se realizó la medición. Los valores de Theta de las muestras medidas se determinaron de acuerdo con el procedimiento descrito 10 anteriormente. De esta manera se realizaron mediciones de las muestras 1 a 28. Los valores de reflexión determinados a este respecto tras la corrección de fondo se han reproducido en las tablas 3 a 30.

En las tablas 3 a 30 se enumeraron en cada caso en la primera columna la reflexión medida. En la columna 2 se realizó la indicación de la posición de la reflexión medida como valores 2Theta, en la columna 3 se transformaron los valores 2Theta determinados por medio de la ecuación de Braggschen en valores d para las distancias entre los planos de red. En la cuarta y quinta columna se encuentran los valores de las intensidades medidas (altura de pico de la reflexión sobre el fondo) por un lado como valores absolutos en la unidad "counts" [cts] así como en su intensidad relativa en porcentaje.

15

Tabla 3: muestra 1: 10 q de pigmento A (100 % en moles de cobre) no de acuerdo con la invención

| niuestia i. io g de | piginento A (10 | 20 70 ETT THOIC | 3 de cobrej no de a | cuerdo com la |
|---------------------|-----------------|-----------------|---------------------|---------------|
| Número de pico      | Pos. [º2Th.]    | Altura [cts]    | Separación d [Å]    | Int. rel. [%] |
| 1                   | 7,2094          | 3642,74         | 12,26193            | 43,46         |
| 2                   | 8,3268          | 792,63          | 10,61882            | 9,46          |
| 3                   | 10,6297         | 757,72          | 8,32286             | 9,04          |
| 4                   | 11,8561         | 722,75          | 7,46459             | 8,62          |
| 5                   | 13,7967         | 1062,35         | 6,41869             | 12,67         |
| 6                   | 16,6521         | 679,59          | 5,32392             | 8,11          |
| 7                   | 17,2085         | 1839,19         | 5,15302             | 21,94         |
| 8                   | 17,7183         | 2228,24         | 5,00588             | 26,58         |
| 9                   | 18,2155         | 2078,06         | 4,87036             | 24,79         |
| 10                  | 19,7576         | 421,01          | 4,49356             | 5,02          |
| 11                  | 20,4804         | 541,97          | 4,33658             | 6,47          |
| 12                  | 22,0776         | 351,15          | 4,02633             | 4,19          |
| 13                  | 24,1154         | 1923,01         | 3,69053             | 22,94         |
| 14                  | 25,9870         | 5003,44         | 3,42881             | 59,69         |
| 15                  | 27,0359         | 4009,69         | 3,29812             | 47,84         |
| 16                  | 27,9041         | 8382,32         | 3,19745             | 100,00        |
| 17                  | 28,4884         | 5869,51         | 3,13318             | 70,02         |
| 18                  | 30,3188         | 738,91          | 2,94808             | 8,82          |
| 19                  | 31,3875         | 930,10          | 2,85009             | 11,10         |

| 20 | 34,6582 | 1242,15 | 2,58825 | 14,82 |
|----|---------|---------|---------|-------|
| 21 | 36,2222 | 427,46  | 2,48001 | 5,10  |
| 22 | 38,4520 | 582,54  | 2,34118 | 6,95  |

Tabla 4: muestra 2: 10 g de pigmento B (100 % en moles de cinc) no de acuerdo con la invención

| 1       6,3948       2945,75       13,82199       25,63         2       6,8383       1840,02       12,92653       16,01         3       9,9386       1432,02       8,90002       12,46         4       10,4376       2712,14       8,47563       23,60         5       11,1586       735,76       7,92954       6,40         6       13,0241       449,58       6,79767       3,91         7       14,7483       528,28       6,00661       4,60         8       16,4912       1407,22       5,37551       12,24         9       17,3233       746,17       5,11914       6,49         10       18,1902       196,22       4,87708       1,71         11       18,6971       189,98       4,74598       1,65         12       20,0597       711,80       4,42658       6,19         13       20,8417       1635,72       4,26222       14,23         14       21,1580       1939,66       4,19920       16,87         15       24,3012       102,47       3,66272       0,89         16       25,3774       1833,55       3,50978       15,95         17                                                                                        | Número de pico | Pos. [º2Th.] | Altura [cts] | Separación d [Å] | Int. rel. [%] |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|--------------|--------------|------------------|---------------|
| 3       9,9386       1432,02       8,90002       12,46         4       10,4376       2712,14       8,47563       23,60         5       11,1586       735,76       7,92954       6,40         6       13,0241       449,58       6,79767       3,91         7       14,7483       528,28       6,00661       4,60         8       16,4912       1407,22       5,37551       12,24         9       17,3233       746,17       5,11914       6,49         10       18,1902       196,22       4,87708       1,71         11       18,6971       189,98       4,74598       1,65         12       20,0597       711,80       4,42658       6,19         13       20,8417       1635,72       4,26222       14,23         14       21,1580       1939,66       4,19920       16,87         15       24,3012       102,47       3,66272       0,89         16       25,3774       1833,55       3,50978       15,95         17       26,6634       10032,41       3,34335       87,28         18       27,0385       11494,33       3,29781       100,00         19 </td <td>1</td> <td>6,3948</td> <td>2945,75</td> <td>13,82199</td> <td>25,63</td> | 1              | 6,3948       | 2945,75      | 13,82199         | 25,63         |
| 4       10,4376       2712,14       8,47563       23,60         5       11,1586       735,76       7,92954       6,40         6       13,0241       449,58       6,79767       3,91         7       14,7483       528,28       6,00661       4,60         8       16,4912       1407,22       5,37551       12,24         9       17,3233       746,17       5,11914       6,49         10       18,1902       196,22       4,87708       1,71         11       18,6971       189,98       4,74598       1,65         12       20,0597       711,80       4,42658       6,19         13       20,8417       1635,72       4,26222       14,23         14       21,1580       1939,66       4,19920       16,87         15       24,3012       102,47       3,66272       0,89         16       25,3774       1833,55       3,50978       15,95         17       26,6634       10032,41       3,34335       87,28         18       27,0385       11494,33       3,29781       100,00         19       27,8974       3209,82       3,19821       27,93         20                                                                                 | 2              | 6,8383       | 1840,02      | 12,92653         | 16,01         |
| 5       11,1586       735,76       7,92954       6,40         6       13,0241       449,58       6,79767       3,91         7       14,7483       528,28       6,00661       4,60         8       16,4912       1407,22       5,37551       12,24         9       17,3233       746,17       5,11914       6,49         10       18,1902       196,22       4,87708       1,71         11       18,6971       189,98       4,74598       1,65         12       20,0597       711,80       4,42658       6,19         13       20,8417       1635,72       4,26222       14,23         14       21,1580       1939,66       4,19920       16,87         15       24,3012       102,47       3,66272       0,89         16       25,3774       1833,55       3,50978       15,95         17       26,6634       10032,41       3,34335       87,28         18       27,0385       11494,33       3,29781       100,00         19       27,8974       320,82       3,19821       27,93         20       28,4615       2477,15       3,13609       21,55         21                                                                                 | 3              | 9,9386       | 1432,02      | 8,90002          | 12,46         |
| 6       13,0241       449,58       6,79767       3,91         7       14,7483       528,28       6,00661       4,60         8       16,4912       1407,22       5,37551       12,24         9       17,3233       746,17       5,11914       6,49         10       18,1902       196,22       4,87708       1,71         11       18,6971       189,98       4,74598       1,65         12       20,0597       711,80       4,42658       6,19         13       20,8417       1635,72       4,26222       14,23         14       21,1580       1939,66       4,19920       16,87         15       24,3012       102,47       3,66272       0,89         16       25,3774       1833,55       3,50978       15,95         17       26,6634       10032,41       3,34335       87,28         18       27,0385       11494,33       3,29781       100,00         19       27,8974       3209,82       3,19821       27,93         20       28,4615       2477,15       3,13609       21,55         21       28,9166       1876,82       3,08776       16,33 <t< td=""><td></td><td>10,4376</td><td>2712,14</td><td>8,47563</td><td>23,60</td></t<> |                | 10,4376      | 2712,14      | 8,47563          | 23,60         |
| 7       14,7483       528,28       6,00661       4,60         8       16,4912       1407,22       5,37551       12,24         9       17,3233       746,17       5,11914       6,49         10       18,1902       196,22       4,87708       1,71         11       18,6971       189,98       4,74598       1,65         12       20,0597       711,80       4,42658       6,19         13       20,8417       1635,72       4,26222       14,23         14       21,1580       1939,66       4,19920       16,87         15       24,3012       102,47       3,66272       0,89         16       25,3774       1833,55       3,50978       15,95         17       26,6634       10032,41       3,34335       87,28         18       27,0385       11494,33       3,29781       100,00         19       27,8974       3209,82       3,19821       27,93         20       28,4615       2477,15       3,13609       21,55         21       28,9166       1876,82       3,08776       16,33         22       31,3971       789,23       2,84924       6,87         <                                                                             |                | 11,1586      | 735,76       | 7,92954          | 6,40          |
| 8       16,4912       1407,22       5,37551       12,24         9       17,3233       746,17       5,11914       6,49         10       18,1902       196,22       4,87708       1,71         11       18,6971       189,98       4,74598       1,65         12       20,0597       711,80       4,42658       6,19         13       20,8417       1635,72       4,26222       14,23         14       21,1580       1939,66       4,19920       16,87         15       24,3012       102,47       3,66272       0,89         16       25,3774       1833,55       3,50978       15,95         17       26,6634       10032,41       3,34335       87,28         18       27,0385       11494,33       3,29781       100,00         19       27,8974       3209,82       3,19821       27,93         20       28,4615       2477,15       3,13609       21,55         21       28,9166       1876,82       3,08776       16,33         22       31,3971       789,23       2,84924       6,87         23       32,0566       1166,28       2,79212       10,15                                                                                    |                | 13,0241      | 449,58       | 6,79767          | 3,91          |
| 9       17,3233       746,17       5,11914       6,49         10       18,1902       196,22       4,87708       1,71         11       18,6971       189,98       4,74598       1,65         12       20,0597       711,80       4,42658       6,19         13       20,8417       1635,72       4,26222       14,23         14       21,1580       1939,66       4,19920       16,87         15       24,3012       102,47       3,66272       0,89         16       25,3774       1833,55       3,50978       15,95         17       26,6634       10032,41       3,34335       87,28         18       27,0385       11494,33       3,29781       100,00         19       27,8974       3209,82       3,19821       27,93         20       28,4615       2477,15       3,13609       21,55         21       28,9166       1876,82       3,08776       16,33         22       31,3971       789,23       2,84924       6,87         23       32,0566       1166,28       2,79212       10,15         24       34,0531       162,92       2,63285       1,42                                                                                     |                | 14,7483      | 528,28       | 6,00661          | 4,60          |
| 10       18,1902       196,22       4,87708       1,71         11       18,6971       189,98       4,74598       1,65         12       20,0597       711,80       4,42658       6,19         13       20,8417       1635,72       4,26222       14,23         14       21,1580       1939,66       4,19920       16,87         15       24,3012       102,47       3,66272       0,89         16       25,3774       1833,55       3,50978       15,95         17       26,6634       10032,41       3,34335       87,28         18       27,0385       11494,33       3,29781       100,00         19       27,8974       3209,82       3,19821       27,93         20       28,4615       2477,15       3,13609       21,55         21       28,9166       1876,82       3,08776       16,33         22       31,3971       789,23       2,84924       6,87         23       32,0566       1166,28       2,79212       10,15         24       34,0531       162,92       2,63285       1,42         25       35,1166       463,91       2,55551       4,04                                                                                    |                | 16,4912      | 1407,22      | 5,37551          | 12,24         |
| 11       18,6971       189,98       4,74598       1,65         12       20,0597       711,80       4,42658       6,19         13       20,8417       1635,72       4,26222       14,23         14       21,1580       1939,66       4,19920       16,87         15       24,3012       102,47       3,66272       0,89         16       25,3774       1833,55       3,50978       15,95         17       26,6634       10032,41       3,34335       87,28         18       27,0385       11494,33       3,29781       100,00         19       27,8974       3209,82       3,19821       27,93         20       28,4615       2477,15       3,13609       21,55         21       28,9166       1876,82       3,08776       16,33         22       31,3971       789,23       2,84924       6,87         23       32,0566       1166,28       2,79212       10,15         24       34,0531       162,92       2,63285       1,42         25       35,1166       463,91       2,55551       4,04         26       36,0936       422,32       2,48855       3,67 </td <td></td> <td>17,3233</td> <td>746,17</td> <td>5,11914</td> <td>6,49</td>     |                | 17,3233      | 746,17       | 5,11914          | 6,49          |
| 12       20,0597       711,80       4,42658       6,19         13       20,8417       1635,72       4,26222       14,23         14       21,1580       1939,66       4,19920       16,87         15       24,3012       102,47       3,66272       0,89         16       25,3774       1833,55       3,50978       15,95         17       26,6634       10032,41       3,34335       87,28         18       27,0385       11494,33       3,29781       100,00         19       27,8974       3209,82       3,19821       27,93         20       28,4615       2477,15       3,13609       21,55         21       28,9166       1876,82       3,08776       16,33         22       31,3971       789,23       2,84924       6,87         23       32,0566       1166,28       2,79212       10,15         24       34,0531       162,92       2,63285       1,42         25       35,1166       463,91       2,55551       4,04         26       36,0936       422,32       2,48855       3,67                                                                                                                                                   | 10             | 18,1902      | 196,22       | 4,87708          | 1,71          |
| 13       20,8417       1635,72       4,26222       14,23         14       21,1580       1939,66       4,19920       16,87         15       24,3012       102,47       3,66272       0,89         16       25,3774       1833,55       3,50978       15,95         17       26,6634       10032,41       3,34335       87,28         18       27,0385       11494,33       3,29781       100,00         19       27,8974       3209,82       3,19821       27,93         20       28,4615       2477,15       3,13609       21,55         21       28,9166       1876,82       3,08776       16,33         22       31,3971       789,23       2,84924       6,87         23       32,0566       1166,28       2,79212       10,15         24       34,0531       162,92       2,63285       1,42         25       35,1166       463,91       2,55551       4,04         26       36,0936       422,32       2,48855       3,67                                                                                                                                                                                                                  |                |              | 189,98       | 4,74598          |               |
| 14       21,1580       1939,66       4,19920       16,87         15       24,3012       102,47       3,66272       0,89         16       25,3774       1833,55       3,50978       15,95         17       26,6634       10032,41       3,34335       87,28         18       27,0385       11494,33       3,29781       100,00         19       27,8974       3209,82       3,19821       27,93         20       28,4615       2477,15       3,13609       21,55         21       28,9166       1876,82       3,08776       16,33         22       31,3971       789,23       2,84924       6,87         23       32,0566       1166,28       2,79212       10,15         24       34,0531       162,92       2,63285       1,42         25       35,1166       463,91       2,55551       4,04         26       36,0936       422,32       2,48855       3,67                                                                                                                                                                                                                                                                                   | 12             | 20,0597      | 711,80       | 4,42658          | 6,19          |
| 15       24,3012       102,47       3,66272       0,89         16       25,3774       1833,55       3,50978       15,95         17       26,6634       10032,41       3,34335       87,28         18       27,0385       11494,33       3,29781       100,00         19       27,8974       3209,82       3,19821       27,93         20       28,4615       2477,15       3,13609       21,55         21       28,9166       1876,82       3,08776       16,33         22       31,3971       789,23       2,84924       6,87         23       32,0566       1166,28       2,79212       10,15         24       34,0531       162,92       2,63285       1,42         25       35,1166       463,91       2,55551       4,04         26       36,0936       422,32       2,48855       3,67                                                                                                                                                                                                                                                                                                                                                    | 13             | 20,8417      | 1635,72      | 4,26222          |               |
| 16       25,3774       1833,55       3,50978       15,95         17       26,6634       10032,41       3,34335       87,28         18       27,0385       11494,33       3,29781       100,00         19       27,8974       3209,82       3,19821       27,93         20       28,4615       2477,15       3,13609       21,55         21       28,9166       1876,82       3,08776       16,33         22       31,3971       789,23       2,84924       6,87         23       32,0566       1166,28       2,79212       10,15         24       34,0531       162,92       2,63285       1,42         25       35,1166       463,91       2,55551       4,04         26       36,0936       422,32       2,48855       3,67                                                                                                                                                                                                                                                                                                                                                                                                                   | 14             | 21,1580      | 1939,66      | 4,19920          | 16,87         |
| 17       26,6634       10032,41       3,34335       87,28         18       27,0385       11494,33       3,29781       100,00         19       27,8974       3209,82       3,19821       27,93         20       28,4615       2477,15       3,13609       21,55         21       28,9166       1876,82       3,08776       16,33         22       31,3971       789,23       2,84924       6,87         23       32,0566       1166,28       2,79212       10,15         24       34,0531       162,92       2,63285       1,42         25       35,1166       463,91       2,55551       4,04         26       36,0936       422,32       2,48855       3,67                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 15             | 24,3012      | 102,47       | 3,66272          | 0,89          |
| 18         27,0385         11494,33         3,29781         100,00           19         27,8974         3209,82         3,19821         27,93           20         28,4615         2477,15         3,13609         21,55           21         28,9166         1876,82         3,08776         16,33           22         31,3971         789,23         2,84924         6,87           23         32,0566         1166,28         2,79212         10,15           24         34,0531         162,92         2,63285         1,42           25         35,1166         463,91         2,55551         4,04           26         36,0936         422,32         2,48855         3,67                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 16             | 25,3774      | 1833,55      | 3,50978          | 15,95         |
| 19       27,8974       3209,82       3,19821       27,93         20       28,4615       2477,15       3,13609       21,55         21       28,9166       1876,82       3,08776       16,33         22       31,3971       789,23       2,84924       6,87         23       32,0566       1166,28       2,79212       10,15         24       34,0531       162,92       2,63285       1,42         25       35,1166       463,91       2,55551       4,04         26       36,0936       422,32       2,48855       3,67                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 17             | 26,6634      |              | 3,34335          |               |
| 20       28,4615       2477,15       3,13609       21,55         21       28,9166       1876,82       3,08776       16,33         22       31,3971       789,23       2,84924       6,87         23       32,0566       1166,28       2,79212       10,15         24       34,0531       162,92       2,63285       1,42         25       35,1166       463,91       2,55551       4,04         26       36,0936       422,32       2,48855       3,67                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 18             | 27,0385      | 11494,33     | 3,29781          | 100,00        |
| 21       28,9166       1876,82       3,08776       16,33         22       31,3971       789,23       2,84924       6,87         23       32,0566       1166,28       2,79212       10,15         24       34,0531       162,92       2,63285       1,42         25       35,1166       463,91       2,55551       4,04         26       36,0936       422,32       2,48855       3,67                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 19             | 27,8974      | 3209,82      | 3,19821          | 27,93         |
| 22       31,3971       789,23       2,84924       6,87         23       32,0566       1166,28       2,79212       10,15         24       34,0531       162,92       2,63285       1,42         25       35,1166       463,91       2,55551       4,04         26       36,0936       422,32       2,48855       3,67                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 20             | 28,4615      | 2477,15      | 3,13609          | 21,55         |
| 23       32,0566       1166,28       2,79212       10,15         24       34,0531       162,92       2,63285       1,42         25       35,1166       463,91       2,55551       4,04         26       36,0936       422,32       2,48855       3,67                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 21             | 28,9166      | 1876,82      | 3,08776          | 16,33         |
| 24       34,0531       162,92       2,63285       1,42         25       35,1166       463,91       2,55551       4,04         26       36,0936       422,32       2,48855       3,67                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 22             | 31,3971      | 789,23       | 2,84924          | 6,87          |
| 25 35,1166 463,91 2,55551 4,04<br>26 36,0936 422,32 2,48855 3,67                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                | 32,0566      | 1166,28      | 2,79212          | 10,15         |
| 26 36,0936 422,32 2,48855 3,67                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 24             | 34,0531      | 162,92       | 2,63285          | 1,42          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                | 35,1166      | 463,91       | 2,55551          | 4,04          |
| <u>27</u> 37,0065 493,27 2,42923 4,29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 26             | 36,0936      | 422,32       | 2,48855          |               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 27             | 37,0065      | 493,27       | 2,42923          | 4,29          |

**Tabla 5:** muestra 3: 10 g de pigmento C (0,5 % en moles de cobre / 99,5 % en moles de cinc) de acuerdo con la invención

| Número de pico         Pos. [°2Th.]         Altura [cts]         Separación d [Å]         Int. rel. [%]           1         6,4662         1350,32         13,65813         31,79           2         6,4823         675,16         13,65813         15,90           3         6,8350         2063,52         12,92195         48,58           4         6,8521         1031,76         12,92195         24,29           5         8,5403         153,75         10,34525         3,62           6         8,5616         76,88         10,34525         1,81           7         9,5163         113,98         9,28635         2,68           8         9,5400         56,99         9,28635         1,34           9         10,3920         1669,72         8,50568         39,31           10         10,4179         834,86         8,50568         19,66           11         11,1560         261,56         7,92481         6,16           12         11,1838         130,78         7,92481         6,16           12         11,1838         130,78         7,92481         3,08           13         12,9936         486,54         6,80789         5 |                                       |         | IIIVEIICIOII |          |       |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|---------|--------------|----------|-------|
| 2       6,4823       675,16       13,65813       15,90         3       6,8350       2063,52       12,92195       48,58         4       6,8521       1031,76       12,92195       24,29         5       8,5403       153,75       10,34525       3,62         6       8,5616       76,88       10,34525       1,81         7       9,5163       113,98       9,28635       2,68         8       9,5400       56,99       9,28635       1,34         9       10,3920       1669,72       8,50568       39,31         10       10,4179       834,86       8,50568       19,66         11       11,1600       261,56       7,92481       6,16         12       11,1838       130,78       7,92481       3,08         13       12,9936       486,54       6,80789       11,46         14       13,0261       243,27       6,80789       5,73         15       14,1901       220,21       6,23645       5,18         16       14,2255       110,11       6,23645       2,59         17       14,7178       536,78       6,01402       12,64         18 <td< td=""><td></td><td></td><td></td><td></td><td></td></td<>                                                 |                                       |         |              |          |       |
| 3       6,8350       2063,52       12,92195       48,58         4       6,8521       1031,76       12,92195       24,29         5       8,5403       153,75       10,34525       3,62         6       8,5616       76,88       10,34525       1,81         7       9,5163       113,98       9,28635       2,68         8       9,5400       56,99       9,28635       1,34         9       10,3920       1669,72       8,50568       39,31         10       10,4179       834,86       8,50568       19,66         11       11,1560       261,56       7,92481       6,16         12       11,1838       130,78       7,92481       3,08         13       12,9936       486,54       6,80789       11,46         14       13,0261       243,27       6,80789       5,73         15       14,1901       220,21       6,23645       5,18         16       14,2255       110,11       6,23645       2,59         17       14,7178       536,78       6,01402       12,64         18       14,7545       268,39       6,01402       6,32         19 <td< td=""><td>· · · · · · · · · · · · · · · · · · ·</td><td>,</td><td></td><td></td><td></td></td<>           | · · · · · · · · · · · · · · · · · · · | ,       |              |          |       |
| 4       6,8521       1031,76       12,92195       24,29         5       8,5403       153,75       10,34525       3,62         6       8,5616       76,88       10,34525       1,81         7       9,5163       113,98       9,28635       2,68         8       9,5400       56,99       9,28635       1,34         9       10,3920       1669,72       8,50568       39,31         10       10,4179       834,86       8,50568       19,66         11       11,1560       261,56       7,92481       6,16         12       11,1838       130,78       7,92481       3,08         13       12,9936       486,54       6,80789       11,46         14       13,0261       243,27       6,80789       5,73         15       14,1901       220,21       6,23645       5,18         16       14,2255       110,11       6,23645       2,59         17       14,7178       536,78       6,01402       12,64         18       14,7545       268,39       6,01402       6,32         19       15,6351       520,98       5,66317       6,13         21                                                                                                                 | 2                                     | ,       |              | ,        |       |
| 5       8,5403       153,75       10,34525       3,62         6       8,5616       76,88       10,34525       1,81         7       9,5163       113,98       9,28635       2,68         8       9,5400       56,99       9,28635       1,34         9       10,3920       1669,72       8,50568       39,31         10       10,4179       834,86       8,50568       19,66         11       11,1560       261,56       7,92481       6,16         12       11,1838       130,78       7,92481       3,08         13       12,9936       486,54       6,80789       11,46         14       13,0261       243,27       6,80789       5,73         15       14,1901       220,21       6,23645       5,18         16       14,2255       110,11       6,23645       2,59         17       14,7178       536,78       6,01402       12,64         18       14,7545       268,39       6,01402       6,32         19       15,6351       520,98       5,66317       12,27         20       15,6742       260,49       5,66317       6,13         21                                                                                                                 | 3                                     | 6,8350  | 2063,52      | 12,92195 | 48,58 |
| 6       8,5616       76,88       10,34525       1,81         7       9,5163       113,98       9,28635       2,68         8       9,5400       56,99       9,28635       1,34         9       10,3920       1669,72       8,50568       39,31         10       10,4179       834,86       8,50568       19,66         11       11,1560       261,56       7,92481       6,16         12       11,1838       130,78       7,92481       3,08         13       12,9936       486,54       6,80789       11,46         14       13,0261       243,27       6,80789       5,73         15       14,1901       220,21       6,23645       5,18         16       14,2255       110,11       6,23645       2,59         17       14,7178       536,78       6,01402       12,64         18       14,7545       268,39       6,01402       6,32         19       15,6351       520,98       5,66317       12,27         20       15,6742       260,49       5,66317       6,13         21       16,5766       710,08       5,34359       16,72         22 <t< td=""><td></td><td>6,8521</td><td>1031,76</td><td>12,92195</td><td>24,29</td></t<>                        |                                       | 6,8521  | 1031,76      | 12,92195 | 24,29 |
| 7       9,5163       113,98       9,28635       2,68         8       9,5400       56,99       9,28635       1,34         9       10,3920       1669,72       8,50568       39,31         10       10,4179       834,86       8,50568       19,66         11       11,1560       261,56       7,92481       6,16         12       11,1838       130,78       7,92481       3,08         13       12,9936       486,54       6,80789       11,46         14       13,0261       243,27       6,80789       5,73         15       14,1901       220,21       6,23645       5,18         16       14,2255       110,11       6,23645       2,59         17       14,7178       536,78       6,01402       12,64         18       14,7545       268,39       6,01402       6,32         19       15,6351       520,98       5,66317       12,27         20       15,6742       260,49       5,66317       6,13         21       16,5766       710,08       5,34359       16,72         22       16,6180       355,04       5,34359       8,36         23                                                                                                             |                                       | 8,5403  | 153,75       | 10,34525 |       |
| 8       9,5400       56,99       9,28635       1,34         9       10,3920       1669,72       8,50568       39,31         10       10,4179       834,86       8,50568       19,66         11       11,1560       261,56       7,92481       6,16         12       11,1838       130,78       7,92481       3,08         13       12,9936       486,54       6,80789       11,46         14       13,0261       243,27       6,80789       5,73         15       14,1901       220,21       6,23645       5,18         16       14,2255       110,11       6,23645       2,59         17       14,7178       536,78       6,01402       12,64         18       14,7545       268,39       6,01402       6,32         19       15,6351       520,98       5,66317       12,27         20       15,6742       260,49       5,66317       6,13         21       16,5766       710,08       5,34359       16,72         22       16,6180       355,04       5,34359       8,36         23       16,6389       0,00       5,32372       0,00         24                                                                                                             |                                       | 8,5616  | 76,88        | 10,34525 | 1,81  |
| 9       10,3920       1669,72       8,50568       39,31         10       10,4179       834,86       8,50568       19,66         11       11,1560       261,56       7,92481       6,16         12       11,1838       130,78       7,92481       3,08         13       12,9936       486,54       6,80789       11,46         14       13,0261       243,27       6,80789       5,73         15       14,1901       220,21       6,23645       5,18         16       14,2255       110,11       6,23645       2,59         17       14,7178       536,78       6,01402       12,64         18       14,7545       268,39       6,01402       6,32         19       15,6351       520,98       5,66317       12,27         20       15,6742       260,49       5,66317       6,13         21       16,5766       710,08       5,34359       16,72         22       16,6180       355,04       5,34359       8,36         23       16,6389       0,00       5,32372       0,00         24       16,6805       0,00       5,32372       0,00         25                                                                                                            |                                       | 9,5163  | 113,98       | 9,28635  | 2,68  |
| 10       10,4179       834,86       8,50568       19,66         11       11,1560       261,56       7,92481       6,16         12       11,1838       130,78       7,92481       3,08         13       12,9936       486,54       6,80789       11,46         14       13,0261       243,27       6,80789       5,73         15       14,1901       220,21       6,23645       5,18         16       14,2255       110,11       6,23645       2,59         17       14,7178       536,78       6,01402       12,64         18       14,7545       268,39       6,01402       6,32         19       15,6351       520,98       5,66317       12,27         20       15,6742       260,49       5,66317       6,13         21       16,5766       710,08       5,34359       16,72         22       16,6180       355,04       5,34359       8,36         23       16,6389       0,00       5,32372       0,00         24       16,6805       0,00       5,32372       0,00         25       17,2557       1245,16       5,13479       29,32                                                                                                                      |                                       | 9,5400  | 56,99        | 9,28635  | 1,34  |
| 11       11,1560       261,56       7,92481       6,16         12       11,1838       130,78       7,92481       3,08         13       12,9936       486,54       6,80789       11,46         14       13,0261       243,27       6,80789       5,73         15       14,1901       220,21       6,23645       5,18         16       14,2255       110,11       6,23645       2,59         17       14,7178       536,78       6,01402       12,64         18       14,7545       268,39       6,01402       6,32         19       15,6351       520,98       5,66317       12,27         20       15,6742       260,49       5,66317       6,13         21       16,5766       710,08       5,34359       16,72         22       16,6180       355,04       5,34359       8,36         23       16,6389       0,00       5,32372       0,00         24       16,6805       0,00       5,32372       0,00         25       17,2557       1245,16       5,13479       29,32                                                                                                                                                                                      | 9                                     | 10,3920 | 1669,72      | 8,50568  | 39,31 |
| 12       11,1838       130,78       7,92481       3,08         13       12,9936       486,54       6,80789       11,46         14       13,0261       243,27       6,80789       5,73         15       14,1901       220,21       6,23645       5,18         16       14,2255       110,11       6,23645       2,59         17       14,7178       536,78       6,01402       12,64         18       14,7545       268,39       6,01402       6,32         19       15,6351       520,98       5,66317       12,27         20       15,6742       260,49       5,66317       6,13         21       16,5766       710,08       5,34359       16,72         22       16,6180       355,04       5,34359       8,36         23       16,6389       0,00       5,32372       0,00         24       16,6805       0,00       5,32372       0,00         25       17,2557       1245,16       5,13479       29,32                                                                                                                                                                                                                                                     | 10                                    | 10,4179 | 834,86       | 8,50568  | 19,66 |
| 13       12,9936       486,54       6,80789       11,46         14       13,0261       243,27       6,80789       5,73         15       14,1901       220,21       6,23645       5,18         16       14,2255       110,11       6,23645       2,59         17       14,7178       536,78       6,01402       12,64         18       14,7545       268,39       6,01402       6,32         19       15,6351       520,98       5,66317       12,27         20       15,6742       260,49       5,66317       6,13         21       16,5766       710,08       5,34359       16,72         22       16,6180       355,04       5,34359       8,36         23       16,6389       0,00       5,32372       0,00         24       16,6805       0,00       5,32372       0,00         25       17,2557       1245,16       5,13479       29,32                                                                                                                                                                                                                                                                                                                    | 11                                    | 11,1560 | 261,56       | 7,92481  | 6,16  |
| 14       13,0261       243,27       6,80789       5,73         15       14,1901       220,21       6,23645       5,18         16       14,2255       110,11       6,23645       2,59         17       14,7178       536,78       6,01402       12,64         18       14,7545       268,39       6,01402       6,32         19       15,6351       520,98       5,66317       12,27         20       15,6742       260,49       5,66317       6,13         21       16,5766       710,08       5,34359       16,72         22       16,6180       355,04       5,34359       8,36         23       16,6389       0,00       5,32372       0,00         24       16,6805       0,00       5,32372       0,00         25       17,2557       1245,16       5,13479       29,32                                                                                                                                                                                                                                                                                                                                                                                    | 12                                    | 11,1838 | 130,78       | 7,92481  | 3,08  |
| 15       14,1901       220,21       6,23645       5,18         16       14,2255       110,11       6,23645       2,59         17       14,7178       536,78       6,01402       12,64         18       14,7545       268,39       6,01402       6,32         19       15,6351       520,98       5,66317       12,27         20       15,6742       260,49       5,66317       6,13         21       16,5766       710,08       5,34359       16,72         22       16,6180       355,04       5,34359       8,36         23       16,6389       0,00       5,32372       0,00         24       16,6805       0,00       5,32372       0,00         25       17,2557       1245,16       5,13479       29,32                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 13                                    | 12,9936 | 486,54       | 6,80789  | 11,46 |
| 16       14,2255       110,11       6,23645       2,59         17       14,7178       536,78       6,01402       12,64         18       14,7545       268,39       6,01402       6,32         19       15,6351       520,98       5,66317       12,27         20       15,6742       260,49       5,66317       6,13         21       16,5766       710,08       5,34359       16,72         22       16,6180       355,04       5,34359       8,36         23       16,6389       0,00       5,32372       0,00         24       16,6805       0,00       5,32372       0,00         25       17,2557       1245,16       5,13479       29,32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 14                                    | 13,0261 | 243,27       | 6,80789  | 5,73  |
| 17     14,7178     536,78     6,01402     12,64       18     14,7545     268,39     6,01402     6,32       19     15,6351     520,98     5,66317     12,27       20     15,6742     260,49     5,66317     6,13       21     16,5766     710,08     5,34359     16,72       22     16,6180     355,04     5,34359     8,36       23     16,6389     0,00     5,32372     0,00       24     16,6805     0,00     5,32372     0,00       25     17,2557     1245,16     5,13479     29,32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 15                                    | 14,1901 | 220,21       | 6,23645  | 5,18  |
| 18       14,7545       268,39       6,01402       6,32         19       15,6351       520,98       5,66317       12,27         20       15,6742       260,49       5,66317       6,13         21       16,5766       710,08       5,34359       16,72         22       16,6180       355,04       5,34359       8,36         23       16,6389       0,00       5,32372       0,00         24       16,6805       0,00       5,32372       0,00         25       17,2557       1245,16       5,13479       29,32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 16                                    | 14,2255 | 110,11       | 6,23645  | 2,59  |
| 19     15,6351     520,98     5,66317     12,27       20     15,6742     260,49     5,66317     6,13       21     16,5766     710,08     5,34359     16,72       22     16,6180     355,04     5,34359     8,36       23     16,6389     0,00     5,32372     0,00       24     16,6805     0,00     5,32372     0,00       25     17,2557     1245,16     5,13479     29,32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 17                                    | 14,7178 | 536,78       | 6,01402  | 12,64 |
| 20       15,6742       260,49       5,66317       6,13         21       16,5766       710,08       5,34359       16,72         22       16,6180       355,04       5,34359       8,36         23       16,6389       0,00       5,32372       0,00         24       16,6805       0,00       5,32372       0,00         25       17,2557       1245,16       5,13479       29,32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 18                                    | 14,7545 | 268,39       | 6,01402  | 6,32  |
| 21       16,5766       710,08       5,34359       16,72         22       16,6180       355,04       5,34359       8,36         23       16,6389       0,00       5,32372       0,00         24       16,6805       0,00       5,32372       0,00         25       17,2557       1245,16       5,13479       29,32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 19                                    | 15,6351 | 520,98       | 5,66317  | 12,27 |
| 22       16,6180       355,04       5,34359       8,36         23       16,6389       0,00       5,32372       0,00         24       16,6805       0,00       5,32372       0,00         25       17,2557       1245,16       5,13479       29,32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 20                                    | 15,6742 | 260,49       | 5,66317  | 6,13  |
| 23     16,6389     0,00     5,32372     0,00       24     16,6805     0,00     5,32372     0,00       25     17,2557     1245,16     5,13479     29,32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 21                                    | 16,5766 | 710,08       | 5,34359  | 16,72 |
| 24       16,6805       0,00       5,32372       0,00         25       17,2557       1245,16       5,13479       29,32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 22                                    | 16,6180 | 355,04       | 5,34359  | 8,36  |
| 25 17,2557 1245,16 5,13479 29,32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 23                                    | 16,6389 | 0,00         | 5,32372  | 0,00  |
| 25 17,2557 1245,16 5,13479 29,32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 24                                    | 16,6805 | 0,00         | 5,32372  | 0,00  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 25                                    | 17,2557 | 1245,16      | 5,13479  |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 26                                    |         |              |          |       |
| 27 18,6134 477,17 4,76320 11,23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 27                                    | 18,6134 | 477,17       | 4,76320  | 11,23 |
| 28 18,6600 238,58 4,76320 5,62                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 28                                    | 18,6600 | 238,58       | 4,76320  | 5,62  |

|   | 29 | 20,2603 | 686,20  | 4,37958 | 16,16  |
|---|----|---------|---------|---------|--------|
|   | 30 | 20,3111 | 343,10  | 4,37958 | 8,08   |
|   | 31 | 20,7787 | 2208,21 | 4,27147 | 51,99  |
|   | 32 | 20,8309 | 1104,10 | 4,27147 | 25,99  |
|   | 33 | 23,9341 | 318,53  | 3,71499 | 7,50   |
|   | 34 | 23,9944 | 159,26  | 3,71499 | 3,75   |
|   | 35 | 24,4209 | 325,56  | 3,64202 | 7,66   |
|   | 36 | 24,4825 | 162,78  | 3,64202 | 3,83   |
|   | 37 | 25,4307 | 417,95  | 3,49966 | 9,84   |
|   | 38 | 25,4949 | 208,97  | 3,49966 | 4,92   |
|   | 39 | 25,8758 | 1083,40 | 3,44045 | 25,51  |
|   | 40 | 25,9412 | 541,70  | 3,44045 | 12,75  |
|   | 41 | 26,5698 | 4247,40 | 3,35214 | 100,00 |
|   | 42 | 26,6370 | 2123,70 | 3,35214 | 50,00  |
|   | 43 | 27,0363 | 3857,50 | 3,29534 | 90,82  |
|   | 44 | 27,1048 | 1928,75 | 3,29534 | 45,41  |
|   | 45 | 27,8647 | 1630,72 | 3,19923 | 38,39  |
|   | 46 | 27,9354 | 815,36  | 3,19923 | 19,20  |
|   | 47 | 28,3962 | 1211,30 | 3,14055 | 28,52  |
|   | 48 | 28,4683 | 605,65  | 3,14055 | 14,26  |
|   | 49 | 28,8588 | 74,89   | 3,09126 | 1,76   |
|   | 50 | 28,9320 | 37,45   | 3,09126 | 0,88   |
|   | 51 | 29,1134 | 722,19  | 3,06479 | 17,00  |
|   | 52 | 29,1873 | 361,09  | 3,06479 | 8,50   |
|   | 53 | 31,3759 | 618,69  | 2,84876 | 14,57  |
|   | 54 | 31,4558 | 309,34  | 2,84876 | 7,28   |
|   | 55 | 31,7678 | 645,30  | 2,81451 | 15,19  |
|   | 56 | 31,8488 | 322,65  | 2,81451 | 7,60   |
|   | 57 | 34,8929 | 679,56  | 2,56926 | 16,00  |
|   | 58 | 34,9824 | 339,78  | 2,56926 | 8,00   |
|   | 59 | 35,0000 | 1023,02 | 2,56164 | 24,09  |
|   | 60 | 35,0897 | 511,51  | 2,56164 | 12,04  |
|   | 61 | 37,7869 | 504,11  | 2,37887 | 11,87  |
| - | 62 | 37,8844 | 252,06  | 2,37887 | 5,93   |

**Tabla 6:** muestra 4: 10 g de pigmento D (2 % en moles de cobre / 98 % en moles de cinc) de acuerdo con la invención

| Número de pico | Pos. [º2Th.] | Altura [cts] | Separación d [Å] | Int. rel. [%] |
|----------------|--------------|--------------|------------------|---------------|
| 1              | 6,4865       | 1495,79      | 13,61539         | 35,60         |
| 2              | 6,5027       | 747,89       | 13,61539         | 17,80         |
| 3              | 6,8367       | 1749,31      | 12,91876         | 41,64         |
| 4              | 6,8537       | 874,66       | 12,91876         | 20,82         |
| 5              | 9,7368       | 131,47       | 9,07648          | 3,13          |
| 6              | 9,7611       | 65,73        | 9,07648          | 1,56          |
| 7              | 10,3801      | 2138,01      | 8,51542          | 50,89         |
| 8              | 10,4059      | 1069,00      | 8,51542          | 25,44         |
| 9              | 11,1018      | 206,48       | 7,96339          | 4,91          |
| 10             | 11,1295      | 103,24       | 7,96339          | 2,46          |
| 11             | 13,0214      | 463,12       | 6,79342          | 11,02         |
| 12             | 13,0539      | 231,56       | 6,79342          | 5,51          |
| 13             | 14,8461      | 404,89       | 5,96232          | 9,64          |
| 14             | 14,8832      | 202,45       | 5,96232          | 4,82          |
| 15             | 15,6258      | 490,08       | 5,66652          | 11,67         |
| 16             | 15,6649      | 245,04       | 5,66653          | 5,83          |
| 17             | 16,5332      | 542,85       | 5,35749          | 12,92         |
| 18             | 16,5746      | 271,43       | 5,35749          | 6,46          |
| 19             | 17,3550      | 1050,37      | 5,10563          | 25,00         |
| 20             | 17,3984      | 525,19       | 5,10564          | 12,50         |
| 21             | 18,7393      | 375,76       | 4,73148          | 8,94          |
| 22             | 18,7863      | 187,88       | 4,73148          | 4,47          |
| 23             | 20,1724      | 603,85       | 4,39845          | 14,37         |
| 24             | 20,2231      | 301,93       | 4,39845          | 7,19          |
| 25             | 20,8650      | 2390,83      | 4,25399          | 56,91         |
| 26             | 20,9174      | 1195,41      | 4,25399          | 28,45         |
| 27             | 23,8615      | 183,54       | 3,72612          | 4,37          |
|                |              |              |                  |               |

| 28 | 23,9217 | 91,77   | 3,72612 | 2,18   |
|----|---------|---------|---------|--------|
| 29 | 24,4978 | 191,49  | 3,63076 | 4,56   |
| 30 | 24,5596 | 95,75   | 3,63076 | 2,28   |
| 31 | 25,8984 | 804,22  | 3,43749 | 19,14  |
| 32 | 25,9639 | 402,11  | 3,43749 | 9,57   |
| 33 | 26,5935 | 4201,25 | 3,34921 | 100,00 |
| 34 | 26,6608 | 2100,63 | 3,34921 | 50,00  |
| 35 | 27,0564 | 3938,87 | 3,29294 | 93,75  |
| 36 | 27,1250 | 1969,43 | 3,29294 | 46,88  |
| 37 | 27,9205 | 1166,82 | 3,19297 | 27,77  |
| 38 | 27,9913 | 583,41  | 3,19297 | 13,89  |
| 39 | 28,4203 | 1077,49 | 3,13794 | 25,65  |
| 40 | 28,4924 | 538,74  | 3,13794 | 12,82  |
| 41 | 29,1652 | 739,15  | 3,05946 | 17,59  |
| 42 | 29,2393 | 369,58  | 3,05946 | 8,80   |
| 43 | 31,4118 | 853,63  | 2,84559 | 20,32  |
| 44 | 31,4919 | 426,82  | 2,84559 | 10,16  |
| 45 | 31,7296 | 675,78  | 2,81781 | 16,09  |
| 46 | 31,8105 | 337,89  | 2,81781 | 8,04   |
| 47 | 35,1799 | 829,77  | 2,54895 | 19,75  |
| 48 | 35,2702 | 414,88  | 2,54895 | 9,88   |
| 49 | 35,9647 | 140,19  | 2,49511 | 3,34   |
| 50 | 36,0571 | 70,09   | 2,49511 | 1,67   |
| 51 | 37,0041 | 100,87  | 2,42738 | 2,40   |
| 52 | 37,0993 | 50,44   | 2,42738 | 1,20   |
| 53 | 37,7306 | 432,35  | 2,38229 | 10,29  |
| 54 | 37,8279 | 216,17  | 2,38229 | 5,15   |

**Tabla 7:** muestra 5: 10 g de pigmento E (6 % en moles de cobre / 94 % en moles de cinc) de acuerdo con la invención

|                |              | IIIVEIIGIOII |                  |               |
|----------------|--------------|--------------|------------------|---------------|
| Número de pico | Pos. [º2Th.] | Altura [cts] | Separación d [Å] | Int. rel. [%] |
| 1              | 6,4993       | 1834,79      | 13,59991         | 17,37         |
| 2              | 6,8254       | 1592,10      | 12,95096         | 15,07         |
| 3              | 10,4043      | 2436,67      | 8,50265          | 23,06         |
| 4              | 13,1235      | 365,13       | 6,74640          | 3,46          |
| 5              | 14,7362      | 253,54       | 6,01152          | 2,40          |
| 6              | 15,5446      | 226,46       | 5,70064          | 2,14          |
| 7              | 16,5915      | 749,08       | 5,34324          | 7,09          |
| 8              | 17,3267      | 585,29       | 5,11813          | 5,54          |
| 9              | 18,1634      | 326,29       | 4,88421          | 3,09          |
| 10             | 19,7732      | 456,42       | 4,49005          | 4,32          |
| 11             | 20,9688      | 2019,92      | 4,23666          | 19,12         |
| 12             | 22,0563      | 226,76       | 4,03018          | 2,15          |
| 13             | 23,8948      | 188,55       | 3,72409          | 1,78          |
| 14             | 25,4209      | 1540,54      | 3,50387          | 14,58         |
| 15             | 26,6719      | 9407,25      | 3,34231          | 89,04         |
| 16             | 27,1015      | 10564,86     | 3,29030          | 100,00        |
| 17             | 27,9074      | 4536,37      | 3,19708          | 42,94         |
| 18             | 28,4833      | 3030,81      | 3,13373          | 28,69         |
| 19             | 29,1504      | 1491,87      | 3,06352          | 14,12         |
| 20             | 31,6564      | 933,77       | 2,82649          | 8,84          |
| 21             | 35,0880      | 208,81       | 2,55753          | 1,98          |
| 22             | 37,2241      | 184,47       | 2,41553          | 1,75          |

5 **Tabla 8:** muestra 6: 10 g de pigmento F (10 % en moles de cobre / 90 % en moles de cinc) de acuerdo con la invención

| Pos. [º2Th.] | Altura [cts] | Separación d [Å] | Int. rel. [%] |
|--------------|--------------|------------------|---------------|
| 6,4530       | 2622,68      | 13,69736         | 26,66         |
| 6,9252       | 923,02       | 12,75391         | 9,38          |
| 9,4842       | 470,19       | 9,31772          | 4,78          |
| 9,9075       | 1481,10      | 8,92785          | 15,06         |
| 10,4742      | 3311,65      | 8,44607          | 33,66         |
| 10,9939      | 806,81       | 8,04129          | 8,20          |
| 13,0372      | 548,01       | 6,79086          | 5,57          |
| 14,6644      | 325,48       | 6,04077          | 3,31          |

| 15,6750 | 478,95  | 5,65353 | 4,87   |
|---------|---------|---------|--------|
| 16,4722 | 1333,03 | 5,38166 | 13,55  |
| 17,1866 | 455,57  | 5,15528 | 4,63   |
| 18,5264 | 172,38  | 4,78931 | 1,75   |
| 19,9554 | 756,14  | 4,44946 | 7,69   |
| 20,2573 | 652,14  | 4,38021 | 6,63   |
| 21,0952 | 2542,88 | 4,21156 | 25,85  |
| 25,3243 | 1101,67 | 3,51702 | 11,20  |
| 25,8102 | 1889,92 | 3,44905 | 19,21  |
| 26,5879 | 8340,52 | 3,35267 | 84,78  |
| 26,7826 | 7526,02 | 3,32599 | 76,50  |
| 27,1079 | 8450,38 | 3,28681 | 85,90  |
| 27,2413 | 9837,37 | 3,27373 | 100,00 |
| 29,1201 | 1437,84 | 3,06664 | 14,62  |
| 31,4399 | 924,04  | 2,84311 | 9,39   |
| 32,1768 | 1530,64 | 2,78196 | 15,56  |
| 36,1483 | 429,90  | 2,48285 | 4,37   |
| 37,2487 | 297,40  | 2,41199 | 3,02   |

**Tabla 9:** muestra 7: 10 g de pigmento G (20 % en moles de cobre / 80 % en moles de cinc) de acuerdo con la invención

| Número de pico | Pos. [º2Th.] | Altura [cts] | Separación d [Å] | Int. rel. [%] |
|----------------|--------------|--------------|------------------|---------------|
| 1              | 6,4318       | 1809,15      | 13,74256         | 27,25         |
| 2              | 7,1979       | 2460,62      | 12,28143         | 37,06         |
| 3              | 8,3278       | 372,59       | 10,61750         | 5,61          |
| 4              | 10,4132      | 2613,35      | 8,49547          | 39,36         |
| 5              | 13,0196      | 357,04       | 6,80002          | 5,38          |
| 6              | 13,8445      | 472,40       | 6,39665          | 7,12          |
| 7              | 14,6446      | 149,01       | 6,04891          | 2,24          |
| 8              | 15,5987      | 246,85       | 5,68101          | 3,72          |
| 9              | 16,7429      | 1026,28      | 5,29527          | 15,46         |
| 10             | 17,2542      | 1497,08      | 5,13948          | 22,55         |
| 11             | 17,7630      | 1019,68      | 4,99338          | 15,36         |
| 12             | 18,1909      | 1412,90      | 4,87690          | 21,28         |
| 13             | 19,7787      | 442,60       | 4,48881          | 6,67          |
| 14             | 20,9339      | 2287,15      | 4,24366          | 34,45         |
| 15             | 22,0941      | 262,75       | 4,02336          | 3,96          |
| 16             | 24,1541      | 1015,45      | 3,68470          | 15,29         |
| 17             | 25,8350      | 3085,77      | 3,44864          | 46,48         |
| 18             | 26,5067      | 6088,86      | 3,36276          | 91,71         |
| 19             | 27,2009      | 6639,46      | 3,27849          | 100,00        |
| 20             | 27,9145      | 5011,17      | 3,19629          | 75,48         |
| 21             | 28,4668      | 2595,33      | 3,13551          | 39,09         |
| 22             | 29,0268      | 1474,82      | 3,07629          | 22,21         |
| 23             | 30,2379      | 340,55       | 2,95577          | 5,13          |
| 24             | 34,6973      | 732,61       | 2,58543          | 11,03         |
| 25             | 36,1426      | 418,39       | 2,48529          | 6,30          |
| 26             | 37,3016      | 204,46       | 2,41069          | 3,08          |

5 **Tabla 10:** muestra 8: 10 g de pigmento H (30 % en moles de cobre / 70 % en moles de cinc) de acuerdo con la invención

| Número de pico | Pos. [º2Th.] | Altura [cts] | Separación d [Å] | Int. rel. [%] |
|----------------|--------------|--------------|------------------|---------------|
| 1              | 7,2465       | 839,77       | 12,19923         | 10,39         |
| 2              | 10,4024      | 2009,53      | 8,50424          | 24,85         |
| 3              | 12,9987      | 211,27       | 6,81088          | 2,61          |
| 4              | 17,2743      | 689,77       | 5,13355          | 8,53          |
| 5              | 18,2038      | 640,10       | 4,87345          | 7,92          |
| 6              | 19,7769      | 361,32       | 4,48923          | 4,47          |
| 7              | 21,1550      | 1480,58      | 4,19979          | 18,31         |
| 8              | 22,0575      | 412,22       | 4,02996          | 5,10          |
| 9              | 23,9960      | 367,27       | 3,70861          | 4,54          |
| 10             | 26,7289      | 8085,33      | 3,33531          | 100,00        |
| 11             | 27,8892      | 5468,39      | 3,19913          | 67,63         |
| 12             | 28,4829      | 4107,54      | 3,13378          | 50,80         |
| 13             | 31,7750      | 629,00       | 2,81622          | 7,78          |

Tabla 11: muestra 9: 10 g de pigmento I (40 % en moles de cobre / 60 % en moles de cinc) de acuerdo con la

|                |              | invención    |                  |               |
|----------------|--------------|--------------|------------------|---------------|
| Número de pico | Pos. [º2Th.] | Altura [cts] | Separación d [Å] | Int. rel. [%] |
| 1              | 7,2160       | 2505,24      | 12,25076         | 35,61         |
| 2              | 8,3038       | 423,45       | 10,64821         | 6,02          |
| 3              | 10,3767      | 1319,28      | 8,52523          | 18,75         |
| 4              | 11,7975      | 363,79       | 7,50153          | 5,17          |
| 5              | 13,7891      | 530,80       | 6,42222          | 7,54          |
| 6              | 17,1853      | 1499,95      | 5,15993          | 21,32         |
| 7              | 17,7002      | 1495,99      | 5,01096          | 21,26         |
| 8              | 18,2223      | 1616,47      | 4,86856          | 22,97         |
| 9              | 19,7580      | 368,15       | 4,49348          | 5,23          |
| 10             | 21,0471      | 940,23       | 4,22108          | 13,36         |
| 11             | 24,0658      | 1160,97      | 3,69802          | 16,50         |
| 12             | 25,9115      | 4513,48      | 3,43864          | 64,15         |
| 13             | 26,6663      | 5932,97      | 3,34300          | 84,32         |
| 14             | 27,1478      | 6640,73      | 3,28479          | 94,38         |
| 15             | 27,9400      | 7036,01      | 3,19343          | 100,00        |
| 16             | 28,4768      | 3829,50      | 3,13444          | 54,43         |
| 17             | 30,3014      | 314,02       | 2,94972          | 4,46          |
| 18             | 31,4059      | 471,53       | 2,84847          | 6,70          |
| 19             | 34,5304      | 868,64       | 2,59754          | 12,35         |
| 20             | 36,2126      | 371,59       | 2,48064          | 5,28          |
| 21             | 38,5100      | 369,75       | 2,33778          | 5,26          |

5 **Tabla 12:** muestra 10: 10 g de pigmento J (50 % en moles de cobre / 50 % en moles de cinc) de acuerdo con la invención

| N.º | Pos. [º2Th.] | Separación d [Å] | Altura int. [cts] | Int. rel. [%] |
|-----|--------------|------------------|-------------------|---------------|
| 1   | 6,2732       | 14,08953         | 804,83            | 11,00         |
| 2   | 7,1870       | 12,30003         | 2194,78           | 29,99         |
| 3   | 8,3666       | 10,56840         | 363,82            | 4,97          |
| 4   | 10,4807      | 8,44086          | 1304,23           | 17,82         |
| 5   | 11,8041      | 7,49734          | 261,50            | 3,57          |
| 6   | 13,7999      | 6,41720          | 531,71            | 7,27          |
| 7   | 16,7948      | 5,27463          | 683,70            | 9,34          |
| 8   | 17,2367      | 5,14467          | 1404,77           | 19,19         |
| 9   | 17,7103      | 5,00813          | 1454,34           | 19,87         |
| 10  | 18,2340      | 4,86545          | 1290,74           | 17,64         |
| 11  | 19,6835      | 4,50658          | 356,50            | 4,87          |
| 12  | 20,5450      | 4,31951          | 376,83            | 5,15          |
| 13  | 21,0971      | 4,21120          | 798,88            | 10,92         |
| 14  | 23,7630      | 3,74134          | 686,55            | 9,38          |
| 15  | 24,1251      | 3,68906          | 1055,22           | 14,42         |
| 16  | 25,9349      | 3,43559          | 4319,19           | 59,02         |
| 17  | 26,6771      | 3,33890          | 4975,72           | 67,99         |
| 18  | 27,1252      | 3,28748          | 7318,60           | 100,00        |
| 19  | 27,8720      | 3,20106          | 6576,43           | 89,86         |
| 20  | 29,0601      | 3,07030          | 919,93            | 12,57         |
| 21  | 30,3544      | 2,94470          | 271,94            | 3,72          |
| 22  | 31,2666      | 2,86083          | 327,73            | 4,48          |
| 23  | 32,2201      | 2,77832          | 260,10            | 3,55          |
| 24  | 34,6795      | 2,58671          | 835,41            | 11,41         |
| 25  | 36,2522      | 2,47803          | 322,18            | 4,40          |
| 26  | 38,5761      | 2,33393          | 287,14            | 3,92          |
| 27  | 39,3726      | 2,28664          | 576,73            | 7,88          |

**Tabla 13:** muestra 11: 10 g de pigmento K (60 % en moles de cobre / 40 % en moles de cinc) de acuerdo con la invención

|                |              | invencion    |                  |               |
|----------------|--------------|--------------|------------------|---------------|
| Número de pico | Pos. [º2Th.] | Altura [cts] | Separación d [Å] | Int. rel. [%] |
| 1              | 7,1942       | 4334,39      | 12,28776         | 49,32         |
| 2              | 8,3526       | 913,07       | 10,58612         | 10,39         |
| 3              | 10,5617      | 1111,77      | 8,37634          | 12,65         |
| 4              | 11,8238      | 646,03       | 7,48490          | 7,35          |
| 5              | 13.8690      | 1215.75      | 6.38537          | 13.83         |

| 6  | 16,7383 | 839,74  | 5,29670 | 9,56   |
|----|---------|---------|---------|--------|
| 7  | 17,2791 | 2258,55 | 5,13212 | 25,70  |
| 8  | 17,7572 | 2404,86 | 4,99502 | 27,37  |
| 9  | 18,2569 | 2554,71 | 4,85941 | 29,07  |
| 10 | 19,7734 | 455,44  | 4,49000 | 5,18   |
| 11 | 20,5717 | 677,23  | 4,31755 | 7,71   |
| 12 | 21,3784 | 577,84  | 4,15642 | 6,58   |
| 13 | 24,1487 | 2200,73 | 3,68550 | 25,04  |
| 14 | 25,8557 | 5113,57 | 3,44593 | 58,19  |
| 15 | 26,9017 | 5336,03 | 3,31427 | 60,72  |
| 16 | 27,9201 | 8787,95 | 3,19566 | 100,00 |
| 17 | 28,4870 | 3457,22 | 3,13334 | 39,34  |
| 18 | 29,0902 | 1258,48 | 3,06973 | 14,32  |
| 19 | 30,1296 | 653,52  | 2,96615 | 7,44   |
| 20 | 31,3075 | 842,18  | 2,85719 | 9,58   |
| 21 | 34,6400 | 1515,97 | 2,58957 | 17,25  |
| 22 | 36,2508 | 625,85  | 2,47812 | 7,12   |
| 23 | 38,5389 | 606,78  | 2,33610 | 6,90   |
| 24 | 39,3680 | 685,76  | 2,28879 | 7,80   |

**Tabla 14:** muestra 12: 10 g de pigmento L (70 % en moles de cobre / 30 % en moles de cinc) de acuerdo con la invención

| invencion |              |                  |                   |               |
|-----------|--------------|------------------|-------------------|---------------|
| N.º       | Pos. [º2Th.] | Separación d [Å] | Altura int. [cts] | Int. rel. [%] |
| 1         | 7,2381       | 12,21334         | 3538,10           | 36,16         |
| 2         | 8,2945       | 10,66011         | 948,31            | 9,69          |
| 3         | 10,4759      | 8,44468          | 818,21            | 8,36          |
| 4         | 11,7706      | 7,51862          | 605,31            | 6,19          |
| 5         | 13,8323      | 6,40226          | 1253,65           | 12,81         |
| 6         | 16,7286      | 5,29975          | 755,47            | 7,72          |
| 7         | 17,2389      | 5,14401          | 2067,38           | 21,13         |
| 8         | 17,7581      | 4,99475          | 2419,24           | 24,73         |
| 9         | 18,2050      | 4,87314          | 2271,13           | 23,21         |
| 10        | 19,6982      | 4,50698          | 225,66            | 2,31          |
| 11        | 20,5009      | 4,33230          | 502,05            | 5,13          |
| 12        | 21,1611      | 4,19861          | 450,80            | 4,61          |
| 13        | 23,7124      | 3,74921          | 972,47            | 9,94          |
| 14        | 24,1520      | 3,68501          | 1989,55           | 20,34         |
| 15        | 25,8012      | 3,45308          | 5571,69           | 56,95         |
| 16        | 26,8777      | 3,31718          | 5658,41           | 57,84         |
| 17        | 27,3613      | 3,25694          | 5394,11           | 55,13         |
| 18        | 27,9211      | 3,19554          | 9783,61           | 100,00        |
| 19        | 28,0976      | 3,17588          | 8985,70           | 91,84         |
| 20        | 29,0108      | 3,07795          | 1495,48           | 15,29         |
| 21        | 30,1968      | 2,95971          | 660,86            | 6,75          |
| 22        | 31,2275      | 2,86433          | 960,62            | 9,82          |
| 23        | 34,6924      | 2,58578          | 1562,70           | 15,97         |
| 24        | 36,1986      | 2,48157          | 639,50            | 6,54          |
| 25        | 38,5428      | 2,33586          | 774,06            | 7,91          |
| 26        | 39,3966      | 2,28719          | 847,60            | 8,66          |

Tabla 15: muestra 13: 10 g de pigmento M (80 % en moles de cobre / 20 % en moles de cinc) de acuerdo con la invención

| Número de pico | Pos. [º2Th.] | Altura [cts] | Separación d [Å] | Int. rel. [%] |
|----------------|--------------|--------------|------------------|---------------|
| 1              | 7,2452       | 5584,85      | 12,20138         | 47,31         |
| 2              | 8,3279       | 1422,27      | 10,61745         | 12,05         |
| 3              | 10,4539      | 410,84       | 8,46248          | 3,48          |
| 4              | 11,8250      | 1014,45      | 7,48413          | 8,59          |
| 5              | 13,8696      | 1679,44      | 6,38513          | 14,23         |
| 6              | 15,1190      | 444,66       | 5,86014          | 3,77          |
| 7              | 16,7733      | 916,00       | 5,28574          | 7,76          |
| 8              | 17,3050      | 2941,68      | 5,12449          | 24,92         |
| 9              | 17,8126      | 2939,18      | 4,97961          | 24,90         |
| 10             | 18,2778      | 3241,31      | 4,85391          | 27,46         |
| 11             | 19,7499      | 368,02       | 4,49529          | 3,12          |
| 12             | 20,5220      | 518,33       | 4,32788          | 4,39          |

| 13 | 24,1354 | 3005,62  | 3,68750 | 25,46  |
|----|---------|----------|---------|--------|
| 14 | 25,8077 | 6285,92  | 3,45224 | 53,25  |
| 15 | 27,9581 | 11804,72 | 3,19140 | 100,00 |
| 16 | 28,9844 | 1423,98  | 3,08069 | 12,06  |
| 17 | 30,2000 | 1337,63  | 2,95940 | 11,33  |
| 18 | 31,2509 | 1650,82  | 2,86224 | 13,98  |
| 19 | 34,6827 | 2123,10  | 2,58649 | 17,99  |
| 20 | 36,2115 | 967,86   | 2,48072 | 8,20   |
| 21 | 38,5854 | 1070,24  | 2,33339 | 9,07   |
| 22 | 39,4198 | 1271,87  | 2,28590 | 10,77  |

**Tabla 16:** muestra 14: 10 g de pigmento N (90 % en moles de cobre / 10 % en moles de cinc) de acuerdo con la invención

| Número de pico | Pos. [º2Th.] | Altura [cts] | Separación d [Å] | Int. rel. [%] |
|----------------|--------------|--------------|------------------|---------------|
| 1              | 7,2063       | 3726,37      | 12,26723         | 47,84         |
| 2              | 8,3093       | 813,32       | 10,64118         | 10,44         |
| 3              | 10,6160      | 865,28       | 8,33359          | 11,11         |
| 4              | 11,8913      | 640,74       | 7,44258          | 8,23          |
| 5              | 13,8368      | 1010,08      | 6,40016          | 12,97         |
| 6              | 17,2470      | 1987,98      | 5,14162          | 25,52         |
| 7              | 17,7113      | 2302,02      | 5,00785          | 29,55         |
| 8              | 18,2312      | 2162,71      | 4,86620          | 27,76         |
| 9              | 19,7865      | 406,44       | 4,48708          | 5,22          |
| 10             | 20,5328      | 641,20       | 4,32564          | 8,23          |
| 11             | 22,0205      | 326,95       | 4,03664          | 4,20          |
| 12             | 24,0045      | 1930,67      | 3,70732          | 24,78         |
| 13             | 25,9058      | 4685,83      | 3,43938          | 60,15         |
| 14             | 26,8813      | 3889,93      | 3,31674          | 49,94         |
| 15             | 27,9278      | 7789,96      | 3,19480          | 100,00        |
| 16             | 28,2064      | 7141,40      | 3,16387          | 91,67         |
| 17             | 28,4922      | 5608,59      | 3,13278          | 72,00         |
| 18             | 30,4860      | 593,22       | 2,93228          | 7,62          |
| 19             | 31,4790      | 814,43       | 2,84202          | 10,45         |
| 20             | 34,5788      | 1228,47      | 2,59402          | 15,77         |
| 21             | 36,1001      | 299,45       | 2,48812          | 3,84          |
| 22             | 38,4758      | 549,23       | 2,33978          | 7,05          |

5 **Tabla 17:** muestra 15: 10 g de pigmento O (94 % en moles de cobre / 6 % en moles de cinc) de acuerdo con la invención

|                |              | IIIVEIICIOII |                  |               |
|----------------|--------------|--------------|------------------|---------------|
| Número de pico | Pos. [º2Th.] | Altura [cts] | Separación d [Å] | Int. rel. [%] |
| 1              | 7,1967       | 5435,33      | 12,28359         | 53,30         |
| 2              | 8,3413       | 1366,32      | 10,60033         | 13,40         |
| 3              | 10,5711      | 668,43       | 8,36887          | 6,55          |
| 4              | 11,8382      | 872,14       | 7,47584          | 8,55          |
| 5              | 13,8740      | 1491,54      | 6,38309          | 14,63         |
| 6              | 16,7811      | 865,60       | 5,28329          | 8,49          |
| 7              | 17,2674      | 2706,97      | 5,13557          | 26,54         |
| 8              | 17,7593      | 3074,07      | 4,99443          | 30,14         |
| 9              | 18,2613      | 2969,43      | 4,85826          | 29,12         |
| 10             | 19,7707      | 582,04       | 4,49062          | 5,71          |
| 11             | 20,5533      | 515,91       | 4,32136          | 5,06          |
| 12             | 21,9760      | 262,96       | 4,04471          | 2,58          |
| 13             | 24,1576      | 2687,10      | 3,68417          | 26,35         |
| 14             | 25,8206      | 5230,21      | 3,45053          | 51,28         |
| 15             | 26,8646      | 3746,17      | 3,31876          | 36,73         |
| 16             | 27,9186      | 10198,52     | 3,19583          | 100,00        |
| 17             | 28,5034      | 4939,11      | 3,13157 4        | 8,43          |
| 18             | 30,2582      | 1050,35      | 2,95384          | 10,30         |
| 19             | 31,3156      | 1348,81      | 2,85648          | 13,23         |
| 20             | 34,6446      | 1643,91      | 2,58924          | 16,12         |
| 21             | 36,1779      | 678,78       | 2,48294          | 6,66          |
| 22             | 38,5718      | 770,05       | 2,33418          | 7,55          |
| 23             | 39,4562      | 866,78       | 2,28387          | 8,50          |

**Tabla 18:** muestra 16: 0,05 g de pigmento A y 9,95 g de pigmento B (mezcla física del 0,5 % en moles de cobre y el 99,5 % en moles de cinc) de acuerdo con la invención

| Número de pico | Pos. [º2Th.] | Altura [cts] | Separación d [Å] | Int. rel. [%] |
|----------------|--------------|--------------|------------------|---------------|
| 1              | 5,0066       | 374,72       | 17,63641         | 6,06          |
| 2              | 5,0190       | 187,36       | 17,63641         | 3,03          |
| 3              | 6,4673       | 673,11       | 13,65597         | 10,88         |
| 4              | 6,4833       | 336,55       | 13,65597         | 5,44          |
| 5              | 10,3592      | 869,13       | 8,53252          | 14,04         |
| 6              | 10,3850      | 434,57       | 8,53252          | 7,02          |
| 7              | 12,5982      | 67,62        | 7,02066          | 1,09          |
| 8              | 12,6296      | 33,81        | 7,02066          | 0,55          |
| 9              | 15,2012      | 785,61       | 5,82381          | 12,69         |
| 10             | 15,2392      | 392,80       | 5,82381          | 6,35          |
| 11             | 16,8993      | 528,20       | 5,24226          | 8,54          |
| 12             | 16,9416      | 264,10       | 5,24226          | 4,27          |
| 13             | 18,7815      | 180,54       | 4,72093          | 2,92          |
| 14             | 18,8286      | 90,27        | 4,72093          | 1,46          |
| 15             | 20,8140      | 743,54       | 4,26429          | 12,02         |
| 16             | 20,8663      | 371,77       | 4,26429          | 6,01          |
| 17             | 25,6520      | 729,96       | 3,46996          | 11,80         |
| 18             | 25,7168      | 364,98       | 3,46996          | 5,90          |
| 19             | 27,2340      | 6188,34      | 3,27187          | 100,00        |
| 20             | 27,3030      | 3094,17      | 3,27187          | 50,00         |
| 21             | 27,8257      | 2248,19      | 3,20363          | 36,33         |
| 22             | 27,8963      | 1124,10      | 3,20363          | 18,16         |
| 23             | 31,4610      | 186,15       | 2,84125          | 3,01          |
| 24             | 31,5412      | 93,07        | 2,84125          | 1,50          |
| 25             | 34,9445      | 428,56       | 2,56558          | 6,93          |
| 26             | 35,0341      | 214,28       | 2,56558          | 3,46          |
| 27             | 36,0103      | 529,81       | 2,49205          | 8,56          |
| 28             | 36,1028      | 264,90       | 2,49205          | 4,28          |

**Tabla 19:** muestra 17: 0,2 g de pigmento A y 9,8 g de pigmento B (mezcla física del 2 % en moles de cobre y el 98 % en moles de cinc) de acuerdo con la invención

|                |              |              | o con la invencion | 1 ( 1 [0/]    |
|----------------|--------------|--------------|--------------------|---------------|
| Número de pico | Pos. [º2Th.] | Altura [cts] | Separación d [Å]   | Int. rel. [%] |
| 1              | 5,4731       | 0,00         | 16,13407           | 0,00          |
| 2 3            | 5,4867       | 0,00         | 16,13407           | 0,00          |
| 3              | 6,4249       | 626,16       | 13,74600           | 8,59          |
| 4              | 6,4408       | 313,08       | 13,74600           | 4,30          |
| 5              | 10,3096      | 841,56       | 8,57346            | 11,55         |
| 6              | 10,3353      | 420,78       | 8,57346            | 5,77          |
| 7              | 15,1837      | 732,31       | 5,83051            | 10,05         |
| 8              | 15,2216      | 366,16       | 5,83051            | 5,02          |
| 9              | 16,9792      | 476,51       | 5,21776            | 6,54          |
| 10             | 17,0217      | 238,26       | 5,21776            | 3,27          |
| 11             | 18,7871      | 158,94       | 4,71953            | 2,18          |
| 12             | 18,8343      | 79,47        | 4,71953            | 1,09          |
| 13             | 20,4050      | 386,58       | 4,34883            | 5,30          |
| 14             | 20,4563      | 193,29       | 4,34883            | 2,65          |
| 15             | 20,8641      | 565,41       | 4,25416            | 7,76          |
| 16             | 20,9165      | 282,70       | 4,25416            | 3,88          |
| 17             | 23,8660      | 77,00        | 3,72544            | 1,06          |
| 18             | 23,9261      | 38,50        | 3,72544            | 0,53          |
| 19             | 25,8584      | 1070,60      | 3,44272            | 14,69         |
| 20             | 25,9238      | 535,30       | 3,44272            | 7,34          |
| 21             | 27,2348      | 7288,96      | 3,27178            | 100,00        |
| 22             | 27,3038      | 3644,48      | 3,27178            | 50,00         |
| 23             | 28,1653      | 1934,59      | 3,16577            | 26,54         |
| 24             | 28,2368      | 967,30       | 3,16577            | 13,27         |
| 25             | 31,4736      | 179,11       | 2,84014            | 2,46          |
| 26             | 31,5539      | 89,55        | 2,84014            | 1,23          |
| 27             | 34,6548      | 328,27       | 2,58636            | 4,50          |
| 28             | 34,7436      | 164,13       | 2,58636            | 2,25          |
| 29             | 36,0524      | 448,34       | 2,48924            | 6,15          |
| 30             | 36,1451      | 224,17       | 2,48924            | 3,08          |

**Tabla 20:** muestra 18: 0,6 g de pigmento A y 9,4 g de pigmento B (mezcla física del 6 % en moles de cobre y el 94 % en moles de cinc) de acuerdo con la invención

| <u></u> % 6    | en moies de cir |              | o con la invencion |               |
|----------------|-----------------|--------------|--------------------|---------------|
| Número de pico | Pos. [º2Th.]    | Altura [cts] | Separación d [Å]   | Int. rel. [%] |
| 1              | 6,3313          | 2281,58      | 13,96036           | 16,53         |
| 2              | 10,3842         | 2417,90      | 8,51912            | 17,51         |
| 3              | 11,1569         | 648,44       | 7,93074            | 4,70          |
| 4              | 12,9719         | 359,22       | 6,82490            | 2,60          |
| 5              | 14,8173         | 410,12       | 5,97881            | 2,97          |
| 6              | 15,4724         | 257,94       | 5,72709            | 1,87          |
| 7              | 16,4361         | 1033,65      | 5,39342            | 7,49          |
| 8              | 17,3462         | 558,26       | 5,11243            | 4,04          |
| 9              | 18,1871         | 266,28       | 4,87790            | 1,93          |
| 10             | 20,0569         | 704,88       | 4,42719            | 5,11          |
| 11             | 20,8790         | 1920,46      | 4,25468            | 13,91         |
| 12             | 22,0595         | 317,86       | 4,02960            | 2,30          |
| 13             | 24,0310         | 157,82       | 3,70330            | 1,14          |
| 14             | 25,3343         | 1757,45      | 3,51566            | 12,73         |
| 15             | 26,5444         | 10318,39     | 3,35807            | 74,75         |
| 16             | 27,0838         | 13804,76     | 3,29240            | 100,00        |
| 17             | 27,8872         | 3794,16      | 3,19935            | 27,48         |
| 18             | 28,4839         | 2779,37      | 3,13367            | 20,13         |
| 19             | 28,9531         | 1950,87      | 3,08394            | 14,13         |
| 20             | 31,4723         | 876,32       | 2,84260            | 6,35          |
| 21             | 32,0291         | 1042,57      | 2,79445            | 7,55          |
| 22             | 35,0939         | 349,26       | 2,55711            | 2,53          |
| 23             | 36,0890         | 318,86       | 2,48885            | 2,31          |
| 24             | 37,0793         | 361,23       | 2,42463            | 2,62          |
|                |                 |              |                    |               |

**Tabla 21:** muestra 19: 1,0 g de pigmento A y 9,0 g de pigmento B (mezcla física del 10 % en moles de cobre y el 90 % en moles de cinc) de acuerdo con la invención

|                |              |              | Con la invencion | Int rol [0/]  |
|----------------|--------------|--------------|------------------|---------------|
| Número de pico | Pos. [º2Th.] | Altura [cts] | Separación d [Å] | Int. rel. [%] |
| 1              | 6,3918       | 2474,85      | 13,82851         | 20,74         |
| 2              | 6,9854       | 1321,60      | 12,65458         | 11,07         |
| 3              | 10,4135      | 2440,69      | 8,49518          | 20,45         |
| 4              | 11,1861      | 664,52       | 7,91014          | 5,57          |
| 5              | 12,9088      | 274,63       | 6,85814          | 2,30          |
| 6              | 14,6503      | 348,64       | 6,04658          | 2,92          |
| 7              | 15,4626      | 282,44       | 5,73072          | 2,37          |
| 8              | 16,4162      | 1059,97      | 5,39990          | 8,88          |
| 9              | 17,3533      | 635,30       | 5,11036          | 5,32          |
| 10             | 18,1701      | 334,49       | 4,88242          | 2,80          |
| 11             | 20,0092      | 660,46       | 4,43762          | 5,53          |
| 12             | 20,8438      | 1830,25      | 4,26180          | 15,34         |
| 13             | 21,2291      | 1419,21      | 4,18530          | 11,89         |
| 14             | 22,0699      | 204,97       | 4,02772          | 1,72          |
| 15             | 23,9551      | 190,05       | 3,71485          | 1,59          |
| 16             | 25,3712      | 1823,51      | 3,51062          | 15,28         |
| 17             | 26,4857      | 8910,41      | 3,36538          | 74,67         |
| 18             | 27,2073      | 11933,22     | 3,27773          | 100,00        |
| 19             | 27,8934      | 3988,06      | 3,19866          | 33,42         |
| 20             | 28,4803      | 2990,24      | 3,13406          | 25,06         |
| 21             | 29,0148      | 1880,99      | 3,07753          | 15,76         |
| 22             | 31,4455      | 796,83       | 2,84496          | 6,68          |
| 23             | 32,0576      | 1010,25      | 2,79203          | 8,47          |
| 24             | 35,1343      | 254,22       | 2,55426          | 2,13          |
| 25             | 36,0968      | 295,22       | 2,48834          | 2,47          |
| 26             | 37,0593      | 249,71       | 2,42589          | 2,09          |

**Tabla 22:** muestra 20: 2,0 g de pigmento A y 8,0 g de pigmento B (mezcla física del 20 % en moles de cobre y el 80 % en moles de cinc) de acuerdo con la invención

| Número de pico | Pos. [º2Th.] | Altura [cts] | Separación d [Å] | Int. rel. [%] |
|----------------|--------------|--------------|------------------|---------------|
| 1              | 6,3455       | 2165,11      | 13,92925         | 18,32         |
| 2              | 7,2136       | 1173,73      | 12,25482         | 9,93          |
| 3              | 8,2939       | 118,81       | 10,66086         | 1,01          |
| 4              | 10,5679      | 2040,81      | 8,37140          | 17,27         |
| 5              | 12,8576      | 222,61       | 6,88533          | 1,88          |
| 6              | 14,7343      | 359,54       | 6,01228          | 3,04          |
| 7              | 15,4652      | 314,43       | 5,72975          | 2,66          |
| 8              | 16,4152      | 977,72       | 5,40022          | 8,27          |
| 9              | 17,2837      | 818,65       | 5,13078          | 6,93          |
| 10             | 18,1656      | 424,24       | 4,88362          | 3,59          |
| 11             | 20,0170      | 621,01       | 4,43591          | 5,25          |
| 12             | 20,9157      | 1734,87      | 4,24730          | 14,68         |
| 13             | 24,0644      | 454,26       | 3,69822          | 3,84          |
| 14             | 26,5944      | 9461,71      | 3,35187          | 80,06         |
| 15             | 27,0564      | 11818,96     | 3,29568          | 100,00        |
| 16             | 27,2638      | 9590,21      | 3,27107          | 81,14         |
| 17             | 27,8687      | 4611,58      | 3,20144          | 39,02         |
| 18             | 28,5040      | 3147,95      | 3,13151          | 26,63         |
| 19             | 28,9624      | 1854,81      | 3,08298          | 15,69         |
| 20             | 30,1756      | 231,46       | 2,96174          | 1,96          |
| 21             | 31,4362      | 783,69       | 2,84579          | 6,63          |
| 22             | 32,0438      | 861,63       | 2,79320          | 7,29          |
| 23             | 36,0798      | 175,14       | 2,48947          | 1,48          |
| 24             | 37,2340      | 196,04       | 2,41491          | 1,66          |

**Tabla 23:** muestra 21: 3,0 g de pigmento A y 7,0 g de pigmento B (mezcla física del 30 % en moles de cobre y el 70 % en moles de cinc) de acuerdo con la invención

| Número de pico | Pos. [º2Th.] | Altura [cts] | Separación d [Å] | Int. rel. [%] |
|----------------|--------------|--------------|------------------|---------------|
| 1              | 6,3250       | 1818,51      | 13,97425         | 17,95         |
| 2              | 7,2050       | 1458,99      | 12,26935         | 14,40         |
| 3              | 8,2931       | 184,80       | 10,66187         | 1,82          |
| 4              | 10,4644      | 1952,88      | 8,45397          | 19,28         |
| 5              | 11,1671      | 523,75       | 7,92353          | 5,17          |
| 6              | 12,9654      | 181,88       | 6,82830          | 1,80          |
| 7              | 13,8842      | 237,61       | 6,37843          | 2,35          |
| 8              | 14,6810      | 200,05       | 6,03400          | 1,97          |
| 9              | 15,5460      | 171,22       | 5,70015          | 1,69          |
| 10             | 16,4167      | 736,95       | 5,39975          | 7,27          |
| 11             | 17,2909      | 815,92       | 5,12865          | 8,05          |
| 12             | 18,2217      | 618,48       | 4,86871          | 6,10          |
| 13             | 19,8884      | 444,39       | 4,46430          | 4,39          |
| 14             | 20,8561      | 1513,35      | 4,25931          | 14,94         |
| 15             | 21,1659      | 1323,04      | 4,19765          | 13,06         |
| 16             | 22,0775      | 316,14       | 4,02636          | 3,12          |
| 17             | 24,0645      | 626,53       | 3,69820          | 6,18          |
| 18             | 25,8317      | 3633,82      | 3,44908          | 35,87         |
| 19             | 26,6610      | 9483,99      | 3,34365          | 93,61         |
| 20             | 27,2262      | 10131,38     | 3,27551          | 100,00        |
| 21             | 27,9040      | 5236,33      | 3,19747          | 51,68         |
| 22             | 28,5297      | 3349,69      | 3,12874          | 33,06         |
| 23             | 29,0755      | 1635,13      | 3,07125          | 16,14         |
| 24             | 30,2617      | 165,40       | 2,95350          | 1,63          |
| 25             | 31,4905      | 777,58       | 2,84100          | 7,67          |
| 26             | 32,0845      | 736,64       | 2,78975          | 7,27          |
| 27             | 34,7143      | 163,32       | 2,58420          | 1,61          |
| 28             | 36,2290      | 190,10       | 2,47956          | 1,88          |

**Tabla 24:** muestra 22: 4,0 g de pigmento A y 6,0 g de pigmento B (mezcla física del 40 % en moles de cobre y el 60 % en moles de cinc) de acuerdo con la invención

| Número de pico | Pos. [º2Th.] | Altura [cts] | Separación d [Å] | Int. rel. [%] |
|----------------|--------------|--------------|------------------|---------------|
| 1              | 6,3250       | 1508,06      | 13,97441         | 14,99         |
| 2              | 7,1844       | 1743,33      | 12,30455         | 17,33         |
| 3              | 8,2928       | 250,38       | 10,66232         | 2,49          |
| 4              | 10,4673      | 1742,73      | 8,45165          | 17,32         |
| 5              | 11,8397      | 185,62       | 7,47485          | 1,84          |
| 6              | 13,8264      | 422,22       | 6,40497          | 4,20          |
| 7              | 14,8186      | 174,77       | 5,97829          | 1,74          |
| 8              | 16,4236      | 688,34       | 5,39748          | 6,84          |
| 9              | 17,2602      | 1019,38      | 5,13770          | 10,13         |
| 10             | 18,1871      | 875,43       | 4,87790          | 8,70          |
| 11             | 19,8064      | 500,74       | 4,48261          | 4,98          |
| 12             | 20,9140      | 1432,78      | 4,24764          | 14,24         |
| 13             | 22,0695      | 361,20       | 4,02780          | 3,59          |
| 14             | 24,1232      | 758,91       | 3,68934          | 7,54          |
| 15             | 25,9586      | 4206,87      | 3,43250          | 41,81         |
| 16             | 26,5856      | 8118,70      | 3,35295          | 80,69         |
| 17             | 27,1130      | 10061,49     | 3,28892          | 100,00        |
| 18             | 27,9092      | 5977,85      | 3,19688          | 59,41         |
| 19             | 28,4844      | 4292,48      | 3,13362          | 42,66         |
| 20             | 30,2620      | 163,71       | 2,95347          | 1,63          |
| 21             | 31,4295      | 701,52       | 2,84638          | 6,97          |
| 22             | 34,6677      | 370,54       | 2,58757          | 3,68          |
| 23             | 36,1038      | 224,89       | 2,48787          | 2,24          |

**Tabla 25:** muestra 23: 5,0 g de pigmento A y 5,0 g de pigmento B (mezcla física del 50 % en moles de cobre y el 50 % en moles de cinc) de acuerdo con la invención

| Número de pico | Pos. [º2Th.] | Altura [cts] | Separación d [Å] | Int. rel. [%] |
|----------------|--------------|--------------|------------------|---------------|
| 1              | 6,3742       | 1355,88      | 13,86652         | 15,72         |
| 2              | 7,1873       | 2059,97      | 12,29963         | 23,88         |
| 3              | 8,2935       | 353,91       | 10,66134         | 4,10          |
| 4              | 10,4341      | 1571,82      | 8,47845          | 18,22         |
| 5              | 11,8007      | 244,96       | 7,49951          | 2,84          |
| 6              | 13,8218      | 528,23       | 6,40707          | 6,12          |
| 7              | 15,1311      | 44,49        | 5,85550          | 0,52          |
| 8              | 16,4619      | 633,01       | 5,38499          | 7,34          |
| 9              | 17,2531      | 1243,56      | 5,13981          | 14,41         |
| 10             | 17,6754      | 1052,68      | 5,01794          | 12,20         |
| 11             | 18,1849      | 1171,93      | 4,87847          | 13,58         |
| 12             | 19,7557      | 469,43       | 4,49399          | 5,44          |
| 13             | 20,9425      | 1159,52      | 4,24192          | 13,44         |
| 14             | 22,0609      | 358,15       | 4,02934          | 4,15          |
| 15             | 24,0658      | 1053,46      | 3,69801          | 12,21         |
| 16             | 25,8945      | 4308,45      | 3,44085          | 49,94         |
| 17             | 26,6391      | 7590,42      | 3,34634          | 87,98         |
| 18             | 27,1420      | 8627,25      | 3,28548          | 100,00        |
| 19             | 27,8921      | 6462,61      | 3,19880          | 74,91         |
| 20             | 28,4615      | 4575,92      | 3,13609          | 53,04         |
| 21             | 30,2165      | 268,95       | 2,95782          | 3,12          |
| 22             | 31,3439      | 653,41       | 2,85396          | 7,57          |
| 23             | 34,6228      | 599,36       | 2,59082          | 6,95          |
| 24             | 36,1290      | 249,92       | 2,48619          | 2,90          |

**Tabla 26:** muestra 24: 6,0 g de pigmento A y 4,0 g de pigmento B (mezcla física del 60 % en moles de cobre y el 40 % en moles de cinc) de acuerdo con la invención

| 70 en moies de cine, de acuerdo com la invención |              |              |                  |               |
|--------------------------------------------------|--------------|--------------|------------------|---------------|
| Número de pico                                   | Pos. [º2Th.] | Altura [cts] | Separación d [Å] | Int. rel. [%] |
| 1                                                | 6,3520       | 1229,59      | 13,91507         | 16,30         |
| 2                                                | 7,1968       | 2358,90      | 12,28342         | 31,26         |
| 3                                                | 8,3004       | 395,71       | 10,65251         | 5,24          |
| 4                                                | 10,5076      | 1355,50      | 8,41928          | 17,97         |
| 5                                                | 11,8277      | 292,39       | 7,48241          | 3,88          |
| 6                                                | 13,8333      | 549,29       | 6,40178          | 7,28          |
| 7                                                | 16,6425      | 718,48       | 5,32698          | 9,52          |
|                                                  |              |              |                  |               |

| <br>8  | 17,2620 | 1298,64 | 5,13718 | 17,21  |
|--------|---------|---------|---------|--------|
| 9      | 17,7257 | 1352,88 | 5,00383 | 17,93  |
| 10     | 18,2151 | 1304,32 | 4,87047 | 17,29  |
| 11     | 21,0892 | 942,04  | 4,21275 | 12,49  |
| 12     | 22,0678 | 408,59  | 4,02809 | 5,42   |
| 13     | 24,0734 | 1163,83 | 3,69686 | 15,42  |
| 14     | 25,8980 | 4266,75 | 3,44040 | 56,55  |
| 15     | 26,6216 | 6502,72 | 3,34851 | 86,18  |
| 16     | 27,1347 | 7545,20 | 3,28634 | 100,00 |
| 17     | 27,9116 | 6734,56 | 3,19661 | 89,26  |
| 18     | 28,5050 | 4578,78 | 3,13140 | 60,68  |
| 19     | 30,2617 | 317,49  | 2,95350 | 4,21   |
| 20     | 31,4265 | 724,66  | 2,84664 | 9,60   |
| 21     | 34,5843 | 600,53  | 2,59362 | 7,96   |
| 22     | 36,2006 | 226,31  | 2,48144 | 3,00   |
| <br>23 | 38,5550 | 208,29  | 2,33516 | 2,76   |

**Tabla 27:** muestra 25: 7,0 g de pigmento A y 3,0 g de pigmento B (mezcla física del 70 % en moles de cobre y el 30 % en moles de cinc) de acuerdo con la invención

| Número de pico | Pos. [º2Th.] | Altura [cts] | Separación d [Å] | Int. rel. [%] |
|----------------|--------------|--------------|------------------|---------------|
| 1              | 6,4118       | 1153,78      | 13,78546         | 15,65         |
| 2              | 7,2045       | 2669,82      | 12,27027         | 36,22         |
| 3              | 8,3000       | 509,00       | 10,65306         | 6,90          |
| 4              | 10,4359      | 1190,82      | 8,47703          | 16,15         |
| 5              | 11,8520      | 371,87       | 7,46714          | 5,04          |
| 6              | 13,8217      | 694,22       | 6,40715          | 9,42          |
| 7              | 17,2822      | 1499,61      | 5,13122          | 20,34         |
| 8              | 17,7154      | 1596,29      | 5,00670          | 21,65         |
| 9              | 18,2123      | 1429,06      | 4,87119          | 19,38         |
| 10             | 19,8170      | 418,33       | 4,48024          | 5,67          |
| 11             | 20,7214      | 792,59       | 4,28669          | 10,75         |
| 12             | 22,0866      | 369,69       | 4,02471          | 5,01          |
| 13             | 24,1146      | 1329,30      | 3,69064          | 18,03         |
| 14             | 25,8688      | 4264,46      | 3,44421          | 57,85         |
| 15             | 26,6693      | 5999,24      | 3,34262          | 81,38         |
| 16             | 27,0538      | 6814,95      | 3,29598          | 92,44         |
| 17             | 27,9203      | 7372,03      | 3,19563          | 100,00        |
| 18             | 28,5016      | 4982,85      | 3,13177          | 67,59         |
| 19             | 30,2431      | 349,05       | 2,95528          | 4,73          |
| 20             | 31,4582      | 713,16       | 2,84385          | 9,67          |
| 21             | 34,6608      | 718,96       | 2,58807          | 9,75          |
| 22             | 36,1947      | 381,69       | 2,48183          | 5,18          |
| 23             | 38,5652      | 323,59       | 2,33456          | 4,39          |
| 24             | 39,3002      | 474,31       | 2,29258          | 6,43          |

**Tabla 28:** muestra 26: 8,0 g de pigmento A y 2,0 g de pigmento B (mezcla física del 80 % en moles de cobre y el 20 % en moles de cinc) de acuerdo con la invención

| Número de pico | Pos. [º2Th.] | Altura [cts] | Separación d [Å] | Int. rel. [%] |
|----------------|--------------|--------------|------------------|---------------|
| 1              | 7,1736       | 3055,44      | 12,32300         | 39,07         |
| 2              | 8,3027       | 693,01       | 10,64961         | 8,86          |
| 3              | 10,3681      | 966,90       | 8,53229          | 12,36         |
| 4              | 11,8485      | 464,33       | 7,46933          | 5,94          |
| 5              | 13,8476      | 797,50       | 6,39523          | 10,20         |
| 6              | 17,2646      | 1588,75      | 5,13639          | 20,31         |
| 7              | 17,7574      | 1695,70      | 4,99496          | 21,68         |
| 8              | 18,2119      | 1660,18      | 4,87130          | 21,23         |
| 9              | 19,7901      | 464,73       | 4,48626          | 5,94          |
| 10             | 20,6311      | 632,64       | 4,30524          | 8,09          |
| 11             | 24,1009      | 1677,70      | 3,69271          | 21,45         |
| 12             | 25,9128      | 4767,88      | 3,43847          | 60,96         |
| 13             | 26,7783      | 5681,88      | 3,32927          | 72,65         |
| 14             | 27,0252      | 5907,92      | 3,29941          | 75,54         |
| 15             | 27,9301      | 7821,25      | 3,19453          | 100,00        |
| 16             | 28,4851      | 5438,38      | 3,13354          | 69,53         |
| 17             | 30,2360      | 445,73       | 2,95596          | 5,70          |

| 1 | 8    | 31,4464 | 790,60 | 2,84489 | 10,11 |
|---|------|---------|--------|---------|-------|
| 1 | 19 ; | 34,7089 | 846,92 | 2,58459 | 10,83 |
| 2 | 20 ( | 36,1959 | 393,37 | 2,48175 | 5,03  |
| 2 | 21 : | 38,5885 | 301,64 | 2,33321 | 3,86  |

**Tabla 29:** muestra 27: 9,0 g de pigmento A y 1,0 g de pigmento B (mezcla física del 90 % en moles de cobre y el 10 % en moles de cinc) de acuerdo con la invención

| Número de pico | Pos. [º2Th.] | Altura [cts] | Separación d [Å] | Int. rel. [%] |
|----------------|--------------|--------------|------------------|---------------|
| 1              | 7,2438       | 2978,94      | 12,20375         | 35,85         |
| 2              | 8,2997       | 597,29       | 10,65348         | 7,19          |
| 3              | 10,4138      | 818,06       | 8,49493          | 9,84          |
| 4              | 11,8301      | 483,66       | 7,48094          | 5,82          |
| 5              | 13,7954      | 1003,71      | 6,41927          | 12,08         |
| 6              | 16,7081      | 634,36       | 5,30622          | 7,63          |
| 7              | 17,2669      | 1677,71      | 5,13572          | 20,19         |
| 8              | 17,7104      | 1929,85      | 5,00809          | 23,22         |
| 9              | 18,2360      | 1876,79      | 4,86494          | 22,58         |
| 10             | 19,7670      | 367,37       | 4,49145          | 4,42          |
| 11             | 20,5166      | 633,88       | 4,32902          | 7,63          |
| 12             | 22,0739      | 502,46       | 4,02701          | 6,05          |
| 13             | 24,0786      | 1759,72      | 3,69608          | 21,17         |
| 14             | 25,9734      | 5031,03      | 3,43058          | 60,54         |
| 15             | 26,9899      | 5288,86      | 3,30364          | 63,64         |
| 16             | 27,9149      | 8310,34      | 3,19624          | 100,00        |
| 17             | 28,4936      | 5610,10      | 3,13263          | 67,51         |
| 18             | 30,2853      | 534,17       | 2,95126          | 6,43          |
| 19             | 31,4675      | 834,42       | 2,84303          | 10,04         |
| 20             | 34,6489      | 988,00       | 2,58893          | 11,89         |
| 21             | 36,2166      | 342,02       | 2,48038          | 4,12          |
| 22             | 38.4879      | 412.43       | 2.33907          | 4.96          |

5 **Tabla 30:** muestra 28: 9,4 g de pigmento A y 0,6 g de pigmento B (mezcla física del 94 % en moles de cobre y el 6 % en moles de cinc) de acuerdo con la invención

| Número de pico | Pos. [º2Th.] | Altura [cts] | Separación d [Å] | Int. rel. [%] |
|----------------|--------------|--------------|------------------|---------------|
| 1              | 7,1753       | 3350,61      | 12,32014         | 38,97         |
| 2              | 8,2817       | 668,11       | 10,67651         | 7,77          |
| 3              | 10,5265      | 806,23       | 8,40426          | 9,38          |
| 4              | 11,8039      | 604,03       | 7,49745          | 7,02          |
| 5              | 13,6935      | 880,36       | 6,46684          | 10,24         |
| 6              | 16,6458      | 592,72       | 5,32592          | 6,89          |
| 7              | 17,2455      | 1742,37      | 5,14204          | 20,26         |
| 8              | 17,7072      | 1926,66      | 5,00899          | 22,41         |
| 9              | 18,2064      | 1871,84      | 4,87277          | 21,77         |
| 10             | 19,7574      | 423,71       | 4,49362          | 4,93          |
| 11             | 20,5220      | 596,50       | 4,32789          | 6,94          |
| 12             | 22,0690      | 489,01       | 4,02788          | 5,69          |
| 13             | 24,0892      | 1772,40      | 3,69447          | 20,61         |
| 14             | 25,8122      | 4513,94      | 3,45164          | 52,50         |
| 15             | 25,9620      | 5143,24      | 3,43207          | 59,81         |
| 16             | 26,8991      | 4855,01      | 3,31459          | 56,46         |
| 17             | 27,8947      | 8598,58      | 3,19850          | 100,00        |
| 18             | 28,4773      | 5937,78      | 3,13438          | 69,06         |
| 19             | 30,2362      | 496,99       | 2,95594          | 5,78          |
| 20             | 31,4281      | 914,98       | 2,84651          | 10,64         |
| 21             | 32,7448      | 198,80       | 2,73499          | 2,31          |
| 22             | 34,6599      | 1045,66      | 2,58813          | 12,16         |
| 23             | 36,2789      | 294,79       | 2,47626          | 3,43          |
| 24             | 38,5696      | 462,48       | 2,33431          | 5,38          |
| 25             | 39,5361      | 747,29       | 2,27944          | 8,69          |

#### REIVINDICACIONES

- 1. Pigmentos azoicos metálicos, caracterizados por que contienen los componentes
- a) al menos dos compuestos azoicos metálicos que se diferencian uno de otro al menos en el tipo del metal y que contienen en cada caso
  - unidades estructurales de fórmula (I), o sus formas tautoméricas,

$$R^{1} \xrightarrow{N} N = N \xrightarrow{-Q} N = N$$

$$R^{3} \qquad R^{4} \qquad N$$

10 (I)

en la que

15

25

35

40

45

R<sup>1</sup> y R<sup>2</sup> independientemente entre sí representan OH, NH<sub>2</sub> o NHR<sup>5</sup>, R<sup>3</sup> y R<sup>4</sup> independientemente entre sí representan =O o =NR<sup>5</sup>, R<sup>5</sup> representa hidrógeno o alquilo, preferentemente alquilo C<sub>1</sub>-C<sub>4</sub>,

iones metálicos Zn<sup>2+</sup> o bien Cu<sup>2+</sup> y eventualmente al menos otro ión metálico Me,
 en donde Me representa un ión metálico 2- o 3-valente, distinto de Zn<sup>2+</sup> y Cu<sup>2+</sup>,
 con la condición de que la cantidad de iones metálicos Zn<sup>2+</sup> y Cu<sup>2+</sup> juntos asciende a del 95 % al 100 % en moles y la cantidad de iones metálicos 2- o 3-valentes, distintos de Zn<sup>2+</sup> y Cu<sup>2+</sup> asciende a del 0 % al 5 % en moles, en cada caso con respecto a un mol de todos los iones metálicos en el pigmento azoico metálico,

en donde la relación molar de iones metálicos Zn<sup>2+</sup> con respecto a Cu<sup>2+</sup> en el pigmento azoico metálico asciende a de 199 : 1 a 1 : 15, preferentemente a de 19 : 1 a 1 : 1 y de manera especialmente preferente a de 9 : 1 a 2 : 1,

30 b) al menos un compuesto de fórmula (II)

en la que R<sup>6</sup> representa hidrógeno o alquilo, preferentemente alquilo C<sub>1</sub>-C<sub>4</sub> que está eventualmente mono- o polisustituido con OH

2. Pigmentos azoicos metálicos de acuerdo con la reivindicación 1, **caracterizados por que** los componentes a) y los componentes b) se encuentran entre sí en forma de aductos.

3. Pigmentos azoicos metálicos de acuerdo con las reivindicaciones 1 o 2, **caracterizados por que** en la fórmula (I)  $R^1$  y  $R^2$  representan OH, Y

R<sup>3</sup> y R<sup>4</sup> representan =O, y en la fórmula (II)

# R<sup>6</sup> representa hidrógeno.

10

25

30

- 4. Pigmentos azoicos metálicos de acuerdo con al menos una de las reivindicaciones 1 a 3, **caracterizados por que** Me representa un ión metálico de la serie de Ni²+, Al³+, Fe²+, Fe³+, Co²+, Co³+, La³+, Ce³+, Pr³+, Nd²+, Nd³+, Sm²+, Sm³+, Eu²+, Eu³+, Gd³+, Tb³+, Dy³+, Ho³+, Yb²+, Yb³+, Er³+, Tm³+, Mg²+, Ca²+, Sr²+, Mn²+, Y³+, Sc³+, Ti²+, Ti³+, Nb³+, Mo²+, Mo³+, V²+, V³+, Zr²+, Zr³+, Cd²+, Cr³+, Pb²+, Ba²+, de manera especialmente preferente de la serie de Al³+, Fe²+, Fe³+, Co²+, Co³+, La³+, Ce³+, Pr³+, Nd³+, Sm³+, Eu³+, Gd³+, Tb³+, Dy³+, Ho³+, Yb³+, Er³+, Tm³+, Mg²+, Ca²+, Sr²+, Mn²+, Y³+, de manera muy especialmente preferente de la serie de Al³+, Fe²+, Fe³+, Co²+, Co³+, La³+, Ce³+, Pr³+, Nd³+, Sm³+, Tb³+, Ho³+, Sr²+ y en particular de la serie de Al³+, Fe²+, Fe³+, Co²+ y Co³+.
- 5. Pigmentos azoicos metálicos de acuerdo con al menos una de las reivindicaciones 1 a 4, **caracterizados por que** la cantidad de iones metálicos de Cu<sup>2+</sup> y Zn<sup>2+</sup> juntos asciende al 100 % en moles, con respecto a un mol de todos los iones metálicos.
- 6. Pigmentos azoicos metálicos de acuerdo con al menos una de las reivindicaciones 1 a 5, **caracterizados por que** por mol de unidades estructurales de fórmula (I) están contenidos de 0,05 a 4 moles, preferentemente de 0,5 a 2,5 moles y de manera muy especialmente preferente de 1,0 a 2,0 moles de compuesto de fórmula (II).
- 7. Pigmentos azoicos metálicos de acuerdo con al menos una de las reivindicaciones 1 a 6, **caracterizados por que**20 tienen una superficie específica de 20 a 200 m²/g, preferentemente de 60 a 160 m²/g y de manera muy especialmente preferente de 90 a 150 m²/g.
  - 8. Pigmentos azoicos metálicos de acuerdo con al menos una de las reivindicaciones 1 a 7, **caracterizados por que** presentan en el difractograma de rayos X entre las distancias entre los planos de red de d = 14,7 ( $\pm$  0,3) Å y d = 11,8 ( $\pm$  0,3) Å al menos una señal S con la intensidad I que supera al valor de fondo en tres veces la raíz cuadrada de este valor.
  - 9. Procedimiento para la preparación de pigmentos azoicos metálicos de acuerdo con al menos una de las reivindicaciones 1 a 8, **caracterizado por que** un compuesto de fórmula (III), o sus tautómeros,

$$R^{1} \xrightarrow{N} N = N \xrightarrow{XO} H \\ N \xrightarrow{N} R^{2}$$

$$(III)$$

en la que

- X representa un ión de metal alcalino, preferentemente representa un ión sodio o potasio, R<sup>1</sup> y R<sup>2</sup> independientemente entre sí representan OH, NH<sub>2</sub> o NHR<sup>5</sup>, R<sup>3</sup> y R<sup>4</sup> independientemente entre sí representan =O o =NR<sup>5</sup>,
  - y independent of the streptes of the streptes
  - R<sup>5</sup> representa hidrógeno o alquilo, preferentemente alquilo C<sub>1</sub>-C<sub>4</sub>,
- 40 en presencia de al menos un compuesto de fórmula (II)

en la que

45

50

R<sup>6</sup> representa hidrógeno o alquilo, preferentemente alquilo C<sub>1</sub>-C<sub>4</sub> que eventualmente está mono- o polisustituido con OH,

se hace reaccionar simultáneamente o sucesivamente con al menos una sal de cinc y al menos una sal de cobre y eventualmente con al menos otra sal metálica de un metal 2- o 3-valente, distinto de cinc y cobre, preferentemente de la serie de las sales de Ni<sup>2+</sup>, Al<sup>3+</sup>, Fe<sup>2+</sup>, Fe<sup>3+</sup>, Co<sup>2+</sup>, Co<sup>3+</sup>, La<sup>3+</sup>, Ce<sup>3+</sup>, Pr<sup>3+</sup>, Nd<sup>2+</sup>, Nd<sup>3+</sup>, Sm<sup>2+</sup>,

### ES 2 690 762 T3

Sm³+, Eu²+, Eu³+, Gd³+, Tb³+, Dy³+, Ho³+, Yb²+, Yb³+, Er³+, Tm³+, Mg²+, Ca²+, Sr²+, Mn²+, Y³+, Sc³+, Ti²+, Ti³+, Nb³+, Mo²+, Mo³+, V²+, V³+, Zr²+, Zr³+, Cd²+, Cr³+, Pb²+ y Ba²+, de manera especialmente preferente de la serie de sales de Al³+, Fe²+, Fe³+, Co²+, Co³+, La³+, Ce³+, Pr³+, Nd³+, Sm³+, Eu³+, Gd³+, Tb³+, Dy³+, Ho³+, Yb³+, Er³+, Tm³+, Mg²+, Ca²+, Sr²+, Mn²+ y Y³+, de manera muy especialmente preferente de la serie de sales de Al³+, Fe²+, Fe³+, Co²+, Co³+, La³+, Ce³+, Pr³+, Nd³+, Sm³+, Tb³+, Ho³+ y Sr²+ y en particular de la serie de sales de Al³+, Fe²+, Fe³+, Co²+ y Co³+, en donde por mol de compuesto de fórmula (III) se usan de 0,06 a 0,995 moles al menos de una sal de cinc, de 0,005 a 0,94 moles al menos de una sal de cobre y de 0,05 a 0 moles al menos de otra sal metálica, y en donde la suma de las cantidades molares de estas sales metálicas asciende en total a un mol.

10. Preparaciones de pigmentos que contienen al menos un pigmento azoico metálico de acuerdo con al menos una de las reivindicaciones 1 a 8 y al menos un coadyuvante y/o un aditivo, preferentemente de la serie de los agentes tensioactivos, de los agentes de revestimiento de superficie, de las bases y de los disolventes y eventualmente al menos un pigmento adicional.

5

20

30

- 15 11. Preparación de pigmentos de acuerdo con la reivindicación 10, **caracterizada por que** contiene como pigmento adicional C.I. Pigment Green 36 y/o C.I. Pigment Green 58.
  - 12. Procedimiento para la preparación de una preparación de pigmentos según al menos una de las reivindicaciones 10 a 11, **caracterizado por que** al menos un pigmento azoico metálico de acuerdo con al menos una de las reivindicaciones 1 a 8 se mezcla o se muele con al menos un coadyuvante y/o un aditivo, preferentemente de la serie de los agentes tensioactivos, de los agentes de revestimiento de superficie, de las bases y de los disolventes y eventualmente con al menos otro pigmento.
- 13. Uso de un pigmento azoico metálico de acuerdo con al menos una de las reivindicaciones 1 a 8 para la preparación de preparaciones de pigmentos.
  - 14. Uso de un pigmento azoico metálico de acuerdo con al menos una de las reivindicaciones 1 a 8 o de una preparación de pigmentos de acuerdo con al menos una de las reivindicaciones 10 a 11 para la coloración de tintas para inyección de tinta, filtros de color para pantallas de cristal líquido, tintas de impresión, pinturas al temple o pinturas de dispersión, para la coloración de masa de sustancias macromoleculares sintéticas, semisintéticas o naturales, en particular poli(cloruro de vinilo), poliestireno, poliamida, polietileno o polipropileno, así como para la coloración en hilado de fibras naturales, regeneradas o sintéticas, tal como por ejemplo fibras de celulosa, de poliéster, de policarbonato, de poliacrilonitrilo o de poliamida, así como para la impresión de materiales textiles y papel.
  - 15. Filtro de color, fotolaca, tinta de impresión o pantalla de cristal líquido que contienen al menos un pigmento azoico metálico de acuerdo con al menos una de las reivindicaciones 1 a 8 o una preparación de pigmentos de acuerdo con al menos una de las reivindicaciones 10 a 11.
- 40 16. Fotolaca que contiene al menos un pigmento azoico metálico de acuerdo con al menos una de las reivindicaciones 1 a 8, o una preparación de pigmentos de acuerdo con al menos una de las reivindicaciones 10 a 11, y uno o varios monómeros que pueden fotocurarse y uno o varios iniciadores de la fotorreacción y eventualmente uno o varios aglutinantes o agentes de dispersión y/o disolventes.
- 45 17. Procedimiento para la preparación de filtros de color para pantallas de cristal líquido, que comprende las etapas a) aplicar una fotolaca de acuerdo con la reivindicación 16 sobre un sustrato, b) iluminar por medio de fotomáscara, c) curar y d) desarrollar para la obtención de filtros de color coloreados acabados.