



# OFICINA ESPAÑOLA DE PATENTES Y MARCAS

ESPAÑA



11) Número de publicación: 2 691 631

(51) Int. CI.:

**E04B 2/96** (2006.01) **E04B 2/90** (2006.01)

(12)

#### TRADUCCIÓN DE PATENTE EUROPEA

**T3** 

(96) Fecha de presentación y número de la solicitud europea: 16.02.2010 E 10001567 (6)
(97) Fecha y número de publicación de la concesión europea: 25.07.2018 EP 2218842

(54) Título: Ensamblaje de montante/travesaño en carpintería

(30) Prioridad:

17.02.2009 FR 0951012

(45) Fecha de publicación y mención en BOPI de la traducción de la patente: 28.11.2018

(73) Titular/es:

PROFILS SYSTÈMES (100.0%) Parcs d'Activités de Massane 10 Rue Alfred Sauvy 34670 Baillargues, FR

(72) Inventor/es:

DERRE, CHRISTOPHE y REINERT, AYMERIC

74 Agente/Representante:

**ISERN JARA, Jorge** 

#### **DESCRIPCIÓN**

Ensamblaje de montante/travesaño en carpintería

5 Campo de aplicación de la invención

La presente invención está relacionada con el campo de la carpintería y particularmente con las adaptaciones que permiten realizar en las mejores condiciones, un ensamblaje de un montante y de un travesaño cuyos ejes longitudinales respectivos están dispuestos en planos diferentes.

Descripción de la técnica anterior

10

15

20

25

30

35

40

65

Entre las diferentes técnicas de construcción de los muros-cortina, existe aquella en la que los muros-cortina se constituyen por una pluralidad de unidades de estructura autoportante, ensambladas en fábrica y suministradas a la obra como una unidad completa.

Esta técnica tiene como ventaja presentar una instalación rápida en la obra. Esta presenta igualmente como ventaja permitir un control de la calidad ya que la fabricación de los elementos constitutivos así como su ensamblaje para formar una unidad se controlan en fábrica.

Convencionalmente, estas unidades comprenden un par de travesaños y un par de montantes preformados y ensamblados para servir de cuadro para una superficie generalmente acristalada. Los travesaños y los montantes presentan además la particularidad de estar preformados para cooperar con el montante o el travesaño de las unidades adyacentes con fines de encaje. Además, esta unidad está provista de medios de fijación a la estructura del edificio. Estas unidades pueden igualmente adoptar la forma de trapecios, de triángulos respetando a la vez los mismos principios.

Cuando la fachada que se debe formar por medio de estas unidades debe incluir estas facetas, es decir, que la fachada presenta ángulos, estos ángulos solo pueden formarse a nivel de las conexiones entre unidades. Para hacer esto, existen varias soluciones en la técnica anterior como las que se describen a continuación.

Una de estas soluciones consiste en disponer y ensamblar los cuadros de las unidades según el ángulo deseado por medio de escuadras o de bloques de ensamblajes.

Esta solución requiere elementos de ensamblaje suplementarios y conllevan una variación de las masas a nivel de los postes formados por dos montantes ensamblados. Además, la estanqueidad de la conexión debe estar asegurada por medio de soluciones especiales.

Otra solución consiste en preformar los montantes y/o travesaños de tal manera que las formas de encaje permitan un batimiento angular en forma de una conexión de pivote de ángulo limitado. Los perfiles que se deben obtener son, sin embargo, complejos y costosos y la estanqueidad en esta conexión sigue siendo un problema.

Estos inconvenientes se multiplican cuando los ángulos susceptibles de ser seguidos por el muro cortina, varían de un ensamblaje de unidades a otro.

45 El documento FR 2 705 710 divulga un ensamblaje según el preámbulo de la reivindicación 1.

Descripción de la invención

A partir de esta situación, el solicitante ha realizado investigaciones con el fin de aportar una solución alternativa para construir un muro-cortina que presente ángulos a partir de elementos unitarios ensamblados previamente. Estas investigaciones han conducido a la concepción y a la realización de un ensamblaje del tipo montante/travesaño que obvia estos inconvenientes citados anteriormente susceptible de utilizarse no solo en el campo técnico de los muros-cortina sino igualmente de una manera más general en carpintería.

Según la invención, el ensamblaje entre un primer perfil que actúa en calidad de montante y un segundo perfil que actúa en calidad de travesaño cuyos ejes longitudinales respectivos se disponen en planos diferentes y no paralelos, el extremo del travesaño que se fija al montante estando preformado de tal manera que presente al montante un plano de apoyo no perpendicular al eje longitudinal del travesaño, el ángulo formado recuperando el ángulo formado por los planos en los cuales están dispuestos dichos ejes longitudinales, es destacable por que el montante se fija sobre el travesaño por tornillos que atraviesan el espesor del montante, el ensamblaje comprendiendo entre las cabezas de tornillos y el montante unos apoyos esféricos que, cooperando con unos orificios adaptados en el espesor del montante, permite al tornillo cumplir su función de ajuste sobre un amplio intervalo angular.

De este modo, en el marco de una aplicación para un muro-cortina del tipo compuesto por unidades constituidas por un par de travesaños y por un par de montantes preformados y ensamblados para servir de cuadro para una superficie generalmente acristalada, los travesaños y los montantes estando preformados para cooperar con el

## ES 2 691 631 T3

montante o el travesaño de las unidades adyacentes con fines de encaje, ya no es la zona de ensamblaje entre las dos unidades la que define el ángulo sino el ensamblaje entre el montante y el travesaño de una misma unidad.

Esta característica permite guardar los montantes que pertenecen a unidades diferentes que se ensamblan una sobre la otra en el mismo plano, lo que facilitará el ensamblaje en la obra. Esta preformación puede especialmente realizarse por aserrado.

La presencia entre las cabezas de tornillo y el montante, de apoyos esféricos aumenta las capacidades angulares de una fijación directa de este tipo mediante tornillos.

10

15

20

25

40

50

55

Según la invención, el perfil del travesaño está preformado por canales longitudinales de atornillado, atravesando los tornillos el espesor del montante para fijar el montante al travesaño que se atornilla en dichos canales. Esta característica de atornillado directo es una gran simplificación en comparación con las soluciones de la técnica anterior que, en una conexión en la que el travesaño y el montante no están en el mismo plano, requieren una interfaz mecánica de conexión.

Según un modo de realización preferente aunque no limitativo, este apoyo esférico se implementa mediante la utilización de arandelas de soporte esférico. De esta manera, según la invención, las arandelas de apoyo esférico funcionan por pares y que dispuestas coaxiales en contacto constante, están preformadas por superficies esféricas complementarias cóncava/convexa para cooperar entre ellas y por superficies planas para cooperar con la cabeza de tornillo y con el montante.

Según otra característica particularmente ventajosa de la invención, las arandelas de apoyo esféricas adoptan una superficie plana en contacto con la cabeza de tornillo y una superficie hemisférica convexa que se apoya con una superficie de apoyo hemisférica cóncava preformada en el perfil del montante al menos alrededor del orificio que atraviesa el perfil. Esta característica evita la presencia de una segunda arandela para formar la conexión de rótula de un doble contacto hemisférico.

Con el fin de permitir el atornillado sea cual sea el ángulo propuesto, el solicitante ha imaginado una pluralidad de perfiles de montantes cuyos salientes internos que participan en las funciones de ensamblaje y de estanqueidad están orientados con el fin de no entorpecer dicho atornillado impidiendo el acceso a la cabeza de tornillo sobre su recorrido de atornillado.

Por supuesto, la invención se refiere igualmente al elemento unitario que adopta tales características que está prefabricado antes de la instalación en la obra, el muro-cortina formado por un elemento unitario de este tipo, así como el procedimiento de fabricación de un elemento unitario de este tipo.

Los conceptos fundamentales de la invención que acaban de exponerse más arriba en su forma más elemental, otros detalles y características se pondrán de manifiesto de manera más clara con la lectura de la descripción que sigue y respecto a los dibujos adjuntos, que dan a título de ejemplo no limitativo, un modo de realización de un ensamblaje conforme a la invención aplicado a los elementos constitutivos de un muro-cortina.

Breve descripción de los dibujos

- La figura 1 es un dibujo esquemático de una vista en perspectiva general de un modo de realización de murocortina conforme a la invención,
  - la figura 2 es un dibujo esquemático de una vista en perspectiva general de un modo de realización de un elemento unitario solo conforme a la invención,
  - la figura 3 es un dibujo esquemático de una vista desde arriba en sección del elemento unitario de la figura 2,
  - la figura 4 es un dibujo esquemático de otro modo de realización del ensamblaje,
    - la figura 5 es una vista desde arriba en sección del detalle de un modo de realización de una conexión entre dos elementos unitarios,

la figura 6 es un dibujo esquemático despiezado del ensamblaje de un extremo del travesaño de la figura 4,

- las figuras 7a, 7b y 7c son dibujos esquemáticos que ilustran las posibilidades de ensamblajes angulares ofrecidas por la invención.

Descripción de modos de realización preferidos

Tal como se ilustra en el dibujo de la figura 1, el muro-cortina M constituye una fachada con facetas, facetas constituidas por ángulos entre los marcos acristalados C que forman dicho muro-cortina M.

Según el modo de realización ilustrado, el muro-cortina M está construido según el principio "unitario" es decir, está constituido por una pluralidad de unidades de estructura autoportante que forma los marcos C, ensambladas en fábrica y suministradas a la obra como una unidad completa.

65

## ES 2 691 631 T3

Una de estas unidades C está ilustrada por el dibujo de la figura 2.

5

15

20

40

45

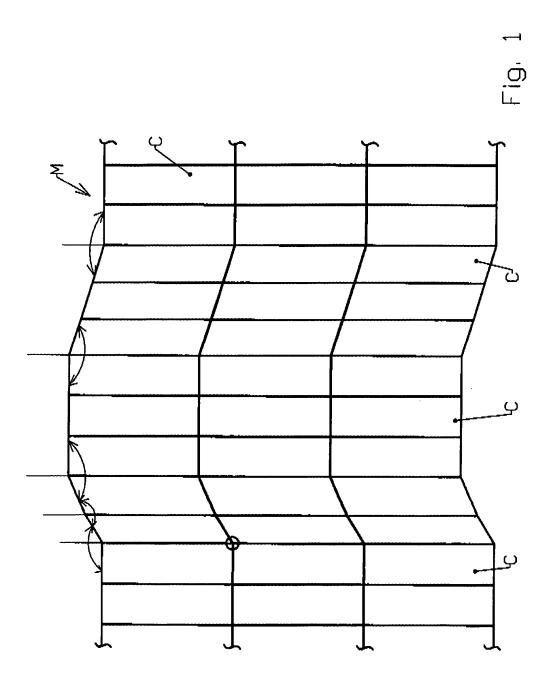
Esta unidad o marco C comprende un par de travesaños 110 y 120 y un par de montantes 210 y 220 preformados y ensamblados para servir de cuadro para una superficie generalmente acristalada 300. Los travesaños y los montantes presentan además la particularidad de estar preformados para cooperar con el montante o el travesaño de las unidades adyacentes con fines de encaje. Para hacer esto, los montantes y/o los travesaños de las unidades que se yuxtaponen adoptan unas formas complementarias para asegurar la colocación y su mantenimiento en posición.

- 10 Como se ilustra por esta figura y por las siguientes, el ensamblaje entre el montante y el travesaño, cuyos planos de simetría longitudinales respectivos no son paralelos, es destacable por que el extremo 111 del travesaño 110 que se fija al montante 210 está preformado de tal manera que presenta al montante 210 un plano P de apoyo no perpendicular al eje longitudinal o al plano de simetría longitudinal del travesaño, el ángulo formado por el extremo recuperando el ángulo formado por dichos planos de simetría.
  - Esta superficie plana no perpendicular permitirá una fijación orientada angularmente del montante que podrá, una vez ensamblado, orientar angularmente la superficie acristalada 300 según el ángulo de la faceta de la fachada.
  - Esta preformación se realiza por aserrado y en taller en el momento de la fabricación de la unidad C.
  - Como se ilustra en las secciones presentes en las figuras 3, 4, 6 y 7a, b, c, el perfil del travesaño 110 está preformado por canales 112 de tipo "alveotornillos" y el montante 210 está fijado sobre el travesaño 110 por tornillos 400 que atraviesan el espesor del montante 210 y que se atornillan en dichos canales 112.
- El ensamblaje imaginado por el solicitante es destacable por que prevé, a partir de un único tipo de montante, una pluralidad de ángulos de ensamblaje y por lo tanto de preformaciones del extremo del travesaño. Para hacer esto, el ensamblaje comprende, entre las cabezas 410 unos tornillos 400 y el montante 210, unos apoyos esféricos que, cooperando con unos orificios adaptados en el espesor del montante, permiten al tornillo 400 cumplir su función de ajuste sobre un amplio intervalo angular. Tres posibilidades de ángulos de aserrado y, por lo tanto, de ensamblaje se ilustran en los dibujos de las figuras 7a a 7b. Por supuesto, un ensamblaje recto tal como se propone en la figura 7c sigue siendo posible. Se crean los orificios de travesía del montante en el momento de la colocación del tornillo que es de tipo autoperforante.
- Como se ilustra en el dibujo de la figura 6, el apoyo esférico se implementa mediante la utilización de arandelas de soporte esférico 500.
  - Según el modo de realización ilustrado, les arandelas de apoyo esféricas 500 adoptan una superficie plana en contacto con la cabeza 410 de tornillo y una superficie hemisférica convexa que se apoya con una superficie de apoyo hemisférica cóncava 211 preformada en el perfil del montante 210 al menos alrededor del orificio que atraviesa el perfil 210.
  - Según otro modo de realización del ensamblaje ilustrado en el dibujo de la figura 4, las arandelas de apoyo esféricas 500' adoptan una superficie plana en contacto con la cabeza 410 de tornillo y una superficie hemisférica cóncava que se apoya con una superficie de apoyo hemisférica convexa 211' preformada en el perfil del montante 210' al menos alrededor del orificio que atraviesa el perfil 210.
  - Según el modo de realización preferente ilustrado, estas formas convexas 211 o cóncavas 211 no están preformadas puntualmente y se refieren al conjunto del perfil.
- 50 Según el modo de realización ilustrado por el dibujo de la figura 5, los perfiles de los montantes 210 presentan con fines de ensamblaje, unos salientes internos que participan en las funciones de ensamblaje y de estanqueidad orientadas con el fin de no entorpecer el atornillado impidiendo el acceso a la cabeza de tornillo en su recorrido de atornillado.
- 55 Se comprende que el ensamblaje, que acaba de describirse y representarse más arriba, lo ha sido con vistas a una divulgación más bien que a una limitación. Por supuesto, podrán aportarse al ejemplo anterior diversas disposiciones, modificaciones y mejoras, sin salirse por ello del marco de la invención.
- De este modo, por ejemplo, según un modo de realización no ilustrado, las arandelas de apoyo esférico funcionan por pares y que dispuestas coaxiales en contacto constante, están preformadas por superficies esféricas complementarias cóncava/convexa para cooperar entre ellas y por superficies planas para cooperar con la cabeza de tornillo y con el montante.

#### **REIVINDICACIONES**

1. Ensamblaje entre un primer perfil que actúa en calidad de montante (210 y 220) y un segundo perfil que actúa en calidad de travesaño (110 y 120) cuyos ejes longitudinales respectivos se disponen en planos diferentes y no paralelos, el extremo (111) del travesaño (110) que se fija al montante (210) estando preformado de tal manera que presente al montante un plano de apoyo (P) no perpendicular al eje longitudinal del travesaño (110), el ángulo formado recuperando el ángulo formado por los planos en los cuales están dispuestos dichos ejes longitudinales, CARACTERIZADO POR QUE el montante (210) está fijado sobre el travesaño (110) mediante tornillos (400) que atraviesan el espesor del montante (210), comprendiendo el ensamblaje entre las cabezas (410) de tornillos (400) y el montante (210) unos apoyos esféricos que, cooperando con unos orificios adaptados en el espesor del montante, permite al tornillo (400) cumplir su función de ajuste en un amplio intervalo angular, el perfil del travesaño (110) estando preformado por canales longitudinales de atornillado (112), los tornillos atravesando el espesor del montante (210) para fijar el montante (210) al travesaño (110) que se atornilla en dichos canales (112).

5


10

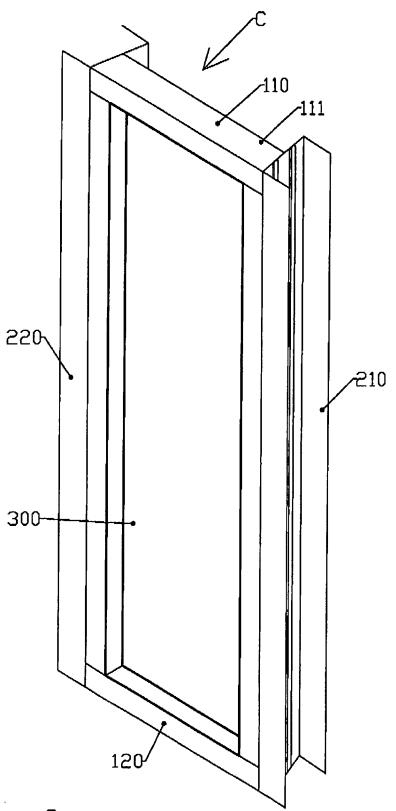
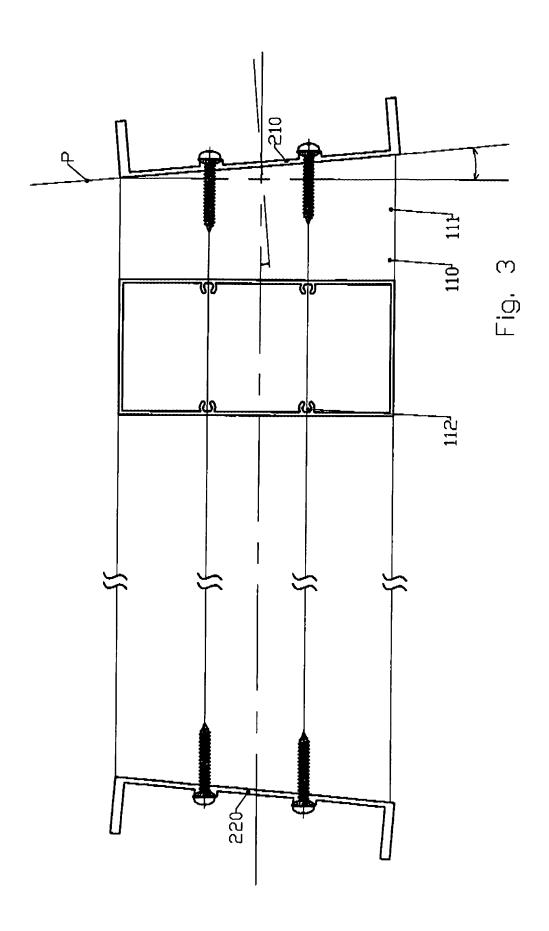
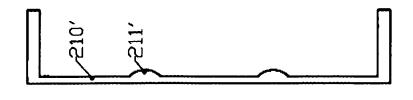
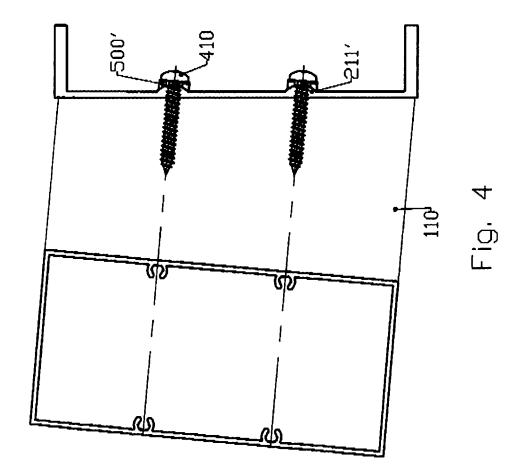
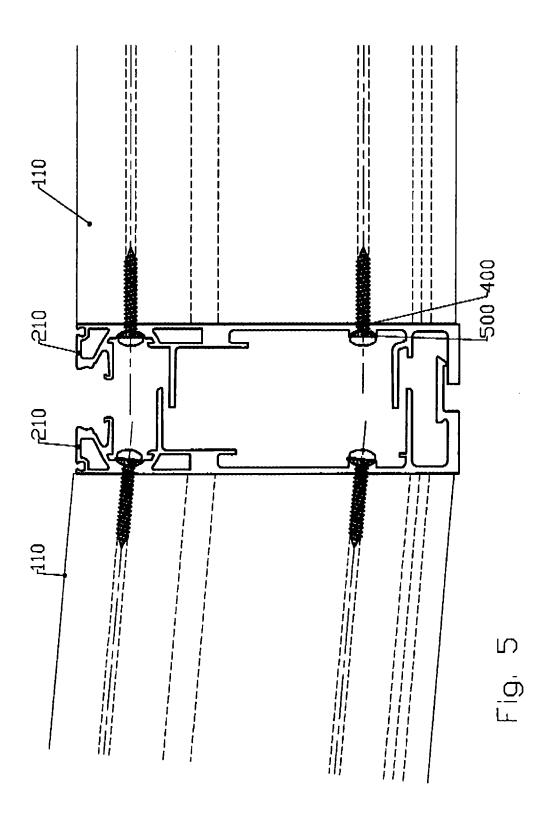
20

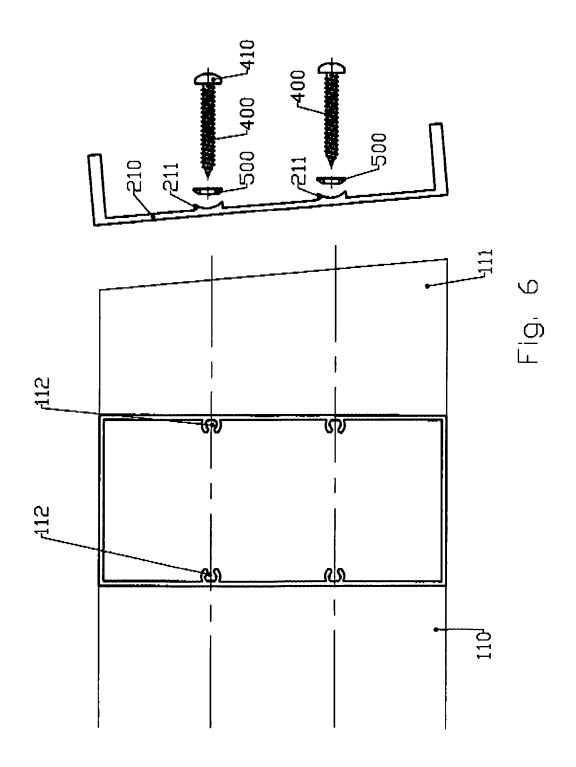
25

30

- 2. Ensamblaje según la reivindicación 1, CARACTERIZADO POR QUE el apoyo esférico se implementa por la utilización de arandelas (500) de soporte esférico.
  - 3. Ensamblaje según la reivindicación 1, CARACTERIZADO POR QUE las arandelas (500) de apoyo esférico adoptan una superficie plana en contacto con la cabeza (410) de tornillo (400) y una superficie hemisférica convexa que se apoya con una superficie de apoyo hemisférica cóncava (211) preformada en el perfil del montante (210) al menos alrededor del orificio que atraviesa el perfil (210).
  - 4. Ensamblaje según la reivindicación 1, CARACTERIZADO POR QUE las arandelas de apoyo esférico (500') adoptan una superficie plana en contacto con la cabeza de tornillo (410) y una superficie hemisférica cóncava que se apoya con una superficie de apoyo hemisférica convexa (211') preformada en el perfil del montante (210) al menos alrededor del orificio que atraviesa el perfil (210).
  - 5. Ensamblaje según la reivindicación 1, CARACTERIZADO POR QUE las arandelas de apoyo esférico funcionan por pares y que dispuestas coaxiales en contacto constante, están preformadas por superficies esféricas complementarias cóncava/convexa para cooperar entre ellas y por superficies planas para cooperar con la cabeza de tornillo y con el montante.
- 6. Ensamblaje según la reivindicación 1, CARACTERIZADO POR QUE comprende una pluralidad de perfiles de montantes (210) cuyos salientes internos que participan en las funciones de ensamblaje y de estanqueidad están orientados con el fin de no entorpecer dicho atornillado impidiendo el acceso a la cabeza de tornillo sobre su recorrido de atornillado.





Fig. 2

