



# OFICINA ESPAÑOLA DE PATENTES Y MARCAS

ESPAÑA



11) Número de publicación: 2 691 941

51 Int. CI.:

C12N 15/113 (2010.01)

(12)

## TRADUCCIÓN DE PATENTE EUROPEA

T3

86) Fecha de presentación y número de la solicitud internacional: 17.12.2013 PCT/US2013/075813

(87) Fecha y número de publicación internacional: 26.06.2014 WO14100009

(96) Fecha de presentación y número de la solicitud europea: 17.12.2013 E 13866064 (2)

(97) Fecha y número de publicación de la concesión europea: 18.07.2018 EP 2935586

(54) Título: Elementos reguladores de plantas y usos de los mismos

(30) Prioridad:

19.12.2012 US 201261739720 P

Fecha de publicación y mención en BOPI de la traducción de la patente: 29.11.2018

(73) Titular/es:

MONSANTO TECHNOLOGY LLC (100.0%) 800 North Lindbergh Blvd. St. Louis, MO 63167, US

(72) Inventor/es:

**FLASINSKI, STANISLAW** 

(74) Agente/Representante:

CARPINTERO LÓPEZ, Mario

#### **DESCRIPCIÓN**

Elementos reguladores de plantas y usos de los mismos

#### Campo de la invención

La invención se refiere al campo de la biología molecular de las plantas, la ingeniería genética de plantas y las moléculas de ADN útiles para modular la expresión génica en plantas.

#### **Antecedentes**

5

10

35

Los elementos reguladores son elementos genéticos que regulan la actividad génica mediante la modulación de la transcripción de una molécula de ADN transcribible unida operativamente. Dichos elementos incluyen promotores, líderes, potenciadores, intrones, y regiones 3' no traducidas y son útiles en el campo de la biología molecular de las plantas y en la ingeniería genética de plantas.

#### Sumario de la invención

La invención proporciona nuevos elementos reguladores para su uso en plantas y construcciones que comprenden los elementos reguladores. En particular, la presente invención proporciona una molécula de ADN recombinante que comprende una secuencia de ADN seleccionada del grupo que consiste en:

- a) una secuencia de ADN que comprende la SEQ ID NO: 17;
  - b) un fragmento que comprende al menos 50 nucleótidos contiguos de la SEQ ID NO: 17, en el que el fragmento tiene actividad reguladora de genes; y
  - c) una secuencia de ADN que comprende al menos un 90 % de identidad de secuencia con la secuencia de ADN de la SEQ ID NO: 16 o 18, cuya secuencia de ADN tiene actividad reguladora de genes;
- 20 en la que dicha secuencia de ADN está unida operativamente a una molécula de ADN transcribible heteróloga.

En una realización relacionada, la invención proporciona una construcción que comprende la molécula de ADN recombinante anterior.

De acuerdo con un aspecto adicional, la invención proporciona una célula vegetal transgénica que comprende una molécula de ADN recombinante que comprende una secuencia de ADN seleccionada del grupo que consiste en:

- a) una secuencia de ADN que comprende la SEQ ID NO: 17;
  - b) un fragmento que comprende al menos 50 nucleótidos contiguos de la SEQ ID NO: 17, en el que el fragmento tiene actividad reguladora de genes; y
  - c) una secuencia de ADN que comprende al menos un 90 % de identidad de secuencia con la secuencia de ADN de la SEQ ID NO: 16 o 18, cuya secuencia de ADN tiene actividad reguladora de genes;
- 30 en la que dicha secuencia de ADN está unida operativamente a una molécula de ADN transcribible heteróloga.

De forma similar, la invención también proporciona una planta transgénica, o parte de la misma, que comprende una molécula de ADN recombinante que comprende una secuencia de ADN seleccionada del grupo que consiste en:

- a) una secuencia de ADN que comprende la SEQ ID NO: 17;
- b) un fragmento que comprende al menos 50 nucleótidos contiguos de la SEQ ID NO: 17, en el que el fragmento tiene actividad reguladora de genes; y
- c) una secuencia de ADN que comprende al menos un 90 % de identidad de secuencia con la secuencia de ADN de la SEQ ID NO: 16 o 18, cuya secuencia de ADN tiene actividad reguladora de genes;

en la que dicha secuencia de ADN está unida operativamente a una molécula de ADN transcribible heteróloga.

La invención también proporciona plantas de progenie y semillas transgénicas de la planta transgénica anterior, en la que la planta de progenie y la semilla transgénica comprenden dicha molécula de ADN recombinante.

En una realización adicional, la invención proporciona procedimientos para expresar una molécula de ADN transcribible que comprende obtener una planta transgénica como se describe anteriormente y cultivar dicha planta, en la que se expresa la molécula de ADN transcribible.

Como alternativa, la invención proporciona procedimientos para producir una planta transgénica que comprende:

- a) transformar una célula vegetal con la molécula de ADN recombinante anterior para producir una célula vegetal transformada; y
  - b) regenerar una planta transgénica a partir de la célula vegetal transformada.

#### Breve descripción de las figuras

5

20

25

30

45

50

- FIG. 1: Muestra una alineación de múltiples variantes promotoras de varios tamaños que corresponden a elementos promotores de *Agrostisnebulosa*. En particular, la FIG. 1 muestra una alineación de un promotor P-AGRne.Ubq1-1:1:5 de 2005 pares de bases (pb) (SEQ ID NO: 2), contenido en el grupo de elementos de expresión reguladores (EXP) EXP-AGRne.Ubq1:1:7 (SEQ ID NO: 1), con variantes promotoras de P-AGRne.Ubq1-1:1:5. La eliminación, por ejemplo, del extremo 5' de P-AGRne.Ubq1-1:1:5, produjo el promotor P-AGRne.Ubq1-1:1:4 (SEQ ID NO: 6), una secuencia de 999 pb que está contenido en EXP- AGRne.Ubq1:1:8 (SEQ ID NO: 5). Otra variante promotora mostrada en la FIG. 1 es P-AGRne.Ubq1-1:1:6 (SEQ ID NO: 8), una secuencia de 762 pb contenida en EXP-AGRne.Ubq1:1:9 (SEQ ID NO: 7).
- FIG. 2: Muestra una alineación de múltiples variantes promotoras de varios tamaños que corresponden a elementos promotores de *Arundo donax*. En particular, la FIG. 2 muestra una alineación de un promotor P-ARUdo.Ubq1-1:1:4 de 4114 pb (SEQ ID NO: 10), contenido en el grupo de elementos de expresión reguladores EXP-ARUdo.Ubq1:1:4 (SEQ ID NO: 9), con variantes promotoras de P-ARUdo.Ubq1-1:1:4. En la alineación se incluye un promotor P-ARUdo.Ubq1-1:1:5 de 2012 pb (SEQ ID NO: 14); un promotor P-ARUdo.Ubq1-1:1:6 de 1000 pb (SEQ ID NO: 17); y un promotor P-ARUdo.Ubq1-1:1:8 de 755 pb (SEQ ID NO: 22).
  - **FIG. 3:** Muestra una alineación de múltiples variantes promotoras de varios tamaños que corresponden a elementos promotores de *Arundo donax*. En particular, la FIG. 3 muestra una alineación de un promotor P-ARUdo.Ubq2-1:1:4 de 2033 pb (SEQ ID NO: 24) con variantes promotoras de P-ARUdo.Ubq2-1:1:4. En la alineación se incluye un promotor P-ARU-do.Ubq2-1:1:6 de 2004 pb (SEQ ID NO: 28); un promotor P-ARUdo.Ubq2-1:1:5 de 1001 pb (SEQ ID NO: 31); y un promotor P-ARUdo.Ubq2-1:1:7 de 696 pb (SEQ ID NO: 33).
  - **FIG. 4:** Muestra una alineación de múltiples variantes promotoras de varios tamaños que corresponden a elementos promotores de *Bouteloua gracilis*. En particular, la FIG. 4 muestra una alineación de un promotor P-BOUgr.Ubq1-1:1:2 de 2371 pb (SEQ ID NO: 35) con variantes promotoras del extremo 5 'de P-BOUgr.Ubq1-1:1:2. En la alineación se incluye un promotor P-BOUgr.Ubq1-1:1:3 de 1999 pb (SEQ ID NO: 39); un promotor P-BOUgr.Ubq1-1:1:6 de 760 pb (SEQ ID NO: 44).
  - **FIG. 5**: Muestra una alineación de múltiples variantes promotoras de varios tamaños que corresponden a elementos promotores de *Bouteloua gracilis*. En particular, la FIG. 5 muestra una alineación de un elemento promotor de 2100 pb, P-BOUgr.Ubq2-1:1:4 (SEQ ID NO: 46) con variantes promotoras de P-BOUgr.Ubq2-1:1:4. En la alineación se incluye un promotor P-BOUgr.Ubq2-1:1:7 de 2043 pb (SEQ ID NO: 50); un promotor P-BOUgr.Ubq2-1:1:5 de 2002 pb (SEQ ID NO: 53); un promotor P-BOUgr.Ubq2-1:1:6 de 1024 pb (SEQ ID NO: 56); y un promotor P-BOUgr.Ubq2-1:1:8 de 749 pb (SEQ ID NO: 61).
- FIG. 6: Muestra una alineación de múltiples variantes promotoras de varios tamaños que corresponden a elementos promotores de *Miscanthus sinesis*. En particular, la FIG. 6 muestra una alineación de un elemento promotor de 5359 pb, P-MISsi.Ubq1-1:1:2 (SEQ ID NO: 63) con variantes promotoras de P-MISsi.Ubq1-1:1:2. En la alineación se incluye un promotor P-MISsi.Ubq1-1:1:11 de 2423 pb (SEQ ID NO: 67); un promotor P-MISsi.Ubq1-1:1:10 de 1447 pb (SEQ ID NO: 71); un promotor P-MISsi.Ubq1-1:1:13 de 899 pb (SEQ ID NO: 73); un promotor P-MISsi.Ubq1-1:1:14 de 691 pb (SEQ ID NO: 75); y un promotor P-MISsi.Ubq1-1:1:9 de 506 pb (SEQ ID NO: 77).
  - **FIG. 7:** Muestra una alineación de múltiples variantes promotoras de varios tamaños que corresponden a elementos promotores de *Schizachyium scoparium.* En particular, la FIG. 7 muestra una alineación de un elemento promotor de 2831 pb, P- SCHsc.Ubq1-1:1:12 (SEQ ID NO: 79) con variantes promotoras de P-SCHsc.Ubq1-1:1:12. En la alineación se incluye un promotor P-SCHsc.Ubq1-1:1:11 de 2033 pb (SEQ ID NO: 83); un promotor P-SCHsc.Ubq1-1:1:10 de 1046 pb (SEQ ID NO: 85); y un promotor P-SCHsc.Ubq1-1:1:14 de 547 pb (SEQ ID NO: 87).
  - **FIG. 8:** Muestra una alineación de múltiples variantes promotoras de varios tamaños que corresponden a elementos promotores de *Sorghastrumnutans*. En particular, la FIG. 8 muestra una alineación de un elemento promotor de 2218 pb, P-SORnu.Ubq1-1:1:4 (SEQ ID NO: 89) con variantes promotoras de P-SORnu.Ubq1-1:1:4. En la alineación se incluye un promotor P-SORnu.Ubq1-1:1:5 de 1964 pb (SEQ ID NO: 93); un promotor P-SORnu.Ubq1-1:1:6 de 1023 pb (SEQ ID NO: 96); y un promotor P-SORnu.Ubq1-1:1:7 de 724 pb (SEQ ID NO: 98).
  - FIG. 9: Muestra las configuraciones de casete de expresión de la invención.

#### BREVE DESCRIPCIÓN DE LAS SECUENCIAS

55 Las SEQ ID NO: 1, 5, 7, 9, 13, 16, 18, 19, 21, 23, 27, 30, 32, 34, 38, 41, 43, 45, 49, 52, 55, 58, 60, 62, 66, 70, 72, 74, 76, 78, 82, 84, 86, 88, 92, 95, 97, 99, 103, 106, 108, 110, 114, 116, 118, 120, 122, 126, 128, 132, 134, 138, 140, 144, 148, 150 y 168 son secuencias de ADN de grupos de elementos de expresión reguladores (EXP) que

comprenden una secuencia promotora unida operativamente en el 5' a una secuencia líder que está unida operativamente en el 5' a una secuencia de intrones.

Las SEQ ID NO: 2, 6, 8, 10, 14, 17, 22, 24, 28, 31, 33, 35, 39, 42, 44, 46, 50, 53, 56, 61, 63, 67, 71, 73, 75, 77, 79, 83, 85, 87, 89, 93, 96, 98, 100, 104, 107, 109, 111, 117, 119, 121, 123, 129, 135, 141, 145, 151 y 169 son secuencias promotoras.

Las SEQ ID NO: 3, 11, 25, 36, 47, 64, 68, 80, 90, 101, 112, 124, 130, 136, 142, 146, 152 y 170 son secuencias líder.

Las SEQ ID NO: 4, 12, 15, 20, 26, 29, 37, 40, 48, 51, 54, 57, 59, 65, 69, 81, 91, 94, 102, 105, 113, 115, 125, 127, 131, 133, 137, 139, 143, 147, 149, 153 y 171 son secuencias de intrones.

#### 10 Descripción detallada de la invención

La invención proporciona moléculas de ADN que tienen actividad reguladora de genes en plantas como se describe anteriormente. Estas moléculas de ADN son, por ejemplo, capaces de alterar la expresión de una molécula de ADN transcribible unida operativamente en tejidos vegetales y, por lo tanto, regular la expresión génica de un transgén unido operativamente en plantas transgénicas. La invención también proporciona procedimientos para modificar, producir y utilizar las mismas. La invención también proporciona composiciones que incluyen células vegetales, plantas, partes de plantas y semillas transgénicas que contienen moléculas de ADN recombinante de la invención, y procedimientos para preparar y utilizar las mismas.

Las siguientes definiciones y procedimientos se proporcionan para definir mejor la invención y para guiar a los expertos en la materia en la práctica de la invención. A menos que se indique otra cosa, los términos deben entenderse según la utilización convencional por los expertos en la materia.

#### Moléculas de ADN

5

15

20

25

30

35

40

45

50

55

Como se usa en el presente documento, la expresión "ADN" o "molécula de ADN" se refiere a una molécula de ADN bicatenario de origen celular o sintético, es decir, un polímero de bases de desoxirribonucleótidos. Como se usa en el presente documento, la expresión "secuencia de ADN" se refiere a la secuencia de nucleótidos de una molécula de ADN. La nomenclatura utilizada en el presente documento corresponde a la del Título 37 del Código de Regulaciones Federales de los Estados Unidos § 1.822, y se establece en las tablas de la Norma ST.25 (1998) de la OMPI, Apéndice 2, Tablas 1 y 3.

Como se usa en el presente documento, una "molécula de ADN recombinante" es una molécula de ADN que comprende una combinación de moléculas de ADN que naturalmente no ocurrirían juntas sin la intervención humana. Por ejemplo, una molécula de ADN recombinante puede ser una molécula de ADN que comprende al menos dos moléculas de ADN heterólogas entre sí, una molécula de ADN que comprende una secuencia de ADN que se desvía de las secuencias de ADN que existen en la naturaleza o una molécula de ADN que se ha incorporado en el ADN de una célula huésped mediante transformación genética.

Como se usa en el presente documento, la expresión "identidad de secuencia" se refiere a la medida en que dos secuencias de ADN alineadas óptimamente son idénticas. Se crea una alineación de secuencia óptima mediante la alineación manual de dos secuencias de ADN, por ejemplo, una secuencia de referencia y otra secuencia de ADN, para maximizar el número de correspondencias de nucleótidos en la alineación de la secuencia con inserciones, supresiones o huecos de nucleótidos internos adecuados. Como se usa en el presente documento, la expresión "secuencia de referencia" se refiere a una secuencia de ADN proporcionada como las SEQ ID NO: 1-98 y 168-171.

Como se usa en el presente documento, la expresión "porcentaje de identidad de secuencia" o "porcentaje de identidad" o "% de identidad" es la fracción de identidad multiplicada por 100. La "fracción de identidad" para una secuencia de ADN alineada de manera óptima con una secuencia de referencia es el número de correspondencias de nucleótidos en el alineamiento óptimo, dividido por el número total de nucleótidos en la secuencia de referencia, por ejemplo, el número total de nucleótidos en toda la longitud de la secuencia de referencia completa. Una molécula de ADN desvelada en el presente documento comprende una secuencia de ADN que cuando se alinea de manera óptima con una secuencia de referencia, proporcionada en el presente documento como las SEQ ID NO: 1-98 y 168-171, tiene al menos aproximadamente el 85 por ciento de identidad, al menos aproximadamente el 86 por ciento de identidad, al menos aproximadamente el 87 por ciento de identidad, al menos aproximadamente el 88 por ciento de identidad, al menos aproximadamente el 89 por ciento de identidad, al menos aproximadamente el 90 por ciento de identidad, al menos aproximadamente el 91 por ciento de identidad, al menos aproximadamente el 92 por ciento de identidad, al menos aproximadamente el 93 por ciento de identidad, al menos aproximadamente el 94 por ciento de identidad, al menos aproximadamente el 95 por ciento de identidad, al menos aproximadamente el 96 por ciento de identidad, al menos aproximadamente el 97 por ciento de identidad, al menos aproximadamente el 98 por ciento de identidad, al menos aproximadamente el 99 por ciento de identidad o al menos aproximadamente el 100 por cien de identidad con la secuencia de referencia.

#### Elementos reguladores

5

25

30

35

40

45

50

55

60

Los elementos reguladores tales como promotores, líderes, potenciadores, intrones y regiones de terminación de la transcripción (o 3' UTR) desempeñan un papel integral en la expresión global de los genes en células vivas. La expresión "elemento regulador", como se usa en el presente documento, se refiere una molécula de ADN que tiene actividad reguladora de genes. La expresión "actividad reguladora de genes", como se usa en el presente documento, se refiere a la capacidad de alterar la expresión de una molécula de ADN transcribible unida operativamente, por ejemplo, alterando la transcripción y/o traducción de la molécula de ADN transcribible unida operativamente. Los elementos reguladores, como promotores, líderes, potenciadores e intrones que funcionan en plantas son, por tanto, útiles para modificar fenotipos de plantas a través de ingeniería genética.

- Como se usa en el presente documento, un "grupo de elementos de expresión reguladores" o secuencia "EXP" puede referirse a un grupo de elementos reguladores unidos operativamente, tales como potenciadores, promotores, líderes e intrones. Por lo tanto, un grupo de elementos de expresión reguladores puede estar comprendido, por ejemplo, por un promotor unido operativamente en el 5' a una secuencia líder, que a su vez está unido operativamente en el 5' a una secuencia intrónica.
- Los elementos reguladores pueden caracterizarse por su patrón de expresión génica, *por ejemplo*, efectos positivos y/o negativos tales como expresión constitutiva o temporal, espacial, de desarrollo, tisular, ambiental, fisiológica, patológica, de ciclo celular y/o expresión químicamente sensible, y cualquier combinación de las mismas, así como mediante indicaciones cuantitativas o cualitativas. Como se usa en el presente documento, un "patrón de expresión génica" es cualquier patrón de transcripción de una molécula de ADN unida operativamente en una molécula de ARN transcrita. La molécula de ARN transcrita puede traducirse para producir una molécula de proteína o puede proporcionar una molécula de ARN antisentido u otra reguladora, como un ARN de bicatenario (ARNbc), un ARN de transferencia (ARNt), un ARN ribosomal (ARNr), un microARN (miARN) y similares.
  - Como se usa en el presente documento, la expresión "expresión proteica" es cualquier patrón de traducción de una molécula de ARN transcrita en una molécula de proteína. La expresión de proteínas puede caracterizarse por sus cualidades temporales, espaciales, de desarrollo o morfológicas, así como mediante indicaciones cuantitativas o cualitativas.

Un promotor es útil como elemento regulador para modular la expresión de una molécula de ADN transcribible unida operativamente. Como se usa en el presente documento, el término "promotor" se refiere, en general, a una molécula de ADN que está implicada en el reconocimiento y la unión de la ARN polimerasa II y otras proteínas, tales como factores de transcripción que actúan en trans, para iniciar la transcripción. Un promotor puede originarse de la región 5' no traducida (5' UTR) de un gen. Como alternativa, los promotores pueden ser moléculas de ADN producidas o manipuladas sintéticamente. Los promotores pueden ser también quiméricos. Los promotores quiméricos se producen mediante la fusión de dos o más moléculas de ADN heterólogas. Los promotores desvelados en el presente documento incluyen las SEQ ID NO: 2, 6, 8, 10, 14, 17, 22, 24, 28, 31, 33, 35, 39, 42, 44, 46, 50, 53, 56, 61, 63, 67, 71, 73, 75, 77, 79, 83, 85, 87, 89, 93, 96, 98 y 169, incluidos fragmentos o variantes de los mismos. Estas moléculas de ADN y cualquier variante o derivado de las mismas como se describen en el presente documento, se definen además por comprender actividad promotora, es decir, son capaces de actuar como un promotor en una célula huésped, tal como en una planta transgénica. En otras realizaciones específicas adicionales, un fragmento puede definirse como que exhibe actividad promotora que posee la molécula promotora de partida de la que procede, o un fragmento puede comprender un "promotor mínimo" que proporciona un nivel basal de transcripción y está compuesto por una caja TATA o una secuencia de ADN equivalente para el reconocimiento y la unión del complejo de ARN polimerasa II para el inicio de la transcripción.

En una realización, se proporcionan fragmentos de una secuencia promotora desvelada en el presente documento. Los fragmentos de promotores pueden comprender actividad promotora, como se ha descrito anteriormente, y pueden ser útiles solos o en combinación con otros promotores y fragmentos de promotores, tal como en la construcción de promotores quiméricos. En realizaciones específicas, se proporcionan fragmentos de un promotor que comprenden al menos aproximadamente 50, al menos aproximadamente 75, al menos aproximadamente 100, al menos aproximadamente 125, al menos aproximadamente 150, al menos aproximadamente 175, al menos aproximadamente 200, al menos aproximadamente 225, al menos aproximadamente 250, al menos aproximadamente 275, al menos aproximadamente 300, al menos aproximadamente 500, al menos aproximadamente 750, al menos aproximadamente 750, al menos aproximadamente 750, al menos aproximadamente 900 o al menos aproximadamente 1000 nucleótidos contiguos o más, de una molécula de ADN que tiene actividad promotora como se desvela en el presente documento. Los procedimientos para producir tales fragmentos a partir de una molécula promotora de partida son bien conocidos en la materia.

Las composiciones procedentes de cualquiera de los promotores presentados como las SEQ ID NO: 2, 6, 8, 10, 14, 17, 22, 24, 28, 31, 33, 35, 39, 42, 44, 46, 50, 53, 56, 61,63, 67, 71, 73, 75, 77, 79, 83, 85, 87, 89, 93, 96, 98 y 169, tales como supresiones internas o en el 5', por ejemplo, pueden producirse utilizando los procedimientos bien conocido en la materia para mejorar o alterar la expresión, incluyendo la eliminación de elementos que tienen efectos positivos o negativos o negativos o negativos o negativos

sobre la expresión; y/o duplicando o eliminando elementos que tienen efectos específicos de tejido o célula sobre la expresión. Las composiciones procedentes de cualquiera de los promotores presentados como las SEQ ID NO: 2, 6, 8, 10, 14, 17, 22, 24, 28, 31,33, 35, 39, 42, 44, 46, 50, 53, 56, 61,63, 67, 71,73, 75, 77, 79, 83, 85, 87, 89, 93, 96, 98 y 169 se componen de supresiones en 3' en las que se puede utilizar el elemento de la caja TATA o su secuencia de ADN equivalente y la secuencia cadena abajo que se elimina, por ejemplo, para preparar elementos potenciadores. Se pueden hacer más supresiones para eliminar cualquier elemento que tenga efectos positivos o negativos; específicos de tejido; específicos de célula; o específicos de tiempo (tales como, pero no limitados a, ritmos circadianos) en la expresión. Cualquiera de los promotores presentados como las SEQ ID NO: 2, 6, 8, 10, 14, 17, 22, 24, 28, 31, 33, 35, 39, 42, 44, 46, 50, 53, 56, 61, 63, 67, 71, 73, 75, 77, 79, 83, 85, 87, 89, 93, 96, 98 y 169 y los fragmentos o potenciadores procedentes de los mismos, se pueden utilizar para hacer composiciones de elementos reguladores quiméricos que comprenden cualquiera de los promotores presentados como las SEQ ID NO: 2, 6, 8, 10, 14, 17, 22, 24, 28, 31, 33, 35, 39, 42, 44, 46, 50, 53, 56, 61,63, 67, 71,73, 75, 77, 79, 83, 85, 87, 89, 93, 96, 98 y 169 y los fragmentos o potenciadores procedentes de los mismos unidos operativamente a otros potenciadores y promotores.

- De acuerdo con la presente divulgación, un promotor o un fragmento de promotor puede analizarse con respecto a la presencia de elementos promotores conocidos, *es decir*, las características de secuencias de ADN, tales como una caja TATA y otros motivos de sitios de unión de factores de transcripción conocidos. Un experto en la materia puede utilizar la identificación de dichos elementos promotores conocidos para diseñar variantes del promotor que tienen un patrón de expresión similar al del promotor original.
- Como se usa en el presente documento, el término "líder" se refiere a una molécula de ADN de la región 5' no traducida (5' UTR) de un gen y se define en general como un segmento de ADN entre el sitio de inicio de la transcripción (TSS, de sus siglas en inglés) y el sitio de inicio de la secuencia codificante de la proteína. Como alternativa, los líderes pueden ser elementos de ADN producidos o manipulados sintéticamente. Se puede utilizar un líder como un elemento regulador en dirección 5' para modular la expresión de una molécula de ADN transcribible unida operativamente. Las moléculas líder pueden utilizarse con un promotor heterólogo o con su promotor nativo. Las moléculas promotoras de la invención pueden así estar unidas operativamente a su líder nativo o pueden estar unidas operativamente a un líder heterólogo. Los líderes útiles en la práctica de la invención incluyen las SEQ ID NO: 3, 11, 25, 36, 47, 64, 68, 80, 90 y 170 o fragmentos o variantes de los mismos. En realizaciones específicas, tales secuencias de ADN pueden definirse como capaces de actuar como un líder en una célula huésped, que incluyen, por ejemplo, una célula vegetal transgénica. En una realización, tales secuencias de ADN pueden decodificarse como que comprenden actividad líder.

Las secuencias líder (5' UTR) presentadas como las SEQ ID NO: 3, 11, 25, 36, 47, 64, 68, 80, 90 y 170 pueden estar compuestas por elementos reguladores o pueden adoptar estructuras secundarias que pueden tener un efecto sobre la transcripción o traducción de una molécula de ADN unida operativamente. Las secuencias líder presentadas como las SEQ ID NO: 3, 11, 25, 36, 47, 64, 68, 80, 90 y 170 se pueden utilizar de acuerdo con la invención para hacer elementos reguladores quiméricos que afecten la transcripción o traducción de una molécula de ADN unida operativamente. Además, las secuencias líder presentadas como las SEQ ID NO: 3, 11, 25, 36, 47, 64, 68, 80, 90 y 170 se pueden utilizar para hacer secuencias líder quiméricas que afecten la transcripción o traducción de una molécula de ADN unida operativamente.

35

50

55

- 40 Como se usa en el presente documento, el término "intrón" se refiere a una molécula de ADN que puede aislarse o identificarse a partir de la copia genómica de un gen y puede definirse en general como una región eliminada durante el procesamiento del ARN mensajero (ARNm) antes de la traducción. Como alternativa, un intrón puede ser un elemento de ADN producido o manipulado sintéticamente. Un intrón puede contener elementos potenciadores que efectúan la transcripción de genes unidos operativamente. Un intrón puede utilizarse como un elemento regulador para modular la expresión de una molécula de ADN transcribible unida operativamente. Una construcción puede comprender un intrón, y el intrón puede ser heterólogo o no con respecto a la molécula de ADN transcribible. Los ejemplos de intrones en la materia incluyen el intrón de actina del arroz y el intrón HSP70 del maíz.
  - En plantas, la inclusión de algunos intrones en construcciones conduce a un ARNm aumentado y a una acumulación de proteínas con respecto a las construcciones que carecen del intrón. Este efecto se ha denominado "mejora mediada por intrones" (IME, de sus siglas en inglés) de la expresión génica. Se han identificado intrones que se sabe que estimulan la expresión en plantas en genes de maíz (por ejemplo, tubA1, Adh1, Sh1 y Ubil), en genes de arroz (por ejemplo, tpi) y en genes de plantas dicotiledóneas como los de petunia (por ejemplo, rbcS), patata (por ejemplo, st-ls1) y de Arabidopsis thaliana (por ejemplo, ubq3 y pat1). Se ha mostrado que las supresiones o mutaciones en los sitios de corte y empalme de un intrón reducen la expresión génica, lo que indica que el empalme podría ser necesario para la IME. Sin embargo, no se requiere el empalme per se, ya que se ha demostrado la IME en plantas dicotiledóneas mediante mutaciones puntuales dentro de los sitios de corte y empalme del gen pat1 de A. thaliana. Se ha mostrado que los múltiples usos del mismo intrón en una planta presentan desventajas. En esos casos, es necesario tener una colección de elementos de control básicos para la construcción de elementos de ADN recombinante adecuados.
- Los intrón útiles en la práctica de la invención incluyen las SEQ ID NO: 4, 12, 15, 20, 26, 29, 37, 40, 48, 51, 54, 57, 59, 65, 69, 81, 91, 94 y 171. Las composiciones procedentes de cualquiera de los intrones presentados como las

SEQ ID NO: 4, 12, 15, 20, 26, 29, 37, 40, 48, 51, 54, 57, 59, 65, 69, 81, 91, 94 y 171 pueden estar compuestas por supresiones internas o duplicaciones de elementos reguladores cis; y/o alteraciones de las secuencias de ADN 5' y 3' que comprenden las uniones de corte y empalme del intrón/exón que se pueden utilizar para mejorar la expresión o la especificidad de la expresión cuando se unen operativamente a un promotor + un líder o un promotor quimérico + un líder y una secuencia codificante. Cuando se modifican las secuencias de límite intrón/exón, puede ser beneficioso evitar utilizar la secuencia de nucleótidos AT o el nucleótido A justo antes del extremo 5' del sitio de corte y empalme (GT) y el nucleótido G o la secuencia de nucleótidos TG, respectivamente justo después del extremo 3' del sitio de corte y empalme (AG) para eliminar la posibilidad de que se formen codones de inicio no deseados durante el procesamiento del ARN mensajero en la transcripción final. La secuencia de ADN alrededor de los sitios de unión de corte y empalme del extremo 5' o 3' del intrón se puede modificar de esta manera. Los intrones y las variantes de intrones alterados como se describe en el presente documento y mediante procedimientos conocidos en la materia, se pueden probar empíricamente como se describe en los ejemplos de trabajo para determinar el efecto de un intrón sobre la expresión de una molécula de ADN unida operativamente.

Como se usa en el presente documento, la expresión "molécula de terminación de la transcripción 3", "región no traducida 3"o" 3' UTR" en el presente documento se refiere a una molécula de ADN que se utiliza durante la transcripción a la región no traducida de la porción 3' de una molécula de ARNm. La región 3' no traducida de una molécula de ARNm puede generarse mediante escisión específica y poliadenilación en 3', también conocida como cola poliA. Una 3' UTR puede estar unida operativamente a y localizada cadena abajo de una molécula de ADN transcribible y puede incluir una señal de poliadenilación y otras señales reguladoras capaces de afectar la transcripción, el procesamiento del ARNm o la expresión génica. Se piensa que las colas de poliA actúan en la estabilidad del ARNm y en el inicio de la traducción. Ejemplos de moléculas de terminación de la transcripción 3' en la materia son la región 3' de nopalina sintasa; la región 3' de hsp17 del trigo, la región 3' de la subunidad pequeña de la rubisco del guisante, la región 3' de E6 del algodón y la 3' UTR de la coixina.

Las 3' UTR encuentran normalmente uso beneficioso para la expresión recombinante de moléculas de ADN específicas. Una 3' UTR débil tiene el potencial de generar una translectura, que puede afectar a la expresión de la molécula de ADN ubicada en los casetes de expresión adyacentes. El control adecuado de la terminación de la transcripción puede evitar la translectura en secuencias de ADN (por ejemplo, otros casetes de expresión) localizadas cadena abajo y puede permitir además un reciclado eficaz de la ARN polimerasa para mejorar la expresión génica. Una terminación eficaz de la transcripción (liberación de la ARN polimerasa II procedente del ADN) es el requisito previo para el reinicio de la transcripción y, por tanto, afecta directamente al nivel de transcripción global. Después de la terminación de la transcripción, el ARNm maduro se libera desde el sitio de síntesis y el molde se transporta al citoplasma. Los ARNm eucariotas se acumulan como formas de poli(A) in vivo, lo que dificulta la detección de los sitios de terminación de la transcripción mediante procedimientos convencionales. Sin embargo, la predicción de 3' UTR funcionales y eficaces mediante procedimientos bioinformáticos es difícil ya que no existen secuencias de ADN conservadas que permitirían una predicción fácil de una 3' UTR eficaz.

Desde un punto de vista práctico, es normalmente beneficioso que una 3' UTR utilizada en un casete de expresión posea las siguientes características. La 3' UTR debería ser capaz de terminar de manera eficaz y efectiva la transcripción del transgén y evitar la translectura de la transcripción en cualquier secuencia de ADN adyacente, que puede estar compuesta por otro casete de expresión, como en el caso de los casetes de expresión múltiples que residen en un ADN de transferencia (ADN-T), o en el ADN cromosómico adyacente en el que se ha insertado el ADN-T. Las 3' UTR no deberían provocar una reducción en la actividad de la transcripción transmitida por el promotor, líder, potenciadores e intrones que se utilizan para dirigir la expresión de la molécula de ADN. En biotecnología de plantas, la 3' UTR se utilizan a menudo para cebar las reacciones de amplificación del ARN transcrito de manera inversa extraído de la planta transformada y se utiliza para: (1) evaluar la expresión o la actividad transcripcional del casete de expresión una vez integrado en el cromosoma de la planta; (2) evaluar el número de copias de inserciones en el ADN de la planta; y (3) evaluar la cigosidad de la semilla resultante tras el cultivo. La 3' UTR se utiliza también en reacciones de amplificación de ADN extraído de la planta transformada para caracterizar la integridad del casete insertado.

Como se usa en el presente documento, la expresión "potenciador" o "elemento potenciador" se refiere a un elemento regulador que actúa en cis, también conocido como elemento cis, que confiere un aspecto del modelo de expresión global, pero es habitualmente insuficiente solo para dirigir la transcripción, de una secuencia de ADN unida operativamente. A diferencia de los promotores, los elementos potenciadores no incluyen habitualmente un sitio de inicio de la transcripción (TSS) o una caja TATA o secuencia de ADN equivalente. Un promotor o fragmento de promotor puede comprender naturalmente uno o más elementos potenciadores que alteran la transcripción de una secuencia de ADN unida operativamente. Un elemento potenciador puede también fusionarse con un promotor para producir un elemento promotor quimérico en cis, que confiere un aspecto de la modulación global de la expresión génica.

Se cree que muchos elementos potenciadores promotores se unen a las proteínas de unión al ADN y/o alteran la topología del ADN, produciendo conformaciones locales que permiten o restringen selectivamente el acceso de la ARN polimerasa al molde de ADN o que facilitan la apertura selectiva de la doble hélice en el sitio de inicio de la transcripción. Un elemento potenciador puede actuar para unir los factores de transcripción que regulan la transcripción. Algunos elementos potenciadores se unen con más de un factor de transcripción, y los factores de

transcripción pueden interactuar con diferentes afinidades con más de un dominio potenciador. Los elementos potenciadores pueden identificarse mediante varias técnicas, incluyendo el análisis de las supresiones, es decir, la supresión de uno o más nucleótidos del extremo 5' o internos a un promotor; el análisis de las proteínas de unión al ADN utilizando la huella de la DNasa I, la interferencia de metilación, los ensayos de cambio de movilidad por electroforesis, la huella genómica in vivo mediante la reacción en cadena de la polimerasa (PCR) mediada por ligamiento, y otros ensayos convencionales; o mediante el análisis de similitud de secuencias de ADN utilizando motivos de elementos en cis conocidos o elementos potenciadores como una secuencia diana o un motivo diana con procedimientos de comparación de secuencias de ADN convencionales, tales como BLAST. La estructura fina de un dominio potenciador puede estudiarse adicionalmente mediante mutagénesis (o sustitución) de uno o más nucleótidos o mediante otros procedimientos convencionales conocidos en la materia. Los elementos potenciadores se pueden obtener mediante síntesis química o mediante el aislamiento de elementos reguladores que incluyen dichos elementos, y se pueden sintetizar con nucleótidos flanqueantes adicionales que contienen sitios útiles de enzimas de restricción para facilitar la manipulación de la subsecuencia. Por lo tanto, el diseño, la construcción y la utilización de elementos potenciadores de acuerdo con los procedimientos desvelados en el presente documento para modular la expresión de moléculas de ADN transcribibles unidas operativamente están abarcados en la invención.

Como se usa en el presente documento, el término "quimérico" se refiere a una única molécula de ADN producida mediante la fusión de una primera molécula de ADN con una segunda molécula de ADN, en la que ni la primera ni la segunda molécula de ADN estarían normalmente contenidas en esa configuración, es decir, fusionadas a la otra. La molécula de ADN quimérica es, por tanto, una nueva molécula de ADN que no está contenida normalmente en la naturaleza. Como se usa en el presente documento, la expresión "promotor quimérico" se refiere a un promotor producido mediante dicha manipulación de moléculas de ADN. Un promotor quimérico puede combinar dos o más fragmentos de ADN, por ejemplo, la fusión de un promotor con un elemento potenciador. Por lo tanto, el diseño, la construcción y el uso de promotores quiméricos de acuerdo con los procedimientos desvelados en el presente documento para modular la expresión de moléculas de ADN transcribibles unidas operativamente están abarcados en la invención.

Como se usa en el presente documento, el término "variante" se refiere a una segunda molécula de ADN, tal como un elemento regulador, que es de composición similar, pero no idéntica a, una primera molécula de ADN, y en la que la segunda molécula de ADN aún mantiene la funcionalidad general, es decir, un patrón de expresión igual o similar, por ejemplo, a través de una actividad transcripcional o traduccional más o menos o equivalente, de la primera molécula de ADN. Una variante puede ser una versión abreviada o truncada de la primera molécula de ADN y/o una versión alterada de la secuencia de ADN de la primera molécula de ADN, como una con diferentes sitios de enzimas de restricción y/o supresiones internas, sustituciones y/o inserciones. Las "variantes" de elementos reguladores también abarcan variantes que surgen de mutaciones que ocurren durante o como resultado de la transformación de células bacterianas y vegetales. Una secuencia de ADN proporcionada como las SEQ ID NO: 1-98 y 168-171 puede utilizarse para crear variantes que son similares en composición, pero no idénticas a, la secuencia de ADN del elemento regulador original, mientras se mantiene la funcionalidad general, es decir, un patrón de expresión igual o similar, del elemento regulador original. La producción de tales variantes está bien dentro de la experiencia ordinaria de la materia.

Los elementos reguladores quiméricos pueden diseñarse para comprender varios elementos constituyentes que pueden unirse operativamente mediante diversos procedimientos conocidos en la materia, como la digestión y el ligamiento mediante enzimas de restricción, la clonación independiente de ligamiento, el ensamblaje modular de productos de la PCR durante la amplificación, o la síntesis química directa del elemento regulador quimérico, así como otros procedimientos conocidos en la materia. Los diversos elementos reguladores quiméricos resultantes pueden comprender el mismo, o variantes del mismo, elementos constituyentes, pero que difieren en la secuencia de ADN o secuencias de ADN que comprenden la secuencia o secuencias de ADN de enlace que permiten que las partes constituyentes se unan operativamente. Una secuencia de ADN proporcionada como las SEQ ID NO: 1-98 y 168-171 puede proporcionar una secuencia de referencia del elemento regulador, en la que los elementos constituyentes que comprenden la secuencia de referencia pueden unirse mediante procedimientos conocidos en la materia y pueden comprender sustituciones, supresiones y/o inserciones de uno o más nucleótidos o mutaciones que se producen de forma natural en la transformación de células bacterianas y vegetales.

La eficacia de las modificaciones, duplicaciones o supresiones descritas en el presente documento sobre los aspectos de la expresión deseados de un transgén concreto puede ensayarse empíricamente en ensayos de plantas estables y transitorios, tales como los descritos en los ejemplos de trabajo en el presente documento, con el fin de validar los resultados, que pueden variar dependiendo de los cambios realizados y del objetivo del cambio en la molécula de ADN de partida.

### Construcciones

5

10

15

20

25

30

35

55

60

Como se usa en el presente documento, el término "construcción" significa cualquier molécula de ADN recombinante tal como un plásmido, cósmido, virus, fago o molécula de ADN o ARN lineal o circular, procedente de cualquier fuente, con capacidad de integración genómica o replicación autónoma, que comprende una molécula de ADN en la que al menos una molécula de ADN se ha unido a otra molécula de ADN de una manera funcionalmente operativa,

es decir, unidas operativamente. Como se usa en el presente documento, el término "vector" significa cualquier construcción que puede utilizarse para el fin de la transformación, es decir, la introducción de ADN o ARN heterólogo en una célula huésped. Una construcción normalmente incluye uno o más casetes de expresión. Como se usa en el presente documento, un "casete de expresión" se refiere a una molécula de ADN que comprende al menos una molécula de ADN transcribible unida operativamente a uno o más elementos reguladores, normalmente al menos un promotor y una 3' UTR.

Como se usa en el presente documento, la expresión "unida operativamente" se refiere a una primera molécula de ADN unida a una segunda molécula de ADN, en la que la primera y la segunda molécula de ADN están dispuestas de manera que la primera molécula de ADN altera la función de la segunda molécula de ADN. Las dos moléculas de ADN pueden ser o no parte de una única molécula de ADN contigua y pueden ser o no adyacentes. Por ejemplo, un promotor está unido operativamente a una molécula de ADN transcribible si el promotor modula la transcripción de la molécula de ADN transcribible de interés en una célula. Un líder, por ejemplo, está unido operativamente a la secuencia de ADN cuando es capaz de alterar la transcripción o traducción de la secuencia de ADN.

Las construcciones de la invención pueden proporcionarse, en una realización, como construcciones del borde de plásmidos inductores de tumores (Ti) que tienen las regiones del borde derecho (RB o AGRtu.RB) y del borde izquierdo (LB o AGRtu.LB) del plásmido Ti aislado del proporcionado por las células de *A. tumefaciens*, que permiten la integración del ADN-T en el genoma de una célula vegetal (véase, *por ejemplo*, la patente de Estados Unidos n.º 6.603.061). Las construcciones pueden contener también segmentos de ADN de la cadena principal del plásmido que proporcionan función de replicación y selección antibiótica en células bacterianas, *por ejemplo*, un origen de replicación de *Escherichia coli* tal como ori322, un origen de replicación de amplio rango de huésped como oriV u oriRi, y una región codificante para un marcador seleccionable como Spec/Strp que codifica la aminoglucósido adeniltransferasa (*aadA*) de Tn7 que confiere resistencia a la espectinomicina o estreptomicina o un gen marcador seleccionable de gentamicina (Gm, Gent). Para la transformación de plantas, la cepa bacteriana del huésped es a menudo *A. tumefaciens* ABI, C58 o LBA4404; sin embargo, otras cepas conocidas por los expertos en la materia de la transformación de plantas pueden funcionar en la invención.

Se conocen en la materia procedimientos para ensamblar e introducir construcciones en una célula de tal manera que la molécula de ADN transcribible se transcriba en una molécula de ARNm funcional que se traduce y expresa como una proteína. Para la práctica de la invención, las composiciones y procedimientos convencionales para preparar y utilizar construcciones y células huésped son bien conocidos por los expertos en la materia. Los vectores típicos útiles para la expresión de ácidos nucleicos en plantas superiores son bien conocidos en la materia e incluyen vectores procedentes del plásmido Ti de *Agrobacterium tumefaciens* y el vector de control de transferencia pCaMVCN.

Pueden incluirse varios elementos reguladores en una construcción, incluyendo cualquiera de los proporcionados en el presente documento. Cualquiera de dichos elementos reguladores puede proporcionarse en combinación con otros elementos reguladores. Dichas combinaciones se pueden diseñar o modificar para producir características reguladoras deseables. En una realización, las construcciones de la invención comprenden al menos un elemento regulador unido operativamente a una molécula de ADN transcribible unida operativamente a una 3' UTR.

Las construcciones de la invención pueden incluir cualquier promotor o líder proporcionado en el presente documento o conocido en la materia. Por ejemplo, un promotor de la invención puede estar unido operativamente a un líder heterólogo no traducido en 5' tal como uno derivado de un gen de la proteína de choque térmico. Como alternativa, un líder puede estar unido operativamente a un promotor heterólogo, tal como el promotor de la transcripción del virus de mosaico de la coliflor 35S.

Los casetes de expresión también pueden incluir una secuencia codificante de péptidos de tránsito que codifica un péptido que es útil para la orientación subcelular de una proteína unida operativamente, particularmente a un cloroplasto, leucoplasto u otro orgánulo plastídico; mitocondria; peroxisoma; vacuola; o una localización extracelular. Muchas proteínas localizadas en cloroplastos se expresan a partir de genes nucleares como precursores y se dirigen al cloroplasto mediante un péptido de tránsito del cloroplasto (CTP, de sus siglas en inglés). Los ejemplos de tales proteínas de cloroplasto aisladas incluyen, pero sin limitación, las asociadas con la subunidad pequeña (SSU, de sus siglas en inglés) de la ribulosa-1,5,-bisfosfato carboxilasa, ferredoxina, ferredoxina oxidorreductasa, la proteína I y la proteína II del complejo recolector de luz, tiorredoxina F y enolpiruvil shikimato fosfato sintasa (EPSPS, de sus siglas en inglés). Los péptidos de tránsito de cloroplastos se describen, por ejemplo, en la Patente de los Estados Unidos n.º 7.193.133. Se ha demostrado que las proteínas no cloroplásticas pueden dirigirse al cloroplasto mediante la expresión de un CTP heterólogo unido operativamente al transgén que codifica proteínas no cloroplásticas.

#### Moléculas de ADN transcribibles

10

30

35

40

45

50

Como se usa en el presente documento, la expresión "molécula de ADN transcribible" se refiere a cualquier molécula de ADN capaz de transcribirse en una molécula de ARN, que incluye, pero sin limitación, las que tienen secuencias codificantes de proteínas y las que producen moléculas de ARN que tienen secuencias útiles para la supresión génica. El tipo de molécula de ADN puede incluir, aunque no de forma limitante, una molécula de ADN de la misma planta, una molécula de ADN de otra planta, una molécula de ADN de un organismo diferente o una

molécula de ADN sintética, tal como una molécula de ADN que contiene una mensaje antisentido de un gen o una molécula de ADN que codifica una versión artificial, sintética o modificada de otro modo de un transgén. Las moléculas de ADN transcribibles ejemplares para la incorporación en construcciones de la invención incluyen, *por ejemplo*, moléculas de ADN o genes de una especie distinta de la especie en la que se incorpora la molécula de ADN o genes que se originan a partir de, o están presentes en, la misma especie, pero que se incorporan en células receptoras mediante procedimientos de ingeniería genética en lugar de técnicas de reproducción clásicas.

Un "transgén" se refiere a una molécula de ADN transcribible heteróloga para una célula huésped al menos con respecto a su localización en el genoma de la célula huésped y/o una molécula de ADN transcribible incorporada artificialmente en el genoma de una célula huésped en la generación actual o cualquier generación anterior de la célula.

Un elemento regulador, tal como un promotor de la invención, puede unirse operativamente a una molécula de ADN transcribible que es heteróloga con respecto al elemento regulador. Como se usa en el presente documento, el término "heterólogo" se refiere a la combinación de dos o más moléculas de ADN cuando dicha combinación no se encuentra normalmente en la naturaleza. Por ejemplo, las dos moléculas de ADN pueden proceder de diferentes especies y/o las dos moléculas de ADN pueden proceder de diferentes genes, por ejemplo, diferentes genes de la misma especie o los mismos genes de diferentes especies. Por lo tanto, un elemento regulador es heterólogo con respecto a una molécula de ADN transcribible unida operativamente si tal combinación normalmente no se encuentra en la naturaleza, es decir, la molécula de ADN transcribible no se produce de manera natural unida operativamente al elemento regulador.

La molécula de ADN transcribible puede ser en general cualquier molécula de ADN para la cual se desea la expresión de un transcrito. Dicha expresión de un transcrito puede dar como resultado la traducción de la molécula de ARNm resultante y, por lo tanto, la expresión de proteínas. Como alternativa, por ejemplo, una molécula de ADN transcribible puede diseñarse para provocar en última instancia una expresión disminuida de un gen o proteína específico. En una realización, esto puede lograrse utilizando una molécula de ADN transcribible que esté orientada en la dirección antisentido. Un experto en la materia está familiarizado con la utilización de dicha tecnología antisentido. Cualquier gen puede regularse negativamente de esta manera, y, en una realización, una molécula de ADN transcribible puede diseñarse para la supresión de un gen específico mediante la expresión de una molécula de ARNbc, ARNip o miARN.

En el presente documento se desvela una molécula de ADN recombinante que comprende un elemento regulador, como los que se proporcionan como las SEQ ID NO: 1-98 y 168-171, unido operativamente a una molécula de ADN transcribible heteróloga para modular la transcripción de la molécula de ADN transcribible a una nivel deseado o en un patrón deseado cuando la construcción se integra en el genoma de una célula vegetal transgénica. En una realización, la molécula de ADN transcribible comprende una región codificadora de proteínas de un gen y, en otra realización, la molécula de ADN transcribible comprende una región antisentido de un gen.

#### 35 Genes de interés agronómico

10

15

30

40

45

50

55

60

Una molécula de ADN transcribible puede ser un gen de interés agronómico. Como se usa en el presente documento, la expresión "gen de interés agronómico" se refiere a una molécula de ADN transcribible que, cuando se expresa en un tejido, célula o tipo celular vegetal particular, confiere una característica deseable. El producto de un gen de interés agronómico puede actuar dentro de la planta para causar un efecto en la morfología, la fisiología, el crecimiento, el desarrollo, el rendimiento, la composición del grano, el perfil nutricional, la resistencia a plagas o enfermedades y/o la tolerancia ambiental o química de las plantas o puede actuar como un agente pesticida en la dieta de una plaga que se alimenta de la planta. En una realización de la invención, un elemento regulador de la invención se incorpora a una construcción de tal manera que el elemento regulador está unido operativamente a una molécula de ADN transcribible que es un gen de interés agronómico. En una planta transgénica que contiene tal construcción, la expresión del gen de interés agronómico puede conferir un rasgo agronómico beneficioso. Un rasgo agronómico beneficioso puede incluir, por ejemplo, aunque no de forma limitante, tolerancia a herbicidas, control de insectos, rendimiento modificado, resistencia a enfermedades, resistencia a patógenos, crecimiento y desarrollo de la planta modificada, contenido de almidón modificado, contenido de aceite modificado, contenido de ácidos grasos modificado, contenido de proteína modificado, maduración del fruto modificado, nutrición animal y humana potenciada, producciones de biopolímeros, resistencia al estrés ambiental, péptidos farmacéuticos, cualidades de procesamiento mejoradas, sabor mejorado, utilidad de producción de semillas híbridas, producción de fibra mejorada y producción de biocombustible deseable.

Los ejemplos de genes de interés agronómico conocidos en la materia incluyen aquellos para la resistencia a herbicidas (patentes de Estados Unidos nº 6.803.501; 6.448.476; 6.248.876; 6.225.114; 6.107.549; 5.866.775; 5.804.425; 5.633.435; y 5.463.175), el rendimiento aumentado (patentes de Estados Unidos nº USRE38.446; 6.716.474; 6.663.906; 6.476.295; 6.441.277; 6.423.828; 6.399.330; 6.372.211; 6.235.971; 6.222.098; y 5.716.837), el control de insectos (patentes de Estados Unidos nº 6.809.078; 6.713.063; 6.686.452; 6.657.046; 6.645.497; 6.642.030; 6.639.054; 6.620.988; 6.593.293; 6.555.655; 6.538.109; 6.537.756; 6.521.442; 6.501.009; 6.468.523; 6.326.351; 6.313.378; 6.284.949; 6.281.016; 6.248.536; 6.242.241; 6.221.649; 6.177.615; 6.156.573; 6.153.814; 6.110.464; 6.093.695; 6.063.756; 6.063.597; 6.023.013; 5.959.091; 5.942.664; 5.942.658, 5.880.275; 5.763.245; y

5.763.241), la resistencia a enfermedades fúngicas,(patentes de Estados Unidos nº 6.653.280; 6.573.361; 6.506.962; 6.316.407; 6.215.048; 5.516.671; 5.773.696; 6.121.436; 6.316.407; y 6.506.962), la resistencia a virus (patentes de Estados Unidos nº 6.617.496; 6.608.241; 6.015.940; 6.013.864; 5.850.023; y 5.304.730), la resistencia a nemátodos (Patente de Estados Unidos nº 6.228.992), la resistencia a enfermedades bacterianas (Patente de Estados Unidos nº 5.516.671), el crecimiento y desarrollo de plantas (Patentes de Estados Unidos nº 6.723.897 y 6.518.488), la producción de almidón (patentes de Estados Unidos nº 6.538.181; 6.538.179; 6.538.178; 5.750.876; 6.476.295), la producción de aceites modificada (patentes de Estados Unidos nº 6,444,876; 6.426.447; y 6.380.462), la producción elevada de aceite (patentes de Estados Unidos nº 6.495.739; 5.608.149; 6.483.008; y 6.476.295), el contenido de ácidos grasos modificado (patentes de Estados Unidos nº 6.828.475; 6.822.141; 6.770.465; 6.706.950; 6.660.849; 6.596.538; 6.589.767; 6.537.750; 6.489.461; y 6.459.018), la producción elevada de proteínas (patente de Estados Unidos nº 6.380.466), la maduración del fruto (patente de Estados Unidos nº 5.512.466), la nutrición animal y humana potenciada (patentes de Estados Unidos nº 6.723.837; 6.653.530; 6.5412.59; 5.985.605; y 6.171.640), los biopolímeros (patentes de Estados Unidos nº USRE37,543; 6.228.623; y 5.958.745, y 6.946.588), la resistencia al estrés ambiental (Patente de Estados Unidos nº 6,072,103), los péptidos farmacéuticos y péptidos secretables (Patentes de Estados Unidos nº 6,812,379; 6.774.283; 6.140.075; y 6.080.560), los rasgos de procesamiento mejorados (Patente de Estados Unidos nº 6.476.295), la digestibilidad mejorada (Patente de Estados Unidos nº 6.531.648), la baja en rafinosa (Patente de Estados Unidos nº 6.166.292), la producción de enzimas industriales (Patente de Estados Unidos nº 5.543.576), el sabor mejorado (Patente de Estados Unidos nº. 6.011.199), là fijación de nitrógeno (Patente de Estados Únidos nº. 5.229.114), là producción de semillas híbridas (Patente de Estados Unidos nº. 5.689.041), la producción de fibra (Patentes de Estados Unidos nº. 6.576.818; 6.271.443; 5.981.834; y 5.869.720) y la producción de biocombustible (patente de Estados Unidos nº 5.998.700).

Como alternativa, un gen de interés agronómico puede alterar las características o el fenotipo de las plantas anteriormente mencionado mediante la codificación de una molécula de ARN que produce la modulación dirigida de la expresión génica de un gen endógeno, por ejemplo, por antisentido (*véase, por ejemplo*, la patente de Estados Unidos nº 5.107.065); ARN inhibidor ("ARNi", que incluye la modulación de la expresión génica mediante mecanismos mediados por miARN, ARNip, ARNip de acción trans y ARNs en fase, *por ejemplo*, como se describe en las solicitudes publicadas US 2006/0200878 y US 2008/0066206, y en la solicitud de patente estadounidense 11/974.469); o mecanismos mediados por cosupresión. El ARN podría ser también una molécula de ARN catalítico (*por ejemplo*, una ribozima o un riboswitch; *véase, por ejemplo*, el documento U.S. 2006/0200878) diseñado mediante ingeniería genética para escindir un producto de ARNm endógeno deseado. Se conocen en la materia procedimientos para construir e introducir construcciones en una célula de tal manera que la molécula de ADN transcribible se transcriba en una molécula que sea capaz de provocar supresión génica.

La expresión de una molécula de ADN transcribible en una célula vegetal también se puede utilizar para suprimir plagas de plantas que se alimentan de la célula vegetal, por ejemplo, composiciones aisladas de plagas de coleópteros y composiciones aisladas de plagas de nemátodos. Las plagas de las plantas incluyen, pero sin limitación, plagas de artrópodos, plagas de nemátodos y plagas fúngicas o microbianas.

#### Marcadores seleccionables

Los transgenes marcadores seleccionables también se pueden utilizar con los elementos reguladores de la invención. Como se usa en el presente documento, la expresión "transgén marcador seleccionable" se refiere a cualquier molécula de ADN transcribible cuya expresión en una planta, tejido o célula transgénica, o la falta de la misma, puede ser evaluada o puntuada de alguna manera. Los genes marcadores seleccionables, y sus técnicas de selección y cribado asociadas, para su uso en la práctica de la invención son conocidos en la materia e incluyen, pero sin limitación, moléculas de ADN transcribible que codifican β-glucuronidasa (GUS), proteína fluorescente verde (GFP), proteínas que confieren resistencia a antibióticos y proteínas que confieren tolerancia a herbicidas.

#### 45 Transformación celular

10

15

20

25

30

35

40

50

55

La invención también está dirigida a un procedimiento para producir células y plantas transformadas que comprenden uno o más elementos reguladores unidos operativamente a una molécula de ADN transcribible.

El término "transformación" se refiere a la introducción de una molécula de ADN en un huésped receptor. Como se usa en el presente documento, el término "huésped" se refiere a bacterias, hongos o plantas, incluyendo cualquier célula, tejidos, órgano o descendencia de las bacterias, hongos o plantas. Los tejidos y células vegetales de particular interés incluyen protoplastos, callos, raíces, tubérculos, semillas, tallos, hojas, plántulas, embriones y polen.

Como se usa en el presente documento, el término "transformado" se refiere a una célula, tejido, órgano u organismo en el que se ha introducido una molécula de ADN extraña, como una construcción. La molécula de ADN introducida puede integrarse en el ADN genómico de la célula, tejido, órgano u organismo receptor, de modo que la progenie posterior hereda la molécula de ADN introducida. Un célula u organismo "transgénico" o "transformado" puede incluir también la progenie de la célula u organismo y la progenie producida a partir de un programa de cultivo que emplea dicho organismo transgénico como un precursor en un cruce y que presenta un fenotipo alterado que resulta de la presencia de una molécula de ADN extraña. La molécula de ADN introducida también puede

introducirse de forma transitoria en la célula receptora de modo que la progenie posterior no herede la molécula de ADN introducida. El término "transgénico" se refiere a una bacteria, hongo o planta que contiene una o más moléculas de ADN heterólogas.

Existen muchos procedimientos bien conocidos por los expertos en la materia para introducir moléculas de ADN en células vegetales. El procedimiento comprende en general las etapas de seleccionar una célula huésped adecuada, transformar la célula huésped con un vector y obtener la célula huésped transformada. Los procedimientos y materiales para transformar células vegetales mediante la introducción de una construcción de plantas en un genoma de plantas en la práctica de la presente invención pueden incluir cualquiera de los procedimientos bien conocidos y demostrados. Los procedimientos adecuados incluyen, pero sin limitación, infección bacteriana (por ejemplo, Agrobacterium), vectores binarios BAC, suministro directo de ADN (por ejemplo, mediante transformación mediada por PEG, captación de ADN mediada por desecación/inhibición, electroporación, agitación con fibras de carburo de silicio, y aceleración de partículas recubiertas de ADN), entre otros.

Las células huésped pueden ser cualquier célula u organismo, como una célula vegetal, célula de algas, algas, célula fúngica, hongos, célula bacteriana o célula de insecto. En realizaciones específicas, las células huésped y las células transformadas pueden incluir células vegetales de cultivo.

Una planta transgénica posteriormente puede regenerarse a partir de una célula vegetal transgénica de la invención. Utilizando técnicas de reproducción convencionales o autopolinización, se pueden producir semillas a partir de esta planta transgénica. Dicha semilla, y la progenie resultante cultivada a partir de dicha semilla, contendrá la molécula de ADN recombinante de la invención y, por lo tanto, será transgénica.

20 Las plantas transgénicas de la invención pueden autopolinizarse para proporcionar semillas para plantas transgénicas homocigotas de la invención (homocigotas para la molécula de ADN recombinante) o cruzarse con plantas no transgénicas o diferentes plantas transgénicas para proporcionar semillas para las plantas transgénicas heterocigotas de la invención (heterocigotas para la molécula de ADN recombinante). Tanto las plantas transgénicas homocigotas como las heterocigotas se denominan en el presente documento "plantas progenie". Las plantas progenie son plantas transgénicas que descienden de la planta transgénica original y que contienen la molécula de 25 ADN recombinante de la invención. Las semillas producidas utilizando una planta transgénica de la invención pueden cosecharse y utilizarse para crecer generaciones de plantas transgénicas, es decir, plantas de progenie, de la invención, que comprenden la construcción de la presente invención y expresan un gen de interés agronómico. Pueden encontrarse descripciones de los procedimientos reproductivos que se utilizan habitualmente para los 30 diferentes cultivos en uno de varios libros de referencia, véase, por ejemplo, Allard, Principles of Plant Breeding, John Wiley & Sons, NY, U. of CA, Davis, CA, 50-98 (1960); Simmonds, Principles of Crop Improvement, Longman, Inc., NY, 369-399 (1979); Sneep y Hendriksen, Plant breeding Perspectives, Wageningen (ed), Center for Agricultural Publishing and Documentation (1979); Fehr, Soybeans: Improvement, Production and Uses, 2ª Edición, Monografía, 16:249 (1987); Fehr, Principles of Variety Development, Theory and Technique, (Vol. 1) y Crop Species 35 Soybean (Vol. 2), Iowa State Univ., Macmillan Pub. Co., NY, 360-376 (1987).

Las plantas transformadas pueden analizarse para determinar la presencia del gen o genes de interés y el nivel de expresión y/o perfil conferido por los elementos reguladores de la invención. Los expertos en la materia conocen los numerosos procedimientos disponibles para el análisis de las plantas transformadas. Por ejemplo, los procedimientos para el análisis de plantas incluyen, pero sin limitación, transferencias de Southern o transferencias de Northern, estrategias basadas en la PCR, análisis bioquímicos, procedimientos de cribado fenotípico, evaluaciones de campo y ensayos inmunodiagnósticos. La expresión de una molécula de ADN transcribible se puede medir utilizando los reactivos y procedimientos de TaqMan® (Applied Biosystems, Foster City, CA) según lo descrito por el fabricante y los tiempos de los ciclos de PCR determinados utilizando la matriz de prueba de TaqMan®. Como alternativa, los reactivos y procedimientos Invader® (Third Wave Technologies, Madison, WI) descritos por el fabricante pueden utilizarse para evaluar la expresión transgénica.

La invención también proporciona partes de una planta de la invención. Las partes de plantas incluyen, pero sin limitación, hojas, tallos, raíces, tubérculos, semillas, endospermo, óvulos y polen. Las partes de planta de la invención pueden ser viables, no viables, regeneradas y/o no regenerables. La invención también incluye y proporciona células vegetales transformadas que comprenden una molécula de ADN de la invención. Las células vegetales transformadas o transgénicas de la invención incluyen células vegetales regenerables y/o no regenerables.

La invención puede entenderse más fácilmente mediante referencia a los siguientes ejemplos.

#### **Ejemplos**

5

10

15

40

45

50

55

#### Ejemplo 1

#### Identificación y clonación de elementos reguladores

Se identificaron nuevos elementos reguladores de la ubiquitina, o secuencias del grupo de elementos de expresión reguladores (EXP), y se aislaron a partir del ADN genómico de la hierba Cloud monocotiledónea (Agrostis nebulosa),

la caña gigante (Arundo donax), el grama azul (Bouteloua gracilis), la hierba plateada china (Miscanthus sinesis), el popotillo azul (Schizachyium scoparium), el césped indio (Sorghastrum nutans) y las lágrimas de Job (Coix lacrymajobi).

Se identificaron secuencias de transcripción de ubiquitina 1 de cada una de las especies anteriores. Se utilizó la región 5' no traducida (5' UTR) de cada uno de los transcritos de ubiquitina 1 para diseñar cebadores para amplificar los elementos reguladores correspondientes para el gen de ubiquitina identificado, que comprende un promotor, un líder (5' UTR), y el primer intrón unido operativamente. Se utilizaron los cebadores con las bibliotecas GenomeWalker™ (Clontech Laboratories, Inc, Mountain View, CA) construidas siguiendo el protocolo del fabricante para clonar la región 5' de la secuencia de ADN genómica correspondiente. También se aislaron los elementos reguladores de ubiquitina de las monocotiledóneas *Setaria italica, Setaria viridis* y *Zea mays* subsp. *Mexicana* (Teosinte) utilizando las bibliotecas GenomeWalker™ como se describe anteriormente. Además, se aislaron los elementos reguladores de la ubiquitina de la monocotiledónea *Sorghum bicolor* utilizando secuencias públicas que son homólogas a los genes de ubiquitina 4, 6 y 7.

Utilizando las secuencias identificadas, se llevó a cabo un análisis bioinformático para identificar elementos reguladores en el ADN amplificado. Utilizando los resultados de este análisis, se definieron elementos reguladores en las secuencias de ADN y los cebadores diseñados para amplificar los elementos reguladores. Se amplificó la molécula de ADN correspondiente para cada elemento regulador utilizando condiciones estándar de la reacción en cadena de la polimerasa (PCR) con cebadores que contienen sitios de enzimas de restricción únicos y ADN genómico aislado de A. nebulosa, A donax, B. gracilis, M. sinesis, S. scoparium, S. nutans, y C. lacryma-jobi. Los fragmentos de ADN resultantes se ligaron en vectores de expresión de plantas de base y se secuenciaron. Luego se realizó un análisis del sitio de inicio de la transcripción (TSS) del elemento regulador y las uniones de corte y empalme intrón/exón utilizando protoplastos de plantas transformadas. En resumen, los protoplastos se transformaron con los vectores de expresión de plantas que comprenden los fragmentos de ADN clonado unidos operativamente con una molécula de ADN transcribible heteróloga y se utilizó el sistema 5' RACE para la amplificación rápida de extremos de ADNc, Versión 2.0 (Invitrogen, Carlsbad, California 92008) para confirmar el TSS del elemento regulador y las uniones de corte y empalme del intrón/exón analizando la secuencia de los transcritos de ARN mensajero (ARNm) producidos de este modo.

Las secuencias de ADN de las EXP identificadas se proporcionan en el presente documento como las SEQ ID NO: 1, 5, 7, 9, 13, 16, 18, 19, 21, 23, 27, 30, 32, 34, 38, 41, 43, 45, 49, 52, 55, 58, 60, 62, 66, 70, 72, 74, 76, 78, 82, 84, 86, 88, 92, 95, 97, 99, 103, 106, 108, 110, 114, 116, 118, 120, 122, 126, 128, 132, 134, 138, 140, 144, 148, 150 y 168, como se indica en la Tabla 1 posterior. Las secuencias promotoras se proporcionan en el presente documento como las SEQ ID NO: 2, 6, 8, 10, 14, 17, 22, 24, 28, 31, 33, 35, 39, 42, 44, 46, 50, 53, 56, 61, 63, 67, 71, 73, 75, 77, 79, 83, 85, 87, 89, 93, 96, 98, 100, 104, 107, 109, 111, 117, 119, 121, 123, 129, 135, 141, 145, 151 y 169. Las secuencias líder se proporcionan en el presente documento como las SEQ ID NO: 3, 11, 25, 36, 47, 64, 68, 80, 90, 101, 112, 124, 130, 136, 142, 146, 152 y 170. Las secuencias de intrones se proporcionan en el presente documento como las SEQ ID NO: 4, 12, 15, 20, 26, 29, 37, 40, 48, 51, 54, 57, 59, 65, 69, 81, 91, 94, 102, 105, 113, 115, 125, 127, 131, 133, 137, 139, 143, 147, 149, 153 y 171.

Tabla 1. Grupos de elementos de expresión reguladores ("EXP"), promotores, potenciadores, líderes e intrones aislados de varias especies de gramíneas.

| Descripción        | SEQ ID<br>NO: | Tamaño<br>(pb) | Género/Especie | Descripción y/o elementos reguladores de EXP unidos en la dirección 5'→ 3' (SEQ ID NO):                              |
|--------------------|---------------|----------------|----------------|----------------------------------------------------------------------------------------------------------------------|
| EXP-AGRne.Ubq1:1:7 | 1             | 3143           |                | EXP: P-AGRne.Ubq1-1:1:5 (SEQ ID NO: 2); L-<br>AGRne.Ubq1-1:1:1 (SEQ ID NO: 3); I-AGRne.Ubq1-<br>1:1:3 (SEQ ID NO: 4) |
| P-AGRne.Ubq1-1:1:5 | 2             | 2005           | A. nebulosa    | Promotor                                                                                                             |
| L-AGRne.Ubq1-1:1:1 | 3             | 85             | A. nebulosa    | Líder                                                                                                                |
| I-AGRne.Ubq1-1:1:3 | 4             | 1053           | A. nebulosa    | Intrón                                                                                                               |

40

5

10

15

20

25

30

35

| Descripción             | SEQ ID<br>NO: | Tamaño<br>(pb) | Género/Especie | Descripción y/o elementos reguladores de EXP unidos en la dirección 5'→ 3' (SEQ ID NO):                                 |  |
|-------------------------|---------------|----------------|----------------|-------------------------------------------------------------------------------------------------------------------------|--|
| EXP-AGRne.Ubq1:1:8      | 5             | 2137           |                | EXP: P-AGRne.Ubq1-1:1:4 (SEQ ID NO: 6); L-<br>AGRne.Ubq1-1:1:1 (SEQ ID NO: 3); I-AGRne.Ubq1-<br>1:1:3 (SEQ ID NO: 4)    |  |
| P-AGRne.Ubq1-1:1:4      | 6             | 999            |                | Promotor                                                                                                                |  |
| EXP-AGRne.Ubq1:1:9      | 7             | 1900           | A. nebulosa    | EXP: P-AGRne.Ubq1-1:1:6 (SEQ ID NO: 8); L-<br>AGRne.Ubq1-1:1:1 (SEQ ID NO: 3); I-AGRne.Ubq1-<br>1:1:3 (SEQ ID NO: 4)    |  |
| P-AGRne.Ubq1-1:1:6      | 8             | 762            | A. nebulosa    | Promotor                                                                                                                |  |
| EXP-ARUdo.Ubq1:1:4      | 9             | 5068           |                | EXP: P-ARUdo.Ubq1-1:1:4 (SEQ ID NO: 10); L-<br>ARUdo.Ubq1-1:1:1 (SEQ ID NO: 11); I-ARUdo.Ubq1-<br>1:1:2 (SEQ ID NO: 12) |  |
| P-ARUdo.Ubq1-1:1:4      | 10            | 4114           | A. donax       | Promotor                                                                                                                |  |
| L-ARUdo.Ubq1-1:1:1      | 11            | 85             | A. donax       | Líder                                                                                                                   |  |
| I-ARUdo.Ubq1-1:1:2      | 12            | 869            | A. donax       | Intrón                                                                                                                  |  |
| EXP-ARUdo.Ubq1:1:8      | 13            | 2969           |                | EXP: P-ARUdo.Ubq1-1:1:5 (SEQ ID NO: 14); L-<br>ARUdo.Ubq1-1:1:1 (SEQ ID NO: 11); I-ARUdo.Ubq1-<br>1:1:3 (SEQ ID NO: 15) |  |
| P-ARUdo.Ubq1-1:1:5      | 14            | 2012           | A. donax       | Promotor                                                                                                                |  |
| I-ARUdo.Ubq1-1:1:3      | 15            | 872            | A. donax       | Intrón                                                                                                                  |  |
| EXP-ARUdo.Ubq1:1:6      | 16            | 1954           |                | EXP: P-ARUdo.Ubq1-1:1:6 (SEQ ID NO: 17); L-ARUdo.Ubq1-1:1:1 (SEQ ID NO: 11); I-ARUdo.Ubq11:1:2 (SEQ ID NO: 12)          |  |
| P-ARUdo.Ubq1-1:1:6      | 17            | 1000           | A. donax       | Promotor                                                                                                                |  |
| EXP-ARUdo.Ubq1:1:9      | 18            | 1957           |                | EXP: P-ARUdo.Ubq1-1:1:6 (SEQ ID NO: 17); L-ARUdo.Ubq1-1:1:1 (SEQ ID NO: 11); I-ARUdo.Ubq1 1:1:3 (SEQ ID NO: 15)         |  |
| EXP-<br>ARUdo.Ubq1:1:12 | 19            | 1957           |                | EXP: P-ARUdo.Ubq1-1:1:6 (SEQ ID NO: 17); L-<br>ARUdo.Ubq1-1:1:1 (SEQ ID NO: 11); I-ARUdo.Ubq1-<br>1:1:4 (SEQ ID NO: 20) |  |

| Descripción             | SEQ ID<br>NO: | Tamaño<br>(pb) | Género/Especie | Descripción y/o elementos reguladores de EXP unidos en la dirección 5'→ 3' (SEQ ID NO):                                 |  |
|-------------------------|---------------|----------------|----------------|-------------------------------------------------------------------------------------------------------------------------|--|
| I-ARUdo.Ubq1-1:1:4      | 20            | 872            | A. donax       | Intrón                                                                                                                  |  |
| EXP-<br>ARUdo.Ubq1:1:11 | 21            | 1712           |                | EXP: P-ARUdo.Ubq1-1:1:8 (SEQ ID NO: 22); L-<br>ARUdo.Ubq1-1:1:1 (SEQ ID NO: 11); I-ARUdo.Ubq1-<br>1:1:3 (SEQ ID NO: 15) |  |
| P-ARUdo.Ubq1-1:1:8      | 22            | 755            | A. donax       | Promotor                                                                                                                |  |
| EXP-ARUdo.Ubq2:1:4      | 23            | 3276           |                | EXP: P-ARUdo.Ubq2-1:1:4 (SEQ ID NO: 24); L-<br>ARUdo.Ubq2-1:1:1 (SEQ ID NO: 25); I-ARUdo.Ubq2-<br>1:1:1 (SEQ ID NO: 26) |  |
| P-ARUdo.Ubq2-1:1:4      | 24            | 2033           | A. donax       | Promotor                                                                                                                |  |
| L-ARUdo.Ubq2-1:1:1      | 25            | 88             | A. donax       | Líder                                                                                                                   |  |
| I-ARUdo.Ubq2-1:1:1      | 26            | 1155           | A. donax       | Intrón                                                                                                                  |  |
| EXP-ARUdo.Ubq2:1:8      | 27            | 3250           |                | EXP: P-ARUdo.Ubq2-1:1:6 (SEQ ID NO: 28); L-<br>ARUdo.Ubq2-1:1:1 (SEQ ID NO: 25); I-ARUdo.Ubq2-<br>1:1:2 (SEQ ID NO: 29) |  |
| P-ARUdo.Ubq2-1:1:6      | 28            | 2004           | A. donax       | Promotor                                                                                                                |  |
| I-ARUdo.Ubq2-1:1:2      | 29            | 1158           | A. donax       | Intrón                                                                                                                  |  |
| EXP-ARUdo.Ubq2:1:9      | 30            | 2247           |                | EXP: P-ARUdo.Ubq2-1:1:5 (SEQ ID NO: 31); L-<br>ARUdo.Ubq2-1:1:1 (SEQ ID NO: 25); I-ARUdo.Ubq2-<br>1:1:2 (SEQ ID NO: 29) |  |
| P-ARUdo.Ubq2-1:1:5      | 31            | 1001           | A. donax       | Promotor                                                                                                                |  |
| EXP-<br>ARUdo.Ubq2:1:10 | 32            | 1942           |                | EXP: P-ARUdo.Ubq2-1:1:7 (SEQ ID NO: 33); L-ARUdo.Ubq2-1:1:1 (SEQ ID NO: 25); I-ARUdo.Ubq2 1:1:2 (SEQ ID NO: 29)         |  |
| P-ARUdo.Ubq2-1:1:7      | 33            | 696            | A. donax       | Promotor                                                                                                                |  |
| EXP-BOUgr.Ubq1:1:1      | 34            | 3511           |                | EXP: P-BOUgr.Ubq1-1:1:2 (SEQ ID NO: 35); L-BOUgr.Ubq1-1:1:1 (SEQ ID NO: 36); I-BOUgr.Ubq1-1:1:2 (SEQ ID NO: 37)         |  |

| Descripción             | SEQ ID<br>NO: | Tamaño<br>(pb) | Género/Especie | Descripción y/o elementos reguladores de EXP unidos en la dirección 5'→ 3' (SEQ ID NO):                         |  |
|-------------------------|---------------|----------------|----------------|-----------------------------------------------------------------------------------------------------------------|--|
| P-BOUgr.Ubq1-1:1:2      | 35            | 2371           | B. gracilis    | Promotor                                                                                                        |  |
| L-BOUgr.Ubq1-1:1:1      | 36            | 86             | B. gracilis    | Líder                                                                                                           |  |
| I-BOUgr.Ubq1-1:1:2      | 37            | 1054           | B. gracilis    | Intrón                                                                                                          |  |
| EXP-BOUgr.Ubq1:1:6      | 38            | 3142           |                | EXP: P-BOUgr.Ubq1-1:1:3 (SEQ ID NO: 39); L-BOUgr.Ubq1-1:1:1 (SEQ ID NO: 36); I-BOUgr.Ubq1-1:1:3 (SEQ ID NO: 40) |  |
| P-BOUgr.Ubq1-1:1:3      | 39            | 1999           | B. gracilis    | Promotor                                                                                                        |  |
| I-BOUgr.Ubq1-1:1:3      | 40            | 1057           | B. gracilis    | Intrón                                                                                                          |  |
| EXP-BOUgr.Ubq1:1:7      | 41            | 2165           |                | EXP: P-BOUgr.Ubq1-1:1:5 (SEQ ID NO: 42); L-BOUgr.Ubq1-1:1:1 (SEQ ID NO: 36); I-BOUgr.Ubq1-1:1:3 (SEQ ID NO: 40) |  |
| P-BOUgr.Ubq1-1:1:5      | 42            | 1022           | B. gracilis    | Promotor                                                                                                        |  |
| EXP-BOUgr.Ubq1:1:8      | 43            | 1903           |                | EXP: P-BOUgr.Ubq1-1:1:6 (SEQ ID NO: 44); L-BOUgr.Ubq1-1:1:1 (SEQ ID NO: 36); I-BOUgr.Ubq1-1:1:3 (SEQ ID NO: 40) |  |
| P-BOUgr.Ubq1-1:1:6      | 44            | 760            | B. gracilis    | Promotor                                                                                                        |  |
| EXP-<br>BOUgr.Ubq2:1:11 | 45            | 3234           |                | EXP: P-BOUgr.Ubq2-1:1:4 (SEQ ID NO: 46); L-BOUgr.Ubq2-1:1:1 (SEQ ID NO: 47); I-BOUgr.Ubq2-1:1:3 (SEQ ID NO: 48) |  |
| P-BOUgr.Ubq2-1:1:4      | 46            | 2100           | B. gracilis    | Promotor                                                                                                        |  |
| L-BOUgr.Ubq2-1:1:1      | 47            | 91             | B. gracilis    | Líder                                                                                                           |  |
| I-BOUgr.Ubq2-1:1:3      | 48            | 1043           | B. gracilis    | Intrón                                                                                                          |  |
| EXP-BOUgr.Ubq2:1:7      | 49            | 3176           |                | EXP: P-BOUgr.Ubq2-1:1:7 (SEQ ID NO: 50); L-BOUgr.Ubq2-1:1:1 (SEQ ID NO: 47); I-BOUgr.Ubq2-1:1:1 (SEQ ID NO: 51) |  |

| Descripción             | SEQ ID<br>NO: | Tamaño<br>(pb) | Género/Especie | Descripción y/o elementos reguladores de EXP unidos en la dirección 5'→ 3' (SEQ ID NO):                         |
|-------------------------|---------------|----------------|----------------|-----------------------------------------------------------------------------------------------------------------|
| P-BOUgr.Ubq2-1:1:7      | 50            | 2043           | B. gracilis    | Promotor                                                                                                        |
| I-BOUgr.Ubq2-1:1:1      | 51            | 1042           | B. gracilis    | Intrón                                                                                                          |
| EXP-<br>BOUgr.Ubq2:1:14 | 52            | 3139           | B. gracilis    | EXP: P-BOUgr.Ubq2-1:1:5 (SEQ ID NO: 53); L-BOUgr.Ubq2-1:1:1 (SEQ ID NO: 47); I-BOUgr.Ubq2-1:1:4 (SEQ ID NO: 54) |
| P-BOUgr.Ubq2-1:1:5      | 53            | 2002           | B. gracilis    | Promotor                                                                                                        |
| I-BOUgr.Ubq2-1:1:4      | 54            | 1046           | B. gracilis    | Intrón                                                                                                          |
| EXP-<br>BOUgr.Ubq2:1:15 | 55            | 2160           | B. gracilis    | EXP: P-BOUgr.Ubq2-1:1:6 (SEQ ID NO: 56); L-BOUgr.Ubq2-1:1:1 (SEQ ID NO: 47); I-BOUgr.Ubq2-1:1:5 (SEQ ID NO: 57) |
| P-BOUgr.Ubq2-1:1:6      | 56            | 1024           | B. gracilis    | Promotor                                                                                                        |
| I-BOUgr.Ubq2-1:1:5      | 57            | 1045           | B. gracilis    | Intrón                                                                                                          |
| EXP-<br>BOUgr.Ubq2:1:16 | 58            | 2160           | B. gracilis    | EXP: P-BOUgr.Ubq2-1:1:6 (SEQ ID NO: 56); L-BOUgr.Ubq2-1:1:1 (SEQ ID NO: 47); I-BOUgr.Ubq2-1:1:6 (SEQ ID NO: 59) |
| I-BOUgr.Ubq2-1:1:6      | 59            | 1045           | B. gracilis    | Intrón                                                                                                          |
| EXP-<br>BOUgr.Ubq2:1:17 | 60            | 1885           | B. gracilis    | EXP: P-BOUgr.Ubq2-1:1:8 (SEQ ID NO: 61); L-BOUgr.Ubq2-1:1:1 (SEQ ID NO: 47); I-BOUgr.Ubq2-1:1:6 (SEQ ID NO: 59) |
| P-BOUgr.Ubq2-1:1:8      | 61            | 749            | B. gracilis    | Promotor                                                                                                        |
| EXP-MISsi.Ubq1:1:2      | 62            | 6813           | M. sinesis     | EXP: P-MISsi.Ubq1-1:1:2 (SEQ ID NO: 63); L-MISsi.Ubq1-1:1:1 (SEQ ID NO: 64); I-MISsi.Ubq1-1:1:1 (SEQ ID NO: 65) |
| P-MISsi.Ubq1-1:1:2      | 63            | 5359           | M. sinesis     | Promotor                                                                                                        |
| L-MISsi.Ubq1-1:1:1      | 64            | 63             | M. sinesis     | Líder                                                                                                           |
| I-MISsi.Ubq1-1:1:1      | 65            | 1391           | M. sinesis     | Intrón                                                                                                          |

| Descripción          | SEQ ID<br>NO: | Tamaño<br>(pb) | Género/Especie | Descripción y/o elementos reguladores de EXP unidos en la dirección 5'→ 3' (SEQ ID NO):                                  |
|----------------------|---------------|----------------|----------------|--------------------------------------------------------------------------------------------------------------------------|
| EXP-MISsi.Ubq1:1:9   | 66            | 4402           | M. sinesis     | EXP: P-MISsi.Ubq1-1:1:11 (SEQ ID NO: 67); L-<br>MISsi.Ubq1-1:1:2 (SEQ ID NO: 68); I-MISsi.Ubq1-<br>1:1:3 (SEQ ID NO: 69) |
| P-MISsi.Ubq1-1:1:11  | 67            | 2423           | M. sinesis     | Promotor                                                                                                                 |
| L-MISsi.Ubq1-1:1:2   | 68            | 55             | M. sinesis     | Líder                                                                                                                    |
| I-MISsi.Ubq1-1:1:3   | 69            | 1924           | M. sinesis     | Intrón                                                                                                                   |
| EXP-MISsi.Ubq1:1:8   | 70            | 3426           | M. sinesis     | EXP: P-MISsi.Ubq1-1:1:10 (SEQ ID NO: 71); L-MISsi.Ubq1-1:1:2 (SEQ ID NO: 68); I-MISsi.Ubq1-1:1:3 (SEQ ID NO: 69)         |
| P-MISsi.Ubq1-1:1:10  | 71            | 1447           | M. sinesis     | Promotor                                                                                                                 |
| EXP-MISsi.Ubq1:1:10  | 72            | 2878           | M. sinesis     | EXP: P-MISsi.Ubq1-1:1:13 (SEQ ID NO: 73); L-<br>MISsi.Ubq1-1:1:2 (SEQ ID NO: 68); I-MISsi.Ubq1-<br>1:1:3 (SEQ ID NO: 69) |
| P-MISsi.Ubq1-1:1:13  | 73            | 899            | M. sinesis     | Promotor                                                                                                                 |
| EY,P-MISsi.Ubq1:1:11 | 74            | 2670           | M. sinesis     | EXP: P-MISsi.Ubq1-1:1:14 (SEQ ID NO: 75); L-<br>MISsi.Ubq1-1:1:2 (SEQ ID NO: 68); I-MISsi.Ubq1-<br>1:1:3 (SEQ ID NO: 69) |
| P-MISsi.Ubq1-1:1:14  | 75            | 691            | M. sinesis     | Promotor                                                                                                                 |
| EXP-MISsi.Ubq1:1:7   | 76            | 2485           | M. sinesis     | EXP: P-MISsi.Ubq1-1:1:9 (SEQ ID NO: 77); L-<br>MISsi.Ubq1-1:1:2 (SEQ ID NO: 68); I-MISsi.Ubq1-<br>1:1:3 (SEQ ID NO: 69)  |
| P-MISsi.Ubq1-1:1:9   | 77            | 506            | M. sinesis     | Promotor                                                                                                                 |
| EXP-SCHsc.Ubq1:1:9   | 78            | 4079           | S. scoparium   | EXP: P-SCHsc.Ubq1-1:1:12 (SEQ ID NO: 79); L-SCHsc.Ubq1-1:1:3 (SEQ ID NO: 80); I-SCHsc.Ubq1-1:1:2 (SEQ ID NO: 81)         |
| P-SCHsc.Ubq1-1:1:12  | 79            | 2831           | S. scoparium   | Promotor                                                                                                                 |
| L-SCHsc.Ubq1-1:1:3   | 80            | 95             | S. scoparium   | Líder                                                                                                                    |
| I-SCHsc.Ubq1-1:1:2   | 81            | 1153           | S. scoparium   | Intrón                                                                                                                   |
| EXP-SCHsc.Ubq1:1:8   | 82            | 3281           | S. scoparium   | EXP: P-SCHsc.Ubq1-1:1:11 (SEQ ID NO: 83); L-SCHsc.Ubq1-1:1:3 (SEQ ID NO: 80); I-SCHsc.Ubq1-1:1:2 (SEQ ID NO: 81)         |

| Descripción             | SEQ ID<br>NO: | Tamaño<br>(pb) | Género/Especie | Descripción y/o elementos reguladores de EXP unidos en la dirección 5'→ 3' (SEQ ID NO):                          |  |
|-------------------------|---------------|----------------|----------------|------------------------------------------------------------------------------------------------------------------|--|
| P-SCHsc.Ubq1-1:1:11     | 83            | 2033           | S. scoparium   | Promotor                                                                                                         |  |
| EXP-SCHsc.Ubq1:1:7      | 84            | 2294           | S. scoparium   | EXP: P-SCHsc.Ubq1-1:1:10 (SEQ ID NO: 85); L-SCHsc.Ubq1-1:1:3 (SEQ ID NO: 80); I-SCHsc.Ubq1-1:1:2 (SEQ ID NO: 81) |  |
| P-SCHsc.Ubq1-1:1:10     | 85            | 1046           | S. scoparium   | Promotor                                                                                                         |  |
| EXP-<br>SCHsc.Ubq1:1:10 | 86            | 1795           | S. scoparium   | EXP: P-SCHsc.Ubq1-1:1:14 (SEQ ID NO: 87); L-SCHsc.Ubq1-1:1:3 (SEQ ID NO: 80); I-SCHsc.Ubq1-1:1:2 (SEQ ID NO: 81) |  |
| P-SCHsc.Ubq1-1:1:14     | 87            | 547            | S. scoparium   | Promotor                                                                                                         |  |
| EXP-SORnu.Ubq1:1:2      | 88            | 3357           | S. nutans      | EXP: P-SORnu.Ubq1-1:1:4 (SEQ ID NO: 89); L-SORnu.Ubq1-1:1:1 (SEQ ID NO: 90); I-SORnu.Ubq1-1:1:1 (SEQ ID NO: 91)  |  |
| P-SORnu.Ubq1-1:1:4      | 89            | 2218           | S. nutans      | Promotor                                                                                                         |  |
| L-SORnu.Ubq1-1:1:1      | 90            | 86             | S. nutans      | Líder                                                                                                            |  |
| I-SORnu.Ubq1-1:1:1      | 91            | 1053           | S. nutans      | Intrón                                                                                                           |  |
| EXP-SORnu.Ubq1:1:6      | 92            | 3106           | S. nutans      | EXP: P-SORnu.Ubq1-1:1:5 (SEQ ID NO: 93); L-SORnu.Ubq1-1:1:1 (SEQ ID NO: 90); I-SORnu.Ubq1-1:1:2 (SEQ ID NO: 94)  |  |
| P-SORnu.Ubq1-1:1:5      | 93            | 1964           | S. nutans      | Promotor                                                                                                         |  |
| I-SORnu.Ubq1-1:1:2      | 94            | 1056           | S. nutans      | Intrón                                                                                                           |  |
| EXP-SORnu.Ubq1:1:7      | 95            | 2165           | S. nutans      | EXP: P-SORnu.Ubq1-1:1:6 (SEQ ID NO: 96); L-SORnu.Ubq1-1:1:1 (SEQ ID NO: 90); I-SORnu.Ubq 1:1:2 (SEQ ID NO: 94)   |  |
| P-SORnu.Ubq1-1:1:6      | 96            | 1023           | S. nutans      | Promotor                                                                                                         |  |
| EXP-SORnu.Ubq1:1:8      | 97            | 1866           | S. nutans      | EXP: P-SORnu.Ubq1-1:1:7 (SEQ ID NO: 98); L-SORnu.Ubq1-1:1:1 (SEQ ID NO: 90); I-SORnu.Ubq1:1:2 (SEQ ID NO: 94)    |  |

| Descripción         | SEQ ID<br>NO: | Tamaño<br>(pb) | Género/Especie | Descripción y/o elementos reguladores de EXP unidos en la dirección 5'→ 3' (SEQ ID NO):                                      |  |
|---------------------|---------------|----------------|----------------|------------------------------------------------------------------------------------------------------------------------------|--|
| P-SORnu.Ubq1-1:1:7  | 98            | 724            | S. nutans      | Promotor                                                                                                                     |  |
| EXP-SETit.Ubq1:1:10 | 99            | 2625           | S. italica     | EXP: P-SETit.Ubq1-1:1:4 (SEQ ID NO: 100); L- SETit.<br>Ubq1-1:1:1 (SEQ ID NO: 101); I-SETit.Ubq1-1:1:3<br>(SEQ ID NO: 102)   |  |
| P-SETit.Ubq1-1:1:4  | 100           | 1492           | S. italica     | Promotor                                                                                                                     |  |
| L-SETit.Ubq1-1:1:1  | 101           | 127            | S. italica     | Líder                                                                                                                        |  |
| I-SETit.Ubq1-1:1:3  | 102           | 1006           | S. italica     | Intrón                                                                                                                       |  |
| EXP-SETit.Ubq1:1:5  | 103           | 2625           | S. italica     | EXP: P-SETit. Ubq1-1:1:1 (SEQ ID NO: 104); L-<br>SETit. Ubq1-1:1:1 (SEQ ID NO: 101); I-SETit.Ubq1-<br>1:1:2 (SEQ ID NO: 105) |  |
| P-SETit.Ubq1-1:1:1  | 104           | 1492           | S. italica     | Promotor                                                                                                                     |  |
| I-SETitUbq1-1:1:2   | 105           | 1006           | S. italica     | Intrón                                                                                                                       |  |
| EXP-SETit.Ubq1:1:7  | 106           | 2167           | S. italica     | EXP: P-SETitUbq1-1:1:2 (SEQ ID NO: 107); L- SETit. Ubq1-1:1:1 (SEQ ID NO: 101); I-SETitUbq1-1:1:2 (SEQ ID NO: 105)           |  |
| P-SETitUbq1-1:1:2   | 107           | 1034           | S. italica     | Promotor                                                                                                                     |  |
| EXP-SETit.Ubq1:1:6  | 108           | 1813           | S. italica     | EXP: P-SETit.Ubq1-1:1:3 (SEQ ID NO: 109); L- SETit.<br>Ubq1-1:1:1 (SEQ ID NO: 101); I-SETitUbq1-1:1:2<br>(SEQ ID NO: 105)    |  |
| P-SETitUbq1-1:1:3   | 109           | 680            | S. italica     | Promotor                                                                                                                     |  |
| EXP-Sv.Ubq1:1:7     | 110           | 2634           | S. viridis     | EXP: P-Sv.Ubq1-1:1:1 (SEQ ID NO: 111); L-Sv.Ubq1-<br>1:1:2 (SEQ ID NO: 112); I-Sv.Ubq1-1:1:2 (SEQ ID<br>NO: 113)             |  |
| P-Sv.Ubq1-1:1:1     | 111           | 1493           | S. viridis     | Promotor                                                                                                                     |  |
| L-Sv.Ubq1-1:1:2     | 112           | 127            | S. viridis     | Líder                                                                                                                        |  |
| I-Sv.Ubq1-1:1:2     | 113           | 1014           | S. viridis     | Intrón                                                                                                                       |  |
| EXP-Sv.Ubq1:1:11    | 114           | 2634           | S. viridis     | EXP: P-Sv.Ubq1-1:1:1 (SEQ ID NO: 111); L-Sv.Ubq1 1:1:2 (SEQ ID NO: 112); I-Sv.Ubq1-1:1:3 (SEQ ID NO: 115)                    |  |
| I-Sv.Ubq1-1:1:3     | 115           | 1014           | S. viridis     | Intrón                                                                                                                       |  |
| EXP-Sv.Ubq1:1:8     | 116           | 2176           | S. viridis     | EXP: P-Sv.Ubq1-1:1:2 (SEQ ID NO: 117); L-Sv.Ubq´<br>1:1:2 (SEQ ID NO: 112); I-Sv.Ubq1-1:1:2 (SEQ ID<br>NO: 113)              |  |

| Descripción                    | SEQ ID<br>NO: | Tamaño<br>(pb) | Género/Especie             | Descripción y/o elementos reguladores de EXP unidos en la dirección 5'→ 3' (SEQ ID NO):                               |  |
|--------------------------------|---------------|----------------|----------------------------|-----------------------------------------------------------------------------------------------------------------------|--|
| P-Sv.Ubq1-1:1:2                | 117           | 1035           | S. viridis                 | Promotor                                                                                                              |  |
| EXP-Sv.Ubq1:1:10               | 118           | 1822           | S. <i>viridis</i>          | EXP: P-Sv.Ubq1-1:1:4 (SEQ ID NO: 119); L-Sv.Ubq1:1:2 (SEQ ID NO: 112); I-Sv.Ubq1-1:1:2 (SEQ ID NO: 113)               |  |
| P-Sv.Ubq1-1:1:4                | 119           | 681            | S. viridis                 | Promotor                                                                                                              |  |
| EXP-Sv.Ubq1:1:12               | 120           | 1822           | S. viridis                 | EXP: P-Sv.Ubq1-1:1:3 (SEQ ID NO: 121); L-Sv.Ubq1-<br>1:1:2 (SEQ ID NO: 112); I-Sv.Ubq1-1:1:3 (SEQ ID<br>NO: 115)      |  |
| P-Sv.Ubq1-1:1:3                | 121           | 681            | S. viridis                 | Promotor                                                                                                              |  |
| EXP-Zm.UbqM1:1:6<br>(Alelo-1)  | 122           | 1925           | Z. mays subsp.<br>Mexicana | EXP: P-Zm.UbqM1-1:1:1 (SEQ ID NO: 123); L-<br>Zm.UbqM1-1:1:1 (SEQ ID NO: 124); I-Zm.UbqM1-<br>1:1:13 (SEQ ID NO: 125) |  |
| P-Zm.UbqM1-1:1:1<br>(Alelo-1)  | 123           | 850            | Z. mays subsp.<br>Mexicana | Promotor                                                                                                              |  |
| L-Zm.UbqM1-1:1:1<br>(Alelo-1)  | 124           | 78             | Z. mays subsp.<br>Mexicana | Líder                                                                                                                 |  |
| I-Zm.UbqM1-1:1:13<br>(Alelo-1) | 125           | 997            | Z. mays subsp.<br>Mexicana | Intrón                                                                                                                |  |
| EXP-Zm.UbqM1:1:10<br>(Alelo-1) | 126           | 1925           | Z. mays subsp.<br>Mexicana | EXP: P-Zm.UbqM1-1:1:1 (SEQ ID NO: 123); L-Zm.UbqM1-1:1:1 (SEQ ID NO: 124); I-Zm.UbqM1-1:1:17 (SEQ ID NO: 127)         |  |
| I-Zm.UbqM1-1:1:17<br>(Alelo-1) | 127           | 997            | Z. mays subsp.<br>Mexicana | Intrón                                                                                                                |  |
| EXP-Zm.UbqM1:1:7<br>(Alelo-2)  | 128           | 1974           |                            | EXP: P-Zm.UbqM1-1:1:4 (SEQ ID NO: 129); L-Zm.UbqM1-1:1:5 (SEQ ID NO: 130); I-Zm.UbqM1-1:1:14 (SEQ ID NO: 131)         |  |
| P-Zm.UbqM1-1:1:4<br>(Alelo-2)  | 129           | 887            | Z. mays subsp.<br>Mexicana | Promotor                                                                                                              |  |
| L-Zm.UbqM1-1:1:5<br>(Alelo-2)  | 130           | 77             | Z. mays subsp.<br>Mexicana | Líder                                                                                                                 |  |
| I-Zm.UbqM1-1:1:14<br>(Alelo-2) | 131           | 1010           | Z. mays subsp.<br>Mexicana | Intrón                                                                                                                |  |
| EXP-Zm.UbqM1:1:12<br>(Alelo-2) | 132           | 1974           | Z. mays subsp.<br>Mexicana | EXP: P-Zm.UbqM1-1:1:4 (SEQ ID NO: 129); L-Zm.UbqM1-1:1:5 (SEQ ID NO: 130); I-Zm.UbqM1-1:1:19 (SEQ ID NO: 133)         |  |

| Descripción                    | SEQ ID<br>NO: | Tamaño<br>(pb) | Género/Especie             | Descripción y/o elementos reguladores de EXP unidos en la dirección 5'→ 3' (SEQ ID NO):                               |  |
|--------------------------------|---------------|----------------|----------------------------|-----------------------------------------------------------------------------------------------------------------------|--|
| I-Zm.UbqM1-1:1:19<br>(Alelo-2) | 133           | 1010           | Z. mays subsp.<br>Mexicana | Intrón                                                                                                                |  |
| EXP-Zm.UbqM1:1:8<br>(Alelo-2)  | 134           | 2008           | Z. mays subsp.<br>Mexicana | EXP: P-Zm.UbqM1-1:1:5 (SEQ ID NO: 135); L-<br>Zm.UbqM1-1:1:4 (SEQ ID NO: 136); I-Zm.UbqM1-<br>1:1:15 (SEQ ID NO: 137) |  |
| P-Zm.UbqM1-1:1:5<br>(Alelo-2)  | 135           | 877            | Z. mays subsp.<br>Mexicana | Promotor                                                                                                              |  |
| L-Zm.UbqM1-1:1:4<br>(Alelo-2)  | 136           | 78             | Z. mays subsp.<br>Mexicana | Líder                                                                                                                 |  |
| I-Zm.UbqM1-1:1:15<br>(Alelo-2) | 137           | 1053           | Z. mays subsp.<br>Mexicana | Intrón                                                                                                                |  |
| EXP-Zm.UbqM1:1:11<br>(Alelo-2) | 138           | 2008           |                            | EXP: P-Zm.UbqM1-1:1:5 (SEQ ID NO: 135); L-<br>Zm.UbqM1-1:1:4 (SEQ ID NO: 136); I-Zm.UbqM1-<br>1:1:18 (SEQ ID NO: 139) |  |
| I-Zm.UbqM1-1:1:18<br>(Alelo-2) | 139           | 1053           | Z. mays subsp.<br>Mexicana | Intrón                                                                                                                |  |
| EXP-Sb.Ubq4:1:2                | 140           | 1635           | S. bicolor                 | EXP: P-Sb.Ubq4-1:1:1 (SEQ ID NO: 141); L-Sb.Ubq4-<br>1:1:1 (SEQ ID NO: 142); I-Sb.Ubq4-1:1:2 (SEQ ID<br>NO: 143)      |  |
| P-Sb.Ubq4-1:1:1                | 141           | 401            | S. bicolor                 | Promotor                                                                                                              |  |
| L-Sb.Ubq4-1:1:1                | 142           | 154            | S. bicolor                 | Líder                                                                                                                 |  |
| I-Sb.Ubq4-1:1:2                | 143           | 1080           | S. bicolor                 | Intrón                                                                                                                |  |
| EXP-Sb.Ubq6:1:2                | 144           | 2067           |                            | EXP: P-Sb.Ubq6-1:1:1 (SEQ ID NO: 145); L-Sb.Ubq6-<br>1:1:1 (SEQ ID NO: 146); I-Sb.Ubq6-1:1:2 (SEQ ID<br>NO: 147)      |  |
| P-Sb.Ubq6-1:1:1                | 145           | 855            | S. bicolor                 | Promotor                                                                                                              |  |
| L-Sb.Ubq6-1:1:1                | 146           | 136            | S. bicolor                 | Líder                                                                                                                 |  |
| I-Sb.Ubq6-1:1:2                | 147           | 1076           | S. bicolor                 | Intrón                                                                                                                |  |
| EXP-Sb.Ubq6:1:3                | 148           | 2067           |                            | EXP: P-Sb.Ubq6-1:1:1 (SEQ ID NO: 145); L-Sb.Ubq6<br>1:1:1 (SEQ ID NO: 146); I-Sb.Ubq6-1:1:3 (SEQ ID<br>NO: 149)       |  |
| I-Sb.Ubq6-1:1:3                | 149           | 1076           | S. bicolor                 | Intrón                                                                                                                |  |
| EXP-Sb.Ubq7:1:2                | 150           | 2003           |                            | EXP: P-Sb.Ubq7-1:1:1 (SEQ ID NO: 151); L-Sb.Ubq7-<br>1:1:1 (SEQ ID NO: 152); I-Sb.Ubq7-1:1:2 (SEQ ID<br>NO: 153)      |  |

#### (continuación)

| Descripción     | SEQ ID<br>NO: | Tamaño<br>(pb) | Género/Especie  | Descripción y/o elementos reguladores de EXP unidos en la dirección 5'→ 3' (SEQ ID NO):    |
|-----------------|---------------|----------------|-----------------|--------------------------------------------------------------------------------------------|
| P-Sb.Ubq7-1:1:1 | 151           | 565            | S. bicolor      | Promotor                                                                                   |
| L-Sb.Ubq7-1:1:1 | 152           | 77             | S. bicolor      | Líder                                                                                      |
| I-Sb.Ubq7-1:1:2 | 153           | 1361           | S. bicolor      | Intrón                                                                                     |
| EXP-CI.Ubq10    | 168           | 1790           | C. lacryma-jobi | EXP: P-CI.UBQ10 (SEQ ID NO: 169); L-CI.UBQ10 (SEQ ID NO: 170); I-CI.UBQ10 (SEQ ID NO: 171) |
| P-Cl.Ubq10      | 169           | 481            | C. lacryma-jobi | Promotor                                                                                   |
| L-CI.Ubq10      | 170           | 93             | C. lacryma-jobi | Líder                                                                                      |
| I-CI.Ubq10      | 171           | 1216           | C. lacryma-jobi | Intrón                                                                                     |

Como se muestra en la Tabla 1, por ejemplo, la secuencia EXP reguladora designada EXP-AGRne.Ubq1:1:7 (SEQ ID NO: 1), con componentes aislados de *A. nebulosa*, comprende un elemento promotor, P-AGRne.Ubq1-1:1:5 (SEQ ID NO: 2), unido operativamente en el 5' a un elemento líder, L-AGRne.Ubq1-1:1:1 (SEQ ID NO: 3), unido operativamente en el 5' a un elemento intrónico, I-AGRne.Ubq1-1:1:3 (SEQ ID NO: 4). Otras secuencias EXP están unidas de manera similar, como se indica en la Tabla 1.

Como se muestra en la Tabla 1, el listado de secuencias, y las FIG. 1-8, se diseñaron variantes de secuencias promotoras de A. *nebulosa, A donax, B. gracilis, M. sinesis, S. scoparium,* y S. *nutans*, que comprenden fragmentos de promotores más cortos de, por ejemplo, P-AGRne.Ubq1-1:1:5 (SEQ ID NO:2), P-ARUdo.Ubq1-1:1:4 (SEQ ID NO:10), u otros promotores respectivos de otras especies y, por ejemplo, que dan como resultado P-AGRne.Ubq1-1:1:4 (SEQ ID NO: 6) y P-ARUdo.Ubq1-1:1:5 (SEQ ID NO: 14), así como otros fragmentos de promotores.

También se enumeran en la Tabla 1 tres variantes alélicas aisladas que utilizan los mismos conjuntos de cebadores diseñados para la amplificación del ADN genómico de Z. mays subsp. mexicana. Las variantes alélicas de las secuencias EXP de Z. mays subsp. mexicana están compuestas por secuencias de ADN que comparten cierta identidad dentro de varias regiones de otras secuencias de ADN, pero las inserciones, supresiones y desajustes de nucleótidos también pueden ser evidentes dentro de cada promotor, líder y/o intrón de cada una de las secuencias EXP. Las secuencias EXP designadas EXP-Zm.UbqM1:1:6 (SEQ ID NO: 122) y EXP-Zm.UbqM1:1:10 (SEQ ID NO: 126) representan un primer alelo (Alelo-1) del grupo de elementos de expresión reguladores del gen Ubq1 de Z. mays subsp. mexicana, con la única diferencia entre las dos secuencias EXP que se producen en los últimos nucleótidos en el 3' de cada intrón respectivo después de la secuencia 5'-AG-3' de la unión de empalme del intrón en el 3'. Las secuencias EXP designadas EXP-Zm.UbqM1:1:7 (SEQ ID NO: 128) y EXP-Zm.UbqM1:1:12 (SEQ ID NO: 132) representan un segundo alelo (Alelo-2) del grupo de elementos de expresión reguladores del gen Ubq1 de la Z. mays subsp. mexicana, con la única diferencia entre las dos secuencias EXP que se producen en los últimos nucleótidos en el 3' de cada intrón respectivo después de la secuencia 5'-AG-3' de la unión de empalme del intrón en el 3'. Las secuencias EXP EXP-Zm.UbqM1:1:8 (SEQ ID NO: 134) y EXP-Zm.UbqM1:1:11 (SEQ ID NO: 138) representan un tercer alelo (Alelo-3) del grupo de elementos de expresión reguladores del gen Ubq1 de Z. mays subsp. mexicana, con la única diferencia entre las dos secuencias EXP que se producen en los últimos nucleótidos en el 3' de cada intrón respectivo después de la secuencia 5'-AG-3' de la unión de empalme del intrón en el 3'.

#### Ejemplo 2

10

15

20

25

#### Análisis de elementos reguladores que conducen GUS en protoplastos de maíz utilizando GUS

### 30 Amplicones de casete de expresión

Se transformaron protoplastos de la hoja de maíz con amplicones de ADN procedentes de vectores de expresión de plantas que contienen una secuencia EXP, que conduce la expresión del transgén de la β-glucuronidasa (GUS), y se compararon con los protoplastos de la hoja en los que la expresión de GUS es dirigida por promotores constitutivos conocidos en una serie de experimentos presentados a continuación.

En una primer conjunto de experimentos, se transformaron las células de protoplasto de maíz procedentes del tejido de la hoja como anteriormente con amplicones producidos a partir de la amplificación de casetes de expresión de

5

10

15

20

25

30

GUS que comprenden vectores de expresión de plantas para comparar la expresión de un transgén (GUS) dirigido por uno de EXP-AGRne.Ubq1:1:7 (SEQ ID NO: 1), EXP-AGRne.Ubq1:1:8 (SEQ ID NO: 5), EXP-AGRne.Ubq1:1:9 (SEQ ID NO: 7), EXP-ARUdo.Ubq1:1:8 (SEQ ID NO: 13), EXP-ARUdo.Ubq1:1:9 (SEQ ID NO: 16), EXP-ARUdo.Ubg1:1:11 (SEQ ID NO: 20), EXP-ARUdo.Ubg2:1:8 (SEQ ID NO: 26), EXP-ARUdo.Ubg2:1:9 (SEQ ID NO: 29), EXP-ARUdo.Ubg2:1:10 (SEQ ID NO: 31), EXP-BOUgr.Ubg1:1:6 (SEQ ID NO: 37), EXP-BOUgr.Ubg1:1:7 (SEQ ID NO: 40), EXP-BOUgr. Ubq1:1:8 (SEQ ID NO: 42), EXP-BOUgr. Ubq2:1:14 (SEQ ID NO: 51), EXP-BOUgr.Ubq2:1:16 (SEQ ID NO: 57), EXP-BOUgr.Ubq2:1:17 (SEQ ID NO: 59), EXP-MISsi.Ubq1:1:8 (SEQ ID NO: 69), EXP-MISsi.Ubq1:1:10 (SEQ ID NO: 71), EXP-MISsi.Ubq1:1:11 (SEQ ID NO: 73), EXP-MISsi.Ubq1:1:7 (SEQ ID NO: 75), EXP-SCHsc.Ubq1:1:9 (SEQ ID NO: 77), EXP-SCHsc.Ubq1:1:7 (SEQ ID NO: 83), EXP-SCHsc.Ubq1:1:10 (SEQ ID NO: 85), EXP-SORnu.Ubq1:1:6 (SEQ ID NO: 91), EXP-SORnu.Ubq1:1:7 (SEQ ID NO: 94), EXP-SORnu.Ubg1:1:8 (SEQ ID NO: 96), EXP-SETit.Ubg1:1:5 (SEQ ID NO: 102), EXP-SETit.Ubg1:1:7 (SEQ ID NO: 105), EXP-SETit.Ubq1:1:6 (SEQ ID NO: 107), EXP-Sv.Ubq1:1:7 (SEQ ID NO: 109), EXP-Sv.Ubq1:1:8 (SEQ ID NO: 115), EXP-Sv.Ubq1:1:10 (SEQ ID NO: 117), EXP-Zm.UbqM1:1:6 (SEQ ID NO: 121), EXP-Zm.UbqM1:1:7 (SEQ ID NO: 127), EXP-Zm.UbqM1:1:8 (SEQ ID NO: 133), Exp-Sb.Ubq4:1:2 (SEQ ID NO: 139) y Exp-Sb.Ubq6:1:2 (SEQ ID NO: 143) con la de promotores constitutivos conocidos. Cada secuencia EXP que comprende la plantilla de amplificación a partir de la cual se produce el amplicón del casete de expresión se clonó utilizando procedimientos conocidos en la materia en un vector de expresión de planta que se muestra en la Tabla 2 a continuación bajo el encabezado "Plantilla de amplicón". Los vectores de expresión de plantas resultantes comprenden un casete de expresión que comprende una secuencia EXP, unida operativamente en el 5' a una secuencia codificante para GUS que contiene un intrón procesable ("GUS-2", SEQ ID NO: 154) o una secuencia codificante para GUS contigua ("GUS-1", SEQ ID NO: 153), unida operativamente en el 5' a una 3' UTR T-AGRtu.nos-1:1:13 (SEC ID NO: 157) o T-Ta.Hsp17-1:1:1 (SEQ ID NO: 158). Los amplicones se produjeron utilizando procedimientos conocidos por los expertos en la materia utilizando las plantillas de construcción de plásmidos que se presentan en la Tabla 2 a continuación. En resumen, se diseñó un cebador de oligonucleótidos 5' para hibridar con la secuencia promotora y se utilizó un cebador de oligonucleotídicos 3', que se hibrida con el extremo 3' de la 3' UTR, para la amplificación de cada casete de expresión. Se introdujeron supresiones en 5' sucesivas en las secuencias promotoras que comprenden los casetes de expresión, dando lugar a diferentes secuencias EXP, mediante la utilización de diferentes cebadores de oligonucleótidos que se diseñaron para hibridar en diferentes posiciones dentro de la secuencia promotora que comprende cada plantilla de amplicón.

Tabla 2. Amplicones de expresión en plantas de GUS y las correspondientes plantillas de amplicones de construcciones de plásmidos, secuencia EXP, secuencia codificante GUS y 3' UTR utilizadas para la transformación de protoplastos de la hoja de maíz.

| ID de amplicón | Molde del<br>amplicón | Secuencia EXP                             | SEQ ID<br>NO: | Secuencia<br>codificante<br>de GUS | 3' UTR                 |
|----------------|-----------------------|-------------------------------------------|---------------|------------------------------------|------------------------|
| PCR0145942     | pMON25455             | EXP-Os.Act1:1:9                           | 162           | GUS-1                              | T-AGRtu.nos-<br>1:1:13 |
| PCR0145943     | pMON65328             | EXP-CaMV.35S-<br>enh+Ta.Lhcb1+Os.Act1:1:1 | 161           | GUS-2                              | T-Ta.Hsp17-1:1:1       |
| PCR0145935     | pMON140890            | EXP-AGRne.Ubq1:1:7                        | 1             | GUS-1                              | T-AGRtu.nos-<br>1:1:13 |
| PCR0145827     | pMON140890            | EXP-AGRne.Ubq1:1:8                        | 5             | GUS-1                              | T-AGRtu.nos-<br>1:1:13 |
| PCR0145828     | pMON140890            | EXP-AGRne.Ubq1:1:9                        | 7             | GUS-1                              | T-AGRtu.nos-<br>1:1:13 |
| PCR0145939     | pMON140894            | EXP-ARUdo.Ubq1:1:8                        | 13            | GUS-1                              | T-AGRtu.nos-<br>1:1:13 |
| PCR0145837     | pMON140894            | EXP-ARUdo.Ubq1:1:9                        | 18            | GUS-1                              | T-AGRtu.nos-<br>1:1:13 |
| PCR0145838     | pMON140894            | EXP-ARUdo.Ubq1:1:11                       | 21            | GUS-1                              | T-AGRtu.nos-<br>1:1:13 |
| PCR0145940     | pMON140895            | EXP-ARUdo.Ubq2:1:8                        | 27            | GUS-1                              | T-AGRtu.nos-<br>1:1:13 |

| ID de amplicón | Molde del<br>amplicón | Secuencia EXP        | SEQ ID<br>NO: | Secuencia<br>codificante<br>de GUS | 3' UTR                 |
|----------------|-----------------------|----------------------|---------------|------------------------------------|------------------------|
| PCR0145841     | pMON140895            | EXP-ARUdo.Ubq2:1:9   | 30            | GUS-1                              | T-AGRtu.nos-<br>1:1:13 |
| PCR0145842     | pMON140895            | EXP-ARUdo.Ubq2:1:10  | 32            | GUS-1                              | T-AGRtu.nos-<br>1:1:13 |
| PCR0145936     | pMON140891            | EXP-BOUgr.Ubq1:1:6   | 38            | GUS-1                              | T-AGRtu.nos-<br>1:1:13 |
| PCR0145829     | pMON140891            | EXP-BOUgr.Ubq1:1:7   | 41            | GUS-1                              | T-AGRtu.nos-<br>1:1:13 |
| PCR0145831     | pMON140891            | EXP-BOUgr.Ubq1:1:8   | 43            | GUS-1                              | T-AGRtu.nos-<br>1:1:13 |
| PCR0145937     | pMON140892            | EXP-BOUgr.Ubq2:1:14  | 52            | GUS-1                              | T-AGRtu.nos-<br>1:1:13 |
| PCR0145833     | pMON140892            | EXP-BOUgr.Ubq2:1:16  | 58            | GUS-1                              | T-AGRtu.nos-<br>1:1:13 |
| PCR0145836     | pMON140892            | EXP-BOUgr.Ubq2:1:17  | 60            | GUS-1                              | T-AGRtu.nos-<br>1:1:13 |
| PCR0145898     | pMON136265            | EXP-MISsi.Ubq1:1:8   | 70            | GUS-1                              | T-AGRtu.nos-<br>1:1:13 |
| PCR0145823     | pMON136265            | EXP-MISsi.Ubq1:1:10  | 72            | GUS-1                              | T-AGRtu.nos-<br>1:1:13 |
| PCR0145824     | pMON136265            | EXP-MISsi.Ubq 1:1:11 | 74            | GUS-1                              | T-AGRtu.nos-<br>1:1:13 |
| PCR0145899     | pMON136260            | EXP-MISsi.Ubq 1:1:7  | 76            | GUS-1                              | T-AGRtu.nos-<br>1:1:13 |
| PCR0145894     | pMON136262            | EXP-SCHsc.Ubq1:1:9   | 78            | GUS-1                              | T-AGRtu.nos-<br>1:1:13 |
| PCR0145895     | pMON136257            | EXP-SCHsc.Ubq1:1:7   | 84            | GUS-1                              | T-AGRtu.nos-<br>1:1:13 |
| PCR0145813     | pMON136257            | EXP-SCHsc.Ubq 1:1:10 | 86            | GUS-1                              | T-AGRtu.nos-<br>1:1:13 |
| PCR0145938     | pMON140893            | EXP-SORnu.Ubq1:1:6   | 92            | GUS-1                              | T-AGRtu.nos-<br>1:1:13 |
| PCR0145839     | pMON140893            | EXP-SORnu.Ubq1:1:7   | 95            | GUS-1                              | T-AGRtu.nos-<br>1:1:13 |
| PCR0145840     | pMON140893            | EXP-SORnu.Ubq1:1:8   | 97            | GUS-1                              | T-AGRtu.nos-<br>1:1:13 |
| PCR0145900     | pMON140877            | EXP-SETit.Ubq1:1:5   | 103           | GUS-1                              | T-AGRtu.nos-<br>1:1:13 |
| PCR0145928     | pMON140877            | EXP-SETit.Ubq1:1:7   | 106           | GUS-1                              | T-AGRtu.nos-<br>1:1:13 |

#### (continuación)

| ID de amplicón | Molde del<br>amplicón | Secuencia EXP      | SEQ ID<br>NO: | Secuencia<br>codificante<br>de GUS | 3' UTR                 |
|----------------|-----------------------|--------------------|---------------|------------------------------------|------------------------|
| PCR0145905     | pMON140877            | EXP-SETit.Ubq1:1:6 | 108           | GUS-1                              | T-AGRtu.nos-<br>1:1:13 |
| PCR0145909     | pMON140878            | EXP-Sv.Ubq1:1:7    | 110           | GUS-1                              | T-AGRtu.nos-<br>1:1:13 |
| PCR0145929     | pMON140878            | EXP-Sv.Ubq1:1:8    | 116           | GUS-1                              | T-AGRtu.nos-<br>1:1:13 |
| PCR0145911     | pMON140878            | EXP-Sv.Ubq1:1:10   | 118           | GUS-1                              | T-AGRtu.nos-<br>1:1:13 |
| PCR0145914     | pMON140881            | EXP-Zm.UbqM1:1:6   | 122           | GUS-1                              | T-AGRtu.nos-<br>1:1:13 |
| PCR0145916     | pMON140883            | EXP-Zm.UbqM1:1:7   | 128           | GUS-1                              | T-AGRtu.nos-<br>1:1:13 |
| PCR0145915     | pMON140882            | EXP-Zm.UbqM1:1:8   | 134           | GUS-1                              | T-AGRtu.nos-<br>1:1:13 |
| PCR0145921     | pMON140887            | Exp-Sb.Ubq4:1:2    | 140           | GUS-1                              | T-AGRtu.nos-<br>1:1:13 |
| PCR0145920     | pMON140886            | Exp-Sb.Ubq6:1:2    | 144           | GUS-1                              | T-AGRtu.nos-<br>1:1:13 |

Las construcciones de plásmidos enumeradas como plantillas de amplicón en la Tabla 2 sirvieron como plantillas para la amplificación de casetes de expresión transgénicos que comprenden las secuencias EXP enumeradas de la Tabla 2. Se construyeron plásmidos de control utilizados para generar amplicones transgénicos GUS para la comparación como se describió previamente con las secuencias EXP constitutivas EXP-Os.Act1:1:9 (SEQ ID NO: 162) y EXP-CaMV.35S-enh+Ta.Lhcb1+Os.Act1:1:1 (SEQ ID NO: 161). Se utilizó un vector vacío no diseñado para la expresión transgénica como control negativo para evaluar la expresión de luciferasa y GUS de origen.

5

10

15

20

25

30

También se construyeron dos plásmidos, para su uso en cotransformación y normalización de datos, utilizando procedimientos conocidos en la materia. Cada plásmido contenía una secuencia codificante de luciferasa específica que fue dirigida por una secuencia EXP constitutiva. El vector vegetal pMON19437 comprende un casete de expresión con un promotor constitutivo unido operativamente en el 5' a un intrón, (EXP-CaMV.35S-enh+Zm.DnaK:1:1, SEQ ID NO: 163), unido operativamente en el 5' a una secuencia codificante de luciferasa de luciérnaga (*Photinus pyralis*) (LUCIFERASA: 1:3, SEQ ID NO: 156), unido operativamente en el 5' a una 3' UTR desde el gen de la nopalina sintasa de *Agrobacterium tumefaciens* (T-AGRtu.nos-1:1:13, SEQ ID NO: 158). El vector vegetal pMON63934 comprende un casete de expresión con una secuencia EXP constitutiva (EXP-CaMV.35S-enh-Lhcbl, SEQ ID NO: 164), unido operativamente en el 5' a una secuencia codificante de luciferasa de pensamiento de mar (*Renilla reniformis*) (CR-Ren.hRenilla Lucife-0:0:1, SEQ ID NO: 157), unido operativamente en el 5' a una 3' UTR desde el gen de la nopalina sintasa de *Agrobacterium tumefaciens* (T-AGRtu.nos-1:1:13, SEQ ID NO: 158).

Se transformaron los protoplastos de la hoja de maíz utilizando un procedimiento de transformación basado en PEG, que es bien conocido en la materia. Se transformaron las células de protoplasto con ADN de plásmido pMON19437, ADN de plásmido pMON63934 y los amplicones presentados en la Tabla 2, y se incubaron durante la noche en oscuridad total. Se llevaron a cabo mediciones tanto de GUS como de luciferasa mediante la colocación de alícuotas de una preparación lisada de células transformadas como anteriormente en dos bandejas de pocillos pequeños diferentes. Una bandeja se utilizó para mediciones de GUS y una segunda bandeja se utilizó para llevar a cabo un doble ensayo de luciferasa utilizando el sistema de doble ensayo indicador de la luciferasa (Promega Corp., Madison, WI; véase, por ejemplo, Promega Notes Magazine, N.º: 57, 1996, p.02). Se realizaron una o dos transformaciones para cada secuencia EXP y los valores medios de expresión para cada secuencia EXP se determinaron a partir de varias muestras de cada experimento de transformación. Se realizaron las mediciones de la muestra utilizando cuatro réplicas de cada transformación de construcción de secuencia EXP, o alternativamente, tres réplicas de cada amplicón de secuencia EXP por uno de dos experimentos de transformación. Los niveles medios de expresión de GUS y luciferasa se proporcionan en la Tabla 3. En esta tabla, los valores de luciferasa de

luciérnaga *(por ejemplo,* de la expresión de pMON19437) se proporcionan en la columna marcada con "FLuc" y los valores de luciferasa de *Renilla* se proporcionan como en la columna marcada con "RLuc".

Tabla 3. Actividad media de GUS y luciferasa en protoplastos de hojas de maíz transformadas.

| Secuencia EXP                         | SEQ ID NO: | GUS     | FLuc    | RLuc    |
|---------------------------------------|------------|---------|---------|---------|
| VACIO                                 |            | 5       | 7840,58 | 205661  |
| EXP-Os.Act1:1:9                       | 162        | 1540,25 | 2671,83 | 105417  |
| EXP-CaMV.35S-enh+Ta.Lhcb1+Os.Act1:1:1 | 161        | 12530,8 | 3067,08 | 137723  |
| EXP-AGRne.Ubq 1:1:7                   | 1          | 39665   | 3645,83 | 137384  |
| EXP-AGRne.Ubq1:1:8                    | 5          | 22805,5 | 4183,58 | 140991  |
| EXP-AGRne.Ubq1:1:9                    | 7          | 5861,5  | 887,08  | 34034,3 |
| EXP-ARUdo.Ubq1:1:8                    | 13         | 26965,5 | 1052,33 | 37774,8 |
| EXP-ARUdo.Ubq1:1:9                    | 18         | 66126   | 3251,08 | 114622  |
| EXP-ARUdo.Ubq1:1:11                   | 21         | 136163  |         | 453851  |
| EXP-ARUdo.Ubq2:1:8                    | 27         | 13222,3 | 2203,58 | 72339,1 |
| EXP-ARUdo.Ubq2:1:9                    | 30         | 30095   | 6538,58 | 229201  |
| EXP-ARUdo.Ubq2:1:10                   | 32         | 16448,5 | 1842,58 | 65325,1 |
| EXP-BOUgr.Ubq1:1:6                    | 38         | 32544,3 | 2765,08 | 80330,8 |
| EXP-BOUgr.Ubq1:1:7                    | 41         | 3826,33 | 697,11  | 20709   |
| EXP-BOUgr.Ubq1:1:8                    | 43         | 9935,5  | 3372,58 | 110965  |
| EXP-BOUgr.Ubq2:1:14                   | 52         | 17828   | 1575,83 | 62286,8 |
| EXP-BOUgr.Ubq2:1:16                   | 58         | 54970,3 | 3389,08 | 117616  |
| EXP-BOUgr.Ubq2:1:17                   | 60         | 48601,3 | 7139,08 | 245785  |
| EXP-MISsi.Ubq1:1:8                    | 70         | 11788,3 | 3264,58 | 87751,6 |
| EXP-MISsi.Ubq1:1:10                   | 72         | 33329,5 | 2388,58 | 81000,6 |
| EXP-MISsi.Ubq 1:1:11                  | 74         | 4723,75 | 3135,33 | 98059,1 |
| EXP-MISsi.Ubq 1:1:7                   | 76         | 4499    | 3073,58 | 84015,1 |
| EXP-SCHsc.Ubq1:1:9                    | 78         | 5972    | 1703,33 | 62310,6 |
| EXP-SCHsc.Ubq 1:1:7                   | 84         | 24173,5 | 5306,08 | 155122  |
| EXP-SCHsc.Ubq 1:1:10                  | 86         | 7260    | 1171,08 | 38698,1 |
| EXP-SORnu.Ubq1:1:6                    | 92         | 3966,5  | 4175,08 | 129365  |
| EXP-SORnu.Ubq1:1:7                    | 95         | 23375,5 | 616,83  | 25125,3 |
| EXP-SORnu.Ubq1:1:8                    | 97         | 8431,75 | 1630,08 | 55095,6 |
| EXP-SETit.Ubq1:1:5                    | 103        | 20496,5 | 2358,83 | 88695,8 |
| EXP-SETit.Ubq1:1:7                    | 106        | 75728,5 | 4723,08 | 185224  |
| EXP-SETit.Ubq1:1:6                    | 108        | 44148,3 | 4962,08 | 161216  |

#### (continuación)

| Secuencia EXP    | SEQ ID NO: | GUS     | FLuc    | RLuc    |
|------------------|------------|---------|---------|---------|
| EXP-Sv.Ubq1:1:7  | 110        | 15043,8 | 1888,33 | 74670,6 |
| EXP-Sv.Ubq1:1:8  | 116        | 31997,8 | 3219,83 | 113787  |
| EXP-Sv.Ubq1:1:10 | 118        | 38952,8 | 7011,33 | 220209  |
| EXP-Zm.UbqM1:1:6 | 122        | 30528,3 | 2453,58 | 90113,1 |
| EXP-Zm.UbqM1:1:8 | 134        | 34986,3 | 2553,78 | 105725  |
| Exp-Sb.Ubq4:1:2  | 140        | 9982,25 | 2171,58 | 72593,8 |
| Exp-Sb.Ubq6:1:2  | 144        | 33689   | 3879,58 | 114710  |

Para comparar la actividad relativa de cada secuencia EXP, se expresaron los valores de GUS como una relación de GUS a la actividad de luciferasa y se normalizaron con respecto a los niveles de expresión observados para EXP-Os.Act1:1:1 y EXP-CaMV.35S-enh+Ta.Lhcb1+Os.Act1:1:1. La tabla 4 a continuación muestra las relaciones GUS/RLuc de expresión normalizada con respecto a la expresión dirigida de EXP-Os.Act1:1:1 y EXP-CaMV.35S-enh+Ta.Lhcb1+Os.Act1:1:1 en protoplastos de maíz. La tabla 5 a continuación muestra las relaciones GUS/FLuc de expresión normalizada con respecto a la expresión dirigida de EXP-Os.Act1:1:1 y EXP-CaMV.35S-enh+Ta.Lhcb1+Os.Act1:1:1 en protoplastos de maíz.

Tabla 4. Relaciones de expresión de GUS/RLuc y GUS/FLuc normalizada con respecto a EXP-CaMV.35S-enh+Ta.Lhcb1+Os.Act1:1:1 (SEQ ID NO: 161) en protoplastos de maíz.

| Secuencia EXP                             | SEQ ID NO: | GUS/FLuc con respecto a EXP-<br>CaMV.35S-enh+Ta.Lhcb1 +<br>Os.Act1:1:1 | GUS/RLuc con respecto a EXP-<br>CaMV.35S-enh+Ta.Lhcb1 +<br>Os.Act1:1:1 |
|-------------------------------------------|------------|------------------------------------------------------------------------|------------------------------------------------------------------------|
| EXP-Os.Act1:1:9                           | 162        | 0,14                                                                   | 0,16                                                                   |
| EXP-CaMV.35S-<br>enh+Ta.Lhcb1+Os.Act1:1:1 | 161        | 1                                                                      | 1                                                                      |
| EXP-AGRne.Ubq1:1:7                        | 1          | 2,66                                                                   | 3,17                                                                   |
| EXP-AGRne.Ubq 1:1:8                       | 5          | 1,33                                                                   | 1,78                                                                   |
| EXP-AGRne.Ubq1:1:9                        | 7          | 1,62                                                                   | 1,89                                                                   |
| EXP-ARUdo.Ubq1:1:8                        | 13         | 6,27                                                                   | 7,85                                                                   |
| EXP-ARUdo.Ubq1:1:9                        | 18         | 4,98                                                                   | 6,34                                                                   |
| EXP-ARUdo.Ubq 1:1:11                      | 21         |                                                                        | 3,3                                                                    |
| EXP-ARUdo.Ubq2:1:8                        | 27         | 1,47                                                                   | 2,01                                                                   |
| EXP-ARUdo.Ubq2:1:9                        | 30         | 1,13                                                                   | 1,44                                                                   |
| EXP-ARUdo.Ubq2:1:10                       | 32         | 2,18                                                                   | 2,77                                                                   |
| EXP-BOUgr.Ubq1:1:6                        | 38         | 2,88                                                                   | 4,45                                                                   |
| EXP-BOUgr.Ubq1:17                         | 41         | 1,34                                                                   | 2,03                                                                   |
| EXP-BOUgr.Ubq1:1:8                        | 43         | 0,72                                                                   | 0,98                                                                   |
| EXP-BOUgr.Ubq2:1:14                       | 52         | 2,77                                                                   | 3,15                                                                   |
| EXP-BOUgr.Ubq2:1:16                       | 58         | 3,97                                                                   | 5,14                                                                   |

| Secuencia EXP        | SEQ ID NO: | GUS/FLuc con respecto a EXP-<br>CaMV.35S-enh+Ta.Lhcb1 +<br>Os.Act1:1:1 | GUS/RLuc con respecto a EXP-<br>CaMV.35S-enh+Ta.Lhcb1 +<br>Os.Act1:1:1 |
|----------------------|------------|------------------------------------------------------------------------|------------------------------------------------------------------------|
| EXP-BOUgr.Ubq2:1:17  | 60         | 1,67                                                                   | 2,17                                                                   |
| EXP-MISsi.Ubq1:1:8   | 70         | 0,88                                                                   | 1,48                                                                   |
| EXP-MISsi.Ubq1:1:10  | 72         | 3,42                                                                   | 4,52                                                                   |
| EXP-MISsi.Ubq1:1:11  | 74         | 0,37                                                                   | 0,53                                                                   |
| EXP-MISsi.Ubq1:1:7   | 76         | 0,36                                                                   | 0,59                                                                   |
| EXP-SCHsc.Ubq1:1:9   | 78         | 0,86                                                                   | 1,05                                                                   |
| EXP-SCHsc.Ubq1:1:7   | 84         | 1,12                                                                   | 1,71                                                                   |
| EXP-SCHsc.Ubq 1:1:10 | 86         | 1,52                                                                   | 2,06                                                                   |
| EXP-SORnu.Ubq1:1:6   | 92         | 0,23                                                                   | 0,34                                                                   |
| EXP-SORnu.Ubq1:1:7   | 95         | 9,28                                                                   | 10,23                                                                  |
| EXP-SORnu.Ubq1:1:8   | 97         | 1,27                                                                   | 1,68                                                                   |
| EXP-SETit.Ubq1:1:5   | 103        | 2,13                                                                   | 2,54                                                                   |
| EXP-SETit.Ubq1:1:7   | 106        | 3,92                                                                   | 4,49                                                                   |
| EXP-SETit.Ubq1:1:6   | 108        | 2,18                                                                   | 3,01                                                                   |
| EXP-Sv.Ubq1:1:7      | 110        | 1,95                                                                   | 2,21                                                                   |
| EXP-Sv.Ubq 1:1:8     | 116        | 2,43                                                                   | 3,09                                                                   |
| EXP-Sv.Ubq 1:1:10    | 118        | 1,36                                                                   | 1,94                                                                   |
| EXP-Zm.UbqM1:1:6     | 122        | 3,05                                                                   | 3,72                                                                   |
| EXP-Zm.UbqM1:1:8     | 134        | 3,35                                                                   | 3,64                                                                   |
| Exp-Sb.Ubq4:1:2      | 140        | 1,13                                                                   | 1,51                                                                   |
| Exp-Sb.Ubq6:1:2      | 144        | 2,13                                                                   | 3,23                                                                   |

Tabla 5. Relaciones de expresión de GUS/RLuc y GUS/FLuc normalizada con respecto a EXP-Os.Act1:1:9 (SEQ ID NO: 162) en protoplastos de hojas de maíz.

| Secuencia EXP                             | SEQ ID NO: | GUS/FLuc con respecto a EXP-Os.Act1:1:9 | GUS/RLuc con respecto a EXP-Os.Act1:1:9 |
|-------------------------------------------|------------|-----------------------------------------|-----------------------------------------|
| EXP-Os.Act1:1:9                           | 162        | 1                                       | 1                                       |
| EXP-CaMV.35S-<br>enh+Ta.Lhcb1+Os.Act1:1:1 | 161        | 7,09                                    | 6,23                                    |
| EXP-AGRne.Ubq1:1:7                        | 1          | 18,87                                   | 19,76                                   |
| EXP-AGRne.Ubq 1:1:8                       | 5          | 9,46                                    | 11,07                                   |
| EXP-AGRne.Ubq 1:1:9                       | 7          | 11,46                                   | 11,79                                   |

| Secuencia EXP        | SEQ ID NO: | GUS/FLuc con respecto a EXP-Os.Act1:1:9 | GUS/RLuc con respecto a EXP-Os.Act1:1:9 |
|----------------------|------------|-----------------------------------------|-----------------------------------------|
| EXP-ARUdo. Ubq 1:1:8 | 13         | 44,45                                   | 48,86                                   |
| EXP-ARUdo. Ubq 1:1:9 | 18         | 35,28                                   | 39,48                                   |
| EXP-ARUdo.Ubq 1:1:11 | 21         |                                         | 20,53                                   |
| EXP-ARUdo.Ubq2:1:8   | 27         | 10,41                                   | 12,51                                   |
| EXP-ARUdo.Ubq2:1:9   | 30         | 7,98                                    | 8,99                                    |
| EXP-ARUdo.Ubq2:1:10  | 32         | 15,49                                   | 17,23                                   |
| EXP-BOUgr.Ubq1:1:6   | 38         | 20,42                                   | 27,73                                   |
| EXP-BOUgr.Ubq 1:1:7  | 41         | 9,52                                    | 12,65                                   |
| EXP-BOUgr.Ubq1:1:8   | 43         | 5,11                                    | 6,13                                    |
| EXP-BOUgr.Ubq2:1:14  | 52         | 19,63                                   | 19,59                                   |
| EXP-BOUgr.Ubq2:1:16  | 58         | 28,14                                   | 31,99                                   |
| EXP-BOUgr.Ubq2:1:17  | 60         | 11,81                                   | 13,53                                   |
| EXP-MISsi.Ubq 1:1:8  | 70         | 6,26                                    | 9,19                                    |
| EXP-MISsi.Ubq1:1:10  | 72         | 24,21                                   | 28,16                                   |
| EXP-MISsi.Ubq 1:1:11 | 74         | 2,61                                    | 3,3                                     |
| EXP-MISsi.Ubq 1:1:7  | 76         | 2,54                                    | 3,67                                    |
| EXP-SCHsc.Ubq1:1:9   | 78         | 6,08                                    | 6,56                                    |
| EXP-SCHsc.Ubq1:1:7   | 84         | 7,9                                     | 10,67                                   |
| EXP-SCHsc.Ubq 1:1:10 | 86         | 10,75                                   | 12,84                                   |
| EXP-SORnu.Ubq 1:1:6  | 92         | 1,65                                    | 2,1                                     |
| EXP-SORnu.Ubq1:1:7   | 95         | 65,74                                   | 63,67                                   |
| EXP-SORnu.Ubq1:1:8   | 97         | 8,97                                    | 10,47                                   |
| EXP-SETit.Ubq1:1:5   | 103        | 15,07                                   | 15,82                                   |
| EXP-SETit.Ubq1:1:7   | 106        | 27,81                                   | 27,98                                   |
| EXP-SETit.Ubq1:1:6   | 108        | 15,43                                   | 18,74                                   |
| EXP-Sv.Ubq1:1:7      | 110        | 13,82                                   | 13,79                                   |
| EXP-Sv.Ubq1:1:8      | 116        | 17,24                                   | 19,25                                   |
| EXP-Sv.Ubq1:1:10     | 118        | 9,64                                    | 12,11                                   |
| EXP-Zm. UbqM1:1:6    | 122        | 21,58                                   | 23,19                                   |
| EXP-Zm. UbqM1:1:8    | 134        | 23,76                                   | 22,65                                   |
| Exp-Sb.Ubq4:1:2      | 140        | 7,97                                    | 9,41                                    |
| Exp-Sb.Ubq6:1:2      | 144        | 15,06                                   | 20,1                                    |

Como se puede ver en las Tablas 9 y 10, todas las secuencias EXP fueron capaces de dirigir la expresión del transgén de GUS en células de maíz. La expresión de GUS promedio fue mayor para todas las secuencias EXP en relación con EXP-Os.Act1:1:9. Las secuencias EXP, EXP-AGRne.Ubq1:1:7 (SEQ ID NO: 1), EXP-AGRne.Ubq1:1:8 (SEQ ID NO: 5), EXP-AGRne.Ubq1:1:9 (SEQ ID NO: 7), EXP-ARUdo.Ubq1:1:8 (SEQ ID NO: 13), EXP-ARUdo.Ubq1:1:9 (SEQ ID NO: 18), EXP-ARU- do.Ubq1:1:11 (SEQ ID NO: 21), EXP-ARUdo.Ubq2:1:8 (SEQ ID NO: 27), EXP-ARUdo.Ubq2:1:9 (SEQ ID NO: 30), EXP-ARUdo.Ubq2:1:10 (SEQ ID NO: 32), EXP-BOUgr.Ubq1:1:6 (SEQ ID NO: 38), EXP-BOUgr.Ubq1:1:7 (SEQ ID NO: 41), EXP-BOUgr.Ubq2:1:14 (SEQ ID NO: 52), EXP-BOUgr.Ubq2:1:16 (SEQ ID NO: 58), EXP-BOUgr.Ubq2:1:17 (SEQ ID NO: 60), EXP-MISsi.Ubq1:1:10 (SEQ ID NO: 72), EXP-SCHsc.Ubq1:1:7 (SEQ ID NO: 95), EXP-SORnu.Ubq1:1:7 (SEQ ID NO: 96), EXP-SORnu.Ubq1:1:7 (SEQ ID NO: 106), EXP-SETit.Ubq1:1:6 (SEQ ID NO: 108), EXP-SETit.Ubq1:1:7 (SEQ ID NO: 110), EXP-SETit.Ubq1:1:8 (SEQ ID NO: 116), EXP-Sv.Ubq1:1:10 (SEQ ID NO: 118), EXP-Zm.UbqM1:1:6 (SEQ ID NO: 134), EXP-Sb.Ubq4:1:2 (SEQ ID NO: 140) y EXP-Sb.Ubq6:1:2 (SEQ ID NO: 144) demostraron niveles de expresión de GUS por encima de EXP-CaMV.35S-enh+Ta.Lhcb1+Os.Act1:1:1.

En un segundo conjunto de experimentos, un amplicón de casete de expresión de GUS que comprende la secuencia EXP EXP-Zm.UbqM1:1:7 (SEQ ID NO: 128) se comparó con los amplicones de control, PCR0145942 (EXP-Os.Act1:1:9, SEQ ID NO: 162) y PCR0145944 (EXP-CaMV.35S-enh+Zm.DnaK: 1:1, SEQ ID NO: 161) con respecto a la expresión de GUS. La expresión de GUS controlada por la secuencia EXP EXP-Zm.UbqM1:1:7 fue mayor que la de los dos controles. La tabla 6 a continuación muestra los valores medios de GUS y luciferasa determinados para cada amplicón. La tabla 7 a continuación muestra las relaciones GUS/RLuc y GUS/FLuc de expresión normalizadas con respecto a la expresión dirigida de EXP-Os.Act1:1:9 y EXP-CaMV.35S-enh+Zm.DnaK:1:1 en protoplastos de maíz.

Tabla 6. Actividad media de GUS y luciferasa en protoplastos de hojas de maíz transformadas.

| Secuencia EXP                         | SEQ ID NO: | GUS      | FLuc     | RLuc      |
|---------------------------------------|------------|----------|----------|-----------|
| EXP-Os.Act1:1:9                       | 162        | 1512,25  | 11333,75 | 190461,00 |
| EXP-CaMV.35S-enh+Ta.Lhcb1+Os.Act1:1:1 | 161        | 41176,50 | 13885,75 | 330837,25 |
| EXP-Zm.UbqM1:1:7                      | 128        | 79581,50 | 15262,50 | 330755,75 |

Tabla 7. Relaciones de expresión de GUS/RLuc y GUS/FLuc normalizada con respecto a EXP-Os.Act1:1:9 (SEQ ID NO: 161) y EXP-CaMV.35S-enh+Zm.DnaK:1:1 (SEQ ID NO: 160) en protoplastos de hojas de maíz.

| Secuencia EXP                             | SEQ ID NO: | GUS      | FLuc     | RLuc      |
|-------------------------------------------|------------|----------|----------|-----------|
| EXP-Os.Act1:1:9                           | 162        | 1512,25  | 11333,75 | 190461,00 |
| EXP-CaMV.35S-<br>enh+Ta.Lhcb1+Os.Act1:1:1 | 161        | 41176,50 | 13885,75 | 330837,25 |
| EXP-Zm.UbqM1:1:7                          | 128        | 79581,50 | 15262,50 | 330755,75 |

La eficacia de los elementos reguladores que impulsan la expresión de GUS de los amplicones se puede estudiar de manera similar en protoplastos de hojas de caña de azúcar. Por ejemplo, se pueden transformar los protoplastos de caña de azúcar con amplicones de ADN procedentes de vectores de expresión de plantas que contienen una secuencia EXP, que conduce la expresión del transgén GUS, y se compararon con protoplastos de hoja en los que la expresión de GUS está dirigida por promotores constitutivos conocidos.

### Ejemplo 3

10

25

30

35

40

# Análisis de elementos reguladores que conducen GUS en protoplastos de trigo utilizando GUS amplicones de casete de expresión

Se transformaron protoplastos de la hoja de trigo con amplicones de ADN procedentes de vectores de expresión de plantas que contienen una secuencia EXP, que conduce la expresión del transgén GUS, y se compararon con protoplastos de hoja en los que la expresión de GUS se dirigió por promotores constitutivos conocidos.

Se transformaron las células de protoplasto de trigo procedentes del tejido de la hoja utilizando procedimientos conocidos en la materia con amplicones producidos a partir de la amplificación de casetes de expresión de GUS que comprenden vectores de expresión de plantas para comparar la expresión de un transgén (GUS), dirigido por las secuencias EXP enumeradas en la Tabla 3, con los promotores constitutivos conocidos con la metodología descrita en un ejemplo anterior (Ejemplo 2), utilizando los mismos amplicones de casete de expresión de GUS que los

utilizados para el ensayo en maíz en el Ejemplo 2 anterior. Los amplicones de casete de expresión de GUS de control y los plásmidos de luciferasa utilizados para la transformación de protoplastos de trigo también fueron los mismos que los presentados en el ejemplo anterior y proporcionados en la Tabla 3 anterior en el Ejemplo 2. Análogamente, se utilizaron controles negativos para la determinación del origen de GUS y luciferasa, como se describe anteriormente. Se transformaron los protoplastos de la hoja de trigo utilizando un procedimiento de transformación basado en PEG, como se describe en el Ejemplo 2 anterior. La Tabla 8 enumera la actividad media de GUS y LUC observada en las células de protoplastos de la hoja de trigo transformadas, y la Tabla 9 y 10 muestra las relaciones de expresión normalizadas de GUS/FLuc y GUS/RLuc en protoplastos de trigo en relación con los controles constitutivos de EXP.

5

10

Tabla 8. Actividad media de GUS y luciferasa en protoplastos de hojas de trigo transformadas.

| Secuencia EXP                         | SEQ ID NO: | GUS     | FLuc    | RLuc    |
|---------------------------------------|------------|---------|---------|---------|
| VACIO                                 |            | 262,56  | 1109,78 | 61422,1 |
| EXP-Os.Act1:1:9                       | 162        | 2976,33 | 730,11  | 53334,8 |
| EXP-CaMV.35S-enh+Ta.Lhcb1+Os.Act1:1:1 | 161        | 29299,3 | 741,78  | 50717,4 |
| EXP-AGRne.Ubq1:1:7                    | 1          | 27078,3 | 754,44  | 44235,8 |
| EXP-AGRne.Ubq 1:1:8                   | 5          | 22082,7 | 958,11  | 55774,8 |
| EXP-AGRne.Ubq 1:1:9                   | 7          | 13882,7 | 699,78  | 49273,4 |
| EXP-ARUdo.Ubq 1:1:8                   | 13         | 65628   | 791,44  | 56358,8 |
| EXP-ARUdo.Ubq 1:1:9                   | 18         | 87615   | 801,44  | 53246,4 |
| EXP-ARUdo.Ubq1:1:11                   | 21         | 19224,3 | 143,44  | 14104,1 |
| EXP-ARUdo.Ubq2:1:8                    | 27         | 25453,3 | 835,11  | 57679,4 |
| EXP-ARUdo.Ubq2:1:9                    | 30         | 26720,7 | 702,44  | 47455,4 |
| EXP-ARUdo.Ubq2:1:10                   | 32         | 37089,3 | 859,11  | 57814,4 |
| EXP-BOUgr.Ubq1:1:6                    | 38         | 35146   | 995,44  | 64418,8 |
| EXP-BOUgr.Ubq1:1:7                    | 41         | 18077   | 857,78  | 55793,4 |
| EXP-BOUgr.Ubq1:1:8                    | 43         | 11723,7 | 938,44  | 59362,1 |
| EXP-BOUgr.Ubq2:1:14                   | 52         | 38109,3 | 875,11  | 58048,1 |
| EXP-BOUgr.Ubq2:1:16                   | 58         | 37384   | 860,44  | 52447,8 |
| EXP-BOUgr.Ubq2:1:17                   | 60         | 24090,7 | 968,78  | 53057,8 |
| EXP-MISsi.Ubq 1:1:8                   | 70         | 16456,7 | 1021,78 | 61684,1 |
| EXP-MISsi.Ubq1:1:10                   | 72         | 42816,7 | 839,78  | 46688,1 |
| EXP-MISsi.Ubq 1:1:11                  | 74         | 20625,7 | 987,78  | 61842,1 |
| EXP-MISsi.Ubq 1:1:7                   | 76         | 4913,67 | 764,78  | 64720,1 |
| EXP-SCHsc.Ubq1:1:9                    | 78         | 9726    | 937,11  | 54725,4 |
| EXP-SCHsc.Ubq1:1:7                    | 84         | 13374,7 | 1112,44 | 73815,4 |
| EXP-SCHsc.Ubq 1:1:10                  | 86         | 13650   | 936,78  | 62242,1 |
| EXP-SORnu.Ubq1:1:6                    | 92         | 8188,17 | 753,83  | 50572,5 |
| EXP-SORnu.Ubq1:1:7                    | 95         | 83233,7 | 854,44  | 54410,1 |

| Secuencia EXP      | SEQ ID NO: | GUS     | FLuc    | RLuc    |
|--------------------|------------|---------|---------|---------|
| EXP-SORnu.Ubq1:1:8 | 97         | 21904,7 | 1011,83 | 60852   |
| EXP-SETit.Ubq1:1:5 | 103        | 39427,7 | 908,78  | 57463,1 |
| EXP-SETit.Ubq1:1:7 | 106        | 108091  | 809,44  | 49330,4 |
| EXP-SETit.Ubq1:1:6 | 108        | 58703   | 809,11  | 46110,1 |
| EXP-Sv.Ubq1:1:7    | 110        | 29330   | 684,11  | 43367,1 |
| EXP-Sv.Ubq1:1:8    | 116        | 53359   | 698,11  | 40076,4 |
| EXP-Sv.Ubq1:1:10   | 118        | 49122,7 | 901,44  | 53180,8 |
| EXP-Zm. UbqM1:1:6  | 122        | 37268   | 945,78  | 54088,1 |
| EXP-Zm. UbqM1:1:8  | 134        | 51408   | 677,78  | 47297,4 |
| Exp-Sb.Ubq4:1:2    | 140        | 35660,3 | 1114,11 | 62591,1 |
| Exp-Sb.Ubq6:1:2    | 144        | 27543   | 915,11  | 57826,4 |

Tabla 9. Relaciones de expresión de GUS/RLuc y GUS/FLuc normalizada con respecto a EXP-CaMV.35S-enh+Ta.Lhcb1+Os.Act1:1:1 (SEQ ID NO: 161) en protoplastos de trigo.

| Secuencia EXP                             | SEQ ID NO: | GUS     | FLuc    | RLuc    |
|-------------------------------------------|------------|---------|---------|---------|
| VACIO                                     |            | 262,56  | 1109,78 | 61422,1 |
| EXP-Os.Act1:1:9                           | 162        | 2976,33 | 730,11  | 53334,8 |
| EXP-CaMV.35S-<br>enh+Ta.Lhcb1+Os.Act1:1:1 | 161        | 29299,3 | 741,78  | 50717,4 |
| EXP-AGRne.Ubq1:1:7                        | 1          | 27078,3 | 754,44  | 44235,8 |
| EXP-AGRne.Ubq 1:1:8                       | 5          | 22082,7 | 958,11  | 55774,8 |
| EXP-AGRne.Ubq 1:1:9                       | 7          | 13882,7 | 699,78  | 49273,4 |
| EXP-ARUdo.Ubq 1:1:8                       | 13         | 65628   | 791,44  | 56358,8 |
| EXP-ARUdo.Ubq 1:1:9                       | 18         | 87615   | 801,44  | 53246,4 |
| EXP-ARUdo.Ubq1:1:11                       | 21         | 19224,3 | 143,44  | 14104,1 |
| EXP-ARUdo.Ubq2:1:8                        | 27         | 25453,3 | 835,11  | 57679,4 |
| EXP-ARUdo.Ubq2:1:9                        | 30         | 26720,7 | 702,44  | 47455,4 |
| EXP-ARUdo.Ubq2:1:10                       | 32         | 37089,3 | 859,11  | 57814,4 |
| EXP-BOUgr.Ubq1:1:6                        | 38         | 35146   | 995,44  | 64418,8 |
| EXP-BOUgr.Ubq1:1:7                        | 41         | 18077   | 857,78  | 55793,4 |
| EXP-BOUgr.Ubq1:1:8                        | 43         | 11723,7 | 938,44  | 59362,1 |
| EXP-BOUgr.Ubq2:1:14                       | 52         | 38109,3 | 875,11  | 58048,1 |
| EXP-BOUgr.Ubq2:1:16                       | 58         | 37384   | 860,44  | 52447,8 |
| EXP-BOUgr.Ubq2:1:17                       | 60         | 24090,7 | 968,78  | 53057,8 |

| Secuencia EXP        | SEQ ID NO: | GUS     | FLuc    | RLuc    |
|----------------------|------------|---------|---------|---------|
| EXP-MISsi.Ubq 1:1:8  | 70         | 16456,7 | 1021,78 | 61684,1 |
| EXP-MISsi.Ubq1:1:10  | 72         | 42816,7 | 839,78  | 46688,1 |
| EXP-MISsi.Ubq 1:1:11 | 74         | 20625,7 | 987,78  | 61842,1 |
| EXP-MISsi.Ubq 1:1:7  | 76         | 4913,67 | 764,78  | 64720,1 |
| EXP-SCHsc.Ubq1:1:9   | 78         | 9726    | 937,11  | 54725,4 |
| EXP-SCHsc.Ubq1:1:7   | 84         | 13374,7 | 1112,44 | 73815,4 |
| EXP-SCHsc.Ubq 1:1:10 | 86         | 13650   | 936,78  | 62242,1 |
| EXP-SORnu.Ubq1:1:6   | 92         | 8188,17 | 753,83  | 50572,5 |
| EXP-SORnu.Ubq 1:1:7  | 95         | 83233,7 | 854,44  | 54410,1 |
| EXP-SORnu.Ubq1:1:8   | 97         | 21904,7 | 1011,83 | 60852   |
| EXP-SETit.Ubq1:1:5   | 103        | 39427,7 | 908,78  | 57463,1 |
| EXP-SETit.Ubq1:1:7   | 106        | 108091  | 809,44  | 49330,4 |
| EXP-SETit.Ubq1:1:6   | 108        | 58703   | 809,11  | 46110,1 |
| EXP-Sv.Ubq1:1:7      | 110        | 29330   | 684,11  | 43367,1 |
| EXP-Sv.Ubq 1:1:8     | 116        | 53359   | 698,11  | 40076,4 |
| EXP-Sv.Ubq 1:1:10    | 118        | 49122,7 | 901,44  | 53180,8 |
| EXP-Zm. UbqM1:1:6    | 122        | 37268   | 945,78  | 54088,1 |
| EXP-Zm. UbqM1:1:8    | 134        | 51408   | 677,78  | 47297,4 |
| Exp-Sb.Ubq4:1:2      | 140        | 35660,3 | 1114,11 | 62591,1 |
| Exp-Sb.Ubq6:1:2      | 144        | 27543   | 915,11  | 57826,4 |

Tabla 10. Relaciones de expresión de GUS/RLuc y GUS/FLuc normalizada con respecto a EXP-Os.Act1:1:9 (SEQ ID NO: 162) en protoplastos de hojas de maíz.

| Secuencia EXP                             | SEQ ID NO: | GUS/FLuc con respecto a EXP-Os.Act1:1:9 | GUS/RLuc con respecto a EXP-Os.Act1:1:9 |
|-------------------------------------------|------------|-----------------------------------------|-----------------------------------------|
| EXP-Os.Act1:1:9                           | 162        | 1                                       | 1                                       |
| EXP-CaMV.35S-<br>enh+Ta.Lhcb1+Os.Act1:1:1 | 161        | 9,69                                    | 10,35                                   |
| EXP-AGRne.Ubq 1:1:7                       | 1          | 8,8                                     | 10,97                                   |
| EXP-AGRne.Ubq 1:1:8                       | 5          | 5,65                                    | 7,09                                    |
| EXP-AGRne.Ubq 1:1:9                       | 7          | 4,87                                    | 5,05                                    |
| EXP-ARUdo.Ubq1:1:8                        | 13         | 20,34                                   | 20,87                                   |
| EXP-ARUdo.Ubq1:1:9                        | 18         | 26,82                                   | 29,49                                   |
| EXP-ARUdo.Ubq 1:1:11                      | 21         | 32,88                                   | 24,43                                   |

### (continuación)

| Secuencia EXP        | SEQ ID NO: | GUS/FLuc con respecto a EXP-Os.Act1:1:9 | GUS/RLuc con respecto a EXP-Os.Act1:1:9 |  |
|----------------------|------------|-----------------------------------------|-----------------------------------------|--|
| EXP-ARUdo.Ubq2:1:8   | 27         | 7,48                                    | 7,91                                    |  |
| EXP-ARUdo.Ubq2:1:9   | 30         | 9,33                                    | 10,09                                   |  |
| EXP-ARUdo.Ubq2:1:10  | 32         | 10,59                                   | 11,5                                    |  |
| EXP-BOUgr.Ubq1:1:6   | 38         | 8,66                                    | 9,78                                    |  |
| EXP-BOUgr.Ubq1:1:7   | 41         | 5,17                                    | 5,81                                    |  |
| EXP-BOUgr.Ubq1:1:8   | 43         | 3,06                                    | 3,54                                    |  |
| EXP-BOUgr.Ubq2:1:14  | 52         | 10,68                                   | 11,76                                   |  |
| EXP-BOUgr.Ubq2:1:16  | 58         | 10,66                                   | 12,77                                   |  |
| EXP-BOUgr.Ubq2:1:17  | 60         | 6,1                                     | 8,14                                    |  |
| EXP-MISsi.Ubq 1:1:8  | 70         | 3,95                                    | 4,78                                    |  |
| EXP-MISsi.Ubq1:1:10  | 72         | 12,51                                   | 16,43                                   |  |
| EXP-MISsi.Ubq 1:1:11 | 74         | 5,12                                    | 5,98                                    |  |
| EXP-MISsi.Ubq 1:1:7  | 76         | 1,58                                    | 1,36                                    |  |
| EXP-SCHsc.Ubq1:1:9   | 78         | 2,55                                    | 3,18                                    |  |
| EXP-SCHsc.Ubq1:1:7   | 84         | 2,95                                    | 3,25                                    |  |
| EXP-SCHsc.Ubq 1:1:10 | 86         | 3,57                                    | 3,93                                    |  |
| EXP-SORnu.Ubq 1:1:6  | 92         | 2,66                                    | 2,9                                     |  |
| EXP-SORnu.Ubq1:1:7   | 95         | 23,9                                    | 27,41                                   |  |
| EXP-SORnu.Ubq1:1:8   | 97         | 5,31                                    | 6,45                                    |  |
| EXP-SETit.Ubq 1:1:5  | 103        | 10,64                                   | 12,3                                    |  |
| EXP-SETit.Ubq1:1:7   | 106        | 32,76                                   | 39,26                                   |  |
| EXP-SETit.Ubq1:1:6   | 108        | 17,8                                    | 22,81                                   |  |
| EXP-Sv.Ubq1:1:7      | 110        | 10,52                                   | 12,12                                   |  |
| EXP-Sv.Ubq1:1:8      | 116        | 18,75                                   | 23,86                                   |  |
| EXP-Sv.Ubq1:1:10     | 118        | 13,37                                   | 16,55                                   |  |
| EXP-Zm.UbqM1:1:6     | 122        | 9,67                                    | 12,35                                   |  |
| EXP-Zm.UbqM1:1:8     | 134        | 18,61                                   | 19,48                                   |  |
| Exp-Sb.Ubq4:1:2      | 140        | 7,85                                    | 10,21                                   |  |
| Exp-Sb.Ubq6:1:2      | 144        | 7,38                                    | 8,54                                    |  |

Como se puede ver en las Tablas 9 y 10 anteriores, todas las secuencias EXP fueron capaces de dirigir la expresión del transgén de GUS en células de trigo. Todas las secuencias EXP condujeron a la expresión de GUS a niveles más altos que los de EXP-Os.Act1:1:9 en células de trigo. Las secuencias EXP EXP-ARUdo.Ubq1:1:8 (SEQ ID NO: 13), EXP-ARUdo.Ubq1:1:10 (SEQ ID NO: 21), EXP-ARUdo.Ubq2:1:10 (SEQ ID NO: 32), EXP-BOUgr.Ubq2:1:14 (SEQ ID NO: 52), EXP-BOUgr.Ubq2:1:16 (SEQ ID NO: 58), EXP-

5

BOUgr.Ubq2:1:17 (SEQ ID NO: 60), EXP-MISsi.Ubq1:1:10 (SEQ ID NO: 72), EXP-SORnu.Ubq1:1:7 (SEQ ID NO: 95), EXP-SETit.Ubq1:1:5 (SEQ ID NO: 103), EXP-SETit.Ubq1:1:7 (SEQ ID NO: 106), EXP-SETit.Ubq1:1:6 (SEQ ID NO: 108), EXP-Sv.Ubq1:1:7 (SEQ ID NO: 110), EXP-Sv.Ubq1:1:8 (SEQ ID NO: 116), EXP-Sv.Ubq1:1:10 (SEQ ID NO: 118), EXP-Zm.UbqM1:1:6 (SEQ ID NO: 122) y EXP-Zm.UbqM1:1:8 (SEQ ID NO: 134) demostraron niveles de expresión de GUS iguales o superiores a la expresión de GUS dirigida por EXP-CaMV.35S-enh+Ta.Lhcb1+Os.Act1:1:1 en células de trigo.

En un segundo conjunto de experimentos, el casete de expresión de GUS del amplicón que comprende EXP-ARUdo.Ubq1:1:11 (SEQ ID NO: 21) se comparó con los controles EXP-Os.Act1:1:9 (SEQ ID NO: 162) y EXP-CaMV.35S-enh+Zm.DnaK:1:1 (SEQ ID NO: 161). La tabla 11 a continuación muestra los valores medios de GUS y luciferasa determinados para cada amplicón. La tabla 12 a continuación muestra las relaciones GUS/RLuc de expresión normalizada con respecto a la expresión dirigida de EXP-Os.Act1:1:9 y EXP-CaMV.35S-enh+Zm.DnaK:1:1 en protoplastos de trigo.

Tabla 11. Actividad media de GUS y luciferasa en protoplastos de hojas de trigo transformadas.

| Secuencia EXP                         | SEQ ID NO: | GUS      | RLuc      |
|---------------------------------------|------------|----------|-----------|
| VACIO                                 |            | 20,75    | 187112,50 |
| EXP-Os.Act1:1:9                       | 162        | 1234,00  | 176970,50 |
| EXP-CaMV.35S-enh+Ta.Lhcb1+Os.Act1:1:1 | 161        | 12883,50 | 119439,00 |
| EXP-ARUdo.Ubq1:1:11                   | 21         | 30571,50 | 135037,50 |

Tabla 12. Relaciones de expresión de GUS/RLuc y GUS/FLuc normalizada con respecto a EXP-Os.Act1:1:9 (SEQ ID NO: 161) y EXP-CaMV.35S-enh+Zm.DnaK:1:1 (SEQ ID NO: 160) en protoplastos de hojas de trigo.

| Secuencia EXP                             | SEQ ID NO: | GUS/RLuc con<br>respecto a EXP-<br>Os.Act1:1:9 | GUS/RLuc con respecto a EXP-<br>CaMV.35S-enh+Ta.Lhcb1+Os.Act1:1:1 |
|-------------------------------------------|------------|------------------------------------------------|-------------------------------------------------------------------|
| EXP-Os.Act1:1:9                           | 162        | 1,00                                           | 0,06                                                              |
| EXP-CaMV.35S-<br>enh+Ta.Lhcb1+Os.Act1:1:1 | 161        | 15,47                                          | 1,00                                                              |
| EXP-ARUdo.Ubq 1:1:11                      | 21         | 32,47                                          | 2,10                                                              |

Como se puede ver en la Tabla 12 anterior, La expresión de GUS dirigida por EXP-ARUdo.Ubq1:1:11 (SEQ ID NO: 21) fue mayor que los dos controles constitutivos, EXP-Os.Act1:1:9 y EXP-CaMV.35S-enh+Zm.DnaK:1:1.

### Ejemplo 4

5

10

15

#### Análisis de elementos reguladores que conducen GUS en protoplastos de maíz y trigo

20 Se transformaron los protoplastos de hojas de maíz y trigo con vectores de expresión de plantas que contenían una secuencia EXP que dirige la expresión del transgén de la β-glucuronidasa (GUS) y se compararon con la expresión de GUS en los protoplastos de hojas en los que la expresión de GUS está dirigido por promotores constitutivos conocidos.

La expresión de un transgén dirigido por EXP-CI.Ubq1O (SEQ ID NO: 168) se comparó con la expresión de promotores constitutivos conocidos. Se clonaron las secuencias EXP anteriores en vectores de expresión de plantas como se muestra en la Tabla 13 a continuación para producir vectores en los que una secuencia EXP está unida operativamente en el 5' a un indicador GUS que contenía un intrón procesable (denominado GUS-2, SEQ ID NO: 160) procedente del gen de ST- LS1 específico de tejido inducible por luz de patata (referencia de GenBank: X04753) o una secuencia codificante para GUS contigua (GUS-1, SEQ ID NO: 159), que está unido operativamente en el 5' a una 3' UTR procedente del gen de la nopalina sintasa de *Agrobacterium tumefaciens* (T-AGRtu.nos-1:1:13, SEQ ID NO: 161) o el gen Hsp17 de trigo (T-Ta.Hsp17-1:1:1, SEQ ID NO: 162).

Tabla 13. Construcción del plásmido de expresión de plantas GUS y secuencia EXP correspondiente, secuencia codificante GUS y 3' UTR utilizadas para la transformación de protoplastos de la hoja de maíz. "SEQ ID NO:" se refiere a la secuencia EXP dada.

| Secuencia EXP                             | SEQ ID NO: | GUS/RLuc con<br>respecto a EXP-<br>Os.Act1:1:9 | GUS/RLuc con respecto a EXP-<br>CaMV.35S-enh+Ta.Lhcb1+Os.Act1:1:1 |
|-------------------------------------------|------------|------------------------------------------------|-------------------------------------------------------------------|
| EXP-Os.Act1:1:9                           | 162        | 1,00                                           | 0,06                                                              |
| EXP-CaMV.35S-<br>enh+Ta.Lhcb1+Os.Act1:1:1 | 161        | 15,47                                          | 1,00                                                              |
| EXP-ARUdo.Ubq1:1:11                       | 21         | 32,47                                          | 2,10                                                              |

Dos plásmidos, para su uso en co-transformación y normalización de datos, también se construyeron utilizando procedimientos conocidos en la materia. Cada plásmido contenía una secuencia codificante de luciferasa específica que fue dirigida por una secuencia EXP constitutiva. El vector vegetal pMON19437 comprende un casete de expresión con un promotor constitutivo unido operativamente en el 5' a un intrón, (EXP-CaMV.35S-enh+Zm.DnaK:1:1, SEQ ID NO: 163), unido operativamente en el 5' a una secuencia codificante de luciferasa de luciérnaga (*Photinus pyralis*) (LUCIFERASE:1:3, SEQ ID NO: 156), unido operativamente en el 5' a una 3' UTR desde el gen de la nopalina sintasa de *Agrobacterium tumefaciens* (T-AGRtu.nos-1:1:13, SEQ ID NO: 158). El vector vegetal pMON63934 comprende un casete de expresión con una secuencia EXP constitutiva (EXP-CaMV.35S-enh-Lhcbl, SEQ ID NO: 164), unido operativamente en el 5' a una secuencia codificante de luciferasa de pensamiento de mar (*Renilla reniformis*) (CR-Ren.hRenilla Lucife-0:0:1, SEQ ID NO: 157), unido operativamente en el 5' a una 3' UTR desde el gen de la nopalina sintasa de *Agrobacterium tumefaciens* (T-AGRtu.nos-1:1:13, SEQ ID NO: 158).

Se transformaron los protoplastos de la hoja de maíz utilizando un procedimiento de transformación basado en PEG, que es bien conocido en la materia. Se transformaron las células de protoplasto con ADN de plásmido pMON19437, ADN de plásmido pMON63934 y los plásmidos presentados en la Tabla 13 y se incubaron durante la noche en oscuridad total. Las mediciones de GUS y luciferasa se realizaron de una manera similar a la descrita en el Ejemplo 2 anterior. Se realizaron una o dos transformaciones para cada secuencia EXP y los valores medios de expresión para cada secuencia EXP se determinaron a partir de varias muestras de cada experimento de transformación. Se realizaron las mediciones de la muestra utilizando cuatro réplicas de cada transformación de construcción de secuencia EXP, o alternativamente, tres réplicas de cada construcción de secuencia EXP por uno de dos experimentos de transformación. Los niveles medios de expresión de GUS y luciferasa se proporcionan en la Tabla 14. En esta tabla, los valores de luciferasa de luciérnaga (por ejemplo, de la expresión de pMON19437) se proporcionan en la columna marcada con "FLuc" y los valores de luciferasa de *Renilla* se proporcionan como en la columna marcada con "RLuc".

Tabla 14. Actividad media de GUS y luciferasa en protoplastos de hojas de maíz transformadas.

| Secuencia EXP                         | SEQ ID NO: | GUS     | FLuc    | RLuc    |
|---------------------------------------|------------|---------|---------|---------|
| EXP-Os.Act1:1:9                       | 162        | 83997,3 | 80983   | 61619   |
| EXP-CaMV.35S-enh+Ta.Lhcb1+Os.Act1:1:1 | 161        | 248832  | 83589,8 | 72064,3 |
| EXP-Cl.Ubq10                          | 168        | 30790,8 | 65807,5 | 34846,3 |

La tabla 15 a continuación muestra las relaciones GUS/FLuc y GUS/RLuc de expresión normalizada con respecto a la expresión dirigida de EXP-Os.Act1:1:9 y EXP-CaMV.35S-enh+Zm.DnaK:1:1 en protoplastos de maíz.

10

Tabla 15. Relaciones de expresión de GUS/FLuc y GUS/RLuc normalizada con respecto a EXP-Os.Act1:1:9 (SEQ ID NO: 161) y EXP-CaMV.35S-enh+Zm.DnaK:1:1 (SEQ ID NO: 160) en protoplastos de hojas de trigo.

| Secuencia EXP                             | SEQ ID<br>NO: | GUS/Fluc<br>normalizada<br>con respecto<br>a EXP-<br>Os.Act1:1:9 | GUS/Fluc<br>normalizada<br>con respecto<br>a EXP-<br>Os.Act1:1:9 | GUS/FLuc<br>normalizada con<br>respecto a EXP-<br>CaMV.35S-<br>enh+Ta.Lhcb1+Os.Act<br>1:1:1 | GUS/RLuc<br>normalizada con<br>respecto a EXP-<br>CaMV.35S-<br>nh+Ta.Lhcb1+Os.Act<br>1:1:1 |
|-------------------------------------------|---------------|------------------------------------------------------------------|------------------------------------------------------------------|---------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|
| EXP-Os.Act1:1:9                           | 162           | 1,00                                                             | 1,00                                                             | 0,35                                                                                        | 0,39                                                                                       |
| EXP-CaMV.35S-<br>enh+Ta.Lhcb1+Os.Act1:1:1 | 161           | 2,87                                                             | 2,53                                                             | 1,00                                                                                        | 1,00                                                                                       |
| EXP-CI.Ubq10                              | 168           | 0,45                                                             | 0,65                                                             | 0,16                                                                                        | 0,26                                                                                       |

Como se puede ver en la Tabla 15 anterior, EXP-CI.Ubq1O (SEQ ID NO: 168) fue capaz de dirigir la expresión de GUS, pero estaba a un nivel más bajo que el de ambos controles constitutivos.

Los plásmidos enumerados en la Tabla 13 anterior también se utilizaron para transformar células de protoplastos de hojas de trigo de una manera similar a la de los protoplastos de hojas de maíz descritos anteriormente. Los valores medios de GUS y luciferasa se muestran en la Tabla 16 a continuación. La tabla 17 a continuación muestra las relaciones GUS/FLuc y GUS/RLuc de expresión normalizada con respecto a la expresión dirigida de EXP-CaMV.35S-enh+Zm.DnaK:1:1 en protoplastos de maíz.

Tabla 16. Actividad media de GUS y luciferasa en protoplastos de hojas de maíz transformadas.

| Secuencia EXP                         | SEQ ID NO: | GUS    | FLuc    | RLuc    |
|---------------------------------------|------------|--------|---------|---------|
| EXP-CaMV.35S-enh+Ta.Lhcb1+Os.Act1:1:1 | 161        | 134145 | 1076,67 | 6858,67 |
| EXP-CI.Ubq10                          | 168        | 104669 | 888,67  | 4516    |

Tabla 17. Relaciones de expresión de normalizada de GUS/FLuc y GUS/RLuc con respecto a EXP-CaMV.35S-enh+Zm.DnaK:1:1 (SEQ ID NO: 160) en protoplastos de hojas de trigo.

| Secuencia EXP                             | SEQ ID<br>NO: | GUS/FLuc normalizada con respecto a EXP-CaMV.35S-enh+Ta.Lhcb1+Os.Act1:1:1 | GUS/RLuc normalizada con respecto a EXP-CaMV.35S-enh+Ta.Lhcb1+Os.Act1:1:1 |
|-------------------------------------------|---------------|---------------------------------------------------------------------------|---------------------------------------------------------------------------|
| EXP-CaMV.35S-<br>enh+Ta.Lhcb1+Os.Act1:1:1 | 161           | 1,00                                                                      | 1,00                                                                      |
| EXP-CI.Ubq10                              | 168           | 0,95                                                                      | 1,19                                                                      |

Como se puede ver en la Tabla 17 anterior, EXP-CI.Ubq10 (SEQ ID NO: 168) expresó GUS a un nivel similar al de EXP-CaMV.35S-enh+Zm.DnaK:1:1 (SEQ ID NO: 160) en células de protoplasto de trigo.

### 15 **Ejemplo 5**

20

25

5

10

#### Análisis de elementos reguladores que dirigen GUS en maíz transgénico.

Se transformaron plantas de maíz con vectores de expresión de plantas que contenían una secuencia EXP que dirigía la expresión del transgén GUS, y las plantas resultantes se analizaron para determinar la expresión de la proteína GUS. Se clonaron las secuencias EXP de ubiquitina en construcciones de plásmidos de transformación binaria de plantas utilizando procedimientos conocidos en la materia.

Los vectores de expresión de plantas resultantes contienen una región del borde derecho de A. *tumefaciens*, un primer casete de expresión para analizar la secuencia EXP unida operativamente a una secuencia codificante para GUS que posee el intrón procesable GUS-2, descrito anteriormente, unido operativamente en el 5' al 3' UTR del gen de la proteína de transferencia de lípidos del arroz (T-Os.LTP-1:1:1, SEQ ID NO: 159); un segundo casete de selección del transgén utilizado para la selección de las células vegetales transformadas que confiere resistencia al herbicida glifosato (dirigido por el promotor de Actina 1 del arroz), y una región del borde izquierdo de A.

38

tumefaciens. Los plásmidos resultantes se utilizaron para transformar plantas de maíz. La Tabla 18 enumera las designaciones de plásmidos, las secuencias EXP y las SEQ ID NO, que también se describen en la Tabla 1.

Tabla 18. Plásmidos de transformación de plantas binarias y las secuencias EXP asociadas.

| Construcción del plásmido | Secuencia EXP        | SEQ ID NO: |
|---------------------------|----------------------|------------|
| pMON140869                | EXP-AGRne.Ubq1:1:7   | 1          |
| pMON140870                | EXP-AGRne.Ubq 1:1:8  | 5          |
| pMON142650                | EXP-ARUdo.Ubq1:1:8   | 13         |
| pMON142651                | EXP-ARUdo.Ubq1:1:9   | 18         |
| pMON142652                | EXP-ARUdo.Ubq2:1:8   | 27         |
| pMON142653                | EXP-ARUdo.Ubq2:1:9   | 30         |
| pMON140871                | EXP-BOUgr.Ubq1:1:6   | 38         |
| pMON140872                | EXP-BOUgr.Ubq1:1:7   | 41         |
| pMON140873                | EXP-BOUgr.Ubq2:1:14  | 52         |
| pMON140874                | EXP-BOUgr.Ubq2:1:15  | 55         |
| pMON142887                | EXP-MISsi.Ubq 1:1:7  | 76         |
| pMON140875                | EXP-SORnu.Ubq1:1:6   | 92         |
| pMON140876                | EXP-SORnu.Ubq 1:1:7  | 95         |
| pMON132037                | EXP-SETit.Ubq 1:1:10 | 99         |
| pMON131958                | EXP-Sv.Ubq1:1:11     | 114        |
| pMON131959                | EXP-Sv.Ubq1:1:12     | 120        |
| pMON131961                | EXP-Zm.UbqM1:1:10    | 126        |
| pMON131963                | EXP-Zm.UbqM1:1:12    | 132        |
| pMON131962                | EXP-Zm.UbqM1:1:11    | 138        |
| pMON132932                | EXP-Sb.Ubq4:1:2      | 140        |
| pMON132931                | EXP-Sb.Ubq6:1:3      | 148        |
| pMON132974                | EXP-Sb.Ubq7:1:2      | 150        |
| pMON142738                | EXP-CI.Ubq10         | 168        |

Se transformaron las plantas utilizando transformaciones *mediadas por Agrobacterium*, por ejemplo, como se describe en la Publicación de Solicitud de Patente de Estados Unidos 2009/0138985.

5

10

15

El análisis histoquímico de GUS se utilizó para el análisis de expresión cualitativa de plantas transformadas. Se incubaron secciones de tejido completo con solución de tinción GUS X-Gluc (5-bromo-4-cloro-3-indolil-b-glucurónido) (1 mg/ml) durante un período de tiempo apropiado, se enjuagaron y se inspeccionó visualmente para determinar la coloración azul. La actividad GUS se determinó cualitativamente mediante inspección visual directa o inspección bajo un microscopio utilizando órganos y tejidos de plantas seleccionadas. Se inspeccionan las plantas R<sub>0</sub> para determinar su expresión en las raíces y hojas, así como en la antera, el estigma y las semillas y embriones en desarrollo, 21 días después de la polinización (21 DAP, de sus siglas en inglés).

Para el análisis cuantitativo, se extrajo la proteína total de tejidos seleccionados de plantas de maíz transformadas. Se utilizó un microgramo de proteína total con el sustrato fluorógeno 4-metileumbeliferil-β-D-glucurónido (MUG) en un volumen de reacción total de 50 μl. El producto de reacción, 4-metilumbeliferona (4-MU), tiene fluorescencia máxima a pH elevado, cuando el grupo hidroxilo está ionizado. La adición de una solución básica de carbonato de sodio detiene simultáneamente el ensayo y ajusta el pH para cuantificar el producto fluorescente. La fluorescencia se

midió con excitación a 365 nm, emisión a 445 nm utilizando un Fluoromax-3 (Horiba; Kioto, Japón) con un lector Micromax, con una anchura de rendija configurada para una excitación de 2 nm y una emisión de 3 nm.

La expresión de  $R_0$  GUS promedio observada para cada transformación se presenta en las Tablas 19 y 20 a continuación.

5 Tabla 19. Expresión de R<sub>0</sub> GUS promedio en tejido de la raíz y la hoja.

| Secuencia EXP       | SEQ ID NO: | Raíz V3 | Raíz V4 | Raíz V7 | Raíz VT | Hoja V3 | Hoja V4 | Hoja V7 | Hoja VT |
|---------------------|------------|---------|---------|---------|---------|---------|---------|---------|---------|
| EXP-AGRne.Ubq1:1:7  | 1          | 16      |         | 25      | 14      | 49      |         | 60      | 48      |
| EXP-AGRne.Ubq1:1:8  | 5          | 13      |         | 20      | 22      | 38      |         | 38      | 52      |
| EXP-ARUdo.Ubq1:1:8  | 13         | 18      |         | 34      | 89      | 117     |         | 48      | 106     |
| EXP-ARUdo.Ubq1:1:9  | 18         | 19      |         | 20      | 68      | 105     |         | 33      | 69      |
| EXP-ARUdo.Ubq2:1:8  | 27         | 14      |         | 19      | 27      | 58      |         | 57      | 47      |
| EXP-ARUdo.Ubq2:1:9  | 30         | 14      |         | 15      | 25      | 40      |         | 38      | 40      |
| EXP-BOUgr.Ubq1:1:6  | 38         | 12      |         | 28      | 16      | 43      |         | 46      | 27      |
| EXP-BOUgr.Ubq1:1:7  | 41         | 14      |         | 24      | 114     | 51      |         | 48      | 48      |
| EXP-BOUgr.Ubq2:1:14 | 52         | 17      |         | 13      | 28      | 46      |         | 33      | 41      |
| EXP-BOUgr.Ubq2:1:15 | 55         | 11      |         | 67      | 36      | 86      |         | 72      | 36      |
| EXP-MISsi.Ubq1:1:7  | 76         | 17      |         | 28      | 13      | 18      |         | 12      | 18      |
| EXP-SORnu.Ubq1:1:6  | 92         | 14      |         | 45      | 33      | 44      |         | 64      | 55      |
| EXP-SORnu.Ubq1:1:7  | 95         | 11      |         | 18      | 20      | 31      |         | 36      | 48      |
| EXP-SETit.Ubq1:1:10 | 99         | 0       |         | 29      | 57      | 58      |         | 37      | 46      |
| EXP-Sv.Ubq1:1:11    | 114        | nd      |         | nd      | 9       | 20      |         | 55      | 29      |
| EXP-Sv.Ubq1:1:12    | 120        | 63      |         | 0       | 28      | 184     |         | 27      | 16      |
| EXP-Zm.UbqM1:1:10   | 126        | 0       |         | 237     | 18      | 221     |         | 272     | 272     |
| EXP-Zm.UbqM1:1:12   | 132        | 0       |         | 21      | 43      | 234     |         | 231     | 196     |
| EXP-Zm.UbqM1:1:11   | 138        | 124     |         | 103     | 112     | 311     |         | 369     | 297     |
| EXP-Sb.Ubq4:1:2     | 140        | 125     |         | 0       | 95      | 233     |         | 150     | 88      |
| EXP-Sb.Ubq6:1:3     | 148        | 154     |         | 13      | 128     | 53      |         | 39      | 55      |
| EXP-Sb.Ubq7:1:2     | 150        | 37      |         | 22      | 18      | 165     |         | 89      | 177     |
| EXP-Cl.Ubq10        | 168        |         | 61      | 67      | 32      |         | 111     | 58      | 115     |

Tabla 20. Expresión de  $R_0$  GUS promedio en los órganos reproductivos de maíz (antera, estigma) y semillas en desarrollo (embrión y endospermo).

| Secuencia EXP           | SEQ ID NO: | Antera VT | Estigma VT/R1 | Embrión 21 DAP | Endospermo 21 DAP |
|-------------------------|------------|-----------|---------------|----------------|-------------------|
| EXP-AGRne.Ubq1:1:7      | 1          | 149       | 36            | 59             | 59                |
| EXP-AGRne.Ubq1:1:8      | 5          | 73        | 66            | 33             | 58                |
| EXP-ARUdo.Ubq1:1:8      | 13         | 321       | 253           | 177            | 355               |
| EXP-ARUdo.Ubq1:1:9      | 18         | 242       | 268           | 97             | 266               |
| EXP-ARUdo.Ubq2:1:8      | 27         | 104       | 99            | 79             | 157               |
| EXP-ARUdo.Ubq2:1:9      | 30         | 78        | 71            | 82             | 139               |
| EXP-BOUgr.Ubq1:1:6      | 38         | 58        | 250           | 43             | 63                |
| EXP-BOUgr.Ubq1:1:7      | 41         | 58        | 77            | 40             | 49                |
| EXP-<br>BOUgr.Ubq2:1:14 | 52         | 236       | 377           | 48             | 137               |
| EXP-<br>BOUgr.Ubq2:1:15 | 55         | 203       | 134           | 47             | 180               |
| EXP-MISsi.Ubq1:1:7      | 76         | 24        | 16            | 29             | 32                |
| EXP-SORnu.Ubq1:1:6      | 92         | 361       | 80            | 37             | 94                |
| EXP-SORnu.Ubq1:1:7      | 95         | 195       | 114           | 20             | 55                |
| EXP-SETit.Ubq1:1:10     | 99         | 132       | 85            | 50             | 63                |
| EXP-Sv.Ubq1:1:11        | 114        | 217       | 3             | 45             | 92                |
| EXP-Sv.Ubq1:1:12        | 120        | 120       | 21            | 49             | 112               |
| EXP-Zm.UbqM1:1:10       | 126        | 261       | 506           | 403            | 376               |
| EXP-Zm.UbqM1:1:12       | 132        | 775       | 362           | 253            | 247               |
| EXP-Zm.UbqM1:1:11       | 138        | 551       | 452           | 234            | 302               |
| EXP-Sb.Ubq4:1:2         | 140        | 213       | 0             | 25             | 79                |
| EXP-Sb.Ubq6:1:3         | 148        | 295       | 87            | 51             | 61                |
| EXP-Sb.Ubq7:1:2         | 150        | 423       | 229           | 274            | 90                |
| EXP-Cl.Ubq10            | 168        | 237       | 82            | 91             | 210               |

En las plantas de maíz Ro, los niveles de expresión de GUS en la hoja y la raíz difirieron entre las secuencias EXP de ubiquitina. Mientras que todas las secuencias EXP demostraron la capacidad de dirigir la expresión del transgén de GUS en plantas transformadas de manera estable, cada secuencia EXP demostró un patrón de expresión único en relación con los demás. Por ejemplo, las secuencias EXP, EXP-AGRne.Ubq1:1:7 (SEQ ID NO: 1), EXP-AGRne. Ubg1:1:8 (SEQ ID NO: 5), EXP-ARUdo. Ubg1:1:8 (SEQ ID NO: 13), EXP-ARUdo. Ubg1:1:9 (SEQ ID NO: 18), EXP-ARUdo.Ubq2:1:8 (SEQ ID NO: 27), EXP-ARUdo.Ubq2:1:9 (SEQ ID NO: 30), EXP-BOUgr.Ubq1:1:6 (SEQ ID NO: 38), EXP-BOUgr.Ubq1:1:7 (SEQ ID NO: 41), EXP-BOUgr.Ubq2:1:14 (SEQ ID NO: 52), EXP-BOUgr.Ubq2:1:15 (SEQ ID NO: 55), EXP-MISsi.Ubg1:1:7 (SEQ ID NO: 76), EXP-SORnu.Ubg1:1:6 (SEQ ID NO: 92), EXP-SORnu.Ubq1:1:7 (SEQ ID NO: 95), EXP-SETit.Ubq1:1:10 (SEQ ID NO: 99), EXP-Sv.Ubq1:1:11 (SEQ ID NO: 114), EXP-Zm.UbqM1:1:12 (SEQ ID NO: 132) y EXP-Sb.Ubq7:1:2 (SEQ ID NO: 150) demostraron niveles más bajos de expresión de GUS en la raíz en las etapas de desarrollo V3 y V7 en relación con EXP-Sv.Ubq1:1:12 (SEQ ID NO: 120), EXP-Zm.UbgM1:1:10 (SEQ ID NO: 126), EXP-Zm.UbgM1:1:11 (SEQ ID NO: 138), EXP-Sb.Ubg4:1:2 (SEQ ID NO: 140) y EXP-Sb.Ubq6:1:3 (SEQ ID NO: 148). Se observaron niveles más altos de expresión de GUS en etapas posteriores del desarrollo de la raíz (VT) para EXP-ARUdo.Ubq1:1:8 (SEQ ID NO: 13), EXP-ARUdo.Ubq1:1:9 (SEQ ID NO: 18), EXP- BOUgr. Ubq1:1:7 (SEQ ID NO: 41), EXP-Zm. UbqM1:1:11 (SEQ ID NO: 138) y EXP-Sb. Ubq6:1:3 (SEQ ID NO: 148). La expresión de raíces dirigida por EXP-Zm.UbqM1:1:10 (SEQ ID NO: 140) no demostró expresión en V3, pero fue alta en V7 y luego cayó en la etapa VT. La expresión de raíces dirigida por EXP-Zm. UbgM1:1:11 (SEQ ID NO: 150) se mantuvo a un nivel similar durante todo el desarrollo desde las etapas V3 y V7 hasta VT. La expresión de GUS dirigido por EXP-CI.Ubq1O (SEQ ID NO: 168) fue relativamente estable desde la etapa V4 a V7, pero se redujo a aproximadamente la mitad de la etapa V4 y V7 en la etapa VT.

10

15

20

25

30

35

40

45

50

55

60

Los niveles de expresión de GUS también mostraron diferencias drásticas en el tejido de la hoja. Las secuencias EXP, EXP- Zm.UbqM1:1:10 (SEQ ID NO: 126), EXP-Zm.UbqM1:1:12 (SEQ ID NO: 132) y EXP-Zm.UbqM1:1:11 (SEQ ID NO: 138) demostraron el nivel más alto de expresión de GUS observado en las tres etapas de desarrollo (V3, V7 y VT). La secuencia EXP, EXP-Sb.Ubq4:1:2 (SEQ ID NO: 140), mostró una disminución en la expresión de las etapas de desarrollo V3 a VT. Las secuencias EXP, EXP-ARUdo.Ubq1:1:8 (SEQ ID NO: 13) y EXP-Sb.Ubq7:1:2 (SEQ ID NO: 150) demostraron niveles más altos de expresión de GUS en la etapa de desarrollo V3 y VT con un nivel de expresión más bajo en la mitad del crecimiento en la etapa V7. La secuencia EXP, EXP-ARUdo.Ubq2:1:9 (SEQ ID NO: 30), EXP-BOUgr.Ubq1:1:7 (SEQ ID NO: 41) y EXP-MISsi.Ubq1:1:7 (SEQ ID NO: 76) mantuvieron la expresión de GUS en las tres etapas, mientras que EXP-ARUdo.Ubq2:1:8 (SEQ ID NO: 27), EXP-BOUgr.Ubq1:1:6 (SEQ ID NO: 38) y EXP-BOUgr.Ubq2:1:15 (SEQ ID NO: 55) mostraron una ligera disminución en la expresión en la etapa VT. La expresión dirigida por EXP-CI.Ubq10 (SEQ ID NO: 168) fue similar en las etapas V4 y VT, pero se redujo a aproximadamente la mitad del nivel en la etapa V4 y VT a V7.

Análogamente, con respecto al tejido reproductivo (antera y estigma) se observaron diferentes patrones de expresión únicos para cada secuencia EXP. Por ejemplo, se observaron niveles de expresión más altos en antera y estigma para las secuencias EXP EXP-ARUdo.Ubq1:1:8 (SEQ ID NO: 13), EXP-ARUdo.Ubq1:1:9 (SEQ ID NO: 18), EXP-BOUgr.Ubq2:1:14 (SEQ ID NO: 52), EXP-BOUgr.Ubq2:1:15 (SEQ ID NO: 55), EXP-SORnu.Ubq1:1:7 (SEQ ID NO: 95), EXP- Zm.UbqM1:1:10 (SEQ ID NO: 126), EXP-Zm.UbqM1:1:12 (SEQ ID NO: 132), EXP-Zm.UbqM1:1:11 (SEQ ID NO: 138) y EXP-Sb.Ubq7:1:2 (SEQ ID NO: 150). La expresión dirigida por las secuencias EXP EXP-AGRne.Ubq1: 1: 7 (SEC ID NO: 1), EXP-SORnu.Ubq1:1:6 (SEQ ID NO: 92), EXP-Sv.Ubq1:1:11 (SEQ ID NO: 114), EXP-Sv.Ubq1:1:12 (SEQ ID NO: 120), EXP-Sb.Ubq4:1:2 (SEQ ID NO: 140), EXP-Sb.Ubq6:1:3 (SEQ ID NO: 148) y EXP-Cl.Ubq10 (SEQ ID NO: 168) fue alta en la antera pero más baja en el estigma en relación con cada secuencia EXP, mientras que la expresión dirigida por EXP-BOUgr.Ubq1:1:6 (SEQ ID NO: 38) fue mayor en el estigma en comparación con la expresión en el otro.

La expresión en la semilla en desarrollo (embriones y endospermo 21 DAP) fue diferente entre las secuencias EXP. Las secuencias EXP, EXP-Zm.UbqM1:1:10 (SEQ ID NO: 126), EXP-Zm.UbqM1:1:12 (SEQ ID NO: 132) y EXP-Zm.UbqM1:1:11 (SEQ ID NO: 138) condujo una alta expresión de GUS en el embrión de semilla y el tejido del endospermo en desarrollo. Los niveles de expresión en el endospermo fueron aproximadamente dos veces o más altos que en el embrión cuando GUS fue dirigido por las secuencias de EXP, EXP-ARUdo.Ubq1:1:8 (SEQ ID NO: 13), EXP-ARUdo.Ubq1:1:9 (SEQ ID NO: 18), EXP-ARU- do.Ubq2:1:8 (SEQ ID NO: 27), EXP-BOUgr.Ubq2:1:14 (SEQ ID NO: 52), EXP-BOUgr.Ubq2:1:15 (SEQ ID NO: 55), EXP-SORnu.Ubq1:1:6 (SEQ ID NO: 92), EXP-SORnu.Ubq1:1:7 (SEQ ID NO: 95), EXP-Sv.Ubq1:1:12 (SEQ ID NO: 120), EXP-Sb.Ubq4:1:2 (SEQ ID NO: 140) y EXP-CI.Ubq10 (SEQ ID NO: 168). La expresión de GUS fue tres veces más alta en el embrión que en el endospermo cuando se dirige mediante EXP-Sb.Ubq7:1:2 (SEQ ID NO: 150). Los niveles de expresión de GUS fueron relativamente equivalentes en el embrión y el endospermo cuando fueron dirigidos por las secuencias EXP EXP-AGRne.Ubq1:1:7 (SEQ ID NO: 1), EXP-AGRne.Ubq1:1:8 (SEQ ID NO: 5), EXP-BOUgr.Ubq1:1:6 (SEQ ID NO: 38), EXP-BOUgr.Ubq1:1:7 (SEQ ID NO: 41), EXP-MISsi.Ubq1:1:7 (SEQ ID NO: 76), EXP-SETit.Ubq1:1:10 (SEQ ID NO: 99) y EXP-Sb.Ubg6:1:3 (SEQ ID NO: 148).

Cada secuencia EXP demostró la capacidad de dirigir la expresión del transgén de en plantas de maíz transformadas de manera estable. Sin embargo, cada secuencia EXP tenía un patrón de expresión para cada tejido que era único y ofrece una oportunidad de seleccionar la secuencia EXP que mejor proporcionará la expresión de un transgén específico dependiendo de la estrategia de expresión del tejido necesaria para lograr los resultados deseados. Este ejemplo demuestra que las secuencias EXP aisladas de genes homólogos no se comportan necesariamente de manera equivalente en la planta transformada y que la expresión solo se puede determinar a

través de la investigación empírica de las propiedades de cada secuencia EXP y no se puede predecir en función de la homología de genes de la que fue promotor procede.

#### Ejemplo 6

20

25

30

35

40

### Potenciadores procedentes de los elementos reguladores.

Los potenciadores proceden de los elementos promotores proporcionados en el presente documento, como los que se presentan como las SEQ ID NO: 2, 6, 8, 10, 14, 17, 22, 24, 28, 31, 33, 35, 39, 42, 44, 46, 50, 53, 56, 61, 63, 67, 71, 73, 75, 77, 79, 83, 85, 87, 89, 93, 96, 98 y 169. El elemento potenciador puede comprender uno o más elementos reguladores cis que, cuando se unen operativamente en el 5' o 3' a un elemento promotor, o se unen operativamente en el 5' o 3' a elementos potenciadores adicionales que están unidos operativamente a un promotor, pueden mejorar o modular la expresión de un transgén, o proporcionar la expresión de un transgén en un tipo de célula u órgano vegetal específico o en un momento particular en el desarrollo o ritmo circadiano. Los potenciadores se fabrican mediante la eliminación de la caja TATA o elementos funcionalmente similares y cualquier secuencia de ADN cadena abajo de los promotores que permiten que se inicie la transcripción de los promotores proporcionados en el presente documento como se describe anteriormente, incluidos los fragmentos de los mismos, en los que se eliminan la caja TATA o elementos funcionalmente similares y la secuencia de ADN cadena abajo de la caja TATA.

Los elementos potenciadores pueden proceder de los elementos promotores proporcionados en el presente documento y clonarse utilizando procedimientos conocidos en la materia para estar unidos operativamente en el 5' o 3' a un elemento promotor, o unidos operativamente en el 5' o 3' a elementos potenciadores adicionales que están unidos operativamente a un promotor. Como alternativa, los elementos potenciadores se clonan, utilizando procedimientos conocidos en la materia, para estar unidos operativamente a una o más copias del elemento potenciador que están unidos operativamente en el 5' o 3' a un elemento promotor, o unidos operativamente en el 5' o 3' a elementos potenciadores adicionales que están unidos operativamente a un promotor. Los elementos potenciadores también se pueden clonar para que se unan operativamente en el 5' o 3' a un elemento promotor procedente de un organismo de género diferente, o se unan operativamente en el 5' o 3' a elementos potenciadores adicionales procedentes de organismos de otro género o del organismo del mismo género que se unen operativamente a un promotor procedente del organismo del mismo o diferente género, dando como resultado un elemento regulador quimérico. Un vector de transformación de plantas de expresión de GUS se construye utilizando procedimientos conocidos en la materia similares a las construcciones descritos en los ejemplos previos en los que los vectores de expresión de plantas resultantes contienen una región del borde derecho de A. tumefaciens, un primer casete de expresión para probar el regulador o un elemento regulador quimérico compuesto por, un elemento regulador o regulador quimérico, unido operativamente a un intrón procedente de la proteína de choque térmico HSP70 de Z. mays (I-Zm.DnaK-1:1:1 SEQ ID NO: 165) o cualquiera de los intrones presentados en el presente documento o cualquier otro intrón, unido operativamente a una secuencia codificante para GUS que posee un intrón procesable (GUS-2, SEQ ID NO: 155) o ningún intrón (GUS-1, SEQ ID NO: 154), unido operativamente a la 3' UTR de Nopalina sintasa de A. tumefaciens (T-AGRtu.nos-1:1:13, SEQ ID NO: 158) o la 3' UTR del gen de la proteína de transferencia de lípidos del arroz (T-Os.LTP-1:1:1, SEQ ID NO: 160); un segundo casete de selección del transgén utilizado para la selección de las células vegetales transformadas que confiere resistencia al herbicida glifosato (dirigido por el promotor de Actina 1 del arroz) o alternativamente, el antibiótico kanamicina (dirigido por el promotor de la actina 1 del arroz) y una región del borde izquierdo de A. tumefaciens. Los plásmidos resultantes se utilizan para transformar plantas de maíz u otro género de plantas mediante los procedimientos descritos anteriormente o mediante otros procedimientos de bombardeo de partículas o mediados por Agrobacterium conocidos en la materia. Como alternativa, las células de protoplastos procedentes de plantas de maíz u otro género se transforman utilizando procedimientos conocidos en la materia para realizar ensayos transitorios

La expresión de GUS dirigida por el elemento regulador que comprende uno o más potenciadores se evalúa en ensayos de plantas estables o transitorios para determinar los efectos del elemento potenciador sobre expresión de un transgén. Las modificaciones a uno o más elementos potenciadores o la duplicación de uno o más elementos potenciadores se realizan a base de la experimentación empírica y la regulación de la expresión génica resultante que se observa utilizando cada composición de elementos reguladores. Alterar las posiciones relativas de uno o más potenciadores en el elemento regulador o regulador quimérico resultante puede alterar la actividad o especificidad transcripcional del elemento regulador o regulador quimérico y se determina empíricamente para identificar los mejores potenciadores para el perfil de expresión transgénico deseado dentro de la planta de maíz u otro género de planta.

## Ejemplo 7

### Análisis de la mejora de intrón de la actividad GUS utilizando protoplastos procedentes de plantas.

Se selecciona un intrón basándose en la experimentación y la comparación con un control de vector de expresión sin intrón para seleccionar empíricamente un intrón y una configuración dentro de la disposición de elementos de ADN de transferencia de vectores (ADN-T) para la expresión óptima de un transgén. Por ejemplo, en la expresión de un gen de resistencia a herbicida, tal como CP4, que confiere tolerancia al glifosato, es deseable tener una expresión transgénica dentro de los tejidos reproductivos así como los tejidos vegetativos, para evitar la pérdida de rendimiento

cuando se aplica el herbicida. Un intrón en este caso se seleccionaría por su capacidad, cuando esté unido operativamente a un promotor constitutivo, para mejorar la expresión del transgén que confiere resistencia a los herbicidas, particularmente dentro de las células y tejidos reproductivos de la planta transgénica y, por lo tanto, proporcionar tolerancia tanto vegetativa como reproductiva a la planta transgénica cuando se pulveriza con el herbicida. En la mayoría de los genes de ubiquitina, la 5' UTR está compuesta por un líder, que tiene una secuencia de intrones incrustada en ella. Por lo tanto, los elementos reguladores procedentes de dichos genes se analizan utilizando la 5' UTR completa que comprende el promotor, líder e intrón. Para lograr diferentes perfiles de expresión o para modular el nivel de expresión transgénica, el intrón de tal elemento regulador puede eliminarse o sustituirse por un intrón heterólogo.

- Los intrones presentados en el presente documento como las SEQ ID NO: 4, 12, 15, 20, 26, 29, 37, 40, 48, 51, 54, 57, 59, 65, 69, 81, 91, 94 y 171 se identifican utilizando contigs de ADN genómico en comparación con grupos de marcadores de secuencia expresada o contigs de ADNc para identificar secuencias de exones e intrones dentro del ADN genómico. Además, Las secuencias 5' UTR o líder también se utilizan para definir la unión de corte y empalme de intrón/exón de uno o más intrones en condiciones en las que la secuencia del gen codifica una secuencia líder que está interrumpida por uno o más intrones. Los intrones se clonan utilizando procedimientos conocidos en la materia en un vector de transformación de plantas para estar unido operativamente en el 3' a un elemento regulador y fragmento líder y unido operativamente en el 5' a un segundo fragmento líder o a secuencias codificantes, por ejemplo, como se muestra en los casetes de expresión presentados en la FIG. 9.
- Por lo tanto, por ejemplo, un primer casete de expresión posible (configuración 1 de casete de expresión en la figura 20 9) comprende un promotor o elemento promotor quimérico [A], unido operativamente en el 5' a un elemento líder [B], unido operativamente en el 5' a un elemento intrónico de control [C], unido operativamente a una región codificante [D], que está unido operativamente a un elemento 3' UTR [E]. Como alternativa, un segundo casete de expresión posible (configuración 2 de casete de expresión en la figura 9) comprende un promotor o elemento promotor quimérico [F], unido operativamente en el 5' a un primer elemento líder o primer fragmento del elemento líder [G], unido operativamente en el 5' a un elemento intrónico de control [H], unido operativamente en el 5' a un segundo 25 elemento líder o primer fragmento del segundo elemento líder [I], unido operativamente a una región codificante [J], que está unido operativamente a un elemento 3' UTR [K]. Además, un tercer casete de expresión posible (configuración 3 de casete de expresión en la figura 9) comprende un promotor o elemento promotor quimérico [L], unido operativamente en el 5' a un elemento líder [M], unido operativamente en el 5' a un primer fragmento del elemento de secuencia codificante [N], unido operativamente en el 5' a un elemento intrónico [O], unido operativamente en el 5' a un segundo fragmento del elemento de secuencia codificante [P], que está unido 30 operativamente a un elemento 3' UTR [Q]. La Configuración 3 de casete de expresión está diseñada para permitir el empalme del intrón de tal manera que produzca un marco de lectura abierto completo sin un cambio de marco entre el primer y el segundo fragmento de la secuencia codificante.
- Como se ha analizado anteriormente, puede ser preferible evitar utilizar la secuencia de nucleótidos AT o el nucleótido A justo antes del extremo 5' del sitio de corte y empalme (GT) y el nucleótido G o la secuencia de nucleótidos TG, respectivamente justo después del extremo 3' del sitio de corte y empalme (AG) para eliminar la posibilidad de que se formen codones de inicio no deseados durante el procesamiento del ARN mensajero en la transcripción final. La secuencia de ADN alrededor de los sitios de unión de corte y empalme del extremo 5' o 3' del intrón se puede modificar así.

45

50

55

60

Los intrones se ensayan para determinar un efecto de mejora a través de la capacidad de mejorar la expresión en un ensayo transitorio o un ensayo de plantas estable. Para el ensayo transitorio de la mejora del intrón, se construye un vector de planta base utilizando procedimientos conocidos en la materia. El intrón se clona en un vector de planta base que comprende un casete de expresión compuesto por un promotor constitutivo tal como el promotor del virus del mosaico de la coliflor, P-CaMV.35S-enh-1:1:9 (SEQ ID NO: 166), unido operativamente en el 5' a un elemento líder, L-CaMV.35S-1:1:15 (SEQ ID NO: 167), unido operativamente en el 5' a un elemento intrón de prueba (por ejemplo, uno de las SEQ ID NO: 4, 12, 15, 20, 26, 29, 37, 40, 48, 51, 54, 57, 59, 65, 69, 81, 91, 94 y 171), unido operativamente a una secuencia codificante para GUS que posee un intrón procesable (GUS-2, SEQ ID NO: 155) o ningún intrón (GUS-1, SEQ ID NO: 154), unido operativamente a la 3' UTR de Nopalina sintasa de A. tumefaciens (T-AGRtu.nos-1:1:13, SEQ ID NO: 158). Las células de protoplastos procedentes del tejido vegetal de maíz u otro género se transforman con el vector de planta base y los vectores de control de luciferasa como se describió anteriormente en el Ejemplo 2 anterior, y se ensayaron para determinar su actividad. Para comparar la capacidad relativa del intrón para mejorar la expresión, los valores de GUS se expresan como una relación de actividad de GUS a luciferasa y se comparan con los niveles impartidos por una construcción que comprende el promotor constitutivo unido operativamente a un estándar de intrón conocido, como el intrón procedente de la proteína de choque térmico HSP70 de Zea mays, I-Zm.DnaK-1:1:1 (SEQ ID NO: 165), así como una construcción que comprende el promotor constitutivo, pero sin un intrón unido operativamente al promotor.

Para el ensayo de plantas estable de los intrones presentados como las SEQ ID NO: 4, 12, 15, 20, 26, 29, 37, 40, 48, 51, 54, 57, 59, 65, 69, 81, 91, 94 y 171, un vector de transformación de plantas de expresión de GUS se construye de manera similar a las construcciones descritas en los ejemplos previos en los que los vectores de expresión de plantas resultantes contienen una región del borde derecho de A. *tumefaciens*, un primer casete de expresión para probar el intrón que comprende un promotor constitutivo como el promotor del virus del mosaico de la

coliflor, P-CaMV.35S-enh-1:1:9 (SEQ ID NO: 166), unido operativamente en el 5' a un elemento líder, L-CaMV.35S-1:1:15 (SEQ ID NO: 167), unido operativamente en el 5' a un elemento intrónico de control proporcionado en el presente documento, unido operativamente a una secuencia codificante para GUS que posee un intrón procesable (GUS-2, SEQ ID NO: 155) o ningún intrón (GUS-1, SEQ ID NO: 154), unido operativamente a la 3' UTR de Nopalina sintasa de A. *tumefaciens* (T-AGRtu.nos-1:1:13, SEQ ID NO: 158); un segundo casete de selección del transgén utilizado para la selección de las células vegetales transformadas que confiere resistencia a glifosato (dirigido por el promotor de Actina 1 del arroz) o alternativamente, el antibiótico kanamicina (dirigido por el promotor de la actina 1 del arroz) y una región del borde izquierdo de A. *tumefaciens*. Los plásmidos resultantes se utilizan para transformar plantas de maíz u otro género de plantas mediante los procedimientos descritos anteriormente o mediante procedimientos *mediados por Agrobacterium* conocidos en la materia. Los transformantes de copia única o bajo número de copia, transformadas con un vector de transformación de plantas idéntico al vector de prueba pero sin el intrón de prueba para determinar si el intrón de prueba proporciona un efecto mejorado mediado por intrones.

Cualquiera de los intrones presentados como las SEQ ID NO: 4, 12, 15, 20, 26, 29, 37, 40, 48, 51, 54, 57, 59, 65, 69, 81, 91, 94 y 171 pueden modificarse de varias maneras, como eliminando fragmentos dentro de la secuencia de intrones, lo que puede reducir la expresión o la duplicación de fragmentos con el intrón que puede mejorar la expresión. Además, las secuencias de ADN dentro del intrón que pueden afectar la especificidad de la expresión a tipos de células o tejidos y órganos particulares pueden duplicarse o alterarse o eliminarse para alterar la expresión y los patrones de expresión del transgén. Además, los intrones proporcionados en el presente documento se pueden modificar para eliminar cualquier posible codón de inicio (ATG) que pueda hacer que los transcritos no intencionales se expresen a partir de intrones empalmados de forma indebida como proteínas diferentes, más largas o truncadas. Una vez que el intrón ha sido probado empíricamente, o ha sido alterado basándose en la experimentación, el intrón se utiliza para mejorar la expresión de un transgén en plantas transformadas de manera estable que pueden ser de cualquier género de planta monocotiledónea o dicotiledónea, siempre que el intrón proporcione una mejora de el transgén. El intrón también se puede utilizar para mejorar la expresión en otros organismos, como algas, hongos o células animales, siempre que el intrón proporcione una mejora o atenuación o especificidad de la expresión del transgén al que está unido operativamente.

<110> Monsanto Technology LLC

<120> ELEMENTOS REGULADORES DE PLANTAS Y USOS DE LOS MISMOS

30 <130> MONS:323WO

<140> Desconocido

<141> 17/12/2013

<150> 61/739.720

<151> 19/12/2012

35 <160> 171

5

10

15

20

25

<210> 1

<211> 3143

<212> ADN

<213> Agrostis nebulosa

40 <400> 1

| ggcctcttta | cgtttggcac | aatttaattg | aatcccggca | tggcatgtta | gaccggagtg | 60   |
|------------|------------|------------|------------|------------|------------|------|
| ageeggeeet | tttactggta | tgacactccc | tctgtcttga | gtgtcgctgt | gccagcttgt | 120  |
| acctctgtct | atgttcacag | cccgtgctgt | gtacctagac | cctccgtttg | tecacattea | 180  |
| ttttaatctc | tattgtatct | tgtcaaaacc | taaaagccta | aaacgactct | gataaaggga | 240  |
| cagaaagatt | atacaagagc | aagtgtataa | tgaaataatg | taagcgagct | atatgaattg | 300  |
| tcacgtgtca | tatttatgtt | gagacgaaga | agagaaaata | aacaccatgc | aaatttatgg | 360  |
| cgagtgatag | atggccagat | gggcacaagg | cctcctattt | cttaaatcgg | attttgtaag | 420  |
| aacgaaaaaa | gggacttata | agagaatagg | atagaccata | tatcaatgat | gtagtatgca | 480  |
| tcaagatcta | actattatat | gagtgaattg | ataaatttat | tctaggtgac | atggccttaa | 540  |
| cgatgaacag | tacatggtta | aatcaataga | acaatagcca | actctagcag | ctctaaaaaa | 600  |
| agatatatat | tcgtcgaggc | actattatgc | aaccacatag | tcaacttcaa | caccgcttga | 660  |
| gtgcgttctc | atgtttttt  | tttcttgcaa | attacgcttt | tctaaaataa | aataatttgg | 720  |
| atcgtgcaat | tatttcactt | taggtgtgcg | tgactacgtg | agtaacattt | ttgaatctca | 780  |
| gaaaggaaat | aaaagtataa | tactgctgcc | tactttgagg | attcggcttg | ttatttaaaa | 840  |
| ccgtctttaa | ggtcaaatgc | tcaagattca | ttcaacaatt | gaaacgtctc | acatgattaa | 900  |
| atcatgtata | aggatgctaa | ggtcttgctt | gacaatgttt | ttctaggaat | ttcatctaac | 960  |
| tttttgagtg | aaactatcaa | ataataattt | taaaacaatt | ttataagaga | agctccggag | 1020 |
| ataaaaggcc | atctaatcta | tgttagaaga | gtgaagttta | ctccctctgt | cccaaaaata | 1080 |
| gaattctaag | tatgaaatga | tttttttgtt | atacaaaagg | agtatatatc | acaagattga | 1140 |
| tgtcagttat | gcttagggca | cgtacacgac | gctggtgctt | taggtagacg | ttaatcgttg | 1200 |
| tttctgcatt | ttattttatt | ttgttgccac | ggtgtacatt | tgggtagacg | tttgtcacag | 1260 |

gcattgccac tcaaacaagc agccggcgct tggagctttt atagtttgaa aagtgacggt 1320 tttaaggatg ggtaagctga ttagtatatg taagtttagc tttttccatt gtaggttaag 1380 ccttaaggct cttacacaat tgtttcatta ttctcattct ttaagagccc atataagcgt 1440 tcatgaattg tacatatcct tagatttttt ttttttgggta aagctcgagc ttctgtatct 1500 aaaagtagag aaatcagaaa aagattcatg ttttggtagt tttgatttct tgcctccata 1560 ataattttgg tttaccattt tttgtttgat tttagtttta gaagcgttta tagcaggatt 1620 taaaateeaa aaetaeeatt atetteaagt gaeegteagt gageegttta aeggegtega 1680 caagtccaac ggacaccaac cagtgaacca ccagcgtcga gccaagcgat gcaaacggaa 1740 eggeegagae gttgacaeet ttggegegge aeggeatgte ggateteeet etetggeece 1800 etetegagag ttecagetee acetecaceg gtggeggttt ceaagteegt teegtteegt 1860 tecgeeteet geetgeteet eteagaegge acgaaacegt gaeggeaceg geageaeggg 1920 gggatteett tteeactget cetteetttt eeetteeteg eeegeegeta taaataqeea 1980 gccccgtccc cagattettt cccaacetea tetttgttcg gagcacecae acaacecgat 2040 ccccaattcc ctcgtctctc ctcgcgagcc tcgtcgaccc ccccttcaag gtacggcgat 2100 egtecteect ecetetetet etetacette tettetetag aetagategg egaceeggte 2160 catggttagg gcctgctagt tctgttcctg ttttttccat ggctgcgagg taaaatagat 2220 ctgatggcgt tatgatggtt aactcgtcat actcttgcga tctatggtcc ctttaggaca 2280 togatttaat ttoggatggt togagatogg tgatocatgg ttagtacoot aggoagtggg 2340 gttagateeg tgetgttagg gttegtagat ggattetgat tgeteagtaa etgggaaace 2400 tgggatggtt ctagctggga atcctgggat ggttctagct ggttcgcaga tgagatcgat 2460 ttcatggtct gctatatctt gtttcgttgc ctaggttccg tttaatctgt ccgtggtatg 2520 atgttageet ttgataaggt tegategtge tagetaegte etgegeagea tttaattgte 2580 gatagtttca atctacctgt cggtttattt tattaaattt ggattggatc tgtatgtgtc 2700 acatatatet teatgattaa tatggttgga attatetett catettttag atatatatgg 2760 ataggtatat atgttgctgt gggttttact ggtactttat tagatatatt catgcttaga 2820 tacatgaagc aacgtgctgt tacagtttaa taattcttgt ttatctaata aacaaataag 2880 gataggtata tatgttgctg atggttttac tgatacttta ttagatagta cttctttgac 2940 atgaaggaac atcctgcgac agcttaataa ttattcttca tctaataaaa agcttgcttt 3000 ttaattattt tgatatactt ggatgatgtc atgcagcagc tatgtgtgaa ttttcggccc 3060 tgtcttcata tgatgtttat ttgcttggga ctgtttcttt ggctgataac tcaccctgtt 3120

#### gtttggtgat ccttctgcag gtg

3143

<210> 2 <211> 2005 <212> ADN <213> Agrostis nebulosa <400> 2

5

ggcctcttta cgtttggcac aatttaattg aatcccggca tggcatgtta gaccggagtg 60 ageoggeest tttactggta tgacactees tetgtettga gtgtegetgt gecagettgt 120 acctetytet atytteaeag eccytyctyt gtaectagae ectecyttty tecacattea 180 ttttaatete tattgtatet tgtcaaaace taaaageeta aaacgaetet gataaaggga 240 300 cagaaagatt atacaagagc aagtgtataa tgaaataatg taagcgagct atatgaattg tcacgtgtca tatttatgtt gagacgaaga agagaaaata aacaccatgc aaatttatgg 360 cgagtgatag atggccagat gggcacaagg cctcctattt cttaaatcgg attttgtaag 420 aacgaaaaaa gggacttata agagaatagg atagaccata tatcaatgat gtagtatgca 480 tcaagatcta actattatat gagtgaattg ataaatttat tctaggtgac atggccttaa 540 cgatgaacag tacatggtta aatcaataga acaatagcca actctagcag ctctaaaaaa 600 agatatatat tcgtcgaggc actattatgc aaccacatag tcaacttcaa caccgcttga 660 gtgcgttctc atgttttttt tttcttgcaa attacgcttt tctaaaataa aataatttgg 720 780 atcgtgcaat tatttcactt taggtgtgcg tgactacgtg agtaacattt ttgaatctca gaaaggaaat aaaagtataa tactgctgcc tactttgagg attcggcttg ttatttaaaa 840 ccgtctttaa ggtcaaatgc tcaagattca ttcaacaatt gaaacgtctc acatgattaa 900 atcatqtata aggatqctaa qqtcttqctt qacaatqttt ttctaqqaat ttcatctaac tttttgagtg aaactatcaa ataataattt taaaacaatt ttataagaga agctccggag 1020 ataaaaggcc atctaatcta tgttagaaga gtgaagttta ctccctctgt cccaaaaata 1080 gaattctaag tatgaaatga tttttttgtt atacaaaagg agtatatatc acaagattga 1140 tgtcagttat gcttagggca cgtacacgac gctggtgctt taggtagacg ttaatcgttg 1200 tttctgcatt ttattttatt ttgttgccac ggtgtacatt tgggtagacg tttgtcacag 1260 gcattgccac tcaaacaagc agccggcgct tggagctttt atagtttgaa aagtgacggt 1320 tttaaggatg ggtaagctga ttagtatatg taagtttagc tttttccatt gtaggttaag 1380 ccttaaggct cttacacaat tgtttcatta ttctcattct ttaagagccc atataagcgt 1440 tcatgaattg tacatatcct tagatttttt tttttgggta aagctcgagc ttctgtatct 1500 aaaagtagag aaatcagaaa aagattcatg ttttggtagt tttgatttct tgcctccata 1560 ataattttgg tttaccattt tttgtttgat tttagtttta gaagcgttta tagcaggatt 1620

| taaaatccaa aactaccatt atcttcaagt gaccgtcagt gagccgttta acggcgtcga 1                                                                 | 680  |
|-------------------------------------------------------------------------------------------------------------------------------------|------|
| caagtccaac ggacaccaac cagtgaacca ccagcgtcga gccaagcgat gcaaacggaa 1                                                                 | 740  |
| eggeegagae gttgaeaeet ttggegegge aeggeatgte ggateteeet etetggeeee 1                                                                 | 800  |
| ctetegagag tteeagetee acetecaceg gtggeggttt ecaagteegt teegtteegt 1                                                                 | 860  |
| teegeeteet geetgeteet eteagaegge acgaaacegt gaeggeaceg geageacggg 1                                                                 | 920  |
| gggatteett tteeactget eetteetttt eeetteeteg eeegeegeta taaatageea 1                                                                 | 980  |
| gccccgtccc cagattcttt cccaa 2                                                                                                       | 005  |
| <210> 3<br><211> 85<br><212> ADN<br><213> Agrostis nebulosa                                                                         |      |
| <400> 3                                                                                                                             |      |
| ceteatettt gtteggagea eccaeacaac eegateecca atteeetegt eteteetege                                                                   | 60   |
| gagoctogto gaccoccot toaag                                                                                                          | 85   |
| <210> 4<br><211> 1053<br><212> ADN<br><213> Agrostis nebulosa                                                                       |      |
| <400> 4                                                                                                                             |      |
| gtacggcgat cgtcctccct ccctctctct ctctaccttc tcttctctag actagatoge                                                                   | , 60 |
| cgacccggtc catggttagg gcctgctagt tctgttcctg ttttttccat ggctgcgagg                                                                   | 120  |
| taaaatagat ctgatggcgt tatgatggtt aactcgtcat actcttgcga tctatggtc                                                                    | 180  |
| ctttaggaca tcgatttaat ttcggatggt tcgagatcgg tgatccatgg ttagtaccc                                                                    | 240  |
| aggeagtggg gttagateeg tgetgttagg gttegtagat ggattetgat tgeteagtaa                                                                   | 300  |
| etgggaaace tgggatggtt etagetggga ateetgggat ggttetaget ggttegeaga                                                                   | 360  |
| tgagatcgat ttcatggtct gctatatctt gtttcgttgc ctaggttccg tttaatctg                                                                    | 420  |
| ccgtggtatg atgttagcct ttgataaggt tcgatcgtgc tagctacgtc ctgcgcagca                                                                   | 480  |
| tttaattgtc aggtcataat ttttagcatt cctgtttttg tttggtttgg                                                                              | 540  |
| ttgggctgta gatagtttca atctacctgt cggtttattt tattaaattt ggattggate                                                                   | 600  |
| tgtatgtgtc acatatatct tcatgattaa tatggttgga attatctctt catcttttag                                                                   | 660  |
| atatatatgg ataggtatat atgttgctgt gggttttact ggtactttat tagatatat                                                                    | 720  |
| catgcttaga tacatgaagc aacgtgctgt tacagtttaa taattcttgt ttatctaata                                                                   | 780  |
| aacaaataag gataggtata tatgttgctg atggttttac tgatacttta ttagatagta                                                                   | 840  |
|                                                                                                                                     | 900  |
| ctictitgac atgaaggaac atcctgcgac agcttaataa ttattcttca tctaataaa;                                                                   |      |
| cttctttgac atgaaggaac atcctgcgac agcttaataa ttattcttca tctaataaa; agcttgcttt ttaattattt tgatatactt ggatgatgtc atgcagcagc tatgtgtga; |      |

tcaccctgtt gtttggtgat ccttctgcag gtg

<210> 5 <211> 2137 <212> ADN <213> Agrostis nebulosa

5 <400> 5

60 gagaagetee ggagataaaa ggeeatetaa tetatgttag aagagtgaag tttacteeet ctgtcccaaa aatagaattc taagtatgaa atgatttttt tgttatacaa aaggagtata 120 tatcacaaga ttgatgtcag ttatgcttag ggcacgtaca cgacgctggt gctttaggta 180 gacgttaatc gttgtttctg cattttattt tattttgttg ccacggtgta catttgggta 240 gacgtttgtc acaggcattg ccactcaaac aagcagccgg cgcttggagc ttttatagtt 300 tgaaaagtga cggttttaag gatgggtaag ctgattagta tatgtaagtt tagctttttc 360 cattgtaggt taagccttaa ggctcttaca caattgtttc attattctca ttctttaaga 420 480 gcccatataa gcgttcatga attgtacata tccttagatt tttttttttg ggtaaagetc gagettetgt atetaaaagt agagaaatea gaaaaagatt eatgttttgg tagttttgat 540 ttcttgcctc cataataatt ttggtttacc attttttgtt tgattttagt tttagaagcg 600 tttatagcag gatttaaaat ccaaaactac cattatcttc aagtgaccgt cagtgagccg 660 tttaacggcg tcgacaagtc caacggacac caaccagtga accaccagcg tcgagccaag 720 780 ccctctctgg ccccctctcg agagttccag ctccacctcc accggtggcg gtttccaagt 840 cogttocgtt cogttocgco tootgootgo toototoaga oggoacgaaa cogtgacggo 900 accggcagca cggggggatt ccttttccac tgctccttcc ttttcccttc ctcgcccgcc 960 gctataaata gccagccccg tccccagatt ctttcccaac ctcatctttg ttcggagcac 1020 ccacacaec cgatccccaa ttccctcgtc tctcctcgcg agcctcgtcg acccccctt 1080 teggegaece ggteeatggt tagggeetge tagttetgtt cetgtttttt ceatggetge 1200 gaggtaaaat agatetgatg gegttatgat ggttaacteg teatactett gegatetatg 1260 gtccctttag gacatcgatt taatttcgga tggttcgaga tcggtgatcc atggttagta 1320 ccctaggcag tggggttaga tccgtgctgt tagggttcgt agatggattc tgattgctca 1380 gtaactggga aacctgggat ggttctagct gggaatcctg ggatggttct agctggttcg 1440

cagatgagat cgattcatg gtctgata tcttgtttcg ttgcctaggt tccgtttaat 1500 ctgtccgtgg tatgatgta gcctttgata aggttcgatc gtgctagcta cgtcctgcgc 1560 agcatttaat tgtcaggtca taatttttag cattcctgtt tttgtttggt ttggttttgt 1620 ctggttgggc tgtagatagt ttcaatctac ctgtcggttt atttattaa atttggattg 1680 gatctgtatg tgtcacatat atcttcatga ttaatatggt tggaattatc tcttcatctt 1740 ttagatatat atggataggt atatatgttg ctgtgggttt tactggtact ttattagata 1800 tattcatgct tagatacatg aagcaacgtg ctgttacagt ttaataattc ttgtttatct 1860 aataaacaaa taaggatagg tatatatgtt gctgatggtt ttactgatac tttattagat 1920 agtacttctt tgacatgaag gaacatcctg cgacagctta ataattatc ttcatctaat 1980 aaaaaagcttg cttttaatt atttgatat acttggatga tgtcatgcag cagctatgtg 2040 tgaattttcg gccctgtctt catatgatgt ttatttgctt gggactgtt ctttggctga 2100 taactcaccc tgttgtttgg tgatccttct gcaggtg

<210> 6

<211> 999

<212> ADN

<213> Agrostis nebulosa

<400> 6

5

gagaagetee ggagataaaa ggeeatetaa tetatgttag aagagtgaag tttacteeet 60 ctgtcccaaa aatagaattc taagtatgaa atgatttttt tgttatacaa aaggagtata 120 tatcacaaga ttgatgtcag ttatgcttag ggcacgtaca cgacgctggt gctttaggta 180 gacgttaatc gttgtttctg cattttattt tattttgttg ccacggtgta catttgggta 240 gacgtttgtc acaggcattg ccactcaaac aagcagccgg cgcttggagc ttttatagtt 300 tgaaaagtga cggttttaag gatgggtaag ctgattagta tatgtaagtt tagctttttc 360 cattgtaggt taagccttaa ggctcttaca caattgtttc attattctca ttctttaaga 420 qcccatataa gcgttcatga attgtacata tccttagatt tttttttttg ggtaaagctc 480 gagcttctgt atctaaaagt agagaaatca gaaaaagatt catgttttgg tagttttgat 540 ttcttgcctc cataataatt ttggtttacc attttttgtt tgattttagt tttagaagcg 600 tttatagcag gatttaaaat ccaaaactac cattatcttc aagtgaccgt cagtgagccg 660 tttaacggcg tcgacaagtc caacggacac caaccagtga accaccagcg tcgagccaag 720 780 ccctctctgg ccccctctcg agagttccag ctccacctcc accggtggcg gtttccaagt 840 ccgttccgtt ccgttccgcc tcctgcctgc tcctctcaga cggcacgaaa ccgtgacggc 900

accggcagca cggggggatt cettttecae tgeteettee tttteeette etegecegee 960 getataaata gecageeeg teeccagatt ettteeeaa 999

<210> 7 <211> 1900 <212> ADN

5 <213> Agrostis nebulosa

<400> 7

gtagacgttt gtcacaggca ttgccactca aacaagcagc cggcgcttgg agcttttata 60 gtttgaaaag tgacggtttt aaggatgggt aagctgatta gtatatgtaa gtttagcttt 120 ttccattgta ggttaagcct taaggctctt acacaattgt ttcattattc tcattcttta 180 agageceata taagegttea tgaattgtae atateettag atttttttt ttgggtaaag 240 ctcgagcttc tgtatctaaa agtagagaaa tcagaaaaag attcatgttt tggtagtttt 300 gatttcttgc ctccataata attttggttt accatttttt gtttgatttt agttttagaa 360 gcgtttatag caggatttaa aatccaaaac taccattatc ttcaagtgac cgtcagtgag 420 ccgtttaacg gcgtcgacaa gtccaacgga caccaaccag tgaaccacca gcgtcgagcc 480 aagcgatgca aacggaacgg ccgagacgtt gacacctttg gcgcggcacg gcatgtcgga 540 totocototo tggcccccto togagagtto cagotocaco tocacoggtg goggtttoca 600 agtocyttcc gttccgttcc gcctcctgcc tgctcctctc agacggcacg aaaccgtgac 660 ggcaccggca gcacgggggg attectttte cactgeteet teetttteee tteetegeee 720 gccgctataa atagccagcc ccgtccccag attctttccc aacctcatct ttgttcggag 780 cacceacaca accegatece caatteeete gteteteete gegageeteg tegaceeeee 840 cttcaaggta cggcgatcgt cctccctccc tctctctct taccttctct tctctagact 900 agatoggoga cooggtocat ggttagggoo tgotagttot gttoctgttt tttocatggo 960 tgcgaggtaa aatagatctg atggcgttat gatggttaac tcgtcatact cttgcgatct 1020 atggtccctt taggacatcg atttaatttc ggatggttcg agatcggtga tccatggtta 1080 gtaccctagg cagtggggtt agatccgtgc tgttagggtt cgtagatgga ttctgattgc 1140 tcagtaactg ggaaacctgg gatggttcta gctgggaatc ctgggatggt tctagctggt 1200 tegeagatga gategattte atggtetget atatettgtt tegttgeeta ggtteegttt 1260 aatctgtccg tggtatgatg ttagcctttg ataaggttcg atcgtgctag ctacgtcctg 1320 ttggatctgt atgtgtcaca tatatcttca tgattaatat ggttggaatt atctcttcat 1500 cttttagata tatatggata ggtatatatg ttgctgtggg ttttactggt actttattag 1560

| atatattcat | gcttagatac | atgaagcaac | gtgctgttac | agtttaataa | ttcttgttta | 1620 |
|------------|------------|------------|------------|------------|------------|------|
| tctaataaac | aaataaggat | aggtatatat | gttgctgatg | gttttactga | tactttatta | 1680 |
| gatagtactt | ctttgacatg | aaggaacatc | ctgcgacagc | ttaataatta | ttcttcatct | 1740 |
| aataaaaagc | ttgcttttta | attattttga | tatacttgga | tgatgtcatg | cagcagctat | 1800 |
| gtgtgaattt | tcggccctgt | cttcatatga | tgtttatttg | cttgggactg | tttctttggc | 1860 |
| tgataactca | ccctgttgtt | tggtgatcct | tctgcaggtg |            |            | 1900 |

<210>8

<211> 762

<212> ADN

<213> Agrostis nebulosa

<400> 8

5

60 gtagacgttt gtcacaggca ttgccactca aacaagcagc cggcgcttgg agcttttata gtttgaaaag tgacggtttt aaggatgggt aagctgatta gtatatgtaa gtttagcttt 120 180 ttccattgta ggttaagcct taaggctctt acacaattgt ttcattattc tcattcttta agageceata taagegttea tgaattgtae atateettag atttttttt ttgggtaaag 240 ctcgagcttc tgtatctaaa agtagagaaa tcagaaaaag attcatgttt tggtagtttt 300 gatttcttgc ctccataata attttggttt accatttttt gtttgatttt agttttagaa 360 420 gcgtttatag caggatttaa aatccaaaac taccattatc ttcaagtgac cgtcagtgag 480 ccgtttaacg gcgtcgacaa gtccaacgga caccaaccag tgaaccacca gcgtcgagcc aagcgatgca aacggaacgg ccgagacgtt gacacctttg gcgcggcacg gcatgtcgga 540 totocotote tggccccctc tcgagagtte cagctccacc tccaccggtg gcggtttcca 600 agtecqttcc gttccgttcc gcctcctgcc tgctcctctc agacggcacg aaaccgtgac 660 ggcaccggca gcacggggg attecttttc cactgctect teetttteee tteetegeee 720 762 geogetataa atageeagee eegteeeeag attettteee aa

<210> 9

10

<211> 5068

<212> ADN

<213> Arundo donax

<400> 9

ggcctcttta cgtttggcac aatttgatcg aatccaacac ggcaagttaa catttgaaga 60
ttgaaccggg cactaatgca agtctacaac taagaactac aagaaagcat gttccttgag 120
gtacttggat gcaacctcac aattatcaaa ttaattaaca actacagtta gaattttaga 180
tcacaagaat atcacgaact gtggatacta cttcaagggc tattctttc tgaatgttgc 240

| agttggttgt  | tttaaacata | ttacaaacta | ggtgtttaaa | tgccaaaaag | ttcatggaaa | 300  |
|-------------|------------|------------|------------|------------|------------|------|
| aagattaagc  | taatattcca | tccgtccaca | aaatttaaat | gctaggaatc | attatatttg | 360  |
| tggatagaag  | gagtagttag | taagacctac | acttaattac | acattggtca | ttcctggagg | 420  |
| aataatcccc  | catagcaagt | tgttttgagt | ttgactaccc | aaacttgcat | aaatttttc  | 480  |
| ttaaaaaaaag | ggggagcttc | accattccat | caagatggcg | aggctaaatg | aaacgcacga | 540  |
| tgggcaaaac  | ggactaacgt | acaaacaaca | aggcaatgaa | agatagggtt | ttgataaata | 600  |
| tcaaatatac  | aaagtcaacc | aaagaaaaaa | gagateceaa | tggctaacct | ttggatccgt | 660  |
| gtcgcaattt  | gtgctttagg | acatacaagg | tggatttctt | ctttggcaaa | ctctataata | 720  |
| attgggtgac  | ggtggcctca | cggcagcctc | aaagagtcgg | tagcaacttt | tagatetttt | 780  |
| gagctgaaac  | tcaattatgt | agtagaatga | tatttagata | gatagatcga | aatttggggg | 840  |
| tgtgaaaaca  | aagaggttct | caatattgat | agcaactcca | acgaatggat | atggaaaata | 900  |
| catgattttt  | tattcgagta | gaaaaaggag | gggaacggaa | caaatctagc | aatagtagcc | 960  |
| accaaagatg  | aggaccctgg | atttcggatc | caatagtggt | aaggaagaaa | gggccggact | 1020 |
| atccagaata  | aggtgaattg | gtcaaggaag | cggaagtctc | cataaagaaa | ttgtgggctc | 1080 |
| acttgatgtg  | agaaagaaga | ccgaccaaga | agcgggtttt | gggggacaga | ggagattggt | 1140 |
| gccaggttgc  | agtggcatgt | atgtggggga | agaggcaatg | acaacggccg | agagaggaga | 1200 |
| agggaatgag  | gtaagtattt | gaagtgaaga | ggtgcccata | taggttaaaa | aatgagctgt | 1260 |
| ggatttaaat  | caaaggtgtc | agcgacacag | gcacggaagt | accctaagtt | acctatgtgg | 1320 |
| gtcgcatatc  | acgctaagtt | ccttcaccgt | acaaggtgaa | agtaacactg | gcaatgtgcc | 1380 |
| ccagctgcaa  | ggcttgtcta | tcaatgtggc | cctacaaggc | tcctggctac | cccaggagct | 1440 |
| caaaacacgt  | ggcacatggt | ggtacttcgc | ccgacctcta | tgctcaccgt | gcacccggcc | 1500 |
| ccgaggtcaa  | tggctcctga | gcacccgact | gcatgactgg | acccctgagt | accegacece | 1560 |
| cgggacaagc  | tcccgtggac | cttccccggg | gatcaggctc | acgagtactc | gacctcacgt | 1620 |
| caatggctct  | cccgagtacc | caaccttgtg | tegatagete | actaaggatc | atgtgctaat | 1680 |
| ccttagcatc  | tcggattttg | agtactagge | cattatttgc | atgccatcct | cttggatcta | 1740 |
| tgcggatttt  | caaggacctt | acctaagcat | caacatgcac | aaacacaaac | ccttcgtgaa | 1800 |
| gccatececa  | actactcggg | tggcaggacc | ctcgacacgt | gcgatgcgag | ctcggacaga | 1860 |
| gctgacaaga  | acctcccgac | ggcgcattaa | atgccctggc | aagggcgccc | cgcctcgtcg | 1920 |
| agctctggac  | ttcatcaagt | cacatcaaca | gcaggcaggc | gctccttccg | cagacttcat | 1980 |
| catgagggaa  | tccgttaccc | tctatttaca | tagtgcagcg | gggaatgtgg | agatcaaatc | 2040 |
| tctccaatga  | tgtcactgtg | tagcatgtat | tagcacgcca | acaccctgtc | gcttaccacg | 2100 |
| aggatcagcc  | atgcaagcaa | gagatgttgg | tegggeeteg | gtggcaactg | aggctatagt | 2160 |

gacctatgac gagcaggcca tagataggcc cactggcaag cccaagaatc gctagacggg 2220 ctagatctgg acacttgtcc gcaccaagca ctaccgttgc aactgcaacc tctatatgta 2280 actatagatt cacatgttgc gacatctttg cccaatacgt attgtaccct agacagctca 2340 coctatettt ttetttttt teetetttet tetteeteet eettgeatgg agaegtagaa 2400 ggactectee ettgtgacta ttaaaggaag gacttaggge tgtgetaggg gagagaactt 2460 ttggacttgg gagagetetg cactgaacat etteetetee acgettgtaa tattttecae 2520 aacaaagaat teeataaage eggatgtagg getattatee etetegggag geetgaacea 2580 gggtaaaaca ccactcttct caccagcgtt cgccgcatta gtctagacta gcatcttttg 2640 accetatate gaaceateta gggaetttae gteecetgee tgeagtttee eggtgacaga 2700 atgactatga tttttcgtcg attttataaa agtgaaaaca accggttgat atctatgcgc 2760 actattttcc tacatatatt tctaacttct tgcttagcca tgtcggttaa gagcaagtgg 2820 agageaetet eatttegtag aacaagtgat gaatgeegae etgeateate ttaettagae 2880 ttgatcatca agtggaatcc ccattcatct taataatctc atattgagtg ccaatgcaac 2940 attgttataa teetetteat atgetaatte tteaaageta aegtagttaa atgaaggeaa 3000 aatatgcaac ttcgtcctct aagtttgctc aaaggctcat ttttaccctt taactatcaa 3060 accgattact ttcgtccctg aactttcatg tttggtccaa tttaatccct gggctgatgt 3120 atccgtccac ggtggtgtgt ccaatcagtg aataatctag ttagtgaagc cagaagtcca 3180 tagtgcccct tgctctgtca ccatatatcc agttcaaccg caccaatttg ccatctcgaa 3240 ctggttcatg ttttattcag gttggtaaat gaattttgcc aattcaatgt agttagatat 3300 ttccatqtca ttttaqtaca tttaccaatt ttttatattc tqqctaqaaa aqqaqaatqq 3360 tgacgtettt eggaagatea agateaatta teaagtatea geaacageae etgaaggttg 3420 gagtgcatta gttgtcattg agaataatgc tagctattca ttgcactggc attagagaca 3480 gagagggcga gccagtttga catggcaaat tagcacagtc aaactggata cgtggtgacg 3540 gagggaggg cactatgaat ttttggtgac ggagggaggg gcactatgaa tttttggctt 3600 tgctgacggg acacgccact atggatgaaa ttggacaaaa tacgaatatt caaggatgaa 3660 agtggtcggt ttgatagttc agggatgaaa tgtgtctttg ggcaaacttt gaggacgaag 3720 ttgcctattt tgcattaaac qaatatattt atatacccca aaaaaaaqaa tacacatctc 3780 cacteegage eggeatgtgg ggteeceact agteageeac tgtatggege egactagete 3840 aacqqccacq aaccaqccaa ccaccaqcqc aacctaaacq qcqtaaacqt tqacqqcatc 3900 tetetetege ecegtetega agetteegea eegetegetg gtegetgeee ggegeegete 3960 gtgctggact ctttccgtgg cggcttccgc gaaattgcgt ggtggagagg agagacggaa 4020

cogtcacggc actggattcc ttccccaccc ggcttggccg gcccctcctc gcctccataa 4080 ataggeacce egtectegee tecteteece accteatete etecttteee gtgaaccgtg 4140 aacacaacco gacccagato coctottgog agottogtog atocotocto ogogtoaagg 4200 tacggagett etectecece ttetteteta gateggegtg ttatgttgtt teegtggttg 4260 cttggttgga tgaatcgaat gattcttagg gcctaggagg ctggttagat ctgttgcgtt 4320 ctgtttcgta gatggatttt ggtgtaagat caggtcggtt ccgctgttta acttgtgatg 4380 ctagtgtgat ttttgggagg atttgagttg ttaatctggg agttgttggg aggttctcgt 4440 aggoggattg tagatgaagt ogcoogcaog atttgogtgg ottgttgggt agotagggtt 4500 agatotgoto ggatttttoa ttgttaotta ttgagagata atgtagotaa cotttaottg 4560 ttcatctatg tatctcgtat tcgtattcat ctggttcgat ggtgctagat agatgcgcct 4620 gatttgtccg atcgaattgg gtagcatccg cggcttgttt ggtagtgttc tgattgattt 4680 gtcgctctag atctgagtgg aataatatta catctcaaca tgttactaga aacttggttt 4740 atageteegg atttacatgt ttattettat gtaaggtttt aaatgaaaga tttatgetae 4800 tgctgctcgt tgatccttta gcatccacct gaggaacatg catgcatctg ttacttcttt 4860 tgatatatgc ttagatagtt gttagtatat actgctgttg ttcgatgatc cttcaggatg 4920 aacatgcatg atcatgttac ttgtttttat atgcttctgc tgttcgttga ttctttagta 4980 ctacctacct gatcatcttg catgtttcct gcttgttaga gattaattga ttaggcttac 5040 5068 cttgttgcct ggtgattctt ccttgcag

<210> 10

<211> 4114

<212> ADN

<213> Arundo donax

<400> 10

5

ggcctcttta cgtttggcac aatttgatcg aatccaacac ggcaagttaa catttgaaga 60 ttgaaccggg cactaatgca agtctacaac taagaactac aagaaagcat gttccttgag gtacttggat gcaacctcac aattatcaaa ttaattaaca actacagtta gaattttaga 180 tcacaagaat atcacgaact gtggatacta cttcaagggc tattcttttc tgaatgttgc 240 agttggttgt tttaaacata ttacaaacta ggtgtttaaa tgccaaaaag ttcatggaaa 300 aagattaagc taatattcca tccgtccaca aaatttaaat gctaggaatc attatatttg 360 tggatagaag gagtagttag taagacctac acttaattac acattggtca ttcctggagg 420 aataatcccc catagcaagt tgttttgagt ttgactaccc aaacttgcat aaattttttc 480 ttaaaaaaag ggggagcttc accattccat caagatggcg aggctaaatg aaacgcacga 540 600 tgggcaaaac ggactaacgt acaaacaaca aggcaatgaa agatagggtt ttgataaata

| tcaaatatac | aaagtcaacc | aaagaaaaaa | gagateceaa | tggctaacct | ttggatccgt | 660  |
|------------|------------|------------|------------|------------|------------|------|
| gtcgcaattt | gtgctttagg | acatacaagg | tggatttctt | ctttggcaaa | ctctataata | 720  |
| attgggtgac | ggtggcctca | cggcagcctc | aaagagtcgg | tagcaacttt | tagatctttt | 780  |
| gagctgaaac | tcaattatgt | agtagaatga | tatttagata | gatagatcga | aatttggggg | 840  |
| tgtgaaaaca | aagaggttct | caatattgat | agcaactcca | acgaatggat | atggaaaata | 900  |
| catgatttt  | tattcgagta | gaaaaaggag | gggaacggaa | caaatctagc | aatagtagcc | 960  |
| accaaagatg | aggaccctgg | atttcggatc | caatagtggt | aaggaagaaa | gggccggact | 1020 |
| atccagaata | aggtgaattg | gtcaaggaag | cggaagtctc | cataaagaaa | ttgtgggctc | 1080 |
| acttgatgtg | agaaagaaga | ccgaccaaga | agcgggtttt | gggggacaga | ggagattggt | 1140 |
| gccaggttgc | agtggcatgt | atgtggggga | agaggcaatg | acaacggccg | agagaggaga | 1200 |
| agggaatgag | gtaagtattt | gaagtgaaga | ggtgcccata | taggttaaaa | aatgagctgt | 1260 |
| ggatttaaat | caaaggtgtc | agcgacacag | gcacggaagt | accctaagtt | acctatgtgg | 1320 |
| gtcgcatatc | acgctaagtt | ccttcaccgt | acaaggtgaa | agtaacactg | gcaatgtgcc | 1380 |
| ccagctgcaa | ggcttgtcta | tcaatgtggc | cctacaaggc | tectggetae | cccaggagct | 1440 |
| caaaacacgt | ggcacatggt | ggtacttcgc | ccgacctcta | tgctcaccgt | gcacccggcc | 1500 |
| ccgaggtcaa | tggctcctga | gcacccgact | gcatgactgg | acccctgagt | accegacece | 1560 |
| cgggacaagc | tcccgtggac | cttccccggg | gatcaggctc | acgagtactc | gacctcacgt | 1620 |
| caatggctct | cccgagtacc | caaccttgtg | tcgatagctc | actaaggatc | atgtgctaat | 1680 |
| ccttagcatc | tcggattttg | agtactaggc | cattatttgc | atgccatcct | cttggatcta | 1740 |
| tgcggatttt | caaggacctt | acctaagcat | caacatgcac | aaacacaaac | ccttcgtgaa | 1800 |
| gccatcccca | actactcggg | tggcaggacc | ctcgacacgt | gcgatgcgag | ctcggacaga | 1860 |
| gctgacaaga | acctcccgac | ggcgcattaa | atgccctggc | aagggcgccc | cgcctcgtcg | 1920 |
| agctctggac | ttcatcaagt | cacatcaaca | gcaggcaggc | gctccttccg | cagacttcat | 1980 |
| catgagggaa | tccgttaccc | tctatttaca | tagtgcagcg | gggaatgtgg | agatcaaatc | 2040 |
| tctccaatga | tgtcactgtg | tagcatgtat | tagcacgcca | acaccctgtc | gcttaccacg | 2100 |
| aggatcagcc | atgcaagcaa | gagatgttgg | tegggeeteg | gtggcaactg | aggctatagt | 2160 |
| gacctatgac | gagcaggcca | tagataggcc | cactggcaag | cccaagaatc | gctagacggg | 2220 |
| ctagatctgg | acacttgtcc | gcaccaagca | ctaccgttgc | aactgcaacc | tctatatgta | 2280 |
| actatagatt | cacatgttgc | gacatctttg | cccaatacgt | attgtaccct | agacagetea | 2340 |
| ccctatcttt | ttctttttt  | tcctctttct | tottcctcct | ccttgcatgg | agacgtagaa | 2400 |
| ggactcctcc | cttgtgacta | ttaaaggaag | gacttagggc | tgtgctaggg | gagagaactt | 2460 |

| ttggacttgg | gagagctctg | cactgaacat | cttcctctcc | acgcttgtaa | tattttccac | 2520 |
|------------|------------|------------|------------|------------|------------|------|
| aacaaagaat | tccataaagc | cggatgtagg | gctattatcc | ctctcgggag | gcctgaacca | 2580 |
| gggtaaaaca | ccactcttct | caccagcgtt | cgccgcatta | gtctagacta | gcatcttttg | 2640 |
| accetatate | gaaccatcta | gggactttac | gteeeetgee | tgcagtttcc | cggtgacaga | 2700 |
| atgactatga | tttttcgtcg | attttataaa | agtgaaaaca | accggttgat | atctatgcgc | 2760 |
| actattttcc | tacatatatt | tctaacttct | tgcttagcca | tgtcggttaa | gagcaagtgg | 2820 |
| agagcactct | catttcgtag | aacaagtgat | gaatgccgac | ctgcatcatc | ttacttagac | 2880 |
| ttgatcatca | agtggaatcc | ccattcatct | taataatctc | atattgagtg | ccaatgcaac | 2940 |
| attgttataa | tcctcttcat | atgctaattc | ttcaaagcta | acgtagttaa | atgaaggcaa | 3000 |
| aatatgcaac | ttegteetet | aagtttgctc | aaaggeteat | ttttaccctt | taactatcaa | 3060 |
| accgattact | ttegteeetg | aactttcatg | tttggtccaa | tttaatccct | gggctgatgt | 3120 |
| atccgtccac | ggtggtgtgt | ccaatcagtg | aataatctag | ttagtgaagc | cagaagtcca | 3180 |
| tagtgcccct | tgctctgtca | ccatatatcc | agttcaaccg | caccaatttg | ccatctcgaa | 3240 |
| ctggttcatg | ttttattcag | gttggtaaat | gaattttgcc | aattcaatgt | agttagatat | 3300 |
| ttccatgtca | ttttagtaca | tttaccaatt | ttttatattc | tggctagaaa | aggagaatgg | 3360 |
| tgacgtcttt | cggaagatca | agatcaatta | tcaagtatca | gcaacagcac | ctgaaggttg | 3420 |
| gagtgcatta | gttgtcattg | agaataatgc | tagctattca | ttgcactggc | attagagaca | 3480 |
| gagagggcga | gccagtttga | catggcaaat | tagcacagtc | aaactggata | cgtggtgacg | 3540 |
| gagggagggg | cactatgaat | ttttggtgac | ggagggaggg | gcactatgaa | tttttggctt | 3600 |
| tgctgacggg | acacgccact | atggatgaaa | ttggacaaaa | tacgaatatt | caaggatgaa | 3660 |
| agtggtcggt | ttgatagttc | agggatgaaa | tgtgtctttg | ggcaaacttt | gaggacgaag | 3720 |
| ttgcctattt | tgcattaaac | gaatatattt | atatacccca | aaaaaaagaa | tacacatctc | 3780 |
| cactccgage | cggcatgtgg | ggtccccact | agtcagccac | tgtatggcgc | cgactagete | 3840 |
| aacggccacg | aaccagccaa | ccaccagcgc | aacctaaacg | gcgtaaacgt | tgacggcatc | 3900 |
| tctctctcgc | cccgtctcga | agcttccgca | ccgctcgctg | gtcgctgccc | ggcgccgctc | 3960 |
| gtgctggact | ctttccgtgg | cggcttccgc | gaaattgcgt | ggtggagagg | agagacggaa | 4020 |
| ccgtcacggc | actggattcc | ttccccaccc | ggcttggccg | gcccctcctc | gcctccataa | 4080 |
| ataggcaccc | cgtcctcgcc | tectetecee | acct       |            |            | 4114 |

<210> 11

<211> 85

<212> ADN

<213> Arundo donax

<400> 11

5

| catctcctc                                         | c tttcccgtga | accgtgaaca | caacccgacc | cagateceet | cttgcgagct | 60  |
|---------------------------------------------------|--------------|------------|------------|------------|------------|-----|
| tcgtcgatc                                         | c ctcctccgcg | tcaag      |            |            |            | 85  |
| 210> 12<br>211> 869<br>212> ADN<br>213> Arundo d  | onax         |            |            |            |            |     |
| 400> 12                                           |              |            |            |            |            |     |
| gtacggagct                                        | tetectccc    | cttcttctct | agateggegt | gttatgttgt | tteegtggtt | 60  |
| gcttggttg                                         | g atgaatcgaa | tgattcttag | ggcctaggag | gctggttaga | tctgttgcgt | 120 |
| tctgtttcgt                                        | agatggattt   | tggtgtaaga | tcaggtcggt | teegetgttt | aacttgtgat | 180 |
| gctagtgtga                                        | tttttgggag   | gatttgagtt | gttaatctgg | gagttgttgg | gaggttctcg | 240 |
| taggcggatt                                        | gtagatgaag   | tegecegeae | gatttgcgtg | gcttgttggg | tagctagggt | 300 |
| tagatetget                                        | cggattttc    | attgttactt | attgagagat | aatgtagcta | acctttactt | 360 |
| gttcatctat                                        | gtatetegta   | ttcgtattca | tctggttcga | tggtgctaga | tagatgegee | 420 |
| tgatttgtcd                                        | gatcgaattg   | ggtagcatcc | gcggcttgtt | tggtagtgtt | ctgattgatt | 480 |
| tgtcgctcta                                        | a gatctgagtg | gaataatatt | acateteaac | atgttactag | aaacttggtt | 540 |
| tatageteeç                                        | gatttacatg   | tttattctta | tgtaaggttt | taaatgaaag | atttatgcta | 600 |
| ctgctgctcq                                        | ttgatccttt   | agcatccacc | tgaggaacat | gcatgcatct | gttacttctt | 660 |
| ttgatatatç                                        | g cttagatagt | tgttagtata | tactgctgtt | gttcgatgat | ccttcaggat | 720 |
| gaacatgcat                                        | gatcatgtta   | cttgttttta | tatgcttctg | ctgttcgttg | attctttagt | 780 |
| actacctacc                                        | tgatcatctt   | gcatgtttcc | tgcttgttag | agattaattg | attaggetta | 840 |
| ccttgttgc                                         | tggtgattet   | tecttgcag  |            |            |            | 869 |
| 210> 13<br>211> 2969<br>212> ADN<br>213> Arundo d | onax         |            |            |            |            |     |
| 400> 13                                           |              |            |            |            |            |     |
| gatcagcca                                         | t gcaagcaaga | gatgttggtc | gggcctcggt | ggcaactgag | gctatagtga | 60  |
| cctatgacg                                         | a gcaggccata | gataggccca | ctggcaagcc | caagaatcgc | tagacgggct | 120 |
| agatctgga                                         | c acttgtccgc | accaagcact | accgttgcaa | ctgcaacctc | tatatgtaac | 180 |
| tatagattc                                         | a catgttgcga | catctttgcc | caatacgtat | tgtaccctag | acageteace | 240 |
| ctatcttt                                          | t ctttttttc  | ctctttcttc | ttcctcctcc | ttgcatggag | acgtagaagg | 300 |
| actcctccc                                         | t tgtgactatt | aaaggaagga | cttagggctg | tgctagggga | gagaactttt | 360 |
|                                                   |              |            |            |            |            |     |

| ggacttggga | gagctctgca | ctgaacatct | tcctctccac | gcttgtaata | ttttccacaa | 420  |
|------------|------------|------------|------------|------------|------------|------|
| caaagaattc | cataaagccg | gatgtagggc | tattatccct | ctcgggaggc | ctgaaccagg | 480  |
| gtaaaacacc | actcttctca | ccagcgttcg | ccgcattagt | ctagactagc | atcttttgac | 540  |
| cctatatcga | accatctagg | gactttacgt | cccctgcctg | cagtttcccg | gtgacagaat | 600  |
| gactatgatt | tttcgtcgat | tttataaaag | tgaaaacaac | cggttgatat | ctatgcgcac | 660  |
| tattttccta | catatatttc | taacttcttg | cttagccatg | tcggttaaga | gcaagtggag | 720  |
| agcactctca | tttcgtagaa | caagtgatga | atgccgacct | gcatcatctt | acttagactt | 780  |
| gatcatcaag | tggaatcccc | attcatctta | ataatctcat | attgagtgcc | aatgcaacat | 840  |
| tgttataatc | ctcttcatat | gctaattctt | caaagctaac | gtagttaaat | gaaggcaaaa | 900  |
| tatgcaactt | cgtcctctaa | gtttgctcaa | aggctcattt | ttacccttta | actatcaaac | 960  |
| cgattacttt | cgtccctgaa | ctttcatgtt | tggtccaatt | taatccctgg | gctgatgtat | 1020 |
| ccgtccacgg | tggtgtgtcc | aatcagtgaa | taatctagtt | agtgaagcca | gaagtccata | 1080 |
| gtgccccttg | ctctgtcacc | atatatccag | ttcaaccgca | ccaatttgcc | atctcgaact | 1140 |
| ggttcatgtt | ttattcaggt | tggtaaatga | attttgccaa | ttcaatgtag | ttagatattt | 1200 |
| ccatgtcatt | ttagtacatt | taccaatttt | ttatattctg | gctagaaaag | gagaatggtg | 1260 |
| acgtettteg | gaagatcaag | atcaattatc | aagtatcagc | aacagcacct | gaaggttgga | 1320 |
| gtgcattagt | tgtcattgag | aataatgcta | gctattcatt | gcactggcat | tagagacaga | 1380 |
| gagggcgagc | cagtttgaca | tggcaaatta | gcacagtcaa | actggatacg | tggtgacgga | 1440 |
| gggaggggca | ctatgaattt | ttggtgacgg | agggagggc  | actatgaatt | tttggctttg | 1500 |
| ctgacgggac | acgccactat | ggatgaaatt | ggacaaaata | cgaatattca | aggatgaaag | 1560 |
| tggtcggttt | gatagttcag | ggatgaaatg | tgtctttggg | caaactttga | ggacgaagtt | 1620 |
| gcctattttg | cattaaacga | atatatttat | ataccccaaa | aaaaagaata | cacateteca | 1680 |
| ctccgagccg | gcatgtgggg | tccccactag | tcagccactg | tatggcgccg | actageteaa | 1740 |
| cggccacgaa | ccagccaacc | accagcgcaa | cctaaacggc | gtaaacgttg | acggcatctc | 1800 |
| tetetegece | cgtctcgaag | cttccgcacc | gctcgctggt | cgctgcccgg | cgccgctcgt | 1860 |
| gctggactct | ttccgtggcg | getteegega | aattgcgtgg | tggagaggag | agacggaacc | 1920 |
| gtcacggcac | tggattcctt | ccccacccgg | cttggccggc | ccctcctcgc | ctccataaat | 1980 |
| aggcaccccg | tectegeete | ctctccccac | ctcatctcct | cctttcccgt | gaaccgtgaa | 2040 |
| cacaaccega | cccagatccc | ctcttgcgag | cttcgtcgat | ccctcctccg | cgtcaaggta | 2100 |
| cggagcttct | cctcccctt  | cttctctaga | tcggcgtgtt | atgttgtttc | cgtggttgct | 2160 |
| tggttggatg | aatcgaatga | ttcttagggc | ctaggaggct | ggttagatct | gttgcgttct | 2220 |
| gtttcgtaga | tggattttgg | tgtaagatca | ggtcggttcc | gctgtttaac | ttgtgatgct | 2280 |

agtgtgattt ttgggaggat ttgagttgtt aattgggag ttgttgggag gttctcgtag 2340 gcggattgta gatgaagtcg cccgcacgat ttgcgtggct tgttgggtag ctagggttag 2400 atctgctcgg attttcatt gttacttatt gagagataat gtagctaacc tttacttgtt 2460 catctatgta tctcgtattc gtattcatct ggttcgatgg tgctagatag atgcgcctga 2520 tttgtccgat cgaattgggt agcatccgcg gcttgtttgg tagtgttctg attgattgt 2580 cgctctagat ctgagtggaa taatattaca tctcaacatg ttactagaaa cttggttat 2640 agctccggat ttacatgtt attcttatgt aaggtttaa atgaaagatt tatgctactg 2700 ctgctcgttg atcctttagc atccacctga ggaacatgca tgcatctgtt acttctttg 2760 atatatgct agatagtt tagtatatac tgctgttgtt cgatgatcct tcaggatgaa 2820 catgcatgat catgttactt gttttatat gcttctgctg ttcgttgatt ctttagtact 2880 acctacctga tgattcttc ttgcaggtg

<210> 14 <211> 2012

<212> ADN

<213> Arundo donax

<400> 14

5

gatcagccat gcaagcaaga gatgttggtc gggcctcggt ggcaactgag gctatagtga 60 cctatgacqa gcaggccata qataggccca ctggcaagcc caagaatcgc tagacgggct 120 agatetggae acttgteege accaageact acegttgeaa etgeaacete tatatgtaac 180 tatagattea catgttgega catetttgee caatacgtat tgtaccetag acageteace 240 ctatettttt etttttte etettette tteeteetee ttgeatggag acgtagaagg 300 actecteet tgtgactatt aaaggaagga ettagggetg tgetagggga gagaactttt 360 ggacttggga gagctctgca ctgaacatct tcctctccac gcttgtaata ttttccacaa 420 caaaqaattc cataaaqccq qatqtaqqqc tattatccct ctcqqqaqqc ctqaaccaqq 480 gtaaaacacc actottotoa coagogttog cogcattagt ctagactage atottttgac 540 cctatatcga accatctagg gactttacgt cccctgcctg cagtttcccg gtgacagaat 600 660 gactatgatt tttcgtcgat tttataaaag tgaaaacaac cggttgatat ctatgcgcac tattttccta catatatttc taacttcttg cttagccatg tcggttaaga gcaagtggag 720 agcactetea tttegtagaa caagtgatga atgeegaeet geateatett aettagaett 780 gatcatcaag tggaatcccc attcatctta ataatctcat attgagtgcc aatgcaacat 840 tgttataatc ctcttcatat gctaattctt caaagctaac gtagttaaat gaaggcaaaa 900

tatgcaactt cgtcctctaa gtttgctcaa aggctcattt ttacccttta actatcaaac 960 cgattacttt cgtccctgaa ctttcatgtt tggtccaatt taatccctgg gctgatgtat 1020 ccgtccacgg tggtgtgtcc aatcagtgaa taatctagtt agtgaagcca gaagtccata 1080 gtgccccttg ctctgtcacc atatatccag ttcaaccgca ccaatttgcc atctcgaact 1140 ggttcatgtt ttattcaggt tggtaaatga attttgccaa ttcaatgtag ttagatattt 1200 ccatgtcatt ttagtacatt taccaatttt ttatattctg gctagaaaag gagaatggtg 1260 acgtettteg gaagateaag ateaattate aagtateage aacageacet gaaggttgga 1320 gtgcattagt tgtcattgag aataatgcta gctattcatt gcactggcat tagagacaga 1380 gagggcgagc cagtttgaca tggcaaatta gcacagtcaa actggatacg tggtgacgga 1440 gggaggggca ctatgaattt ttggtgacgg agggaggggc actatgaatt tttggctttg 1500 ctgacgggac acgccactat ggatgaaatt ggacaaaata cgaatattca aggatgaaag 1560 tggtcggttt gatagttcag ggatgaaatg tgtctttggg caaactttga ggacgaagtt 1620 gcctattttg cattaaacga atatatttat ataccccaaa aaaaagaata cacatctcca 1680 ctccgagccg gcatgtgggg tccccactag tcagccactg tatggcgccg actagctcaa 1740 cggccacgaa ccagccaacc accagcgcaa cctaaacggc gtaaacgttg acggcatete 1800 tetetegece egtetegaag etteegeace getegetggt egetgecegg egeegetegt 1860 gctggactct ttccgtggcg gcttccgcga aattgcgtgg tggagaggag agacggaacc 1920 gtcacggcac tggattcctt ccccaccgg cttggccggc ccctcctcgc ctccataaat 1980 aggeacceeg tectegeete eteteceeae et 2012

<210> 15 <211> 872 <212> ADN

<213> Arundo donax

<400> 15

5

gtacggagct tetectecce ettettetet agateggegt gttatgttgt tteegtggtt 60 gettggttgg atgaategaa tgattettag ggeetaggag getggttaga tetgttgegt 120 tetgtttegt agatggattt tggtgtaaga teaggteggt teegetgttt aacttgtgat 180 gctagtgtga tttttgggag gatttgagtt gttaatctgg gagttgttgg gaggttctcg taggoggatt gtagatgaag togocogcac gatttgogtg gottgttggg tagctagggt tagatetget eggattttte attgttaett attgagagat aatgtageta acetttaett gttcatctat gtatctcgta ttcgtattca tctggttcga tggtgctaga tagatgcgcc 420 tgatttgtcc gatcgaattg ggtagcatcc gcggcttgtt tggtagtgtt ctgattgatt 480 tgtcgctcta gatctgagtg gaataatatt acatctcaac atgttactag aaacttggtt 540 tatagctccg gatttacatg tttattctta tgtaaggttt taaatgaaag atttatgcta 600 ctgctgctcg ttgatccttt agcatccacc tgaggaacat gcatgcatct gttacttctt 660 ttgatatatg cttagatagt tgttagtata tactgctgtt gttcgatgat ccttcaggat 780 qaacatgcat qatcatgtta cttqttttta tatqcttctq ctqttcqttq attctttaqt actacctacc tgatcatctt gcatgtttcc tgcttgttag agattaattg attaggctta 840 872 cettgttgcc tggtgattet teettgcagg tg

<210> 16 <211> 1954 <212> ADN <213> Arundo donax

5 <400> 16

tgatgtatcc gtccacggtg gtgtgtccaa tcagtgaata atctagttag tgaagccaga 60 agtccatagt gccccttgct ctgtcaccat atatccagtt caaccgcacc aatttgccat 120 ctcgaactgg ttcatgtttt attcaggttg gtaaatgaat tttgccaatt caatgtagtt 180 agatatttcc atgtcatttt agtacattta ccaatttttt atattctggc tagaaaagga 240 gaatggtgac gtctttcgga agatcaagat caattatcaa gtatcagcaa cagcacctga 300 aggttggagt gcattagttg tcattgagaa taatgctagc tattcattgc actggcatta 360 gagacagaga gggcgagcca gtttgacatg gcaaattagc acagtcaaac tggatacgtg 420 gtgacggagg gaggggcact atgaattttt ggtgacggag ggaggggcac tatgaatttt 480 540 tggctttgct gacgggacac gccactatgg atgaaattgg acaaaatacg aatattcaag gatgaaagtg gtcggtttga tagttcaggg atgaaatgtg tctttgggca aactttgagg 600 acgaagttgc ctattttgca ttaaacgaat atatttatat accccaaaaa aaagaataca 660 catctccact ccgagccggc atgtggggtc cccactagtc agccactgta tggcgccgac tageteaacg gecaegaace ageeaaceac cagegeaace taaacggegt aaacgttgae 780 ggcatetete tetegeeceg tetegaaget teegeacege tegetggteg etgeecggeg 840 900 acggaaccgt cacggcactg gattecttee ecaccegget tggccggccc etectegeet 960 ccataaatag gcaccccgtc ctcgcctcct ctccccacct catctcctcc tttcccgtga 1020 acceptgaaca caaccegace cagatecect ettgegaget tegtegatee etecteegeg 1080 tcaaggtacg gagcttetec tececettet tetetagate ggegtgttat gttgttteeg 1140 tggttgcttg gttggatgaa tcgaatgatt cttagggcct aggaggctgg ttagatctgt 1200 tgcgttctgt ttcgtagatg gattttggtg taagatcagg tcggttccgc tgtttaactt 1260

gtgatgctag tgtgatttt gggaggatt gagttgttaa tetgggagtt gttgggaggt 1320
tetegtagge ggattgtaga tgaagtegee egeacgattt gegtggettg ttgggtaget 1380
agggttagat etgeteggat tttteattgt tacttattga gagataatgt agetaacett 1440
tacttgttea tetatgtate tegtattegt atteatetgg ttegatggtg etagatagat 1500
gegeetgatt tgteegateg aattgggtag eateegegge ttgtttggta gtgttetgat 1560
tgatttgteg etetagatet gagtggaata atattacate teaacatgtt actagaaacet 1620
tggtttatag eteeggatt acatgttat tettatgtaa ggttttaaat gaaagattta 1680
tgetaetget getegttgat eetttageat eeaeetgagg aacatgeatg eatetgttae 1740
ttettttgat atatgettag atagttgta gtatataetg etgttgtteg atgateette 1800
aggatgaaca tgeatgatea tgttaettgt ttttatatge ttetgetgtt egttgattet 1860
ttagtaetae etaeetgate atettgeatg ttteetgett gttagagatt aattgattag 1920
gettaeettg ttgeetggtg attetteett geag

<210> 17 <211> 1000 <212> ADN <213> Arundo

<213> Arundo donax

<400> 17

5

tgatgtatcc gtccacggtg gtgtgtccaa tcagtgaata atctagttag tgaagccaga 60 agtocatagt goccottgot otgtoaccat atatocagtt caaccgcacc aatttgccat 120 ctcgaactgg ttcatgtttt attcaggttg gtaaatgaat tttgccaatt caatgtagtt agatatttcc atgtcatttt agtacattta ccaatttttt atattctggc tagaaaagga gaatggtgac gtctttcgga agatcaagat caattatcaa gtatcagcaa cagcacctga 300 aggttggagt gcattagttg tcattgagaa taatgctagc tattcattgc actggcatta 360 gagacagaga gggcgagcca gtttgacatg gcaaattagc acagtcaaac tggatacgtg 420 gtgacggagg gaggggcact atgaattttt ggtgacggag ggaggggcac tatgaatttt 480 tggctttgct gacgggacac gccactatgg atgaaattgg acaaaatacg aatattcaag gatgaaagtg gtcggtttga tagttcaggg atgaaatgtg tctttgggca aactttgagg 600 acqaagttqc ctattttqca ttaaacqaat atatttatat accccaaaaa aaaqaataca 660 catctccact ccgagccggc atgtggggtc cccactagtc agccactgta tggcgccgac 720 tageteaacg gecacgaace agecaaceac cagegeaace taaacggegt aaacgttgac 780 ggcatctctc tetegeceeg tetegaaget teegeacege tegetggteg etgeceggeg 840 900 acggaaccgt cacggcactg gattccttcc ccacccggct tggccggccc ctcctcgcct 960

<210> 18 <211> 1957 <212> ADN

10

1000

ccataaatag gcaccccgtc ctcgcctcct ctccccacct

<213> Arundo donax

<400> 18

| tgatgtatcc | gtccacggtg | gtgtgtccaa | tcagtgaata | atctagttag | tgaagccaga | 60   |
|------------|------------|------------|------------|------------|------------|------|
| agtccatagt | gccccttgct | ctgtcaccat | atatccagtt | caaccgcacc | aatttgccat | 120  |
| ctcgaactgg | ttcatgtttt | attcaggttg | gtaaatgaat | tttgccaatt | caatgtagtt | 180  |
| agatatttcc | atgtcatttt | agtacattta | ccaattttt  | atattctggc | tagaaaagga | 240  |
| gaatggtgac | gtctttcgga | agatcaagat | caattatcaa | gtatcagcaa | cagcacctga | 300  |
| aggttggagt | gcattagttg | tcattgagaa | taatgctagc | tattcattgc | actggcatta | 360  |
| gagacagaga | gggcgagcca | gtttgacatg | gcaaattagc | acagtcaaac | tggatacgtg | 420  |
| gtgacggagg | gaggggcact | atgaatttt  | ggtgacggag | ggagggcac  | tatgaatttt | 480  |
| tggctttgct | gacgggacac | gccactatgg | atgaaattgg | acaaaatacg | aatattcaag | 540  |
| gatgaaagtg | gtcggtttga | tagttcaggg | atgaaatgtg | tctttgggca | aactttgagg | 600  |
| acgaagttgc | ctattttgca | ttaaacgaat | atatttatat | accccaaaaa | aaagaataca | 660  |
| catctccact | ccgagccggc | atgtggggtc | cccactagtc | agccactgta | tggcgccgac | 720  |
| tagctcaacg | gccacgaacc | agccaaccac | cagcgcaacc | taaacggcgt | aaacgttgac | 780  |
| ggcatetete | tetegeceeg | tetegaaget | teegeacege | tegetggteg | ctgcccggcg | 840  |
| ccgctcgtgc | tggactcttt | ccgtggcggc | ttccgcgaaa | ttgcgtggtg | gagaggagag | 900  |
| acggaaccgt | cacggcactg | gatteettee | ccacccggct | tggccggccc | ctcctcgcct | 960  |
| ccataaatag | gcaccccgtc | ctcgcctcct | ctccccacct | catctcctcc | tttcccgtga | 1020 |
| accgtgaaca | caacccgacc | cagateceet | cttgcgagct | tegtegatee | ctcctccgcg | 1080 |
| tcaaggtacg | gagettetee | teccettet  | tctctagatc | ggcgtgttat | gttgtttccg | 1140 |
| tggttgcttg | gttggatgaa | tcgaatgatt | cttagggcct | aggaggetgg | ttagatctgt | 1200 |
| tgcgttctgt | ttcgtagatg | gattttggtg | taagatcagg | teggtteege | tgtttaactt | 1260 |
| gtgatgctag | tgtgattttt | gggaggattt | gagttgttaa | tctgggagtt | gttgggaggt | 1320 |
| tctcgtaggc | ggattgtaga | tgaagtcgcc | cgcacgattt | gcgtggcttg | ttgggtagct | 1380 |
| agggttagat | ctgctcggat | ttttcattgt | tacttattga | gagataatgt | agctaacctt | 1440 |
| tacttgttca | tctatgtatc | tcgtattcgt | attcatctgg | ttcgatggtg | ctagatagat | 1500 |
| gcgcctgatt | tgtccgatcg | aattgggtag | cateegegge | ttgtttggta | gtgttctgat | 1560 |

tgatttgtcg ctctagatct gagtggaata atattacatc tcaacatgtt actagaaact 1620
tggtttatag ctccggattt acatgtttat tcttatgtaa ggttttaaat gaaagattta 1680
tgctactgct gctcgttgat cctttagcat ccacctgagg aacatgcatg catctgttac 1740
ttcttttgat atatgcttag atagttgtta gtatatactg ctgttgttcg atgatccttc 1800
aggatgaaca tgcatgatca tgttacttgt ttttatatgc ttctgctgtt cgttgattct 1860
ttagtactac ctacctgatc atcttgcatg tttcctgctt gttagagatt aattgattag 1920
gcttaccttg ttgcctggtg attcttcctt gcaggtg 1957

<210> 19 <211> 1957 <212> ADN <213> Arundo donax

<400> 19

5

tgatgtatcc gtccacggtg gtgtgtccaa tcagtgaata atctagttag tgaagccaga 60 agtocatagt goccottgot otgtoaccat atatocagtt caaccgcacc aatttgocat 120 ctcgaactgg ttcatgtttt attcaggttg gtaaatgaat tttgccaatt caatgtagtt 180 agatatttcc atgtcatttt agtacattta ccaatttttt atattctggc tagaaaagga 240 gaatggtgac gtctttcgga agatcaagat caattatcaa gtatcagcaa cagcacctga 300 aggttggagt gcattagttg tcattgagaa taatgctagc tattcattgc actggcatta 360 gagacagaga gggcgagcca gtttgacatg gcaaattagc acagtcaaac tggatacgtg 420 gtgacggagg gaggggcact atgaattttt ggtgacggag ggaggggcac tatgaatttt tggctttgct gacgggacac gccactatgg atgaaattgg acaaaatacg aatattcaag 540 600 gatgaaagtg gtcggtttga tagttcaggg atgaaatgtg tctttgggca aactttgagg acgaagttgc ctattttgca ttaaacgaat atatttatat accccaaaaa aaagaataca 660 catctccact ccgagccggc atgtggggtc cccactagtc agccactgta tggcgccgac 720 tageteaacg gecaegaace agecaaceae cagegeaace taaacggegt aaacgttgae 780 ggcatetete tetegeeceg tetegaaget teegeacege tegetggteg etgeceggeg 840 900 acggaaccgt cacggcactg gattccttcc ccacccggct tggccggccc ctcctcgcct ccataaatag gcaccccgtc ctcgcctcct ctccccacct catctcctcc tttcccgtga 1020 acceptgaaca caaccegace cagatecect cttgcgaget tegtegatee ctecteegeg 1080 tcaaggtacg gagettetee teeceettet tetetagate ggegtgttat gttgttteeg 1140 tggttgcttg gttggatgaa tcgaatgatt cttagggcct aggaggctgg ttagatctgt 1200 tgcgttctgt ttcgtagatg gattttggtg taagatcagg tcggttccgc tgtttaactt 1260

gtgatgctag tgtgattttt gggaggattt gagttgttaa tctgggaggt gttgggaggt 1320 tetegtagge ggattgtaga tgaagtegee egeacgattt gegtggettg ttgggtaget 1380 agggttagat etgeteggat tttteattgt taettattga gagataatgt agetaacett 1440 tacttgttca tctatgtata tcgtattcgt attcatctgg ttcgatggtg ctagatagat 1500 gcgcctgatt tgtccgatcg aattgggtag catccgcggc ttgtttggta gtgttctgat 1560 tgatttgtcg ctctagatct gagtggaata atattacatc tcaacatgtt actagaaact 1620 tggtttatag ctccggattt acatgtttat tcttatgtaa ggttttaaat gaaagattta 1680 tgctactgct gctcgttgat cctttagcat ccacctgagg aacatgcatg catctgttac 1740 ttcttttgat atatgcttag atagttgtta gtatatactg ctgttgttcg atgatccttc 1800 aggatgaaca tgcatgatca tgttacttgt ttttatatgc ttctgctgtt cgttgattct 1860 ttagtactac ctacctgatc atcttgcatg tttcctgctt gttagagatt aattgattag 1920 gcttaccttg ttgcctggtg attcttcctt gcaggtg 1957

<210> 20 <211> 872

<212> ADN

<213> Arundo donax

<400> 20

5

gtacggagct tctcctcccc cttcttctct agatcggcgt gttatgttgt ttccgtggtt 60 gcttggttgg atgaatcgaa tgattcttag ggcctaggag gctggttaga tctgttgcgt tctgtttcgt agatggattt tggtgtaaga tcaggtcggt tccgctgttt aacttgtgat 180 gctagtgtga tttttgggag gatttgagtt gttaatctgg gagttgttgg gaggttctcg 240 taggcggatt gtagatgaag tcgcccgcac gatttgcgtg gcttgttggg tagctagggt 300 tagatetget eggattttte attgttactt attgagagat aatgtageta acetttaett 360 gttcatctat gtatatcgta ttcgtattca tctggttcga tggtgctaga tagatgcgcc 420 tgatttgtcc gatcgaattg ggtagcatcc gcggcttgtt tggtagtgtt ctgattgatt 480 tgtcgctcta gatctgagtg gaataatatt acatctcaac atgttactag aaacttggtt 540 tatagctccg gatttacatg tttattctta tgtaaggttt taaatgaaag atttatgcta 600 ctgctgctcg ttgatccttt agcatccacc tgaggaacat gcatgcatct gttacttctt 660 ttgatatatg cttagatagt tgttagtata tactgctgtt gttcgatgat ccttcaggat 720 gaacatgcat gatcatgtta cttgttttta tatgcttctg ctgttcgttg attctttagt 780 actacctacc tgatcatctt gcatgtttcc tgcttgttag agattaattg attaggctta 840 872 ccttgttgcc tggtgattct tccttgcagg tg

<210> 21

<211> 1712 <212> ADN <213> Arundo donax

<400> 21

| gtgacgtctt | tcggaagatc | aagatcaatt | atcaagtatc | agcaacagca | cctgaaggtt | 60   |
|------------|------------|------------|------------|------------|------------|------|
| ggagtgcatt | agttgtcatt | gagaataatg | ctagctattc | attgcactgg | cattagagac | 120  |
| agagagggeg | agccagtttg | acatggcaaa | ttagcacagt | caaactggat | acgtggtgac | 180  |
| ggagggaggg | gcactatgaa | tttttggtga | cggagggagg | ggcactatga | atttttggct | 240  |
| ttgctgacgg | gacacgccac | tatggatgaa | attggacaaa | atacgaatat | tcaaggatga | 300  |
| aagtggtcgg | tttgatagtt | cagggatgaa | atgtgtcttt | gggcaaactt | tgaggacgaa | 360  |
| gttgcctatt | ttgcattaaa | cgaatatatt | tatatacccc | aaaaaaaga  | atacacatct | 420  |
| ccactccgag | ccggcatgtg | gggtccccac | tagtcagcca | ctgtatggcg | ccgactagct | 480  |
| caacggccac | gaaccagcca | accaccageg | caacctaaac | ggcgtaaacg | ttgacggcat | 540  |
| ctctctctcg | cecegteteg | aagetteege | accgctcgct | ggtcgctgcc | cggcgccgct | 600  |
| cgtgctggac | tettteegtg | gcggcttccg | cgaaattgcg | tggtggagag | gagagacgga | 660  |
| accgtcacgg | cactggattc | cttccccacc | cggcttggcc | ggcccctcct | cgcctccata | 720  |
| aataggcacc | cegteetege | ctcctctccc | cacctcatct | cctcctttcc | cgtgaaccgt | 780  |
| gaacacaacc | cgacccagat | cccctcttgc | gagettegte | gatecetect | ccgcgtcaag | 840  |
| gtacggaget | tetectecce | cttcttctct | agatcggcgt | gttatgttgt | ttccgtggtt | 900  |
| gcttggttgg | atgaatcgaa | tgattcttag | ggcctaggag | gctggttaga | tetgttgegt | 960  |
| tctgtttcgt | agatggattt | tggtgtaaga | tcaggtcggt | tccgctgttt | aacttgtgat | 1020 |
| gctagtgtga | tttttgggag | gatttgagtt | gttaatctgg | gagttgttgg | gaggttctcg | 1080 |
| taggcggatt | gtagatgaag | tegecegeae | gatttgcgtg | gcttgttggg | tagctagggt | 1140 |
| tagatctgct | cggattttc  | attgttactt | attgagagat | aatgtagcta | acctttactt | 1200 |
| gttcatctat | gtatctcgta | ttcgtattca | tetggttega | tggtgctaga | tagatgcgcc | 1260 |
| tgatttgtcc | gatcgaattg | ggtagcatcc | geggettgtt | tggtagtgtt | ctgattgatt | 1320 |
| tgtcgctcta | gatctgagtg | gaataatatt | acatctcaac | atgttactag | aaacttggtt | 1380 |
| tatageteeg | gatttacatg | tttattctta | tgtaaggttt | taaatgaaag | atttatgcta | 1440 |
| ctgctgctcg | ttgatccttt | agcatccacc | tgaggaacat | gcatgcatct | gttacttctt | 1500 |
| ttgatatatg | cttagatagt | tgttagtata | tactgctgtt | gttcgatgat | ccttcaggat | 1560 |
| gaacatgcat | gatcatgtta | cttgttttta | tatgcttctg | ctgttcgttg | attctttagt | 1620 |
| actacctacc | tgatcatctt | gcatgtttcc | tgcttgttag | agattaattg | attaggctta | 1680 |
|            |            |            |            |            |            |      |

ccttgttgcc tggtgattct tccttgcagg tg

1712

| <210> 22        |     |
|-----------------|-----|
| <211> 755       |     |
| <212> ADN       |     |
| <213> Arundo do | nax |
|                 |     |

5 <400> 22

| gtgacgtctt | teggaagate | aagatcaatt | atcaagtatc | agcaacagca | cctgaaggtt | 60  |
|------------|------------|------------|------------|------------|------------|-----|
| ggagtgcatt | agttgtcatt | gagaataatg | ctagctattc | attgcactgg | cattagagac | 120 |
| agagagggcg | agccagtttg | acatggcaaa | ttagcacagt | caaactggat | acgtggtgac | 180 |
| ggagggaggg | gcactatgaa | tttttggtga | cggagggagg | ggcactatga | atttttggct | 240 |
| ttgctgacgg | gacacgccac | tatggatgaa | attggacaaa | atacgaatat | tcaaggatga | 300 |
| aagtggtcgg | tttgatagtt | cagggatgaa | atgtgtcttt | gggcaaactt | tgaggacgaa | 360 |
| gttgcctatt | ttgcattaaa | cgaatatatt | tatatacccc | aaaaaaaga  | atacacatct | 420 |
| ccactccgag | ccggcatgtg | gggtccccac | tagtcagcca | ctgtatggcg | ccgactaget | 480 |
| caacggccac | gaaccagcca | accaccagcg | caacctaaac | ggcgtaaacg | ttgacggcat | 540 |
| ctctctctcg | ccccgtctcg | aagetteege | accgctcgct | ggtegetgee | cggcgccgct | 600 |
| cgtgctggac | tettteegtg | gcggcttccg | cgaaattgcg | tggtggagag | gagagacgga | 660 |
| accgtcacgg | cactggattc | cttccccacc | cggcttggcc | ggeceeteet | cgcctccata | 720 |
| aataggcacc | ccgtcctcgc | ctcctctccc | cacct      |            |            | 755 |

<210> 23 <211> 3276 <212> ADN <213> Arundo donax

10

<400> 23

ggcctcttta cgtttggcac aatttgatcg aatccaacac ggcaagttag cctttgaage 60
ttgaaccggg cactaatgca agtatataat aactgagaac tacaagaaag catattcctt 120
gaggtactta tgcaacctta caattatcaa attaattaac aactagcagt tagaatttta 180
tatcacaaga atatcatgaa ccgtggatac tacttcttaa agggctattc tttttctgaa 240
tgtcgcagtt ggttatttta accatattac aaactagggg tttaaatccc aaaaagttca 300
cggaaaggga ttaagcaagt agttagcaag actcacactt atgaccgtta gccaaattac 360
acattggtca ttccaggagg agtaatcccc catagctagt tgttttgagt ttgactaccc 420
aaacttgcat aatcgtttc ctagaggggg ggggggggtt caccattcca tcaagatgag 480
gcaaagctaa atgaaacaca cgagaggcaa aacggactga cgtgatagag tttttaataa 540

| atatcaaata | tgtagagtca | accaaagaaa | aaagatatcc | caatggctaa | actttggatc | 600  |
|------------|------------|------------|------------|------------|------------|------|
| tatgtcgtaa | ttcgtgtttt | aggacataca | aggcgaattc | cttctacggc | aaactctaga | 660  |
| atagctgggc | gacaatggcc | tcacgatagc | ctcaaagagt | tggtagcaac | tttgagatct | 720  |
| tttgatccga | aactcaatta | tgtagtacaa | tgatatttag | atagattgat | tgaaagttgg | 780  |
| gggtggggc  | gaaagcgaag | gggatctcaa | tattaataca | tctatagtga | atggatatag | 840  |
| aaaacacagg | atttccaatt | caagtagaaa | taggaggaac | ggaacagatc | tagcaatagt | 900  |
| agccaccaaa | gacgaggagg | attctagatt | gcaaatccaa | ggtgaaagga | agaaatgttg | 960  |
| aactatccag | aataaggcgg | attggccaag | gaggcggaag | tctctagaaa | gaagtcattt | 1020 |
| ggctctgagg | gctcacttga | tgcgagaagg | aagactgact | gaggaatgga | ttttggtgga | 1080 |
| ccgaggaaat | tggtgctggg | ttgcagaggc | atgtatgtgg | gaaaagaggc | agtggcaacg | 1140 |
| atcgagagag | gagaagggaa | tgaggtaagt | atttgaagtg | aagaggagcc | catataggtg | 1200 |
| aaaaataaaa | ataatccatc | gtggattcaa | ataatcaaag | ggctatgacc | tttcatcaat | 1260 |
| tttagaaaag | tgaaaacaac | cggtttaaca | cctatatgca | ccattttcct | acatagattt | 1320 |
| ttaacttctt | acttaaccat | gttgactaag | agcaagtgga | gagcactete | atttcataga | 1380 |
| acaagtgatg | aatgccaacc | tgcattatta | tcttaattag | actttgatca | tcaagtggaa | 1440 |
| tcccatttat | cttaataatc | ttggcaacat | tgttataatg | ctacttcata | tgctaattct | 1500 |
| tcaaagctaa | catcgttaaa | cgaatacata | tctcctgtat | tctaagaccc | tatttagaat | 1560 |
| acagaaattt | tacagaaatc | agttcaattc | tcgtagaatt | gggaaagaaa | tectecgtte | 1620 |
| caaacgtgac | ctaageegge | atggcacgac | cccactcgtc | aggcactgta | tgtaaacgtc | 1680 |
| agcaactccg | tggcaagtaa | cgtcgagagg | aggagcgggc | ctaacggcgc | cgactagete | 1740 |
| aacggccacc | aaccagccaa | ccaccagege | aaccgaaacg | gcgcaaacgt | tgacgtcatc | 1800 |
| tctctctctc | tegegeeeeg | cgtcccgaag | cttccgcacc | actcgctggt | cgctgctagc | 1860 |
| tgggccccac | cggccggccc | cgttcgtgct | ggactcttct | teetegaaat | tgcgtggtgg | 1920 |
| agagggagag | ggggcacctc | gagacggaac | cgtcacggca | cgggattcct | tecceacecg | 1980 |
| gcccctcctc | gtctccataa | ataggcgccc | cctcctcgcg | tcctctcccc | cgtctcatct | 2040 |
| cctcctgttc | cgtgaaccgt | gaacgcaacc | cgacccccag | atctctctcg | cgagcatcgt | 2100 |
| cgatccctcc | teegegteaa | ggtacggatc | ttctccttcc | tecceettee | cctctgggtc | 2160 |
| ggcgtgtcgt | gttgtttctc | tagttgcttg | gctggatgga | tcgagtggtt | cttagggctt | 2220 |
| agatggctgg | ttagatctgt | tgcgttctgt | ttcgtagatg | gatttttggt | gtagatctgg | 2280 |
| taggttatgc | tggttaactg | gtgatgctcc | tgcgattttt | gggggatctg | agttgttaat | 2340 |
| ctggtagttg | tatggggttc | tcgtagccgg | attgtagatg | aaatcgtccg | cgcggtttgc | 2400 |
| gtggctcgtt | ggttagctag | ggttagatct | gctcggattt | ttcattgttc | ctgattcaga | 2460 |

gatgtagtta acctttactt gttcatcttt gtatctcgta ttcgtactg catgtatgat 2520 ctgtttcgat ggtgctagat aggtgcgcct gatttgtccg atcgaatctg gtagcatgcg 2580 ctgtttgttt ggtagtgttc tgattgattt gtcgctctag atctgagtag aataggatta 2640 tttctcaaca tgatattaga agcttggttt atagctccgg attagcatgt atgttacatg 2700 tttattctta tgtaaggttt taaacggaag atatatgcta ctgctgctca ttgattcttt 2760 atcatccacc tgagtccatg catgcttctg ttacttcttt tgatatgtgc ttagatagct 2820 gttgatatgt actgctgctg ttagatgatc cttcaggatg aacatgcatg attctgttac 2880 ttgttttggt atgcttagat aaatcaagat acgcttctge tgttcgttga ttctttagta 2940 ctacctacct gatcagcta gatagatcaa gatatgcttc tgctgttgt tgattctta 3000 gtaataccta cctgatcagc ttagatagat caagatacgc ttctgctgtt cgttgattct 3060 ctagtactac ctacctgata aacatgcatg ttttctgctt gttaaaggtt gattgcttag 3120 gctcatcttt ttctttcgt tgattctta gtactaccta cctgataaac atgcatgttt 3180 tctgcttgtt aaagattgat tgcttagtc catcttttc tttctcttt gtctaccgcc 3240 aggcctaacc ttgttgctgg tgactcttc ttgcag

<210> 24

<211> 2033

<212> ADN

5

<213> Arundo donax

<400> 24

ggcctcttta cgtttggcac aatttgatcg aatccaacac ggcaagttag cctttgaagc 60 ttgaaccggg cactaatgca agtatataat aactgagaac tacaagaaag catattcctt 120 gaggtactta tgcaacctta caattatcaa attaattaac aactagcagt tagaatttta 180 240 tatcacaaga atatcatgaa ccgtggatac tacttcttaa agggctattc tttttctgaa tgtcgcagtt ggttatttta accatattac aaactagggg tttaaatccc aaaaagttca 300 cggaaaggga ttaagcaagt agttagcaag actcacactt atgaccgtta gccaaattac 360 acattggtca ttccaggagg agtaatcccc catagctagt tgttttgagt ttgactaccc 420 aaacttgcat aatcgttttc ctagaggggg gggggggtt caccattcca tcaagatgag 480 540 gcaaagctaa atgaaacaca cgagaggcaa aacggactga cgtgatagag tttttaataa atatcaaata tgtagagtca accaaagaaa aaagatatcc caatggctaa actttggatc 600 tatgtcgtaa ttcgtgtttt aggacataca aggcgaattc cttctacggc aaactctaga 660 atagetggge gacaatggee teaegatage etcaaagagt tggtageaac tttgagatet 720 780 tttgatccga aactcaatta tgtagtacaa tgatatttag atagattgat tgaaagttgg

| gggtggggc  | gaaagcgaag | gggatctcaa | tattaataca | tctatagtga | atggatatag         | 840  |
|------------|------------|------------|------------|------------|--------------------|------|
| aaaacacagg | atttccaatt | caagtagaaa | taggaggaac | ggaacagatc | tagcaatagt         | 900  |
| agccaccaaa | gacgaggagg | attctagatt | gcaaatccaa | ggtgaaagga | agaaatgttg         | 960  |
| aactatccag | aataaggcgg | attggccaag | gaggcggaag | tctctagaaa | gaagtcattt         | 1020 |
| ggctctgagg | gctcacttga | tgcgagaagg | aagactgact | gaggaatgga | ttttggtgga         | 1080 |
| ccgaggaaat | tggtgctggg | ttgcagaggc | atgtatgtgg | gaaaagaggc | agtggcaacg         | 1140 |
| atcgagagag | gagaagggaa | tgaggtaagt | atttgaagtg | aagaggagcc | catataggtg         | 1200 |
| aaaaataaaa | ataatccatc | gtggattcaa | ataatcaaag | ggctatgacc | tttcatcaat         | 1260 |
| tttagaaaag | tgaaaacaac | cggtttaaca | cctatatgca | ccattttcct | acatagattt         | 1320 |
| ttaacttctt | acttaaccat | gttgactaag | agcaagtgga | gagcactctc | atttcataga         | 1380 |
| acaagtgatg | aatgccaacc | tgcattatta | tcttaattag | actttgatca | tcaagtggaa         | 1440 |
| tcccatttat | cttaataatc | ttggcaacat | tgttataatg | ctacttcata | tgctaattct         | 1500 |
| tcaaagctaa | catcgttaaa | cgaatacata | tctcctgtat | tctaagaccc | tatttagaat         | 1560 |
| acagaaattt | tacagaaatc | agttcaattc | togtagaatt | gggaaagaaa | tectcegtte         | 1620 |
| caaacgtgac | ctaagccggc | atggcacgac | cccactcgtc | aggcactgta | tgtaaacgtc         | 1680 |
| agcaactccg | tggcaagtaa | cgtcgagagg | aggagcgggc | ctaacggcgc | cgactagete         | 1740 |
| aacggccacc | aaccagccaa | ccaccagege | aaccgaaacg | gcgcaaacgt | tgacgtcatc         | 1800 |
| tetetetete | tegegeeeeg | cgtcccgaag | cttccgcacc | actcgctggt | <b>cgct</b> gctagc | 1860 |
| tgggccccac | cggccggccc | cgttcgtgct | ggactcttct | tcctcgaaat | tgcgtggtgg         | 1920 |
| agagggagag | ggggcacctc | gagacggaac | cgtcacggca | cgggattcct | tecceacecg         | 1980 |
| gecectecte | gtctccataa | ataggcgccc | cctcctcgcg | tectetecee | cgt                | 2033 |

<210> 25

<211> 88

<212> ADN

<213> Arundo donax

<400> 25

5

10

ctcatctcct cctgttccgt gaaccgtgaa cgcaacccga cccccagatc tctctcgcga 60 gcatcgtcga tccctcctcc gcgtcaag 88

<210> 26

<211> 1155

<212> ADN

<213> Arundo donax

<400> 26

| gtacggatct | teteetteet | ccccttccc  | ctctgggtcg | gcgtgtcgtg | ttgtttctct | 60   |
|------------|------------|------------|------------|------------|------------|------|
| agttgcttgg | ctggatggat | cgagtggttc | ttagggctta | gatggctggt | tagatetgtt | 120  |
| gcgttctgtt | tcgtagatgg | atttttggtg | tagatctggt | aggttatgct | ggttaactgg | 180  |
| tgatgctcct | gcgatttttg | ggggatctga | gttgttaatc | tggtagttgt | atggggttct | 240  |
| cgtagccgga | ttgtagatga | aatcgtccgc | gcggtttgcg | tggctcgttg | gttagctagg | 300  |
| gttagatctg | ctcggatttt | tcattgttcc | tgattcagag | atgtagttaa | cctttacttg | 360  |
| ttcatctttg | tatctcgtat | togtacctgc | atgtatgatc | tgtttcgatg | gtgctagata | 420  |
| ggtgcgcctg | atttgtccga | togaatotgg | tagcatgcgc | tgtttgtttg | gtagtgttct | 480  |
| gattgatttg | tcgctctaga | tctgagtaga | ataggattat | ttctcaacat | gatattagaa | 540  |
| gcttggttta | tageteegga | ttagcatgta | tgttacatgt | ttattcttat | gtaaggtttt | 600  |
| aaacggaaga | tatatgctac | tgctgctcat | tgattcttta | tcatccacct | gagtccatgc | 660  |
| atgcttctgt | tacttctttt | gatatgtgct | tagatagctg | ttgatatgta | ctgctgctgt | 720  |
| tagatgatcc | ttcaggatga | acatgcatga | ttctgttact | tgttttggta | tgcttagata | 780  |
| aatcaagata | cgcttctgct | gttcgttgat | tctttagtac | tacctacctg | atcagcttag | 840  |
| atagatcaag | atatgcttct | gctgttcgtt | gattctttag | taatacctac | ctgatcagct | 900  |
| tagatagatc | aagatacgct | tetgetgtte | gttgattctc | tagtactacc | tacctgataa | 960  |
| acatgcatgt | tttctgcttg | ttaaaggttg | attgcttagg | ctcatctttt | tcttttcgtt | 1020 |
| gattctctag | tactacctac | ctgataaaca | tgcatgtttt | ctgcttgtta | aagattgatt | 1080 |
| gcttagtctc | atcttttct  | ttctcttttg | tctaccgcca | ggcctaacct | tgttgctggt | 1140 |
| gactctttct | tgcag      |            |            |            |            | 1155 |

<210> 27

<211> 3250

<212> ADN

<213> Arundo donax

<400> 27

5

| gaatccaaca | cggcaagtta | gcctttgaag | cttgaaccgg | gcactaatgc | aagtatataa | 60  |
|------------|------------|------------|------------|------------|------------|-----|
| taactgagaa | ctacaagaaa | gcatattcct | tgaggtactt | atgcaacctt | acaattatca | 120 |
| aattaattaa | caactagcag | ttagaatttt | atatcacaag | aatatcatga | accgtggata | 180 |
| ctacttctta | aagggctatt | ctttttctga | atgtcgcagt | tggttatttt | aaccatatta | 240 |
| caaactaggg | gtttaaatcc | caaaaagttc | acggaaaggg | attaagcaag | tagttagcaa | 300 |
| gactcacact | tatgaccgtt | agccaaatta | cacattggtc | attccaggag | gagtaatccc | 360 |
| ccatagctag | ttgttttgag | tttgactacc | caaacttgca | taatcgtttt | cctagagggg | 420 |
| ggggggggt  | tcaccattcc | atcaagatga | ggcaaagcta | aatgaaacac | acgagaggca | 480 |

| aaacggactg | acgtgataga | gtttttaata | aatatcaaat | atgtagagtc | aaccaaagaa | 540  |
|------------|------------|------------|------------|------------|------------|------|
| aaaagatatc | ccaatggcta | aactttggat | ctatgtcgta | attcgtgttt | taggacatac | 600  |
| aaggcgaatt | ccttctacgg | caaactctag | aatagctggg | cgacaatggc | ctcacgatag | 660  |
| cctcaaagag | ttggtagcaa | ctttgagatc | ttttgatccg | aaactcaatt | atgtagtaca | 720  |
| atgatattta | gatagattga | ttgaaagttg | ggggtggggg | cgaaagcgaa | ggggatctca | 780  |
| atattaatac | atctatagtg | aatggatata | gaaaacacag | gatttccaat | tcaagtagaa | 840  |
| ataggaggaa | cggaacagat | ctagcaatag | tagccaccaa | agacgaggag | gattctagat | 900  |
| tgcaaatcca | aggtgaaagg | aagaaatgtt | gaactatcca | gaataaggcg | gattggccaa | 960  |
| ggaggcggaa | gtctctagaa | agaagtcatt | tggctctgag | ggctcacttg | atgcgagaag | 1020 |
| gaagactgac | tgaggaatgg | attttggtgg | accgaggaaa | ttggtgctgg | gttgcagagg | 1080 |
| catgtatgtg | ggaaaagagg | cagtggcaac | gatcgagaga | ggagaaggga | atgaggtaag | 1140 |
| tatttgaagt | gaagaggagc | ccatataggt | gaaaaataaa | aataatccat | cgtggattca | 1200 |
| aataatcaaa | gggctatgac | ctttcatcaa | ttttagaaaa | gtgaaaacaa | ccggtttaac | 1260 |
| acctatatgc | accattttcc | tacatagatt | tttaacttct | tacttaacca | tgttgactaa | 1320 |
| gagcaagtgg | agagcactct | catttcatag | aacaagtgat | gaatgccaac | ctgcattatt | 1380 |
| atcttaatta | gactttgatc | atcaagtgga | atcccattta | tcttaataat | cttggcaaca | 1440 |
| ttgttataat | gctacttcat | atgctaattc | ttcaaagcta | acatcgttaa | acgaatacat | 1500 |
| atctcctgta | ttctaagacc | ctatttagaa | tacagaaatt | ttacagaaat | cagttcaatt | 1560 |
| ctcgtagaat | tgggaaagaa | atcctccgtt | ccaaacgtga | cctaagccgg | catggcacga | 1620 |
| ccccactcgt | caggcactgt | atgtaaacgt | cagcaactcc | gtggcaagta | acgtcgagag | 1680 |
| gaggagcggg | cctaacggcg | ccgactagct | caacggccac | caaccagcca | accaccagcg | 1740 |
| caaccgaaac | ggcgcaaacg | ttgacgtcat | ctctctct   | ctegegeece | gegteeegaa | 1800 |
| gcttccgcac | cactcgctgg | tcgctgctag | ctgggcccca | ccggccggcc | ccgttcgtgc | 1860 |
| tggactcttc | ttcctcgaaa | ttgcgtggtg | gagagggaga | gggggcacct | cgagacggaa | 1920 |
| ccgtcacggc | acgggattcc | ttccccaccc | ggcccctcct | cgtctccata | aataggcgcc | 1980 |
| ccctcctcgc | gteeteteec | ccgtctcatc | teeteetgtt | ccgtgaaccg | tgaacgcaac | 2040 |
| ccgaccccca | gatctctctc | gcgagcatcg | tegatecete | ctccgcgtca | aggtacggat | 2100 |
| cttctccttc | ctcccccttc | ccctctgggt | cggcgtgtcg | tgttgtttct | ctagttgctt | 2160 |
| ggctggatgg | atcgagtggt | tettaggget | tagatggctg | gttagatctg | ttgcgttctg | 2220 |
| tttcgtagat | ggatttttgg | tgtagatctg | gtaggttatg | ctggttaact | ggtgatgctc | 2280 |
| ctgcgatttt | tgggggatct | gagttgttaa | tctggtagtt | gtatggggtt | ctcgtagccg | 2340 |
| gattgtagat | gaaatcgtcc | gegeggtttg | cgtggctcgt | tggttagcta | gggttagatc | 2400 |

tgctcggatt tttcattgtt cctgattcag agatgtagtt aacctttact tgttcatctt 2460 tgtatctcgt attcgtacct gcatgtatga tctgtttcga tggtgctaga taggtgcgcc 2520 tgatttgtcc gatcgaatct ggtagcatgc gctgtttgtt tggtagtgtt ctgattgatt 2580 tgtegeteta gatetgagta gaataggatt attteteaac atgatattag aagettggtt 2640 tatageteeg gattageatg tatgttaeat gtttattett atgtaaggtt ttaaaeggaa 2700 gatatatgct actgctgctc attgattctt tatcatccac ctgagtccat gcatgcttct 2760 gttacttctt ttgatatgtg cttagatagc tgttgatatg tactgctgct gttagatgat 2820 ccttcaggat gaacatgcat gattctgtta cttgttttgg tatgcttaga taaatcaaga 2880 tacgettetg etgttegttg attetttagt actacetace tgateagett agatagatea 2940 agatatgett etgetgtteg ttgattettt agtaatacet acetgateag ettagataga 3000 teaagataeg ettetgetgt tegttgatte tetagtaeta eetaeetgat aaacatgeat 3060 gttttctgct tgttaaaggt tgattgctta ggctcatctt tttcttttcg ttgattctct 3120 agtactacct acctgataaa catgcatgtt ttctgcttgt taaagattga ttgcttagtc 3180 teatettttt ettetettt tgtetacege caggeetaac ettgttgetg gtgactettt 3240 3250 cttgcaggtg

<210> 28

<211> 2004

<212> ADN

<213> Arundo donax

<400> 28

5

gaatccaaca cggcaagtta gcctttgaag cttgaaccgg gcactaatgc aagtatataa 60 taactgagaa ctacaagaaa gcatattcct tgaggtactt atgcaacctt acaattatca 120 aattaattaa caactagcag ttagaatttt atatcacaag aatatcatga accgtggata 180 ctacttctta aagggctatt ctttttctga atgtcgcagt tggttatttt aaccatatta 240 caaactaggg gtttaaatcc caaaaagttc acggaaaggg attaagcaag tagttagcaa 300 gactcacact tatgaccgtt agccaaatta cacattggtc attccaggag gagtaatccc 360 ccatagctag ttgttttgag tttgactacc caaacttgca taatcgtttt cctagagggg 420 ggggggggt tcaccattcc atcaagatga ggcaaagcta aatgaaacac acgagaggca 480 aaacggactg acgtgataga gtttttaata aatatcaaat atgtagagtc aaccaaagaa 540 aaaagatatc ccaatggcta aactttggat ctatgtcgta attcgtgttt taggacatac 600 aaggegaatt ccttctacgg caaactctag aatagctggg cgacaatggc ctcacgatag 660 cctcaaagag ttggtagcaa ctttgagatc ttttgatccg aaactcaatt atgtagtaca 720

| atgatattta | gatagattga | ttgaaagttg | ggggtggggg | cgaaagcgaa | ggggatetea | 780  |
|------------|------------|------------|------------|------------|------------|------|
| atattaatac | atctatagtg | aatggatata | gaaaacacag | gatttccaat | tcaagtagaa | 840  |
| ataggaggaa | cggaacagat | ctagcaatag | tagccaccaa | agacgaggag | gattctagat | 900  |
| tgcaaatcca | aggtgaaagg | aagaaatgtt | gaactatcca | gaataaggcg | gattggccaa | 960  |
| ggaggcggaa | gtctctagaa | agaagtcatt | tggctctgag | ggctcacttg | atgcgagaag | 1020 |
| gaagactgac | tgaggaatgg | attttggtgg | accgaggaaa | ttggtgctgg | gttgcagagg | 1080 |
| catgtatgtg | ggaaaagagg | cagtggcaac | gatcgagaga | ggagaaggga | atgaggtaag | 1140 |
| tatttgaagt | gaagaggagc | ccatataggt | gaaaaataaa | aataatccat | cgtggattca | 1200 |
| aataatcaaa | gggctatgac | ctttcatcaa | ttttagaaaa | gtgaaaacaa | ccggtttaac | 1260 |
| acctatatgc | accattttcc | tacatagatt | tttaacttct | tacttaacca | tgttgactaa | 1320 |
| gagcaagtgg | agagcactct | catttcatag | aacaagtgat | gaatgccaac | ctgcattatt | 1380 |
| atcttaatta | gactttgatc | atcaagtgga | atcccattta | tcttaataat | cttggcaaca | 1440 |
| ttgttataat | gctacttcat | atgctaattc | ttcaaagcta | acatcgttaa | acgaatacat | 1500 |
| atctcctgta | ttctaagacc | ctatttagaa | tacagaaatt | ttacagaaat | cagttcaatt | 1560 |
| ctcgtagaat | tgggaaagaa | atcctccgtt | ccaaacgtga | cctaagccgg | catggcacga | 1620 |
| ccccactcgt | caggcactgt | atgtaaacgt | cagcaactcc | gtggcaagta | acgtcgagag | 1680 |
| gaggagcggg | cctaacggcg | ccgactaget | caacggccac | caaccagcca | accaccagcg | 1740 |
| caaccgaaac | ggcgcaaacg | ttgacgtcat | ctctctctct | ctcgcgcccc | gcgtcccgaa | 1800 |
| gcttccgcac | cactcgctgg | tegetgetag | ctgggcccca | ccggccggcc | ccgttcgtgc | 1860 |
| tggactcttc | ttcctcgaaa | ttgcgtggtg | gagagggaga | gggggcacct | cgagacggaa | 1920 |
| ccgtcacggc | acgggattcc | ttccccaccc | ggcccctcct | cgtctccata | aataggcgcc | 1980 |
| ccctcctcac | atcetetece | ccat       |            |            |            | 2004 |

<210> 29

<211> 1158 <212> ADN

<213> Arundo donax

<400> 29

5

| gtacggatct | tctccttcct | ccccttccc  | ctctgggtcg | gcgtgtcgtg  | ttgtttctct | 60   |
|------------|------------|------------|------------|-------------|------------|------|
| agttgcttgg | ctggatggat | cgagtggttc | ttagggctta | gatggctggt  | tagatctgtt | 120  |
| gcgttctgtt | tcgtagatgg | atttttggtg | tagatctggt | aggttatgct  | ggttaactgg | 180  |
| tgatgctcct | gcgatttttg | ggggatctga | gttgttaatc | tggtagttgt  | atggggttct | 240  |
| cgtagccgga | ttgtagatga | aatcgtccgc | gcggtttgcg | tggctcgttg  | gttagctagg | 300  |
| gttagatctg | ctcggatttt | tcattgttcc | tgattcagag | atgtagttaa  | cctttacttg | 360  |
|            |            | <b>.</b>   |            | <b>L_LL</b> |            | 400  |
| tteatetttg | tatetegtat | tegraeerge | atgtatgatc | tgtttegatg  | gcgccagaca | 420  |
| ggtgcgcctg | atttgtccga | tcgaatctgg | tagcatgcgc | tgtttgtttg  | gtagtgttct | 480  |
| gattgatttg | tcgctctaga | tctgagtaga | ataggattat | ttctcaacat  | gatattagaa | 540  |
| gcttggttta | tagctccgga | ttagcatgta | tgttacatgt | ttattcttat  | gtaaggtttt | 600  |
| aaacggaaga | tatatgctac | tgctgctcat | tgattcttta | tcatccacct  | gagtccatgc | 660  |
| atgcttctgt | tacttctttt | gatatgtgct | tagatagctg | ttgatatgta  | ctgctgctgt | 720  |
| tagatgatcc | ttcaggatga | acatgcatga | ttctgttact | tgttttggta  | tgcttagata | 780  |
| aatcaagata | cgcttctgct | gttcgttgat | tctttagtac | tacctacctg  | atcagcttag | 840  |
| atagatcaag | atatgettet | gctgttcgtt | gattctttag | taatacctac  | ctgatcagct | 900  |
| tagatagatc | aagatacgct | tctgctgttc | gttgattctc | tagtactacc  | tacctgataa | 960  |
| acatgcatgt | tttctgcttg | ttaaaggttg | attgcttagg | ctcatctttt  | tcttttcgtt | 1020 |
| gattctctag | tactacctac | ctgataaaca | tgcatgtttt | ctgcttgtta  | aagattgatt | 1080 |
| gcttagtctc | atctttttct | ttctcttttg | tctaccgcca | ggcctaacct  | tgttgctggt | 1140 |
| gactctttct | tgcaggtg   |            |            |             |            | 1158 |

<210> 30

<211> 2247

<212> ADN

<213> Arundo donax

<400> 30

5

teacttgatg cgagaaggaa gactgactga ggaatggatt ttggtggacc gaggaaattg 60 gtgctgggtt gcagaggaa gtatgtgga aaagaggcag tggcaacgat cgagagagga 120 gaagggaatg aggtaagtat ttgaagtgaa gaggagccca tataggtgaa aaataaaaat 180 aatccatcgt ggattcaaat aatcaaaggg ctatgacctt tcatcaattt tagaaaagtg 240 aaaacaaccg gtttaacacc tatatgcacc attttcctac atagatttt aacttcttac 300 ttaaccatgt tgactaagag caagtggaga gcactctcat ttcatagaac aagtgatgaa 360 tgccaacctg cattattac ttaattagac tttgatcatc aagtggaatc ccatttatct 420 taataatctt ggcaacattg ttataatgct acttcatatg ctaattcttc aaagctaaca 480 tcgttaaacg aatacatac tcctgtattc taagacccta tttagaatac agaaatttta 540 cagaaatcag ttcaattctc gtagaattgg gaaagaaatc ctccgttcca aacgtgacct 600 aagccggcat ggcacgacc cactcgtcag gcactgtatg taaacgtcag caactccgtg 660 gcaagtaacg tcgagaggag gagcggcct aacggcgccg actagctca cggccaccaa 720 ccagccaacc accagcgaa ccgaaacggc gcaaacgttg acgtcatctc tctctctctc 780

```
gcgccccgcg tcccgaagct tccgcaccac tcgctggtcg ctgctagctg ggccccaccg
gccggccccg ttcgtgctgg actcttcttc ctcgaaattg cgtggtggag agggagaggg
ggcacctcga gacggaaccg tcacggcacg ggattccttc cccacccggc ccctcctcgt 960
ctccataaat aggcgcccc tcctcgcgtc ctctcccccg tctcatctcc tcctgttccg 1020
tgaaccgtga acgcaacccg acccccagat ctctctcgcg agcatcgtcg atccctcctc 1080
egegteaagg taeggatett eteetteete eeeetteeee tetgggtegg egtgtegtgt 1140
tgtttctcta gttgcttggc tggatggatc gagtggttct tagggcttag atggctggtt 1200
agatotgttq cqttctqttt cqtagatqqa tttttqqtqt aqatotqqta qqttatqctq 1260
gttaactggt gatgctcctg cgatttttgg gggatctgag ttgttaatct ggtagttgta 1320
tggggttete gtageeggat tgtagatgaa ategteegeg eggtttgegt ggetegttgg 1380
ttagctaggg ttagatctgc tcggattttt cattgttcct gattcagaga tgtagttaac 1440
ctttacttgt tcatctttgt atctcgtatt cgtacctgca tgtatgatct gtttcgatgg 1500
tgctagatag gtgcgcctga tttgtccgat cgaatctggt agcatgcgct gtttgtttgg 1560
tagtgttctg attgatttgt cgctctagat ctgagtagaa taggattatt tctcaacatg 1620
atattagaag cttggtttat agctccggat tagcatgtat gttacatgtt tattcttatg 1680
taaggtttta aacggaagat atatgctact gctgctcatt gattctttat catccacctg 1740
agtecatgea tgettetgtt aettettttg atatgtgett agatagetgt tgatatgtae 1800
tgctgctgtt agatgatcct tcaggatgaa catgcatgat tctgttactt gttttggtat 1860
gcttagataa atcaagatac gcttctgctg ttcgttgatt ctttagtact acctacctga 1920
tcaqcttaga taqatcaaqa tatqcttctq ctqttcqttq attctttaqt aatacctacc 1980
tgatcagctt agatagatca agatacgctt ctgctgttcg ttgattctct agtactacct 2040
acctgataaa catgcatgtt ttctgcttgt taaaggttga ttgcttaggc tcatcttttt 2100
cttttcgttg attctctagt actacctacc tgataaacat gcatgttttc tgcttgttaa 2160
agattgattg cttagtctca tctttttctt tctcttttgt ctaccgccag gcctaacctt 2220
                                                                  2247
gttgctggtg actctttctt gcaggtg
```

<210> 31

<211> 1001

<212> ADN

<213> Arundo donax

<400> 31

5

tcacttgatg cgagaaggaa gactgactga ggaatggatt ttggtggacc gaggaaattg 60 gtgctgggtt gcagaggcat gtatgtggga aaagaggcag tggcaacgat cgagagagga gaagggaatg aggtaagtat ttgaagtgaa gaggagccca tataggtgaa aaataaaaat aatccatcgt ggattcaaat aatcaaaggg ctatgacctt tcatcaattt tagaaaagtg 240 300 aaaacaaccg gtttaacacc tatatgcacc attttcctac atagattttt aacttcttac ttaaccatgt tgactaagag caagtggaga gcactctcat ttcatagaac aagtgatgaa tgccaacctg cattattatc ttaattagac tttgatcatc aagtggaatc ccatttatct 420 taataatett ggcaacattg ttataatget actteatatg etaattette aaagetaaca tegttaaacg aatacatate teetgtatte taagaceeta tttagaatae agaaatttta 540 cagaaatcag ttcaattctc gtagaattgg gaaagaaatc ctccgttcca aacgtgacct aagccggcat ggcacgaccc cactcgtcag gcactgtatg taaacgtcag caactccgtg 660 gcaagtaacg tegagaggag gagegggeet aaeggegeeg actageteaa eggeeaceaa 720 ccagccaacc accagcgcaa ccgaaacggc gcaaacgttg acgtcatctc tctctctct 780 gcgccccgcg tcccgaagct tccgcaccac tcgctggtcg ctgctagctg ggccccaccg 840 900 gccggccccg ttcgtgctgg actcttcttc ctcgaaattg cgtggtggag agggagaggg ggcacctega gaeggaaccg teaeggeacg ggatteette eccaccegge eccteetegt 960 1001 ctccataaat aggcgccccc tcctcgcgtc ctctcccccg t

<210> 32 <211> 1942 <212> ADN <213> Arundo donax

<400> 32

5

catgttgact aagagcaagt ggagagcact ctcatttcat agaacaagtg atgaatgcca 60 acctgcatta ttatcttaat tagactttga tcatcaagtg gaatcccatt tatcttaata atcttggcaa cattgttata atgctacttc atatgctaat tettcaaage taacategtt aaacgaatac atatctcctg tattctaaga coctatttag aatacagaaa ttttacagaa 240 atcagttcaa ttctcgtaga attgggaaag aaatcctccg ttccaaacgt gacctaagcc 300 ggcatggcac gaccccactc gtcaggcact gtatgtaaac gtcagcaact ccgtggcaag 360 taacgtcgag aggaggagcg ggcctaacgg cgccgactag ctcaacggcc accaaccagc 420 caaccaccag cgcaaccgaa acggcgcaaa cgttgacgtc atctctctct ctctcgcgcc 480 540 cegegteeeg aagetteege accaeteget ggtegetget agetgggeee caeeggeegg ccccgttcgt gctggactct tcttcctcga aattgcgtgg tggagaggga gagggggcac 600 660 ctogagacgg aaccgtcacg gcacgggatt ccttccccac ccggcccctc ctcgtctcca taaataggog coccotocto gogtoctoto cocogtotoa totoctoctg ttoogtgaac 720 cgtgaacgca acccgacccc cagatetete tegegageat egtegatece tecteegegt 780

| caaggtacgg | atcttctcct | tectececet | tcccctctgg | gtcggcgtgt | cgtgttgttt | 840  |
|------------|------------|------------|------------|------------|------------|------|
| ctctagttgc | ttggctggat | ggatcgagtg | gttcttaggg | cttagatggc | tggttagatc | 900  |
| tgttgcgttc | tgtttcgtag | atggatttt  | ggtgtagatc | tggtaggtta | tgctggttaa | 960  |
| ctggtgatgc | tcctgcgatt | tttgggggat | ctgagttgtt | aatctggtag | ttgtatgggg | 1020 |
| ttctcgtagc | cggattgtag | atgaaatcgt | ccgcgcggtt | tgcgtggctc | gttggttagc | 1080 |
| tagggttaga | tctgctcgga | tttttcattg | ttcctgattc | agagatgtag | ttaaccttta | 1140 |
| cttgttcatc | tttgtatctc | gtattcgtac | ctgcatgtat | gatctgtttc | gatggtgcta | 1200 |
| gataggtgcg | cctgatttgt | ccgatcgaat | ctggtagcat | gcgctgtttg | tttggtagtg | 1260 |
| ttctgattga | tttgtcgctc | tagatctgag | tagaatagga | ttatttctca | acatgatatt | 1320 |
| agaagcttgg | tttatagctc | cggattagca | tgtatgttac | atgtttattc | ttatgtaagg | 1380 |
| ttttaaacgg | aagatatatg | ctactgctgc | tcattgattc | tttatcatcc | acctgagtcc | 1440 |
| atgcatgctt | ctgttacttc | ttttgatatg | tgcttagata | gctgttgata | tgtactgctg | 1500 |
| ctgttagatg | atccttcagg | atgaacatgc | atgattctgt | tacttgtttt | ggtatgctta | 1560 |
| gataaatcaa | gatacgcttc | tgctgttcgt | tgattcttta | gtactaccta | cctgatcagc | 1620 |
| ttagatagat | caagatatgc | ttctgctgtt | cgttgattct | ttagtaatac | ctacctgatc | 1680 |
| agcttagata | gatcaagata | cgcttctgct | gttcgttgat | tctctagtac | tacctacctg | 1740 |
| ataaacatgc | atgttttctg | cttgttaaag | gttgattgct | taggctcatc | tttttcttt  | 1800 |
| cgttgattct | ctagtactac | ctacctgata | aacatgcatg | ttttctgctt | gttaaagatt | 1860 |
| gattgcttag | tctcatcttt | ttctttctct | tttgtctacc | gccaggccta | accttgttgc | 1920 |
| tggtgactct | ttcttgcagg | tg         |            |            |            | 1942 |

<210> 33 <211> 696 <212> ADN <213> Arundo donax

<400> 33

5

catgitigant aagagcaagt ggagagcact citcatiticat agaacaagtg atgaatgcca 60 acctigcatta tiatettaat tagactitiga teateaagtg gaateecatt tatettaata 120 atettiggeaa cattigitiata atgetaette atatigetaat tetteaaage taacategiti 180 aaacgaatac atateteetig tattetaaga eeetatitiag aatacagaaa tittacagaa 240 ateagiticaa tieetegaga attigggaaag aaateeteeg tieecaaacgi gacetaagee 300 ggeatiggeac gaceecaete gicaggeact giatigtaaac gicagcaact eegitiggeaag 360 taacgitegag aggaggageg ggeetaacgi egeegactag eteaacgice accaaceage 420 caaccaceag egeaacegaa acgitigacgic atetetetet etetegegee 480 eegegiteetig getiggaetet tetteetega aattigegigg tiggagaggga gagggggaac 600 etegagaacgi aaccgicaeg geaeggatt eetteecaa eeggeeete etegiteete etegiteete 660 taaataggeg eeeeeteete gegteetete eeeegt

<210> 34 <211> 3511 <212> ADN <213> Bouteloua gracilis

5 <400> 34

gtggccagct tttgttctag ttcaacggtc ccggccttcc gtgcacctaa tactacactg 60 attaatctat tgcagctaac ctcaaaagaa atacacttgc agttgtctgt cccaatcaag 120 ccactagcag actctcatgt cattgatgga ggaaattaaa ttcagtcttt gacgtggatg 180 caacaactgc acagtatacc atgcatctta attagccgtt gtgtcaaagt ttgttttgct gacgttttga gaaaaccaac tttgaccaac aggagatgag cgtcttgcgt ttggcacagt 300 gtaatggaat coggcacggc aagttagact ctgtagtgtt agoggtotot ttacgtttgg cacaatttaa ttgaatcccg gcatggcatg ttagaccgga gtgagccggc ccttttactg 420 gtatgacact ecetetytet tyagtytege tytgecaget tytacetety tetatyttea 480 cagocogtgo tgtgtaccta gaccotocgt ttgtocacat toattttaat ototattgta 540 tettgteaaa aeetaaaage etaaaaegae tetgataaag ggacagaaag attatacaag 600 agcaagtgta taatgaaata atgtaagcga gctatatgaa ttgtcacgtg tcatatttat 660 gttgagacga agaagagaaa ataaacacca tgcaaattta tggcgagtga tagatggcca 720 gatgggcaca aggcctccta tttcttaaat cggattttgt aagaacgaaa aaagggactt 780 ataagagaat aggatagacc atatatcaat gatgtagtat gcatcaagat ctaactatta 840 tatgagtgaa ttgataaatt tattctaggt gacatggcct taacgatgaa cagtacgtgg 900 ttaaatcaat agaacaatag ccaactctag cggctctaaa aaaagatata tattcgtcga ggcactatta tgcaaccaca tagtcaactt caacgccgct tgagtgcgtt ctcatgtttt 1020 ttttttcttg caaattacgc ttttctaaaa taaaataatt tggatcgtgc aattatttca 1080 ctttaggtgt gcgtgactac gtgagtaaca attttgaatc tcagaaagga aataaaagta 1140 taatactgct acctactttg aggattcagc ttgttactta aaaccgtctt taaggtcaaa 1200 tgctcaagat tcattcaaca attgaaacgt ctcacatgat taaaccatgt ataaggatgc 1260 taaggtettg ettgacaatg tttttetagg aattteatet aactttttga gtgaaactat 1320 caaataataa ttttaaaaca attttataag agaagctccg gagataaaag ggcatctaat 1380 ctatgttaga agagtgaagt ttactccctc tgtcccaaaa atagaattct aagtatgaaa 1440 tgatttttt gttatacqaa aggaqtatat atcacaagat tgatgtcagt tatgcttagg 1500 attttgttgc cacggtgtac atttgggtag acgtttgtca caggcattgc cactcaaaca 1620 agcagccggc gcttggagct tttatagttt gaaaagtgac ggttttaatg atgggtaagc 1680 tgattagtat atgtaagttt agctttttcc attgtaggtt aagccttaag gctcttacac 1740 aattgtttca ttattctcat tctttaagag cccatataag cgttcatgaa ttgtacatat 1800 ccttagatgt ttttttttt gggtaaagct cgagcttctc tatctaaaag tagagaaatc 1860 agaaaaagat tcatgttttg gtagttttga tttcttgcct ccataataat tttggtttac 1920 cattttttgt ttgattttag ttttagaagc gtttatagca ggatttaaaa tccaaaacta 1980 ccattatctt caagtgaccg tcagtgagcc gtttaacggc gtcgacaagt ccaacggaca 2040 ccaaccagtg aaccaccage gtcgagccaa gcgatgcaaa cggaacggcc gagacgttga 2100 cacctttggc gcggcacggc atgtcggatc tecetetetg gccagagagt tecageteca 2160 cetecacete cacetecace ggtggcggtt tecaagteeg tteegtteeg tteegtteeg 2220 ttccgttccg cctcctgcct gctcctctca gacggcacga aaccgtgacg gcaccggcag 2280 cacgggggga tteettttee actgeteett cetetteeet teetegeeeg eegetataaa 2340 tagocagoco ogtococaga ttotttocoa acotoatott tgttoggago acgoacacaa 2400 ecegateece aatteeeteg teteteeteg egageetegt egaceeeeee etteaaggta 2460 eggegateat cetecetece tecetetete tacettetet tetetagaet agateggega 2520 eccggtecat ggttagggee tgetagttet gtteetgttt ttteeatgge tgegaggtaa 2580 aatagatetg atggegttat gatggttaac tegteatact ettgegatet atggteeett 2640 taggacateg atttaattte ggatggtteg agateggtga tecatggtta gtaccetagg 2700 cagtggggtt agatecgtge tgttagggtt egtagatgga ttetgattge teagtaactg 2760 ggaaacctgg gatggttcta gctgggaatc ctgggatggt tctagctggt tcgcagatga 2820 gategattte atggtetget atatettgtt tegttgeeta ggtteegttt aatetgteeg 2880 tggtatgatg ttagcctttg ataaggttcg atcgtgctag ctacgtcctg cgcagcattt 2940 atgtgtcaca tatatcttca tgattaagat ggttggaatt atctcttcat cttttagata 3120 tatatggata ggtatatatg ttgctgtggg ttttactggt actttattag atatattcat 3180 gcttagatac atgaagcaac gtgctgttac agtttaataa ttcttgttta tctaataaac 3240 aaataaggat aggtatatgt tgctgatggt tttactgata ctttattaga tagtactttg 3300

acatgaagga acatcctgcg acagcttaat aattattctt catctaataa aaagcttgct 3360 ttttaattat tttaattatt ttgatatact tggatgatgt catgcagcag ctatgtgtga 3420 attttcggcc ctgtcttcat atgatgttta tttgcttggg actgtttctt tggctgataa 3480 cttaccctgt tgtttggtga tccttctgca g 3511

<210> 35

<211> 2371

<212> ADN

<213> Bouteloua gracilis

<400> 35

5

gtggccagct tttgttctag ttcaacggtc ccggccttcc gtgcacctaa tactacactg 60 attaatctat tgcagctaac ctcaaaagaa atacacttgc agttgtctgt cccaatcaag 120 ccactagcag actctcatgt cattgatgga ggaaattaaa ttcagtcttt gacgtggatg 180 caacaactgc acagtatacc atgcatctta attagccgtt gtgtcaaagt ttgttttgct 240 300 gacgttttga gaaaaccaac tttgaccaac aggagatgag cgtcttgcgt ttggcacagt 360 gtaatggaat ccggcacggc aagttagact ctgtagtgtt agcggtctct ttacgtttgg cacaatttaa ttgaatcccg gcatggcatg ttagaccgga gtgagccggc ccttttactg 420 gtatgacact ccctctgtct tgagtgtcgc tgtgccagct tgtacctctg tctatgttca 480 cagecegtge tgtgtaceta gacecteegt ttgtecacat teattttaat etetattgta 540 tottgtcaaa acctaaaagc ctaaaacgac totgataaag ggacagaaag attatacaag 600 agcaagtgta taatgaaata atgtaagcga gctatatgaa ttgtcacgtg tcatatttat 660 gttgagacga agaagagaaa ataaacacca tgcaaattta tggcgagtga tagatggcca 720 780 gatgggcaca aggcctccta tttcttaaat cggattttgt aagaacgaaa aaagggactt ataagagaat aggatagacc atatatcaat gatgtagtat gcatcaagat ctaactatta 840 tatgagtgaa ttgataaatt tattctaggt gacatggcct taacgatgaa cagtacgtgg 900 ttaaatcaat agaacaatag ccaactctag cggctctaaa aaaagatata tattcgtcga ggcactatta tgcaaccaca tagtcaactt caacgccgct tgagtgcgtt ctcatgtttt 1020 ttttttcttg caaattacge ttttctaaaa taaaataatt tggatcgtgc aattatttca 1080 ctttaggtgt gcgtgactac gtgagtaaca attttgaatc tcagaaagga aataaaagta 1140 taatactgct acctactttg aggattcagc ttgttactta aaaccgtctt taaggtcaaa 1200 tgctcaagat tcattcaaca attgaaacgt ctcacatgat taaaccatgt ataaggatgc 1260 taaggtettg ettgacaatg tttttetagg aattteatet aactttttga gtgaaactat 1320 caaataataa ttttaaaaca attttataag agaageteeg gagataaaag ggeatetaat 1380

| ctatgttaga | agagtgaagt | ttactccctc | tgtcccaaaa | atagaattct | aagtatgaaa | 1440 |
|------------|------------|------------|------------|------------|------------|------|
| tgatttttt  | gttatacgaa | aggagtatat | atcacaagat | tgatgtcagt | tatgcttagg | 1500 |
| gcacgtacac | gacgctggtg | ctttaggtag | acgttaatcg | ttgtttctgc | attttattt  | 1560 |
| attttgttgc | cacggtgtac | atttgggtag | acgtttgtca | caggcattgc | cactcaaaca | 1620 |
| agcagccggc | gcttggagct | tttatagttt | gaaaagtgac | ggttttaatg | atgggtaagc | 1680 |
| tgattagtat | atgtaagttt | agctttttcc | attgtaggtt | aagccttaag | gctcttacac | 1740 |
| aattgtttca | ttattctcat | tctttaagag | cccatataag | cgttcatgaa | ttgtacatat | 1800 |
| ccttagatgt | tttttttt   | gggtaaagct | cgagettete | tatctaaaag | tagagaaatc | 1860 |
| agaaaaagat | tcatgttttg | gtagttttga | tttcttgcct | ccataataat | tttggtttac | 1920 |
| cattttttgt | ttgattttag | ttttagaagc | gtttatagca | ggatttaaaa | tccaaaacta | 1980 |
| ccattatctt | caagtgaccg | tcagtgagcc | gtttaacggc | gtcgacaagt | ccaacggaca | 2040 |
| ccaaccagtg | aaccaccagc | gtcgagccaa | gcgatgcaaa | cggaacggcc | gagacgttga | 2100 |
| cacetttgge | gcggcacggc | atgtcggatc | tecetetetg | gccagagagt | tccagctcca | 2160 |
| cctccacctc | cacctccacc | ggtggcggtt | tccaagtccg | ttccgttccg | ttccgttccg | 2220 |
| ttccgttccg | cctcctgcct | gctcctctca | gacggcacga | aaccgtgacg | gcaccggcag | 2280 |
| cacgggggga | ttccttttcc | actgctcctt | cctcttccct | tectegeeeg | ccgctataaa | 2340 |
| tagccagccc | cgtccccaga | ttctttccca | a          |            |            | 2371 |

<210> 36

<211> 86

<212> ADN

5 <213> Bouteloua gracilis

<400> 36

ceteatettt gtteggagea egeacaeaac eegateeeca attecetegt eteteetege 60 gagcctcgtc gaccccccc ttcaag 86

<210> 37 <211> 1054

10 <212> ADN

<213> Bouteloua gracilis

<400> 37

gtacggcgat catectect ecetecetet etetacette tettetetag actagategg 60 120 egaceeggte catggttagg geetgetagt tetgtteetg tttttteeat ggetgegagg taaaatagat ctgatggcgt tatgatggtt aactegteat actettgega tetatggtee 180 ctttaggaca tcgatttaat ttcggatggt tcgagatcgg tgatccatgg ttagtaccct 240 aggcagtggg gttagatccg tgctgttagg gttcgtagat ggattctgat tgctcagtaa 300 ctgggaaacc tgggatggtt ctagctggga atcctgggat ggttctagct ggttcgcaga 360 tgagatcgat ttcatggtct gctatatctt gtttcgttgc ctaggttccg tttaatctgt 420 ccgtggtatg atgttagcct ttgataaggt tcgatcgtgc tagctacgtc ctgcgcagca 480 ttgggctgta gatagtttca atctacctgt cggtttattt tattaaattt ggattggatc 600 tgtatgtgtc acatatatct tcatgattaa gatggttgga attatctctt catcttttag 660 atatatatgg ataggtatat atgttgctgt gggttttact ggtactttat tagatatatt 720 catgcttaga tacatgaagc aacgtgctgt tacagtttaa taattcttgt ttatctaata 780 aacaaataag gataggtata tgttgctgat ggttttactg atactttatt agatagtact 840 ttgacatgaa ggaacatcct gcgacagctt aataattatt cttcatctaa taaaaagctt 900 gctttttaat tattttaatt attttgatat acttggatga tgtcatgcag cagctatgtg 960 tgaattttcg gccctgtctt catatgatgt ttatttgctt gggactgttt ctttggctga 1020 1054 taacttaccc tgttgtttgg tgatccttct gcag

<210> 38

<211> 3142

<212> ADN

5

<213> Bouteloua gracilis

<400> 38

gaatcccggc atggcatgtt agaccggagt gagccggccc ttttactggt atgacactcc 60 ctctgtcttg agtgtcgctg tgccagcttg tacctctgtc tatgttcaca gcccgtgctg tgtacctaga ccctccgttt gtccacattc attttaatct ctattgtatc ttgtcaaaac 180 ctaaaaqcct aaaacqactc tqataaaqqq acaqaaaqat tatacaaqaq caaqtqtata atgaaataat gtaagcgagc tatatgaatt gtcacgtgtc atatttatgt tgagacgaag 300 aagagaaaat aaacaccatg caaatttatg gcgagtgata gatggccaga tgggcacaag 360 gcctcctatt tcttaaatcg gattttgtaa gaacgaaaaa agggacttat aagagaatag 420 gatagaccat atatcaatga tgtagtatgc atcaagatct aactattata tgagtgaatt 480 gataaattta ttctaggtga catggcctta acgatgaaca gtacgtggtt aaatcaatag 540 aacaatagcc aactctagcg gctctaaaaa aagatatata ttcgtcgagg cactattatg 600 caaccacata gtcaacttca acgccgcttg agtgcgttct catgtttttt ttttcttgca 660 aattacgctt ttctaaaata aaataatttg gatcgtgcaa ttatttcact ttaggtgtgc 720 gtgactacgt gagtaacaat tttgaatctc agaaaggaaa taaaagtata atactgctac 780 ctactttgag gattcagctt gttacttaaa accgtcttta aggtcaaatg ctcaagattc

| attcaacaat | tgaaacgtct | cacatgatta | aaccatgtat | aaggatgcta | aggtcttgct | 900  |
|------------|------------|------------|------------|------------|------------|------|
| tgacaatgtt | tttctaggaa | tttcatctaa | ctttttgagt | gaaactatca | aataataatt | 960  |
| ttaaaacaat | tttataagag | aagctccgga | gataaaaggg | catctaatct | atgttagaag | 1020 |
| agtgaagttt | actccctctg | tcccaaaaat | agaattotaa | gtatgaaatg | atttttttgt | 1080 |
| tatacgaaag | gagtatatat | cacaagattg | atgtcagtta | tgcttagggc | acgtacacga | 1140 |
| cgctggtgct | ttaggtagac | gttaatcgtt | gtttctgcat | tttattttat | tttgttgcca | 1200 |
| cggtgtacat | ttgggtagac | gtttgtcaca | ggcattgcca | ctcaaacaag | cagccggcgc | 1260 |
| ttggagcttt | tatagtttga | aaagtgacgg | ttttaatgat | gggtaagctg | attagtatat | 1320 |
| gtaagtttag | ctttttccat | tgtaggttaa | gccttaaggc | tcttacacaa | ttgtttcatt | 1380 |
| attctcattc | tttaagagcc | catataagcg | ttcatgaatt | gtacatatcc | ttagatgttt | 1440 |
| tttttttgg  | gtaaagctcg | agcttctcta | tctaaaagta | gagaaatcag | aaaaagattc | 1500 |
| atgttttggt | agttttgatt | tattgaataa | ataataattt | tggtttacca | ttttttgttt | 1560 |
| gattttagtt | ttagaagcgt | ttatagcagg | atttaaaatc | caaaactacc | attatcttca | 1620 |
| agtgaccgtc | agtgagccgt | ttaacggcgt | cgacaagtcc | aacggacacc | aaccagtgaa | 1680 |
| ccaccagcgt | cgagccaagc | gatgcaaacg | gaacggccga | gacgttgaca | cctttggcgc | 1740 |
| ggcacggcat | gtcggatctc | cctctctggc | cagagagttc | cagctccacc | tocaceteca | 1800 |
| cctccaccgg | tggcggtttc | caagtccgtt | ccgttccgtt | ccgttccgtt | ccgttccgcc | 1860 |
| tectgeetge | tcctctcaga | cggcacgaaa | ccgtgacggc | accggcagca | cggggggatt | 1920 |
| ccttttccac | tgctccttcc | tcttcccttc | ctcgcccgcc | gctataaata | gccagccccg | 1980 |
| tccccagatt | ctttcccaac | ctcatctttg | ttcggagcac | gcacacaacc | cgatccccaa | 2040 |
| ttccctcgtc | totoctogog | agcctcgtcg | accecccct  | tcaaggtacg | gcgatcatcc | 2100 |
| tecetecete | cctctctcta | ccttctcttc | tctagactag | atcggcgacc | cggtccatgg | 2160 |
| ttagggcctg | ctagttctgt | tactgttttt | tccatggctg | cgaggtaaaa | tagatotgat | 2220 |
| ggcgttatga | tggttaactc | gtcatactct | tgcgatctat | ggtcccttta | ggacatcgat | 2280 |
| ttaatttcgg | atggttcgag | atcggtgatc | catggttagt | accctaggca | gtggggttag | 2340 |
| atccgtgctg | ttagggttcg | tagatggatt | ctgattgctc | agtaactggg | aaacctggga | 2400 |
| tggttctagc | tgggaatect | gggatggttc | tagctggttc | gcagatgaga | tcgatttcat | 2460 |
| ggtctgctat | atcttgtttc | gttgcctagg | ttccgtttaa | tctgtccgtg | gtatgatgtt | 2520 |
| agcctttgat | aaggttcgat | cgtgctagct | acgtcctgcg | cagcatttaa | ttgtcaggtc | 2580 |
| ataatttta  | gcattcctgt | ttttgtttgg | tttggttttg | tctggttggg | ctgtagatag | 2640 |
| tttcaatcta | cctgtcggtt | tattttatta | aatttggatt | ggatctgtat | gtgtcacata | 2700 |
| tatcttcatg | attaagatgg | ttggaattat | ctcttcatct | tttagatata | tatggatagg | 2760 |

tatatatgtt gctgtgggtt ttactggtac tttattagat atattcatgc ttagatacat 2820 gaagcaacgt gctgttacag tttaataatt cttgtttatc taataaacaa ataaggatag 2880 gtatatgttg ctgatggttt tactgatact ttattagata gtactttgac atgaaggaac 2940 atcctgcgac agcttaataa ttattcttca tctaataaaa agcttgcttt ttaattattt 3000 taattatttt gatatacttg gatgatgtca tgcagcagct atgtgtgaat tttcggccct 3060 gtcttcatat gatgtttatt tgcttgggac tgtttctttg gctgataact taccctgttg 3120 tttggtgatc cttctgcagg tg

<210> 39

<211> 1999

<212> ADN

<213> Bouteloua gracilis

<400> 39

5

gaatcccggc atggcatgtt agaccggagt gagccggccc ttttactggt atgacactcc 60 ctctgtcttg agtgtcgctg tgccagcttg tacctctgtc tatgttcaca gcccgtgctg 120 tgtacctaga ccctccgttt gtccacattc attttaatct ctattgtatc ttgtcaaaac 180 ctaaaagcct aaaacgactc tgataaaggg acagaaagat tatacaagag caagtgtata 240 300 atgaaataat gtaagcgagc tatatgaatt gtcacgtgtc atatttatgt tgagacgaag aagagaaaat aaacaccatg caaatttatg gcgagtgata gatggccaga tgggcacaag 360 gcctcctatt tcttaaatcg gattttgtaa gaacgaaaaa agggacttat aagagaatag 420 gatagaccat atatcaatga tgtagtatgc atcaagatct aactattata tgagtgaatt 480 gataaattta ttctaggtga catggcctta acgatgaaca gtacgtggtt aaatcaatag 540 aacaatagcc aactctagcg gctctaaaaa aagatatata ttcgtcgagg cactattatg 600 caaccacata gtcaacttca acgccgcttg agtgcgttct catgtttttt ttttcttgca 660 720 aattacgctt ttctaaaata aaataatttg gatcgtgcaa ttatttcact ttaggtgtgc gtgactacgt gagtaacaat tttgaatctc agaaaggaaa taaaagtata atactgctac 780 ctactttgag gattcagctt gttacttaaa accgtcttta aggtcaaatg ctcaagattc 840 900 attcaacaat tgaaacgtct cacatgatta aaccatgtat aaggatgcta aggtcttgct tgacaatgtt tttctaggaa tttcatctaa ctttttgagt gaaactatca aataataatt 960 ttaaaacaat tttataagag aagctccgga gataaaaggg catctaatct atgttagaag 1020 agtgaagttt actccctctg tcccaaaaat agaattctaa gtatgaaatg atttttttgt 1080 tatacgaaag gagtatatat cacaagattg atgtcagtta tgcttagggc acgtacacga 1140 

<210> 40 <211> 1057

<212> ADN

<213> Bouteloua gracilis

<400> 40

5

gtacggcgat catcetect cectecetet etetacette tettetetag actagategg cgaccoggtc catggttagg gcctgctagt tctgttcctg ttttttccat ggctgcgagg 120 taaaatagat ctgatggcgt tatgatggtt aactcgtcat actcttgcga tctatggtcc 180 ctttaggaca tcgatttaat ttcggatggt tcgagatcgg tgatccatgg ttagtaccct 240 aggcagtggg gttagatccg tgctgttagg gttcgtagat ggattctgat tgctcagtaa 300 ctgggaaacc tgggatggtt ctagctggga atcctgggat ggttctagct ggttcgcaga 360 tgagatcgat ttcatggtct gctatatctt gtttcgttgc ctaggttccg tttaatctgt 420 ccgtggtatg atgttagcct ttgataaggt tcgatcgtgc tagctacgtc ctgcgcagca 480 ttgggctgta gatagtttca atctacctgt cggtttattt tattaaattt ggattggatc 600 tgtatgtgtc acatatatct tcatgattaa gatggttgga attatctctt catcttttag 660 atatatatgg ataggtatat atgttgctgt gggttttact ggtactttat tagatatatt 720 catgcttaga tacatgaagc aacgtgctgt tacagtttaa taattcttgt ttatctaata 780 aacaaataag gataggtata tgttgctgat ggttttactg atactttatt agatagtact 840 ttgacatgaa ggaacateet gegacagett aataattatt etteatetaa taaaaagett 900 gctttttaat tattttaatt attttgatat acttggatga tgtcatgcag cagctatgtg 960 tgaattttcg gccctgtctt catatgatgt ttatttgctt gggactgttt ctttggctga 1020 taacttaccc tgttgtttgg tgatccttct gcaggtg 1057

<210> 41 <211> 2165 <212> ADN <213> Bouteloua gracilis

5 <400> 41

gagaagetee ggagataaaa gggeatetaa tetatgttag aagagtgaag tttaeteeet 60 ctgtcccaaa aatagaattc taagtatgaa atgatttttt tgttatacga aaggagtata 120 tatcacaaga ttgatgtcag ttatgcttag ggcacgtaca cgacgctggt gctttaggta gacgttaatc gttgtttctg cattttattt tattttgttg ccacggtgta catttgggta 240 gacgtttgtc acaggcattg ccactcaaac aagcagccgg cgcttggagc ttttatagtt 300 tgaaaagtga cggttttaat gatgggtaag ctgattagta tatgtaagtt tagctttttc 360 cattgtaggt taagccttaa ggctcttaca caattgtttc attattctca ttctttaaga 420 480 tcgagcttct ctatctaaaa gtagagaaat cagaaaaaga ttcatgtttt ggtagttttg 540 600 atttcttgcc tccataataa ttttggttta ccattttttg tttgatttta gttttagaag cgtttatagc aggatttaaa atccaaaact accattatct tcaagtgacc gtcagtgagc 660 cgtttaacgg cgtcgacaag tccaacggac accaaccagt gaaccaccag cgtcgagcca 720 agcgatgcaa acggaacggc cgagacgttg acacctttgg cgcggcacgg catgtcggat 780 etecetetet ggecagagag ttecagetee acetecacet ceacetecae eggtggeggt ttecaagtee gtteegttee gtteegttee gtteegttee geeteetgee tgeteetete 900 agacggcacg aaaccgtgac ggcaccggca gcacgggggg attccttttc cactgctcct 960 tectettece tteetegeee geegetataa atageeagee eegteeeeag attettteee 1020 aacctcatct ttgttcggag cacgcacaca acccgatccc caattccctc gtctctcctc 1080 gegageeteg tegaceecee eetteaaggt aeggegatea teeteeetee eteeetetet 1140 ctaccttctc ttctctagac tagatcggcg acccgqtcca tggttagggc ctgctagttc 1200 tgttcctgtt ttttccatgg ctgcgaggta aaatagatct gatggcgtta tgatggttaa 1260 ctcgtcatac tcttgcgatc tatggtccct ttaggacatc gatttaattt cggatggttc 1320 gagateggtg atceatggtt agtacectag geagtggggt tagateegtg etgttagggt 1380

tcgtagatgg attctgattg ctcagtaact gggaaacctg ggatggttct agctggaat 1440 cctgggatgg ttctagctgg ttcgcagatg agatcgattt catggtctgc tatatcttgt 1500 ttcgttgcct aggttccgtt taatctgtcc gtggtatgat gttagccttt gataaggttc 1560 gatcgtgcta gctacgtcct gcgcagcatt taattgtcag gtcataattt ttagcattcc 1620 tgttttgtt tggtttggtt ttgtctggtt gggctgtaga tagtttcaat ctacctgtcg 1680 gtttattta ttaaatttgg attggatctg tatggtcac atatatcttc atgattaaga 1740 tggttggaat tatctctca tcttttagat atatatggat aggtatatat gttgctgtgg 1800 gtttactgg tactttatta gataattca tgcttagata catgaagcaa cgtgctgtta 1860 cagtttaata attcttgtt atctaataa caaataagga taggtatatg ttgctgatgg 1920 ttttactgat actttattag atagtacttt gacatgaagg aacatcctgc gacagcttaa 1980 taattattct tcatctaata aaaagcttgc tttttaatta ttttaattat tttgatatac 2040 ttggatgatg tcatgcagca gctagtgtg aattttcggc cctgtcttca tatgatgttt 2100 atttgctgg gactgttct ttggctgata acttaccctg ttgtttggtg atcctctgc 2160 aggtg

<210> 42

<211> 1022

<212> ADN

<213> Bouteloua gracilis

<400> 42

5

gagaagetee ggagataaaa gggeatetaa tetatgttag aagagtgaag tttacteeet 60 ctgtcccaaa aatagaattc taagtatgaa atgatttttt tgttatacga aaggagtata 120 tatcacaaga ttgatgtcag ttatgcttag ggcacgtaca cgacgctggt gctttaggta gacgttaatc gttgtttctg cattttattt tattttgttg ccacggtgta catttgggta 240 gacgtttgtc acaggcattg ccactcaaac aagcagccgg cgcttggagc ttttatagtt 300 tgaaaagtga cggttttaat gatgggtaag ctgattagta tatgtaagtt tagctttttc cattgtaggt taagccttaa ggctcttaca caattgtttc attattctca ttctttaaga 420 tcgagcttct ctatctaaaa gtagagaaat cagaaaaaga ttcatgtttt ggtagttttg 540 atttcttqcc tccataataa ttttqqttta ccattttttq tttqatttta qttttaqaaq 600 cgtttatagc aggatttaaa atccaaaact accattatct tcaagtgacc gtcagtgagc 660 cgtttaacgg cgtcgacaag tccaacggac accaaccagt gaaccaccag cgtcgagcca 720 agcgatgcaa acggaacggc cgagacgttg acacctttgg cgcggcacgg catgtcggat 780 ctccctctct ggccagagag ttccagctcc acctccacct ccacctccac cggtggcggt 840 900 agacggcacg aaaccgtgac ggcaccggca gcacgggggg attectttte cactgctcct tectettece ttectegece geogetataa atagecagee cegteeceag attetttece 1020 1022 aa

<210> 43

<211> 1903 <212> ADN

<213> Bouteloua gracilis

<400> 43

actcaaacaa gcagccggcg cttggagctt ttatagtttg aaaagtgacg gttttaatga 60 tgggtaagct gattagtata tgtaagttta gctttttcca ttgtaggtta agccttaagg 120 ctcttacaca attgtttcat tattctcatt ctttaagagc ccatataagc gttcatgaat 180 tgtacatate cttagatgtt tttttttttg ggtaaagete gagettetet atetaaaagt 240 agagaaatca gaaaaagatt catgttttgg tagttttgat ttcttgcctc cataataatt 300 ttggtttacc attttttgtt tgattttagt tttagaagcg tttatagcag gatttaaaat 360 420 ccaaaactac cattatette aagtgacegt cagtgageeg tttaacggeg tegacaagte 480 caacggacac caaccagtga accaccagcg tcgagccaag cgatgcaaac ggaacggccg 540 agacgttgac acctttggcg cggcacggca tgtcggatct ccctctctgg ccagagagtt coagetecae etecacetee acetecaceg gtggcggttt ccaagtecgt tecgttecgt 600 teegtteegt teegtteege eteetgeetg eteeteteag acggeacgaa accgtgaegg 660 caccygcage acgyggggat teetttteca etgeteette etetteeett eetegeeege 720 780 egetataaat ageeageece gteeceagat tettteecaa eeteatettt gtteggagea egeacacaac ecgatececa attecetegt etetectege gageetegte gacececeee 840 ttcaaggtac ggcgatcatc ctccctccct ccctctctct accttctctt ctctagacta 900 gatoggcgac ccggtccatg gttagggcct gctagttctg ttcctgtttt ttccatggct 960 gcgaggtaaa atagatctga tggcgttatg atggttaact cgtcatactc ttgcgatcta 1020 tggtcccttt aggacatcga tttaatttcg gatggttcga gatcggtgat ccatggttag 1080 taccetagge agtggggtta gateegtget gttagggtte gtagatggat tetgattget 1140 cagtaactgg gaaacctggg atggttctag ctgggaatcc tgggatggtt ctagctggtt 1200 cgcagatgag atcgatttca tggtctgcta tatcttgttt cgttgcctag gttccgttta 1260 atotytoogt ggtatgatgt tagootttga taaggttoga togtgotago tacgtootgc 1320 gcagcattta attgtcaggt cataattttt agcattcctg tttttgtttg gtttggtttt 1380

5

<210> 44

<211> 760

<212> ADN

<213> Bouteloua gracilis

<400> 44

5

60 actcaaacaa gcagccggcg cttggagctt ttatagtttg aaaagtgacg gttttaatga tgggtaagct gattagtata tgtaagttta gctttttcca ttgtaggtta agccttaagg 120 ctcttacaca attgtttcat tattctcatt ctttaagagc ccatataagc gttcatgaat 180 tgtacatatc cttagatgtt tttttttttg ggtaaagctc gagcttctct atctaaaagt 240 agagaaatca gaaaaagatt catgttttgg tagttttgat ttcttgcctc cataataatt 300 ttggtttacc attttttgtt tgattttagt tttagaagcg tttatagcag gatttaaaat ccaaaactac cattatcttc aagtgaccgt cagtgagccg tttaacggcg tcgacaagtc 420 caacggacac caaccagtga accaccagcg tcgagccaag cgatgcaaac ggaacggccg 480 agacgttgac acctttggcg cggcacggca tgtcggatct ccctctctgg ccagagagtt 540 ccagetecae etecacetee acetecaceg gtggeggttt ccaagteegt teegtteegt 600 teegtteegt teegtteege eteetgeetg eteeteteag aeggeaegaa aeegtgaegg 660 caccggcagc acgggggat tccttttcca ctgctccttc ctcttccctt cctcqcccqc 720 cgctataaat agccagcccc gtccccagat tctttcccaa 760

<210> 45

<211> 3234

<212> ADN

10

<213> Bouteloua gracilis

<400>45

ggcctcttta cgtttggcac aacttagttg aatccggctt ccggcaaact atatggcaag 60 ttagacccaa gtgtgagccg gccaccgcaa gttattgtga cattatacgt aggaagcaag 120

| tgtataataa | gaatatgaga | taatgtaagc | agctatatga | attatcacgt | catatttatg | 180  |
|------------|------------|------------|------------|------------|------------|------|
| ttaagatgaa | gaggagagaa | taaacggtac | gtaaatttat | agcgagtgat | agacgggcac | 240  |
| gaggcctcct | agctatttcc | ataaatcgga | ttttgtaaga | acaaaaaaga | ggacttatta | 300  |
| taagagaatg | tggtaagtaa | gcatactccc | tccgtttcaa | attataagtt | gttttaactt | 360  |
| ttttttata  | tctattttac | tatacattag | atataataat | gtgtctagat | acataataaa | 420  |
| atggatgaac | aaaaaagtca | aagtgactta | caatttggaa | cggagggagt | aagttcaagc | 480  |
| catcaaggca | cttctatgca | accacatagt | caacttgaat | gccgcttgag | tgccttctca | 540  |
| agttttttt  | ttcttgcaaa | aattgtttct | tttttttaa  | aaaagtataa | tttggatcgt | 600  |
| gcaaatttct | ctctaggtgt | gtgtgtgact | gtgtgagtaa | caatttctct | agttgtgcgt | 660  |
| gactgctgct | tactttggag | attacaatat | atttctaaaa | tgcttcgatt | acttatttat | 720  |
| aaaccgtctc | taaggccaat | tgctcaagat | tcattcaaca | attgaaacgt | ctcacatgat | 780  |
| taaatcatat | aaagtttcta | agtcttgttt | gacaagattt | ttttagattt | tcatctaaat | 840  |
| tggatgaaac | tatcaaacac | taattttaaa | aaatataaga | gaageteegg | agataaaagg | 900  |
| togtotatgt | tattataaga | gtaaagtcgt | ctattctctt | cgtcccaaca | tatataattc | 960  |
| taagcatgaa | ttgctttctt | tttggacaaa | aggagtatgc | cacaacacaa | gaatgatgtc | 1020 |
| accgtcatgc | ttagatcctt | ttatggtaaa | gcttcacctt | ctataatcta | acaatagaga | 1080 |
| aatcggggaa | aaatcatgtt | ttggttgttt | ttatttctaa | cctccacaat | aactttggtt | 1140 |
| taccattttt | tgtttgattt | tagttttaga | gaagcgttta | taacaggacc | taaaatcttt | 1200 |
| ttttgagtac | acagtacaac | gcagacgctc | atacacgcac | gcacaatgtc | ctctatgaac | 1260 |
| acacgtaagg | aaaccctaca | ccttgagcac | cttcgaagga | ctgagccggc | aaatctagag | 1320 |
| attctcgaag | tcactattgg | cacctcgtta | tcaacgagaa | cgtcgcttac | cacttaaagc | 1380 |
| ataacaccga | gaaatcccgt | aacaaatcca | gtaaaatacg | agcacccgta | ccaagttgaa | 1440 |
| tatttgaacc | cgagtgggta | gattccaccg | caaaggacct | aaccagatca | tttcgcaaac | 1500 |
| aggaactaaa | atcggtagag | agcccagaca | aaaacctttt | ctaagagcaa | ctccagtgaa | 1560 |
| agcccctact | ttaggtataa | aatgcaacac | tagtggagct | tctaaataaa | cttctatttt | 1620 |
| tcatgccctc | ctaaaattta | ctcctaaaac | cctagctata | ggagcctcct | atccatcctc | 1680 |
| tattttattc | cactagaatt | gattataaat | ttagcctctt | aaattttata | agttgggagt | 1740 |
| cgagggtaac | tagagttgct | ctaaacggac | cttatcttca | agtgacctca | gtgagcccgt | 1800 |
| ttaacggcgt | cgacaagtct | aatctaacgg | acaccaacca | gagaaccacc | gccagcgccg | 1860 |
| agccaagcga | cgttgacatc | ttggcgcggc | acggcatctc | cctggcgtct | ggtcccctcc | 1920 |
| cgagacttcc | getecacete | ccaccggtgg | cggtttccga | gtccgttccg | cctcctctca | 1980 |

| cacgg | cacga | aaccttgacg | gcaccggcag | cacgggggat | teegtteeca | eggeteette | 2040 |
|-------|-------|------------|------------|------------|------------|------------|------|
| ccttt | ccctt | cctcgcccgc | tgctataaat | agecagecee | atccccagct | tcttccccaa | 2100 |
| cctca | tcttc | tcgtgttgtt | cggcccaacc | cgatcgatcc | ccaattccct | cgtcgtctct | 2160 |
| cgtcg | cgagc | ctcgtcgatc | cccgcttcaa | ggtacagcga | tcgatcgatc | atcctcgctc | 2220 |
| tetet | acctt | ctctctctta | gggcgtgctg | gttctgttcc | tgtttttcca | tggctgcgag | 2280 |
| gtaca | ataga | ttggcgattc | atggttaggg | cctgctagtt | ctgttcctgt | tttttttt   | 2340 |
| tccat | ggctg | cgaggcacaa | tagatctgat | ggcgttatga | tggttaactt | gtcatactct | 2400 |
| tgcga | tctat | ggtcccttta | ggagtttagg | acatcgattt | aatttcggat | agttcgagat | 2460 |
| ctgtg | atcca | tggttagtac | cctaggcagt | ggggttagat | cegtgetgtt | atggttcgta | 2520 |
| gatgg | attct | gattgctcag | taactgggaa | tcctgggatg | gttctagctg | gttcgcagat | 2580 |
| aagat | cgatt | tcatgatatg | ctatatcttg | tttggttgcc | gtggttccgt | taaatctgtc | 2640 |
| tgtta | tgatc | ttagtctttg | ataaggttcg | gtcgtgctag | ctacgtcctg | tgcagcactt | 2700 |
| aattg | tcagg | tcataatttt | tagcatgcct | tttttttatt | ggtttggttt | tgtctgactg | 2760 |
| ggctg | tagat | agtttcaatc | tttgtctgac | tgggctgtag | atagtttcaa | tcttcctgtc | 2820 |
| tgttt | atttt | attaaatttg | gatctgtatg | tgtgtcatat | atcttcatct | tttagatata | 2880 |
| tcgat | aggta | tatatgttgc | tgtcgttttt | tactgttcct | ttatgagata | tattcatgct | 2940 |
| tagat | acatg | aaacaacgtg | ctgttacagt | ttaatagttc | ttgtttatct | aataaacaaa | 3000 |
| taagg | atagg | tgctgcagtt | agttttactg | gtacttttt  | tgacatgaac | ctacggctta | 3060 |
| ataat | tagtc | ttcatcaaat | aaaaagcata | ttttttaatt | atttcgatat | acttgaatga | 3120 |
| tgtca | tatgc | agcatctgtg | tgaatttttg | gccctgtctt | catatgatgt | ttatttgctt | 3180 |
| gggac | tgttt | ctttggctga | taactcaccc | tgttgtttgg | tgatccttct | gcag       | 3234 |

<210> 46

<211> 2100

<212> ADN

<213> Bouteloua gracilis

<400> 46

5

ggeetettta egtttggeac aacttagttg aateeggett eeggeaaact atatggeaag 60
ttagacccaa gtgtgageeg geeacegeaa gttattgtga eattataegt aggaageaag 120
tgtataataa gaatatgaga taatgtaage agetatatga attateaegt eatattatg 180
ttaagatgaa gaggagagaa taaaeggtae gtaaatttat agegagtgat agaegggeae 240
gaggeeteet agetattee ataaategga ttttgtaaga acaaaaaaga ggaettatta 300
taagagaatg tggtaagtaa geataeteee teegtteaa attataagtt gttttaaett 360
ttttttata tetatttae tataeattag atataataat gtgtetagat acataataaa 420

```
atggatgaac aaaaaagtca aagtgactta caatttggaa cggagggagt aagttcaagc
                                                                480
catcaaggca cttctatgca accacatagt caacttgaat gccgcttgag tgccttctca
                                                                540
agttttttt ttcttgcaaa aattgtttct ttttttttaa aaaagtataa tttggatcgt
                                                                600
gcaaatttct ctctaggtgt gtgtgtgact gtgtgagtaa caatttctct agttgtgcgt
                                                                660
gactgctgct tactttggag attacaatat atttctaaaa tgcttcgatt acttatttat
                                                                720
aaaccgtctc taaggccaat tgctcaagat tcattcaaca attgaaacgt ctcacatgat 780
taaatcatat aaagtttcta agtcttgttt gacaagattt ttttagattt tcatctaaat
                                                                840
tggatgaaac tatcaaacac taattttaaa aaatataaga gaagctccgg agataaaagg
                                                                900
tcgtctatgt tattataaga gtaaagtcgt ctattctctt cgtcccaaca tatataattc 960
acceptcatge ttagateett ttatgetaaa getteacett etataateta acaatagaga 1080
aatcggggaa aaatcatgtt ttggttgttt ttatttctaa cctccacaat aactttggtt 1140
taccattttt tgtttgattt tagttttaga gaagcgttta taacaggacc taaaatcttt 1200
ttttgagtac acagtacaac gcagacgctc atacacgcac gcacaatgtc ctctatgaac 1260
acacgtaagg aaaccctaca ccttgagcac cttcgaagga ctgagccggc aaatctagag 1320
attetegaag teactattgg cacetegtta teaacgagaa egtegettae caettaaage 1380
ataacaccga gaaatcccgt aacaaatcca gtaaaatacg agcacccgta ccaagttgaa 1440
tatttgaacc cgagtgggta gattccaccg caaaggacct aaccagatca tttcgcaaac 1500
aggaactaaa atcggtagag agcccagaca aaaacctttt ctaagagcaa ctccagtgaa 1560
agcccctact ttaggtataa aatgcaacac tagtggagct tctaaataaa cttctatttt 1620
tcatgcctc ctaaaattta ctcctaaaac cctagctata ggagcctcct atccatcctc 1680
tattttattc cactagaatt gattataaat ttagcctctt aaattttata agttgggagt 1740
cgagggtaac tagagttgct ctaaacggac cttatcttca agtgacctca gtgagcccgt 1800
ttaacggcgt cgacaagtct aatctaacgg acaccaacca gagaaccacc gccagcgccg 1860
agccaagcga cgttgacatc ttggcgcggc acggcatctc cctggcgtct ggtcccctcc 1920
cgagacttcc gctccacctc ccaccggtgg cggtttccga gtccgttccg cctcctctca 1980
cacggcacga aaccttgacg gcaccggcag cacgggggat tecgttecca eggeteette 2040
cetttecett cetegeeege tgetataaat ageeageeee ateeceaget tetteeecaa 2100
```

5

<sup>&</sup>lt;210> 47

<sup>&</sup>lt;211>91

<sup>&</sup>lt;212> ADN

<sup>&</sup>lt;213> Bouteloua gracilis

<sup>&</sup>lt;400> 47

|          | cctcatcttc                                           | tcgtgttgtt | cggcccaacc | cgatcgatcc | ccaattccct | cgtcgtctct | 60   |
|----------|------------------------------------------------------|------------|------------|------------|------------|------------|------|
|          | cgtcgcgagc                                           | ctcgtcgatc | cccgcttcaa | g          |            |            | 91   |
| <;<br><; | 210> 48<br>211> 1043<br>212> ADN<br>213> Bouteloua ( | gracilis   |            |            |            |            |      |
| <,       | 400> 48                                              |            |            |            |            |            |      |
|          | gtacagcgat                                           | cgatcgatca | tectegetet | ctctaccttc | tctctcttag | ggcgtgctgg | 60   |
|          | ttctgttcct                                           | gtttttccat | ggctgcgagg | tacaatagat | tggcgattca | tggttagggc | 120  |
|          | ctgctagttc                                           | tgttcctgtt | tttttttt   | ccatggctgc | gaggcacaat | agatctgatg | 180  |
|          | gcgttatgat                                           | ggttaacttg | tcatactctt | gcgatctatg | gtccctttag | gagtttagga | 240  |
|          | catcgattta                                           | atttcggata | gttcgagatc | tgtgatccat | ggttagtacc | ctaggcagtg | 300  |
|          | gggttagatc                                           | cgtgctgtta | tggttcgtag | atggattctg | attgctcagt | aactgggaat | 360  |
|          | cctgggatgg                                           | ttctagctgg | ttcgcagata | agatcgattt | catgatatgc | tatatcttgt | 420  |
|          | ttggttgccg                                           | tggttccgtt | aaatctgtct | gttatgatct | tagtctttga | taaggttcgg | 480  |
|          | tcgtgctagc                                           | tacgtcctgt | gcagcactta | attgtcaggt | cataattttt | agcatgcctt | 540  |
|          | ttttttattg                                           | gtttggtttt | gtctgactgg | gctgtagata | gtttcaatct | ttgtctgact | 600  |
|          | gggctgtaga                                           | tagtttcaat | cttcctgtct | gtttatttta | ttaaatttgg | atctgtatgt | 660  |
|          | gtgtcatata                                           | tcttcatctt | ttagatatat | cgataggtat | atatgttgct | gtcgttttt  | 720  |
|          | actgttcctt                                           | tatgagatat | attcatgctt | agatacatga | aacaacgtgc | tgttacagtt | 780  |
|          | taatagttct                                           | tgtttatcta | ataaacaaat | aaggataggt | gctgcagtta | gttttactgg | 840  |
|          | tactttttt                                            | gacatgaacc | tacggcttaa | taattagtct | tcatcaaata | aaaagcatat | 900  |
|          | tttttaatta                                           | tttcgatata | cttgaatgat | gtcatatgca | gcatctgtgt | gaatttttgg | 960  |
|          | ccctgtcttc                                           | atatgatgtt | tatttgcttg | ggactgtttc | tttggctgat | aactcaccct | 1020 |
|          | gttgtttggt                                           | gatecttetg | cag        |            |            |            | 1043 |
| <;<br><; | 210> 49<br>211> 3176<br>212> ADN<br>213> Bouteloua ( | gracilis   |            |            |            |            |      |
| <,       | 400> 49                                              |            |            |            |            |            |      |
|          | aagttagacc                                           | caagtgtgag | ccggccaccg | caagttattg | tgacattata | cgtaggaagc | 60   |
|          | aagtgtataa                                           | taagaatatg | agataatgta | agcagctata | tgaattatca | cgtcatattt | 120  |
|          | atgttaagat                                           | gaagaggaga | gaataaacgg | tacgtaaatt | tatagcgagt | gatagacggg | 180  |

| cacgaggcct | cctagctatt | tccataaatc | ggattttgta | agaacaaaaa | agaggactta | 240  |
|------------|------------|------------|------------|------------|------------|------|
| ttataagaga | atgtggtaag | taagcatact | ccctccgttt | caaattataa | gttgttttaa | 300  |
| ctttttttt  | atatctattt | tactatacat | tagatataat | aatgtgtcta | gatacataat | 360  |
| aaaatggatg | aacaaaaaag | tcaaagtgac | ttacaatttg | gaacggaggg | agtaagttca | 420  |
| agccatcaag | gcacttctat | gcaaccacat | agtcaacttg | aatgccgctt | gagtgccttc | 480  |
| tcaagttttt | tttttcttgc | aaaaattgtt | tcttttttt  | taaaaaagta | taatttggat | 540  |
| cgtgcaaatt | tctctctagg | tgtgtgtgtg | actgtgtgag | taacaatttc | tctagttgtg | 600  |
| cgtgactgct | gcttactttg | gagattacaa | tatatttcta | aaatgcttcg | attacttatt | 660  |
| tataaaccgt | ctctaaggcc | aattgctcaa | gattcattca | acaattgaaa | cgtctcacat | 720  |
| gattaaatca | tataaagttt | ctaagtcttg | tttgacaaga | tttttttaga | ttttcatcta | 780  |
| aattggatga | aactatcaaa | cactaatttt | aaaaaatata | agagaagctc | cggagataaa | 840  |
| aggtcgtcta | tgttattata | agagtaaagt | cgtctattct | cttcgtccca | acatatataa | 900  |
| ttctaagcat | gaattgcttt | ctttttggac | aaaaggagta | tgccacaaca | caagaatgat | 960  |
| gtcaccgtca | tgcttagatc | cttttatggt | aaagcttcac | cttctataat | ctaacaatag | 1020 |
| agaaatcggg | gaaaaatcat | gttttggttg | tttttatttc | taacctccac | aataactttg | 1080 |
| gtttaccatt | ttttgtttga | ttttagtttt | agagaagcgt | ttataacagg | acctaaaatc | 1140 |
| tttttttgag | tacacagtac | aacgcagacg | ctcatacacg | cacgcacaat | gtcctctatg | 1200 |
| aacacacgta | aggaaaccct | acaccttgag | caccttcgaa | ggactgagcc | ggcaaatcta | 1260 |
| gagattctcg | aagtcactat | tggcacctcg | ttatcaacga | gaacgtcgct | taccacttaa | 1320 |
| agcataacac | cgagaaatcc | cgtaacaaat | ccagtaaaat | acgagcaccc | gtaccaagtt | 1380 |
| gaatatttga | acccgagtgg | gtagattcca | ccgcaaagga | cctaaccaga | tcatttcgca | 1440 |
| aacaggaact | aaaatcggta | gagagcccag | acaaaaacct | tttctaagag | caactccagt | 1500 |
| gaaagcccct | actttaggta | taaaatgcaa | cactagtgga | gcttctaaat | aaacttctat | 1560 |
| ttttcatgcc | ctcctaaaat | ttactcctaa | aaccctagct | ataggagcct | cctatccatc | 1620 |
| ctctatttta | ttccactaga | attgattata | aatttagcct | cttaaatttt | ataagttggg | 1680 |
| agtcgagggt | aactagagtt | gctctaaacg | gaccttatct | tcaagtgacc | tcagtgagcc | 1740 |
| cgtttaacgg | cgtcgacaag | tctaatctaa | cggacaccaa | ccagagaacc | accgccagcg | 1800 |
| ccgagccaag | cgacgttgac | atcttggcgc | ggcacggcat | ctccctggcg | tetggteece | 1860 |
| tecegagaet | teegeteeae | ctcccaccgg | tggcggtttc | cgagtccgtt | cegeeteete | 1920 |
| tcacacggca | cgaaaccttg | acggcaccgg | cagcacgggg | gattccgttc | ccacggctcc | 1980 |
| ttecetttee | cttcctcgcc | cgctgctata | aatagccagc | cccatcccca | gettetteee | 2040 |

caaceteate ttetegtgtt gtteggeeca accegatega tececaatte cetegtegte 2100 tetegtegeg agestegteg atseccegett caaggtacag egategateg atsatesteg 2160 ctctctctac cttctctctc ttagggcgtg ctggttctgt tcctgttttt ccatggctgc 2220 gaggtacaat agattggcga ttcatggtta gggcctgcta gttctgttcc tgtttttttt 2280 ttttccatgg ctgcgaggca caatagatct gatggcgtta tgatggttaa cttgtcatac 2340 tettgegate tatggteest ttaggagttt aggacatega tttaattteg gatagttega 2400 gatetgtgat eeatggttag taccetagge agtggggtta gateegtget gttatggtte 2460 gtagatggat tetgattget eagtaactgg gaateetggg atggttetag etggttegea 2520 gataagateg attteatgat atgetatate ttgtttggtt geegtggtte egttaaatet 2580 gtctgttatg atcttagtct tgataaggtt cggtcgtgct agctacgtcc tgtgcagcac 2640 tgggctgtag atagtttcaa tctttgtctg actgggctgt agatagtttc aatcttcctg 2760 tctgtttatt ttattaaatt tggatctgta tgtgtgtcat atatcttcat cttttagata 2820 tatogatagg tatatatgtt gotgtogttt tttactgttc otttatgaga tatattoatg 2880 cttagataca tgaaacaacg tgctgttaca gtttaatagt tcttgtttat ctaataaaca 2940 aataaggata ggtgctgcag ttagttttac tggtactttt tttgacatga acctacggct 3000 taataattag tottoatoaa ataaaaagoa tatttttaa ttatttogat ataottgaat 3060 gatgtcatat gcagcatctg tgtgaatttt tggccctgtc ttcatatgat gtttatttgc 3120 ttgggactgt ttctttggct gataactcac cctgttgttt ggtgatcctt ctgcag 3176

<210> 50

<211> 2043

<212> ADN

<213> Bouteloua gracilis

<400> 50

5

aagttagacc caagtgtgag ccggccaccg caagttattg tgacattata cgtaggaagc 60
aagtgtataa taagaatatg agataatgta agcagctata tgaattatca cgtcatattt 120
atgttaagat gaagaggaga gaataaacgg tacgtaaatt tatagcgagt gatagacggg 180
cacgaggcct cctagctatt tccataaatc ggattttgta agaacaaaaa agaggactta 240
ttataagaga atgtggtaag taagcatact ccctccgttt caaattataa gttgtttaa 300
ctttttttt atatctattt tactatacat tagatataat aatgtgtcta gatacataat 360
aaaatggatg aacaaaaaag tcaaagtgac ttacaatttg gaacggaggg agtaagttca 420
agccatcaag gcacttctat gcaaccacat agtcaacttg aatgccgctt gagtgccttc 480
tcaagttttt ttttcttgc aaaaattgtt tcttttttt taaaaaaagta taatttggat 540

| cgtgcaaatt | tctctctagg | tgtgtgtgtg | actgtgtgag | taacaatttc | tctagttgtg | 600  |
|------------|------------|------------|------------|------------|------------|------|
| cgtgactgct | gcttactttg | gagattacaa | tatatttcta | aaatgcttcg | attacttatt | 660  |
| tataaaccgt | ctctaaggcc | aattgctcaa | gattcattca | acaattgaaa | cgtctcacat | 720  |
| gattaaatca | tataaagttt | ctaagtcttg | tttgacaaga | tttttttaga | ttttcatcta | 780  |
| aattggatga | aactatcaaa | cactaatttt | aaaaaatata | agagaagctc | cggagataaa | 840  |
| aggtcgtcta | tgttattata | agagtaaagt | cgtctattct | cttcgtccca | acatatataa | 900  |
| ttctaagcat | gaattgcttt | ctttttggac | aaaaggagta | tgccacaaca | caagaatgat | 960  |
| gtcaccgtca | tgcttagatc | cttttatggt | aaagcttcac | cttctataat | ctaacaatag | 1020 |
| agaaatcggg | gaaaaatcat | gttttggttg | tttttatttc | taacctccac | aataactttg | 1080 |
| gtttaccatt | ttttgtttga | ttttagtttt | agagaagcgt | ttataacagg | acctaaaatc | 1140 |
| tttttttgag | tacacagtac | aacgcagacg | ctcatacacg | cacgcacaat | gtcctctatg | 1200 |
| aacacacgta | aggaaaccct | acaccttgag | caccttcgaa | ggactgagcc | ggcaaatcta | 1260 |
| gagattctcg | aagtcactat | tggcacctcg | ttatcaacga | gaacgtcgct | taccacttaa | 1320 |
| agcataacac | cgagaaatcc | cgtaacaaat | ccagtaaaat | acgagcaccc | gtaccaagtt | 1380 |
| gaatatttga | acccgagtgg | gtagattcca | ccgcaaagga | cctaaccaga | tcatttcgca | 1440 |
| aacaggaact | aaaatcggta | gagagcccag | acaaaaacct | tttctaagag | caactccagt | 1500 |
| gaaagcccct | actttaggta | taaaatgcaa | cactagtgga | gcttctaaat | aaacttctat | 1560 |
| ttttcatgcc | ctcctaaaat | ttactcctaa | aaccctagct | ataggagcct | cctatccatc | 1620 |
| ctctatttta | ttccactaga | attgattata | aatttagcct | cttaaatttt | ataagttggg | 1680 |
| agtcgagggt | aactagagtt | gctctaaacg | gaccttatct | tcaagtgacc | tcagtgagcc | 1740 |
| cgtttaacgg | cgtcgacaag | tctaatctaa | cggacaccaa | ccagagaacc | accgccagcg | 1800 |
| ccgagccaag | cgacgttgac | atcttggcgc | ggcacggcat | ctccctggcg | tctggtcccc | 1860 |
| tecegagaet | teegeteeae | ctcccaccgg | tggcggtttc | cgagtccgtt | ccgcctcctc | 1920 |
| tcacacggca | cgaaaccttg | acggcaccgg | cagcacgggg | gattccgttc | ccacggetec | 1980 |
| ttccctttcc | cttcctcgcc | cgctgctata | aatagccagc | cccatcccca | gcttcttccc | 2040 |
| caa        |            |            |            |            |            | 2043 |

<210> 51

<211> 1042

<212> ADN

5 <213> Bouteloua gracilis

<400> 51

gtacagogat cgatcgatca tcctcgctct ctctaccttc tctctcttag ggcgtgctgg 60

| ttctgttcct | gtttttccat | ggctgcgagg | tacaatagat | tggcgattca | tggttagggc | 120  |
|------------|------------|------------|------------|------------|------------|------|
| ctgctagttc | tgttcctgtt | tttttttt   | ccatggctgc | gaggcacaat | agatctgatg | 180  |
| gcgttatgat | ggttaacttg | tcatactctt | gcgatctatg | gtccctttag | gagtttagga | 240  |
| catcgattta | atttcggata | gttcgagatc | tgtgatccat | ggttagtacc | ctaggcagtg | 300  |
| gggttagatc | cgtgctgtta | tggttcgtag | atggattctg | attgctcagt | aactgggaat | 360  |
| cctgggatgg | ttctagctgg | ttcgcagata | agatcgattt | catgatatgc | tatatcttgt | 420  |
| ttggttgccg | tggttccgtt | aaatctgtct | gttatgatct | tagtcttgat | aaggttcggt | 480  |
| cgtgctagct | acgtcctgtg | cagcacttaa | ttgtcaggtc | ataatttta  | gcatgccttt | 540  |
| tttttattgg | tttggttttg | tctgactggg | ctgtagatag | tttcaatctt | tgtctgactg | 600  |
| ggctgtagat | agtttcaatc | ttcctgtctg | tttattttat | taaatttgga | tctgtatgtg | 660  |
| tgtcatatat | cttcatcttt | tagatatatc | gataggtata | tatgttgctg | tcgtttttta | 720  |
| ctgttccttt | atgagatata | ttcatgctta | gatacatgaa | acaacgtgct | gttacagttt | 780  |
| aatagttctt | gtttatctaa | taaacaaata | aggataggtg | ctgcagttag | ttttactggt | 840  |
| acttttttg  | acatgaacct | acggcttaat | aattagtctt | catcaaataa | aaagcatatt | 900  |
| ttttaattat | ttcgatatac | ttgaatgatg | tcatatgcag | catctgtgtg | aatttttggc | 960  |
| cctgtcttca | tatgatgttt | atttgcttgg | gactgtttct | ttggctgata | actcaccctg | 1020 |
| ttgtttggtg | atccttctgc | ag         |            |            |            | 1042 |

<210> 52

<211> 3139

<212> ADN

<213> Bouteloua gracilis

<400> 52

5

gacattatac gtaggaagca agtgtataat aagaatatga gataatgtaa gcagctatat 60 gaattatcac gtcatattta tgttaagatg aagaggagag aataaacggt acgtaaattt 120 atagcgagtg atagacgggc acgaggcctc ctagctattt ccataaatcg gattttgtaa 180 gaacaaaaa gaggacttat tataagagaa tgtggtaagt aagcatactc cctccgtttc 240 aaattataag ttgttttaac tttttttta tatctatttt actatacatt agatataata 300 atgtgtctag atacataata aaatggatga acaaaaaagt caaagtgact tacaatttgg 360 aacggaggga gtaagttcaa gccatcaagg cacttctatg caaccacata gtcaacttga 420 atgccgcttg agtgccttct caagtttttt ttttcttgca aaaattgttt ctttttttt 480 aaaaaagtat aatttggatc gtgcaaattt ctctctaggt gtgtgtgtga ctgtgtgagt 540 600 aacaatttct ctagttgtgc gtgactgctg cttactttgg agattacaat atatttctaa aatgettega ttaettattt ataaacegte tetaaggeea attgeteaag atteatteaa 660

| caattgaaac | gtctcacatg | attaaatcat | ataaagtttc | taagtcttgt | ttgacaagat | 720  |
|------------|------------|------------|------------|------------|------------|------|
| ttttttagat | tttcatctaa | attggatgaa | actatcaaac | actaatttta | aaaaatataa | 780  |
| gagaagctcc | ggagataaaa | ggtcgtctat | gttattataa | gagtaaagtc | gtctattctc | 840  |
| ttcgtcccaa | catatataat | tctaagcatg | aattgctttc | tttttggaca | aaaggagtat | 900  |
| gccacaacac | aagaatgatg | tcaccgtcat | gcttagatcc | ttttatggta | aagcttcacc | 960  |
| ttctataatc | taacaataga | gaaatcgggg | aaaaatcatg | ttttggttgt | ttttatttct | 1020 |
| aacctccaca | ataactttgg | tttaccattt | tttgtttgat | tttagtttta | gagaagcgtt | 1080 |
| tataacagga | cctaaaatct | ttttttgagt | acacagtaca | acgcagacgc | tcatacacgc | 1140 |
| acgcacaatg | tcctctatga | acacacgtaa | ggaaacccta | caccttgagc | accttcgaag | 1200 |
| gactgagccg | gcaaatctag | agattctcga | agtcactatt | ggcacctcgt | tatcaacgag | 1260 |
| aacgtcgctt | accacttaaa | gcataacacc | gagaaatccc | gtaacaaatc | cagtaaaata | 1320 |
| cgagcacccg | taccaagttg | aatatttgaa | cccgagtggg | tagattccac | cgcaaaggac | 1380 |
| ctaaccagat | catttcgcaa | acaggaacta | aaatcggtag | agageceaga | caaaaacctt | 1440 |
| ttctaagagc | aactccagtg | aaagccccta | ctttaggtat | aaaatgcaac | actagtggag | 1500 |
| cttctaaata | aacttctatt | tttcatgccc | tcctaaaatt | tactcctaaa | accctagcta | 1560 |
| taggageete | ctatccatcc | tctattttat | tccactagaa | ttgattataa | atttagcctc | 1620 |
| ttaaatttta | taagttggga | gtcgagggta | actagagttg | ctctaaacgg | accttatctt | 1680 |
| caagtgacct | cagtgagccc | gtttaacggc | gtcgacaagt | ctaatctaac | ggacaccaac | 1740 |
| cagagaacca | ccgccagcgc | cgagccaagc | gacgttgaca | tcttggcgcg | gcacggcatc | 1800 |
| tecctggcgt | ctggtcccct | cccgagactt | cegetecace | tcccaccggt | ggcggtttcc | 1860 |
| gagtccgttc | agaataatat | cacacggcac | gaaaccttga | cggcaccggc | agcacggggg | 1920 |
| attccgttcc | cacggctcct | tecetttece | ttcctcgccc | gctgctataa | atagccagcc | 1980 |
| ccatccccag | cttcttcccc | aacctcatct | tctcgtgttg | ttcggcccaa | cccgatcgat | 2040 |
| ccccaattcc | ctcgtcgtct | ctcgtcgcga | gcctcgtcga | teccegette | aaggtacagc | 2100 |
| gatcgatcga | tcatcctcgc | tctctctacc | ttetetetet | tagggcgtgc | tggttctgtt | 2160 |
| cctgttttc  | catggctgcg | aggtacaata | gattggcgat | tcatggttag | ggcctgctag | 2220 |
| ttctgttcct | gtttttttt  | tttccatggc | tgcgaggcac | aatagatctg | atggcgttat | 2280 |
| gatggttaac | ttgtcatact | cttgcgatct | atggtccctt | taggagttta | ggacatcgat | 2340 |
| ttaatttcgg | atagttcgag | atctgtgatc | catggttagt | accctaggca | gtggggttag | 2400 |
| atccgtgctg | ttatggttcg | tagatggatt | ctgattgctc | agtaactggg | aatcctggga | 2460 |
| tggttctagc | tggttcgcag | ataagatcga | tttcatgata | tgctatatct | tgtttggttg | 2520 |

agctacqtcc tqtqcagcac ttaattqtca qqtcataatt tttaqcatqc cttttttta 2640 ttqqtttqqt tttqtctqac tqqqqctqtaq ataqttcaa tctttqtctq actqqqctqt 2700 aqataqttc aatcttcctq tctqtttatt ttattaaatt tqqatctqta tqtqqtcat 2760 atatcttcat cttttaqata tatcqataqq tatatatqtt qctqtqttt tttactqtc 2820 ctttatqqq tatattcatq cttaqqataca tqqaacaacq tqctqttaca qtttaatqqt 2880 tcttqttat ctaataaaca aataaqqata qqtqctqcaq ttaqtttac tqqtacttt 2940 tttqacatqa acctacqqct taataattqq tcttcatcaa ataaaaqqa tatttttaa 3000 ttatttcqat atacttqaat qatqtcatat qcaqcatctq tqtqaatttt tqqccctqtc 3060 ttcatatqat qtttattqc ttqqqacqt ttctttqqct qataactcac cctqttqtt 3120 qqtqatcctt ctqcaqqtq

<210> 53

<211> 2002

<212> ADN

<213> Bouteloua gracilis

<400> 53

5

gacattatac gtaggaagca agtgtataat aagaatatga gataatgtaa gcagctatat 60 gaattatcac gtcatattta tgttaagatg aagaggagag aataaacggt acgtaaattt 120 atagogagtg atagaogggo acgaggooto ctagotattt ccataaatog gattttgtaa 180 gaacaaaaaa gaggacttat tataagagaa tgtggtaagt aagcatactc cctccgtttc 240 aaattataag ttgttttaac ttttttttta tatctatttt actatacatt agatataata 300 atgtgtctag atacataata aaatggatga acaaaaaagt caaagtgact tacaatttgg 360 aacggaggga gtaagttcaa gccatcaagg cacttctatg caaccacata gtcaacttga 420 atgccgcttg agtgccttct caagtttttt ttttcttgca aaaattgttt ctttttttt 480 aaaaaagtat aatttggatc gtgcaaattt ctctctaggt gtgtgtgtga ctgtgtgagt 540 aacaatttct ctagttgtgc gtgactgctg cttactttgg agattacaat atatttctaa 600 aatgettega ttaettattt ataaacegte tetaaggeea attgeteaag atteatteaa 660 caattgaaac gtctcacatg attaaatcat ataaagtttc taagtcttgt ttgacaagat 720 tttttttagat tttcatctaa attggatgaa actatcaaac actaatttta aaaaatataa 780 gagaagetee ggagataaaa ggtegtetat gttattataa gagtaaagte gtetattete 840 ttcgtcccaa catatataat tctaagcatg aattgctttc tttttggaca aaaggagtat 900 gccacaacac aagaatgatg tcaccgtcat gcttagatcc ttttatggta aagcttcacc 960 ttctataatc taacaataga gaaatcgggg aaaaatcatg ttttggttgt ttttatttct 1020

aacctccaca ataactttgg tttaccattt tttgtttgat tttagtttta gagaagcgtt 1080 tataacagga cctaaaatct ttttttgagt acacagtaca acgcagacgc tcatacacgc 1140 acgcacaatg teetetatga acacaegtaa ggaaaceeta cacettgage acettegaag 1200 gactgagccg gcaaatctag agattctcga agtcactatt ggcacctcgt tatcaacgag 1260 aacgtcgctt accacttaaa gcataacacc gagaaatccc gtaacaaatc cagtaaaata 1320 cgagcacccg taccaagttg aatatttgaa cccgagtggg tagattccac cgcaaaggac 1380 ctaaccagat catttegeaa acaggaacta aaateggtag agageecaga caaaaacett 1440 ttctaagagc aactccagtg aaagccccta ctttaggtat aaaatgcaac actagtggag 1500 cttctaaata aacttctatt tttcatgccc tcctaaaatt tactcctaaa accctagcta 1560 taggagecte etatecatee tetattttat teeactagaa ttgattataa atttageete 1620 ttaaatttta taagttggga gtcgagggta actagagttg ctctaaacgg accttatctt 1680 caagtgacct cagtgagccc gtttaacggc gtcgacaagt ctaatctaac ggacaccaac 1740 cagagaacca ccgccagcgc cgagccaagc gacgttgaca tcttggcgcg gcacggcatc 1800 tecetggcgt etggteeect eeegagaett eegeteeace teceaeeggt ggeggtttee 1860 gagteegtte egeeteetet cacaeggeac gaaacettga eggeacegge ageaeggggg 1920 attecqttcc cacggetect tecetttece ttectequee getqctataa atagccaqce 1980 2002 ccatccccag cttcttcccc aa

<210> 54

<211> 1046

<212> ADN

<213> Bouteloua gracilis

<400> 54

5

gtacagegat egategatea tectegetet etetacette tetetettag ggegtgetgg 60 ttotgttoot gtttttocat ggotgogagg tacaatagat tggogattoa tggttagggo 120 etgetagtte tgtteetgtt ttttttttt ceatggetge gaggeacaat agatetgatg 180 gcgttatgat ggttaacttg tcatactctt gcgatctatg gtccctttag gagtttagga 240 categattta attteggata gttegagate tgtgatecat ggttagtace etaggeagtg 300 gggttagatc cgtgctgtta tggttcgtag atggattctg attgctcagt aactgggaat 360 cctgggatgg ttctagctgg ttcgcagata agatcgattt catgatatgc tatatcttgt 420 ttggttgccg tggttccgtt aaatctgtct gttatgatct tagtctttga taaggttcgg 480 tegtgetage taegteetgt geageactta attgteaggt cataattttt ageatgeett 540 ttttttattg gtttggtttt gtctgactgg gctgtagata gtttcaatct ttgtctgact 600

gggctgtaga tagtttcaat cttcctgtct gtttattta ttaaatttgg atctgtatgt 660 gtgtcatata tcttcatctt ttagatatat cgataggtat atatgttgct gtcgttttt 720 actgttcctt tatgagatat attcatgctt agatacatga aacaacgtgc tgttacagtt 780 taatagttct tgtttatcta ataaacaaat aaggataggt gctgcagtta gttttactgg 840 tactttttt gacatgaacc tacggcttaa taattagtct tcatcaaata aaaagcatat 900 ttttaatta tttcgatata cttgaatgat gtcatatgca gcatctgtgt gaatttttgg 960 ccctgtcttc atatgatgt tatttgcttg ggactgttc tttggctgat aactcaccct 1020 gttgtttggt gatccttctg caggtg

<210> 55

<211> 2160

<212> ADN

<213> Bouteloua gracilis

<400> 55

5

gagaaatcgg ggaaaaatca tgttttggtt gtttttattt ctaacctcca caataacttt 60 ggtttaccat tttttgtttg attttagttt tagagaagcg tttataacag gacctaaaat 120 ctttttttga gtacacagta caacgcagac gctcatacac gcacgcacaa tgtcctctat 180 gaacacacgt aaggaaaccc tacaccttga gcaccttcga aggactgagc cggcaaatct 240 agagattete gaagteacta ttggeacete gttateaacg agaaegtege ttaceaetta 300 aagcataaca ccgagaaatc ccgtaacaaa tccagtaaaa tacgagcacc cgtaccaagt 360 tgaatatttg aacccgagtg ggtagattcc accgcaaagg acctaaccag atcatttcgc 420 aaacaggaac taaaatcggt agagagccca gacaaaaacc ttttctaaga gcaactccag 480 tgaaagcccc tactttaggt ataaaatgca acactagtgg agcttctaaa taaacttcta 540 tttttcatgc cctcctaaaa tttactccta aaaccctagc tataggagcc tcctatccat 600 cctctatttt attccactag aattgattat aaatttagcc tcttaaattt tataagttgg 660 gagtcgaggg taactagagt tgctctaaac ggaccttatc ttcaagtgac ctcagtgagc 720 ccgtttaacg gcgtcgacaa gtctaatcta acggacacca accagagaac caccgccagc 840 etceegagae tteegeteea ecteecaceg gtggeggttt eegagteegt teegeeteet ctcacacggc acgaaacctt gacggcaccg gcagcacggg ggattccgtt cccacggctc cttccctttc ccttcctcgc ccgctgctat aaatagccag ccccatcccc agcttcttcc 1020 ccaacctcat cttctcgtgt tgttcggccc aacccgatcg atccccaatt ccctcgtcgt 1080 ctctcgtcgc gagcctcgtc gatccccgct tcaaggtaca gcgatcgatc gatcatcctc 1140 geteteteta cettetetet ettagggegt getggttetg tteetgtttt teeatggetg 1200

cgaggtacaa tagattggcg attcatggtt agggcctgct agttctgttc ctgtttttt 1260 ttttccatgg ctgcgaggca caatagatct gatggcgtta tgatggttaa cttgtcatac 1320 tettgegate tatggteeet ttaggagttt aggacatega tttaattteg gatagttega 1380 gatetgtgat ecatggttag taccetagge agtggggtta gateegtget gttatggtte 1440 gtagatggat tetgattget eagtaactgg gaateetggg atggttetag etggttegea 1500 gataagateg attteatgat atgetatate ttgtttggtt geegtggtte egttaaatet 1560 gtctgttatg atcttagtct ttgataaggt tcggtcgtgc tagctacgtc ctgtgcagca 1620 cttaattgtc aggtcataat ttttagcatg ccttttttt attggtttgg ttttgtctga 1680 ctgggctgta gatagtttca atctttgtct gactgggctg tagatagttt caatcttcct 1740 gtotgtttat tttattaaat ttggatotgt atgtgtgtca tatatottca tottttagat 1800 atategatag gtatatatgt tgetgtegtt ttttactgtt cetttatgag atatatteat 1860 gcttagatac atgaaacaac gtgctgttac agtttaatag ttcttgttta tctaataaac 1920 aaataaggat aggtgctgca gttagtttta ctggtacttt ttttgacatg aacctacggc 1980 ttaataatta gtottoatoa aataaaaago atattttta attatttoga tatacttgaa 2040 tgatgtcata tgcagcatct gtgtgaattt ttggccctgt cttcatatga tgtttatttg 2100 cttgggactg tttctttggc tgataactca coctgttgtt tggtgatcct tctgcaggtg 2160

<210> 56

<211> 1024

<212> ADN

<213> Bouteloua gracilis

<400> 56

5

60 gagaaatcgg ggaaaaatca tgttttggtt gtttttattt ctaacctcca caataacttt ggtttaccat tttttgtttg attttagttt tagagaagcg tttataacag gacctaaaat 120 ctttttttga gtacacagta caacgcagac gctcatacac gcacgcacaa tgtcctctat 180 gaacacacgt aaggaaacce tacacettga geaeettega aggaetgage eggeaaatet 240 agagattete gaagteacta ttggeacete gttateaacg agaacgtege ttaceactta 300 aagcataaca cegagaaate eegtaacaaa teeagtaaaa tacgagcace egtaccaagt 360 tgaatatttg aacccgagtg ggtagattcc accgcaaagg acctaaccag atcatttcgc 420 480 aaacaggaac taaaatcggt agagagccca gacaaaaacc ttttctaaga gcaactccag tgaaagcccc tactttaggt ataaaatgca acactagtgg agcttctaaa taaacttcta 540 600 tttttcatgc cctcctaaaa tttactccta aaaccctagc tataggagcc tcctatccat cctctatttt attccactag aattgattat aaatttagcc tcttaaattt tataagttgg 660

| gagtcgaggg | taactagagt | tgctctaaac | ggaccttatc | ttcaagtgac | ctcagtgagc | 720  |
|------------|------------|------------|------------|------------|------------|------|
| ccgtttaacg | gcgtcgacaa | gtctaatcta | acggacacca | accagagaac | caccgccagc | 780  |
| gccgagccaa | gcgacgttga | catcttggcg | cggcacggca | tetecetgge | gtctggtccc | 840  |
| ctcccgagac | ttccgctcca | cctcccaccg | gtggcggttt | ccgagtccgt | tccgcctcct | 900  |
| ctcacacggc | acgaaacctt | gacggcaccg | gcagcacggg | ggattccgtt | cccacggctc | 960  |
| cttccctttc | ccttcctcgc | ccgctgctat | aaatagccag | ccccatcccc | agcttcttcc | 1020 |
| ccaa       |            |            |            |            |            | 1024 |

<210> 57

<211> 1045

<212> ADN

<213> Bouteloua gracilis

<400> 57

5

gtacagcgat cgatcgatca toctcgctct ctctaccttc tctctcttag ggcgtgctgg 60 ttctgttcct gtttttccat ggctgcgagg tacaatagat tggcgattca tggttagggc etgetagtte tgtteetgtt tttttttte catggetgeg aggeacaata gatetgatgg 180 egitatgatg gitaactigt catactetig egatetatgg teeetitagg agtitaggae 240 ategatttaa ttteggatag ttegagatet gtgateeatg gttagtacee taggeagtgg 300 360 ggttagatcc gtgctgttat ggttcgtaga tggattctga ttgctcagta actgggaatc ctgggatggt tctagctggt tcgcagataa gatcgatttc atgatatgct atatcttgtt 420 tggttgccgt ggttccgtta aatctgtctg ttatgatctt agtctttgat aaggttcggt 480 egtgetaget aegteetgtg cageacttaa ttgtcaggte ataattttta geatgeettt 540 tttttattgg tttggttttg tctgactggg ctgtagatag tttcaatctt tgtctgactg 600 660 tgtcatatat cttcatcttt tagatatatc gataggtata tatgttgctg tcgtttttta 720 ctgttccttt atgagatata ttcatgctta gatacatgaa acaacgtgct gttacagttt 780 840 aatagttett gtttatetaa taaacaaata aggataggtg etgeagttag ttttaetggt 900 actttttttg acatgaacct acggettaat aattagtett catcaaataa aaagcatatt ttttaattat ttcgatatac ttgaatgatg tcatatgcag catctgtgtg aatttttggc 960 cctgtcttca tatgatgttt atttgcttgg gactgtttct ttggctgata actcaccctg 1020 ttgtttggtg atccttctgc aggtg 1045

<210> 58

10

<211> 2160

<212> ADN

<213> Bouteloua gracilis

<400> 58

| gagaaatcgg | ggaaaaatca | tgttttggtt | gtttttattt | ctaacctcca | caataacttt | 60   |
|------------|------------|------------|------------|------------|------------|------|
| ggtttaccat | tttttgtttg | attttagttt | tagagaagcg | tttataacag | gacctaaaat | 120  |
| ctttttttga | gtacacagta | caacgcagac | gctcatacac | gcacgcacaa | tgtcctctat | 180  |
| gaacacacgt | aaggaaaccc | tacaccttga | gcaccttcga | aggactgagc | cggcaaatct | 240  |
| agagattctc | gaagtcacta | ttggcacctc | gttatcaacg | agaacgtcgc | ttaccactta | 300  |
| aagcataaca | ccgagaaatc | ccgtaacaaa | tccagtaaaa | tacgagcacc | cgtaccaagt | 360  |
| tgaatatttg | aacccgagtg | ggtagattcc | accgcaaagg | acctaaccag | atcatttcgc | 420  |
| aaacaggaac | taaaatcggt | agagagccca | gacaaaaacc | ttttctaaga | gcaactccag | 480  |
| tgaaagcccc | tactttaggt | ataaaatgca | acactagtgg | agcttctaaa | taaacttcta | 540  |
| tttttcatgc | cctcctaaaa | tttactccta | aaaccctagc | tataggagcc | tcctatccat | 600  |
| cctctatttt | attccactag | aattgattat | aaatttagcc | tcttaaattt | tataagttgg | 660  |
| gagtcgaggg | taactagagt | tgctctaaac | ggaccttatc | ttcaagtgac | ctcagtgagc | 720  |
| ccgtttaacg | gcgtcgacaa | gtctaatcta | acggacacca | accagagaac | caccgccagc | 780  |
| gccgagccaa | gcgacgttga | catcttggcg | cggcacggca | tctccctggc | gtctggtccc | 840  |
| ctcccgagac | ttccgctcca | cctcccaccg | gtggcggttt | ccgagtccgt | tccgcctcct | 900  |
| ctcacacggc | acgaaacctt | gacggcaccg | gcagcacggg | ggattccgtt | cccacggctc | 960  |
| cttccctttc | ccttcctcgc | ccgctgctat | aaatagccag | ccccatcccc | agcttcttcc | 1020 |
| ccaacctcat | cttctcgtgt | tgttcggccc | aacccgatcg | atccccaatt | ccctcgtcgt | 1080 |
| ctctcgtcgc | gageetegte | gateceeget | tcaaggtaca | gcgatcgatc | gatcatcctc | 1140 |
| gctctctcta | ccttctctct | cttagggcgt | gctggttctg | ttcctgtttt | tccatggctg | 1200 |
| cgaggtacaa | tagattggcg | attcatggtt | agggcctgct | agttctgttc | atgtttttt  | 1260 |
| tttttccatg | gctgcgaggc | acaatagatc | tgatggcgtt | atgatggtta | acttgtcata | 1320 |
| ctcttgcgat | ctatggtccc | tttaggagtt | taggacatcg | atttaatttc | ggatagttcg | 1380 |
| agatctgtga | tccatggtta | gtaccctagg | cagtggggtt | agatccgtgc | tgttatggtt | 1440 |
| cgtagatgga | ttctgattgc | tcagtaactg | ggaatcctgg | gatggttcta | gctggttcgc | 1500 |
| agataagatc | gatttcatga | tatgctatat | cttgtttggt | tgccgtggtt | ccgttaaatc | 1560 |
| tgtctgttat | gatcttagtc | ttgataaggt | tcggtcgtgc | tagctacgtc | ctgtgcagca | 1620 |
| cttaattgtc | aggtcataat | ttttagcatg | ccttttttt  | attggtttgg | ttttgtctga | 1680 |
| ctgggctgta | gatagtttca | atctttgtct | gactgggctg | tagatagttt | caatcttcct | 1740 |
| gtctgtttat | tttattaaat | ttggatctgt | atgtgtgtca | tatatcttca | tcttttagat | 1800 |

atatcgatag gtatatatgt tgctgtcgtt ttttactgtt cctttatgag atatatcat 1860 gcttagatac atgaaacaac gtgctgttac agtttaatag ttcttgttta tctaataaac 1920 aaataaggat aggtgctgca gttagtttta ctggtacttt ttttgacatg aacctacggc 1980 ttaataatta gtcttcatca aataaaaagc atattttta attatttcga tatacttgaa 2040 tgatgtcata tgcagcatct gtgtgaattt ttggccctgt cttcatatga tgtttatttg 2100 cttgggactg tttctttggc tgataactca ccctgttgtt tggtgatcct tctgcaggtg 2160

<210> 59

<211> 1045

<212> ADN

5 <213> Bouteloua gracilis

<400> 59

60 gtacagcgat cgatcgatca tcctcgctct ctctaccttc tctctcttag ggcgtgctgg ttctgttcct gtttttccat ggctgcgagg tacaatagat tggcgattca tggttagggc 120 ctgctagttc tgttcctgtt ttttttttt ccatggctgc gaggcacaat agatctgatg 180 gcgttatgat ggttaacttg tcatactctt gcgatctatg gtccctttag gagtttagga 240 catcgattta atttcggata gttcgagatc tgtgatccat ggttagtacc ctaggcagtg 300 gggttagatc cgtgctgtta tggttcgtag atggattctg attgctcagt aactgggaat 360 cctgggatgg ttctagctgg ttcgcagata agatcgattt catgatatgc tatatcttgt 420 ttggttgccg tggttccgtt aaatctgtct gttatgatct tagtcttgat aaggttcggt 480 cgtgctagct acgtcctgtg cagcacttaa ttgtcaggtc ataattttta gcatgccttt 540 tttttattgg tttggttttg tctgactggg ctgtagatag tttcaatctt tgtctgactg 600 660 720 tgtcatatat cttcatcttt tagatatatc gataggtata tatgttgctg tcgtttttta ctgttccttt atgagatata ttcatgctta gatacatgaa acaacgtgct gttacagttt 780 aatagttett gtttatetaa taaacaaata aggataggtg etgeagttag ttttactggt 840 actttttttg acatgaacct acggettaat aattagtett catcaaataa aaagcatatt 900 ttttaattat ttcgatatac ttgaatgatg tcatatgcag catctgtgtg aatttttggc 960 cctgtcttca tatgatgttt atttgcttgg gactgtttct ttggctgata actcaccctg 1020 ttgtttggtg atccttctgc aggtg 1045

<210> 60

<211> 1885

10 <212> ADN

<213> Bouteloua gracilis

<400> 60

| caacgaga | ac  | gtcgcttacc | acttaaagca | taacaccgag | aaatcccgta | acaaatccag | 60   |
|----------|-----|------------|------------|------------|------------|------------|------|
| taaaatac | ga  | gcacccgtac | caagttgaat | atttgaaccc | gagtgggtag | attccaccgc | 120  |
| aaaggacc | ta  | accagatcat | ttcgcaaaca | ggaactaaaa | tcggtagaga | gcccagacaa | 180  |
| aaaccttt | tc  | taagagcaac | tccagtgaaa | gcccctactt | taggtataaa | atgcaacact | 240  |
| agtggagc | tt  | ctaaataaac | ttctattttt | catgccctcc | taaaatttac | tcctaaaacc | 300  |
| ctagctat | ag  | gagcctccta | tccatcctct | attttattcc | actagaattg | attataaatt | 360  |
| tagcctct | ta  | aattttataa | gttgggagtc | gagggtaact | agagttgctc | taaacggacc | 420  |
| ttatcttc | aa  | gtgacctcag | tgagcccgtt | taacggcgtc | gacaagtcta | atctaacgga | 480  |
| caccaacc | ag  | agaaccaccg | ccagegeega | gccaagcgac | gttgacatct | tggcgcggca | 540  |
| cggcatct | cc  | ctggcgtctg | gtcccctccc | gagacttccg | ctccacctcc | caccggtggc | 600  |
| ggtttccg | ag  | teegtteege | ctcctctcac | acggcacgaa | accttgacgg | caccggcagc | 660  |
| acggggga | tt  | ccgttcccac | ggeteettee | ctttcccttc | ctcgcccgct | gctataaata | 720  |
| gccagccc | ca  | tecceagett | cttccccaac | ctcatcttct | cgtgttgttc | ggcccaaccc | 780  |
| gatcgatc | cc  | caattccctc | gtcgtctctc | gtcgcgagcc | tegtegatee | ccgcttcaag | 840  |
| gtacagcg | at  | cgatcgatca | tectegetet | ctctaccttc | tctctcttag | ggcgtgctgg | 900  |
| ttctgttc | ct  | gtttttccat | ggctgcgagg | tacaatagat | tggcgattca | tggttagggc | 960  |
| ctgctagt | tc  | tgttcctgtt | tttttttt   | ccatggctgc | gaggcacaat | agatctgatg | 1020 |
| gcgttatg | at  | ggttaacttg | tcatactctt | gcgatctatg | gtccctttag | gagtttagga | 1080 |
| catcgatt | ta  | atttcggata | gttcgagatc | tgtgatccat | ggttagtacc | ctaggcagtg | 1140 |
| gggttaga | tc  | cgtgctgtta | tggttcgtag | atggattctg | attgctcagt | aactgggaat | 1200 |
| cctgggat | gg  | ttctagctgg | ttcgcagata | agatcgattt | catgatatgc | tatatcttgt | 1260 |
| ttggttgc | cg  | tggttccgtt | aaatctgtct | gttatgatct | tagtcttgat | aaggttcggt | 1320 |
| cgtgctag | ct  | acgtcctgtg | cagcacttaa | ttgtcaggtc | ataatttta  | gcatgccttt | 1380 |
| tttttatt | gg  | tttggttttg | tctgactggg | ctgtagatag | tttcaatctt | tgtctgactg | 1440 |
| ggctgtag | at  | agtttcaatc | ttcctgtctg | tttattttat | taaatttgga | tctgtatgtg | 1500 |
| tgtcatat | at  | cttcatcttt | tagatatatc | gataggtata | tatgttgctg | tcgtttttta | 1560 |
| ctgttcct | tt  | atgagatata | ttcatgctta | gatacatgaa | acaacgtgct | gttacagttt | 1620 |
| aatagtto | tt. | gtttatctaa | taaacaaata | aggataggtg | ctgcagttag | ttttactggt | 1680 |
| acttttt  | tg  | acatgaacct | acggcttaat | aattagtctt | catcaaataa | aaagcatatt | 1740 |
| ttttaatt | at  | ttcgatatac | ttgaatgatg | tcatatgcag | catctgtgtg | aatttttggc | 1800 |
| cctgtctt | ca  | tatgatgttt | atttgcttgg | gactgtttct | ttggctgata | actcaccctg | 1860 |
| ttatttaa | ta  | atccttctgc | aggtg      |            |            |            | 1885 |

| <2 | 210>         | 61                 |
|----|--------------|--------------------|
| <2 | 211>         | 749                |
| <2 | 212>         | ADN                |
| <2 | 213>         | Bouteloua gracilis |
| <4 | <b>1</b> 00> | 61                 |
|    |              |                    |

5

caacgagaac gtcgcttacc acttaaagca taacaccgag aaatcccgta acaaatccag 60 120 taaaatacga gcacccgtac caagttgaat atttgaaccc gagtgggtag attccaccgc aaaggaccta accagatcat ttcgcaaaca ggaactaaaa tcggtagaga gcccagacaa 180 aaaccttttc taagagcaac tccagtgaaa gcccctactt taggtataaa atgcaacact 240 agtggagett ctaaataaac ttetattttt catgeeetee taaaatttae teetaaaace 300 ctagetatag gagectecta tecatectet attttattee actagaattg attataaatt 360 tagcetetta aattttataa gttgggagte gagggtaact agagttgete taaacggace 420 480 ttatcttcaa gtgacctcag tgagcccgtt taacggcgtc gacaagtcta atctaacgga caccaaccag agaaccaccg ccagcgccga gccaagcgac gttgacatct tggcgcggca 540 eggeatetee etggegtetg gteeceteee gagaetteeg etceacetee eaceggtgge 600 ggtttccgag tccgttccgc ctcctctcac acggcacgaa accttgacgg caccggcagc 660 acgggggatt cogttoccac ggctocttoc ctttcccttc ctcgcccgct gctataaata 720 749 gccagcccca tccccagctt cttccccaa

<210> 62 <211> 6813 <212> ADN

10 <213> Miscanthus sinesis

<400> 62

agcagactcg cattatcgat gggggaaatg aaattcagcg tttgacgtgg atgcaacaac 60 tgcactgcac aggatatett ageegttgtg tegaagtttg etttgctaac gttttgagaa 120 aaccagettt gaccaacaeg agaegagege ettaegtttg geacaatgta atgtageeeg 180 gcacggcaag ttagactagt atattgtgtt agccggcctc tttacgtttg gcacagttta 240 300 attgaatccg gcatggcaag ttagactgga gtgtgagccg gtcattgcaa agttattatg 360 acatatatat aagagcacaa gtgtataata agataatgta agcaaggcag caagctatat gaattgtcac gttatattta tgttgagatg ttgagatgaa gaagagaaaa taaacagcct 420 ataaattcat agegagtgat agaegggeac aaggeeteet atttettaaa eegaattttg 480 taagaacaaa aaaaaggact tataggagaa tgggatagac catatatcaa cgggaaaggt 540 acacgttgct cgagtgtttt aggcgttctg ctcactcgat cctgtagctg tccgatctgc 600

| ggcgtcaaca | cggcgcgcaa | caagcggtgg | cgggcccctc | ggtagccgcg | gtcggaccgg | 660  |
|------------|------------|------------|------------|------------|------------|------|
| acgatggcct | atggcgaccc | gcggcctggg | cgtggcctgt | gcgtgcatgc | gccataggtc | 720  |
| ccggtgcatg | gtgcaggcgg | caggtgcatg | tgcatggagt | aggctttggt | gctggtgcag | 780  |
| gctttggtca | ggtgcaggag | gggtaggttg | cgcaggtgag | aggtgaggtg | catgctgacc | 840  |
| cgtcacatca | ccttactcct | agcccctaag | tcttgcatgt | atgcagattt | attcttttag | 900  |
| cagcgacaga | ttcagcagcg | agagaccggc | taccgtagca | ttttcatttt | tatttgataa | 960  |
| ttagtattta | attatggact | aattaggttc | aaaatattcg | tctcgcgatt | tccaaccaaa | 1020 |
| ctgtgcaatt | agttttttc  | gtctacattt | aatgctctat | acacgtatca | caagattcaa | 1080 |
| cgtgatggct | actgtagcac | tttttgaaaa | aactttttgc | aactaaacaa | ggcctgaggt | 1140 |
| atcgtttaaa | tttaggtaca | aaaaatataa | gggtgtcaca | tcgaatgtta | cacgagatat | 1200 |
| catatgtgag | tgttcggata | gtaataataa | aataaattac | acaagteett | agtaatccac | 1260 |
| gagacgaatt | tattgagtct | aattaatcag | tcattagcac | atggtgcatt | catgcatctg | 1320 |
| catattattt | tgtgttgctt | ggttgaaagt | tggatttcaa | attgagttga | atttgcattt | 1380 |
| tgaaattgct | ttggaaaaat | tagaaaaaaa | gaaaaaaaat | gaatttccct | ccctcctttc | 1440 |
| tcatttccct | gctttcggcc | cctctgtgta | gaactattcg | agttctcagg | tcgagtgctc | 1500 |
| gaatcatcta | gcttctcttt | tttgaggaga | gccagagagc | cagattcaga | atagecagee | 1560 |
| tcctttttag | gagagagctc | atcccctttt | atagttgaag | gcagcgacga | agccagcggg | 1620 |
| gggctacccg | tgctccagcc | tecetaegge | catgatttac | atggaacccg | ggcttagctc | 1680 |
| gggctaccgc | catgaggagg | aagaagaaga | taaggagggg | ctagaggaag | aagaagagga | 1740 |
| agctagccct | ggettegteg | attcctggct | tcgtcgctgg | ttgaagggga | tgggctctta | 1800 |
| caagtcagag | aaagagagag | aatgtatacg | tgtgctatct | agtcttgttg | cccacgctgt | 1860 |
| caggtacgag | acggttgtcg | gcgcccacaa | tactgtttat | gtccagatgc | atgtggcagg | 1920 |
| ctctaccgtg | ttcgcctgtt | atggcaaatg | teggegeata | caatactatt | tgggttctga | 1980 |
| cacgcctgaa | aggttgcata | gtgcctatct | ggcatggcct | ggtggcaccg | teeggeatgt | 2040 |
| gcgcaggata | tgccagggta | cggtccttgg | tattacggtt | tgacttgagc | gccttacctt | 2100 |
| atctgctccg | cctgatcccc | gggctcttac | cgagcgggcg | tecceggteg | gtcgttccca | 2160 |
| gtcggccccg | actgtgtcgg | tcggggaaga | gctgcaagca | gaggtccggc | gtatccccga | 2220 |
| tcgaaaaagg | aagtcggagt | cagactatgt | ctccacctta | gccaggcctt | ccggtcgggg | 2280 |
| atcggatcat | teteceggee | tgtcattagg | tatctgggtc | ggcccgagag | gtgtgcgttg | 2340 |
| tcgctacgct | gtctgctggg | ccgagtttct | gttgggaagc | gggtccattg | gggaccccgg | 2400 |
| gtttatgaac | ccgacacgtg | gtcactatgc | tgcatactcc | ctatacagcc | gctgaccagt | 2460 |

| acgctggttc | accgcgtcgc | ccgcgcggga | cggaatggga | tgtcacgacc | cgctgaacgc | 2520 |
|------------|------------|------------|------------|------------|------------|------|
| cggggcatgg | catcagcggc | gaacaggcac | ccggcgtgga | gctgtccgtg | tcaccatcta | 2580 |
| cagtgttgac | gggacccgca | taaaaggaga | aaaaaggccc | gacggtcctg | gaagccttcc | 2640 |
| tctccttagc | tetteteeet | ctttctctct | gtgtaacctg | ctcttcccct | tcgtctataa | 2700 |
| aaagggaagt | aggacgtccc | aggaagagaa | gggcggttca | ccactctaca | tggctataga | 2760 |
| cataaaaaca | cacgccttgg | gagcacactc | acatcagaga | cttgggacct | atccctctct | 2820 |
| cgctcgtttg | taacccctac | tacaaacttt | tagtgctagt | aacacgagca | gcagcgacga | 2880 |
| actagacgta | aggactttct | gecegaacea | gtataaacat | cgtgtcatct | aagcacacca | 2940 |
| tacgagccag | acgcgcaata | ctagaaattt | actagtcggt | aactcgaaac | accgacatct | 3000 |
| agctaatctt | tttgttttat | ttggtttccc | tttgaaatct | tctaatttag | ctttcataga | 3060 |
| aataatctag | gtattttta  | ttttatatgt | tctatctgtt | tgcattaatt | ttgatcattt | 3120 |
| gatctgaatg | ctgtggtcac | gagaatcgag | tgtttcatgg | ccttaaaaca | ctcgattatg | 3180 |
| ccatctgacc | cgttttcaac | cattctagtg | tttctgagct | atatcaatgg | tgcagcatgt | 3240 |
| tagtatacat | atctaactat | tactccgtat | atgagtgagt | tgttaaattt | attccaggtg | 3300 |
| aaatggcatt | aacgatagcc | aataggcggc | taaattaata | gccatactct | aacagctcta | 3360 |
| aaaaacatat | attcatcgag | gcacctttat | gcaaccacat | agtcaacttc | aacgtcgctt | 3420 |
| gcgtgcgttc | tcaagttttc | tttcttgcaa | attacatttt | ttttaaaaaa | aagtataatt | 3480 |
| tgtategtge | gattttttct | ctctaggtgt | gcgtgactgt | gggagtaaca | attttgaatc | 3540 |
| tcaagaagga | aataaaagaa | taatactgct | gcctactttg | aggatttcag | tatttttctc | 3600 |
| taaaatgttt | tggtgtgata | tctaaaccgt | ctttaaagcc | aattgctcaa | gattcattca | 3660 |
| acaattgaaa | cgtctcacat | gactaaatga | tataaggttg | ctaaggtett | tcttgataag | 3720 |
| cttttttatg | aatttcatct | aaattttcga | gtgaaactat | taaatactaa | ggttgctaag | 3780 |
| tgtcattctc | gctcgagaag | tctaacgctt | taaactttaa | ccaaatatat | acaagaaaat | 3840 |
| attaatattt | atagtacata | attagtatca | ttagatagat | cgttgaatct | attttcataa | 3900 |
| caaacttatt | tgaagaaaca | aatgttgttc | atatatttct | atatacgaat | accatagega | 3960 |
| cacttatttt | agaatgtagg | gagtactccc | tttgtgccgc | tttgagtgtc | gctttggcag | 4020 |
| ctagtaccta | tgtccacctt | cacagettgt | gcctagtacc | tagactcttt | ctctgtccac | 4080 |
| attcatttaa | tctctgttgt | accttgttcg | gagataaaac | gactctgata | aagggacgag | 4140 |
| gaagtagtat | gttagaggag | tgaagtctac | tccctttgcc | gcaaaaaggt | aatcctaagt | 4200 |
| gtgaattgta | ttcttttttg | accaaaggaa | tatacaacaa | gaatgatgtc | atcatcatgc | 4260 |
| ttcgatcctt | ttttttggta | aagcttgagc | ttctgtaaaa | atagagaaat | catgggaaaa | 4320 |
| atcacgtttt | ggtggttttg | atttctagcc | tccacaataa | ctttggtttt | actattttt  | 4380 |

gtttgatttt agtttcagaa gtccactttt gtacgtgctc gtagagccta aacaaaaggc 4440 tttccaaaac gaccttatct tcgagtgttg taaaaaaaat gagcccgttt aacggcgtcg 4500 acaagtotaa oggacaccaa ocagogaacc accagogoog agocaagoga agoagactgo 4560 agacggcacg gccgagacgt tgacaccttg gcgcggcaac ggcatctctc tggcccctc 4620 tegagagtte egetecacet eegeateeae etceacetee acetecaceg gtggeggttt 4680 ccaagtccgt cccgttccgc cacctgctcc tctcacacgg cacgaaaccg tcacggcacc 4740 ggcagcacag cacgggggat teettteeca cegeteegte cetttetett cetegeeege 4800 cogttataaa tagccagccc catccctcgt ctctcgtgtt gttcggagcg cacacacaac 4860 cogatececa ateaategat eccegettea aggtacggcg atectectec etetetett 4920 accttetett etetaeacta gateggeggt ceatggttag ggeetgetag tteegtteet 4980 gtttttccat ggctgcgagg tacaatagat ctgatggcgt tatgatggtt aacttgtcat 5040 gcttttgcga tttatagtcc ctttagatag ttcgagatcg gtgatccatg gttagtaccc 5100 taggctgtgg agtcgggtta gatccgcgct gttagggttc gtatatggag gcgagctgtt 5160 ctgattgtta acttgctggg aatcctggga tggttctagc tgttccgcag atgagatcga 5220 tttcatgatc tgctgtatct atccgtggta tgatgttagc ctttgatatg gttcgatcgt 5280 gctagctacg tcctqtqcac ttaattqtca qqtcataatt tttactatac ttttttttt 5340 gtttggtttg gtttcgtctg atttggctgt cgttctagat cagagtagaa actgtttcaa 5400 actacctgtt ggatttatta aggtagcgtt tggttcctgg tatcgaatca tacacgcacc 5460 agtgcatctt ggatagccag ctggggccca cctgtccaac cgtttggttg ccggatcgaa 5520 cgagtccatt caagaccgaa ccatgcagag caatcgaata ttctcttgtg acgctgtatc 5580 atccagttcg gcaaaaaaca ccgaatgccg ccatacagga caccgtactg agcgtctgca 5640 actotycatc cogetcacty etcacatete cycttyccyc etcaccecate cyacteagae 5700 cagagecaca eggattactg etgetggtgt gtgtattaac aaaagateca tttgacegga 5760 gcacatgcag cttggatgga aaaaatttat tatattcgtc agtgctgcat atgtactcat 5820 acttgcatga tggttttatt tattcgacct catcagtcct ggcactatgg aaagtcattg 5880 tagtatagat tttttaatat aatataaatc attggtgact tatcttgctt aattttattt 5940 tottattatg aaatatogtt goattoataa tagoaaattt gtgcaaatat atagaatota 6000 cgtgaaattc ttggttggac caatacaaca aacccctcaa acattctctt gtactgaacc 6060 ataccattcc gtacaaccat ccaaacaaaa atcatgtatc atcatgtaca tgtaaccaaa 6120 caattaacac gcaccatcct attcagactt gtctcatcca taatctatcc atccaggatg 6180 atccatecca tteatetata tacacecaat caaaegetae etaaaatttg gatetgtatg 6240

tgtcacatat atcttaataa gatggatgga aatatctctt tatcttttag atatggatag 6300 gtatatatgt tgctgtgggt ttgttagtta tatatatacg tgcttacata cgtgaagaaa 6360 cctgctgcta cagtttaata attcttgttc atctcaacaa ataacgatag gcgtatatgt 6420 tgctgtgttt tttactggta ctttgttaga tatatacatg cttacataca tgaagaacac 6480 atgctacagt tcaaaaattc ttgttcatct cataaacaaa aaggaggtgt atatgttgct 6540 gtgggtttta ctggtacttt attagatata tacatgctta catagatgaa gcaacatgct 6600 gctatggtgt ttaataatta ttgtttatct aataaacaaa catgctttt aattacttg 6660 atatgtttgg atgatggcat atgcagcage tatgtgtgga ttttaaatac ccagcatcat 6720 gagcatgcat gaccctgcct tagtatgcag ttatttgctt gagactgtt cttttgttga 6780 tactcatcct ttagttcggt cactcttctg cag

<210> 63

<211> 5359

<212> ADN

<213> Miscanthus sinesis

<400> 63

5

agcagactcg cattatcgat gggggaaatg aaattcagcg tttgacgtgg atgcaacaac 60 tgcactgcac aggatatctt agccgttgtg tcgaagtttg ctttgctaac gttttgagaa 120 aaccagcttt gaccaacacg agacgagege ettacgtttg geacaatgta atgtageeeg 180 gcacggcaag ttagactagt atattgtgtt agccggcctc tttacgttttg gcacagttta 240 300 attgaatccg gcatggcaag ttagactgga gtgtgagccg gtcattgcaa agttattatg acatatatat aagagcacaa gtgtataata agataatgta agcaaggcag caagctatat 360 gaattgtcac gttatattta tgttgagatg ttgagatgaa gaagagaaaa taaacagcct 420 ataaattcat agcgagtgat agacgggcac aaggcctcct atttcttaaa ccgaattttg 480 taagaacaaa aaaaaggact tataggagaa tgggatagac catatatcaa cgggaaaggt 540 acacgttgct cgagtgtttt aggcgttctg ctcactcgat cctgtagctg tccgatctgc 600 ggogtcaaca cggcgcgcaa caagcggtgg cgggcccctc ggtagccgcg gtcggaccgg 660 acgatggcct atggcgaccc gcggcctggg cgtggcctgt gcgtgcatgc gccataggtc 720 780 ccggtgcatg gtgcaggcgg caggtgcatg tgcatggagt aggctttggt gctggtgcag 840 cgtcacatca ccttactcct agcccctaag tcttgcatgt atgcagattt attcttttag 900 cagcgacaga ttcagcagcg agagaccggc taccgtagca ttttcatttt tatttgataa ttagtattta attatggact aattaggttc aaaatattcg tctcgcgatt tccaaccaaa 1020 ctgtgcaatt agttttttc gtctacattt aatgctctat acacgtatca caagattcaa 1080

| cgtgatggct | actgtagcac | tttttgaaaa | aactttttgc | aactaaacaa | ggcctgaggt | 1140 |
|------------|------------|------------|------------|------------|------------|------|
| atcgtttaaa | tttaggtaca | aaaaatataa | gggtgtcaca | tcgaatgtta | cacgagatat | 1200 |
| catatgtgag | tgttcggata | gtaataataa | aataaattac | acaagtcctt | agtaatccac | 1260 |
| gagacgaatt | tattgagtct | aattaatcag | tcattagcac | atggtgcatt | catgcatctg | 1320 |
| catattattt | tgtgttgctt | ggttgaaagt | tggatttcaa | attgagttga | atttgcattt | 1380 |
| tgaaattgct | ttggaaaaat | tagaaaaaaa | gaaaaaaaat | gaatttccct | ccctcctttc | 1440 |
| tcatttccct | gctttcggcc | cctctgtgta | gaactattcg | agttctcagg | tcgagtgctc | 1500 |
| gaatcatcta | gcttctcttt | tttgaggaga | gccagagagc | cagattcaga | atagccagcc | 1560 |
| tcctttttag | gagagagete | atcccctttt | atagttgaag | gcagcgacga | agccagcggg | 1620 |
| gggctacccg | tgctccagcc | tccctacggc | catgatttac | atggaacccg | ggcttagctc | 1680 |
| gggctaccgc | catgaggagg | aagaagaaga | taaggagggg | ctagaggaag | aagaagagga | 1740 |
| agctagccct | ggettegteg | atteetgget | tegtegetgg | ttgaagggga | tgggctctta | 1800 |
| caagtcagag | aaagagagag | aatgtatacg | tgtgctatct | agtcttgttg | cccacgctgt | 1860 |
| caggtacgag | acggttgtcg | gegeecacaa | tactgtttat | gtccagatgc | atgtggcagg | 1920 |
| ctctaccgtg | ttcgcctgtt | atggcaaatg | tcggcgcata | caatactatt | tgggttctga | 1980 |
| cacgcctgaa | aggttgcata | gtgcctatct | ggcatggcct | ggtggcaccg | tccggcatgt | 2040 |
| gcgcaggata | tgccagggta | cggtccttgg | tattacggtt | tgacttgagc | gccttacctt | 2100 |
| atctgctccg | cctgatcccc | gggctcttac | cgagcgggcg | tccccggtcg | gtcgttccca | 2160 |
| gtcggccccg | actgtgtcgg | tcggggaaga | gctgcaagca | gaggtccggc | gtatccccga | 2220 |
| togaaaaagg | aagtcggagt | cagactatgt | ctccacctta | gccaggcctt | ccggtcgggg | 2280 |
| atcggatcat | teteceggee | tgtcattagg | tatctgggtc | ggcccgagag | gtgtgcgttg | 2340 |
| togotacgot | gtetgetggg | ccgagtttct | gttgggaagc | gggtccattg | gggaccccgg | 2400 |
| gtttatgaac | ccgacacgtg | gtcactatgc | tgcatactcc | ctatacagcc | gctgaccagt | 2460 |
| acgctggttc | accgcgtcgc | ccgcgcggga | cggaatggga | tgtcacgacc | cgctgaacgc | 2520 |
| cggggcatgg | catcagcggc | gaacaggcac | ccggcgtgga | gctgtccgtg | tcaccatcta | 2580 |
| cagtgttgac | gggacccgca | taaaaggaga | aaaaaggccc | gacggtcctg | gaagccttcc | 2640 |
| teteettage | tettetecet | ctttctctct | gtgtaacctg | ctcttcccct | tcgtctataa | 2700 |
| aaagggaagt | aggacgtccc | aggaagagaa | gggcggttca | ccactctaca | tggctataga | 2760 |
| cataaaaaca | cacgccttgg | gagcacactc | acatcagaga | cttgggacct | atccctctct | 2820 |
| cgctcgtttg | taacccctac | tacaaacttt | tagtgctagt | aacacgagca | gcagcgacga | 2880 |
| actagacgta | aggactttct | gcccgaacca | gtataaacat | cgtgtcatct | aagcacacca | 2940 |

| tacgagecag | acgcgcaata | ctagaaattt | actagtcggt | aactcgaaac | accgacatct | 3000 |
|------------|------------|------------|------------|------------|------------|------|
| agctaatctt | tttgttttat | ttggtttccc | tttgaaatct | tctaatttag | ctttcataga | 3060 |
| aataatctag | gtattttta  | ttttatatgt | tctatctgtt | tgcattaatt | ttgatcattt | 3120 |
| gatctgaatg | ctgtggtcac | gagaatcgag | tgtttcatgg | ccttaaaaca | ctcgattatg | 3180 |
| ccatctgacc | cgttttcaac | cattctagtg | tttctgagct | atatcaatgg | tgcagcatgt | 3240 |
| tagtatacat | atctaactat | tactccgtat | atgagtgagt | tgttaaattt | attccaggtg | 3300 |
| aaatggcatt | aacgatagcc | aataggcggc | taaattaata | gccatactct | aacagctcta | 3360 |
| aaaaacatat | attcatcgag | gcacctttat | gcaaccacat | agtcaacttc | aacgtcgctt | 3420 |
| gcgtgcgttc | tcaagttttc | tttcttgcaa | attacatttt | ttttaaaaaa | aagtataatt | 3480 |
| tgtatcgtgc | gattttttct | ctctaggtgt | gcgtgactgt | gggagtaaca | attttgaatc | 3540 |
| tcaagaagga | aataaaagaa | taatactgct | gcctactttg | aggatttcag | tatttttctc | 3600 |
| taaaatgttt | tggtgtgata | tctaaaccgt | ctttaaagcc | aattgctcaa | gattcattca | 3660 |
| acaattgaaa | cgtctcacat | gactaaatga | tataaggttg | ctaaggtctt | tcttgataag | 3720 |
| cttttttatg | aatttcatct | aaattttcga | gtgaaactat | taaatactaa | ggttgctaag | 3780 |
| tgtcattctc | gctcgagaag | tctaacgctt | taaactttaa | ccaaatatat | acaagaaaat | 3840 |
| attaatattt | atagtacata | attagtatca | ttagatagat | cgttgaatct | attttcataa | 3900 |
| caaacttatt | tgaagaaaca | aatgttgttc | atatatttct | atatacgaat | accatagcga | 3960 |
| cacttatttt | agaatgtagg | gagtactccc | tttgtgccgc | tttgagtgtc | gctttggcag | 4020 |
| ctagtaccta | tgtccacctt | cacagettgt | gcctagtacc | tagactcttt | ctctgtccac | 4080 |
| attcatttaa | tetetgttgt | accttgttcg | gagataaaac | gactctgata | aagggacgag | 4140 |
| gaagtagtat | gttagaggag | tgaagtctac | tecetttgee | gcaaaaaggt | aatcctaagt | 4200 |
| gtgaattgta | ttcttttttg | accaaaggaa | tatacaacaa | gaatgatgtc | atcatcatgc | 4260 |
| ttcgatcctt | ttttttggta | aagettgage | ttctgtaaaa | atagagaaat | catgggaaaa | 4320 |
| atcacgtttt | ggtggttttg | atttctagcc | tccacaataa | ctttggtttt | actattttt  | 4380 |
| gtttgatttt | agtttcagaa | gtccactttt | gtacgtgctc | gtagagccta | aacaaaaggc | 4440 |
| tttccaaaac | gaccttatct | tcgagtgttg | taaaaaaaat | gagcccgttt | aacggcgtcg | 4500 |
| acaagtctaa | cggacaccaa | ccagcgaacc | accagcgccg | agccaagcga | agcagactgc | 4560 |
| agacggcacg | gccgagacgt | tgacaccttg | gcgcggcaac | ggcatctctc | tggccccctc | 4620 |
| togagagtto | cgctccacct | ccgcatccac | ctccacctcc | acctccaccg | gtggcggttt | 4680 |
| ccaagtccgt | cccgttccgc | cacctgctcc | tctcacacgg | cacgaaaccg | tcacggcacc | 4740 |
| ggcagcacag | cacgggggat | tcctttccca | ccgctccgtc | cctttctctt | cctcgcccgc | 4800 |
| ccgttataaa | tagccagccc | catecetegt | ctctcgtgtt | gttcggagcg | cacacacaac | 4860 |

ccgatccca atcaatcgat ccccgcttca aggtacggcg atcctcctc ctctctctct 4920 accttctctt ctctacacta gatcggcggt ccatggttag ggcctgctag ttccgttcct 4980 gtttttccat ggctgcgagg tacaatagat ctgatggcgt tatgatggtt aacttgtcat 5040 gcttttgcga tttatagtcc ctttagatag ttcgagatcg gtgatccatg gttagtaccc 5100 taggctgtgg agtcgggtta gatccgcgct gttagggttc gtatatggag gcgagctgtt 5160 ctgattgtta acttgctggg aatcctggga tggttctagc tgttccgcag atgagatcga 5220 tttcatgatc tgctgtatct atccgtggta tgatgttagc ctttgatatg gttcgatcgt 5340 gctagctacg tcctgtgcac ttaattgtca ggtcataatt tttactatac ttttttttg 5340 gtttggtttg gtttcgtct 5359

<210> 64

<211>63

5

10

<212> ADN

<213> Miscanthus sinesis

<400> 64

gatttggctg tcgttctaga tcagagtaga aactgtttca aactacctgt tggatttatt 60 aag

<210> 65

<211> 1391

<212> ADN

<213> Miscanthus sinesis

<400> 65

gtagogtttg gttoctggta togaatoata cacgcaccag tgcatcttgg atagccagct 60 ggggcccacc tgtccaaccg tttggttgcc ggatcgaacg agtccattca agaccgaacc 120 atgcagagca atcgaatatt ctcttgtgac gctgtatcat ccagttcggc aaaaaacacc 180 gaatgeegee atacaggaca cegtactgag egtetgeaac tetgeateee geteactget 240 cacatetecg ettgeegeet cacecateeg acteagacea gagecacaeg gattactget 300 gctggtgtgt gtattaacaa aagatccatt tgaccggagc acatgcagct tggatggaaa 360 aaatttatta tattegteag tgetgeatat gtaeteatae ttgeatgatg gttttattta 420 ttcgacctca tcagtcctgg cactatggaa agtcattgta gtatagattt tttaatataa 480 tataaatcat tggtgactta tcttgcttaa ttttattttc ttattatgaa atatcgttgc 540 attcataata gcaaatttgt gcaaatatat agaatctacg tgaaattctt ggttggacca 600 atacaacaaa cccctcaaac attctcttgt actgaaccat accattccgt acaaccatcc 660 720 aaacaaaaat catgtatcat catgtacatg taaccaaaca attaacacgc accatcctat

tcagacttgt ctcatccata atctatccat ccaggatgat ccatccatt catctatata 780 cacccaatca aacgctacct aaaatttgga tctgtatgtg tcacatatat cttaataaga 840 tggatggaaa tatctcttta tcttttagat atggataggt atatatgttg ctgtgggttt 900 gttagttata tatatacgtg cttacatacg tgaagaaacc tgctgctaca gtttaataat 960 tcttgttcat ctcaacaaat aacgatagge gtatatgttg ctgtgtttt tactggtact 1020 ttgttagata tatacatgct tacatacatg aagaacacat gctacagttc aaaaattctt 1080 gttcatctca taaacaaaaa ggaggtgtat atgttgctgt gggttttact ggtactttat 1140 tagatatata catgcttaca tagatgaagc aacatgctgc tatggtgtt aataattatt 1200 gtttatctaa taaacaaaca tgcttttaa ttatcttgat atgttggat gatggcatat 1260 gcagcagcta tgtgtggatt ttaaatacce agcatcatga gcatgcatga ccctgcctta 1320 gtatgcagtt atttgcttga gactgttct tttgttgata ctcatcctt agttcggtca 1380 ctcttctgca g

<210> 66

<211> 4402

<212> ADN

<213> Miscanthus sinesis

<400>66

5

cacqtqqtca ctatqctqca tactccctat acaqccqctq accaqtacqc tqqttcaccq 60 cgtcgcccgc gcgggacgga atgggatgtc acgacccgct gaacgccggg gcatggcatc 120 ageggegaac aggeaceegg egtggagetg teegtgteac catetacagt gttgaeggga cccgcataaa aggaqaaaaa aggcccgacg gtcctggaag ccttcctctc cttagctctt 240 ctccctcttt ctctctgtgt aacctgctct tccccttcgt ctataaaaag ggaagtagga 300 360 cgtcccagga agagaagggc ggttcaccac tctacatggc tatagacata aaaacacacg cettgggage acacteacat cagagacttg ggacetatee eteteteget egtttgtaac 420 cectaetaca aaettttagt getagtaaca egageageag egaegaaeta gaegtaagga 480 ctttctgccc gaaccagtat aaacatcgtg tcatctaagc acaccatacg agccagacgc 540 gcaatactag aaatttacta gtcggtaact cgaaacaccg acatctagct aatctttttg 600 ttttatttgg tttccctttg aaatcttcta atttagcttt catagaaata atctaggtat 660 tttttatttt atatgttcta tctgtttgca ttaattttga tcatttgatc tgaatgctgt 720 ggtcacgaga atcgagtgtt tcatggcctt aaaacactcg attatgccat ctgacccgtt 780 ttcaaccatt ctagtgtttc tgagctatat caatggtgca gcatgttagt atacatatct 840 aactattact ccgtatatga gtgagttgtt aaatttattc caggtgaaat ggcattaacg 900 atagccaata ggcggctaaa ttaatagcca tactctaaca gctctaaaaa acatatattc 960 atogaggeac etttatgeaa ecacatagte aactteaaeg tegettgegt gegtteteaa 1020 gttttctttc ttgcaaatta cattttttt aaaaaaaagt ataatttgta tcgtgcgatt 1080 ttttctctct aggtgtgcgt gactgtggga gtaacaattt tgaatctcaa gaaggaaata 1140 aaagaataat actgctgcct actttgagga tttcagtatt tttctctaaa atgttttggt 1200 gtgatateta aacegtettt aaageeaatt geteaagatt eatteaaeaa ttgaaaegte 1260 tcacatgact aaatgatata aggttgctaa ggtctttctt gataagcttt tttatgaatt 1320 tcatctaaat tttcgagtga aactattaaa tactaaggtt gctaagtgtc attctcgctc 1380 gagaagtota acgotttaaa otttaacoaa atatatacaa gaaaatatta atatttatag 1440 tacataatta gtatcattag atagatcgtt gaatctattt tcataacaaa cttatttgaa 1500 gaaacaaatg ttgttcatat atttctatat acgaatacca tagcgacact tattttagaa 1560 tgtagggagt actccctttg tgccgctttg agtgtcgctt tggcagctag tacctatgtc 1620 caccttcaca gettgtgcct agtacctaga etetttetet gtecacatte atttaatete 1680 tgttgtacct tgttcggaqa taaaacgact ctgataaagg gacgaggaag tagtatgtta 1740 gaggagtgaa gtctactccc tttgccgcaa aaaggtaatc ctaagtgtga attgtattct 1800 tttttgacca aaggaatata caacaagaat gatgtcatca tcatgcttcg atccttttt 1860 ttggtaaagc ttgagcttct gtaaaaatag agaaatcatg ggaaaaatca cgttttggtg 1920 gttttgattt ctagcctcca caataacttt ggttttacta ttttttgttt gattttagtt 1980 tcagaagtcc acttttgtac gtgctcgtag agcctaaaca aaaggctttc caaaacgacc 2040 ttatettega gtgttgtaaa aaaaatgage eegtttaaeg gegtegacaa gtetaaegga 2100 caccaaccaq cqaaccacca gcqccqaqcc aagcqaagca qactqcaqac gqcacqqccq 2160 agacgttgac accttggcgc ggcaacggca totototggc cocototoga gagttccgct 2220 ccacctccgc atccacctcc acctccacct ccaccggtgg cggtttccaa gtccgtcccg 2280 ttccgccacc tgctcctctc acacggcacg aaaccgtcac ggcaccggca gcacagcacg 2340 ggggatteet tteccaeege teegteeett tetetteete geeegeeegt tataaatage 2400 cagocccato cotogtotot ogtgttgtto ggagogoaca cacaaccoga tocccaatca 2460 ategateece getteaaggt aeggegatee teeteectet etetetaeet tetettetet 2520 acactagate ggeggteeat ggttagggee tgetagttee gtteetgttt tteeatgget 2580 gcgaggtaca atagatctga tggcgttatg atggttaact tgtcatgctt ttgcgattta 2640 tagtcccttt agatagttcg agatcggtga tccatggtta gtaccctagg ctgtggagtc 2700 gggttagatc cgcgctgtta gggttcgtat atggaggcga gctgttctga ttgttaactt 2760 getgggaate etgggatggt tetagetgtt eegeagatga gategattte atgatetget 2820

```
gtatctatcc gtggtatgat gttagccttt gatatggttc gatcgtgcta gctacgtcct 2880
cgtctgattt ggctgtcgtt ctagatcaga gtagaaactg tttcaaacta cctgttggat 3000
ttattaaggt agegtttggt teetggtate gaateataca egeaceagtg catettggat 3060
agecagetgg ggeecacetg tecaacegtt tggttgeegg ategaacgag tecatteaag 3120
accgaaccat gcagagcaat cgaatattet ettgtgacge tgtateatee agtteggeaa 3180
aaaacaccga atgccgccat acaggacacc gtactgagcg tctgcaactc tgcatcccgc 3240
tcactgctca catctccgct tgccgcctca cccatccgac tcagaccaga gccacacgga 3300
ttactgctgc tggtgtgtgt attaacaaaa gatccatttg accggagcac atgcagcttg 3360
gatggaaaaa atttattata ttcgtcagtg ctgcatatgt actcatactt gcatgatggt 3420
tttatttatt cgacctcatc agtcctggca ctatggaaag tcattgtagt atagattttt 3480
taatataata taaatcattg gtgacttatc ttgcttaatt ttattttctt attatgaaat 3540
atcgttgcat tcataatagc aaatttgtgc aaatatatag aatctacgtg aaattcttgg 3600
ttggaccaat acaacaacc cctcaaacat tctcttgtac tgaaccatac cattccgtac 3660
aaccatccaa acaaaaatca tgtatcatca tgtacatgta accaaacaat taacacgcac 3720
catectatte agacttgtet catecataat etatecatee aggatgatee ateceattea 3780
tctatataca cccaatcaaa cgctacctaa aatttggatc tgtatgtgtc acatatatct 3840
taataagatg gatggaaata tototttato tittagatat ggataggtat atatgttgot 3900
gtgggtttgt tagttatata tatacgtgct tacatacgtg aagaaacctg ctgctacagt 3960
ttaataattc ttgttcatct caacaaataa cgataggcgt atatgttgct gtgtttttta 4020
ctggtacttt gttagatata tacatgctta catacatgaa gaacacatgc tacagttcaa 4080
aaattettgt teateteata aacaaaaagg aggtgtatat gttgetgtgg gttttactgg 4140
tactttatta gatatataca tgcttacata gatgaagcaa catgctgcta tggtgtttaa 4200
taattattgt ttatctaata aacaaacatg ctttttaatt atcttgatat gtttggatga 4260
tggcatatgc agcagctatg tgtggatttt aaatacccag catcatgagc atgcatgacc 4320
ctgccttagt atgcagttat ttgcttgaga ctgtttcttt tgttgatact catcctttag 4380
ttcggtcact cttctgcagg tg
                                                                4402
```

<210> 67

<211> 2423

<212> ADN

<213> Miscanthus sinesis

<400> 67

5

cacgtggtca ctatgctgca tactccctat acagccgctg accagtacgc tggttcaccg

| cgtcgcccgc | gcgggacgga | atgggatgtc | acgacccgct | gaacgccggg | gcatggcatc | 120  |
|------------|------------|------------|------------|------------|------------|------|
| agcggcgaac | aggcacccgg | cgtggagctg | tccgtgtcac | catctacagt | gttgacggga | 180  |
| cccgcataaa | aggagaaaaa | aggcccgacg | gtcctggaag | cettectete | cttagctctt | 240  |
| ctccctcttt | ctctctgtgt | aacctgctct | teceettegt | ctataaaaag | ggaagtagga | 300  |
|            |            |            | tctacatggc |            |            | 360  |
|            |            |            | ggacctatcc |            |            | 420  |
|            |            |            | cgagcagcag |            |            | 480  |
|            |            |            | tcatctaagc |            |            | 540  |
|            |            |            | cgaaacaccg |            |            | 600  |
|            |            |            | atttagcttt |            |            | 660  |
|            |            |            | ttaattttga |            |            | 720  |
|            |            |            | aaaacactcg |            |            | 780  |
|            |            |            | caatggtgca |            |            | 840  |
|            |            |            | aaatttattc |            |            | 900  |
|            |            |            |            |            |            |      |
|            |            |            | tactctaaca |            |            | 960  |
|            |            |            | aacttcaacg |            |            |      |
| gttttctttc | ttgcaaatta | cattttttt  | aaaaaaaagt | ataatttgta | tegtgegatt | 1080 |
| ttttctctct | aggtgtgcgt | gactgtggga | gtaacaattt | tgaatctcaa | gaaggaaata | 1140 |
| aaagaataat | actgctgcct | actttgagga | tttcagtatt | tttctctaaa | atgttttggt | 1200 |
| gtgatatcta | aaccgtcttt | aaagccaatt | gctcaagatt | cattcaacaa | ttgaaacgtc | 1260 |
| tcacatgact | aaatgatata | aggttgctaa | ggtctttctt | gataagcttt | tttatgaatt | 1320 |
| tcatctaaat | tttcgagtga | aactattaaa | tactaaggtt | gctaagtgtc | attctcgctc | 1380 |
| gagaagtcta | acgctttaaa | ctttaaccaa | atatatacaa | gaaaatatta | atatttatag | 1440 |
| tacataatta | gtatcattag | atagatcgtt | gaatctattt | tcataacaaa | cttatttgaa | 1500 |
| gaaacaaatg | ttgttcatat | atttctatat | acgaatacca | tagcgacact | tattttagaa | 1560 |
| tgtagggagt | actccctttg | tgccgctttg | agtgtcgctt | tggcagctag | tacctatgtc | 1620 |
| caccttcaca | gcttgtgcct | agtacctaga | ctctttctct | gtccacattc | atttaatctc | 1680 |
| tgttgtacct | tgttcggaga | taaaacgact | ctgataaagg | gacgaggaag | tagtatgtta | 1740 |
| gaggagtgaa | gtctactccc | tttgccgcaa | aaaggtaatc | ctaagtgtga | attgtattct | 1800 |
| tttttgacca | aaggaatata | caacaagaat | gatgtcatca | tcatgcttcg | atccttttt  | 1860 |
| ttggtaaagc | ttgagcttct | gtaaaaatag | agaaatcatg | ggaaaaatca | cgttttggtg | 1920 |

gttttgatt ctagceteca caataactt ggttttacta ttttttgtt gattttagtt 1980 teagaagtee actttgtae gtgetegtag ageetaaaca aaaggettte caaaacgace 2040 ttatettega gtgttgtaaa aaaaatgage eegtttaacg gegtegacaa gtetaacgga 2100 caccaaccag egaaccacca gegeegagee aagegaagea gactgeagae ggeacggeeg 2160 agaegttgae acettggege ggeaacggea tetetetgge eecetetega gagtteeget 2220 ceaecteege atecacete acetecacet ceaecggtgg eggtteeaa gteegteeg 2280 tteegeeace tgeteete acacggeacg aaaccgteae ggeaceggea geacageae 2340 ggggatteet tteecacege teegteeett teteteete geeegeegt tataaatage 2400 cageeceate eetegteete egt

<210> 68

<211> 55

<212> ADN

<213> Miscanthus sinesis

<400> 68

#### gttgttcgga gcgcacacac aacccgatcc ccaatcaatc gatccccgct tcaag

55

<210> 69

<211> 1924

10 <212> ADN

5

<213> Miscanthus sinesis

<400>69

60 gtacggcgat cetectect etetetetac ettetettet etacactaga teggeggtee atggttaggg cctgctagtt ccgttcctgt ttttccatgg ctgcgaggta caatagatct gatggcgtta tgatggttaa cttgtcatgc ttttgcgatt tatagtccct ttagatagtt 180 egagateggt gateeatggt tagtaceeta ggetgtggag tegggttaga teegegetgt 240 tagggttcgt atatggaggc gagctgttct gattgttaac ttgctgggaa tcctgggatg 300 gttctagctg ttccgcagat gagatcgatt tcatgatctg ctgtatctat ccgtggtatg 360 atgttagcct ttgatatggt tcgatcgtgc tagctacgtc ctgtgcactt aattgtcagg 420 480 ttctagatca gagtagaaac tgtttcaaac tacctgttgg atttattaag gtagcgtttg 540 gttcctggta tcgaatcata cacgcaccag tgcatcttgg atagccagct ggggcccacc 600 tgtccaaccg tttggttgcc ggatcgaacg agtccattca agaccgaacc atgcagagca 660 ategaatatt etettgtgae getgtateat eeagttegge aaaaaacace gaatgeegee 720 atacaggaca ccgtactgag cgtctgcaac tctgcatccc gctcactgct cacatctccg 780 cttgccgcct cacccatccg actcagacca gagccacacg gattactgct gctggtgtgt

gtattaacaa aagatccatt tgaccggagc acatgcagct tggatggaaa aaatttatta 900 tattcgtcag tgctgcatat gtactcatac ttgcatgatg gttttattta ttcgacctca tcagtcctgg cactatggaa agtcattgta gtatagattt tttaatataa tataaatcat 1020 tggtgactta tcttgcttaa ttttattttc ttattatgaa atatcgttgc attcataata 1080 gcaaatttgt gcaaatatat agaatctacg tgaaattctt ggttggacca atacaacaaa 1140 cccctcaaac attctcttgt actgaaccat accattccgt acaaccatcc aaacaaaat 1200 catgtatcat catgtacatg taaccaaaca attaacacgc accatectat teagacttgt 1260 ctcatccata atctatccat ccaggatgat ccatcccatt catctatata cacccaatca 1320 aacgctacct aaaatttgga tctgtatgtg tcacatatat cttaataaga tggatggaaa 1380 tatctcttta tcttttagat atggataggt atatatgttg ctgtgggttt gttagttata 1440 tatatacgtg cttacatacg tgaagaaacc tgctgctaca gtttaataat tcttgttcat 1500 ctcaacaaat aacgataggc gtatatgttg ctgtgttttt tactggtact ttgttagata 1560 tatacatgct tacatacatg aagaacacat gctacagttc aaaaattctt gttcatctca 1620 taaacaaaaa ggaggtgtat atgttgctgt gggttttact ggtactttat tagatatata 1680 catgcttaca tagatgaagc aacatgctgc tatggtgttt aataattatt gtttatctaa 1740 taaacaaaca tgctttttaa ttatcttgat atgtttggat gatggcatat gcagcagcta 1800 tgtgtggatt ttaaataccc agcatcatga gcatgcatga ccctgcctta gtatgcagtt 1860 atttgcttga gactgtttct tttgttgata ctcatccttt agttcggtca ctcttctgca 1920 1924 ggtg

<210> 70

<211> 3426

<212> ADN

<213> Miscanthus sinesis

<400> 70

5

gcaaccacat agtcaacttc aacgtcgctt gcgtgcgttc tcaagttttc tttcttgcaa 60 120 attacatttt ttttaaaaaa aagtataatt tgtatcgtgc gattttttct ctctaggtgt gcgtgactgt gggagtaaca attttgaatc tcaagaagga aataaaagaa taatactgct 180 gestactttg aggatttsag tatttttsts taaaatgttt tggtgtgata tstaaacsgt 240 ctttaaagcc aattgctcaa gattcattca acaattgaaa cgtctcacat gactaaatga 300 tataaggttg ctaaggtctt tcttgataag cttttttatg aatttcatct aaattttcga 360 gtgaaactat taaatactaa ggttgctaag tgtcattctc gctcgagaag tctaacgctt 420 taaactttaa ccaaatatat acaagaaaat attaatattt atagtacata attagtatca 480

| ttagatagat | cgttgaatct | attttcataa | caaacttatt | tgaagaaaca | aatgttgttc | 540  |
|------------|------------|------------|------------|------------|------------|------|
| atatatttct | atatacgaat | accatagcga | cacttatttt | agaatgtagg | gagtactccc | 600  |
| tttgtgccgc | tttgagtgtc | gctttggcag | ctagtaccta | tgtccacctt | cacagettgt | 660  |
| gcctagtacc | tagactcttt | ctctgtccac | attcatttaa | tatatgttgt | accttgttcg | 720  |
| gagataaaac | gactctgata | aagggacgag | gaagtagtat | gttagaggag | tgaagtctac | 780  |
| tecetttgee | gcaaaaaggt | aatcctaagt | gtgaattgta | ttctttttg  | accaaaggaa | 840  |
| tatacaacaa | gaatgatgtc | atcatcatgc | ttcgatcctt | ttttttggta | aagcttgagc | 900  |
| ttctgtaaaa | atagagaaat | catgggaaaa | atcacgtttt | ggtggttttg | atttctagcc | 960  |
| tccacaataa | ctttggtttt | actattttt  | gtttgatttt | agtttcagaa | gtccactttt | 1020 |
| gtacgtgctc | gtagagccta | aacaaaaggc | tttccaaaac | gaccttatct | tcgagtgttg | 1080 |
| taaaaaaaat | gagcccgttt | aacggcgtcg | acaagtctaa | cggacaccaa | ccagcgaacc | 1140 |
| accagegeeg | agccaagcga | agcagactgc | agacggcacg | gccgagacgt | tgacaccttg | 1200 |
| gcgcggcaac | ggcatctctc | tggccccctc | tcgagagttc | cgctccacct | ccgcatccac | 1260 |
| ctccacctcc | acctccaccg | gtggcggttt | ccaagtccgt | cccgttccgc | cacctgctcc | 1320 |
| tctcacacgg | cacgaaaccg | tcacggcacc | ggcagcacag | cacgggggat | tcctttccca | 1380 |
| cegeteegte | cctttctctt | cctcgcccgc | ccgttataaa | tagccagccc | catccctcgt | 1440 |
| ctctcgtgtt | gttcggagcg | cacacacaac | ccgatcccca | atcaatcgat | ccccgcttca | 1500 |
| aggtacggcg | atcctcctcc | ctctctctct | accttctctt | ctctacacta | gatcggcggt | 1560 |
| ccatggttag | ggcctgctag | tteegtteet | gtttttccat | ggctgcgagg | tacaatagat | 1620 |
| ctgatggcgt | tatgatggtt | aacttgtcat | gcttttgcga | tttatagtcc | ctttagatag | 1680 |
| ttcgagatcg | gtgatccatg | gttagtaccc | taggctgtgg | agtcgggtta | gatccgcgct | 1740 |
| gttagggttc | gtatatggag | gcgagctgtt | ctgattgtta | acttgctggg | aatcctggga | 1800 |
| tggttctagc | tgttccgcag | atgagatcga | tttcatgatc | tgctgtatct | atccgtggta | 1860 |
| tgatgttagc | ctttgatatg | gttcgatcgt | gctagctacg | tcctgtgcac | ttaattgtca | 1920 |
| ggtcataatt | tttactatac | ttttttttg  | gtttggtttg | gtttcgtctg | atttggctgt | 1980 |
| cgttctagat | cagagtagaa | actgtttcaa | actacctgtt | ggatttatta | aggtagcgtt | 2040 |
| tggttcctgg | tatcgaatca | tacacgcacc | agtgcatctt | ggatagccag | ctggggccca | 2100 |
| cctgtccaac | cgtttggttg | ccggatcgaa | cgagtccatt | caagaccgaa | ccatgcagag | 2160 |
| caatcgaata | ttctcttgtg | acgctgtatc | atccagttcg | gcaaaaaaca | ccgaatgccg | 2220 |
| ccatacagga | caccgtactg | agegtetgea | actctgcatc | cegeteactg | ctcacatctc | 2280 |
| cgettgeege | ctcacccatc | cgactcagac | cagagecaca | cggattactg | ctgctggtgt | 2340 |
| gtgtattaac | aaaagatcca | tttgaccgga | gcacatgcag | cttggatgga | aaaaatttat | 2400 |

tatattegte agtgetgeat atgtacteat acttgeatga tggttttatt tattegacet 2460 catcagtcct ggcactatgg aaagtcattg tagtatagat tttttaatat aatataaatc 2520 attggtgact tatcttgctt aattttattt tcttattatg aaatatcgtt gcattcataa 2580 tagcaaattt gtgcaaatat atagaatcta cgtgaaattc ttggttggac caatacaaca 2640 aacccctcaa acattctctt gtactgaacc ataccattcc gtacaaccat ccaaacaaaa 2700 atcatgtate atcatgtaca tgtaaccaaa caattaacac gcaccateet attcagaett 2760 gtotoatoca taatotatoo atooaggatg atooatooca ttoatotata tacaccoaat 2820 caaacgctac ctaaaatttg gatctgtatg tgtcacatat atcttaataa gatggatgga 2880 aatatetett tatettttag atatggatag gtatatatgt tgetgtgggt ttgttagtta 2940 tatatatacg tgcttacata cgtgaagaaa cctgctgcta cagtttaata attcttgttc 3000 atctcaacaa ataacgatag gcgtatatgt tgctgtgttt tttactggta ctttgttaga 3060 tatatacatg cttacataca tgaagaacac atgctacagt tcaaaaattc ttgttcatct 3120 cataaacaaa aaggaggtgt atatgttgct gtgggtttta ctggtacttt attagatata 3180 tacatgetta catagatgaa geaacatget getatggtgt ttaataatta ttgtttatet 3240 aataaacaaa catgcttttt aattatcttg atatgtttgg atgatggcat atgcagcagc 3300 tatgtgtgga ttttaaatac ccagcatcat gagcatgcat gaccctgcct tagtatgcag 3360 ttatttgctt gagactgttt cttttgttga tactcatcct ttagttcggt cactcttctg 3420 3426 caggtg

<210> 71

<211> 1447

<212> ADN

<213> Miscanthus sinesis

<400> 71

5

gcaaccacat agtcaacttc aacgtcgctt gcgtgcgttc tcaagttttc tttcttgcaa 60 attacatttt ttttaaaaaa aagtataatt tgtatcgtgc gattttttct ctctaggtgt 120 gcgtgactgt gggagtaaca attttgaatc tcaagaagga aataaaagaa taatactgct 180 geetactttg aggattteag tatttttete taaaatgttt tggtgtgata tetaaaeegt 240 ctttaaagcc aattgctcaa gattcattca acaattgaaa cgtctcacat gactaaatga 300 tataaggttg ctaaggtctt tcttgataag cttttttatg aatttcatct aaattttcga 360 gtgaaactat taaatactaa ggttgctaag tgtcattctc gctcgagaag tctaacgctt 420 taaactttaa ccaaatatat acaagaaaat attaatattt atagtacata attagtatca 480 ttagatagat cgttgaatct attttcataa caaacttatt tgaagaaaca aatgttgttc 540

| atatatttct | atatacgaat | accatagoga | cacttatttt | agaatgtagg | gagtactccc | 600  |
|------------|------------|------------|------------|------------|------------|------|
| tttgtgccgc | tttgagtgtc | gctttggcag | ctagtaccta | tgtccacctt | cacagcttgt | 660  |
| gcctagtacc | tagactcttt | ctctgtccac | attcatttaa | tctctgttgt | accttgttcg | 720  |
| gagataaaac | gactctgata | aagggacgag | gaagtagtat | gttagaggag | tgaagtctac | 780  |
| tccctttgcc | gcaaaaaggt | aatcctaagt | gtgaattgta | ttcttttttg | accaaaggaa | 840  |
| tatacaacaa | gaatgatgtc | atcatcatgc | ttcgatcctt | ttttttggta | aagcttgagc | 900  |
| ttctgtaaaa | atagagaaat | catgggaaaa | atcacgtttt | ggtggttttg | atttctagcc | 960  |
| tccacaataa | ctttggtttt | actattttt  | gtttgatttt | agtttcagaa | gtccactttt | 1020 |
| gtacgtgctc | gtagagccta | aacaaaaggc | tttccaaaac | gaccttatct | tcgagtgttg | 1080 |
| taaaaaaaat | gagecegttt | aacggcgtcg | acaagtctaa | cggacaccaa | ccagcgaacc | 1140 |
| accagcgccg | agccaagcga | agcagactgc | agacggcacg | gccgagacgt | tgacaccttg | 1200 |
| gcgcggcaac | ggcatetete | tggccccctc | tcgagagttc | cgctccacct | ccgcatccac | 1260 |
| ctccacctcc | acctccaccg | gtggcggttt | ccaagtccgt | cccgttccgc | cacctgctcc | 1320 |
| tctcacacgg | cacgaaaccg | tcacggcacc | ggcagcacag | cacgggggat | tcctttccca | 1380 |
| ccgctccgtc | cctttctctt | cctcgcccgc | ccgttataaa | tagccagccc | catecetegt | 1440 |
| ctctcgt    |            |            |            |            |            | 1447 |

<210> 72

<211> 2878

<212> ADN

<213> Miscanthus sinesis

<400> 72

5

ctatatacga ataccatago gacacttatt ttagaatgta gggagtacto cotttgtgoc 60 getttgagtg tegetttgge agetagtace tatgteeace tteacagett gtgeetagta 120 cetagactet ttetetgtee acatteattt aatetetgtt gtacettgtt eggagataaa 180 acgaetetga taaagggaeg aggaagtagt atgttagagg agtgaagtet acteeetttg 240 cegeaaaaag gtaateetaa gtgtgaattg tattettttt tgaceaaagg aatatacaac 300 aagaatgatg teateateat gettegatee ttttttttgg taaagettga gettetgtaa 360 aaatagagaa ateatgggaa aaateacagtt ttggtggttt tgatteetag cetecacaat 420 aactttggtt ttactattt ttgtttgatt ttagtteeag aagteeactt ttgtaegtge 480 tegtagagee taaacaaaag getteeaaa acgaeettat ettegagtgt tgtaaaaaaa 540 atgageeegg ttaaeggegt egacaagtet aaeggaeace aaceagega ceaceagege 600 egageeaage gaageagaet geagaeggea eggeeggaae gttgaeacet tggeeggea 660 aeggeeatete tetggeeeee teteggaggt teeegeteeae eteeggatee aceteeacet 720

| ccacctccac | cggtggcggt | ttccaagtcc | gtcccgttcc | gccacctgct | cctctcacac | 780  |
|------------|------------|------------|------------|------------|------------|------|
| ggcacgaaac | cgtcacggca | ccggcagcac | agcacggggg | attcctttcc | caccgctccg | 840  |
| tccctttctc | tteetegeee | gcccgttata | aatagccagc | cccatccctc | gtctctcgtg | 900  |
| ttgttcggag | cgcacacaca | acccgatccc | caatcaatcg | atccccgctt | caaggtacgg | 960  |
| cgatcctcct | ccctctctct | ctaccttctc | ttctctacac | tagatcggcg | gtccatggtt | 1020 |
| agggcctgct | agttccgttc | ctgtttttcc | atggctgcga | ggtacaatag | atctgatggc | 1080 |
| gttatgatgg | ttaacttgtc | atgcttttgc | gatttatagt | ccctttagat | agttcgagat | 1140 |
| cggtgatcca | tggttagtac | cctaggctgt | ggagtcgggt | tagatccgcg | ctgttagggt | 1200 |
| tcgtatatgg | aggcgagctg | ttctgattgt | taacttgctg | ggaatcctgg | gatggttcta | 1260 |
| gctgttccgc | agatgagatc | gatttcatga | tctgctgtat | ctatccgtgg | tatgatgtta | 1320 |
| gcctttgata | tggttcgatc | gtgctagcta | cgtcctgtgc | acttaattgt | caggtcataa | 1380 |
| tttttactat | acttttttt  | tggtttggtt | tggtttegte | tgatttggct | gtcgttctag | 1440 |
| atcagagtag | aaactgtttc | aaactacctg | ttggatttat | taaggtagcg | tttggttcct | 1500 |
| ggtatcgaat | catacacgca | ccagtgcatc | ttggatagcc | agetggggee | cacctgtcca | 1560 |
| accgtttggt | tgccggatcg | aacgagtcca | ttcaagaccg | aaccatgcag | agcaatcgaa | 1620 |
| tattctcttg | tgacgctgta | tcatccagtt | cggcaaaaaa | caecgaatge | cgccatacag | 1680 |
| gacaccgtac | tgagcgtctg | caactetgea | tecegeteae | tgctcacatc | teegettgee | 1740 |
| gcctcaccca | tccgactcag | accagagcca | cacggattac | tgctgctggt | gtgtgtatta | 1800 |
| acaaaagatc | catttgaccg | gagcacatgc | agcttggatg | gaaaaaattt | attatattcg | 1860 |
| tcagtgctgc | atatgtactc | atacttgcat | gatggtttta | tttattcgac | ctcatcagtc | 1920 |
| ctggcactat | ggaaagtcat | tgtagtatag | attttttaat | ataatataaa | tcattggtga | 1980 |
| cttatcttgc | ttaattttat | tttcttatta | tgaaatatcg | ttgcattcat | aatagcaaat | 2040 |
| ttgtgcaaat | atatagaatc | tacgtgaaat | tcttggttgg | accaatacaa | caaacccctc | 2100 |
| aaacattctc | ttgtactgaa | ccataccatt | ccgtacaacc | atccaaacaa | aaatcatgta | 2160 |
| tcatcatgta | catgtaacca | aacaattaac | acgcaccatc | ctattcagac | ttgtctcatc | 2220 |
| cataatctat | ccatccagga | tgatccatcc | cattcatcta | tatacaccca | atcaaacgct | 2280 |
| acctaaaatt | tggatctgta | tgtgtcacat | atatcttaat | aagatggatg | gaaatatctc | 2340 |
| tttatctttt | agatatggat | aggtatatat | gttgctgtgg | gtttgttagt | tatatatata | 2400 |
| cgtgcttaca | tacgtgaaga | aacctgctgc | tacagtttaa | taattcttgt | tcatctcaac | 2460 |
| aaataacgat | aggcgtatat | gttgctgtgt | tttttactgg | tactttgtta | gatatataca | 2520 |
| tgcttacata | catgaagaac | acatgctaca | gttcaaaaat | tcttgttcat | ctcataaaca | 2580 |

aaaaggaggt gtatatgttg ctgtgggttt tactggtact ttattagata tatacatgct 2640 tacatagatg aagcaacatg ctgctatggt gtttaataat tattgtttat ctaataaaca 2700 aacatgcttt ttaattatct tgatatgttt ggatgatggc atatgcagca gctatgtgtg 2760 gattttaaat acccagcatc atgagcatgc atgaccctgc cttagtatgc agttatttgc 2820 ttgagactgt ttcttttgtt gatactcatc ctttagttcg gtcactcttc tgcaggtg 2878

<210> 73

<211> 899

<212> ADN

5 <213> Miscanthus sinesis

<400> 73

ctatatacga ataccatage gacaettatt ttagaatgta gggagtaete cetttgtgce 60 gctttgagtg tcgctttggc agctagtacc tatgtccacc ttcacagctt gtgcctagta 120 cctagactct ttctctgtcc acattcattt aatctctgtt gtaccttgtt cggagataaa 180 acgactctga taaagggacg aggaagtagt atgttagagg agtgaagtct actccctttg 240 ccgcaaaaag gtaatcctaa gtgtgaattg tattcttttt tgaccaaagg aatatacaac 300 aagaatgatg tcatcatcat gcttcgatcc ttttttttgg taaagcttga gcttctgtaa 360 aaatagagaa atcatgggaa aaatcacgtt ttggtggttt tgatttctag cctccacaat 420 aactttggtt ttactatttt ttgtttgatt ttagtttcag aagtccactt ttgtacgtgc 480 togtagagoo taaacaaaag gotttocaaa acgacottat ottogagtgt tgtaaaaaaaa 540 600 atgagecegt ttaaeggegt egacaagtet aaeggacaee aaeeagegaa eeaeeagege cgagccaage gaagcagact gcagacggca cggccgagac gttgacacct tggcgcggca 660 acggeatete tetggeeece tetegagagt teegeteeac eteegeatee aceteeacet 720 ccacctccac cggtggcggt ttccaagtcc gtcccgttcc gccacctgct cctctcacac 780 ggcacgaaac cgtcacggca ccggcagcac agcacggggg attcctttcc caccgctccg 840 tecetttete tteetegeee geeegttata aatageeage eccateeete gtetetegt 899

<210> 74

10

<211> 2670

<212> ADN

<213> Miscanthus sinesis

<400> 74

gtatgttaga ggagtgaagt ctactccctt tgccgcaaaa aggtaatcct aagtgtgaat 60
tgtattcttt tttgaccaaa ggaatataca acaagaatga tgtcatcatc atgcttcgat 120
ccttttttt ggtaaagctt gagcttctgt aaaaatagag aaatcatggg aaaaatcacg 180
ttttggtggt tttgatttct agcctccaca ataactttgg ttttactatt ttttgtttga 240

| ttttagtttc | agaagtecae  | ttttgtacgt | gctcgtagag | cctaaacaaa | aggettteca | 300  |
|------------|-------------|------------|------------|------------|------------|------|
| aaacgacctt | atcttcgagt  | gttgtaaaaa | aaatgagccc | gtttaacggc | gtcgacaagt | 360  |
| ctaacggaca | ccaaccagcg  | aaccaccagc | gccgagccaa | gcgaagcaga | ctgcagacgg | 420  |
| cacggccgag | acgttgacac  | cttggcgcgg | caacggcatc | tetetggeee | cctctcgaga | 480  |
| gtteegetee | acctccgcat  | ccacctccac | ctccacctcc | accggtggcg | gtttccaagt | 540  |
| ccgtcccgtt | ccgccacctg  | ctcctctcac | acggcacgaa | accgtcacgg | caccggcagc | 600  |
| acagcacggg | ggattccttt  | cccaccgctc | cgtccctttc | tetteetege | ccgcccgtta | 660  |
| taaatagcca | gccccatccc  | tegteteteg | tgttgttcgg | agegeacaea | caacccgatc | 720  |
| cccaatcaat | cgatccccgc  | ttcaaggtac | ggcgatcctc | ctccctctct | ctctaccttc | 780  |
| tcttctctac | actagatcgg  | cggtccatgg | ttagggcctg | ctagttccgt | tcctgttttt | 840  |
| ccatggctgc | gaggtacaat  | agatctgatg | gcgttatgat | ggttaacttg | tcatgctttt | 900  |
| gcgatttata | gtccctttag  | atagttcgag | atcggtgatc | catggttagt | accctaggct | 960  |
| gtggagtcgg | gttagatccg  | cgctgttagg | gttcgtatat | ggaggcgagc | tgttctgatt | 1020 |
| gttaacttgc | tgggaatcct  | gggatggttc | tagetgttee | gcagatgaga | tcgatttcat | 1080 |
| gatctgctgt | atctatccgt  | ggtatgatgt | tagcctttga | tatggttcga | tcgtgctagc | 1140 |
| tacgtcctgt | gcacttaatt  | gtcaggtcat | aatttttact | atacttttt  | tttggtttgg | 1200 |
| tttggtttcg | tctgatttgg  | ctgtcgttct | agatcagagt | agaaactgtt | tcaaactacc | 1260 |
| tgttggattt | attaaggtag  | cgtttggttc | ctggtatcga | atcatacacg | caccagtgca | 1320 |
| tcttggatag | ccagctgggg  | cccacctgtc | caaccgtttg | gttgccggat | cgaacgagtc | 1380 |
| cattcaagac | cgaaccatgc  | agagcaatcg | aatattetet | tgtgacgctg | tatcatccag | 1440 |
| ttcggcaaaa | aacaccgaat  | gccgccatac | aggacaccgt | actgagcgtc | tgcaactctg | 1500 |
| catecegete | actgctcaca  | teteegettg | ccgcctcacc | catccgactc | agaccagagc | 1560 |
| cacacggatt | actgctgctg  | gtgtgtgtat | taacaaaaga | tccatttgac | cggagcacat | 1620 |
| gcagcttgga | tggaaaaaaat | ttattatatt | cgtcagtgct | gcatatgtac | tcatacttgc | 1680 |
| atgatggttt | tatttattcg  | acctcatcag | tectggcact | atggaaagtc | attgtagtat | 1740 |
| agattttta  | atataatata  | aatcattggt | gacttatctt | gcttaatttt | attttcttat | 1800 |
| tatgaaatat | cgttgcattc  | ataatagcaa | atttgtgcaa | atatatagaa | tctacgtgaa | 1860 |
| attcttggtt | ggaccaatac  | aacaaacccc | tcaaacattc | tcttgtactg | aaccatacca | 1920 |
| ttccgtacaa | ccatccaaac  | aaaaatcatg | tatcatcatg | tacatgtaac | caaacaatta | 1980 |
| acacgcacca | tcctattcag  | acttgtctca | tccataatct | atccatccag | gatgatccat | 2040 |
| cccattcatc | tatatacacc  | caatcaaacg | ctacctaaaa | tttggatctg | tatgtgtcac | 2100 |

atatatetta ataagatgga tggaaatate tetttatett ttagatatgg ataggtatat 2160 atgttgetgt gggtttgtta gttatatata taegtgetta cataegtgaa gaaacetget 2220 getacagttt aataattett gtteatetea acaaataaeg ataggegtat atgttgetgt 2280 gttttttaet ggtaetttgt tagatatata catgettaca taeatgaaga acacatgeta 2340 cagtteaaaa attettgtte ateteataaa caaaaaaggag gtgtatatgt tgetgtgggt 2400 tttaetggta etttattaga tatataeatg ettaeataga tgaageaaea tgetgetatg 2460 gtgtttaata attattgttt atetaataaa caaacatget ttttaattat ettgatatgt 2520 ttggatgatg geatatgeag eagetatgt tggatttaa ataeecagea teatgageat 2580 geatgaecet geettagtat geagttatt gettgaget gttettttg ttgataetea 2640 teetttagtt eggteaetet tetgeaggtg

<210> 75

<211> 691

<212> ADN

<213> Miscanthus sinesis

<400> 75

5

gtatgttaga ggagtgaagt ctactccctt tgccgcaaaa aggtaatcct aagtgtgaat 60 tgtattcttt tttgaccaaa ggaatataca acaagaatga tgtcatcatc atgcttcgat 120 cctttttttt ggtaaagctt gagcttctgt aaaaatagag aaatcatggg aaaaatcacg 180 ttttggtggt tttgatttct agcctccaca ataactttgg ttttactatt ttttgtttga 240 300 ttttagtttc agaagtccac ttttgtacgt gctcgtagag cctaaacaaa aggctttcca 360 aaacgacctt atcttcgagt gttgtaaaaa aaatgagccc gtttaacggc gtcgacaagt ctaacggaca ccaaccageg aaccaccage geegagecaa gegaagcaga etgeagaegg 420 cacggccgag acgttgacac cttggcgcgg caacggcatc tctctggccc cctctcgaga 480 gttccgctcc acctccgcat ccacctccac ctccacctcc accggtggcg gtttccaagt 540 600 ecgtecegtt cegecacetg etecteteae aeggeaegaa aeegteaegg caeeggeage acageaeggg ggatteettt eccaeegete egteeettte tetteetege eegeeegtta 660 taaatagcca gccccatccc tcgtctctcg t 691

<210> 76

10

<211> 2485

<212> ADN

<213> Miscanthus sinesis

<400> 76

gtggttttga tttctagcct ccacaataac tttggtttta ctattttttg tttgatttta 60 gtttcagaag tccacttttg tacgtgctcg tagagcctaa acaaaaggct ttccaaaacg 120

| accttatctt | cgagtgttgt | aaaaaaaatg | agcccgttta | acggcgtcga | caagtctaac | 180  |
|------------|------------|------------|------------|------------|------------|------|
| ggacaccaac | cagogaacca | ccagcgccga | gccaagcgaa | gcagactgca | gacggcacgg | 240  |
| ccgagacgtt | gacaccttgg | cgcggcaacg | gcatctctct | ggccccctct | cgagagttcc | 300  |
| gctccacctc | cgcatccacc | tccacctcca | cctccaccgg | tggcggtttc | caagtccgtc | 360  |
| cogttccgcc | acctgctcct | ctcacacggc | acgaaaccgt | cacggcaccg | gcagcacagc | 420  |
| acgggggatt | cctttcccac | cgctccgtcc | ctttctcttc | ctegecegee | cgttataaat | 480  |
| agccagcccc | atccctcgtc | tctcgtgttg | ttcggagcgc | acacacaacc | cgatccccaa | 540  |
| tcaatcgatc | cccgcttcaa | ggtacggcga | tectectece | teteteteta | cettetette | 600  |
| tctacactag | atcggcggtc | catggttagg | gcctgctagt | teegtteetg | tttttccatg | 660  |
| gctgcgaggt | acaatagatc | tgatggcgtt | atgatggtta | acttgtcatg | cttttgcgat | 720  |
| ttatagtccc | tttagatagt | tcgagatcgg | tgatccatgg | ttagtaccct | aggctgtgga | 780  |
| gtcgggttag | ateegegetg | ttagggttcg | tatatggagg | cgagctgttc | tgattgttaa | 840  |
| cttgctggga | atcctgggat | ggttctagct | gttccgcaga | tgagatcgat | ttcatgatct | 900  |
| gctgtatcta | teegtggtat | gatgttagcc | tttgatatgg | ttcgatcgtg | ctagctacgt | 960  |
| cctgtgcact | taattgtcag | gtcataattt | ttactatact | ttttttttgg | tttggtttgg | 1020 |
| tttcgtctga | tttggetgte | gttctagatc | agagtagaaa | ctgtttcaaa | ctacctgttg | 1080 |
| gatttattaa | ggtagcgttt | ggtteetggt | atcgaatcat | acacgcacca | gtgcatcttg | 1140 |
| gatagccagc | tggggcccac | ctgtccaacc | gtttggttgc | cggatcgaac | gagtccattc | 1200 |
| aagaccgaac | catgcagagc | aatcgaatat | tetettgtga | cgctgtatca | tccagttcgg | 1260 |
| caaaaaacac | cgaatgccgc | catacaggac | accgtactga | gcgtctgcaa | ctctgcatcc | 1320 |
| cgctcactgc | tcacatetee | gettgeegee | tcacccatcc | gactcagacc | agagccacac | 1380 |
| ggattactgc | tgctggtgtg | tgtattaaca | aaagatccat | ttgaccggag | cacatgcagc | 1440 |
| ttggatggaa | aaaatttatt | atattcgtca | gtgctgcata | tgtactcata | cttgcatgat | 1500 |
| ggttttattt | attcgacctc | atcagtcctg | gcactatgga | aagtcattgt | agtatagatt | 1560 |
| ttttaatata | atataaatca | ttggtgactt | atcttgctta | attttattt  | cttattatga | 1620 |
| aatatcgttg | cattcataat | agcaaatttg | tgcaaatata | tagaatctac | gtgaaattct | 1680 |
| tggttggacc | aatacaacaa | acccctcaaa | cattctcttg | tactgaacca | taccattccg | 1740 |
| tacaaccatc | caaacaaaaa | tcatgtatca | tcatgtacat | gtaaccaaac | aattaacacg | 1800 |
| caccatccta | ttcagacttg | tctcatccat | aatctatcca | tccaggatga | tccatcccat | 1860 |
| tcatctatat | acacccaatc | aaacgctacc | taaaatttgg | atctgtatgt | gtcacatata | 1920 |
| tcttaataag | atggatggaa | atatctcttt | atcttttaga | tatggatagg | tatatatgtt | 1980 |

gctgtgggtt tgttagttat atatatacgt gcttacatac gtgaagaaac ctgctgctac 2040 agtttaataa ttcttgttca tctcaacaaa taacgatagg cgtatatgtt gctgtgtttt 2100 ttactggtac tttgttagat atatacatgc ttacatacat gaagaacaca tgctacagtt 2160 caaaaattct tgttcatctc ataaacaaaa aggaggtgta tatgttgctg tgggttttac 2220 tggtacttta ttagatatat acatgcttac atagatgaag caacatgctg ctatggtgtt 2280 taataattat tgtttatcta ataaacaaac atgctttta attatcttga tatgttgga 2340 tgatggcata tgcagcagct atgtgtggat tttaaatacc cagcatcatg agcatgcatg 2400 accctgcctt agtatgcagt tatttgcttg agactgttc ttttgttgat actcatcctt 2460 tagttcggtc actcttctgc aggtg

<210> 77

<211> 506

<212> ADN

<213> Miscanthus sinesis

<400> 77

5

10

gtggttttga tttctagcct ccacaataac tttggtttta ctattttttg tttgatttta 60 gtttcagaag tccacttttg tacgtgctcg tagagcctaa acaaaaggct ttccaaaacg 120 accttatett egagtgttgt aaaaaaaatg ageeegttta aeggegtega caagtetaae 180 ggacaccaac cagcgaacca ccagcgccga gccaagcgaa gcagactgca gacggcacgg 240 ecgagaegtt gacacettgg egeggeaaeg geatetetet ggeeecetet egagagttee 300 getecacete egeatecace tecaceteca ectecacegg tggeggttte caagteegte 360 cogttocgcc acctgotoct otcacacggc acgaaaccgt cacggcaccg gcagcacagc 420 acgggggatt cettteceae egeteegtee etttetette etegeeegee egttataaat 480 agecagecee atcectegte tetegt 506

<210> 78

<211> 4079

<212> ADN

<213> Schizachyium scoparium

<400> 78

ctctatgcct gtgtcattgt gccagccct acctctgtca atgttcaaga tccaaataag 60
agaatgggat agaccatata ttaatggtgt agtatgcatc aagatctgaa tattatatga 120
gtgaattgat aaatttattc taggtgacat ggccttaacg atggccagta cgtggttaaa 180
tcaatgaatc aatagccata ctctaatagc tctaaaaaaag gatatatatt tgtcgaggca 240
ctattatgca accacatagt caacttcaaa gccgcttgag tgcgttctaa aaaaaaaatt 300
tcttgtaaat tacgcttttc tcaaaaaaat tggatcatgc atttattca ctctaggtgt 360

| gegtgaetae | gtgaataaca | attttgaatc | tcagcaagga | aataaaagta | taataccgct | 420  |
|------------|------------|------------|------------|------------|------------|------|
| gtctactttg | aagatcacaa | tatctttctc | ttagaatgtt | tctgtttgtt | atttaaaacc | 480  |
| atcgttatta | aggtcaaatg | atcaagattc | attcaacaat | tgaaacttct | cacatgatta | 540  |
| catcatatat | aaggttgcta | aggtettget | tgacaaggta | tctctagtaa | catctagttt | 600  |
| ttttgagtga | aataataaaa | ttttaaagca | atgttacaag | agaagctctg | gagataaaag | 660  |
| ttagaagggt | gaagtttact | ccctctatcc | caaagatgta | attctaagaa | tgacttaaat | 720  |
| tttttataca | aaaggagtat | atatcacaag | attgatgtca | tcgttatgct | taggccacgt | 780  |
| acacgacgct | ggcgcttatg | tggacgttaa | teggtaatte | ttcattttat | tttattttgt | 840  |
| tgtcaccgcg | tacatttggg | ttaggcgttt | gttaaaggca | ttgccactca | aacaagcagc | 900  |
| cgcgtttgga | gcttttatag | tttgaaaagt | gacggttgta | aagatgagta | agctgattat | 960  |
| tagtagagta | aattataatt | atcatacaac | aactctcaaa | gtgggtgcac | gttagtccaa | 1020 |
| catcttataa | tttatccaac | tcaatacaac | aactatatag | gtgggtgcat | gttggtccaa | 1080 |
| catcttctaa | tttgtttaat | ttgatacgag | aacttgtctt | attggtacat | atatgatcca | 1140 |
| aagcattgta | acaacgtgtt | tatgtatact | cttaatcatg | gtcatcagaa | gctaacacac | 1200 |
| acgctcatgc | catccatatc | attcaacttt | tgaatcgttt | actatacaat | attatttcta | 1260 |
| aatttggctg | taaagatggc | attgatttca | taaatatgaa | aaataccaaa | ttgcacattt | 1320 |
| tctttctata | ttataatatt | gttttcatct | attttcaccc | cgtaaccttt | aatttggtca | 1380 |
| tttagggctc | actaaaactg | atatgtgggt | tgtgcatcgc | ataagaatca | agaacccaga | 1440 |
| agtaattttc | aatactaaga | aacaacaaaa | tttggttttt | ttttgtttgg | tttcgattat | 1500 |
| agccgaacta | accaaattta | agaaagcttt | ttatatttgg | ccacataaga | aatgatatca | 1560 |
| tttaatattg | taactgattc | aagctgagta | atagatgaga | tgagtgtgtt | aggatgtgta | 1620 |
| gcttccgatg | atagagaatt | agagtgtaca | aagacgcatc | gttacaatat | ttggacctta | 1680 |
| tatgcaccaa | tgtgtcaagt | ctcgcttcaa | attaactata | ttaaaagatg | ttggatcaac | 1740 |
| atgcactcac | ttagatatca | gtcgtattaa | attgaacaaa | ttacaagata | ttggactatg | 1800 |
| cacccactca | aatagttgtt | atatagtgaa | tacagtttac | tcttagtagt | atatgtaagt | 1860 |
| tcagcctttt | ctattgtagg | ttaagcctta | attaaggctc | ttacacaatt | gtttcattat | 1920 |
| tegegttega | agcagcttct | togtagattt | tgcgagggaa | ggctgcctcg | gttttgcctt | 1980 |
| ccctagcact | catgtgagag | cctctggcaa | taggtcttct | catttttatt | cacattcttt | 2040 |
| aagagcccat | ataagcgttc | atgacttgta | tatactctta | gatcttttt  | tgtgggtaaa | 2100 |
| gctcaagcta | atctaaaaat | agagaaatca | ggaacaaaga | atcatgtttt | ggtggttttg | 2160 |
| atttctagcc | tccacaataa | ttttagttta | cctttttttg | tttgatttta | attttagaag | 2220 |

| ggtttatagc | aggacttaaa | atccaaaatg | accattatct | tcgagtaata | acccgtttaa | 2280 |
|------------|------------|------------|------------|------------|------------|------|
| cggcgtcgac | aagtctaacg | gacaccaacc | catgaaccac | cagegeegag | ccaagaactg | 2340 |
| aaggtcgaga | cgttgacacc | tttggcgcga | cacggcatgt | tggcatctcc | ctctctggcc | 2400 |
| ccctctcgag | aattccgctc | caccgcctca | accggagacg | gtttccaaag | ttgtgcttag | 2460 |
| atgctcaaaa | gttggtgaaa | tcatttttat | ttggcaattt | gtgtccaact | atagactaat | 2520 |
| taggctcaaa | agatttgtct | cgtaaagtac | attcaaactg | tgtaattagt | tattttattt | 2580 |
| atctacattt | aatactctat | gaatgcgtca | agagatttga | tgtgacttta | atgtgacgga | 2640 |
| caatctgaaa | cttttacgca | acttgcatat | aaacagagcc | caagtccgtt | ccgttccgtt | 2700 |
| ccgcttcctc | ctcccagacg | gcacgaaacc | gtgacggcac | cggcagcacg | gggattcctt | 2760 |
| tcccaccgct | ccttcctttt | cccttcatcg | cccgcagcta | taaatagcca | cccccgtccg | 2820 |
| caacttcttt | ccccaacctc | atcttttgtt | cggagcacgc | acacaatccg | atcgatcccc | 2880 |
| aatcccctcg | tetetecteg | cgagcctcgt | cgatccgcca | ttcaaggtac | ggcgatcatc | 2940 |
| ctccctccct | ctctacctgc | tcttctgtag | atcggcgacc | ccatccatgg | ttagggcctg | 3000 |
| ctagttctgt | tcctgttttt | tttccatggc | tgcgaggtag | aatagatctg | atggcgttat | 3060 |
| gatggttaat | ttgtcatact | cttgcggtct | atgggtccct | ttaggtcatc | aatttaattt | 3120 |
| tgggtggttg | agatcggtga | tccatggtta | gtaccctagt | cagtggggtt | ggatccgtgc | 3180 |
| tattagggtt | cgtagatgga | ttctgatggc | tcagtaactg | ggaatcctag | gatggttcca | 3240 |
| tctggtttgc | agatgagaac | gatttcatca | tctgctatat | cttgtttcgt | tgcgtaggtt | 3300 |
| ctgtttaaac | taatccgtgg | tatgatgtta | gcctttgata | aggttgattt | catcatctgc | 3360 |
| tatatcttgt | ttcgttgcgt | aggttctgtt | taaactaatc | cgtggtatga | tgttagcctt | 3420 |
| tgataaggtt | tgattgtgct | agctacgtcc | tgtgcagcag | ttaattgtca | ggtcatacgt | 3480 |
| cataattttt | agcatgtctg | tttttgtttg | atttcgttgt | ctgattaggc | tgtagatagt | 3540 |
| ttcgatctac | ctgtcggttt | attttattaa | aatttggatc | cgtatgtgtg | tcacatatat | 3600 |
| cttcatgatt | aagatggagt | tatatgggta | ggttatacat | gtggctgtgg | atcatgatta | 3660 |
| agatggattg | aagtatctct | ttatctttta | gttaggatag | attattatat | atgttgctgt | 3720 |
| tgattttatt | ggttctttat | tatatatatt | catgcttata | tacataaaag | caatgtgcta | 3780 |
| ttacagttta | atagttcttg | attatctaat | aaacaaataa | ggataggtat | atttgttgct | 3840 |
| gttggtttta | ctggtactct | attagatagt | actttgacat | gaagcaacat | cctgctatgg | 3900 |
| attaataatt | attcttcgtc | taataaaaag | catggttttt | aattattttg | atttgatata | 3960 |
| cttggatgat | gtcatatgca | gcagctattt | gtgaatttt  | cggccgtatc | ttcatattgc | 4020 |
| ttgggactgt | ttctttggtt | gataactcac | cctgttgttt | ggtgatcctt | ctgcaggtg  | 4079 |

<210> 79

<211> 2831

<212> ADN

<213> Schizachyium scoparium

5 <400> 79

ctctatgcct gtgtcattgt gccagccct acctctgtca atgttcaaga tccaaataag 60 agaatgggat agaccatata ttaatggtgt agtatgcatc aagatctgaa tattatatga gtgaattgat aaatttattc taggtgacat ggccttaacg atggccagta cgtggttaaa 180 tcaatgaatc aatagccata ctctaatagc tctaaaaaag gatatatatt tgtcgaggca 240 ctattatgca accacatagt caacttcaaa gccgcttgag tgcgttctaa aaaaaaaatt 300 tottgtaaat tacgetttte teaaaaaaat tggateatge atttatttea etetaggtgt 360 gcgtgactac gtgaataaca attttgaatc tcagcaagga aataaaagta taataccgct 420 gtctactttg aagatcacaa tatctttctc ttagaatgtt tctgtttgtt atttaaaacc 480 atcqttatta aggtcaaatg atcaagattc attcaacaat tgaaacttct cacatgatta 540 catcatatat aaggttgcta aggtcttgct tgacaaggta tctctagtaa catctagttt 600 ttttgagtga aataataaaa ttttaaagca atgttacaag agaagctctg gagataaaag 660 ttagaagggt gaagtttact ccctctatcc caaagatgta attctaagaa tgacttaaat 720 tttttataca aaaggagtat atatcacaag attgatgtca tcgttatgct taggccacgt 780 acacgacgct ggcgcttatg tggacgttaa tcggtaattc ttcattttat tttattttgt 900 tgtcaccgcg tacatttggg ttaggcgttt gttaaaggca ttgccactca aacaagcagc cgcgtttgga gcttttatag tttgaaaagt gacggttgta aagatgagta agctgattat 960 tagtagagta aattataatt atcatacaac aacteteaaa gtgggtgeac gttagteeaa 1020 catcttataa tttatccaac tcaatacaac aactatatag gtgggtgcat gttggtccaa 1080 catcttctaa tttgtttaat ttgatacgag aacttgtctt attggtacat atatgatcca 1140 aagcattgta acaacgtgtt tatgtatact cttaatcatg gtcatcagaa gctaacacac 1200 acgctcatgc catccatatc attcaacttt tgaatcgttt actatacaat attattcta 1260 aatttggctg taaagatggc attgatttca taaatatgaa aaataccaaa ttgcacattt 1320 tetttetata ttataatatt gtttteatet atttteacee egtaacettt aatttggtea 1380 tttagggctc actaaaactg atatgtgggt tgtgcatcgc ataagaatca agaacccaga 1440 agtaattttc aatactaaga aacaacaaaa tttggttttt ttttgtttgg tttcgattat 1500 agccgaacta accaaattta agaaagcttt ttatatttgg ccacataaga aatgatatca 1560 tttaatattq taactqattc aaqctqaqta ataqatqaqa tqaqtqtqtt aqqatqtqta 1620 gcttccgatg atagagaatt agagtgtaca aagacgcatc gttacaatat ttggacctta 1680

| tatgcaccaa | tgtgtcaagt | ctcgcttcaa | attaactata | ttaaaagatg | ttggatcaac | 1740 |
|------------|------------|------------|------------|------------|------------|------|
| atgcactcac | ttagatatca | gtcgtattaa | attgaacaaa | ttacaagata | ttggactatg | 1800 |
| cacccactca | aatagttgtt | atatagtgaa | tacagtttac | tcttagtagt | atatgtaagt | 1860 |
| tcagcctttt | ctattgtagg | ttaagcctta | attaaggctc | ttacacaatt | gtttcattat | 1920 |
| tcgcgttcga | agcagcttct | tcgtagattt | tgcgagggaa | ggctgcctcg | gttttgcctt | 1980 |
| ccctagcact | catgtgagag | cctctggcaa | taggtcttct | catttttatt | cacattcttt | 2040 |
| aagagcccat | ataagcgttc | atgacttgta | tatactctta | gatcttttt  | tgtgggtaaa | 2100 |
| gctcaagcta | atctaaaaat | agagaaatca | ggaacaaaga | atcatgtttt | ggtggttttg | 2160 |
| atttctagcc | tccacaataa | ttttagttta | ccttttttg  | tttgatttta | attttagaag | 2220 |
| ggtttatagc | aggacttaaa | atccaaaatg | accattatct | tcgagtaata | acccgtttaa | 2280 |
| cggcgtcgac | aagtctaacg | gacaccaacc | catgaaccac | cagcgccgag | ccaagaactg | 2340 |
| aaggtcgaga | cgttgacacc | tttggcgcga | cacggcatgt | tggcatctcc | ctctctggcc | 2400 |
| ccctctcgag | aattccgctc | caccgcctca | accggagacg | gtttccaaag | ttgtgcttag | 2460 |
| atgctcaaaa | gttggtgaaa | tcatttttat | ttggcaattt | gtgtccaact | atagactaat | 2520 |
| taggctcaaa | agatttgtct | cgtaaagtac | attcaaactg | tgtaattagt | tattttattt | 2580 |
| atctacattt | aatactctat | gaatgcgtca | agagatttga | tgtgacttta | atgtgacgga | 2640 |
| caatctgaaa | cttttacgca | acttgcatat | aaacagagcc | caagtccgtt | ccgttccgtt | 2700 |
| ccgcttcctc | ctcccagacg | gcacgaaacc | gtgacggcac | cggcagcacg | gggattcctt | 2760 |
| teccaceget | ccttcctttt | cccttcatcg | cccgcagcta | taaatagcca | acacagtacg | 2820 |
| caacttcttt | С          |            |            |            |            | 2831 |

<210> 80

<211> 95

<212> ADN

5 <213> Schizachyium scoparium

<400> 80

cccaacctca tettttgtte ggagcacgca cacaatccga tegateccca atcccetegt 60 etetectege gagcetegte gatecgccat teaag 95

<210> 81

<211> 1153

10 <212> ADN

<213> Schizachyium scoparium

<400> 81

| gtacggcgat | catcctccct | cectetetae | ctgctcttct | gtagatcggc | gaccccatcc | 60   |
|------------|------------|------------|------------|------------|------------|------|
| atggttaggg | cctgctagtt | ctgttcctgt | tttttttcca | tggctgcgag | gtagaataga | 120  |
| tctgatggcg | ttatgatggt | taatttgtca | tactcttgcg | gtctatgggt | ccctttaggt | 180  |
| catcaattta | attttgggtg | gttgagatcg | gtgatccatg | gttagtaccc | tagtcagtgg | 240  |
| ggttggatcc | gtgctattag | ggttcgtaga | tggattctga | tggctcagta | actgggaatc | 300  |
| ctaggatggt | tccatctggt | ttgcagatga | gaacgatttc | atcatctgct | atatcttgtt | 360  |
| tegttgegta | ggttctgttt | aaactaatcc | gtggtatgat | gttagccttt | gataaggttg | 420  |
| atttcatcat | ctgctatatc | ttgtttcgtt | gcgtaggttc | tgtttaaact | aatccgtggt | 480  |
| atgatgttag | cctttgataa | ggtttgattg | tgctagctac | gtcctgtgca | gcagttaatt | 540  |
| gtcaggtcat | acgtcataat | ttttagcatg | tctgtttttg | tttgatttcg | ttgtctgatt | 600  |
| aggctgtaga | tagtttcgat | ctacctgtcg | gtttatttta | ttaaaatttg | gatccgtatg | 660  |
| tgtgtcacat | atatetteat | gattaagatg | gagttatatg | ggtaggttat | acatgtggct | 720  |
| gtggatcatg | attaagatgg | attgaagtat | ctctttatct | tttagttagg | atagattatt | 780  |
| atatatgttg | ctgttgattt | tattggttct | ttattatata | tattcatgct | tatatacata | 840  |
| aaagcaatgt | gctattacag | tttaatagtt | cttgattatc | taataaacaa | ataaggatag | 900  |
| gtatatttgt | tgctgttggt | tttactggta | ctctattaga | tagtactttg | acatgaagca | 960  |
| acatcctgct | atggattaat | aattattctt | cgtctaataa | aaagcatggt | ttttaattat | 1020 |
| tttgatttga | tatacttgga | tgatgtcata | tgcagcagct | atttgtgaat | ttttcggccg | 1080 |
| tatcttcata | ttgcttggga | ctgtttcttt | ggttgataac | tcaccctgtt | gtttggtgat | 1140 |
| ccttctgcag | gtg        |            |            |            |            | 1153 |

<210> 82

<211> 3281

<212> ADN

<213> Schizachyium scoparium

<400> 82

5

gtggacgtta atcggtaatt cttcattta ttttatttg ttgtcaccgc gtacatttgg 60 gttaggcgtt tgttaaaggc attgccactc aaacaagcag ccgcgtttgg agctttata 120 gtttgaaaag tgacggttgt aaagatgagt aagctgatta ttagtagagt aaattataat 180 tatcatacaa caactctcaa agtgggtgca cgttagtcca acatcttata atttatccaa 240 ctcaatacaa caactatata ggtgggtgca tgttggtcca acatcttcta atttgttaa 300 tttgatacga gaacttgtct tattggtaca tatatgatcc aaagcattgt aacaacgtgt 360 ttatgtatac tcttaatcat ggtcatcaga agctaacaca cacgctcatg ccatccatat 420 cattcaactt ttgaatcgtt tactatacaa tattattct aaatttggct gtaaagatgg 480 cattgattc ataaatatga aaaataccaa attgcacatt ttcttctat attataatat 540

| tgttttcatc | tattttcacc | ccgtaacctt | taatttggtc | atttagggct | cactaaaact | 600  |
|------------|------------|------------|------------|------------|------------|------|
| gatatgtggg | ttgtgcatcg | cataagaatc | aagaacccag | aagtaatttt | caatactaag | 660  |
| aaacaacaaa | atttggtttt | tttttgtttg | gtttcgatta | tagccgaact | aaccaaattt | 720  |
| aagaaagctt | tttatatttg | gccacataag | aaatgatatc | atttaatatt | gtaactgatt | 780  |
| caagctgagt | aatagatgag | atgagtgtgt | taggatgtgt | agcttccgat | gatagagaat | 840  |
| tagagtgtac | aaagacgcat | cgttacaata | tttggacctt | atatgcacca | atgtgtcaag | 900  |
| tctcgcttca | aattaactat | attaaaagat | gttggatcaa | catgcactca | cttagatatc | 960  |
| agtcgtatta | aattgaacaa | attacaagat | attggactat | gcacccactc | aaatagttgt | 1020 |
| tatatagtga | atacagttta | ctcttagtag | tatatgtaag | ttcagccttt | tctattgtag | 1080 |
| gttaagcctt | aattaaggct | cttacacaat | tgtttcatta | ttcgcgttcg | aagcagcttc | 1140 |
| ttcgtagatt | ttgcgaggga | aggetgeete | ggttttgcct | tecetageae | tcatgtgaga | 1200 |
| gcctctggca | ataggtette | tcatttttat | tcacattctt | taagageeea | tataagcgtt | 1260 |
| catgacttgt | atatactctt | agatctttt  | tttgtgggta | aagctcaagc | taatctaaaa | 1320 |
| atagagaaat | caggaacaaa | gaatcatgtt | ttggtggttt | tgatttctag | cctccacaat | 1380 |
| aattttagtt | taccttttt  | tgtttgattt | taattttaga | agggtttata | gcaggactta | 1440 |
| aaatccaaaa | tgaccattat | cttcgagtaa | taacccgttt | aacggcgtcg | acaagtctaa | 1500 |
| cggacaccaa | cccatgaacc | accagegeeg | agccaagaac | tgaaggtcga | gacgttgaca | 1560 |
| cctttggcgc | gacacggcat | gttggcatct | ccctctctgg | ccccctctcg | agaattccgc | 1620 |
| tccaccgcct | caaccggaga | cggtttccaa | agttgtgctt | agatgctcaa | aagttggtga | 1680 |
| aatcatttt  | atttggcaat | ttgtgtccaa | ctatagacta | attaggetea | aaagatttgt | 1740 |
| ctcgtaaagt | acattcaaac | tgtgtaatta | gttattttat | ttatctacat | ttaatactct | 1800 |
| atgaatgcgt | caagagattt | gatgtgactt | taatgtgacg | gacaatctga | aacttttacg | 1860 |
| caacttgcat | ataaacagag | cccaagtccg | ttccgttccg | ttccgcttcc | tecteceaga | 1920 |
| cggcacgaaa | ccgtgacggc | accggcagca | cggggattcc | tttcccaccg | ctccttcctt | 1980 |
| ttecettcat | egecegeage | tataaatagc | cacececgte | cgcaacttct | ttccccaacc | 2040 |
| tcatcttttg | ttcggagcac | gcacacaatc | cgatcgatcc | ccaatcccct | cgtctctcct | 2100 |
| cgcgagcctc | gtcgatccgc | cattcaaggt | acggcgatca | testesstes | ctctctacct | 2160 |
| gctcttctgt | agatcggcga | ccccatccat | ggttagggcc | tgctagttct | gttcctgttt | 2220 |
| tttttccatg | gctgcgaggt | agaatagatc | tgatggcgtt | atgatggtta | atttgtcata | 2280 |
| ctcttgcggt | ctatgggtcc | ctttaggtca | tcaatttaat | tttgggtggt | tgagatcggt | 2340 |
| gatccatggt | tagtacccta | gtcagtgggg | ttggatccgt | gctattaggg | ttcgtagatg | 2400 |
| gattctgatg | gctcagtaac | tgggaatcct | aggatggttc | catctggttt | gcagatgaga | 2460 |

acgattcat catctgctat atcttgtttc gttgcgtagg ttctgtttaa actaatccgt 2520 ggtatgatgt tagcctttga taaggttgat ttcatcatct gctatatctt gtttcgttgc 2580 gtaggttctg tttaaactaa tccgtggtat gatgttagcc tttgataagg tttgattgtg 2640 ctagctacgt cctgtgcagc agttaattgt caggtcatac gtcataattt ttagcatgtc 2700 tgtttttgtt tgattcgtt gtctgattag gctgtagata gtttcgatct acctgtcggt 2760 ttatttatt aaaatttgga tccgtatgtg tgtcacatat atcttcatga ttaagatgga 2820 gttatatggg taggttatac atgtggctgt ggatcatgat taagatggat tgaagtatct 2880 ctttatcttt tagttaggat agattattat atatgttgct gttgatttta ttggttcttt 2940 attatatata ttcatgctta tatacataaa agcaatgtgc tattacagtt taatagttct 3000 tgattatcta ataacaaat aaggataggt atatttgttg ctgttggttt tactggtact 3060 ctattagata gtactttgac atgaagcaac atcctgctat ggattaataa ttattcttcg 3120 tctaataaaa agcatggtt ttaattattt tgatttgata tacttggatg atgtcatatg 3180 cagcagctat ttgtgaattt ttcggccgta tcttcatatt gcttgggact gttctttgg 3240 ttgataaccc accctgttgt ttggtgatcc ttctgcaggt g

<210> 83

<211> 2033

<212> ADN

<213> Schizachyium scoparium

<400> 83

5

gtggacgtta atcggtaatt cttcatttta ttttattttg ttgtcaccgc gtacatttgg 60 gttaggegtt tgttaaagge attgecacte aaacaageag eegegtttgg agettttata 120 gtttgaaaag tgacggttgt aaagatgagt aagctgatta ttagtagagt aaattataat 180 tatcatacaa caactetcaa agtgggtgca cgttagteca acatettata atttatecaa 240 ctcaatacaa caactatata ggtgggtgca tgttggtcca acatcttcta atttgtttaa 300 360 tttgatacga gaacttgtct tattggtaca tatatgatcc aaagcattgt aacaacgtgt ttatgtatac tcttaatcat ggtcatcaga agctaacaca cacgctcatg ccatccatat 420 cattcaactt ttgaatcgtt tactatacaa tattatttct aaatttggct gtaaagatgg 480 cattgatttc ataaatatga aaaataccaa attgcacatt ttctttctat attataatat 540 tgttttcatc tattttcacc ccgtaacctt taatttggtc atttagggct cactaaaact 600 gatatgtggg ttgtgcatcg cataagaatc aagaacccag aagtaatttt caatactaag 660 aaacaacaaa atttggtttt tttttgtttg gtttcgatta tagccgaact aaccaaattt 720 aagaaagctt tttatatttg gccacataag aaatgatatc atttaatatt gtaactgatt 780

| caagctgagt | aatagatgag | atgagtgtgt | taggatgtgt | agcttccgat | gatagagaat | 840  |
|------------|------------|------------|------------|------------|------------|------|
| tagagtgtac | aaagacgcat | cgttacaata | tttggacctt | atatgcacca | atgtgtcaag | 900  |
| tctcgcttca | aattaactat | attaaaagat | gttggatcaa | catgcactca | cttagatatc | 960  |
| agtcgtatta | aattgaacaa | attacaagat | attggactat | gcacccactc | aaatagttgt | 1020 |
| tatatagtga | atacagttta | ctcttagtag | tatatgtaag | ttcagccttt | tctattgtag | 1080 |
| gttaagcctt | aattaaggct | cttacacaat | tgtttcatta | ttcgcgttcg | aagcagcttc | 1140 |
| ttcgtagatt | ttgcgaggga | aggctgcctc | ggttttgcct | tccctagcac | tcatgtgaga | 1200 |
| gcctctggca | ataggtcttc | tcatttttat | tcacattctt | taagagccca | tataagcgtt | 1260 |
| catgacttgt | atatactctt | agatctttt  | tttgtgggta | aagctcaagc | taatctaaaa | 1320 |
| atagagaaat | caggaacaaa | gaatcatgtt | ttggtggttt | tgatttctag | cctccacaat | 1380 |
| aattttagtt | taccttttt  | tgtttgattt | taattttaga | agggtttata | gcaggactta | 1440 |
| aaatccaaaa | tgaccattat | cttcgagtaa | taacccgttt | aacggcgtcg | acaagtctaa | 1500 |
| cggacaccaa | cccatgaacc | accagegeeg | agccaagaac | tgaaggtcga | gacgttgaca | 1560 |
| cctttggcgc | gacacggcat | gttggcatct | ccctctctgg | cccctctcg  | agaattccgc | 1620 |
| tccaccgcct | caaccggaga | cggtttccaa | agttgtgctt | agatgctcaa | aagttggtga | 1680 |
| aatcattttt | atttggcaat | ttgtgtccaa | ctatagacta | attaggctca | aaagatttgt | 1740 |
| ctcgtaaagt | acattcaaac | tgtgtaatta | gttattttat | ttatctacat | ttaatactct | 1800 |
| atgaatgcgt | caagagattt | gatgtgactt | taatgtgacg | gacaatctga | aacttttacg | 1860 |
| caacttgcat | ataaacagag | cccaagtccg | ttccgttccg | ttccgcttcc | tcctcccaga | 1920 |
| cggcacgaaa | ccgtgacggc | accggcagca | cggggattcc | tttcccaccg | ctccttcctt | 1980 |
| ttcccttcat | cgcccgcagc | tataaatagc | cacccccgtc | cgcaacttct | ttc        | 2033 |

<210> 84

<211> 2294

<212> ADN

<213> Schizachyium scoparium

<400> 84

5

gatattggac tatgcaccca ctcaaatagt tgttatatag tgaatacagt ttactcttag 60 tagtatatgt aagttcagcc ttttctattg taggttaagc cttaattaag gctcttacac 120 aattgttca ttattcgcgt tcgaagcagc ttcttcgtag attttgcgag ggaaggctgc 180 ctcggttttg ccttccctag cactcatgtg agagcctctg gcaataggtc ttctcatttt 240 tattcacatt ctttaagagc ccatataagc gttcatgact tgtatatact cttagatctt 300 tttttgtgg gtaaagctca agctaatcta aaaatagaga aatcaggaac aaagaatcat 360 gttttggtgg ttttgatttc tagcctccac aataattta gtttaccttt ttttgttga 420

| ttttaatttt | agaagggttt | atagcaggac | ttaaaatcca | aaatgaccat | tatcttcgag | 480  |
|------------|------------|------------|------------|------------|------------|------|
| taataacccg | tttaacggcg | tcgacaagtc | taacggacac | caacccatga | accaccagcg | 540  |
| ccgagccaag | aactgaaggt | cgagacgttg | acacctttgg | cgcgacacgg | catgttggca | 600  |
| tetecetete | tggccccctc | tcgagaattc | cgctccaccg | cctcaaccgg | agacggtttc | 660  |
| caaagttgtg | cttagatgct | caaaagttgg | tgaaatcatt | tttatttggc | aatttgtgtc | 720  |
| caactataga | ctaattaggc | tcaaaagatt | tgtctcgtaa | agtacattca | aactgtgtaa | 780  |
| ttagttattt | tatttatcta | catttaatac | tctatgaatg | cgtcaagaga | tttgatgtga | 840  |
| ctttaatgtg | acggacaatc | tgaaactttt | acgcaacttg | catataaaca | gagcccaagt | 900  |
| ccgttccgtt | ccgttccgct | tectectece | agacggcacg | aaaccgtgac | ggcaccggca | 960  |
| gcacggggat | teettteeca | cegeteette | cttttccctt | categeeege | agctataaat | 1020 |
| agccaccccc | gtccgcaact | tctttcccca | acctcatctt | ttgttcggag | cacgcacaca | 1080 |
| atccgatcga | tccccaatcc | catagtatat | cctcgcgagc | ctcgtcgatc | cgccattcaa | 1140 |
| ggtacggcga | tcatcctccc | teceteteta | cetgetette | tgtagatcgg | cgaccccatc | 1200 |
| catggttagg | gcctgctagt | tctgttcctg | tttttttcc  | atggctgcga | ggtagaatag | 1260 |
| atctgatggc | gttatgatgg | ttaatttgtc | atactcttgc | ggtctatggg | tccctttagg | 1320 |
| tcatcaattt | aattttgggt | ggttgagatc | ggtgatccat | ggttagtacc | ctagtcagtg | 1380 |
| gggttggatc | cgtgctatta | gggttcgtag | atggattctg | atggctcagt | aactgggaat | 1440 |
| cctaggatgg | ttccatctgg | tttgcagatg | agaacgattt | catcatctgc | tatatcttgt | 1500 |
| ttcgttgcgt | aggttctgtt | taaactaatc | cgtggtatga | tgttagcctt | tgataaggtt | 1560 |
| gatttcatca | tctgctatat | cttgtttcgt | tgcgtaggtt | ctgtttaaac | taatccgtgg | 1620 |
| tatgatgtta | gcctttgata | aggtttgatt | gtgctagcta | cgtcctgtgc | agcagttaat | 1680 |
| tgtcaggtca | tacgtcataa | tttttagcat | gtctgttttt | gtttgatttc | gttgtctgat | 1740 |
| taggctgtag | atagtttcga | tctacctgtc | ggtttatttt | attaaaattt | ggatccgtat | 1800 |
| gtgtgtcaca | tatatcttca | tgattaagat | ggagttatat | gggtaggtta | tacatgtggc | 1860 |
| tgtggatcat | gattaagatg | gattgaagta | tctctttatc | ttttagttag | gatagattat | 1920 |
| tatatatgtt | gctgttgatt | ttattggttc | tttattatat | atattcatgc | ttatatacat | 1980 |
| aaaagcaatg | tgctattaca | gtttaatagt | tcttgattat | ctaataaaca | aataaggata | 2040 |
| ggtatatttg | ttgctgttgg | ttttactggt | actctattag | atagtacttt | gacatgaagc | 2100 |
| aacatcctgc | tatggattaa | taattattct | tegtetaata | aaaagcatgg | tttttaatta | 2160 |
| ttttgatttg | atatacttgg | atgatgtcat | atgcagcagc | tatttgtgaa | tttttcggcc | 2220 |
| gtatcttcat | attgcttggg | actgtttctt | tggttgataa | ctcaccctgt | tgtttggtga | 2280 |

5

10

<400> 86

| teettetge                                                           | a ggtg        |            |            |            |            | 2294 |  |
|---------------------------------------------------------------------|---------------|------------|------------|------------|------------|------|--|
| <210> 85<br><211> 1046<br><212> ADN<br><213> Schizachy              | ium scoparium |            |            |            |            |      |  |
| <400> 85                                                            |               |            |            |            |            |      |  |
| gatattggac                                                          | tatgcaccca    | ctcaaatagt | tgttatatag | tgaatacagt | ttactcttag | 60   |  |
| tagtatatgt                                                          | aagttcagcc    | ttttctattg | taggttaagc | cttaattaag | gctcttacac | 120  |  |
| aattgtttca                                                          | ttattcgcgt    | tcgaagcagc | ttcttcgtag | attttgcgag | ggaaggetge | 180  |  |
| ctcggttttg                                                          | ccttccctag    | cactcatgtg | agageetetg | gcaataggtc | ttctcatttt | 240  |  |
| tattcacatt                                                          | ctttaagagc    | ccatataagc | gttcatgact | tgtatatact | cttagatctt | 300  |  |
| ttttttgtgg                                                          | gtaaagctca    | agctaatcta | aaaatagaga | aatcaggaac | aaagaatcat | 360  |  |
| gttttggtgg                                                          | ttttgatttc    | tagcetecae | aataatttta | gtttaccttt | ttttgtttga | 420  |  |
| ttttaatttt                                                          | agaagggttt    | atagcaggac | ttaaaatcca | aaatgaccat | tatcttcgag | 480  |  |
| taataacccg                                                          | tttaacggcg    | tcgacaagtc | taacggacac | caacccatga | accaccageg | 540  |  |
| ccgagccaag                                                          | aactgaaggt    | cgagacgttg | acacctttgg | cgcgacacgg | catgttggca | 600  |  |
| tatacatata                                                          | tggccccctc    | tcgagaattc | cgctccaccg | cctcaaccgg | agacggtttc | 660  |  |
| caaagttgtg                                                          | cttagatgct    | caaaagttgg | tgaaatcatt | tttatttggc | aatttgtgtc | 720  |  |
| caactataga                                                          | ctaattaggc    | tcaaaagatt | tgtctcgtaa | agtacattca | aactgtgtaa | 780  |  |
| ttagttattt                                                          | tatttatcta    | catttaatac | tctatgaatg | cgtcaagaga | tttgatgtga | 840  |  |
| ctttaatgtg                                                          | acggacaatc    | tgaaactttt | acgcaacttg | catataaaca | gagcccaagt | 900  |  |
| ccgttccgtt                                                          | ccgttccgct    | tectectece | agacggcacg | aaaccgtgac | ggcaccggca | 960  |  |
| gcacggggat                                                          | tcctttccca    | ccgctccttc | cttttccctt | categeeege | agctataaat | 1020 |  |
| agecacecee                                                          | gtccgcaact    | tctttc     |            |            |            | 1046 |  |
| <210> 86<br><211> 1795<br><212> ADN<br><213> Schizachyium scoparium |               |            |            |            |            |      |  |

142

```
60
gtogacaagt ctaacggaca ccaacccatg aaccaccagc gccgagccaa gaactgaagg
togagacgtt gacacetttg gegegacaeg geatgttgge atetecetet etggeeecet
                                                                   120
ctcgagaatt ccgctccacc gcctcaaccg gagacggttt ccaaagttgt gcttagatgc
                                                                   180
tcaaaagttg gtgaaatcat ttttatttgg caatttgtgt ccaactatag actaattagg
                                                                   240
ctcaaaagat ttgtctcgta aagtacattc aaactgtgta attagttatt ttatttatct
                                                                   300
acatttaata ctctatgaat gcgtcaagag atttgatgtg actttaatgt gacggacaat
                                                                   360
ctgaaacttt tacgcaactt gcatataaac agagcccaag teegtteegt teegtteege
                                                                   420
tteeteetee eagaeggeae gaaacegtga eggeacegge ageaegggga tteettteee
                                                                   480
accgetectt cetttteeet teategeeeg cagetataaa tageeaeeee egteegeaae
                                                                   540
                                                                   600
ttotttoccc aacotcatot tttgttogga goacgcacac aatocgatog atocccaato
ecctegtete tectegegag ectegtegat eegecattea aggtaeggeg ateatectee
                                                                   660
ctccctctct acctgctctt ctgtagatcg gcgaccccat ccatggttag ggcctgctag
                                                                   720
ttctgttcct gttttttttc catggctgcg aggtagaata gatctgatgg cgttatgatg
                                                                   780
gttaatttgt catactettg eggtetatgg gteeetttag gteateaatt taattttggg
                                                                   840
tggttgagat cggtgatcca tggttagtac cctagtcagt ggggttggat ccgtgctatt
                                                                   900
agggttegta gatggattet gatggeteag taactgggaa teetaggatg gtteeatetg 960
gtttgcagat gagaacgatt tcatcatctg ctatatcttg tttcgttgcg taggttctgt 1020
ttaaactaat ccgtggtatg atgttagcct ttgataaggt tgatttcatc atctgctata 1080
tettgttteg ttgegtaggt tetgtttaaa etaateegtg gtatgatgtt ageetttgat 1140
aaggtttgat tgtgctagct acgtcctgtg cagcagttaa ttgtcaggtc atacgtcata 1200
atttttagca tgtctgtttt tgtttgattt cgttgtctga ttaggctgta gatagtttcg 1260
atctacctgt cggtttattt tattaaaatt tggatccgta tgtgtgtcac atatatcttc 1320
atgattaaga tggagttata tgggtaggtt atacatgtgg ctgtggatca tgattaagat 1380
ggattgaagt atctctttat cttttagtta ggatagatta ttatatatgt tgctgttgat 1440
tttattggtt ctttattata tatattcatg cttatataca taaaagcaat gtgctattac 1500
agtttaatag ttcttgatta tctaataaac aaataaggat aggtatattt gttgctgttg 1560
gttttactgg tactctatta gatagtactt tgacatgaag caacatcctg ctatggatta 1620
ataattattc ttcgtctaat aaaaagcatg gtttttaatt attttgattt gatatacttg 1680
gatgatgtca tatgcagcag ctatttgtga atttttcggc cgtatcttca tattgcttgg 1740
gactgtttct ttggttgata actcaccctg ttgtttggtg atccttctgc aggtg
                                                                  1795
```

5

<sup>&</sup>lt;210> 87

<sup>&</sup>lt;211> 547

<sup>&</sup>lt;212> ADN

<sup>&</sup>lt;213> Schizachyium scoparium

<400>87

| gtcgacaagt | ctaacggaca | ccaacccatg | aaccaccagc | gccgagccaa | gaactgaagg | 60  |
|------------|------------|------------|------------|------------|------------|-----|
| togagacgtt | gacacctttg | gcgcgacacg | gcatgttggc | atctccctct | ctggccccct | 120 |
| ctcgagaatt | cegetecace | gcctcaaccg | gagacggttt | ccaaagttgt | gcttagatgc | 180 |
| tcaaaagttg | gtgaaatcat | ttttatttgg | caatttgtgt | ccaactatag | actaattagg | 240 |
| ctcaaaagat | ttgtctcgta | aagtacattc | aaactgtgta | attagttatt | ttatttatct | 300 |
| acatttaata | ctctatgaat | gcgtcaagag | atttgatgtg | actttaatgt | gacggacaat | 360 |
| ctgaaacttt | tacgcaactt | gcatataaac | agagcccaag | tccgttccgt | teegtteege | 420 |
| ttectectec | cagacggcac | gaaaccgtga | cggcaccggc | agcacgggga | ttcctttccc | 480 |
| accgctcctt | ccttttccct | tcatcgcccg | cagctataaa | tagccacccc | cgtccgcaac | 540 |
| ttctttc    |            |            |            |            |            | 547 |

<210> 88

<211> 3357

<212> ADN

5

<213> Sorghastrum nutans

<400>88

gtggccagct tttgttctag ttcaacggtc cgggccttcc gggaacctaa tgcactaatt gattattatt aatctactat tgcagctaac ctcaaaagaa atgctctgca gttagttgtc 120 cgtcccaatc aatccaccag cagactcaca ttattgatgg aggaaattaa attcagcctt 180 tgacgtggat gcaacaactg cacaagatac catctacttt gcttaatttg ctgatgtttt 240 gagaaaatta aaccagcttt gaccaacaca tgagatgggc gccttacgtt tggcacaatg 300 taatgtagtc cggcacggca agttagactc tgtgtgtagt gttatattag ccggcctctt 360 taggtttggc acaatttaat tgaatccggc atggcaagtt agactgcagt gtgagccggt 420 caccgcaagt taggatataa tatacaagag caagtataca ataaagtgac attagcgtaa 480 agttatatga catatggaat ataagagaaa atacggagta tataataagg tgaactgtat 540 agcgatcaaa tttatgctaa gcgaagaaaa gagaagataa ataggttgaa aacttatagt 600 gagetttgge teataateta aataattatg agagagtggg ategaceaea tatteatttt 660 gtagtacgta ctctctccgt tttttataag ttgctttgat tttttttat atcaattttg 720 ctatacatct aaacataata ggaatatcaa gttcatgaag gtcgtgattt gcactaaata 780 tgttccctta ttagatagac gagttgttta gttttattgt agatgatata gcgcttgcat 840 atagcatgtg aaccggctaa attattagcc atacacgact ataaaaaatg acattccttt 900 gaggaacttt tatgcaacca aatagtcaac ttcaatgttg ctagagcggg ctttaagcca 960 aaagcagctg ctgctttgtt tccgagagaa gggacattct agttgatagc aaaacaaata 1020 cgtagcagtt gtagcgagtg tgtgagtaat aatttttctc tagtgtgtac gagtatgcga 1080 gtaataattt taaatctcta gaaggaagaa aaataatatt gctacctact ttgaggatat 1140 caatacettt etetaaaatg tittggtgaa gecatettta aagetaattg ticaagatte 1200

```
aaccattggg acgtctcaaa tgattagatc ctataatact cctacgtact aaattataag 1260
tcgttttgat tttattggta catacatttt gctatgtgtt tagatataat aatatgtcta 1320
gatacattgg atgaaccgaa aaaatcgaaa cgacttataa tttggatcga aaggagtatt 1380
tgctaaagtc cttttcgaag ttccggctct aaatttttgg ataaaatttt atgaaatact 1440
atettaagaa qtaatttgac tagagaaget tgaagagtat aatetettaa ttttgtgeta 1500
caggagtgaa gccaacgtcg tatttagatc tagatgctgt caggtagtga ggacggaggg 1560
agtattggat aaagtcattc caagatctta gaaaattaaa gtatattaag tttgattaaa 1620
tttatatgac aagtaataac attcatgatg ccaattaagt atcattagat tcttcatcaa 1680
ctatattttc atagtatact tatttaatgt tataaatttt tataattttt tttataattt 1740
tagctaaact cgagatcgat tcttataatt aaaaataaac tgaaaaaaaa tcacatgttc 1800
aagtgacagg aggagccagt ttaacggcgt cgacaagtct aacggacacc aaccagcgaa 1860
ccaccagege egagecaate ccaagegaag eegactgeag acggeegaga egttgacace 1920
tttggcgcgg catccatctc tccggccccc tcttgagagt tccgcccac cggcggcggt 1980
ttccaagtcc gttccgcccg ccttcgcggt tggacttgtt ccggtggcgc ctggcggatc 2040
gegtggegga geggagaega egaggtgage egtgggegtt ceteeteetg eteeteteae 2100
acggcacgga acggaaccgt gacggcaccg ggcagcacgg gcgggattcc ttccccacct 2160
etectteggt ecteecteea teataaatag ceaececet eccaecttet tteeceaect 2220
egteteceet egtgttatte ggageacaga cacacceega tececaatee tetectegeg 2280
agectegteg atcecegett caaggtacgg cgatcatect cecteectaa etceaateeg 2340
tggttagggc ctgctagatc gtcctccctc cctacctgcg atccgtggtt cgcgcctgct 2400
agttetgttt cetgtttgte gatggetgeq aggtataata gatetgatgg egtgeggtgt 2460
gacggttaaa ttcacatgct cttgcgattt atacgcgaat cgatctggga ttgctcgaga 2520
teggtgatee atggttagaa eeetaggegg tggagteggg ttaaateegt getgttaggg 2580
ttegtaggtg gatgegaeet gttetggttg tttaettgte agtatttagg aateetaeta 2640
ggatggttet agetggtteg eagatgagat egattteatg atetgetata tetttegttg 2700
cctaagtttc gtttaatctg tccgtggtat gatgttagcc tttgatatgc ttcgatcgtg 2760
ctagctacct cctgtgcact aaattatcag ctcgtaattt ttagcatgcc ctttttttt 2820
tgggtattgt tcgattgagg tgtcgttcta gatcagagta ggaagactgt ttcaaactac 2880
ctgctggatt tattaaattt ggatctgtat gagtatcaca tatatctcca taatttagat 2940
qqatqqaaat atcccttttt cttttaqata ctqtttqqta taqattttqc tqtqqqtttt 3000
actggtactt agatactctt cgtttagata tggatatgtt tacatgcaga tacatgaagc 3060
```

<210> 89

<211> 2218

<212> ADN

<213> Sorghastrum nutans

<400> 89

5

gtggccagct tttgttctag ttcaacggtc cgggccttcc gggaacctaa tgcactaatt 60 gattattatt aatctactat tgcagctaac ctcaaaagaa atgctctgca gttagttgtc 120 cgtcccaatc aatccaccag cagactcaca ttattgatgg aggaaattaa attcagcctt 180 tgacgtggat gcaacaactg cacaagatac catctacttt gcttaatttg ctgatgtttt 240 gagaaaatta aaccagcttt gaccaacaca tgagatgggc gccttacgtt tggcacaatg 300 taatgtagte eggeacggea agttagaete tgtgtgtagt gttatattag eeggeetett 360 taggtttggc acaatttaat tgaatccggc atggcaagtt agactgcagt gtgagccggt caccgcaagt taggatataa tatacaagag caagtataca ataaagtgac attagcgtaa 480 agttatatga catatggaat ataagagaaa atacggagta tataataagg tgaactgtat 540 agcgatcaaa tttatgctaa gcgaagaaaa gagaagataa ataggttgaa aacttatagt 600 gagetttgge teataateta aataattatg agagagtggg ategaceaea tatteatttt 660 gtagtacgta ctctctccgt tttttataag ttgctttgat tttttttat atcaattttg 780 ctatacatct aaacataata ggaatatcaa gttcatgaag gtcgtgattt gcactaaata tgttccctta ttagatagac gagttgttta gttttattgt agatgatata gcgcttgcat 840 atagcatgtg aaccggctaa attattagcc atacacgact ataaaaaatg acattccttt 900 gaggaacttt tatgcaacca aatagtcaac ttcaatgttg ctagagcggg ctttaagcca aaagcagctg ctgctttgtt tccgagagaa gggacattct agttgatagc aaaacaaata 1020 cgtagcagtt gtagcgagtg tgtgagtaat aatttttctc tagtgtgtac gagtatgcga 1080 gtaataattt taaatctcta gaaggaagaa aaataatatt gctacctact ttgaggatat 1140 caatacettt etetaaaatg ttttggtgaa gecatettta aagetaattg tteaagatte 1200 aaccattggg acgtctcaaa tgattagatc ctataatact cctacgtact aaattataag 1260 togttttgat tttattggta catacatttt gctatgtgtt tagatataat aatatgtcta 1320 gatacattgg atgaaccgaa aaaatcgaaa cgacttataa tttggatcga aaggagtatt 1380

| tgctaaagtc | cttttcgaag | tteeggetet | aaatttttgg | ataaaatttt | atgaaatact | 1440 |
|------------|------------|------------|------------|------------|------------|------|
| atcttaagaa | gtaatttgac | tagagaagct | tgaagagtat | aatctcttaa | ttttgtgcta | 1500 |
| caggagtgaa | gccaacgtcg | tatttagatc | tagatgctgt | caggtagtga | ggacggaggg | 1560 |
| agtattggat | aaagtcattc | caagatctta | gaaaattaaa | gtatattaag | tttgattaaa | 1620 |
| tttatatgac | aagtaataac | attcatgatg | ccaattaagt | atcattagat | tcttcatcaa | 1680 |
| ctatattttc | atagtatact | tatttaatgt | tataaatttt | tataatttt  | tttataattt | 1740 |
| tagctaaact | cgagatcgat | tcttataatt | aaaaataaac | tgaaaaaaaa | tcacatgttc | 1800 |
| aagtgacagg | aggagccagt | ttaacggcgt | cgacaagtct | aacggacacc | aaccagcgaa | 1860 |
| ccaccagcgc | cgagccaatc | ccaagcgaag | ccgactgcag | acggccgaga | cgttgacacc | 1920 |
| tttggcgcgg | catccatctc | teeggeeece | tcttgagagt | tccgccccac | cggcggcggt | 1980 |
| ttccaagtcc | gttccgcccg | ccttcgcggt | tggacttgtt | ccggtggcgc | ctggcggatc | 2040 |
| gcgtggcgga | gcggagacga | cgaggtgagc | cgtgggcgtt | cctcctcctg | ctcctctcac | 2100 |
| acggcacgga | acggaaccgt | gacggcaccg | ggcagcacgg | gcgggattcc | ttccccacct | 2160 |
| ctccttcggt | cctccctcca | tcataaatag | ccacccccct | cccaccttct | ttccccac   | 2218 |

<210> 90

<211> 86

<212> ADN

5 <213> Sorghastrum nutans

<400> 90

ctcgtctccc ctcgtgttat tcggagcaca gacacaccc gatccccaat cctctcctcg 60 cgagcctcgt cgatccccgc ttcaag 86

<210> 91

<211> 1053

10 <212> ADN

<213> Sorghastrum nutans

| gtacggcgat | catcctccct | ccctaactcc | aatccgtggt | tagggcctgc | tagatcgtcc | 60   |
|------------|------------|------------|------------|------------|------------|------|
| tccctcccta | cctgcgatcc | gtggttcgcg | cctgctagtt | ctgtttcctg | tttgtcgatg | 120  |
| gctgcgaggt | ataatagatc | tgatggcgtg | cggtgtgacg | gttaaattca | catgctcttg | 180  |
| cgatttatac | gcgaatcgat | ctgggattgc | tcgagatcgg | tgatccatgg | ttagaaccct | 240  |
| aggeggtgga | gtcgggttaa | atccgtgctg | ttagggttcg | taggtggatg | cgacctgttc | 300  |
| tggttgttta | cttgtcagta | tttaggaatc | ctactaggat | ggttctagct | ggttcgcaga | 360  |
| tgagatcgat | ttcatgatct | gctatatctt | tcgttgccta | agtttcgttt | aatctgtccg | 420  |
| tggtatgatg | ttagcctttg | atatgcttcg | atcgtgctag | ctacctcctg | tgcactaaat | 480  |
| tatcagctcg | taatttttag | catgcccttt | tttttttggg | tattgttcga | ttgaggtgtc | 540  |
| gttctagatc | agagtaggaa | gactgtttca | aactacctgc | tggatttatt | aaatttggat | 600  |
| ctgtatgagt | atcacatata | tctccataat | ttagatggat | ggaaatatcc | ctttttcttt | 660  |
| tagatactgt | ttggtataga | ttttgctgtg | ggttttactg | gtacttagat | actcttcgtt | 720  |
| tagatatgga | tatgtttaca | tgcagataca | tgaagcaaca | tgctgctaca | gtttaatatg | 780  |
| gataggtgta | tatgttgttg | tgggtccttt | acttacatgc | ttagatacat | gaagcaacat | 840  |
| gctgctacgt | ttaataatta | ttgtttatct | gatctgattt | aaacaaacat | gctttttaat | 900  |
| tgtcctgaaa | tgcttggatg | atggcatatg | cagcagctat | gtgtggattt | taaataccca | 960  |
| gcatgagcat | gcatgaccct | aacttagtat | gctgtttatt | tgcttgactt | ttcttttgtt | 1020 |
| gatactcacc | cttttgtttg | ttgactcttg | caq        |            |            | 1053 |

<210> 92 <211> 3106

<212> ADN

<213> Sorghastrum nutans

<400> 92

5

| agctttgacc | aacacatgag | atgggcgcct | tacgtttggc | acaatgtaat | gtagtccggc | 60   |
|------------|------------|------------|------------|------------|------------|------|
| acggcaagtt | agactctgtg | tgtagtgtta | tattagccgg | cctctttagg | tttggcacaa | 120  |
| tttaattgaa | tccggcatgg | caagttagac | tgcagtgtga | gccggtcacc | gcaagttagg | 180  |
| atataatata | caagagcaag | tatacaataa | agtgacatta | gcgtaaagtt | atatgacata | 240  |
| tggaatataa | gagaaaatac | ggagtatata | ataaggtgaa | ctgtatagcg | atcaaattta | 300  |
| tgctaagcga | agaaaagaga | agataaatag | gttgaaaact | tatagtgagc | tttggctcat | 360  |
| aatctaaata | attatgagag | agtgggatcg | accacatatt | cattttgtag | tacgtactct | 420  |
| ctccgttttt | tataagttgc | tttgattttt | ttttatatca | attttgctat | acatctaaac | 480  |
| ataataggaa | tatcaagttc | atgaaggtcg | tgatttgcac | taaatatgtt | cccttattag | 540  |
| atagacgagt | tgtttagttt | tattgtagat | gatatagcgc | ttgcatatag | catgtgaacc | 600  |
| ggctaaatta | ttagccatac | acgactataa | aaaatgacat | tcctttgagg | aacttttatg | 660  |
| caaccaaata | gtcaacttca | atgttgctag | agcgggcttt | aagccaaaag | cagetgetge | 720  |
| tttgtttccg | agagaaggga | cattctagtt | gatagcaaaa | caaatacgta | gcagttgtag | 780  |
| cgagtgtgtg | agtaataatt | tttctctagt | gtgtacgagt | atgcgagtaa | taattttaaa | 840  |
| tctctagaag | gaagaaaaat | aatattgcta | cctactttga | ggatatcaat | acctttctct | 900  |
| aaaatgtttt | ggtgaagcca | tctttaaagc | taattgttca | agattcaacc | attgggacgt | 960  |
| ctcaaatgat | tagatectat | aatactccta | cgtactaaat | tataagtcgt | tttgatttta | 1020 |

| ttggtacata | cattttgcta | tgtgtttaga | tataataata | tgtctagata | cattggatga | 1080 |
|------------|------------|------------|------------|------------|------------|------|
| accgaaaaaa | tcgaaacgac | ttataatttg | gatcgaaagg | agtatttgct | aaagtccttt | 1140 |
| tcgaagttcc | ggctctaaat | ttttggataa | aattttatga | aatactatct | taagaagtaa | 1200 |
| tttgactaga | gaagcttgaa | gagtataatc | tcttaatttt | gtgctacagg | agtgaagcca | 1260 |
| acgtcgtatt | tagatctaga | tgctgtcagg | tagtgaggac | ggagggagta | ttggataaag | 1320 |
| tcattccaag | atcttagaaa | attaaagtat | attaagtttg | attaaattta | tatgacaagt | 1380 |
| aataacattc | atgatgccaa | ttaagtatca | ttagattctt | catcaactat | attttcatag | 1440 |
| tatacttatt | taatgttata | aatttttata | attttttta  | taattttagc | taaactcgag | 1500 |
| atcgattctt | ataattaaaa | ataaactgaa | aaaaaatcac | atgttcaagt | gacaggagga | 1560 |
| gccagtttaa | cggcgtcgac | aagtctaacg | gacaccaacc | agcgaaccac | cagcgccgag | 1620 |
| ccaatcccaa | gcgaagccga | ctgcagacgg | ccgagacgtt | gacacctttg | gcgcggcatc | 1680 |
| catctctccg | gccccctctt | gagagttccg | ccccaccggc | ggcggtttcc | aagtccgttc | 1740 |
| egeeegeett | cgcggttgga | cttgttccgg | tggcgcctgg | cggatcgcgt | ggcggagcgg | 1800 |
| agacgacgag | gtgagccgtg | ggcgttcctc | ctcctgctcc | teteacaegg | cacggaacgg | 1860 |
| aaccgtgacg | gcaccgggca | gcacgggcgg | gattccttcc | ccacctctcc | ttcggtcctc | 1920 |
| cctccatcat | aaatagccac | ccccctccca | cettettee  | ccacctcgtc | teccetcgtg | 1980 |
| ttattcggag | cacagacaca | ccccgatccc | caatcctctc | ctcgcgagcc | tcgtcgatcc | 2040 |
| ccgcttcaag | gtacggcgat | catectecet | ccctaactcc | aatccgtggt | tagggeetge | 2100 |
| tagatcgtcc | teceteceta | cctgcgatcc | gtggttcgcg | cctgctagtt | ctgtttcctg | 2160 |
| tttgtcgatg | gctgcgaggt | ataatagatc | tgatggcgtg | cggtgtgacg | gttaaattca | 2220 |
| catgctcttg | cgatttatac | gcgaatcgat | ctgggattgc | tcgagatcgg | tgatccatgg | 2280 |
| ttagaaccct | aggcggtgga | gtcgggttaa | atccgtgctg | ttagggttcg | taggtggatg | 2340 |
| cgacctgttc | tggttgttta | cttgtcagta | tttaggaatc | ctactaggat | ggttctagct | 2400 |
| ggttcgcaga | tgagatcgat | ttcatgatct | gctatatctt | tegttgeeta | agtttcgttt | 2460 |
| aatctgtccg | tggtatgatg | ttagcctttg | atatgcttcg | atcgtgctag | ctacctcctg | 2520 |
| tgcactaaat | tatcageteg | taatttttag | catgcccttt | tttttttggg | tattgttcga | 2580 |
| ttgaggtgtc | gttctagatc | agagtaggaa | gactgtttca | aactacctgc | tggatttatt | 2640 |
| aaatttggat | ctgtatgagt | atcacatata | tctccataat | ttagatggat | ggaaatatcc | 2700 |
| ctttttcttt | tagatactgt | ttggtataga | ttttgctgtg | ggttttactg | gtacttagat | 2760 |
| actcttcgtt | tagatatgga | tatgtttaca | tgcagataca | tgaagcaaca | tgctgctaca | 2820 |
| gtttaatatg | gataggtgta | tatgttgttg | tgggtccttt | acttacatgc | ttagatacat | 2880 |

gaagcaacat gctgctacgt ttaataatta ttgtttatct gatctgatt aaacaaacat 2940 gcttttaat tgtcctgaaa tgcttggatg atggcatatg cagcagctat gtgtggattt 3000 taaataccca gcatgagcat gcatgaccct aacttagtat gctgtttatt tgcttgactt 3060 ttcttttgtt gatactcacc cttttgtttg ttgactcttg caggtg 3106

<210> 93

<211> 1964

<212> ADN

5 <213> Sorghastrum nutans

<400> 93

agetttgace aacacatgag atgggegeet taegtttgge acaatgtaat gtagteegge 60 acggcaagtt agactetgtg tgtagtgtta tattageegg cetetttagg tttggcacaa 120 tttaattgaa teeggeatgg caagttagae tgeagtgtga geeggteaee geaagttagg 180 atataatata caagagcaag tatacaataa agtgacatta gcgtaaagtt atatgacata tggaatataa gagaaaatac ggagtatata ataaggtgaa ctgtatagcg atcaaattta 300 tgctaagcga agaaaagaga agataaatag gttgaaaact tatagtgagc tttggctcat 360 aatctaaata attatgagag agtgggatcg accacatatt cattttgtag tacgtactct 420 ctccgttttt tataagttgc tttgattttt ttttatatca attttgctat acatctaaac 480 ataataggaa tatcaagttc atgaaggtcg tgatttgcac taaatatgtt cccttattag 540 atagacgagt tgtttagttt tattgtagat gatatagcgc ttgcatatag catgtgaacc 600 ggctaaatta ttagccatac acgactataa aaaatgacat tcctttgagg aacttttatg 720 caaccaaata gtcaacttca atgttgctag agegggettt aagecaaaag cagetgetge tttgtttccg agagaaggga cattctagtt gatagcaaaa caaatacgta gcagttgtag 780 cgagtgtgtg agtaataatt tttctctagt gtgtacgagt atgcgagtaa taattttaaa 840 tototagaag gaagaaaaat aatattgota cotactttga ggatatcaat acctttotot aaaatgtttt ggtgaagcca tctttaaagc taattgttca agattcaacc attgggacgt 960 ctcaaatgat tagatcctat aatactccta cgtactaaat tataagtcgt tttgatttta 1020 ttggtacata cattttgcta tgtgtttaga tataataata tgtctagata cattggatga 1080 accgaaaaaa tcgaaacgac ttataatttg gatcgaaagg agtatttgct aaagtccttt 1140 tcgaagttcc ggctctaaat ttttggataa aattttatga aatactatct taagaagtaa 1200 tttgactaga gaagcttgaa gagtataatc tcttaatttt gtgctacagg agtgaagcca 1260 acqtcqtatt tagatctaga tqctqtcagq tagtqaqqac qqaqqqaqta ttqqataaaq 1320 tcattccaag atcttagaaa attaaagtat attaagtttg attaaattta tatgacaagt 1380 aataacattc atgatgccaa ttaagtatca ttagattctt catcaactat attttcatag 1440 tatacttatt taatgttata aatttttata attttttta taatttagc taaactcgag 1500 atcgattctt ataattaaaa ataaactgaa aaaaaatcac atgttcaagt gacaggagga 1560 gccagtttaa cggcgtcgac aagtctaacg gacaccaacc agcgaaccac cagcgccgag 1620 ccaatcccaa gcgaagccga ctgcagacgg ccgagacgtt gacacctttg gcgcggcatc 1680 catctctccg gccccctctt gagagttccg ccccaccggc ggcggtttcc aagtccgttc 1740 cgcccgcctt cgcggttgga cttgttccgg tggcgcctgg cggatcgcgt ggcggagcgg 1800 agacgacgag gtgagccgtg ggcgttcctc ctcctgctcc tctcacaccgg cacggaacgg 1860 aaccgtgacg gcaccgggca gcaccggcgg gattccttcc ccacctctcc ttcggtcctc 1920 cctccatcat aaatagccac ccccctcca ccttcttcc ccac

<210> 94

<211> 1056

<212> ADN

<213> Sorghastrum nutans

<400> 94

5

gtacggcgat catectecet ecctaactee aatecgtggt tagggeetge tagategtee 60 teceteceta cetgegatee gtggttegeg cetgetagtt etgttteetg tttgtegatg 120 180 gctgcgaggt ataatagatc tgatggcgtg cggtgtgacg gttaaattca catgctcttg 240 cgatttatac gcgaatcgat ctgggattgc tcgagatcgg tgatccatgg ttagaaccct 300 aggeggtgga gtegggttaa ateegtgetg ttagggtteg taggtggatg egacetgtte tggttgttta ettgteagta tttaggaate etaetaggat ggttetaget ggttegeaga 360 tgagategat tteatgatet getatatett tegttgeeta agtttegttt aatetgteeg 420 tggtatgatg ttageetttg atatgetteg ategtgetag etaceteetg tgeactaaat 480 tatcageteg taatttttag eatgeeettt ttttttttggg tattgttega ttgaggtgte 540 gttctagatc agagtaggaa gactgtttca aactacctgc tggatttatt aaatttggat 600 660 ctgtatgagt atcacatata tctccataat ttagatggat ggaaatatcc ctttttcttt 720 tagatactgt ttggtataga ttttgctgtg ggttttactg gtacttagat actcttcgtt tagatatgga tatgtttaca tgcagataca tgaagcaaca tgctgctaca gtttaatatg 780 gataggtgta tatgttgttg tgggtccttt acttacatgc ttagatacat gaagcaacat 840 gctgctacgt ttaataatta ttgtttatct gatctgattt aaacaaacat gctttttaat 900 tgtcctgaaa tgcttggatg atggcatatg cagcagctat gtgtggattt taaataccca 960 gcatgagcat gcatgaccct aacttagtat gctgtttatt tgcttgactt ttcttttgtt 1020 1056 gatactcacc cttttgtttg ttgactcttg caggtg

<210> 95 <211> 2165

<212> ADN

<213> Sorghastrum nutans

5 <400> 95

gattcaacca ttgggacgtc tcaaatgatt agatcctata atactcctac gtactaaatt 60 ataagtegtt ttgattttat tggtacatae attttgetat gtgtttagat ataataatat 120 gtctagatac attggatgaa ccgaaaaaat cgaaacgact tataatttgg atcgaaagga 180 gtatttgcta aagteetttt egaagtteeg getetaaatt tttggataaa attttatgaa 240 atactatett aagaagtaat ttgactagag aagettgaag agtataatet ettaattttg 300 tgctacagga gtgaagccaa cgtcgtattt agatctagat gctgtcaggt agtgaggacg 360 gagggagtat tggataaagt cattccaaga tcttagaaaa ttaaagtata ttaagtttga 420 ttaaatttat atgacaagta ataacattca tgatgccaat taagtatcat tagattcttc 480 540 atcaactata ttttcatagt atacttattt aatgttataa atttttataa ttttttttat aattttagct aaactcgaga tcgattctta taattaaaaa taaactgaaa aaaaatcaca 600 tgttcaagtg acaggaggag ccagtttaac ggcgtcgaca agtctaacgg acaccaacca 660 gcgaaccacc agcgccgage caateccaag cgaagccgae tgcagacggc cgagacgttg 720 acacetttgg cgcggcatce atctetecgg cecectettg agagttecge cecaceggeg 780 840 geggttteea agteegttee geeegeette geggttggae ttgtteeggt ggegeetgge 900 ggategegtg geggagegga gaegaegagg tgageegtgg gegtteetee teetgeteet ctcacacggc acggaacgga accgtgacgg caccgggcag cacgggcggg attecttccc cacctetect teggteetee etecateata aatageeace ecceteceae ettettteee 1020 cacctcgtct cccctcgtgt tattcggagc acagacacac cccgatcccc aatcctctcc 1080 tegegageet egtegateee egetteaagg taeggegate atecteeete eetaacteea 1140 atcogtggtt agggcctgct agategteet cecteectae etgegateeg tggttegege 1200 ctgctagttc tgtttcctgt ttgtcgatgg ctgcgaggta taatagatct gatggcgtgc 1260 ggtgtgacgg ttaaattcac atgctcttgc gatttatacg cgaatcgatc tgggattgct 1320 cgagatcggt gatccatggt tagaacccta ggcggtggag tcgggttaaa tccgtgctgt 1380 tagggttcgt aggtggatgc gacctgttct ggttgtttac ttgtcagtat ttaggaatcc 1440 tactaggatg gttctagctg gttcgcagat gagatcgatt tcatgatctg ctatatcttt 1500 egttgeetaa gtttegttta atetgteegt ggtatgatgt tageetttga tatgettega 1560 tegtgetage taccteetgt geactaaatt ateagetegt aattittage atgeeetttt 1620 tttttttgggt attgttcgat tgaggtgtcg ttctagatca gagtaggaag actgtttcaa 1680

actacctgct ggatttatta aatttggatc tgtatgagta tcacatatat ctccataatt 1740 tagatggatg gaaatatccc ttttctttt agatactgtt tggtatagat tttgctgtgg 1800 gttttactgg tacttagata ctcttcgttt agatatggat atgtttacat gcagatacat 1860 gaagcaacat gctgctacag tttaatatgg ataggtgtat atgttgttgt gggtccttta 1920 cttacatgct tagatacatg aagcaacatg ctgctacgtt taataattat tgtttatctg 1980 atctgattta aacaaacatg cttttaatt gtcctgaaat gcttggatga tggcatatgc 2040 agcagctatg tgtggatttt aaatacccag catgagcatg catgacccta acttagtatg 2100 ctgtttattt gcttgacttt tctttgttg atactcaccc ttttgttgt tgactcttgc 2160 aggtg

<210> 96

<211> 1023

<212> ADN

<213> Sorghastrum nutans

<400> 96

5

gattcaacca ttgggacgtc tcaaatgatt agatcctata atactcctac gtactaaatt 60 ataagtcgtt ttgattttat tggtacatac attttgctat gtgtttagat ataataatat 120 gtctagatac attggatgaa ccgaaaaaat cgaaacgact tataatttgg atcgaaagga 180 gtatttgcta aagtcctttt cgaagttccg gctctaaatt tttggataaa attttatgaa 240 atactatett aagaagtaat ttgactagag aagettgaag agtataatet ettaattttg 300 tgctacagga gtgaagccaa cgtcgtattt agatctagat gctgtcaggt agtgaggacg 360 gagggagtat tggataaagt cattccaaga tcttagaaaa ttaaagtata ttaagtttga 420 ttaaatttat atgacaagta ataacattca tgatgccaat taagtatcat tagattcttc 480 atcaactata ttttcatagt atacttattt aatgttataa atttttataa ttttttttat 540 aattttagct aaactcgaga tcgattctta taattaaaaa taaactgaaa aaaaatcaca 600 660 tgttcaagtg acaggaggag ccagtttaac ggcgtcgaca agtctaacgg acaccaacca gcgaaccacc agcgccgagc caatcccaag cgaagccgac tgcagacggc cgagacgttg 720 acacetttgg cgcggcatec atetetecgg ceceetettg agagttecge eecaceggeg 780 geggttteea agteegttee geeegeette geggttggae ttgtteeggt ggegeetgge 840 900 ggatcgcgtg gcggagcgga gacgacgagg tgagccgtgg gcgttcctcc tcctgctcct ctcacacggc acggaacgga accgtgacgg caccgggcag cacgggcggg attccttccc 960 cacctetect teggteetec etecateata aatageeace ecceteceae ettettteee 1020 1023 cac

<210> 97 <211> 1866 <212> ADN <213> Sorghastrum nutans

| gtgctacagg | agtgaagcca | acgtcgtatt | tagatotaga | tgctgtcagg | tagtgaggac | 60   |
|------------|------------|------------|------------|------------|------------|------|
| ggagggagta | ttggataaag | tcattccaag | atcttagaaa | attaaagtat | attaagtttg | 120  |
| attaaattta | tatgacaagt | aataacattc | atgatgccaa | ttaagtatca | ttagattctt | 180  |
| catcaactat | attttcatag | tatacttatt | taatgttata | aatttttata | attttttta  | 240  |
| taattttagc | taaactcgag | atcgattctt | ataattaaaa | ataaactgaa | aaaaaatcac | 300  |
| atgttcaagt | gacaggagga | gccagtttaa | cggcgtcgac | aagtctaacg | gacaccaacc | 360  |
| agcgaaccac | cagcgccgag | ccaatcccaa | gcgaagccga | ctgcagacgg | ccgagacgtt | 420  |
| gacacctttg | gcgcggcatc | catctctccg | gccccctctt | gagagttccg | ccccaccggc | 480  |
| ggcggtttcc | aagtccgttc | cgcccgcctt | cgcggttgga | cttgttccgg | tggcgcctgg | 540  |
| cggatcgcgt | ggcggagcgg | agacgacgag | gtgagccgtg | ggcgttcctc | ctcctgctcc | 600  |
| tctcacacgg | cacggaacgg | aaccgtgacg | gcaccgggca | gcacgggcgg | gatteettee | 660  |
| ccacctctcc | ttcggtcctc | cctccatcat | aaatagccac | cccctccca  | ccttctttcc | 720  |
| ccacctcgtc | teceetegtg | ttattcggag | cacagacaca | ccccgatccc | caatcetete | 780  |
| ctcgcgagcc | tcgtcgatcc | ccgcttcaag | gtacggcgat | catcctccct | ccctaactcc | 840  |
| aatccgtggt | tagggcctgc | tagategtee | teceteceta | cctgcgatcc | gtggttcgcg | 900  |
| cctgctagtt | ctgtttcctg | tttgtcgatg | gctgcgaggt | ataatagatc | tgatggcgtg | 960  |
| cggtgtgacg | gttaaattca | catgetettg | cgatttatac | gcgaatcgat | ctgggattgc | 1020 |
| tcgagatcgg | tgatccatgg | ttagaaccct | aggcggtgga | gtcgggttaa | atccgtgctg | 1080 |
| ttagggttcg | taggtggatg | cgacctgttc | tggttgttta | cttgtcagta | tttaggaatc | 1140 |
| ctactaggat | ggttctagct | ggttcgcaga | tgagatcgat | ttcatgatct | gctatatctt | 1200 |
| tegttgeeta | agtttcgttt | aatctgtccg | tggtatgatg | ttagcctttg | atatgcttcg | 1260 |
| atcgtgctag | ctacctcctg | tgcactaaat | tatcageteg | taatttttag | catgecettt | 1320 |
| tttttttggg | tattgttcga | ttgaggtgtc | gttctagatc | agagtaggaa | gactgtttca | 1380 |
| aactacctgc | tggatttatt | aaatttggat | ctgtatgagt | atcacatata | tetecataat | 1440 |
| ttagatggat | ggaaatatcc | ctttttcttt | tagatactgt | ttggtataga | ttttgctgtg | 1500 |
| ggttttactg | gtacttagat | actcttcgtt | tagatatgga | tatgtttaca | tgcagataca | 1560 |
| tgaagcaaca | tgctgctaca | gtttaatatg | gataggtgta | tatgttgttg | tgggtccttt | 1620 |
| acttacatgc | ttagatacat | gaagcaacat | gctgctacgt | ttaataatta | ttgtttatct | 1680 |

5

10

|   | gatctgattt                                           | aaacaaacat   | gctttttaat   | tgtcctgaaa   | tgcttggatg   | atggcatatg | 1740 |
|---|------------------------------------------------------|--------------|--------------|--------------|--------------|------------|------|
|   | cagcagctat                                           | gtgtggattt   | taaataccca   | gcatgagcat   | gcatgaccct   | aacttagtat | 1800 |
|   | gctgtttatt                                           | : tgcttgactt | ttcttttgtt   | gatactcacc   | cttttgtttg   | ttgactcttg | 1860 |
|   | caggtg                                               |              |              |              |              |            | 1866 |
|   | 210> 98<br>211> 724<br>212> ADN<br>213> Sorghastr    | um nutans    |              |              |              |            |      |
|   | 400> 98                                              |              |              |              |              |            |      |
|   | gtgctacagg                                           | agtgaagcca   | acgtcgtatt   | tagatctaga   | tgctgtcagg   | tagtgaggac | 60   |
|   | ggagggagta                                           | ttggataaag   | tcattccaag   | atcttagaaa   | attaaagtat   | attaagtttg | 120  |
|   | attaaattta                                           | tatgacaagt   | aataacattc   | atgatgccaa   | ttaagtatca   | ttagattctt | 180  |
|   | catcaactat                                           | attttcatag   | tatacttatt   | taatgttata   | aatttttata   | attttttta  | 240  |
|   | taattttagc                                           | taaactcgag   | atcgattctt   | ataattaaaa   | ataaactgaa   | aaaaaatcac | 300  |
|   | atgttcaagt                                           | gacaggagga   | gccagtttaa   | cggcgtcgac   | aagtctaacg   | gacaccaacc | 360  |
|   | agcgaaccac                                           | cagegeegag   | ccaatcccaa   | gcgaagccga   | ctgcagacgg   | ccgagacgtt | 420  |
|   | gacacctttg                                           | gcgcggcatc   | catctctccg   | gccccctctt   | gagagttccg   | ccccaccggc | 480  |
|   | ggcggtttcc                                           | aagtccgttc   | cgcccgcctt   | cgcggttgga   | cttgttccgg   | tggcgcctgg | 540  |
|   | cggatcgcgt                                           | ggcggagcgg   | agacgacgag   | gtgagccgtg   | ggcgttcctc   | ctcctgctcc | 600  |
|   | tctcacacgg                                           | cacggaacgg   | aaccgtgacg   | gcaccgggca   | gcacgggcgg   | gattccttcc | 660  |
|   | ccacctctcc                                           | tteggteete   | cctccatcat   | aaatagccac   | cccctccca    | ccttctttcc | 720  |
|   | ccac                                                 |              |              |              |              |            | 724  |
|   | 210> 99<br>211> 2625<br>212> ADN<br>213> Setaria ita | alica        |              |              |              |            |      |
|   | 400> 99                                              |              |              |              |              |            |      |
| 3 | ıctgccgcga                                           | cacgcctcac · | tggcgggagg ( | geteegageg ( | ctctctcccc « | ggeggeegge | 60   |
| 2 | ıgagcagcga                                           | tctggattgg : | agagaataga 🤉 | ggaaagagag ( | ggaaaaggag   | agagatagcg | 120  |
|   | aaagagctg                                            | aaaagataag ( | gttgtgcggg ( | etgtggtgat   | tagaggacca ( | ctaatccctc | 180  |
|   | atctcctaa                                            | tgacgcggtg ( | cccaagacca ( | gtgeegegge   | acaccagegt   | ctaagtgaac | 240  |
| t | tecgetaac                                            | cttccggtca · | ttgcgcctga a | aagatgtcat ( | gtggcgaggc   | cccctctca  | 300  |
|   |                                                      |              |              |              |              |            |      |

gtagattgcc aactgcctac cgtgccactc ttccatgcat gattgctccc gtctatcccg 360

| tttctcacaa | cagatagaca | acagtaagca | tcactaaagc | aagcatgtgt | agaaccttaa | 420  |
|------------|------------|------------|------------|------------|------------|------|
| aaaaaggctt | atactaccag | tatactatca | accagcatgc | cgtttttgaa | gtatccagga | 480  |
| ttagaagctt | ctactgcgct | tttatattat | agctgtggac | ccgtggtaac | ctttctcttt | 540  |
| tggcgcttgc | ttaatctcgg | ccgtgctggt | ccatgcttag | gcactaggca | gagatagagc | 600  |
| cgggggtgaa | tggggctaaa | gctcagctgc | tegaggggee | gtgggctggt | ttccactagc | 660  |
| ctacagctgt | gccacgtgcg | gccgcgcaag | ccgaagcaag | cacgctgagc | cgttggacag | 720  |
| cttgtcataa | tgccattacg | tggattacac | gtaactggcc | ctgtaactac | tegtteggee | 780  |
| atcatcaaac | gacgacgtcc | gctaggcgac | gacacgggta | atgcacgcag | ccacccaggc | 840  |
| gcgcgcgcta | gcggagcacg | gtcaggtgac | acgggcgtcg | tgacgettee | gagttgaagg | 900  |
| ggttaacgcc | agaaacagtg | tttggccagg | gtatgaacat | aacaaaaaat | attcacacga | 960  |
| aagaatggaa | gtatggagct | gctactgtgt | aaatgccaag | caggaaactc | acgcccgcta | 1020 |
| acatccaacg | gccaacagct | cgacgtgccg | gtcagcagag | catcggaaca | ctggtgattg | 1080 |
| gtggagccgg | cagtatgege | cccagcacgg | ccgaggtggt | ggtggcccgt | ggccctgctg | 1140 |
| tetgegegge | tegggacaac | ttgaaactgg | gccaccgcct | cgtcgcaact | cgcaacccgt | 1200 |
| tggcggaaga | aaggaatggc | tegtagggge | ccgggtagaa | tcgaagaatg | ttgcgctggg | 1260 |
| cttcgattca | cataacatgg | geetgaaget | ctaaaacgac | ggcccggtcg | ccgcgcgatg | 1320 |
| gaaagagacc | ggatcctcct | cgtgaattct | ggaaggccac | acgagagcga | cccaccaccg | 1380 |
| acgcggagga | gtcgtgcgtg | gtccaacacg | gccggcgggc | tgggctgcga | ccttaaccag | 1440 |
| caaggcacgc | cacgacccgc | cccgccctcg | aggcataaat | acceteccat | cccgttgccg | 1500 |
| caagactcag | atcagattcc | gatccccagt | tcttccccaa | tcaccttgtg | gtctctcgtg | 1560 |
| togoggttcc | cagggacgcc | teeggetegt | cgctcgacag | cgatctccgc | cccagcaagg | 1620 |
| tatagattca | gttccttgct | ccgatcccaa | tctggttgag | atgttgctcc | gatgcgactt | 1680 |
| gattatgtca | tatatctgcg | gtttgcaccg | atctgaagcc | tagggtttct | cgagcgaccc | 1740 |
| agttatttgc | aatttgcgat | ttgctcgttt | gttgcgcagc | gtagtttatg | tttggagtaa | 1800 |
| tegaggattt | gtatgeggeg | teggegetae | ctgcttaatc | acgccatgtg | acgcggttac | 1860 |
| ttgcagaggc | tgggttctgt | tatgtcgtga | tctaagaatc | tagattaggc | tcagtcgttc | 1920 |
| ttgctgtcga | ctagtttgtt | ttgatatcca | tgtagtacaa | gttacttaaa | atttaggtcc | 1980 |
| aatatatttt | gcatgctttt | ggcctgttat | tcttgccaac | aagttgtcct | ggtaaaaagt | 2040 |
| agatgtgaaa | gtcacgtatt | gggacaaatt | gatggtttag | tgctatagtt | ctatagttct | 2100 |
| gtgatacatc | tatctgattt | tttttggtct | attggtgcct | aacttatctg | aaaatcatgg | 2160 |
| aacatgaggc | tagtttgatc | atggtttagt | tcattgtgat | taataatgta | tgatttagta | 2220 |
| gctattttgg | tgatcgtgtc | attttatttg | tgaatggaat | cattgtatgt | aaatgaagct | 2280 |

agttcagggg ttacgatgta gctggctttg tattctaaag gctgctatta ttcatccatc 2340 gatttcacct atatgtaatc cagagctttt gatgtgaaat ttgtctgatc cttcactagg 2400 aaggacagaa cattgttaat attttggcac atctgtctta ttctcatcct ttgtttgaac 2460 atgttagcct gttcaaaccag atactgttgt aatgtcctag ttatataggt acatatgtgt 2520 tctctattga gtttatggac ttttgtgtgt gaagttatat ttcattttgc tcaaaactca 2580 tgtttgcaag ctttctgaca ttattctatt gttctgaaac agggt 2625

<210> 100

<211> 1492

<212> ADN

<213> Setaria italica

<400> 100

5

actgoogoga cacgootoac tggogggagg gotocgageg otototococ ggoggooggo 60 ggagcagcga totggattgg agagaataga ggaaagagag ggaaaaggag agagatagcg 120 caaagagetg aaaagataag gttgtgeggg etgtggtgat tagaggaeca etaateeete 180 240 catetectaa tgacgeggtg cecaagaeca gtgeegegge acaecagegt etaagtgaac 300 ttccgctaac cttccggtca ttgcgcctga aagatgtcat gtggcgaggc cccctctca 360 gtagattgcc aactgcctac cgtgccactc ttccatgcat gattgctccc gtctatcccg tttctcacaa cagatagaca acagtaagca tcactaaagc aagcatgtgt agaaccttaa 420 aaaaaggett atactaccag tatactatca accagcatge egtttttgaa gtatecagga 480 ttagaagett etactgeget tttatattat agetgtggac eegtggtaac etttetettt 540 tggcgcttgc ttaatctcgg ccgtgctggt ccatgcttag gcactaggca gagatagagc 600 cgggggtgaa tggggctaaa geteagetge tegaggggee gtgggetggt ttecaetage 660 720 ctacagetgt gecaegtgeg geegegeaag eegaageaag caegetgage egttggaeag 780 cttgtcataa tgccattacg tggattacac gtaactggcc ctgtaactac tcgttcggcc atcatcaaac gacgacgtcc gctaggcgac gacacgggta atgcacgcag ccacccaggc 840 900 gegegegeta geggageaeg gteaggtgae aegggegteg tgaegettee gagttgaagg ggttaacgcc agaaacagtg tttggccagg gtatgaacat aacaaaaaat attcacacga aagaatggaa gtatggaget getactgtgt aaatgeeaag caggaaaete acgeeegeta 1020 acatecaaeg gecaacaget egaegtgeeg gteageagag categgaaea etggtgattg 1080 gtggagccgg cagtatgcgc cccagcacgg ccgaggtggt ggtggcccgt ggccctgctg 1140 tctgcgcggc tcgggacaac ttgaaactgg gccaccgcct cgtcgcaact cgcaacccgt 1200 tggcggaaga aaggaatggc tcgtaggggc ccgggtagaa tcgaagaatg ttgcgctggg 1260

cttcgattca cataacatgg gcctgaagct ctaaaacgac ggcccggtcg ccgcgcgatg 1320 gaaagagacc ggatcctcct cgtgaattct ggaaggccac acgagagcga cccaccaccg 1380 acgcggagga gtcgtgcgtg gtccaacacg gccggcggc tgggctgcga ccttaaccag 1440 caaggcacgc cacgaccgc cccgccctcg aggcataaat accctccat cc 1492

<210> 101

<211> 127

<212> ADN

5 <213> Setaria italica

<400> 101

cgttgccgca agactcagat cagattccga tccccagttc ttccccaatc accttgtggt 60 ctctcgtgtc gcggttccca gggacgcctc cggctcgtcg ctcgacagcg atctccgccc 120 cagcaag 127

<210> 102

<211> 1006

<212> ADN

10

<213> Setaria italica

<400> 102

60 gtatagattc agttccttgc tccgatccca atctggttga gatgttgctc cgatgcgact tgattatgtc atatatctgc ggtttgcacc gatctgaagc ctagggtttc tcgagcgacc 120 cagttatttg caatttgcga tttgctcgtt tgttgcgcag cgtagtttat gtttggagta 180 ategaggatt tgtatgegge gteggegeta cetgettaat caegecatgt gaegeggtta 240 cttgcagagg ctgggttctg ttatgtcgtg atctaagaat ctagattagg ctcagtcgtt 300 cttgctgtcg actagtttgt tttgatatcc atgtagtaca agttacttaa aatttaggtc 360 caatatattt tgcatgcttt tggcctgtta ttcttgccaa caagttgtcc tggtaaaaag 420 tagatgtgaa agtcacgtat tgggacaaat tgatggttta gtgctatagt tctatagttc 480 tgtgatacat ctatctgatt ttttttggtc tattggtgcc taacttatct gaaaatcatg 540 gaacatgagg ctagtttgat catggtttag ttcattgtga ttaataatgt atgatttagt 600 agctattttg gtgatcgtgt cattttattt gtgaatggaa tcattgtatg taaatgaagc 660 tagttcaggg gttacgatgt agctggcttt gtattctaaa ggctgctatt attcatccat 720 cgatttcacc tatatgtaat ccagagettt tgatgtgaaa tttgtctgat cettcactag 780 840 gaaggacaga acattgttaa tattttggca catctgtctt attctcatcc tttgtttgaa catgttagcc tgttcaaaca gatactgttg taatgtccta gttatatagg tacatatgtg 900 ttctctattq agtttatgqa cttttgtgtg tgaagttata tttcattttg ctcaaaactc 960 1006 atgtttgcaa gctttctgac attattctat tgttctgaaa cagggt

<210> 103 <211> 2625 <212> ADN <213> Setaria italica

| actgccgcga | cacgcctcac | tggcgggagg | gctccgagcg | ctctctcccc | ggeggeegge | 60   |
|------------|------------|------------|------------|------------|------------|------|
| ggagcagcga | tctggattgg | agagaataga | ggaaagagag | ggaaaaggag | agagatagcg | 120  |
| caaagagctg | aaaagataag | gttgtgcggg | ctgtggtgat | tagaggacca | ctaatccctc | 180  |
| catctcctaa | tgacgcggtg | cccaagacca | gtgccgcggc | acaccagcgt | ctaagtgaac | 240  |
| ttccgctaac | cttccggtca | ttgcgcctga | aagatgtcat | gtggcgaggc | cccctctca  | 300  |
| gtagattgcc | aactgcctac | cgtgccactc | ttccatgcat | gattgctccc | gtctatcccg | 360  |
| tttctcacaa | cagatagaca | acagtaagca | tcactaaagc | aagcatgtgt | agaaccttaa | 420  |
| aaaaaggctt | atactaccag | tatactatca | accagcatgc | cgtttttgaa | gtatccagga | 480  |
| ttagaagctt | ctactgcgct | tttatattat | agctgtggac | ctgtggtaac | ctttctcttt | 540  |
| tggcgcttgc | ttaatctcgg | ccgtgctggt | ccatgcttag | gcactaggca | gagatagagc | 600  |
| cgggggtgaa | tggggctaaa | geteagetge | tegaggggee | gtgggctggt | ttccactage | 660  |
| ctacagctgt | gccacgtgcg | gccgcgcaag | ccgaagcaag | cacgctgagc | cgttggacag | 720  |
| cttgtcataa | tgccattacg | tggattacac | gtaactggcc | ctgtaactac | tegtteggee | 780  |
| atcatcaaac | gacgacgtcc | gctaggcgac | gacacgggta | atgcacgcag | ccacccaggc | 840  |
| gegegegeta | geggageaeg | gtcaggtgac | acgggcgtcg | tgacgcttcc | gagttgaagg | 900  |
| ggttaacgcc | agaaacagtg | tttggccagg | gtatgaacat | aacaaaaaat | attcacacga | 960  |
| aagaatggaa | gtatggagct | gctactgtgt | aaatgccaag | caggaaactc | acgcccgcta | 1020 |
| acatccaacg | gccaacagct | cgacgtgccg | gtcagcagag | catcggaaca | ctggtgattg | 1080 |
| gtggagccgg | cagtatgcgc | cccagcacgg | ccgaggtggt | ggtggcccgt | ggccctgctg | 1140 |
| tetgegegge | tegggacaac | ttgaaactgg | gccaccgcct | cgtcgcaact | cgcaacccgt | 1200 |
| tggcggaaga | aaggaatggc | tegtagggge | ccgggtagaa | tcgaagaatg | ttgcgctggg | 1260 |
| cttcgattca | cataacatgg | geetgaaget | ctaaaacgac | ggcccggtcg | ccgcgcgatg | 1320 |
| gaaagagacc | ggateeteet | cgtgaattct | ggaaggccac | acgagagcga | cccaccaccg | 1380 |
| acgcggagga | gtcgtgcgtg | gtccaacacg | geeggeggge | tgggctgcga | ccttaaccag | 1440 |
| caaggcacgc | cacgacccgc | cccgccctcg | aggcataaat | accctcccat | cccgttgccg | 1500 |
| caagactcag | atcagattcc | gatccccagt | tcttccccaa | tcaccttgtg | gtctctcgtg | 1560 |
| tegeggttee | cagggacgcc | tccggctcgt | cgctcgacag | cgatctccgc | cccagcaagg | 1620 |

tatagattca gttccttgct ccgatcccaa tctggttgag atgttgctcc gatgcgactt 1680 gattatgtca tatatctgcg gtttgcaccg atctgaagce tagggtttct cgagcgacce 1740 agttatttgc aatttgcgat ttgctcgttt gttgcgcagc gtagtttatg tttggagtaa 1800 togaggattt gtatgoggog toggogotac otgottaatc acgocatgtg acgoggttac 1860 ttgcagagge tgggttetgt tatgtegtga tetaagaate tagattagge teagtegtte 1920 ttgctgtcga ctagtttgtt ttgatatcca tgtagtacaa gttacttaaa atttaggtcc 1980 aatatatttt geatgetttt ggeetgttat tettgeeaae aagttgteet ggtaaaaagt 2040 agatgtgaaa gtcacgtatt gggacaaatt gatggtttag tgctatagtt ctatagttct 2100 gtgatacatc tatctgattt tttttggtct attggtgcct aacttatctg aaaatcatgg 2160 aacatgaggc tagtttgatc atggtttagt tcattgtgat taataatgta tgatttagta 2220 gctattttgg tgatcgtgtc attttatttg tgaatggaat cattgtatgt aaatgaagct 2280 agttcagggg ttacgatgta gctggctttg tattctaaag gctgctatta ttcatccatc 2340 gatttcacct atatgtaatc cagagetttt gatgtgaaat ttgtetgate etteactagg 2400 aaggacagaa cattgttaat attttggcac atctgtctta ttctcatcct ttgtttgaac 2460 atgttagcct gttcaaacag atactgttgt aatgtcctag ttatataggt acatatgtgt 2520 tototattga gtttatggac ttttgtgtgt gaagttatat ttcattttgc tcaaaactca 2580 tgtttgcaag ctttctgaca ttattctatt gttctgaaac aggtg 2625

<210> 104

<211> 1492

<212> ADN

5

<213> Setaria italica

```
60
actgeegega caegeeteae tggegggagg geteegageg eteteteeee ggeggeegge
ggagcagcga tctggattgg agagaataga ggaaaagagag ggaaaaggag agagatagcg
                                                                   120
caaagagetg aaaagataag gttgtgeggg etgtggtgat tagaggaeca etaateeete
                                                                    180
catetectaa tgacgeggtg eecaagaeca gtgeegegge acaecagegt etaagtgaac
                                                                    240
                                                                    300
ttccgctaac cttccggtca ttgcgcctga aagatgtcat gtggcgaggc ccccctctca
gtagattgcc aactgcctac cgtgccactc ttccatgcat gattgctccc gtctatcccg
                                                                    360
tttctcacaa cagatagaca acagtaagca tcactaaagc aagcatgtgt agaaccttaa
                                                                    420
aaaaaggett atactaccag tatactatca accagcatge egtttttgaa gtatecagga
                                                                    480
ttagaagett etaetgeget tttatattat agetgtggae etgtggtaae etttetettt
                                                                    540
tggcgcttgc ttaatctcgg ccgtgctggt ccatgcttag gcactaggca gagatagagc
                                                                    600
cgggggtgaa tggggctaaa gctcagctgc tcgaggggcc gtgggctggt ttccactagc
                                                                    660
                                                                   720
ctacagetgt gecaegtgeg geegegeaag eegaageaag cacgetgage egttggaeag
                                                                    780
cttgtcataa tgccattacg tggattacac gtaactggcc ctgtaactac tcgttcggcc
                                                                    840
atcatcaaac gacgacgtcc gctaggcgac gacacgggta atgcacgcag ccacccaggc
gegegegeta geggageacg gteaggtgae aegggegteg tgaegettee gagttgaagg
                                                                    900
ggttaacgcc agaaacagtg tttggccagg gtatgaacat aacaaaaaat attcacacga
                                                                    960
aagaatggaa gtatggaget getaetgtgt aaatgecaag caggaaacte acgeeegeta 1020
acatecaaeg gecaacaget egaegtgeeg gteageagag categgaaea etggtgattg 1080
gtggagccgg cagtatgcgc cccagcacgg ccgaggtggt ggtggcccgt ggccctgctg 1140
tetgegegge tegggaeaac ttgaaactgg gecacegeet egtegeaact egeaaceegt 1200
tggcggaaga aaggaatggc tcgtaggggc ccgggtagaa tcgaagaatg ttgcgctggg 1260
cttcgattca cataacatgg gcctgaagct ctaaaacgac ggcccggtcg ccgcgcgatg 1320
gaaagagace ggateeteet egtgaattet ggaaggeeac acgagagega cecaceaceg 1380
acgcggagga gtcgtgcgtg gtccaacacg gccggcgggc tgggctgcga ccttaaccag 1440
caaggcacgc cacgacccgc cccgccctcg aggcataaat accctcccat cc
                                                                   1492
```

<210> 105

<211> 1006

<212> ADN

5

<213> Setaria italica

| gtatag | attc | agttccttgc | teegateeea | atctggttga | gatgttgctc | cgatgcgact | 60   |
|--------|------|------------|------------|------------|------------|------------|------|
| tgatta | tgtc | atatatctgc | ggtttgcacc | gatctgaagc | ctagggtttc | tegagegace | 120  |
| cagtta | tttg | caatttgcga | tttgctcgtt | tgttgcgcag | cgtagtttat | gtttggagta | 180  |
| atcgag | gatt | tgtatgcggc | gtcggcgcta | cctgcttaat | cacgccatgt | gacgcggtta | 240  |
| cttgca | gagg | ctgggttctg | ttatgtcgtg | atctaagaat | ctagattagg | ctcagtcgtt | 300  |
| cttgct | gtcg | actagtttgt | tttgatatcc | atgtagtaca | agttacttaa | aatttaggtc | 360  |
| caatat | attt | tgcatgcttt | tggcctgtta | ttcttgccaa | caagttgtcc | tggtaaaaag | 420  |
| tagatg | tgaa | agtcacgtat | tgggacaaat | tgatggttta | gtgctatagt | tctatagttc | 480  |
| tgtgat | acat | ctatctgatt | ttttttggtc | tattggtgcc | taacttatct | gaaaatcatg | 540  |
| gaacat | gagg | ctagtttgat | catggtttag | ttcattgtga | ttaataatgt | atgatttagt | 600  |
| agctat | tttg | gtgatcgtgt | cattttattt | gtgaatggaa | tcattgtatg | taaatgaagc | 660  |
| tagtto | aggg | gttacgatgt | agctggcttt | gtattctaaa | ggctgctatt | attcatccat | 720  |
| cgattt | cacc | tatatgtaat | ccagagettt | tgatgtgaaa | tttgtctgat | ccttcactag | 780  |
| gaagga | caga | acattgttaa | tattttggca | catctgtctt | attctcatcc | tttgtttgaa | 840  |
| catgtt | agcc | tgttcaaaca | gatactgttg | taatgtccta | gttatatagg | tacatatgtg | 900  |
| ttetet | attg | agtttatgga | cttttgtgtg | tgaagttata | tttcattttg | ctcaaaactc | 960  |
| atgttt | gcaa | gctttctgac | attattctat | tgttctgaaa | caggtg     |            | 1006 |

<210> 106 <211> 2167

<212> ADN

5

<213> Setaria italica

| gccgtttttg | aagtatccag | gattagaagc | ttctactgcg | cttttatatt | atagetgtgg | 60   |
|------------|------------|------------|------------|------------|------------|------|
| acctgtggta | acctttctct | tttggcgctt | gcttaatctc | ggccgtgctg | gtccatgctt | 120  |
| aggcactagg | cagagataga | gccgggggtg | aatggggcta | aagctcagct | gctcgagggg | 180  |
| ccgtgggctg | gtttccacta | gcctacagct | gtgccacgtg | cggccgcgca | agccgaagca | 240  |
| agcacgctga | gccgttggac | agcttgtcat | aatgccatta | cgtggattac | acgtaactgg | 300  |
| ccctgtaact | actcgttcgg | ccatcatcaa | acgacgacgt | cegetaggeg | acgacacggg | 360  |
| taatgcacgc | agccacccag | gegegegege | tageggagea | cggtcaggtg | acacgggcgt | 420  |
| cgtgacgctt | ccgagttgaa | ggggttaacg | ccagaaacag | tgtttggcca | gggtatgaac | 480  |
| ataacaaaaa | atattcacac | gaaagaatgg | aagtatggag | ctgctactgt | gtaaatgcca | 540  |
| agcaggaaac | tcacgcccgc | taacatccaa | cggccaacag | ctcgacgtgc | cggtcagcag | 600  |
| agcatcggaa | cactggtgat | tggtggagcc | ggcagtatgc | gccccagcac | ggccgaggtg | 660  |
| gtggtggccc | gtggccctgc | tgtctgcgcg | gctcgggaca | acttgaaact | gggccaccgc | 720  |
| ctcgtcgcaa | ctcgcaaccc | gttggcggaa | gaaaggaatg | gctcgtaggg | gcccgggtag | 780  |
| aatcgaagaa | tgttgcgctg | ggcttcgatt | cacataacat | gggcctgaag | ctctaaaacg | 840  |
| acggcccggt | cgccgcgcga | tggaaagaga | ccggatcctc | ctcgtgaatt | ctggaaggcc | 900  |
| acacgagagc | gacccaccac | cgacgcggag | gagtcgtgcg | tggtccaaca | cggccggcgg | 960  |
| gctgggctgc | gaccttaacc | agcaaggcac | gccacgaccc | geceegeest | cgaggcataa | 1020 |
| ataccctccc | atcccgttgc | cgcaagactc | agatcagatt | ccgatcccca | gttcttcccc | 1080 |
| aatcaccttg | tggtctctcg | tgtcgcggtt | cccagggacg | cctccggctc | gtcgctcgac | 1140 |
| agcgatctcc | gccccagcaa | ggtatagatt | cagttccttg | ctccgatccc | aatctggttg | 1200 |
| agatgttgct | ccgatgcgac | ttgattatgt | catatatctg | cggtttgcac | cgatctgaag | 1260 |
| cctagggttt | ctcgagcgac | ccagttattt | gcaatttgcg | atttgctcgt | ttgttgcgca | 1320 |
| gcgtagttta | tgtttggagt | aatcgaggat | ttgtatgcgg | cgtcggcgct | acctgcttaa | 1380 |
| tcacgccatg | tgacgcggtt | acttgcagag | gctgggttct | gttatgtcgt | gatctaagaa | 1440 |

tetagattag geteagtegt tettgetgte gactagtttg tettgatate catgtagtae 1500
aagttactta aaatttaggt ecaatatatt ttgeatgett ttggeetgtt attettgeea 1560
acaagttgte etggtaaaaa gtagatgga aagteacgta ttgggacaaa ttgatggtt 1620
agtgetatag ttetatagtt etgtgataca tetatetgat tttttttggt etattggtge 1680
etaacttate tgaaaateat ggaacatgag getagtttga teatggttta gtteattgtg 1740
attaataatg tatgatttag tagetattt ggtgategtg teattttatt tgtgaatgga 1800
ateattgtat gtaaatgaag etagtteag ggttaegatg tagetggett tgtattetaa 1860
aggetgetat tatteateea tegatteae etatatgtaa teeagagett ttgatggaa 1920
atttgtetga teetteaeta ggaaggacag aacattgtta atattttgge acatetgte 1980
tatteeteate etttgttga acatgttage etgtteaaae agataetgtt gtaatgteet 2040
agttatatag gtacatatgt gttetetatt gagtttatgg acttttgtg gtgaagttat 2100
attteattt geteaaaeet eatgttgea agetteetga cattateeta ttgtteetgaa 2160
acaggtg

<210> 107

<211> 1034

<212> ADN

<213> Setaria italica

<400> 107

5

60 gccgtttttg aagtatccag gattagaagc ttctactgcg cttttatatt atagctgtgg acctgtggta acctttctct tttggcgctt gcttaatctc ggccgtgctg gtccatgctt 120 aggcactagg cagagataga gccgggggtg aatggggcta aagctcagct gctcgagggg ccgtgggctg gtttccacta gcctacagct gtgccacgtg cggccgcgca agccgaagca 240 agcacgetga geegttggae agettgteat aatgeeatta egtggattae aegtaactgg 300 ccctgtaact actcgttcgg ccatcatcaa acgacgacgt ccgctaggcg acgacacggg 360 420 taatgcacgc agccacccag gcgcgcgcgc tagcggagca cggtcaggtg acacgggcgt 480 cgtgacgctt ccgagttgaa ggggttaacg ccagaaacag tgtttggcca gggtatgaac ataacaaaaa atattcacac gaaagaatgg aagtatggag ctgctactgt gtaaatgcca 540 agcaggaaac tcacgcccgc taacatccaa cggccaacag ctcgacgtgc cggtcagcag 600 agcatcggaa cactggtgat tggtggagcc ggcagtatgc gccccagcac ggccgaggtg 660 gtggtggccc gtggccctgc tgtctgcgcg gctcgggaca acttgaaact gggccaccgc 720 ctcgtcgcaa ctcgcaaccc gttggcggaa gaaaggaatg gctcgtaggg gcccgggtag 780 aatcgaagaa tgttgcgctg ggcttcgatt cacataacat gggcctgaag ctctaaaacg 840

acacgaccggt cgccgcgca tggaaagaga ccggatcctc ctcgtgaatt ctggaaggcc 900
acacgagagc gacccaccac cgacgcggag gagtcgtgcg tggtccaaca cggccggcgg 960
gctgggctgc gaccttaacc agcaaggcac gccacgaccc gccccgccct cgaggcataa 1020
ataccctccc atcc 1034

<210> 108 <211> 1813 <212> ADN

5 <213> Setaria italica

<400> 108

cacgggtaat gcacgcagcc acccaggcgc gcgcgctagc ggagcacggt caggtgacac 60 gggcgtcgtg acgcttccga gttgaagggg ttaacgccag aaacagtgtt tggccagggt 120 atgaacataa caaaaaatat tcacacgaaa gaatggaagt atggagctgc tactgtgtaa 180 atgccaagca ggaaactcac gcccgctaac atccaacggc caacagctcg acgtgccggt 240 cagcagagca teggaacact ggtgattggt ggageeggea gtatgegeee cagcaeggee 300 gaggtggtgg tggcccgtgg ccctgctgtc tgcgcggctc gggacaactt gaaactgggc 360 caccgcctcg tegeaacteg caaccegttg geggaagaaa ggaatggete gtaggggeee 420 gggtagaatc gaagaatgtt gegetggget tegatteaca taacatggge etgaagetet 480 aaaacgacgg cccggtcgcc gcgcgatgga aagagaccgg atcctcctcg tgaattctgg 540 aaggccacac gagagcgacc caccaccgac gcggaggagt cgtgcgtggt ccaacacggc 600 eggegggetg ggetgegace ttaaceagea aggeaegeea egaceegeee egeeetegag 660 geataaatae eeteecatee egttgeegea agaeteagat eagatteega teeceagtte 720 ttccccaatc accttgtggt ctctcgtgtc gcggttccca gggacgcctc cggctcgtcg 780 ctcgacagcg atctccgccc cagcaaggta tagattcagt tccttgctcc gatcccaatc 840 tggttgagat gttgctccga tgcgacttga ttatgtcata tatctgcggt ttgcaccgat 900 ctgaagccta gggtttctcg agcgacccag ttatttgcaa tttgcgattt gctcgtttgt tgcgcagcgt agtttatgtt tggagtaatc gaggatttgt atgcggcgtc ggcgctacct 1020 gettaateae geeatgtgae geggttaett geagaggetg ggttetgtta tgtegtgate 1080 taagaateta gattaggete agtegttett getgtegaet agtttgtttt gatateeatg 1140 tagtacaagt tacttaaaat ttaggtccaa tatattttgc atgcttttgg cctgttattc 1200 ttgccaacaa gttgtcctgg taaaaagtag atgtgaaagt cacgtattgg gacaaattga 1260 tggtttagtg ctatagttct atagttctgt gatacatcta tctgattttt tttggtctat 1320 tggtgcctaa cttatctgaa aatcatggaa catgaggcta gtttgatcat ggtttagttc 1380 attgtgatta ataatgtatg atttagtagc tattttggtg atcgtgtcat tttatttgtg 1440

aatggaatca ttgtatgtaa atgaagctag ttcaggggtt acgatgtagc tggctttgta 1500 ttctaaaggc tgctattatt catccatcga tttcacctat atgtaatcca gagcttttga 1560 tgtgaaattt gtctgatcct tcactaggaa ggacagaaca ttgttaatat tttggcacat 1620 ctgtcttatt ctcatccttt gtttgaacat gttagcctgt tcaaaccagat actgttgtaa 1680 tgtcctagtt atataggtac atatgtgttc tctattgagt ttatggactt ttgtgtgtga 1740 agttatattt catttgctc aaaactcatg tttgcaagct ttctgacatt attctattgt 1800 tctgaaacag gtg 1813

<210> 109

<211> 680

<212> ADN

5

<213> Setaria italica

<400> 109

cacgggtaat gcacgcagcc acccaggcgc gcgcgctagc ggagcacggt caggtgacac 60 gggcgtcgtg acgcttccga gttgaagggg ttaacgccag aaacagtgtt tggccagggt 120 atgaacataa caaaaaatat tcacacgaaa gaatggaagt atggagctgc tactgtgtaa 180 atgecaagea ggaaacteae geoegetaae atceaaegge caacageteg aegtgeeggt 240 cagcagagca toggaacact ggtgattggt ggagooggca gtatgogooc cagcaoggoo 300 gaggtggtgg tggcccgtgg ccctgctgtc tgcgcggctc gggacaactt gaaactgggc 360 cacegeeteg tegeaacteg caaceegttg geggaagaaa ggaatggete gtaggggeee 420 gggtagaatc gaagaatgtt gcgctgggct tcgattcaca taacatgggc ctgaagctct 480 540 aaaacgacgg cccggtcgcc gcgcgatgga aagagaccgg atcctcctcg tgaattctgg aaggecacae gagagegace caecacegae geggaggagt egtgegtggt ceaacaegge 600 660 eggegggetg ggetgegace ttaaccagea aggeacgeea egaccegeee egecetegag gcataaatac cctcccatcc 680

<210> 110

10

<211> 2634

<212> ADN

<213> Setaria viridis

<400> 110

actgccgcga cacgcctcac tggcgggagg gctccgagcg ctctctcccc ggcggccggc 60 ggagcagcga tctggattgg agagaataga ggaaaagagag ggaaaaggag agagatagcg 120 caaagagctg aaaagataag gttgtgcggg ctgtggtgat tagaggacca ctaatccctc 180 catctcctaa tgacgcggtg cccaagacca gtgccgcggc acaccagcgt ctaagtgaac 240

| ttccgctaac | cttccggtca | ttgcgcctga | aagatgtcat | gtggcgaggc | ccccctctca | 300  |
|------------|------------|------------|------------|------------|------------|------|
| gtagattgcc | aactgcctac | cgtgccactc | ttccatgcat | gattgctccc | gtctatcccg | 360  |
| tttctcacaa | cagatagaca | acagtaagca | tcactaaagc | aagcatgtgt | agaaccttaa | 420  |
| aaaaaggctt | atactaccag | tatactatca | accagcatgc | cgtttttgaa | gtatccagga | 480  |
| ttagaagctt | ctactgcgct | tttatattat | agctgtggac | ctgtggtaac | ctttctcttt | 540  |
| tggcgcttgc | ttaatctcgg | ccgtgctggt | ccatgcttag | gcactaggca | gagatagagc | 600  |
| cgggggtgaa | tggggctaaa | gctcagctgc | tegaggggee | gtgggctggt | ttccactagc | 660  |
| ctacagetgt | gccacgtgcg | gccgcgcaag | ccgaagcaag | cacgctgagc | cgttggacag | 720  |
| cttgtcataa | tgccattacg | tggattacag | gtaactggcc | ctgtaactac | tegtteggee | 780  |
| atcatcaaac | gacgacgtcc | gctaggcgac | gacacgggta | atgcacgcag | ccacccaggc | 840  |
| gcgcgcgcta | geggageaeg | gtcaggtgac | acgggcgtcg | tgacgcttcc | gagttgaagg | 900  |
| ggttaacgcc | agaaacagtg | tttggccagg | gtatgaacat | aacaaaaaat | attcacacga | 960  |
| aagaatggaa | gtatggagct | gctactgtgt | aaatgccaag | caggaaactc | acgcccgcta | 1020 |
| acatccaacg | gccaacagct | cgacgtgccg | gtcagcagag | acatcggaac | actggtgatt | 1080 |
| ggtggagccg | gcagtatgcg | ccccagcacg | gccgaggtgg | tggtggcccg | tggccctgct | 1140 |
| gtctgcgcgg | ctcgggacaa | cttgaaactg | ggccaccgcc | tcgtcgcaac | tegeaaceeg | 1200 |
| ttggcggaag | aaaggaatgg | ctcgtagggg | cccgggtaga | atccaagaat | gttgcgctgg | 1260 |
| gcttcgattc | acataacatg | ggcctgaagc | tctaaaacga | cggcccggtc | accgggcgat | 1320 |
| ggaaagagac | cggatcctcc | tcgtgaattc | tggaaggcca | cacgagagcg | acccaccacc | 1380 |
| gacgcggagg | agtcgtgcgt | ggtccaacac | ggccggcggg | ctgggctgcg | accttaacca | 1440 |
| gcaaggcacg | ccacgacccg | cctcgccctc | gaggcataaa | taccetecca | tcccgttgcc | 1500 |
| gcaagactca | gatcagattc | cgatccccag | ttcttcccca | atcaccttgt | ggtetetegt | 1560 |
| gtcgcggttc | ccagggacgc | ctccggctcg | togotogaca | gcgatctccg | ccccagcaag | 1620 |
| gtatagattc | agttccttgc | tccgatccca | atctggttga | gatgttgctc | cgatgcgact | 1680 |
| tgattatgtc | atatatctgc | ggtttgcacc | gatctgaagc | ctagggtttc | tcgagcgacc | 1740 |
| cagttgtttg | caatttgcga | tttgctcgtt | tgttgcgcat | cgtagtttat | gtttggagta | 1800 |
| atcgaggatt | tgtatgcggc | gtcggcgcta | cctgcttaat | cacgccatgt | gacgcggtta | 1860 |
| cttgcagagg | ctgggttagt | gggttctgtt | atgtcgtgat | ctaagaatct | agattaggct | 1920 |
| cagtcgttct | tgctgtcgac | tagtttgttt | tgatatccat | gtagtacaag | ttacttaaaa | 1980 |
| tttaggtcca | atatattttg | catgcttttg | gcctgttatt | cttgccaaca | agttgtcctg | 2040 |
| gtaaaaagta | gatgtgaaag | tcacgtattg | ggacaaattg | atggttaagt | gctatagttc | 2100 |
| tatagttctg | tgatacatct | atctgatttt | ttttggtcta | ttggtgccta | acttatctga | 2160 |

aaatcatgga acatgaggct agtttgatca tggtttagtt cattgtgatt aataatgtat 2220 gatttagtag ctattttggt gatcgtgtca ttttatttgt gaatggaatc attgtatgta 2280 aatgaagcta gttcaggggt tatgatgtag ctggctttgt attctaaagg ctgctattat 2340 tcatccatcg atttcaccta tatgtaatcc agagctttcg atgtgaaatt tgtctgatcc 2400 ttcacctagga aggacagaac attgttaata ttttggcaca tctgtcttat tctcatcctt 2460 tgtttgaaca tgttagcctg ttcaaacaga tactgttgta atgtcctagt tatataggta 2520 catatgtgtt ctctattgag tttatggact tttgtgtgtg aagttatatt tcattttgct 2580 caaaactcat gtttgcaagc tttctgacat tattctattg ttctgaaaca ggtg 2634

<210> 111

<211> 1493

<212> ADN

<213> Setaria viridis

<400> 111

5

actgeegega caegeeteae tggegggagg geteegageg eteteteeee ggeggeegge 60 ggagcagcga tctggattgg agagaataga ggaaaagagag ggaaaaggag agagatagcg caaagagctg aaaagataag gttgtgcggg ctgtggtgat tagaggacca ctaatccctc 180 240 catctcctaa tgacgcggtg cccaagacca gtgccgcggc acaccagcgt ctaagtgaac 300 ttccgctaac cttccggtca ttgcgcctga aagatgtcat gtggcgaggc ccccctctca gtagattgcc aactgcctac cgtgccactc ttccatgcat gattgctccc gtctatcccg 360 tttctcacaa cagatagaca acagtaagca tcactaaagc aagcatgtgt agaaccttaa 420 aaaaaggett atactaccag tatactatca accagcatge egtttttgaa gtatecagga 480 ttagaagett etactgeget tttatattat agetgtggae etgtggtaae etttetettt 540 tggcgcttgc ttaatctcgg ccgtgctggt ccatgcttag gcactaggca gagatagagc 600 660 cgggggtgaa tggggctaaa gctcagctgc tcgaggggcc gtgggctggt ttccactagc ctacagctgt gccacgtgcg gccgcgcaag ccgaagcaag cacgctgagc cgttggacag 720 cttgtcataa tgccattacg tggattacag gtaactggcc ctgtaactac tcgttcggcc 780 840 atcatcaaac gacgacgtcc gctaggcgac gacacgggta atgcacgcag ccacccaggc gegegegeta geggageacg gteaggtgae aegggegteg tgaegettee gagttgaagg 900 ggttaacgcc agaaacagtg tttggccagg gtatgaacat aacaaaaaat attcacacga 960 aagaatggaa gtatggaget getactgtgt aaatgecaag caggaaacte acgecegeta 1020 acatccaacg gccaacagct cgacgtgccg gtcagcagag acatcggaac actggtgatt 1080 ggtggagccg gcagtatgcg ccccagcacg gccgaggtgg tggtggcccg tggccctgct 1140

|                           | gtctgcgcg  | g ctcgggacaa   | a cttgaaactg | ggccaccgcc | tcgtcgcaac | togcaaccog | 1200        |
|---------------------------|------------|----------------|--------------|------------|------------|------------|-------------|
|                           | ttggcggaa  | g aaaggaatgo   | g ctcgtagggg | cccgggtaga | atccaagaat | gttgcgctgg | 1260        |
|                           | gcttcgatt  | c acataacato   | g ggcctgaagc | tctaaaacga | cggcccggtc | accgggcgat | 1320        |
|                           | ggaaagaga  | c cggatcctco   | tcgtgaattc   | tggaaggcca | cacgagagcg | acccaccacc | 1380        |
|                           | gacgcggag  | g agtcgtgcgt   | ggtccaacac   | ggccggcggg | ctgggctgcg | accttaacca | 1440        |
|                           | gcaaggcac  | g ccacgacccç   | g cetegecete | gaggcataaa | taccctccca | tcc        | 1493        |
| <210><211><211><212><213> | 127        |                |              |            |            |            |             |
| <400>                     | 112        |                |              |            |            |            |             |
|                           | cgttgccgca | agactcagat     | cagattccga   | tececagtte | ttccccaatc | accttgtggt | 60          |
|                           | ctctcgtgtc | geggtteeca     | gggacgcctc   | cggctcgtcg | ctcgacagcg | atctccgccc | 120         |
|                           | cagcaag    |                |              |            |            |            | 127         |
| <210><211><211><212><213> | 1014       |                |              |            |            |            |             |
| <400>                     | 113        |                |              |            |            |            |             |
|                           | gtatagattc | agttccttgc     | tccgatccca   | atctggttga | gatgttgctc | cgatgcgact | 60          |
|                           | tgattatgtc | atatatctgc     | ggtttgcacc   | gatctgaagc | ctagggtttc | tcgagcgac  | 2 120       |
| (                         | cagttgtttg | caatttgcga     | tttgctcgtt   | tgttgcgcat | cgtagtttat | gtttggagta | a 180       |
| ;                         | atcgaggatt | tgtatgcggc     | gtcggcgcta   | cctgcttaat | cacgccatgt | gacgcggtta | a 240       |
| (                         | cttgcagagg | ctgggttagt     | gggttctgtt   | atgtcgtgat | ctaagaatct | agattaggci | 300         |
| •                         | cagtcgttct | tgctgtcgac     | tagtttgttt   | tgatatccat | gtagtacaag | ttacttaaaa | 360         |
| •                         | tttaggtcca | atatattttg     | catgcttttg   | gcctgttatt | cttgccaaca | agttgtcct  | <b>42</b> 0 |
|                           | gtaaaaagta | gatgtgaaag     | tcacgtattg   | ggacaaattg | atggttaagt | gctatagtt  | <b>480</b>  |
| •                         | tatagttctg | tgatacatct     | atctgatttt   | ttttggtcta | ttggtgccta | acttatctg  | a 540       |
|                           | aaatcatgga | acatgaggct     | agtttgatca   | tggtttagtt | cattgtgatt | aataatgta  | 600         |
| (                         | gatttagtag | ctattttggt     | gatcgtgtca   | ttttatttgt | gaatggaatc | attgtatgta | a 660       |
| i                         | aatgaagcta | gttcaggggt     | tatgatgtag   | ctggctttgt | attctaaagg | ctgctatta  | 720         |
| ,                         | tcatccatcg | atttcaccta     | tatgtaatcc   | agagettteg | atgtgaaatt | tgtctgatco | 780         |
|                           | ttcactagga | aggacagaac     | attgttaata   | ttttggcaca | tctgtcttat | tctcatcct  | 840         |
|                           | tgtttgaaca | tgttagcctg     | ttcaaacaga   | tactgttgta | atgtcctagt | tatataggta | a 900       |
|                           | 02+2+a+a++ | at at at t a a | +++>+        | ++++++++++ | 224+2+2++  | +02++++00  | - 960       |

caaaactcat gtttgcaagc tttctgacat tattctattg ttctgaaaca ggtg

<210> 114 <211> 2634 <212> ADN <213> Setaria viridis

| actgccgcga | cacgcctcac | tggcgggagg | gctccgagcg | ctctctcccc | ggcggccggc | 60          |
|------------|------------|------------|------------|------------|------------|-------------|
| ggagcagcga | tctggattgg | agagaataga | ggaaagagag | ggaaaaggag | agagatagcg | 120         |
| caaagagctg | aaaagataag | gttgtgcggg | ctgtggtgat | tagaggacca | ctaatccctc | 180         |
| catctcctaa | tgacgcggtg | cccaagacca | gtgccgcggc | acaccagcgt | ctaagtgaac | 240         |
| ttccgctaac | cttccggtca | ttgcgcctga | aagatgtcat | gtggcgaggc | cecectetea | 300         |
| gtagattgcc | aactgcctac | cgtgccactc | ttccatgcat | gattgctccc | gtctatcccg | 360         |
| tttctcacaa | cagatagaca | acagtaagca | tcactaaagc | aagcatgtgt | agaaccttaa | <b>4</b> 20 |
| aaaaaggctt | atactaccag | tatactatca | accagcatgc | cgtttttgaa | gtatccagga | <b>4</b> 80 |
| ttagaagctt | ctactgcgct | tttatattat | agctgtggac | ctgtggtaac | ctttctcttt | 540         |
| tggcgcttgc | ttaatctcgg | ccgtgctggt | ccatgcttag | gcactaggca | gagatagagc | 600         |
| cgggggtgaa | tggggctaaa | gctcagctgc | tegaggggee | gtgggctggt | ttccactage | 660         |
| ctacagetgt | gecacgtgcg | gccgcgcaag | ccgaagcaag | cacgetgage | cgttggacag | 720         |
| cttgtcataa | tgccattacg | tggattacag | gtaactggcc | ctgtaactac | tegtteggee | 780         |
| atcatcaaac | gacgacgtcc | gctaggcgac | gacacgggta | atgcacgcag | ccacccaggc | 840         |
| gcgcgcgcta | gcggagcacg | gtcaggtgac | acgggcgtcg | tgacgcttcc | gagttgaagg | 900         |
| ggttaacgcc | agaaacagtg | tttggccagg | gtatgaacat | aacaaaaaat | attcacacga | 960         |
| aagaatggaa | gtatggagct | gctactgtgt | aaatgccaag | caggaaactc | acgcccgcta | 1020        |
| acatecaaeg | gccaacagct | cgacgtgccg | gtcagcagag | acateggaac | actggtgatt | 1080        |
| ggtggagccg | gcagtatgcg | ccccagcacg | gccgaggtgg | tggtggcccg | tggccctgct | 1140        |
| gtctgcgcgg | ctcgggacaa | cttgaaactg | ggccaccgcc | tegtegeaac | tcgcaacccg | 1200        |
| ttggcggaag | aaaggaatgg | ctcgtagggg | cccgggtaga | atccaagaat | gttgcgctgg | 1260        |
| gcttcgattc | acataacatg | ggcctgaagc | tctaaaacga | eggcecggtc | accgggcgat | 1320        |
| ggaaagagac | cggatectce | tcgtgaattc | tggaaggcca | cacgagagcg | acccaccacc | 1380        |
| gacgcggagg | agtcgtgcgt | ggtccaacac | ggccggcggg | ctgggctgcg | accttaacca | 1440        |
| gcaaggcacg | ccacgacccg | cotogocoto | gaggcataaa | taccctccca | tecegttgee | 1500        |

gcaagactca gatcagattc cgatccccag ttcttcccca atcaccttgt ggtctctcgt 1560 gtogoggtte ccagggaege etceggeteg tegetegaea gegateteeg ecceageaag 1620 gtatagatte agtteettge teegateeea atetggttga gatgttgete egatgegaet 1680 tgattatgtc atatatctgc ggtttgcacc gatctgaagc ctagggtttc tcgagcgacc 1740 cagttgtttg caatttgcga tttgctcgtt tgttgcgcat cgtagtttat gtttggagta 1800 atcgaggatt tgtatgcggc gtcggcgcta cctgcttaat cacgccatgt gacgcggtta 1860 cttgcagagg ctgggttagt gggttctgtt atgtcgtgat ctaagaatct agattaggct 1920 cagtegttet tgetgtegae tagtttgttt tgatateeat gtagtacaag ttaettaaaa 1980 tttaggtcca atatattttg catgettttg geetgttatt ettgecaaca agttgteetg 2040 gtaaaaagta gatgtgaaag tcacgtattg ggacaaattg atggttaagt gctatagttc 2100 tatagttctg tgatacatct atctgatttt ttttggtcta ttggtgccta acttatctga 2160 aaatcatgga acatgaggct agtttgatca tggtttagtt cattgtgatt aataatgtat 2220 gatttagtag ctattttggt gatcgtgtca ttttatttgt gaatggaatc attgtatgta 2280 aatgaagcta gttcaggggt tatgatgtag ctggctttgt attctaaagg ctgctattat 2340 tcatccatcg atttcaccta tatgtaatcc agagetttcg atgtgaaatt tgtctgatcc 2400 ttcactagga aggacagaac attgttaata ttttggcaca tctgtcttat tctcatcctt 2460 tgtttgaaca tgttagcctg ttcaaacaga tactgttgta atgtcctagt tatataggta 2520 catatgtgtt ctctattgag tttatggact tttgtgtgtg aagttatatt tcattttgct 2580 caaaactcat gtttgcaagc tttctgacat tattctattg ttctgaaaca gggt 2634

<210> 115

<211> 1014

<212> ADN

<213> Setaria viridis

<400> 115

5

| gta | atagattc | agttccttgc | tccgatccca | atctggttga | gatgttgctc | cgatgcgact | 60   |
|-----|----------|------------|------------|------------|------------|------------|------|
| tga | attatgtc | atatatctgc | ggtttgcacc | gatctgaagc | ctagggtttc | tcgagcgacc | 120  |
| caç | gttgtttg | caatttgcga | tttgctcgtt | tgttgcgcat | cgtagtttat | gtttggagta | 180  |
| ato | cgaggatt | tgtatgcggc | gtcggcgcta | cctgcttaat | cacgccatgt | gacgcggtta | 240  |
| ctt | tgcagagg | ctgggttagt | gggttctgtt | atgtcgtgat | ctaagaatct | agattaggct | 300  |
| caç | gtcgttct | tgctgtcgac | tagtttgttt | tgatatccat | gtagtacaag | ttacttaaaa | 360  |
| ttt | taggtcca | atatattttg | catgcttttg | gcctgttatt | cttgccaaca | agttgtcctg | 420  |
| gta | aaaaagta | gatgtgaaag | tcacgtattg | ggacaaattg | atggttaagt | gctatagttc | 480  |
| tat | tagttctg | tgatacatct | atctgatttt | ttttggtcta | ttggtgccta | acttatctga | 540  |
|     |          |            |            |            |            |            |      |
| aaa | atcatgga | acatgaggct | agtttgatca | tggtttagtt | cattgtgatt | aataatgtat | 600  |
| gat | tttagtag | ctattttggt | gatcgtgtca | ttttatttgt | gaatggaatc | attgtatgta | 660  |
| aat | tgaagcta | gttcaggggt | tatgatgtag | ctggctttgt | attctaaagg | ctgctattat | 720  |
| tca | atccatcg | atttcaccta | tatgtaatcc | agagctttcg | atgtgaaatt | tgtctgatcc | 780  |
| tto | cactagga | aggacagaac | attgttaata | ttttggcaca | tctgtcttat | tctcatcctt | 840  |
| tgl | tttgaaca | tgttagcctg | ttcaaacaga | tactgttgta | atgtcctagt | tatataggta | 900  |
| cat | tatgtgtt | ctctattgag | tttatggact | tttgtgtgtg | aagttatatt | tcattttgct | 960  |
| caa | aaactcat | gtttgcaagc | tttctgacat | tattctattg | ttctgaaaca | gggt       | 1014 |

<210> 116 <211> 2176 <212> ADN

5

<213> Setaria viridis

| gccgtttttg | aagtatccag | gattagaagc | ttctactgcg | cttttatatt | atagctgtgg | 60   |
|------------|------------|------------|------------|------------|------------|------|
| acctgtggta | acctttctct | tttggcgctt | gcttaatctc | ggccgtgctg | gtccatgctt | 120  |
| aggcactagg | cagagataga | gccgggggtg | aatggggcta | aagctcagct | gctcgagggg | 180  |
| ccgtgggctg | gtttccacta | gcctacagct | gtgccacgtg | cggccgcgca | agccgaagca | 240  |
| agcacgctga | gccgttggac | agcttgtcat | aatgccatta | cgtggattac | aggtaactgg | 300  |
| ccctgtaact | actcgttcgg | ccatcatcaa | acgacgacgt | ccgctaggcg | acgacacggg | 360  |
| taatgcacgc | agccacccag | gcgcgcgcgc | tagcggagca | cggtcaggtg | acacgggcgt | 420  |
| cgtgacgctt | ccgagttgaa | ggggttaacg | ccagaaacag | tgtttggcca | gggtatgaac | 480  |
| ataacaaaaa | atattcacac | gaaagaatgg | aagtatggag | ctgctactgt | gtaaatgcca | 540  |
| agcaggaaac | tcacgcccgc | taacatccaa | cggccaacag | ctcgacgtgc | cggtcagcag | 600  |
| agacatcgga | acactggtga | ttggtggagc | cggcagtatg | cgccccagca | cggccgaggt | 660  |
| ggtggtggcc | cgtggccctg | ctgtctgcgc | ggctcgggac | aacttgaaac | tgggccaccg | 720  |
| cctcgtcgca | actcgcaacc | cgttggcgga | agaaaggaat | ggctcgtagg | ggcccgggta | 780  |
| gaatccaaga | atgttgcgct | gggcttcgat | tcacataaca | tgggcctgaa | gctctaaaac | 840  |
| gacggcccgg | tcaccgggcg | atggaaagag | accggatcct | cctcgtgaat | tctggaaggc | 900  |
| cacacgagag | cgacccacca | ccgacgcgga | ggagtcgtgc | gtggtccaac | acggccggcg | 960  |
| ggctgggctg | cgaccttaac | cagcaaggca | cgccacgacc | cgcctcgccc | tcgaggcata | 1020 |
| aataccctcc | catcccgttg | ccgcaagact | cagatcagat | teegateeee | agttcttccc | 1080 |
| caatcacctt | gtggtctctc | gtgtcgcggt | tcccagggac | gcctccggct | cgtcgctcga | 1140 |

cagogatoto ogococagoa aggtatagat toagttoott gotoogatoo caatotggtt 1200 gagatgttgc tccgatgcga cttgattatg tcatatatct gcggtttgca ccgatctgaa 1260 gcctagggtt tctcgagcga cccagttgtt tgcaatttgc gatttgctcg tttgttgcgc 1320 atcqtagttt atgtttggag taatcgagga tttgtatgcg gcgtcggcgc tacctgctta 1380 atcacgccat gtgacgcggt tacttgcaga ggctgggtta gtgggttctg ttatgtcgtg 1440 atctaagaat ctagattagg ctcagtcgtt cttgctgtcg actagtttgt tttgatatcc 1500 atgtagtaca agttacttaa aatttaggtc caatatattt tgcatgcttt tggcctgtta 1560 ttcttgccaa caagttgtcc tggtaaaaag tagatgtgaa agtcacgtat tgggacaaat 1620 tgatggttaa gtgctatagt tctatagttc tgtgatacat ctatctgatt tttttttggtc 1680 tattggtgcc taacttatct gaaaatcatg gaacatgagg ctagtttgat catggtttag 1740 ttcattgtga ttaataatgt atgatttagt agctattttg gtgatcgtgt cattttattt 1800 gtgaatggaa tcattgtatg taaatgaagc tagttcaggg gttatgatgt agctggcttt 1860 gtattctaaa ggctgctatt attcatccat cgatttcacc tatatgtaat ccagagcttt 1920 cgatgtgaaa tttgtctgat ccttcactag gaaggacaga acattgttaa tattttggca 1980 catctgtctt attctcatcc tttgtttgaa catgttagcc tgttcaaaca gatactgttg 2040 taatgtccta gttatatagg tacatatgtg ttctctattg agtttatgga cttttgtgtg 2100 tgaagttata tttcattttg ctcaaaactc atgtttgcaa gctttctgac attattctat 2160 2176 tgttctgaaa caggtg

<210> 117

<211> 1035

<212> ADN

<213> Setaria viridis

<400> 117

5

| gccgtttttg | aagtatccag | gattagaagc | ttctactgcg | cttttatatt | atagctgtgg | 60   |
|------------|------------|------------|------------|------------|------------|------|
| acctgtggta | acctttctct | tttggcgctt | gcttaatctc | ggccgtgctg | gtccatgctt | 120  |
| aggcactagg | cagagataga | gccgggggtg | aatggggcta | aagctcagct | gctcgagggg | 180  |
| ccgtgggctg | gtttccacta | gcctacagct | gtgccacgtg | cggccgcgca | agccgaagca | 240  |
| agcacgctga | gccgttggac | agcttgtcat | aatgccatta | cgtggattac | aggtaactgg | 300  |
| ccctgtaact | actcgttcgg | ccatcatcaa | acgacgacgt | ccgctaggcg | acgacacggg | 360  |
| taatgcacgc | agecacecag | gegegegege | tageggagea | cggtcaggtg | acacgggcgt | 420  |
| cgtgacgctt | ccgagttgaa | ggggttaacg | ccagaaacag | tgtttggcca | gggtatgaac | 480  |
| ataacaaaaa | atattcacac | gaaagaatgg | aagtatggag | ctgctactgt | gtaaatgcca | 540  |
| agcaggaaac | tcacgcccgc | taacatccaa | cggccaacag | ctcgacgtgc | cggtcagcag | 600  |
| agacategga | acactggtga | ttggtggagc | cggcagtatg | cgccccagca | cggccgaggt | 660  |
| ggtggtggcc | cgtggccctg | ctgtctgcgc | ggctcgggac | aacttgaaac | tgggccaccg | 720  |
| cctcgtcgca | actogoaaco | cgttggcgga | agaaaggaat | ggctcgtagg | ggcccgggta | 780  |
| gaatccaaga | atgttgcgct | gggcttcgat | tcacataaca | tgggcctgaa | gctctaaaac | 840  |
| gacggcccgg | tcaccgggcg | atggaaagag | accggatcct | cctcgtgaat | tctggaaggc | 900  |
| cacacgagag | cgacccacca | ccgacgcgga | ggagtcgtgc | gtggtccaac | acggccggcg | 960  |
| ggctgggctg | cgaccttaac | cagcaaggca | cgccacgacc | egectegece | tegaggeata | 1020 |
| aataccctcc | catcc      |            |            |            |            | 1035 |

<210> 118 <211> 1822 <212> ADN

5

<213> Setaria viridis

| cacgggtaat | gcacgcagcc | acccaggcgc | gegegetage | ggagcacggt | caggtgacac | 60   |
|------------|------------|------------|------------|------------|------------|------|
| gggcgtcgtg | acgcttccga | gttgaagggg | ttaacgccag | aaacagtgtt | tggccagggt | 120  |
| atgaacataa | caaaaaatat | tcacacgaaa | gaatggaagt | atggagetge | tactgtgtaa | 180  |
| atgccaagca | ggaaactcac | gcccgctaac | atccaacggc | caacageteg | acgtgccggt | 240  |
| cagcagagac | atcggaacac | tggtgattgg | tggagccggc | agtatgcgcc | ccagcacggc | 300  |
| cgaggtggtg | gtggcccgtg | gccctgctgt | ctgcgcggct | cgggacaact | tgaaactggg | 360  |
| ccaccgcctc | gtcgcaactc | gcaacccgtt | ggcggaagaa | aggaatggct | cgtaggggcc | 420  |
| cgggtagaat | ccaagaatgt | tgcgctgggc | ttcgattcac | ataacatggg | cctgaagctc | 480  |
| taaaacgacg | gcccggtcac | cgggcgatgg | aaagagaccg | gatectecte | gtgaattctg | 540  |
| gaaggccaca | cgagagcgac | ccaccaccga | cgcggaggag | togtgogtgg | tccaacacgg | 600  |
| ccggcgggct | gggctgcgac | cttaaccagc | aaggcacgcc | acgacccgcc | tegecetega | 660  |
| ggcataaata | ccctcccatc | ccgttgccgc | aagactcaga | tcagattccg | atccccagtt | 720  |
| cttccccaat | caccttgtgg | tetetegtgt | cgcggttccc | agggacgcct | ccggctcgtc | 780  |
| gctcgacagc | gateteegee | ccagcaaggt | atagattcag | ttccttgctc | cgatcccaat | 840  |
| ctggttgaga | tgttgctccg | atgcgacttg | attatgtcat | atatctgcgg | tttgcaccga | 900  |
| tctgaagcct | agggtttctc | gagcgaccca | gttgtttgca | atttgcgatt | tgctcgtttg | 960  |
| ttgcgcatcg | tagtttatgt | ttggagtaat | cgaggatttg | tatgcggcgt | cggcgctacc | 1020 |
| tgcttaatca | cgccatgtga | cgcggttact | tgcagaggct | gggttagtgg | gttctgttat | 1080 |
| gtcgtgatct | aagaatctag | attaggetea | gtcgttcttg | ctgtcgacta | gtttgttttg | 1140 |
| atatccatgt | agtacaagtt | acttaaaatt | taggtccaat | atattttgca | tgcttttggc | 1200 |
| ctgttattct | tgccaacaag | ttgtcctggt | aaaaagtaga | tgtgaaagtc | acgtattggg | 1260 |
| acaaattgat | ggttaagtgc | tatagttcta | tagttctgtg | atacatctat | ctgattttt  | 1320 |
| ttggtctatt | ggtgcctaac | ttatctgaaa | atcatggaac | atgaggctag | tttgatcatg | 1380 |
| gtttagttca | ttgtgattaa | taatgtatga | tttagtagct | attttggtga | tcgtgtcatt | 1440 |
| ttatttgtga | atggaatcat | tgtatgtaaa | tgaagctagt | tcaggggtta | tgatgtagct | 1500 |
| ggctttgtat | tctaaaggct | gctattattc | atccatcgat | ttcacctata | tgtaatccag | 1560 |
| agctttcgat | gtgaaatttg | tctgatcctt | cactaggaag | gacagaacat | tgttaatatt | 1620 |
| ttggcacatc | tgtcttattc | tcatcctttg | tttgaacatg | ttagcctgtt | caaacagata | 1680 |
| ctgttgtaat | gtcctagtta | tataggtaca | tatgtgttct | ctattgagtt | tatggacttt | 1740 |
| tgtgtgtgaa | gttatatttc | attttgctca | aaactcatgt | ttgcaagctt | tctgacatta | 1800 |
| ttctattgtt | ctgaaacagg | tg         |            |            |            | 1822 |

| <210> 119             |
|-----------------------|
| <211> 681             |
| <212> ADN             |
| <213> Setaria viridis |
|                       |

5 <400> 119

| cacgggtaat | gcacgcagcc | acccaggcgc | gegegetage | ggagcacggt | caggtgacac | 60  |
|------------|------------|------------|------------|------------|------------|-----|
| gggcgtcgtg | acgcttccga | gttgaagggg | ttaacgccag | aaacagtgtt | tggccagggt | 120 |
| atgaacataa | caaaaaatat | tcacacgaaa | gaatggaagt | atggagctgc | tactgtgtaa | 180 |
| atgccaagca | ggaaactcac | gcccgctaac | atccaacggc | caacagctcg | acgtgccggt | 240 |
| cagcagagac | atcggaacac | tggtgattgg | tggagccggc | agtatgcgcc | ccagcacggc | 300 |
| cgaggtggtg | gtggcccgtg | gccctgctgt | ctgcgcggct | cgggacaact | tgaaactggg | 360 |
| ccacegecte | gtcgcaactc | gcaacccgtt | ggcggaagaa | aggaatggct | cgtaggggcc | 420 |
| cgggtagaat | ccaagaatgt | tgegetggge | ttcgattcac | ataacatggg | cctgaagctc | 480 |
| taaaacgacg | gcccggtcac | cgggcgatgg | aaagagaccg | gatectecte | gtgaattctg | 540 |
| gaaggccaca | cgagagcgac | ccaccaccga | cgcggaggag | togtgogtgg | tccaacacgg | 600 |
| ccggcgggct | gggctgcgac | cttaaccagc | aaggcacgcc | acgacccgcc | tegecetega | 660 |
| ggcataaata | ccctcccatc | С          |            |            |            | 681 |

<210> 120

<211> 120 <211> 1822 <212> ADN <213> Setaria viridis 10

| cacgggtaat | gcacgcagcc | acccaggcgc | gcgcgctagc | ggagcacggt | caggtgacac | 60   |
|------------|------------|------------|------------|------------|------------|------|
| gggcgtcgtg | acgetteega | gttgaagggg | ttaacgccag | aaacagtgtt | tggccagggt | 120  |
| atgaacataa | caaaaaatat | tcacacgaaa | gaatggaagt | atggagctgc | tactgtgtaa | 180  |
| atgccaagca | ggaaactcac | gcccgctaac | atccaacggc | caacageteg | acgtgccggt | 240  |
| cagcagagac | atcggaacac | tggtgattgg | tggagccggc | agtatgcgcc | ccagcacggc | 300  |
| cgaggtggtg | gtggcccgtg | gccctgctgt | ctgcgcggct | cgggacaact | tgaaactggg | 360  |
| ccaccgcctc | gtcgcaactc | gcaacccgtt | ggcggaagaa | aggaatggct | cgtaggggcc | 420  |
| cgggtagaat | ccaagaatgt | tgcgctgggc | ttcgattcac | ataacatggg | cctgaagctc | 480  |
| taaaacgacg | gcccggtcac | cgggcgatgg | aaagagaccg | gatectectt | gtgaattctg | 540  |
| gaaggccaca | cgagagcgac | ccaccaccga | cgcggaggag | tegtgegtgg | tccaacacgg | 600  |
| ccggcgggct | gggctgcgac | cttaaccagc | aaggcacgcc | acgacccgcc | tegecetega | 660  |
| ggcataaata | ccctcccatc | cegttgeege | aagactcaga | tcagattccg | atececagtt | 720  |
| cttccccaat | caccttgtgg | tctctcgtgt | cgcggttccc | agggacgcct | ccggctcgtc | 780  |
| gctcgacagc | gateteegee | ccagcaaggt | atagattcag | tteettgete | cgatcccaat | 840  |
| ctggttgaga | tgttgctccg | atgcgacttg | attatgtcat | atatetgegg | tttgcaccga | 900  |
| tctgaagcct | agggtttctc | gagegaeeea | gttgtttgca | atttgcgatt | tgctcgtttg | 960  |
| ttgcgcatcg | tagtttatgt | ttggagtaat | cgaggatttg | tatgcggcgt | cggcgctacc | 1020 |
| tgcttaatca | cgccatgtga | cgcggttact | tgcagaggct | gggttagtgg | gttctgttat | 1080 |
| gtcgtgatct | aagaatctag | attaggctca | gtcgttcttg | ctgtcgacta | gtttgttttg | 1140 |
| atatccatgt | agtacaagtt | acttaaaatt | taggtccaat | atattttgca | tgettttgge | 1200 |
| ctgttattct | tgccaacaag | ttgtcctggt | aaaaagtaga | tgtgaaagtc | acgtattggg | 1260 |
| acaaattgat | ggttaagtgc | tatagttcta | tagttctgtg | atacatctat | ctgattttt  | 1320 |
| ttggtctatt | ggtgcctaac | ttatctgaaa | atcatggaac | atgaggctag | tttgatcatg | 1380 |
| gtttagttca | ttgtgattaa | taatgtatga | tttagtagct | attttggtga | tcgtgtcatt | 1440 |
| ttatttgtga | atggaatcat | tgtatgtaaa | tgaagctagt | tcaggggtta | tgatgtagct | 1500 |
| ggctttgtat | tctaaaggct | gctattattc | atccatcgat | ttcacctata | tgtaatccag | 1560 |
| agctttcgat | gtgaaatttg | tctgatcctt | cactaggaag | gacagaacat | tgttaatatt | 1620 |
| ttggcacatc | tgtcttattc | tcatcctttg | tttgaacatg | ttagcctgtt | caaacagata | 1680 |
| ctgttgtaat | gtcctagtta | tataggtaca | tatgtgttct | ctattgagtt | tatggacttt | 1740 |
| tgtgtgtgaa | gttatatttc | attttgctca | aaactcatgt | ttgcaagctt | tetgacatta | 1800 |
| ttctattctt | ctgaaacagg | at         |            |            |            | 1822 |

| <210> 121             |
|-----------------------|
| <211> 681             |
| <212> ADN             |
| <213> Setaria viridis |
| 11005 101             |

5 <400> 121

| cacgggtaat | gcacgcagcc | acccaggcgc | gegegetage | ggagcacggt | caggtgacac | 60  |
|------------|------------|------------|------------|------------|------------|-----|
| gggcgtcgtg | acgcttccga | gttgaagggg | ttaacgccag | aaacagtgtt | tggccagggt | 120 |
| atgaacataa | caaaaaatat | tcacacgaaa | gaatggaagt | atggagctgc | tactgtgtaa | 180 |
| atgccaagca | ggaaactcac | gcccgctaac | atccaacggc | caacagctcg | acgtgccggt | 240 |
| cagcagagac | atcggaacac | tggtgattgg | tggagccggc | agtatgcgcc | ccagcacggc | 300 |
| cgaggtggtg | gtggcccgtg | gccctgctgt | ctgcgcggct | cgggacaact | tgaaactggg | 360 |
| ccaccgcctc | gtcgcaactc | gcaacccgtt | ggcggaagaa | aggaatggct | cgtaggggcc | 420 |
| cgggtagaat | ccaagaatgt | tgcgctgggc | ttcgattcac | ataacatggg | cctgaagctc | 480 |
| taaaacgacg | gcccggtcac | cgggcgatgg | aaagagaccg | gatcctcctt | gtgaattctg | 540 |
| gaaggccaca | cgagagcgac | ccaccaccga | cgcggaggag | tcgtgcgtgg | tccaacacgg | 600 |
| ccggcgggct | gggctgcgac | cttaaccagc | aaggcacgcc | acgacccgcc | togocotoga | 660 |
| ggcataaata | ccctcccatc | С          |            |            |            | 681 |

<210> 122

<211> 1925

<212> ADN

10

<213> Zea mays subsp. Mexicana

<400> 122

gtegtgeece tetetagaga taatgageat tgeatgteta agttataaaa aattaecaca 60 tattttttt tgtcacactt gtgtttgaag tgcagtttat ctatctctat acatatattt 120 aaacttcact atatgaataa tatagtctat agtattaaaa taatatcaat gttttagatg 180 attatataac tgaactgcta gacatggtct aaaggacaac cgagtatttt gacaacatga 240 ctctacagtt ttatcttttt agtgtgcatg tgttcttttt acttttgcaa atagcttcac 300 ctatataata cttcatccat tttattagta catccattta ctaaattttt agtacatcta 360 420 ttttattcta ttttagcctc taaattaaga aaacttaaac tctattttag tttttattt aataatttag atataaaata gaataaaata aagtgactaa aaaataacta aatacctttt 480 aagaaataaa aaaactaagg aaccattttt cttgttccga gtagataatg acagcctgtt 540 caacgccgtc gacgagtcta acggacacca accagcgaac cagcagcgtc gcgtcgggcc 600 aagcgaagca gacggcacgg catctctgta gctgcctctg gacccctctc gagagttccg 660 ctccaccgtt ggacttgctc cgctgtcggc atccagaaat tgcgtggcgg agcggcagac 720

| gtgagccggc | acggcaggcg | geeteetete | acggcaccgg | cagctacggg | ggattccttt | 780  |
|------------|------------|------------|------------|------------|------------|------|
| cccaccgctc | cttcgctttc | cetteetege | ccgccgtaat | aaatagaccc | cctccacacc | 840  |
| ctctttcccc | aacctcgtgt | tegtteggag | cgcgcacaca | cacaaccaga | tctcccccaa | 900  |
| atccacccgt | cggcacctcc | gcttcaaggt | acgccgctca | tcctcctccc | cecectetet | 960  |
| ctaccttctc | tagatcggcg | tttcggtcca | tggttagggc | ccggtagttc | tacttctgtt | 1020 |
| catgtttgtg | ttagatccgt | gtttgtgtta | gatecgtget | gctagatttc | gtacacggat | 1080 |
| gcgacctgta | catcagacat | gttctgattg | ctaacttgcc | agtgtttctc | tttggggaat | 1140 |
| cctgggatgg | ctctagccgt | teegeagaeg | ggatcgattt | catgaatttt | ttttgtttcg | 1200 |
| ttgcataggg | tttggtttgc | ccttttcctt | tatttcaata | tatgccgtgc | acttgtttgt | 1260 |
| cgggtcatct | tttcatgttt | tttttggctt | ggttgtgatg | atgtggtctg | gttgggcggt | 1320 |
| cgttctagat | cggagtagaa | tactgtttca | aactacctgg | tggatttatt | aaaggatctg | 1380 |
| tatgtatgtg | ccatacatct | tcatagttac | gagtttaaga | tgatggatgg | aaatatcgat | 1440 |
| ctaggatagg | tatacatgtt | gatgcgggtt | ttactgatgc | atatacagag | atgcttttt  | 1500 |
| ttcgcttggt | tgtgatgatg | tggtctggtc | gggcggtcgt | tctagatcgg | agtagaatac | 1560 |
| tgtttcaaac | tacctggtgg | atttattaat | tttggatctg | tatgtgtgtc | atacatette | 1620 |
| atagttacga | gtttaagatc | gatggaaata | tcgatctagg | ataggtatac | atgttgatgt | 1680 |
| gggttttact | gatgcatata | catggcatat | gcagcatcta | ttcatatgct | ctaaccttga | 1740 |
| gtacctatct | attataataa | acaagtatgt | tttataatta | ttttgatctt | gatatacttg | 1800 |
| gatgatggca | tatgcagcag | ctatatgtgg | atttttttag | ccctgccttc | atacgctatt | 1860 |
| tatttgcttg | gtactgtttc | ttttgtcgat | gctcaccctg | ttgtttggtg | atacttctgc | 1920 |
| aggtc      |            |            |            |            |            | 1925 |

<210> 123

<211> 850

<212> ADN

5

<213> Zea mays subsp. Mexicana

<400> 123

gtcgtgcccc tctctagaga taatgagcat tgcatgtcta agttataaaa aattaccaca 60
tattttttt tgtcacactt gtgtttgaag tgcagtttat ctatctctat acatatatt 120
aaacttcact atatgaataa tatagtctat agtattaaaa taatatcaat gttttagatg 180
attatataac tgaactgcta gacatggtct aaaggacaac cgagtatttt gacaacatga 240
ctctacagtt ttatctttt agtgtgcatg tgttctttt acttttgcaa atagcttcac 300
ctatataata cttcatccat tttattagta catccatta ctaaatttt agtacatcta 360

|    | ttttattcta ttttagcctc taaattaaga aaacttaaac tctattttag ttttttattt                 | 420 |
|----|-----------------------------------------------------------------------------------|-----|
|    | aataatttag atataaaata gaataaaata aagtgactaa aaaataacta aatacctttt                 | 480 |
|    | aagaaataaa aaaactaagg aaccattttt cttgttccga gtagataatg acagcctgtt                 | 540 |
|    | caacgccgtc gacgagtcta acggacacca accagcgaac cagcagcgtc gcgtcgggcc                 | 600 |
|    | aagegaagea gaeggeaegg catetetgta getgeetetg gaeeeetete gagagtteeg                 | 660 |
|    | ctccaccgtt ggacttgctc cgctgtcggc atccagaaat tgcgtggcgg agcggcagac                 | 720 |
|    | gtgageegge aeggeaggeg geeteetete aeggeaeegg eagetaeggg ggatteettt                 | 780 |
|    | cocacegete ettegettte cetteetege eegeegtaat aaatagaeee eeteeaeaee                 | 840 |
|    | ctctttcccc                                                                        | 850 |
| 5  | <210> 124<br><211> 78<br><212> ADN<br><213> Zea mays subsp. Mexicana<br><400> 124 |     |
|    | aacetegtgt tegtteggag egegeacaca cacaaceaga tetececeaa atecaceegt                 | 60  |
|    | cggcacctcc gcttcaag                                                               | 78  |
| 10 | <210> 125<br><211> 997<br><212> ADN<br><213> Zea mays subsp. Mexicana             |     |
|    | <400> 125                                                                         |     |

| gtacgccgct | catcctcctc | cccccctct  | ctctaccttc | tctagatcgg | cgtttcggtc | 60  |
|------------|------------|------------|------------|------------|------------|-----|
| catggttagg | gcccggtagt | tctacttctg | ttcatgtttg | tgttagatcc | gtgtttgtgt | 120 |
| tagatccgtg | ctgctagatt | tcgtacacgg | atgcgacctg | tacatcagac | atgttctgat | 180 |
| tgctaacttg | ccagtgtttc | tctttgggga | atcctgggat | ggctctagcc | gttccgcaga | 240 |
| cgggatcgat | ttcatgaatt | ttttttgttt | cgttgcatag | ggtttggttt | gcccttttcc | 300 |
| tttatttcaa | tatatgccgt | gcacttgttt | gtcgggtcat | cttttcatgt | tttttttggc | 360 |
| ttggttgtga | tgatgtggtc | tggttgggcg | gtcgttctag | atcggagtag | aatactgttt | 420 |
| caaactacct | ggtggattta | ttaaaggatc | tgtatgtatg | tgccatacat | cttcatagtt | 480 |
| acgagtttaa | gatgatggat | ggaaatatcg | atctaggata | ggtatacatg | ttgatgcggg | 540 |
| ttttactgat | gcatatacag | agatgctttt | ttttcgcttg | gttgtgatga | tgtggtctgg | 600 |
| tcgggcggtc | gttctagatc | ggagtagaat | actgtttcaa | actacctggt | ggatttatta | 660 |
| attttggatc | tgtatgtgtg | tcatacatct | tcatagttac | gagtttaaga | tcgatggaaa | 720 |
| tatcgatcta | ggataggtat | acatgttgat | gtgggtttta | ctgatgcata | tacatggcat | 780 |
| atgcagcatc | tattcatatg | ctctaacctt | gagtacctat | ctattataat | aaacaagtat | 840 |
|            |            |            |            | catatgcage |            | 900 |
|            |            |            |            | tggtactgtt |            | 960 |
| atgeteacce | tattatttaa | tgatacttct | gcaggte    |            |            | 997 |
|            |            |            |            |            |            |     |

5

<sup>&</sup>lt;210> 126

<sup>&</sup>lt;211> 1925

<sup>&</sup>lt;212> ADN

<sup>&</sup>lt;213> Zea mays subsp. Mexicana

<sup>&</sup>lt;400> 126

| gtcgtgcccc | tetetagaga | taatgagcat | tgcatgtcta | agttataaaa | aattaccaca | 60   |
|------------|------------|------------|------------|------------|------------|------|
| tattttttt  | tgtcacactt | gtgtttgaag | tgcagtttat | ctatctctat | acatatattt | 120  |
| aaacttcact | atatgaataa | tatagtctat | agtattaaaa | taatatcaat | gttttagatg | 180  |
| attatataac | tgaactgcta | gacatggtct | aaaggacaac | cgagtatttt | gacaacatga | 240  |
| ctctacagtt | ttatcttttt | agtgtgcatg | tgttcttttt | acttttgcaa | atagetteae | 300  |
| ctatataata | cttcatccat | tttattagta | catccattta | ctaaattttt | agtacatcta | 360  |
| ttttattcta | ttttagcctc | taaattaaga | aaacttaaac | tctattttag | ttttttattt | 420  |
| aataatttag | atataaaata | gaataaaata | aagtgactaa | aaaataacta | aatacctttt | 480  |
| aagaaataaa | aaaactaagg | aaccattttt | cttgttccga | gtagataatg | acagcctgtt | 540  |
| caacgccgtc | gacgagtcta | acggacacca | accagcgaac | cagcagcgtc | gcgtcgggcc | 600  |
| aagcgaagca | gacggcacgg | catctctgta | getgeetetg | gacccctctc | gagagttccg | 660  |
| ctccaccgtt | ggacttgctc | cgctgtcggc | atccagaaat | tgcgtggcgg | agcggcagac | 720  |
| gtgagccggc | acggcaggcg | gcctcctctc | acggcaccgg | cagetaeggg | ggattccttt | 780  |
| cccaccgctc | cttcgctttc | ccttcctcgc | ccgccgtaat | aaatagaccc | cctccacacc | 840  |
| ctctttcccc | aacctcgtgt | tcgttcggag | cgcgcacaca | cacaaccaga | tctcccccaa | 900  |
| atccacccgt | cggcacctcc | gcttcaaggt | acgccgctca | tcctcctccc | cccctctct  | 960  |
| ctaccttctc | tagateggeg | tttcggtcca | tggttagggc | ccggtagttc | tacttctgtt | 1020 |
| catgtttgtg | ttagatccgt | gtttgtgtta | gatccgtgct | gctagatttc | gtacacggat | 1080 |
| gcgacctgta | catcagacat | gttctgattg | ctaacttgcc | agtgtttctc | tttggggaat | 1140 |
| cctgggatgg | ctctagccgt | tccgcagacg | ggatcgattt | catgaatttt | ttttgtttcg | 1200 |
| ttgcataggg | tttggtttgc | ccttttcctt | tatttcaata | tatgccgtgc | acttgtttgt | 1260 |
| cgggtcatct | tttcatgttt | tttttggctt | ggttgtgatg | atgtggtctg | gttgggcggt | 1320 |
| cgttctagat | cggagtagaa | tactgtttca | aactacctgg | tggatttatt | aaaggatctg | 1380 |

tatgtatgtg ccatacatct tcatagttac gagtttaaga tgatggatgg aaatatcgat 1440 ctaggatagg tatacatgtt gatgcgggtt ttactgatgc atatacagag atgcttttt 1500 ttcgcttggt tgtgatgatg tggtctggtc gggcggtcgt tctagatcgg agtagaatac 1560 tgtttcaaac tacctggtgg atttattaat tttggatctg tatgtgtgc atacatcttc 1620 atagttacga gtttaagatc gatggaaata tcgatctagg ataggtatac atgttgatgt 1680 gggttttact gatgcatata catggcatat gcagcatcta ttcatatgct ctaaccttga 1740 gtacctatct attataata acaagtatgt tttataatta ttttgatctt gatatacttg 1800 gatgatggca tatgcagcag ctatatgtgg attttttag ccctgccttc ataccttga 1920 agggt

<210> 127

<211> 997

<212> ADN

5

<213> Zea mays subsp. Mexicana

<400> 127

gtacgccgct catcctcctc cccccctct ctctaccttc tctagatcgg cgtttcggtc 60 catggttagg geoggtagt tetaettetg tteatgtttg tgttagatee gtgtttgtgt 120 tagateegtg etgetagatt tegtacaegg atgegaeetg tacateagae atgttetgat 180 240 tgctaacttg ccagtgtttc tctttgggga atcctgggat ggctctagcc gttccgcaga 300 tttatttcaa tatatgccgt gcacttgttt gtcgggtcat cttttcatgt tttttttggc 360 ttggttgtga tgatgtggtc tggttgggcg gtcgttctag atcggagtag aatactgttt 420 caaactacct ggtggattta ttaaaggatc tgtatgtatg tgccatacat cttcatagtt 480 acgagtttaa gatgatggat ggaaatatcg atctaggata ggtatacatg ttgatgcggg 540 ttttactgat gcatatacag agatgctttt ttttcgcttg gttgtgatga tgtggtctgg 600 660 tegggeggte gttetagate ggagtagaat aetgttteaa aetaeetggt ggatttatta attttggatc tgtatgtgtg tcatacatct tcatagttac gagtttaaga tcgatggaaa 720 tatcgatcta ggataggtat acatgttgat gtgggtttta ctgatgcata tacatggcat 780 atgcagcate tatteatatg etetaacett gagtaeetat etattataat aaacaagtat 840 gttttataat tattttgate ttgatataet tggatgatgg catatgcage agetatatgt 900 ggattttttt agccctgcct tcatacgcta tttatttgct tggtactgtt tcttttgtcg 960 997 atgctcaccc tgttgtttgg tgatacttct gcagggt

<210> 128

<211> 1974

<212> ADN

<213> Zea mays subsp. Mexicana

5 <400> 128

gtcgtgcccc tctctagaga taaagagcat tgcatgtcta agttataaaa aattaccaca 60 tatttttttt gtcacacttg tttgaagtgc agtttatcta tctttataca tatatttaaa 120 ctttactcta cgaataatat aatctatagt actacaataa tatcagtgtt ttagagaatc 180 atataaatga acagttagac atggtctaaa ggacaattga gtattttgac aacaggactc 240 tacagtttta tetttttagt gtgcatgtgt teteettttt tttttgcaaa tagetteace 300 tatataatac ttcatccatt ttattagtac atccatttag ggtttagggt taatggtttt 360 tatagactaa tttttttagt acatctattt tattctattt tagcctctaa attaagaaaa 420 ctaaaactct attttagttt ttttatttaa taatttagat ataaaataga ataaaataaa 480 540 gtgactaaaa attaaacaaa taccctttaa gaaattaaaa aaactaagga aacatttttc 600 ttgtttcgag tagataatgc cagcctgtta aacgccgtcg acgagtctaa cggacaccaa 660 etgeetetgg accepteteg agagtteege tecacegttg gaettgetee getgteggea 720 tecagaaatt gegtggegga geggeagaeg tgageeggea eggeaggegg eeteeteete 780 ctctcacggc accggcagct acgggggatt cctttcccac cgctccttcg ctttcccttc 840 ctcgcccgcc gtaataaata gacaccccct ccacaccttc tttccccaac ctcgtgttgt 900 teggagegea cacacacaca accagatete coccaaatee accegtegge accteegett caaggtacgc cgctcatcct ccccccccc tctctacctt ctctagatcg gcgttccggt 1020 ccatggttag ggcccggtag ttctacttct gttcatgttt gtgttagatc cgtgtttgtg 1080 ttagatccgt gctgctagcg ttcgtacacg gatgcgacct gtacgtcaga cacgttctga 1140 ttgctaactt gccagtgttt ctctttgggg aatcctggga tggctctagc cgttccgcag 1200 acgggatega tttcatgatt ttttttgttt egttgcatag ggtttggttt gecettttee 1260 tttatttcaa tatatgccgt gcacttgttt gtcgggtcat cttttcatgc ttttttttgt 1320 cttggttgtg atgatgtggt ctggttgggc ggtcgttcta gatcggagaa gaattctgtt 1380 tcaaactacc tggtggattt attaattttg gatctgtatg tgtgtgccat acatattcat 1440 agttacgaat tgaagatgat ggatggaaat atcgatctag gataggtata catgttgatg 1500 cgggttttac tgatgcatat acagagatgc tttttgttcg cttggttgtg atgatgtggt 1560 ctggttgggc ggtcgttcat tcgttctaga tcggagtaga atactgtttc aaactacctg 1620 gtgtatttat taattttgga actgtatgtg tgtgtcatac atcttcatag ttacgagttt 1680

aagatggatg gaaatatoga totaggatag gtatacatgt tgatgtgggt tttactgatg 1740 catatacatg atggcatatg cagcatctat toatatgoto taacettgag tacetatota 1800 ttataataaa caagtatgtt ttataattat tttgatottg atatacttgg atgatggcat 1860 atgcagcage tatatgtgga tttttttage ectgeettea taegetattt atttgettgg 1920 taetgtttet tttgtegatg etcaeeetgt tgtttggtga taettetgea ggte 1974

<210> 129

<211> 887

<212> ADN

5 <213> Zea mays subsp. Mexicana

<400> 129

gtogtgcccc tototagaga taaagagcat tgcatgtota agttataaaa aattaccaca 60 tattttttt gtcacacttg tttgaagtgc agtttatcta tctttataca tatatttaaa 120 ctttactcta cgaataatat aatctatagt actacaataa tatcagtgtt ttagagaatc 180 atataaatga acagttagac atggtetaaa ggacaattga gtattttgac aacaggacte 240 tacagtttta tetttttagt gtgcatgtgt teteettttt tttttgcaaa tagetteace 300 tatataatac ttcatccatt ttattagtac atccatttag ggtttagggt taatggtttt 360 420 tatagactaa tttttttagt acatctattt tattctattt tagcctctaa attaagaaaa 480 ctaaaactct attttagttt ttttatttaa taatttagat ataaaataga ataaaataaa gtgactaaaa attaaacaaa taccctttaa gaaattaaaa aaactaagga aacatttttc 540 ttgtttcgag tagataatgc cagcctgtta aacgccgtcg acgagtctaa cggacaccaa 600 660 etgeetetgg accepteteg agagtteege tecacegttg gaettgetee getgteggea 720 tecagaaatt gegtggegga geggeagaeg tgageeggea eggeaggegg ceteeteete 780 840 ctctcacggc accggcagct acgggggatt cctttcccac cgctccttcg ctttcccttc 887 ctegecegee gtaataaata gacaceeeet ceacacette ttteeee

<210> 130

<211> 77

10

<212> ADN

<213> Zea mays subsp. Mexicana

<400> 130

aacctcgtgt tgttcggagc gcacacaca acaaccagat ctcccccaaa tccacccgtc 60 ggcacctccg cttcaag 77

<210> 131

<211> 1010 <212> ADN <213> Zea mays subsp. Mexicana <400> 131 gtacgccgct catcctcccc ccccctctc taccttctct agatcggcgt tccggtccat 60 ggttagggcc cggtagttct acttctgttc atgtttgtgt tagatccgtg tttgtgttag 120 atcogtgotg ctagogttog tacacggatg cgacctgtac gtcagacacg ttctgattgc 180 taacttgcca gtgtttctct ttggggaatc ctgggatggc tctagccgtt ccgcagacgg 240 gatcgatttc atgatttttt ttgtttcgtt gcatagggtt tggtttgccc ttttccttta 300 tttcaatata tgccgtgcac ttgtttgtcg ggtcatcttt tcatgctttt ttttgtcttg 360 gttgtgatga tgtggtctgg ttgggcggtc gttctagatc ggagaagaat tctgtttcaa 420 actacctggt ggatttatta attttggatc tgtatgtgtg tgccatacat attcatagtt 480 acgaattgaa gatgatggat ggaaatatcg atctaggata ggtatacatg ttgatgcggg 540 ttttactgat gcatatacag agatgctttt tgttcgcttg gttgtgatga tgtggtctgg 600 ttgggcggtc gttcattcgt tctagatcgg agtagaatac tgtttcaaac tacctggtgt 660 atttattaat tttggaactg tatgtgtgtg tcatacatct tcatagttac gagtttaaga 720 tggatggaaa tatcgatcta ggataggtat acatgttgat gtgggtttta ctgatgcata 780 tacatgatgg catatgcagc atctattcat atgctctaac cttgagtacc tatctattat 840 aataaacaag tatgttttat aattattttg atcttgatat acttggatga tggcatatgc 900 agcagetata tgtggatttt tttagecetg cetteataeg etatttattt gettggtaet 960 1010 gtttcttttg tcgatgctca ccctgttgtt tggtgatact tctgcaggtc <210> 132 <211> 1974 <212> ADN <213> Zea mays subsp. Mexicana

5

10 <400> 132

gtogtgocco tototagaga taaagagoat tgcatgtota agttataaaa aattaccaca 60 tatttttttt gtcacacttg tttgaagtgc agtttatcta tctttataca tatatttaaa 120 ctttactcta cgaataatat aatctatagt actacaataa tatcagtgtt ttagagaatc 180 atataaatga acagttagac atggtctaaa ggacaattga gtattttgac aacaggactc 240 tacagtttta tetttttagt gtgcatgtgt teteettttt tttttgcaaa tagetteace 300 tatataatac ttcatccatt ttattagtac atccatttag ggtttagggt taatggtttt 360 tatagactaa tttttttagt acatetattt tattetattt tageetetaa attaagaaaa 420 ctaaaactct attttagttt ttttatttaa taatttagat ataaaataga ataaaataaa 480

```
gtgactaaaa attaaacaaa taccctttaa gaaattaaaa aaactaagga aacatttttc
ttgtttcgag tagataatgc cagcctgtta aacgccgtcg acgagtctaa cggacaccaa
                                                              600
660
                                                              720
etgeetetgg accepteteg agagtteege tecacegttg gaettgetee getgteggea
tecagaaatt gegtggegga geggeagaeg tgageeggea eggeaggegg ceteeteete
                                                              780
ctctcacggc accggcagct acgggggatt cctttcccac cgctccttcg ctttcccttc
                                                              840
                                                              900
etegeeegee gtaataaata gacaceeeet ceacacette ttteeecaae etegtgttgt
teggagegea cacacacaca accagatete ceceaaatee accegtegge accteegett
                                                              960
caaggtacge egeteateet ecceecece tetetacett etetagateg gegtteeggt 1020
ccatggttag ggcccggtag ttctacttct gttcatgttt gtgttagatc cgtgtttgtg 1080
ttagatccgt gctgctagcg ttcgtacacg gatgcgacct gtacgtcaga cacgttctga 1140
ttgctaactt gccagtgttt ctctttgggg aatcctggga tggctctagc cgttccgcag 1200
tttatttcaa tatatgccgt gcacttgttt gtcgggtcat cttttcatgc ttttttttgt 1320
cttggttgtg atgatgtggt ctggttgggc ggtcgttcta gatcggagaa gaattctgtt 1380
tcaaactacc tggtggattt attaattttg gatctgtatg tgtgtgccat acatattcat 1440
agttacgaat tgaagatgat ggatggaaat atcgatctag gataggtata catgttgatg 1500
cgggttttac tgatgcatat acagagatgc tttttgttcg cttggttgtg atgatgtggt 1560
ctggttgggc ggtcgttcat tcgttctaga tcggagtaga atactgtttc aaactacctg 1620
gtgtatttat taattttgga actgtatgtg tgtgtcatac atcttcatag ttacgagttt 1680
aagatggatg gaaatatcga tctaggatag gtatacatgt tgatgtgggt tttactgatg 1740
catatacatg atggcatatg cagcatctat tcatatgctc taaccttgag tacctatcta 1800
ttataataaa caagtatgtt ttataattat tttgatcttg atatacttgg atgatggcat 1860
atgcagcage tatatgtgga tttttttage ectgeettea tacgetattt atttgettgg 1920
                                                             1974
tactgtttct tttgtcgatg ctcaccctgt tgtttggtga tacttctgca gggt
```

5

<sup>&</sup>lt;210> 133

<sup>&</sup>lt;211> 1010

<sup>&</sup>lt;212> ADN

<sup>&</sup>lt;213> Zea mays subsp. Mexicana

<sup>&</sup>lt;400> 133

| gtacgccgct | catcctcccc | ccccctctc  | taccttctct | agatcggcgt | tccggtccat | 60   |
|------------|------------|------------|------------|------------|------------|------|
| ggttagggcc | cggtagttct | acttctgttc | atgtttgtgt | tagatccgtg | tttgtgttag | 120  |
| atccgtgctg | ctagcgttcg | tacacggatg | cgacctgtac | gtcagacacg | ttctgattgc | 180  |
| taacttgcca | gtgtttctct | ttggggaatc | ctgggatggc | tctagccgtt | ccgcagacgg | 240  |
| gatcgatttc | atgattttt  | ttgtttcgtt | gcatagggtt | tggtttgccc | ttttccttta | 300  |
| tttcaatata | tgccgtgcac | ttgtttgtcg | ggtcatcttt | tcatgctttt | ttttgtcttg | 360  |
| gttgtgatga | tgtggtctgg | ttgggcggtc | gttctagatc | ggagaagaat | tctgtttcaa | 420  |
| actacctggt | ggatttatta | attttggatc | tgtatgtgtg | tgccatacat | attcatagtt | 480  |
| acgaattgaa | gatgatggat | ggaaatatcg | atctaggata | ggtatacatg | ttgatgcggg | 540  |
| ttttactgat | gcatatacag | agatgctttt | tgttcgcttg | gttgtgatga | tgtggtctgg | 600  |
| ttgggcggtc | gttcattcgt | tctagatcgg | agtagaatac | tgtttcaaac | tacctggtgt | 660  |
| atttattaat | tttggaactg | tatgtgtgtg | tcatacatct | tcatagttac | gagtttaaga | 720  |
| tggatggaaa | tatcgatcta | ggataggtat | acatgttgat | gtgggtttta | ctgatgcata | 780  |
| tacatgatgg | catatgcagc | atctattcat | atgetetaae | cttgagtacc | tatctattat | 840  |
| aataaacaag | tatgttttat | aattattttg | atcttgatat | acttggatga | tggcatatgc | 900  |
| agcagctata | tgtggatttt | tttagccctg | ccttcatacg | ctatttattt | gcttggtact | 960  |
| gtttcttttg | tcgatgctca | ccctgttgtt | tggtgatact | tctgcagggt |            | 1010 |

<sup>&</sup>lt;210> 134 <211> 2008 <212> ADN

<sup>5</sup> <213> Zea mays subsp. Mexicana

<sup>&</sup>lt;400> 134

| gtcgtgcccc | tctctagaga | taaagagcat | tgcatgtcta | aagtataaaa | aattaccaca | 60  |
|------------|------------|------------|------------|------------|------------|-----|
| tattttttg  | tcacacttat | ttgaagtgta | gtttatctat | ctctatacat | atatttaaac | 120 |
| ttcactctac | aaataatata | gtctataata | ctaaaataat | attagtgttt | tagaggatca | 180 |
| tataaataaa | ctgctagaca | tggtctaaag | gataattgaa | tattttgaca | atctacagtt | 240 |
| ttatcttttt | agtgtgcatg | tgatctctct | gtttttttg  | caaatagctt | gacctatata | 300 |
| atacttcatc | cattttatta | gtacatccat | ttaggattta | gggttgatgg | tttctataga | 360 |
| ctaattttta | gtacatccat | tttattcttt | ttagteteta | aatttttaa  | aactaaaact | 420 |
| ctattttagt | tttttattta | ataatttaga | tataaaatga | aataaaataa | attgactaca | 480 |
| aataaaacaa | ataccettta | agaaataaaa | aaactaagca | aacattttc  | ttgtttcgag | 540 |
| tagataatga | caggetgtte | aacgccgtcg | acgagtctaa | cggacaccaa | ccagcgaacc | 600 |
| agcagcgtcg | cgtcgggcca | agcgaagcag | acggcacggc | atctctgtag | ctgcctctgg | 660 |
| acccctctcg | agagttccgc | tccaccgttg | gacttgctcc | gctgtcggca | tccagaaatt | 720 |
| acataacaaa | geggeagaeg | tgagggggga | caacaaacaa | cctcttcctc | ctctcacggc | 780 |

```
accggcaget acgggggatt cettteceae egeteetteg etttecette etegecegee
gtaataaata gacacccct ccacaccctc tttccccaac ctcgtgttcg ttcggagcgc
                                                                   900
acacacage aaccagatet cececaaate cageegtegg caceteeget teaaggtaeg
cogotoatco tocococco cotototota cottototag atoggogato oggicoatgg 1020
ttagggcccg gtagttctac ttctgttcat gtttgtgtta gagcaaacat gttcatgttc 1080
atgtttgtga tgatgtggtc tggttgggcg gtcgttctag atcggagtag gatactgttt 1140
caagctacct ggtggattta ttaattttgt atctgtatgt gtgtgccata catcttcata 1200
gttacgagtt taagatgatg gatggaaata tegatetagg ataggtatae atgttgatge 1260
gggttttact gatgcatata cagagatget tttttteteg ettggttgtg atgatatggt 1320
ctggttgggc ggtcgttcta gatcggagta gaatactgtt tcaaactacc tggtggattt 1380
attaaaggat aaagggtcgt tctagatcgg agtagaatac tgtttcaaac tacctggtgg 1440
atttattaaa ggatctgtat gtatgtgcct acatcttcat agttacgagt ttaagatgat 1500
ggatggaaat atcgatctag gataggtata catgttgatg cgggttttac tgatgcatat 1560
acagagatgc tttttttcgc ttggttgtga tgatgtggtc tggttgggcg gtcgttctag 1620
atcggagtag aatactgttt caaactacct ggtggattta ttaattttgt atctttatgt 1680
gtgtgccata catcttcata gttacgagtt taagatgatg gatggaaata ttgatctagg 1740
ataggtatac atgttgatgt gggttttact gatgcatata catgatggca tatgcggcat 1800
ctattcatat getetaaeet tgagtaeeta tetattataa taaacaagta tgttttataa 1860
ttattttgat cttgatatac ttggatgatg gcatatgcag cagctatatg tggattttt 1920
agccctgcct tcatacgcta tttatttgct tggtactgtt tcttttgtcc gatgctcacc 1980
ctgttgttgg gtgatacttc tgcaggtc
                                                                  2008
```

<210> 135

<211> 877

<212> ADN

5

<213> Zea mays subsp. Mexicana

| gtcgtgcccc                                                   | tctctagaga      | taaagagcat | tgcatgtcta | aagtataaaa | aattaccaca | 60  |
|--------------------------------------------------------------|-----------------|------------|------------|------------|------------|-----|
| tatttttttg                                                   | tcacacttat      | ttgaagtgta | gtttatctat | ctctatacat | atatttaaac | 120 |
| ttcactctac                                                   | aaataatata      | gtctataata | ctaaaataat | attagtgttt | tagaggatca | 180 |
| tataaataaa                                                   | ctgctagaca      | tggtctaaag | gataattgaa | tattttgaca | atctacagtt | 240 |
| ttatcttttt                                                   | agtgtgcatg      | tgatctctct | gttttttttg | caaatagctt | gacctatata | 300 |
| atacttcatc                                                   | cattttatta      | gtacatccat | ttaggattta | gggttgatgg | tttctataga | 360 |
| ctaattttta                                                   | gtacatccat      | tttattcttt | ttagtctcta | aatttttaa  | aactaaaact | 420 |
|                                                              |                 |            |            |            |            |     |
| ctattttagt                                                   | tttttattta      | ataatttaga | tataaaatga | aataaaataa | attgactaca | 480 |
| aataaaacaa                                                   | atacccttta      | agaaataaaa | aaactaagca | aacattttc  | ttgtttcgag | 540 |
| tagataatga                                                   | caggctgttc      | aacgccgtcg | acgagtctaa | cggacaccaa | ccagcgaacc | 600 |
| agcagcgtcg                                                   | cgtcgggcca      | agcgaagcag | acggcacggc | atctctgtag | ctgcctctgg | 660 |
| acccctctcg                                                   | agagttccgc      | tecacegttg | gacttgctcc | gctgtcggca | tccagaaatt | 720 |
| gcgtggcgga                                                   | gcggcagacg      | tgaggcggca | cggcaggcgg | catattaata | ctctcacggc | 780 |
| accggcagct                                                   | acgggggatt      | cctttcccac | cgctccttcg | ctttcccttc | ctcgcccgcc | 840 |
| gtaataaata                                                   | gacaccccct      | ccacaccctc | tttcccc    |            |            | 877 |
| 210> 136<br>211> 78<br>212> ADN<br>213> Zea mays<br>400> 136 | subsp. Mexicana | а          |            |            |            |     |
| aacctcgtgt                                                   | tcgttcggag      | cgcacacaca | cgcaaccaga | tctcccccaa | atccagccgt | 60  |
|                                                              |                 |            |            |            |            |     |

<210> 137

5

10

<211> 1053 <212> ADN

<213> Zea mays subsp. Mexicana

cggcacctcc gcttcaag

<400> 137

78

| gt  | acgccgct | catectecce | cccccctct  | ctctaccttc | tctagatcgg | cgatccggtc | 60   |
|-----|----------|------------|------------|------------|------------|------------|------|
| cai | tggttagg | gcccggtagt | tctacttctg | ttcatgtttg | tgttagagca | aacatgttca | 120  |
| tg  | ttcatgtt | tgtgatgatg | tggtctggtt | gggcggtcgt | tctagatcgg | agtaggatac | 180  |
| tg  | tttcaagc | tacctggtgg | atttattaat | tttgtatctg | tatgtgtgtg | ccatacatct | 240  |
| tc  | atagttac | gagtttaaga | tgatggatgg | aaatatcgat | ctaggatagg | tatacatgtt | 300  |
| ga  | tgegggtt | ttactgatgc | atatacagag | atgcttttt  | tetegettgg | ttgtgatgat | 360  |
| ate | ggtctggt | tgggcggtcg | ttctagatcg | gagtagaata | ctgtttcaaa | ctacctggtg | 420  |
| ga  | tttattaa | aggataaagg | gtcgttctag | atcggagtag | aatactgttt | caaactacct | 480  |
| ggʻ | tggattta | ttaaaggatc | tgtatgtatg | tgcctacatc | ttcatagtta | cgagtttaag | 540  |
| ato | gatggatg | gaaatatcga | tctaggatag | gtatacatgt | tgatgcgggt | tttactgatg | 600  |
| ca  | tatacaga | gatgcttttt | ttcgcttggt | tgtgatgatg | tggtctggtt | gggcggtcgt | 660  |
| tc  | tagatcgg | agtagaatac | tgtttcaaac | tacctggtgg | atttattaat | tttgtatctt | 720  |
| tai | tgtgtgtg | ccatacatct | tcatagttac | gagtttaaga | tgatggatgg | aaatattgat | 780  |
| ct  | aggatagg | tatacatgtt | gatgtgggtt | ttactgatgc | atatacatga | tggcatatgc | 840  |
| gg  | catctatt | catatgetet | aaccttgagt | acctatctat | tataataaac | aagtatgttt | 900  |
| tai | taattatt | ttgatcttga | tatacttgga | tgatggcata | tgcagcagct | atatgtggat | 960  |
| tti | tttagccc | tgccttcata | cgctatttat | ttgcttggta | ctgtttcttt | tgtccgatgc | 1020 |
| to  | accetatt | gttgggtgat | acttctgcag | atc        |            |            | 1053 |

<210> 138 <211> 2008

<212> ADN

5

<213> Zea mays subsp. Mexicana

| gtcgtgcccc | tctctagaga | taaagagcat | tgcatgtcta | aagtataaaa | aattaccaca | 60   |
|------------|------------|------------|------------|------------|------------|------|
| tattttttg  | tcacacttat | ttgaagtgta | gtttatctat | ctctatacat | atatttaaac | 120  |
| ttcactctac | aaataatata | gtctataata | ctaaaataat | attagtgttt | tagaggatca | 180  |
| tataaataaa | ctgctagaca | tggtctaaag | gataattgaa | tattttgaca | atctacagtt | 240  |
| ttatctttt  | agtgtgcatg | tgatctctct | gtttttttg  | caaatagctt | gacctatata | 300  |
| atacttcatc | cattttatta | gtacatccat | ttaggattta | gggttgatgg | tttctataga | 360  |
| ctaatttta  | gtacatccat | tttattcttt | ttagtctcta | aatttttaa  | aactaaaact | 420  |
| ctattttagt | tttttattta | ataatttaga | tataaaatga | aataaaataa | attgactaca | 480  |
| aataaaacaa | atacccttta | agaaataaaa | aaactaagca | aacattttc  | ttgtttcgag | 540  |
| tagataatga | caggctgttc | aacgccgtcg | acgagtctaa | cggacaccaa | ccagcgaacc | 600  |
| agcagcgtcg | cgtcgggcca | agcgaagcag | acggcacggc | atctctgtag | ctgcctctgg | 660  |
| acccctctcg | agagttccgc | tccaccgttg | gacttgctcc | gctgtcggca | tccagaaatt | 720  |
| gcgtggcgga | gcggcagacg | tgaggcggca | cggcaggcgg | cctcttcctc | ctctcacggc | 780  |
| accggcagct | acgggggatt | cctttcccac | cgctccttcg | ctttcccttc | ctcgcccgcc | 840  |
| gtaataaata | gacaccccct | ccacaccctc | tttccccaac | ctcgtgttcg | ttcggagcgc | 900  |
| acacacacgc | aaccagatct | cccccaaatc | cageegtegg | cacctccgct | tcaaggtacg | 960  |
| ccgctcatcc | tecececee  | cctctctcta | ccttctctag | atcggcgatc | cggtccatgg | 1020 |
| ttagggcccg | gtagttctac | ttctgttcat | gtttgtgtta | gagcaaacat | gttcatgttc | 1080 |
| atgtttgtga | tgatgtggtc | tggttgggcg | gtcgttctag | atcggagtag | gatactgttt | 1140 |
| caagctacct | ggtggattta | ttaattttgt | atctgtatgt | gtgtgccata | catcttcata | 1200 |
| gttacgagtt | taagatgatg | gatggaaata | tcgatctagg | ataggtatac | atgttgatgc | 1260 |
| gggttttact | gatgcatata | cagagatgct | ttttttctcg | cttggttgtg | atgatatggt | 1320 |
| ctggttgggc | ggtcgttcta | gatcggagta | gaatactgtt | tcaaactacc | tggtggattt | 1380 |

attataaa ggatctgta tctagatcgg agtagaatac tgtttcaaac tacctggtgg 1440
atttataaa ggatctgtat gtatgtgcct acatcttcat agttacgagt ttaagatgat 1500
ggatggaaat atcgatctag gataggtata catgttgatg cgggttttac tgatgcatat 1560
acagagatgc ttttttcgc ttggttgtga tgatgtggtc tggttgggcg gtcgttctag 1620
atcggagtag aatactgtt caaactacct ggtggattta ttaattttgt atcttatgt 1680
gtgtgccata catctcata gttacgagtt taagatgatg gatggaaata ttgatctagg 1740
ataggtatac atgttgatgt gggttttact gatgcatata catgatggca tatgcggcat 1800
ctattcatat gctctaacct tgagtaccta tctattataa taaacaagta tggtttata 1920
agccctgcct tcatacgcta tttatttgct tggtactgtt tcttttgtcc gatgctcacc 1980
ctgttgttgg gtgatacttc tgcagggt

<210> 139

<211> 1053

<212> ADN

5

<213> Zea mays subsp. Mexicana

<400> 139

gtacgccgct catectcccc coccectct ctctaccttc tctagatcgg cgatccggtc 60 catggttagg gcccggtagt totacttotg ttcatgtttg tgttagagca aacatgttca tgttcatgtt tgtgatgatg tggtctggtt gggcggtcgt tctagatcgg agtaggatac 180 tgtttcaage tacetggtgg atttattaat tttgtatetg tatgtgtgtg ceatacatet 240 tcatagttac gagtttaaga tgatggatgg aaatatcgat ctaggatagg tatacatgtt 300 gatgegggtt ttactgatge atatacagag atgetttttt tetegettgg ttgtgatgat 360 atggtctggt tgggcggtcg ttctagatcg gagtagaata ctgtttcaaa ctacctggtg 420 gatttattaa aggataaagg gtcgttctag atcggagtag aatactgttt caaactacct 480 ggtggattta ttaaaggatc tgtatgtatg tgcctacatc ttcatagtta cgagtttaag 540 atgatggatg gaaatatega tetaggatag gtatacatgt tgatgegggt tttactgatg 600 catatacaga gatgettttt ttegettggt tgtgatgatg tggtetggtt gggeggtegt 660 720 tctagatcgg agtagaatac tgtttcaaac tacctggtgg atttattaat tttgtatctt tatgtgtgtg ccatacatct tcatagttac gagtttaaga tgatggatgg aaatattgat 780 ctaggatagg tatacatgtt gatgtgggtt ttactgatgc atatacatga tggcatatgc 840 ggcatctatt catatgctct aaccttgagt acctatctat tataataaac aagtatgttt 900 tataattatt ttgatcttga tatacttgga tgatggcata tgcagcagct atatgtggat tttttagece tgeetteata egetatttat ttgettggta etgtttettt tgteegatge 1020 1053 teaccetgtt gttgggtgat acttetgeag ggt

<210> 140 <211> 1635 <212> ADN <213> Sorghum bicolor

| ccaagtccaa | atgtcaattc | ccttgaagat | gatctatttt  | tatcttttgc | attttgttat | 60   |
|------------|------------|------------|-------------|------------|------------|------|
| ggaagtttgc | aaatagcaac | aaatgctaag | tcaatttgcc  | aaagtctttg | gagatgctct | 120  |
| tagtctataa | ttgaacaata | tttgtaaaat | acaaaaaaaa  | atagtactat | ttttatttta | 180  |
| aaaaattttt | ggaagtaaac | aaggccgagg | atggggaaac  | ggaagtccaa | cacgtcgttt | 240  |
| tctaagttgg | gctcaaaagc | ccatcacgga | actgacetge  | tatgggtcgg | aggagagcgc | 300  |
| gtccagatgg | ttccagaggc | tggtggtggt | gggccaaacg  | cggaactccg | ccaccgccac | 360  |
| ggcctcgtgc | gcaagcgcag | cgcgttgccg | tgagccgtga  | cgtaaccctc | cgttgcccac | 420  |
| gataaaagct | ccacccccga | ccccggcccc | ccgatttccc  | ctacggacca | gtctccccc  | 480  |
| gatcgcaatc | gcgaattcgt | cgcaccatcg | gcacgcagac  | gaacgaagca | aggetetece | 540  |
| categgeteg | tcaaggtatg | cgttccctag | atttgttccc  | ttcctctctc | ggtttgtcta | 600  |
| tatatatgca | tgtatggtcg | attecegate | tegtegatte  | teggtttege | cttccgtacg | 660  |
| aagattcgtt | tagattgttc | atatgttctg | ttgtgttacc  | agattgatcg | gatcaacttg | 720  |
| atccagttat | cttcgctcct | ccgattagat | ccgtttctat  | ttcagtatat | atatactagt | 780  |
| atagtatcta | gggttcacac | tgttgaccga | ctggttactt  | ggaattgatc | cgtgctgagt | 840  |
| tcagttgttg | ccgtccataa | aggcccgtgc | tattgtctgt  | tctgaaacga | aatcctgtag | 900  |
| atttcttagg | gttagtgttc | aattcatcaa | aaggttgatt  | agtgaattat | caaatttgag | 960  |
| agggttaaat | cattctcatc | atgttgtctc | gaatgtaatc  | ccaaagatat | tatagactgt | 1020 |
| gtttcgattt | gatggattga | tttgtgtatc | atctaaatca  | acaaggctaa | gtcatcagtt | 1080 |
| catagaatca | tgtttaggtt | tccgttcaat | agactagttt  | tatcaatata | taaaattata | 1140 |
| agaagggtag | ggtaaatcac | gttgcctcaa | atgecatect  | gtatggtttg | gtttcaattc | 1200 |
| aattagtttg | gttgattagg | gtatgctctg | gattaagatg  | gttaaatctt | ccctagcate | 1260 |
| ttccctgcct | atccttactt | gatccgtttc | ggatatgttg  | gaagtacagc | gagcttattt | 1320 |
| catgttgata | gtgacccctt | tcagattata | ctattgaata  | ttgtatgttt | gccacttctg | 1380 |
| tatgttgaat | tatcctgcta | aattagcaat | ggaattagca  | tattggcaat | tggtatgcat | 1440 |
| ggacctaatc | aggacggatg | tggttatgtt | agtttcaatt  | cattgtcaat | tcattgttca | 1500 |
| cctgcgttag | atatatatga | tgatttttac | gtgtagttca  | tagttcttga | gttttggatc | 1560 |
| tttcttatct | gatatatgct | ttectataca | tatachthat  | tatatettae | catocoattt | 1620 |
| ttgtctatgc |            |            | -9-9-0-0-40 | -9-9-0-040 |            | 1635 |
| Ligituatyc | ~99cc      |            |             |            |            | 1000 |

|    | <210> 141<br><211> 401<br><212> ADN<br><213> Sorghum I  | bicolor      |            |              |              |            |     |
|----|---------------------------------------------------------|--------------|------------|--------------|--------------|------------|-----|
| 5  | <400> 141                                               |              |            |              |              |            |     |
|    | ccaagtccaa                                              | atgtcaattc   | ccttgaagat | gatctatttt   | tatcttttgc   | attttgttat | 60  |
|    | ggaagtttgc                                              | aaatagcaac   | aaatgctaag | tcaatttgcc   | aaagtctttg   | gagatgetet | 120 |
|    | tagtctataa                                              | ttgaacaata   | tttgtaaaat | acaaaaaaaa   | atagtactat   | ttttatttta | 180 |
|    | aaaaattttt                                              | ggaagtaaac   | aaggccgagg | atggggaaac   | ggaagtccaa   | cacgtcgttt | 240 |
|    | tctaagttgg                                              | gctcaaaagc   | ccatcacgga | actgacctgc   | tatgggtcgg   | aggagagcgc | 300 |
|    | gtccagatgg                                              | ttccagaggc   | tggtggtggt | gggccaaacg   | cggaactccg   | ccaccgccac | 360 |
|    | ggcctcgtgc                                              | gcaagcgcag   | cgcgttgccg | tgagccgtga   | С            |            | 401 |
| 10 | <210> 142<br><211> 154<br><212> ADN<br><213> Sorghum I  | bicolor      |            |              |              |            |     |
|    | <400> 142                                               |              |            |              |              |            |     |
|    | gtaaccctcc                                              | gttgcccacg   | ataaaagcto | : cacccccgac | cccggccccc   | cgatttcccc | 60  |
|    | tacggaccag                                              | tetececeeg   | ategeaateg | cgaattcgtc   | gcaccatcgg   | cacgcagacg | 120 |
|    | aacgaagcaa                                              | ggeteteece   | atcggctcgt | caag         |              |            | 154 |
| 15 | <210> 143<br><211> 1080<br><212> ADN<br><213> Sorghum I | bicolor      |            |              |              |            |     |
|    | <400> 143                                               |              |            |              |              |            |     |
|    | gtatgegtte                                              | cctagatttg   | ttecettect | : ctctcggttt | gtctatatat   | atgcatgtat | 60  |
|    | ggtcgattcc                                              | cgatetegte   | gatteteggt | ttagaattaa   | gtacgaagat   | tcgtttagat | 120 |
|    | tgttcatatg                                              | ı ttctgttgtg | ttaccagatt | gateggatea   | acttgatcca   | gttatcttcg | 180 |
|    | ctcctccgat                                              | tagatccgtt   | tctatttcac | , tatatatata | ı ctagtatagt | atctagggtt | 240 |
|    | cacactgttg                                              | g accgactggt | tacttggaat | tgatccgtgc   | tgagttcagt   | tgttgccgtc | 300 |
|    | cataaaggco                                              | cgtgctattg   | tctgttctga | a aacgaaatco | tgtagatttc   | ttagggttag | 360 |
|    | tgttcaatto                                              | atcaaaaggt   | tgattagtga | a attatcaaat | : ttgagagggt | taaatcattc | 420 |

tcatcatgtt gtctcgaatg taatcccaaa gatattatag actgtgtttc gatttgatgg 480 attgatttgt gtatcatcta aatcaacaag gctaagtcat cagttcatag aatcatgttt 540 aggtttccgt tcaatagact agttttatca atatataaaa ttataagaag ggtagggtaa 600 atcacgttgc ctcaaatgcc atcctgtatg gtttggtttc aattcaatta gtttggttga 660 720 ttagggtatg ctctggatta agatggttaa atcttcccta gcatcttccc tgcctatcct tacttgatcc gtttcggata tgttggaagt acagcgagct tatttcatgt tgatagtgac 780 ccctttcaga ttatactatt gaatattgta tgtttqccac ttctqtatqt tgaattatcc 840 tgctaaatta gcaatggaat tagcatattg gcaattggta tgcatggacc taatcaggac 900 ggatgtggtt atgttagttt caattcattg tcaattcatt gttcacctgc gttagatata 960 tatgatgatt tttacgtgta gttcatagtt cttgagtttt ggatctttct tatctgatat 1020 atgettteet gtgeetgtge tttattgtgt ettaccatge gatttttgte tatgeaggte 1080

<210> 144

<211> 2067

<212> ADN

5

<213> Sorghum bicolor

<400> 144

cattaaaagt cattatgtgc atgcgtcgta actaacatgg atatgttgct gcactatctc 60 ctcgcactag ctgcgcatga taaagccaca agccaaaatt aattattatg ggtgagaata 120 aatacgtacc agcaccggcc atagaaaaag tacattatta aaggtctaat ttggaaacag 180 totgaaaacg acgtgcgctg cagaggtaaa tgtaattttc ggcactaaaa ccattatcaa 240 ctaattcatt caataacagt tatttagaaa atgtatagct cgctctaaaa aaacagttta 300 360 gaaaaacagt caaaataatt cgaccaacaa acagttaata aggttcatta aatatataat gcacggtgct atttgatctt ttaaaggaaa aagaggaata gtcgtgggcg ccaggcggga 420 attgggggg gggagtctgc cggacgacgc gttccgtccg aacggccgga cccgacgag 480 ccccccgcc gccccacgtc gcagaaccgt ccgtgggtgg taatctggcc gggtacacca 540 geogtecect tgggeggeet cacageactg ggeteacacg tgagttttgt tetgggette 600 660 ggatcgcacc atatgggcct cggcatcaga aagacggggc ccgtctggga tagaagagac aggaacctcc tcgtggattc cagaagccag ccacgagcga ccaccgacgc ggaggatact 720 cgtcgtccaa gtccaacacg gcgggcgggc gggcggacgc gtgggctggg ctaactgcct 780 aacettaace tecaaggeae gecaaggeee getteteeca eeegacataa atateeeeee 840 atocaggoaa ggogoagago otoagacoag attocgatoa atoaccoata agotococoo 900 aaatctgttc ctcgtctccc gtctcgcggt ttcctacttc cctcggacgc ctccggcaag 960 tegetegace gegegattee gecegeteaa ggtateaact eggtteaeca etecaateta 1020

cgtctgattt agatgttact tccatctatg tctaatttag atgttactcc gatgcgattg 1080 gattatgttt atgcggtttg cactgctctg gaaactggaa tctagggttt cgagtgattt 1140 gategatege gatetgtgat ttegttgege ettgtgtatg ettggagtga tetaggettg 1200 tatatgegge ategegatet gaegeggttg etttgtagag getgggggte taggetgtga 1260 ttttagaate aaataaaget gtteettace gtagatgttt eetacatgtt etgteeagta 1320 ctccagtgct atattcacat tgtttgaggc ttgagttttg tcgatcagtg gtcatgagaa 1380 aaatatatct catgatttta gaggcaccta ttgggaaagg tagatggttc cgttttacat 1440 gttttataga ccttgtggca tggctccttt gttctatggg tgctttattt tcctgaataa 1500 cagtaatgcg agactggtct atgggtgctt tgaccagtaa tgcgagacta gttatttgat 1560 catggtgcag ttcctagtga ttacgaacaa caatttggta gctcagttca ttcagcattg 1620 gtttctacga tccttatcat tttacttctg aatgaattta tttatttaag atattacagt 1680 gcaataaact gctgtataat atcagtaaca aactgctatt actagtaaat gcctagattc 1740 ataataattc attattctac ttgaaaatga tcttaggcct ttttatgcgg tcctacgcat 1800 ccttccacag gacttgctgt ttgtttgttt tttgtaatcc ctcgctggga cgcagaatgg 1860 ttcatctqtq ctaataattt ttttqcatat ataaqtttat aqttctcatt attcatqtqq 1920 ctatggtage etgtaaaate tattgtaata acatattagt eagecataca tetgtteeaa 1980 cttgctcaat tgcaaatcat atctccactt aaagcacatg tttgcaagct ttctgacaag 2040 2067 tttctttgtg tttgattgaa acaggtg

<210> 145

<211>855

<212> ADN

5

<213> Sorghum bicolor

<400> 145

cattaaaagt cattatgtgc atgcgtcgta actaacatgg atatgttgct gcactatctc 60 ctcgcactag ctgcgcatga taaagccaca agccaaaatt aattattatg ggtgagaata 120 aatacgtacc agcaccggcc atagaaaaag tacattatta aaggtctaat ttggaaacag 180 tctgaaaacg acgtgcgctg cagaggtaaa tgtaattttc ggcactaaaa ccattatcaa 240 ctaattcatt caataacagt tatttagaaa atgtatagct cgctctaaaa aaacagttta 300 gaaaaacagt caaaataatt cgaccaacaa acagttaata aggttcatta aatatataat 360 gcacggtgct atttgatctt ttaaaggaaa aagaggaata gtcgtgggcg ccaggcggga 420 attggggcgc gggagtctgc cggacgacgc gttccgtccg aacggccgga cccgacgagg 480 ecececegee gececacgte geagaacegt cegtgggtgg taatetggee gggtacacea 540

|                                                     | gccgtcccct                    | tgggcggcct | cacagcactg | ggctcacacg | tgagttttgt | tctgggcttc | 600 |
|-----------------------------------------------------|-------------------------------|------------|------------|------------|------------|------------|-----|
|                                                     | ggatcgcacc a                  | atatgggcct | cggcatcaga | aagacggggc | ccgtctggga | tagaagagac | 660 |
|                                                     | aggaacetee 1                  | tegtggatte | cagaagccag | ccacgagega | ccaccgacgc | ggaggatact | 720 |
|                                                     | cgtcgtccaa                    | gtccaacacg | gcgggcgggc | gggcggacgc | gtgggctggg | ctaactgcct | 780 |
|                                                     | aaccttaacc                    | tccaaggcac | gccaaggccc | gcttctccca | cccgacataa | atatccccc  | 840 |
|                                                     | atccaggcaa (                  | ggcgc      |            |            |            |            | 855 |
| <210> 1<br><211> 1<br><212> A<br><213> S            | 36                            |            |            |            |            |            |     |
| <400> 1                                             | 46                            |            |            |            |            |            |     |
| a                                                   | gagceteag ac                  | cagattee g | gatcaatcac | ccataagctc | ccccaaato  | tgtteetegt | 60  |
| c                                                   | tecegtete ge                  | ggtttcct a | cttccctcg  | gacgectecg | gcaagtcgct | cgaccgcgcg | 120 |
| at                                                  | tteegeeeg et                  | :caag      |            |            |            |            | 136 |
| <210> 1<br><211> 1<br><212> A<br><213> S<br><400> 1 | 076<br>ADN<br>Gorghum bicolor |            |            |            |            |            |     |
|                                                     | gtatcaactc                    | ggttcaccac | tecaatetae | gtctgattta | gatgttagtt | ccatctatct | 60  |
|                                                     |                               |            |            | attatgttta |            |            | 120 |
|                                                     |                               |            |            | atcgatcgcg |            |            | 180 |
|                                                     | ttgtgtatgc                    | ttggagtgat | ctaggettgt | atatgcggca | tegegatetg | acgcggttgc | 240 |
|                                                     | tttgtagagg                    | ctgggggtct | aggctgtgat | tttagaatca | aataaagctg | ttccttaccg | 300 |
|                                                     | tagatgtttc                    | ctacatgttc | tgtccagtac | tccagtgcta | tattcacatt | gtttgaggct | 360 |
|                                                     | tgagttttgt                    | cgatcagtgg | tcatgagaaa | aatatatctc | atgattttag | aggcacctat | 420 |
|                                                     | tgggaaaggt                    | agatggttcc | gttttacatg | ttttatagac | cttgtggcat | ggeteetttg | 480 |
|                                                     | ttctatgggt                    | gctttatttt | cctgaataac | agtaatgcga | gactggtcta | tgggtgcttt | 540 |
|                                                     | gaccagtaat                    | gcgagactag | ttatttgatc | atggtgcagt | tectagtgat | tacgaacaac | 600 |
|                                                     | aatttggtag                    | ctcagttcat | tcagcattgg | tttctacgat | ccttatcatt | ttacttctga | 660 |
|                                                     | atgaatttat                    | ttatttaaga | tattacagtg | caataaactg | ctgtataata | tcagtaacaa | 720 |
|                                                     | actgctatta                    | ctagtaaatg | cctagattca | taataattca | ttattctact | tgaaaatgat | 780 |
|                                                     | cttaggcctt                    | tttatgcggt | cctacgcatc | cttccacagg | acttgctgtt | tgtttgtttt | 840 |

<210> 148

5

10

ttgtaatece tegetgggac geagaatggt teatetgtge taataatttt tttgeatata 900

taagtttata gttctcatta ttcatgtggc tatggtagcc tgtaaaatct attgtaataa 960 catattagtc agccatacat ctgttccaac ttgctcaatt gcaaatcata tctccactta 1020

1076

aagcacatgt ttgcaagctt tctgacaagt ttctttgtgt ttgattgaaa caggtg

<211> 2067 <212> ADN

<213> Sorghum bicolor

<400> 148

cattaaaagt cattatgtgc atgcgtcgta actaacatgg atatgttgct gcactatctc 60 ctcgcactag ctgcgcatga taaagccaca agccaaaatt aattattatg ggtgagaata 120 aatacqtacc agcaccqqcc ataqaaaaaq tacattatta aaqqtctaat ttqqaaacaq 180 tctgaaaacg acgtgcgctg cagaggtaaa tgtaattttc ggcactaaaa ccattatcaa 240 300 ctaattcatt caataacagt tatttagaaa atgtatagct cgctctaaaa aaacagttta gaaaaacagt caaaataatt cgaccaacaa acagttaata aggttcatta aatatataat 360 420 gcacggtgct atttgatctt ttaaaggaaa aagaggaata gtcgtgggcg ccaggcggga attggggege gggagtetge eggaegaege gtteegteeg aaeggeegga eeegaegagg 480 ecceeegee geeccacqte geagaaccqt cogtgggtgg taatetggee gggtacacca 540 geogteecet tgggeggeet eacageactg ggeteacacg tgagttttgt tetgggette 600 ggategeace atatgggeet eggeateaga aagaegggge eegtetggga tagaagagae 660 aggaacetee tegtggatte cagaageeag ceaegagega eeaeegaege ggaggataet 720 780 cgtcgtccaa gtccaacacg gcgggcgggc gggcggacgc gtgggctggg ctaactgcct aaccttaacc tccaaggcac gccaaggccc gcttctccca cccgacataa atatcccccc 840 atecaggeaa ggegeagage eteagaceag attecgatea ateaceeata ageteecee 900 aaatetgtte etegteteee gtetegeggt tteetaette eeteggaege eteeggeaag 960 tegetegace gegegattee geeegeteaa ggtateaact eggtteacea etecaateta 1020 cgtctgattt agatgttact tocatctatg tctaatttag atgttactcc gatgcgattg 1080 gattatgttt atgcggtttg cactgctctg gaaactggaa tctagggttt cgagtgattt 1140 gategatege gatetgtgat ttegttgege ettgtgtatg ettggagtga tetaggettg 1200 tatatgcggc atcgcgatct gacgcggttg ctttgtagag gctgggggtc taggctgtga 1260 ttttagaatc aaataaagct gttccttacc gtagatgttt cctacatgtt ctgtccagta 1320 ctccagtgct atattcacat tgtttgaggc ttgagttttg tcgatcagtg gtcatgagaa 1380 aaatatatct catgatttta gaggcaccta ttgggaaagg tagatggttc cgttttacat 1440

5

gttttataga ccttgtggca tggctccttt gttctatggg tgctttattt tcctgaataa 1500 cagtaatgcg agactggtct atgggtgctt tgaccagtaa tgcgagacta gttatttgat 1560 catggtgcag ttcctagtga ttaccgaacaa caatttggta gctcagttca ttcagcattg 1620 gttctacga tccttatcat tttacttctg aatgaattta tttatttaag atattacagt 1680 gcaataaact gctgtataat atcagtaaca aactgctatt actagtaaat gcctagattc 1740 ataataattc attattctac ttgaaaatga tcttaggcct ttttatgcgg tcctacgcat 1800 ccttccacag gacttgctgt ttgtttgttt tttgtaatcc ctcgctggga cgcagaatgg 1860 ttcatctgtg ctaataatt ttttgcatat ataagtttat agttctcatt attcatgtgg 1920 ctatggtagc ctgtaaaatc tattgtaata acatattagt cagccataca tctgttccaa 1980 cttgctcaat tgcaaatcat atctccactt aaagcacatg tttgcaagct ttctgacaag 2040 tttctttgtg tttgattgaa acagggt

<210> 149

<211> 1076

<212> ADN

<213> Sorghum bicolor

<400> 149

5

gtatcaactc ggttcaccac tccaatctac gtctgattta gatgttactt ccatctatgt 60 ctaatttaga tgttactccg atgcgattgg attatgttta tgcggtttgc actgctctgg 120 aaactggaat ctagggtttc gagtgatttg atcgatcgcg atctgtgatt tcgttgcgcc 180 ttgtgtatgc ttggagtgat ctaggcttgt atatgcggca tcgcgatctg acgcggttgc 240 300 tttgtagagg ctgggggtct aggctgtgat tttagaatca aataaagctg ttccttaccg tagatgtttc ctacatgttc tgtccagtac tccagtgcta tattcacatt gtttgaggct 360 tgagttttgt cgatcagtgg tcatgagaaa aatatatctc atgattttag aggcacctat 420 480 tgggaaaggt agatggttcc gttttacatg ttttatagac cttgtggcat ggctcctttg ttctatgggt gctttatttt cctgaataac agtaatgcga gactggtcta tgggtgcttt 540 gaccagtaat gcgagactag ttatttgatc atggtgcagt tcctagtgat tacgaacaac 600 aatttggtag ctcagttcat tcagcattgg tttctacgat ccttatcatt ttacttctga 660 atgaatttat ttatttaaga tattacagtg caataaactg ctgtataata tcagtaacaa 720 780 actgctatta ctagtaaatg cctagattca taataattca ttattctact tgaaaatgat cttaggcctt tttatgcggt cctacgcatc cttccacagg acttgctgtt tgtttgtttt 840 ttgtaatccc tcgctgggac gcagaatggt tcatctgtgc taataatttt tttgcatata 900 taagtttata gttctcatta ttcatgtggc tatggtagcc tgtaaaatct attgtaataa catattagtc agccatacat ctgttccaac ttgctcaatt gcaaatcata tctccactta 1020

1076

aagcacatgt ttgcaagctt tctgacaagt ttctttgtgt ttgattgaaa cagggt

<210> 150 <211> 2003 <212> ADN <213> Sorghum bicolor

| agaagtaaaa | aaaaagttcg | tttcagaatc | ataaaggtaa | gttaaaaaaa | gaccatacaa | 60   |
|------------|------------|------------|------------|------------|------------|------|
| aaaagaggta | tttaatgata | aactataatc | cagaatttgt | taggatagta | tataagaata | 120  |
| agaccttgtt | tagtttcaaa | aaaatttgca | aaattttcca | gattcctcgt | cacatcaaat | 180  |
| ctttagaggt | atgcatggag | tattaaatat | agacaagacc | taaataagaa | aacatgaaat | 240  |
| gttcacgaaa | aaaatcaagc | caatgcatga | tcgaagcaaa | cggtatagta | acggtgttaa | 300  |
| cctgatccat | tgatctttgt | aatctttaac | ggccacctac | cgcgggcagc | aaacggcgtc | 360  |
| cecetecteg | atateteege | ggcggcctct | ggctttttcc | gcggaattgc | gcggtgggga | 420  |
| cggattccac | gagaccgcaa | cgcaaccgcc | tctcgccgct | gggccccaca | ccgctcggtg | 480  |
| ccgtagcccg | tagcctcacg | ggattctttc | tccctcctcc | cccgtgtata | aattggcttc | 540  |
| atcccctccc | tgcctcatcc | atccaaatcc | cactccccaa | teccateeeg | tcggagaaat | 600  |
| tcatcgaagc | gaagegaage | gaateeteee | gatectetea | aggtacgcga | gttttcgaat | 660  |
| cccctccaga | cccctcgtat | gctttccctg | ttcgttttcg | togtagogtt | tgattaggta | 720  |
| tgctttccct | gttcgtgttc | gtcgtagggt | tcgattaggt | cgtgtgaggc | catggcctgc | 780  |
| tgtgataaat | ttatttgttg | ttatatcgga | tctgtagtcg | atttgggggt | cgtggtgtag | 840  |
| atccgcgggc | tgtgatgaag | ttatttggtg | tgattgtgct | cgcgtgattc | tgcgcgttga | 900  |
| gctcgagtag | atctgatggt | tggacgaccg | attggttcgt | tggctggctg | cgctaaggtt | 960  |
| gggctgggct | catgttgcgt | tegetgttge | gcgtgattcc | geggatggae | ttgcgcttga | 1020 |
| ttgccgccag | atcacgttac | gattatgtga | tttcgtttgg | aactttttag | atttgtagct | 1080 |
| tetgettatt | atatgacaga | tgcgcctact | gctcatatgc | ctgtggtaaa | taatggatgg | 1140 |
| ctgtgggtca | aactagttga | ttgtcgagtc | atgtatcata | tacaggtgta | tagacttgcg | 1200 |
| tctaattgtt | tgcatgttgc | agttatatga | tttgttttag | attgtttgtt | ccactcatct | 1260 |
| aggctgtaaa | agggacacta | cttattagct | tgttgtttaa | tctttttatt | agtagattat | 1320 |
| attggtaatg | ttttactaat | tattattatg | ttatatgtga | cttctgctca | tgcctgatta | 1380 |
| taatcataga | tcactgtagt | tgattgttga | atcatgtgtc | aaatacccgt | atacataaca | 1440 |
| ctacacattt | gcttagttgt | ttccttaact | catgcaaatt | gaacaccatg | tatgatttgc | 1500 |
| atggtgctgt | aatgttaaat | actacagtcc | tgttggtact | tgtttagtaa | gaatctgctt | 1560 |

| catacaacta                                                        | tatgctatgc   | ctgatgataa   | tcatatatct   | : ttgtgtaatt | : aataattagt | 1620 |
|-------------------------------------------------------------------|--------------|--------------|--------------|--------------|--------------|------|
| tgactgttga                                                        | ataatgtato   | gagtacatac   | catggcacaa   | ttgcttagtc   | acttecttaa   | 1680 |
| ccatgcatat                                                        | tgaactgac    | ccttcatgtt   | ctgctgaatt   | gttctattct   | gattagacca   | 1740 |
| tacatcatgt                                                        | attgcaatct   | ttatttgcaa   | ttgtaatgta   | a atggttcggt | tctcaaatgt   | 1800 |
| taaatgctat                                                        | agttgtgcta   | ctttctaato   | , ttaaatgcta | a tagctgtgct | acttgtaaga   | 1860 |
| tctgcttcat                                                        | agtttagtta   | a aattaggatg | , atgagettte | g atgctgtaac | tttgtttgat   | 1920 |
| tatgttcata                                                        | gttgatcagt   | : ttttgttaga | ctcacagtaa   | a cttatggtct | cactettett   | 1980 |
| ctggtctttg                                                        | g atgtttgcaç | ı caa        |              |              |              | 2003 |
| 2210> 151<br>2211> 565<br>2212> ADN<br>2213> Sorghum<br>2400> 151 | bicolor      |              |              |              |              |      |
| agaagtaaaa                                                        | aaaaagttcg   | tttcagaatc   | ataaaggtaa   | gttaaaaaaa   | gaccatacaa   | 60   |
| aaaagaggta                                                        | tttaatgata   | aactataatc   | cagaatttgt   | taggatagta   | tataagaata   | 120  |
| agaccttgtt                                                        | tagtttcaaa   | aaaatttgca   | aaattttcca   | gattcctcgt   | cacatcaaat   | 180  |
| ctttagaggt                                                        | atgcatggag   | tattaaatat   | agacaagacc   | taaataagaa   | aacatgaaat   | 240  |
| gttcacgaaa                                                        | aaaatcaagc   | caatgcatga   | tcgaagcaaa   | cggtatagta   | acggtgttaa   | 300  |
| cctgatccat                                                        | tgatctttgt   | aatctttaac   | ggccacctac   | cgcgggcagc   | aaacggcgtc   | 360  |
| cacatacteg                                                        | atatctccgc   | ggcggcctct   | ggctttttcc   | gcggaattgc   | gcggtgggga   | 420  |
| cggattccac                                                        | gagaccgcaa   | cgcaaccgcc   | tetegeeget   | gggccccaca   | ccgctcggtg   | 480  |
| ccgtagcccg                                                        | tagectcacg   | ggattctttc   | tecetectee   | cccgtgtata   | aattggcttc   | 540  |
| atcccctccc                                                        | tgcctcatcc   | atcca        |              |              |              | 565  |
| 210> 152<br>211> 77<br>212> ADN<br>213> Sorghum                   | bicolor      |              |              |              |              |      |
| :400> 152                                                         |              |              |              |              |              |      |
| aatcccactc                                                        | cccaatccca   | tcccgtcgga   | gaaattcatc   | gaagcgaagc   | gaagcgaatc   | 60   |
| ctcccgatcc                                                        | tctcaag      |              |              |              |              | 77   |
| 210> 153<br>211> 1361<br>212> ADN<br>213> Sorghum                 | bicolor      |              |              |              |              |      |
| :400> 153                                                         |              |              |              |              |              |      |

```
60
gtacgcgagt tttcgaatcc cctccagacc cctcgtatgc tttccctgtt cgttttcgtc
gtagcgtttg attaggtatg ctttccctgt tcgtgttcgt cgtagggttc gattaggtcg
                                                                120
tgtgaggcca tggcctgctg tgataaattt atttgttgtt atatcggatc tgtagtcgat
                                                                180
ttgggggtcg tggtgtagat ccgcgggctg tgatgaagtt atttggtgtg attgtgctcg
                                                                240
egtgattetg egegttgage tegagtagat etgatggttg gaegaeegat tggttegttg
                                                                300
getggetgeg etaaggttgg getgggetea tgttgegtte getgttgege gtgatteege
                                                                360
ggatggactt gcgcttgatt gccgccagat cacgttacga ttatgtgatt tcgtttggaa
                                                                420
ctttttagat ttgtagcttc tgcttattat atgacagatg cgcctactgc tcatatgcct
                                                                480
gtggtaaata atggatggct gtgggtcaaa ctagttgatt gtcgagtcat gtatcatata
                                                                540
caggtgtata gacttgcgtc taattgtttg catgttgcag ttatatgatt tgttttagat
                                                                600
tgtttgttcc actcatctag gctgtaaaag ggacactact tattagcttg ttgtttaatc
                                                                660
tttttattag tagattatat tggtaatgtt ttactaatta ttattatgtt atatgtgact
                                                                720
                                                                780
tctgctcatg cctgattata atcatagatc actgtagttg attgttgaat catgtgtcaa
atacccgtat acataacact acacatttgc ttagttgttt ccttaactca tgcaaattga
                                                                840
acaccatgta tgatttgcat ggtgctgtaa tgttaaatac tacagtcctg ttggtacttg
                                                                900
tttagtaaga atctgcttca tacaactata tgctatgcct gatgataatc atatatcttt
gtgtaattaa taattagttg actgttgaat aatgtatcga gtacatacca tggcacaatt 1020
gettagteae tteettaace atgeatattg aactgaceee tteatgttet getgaattgt 1080
ggttcggttc tcaaatgtta aatgctatag ttgtgctact ttctaatgtt aaatgctata 1200
gctgtgctac ttgtaagatc tgcttcatag tttagttaaa ttaggatgat gagctttgat 1260
gctgtaactt tgtttgatta tgttcatagt tgatcagttt ttgttagact cacagtaact 1320
                                                               1361
tatggtctca ctcttcttct ggtctttgat gtttgcagcg g
```

10 <400> 154

atggtccgtc ctgtagaaac cccaacccgt gaaatcaaaa aactcgacgg cctgtgggca 60 ttcagtctgg atcgcgaaaa ctgtggaatt gatcagcgtt ggtgggaaag cgcgttacaa 120

<sup>&</sup>lt;210> 154

<sup>&</sup>lt;211> 1812

<sup>&</sup>lt;212> ADN

<sup>5 &</sup>lt;213> Secuencia artificial

<sup>&</sup>lt;220>

<sup>&</sup>lt;221> misc feature

<sup>&</sup>lt;222> (1)..( 1812)

<sup>&</sup>lt;223> Secuencia codificante optimizada por codón.

| gaaagccggg | caattgctgt | gccaggcagt | tttaacgatc | agttcgccga | tgcagatatt | 180  |
|------------|------------|------------|------------|------------|------------|------|
| cgtaattatg | cgggcaacgt | ctggtatcag | cgcgaagtct | ttataccgaa | aggttgggca | 240  |
| ggccagcgta | tcgtgctgcg | tttcgatgcg | gtcactcatt | acggcaaagt | gtgggtcaat | 300  |
| aatcaggaag | tgatggagca | tcagggcggc | tatacgccat | ttgaagccga | tgtcacgccg | 360  |
| tatgttattg | ccgggaaaag | tgtacgtatc | accgtttgtg | tgaacaacga | actgaactgg | 420  |
| cagactatcc | cgccgggaat | ggtgattacc | gacgaaaacg | gcaagaaaaa | gcagtcttac | 480  |
| ttccatgatt | tctttaacta | tgccggaatc | catcgcagcg | taatgctcta | caccacgccg | 540  |
| aacacctggg | tggacgatat | caccgtggtg | acgcatgtcg | cgcaagactg | taaccacgcg | 600  |
| tctgttgact | ggcaggtggt | ggccaatggt | gatgtcagcg | ttgaactgcg | tgatgcggat | 660  |
| caacaggtgg | ttgcaactgg | acaaggcact | agegggaett | tgcaagtggt | gaatccgcac | 720  |
| ctctggcaac | cgggtgaagg | ttatctctat | gaactgtgcg | tcacagccaa | aagccagaca | 780  |
| gagtgtgata | tctacccgct | tegegtegge | atccggtcag | tggcagtgaa | gggcgaacag | 840  |
| ttcctgatta | accacaaacc | gttctacttt | actggctttg | gtcgtcatga | agatgcggac | 900  |
| ttgcgtggca | aaggattcga | taacgtgctg | atggtgcacg | accacgcatt | aatggactgg | 960  |
| attggggcca | actcctaccg | tacctcgcat | tacccttacg | ctgaagagat | gctcgactgg | 1020 |
| gcagatgaac | atggcatcgt | ggtgattgat | gaaactgctg | ctgtcggctt | taacctctct | 1080 |
| ttaggcattg | gtttcgaagc | gggcaacaag | ccgaaagaac | tgtacagcga | agaggcagtc | 1140 |
| aacggggaaa | ctcagcaagc | gcacttacag | gcgattaaag | agetgatage | gcgtgacaaa | 1200 |
| aaccacccaa | gcgtggtgat | gtggagtatt | gccaacgaac | cggatacccg | tccgcaaggt | 1260 |
| gcacgggaat | atttcgcgcc | actggcggaa | gcaacgcgta | aactcgaccc | gacgcgtccg | 1320 |
| atcacctgcg | tcaatgtaat | gttctgcgac | gctcacaccg | ataccatcag | cgatctcttt | 1380 |
| gatgtgctgt | gcctgaaccg | ttattacgga | tggtatgtcc | aaagcggcga | tttggaaacg | 1440 |
| gcagagaagg | tactggaaaa | agaacttctg | gcctggcagg | agaaactgca | tcagccgatt | 1500 |
| atcatcaccg | aatacggcgt | ggatacgtta | gccgggctgc | actcaatgta | caccgacatg | 1560 |
| tggagtgaag | agtatcagtg | tgcatggctg | gatatgtatc | accgcgtctt | tgatcgcgtc | 1620 |
| agcgccgtcg | tcggtgaaca | ggtatggaat | ttcgccgatt | ttgcgacctc | gcaaggcata | 1680 |
| ttgcgcgttg | gcggtaacaa | gaaagggatc | ttcactcgcg | accgcaaacc | gaagtcggcg | 1740 |
| gcttttctgc | tgcaaaaacg | ctggactggc | atgaacttcg | gtgaaaaacc | gcagcaggga | 1800 |
| ggcaaacaat | ga         |            |            |            |            | 1812 |

<sup>&</sup>lt;210> 155 <211> 2001

<sup>&</sup>lt;212> ADN

<213> Secuencia artificial

<220>

5

<221> misc feature

<222> (1)..(2001)

<223> Secuencia codificante quimérica con intrón procesable.

<400> 155

atggtccgtc ctgtagaaac cccaacccgt gaaatcaaaa aactcgacgg cctgtgggca 60 ttcagtctgg atcgcgaaaa ctgtggaatt gatcagcgtt ggtgggaaag cgcgttacaa 120 gaaagccggg caattgctgt gccaggcagt tttaacgatc agttcgccga tgcagatatt 180 cgtaattatg cgggcaacgt ctggtatcag cgcgaagtct ttataccgaa aggttgggca 240 ggccagcgta tcgtgctgcg tttcgatgcg gtcactcatt acggcaaagt gtgggtcaat 300 360 aatcaggaag tgatggagca tcagggcggc tatacgccat ttgaagccga tgtcacgccg tatgttattg ccgggaaaag tgtacgtaag tttctgcttc tacctttgat atatatataa 420 taattatcat taattagtag taatataata tttcaaaatat ttttttcaaa ataaaagaat 480 gtagtatata gcaattgctt ttctgtagtt tataagtgtg tatattttaa tttataactt 540 ttctaatata tgaccaaaat ttgttgatgt gcaggtatca ccgtttgtgt gaacaacgaa 600 ctgaactggc agactatece geegggaatg gtgattaceg aegaaaaegg caagaaaaag 660 cagtettact tecatgattt etttaaetat geeggaatee ategeagegt aatgetetae 720 accacgccga acacctgggt ggacgatatc accgtggtga cgcatgtcgc gcaagactgt 780 aaccacgcgt ctgttgactg gcaggtggtg gccaatggtg atgtcagcgt tgaactgcgt 840 gatgeggate aacaggtggt tgeaactgga caaggeacta gegggaettt geaagtggtg 900 aatccgcacc totggcaacc gggtgaaggt tatototatg aactgtgcgt cacagccaaa agccagacag agtgtgatat ctacccgctt cgcgtcggca tccggtcagt ggcagtgaag 1020 ggcgaacagt teetgattaa eeacaaaceg ttetaettta etggetttgg tegteatgaa 1080 gatgeggaet tgegtggeaa aggattegat aaegtgetga tggtgeaega ceaegeatta 1140 atggactgga ttggggccaa ctcctaccgt acctcgcatt acccttacgc tgaagagatg 1200 ctogactggg cagatgaaca tggcatogtg gtgattgatg aaactgctgc tgtoggcttt 1260 aacctctctt taggcattgg tttcgaagcg ggcaacaagc cgaaagaact gtacagcgaa 1320 gaggcagtca acggggaaac tcagcaagcg cacttacagg cgattaaaga gctgatagcg 1380 cgtgacaaaa accacccaag cgtggtgatg tggagtattg ccaacgaacc ggatacccgt 1440 ccgcaaggtg cacgggaata tttcgcgcca ctggcggaag caacgcgtaa actcgacccg 1500 acgogtocga toacetgogt caatgtaatg ttotgogacg otcacacoga taccatcage 1560 gatetetttg atgtgetgtg eetgaacegt tattaeggat ggtatgteea aageggegat 1620

ttggaaacgg cagagaaggt actggaaaaa gaacttctgg cctggcagga gaaactgcat 1680 cagccgatta tcatcaccga atacggcgtg gatacgttag ccgggctgca ctcaatgtac 1740 accgacatgt ggagtgaaga gtatcagtgt gcatggctgg atatgtatca ccgcgtcttt 1800 gatcgcgtca gcgccgtcgt cggtgaacaag gtatggaatt tcgccgattt tgcgacctcg 1860 caaggcatat tgcgcgttgg cggtaacaag aaagggatct tcactcgcga ccgcaaaccg 1920 aagtcggcgg cttttctgct gcaaaaacgc tggactggca tgaacttcgg tgaaaaaccg 1980 cagcagggag gcaaacaatg a

<210> 156

<211> 1653

<212> ADN

5 <213> Secuencia artificial

<220>

<221> misc feature

<222> (1)..(1653)

<223> Secuencia codificante optimizada por codón.

| atggaagad | g ccaaaaacat  | aaagaaaggc | ccggcgccat | tctatcctct | agaggatgga | 60   |
|-----------|---------------|------------|------------|------------|------------|------|
| accgctgga | ng agcaactgca | taaggctatg | aagagatacg | ccctggttcc | tggaacaatt | 120  |
| gcttttaca | ng atgcacatat | cgaggtgaac | atcacgtacg | cggaatactt | cgaaatgtcc | 180  |
| gttcggttq | gg cagaagctat | gaaacgatat | gggctgaata | caaatcacag | aatcgtcgta | 240  |
| tgcagtgaa | a actetettea  | attctttatg | ccggtgttgg | gcgcgttatt | tatcggagtt | 300  |
| gcagttgcg | ge eegegaaega | catttataat | gaacgtgaat | tgctcaacag | tatgaacatt | 360  |
| tegeageet | a ccgtagtgtt  | tgtttccaaa | aaggggttgc | aaaaaatttt | gaacgtgcaa | 420  |
| aaaaaatta | nc caataatcca | gaaaattatt | atcatggatt | ctaaaacgga | ttaccaggga | 480  |
| tttcagtco | ga tgtacacgtt | cgtcacatct | catctacctc | ccggttttaa | tgaatacgat | 540  |
| tttgtacca | ag agteetttga | tcgtgacaaa | acaattgcac | tgataatgaa | ttcctctgga | 600  |
| tctactggg | gt tacctaaggg | tgtggccctt | ccgcatagaa | ctgcctgcgt | cagattctcg | 660  |
| catgccaga | ng atcctatttt | tggcaatcaa | atcattccgg | atactgcgat | tttaagtgtt | 720  |
| gttccattc | c atcacggttt  | tggaatgttt | actacactcg | gatatttgat | atgtggattt | 780  |
| cgagtcgtc | t taatgtatag  | atttgaagaa | gagctgtttt | tacgatccct | tcaggattac | 840  |
| aaaattcaa | a gtgcgttgct  | agtaccaacc | ctattttcat | tcttcgccaa | aagcactctg | 900  |
| attgacaaa | at acgatttatc | taatttacac | gaaattgctt | ctgggggcgc | acctctttcg | 960  |
| aaagaagto | g gggaagcggt  | tgcaaaacgc | ttccatcttc | cagggatacg | acaaggatat | 1020 |
| gggctcact | g agactacatc  | agctattctg | attacacccg | agggggatga | taaaccgggc | 1080 |
| gcggtcggt | a aagttgttcc  | attttttgaa | gcgaaggttg | tggatctgga | taccgggaaa | 1140 |
| acgctgggd | g ttaatcagag  | aggcgaatta | tgtgtcagag | gacctatgat | tatgtccggt | 1200 |
| tatgtaaac | a atccggaagc  | gaccaacgcc | ttgattgaca | aggatggatg | gctacattct | 1260 |
| ggagacata | ng cttactggga | cgaagacgaa | cacttcttca | tagttgaccg | cttgaagtct | 1320 |
| ttaattaaa | at acaaaggata | tcaggtggcc | cccgctgaat | tggaatcgat | attgttacaa | 1380 |
| caccccaac | ea tettegaege | gggcgtggca | ggtcttcccg | acgatgacgc | cggtgaactt | 1440 |
| cccgccgc  | g ttgttgtttt  | ggagcacgga | aagacgatga | cggaaaaaga | gatcgtggat | 1500 |
| tacgtcgcc | a gtcaagtaac  | aaccgcgaaa | aagttgcgcg | gaggagttgt | gtttgtggac | 1560 |
| gaagtacco | ga aaggtettae | cggaaaactc | gacgcaagaa | aaatcagaga | gatecteata | 1620 |
| aaggccaag | ga agggcggaaa | gtccaaattg | taa        |            |            | 1653 |

5

<sup>&</sup>lt;210> 157

<sup>&</sup>lt;211> 936

<sup>&</sup>lt;212> ADN

<sup>&</sup>lt;213> Secuencia artificial

<220>

| <221> misc_feature <222> (1)(936) <223> Secuencia codificante optimizada por codón. |                  |             |             |                         |              |     |
|-------------------------------------------------------------------------------------|------------------|-------------|-------------|-------------------------|--------------|-----|
| <400> 157                                                                           |                  |             |             |                         |              |     |
| atggcttcca                                                                          | aggtgtacga       | ccccgagcaa  | cgcaaacgca  | tgatcactgg              | gcctcagtgg   | 60  |
| tgggctcgct                                                                          | gcaagcaaat       | gaacgtgctg  | gactccttca  | tcaactacta              | tgattccgag   | 120 |
| aagcacgccg                                                                          | agaacgccgt       | gatttttctg  | catggtaacg  | ctgcctccag              | ctacctgtgg   | 180 |
| aggcacgtcg                                                                          | tgcctcacat       | cgagcccgtg  | gctagatgca  | tcatccctga              | tctgatcgga   | 240 |
| atgggtaagt                                                                          | ccggcaagag       | cgggaatggc  | tcatatcgcc  | teetggatea              | ctacaagtac   | 300 |
| ctcaccgctt                                                                          | ggttcgagct       | gctgaacctt  | ccaaagaaaa  | tcatctttgt              | gggccacgac   | 360 |
| tggggggctt                                                                          | gtctggcctt       | tcactactcc  | tacgagcacc  | aagacaagat              | caaggccatc   | 420 |
| gtccatgctg                                                                          | agagtgtcgt       | ggacgtgatc  | gagtcctggg  | acgagtggcc              | tgacatcgag   | 480 |
| gaggatatcg                                                                          | ccctgatcaa       | gagcgaagag  | ggcgagaaaa  | tggtgcttga              | gaataacttc   | 540 |
| ttcgtcgaga                                                                          | ccatgeteee       | aagcaagatc  | atgcggaaac  | tggagcctga              | ggagtteget   | 600 |
| gcctacctgg                                                                          | agccattcaa       | ggagaagggc  | gaggttagac  | ggcctaccct              | ctcctggcct   | 660 |
| cgcgagatcc                                                                          | ctctcgttaa       | gggaggcaag  | cccgacgtcg  | tccagattgt              | ccgcaactac   | 720 |
| aacgcctacc                                                                          | ttcgggccag       | cgacgatctg  | cctaagatgt  | tcatcgagtc              | cgaccctggg   | 780 |
| ttcttttcca                                                                          | acgctattgt       | cgagggagct  | aagaagttcc  | ctaacac <del>cg</del> a | gttcgtgaag   | 840 |
| gtgaagggcc                                                                          | tccacttcag       | ccaggaggac  | gctccagatg  | aaatgggtaa              | gtacatcaag   | 900 |
| agcttcgtgg                                                                          | agcgcgtgct       | gaagaacgag  | cagtaa      |                         |              | 936 |
| <210> 158<br><211> 253<br><212> ADN<br><213> Agrobacte                              | erium tumefacier | าร          |             |                         |              |     |
| <400> 158                                                                           |                  |             |             |                         |              |     |
| gategttea                                                                           | a acatttggc      | a ataaagttt | c ttaagattg | a atcctgttg             | c cggtcttgcg | 60  |
| atgattato                                                                           | a tataattto      | t gttgaatta | c gttaagcat | g taataatta             | a catgtaatgc | 120 |
| atgacgtta                                                                           | t ttatgagat      | g ggtttttat | g attagagte | c cgcaattat             | a catttaatac | 180 |
| gcgatagaa                                                                           | a acaaaatat      | a gegegeaaa | c taggataaa | t tatcgcgcg             | c ggtgtcatct | 240 |
| atgttacta                                                                           | g atc            |             |             |                         |              | 253 |
| <210> 159<br><211> 210<br><212> ADN<br><213> Triticum a                             | aestivum         |             |             |                         |              |     |

60

<400> 159 ctgcatgcgt ttggacgtat gctcattcag gttggagcca atttggttga tgtgtgcg agttettgeg agtetgatga gacatetetg tattgtgttt ettteeceag tgttttetgt 120 acttgtgtaa teggetaate gecaacagat teggegatga ataaatgaga aataaattgt 180 210 tctgattttg agtgcaaaaa aaaaggaatt <210> 160 <211> 300 <212> ADN 5 <213> Oryza sativa <400> 160 attaatcgat cctccgatcc cttaattacc ataccattac accatgcatc aatatccata 60 tatatataaa ccctttcgca cgtacttata ctatgttttg tcatacatat atatgtgtcg 120 aacgatcgat ctatcactga tatgatatga ttgatccatc agcctgatct ctgtatcttg 180 ttatttgtat accgtcaaat aaaagtttct tccacttgtg ttaataatta gctactctca 240 tctcatgaac cctatatata actagtttaa tttgctgtca attgaacatg atgatcgatg 300 <210> 161 10 <211> 1204 <212> ADN <213> Secuencia artificial <220> <221> misc feature

<223> Grupo de elementos de expresión reguladores de la transcripción quimérico.

15

<222> (1)..(1204)

| ggtccgattg | agacttttca | acaaagggta | atatccggaa | acctcctcgg | attccattgc | 60   |
|------------|------------|------------|------------|------------|------------|------|
| ccagctatct | gtcactttat | tgtgaagata | gtggaaaagg | aaggtggctc | ctacaaatgc | 120  |
| catcattgcg | ataaaggaaa | ggccatcgtt | gaagatgcct | ctgccgacag | tggtcccaaa | 180  |
| gatggacccc | cacccacgag | gagcatcgtg | gaaaaagaag | acgttccaac | cacgtcttca | 240  |
| aagcaagtgg | attgatgtga | tggtccgatt | gagacttttc | aacaaagggt | aatatccgga | 300  |
| aacctcctcg | gattccattg | cccagctatc | tgtcacttta | ttgtgaagat | agtggaaaag | 360  |
| gaaggtggct | cctacaaatg | ccatcattgc | gataaaggaa | aggccatcgt | tgaagatgcc | 420  |
| tctgccgaca | gtggtcccaa | agatggaccc | ccacccacga | ggagcatcgt | ggaaaaagaa | 480  |
| gacgttccaa | ccacgtcttc | aaagcaagtg | gattgatgtg | atatotocac | tgacgtaagg | 540  |
| gatgacgcac | aatcccacta | tccttcgcaa | gaccettect | ctatataagg | aagttcattt | 600  |
| catttggaga | ggacacgctg | acaagctgac | tctagcagat | cctctagaac | catcttccac | 660  |
| acactcaagc | cacactattg | gagaacacac | agggacaaca | caccataaga | tccaagggag | 720  |
| gcctccgccg | ccgccggtaa | ccaccccgcc | cctctcctct | ttctttctcc | gtttttttt  | 780  |
| ccgtctcggt | ctcgatcttt | ggccttggta | gtttgggtgg | gcgagaggcg | gcttcgtgcg | 840  |
| cgcccagatc | ggtgcgcggg | aggggcggga | tetegegget | ggggctctcg | ccggcgtgga | 900  |
| teeggeeegg | atctcgcggg | gaatggggct | ctcggatgta | gatctgcgat | ccgccgttgt | 960  |
| tgggggagat | gatggggggt | ttaaaatttc | cgccgtgcta | aacaagatca | ggaagagggg | 1020 |
| aaaagggcac | tatggtttat | atttttatat | atttctgctg | cttcgtcagg | cttagatgtg | 1080 |
| ctagatcttt | ctttcttctt | tttgtgggta | gaatttgaat | ccctcagcat | tgttcatcgg | 1140 |
| tagtttttct | tttcatgatt | tgtgacaaat | gcagcctcgt | gcggagcttt | tttgtaggta | 1200 |
| gaag       |            |            |            |            |            | 1204 |

5

<210> 162 <211> 1396 <212> ADN <213> Oryza sativa

<400> 162

tcgaggtcat tcatatgctt gagaagagag tcgggatagt ccaaaataaa acaaaggtaa 60 gattacctgg tcaaaagtga aaacatcagt taaaaggtgg tataaagtaa aatatcggta 120 ataaaaggtg gcccaaagtg aaatttactc ttttctacta ttataaaaat tgaggatgtt 180 tttgtcggta ctttgatacg tcatttttgt atgaattggt ttttaagttt attcgctttt 240 ggaaatgcat atctgtattt gagtcgggtt ttaagttcgt ttgcttttgt aaatacagag 300

```
ggatttgtat aagaaatatc tttagaaaaa cccatatgct aatttgacat aatttttgag
                                                                   360
aaaaatatat attoaggoga attotoacaa tgaacaataa taagattaaa atagotttoo
                                                                   420
cccgttgcag cgcatgggta ttttttctag taaaaataaa agataaactt agactcaaaa
                                                                   480
catttacaaa aacaacccct aaagttccta aagcccaaag tgctatccac gatccatagc
                                                                   540
aagoccagoo caacccaaco caacccagoo cacccagto cagocaactg gacaatagto
                                                                   600
tocacacco cocactatca cogtgagtty tecgcacgca cogcacgtot cgcagccaaa
                                                                   660
aaaaaaaaga aagaaaaaaa agaaaaagaa aaaacagcag gtgggtccgg gtcgtggggg
                                                                   720
coggaaacgo gaggaggato gogagcoago gacgaggoog gocotocoto ogottocaaa
                                                                   780
gaaacgcccc ccatcgccac tatatacata ccccccctc tcctcccatc cccccaaccc
                                                                   840
taccaccacc accaccacca cctccacctc ctccccctc gctgccggac gacgagctcc
                                                                   900
teccectee cecteegeeg eegeegegee ggtaaceace eegeecetet eetettett
teteegtttt ttttteegte teggtetega tetttggeet tggtagtttg ggtgggegag 1020
aggeggette gtgeegeeca gateggtgeg egggagggge gggatetege ggetggetet 1080
egeceegtg gateeggee ggatetegeg gggaatgggg eteteggatg tagatetgeg 1140
atecgeegtt gttggggeeg atgatgggge cettaaaatt teegeegtge taaacaagat 1200
caggaagagg ggaaaagggc actatggttt atatttttat atatttctgc tgcttcgtca 1260
ggcttagatg tgctagatct ttctttcttc tttttgtggg tagaatttaa tccctcagca 1320
ttqttcatcq qtaqtttttc ttttcatqat tcqtqacaaa tqcaqcctcq tqcqqacqtt 1380
tttttgtagg tagaag
                                                                  1396
```

<210> 163

<211> 1446

<212> ADN

5 <213> Secuencia artificial

<220>

<221> misc\_feature

<222> (1)..(1446)

<223> Grupo de elementos de expresión reguladores de la transcripción quimérico.

```
60
ggtccgattg agacttttca acaaagggta atatccggaa acctcctcgg attccattgc
ccagctatct gtcactttat tgtgaagata gtggaaaagg aaggtggctc ctacaaatgc
                                                                   120
catcattgcg ataaaggaaa ggccatcgtt gaagatgcct ctgccgacag tggtcccaaa
                                                                   180
gatggacccc cacccacgag gagcatcgtg gaaaaagaag acgttccaac cacgtcttca
                                                                   240
aagcaagtgg attgatgtga tggtccgatt gagacttttc aacaaagggt aatatccgga
                                                                   300
aacctecteg gattecattg cecagetate tgteaettta ttgtgaagat agtggaaaag
                                                                   360
gaaggtggct cctacaaatg ccatcattgc gataaaggaa aggccatcgt tgaagatgcc
                                                                   420
tetgeegaca gtggteecaa agatggaece ecacecacga ggageategt ggaaaaagaa
                                                                   480
                                                                   540
gacgttccaa ccacgtcttc aaagcaagtg gattgatgtg atatctccac tgacgtaagg
gatgacgcac aatcccacta tccttcgcaa gacccttcct ctatataagg aagttcattt
                                                                   600
catttggaga ggacacgetg acaagetgae tetageagat etacegtett eggtacgege
                                                                   660
teacteegee etetgeettt gttactgeea egtttetetg aatgetetet tgtgtggtga
                                                                   720
ttgctgagag tggtttagct ggatctagaa ttacactctg aaatcgtgtt ctgcctgtgc
                                                                   780
tgattacttg ccgtcctttg tagcagcaaa atatagggac atggtagtac gaaacgaaga
                                                                   840
tagaacctac acagcaatac gagaaatgtg taatttggtg cttagcggta tttatttaag
                                                                   900
cacatgttgg tgttataggg cacttggatt cagaagtttg ctgttaattt aggcacaggc
                                                                   960
ttcatactac atgggtcaat agtataggga ttcatattat aggcgatact ataataattt 1020
gttcgtctgc agagcttatt atttgccaaa attagatatt cctattctgt ttttgtttgt 1080
gtgctgttaa attgttaacg cctgaaggaa taaatataaa tgacgaaatt ttgatgttta 1140
tetetgetee tttattgtga eeataagtea agateagatg caettgtttt aaatattgtt 1200
gtctgaagaa ataagtactg acagtatttt gatgcattga tctgcttgtt tgttgtaaca 1260
aaatttaaaa ataaagagtt teetttttgt tgeteteett aceteetgat ggtatetagt 1320
atotaccaac tgacactata ttgcttctct ttacatacgt atcttgctcg atgccttctc 1380
cctagtgttg accagtgtta ctcacatagt ctttgctcat ttcattgtaa tgcagatacc 1440
                                                                  1446
aagcgg
```

<210> 164

<211> 675

<212> ADN

5 <213> Secuencia artificial

<220>

<221> misc\_feature

<222> (1)..(675)

<223> Grupo de elementos de expresión reguladores de la transcripción quimérico.

ggtccgatgt gagacttttc aacaaagggt aatatccgga aacctcctcg gattccattg 60 cccagctatc tgtcacttta ttgtgaagat agtggaaaag gaaggtggct cctacaaatg 120 180 ccatcattgc gataaaggaa aggccatcgt tgaagatgcc tctgccgaca gtggtcccaa agatggacco ccacccacga ggagcatogt ggaaaaagaa gacgttocaa ccacgtotto 240 aaagcaagtg gattgatgtg atggtccgat gtgagacttt tcaacaaagg gtaatatccg 300 gaaacctcct cggattccat tgcccagcta tctgtcactt tattgtgaag atagtggaaa 420 aggaaggtgg ctcctacaaa tgccatcatt gcgataaagg aaaggccatc gttgaagatg 480 cctctgccga cagtggtccc aaagatggac ccccacccac gaggagcatc gtggaaaaag aagacgttcc aaccacgtct tcaaagcaag tggattgatg tgatatctcc actgacgtaa 540 gggatgacgc acaatcccac tatccttcgc aagacccttc ctctatataa ggaagttcat ttcatttgga gaggaaccat cttccacaca ctcaagccac actattggag aacacacagg 660 675 gacaacacac cataa

<210> 165 <211> 804 <212> ADN <213> Zea mays

<400> 165

5

acceptetteg gtacgegete acteegeeet etgeetttgt tactgeeaeg tttetetgaa 60 tgctctcttg tgtggtgatt gctgagagtg gtttagctgg atctagaatt acactctgaa 120 atogtgttet geetgtgetg attacttgee gteetttgta geageaaaat atagggaeat 180 ggtagtacga aacgaagata gaacctacac agcaatacga gaaatgtgta atttggtgct 240 tagcggtatt tatttaagca catgttggtg ttatagggca cttggattca gaagtttgct 300 gttaatttag gcacaggett catactacat gggtcaatag tatagggatt catattatag 360 420 gcgatactat aataatttgt tcgtctgcag agcttattat ttgccaaaat tagatattcc tattctgttt ttgtttgtgt gctgttaaat tgttaacgcc tgaaggaata aatataaatg 480 acqaaatttt gatgtttate tetgeteett tattgtgace ataagteaag ateagatgea 540 cttgttttaa atattgttgt ctgaagaaat aagtactgac agtattttga tgcattgatc 600 tgcttgtttg ttgtaacaaa atttaaaaat aaagagtttc ctttttgttg ctctccttac 660 ctcctgatgg tatctagtat ctaccaactg acactatatt gcttctcttt acatacgtat 720 cttgctcgat gccttctccc tagtgttgac cagtgttact cacatagtct ttgctcattt 780 804 cattgtaatg cagataccaa gcgg

<210> 166

<211> 623

<212> ADN

10

<213> Virus del mosaico de la coliflor

### ES 2 691 941 T3

| ggtccgatgt | gagacttttc | aacaaagggt | aatatccgga | aacctcctcg | gattccattg | 60  |
|------------|------------|------------|------------|------------|------------|-----|
| cccagctatc | tgtcacttta | ttgtgaagat | agtggaaaag | gaaggtggct | cctacaaatg | 120 |
| ccatcattgc | gataaaggaa | aggccatcgt | tgaagatgcc | tctgccgaca | gtggtcccaa | 180 |
| agatggaccc | ccacccacga | ggagcatcgt | ggaaaaagaa | gacgttccaa | ccacgtette | 240 |
|            |            |            | gtgagacttt |            |            | 300 |
|            |            |            | tctgtcactt |            |            | 360 |
| _          |            | _          | gcgataaagg |            |            | 420 |
|            |            |            | ccccacccac |            |            | 480 |
|            |            |            | tggattgatg |            |            | 540 |
|            | _          |            | aagacccttc |            |            | 600 |
|            | gaggacacgc | _          | -          |            |            | 623 |

<210> 167

<211> 8

5

<212> ADN

<213> Virus del mosaico de la coliflor

<400> 167 acacgctg 8

<210> 168

<211> 1790

<212> ADN

10 <213> Coix lacryma-jobi

<400> 168

gtgatgttca agatattgta atggtgttta ttttctatca aatagccata aaatgatata 60 caaaatgtta ttcatgattg atcctagtta cattcaaagt attaaatagc ttgcagatag 120 taaatagaca gtcattgtat aacctgtttt tttgactgtc tatgttcagt tccaagaact 180 tacagacaag aggttatgtg tagattgaac gtgcccttga cggcatccaa ctagcgaacc 240 acgagggaag cagatggtgg ccgttgaggg gctgttgacg caaagcatct ctctcggctg 300 ctctcgaaag ctccattgcg ggtggcggtc tggtggcacc aggaaattgc gtgagccaag 360 gegggetegt eteggtetea caacaeggea egaaacegte aeggcacaeg geaceaggat 420 tteetteece teecetgeeg tteteeteat cataaatage cacecectee tegeetettt 480 tececaacte atetyttett egteteacae agecagatee caatecetet eetegegaac 540 ttegtegate teeetteeet egeetegett caaggtaegg egateateet eeegetttee 600 ctcctcctcc tctagatgta gtacggagta cttgccatca tgcatcatgc tacatcacgc 660 tegtgegage tetgggteet egatetggga aeggaactgt gggatgetge tegtgegatt 720 tattattggg gatctgggtt ctcgatctgg gaacggaact gtgggatgct gctcgtgcga 780 tttattattg gggatctggg ttctcgatct gggaacggaa ctgtgggatg cttgtaggca 840 ggtcggagat gggtcggatc gttgcttagg gttcgatctg ctcgtggttt tcttttaatc 900

#### ES 2 691 941 T3

cctgatgcat gatttatcgg tcatcctatt agatggaacc agtagggtga ctctgatccg 960 atatacttaa cctcgatctg gttcgatgtt cctggctagg cttgtgcgtc tgtttcgtca 1020 gaccagtttt gctgtttttg gtatggttgt gatgcccgtc caaatatgac taagcgagtg 1080 tagaatcatt ttatgaacta actgctggtc ttattaaatc tagatctgca tacgttgatg 1140 tactacgttc atagttgata cagtatgtat gaactagttg ctggtcgtat taattttgga 1200 tctgcatgtg tggtagcata taatgttcat aatacaattg atacagtatg atgtatgaac 1260 tatctgctgg tttattaaat ttggatctgc ttgtggtaaa aaatatgttt tttatatagt 1320 taccatgatg gattaatcta tacttctgat gtatatgctg cagttttctg ctgaggctgt 1380 agttttttcc agattaaaat acagcatgca tatttgctaa gctctgggcg tgtgaacgcc 1440 caccatggca ttgtccagta atagtaatga atttttttgt ttgcctgatg tgggagaaaa 1500 cacgcattgt ccagttattt tgttccatat gcattgtcct gttttgttgg atatgcatgc 1560 ttagaaaaca tatgcagcca ctgtttgata atgctttagc atctgcctgt tgaacatgca 1620 tgatctacct atctttattt tgtatgtact tgggtagtgg catgttgcta gttttccttg 1680 attetgtgge gtetacatgt tgagettgea tatatgtttg ttgteettet ttteeteett 1740 ggtctactgc tatatgctta cccttttgtt tggctaattt tcaggtgcag 1790

<210> 169

<211> 481

<212> ADN

5

<213> Coix lacryma-jobi

<400> 169

gtgatgttca agatattgta atggtgttta ttttctatca aatagccata aaatgatata 60 caaaatgtta ttcatgattg atcctagtta cattcaaagt attaaatagc ttgcagatag 120 taaatagaca gtcattgtat aacctgtttt tttgactgtc tatgttcagt tccaagaact 180 tacagacaag aggttatgtg tagattgaac gtgcccttga cggcatccaa ctagcgaacc 240 acgagggaag cagatggtgg ccgttgaggg gctgttgacg caaagcatct ctctcggctg 300 ctctcgaaag ctccattgcg ggtggcggtc tggtggcacc aggaaattgc gtgagccaag 360 gegggetegt eteggtetea caacaeggea egaaacegte aeggeacaeg geaceaggat 420 tteetteece teecetgeeg tteteeteat cataaatage caccecetee tegeetettt 480 481 t

<210> 170

<211> 93

10 <212> ADN

<213> Coix lacryma-jobi

<400> 170

# ES 2 691 941 T3

| ccccaactca | tctgttcttc | gtctcacaca | gccagatccc | aatccctctc | ctcgcgaact | 60 |
|------------|------------|------------|------------|------------|------------|----|
| tegtegatet | cccttccctc | geetegette | aaq        |            |            | 93 |

<210> 171 <211> 1216

5

<212> ADN <213> Coix lacryma-jobi

<400> 171

| gtacggcgat | catcctcccg | ctttccctcc | tcctcctcta | gatgtagtac | ggagtacttg | 60   |
|------------|------------|------------|------------|------------|------------|------|
| ccatcatgca | tcatgctaca | tcacgctcgt | gcgagctctg | ggtcctcgat | ctgggaacgg | 120  |
| aactgtggga | tgctgctcgt | gcgatttatt | attggggatc | tgggttctcg | atctgggaac | 180  |
| ggaactgtgg | gatgctgctc | gtgcgattta | ttattgggga | tctgggttct | cgatctggga | 240  |
| acggaactgt | gggatgcttg | taggcaggtc | ggagatgggt | cggatcgttg | cttagggttc | 300  |
| gatctgctcg | tggttttctt | ttaatccctg | atgcatgatt | tatcggtcat | cctattagat | 360  |
| ggaaccagta | gggtgactct | gatccgatat | acttaacctc | gatctggttc | gatgttcctg | 420  |
| gctaggcttg | tgcgtctgtt | tcgtcagacc | agttttgctg | tttttggtat | ggttgtgatg | 480  |
| cccgtccaaa | tatgactaag | cgagtgtaga | atcattttat | gaactaactg | ctggtcttat | 540  |
| taaatctaga | tctgcatacg | ttgatgtact | acgttcatag | ttgatacagt | atgtatgaac | 600  |
| tagttgctgg | tcgtattaat | tttggatctg | catgtgtggt | agcatataat | gttcataata | 660  |
| caattgatac | agtatgatgt | atgaactatc | tgctggttta | ttaaatttgg | atctgcttgt | 720  |
| ggtaaaaaat | atgttttta  | tatagttacc | atgatggatt | aatctatact | tctgatgtat | 780  |
| atgctgcagt | tttctgctga | ggctgtagtt | ttttccagat | taaaatacag | catgcatatt | 840  |
| tgctaagctc | tgggcgtgtg | aacgcccacc | atggcattgt | ccagtaatag | taatgaattt | 900  |
| ttttgtttgc | ctgatgtggg | agaaaacacg | cattgtccag | ttattttgtt | ccatatgcat | 960  |
| tgtcctgttt | tgttggatat | gcatgcttag | aaaacatatg | cagccactgt | ttgataatgc | 1020 |
| tttagcatct | gcctgttgaa | catgcatgat | ctacctatct | ttattttgta | tgtacttggg | 1080 |
| tagtggcatg | ttgctagttt | tccttgattc | tgtggcgtct | acatgttgag | cttgcatata | 1140 |
| tgtttgttgt | ccttctttc  | ctccttggtc | tactgctata | tgcttaccct | tttgtttggc | 1200 |
| taattttcag | gtgcag     |            |            |            |            | 1216 |

#### **REIVINDICACIONES**

- 1. Una molécula de ADN recombinante que comprende una secuencia de ADN seleccionada del grupo que consiste en:
  - a) una secuencia de ADN que comprende la SEQ ID NO: 17;
  - b) un fragmento que comprende al menos 50 nucleótidos contiguos de la SEQ ID NO: 17, en el que el fragmento tiene actividad reguladora de genes; y
  - c) una secuencia de ADN que comprende al menos un 90 % de identidad de secuencia con la secuencia de ADN de la SEQ ID NO: 16 o 18, cuya secuencia de ADN tiene actividad reguladora de genes;

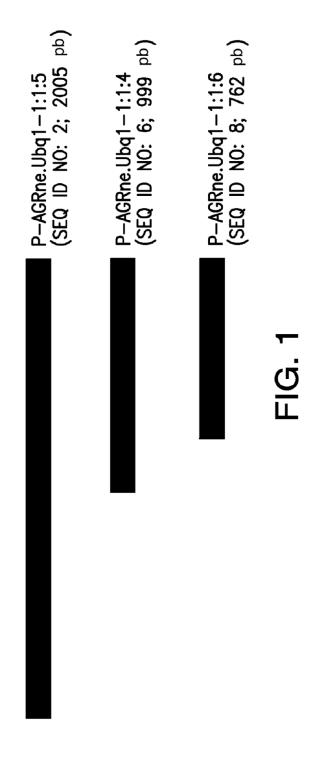
en la que dicha secuencia de ADN está unida operativamente a una molécula de ADN transcribible heteróloga.

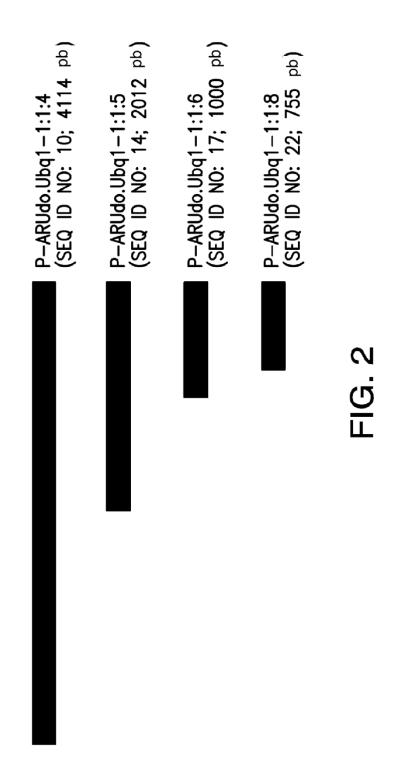
- 2. La molécula de ADN recombinante de la reivindicación 1, en la que dicha secuencia de ADN tiene al menos un 95 por ciento de identidad de secuencia con la secuencia de ADN de la SEQ ID NO: 16 o 18.
  - 3. La molécula de ADN de la reivindicación 1, en la que la molécula de ADN transcribible heteróloga es un gen de interés agronómico.
- 4. La molécula de ADN recombinante de la reivindicación 2, en la que el gen de interés agronómico confiere tolerancia a herbicidas en plantas.
  - 5. La molécula de ADN recombinante de la reivindicación 2, en la que el gen de interés agronómico confiere resistencia a plagas en plantas.
  - 6. Una construcción que comprende la molécula de ADN recombinante de la reivindicación 1.
- 7. Una célula vegetal transgénica que comprende una molécula de ADN recombinante que comprende una secuencia de ADN seleccionada del grupo que consiste en:
  - a) una secuencia de ADN que comprende la SEQ ID NO: 17;
  - b) un fragmento que comprende al menos 50 nucleótidos contiguos de la SEQ ID NO: 17, en el que el fragmento tiene actividad reguladora de genes; y
  - c) una secuencia de ADN que comprende al menos un 90 % de identidad de secuencia con la secuencia de ADN de la SEQ ID NO: 16 o 18, cuya secuencia de ADN tiene actividad reguladora de genes;

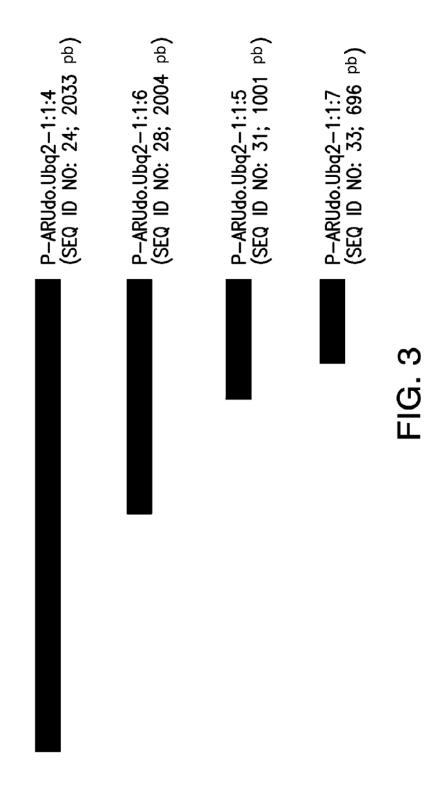
en la que dicha secuencia de ADN está unida operativamente a una molécula de ADN transcribible heteróloga.

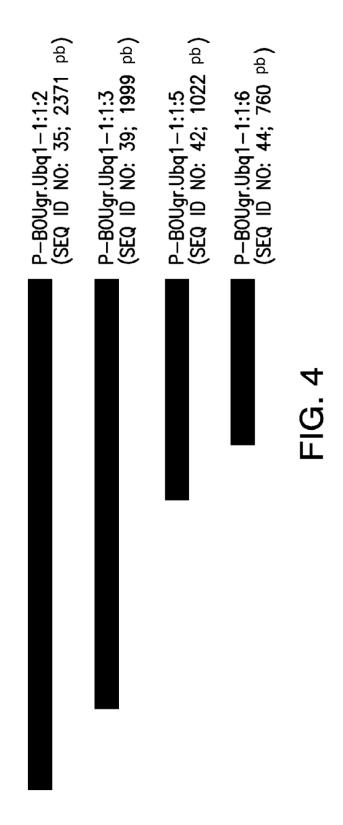
- 8. La célula vegetal transgénica de la reivindicación 7, en la que dicha célula vegetal transgénica es una célula vegetal monocotiledónea.
- 9. La célula vegetal transgénica de la reivindicación 7, en la que dicha célula vegetal transgénica es una célula vegetal dicotiledónea.
  - 10. Una planta transgénica, o parte de la misma, que comprende una molécula de ADN recombinante que comprende una secuencia de ADN seleccionada del grupo que consiste en:
    - a) una secuencia de ADN que comprende la SEQ ID NO: 17;
    - b) un fragmento que comprende al menos 50 nucleótidos contiguos de la SEQ ID NO: 17, en el que el fragmento tiene actividad reguladora de genes; y
    - c) una secuencia de ADN que comprende al menos un 90 % de identidad de secuencia con la secuencia de ADN de la SEQ ID NO: 16 o 18, cuya secuencia de ADN tiene actividad reguladora de genes;

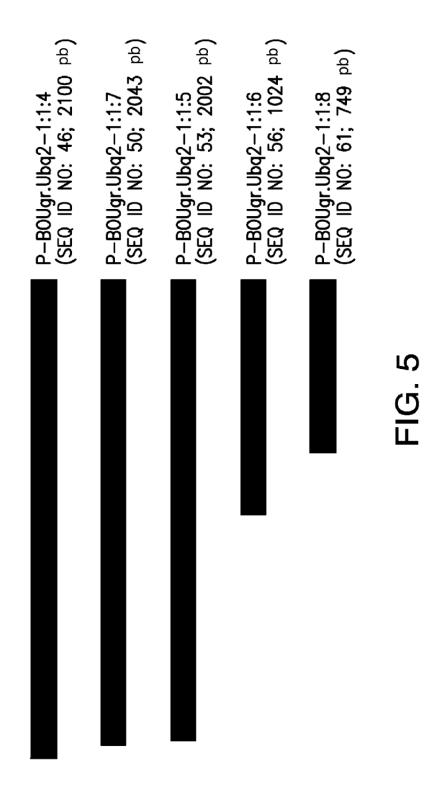
en la que dicha secuencia de ADN está unida operativamente a una molécula de ADN transcribible heteróloga.

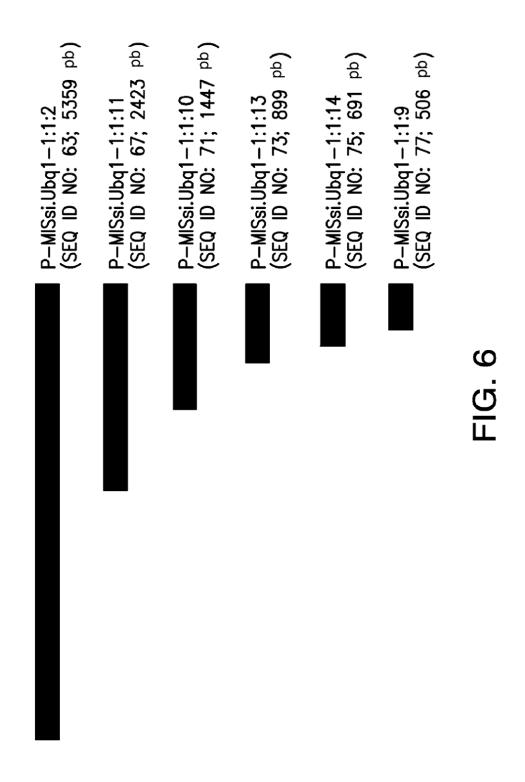

- 11. Una planta de progenie de la planta transgénica de la reivindicación 10, en la que la planta de progenie comprende dicha molécula de ADN recombinante.
  - 12. Una semilla transgénica de la planta transgénica de la reivindicación 10, en la que la semilla comprende dicha molécula de ADN recombinante.
  - 13. Un procedimiento para expresar una molécula de ADN transcribible que comprende obtener una planta transgénica de acuerdo con la reivindicación 10 y cultivar dicha planta, en la que se expresa la molécula de ADN transcribible.
    - 14. Un procedimiento para producir una planta transgénica que comprende:
      - a) transformar una célula vegetal con la molécula de ADN recombinante de la reivindicación 1 para producir una célula vegetal transformada; y
      - b) regenerar una planta transgénica a partir de la célula vegetal transformada.

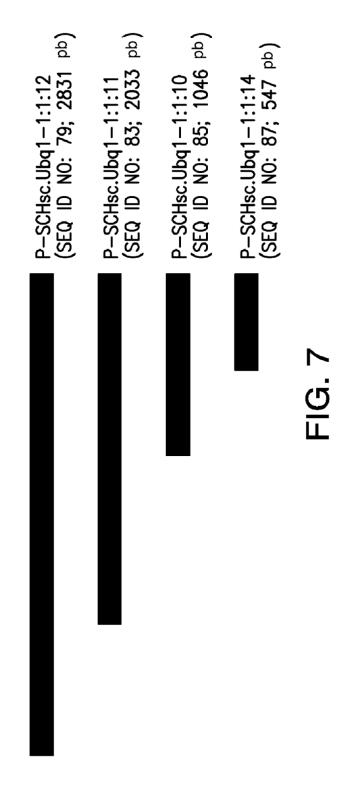

45

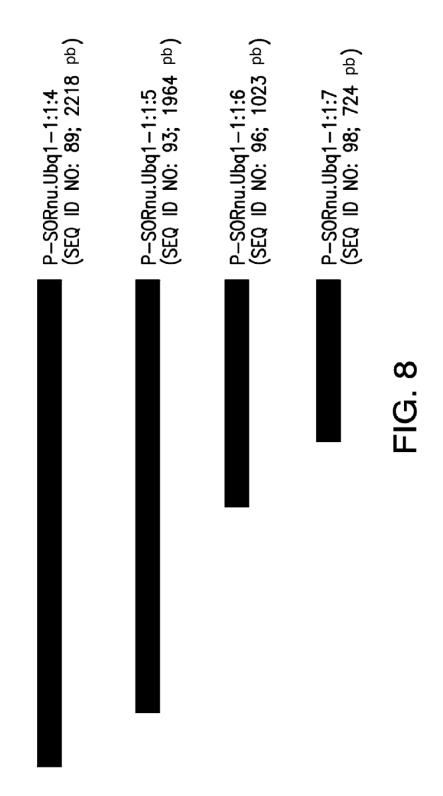

5


25

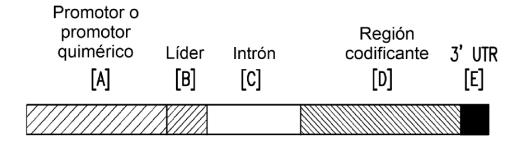

35



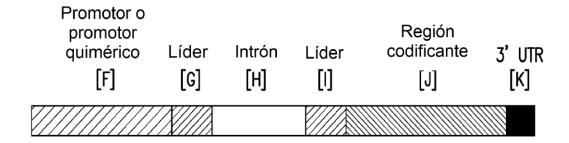










## Configuración 1 de casete de expresión



## Configuración 2 de casete de expresión



## Configuración 3 de casete de expresión

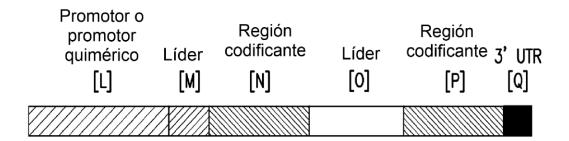



FIG. 9