

OFICINA ESPAÑOLA DE PATENTES Y MARCAS

ESPAÑA

11 Número de publicación: 2 692 811

51 Int. Cl.:

C12N 9/50 (2006.01) C12P 21/00 (2006.01)

(12)

TRADUCCIÓN DE PATENTE EUROPEA

T3

Fecha de presentación y número de la solicitud europea: 23.09.2010 E 15182886 (0)
 Fecha y número de publicación de la concesión europea: 01.08.2018 EP 2993231

(54) Título: Cepa bacteriana para expresión de proteína recombinante que tiene los genes DEGP deficiente de proteasa que retiene actividad chaperona y TSP y PTR desactivados génicamente

(30) Prioridad:

24.09.2009 GB 0916822 24.09.2009 GB 0916821

Fecha de publicación y mención en BOPI de la traducción de la patente: **05.12.2018**

(73) Titular/es:

UCB BIOPHARMA SPRL (100.0%) Allée de la Recherche 60 1070 Brussels, BE

(72) Inventor/es:

ELLIS, MARK y HUMPHREYS, DAVID PAUL

(74) Agente/Representante:

ELZABURU, S.L.P

DESCRIPCIÓN

Cepa bacteriana para expresión de proteína recombinante que tiene los genes DEGP deficiente de proteasa que retiene actividad chaperona y TSP y PTR desactivados génicamente

La invención se refiere a una cepa hospedadora bacteriana recombinante, particularmente *E. coli.* La invención se refiere también a un método para producir una proteína de interés en tal célula.

Antecedentes de la invención

5

10

15

20

25

30

45

50

Las células bacterianas, tales como *E. coli*, se usan comúnmente para producir proteínas recombinantes. Hay muchas ventajas en usar células bacterianas, tales como *E. coli*, para producir proteínas recombinantes, particularmente debido a la naturaleza versátil de las células bacterianas como células hospedadoras que permiten la inserción génica a través de plásmidos. *E. coli* se ha usado para producir muchas proteínas recombinantes, incluyendo insulina humana.

A pesar de las muchas ventajas de usar células bacterianas para producir proteínas recombinantes, hay todavía limitaciones significativas que incluyen la dificultad de producir proteínas sensibles a proteasa. Las proteasas desempeñan un papel importante en el recambio de proteínas antiguas y mal plegadas en el periplasma y citoplasma de *E. coli*. Las proteasas bacterianas actúan degradando la proteína de interés recombinante, reduciendo así significativamente a menudo el rendimiento de proteína activa.

Se han identificado una serie de proteasas bacterianas, En *E. coli* se han identificado proteasas que incluyen proteasa III (ptr), DegP, OmpT, Tsp, prIC, ptrA, ptrB, pepA-T, tsh, espc, eatA, clpP e lon.

La proteína proteasa III (ptr) es una proteasa periplásmica de 110 kDa que degrada proteínas de alto peso molecular.

La Tsp (también conocida como Prc) es una proteasa periplámica de 60 kDa. El primer sustrato conocido de Tsp fue la proteína 3 de unión a penicilina (PBP3) ("Determination of the cleavage site involved in C-terminal processing of penicillin-binding protein 3 of Escherichia coli"; Nagasawa H, Sakagami Y, Suzuki A, Suzuki H, Hara H, Hirota Y. J Bacteriol. Nov. de 1989; 171(11): 5890-3 y "Cloning, mapping and characterization of the Escherichia coli Tsp gene which is involved in C-terminal processing of penicillin-binding protein 3"; Hara H, Yamamoto Y, Higashitani A, Suzuki H, Nishimura Y. J Bacteriol. agosto de 1991; 173(15): 4799-813), pero se descubrió más tarde que la Tsp era también capaz de escindir proteínas de cola de fago y, por lo tanto, se renombró como proteasa específica de cola (Tsp) (Silber et al., Proc. Natl. Acad. Sci. USA, 89: 295-299 (1992)). Silber et al. ("Deletion of the prc(tsp) gene provides evidence for additional tail-specific proteolytic activity in Escherichia coli K-12"; Silber, K.R., Sauer, R.T.; Mol Gen Genet 1994 242:237-240) describe una cepa de deleción de prc (KS1000) en la que se creó la mutación reemplazando un segmento del gen pcr por un fragmento que comprendía un marcador Kan^r.

La DegP (también conocida como HtrA) es una proteína de 46 kDa que tiene función dual como chaperona y proteasa ("Families of serine peptidases"; Rawlings ND, Barrett AJ. Methods Enzymol. 1994; 244:19-61).

Es conocido desactivar génicamente proteasas bacterianas para afectar al rendimiento de la proteína recombinante.

Georgiou et al. ("Construction and characterization of Escherichia coli strains deficient in multiple secreted proteases: protease III degrades high-molecular-weight substrates in vivo". Baneyx F, Georgiou G.J Bacteriol. abril de 1991; 173(8): 2696-703) estudiaron los efectos sobre las propiedades de crecimiento y la estabilidad de proteína de cepas de *E. coli* deficientes en proteasa III construidas por inactivación insercional del gen ptr y se observó un aumento de la expresión de un polipéptido secretado sensible a proteasa. Se produjo también una cepa que comprendía la mutación ptr y era también deficiente en la proteasa secretada DegP, y se encontró que tenía una tasa de crecimiento reducida y un aumento de la expresión proteica. En Georgiou et al., se construyeron cepas de *E. coli* deficientes en proteasa III y/o DegP a partir de la cepa parental KS272 que comprende ya una serie de mutaciones genómicas.

El documento US 5264365 (Georgiou et al.) divulga la construcción de hospedadores de *Escherichia coli* deficientes en proteasa que, cuando se combinan con un sistema de expresión, son útiles para la producción de polipéptidos proteolíticamente sensibles.

Meerman et al. ("Construction and characterization of Escherichia coli strains deficient in All Known Loci Affecting the Proteolytic Stability of Secreted Recombinant Proteins". Meerman H. J., Georgeou G., Nature Biotechnology, 1994 Nov; 12; 1107-1110) divulgan cepas de *E. coli* que comprenden mutaciones en rpoH, el factor sigma de ARN polimerasa responsable de la síntesis de proteína de choque térmico, y diferentes combinaciones de mutaciones en genes de proteasa incluyendo DegP, proteasa III, Tsp (Prc) y OmpT, donde se causaron mutaciones nulas de los genes de proteasa por mutaciones insercionales. En Meerman et al, se construyeron cepas de *E. coli* deficientes en una o más de Tsp, proteasa III y DegP a partir de la cepa parental KS272 que comprende ya una serie de mutaciones genómicas.

El documento US 5508192 (Georgiou et al.) divulga un método de producción de polipéptidos recombinantes en hospedadores bacterianos deficientes en proteasa y constructos de bacterias deficientes en una, dos, tres y cuatro proteasas que portan también una mutación en el gen rpoH.

Chen et al describe la construcción de cepas de *E. coli* portadoras de diferentes combinaciones de mutaciones en prc (Tsp) y DegP creadas por amplificación de las regiones en dirección 5' y en dirección 3' del gen y ligamiento de estas conjuntamente en un vector que comprende marcadores de selección y una mutación sprW148R ("High-level accumulation of a recombinant antibody fragment in the periplasm of Escherichia coli requires a triple-mutant (ΔDegP Δprc spr W148R) host strain". Chen C, Snedecor B, Nishihara JC, Joly JC, McFarland N, Andersen DC, Battersby JE, Champion KM. Biotechnol Bioeng. 5 de marzo de 2004; 85(5): 463-74). La combinación de mutaciones ΔDegP, Δprc y W148Rspr se encontró que proporcionaba los mayores niveles de cadena ligera de anticuerpo, cadena pesada de anticuerpo y F(ab')2-LZ. El documento EP1341899 divulga una cepa de E. coli que es deficiente en DegP y prc cromosómicos que codifican las proteasas DegP y Prc, respectivamente, y alberga un gen spr mutante que codifica una proteína que suprime fenotipos de crecimiento exhibidos por cepas que albergan mutantes de prc.

Kandilogiannaki et al (Expression of a recombinant human anti-MUCl scFv fragment in protease-deficient Escherichia coli mutants. Kandilogiannaki M, Koutsoudakis G, Zafiropoulos A, Krambovitis E. Int J Mol Med. junio de 2001; 7(6): 659-64) describe la utilización de una cepa deficiente en proteasa para la expresión de una proteína scFv.

Las cepas bacterianas deficientes en proteasa usadas anteriormente para expresar proteínas recombinantes comprenden mutaciones adicionales de genes implicados en el metabolismo celular y la replicación de ADN tales como, por ejemplo, *phoA*, *fhuA*, *lac*, *rec*, *gal*, *ara*, *arg*, *thi* y *pro* en cepas de *E. coli*. Estas mutaciones pueden tener muchos efectos nocivos sobre la célula hospedadora, incluyendo efectos sobre el crecimiento celular, estabilidad, rendimiento de expresión de proteína recombinante y toxicidad. Las cepas que tienen una o más de estas mutaciones genómicas, particularmente cepas que tienen un alto número de estas mutaciones pueden exhibir una pérdida de aptitud que reduce la tasa de crecimiento bacteriano a un nivel que no es adecuado para la producción de proteína industrial. Adicionalmente, cualquiera de las mutaciones genómicas anteriores puede afectar a otros genes en *cis* y/o en *trans* de modos dañinos impredecibles, alterando sí el fenotipo, aptitud y perfil proteico de la cepa. Adicionalmente, el uso de células fuertemente mutadas no es generalmente adecuado para producir proteínas recombinantes para uso comercial, particularmente productos terapéuticos, porque tales cepas tienen generalmente rutas metabólicas defectivas y por ello pueden crecer mal o nada en absoluto en medios mínimos o definidos químicamente.

Las cepas bacterianas deficientes en proteasa comprenden típicamente también mutaciones de desactivación 30 génica de uno o más genes que codifican proteasa que se han creado por inserción de una secuencia de ADN en la secuencia de codificación génica. La secuencia de ADN insertada codifica típicamente un marcador de selección tal como un gen de resistencia a antibiótico. Aunque este método de mutación puede ser eficaz para desactivar génicamente la proteasa diana, hay muchas desventajas asociadas a este método. Es una desventaja que la 35 inserción de ADN extraño, tal como un gen de resistencia a antibiótico, causa desestabilización del genoma del hospedador, lo que puede dar como resultado cualquier número de efectos indeseados, incluyendo la sobreexpresión de proteínas dañinas y/o la regulación negativa o desactivación génica de otras proteínas esenciales. Este efecto es particularmente evidente para aquellos genes colocados inmediatamente en dirección 5' o 3' del gen de proteasa diana. Una desventaja adicional de la inserción de ADN extraño, particularmente genes de resistencia a antibiótico, es las modificaciones fenotípicas desconocidas en la célula hospedadora que pueden 40 afectar a la expresión de la proteína diana y/o al crecimiento de la célula hospedadora y pueden hacer también a la célula hospedadora inadecuada para la producción de proteínas pretendidas para uso terapéutico. Las proteínas de resistencia a antibiótico son particularmente desventaiosas por los requisitos de bioseguridad de la fabricación a gran escala, particularmente para la producción de productos terapéuticos para administración humana. Es una 45 desventaja adicional de la inserción de marcadores de resistencia a antibiótico la carga metabólica sobre la célula creada por la expresión de la proteína codificada por el gen de resistencia a antibiótico. El uso de marcadores de resistencia a antibiótico para uso como marcadores para manipulaciones genéticas tales como mutaciones de desactivación génica está también limitado por el número de diferentes marcadores de resistencia a antibiótico disponibles.

Por consiguiente, sigue existiendo la necesidad de proporcionar nuevas cepas bacterianas que proporcionen medios ventajosos para producir proteínas recombinante.

Compendio de la invención

20

25

55

Es un objetivo de la presente invención resolver uno o más de los problemas descritos anteriormente.

En un primer aspecto, la presente invención proporciona una célula bacteriana gramnegativa recombinante que comprende:

a. un gen Tsp mutado, en el que el gen Tsp mutado codifica una proteína Tsp que tiene un 50 % o menos de la actividad proteasa de una Tsp no mutada de tipo silvestre o es un gen Tsp mutado por desactivación génica;

en la que la célula es isogénica de una célula W3110 de E. coli, excepto por el gen Tsp mutado y opcionalmente una secuencia polinucleotídica que codifica una proteína de interés.

Además, la presente invención proporciona una célula bacteriana gramnegativa recombinante que comprende:

- a. un gen Tsp mutado, en el que el gen Tsp mutado codifica una proteína Tsp que tiene un 50 % o menos de la actividad proteasa de una Tsp no mutada de tipo silvestre o es un gen Tsp mutado por desactivación génica; y
- b. un gen DegP mutado que codifica una proteína DegP que tiene actividad chaperona pero no actividad proteasa,
- en la que la célula es isogénica de una célula W3110 de E. coli, excepto por los genes Tsp y DegP mutados y opcionalmente una secuencia polinucleotídica que codifica una proteína de interés.
- Además, la presente invención proporciona una célula bacteriana gramnegativa recombinante que comprende:
- a. un gen Tsp mutado, en el que el gen Tsp mutado codifica una proteína Tsp que tiene un 50 % o menos de la actividad proteasa de una Tsp no mutada de tipo silvestre o es un gen Tsp mutado por desactivación génica; y
 - b. un gen ptr mutado por desactivación génica,

35

- en la que la célula es isogénica de una célula W3110 de E. coli, excepto por los genes Tsp y ptr mutados y opcionalmente una secuencia polinucleotídica que codifica una proteína de interés.
- Se divulga también una célula que comprende un gen ptr mutado, en la que el gen ptr mutado codifica una proteína proteasa III que tiene actividad proteasa reducida o es un gen ptr mutado por desactivación génica y ningún gen de proteasa mutado adicional. Por consiguiente, la divulgación describe una célula que es isogénica de una célula bacteriana de tipo silvestre, excepto por el gen ptr mutado y opcionalmente una secuencia polinucleotídica que codifica una proteína de interés.
- Se divulga adicionalmente una célula que comprende un gen DegP mutado que codifica una proteína DegP que tiene actividad chaperona y actividad proteasa reducida y ningún gen de proteasa mutado adicional. Por consiguiente, la divulgación describe una célula que es isogénica de una célula bacteriana de tipo silvestre, excepto por el gen DegP mutado y opcionalmente una secuencia polinucleotídica que codifica una proteína de interés.
- Se divulga adicionalmente una célula que comprende un gen DegP mutado que codifica una proteína DegP que tiene actividad chaperona y actividad proteasa reducida, un gen ptr mutado en el que el gen ptr mutado codifica una proteína proteána proteána proteána proteána proteána proteána proteána proteána mutado proteasa reducida o es un gen ptr mutado por desactivación génica y ningún gen de proteasa mutado adicional. Por consiguiente, la divulgación describe una célula que es isogénica de una célula bacteriana de tipo silvestre excepto por el gen DegP mutado y el gen ptr mutado y opcionalmente una secuencia polinucleotídica que codifica una proteína de interés.
- 30 En una realización preferida, el gen ptr mutado y/o el gen Tsp mutado a los que se hace referencia anteriormente son mutaciones de desactivación génica.
 - Los presentes inventores han encontrado que una cepa hospedadora bacteriana isogénica de una célula bacteriana de tipo silvestre, excepto por las una o más proteasas mutadas anteriores, proporciona un hospedador ventajoso para producir una proteína de interés recombinante. Las células de E. coli proporcionadas por la presente invención tienen actividad proteasa reducida en comparación con una célula no mutada, lo que puede reducir la proteólisis de una proteína de interés recombinante, particularmente proteínas de interés que son proteolíticamente sensibles. Además, la célula de E. coli según la presente invención porta solo las mutaciones mínimas de la secuencia genómica para introducir una o más de las mutaciones de proteasa anteriores y no porta ninguna otra mutación que pueda tener efectos nocivos sobre el crecimiento celular y/o la capacidad de expresar una proteína de interés.
- Una o más de las células de E. coli proporcionadas por la presente invención pueden proporcionar un alto rendimiento de la proteína de interés recombinante. Una o más de las células de E. coli proporcionadas por la presente invención pueden proporcionar una tasa de producción rápida de una proteína de interés. Una o más de las células de E. coli pueden proporcionar un rendimiento inicial rápido de la proteína de interés recombinante. Adicionalmente, una o más células de E. coli pueden mostrar buenas características de crecimiento.
- 45 En un segundo aspecto, la divulgación describe una célula bacteriana gramnegativa recombinante que comprende:
 - a. un gen Tsp mutado por desactivación génica que comprende una mutación en el codón de iniciación del gen y/o uno o más codones de terminación colocados en dirección 3' del codón de iniciación del gen y en dirección 5' del codón de terminación del gen; y/o
- b. un gen ptr mutado por desactivación génica que comprende una mutación en el codón de iniciación del gen y/o
 uno o más codones de terminación colocados en dirección 3' del codón de iniciación del gen y en dirección 5' del codón de terminación del gen; y

c. opcionalmente un gen DegP mutado que codifica una proteína DegP que tiene actividad chaperona y actividad proteasa reducida.

En una realización, la presente invención proporciona una célula de E. coli que comprende un gen Tsp mutado por desactivación génica que comprende una mutación en el codón de iniciación del gen y/o uno o más codones de terminación colocados en dirección 3' del codón de iniciación del gen y en dirección 5' del codón de terminación del gen.

La divulgación describe también una célula que comprende un gen ptr mutado por desactivación génica que comprende una mutación en el codón de iniciación del gen y/o uno o más codones de terminación colocados en dirección 3' del codón de iniciación del gen y en dirección 5' del codón de terminación del gen.

- En una realización, la presente invención proporciona una célula de E. coli que comprende un gen DegP mutado que codifica una proteína DegP mutada que tiene actividad chaperona y actividad proteasa reducida y un gen Tsp mutado por desactivación génica que comprende una mutación en el codón de iniciación del gen y/o uno o más codones de terminación colocados en dirección 3' del codón de iniciación del gen y en dirección 5' del codón de terminación del gen.
- En una realización, la presente invención proporciona una célula de E. coli que comprende un gen ptr mutado por desactivación génica que comprende una mutación en el codón de iniciación del gen y/o uno o más codones de terminación colocados en dirección 3' del codón de iniciación del gen y en dirección 5' del codón de terminación del gen y un gen Tsp mutado por desactivación génica que comprende una mutación en el codón de iniciación del gen y/o uno o más codones de terminación colocados en dirección 3' del codón de iniciación del gen y en dirección 5' del codón de terminación del gen.

Se divulga adicionalmente una célula que comprende un gen DegP mutado que codifica una proteína DegP que tiene actividad chaperona y actividad proteasa reducida y un gen ptr mutado por desactivación génica que comprende una mutación en el codón de iniciación del gen y/o uno o más codones de terminación colocados en dirección 3' del codón de iniciación del gen y en dirección 5' del codón de terminación del gen.

En una realización, la presente invención proporciona una célula de E. coli que comprende un gen DegP mutado que codifica una proteína DegP que tiene actividad chaperona y actividad proteasa reducida, un gen ptr mutado por desactivación génica que comprende una mutación en el codón de iniciación del gen y/o uno o más codones de terminación colocados en dirección 3' del codón de iniciación del gen y en dirección 5' del codón de iniciación del gen y/o uno o más codones de terminación colocados en dirección 3' del codón de iniciación del gen y en dirección 5' del codón de terminación del gen.

La célula descrita en el segundo aspecto supera las desventajas anteriormente descritas de métodos de mutación por desactivación génica que emplean inserción de ADN usados típicamente en la técnica para proporcionar cepas deficientes en proteasa. En la presente invención, las mutaciones por desactivación génica del gen ptr y/o el gen Tsp se proporcionan por una mutación en el codón de iniciación del gen y/o uno o más codones de terminación colocados en dirección 3' del codón de iniciación del gen y en dirección 5' del codón de terminación del gen. Una mutación, tal como una mutación puntual con cambio de sentido, en el codón de iniciación del gen de desactivación génica diana, asegura que el gen diana no comprenda un codón de iniciación adecuado en el inicio de la secuencia de codificación. La inserción de uno o más codones de terminación colocados entre el codón de iniciación y el codón de terminación del gen asegura que, incluso si se inicia la transcripción del gen, no se transcribirá la secuencia de codificación completa. El genoma hospedador requería una desestabilización mínima para mutar el codón de iniciación y/o insertar uno o más codones de terminación, minimizando así los efectos nocivos de la desestabilización del genoma sobre la expresión de la proteína diana y/o el crecimiento de la célula hospedadora. La célula de E. coli de la presente invención puede ser también más adecuada para la producción de proteínas pretendidas para uso como productos terapéuticos debido a la desestabilización mínima del genoma celular.

En un tercer aspecto, la presente invención proporciona un método para producir una proteína de interés recombinante que comprende expresar la proteína de interés recombinante en una célula de E. coli recombinante de la presente invención.

Breve descripción de los dibujos

35

40

45

- La Figura 1a muestra el extremo 5' de las secuencias proteica y génica de ptr de tipo silvestre (proteasa III) y ptr mutado por desactivación génica (proteasa III).
 - La Figura 1b muestra el extremo 5' de las secuencias proteica y génica de Tsp de tipo silvestre y Tsp mutado por desactivación génica.
 - La Figura 1c muestra una región de las secuencias proteica y génica de DegP de tipo silvestre y DegP mutado.
- 55 La Figura 2 muestra el crecimiento de la cepa MXE001 de *E. coli* portadora de un gen Tsp mutado por desactivación

génica y la cepa MXE005 de *E. coli* portadora de un gen Tsp mutado por desactivación génica y un gen DegP mutado en comparación con W3110 de *E. coli* de tipo silvestre.

La Figura 3 muestra la expresión de un Fab' en MXE005 y MXE001 en comparación con W3110 de tipo silvestre.

La Figura 4 muestra el crecimiento de la cepa MXE004 de *E. coli* portadora de un gen Tsp mutado por desactivación génica y una proteasa III mutada por desactivación génica en comparación con W3110 de tipo silvestre.

La Figura 5 muestra la expresión de un Fab' en MXE004 y W3110.

La Figura 6 muestra la expresión de un Fab en MXE001, MXE004, MXE005 y W3110.

La Figura 7 muestra la expresión de cadena ligera (cadena L), cadena pesada (cadena H) y Fab' durante un experimento de fermentación para MXE001, MXE005 y W3110 de tipo silvestre.

La Figura 8 muestra los resultados de un análisis de transferencia Western para W3110 de tipo silvestre, MXE001 y MXE005 que muestran la fragmentación relativa de un Fab'.

La Figura 9 muestra el perfil de crecimiento de MXE001 en comparación con W3110 de control.

La Figura 10 muestra el rendimiento de Fab' del sobrenadante (líneas de puntos) y periplasma (líneas continuas) de la cepa MXE001 de *E. coli* en comparación con W3110 de *E. coli* de control.

La Figura 11 muestra el rendimiento de Fab' total de sobrenadante y periplasma de la cepa MXE001 de *E. coli* en comparación con W3110 de control.

La Figura 12 muestra la tasa de producción específica de Fab' de la cepa MXE001 de *E. coli* en comparación con W3110 de control.

La Figura 13 muestra el perfil de crecimiento de MXE004 y MXE005 en comparación con W3110 de control.

La Figura 14 muestra rendimientos de Fab' de sobrenadante (líneas de puntos) y periplasma (líneas continuas) de las cepas MXE004, MXE005 y el control W3110 de *E. coli*.

La Figura 15 muestra el rendimiento de Fab' total de sobrenadante y periplasma de las cepas MXE004 y MXE005 de *E. coli.*

La Figura 16 muestra la tasa de producción específica de Fab' de las cepas MXE004 y MXE005 y el control W3110 de *E. coli.*

La Figura 17 muestra el perfil de crecimiento de las cepas W3110, MXE001, MXE004 y MXE005 de *E. coli* en comparación con las cepas XL1 Blue, TOP10, Stbl 3 y Sure de *E. coli*.

Breve descripción de las secuencias

25

La SEQ ID NO: 1 es la secuencia de ADN del gen Tsp no mutado incluyendo los 6 nucleótidos ATGAAC en dirección 5' del codón de iniciación.

La SEQ ID NO: 2 es la secuencia aminoacídica de la proteína Tsp no mutada.

La SEQ ID NO: 3 es la secuencia de ADN de un gen Tsp mutado por desactivación génica incluyendo los 6 nucleótidos ATGAAT en dirección 5' del codón de iniciación.

La SEQ ID NO: 4 es la secuencia de ADN del gen de proteasa III no mutado.

35 La SEQ ID NO: 5 es la secuencia aminoacídica de la proteína proteasa III no mutada.

La SEQ ID NO: 6 es la secuencia de ADN de un gen de proteasa III mutado por desactivación génica.

La SEQ ID NO: 7 es la secuencia de ADN de un gen DegP no mutado.

La SEQ ID NO: 8 es la secuencia aminoacídica de la proteína DegP no mutada.

La SEQ ID NO: 9 es la secuencia de ADN de un gen DegP mutado.

40 La SEQ ID NO: 10 es la secuencia aminoacídica de una proteína DegP mutada.

La SEQ ID NO: 11 es la secuencia aminoacídica de la región variable de cadena ligera de un anticuerpo anti-TNF.

La SEQ ID NO: 12 es la secuencia aminoacídica de la región variable de cadena pesada de un anticuerpo anti-TNF.

La SEQ ID NO: 13 es la secuencia aminoacídica de la cadena ligera de un anticuerpo anti-TNF.

La SEQ ID NO: 14 es la secuencia aminoacídica de la cadena pesada de un anticuerpo anti-TNF.

La SEQ ID NO: 15 es la secuencia del cebador oligonucleotídico 3' de la región del gen Tsp mutado que comprende el sitio de restricción Ase I.

5 La SEQ ID NO: 16 es la secuencia del cebador oligonucleotídico 5' de la región del gen Tsp mutado que comprende el sitio de restricción Ase I.

La SEQ ID NO: 17 es la secuencia del cebador oligonucleotídico 3' de la región del gen de proteasa III mutado que comprende el sitio de restricción Ase I.

La SEQ ID NO: 18 es la secuencia del cebador oligonucleotídico 5' de la región del gen de proteasa III mutado que comprende el sitio de restricción Ase I.

La SEQ ID NO: 19 es la secuencia del cebador oligonucleotídico 5' de la región del gen DegP mutado que comprende el sitio de restricción Ase I.

La SEQ ID NO: 20 es la secuencia del cebador oligonucleotídico 3' de la presión del gen DegP mutado que comprende el sitio de restricción.

15 Descripción detallada de las realizaciones preferidas de la invención

10

20

25

30

35

40

45

50

55

En un primer aspecto de la presente invención, los presentes inventores han proporcionado una célula de E. coli recombinante adecuada para expresar una proteína de interés que comprende solo las mutaciones mínimas del genoma requeridas para introducir una o más mutaciones de proteasa. En un segundo aspecto de la divulgación, la célula bacteriana comprende mutaciones por desactivación génica de Tsp y/o proteasa III, en el que el gen Tsp y/o de proteasa III comprende una mutación en el codón de iniciación del gen y/o uno o más codones de terminación colocados en dirección 3' del codón de iniciación del gen y en dirección 5' del codón de terminación del gen.

Las células de E. coli proporcionadas por la presente invención tienen actividad proteasa reducida en comparación con células no mutadas, lo que puede reducir la proteólisis de una proteína de interés recombinante, particularmente proteínas de interés que son proteolíticamente sensibles. Por lo tanto, una o más de las células de E. coli proporcionadas por la presente invención pueden proporcionar mayor rendimiento de la proteína de interés recombinante intacta y menor rendimiento, o preferiblemente ningún rendimiento, de fragmentos proteolíticos de la proteína de interés en comparación con una célula bacteriana no mutada.

El especialista en la materia sería capaz de ensayar fácilmente un clon de célula candidata para ver si tiene el rendimiento deseado de una proteína de interés usando métodos bien conocidos en la materia, incluyendo un método de fermentación, ELISA y HPLC de proteína G. Se describen métodos de fermentación adecuados en Humphreys D P, et al. (1997). "Formation of dimeric Fabs in E. coli: effect of hinge size and isotype, presence of interchain disulphide bond, Fab' expression levels, tail piece sequences and growth conditions". J. IMMUNOL. METH. 209: 193-202; Backlund E. Reeks D. Markland K. Weir N. Bowering L. Larsson G. "Fedbatch design for periplasmic product retention in Escherichia coli", Journal Article. Research Support, Non-U.S. Gov't Journal of Biotechnology. 135(4): 358-65, 31 de julio de 2008; Champion KM. Nishihara JC. Joly JC. Arnott D. "Similarity of the Escherichia coli proteome upon completion of different biopharmaceutical fermentation processes". [Journal Article] Proteomics. 1(9): 1133-48, sep. de 2001 y Horn U. Strittmatter W. Krebber A. Knupfer U. Kujau M. Wenderoth R. Muller K. Matzku S. Pluckthun A. Riesenberg D. "High volumetric yields of functional dimeric miniantibodies in Escherichia coli, using an optimized expression vector and high-cell-density fermentation under non-limited growth conditions", Journal Article. Research Support, Non-U.S. Gov't Applied Microbiology & Biotechnology. 46(5-6): 524-32, diciembre de 1996. El especialista sería también capaz de ensayar fácilmente proteína secretada para ver si la proteína está correctamente plegada usando métodos bien conocidos en la materia, tales como HPLC de proteína G, dicroísmo circular, RMN, cristalografía de rayos X y métodos de medida de la afinidad de epítopo.

Una o más de las células de E. coli recombinantes de la presente invención pueden exhibir un rendimiento de proteína significativamente mejorado en comparación con una célula bacteriana no mutada. El rendimiento de proteína mejorado puede ser el rendimiento de proteína periplásmica y/o el rendimiento de proteína sobrenadante. Una o más de las células de E. coli recombinantes de la presente invención pueden ser capaces de una tasa de producción más rápida de una proteína de interés y, por lo tanto, puede producirse la misma cantidad de una proteína de interés en un tiempo más corto en comparación con una célula bacteriana no mutada. La tasa de producción más rápida de una proteína de interés puede ser especialmente significativa durante el periodo de crecimiento inicial de la célula de E. coli, por ejemplo, durante las primeras 5, 10, 20 o 30 horas después de la inducción de la expresión de proteína.

Las células de E. coli según la presente invención comprenden una mutación de Tsp, que es preferiblemente la mutación de desactivación génica, sola o en combinación con una mutación de DegP o una mutación de proteasa III. Estas células de E. coli exhiben un mayor rendimiento y un rendimiento inicial más rápido de una proteína de interés

en comparación con una célula no mutada. Son ejemplos de tales estirpes celulares que comprenden el gen Tsp mutado solo o en combinación con el gen DegP mutado o el gen ptr mutado las cepas de células $E.\ coli$ mutantes MXE001 que tiene genotipo ΔT sp y depositada el 21 de mayo de 2009 en la National Collection of Type Cultures, HPA, Reino Unido, con número de acceso NCTC13444, MXE004 que tiene genotipo ΔT sp ΔT ptr y depositada el 21 de mayo de 2009 en la National Collection of Type Cultures, HPA, Reino Unido, con número de acceso NCTC13447, y MXE005 que tiene genotipo ΔT sp, DegP S210A y depositada el 21 de mayo de 209 en la National Collection of Type Cultures, HPA, Reino Unido, con número de acceso NCTC13448.

Adicionalmente, una o más de las células de E. coli pueden mostrar buenas características de crecimiento, incluyendo crecimiento y/o reproducción celular, que pueden ser sustancialmente las mismas que una célula bacteriana no mutada o mejoradas en comparación con una célula bacteriana no mutada.

10

15

20

50

El genoma de la célula de E. coli según la presente invención ha tenido una desestabilización mínima del genoma en comparación con una célula de tipo silvestre, reduciendo así los efectos nocivos de otras mutaciones encontradas típicamente en células hospedadoras sobre la expresión de otras proteínas celulares. Por consiguiente, una o más células hospedadoras de E. coli recombinantes según el primer aspecto de la presente invención pueden exhibir expresión de proteína mejorada y/o características de crecimiento mejoradas en comparación con células que comprenden mutaciones genomanipuladas adicionalmente de la secuencia genómica.

El genoma de la célula según el segundo aspecto de la divulgación ha tenido una desestabilización mínima del genoma para introducir las mutaciones de desactivación génica, reduciendo así los efectos nocivos de crear desactivaciones génicas de proteasa insertando ADN, tal como marcadores de resistencia a antibiótico. Por consiguiente, una o más células hospedadoras recombinantes según el segundo aspecto de la divulgación pueden exhibir una expresión de proteína mejorada y/o características de crecimiento mejoradas en comparación con células que comprenden mutaciones de desactivación génica de proteasa creadas mediante la inserción de ADN, tal como marcadores de resistencia a antibiótico.

Las células de E. coli proporcionadas por la presente invención son también más adecuadas para uso para producir proteínas terapéuticas en comparación con célula que comprenden desestabilizaciones adicionales del genoma celular.

La presente invención se describirá ahora con más detalle. Todas las realizaciones descritas en la presente memoria hacen referencia al primer, segundo y tercer aspectos de la divulgación a menos que se afirme específicamente otra cosa.

Los términos "proteína" y "polipéptido" se usan intercambiablemente en la presente memoria, a menos que el contexto indique otra cosa. "Péptido" pretende hacer referencia a 10 o menos aminoácidos.

El término "polinucleótido" incluye un gen, ADN, ADNc, ARN, ARNm, etc. a menos que el contexto indique otra cosa.

Como se usa en la presente memoria, el término "comprende" en el contexto de la presente memoria descriptiva debería interpretarse como "incluye".

- Célula no mutada o célula de control en el contexto de la presente invención significa una célula del mismo tipo que la célula de E. coli recombinante de la invención en la que la célula no se ha modificado para portar las mutaciones de proteasa anteriores. Por ejemplo, una célula no mutada puede ser una célula de tipo silvestre y puede derivar de la misma población de células hospedadoras que las células de E. coli de la invención antes de la modificación para introducir la una o más mutaciones.
- 40 Las expresiones "célula", "estirpe celular", "cultivo celular" y "cepa" se usan intercambiablemente.

El término "isogénico" en el contexto de la presente invención significa que el genoma de la célula de E. coli de la presente invención tiene la misma secuencia genómica en comparación con una cepa de E. coli de tipo silvestre, excepto por los genes de proteasa mutados específicos y opcionalmente un polinucleótido que codifica una proteína de interés.

Los ejemplos de mutaciones génicas implicadas en el metabolismo celular y la replicación de ADN que se usan comúnmente en cepas de *E. coli* en la materia, pero que no se usan en la célula de *E. coli* según la presente invención, incluyen *phoA*, *fhuA*, *lac*, *rec*, *gal*, *ara*, *arg*, *thi* y *pro*.

La expresión "tipo silvestre" en el contexto de la presente invención significa una cepa de una célula de E. coli como puede aparecer en la naturaleza o puede aislarse del entorno, que no porta ninguna mutación genomanipulada. Es un ejemplo de una cepa de tipo silvestre de *E. coli* W3110, tal como la cepa W3110 K-12 (F⁻λ⁻ rph-1 INV(rrnD, rrnE) ilvG) (ATCC27325).

La célula de E. coli según el primer aspecto de la presente invención es isogénica de una célula W3110 de E. coli de tipo silvestre, excepto por el uno o más genes de proteasa mutados y opcionalmente una secuencia polinucleotídica que codifica una proteína de interés.

La célula de E. coli de la presente invención puede diferir adicionalmente de una célula de tipo silvestre por comprender un polinucleótido que codifica la proteína de interés. En esta realización, el polinucleótido que codifica la proteína de interés puede estar contenido en un vector de expresión adecuado transformado en la célula de E. coli y/o integrado en el genoma de la célula hospedadora de E. coli. En la realización en que el polinucleótido que codifica la proteína de interés se inserta en el genoma del hospedador, la célula de E. coli de la presente invención diferirá también de una célula de tipo silvestre debido a la secuencia polinucleotídica insertada que codifica la proteína de interés. Preferiblemente, el polinucleótido está en un vector de expresión en la célula de E. coli, causando así una desestabilización mínima del genoma de la célula hospedadora.

- En ciertas realizaciones de la presente invención, la célula de E. coli recombinante comprende un gen DegP mutado que codifica una proteína DegP que tiene actividad chaperona y actividad proteasa reducida. Como se usa en la presente memoria, "DegP" significa un gen que codifica la proteína DegP (también conocida como HtrA) que tiene función dual como chaperona y proteasa ("Families of serine peptidases"; Rawlings ND, Barrett AJ. Methods Enzymol. 1994; 244: 19-61). La secuencia del gen DegP no mutado se muestra en la SEQ ID NO: 7 y la secuencia de la proteína DegP no mutada se muestra en la SEQ ID NO: 8.
- A bajas temperaturas, la DegP funciona como chaperona y a altas temperaturas la DegP tiene preferencia por funcionar como protesa ("A Temperature-Dependent Switch from Chaperone to Protease in a Widely Conserved Heat Shock Protein". Cell, volumen 97, publicación 3, páginas 339-347. Spiess C, Beil A, Ehrmann M) y "The proteolytic activity of the HtrA (DegP) protein from *Escherichia coli* at low temperaturas", Skorko-Glonek J et al Microbiology 2008, 154, 3649-3658).
- 20 En las realizaciones en que la célula de E. coli comprende la mutación de DegP, la mutación de DegP en la célula de E. coli proporciona un gen DegP mutado que codifica una proteína DegP que tiene actividad chaperona, pero no actividad proteasa completa.
 - La expresión "que tiene actividad chaperona" en el contexto de la presente invención significa que la proteína DegP mutada tiene la misma o sustancialmente la misma actividad chaperona en comparación con la proteína DegP no mutada de tipo silvestre. Preferiblemente, el gen DegP mutado codifica una proteína DegP que tiene un 50 % o más, un 60 % o más, un 70 % o más, un 80 % o más, un 90 % o más o un 95 % o más de la actividad chaperona de una proteína DegP no mutada de tipo silvestre. Más preferiblemente, el gen DegP mutado codifica una proteína DegP que tiene la misma actividad chaperona en comparación con DegP de tipo silvestre.
- La expresión "que tiene actividad proteasa reducida" en el contexto de la divulgación significa que la proteína DegP mutada no tiene la actividad proteasa completa en comparación con la proteína DegP no mutada de tipo silvestre. Preferiblemente, el gen DegP mutado codifica una proteína DegP que tiene un 50 % o menos, un 40 % o menos, un 30 % o menos, un 20 % o menos, un 10 % o menos o un 5 % o menos de la actividad proteasa de una proteína DegP no mutada de tipo silvestre. Más preferiblemente, el gen DegP mutado codifica una proteína DegP que no tiene actividad proteasa.
- La célula de E. coli no es deficiente de DegP cromosómico, concretamente las secuencias del gen DegP no se han eliminado o mutado para prevenir la expresión de cualquier forma de proteína DegP.
 - Puede introducirse cualquier mutación adecuada en el gen DegP para producir una proteína que tenga actividad chaperona y actividad proteasa reducida. La actividad proteasa y chaperona de una proteína DegP expresada a partir de una bacteria gramnegativa puede ensayarse fácilmente por un especialista en la materia mediante cualquier método adecuado tal como el método descrito en Spiess et al. en el que se ensayaron las actividades proteasa y chaperona de DegP en MalS, un sustrato natural de DegP ("A Temperature-Dependent Switch from Chaperone to Protease in a Widely Conserved Heat Shock Protein". Cell, volumen 97, publicación 3, páginas 339-347. Spiess C, Beil A, Ehrmann M) y también el método descrito en "The proteolytic activity of the HtrA (DegP) protein from Escherichia coli at low temperaturas", Skorko-Glonek J et al Microbiology 2008, 154, 3649-3658.
- La DegP es una serinproteasa y tiene un centro activo consistente en una triada catalítica de residuos aminoacídicos His105, Asp135 y Ser210 ("Families of serine peptidases", Methods Enzymol., 1994, 244: 19-61 Rawlings N y Barrett A). La mutación de DegP para producir una proteína que tiene actividad chaperona y actividad proteasa reducida puede comprender una mutación, tal como una mutación con cambio de sentido, de uno, dos o tres de His105, Asp135 y Ser210. Por consiguiente, el gen DegP mutado puede comprender:
 - una mutación en His 105; o

25

40

50

- una mutación en Asp135; o
- una mutación en Ser210; o
- una mutación en His105 y Asp135; o
- una mutación en His105 y Ser210; o

una mutación en Asp135 y Ser210; o

10

15

35

40

50

55

• una mutación en His105, Asp135 y Ser210.

Uno, dos o tres de His 105, Asp135 y Ser210 pueden mutarse a cualquier aminoácido adecuado que dé como resultado una proteína que tenga actividad chaperona y actividad proteasa reducida. Por ejemplo, pueden mutarse uno, dos o tres de His105, Asp135 y Ser210 a un aminoácido pequeño tal como Gly o Ala. Es una mutación adecuada adicional cambiar uno, dos o tres de His105, Asp135 y Ser210 a un aminoácido que tenga propiedades opuestas tales como mutar Asp135 a Lys o Arg, mutar His105 polar a un aminoácido no polar tal como Gly, Ala, Val o Leu y mutar Ser210 hidrófilo pequeño a un residuo grande o hidrófobo tal como Val, Leu, Phe o Tyr. Preferiblemente, el gen DegP comprende la mutación puntual S210A, como se muestra en la Figura 1c, que se ha encontrado que produce una proteína que tiene actividad chaperona pero no actividad proteasa ("A Temperature-Dependent Switch from Chaperone to Protease in a Widely Conserved Heat Shock Protein". Cell, volumen 97, publicación 3, páginas 339-347. Spiess C, Beil A, Ehrmann M).

La presente divulgación describe también una célula bacteriana gramnegativa recombinante que comprende un gen DegP mutado que codifica una proteína DegP que tiene actividad chaperona y actividad proteasa reducida, en la que el gen DegP comprende una mutación en His 105; o una mutación en Asp135; o una mutación en His105 y Asp135; o una mutación en His105 y Ser210; o una mutación en His105, Asp135 y Ser210, como se discute anteriormente.

La DegP tiene dos dominios PDZ, PDZ1 (residuos 260-358) y PDZ2 (residuos 359-448), que median la interacción proteína-proteína ("A Temperature-Dependent Switch from Chaperone to Protease in a Widely Conserved Heat Shock Protein". Cell, volumen 97, publicación 3, páginas 339-347. Spiess C, Beil A, Ehrmann M). En una realización de la presente invención, el gen degP se muta para eliminar el dominio PDZ1 y/o el dominio PDZ2. La deleción de PDZ1 y PDZ2 da como resultado la pérdida completa de actividad proteasa de la proteína DegP y una actividad chaperona rebajada en comparación con la proteína DegP de tipo silvestre, mientras que la deleción de cualquiera de PDZ1 o PDZ2 da como resultado un 5 % de actividad proteasa y actividad chaperona similar en comparación con la proteína DegP de tipo silvestre ("A Temperature-Dependent Switch from Chaperone to Protease in a Widely Conserved Heat Shock Protein". Cell, volumen 97, pulicación 3, páginas 339-347. Spiess C, Beil A, Ehrmann M).

El gen DegP mutado puede comprender también un sitio de restricción de origen no natural silencioso, tal como Ase I, para ayudar a los métodos de identificación y cribado, por ejemplo, como se muestra en la Figura 1c.

La secuencia preferida del gen DegP mutado que comprende la mutación puntual S210A y un sitio marcador de restricción Ase I se proporciona en la SEQ ID NO: 9 y la secuencia proteica codificada se muestra en la SEQ ID NO: 10. Las mutaciones que se han realizado en la secuencia de DegP mutada de SEQ ID NO: 9 se muestran en la Figura 1c.

En las realizaciones de la presente invención en las que la célula de E. coli comprende un gen DegP mutado que codifica una proteína DegP que tiene actividad chaperona y actividad proteasa reducida, una o más de las células de E. coli proporcionadas por la presente invención pueden proporcionar un rendimiento mejorado de proteínas plegadas correctamente a partir de la célula respecto a células mutadas en las que el gen DegP se ha mutado para desactivar génicamente DegP previniendo la expresión de DegP, tal como DegP cromosómico deficiente. En una célula que comprende un gen DegP mutado por desactivación génica que previene la expresión de DegP, la actividad chaperona de DegP se pierde completamente, mientras que en la célula de E. coli según una realización de la presente invención se retiene la actividad chaperona de DegP mientras que se pierde la actividad proteasa total. En estas realizaciones, una o más células de E. coli según la presente invención tienen una menor actividad proteasa para prevenir la proteólisis de la proteína mientras mantienen la actividad chaperona para permitir un plegado y transporte correctos de la proteína en la célula hospedadora.

El especialista en la materia será capaz de ensayar fácilmente proteína secretada para ver si la proteína está plegada correctamente usando métodos bien conocidos en la materia, tales como HPLC de proteína G, dicroísmo circular, RMN, cristalografía de rayos X y métodos de medida de afinidad de epítopo.

En estas realizaciones, una o más células de E. coli según la presente invención pueden tener un crecimiento celular mejorado en comparación con células portadoras de un gen DegP mutado con desactivación génica que previene la expresión de DegP. Sin desear limitarse por la teoría, el crecimiento celular mejorado puede exhibirse debido a que la proteasa DegP retiene actividad chaperona que puede aumentar la capacidad de la célula de procesar todas las proteínas que requieren actividad chaperona. Por consiguiente, la producción de proteínas plegadas correctamente necesarias para el crecimiento y reproducción celular puede aumentarse en una o más de las células de E. coli de la presente invención en comparación con células portadoras de una mutación de desactivación génica de DegP, mejorando así las rutas celulares que regulan el crecimiento. Adicionalmente, las cepas deficientes en proteasa DegP conocidas son generalmente sensibles a la temperatura y no crecen típicamente a temperaturas mayores de aproximadamente 28 °C. Sin embargo, las células de E. coli según la presente invención no son sensibles a la temperatura y pueden crecer a temperaturas de 28 °C o mayores, incluyendo temperaturas de aproximadamente 30 °C a aproximadamente 37 °C, que se usan típicamente para la producción a escala industrial de proteínas a partir de

bacterias.

5

10

15

20

25

30

35

40

45

La presente divulgación describe también células bacterianas gramnegativas que comprenden un gen ptr mutado por desactivación génica. Como se usa en la presente memoria, "gen ptr" significa un gen que codifica proteasa III, una proteasa que degrada proteínas de alto peso molecular. La secuencia del gen ptr no mutado se muestra en la SEQ ID NO: 4 y la secuencia de la proteína proteasa III no mutada se muestra en la SEQ ID NO: 5.

En ciertas realizaciones de la presente invención, la célula de E. coli recombinante comprende un gen Tsp mutado por desactivación génica. Como se usa en la presente memoria, "gen Tsp" significa un gen que codifica la proteasa Tsp (también conocida como Prc) que es una proteasa periplásmica capaz de actuar sobre la proteína de unión a penicilina 3 (PBP3) y proteínas de cola de fago. La secuencia del gen Tsp no mutado se muestra en la SEQ ID NO: 1 y la secuencia de la proteína Tsp no mutada se muestra en la SEQ ID NO: 2.

Un gen ptr mutado puede codificar una proteasa III que tiene un 50 % o menos, un 40 % o menos, un 30 % o menos, un 20 % o menos, un 10 % o menos o un 5 % o menos de la actividad proteasa de una proteína proteasa III no mutada de tipo silvestre. Más preferiblemente, el gen ptr mutado codifica una proteína proteasa III que no tiene actividad proteasa. En esta realización, la célula de E. coli no es deficiente en ptr cromosómico, concretamente la secuencia del gen ptr no se ha eliminado ni mutado para prevenir la expresión de cualquier forma de proteína proteasa III.

Puede introducirse cualquier mutación adecuada en el gen ptr para producir una proteína proteasa III que tiene actividad proteasa reducida. La actividad proteasa de una proteína proteasa III expresada a partir de una bacteria gramnegativa puede ensayarse fácilmente por un especialista en la materia mediante cualquier método adecuado en la materia

En el primer aspecto de la presente invención, el gen Tsp mutado codifica una proteína Tsp que tiene un 50 % o menos, un 40 % o menos, un 30 % o menos, un 20 % o menos, un 10 % o menos o un 5 % o menos de la actividad proteasa de una proteína Tsp no mutada de tipo silvestre. Más preferiblemente, el gen Tsp mutado codifica una proteína Tsp que no tiene actividad proteasa. En esta realización, la célula de E. coli no es deficiente en Tsp cromosómico, concretamente la secuencia del gen Tsp no se ha eliminado ni mutado para prevenir la expresión de cualquier forma de proteína Tsp.

Puede introducirse en el gen Tsp cualquier mutación adecuada para producir una proteína que tiene actividad proteasa reducida. La actividad proteasa de una proteína Tsp expresada a partir de una bacteria gramnegativa puede ensayarse fácilmente por un especialista en la materia mediante cualquier método adecuado en la materia, tal como el método descrito en Keiler et al ("Identification of Active Site Residues of the Tsp Protease*" THE JOURNAL OF BIOLOGICAL CHEMISTRY Vol. 270, No. 48, publicación de 1 de diciembre, pág. 28864-28868, 1995 Kenneth C. Keiler y Robert T. Sauer) en el que se ensayaron las actividades proteasa de Tsp.

Se ha reseñado en Keiler et al (*supra*) que Tsp tiene un sitio activo que comprende los residuos S430, D441 y K455 y los residuos G375, G376, E433 y T452 son importantes para mantener la estructura de Tsp. Keiler et al (*supra*) reseña los hallazgos de que los genes de Tsp mutados S430A, D441A, K455A, K455H, K455R, G375A, G376A, E433A y T452A no tenían actividad proteasa detectable. Se reseña adicionalmente que el gen Tsp mutado con S430C presentaba aproximadamente un 5-10 % de actividad de tipo silvestre. Por consiguiente, la mutación de Tsp para producir una proteína que tenga actividad proteasa reducida puede comprender una mutación, tal como una mutación con cambio de sentido, en uno más de los residuos S430, D441, K455, G375, G376, E433 y T452. Preferiblemente, la mutación de Tsp para producir una proteína que tenga actividad proteasa reducida puede comprender una mutación, tal como una mutación con cambio de sentido, de uno, dos o los tres residuos de sitio activo S430, D441 y K455.

Según el gen Tsp mutado puede comprender:

- una mutación en S430; o
- una mutación en D441; o
- una mutación en K455; o
- una mutación en S430 y D441; o
- una mutación en S430 y K455; o
- una mutación en D441 y K455; o
- una mutación en S430, D441 y K455.

Uno o más de S430, D441, K455, G375, G376, E433 y T452 puede mutarse a cualquier aminoácido adecuado que dé como resultado una proteína que tenga actividad proteasa reducida. Son ejemplos de mutaciones adecuadas S430A, S430C, D441A, K455A, K455H, K455R, G375A, G376A, E433A y T452A. El gen Tsp mutado puede

comprender una, dos o tres mutaciones en los residuos de sitio activo, por ejemplo, el gen puede comprender:

- S430A o S430C; y/o
- D441A; y/o

10

15

20

40

45

50

- K455A o K455H o K455R.
- 5 Preferiblemente, el gen Tsp comprende la mutación puntual S430A o S430C.

En el primer aspecto de la presente invención, la expresión "gen ptr mutado por desactivación génica" y "gen Tsp mutado por desactivación génica" en el contexto de la presente invención significa que el gen comprende una o más mutaciones, causando así que la no expresión de la proteína codificada por el gen proporcione una célula E. coli deficiente en la proteína codificada por el gen mutado por desactivación génica. El gen desactivado génicamente puede transcribirse parcial o completamente, pero no se traduce a la proteína codificada.

El gen ptr mutado por desactivación génica y/o gen Tsp mutado por desactivación génica puede mutarse de cualquier modo adecuado, por ejemplo por una o más de mutaciones de deleción, inserción, puntual, cambio de sentido, sin sentido y de desplazamiento de marco, causando la no expresión de la proteína. Por ejemplo, el gen puede desactivarse génicamente por inserción de una secuencia de ADN extraña, tal como un marcador de resistencia a antibiótico, en la secuencia de codificación del gen.

En una realización preferida del primer aspecto de la presente invención, el gen no se muta por inserción de una secuencia de ADN extraña, tal como un marcador de resistencia a antibiótico, en la secuencia de codificación del gen. Preferiblemente, el gen Tsp y/o el gen de proteasa III comprenden una mutación en el codón de iniciación del gen y/o uno o más codones de terminación colocados en dirección 3' del codón de iniciación del gen y en dirección 5' del codón de terminación del gen, previniendo así la expresión de la proteína Tsp y/o de la proteína proteasa III.

La célula según el segundo aspecto de la divulgación comprende mutaciones de desactivación génica de Tsp y/o proteasa III donde el gen Tsp y el gen de proteasa III comprenden una mutación en el codón de iniciación del gen y/o uno o más codones de terminación colocados en dirección 3' del codón de iniciación del gen y en dirección 5' del codón de terminación del gen, previniendo así la expresión de la proteína Tsp y/o la proteína proteasa III.

- Una mutación en el codón de iniciación del gen de desactivación génica diana causa pérdida de función del codón de iniciación y asegura así que el gen diana no comprenda un sitio de iniciación adecuado al inicio de la secuencia de codificación. La mutación en el codón de iniciación puede ser una mutación de cambio de sentido de uno, dos o los tres nucleótidos del codón de iniciación. Como alternativa, o adicionalmente, el codón de iniciación puede mutarse por una mutación de desplazamiento de marco de inserción o deleción.
- 30 El gen ptr y el gen Tsp comprenden cada uno un codón de iniciación ATG. Si el gen comprende más de un codón de iniciación colocado adecuadamente, como se encuentra en el gen Tsp en que están presentes dos codones ATG en el extremo 5' de la secuencia de codificación, uno o ambos de los codones ATG pueden estar mutados con una mutación con cambio de sentido.
- En una realización preferida, el gen ptr se muta para cambiar el codón de iniciación ATG a ATT, como se muestra en la Figura 1a. En una realización preferida, el gen Tsp se muta en el segundo codón ATG (codón 3) a TCG, como se muestra en la Figura 1b.

El gen ptr mutado por desactivación génica y/o el gen Tsp mutado por desactivación génica pueden comprender como alternativa o adicionalmente uno o más codones de terminación colocados en dirección 3' del codón de iniciación del gen y en dirección 5' del codón de terminación del gen. Preferiblemente, el gen ptr mutado por desactivación génica y/o el gen Tsp mutado por desactivación génica comprenden ambos una mutación con cambio de sentido del codón de iniciación y uno o más codones de terminación insertados.

El uno o más codones de terminación insertados son preferiblemente codones de terminación en marco. Sin embargo, el uno o más codones de terminación insertados pueden ser como alternativa o adicionalmente codones de terminación fuera de marco. Pueden requerirse uno o más codones de terminación fuera de marco para terminar la traducción cuando un codón de iniciación fuera de marco se cambia a un codón de iniciación en marco por la inserción o deleción de una mutación de desplazamiento de marco. El uno o más codones de terminación pueden introducirse mediante cualquier mutación adecuada incluyendo una mutación puntual con cambio de sentido y una mutación con desplazamiento de fase. Los uno o más codones de terminación se introducen preferiblemente por una mutación de desplazamiento de fase y/o una mutación de inserción, preferiblemente mediante el reemplazo de un segmento de la secuencia génica por una secuencia que comprende un codón de terminación. Por ejemplo, puede insertarse un sitio de restricción *Ase I* que comprende el codón de terminación TAA.

En una realización preferida, se muta el gen ptr para insertar un codón de terminación en marco mediante inserción de un sitio de restricción Ase I, como se muestra en la Figura 1a.

En una realización preferida, se muta el gen Tsp para eliminar "T" del quinto codón, causando así un desplazamiento

de marco que da como resultado codones de terminación en los codones 11 y 16, como se muestra en la Figura 1b. En una realización preferida, se muta el gen Tsp para insertar un sitio de restricción Ase I para crear un tercer codón de terminación en marco en el codón 21, como se muestra en la Figura 1b.

En una realización preferida, el gen ptr mutado por desactivación génica tiene la secuencia de ADN de SEQ ID NO: 6. Las mutaciones que se han realizado en la secuencia del gen ptr mutado por desactivación génica de SEQ ID NO: 6 se muestran en la Figura 1a.

En una realización preferida, el gen Tsp mutado por desactivación génica tiene la secuencia de ADN de SEQ ID NO: 3, que incluye los 6 nucleótidos ATGAAT en dirección 5' del codón de iniciación. Las mutaciones que se han realizado en la secuencia de Tsp mutada por desactivación génica de SEQ ID NO: 3 se muestran en la Figura 1b. En una realización, el gen Tsp mutado tiene la secuencia de ADN de nucleótidos 7 a 2048 de SEQ ID NO: 3.

10

15

25

30

35

40

45

50

55

Las mutaciones por desactivación génica descritas anteriormente son ventajosas porque causan una desestabilización mínima o nula del ADN cromosómico en dirección 5' o en dirección 3' del sitio del gen de desactivación génica diana y no requieren la inserción y retención de ADN extraño, tal como marcadores de resistencia a antibióticos, que pueden afectar a la aptitud de la célula para expresar una proteína de interés, particularmente proteínas terapéuticas. Por consiguiente, una o más de las células de E. coli según la presente invención pueden exhibir características de crecimiento y/o expresión de proteína mejoradas en comparación con células en las que el gen de proteasa se ha desactivado génicamente por inserción de ADN extraño en la secuencia que codifica el gen.

Muchas mutaciones genomanipuladas, incluyendo mutaciones de desactivación génica, implican el uso de marcadores de resistencia a antibiótico que permiten la selección e identificación de células mutadas exitosamente. Sin embargo, como se discute anteriormente, hay una serie de desventajas al usar marcadores de resistencia a antibióticos.

Una realización adicional de la presente invención supera las desventajas anteriores de usar marcadores de resistencia a antibiótico en la que los genes de proteasa mutados seleccionados de uno o más de un gen DegP mutado que codifica una proteína DegP que tiene actividad chaperona pero no actividad proteasa; un gen ptr mutado que codifica proteasa IIII y un gen Tsp mutado que codifica proteasa Tsp se mutan para comprender uno o más sitios marcadores de restricción. Los sitios de restricción se genomanipulan en el gen y no son de origen natural. Los sitios marcadores de restricción son ventajosos porque permiten el cribado e identificación de células modificadas correctamente que comprenden las mutaciones cromosómicas requeridas. Las células que se han modificado para portar uno o más de los genes de proteasa mutados pueden analizarse por PCR de ADN genómico de lisados celulares usando pares oligonucleotídicos diseñados para amplificar una región del ADN genómico que comprende un sitio marcador de restricción de origen no natural. El ADN amplificado puede analizarse entonces por electroforesis en gel de agarosa antes y después de incubación con una enzima de restricción adecuada capaz de digerir el ADN en el sitio marcador de restricción de origen no natural. La presencia de fragmentos de ADN después de incubación con la enzima de restricción confirma que las células se han modificado exitosamente para portar el uno o más genes de proteasa mutados.

En la realización en la que el gen ptr mutado por desactivación génica tiene la secuencia de ADN de SEQ ID NO: 6, las secuencias cebadoras oligonucleotídicas mostradas en la SEQ ID NO: 17 y la SEQ ID NO: 18 pueden usarse para amplificar la región del ADN que comprende el sitio de restricción Ase I de origen no natural a partir del ADN genómico de células de E. coli transformadas. El ADN genómico amplificado puede incubarse entonces con la enzima de restricción Ase I y analizarse por electroforesis en gel para confirmar la presencia del gen ptr mutado en el ADN genómico.

En la realización en la que el gen Tsp mutado por desactivación génica tiene la secuencia de ADN de SEQ ID NO: 3 o los nucleótidos 7 a 2048 de SEQ ID NO: 3, las secuencias cebadoras oligonucleotídicas mostradas en la SEQ ID NO: 15 y la SEQ ID NO: 16 pueden usarse para amplificar la región del ADN que comprende el sitio de restricción Ase I de origen no natural a partir del ADN genómico de células de E. coli transformadas. El ADN genómico amplificado puede incubarse entonces con enzima de restricción Ase I y analizarse por electroforesis en gel para confirmar la presencia del gen Tsp mutado en el ADN genómico.

En la realización en la que el gen DegP mutado tiene la secuencia de ADN de SEQ ID NO: 9, las secuencias cebadoras oligonucleotídicas mostradas en la SEQ ID NO: 19 y la SEQ ID NO: 20 pueden usarse para amplificar la región de ADN que comprende el sitio de restricción Ase I de origen no natural a partir del ADN genómico de células de E. coli transformadas. El ADN genómico amplificado puede incubarse entonces con enzima de restricción Ase I y analizarse por electroforesis en gel para confirmar la presencia del gen DegP mutado en el ADN genómico.

El uno o más sitios de restricción pueden introducirse mediante cualquier mutación adecuada incluyendo mediante una o más mutaciones de deleción, inserción, puntual, con cambio de sentido, sin sentido y con desplazamiento de marco. Puede introducirse un sitio de restricción mediante la mutación en el codón de iniciación y/o la mutación para introducir el uno o más codones de terminación, como se describe anteriormente. Esta realización es ventajosa porque el sitio marcador de restricción es un marcador directo y único de las mutaciones por desactivación génica

introducidas.

25

30

35

55

Puede insertarse un sitio marcador de restricción que comprende un codón de terminación en marco, tal como un sitio de restricción *Ase I*. Esto es particularmente ventajoso porque el sitio de restricción insertado sirve tanto como sitio marcador de restricción como codón de terminación para prevenir la transcripción completa de la secuencia codificante del gen. Por ejemplo, en la realización en la que se introduce un codón de terminación en el gen ptr mediante la introducción de un sitio *Ase I*, esto crea también un sitio de restricción, como se muestra en la Figura 1a. Por ejemplo, en la realización en la que se introduce un codón de terminación en el gen Tsp en el codón 21 mediante la introducción de un sitio *Ase I*, esto crea también un sitio de restricción como se muestra en la Figura 1b.

Puede insertarse un sitio marcador de restricción mediante la mutación en el codón de iniciación y opcionalmente una o más mutaciones puntuales adicionales. En esta realización, el sitio marcador de restricción es preferiblemente un sitio de restricción *EcoR I*. Esto es particularmente ventajoso porque la mutación en el codón de iniciación crea también un sitio marcador de restricción. Por ejemplo, en la realización en la que el codón de iniciación del gen ptr se cambia a ATT, esto crea un sitio marcador *EcoR I*, como se muestra en la Figura 1a. Por ejemplo, en la realización en la que el codón de iniciación (codón 3) del gen Tsp se cambia de ATG a TCG, como se muestra en la Figura 1b, una mutación puntual adicional del codón 2 de AAC a ATT y la mutación en el codón 3 de ATG a TCG crea un sitio marcador de restricción *EcoR I*, como se muestra en la Figura 1b.

En el gen DegP, puede introducirse un sitio de restricción marcador usando cambios de codón silenciosos. Por ejemplo, puede usarse un sitio *Ase I* como sitio marcador de restricción silencioso, en el que el codón de terminación TAA está fuera de marco, como se muestra en la Figura 1c.

20 En las realizaciones de la presente invención en las que el gen ptr y/o el gen Tsp se mutan para codificar una proteasa III o Tsp que tiene actividad proteasa reducida, pueden introducirse uno o más sitios de restricción marcadores usando cambios de codón silenciosos.

La célula de E. coli recombinante según la presente invención puede producirse mediante cualquier medio adecuado. El especialista en la materia conoce técnicas adecuadas que pueden usarse para reemplazar una secuencia génica cromosómica por una secuencia génica mutada. Pueden emplearse vectores adecuados que permitan la integración en el cromosoma hospedador por recombinación homóloga.

Se describen métodos de reemplazo génico adecuados, por ejemplo, en Hamilton et al. ("New Method for Generating Deletions and Gene Replacements in Escherichia coli", Hamilton C. M. et al., Journal of Bacteriology Septiembre de 1989, Vol. 171, No. 9, pág. 4617-4622), Skorupski et al ("Positive selection vectors for allelic Exchange", Skorupski K y Taylor R. K., Gene, 1996, 169, 47-52), Kiel et al ("A general method for the construction of Escherichia coli mutants by homologous recombination and plasmid segregation", Kiel J.A.K.W. et al, Mol Gen Genet 1987, 207: 294-301), Blomfield et al ("Allelic exchange in Escherichia coli using the Bacillus subtilis sacB gene and a temperature sensitive pSC101 replicon", Blomfield I.C. et al., Molecular Microbiology 1991, 5(6), 1447-1457) y Ried et al. ("An nptl-sacB-sacR cartridge for constructing directed, unmarked mutations in Gram-negative bacteria by marker exchange-eviction mutagénesis", Ried J. L. y Collmer A., Gene 57 (1987) 239-246). Es un plásmido adecuado que posibilita una recombinación/reemplazo homólogo el plásmido pKO3 (Link et al., 1997, Journal of Bacteriology, 179, 6228-6237).

Pueden identificarse cepas mutadas exitosamente usando métodos bien conocidos en la materia, incluyendo secuenciación de ADN por PCR de colonia y cartografía por enzimas de restricción de PCR de colonia.

40 En la realización en la que la célula de E. coli comprende dos o tres de los genes de proteasa mutados, puede introducirse la proteasa mutada en la célula de E. coli en el mismo o diferentes vectores.

En una realización, la presente invención proporciona una célula de E. coli mutante de cepa MXE001 que tiene el genotipo Δ Tsp y depositada el 21 de mayo de 2009 en la National Collection of Type Cultures, HPA, Reino Unido, con número de acceso NCTC13444.

45 Además, se divulga una célula de *E. coli* mutante de cepa MXE002 que tiene genotipo ∆ptr y depositada el 21 de mayo de 2009 en la National Collection of Type Cultures, HPA, Reino Unido, con número de acceso NCTC13445.

Además, se divulga una célula de *E. coli* mutante de cepa MXE003 que tiene genotipo DegP S210A y depositada el 21 de mayo de 2009 en la National Collection of Type Cultures, HPA, Reino Unido, con número de acceso NCTC13446.

50 En una realización adicional, la presente invención proporciona una célula de *E. coli* mutante de cepa MXE004 que tiene genotipo ΔTsp Δptr y depositada el 21 de mayo de 2009 en la National Collection of Type Cultures, HPA, Reino Unido, con número de acceso NCTC13447.

En una realización, la presente invención proporciona una célula de *E. coli* mutante de cepa MXE005 que tiene genotipo ΔTsp, DegP S210A y depositada el 12 de mayo de 2009 en la National Collection of Type Cultures, HPA, Reino Unido, con número de acceso NCTC13448.

Además, se divulga una célula de *E. coli* mutante de cepa MXE006 que tiene genotipo Δptr, DegP S210A y depositada el 21 de mayo de 2009 en la National Collection of Type Cultures, HPA, Reino Unido, con número de acceso NCTC13449.

En una realización, la célula de E. coli según la presente invención no porta un gen ompT mutado por desactivación génica, tal como es deficiente en ompT cromosómico. En una realización, la célula de E. coli según la presente invención no porta ningún gen de proteasa mutado por desactivación génica adicional.

La célula de E. coli según la presente invención puede comprender además una secuencia polinucleotídica que codifica una proteína de interés. La secuencia polinucleotídica que codifica la proteína de interés puede ser exógena o endógena. La secuencia polinucleotídica que codifica la proteína de interés puede estar integrada en el cromosoma del hospedador o puede no estar no integrada en un vector, típicamente un plásmido.

En una realización, la célula de E. coli según la presente invención expresa una proteína de interés. "Proteína de interés" en el contexto de la presente memoria descriptiva pretende hacer referencia a un polipéptido para expresión, habitualmente un polipéptido recombinante. Sin embargo, la proteína de interés puede ser una proteína endógena expresada a partir de un gen endógeno en la célula hospedadora de E. coli.

- 15 Como se usa en la presente memoria, un "polipéptido recombinante" hace referencia a una proteína que se construye o produce usando tecnología de ADN recombinante. La proteína de interés puede ser una secuencia exógena idéntica a la proteína endógena o una versión mutada de la misma, por ejemplo con actividad biológica atenuada, o fragmento de la misma, expresada a partir de un vector exógeno. Como alternativa, la proteína de interés puede ser una proteína heteróloga, no expresada normalmente por la célula de hospedadora de E. coli.
- 20 La proteína de interés puede ser cualquier proteína adecuada, incluyendo una proteína terapéutica, profiláctica o de diagnóstico.

En una realización, la proteína de interés es útil en el tratamiento de enfermedades o trastorno que incluyen enfermedades y trastornos inflamatorios, enfermedades y trastornos inmunitarios y trastornos fibróticos y cánceres.

La expresión "enfermedad o trastorno inflamatorio" y "enfermedad o trastorno inmunitario" incluye artritis reumatoide, artritis psoriásica, enfermedad de Still, enfermedad de Muckle Wells, psoriasis, enfermedad de Crohn, colitis ulcerosa, LSE (lupus sistémico eritematoso), asma, rinitis alérgica, dermatitis atópica, esclerosis múltiple, vasculitis, diabetes sacarina de tipo I, trasplante y enfermedad de injerto contra el hospedador.

La expresión "trastorno fibrótico" incluye fibrosis pulmonar idiopática (FPI), esclerosis sistémica (o escleroderma), fibrosis renal, nefropatía diabética, nefropatía de IgA, hipertensión, enfermedad renal de etapa terminal, fibrosis peritoneal (diálisis peritoneal ambulatoria continua), cirrosis hepática, degeneración macular relacionada con la edad (DMRA), retinopatía, fibrosis reactiva cardiaca, cicatrización, queloides, quemaduras, úlceras cutáneas, angioplastia, cirugía de derivación coronaria, artroplastia y cirugía de cataratas.

El término "cáncer" incluye un nuevo crecimiento maligno que surge del epitelio, encontrado en piel o, más comúnmente, el revestimiento de órganos corporales, por ejemplo: mama, ovario, próstata, pulmón, riñón, páncreas, estómago, vejiga o intestino. Los cánceres tienden a infiltrarse en tejido adyacente y extenderse (metastatizarse) a órganos distantes, por ejemplo a hueso, hígado, pulmón o cerebro.

La proteína puede ser un polipéptido sensible proteolíticamente, concretamente proteínas que tienden a escindirse, susceptibles de escindirse o escindidas por una o más proteasas bacterianas gramnegativas, tales como de *E. coli*, en estado nativo o durante la secreción. En una realización, la proteína de interés es sensible proteolíticamente a una proteasa seleccionada de DegP, proteasa III y Tsp. En una realización, la proteína de interés es sensible proteolíticamente a las proteasas DegP y proteasa III. En una realización, la proteína de interés es sensible proteolíticamente a las proteasas DegP y Tsp. En una realización, la proteína de interés es sensible proteolíticamente a las proteasas Tsp y proteasa III. En una realización, la proteína de interés es sensible proteolíticamente a las proteasas DegP, proteasa III y Tsp.

45 Preferiblemente, la proteína es un polipéptido eucariótico.

10

30

35

40

50

55

La proteína de interés expresada por las células de E. coli según la invención pueden ser, por ejemplo, un inmunógeno, una proteína de fusión que comprende dos proteínas heterólogas o un anticuerpo. Los anticuerpos para uso como proteína de interés incluyen anticuerpos monoclonales, multivalentes, multiespecíficos, humanizados, totalmente humanos o quiméricos. El anticuerpo puede ser de cualquier especie, pero deriva preferiblemente de un anticuerpo monoclonal, un anticuerpo humano o un fragmento humanizado. El anticuerpo puede derivar de cualquier clase (p. ej., IgG, IgE, IgM, IgD o IgA) o subclase de molécula de inmunoglobulina y puede obtenerse de cualquier especie, incluyendo por ejemplo ratón, rata, tiburón, conejo, cerdo, hámster, camello, llama, cabra o ser humano. Pueden obtenerse partes del fragmento de anticuerpo a partir de una o más especies, por ejemplo los fragmentos de anticuerpo pueden ser quiméricos. En un ejemplo, las regiones constantes son de una especie y las regiones variables de otra.

El anticuerpo puede ser una molécula de anticuerpo completa que tiene cadenas pesadas y ligeras completas o un fragmento de las mismas, p. ej. VH, VL, VHH, Fab, Fab modificado, Fab', F(ab')2, Fv, fragmento scFv, Fab-Fv o un anticuerpo de especificidad dual, tal como un Fab-dAb, como se describe en el documento PCT/GB2008/003331.

El anticuerpo puede ser específico de cualquier antígeno diana. El antígeno puede ser una proteína asociada a célula, por ejemplo una proteína de superficie celular sobre células tales como células bacterianas, células de levadura, linfocitos T, células endoteliales o células tumorales, o puede ser una proteína soluble. Los antígenos de interés pueden ser también cualquier proteína médicamente relevante tal como aquellas proteínas reguladas positivamente durante enfermedad o infección, por ejemplo receptores y/o sus correspondientes ligandos. Los ejemplos particulares de proteínas de superficie celular incluyen moléculas de adhesión, por ejemplo integrinas tales como integrinas β1, p. ej. VLA-4, E-selectina, P selectina o L selectina, CD2, CD3, CD4, CD5, CD7, CD8, CD11a, CD11b, CD18, CD19, CD20, CD23, CD25, CD33, CD38, CD40, CD40L, CD45, CDW52, CD69, CD134 (OX40), ICOS, BCMP7, CD137, CD27L, CDCP1, CSF1 o receptor de CSF1, DPCR1, DPCR1, dudulina 2, FLJ20584, FLJ40787, HEK2, KIAA0634, KIAA0659, KIAA1246, KIAA1455, LTBP2, LTK, MAL2, MRP2, similar a nectina 2, NKCC1, PTK7, RAIG1, TCAM1, SC6, BCMP101, BCMP84, BCMP11, DTD, antígeno carcinoembrionario (CEA), globulina de grasa de leche humana (HMFG1 y 2), antígenos de MHC de clase I y MHC de clase II, KDR y VEGF y, cuando sea apropiado, receptores de las mismas.

10

15

20

30

40

Los antígenos solubles incluyen interleucinas tales como IL-1, IL-2, IL-3, IL-4, IL-5, IL-6, IL-8, IL-12, IL-13, IL-14, IL-16 o IL-17, tales como IL17A y/o IL17F, antígenos víricos, por ejemplo antígenos de virus respiratorio sincitial o citomegalovirus, inmunoglobulinas tales como IgE, interferones tales como interferón α , interferón β o interferón γ , factor de necrosis tumoral TNF (anteriormente conocido como factor de necrosis tumoral α), factor de necrosis tumoral β , factores estimulantes de colonias tales como as G-CSF o GMCSF y factores de crecimiento derivados de plaquetas tales como PDGF- α y PDGF- β y, cuando sea apropiado, receptores de los mismos. Otros antígenos incluyen antígenos de superficie celular bacteriana, toxinas bacterianas, virus tales como de la gripe, EBV, Hep A, B y C, agente de bioterrorismo, radionucleidos y metales pesados y venenos y toxinas de serpientes y arañas.

En una realización, el anticuerpo puede usarse para alterar funcionalmente la actividad del antígeno de interés. Por ejemplo, el anticuerpo puede neutralizar, antagonizar o agonizar la actividad de dicho antígeno, directa o indirectamente.

En una realización preferida, la proteína de interés expresada por las células de E. coli según la presente invención es un anticuerpo anti-TNF, más preferiblemente un Fab' anti-TNF, como se describe en el documento WO01/094585.

Preferiblemente, la molécula de anticuerpo tiene especificidad por TNF humano (anteriormente conocido como $TNF\alpha$), en el que la cadena ligera comprende la región variable de cadena ligera de SEQ ID NO: 11 y la cadena pesada comprende la región variable de cadena pesada de SEQ ID NO: 12.

Preferiblemente, la molécula de anticuerpo que tiene especificidad por TNF humano es un Fab' y tiene una secuencia de cadena ligera que comprende o consiste en la SEQ ID NO: 13 y una secuencia de cadena pesada que comprende o consiste en la SEQ ID NO: 14.

Los inventores de la presente invención han descubierto sorprendentemente que el rendimiento de Fab puede mejorarse mediante expresión en una o más células de E. coli según la presente invención. Sin desear limitarse por la teoría, el gen DegP mutado usado en las cepas de E. coli de la presente invención que tiene actividad chaperona y actividad proteasa reducida mejora el rendimiento de Fab porque la actividad chaperona de DegP facilita el plegamiento correcto de Fab.

Después de la expresión, los fragmentos de anticuerpo pueden procesarse adicionalmente, por ejemplo por conjugación con otra entidad tal como una molécula efectora.

La expresión molécula efectora como se usa en la presente memoria incluye, por ejemplo, agentes antineoplásicos, fármacos, toxinas (tales como toxinas enzimáticamente activas de origen bacteriano o vegetal y fragmentos de la mismas, p. ej. ricina y fragmentos de la misma), proteínas biológicamente activas, por ejemplo enzimas, otros anticuerpos o fragmentos de anticuerpo, polímeros de origen sintético o natural, ácidos nucleicos y fragmentos de los mismos, p. ej. ADN, ARN y fragmentos de los mismos, radionucleidos, particularmente radioyodo, radioisótopos, metales quelados, nanopartículas y grupos indicadores tales como compuestos fluorescentes o compuestos que puedan detectarse por espectroscopía por RMN o REE. Las moléculas efectoras pueden enlazarse con el anticuerpo o fragmento del mismo mediante cualquier método adecuado, por ejemplo un fragmento de anticuerpo puede modificarse para enlazar al menos una molécula efectora como se describe en los documentos WO05/003171 o WO05/003170. Los documentos WO05/003171 o WO05/003170 describen también moléculas efectoras adecuadas.

55 En una realización, el anticuerpo o fragmento del mismo, tal como un Fab, se PEGila para generar un producto con las propiedades requeridas, por ejemplo similares a los anticuerpos enteros, si se requiere. Por ejemplo, el anticuerpo puede ser un Fab' anti-TNF α PEGilado como se describe en el documento WO01/094585, que tiene

preferiblemente enlazado en uno de los residuos de cisteína en el extremo C-terminal de la cadena pesada un grupo derivado de lisilmaleimida, en el que cada uno de los dos grupos amino del residuo de lisilo tiene ligado covalentemente al mismo un residuo de metoxipoli(etilenglicol) que tiene un peso molecular de aproximadamente 20.000 Da, de tal modo que el peso molecular medio total de los residuos de metoxipoli(etilenglicol) sea de aproximadamente 40.000 Da, más preferiblemente el grupo derivado de lisilmaleimida es [1-[[[2-[[3-(2,5-dioxo-1-pirrolidinil)-1-oxopropil]amino]etil]amino]carbonil]-1,5-pentanodiil]bis(iminocarbonilo).

La célula de E. coli puede comprender también secuencias polinucleotídicas adicionales que codifican una o más proteínas de interés adicionales.

El polinucleótido que codifica la proteína de interés puede expresarse como una fusión con otro polipéptido, preferiblemente una secuencia señal u otro polipéptido que tiene un sitio de escisión específico en el extremo N del polipéptido maduro. La secuencia señal heteróloga seleccionada debería ser una reconocida y procesada por la célula hospedadora de E. coli. Para células hospedadoras de E. coli que no reconocen ni procesan la secuencia señal nativa o de polipéptido eucariótico, se sustituye la secuencia señal por una secuencia señal procariótica. Las secuencias señal adecuadas incluyen OmpA, PhoA, LamB, PelB, DsbA y DsbC.

En una realización, se emplea un módulo de expresión en la presente invención para portar el polinucleótido que codifica la proteína de interés que comprende típicamente una o más secuencias codificantes de proteína que codifican una o más proteínas de interés y una o más secuencias reguladoras de expresión. La una o más secuencias reguladoras de expresión pueden incluir un promotor. La una o más secuencias reguladoras de expresión pueden incluir también una región 3' no traducida tal como una secuencia de terminación. Se discuten promotores adecuados con más detalle a continuación.

En una realización, la célula de E. coli según la presente invención comprende un vector, tal como un plásmido. El vector comprende preferiblemente uno o más módulos de expresión como se definen anteriormente.

El vector para uso en la presente invención puede producirse insertando un módulo de expresión como se define anteriormente en un vector adecuado. Como alternativa, las secuencias reguladoras de expresión para dirigir la expresión de la secuencia polinucleotídica que codifica una proteína de interés pueden estar contenidas en el vector y por tanto puede requerirse solo la región codificante del polinucleótido para completar el vector.

Los ejemplos de vectores que pueden emplearse para transformar la célula hospedadora de E. coli con un polinucleótido según la invención incluyen:

- un plásmido tal como pBR322 o PACYC184, y/o
- un vector vírico tal como un fago bacteriano

25

30

35

40

50

• un elemento genético transponible tal como un transposón.

Están disponibles muchas formas de vector de expresión. Tales vectores comprenden habitualmente un origen de replicación de ADN de plásmido, un marcador seleccionable de antibiótico, un promotor y un terminador transcripcional separados por un sitio de multiclonación (módulo de expresión) y una secuencia de ADN que codifica un sitio de unión a ribosoma.

Los promotores empleados en la presente invención pueden ligarse con el polinucleótido relevante directamente o como alternativa localizarse en una posición apropiada, por ejemplo en un vector tal que, cuando se inserta el polipéptido relevante, el promotor relevante pueda actuar sobre el mismo. En una realización, el promotor se localiza antes de la porción codificante del polinucleótido sobre el que actúa, por ejemplo un promotor relevante antes de cada porción codificante de polinucleótido. "Antes" como se usa en la presente memoria pretende implicar que el promotor está localizado en el extremo 5' con respecto a la porción polinucleotídica codificante.

Los promotores pueden ser endógenos o exógenos de las células hospedadoras de E. coli. Los promotores adecuados incluyen Lac, tac, trp, PhoA, Ipp, Arab, Tet y T7.

Uno o más promotores empleados pueden ser promotores inducibles.

Las unidades de expresión para uso en sistemas bacterianos contienen generalmente también una secuencia ribosómica de Shine-Dalgarno (S. D.) ligada operativamente con el ADN codificante del polipéptido de interés.

En las realizaciones de la presente invención en las que una secuencia polinucleotídica comprende dos o más secuencias codificantes de dos o más proteínas de interés, por ejemplo una cadena ligera de anticuerpo y una cadena pesada de anticuerpo, la secuencia polinucleotídica puede comprender una o más secuencias de sitio interno de entrada al ribosoma (IRES) que permiten la iniciación de la traducción en el medio de un ARNm. Una secuencia de IRES puede estar situada entre secuencias polinucleotídicas codificantes para potenciar la traducción separada del ARNm produciendo las secuencias polipeptídicas codificadas.

Los terminadores pueden ser endógenos o exógenos de las células hospedadoras de E. coli. Es un terminador

adecuado rmB.

25

50

Pueden encontrarse reguladores transcripcionales adecuados adicionales, incluyendo promotores y terminadores y métodos de orientación a proteína, en "Strategies for Achieving High-Level Expression of Genes in Escherichia coli" Savvas C. Makrides, Microbiological Reviews, Septiembre de 1996, pág. 512-538.

- Las realizaciones de la invención descritas en la presente memoria con referencia al polinucleótido se aplican igualmente a realizaciones alternativas de la invención, por ejemplo vectores, módulos de expresión y/o células hospedadoras de E. coli que comprenden los componentes empleados en las mismas, siempre que el aspecto relevante pueda aplicarse a las mismas.
- Según un tercer aspecto de la presente invención, se proporciona un método para producir una proteína de interés recombinante que comprende expresar la proteína de interés recombinante en una célula de E. coli recombinante de la presente invención.
 - La célula de E. coli y proteína de interés empleadas preferiblemente en el método de la presente invención se describen con detalle anteriormente.
- Cuando el polinucleótido codificante de la proteína de interés es exógena, el polinucleótido puede incorporarse a la célula hospedadora de E. coli usando cualquier medio adecuado conocido en la materia. Típicamente, el polinucleótido se incorpora como parte de un vector de expresión que se transforma en la célula de E. coli. Por consiguiente, en un aspecto la célula de E. coli según la presente invención comprende un módulo de expresión que comprende el polinucleótido codificante de la proteína de interés.
- La secuencia polinucleotídica puede transformarse en una célula usando técnicas estándares, por ejemplo empleado cloruro de rubidio, PEG o electroporación.
 - El método según la presente invención puede emplear también un sistema de selección para facilitar la selección de células de E. coli estables que se han transformado exitosamente con el polinucleótido codificante de la proteína de interés. El sistema de selección emplea típicamente la cotransformación de una secuencia polinucleotídica codificante de un marcador de selección. En una realización, cada polinucleótido transformado en la célula de E. coli comprende además una secuencia polinucleotídica que codifica uno o más marcadores de selección. Por consiguiente, la transformación de polinucleótido que codifica la proteína de interés y el uno o más polinucleótidos que codifican el marcador ocurre conjuntamente y el sistema de selección puede emplearse para seleccionar aquellas células de E. coli que producen las proteínas deseadas.
- Las células capaces de expresar el uno o más marcadores son capaces de sobrevivir/crecer/multiplicarse en ciertas condiciones impuestas artificialmente, por ejemplo la adición de una toxina o antibiótico, debido a las propiedades dotadas por el componente polipeptídico/génico o polipeptídico del sistema de selección incorporado a las mismas (p. ej., resistencia a antibiótico). Aquellas células que no pueden expresar el uno o más marcadores no son capaces de sobrevivir/crecer/multiplicarse en las condiciones impuestas artificialmente. Las condiciones impuestas artificialmente pueden elegirse para ser más o menos rigurosas, según se requiera.
- Puede emplearse cualquier sistema de selección adecuado en la presente invención. Típicamente, el sistema de selección puede estar basado en la inclusión en el vector de uno o más genes que proporcionen resistencia a un antibiótico conocido, por ejemplo un gen de resistencia a tetraciclina, cloranfenicol, kanamcina o ampicilina. Pueden seleccionarse las células de E. coli que crecen en presencia de un antibiótico relevante, ya que expresan tanto el gen que da resistencia al antibiótico como la proteína deseada.
- 40 En una realización, el método según la presente invención comprende además la etapa de cultivar la célula de E. coli transformada en un medio para expresar así la proteína de interés.
 - Puede usarse un sistema de expresión inducible o un promotor constitutivo en la presente invención para expresar la proteína de interés. Los sistemas de expresión inducibles y promotores constitutivos son bien conocidos en la materia.
- Puede usarse cualquier medio adecuado para cultivar la célula de E. coli transformada. El medio puede adaptarse para un sistema de selección específico, por ejemplo el medio puede comprender un antibiótico para permitir que solo aquellas células de E. coli que se hayan transformado exitosamente crezcan en el medio.
 - Las células de E. coli obtenidas a partir del medio pueden someterse a cribado y/o purificación adicional según se requiera. El método puede comprender además una o más etapas para extraer y purificar la proteína de interés según se requiera.
 - El polipéptido puede recuperarse de la cepa, incluyendo del citoplasma, periplasma o medio de cultivo.
 - El método o métodos específicos usados para purificar una proteína dependen del tipo de proteína. Los métodos adecuados incluyen fraccionamiento en columnas de inmunoafinidad o intercambio iónico; precipitación con etanol; HPLC en fase inversa; cromatografía de interacción hidrófoba; cromatografía en sílice; cromatografía en una resina

de intercambio iónico tal como S-SEPHAROSE y DEAE; cromatoenfoque; precipitación con sulfato de amonio y filtración en gel.

Los anticuerpos pueden separarse adecuadamente del medio de cultivo y/o extracto de citoplasma y/o extracto de periplasma mediante procedimientos de purificación de anticuerpo convencionales tales como, por ejemplo, proteína A-Sepharose, cromatografía de proteína G, cromatografía de proteína L, resinas en modo mixto tiofílicas, marcaje His, marcaje FLAG, cromatografía de hidroxiapatito, electroforesis en gel, diálisis, cromatografía de afinidad, fraccionamiento/precipitación con sulfato de amonio, etanol o PEG, membranas de intercambio iónico, cromatografía de adsorción de lecho expandido (EBA) o cromatografía de lecho móvil simulado.

El método puede incluir también una etapa adicional de medida de la cantidad de expresión de la proteína de interés y selección de las células de E. coli que tienen altos niveles de expresión de la proteína de interés.

Pueden efectuarse una o más etapas de método descritas en la presente memoria en combinación en un recipiente adecuado tal como un biorreactor.

Ejemplos

Ejemplo 1 – Generación de cepas de células de E. coli mutantes

15 La cepa de célula hospedadora usada era W3110 de genotipo: F- LAM-IN (rrnD-rrnE)1 rph1 (ATCC nº 27325).

W3110A, como se muestra en las figuras, es un lote diferente de W3110.

Se generaron las siguientes cepas de células de *E. coli* mutantes usando un sistema de vector de reemplazo génico que usa el plásmido de recombinación/reemplazo homólogo pKO3 (Link et al., 1997, Journal of Bacteriology, 179, 6228-6237).

Cepa de célula de E. coli mutante	Genotipo
MXE001	ΔTsp
MXE004	∆Tsp, ∆proteasa III
MXE005	∆Tsp, DegP S210A

20

40

10

Se depositó la cepa MXE001 el 21 de mayo de 2009 en la National Collection of Type Cultures, HPA, Reino Unido, con número de acceso NCTC13444.

Se depositó la cepa MXE004 el 21 de mayo de 2009 en la National Collection of Type Cultures, HPA, Reino Unido, con número de acceso NCTC13447.

25 Se depositó la cepa MXE005 el 21 de mayo de 2009 en la National Collection of Type Cultures, HPA, Reino Unido, con número de acceso NCTC13448.

Se desplazaron los módulos de integración de Tsp, proteasa III y DegP como fragmentos de restricción de Sal I, Not I a plásmidos pKO3 de restricción similar.

El plásmido usa el mutante sensible a la temperatura del origen de replicación de pSC101 (*RepA*) junto con un marcador de cloranfenicol para forzar y seleccionar eventos de integración cromosómica. El gen *sacB* que codifica levansucrasa es letal para *E. coli* crecida en sacarosa y, por ello se usa (junto con el marcador de cloranfenicol y el origen de pSC101) para forzar y seleccionar eventos de desintegración y curación de plásmido. Esta metodología se ha descrito anteriormente (Hamilton et al., 1989, Journal of Bacteriology, 171, 4617-4622 y Blomfield et al., 1991, Molecular Microbiology, 5, 1447-1457). El sistema pKO3 retira todos los marcadores selectivos del genoma hospedador excepto del gen insertado.

Se construyeron los siguientes plásmidos.

pMXE191 que comprende el gen Tsp mutado por desactivación génica como se muestra en la SEQ ID NO: 3 que comprende los marcadores de restricción *EcoR I* y *Ase I*.

pMXE192 que comprende el gen de proteasa III mutado por desactivación génica como se muestra en la SEQ ID NO: 6 que comprende los marcadores de restricción *EcoR I* y *Ase I*.

pMXE192 que comprende el gen DegP mutado como se muestra en la SEQ ID NO: 9 que comprende un Ase I.

Se transformaron entonces estos plásmidos en células W3110 de *E. coli* químicamente competentes preparadas usando el método encontrado en Chung CT et al. "Transformation and storage of bacterial cells in the same

solution". PNAS 86: 2172-2175 (1989).

10

15

20

25

30

- **Día 1.** Se mezclaron 40 μl de células de *E.coli* con 1 μl (10 pg) de ADN de pKO3 en una cubeta de electroporación BioRad enfriada de 0,2 cm antes de electroporación a 2500 V, 25 μF y 200 Ω . Se añadieron 1000 μl de 2xPY inmediatamente y se recuperaron las células por agitación a 250 rpm en una incubadora a 30 °C durante 1 hora. Se diluyeron las células en serie 1/10 en 2xPY antes de sembrar alícuotas de 100 μl sobre placas de agar 2xPY que contenía cloranfenicol 20 μg/ml precalentadas a 30 °C y 43 °C. Se incubaron las placas durante una noche a 30 °C y 43 °C.
- **Día 2.** El número de colonias crecidas a 30 °C daba una estimación de la eficacia de electroporación, mientras que las colonias que sobreviven al crecimiento a 43 °C representan eventos de integración potenciales. Se eligieron colonias individuales de la placa de 43 °C y se resuspendieron en 10 ml de 2xPY. Se sembraron 100 µl de esto en placas de agar 2xPY que contenían sacarosa al 5 % (p/v) precalentadas a 30 °C para generar colonias individuales. Se incubaron las placas durante una noche a 30 °C.
- **Día 3.** Las colonias representan aquí eventos de desintegración y curación de plásmido simultáneos potenciales. Si los eventos de desintegración y curación sucedían tempranamente en el crecimiento, entonces el grueso de la masa de colonias será clonal. Se eligieron colonias individuales y se sembraron por duplicado en agar 2xPY que contenía cloranfenicol 20 µg/ml o sacarosa al 5 % (p/v). Se incubaron las placas durante una noche a 30 °C.
 - **Día 4.** Las colonias que tanto crecen en sacarosa como mueren en cloranfenicol representan eventos de reemplazo cromosómico y de curación de plásmido potenciales. Se eligieron estas y se cribaron por PCR con un oligonucleótido específico de mutación. Las colonias que generaron una banda de PCR positiva del tamaño correcto se recortaron para producir colonias individuales en agar 2xPY que contenía sacarosa al 5 % (p/v) y se incubaron las placas durante una noche a 30 °C.
 - **Día 5.** Se usaron colonias individuales de *E.* coli positivas de PCR, sensibles a cloranfenicol y resistentes a sacarosa para elaborar células químicamente competentes en soluciones madre de glicerol, y actúan como moldes de PCR para una reacción PCR con oligos flanqueantes 5' y 3' para generar un producto de PCR para secuenciación de ADN directa usando polimerasa Taq.

Se ensayaron las cepas celulares MXE001, MXE004 y MXE005 para confirmar la modificación exitosa de ADN genómico portador de uno o más genes de proteasa mutados por amplificación por PCR de la región de cada gen de proteasa mutada que comprende un sitio de restricción Ase I de origen no natural, como se muestra en las Figuras 1a, 1b y 1c, usando cebadores oligonucleotídicos. Se analizaron entonces las regiones amplificadas del ADN por electroforesis en gel antes y después de incubación con enzima de restricción Ase I para confirmar la presencia del sitio de restricción Ase I de origen no natural en los genes mutados. Se llevó a cabo el método como sigue:

Se usaron los siguientes oligos para amplificar, usando PCR, ADN genómico de lisados de células de *E. coli* preparadas a partir de MXE001, MXE004, MXE005 y W3110:

6284 Tsp 3'	5'-GCATCATAATTTTCTTTTTACCTC-3' (SEQ ID NO: 15)
6283 Tsp 5'	5'-GGGAAATGAACCTGAGCAAAACGC-3' (SEQ ID 16) NO:
6362 Protease III 3'	5'-GTGCCAGGAGATGCAGCAGCTTGC-3' (SEQ ID NO 17)
6361 Protease III 5'	5'-TTTGCAGCCAGTCAGAAAGTG-3' (SEQ ID NO: 18)
6282 DegP 5'	5'-CTGCCTGCGATTTTCGCCGGAACG-3' (SEQ ID NO 19)
6281 DegP 3'	5'-CGCATGGTACGTGCCACGATATCC-3' (SEQ ID NO 20)

35 Se prepararon los lisados calentando una colonia individual de células durante 10 minutos a 95 °C en 20 µl de tampón 1x PCR. Se dejó enfriar la mezcla a temperatura ambiente y entonces centrifugación a 13.200 rpm durante 10 minutos. Se retiró el sobrenadante y se marcó como "lisado celular".

Se amplificó cada cepa usando cada par de oligos par de Tsp, par de proteasa III y par de DegP.

Se amplificó el ADN usando un procedimiento de PCR estándar.

```
40 5 ul tampón x10 (Roche)

1 ul mezcla de dNTP (Roche, mezcla 10 mM)

1,5 ul oligo 5' (5 pmol)

1,5 ul oligo 3' (5 pmol)
```

lisado celular

2 ul

0,5 ul ADN polimerasa Taq (Roche 5U/ul)

38,5 ul H2O

Ciclo de PCR

94 °C 1 minuto

94 °C 1 minuto)

55 °C 1 minuto) repetido durante 30 ciclos

72 °C 1 minuto)

15

72 °C 10 minutos

Una vez se completaron las reacciones, se retiraron 25 ul a un tubo de microcentrífuga nuevo para digestión con Ase I. Se añadieron a los 25 ul de reacción PCR 19 ul de H2O, 5 ul de tampón 3 (NEB), 1 ul de Ase I (NEB), se mezcló y se incubó a 37 °C durante 2 horas.

Se añadieron a la reacción PCR restante 5 ul de tampón de carga (x6) y se cargaron 20 ul en 200 ml de gel de agarosa con TAE al 0,8 % (Invitrogen) más bromuro de etidio (5 ul de solución madre de 10 mg/ml) y se ejecutó a 110 voltios durante 1 hora. Se cargaron 10 ul de marcador de tamaño (marcador de ADN Perfect de 0,1-12 Kb, Novagen) en el carril final.

Una vez se completaron las digestiones con Ase I, se añadieron 10 ul de tampón de carga (x6) y se cargaron 20 ul en gel de agarosa con TAE al 0,8 % (Invitrogen) más bromuro de etidio (5 ul de solución madre 10 mg/ml) y se ejecutó a 100 voltios durante 1 hora. Se cargaron 10 ul de marcador de tamaño (marcador de ADN Perfect de 0,1-12 Kb, Novagen) en el carril final.

20 Se visualizaron ambos geles usando un transiluminador de UV.

Todos los fragmentos genómicos amplificados mostraron la banda de tamaño correcto de 2,8 kb para Tsp, 1,8 kb para proteasa III y 2,2 kb para DegP.

Después de digestión con Ase I, esto confirmó la presencia de sitios Ase I introducidos en las cepas deficientes de proteasa pero no en el control de W3110.

25 MXE001: Se amplificó ADN genómico usando el conjunto de cebadores de Tsp y se digirió el ADN resultante con Ase I, produciendo bandas de 2,2 y 0,6 kpb.

MXE004: Se amplificó ADN genómico usando el conjunto de cebadores de Tsp y el conjunto de cebadores de proteasa III y se digirió el ADN resultante con Ase I, produciendo bandas de 2,2 y 0,6 kpb (fragmentos de Tsp) y bandas de 1,0 y 0,8 kbp (fragmentos de proteasa III).

MXE005: Se amplificó ADN genómico usando el conjunto de cebadores de Tsp y el conjunto de cebadores de DegP y se digirió el ADN resultante con Ase I, produciendo bandas de 2,2 y 0,6 kpb (fragmentos de Tsp) y bandas de 1,25 y 0,95 kpb (fragmentos de DegP).

El ADN amplificado por PCR de W3110 no se digirió con la enzima de restricción Ase I.

- Se construyó el plásmido pMXE117 (pTTO CDP870 o 40.4), un vector de expresión de Fab' CDP870 (un Fab' antiTNF), usando metodologías de clonación de restricción convencionales que pueden encontrarse en Sambrook et al 1989, "Molecular cloning: a laboratory manual". CSHL press, N.Y. El plásmido pMXE1 17 (pTTO CDP870 o 40.4) contenía los siguientes rasgos: un promotor *tac* fuerte y una secuencia operadora *lac*. Se transcribieron los genes de cadena ligera y pesada de Fab en forma de un mensaje dicistrónico individual. Se fusionó el ADN codificante del péptido señal de la proteína OmpA de *E. coli* con el extremo 5' de ambas secuencias génicas de cadena ligera y pesada, que dirigían la translocación de los polipéptidos al periplasma de *E. coli*. Se terminó la transcripción usando un terminador de transcripción dual *rrnB tlt2*. El gen *laclq* codificaba la proteína represora Lac I expresada constitutivamente. Esta transcripción reprimida del promotor tac hasta desrrepresión se indujo por la presencia de alolactosa o IPTG. El origen de replicación usado era p15A, que mantenía un bajo número de copias. El plásmido contenía un gen de resistencia a tetraciclina para selección de antibiótico.
- 45 Se transformó entonces pMXE117 en células deficientes en proteasas químicamente competentes (cepas MXE001, MXE004 y MXE005) y células W3110 preparadas usando el método encontrado en Chung C.T et al. "Transformation and storage of bacterial cells in the same solution". PNAS 86: 2172-2175 (1989).

Ejemplo 2- Expresión de un Fab anti-TNF α en cepas de *E. coli* mutadas usando cultivos de matraz agitado

Se ensayaron las cepas MXE001, MXE004 y MXE005 en un experimento de matraz agitado que compara el

crecimiento y la expresión de un Fab' anti-TNF α contra W3110.

Se efectuó el protocolo experimental de matraz agitado usado como sigue:

Preparación de células adaptadas a medio definido.

Se eligió una colonia individual en 5 ml de caldo 2xPY (1 % de Phytone, Difco, 0,5 % de extracto de levadura, Difco, 0,5 % de NaCl) más tetraciclina (Sigma) a 10 ug/ml y se dejó crecer durante una noche a 37 °C con agitación a 250 rpm. Se usaron 100 ul de este cultivo de una noche para inocular 200 ml de medio SM6E químicamente definido (descrito en Humphreys et al., 2002, Protein Expression and Purification, 26, 309-320) más tetraciclina 10 ug/ml, crecido durante una noche a 30 °C con agitación a 250 rpm. Se usaron 100 ul de este segundo cultivo de una noche para inocular un segundo matraz de medio SM6E de 200 ml más tetraciclina 10 ug/ml. Se dejó crecer este hasta que el cultivo alcanzó una DO600 de aproximadamente 2. Se centrifugaron los cultivos brevemente para recoger células antes de resuspender en 100 ml de SM6E. Se añadió glicerol a una concentración final del 12,5 % antes de almacenar alícuotas de "células adaptadas" a -80 °C.

Experimento de matraz de cultivo de 200 ml

Se iniciaron cultivos de matraz agitado mediante la adición de una alícuota de 2 ml de medio definido descongelado de "células adaptadas" a 200 ml de medio SM6E más tetraciclina 10 ug/ml. Se dejaron crecer estos durante una noche a 30 °C con agitación a 250 rpm. Cada cepa que se ensaya se dejó crecer por triplicado.

Se indujo en cultivos crecidos hasta DO600 de 2,0 la producción de proteína heteróloga mediante la adición de IPTG 200 uM. Se tomaron muestras de cultivo de 1 ml a 1 h, 2 h, 4 h, 6 h, 12 h y 24 h y, después de centrifugación a 13.200 rpm durante 5 minutos, se resuspendió el sedimento celular en 200 ul de tampón de extracción periplásmica (Tris·Cl 100 mM/EDTA 10 mM pH 7,4). Se agitaron los extractos periplásmicos a 250 rpm durante una noche a 30 °C. El día siguiente, se centrifugaron los extractos durante 10 minutos a 13.200 rpm, se decantó el sobrenadante y se almacenó a -20 °C como "extracto periplásmico". Se desechó el sedimento de células gastadas.

Cuantificación de ELISA

10

15

20

50

- Se recubrieron placas ELISA de 96 pocillos durante una noche a 4 °C con AB141 (CH1 de conejo anti-humano, UCB) a 2 μgml⁻¹ en PBS. Después de lavar 3x con 300 ul de tampón de muestra/conjugado (PBS, BSA al 0,2 % (p/v), Tween 20 al 0,1 % (v/v)), se efectuaron diluciones en serie 1/2 de muestras y patrones en la placa en 100 μl de tampón de muestra/conjugado y se agitó la placa a 250 rpm a temperatura ambiente durante 1 hora. Después de lavar 3x con 300 ul de tampón de lavado (PBS, 0,1 % de Tween 20 (v/v)), se añadieron 100 μl del anticuerpo de revelado 6062 (kappa de conejo anti-humano, conjugado con HRP, The Binding Site, Birmingham, RU) después de dilución a 1/1000 en tampón de muestra/conjugado. Se agitó entonces la placa a 250 rpm a temperatura ambiente durante 1 hora. Después de lavar con 3x 300 ul de tampón de lavado, se añadieron 100 μl de sustrato TMB (mezcla 50:50 de solución de TMB (Calbiochem):H₂Od) y se registró la A₆₃₀ usando un lector de placas automatizado. Se calculó la concentración de Fab' en los extractos periplásmicos por comparación con patrones de Fab' purificados del isotipo apropiado.
- La Figura 2 muestra el crecimiento de MXE005 y MXE001 en comparación con W3110 de tipo silvestre. La Figura 3 muestra la expresión mejorada de Fab' de las cepas MXE005 y MXE001 en comparación con W3110 de tipo silvestre.
 - La Figura 4 muestra el crecimiento de MXE004 y W3110 y la Figura 5 muestra la expresión de Fab' en MXE004 y W3110, donde puede verse que la expresión de MXE004 era mayor que de W3110.
- 40 Ejemplo 3 Expresión de un Fab de ratón anti-mIL13 en cepas de *E. coli* mutadas usando cultivos de matraz agitado
 - Se transformaron las cepas MXE001, MXE004, MXE005 y células W3110 de tipo silvestre con el plásmido pMKC006 que expresa un Fab' anti-mlL13 murinizado y se ensayaron usando el mismo método de matraz agitado descrito en el Ejemplo 2, excepto que el experimento se detuvo después de 6 horas en lugar de 24 horas.
- La Figura 6 muestra la expresión de un Fab de ratón anti-mIL-13 en MXE001, MXE004, MXE005 y W3110, donde puede verse que MXE001, MXE004 y MXE005 muestran mayor expresión de Fab en comparación con W3110.
 - Ejemplo 4- Análisis de la expresión de cadena ligera y pesada a partir de cepas de E. coli mutadas
 - Se transformaron extractos periplásmicos de la cepa MXE005 y células W3110 de tipo silvestre con el plásmido pMXE117, del experimento de matraz agitado descrito en el Ejemplo 2, y se ensayaron usando un ensayo de unión de resonancia de plasmón de superficie efectuado usando un instrumento BIAcore™ 2000 (Pharmacia Biosensor AB, Uppsala, Suecia). Se inmovilizó el Fab' anti-TNF sobre chips sensores CM5 usando química de NHS/EDC estándar. Se inactivaron los ésteres de NHS residuales con hidrocloruro de etanolamina (1 M).

Se capturaron los fragmentos Fab' por un anticuerpo monoclonal inmovilizado anti-cadena pesada o monoclonal

inmovilizado anti-cadena ligera en celdas de flujo separadas. Se reveló la presencia del Fab' unido por unión del anticuerpo monoclonal complementario (anti-cadena ligera o anti-cadena pesada) en una segunda etapa. Los altos niveles de anticuerpo inmovilizado aseguran que las medidas se efectúan en condiciones de transporte de masa limitado, en que la contribución de la constante de la velocidad de asociación a la unión es baja en comparación con la contribución realizada por la concentración de Fab' en la muestra. El anticuerpo monoclonal en fase de disolución usado en la segunda etapa se pasa sobre la superficie a una alta concentración, de modo que la unión no está limitada por la constante de velocidad de asociación de esta interacción.

Los fragmentos de Fab' ensamblados y cadenas no ensambladas correctamente plegadas se detectan ambos durante la primera etapa de captura. La unión del segundo anticuerpo es solo con un fragmento de Fab' intacto. Por lo tanto, el análisis de la unión relativa en el primer y segundo pasos revela la presencia de cadena ligera no ensamblada en exceso o bien cadena pesada no ensamblada en exceso en la muestra de Fab' y proporciona información sobre la estequiometría del ensamblaje.

Se efectuaron los ensayos en ambas configuraciones para cada muestra, y se ejecutó cada muestra por duplicado y en orden aleatorio.

- (i) Cuando tenía que determinarse la concentración de Fab' ensamblado por captura de cadena ligera, se inyectaron muestras y patrones (a 10 gl/min) sobre HP6053 inmovilizado, seguido de una segunda etapa en que se pasaba HP6045 a 300 Rg/ml sobre la superficie en fase de disolución.
- (ii) Cuando tenía que determinarse la concentración de Fab' ensamblado por captura de cadena pesada, se inyectaron muestras y patrones (10t a tOjuVmin) sobre HP6045 inmovilizado, seguido de una segunda etapa en que se pasaba HP6053 a 5001lug/ml sobre la superficie en fase de disolución. En ambos casos, se regeneró la superficie con 10 gi of 30mM de HCl 30 mM a 30 l/min.

Se leyó el número de unidades de resonancia determinado usando BIAevaluation 3.1 (Pharmacia Biosensor AB) frente a una curva patrón.

La Figura 7 muestra la expresión de cadena ligera (cadena L), cadena pesada (cadena H) y Fab durante el transcurso de una tanda de fermentación, donde se muestra una mayor expresión de cadena ligera, cadena pesada y Fab' a partir de MXE001 después de 2 horas, 4 horas y 6 horas en comparación con W3110. La Figura 7 muestra una mayor expresión de cadena ligera después de 6 horas a partir de MXE005 en comparación con W3110 y una mayor expresión de Fab' a partir de MXE005 después de 2 horas, 4 horas y 6 horas en comparación con W3100.

Ejemplo 5 – Análisis de la actividad de proteólisis de cepas de E. coli mutadas para Fab'

10

35

40

45

50

30 Se ensayaron extractos periplásmicos de las cepas MXE001, MXE005 y células W3110 de tipo silvestre transformadas con plásmido pMXE117 del experimento de matraz agitado del ejemplo 2 en un análisis de transferencia Western que compara la proteólisis de un Fab' anti-TNFa como sigue:

Se calentaron a 85 °C durante 5 minutos 12 ul de cada extracto periplásmico más 4 ul de tampón de carga de PAGE-SDS (Invitrogen), se dejaron enfriar a 25 °C y se centrifugaron entonces brevemente antes de cargar en un gel Bis-Tris al 4-12 % de NuPAGE (Invitrogen) preparado anteriormente. Se usaron marcadores de tamaño SeeBlue 2 (Invitrogen) para la estimación del peso molecular. Se sometió a electroforesis el gel durante 1 hora a 150 V antes de transferencia de proteínas sobre membrana de PVDF prehumedecida (Invitrogen) usando inmunotransferencia a 150 mA durante 2 horas. Se bloqueó la membrana durante 1 h en "tampón de bloqueo" (PBS, 3 % (p/v) de leche en polvo, 0,1 % (v/v) de Tween 20 (Sigma)) con agitación suave. Se aplicó un Fab' policional de conejo anti-humano (UCB) a una dilución de 1 a 1000 en 5 ml de tampón de bloqueo y se incubó a temperatura ambiente durante 1 hora con agitación suave. Se lavó la membrana tres veces durante 5 min cada vez con agitación suave con tampón de bloqueo. Se aplicó un anticuerpo secundario (IgG de burro anti-conejo conjugado con HRP (Jackson)) a una dilución de 1 a 5000 en tampón de bloqueo con incubación a temperatura ambiente durante 1 hora con agitación suave. Se lavó la membrana cuatro veces durante 5 minutos cada vez con agitación en primer lugar con tampón de bloqueo seguido de PBS, 0,1 % de Tween, durante dos lavados y entonces PBS para el lavado final. Se visualizó la transferencia usando sustrato Metal Enhanced Dab (Thermo Scientific).

La Figura 8 muestra los resultados del análisis de transferencia Western en que W= W3110, 1= MXE001 (Δ Tsp) y 5= MXE005 (Δ Tsp, DegP S210A). Se cree que la fragmentación alrededor de 14 kDa representa fragmentos proteolíticos de la cadena ligera del Fab' expresado. Puede verse que MXE001 y MXE005 tienen menos productos proteolizados en comparación con W3110 de tipo silvestre alrededor de la marca de 14 kDa. Sin limitarse por la teoría, este dato sugiere que el Fab' anti-TNF α es susceptible de proteólisis por Tsp y DegP.

Ejemplo 6- Crecimiento de cepas de *E. coli* mutadas y expresión de Fab' en cepas de *E. coli* mutadas usando fermentaciones de alta densidad.

La cepa MXE005 y las células W3110 de tipo silvestre transformadas con plásmido pMXE117 se ensayaron en experimentos de fermentación que comparan crecimiento y expresión de un Fab' anti-TNFa.

Medio de crecimiento.

5

10

15

25

35

El medio de crecimiento de fermentación estaba basado en medio SM6E (descrito en Humphreys et al., 2002, "Protein Expression and Purification", 26, 309-320) con 3,86 g/l de NaH₂PO₄·H₂O y glicerol 112 g/l.

Inóculo. Se dejaron crecer los cultivos de inóculo en el mismo medio suplementado con tetraciclina 10 μg/ml. Se incubaron los cultivos a 30 °C con agitación durante aproximadamente 22 horas.

Fermentación. Se sembraron fermentadores (2,5 litros de volumen final) con cultivo de inóculo a DO $_{600}$ de 0,3-0,5. Se mantuvo la temperatura a 30 °C durante la fase de crecimiento y se redujo a 25 °C antes de la inducción. Se mantuvo la concentración de oxígeno disuelto por encima de 30 % de saturación del aire por agitación variable y flujo de aire. Se controló el pH de cultivo a 7,0 por titulación automática con NH $_4$ OH al 15 % (v/v) y H $_2$ SO $_4$ con. al 10 % (v/v). Se controló la espumación mediante la adición de una solución Struktol J673 al 10 % (v/v) (Schill y Seilacher).

Se realizaron una serie de adiciones en diferentes pasos de la fermentación. Cuando la concentración de biomasa alcanzó aproximadamente una DO₆₀₀ de 40, se añadieron sales de magnesio y NaH₂PO₄·H₂O. Se realizaron adiciones adicionales de NaH₂PO₄·H₂O antes y durante la fase de inducción para asegurar que el fosfato se mantenía en exceso. Cuando el glicerol presente al inicio de la fermentación se agotó (DO₆₀₀ de aproximadamente 75), se aplicó una alimentación continua de glicerol al 80 % (p/p). En el mismo punto de la fermentación, se aplicó una alimentación de IPTG 170 μM. Se tomó el inicio de la alimentación de IPTG como el inicio de la inducción. Se ejecutaron las fermentaciones típicamente durante 70-73 horas a las tasas de alimentación de glicerol menores (0,5-2,5 ml/h) y 50-60 h a las tasas de alimentación de glicerol mayores (5,4-10,9 ml/h).

Medida de la concentración de biomasa y tasa de crecimiento. Se determinó la concentración de biomasa midiendo la densidad óptica de cultivos a 600 nm.

Extracción periplásmica. Se recogieron células de muestras de cultivo por centrifugación. Se retuvo la fracción sobrenadante (a -20 °C) para análisis adicional. Se resuspendió la fracción de sedimento celular al volumen de cultivo original en tampón de extracción (Tris-HCl 100 mM, EDTA 10 mM; pH 7,4). Después de incubación a 60 °C durante aproximadamente 16 horas, se clarificó el extracto por centrifugación y se retuvo la fracción sobrenadante (a -20 °C) para análisis.

Cuantificación de Fab'. Se determinaron las concentraciones de Fab' en extractos periplásmicos y sobrenadantes de cultivo por ELISA de ensamblaje de Fab' como se describe en Humphreys et al., 2002, Protein Expression and Purification, 26, 309-320.

La Figura 9 muestra el perfil de crecimiento de MXE001 en comparación con W3110 de control, que muestra que los perfiles de control son sustancialmente los mismos durante aproximadamente 35 horas.

La Figura 10 muestra el rendimiento de Fab de sobrenadante (líneas de puntos) y periplasma (líneas continuas) de la cepa de *E. coli* MXE001 en comparación con W3110 de control. La cepa MXE001 muestra mayor expresión de Fab' periplásmica hasta aproximadamente 30 horas y una expresión de Fab' en sobrenadante significativamente superior durante todo el periodo de fermentación.

La Figura 11 muestra el rendimiento de Fab' total de sobrenadante y periplasma de la cepa de *E. coli* MXE001 en comparación con W3110 de control, donde puede verse que la cepa MXE005 producía mayor rendimiento de Fab' en comparación con W3110 de control.

La Figura 12 muestra la tasa de producción específica de Fab' de la cepa de *E. coli* MXE001 en comparación con W3110 de control, donde puede verse que MXE001 tiene una tasa de producción específica significativamente mayor en comparación con W3110.

La Figura 13 muestra el perfil de crecimiento de MXE004 y MXE005 en comparación con W3110 de control. Los perfiles de crecimiento de MXE004 y MXE005 son más rápidos durante el periodo inicial de aproximadamente 35 horas en comparación con W3110 de control.

La Figura 14 muestra los rendimientos de Fab' de sobrenadante (líneas de puntos) y periplasma (líneas continuas) de las cepas de *E. coli* MXE004, MXE005 y control W3110. La cepa MXE005 muestra mayor rendimiento de Fab' de periplasma durante aproximadamente 28 horas en comparación con el control y un rendimiento de Fab' de sobrenadante significativamente mayor en comparación con el control durante todo el periodo de fermentación. La cepa MXE004 muestra mayor rendimiento de Fab' de periplasma durante aproximadamente 20 horas en comparación con el control y un rendimiento de Fab' de sobrenadante significativamente mayor en comparación con el control durante todo el periodo de fermentación.

La Figura 15 muestra el rendimiento de Fab' de sobrenadante y periplasma de las cepas de *E. coli* MXE004 y MXE005, donde puede verse claramente que las cepas MXE004 y MXE005 producían un rendimiento significativamente mayor en comparación con el control.

La Figura 16 muestra la tasa de producción específica de las cepas de *E. coli* MXE004 y MXE005 y el control W3110, donde puede verse que MXE004 y MXE005 tienen una tasa de producción específica significativamente mayor en comparación con W3110.

Ejemplo 7- Crecimiento de las cepas de *E. coli* mutadas MXE001, MXE004 y MXE005 en comparación con W3110 y cepas de *E. coli* altamente mutadas en experimentos de matraz agitado

Se analizaron las siguientes cepas en un experimento de matraz agitado para valorar la tasa de crecimiento::

Cepas de E. coli mutadas MXE001, MXE004 y MXE005 derivadas de W3110 (Ejemplo 1)

Cepa de E. coli de tipo silvestre W3110

SURE (Stratagene) que tiene el genotipo: endA1 glnV44 thi-1 gyrA96 relA1 lac recB recJ sbcC umuC::Tn5 uvrC e14-Δ(mcrCB-hsdSMR-mrr)171 F'[proAB+ lacIq lacZΔM15 Tn10]

STBL3 (Invitrogen) que tiene el genotipo: F- glnV44 recA13 mcrB mrr hsdS20(rB-, mB-) ara-14 galK2 lacY1 proA2 rpsL20 xyl-5 leu mtl-1

TOP10 (Invitrogen) que tiene el genotipo: F- mcrA Δ (mrr-hsdRMS-mcrBC) ϕ 80lacZ Δ M15 Δ lacX74 nupG recA1 araD139 Δ (ara-leu)7697 galE15 galK16 rpsL(StrR) endA1 λ -

15 y

20

XL1-Blue (Stratagene) que tiene el genotipo endA1 gyrA96(nal^R) thi-1 recA1 relA1 lac glnV44 F'[::Tn10proAB+ lacl^q Δ (lacZ)M15] hsdR17(r_K ^{-m} $_K$ ⁺)

Se eligió una única colonia en 5 ml de caldo LB (10 g de Tryptone, 5 g de extracto de levadura, 10 g de NaCl por litro) y se dejó crecer durante una noche a 37 °C con agitación a 250 rpm. Se usó el cultivo de una noche para inocular 75 ml de caldo LB a una DO660 de 0,1 (n= 2). Se dejaron crecer los cultivos a 37 °C con agitación a 250 rpm, se retiraron muestras de 0,2 ml cada hora y se registró la DO600. Se representó entonces la DO600 frente al tiempo en horas y se muestran los resultados en la Figura 17. Puede verse por la Figura 17 que las cepas de *E. coli* fuertemente mutadas tienen una menor tasa de crecimiento en comparación con MXE001, MXE004, MXE005 y W3110.

25 Listado de secuencias

- <110> UCB PHARMA S.A.
- <120> CEPA HOSPEDADORA BACTERIANA
- <130> G0091
- <160> 20
- 30 <170> PatentIn versión 3.5
 - <210> 1
 - <211> 2049
 - <212> ADN
 - <213> E. coli
- 35 <400> 1

atgaacatgt	tttttaggct	taccgcgtta	gctggcctgc	ttgcaatagc	aggccagacc	60
ttcgctgtag	aagatatcac	gcgtgctgat	caaattccgg	tattaaagga	agagacgcag	120
catgcgacgg	taagtgagcg	cgtaacgtcg	cgcttcaccc	gttctcatta	tcgccagttc	180
gacctcgatc	aggcattttc	ggccaaaatc	tttgaccgct	acctgaatct	gctcgattac	240
agccacaacg	tgctgctggc	aagcgatgtt	gaacagttcg	cgaaaaagaa	aaccgagtta	300
ggcgatgaac	tgcgttcagg	caaactcgac	gttttctacg	atctctacaa	tctggcgcaa	360
aagcgccgtt	ttgagcgtta	ccagtacgct	ttgtcggtac	tggaaaagcc	gatggatttc	420
accggcaacg	acacttataa	ccttgaccgc	agcaaagcgc	cctggccgaa	aaacgaggct	480
gagttgaacg	cgctgtggga	cagtaaagtc	aaattcgacg	agttaagcct	gaagctgaca	540
ggaaaaacgg	ataaagaaat	tcgtgaaacc	ctgactcgcc	gctacaaatt	tgccattcgt	600
cgtctggcgc	aaaccaacag	cgaagatgtt	ttctcgctgg	caatgacggc	gtttgcgcgt	660
gaaatcgacc	cgcataccaa	ctatctttcc	ccgcgtaata	ccgaacagtt	caacactgaa	720
atgagtttgt	cgctggaagg	tattggcgca	gtgctgcaaa	tggatgatga	ctacaccgtt	780
atcaattcga	tggtggcagg	tggtccggca	gcgaagagta	aagctatcag	cgttggtgac	840
aaaattgtcg	gtgttggtca	aacaggcaag	ccgatggttg	acgtgattgg	ctggcgtctt	900
gatgatgtgg	ttgccttaat	taaagggccg	aagggcagta	aagttcgtct	ggaaatttta	960
cctgctggta	aagggaccaa	gacccgtact	gtaacgttga	cccgtgaacg	tattcgtctc	1020
gaagaccgcg	cggttaaaat	gtcggtgaag	accgtcggta	aagagaaagt	cggcgtgctg	1080
gatattccgg	gcttctatgt	gggtttgaca	gacgatgtca	aagtgcaact	gcagaaactg	1140
gaaaaacaga	atgtcagcag	cgtcatcatc	gacctgcgta	gcaatggcgg	tggggcgtta	1200
actgaagccg	tatcgctctc	cggtctgttt	attcctgcgg	gtcccattgt	tcaggtccgc	1260
gataacaacg	gcaaggttcg	tgaagatagc	gataccgacg	gacaggtttt	ctataaaggc	1320
ccgctggtgg	tgctggttga	ccgcttcagt	gcttcggctt	cagaaatctt	tgccgcggca	1380
atgcaggatt	acggtcgtgc	gctggttgtg	ggtgaaccga	cgtttggtaa	aggcaccgtt	1440
cagcaatacc	gttcattgaa	ccgtatttac	gatcagatgt	tacgtcctga	atggccagcg	1500
ctgggttctg	tgcagtacac	gatccagaaa	ttctatcgcg	ttaacggcgg	cagtacgcaa	1560
cgtaaaggcg	taacgccaga	catcatcatg	ccgacgggta	atgaagaaac	ggaaacgggt	1620
gagaaattcg	aagataacgc	gctgccgtgg	gatagcattg	atgccgcgac	ttatgtgaaa	1680
tcaggagatt	taacggcctt	tgaaccggag	ctgctgaagg	aacataatgc	gcgtatcgcg	1740
aaagatcctg	agttccagaa	catcatgaag	gatatcgcgc	gcttcaacgc	tatgaaggac	1800
aagcgcaata	tcgtttctct	gaattacgct	gtgcgtgaga	aagagaataa	tgaagatgat	1860
gcgacgcgtc	tggcgcgttt	gaacgaacgc	tttaaacgcg	aaggtaaacc	ggagttgaag	1920
aaactggatg	atctaccgaa	agattaccag	gagccggatc	cttatctgga	tgagacggtg	1980
aatatcgcac	tcgatctggc	gaagcttgaa	aaagccagac	ccgcggaaca	acccgctccc	2040
gtcaagtaa						2049

<211> 682 <212> PR <213> E. o	Т											
<400> 2 Met Asn 1	Met Phe	Phe 2	Arg L	eu Th	Ala	Leu 10	Ala	Gly	Leu	Leu	Ala 15	Ile
Ala Gly	Gln Thi	r Phe i	Ala V	al Glı	1 Asp 25	Ile	Thr	Arg	Ala	Asp 30	Gln	Ile
Pro Val	Leu Lys	s Glu (Glu T	hr Gli 40	n His	Ala	Thr	Val	Ser 45	Glu	Arg	Val
Thr Ser 50	Arg Phe	e Thr i	-	Ger His	s Tyr	Arg	Gln	Phe 60	Asp	Leu	Asp	Gln
Ala Phe 65	Ser Ala	_	Ile P 70	he Ası	Arg	Tyr	Leu 75	Asn	Leu	Leu	Asp	Tyr 80
Ser His	Asn Va	Leu : 85	Leu A	ala Se	Asp	Val 90	Glu	Gln	Phe	Ala	Lys 95	Lys
Lys Thr	Glu Let		Asp G	Slu Lei	Arg 105	Ser	Gly	Lys	Leu	Asp 110	Val	Phe
Tyr Asp	Leu Ty	Asn i	Leu A	ala Gli 120	-	Arg	Arg	Phe	Glu 125	Arg	Tyr	Gln

Tyr	Ala 130	Leu	Ser	Val	Leu	Glu 135	Lys	Pro	Met	Asp	Phe 140	Thr	Gly	Asn	Asp
Thr 145	Tyr	Asn	Leu	Asp	Arg 150	Ser	Lys	Ala	Pro	Trp 155	Pro	Lys	Asn	Glu	Ala 160
Glu	Leu	Asn	Ala	Leu 165	Trp	Asp	Ser	Lys	Val 170	Lys	Phe	Asp	Glu	Leu 175	Ser
Leu	Lys	Leu	Thr 180	Gly	Lys	Thr	Asp	Lys 185	Glu	Ile	Arg	Glu	Thr 190	Leu	Thr
Arg	Arg	Tyr 195	Lys	Phe	Ala	Ile	Arg 200	Arg	Leu	Ala	Gln	Thr 205	Asn	Ser	Glu
Asp	Val 210	Phe	Ser	Leu	Ala	Met 215	Thr	Ala	Phe	Ala	Arg 220	Glu	Ile	Asp	Pro
His 225	Thr	Asn	Tyr	Leu	Ser 230	Pro	Arg	Asn	Thr	Glu 235	Gln	Phe	Asn	Thr	Glu 240
Met	Ser	Leu	Ser	Leu 245	Glu	Gly	Ile	Gly	Ala 250	Val	Leu	Gln	Met	Asp 255	Asp
Asp	Tyr	Thr	Val 260	Ile	Asn	Ser	Met	Val 265	Ala	Gly	Gly	Pro	Ala 270	Ala	Lys
Ser	Lys	Ala 275	Ile	Ser	Val	Gly	Asp 280	Lys	Ile	Val	Gly	Val 285	Gly	Gln	Thr
Gly	Lys 290	Pro	Met	Val	Asp	Val 295	Ile	Gly	Trp	Arg	Leu 300	Asp	Asp	Val	Val
Ala 305	Leu	Ile	Lys	Gly	Pro 310	Lys	Gly	Ser	Lys	Val 315	Arg	Leu	Glu	Ile	Leu 320
Pro	Ala	Gly	Lys	Gly 325	Thr	Lys	Thr	Arg	Thr 330	Val	Thr	Leu	Thr	Arg 335	Glu
Arg	Ile	Arg	Leu 340	Glu	Asp	Arg	Ala	Val 345	Lys	Met	Ser	Val	Lys 350	Thr	Val
Gly	Lys	Glu 355	Lys	Val	Gly	Val	Leu 360	Asp	Ile	Pro	Gly	Phe 365	Tyr	Val	Gly
Leu	Thr	Asp	Asp	Val	Lys	Val	Gln	Leu	Gln	Lys	Leu	Glu	Lys	Gln	Asn

	370					375					380				
Val 385	Ser	Ser	Val	Ile	Ile 390	Asp	Leu	Arg	Ser	Asn 395	Gly	Gly	Gly	Ala	Leu 400
Thr	Glu	Ala	Val	Ser 405	Leu	Ser	Gly	Leu	Phe 410	Ile	Pro	Ala	Gly	Pro 415	Ile
Val	Gln	Val	Arg 420	Asp	Asn	Asn	Gly	Lys 425	Val	Arg	Glu	Asp	Ser 430	Asp	Thr
Asp	Gly	Gln 435	Val	Phe	Tyr	Lys	Gly 440	Pro	Leu	Val	Val	Leu 445	Val	Asp	Arg
Phe	Ser 450	Ala	Ser	Ala	Ser	Glu 455	Ile	Phe	Ala	Ala	Ala 460	Met	Gln	Asp	Tyr
Gly 465	Arg	Ala	Leu	Val	Val 470	Gly	Glu	Pro	Thr	Phe 475	Gly	Lys	Gly	Thr	Val 480
Gln	Gln	Tyr	Arg	Ser 485	Leu	Asn	Arg	Ile	Tyr 490	Asp	Gln	Met	Leu	Arg 495	Pro
Glu	Trp	Pro	Ala 500	Leu	Gly	Ser	Val	Gln 505	Tyr	Thr	Ile	Gln	Lys 510	Phe	Tyr
Arg	Val	Asn 515	Gly	Gly	Ser	Thr	Gln 520	Arg	Lys	Gly	Val	Thr 525	Pro	Asp	Ile
Ile	Met 530	Pro	Thr	Gly	Asn	Glu 535	Glu	Thr	Glu	Thr	Gly 540	Glu	Lys	Phe	Glu
Asp 545	Asn	Ala	Leu	Pro	Trp 550	Asp	Ser	Ile	Asp	Ala 555	Ala	Thr	Tyr	Val	Lys 560
Ser	Gly	Asp	Leu	Thr 565	Ala	Phe	Glu	Pro	Glu 570	Leu	Leu	Lys	Glu	His 575	Asn
Ala	Arg	Ile	Ala 580	Lys	Asp	Pro	Glu	Phe 585	Gln	Asn	Ile	Met	Lys 590	Asp	Ile
Ala	Arg	Phe 595	Asn	Ala	Met	Lys	Asp 600	Lys	Arg	Asn	Ile	Val 605	Ser	Leu	Asn
Tyr	Ala 610	Val	Arg	Glu	Lys	Glu 615	Asn	Asn	Glu	Asp	Asp 620	Ala	Thr	Arg	Leu

Ala Arg Leu Asn Glu Arg Phe Lys Arg Glu Gly Lys Pro Glu Leu Lys 625 630 635 640

Lys Leu Asp Asp Leu Pro Lys Asp Tyr Gln Glu Pro Asp Pro Tyr Leu 645 650 655

Asp Glu Thr Val Asn Ile Ala Leu Asp Leu Ala Lys Leu Glu Lys Ala 660 665 670

Arg Pro Ala Glu Gln Pro Ala Pro Val Lys 675 680

<210> 3

<211> 2048

<212> ADN

5 <213> E. coli

<400> 3

atgaattcgt ttttaggctt accgcgttag ctggcctgct tgcaatagca ggccagacat 60 120 taattgtaga agatatcacg cgtgctgatc aaattccggt attaaaggaa gagacgcagc 180 atgcgacggt aagtgagcgc gtaacgtcgc gcttcacccg ttctcattat cgccagttcg acctcgatca ggcattttcg gccaaaatct ttgaccgcta cctgaatctg ctcgattaca 240 gccacaacgt gctgctggca agcgatgttg aacagttcgc gaaaaagaaa accgagttag 300 gcgatgaact gcgttcaggc aaactcgacg ttttctacga tctctacaat ctggcgcaaa 360 420 agcgccgttt tgagcgttac cagtacgctt tgtcggtact ggaaaagccg atggatttca 480 ccggcaacga cacttataac cttgaccgca gcaaagcgcc ctggccgaaa aacgaggctg agttgaacgc gctgtgggac agtaaagtca aattcgacga gttaagcctg aagctgacag 540 gaaaaacgga taaagaaatt cgtgaaaccc tgactcgccg ctacaaattt gccattcgtc 600 gtctggcgca aaccaacagc gaagatgttt tctcgctggc aatgacggcg tttgcgcgtg 660 720 aaatcgaccc gcataccaac tatctttccc cgcgtaatac cgaacagttc aacactgaaa 780 tgagtttgtc gctggaaggt attggcgcag tgctgcaaat ggatgatgac tacaccgtta 840 tcaattcgat ggtggcaggt ggtccggcag cgaagagtaa agctatcagc gttggtgaca aaattgtcgg tgttggtcaa acaggcaagc cgatggttga cgtgattggc tggcgtcttg 900 atgatgtggt tgccttaatt aaagggccga agggcagtaa agttcgtctg gaaattttac 960 1020 ctgctggtaa agggaccaag acccgtactg taacgttgac ccgtgaacgt attcgtctcg aagaccgcgc ggttaaaatg tcggtgaaga ccgtcggtaa agagaaagtc ggcgtgctgg 1080 atattccggg cttctatgtg ggtttgacag acgatgtcaa agtgcaactg cagaaactgg 1140 aaaaacagaa tgtcagcagc gtcatcatcg acctgcgtag caatggcggt ggggcgttaa 1200 1260 ctgaagccgt atcgctctcc ggtctgttta ttcctgcggg tcccattgtt caggtccgcg

ataacaacgg	caaggttcgt	gaagatagcg	ataccgacgg	acaggttttc	tataaaggcc	1320
cgctggtggt	gctggttgac	cgcttcagtg	cttcggcttc	agaaatcttt	gccgcggcaa	1380
tgcaggatta	cggtcgtgcg	ctggttgtgg	gtgaaccgac	gtttggtaaa	ggcaccgttc	1440
agcaataccg	ttcattgaac	cgtatttacg	atcagatgtt	acgtcctgaa	tggccagcgc	1500
tgggttctgt	gcagtacacg	atccagaaat	tctatcgcgt	taacggcggc	agtacgcaac	1560
gtaaaggcgt	aacgccagac	atcatcatgc	cgacgggtaa	tgaagaaacg	gaaacgggtg	1620
agaaattcga	agataacgcg	ctgccgtggg	atagcattga	tgccgcgact	tatgtgaaat	1680
caggagattt	aacggccttt	gaaccggagc	tgctgaagga	acataatgcg	cgtatcgcga	1740
aagatcctga	gttccagaac	atcatgaagg	atatcgcgcg	cttcaacgct	atgaaggaca	1800
agcgcaatat	cgtttctctg	aattacgctg	tgcgtgagaa	agagaataat	gaagatgatg	1860
cgacgcgtct	ggcgcgtttg	aacgaacgct	ttaaacgcga	aggtaaaccg	gagttgaaga	1920
aactggatga	tctaccgaaa	gattaccagg	agccggatcc	ttatctggat	gagacggtga	1980
atatcgcact	cgatctggcg	aagcttgaaa	aagccagacc	cgcggaacaa	cccgctcccg	2040
tcaagtaa						2048
<210> 4 <211> 2889 <212> ADN <213> E. coli						
<400> 4 atgccccgca						
	gcacctggtt	caaagcatta	ttgttgttag	ttgccctttg	ggcaccctta	60
agtcaggcag	gcacctggtt aaacgggatg					60 120
		gcagccgatt	caggaaacca	tccgtaaaag	tgataaagat	
aaccgccagt	aaacgggatg	gcagccgatt	caggaaacca	tccgtaaaag	tgataaagat	120
aaccgccagt	aaacgggatg	gcagccgatt acgtctggat ctcggcgctg	caggaaacca aacggtatgg gtggtgcccg	tccgtaaaag tggtcttgct ttgggtcgct	tgataaagat ggtttctgat ggaagatccc	120 180
aaccgccagt ccgcaggcag gaggcgtacc	aaacgggatg atcaggctat ttaaatcgct	gcagccgatt acgtctggat ctcggcgctg acattacctt	caggaaacca aacggtatgg gtggtgcccg gaacatatga	tccgtaaaag tggtcttgct ttgggtcgct gtctgatggg	tgataaagat ggtttctgat ggaagatccc gtcgaaaaag	120 180 240
aaccgccagt ccgcaggcag gaggcgtacc tacccgcagg	aaacgggatg atcaggctat ttaaatcgct aggggctggc	gcagccgatt acgtctggat ctcggcgctg acattacctt ggccgaatat	caggaaacca aacggtatgg gtggtgcccg gaacatatga ctcaaaatgc	tccgtaaaag tggtcttgct ttgggtcgct gtctgatggg acggcggtag	tgataaagat ggtttctgat ggaagatccc gtcgaaaaag tcacaatgcc	120 180 240 300
aaccgccagt ccgcaggcag gaggcgtacc tacccgcagg agcactgcgc	aaacgggatg atcaggctat ttaaatcgct aggggctggc ctgacagtct	gcagccgatt acgtctggat ctcggcgctg acattacctt ggccgaatat ggctttctat	caggaaacca aacggtatgg gtggtgcccg gaacatatga ctcaaaatgc ctggaagttg	tccgtaaaag tggtcttgct ttgggtcgct gtctgatggg acggcggtag agaacgacgc	tgataaagat ggtttctgat ggaagatccc gtcgaaaaag tcacaatgcc cttgcctggt	120 180 240 300 360
aaccgccagt ccgcaggcag gaggcgtacc tacccgcagg agcactgcgc gcggtagacc	aaacgggatg atcaggctat ttaaatcgct aggggctggc ctgacagtct cgtatcgcac	gcagccgatt acgtctggat ctcggcgctg acattacctt ggccgaatat ggctttctat tgctattgct	caggaaacca aacggtatgg gtggtgcccg gaacatatga ctcaaaatgc ctggaagttg gaacctttgc	tccgtaaaag tggtcttgct ttgggtcgct gtctgatggg acggcggtag agaacgacgc tcgacaagaa	tgataaagat ggtttctgat ggaagatccc gtcgaaaaag tcacaatgcc cttgcctggt atatgccgaa	120 180 240 300 360 420
aaccgccagt ccgcaggcag gaggcgtacc tacccgcagg agcactgcgc gcggtagacc cgtgagcgta	aaacgggatg atcaggctat ttaaatcgct aggggctggc ctgacagtct cgtatcgcac gcctggccga	gcagccgatt acgtctggat ctcggcgctg acattacctt ggccgaatat ggctttctat tgctattgct cgctgaatta	caggaaacca aacggtatgg gtggtgcccg gaacatatga ctcaaaatgc ctggaagttg gaacctttgc accatggcgc	tccgtaaaag tggtcttgct ttgggtcgct gtctgatggg acggcggtag agaacgacgc tcgacaagaa gtacgcgtga	tgataaagat ggtttctgat ggaagatccc gtcgaaaaag tcacaatgcc cttgcctggt atatgccgaa cgggatgcgc	120 180 240 300 360 420
aaccgccagt ccgcaggcag gaggcgtacc tacccgcagg agcactgcgc gcggtagacc cgtgagcgta atggcacagg	aaacgggatg atcaggctat ttaaatcgct aggggctggc ctgacagtct cgtatcgcac gcctggccga atgcggtgaa	gcagccgatt acgtctggat ctcggcgctg acattacctt ggccgaatat ggctttctat tgctattgct cgctgaatta aaccattaac	caggaaacca aacggtatgg gtggtgcccg gaacatatga ctcaaaatgc ctggaagttg gaacctttgc accatggcgc ccggcacacc	tccgtaaaag tggtcttgct ttgggtcgct gtctgatggg acggcggtag agaacgacgc tcgacaagaa gtacgcgtga ccggttcaaa	tgataaagat ggtttctgat ggaagatccc gtcgaaaaag tcacaatgcc cttgcctggt atatgccgaa cgggatgcgc gttttctggt	120 180 240 300 360 420 480 540
aaccgccagt ccgcaggcag gaggcgtacc tacccgcagg agcactgcgc gcggtagacc cgtgagcgta atggcacagg ggtaacctcg	aaacgggatg atcaggctat ttaaatcgct aggggctggc ctgacagtct cgtatcgcac gcctggccga atgcggtgaa tcagcgcaga	gcagccgatt acgtctggat ctcggcgctg acattacctt ggccgaatat ggctttctat tgctattgct cgctgaatta aaccattaac cgacaaacct	caggaaacca aacggtatgg gtggtgcccg gaacatatga ctcaaaatgc ctggaagttg gaacctttgc accatggcgc ccggcacacc ggtaatccgg	tccgtaaaag tggtcttgct ttgggtcgct gtctgatggg acggcggtag agaacgacgc tcgacaagaa gtacgcgtga ccggttcaaa tgcagcaggc	tgataaagat ggtttctgat ggaagatccc gtcgaaaaag tcacaatgcc cttgcctggt atatgccgaa cgggatgcgc gttttctggt gctgaaagat	120 180 240 300 360 420 480 540
aaccgccagt ccgcaggcag gaggcgtacc tacccgcagg agcactgcgc gcggtagacc cgtgagcgta atggcacagg ggtaacctcg ttccacgaga	aaacgggatg atcaggctat ttaaatcgct aggggctggc ctgacagtct cgtatcgcac gcctggccga atgcggtgaa tcagcgcaga aaactttaag	gcagccgatt acgtctggat ctcggcgctg acattacctt ggccgaatat ggctttctat tgctattgct cgctgaatta accattaac cgacaaacct cgccaatttg	caggaaacca aacggtatgg gtggtgcccg gaacatatga ctcaaaatgc ctggaagttg gaacctttgc accatggcgc ccggcacacc ggtaatccgg atgaaggcgg	tccgtaaaag tggtcttgct ttgggtcgct gtctgatggg acggcggtag agaacgacgc tcgacaagaa gtacgcgtga ccggttcaaa tgcagcaggc ttatttacag	tgataaagat ggtttctgat ggaagatccc gtcgaaaaag tcacaatgcc cttgcctggt atatgccgaa cgggatgcgc gtttctggt gctgaaagat taataaaccg	120 180 240 300 360 420 480 540 600 660

tacgtccctg cgctgccgcg ta	aagtgttg	cgcgttgagt	ttcgcatcga	taacaactca	900
gcgaagttcc gtagtaaaac cg	gatgaattg	attacctatc	tgattggcaa	tcgcagccca	960
ggtacacttt ctgactggct gc	caaaagcag	ggattagttg	agggcattag	cgccaactcc	1020
gatcctatcg tcaacggcaa ca	igcggcgta	ttagcgatct	ctgcgtcttt	aaccgataaa	1080
ggcctggcta atcgcgatca gg	ıttgtggcg	gcaattttta	gctatctcaa	tctgttacgt	1140
gaaaaaggca ttgataaaca at	acttcgat	gaactggcga	atgtgctgga	tatcgacttc	1200
cgttatccgt cgatcacccg tg	gatatggat	tacgtcgaat	ggctggcaga	taccatgatt	1260
cgcgttcctg ttgagcatac gc	tggatgca	gtcaatattg	ccgatcggta	cgatgctaaa	1320
gcagtaaagg aacgtctggc ga	tgatgacg	ccgcagaatg	cgcgtatctg	gtatatcagc	1380
ccgaaagagc cgcacaacaa aa	cggcttac	tttgtcgatg	cgccgtatca	ggtcgataaa	1440
atcagcgcac aaactttcgc cg	gactggcag	aaaaaagccg	ccgacattgc	gctctctttg	1500
ccagagetta accettatat te	ctgatgat	ttctcgctga	ttaagtcaga	gaagaaatac	1560
gaccatccag agctgattgt tg	gatgagtcg	aatctgcgcg	tggtgtatgc	gccaagccgt	1620
tattttgcca gcgagcccaa ag	gctgatgtc	agcctgattt	tgcgtaatcc	gaaagccatg	1680
gacagcgccc gcaatcaggt ga	tgtttgcg	ctcaatgatt	atctcgcagg	gctggcgctt	1740
gatcagttaa gcaaccaggc gt	cggttggt	ggcataagtt	tttccaccaa	cgctaacaac	1800
ggccttatgg ttaatgctaa tg	gttacacc	cagcgtctgc	cgcagctgtt	ccaggcattg	1860
ctcgaggggt actttagcta ta	ccgctacg	gaagatcagc	ttgagcaggc	gaagtcctgg	1920
tataaccaga tgatggattc cg	gcagaaaag	ggtaaagcgt	ttgagcaggc	gattatgece	1980
gcgcagatgc tctcgcaagt gc	ecgtacttc	tcgcgagatg	aacggcgtaa	aattttgccc	2040
tccattacgt tgaaagaggt gc	tggcctat	cgcgacgcct	taaaatcagg	ggctcgacca	2100
gagtttatgg ttatcggcaa ca	tgaccgag	gcccaggcaa	caacgctggc	acgcgatgtg	2160
caaaaacagt tgggcgctga tg	gttcagag	tggtgtcgaa	acaaagatgt	agtggtcgat	2220
aaaaaacaat ccgtcatctt tg	gaaaaagcc	ggtaacagca	ccgactccgc	actggcagcg	2280
gtatttgtac cgactggcta cg	gatgaatac	accagctcag	cctatagctc	tctgttgggg	2340
cagatcgtac agccgtggtt ct	acaatcag	ttgcgtaccg	aagaacaatt	gggctatgcc	2400
gtgtttgcgt ttccaatgag cg	tggggcgt	cagtggggca	tgggcttcct	tttgcaaagc	2460
aatgataaac agccttcatt ct	tgtgggag	cgttacaagg	cgtttttccc	aaccgcagag	2520
gcaaaattgc gagcgatgaa gc	cagatgag	tttgcgcaaa	tccagcaggc	ggtaattacc	2580
cagatgctgc aggcaccgca aa	ıcgctcggc	gaagaagcat	cgaagttaag	taaagatttc	2640
gatcgcggca atatgcgctt cg	gattegegt	gataaaatcg	tggcccagat	aaaactgctg	2700
acgccgcaaa aacttgctga tt	ttcttccat	caggcggtgg	tcgagccgca	aggcatggct	2760
attctgtcgc agatttccgg ca	agccagaac	gggaaagccg	aatatgtaca	ccctgaaggc	2820
tggaaagtgt gggagaacgt ca	agcgcgttg	cagcaaacaa	tgcccctgat	gagtgaaaag	2880
aatgagtga					2889

<210> 5

<212> PR <213> E. (
<400> 5 Met Pro 1	Arg	Ser	Thr 5	Trp	Phe	Lys	Ala	Leu 10	Leu	Leu	Leu	Val	Ala 15	Leu
Trp Ala		Leu 20	Ser	Gln	Ala	Glu	Thr 25	Gly	Trp	Gln	Pro	Ile 30	Gln	Glu
Thr Ile	Arg	Lys	Ser	Asp	Lys	Asp 40	Asn	Arg	Gln	Tyr	Gln 45	Ala	Ile	Arg
Leu Asp 50	Asn	Gly	Met	Val	Val 55	Leu	Leu	Val	Ser	Asp 60	Pro	Gln	Ala	Val
Lys Ser 65	Leu	Ser	Ala	Leu 70	Val	Val	Pro	Val	Gly 75	Ser	Leu	Glu	Asp	Pro 80
Glu Ala	Tyr	Gln	Gly 85	Leu	Ala	His	Tyr	Leu 90	Glu	His	Met	Ser	Leu 95	Met
Gly Ser	_	Lys 100	Tyr	Pro	Gln	Ala	Asp 105	Ser	Leu	Ala	Glu	Tyr 110	Leu	Lys
Met His	Gly 115	Gly	Ser	His	Asn	Ala 120	Ser	Thr	Ala	Pro	Tyr 125	Arg	Thr	Ala
Phe Tyr 130	Leu	Glu	Val	Glu	Asn 135	Asp	Ala	Leu	Pro	Gly 140	Ala	Val	Asp	Arg
Leu Ala 145	Asp .	Ala	Ile	Ala 150	Glu	Pro	Leu	Leu	Asp 155	Lys	Lys	Tyr	Ala	Glu 160
Arg Glu	Arg .	Asn	Ala 165	Val	Asn	Ala	Glu	Leu 170	Thr	Met	Ala	Arg	Thr 175	Arg
Asp Gly		Arg 180	Met	Ala	Gln	Val	Ser 185	Ala	Glu	Thr	Ile	Asn 190	Pro	Ala

His	Pro	Gly 195	Ser	Lys	Phe	Ser	Gly 200	Gly	Asn	Leu	Glu	Thr 205	Leu	Ser	Asp
Lys	Pro 210	Gly	Asn	Pro	Val	Gln 215	Gln	Ala	Leu	Lys	Asp 220	Phe	His	Glu	Lys
Туг 225	Tyr	Ser	Ala	Asn	Leu 230	Met	Lys	Ala	Val	Ile 235	Tyr	Ser	Asn	Lys	Pro 240
Leu	Pro	Glu	Leu	Ala 245	Lys	Met	Ala	Ala	Asp 250	Thr	Phe	Gly	Arg	Val 255	Pro
Asn	Lys	Glu	Ser 260	Lys	Lys	Pro	Glu	11e 265	Thr	Val	Pro	Val	Val 270	Thr	Asp
Ala	Gln	Lys 275	Gly	Ile	Ile	Ile	His 280	Tyr	Val	Pro	Ala	Leu 285	Pro	Arg	Lys
Val	Leu 290	Arg	Val	Glu	Phe	Arg 295	Ile	Asp	Asn	Asn	Ser 300	Ala	Lys	Phe	Arg
Ser 305	Lys	Thr	Asp	Glu	Leu 310	Ile	Thr	Tyr	Leu	Ile 315	Gly	Asn	Arg	Ser	Pro 320
Gly	Thr	Leu	Ser	Asp 325	Trp	Leu	Gln	Lys	Gln 330	Gly	Leu	Val	Glu	Gly 335	Ile
Ser	Ala	Asn	Ser 340	Asp	Pro	Ile	Val	Asn 345	Gly	Asn	Ser	Gly	Val 350	Leu	Ala
Ile	Ser	Ala 355	Ser	Leu	Thr	Asp	Lys 360	Gly	Leu	Ala	Asn	Arg 365	Asp	Gln	Val
Val	Ala 370	Ala	Ile	Phe	Ser	Tyr 375	Leu	Asn	Leu	Leu	A rg 380	Glu	Lys	Gly	Ile
Asp 385	Lys	Gln	Tyr	Phe	Asp 390	Glu	Leu	Ala	Asn	Val 395	Leu	Asp	Ile	Asp	Phe 400
Arg	Tyr	Pro	Ser	Ile 405	Thr	Arg	Asp	Met	Asp 410	Tyr	Val	Glu	Trp	Leu 415	Ala
Asp	Thr	Met	Ile 420	Arg	Val	Pro	Val	Glu 425	His	Thr	Leu	Asp	Ala 430	Val	Asn
Ile	Ala	Asp 435	Arg	Tyr	Asp	Ala	Lys 440	Ala	Val	Lys	Glu	Arg 445	Leu	Ala	Met

Met	Thr 450	Pro	Gln	Asn	Ala	Arg 455	Ile	Trp	Tyr	Ile	Ser 460	Pro	Lys	Glu	Pro
His 465	Asn	Lys	Thr	Ala	Tyr 470	Phe	Val	Asp	Ala	Pro 4 75	Tyr	Gln	Val	Asp	Lys 480
Ile	Ser	Ala	Gln	Thr 485	Phe	Ala	Asp	Trp	Gln 490	Lys	Lys	Ala	Ala	Asp 495	Ile
Ala	Leu	Ser	Leu 500	Pro	Glu	Leu	Asn	Pro 505	Tyr	Ile	Pro	Asp	Asp 510	Phe	Ser
Leu	Ile	Lys 515	Ser	Glu	Lys	Lys	Tyr 520	Asp	His	Pro	Glu	Leu 525	Ile	Val	Asp
Glu	Ser 530	Asn	Leu	Arg	Val	Val 535	Tyr	Ala	Pro	Ser	Arg 540	Tyr	Phe	Ala	Ser
Glu 545	Pro	Lys	Ala	Asp	Val 550	Ser	Leu	Ile	Leu	Arg 555	Asn	Pro	Lys	Ala	Met 560
Asp	Ser	Ala	Arg	Asn 565	Gln	Val	Met	Phe	Ala 570	Leu	Asn	Asp	Tyr	Leu 575	Ala
Gly	Leu	Ala	Leu 580	Asp	Gln	Leu	Ser	As n 585	Gln	Ala	Ser	Val	Gly 590	Gly	Ile
Ser	Phe	Ser 595	Thr	Asn	Ala	Asn	Asn 600	Gly	Leu	Met	Val	As n 605	Ala	Asn	Gly
Tyr	Thr 610	Gln	Arg	Leu	Pro	Gln 615	Leu	Phe	Gln	Ala	Leu 620	Leu	Glu	Gly	Tyr
Phe 625	Ser	Tyr	Thr	Ala	Thr 630	Glu	Asp	Gln	Leu	Glu 635	Gln	Ala	Lys	Ser	Trp 640
Tyr	Asn	Gln	Met	Met 645	Asp	Ser	Ala	Glu	Lys 650	Gly	Lys	Ala	Phe	Glu 655	Gln
Ala	Ile	Met	Pro 660	Ala	Gln	Met	Leu	Ser 665	Gln	Val	Pro	Tyr	Phe 670	Ser	Arg
Asp	Glu	Arg 675	Arg	Lys	Ile	Leu	Pro 680	Ser	Ile	Thr	Leu	Lys 685	Glu	Val	Leu

Ala Tyr Arg Asp Ala Leu Lys Ser Gly Ala Arg Pro Glu Phe Met Val

	690					695					700				
Ile 705	Gly	Asn	Met	Thr	Glu 710	Ala	Gln	Ala	Thr	Thr 715	Leu	Ala	Arg	Asp	Val 720
Gln	Lys	Gln	Leu	Gly 725	Ala	Asp	Gly	Ser	Glu 730	Trp	Cys	Arg	Asn	Lys 735	Asp
Val	Val	Val	Asp 740	Lys	Lys	Gln	Ser	Val 745	Ile	Phe	Glu	Lys	Ala 750	Gly	Asn
Ser	Thr	Asp 755	Ser	Ala	Leu	Ala	Ala 760	Val	Phe	Val	Pro	Thr 765	Gly	Tyr	Asp
Glu	Tyr 770	Thr	Ser	Ser	Ala	Tyr 775	Ser	Ser	Leu	Leu	Gly 780	Gln	Ile	Val	Gln
Pro 785	Trp	Phe	Tyr	Asn	Gln 790	Leu	Arg	Thr	Glu	Glu 795	Gln	Leu	Gly	Tyr	Ala 800
Val	Phe	Ala	Phe	Pro 805	Met	Ser	Val	Gly	Arg 810	Gln	Trp	Gly	Met	Gly 815	Phe
Leu	Leu	Gln	Ser 820	Asn	Asp	Lys	Gln	Pro 825	Ser	Phe	Leu	Trp	Glu 830	Arg	Tyr
Lys	Ala	Phe 835	Phe	Pro	Thr	Ala	Glu 840	Ala	Lys	Leu	Arg	Ala 845	Met	Lys	Pro
Asp	Glu 850	Phe	Ala	Gln	Ile	Gln 855	Gln	Ala	Val	Ile	Thr 860	Gln	Met	Leu	Gln
Ala 865	Pro	Gln	Thr	Leu	Gly 870	Glu	Glu	Ala	Ser	Lys 875	Leu	Ser	Lys	Asp	Phe 880
Asp	Arg	Gly	Asn	Met 885	Arg	Phe	Asp	Ser	Arg 890	Asp	Lys	Ile	Val	Ala 895	Gln
Ile	Lys	Leu	Leu 900	Thr	Pro	Gln	Lys	Leu 905	Ala	Asp	Phe	Phe	His 910	Gln	Ala
Val	Val	Glu 915	Pro	Gln	Gly	Met	Ala 920	Ile	Leu	Ser	Gln	Ile 925	Ser	Gly	Ser
Gln	Asn 930	Gly	Lys	Ala	Glu	Tyr 935	Val	His	Pro	Glu	Gly 940	Trp	Lys	Val	Trp
Glu 945	Asn	Val	Ser	Ala	Leu 950	Gln	Gln	Thr	Met	Pro 955		Met	Ser	Glu	1 Lys 960
Asn	Glu														
<210 <211		15													
	> 20 > AD														

5

<213> E. coli

<400> 6						
	gcacctggtt	caaagcatta	ttgttgttag	ttgccctttg	ggcacattaa	60
tgtcaggcag	aaacgggatg	gcagccgatt	caggaaacca	tccgtaaaag	tgataaagat	120
aaccgccagt	atcaggctat	acgtctggat	aacggtatgg	tggtcttgct	ggtttctgat	180
ccgcaggcag	ttaaatcgct	ctcggcgctg	gtggtgcccg	ttgggtcgct	ggaagatccc	240
gaggcgtacc	aggggctggc	acattacctt	gaacatatga	gtctgatggg	gtcgaaaaag	300
tacccgcagg	ctgacagtct	ggccgaatat	ctcaaaatgc	acggcggtag	tcacaatgcc	360
agcactgcgc	cgtatcgcac	ggctttctat	ctggaagttg	agaacgacgc	cttgcctggt	420
gcggtagacc	gcctggccga	tgctattgct	gaacctttgc	tcgacaagaa	atatgccgaa	480
cgtgagcgta	atgcggtgaa	cgctgaatta	accatggcgc	gtacgcgtga	cgggatgcgc	540
atggcacagg	tcagcgcaga	aaccattaac	ccggcacacc	ccggttcaaa	gttttctggt	600
ggtaacctcg	aaactttaag	cgacaaacct	ggtaatccgg	tgcagcaggc	gctgaaagat	660
ttccacgaga	agtactattc	cgccaatttg	atgaaggcgg	ttatttacag	taataaaccg	720
ctgccggagt	tggcaaaaat	ggcggcggac	acctttggtc	gcgtgccgaa	caaagagagc	780
aaaaaaccgg	aaatcaccgt	gccggtagtc	accgacgcgc	aaaagggcat	tatcattcat	840
tacgtccctg	cgctgccgcg	taaagtgttg	cgcgttgagt	ttcgcatcga	taacaactca	900
gcgaagttcc	gtagtaaaac	cgatgaattg	attacctatc	tgattggcaa	tcgcagccca	960
ggtacacttt	ctgactggct	gcaaaagcag	ggattagttg	agggcattag	cgccaactcc	1020
gatcctatcg	tcaacggcaa	cagcggcgta	ttagcgatct	ctgcgtcttt	aaccgataaa	1080
ggcctggcta	atcgcgatca	ggttgtggcg	gcaatttta	gctatctcaa	tctgttacgt	1140
gaaaaaggca	ttgataaaca	atacttcgat	gaactggcga	atgtgctgga	tatcgacttc	1200
cgttatccgt	cgatcacccg	tgatatggat	tacgtcgaat	ggctggcaga	taccatgatt	1260
cgcgttcctg	ttgagcatac	gctggatgca	gtcaatattg	ccgatcggta	cgatgctaaa	1320
gcagtaaagg	aacgtctggc	gatgatgacg	ccgcagaatg	cgcgtatctg	gtatatcagc	1380
ccgaaagagc	cgcacaacaa	aacggcttac	tttgtcgatg	cgccgtatca	ggtcgataaa	1440
ataaaaaaaa	aaactttccc	caaataaaaa	222222666	aaaaaattaa	act at at the	1500

ccagagetta accettatat	tcctgatgat	ttctcgctga	ttaagtcaga	gaagaaatac	1560
gaccatccag agctgattgt	tgatgagtcg	aatctgcgcg	tggtgtatgc	gccaagccgt	1620
tattttgcca gcgagcccaa	agctgatgtc	agcctgattt	tgcgtaatcc	gaaagccatg	1680
gacagcgccc gcaatcaggt	gatgtttgcg	ctcaatgatt	atctcgcagg	gctggcgctt	1740
gatcagttaa gcaaccaggc	gtcggttggt	ggcataagtt	tttccaccaa	cgctaacaac	1800
ggccttatgg ttaatgctaa	tggttacacc	cagcgtctgc	cgcagctgtt	ccaggcattg	1860
ctcgaggggt actttagcta	taccgctacg	gaagatcagc	ttgagcaggc	gaagtcctgg	1920
tataaccaga tgatggattc	cgcagaaaag	ggtaaagcgt	ttgagcaggc	gattatgccc	1980
gcgcagatgc tctcgcaagt	gccgtacttc	tcgcgagatg	aacggcgtaa	aattttgccc	2040
tccattacgt tgaaagaggt	gctggcctat	cgcgacgcct	taaaatcagg	ggctcgacca	2100
gagtttatgg ttatcggcaa	catgaccgag	gcccaggcaa	caacgctggc	acgcgatgtg	2160
caaaaacagt tgggcgctga	tggttcagag	tggtgtcgaa	acaaagatgt	agtggtcgat	2220
aaaaaacaat ccgtcatctt	tgaaaaagcc	ggtaacagca	ccgactccgc	actggcagcg	2280
gtatttgtac cgactggcta	cgatgaatac	accagctcag	cctatagctc	tctgttgggg	2340
cagatcgtac agccgtggtt	ctacaatcag	ttgcgtaccg	aagaacaatt	gggctatgcc	2400
gtgtttgcgt ttccaatgag	cgtggggcgt	cagtggggca	tgggcttcct	tttgcaaagc	2460
aatgataaac agccttcatt	cttgtgggag	cgttacaagg	cgtttttccc	aaccgcagag	2520
gcaaaattgc gagcgatgaa	gccagatgag	tttgcgcaaa	tccagcaggc	ggtaattacc	2580
cagatgctgc aggcaccgca	aacgctcggc	gaagaagcat	cgaagttaag	taaagatttc	2640
gatcgcggca atatgcgctt	cgattcgcgt	gataaaatcg	tggcccagat	aaaactgctg	2700
acgccgcaaa aacttgctga	tttcttccat	caggcggtgg	tcgagccgca	aggcatggct	2760
attctgtcgc agatttccgg	cagccagaac	gggaaagccg	aatatgtaca	ccctgaaggc	2820
tggaaagtgt gggagaacgt	cagcgcgttg	cagcaaacaa	tgcccctgat	gagtgaaaag	2880
aatgagtgat gtcgccgaga	cactagatcc	tttgc			2915
<210> 7 <211> 1425 <212> ADN <213> E. coli					
<400> 7					66
atgaaaaaaa ccacattagc					60
ccgctctctg caacggcggc					120
cttgcaccga tgctcgaaaa	ggtgatgcct	tcagtggtca	gcattaacgt	agaaggtagc	180
acaaccgtta atacgccgcg	tatgccgcgt	aatttccagc	agttcttcgg	tgatgattct	240

ccgttctgcc	aggaaggttc	tccgttccag	agctctccgt	tctgccaggg	tggccagggc	300
ggtaatggtg	gcggccagca	acagaaattc	atggcgctgg	gttccggcgt	catcattgat	360
gccgataaag	gctatgtcgt	caccaacaac	cacgttgttg	ataacgcgac	ggtcattaaa	420
gttcaactga	gcgatggccg	taagttcgac	gcgaagatgg	ttggcaaaga	tccgcgctct	480
gatatcgcgc	tgatccaaat	ccagaacccg	aaaaacctga	ccgcaattaa	gatggcggat	540
tctgatgcac	tgcgcgtggg	tgattacacc	gtagcgattg	gtaacccgtt	tggtctgggc	600
gagacggtaa	cttccgggat	tgtctctgcg	ctggggcgta	gcggcctgaa	tgccgaaaac	660
tacgaaaact	tcatccagac	cgatgcagcg	atcaaccgtg	gtaactccgg	tggtgcgctg	720
gttaacctga	acggcgaact	gatcggtatc	aacaccgcga	tcctcgcacc	ggacggcggc	780
aacatcggta	tcggttttgc	tatcccgagt	aacatggtga	aaaacctgac	ctcgcagatg	840
gtggaatacg	gccaggtgaa	acgcggtgag	ctgggtatta	tggggactga	gctgaactcc	900
gaactggcga	aagcgatgaa	agttgacgcc	cagcgcggtg	ctttcgtaag	ccaggttctg	960
cctaattcct	ccgctgcaaa	agcgggcatt	aaagcgggtg	atgtgatcac	ctcactgaac	1020
ggtaagccga	tcagcagctt	tgccgcactg	cgtgctcagg	tgggtactat	gccggtaggc	1080
agcaaactga	ccctgggctt	actgcgcgac	ggtaagcagg	ttaacgtgaa	cctggaactg	1140
cagcagagca	gccagaatca	ggttgattcc	agctccatct	tcaacggcat	tgaaggcgct	1200
gagatgagca	acaaaggcaa	agatcagggc	gtggtagtga	acaacgtgaa	aacgggcact	1260
ccggctgcgc	agatcggcct	gaagaaaggt	gatgtgatta	ttggcgcgaa	ccagcaggca	1320
gtgaaaaaca	tcgctgaact	gcgtaaagtt	ctcgacagca	aaccgtctgt	gctggcactc	1380
aacattcagc	gcggcgacag	caccatctac	ctgttaatgc	agtaa		1425

<210> 8 <211> 474 <212> PRT <213> E. coli

<400> 8

Met Lys Lys Thr Thr Leu Ala Leu Ser Ala Leu Ala Leu Ser Leu Gly 1 $$ 5

Leu Ala Leu Ser Pro Leu Ser Ala Thr Ala Ala Glu Thr Ser Ser Ala 20 25 30

Thr Thr Ala Gln Gln Met Pro Ser Leu Ala Pro Met Leu Glu Lys Val 35 40 40

Met Pro Ser Val Val Ser Ile Asn Val Glu Gly Ser Thr Thr Val Asn 50 55 60

Thr 65	Pro	Arg	Met	Pro	Arg 70	Asn	Phe	Gln	Gln	Phe 75	Phe	Gly	Asp	Asp	Ser 80
Pro	Phe	Суз	Gln	Glu 85	Gly	Ser	Pro	Phe	Gln 90	Ser	Ser	Pro	Phe	Cys 95	Gln
Gly	Gly	Gln	Gly 100	Gly	Asn	Gly	Gly	Gly 105	Gln	Gln	Gln	Lys	Phe 110	Met	Ala
Leu	Gly	Ser 115	Gly	Val	Ile	Ile	Asp 120	Ala	Asp	Lys	Gly	Tyr 125	Val	Val	Thr
Asn	Asn 130	His	Val	Val	Asp	Asn 135	Ala	Thr	Val	Ile	Lys 140	Val	Gln	Leu	Ser
As p 145	Gly	Arg	Lys	Phe	Asp 150	Ala	Lys	Met	Val	Gly 155	Lys	Asp	Pro	Arg	Ser 160
Asp	Ile	Ala	Leu	Ile 165	Gln	Ile	Gln	Asn	Pro 170	Lys	Asn	Leu	Thr	Ala 175	Ile
Lys	Met	Ala	Asp 180	Ser	Asp	Ala	Leu	Arg 185	Val	Gly	Asp	Tyr	Thr 190	Val	Ala
Ile	Gly	Asn 195	Pro	Phe	Gly	Leu	Gly 200	Glu	Thr	Val	Thr	Ser 205	Gly	Ile	Val
Ser	Ala 210	Leu	Gly	Arg	Ser	Gly 215	Leu	Asn	Ala	Glu	Asn 220	Tyr	Glu	Asn	Phe
Ile 225	Gln	Thr	Asp	Ala	Ala 230	Ile	Asn	Arg	Gly	Asn 235	Ser	Gly	Gly	Ala	Leu 240
Val	Asn	Leu	Asn	Gly 245	Glu	Leu	Ile	Gly	11e 250	Asn	Thr	Ala	Ile	Leu 255	Ala
Pro	Asp	Gly	Gly 260	Asn	Ile	Gly	Ile	Gly 265	Phe	Ala	Ile	Pro	Ser 270	Asn	Met
Val	Lys	As n 275	Leu	Thr	Ser	Gln	Met 280	Val	Glu	Tyr	Gly	Gln 285	Val	Lys	Arg
Gly	Glu 290	Leu	Gly	Ile	Met	Gly 295	Thr	Glu	Leu	Asn	Ser 300	Glu	Leu	Ala	Lys
Ala	Met	Lys	Val	Asp	Ala	Gln	Arg	Gly	Ala	Phe	Val	Ser	Gln	Val	Leu

Pro	Asn	Ser	Ser	Ala 325	Ala	Lys	Ala	Gly	Ile 330	Lys	Ala	Gly	Asp	Val 335	Ile	
Thr	Ser	Leu	Asn 340	Gly	Lys	Pro	Ile	Ser 345	Ser	Phe	Ala	Ala	Leu 350	Arg	Ala	
Gln	Val	Gly 355	Thr	Met	Pro	Val	Gly 360	Ser	Lys	Leu	Thr	Leu 365	Gly	Leu	Leu	
Arg	Asp 370	Gly	Lys	Gln	Val	Asn 375	Val	Asn	Leu	Glu	Leu 380	Gln	Gln	Ser	Ser	
Gln 385	Asn	Gln	Val	Asp	Ser 390	Ser	Ser	Ile	Phe	Asn 395	Gly	Ile	Glu	Gly	Ala 400	
Glu	Met	Ser	Asn	Lys 405	Gly	Lys	Asp	Gln	Gly 410	Val	Val	Val	Asn	Asn 415	Val	
Lys	Thr	Gly	Thr 420	Pro	Ala	Ala	Gln	Ile 425	Gly	Leu	Lys	Lys	Gly 430	Asp	Val	
Ile	Ile	Gly 435	Ala	Asn	Gln	Gln	Ala 440	Val	Lys	Asn	Ile	Ala 445	Glu	Leu	Arg	
Lys	Val 450	Leu	Asp	Ser	Lys	Pro 455	Ser	Val	Leu	Ala	Leu 460	Asn	Ile	Gln	Arg	
Gly 465	Asp	Ser	Thr	Ile	Tyr 470	Leu	Leu	Met	Gln							
<212	> 9 > 142 > AD > E. 0	N														
<400 atga		aa o	ccaca	attag	gc ac	ctgag	gtgca	a cto	gete	ctga	gttt	aggt	tt ç	ggcgt	tatct	60
															ccaagc	120
ctto	cacc	ega t	gcto	cgaaa	aa go	gtgat	gaat	t tca	gtgg	gtca	gcat	taad	cgt a	agaaq	ggtagc	180
acaa	ccgt	ta a	ataco	gccgo	cg ta	tgc	cgcgt	aat	ttc	cagc	agtt	ctto	cgg t	gato	gattct	240
ccgt	tctc	gcc a	aggaa	aggtt	c to	cgtt	ccaç	g ago	etete	ccgt	tctç	gccaç	ggg t	ggco	cagggc	300
ggta	atgo	gtg g	gegge	ccago	ca ac	agaa	atto	ato	gcgc	ctgg	gtto	ccggc	cgt d	catca	attgat	360
gccg	gataa	ag g	gctat	gtc	gt ca	ccaa	caac	c cac	gtto	gttg	ataa	acgco	gac (ggtca	attaaa	420

gttcaactga	gcgatggccg	taagttcgac	gcgaagatgg	ttggcaaaga	teegegetet	480
gatatcgcgc	tgatccaaat	ccagaacccg	aaaaacctga	ccgcaattaa	gatggcggat	540
tctgatgcac	tgcgcgtggg	tgattacacc	gtagcgattg	gtaacccgtt	tggtctgggc	600
gagacggtaa	cttccgggat	tgtctctgcg	ctggggcgta	gcggcctgaa	tgccgaaaac	660
tacgaaaact	tcatccagac	cgatgcagcg	attaatcgtg	gtaacgccgg	tggtgcgctg	720
gttaacctga	acggcgaact	gatcggtatc	aacaccgcga	tcctcgcacc	ggacggcggc	780
aacatcggta	tcggttttgc	tatcccgagt	aacatggtga	aaaacctgac	ctcgcagatg	840
gtggaatacg	gccaggtgaa	acgcggtgag	ctgggtatta	tggggactga	gctgaactcc	900
gaactggcga	aagcgatgaa	agttgacgcc	cagcgcggtg	ctttcgtaag	ccaggttctg	960
cctaattcct	ccgctgcaaa	agcgggcatt	aaagcgggtg	atgtgatcac	ctcactgaac	1020
ggtaagccga	tcagcagctt	tgccgcactg	cgtgctcagg	tgggtactat	gccggtaggc	1080
agcaaactga	ccctgggctt	actgcgcgac	ggtaagcagg	ttaacgtgaa	cctggaactg	1140
cagcagagca	gccagaatca	ggttgattcc	agctccatct	tcaacggcat	tgaaggcgct	1200
gagatgagca	acaaaggcaa	agatcagggc	gtggtagtga	acaacgtgaa	aacgggcact	1260
ccggctgcgc	agatcggcct	gaagaaaggt	gatgtgatta	ttggcgcgaa	ccagcaggca	1320
gtgaaaaaca	tcgctgaact	gcgtaaagtt	ctcgacagca	aaccgtctgt	gctggcactc	1380
aacattcagc	gcggcgacag	caccatctac	ctgttaatgc	agtaa		1425

<210> 10 <211> 474

<212> PRT <213> E. coli

<400> 10

Met Lys Lys Thr Thr Leu Ala Leu Ser Ala Leu Ala Leu Ser Leu Gly 1 5 15

Leu Ala Leu Ser Pro Leu Ser Ala Thr Ala Ala Glu Thr Ser Ser Ala 20 25 30

Thr Thr Ala Gln Gln Met Pro Ser Leu Ala Pro Met Leu Glu Lys Val 35 40 45

Met Pro Ser Val Val Ser Ile Asn Val Glu Gly Ser Thr Thr Val Asn 50 60

Thr Pro Arg Met Pro Arg Asn Phe Gln Gln Phe Phe Gly Asp Asp Ser 65 70 75 75 80

Pro Phe Cys Gln Glu Gly Ser Pro Phe Gln Ser Ser Pro Phe Cys Gln

				85					90					95	
Gly	Gly	Gln	Gly 100	Gly	Asn	Gly	Gly	Gly 105	Gln	Gln	Gln	Lys	Phe 110	Met	Ala
Leu	Gly	Ser 115	Gly	Val	Ile	Ile	Asp 120	Ala	Asp	Lys	Gly	Tyr 125	Val	Val	Thr
Asn	Asn 130	His	Val	Val	Asp	Asn 135	Ala	Thr	Val	Ile	Lys 140	Val	Gln	Leu	Ser
Asp 145	Gly	Arg	Lys	Phe	Asp 150	Ala	Lys	Met	Val	Gly 155	Lys	Asp	Pro	Arg	Ser 160
Asp	Ile	Ala	Leu	Ile 165	Gln	Ile	Gln	Asn	Pro 170	Lys	Asn	Leu	Thr	Ala 175	Ile
Lys	Met	Ala	Asp 180	Ser	Asp	Ala	Leu	Arg 185	Val	Gly	Asp	Tyr	Thr 190	Val	Ala
Ile	Gly	Asn 195	Pro	Phe	Gly	Leu	Gly 200	Glu	Thr	Val	Thr	Ser 205	Gly	Ile	Val
Ser	Ala 210	Leu	Gly	Arg	Ser	Gly 215	Leu	Asn	Ala	Glu	Asn 220	Tyr	Glu	Asn	Phe
Ile 225	Gln	Thr	Asp	Ala	Ala 230	Ile	Asn	Arg	Gly	Asn 235	Ala	Gly	Gly	Ala	Leu 240
Val	Asn	Leu	Asn	Gly 245	Glu	Leu	Ile	Gly	Ile 250	Asn	Thr	Ala	Ile	Leu 255	Ala
Pro	Asp	Gly	Gly 260	Asn	Ile	Gly	Ile	Gly 265	Phe	Ala	Ile	Pro	Ser 270	Asn	Met
Val	Lys	Asn 275	Leu	Thr	Ser	Gln	Met 280	Val	Glu	Tyr	Gly	Gln 285	Val	Lys	Arg
Gly	Glu 290	Leu	Gly	Ile	Met	Gly 295	Thr	Glu	Leu	Asn	Ser 300	Glu	Leu	Ala	Lys
Ala 305	Met	Lys	Val	Asp	Ala 310	Gln	Arg	Gly	Ala	Phe 315	Val	Ser	Gln	Val	Leu 320
Pro	Asn	Ser	Ser	Ala 325	Ala	Lys	Ala	Gly	Ile 330	Lys	Ala	Gly	Asp	Val 335	Ile

Gln	Val	Gly 355	Thr	Met	Pro	Val	Gly 360	Ser	Lys	Leu	Thr	Leu 365	Gly	Leu	Leu
Arg	Asp 370	Gly	Lys	Gln	Val	As n 375	Val	Asn	Leu	Glu	Leu 380	Gln	Gln	Ser	Ser
Gln 385	Asn	Gln	Val	Asp	Ser 390	Ser	Ser	Ile	Phe	Asn 395	Gly	Ile	Glu	Gly	Ala 400
Glu	Met	Ser	Asn	Lys 405	Gly	Lys	Asp	Gln	Gly 410	Val	Val	Val	Asn	Asn 415	Val
Lys	Thr	Gly	Thr 420	Pro	Ala	Ala	Gln	Ile 425	Gly	Leu	Lys	Lys	Gly 430	Asp	Val
Ile	Ile	Gly 435	Ala	Asn	Gln	Gln	Ala 440	Val	Lys	Asn	Ile	Ala 445	Glu	Leu	Arg
Lys	Val 450	Leu	Asp	Ser	Lys	Pro 455	Ser	Val	Leu	Ala	Leu 460	Asn	Ile	Gln	Arg
Gly 465	Asp	Ser	Thr	Ile	Tyr 470	Leu	Leu	Met	Gln						
<210 <211 <212 <213	> 107 > PR	Т	cia Ari	tificial											
<220 <223		NF40-	-gLl												
<400 Asp 1	> 11 Ile	Gln	Met	Thr 5	Gln	Ser	Pro	Ser	Ser 10	Leu	Ser	Ala	Ser	Val 15	Gly
Asp	Arg	Val	Thr 20	Ile	Thr	Cys	Lys	Ala 25	Ser	Gln	Asn	Val	Gly 30	Thr	Asn
Val	Ala	Trp 35	Tyr	Gln	Gln	Lys	Pro 40	Gly	Lys	Ala	Pro	Lys 45	Ala	Leu	Ile
Tyr	Ser 50	Ala	Ser	Phe	Leu	Tyr 55	Ser	Gly	Val	Pro	Tyr 60	Arg	Phe	Ser	Gly
Ser	Gly	Ser	Gly	Thr	Asp	Phe	Thr	Leu	Thr	Ile	Ser	Ser	Leu	Gln	Pro

5

10

Thr Ser Leu Asn Gly Lys Pro Ile Ser Ser Phe Ala Ala Leu Arg Ala 340

70 65 75 80 Glu Asp Phe Ala Thr Tyr Tyr Cys Gln Gln Tyr Asn Ile Tyr Pro Leu 90 Thr Phe Gly Gln Gly Thr Lys Val Glu Ile Lys 100 <210> 12 <211> 118 <212> PRT <213> Secuencia Artificial <220> <223> gh3h TNF40.4 <400> 12 Glu Val Gln Leu Val Glu Ser Gly Gly Gly Leu Val Gln Pro Gly Gly Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Tyr Val Phe Thr Asp Tyr Gly Met Asn Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp Met Gly Trp Ile Asn Thr Tyr Ile Gly Glu Pro Ile Tyr Ala Asp Ser Val Lys Gly Arg Phe Thr Phe Ser Leu Asp Thr Ser Lys Ser Thr Ala Tyr 70 Leu Gln Met Asn Ser Leu Arg Ala Glu Asp Thr Ala Val Tyr Tyr Cys Ala Arg Gly Tyr Arg Ser Tyr Ala Met Asp Tyr Trp Gly Gln Gly Thr Leu Val Thr Val Ser Ser 115 <210> 13 <211> 214 <212> PRT <213> Secuencia Artificial <220> <223> Cadena ligera injertada

10

15

<400> 13

Asp	Ile	GIn	Met	Thr	GIn	Ser	Pro	Ser	Ser	Leu	Ser	Ala	Ser	Val	GLY
1				5					10					15	

Asp Arg Val Thr Ile Thr Cys Lys Ala Ser Gln Asn Val Gly Thr Asn 20 25 30

Val Ala Trp Tyr Gln Gln Lys Pro Gly Lys Ala Pro Lys Ala Leu Ile 35 40 45

Tyr Ser Ala Ser Phe Leu Tyr Ser Gly Val Pro Tyr Arg Phe Ser Gly 50 60

Ser Gly Ser Gly Thr Asp Phe Thr Leu Thr Ile Ser Ser Leu Gln Pro 65 70 75 80

Glu Asp Phe Ala Thr Tyr Tyr Cys Gln Gln Tyr Asn Ile Tyr Pro Leu 85 90 95

Thr Phe Gly Gln Gly Thr Lys Val Glu Ile Lys Arg Thr Val Ala Ala 100 105 110

Pro Ser Val Phe Ile Phe Pro Pro Ser Asp Glu Gln Leu Lys Ser Gly 115 120 125

Thr Ala Ser Val Val Cys Leu Leu Asn Asn Phe Tyr Pro Arg Glu Ala 130 135 140

Lys Val Gln Trp Lys Val Asp Asn Ala Leu Gln Ser Gly Asn Ser Gln 145 150 155 160

Glu Ser Val Thr Glu Gln Asp Ser Lys Asp Ser Thr Tyr Ser Leu Ser 165 170 175

Ser Thr Leu Thr Leu Ser Lys Ala Asp Tyr Glu Lys His Lys Val Tyr 180 185 190

Ala Cys Glu Val Thr His Gln Gly Leu Ser Ser Pro Val Thr Lys Ser 195 200 205

Phe Asn Arg Gly Glu Cys 210

<210> 14

<211> 229

<212> PRT

5 <213> Secuencia Artificial

<220>

<223> Cadena pesada injertada

<400> 14

Glu 1	Val	Gln	Leu	Val 5	Glu	Ser	Gly	Gly	Gly 10	Leu	Val	Gln	Pro	Gly 15	Gly
Ser	Leu	Arg	Leu 20	Ser	Cys	Ala	Ala	Ser 25	Gly	Tyr	Val	Phe	Thr 30	Asp	Tyr
Gly	Met	Asn 35	Trp	Val	Arg	Gln	Ala 40	Pro	Gly	Lys	Gly	Leu 45	Glu	Trp	Met
Gly	Trp 50	Ile	Asn	Thr	Tyr	Ile 55	Gly	Glu	Pro	Ile	Tyr 60	Ala	Asp	Ser	Val
Lys 65	Gly	Arg	Phe	Thr	Phe 70	Ser	Leu	Asp	Thr	Ser 75	Lys	Ser	Thr	Ala	Tyr 80
Leu	Gln	Met	Asn	Ser 85	Leu	Arg	Ala	Glu	Asp 90	Thr	Ala	Val	Tyr	Tyr 95	Cys
Ala	Arg	Gly	Tyr 100	Arg	Ser	Tyr	Ala	Met 105	Asp	Tyr	Trp	Gly	Gln 110	Gly	Thr
Leu	Val	Thr 115	Val	Ser	Ser	Ala	Ser 120	Thr	Lys	Gly	Pro	Ser 125	Val	Phe	Pro
Leu	Ala 130	Pro	Ser	Ser	Lys	Ser 135	Thr	Ser	Gly	Gly	Thr 140	Ala	Ala	Leu	Gly
Cys 145	Leu	Val	Lys	Asp	Tyr 150	Phe	Pro	Glu	Pro	Val 155	Thr	Val	Ser	Trp	Asn 160
Ser	Gly	Ala	Leu	Thr 165	Ser	Gly	Val	His	Thr 170	Phe	Pro	Ala	Val	Leu 175	Gln
Ser	Ser	Gly	Leu 180	Tyr	Ser	Leu	Ser	Ser 185	Val	Val	Thr	Val	Pro 190	Ser	Ser
Ser	Leu	Gly 195	Thr	Gln	Thr	Tyr	Ile 200	Cys	Asn	Val	Asn	His 205	Lys	Pro	Ser
Asn	Thr 210	Lys	Val	Asp	Lys	Lys 215	Val	Glu	Pro	Lys	Ser 220	Cys	Asp	Lys	Thr
His 225	Thr	Cys	Ala	Ala											
	_		cia Ar	tificial	l										
<220 <223	> > Ce	badoı	oligo	nuclé	éotido	1									
<400 gcate	> 15 cataat	tttctt	ttta co	ctc	2	4									

	<210> 16 <211> 24 <212> ADN <213> Secuencia Artificial	
5	<220> <223> Cebador oligonucléotido	
	<400> 16 gggaaatgaa cctgagcaaa acgc	24
10	<210> 17 <211> 24 <212> ADN <213> Secuencia Artificial	
	<220> <223> Cebador oligonucléotido	
15	<400> 17 gtgccaggag atgcagcagc ttgc	24
20	<210> 18 <211> 21 <212> ADN <213> Secuencia Artificial	
	<220> <223> Cebador oligonucléotido	
	<400> 18 tttgcagcca gtcagaaagt g 2	1
25	<210> 19 <211> 24 <212> ADN <213> Secuencia Artificial	
30	<220> <223> Cebador oligonucléotido	
	<400> 19 ctgcctgcga ttttcgccgg aacg	24
35	<210> 20 <211> 24 <212> ADN <213> Secuencia Artificial	
	<220> <223> Cebador oligonucléotido	
40	<400> 20 cgcatggtac gtgccacgat atcc	24

REIVINDICACIONES

- 1. Una célula bacteriana gramnegativa recombinante que comprende:
- a. un gen Tsp mutado, en la que el gen Tsp mutado codifica una proteína Tsp que tiene un 50 % o menos de la actividad proteasa de una Tsp no mutada de tipo silvestre o es un gen Tsp mutado por desactivación génica;
- en la que la célula es isogénica de una célula W3110 de E. coli, excepto por el gen Tsp mutado y opcionalmente una secuencia polinucleotídica que codifica una proteína de interés.
 - **2.** Una célula según la reivindicación 1, en la que el gen Tsp mutado por desactivación génica comprende una mutación en el codón de iniciación génica y/o uno o más codones de terminación colocados en dirección 3' del codón de iniciación génica y en dirección 5' del codón de terminación génica.
- 10 **3.** Una célula según las reivindicaciones 1 o 2, en la que la célula comprende un gen Tsp mutado por desactivación génica.
 - **4.** Una célula según cualquiera de las reivindicaciones 1 a 3, en la que la célula es la cepa MXE001 depositada en la National Collection of Type Cultures, HPA, RU con número de acceso NCTC13444.
 - 5. Una célula bacteriana gramnegativa recombinante que comprende:
- a. un gen Tsp mutado, en la que el gen Tsp mutado codifica una proteína Tsp que tiene un 50 % o menos de la actividad proteasa de una Tsp no mutada de tipo silvestre o es un gen Tsp mutado por desactivación génica; y
 - b. un gen DegP mutado que codifica una proteína DegP que tiene actividad chaperona pero no actividad proteasa,
 - en la que la célula es isogénica de una célula W3110 de E. coli, excepto por los genes Tsp y DegP mutados y opcionalmente una secuencia polinucleotídica que codifica una proteína de interés.
- 20 **6.** Una célula según la reivindicación 5, en la que la célula es la cepa MXE005 depositada en la National Collection of Type Cultures, HPA, RU con número de acceso NCTC13448.
 - 7. Una célula bacteriana gramnegativa recombinante que comprende:
 - a. un gen Tsp mutado, en la que el gen Tsp mutado codifica una proteína Tsp que tiene un 50 % o menos de la actividad proteasa de una Tsp no mutada de tipo silvestre o es un gen Tsp mutado por desactivación génica; y
- b. un gen ptr mutado por desactivación génica,

- en la que la célula es isogénica de una célula W3110 de E. coli, excepto por los genes Tsp y ptr mutados y opcionalmente una secuencia polinucleotídica que codifica una proteína de interés.
- **8.** Una célula según la reivindicación 7, en la que la célula es la cepa MXE004 depositada en la National Collection of Type Cultures, HPA, RU con número de acceso NCTC13447.
- **9.** Una célula según cualquier reivindicación anterior, en la que el gen DegP mutado, el gen ptr mutado y/o el gen Tsp mutado se mutan para comprender uno o más sitios marcadores de restricción.
 - **10.** Una célula según la reivindicación 9, en la que el gen ptr mutado por desactivación génica y/o el gen Tsp mutado por desactivación génica se mutan para comprender un sitio marcador de restricción que comprende un codón de terminación en marco.
- 35 **11.** Una célula según la reivindicación 9, en la que el sitio marcador de restricción es un sitio de restricción *Ase I.*
 - **12.** Una célula según cualquiera de las reivindicaciones 9 a 11, en la que el gen ptr mutado por desactivación génica y/o el gen Tsp mutado por desactivación génica comprenden un sitio marcador de restricción creado por una mutación con cambio de sentido en el codón de iniciación génica opcionalmente una o más mutaciones puntuales adicionales.
 - 13. Una célula según la reivindicación 12, en la que el sitio marcador de restricción es un sitio marcador *EcoR I*.
 - **14.** Una célula según cualquiera de las reivindicaciones 7, o 9 a 13, en la que el gen ptr mutado por desactivación génica comprende la SEQ ID NO: 6.
- **15.** Una célula según cualquiera de las reivindicaciones anteriores, en la que el gen Tsp mutado por desactivación génica comprende la SEQ ID NO: 3.
 - 16. Una célula según cualquiera de las reivindicaciones 5, 6, o 9 a 15, en la que el gen DegP mutado

comprende la mutación S210A.

- 17. Una célula según la reivindicación 16, en la que el gen DegP mutado comprende la SEQ ID NO: 9.
- **18.** Una célula según cualquier reivindicación anterior, en la que la célula comprende adicionalmente una secuencia polinucleotídica que codifica una proteína de interés.
- 5 **19.** Una célula según la reivindicación 18, en la que la secuencia polinucleotídica que codifica la proteína de interés es exógena.
 - **20.** Una célula según la reivindicación 19, en la que la célula comprende un módulo de expresión o un vector que comprende la secuencia polinucleotídica que codifica la proteína de interés.
- **21.** Una célula según cualquiera de las reivindicaciones 18 a 20, en la que la proteína de interés es un anticuerpo o un fragmento de unión a antígeno del mismo.
 - **22.** Una célula según la reivindicación 21, en la que el anticuerpo o fragmento de unión a antígeno del mismo es específico de TNF.
 - 23. Un método para producir una proteína de interés recombinante que comprende expresar la proteína de interés recombinante en una célula bacteriana gramnegativa recombinante como se define en cualquiera de las reivindicaciones 1 a 22.

Figura 1a Ptr de tipo silvestre (proteasa III) 5' * M P R S T W F K A L L L V TGA ATG CCC CGC AGC ACC TGG TTC AAA GCA TTA TTG TTG TTA GTT A L W A P L S GCC CTT TGG GCA CCC TTA AGT Δptr mutado (proteasa III) 5' EcoR I * I P R S T W F K A L L L V TGA ATT CCC CGC AGC ACC TGG TTC AAA GCA TTA TTG TTG TTA GTT

A L W A H * C GCC CTT TGG GCA C*AT TAA T*GT

Ase I

Figura 1b

Tsp de tipo silvestre 5'

M N M F F R L T A L A G L L A ATG AAC ATG TIT TIT AGG CTT ACC GCG TTA GCT GGC CTG CTT GCA

I A G Q T F A ATA GCA GGC CAG ACC TTC GCT

∆Tsp mutado 5'

EcoR I

M N S F L G L P R * L A C L Q \underline{ATG} AAT \underline{TCG} TTT TTA GGC TTA CCG CGT TAG CTG GCC TGC TTG CAA

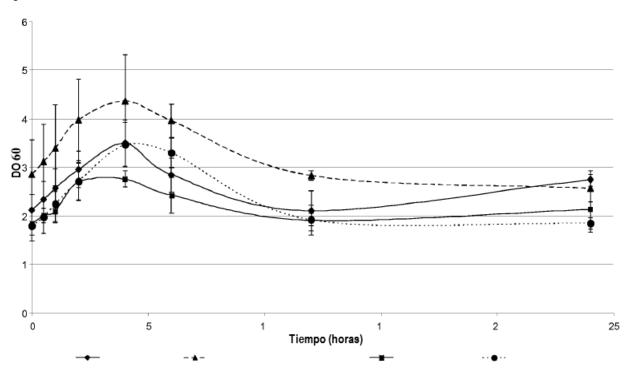
Ase I

* Q A R H * L TAG CAG GCC AGA C*AT TAA T*TG

Figura 1c

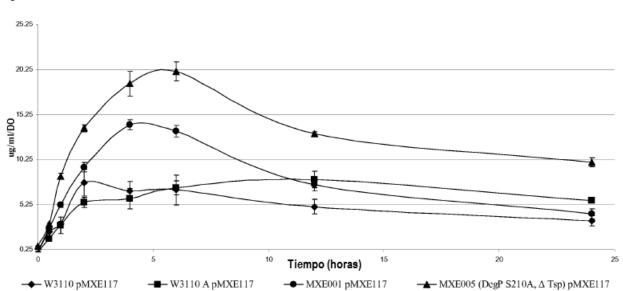
DegP de tipo silvestre

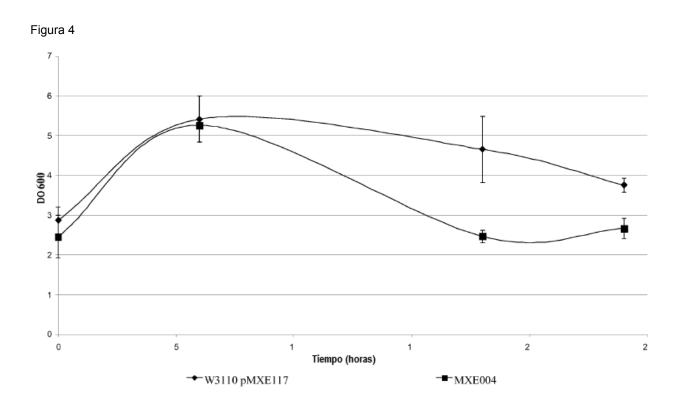
202 D A A I N R G N $\bf S$ G G 949 GAT GCA GCG ATC AAC CGT GGT AAC $\it TCC$ GGT GGT

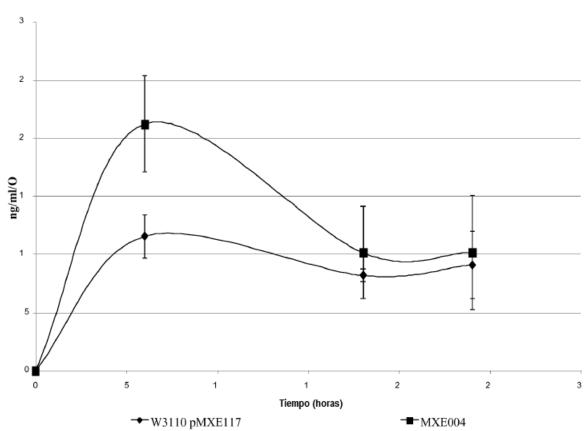

DegP mutado S210A

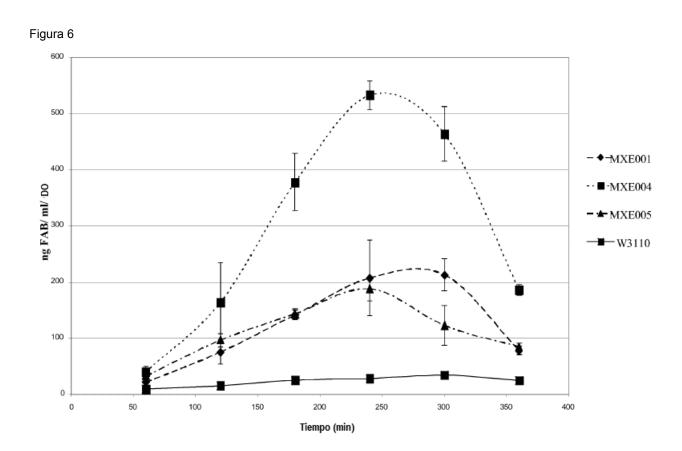
Ase I

202 D A A I N R G N A G G


949 GAT GCA GCG ATT AAT CGT GGT AAC GCC GGT GGT




W3110 pMXE117 MXE005 (DegP S210A, Δ Tsp) W3110 pMXE117 MXE001(Δ Tsp) pMXE117


Figura 3

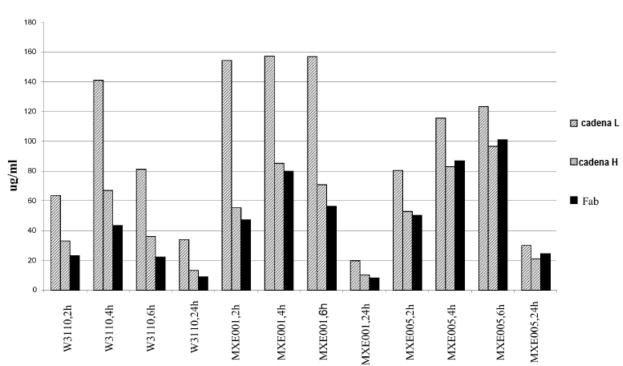
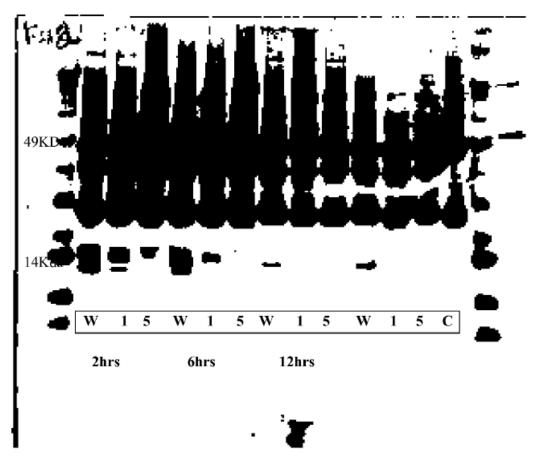



Figura 8

W = W3110

 $1 = MXE001 (\Delta Tsp)$ $5 = MXE005 (\Delta Tsp, DegP S210A)$

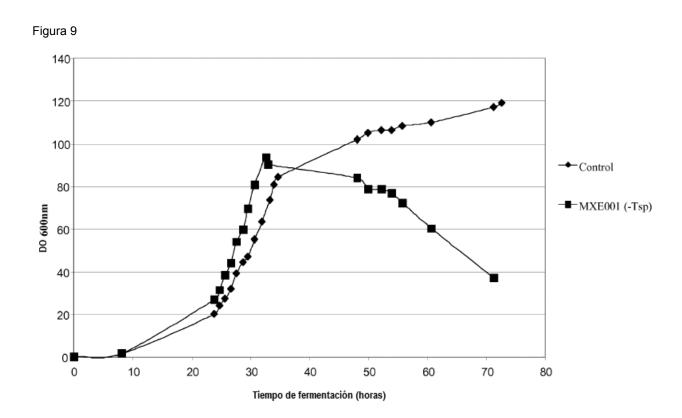


Figura 10

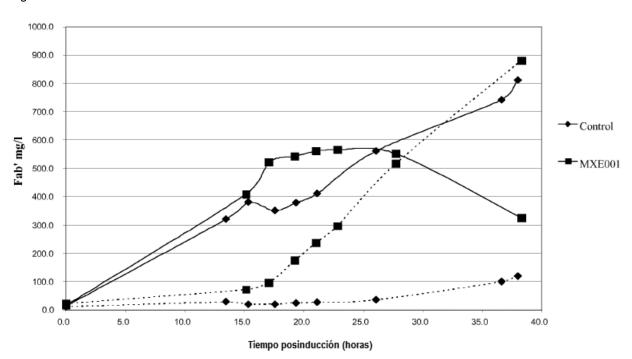


Figura 11

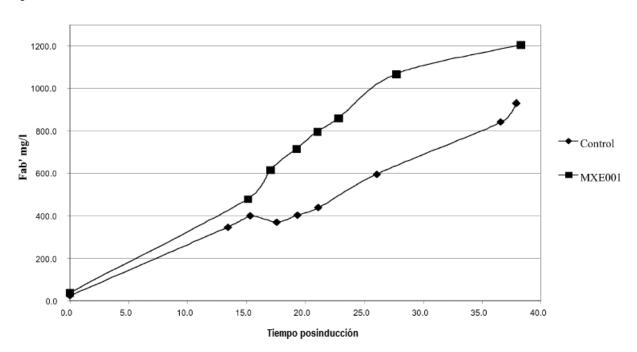


Figura 12

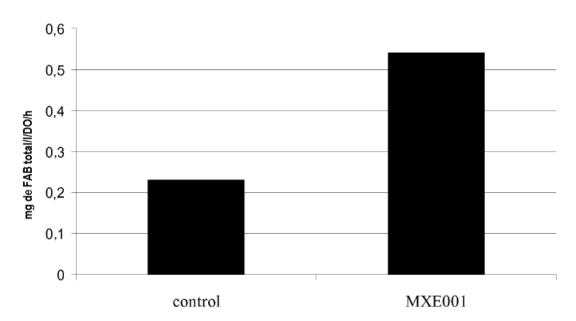


Figura 13

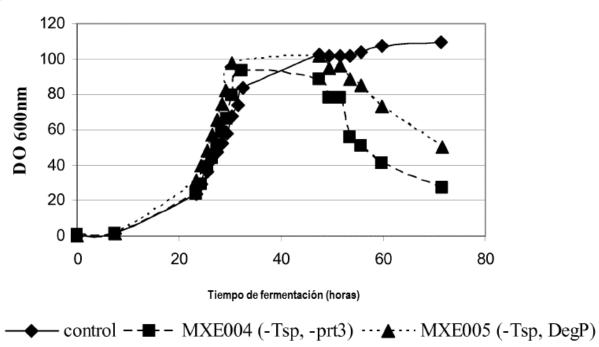
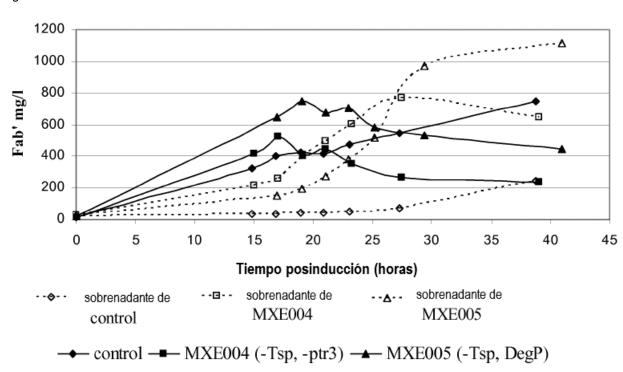
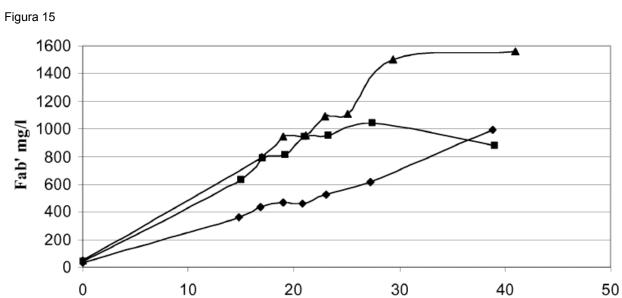
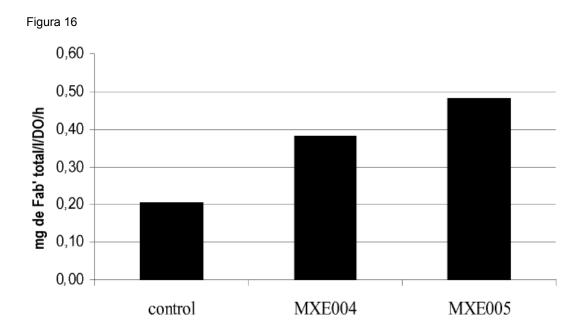
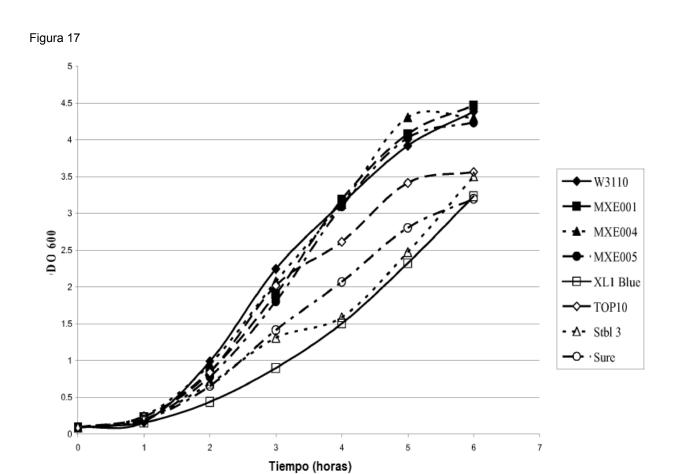




Figura 14





0 10 20 30 40

Tiempo posinducción (horas)

→ control → MXE004 (-Tsp, -prt3) → MXE005 (-Tsp, DegP)

