



# OFICINA ESPAÑOLA DE PATENTES Y MARCAS

ESPAÑA



11) Número de publicación: 2 697 697

51 Int. Cl.:

C07D 213/04 (2006.01) **C07D 405/06** C07D 239/24 (2006.01) **C07D 405/10** (2006.01) A61K 31/505 (2006.01) **C07D 405/12** (2006.01) A61K 31/44 (2006.01) **C07D 239/42** (2006.01) A61P 35/00 (2006.01) **CO7D 413/12** (2006.01) C07D 403/12 (2006.01) **CO7D 417/12** (2006.01) C07D 401/14 (2006.01) **C07D 471/04** (2006.01) C07D 405/14 (2006.01) **C07D 487/04** (2006.01) C07D 401/12 (2006.01)

C07D 401/12 (2006.01) C07D 403/14 (2006.01)

(12)

# TRADUCCIÓN DE PATENTE EUROPEA

T3

(86) Fecha de presentación y número de la solicitud internacional: 14.03.2014 PCT/CN2014/073444

(87) Fecha y número de publicación internacional: 18.09.2014 WO14139465

96) Fecha de presentación y número de la solicitud europea: 14.03.2014 E 14764299 (5)

(97) Fecha y número de publicación de la concesión europea: 12.09.2018 EP 2970120

(54) Título: Compuestos de pirimidina y piridina novedosos y su uso

(30) Prioridad:

15.03.2013 WO PCT/CN2013/072690

(45) Fecha de publicación y mención en BOPI de la traducción de la patente: **25.01.2019** 

(73) Titular/es:

HUTCHISON MEDIPHARMA LIMITED (100.0%) Building 4, 720 Cailun Road Hi-tech Park Shanghai 201203, CN

(72) Inventor/es:

SU, WEI-GUO; ZHANG, WEIHAN y LI, JINSHUI

(74) Agente/Representante:

**LEHMANN NOVO, María Isabel** 

#### **DESCRIPCIÓN**

Compuestos de pirimidina y piridina novedosos y su uso

#### Campo de la invención

5

10

15

20

La presente invención se refiere a compuestos de pirimidina y piridina novedosos, composiciones farmacéuticas que los contienen, un proceso para prepararlos y a estos compuestos para su uso en terapia.

#### Antecedentes de la invención

El factor de crecimiento de fibroblastos (FGF, por sus siglas en inglés) se ha reconocido como un mediador importante en muchos procesos fisiológicos. La familia de receptores del factor de crecimiento de fibroblastos de los receptores tirosina-cinasa está constituida por cuatro miembros (FGFR1, FGFR2, FGFR3 y FGFR4). Los factores de crecimiento de fibroblastos (FGF) y sus receptores (FGFR) desempeñan funciones importantes en la proliferación celular, diferenciación celular, migración celular, supervivencia celular, síntesis de proteínas y angiogénesis. Existen muchas pruebas que relacionan de manera directa la señalización por FGF con el cáncer. La desregulación de la señalización por FGFR se ha implicado en varios tipos de cáncer, incluidos el cáncer de pulmón no microcítico (CPNM) escamoso, cáncer de pulmón microcítico (CPM), carcinomas gástrico, de hígado, de mama, de ovario, de endometrio y de vejiga, tal como FGFR1 que se ha observado que está amplificado en un 22% de los CPNM escamosos, se ha informado de amplificaciones de FGFR2 hasta en un 10% de los cánceres gástricos y se ha detectado la mutación de FGFR3 a aproximadamente un 50-60% de la invasión no muscular y un 17% de cánceres de vejiga de grado elevado, lo que ha estimulado un interés significativo en los FGFR como dianas para la intervención terapéutica. En consecuencia, se necesitan nuevos compuestos y métodos para modular los genes de FGFR y tratar los trastornos proliferativos, incluido el cáncer. La presente invención aborda estas necesidades.

#### Compendio de la invención

La presente invención proporciona un compuesto de fórmula (I):

o una sal farmacéuticamente aceptable de este;

25 donde

30

X es CH<sub>2</sub>, Y se selecciona entre CH<sub>2</sub>, O o S(O)<sub>2</sub>; o X e Y junto con el enlace entre ellos forman -CH=CH- o -C≡C-;

G es N o CH;

 $R^1$  es arilo o heteroarilo, que está sustituido opcionalmente con uno o más sustituyentes seleccionados independientemente entre halo,  $-NR^6R^7$ ,  $-OR^8$ ,  $-S(O)_nR^9$ ,  $-(CH_2)_r-C(O)R^{10}$ , -CN,  $-C(O)NR^6R^7$ ,  $-NR^6C(O)R^{10}$ ,  $-NR^6S(O)_nR^9$ ,  $-NR^6S(O)_nNR^{11}R^{12}$ ,  $-NR^6C(O)OR^8$ ,  $-NR^6C(O)NR^{11}R^{12}$ ,  $-NO_2$ ,  $-S(O)_nNR^6R^7$ , oxo, alquilo sustituido opcionalmente,  $-(CH_2)_m$ -heterociclilo sustituido opcionalmente,  $-(CH_2)_m$ -heterociclilo sustituido opcionalmente; elquenilo sustituido opcionalmente;

 $R^2$  se escoge independientemente entre alquilo  $C_1$ - $C_6$  sustituido opcionalmente, alcoxi  $C_1$ - $C_6$  sustituido opcionalmente, o cicloalquilo  $C_3$ - $C_8$  sustituido opcionalmente;

35 R<sup>3</sup>, R<sup>4</sup> se escogen independientemente entre hidrógeno, halógeno, -CN, o alguilo C<sub>1</sub>-C<sub>6</sub> sustituido opcionalmente,

R<sup>5</sup> es alquilo C<sub>1</sub>-C<sub>6</sub>,

o R³ y R⁵ junto con el átomo de O al cual R⁵ está unido y el enlace entre ellos forman un anillo heterocíclico que contiene oxi de 5 o 6 miembros;

n es 1 o 2;

40 m, p, q y r se escogen independientemente entre 0, 1, 2, 3, 4, 5, 6;

R<sup>6</sup>, R<sup>7</sup>, R<sup>8</sup>, R<sup>9</sup>, R<sup>10</sup>, R<sup>11</sup> y R<sup>12</sup> se seleccionan independientemente entre hidrógeno, alquilo, cicloalquilo, arilo, heteroarilo, heterociclilo, donde cada uno de los cuales, excepto para el hidrógeno, está sustituido opcionalmente con uno o más

sustituyentes seleccionados independientemente entre halo, hidroxilo, mercapto, oxo, alquilo, cicloalquilo, heterociclilo, amina sustituida opcionalmente y amida sustituida opcionalmente,

donde cada grupo anterior sustituido opcionalmente para el cual no se designa(n) específicamente el(los) sustituyente(s), puede estar no sustituido o sustituido independientemente con uno o más, tal como uno. dos o tres. 5 sustituyentes escogidos independientemente entre alquilo C<sub>1</sub>-C<sub>6</sub>, alquenilo C<sub>2</sub>-C<sub>6</sub>, alquinilo C<sub>2</sub>-C<sub>6</sub>, cicloalquilo, arilo, heterociclilo, heteroarilo, aril- (alquil C<sub>1</sub>-C<sub>6</sub>)-, heteroaril-(alquil C<sub>1</sub>-C<sub>6</sub>)-, haloalquil C<sub>1</sub>-C<sub>6</sub>-, -O(alquilo C<sub>1</sub>-C<sub>6</sub>), -O(alquenilo  $C_2-C_6), -O(alquil\ C_1-C_6) \\ fenilo, -(alquil\ C_1-C_6) - OH, -(alquil\ C_1-C_6) - SH, -(alquil\ C_1-C_6) - O-(alquil\ C_1-C_6), -O(haloalquilo\ C_1-C_6) \\ fenilo, -(alquil\ C_1-C_6) - OH, -($  $C_1-C_6$ ), halo, -OH, mercapto, -NH<sub>2</sub>, -(alquil  $C_1-C_6$ )-NH<sub>2</sub>, -N(alquilo  $C_1-C_6$ )<sub>2</sub>, -NH(alquilo  $C_1-C_6$ ), -N(alquil  $C_1-C_6$ )((alquil  $C_1-C_6$ )fenilo), -NH((alquil  $C_1-C_6$ )fenilo), ciano, nitro, oxo, -C(O)-OH, -C(O)O(alquilo  $C_1-C_6$ ), -CON(alquilo  $C_1-C_6$ )<sub>2</sub>, -CONH(alquilo C<sub>1</sub>-C<sub>6</sub>), -CONH<sub>2</sub>, -NHC(O)(alquilo C<sub>1</sub>-C<sub>6</sub>), -NHC(O)(fenilo), -N(alquil C<sub>1</sub>-C<sub>6</sub>)C(O)(alquilo C<sub>1</sub>-C<sub>6</sub>), -N(alquil 10  $C_1-C_6$ )C(O)(fenilo), -C(O)(alquilo  $C_1-C_6$ ), -C(O)(alquilo  $C_1-C_6$ ), -C(O)(haloalquilo  $C_1-C_6$ ), -OC(O)(alquilo  $C_1-C_6$ )  $S(O)_2$ -(alquilo  $C_1$ - $C_6$ ),  $-S(O)_2$ -(alquilo  $C_1$ - $C_6$ ),  $-S(O)_2$ -fenilo,  $-S(O)_2$ -(haloalquilo  $C_1$ - $C_6$ ),  $-S(O)_2$ NH<sub>2</sub>,  $-S(O)_2$ NH<sub>4</sub>,  $-S(O)_2$ NH<sub>4</sub>,  $-S(O)_2$ NH<sub>4</sub>,  $-S(O)_2$ NH<sub>4</sub>,  $-S(O)_2$ NH<sub>5</sub>,  $-S(O)_2$ NH<sub>6</sub>,  $-S(O)_2$ NH<sub>7</sub>,  $-S(O)_2$ NH<sub>7</sub>,  $-S(O)_2$ NH<sub>7</sub>,  $-S(O)_2$ NH<sub>8</sub>,  $-S(O)_2$ NH<sub>9</sub>,  $-S(O)_2$ NH<sub>9</sub>, -S(OC<sub>6</sub>), -S(O)<sub>2</sub>NH(fenilo), -NHS(O)<sub>2</sub>(alquilo C<sub>1</sub>-C<sub>6</sub>), -NHS(O)<sub>2</sub>(fenilo), y -NHS(O)<sub>2</sub>(haloalquilo C<sub>1</sub>-C<sub>6</sub>), en los cuales cada uno de fenilo, arilo, heterociclilo y heteroarilo está sustituido opcionalmente con uno o más sustituyentes elegidos entre halo, cicloalquilo, heterociclilo, alquilo  $C_1$ - $C_4$ , (haloalquil  $C_1$ - $C_6$ )-, -O(alquilo  $C_1$ - $C_6$ ), (alquil  $C_1$ - $C_6$ )-OH, -(alquilo  $C_1$ - $C_6$ ), -O(haloalquilo  $C_1$ - $C_6$ ), ciano, nitro, -NH<sub>2</sub>, -C(O)-OH, -C(O)O(alquilo  $C_1$ - $C_6$ ), -CON(alquilo  $C_1$ - $C_6$ )<sub>2</sub>, -15  $CONH(alquilo\ C_1-C_6),\ -CONH_2,\ -NHC(O)(alquilo\ C_1-C_6),\ -NH(alquil\ C_1-C_6)C(O)(alquil\ C_1-C_6),\ -SO_2(alquilo\ C_1-C_6),\ -NH(alquil\ C_1-C_6)C(O)(alquil\ C_1-C_6),\ -SO_2(alquilo\ C_1-C_6),\ -NH(alquil\ C_1-C_6)C(O)(alquil\ C_1-C_6),\ -NH(alquil\ C_1-C_6)C(O)(alquil\ C_1-C_6),\ -NH(alquil\ C_1-C_6)C(O)(alquil\ C_1-C_6),\ -SO_2(alquil\ C_1-C_6)C(O)(alquil\ C_1-C_6),\ -NH(alquil\ C_1-C_6)C(O)(alquil\ C_1-C_6)C(O)(alquil\ C_1-C_6),\ -NH(alquil\ C_1-C_6)C(O)(alquil\ C_1-C_6)C(O$ SO<sub>2</sub>(fenilo), -SO<sub>2</sub>(haloalguilo C<sub>1</sub>-C<sub>6</sub>), -SO<sub>2</sub>NH<sub>2</sub>, -SO<sub>2</sub>NH(alquilo C<sub>1</sub>-C<sub>6</sub>), -SO<sub>2</sub>NH(fenilo), -NHSO<sub>2</sub>(alquilo C<sub>1</sub>-C<sub>6</sub>), -SO<sub>2</sub>NH(alquilo C<sub>1</sub>-C<sub>6</sub> NHSO<sub>2</sub>(fenilo) y -NHSO<sub>2</sub>(haloalquilo C<sub>1</sub>-C<sub>6</sub>).

También se proporciona una composición farmacéutica que comprende al menos un compuesto de fórmula (I) y/o al menos una sal farmacéuticamente aceptable de este descritos en la presente y opcionalmente al menos un portador farmacéuticamente aceptable.

También se divulga un método para inhibir *in vivo* o *in vitro* la actividad de FGFR que comprende poner en contacto FGFR con una cantidad eficaz de al menos un compuesto de fórmula (I) y/o al menos una sal farmacéuticamente aceptable de este descritos en la presente.

También se divulga un método para tratar una enfermedad sensible a la inhibición de FGFR que comprende administrar a un sujeto que lo necesite una cantidad eficaz para tratar dicha enfermedad de al menos un compuesto de fórmula (I) y/o al menos una sal farmacéuticamente aceptable de este descritos en la presente.

También se divulga el uso de al menos un compuesto de fórmula (I) y/o al menos una sal farmacéuticamente aceptable de este descritos en la presente para tratar una enfermedad sensible a la inhibición de FGFR.

También se proporciona el uso de al menos un compuesto de fórmula (I) y/o al menos una sal farmacéuticamente aceptable de este descritos en la presente en la producción de un medicamento para tratar una enfermedad sensible a la inhibición de FGFR.

#### Descripción detallada de la invención

#### 35 <u>Definiciones</u>

25

30

40

50

Tal como se utilizan en la presente solicitud, por lo general se pretende que las siguientes palabras, frases y símbolos tengan los significados expuestos a continuación, excepto en la medida en la que el contexto en el que se utilizan indique otra cosa.

Un guion («-») que no está entre dos letras o símbolos se utiliza para indicar un punto de unión para un sustituyente. Por ejemplo, -C(O)NH<sub>2</sub> está unido a través del átomo de carbono.

El término «alquilo», tal como se utiliza en la presente, se refiere a un radical hidrocarbonado saturado lineal o ramificado, que contiene 1-18, preferentemente 1-12, más preferentemente 1-6, más preferentemente 1-4, especialmente 1-3 átomos de carbono. Los ejemplos de grupos alquilo incluyen, sin carácter limitante, metilo, etilo, *n*-propilo, *i*-propilo, *i*-butilo, *s*-butilo, *s*-butilo.

45 El término «alcoxi», tal como se utiliza en la presente, se refiere al grupo -O-alquilo, donde el alquilo es tal como se ha definido anteriormente. Los ejemplos de grupos alcoxi incluyen, sin carácter limitante, metoxi, etoxi, *n*-propiloxi, *i*-propiloxi, *i*-butiloxi, *i*-butiloxi, *t*-butiloxi, pentiloxi, hexiloxi, incluidos sus isómeros.

El término «alquenilo», tal como se utiliza en la presente, se refiere a un radical hidrocarbonado lineal o ramificado, que contiene uno o más dobles enlaces C=C y 2-10, preferentemente 2-6, más preferentemente 2-4 átomos de carbono. Los ejemplos de grupos alquenilo incluyen, sin carácter limitante, vinilo, 2-propenilo y 2-butenilo.

El término «alquinilo», tal como se utiliza en la presente, se refiere a un radical hidrocarbonado lineal o ramificado, que contiene uno o más triples enlaces C≡C y 2-10, preferentemente 2-6, más preferentemente 2-4 átomos de carbono. Los ejemplos de grupos alquinilo incluyen, sin carácter limitante, etinilo, 2-propinilo y 2-butinilo.

El término «cicloalquilo», tal como se utiliza en la presente, se refiere a un radical hidrocarbonado cíclico saturado y parcialmente insaturado que tiene de 3 a 12, preferentemente de 3 a 8, más preferentemente de 3 a 6 átomos de carbono. Los ejemplos de grupos cicloalquilo incluyen, sin carácter limitante, ciclopropilo, ciclobutilo, ciclopentilo, ciclohexilo, ciclohexenilo, cicloheptilo y ciclooctilo. El anillo del grupo cicloalquilo puede ser saturado o tener uno o más, por ejemplo, uno o dos dobles enlaces (es decir, parcialmente insaturados), pero no totalmente conjugado, y no arilo tal como se define en la presente.

El término «arilo», tal como se utiliza en la presente, se refiere a un radical hidrocarbonado aromático carbocíclico monocíclico de 5 y 6 miembros y un radical hidrocarbonado carbocíclico bicíclico de 8 a 12 miembros donde al menos un anillo es aromático, por ejemplo, fenilo, naftalenilo, 1,2,3,4-tetrahidronaftalenilo, indenilo, indanilo y azulenilo.

El término «halo», tal como se utiliza en la presente, incluye fluoro, cloro, bromo y yodo, y el término «halógeno», tal como se utiliza en la presente, incluye fluor, cloro, bromo y yodo.

El término «heteroarilo», tal como se utiliza en la presente, se refiere a

5

15

20

25

30

35

40

45

50

55

un radical hidrocarbonado aromático monocíclico de 5 a 6 miembros que contiene uno o más, por ejemplo, de 1 a 4, o en algunas realizaciones, de 1 a 3, en algunas realizaciones, 1 o 2 heteroátomos seleccionados independientemente entre N, O y S, siendo los átomos anulares restantes carbono; y

un radical hidrocarbonado bicíclico de 8 a 12 miembros que contiene uno o más, por ejemplo, de 1 a 4, o en algunas realizaciones, de 1 a 3, en algunas realizaciones, 1 o 2 heteroátomos seleccionados independientemente entre N, O y S, siendo los átomos anulares restantes carbono, donde al menos uno de los anillos es aromático. Por ejemplo, el heteroarilo bicíclico incluye un anillo aromático heterocíclico de 5 a 6 miembros condensado a un anillo cicloalquilo de 5 a 6 miembros.

Cuando el número total de átomos de S y O en el grupo heteroarilo excede 1, esos heteroátomos no son adyacentes entre sí. En algunas realizaciones, el número total de átomos de S y O en el grupo heteroarilo no es superior a 2. En algunas realizaciones, el número total de átomos de S y O en el grupo heteroarilo no es superior a 1.

El grupo heteroarilo también incluye aquellos donde el heteroátomo N se presenta como un *N*-óxido, tal como los *N*-óxidos de piridinilo.

Los ejemplos del grupo heteroarilo incluyen, sin carácter limitante, piridilo, *N*-óxido de piridilo tales como pirid-2-ilo, pirid-3-ilo, pirid-4-ilo o un *N*-óxido de estos; pirazinilo, tal como pirazin-2-ilo, pirazin-3-ilo; pirimidinilo, tal como piridilo; pirimidinilo, tal como pirimidin-2-ilo, pirimidin-4-ilo; pirimidinilo, tal como pirazin-1-ilo, pirazol-3-ilo, pirazol-3-ilo, pirazol-5-ilo; imidazolilo, imidazolilo, imidazol-2-ilo, imidazolilo; tal como 1*H*-1,2,4-triazolilo, tal como 1*H*-1,2,4-triazolilo, 1*H*-1,2,3-triazolilo, 2*H*-1,2,3-triazolilo; tienilo; furilo; piranilo; pirrolilo; piridazinilo; bezodioxolilo, tal como benzo[*d*][1,3]dioxolilo; benzoxazolilo, tal como benzo[*d*]oxazolilo; imidazopiridinilo, tal como imidazo[1,2-*a*]piridinilo; triazolopirimidinilo, tal como [1,2,4]triazolo[4,3-*a*]piridinilo; tetrazolopiridinilo, tal como tetrazolo[1,5-*a*]piridinilo; benzotienilo; benzofurilo; benzoimidazolinilo; indolinilo; quinolinilo, isoquinolinilo, 1,2,3,4-tetrahidroquinolinilo y 5,6,7,8-tetrahidroisoquinolinilo.

El término «heterociclilo», tal como se utiliza en la presente, se refiere a un radical hidrocarbonado saturado o parcialmente insaturado monocíclico, bicíclico o tricíclico, de 3 a 14 miembros, preferentemente de 4 a 12 miembros, que contiene al menos 2 átomos de carbono y 1, 2 o 3 heteroátomos seleccionados independientemente entre oxígeno, azufre y nitrógeno. Más preferentemente, el término «heterociclilo» se refiere a un grupo heterociclilo monocíclico de 4 a 8 miembros, especialmente de 4, 5 o 6 miembros que contiene 1 o 2 heteroátomos seleccionados independientemente entre N, O y S. El término «heterociclilo» también se refiere a un anillo espirocíclico alifático que contiene uno o más heteroátomos seleccionados independientemente entre N, O y S. Los anillos pueden ser saturados o tener uno o más dobles enlaces (es decir, parcialmente insaturados). El punto de unión puede ser un carbono o heteroátomo en el grupo heterociclilo. Sin embargo, uno cualquiera de los anillos en el grupo heterociclilo no es aromático de manera que el grupo heterociclilo no es un heteroarilo tal como se ha definido en la presente. El grupo heterociclilo también incluye aquellos donde el heteroátomo de N o S se presenta como un óxido de estos. Los ejemplos de heterociclilo incluyen, sin carácter limitante, oxetanilo, tal como oxetan-2-ilo u oxetan-3-ilo; azetidinilo, tal como azetidin-2-ilo o azetidin-3-ilo; pirrolidinilo, tal como pirrolidin-1-ilo, pirrolidin-2-ilo, pirrolidin-3-ilo; tetrahidrofuranilo, tal como tetrahidrofuran-2-ilo, tetrahidrofuran-3-ilo; tetrahidropiranilo, tal como tetrahidropiran-2-ilo, tetrahidropiran-3ilo, tetrahidropiran-4-ilo; dioxolanilo, tal como 1,3-dioxolanilo; dioxanilo, tal como 1,4-dioxanilo, 1,3-dioxanilo; morfolinilo, N-óxido de morfolinilo, tal como morfolin-2-ilo, morfolin-3-ilo, morfolin-4-ilo (morfolino) (con una numeración en la que al oxígeno se le asigna la prioridad 1); tiomorfolinilo, 1-oxotiomorfolin-4-ilo, 1,1-dioxotiomorfolin-4-ilo; imidazolinilo, tal como imidazolidin-2-ilo, imidazolidin-4-ilo; pirazolidinilo, tal como pirazolidin-2-ilo, pirazolidin-3-ilo; piperidinilo o N-óxido de piperidinilo, tal como piperidin-1-ilo y piperidin-2-ilo, piperidin-3-ilo, piperidin-4-ilo o N-óxido de estos; y piperazinilo, tal como piperazin-1-ilo, piperazin-2-ilo, piperazin-3-ilo; octahidropirrolo[3,4-b]pirrolilo.

La expresión «anillo heterocíclico que contiene oxi de 5 o 6 miembros», tal como se utiliza en la presente, se refiere a un anillo insaturado de 5 o 6 miembros que contiene opcionalmente uno o dos heteroátomos seleccionados independientemente entre N, O o S, además del heteroátomo oxi que une el anillo de fenilo y el grupo R<sup>5</sup> en la fórmula

# ES 2 697 697 T3

- (I), siendo los átomos anulares restantes carbono. El «anillo heterocíclico que contiene oxi de 5 o 6 miembros» es preferentemente furano, dihidrofurano, pirano o dihidropirano.
- El término «hidroxilo» se refiere al radical -OH.
- El término «nitro» se refiere al radical -NO2.
- 5 El término «mercapto» se refiere al radical -SH.
  - El término «ciano» se refiere a un radical -CN.
  - El término «oxo» se refiere al radical =O.

20

25

30

- El término «carboxilo» se refiere al radical -C(O)-OH.
- El término «opcional» u «opcionalmente» significa que el evento o circunstancia descrito posteriormente puede ocurrir o no, y que la descripción incluye casos en los que el evento o circunstancia ocurre y casos en los que no. Por ejemplo, «alquilo sustituido opcionalmente» abarca tanto «alquilo no sustituido» como «alquilo sustituido» tal como se definen en la presente. Los expertos en la técnica entenderán, con respecto a cualquier grupo que contiene uno o más sustituyentes, que no se pretende que tales grupos introduzcan ninguna sustitución o patrones de sustitución que sean imposibles desde un punto de vista estérico, incorrectos químicamente, no factibles desde un punto de vista sintético y/o intrínsecamente inestables.
  - El término «sustituido», tal como se utiliza en la presente, significa que uno o más hidrógenos en el grupo o átomo designado se reemplazan con una o más selecciones del grupo indicado de sustituyentes, siempre que no se exceda la valencia normal del átomo designado. Cuando un sustituyente es oxo (es decir, =O), entonces se reemplazan 2 hidrógenos en un único átomo. Las combinaciones de sustituyentes y/o variables son permisibles solamente si tales combinaciones dan como resultado un compuesto estable y correcto químicamente. Se pretende que un compuesto estable y correcto químicamente se refiera a un compuesto que es lo suficientemente robusto para sobrevivir al aislamiento a partir de una mezcla de reacción y la formulación posterior como un agente que tiene al menos utilidad práctica. A menos que se indique de otra manera, los sustituyentes se nombran en la estructura nuclear. Por ejemplo, se debe entender que cuando se enumera (cicloalquil)alquilo como un posible sustituyente, el punto de unión de este sustituyente a la estructura nuclear está en la porción alquilo.
  - La expresión «sustituido con uno o más sustituyentes», tal como se utiliza en la presente, significa que uno o más hidrógenos en el átomo o grupo designado se reemplazan independientemente con una o más selecciones del grupo indicado de sustituyentes. En algunas realizaciones, «sustituido con uno o más sustituyentes» significa que el átomo o grupo designado está sustituido con dos sustituyentes seleccionados independientemente del grupo indicado de sustituyentes. En algunas realizaciones, «sustituido con uno o más sustituyentes» significa que el átomo o grupo designado está sustituido con tres sustituyentes seleccionados independientemente del grupo indicado de sustituyentes. En algunas realizaciones, «sustituido con uno o más sustituyentes» significa que el átomo o grupo designado está sustituido con cuatro sustituyentes seleccionados independientemente del grupo indicado de sustituyentes.
- Los expertos en la técnica apreciarán que algunos de los compuestos de fórmula (I) pueden contener uno o más centros quirales y, por lo tanto, existir en dos o más formas estereoisoméricas. Los racematos de estos isómeros, los isómeros individuales y mezclas enriquecidas en un enantiómero, así como también los diastereómeros cuando haya dos centros quirales, y mezclas parcialmente enriquecidas con diastereómeros específicos están comprendidos en el alcance de la presente invención. Los expertos en la técnica apreciarán además que la presente invención incluye todos los estereoisómeros individuales (por ejemplo, enantiómeros), mezclas racémicas o mezclas parcialmente resueltas de los compuestos de fórmula (I) y, cuando sea apropiado, las formas tautoméricas individuales de estos.
- Los racematos se pueden utilizar tal cual o se pueden resolver para obtener sus isómeros individuales. La resolución puede proporcionar compuestos estereoquímicamente puros o mezclas enriquecidas en uno o más isómeros. Los métodos para la separación de isómeros son muy conocidos (cf. Allinger N. L. y Eliel E. L. en "Topics in 45 Stereochemistry", Vol. 6, Wiley Interscience, 1971) e incluyen métodos físicos tales como cromatografía utilizando un adsorbente quiral. Los isómeros individuales se pueden preparar en forma quiral a partir de precursores quirales. Como alternativa, los isómeros individuales se pueden separar químicamente a partir de una mezcla formando sales diastereoméricas con un ácido quiral, tal como los enantiómeros individuales del ácido 10-canforsulfónico, ácido canfórico, ácido alfa-bromocanfórico, ácido tartárico, ácido diacetiltartárico, ácido málico, ácido pirrolidono-5carboxílico y similares, cristalizando de manera fraccionada las sales y a continuación, liberando una o ambas bases 50 resueltas, repitiendo opcionalmente el proceso, de manera que se obtenga una cualquiera o ambas sustancialmente exentas de la otra; es decir, en una forma que tenga una pureza óptica de >95%. Como alternativa, los racematos se pueden unir covalentemente a un compuesto (auxiliar) quiral para producir diastereómeros que se pueden separar mediante cromatografía o cristalización fraccionada y tras eso se elimina químicamente el auxiliar quiral para 55 proporcionar los enantiómeros puros.

La «sal farmacéuticamente aceptable» incluye, sin carácter limitante, sales de adición de ácido formadas por el compuesto de fórmula (I) con un ácido inorgánico, tal como clorhidrato, bromhidrato, carbonato, bicarbonato, fosfato, sulfato, sulfito, nitrato y similares; así como también con un ácido orgánico tal como formiato, acetato, malato, maleato, fumarato, tartrato, succinato, citrato, lactato, metanosulfonato, *p*-toluenosulfonato, 2-hidroxietilsulfonato, benzoato, salicilato, estearato, y sales con ácido alcanodicarboxílico de fórmula HOOC-(CH<sub>2</sub>)<sub>n</sub>-COOH donde n es 0-4 y similares. Asimismo, la «sal farmacéuticamente aceptable» incluye sales de adición de base formadas por el compuesto de fórmula (I) que porta un resto ácido con cationes farmacéuticamente aceptables, por ejemplo, sodio, potasio, calcio, aluminio, litio y amonio.

Además, si se obtiene un compuesto descrito en la presente como una sal de adición de ácido, la base libre se puede obtener basificando una solución de la sal de adición de ácido. En cambio, si el producto es una base libre, se puede producir una sal de adición de ácido, especialmente una sal de adición de ácido farmacéuticamente aceptable, disolviendo la base libre en un disolvente adecuado y tratando la solución con un ácido, de acuerdo con procedimientos convencionales para preparar sales de adición de ácido a partir de compuestos básicos. Los expertos en la técnica reconocerán que se pueden utilizar diversas metodologías sintéticas sin una experimentación excesiva para preparar sales de adición de ácido farmacéuticamente aceptables atóxicas.

El término «solvato» se refiere a formas de adición de disolvente que contienen cantidades estequiométricas o no estequiométricas de disolvente. Algunos compuestos tienen una tendencia a atrapar una proporción molar fija de moléculas de disolvente en el estado sólido para formar de esta manera un solvato. Si el disolvente es agua, el solvato formado es un hidrato, cuando el disolvente es alcohol, el solvato formado es un alcoholato. Los hidratos se forman por la combinación de una o más moléculas de agua con una de las sustancias en donde el agua mantiene su estado molecular como H<sub>2</sub>O, siendo una combinación de este tipo capaz de formar uno o más hidratos, por ejemplo, hemihidratos, monohidratos y dihidratos.

20

25

30

45

50

55

Un «profármaco» es un compuesto que se convierte en un compuesto terapéuticamente activo después de la administración y el término se debe interpretar en la presente de manera tan amplia como se entiende por lo general en la técnica. Sin querer limitar el alcance de la invención, la conversión puede ocurrir por hidrólisis de un grupo éster u otro grupo lábil desde un punto de vista biológico diferente. Por lo general, pero no necesariamente, un profármaco es inactivo o menos activo que el compuesto terapéuticamente activo en el cual se convierte. Por ejemplo, un éster puede proceder de un ácido carboxílico de C1 (es decir, el ácido carboxílico terminal de una prostaglandina natural) o un éster puede proceder de un grupo funcional de tipo ácido carboxílico en otra parte de la molécula, tal como en un anillo de fenilo. Sin querer ser limitante, un éster puede ser un éster de alquilo, un éster de arilo o un éster de heteroarilo.

Tal como se utiliza en la presente, los términos «grupo», «radical» y «resto» son sinónimos y se pretende que indiquen grupos funcionales o fragmentos de moléculas que se pueden unir a otros fragmentos de moléculas.

Los términos y expresiones «que trata», «tratar» o «tratamiento» de una enfermedad o trastorno se refieren a la administración de una o más sustancias farmacéuticas, especialmente al menos un compuesto de fórmula (I) y/o al menos una sal farmacéuticamente aceptable de este descritos en la presente a un sujeto que tiene la enfermedad o trastorno, o tiene un síntoma de una enfermedad o trastorno, o tiene una predisposición a la enfermedad o trastorno, con el propósito de curar, sanar, mitigar, aliviar, alterar, remediar, paliar, mejorar o afectar una enfermedad o trastorno, los síntomas de la enfermedad o trastorno o la predisposición a la enfermedad o trastorno. En algunas realizaciones, la enfermedad o trastorno es cáncer.

Los términos y expresiones «tratar», «poner en contacto» y «hacer reaccionar» cuando se refieren a una reacción química significan añadir o mezclar dos o más reactivos en las condiciones apropiadas para producir el producto indicado y/o deseado. Se debe apreciar que la reacción que produce el producto indicado y/o deseado puede que no sea necesariamente el resultado directo de la combinación de dos reactivos que se añadieron inicialmente, es decir, puede haber uno o más intermedios que se producen en la mezcla, que en última instancia da lugar a la formación del producto indicado y/o deseado.

La expresión «cantidad eficaz», tal como se utiliza en la presente, se refiere a una cantidad de al menos un compuesto de fórmula (I) y/o al menos una sal farmacéuticamente aceptable de este descritos en la presente eficaz para «tratar», tal como se ha definido anteriormente, una enfermedad o trastorno en un sujeto sensible a la inhibición de FGFR. La cantidad eficaz puede provocar cualquiera de los cambios observables o medibles en un sujeto tal como se han descrito anteriormente en la definición de «que trata», «tratar» o «tratamiento». Por ejemplo, en el caso del cáncer, la cantidad eficaz puede reducir el número de células cancerosas o tumorales; reducir el tamaño tumoral; inhibir o detener la infiltración de células tumorales en órganos periféricos incluida, por ejemplo, la diseminación del tumor al tejido blando y hueso; inhibir y detener la metástasis tumoral; inhibir y detener el crecimiento tumoral; aliviar en cierta medida uno o más de los síntomas asociados con el cáncer, reducir la morbimortalidad; mejorar la calidad de vida; o una combinación de tales efectos. Una cantidad eficaz puede ser una cantidad suficiente para reducir los síntomas de una enfermedad sensible a la inhibición de FGFR. La expresión «cantidad eficaz», también se puede referir a una cantidad de al menos un compuesto de fórmula (I) y/o al menos una sal farmacéuticamente aceptable de este descritos en la presente eficaz para inhibir la actividad de FGFR en un sujeto sensible a la inhibición de FGFR.

El término «inhibición» o la expresión «que inhibe» indica un descenso en la actividad inicial de un proceso o actividad biológicos. La «inhibición de FGFR» se refiere a una reducción en la actividad de FGFR como respuesta directa o indirecta a la presencia de al menos un compuesto de fórmula (I) y/o al menos una sal farmacéuticamente aceptable de este descritos en la presente, respecto a la actividad de FGFR en ausencia del al menos un compuesto de fórmula (I) y/o la al menos una sal farmacéuticamente aceptable de este. La reducción de la actividad se puede deber a la interacción directa del al menos un compuesto de fórmula (I) y/o al menos una sal farmacéuticamente aceptable de este descritos en la presente con FGFR, o deberse a la interacción del al menos un compuesto de fórmula (I) y/o al menos una sal farmacéuticamente aceptable de este descritos en la presente, con uno o más factores que a su vez afectan a la actividad de FGFR. Por ejemplo, la presencia de al menos un compuesto de fórmula (I) y/o al menos una sal farmacéuticamente aceptable de este descritos en la presente, puede reducir la actividad de FGFR uniéndose directamente al FGFR, provocando (directa o indirectamente) que otro factor reduzca la actividad de FGFR o reduciendo (directa o indirectamente) la cantidad de FGFR presente en la célula u organismo.

El término «sujeto», tal como se utiliza en la presente, se refiere a mamíferos y no mamíferos. El término «mamíferos» se refiere a cualquier miembro de la clase de los mamíferos incluidos, sin carácter limitante, seres humanos; primates no humanos tales como chimpancés y otras especies de simios y monos; animales de granja tales como ganado, caballos, ovejas, cabras y cerdos; animales domésticos tales como conejos, perros y gatos; animales de laboratorio incluidos roedores, tales como ratas, ratones y cobayas; y similares. Los ejemplos de no mamíferos incluyen, sin carácter limitante, aves y similares. El término «sujeto» no denota una edad o sexo particulares.

La expresión «farmacéuticamente aceptable» significa que la sustancia que precede a esta expresión es útil para preparar una composición farmacéutica y, por lo general, es segura, atóxica y no es indeseable ni biológicamente ni de otra manera, especialmente para el uso farmacéutico en seres humanos.

El término «aproximadamente» se utiliza en la presente para significar próximamente, en la región de, más o menos, o alrededor de. Cuando se utiliza el término «aproximadamente» junto con un intervalo numérico, modifica el intervalo prolongando los límites por encima y por debajo de los valores numéricos expuestos. En general, el término «aproximadamente» se utiliza en la presente para modificar un valor numérico por encima y por debajo del valor mencionado según una varianza de un 20%.

Los términos científicos y técnicos utilizados en la presente y no definidos de manera específica tienen el significado que comúnmente les adjudican los expertos en la técnica a la cual pertenece la presente invención.

# Realizaciones de la invención

30 En un aspecto, la presente invención proporciona un compuesto de fórmula (I):

o una sal farmacéuticamente aceptable de este;

#### donde

5

10

15

20

25

X es CH<sub>2</sub>, Y se selecciona entre CH<sub>2</sub>, O o S(O)<sub>2</sub>; o X e Y junto con el enlace entre ellos forman -CH=CH- o -C≡C-;

#### 35 G es N o CH;

40

 $R^1$  es arilo o heteroarilo, donde cada uno de los cuales está sustituido opcionalmente con uno o más sustituyentes seleccionados independientemente entre halo,  $-NR^6R^7$ ,  $-OR^8$ ,  $-S(O)_nR^9$ ,  $-(CH_2)_r-C(O)R^{10}$ , -CN,  $-C(O)NR^6R^7$ ,  $-NR^6C(O)R^{10}$ ,  $-NR^6S(O)_nR^9$ ,  $-NR^6S(O)_nNR^{11}R^{12}$ ,  $-NR^6C(O)OR^8$ ,  $-NR^6C(O)NR^{11}R^{12}$ ,  $-NO_2$ ,  $-S(O)_nNR^6R^7$ , oxo, alquilo sustituido opcionalmente,  $-(CH_2)_p$ -cicloalquilo sustituido opcionalmente,  $-(CH_2)_m$ -heteroarilo sustituido opcionalmente; alquenilo sustituido opcionalmente y alquinilo sustituido opcionalmente;

 $R^2$  se escoge independientemente entre alquilo  $C_1$ - $C_6$  sustituido opcionalmente, alcoxi  $C_1$ - $C_6$  sustituido opcionalmente, o cicloalquilo  $C_3$ - $C_8$  sustituido opcionalmente;

 $R^3$ ,  $R^4$  se escogen independientemente entre hidrógeno, halógeno, -CN, o alquilo  $C_1$ - $C_6$  sustituido opcionalmente,  $R^5$  es alquilo  $C_1$ - $C_6$ ,

# ES 2 697 697 T3

o  $R^3$  y  $R^5$  junto con el átomo de O al cual  $R^5$  está unido y el enlace entre ellos forman un anillo heterocíclico que contiene oxi de 5 o 6 miembros;

n es 1 o 2;

m, p, q y r se escogen independientemente entre 0, 1, 2, 3, 4, 5, 6;

- 5 R<sup>6</sup>, R<sup>7</sup>, R<sup>8</sup>, R<sup>9</sup>, R<sup>10</sup>, R<sup>11</sup> y R<sup>12</sup> se seleccionan independientemente entre hidrógeno, alquilo, cicloalquilo, arilo, heteroarilo, heterociclilo, donde cada uno de los cuales, excepto para el hidrógeno, está sustituido opcionalmente con uno o más sustituyentes seleccionados independientemente entre halo, hidroxilo, mercapto, oxo, alquilo, cicloalquilo, heterociclilo, amina sustituida opcionalmente y amida sustituida opcionalmente,
- donde cada grupo anterior sustituido opcionalmente para el cual no se designa(n) específicamente el(los) sustituyente(s), puede no estar sustituido o estar sustituido independientemente con uno o más, tal como uno, dos o tres, sustituyentes escogidos independientemente entre alquilo C<sub>1</sub>-C<sub>6</sub>, alquenilo C<sub>2</sub>-C<sub>6</sub>, alquinilo C<sub>2</sub>-C<sub>6</sub>, cicloalquilo, arilo, heteroarilo, aril-(alquil C<sub>1</sub>-C<sub>6</sub>)-, heteroaril-(alquil C<sub>1</sub>-C<sub>6</sub>)-, haloalquil C<sub>1</sub>-C<sub>6</sub>-, -O(alquilo C<sub>1</sub>-C<sub>6</sub>), -O(alquenilo C<sub>2</sub>-C<sub>6</sub>), -O(alquil C<sub>1</sub>-C<sub>6</sub>)fenil, -(alquil C<sub>1</sub>-C<sub>6</sub>)-OH, -(alquil C<sub>1</sub>-C<sub>6</sub>)-SH, -(alquil C<sub>1</sub>-C<sub>6</sub>)-O-(alquilo C<sub>1</sub>-C<sub>6</sub>), -O(haloalquilo C<sub>1</sub>-C<sub>6</sub>), halo, -OH, mercapto, -NH<sub>2</sub>, -(alquil C<sub>1</sub>-C<sub>6</sub>)-NH<sub>2</sub>, -N(alquilo C<sub>1</sub>-C<sub>6</sub>)<sub>2</sub>, -NH(alquilo C<sub>1</sub>-C<sub>6</sub>), -N(alquilo C<sub>1</sub>-C<sub>6</sub>)((alquilC<sub>1</sub>-C<sub>6</sub>)fenil), -NH((alquil C<sub>1</sub>-C<sub>6</sub>)fenil), ciano, nitro, oxo, -C(O)-OH, -C(O)O(alquilo C<sub>1</sub>-C<sub>6</sub>), -CON(alquilo C<sub>1</sub>-C<sub>6</sub>)<sub>2</sub>, -CONH(alquilo C<sub>1</sub>-C<sub>6</sub>), -CONH<sub>2</sub>, -NHC(O)(alquilo C<sub>1</sub>-C<sub>6</sub>), -NHC(O)(fenilo), -N(alquil C<sub>1</sub>-C<sub>6</sub>), -CON(alquilo C<sub>1</sub>-C<sub>6</sub>), -N(alquil C<sub>1</sub>-C<sub>6</sub>)(O)(alquilo C<sub>1</sub>-C<sub>6</sub>), -O(O)(alquilo C<sub>1</sub>-C<sub>6</sub>), -S(O)<sub>2</sub>-(alquilo C<sub>1</sub>-C<sub>6</sub>), -S(O)<sub>2</sub>-(alquilo C<sub>1</sub>-C<sub>6</sub>), -S(O)<sub>2</sub>-(alquilo C<sub>1</sub>-C<sub>6</sub>), -S(O)<sub>2</sub>-(alquilo C<sub>1</sub>-C<sub>6</sub>), -S(O)<sub>2</sub>-(alquilo C<sub>1</sub>-C<sub>6</sub>), -S(O)<sub>2</sub>-(alquilo C<sub>1</sub>-C<sub>6</sub>), -NHS(O)<sub>2</sub>(fenilo), -NHS(O)<sub>2</sub>(fenilo), -NHS(O)<sub>2</sub>(faloalquilo C<sub>1</sub>-C<sub>6</sub>).
- En una realización del compuesto de fórmula (I), cada grupo anterior sustituido opcionalmente puede no estar sustituido o estar sustituido independientemente con uno o más sustituyentes escogidos independientemente entre hidroxilo, mercapto, halo, alquilo C<sub>1</sub>-C<sub>6</sub>, alquenilo C<sub>2</sub>-C<sub>6</sub>, alquinilo C<sub>2</sub>-C<sub>6</sub>, -O(alquilo C<sub>1</sub>-C<sub>6</sub>), -NH<sub>2</sub>, -N(alquilo C<sub>1</sub>-C<sub>6</sub>), ciano, nitro, oxo, -S(O)<sub>2</sub>-(alquilo C<sub>1</sub>-C<sub>6</sub>), -S(O)-(alquilo C<sub>1</sub>-C<sub>6</sub>), -S(O)<sub>2</sub>-(haloalquilo C<sub>1</sub>-C<sub>6</sub>), -C(O)-OH, -(alquil C<sub>1</sub>-C<sub>6</sub>)-OH, -(alquil C<sub>1</sub>-C<sub>6</sub>)-SH y heterociclilo.
- En una realización del compuesto de fórmula (I), R¹ es arilo o heteroarilo, donde cada uno de los cuales está sustituido opcionalmente con uno o más sustituyentes seleccionados independientemente entre halo, oxo, alquilo sustituido opcionalmente, -(CH<sub>2</sub>)<sub>p</sub>-cicloalquilo sustituido opcionalmente, -(CH<sub>2</sub>)<sub>q</sub>-heteroarilo sustituido opcionalmente, -S(O)<sub>n</sub>R<sup>9</sup>, -(CH<sub>2</sub>)<sub>r</sub>-C(O)R<sup>10</sup>, alquenilo sustituido opcionalmente, alquinilo sustituido opcionalmente, -OR<sup>8</sup>, donde n es 1 o 2; m, p, q y r se escogen independientemente entre 0, 1, 2, 3, 4, 5, 6; R<sup>8</sup>, R<sup>9</sup> y R<sup>10</sup> se seleccionan independientemente entre hidrógeno, alquilo, heterociclilo, donde cada uno de los cuales, excepto para el hidrógeno, está sustituido opcionalmente con uno o más sustituyentes seleccionados independientemente entre alquilo, oxo y heterociclilo;
  - donde el «alquilo sustituido opcionalmente», «heterociclilo sustituido opcionalmente», «cicloalquilo sustituido opcionalmente», «heteroarilo sustituido opcionalmente», «alquenilo sustituido opcionalmente» y «alquinilo sustituido opcionalmente» en el  $R^1$  anterior pueden no estar sustituidos o estar sustituidos independientemente con uno o más sustituyentes escogidos independientemente entre hidroxilo, mercapto, halo, alquilo  $C_1$ - $C_6$ , alquenilo  $C_2$ - $C_6$ , alquinilo  $C_2$ - $C_6$ , -O(alquilo  $C_1$ - $C_6$ ), -NH2, -N(alquilo  $C_1$ - $C_6$ ), -NH(alquilo  $C_1$ - $C_6$ ), ciano, nitro, oxo, -S(O)<sub>2</sub>-(alquilo  $C_1$ - $C_6$ ), -S(O)-(alquilo  $C_1$ - $C_6$ ), -S(O)-OH, -(alquil  $C_1$ - $C_6$ )-OH, -(alquil  $C_1$ - $C_6$ )-SH y heterociclilo.
  - En una realización del compuesto de fórmula (I), R¹ es arilo o heteroarilo, donde cada uno de los cuales está sustituido opcionalmente con uno o más sustituyentes seleccionados independientemente entre: (1) halo; (2) oxo; (3) alquilo sustituido opcionalmente con uno o más sustituyentes seleccionados independientemente entre hidroxilo, mercapto, halo, -O(alquilo C₁-C₆), -NH₂, -N(alquilo C₁-C₆)₂, -NH(alquilo C₁-C₆), ciano, nitro, -S(O)₂-(alquilo C₁-C₆), -S(O)-(alquilo C₁-C₆), -C(O)-OH; (4) -(CH₂)m-heterociclilo sustituido opcionalmente con uno o más sustituyentes seleccionados independientemente entre alquilo C₁-C₆, -(alquilo C₁-C₆)-OH, -(alquilo C₁-C₆)-SH y oxo, donde m es 0, 1, 2, 3, 4, 5 o 6; (5) -(CH₂)p-cicloalquilo no sustituido, donde p es 0, 1, 2, 3, 4, 5 o 6; (6) -(CH₂)q-heteroarilo sustituido opcionalmente con uno o más sustituyentes seleccionados independientemente entre alquilo C₁-C₆, donde q es 0, 1, 2, 3, 4, 5 o 6; (7) -S(O)nR³, donde R³ es alquilo C₁-C₆, y n es 1 o 2; (8) -(CH₂)r-C(O)R¹0, donde R¹0 es heterociclilo sustituido opcionalmente con uno o más sustituyentes seleccionados independientemente entre alquilo C₁-C₆ y oxo, donde r es 0, 1, 2, 3, 4, 5 o 6; (9) alquenilo C₂-C₆ no sustituido; (10) alquinilo C₂-C₆ no sustituido; (11) -OR³, donde R³ se selecciona entre hidrógeno, alquilo sustituido opcionalmente con uno o más sustituido sustituido sustituido entre heterociclilo.

En una realización del compuesto de fórmula (I), R¹ es arilo o heteroarilo, donde cada uno de los cuales está sustituido opcionalmente con uno o más sustituyentes seleccionados independientemente entre:

(1) halo;

35

40

45

50

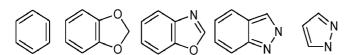
55

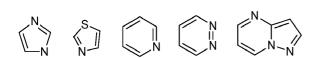
(2) -NR<sup>6</sup>R<sup>7</sup>, donde R<sup>6</sup> y R<sup>7</sup> se seleccionan independientemente entre hidrógeno y alquilo C<sub>1</sub>-C<sub>6</sub> sustituido opcionalmente con amina que está sustituida opcionalmente con alquilo C<sub>1</sub>-C<sub>6</sub>;

- (3) -OR<sup>8</sup>, donde R<sup>8</sup> se selecciona entre hidrógeno y alquilo C<sub>1</sub>-C<sub>6</sub> sustituido opcionalmente con uno o más sustituyentes seleccionados independientemente entre: heterociclilo sustituido opcionalmente con -OH o mercapto, y amina sustituida opcionalmente con alquilo C<sub>1</sub>-C<sub>6</sub>,
- (4) -S(O)<sub>n</sub>R<sup>9</sup>, donde R<sup>9</sup> es alquilo C<sub>1</sub>-C<sub>6</sub>, y n es 1 o 2;
- (5) -(CH<sub>2</sub>)<sub>r</sub>-C(O)R<sup>10</sup>, donde R<sup>10</sup> es alquilo C<sub>1</sub>-C<sub>6</sub>, o heterociclilo sustituido opcionalmente con uno o más sustituyentes seleccionados independientemente entre alquilo C<sub>1</sub>-C<sub>6</sub> y oxo, donde r es 0, 1, 2, 3, 4, 5 o 6;
  - (6) -CN;

5

15

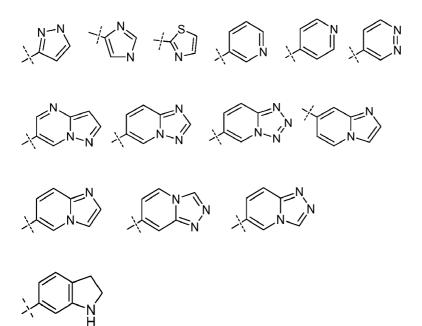

20


25

30

- (7)  $-C(O)NR^6R^7$ , donde  $R^6$  y  $R^7$  se seleccionan independientemente entre hidrógeno y alquilo  $C_1-C_6$  sustituido opcionalmente con amina que está sustituido opcionalmente con alquilo  $C_1-C_6$ ;
- 10 (8)  $-NR^6C(O)R^{10}$ , donde  $R^6$  es H, y  $R^{10}$  es alquilo  $C_1-C_6$ ;
  - (9) oxo;
  - (10) alquilo sustituido opcionalmente con uno o más sustituyentes seleccionados independientemente entre hidroxilo, mercapto, halo, -O(alquilo  $C_1$ - $C_6$ ), -NH2, -N(alquilo  $C_1$ - $C_6$ )2, -NH(alquilo  $C_1$ - $C_6$ ), ciano, nitro, -S(O)2-(alquilo  $C_1$ - $C_6$ ), -S(O)-(alquilo  $C_1$ - $C_6$ ), -C(O)-OH;
  - (11) -(CH<sub>2</sub>)<sub>p</sub>-cicloalquilo no sustituido, donde p es 0, 1, 2, 3, 4, 5 o 6;
    - (12) -(CH<sub>2</sub>)<sub>m</sub>-heterociclilo sustituido opcionalmente con uno o más sustituyentes seleccionados independientemente entre alquilo  $C_1$ - $C_6$ , cicloalquilo  $C_3$ - $C_6$ , -(alquilo  $C_1$ - $C_6$ )-OH, -(alquilo  $C_1$ - $C_6$ )-O-(alquilo  $C_1$ - $C_6$ ), -NH<sub>2</sub>, -N(alquilo  $C_1$ - $C_6$ )<sub>2</sub>, -NH(alquilo  $C_1$ - $C_6$ ), oxo, -C(O)(alquilo  $C_1$ - $C_6$ ), donde m es 0, 1, 2, 3, 4, 5 o 6;
    - (13) - $(CH_2)_q$ -heteroarilo sustituido opcionalmente con uno o más sustituyentes seleccionados independientemente entre alquilo  $C_1$ - $C_6$ , donde q es 0, 1, 2, 3, 4, 5 o 6;
    - (14) alquenilo C2-C6 no sustituido;
    - (15) alquinilo C2-C6 no sustituido.

En cualquiera de las realizaciones anteriores, R1 es un radical del anillo o sistema anular escogido entre






$$\begin{array}{c|c} & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & & & \\ & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ &$$

donde cada uno de los cuales está sustituido opcionalmente tal como se ha definido anteriormente.

En cualquiera de las realizaciones anteriores, R1 se escoge entre



5

25

30

35

40

donde cada uno de los cuales está sustituido opcionalmente tal como se ha definido anteriormente.

10 En una realización del compuesto de fórmula (I), R<sup>8</sup> es hidrógeno o alquilo C<sub>1</sub>-C<sub>6</sub> sustituido opcionalmente con heterociclilo.

En una realización del compuesto de fórmula (I),  $R^{10}$  es heterociclilo sustituido opcionalmente con uno o más sustituyentes seleccionados independientemente entre alquilo  $C_1$ - $C_6$  y oxo.

En una realización del compuesto de fórmula (I), R¹ es fenilo sustituido opcionalmente con uno o más sustituyentes seleccionados independientemente entre: (1) halo; (2) alquilo sustituido opcionalmente con -C(O)-OH; (3) -(CH<sub>2</sub>)<sub>m</sub>-heterociclilo sustituido opcionalmente con uno o más sustituyentes seleccionados independientemente entre alquilo C<sub>1</sub>-C<sub>6</sub>, -(alquil C<sub>1</sub>-C<sub>6</sub>)-OH, -(alquil C<sub>1</sub>-C<sub>6</sub>)-SH y oxo, donde m es 0, 1, 2, 3, 4, 5 o 6; (4) -(CH<sub>2</sub>)<sub>q</sub>-heteroarilo sustituido opcionalmente con uno o más sustituyentes seleccionados independientemente entre alquilo C<sub>1</sub>-C<sub>6</sub>, donde q es 0; (5) -(CH<sub>2</sub>)<sub>r</sub>-C(O)R¹0, donde R¹0 es heterociclilo sustituido opcionalmente con uno o más sustituyentes seleccionados independientemente entre alquilo C<sub>1</sub>-C<sub>6</sub> y oxo, donde r es 0; (6) alquenilo C<sub>2</sub>-C<sub>6</sub> no sustituido; (7) alquinilo C<sub>2</sub>-C<sub>6</sub> no sustituido; (8) -OR³, donde R³ se selecciona entre hidrógeno, alquilo sustituido opcionalmente con uno o más sustituyentes seleccionados independientemente entre heterociclilo.

En una realización del compuesto de fórmula (I),  $R^1$  es fenilo sustituido con piperazinilo, donde el piperazinilo está sustituido opcionalmente con uno o más alquilos  $C_1$ - $C_6$  o cicloalquilos  $C_3$ - $C_8$ , preferentemente alquilo  $C_1$ - $C_6$ , más preferentemente,  $R^1$  es fenilo sustituido con piperazinilo, el cual está sustituido opcionalmente con uno o más metilos o etilos. En una realización específica,  $R^1$  es fenilo sustituido con piperazinilo, donde el piperazinilo está sustituido opcionalmente con uno o más alquilos  $C_1$ - $C_6$ . En una realización más específica,  $R^1$  es fenilo sustituido con piperazinilo, donde el piperazinilo está sustituido opcionalmente con uno o más metilos o etilos.

En una realización del compuesto de fórmula (I), R¹ es pirazolilo, el cual está sustituido opcionalmente con uno o más sustituyentes seleccionados entre: (1) alquilo sustituido opcionalmente con uno o más sustituyentes seleccionados independientemente entre hidroxilo, mercapto, halo, -O(alquilo C<sub>1</sub>-C<sub>6</sub>), -NH<sub>2</sub>, -N(alquilo C<sub>1</sub>-C<sub>6</sub>)<sub>2</sub>, -NH(alquilo C<sub>1</sub>-C<sub>6</sub>), -S(O)<sub>2</sub>-(alquilo C<sub>1</sub>-C<sub>6</sub>), -S(O)-(alquilo C<sub>1</sub>-C<sub>6</sub>); (2) -(CH<sub>2</sub>)<sub>m</sub>-heterociclilo sustituido opcionalmente con uno o más sustituyentes seleccionados independientemente entre alquilo C<sub>1</sub>-C<sub>6</sub>, donde m es 0, 1, 2, 3, 4, 5 o 6; (3) -(CH<sub>2</sub>)<sub>p</sub>-cicloalquilo no sustituido, donde p is 0, 1, 2, 3, 4, 5 o 6; (4) -(CH<sub>2</sub>)<sub>q</sub>-heteroarilo sustituido opcionalmente con uno o más sustituyentes seleccionados independientemente entre alquilo C<sub>1</sub>-C<sub>6</sub>, donde q es 0, 1, 2, 3, 4, 5 o 6; (5) -S(O)<sub>n</sub>R<sup>9</sup>, donde R<sup>9</sup> es alquilo C<sub>1</sub>-C<sub>6</sub>, y n es 1 o 2; (6) -(CH<sub>2</sub>)<sub>r</sub>-C(O)R<sup>10</sup>, donde R<sup>10</sup> es heterociclilo sustituido opcionamente con uno o más sustituyentes seleccionados independientemente entre alquilo C<sub>1</sub>-C<sub>6</sub> y oxo,donde r es 0, 1, 2, 3, 4, 5 o 6.

En cualquiera de las realizaciones anteriores,  $R^2$  se escoge entre alquilo  $C_1$ - $C_6$ , alcoxi  $C_1$ - $C_6$  sustituido opcionalmente con hidroxilo o cicloalquilo  $C_3$ - $C_6$ ). En una realización específica,  $R^2$  es metilo, etilo, metoxi, etoxi sustituido con hidroxilo, isopropoxi o ciclopropilo. En una realización específica,  $R^2$  es metilo.

En cualquiera de las realizaciones anteriores,  $R^3$  y  $R^4$  se escogen independientemente entre hidrógeno, halógeno, - CN o un alquilo  $C_1$ - $C_6$  no sustituido (preferentemente alquilo  $C_1$ - $C_3$  no sustituido),  $R^5$  es alquilo  $C_1$ - $C_6$ , preferentemente alquilo  $C_1$ - $C_3$  o  $R^3$  y  $R^5$  junto con el átomo de  $R^5$  se encuentra unido y el enlace entre ellos forman un anillo

heterocíclico que contiene oxi de 5 o 6 miembros. En una realización específica, R³ es hidrógeno, F, Cl, Br, -CN, metilo, R⁴ es hidrógeno o F, R⁵ es metilo o etilo. En otra realización específica, R⁴ es hidrógeno, y R³ y R⁵ junto con el átomo de O al que R⁵ se encuentra unido y el enlace entre ellos forman un anillo de furano o dihidrofurano.

En una realización específica, el compuesto de fórmula (I) se selecciona entre los Compuestos 1-309 preparados en los Ejemplos.

5

20

30

35

En otro aspecto, la presente invención proporciona una composición farmacéutica que comprende al menos un compuesto de fórmula (I) y/o al menos una sal farmacéuticamente aceptable de este descritos en la presente y opcionalmente al menos un portador farmacéuticamente aceptable.

En otro aspecto, la presente invención divulga un método *in vivo* o *in vitro* para inhibir la actividad de FGFR, que comprende poner en contacto FGFR con una cantidad eficaz de al menos un compuesto de fórmula (I) y/o al menos una sal farmacéuticamente aceptable de este descritos en la presente.

En otro aspecto, la presente invención divulga un método para tratar una enfermedad sensible a la inhibición de FGFR, que comprende administrar a un sujeto que lo necesite una cantidad eficaz para tratar dicha enfermedad de al menos un compuesto de fórmula (I) y/o al menos una sal farmacéuticamente aceptable de este descritos en la presente.

15 En otro aspecto, la presente invención divulga el uso de al menos un compuesto de fórmula (I) y/o al menos una sal farmacéuticamente aceptable de este descritos en la presente para tratar una enfermedad sensible a la inhibición de FGFR.

En otro aspecto, la presente invención proporciona el uso de al menos un compuesto de fórmula (I) y/o al menos una sal farmacéuticamente aceptable de este descritos en la presente en la producción de un medicamento para tratar una enfermedad sensible a la inhibición de FGFR.

En algunas realizaciones, dicha enfermedad sensible a la inhibición de FGFR es cáncer, por ejemplo, cáncer de pulmón, cáncer de estómago, cáncer de hígado, cáncer de mama, cáncer de ovario, carcinoma de endometrio o carcinoma de vejiga.

El compuesto de fórmula (I) descrito en la presente y/o una sal farmacéuticamente aceptable de este descritos en la presente se pueden sintetizar a partir de materias de partida comercializados mediante métodos muy conocidos en la técnica, considerados conjuntamente con la divulgación en esta solicitud de patente. Los siguientes esquemas ilustran métodos para preparar algunos de los compuestos divulgados en la presente.

Tal como se muestra en el Esquema I, los compuestos de fórmula (I) se pueden obtener a partir de la reducción de compuestos de fórmula (V). La reducción se puede llevar a cabo con hidrógeno en presencia de un catalizador tal como paladio, platino, etc., o llevar a cabo con otros reductores tales como 4-metilbencenosulfonohidrazida, etc. Los compuestos de fórmula (V) se pueden obtener a partir de compuestos de fórmula (IV) con la reacción de aminólisis con o sin otro reactivo tal como trimetilaluminio. En otras realizaciones, los compuestos de fórmula (I) se pueden obtener a partir de compuestos de fórmula (III), que se pueden obtener a partir de la reducción de compuestos de fórmula (IV), con el método de la reacción de hidrólisis y a continuación la reacción de acoplamiento o con otros métodos adecuados que podría reconocer un experto en la técnica. Y R¹, R² y R³ son tal como se han definido anteriormente en la presente.

# Esquema II O R3 base HO Y N R1 (VII) (VIII) (VIII)

Tal como se muestra en el Esquema II, los compuestos de fórmula (**VIII**) se pueden obtener a partir de los compuestos de fórmula (**VI**) en las condiciones descritas en el Esquema I. Y R¹, R², R³ e Y son tal como se han definido anteriormente en la presente. Los compuestos obtenidos de esta manera se puede modificar adicionalmente en sus posiciones periféricas para proporcionar los compuestos deseados. Se describen transformaciones de química sintética, por ejemplo, en R. Larock, *Comprehensive Organic Transformations*, VCH Publishers (1989); T.W. Greene y P.G.M. Wuts, *Protective Groups in Organic Synthesis*, 3.ª Ed., John Wiley and Sons (1999); L. Fieser y M. Fieser, *Fieser and Fieser's Reagents for Organic Synthesis*, John Wiley and Sons (1994); y L. Paquette, ed., *Encyclopedia of Reagents for Organic Synthesis*, John Wiley and Sons (1995) y ediciones posteriores de estos.

Antes de su uso, el compuesto de fórmula (I) y/o una sal farmacéuticamente aceptable de este descritos en la presente se pueden purificar mediante cromatografía en columna, cromatografía líquida de alta resolución, cristalización u otros métodos adecuados.

#### Composiciones farmacéuticas v utilidad

5

25

30

35

45

Una composición que comprende al menos un compuesto de fórmula (I) y/o al menos una sal farmacéuticamente aceptable de este descritos en la presente se puede administrar de diversas maneras conocidas, tales como por vía oral, parenteral, mediante espray de inhalación o mediante un depósito implantado. El término «parenteral», tal como se utiliza en la presente, incluye técnicas subcutáneas, intracutáneas, intravenosas, intramusculares, intraarticulares, intraarteriales, intrasinoviales, intrasternales, intratecales, intralesionales y de infusión o inyección intracraneal.

Una composición oral puede ser cualquier forma farmacéutica aceptable por vía oral incluidos, sin carácter limitante, comprimidos, cápsulas, emulsiones, y suspensiones, dispersiones y soluciones acuosas. Los portadores utilizados habitualmente para los comprimidos incluyen la lactosa y el almidón de maíz. También se añaden normalmente a los comprimidos agentes lubricantes, tales como estearato de magnesio.

Para la administración oral en una forma de cápsula, los diluyentes útiles incluyen la lactosa y almidón de maíz seco. Cuando las suspensiones o emulsiones acuosas se administran por vía oral, el principio activo se puede suspender o disolver en una fase oleosa combinado con agentes emulsionantes o de suspensión. Si se desea, se pueden añadir ciertos agentes edulcorantes, saborizantes o colorantes.

Una composición inyectable estéril (por ejemplo, suspensión acuosa u oleaginosa) se puede formular de acuerdo con técnicas conocidas en la materia utilizando agentes de dispersión o humectantes adecuados (tales como, por ejemplo, Tween 80) y agentes de suspensión. El Intermedio inyectable estéril también puede ser una solución o suspensión inyectable estéril en un diluyente o disolvente atóxico aceptable desde un punto de vista parenteral, por ejemplo, una solución en 1,3-butanodiol. Entre los vehículos y disolventes farmacéuticamente aceptables que se pueden emplear están el manitol, agua, solución de Ringer y solución de cloruro de sodio isotónica. Además, se utilizan convencionalmente aceites estériles, fijos como un disolvente o medios de suspensión (por ejemplo, mono- o diglicéridos sintéticos). Los ácidos grasos, tales como el ácido oleico y sus derivados glicerídicos son útiles en el Intermedio de los inyectables, al igual que lo son los aceites farmacéuticamente aceptables naturales, tales como el aceite de oliva o aceite de ricino, especialmente en sus versiones polioxietiladas. Estas soluciones o suspensiones oleosas también pueden contener un dispersante o diluyente de tipo alcohol de cadena larga, o carboximetilcelulosa o agentes dispersantes similares.

Se puede preparar una composición de inhalación de acuerdo con técnicas muy conocidas en la materia de la formulación farmacéutica y se puede preparar como soluciones en disolución salina, empleando alcohol bencílico u otros conservantes adecuados, promotores de la absorción para mejorar la biodisponibilidad, fluorocarbonos y/u otros agentes solubilizantes o de dispersión conocidos en la materia.

Una composición tópica se puede formular en forma de aceite, crema, loción, pomada y similares. Los portadores adecuados para la composición incluyen aceites vegetales o minerales, petrolato blanco (parafina blanda blanca), grasas o aceites de cadena ramificada, grasas animales y alcoholes de peso molecular elevado (superiores a C12).

# ES 2 697 697 T3

En algunas realizaciones, el portador farmacéuticamente aceptable es uno en el cual el principio activo es soluble. También se pueden incluir emulsionantes, estabilizantes, humectantes y antioxidantes así como también agentes que confieren color o fragancia, si se desea. Además, se pueden emplear potenciadores de la penetración transdérmica en estas formulaciones tópicas. Se pueden consultar ejemplos de potenciadores de este tipo en las Patentes de EE. UU. 3 989 816 y 4 444 762.

5

10

25

40

45

50

Las cremas se pueden formular a partir de una mezcla de aceite mineral, cera de abejas autoemulsionante y agua en la cual se combina la mezcla del principio activo, disuelto en una pequeña cantidad de un aceite, tal como aceite de almendras. Un ejemplo de una crema de este tipo es uno que incluye, en peso, aproximadamente 40 partes de agua, aproximadamente 20 partes de cera de abejas, aproximadamente 40 partes de aceite mineral y aproximadamente 1 parte de aceite de almendras. Las pomadas se pueden formular mezclando una solución del principio activo en un aceite vegetal, tal como aceite de almendras, con parafina blanda caliente y permitiendo que la mezcla se enfríe. Un ejemplo de una pomada de este tipo es una que incluye aproximadamente un 30% en peso de aceite de almendras y aproximadamente un 70% en peso de parafina blanda blanca.

Un portador farmacéuticamente aceptable se refiere a un portador que es compatible con los principios activos de la composición (y en algunas realizaciones, capaz de estabilizar los ingredientes activos) no es perjudicial para el sujeto que se va a tratar. Por ejemplo, se pueden utilizar agentes solubilizantes, tales como ciclodextrinas (que forman complejos específicos, más solubles con el compuesto de fórmula (I) y/o una sal farmacéuticamente aceptable de este descritos en la presente) como excipientes farmacéuticos para el suministro de los principios activos. Los ejemplos de otros portadores incluyen el dióxido de silicio coloidal, estearato de magnesio, celulosa, laurilsulfato de sodio y pigmentos tales como Amarillo D&C n.º 10.

Se pueden utilizar ensayos *in vitro* adecuados para evaluar de manera preliminar la eficacia del compuesto de fórmula (I) y/o una sal farmacéuticamente aceptable de este descritos en la presente, en la inhibición de la actividad de la cinasa FGFR. El compuesto de fórmula (I) y/o una sal farmacéuticamente aceptable de este descritos en la presente se pueden examinar adicionalmente para determinar su eficacia para tratar la enfermedad inflamatoria mediante ensayos *in vivo*. Por ejemplo, el compuesto de fórmula (I) y/o una sal farmacéuticamente aceptable de este descritos en la presente se pueden administrar a un animal (por ejemplo, un modelo en ratones) que padece una enfermedad inflamatoria y se pueden evaluar sus efectos terapéuticos. En función de los resultados, también se pueden determinar un intervalo posológico y las vías de administración adecuados para los animales, tales como seres humanos.

El compuesto de fórmula (I) y/o una sal farmacéuticamente aceptable de este descritos en la presente se pueden utilizar para conseguir un efecto beneficioso terapéutico o profiláctico, por ejemplo, en sujetos con cáncer. Tal como se utiliza en la presente, el término «cáncer» se refiere a un trastorno celular caracterizado por la proliferación celular descontrolada o desregulada, descenso de la diferenciación celular, capacidad inapropiada para invadir el tejido circundante y/o capacidad para establecer nuevo crecimiento en sitios ectópicos. El término «cáncer» incluye, sin carácter limitante, tumores sólidos y tumores sanguíneos. El término «cáncer» engloba enfermedades de la piel, tejidos, órganos, hueso, cartílago, sangre y vasos. El término «cáncer» engloba además cánceres primarios y metastásicos.

Los ejemplos no limitantes de tumores sólidos incluyen el cáncer pancreático; cáncer de vejiga; cáncer colorrectal; cáncer de mama, incluido el cáncer de mama metastásico; cáncer de próstata, incluido el cáncer de próstata dependiente de andrógenos e independiente de andrógenos; cáncer renal, incluido, por ejemplo, el carcinoma de células renales metastásico; cáncer hepatocelular; cáncer de pulmón, incluido, por ejemplo, el cáncer de pulmón no microcítico (CPNM), carcinoma bronquioalveolar (CBA) y adenocarcinoma del pulmón; cáncer de ovario, incluido, por ejemplo, el cáncer peritoneal primario o epitelial progresivo; cáncer de cuello uterino; cáncer gástrico; cáncer esofágico; cáncer de las vías digestivas y respiratorias altas, incluido, por ejemplo, el carcinoma de células escamosas de las vías digestivas y respiratorias altas; cáncer de piel, incluido, por ejemplo, el melanoma maligno; cáncer neuroendocrino, incluidos los tumores neuroendocrinos metastásicos; tumores cerebrales, incluido, por ejemplo, el glioma, oligodendroglioma anaplásico, glioblastoma multiforme adulto y astrocitoma anaplásico adulto; cáncer de huesos; sarcoma de tejidos blandos; y carcinoma de tiroides.

Los ejemplos no limitantes de neoplasias malignas hematológicas incluyen la leucemia mieloide aguda (LMA); leucemia mielógena crónica (LMC), incluida la LMC acelerada y LMC de fase blástica (LMC-FB); leucemia linfoblástica aguda (LLA); leucemia linfocítica crónica (LLC); enfermedad de Hodgkin (EH); linfoma no hodgkiniano (LNH), incluido el linfoma folicular y linfoma de células del manto; linfoma de linfocitos B; linfoma de linfocitos T; mieloma múltiple (MM); macroglobulinemia de Waldenstrom; síndromes mielodisplásicos (SMD), incluida la anemia refractaria (AR), anemia refractaria con sideroblastos en anillos (ARAS), anemia refractaria con exceso de blastos (AREB) y AREB en transformación (AREB-T); y síndromes mieloproliferativos.

En algunas realizaciones, los ejemplos del cáncer que se van a tratar incluyen, sin carácter limitante, cáncer de pulmón (tal como el cáncer de pulmón no microcítico (CPNM) escamoso, cáncer de pulmón microcítico (CPM)), cáncer de estómago, cáncer de hígado, cáncer de mama, cáncer de ovario, carcinoma de endometrio y carcinomas de vejiga.

En algunas realizaciones, el compuesto de fórmula (I) y/o una sal farmacéuticamente aceptable de este descritos en la presente se administran junto con otro agente terapéutico. En algunas realizaciones, el otro agente terapéutico es

uno que se administra normalmente a pacientes con la enfermedad o afección que se está tratando. El compuesto de fórmula (I) y/o una sal farmacéuticamente aceptable de este descritos en la presente se pueden administrar con el otro agente terapéutico en una forma farmacéutica unitaria o como una forma farmacéutica independiente. Cuando se administra como una forma farmacéutica independiente, el otro agente terapéutico se puede administrar antes, a la vez o después de la administración del compuesto de fórmula (I) y/o una sal farmacéuticamente aceptable de este descritos en la presente.

En algunas realizaciones, el compuesto de fórmula (I) y/o una sal farmacéuticamente aceptable de este descritos en la presente se administran junto con un agente antineoplásico. Tal como se utiliza en la presente, la expresión «agente antineoplásico» se refiere a cualquier agente que se administra a un sujeto con cáncer con el objetivo de tratar el cáncer. Los ejemplos no limitantes de agentes antineoplásicos incluyen: radioterapia; inmunoterapia; agentes quimioterápicos que dañan el ADN; y agentes quimioterápicos que alteran la replicación celular.

Los ejemplos no limitantes de agentes quimioterápicos que dañan el ADN incluyen los inhibidores de la topoisomerasa I (por ejemplo, irinotecán, topotecán, camptotecina y análogos o metabolitos de estos, y doxorubicina); inhibidores de la topoisomerasa II (por ejemplo, etopósido, tenipósido y daunorubicina); agentes alquilantes (por ejemplo, melfalán, clorambucilo, busulfán, tiotepa, ifosfamida, carmustina, lomustina, semustina, estreptozocina, decarbazina, metotrexato, mitomicina C y ciclofosfamida); intecalantes del ADN (por ejemplo, cisplatino, oxaliplatino y carboplatino); intercalantes del ADN y generadores de radicales libres tales como la bleomicina; y miméticos de nucleósidos (por ejemplo, 5-fluorouracilo, capecitibina, gemcitabina, fludarabina, citarabina, mercaptopurina, tioguanina, pentostatina e hidroxiurea).

Los agentes quimioterápicos que alteran la replicación celular incluyen: paclitaxel, docetaxel y análogos relacionados; vincristina, vinblastina y análogos relacionados; talidomida y análogos relacionados (por ejemplo, CC-5013 y CC-4047); inhibidores de la proteína tirosina-cinasa (por ejemplo, mesilato de imatinib y gefitinib); inhibidores el proteasoma (por ejemplo, bortezomib); inhibidores de NF-kappa B, incluidos inhibidores de la cinasa I kappa B; anticuerpos que se unen a proteínas sobreexpresadas en cánceres y que de esta manera disminuyen de manera regulada la replicación celular (por ejemplo, trastuzumab, rituximab, cetuximab y bevacizumab); y otros inhibidores de proteínas o enzimas de los que se sabe que experimentan un aumento regulado, están sobreexpresados o activados en cánceres, cuya inhibición disminuye de manera regulada la replicación celular.

#### **Ejemplos**

5

10

15

30

35

40

45

Los siguientes ejemplos se pretende que sean simplemente ilustrativos. Se ha intentado garantizar la exactitud en lo que se refiere a los números utilizados (por ejemplo, cantidades, temperatura, etc.) pero se deben tener en cuenta algunos errores y desviaciones experimentales. A menos que se indique otra cosa, las partes son partes en peso, la temperatura está en grados centígrados y la presión es la atmosférica o cercana a esta. Todos los datos de MS se comprobaron mediante agilent 6120 y/o agilent 1100. Los espectros de ¹H-RMN se registraron en un instrumento que funciona a 400 MHz. Los espectros de RMN se obtuvieron como soluciones de CDCl₃ (presentados en ppm), utilizando cloroformo como el patrón de referencia (7.26 ppm) o trimetilsilano de manera interna (0.00 ppm) cuando fue apropiado. Se utilizaron otros disolventes de RMN según fue necesario. Cuando se presentan las multiplicidades de los picos, se utilizan las siguientes abreviaturas: s (singulete), d (doblete), t (triplete), m (multiplete), c (cuadruplete), a (ancho), dd (doble doblete) y dt (doble triplete). Cuando se proporcionan, las constantes de acoplamiento se presentan en Hercios (Hz). Todos los reactivos, excepto los intermedios, utilizados en esta invención están comercializados. Todos los compuestos de los nombres excepto los reactivos se generaron con Chemdraw.

Además, a efectos de conveniencia y como entenderán claramente los expertos en la técnica, no se han indicado de manera expresa todos los átomos de hidrógeno que se unen a cada átomo de carbono y/o nitrógeno. Por ejemplo, el compuesto 16 se representa con la fórmula

en el Ejemplo 3 más adelante, donde se ha omitido un átomo de hidrógeno que se une al átomo de nitrógeno entre el anillo de pirimidina y el anillo de fenilo. En consecuencia, esta fórmula representa el mismo compuesto que la fórmula

# ES 2 697 697 T3

En los siguientes ejemplos, se utilizan las siguientes abreviaturas:

AIBN a,a'-azoisobutironnitrilo

CCI<sub>4</sub> perclorometano
DCM diclorometano

5 DEAD azodicarboxilato de dietilo

DIPEA N,N-diisopropiletilamina

DMF N,N-dimetilformamida

AE acetato de etilo

h hora(s)

10 HATU hexafluorofosfato de *O*-(7-azabenzotriazol-1-il)-*N*,*N*,*N*',*N*'-tetrametiluronio

ISCO cromatografía combiflash

KHMDS bis(trimetilsilil)amida de potasio

mL mililitro(s)
min minuto(s)
MeOH metanol

NBS N-bromosuccinimida
NIS N-yodosuccinimida

EP éter de petróleo

Pd(dppf)Cl<sub>2</sub>·CH<sub>2</sub>Cl<sub>2</sub> complejo de 1,1'-bis(difenilfosfino)ferroceno-dicloropaladio(II) diclorometano

20 Pd(PPh<sub>3</sub>)<sub>4</sub> tetrakis(trifenilfosfina)paladio(0)

PdCl<sub>2</sub>(PPh<sub>3</sub>)<sub>2</sub> bis(trifenilfosfina)paladio(II)dicloruro

PPh<sub>3</sub> trifenilfosfina

PTLC cromatografía en capa fina preparativa

THF tetrahidrofurano

25 TFA ácido trifluoroacético

Xantphos 4,5-bis(difenilfosfino)-9,9-dimetilxanteno

# Intermedio 1

30

15

# 3-Bromo-4-fluoro-5-metoxibenzoato de metilo

# (A) Ácido 3-bromo-4-fluoro-5-yodobenzoico

A una mezcla de ácido 3-bromo-4-fluorobenzoico (45 g, 0.21 mol) en  $H_2SO_4$  (96%, 150 mL) se añadió NIS (50 g, 0.22 mol) en porciones a 0 °C en 30 min. La mezcla se agitó a temperatura ambiente durante 2 h. A continuación, la mezcla

se diluyó con hielo-agua y se filtró. La masa retenida en el filtro se lavó con hielo-agua y se secó para proporcionar el compuesto del título como un sólido amarillo (60 g, 84.7% de rendimiento). MS (m/z): 342.7, 344.7 (M-H)<sup>-</sup>.

# (B) Ácido 3-bromo-4-fluoro-5-hidroxibenzoico

5

Una mezcla de ácido 3-bromo-4-fluoro-5-yodobenzoico (60 g, 0.17 mol), Cu<sub>2</sub>O (3.0 g, 0.021 mol) y NaOH (35 g, 0.88 mol) en agua (600 mL) se calentó a 100 °C durante 16 h. A continuación, la mezcla de reacción se enfrió hasta la temperatura ambiente y se filtró. El filtrado se acidificó con HCl ac. (5 N) y se extrajo con AE. La fase orgánica se separó, se concentró y se secó para proporcionar el compuesto del título como un sólido amarillo (35 g, 85.6% de rendimiento).

#### (C) 3-Bromo-4-fluoro-5-metoxibenzoato de metilo

A una mezcla de ácido 3-bromo-4-fluoro-5-hidroxibenzoico (35 g, 0.15 mol) y K<sub>2</sub>CO<sub>3</sub> (45 g, 0.32 mol) en DMF (150 mL) se añadió yodometano (45 g, 0.32 mol) a temperatura ambiente. La mezcla se agitó a 80 °C durante 4 h. A continuación, la mezcla se diluyó con agua y se extrajo con AE. La fase orgánica se separó y se concentró y a continuación, el residuo se purificó mediante cromatografía en gel de sílice (EP/AE) para proporcionar el compuesto del título como un sólido blanco (15 g, 38.3% de rendimiento). MS (m/z): 263.2, 265.2 (M+H)+.

Los siguientes intermedios se prepararon de acuerdo con los procedimientos del intermedio 1 utilizando los correspondientes intermedios y reactivos en condiciones apropiadas que podrá reconocer un experto en la técnica.

| Intermedio | Estructura | MS (m/z) (M+H)+ |
|------------|------------|-----------------|
| 2          | F          | 199.1           |
| 3          | O CI       | 215.0           |
| 4          | Br         | 245.0/247.0     |
| 5          | Br O       | 259.0/261.0     |
| 6          | F O O      | 262.8/264.8     |

| Intermedio | Estructura | MS (m/z) (M+H)+ |
|------------|------------|-----------------|
| 7          | Br Cl      | 278.9/280.9     |
| 8          | Br Cl      | 297.0/299.0     |

#### Intermedio 9

#### 4-Bromo-3-yodo-5-metoxibenzoato de metilo

# (A) Ácido 4-bromo-3,5-diyodobenzoico

A una mezcla de ácido 4-bromobenzoico (2.7 g, 13 mol) en H<sub>2</sub>SO<sub>4</sub> (96%, 50 mL) se añadió NIS (7.5 g, 33 mol) en porciones a 0 °C en 15 min y la mezcla resultante se agitó a temperatura ambiente durante 2 h. A continuación, la mezcla se diluyó con hielo-agua y después una solución acuosa de Na<sub>2</sub>SO<sub>3</sub>. A continuación, se filtró la mezcla. La masa retenida en el filtro se lavó con hielo-agua y se secó para proporcionar el compuesto del título como un sólido rosa claro (5.8 g, 95.4% de rendimiento). MS (m/z): 450.5, 452.5 (M-H)<sup>-</sup>.

# 10 (B) Ácido 4-bromo-3-hidroxi-5-yodobenzoico

Una mezcla de ácido 4-bromo-3,5-diyodobenzoico (3.0 g, 6.6 mmol), Cu<sub>2</sub>O (0.10 g, 0.70 mmol) y NaOH (1.4 g, 35 mmol) en agua (30 mL) se calentó a 80 °C durante 3 h. A continuación, la mezcla de reacción se diluyó con agua, se acidificó con HCl ac. (10 N) y después se filtró. La masa retenida en el filtro se lavó con hielo-agua y se secó para proporcionar el compuesto del título como un sólido amarillo (1.8 g, 79.2% de rendimiento). MS (m/z): 340.6, 342.6 (M-H)<sup>-</sup>.

# (C) 4-Bromo-3-yodo-5-metoxibenzoato de metilo

A una mezcla de ácido 4-bromo-3-hidroxi-5-yodobenzoico (1.8 g, 5.3 mmol) y  $K_2CO_3$  (1.8 g, 13 mmol) en DMF (30mL) se añadió yodometano (1.7 g, 12 mmol) a temperatura ambiente y a continuación, la mezcla se agitó a 80 °C durante 4 h. La mezcla se diluyó a continuación con agua y se extrajo con AE. La fase orgánica se separó y se concentró para proporcionar el compuesto del título como un sólido gris (1.9 g, 97.6% de rendimiento). MS (m/z): 370.7, 372.7 (M+H) $^+$ .

# Intermedio 10

15

20

#### 3-Bromo-N,5-dimetoxibenzamida

#### (A) 3-Bromo-5-yodo-N-metoxibenzamida

17

A una solución de ácido 3-bromo-5-yodobenzoico (5.0 g, 15 mmol) y clorhidrato de metoxilamina (1.3 g, 16 mmol) en DCM (70 mL) se añadieron HATU (7.0 g, 18 mmol) y DIPEA (4.0 g, 31 mmol). La mezcla resultante se agitó a temperatura ambiente durante 16 h, se diluyó con agua y se extrajo con DCM. Las fases orgánicas combinadas se concentraron y el residuo se purificó mediante cromatografía en gel de sílice (DCM/MeOH) para proporcionar el compuesto del título como un sólido blanco (4.2 g, 77.1% de rendimiento). MS (m/z): 356.2, 358.2 (M+H)+.

# (B) 3-Bromo-N,5-dimetoxibenzamida

Se calentó una mezcla de 3-bromo-5-yodo-*N*-metoxibenzamida (3.6 g, 10 mmol), Cul (0.20 g, 1.1 mmol), 1, 10-fenantrolina (0.38 g, 2.1 mmol) y Cs<sub>2</sub>CO<sub>3</sub> (4.6 g, 14 mmol) en MeOH (20 mL) se calentó a 100 °C durante 1 h con microondas. A continuación, se filtró la mezcla y la masa retenida en el filtro se lavó con MeOH (20 mL). El filtrado se concentró y el residuo se purificó mediante cromatografía en gel de sílice (EP/AE) para proporcionar el compuesto del título como un sólido de color café (1.1 g, 41.8% de rendimiento). MS (m/z): 262.0, 260.0 (M+H)+.

#### Intermedio 11

5

10

15

20

25

30

#### 2,4-Difluoro-5-metoxi-3-metilbenzoato de metilo

#### (A) 2,4-Difluoro-5-metoxi-3-metilbenzoato de metilo

A una solución de 4-fluoro-3-metoxi-5-metilbenzoato de metilo (5.0 g, 25.23 mmol) y tetrafluoroborato de 1-(clorometil)-4-fluoro-1 ,4-diazabiciclo[2.2.2]octano-1 ,4-diio (9.8 g, 27.66 mmol) en acetonitrilo (150 mL) se añadió ácido acético (30 mL) y la mezcla resultante se agitó a 70 °C durante 18 h en una atmósfera de nitrógeno. Los componentes volátiles se eliminaron a presión reducida y el residuo se purificó mediante cromatografía en columna de gel de sílice (eluida con AE en EP 0~100%) para proporcionar el compuesto del título como un sólido blanco (1.50 g, 27.5% de rendimiento). MS (m/z): 217.0 (M+H)+.

# Intermedio 12

# 3-(Bromometil)-4-cloro-5-metoxibenzoato de metilo

#### (A) 3-(Bromometil)-4-cloro-5-metoxibenzoato de metilo

A una solución de 4-cloro-3-metoxi-5-metilbenzoato de metilo (2.00 g, 9.32 mmol) en CCl<sub>4</sub> (40 mL) se añadieron NBS (1.99 g, 11.18 mmol) y AIBN (153 mg, 0.93 mmol). A continuación la mezcla se agitó a 70 °C durante toda la noche. Después de enfriar hasta la temperatura ambiente, la mezcla se repartió entre DCM y agua. La fase acuosa se extrajo con DCM. Las fases orgánicas combinadas se lavaron con agua y salmuera, se secaron con sulfato de sodio anhidro y se concentraron. El residuo se suspendió en EP (5 mL) y se agitó durante 1 h a temperatura ambiente. Después de la filtración, la masa retenida en el filtro se lavó con EP (2\*2 mL), se secó a presión reducida a 60 °C durante 1 h para obtener un sólido amarillo (2.66 g, 97.3% de rendimiento). MS (m/z): 293.0/295.0 (M+H)+.

Los siguientes intermedios se prepararon de acuerdo con los procedimientos del intermedio 12 utilizando los correspondientes intermedios y reactivos en condiciones apropiadas que podrá reconocer un experto en la técnica.

| Intermedio | Estructura | MS (m/z) (M+H)+ |
|------------|------------|-----------------|
| 13         | Br F       | 277.0/279.0     |

| Intermedio | Estructura      | MS (m/z) (M+H)+ |
|------------|-----------------|-----------------|
| 14         | O O O F O F O F | 295.3/297.3     |

#### Intermedio 15

# 1-Etil-1H-pirazol-4-amina

# (A) 1-Etil-1H-pirazol-4-amina

A una solución de 4-nitro-1*H*-pirazol (500 mg, 4.42 mmol) en THF anhidro (20 mL) se añadió NaH (dispersión al 60% en aceite mineral, 353 mg, 8.84 mmol) en porciones a 0 °C. La mezcla resultante se agitó a 0 °C durante 10 min. A continuación, se añadió 1-bromoetano (723 mg, 6.64 mmol) en THF anhidro (2 mL) gota a gota a 0 °C. La mezcla se agitó a temperatura ambiente durante 16 h. A continuación, la reacción se desactivó con H<sub>2</sub>O (20 mL) y los componentes volátiles se eliminaron a presión reducida. La fase acuosa resultante se extrajo con AE (2\*30 mL). Los extractos combinados se concentraron a presión reducida. El residuo se disolvió en MeOH (30 mL) y a continuación se añadió Pd/C (10%, 100 mg). La mezcla se agitó a temperatura ambiente en una atmósfera de hidrógeno durante 16 h. El catalizador se separó por filtración. El filtrado se concentró y el residuo se purificó mediante ISCO (eluida con MeOH en H<sub>2</sub>O 0~100%) para proporcionar el compuesto del título como un aceite marrón (260 mg, 52.9% de rendimiento, 2 pasos). MS (m/z): 112.1 (M+H)+.

# 15 Intermedio 16

20

# (R)-3-(4-Amino-1H-pirazol-1-il)piperidino-1-carboxilato de tert-butilo

$$O_2N$$
 $O_2N$ 
 $O_2N$ 

# (A) (R)-3-(4-Nitro-1H-pirazol-1-il)piperidino-1-carboxilato de tert-butilo

A una solución de 4-nitro-1*H*-pirazol (1, 2.0 g, 17.7 mmol), (*S*)-3-hidroxipiperidino-1-carboxilato de *tert*-butilo (4.2 g, 21.2 mmol) y PPh<sub>3</sub> (6.9 g, 26.6 mmol) en THF (35 mL) se añadió DEAD (4.6 g, 26.6 mmol) gota a gota enfriando con un baño de hielo-agua. Después de la adición, la mezcla se agitó a temperatura ambiente durante 12 h más. La mezcla resultante se concentró al vacío. El residuo se purificó mediante cromatografía en gel de sílice (eluida con AE en EP 0-60%) para obtener un aceite amarillo (2.5 g, 47.7% de rendimiento). MS (m/z): 197.0 (M+H-100)+.

# (B) (R)-3-(4-Amino-1H-pirazol-1-il)piperidino-1-carboxilato de tert-butilo

Una mezcla de (*R*)-3-(4-nitro-1*H*-pirazol-1-il)piperidino-1-carboxilato de *tert*-butilo (1.0 g, 3.37 mmol) y Pd/C (5%, 200 mg) en MeOH (20 mL)se agitó en 1 atm de H<sub>2</sub> a temperatura ambiente durante 12 h. La mezcla resultante se filtró y el filtrado se concentró al vacío para obtener un aceite marrón (920 mg, rendimiento cuantitativo). MS (m/z): 267.0 (M+H)+

Los siguientes intermedios se prepararon de acuerdo con los procedimientos del intermedio 16 utilizando los correspondientes intermedios y reactivos en condiciones apropiadas que podrá reconocer un experto en la técnica.

| Intermedio | Estructura               | MS (m/z) (M+H)+ |
|------------|--------------------------|-----------------|
| 17         | $H_2N$                   | 140.0           |
| 18         | $H_2N$ $N$ $(R)$ $N$     | 154.0           |
| 19         | $H_2N$ $N$ $(S)$         | 154.1           |
| 20         | $H_2N$                   | 168.0           |
| 21         | H <sub>2</sub> N N Boc   | 182.9(M+H-56)⁺  |
| 22         | H <sub>2</sub> N N-Boc   | 153.0(M+H-100)+ |
| 23         | H <sub>2</sub> N S N-Boc | 153.1(M+H-100)+ |
| 24         | H <sub>2</sub> N N Boc   | 167.0(M+H-100)+ |
| 25         | H <sub>2</sub> N Boc     | 267.1           |

#### Intermedio 26

# (R)-1-(4-Amino-1H-pirazol-1-il)propan-2-ol

$$O_{2}N \xrightarrow{N} H + \bigvee_{(R)} \frac{K_{2}CO_{3}}{O_{2}N} \xrightarrow{N} N \xrightarrow{(R)} OH \xrightarrow{H_{2}} N \xrightarrow{N} N \xrightarrow{(R)} OH$$

# (A) (R)-1-(4-Nitro-1H-pirazol-1-il)propan-2-ol

A una solución de 4-nitro-1*H*-pirazol (500 mg, 4.42 mmol) en DMF (5 mL) se añadió (*R*)-2-metiloxirano (282 mg, 4.86 mmol) y K<sub>2</sub>CO<sub>3</sub> (1.2 g, 8.84 mmol). La mezcla resultante se agitó a 60 °C en un tubo sellado durante 16 h. La mezcla de reacción se repartió entre H<sub>2</sub>O (30 mL) y AE (30 mL). La fase orgánica se concentró y se purificó mediante ISCO (EP/AE) para proporcionar el compuesto del título como un sólido incoloro (360 g, 47.6% de rendimiento). MS (m/z): 171.9 (M+H)+

# (B) (R)-1-(4-Amino-1H-pirazol-1-il)propan-2-ol

A una solución de (*R*)-1-(4-nitro-1*H*-pirazol-1-il) propan-2-ol (140 mg, 0.82 mmol) en MeOH (30 mL) se añadió Pd/C (10%, 50 mg). La mezcla se agitó a temperatura ambiente en una atmósfera de nitrógeno durante 16 h. El catalizador se separó por filtración y el filtrado se concentró para proporcionar el compuesto del título como un aceite marrón (115 mg, 0.82 mmol, rendimiento cuantitativo). MS (m/z): 142.1 (M+H)+.

El siguiente intermedio se preparó de acuerdo con los procedimientos del intermedio 26 utilizando los correspondientes intermedios y reactivos en condiciones apropiadas que podrá reconocer un experto en la técnica.

| Intermedio | Estructura                                 | MS (m/z) (M+H)+ |
|------------|--------------------------------------------|-----------------|
| 27         | $H_2N$ $N$ $N$ $N$ $N$ $N$ $N$ $N$ $N$ $N$ | 142.0           |

#### Intermedio 28

5

10

15

20

#### 3-(4-Etilpiperazin-1-il)anilina

$$\begin{pmatrix} H \\ N \\ N \end{pmatrix} + F \begin{pmatrix} N \\ NO_2 \end{pmatrix} \begin{pmatrix} N \\ NO_2 \end{pmatrix} \begin{pmatrix} H_2 \\ Pd/C \end{pmatrix} \begin{pmatrix} N \\ N \end{pmatrix} \begin{pmatrix} N \\$$

# (A) 1-Etil-4-(3-nitrofenil)piperazina

Una mezcla de 1-etilpiperazina (3.23 g, 0.0283 mol) y 1-fluoro-3-nitrobenceno (2.0 g, 0.0142 mol) se calentó a reflujo durante 2 días. La mezcla resultante se enfrió y se concentró al vacío. El residuo se vertió en agua (50 mL) y se extrajo con AE (2\*50 mL). Los extractos combinados se lavaron con salmuera y se concentraron al vacío. El residuo se purificó mediante ISCO (eluida con AE en EP 0-70%) para obtener un sólido amarillo (1.80 g, 54.0% de rendimiento). MS (m/z): 236.1 (M+H)+.

# (B) 3-(4-Etilpiperazin-1-il)anilina

Una mezcla de 1-etil-4-(3-nitrofenil)piperazina (1.8 g, 0.00765 mol) y Ni-Raney (1.0 g) en MeOH (20 mL) se agitó en 1 atm de H<sub>2</sub> a temperatura ambiente durante 6 h. La mezcla resultante se filtró y el filtrado se concentró al vacío para obtener una suspensión espesa gris (1.5 g, 95.5% de rendimiento). MS (m/z): 206.2 (M+H)<sup>+</sup>.

Los siguientes intermedios se prepararon de acuerdo con los procedimientos del intermedio 28 utilizando los correspondientes intermedios y reactivos en condiciones apropiadas que podrá reconocer un experto en la técnica.

| Intermedio | Estructura          | MS (m/z) (M+H)+ |
|------------|---------------------|-----------------|
| 29         | H <sub>2</sub> N NH | 178.1           |
| 30         | H <sub>2</sub> N NH | 206.1           |

# Intermedio 31

# 5-Bromo-N-(4-((3R,5S)-3,5-dimetilpiperazin-1-il)fenil)pirimidin-2-amina

# (A) 5-Bromo-N-(4-((3R,5S)-3,5-dimetilpiperazin-1-il)fenil)pirimidin-2-amina

Una mezcla de 5-bromo-2-cloropirimidina (392 mg, 2.03 mmol), 4-((3*R*,5*S*)-3,5-dimetilpiperazin-1-il)anilina (416 mg, 1.968 mmol) y TFA (0.5 mL, 6.09 mmol) en propan-2-ol (5 mL) se agitó a 150 °C durante 80 min con microondas. La mezcla resultante se concentró, se basificó con amoniaco-agua y se purificó mediante ISCO (DCM/MeOH) para proporcionar el compuesto del título como un sólido amarillo (550 mg, 74.9% de rendimiento). MS (m/z): 362.0(M+H)+.

Los siguientes intermedios se prepararon de acuerdo con los procedimientos del intermedio 31 utilizando los correspondientes intermedios y reactivos en condiciones apropiadas que podrá reconocer un experto en la técnica.

| Intermedio | Estructura                               | MS (m/z) (M+H)+ |
|------------|------------------------------------------|-----------------|
| 32         | HO N N N N                               | 206.1           |
| 33         | Br N N N                                 | 267.9/269.9     |
| 34         | Br N N                                   | 361.1/363.1     |
| 35         | Br N N N N N N N N N N N N N N N N N N N | 362.1/364.1     |
| 36         | Br N N N                                 | 362.1/364.1     |

# Intermedio 37

5

# 10 4-((6-Bromopiridin-3-il)metil)morfolina

# (A) 4-((6-Bromopiridin-3-il)metil)morfolina

A una solución de 6-bromonicotinaldehído (1.0 g, 5.4 mmol) y morfolina (0.50 g, 5.7 mmol) en 1,2-dicloroetano (30 mL) se añadió triacetoxiborohidruro de sodio (1.8 g, 8.5 mmol) y la mezcla resultante se agitó a temperatura ambiente durante 2 h. La mezcla se concentró y purificó mediante ISCO (eluida con MeOH en H<sub>2</sub>O 0~100%) para proporcionar el compuesto del título como un sólido amarillo (0.80 g, 57.9% de rendimiento). MS (m/z): 256.9/258.9 (M+H)+.

#### Intermedio 38

15

# 1-(4-Aminofenil)piridin-2(1H)-ona

#### (A) 1-(4-Aminofenil)piridin-2(1H)-ona

Una mezcla de piridin-2-ol (2.00 g, 21.0 mmol), 4-yodoanilina (4.61 g, 21.0 mmol), 8-quinolinol (0.61 g, 4.2 mmol), Cul (0.80 g, 4.2 mmol) y Cs<sub>2</sub>CO<sub>3</sub> (10.26 g, 31.5 mmol) en DMSO (50 mL) se agitó a 120 °C durante toda la noche. Después de la filtración, el filtrado se repartió entre AE y agua y la fase acuosa se extrajo adicionalmente con AE. Las fases ogánicas combinadas se lavaron con agua y salmuera, se secaron con sulfato de sodio anhidro y se concentraron para proporcionar el compuesto del título como un sólido verde (1.56 g, 39.8% de rendimiento). MS (m/z): 186.9 (M+H)<sup>+</sup>.

#### 10 Intermedio 39

5

15

# (E)-4-Cloro-3-metoxi-5-(2-(4,4,5,5-tetrametil-1,3,2-dioxaborolan-2-il)vinil)benzoato de metilo

# (A) (E)-4-Cloro-3-metoxi-5-(2-(4,4,5,5-tetrametil-1,3,2-dioxaborolan-2-il)vinil)benzoato de metilo

Una mezcla de 3-bromo-4-cloro-5-metoxibenzoato de metilo (24 g, 86 mmol), 4,4,5,5-tetrametil-2-vinil-1,3,2-dioxaborolano (26.5 g, 172 mmol), Pd(PPh<sub>3</sub>)<sub>4</sub> (6 g, 5.16 mmol) y DIPEA (27.7 g, 215 mmol) en anisol (450 mL) se agitó a 140 °C en una atmósfera de nitrógeno durante 16 h. Los componentes volátiles se eliminaron a presión reducida y el residuo se purificó mediante cromatografía en gel de sílice (eluida con EP/AE = 10:1). Después de la purificación, el producto crudo se lavó de nuevo con EP para proporcionar el compuesto del título como un sólido amarillo (14.5 g, 47.9% de rendimiento). MS (m/z): 353.1 (M+H)+.

Los siguientes intermedios se prepararon de acuerdo con los procedimientos del intermedio **39** utilizando los correspondientes intermedios y reactivos en condiciones apropiadas que podrá reconocer un experto en la técnica.

| Intermedio | Estructura                            | MS (m/z) (M+H)+ |
|------------|---------------------------------------|-----------------|
| 40         | O O O O O O O O O O O O O O O O O O O | 319.2           |
| 41         | O O O O O O O O O O O O O O O O O O O | 333.2           |

| Intermedio | Estructura                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | MS (m/z) (M+H)+ |
|------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|
| 42         | O HOO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 334.5           |
| 43         | O O O F O O O O O O O O O O O O O O O O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 337.0           |
| 44         | O C B O C F O C F O C F O C F O C F O C F O C F O C F O C F O C F O C F O C F O C F O C F O C F O C F O C F O C F O C F O C F O C F O C F O C F O C F O C F O C F O C F O C F O C F O C F O C F O C F O C F O C F O C F O C F O C F O C F O C F O C F O C F O C F O C F O C F O C F O C F O C F O C F O C F O C F O C F O C F O C F O C F O C F O C F O C F O C F O C F O C F O C F O C F O C F O C F O C F O C F O C F O C F O C F O C F O C F O C F O C F O C F O C F O C F O C F O C F O C F O C F O C F O C F O C F O C F O C F O C F O C F O C F O C F O C F O C F O C F O C F O C F O C F O C F O C F O C F O C F O C F O C F O C F O C F O C F O C F O C F O C F O C F O C F O C F O C F O C F O C F O C F O C F O C F O C F O C F O C F O C F O C F O C F O C F O C F O C F O C F O C F O C F O C F O C F O C F O C F O C F O C F O C F O C F O C F O C F O C F O C F O C F O C F O C F O C F O C F O C F O C F O C F O C F O C F O C F O C F O C F O C F O C F O C F O C F O C F O C F O C F O C F O C F O C F O C F O C F O C F O C F O C F O C F O C F O C F O C F O C F O C F O C F O C F O C F O C F O C F O C F O C F O C F O C F O C F O C F O C F O C F O C F O C F O C F O C F O C F O C F O C F O C F O C F O C F O C F O C F O C F O C F O C F O C F O C F O C F O C F O C F O C F O C F O C F O C F O C F O C F O C F O C F O C F O C F O C F O C F O C F O C F O C F O C F O C F O C F O C F O C F O C F O C F O C F O C F O C F O C F O C F O C F O C F O C F O C F O C F O C F O C F O C F O C F O C F O C F O C F O C F O C F O C F O C F O C F O C F O C F O C F O C F O C F O C F O C F O C F O C F O C F O C F O C F O C F O C F O C F O C F O C F O C F O C F O C F O C F O C F O C F O C F O C F O C F O C F O C F O C F O C F O C F O C F O C F O C F O C F O C F O C F O C F O C F O C F O C F O C F O C F O C F O C F O C F O C F O C F O C F O C F O C F O C F O C F O C F O C F O C F O C F O C F O C F O C F O C F O C F O C F O C F O C F O C F O C F O C F O C F O C F O C F O C F O C F O C F O C F O C F O C F O C F O C F O C F O C F O C F O C F O C F O C F O C F O C F O C F O C F | 337.4           |
| 45         | O O O O O O O O O O O O O O O O O O O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 347.2           |
| 46         | N N N N N N N N N N N N N N N N N N N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 342.1           |
| 47         | N N N B-O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 436.3           |

# Intermedio 48

# (E)-4-Cloro-3-(2-(2-cloropirimidin-5-il)vinil)-5-metoxibenzoato de metilo

$$\begin{array}{c|c} & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & &$$

# (A) (E)-4-Cloro-3-(2-(2-cloropirimidin-5-il)vinil)-5-metoxibenzoato de metilo

24

Una mezcla de (E)-4-cloro-3-metoxi-5-(2-(4,4,5,5-tetrametil-1,3,2-dioxaborolan-2-il)vinil)benzoato de metilo (8.0~g, 23~mmol), 5-bromo-2-cloropirimidina (5.5~g, 28~mmol),  $K_2CO_3$  (7.8~g, 56~mmol) y  $Pd(dppf)Cl_2\cdot CH_2Cl_2$  (0.80~g, 1.1~mmol) en dioxano (100~mL) y agua (20~mL) se calentó a  $80~^{\circ}C$  durante 30~min. A continuación, la mezcla se concentró y el residuo se repartió entre agua (400~mL) y DCM (300~mL). La fase acuosa se extrajo con DCM  $(2^*150~mL)$ . Las fases orgánicas combinadas se concentraron. A continuación, el residuo se dispersó en etanol (50~mL) y se filtró. La masa retenida en el filtro se lavó con etanol  $(3^*20~mL)$  y a continuación se secó para proporcionar el compuesto del título como un sólido amarillo (5.5~g, 71.5% de rendimiento). MS (m/z):  $338.9~(M+H)^+$ .

Los siguientes intermedios se prepararon de acuerdo con los procedimientos del intermedio 48 utilizando los correspondientes intermedios y reactivos en condiciones apropiadas que podrá reconocer un experto en la técnica.

| Intermedio | Estructura              | MS (m/z) (M+H)+ |
|------------|-------------------------|-----------------|
| 49         | O O N N NH <sub>2</sub> | 304.0           |
| 50         |                         | 305.0           |
| 51         | O O N CI                | 323.0           |
| 52         | O C Br                  | 348.0/350.0     |
| 53         | O O Br                  | 365.8/367.8     |

#### 10 Ejemplo 1: Síntesis de los Compuestos 1-8

# Compuesto 1

3-(2-(4-(4-Etilpiperazin-1-il)fenil)amino)pirimidin-5-il)etil)-5-metoxi-N-metilbenzamida

#### (A) (E)-3-(2-(2-(4-(4-Etilpiperazin-1-il)fenilamino) pirimidin-5-il)vinil)-5-metoxibenzoato de metilo

Una mezcla de (*E*)-*N*-(4-(4-etilpiperazin-1-il)fenil)-5-(2-(4,4,5,5-tetrametil-1,3,2-dioxaborolan-2-il)vinil)pirimidin-2-amina (170 mg, 0.39 mmol), 3-bromo-5-metoxibenzoato de metilo (96 mg, 0.39 mmol), Pd(dppf)Cl₂·CH₂Cl₂ (16 mg, 0.020 mmol) y Na₂CO₃ (103 mg, 0.975 mmol) en 1,4-dioxano (4 mL) y agua (1 mL) se agitó a 120 °C durante 30 min con microondas. La mezcla resultante se repartió entre HCl 2 N (20 mL) y AE (30 mL). A continuación, la fase acuosa se basificó con NaOH 2 N hasta pH = 8 y se extrajo con AE (2\*30 mL). Los extractos combinados se concentraron para proporcionar el compuesto del título como un sólido naranja (100 mg, 54.1% de rendimiento). MS (m/z): 474.0 (M+H)+.

# 10 (B) (E)-3-(2-(4-(4-Etilpiperazin-1-il)fenilamino)pirimidin-5-il)vinil)-5-metoxi-N-metilbenzamida

Una mezcla de (*E*)-3-(2-(2-(4-(4-etilpiperazin-1-il)fenilamino)pirimidin-5-il)vinil)-5-metoxibenzoato de metilo (100 mg, 0.211 mmol) y metilamina (5 mL, solución al 35% en etanol) se agitó a 120 °C durante 50 min con microondas. La mezcla resultante se repartió entre agua (20 mL) y AE (20 mL). La fase acuosa se extrajo con AE (2\*20 mL). La fase orgánica combinada se concentró para proporcionar el compuesto del título como un sólido amarillo (60 mg, 60.1% de rendimiento). MS (m/z): 472.9(M+H)+.

# (C) 3-(2-(4-(4-Etilpiperazin-1-il)fenilamino)pirimidin-5-il)etil)-5-metoxi-N-metilbenzamida

15

20

Los siguientes compuestos se prepararon de acuerdo con los procedimientos del Compuesto 1 utilizando los correspondientes intermedios y reactivos en condiciones apropiadas que podrá reconocer un experto en la técnica.

| Compuesto | Estructura                               | LC-MS<br>(m/z)<br>(M+H) <sup>+</sup> | ¹H RMN                                                                                                                                                                                                                                                                                                      |
|-----------|------------------------------------------|--------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2         | H CI                                     | 431.2                                | <sup>1</sup> H RMN (400 MHz, CDCl <sub>3</sub> ) δ 8.58 (s, 2H), 7.91 (s, 1H), 7.58 (d, <i>J</i> = 6.6 Hz, 1H), 7.53 (s, 1H), 7.12 (s, 2H), 6.96 (s, 1H), 6.78 (d, <i>J</i> = 9.3 Hz, 1H), 4.18 (c, <i>J</i> = 7.3 Hz, 2H), 3.96 (s, 3H), 3.06 (d, <i>J</i> = 4.8 Hz, 3H), 1.52 (t, <i>J</i> = 7.4 Hz, 3H). |
| 3         | Br N N N N N N N N N N N N N N N N N N N | 457.1/45<br>9.1                      | <sup>1</sup> H RMN (400 MHz, CD <sub>3</sub> OD) δ 8.59 (s, 2H), 7.94 (s, 1H), 7.71 (d, $J$ = 1.8 Hz, 1H), 7.57 (s, 1H), 7.44 (d, $J$ = 16.3 Hz, 1H), 7.32 (d, $J$ = 1.6 Hz, 1H), 7.00 (d, $J$ = 16.3 Hz, 1H), 4.17 (c, $J$ = 7.3 Hz, 2H), 3.98 (s, 3H), 2.99 (s, 3H), 1.51 (t, $J$ = 7.3 Hz, 3H).          |

| Compuesto | Estructura                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | LC-MS<br>(m/z)<br>(M+H)+ | <sup>1</sup> H RMN                                                                                                                                                                                                                                                                                                                                                                   |
|-----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 4         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 485.2                    | <sup>1</sup> H RMN (400 MHz, CD <sub>3</sub> OD) δ 8.06 (s, 2H), 7.85 - 7.82 (m, 2H), 7.55 - 7.52 (m, 1H), 7.46 (d, $J$ = 9.0 Hz, 2H), 6.97 (d, $J$ = 9.0 Hz, 2H), 6.91 - 6.89 (m, 1H), 3.40 - 3.32 (m, 4H), 3.27 - 3.23 (m, 4H), 3.19 (t, $J$ = 7.6 Hz, 2H), 3.07 (c, $J$ = 7.6 Hz, 2H), 2.95 - 2.90 (m, 5H), 1.33 (t, $J$ = 7.6 Hz, 3H).                                           |
| 5         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 501.2                    | <sup>1</sup> H RMN (400 MHz, CD <sub>3</sub> OD) δ 8.05 (s, 2H), 7.86 (s, 1H), 7.78 (s, 1H), 7.50 - 7.39 (m, 3H), 6.98 - 6.88 (m, 3H), 3.80 (s, 3H), 3.21 - 3.08 (m, 6H), 2.90 (t, $J = 7.2$ Hz, 2H), 272 - 2.61 (m, 4H), 2.51 (c, $J = 7.1$ Hz, 2H), 1.14 (t, $J = 7.1$ Hz, 3H).                                                                                                    |
| 6         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 503.1                    | <sup>1</sup> H RMN (400 MHz, CD <sub>3</sub> OD) δ 8.00 (s, 2H), 7.35 (d, $J = 9.0$ Hz, 2H), 7.00 (d, $J = 2.4$ Hz, 1H), 6.89-6.84 (m, 3H), 4.42 (t, $J = 8.7$ Hz, 2H), 3.68 (s, 3H), 3.08 - 3.06 (m, 4H), 2.96 (t, $J = 8.7$ Hz, 2H), 2.79 - 2.69 (m, 4H), 2.59 - 2.56 (m, 4H), 2.42 (c, $J = 7.2$ Hz, 2H), 1.06 (t, $J = 7.2$ Hz, 3H).                                             |
| 7         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 511.2                    | <sup>1</sup> H RMN (400 MHz, CD <sub>3</sub> OD) δ 8.05 (s, 2H), 7.85 - 7.83 (m, 2H), 7.53 - 7.50 (m, 1H), 7.42 (d, $J$ = 7.2 Hz, 2H), 6.94 (d, $J$ = 7.2 Hz, 2H), 6.91 - 6.89 (m, 1H), 3.18 - 3.14 (m, 6H), 2.90 (t, $J$ = 7.5 Hz, 2H), 2.88 - 2.83 (m, 1H), 2.66 - 2.64 (m, 4H), 2.50 (c, $J$ = 7.2 Hz, 2H), 1.14 (t, $J$ = 7.2 Hz, 3H), 0.81 - 0.78 (m, 2H), 0.65 - 0.63 (m, 2H). |
| 8         | H N N N S N N S N N S N N S N N S N N S N N S N N S N N S N N S N N S N N S N N S N N S N N S N N S N N S N N S N N S N N S N N S N N S N N S N N S N N S N N S N N S N N S N N S N N S N N S N N S N N S N N S N N S N N S N N S N N S N N S N N S N N S N N S N N S N N S N N S N N S N N S N N S N N S N N S N N S N N S N N S N N S N N S N N S N N S N N S N N S N N S N N S N N S N N S N N S N N S N N S N N S N N S N N S N N S N N S N N S N N S N N S N N S N N S N N S N N S N N S N N S N N S N N S N N S N N S N N S N N S N N S N N S N N S N N S N N S N N S N N S N N S N N S N N S N N S N N S N N S N N S N N S N N S N N S N N S N N S N N S N N S N N S N N S N N S N N S N N S N N S N N S N N S N N S N N S N N S N N S N N S N N S N N S N N S N N S N N S N N S N N S N N S N N S N N S N N S N N S N N S N N S N N S N N S N N S N N S N N S N N S N N S N N S N N S N N S N N S N N S N N S N N S N N S N N S N N S N N S N N S N N S N N S N N S N N S N N S N N S N N S N N S N N S N N S N N S N N S N N S N N S N N S N N S N N S N N S N N S N N S N N S N N S N N S N N S N N S N N S N N S N N S N N S N N S N N S N N S N N S N N S N N S N N S N N S N N S N N S N N S N N S N N S N N S N N S N N S N N S N N S N N S N N S N N S N N S N N S N N S N N S N N S N N S N N S N N S N N S N N S N N S N N S N N S N N S N N S N N S N N S N N S N N S N N S N N S N N S N N S N N S N N S N N S N N S N N S N N S N N S N N N S N N S N N S N N S N N S N N S N N S N N S N N S N N S N N S N N N S N N S N N S N N S N N S N N S N N S N N S N N S N N S N N S N N S N N S N N S N N S N N S N N S N N S N N S N N S N N S N N S N N S N N S N N S N N S N N S N N S N N S N N S N N S N N N S N N S N N S N N S N N S N N S N N S N N S N N S N N S N N S N N N S N N N S N N S N N S N N N S N N N S N N N S N N N S N N N N S N N N N S N N N N S N N N N N N N N N N N N N N N N N N N N | 525.3                    | <sup>1</sup> H RMN (400 MHz, CDCl <sub>3</sub> ) δ 8.56 (s, 2H), 7.57 (d, $J = 6.5$ Hz, 1H), 7.47 (d, $J = 8.8$ Hz, 2H), 7.13 (s, 1H), 7.11 (s, 2H), 6.94 (d, $J = 8.8$ Hz, 2H), 6.78 (d, $J = 7.8$ Hz, 1H), 3.96 (s, 3H), 3.51 - 3.44 (m, 2H), 3.12 - 3.07 (m, 2H), 3.06 (d, $J = 4.7$ Hz, 3H), 2.31 (t, $J = 11.0$ Hz, 2H), 1.16 (d, $J = 6.3$ Hz, 6H).                            |

Ejemplo 2: Síntesis de los Compuestos 9-13

# Compuesto 9

5

# 3-(2-((3-(4-Etilpiperazin-1-il)fenil)amino)pirimidin-5-il)etil)-5-metoxi-N-metilbenzamida

# (A) (E)-3-(2-((3-(4-Etilpiperazin-1-il)fenil)amino)pirimidin-5-il)vinil)-5-metoxibenzoato de metilo

Una mezcla de 5-bromo-N-(3-(4-etilpiperazin-1-il)fenil)pirimidin-2-amina (113 mg, 0.31 mmol), (E)-3-metoxi-4-(2-(4,4,5,5-tetrametil-1,3,2-dioxaborolan-2-il)vinil)benzoato de metilo (100 mg, 0.31 mmol),  $K_2CO_3$  (87 mg, 0.63 mmol), Pd(dffp) $_2Cl_2$ - $CH_2Cl_2$  (20 mg, 0.022 mmol) y agua (1 mL) en dioxano (5 mL) se calentó a 100 °C durante 1 h con microondas. La mezcla resultante se enfrió y se concentró al vacío. El residuo se disolvió en DCM (10 mL) y se lavó

con agua y salmuera. La fase orgánica se concentró y se purificó mediante ISCO (eluida con MeOH en DCM 0 - 10%) para obtener un sólido amarillo (70 mg, 47.4% de rendimiento). MS (m/z): 462.2 (M+H)+.

# (B) (E)-3-(2-((3-(4-Etilpiperazin-1-il)fenil)amino)pirimidin-5-il)vinil)-5-metoxi-N-metilbenzamida

Una mezcla de (*E*)-3-(2-(2-((3-(4-etilpiperazin-1-il)fenil)amino)pirimidin-5-il)vinil)-5-metoxibenzoato de metilo (70 mg, 0.15 mmol) en metilamina (5 mL, solución al 35% en etanol) se calentó a 120 °C durante 30 min con microondas. La mezcla resultante se enfrió y se concentró al vacío para obtener un sólido amarillo (70 mg, rendimiento cuantitativo). MS (m/z): 473.2 (M+H)+.

# (C) 3-(2-(2-((3-(4-Etilpiperazin-1-il)fenil)amino)pirimidin-5-il)etil)-5-metoxi-N-metilbenzamida

Una mezcla de (*E*)-3-(2-(2-((3-(4-etilpiperazin-1-il)fenil)amino)pirimidin-5-il)vinil)-5- metoxi-*N*-metilbenzamida (70 mg, 0.15 mmol) y Pd/C (5%, 25 mg) en MeOH (15 mL) se agitó en 1 atm de  $H_2$  a 40 °C durante 12 h. La mezcla resultante se filtró y el filtrado se concentró al vacío. El residuo se purificó mediante PTLC (DCM/MeOH = 10:1) para obtener el compuesto del título como un sólido blanco (23.0 mg, 32.8% de rendimiento). MS (m/z): 475.2 (M+H)+.  $^{1}$ H RMN (400 MHz, CD<sub>3</sub>OD)  $\delta$  8.18 (s, 2H), 7.37 (s, 1H), 7.24 - 7.21 (m, 2H), 7.18 - 7.11 (m, 2H), 6.89 (s, 1H), 6.65 (d, J = 8.1 Hz) 3.83 (s, 3H), 3.31 - 3.26 (m, 4H), 2.95 - 2.82 (m, 1H), 2.75 - 2.67 (m, 2H), 1.23 (t, J = 7.2 Hz, 3H).

Los siguientes compuestos se prepararon de acuerdo con los procedimientos del Compuesto 9 utilizando los correspondientes intermedios y reactivos en condiciones apropiadas que podrá reconocer un experto en la técnica.

| Compuesto | Estructura                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | LC-MS<br>(m/z)<br>(M+H)+ | <sup>1</sup> H RMN                                                                                                                                                                                                                                                                                                                                                                |
|-----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 10        | The state of the s | 425.0                    | <sup>1</sup> H RMN (400 MHz, CDCl <sub>3</sub> ) δ 8.15 (s, 2H), 7.91 (s, 1H), 7.44 (s, 1H), 7.32 (d, $J$ = 6.0 Hz, 1H), 7.21 (s, 1H), 7.00 (d, $J$ = 4.3 Hz, 1H), 4.77 - 4.69 (m, 1H), 3.90 (s, 3H), 2.97 (d, $J$ = 4.6 Hz, 3H), 2.91 (t, $J$ = 7.4 Hz, 2H), 2.79 (t, $J$ = 7.3 Hz, 2H), 2.62 - 2.41 (m, 4H), 1.92 - 1.83 (m, 2H).                                               |
| 11        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 465.9                    | <sup>1</sup> H RMN (400 MHz, DMSO-d6) δ 9.20 (s, 1H), 8.38 (d, $J$ = 4.6 Hz, 1H), 8.20 (s, 2H), 7.53 (d, $J$ = 9.1 Hz, 2H), 7.42 (d, $J$ = 7.8 Hz, 1H), 7.37 (d, $J$ = 4.3 Hz, 1H), 6.85 (d, $J$ = 9.1 Hz, 2H), 3.83 (s, 3H), 3.75 - 3.67 (m, 4H), 3.03 - 2.96 (m, 4H), 2.88 (t, $J$ = 7.3 Hz, 2H), 2.76 - 2.72 (m, 5H).                                                          |
| 12        | H N N N N N N N N N N N N N N N N N N N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 475.1                    | <sup>1</sup> H RMN (400 MHz, CD <sub>3</sub> OD) δ 8.17 (s, 2H), 7.29 (s, 1H), 7.22 (s, 1H), 7.20 (s, 1H), 7.15 - 7.08 (m, 2H), 6.88 (s, 1H), 6.62 (d, $J$ = 7.7 Hz, 1H), 3.79 (s, 3H), 3.56 - 3.50 (m, 2H), 3.02 - 2.96 (m, 2H), 2.93 - 2.90 (m, 2H), 2.89 (s, 3H), 2.87 - 2.82 (m, 2H), 2.27 (t, $J$ = 11.2 Hz, 2H), 1.14 (d, $J$ = 6.4 Hz, 6H).                                |
| 13        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 483.9                    | <sup>1</sup> H RMN (400 MHz, CD <sub>3</sub> OD) δ 8.14 (s, 2H), 7.95 (s, 1H), 7.53 (s, 1H), 7.41 (dd, $J$ = 7.8 Hz, 2.1 Hz, 1H), 7.27 (dd, $J$ = 6.0 Hz, 2.1 Hz, 1H), 4.15 - 4.09 (m, 2H), 3.88 (s, 3H), 2.94 (t, $J$ = 7.6 Hz, 2H), 2.89 (s, 3H), 2.81 (t, $J$ = 7.6 Hz, 2H), 2.55 (c, $J$ = 7.2 Hz, 4H), 2.50 - 2.43 (m, 2H), 2.02 - 1.99 (m, 2H), 1.01 (t, $J$ = 7.2 Hz, 6H). |

Ejemplo 3: Síntesis de los Compuestos 14-17

#### Compuesto 14

5

10

3-(2-((3-(4-Etilpiperazin-1-il)fenil)amino)pirimidin-5-il)etil)-N,5-dimetoxibenzamida

#### (A) (E)-3-(2-(2-((-3-(4-Etilpiperazin-1-il)fenil)amino)pirimidin-5-il)vinil)-N,5-dimetoxibenzamida

Una mezcla de (E)-N,3-dimetoxi-5-(2-(4,4,5,5-tetrametil-1,3,2-dioxaborolan -2-il)vinil)benzamida (0.10 g, 0.30 mmol), 5-bromo-N-(3-(4-etilpiperazin-1-il)fenil)pirimidin-2-amina (0.11 g, 0.30 mmol),  $Na_2CO_3$  (0.07 g, 0.66 mmol) y  $Pd(dffp)_2Cl_2\cdot CH_2Cl_2$  (0.025 g, 0.034 mmol) en dioxano (5 mL) y agua (1 mL) se calentó a 100 °C durante 30 min con microondas. A continuación, la mezcla se filtró y el filtrado se purificó mediante ISCO (eluida con MeOH en  $H_2O$   $0\sim100\%$ ) directamente para proporcionar el compuesto del título como un sólido amarillo (0.036 g, 24.6% de rendimiento). MS (m/z): 489.7 (M+H)+.

# (B) 3-(2-(2-((3-(4-Etilpiperazin-1-il)fenil)amino)pirimidin-5-il)etil)-N,5-dimetoxibenzamida

A una solución de (*E*)-3-(2-(2-((3-(4-etilpiperazin-1-il)fenil)amino)pirimidin-5-il)vinil)-*N*,5-dimetoxibenzamida (0.036 g, 0.078 mmol) en MeOH (15 mL) se añadió Pd/C (10%, 0.04 g) y la mezcla se agitó a 35 °C durante 40 h en una atmósfera de hidrógeno. La mezcla se filtró y el filtrado se concentró. El residuo se purificó mediante PTLC (DCM/MeOH) para proporcionar el compuesto del título como un sólido amarillo (0.020 mg, 55.3% de rendimiento). MS (m/z): 491.7 (M+H)+. ¹H RMN (400 MHz, CD<sub>3</sub>OD) δ 8.19 (s, 2H), 7.34 (s, 1H), 7.22 (s, 1H), 7.19 - 7.08 (m, 3H), 6.68 - 6.59 (m, 2H), 3.76 (s, 3H), 3.71 (s, 3H), 3.23 - 3.17 (m, 4H), 2.89 - 2.79 (m, 4H), 2.68 - 2.61 (m, 4H), 2.49 (c, *J* = 7.3 Hz, 2H), 1.14 (t, *J* = 7.2 Hz, 3H).

Los siguientes compuestos se prepararon de acuerdo con los procedimientos del Compuesto 14 utilizando los correspondientes intermedios y reactivos en condiciones apropiadas que podrá reconocer un experto en la técnica.

| Compuesto | Estructura                               | LC-MS<br>(m/z)<br>(M+H) <sup>+</sup> | ¹H RMN                                                                                                                                                                                                                                                                                                                       |
|-----------|------------------------------------------|--------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 15        |                                          | 489.2                                | <sup>1</sup> H RMN (400 MHz, CD <sub>3</sub> OD) δ 8.58 (s, 2H), 7.55 - 7.51 (m, 3H), 7.24 (s, 1H), 7.09 - 6.96 (m, 5H), 3.83 (s, 3H), 3.72 (s, 3H), 3.18 - 3.17 (m, 4H), 2.67 - 2.64 (m, 4H), 2.50 (c, $J = 7.1$ Hz, 2H), 1.14 (t, $J = 7.1$ Hz, 3H).                                                                       |
| 16        |                                          | 491.2                                | <sup>1</sup> H RMN (400 MHz, CD <sub>3</sub> OD) δ 8.12 (s, 2H), 7.49 (d, $J$ = 9.0 Hz, 2H), 7.13 - 7.12 (m, 2H), 6.97 (d, $J$ = 9.0 Hz, 2H), 6.90 (s, 1H), 3.78 (s, 3H), 3.77 (s, 3H), 3.36 - 3.31 (m, 4H), 3.12 (c, $J$ = 7.3 Hz, 3H), 2.90 (t, $J$ = 7.3 Hz, 2H), 2.81 (t, $J$ = 7.3 Hz, 2H), 1.33 (t, $J$ = 7.3 Hz, 3H). |
| 17        | ON NO N | 491.4                                | <sup>1</sup> H RMN (400 MHz, CD <sub>3</sub> OD) δ 8.17 (s, 2H), 7.29 (s, 1H), 7.24 - 7.06 (m, 4H), 6.75 (s, 1H), 6.61 (s, 1H), 3.76 (s, 3H), 3.73 (s, 3H), 3.57 - 3.48 (m, 2H), 3.03 - 2.92 (m, 2H), 2.92 - 2.76 (m, 4H), 2.25 (t, $J = 10.6$ Hz, 2H), 1.13 (d, $J = 6.0$ Hz, 6H).                                          |

Ejemplo 4: Síntesis del Compuesto 18

# 20 Compuesto 18

3-(2-(2-((4-(4-(2-Hidroxietil)piperazin-1-il)fenil)amino)pirimidin-5-il)etil)-N,5-dimetoxibenzamida

# (A) (E)-3-Metoxi-5-(2-(2-(4-(piperazin-1-il)fenilamino)pirimidin-5-il)vinil)benzoato de metilo

Una mezcla de 4-(piperazin-1-il)anilina (348 mg, 1.968 mmol), (*E*)-3-(2-(2-cloropirimidin-5-il)vinil)-5-metoxibenzoato de metilo (600 mg, 1.968 mmol) y TFA (672 mg, 5.904 mmol) en propan-2-ol (30 mL) se agitó a 150 °C durante 40 min con microondas. La mezcla resultante se concentró, se basificó con amoniaco-agua y se purificó mediante ISCO (DCM/MeOH) para proporcionar el compuesto del título como un sólido amarillo (320 mg, 36.6% de rendimiento). MS (m/z): 446.3(M+H)+.

#### (B) (E)-3-(2-(2-(4-(4-(2-Hidroxietil)piperazin-1-il)fenilamino)pirimidin-5-il)vinil)-5-metoxibenzoato de metilo

Una mezcla de (*E*)-3-metoxi-5-(2-(2-(4-(piperazin-1-il)fenilamino)pirimidin -5-il)vinil)benzoato de metilo (260 mg, 0.584 mmol), 2-bromoetanol (146 mg, 1.167 mmol) y K<sub>2</sub>CO<sub>3</sub> (242 mg, 1.752 mmol) en DMF (5 mL) se agitó a 65 °C durante toda la noche. La mezcla resultante se repartió entre agua (30 mL) y AE (30 mL). La fase orgánica se concentró para proporcionar el compuesto del título como un aceite marrón (200 mg, 70.0% de rendimiento). MS (m/z): 490.2 (M+H)+.

#### (C) 3-(2-(2-(4-(4-(2-Hidroxietil)piperazin-1-il)fenilamino)pirimidin-5-il)etil)-5-metoxibenzoato de metilo

A una mezcla de (*E*)-3-(2-(2-(4-(4-(2-hidroxietil)piperazin-1-il)fenilamino)pirimidin-5-il)vinil)-5-metoxibenzoato de metilo (200 mg, 0.409 mmol) en MeOH (8 mL) y THF (2 mL) se añadió Pd/C (10%, 100mg). La mezcla resultante se agitó a temperatura ambiente durante 20 h y 50 °C durante 6 h en una atmósfera de hidrógeno. La mezcla resultante se filtró a través de celite. El filtrado se concentró y el residuo se purificó mediante ISCO (eluida con MeOH en H<sub>2</sub>O 0~100%) para proporcionar el compuesto del título como un sólido marrón (85 mg, 42.3% de rendimiento). MS (m/z): 492.2(M+H)+.

# (D) Ácido 3-(2-(4-(4-(4-(2-hidroxietil)piperazin-1-il)feniamino)pirimidin-5-il)etil) -5-metoxibenzoico

Una mezcla de  $3-(2-(2-(4-(4-(2-hidroxietil)piperazin-1-il)fenilamino)pirimidin-5-il)etil)-5-metoxibenzoato de metilo (85 mg, 0.173 mmol) y una solución al 30% de hidróxido de sodio (0.8 mL, 6.00 mmol) en MeOH (10 mL) se agitó a 40 °C durante 3 h. La mezcla resultante se concentró, se ajustó a pH = 7 con HCl 2 N, se concentró y se purificó mediante ISCO (eluida con MeOH en <math>H_2O$  0~100%) para proporcionar el compuesto del título como un aceite marrón (70 mg, 84.8% de rendimento). MS (m/z): 478.2(M+H)+.

# (E) 3-(2-(4-(4-(2-hidroxietil)piperazin-1-il)fenilamino)pirimidin-5-il)etil) -N,5-dimetoxibenzamida

Una mezcla de ácido 3-(2-(2-(4-(4-(2-hidroxietil)piperazin-1-il)fenilamino)pirimidin-5-il)etil)-5-metoxibenzoico (70 mg, 0.173 mmol),*O* $-metilhidroxilamina (18 mg, 0.220 mmol), HATU (168 mg, 0.441 mmol) y DIPEA (57 mg, 0.441 mmol) en DMF (3 mL) se agitó a temperatura ambiente durante 20 min. La mezcla resultante se concentró, se purificó mediante ISCO (eluida con MeOH en <math>H_2O$  0~100%) para proporcionar el compuesto del título como un sólido amarillo (60 mg, 80.8% de rendimiento). MS (m/z): 507.2(M+H)+.  $^1H$  RMN (400 MHz, CD<sub>3</sub>OD)  $\delta$  8.11 (s, 2H),7.47 (d, J = 9.0 Hz, 2H), 7.12 - 7.11 (m, 2H), 6.96 (d, J = 9.0 Hz, 2H), 6.90 (s, 1H), 3.85 (t, J = 5.6 Hz, 2H), 3.78 (s, 3H), 3.76 (s, 3H), 3.32 - 3.30 (m, 2H), 3.11 (t, J = 5.6 Hz, 2H), 2.89 (t, J = 7.3 Hz, 2H), 2.81 (t, J = 7.3 Hz, 2H).

#### Ejemplo 5: Síntesis del Compuesto 19

# Compuesto 19

5

10

15

20

25

30

35

# 3-(2-(2-((4-(4-Etilpiperazin-1-il)fenil)amino)pirimidin-5-il)etil)-N-(2-hidroxietoxi)-5-metoxibenzamida

#### (A) 3-(2-(2-((4-(4-Etilpiperazin-1-il)fenil)amino)pirimidin-5-il)etil)-5-metoxibenzoato de metilo

A una solución de (*E*)-3-(2-((4-(4-etilpiperazin-1-il)fenil)amino)pirimidin-5-il)vinil)-5-metoxibenzoato de metilo (0.91 g, 1.9 mmol) en THF (30 mL) se añadió Pd/C (10%, 0.5 g) y la mezcla se agitó a 40 °C durante 24 h en hidrógeno (1 atm). La mezcla se filtró y el filtrado se concentró para proporcionar el compuesto del título como un sólido amarillo (0.68 mg, 74.4% de rendimiento). MS (m/z): 476.3 (M+H)+.

# (B) Ácido 3-(2-(4-(4-etilpiperazin-1-il)fenil)amino)pirimidin-5-il)etil)-5-metoxibenzoico

A una solución de 3-(2-(2-((4-(4-etilpiperazin-1-il)fenil)amino)pirimidin-5-il)etil)-5-metoxibenzoato de metilo (0.68 g, 1.4 mmol) en THF (20 mL) se añadió una solución acuosa de LiOH (0.20 g de LiOH en 5 mL de H<sub>2</sub>O). La mezcla se agitó a 40 °C durante 2 h y a continuación se purificó mediante ISCO (eluida con MeOH en H<sub>2</sub>O 0~100%) directamente para proporcionar el compuesto del título como un sólido amarillo (0.503 g, 76.2% de rendimiento). MS (m/z): 462.2 (M+H)+.

#### (C) 3-(2-(2-(4-(4-Etilpiperazin-1-il)fenilamino)pirimidin-5-il)etil)-5-metoxi-N-(2-(viniloxi)etoxi)benzamida

Una mezcla de ácido 3-(2-(2-(4-(4-etilpiperazin-1-il)fenilamino)pirimidin-5-il)etil)-5-metoxibenzoico (100 mg, 0.210 mmol), <math>O-(2-(viniloxi)etil)hidroxilamina (32 mg, 0.315 mmol), HATU (240 mg, 0.630 mmol) y DIPEA (81 mg, 0.630 mmol) en DMF (3 mL) se agitó a temperatura ambiente durante 30 min. La mezcla resultante se repartió entre agua (30 mL) y AE (30 mL). La fase orgánica se concentró y el residuo se purificó mediante ISCO (eluida con MeOH en  $H_2O$  0~100%) para proporcionar el compuesto del título como un sólido marrón (70 mg, 59.1% de rendimiento). MS (m/z):  $547.3(M+H)^+$ .

# (D) 3-(2-(2-(4-(4-Etilpiperazin-1-il)fenilamino)pirimidin-5-il)etil)-N-(2-hidroxietoxi)-5-metoxibenzamida

A una mezcla de 3-(2-(2-(4-(4-etilpiperazin-1-il)fenilamino)pirimidin-5-il)etil)-5-metoxi-*N*-(2-(viniloxi)etoxi)benzamida (70 mg, 0.128 mmol) en MeOH (4 mL) se añadió HCl 2 N (1 mL, 2.0 mmol). La mezcla se agitó a temperatura ambiente durante 1 h. La mezcla resultante se concentró, se basificó con amoniaco-agua, se concentró y se purificó mediante ISCO (eluida con MeOH en H<sub>2</sub>O 0~100%) para proporcionar el compuesto del título como un sólido amarillo (35 mg, 52.5% de rendimiento). MS (m/z): 521.2(M+H)+. ¹H RMN (400 MHz, CD<sub>3</sub>OD) δ 8.11 (s, 2H), 7.48 (d, *J* = 9.0 Hz, 2H), 7.14 (s, 1H), 7.13 (s, 1H), 6.96 (d, *J* = 9.0 Hz, 2H), 6.91 (s, 1H), 4.00 (t, *J* = 4.5 Hz, 2H), 3.78 (s, 3H), 3.73 (t, *J* = 4.5 Hz, 2H), 3.33 - 3.31 (m, 4H), 3.25 - 3.22 (m, 4H), 3.10 (c, *J* = 7.3 Hz, 2H), 2.90 (t, *J* = 7.3 Hz, 2H), 2.81 (t, *J* = 7.3 Hz, 2H), 1.32 (t, *J* = 7.3 Hz, 3H).

# Ejemplo 6: Síntesis de los Compuestos 20-59

#### Compuesto 20

5

10

15

30

35

# 3-(2-(2-((4-((3R,5S)-3,5-Dimetilpiperazin-1-il)fenil)amino)pirimidin-5-il)etil)-4-fluoro-5-metoxi-N-metilbenzamida

# (A) 3-((E)-2-(2-(4-((3R,5S)-3,5-Dimetilpiperazin-1-il)fenilamino)pirimidin-5-il)vinil)-4-fluoro-5-metoxibenzoato de metilo

Una mezcla de (*E*)-4-fluoro-3-metoxi-5-(2-(4,4,5,5-tetrametil-1,3,2-dioxaborolan-2-il)vinil)benzoato de metilo (278 mg, 0.828 mmol), 5-bromo-*N*-(4-((3*R*,5*S*)-3,5-dimetilpiperazin-1-il)fenil)pirimidin-2-amina (300 mg, 0.828 mmol), Pd(dffp)<sub>2</sub>Cl<sub>2</sub>·CH<sub>2</sub>Cl<sub>2</sub> (34 mg, 0.041 mmol) y Na<sub>2</sub>CO<sub>3</sub> (220 mg, 2.07 mmol) en 1,4-dioxano (4 mL) y agua (1 mL) se agitó

a 110 °C duranet 25 min con microondas. La mezcla resultante se concentró y se purificó mediante ISCO (eluida con MeOH en  $H_2O$  0~100%) para proporcionar el compuesto del título como un sólido amarillo (170 mg, 41.8% de rendimiento). MS (m/z): 492.2 (M+H)+.

# (B) 3-(2-(4-((3*R*,5*S*)-3,5-Dimetilpiperazin-1-il)fenilamino)pirimidin-5-il)etil)-4-fluoro-5-metoxibenzoato de metilo

5

10

15

20

25

A una mezcla de  $3-((E)-2-(2-(4-((3R,5S)-3,5-dimetilpiperazin-1-il)fenilamino)pirimidin-5-il)vinil)-4-fluoro-5-metoxibenzoato de metilo (170 mg, 0.346 mmol) en MeOH (10 mL) y THF (4 mL) se añadió Pd/C (10%, 50 mg). La mezcla se agitó a 50 <math>^{\circ}$ C durante 4 h en una atmósfera de hidrógeno. La mezcla resultante se filtró a través de celite. El filtrado se concentró para proporcionar el compuesto del título como un aceite amarillo (150 mg, 87.9% de rendimiento). MS (m/z): 494.2(M+H)+.

# (B) Ácido 3-(2-(2-(4-((3R,5S)-3,5-dimetilpiperazin-1-il)fenilamino)pirimidin-5-il)etil)-4-fluoro-5-metoxibenzoico

Una mezcla de 3-(2-(4-((3R,5S)-3,5-dimetilpiperazin-1-il)fenilamino)pirimidin-5-il)etil)-4-fluoro-5-metoxibenzoato de metilo (150 mg, 0.304 mmol) y una solución al 30% de hidróxido de sodio (1 mL, 7.50 mmol) en MeOH (10 mL) se agitó a 40  $^{\circ}$ C durante 3 h. La mezcla resultante se enfrió hasta la temperatura ambiente, se ajustó a pH = 7 con HCl 2 N, se concentró y se purificó mediante ISCO (eluida con MeOH en H<sub>2</sub>O 0~100%) para proporcionar el compuesto del título como un aceite marrón (60 mg, 41.2% de rendimento). MS (m/z): 480.2(M+H)+.

# (D) 3-(2-(4-((3R,5S)-3,5-dimetilpiperazin-1-il)fenilamino)pirimidin-5-il)etil)-4-fluoro-5-metoxi-N-metilbenzamida

Una mezcla de ácido  $3-(2-(4-((3R,5S)-3,5-dimetilpiperazin-1-il)fenilamino)pirimidin-5-il)etil)-4-fluoro-5-metoxibenzoico (40 mg, 0.083 mmol), clorhidrato de metilamina (8.4 mg, 0.125 mmol), HATU (95 mg, 0.250 mmol) y DIPEA (32 mg, 0.250 mmol) en DMF (3 mL) se agitó a temperatura ambiente durante 30 min. La mezcla resultante se purificó mediante ISCO (eluida con MeOH en <math>H_2O$   $0\sim100\%$ ) y a continuación PTLC (DCM/MeOH = 15:1) para proporcionar el compuesto del título como un sólido amarillo (29 mg, 70.6% de rendimiento). MS (m/z): 493.2(M+H)+.  $^1H$  RMN (400 MHz, CD<sub>3</sub>OD)  $\delta$  8.11 (s, 2H), 7.42 (d, J = 9.0 Hz, 2H), 7.41 (dd, J = 6.0 Hz, 2.0 Hz, 1H), 7.28 (dd, J = 6.0 Hz, 2.0 Hz, 1H), 6.95 (d, J = 9.0 Hz, 2H), 3.90 (s, 3H), 3.48 - 3.43 (m, 2H), 3.05 - 2.98 (m, 2H), 2.95 (t, J = 7.3 Hz, 2H), 2.90 (s, 3H), 2.82 (t, J = 7.3 Hz, 2H), 2.28 - 2.22 (m, 2H), 1.15 (t, J = 6.4 Hz, 3H).

Los siguientes compuestos se prepararon de acuerdo con los procedimientos del Compuesto 20 utilizando los correspondientes intermedios y reactivos en condiciones apropiadas que podrá reconocer un experto en la técnica.

| Compuesto | Estructura                              | LC-MS<br>(m/z)<br>(M+H) <sup>+</sup> | ¹H RMN                                                                                                                                                                                                                                                                                       |
|-----------|-----------------------------------------|--------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 21        |                                         | 379.1                                | <sup>1</sup> H RMN (400 MHz, CD <sub>3</sub> OD) δ 8.18 (s, 2H), 7.58 (dd, $J = 8.6$ Hz, 1.0 Hz, 2H), 7.27 - 7.21 (m, 2H), 7.20 (s, 1H), 7.15 (dd, $J = 2.2$ Hz, 1.4 Hz, 1H), 6.97 - 6.91 (m, 1H), 6.72 - 6.69 (m, 1H), 3.75 (s, 3H), 3.71 (s, 3H), 2.87 - 2.82 (m, 4H).                     |
| 22        |                                         | 383.1                                | <sup>1</sup> H RMN (400 MHz, CD <sub>3</sub> OD) δ 8.16 (s, 2H), 7.42 (d, $J$ = 2.0 Hz, 1H), 7.15 (s, 1H), 7.12 (s, 1H), 6.90 (s, 1H), 6.48 (d, $J$ = 2.1 Hz, 1H), 3.81 - 3.76 (m, 9H), 2.89 (t, $J$ = 6.9 Hz, 2H), 2.83 (t, $J$ = 6.8 Hz, 2H).                                              |
| 23        |                                         | 383.5                                | <sup>1</sup> H RMN (400 MHz, CD <sub>3</sub> OD) δ 8.16 (s, 2H), 7.89 (s, 1H), 7.51 (s, 1H), 7.14 (d, $J = 7.8$ Hz, 2H), 6.90 (s, 1H), 3.84 (s, 3H), 3.79 (s, 6H), 2.90 (t, $J = 6.8$ Hz, 2H), 2.82 (t, $J = 6.8$ Hz, 2H).                                                                   |
| 24        | F N N N N N N N N N N N N N N N N N N N | 385.1                                | <sup>1</sup> H RMN (400 MHz, CD <sub>3</sub> OD) δ 8.13 (s, 2H), 7.87 (s, 1H), 7.50 (s, 1H), 7.40 (dd, <i>J</i> = 7.8 Hz, 2.1 Hz, 1H), 7.27 (dd, <i>J</i> = 5.9 Hz, 2.1 Hz, 1H), 3.88 (s, 3H), 3.84 (s, 3H), 2.93 (t, <i>J</i> = 7.3 Hz, 2H), 2.89 (s, 3H), 2.81 (t, <i>J</i> = 7.4 Hz, 2H). |

| Compuesto | Estructura                              | LC-MS<br>(m/z)<br>(M+H)+ | <sup>1</sup> H RMN                                                                                                                                                                                                                                                                                                                               |
|-----------|-----------------------------------------|--------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 25        | H N N N N                               | 396.0                    | <sup>1</sup> H RMN (400 MHz, CD <sub>3</sub> OD) δ 8.67 (d, $J$ = 2.1 Hz, 1H), 8.19 (s, 2H), 8.07 (dd, $J$ = 8.5 Hz, 2.7 Hz, 1H), 7.40 (dd, $J$ = 7.8 Hz, 2.1 Hz, 1H), 7.26 (dd, $J$ = 6.0 Hz, 2.2 Hz, 1H), 7.19 (d, $J$ = 8.5 Hz, 1H), 3.87 (s, 3H), 2.95 (t, $J$ = 7.5 Hz, 2H), 2.87 (s, 3H), 2.83 (t, $J$ = 7.5 Hz, 2H), 2.45 (s, 3H).        |
| 26        | H N N N N N N N N N N N N N N N N N N N | 398.9                    | <sup>1</sup> H RMN (400 MHz, CD <sub>3</sub> OD) δ 8.14 (s, 2H), 7.91 (s, 1H), 7.52 (s, 1H), 7.06 (s, 1H), 6.85 (s, 1H), 4.12 (c, $J = 6.7$ Hz, 2H), 3.74 (s, 3H), 2.99 - 2.91 (m, 2H), 2.87 (s, 3H), 2.84 - 2.75 (m, 2H), 1.43 (t, $J = 6.6$ Hz, 3H).                                                                                           |
| 27        |                                         | 399.2                    | <sup>1</sup> H RMN (400 MHz, CD <sub>3</sub> OD) δ 8.17 (s, 2H), 7.46 - 7.38 (m, 2H), 7.33 - 7.22 (m, 2H), 4.02 (c, <i>J</i> = 6.9 Hz, 2H), 3.88 (s, 3H), 2.96 - 2.92 (m, 2H), 2.89 (s, 3H), 2.86 - 2.80 (m, 2H), 1.44 (t, <i>J</i> = 7.2 Hz, 3H).                                                                                               |
| 28        | o H N N N N N N N N N N N N N N N N N N | 401.4                    | <sup>1</sup> H RMN (400 MHz, CD <sub>3</sub> OD) δ 8.13 (s, 2H), 7.87 (s, 1H), 7.50 (s, 1H), 7.35 (dd, $J$ = 7.8 Hz, 2.0 Hz, 1H), 7.21 (dd, $J$ = 6.0 Hz, 2.0 Hz, 1H), 3.89 (s, 3H), 3.84 (s, 3H), 3.78 (s, 3H), 2.94 (t, $J$ = 7.3 Hz, 2H), 2.81 (t, $J$ = 7.4 Hz, 2H).                                                                         |
| 29        | H N N N N                               | 411.9                    | <sup>1</sup> H RMN (400 MHz, CD <sub>3</sub> OD) $\delta$ 8.33 (d, $J$ = 2.8 Hz, 1H), 8.16 (s, 2H), 7.94 (dd, $J$ = 8.9 Hz, 2.8 Hz, 1H), 7.42 (dd, $J$ = 7.8 Hz, 2.1 Hz, 1H), 7.29 (dd, $J$ = 6.0 Hz, 2.1 Hz, 1H), 6.77 (d, $J$ = 8.9 Hz, 1H), 3.91 (s, 3H), 3.90 (s, 3H), 2.96 (t, $J$ = 7.4 Hz, 2H), 2.92 (s, 3H), 2.84 (t, $J$ = 7.4 Hz, 2H). |
| 30        | H N N N N N N N N N N N N N N N N N N N | 425.1                    | <sup>1</sup> H RMN (400 MHz, CD <sub>3</sub> OD) δ 8.11 (s, 2H), 7.41 (dd, $J = 7.6$ Hz, 2.0 Hz, 1H), 7.27 (dd, $J = 7.6$ Hz, 2.0 Hz, 1H), 7.23 (d, $J = 2.1$ Hz, 1H), 6.89 (dd, $J = 8.3$ Hz, 2.0 Hz, 1H), 6.72 (d, $J = 8.3$ Hz, 1H), 5.90 (s, 2H), 3.89 (s, 3H), 2.95 (t, $J = 7.5$ Hz, 2H), 2.89 (s, 3H), 2.81 (t, $J = 7.5$ Hz, 2H).        |
| 31        | N N N N N N N N N N N N N N N N N N N   | 429.2                    | <sup>1</sup> H RMN (400 MHz, CD <sub>3</sub> OD) δ 8.12 (s, 2H), 7.91 (s, 1H), 7.53 (s, 1H), 7.40 (dd, $J$ = 7.8 Hz, 2.1 Hz, 1H), 7.26 (dd, $J$ = 5.9 Hz, 2.1 Hz, 1H), 4.12 - 4.08 (m, 1H), 4.05 - 3.95 (m, 2H), 3.88 (s, 3H), 2.94 (t, $J$ = 7.4 Hz, 2H), 2.88 (s, 3H), 2.81 (t, $J$ = 7.3 Hz, 2H), 1.15 (d, $J$ = 6.2 Hz, 3H).                 |
| 32        | H N N N N N N N N N N N N N N N N N N N | 429.2                    | <sup>1</sup> H RMN (400 MHz, CD <sub>3</sub> OD) δ 8.12 (s, 2H), 7.90 (s, 1H), 7.53 (s, 1H), 7.40 (d, $J$ = 7.6 Hz, 1H), 7.26 (d, $J$ = 5.0 Hz, 1H), 4.15 - 4.06 (m, 1H), 4.05 - 3.94 (m, 2H), 3.88 (s, 3H), 2.93 (t, $J$ = 7.0 Hz, 2H), 2.88 (s, 3H), 2.80 (t, $J$ = 7.1 Hz, 2H), 1.15 (d, $J$ = 6.0 Hz, 3H).                                   |
| 33        | H N N N N N N N N N N N N N N N N N N N | 436.1                    | <sup>1</sup> H RMN (400 MHz, CD <sub>3</sub> OD) δ 8.22 (d, $J$ = 2.1 Hz, 1H), 8.20 (s, 2H), 7.45 (d, $J$ = 8.6 Hz, 1H), 7.40 (dd, $J$ = 7.6 Hz, 2.1 Hz, 1H), 7.35 (dd, $J$ = 8.6 Hz, 2.1 Hz, 1H), 7.27 (dd, $J$ = 6.0 Hz, 2.1 Hz, 1H), 3.88 (s, 2H), 2.96 (t, $J$ = 7.2 Hz, 2H), 2.87 (s, 3H), 2.84 (t, $J$ = 7.2 Hz, 2H), 2.59 (s, 3H).        |

| Compuesto | Estructura                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | LC-MS<br>(m/z)<br>(M+H) <sup>+</sup> | <sup>1</sup> H RMN                                                                                                                                                                                                                                                                                                                                                  |
|-----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 34        | H N N N N N N N N N N N N N N N N N N N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 447.0                                | <sup>1</sup> H RMN (400 MHz, CD <sub>3</sub> OD) δ 8.19 (s, 2H), 8.11 (d, $J$ = 2.5 Hz, 1H), 7.77 (d, $J$ = 9.2 Hz, 2H), 7.67 - 7.65 (m, 1H), 7.59 (d, $J$ = 9.2 Hz, 2H), 7.40 (dd, $J$ = 7.8 Hz, 2.1 Hz, 1H), 7.27 (dd, $J$ = 6.0 Hz, 2.1 Hz, 1H), 6.49 - 6.48 (m, 1H), 3.88 (s, 3H), 2.96 (t, $J$ = 7.3 Hz, 2H), 2.88 (s, 3H), 2.84 (t, $J$ = 7.3 Hz, 2H).        |
| 35        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 453.0                                | <sup>1</sup> H RMN (400 MHz, CD <sub>3</sub> OD) δ 8.16 (s, 2H), 8.08 (s, 1H), 7.62 (s, 1H), 7.39 (s, 1H), 7.26 (s, 1H), 4.82 - 4.80 (m, 2H), 3.86 (s, 3H), 2.96 - 2.90 (m, 2H), 2.87 (s, 3H), 2.83 - 2.77 (m, 2H).                                                                                                                                                 |
| 36        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 464.2                                | <sup>1</sup> H RMN (400 MHz, CD <sub>3</sub> OD) δ 8.09 (s, 2H), 7.45 - 7.41 (m, 2H), 7.15 (s, 1H), 7.12 (s, 1H), 6.93 - 6.89 (m, 2H), 6.87 (s, 1H), 3.82 - 3.79 (m, 4H), 3.77 (s, 3H), 3.76 (s, 3H), 3.07 - 3.03 (m, 4H), 2.87 (t, $J = 6.8$ Hz, 3H), 2.78 (t, $J = 6.8$ Hz, 2H).                                                                                  |
| 37        | THE NAME OF THE PARTY OF THE PA | 466.2                                | <sup>1</sup> H RMN (400 MHz, CD <sub>3</sub> OD) δ 8.19 (s, 2H), 7.44 (dd, $J = 7.8$ Hz, 2.1 Hz, 1H), 7.35 (t, $J = 2.1$ Hz, 1H), 7.31 (dd, $J = 6.0$ Hz, 2.1 Hz, 1H), 7.21 - 7.17 (m, 1H), 7.17 - 7.14 (m, 1H), 6.67 - 6.65 (m, 1H), 3.92 (s, 2H), 3.88 - 3.85 (m, 4H), 3.17 - 3.15 (m, 4H), 2.98 (t, $J = 7.5$ Hz, 2H), 2.92 (s, 3H), 2.85 (t, $J = 7.5$ Hz, 2H). |
| 38        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 489.3                                | <sup>1</sup> H RMN (400 MHz, CD <sub>3</sub> OD) δ 8.09 (s, 2H), 7.44 (d, $J$ = 8.7 Hz, 2H), 7.24 (s, 1H), 7.20 (s, 1H), 6.95 (d, $J$ = 8.9 Hz, 2H), 3.86 (s, 3H), 3.20 - 3.11 (m, 4H), 2.97 - 2.91 (m, 2H), 2.89 (s, 3H), 2.78 - 2.74 (m, 2H), 2.69 - 2.61 (m, 4H), 2.53 - 2.45 (m, 2H), 2.14 (s, 3H), 1.14 (t, $J$ = 7.1 Hz, 3H).                                 |
| 39        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 491.2                                | <sup>1</sup> H RMN (400 MHz, CD <sub>3</sub> OD) δ 8.12 (s, 2H), 7.45 (d, $J$ = 9.0 Hz, 2H), 7.16 - 7.13 (m, 2H), 6.97 - 6.90 (m, 3H), 3.78 (s, 3H), 3.78 (s, 3H), 3.53 - 3.46 (m, 2H), 3.14 - 3.04 (m, 1H), 2.93 - 2.84 (m, 3H), 2.84 - 2.78 (m, 2H), 2.68 - 2.59 (m, 1H), 2.59 - 2.50 (m, 2H), 2.48 (s, 3H), 1.22 (d, $J$ = 6.0 Hz, 3H).                          |
| 40        | ON NO NO NO SOL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 491.2                                | <sup>1</sup> H RMN (400 MHz, CD <sub>3</sub> OD) δ 8.13 (s, 2H), 7.50 (d, $J$ = 8.9 Hz, 2H), 7.15 (s, 1H), 7.13 (s, 1H), 6.98 (d, $J$ = 9.0 Hz, 2H), 6.92 (s, 1H), 3.80 (s, 3H), 3.78 (s, 3H), 3.76 - 3.71 (m, 2H), 3.53 - 3.44 (m, 2H), 2.91 (t, $J$ = 7.0 Hz, 2H), 2.85 - 2.79 (m, 2H), 2.68 - 2.58 (m, 2H), 1.37 (d, $J$ = 6.6 Hz, 6H).                          |
| 41        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 492.3                                | <sup>1</sup> H RMN (400 MHz, CD <sub>3</sub> OD) δ 8.48 (s, 1H), 8.24 (s, 2H), 8.01 (d, $J = 7.0$ Hz, 1H), 7.25 (s, 1H), 7.23 (s, 1H), 7.10 - 6.89 (m, 2H), 3.91 - 3.87 (m, 4H), 3.79 (s, 3H), 3.40 (s, 3H), 3.37 - 3.24 (m, 4H), 3.17 (c, $J = 7.0$ Hz, 2H), 3.05 - 2.97 (m, 2H), 2.97 - 2.87 (m, 2H), 1.43 (t, $J = 7.0$ Hz, 3H).                                 |
| 42        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 492.5                                | <sup>1</sup> H RMN (400 MHz, CD <sub>3</sub> OD) δ 8.13 (s, 2H), 7.51 (d, $J$ = 9.0 Hz, 2H), 7.17 - 7.11 (m, 2H), 6.96 (d, $J$ = 9.0 Hz, 2H), 6.93 - 6.90 (m, 1H), 4.29 (t, $J$ = 8.0 Hz, 2H), 3.79 (s, 3H), 3.74 (s, 3H), 3.61 (t, $J$ = 8.0 Hz, 2H), 3.49 - 3.39 (m, 4H), 2.91 (t, $J$ = 7.0 Hz, 2H), 2.83 (t, $J$ = 7.0 Hz, 2H), 2.13 - 2.09 (m, 4H).            |

| Compuesto | Estructura                              | LC-MS<br>(m/z)<br>(M+H)+ | ¹H RMN                                                                                                                                                                                                                                                                                                                                                                                                   |
|-----------|-----------------------------------------|--------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 43        |                                         | 493.3                    | <sup>1</sup> H RMN (400 MHz, CD <sub>3</sub> OD) δ 8.08 (s, 2H), 7.53 - 7.33 (m, 3H), 7.25 (d, $J$ = 4.3 Hz, 1H), 6.93 (d, $J$ = 8.9 Hz, 2H), 3.87 (s, 3H), 3.18 - 3.09 (m, 4H), 2.91 (t, $J$ = 7.0 Hz, 2H), 2.87 (s, 3H), 2.78 (t, $J$ = 7.3 Hz, 2H), 2.69 - 2.59 (m, 4H), 2.48 (c, $J$ = 7.1 Hz, 2H), 1.12 (t, $J$ = 7.2 Hz, 3H).                                                                      |
| 44        |                                         | 497.3                    | <sup>1</sup> H RMN (400 MHz, CD <sub>3</sub> OD) δ 8.13 (s, 2H), 7.96 (s, 1H), 7.52 (s, 1H), 7.40 (d, $J = 7.7$ Hz, 1H), 7.27 (d, $J = 5.8$ Hz, 1H), 4.21 (t, $J = 6.5$ Hz, 2H), 3.88 (s, 3H), 2.93 (t, $J = 7.2$ Hz, 2H), 2.88 (s, 3H), 2.82 - 2.78 (m, 4H), 2.62 - 2.35 (m, 8H), 2.25 (s, 3H).                                                                                                         |
| 45        |                                         | 501.2                    | <sup>1</sup> H RMN (400 MHz, CD <sub>3</sub> OD) δ 8.12 (s, 2H), 7.49 (d, $J$ = 8.8 Hz, 2H), 7.19 (s, 1H), 7.18 (s, 1H), 6.97 (d, $J$ = 8.8 Hz, 2H), 6.87 (s, 1H), 3.78 (s, 3H), 3.37 - 3.31 (m, 4H), 3.27 - 3.18 (m, 4H), 3.08 (c, $J$ = 7.1 Hz, 2H), 2.94 - 2.85 (m, 2H), 2.86 - 2.80 (m, 2H), 2.80 - 2.70 (m, 1H), 1.32 (t, $J$ = 7.3 Hz, 3H), 0.86 - 0.71 (m, 2H), 0.69 - 0.54 (m, 2H).              |
| 46        |                                         | 504.3                    | <sup>1</sup> H RMN (400 MHz, CD <sub>3</sub> OD) δ 7.74 (s, 1H), 7.29 (d, $J$ = 8.3 Hz, 1H), 7.24 (d, $J$ = 8.0 Hz, 2H), 7.15 (s, 1H), 7.13 (s, 1H), 6.93 (d, $J$ = 8.1 Hz, 2H), 6.65 (d, $J$ = 8.1 Hz, 1H), 3.83 (s, 3H), 3.77 (s, 3H), 3.20 - 3.08 (m, 4H), 2.94 - 2.83 (m, 2H), 2.76 - 2.68 (m, 2H), 2.68 - 2.56 (m, 4H), 2.48 (c, $J$ = 6.5 Hz, 2H), 2.12 (s, 3H), 1.13 (t, $J$ = 6.6 Hz, 3H).       |
| 47        |                                         | 505.2                    | <sup>1</sup> H RMN (400 MHz, CD <sub>3</sub> OD) δ 8.12 (s, 2H), 7.45 (d, <i>J</i> = 8.8 Hz, 2H), 7.16 (s, 1H), 7.15 (s, 1H), 6.94 (d, <i>J</i> = 8.8 Hz, 2H), 6.91 (s, 1H), 3.80 (s, 3H), 3.79 (s, 3H), 3.46 - 3.38 (m, 2H), 3.04 - 2.98 (m, 1H), 2.98 - 2.87 (m, 4H), 2.86 - 2.77 (m, 2H), 2.64 - 2.55 (m, 2H), 2.53 - 2.43 (m, 2H), 1.16 (d, <i>J</i> = 6.0 Hz, 3H), 1.11 (t, <i>J</i> = 7.2 Hz, 3H). |
| 48        | N N N N N N N N N N N N N N N N N N N   | 505.3                    | <sup>1</sup> H RMN (400 MHz, CD <sub>3</sub> OD) δ 8.14 (s, 2H), 7.37 - 7.35 (m, 2H), 7.17 (s, H), 7.15 (s, 1H), 6.97 (d, $J$ = 9.2 Hz, 1H), 6.91 (s, 1H), 3.80 (s, 3H), 3.79 (s, 3H), 3.08 - 2.99 (m, 2H), 2.96 - 2.87 (m, 4H), 2.86 - 2.80 (m, 2H), 2.34 - 2.25 (m, 5H), 1.12 (d, $J$ = 6.4 Hz, 6H).                                                                                                   |
| 49        | ~."\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ | 505.3                    | <sup>1</sup> H RMN (400 MHz, CD <sub>3</sub> OD) δ 8.10 (s, 2H), 7.44 (d, $J$ = 8.8 Hz, 2H), 7.15 (s, 1H), 7.14 - 7.08 (m, 1H), 6.93 (d, $J$ = 8.9 Hz, 2H), 6.89 (s, 1H), 3.98 (c, $J$ = 7.0 Hz, 2H), 3.78 (s, 3H), 3.19 - 3.08 (m, 4H), 2.91 - 2.84 (m, 2H), 2.82 - 2.75 (m, 2H), 2.68 - 2.58 (m, 4H), 2.48 (c, $J$ = 7.1 Hz, 2H), 1.28 (t, $J$ = 7.0 Hz, 3H), 1.13 (t, $J$ = 7.2 Hz, 3H).              |
| 50        |                                         | 505.3                    | <sup>1</sup> H RMN (400 MHz, CD <sub>3</sub> OD) δ 8.10 (s, 2H), 7.47 (d, <i>J</i> = 8.8 Hz, 2H), 7.12 (s, 1H), 7.09 (s, 1H), 6.94 (d, <i>J</i> = 8.8 Hz, 2H), 6.86 (s, 1H), 4.00 (c, <i>J</i> = 7.0 Hz, 2H), 3.77 (s, 3H), 3.45 - 3.29 (m, 6H), 3.25 - 3.08 (m, 3H), 3.00 - 2.73 (m, 5H), 1.36 - 1.34 (m, 3H), 1.33 - 1.32 (m, 3H).                                                                     |
| 51        |                                         | 505.4                    | <sup>1</sup> H RMN (400 MHz, CD <sub>3</sub> OD) δ 8.08 (s, 2H), 7.44 (d, $J$ = 6.1 Hz, 2H), 7.18 (s, 1H), 7.13 (s, 1H), 6.94 (d, $J$ = 5.5 Hz, 2H), 3.85 (s, 3H), 3.77 (s, 3H), 3.24 - 3.08 (m, 4H), 2.99 - 2.86 (m, 2H), 2.82 - 2.71 (m, 2H), 2.71 - 2.56 (m, 4H), 2.56 - 2.42 (m, 2H), 2.14 (s, 3H), 1.13 (t, $J$ = 9.8 Hz, 3H).                                                                      |

| Compuesto | Estructura                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | LC-MS<br>(m/z)<br>(M+H)+ | <sup>1</sup> H RMN                                                                                                                                                                                                                                                                                                                                                                                               |
|-----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 52        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 507.2                    | <sup>1</sup> H RMN (400 MHz, CD <sub>3</sub> OD) δ 8.09 (s, 2H), 7.43 (d, $J$ = 8.8 Hz, 2H), 7.39 (s, 1H), 7.26 (d, $J$ = 4.6 Hz, 1H), 6.93 (d, $J$ = 8.8 Hz, 2H), 3.88 (s, 3H), 3.48 - 3.36 (m, 2H), 3.06 - 2.91 (m, 4H), 2.88 (s, 3H), 2.86 - 2.73 (m, 3H), 2.67 - 2.38 (m, 4H), 1.15 (d, $J$ = 5.4 Hz, 3H), 1.10 (t, $J$ = 6.8 Hz, 3H).                                                                       |
| 53        | O H N N N N N N N N N N N N N N N N N N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 509.2                    | <sup>1</sup> H RMN (400 MHz, CD <sub>3</sub> OD) δ 8.16 (s, 2H), 7.58 (dd, $J = 15.0$ Hz, 2.5 Hz, 1H), 7.22 - 7.18 (m, 1H), 7.16 - 7.15 (m, 1H), 7.13 - 7.12 (m, 1H), 6.97 - 6.91 (t, $J = 8.0$ Hz, 1H), 6.89 (s, 1H), 3.78 (s, 3H), 3.77 (s, 3H), 3.24 - 3.16 (m, 2H), 3.07 - 2.98 (m, 2H), 2.92 - 2.86 (m, 2H), 2.86 - 2.78 (m, 2H), 2.28 (t, $J = 11.0$ Hz, 2H), 1.10 (d, $J = 6.5$ Hz, 6H).                  |
| 54        | 0, H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 509.3                    | <sup>1</sup> H RMN (400 MHz, CD <sub>3</sub> OD) δ 8.09 (s, 2H), 7.42 (d, $J$ = 8.5 Hz, 2H), 7.33 (d, $J$ = 7.2 Hz, 1H), 7.20 (d, $J$ = 4.5 Hz, 1H), 6.92 (d, $J$ = 8.5 Hz, 2H), 3.86 (s, 3H), 3.76 (s, 3H), 3.18 - 3.08 (m, 4H), 2.90 (t, $J$ = 6.9 Hz, 2H), 2.78 (t, $J$ = 7.2 Hz, 2H), 2.68 - 2.59 (m, 4H), 2.48 (c, $J$ = 6.9 Hz, 2H), 1.12 (t, $J$ = 7.1 Hz, 3H).                                           |
| 55        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 509.2                    | <sup>1</sup> H RMN (400 MHz, CD <sub>3</sub> OD) δ 8.09 (s, 2H), 7.58 - 7.20 (m, 4H), 6.93 (d, $J$ = 8.5 Hz, 2H), 3.90 (s, 3H), 3.20 - 3.09 (m, 4H), 3.02 (t, $J$ = 7.3 Hz, 2H), 2.88 (s, 3H), 2.80 (t, $J$ = 7.3 Hz, 2H), 2.69 - 2.59 (m, 4H), 2.48 (c, $J$ = 7.1 Hz, 2H), 1.13 (t, $J$ = 7.0 Hz, 3H).                                                                                                          |
| 56        | THE SECOND SECON | 519.3                    | <sup>1</sup> H RMN (400 MHz, CD <sub>3</sub> OD) δ 8.08 (s, 2H), 7.42 (d, $J$ = 8.9 Hz, 2H), 7.38 (d, $J$ = 7.8 Hz, 1H), 7.24 (d, $J$ = 4.1 Hz, 1H), 6.93 (d, $J$ = 8.9 Hz, 2H), 3.86 (s, 3H), 3.18 - 3.09 (m, 4H), 3.06 - 2.98 (m, 1H), 2.91 (t, $J$ = 7.0 Hz, 2H), 2.80 - 2.75 (m, 2H), 2.67 - 2.59 (m, 4H), 2.47 (c, $J$ = 7.2 Hz, 2H), 1.12 (t, $J$ = 7.2 Hz, 3H), 0.81 - 0.72 (m, 2H), 0.64 - 0.57 (m, 2H). |
| 57        | 10 H 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 519.3                    | <sup>1</sup> H RMN (400 MHz, CD <sub>3</sub> OD) δ 8.10 (s, 2H), 7.44 (d, $J$ = 6.5 Hz, 2H), 7.13 (s, 2H), 7.05 - 6.73 (m, 3H), 4.26 - 4.08 (m, 1H), 3.78 (s, 3H), 3.23 - 3.04 (m, 4H), 2.95 - 2.75 (m, 4H), 2.74 - 2.57 (m, 4H), 2.57 - 2.42 (m, 2H), 1.25 (d, $J$ = 4.1 Hz, 6H), 1.13 (t, $J$ = 12.3 Hz, 3H).                                                                                                  |
| 58        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 523.0                    | <sup>1</sup> H RMN (400 MHz, CD <sub>3</sub> OD) δ 8.22 (s, 2H), 7.81 - 7.71 (m, 4H), 7.40 (dd, $J$ = 7.5 Hz, 1.6 Hz, 1H), 7.27 (dd, $J$ = 5.8 Hz, 1.6 Hz, 1H), 3.88 (s, 3H), 3.49 (t, $J$ = 7.4 Hz, 2H), 2.97 (t, $J$ = 7.4 Hz, 2H), 2.88 (s, 3H), 2.85 (t, $J$ = 7.2 Hz, 2H), 2.72 (t, $J$ = 7.2 Hz, 2H), 2.65 (c, $J$ = 7.1 Hz, 4H), 1.09 (t, $J$ = 7.1 Hz, 6H).                                              |
| 59        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 525.2                    | <sup>1</sup> H RMN (400 MHz, CD <sub>3</sub> OD) δ 8.10 (s, 2H), 7.43 (d, $J$ = 8.1 Hz, 2H), 7.30 (s, 1H), 7.22 (s, 1H), 6.93 (d, $J$ = 8.1 Hz, 2H), 3.90 (s, 3H), 3.76 (s, 3H), 3.20 - 3.09 (m, 4H), 3.09 - 2.96 (m, 2H), 2.86 - 2.73 (m, 2H), 2.71 - 2.58 (m, 4H), 2.48 (c, $J$ = 6.8 Hz, 2H), 1.13 (t, $J$ = 6.7 Hz, 3H).                                                                                     |

Ejemplo 7: Síntesis de los Compuestos 60-76

# Compuesto 60

 $\hbox{\it 4-Fluoro-3-metoxi-$\it N$-metil-5-(2-((2-metil pirid in-4-il) amino) pirimid in-5-il) etil)} benzamida$ 

#### (A) (E)-4-Fluoro-3-metoxi-5-(2-(2-((2-metilpiridin-4-il)amino)pirimidin-5-il)vinil)benzoato de metilo

A una solución de (*E*)-3-(2-(2-cloropirimidin-5-il)vinil)-4-fluoro-5-metoxibenzoato de metilo (232 mg, 0.72 mmol) in 1,4-dioxano (12 mL) se añadieron 2-metilpiridin-4-amina (93 mg, 0.86 mmol), acetato de paladio(II) (16 mg, 0.072 mmol), Xantphos (83 mg, 0.14 mmol) y Cs<sub>2</sub>CO<sub>3</sub> (703 mg, 2.16 mmol). A continuación, la mezcla se agitó con microondas a 150 °C durante 20 min. A continuación, la mezcla se concentró y se purificó mediante ISCO (eluida con MeOH en DCM 0%~15%) directamente para obtener un sólido amarillo (143 mg, 50.4% de rendimiento). MS (m/z): 395.1 (M+H)+.

## (B) 4-Fluoro-3-metoxi-5-(2-(2-((2-metilpiridin-4-il)amino)pirimidin-5-il)etil)benzoato de metilo

5

10

20

25

A una solución de (*E*)-4-fluoro-3-metoxi-5-(2-(2-((2-metilpiridin-4-il)amino)pirimidin-5-il)vinil)benzoato de metilo (143 mg, 0.36 mmol) en un disolvente mixto de MeOH/THF (10 mL/10mL) se añadió Pd/C (10%, 50 mg). A continuación, la mezcla se purgó con hidrógeno y se agitó durante toda la noche a 35 °C en una atmósfera de hidrógeno. Después de la filtración, el filtrado se concentró y el residuo (119 mg, 82.8% de rendimiento) se utilizó directamente en el siguiente paso sin una purificación adicional. MS (m/z): 397.1 (M+H)+.

## (C) Ácido 4-fluoro-3-metoxi-5-(2-(2-((2-metilpiridin-4-il)amino)pirimidin-5-il)etil)benzoico

A una solución de 4-fluoro-3-metoxi-5-(2-(2-((2-metilpiridin-4-il)amino)pirimidin-5-il)etil)benzoato de metilo (119 mg, 0.30 mmol) en MeOH (10 mL) se añadió NaOH acuoso (2 N, 4 mL, 8 mmol). A continuación, la mezcla se agitó durante toda la noche a temperatura ambiente. Después de la concentración, el residuo se purificó mediante ISCO (eluida con MeOH en H<sub>2</sub>O 0%~100%) para obtener un sólido amarillo (110 mg, 95.8% de rendimiento). MS (m/z): 383.1 (M+H)+.

# (D) 4-Fluoro-3-metoxi-N-metil-5-(2-(2-((2-metilpiridin-4-il)amino)pirimidin-5-il)etil)benzamida

A una solución de ácido 4-fluoro-3-metoxi-5-(2-(2-((2-metilpiridin-4-il)amino)pirimidin-5-il)etil)benzoico (55 mg, 0.14mmol) en DMF (5 mL) se añadieron clorhidrato de metanamina (19 mg, 0.29 mmol), HATU (164 mg, 0.43 mmol) y DIPEA (74 mg, 0.58 mmol). La mezcla se agitó durante 2 h a temperatura ambiente. A continuación, la mezcla se purificó con ISCO (eluida con MeOH en  $H_2O$  0~100%) directamente para proporcionar el compuesto del título como un sólido amarillo (17.5 mg, 30.8% de rendimiento). MS (m/z): 396.1 (M+H)+.  $^1H$  RMN (400 MHz, CD3OD)  $\delta$  8.29 (s, 2H), 8.13 (d, J = 5.9 Hz, 1H), 7.61 (d, J = 2.1 Hz, 1H), 7.59 (dd, J = 5.8 Hz, 2.3 Hz, 1H), 7.41 (dd, J = 7.8 Hz, 2.1 Hz, 1H), 7.28 (dd, J = 6.0 Hz, 2.1 Hz, 1H), 3.88 (s, 3H), 2.98 (t, J = 7.5 Hz, 3H), 2.91 - 2.86 (m, 5H), 2.45 (s, 3H).

Los siguientes compuestos se prepararon de acuerdo con los procedimientos del Compuesto 60 utilizando los correspondientes intermedios y reactivos en condiciones apropiadas que podrá reconocer un experto en la técnica.

| Compuesto | Estructura                              | LC-MS<br>(m/z)<br>(M+H)+ | ¹H RMN                                                                                                                                                                                                                                                                                                                                                      |
|-----------|-----------------------------------------|--------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 61        | H N N N N N N N N N N N N N N N N N N N | 383.1                    | <sup>1</sup> H RMN (400 MHz, CD <sub>3</sub> OD) δ 9.51 (s, 1H), 9.05 - 8.90 (m, 1H), 8.56 (s, 2H), 8.52 - 8.45 (m, 1H), 7.60 (dd, $J$ = 7.8 Hz, 2.1 Hz, 1H), 7.48 (dd, $J$ = 6.0 Hz, 2.1 Hz, 1H), 4.08 (s, 3H), 3.19 (t, $J$ = 7.4 Hz, 2H), 3.11 (t, $J$ = 7.4 Hz, 2H), 3.08 (s, 3H).                                                                      |
| 62        | -H                                      | 411.9                    | <sup>1</sup> H RMN (400 MHz, CD <sub>3</sub> OD) δ 8.63 (dd, $J$ = 7.8 Hz, 1.6 Hz, 1H), 8.24 (s, 2H), 7.71 (dd, $J$ = 5.0 Hz, 1.7 Hz, 1H), 7.40 (dd, $J$ = 7.8 Hz, 2.0 Hz, 1H), 7.27 (dd, $J$ = 6.0 Hz, 2.0 Hz, 1H), 6.92 (dd, $J$ = 7.8 Hz, 5.0 Hz, 1H), 4.01 (s, 3H), 3.88 (s, 3H), 2.97 (t, $J$ = 7.4 Hz, 2H), 2.88 (s, 3H), 2.86 (t, $J$ = 7.4 Hz, 2H). |

| Compuesto | Estructura                              | LC-MS<br>(m/z)<br>(M+H)+ | ¹H RMN                                                                                                                                                                                                                                                                                                                                                                |
|-----------|-----------------------------------------|--------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 63        | F N N N                                 | 412.0                    | <sup>1</sup> H RMN (400 MHz, CD <sub>3</sub> OD) δ 8.28 (s, 2H), 7.86 (d, $J$ = 5.9 Hz, 1H), 7.40 (dd, $J$ = 7.7 Hz, 2.1 Hz, 1H), 7.38 (d, $J$ = 1.9 Hz, 1H), 7.27 (dd, $J$ = 5.9 Hz, 2.1 Hz, 1H), 7.15 (dd, $J$ = 5.9 Hz, 2.1 Hz, 1H), 3.88 (s, 3H), 3.86 (s, 3H), 2.97 (t, $J$ = 7.5 Hz, 2H), 2.99 - 2.85 (m, 5H).                                                  |
| 64        |                                         | 419.1                    | <sup>1</sup> H RMN (400 MHz, CD <sub>3</sub> OD) δ 9.19 (s, 1H), 8.16 (s, 2H), 7.70 (s, 1H), 7.40 (s, 1H), 7.36 (d, $J$ = 9.6 Hz, 1H), 7.22 (dd, $J$ = 9.6 Hz, 2.0 Hz, 1H), 7.11 (s, 1H), 7.07 (dd, $J$ = 2.4 Hz, 1.4 Hz, 1H), 6.68 (dd, $J$ = 2.2 Hz, 1.4 Hz, 1H), 3.68 (s, 3H), 3.64 (s, 3H), 2.83 - 2.76 (m, 4H).                                                  |
| 65        | H N N N N N N N N N N N N N N N N N N N | 421.1                    | <sup>1</sup> H RMN (400 MHz, CD <sub>3</sub> OD) δ 8.73 - 8.62 (m, 1H), 8.53 - 8.43 (m, 1H), 8.36 (s, 2H), 7.94 - 7.80 (m, 1H), 7.75 - 7.59 (m, 1H), 7.41 (dd, $J$ = 7.8 Hz, 2.1Hz, 1H), 7.33 (d, $J$ = 7.2 Hz, 1H), 7.29 (dd, $J$ = 5.9 Hz, 2.0 Hz, 1H), 3.88 (s, 3H), 3.01 (t, $J$ = 6.7 Hz, 2H), 2.95 - 2.90 (t, $J$ = 6.7 Hz, 2H), 2.89 (s, 3H).                  |
| 66        | H N N N N N N N N N N N N N N N N N N N | 422                      | <sup>1</sup> H RMN (400 MHz, CD <sub>3</sub> OD) δ 9.72 (dd, $J$ = 1.9 Hz, 0.8 Hz, 1H), 8.29 (s, 1H), 8.28 (s, 2H), 7.70 (dd, $J$ = 9.5 Hz, 2.0 Hz, 1H), 7.66 (dd, $J$ = 9.5 Hz, 0.7 Hz, 1H), 7.40 (dd, $J$ = 7.8 Hz, 2.1 Hz, 1H), 7.28 (dd, $J$ = 6.0 Hz, 2.1 Hz, 1H), 3.87 (s, 3H), 2.97 (t, $J$ = 7.4 Hz, 2H), 2.89 - 2.85 (m, 5H).                                |
| 67        | H N N N N N N N N N N N N N N N N N N N | 422.1                    | <sup>1</sup> H RMN (400 MHz, CD <sub>3</sub> OD) $\delta$ 8.93 (d, $J$ = 0.7 Hz, 1H), 8.51 - 8.47 (m, 1H), 8.32 (s, 2H), 8.30 - 8.28 (m, 1H), 7.40 (dd, $J$ = 7.7 Hz, 2.0 Hz, 1H), 7.28 (dd, $J$ = 6.0 Hz, 2.0 Hz, 1H), 7.08 (dd, $J$ = 7.5 Hz, 2.0 Hz, 1H), 3.87 (s, 3H), 2.98 (t, $J$ = 7.3 Hz, 2H), 2.91 - 2.86 (m, 5H).                                           |
| 68        | F N N N N N N N N N N N N N N N N N N N | 436.1                    | <sup>1</sup> H RMN (400 MHz, CD <sub>3</sub> OD) δ 9.59 (dd, $J$ = 2.0 Hz, 0.7 Hz, 1H), 8.26 (s, 2H), 7.65 (dd, $J$ = 9.5 Hz, 2.1 Hz, 1H), 7.54 (dd, $J$ = 9.5 Hz, 0.6 Hz, 1H), 7.40 (dd, $J$ = 7.8 Hz, 2.1 Hz, 1H), 7.27 (dd, $J$ = 6.0 Hz, 2.1 Hz, 1H), 3.87 (s, 3H), 2.97 (t, $J$ = 7.1 Hz, 2H), 2.89 - 2.84 (m, 5H), 2.49 (s, 3H).                                |
| 69        | H N N N N N N N N N N N N N N N N N N N | 436.1                    | <sup>1</sup> H RMN (400 MHz, CD <sub>3</sub> OD) δ 8.37 - 8.34 (m, 1H), 8.24 (s, 2H), 8.03 (d, $J$ = 7.5 Hz, 1H), 7.32 (dd, $J$ = 7.8 Hz, 2.0 Hz, 1H), 7.20 (dd, $J$ = 5.9 Hz, 2.0 Hz, 1H), 7.01 (dd, $J$ = 7.5 Hz, 2.0 Hz, 1H), 3.79 (s, 3H), 2.90 (t, $J$ = 7.3 Hz, 2H), 2.83 - 2.79 (m, 5H), 2.59 (s, 3H).                                                         |
| 70        | H S S S S S S S S S S S S S S S S S S S | 444.2                    | <sup>1</sup> H RMN (400 MHz, DMSO-d6) δ 11.39 (s a, 1H), 8.45 (s a, 1H), 8.42 (s, 2H), 7.44 (s, 1H), 7.42 (s, 1H), 6.62 (s, 1H), 3.89 (s, 3H), 3.03 (t, <i>J</i> = 7.5 Hz, 2H), 2.85 (t, <i>J</i> = 7.6 Hz, 2H), 2.79 (d, <i>J</i> = 3.4 Hz, 3H), 2.01 - 1.89 (m, 1H), 0.86 - 0.73 (m, 4H).                                                                           |
| 71        |                                         | 466.1                    | <sup>1</sup> H RMN (400 MHz, CDCl <sub>3</sub> ) δ 9.68 (d, $J$ = 1.3 Hz, 1H), 8.22 (s, 2H), 7.61 (d, $J$ = 9.4 Hz, 1H), 7.36 (dd, $J$ = 9.5 Hz, 2.1 Hz, 1H), 7.33 (dd, $J$ = 7.7 Hz, 1.9 Hz, 1H), 7.08 (dd, $J$ = 5.8 Hz, 1.9 Hz, 1H), 4.74 (s, 2H), 3.91 (s, 3H), 3.54 (s, 3H), 2.98 (s, 3H), 2.97 - 2.93 (t, $J$ = 7.3 Hz, 2H), 2.87 - 2.82 (t, $J$ = 7.3 Hz, 2H). |

| Compuesto | Estructura                              | LC-MS<br>(m/z)<br>(M+H)+ | <sup>1</sup> H RMN                                                                                                                                                                                                                                                                                                                                                                                              |
|-----------|-----------------------------------------|--------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 72        | H N N N N N N N N N N N N N N N N N N N | 466.1                    | <sup>1</sup> H RMN (400 MHz, CD <sub>3</sub> OD) δ 8.44 (dd, $J$ = 2.0 Hz, 0.8 Hz, 1H), 8.25 (s, 2H), 8.18 (dd, $J$ = 7.5 Hz, 0.8 Hz, 1H), 7.33 (dd, $J$ = 7.8 Hz, 2.1 Hz, 1H), 7.20 (dd, $J$ = 6.0 Hz, 2.2 Hz, 1H), 7.05 (dd, $J$ = 7.5 Hz, 2.1 Hz, 1H), 4.84 (s, 2H), 3.80 (s, 3H), 3.31 (s, 3H), 2.94 - 2.89 (t, $J$ = 7.0 Hz, 2H), 2.83 (t, $J$ = 7.0 Hz, 2H), 2.80 (s, 3H).                                |
| 73        |                                         | 490.3                    | <sup>1</sup> H RMN (400 MHz, CD <sub>3</sub> OD) δ 7.74 (s, 1H), 7.31 (dd, $J$ = 8.5 Hz, 2.0 Hz, 1H), 7.25 (d, $J$ = 8.7 Hz, 2H), 7.16 - 7.09 (m, 2H), 6.92 (d, $J$ = 8.2 Hz, 2H), 6.86 (s, 1H), 6.65 (d, $J$ = 8.5 Hz, 1H), 3.77 (s, 3H), 3.76 (s, 3H), 3.19 - 3.08 (m, 4H), 2.90 - 2.83 (m, 2H), 2.82 - 2.74 (m, 2H), 2.69 - 2.60 (m, 4H), 2.50 (c, $J$ = 7.2 Hz, 2H), 1.13 (t, $J$ = 7.2 Hz, 3H).            |
| 74        |                                         | 491.3                    | <sup>1</sup> H RMN (400 MHz, CD <sub>3</sub> OD) δ 8.27 (s, 1H), 7.86 - 7.68 (m, 2H), 7.38 (d, $J$ = 8.4 Hz, 1H), 7.13 (s, 1H), 7.10 (s, 1H), 6.92 - 6.83 (m, 2H), 6.76 - 6.59 (m, 1H), 3.77 (s, 3H), 3.76 (s, 3H), 3.76 - 3.64 (m, 4H), 3.38 - 3.29 (m, 4H), 3.20 (c, $J$ = 7.1 Hz, 2H), 2.89 - 2.76 (m, 4H), 1.34 (t, $J$ = 7.0 Hz, 3H).                                                                      |
| 75        |                                         | 492.3                    | <sup>1</sup> H RMN (400 MHz, CD <sub>3</sub> OD) δ 8.28 (s, 2H), 7.86 (d, $J$ = 5.9 Hz, 1H), 7.35 (d, $J$ = 1.7 Hz, 1H), 7.20 (t, $J$ = 1.4 Hz, 1H), 7.15 (dd, $J$ = 2.5 Hz, 1.3 Hz, 1H), 7.01 (dd, $J$ = 5.9 Hz, 1.8 Hz, 1H), 6.62 (dd, $J$ = 2.4 Hz, 1.6 Hz, 1H), 3.74 (s, 3H), 3.69 (s, 3H), 3.50 - 3.46 (m, 4H), 2.86 (m, 4H), 2.61 - 2.57 (m, 4H), 2.48 (c, $J$ = 7.3 Hz, 2H), 1.14 (t, $J$ = 7.2 Hz, 3H). |
| 76        |                                         | 509.2                    | <sup>1</sup> H RMN (400 MHz, CD <sub>3</sub> OD) δ 8.20 (s, 2H), 7.19 (s, 1H), 7.16 - 7.09 (m, 2H), 6.96 (s, 1H), 6.70 (s, 1H), 6.29 (dt, $J$ = 11.9 Hz, 2.0 Hz, 1H), 3.75 (s, 3H), 3.71 (s, 3H), 3.22 - 3.17 (t, $J$ = 4.9 Hz, 4H), 2.84 (m, 4H), 2.62 - 2.58 (t, $J$ = 4.9 Hz, 4H), 2.47 (c, $J$ = 7.2 Hz, 2H), 1.12 (t, $J$ = 7.2 Hz, 3H).                                                                   |

Ejemplo 8: Síntesis del Compuesto 77

# 1-Óxido de 4-((5-(2-fluoro-3-metoxi-5-(metilcarbamoil)fenetil)pirimidin-2-il)amino)-2 -metilpiridina

## (A) 1-Óxido de 4-((5-(2-fluoro-3-metoxi-5-(metilcarbamoil)fenetil)pirimidin-2-il)amino)-2 -metilpiridina

A una solución de 4-fluoro-3-metoxi-N-metil-5-(2-(2-((2-metilpiridin-4-il)amino)pirimidin-5-il)etil)benzamida (18 mg, 0.046 mmol) en DCM (6 mL) se añadió ácido 3-clorobenzoperoxoico (8 mg, 0.046 mmol) en una porción. La mezcla resultante se agitó durante 2 h a 0 °C. A continuación, la mezcla de reacción se diluyó con DCM y se lavó con una solución acuosa de  $K_2CO_3$  al 10%. Después de eliminar el disolvente, el residuo se purificó mediante PTLC (DCM/MeOH = 20:1) para proporcionar el compuesto del título como un sólido amarillo (6.7 mg, 35.8% de rendimiento). MS (m/z): 412.1 (M+H)<sup>+</sup>.  $^{1}$ H RMN (400 MHz, CD<sub>3</sub>OD)  $\delta$  8.30 (s, 2H), 8.12 (d, J = 7.3 Hz, 1H), 7.89 (d, J = 3.1 Hz, 1H), 7.80 (dd, J = 7.3 Hz, 3.1 Hz, 1H), 7.40 (dd, J = 7.8 Hz, 2.1 Hz, 1H), 7.27 (dd, J = 6.0 Hz, 2.1 Hz, 1H), 3.87 (s, 3H), 2.97 (t, J = 7.3 Hz, 2H), 2.91 - 2.85 (m, 5H), 2.49 (s, 3H).

#### Ejemplo 9: Síntesis de los Compuestos 78-103

#### 15 Compuesto 78

5

## 4-Cloro-3-(2-(2-((4-((3S,5R)-3,5-dimetilpiperazin-1-il)fenil)amino)pirimidin-5-il)etil)-5-metoxi-N-metilbenzamida

10

15

20

25

# (A) 4-Cloro-3-((E)-2-(2-(4-((3S,5R)-3,5-dimetilpiperazin-1-il) fenilamino)pirimidin-5-il)vinil)-5-metoxibenzoato de metilo

Una mezcla de (*E*)-4-cloro-3-(2-(2-cloropirimidin-5-il)vinil)-5-metoxibenzoato de metilo (150 mg, 0.442 mmol), 4- ((3*S*,5*R*)-3,5-dimetilpiperazin-1-il)anilina (109 mg, 0.531 mmol) y TFA (0.1 mL, 1.326 mmol) en propan-2-ol (5 mL) se agitó a 150 °C durante 1 h con microondas. La mezcla resultante se concentró, se basificó con amoniaco-agua y se purificó mediante ISCO (DCM/MeOH) para proporcionar el compuesto del título como un sólido amarillo (130 mg, 57.9% de rendimiento). MS (m/z): 508.2(M+H)+.

# (B) 4-Cloro-3-((E)-2-(2-(4-((3S,5R)-3,5-dimetilpiperazin-1-il)fenilamino)pirimidin-5-il)vinil)-5-metoxi-N-metilbenzamida

Una mezcla de 4-cloro-3-((E)-2-(2-(4-((3S,5R)-3,5-dimetilpiperazin-1-il)fenilamino)pirimidin-5-il)vinil)-5-metoxibenzoato de metilo (250 mg, 0.492 mmol) y metilamina (6 mL, solución al 35% en etanol) se agitó a 145 °C durante 22 min con microondas. La mezcla resultante se concentró y se purificó mediante ISCO (DCM/MeOH) para proporcionar el compuesto del título como un sólido amarillo (145 mg, 58.1% de rendimiento). MS (m/z): 506.9(M+H)+.

# (C) 4-Cloro-3-(2-(2-(4-((3S,5R)-3,5-dimetilpiperazin-1-il)fenilamino)pirimidin-5-il)etil)-5-metoxi-N-metilbenzamida

Una mezcla de 4-cloro-3-((E)-2-(2-(4-(((3S,5R)-3,5-dimetilpiperazin-1-il)fenilamino)pirimidin-5-il)vinil)-5-metoxi-N-metilbenzamida (120 mg, 0.237 mmol), 4-metilbencenosulfonohidrazida (528 mg, 2.84 mmol) y acetato de sodio (233 mg, 2.84 mmol) en THF (6mL) y agua (6mL) se agitó durante toda la noche a 100 °C en una atmósfera de nitrógeno. La mezcla resultante se concentró. El residuo se repartió entre HCl 2 N (15 mL) y AE (15 mL). La fase acuosa se ajustó a continuación hasta pH = 8 con NaOH al 30% y se extrajo con DCM (2\*15 mL). Los extractos combinados se concentraron y el residuo se purificó mediante ISCO (eluida con MeOH en H<sub>2</sub>O 0~100%) para proporcionar el compuesto del título como un sólido amarillo (50 mg, 41.5% de rendimiento). MS (m/z): 509.0(M+H)+.  $^{1}$ H RMN (400 MHz, CD<sub>3</sub>OD)  $\delta$  8.11 (s, 2H), 7.44 (d, J = 9.1 Hz, 2H), 7.37 (d, J = 2.0 Hz, 1H), 7.30 (d, J = 2.0 Hz, 1H), 6.95 (d, J = 9.1 Hz, 2H), 3.93 (s, 3H), 3.53 - 3.44 (m, 2H), 3.10 - 2.99 (m, 4H), 2.90 (s, 3H), 2.82 (t, J = 7.6 Hz, 2H), 2.25 (t, J = 7.5 Hz, 2H), 1.16 (d, J = 6.4 Hz, 6H).

Los siguientes compuestos se prepararon de acuerdo con los procedimientos del Compuesto 78 utilizando los correspondientes intermedios y reactivos en condiciones apropiadas que podrá reconocer un experto en la técnica.

| Compuesto | Estructura                              | LC-MS<br>(m/z)<br>(M+H)+ | ¹H RMN                                                                                                                                                                                                       |
|-----------|-----------------------------------------|--------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 79        | H N N N N N N N N N N N N N N N N N N N | 401.1                    | <sup>1</sup> H RMN (400 MHz, CD <sub>3</sub> OD) δ 8.17 (s, 2H), 7.87 (s, 1H), 7.52 (s, 1H), 7.37 (s, 1H), 7.31 (s, 1H), 3.94 (s, 3H), 3.86 (s, 3H), 3.09 - 3.02 (m, 2H), 2.92 (s, 3H), 2.86 - 2.80 (m, 2H). |

| Compuesto | Estructura                               | LC-MS<br>(m/z)<br>(M+H)+ | ¹H RMN                                                                                                                                                                                                                                                                                                         |
|-----------|------------------------------------------|--------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 80        | H CI N NH2                               | 411.8                    | <sup>1</sup> H RMN (400 MHz, DMSO-d6) δ 8.89 (s, 1H), 8.45 (a, 1H), 8.19 (s, 2H), 7.45 (d, $J$ = 1.9 Hz, 1H), 7.43 (d, $J$ = 1.9 Hz, 1H), 7.29 (d, $J$ = 8.7 Hz, 2H), 6.51 (d, $J$ = 8.7 Hz, 2H), 4.68 (s, 2H), 3.91 (s, 3H), 3.02 - 2.96 (m, 2H), 2.80 (d, $J$ = 4.5 Hz, 3H), 2.78 - 2.73 (m, 2H).            |
| 81        | H N N N N OH                             | 412.8                    | <sup>1</sup> H RMN (400 MHz, DMSO-d6) δ 9.07 (s, 1H), 8.44 (a, 1H), 8.21 (s, 2H), 7.46 - 7.43 (m, 2H), 7.43 - 7.40 (m, 2H), 6.67 (d, <i>J</i> = 8.8 Hz, 2H), 3.89 (s, 3H), 3.01 - 2.96 (m, 2H), 2.78 (d, <i>J</i> = 4.4 Hz, 3H), 2.78 - 2.73 (m, 2H).                                                          |
| 82        |                                          | 414.9                    | <sup>1</sup> H RMN (400 MHz, CD <sub>3</sub> OD) δ 8.15 (s, 2H), 7.88 (s, 1H), 7.50 (s, 1H), 7.37 (s, 1H), 7.30 (s, 1H), 3.93 (s, 3H), 3.84 (s, 3H), 3.38 (c, <i>J</i> = 6.5 Hz, 2H), 3.10 - 3.01 (m, 2H), 2.87 - 2.77 (m, 2H), 1.20 (t, <i>J</i> = 6.8 Hz, 3H).                                               |
| 83        | H                                        | 431.0                    | <sup>1</sup> H RMN (400 MHz, CD <sub>3</sub> OD) δ 8.13 (s, 2H), 7.93 (s, 1H), 7.54 (s, 1H), 7.36 (d, $J$ = 1.8 Hz, 1H), 7.29 (d, $J$ = 1.9 Hz, 1H), 4.16 (t, $J$ = 5.4 Hz, 2H), 3.91 (s, 3H), 3.86 (t, $J$ = 5.2 Hz, 2H), 3.04 (t, $J$ = 7.6 Hz, 2H), 2.89 (s, 3H), 2.81 (t, $J$ = 7.6 Hz, 2H).               |
| 84        | H CI<br>N N N N                          | 433.2                    | <sup>1</sup> H RMN (400 MHz, CD <sub>3</sub> OD) δ 8.13 (s, 2H), 7.90 (s, 1H), 7.52 (s, 1H), 7.26 (d, $J$ = 5.5 Hz, 1H), 4.13 (c, $J$ = 7.2 Hz, 2H), 3.88 (s, 3H), 3.10 (t, $J$ = 6.9 Hz, 2H), 2.90 (s, 3H), 2.79 (t, $J$ = 7.0 Hz, 2H), 1.43 (t, $J$ = 7.3 Hz, 3H).                                           |
| 85        | H N N N F F                              | 436.9                    | <sup>1</sup> H RMN (400 MHz, CD <sub>3</sub> OD) δ 8.33 (s, 1H), 8.22 (s, 2H), 7.76 (s, 1H), 7.38 (t, $J = 59.8$ Hz, 1H), 7.37 (d, $J = 2.0$ Hz, 1H), 7.31 (d, $J = 1.6$ Hz, 1H), 3.93 (s, 3H), 3.07 (t, $J = 7.6$ Hz, 2H), 2.89 (s, 3H), 2.85 (t, $J = 7.6$ Hz, 2H).                                          |
| 86        | H CI                                     | 441.0                    | <sup>1</sup> H RMN (400 MHz, CDCl <sub>3</sub> ) δ 8.16 (s, 2H), 7.91 (s, 1H), 7.43 (s, 1H), 7.28 (s, 1H), 7.23 (s, 1H), 7.03 (s, 1H), 4.77 - 4.69 (m, 1H), 3.95 (s, 3H), 3.01 (t, $J$ = 7.6 Hz, 2H), 2.97 (d, $J$ = 4.7 Hz, 3H), 2.79 (t, $J$ = 7.6 Hz, 2H), 2.62 - 2.40 (m, 4H), 1.92 - 1.83 (m, 2H).        |
| 87        | H CI N N N N N N N N N N N N N N N N N N | 445.2                    | <sup>1</sup> H RMN (400 MHz, CD <sub>3</sub> OD) δ 8.13 (s, 2H), 7.93 (s, 1H), 7.54 (s, 1H), 7.36 (s, 1H), 7.30 (s, 1H), 4.19 - 3.97 (m, 3H), 3.91 (s, 3H), 3.04 (t, $J$ = 7.0 Hz, 2H), 2.89 (s, 3H), 2.81 (d, $J$ = 7.0 Hz, 2H), 1.15 (d, $J$ = 5.2 Hz, 3H).                                                  |
| 88        |                                          | 445.3                    | <sup>1</sup> H RMN (400 MHz, CD <sub>3</sub> OD) δ 8.13 (s, 2H), 7.91 (s, 1H), 7.54 (s, 1H), 7.36 (d, $J$ = 1.9 Hz, 1H), 7.30 (d, $J$ = 1.9 Hz, 1H), 4.14 - 4.06 (m, 1H), 4.05 - 3.96 (m, 2H), 3.92 (s, 3H), 3.05 (t, $J$ = 7.6 Hz, 2H), 2.89 (s, 3H), 2.82 (t, $J$ = 7.6 Hz, 2H), 1.15 (d, $J$ = 6.2 Hz, 3H). |

| Compuesto | Estructura                              | LC-MS<br>(m/z)<br>(M+H)+ | ¹H RMN                                                                                                                                                                                                                                                                                                                                                                                          |
|-----------|-----------------------------------------|--------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 89        | H N N N N N N N N N N N N N N N N N N N | 458.9<br>460.9           | <sup>1</sup> H RMN (400 MHz, CD <sub>3</sub> OD) δ 8.15 (s, 2H), 7.91 (s, 1H), 7.52 (s, 1H), 7.30 (s, 1H), 7.29 (s, 1H), 4.12 (c, $J = 6.8$ Hz, 2H), 3.91 (s, 3H), 3.12 - 3.02 (m, 2H), 2.89 (s, 3H), 2.81 (t, $J = 9.1$ Hz, 2H), 1.43 (t, $J = 6.9$ Hz, 3H).                                                                                                                                   |
| 90        | H N N N N N N N N N N N N N N N N N N N | 463.9                    | <sup>1</sup> H RMN (400 MHz, CD <sub>3</sub> OD) δ 8.86 (s, 1H), 8.38 (s, 1H), 8.21 (s, 2H), 7.93 - 7.80 (m, 3H), 7.33 (s, 1H), 7.29 (s, 1H), 7.23 - 7.16 (m, 1H), 3.91 (s, 3H), 3.09 - 2.98 (m, 2H), 2.89 (s, 3H), 2.87 - 2.77 (m, 2H).                                                                                                                                                        |
| 91        | H CI                                    | 464.9                    | <sup>1</sup> H RMN (400 MHz, CD <sub>3</sub> OD) δ 8.22 (s, 2H), 8.09 (s, 1H), 7.51 (d, $J$ = 9.0 Hz, 1H), 7.38 (d, $J$ = 1.9 Hz, 1H), 7.32 (d, $J$ = 1.9 Hz, 1H), 7.06 (dd, $J$ = 9.0 Hz, 1.8 Hz, 1H), 4.02 (s, 3H), 3.93 (s, 3H), 3.08 (t, $J$ = 7.2 Hz, 2H), 2.89 (s, 3H), 2.86 (t, $J$ = 7.2 Hz, 2H), 2.59 (s, 3H).                                                                         |
| 92        | NH2                                     | 468.9                    | <sup>1</sup> H RMN (400 MHz, DMSO-d6) δ 8.91 (s, 1H), 8.45 (a, 1H), 8.18 (s, 2H), 7.44 (d, $J$ = 1.9 Hz, 1H), 7.42 (d, $J$ = 1.9 Hz, 1H), 7.33 (d, $J$ = 8.8 Hz, 2H), 6.52 (d, $J$ = 8.8 Hz, 2H), 5.20 (t, $J$ = 5.9 Hz, 1H), 3.89 (s, 3H), 3.02 - 2.93 (m, 3H), 2.91 - 2.84 (m, 1H), 2.79 (d, $J$ = 4.5 Hz, 3H), 2.76 - 2.71 (m, 3H), 1.01 (d, $J$ = 6.3 Hz, 3H).                              |
| 93        | H N N N N N N N N N N N N N N N N N N N | 477.9                    | <sup>1</sup> H RMN (400 MHz, CD <sub>3</sub> OD) δ 8.82 (s, 1H), 8.55 (s, 1H), 8.24 (s, 2H), 8.05 (d, $J$ = 6.9 Hz, 1H), 7.85 (s, 1H), 7.40 (d, $J$ = 7.2 Hz, 1H), 7.38 (s, 1H), 7.33 (s, 1H), 3.94 (s, 3H), 3.08 (t, $J$ = 7.8 Hz, 2H), 2.92 (s, 3H), 2.89 - 2.83 (m, 2H), 2.58 (s, 3H).                                                                                                       |
| 94        |                                         | 481.8                    | <sup>1</sup> H RMN (400 MHz, CDCl <sub>3</sub> ) δ 8.09 (s, 2H), 7.39 (d, $J$ = 7.5 Hz, 2H), 7.22 (d, $J$ = 1.8 Hz, 1H), 6.99 (s, 1H), 6.93 (d, $J$ = 1.8 Hz, 1H), 6.85 (s, 2H), 5.95 (s, 1H), 3.89 (s, 3H), 3.82 - 3.78 (m, 4H), 3.07 - 3.03 (m, 4H), 2.97 - 2.92 (m, 2H), 2.90 (d, $J$ = 4.8 Hz, 3H), 2.78 - 2.72 (m, 2H).                                                                    |
| 95        |                                         | 485.9                    | <sup>1</sup> H RMN (400 MHz, CD <sub>3</sub> OD) δ 8.15 (s, 2H), 7.97 (s, 1H), 7.54 (s, 1H), 7.37 (d, $J$ = 1.8 Hz, 1H), 7.31 (d, $J$ = 1.8 Hz, 1H), 4.19 (t, $J$ = 7.0 Hz, 2H), 3.92 (s, 3H), 3.06 (t, $J$ = 7.6 Hz, 2H), 2.93 - 2.87 (m, 5H), 2.83 (t, $J$ = 7.5 Hz, 2H), 2.58 (c, $J$ = 7.1 Hz, 4H), 1.04 (t, $J$ = 7.1 Hz, 6H).                                                             |
| 96        | H N N N N N N N N N N N N N N N N N N N | 491.2                    | <sup>1</sup> H RMN (400 MHz, CDCl <sub>3</sub> ) δ 8.55 (s, 2H), 7.47 (d, $J$ = 8.9 Hz, 2H), 7.34 (dd, $J$ = 7.9 Hz, 1.9 Hz, 1H), 7.14 (d, $J$ = 16.6 Hz, 1H), 7.08 (s, 1H), 7.02 (d, $J$ = 16.5 Hz, 1H), 6.95 (d, $J$ = 8.7 Hz, 2H), 6.14 (s, 1H), 3.95 (s, 3H), 3.24 - 3.16 (m, 4H), 3.04 (d, $J$ = 4.9 Hz, 3H), 2.66 - 2.59 (m, 4H), 2.49 (c, $J$ = 7.1 Hz, 2H), 1.14 (t, $J$ = 7.2 Hz, 3H). |
| 97        |                                         | 492.9                    | <sup>1</sup> H RMN (400 MHz, DMSO-d6) δ 9.33 (s, 1H), 8.47 (s, 1H), 8.23 (s, 2H), 7.97 (s, 1H), 7.51 (s, 1H), 7.42 (s, 1H), 7.40 (s, 1H), 4.47 (t, <i>J</i> = 6.9 Hz, 2H), 3.87 (s, 3H), 3.64 (t, <i>J</i> = 6.5 Hz, 2H), 2.97 (t, <i>J</i> = 7.4 Hz, 2H), 2.83 (s, 3H), 2.78 - 2.71 (m, 5H).                                                                                                   |

| Compuesto | Estructura                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | LC-MS<br>(m/z)<br>(M+H)+ | ¹H RMN                                                                                                                                                                                                                                                                                                                                                                                                           |
|-----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 98        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 498.0                    | <sup>1</sup> H RMN (400 MHz, CD <sub>3</sub> OD) δ 8.15 (s, 2H), 7.98 (s, 1H), 7.55 (s, 1H), 7.37 (d, $J$ = 1.9 Hz, 1H), 7.30 (d, $J$ = 1.9 Hz, 1H), 4.07 (d, $J$ = 6.9 Hz, 2H), 3.93 (s, 3H), 3.06 (t, $J$ = 7.5 Hz, 2H), 2.90 (s, 3H), 2.84 (t, $J$ = 7.5 Hz, 2H), 2.79 (s, 3H), 2.20 - 2.16 (m, 2H), 2.08 - 1.99 (m, 1H), 1.86 - 1.82 (m, 2H), 1.60 - 1.46 (m, 4H).                                           |
| 99        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 500.0                    | <sup>1</sup> H RMN (400 MHz, CD <sub>3</sub> OD) δ 8.15 (s, 2H), 7.95 (s, 1H), 7.53 (s, 1H), 7.37 (d, $J$ = 1.9 Hz, 1H), 7.31 (d, $J$ = 1.9 Hz, 1H), 4.12 (t, $J$ = 6.7 Hz, 2H), 3.92 (s, 3H), 3.05 (t, $J$ = 7.6 Hz, 2H), 2.90 (s, 3H), 2.82 (t, $J$ = 7.6 Hz, 2H), 2.55 (c, $J$ = 7.2 Hz, 4H), 2.51 - 2.42 (m, 2H), 2.06 - 1.93 (m, 2H), 1.01 (t, $J$ = 7.2 Hz, 6H).                                           |
| 100       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 511.9                    | <sup>1</sup> H RMN (400 MHz, CD <sub>3</sub> OD) δ 8.16 (s, 2H), 7.92 (s, 1H), 7.54 (s, 1H), 7.37 (d, $J$ = 1.9 Hz, 1H), 7.31 (d, $J$ = 1.9 Hz, 1H), 3.98 (d, $J$ = 7.2 Hz, 2H), 3.93 (s, 3H), 3.06 (t, $J$ = 7.6 Hz, 2H), 2.98 - 2.92 (m, 2H), 2.90 (s, 3H), 2.83 (t, $J$ = 7.6 Hz, 2H), 2.42 (c, $J$ = 7.4 Hz, 2H), 2.02 - 1.90 (m, 3H), 1.64 - 1.56 (m, 2H), 1.37 - 1.34 (m, 2H), 1.08 (t, $J$ = 7.4 Hz, 3H). |
| 101       | H C C C C C C C C C C C C C C C C C C C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 513.0                    | <sup>1</sup> H RMN (400 MHz, CD <sub>3</sub> OD) δ 8.15 (s, 2H), 7.97 (s, 1H), 7.53 (s, 1H), 7.36 (s, 1H), 7.30 (s, 1H), 4.21 (t, <i>J</i> = 6.6 Hz, 2H), 3.92 (s, 3H), 3.05 (t, <i>J</i> = 7.6 Hz, 2H), 2.89 (s, 3H), 2.89 - 2.78 (m, 4H), 2.62 - 2.40 (m, 8H), 2.26 (s, 3H).                                                                                                                                   |
| 102       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 523.3                    | <sup>1</sup> H RMN (400 MHz, CD <sub>3</sub> OD) δ 8.23 (s, 2H), 7.77 (d, $J$ = 8.8 Hz, 2H), 7.38 - 7.35 (m, 3H), 7.31 (d, $J$ = 2.0 Hz, 1H), 3.93 (s, 3H), 3.79 - 3.54 (m, 4H), 3.08 (t, $J$ = 7.6 Hz, 2H), 2.89 - 2.85 (m, 5H), 2.53 - 2.41 (m, 4H), 2.32 (s, 3H).                                                                                                                                             |
| 103       | THE STATE OF THE S | 527.3                    | <sup>1</sup> H RMN (400 MHz, CD <sub>3</sub> OD) δ 8.01 (s, 2H), 7.34 (d, $J$ = 8.5 Hz, 2H), 7.18 (d, $J$ = 6.2 Hz, 1H), 6.85 (d, $J$ = 8.6 Hz, 2H), 3.80 (s, 3H), 3.43 - 3.32 (m, 2H), 3.02 (t, $J$ = 7.2 Hz, 2H), 2.96 - 2.87 (m, 2H), 2.81 (s, 3H), 2.70 (t, $J$ = 7.4 Hz, 2H), 2.15 (t, $J$ = 11.0 Hz, 2H), 1.05 (d, $J$ = 6.4 Hz, 6H).                                                                      |

Ejemplo 10: Síntesis de los Compuestos 104-111

# 4-Fluoro-3-metoxi-N-metil-5-(2-(2-((5-(morfolinometil)piridin-2-il)amino)pirimidin-5-il)etil)benzamida

## 5 (A) 3-(2-(2-Aminopirimidin-5-il)etil)-4-fluoro-5-metoxibenzoato de metilo

A una solución de (E)-3-(2-(2-aminopirimidin-5-il)vinil)-4-fluoro-5-metoxibenzoato de metilo  $(0.26 \, \text{g}, \, 0.86 \, \text{mmol})$  en THF  $(40 \, \text{mL})$  se añadió Pd/C  $(10\%, \, 0.14 \, \text{g})$ . La mezcla se agitó a 35  $^{\circ}$ C durante 48 h en hidrógeno  $(1 \, \text{atm})$ . La mezcla se filtró y el filtrado se concentró. A continuación, el residuo se purificó mediante ISCO (eluida con MeOH en  $H_2O$  0~100%)

para proporcionar el compuesto del título como un sólido amarillo (0.11 g, 42.0% de rendimiento). MS (m/z): 306.1 (M+H) $^+$ .

#### (B) 4-Fluoro-3-metoxi-5-(2-((5-(morfolinometil)piridin-2-il)amino)pirimidin-5-il)etil)benzoato de metilo

Una mezcla de 3-(2-(2-aminopirimidin-5-il)etil)-4-fluoro-5-metoxibenzoato de metilo (0.09 g, 0.30 mmol), 4-((6-bromopiridin-3-il)metil)morfolina (0.12 g, 0.47 mmol), Cs<sub>2</sub>CO<sub>3</sub> (0.20 g, 0.62 mmol), acetato de paladio (II) (0.02 g, 0.089 mmol) y Xantphos (0.02 g, 0.035 mmol) en dioxano (6 mL) se calentó a 130 °C con microondas durante 15 min. A continuación, la mezcla se concentró y el residuo se purificó mediante ISCO (eluida con MeOH en H<sub>2</sub>O 0~100%) para proporcionar el compuesto del título como un sólido amarillo (0.06 g, 42.3% de rendimiento). MS (m/z): 482.3 (M+H)<sup>+</sup>.

## (C) Ácido 4-fluoro-3-metoxi-5-(2-(2-((5-(morfolinometil)piridin-2-il)amino)pirimidin-5-il)etil)benzoico

5

15

20

Una mezcla de 4-fluoro-3-metoxi-5-(2-(2-((5-(morfolinometil)piridin-2-il)amino)pirimidin-5-il)etil)benzoato de metilo (0.06 g, 0.12 mmol) en THF (4 mL) y una solución acuosa de LiOH (0.02 g en 1 mL H₂O) se agitó a 40 °C durante 2 h. A continuación, la mezcla de reacción se purificó mediante ISCO (eluida con MeOH en H₂O 0~100%) directamente para proporcionar el compuesto del título como un sólido amarillo (0.042 g, 72.1% de rendimiento). MS (m/z): 468.2 (M+H)+.

## (D) 4-Fluoro-3-metoxi-N-metil-5-(2-(2-((5-(morfolinometil)piridin-2-il)amino)pirimidin-5-il)etil)benzamida

Una mezcla de ácido 4-fluoro-3-metoxi-5-(2-(2-((5-(morfolinometil)piridin-2-il)amino)pirimidin-5-il)etil)benzoico (0.042 g, 0.090 mmol), clorhidrato de metilamina (0.010 g, 0.15 mmol), DIPEA (0.032 g, 0.25 mmol) y HATU (0.070 g, 0.18 mmol) en DMF (8 mL) se agitó a temperatura ambiente durante 0.5 h. A continuación, la mezcla de reacción se purificó mediante ISCO (eluida con MeOH en  $H_2O$  0~100%) directamente para proporcionar el compuesto del título como un sólido amarillo (0.015 g, 34.7% de rendimiento). MS (m/z): 481.2 (M+H)+. ¹H RMN (400 MHz, CD<sub>3</sub>OD)  $\delta$  8.30 (s, 2H), 8.17 (s, 1H), 7.73 (s, 1H), 7.72 (s, 1H), 7.42 (d, J = 7.2 Hz, 1H), 7.30 (d, J = 7.1 Hz, 1H), 3.91 (s, 3H), 3.80 - 3.66 (m, 4H), 3.54 - 3.47 (m, 2H), 3.00 (t, J = 9.1 Hz, 2H), 2.92 (s, 3H), 2.91 - 2.82 (m, 2H), 2.57 - 2.40 (m, 4H).

Los siguientes compuestos se prepararon de acuerdo con los procedimientos del Compuesto 104 utilizando los correspondientes intermedios y reactivos en condiciones apropiadas que podrá reconocer un experto en la técnica.

| Compuesto | Estructura                              | LC-MS<br>(m/z)<br>(M+H)+ | ¹H RMN                                                                                                                                                                                                                                                                                                                                                         |
|-----------|-----------------------------------------|--------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 105       | H N N N                                 | 412.0                    | <sup>1</sup> H RMN (400 MHz, CD <sub>3</sub> OD) δ 8.29 (s, 2H), 7.46 (d, $J$ = 7.5 Hz, 1H), 7.40 (dd, $J$ = 7.8 Hz, 2.0 Hz, 1H), 7.30 (d, $J$ = 2.4 Hz, 1H), 7.27 (dd, $J$ = 5.9 Hz, 2.0 Hz, 1H), 6.64 (dd, $J$ = 7.5 Hz, 2.4 Hz, 1H), 3.88 (s, 3H), 3.48 (s, 3H), 2.97 (t, $J$ = 7.2 Hz, 2H), 2.88 (s, 3H), 2.87 (t, $J$ = 7.2 Hz, 2H).                      |
| 106       | H N N N N N N N N N N N N N N N N N N N | 421.9                    | <sup>1</sup> H RMN (400 MHz, CDCl <sub>3</sub> ) δ 9.72 (s, 1H), 8.30 (s, 1H), 8.25 (s, 2H), 7.69 (d, $J$ = 9.4 Hz, 1H), 7.36 (dd, $J$ = 9.4 Hz, 2.0 Hz, 1H), 7.32 (dd, $J$ = 7.7 Hz, 2.0 Hz, 1H), 7.16 (s, 1H), 7.06 (dd, $J$ = 5.9 Hz, 2.0 Hz, 1H), 6.06 (s, 1H), 3.92 (s, 3H), 2.98 (d, $J$ = 4.8 Hz, 3H), 2.96 - 2.93 (m, 2H), 2.86 (t, $J$ = 7.4 Hz, 2H). |
| 107       | H N N N N N N N N N N N N N N N N N N N | 422.0                    | <sup>1</sup> H RMN (400 MHz, CD <sub>3</sub> OD) δ 9.74 (s, 1H), 8.60 (s, 1H), 8.27 (s, 2H), 8.03 (s, 1H), 7.41 (d, $J$ = 7.7 Hz, 1H), 7.29 (d, $J$ = 4.3 Hz, 1H), 6.63 (s, 1H), 3.89 (s, 3H), 2.98 (t, $J$ = 7.3 Hz, 2H), 2.92 - 2.84 (m, 5H).                                                                                                                |
| 108       | H N N N N N N N N N N N N N N N N N N N | 422.9                    | <sup>1</sup> H RMN (400 MHz, DMSO-d6) δ 10.24 (s, 1H), 9.91 (s, 1H), 8.45 (s, 2H), 8.38 (d, $J$ = 4.4 Hz, 1H), 8.13 (d, $J$ = 9.6 Hz, 1H), 7.89 (dd, $J$ = 9.6 Hz, 1.8 Hz, 1H), 7.42 (dd, $J$ = 7.9 Hz, 2.0 Hz, 1H), 7.38 (dd, $J$ = 7.9 Hz, 2.0 Hz, 1H), 3.82 (s, 3H), 2.93 (t, $J$ = 7.4 Hz, 2H), 2.84 (t, $J$ = 7.5 Hz, 2H), 2.74 (d, $J$ = 4.5 Hz, 3H).    |

| Compuesto | Estructura                                | LC-MS<br>(m/z)<br>(M+H)+ | <sup>1</sup> H RMN                                                                                                                                                                                                                                                                                                                                           |
|-----------|-------------------------------------------|--------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 109       | - H C N N N N N N N N N N N N N N N N N N | 480.0                    | <sup>1</sup> H RMN (400 MHz, CD <sub>3</sub> OD) δ 8.17 (s, 2H), 7.58 (d, $J$ = 8.6 Hz, 2H), 7.42 (dd, $J$ = 7.7 Hz, 2.2 Hz, 1H), 7.28 (dd, $J$ = 5.9 Hz, 2.2 Hz, 1H), 7.25 (d, $J$ = 8.6 Hz, 2H), 3.90 (s, 3H), 3.69 (t, $J$ = 4.5 Hz, 4H), 3.48 (s, 2H), 2.97 (t, $J$ = 7.4 Hz, 2H), 2.90 (s, 3H), 2.84 (t, $J$ = 7.4 Hz, 2H), 2.46 (t, $J$ = 4.5 Hz, 4H). |
| 110       |                                           | 481.0                    | <sup>1</sup> H RMN (400 MHz, CD <sub>3</sub> OD) δ 8.80 (d, $J$ = 2.6 Hz, 1H), 8.23 - 8.21 (m, 3H), 7.43 - 7.39 (m, 2H),7.27 (dd, $J$ = 6.0 Hz, 2.1Hz, 1H), 3.88 (s, 3H), 3.77 (s, 2H), 3.75 - 3.72 (m, 4H), 2.97 (t, $J$ = 7.3 Hz, 2H), 2.88 (s, 3H), 2.85 (t, $J$ = 7.3 Hz, 2H), 2.70 - 2.65 (m, 4H).                                                      |
| 111       |                                           | 493.0                    | <sup>1</sup> H RMN (400 MHz, CD <sub>3</sub> OD) δ 8.18 (s, 2H), 7.63 (d, <i>J</i> = 8.3 Hz, 2H), 7.43 - 7.41 (m, 1H), 7.30 - 7.26 (m, 3H), 3.89 (s, 3H), 3.69 (s, 2H), 3.14 - 3.06 (m, 4H), 2.97 (t, <i>J</i> = 7.8 Hz, 2H), 2.90 (s, 3H), 2.86 - 2.78 (m, 6H), 2.73 (s, 3H).                                                                               |

Ejemplo 11: Síntesis de los Compuestos 112-161

5

10

15

20

#### 3-(2-(2-((1-Etil-1H-pirazol-4-il)amino)pirimidin-5-il)etil)-4-fluoro-5-metoxi-N-metilbenzamida

# (A) (E)-3-(2-((1-Etil-1H-pirazol-4-il)amino)pirimidin-5-il)vinil)-4-fluoro-5-metoxibenzoato de metilo

Una mezcla de (*E*)-3-(2-(2-cloropirimidin-5-il)vinil)-4-fluoro-5-metoxibenzoato de metilo (150 mg, 0.46 mmol), 1-etil-1*H*-pirazol-4-amina (103 mg, 0.93 mmol) y ácido *p*-toluenosulfónico (79 mg, 0.46 mmol) en propan-2-ol (20 mL) se agitó a 150 °C con microondas durante 40 min. Los componentes volátiles se eliminaron a presión reducida y el residuo se repartió entre NaHCO<sub>3</sub> acuoso saturado (20 mL) y DCM (60 mL). La fase orgánica se concentró y se purificó mediante ISCO (DCM/MeOH) para proporcionar el compuesto del título como un sólido amarillo (130 mg, 70.4% de rendimiento).

# (B) 3-(2-(2-((1-Etil-1*H*-pirazol-4-il)amino)pirimidin-5-il)etil)-4-fluoro-5-metoxibenzoato de metilo

A una solución de (*E*)-3-(2-(2-((1-etil-1*H*-pirazol-4-il)amino)pirimidin-5-il)vinil)-4-fluoro-5-metoxibenzoato de metilo (130 mg, 0.33 mmol) en THF (30 mL) y MeOH (20 mL) se añadió Pd/C (10%, 100 mg). La mezcla se agitó a 40 °C en una atmósfera de nitrógeno durante 16 h. El catalizador se separó por filtración y el filtrado se concentró para proporcionar el compuesto del título como un sólido amarillo (130 mg, rendimiento cuantitativo). MS (m/z): 400.0 (M+H)+.

#### (C) Ácido 3-(2-(2-((1-etil-1*H*-pirazol-4-il)amino)pirimidin-5-il)etil)-4-fluoro-5-metoxibenzoico

A una solución de  $3-(2-((1-\text{etil-}1H-\text{pirazol-}4-\text{il})\text{amino})\text{pirimidin-}5-\text{il})\text{-}4-fluoro-}5-\text{metoxibenzoato}$  de metilo (130 mg, 0.33 mmol) en MeOH (10 mL) se añadió NaOH ac. (66 mg, 1.65 mmol en 4 mL H<sub>2</sub>O). La reacción se agitó a 40 °C durante 3 h. Los componentes volátiles se eliminaron a presión reducida y el residuo se purificó mediante ISCO (eluida con MeOH en H<sub>2</sub>O 0~100%) para proporcionar el compuesto del título como un sólido blanco (100 mg, 79.7% de rendimiento). MS (m/z): 386.0 (M+H)+.

#### (D) 3-(2-(2-((1-Etil-1*H*-pirazol-4-il)amino)pirimidin-5-il)etil)-4-fluoro-5-metoxi-*N*-metilbenzamida

A una solución de ácido  $3-(2-(2-((1-etil-1\mbox{$H$-pirazol-4-il})amino)pirimidin-5-il)etil)-4-fluoro-5-metoxibenzoico (100 mg, 0.26 mmol) en DMF seco (4 mL) se añadió DIPEA (10 gotas), HATU (296 mg, 0.78 mmol) y clorhidrato de metilamina (52 mg, 0.78 mmol). La reacción se agitó a temperatura ambiente durante 30 min y a continuación, se purificó mediante ISCO (eluida con MeOH en <math>H_2O$   $0\sim100\%$ ) directamente para proporcionar el compuesto del título como un sólido blanco (78 mg, 75.4% de rendimiento). MS (m/z): 399.1 (M+H)+.  $^1H$  RMN (400 MHz, CD<sub>3</sub>OD)  $\delta$  8.12 (s, 2H), 7.89 (s, 1H), 7.50 (s, 1H), 7.39 (dd, J=7.7 Hz, 1.9 Hz, 1H), 7.25 (dd, J=5.9 Hz, 2.0 Hz, 1H), 4.11 (c, J=7.3 Hz, 2H), 3.87 (s, 3H), 2.92 (t, J=7.4 Hz, 2H), 2.87 (s, 3H), 2.79 (t, J=7.5 Hz, 2H), 1.42 (t, J=7.3 Hz, 3H).

5

Los siguientes compuestos se prepararon de acuerdo con los procedimientos del Compuesto 112 utilizando los correspondientes intermedios y reactivos en condiciones apropiadas que podrá reconocer un experto en la técnica.

| Compuesto | Estructura                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | LC-MS<br>(m/z)<br>(M+H) <sup>+</sup> | <sup>1</sup> H RMN                                                                                                                                                                                                                                                                                                                                                      |
|-----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 113       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 369.1                                | <sup>1</sup> H RMN (400 MHz, CD <sub>3</sub> OD) δ 8.14 (s, 2H), 7.77 (s, 2H), 7.16 - 7.13 (m, 2H), 6.91 (s, 1H), 3.79 - 3.78 (m, 6H), 2.89 - 2.88 (m, 2H), 2.83 - 2.82 (m, 2H).                                                                                                                                                                                        |
| 114       | F N N N N N N N N N N N N N N N N N N N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 371.1                                | <sup>1</sup> H RMN (400 MHz, CD <sub>3</sub> OD) δ 8.13 (s, 2H), 7.75 (s, 2H), 7.40 (dd, <i>J</i> = 7.7 Hz, 2.0 Hz, 1H), 7.26 (dd, <i>J</i> = 5.9 Hz, 2.0 Hz, 1H), 3.87 (s, 3H), 2.93 (t, <i>J</i> = 7.4 Hz, 2H), 2.88 (s, 3H), 2.80 (t, <i>J</i> = 7.4 Hz, 2H).                                                                                                        |
| 115       | H N N N N N N N N N N N N N N N N N N N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 384.1                                | <sup>1</sup> H RMN (400 MHz, CD <sub>3</sub> OD) δ 7.76 (d, $J$ = 3.1 Hz, 2H), 7.39 (d, $J$ = 0.7 Hz, 1H), 7.37 (dd, $J$ = 7.8 Hz, 2.2 Hz, 1H), 7.30 (dd, $J$ = 8.6 Hz, 2.4 Hz, 1H), 7.24 (dd, $J$ = 6.0 Hz, 2.1 Hz, 1H), 6.56 (dd, $J$ = 8.5 Hz, 0.6 Hz, 1H), 3.87 (s, 3H), 3.83 (s, 3H), 2.93 - 2.88 (t, $J$ = 7.5 Hz, 2H), 2.87 (s, 3H), 2.78 (t, $J$ = 7.5 Hz, 2H). |
| 116       | o H N N F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 397.2                                | <sup>1</sup> H RMN (400 MHz, CD <sub>3</sub> OD) δ 8.16 (s, 2H), 7.58 (dd, $J$ = 9.0 Hz, 4.8 Hz, 2H), 7.16 (s, 1H), 7.13 (s, 1H), 7.05 - 6.95 (m, 2H), 6.91 (s, 1H), 3.79 (s, 3H), 3.78 (s, 3H), 2.94 - 2.87 (m, 2H), 2.86 - 2.79 (m, 2H).                                                                                                                              |
| 117       | H N N N N N N N N N N N N N N N N N N N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 399.1                                | <sup>1</sup> H RMN (400 MHz, CD <sub>3</sub> OD) δ 8.02 (s, 2H), 7.40 (s, 1H), 7.38 (d, $J$ = 2.0 Hz, 1H), 7.24 (dd, $J$ = 5.9 Hz, 2.0 Hz, 1H), 3.86 (s, 3H), 3.75 (s, 3H), 2.91 (t, $J$ = 7.4 Hz, 2H), 2.88 (s, 3H), 2.77 (t, $J$ = 7.3 Hz, 2H), 2.11 (s, 3H).                                                                                                         |
| 118       | 0-H-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 409.2                                | <sup>1</sup> H RMN (400 MHz, CD <sub>3</sub> OD) δ 8.06 (s, 2H), 7.38 (d, $J$ = 7.8 Hz, 2H), 7.11 (s, 1H), 7.09 (s, 1H), 6.86 (s, 1H), 6.81 (d, $J$ = 7.9 Hz, 2H), 3.84 - 3.62 (m, 9H), 2.84 (t, $J$ = 6.2 Hz, 2H), 2.77 (t, $J$ = 6.2 Hz, 2H).                                                                                                                         |
| 119       | The state of the s | 411.0                                | <sup>1</sup> H RMN (400 MHz, CD <sub>3</sub> OD) δ 8.13 (s, 2H), 7.92 (s, 1H), 7.49 (s, 1H), 7.40 (dd, $J$ = 7.7 Hz, 2.1 Hz, 1H), 7.26 (dd, $J$ = 6.0 Hz, 2.1 Hz, 1H), 3.88 (s, 3H), 3.57 - 3.54 (m, 1H), 2.94 (t, $J$ = 7.3 Hz, 2H), 2.88 (s, 3H), 2.81 (t, $J$ = 7.3 Hz, 2H), 1.07 - 0.97 (m, 4H).                                                                    |
| 120       | о-H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 413.1                                | <sup>1</sup> H RMN (400 MHz, CD <sub>3</sub> OD) δ 8.13 (s, 2H), 8.13 (s, 2H), 7.93 (s, 1H), 7.93 (s, 1H), 7.54 (s, 1H), 7.54 (s, 1H), 7.15 - 7.13(m, 2H), 6.89 (s, 1H), 4.17 (t, <i>J</i> = 5.4 Hz, 2H), 3.86 (t, <i>J</i>                                                                                                                                             |

| Compuesto | Estructura                              | LC-MS<br>(m/z)<br>(M+H) <sup>+</sup> | ¹H RMN                                                                                                                                                                                                                                                                                                             |
|-----------|-----------------------------------------|--------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|           |                                         |                                      | = 5.3 Hz, 2H), 3.78 (s, 6H), 2.89 - 2.87 (m, 2H), 2.83 - 2.81 (m, 2H).                                                                                                                                                                                                                                             |
| 121       |                                         | 413.0                                | <sup>1</sup> H RMN (400 MHz, CD <sub>3</sub> OD) δ 8.03 (s, 2H), 7.44 (s, 1H), 7.40 (dd, $J$ = 7.8 Hz, 1.9 Hz, 1H), 7.26 (dd, $J$ = 5.9 Hz, 1.9 Hz, 1H), 4.10 (c, $J$ = 7.2 Hz, 2H), 3.88 (s, 3H), 2.93 (t, $J$ = 7.4 Hz, 2H), 2.89 (s, 3H), 2.79 (t, $J$ = 7.3 Hz, 2H), 2.14 (s, 3H), 1.38 (t, $J$ = 7.2 Hz, 3H). |
| 122       | H F N N N N N N N N N N N N N N N N N N | 413.0                                | <sup>1</sup> H RMN (400 MHz, CD <sub>3</sub> OD) δ 8.07 (s, 2H), 7.72 (s, 1H), 7.40 (dd, $J$ = 7.8 Hz, 2.0 Hz, 1H), 7.26 (dd, $J$ = 5.9 Hz, 2.1 Hz, 1H), 4.07 (c, $J$ = 7.3 Hz, 2H), 3.88 (s, 3H), 2.94 (t, $J$ = 7.2 Hz, 2H), 2.89 (s, 3H), 2.80 (t, $J$ = 7.4 Hz, 2H), 2.12 (s, 3H), 1.42 (t, $J$ = 7.3 Hz, 3H). |
| 123       | H N N N N N N N N N N N N N N N N N N N | 413.0                                | <sup>1</sup> H RMN (400 MHz, CD <sub>3</sub> OD) δ 8.11 (s, 2H), 7.89 (s, 1H), 7.51 (s, 1H), 7.39 (d, $J$ = 7.2 Hz, 1H), 7.25 (d, $J$ = 4.7 Hz, 1H), 4.50 - 4.36 (m, 1H), 3.86 (s, 3H), 2.92 (t, $J$ = 7.2 Hz, 2H), 2.87 (s, 3H), 2.78 (t, $J$ = 7.1 Hz, 2H), 1.45 (d, $J$ = 6.5 Hz, 6H).                          |
| 124       | H N N N N N N N N N N N N N N N N N N N | 413.1                                | <sup>1</sup> H RMN (400 MHz, CD <sub>3</sub> OD) δ 7.99 (s, 2H), 7.39 (dd, $J$ = 7.8 Hz, 2.0 Hz, 1H), 7.23 (dd, $J$ = 5.9 Hz, 2.0 Hz, 1H), 3.87 (s, 3H), 3.69 (s, 3H), 2.91 (t, $J$ = 7.4 Hz, 2H), 2.88 (s, 3H), 2.78 (t, $J$ = 7.3 Hz, 2H), 2.06 (s, 3H), 2.00 (s, 3H).                                           |
| 125       | o-H C C I                               | 413.2                                | <sup>1</sup> H RMN (400 MHz, CD <sub>3</sub> OD) δ 8.15 (s, 2H), 7.56 (d, $J$ = 8.9 Hz, 2H), 7.21 (d, $J$ = 8.9 Hz, 2H), 7.16 (s, 1H), 7.13 (s, 1H), 6.81 (s, 1H), 3.79 (s, 3H), 3.77 (s, 3H), 2.92 - 2.85 (m, 2H), 2.85 - 2.78 (m, 2H).                                                                           |
| 126       | H N N N N N N N N N N N N N N N N N N N | 415.1                                | <sup>1</sup> H RMN (400 MHz, CD <sub>3</sub> OD) δ 8.15 (s, 2H), 7.95 (s, 1H), 7.58 (s, 1H), 7.43 (d, $J = 7.4$ Hz, 1H), 7.30 (d, $J = 4.4$ Hz, 1H), 4.20 (t, $J = 5.2$ Hz, 2H), 3.91 (s, 3H), 3.90 - 3.88 (m, 2H), 2.97- 2.95 (m, 2H), 2.92 (s, 3H), 2.84 (t, $J = 7.2$ Hz, 2H).                                  |
| 127       | H CI                                    | 414.9                                | <sup>1</sup> H RMN (400 MHz, CD <sub>3</sub> OD) δ 8.15 (s, 2H), 7.89 (s, 1H), 7.53 (s, 1H), 7.36 (s, 1H), 7.30 (s, 1H), 4.13 (c, $J = 7.2$ Hz, 2H), 3.92 (s, 3H), 3.04 (t, $J = 7.4$ Hz, 2H), 2.90 (s, 3H), 2.81 (t, $J = 7.6$ Hz, 2H), 1.45 (t, $J = 7.2$ Hz, 3H).                                               |
| 128       | H N N F F                               | 421.3                                | <sup>1</sup> H RMN (400 MHz, CD <sub>3</sub> OD) δ 8.33 (s, 1H), 8.21 (s, 2H), 7.76 (s, 1H), 7.41 (dd, <i>J</i> = 7.6 Hz, 2.0 Hz, 1H), 7.38 (t, <i>J</i> = 60.0 Hz, 1H), 7.28 (dd, <i>J</i> = 6.0 Hz, 2.0 Hz, 1H), 3.89 (s, 3H), 2.96 (t, <i>J</i> = 7.3 Hz, 2H), 2.90 (s, 3H), 2.84 (t, <i>J</i> = 7.3 Hz, 2H).   |
| 129       |                                         | 426.9                                | <sup>1</sup> H RMN (400 MHz, CD <sub>3</sub> OD) δ 8.14 (s, 2H), 8.09 (s, 1H), 7.63 (s, 1H), 7.40 (dd, $J$ = 7.7 Hz, 2.1 Hz, 1H), 7.26 (dd, $J$ = 6.0 Hz, 2.0 Hz, 1H), 5.53 - 5.44 (m, 1H), 5.05 - 4.98 (m, 4H), 3.88 (s, 3H), 2.94 (t, $J$ = 7.4 Hz, 2H), 2.88 (s, 3H), 2.80 (d, $J$ = 7.3 Hz, 2H).               |

| Compuesto | Estructura                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | LC-MS<br>(m/z)<br>(M+H)+ | <sup>1</sup> H RMN                                                                                                                                                                                                                                                                                                                                                                |
|-----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 130       | The state of the s | 427.0                    | <sup>1</sup> H RMN (400 MHz, CD <sub>3</sub> OD) δ 8.13 (s, 2H), 7.88 (s, 1H), 7.52 (s, 1H), 7.39 (dd, $J$ = 7.8 Hz, 2.1 Hz, 1H), 7.26 (dd, $J$ = 6.0 Hz, 2.0 Hz, 1H), 3.87 (s, 3H), 3.87 (d, $J$ = 7.2 Hz, 2H), 2.93 (t, $J$ = 7.4 Hz, 2H), 2.88 (s, 3H), 2.80 (t, $J$ = 7.4 Hz, 2H), 2.19 - 2.09 (m, 1H), 0.89 (d, $J$ = 6.8 Hz, 6H).                                           |
| 131       | H N N N N N N N N N N N N N N N N N N N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 426.9                    | <sup>1</sup> H RMN (400 MHz, CD <sub>3</sub> OD) δ 8.14 (s, 2H), 7.92 (s, 1H), 7.50 (s, 1H), 7.36 (d, $J$ = 1.9 Hz, 1H), 7.29 (d, $J$ = 1.9 Hz, 1H), 3.91 (s, 3H), 3.57 - 3.55 (m, 1H), 3.04 (t, $J$ = 7.6 Hz, 2H), 2.89 (s, 3H), 2.81 (t, $J$ = 7.6 Hz, 2H), 1.07 - 0.97 (m, 4H).                                                                                                |
| 132       | H N N N N N N N N N N N N N N N N N N N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 429.0                    | <sup>1</sup> H RMN (400 MHz, CD <sub>3</sub> OD) δ 8.12 (s, 2H), 7.91 (s, 1H), 7.53 (s, 1H), 7.39 (dd, $J$ = 7.8 Hz, 1.9 Hz, 1H), 7.25 (dd, $J$ = 5.9 Hz, 1.9 Hz, 1H), 4.22 (t, $J$ = 5.3 Hz, 2H), 3.87 (s, 3H), 3.70 (t, $J$ = 5.3 Hz, 2H), 2.92 (t, $J$ = 7.3 Hz, 2H), 2.87 (s, 3H), 2.79 (t, $J$ = 7.4 Hz, 2H).                                                                |
| 133       | H N N N N N N N N N N N N N N N N N N N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 429.1                    | <sup>1</sup> H RMN (400 MHz, CD <sub>3</sub> OD) δ 8.14 (s, 2H), 7.90 (s, 1H), 7.52 (s, 1H), 7.36 (s, 1H), 7.29 (s, 1H), 4.49 - 4.41 (m, 1H), 3.91 (s, 3H), 3.05 (t, $J = 7.6$ Hz, 2H), 2.89 (s, 3H), 2.81 (t, $J = 7.7$ Hz, 2H), 1.47 (d, $J = 6.7$ Hz, 6H).                                                                                                                     |
| 134       | H T T N N N N N N N N N N N N N N N N N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 439.2                    | <sup>1</sup> H RMN (400 MHz, DMSO-d6) δ 9.34 (s, 1H), 8.38 - 8.32 (m, 1H), 8.23 (s, 2H), 7.58 (d, $J$ = 8.4 Hz, 2H), 7.41 (d, $J$ = 6.6 Hz, 1H), 7.37 (d, $J$ = 6.0 Hz, 1H), 7.09 (d, $J$ = 8.4 Hz, 2H), 3.82 (s, 3H), 3.36 (s, 2H), 2.88 (t, $J$ = 7.5 Hz, 2H), 2.78 - 2.72 (m, 5H).                                                                                             |
| 135       | H N N N N N N N N N N N N N N N N N N N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 439.0                    | <sup>1</sup> H RMN (400 MHz, CD <sub>3</sub> OD) δ 8.12 (s, 2H), 7.90 (s, 1H), 7.52 (s, 1H), 7.39 (d, $J$ = 7.8 Hz, 1H), 7.26 (d, $J$ = 4.0 Hz, 1H), 4.67 - 4.60 (m, 1H), 3.88 (s, 3H), 2.93 (t, $J$ = 7.4 Hz, 2H), 2.88 (s, 3H), 2.80 (t, $J$ = 7.3 Hz, 2H), 2.21 - 2.09 (m, 2H), 2.02 - 1.80 (m, 4H), 1.73- 1.70 (m, 2H).                                                       |
| 136       | H NEW O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 440.9                    | <sup>1</sup> H RMN (400 MHz, CD <sub>3</sub> OD) δ 8.13 (s, 2H), 7.96 (s, 1H), 7.54 (s, 1H), 7.40 (dd, $J$ = 7.8 Hz, 2.1 Hz, 1H), 7.26 (dd, $J$ = 5.9 Hz, 2.1 Hz, 1H), 5.02 - 4.94 (m, 1H), 4.15 - 4.07 (m, 1H), 4.00 (d, $J$ = 4.8 Hz, 2H), 3.94 - 3.84 (m, 4H), 2.94 (t, $J$ = 7.3 Hz, 2H), 2.88 (s, 3H), 2.81 (t, $J$ = 7.4 Hz, 2H), 2.50 - 2.41 (m, 1H), 2.35 - 2.26 (m, 1H). |
| 137       | - I - C N N N N N N N N N N N N N N N N N N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 441.0                    | <sup>1</sup> H RMN (400 MHz, CD <sub>3</sub> OD) δ 8.13 (s, 2H), 7.96 (s, 1H), 7.54 (s, 1H), 7.40 (dd, $J$ = 7.8 Hz, 2.1 Hz, 1H), 7.26 (dd, $J$ = 6.0 Hz, 2.1 Hz, 1H), 5.00 - 4.93 (m, 1H), 4.14 - 4.05 (m, 1H), 4.00 (d, $J$ = 4.8 Hz, 2H), 3.92 - 3.85 (m, 4H), 2.94 (t, $J$ = 7.3 Hz, 2H), 2.88 (s, 3H), 2.81 (t, $J$ = 7.4 Hz, 2H), 2.51 - 2.40 (m, 1H), 2.35 - 2.23 (m, 1H). |
| 138       | H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 442.0                    | <sup>1</sup> H RMN (400 MHz, CD <sub>3</sub> OD) δ 8.13 (s, 2H), 7.96 (s, 1H), 7.54 (s, 1H), 7.40 (dd, $J$ = 7.8 Hz, 2.1 Hz, 1H), 7.26 (dd, $J$ = 6.0 Hz, 2.1 Hz, 1H), 4.24 (t, $J$ = 6.8 Hz, 2H), 3.87 (s, 3H), 2.93 (t, $J$ = 7.4 Hz, 2H), 2.90 - 2.85 (m, 5H), 2.81 (t, $J$ = 7.4 Hz, 2H), 2.34 (s, 6H).                                                                       |

| Compuesto | Estructura                               | LC-MS<br>(m/z)<br>(M+H)+ | ¹H RMN                                                                                                                                                                                                                                                                                                                                                         |
|-----------|------------------------------------------|--------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 139       | H N N N N N N N N N N N N N N N N N N N  | 443.1                    | <sup>1</sup> H RMN (400 MHz, CD <sub>3</sub> OD) δ 8.12 (s, 2H), 7.89 (s, 1H), 7.51 (s, 1H), 7.39 (s, 1H), 7.26 (s, 1H), 4.18- 4.12 (m, 2H), 3.86 (s, 3H), 3.33- 3.31 (m, 5H), 2.92- 2.90 (m, 2H), 2.87 (s, 3H), 2.82 - 2.74 (m, 2H), 2.07- 2.01 (m, 2H).                                                                                                      |
| 140       | H CI N N N N N N N N N N N N N N N N N N | 444.9                    | <sup>1</sup> H RMN (400 MHz, CD <sub>3</sub> OD) δ 8.15 (s, 2H), 7.93 (s, 1H), 7.54 (s, 1H), 7.36 (d, $J$ = 1.8 Hz, 1H), 7.30 (d, $J$ = 1.8 Hz, 1H), 4.23 (t, $J$ = 5.3 Hz, 2H), 3.92 (s, 3H), 3.71 (t, $J$ = 5.2 Hz, 2H), 3.31 (s, 3H), 3.05 (t, $J$ = 7.6 Hz, 2H), 2.89 (s, 3H), 2.82 (t, $J$ = 7.7 Hz, 2H).                                                 |
| 141       | H N N N N N N N N N N N N N N N N N N N  | 448.1                    | <sup>1</sup> H RMN (400 MHz, CD <sub>3</sub> OD) δ 8.95 (s, 1H), 8.56 (s, 1H), 8.42 (d, $J$ = 4.3 Hz, 1H), 8.21 (s, 2H), 8.13 (d, $J$ = 7.1 Hz, 1H), 7.84 (s, 1H), 7.51 (dd, $J$ = 8.3 Hz, 4.8 Hz, 1H), 7.38 (dd, $J$ = 7.7 Hz, 1.9 Hz, 1H), 7.27 (dd, $J$ = 5.9 Hz, 2.0 Hz, 1H), 3.88 (s, 3H), 2.98 - 2.91 (m, 2H), 2.89 (s, 3H), 2.83 (t, $J$ = 7.4 Hz, 2H). |
| 142       | H N N N N N N N N N N N N N N N N N N N  | 448.9                    | <sup>1</sup> H RMN (400 MHz, CD <sub>3</sub> OD) δ 8.81 (d, $J$ = 2.4 Hz, 1H), 8.28 (dd, $J$ = 8.6 Hz, 2.7 Hz, 1H), 8.24 (s, 2H), 7.51 (d, $J$ = 8.8 Hz, 1H), 7.42 (dd, $J$ = 7.9 Hz, 1.9 Hz, 1H), 7.28 (dd, $J$ = 6.0 Hz, 1.9 Hz, 1H), 3.89 (s, 3H), 3.01 - 2.95 (m, 2H), 2.89 (s, 3H), 2.89 - 2.84 (m, 2H), 1.74 (s, 6H).                                    |
| 143       | H N N N N N N N N N N N N N N N N N N N  | 448.9                    | <sup>1</sup> H RMN (400 MHz, CD <sub>3</sub> OD) δ 8.20 (s, 2H), 8.09 (s, 1H), 7.51 (d, $J$ = 8.9 Hz, 1H), 7.41 (dd, $J$ = 7.6 Hz, 2.0 Hz, 1H), 7.28 (dd, $J$ = 6.0 Hz, 2.0 Hz, 1H), 7.05 (dd, $J$ = 9.0 Hz, 1.7 Hz, 1H), 4.02 (s, 3H), 3.89 (s, 3H), 2.97 (t, $J$ = 7.1 Hz, 2H), 2.89 (s, 3H), 2.85 (t, $J$ = 7.1 Hz, 3H), 2.59 (s, 3H).                      |
| 144       | H C C C C C C C C C C C C C C C C C C C  | 454.9                    | <sup>1</sup> H RMN (400 MHz, CD <sub>3</sub> OD) δ 8.15 (s, 2H), 7.98 (s, 1H), 7.56 (s, 1H), 7.41 (dd, $J$ = 7.8 Hz, 2.1 Hz, 1H), 7.28 (dd, $J$ = 6.0 Hz, 2.1 Hz, 1H), 4.40 - 4.30 (m, 1H), 4.12 - 4.02 (m, 2H), 3.89 (s, 3H), 3.62 - 3.52 (m, 2H), 2.95 (t, $J$ = 7.5 Hz, 2H), 2.90 (s, 3H), 2.82 (t, $J$ = 7.4 Hz, 3H), 2.08 - 1.98 (m, 4H).                 |
| 145       | H N N N N N N N N N N N N N N N N N N N  | 455.0                    | <sup>1</sup> H RMN (400 MHz, CD <sub>3</sub> OD) δ 8.13 (s, 2H), 7.94 (s, 1H), 7.54 (s, 1H), 7.40 (dd, $J$ = 7.7 Hz, 2.0 Hz, 1H), 7.26 (dd, $J$ = 5.9 Hz, 2.0 Hz, 1H), 4.70 (d, $J$ = 6.1 Hz, 2H), 4.34 (d, $J$ = 6.1 Hz, 2H), 4.29 (s, 2H), 3.88 (s, 3H), 2.94 (t, $J$ = 7.4 Hz, 2H), 2.88 (s, 3H), 2.81 (t, $J$ = 7.4 Hz, 2H), 1.23 (s, 3H).                 |
| 146       | H N N N N N N N N N N N N N N N N N N N  | 456.0                    | <sup>1</sup> H RMN (400 MHz, CD <sub>3</sub> OD) δ 8.13 (s, 2H), 7.99 (s, 1H), 7.56 (s, 1H), 7.40 (dd, $J$ = 7.8 Hz, 2.1 Hz, 1H), 7.27 (dd, $J$ = 6.0 Hz, 2.1 Hz, 1H), 4.23 (t, $J$ = 6.4 Hz, 2H), 3.88 (s, 3H), 3.13 - 3.06 (m, 2H), 2.94 (t, $J$ = 7.2 Hz, 2H), 2.88 (s, 3H), 2.85 - 2.83 (m, 6H), 2.82 - 2.79 (m, 2H), 2.28 - 2.20 (m, 2H).                 |
| 147       | H N N N N N N N N N N N N N N N N N N N  | 462.4                    | <sup>1</sup> H RMN (400 MHz, CD <sub>3</sub> OD) δ 8.82 (s, 1H), 8.55 (s, 1H), 8.21 (s, 2H), 8.06 (s, <i>J</i> = 7.2 Hz, 1H), 7.83 (s, 1H), 7.42 (s, 1H), 7.40 (s, 1H), 7.28 (s, 1H), 3.89 (s, 3H), 3.01 - 2.94 (m, 2H), 2.89 (s, 3H), 2.87 - 2.79 (m, 2H), 2.57 (s, 3H).                                                                                      |

| Compuesto | Estructura                              | LC-MS<br>(m/z)<br>(M+H) <sup>+</sup> | <sup>1</sup> H RMN                                                                                                                                                                                                                                                                                                                                                                                                                       |
|-----------|-----------------------------------------|--------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 148       |                                         | 468.0                                | <sup>1</sup> H RMN (400 MHz, CD <sub>3</sub> OD) δ 8.12 (s, 2H), 7.95 (s, 1H), 7.53 (s, 1H), 7.39 (d, $J$ = 7.2 Hz, 1H), 7.26 (d, $J$ = 4.8 Hz, 1H), 4.23 (t, $J$ = 6.9 Hz, 2H), 3.87 (s, 3H), 2.98 - 2.88 (m, 4H), 2.87 (s, 3H), 2.80 (t, $J$ = 7.1 Hz, 2H), 2.60 - 2.50 (m, 4H), 1.84 - 1.72 (m, 4H).                                                                                                                                  |
| 149       | H N N N N N N N N N N N N N N N N N N N | 469.9                                | <sup>1</sup> H RMN (400 MHz, CD <sub>3</sub> OD) δ 8.14 (s, 2H), 7.96 (s, 1H), 7.54 (s, 1H), 7.41 (dd, <i>J</i> = 7.8 Hz, 2.1 Hz, 1H), 7.27 (dd, <i>J</i> = 5.9 Hz, 2.1 Hz, 1H), 4.24 - 4.13 (m, 2H), 3.89 (s, 3H), 2.97 - 2.89 (m, 4H), 2.89 (s, 3H), 2.82 (t, <i>J</i> = 7.4 Hz, 2H), 2.58 (c, <i>J</i> = 7.2 Hz, 4H), 1.04 (t, <i>J</i> = 7.2 Hz, 6H).                                                                                |
| 150       | H N N N N N N N N N N N N N N N N N N N | 482.0                                | <sup>1</sup> H RMN (400 MHz, CD <sub>3</sub> OD) δ 8.14 (s, 2H), 7.92 (s, 1H), 7.53 (s, 1H), 7.41 (dd, $J$ = 7.8 Hz, 2.1 Hz, 1H), 7.27 (dd, $J$ = 5.9 Hz, 2.1 Hz, 1H), 3.98 (d, $J$ = 7.2 Hz, 2H), 3.89 (s, 3H), 2.95 (t, $J$ = 7.5 Hz, 2H), 2.89 (s, 3H), 2.81 (t, $J$ = 7.5 Hz, 2H), 2.25 (s, 3H), 2.02 - 1.93 (m, 2H), 1.93 - 1.82 (m, 1H), 1.60 - 1.53 (m, 2H), 1.37 - 1.28 (m, 4H).                                                 |
| 151       | H C N N N N N N N N N N N N N N N N N N | 482.1                                | <sup>1</sup> H RMN (400 MHz, CD <sub>3</sub> OD) δ 8.05 (s, 2H), 7.86 (s, 1H), 7.44 (s, 1H), 7.31 (d, $J$ = 7.7 Hz, 1H), 7.18 (d, $J$ = 4.1 Hz, 1H), 4.07 (t, $J$ = 6.7 Hz, 2H), 3.79 (s, 3H), 2.86 (t, $J$ = 7.5 Hz, 2H), 2.80 (s, 3H), 2.73 (t, $J$ = 7.2 Hz, 2H), 2.66 - 2.54 (m, 4H), 2.54 - 2.45 (m, 2H), 2.05 - 1.95 (m, 2H), 1.83 - 1.69 (m, 4H).                                                                                 |
| 152       | H C C C C C C C C C C C C C C C C C C C | 484.0                                | <sup>1</sup> H RMN (400 MHz, CD <sub>3</sub> OD) δ 8.11 (s, 2H), 7.96 (s, 1H), 7.51 (s, 1H), 7.39 (dd, <i>J</i> = 7.8 Hz, 2.1 Hz, 1H), 7.26 (dd, <i>J</i> = 6.0 Hz, 2.1 Hz, 1H), 4.21 (t, <i>J</i> = 6.6 Hz, 2H), 3.87 (s, 3H), 3.68 - 3.58 (m, 4H), 2.93 (t, <i>J</i> = 7.4 Hz, 2H), 2.87 (s, 3H), 2.82 - 2.78 (m, 2H), 2.77 - 2.75 (m, 2H), 2.49 - 2.43 (m, 4H).                                                                       |
| 153       | F N N N SSI                             | 494.0                                | <sup>1</sup> H RMN (400 MHz, CD <sub>3</sub> OD) δ 8.30 (d, $J$ = 2.7 Hz, 1H), 8.10 (s, 2H), 7.82 (dd, $J$ = 9.1 Hz, 2.7 Hz, 1H), 7.40 (dd, $J$ = 7.8 Hz, 2.1 Hz, 1H), 7.26 (dd, $J$ = 5.9 Hz, 2.0 Hz, 1H), 6.82 (d, $J$ = 9.1 Hz, 1H), 4.12 - 4.02 (m, 2H), 3.88 (s, 3H), 3.02 - 2.95 (m, 2H), 2.93 (t, $J$ = 7.4 Hz, 2H), 2.88 (s, 3H), 2.80 (t, $J$ = 7.4 Hz, 2H), 2.43 (dd, $J$ = 12.6 Hz, 11.0 Hz, 2H), 1.18 (d, $J$ = 6.4 Hz, 6H). |
| 154       | F N N N N N N N N N N N N N N N N N N N | 506.9                                | <sup>1</sup> H RMN (400 MHz,CD <sub>3</sub> OD) δ 8.11 (s, 2H), 7.40 (dd, $J$ = 7.7 Hz, 2.1 Hz, 1H), 7.37 - 7.32 (m, 2H), 7.26 (dd, $J$ = 6.0 Hz, 2.0 Hz, 1H), 6.95 (d, $J$ = 9.3 Hz, H), 3.88 (s, 3H), 3.07 - 2.98 (m, 2H), 2.97 - 2.89 (m, 4H), 2.88 (s, 3H), 2.81 (t, $J$ = 7.4 Hz, 2H), 2.28 (t, $J$ = 11.0 Hz, 2H), 2.26 (s, 3H), 1.10 (d, $J$ = 6.4 Hz, 6H).                                                                       |
| 155       | H N N N N N N N N N N N N N N N N N N N | 510.9                                | <sup>1</sup> H RMN (400 MHz, CD <sub>3</sub> OD) δ 8.15 (s, 2H), 7.57 (dd, $J = 15.0$ Hz, 2.4 Hz, 1H), 7.40 (dd, $J = 7.7$ Hz, 2.0 Hz, 1H), 7.26 (dd, $J = 5.9$ Hz, 2.0 Hz, 1H), 7.20 (dd, $J = 8.7$ Hz, 2.4 Hz, 1H), 6.93 (t, $J = 9.2$ Hz, 1H), 3.87 (s, 3H), 3.24 - 3.16 (m, 2H), 3.08 - 2.98 (m, 2H), 2.94 (t, $J = 7.3$ Hz, 2H), 2.88 (s, 3H), 2.81 (t, $J = 7.4$ Hz, 2H), 2.29 (t, $J = 10.9$ Hz, 2H), 1.10 (d, $J = 6.4$ Hz, 6H). |

| Compuesto | Estructura                              | LC-MS<br>(m/z)<br>(M+H) <sup>+</sup> | ¹H RMN                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|-----------|-----------------------------------------|--------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 156       | H N N N N N N N N N N N N N N N N N N N | 523.2                                | <sup>1</sup> H RMN (400 MHz, CD <sub>3</sub> OD) δ 8.13 (s, 2H), 7.39 (dd, $J$ = 7.8 Hz, 2.1 Hz, 1H), 7.33 (d, $J$ = 2.3 Hz, 1H), 7.26 (dd, $J$ = 5.9 Hz, 2.1 Hz, 1H), 7.09 (dd, $J$ = 8.6 Hz, 2.3 Hz, 1H), 6.87 (d, $J$ = 8.6 Hz, 1H), 3.87 (s, 3H), 3.84 (s, 3H), 3.25 - 3.18 (m, 2H), 3.08 - 3.00 (m, 2H), 2.93 (t, $J$ = 7.5 Hz, 2H), 2.87 (s, 3H), 2.80 (t, $J$ = 7.5 Hz, 2H), 2.21 - 2.15 (m, 2H), 1.08 (d, $J$ = 6.4 Hz, 6H).           |
| 157       |                                         | 523.4                                | <sup>1</sup> H RMN (400 MHz, CD <sub>3</sub> OD) δ 8.13 (s, 2H), 7.39 (dd, $J$ = 7.4 Hz, 1.5 Hz, 1H), 7.33 (d, $J$ = 2.2 Hz, 1H), 7.25 (dd, $J$ = 5.9 Hz, 1.9 Hz, 1H), 7.08 (dd, $J$ = 8.6 Hz, 2.1 Hz, 1H), 6.90 (d, $J$ = 8.6 Hz, 1H), 3.87 (s, 3H), 3.84 (s, 3H), 3.09 - 2.99 (m, 4H), 2.94 (t, $J$ = 7.4 Hz, 2H), 2.87 (s, 3H), 2.80 (t, $J$ = 7.4 Hz, 2H), 2.69 - 2.57 (m, 4H), 2.48 (c, $J$ = 7.2 Hz, 2H), 1.12 (t, $J$ = 7.2 Hz, 3H).    |
| 158       | H N N SSI                               | 524.3                                | <sup>1</sup> H RMN (400 MHz, CD <sub>3</sub> OD) δ 8.30 (dd, $J$ = 2.8 Hz, 0.5 Hz, 1H), 8.12 (s, 2H), 7.82 (dd, $J$ = 9.1 Hz, 2.8 Hz, 1H), 7.37 (d, $J$ = 2.0 Hz, 1H), 7.30 (d, $J$ = 2.0 Hz, 1H), 6.81 (dd, $J$ = 9.1 Hz, 0.5 Hz, 1H), 4.02 - 3.96 (m, 2H), 3.92 (s, 3H), 3.07 - 3.03 (m, 2H), 2.90 (s, 3H), 2.83 (t, $J$ = 7.6 Hz, 2H), 2.65 - 2.59 (m, 2H), 2.40 - 2.33 (m, 2H), 2.33 (s, 3H), 1.19 (d, $J$ = 6.3 Hz, 6H).                  |
| 159       |                                         | 538.3                                | <sup>1</sup> H RMN (400 MHz, CD <sub>3</sub> OD) δ 8.29 (d, $J$ = 2.6 Hz, 1H), 8.12 (s, 2H), 7.81 (dd, $J$ = 9.1 Hz, 2.6 Hz, 1H), 7.37 (d, $J$ = 1.9 Hz, 1H), 7.30 (d, $J$ = 1.9 Hz, 1H), 6.80 (d, $J$ = 9.1 Hz, 1H), 3.95 - 4.01 (m, 2H), 3.05 (t, $J$ = 7.5 Hz, 2H), 2.99 (c, $J$ = 7.2 Hz, 2H), 2.89 (s, 3H), 2.82 (t, $J$ = 7.5 Hz, 2H), 2.79 - 2.71 (m, 2H), 2.63 - 2.54 (m, 2H), 1.17 (d, $J$ = 6.3 Hz, 6H), 0.96 (t, $J$ = 7.2 Hz, 3H). |
| 160       | H N N N N N N N N N N N N N N N N N N N | 539.6                                | <sup>1</sup> H RMN (400 MHz, CD <sub>3</sub> OD) δ 8.13 (s, 2H), 7.36 - 7.31 (m, 2H), 7.28 (s, 1H), 7.09 (dd, $J$ = 8.5 Hz, 2.0 Hz, 1H), 6.87 (dd, $J$ = 8.5 Hz, 1.1 Hz, 1H), 3.90 (s, 3H), 3.83 (s, 3H), 3.23 - 3.19 (m, 2H), 3.07 - 2.98 (m, 4H), 2.87 (s, 3H), 2.79 (t, $J$ = 7.5 Hz, 2H), 2.19 - 2.15 (m, 2H), 1.07 (d, $J$ = 7.3 Hz, 6H).                                                                                                 |
| 161       |                                         | 539.6                                | <sup>1</sup> H RMN (400 MHz, CD <sub>3</sub> OD) δ 8.15 (s, 2H), 7.36 - 7.35 (m, 2H), 7.29 (d, $J$ = 1.8 Hz, 1H), 7.10 (dd, $J$ = 8.5 Hz, 2.1 Hz, 1H), 6.91 (d, $J$ = 8.6 Hz, 1H), 3.89 (s, 3H), 3.85 (s, 3H), 3.07 - 3.03 (m, 6H), 2.88 (s, 3H), 2.82 (t, $J$ = 7.6 Hz, 2H), 2.72 - 2.68 (m, 4H), 2.54 (c, $J$ = 7.0 Hz, 2H), 1.14 (t, $J$ = 7.2 Hz, 3H).                                                                                     |

Ejemplo 12: Síntesis del Compuesto 162

5

# 3-(2-((1-Etilsulfonil-1*H*-pirazol-4-il)amino)pirimidin-5-il)etil)-4-fluoro-5-metoxi-*N*-metilbenzamida

(A) 3-(2-(2-((1-Etilsulfonil-1*H*-pirazol-4-il)amino)pirimidin-5-il)etil)-4-fluoro-5-metoxi-*N*-metilbenzamida

A una solución de  $3-(2-(2-(1H-pirazol-4-il)amino)pirimidin-5-il)etil)-4-fluoro-5-metoxi-N-metilbenzamida (80.0 mg, 0.22 mmol) en THF/DMF (1 mL, 1:1 vol.) se añadió KHMDS (0.43 mL, 0.22 mmol, 0.5 M en tolueno) gota a gota enfriando con un baño de hielo-agua. Después de la adición, la mezcla se agitó durante 2 min más. A continuación, a la mezcla se añadió cloruro de etanosulfonilo (28 mg, 0.22 mmol) gota a gota a la misma temperatura. Después de la adición, la mezcla se agitó durante 2 min más y a continuación se desactivó con agua (0.5 mL). La mezcla resultante se extrajo con DCM (5 mL). La fase orgánica se concentró al vacío y el residuo se purificó mediante ISCO (eluida con MeOH en H<sub>2</sub>O 0-100%) para obtener el compuesto del título como un sólido blanco (7.8 mg, 7.8% de rendimiento). MS (m/z): 426.9 (M+H)+. <math>^{1}$ H RMN (400 MHz, CD<sub>3</sub>OD)  $\delta$  8.47 (s, 1H), 8.23 (s, 2H), 7.95 (s, 1H), 7.41 (dd, J = 7.8 Hz, 2.1 Hz, 1H), 7.28 (dd, J = 6.0 Hz, 2.1 Hz, 1H), 3.89 (s, 3H), 3.51 (c, J = 7.4 Hz, 2H), 2.97 (t, J = 7.4 Hz, 2H), 2.89 (s, 3H), 2.85 (t, J = 7.4 Hz, 2H), 1.20 (t, J = 7.4 Hz, 3H).

#### Ejemplo 13: Síntesis de los Compuestos 163-166

### Compuesto 163

5

10

20

25

#### 3-(2-(2-((1-(Ciclopropilmetil)-1H-pirazol-4-il)amino)pirimidin-5-il)etil)-4-fluoro-5-metoxi-N-metilbenzamida

### 15 (A) 3-(2-(2-((1-Ciclopropilmetil-1*H*-pirazol-4-il)amino)pirimidin-5-il)etil)-4-fluoro-5-metoxi-*N*-metilbenzamida

A una solución de 3-(2-(2-((1H-pirazol-4-il)amino)pirimidin-5-il)etil)-4-fluoro-5-metoxi-N-metilbenzamida (106 mg, 0.29 mmol) y (bromometil)ciclopropano (77 mg, 0.57 mmol) en DMF (10 mL) se añadió Cs<sub>2</sub>CO<sub>3</sub> (280 mg, 0.86 mmol). La mezcla se agitó a 80 °C durante toda la noche. A continuación, la mezcla se repartió entre AE y agua. La fase orgánica se lavó con agua y salmuera, se secó con sulfato de sodio anhidro y se concentró. El residuo se purificó con ISCO (eluida con MeOH en DCM 0~10%) para proporcionar el compuesto del título como un sólido blanquecino (34 mg, 28.0% de rendimiento). MS (m/z): 425.1 (M+H) $^+$ .  $^1$ H RMN (400 MHz, CD<sub>3</sub>OD)  $\delta$  8.13 (s, 2H), 7.95 (s, 1H), 7.52 (s, 1H), 7.40 (dd, J = 7.8 Hz, 2.1 Hz, 1H), 7.26 (dd, J = 5.9 Hz, 2.0 Hz, 1H), 3.93 (d, J = 7.1 Hz, 2H), 3.88 (s, 3H), 2.94 (t, J = 7.4 Hz, 2H), 2.88 (s, 3H), 2.80 (t, J = 7.4 Hz, 2H), 1.28 - 1.26 (m, 1H), 0.62 - 0.56 (m, 2H), 0.41 - 0.34 (m, 2H).

Los siguientes compuestos se prepararon de acuerdo con los procedimientos del Compuesto 163 utilizando los correspondientes intermedios y reactivos en condiciones apropiadas que podrá reconocer un experto en la técnica.

| Compuesto | Estructura | LC-MS<br>(m/z)<br>(M+H)+ | ¹H RMN                                                                                                                                                                                                                                                                                                                                                                                                            |
|-----------|------------|--------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 164       |            | 462.1                    | <sup>1</sup> H RMN (400 MHz, CD <sub>3</sub> OD) $\delta$ 8.50 (d, $J$ = 4.9 Hz, 1H), 8.13 (s, 2H), 8.07 (s, 1H), 7.77 (td, $J$ = 7.8 Hz, 1.7 Hz, 1H), 7.61 (s, 1H), 7.39 (dd, $J$ = 7.8 Hz, 2.1 Hz, 1H), 7.32 (dd, $J$ = 6.9 Hz, 5.3 Hz, 1H), 7.26 (dd, $J$ = 5.9 Hz, 2.1 Hz, 1H), 7.05 (d, $J$ = 7.9 Hz, 1H), 5.39 (s, 2H), 3.87 (s, 3H), 2.93 (t, $J$ = 7.4 Hz, 2H), 2.87 (s, 3H), 2.80 (t, $J$ = 7.4 Hz, 2H). |
| 165       |            | 482.2                    | <sup>1</sup> H RMN (400 MHz, CDCl <sub>3</sub> ) δ 8.15 (s, 2H), 7.60 (s, 1H), 7.34 (d, <i>J</i> = 7.5 Hz, 1H), 6.98 (s, 1H), 6.22 (s, 1H), 4.86 (s, 2H), 3.91 (s, 3H), 3.58 - 3.43 (m, 4H), 2.95 (s, 3H), 2.93 - 2.87 (m, 2H), 2.85 - 2.77 (m, 2H), 2.04 - 1.98 (m, 2H), 1.90 - 1.84 (m, 2H).                                                                                                                    |
| 166       |            | 511.2                    | <sup>1</sup> H RMN (400 MHz, CDCl <sub>3</sub> ) δ 8.29 - 7.95 (m, 2H), 7.66 - 7.45 (m, 1H), 7.33 (d, $J = 6.8$ Hz, 1H), 7.04 - 6.96 (m, 1H), 6.32 - 6.09 (m, 1H), 5.30 (s, 2H), 3.92 (s, 3H), 3.70 - 3.63 (m, 2H), 3.61 - 3.55 (m, 2H), 2.97 (d, $J = 3.7$ Hz, 3H), 2.92 (t, $J = 7.0$ Hz, 2H), 2.85 - 2.75 (t, $J = 7.0$ Hz, 2H), 2.48 - 2.37 (m, 4H), 2.35 - 2.29 (m, 3H).                                     |

Ejemplo 14: Síntesis del Compuesto 167

#### Compuesto 167

## 4-Fluoro-3-metoxi-N-metil-5-(2-(2-((4-(2-oxopiperidin-1-il)fenil)amino)pirimidin-5-il)etil)benzamida

## (A) (E)-4-Fluoro-3-metoxi-5-(2-(2-((4-(2-oxopiridin-1(2H)-il)fenil)amino)pirimidin-5-il)vinil)benzoato de metilo

Una mezcla de 1-(4-aminofenil)piridin-2(1*H*)-ona (138 mg, 0.74 mmol), (*E*)-3-(2-(2-cloropirimidin-5-il)vinil)-4-fluoro-5-metoxibenzoato de metilo (120 mg, 0.37 mmol) y ácido 4-metilbencenosulfónico hidratado (71 mg, 0.37 mmol) en propan-2-ol (4 mL) se agitó a 140 °C durante 1h con microondas. La mezcla se filtró y la masa retenida en el filtro se lavó con propan-2-ol (3\*10 mL). El sólido se secó a presión reducida a 50 °C durante 20 min para obtener el compuesto deseado como un sólido gris (150 mg, 85.4% de rendimiento). MS (m/z): 473.1 (M+H)+.

### (B) 4-Fluoro-3-metoxi-5-(2-(2-((4-(2-oxopiperidin-1-il)fenil) amino)pirimidin-5-il)etil)benzoato de metilo

A una solución de (*E*)-4-fluoro-3-metoxi-5-(2-(2-((4-(2-oxopiridin-1(2*H*)-il)fenil)amino)pirimidin-5-il)vinil)benzoato de metilo (150 mg, 0.32 mmol) en un disolvente mixto de THF/MeOH (20 mL/ 20 mL) se añadió Pd/C (10%, 100 mg). La mezcla se purgó con hidrógeno y se agitó durante toda la noche a temperatura ambiente en una atmósfera de hidrógeno. El catalizador se separó por filtración a través de celite y el filtrado se concentró para obtener un aceite amarillo claro (152 mg, rendimiento cuantitativo). MS (m/z): 479.1 (M+H)+.

### (C) 4-Fluoro-3-metoxi-N-metil-5-(2-(2-((4-(2-oxopiperidin-1-il)fenil)amino)pirimidin-5-il)etil)benzamida

A una solución de 4-fluoro-3-metoxi-5-(2-(2-((4-(2-oxopiperidin-1-i))fenil)amino)pirimidin-5-il)etil)benzoato de metilo (152 mg, 0.32 mmol) en MeOH (20 mL) se añadió NaOH acuoso (2 N, 3 mL, 6 mmol). A continuación, la mezcla se agitó durante toda la noche a temperatura ambiente. Después de la concentración, el residuo se ajustó a pH<2 con HCl conc. A continuación, la mezcla se concentró para obtener un sólido marrón que se suspendió en DMF (10 mL) y a continuación, se añadieron clorhidrato de metanamina (43 mg, 0.64 mmol), HATU (183 mg, 0.48 mmol) y DIPEA (165 mg, 1.28 mmol). La mezcla resultante se agitó durante 2 h a temperatura ambiente y a continuación se repartió entre AE y agua. La fase orgánica se lavó con agua y salmuera, se secó con sulfato de sodio anhidro y se concentró. El residuo se purificó mediante ISCO (eluida con MeOH en  $H_2O$  0~100%) para obtener el compuesto del título como un sólido ligeramente amarillo (29.1 mg, 19.2% de rendimiento). MS (m/z): 478.2 (M+H)+.  $^1$ H RMN (400 MHz, CD<sub>3</sub>OD)  $^3$  8.17 (s, 2H), 7.68 (d,  $^3$ J = 8.5 Hz, 2H), 7.42 - 7.37 (m, 1H), 7.29 - 7.24 (m, 1H), 7.14 (d,  $^3$ J = 8.7 Hz, 2H), 3.87 (s, 3H), 3.65 - 3.62 (m, 2H), 2.97 - 2.93 (m, 2H), 2.88 (s, 3H), 2.85 - 2.80 (m, 2H), 2.51 - 2.46 (m, 2H), 1.97 - 1.92 (m, 4H).

### Ejemplo 15: Síntesis de los Compuestos 168-178

#### Compuesto 168

### 4-Cloro-N,3-dimetoxi-5-(2-(2-((1-metil-1H-pirazol-4-il)amino)pirimidin-5-il)etil)benzamida

(A) 4-Cloro-3-metoxi-5-(2-(2-((1-metil-1*H*-pirazol-4-il)amino)pirimidin-5-il)etil)benzoato de metilo

5

15

20

Una mezcla de (E)-4-cloro-3-metoxi-5-(2-(2-((1-metil-1H-pirazol-4-il)amino)pirimidin-5-il)vinil)benzoato de metilo (0.25 g, 0.63 mmol), 4-metilbencenosulfonohidrazida (1.2 g, 6.4 mmol) y acetato de sodio (0.53 g, 6.5 mmol) en THF (15 mL) y  $H_2O$  (10 mL) se calentó a  $100 \text{ }^{\circ}\text{C}$  durante 20 h en nitrógeno. A continuación, los componentes volátiles se eliminaron a presión reducida y el residuo se purificó mediante ISCO (eluida con MeOH en  $H_2O$   $0\sim100\%$ ) para proporcionar el compuesto del título como un sólido amarillo (0.12 g, 47.8% de rendimiento). MS (m/z):  $402.3 \text{ (M+H)}^+$ .

### (B) Ácido 4-cloro-3-metoxi-5-(2-(2-((1-metil-1H-pirazol-4-il)amino)pirimidin-5-il)etil)benzoico

5

10

15

Una solución de 4-cloro-3-metoxi-5-(2-(2-((1-metil-1H-pirazol-4-il)amino)pirimidin-5-il)etil)benzoato de metilo (0.12 g, 0.30 mmol) en THF (3 mL) y MeOH (2 mL) se mezcló con una solución acuosa de NaOH (0.20 g de NaOH en 1mL de  $H_2O$ ). La mezcla resultante se agitó a temperatura ambiente durante 2 h y a continuación se purificó mediante ISCO (eluida con MeOH en  $H_2O$  0~100%) directamente para proporcionar el compuesto del título como un sólido blanco (0.075 g, 64.8% de rendimiento). MS (m/z): 388.3 (M+H)+.

### (C) 4-Cloro-N,3-dimetoxi-5-(2-(2-((1-metil-1 H-pirazol-4-il)amino)pirimidin-5-il)etil)benzamida

Una mezcla de ácido 4-cloro-3-metoxi-5-(2-(2-((1-metil-1H-pirazol-4-il)amino)pirimidin-5-il)etil)benzoico (0.025 g, 0.065 mmol), clorhidrato de metoxilamina (0.012 g, 0.14 mmol), DIPEA (0.030 g, 0.23 mmol) y HATU (0.035 g, 0.092 mmol) en DMF (4 mL) se agitó a temperatura ambiente durante 30 min. A continuación, la mezcla de reacción se purificó mediante ISCO (eluida con MeOH en  $H_2O$  0~100%) directamente para proporcionar el compuesto del título como un sólido amarillo (0.022 g, 81.9% de rendimiento). MS (m/z): 417.4 (M+H)+.  $^1$ H RMN (400 MHz, CD<sub>3</sub>OD)  $\delta$  8.17 (s, 2H), 7.87 (s, 1H), 7.53 (s, 1H), 7.31 (d, J = 1.6 Hz, 1H), 7.26 (d, J = 1.6 Hz, 1H), 3.95 (s, 3H), 3.87 (s, 3H), 3.82 (s, 3H), 3.06 (t, J = 7.7 Hz, 2H), 2.83 (t, J = 7.7 Hz, 2H).

Los siguientes compuestos se prepararon de acuerdo con los procedimientos del Compuesto **168** utilizando los correspondientes intermedios y reactivos en condiciones apropiadas que podrá reconocer un experto en la técnica.

| Compuesto | Estructura                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | LC-MS<br>(m/z)<br>(M+H)+ | ¹H RMN                                                                                                                                                                                                                                                                                                                                                                   |
|-----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 169       | THE CI NAME OF THE COLUMN TO T | 427.0                    | <sup>1</sup> H RMN (400 MHz, CD <sub>3</sub> OD) δ 8.13 (s, 2H), 7.87 (s, 1H), 7.50 (s, 1H), 7.35 (s, 1H), 7.28 (s, 1H), 3.91 (s, 3H), 3.84 (s, 3H), 3.03 (t, <i>J</i> = 9.4 Hz, 2H), 2.91 - 2.83 (m, 1H), 2.83 - 2.75 (m, 2H), 0.86 - 0.70 (m, 2H), 0.70 - 0.51 (m, 2H).                                                                                                |
| 170       | THE NAME OF THE PARTY OF THE PA | 480.8                    | <sup>1</sup> H RMN (400 MHz, CD <sub>3</sub> OD) δ 8.10 (s, 2H), 7.43 (d, $J$ = 7.3 Hz, 2H), 7.37 - 7.34 (m, 1H), 7.30 - 7.26 (m, 1H), 6.93 (d, $J$ = 7.3 Hz, 2H), 3.91 (s, 3H), 3.09-3.01 (m, 6H), 3.00 - 2.94 (m, 4H), 2.88 (s, 3H), 2.81 (t, $J$ = 7.4 Hz, 2H).                                                                                                       |
| 171       | F N N N SS N N N N N SS N N N N SS N N N N N N N N N N N N N N N N N N N N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 506.9                    | <sup>1</sup> H RMN (400 MHz, CD <sub>3</sub> OD) δ 8.09 (s, 2H), 7.45 - 7.37 (m, 3H), 7.26 (dd, $J = 5.9$ Hz, 2.0 Hz, 1H), 6.95 - 6.88 (m, 2H), 3.88 (s, 3H), 3.44 (d, $J = 10.3$ Hz, 2H), 2.93 (t, $J = 7.4$ Hz, 2H), 2.88 (s, 3H), 2.80 (t, $J = 7.4$ Hz, 2H), 2.52 - 2.41 (m, 4H), 2.33 (s, 3H), 1.17 (d, $J = 5.8$ Hz, 6H).                                          |
| 172       | H N N N N N N N N N N N N N N N N N N N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 509.2                    | <sup>1</sup> H RMN (400 MHz, CD <sub>3</sub> OD) δ 8.12 (s, 2H), 7.44 - 7.36 (m, 1H), 7.33 (d, $J$ = 2.0 Hz, 1H), 7.25 (d, $J$ = 4.1 Hz, 1H), 7.08 (dd, $J$ = 8.5 Hz, 2.1 Hz, 1H), 6.88 (d, $J$ = 8.6 Hz, 1H), 3.86 (s, 3H), 3.83 (s, 3H), 3.03 - 2.99 (m, 4H), 2.93 (t, $J$ = 7.3 Hz, 2H), 2.87 (s, 3H), 2.80 (t, $J$ = 7.3 Hz, 2H), 2.65 - 2.61 (m, 4H), 2.32 (s, 3H). |
| 173       | H N N N N N N N N N N N N N N N N N N N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 508.8                    | <sup>1</sup> H RMN (400 MHz, CD <sub>3</sub> OD) δ 8.09 (s, 2H), 7.39 (d, $J$ = 8.8 Hz, 2H), 7.35 (s, 1H), 7.28 (s, 1H), 6.87 (d, $J$ = 8.8 Hz, 2H), 3.91 (s, 3H), 3.06 - 2.95 (m, 6H), 2.88 (s, 3H), 2.84 - 2.76 (m, 4H), 1.21 (s, 6H).                                                                                                                                 |

| Compuesto | Estructura                               | LC-MS<br>(m/z)<br>(M+H)+ | ¹H RMN                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|-----------|------------------------------------------|--------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 174       | TO CI NO NO SOLVEN                       | 510.3                    | <sup>1</sup> H RMN (400 MHz, CD <sub>3</sub> OD) δ 8.38 (d, $J$ = 2.6 Hz, 1H), 8.13 (s, 2H), 7.91 (dd, $J$ = 9.0 Hz, 2.7 Hz, 1H), 7.36 (d, $J$ = 1.8 Hz, 1H), 7.29 (d, $J$ = 1.9 Hz, 1H), 6.92 (d, $J$ = 9.1 Hz, 1H), 4.36 (dd, $J$ = 14.0 Hz, 2.4 Hz, 2H), 3.92 (s, 3H), 3.45 - 3.36 (m, 2H), 3.05 (t, $J$ = 7.6 Hz, 2H), 2.89 (s, 3H), 2.83 (t, $J$ = 7.6 Hz, 2H), 2.75 (dd, $J$ = 13.9 Hz, 11.4 Hz, 2H), 1.37 (d, $J$ = 6.6 Hz, 6H). |
| 175       |                                          | 522.9                    | <sup>1</sup> H RMN (400 MHz,CD <sub>3</sub> OD) δ 8.10 (s, 2H), 7.45 - 7.40 (m, 2H), 7.36 (d, $J$ = 2.0 Hz, 1H), 7.28 (d, $J$ = 2.0 Hz, 1H), 6.94 - 6.88 (m, 2H), 3.91 (s, 3H), 3.46 - 3.40 (m, 2H), 3.03 (t, $J$ = 7.6 Hz, 2H), 2.88 (s, 3H), 2.80 (t, $J$ = 7.6 Hz, 2H), 2.51 - 2.40 (m, 4H), 2.32 (s, 3H), 1.17 (d, $J$ = 5.9 Hz, 6H).                                                                                               |
| 176       |                                          | 523.3                    | <sup>1</sup> H RMN (400 MHz,CD <sub>3</sub> OD) δ 8.12 (s, 2H), 7.37 - 7.32 (m, 3H), 7.30 - 7.28 (m, 1H), 6.95 (d, $J$ = 9.3 Hz, 1H), 3.91 (s, 3H), 3.07 - 3.01 (m, 4H), 2.94 - 2.89 (m, 2H), 2.88 (s, 3H), 2.81 (t, $J$ = 7.6 Hz, 2H), 2.28 (t, $J$ = 10.9 Hz, 2H), 2.26 (s, 3H), 1.09 (d, $J$ = 6.5 Hz, 6H).                                                                                                                          |
| 177       | H C C N N N N N N N N N N N N N N N N N  | 525.2                    | <sup>1</sup> H RMN (400 MHz, CD <sub>3</sub> OD) δ 8.14 (s, 2H), 7.39 - 7.31 (m, 2H), 7.29 (s, 1H), 7.08 (d, <i>J</i> = 8.6 Hz, 1H), 6.89 (d, <i>J</i> = 8.5 Hz, 1H), 3.91 (s, 3H), 3.84 (s, 3H), 3.10 - 2.98 (m, 6H), 2.88 (s, 3H), 2.82 (t, <i>J</i> = 7.5 Hz, 2H), 2.63 - 2.59 (m, 4H), 2.32 (s, 3H).                                                                                                                                |
| 178       | H CO N N N N N N N N N N N N N N N N N N | 527.3                    | <sup>1</sup> H RMN (400 MHz, CD <sub>3</sub> OD) δ 8.16 (s, 2H), 7.57 (d, $J$ = 14.2 Hz, 1H), 7.36 (s, 1H), 7.29 (s, 1H), 7.19 (d, $J$ = 8.3 Hz, 1H), 6.93 (t, $J$ = 9.1 Hz, 1H), 3.91 (s, 3H), 3.20 (d, $J$ = 11.0 Hz, 2H), 3.09 - 2.95 (m, 4H), 2.88 (s, 3H), 2.82 (t, $J$ = 7.1 Hz, 2H), 2.28 (t, $J$ = 10.7 Hz, 2H), 1.10 (d, $J$ = 6.1 Hz, 6H).                                                                                    |

Ejemplo 16: Síntesis del Compuesto 179

# 4-Cloro-3-metoxi-N-metil-5-(2-(2-((1-(piperidin-4-il)-1H-pirazol-4-il)amino)pirimidin-5-il)etil)benzamida

# 5 (A) 4-(4-((5-(2-Cloro-3-metoxi-5-(metilcarbamoil)fenetil)pirimidin-2-il)amino)-1*H*-pirazol-1-il)piperidino-1-carboxilato de *tert*-butilo

El compuesto del título se preparó de acuerdo con los procedimientos del Ejemplo 9 utilizando los correspondientes intermedios y reactivos.

## (B) 4-Cloro-3-metoxi-N-metil-5-(2-((1-(piperidin-4-il)-1H-pirazol-4-il)amino)pirimidin-5-il)etil)benzamida

Una mezcla de 4-(4-((5-(2-cloro-3-metoxi-5-(metilcarbamoil)-fenetil)pirimidin-2-il)amino)-1*H*-pirazol-1-il)piperidino-1-carboxilato de *tert*-butilo (80 mg, 0.15 mmol) en MeOH (2 mL) se trató con 5 gotas de ácido clorhídrico conc. La mezcla se concentró al vacío (45 °C, baño de agua) y al residuo se añadió NaHCO<sub>3</sub> ac. (5 mL) y se extrajo con DCM (2\*10 mL). Las fases orgánicas se combinaron y concentraron al vacío. El residuo se purificó mediante ISCO (eluida con

MeOH en H<sub>2</sub>O 0-100%) para proporcionar el compuesto del título (46 mg, 69.7% de rendimiento). MS (m/z): 470.0 (M+H)<sup>+</sup>.  $^{1}$ H RMN (400 MHz, CD<sub>3</sub>OD) δ 8.14 (s, 2H), 8.01 (s, 1H), 7.57 (s, 1H), 7.36 (d, J = 1.9 Hz, 1H), 7.30 (d, J = 1.9 Hz, 1H), 4.52 - 4.43 (m, 1H), 3.92 (s, 3H), 3.59 - 3.50 (m, 2H), 3.23 - 3.13 (m, 2H), 3.05 (t, J = 7.6 Hz, 2H), 2.89 (s, 3H), 2.83 (t, J = 7.6 Hz, 2H), 2.33 - 2.17 (m, 4H).

#### 5 Ejemplo 17: Síntesis de los Compuestos 180-185

#### Compuesto 180

10

15

20

## (R)-4-Fluoro-3-metoxi-N-metil-5-(2-(2-((1-(piperidin-3-il)-1H-pirazol-4-il)amino)pirimidin-5-il)etil)benzamida

# (A) (R)-3-(4-((5-(2-Fluoro-3-metoxi-5-(metilcarbamoil)fenetil)pirimidin-2-il)amino)-1H-pirazol-1-il)piperidino-1-carboxilato de *tert*-butilo

El compuesto del título se preparó de acuerdo con los procedimientos del Ejemplo 11 utilizando los correspondientes intermedios y reactivos.

## (B) (R)-4-Fluoro-3-metoxi-N-metil-5-(2-(2-((1-(piperidin-3-il)-1H-pirazol-4-il)amino)pirimidin-5-il)etil)benzamida

Una mezcla de (R)-3-(4-((5-(2-fluoro-3-metoxi-5-(metilcarbamoil)fenetil)pirimidin-2-il)amino)-1H-pirazol-1-il)piperidino-1-carboxilato de tert-butilo (160 mg, 0.29 mmol) en MeOH (2 mL) se trató con 6 gotas de ácido clorhídrico conc. La mezcla se concentró al vacío (40  $^{\circ}$ C, baño de agua) y al residuo se añadió NaHCO3 ac. (5 mL) y se extrajo con DCM (2\*10 mL). Las fases orgánicas se combinaron y concentraron al vacío. El residuo se purificó mediante ISCO (eluida con MeOH en H2O 0-100%) para proporcionar el compuesto del título (87.0 mg, 66.4% de rendimiento). MS (m/z): 454.0 (M+H)+.  $^{1}$ H RMN (400 MHz, CD3OD)  $\delta$  8.12 (s, 2H), 7.93 (s, 1H), 7.52 (s, 1H), 7.39 (dd, J = 7.8 Hz, 2.2 Hz, 1H), 7.26 (dd, J = 6.0 Hz, 2.1 Hz, 1H), 4.17 - 4.10 (m, 1H), 3.87 (s, 3H), 3.25 - 3.18 (m, 1H), 2.95 - 2.90 (m, 3H), 2.87 (s, 3H), 2.83 - 2.78 (m, 3H), 2.62 - 2.57 (m, 1H), 2.17 - 2.16 (m, 1H), 1.95 - 1.88 (m, 1H), 1.84 - 1.79 (m, 1H), 1.64 - 1.59 (m, 1H).

Los siguientes compuestos se prepararon de acuerdo con los procedimientos del Compuesto 180 utilizando los correspondientes intermedios y reactivos en condiciones apropiadas que podrá reconocer un experto en la técnica.

| Compuesto | Estructura                              | LC-MS<br>(m/z)<br>(M+H) <sup>+</sup> | ¹H RMN                                                                                                                                                                                                                                                                                                                                        |
|-----------|-----------------------------------------|--------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 181       | H N N N                                 | 426.1                                | <sup>1</sup> H RMN (400 MHz, CD <sub>3</sub> OD) δ 8.13 (s, 2H), 8.06 (s, 1H), 7.58 (s, 1H), 7.39 (dd, <i>J</i> = 7.7 Hz, 2.1 Hz, 1H), 7.26 (dd, <i>J</i> = 5.9 Hz, 2.0 Hz, 1H), 5.28 - 5.08 (m, 1H), 4.10 - 3.99 (m, 2H), 3.92 - 3.87 (m, 2H), 3.87 (s, 3H), 2.93 (t, <i>J</i> = 7.4 Hz, 2H), 2.87 (s, 3H), 2.80 (t, <i>J</i> = 7.4 Hz, 2H). |
| 182       | H N N N N N N N N N N N N N N N N N N N | 439.9                                | <sup>1</sup> H RMN (400 MHz, CD <sub>3</sub> OD) δ 8.13 (s, 2H), 7.96 (s, 1H), 7.54 (s, 1H), 7.40 (dd, $J$ = 7.8 Hz, 2.1 Hz, 1H), 7.27 (dd, $J$ = 6.0 Hz, 2.1 Hz, 1H), 3.88 (s, 3H), 3.24 - 3.09 (m, 4H), 2.99 - 2.95 (m, 1H), 2.95 (t, $J$ = 7.4 Hz, 2H) 2.89 (s, 3H), 2.81 (t, $J$ = 7.4 Hz, 2H), 2.36 - 2.26 (m, 1H), 2.22 - 2.11 (m, 1H). |
| 183       | H N N N N N N N N N N N N N N N N N N N | 439.9                                | <sup>1</sup> H RMN (400 MHz, CD <sub>3</sub> OD) δ 8.12 (s, 2H), 7.95 (s, 1H), 7.53 (s, 1H), 7.39 (dd, <i>J</i> = 7.8 Hz, 2.1 Hz, 1H), 7.26 (dd, <i>J</i> = 6.0 Hz, 2.1 Hz, 1H), 3.87 (s, 3H), 3.25 - 3.11 (m, 4H), 3.00 - 2.95 (m, 1H), 2.93 (t, <i>J</i> = 7.4 Hz, 2H), 2.88 (s, 3H),                                                       |

| Compuesto | Estructura                              | LC-MS<br>(m/z)<br>(M+H)+ | <sup>1</sup> H RMN                                                                                                                                                                                                                                                                                                                                                                              |
|-----------|-----------------------------------------|--------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|           |                                         |                          | 2.80 (t, <i>J</i> = 7.4 Hz, 2H), 2.35 - 2.25 (m, 1H), 2.21 - 2.10 (m, 1H).                                                                                                                                                                                                                                                                                                                      |
| 184       | H N N N N N N N N N N N N N N N N N N N | 454.0                    | <sup>1</sup> H RMN (400 MHz, CD <sub>3</sub> OD) δ 8.12 (s, 2H), 7.93 (s, 1H), 7.52 (s, 1H), 7.39 (dd, $J$ = 7.6 Hz, 2.0 Hz, 1H), 7.26 (dd, $J$ = 7.6 Hz, 2.0 Hz, 1H), 4.19 - 4.12 (m, 1H), 3.87 (s, 3H), 3.25 - 3.20 (m, 1H), 2.93 - 2.91 (m, 3H), 2.87 (s, 3H), 2.82 - 2.80 (m, 3H), 2.61 - 2.58 (m, 1H), 2.18 - 2.16 (m, 1H), 2.00 - 1.90 (m, 1H), 1.90 - 1.79 (m, 1H), 1.65 - 1.59 (m, 1H). |
| 185       |                                         | 454.0                    | <sup>1</sup> H RMN (400 MHz, CD <sub>3</sub> OD) δ 8.12 (s, 2H), 7.93 (s, 1H), 7.52 (s, 1H), 7.39 (d, $J$ = 6.4 Hz, 1H), 7.26 (d, $J$ = 4.1 Hz, 1H), 4.26 - 4.12 (m, 1H), 3.87 (s, 3H), 3.18 - 3.09 (m, 2H), 2.92 (t, $J$ = 7.2 Hz, 2H), 2.87 (s, 3H), 2.79 (t, $J$ = 7.4 Hz, 2H), 2.75 - 2.64 (m, 2H), 2.11 - 1.99 (m, 2H), 1.94 - 1.80 (m, 2H).                                               |

Ejemplo 18: Síntesis de los Compuestos 186-199

# (R)-4-Fluoro-3-metoxi-N-metil-5-(2-((1-(1-metilpiperidin-3-il)-1H-pirazol-4-il)amino)pirimidin-5-il)etil)benzamida

# (A) (R)-4-Fluoro-3-metoxi-N-metil-5-(2-(2-((1-(1-metilpiperidin-3-il)-1H-pirazol-4-il)amino)pirimidin-5-il)etil)benzamida

A una mezcla de (R)-4-fluoro-3-metoxi-N-metil-5-(2-(2-((1-(piperidin-3-il)-1H-pirazol-4-il)amino)pirimidin-5-il)etil)benzamida (37.0 mg, 0.082 mmol) y formaldehído (37%, 0.01 mL) en THF (5 mL) se añadió triacetoxiborohidruro de sodio (52 mg, 0.25 mmol) en porciones enfriando con un baño de hielo-agua. A continuación, la mezcla se agitó a temperatura ambiente durante 2 h. La mezcla resultante se concentró al vacío. Al residuo se añadió Na $_2$ CO $_3$  ac. (10 mL) y se extrajo con DCM (2\*10 mL). Las fases orgánicas se combinaron y concentraron al vacío. El residuo se purificó mediante PTLC (DCM/MeOH = 7: 1) para proporcionar el compuesto del título como un sólido amarillo (31.2 mg, 81.8% de rendimiento). MS (m/z): 468.0 (M+H) $^+$ .  $^1$ H RMN (400 MHz, CD $_3$ OD)  $\delta$  8.13 (s, 2H), 8.00 (s, 1H), 7.55 (s, 1H), 7.40 (dd, J = 7.8 Hz, 2.2 Hz, 1H), 7.27 (dd, J = 5.9 Hz, 2.1 Hz, 1H), 4.47 - 4.36 (m, 1H), 3.87 (s, 3H), 3.36 - 3.33 (m, 1H), 3.25 - 3.20 (m, 1H), 3.20 - 3.10 (m, 1H), 3.07 - 3.00 (m, 1H), 2.94 (t, J = 7.3 Hz, 2H), 2.88 (s, 3H), 2.81 (t, J = 7.3 Hz, 2H), 2.55 (s, 3H), 2.17 - 2.06 (m, 1H), 2.00 - 1.87 (m, 2H), 1.83 - 1.74 (m, 1H).

Los siguientes compuestos se prepararon de acuerdo con los procedimientos del Compuesto **186** utilizando los correspondientes intermedios y reactivos en condiciones apropiadas que podrá reconocer un experto en la técnica.

| Compuesto | Estructura                              | LC-MS<br>(m/z)<br>(M+H) <sup>+</sup> | ¹H RMN                                                                                                                                                                                                                                                                                                                                  |
|-----------|-----------------------------------------|--------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 187       | H N N N N N N N N N N N N N N N N N N N | 440.1                                | <sup>1</sup> H RMN (400 MHz, CD <sub>3</sub> OD) δ 8.13 (s, 2H), 8.03 (s, 1H), 7.58 (s, 1H), 7.39 (dd, $J$ = 7.8 Hz, 2.0 Hz, 1H), 7.26 (dd, $J$ = 5.9 Hz, 2.0 Hz, 1H), 4.95 - 4.89 (m, 1H), 3.87 (s, 3H), 3.84 - 3.78 (m, 2H), 3.59 - 3.50 (m, 2H), 2.92 (t, $J$ = 7.3 Hz, 2H), 2.87 (s, 3H), 2.80 (t, $J$ = 7.4 Hz, 2H), 2.43 (s, 3H). |

5

10

| Compuesto | Estructura                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | LC-MS<br>(m/z)<br>(M+H) <sup>+</sup> | ¹H RMN                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|-----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 188       | -H T - CN L NASC N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 454.0                                | <sup>1</sup> H RMN (400 MHz, CD <sub>3</sub> OD) δ 8.14 (s, 2H), 8.01 (s, 1H), 7.55 (s, 1H), 7.41 (dd, $J$ = 7.8 Hz, 2.1 Hz, 1H), 7.28 (dd, $J$ = 6.0 Hz, 2.1 Hz, 1H), 4.90 - 4.89 (m, 1H), 3.89 (s, 3H), 3.11 - 3.04 (m, 1H), 2.95 (t, $J$ = 7.4 Hz, 2H), 2.92 - 2.86 (m, 5H), 2.82 (t, $J$ = 7.3 Hz, 2H), 2.77 - 2.71 (m, 1H), 2.52 - 2.45 (m, 1H), 2.44 (s, 3H), 2.27 - 2.16 (m, 1H).                                                                |
| 189       | H N N N N N N N N N N N N N N N N N N N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 454.0                                | <sup>1</sup> H RMN (400 MHz, CD <sub>3</sub> OD) δ 8.14 (s, 2H), 8.01 (s, 1H), 7.54 (s, 1H), 7.41 (dd, $J$ = 7.8 Hz, 2.2 Hz, 1H), 7.27 (dd, $J$ = 6.0 Hz, 2.1 Hz, 1H), 4.90 - 4.87 (m, 1H), 3.89 (s, 3H), 3.09 - 3.03 (m, 1H), 2.95 (t, $J$ = 7.4 Hz, 2H), 2.92 - 2.85 (m, 5H), 2.82 (t, $J$ = 7.4 Hz, 2H), 2.76 - 2.69 (m, 1H), 2.52 - 2.44 (m, 1H), 2.43 (s, 3H), 2.25 - 2.15 (m, 1H).                                                                |
| 190       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 454.2                                | <sup>1</sup> H RMN (400 MHz, CD <sub>3</sub> OD) δ 8.13 (s, 2H), 8.03 (s, 1H), 7.58 (s, 1H), 7.39 (dd, $J$ = 7.8 Hz, 2.1 Hz, 1H), 7.26 (dd, $J$ = 5.9 Hz, 2.1 Hz, 1H), 4.98 - 4.90 (m, 1H), 3.86 (s, 3H), 3.82 - 3.75 (m, 2H), 3.52 - 3.45 (m, 2H), 2.92 (t, $J$ = 7.4 Hz, 2H), 2.87 (s, 3H), 2.79 (t, $J$ = 7.4 Hz, 2H), 2.63 (c, $J$ = 7.2 Hz, 2H), 1.01 (t, $J$ = 7.2 Hz, 3H).                                                                       |
| 191       | N NASK N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 468.0                                | <sup>1</sup> H RMN (400 MHz, CD <sub>3</sub> OD) δ 8.15 (s, 2H), 8.04 (s, 1H), 7.57 (s, 1H), 7.42 (dd, $J$ = 7.8 Hz, 2.1 Hz, 1H), 7.29 (dd, $J$ = 7.8 Hz, 2.1 Hz, 1H), 5.01 - 4.98 (m, 1H), 3.89 (s, 3H), 3.49-3.48 (m, 2H), 3.36 - 3.35 (m, 2H), 3.15 - 3.12 (m, 2H), 2.96 (t, $J$ = 7.2 Hz, 2H), 2.90 (s, 3H), 2.83 (t, $J$ = 7.2 Hz, 2H), 2.54 - 2.45 (m, 1H), 2.31 - 2.19 (m, 1H), 1.23 (t, $J$ = 7.0 Hz, 3H).                                      |
| 192       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 468.0                                | <sup>1</sup> H RMN (400 MHz, CD <sub>3</sub> OD) δ 8.15 (s, 2H), 8.06 (s, 1H), 7.60 (s, 1H), 7.42 (dd, $J$ = 7.7 Hz, 2.1 Hz, 1H), 7.30 (dd, $J$ = 7.7 Hz, 2.1 Hz, 1H), 5.15 - 5.08 (m, 1H), 3.89 (s, 3H), 3.56 - 3.42 (m, 2H), 3.40 - 3.33 (m, 2H), 3.12 - 3.04 (m, 2H), 2.96 (t, $J$ = 7.3 Hz, 2H), 2.90 (s, 3H), 2.84 (d, $J$ = 7.5 Hz, 2H), 2.64 - 2.54 (m, 1H), 2.36 - 2.27 (m, 1H), 1.30 (t, $J$ = 7.4 Hz, 3H).                                    |
| 193       | The state of the s | 468.0                                | <sup>1</sup> H RMN (400 MHz, CD <sub>3</sub> OD) δ 8.13 (s, 2H), 8.02 (s, 1H), 7.57 (s, 1H), 7.40 (dd, $J$ = 7.8 Hz, 2.1 Hz, 1H), 7.27 (dd, $J$ = 6.0 Hz, 2.2 Hz, 1H), 4.54 - 4.48 (m, 1H), 3.87 (s, 3H), 3.48 - 3.42 (m, 1H), 3.35 - 3.33 (m, 2H), 3.21 - 3.16 (m, 1H), 2.94 (t, $J$ = 7.4 Hz, 2H), 2.88 (s, 3H), 2.81 (t, $J$ = 7.4 Hz, 2H), 2.74 (s, 3H), 2.16 - 2.06 (m, 1H), 2.04 - 1.92 (m, 2H), 1.87 - 1.75 (m, 1H).                             |
| 194       | THE STATE OF THE S | 468.1                                | <sup>1</sup> H RMN (400 MHz, CD <sub>3</sub> OD) δ 8.12 (s, 2H), 7.93 (s, 1H), 7.52 (s, 1H), 7.39 (d, $J = 6.9$ Hz, 1H), 7.26 (d, $J = 4.3$ Hz, 1H), 4.15 - 4.03 (m, 1H), 3.87 (s, 3H), 3.01 - 2.90 (m, 4H), 2.87 (s, 3H), 2.83 - 2.72 (m, 2H), 2.30 (s, 3H), 2.25 - 2.15 (m, 2H), 2.12 - 1.98 (m, 4H).                                                                                                                                                 |
| 195       | H N N (R)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 482.0                                | <sup>1</sup> H RMN (400 MHz, CD <sub>3</sub> OD) δ 8.13 (s, 2H), 8.02 (s, 1H), 7.56 (s, 1H), 7.40 (dd, $J$ = 7.7 Hz, 2.1 Hz, 1H), 7.26 (dd, $J$ = 6.0 Hz, 2.1 Hz, 1H), 4.55 - 4.51 (m, 1H), 3.87 (s, 3H), 3.47 - 3.36 (m, 2H), 3.35 - 3.32 (m, 2H), 3.25 - 3.20 (m, 1H), 3.20 - 3.12 (m, 1H), 2.94 (t, $J$ = 7.4 Hz, 2H), 2.88 (s, 3H), 2.81 (t, $J$ = 7.4 Hz, 2H), 2.21 - 2.08 (m, 1H), 2.07 - 1.93 (m, 2H), 1.89 - 1.80 (m, 1H), 1.33 - 1.21 (m, 3H). |

| Compuesto | Estructura                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | LC-MS<br>(m/z)<br>(M+H)+ | ¹H RMN                                                                                                                                                                                                                                                                                                                                                                                                                             |
|-----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 196       | The state of the s | 482.0                    | <sup>1</sup> H RMN (400 MHz, CD <sub>3</sub> OD) δ 8.13 (s, 2H), 8.03 (s, 1H), 7.57 (s, 1H), 7.40 (dd, $J$ = 7.8 Hz, 2.1 Hz, 1H), 7.27 (dd, $J$ = 5.9 Hz, 2.1 Hz, 1H), 4.53 - 4.52 (m, 1H), 3.87 (s, 3H), 3.48 - 3.43 (m, 1H), 3.35 - 3.33 (m, 2H), 3.23 - 3.20 (m, 1H), 3.05 - 2.94 (m, 4H), 2.88 (s, 3H), 2.81 (t, $J$ = 7.4 Hz, 2H), 2.17 - 2.10 (m, 1H), 2.06 - 1.90 (m, 2H), 1.89 - 1.80 (m, 1H), 1.27 (t, $J$ = 8.0 Hz, 3H). |
| 197       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 482.2                    | <sup>1</sup> H RMN (400 MHz, CD <sub>3</sub> OD) δ 8.12 (s, 2H), 7.93 (s, 1H), 7.52 (s, 1H), 7.39 (dd, $J$ = 7.7 Hz, 1.7 Hz, 1H), 7.26 (dd, $J$ = 5.8 Hz, 1.7 Hz, 1H), 4.18 - 4.04 (m, 1H), 3.87 (s, 3H), 3.12 - 3.01 (m, 2H), 2.93 (t, $J$ = 7.2 Hz, 2H), 2.87 (s, 3H), 2.80 (t, $J$ = 7.4 Hz, 2H), 2.47 (c, $J$ = 7.2 Hz, 2H), 2.20 - 1.97 (m, 6H), 1.11 (t, $J$ = 7.2 Hz, 3H).                                                  |
| 198       | H N N N N N N N N N N N N N N N N N N N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 484.0                    | <sup>1</sup> H RMN (400 MHz, CD <sub>3</sub> OD) δ 8.14 (s, 2H), 7.95 (s, 1H), 7.53 (s, 1H), 7.36 (d, $J$ = 2.0 Hz, 1H), 7.30 (d, $J$ = 2.0 Hz, 1H), 4.15 - 4.06 (m, 1H), 3.92 (s, 3H), 3.05 (t, $J$ = 7.6 Hz, 2H), 3.01 - 2.95 (m, 2H), 2.89 (s, 3H), 2.82 (t, $J$ = 7.6 Hz, 2H), 2.31 (s, 3H), 2.26 - 2.17 (m, 2H), 2.11 - 2.01 (m, 4H).                                                                                         |
| 199       | H N N N N N N N N N N N N N N N N N N N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 498.0                    | <sup>1</sup> H RMN (400 MHz, CD <sub>3</sub> OD) δ 8.15 (s, 2H), 8.01 (s, 1H), 7.57 (s, 1H), 7.37 (s, 1H), 7.30 (s, 1H), 4.51 - 4.39 (m, 1H), 3.92 (s, 3H), 3.67 - 3.57 (m, 2H), 3.23 - 3.08 (m, 4H), 3.05 (t, <i>J</i> = 7.5 Hz, 2H), 2.89 (s, 3H), 2.83 (t, <i>J</i> = 7.6 Hz, 2H), 2.37 - 2.26 (m, 4H), 1.35 (t, <i>J</i> = 7.3 Hz, 3H).                                                                                        |

Ejemplo 19: Síntesis del Compuesto 200

## 4-Ciano-3-(2-(2-((1-etil-1*H*-pirazol-4-il)amino)pirimidin-5-il)etil)-5-metoxi-*N*-metilbenzamida

# 5 (A) (E)-4-Ciano-3-(2-(2-((1-etil-1*H*-pirazol-4-il)amino)pirimidin-5-il)vinil)-5-metoxi-*N*-metilbenzamida

Una mezcla de (*E*)-4-bromo-3-(2-(2-((1-etil-1*H*-pirazol-4-il)amino)pirimidin-5-il)vinil)-5-metoxi-*N*-metilbenzamida (0.060 g, 0.13 mmol), cianuro de zinc (0.030 g, 0.26 mmol) y Pd(PPh<sub>3</sub>)<sub>4</sub> (0.015 g, 0.013 mmol) en DMF (5 mL) se calentó a 100 °C durante 30 min con microondas. A continuación, la mezcla se purificó mediante ISCO (eluida con MeOH en  $H_2O$  0~100%) directamente para proporcionar el compuesto del título como un sólido blanco (0.045 g, 85.0% de rendimiento). MS (m/z): 404.1 (M+H)+.

# (B) 4-Ciano-3-(2-((1-etil-1*H*-pirazol-4-il)amino)pirimidin-5-il)etil)-5-metoxi-*N*-metilbenzamida

A una solución de (E)-4-ciano-3-(2-(2-((1-etil-1 H-pirazol-4-il)amino)pirimidin-5-il)vinil)-5-metoxi-<math>N-metilbenzamida (0.045 g, 0.11 mmol) en MeOH (10 mL) se añadió Pd/C (10%, 0.012 g) y la mezcla resultante se agitó a 40 °C durante 16 h en una atmósfera de hidrógeno. El catalizador se separó mediante filtración a través de celite y el filtrado se concentró. El residuo se purificó mediante PTLC (DCM/MeOH) para proporcionar el compuesto del título como un sólido amarillo (0.023 mg, 50.9% de rendimiento). MS (m/z): 406.1  $(M+H)^+$ .  $^1$ H RMN  $(400 \text{ MHz}, CD_3OD)$   $\delta$  8.15 (s, 2H), 7.91 (s, 1H), 7.51 (s, 1H), 7.40 (s, 1H), 7.37 (s, 1H), 4.12 (c, J=6.6 Hz, 2H), 3.97 (s, 3H), 3.08 (t, J=7.1 Hz, 2H), 2.91 (s, 3H), 2.89 - 2.83 (m, 2H), 1.43 (t, J=6.6 Hz, 3H).

## Ejemplo 20: Síntesis de los Compuestos 201-205

## 20 Compuesto 201

10

#### 3-(((2-((1-Etil-1*H*-pirazol-4-il)amino)pirimidin-5-il)oxi)metil)-4-fluoro-5-metoxi-*N*-metilbenzamida

5

15

20

## (A) 3-(((2-((1-Etil-1H-pirazol-4-il)amino)pirimidin-5-il)oxi)metil) -4-fluoro-5-metoxibenzoato de metilo

A una solución de 2-((1-etil-1*H*-pirazol-4-il)amino)pirimidin-5-ol (150 mg, 0.73 mmol) y 3-(bromometil)-4-fluoro-5-metoxibenzoato de metilo (203 mg, 0.73 mmol) en DMF (10 mL) se añadió K₂CO₃ (203 mg, 1.47 mmol) y Bu₄NI (54 mg, 0.15 mmol). A continuación, la mezcla se agitó durante toda la noche a 60 °C. Después de enfriar hasta la temperatura ambiente, la mezcla se repartió entre AE y agua y la fase orgánica se lavó con agua y salmuera, se secó con sulfato de sodio anhidro y se concentró. El residuo se purificó mediante ISCO (eluida con AE en EP 0~100%) para proporcionar el compuesto del título como un sólido amarillo (160 g, 54.5% de rendimiento). MS (m/z): 402.1 (M+H)⁺.

#### 10 (B) 3-(((2-((1-Etil-1*H*-pirazol-4-il)amino)pirimidin-5-il)oxi)metil)-4-fluoro-5-metoxi-*N*-metilbenzamida

A una solución de 3-(((2-((1-etil-1H-pirazol-4-il)amino)pirimidin-5-il)oxi)metil)-4-fluoro-5-metoxibenzoato de metilo (160 mg, 0.40 mmol) en MeOH (20 mL) se añadió una solución acuosa de NaOH (2 N, 5 mL, 10 mmol). A continuación, la mezcla se agitó a temperatura ambiente durante toda la noche. Los componentes volátiles se eliminaron a presión reducida y el residuo se ajustó a pH <2 con HCl conc y se concentró para obtener un sólido marrón que suspendió en DMF (10 mL). A continuación, se añadieron clorhidrato de metanamina (32 mg, 0.48 mmol), HATU (228 mg, 0.60 mmol) y DIPEA (155 mg, 1.20 mmol). La mezcla resultante se agitó durante 2 h a temperatura ambiente y a continuación se repartió entre AE y agua. La fase orgánica se lavó con agua y salmuera, se secó con sulfato de sodio anhidro y se concentró. El residuo se purificó mediante ISCO (eluida con MeOH en DCM 0~10%) para proporcionar el compuesto del título como un sólido amarillo (94.3 mg, 59.1% de rendimiento). MS (m/z): 401.1 (M+H)+.  $^{1}$ H RMN (400 MHz, CD<sub>3</sub>OD)  $\delta$  8.22 (s, 2H), 7.92 (s, 1H), 7.58 (s, 1H), 7.56 (s, 1H), 7.51 (s, 1H), 5.16 (s, 2H), 4.12 (c, J = 7.3 Hz, 2H), 3.94 (s, 3H), 2.91 (s, 3H), 1.43 (t, J = 7.3 Hz, 3H).

Los siguientes compuestos se prepararon de acuerdo con los procedimientos del Compuesto 201 utilizando los correspondientes intermedios y reactivos en condiciones apropiadas que podrá reconocer un experto en la técnica.

| Compuesto | Estructura                                | LC-MS<br>(m/z)<br>(M+H)+ | <sup>1</sup> H RMN                                                                                                                                                                                                     |
|-----------|-------------------------------------------|--------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 202       | H N N N N N N N N N N N N N N N N N N N   | 387.1                    | <sup>1</sup> H RMN (400 MHz, CD <sub>3</sub> OD) δ 8.22 (s, 2H), 7.89 (s, 1H), 7.57 (s, 1H), 7.56 (s, 1H), 7.50 (s, 1H), 5.16 (s, 2H), 3.94 (s, 3H), 3.84 (s, 3H), 2.91 (s, 3H).                                       |
| 203       | -H CI N N N N N N N N N N N N N N N N N N | 403.1                    | <sup>1</sup> H RMN (400 MHz, CD <sub>3</sub> OD) δ 8.23 (s, 2H), 7.89 (s, 1H), 7.64 (d, <i>J</i> = 1.8 Hz, 1H), 7.51 (d, <i>J</i> = 1.9 Hz, 1H), 7.50 (s, 1H), 5.20 (s, 2H), 3.97 (s, 3H), 3.84 (s, 3H), 2.92 (s, 3H). |

| Compuesto | Estructura | LC-MS<br>(m/z)<br>(M+H)+ | ¹H RMN                                                                                                                                                                                                                                   |
|-----------|------------|--------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 204       | H CI       | 416.9                    | <sup>1</sup> H RMN (400 MHz, CD <sub>3</sub> OD) δ 8.22 (s, 2H), 7.92 (s, 1H), 7.64 (s, 1H), 7.51 (s, 2H), 5.20 (s, 2H), 4.11 (c, <i>J</i> = 7.2 Hz, 2H), 3.96 (s, 3H), 2.91 (s, 3H), 1.42 (t, <i>J</i> = 7.3 Hz, 3H).                   |
| 205       |            | 419.1                    | <sup>1</sup> H RMN (400 MHz, DMSO-d6) δ 11.99 (s, 1H), 9.27 (s, 1H), 8.37 (s, 2H), 7.90 (s, 1H), 7.67 (d, <i>J</i> = 1.6 Hz, 1H), 7.55 (d, <i>J</i> = 1.6 Hz, 1H), 7.49 (s, 1H), 5.27 (s, 2H), 4.00 (s, 3H), 3.85 (s, 3H), 3.79 (s, 3H). |

Ejemplo 21: Síntesis de los Compuestos 206-303

5

10

15

20

25

# 4-Cloro-3-(((2-((4-((3S,5R)-3,5-dimetilpiperazin-1-il)fenil)amino)pirimidin-5-il)oxi)metil)-5-metoxi-*N*-metilbenzamida

#### (A) 4-Cloro-3-(((2-cloropirimidin-5-il)oxi)metil)-5-metoxibenzoato de metilo

Una mezcla de 3-(bromometil)-4-cloro-5-metoxibenzoato (600 mg, 2.04 mmol), 2-cloropirimidin-5-ol (320 mg, 2.45 mmol), Bu<sub>4</sub>NI (151 mg, 0.408 mmol) y  $K_2CO_3$  (564 mg, 4.08 mmol) en DMF (15 mL) se agitó a 60 °C durante 2 h. La mezcla resultante se repartió entre agua (100 mL) y DCM (100 mL). A continuación, la fase orgánica se concentró para proporcionar el compuesto del título como un sólido amarillo (700 mg, rendimiento cuantitativo). MS (m/z): 343.0 (M+H) $^+$ .

# (B) 4-Cloro-3-(((2-((4-((3*S*,5*R*)-3,5-dimetilpiperazin-1-il)fenil)amino)pirimidin-5-il)oxi)metil)-5-metoxibenzoato de metilo

Una mezcla de 4-cloro-3-(((2-cloropirimidin-5-il)oxi)metil)-5-metoxibenzoato de metilo (500 mg, 1.460 mmol), 4-((3*S*,5*R*)-3,5-dimetilpiperazin-1-il)anilina (359 mg, 1.750 mmol), acetato de paladio (II) (33 mg, 0.146 mmol), Xantphos (169 mg, 0.292 mmol) y Cs<sub>2</sub>CO<sub>3</sub> (1.43 g, 4.38 mmol) en 1,4-dioxano (10 mL) se agitó a 80 °C durante toda la noche. La mezcla resultante se concentró y el residuo se repartió entre agua (50 mL) y AE (50 mL). La fase acuosa se extrajo con AE (2\*50 mL). Las fases orgánicas combinadas se concentraron y el residuo se purificó mediante ISCO (eluida con MeOH en H<sub>2</sub>O 0~100%) para proporcionar el compuesto del título como un sólido marrón (480 mg, 64.3% de rendimiento). MS (m/z): 511.9 (M+H)+.

# (C) Ácido 4-cloro-3-(((2-((4-((3*S*,5*R*)-3,5-dimetilpiperazin-1-il)fenil)amino)pirimidin-5-il)oxi)metil)-5-metoxibenzoico

Una mezcla de 4-cloro-3-(((2-((4-((3S,5R)-3,5-dimetilpiperazin-1-il)fenil)amino)pirimidin-5-il)oxi)metil)-5-metoxibenzoato de metilo (288 mg, 0.562 mmol) y una solución de hidróxido de sodio al 30% (3 mL, 22.5 mmol) en MeOH (10 mL) se agitaron a 50 °C durante 2 h. La mezcla resultante se enfrió hasta la temperatura ambiente, se ajustó hasta pH = 7 con HCl 2 N y se concentró para proporcionar el compuesto del título como un sólido blanco (280 mg, rendimiento cuantitativo). MS (m/z): 497.9 (M+H)+.

# (D) 4-Cloro-3-(((2-((4-((3S,5R)-3,5-dimetilpiperazin-1-il)fenil)amino)pirimidin-5-il)oxi)metil)-5-metoxi-N-metilbenzamida

Una mezcla de ácido 4-cloro-3-(((2-((4-((3S,5R)-3,5-dimetilpiperazin-1-il)fenil)amino)pirimidin-5-il)oxi)metil)-5-metoxibenzoico (280 mg, 0.562 mmol), clorhidrato de metilamina (75 mg, 1.124 mmol), HATU (641 mg, 1.686 mmol) y DIPEA (217 mg, 1.686 mmol) en DMF (10 mL) se agitó a temperatura ambiente durante 1 h. La mezcla resultante se concentró y se purificó mediante ISCO (eluida con MeOH en H<sub>2</sub>O 0~100%) para proporcionar el compuesto del título como un sólido amarillo (184 mg, 64.0% de rendimiento). MS (m/z): 510.9 (M+H)+.  $^{1}$ H RMN (400 MHz, CD<sub>3</sub>OD)  $^{5}$  8.21 (s, 2H), 7.65 (d,  $^{2}$  = 1.9 Hz, 1H), 7.52 (d,  $^{2}$  = 1.9 Hz, 1H), 7.47 (d,  $^{2}$  = 9.0 Hz, 2H), 6.94 (d,  $^{2}$  = 9.0 Hz, 2H), 5.22 (s, 2H), 3.97 (s, 3H), 3.48 - 3.45 (m, 2H), 3.06 - 2.99 (m, 2H), 2.92 (s, 3H), 2.28 - 2.23 (m, 2H), 1.16 (d,  $^{2}$  = 6.4 Hz, 6H).

Los siguientes compuestos se prepararon de acuerdo con los procedimientos del Compuesto **206** utilizando los correspondientes intermedios y reactivos en condiciones apropiadas que podrá reconocer un experto en la técnica.

| Compuesto | Estructura                              | LC-MS<br>(m/z)<br>(M+H)+ | ¹H RMN                                                                                                                                                                                                                                                                                              |
|-----------|-----------------------------------------|--------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 207       | H C N N N N N N N N N N N N N N N N N N | 398.9                    | <sup>1</sup> H RMN (400 MHz, DMSO-d6) δ 9.00 (s, 1H), 8.89 (s, 1H), 8.45 (s, 1H), 8.24 (s, 2H), 7.64 - 7.52 (m, 2H), 7.39 (d, <i>J</i> = 8.5 Hz, 2H), 6.63 (d, <i>J</i> = 8.6 Hz, 2H), 5.15 (s, 2H), 3.87 (s, 3H), 2.75 (d, <i>J</i> = 3.9 Hz, 3H).                                                 |
| 208       | H C C C C C C C C C C C C C C C C C C C | 400.2                    | <sup>1</sup> H RMN (400 MHz, CD <sub>3</sub> OD) δ 7.93 - 7.74 (m, 2H), 7.65 - 7.50 (m, 2H), 7.42 (s, 1H), 7.33 - 7.20 (m, 1H), 6.68 - 6.54 (m, 1H), 5.09 (s, 2H), 4.22 - 4.04 (m, 2H), 3.92 (s, 3H), 2.90 (s, 3H), 1.58 - 1.29 (m, 3H).                                                            |
| 209       | -H-O-O-O-O-O-O-O-O-O-O-O-O-O-O-O-O-O-O- | 406.9                    | <sup>1</sup> H RMN (400 MHz, DMSO-d6) δ 9.66 (s, 1H), 8.46 (s, 1H), 8.37 (s, 2H), 7.71 (d, $J = 8.7$ Hz, 2H), 7.62 - 7.56 (m, 2H), 7.33 (d, $J = 8.6$ Hz, 2H), 5.20 (s, 2H), 3.92 (s, 1H), 3.88 (s, 3H), 2.76 (d, $J = 4.5$ Hz, 3H).                                                                |
| 210       | H C N N N N N N N N N N N N N N N N N N | 406.9                    | <sup>1</sup> H RMN (400 MHz, DMSO-d6) δ 9.55 (s, 1H), 8.46 (d, $J$ = 4.1 Hz, 1H), 8.41 (s, 2H), 7.92 (s, 1H), 7.71 (d, $J$ = 7.8 Hz, 1H), 7.63 (s, 1H), 7.61 (s, 1H), 7.25 (t, $J$ = 7.9 Hz, 1H), 7.00 (d, $J$ = 7.7 Hz, 1H), 5.23 (s, 2H), 4.07 (s, 1H), 3.91 (s, 3H), 2.79 (d, $J$ = 4.5 Hz, 3H). |
| 211       | H O N N N N N N N N N N N N N N N N N N | 408.1                    | <sup>1</sup> H RMN (400 MHz, CDCl <sub>3</sub> ) δ 8.66 (s, 1H), 8.29 (d, <i>J</i> = 5.9 Hz, 1H), 8.23 (s, 2H), 7.51 - 7.44 (m, 3H), 7.38 (s, 1H), 6.28 (s, 1H), 5.15 (s, 2H), 3.94 (s, 3H), 3.13 (s, 1H), 3.00 (d, <i>J</i> = 4.6 Hz, 3H).                                                         |
| 212       | H N N N N N N N N N N N N N N N N N N N | 413.3                    | <sup>1</sup> H RMN (400 MHz, CD <sub>3</sub> OD) δ 8.25 (s, 2H), 7.56 - 7.54 (m, 2H), 7.36 (d, <i>J</i> = 2.4 Hz, 1H), 7.15 - 7.07 (m, 2H), 6.52 - 6.49 (m, 1H), 5.17 (s, 2H), 3.93 (s, 3H), 3.76 (s, 3H), 2.89 (s, 3H).                                                                            |
| 213       | H C N N N N N N N N N N N N N N N N N N | 419.4                    | <sup>1</sup> H RMN (400 MHz, CD <sub>3</sub> OD) δ 8.19 (s, 2H), 7.90 (s, 1H), 7.51 (s, 1H), 7.47 (dd, $J = 9.4$ Hz, 6.8 Hz, 1H), 5.17 (s, 2H), 4.11 (c, $J = 7.3$ Hz, 2H), 3.89 (s, 3H), 2.91 (s, 3H), 1.42 (t, $J = 7.3$ Hz, 3H).                                                                 |

| Compuesto | Estructura                              | LC-MS<br>(m/z)<br>(M+H) <sup>+</sup> | <sup>1</sup> H RMN                                                                                                                                                                                                                                                                                                             |
|-----------|-----------------------------------------|--------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 214       | H N N N N N N N N N N N N N N N N N N N | 424.1                                | <sup>1</sup> H RMN (400 MHz, CD <sub>3</sub> OD) δ 8.20 (s, 2H), 7.58 - 7.53 (m, 2H), 7.13 - 7.08 (m, 1H), 7.00 - 6.93 (m, 1H), 6.83 (dd, <i>J</i> = 7.9 Hz, 2.0 Hz, 1H), 5.17 (s, 2H), 3.93 (s, 3H), 3.46 (t, <i>J</i> = 8.3 Hz, 2H), 2.95 - 2.90 (m, 5H).                                                                    |
| 215       | H N N N N N N N N N N N N N N N N N N N | 425.1                                | <sup>1</sup> H RMN (400 MHz, CD <sub>3</sub> OD) δ 8.34 (s, 2H), 7.92 (d, $J = 8.8$ Hz, 2H), 7.81 (d, $J = 8.7$ Hz, 2H), 7.59 (s, 1H), 7.58 (s, 1H), 5.23 (s, 2H), 3.94 (s, 3H), 2.91 (s, 3H), 2.54 (s, 3H).                                                                                                                   |
| 216       |                                         | 439.1                                | <sup>1</sup> H RMN (400 MHz, DMSO-d6) δ 9.77 (s, 1H), 9.34 (s, 1H), 8.48 - 8.40 (m, 1H), 8.31 (s, 2H), 7.84 (s, 1H), 7.59 (s, 1H), 7.58 (s, 1H), 7.30 (d, <i>J</i> = 8.0 Hz, 1H), 7.17 (d, <i>J</i> = 8.0 Hz, 1H), 7.10 (t, <i>J</i> = 8.0 Hz, 1H), 5.19 (s, 2H), 3.88 (s, 3H), 2.76 (d, <i>J</i> = 4.5 Hz, 3H), 1.99 (s, 3H). |
| 217       |                                         | 441.2                                | <sup>1</sup> H RMN (400 MHz, DMSO-d6) δ 9.31 (s, 1H), 8.51 - 8.45 (m, 1H), 8.34 (s, 2H), 7.64 - 7.60 (m, 2H), 7.58 (d, $J$ = 8.4 Hz, 2H), 7.11 (d, $J$ = 8.4 Hz, 2H), 5.20 (s, 2H), 3.91 (s, 3H), 3.34 (s, 2H), 2.76 (d, $J$ = 4.3 Hz, 3H).                                                                                    |
| 218       |                                         | 443.3                                | <sup>1</sup> H RMN (400 MHz, CD <sub>3</sub> OD) δ 8.20 (s, 2H), 7.56 - 7.54 (m, 2H), 7.32 (d, $J$ = 2.5 Hz, 1H), 7.08 (dd, $J$ = 8.7 Hz, 2.5 Hz, 1H), 6.85 (d, $J$ = 8.7 Hz, 1H), 5.16 (s, 2H), 3.92 (s, 3H), 3.80 (s, 3H), 3.78 (s, 3H), 2.89 (s, 3H).                                                                       |
| 219       | H S N N N N N N N N N N N N N N N N N N | 447.1                                | <sup>1</sup> H RMN (400 MHz, CD <sub>3</sub> OD) δ 8.22 (s, 2H), 7.96 (s, 1H), 7.58 (s, 1H), 7.57 - 7.56 (m, 2H), 5.18 (s, 2H), 4.27 - 4.23 (m, 1H), 4.10 - 4.06 (m, 1H), 4.01 - 3.96 (m, 1H), 3.95 (s, 3H), 3.52 - 3.50 (m, 2H), 2.92 (s, 3H).                                                                                |
| 220       | F O N N O O O O O O O O O O O O O O O O | 447.1                                | <sup>1</sup> H RMN (400 MHz, CD <sub>3</sub> OD) δ 8.19 (s, 2H), 7.93 (s, 1H), 7.56 (s, 1H), 7.54 - 7.53 (m, 2H), 5.15 (s, 2H), 4.24 - 4.21 (m, 1H), 4.06 - 4.04 (m, 1H), 3.96 - 3.94 (m, 1H), 3.92 (s, 3H), 3.49 - 3.47 (m, 2H), 2.89 (s, 3H).                                                                                |
| 221       |                                         | 449.8                                | <sup>1</sup> H RMN (400 MHz, DMSO-d6) δ 9.66 (s, 1H), 9.09 (s, 1H), 8.45 (s, 1H), 8.39 (s, 2H), 8.14 (s, 1H), 7.86 (d, <i>J</i> = 8.6 Hz, 2H), 7.69 (d, <i>J</i> = 8.5 Hz, 2H), 7.61 (d, <i>J</i> = 6.6 Hz, 2H), 5.21 (s, 2H), 3.89 (s, 3H), 2.77 (s, 3H).                                                                     |
| 222       | F O N N N N N N N N N N N N N N N N N N | 449.9                                | <sup>1</sup> H RMN (400 MHz, DMSO-d6) δ 9.72 (s, 1H), 8.64 (s, 1H), 8.44 (s, 1H), 8.40 (s, 2H), 7.92 - 7.90 (m, 1H), 7.90 - 7.87 (m, 2H), 7.76 - 7.70 (m, 2H), 7.60 (d, $J$ = 7.0 Hz, 2H), 5.22 (s, 2H), 3.89 (s, 3H), 2.77 (d, $J$ = 4.5 Hz, 3H).                                                                             |

| Compuesto | Estructura                              | LC-MS<br>(m/z)<br>(M+H) <sup>+</sup> | ¹H RMN                                                                                                                                                                                                                                                                                                      |
|-----------|-----------------------------------------|--------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 223       |                                         | 450.2                                | <sup>1</sup> H RMN (400 MHz, DMSO-d6) δ 9.69 (s, 1H), 8.98 (s, 2H), 8.47 (s, 1H), 8.41 (s, 2H), 7.91 - 7.84 (m, 2H), 7.63 (d, <i>J</i> = 6.9 Hz, 2H), 7.59 - 7.52 (m, 2H), 5.24 (s, 2H), 3.91 (s, 3H), 2.79 (d, <i>J</i> = 4.5 Hz, 3H).                                                                     |
| 224       | H N N N N N N N N N N N N N N N N N N N | 452.1                                | <sup>1</sup> H RMN (400 MHz, CD <sub>3</sub> OD) δ 8.15 (s, 2H), 7.56 (d, $J = 6.9$ Hz, 2H), 7.28 (s, 1H), 7.18-7.10 (m, 1H), 6.54 - 6.46 (m, 1H), 5.15 (s, 2H), 3.93 (s, 3H), 3.28 - 3.19 (m, 2H), 3.15 - 3.04 (m, 2H), 2.93 - 2.87 (m, 5H), 1.18 (t, $J = 7.2$ Hz, 3H).                                   |
| 225       | H C N N N N N N N N N N N N N N N N N N | 454.2                                | <sup>1</sup> H RMN (400 MHz, CD <sub>3</sub> OD) δ 8.29 (s, 2H), 7.64 - 7.60 (m, 2H), 7.60 - 7.58 (m, 2H), 7.19 - 7.17 (m, 2H), 5.24 (s, 2H), 4.00 (s, 3H), 2.98 (s, 3H), 2.83 - 2.81 (m, 2H), 2.64 - 2.60 (m, 2H), 2.37 (s, 6H).                                                                           |
| 226       |                                         | 461.2                                | <sup>1</sup> H RMN (400 MHz, CDCl <sub>3</sub> ) δ 8.28 (s, 2H), 7.87 (d, $J$ = 8.9 Hz, 2H), 7.79 (d, $J$ = 9.0 Hz, 2H), 7.50 (dd, $J$ = 8.0 Hz, 2.0 Hz, 1H), 7.38 (dd, $J$ = 5.5 Hz, 2.0 Hz, 1H), 7.32 (s, 1H), 6.16 - 6.03 (m, 1H), 5.18 (s, 2H), 3.96 (s, 3H), 3.04 (s, 3H), 3.02 (d, $J$ = 4.9 Hz, 3H). |
| 227       | H N N N N N N N N N N N N N N N N N N N | 461.2                                | <sup>1</sup> H RMN (400 MHz, DMSO-d6) δ 9.86 (s, 1H), 8.46 (d, $J$ = 4.0 Hz, 1H), 8.44 (s, 2H), 8.40 (t, $J$ = 1.8 Hz, 1H), 8.04 - 7.93 (m, 1H), 7.64 (s, 1H), 7.62 (s, 1H), 7.53 (t, $J$ = 8.0 Hz, 1H), 7.48 - 7.40 (m, 1H), 5.25 (s, 2H), 3.91 (s, 3H), 3.17 (s, 3H), 2.79 (d, $J$ = 4.4 Hz, 3H).         |
| 228       | H N N N N N N N N N N N N N N N N N N N | 463.2                                | <sup>1</sup> H RMN (400 MHz, DMSO-d6) δ 9.37 (s, 1H), 8.44 (d, $J$ = 4.2 Hz, 1H), 8.34 (s, 2H), 7.96 (s, 1H), 7.72 (s, 1H), 7.66 (d, $J$ = 8.7 Hz, 2H), 7.60 (d, $J$ = 6.9 Hz, 2H), 7.40 (d, $J$ = 8.7 Hz, 2H), 5.19 (s, 2H), 3.88 (s, 3H), 3.82 (s, 3H), 2.77 (d, $J$ = 4.5 Hz, 3H).                       |
| 230       | For N H H P                             | 466.1                                | <sup>1</sup> H RMN (400 MHz, DMSO-d6) δ 10.16 (s, 1H), 9.34 (s, 1H), 8.42 (a, 1H), 8.31 (s, 2H), 7.59 (d, $J$ = 6.9 Hz, 2H), 7.39 (d, $J$ = 1.9 Hz, 1H), 7.16 (dd, $J$ = 8.1 Hz, 1.9 Hz, 1H), 7.06 (d, $J$ = 8.1 Hz, 1H), 5.19 (s, 2H), 3.87 (s, 3H), 2.76 (d, $J$ = 4.5 Hz, 3H), 1.18 (s, 6H).             |
| 231       | H N N N N N N N N N N N N N N N N N N N | 466.1                                | <sup>1</sup> H RMN (400 MHz, CD <sub>3</sub> OD) δ 8.13 (s, 2H), 7.51 - 7.45 (m, 2H), 7.45 - 7.38 (m, 2H), 7.07 - 7.02 (m, 2H), 5.08 (s, 2H), 3.84 (s, 3H), 3.08 - 3.02 (m, 2H), 2.82 (s, 3H), 2.68 - 2.61 (m, 2H), 2.57 - 2.48 (m, 1H), 1.75 - 1.69 (m, 2H), 1.61 - 1.50 (m, 2H).                          |
| 232       |                                         | 465.8                                | <sup>1</sup> H RMN (400 MHz, DMSO-d6) δ 9.74 (s, 1H), 8.60 - 8.58 (m, 1H), 8.52 (d, $J$ = 4.3 Hz, 1H), 8.42 (s, 2H), 8.06 (s, 2H), 7.68 - 7.65 (m, 2H), 7.55 (d, $J$ = 1.8 Hz, 1H), 7.53 - 7.51 (m, 1H), 7.41 - 7.37 (m, 1H), 5.24 (s, 2H), 3.92 (s, 3H), 2.77 (d, $J$ = 4.5 Hz, 3H).                       |

| Compuesto | Estructura                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | LC-MS<br>(m/z)<br>(M+H) <sup>+</sup> | <sup>1</sup> H RMN                                                                                                                                                                                                                                                                                                                                                                          |
|-----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 233       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 466.1                                | <sup>1</sup> H RMN (400 MHz, DMSO-d6) δ 9.70 (s, 1H), 8.52 (d, $J$ = 4.1 Hz, 1H), 8.39 (s, 2H), 8.00 (s, 2H), 7.88 - 7.86 (m, 4H), 7.66 (s, 1H), 7.55 (s, 1H), 5.24 (s, 2H), 3.92 (s, 3H), 2.77 (d, $J$ = 4.4 Hz, 3H).                                                                                                                                                                      |
| 234       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 466.1                                | <sup>1</sup> H RMN (400 MHz, DMSO-d6) δ 9.75 (s, 1H), 8.67 (s, 1H), 8.52 (d, $J$ = 4.5 Hz, 1H), 8.42 - 8.38 (m, 3H), 7.92 (s, 1H), 7.74 - 7.70 (m, 1H), 7.65 (d, $J$ = 1.9 Hz, 1H), 7.54 (d, $J$ = 1.8 Hz, 1H), 7.43 (t, $J$ = 8.1 Hz, 1H), 7.35 - 7.29 (m, 1H), 5.23 (s, 2H), 3.91 (s, 3H), 2.77 (d, $J$ = 4.5 Hz, 3H).                                                                    |
| 235       | H N N N N N N N N N N N N N N N N N N N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 466.9                                | <sup>1</sup> H RMN (400 MHz, CD <sub>3</sub> OD) δ 8.19 (s, 2H), 7.58 - 7.54 (m, 2H), 7.46 (d, $J$ = 8.2 Hz, 2H), 6.93 (d, $J$ = 8.3 Hz, 2H), 5.16 (s, 2H), 3.93 (s, 3H), 3.09 - 3.03 (m, 4H), 3.01 - 2.94 (m, 4H), 2.90 (s, 3H).                                                                                                                                                           |
| 236       | -H-C-N-NH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 467.2                                | <sup>1</sup> H RMN (400 MHz, CD <sub>3</sub> OD) δ 8.74 - 8.70 (m, 1H), 8.28 (s, 2H), 8.16 - 8.11 (m, 1H), 7.59 - 7.55 (m, 2H), 7.22 (d, $J$ = 8.7 Hz, 1H), 5.20 (s, 2H), 3.94 (s, 3H), 3.19 - 3.11 (m, 2H), 2.91 (s, 3H), 2.84 - 2.69 (m, 3H), 1.92 - 1.85 (m, 2H), 1.76 - 1.64 (m, 2H).                                                                                                   |
| 237       | H O C N O O O O O O O O O O O O O O O O O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 468.2                                | <sup>1</sup> H RMN (400 MHz, DMSO-d6) δ 8.94 (s, 1H), 8.49 - 8.41 (m, 1H), 8.27 (s, 2H), 8.06 (d, $J$ = 2.5 Hz, 1H), 7.61 - 7.56 (m, 2H), 7.50 (dd, $J$ = 9.6 Hz, 2.7 Hz, 1H), 6.33 (d, $J$ = 9.6 Hz, 1H), 5.16 (s, 2H), 5.10 (m, 1H), 3.87 (s, 3H), 2.76 (d, $J$ = 4.4 Hz, 3H), 2.07 - 1.93 (m, 2H), 1.87 - 1.74 (m, 2H), 1.67 - 1.56 (m, 4H).                                             |
| 238       | H C N N N N N N N N N N N N N N N N N N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 472.0                                | <sup>1</sup> H RMN (400 MHz, CD <sub>3</sub> OD) δ 8.22 (s, 2H), 7.96 (s, 1H), 7.57 - 7.55 (m, 2H), 7.53 (s, 1H), 5.16 (s, 2H), 4.17 (t, <i>J</i> = 7.0 Hz, 2H), 3.94 (s, 3H), 2.94 - 2.86 (m, 5H), 2.57 (c, <i>J</i> = 7.2 Hz, 4H), 1.03 (t, <i>J</i> = 7.2 Hz, 6H).                                                                                                                       |
| 239       | F O N N N N N N N N N N N N N N N N N N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 473.2                                | <sup>1</sup> H RMN (400 MHz, CD <sub>3</sub> OD) δ 8.25 (s, 2H), 7.59 - 7.52 (m, 2H), 7.04 (s, 2H), 5.18 (s, 2H), 3.93 (s, 3H), 3.81 (s, 6H), 3.70 (s, 3H), 2.90 (s, 3H).                                                                                                                                                                                                                   |
| 240       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 480.1                                | <sup>1</sup> H RMN (400 MHz, DMSO-d6) δ 7.91 (s, 2H), 7.67 (dd, $J$ = 8.4 Hz, 1.9 Hz, 1H), 7.60 (dd, $J$ = 6.3 Hz, 1.9 Hz, 1H), 7.36 (d, $J$ = 8.5 Hz, 2H), 6.97 (d, $J$ = 8.5 Hz, 2H), 4.97 (s, 2H), 3.85 (s, 3H), 3.55 (t, $J$ = 7.3 Hz, 2H), 3.45 - 3.20 (m, 1H), 2.92 (t, $J$ = 7.2 Hz, 2H), 2.72 (s, 3H), 2.35 (t, $J$ = 7.2 Hz, 2H), 1.40 - 1.20 (m, 2H), 0.87 (t, $J$ = 7.4 Hz, 3H). |
| 241       | To the second se | 481.1                                | <sup>1</sup> H RMN (400 MHz, CD <sub>3</sub> OD) δ 8.76 (d, $J$ = 2.6 Hz, 1H), 8.29 (s, 2H), 8.16 (dd, $J$ = 8.6 Hz, 2.6 Hz, 1H), 7.58 - 7.55 (m, 2H), 7.27 (d, $J$ = 8.6 Hz, 1H), 5.20 (s, 2H), 3.94 (s, 3H), 3.84 (s, 1H), 3.78 - 3.75 (m, 1H), 3.75 - 3.71 (m, 1H), 3.34 - 3.31 (m, 2H), 2.91 (s, 3H), 2.50 (t, $J$ = 7.6 Hz, 2H), 1.45 - 1.38 (m, 2H), 0.92 (t, $J$ = 7.5 Hz, 3H).      |

| Compuesto | Estructura                                    | LC-MS<br>(m/z)<br>(M+H) <sup>+</sup> | <sup>1</sup> H RMN                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|-----------|-----------------------------------------------|--------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 242       |                                               | 481.9                                | <sup>1</sup> H RMN (400 MHz, DMSO-d6) δ 9.33 (s, 1H), 8.44 (d, <i>J</i> = 4.6 Hz, 1H), 8.32 (s, 2H), 7.62 - 7.57 (m, 4H), 7.15 (s, 1H), 7.13 (s, 1H), 5.18 (s, 2H), 3.88 (s, 3H), 3.55 - 3.50 (m, 4H), 3.35 (s, 2H), 2.76 (d, <i>J</i> = 4.5 Hz, 3H), 2.31 - 2.28 (m, 4H).                                                                                                                                                                                       |
| 243       |                                               | 482.3                                | <sup>1</sup> H RMN (400 MHz, CDCl <sub>3</sub> ) $\delta$ 8.19 (s, 2H), 7.49 (dd, $J$ = 7.9 Hz, 2.0 Hz, 1H), 7.41 (d, $J$ = 6.7 Hz, 2H), 7.35 (dd, $J$ = 5.5 Hz, 2.0 Hz, 1H), 7.21 (dd, $J$ = 8.7 Hz, 7.6 Hz, 1H), 6.99 (s, 1H), 6.84 (d, $J$ = 7.6 Hz, 1H), 6.23 - 6.12 (m, 1H), 5.12 (s, 2H), 3.93 (s, 3H), 2.99 (d, $J$ = 4.8 Hz, 3H), 2.76 - 2.62 (m, 8H), 1.10 (t, $J$ = 7.2 Hz, 6H).                                                                       |
| 244       | H CI<br>N N N N N N N N N N N N N N N N N N N | 482.8                                | <sup>1</sup> H RMN (400 MHz, CD <sub>3</sub> OD) δ 8.71 (d, $J$ = 2.6 Hz, 1H), 8.29 (s, 2H), 8.12 (dd, $J$ = 8.6 Hz, 2.7 Hz, 1H), 7.64 (d, $J$ = 2.0 Hz, 1H), 7.51 (d, $J$ = 2.0 Hz, 1H), 7.20 (d, $J$ = 8.6 Hz, 1H), 5.24 (s, 2H), 3.96 (s, 3H), 3.16 - 3.11 (m, 1H), 3.07 - 3.01 (m, 1H), 2.91 (s, 3H), 2.85 - 2.81 (m, 1H), 2.80 - 2.71 (m, 1H), 2.66 - 2.60 (m, 1H), 2.02 - 1.99 (m, 1H), 1.83 - 1.59 (m, 3H).                                               |
| 245       | CI N N N N N N N N N N N N N N N N N N N      | 482.8                                | <sup>1</sup> H RMN (400 MHz, CD <sub>3</sub> OD) δ 8.69 (d, <i>J</i> = 2.6 Hz, 1H), 8.27 (s, 2H), 8.10 (dd, <i>J</i> = 8.4 Hz, 2.6 Hz, 1H), 7.62 (d, <i>J</i> = 1.9 Hz, 1H), 7.50 (d, <i>J</i> = 1.9 Hz, 1H), 7.19 (d, <i>J</i> = 8.4 Hz, 1H), 5.23 (s, 2H), 3.95 (s, 3H), 3.11 - 3.09 (m, 1H), 3.02 - 2.99 (m, 1H), 2.89 (s, 3H), 2.81 - 2.76 (m, 1H), 2.72 - 2.66 (m, 1H), 2.61 - 2.56 (m, 1H), 2.02 - 1.97 (m, 2H), 1.78 - 1.71 (m, 1H), 1.62 - 1.55 (m, 1H). |
| 246       | NH NH                                         | 483.9                                | <sup>1</sup> H RMN (400 MHz, CD <sub>3</sub> OD) δ 8.20 (s, 2H), 8.00 (s, 1H), 7.57 - 7.53 (m, 3H), 5.16 (s, 2H), 3.93 (s, 3H), 3.91 - 3.85 (m, 1H), 3.64 - 3.56 (m, 1H), 3.39 - 3.36 (m, 1H), 2.90 (s, 3H), 2.32 - 2.22 (m, 2H), 2.21 - 2.09 (m, 2H), 1.48 (d, $J$ = 7.2 Hz, 3H), 1.34 (d, $J$ = 6.8 Hz, 3H).                                                                                                                                                   |
| 247       | H CCI N N N N N N N N N N N N N N N N N N     | 484.8                                | <sup>1</sup> H RMN (400 MHz, DMSO-d6) δ 9.14 (s, 1H), 8.56 - 8.53 (m, 1H), 8.41 (d, $J$ = 2.7 Hz, 1H), 8.31 (s, 2H), 7.87 (dd, $J$ = 9.1 Hz, 2.8 Hz, 1H), 7.68 (d, $J$ = 1.9 Hz, 1H), 7.58 (d, $J$ = 1.9 Hz, 1H), 6.80 (d, $J$ = 9.1 Hz, 1H), 5.21 (s, 2H), 3.94 (s, 3H), 3.72 - 3.68 (m, 4H), 3.40 - 3.21 (m, 4H), 2.80 (d, $J$ = 4.6 Hz, 3H).                                                                                                                  |
| 248       | H N N N N N N N N N N N N N N N N N N N       | 487.2                                | <sup>1</sup> H RMN (400 MHz, CD <sub>3</sub> OD) δ 8.28 (s, 2H), 8.04 (s, 1H), 7.64 (s, 1H), 7.62 (s, 1H), 7.61 (s, 1H), 5.23 (s, 2H), 4.50 - 4.47 (m, 1H), 4.28 (t, <i>J</i> = 5.2 Hz, 2H), 4.13 - 4.08 (m, 1H), 4.00 (s, 3H), 3.83 - 3.75 (m, 1H), 2.97 (s, 3H), 1.42 (s, 3H), 1.37 (s, 3H).                                                                                                                                                                   |
| 249       | H N N N N N N N N N N N N N N N N N N N       | 487.2                                | <sup>1</sup> H RMN (400 MHz, CD <sub>3</sub> OD) δ 8.21 (s, 2H), 7.97 (s, 1H), 7.56 (s, 1H), 7.54 (s, 1H), 7.53 (s, 1H), 5.15 (s, 2H), 4.44 - 4.37 (m, 1H), 4.20 (t, <i>J</i> = 5.3 Hz, 2H), 4.05 - 4.01 (m, 1H), 3.92 (s, 3H), 3.73 - 3.69 (m, 1H), 2.89 (s, 3H), 1.34 (s, 3H), 1.30 (s, 3H).                                                                                                                                                                   |

| Compuesto | Estructura                                | LC-MS<br>(m/z)<br>(M+H)+ | ¹H RMN                                                                                                                                                                                                                                                                                                                                                                                         |
|-----------|-------------------------------------------|--------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 250       | H C C N N N N N N N N N N N N N N N N N   | 487.9                    | <sup>1</sup> H RMN (400 MHz, CD <sub>3</sub> OD) δ 8.22 (s, 2H), 7.96 (s, 1H), 7.63 (s, 1H), 7.53 (s, 1H), 7.50 (s, 1H), 5.19 (s, 2H), 4.17 (t, $J = 7.0$ Hz, 2H), 3.94 (s, 3H), 2.93 - 2.84 (m, 5H), 2.57 (c, $J = 7.2$ Hz, 4H), 1.03 (t, $J = 7.2$ Hz, 6H).                                                                                                                                  |
| 251       |                                           | 490.3                    | <sup>1</sup> H RMN (400 MHz, CD <sub>3</sub> OD) δ 8.19 (s, 2H), 7.95 (d, $J = 0.6$ Hz, 1H), 7.53 (d, $J = 0.6$ Hz, 1H), 7.47 (dd, $J = 9.4$ Hz, 6.8 Hz, 1H), 5.17 (s, 2H), 4.21 - 4.15 (m, 2H), 3.89 (s, 3H), 2.94 - 2.88 (m, 2H), 2.91 (s, 3H), 2.59 (c, $J = 7.2$ Hz, 4H), 1.03 (t, $J = 7.2$ Hz, 6H).                                                                                      |
| 252       |                                           | 494.1                    | <sup>1</sup> H RMN (400 MHz, CDCl <sub>3</sub> ) δ 8.18 (s, 2H), 7.52 - 7.45 (m, 3H), 7.35 (dd, $J$ = 5.4 Hz, 1.8 Hz, 1H), 7.22 - 7.15 (m, 2H), 5.12 (s, 2H), 3.94 (s, 3H), 3.11 - 3.03 (m, 2H), 2.99 (s, 3H), 2.51 - 2.41 (m, 3H), 2.04 - 1.98 (m, 2H), 1.84 - 1.75 (m, 4H), 1.12 (t, $J$ = 7.2 Hz, 3H).                                                                                      |
| 253       | F N N S N N S N N N N N N N N N N N N N   | 494.3                    | <sup>1</sup> H RMN (400 MHz, CD <sub>3</sub> OD) δ 7.81 (d, $J$ = 2.9 Hz, 1H), 7.61 - 7.51 (m, 2H), 7.38 - 7.20 (m, 3H), 6.93 (d, $J$ = 8.7 Hz, 2H), 6.73 (d, $J$ = 9.0 Hz, 1H), 5.11 (s, 2H), 3.93 (s, 3H), 3.47 - 3.39 (m, 2H), 3.05 - 2.96 (m, 2H), 2.90 (s, 3H), 2.23 (t, $J$ = 11.0 Hz, 2H), 1.13 (d, $J$ = 6.4 Hz, 6H).                                                                  |
| 254       | H N N N N N N N N N N N N N N N N N N N   | 494.9                    | <sup>1</sup> H RMN (400 MHz, CD <sub>3</sub> OD) δ 8.20 (s, 2H), 7.59 - 7.55 (m, 2H), 7.47 (d, <i>J</i> = 8.9 Hz, 2H), 6.94 (d, <i>J</i> = 8.9 Hz, 2H), 5.17 (s, 2H), 3.94 (s, 3H), 3.44 - 3.42 (m, 2H), 3.00 - 2.98 (m, 2H), 2.91 (s, 3H), 2.26 - 2.20 (m, 2H), 1.14 (d, <i>J</i> = 6.4 Hz, 6H).                                                                                              |
| 255       | N N N N N N N N N N N N N N N N N N N     | 495.0                    | <sup>1</sup> H RMN (400 MHz, CD <sub>3</sub> OD) δ 8.18 (s, 2H), 7.58 - 7.54 (m, 2H), 7.43 (d, <i>J</i> = 8.1 Hz, 2H), 6.88 (d, <i>J</i> = 8.3 Hz, 2H), 5.16 (s, 2H), 3.93 (s, 3H), 3.01 - 2.97 (m, 4H), 2.90 (s, 3H), 2.83 - 2.81 (m, 2H), 1.22 (s, 6H).                                                                                                                                      |
| 256       |                                           | 495.2                    | <sup>1</sup> H RMN (400 MHz, CD <sub>3</sub> OD) δ 8.72 (d, $J$ = 2.6 Hz, 1H), 8.28 (s, 2H), 8.14 (dd, $J$ = 8.6 Hz, 2.6 Hz, 1H), 7.60 - 7.54 (m, 2H), 7.23 (d, $J$ = 8.6 Hz, 1H), 5.20 (s, 2H), 3.94 (s, 3H), 3.14 - 3.06 (m, 2H), 2.91 (s, 3H), 2.73 - 2.64 (m, 1H), 2.48 (c, $J$ = 7.2 Hz, 2H), 2.15 - 2.08 (m, 2H), 1.97 - 1.91 (m, 2H), 1.86 - 1.76 (m, 2H), 1.13 (t, $J$ = 7.2 Hz, 3H).  |
| 257       | F O N N N S N S N S N S N S N S N S N S N | 495.9                    | <sup>1</sup> H RMN (400 MHz, CD <sub>3</sub> OD) δ 8.24 (d, $J$ = 2.6 Hz, 1H), 8.12 (s, 2H), 7.76 (dd, $J$ = 9.1 Hz, 2.7 Hz, 1H), 7.51 - 7.46 (m, 2H), 6.72 (d, $J$ = 9.0 Hz, 1H), 5.09 (s, 2H), 3.92 (dd, $J$ = 12.5 Hz, 2.4 Hz, 2H), 3.85 (s, 3H), 2.86 - 2.78 (m, 2H), 2.83 (s, 3H), 2.31 - 2.20 (m, 2H), 1.06 (d, $J$ = 6.4 Hz, 6H).                                                       |
| 258       | H NH                                      | 496.2                    | <sup>1</sup> H RMN (400 MHz, CDCl <sub>3</sub> ) δ 8.18 (s, 2H), 7.48 (d, <i>J</i> = 7.4 Hz, 1H), 7.34 (d, <i>J</i> = 4.6 Hz, 1H), 7.10 - 7.06 (m, 1H), 7.01 - 6.99 (m, 1H), 6.95 (s, 1H), 6.13 (s, 1H), 5.13 (s, 2H), 3.93 (s, 3H), 3.84 (s, 3H), 3.75 - 3.73 (m, 2H), 3.17 - 3.14 (m, 1H), 3.01 - 2.98 (m, 4H), 2.78 - 2.72 (m, 1H), 2.25 (s, 1H), 1.84 - 1.81 (m, 2H), 1.79 - 1.69 (m, 2H). |

| Compuesto | Estructura                                                                                                                                                                                                                      | LC-MS<br>(m/z)<br>(M+H)+ | ¹H RMN                                                                                                                                                                                                                                                                                                                                                      |
|-----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 259       | F N N N N N N N N N N N N N N N N N N N                                                                                                                                                                                         | 496.3                    | <sup>1</sup> H RMN (400 MHz, CD <sub>3</sub> OD) δ 8.33 (s, 2H), 7.85 (d, $J = 5.9$ Hz, 1H), 7.58 - 7.54 (m, 2H), 7.24 (d, $J = 1.3$ Hz, 1H), 7.00 (dd, $J = 5.9$ Hz, 1.8 Hz, 1H), 5.21 (s, 2H), 4.05 - 3.97 (m, 2H), 3.93 (s, 3H), 2.92 - 2.84 (m, 5H), 2.43 - 2.33 (m, 2H), 1.14 (d, $J = 6.4$ Hz, 6H).                                                   |
| 260       | H N N N N N N N N N N N N N N N N N N N                                                                                                                                                                                         | 497.2                    | <sup>1</sup> H RMN (400 MHz, CD <sub>3</sub> OD) δ 8.22 (s, 2H), 7.62 - 7.49 (m, 2H), 7.37 (d, $J$ = 2.4 Hz, 1H), 7.11 (dd, $J$ = 8.6 Hz, 2.4 Hz, 1H), 6.88 (d, $J$ = 8.6 Hz, 1H), 5.16 (s, 2H), 3.92 (s, 3H), 3.85 (s, 3H), 3.00 - 2.92 (m, 8H), 2.89 (s, 3H).                                                                                             |
| 261       | H N N N N N N N N N N N N N N N N N N N                                                                                                                                                                                         | 498.2                    | <sup>1</sup> H RMN (400 MHz, CD <sub>3</sub> OD) $\delta$ 8.22 (s, 2H), 7.58 - 7.51 (m, 2H), 7.37 (d, $J$ = 2.2 Hz, 1H), 7.11 (dd, $J$ = 8.6 Hz, 2.2 Hz, 1H), 6.88 (d, $J$ = 8.6 Hz, 1H), 5.17 (s, 2H), 3.92 (s, 3H), 3.85 (s, 3H), 3.82 - 3.78 (m, 4H), 2.99 - 2.95 (m, 4H), 2.89 (s, 3H).                                                                 |
| 262       |                                                                                                                                                                                                                                 | 498.2                    | <sup>1</sup> H RMN (400 MHz, CD <sub>3</sub> OD) δ 8.13 (s, 2H), 7.51 (s, 1H), 7.49 (s, 1H), 7.39 (d, $J$ = 8.8 Hz, 2H), 6.80 (d, $J$ = 8.8 Hz, 2H), 5.10 (s, 2H), 4.00 (t, $J$ = 5.7 Hz, 2H), 3.87 (s, 3H), 2.84 (s, 3H), 2.81 (t, $J$ = 5.8 Hz, 2H), 2.60 (c, $J$ = 7.1 Hz, 4H), 1.02 (t, $J$ = 7.2 Hz, 6H).                                              |
| 263       |                                                                                                                                                                                                                                 | 497.8                    | <sup>1</sup> H RMN (400 MHz, DMSO-d6) δ 9.09 (s, 1H), 8.54 (s, 1H), 8.37 (d, $J$ = 2.8 Hz, 1H), 8.30 (s, 2H), 7.83 (dd, $J$ = 9.1 Hz, 2.8 Hz, 1H), 7.67 (d, $J$ = 1.9 Hz, 1H), 7.57 (d, $J$ = 1.8 Hz, 1H), 6.78 (d, $J$ = 9.2 Hz, 1H), 5.21 (s, 2H), 3.94 (s, 3H), 3.39 - 3.36 (m, 4H), 2.80 (d, $J$ = 4.5 Hz, 3H), 2.42 - 2.37 (m, 4H), 2.21 (s, 3H).      |
| 264       |                                                                                                                                                                                                                                 | 509.2                    | <sup>1</sup> H RMN (400 MHz, CD <sub>3</sub> OD) δ 8.18 (s, 2H), 7.56 - 7.54 (m, 2H), 7.45 - 7.43 (m, 2H), 6.95 - 6.92 (m, 2H), 5.15 (s, 2H), 3.92 (s, 3H), 3.64 - 3.60 (m, 2H), 2.90 (s, 3H), 2.67 - 2.61 (m, 2H), 2.32 - 228(m, 7H), 1.97 - 1.94 (m, 2H), 1.64 - 1.62 (m, 2H).                                                                            |
| 265       | H N S N N S N N S N N S N N S N N S N N S N N S N N S N N S N N S N N S N N S N N S N N S N N N S N N N S N N N S N N N S N N N S N N N S N N N N S N N N S N N N S N N N N S N N N N S N N N N N N N N N N N N N N N N N N N N | 509.3                    | <sup>1</sup> H RMN (400 MHz, CD <sub>3</sub> OD) δ 8.20 (s, 2H), 7.56 (s, 1H), 7.55 - 7.53 (m, 1H), 7.44 (dd, $J$ = 8.6 Hz, 2.5 Hz, 1H), 7.41 (d, $J$ = 1.7 Hz, 1H), 6.99 (d, $J$ = 8.6 Hz, 1H), 5.16 (s, 2H), 3.92 (s, 3H), 3.51 - 3.41 (m, 2H), 3.17 - 3.10 (m, 2H), 2.89 (s, 3H), 2.63 (t, $J$ = 11.8 Hz, 2H), 2.27 (s, 3H), 1.31 (d, $J$ = 6.8 Hz, 6H). |
| 266       | H C N N (S)                                                                                                                                                                                                                     | 509.3                    | <sup>1</sup> H RMN (400 MHz, CD <sub>3</sub> OD) δ 8.18 (s, 2H), 7.59 - 7.53 (m, 2H), 7.45 (d, $J$ = 9.0 Hz, 2H), 6.91 (d, $J$ = 9.0 Hz, 2H), 5.14 (s, 2H), 3.92 (s, 3H), 3.46 (dd, $J$ = 12.1 Hz, 2.3 Hz, 2H), 3.39 (c, $J$ = 7.3 Hz, 2H), 3.04 - 2.94 (m, 2H), 2.22 (t, $J$ = 11.1 Hz, 2H), 1.20 (t, $J$ = 7.3 Hz, 3H), 1.13 (d, $J$ = 6.4 Hz, 6H).       |
| 267       | H N N S N N S N S N S N S N S N S N S N                                                                                                                                                                                         | 509.3                    | <sup>1</sup> H RMN (400 MHz, CD <sub>3</sub> OD) δ 8.18 (s, 2H), 7.56 (s, 1H), 7.54 (s, 1H), 7.49 - 7.40 (m, 2H), 6.94 - 6.87 (m, 2H), 5.15 (s, 2H), 3.92 (s, 3H), 3.41 (d, $J = 10.5$ Hz, 2H), 2.90 (s, 3H), 2.51 - 2.37 (m, 4H), 2.32 (s, 3H), 1.17 (d, $J = 5.8$ Hz, 6H).                                                                                |

| Compuesto | Estructura                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | LC-MS<br>(m/z)<br>(M+H) <sup>+</sup> | <sup>1</sup> H RMN                                                                                                                                                                                                                                                                                                                                                          |
|-----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 268       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 510.1                                | <sup>1</sup> H RMN (400 MHz, CD <sub>3</sub> OD) δ 8.53 - 8.32 (m, 2H), 8.21 (s, 2H), 7.92 (dd, $J$ = 8.7 Hz, 2.1 Hz, 1H), 7.62 - 7.47 (m, 2H), 6.88 (d, $J$ = 8.7 Hz, 1H), 5.17 (s, 2H), 4.28 - 4.18 (m, 2H), 3.93 (s, 3H), 3.14 (m, 2H), 2.94 - 2.83 (m, 5H), 2.76 (s, 3H), 1.39 (d, $J$ = 6.3 Hz, 6H).                                                                   |
| 269       | H N N N N N N N N N N N N N N N N N N N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 511.2                                | <sup>1</sup> H RMN (400 MHz, CD <sub>3</sub> OD) δ 8.22 (s, 2H), 7.56 (s, 1H), 7.54 (s, 1H), 7.37 (d, $J$ = 2.2 Hz, 1H), 7.11 (dd, $J$ = 8.6 Hz, 1.4 Hz, 1H), 6.88 (d, $J$ = 8.6 Hz, 1H), 5.16 (s, 2H), 3.92 (s, 3H), 3.84 (s, 3H), 3.02 - 3.00 (m, 4H), 2.90 (s, Hz, 3H), 2.62 - 2.60 (m, 4H), 2.32 (s, 3H).                                                               |
| 270       | -HTF-OTN NON                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 511.3                                | <sup>1</sup> H RMN (400 MHz, CD <sub>3</sub> OD) δ 8.17 (s, 2H), 7.58 - 7.49 (m, 2H), 7.27 - 7.18 (m, 2H), 6.87 - 6.79 (m, 1H), 5.13 (s, 2H), 3.91 (s, 3H), 3.80 (s, 3H), 3.15 - 2.96 (m, 4H), 2.89 (s, 3H), 2.68 - 2.51 (m, 4H), 2.32 (s, 3H).                                                                                                                             |
| 271       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 511.9                                | <sup>1</sup> H RMN (400 MHz, CD <sub>3</sub> OD) δ 8.32 (d, $J$ = 2.7 Hz, 1H), 8.20 (s, 2H), 7.84 (dd, $J$ = 9.0 Hz, 2.8 Hz, 1H), 7.63 (d, $J$ = 1.9 Hz, 1H), 7.50 (d, $J$ = 1.8 Hz, 1H), 6.80 (d, $J$ = 9.1 Hz, 1H), 5.20 (s, 2H), 4.01 (dd, $J$ = 12.7 Hz, 2.4 Hz, 2H), 3.95 (s, 3H), 2.96 - 2.91 (m, 2H), 2.90 (s, 3H), 2.40 - 2.32 (m, 2H), 1.15 (d, $J$ = 6.4 Hz, 6H). |
| 272       | THE COLONIAL PROPERTY OF THE COLONIAL PROPERTY | 511.9                                | <sup>1</sup> H RMN (400 MHz, CD <sub>3</sub> OD) δ 8.33 (d, $J$ = 2.4 Hz, 1H), 8.21 (s, 2H), 7.85 (dd, $J$ = 9.1 Hz, 2.8 Hz, 1H), 7.63 (d, $J$ = 2.0 Hz, 1H), 7.50 (d, $J$ = 2.0 Hz, 1H), 6.81 (d, $J$ = 9.1 Hz, 1H), 5.21 (s, 2H), 3.96 (s, 3H), 3.48-3.43 (m, 4H), 2.91 (s, 3H), 2.65-2.50 (m, 4H), 2.48 (c, $J$ = 7.2 Hz, 2H), 1.13 (t, $J$ = 7.2 Hz, 3H).               |
| 273       | H N N N N N N N N N N N N N N N N N N N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 513.3                                | <sup>1</sup> H RMN (400 MHz, CD <sub>3</sub> OD) δ 8.25 (s, 2H), 7.70 - 7.65 (m, 1H), 7.58 - 7.53 (m, 2H), 7.26 (dd, <i>J</i> = 8.6Hz, 1.4 Hz, 1H), 7.00 (t, <i>J</i> = 9.1 Hz, 1H), 5.18 (s, 2H), 3.93 (s, 3H), 3.58 - 3.51 (m, 2H), 3.46 (dd, <i>J</i> = 12.6 Hz, 1.4 Hz, 2H), 2.90 (s, 3H), 2.73 (t, <i>J</i> = 11.9 Hz, 2H), 1.35 (d, <i>J</i> = 6.8 Hz, 6H).           |
| 274       | F O N N S N S N S N S N S N S N S N S N S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 513.3                                | <sup>1</sup> H RMN (400 MHz, CD <sub>3</sub> OD) δ 8.17 (s, 2H), 7.53 - 7.47 (m, 1H), 7.45 (d, $J$ = 8.9 Hz, 2H), 6.92 (d, $J$ = 8.8 Hz, 2H), 5.17 (s, 2H), 3.89 (s, 3H), 3.49-3.41 (m, 2H), 3.06 - 2.96 (m, 2H), 2.91 (s, 3H), 2.24 (t, $J$ = 11.1 Hz, 2H), 1.14 (d, $J$ = 6.4 Hz, 6H).                                                                                    |
| 275       | THE STATE OF THE S | 513.3                                | <sup>1</sup> H RMN (400 MHz, CD <sub>3</sub> OD) δ 8.23 (s, 2H), 7.48 (dd, $J = 9.4$ Hz, 6.9 Hz, 1H), 7.34 - 7.29 (m, 1H), 7.17 - 7.09 (m, 2H), 6.64 - 6.57 (m, 1H), 5.20 (s, 2H), 3.90 (s, 3H), 3.64 - 3.55 (m, 2H), 3.16 - 3.07 (m, 2H), 2.92 (s, 3H), 2.43 - 2.34 (m, 2H), 1.20 (d, $J = 6.5$ Hz, 6H).                                                                   |
| 276       | H C CI N N N N SSL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 513.4                                | <sup>1</sup> H RMN (400 MHz, CD <sub>3</sub> OD) δ 8.55 (s, 2H), 8.20 (s, 2H), 7.62 (d, <i>J</i> = 2.0 Hz, 1H), 7.50 (d, <i>J</i> = 2.0 Hz, 1H), 5.20 (s, 2H), 4.54 - 4.49 (m, 2H), 3.95 (s, 3H), 2.91 (s, 3H), 2.85 - 2.76 (m, 2H), 2.47 - 2.39 (m, 2H), 1.12 (d, <i>J</i> = 6.4 Hz, 6H).                                                                                  |

| Compuesto | Estructura                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | LC-MS<br>(m/z)<br>(M+H)+ | ¹H RMN                                                                                                                                                                                                                                                                                                                                                                                                                           |
|-----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 277       | F NH NH (S)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 513.9                    | <sup>1</sup> H RMN (400 MHz, CD <sub>3</sub> OD) δ 8.25 (s, 2H), 8.16 (d, $J = 2.2$ Hz, 1H), 7.99 (dd, $J = 14.8$ Hz, 2.2 Hz, 1H), 7.61 - 7.48 (m, 2H), 5.18 (s, 2H), 3.93 (s, 3H), 3.71 - 3.63 (m, 2H), 3.04 - 2.94 (m, 2H), 2.90 (s, 3H), 2.48 - 2.40 (m, 2H), 1.11 (d, $J = 6.4$ Hz, 6H).                                                                                                                                     |
| 278       | The state of the s | 514.2                    | <sup>1</sup> H RMN (400 MHz, CD <sub>3</sub> OD) δ 8.30 (d, $J$ = 2.7 Hz, 1H), 8.18 (s, 2H), 7.82 (dd, $J$ = 9.1 Hz, 2.8 Hz, 1H), 7.48 (dd, $J$ = 9.4 Hz, 6.8 Hz, 1H), 6.80 (d, $J$ = 9.1 Hz, 1H), 5.18 (s, 2H), 4.02 - 3.96 (m, 2H), 3.90 (s, 3H), 2.92 (s, 3H), 2.91 - 2.84 (m, 2H), 2.39 - 2.30 (m, 2H), 1.14 (d, $J$ = 6.4 Hz, 6H).                                                                                          |
| 279       | P N N N N N N N N N N N N N N N N N N N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 514.2                    | <sup>1</sup> H RMN (400 MHz, CD <sub>3</sub> OD) δ 8.40 (s, 2H), 7.90 (d, $J = 6.3$ Hz, 1H), 7.54 (s, 1H), 7.49 (dd, $J = 9.3$ Hz, 6.8 Hz, 1H), 7.18 (dd, $J = 6.2$ Hz, 1.2 Hz, 1H), 5.27 (s, 2H), 4.29 (dd, $J = 14.0$ Hz, 1.9 Hz, 2H), 3.91 (s, 3H), 3.49 - 3.40 (m, 2H), 2.99 (dd, $J = 13.6$ Hz, 11.7 Hz, 2H), 2.92 (s, 3H), 1.42 (d, $J = 6.6$ Hz, 6H).                                                                     |
| 280       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 524.2                    | <sup>1</sup> H RMN (400 MHz, CDCl <sub>3</sub> ) δ 8.18 (s,2H), 7.48 (d, $J$ = 6.9 Hz, 1H), 7.33 (s, 1H), 7.12 (d, $J$ = 7.2 Hz, 1H), 7.00 (d, $J$ = 8.0 Hz, 1H), 6.93 - 6.92 (m, 1H), 6.08 (s, 1H), 5.11 (s, 2H), 3.93 (s, 3H), 3.82 (s, 3H), 3.05 - 3.03 (m, 2H), 2.99 (s, 3H), 2.89 - 2.87 (m, 1H), 2.45 - 2.42 (m, 2H), 2.05 - 2.00 (m, 2H), 1.74 - 1.72 (m, 4H), 1.09 (t, $J$ = 6.9 Hz, 3H).                                |
| 281       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 524.2                    | <sup>1</sup> H RMN (400 MHz, CD <sub>3</sub> OD) δ 8.32 (d, $J$ = 2.8 Hz, 1H), 8.20 (s, 2H), 7.85 (dd, $J$ = 9.2 Hz, 2.8 Hz, 1H), 7.58 - 7.54 (m, 2H), 6.80 (d, $J$ = 9.2 Hz, 1H), 5.16 (s, 2H), 3.99 - 3.94 (m, 2H), 3.93 (s, 3H), 2.99 (c, $J$ = 7.2 Hz, 2H), 2.90 (s, 3H), 2.82 - 2.74 (m, 2H), 2.62 - 2.54 (m, 2H), 1.17 (d, $J$ = 6.3 Hz, 6H), 0.96 (t, $J$ = 7.2 Hz, 3H).                                                  |
| 282       | H N SIL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 525.3                    | <sup>1</sup> H RMN (400 MHz, CD <sub>3</sub> OD) δ 8.22 (s, 2H), 7.58 - 7.55 (m, 1H), 7.54 (dd, $J$ = 4.7 Hz, 2.2 Hz, 1H), 7.41 (d, $J$ = 2.3 Hz, 1H), 7.14 (dd, $J$ = 8.6 Hz, 2.3 Hz, 1H), 6.89 (d, $J$ = 8.6 Hz, 1H), 5.16 (s, 2H), 3.92 (s, 3H), 3.85 (s, 3H), 3.53 - 3.45 (m, 2H), 3.45 - 3.39 (m, 2H), 2.90 (s, 3H), 2.72 - 2.61 (m, 2H), 1.33 (d, $J$ = 6.5 Hz, 6H).                                                       |
| 283       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 525.3                    | <sup>1</sup> H RMN (400 MHz, CDCl <sub>3</sub> ) $\delta$ 8.17 (s, 2H), 7.48 (dd, $J$ = 7.9 Hz, 2.1 Hz, 1H), 7.33 (dd, $J$ = 5.5 Hz, 2.1 Hz, 1H), 7.23 (d, $J$ = 2.4 Hz, 1H), 7.00 (dd, $J$ = 8.5 Hz, 2.4 Hz, 1H), 6.91 - 6.85 (m, 2H), 6.10 (s, 1H), 5.11 (s, 2H), 3.93 (s, 3H), 3.86 (s, 3H), 3.18 - 3.05 (m, 4H), 2.99 (d, $J$ = 4.9 Hz, 3H), 2.82 - 2.66 (m, 4H), 2.58 (c, $J$ = 7.1 Hz, 2H), 1.18 (t, $J$ = 7.1 Hz, 3H).    |
| 284       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 524.8                    | <sup>1</sup> H RMN (400 MHz, CD <sub>3</sub> OD) δ 8.75 (dd, $J$ = 8.0 Hz, 2.6 Hz, 1H), 8.30 (s, 2H), 8.16 (dd, $J$ = 8.8 Hz, 2.6 Hz, 1H), 7.65 (d, $J$ = 1.7 Hz, 1H), 7.52 (d, $J$ = 1.7 Hz, 1H), 7.30 - 7.24 (m, 1H), 5.25 (s, 2H), 4.02 - 3.96 (m, 1H), 3.97 (s, 3H), 3.38 - 3.30(m, 1H), 3.27 - 3.16 (m, 1H), 2.92 (s, 3H), 2.89 - 2.65 (m, 2H), 2.13 (s, 3H), 2.13 - 2.00 (m, 1H), 1.90 - 1.79 (m, 2H), 168 - 1.50 (m, 1H). |

| Compuesto | Estructura                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | LC-MS<br>(m/z)<br>(M+H)+ | <sup>1</sup> H RMN                                                                                                                                                                                                                                                                                                                                                               |
|-----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 285       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 524.9                    | <sup>1</sup> H RMN (400 MHz, CD <sub>3</sub> OD) δ 8.21 (s, 2H), 7.63 (d, $J = 2.0$ Hz, 1H), 7.50 (d, $J = 1.9$ Hz, 1H), 7.39 - 7.35 (m, 2H), 6.94 (d, $J = 8.6$ Hz, 1H), 5.20 (s, 2H), 3.95 (s, 3H), 3.07 - 2.96 (m, 2H), 2.93 - 2.88 (m, 2H), 2.90 (s, 3H), 2.30 - 2.23 (m, 2H), 2.25 (s, 3H), 1.09 (d, $J = 6.5$ Hz, 6H).                                                     |
| 286       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 524.9                    | <sup>1</sup> H RMN (400 MHz, CD <sub>3</sub> OD) δ 8.20 (s, 2H), 7.63 (d, $J = 2.0$ Hz, 1H), 7.50 (d, $J = 2.0$ Hz, 1H), 7.48 - 7.43 (m, 2H), 6.94 - 6.89 (m, 2H), 5.20 (s, 2H), 3.96 (s, 3H), 3.45 - 3.40 (m, 2H), 2.91 (s, 3H), 2.51 - 2.42 (m, 4H), 2.33 (s, 3H), 1.17 (d, $J = 5.9$ Hz, 6H).                                                                                 |
| 287       | CI NH (S)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 526.3                    | <sup>1</sup> H RMN (400 MHz, CD <sub>3</sub> OD) δ 8.35 (d, $J$ = 2.7 Hz, 1H), 8.23 (s, 2H), 7.84 (d, $J$ = 2.7 Hz, 1H), 7.63 (d, $J$ = 1.8 Hz, 1H), 7.49 (d, $J$ = 1.8 Hz, 1H), 5.20 (s, 2H), 3.95 (s, 3H), 3.20-3.13 (m, 2H), 3.04 - 2.97 (m, 2H), 2.91 (s, 3H), 2.44 - 2.38 (m, 2H), 2.26 (s, 3H), 1.10 (d, $J$ = 6.4 Hz, 6H).                                                |
| 288       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 527.4                    | <sup>1</sup> H RMN (400 MHz, CD <sub>3</sub> OD) δ 8.22 (s, 2H), 7.63 (d, $J = 1.9$ Hz, 1H), 7.49 (d, $J = 1.9$ Hz, 1H), 7.37 (d, $J = 2.3$ Hz, 1H), 7.10 (dd, $J = 8.6$ Hz, 2.3 Hz, 1H), 6.88 (d, $J = 8.6$ Hz, 1H), 5.20 (s, 2H), 3.93 (s, 3H), 3.84 (s, 3H), 3.03 - 2.99 (m, 4H), 2.90 (s, 3H), 2.66 - 2.62 (m, 4H), 2.32 (s, 3H).                                            |
| 289       | CI N N SI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 528.9                    | <sup>1</sup> H RMN (400 MHz, CD <sub>3</sub> OD) δ 8.25 (s, 2H), 7.64 (d, $J = 1.7$ Hz, 1H), 7.60 (dd, $J = 15.1$ Hz, 2.4 Hz, 1H), 7.51 (d, $J = 1.7$ Hz, 1H), 7.21 (dd, $J = 8.7$ Hz, 1.6 Hz, 1H), 6.93 (t, $J = 9.2$ Hz, 1H), 5.22 (s, 2H), 3.96 (s, 3H), 3.22 - 3.16 (m, 2H), 3.05 - 2.98 (m, 2H), 2.91 (s, 3H), 2.27 (t, $J = 10.9$ Hz, 2H), 1.10 (d, $J = 6.4$ Hz, 6H).     |
| 290       | CI N N S N N S N N S N N S N N S N N S N N S N N S N N S N N N S N N N S N N N S N N N N N N N N N N N N N N N N N N N N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 529.3                    | <sup>1</sup> H RMN (400 MHz, CD <sub>3</sub> OD) δ 8.18 (s, 2H), 7.47 - 7.43 (m, 2H), 7.43 - 7.41 (m, 1H), 6.95 - 6.89 (m, 2H), 5.25 (d, $J$ = 2.3 Hz, 2H), 3.92 (s, 3H), 3.46 - 3.40 (m, 2H), 3.02 - 2.95 (m, 2H), 2.92 (s, 3H), 2.25 - 2.18 (m, 2H), 1.12 (d, $J$ = 6.4 Hz, 6H).                                                                                               |
| 291       | H CI N N S N N S N S N S N S N S N S N S N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 530.2                    | <sup>1</sup> H RMN (400 MHz, CD <sub>3</sub> OD) δ 8.30 (d, $J$ = 2.5 Hz, 1H), 8.19 (s, 2H), 7.82 (dd, $J$ = 9.1 Hz, 2.7 Hz, 1H), 7.43 (d, $J$ = 6.3 Hz, 1H), 6.80 (d, $J$ = 9.2 Hz, 1H), 5.26 (d, $J$ = 2.2 Hz, 2H), 3.99 (dd, $J$ = 12.6 Hz, 2.3 Hz, 2H), 3.92 (s, 3H), 2.92 (s, 3H), 2.92 - 2.85 (m, 2H), 2.38 - 2.32 (m, 2H), 1.14 (d, $J$ = 6.4 Hz, 6H).                    |
| 292       | THE STATE OF THE S | 530.4                    | <sup>1</sup> H RMN (400 MHz, CD <sub>3</sub> OD) $\delta$ 8.26 (s, 2H), 8.19 - 8.14 (m, 1H), 8.03 - 7.94 (m, 1H), 7.63 (d, $J$ = 1.4 Hz, 1H), 7.50 (d, $J$ = 1.7 Hz, 1H), 5.22 (s, 2H), 3.95 (s, 3H), 3.73 - 3.64 (m, 2H), 3.03 - 2.94 (m, 2H), 2.91 (s, 3H), 2.47 - 2.41 (m, 2H), 1.11 (d, $J$ = 6.4 Hz, 6H).                                                                   |
| 293       | H N N H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 537.0                    | <sup>1</sup> H RMN (400 MHz, CD <sub>3</sub> OD) δ 8.18 (s, 2H), 7.57 - 7.51 (m, 2H), 7.27 (d, <i>J</i> = 2.3 Hz, 1H), 7.04 (dd, <i>J</i> = 8.5 Hz, 2.3 Hz, 1H), 6.72 (d, <i>J</i> = 8.5 Hz, 1H), 5.13 (s, 2H), 3.91 (s, 3H), 3.81 (s, 3H), 3.33 - 3.29 (m, 1H), 3.08 - 2.73 (m, 6H), 2.90 (s, 3H), 2.45 - 2.28 (m, 1H), 2.34 (s, 3H), 2.14 - 2.03 (m, 1H), 1.82 - 1.62 (m, 1H). |

| Compuesto | Estructura                                | LC-MS<br>(m/z)<br>(M+H)+ | ¹H RMN                                                                                                                                                                                                                                                                                                                                                                                                                        |
|-----------|-------------------------------------------|--------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 294       |                                           | 537.2                    | <sup>1</sup> H RMN (400 MHz, CDCl3) δ 8.15 (s, 2H), 7.49 - 7.44 (m, 1H), 7.35 - 7.29 (m, 1H), 7.19 (d, <i>J</i> = 2.2 Hz, 1H), 6.99 (dd, <i>J</i> = 8.5 Hz, 1.8 Hz, 1H), 6.86 (d, <i>J</i> = 8.5 Hz, 1H), 5.08 (s, 2H), 3.91 (s, 3H), 3.85 (s, 3H), 3.11 - 2.87 (m, 8H), 2.79 (s, 3H), 1.70 - 1.63 (m, 1H), 0.47 - 0.39 (m, 4H).                                                                                              |
| 295       |                                           | 540.9                    | <sup>1</sup> H RMN (400 MHz, CD <sub>3</sub> OD) δ 8.31 (s, 2H), 7.75 (s, 4H), 7.65 (s, 1H), 7.51 (s, 1H), 5.25 (s, 2H), 3.96 (s, 3H), 3.47 (t, <i>J</i> = 7.2 Hz, 2H), 2.91 (s, 3H), 2.69 (t, <i>J</i> = 7.2 Hz, 2H), 2.63 (c, <i>J</i> = 7.2 Hz, 4H), 1.08 (t, <i>J</i> = 7.1 Hz, 6H).                                                                                                                                      |
| 296       | CI NA | 541.3                    | <sup>1</sup> H RMN (400 MHz, DMSO-d6) δ 9.17 (s, 1H), 8.54 (d, $J$ = 4.4 Hz, 1H), 8.30 (s, 2H), 7.64 (d, $J$ = 1.8 Hz, 1H), 7.54 (d, $J$ = 1.9 Hz, 1H), 7.30 (d, $J$ = 2.3 Hz, 1H), 7.20 (dd, $J$ = 8.6 Hz, 2.3 Hz, 1H), 6.72 (d, $J$ = 8.6 Hz, 1H), 5.19 (s, 2H), 3.90 (s, 3H), 3.71 (s, 3H), 3.07 - 3.05 (m, 2H), 2.84 - 2.82 (m, 2H), 2.76 (d, $J$ = 4.6 Hz, 3H), 2.02 - 1.97 (m, 2H), 0.92 (d, $J$ = 6.4 Hz, 3H).         |
| 297       |                                           | 541.3                    | <sup>1</sup> H RMN (400 MHz, CD <sub>3</sub> OD) δ 8.23 (s, 2H), 7.63 (d, $J$ = 2.0 Hz, 1H), 7.50 (d, $J$ = 1.9 Hz, 1H), 7.38 (d, $J$ = 2.4 Hz, 1H), 7.11 (dd, $J$ = 8.6 Hz, 2.4 Hz, 1H), 6.89 (d, $J$ = 8.6 Hz, 1H), 5.20 (s, 2H), 3.95 (s, 3H), 3.84 (s, 3H), 3.07 - 3.03 (m, 4H), 2.90 (s, 3H), 2.70 - 2.66 (m, 4H), 2.49 (c, $J$ = 7.2 Hz, 2H), 1.12 (t, $J$ = 7.2 Hz, 3H).                                               |
| 298       | CI NH N (S)                               | 543.3                    | <sup>1</sup> H RMN (400 MHz, CD <sub>3</sub> OD) δ 8.12 (s, 2H), 7.35 (d, $J = 6.3$ Hz, 1H), 7.33 - 7.24 (m, 2H), 6.87 (d, $J = 8.6$ Hz, 1H), 5.18 (d, $J = 1.8$ Hz, 2H), 3.84 (s, 3H), 2.97 - 2.88 (m, 2H), 2.84 (s, 3H), 2.83 - 2.78 (m, 2H), 2.22 - 2.18 (m, 2H), 2.18 (s, 3H), 1.01 (d, $J = 6.4$ Hz, 6H).                                                                                                                |
| 299       | CI N N N N N N N N N N N N N N N N N N N  | 547.2                    | <sup>1</sup> H RMN (400 MHz, CD <sub>3</sub> OD) δ 8.24 (s, 2H), 7.66 - 7.52 (m, 1H), 7.43 (d, $J$ = 6.2 Hz, 1H), 7.26 - 7.15 (m, 1H), 7.00-6.89 (m, 1H), 5.28 (s, 2H), 3.92 (s, 3H), 3.22 - 3.16 (m, 2H), 3.07 - 2.98 (m, 2H), 2.92 (s, 3H), 2.34 - 2.22 (m, 2H), 1.10 (d, $J$ = 6.4 Hz, 6H).                                                                                                                                |
| 301       |                                           | 553.3                    | <sup>1</sup> H RMN (400 MHz, CD <sub>3</sub> OD) $\delta$ 8.24 (s, 2H), 7.58 - 7.54 (m, 2H), 7.51 (t, $J$ = 1.7 Hz, 1H), 7.48 - 7.42 (m, 1H), 7.17 (t, $J$ = 7.8 Hz, 1H), 6.84 - 6.80 (m, 1H), 5.17 (s, 2H), 3.93 (s, 3H), 3.55 (t, $J$ = 5.5 Hz, 2H), 3.33 (s, 3H), 2.90 (s, 3H), 2.83 - 2.77 (m, 2H), 2.74 - 2.65 (m, 12H).                                                                                                 |
| 302       | H C N N N N N N N N N N N N N N N N N N   | 565.1                    | <sup>1</sup> H RMN (400 MHz, CDCl <sub>3</sub> ) $\delta$ 8.17 (s, 2H), 7.48 (dd, $J$ = 7.9 Hz, 1.9 Hz, 1H), 7.33 (dd, $J$ = 5.5 Hz, 1.7 Hz, 1H), 7.21 - 7.17 (m, 1H), 7.01 (dd, $J$ = 8.5 Hz, 2.3 Hz, 1H), 6.91 - 6.86 (m, 2H), 6.12 (s, 1H), 5.11 (s, 2H), 3.93 (s, 3H), 3.86 (s, 3H), 3.13 - 3.02 (m, 4H), 2.99 (d, $J$ = 4.7 Hz, 3H), 2.75 - 2.62 (m, 4H), 2.59 - 2.47 (m, 1H), 1.93 - 1.83 (m, 2H), 1.71 - 1.39 (m, 6H). |
| 303       | TO T  | 577.2                    | <sup>1</sup> H RMN (400 MHz, DMSO-d6) δ 9.24 (s, 1H), 8.56 (d, <i>J</i> = 4.4 Hz, 1H), 8.32 (s, 2H), 7.67 (d, <i>J</i> = 1.7 Hz, 1H), 7.58 (d, <i>J</i> = 9.3 Hz, 2H), 7.57 (s, 1H), 6.96 (d, <i>J</i> = 9.1 Hz, 2H), 5.22 (s, 2H), 4.74 (d, <i>J</i> = 7.4 Hz, 1H), 3.94 (s, 3H), 3.73 - 3.68 (m, 1H), 3.28 - 3.12 (m, 5H), 2.80 (d, <i>J</i> = 4.5 Hz, 3H).                                                                 |

## Ejemplo 22: Síntesis de los Compuestos 304-309

### Compuesto 304

5

10

15

20

25

30

### 4-Cloro-3-((2-((4-((3S,5R)-3,5-dimetilpiperazin-1-il)fenil)amino)pirimidin-5-il)etinil)-5-metoxi-N-metilbenzamida

#### (A) 4-Cloro-3-etinil-5-metoxibenzoato de metilo

Una mezcla de 3-bromo-4-cloro-5-metoxibenzoato de metilo (0.81~g, 2.90~mmol), etiniltriisopropilsilano (0.6~g, 3.29~mmol), CuI (0.055~g, 0.29~mmol), PdCl<sub>2</sub>(PPh<sub>3</sub>)<sub>2</sub> (0.202~g, 0.29~mmol) y trietilamina (0.6~g, 5.93~mmol) en THF (20~mL) se agitó a 60 °C durante 16 h en una atmósfera de nitrógeno. La mezcla resultante se repartió entre agua (100~mL) y AE (100~mL). La fase orgánica se secó a continuación con Na<sub>2</sub>SO<sub>4</sub> anhidro y se concentró a presión reducida. El residuo se disolvió en una solución de fluoruro de tetrabutilamonio en THF (1~M, 10~mL) y la mezcla resultante se agitó a temperatura ambiente durante 4 h. Los componentes volátiles se eliminaron a presión reducida y el residuo se purificó mediante ISCO (eluida con MeOH en H<sub>2</sub>O  $\sim$ 100%) para proporcionar el compuesto del título como un sólido amarillo (0.25~g, 38.4% de rendimiento). MS (m/z): 225.0  $(M+H)^+$ .

# (B) 4-Cloro-3-((2-((4-((3S,5R)-3,5-dimetilpiperazin-1-il)fenil)amino)pirimidin-5-il)etinil)-5-metoxibenzoato de metilo

Una mezcla de 4-cloro-3-etinil-5-metoxibenzoato de metilo (0.052~g,~0.231~mmol), 5-bromo-N-(4-((3R,5S)-3,5-dimetilpiperazin-1-il)fenil)pirimidin-2-amina <math>(0.160~g,~0.442~mmol), Cul (0.005~g,~0.026~mmol) y PdCl<sub>2</sub>(PPh<sub>3</sub>)<sub>2</sub> (0.018~g,~0.026~mmol) en THF (8~mL) se agitó a 60 °C durante 3 h en una atmósfera de nitrógeno. Los componentes volátiles se eliminaron a presión reducida y el residuo se purificó mediante ISCO (eluida con MeOH en H<sub>2</sub>O 0~100%) para proporcionar el compuesto del título como un sólido amarillo (0.045~g,~38.4%~de~rendimiento). MS (m/z): 506.3  $(M+H)^+$ .

# (C) 4-Cloro-3-((2-((4-((3*S*,5*R*)-3,5-dimetilpiperazin-1-il)fenil)amino)pirimidin-5-il)etinil)-5-metoxi-*N*-metilbenzamida

Una mezcla de 4-cloro-3-((2-((4-((3S,5R)-3,5-dimetilpiperazin-1-il)fenil)amino)pirimidin-5-il)etinil)-5-metoxibenzoato de metilo (0.045 g, 0.089 mmol) y una solución de hidróxido de sodio (0.043 g en 1 mL de agua, 1.075 mmol) en MeOH (2 mL) y THF (3 mL) se agitó a temperatura ambiente durante 2 h. A continuación, la mezcla de reacción se purificó mediante ISCO (eluida con MeOH en H<sub>2</sub>O 0~100%) directamente para proporcionar el ácido como un sólido blanco (0.031 g, 70.9% de rendimiento). MS (m/z): 492.3 (M+H) $^+$ . Una mezcla del ácido intermedio (0.031 g, 0.063 mmol), clorhidrato de metilamina (0.012 g, 0.179 mmol), HATU (0.080 g, 0.210 mmol) y DIPEA (0.040 g, 0.310 mmol) en DMF (5 mL) se agitó a temperatura ambiente durante 30 min. A continuación, la mezcla de reacción se purificó mediante ISCO (eluida con MeOH en H<sub>2</sub>O 0 ~100%) directamente para proporcionar el compuesto del título como un sólido amarillo (0.011 g, 34.6% de rendimiento). MS (m/z): 505.3 (M+H) $^+$ .  $^1$ H RMN (400 MHz, CDCl<sub>3</sub>)  $\delta$  8.53 (s, 2H), 7.53 - 7.38 (m, 4H), 7.16 (s, 1H), 6.93 (d, J = 8.4 Hz, 2H), 6.15 (s, 1H), 3.97 (s, 3H), 3.55 - 3.38 (m, 2H), 3.13 - 3.03 (m, 2H), 3.02 (d, J = 4.6 Hz, 3H), 2.37 - 2.20 (m, 2H), 1.14 (d, J = 5.8 Hz, 6H).

Los siguientes compuestos se prepararon de acuerdo con los procedimientos del Compuesto **304** utilizando los correspondientes intermedios y reactivos en condiciones apropiadas que podrá reconocer un experto en la técnica.

| Compuesto | Estructura                              | LC-MS<br>(m/z)<br>(M+H)+ | ¹H RMN                                                                                                                                                                                                                                                                                                                                                            |
|-----------|-----------------------------------------|--------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 305       | H CI                                    | 411.2                    | <sup>1</sup> H RMN (400 MHz, CD <sub>3</sub> OD) δ 8.55 (s, 2H), 8.00 (s, 1H), 7.63 (d, $J$ = 1.7 Hz, 1H), 7.60 (s, 1H), 7.50 (d, $J$ = 1.7 Hz, 1H), 4.16 (c, $J$ = 7.2 Hz, 2H), 3.97 (s, 3H), 2.93 (s, 3H), 1.47 (t, $J$ = 7.2 Hz, 3H).                                                                                                                          |
| 306       | THE | 519.2                    | <sup>1</sup> H RMN (400 MHz, CD <sub>3</sub> OD) δ 8.53 (s, 2H), 7.55 (d, $J = 6.6$ Hz, 2H), 7.41 (d, $J = 2.3$ Hz, 1H), 7.19 (dd, $J = 8.6$ Hz, 2.3 Hz, 1H), 6.90 (d, $J = 8.6$ Hz, 1H), 3.93 (s, 3H), 3.86 (s, 3H), 3.27 - 3.22 (m, 2H), 3.11 - 3.01 (m, 2H), 2.90 (s, 3H), 2.25 - 2.17 (m, 2H), 1.10 (d, $J = 6.4$ Hz, 6H).                                    |
| 307       |                                         | 519.4                    | <sup>1</sup> H RMN (400 MHz, CD <sub>3</sub> OD) δ 8.51 (s, 2H), 7.54 (d, $J = 6.6$ Hz, 2H), 7.40 (d, $J = 2.4$ Hz, 1H), 7.17 (dd, $J = 8.6$ Hz, 2.4 Hz, 1H), 6.92 (d, $J = 8.6$ Hz, 1H), 3.93 (s, 3H), 3.86 (s, 3H), 3.10 - 2.99 (m, 4H), 2.90 (s, 3H), 2.72 - 2.58 (m, 4H), 2.49 (c, $J = 7.2$ Hz, 2H), 1.12 (t, $J = 7.2$ Hz, 3H).                             |
| 308       | H CI (R) NH (S) (S)                     | 535.2                    | <sup>1</sup> H RMN (400 MHz, CD <sub>3</sub> OD) δ 8.51 (s, 2H), 7.59 (d, $J = 1.9$ Hz, 1H), 7.46 (d, $J = 1.9$ Hz, 1H), 7.40 (d, $J = 2.3$ Hz, 1H), 7.18 (dd, $J = 8.6$ Hz, 2.3 Hz, 1H), 6.89 (d, $J = 8.6$ Hz, 1H), 3.94 (s, 3H), 3.86 (s, 3H), 3.26 - 3.21 (m, 2H), 3.09 - 2.98 (m, 2H), 2.90 (s, 3H), 2.20 - 2.16 (m, 2H), 1.08 (d, $J = 6.4$ Hz, 6H).        |
| 309       | -H-CI                                   | 535.6                    | <sup>1</sup> H RMN (400 MHz, CD <sub>3</sub> OD) δ 8.54 (s, 2H), 7.62 (d, $J = 1.9$ Hz, 1H), 7.49 (d, $J = 1.9$ Hz, 1H), 7.43 (d, $J = 2.3$ Hz, 1H), 7.19 (dd, $J = 8.6$ Hz, 2.4 Hz, 1H), 6.94 (d, $J = 8.6$ Hz, 1H), 3.96 (s, 3H), 3.87 (s, 3H), 3.10 - 3.06 (m, 4H), 2.91 (s, 3H), 2.70 - 2.66 (m, 4H), 2.51 (c, $J = 7.4$ Hz, 2H), 1.14 (t, $J = 7.3$ Hz, 3H). |

Ejemplo 23: Ensayo Transcreener cinasa de FGFR1

## 1. Materiales y reactivos:

- Kit de ensayo Transcreenen™ CINASA: Bellbrook Labs., 3003-10K;
- FGFR1 humano recombinante: Invitrogen, PV3146;
- Poli E4Y (sustrate): Sigma, P0275; 5mg/mL, disuelto en agua MiliQ;
- Tampón de ensayo: HEPES 67 mM, 0.013% de Triton X-100, MgCl<sub>2</sub> 27 mM, MnCl<sub>2</sub> 0.67 mM, DTT 1.25 mM, pH 7.4;
- ATP 10 mM: Invitrogen, PV3227:
- EDTA 500 mM: Invitrogen, 15575-038;
- Placa Greiner negra de 96 pocillos: Greiner, 675076.

### 2. Preparación de la solución

- Los compuestos de prueba se disolvieron en DMSO y se diluyeron con tampón de ensayo hasta 5 veces la concentración final manteniendo la concentración de DMSO a un 5%. Se necesitan diluciones adicionales para generar concentraciones finales que son 1, 0.33, 0.11, 0.037, 0.012, 0.004, 0.0014, 0.0005 μM; (la concentración final de DMSO es de un 1%).
- Preparación de la solución madre de enzima/sustrato: Se diluyeron en tampón de ensayo tanto el FGFR1 humano recombinante como Poli E4Y. La concentración final es de 0.4 ng/μL para FGFR1 y de 62.5 ng/μL para Poli E4Y. La mezcla se mantiene en hielo antes de su uso;
- Preparación de diluyentes de ATP: Se diluye ATP 10 mM en tampón de ensayo y la concentración final es de 25 μM;

20

15

5

10

- Preparación de diluyentes de ADP: se diluye ADP (500 μM) en tampón de ensayo y la concentración final es de 25 μM;
- Preparar patrones para la curva de calibración de ATP como los siguientes:

| Columna | Diluyentes de ADP (μL) | Diluyentes de ATP (μL) |
|---------|------------------------|------------------------|
| 1       | 50                     | 0                      |
| 2       | 25                     | 25                     |
| 3       | 10                     | 40                     |
| 4       | 5                      | 45                     |
| 5       | 5                      | 95                     |
| 6       | 5                      | 195                    |
| 7       | 5                      | 495                    |
| 8       | 4                      | 496                    |
| 9       | 3                      | 497                    |
| 10      | 2                      | 498                    |
| 11      | 1                      | 499                    |
| 12      | 1                      | 999                    |

## 3. Reacción enzimática

5

10

15

20

- En una placa de 96 pocillos, añadir 5 μL de la solución diluida del compuesto de prueba o solución de control (control positivo: 5 μL de DMSO al 5%; control negativo: 5 μL de EDTA 500mM) los pocillos deseados respectivamente;
  - Añadir 10 μL de la solución madre enzima/sustrato a cada pocillo;
- Añadir 10 μL de los diluyentes de ATP para iniciar la reacción enzimática y agitar vorticialmente la placa inmediatamente en un agitador de placas;
- Para los pocillos con los que se va obtener la curva de calibrado, añadir 5 μL de DMSO al 5%, 10 μL de tampón de ensayo y 10 μL del patrón para la curva de calibrado de ATP.
- Incubar la placa durante 45 min a 28 °C en un agitador de placas a velocidad baja.

### 4. Parada de la reacción y detección de ADP

- Preparación de la mezcla de detección: La mezcla se realiza por dilución con agua MiliQ, tal como sigue: trazador ADP Alexa633 (1: 100), anticuerpo contra ADP (1: 158), y tampón de parada y detección (1: 10);
- Preparación del control del Trazador solo: La mezcla se realiza por dilución con agua MiliQ, tal como sigue: trazador ADP Alexa633 (1: 100), y tampón de parada y detección (1: 10)
- Preparación del control sin Trazador: se diluye el tampón de parada y detección con agua MiliQ; 10 veces.
- Añadir 25 µL de mezcla de detección, control del Trazador solo y control sin Trazador en los correspondientes pocillos, respectivamente;
- Incubar a 28 °C durante 1 h, en un agitador de placas a velocidad baja;
- Medir la polarización de la fluorescencia (mP) en TECAN F500. Longitud de onda de excitación: 610 nm, Longitud de onda de emisión: 670 nm.

### 25 5. Análisis de los datos

75

### Nota:

5

15

25

30

- [ADP] en el pocillo del Compuesto representa la concentración de ADP en el pocillo del compuesto de prueba.
- [ADP] en el pocillo del control positivo representa la concentración de ADP en el pocillo con DMSO al 5%
- La conversión del valor de mP en la concentración de ADP se calcula a partir de la fórmula que determinó la curva de calibración. Y el valor de mP se mide siguiendo las instrucciones que proporciona BellBrook Labs. (www.bellbrooklabs.com).
- **6. Cl**<sub>50</sub>: determinada con un software añadido para Microsoft Excel, XLfit™ (versión 2.0) de ID Business Solutions (Guildford, Reino Unido).

### 10 Ejemplo 24: Ensayo Transcreener cinasa de FGFR2

### 1. Materiales y reactivos

- Kit de ensayo Transcreenen™ CINASA: Bellbrook Labs., 3003-10K;
- FGFR2 humano recombinante: Invitrogen, PV3368;
- Poli E4Y (sustrate): Sigma, P0275; 5mg/mL, disuelto en agua MiliQ;
- Tampón de ensayo: HEPES 67 mM, 0.013% de Triton X-100, MgCl<sub>2</sub> 27 mM, MnCl<sub>2</sub> 0.67 mM, DTT 1.25 mM, pH 7.4;
- ATP 10 mM: Invitrogen, PV3227;
- EDTA 500 mM: Invitrogen, 15575-038;
- Placa Greiner negra de 96 pocillos: Greiner, 675076.

### 20 2. Preparación de la solución

- Los compuestos de prueba se disolvieron en DMSO y se diluyeron con tampón de ensayo hasta 5 veces la concentración final manteniendo la concentración de DMSO a un 5%. Se necesitan diluciones adicionales para generar concentraciones finales que son 1, 0.33, 0.11, 0.037, 0.012, 0.004, 0.0014, 0.0005 μM; (la concentración final de DMSO es de un 1%).
- Preparación de la solución madre de enzima/sustrato: Se diluyeron en tampón de ensayo tanto el FGFR2 humano recombinante como Poli E4Y. La concentración final es de 0.3 ng/μL para FGFR2 y de 62.5 ng/μL para Poli E4Y. La mezcla se mantiene en hielo antes de su uso;
- Preparar los diluyentes de ATP, se diluye ATP 10 nM en tampón de ensayo y la concentración final es de 25 uM:
- Preparar los diluyentes de ADP: se diluye ADP (500 μM) en tampón de ensayo y la concentración final es de 25 μM;
- Preparar patrones para la curva de calibración de ATP como los siguientes:

| Columna | Diluyentes de ADP (μL) | Diluyentes de ATP (μL) |
|---------|------------------------|------------------------|
| 1       | 50                     | 0                      |
| 2       | 25                     | 25                     |
| 3       | 10                     | 40                     |
| 4       | 5                      | 45                     |
| 5       | 5                      | 95                     |
| 6       | 5                      | 195                    |
| 7       | 5                      | 495                    |

| Columna | Diluyentes de ADP (μL) | Diluyentes de ATP (μL) |
|---------|------------------------|------------------------|
| 8       | 4                      | 496                    |
| 9       | 3                      | 497                    |
| 10      | 2                      | 498                    |
| 11      | 1                      | 499                    |
| 12      | 1                      | 999                    |

#### 3. Reacción enzimática

5

10

15

20

25

- En una placa de 96 pocillos, añadir 5 μL de la solución diluida del compuesto de prueba o solución de control (control positivo: 5 μL de DMSO al 5%; control negativo: 5 μL de EDTA 500mM) los pocillos deseados respectivamente;
- Añadir 10 μL de la solución madre enzima/sustrato a cada pocillo;
- Añadir 10 μL de los diluyentes de ATP para iniciar la reacción enzimática y agitar vorticialmente la placa inmediatamente en un agitador de placas;
- Para los pocillos con los que se va obtener la curva de calibrado, añadir 5 μL de DMSO al 5%, 10 μL de tampón de ensayo y 10 μL del patrón para la curva de calibrado de ATP.
- Incubar la placa durante 45 min a 28 °C en un agitador de placas a velocidad baja.

## 4. Parada de la reacción y detección de ADP

- Preparación de la mezcla de detección: La mezcla se realiza por dilución con agua MiliQ, tal como sigue: trazador ADP Alexa633 (1: 100), anticuerpo contra ADP (1: 158), y tampón de parada y detección (1: 10);
- Preparación del control del Trazador solo: La mezcla se realiza por dilución con agua MiliQ, tal como sigue: trazador ADP Alexa633 (1: 100), y tampón de parada y detección (1: 10)
- Preparación del control sin Trazador: se diluye el tampón de parada y detección con agua MiliQ; 10 veces.
- Añadir 25 µL de mezcla de detección, control del Trazador solo y control sin Trazador en los correspondientes pocillos, respectivamente;
- Incubar a 28 °C durante 1 h, en un agitador de placas a velocidad baja;
- Medir la polarización de la fluorescencia (mP) en TECAN F500. Longitud de onda de excitación: 610 nm, Longitud de onda de emisión: 670nm.

### 5. Análisis de los datos

## Nota:

- [ADP] en el pocillo del Compuesto representa la concentración de ADP en el pocillo del compuesto de prueba.
- [ADP] en el pocillo del control positivo representa la concentración de ADP en el pocillo con DMSO al 5%
- La conversión del valor de mP en la concentración de ADP se calcula a partir de la fórmula que determinó la curva de calibración. Y el valor de mP se mide siguiendo las instrucciones que proporciona BellBrook Labs. (www.bellbrooklabs.com).
- 30 **6. CI₅o:** determinada con un software añadido para Microsoft Excel, XLfit™ (versión 2.0) de ID Business Solutions (Guildford, Reino Unido).

### Ejemplo 25: Ensayo Z-lyte cinasa de FGFR3

## 1. Materiales y reactivos:

|                               | Proveedor    | Número de cat. |
|-------------------------------|--------------|----------------|
| Kit de ensayo Z-lyte-TYR4     | Invitrogen   | PV3193         |
| Péptido Tyr 4 Z-LYTE          | Invitrogen   | PV3279         |
| Fosfopéptido Tyr 4 Z-LYTE     | Invitrogen   | PV3280         |
| Tampón de cinasa 5X           | Invitrogen   | PV3189         |
| ATP 10 mM                     | Invitrogen   | PV3227         |
| Reactivo de desarrollo B      | Invitrogen   | PV3298         |
| Tampón de desarrollo          | Invitrogen   | P3127          |
| Reactivo de parada            | Invitrogen   | P3094          |
| FGFR3 cinasa                  | Invitrogen   | PV3145         |
| placa de 384 pocillos (negra) | Corning      | 3575           |
| Victor3                       | PerkinElmer™ |                |

## 2. Pasos de la reacción:

## Mapa de la placa

| 1  | Cons comp ref (µM) | Cons comp 1 (μM) | Cons comp 2 (μM) | <br>Cons comp N (μM) |
|----|--------------------|------------------|------------------|----------------------|
| C1 | 1.00E+00           | 1.00E+00         | 1.00E+00         | 1.00E+00             |
|    | 1.00E+00           | 1.00E+00         | 1.00E+00         | 1.00E+00             |
|    | 3.33E-01           | 3.33E-01         | 3.33E-01         | 3.33E-01             |
|    | 3.33E-01           | 3.33E-01         | 3.33E-01         | 3.33E-01             |
| C2 | 1.11E-01           | 1.11E-01         | 1.11E-01         | 1.11E-01             |
|    | 1.11E-01           | 1.11E-01         | 1.11E-01         | 1.11E-01             |
|    | 3.70E-02           | 3.70E-02         | 3.70E-02         | 3.70E-02             |
|    | 3.70E-02           | 3.70E-02         | 3.70E-02         | 3.70E-02             |
| C3 | 1.23E-02           | 1.23E-02         | 1.23E-02         | 1.23E-02             |
|    | 1.23E-02           | 1.23E-02         | 1.23E-02         | 1.23E-02             |
|    | 4.12E-03           | 4.12E-03         | 4.12E-03         | 4.12E-03             |

| 1 | Cons comp ref (μM) | Cons comp 1 (μM) | Cons comp 2 (µM) | <br>Cons comp N (μM) |
|---|--------------------|------------------|------------------|----------------------|
|   | 4.12E-03           | 4.12E-03         | 4.12E-03         | 4.12E-03             |
|   | 1.37E-03           | 1.37E-03         | 1.37E-03         | 1.37E-03             |
|   | 1.37E-03           | 1.37E-03         | 1.37E-03         | 1.37E-03             |
|   | 4.57E-04           | 4.57E-04         | 4.57E-04         | 4.57E-04             |
|   | 4.57E-04           | 4.57E-04         | 4.57E-04         | 4.57E-04             |

### 3. Preparación de la solución

- 1) Tampón de cinasa 1.33X: Diluir tampón de cinasa 5X hasta 1.33X con ddH<sub>2</sub>O.
- 2) Compuestos de prueba 4X: Diluir en serie los compuestos de prueba hasta 4 veces las concentraciones deseadas, manteniendo la concentración de DMSO en un 8%. Las concentraciones finales son 1, 0.33, 0.11, 0.037, 0.012, 0.004, 0.0014, 0.00046 µM, y la concentración final de DMSO es de un 2%.
- 3) Mezcla cinasa/péptido (solución P/C): Preparar la mezcla de cinasa/péptido diluyendo la cinasa hasta 0.7 µg/mL y el péptido Tyr 4 Z-LYTE™ hasta 4 µM en Tampón de cinasa 1.33X. Mezclar suavemente pipeteando.
- Solución de fosfopéptido (solución FP): Añadir 0.4 μL de Fosfopéptido Tyr 4 Z-LYTE™ a 99.6 μL de Tampón de cinasa 1.33X.
- 5) Solución de ATP: Preparar la solución de ATP diluyendo el ATP 10 mM en Tampón de cinasa 1.33X hasta 300 uM.
- 6) Solución de desarrollo: Diluir 1:128 el Reactivo de desarrollo B con el Tampón de desarrollo.

## 4. Reacción

5

10

15

20

- 1) Reacción de cinasa (10 µL de volumen)
- En una placa de 384 pocillos, añadir 2.5 µL de los Comp de prueba 4X a cada pocillo excepto a los pocillos C1, C2 y C3.
  - Añadir 2.5 µL de DMSO al 8% a los pocillos C1, C2 y C3.
  - Poner la placa en hielo.
  - Añadir 5 µL de mezcla P/C a cada uno de los pocillos con Comp de prueba y los pocillos C1 y C2.
  - Añadir 5 µL de solución FP al pocillo C3.
  - Añadir 2.5 μL de tampón de cinasa 1.33X a los pocillos C1 y C3.
  - Añadir 2.5 µL de Solución de ATP 4X a cada uno de los pocillos con Comp de prueba y el pocillo C2, respectivamente. Agitar la placa durante 30 s y centrifugar (1500 rpm, 1 min).
  - Sellar la placa para protegerla de la luz e incubar la placa durante 1 hora a TA (25-30 °C).
- 25 2) Reacción de desarrollo
  - Añadir 5 µL de solución de desarrollo a todos los pocillos.
  - Agitar la placa durante 30 s y centrifugar (1500 rpm, 1 min).
  - Sellar la placa para protegerla de la luz e incubar la placa durante 1 hora a TA (25-30 °C).
  - 3) Parada y lectura
    - Añadir 5 µL del reactivo de parada a todos los pocillos.
    - Agitar la placa durante 30 s y centrifugar (1500 rpm, 1 min).
    - Medir el valor de cumarina (Ex400 nm, Em445 nm) y fluoresceína (Ex400 nm, Em520 nm), respectivamente.

#### 5. Análisis de los datos

Relación de la emisión (RE) = Emisión de la cumarina (445 nm)/Emisión de la fluoresceína (520 nm)

35 % de Fosforilación =  $1 - [RE \times C3_{520 \text{ nm}} - C3_{445 \text{ nm}}]/[(C1_{445 \text{ nm}} - C3_{445 \text{ nm}}) + RE \times (C3_{520 \text{ nm}} - C1_{520 \text{ nm}})]$ 

30

Tasa de inhibición (TI) = 1 - %Foscomp de prueba/%Fosc2

**6. Valor de Cl**<sub>50</sub>: determinado con un software añadido para Microsoft Excel, XLfit™ (versión 2.0) de ID Business Solutions (Guildford, Reino Unido).

#### Ejemplo 26: Ensayo de proliferación celular

#### 5 1. Línea celular

KG-1 (N.º de acceso ATCC CCL-246),

SNU-16 (N.º de acceso ATCC CRL-5974),

RT-112 (N.º de acceso ECACC 85061106)

### 2. Protocolo de ensayo

- 10 Se mide la proliferación celular del cáncer relacionado con FGFR en placas de 96 pocillos utilizando el Kit-8 de Recuento Celular (Dojindo CK04-13).
  - Sembrar 30 000 células/pocillo de KG1, 5000 células/pocillo de SNU16 y 1000 células/pocillo de RT112 en un volumen de 100 μL/pocillo en medio de crecimiento.
  - Después de 24 horas, diluir el compuesto de prueba hasta 10, 3.3, 1.1, 0.37, 0.12, 0.04, 0.013 y 0.004 μM, manteniendo la concentración de DMSO en un 5%.
  - Añadir 10 μL de una serie de compuesto de 8 puntos a los pocillos de las células en cultivo.
  - Incubar a 37 °C y un 5% de CO2 durante 72 horas.
  - Añadir 10 μL/pocillo de CCkit8 e incubar a 37 °C y un 5% de CO₂ durante una hora.
  - Detectar la densidad óptica de cada pocillo a 450 nM en Labsystems Multiskan K3.

### 20 3. Análisis de los datos

Inhibición (%) = 100 - 
$$\frac{\text{OD}_{\text{pocillo del compuesto}} \quad \text{OD}_{\text{pocillo del control}}}{\text{OD}_{\text{pocillo del células}} - \text{OD}_{\text{pocillo de control}}} \quad X 100$$

#### Nota:

- DOpocillo del compuesto representa la densidad óptica de las células tratadas con compuesto.
- DO<sub>pocillo células</sub> representa la densidad óptica de células sin tratamiento con compuestos (solo un 0.5% de DMSO)
- DO<sub>pocillo de control</sub> representa la densidad óptica del fondo del medio de cultivo

**Cl**<sub>50</sub>: determinada con un software añadido para Microsoft Excel, XLfit™ (versión 2.0) de ID Business Solutions (Guildford, Reino Unido).

### Resultados del bioensayo:

| Ejemplo N.º | FGFR1 (FP)            | FGFR2 (FP)            | FGFR3 (Z-lyte)        | KG1                   | SNU-16                | TR-112                |
|-------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|
|             | Cl <sub>50</sub> (μM) |
| 1           | 0.024                 | 0.019                 | 0.028                 | 0.049                 | 0.095                 | 0.612                 |
| 2           | 0.017                 | 0.010                 | 0.017                 | 0.017                 | 0.031                 | 0.019                 |
| 3           | 0.028                 | 0.028                 | 0.188                 | 0.072                 | 0.134                 | 0.370                 |
| 4           | 0.201                 | 0.233                 | 0.795                 |                       |                       |                       |
| 5           | 0.013                 | 0.012                 | 0.047                 | 0.024                 | 0.056                 |                       |

15

25

| Ejemplo N.º | FGFR1 (FP)            | FGFR2 (FP)            | FGFR3 (Z-lyte)        | KG1                   | SNU-16                | TR-112                |
|-------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|
|             | Cl <sub>50</sub> (μM) | CI <sub>50</sub> (µM) | Cl <sub>50</sub> (μM) | Cl <sub>50</sub> (µM) | Cl <sub>50</sub> (µM) | Cl <sub>50</sub> (μM) |
| 7           | 0.143                 | 0.169                 | 0.590                 |                       |                       |                       |
| 8           | 0.006                 | 0.005                 | 0.014                 | 0.011                 | 0.014                 | 0.019                 |
| 9           | 0.038                 | 0.028                 | 0.064                 | 0.098                 | 0.044                 |                       |
| 10          | 0.025                 | 0.005                 | 0.008                 | 0.018                 | 0.022                 | 0.029                 |
| 11          | 0.018                 | 0.009                 | 0.007                 | 0.040                 | 0.028                 | 0.034                 |
| 12          | 0.098                 | 0.025                 | 0.128                 |                       | 0.266                 |                       |
| 13          | 0.029                 | 0.010                 | 0.007                 |                       | 0.021                 | 0.059                 |
| 14          | 0.003                 | 0.004                 | 0.004                 | 0.009                 | 0.007                 |                       |
| 15          | 0.012                 | 0.008                 | 0.016                 | 0.013                 | 0.017                 |                       |
| 16          | 0.004                 | 0.006                 | 0.009                 | 0.009                 | 0.012                 |                       |
| 17          | 0.012                 | 0.006                 | 0.008                 | 0.077                 | 0.003                 |                       |
| 18          | 0.005                 | 0.005                 | 0.011                 | 0.019                 | 0.022                 |                       |
| 19          | 0.043                 | 0.034                 | 0.128                 |                       |                       |                       |
| 20          | 0.009                 | 0.006                 | 0.014                 | 0.040                 | 0.016                 | 0.052                 |
| 21          | 0.009                 | 0.005                 | 0.020                 | 0.028                 | 0.026                 | 0.084                 |
| 22          | 0.047                 | 0.027                 | 0.094                 | 0.122                 | 0.151                 |                       |
| 23          | 0.009                 | 0.006                 | 0.013                 | 0.029                 | 0.018                 |                       |
| 24          | 0.015                 | 0.008                 | 0.030                 | 0.039                 | 0.023                 | 0.218                 |
| 25          | 0.020                 | 0.012                 | 0.027                 | 0.048                 | 0.029                 | 0.093                 |
| 26          | 0.256                 | 0.042                 | 0.021                 | 0.340                 | 0.293                 | 0.402                 |
| 27          | 0.360                 | 0.245                 | 0.347                 |                       |                       |                       |
| 28          | 0.003                 | 0.002                 | 0.007                 | 0.005                 | 0.005                 |                       |
| 29          | 0.029                 | 0.010                 | 0.040                 | 0.055                 | 0.068                 | 0.241                 |
| 30          | 0.042                 | 0.023                 | 0.287                 | 0.178                 | 0.236                 | 0.491                 |

| Ejemplo N.º    | FGFR1 (FP)            | FGFR2 (FP)            | FGFR3 (Z-lyte)        | KG1                   | SNU-16                | TR-112                |
|----------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|
| <b>_</b> jop.o | Cl <sub>50</sub> (μM) | CI <sub>50</sub> (μM) | Cl <sub>50</sub> (μM) | Cl <sub>50</sub> (µM) | Cl <sub>50</sub> (μM) | Cl <sub>50</sub> (μM) |
| 31             | 0.018                 | 0.006                 | 0.005                 | 0.057                 | 0.030                 | 0.104                 |
| 32             | 0.022                 | 0.007                 | 0.017                 | 0.047                 | 0.019                 | 0.135                 |
| 33             | 0.033                 | 0.013                 | 0.046                 | 0.132                 | 0.058                 | 0.308                 |
| 34             | 0.030                 | 0.009                 | 0.083                 | 0.189                 | 0.157                 | 0.455                 |
| 35             | 0.021                 | 0.010                 | 0.031                 | 0.052                 | 0.029                 | 0.160                 |
| 36             | 0.010                 | 0.007                 | 0.016                 | 0.046                 | 0.044                 |                       |
| 37             | 0.008                 | 0.003                 | 0.020                 | 0.028                 | 0.030                 | 0.086                 |
| 38             | 0.043                 | 0.041                 | 0.043                 | 0.049                 | 0.071                 | 0.342                 |
| 39             | 0.012                 | 0.010                 | 0.039                 | 0.031                 | 0.048                 |                       |
| 40             | 0.004                 | 0.006                 | 0.009                 | 0.038                 | 0.024                 |                       |
| 41             | 0.002                 | 0.004                 | 0.008                 | 0.011                 | 0.015                 |                       |
| 42             | 0.016                 | 0.010                 | 0.048                 | 0.069                 | 0.033                 |                       |
| 43             | 0.005                 | 0.004                 | 0.009                 | 0.009                 | 0.015                 | 0.051                 |
| 44             | 0.014                 | 0.007                 | 0.010                 | 0.388                 | 0.034                 |                       |
| 45             | 0.132                 | 0.034                 | 0.061                 | 0.059                 | 0.113                 |                       |
| 46             | 0.006                 | 0.006                 | 0.008                 | 0.063                 | 0.074                 |                       |
| 47             | 0.005                 | 0.005                 | 0.015                 | 0.011                 | 0.016                 |                       |
| 48             | 0.006                 | 0.005                 | 0.008                 | 0.075                 | 0.018                 | 0.062                 |
| 49             | 0.014                 | 0.015                 | 0.029                 | 0.045                 | 0.132                 | 0.352                 |
| 50             | 0.103                 | 0.113                 | 0.175                 | 0.387                 | 0.581                 |                       |
| 51             | 0.001                 | 0.002                 | 0.005                 | 0.004                 | 0.005                 |                       |
| 52             | 0.005                 | 0.004                 | 0.008                 | 0.014                 | 0.019                 | 0.049                 |
| 53             | 0.006                 | 0.003                 | 0.006                 | 0.018                 | 0.010                 | 0.031                 |
| 54             | 0.002                 | 0.003                 | 0.002                 | 0.003                 | 0.004                 | 0.016                 |
| 55             | 0.004                 | 0.004                 | 0.009                 | 0.007                 | 0.017                 |                       |

| Ejemplo N.º | FGFR1 (FP)            | FGFR2 (FP)            | FGFR3 (Z-lyte)        | KG1                   | SNU-16                | TR-112                |
|-------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|
|             | Cl <sub>50</sub> (μM) | CI <sub>50</sub> (µM) | Cl <sub>50</sub> (μM) | Cl <sub>50</sub> (µM) | Cl <sub>50</sub> (μM) | Cl <sub>50</sub> (μM) |
| 56          | 0.008                 | 0.009                 | 0.014                 | 0.016                 | 0.032                 |                       |
| 57          | 0.325                 | 0.123                 | 0.509                 |                       |                       |                       |
| 58          | 0.019                 | 0.008                 | 0.011                 | 0.805                 | 0.070                 | 0.560                 |
| 59          | 0.003                 | 0.002                 | 0.002                 | 0.002                 | 0.004                 |                       |
| 60          | 0.016                 | 0.007                 | 0.023                 | 0.051                 | 0.046                 | 0.137                 |
| 61          | 0.054                 | 0.017                 | 0.062                 | 0.400                 | 0.158                 |                       |
| 62          | 0.195                 | 0.027                 | 0.243                 | 0.427                 | 0.419                 | 0.895                 |
| 63          | 0.020                 | 0.009                 | 0.033                 | 0.046                 | 0.049                 | 0.152                 |
| 64          | 0.048                 | 0.028                 | 0.112                 | 0.203                 | 0.055                 | 0.296                 |
| 65          | 0.018                 | 0.007                 | 0.025                 | 0.194                 | 0.055                 | 0.201                 |
| 66          | 0.037                 | 0.027                 | 0.044                 | 0.089                 | 0.071                 | 0.263                 |
| 67          | 0.031                 | 0.013                 | 0.025                 |                       |                       |                       |
| 68          | 0.042                 | 0.020                 | 0.042                 | 0.268                 | 0.085                 | 0.337                 |
| 69          | 0.027                 | 0.016                 | 0.022                 |                       |                       |                       |
| 70          | 0.126                 | 0.053                 | 0.591                 | 0.398                 | 0.708                 | 0.101                 |
| 71          | 0.058                 | 0.024                 | 0.038                 | 0.195                 | 0.094                 | 0.554                 |
| 72          | 0.034                 | 0.011                 | 0.040                 |                       |                       |                       |
| 73          | 0.009                 | 0.008                 | 0.025                 | 0.070                 | 0.065                 | 0.493                 |
| 74          | 0.041                 | 0.033                 | 0.061                 | 0.123                 | 0.094                 |                       |
| 75          | 0.005                 | 0.004                 | 0.008                 | 0.043                 | 0.016                 | 0.067                 |
| 76          | 0.005                 | 0.003                 | 0.004                 | 0.011                 | 0.012                 |                       |
| 77          | 0.044                 | 0.018                 | 0.031                 |                       |                       |                       |
| 78          | 0.006                 | 0.006                 | 0.006                 | 0.013                 | 0.014                 | 0.034                 |
| 79          | 0.012                 | 0.010                 | 0.014                 | 0.009                 | 0.019                 | 0.142                 |

| Ejemplo N.º             | FGFR1 (FP)            | FGFR2 (FP)            | FGFR3 (Z-lyte)        | KG1                   | SNU-16                | TR-112                |
|-------------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|
| <b>_</b> je <b>p</b> .e | Cl <sub>50</sub> (μM) | Cl <sub>50</sub> (µM) | Cl <sub>50</sub> (μM) | Cl <sub>50</sub> (µM) | Cl <sub>50</sub> (μM) | Cl <sub>50</sub> (μM) |
| 80                      | 0.010                 | 0.011                 | 0.013                 | 0.013                 | 0.018                 | 0.044                 |
| 81                      | 0.017                 | 0.013                 | 0.026                 | 0.026                 | 0.059                 | 0.133                 |
| 82                      | 0.019                 | 0.010                 | 0.022                 | 0.048                 | 0.046                 | 0.334                 |
| 83                      | 0.009                 | 0.005                 | 0.014                 | 0.024                 | 0.059                 | 0.495                 |
| 84                      | 0.024                 | 0.016                 | 0.019                 | 0.033                 | 0.039                 | 0.024                 |
| 85                      | 0.015                 | 0.008                 | 0.033                 | 0.067                 | 0.017                 | 0.021                 |
| 86                      | 0.008                 | 0.005                 | 0.011                 | 0.016                 | 0.025                 | 0.010                 |
| 87                      | 0.015                 | 0.006                 | 0.006                 | 0.031                 | 0.033                 | 0.062                 |
| 88                      | 0.012                 | 0.005                 | 0.003                 | 0.030                 | 0.024                 | 0.050                 |
| 89                      | 0.015                 | 0.009                 | 0.035                 | 0.053                 | 0.055                 | 0.201                 |
| 90                      | 0.015                 | 0.016                 | 0.152                 | 0.071                 | 0.149                 | 0.626                 |
| 91                      | 0.019                 | 0.007                 | 0.016                 | 0.248                 | 0.239                 | 0.122                 |
| 92                      | 0.008                 | 0.008                 | 0.010                 | 0.090                 | 0.032                 | 0.087                 |
| 93                      | 0.019                 | 0.012                 | 0.038                 | 0.056                 | 0.029                 | 0.088                 |
| 94                      | 0.015                 | 0.009                 | 0.017                 | 0.030                 | 0.093                 | 0.026                 |
| 95                      | 0.017                 | 0.010                 | 0.010                 | 0.042                 | 0.016                 | 0.012                 |
| 96                      | 0.010                 | 0.010                 | 0.036                 | 0.025                 | 0.050                 | 0.084                 |
| 97                      | 0.015                 | 0.007                 | 0.016                 | 0.177                 | 0.059                 | 0.240                 |
| 98                      | 0.012                 | 0.005                 | 0.009                 | 0.370                 | 0.016                 | 0.021                 |
| 99                      | 0.015                 | 0.006                 | 0.009                 | 0.214                 | 0.013                 | 0.027                 |
| 100                     | 0.010                 | 0.004                 | 0.004                 | 0.461                 | 0.018                 | 0.012                 |
| 101                     | 0.012                 | 0.008                 | 0.008                 | 0.130                 | 0.029                 | 0.046                 |
| 102                     | 0.011                 | 0.005                 | 0.007                 | 0.031                 | 0.009                 | 0.026                 |
| 103                     | 0.020                 | 0.016                 | 0.017                 | 0.032                 | 0.019                 | 0.064                 |
| 104                     | 0.164                 | 0.040                 | 0.198                 | 0.255                 | 0.238                 | 0.831                 |

| Ejemplo N.º | FGFR1 (FP)            | FGFR2 (FP)            | FGFR2 (FP) FGFR3 (Z-lyte) |                       | SNU-16                | TR-112                |  |
|-------------|-----------------------|-----------------------|---------------------------|-----------------------|-----------------------|-----------------------|--|
| Ljempio II. | Cl <sub>50</sub> (μM) | Cl <sub>50</sub> (µM) | Cl <sub>50</sub> (μM)     | Cl <sub>50</sub> (μM) | Cl <sub>50</sub> (µM) | Cl <sub>50</sub> (μM) |  |
| 105         | 0.018                 | 0.009                 | 0.011                     |                       |                       |                       |  |
| 106         | 0.034                 | 0.012                 | 0.033                     | 0.044                 | 0.033                 | 0.072                 |  |
| 107         | 0.161                 | 0.053                 | 0.213                     | 0.344                 | 0.170                 | 0.287                 |  |
| 108         | 0.063                 | 0.044                 | 0.119                     |                       |                       |                       |  |
| 109         | 0.011                 | 0.006                 | 0.012                     | 0.026                 | 0.022                 | 0.159                 |  |
| 110         | 0.032                 | 0.015                 | 0.026                     | 0.048                 | 0.024                 | 0.225                 |  |
| 111         | 0.014                 | 0.007                 | 0.012                     | 0.030                 | 0.017                 | 0.110                 |  |
| 112         | 0.012                 | 0.005                 | 0.013                     | 0.021                 | 0.024                 | 0.094                 |  |
| 113         | 0.008                 | 0.004                 | 0.015                     | 0.022                 | 0.042                 | 0.257                 |  |
| 114         | 0.012                 | 0.007                 | 0.018                     | 0.033                 | 0.055                 | 0.461                 |  |
| 115         | 0.032                 | 0.021                 | 0.047                     | 0.138                 | 0.139                 | 0.659                 |  |
| 116         | 0.015                 | 0.009                 | 0.044                     | 0.053                 | 0.038                 | 0.142                 |  |
| 117         | 0.031                 | 0.011                 | 0.030                     | 0.201                 | 0.048                 | 0.428                 |  |
| 118         | 0.010                 | 0.007                 | 0.035                     | 0.040                 | 0.033                 |                       |  |
| 119         | 0.010                 | 0.007                 | 0.014                     | 0.028                 | 0.026                 | 0.090                 |  |
| 120         | 0.005                 | 0.003                 | 0.010                     | 0.110                 | 0.112                 | 0.562                 |  |
| 121         | 0.068                 | 0.014                 | 0.024                     | 0.095                 | 0.046                 | 0.197                 |  |
| 122         | 0.107                 | 0.033                 | 0.061                     | 0.162                 | 0.127                 | 0.570                 |  |
| 123         | 0.009                 | 0.007                 | 0.008                     | 0.018                 | 0.017                 | 0.036                 |  |
| 124         | 0.379                 | 0.275                 | 0.311                     |                       |                       |                       |  |
| 125         | 0.048                 | 0.018                 | 0.146                     |                       |                       |                       |  |
| 126         | 0.012                 | 0.005                 | 0.014 0.07                |                       | 0.088                 | 0.591                 |  |
| 127         | 0.014                 | 0.006                 | 0.011                     | 0.012                 | 0.019                 | 0.053                 |  |
| 128         | 0.027                 | 0.010                 | 0.028                     | 0.020                 | 0.045                 | 0.019                 |  |
| 129         | 0.028                 | 0.005                 | 0.013                     | 0.031                 | 0.026                 | 0.188                 |  |

| Ejemplo N.º | FGFR1 (FP)            | FGFR2 (FP)            | FGFR3 (Z-lyte)        | KG1                   | SNU-16                | TR-112                |  |
|-------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|--|
| _jop.o 14.  | CI <sub>50</sub> (μΜ) | Cl <sub>50</sub> (µM) | Cl <sub>50</sub> (μM) | Cl <sub>50</sub> (µM) | Cl <sub>50</sub> (μM) | Cl <sub>50</sub> (μM) |  |
| 130         | 0.023                 | 0.012                 | 0.034                 | 0.026                 | 0.029                 |                       |  |
| 131         | 0.011                 | 0.006                 | 0.019                 | 0.022                 | 0.027                 | 0.124                 |  |
| 132         | 0.015                 | 0.007                 | 0.017                 | 0.032                 | 0.031                 | 0.165                 |  |
| 133         | 0.009                 | 0.006                 | 0.015                 | 0.007                 | 0.018                 | 0.065                 |  |
| 134         | 0.038                 | 0.013                 | 0.021                 |                       |                       |                       |  |
| 135         | 0.014                 | 0.006                 | 0.009                 | 0.020                 | 0.013                 | 0.067                 |  |
| 136         | 0.010                 | 0.007                 | 0.013                 | 0.029                 | 0.018                 | 0.166                 |  |
| 137         | 0.009                 | 0.005                 | 0.013                 | 0.026                 | 0.018                 | 0.135                 |  |
| 138         | 0.028                 | 0.019                 | 0.020                 | 0.030                 | 0.029                 | 0.750                 |  |
| 139         | 0.015                 | 0.008                 | 0.017                 | 0.045                 | 0.018                 | 0.112                 |  |
| 140         | 0.009                 | 0.005                 | 0.009                 | 0.022                 | 0.020                 | 0.066                 |  |
| 141         | 0.020                 | 0.010                 | 0.014                 | 0.047                 | 0.015                 | 0.112                 |  |
| 142         | 0.031                 | 0.012                 | 0.049                 | 0.064                 | 0.043                 | 0.127                 |  |
| 143         | 0.008                 | 0.005                 | 0.010                 | 0.028                 | 0.032                 | 0.048                 |  |
| 144         | 0.012                 | 0.006                 | 0.006                 | 0.020                 | 0.010                 | 0.059                 |  |
| 145         | 0.019                 | 0.008                 | 0.011                 | 0.037                 | 0.013                 | 0.131                 |  |
| 146         | 0.020                 | 0.008                 | 0.016                 | 0.345                 | 0.051                 | 0.713                 |  |
| 147         | 0.071                 | 0.008                 | 0.024                 | 0.033                 | 0.034                 | 0.084                 |  |
| 148         | 0.022                 | 0.019                 | 0.022                 | 0.368                 | 0.046                 | 0.230                 |  |
| 149         | 0.023                 | 0.011                 | 0.018                 | 0.092                 | 0.025                 | 0.037                 |  |
| 150         | 0.012                 | 0.006                 | 0.007                 | 0.319                 | 0.029                 | 0.086                 |  |
| 151         | 0.009                 | 0.007                 | 0.008                 |                       | 0.032                 | 0.202                 |  |
| 152         | 0.012                 | 0.006                 | 0.008                 | 0.064                 | 0.022                 | 0.146                 |  |
| 156         | 0.014                 | 0.006                 | 0.006                 | 0.218                 | 0.009                 | 0.013                 |  |
| 157         | 0.007                 | 0.005                 | 0.006                 |                       |                       | 1                     |  |

| Ejemplo N.º  | FGFR1 (FP)            | FGFR2 (FP)            | FGFR3 (Z-lyte)        | KG1                   | SNU-16                | TR-112                |  |
|--------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|--|
| -joinplo Ni- | Cl <sub>50</sub> (µM) | Cl <sub>50</sub> (µM) | Cl <sub>50</sub> (μM) | Cl <sub>50</sub> (µM) | Cl <sub>50</sub> (µM) | Cl <sub>50</sub> (μM) |  |
| 158          | 0.014                 | 0.007                 | 0.006                 | 0.016                 | 0.007                 | 0.029                 |  |
| 159          | 0.023                 | 0.011                 | 0.010                 | 0.026                 | 0.006                 | 0.021                 |  |
| 162          | 0.038                 | 0.016                 | 0.060                 | 0.152                 | 0.062                 | 0.438                 |  |
| 163          | 0.011                 | 0.005                 | 0.017                 | 0.015                 | 0.017                 | 0.112                 |  |
| 164          | 0.020                 | 0.011                 | 0.028                 | 0.060                 | 0.028                 | 0.208                 |  |
| 165          | 0.041                 | 0.007                 | 0.203                 | 0.803                 | 0.100                 | 0.991                 |  |
| 166          | 0.013                 | 0.006                 | 0.016                 |                       |                       |                       |  |
| 167          | 0.037                 | 0.013                 | 0.032                 | 0.154                 | 0.052                 | 0.260                 |  |
| 168          | 0.006                 | 0.002                 | 0.004                 | 0.002                 | 0.004                 | 0.004                 |  |
| 169          | 0.020                 | 0.010                 | 0.019                 | 0.048                 | 0.048                 | 0.254                 |  |
| 170          | 0.006                 | 0.005                 | 0.009                 | 0.051                 | 0.014                 | 0.020                 |  |
| 171          | 0.012                 | 0.008                 | 0.011                 | 0.008                 | 0.016                 | 0.043                 |  |
| 172          | 0.007                 | 0.006                 | 0.006                 | 0.013                 | 0.004                 | 0.012                 |  |
| 173          | 0.009                 | 0.006                 | 0.006                 | 0.091                 | 0.020                 | 0.034                 |  |
| 174          | 0.010                 | 0.011                 | 0.017                 |                       |                       |                       |  |
| 175          | 0.012                 | 0.008                 | 0.006                 | 0.011                 | 0.012                 | 0.030                 |  |
| 176          | 0.010                 | 0.005                 | 0.009                 | 0.060                 | 0.017                 | 0.021                 |  |
| 177          | 0.006                 | 0.005                 | 0.006                 | 0.011                 | 0.002                 | 0.011                 |  |
| 178          | 0.009                 | 0.005                 | 0.008                 | 0.018                 | 0.007                 | 0.015                 |  |
| 179          | 0.008                 | 0.008                 | 0.006                 |                       |                       |                       |  |
| 180          | 0.008                 | 0.006                 | 0.008                 |                       | 0.075                 | 0.759                 |  |
| 181          | 0.015                 | 0.010                 | 0.016                 |                       |                       |                       |  |
| 182          | 0.017                 | 0.009                 | 0.012                 |                       |                       |                       |  |
| 183          | 0.017                 | 0.010                 | 0.014                 |                       |                       |                       |  |

| Ejemplo N.º | FGFR1 (FP)            | FGFR2 (FP)             | FGFR3 (Z-lyte)        | KG1                   | SNU-16                | TR-112                |  |
|-------------|-----------------------|------------------------|-----------------------|-----------------------|-----------------------|-----------------------|--|
| <u> </u>    | Cl <sub>50</sub> (μM) | CI <sub>50</sub> (µM)  | Cl <sub>50</sub> (μM) | Cl <sub>50</sub> (µM) | Cl <sub>50</sub> (µM) | Cl <sub>50</sub> (μM) |  |
| 184         | 0.007                 | 0.006 0.008 0.201 0.06 | 0.008 0.201 0.060     | 0.584                 |                       |                       |  |
| 185         | 0.008                 | 0.008                  | 0.008                 |                       |                       |                       |  |
| 186         | 0.011                 | 0.007                  | 0.007                 | 0.056                 | 0.023                 | 0.106                 |  |
| 187         | 0.020                 | 0.013                  | 0.015                 | 0.069                 | 0.057                 | 0.592                 |  |
| 188         | 0.016                 | 0.011                  | 0.015                 | 0.032                 | 0.016                 | 0.414                 |  |
| 189         | 0.015                 | 0.014                  | 0.015                 | 0.017                 | 0.018                 | 0.539                 |  |
| 190         | 0.018                 | 0.010                  | 0.015                 | 0.062                 | 0.048                 | 0.382                 |  |
| 191         | 0.099                 | 0.087                  | 0.132                 |                       |                       |                       |  |
| 192         | 0.043                 | 0.041                  | 0.050                 | 0.128                 | 0.048                 | 0.655                 |  |
| 193         | 0.009                 | 0.006                  | 0.006                 | 0.022                 | 0.014                 | 0.064                 |  |
| 194         | 0.008                 | 0.007                  | 0.028                 | 0.041                 | 0.020                 | 0.135                 |  |
| 195         | 0.010                 | 0.006                  | 0.005                 | 0.040                 | 0.017                 | 0.065                 |  |
| 196         | 0.009                 | 0.006                  | 0.008                 | 0.023                 | 0.014                 | 0.057                 |  |
| 197         | 0.007                 | 0.007                  | 0.008                 | 0.066                 | 0.017                 | 0.100                 |  |
| 198         | 0.006                 | 0.005                  | 0.009                 | 0.025                 | 0.019                 | 0.086                 |  |
| 199         | 0.014                 | 0.015                  | 0.018                 | 0.072                 | 0.027                 | 0.186                 |  |
| 200         | 0.069                 | 0.056                  | 0.091                 | 0.284                 | 0.202                 | 0.952                 |  |
| 201         | 0.019                 | 0.005                  | 0.009                 | 0.026                 | 0.008                 | 0.035                 |  |
| 202         | 0.027                 | 0.009                  | 0.010                 |                       |                       |                       |  |
| 203         | 0.007                 | 0.005                  | 0.007                 | 0.009                 | 0.008                 | 0.014                 |  |
| 204         | 0.009                 | 0.007                  | 0.009                 | 0.005                 | 0.010                 | 0.053                 |  |
| 205         | 0.005                 | 0.003                  | 0.004                 | 0.002                 | 0.002                 | 0.005                 |  |
| 206         | 0.005                 | 0.004                  | 0.005                 | 0.010                 | 0.007                 | 0.007                 |  |
| 207         | 0.018                 | 0.009                  | 0.021                 | 0.084                 | 0.053                 | 0.163                 |  |
| 208         | 0.271                 | 0.132                  | 0.227                 |                       |                       |                       |  |

| Ejemplo N.º | FGFR1 (FP)            | FGFR2 (FP)            | FGFR3 (Z-lyte)        | KG1                   | SNU-16                | TR-112                |  |
|-------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|--|
| Ljempio N.  | Cl <sub>50</sub> (μM) | Cl <sub>50</sub> (µM) | Cl <sub>50</sub> (µM) | Cl <sub>50</sub> (µM) | Cl <sub>50</sub> (µM) | Cl <sub>50</sub> (μM) |  |
| 209         | 0.119                 | 0.027                 | 0.690                 |                       |                       |                       |  |
| 210         | 0.024                 | 0.013                 | 0.177                 | 0.166                 | 0.115                 | 0.305                 |  |
| 211         | 0.040                 | 0.016                 | 0.042                 | 0.103                 | 0.155                 | 0.078                 |  |
| 212         | 0.026                 | 0.016                 | 0.080                 | 0.059                 | 0.014                 | 0.057                 |  |
| 213         | 0.011                 | 0.008                 | 0.014                 | 0.011                 | 0.023                 | 0.037                 |  |
| 214         | 0.067                 | 0.025                 | 0.019                 | 0.006                 | 0.027                 | 0.090                 |  |
| 215         | 0.044                 | 0.020                 | 0.065                 | 0.026                 | 0.072                 | 0.127                 |  |
| 216         | 0.010                 | 0.007                 | 0.011                 | 0.024                 | 0.020                 | 0.132                 |  |
| 217         | 0.045                 | 0.016                 | 0.029                 |                       |                       |                       |  |
| 218         | 0.025                 | 0.012                 | 0.021                 | 0.027                 | 0.007                 | 0.044                 |  |
| 219         | 0.014                 | 0.010                 | 0.008                 |                       |                       |                       |  |
| 220         | 0.017                 | 0.010                 | 0.008                 |                       |                       |                       |  |
| 221         | 0.034                 | 0.011                 | 0.037                 | 0.035                 | 0.027                 | 0.072                 |  |
| 222         | 0.039                 | 0.012                 | 0.040                 | 0.052                 | 0.034                 | 0.083                 |  |
| 223         | 0.029                 | 0.018                 | 0.020                 | 0.102                 | 0.051                 | 0.729                 |  |
| 224         | 0.065                 | 0.027                 | 0.056                 | 0.063                 | 0.056                 | 0.234                 |  |
| 225         | 0.026                 | 0.015                 | 0.011                 | 0.007                 | 0.014                 | 0.021                 |  |
| 226         | 0.030                 | 0.010                 | 0.027                 | 0.035                 | 0.032                 | 0.285                 |  |
| 227         | 0.023                 | 0.008                 | 0.025                 | 0.035                 | 0.020                 | 0.085                 |  |
| 228         | 0.029                 | 0.018                 | 0.120                 | 0.094                 | 0.097                 | 0.270                 |  |
| 230         | 0.101                 | 0.032                 | 0.045                 | 0.076                 | 0.014                 | 0.026                 |  |
| 231         | 0.016                 | 0.016                 | 0.011                 | 0.058                 | 0.008                 | 0.009                 |  |
| 232         | 0.017                 | 0.009                 | 0.228                 | 0.070                 | 0.060                 | 0.107                 |  |
| 233         | 0.098                 | 0.031                 | 0.310                 | 0.058                 | 0.063                 | 0.121                 |  |
| 234         | 0.006                 | 0.004                 | 0.030                 | 0.014                 | 0.015                 | 0.035                 |  |

| Ejemplo N.º | FGFR1 (FP)            | FGFR2 (FP)            | FGFR3 (Z-lyte)        | KG1                   | SNU-16                | TR-112                |  |
|-------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|--|
| _jop.o 14.  | CI <sub>50</sub> (μM) | CI <sub>50</sub> (µM) | Cl <sub>50</sub> (µM) | Cl <sub>50</sub> (µM) | Cl <sub>50</sub> (µM) | Cl <sub>50</sub> (μM) |  |
| 235         | 0.008                 | 0.005                 | 0.010 0.020 0.006     | 0.010 0.020           | 0.012                 |                       |  |
| 236         | 0.028                 | 0.014                 | 0.009                 |                       |                       |                       |  |
| 237         | 0.066                 | 0.027                 | 0.029                 | 0.079                 | 0.042                 | 0.134                 |  |
| 238         | 0.023                 | 0.020                 | 0.013                 | 0.038                 | 0.028                 | 0.023                 |  |
| 240         | 0.034                 | 0.023                 | 0.023                 | 0.023                 | 0.039                 | 0.056                 |  |
| 241         | 0.031                 | 0.021                 | 0.019                 | 0.162                 | 0.031                 | 0.112                 |  |
| 242         | 0.018                 | 0.010                 | 0.013                 | 0.010                 | 0.014                 | 0.032                 |  |
| 243         | 0.020                 | 0.009                 | 0.009                 | 0.069                 | 0.006                 | 0.015                 |  |
| 244         | 0.010                 | 0.010                 | 0.013                 | 0.362                 | 0.115                 | 0.585                 |  |
| 245         | 0.016                 | 0.017                 | 0.018                 | 0.533                 | 0.136                 | 0.581                 |  |
| 246         | 0.015                 | 0.006                 | 0.007                 |                       |                       |                       |  |
| 247         | 0.034                 | 0.016                 | 0.023                 | 0.042                 | 0.028                 | 0.057                 |  |
| 248         | 0.016                 | 0.011                 | 0.014                 | 0.006                 | 0.009                 | 0.021                 |  |
| 249         | 0.038                 | 0.014                 | 0.015                 | 0.027                 | 0.010                 | 0.030                 |  |
| 250         | 0.012                 | 0.009                 | 0.007                 | 0.037                 | 0.016                 | 0.017                 |  |
| 251         | 0.025                 | 0.023                 | 0.024                 | 0.031                 | 0.041                 | 0.087                 |  |
| 252         | 0.021                 | 0.022                 | 0.016                 | 0.028                 | 0.008                 | 0.006                 |  |
| 253         | 0.181                 | 0.068                 | 0.334                 |                       |                       |                       |  |
| 254         | 0.012                 | 0.006                 | 0.008                 | 0.008                 | 0.002                 | 0.014                 |  |
| 255         | 0.008                 | 0.005                 | 0.011                 | 0.062                 | 0.017                 | 0.021                 |  |
| 256         | 0.100                 | 0.040                 | 0.039                 | 0.202                 | 0.022                 | 0.057                 |  |
| 257         | 0.029                 | 0.012                 | 0.019                 | 0.103                 | 0.019                 | 0.066                 |  |
| 258         | 0.028                 | 0.015                 | 0.017                 |                       |                       | 1                     |  |
| 259         | 0.024                 | 0.014                 | 0.013                 | 0.220                 | 0.039                 | 0.141                 |  |
| 261         | 0.026                 | 0.013                 | 0.018                 | 0.019                 | 0.007                 | 0.013                 |  |

| Ejemplo N.º             | FGFR1 (FP)            | FGFR2 (FP)            | FGFR3 (Z-lyte)        | KG1                   | SNU-16                | TR-112                |
|-------------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|
| <b>_</b> je <b>p</b> .e | Cl <sub>50</sub> (μM) | CI <sub>50</sub> (μM) | Cl <sub>50</sub> (μM) | Cl <sub>50</sub> (µM) | Cl <sub>50</sub> (μM) | Cl <sub>50</sub> (μM) |
| 262                     | 0.043                 | 0.020                 | 0.021                 | 0.037                 | 0.029                 | 0.133                 |
| 263                     | 0.005                 | 0.005                 | 0.006                 | 0.007                 | 0.014                 | 0.028                 |
| 264                     | 0.010                 | 0.005                 | 0.006                 | 0.007                 | 0.008                 | 0.008                 |
| 265                     | 0.014                 | 0.014                 | 0.020                 | 0.060                 | 0.031                 | 0.027                 |
| 266                     | 0.036                 | 0.025                 | 0.028                 | 0.068                 | 0.037                 | 0.097                 |
| 267                     | 0.006                 | 0.006                 | 0.008                 | 0.028                 | 0.017                 | 0.033                 |
| 268                     | 0.021                 | 0.016                 | 0.020                 | 0.017                 | 0.018                 | 0.047                 |
| 269                     | 0.010                 | 0.007                 | 0.005                 | 0.006                 | 0.006                 | 0.005                 |
| 270                     | 0.018                 | 0.009                 | 0.008                 | 0.052                 | 0.010                 | 0.023                 |
| 271                     | 0.008                 | 0.007                 | 0.009                 | 0.026                 | 0.008                 | 0.025                 |
| 272                     | 0.010                 | 0.009                 | 0.008                 | 0.018                 | 0.015                 | 0.031                 |
| 273                     | 0.012                 | 0.006                 | 0.012                 | 0.025                 | 0.016                 | 0.025                 |
| 274                     | 0.013                 | 0.007                 | 0.008                 | 0.020                 | 0.018                 | 0.041                 |
| 275                     | 0.014                 | 0.009                 | 0.014                 | 0.046                 | 0.018                 | 0.062                 |
| 276                     | 0.020                 | 0.023                 | 0.021                 | 0.083                 | 0.021                 | 0.140                 |
| 277                     | 0.020                 | 0.014                 | 0.018                 | 0.057                 | 0.036                 | 0.109                 |
| 278                     | 0.023                 | 0.014                 | 0.020                 | 0.034                 | 0.027                 | 0.065                 |
| 279                     | 0.044                 | 0.023                 | 0.034                 | 0.134                 | 0.037                 | 0.080                 |
| 280                     | 0.027                 | 0.018                 | 0.016                 | 0.191                 | 0.007                 | 0.029                 |
| 281                     | 0.019                 | 0.014                 | 0.019                 | 0.009                 | 0.014                 | 0.037                 |
| 282                     | 0.018                 | 0.009                 | 0.007                 | 0.046                 | 0.005                 | 0.005                 |
| 283                     | 0.012                 | 0.005                 | 0.004                 | 0.008                 | 0.003                 | 0.008                 |
| 284                     | 0.039                 | 0.024                 | 0.043                 | 0.071                 | 0.033                 | 0.072                 |
| 285                     | 0.007                 | 0.006                 | 0.007                 | 0.013                 | 0.008                 | 0.016                 |
| 286                     | 0.007                 | 0.006                 | 0.009                 | 0.008                 | 0.016                 | 0.043                 |

| Ejemplo N.º        | FGFR1 (FP) FGFR2 (FP) F |                       | FGFR3 (Z-lyte)            | KG1   | SNU-16                | TR-112 |  |
|--------------------|-------------------------|-----------------------|---------------------------|-------|-----------------------|--------|--|
| сјешрю <b>м.</b> - | Cl <sub>50</sub> (μΜ)   | Cl <sub>50</sub> (µM) | μM) Cl <sub>50</sub> (μM) |       | Cl <sub>50</sub> (µM) |        |  |
| 287                | 0.011                   | 0.008                 | 0.008                     | 0.054 | 0.014                 | 0.035  |  |
| 288                | 0.006                   | 0.004                 | 0.004                     | 0.002 | 0.002                 | 0.003  |  |
| 289                | 0.010                   | 0.004                 | 0.010                     |       |                       |        |  |
| 290                | 0.010                   | 0.007                 | 0.011                     | 0.006 | 0.011                 | 0.012  |  |
| 291                | 0.017                   | 0.018                 | 0.017                     | 0.015 | 0.017                 | 0.027  |  |
| 292                | 0.013                   | 0.011                 | 0.014                     | 0.046 | 0.017                 | 0.070  |  |
| 293                | 0.018                   | 0.008                 | 0.011                     |       |                       |        |  |
| 294                | 0.014                   | 0.006                 | 0.005                     |       |                       |        |  |
| 295                | 0.013                   | 0.013                 | 0.019                     | 0.040 | 0.104                 | 0.337  |  |
| 298                | 0.009                   | 0.008                 | 0.013                     | 0.008 | 0.014                 | 0.015  |  |
| 299                | 0.006                   | 0.006                 | 0.008                     | 0.007 | 0.011                 | 0.015  |  |
| 301                | 0.009                   | 0.006                 | 0.010                     | 0.024 | 0.011                 | 0.037  |  |
| 302                | 0.012                   | 0.007                 | 0.009                     |       |                       |        |  |
| 303                | 0.011                   | 0.007                 | 0.007                     | 0.040 | 0.023                 | 0.064  |  |
| 304                | 0.022                   | 0.008                 | 0.027                     |       |                       |        |  |
| 306                | 0.029                   | 0.012                 | 0.026                     | 0.100 | 0.023                 | 0.016  |  |
| 307                | 0.019                   | 0.017                 | 0.021                     | 0.005 | 0.0010                | 0.005  |  |

### REIVINDICACIONES

1. Un compuesto de fórmula (I):

o una sal farmacéuticamente aceptable de este,

5 donde

10

15

40

X es  $CH_2$ , Y se selecciona entre  $CH_2$ , O o  $S(O)_2$ ; o X e Y junto con el enlace entre ellos forman -CH=CH- o -C=C-;

G es N o CH;

R¹ es arilo o heteroarilo, donde cada uno de los cuales está sustituido opcionalmente con uno o más sustituyentes seleccionados independientemente entre halo, -NR<sup>6</sup>R<sup>7</sup>, -OR<sup>8</sup>, -S(O)<sub>n</sub>R<sup>9</sup>, -(CH<sub>2</sub>)<sub>r</sub>-C(O)R<sup>10</sup>, -CN, -C(O)NR<sup>6</sup>R<sup>7</sup>, -NR<sup>6</sup>C(O)R<sup>10</sup>, -NR<sup>6</sup>S(O)<sub>n</sub>NR<sup>9</sup>, -NR<sup>6</sup>S(O)<sub>n</sub>NR<sup>11</sup>R<sup>12</sup>, -NR<sup>6</sup>C(O)OR<sup>8</sup>, -NR<sup>6</sup>C(O)NR<sup>11</sup>R<sup>12</sup>, -NO<sub>2</sub>, -S(O)<sub>n</sub>NR<sup>6</sup>R<sup>7</sup>, oxo, alquilo sustituido opcionalmente, -(CH<sub>2</sub>)<sub>p</sub>-cicloalquilo sustituido opcionalmente, -(CH<sub>2</sub>)<sub>p</sub>-heteroarilo sustituido opcionalmente. alquenilo sustituido opcionalmente y alquinilo sustituido opcionalmente:

 $R^2$  se escoge independientemente entre alquilo  $C_1$ - $C_6$  sustituido opcionalmente, alcoxi  $C_1$ - $C_6$  sustituido opcionalmente, o cicloalquilo  $C_3$ - $C_8$  sustituido opcionalmente;

R<sup>3</sup>, R<sup>4</sup> se escogen independientemente entre hidrógeno, halógeno, -CN, o alquilo C<sub>1</sub>-C<sub>6</sub> sustituido opcionalmente,

R<sup>5</sup> es alquilo C<sub>1</sub>-C<sub>6</sub>,

o  $R^3$  y  $R^5$  junto con el átomo de O al cual  $R^5$  está unido y el enlace entre ellos forman un anillo heterocíclico que contiene oxi de 5 o 6 miembros;

n es 1 o 2;

20 m, p, q y r se escogen independientemente entre 0, 1, 2, 3, 4, 5, 6;

 $R^6$ ,  $R^7$ ,  $R^8$ ,  $R^9$ ,  $R^{10}$ ,  $R^{11}$  y  $R^{12}$  se seleccionan independientemente entre hidrógeno, alquilo, cicloalquilo, arilo, heteroarilo, heterociclilo, donde cada uno de los cuales, excepto para el hidrógeno, está sustituido opcionalmente con uno o más sustituyentes seleccionados independientemente entre halo, hidroxilo, mercapto, oxo, alquilo, cicloalquilo, heterociclilo, amina sustituida opcionalmente y amida sustituida opcionalmente,

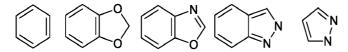
- donde cada grupo anterior sustituido opcionalmente para el cual no se designa(n) específicamente el(los) sustituyente(s), puede no estar sustituido o estar sustituido independientemente con uno o más, tal como uno, dos o tres, sustituyentes escogidos independientemente entre alquilo C<sub>1</sub>-C<sub>6</sub>, alquenilo C<sub>2</sub>-C<sub>6</sub>, alquinilo C<sub>2</sub>-C<sub>6</sub>, cicloalquilo, arilo, heteroarilo, aril-(alquil C<sub>1</sub>-C<sub>6</sub>)-, heteroaril-(alquil C<sub>1</sub>-C<sub>6</sub>)-, haloalquil C<sub>1</sub>-C<sub>6</sub>-, -O(alquilo C<sub>1</sub>-C<sub>6</sub>), -O(alquilo C<sub>1</sub>-C<sub>6</sub>), -O(alquilo C<sub>1</sub>-C<sub>6</sub>)fenil, -(alquil C<sub>1</sub>-C<sub>6</sub>)-OH, -(alquil C<sub>1</sub>-C<sub>6</sub>)-SH, -(alquil C<sub>1</sub>-C<sub>6</sub>)-O-(alquilo C<sub>1</sub>-C<sub>6</sub>), -O(haloalquilo C<sub>1</sub>-C<sub>6</sub>), halo, -OH, mercapto, -NH<sub>2</sub>, -(alquil C<sub>1</sub>-C<sub>6</sub>)-NH<sub>2</sub>, -N(alquilo C<sub>1</sub>-C<sub>6</sub>)<sub>2</sub>, -NH(alquilo C<sub>1</sub>-C<sub>6</sub>), -N(alquilo C<sub>1</sub>-C<sub>6</sub>)((alquilC<sub>1</sub>-C<sub>6</sub>)fenil), -NH((alquil C<sub>1</sub>-C<sub>6</sub>)fenil), ciano, nitro, oxo, -C(O)-OH, -C(O)O(alquilo C<sub>1</sub>-C<sub>6</sub>), -CON(alquilo C<sub>1</sub>-C<sub>6</sub>), -CONH(alquilo C<sub>1</sub>-C<sub>6</sub>), -NHC(O)(alquilo C<sub>1</sub>-C<sub>6</sub>), -NHC(O)(fenilo), -N(alquil C<sub>1</sub>-C<sub>6</sub>), -CON(alquilo C<sub>1</sub>-C<sub>6</sub>), -N(alquil C<sub>1</sub>-C<sub>6</sub>), -N(alquilo C<sub>1</sub>-C<sub>6</sub>), -O(O)(alquilo C<sub>1</sub>-C<sub>6</sub>), -N(alquilo C<sub>1</sub>-C<sub>6</sub>), -S(O)<sub>2</sub>-(alquilo C<sub>1</sub>-C<sub>6</sub>), -S(O)<sub>2</sub>-(alquilo C<sub>1</sub>-C<sub>6</sub>), -S(O)<sub>2</sub>-(alquilo C<sub>1</sub>-C<sub>6</sub>), -S(O)<sub>2</sub>-(alquilo C<sub>1</sub>-C<sub>6</sub>), -NHS(O)<sub>2</sub>(fenilo) y -NHS(O)<sub>2</sub>(haloalquilo C<sub>1</sub>-C<sub>6</sub>).
  - 2. El compuesto de fórmula (I) de acuerdo con la reivindicación 1, donde cada grupo sustituido opcionalmente para el cual el(los) sustituyente(s) no se designa(n) específicamente puede no estar sustituido o estar sustituido independientemente con uno o más sustituyentes escogidos independientemente entre hidroxilo, mercapto, halo, alquilo  $C_1$ - $C_6$ , alquenilo  $C_2$ - $C_6$ , alquinilo  $C_2$ - $C_6$ , -O(alquilo  $C_1$ - $C_6$ ), -NH2, -N(alquilo  $C_1$ - $C_6$ )2, -NH(alquilo  $C_1$ - $C_6$ ), ciano, nitro, oxo, -S(O)2-(alquilo  $C_1$ - $C_6$ ), -S(O)-(alquilo  $C_1$ - $C_6$ ), -S(O)2-(haloalquilo  $C_1$ - $C_6$ ), -C(O)-OH, -(alquil  $C_1$ - $C_6$ )-OH, (alquil  $C_1$ - $C_6$ )-SH, heterociclilo, o una sal farmacéuticamente aceptable de este.
  - 3. El compuesto de fórmula (I) de acuerdo con la reivindicación 1 o 2, donde R¹ es arilo o heteroarilo, donde cada uno de los cuales está sustituido opcionalmente con uno o más sustituyentes seleccionados independientemente entre:

- (1) halo;
- (2) oxo;
- (3) alquilo sustituido opcionalmente;
- (4) - $(CH_2)_m$ -heterociclilo sustituido opcionalmente;
- 5 (5) -(CH<sub>2</sub>)<sub>p</sub>-cicloalquilo sustituido opcionalmente;
  - (6) -(CH<sub>2</sub>)<sub>q</sub>-heteroarilo sustituido opcionalmente;
  - $(7) -S(O)_nR^9;$
  - (8)  $-(CH_2)_r-C(O)R^{10}$ ;
  - (9) alquenilo sustituido opcionalmente;
- 10 (10) alquinilo sustituido opcionalmente;
  - (11) -OR8;

15

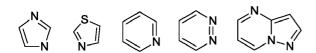
20

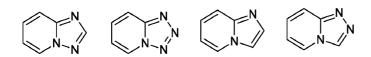
donde n es 1 o 2; m, p, q y r se escogen independientemente entre 0, 1, 2, 3, 4, 5, 6; R<sup>8</sup>, R<sup>9</sup> y R<sup>10</sup> se seleccionan independientemente entre hidrógeno, alquilo, heterociclilo, donde cada uno de los cuales, excepto para el hidrógeno, está sustituido opcionalmente con uno o más sustituyentes seleccionados independientemente entre alquilo, oxo, heterociclilo;


donde el «alquilo sustituido opcionalmente», «heterociclilo sustituido opcionalmente», «cicloalquilo sustituido opcionalmente», «heteroarilo sustituido opcionalmente», «alquenilo sustituido opcionalmente» y «alquinilo sustituido opcionalmente» en el  $R^1$  anterior pueden no estar sustituidos o estar sustituidos independientemente con uno o más sustituyentes escogidos independientemente entre hidroxilo, mercapto, halo, alquilo  $C_1$ - $C_6$ , alquenilo  $C_2$ - $C_6$ , alquinilo  $C_2$ - $C_6$ , -O(alquilo  $C_1$ - $C_6$ ), -N(alquilo  $C_1$ - $C_6$ ), -N(alquilo  $C_1$ - $C_6$ ), -S(O)-(alquilo  $C_1$ - $C_6$ ), -S(O)-(Alquilo  $C_1$ - $C_6$ ), -S(O)-OH, -(alquilo  $C_1$ - $C_6$ )-OH, -(alquilo  $C_1$ - $C_6$ )-SH y heterociclilo,

- 4. El compuesto de fórmula (I) de acuerdo con la reivindicación 3, donde R¹ es arilo o heteroarilo, donde cada uno de los cuales está sustituido opcionalmente con uno o más sustituyentes seleccionados independientemente entre:
- 25 (1) halo;
  - (2) oxo;
  - (3) alquilo sustituido opcionalmente con uno o más sustituyentes seleccionados independientemente entre hidroxilo, mercapto, halo,  $-O(\text{alquilo }C_1-C_6)$ ,  $-NH_2$ ,  $-N(\text{alquilo }C_1-C_6)_2$ ,  $-NH(\text{alquilo }C_1-C_6)$ , ciano, nitro,  $-S(O)_2$ -(alquilo  $C_1-C_6)$ , -S(O)-(alquilo  $C_1-C_6)$ , -C(O)-OH;
- 30 (4) -(CH<sub>2</sub>)<sub>m</sub>-heterociclilo sustituido opcionalmente con uno o más sustituyentes seleccionados independientemente entre alquilo C<sub>1</sub>-C<sub>6</sub>, -(alquil C<sub>1</sub>-C<sub>6</sub>)-OH, -(alquil C<sub>1</sub>-C<sub>6</sub>)-SH y oxo, donde m es 0, 1, 2, 3, 4, 5 o 6;
  - (5) -(CH<sub>2</sub>)<sub>p</sub>-cicloalquilo no sustituido, donde p es 0, 1, 2, 3, 4, 5 o 6;
  - (6) -(CH<sub>2</sub>)<sub>q</sub>-heteroarilo sustituido opcionalmente con uno o más sustituyentes seleccionados independientemente entre alquilo  $C_1$ - $C_6$ , donde q es 0, 1, 2, 3, 4, 5 o 6;
- 35 (7)  $-S(O)_nR^9$ , donde  $R^9$  es alquilo  $C_1-C_6$ , y n es 1 o 2;
  - (8)  $-(CH_2)_r$ - $C(O)R^{10}$ , donde  $R^{10}$  es heterociclilo sustituido opcionalmente con uno o más sustituyentes seleccionados independientemente entre alquilo  $C_1$ - $C_6$  y oxo, donde r es 0, 1, 2, 3, 4, 5 o 6;
  - (9) alquenilo C2-C6 no sustituido;
  - (10) alquinilo C2-C6 no sustituido;
- 40 (11) -OR<sup>8</sup>, donde R<sup>8</sup> se selecciona entre hidrógeno y alquilo sustituido opcionalmente con uno o más sustituyentes seleccionados independientemente entre heterociclilo,
  - o una sal farmacéuticamente aceptable de este.
  - 5. El compuesto de fórmula (I) de acuerdo con la reivindicación 1, donde R¹ es arilo o heteroarilo, donde cada uno de los cuales está sustituido opcionalmente con uno o más sustituyentes seleccionados independientemente entre:

- (1) halo;
- (2) -NR $^6$ R $^7$ , donde R $^6$  y R $^7$  se seleccionan independientemente entre hidrógeno y alquilo C<sub>1</sub>-C<sub>6</sub> sustituido opcionalmente con amina que está sustituida opcionalmente con alquilo C<sub>1</sub>-C<sub>6</sub>;
- (3) -OR<sup>8</sup>, donde R<sup>8</sup> se selecciona entre hidrógeno y alquilo C<sub>1</sub>-C<sub>6</sub> sustituido opcionalmente con uno o más sustituyentes seleccionados independientemente entre: heterociclilo sustituido opcionalmente con -OH o mercapto, y amina sustituida opcionalmente con alquilo C<sub>1</sub>-C<sub>6</sub>,
  - (4) -S(O)<sub>n</sub>R<sup>9</sup>, donde R<sup>9</sup> es alquilo C<sub>1</sub>-C<sub>6</sub>, y n es 1 o 2;
  - (5)  $-(CH_2)_r-C(O)R^{10}$ , donde  $R^{10}$  es alquilo  $C_1-C_6$ , o heterociclilo sustituido opcionalmente con uno o más sustituyentes seleccionados independientemente entre alquilo  $C_1-C_6$  y oxo, donde r es 0, 1, 2, 3, 4, 5 o 6;
- 10 (6) -CN:
  - (7) -C(O)NR<sup>6</sup>R<sup>7</sup>, donde R<sup>6</sup> y R<sup>7</sup> se seleccionan independientemente entre hidrógeno y alquilo C<sub>1</sub>-C<sub>6</sub> sustituido opcionalmente con amina que está sustituido opcionalmente con alquilo C<sub>1</sub>-C<sub>6</sub>;
  - (8) -NR $^6$ C(O)R $^{10}$ , donde R $^6$  es H, y R $^{10}$  es alquilo C<sub>1</sub>-C<sub>6</sub>;
  - (9) oxo;
- (10) alquilo sustituido opcionalmente con uno o más sustituyentes seleccionados independientemente entre hidroxilo, mercapto, halo, -O(alquilo C<sub>1</sub>-C<sub>6</sub>), -NH<sub>2</sub>, -N(alquilo C<sub>1</sub>-C<sub>6</sub>)<sub>2</sub>, -NH(alquilo C<sub>1</sub>-C<sub>6</sub>), ciano, nitro, -S(O)<sub>2</sub>-(alquilo C<sub>1</sub>-C<sub>6</sub>), -S(O)-(alquilo C<sub>1</sub>-C<sub>6</sub>), -C(O)-OH;
  - (11) -(CH<sub>2</sub>)<sub>p</sub>-cicloalquilo no sustituido, donde p es 0, 1, 2, 3, 4, 5 o 6;
- (12) -(CH<sub>2</sub>)<sub>m</sub>-heterociclilo sustituido opcionalmente con uno o más sustituyentes seleccionados independientemente 20 entre alquilo C<sub>1</sub>-C<sub>6</sub>, cicloalquilo C<sub>3</sub>-C<sub>8</sub>, -(alquilo C<sub>1</sub>-C<sub>6</sub>)-OH, -(alquil C<sub>1</sub>-C<sub>6</sub>)-SH, -(alquil C<sub>1</sub>-C<sub>6</sub>)-O-(alquilo C<sub>1</sub>-C<sub>6</sub>), -NH<sub>2</sub>, -N(alquilo C<sub>1</sub>-C<sub>6</sub>)<sub>2</sub>, -NH(alquilo C<sub>1</sub>-C<sub>6</sub>), oxo, -C(O)(alquilo C<sub>1</sub>-C<sub>6</sub>), donde m es 0, 1, 2, 3, 4, 5 o 6;
  - (13) - $(CH_2)_q$ -heteroarilo sustituido opcionalmente con uno o más sustituyentes seleccionados independientemente entre alguilo  $C_1$ - $C_6$ , donde q es 0, 1, 2, 3, 4, 5 o 6;
  - (14) alquenilo C2-C6 no sustituido;
- 25 (15) alquinilo C<sub>2</sub>-C<sub>6</sub> no sustituido;


o una sal farmacéuticamente aceptable de este.

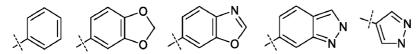

6. El compuesto de fórmula (I) de acuerdo con la reivindicación 4 o 5, donde R¹ es un radical del anillo o sistema anular escogido entre



30

35








donde cada uno de los cuales está sustituido opcionalmente tal como se ha definido en la reivindicación 4 o 5,

o una sal farmacéuticamente aceptable de este.

7. El compuesto de fórmula (I) de acuerdo con la reivindicación 4 o 5, donde R1 se escoge entre



X N

10

15

20

25

30

35

donde cada uno de los cuales está sustituido opcionalmente tal como se ha definido en la reivindicación 4 o 5,

o una sal farmacéuticamente aceptable de este.

- 8. El compuesto de fórmula (I) de acuerdo con la reivindicación 1, donde R<sup>8</sup> es hidrógeno o alquilo C<sub>1</sub>-C<sub>6</sub> sustituido opcionalmente con heterociclilo, o una sal farmacéuticamente aceptable de este.
- 9. El compuesto de fórmula (I) de acuerdo con la reivindicación 1, donde  $R^{10}$  es heterociclilo sustituido opcionalmente con uno o más sustituyentes seleccionados independientemente entre alquilo  $C_1$ - $C_6$  y oxo, o una sal farmacéuticamente aceptable de este.
- 10. El compuesto de fórmula (I) de acuerdo con la reivindicación 1, donde R¹ es arilo sustituido opcionalmente con uno o más sustituyentes seleccionados independientemente entre: (1) halo; (2) alquilo sustituido opcionalmente con C(O)-OH; (3) -(CH<sub>2</sub>)<sub>m</sub>-heterociclilo sustituido opcionalmente con uno o más sustituyentes seleccionados independientemente entre alquilo C<sub>1</sub>-C<sub>6</sub>, -(alquil C<sub>1</sub>-C<sub>6</sub>)-OH, -(alquil C<sub>1</sub>-C<sub>6</sub>)-SH y oxo, donde m es 0, 1, 2, 3, 4, 5 o 6; (4) -(CH<sub>2</sub>)<sub>q</sub>-heteroarilo sustituido opcionalmente con uno o más sustituyentes seleccionados independientemente entre alquilo C<sub>1</sub>-C<sub>6</sub>, donde q es 0; (5) -(CH<sub>2</sub>)<sub>r</sub>-C(O)R¹0, donde R¹0 es heterociclilo sustituido opcionalmente con uno o más sustituyentes seleccionados independientemente entre alquilo C<sub>1</sub>-C<sub>6</sub> y oxo, donde r es 0; (6) alquenilo C<sub>2</sub>-C<sub>6</sub> no sustituido; (7) alquinilo C<sub>2</sub>-C<sub>6</sub> no sustituido; (8) -OR³, donde R³ se selecciona entre hidrógeno, alquilo sustituido opcionalmente con uno o más sustituyentes seleccionados independientemente entre heterociclilo,

- 11. El compuesto de fórmula (I) de acuerdo con cualquiera de las reivindicaciones 1 a 10, donde R¹ es fenilo sustituido con piperazinilo, donde el piperazinilo está sustituido opcionalmente con uno o más alquilos C₁-C₆ o cicloalquilos C₃-C₆, preferentemente alquilo C₁-C₆, más preferentemente, R¹ es fenilo sustituido con piperazinilo, el cual está sustituido opcionalmente con uno o más metilos o etilos, o una sal farmacéuticamente aceptable de este.
- 12. El compuesto de fórmula (I) de acuerdo con la reivindicación 11, donde R¹ es fenilo sustituido con piperazinilo, donde el piperazinilo está sustituido opcionalmente con uno o más alquilos C₁-C6, preferentemente R¹ es fenilo sustituido con piperazinilo, el cual está sustituido opcionalmente con uno o más metilos o etilos, o una sal farmacéuticamente aceptable de este.

- 13. El compuesto de fórmula (I) de acuerdo con la reivindicación 1, donde R¹ es pirazolilo, el cual está sustituido opcionalmente con uno o más sustituyentes seleccionados entre:
- (1) alquilo sustituido opcionalmente con uno o más sustituyentes seleccionados independientemente entre hidroxilo, mercapto, halo, -O(alquilo  $C_1$ - $C_6$ ), -NH<sub>2</sub>, -N(alquilo  $C_1$ - $C_6$ )<sub>2</sub>, -NH(alquilo  $C_1$ - $C_6$ ), -S(O)<sub>2</sub>-(alquilo  $C_1$ - $C_6$ ), -S(O)-(alquilo  $C_1$ - $C_6$ );
- (2) -(CH<sub>2</sub>)<sub>m</sub>-heterociclilo sustituido opcionalmente con uno o más sustituyentes seleccionados independientemente entre alguilo C<sub>1</sub>-C<sub>6</sub>, donde m es 0, 1, 2, 3, 4, 5 o 6;
- (3) -(CH<sub>2</sub>)<sub>p</sub>-cicloalguilo no sustituido, donde p es 0, 1, 2, 3, 4, 5 o 6;
- (4) -(CH<sub>2</sub>)q-heteroarilo sustituido opcionalmente con uno o más sustituyentes seleccionados independientemente entre alquilo C<sub>1</sub>-C<sub>6</sub>, donde q es 0, 1, 2, 3, 4, 5 o 6;
  - (5) -S(O)<sub>n</sub>R<sup>9</sup>, donde R<sup>9</sup> es alguilo C<sub>1</sub>-C<sub>6</sub>, y n es 1 o 2;

5

(6)  $-(CH_2)_r$ - $C(O)R^{10}$ , donde  $R^{10}$  es heterociclilo sustituido opcionalmente con uno o más sustituyentes seleccionados independientemente entre alquilo  $C_1$ - $C_6$  y oxo, donde r es 0, 1, 2, 3, 4, 5 o 6,

- 15 14. El compuesto de fórmula (I) de acuerdo con cualquiera de las reivindicaciones 1 a 13, donde R² se escoge entre alquilo C<sub>1</sub>-C<sub>6</sub>, alcoxi C<sub>1</sub>-C<sub>6</sub> sustituido opcionalmente con hidroxilo, o cicloalquilo C<sub>3</sub>-C<sub>8</sub>, o una sal farmacéuticamente aceptable de este.
  - 15. El compuesto de fórmula (I) de acuerdo con la reivindicación 14, donde R² es metilo, etilo, metoxi, etoxi sustituido con hidroxilo, isopropoxi o ciclopropilo, o una sal farmacéuticamente aceptable de este.
- 16. El compuesto de fórmula (I) de acuerdo con cualquiera las reivindicaciones 1 a 13, donde  $R^3$ ,  $R^4$  se escogen independientemente entre hidrógeno, halógeno, -CN, o alquilo  $C_1$ - $C_6$  no sustituido,  $R^5$  es alquilo  $C_1$ - $C_6$ , o  $R^3$  y  $R^5$  junto con el átomo de O al cual  $R^5$  se encuentra unido y el enlace entre ellos forman un anillo heterocíclico que contiene oxi de 5 o 6 miembros, o una sal farmacéuticamente aceptable de este.
- 17. El compuesto de fórmula (I) de acuerdo con cualquiera de las reivindicaciones 1 a 13, donde R<sup>4</sup> es hidrógeno, y R<sup>3</sup> y R<sup>5</sup> junto con el átomo de O al cual R<sup>5</sup> se encuentra unido y el enlace entre ellos forman un anillo de furano o dihidrofurano, o una sal farmacéuticamente aceptable de este.
  - 18. El compuesto de fórmula (I) de acuerdo con la reivindicación 1, donde dicho compuesto se selecciona entre los Compuestos 1-228, 230-299 y 301-309:

| 1 |          | 155 | H N N N S N N S N N S N N S N N S N N S N N S N N S N N S N N N S N N N S N N N S N N N S N N N N N N N N N N N N N N N N N N N N |
|---|----------|-----|-----------------------------------------------------------------------------------------------------------------------------------|
| 2 |          | 156 | H NH N (S)                                                                                                                        |
| 3 | Br N N N | 157 | HN Z ZH                                                                                                                           |

| 4  |                                                                                                             | 158 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|----|-------------------------------------------------------------------------------------------------------------|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 5  |                                                                                                             | 159 | The state of the s |
| 6  |                                                                                                             | 160 | CI REPORT NO.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 7  |                                                                                                             | 161 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 8  | CI N N SS N N N SS N N N N N N N N N N N N N N N N N N N N | 162 | HN O S O S O S O S O S O S O S O S O S O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 9  |                                                                                                             | 163 | H N N N N N N N N N N N N N N N N N N N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 10 |                                                                                                             | 164 | H N N N N N N N N N N N N N N N N N N N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 11 | -H                                                                                                          | 165 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

| 12 | H N R N R N N R N N N N N N N N N N N N  | 166 | H N N N N N N N N N N N N N N N N N N N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|----|------------------------------------------|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 13 | H N N N N N N N N N N N N N N N N N N N  | 167 | H C F N N N N N N N N N N N N N N N N N N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 14 |                                          | 168 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 15 |                                          | 169 | THE CI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 16 |                                          | 170 | THE STATE OF THE S |
| 17 |                                          | 171 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 18 | OH CONTRACTOR                            | 172 | -H-V-F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 19 | OH N N N N N N N N N N N N N N N N N N N | 173 | THE NEW YORK THE N |

| 20 | P NH N N N N N N N N N N N N N N N N N N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 174 |                                          |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|------------------------------------------|
| 21 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 175 |                                          |
| 22 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 176 | H CI N (S)                               |
| 23 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 177 | H CO N N N N N N N N N N N N N N N N N N |
| 24 | -H - N N N N N N N N N N N N N N N N N N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 178 |                                          |
| 25 | THE STATE OF THE S | 179 | N N N N N N N N N N N N N N N N N N N    |
| 26 | H N N N N N N N N N N N N N N N N N N N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 180 | F N N N N N N N N N N N N N N N N N N N  |
| 27 | THE THE PART OF TH | 181 | H N N N N N N N N N N N N N N N N N N N  |

| 28 | O H N N N N N N N N N N N N N N N N N N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 182 | H N N N N N N N N N N N N N N N N N N N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 29 | H P P P P P P P P P P P P P P P P P P P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 183 | H N N N N N N N N N N N N N N N N N N N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 30 | -H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 184 | N N N N N N N N N N N N N N N N N N N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 31 | H N N N N N N N N N N N N N N N N N N N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 185 | H N N N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 32 | H N N N N N N N N N N N N N N N N N N N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 186 | F N N N N N N N N N N N N N N N N N N N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 33 | H N N N N N N N N N N N N N N N N N N N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 187 | H N N N N N N N N N N N N N N N N N N N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 34 | The state of the s | 188 | H N N N N N N N N N N N N N N N N N N N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 35 | N F F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 189 | THE NAME OF THE PARTY OF THE PA |

| 36 | 0′                                      | 190 | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|----|-----------------------------------------|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|    |                                         |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 37 | H N N N N N N N N N N N N N N N N N N N | 191 | THE NAME OF THE PARTY OF THE PA |
| 38 |                                         | 192 | -H - N - N - N - N - N - N - N - N - N -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 39 |                                         | 193 | H N N N N N N N N N N N N N N N N N N N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 40 | O N N N N N N N N N N N N N N N N N N N | 194 | H T N N N N N N N N N N N N N N N N N N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 41 |                                         | 195 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 42 |                                         | 196 | H N N N N N N N N N N N N N N N N N N N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 43 | F N N N                                 | 197 | H N N N N N N N N N N N N N N N N N N N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 44 | H N N N N                               | 198 | H CI<br>N N N N N N N N N N N N N N N N N N N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |

| 45 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 199 |                                          |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|------------------------------------------|
| 46 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 200 |                                          |
| 47 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 201 | H C N N N N N N N N N N N N N N N N N N  |
| 48 | ON NO SOL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 202 | H N N N N N N N N N N N N N N N N N N N  |
| 49 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 203 | H N N N N N N N N N N N N N N N N N N N  |
| 50 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 204 |                                          |
| 51 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 205 | O H N N N N N N N N N N N N N N N N N N  |
| 52 | THE STATE OF THE S | 206 | H CI NH N(S)                             |
| 53 | N (S) NH (S)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 207 | -H-C-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N |

| 54 | O'N N N N N N N N N N N N N N N N N N N | 208 | THE TOP TO  |
|----|-----------------------------------------|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 55 | H CI N N N                              | 209 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 56 | V N N N N N N N N N N N N N N N N N N N | 210 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 57 |                                         | 211 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 58 | H N N N N N N N N N N N N N N N N N N N | 212 | H C C N N N N N N N N N N N N N N N N N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 59 | O H N N N N N N N N N N N N N N N N N N | 213 | The state of the s |
| 60 | F N N N N N N N N N N N N N N N N N N N | 214 | H C N N N N N N N N N N N N N N N N N N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 61 | H N N N N                               | 215 | H C N N N N N N N N N N N N N N N N N N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 62 | F N N N N                               | 216 | H C C N N N N N N N N N N N N N N N N N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |

| 63 | F N N N                                 | 217 |                                                |
|----|-----------------------------------------|-----|------------------------------------------------|
| 64 |                                         | 218 |                                                |
| 65 | F N N N N N N N N N N N N N N N N N N N | 219 | H N N N N N N N N N N N N N N N N N N N        |
| 66 | H N N N N N N N N N N N N N N N N N N N | 220 | H O N N N (S)                                  |
| 67 | H N N N N N N N N N N N N N N N N N N N | 221 | F O N N N N N N N N N N N N N N N N N N        |
| 68 | H N N N N                               | 222 | N=N<br>N=N                                     |
| 69 | H N N N N N N N N N N N N N N N N N N N | 223 |                                                |
| 70 | H N N S N                               | 224 |                                                |
| 71 | H N N N N N N N N N N N N N N N N N N N | 225 | -H - F O - N N N N N N N N N N N N N N N N N N |

| 72 | H N N N N N N N N N N N N N N N N N N N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 226 | THE CONTRACTOR OF THE CONTRACT |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 73 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 227 | H C N N N N N N N N N N N N N N N N N N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 74 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 228 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 75 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 230 | H C P C N N C N N N N N N N N N N N N N N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 76 | O. H. N.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 231 | H N N N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 77 | H N N O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 232 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 78 | THE STATE OF THE S | 233 | -H-CI<br>NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 79 | H N N N N N N N N N N N N N N N N N N N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 234 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 80 | H N NH <sub>2</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 235 | The state of the s |

| 81 | H N N N OH                               | 236 | H O F O N N N N N N N N N N N N N N N N N  |
|----|------------------------------------------|-----|--------------------------------------------|
| 82 |                                          | 237 |                                            |
| 83 | TO NOT NOT NOT NOT NOT NOT NOT NOT NOT N | 238 | -H-C-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N   |
| 84 | CI<br>N N N                              | 239 | H CON NO OO                                |
| 85 | H N N F F F F F F F F F F F F F F F F F  | 240 |                                            |
| 86 |                                          | 241 | -N                                         |
| 87 | H N N N N N N N N N N N N N N N N N N N  | 242 |                                            |
| 88 |                                          | 243 |                                            |
| 89 | H N N N N N N N N N N N N N N N N N N N  | 244 | H CI O N N N N N N N N N N N N N N N N N N |

| 90 | H N N N N N N N N N N N N N N N N N N N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 245 | CI O N N N N N N N N N N N N N N N N N N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 91 | THE CITY OF THE CI | 246 | N N N N N N N N N N N N N N N N N N N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 92 | H NH2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 247 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 93 | H CI<br>N N N N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 248 | H N N N N N N N N N N N N N N N N N N N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 94 | H CI N N N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 249 | H O N N N N N N N N N N N N N N N N N N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 95 | H N N N N N N N N N N N N N N N N N N N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 250 | H CO CN LN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 96 | H (E) N N N N N N N N N N N N N N N N N N N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 251 | H N N N N N N N N N N N N N N N N N N N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 97 | H CI N N N N N N N N N N N N N N N N N N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 252 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 98 | H N N N N N N N N N N N N N N N N N N N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 253 | THE STATE OF THE S |

| 99  |                                         | 254 | F NH (S)                                |
|-----|-----------------------------------------|-----|-----------------------------------------|
| 100 | H CI N N N N                            | 255 | H NH                                    |
| 101 |                                         | 256 |                                         |
| 102 | H CI N N N N                            | 257 | H N N N N N N N N N N N N N N N N N N N |
| 103 | H NH N (S)                              | 258 | H N N N N N N N N N N N N N N N N N N N |
| 104 | F N N N N                               | 259 | H N N (R) NH                            |
| 105 | H N N N O                               | 260 | H NH                                    |
| 106 | F N N N N N N N N N N N N N N N N N N N | 261 | H N N N N N N N N N N N N N N N N N N N |
| 107 | H N N N N N N N N N N N N N N N N N N N | 262 |                                         |

| 108 | 0′                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 263 | 0′                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|     | F N N N N N N N N N N N N N N N N N N N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |     | THE TOTAL PROPERTY OF THE PROP |
| 109 | THE STATE OF THE S | 264 | H C N N N N N N N N N N N N N N N N N N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 110 | F N N N N N N N N N N N N N N N N N N N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 265 | H N N N N N N N N N N N N N N N N N N N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 111 | H N N N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 266 | H N N N N N N N N N N N N N N N N N N N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 112 | H N N N N N N N N N N N N N N N N N N N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 267 | H N N N N N N N N N N N N N N N N N N N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 113 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 268 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 114 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 269 | H N N N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 115 | H N N N N N N N N N N N N N N N N N N N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 270 | H O N N O N N N N N N N N N N N N N N N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 116 | O H N N F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 271 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

| 117 | H N N N N N N N N N N N N N N N N N N N | 272 | H CI N N N N N N N N N N N N N N N N N N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|-----|-----------------------------------------|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 118 |                                         | 273 | H N N (S) N N N N N N N N N N N N N N N N N N N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 119 | H N N N N N N N N N N N N N N N N N N N | 274 | H N N (S)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 120 | O H N N N OH                            | 275 | H N N N N N N N N N N N N N N N N N N N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 121 | H N N N N N N N N N N N N N N N N N N N | 276 | CI N N (S)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 122 | H N N N N N N N N N N N N N N N N N N N | 277 | F O N N N S S N H S S N H S S N H S S N H S S N H S S N H S S N H S S N H S N H S N H S N H S N H S N H S N H S N H S N H S N H S N H S N H S N H S N H S N H S N H S N H S N H S N H S N H S N H S N H S N H S N H S N H S N H S N H S N H S N H S N H S N H S N H S N H S N H S N H S N H S N H S N H S N H S N H S N H S N H S N H S N H S N H S N H S N H S N H S N H S N H S N H S N H S N H S N H S N H S N H S N H S N H S N H S N H S N H S N H S N H S N H S N H S N H S N H S N H S N H S N H S N H S N H S N H S N H S N H S N H S N H S N H S N H S N H S N H S N H S N H S N H S N H S N H S N H S N H S N H S N H S N H S N H S N H S N H S N H S N H S N H S N H S N H S N H S N H S N H S N H S N H S N H S N H S N H S N H S N H S N H S N H S N H S N H S N H S N H S N H S N H S N H S N H S N H S N H S N H S N H S N H S N H S N H S N H S N H S N H S N H S N H S N H S N H S N H S N H S N H S N H S N H S N H S N H S N H S N H S N H S N H S N H S N H S N H S N H S N H S N H S N H S N H S N H S N H S N H S N H S N H S N H S N H S N H S N H S N H S N H S N H S N H S N H S N H S N H S N H S N H S N H S N H S N H S N H S N H S N H S N H S N H S N H S N H S N H S N H S N H S N H S N H S N H S N H S N H S N H S N H S N H S N H S N H S N H S N H S N H S N H S N H S N H S N H S N H S N H S N H S N H S N H S N H S N H S N H S N H S N H S N H S N H S N H S N H S N H S N H S N H S N H S N H S N H S N H S N H S N H S N H S N H S N H S N H S N H S N H S N H S N H S N H S N H S N H S N H S N H S N H S N H S N H S N H S N H S N H S N H S N H S N H S N H S N H S N H S N H S N H S N H S N H S N H S N H S N H S N H S N H S N H S N H S N H S N H S N H S N H S N H S N H S N H S N H S N H S N H S N H S N H S N H S N H S N H S N H S N H S N H S N H S N H S N H S N H S N H S N H S N H S N H S N H S N H S N H S N H S N H S N H S N H S N H S N H S N H S N H S N H S N H S N H S N H S N H S N H S N H S N H S N H S N H S N H S N H S N H S N H S N H S N H S N H S N H S N H S N H S N H S N H S N H S N H S N H S N H S N H S N H S N H S N H S N H S N H S N H S N |
| 123 | H N N N N N N N N N N N N N N N N N N N | 278 | F N N (S)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 124 | H N N N N N N N N N N N N N N N N N N N | 279 | P O N N (R) NH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 125 | o H C C I                               | 280 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |

| 126 | H N N OH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 281 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 127 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 282 | F O N N N (S)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 128 | THE THE PROPERTY OF THE PROPER | 283 | THE STATE OF THE S |
| 129 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 284 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 130 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 285 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 131 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 286 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 132 | H N N N N N N N N N N N N N N N N N N N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 287 | CI N N (S)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 133 | -H - C - N N N N N N N N N N N N N N N N N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 288 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 134 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 289 | H CI CI (R) N (S) N (S)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |

| 135 | 9′                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 290 | CI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     | H N N N N N N N N N N N N N N N N N N N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 136 | F N N R O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 291 | THE POLICE OF TH |
| 137 | THE NEW YORK OF THE PARTY OF TH | 292 | CI NH N (3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 138 | H N N N N N N N N N N N N N N N N N N N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 293 | H N (S) (S) H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 139 | H N N N N N N N N N N N N N N N N N N N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 294 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 140 | THE CI NAME OF THE COLUMN TO T | 295 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 141 | H N N N N N N N N N N N N N N N N N N N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 296 | THE PART OF THE PA |
| 142 | H N N N N N N N N N N N N N N N N N N N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 297 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 143 | H N N N N N N N N N N N N N N N N N N N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 298 | CI C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |

| 144 | H C C C C C C C C C C C C C C C C C C C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 299 | P CI (R) NH (S) |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------------------------------------------------|
| 145 | H N N N N N N N N N N N N N N N N N N N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 301 |                                                     |
| 146 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 302 | H C N N N N N N N N N N N N N N N N N N             |
| 147 | H N N N N N N N N N N N N N N N N N N N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 303 | CI N HO OH OH                                       |
| 148 | H F N N N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 304 |                                                     |
| 149 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 305 | N N N N N N N N N N N N N N N N N N N               |
| 150 | H N N N N N N N N N N N N N N N N N N N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 306 | H N S N H N S N H                                   |
| 151 | THE STATE OF THE S | 307 | - F - N N N N N N N N N N N N N N N N N             |

| 152 |           | 308 | CI<br>N NH<br>N (S)                      |
|-----|-----------|-----|------------------------------------------|
| 153 | F N N (S) | 309 | CI N N N N N N N N N N N N N N N N N N N |
| 154 |           |     |                                          |

- 19. El compuesto de fórmula (I) de acuerdo con cualquiera de las reivindicaciones 1-18 y/o una sal farmacéuticamente aceptable de este para su uso como un medicamento.
- 20. Una composición farmacéutica que comprende al menos un compuesto de fórmula (I) de acuerdo con cualquiera
   de las reivindicaciones 1-18 y/o al menos una sal farmacéuticamente aceptable de este y opcionalmente al menos un portador farmacéuticamente aceptable.
  - 21. El compuesto de fórmula (I) de acuerdo con cualquiera de las reivindicaciones 1-18 y/o una sal farmacéuticamente aceptable de este, para su uso en el tratamiento de una enfermedad sensible a la inhibición de FGFR, donde la enfermedad sensible a la inhibición de FGFR es cáncer.
- 10 22. El compuesto de fórmula (I) para su uso de acuerdo con la reivindicación 21, donde el cáncer es cáncer de pulmón, cáncer de estómago, cáncer de hígado, cáncer de mama, cáncer de ovario, carcinoma de endometrio o carcinoma de vejiga.