

OFICINA ESPAÑOLA DE PATENTES Y MARCAS

ESPAÑA

① Número de publicación: 2 700 461

61 Int. Cl.:

G03G 21/16 (2006.01) G03G 15/08 (2006.01) G03G 21/18 (2006.01)

(12)

TRADUCCIÓN DE PATENTE EUROPEA

T3

96 Fecha de presentación y número de la solicitud europea: 17.06.2016 E 16174906 (4)
97 Fecha y número de publicación de la concesión europea: 26.09.2018 EP 3130965

(54) Título: Cartucho de tóner con una proyección móvil para proporcionar información de instalación a un dispositivo de formación de imágenes

(30) Prioridad:

13.08.2015 US 201514825400

Fecha de publicación y mención en BOPI de la traducción de la patente: 15.02.2019

(73) Titular/es:

LEXMARK INTERNATIONAL, INC. (100.0%) 740 West New Circle Road Lexington, KY 40550, US

(72) Inventor/es:

BAYUBAY, MICHAEL NUESTRO; BONANCIAR, SALVADOR CAPURIHAN; CARPENTER, BRIAN SCOTT; MARMOL, DONATO AUSTRIA; MCALPINE, ROBERT WATSON y LACTUAN, KATRINA ROSIT

(74) Agente/Representante:

ELZABURU, S.L.P

DESCRIPCIÓN

Cartucho de tóner con una proyección móvil para proporcionar información de instalación a un dispositivo de formación de imágenes

Antecedentes

5 1. Campo de la descripción

La presente descripción se refiere, en general, a dispositivos de formación de imágenes y, más particularmente, a un cartucho de tóner con una proyección móvil para proporcionar información de instalación a un dispositivo de formación de imágenes.

2. Descripción de la técnica relacionada

Durante el proceso de impresión electrofotográfica, un tambor fotoconductor giratorio cargado eléctricamente se expone selectivamente a un rayo láser. Las áreas del tambor fotoconductor expuestas al rayo láser se descargan creando una imagen latente electrostática de una página que se imprimirá en el tambor fotoconductor. Luego, las partículas de tóner son recogidas electrostáticamente por la imagen latente en el tambor fotoconductor creando una imagen con tonalidad en el tambor. La imagen con tonalidad se transfiere al medio de impresión (por ejemplo, papel) ya sea directamente mediante el tambor fotoconductor o indirectamente mediante un miembro de transferencia intermedia. Luego, el tóner se fusiona con el medio mediante el uso de calor y presión para completar la impresión.

El suministro de tóner del dispositivo de formación de imágenes generalmente se almacena en uno o más cartuchos de tóner que deben reemplazarse periódicamente para continuar proporcionando tóner al dispositivo de formación de imágenes para la impresión. Se desea comunicar varias condiciones del cartucho de tóner al dispositivo de formación de imágenes para su correcto funcionamiento. Las descripciones de los documentos WO 2013/101351 A2, EP 1 950 625 A2, US 2013/170868 A1, US 2006/269302 A1 y US 2014/029960 A1 pueden ser útiles para comprender la presente invención.

Compendio

20

45

50

La invención está definida por las reivindicaciones adjuntas.

25 Un cartucho de tóner según una realización ilustrativa incluye un alojamiento con una parte superior, inferior, delantera y trasera colocadas entre un primer lado y un segundo lado del alojamiento. El alojamiento tiene un depósito para contener el tóner. Un puerto de salida está en comunicación fluida con el depósito y se orienta hacia abaio en la parte delantera del alojamiento, cerca del primer lado del alojamiento, para que salga el tóner del cartucho de tóner. Una conexión se coloca sobre el primer lado del alojamiento. La conexión tiene una superficie de acoplamiento a la que se 30 puede acceder en la parte trasera del aloiamiento. Una provección se coloca sobre el primer lado del aloiamiento. La proyección puede moverse entre una primera posición y una segunda posición. La proyección se extiende hacia afuera lateralmente desde el primer lado cuando la proyección se encuentra en la segunda posición. La proyección está conectada operativamente a la conexión, de modo que la proyección se mueve hacia arriba desde la primera posición hasta la segunda posición cuando la superficie de acoplamiento recibe una fuerza directa hacia la parte delantera del alojamiento. La proyección no está obstruida para hacer contacto y empujar hacia arriba sobre un brazo en el 35 dispositivo de formación de imágenes cuando la proyección se mueve hacia arriba desde la primera posición hasta la segunda posición para cambiar el estado de un sensor en el dispositivo de formación de imágenes cuando el cartucho de tóner está instalado en el dispositivo de formación de imágenes. En algunas realizaciones, la proyección está desviada hacia la primera posición. Las realizaciones incluyen aquellas en las que la conexión está orientada hacia 40 atrás hacia la parte trasera del alojamiento.

En algunas realizaciones, una guía de alineación se extiende hacia afuera lateralmente sobre el primer lado del alojamiento. En la segunda posición, una parte superior de la proyección se coloca más alta que al menos una parte de una superficie superior de la guía de alineación. En la primera posición, la proyección puede extenderse hacia afuera lateralmente desde el primer lado y puede estar en línea con la guía de alineación desde la parte trasera hasta la parte delantera del alojamiento. La guía de alineación puede extenderse desde la parte trasera hasta la parte delantera sobre el primer lado del alojamiento.

Las realizaciones incluyen aquellas en donde la proyección se mueve hacia afuera lateralmente desde el primer lado a medida que la proyección se mueve desde la primera posición hasta la segunda posición.

Algunas realizaciones incluyen un obturador móvil entre una posición cerrada que bloquea el puerto de salida y una posición abierta que desbloquea el puerto de salida. El obturador está conectado operativamente a la conexión, de modo que el obturador se mueve desde la posición cerrada hasta la posición abierta cuando la superficie de acoplamiento recibe la fuerza directa hacia la parte delantera del alojamiento.

En algunas realizaciones, un canal corre a lo largo de la parte delantera del alojamiento entre el primer lado y el segundo lado en comunicación fluida con el puerto de salida. Al menos una parte del canal es abierta hacia el depósito.

Una barrena se coloca en el canal y se extiende a lo largo de la parte delantera del alojamiento entre el primer lado y el segundo lado. La barrena funciona para mover el tóner en el canal hacia el puerto de salida. En la segunda posición, una parte superior de la proyección se coloca más alta que una superficie inferior del canal. En la segunda posición, una parte superior de la proyección se coloca en línea con el canal desde el segundo lado hasta el primer lado del alojamiento. Una unidad de suministro de tóner se coloca en el depósito para suministrar tóner al canal. La unidad de suministro de tóner incluye un eje de accionamiento montado de forma giratoria en el depósito. El eje de accionamiento incluye un eje de rotación. En la segunda posición, una parte superior de la proyección se coloca más alta que el eje de rotación del eje de accionamiento.

Un cartucho de tóner según otra realización ilustrativa incluye un alojamiento con una parte superior, inferior, delantera y trasera colocadas entre un primer lado y un segundo lado del alojamiento. El alojamiento tiene un depósito para contener el tóner. Un puerto de salida está en comunicación fluida con el depósito y se orienta hacia abajo en la parte delantera del alojamiento, cerca del primer lado del alojamiento, para que salga el tóner del cartucho de tóner. Una conexión se coloca sobre el primer lado del alojamiento. La conexión tiene una superficie de acoplamiento a la que se puede acceder en la parte trasera del alojamiento para recibir una fuerza de accionamiento en la parte trasera del alojamiento. La conexión se puede mover hacia adelante del alojamiento sobre la superficie de acoplamiento que recibe la fuerza de accionamiento en la parte trasera del alojamiento. Un indicador se coloca sobre el primer lado del alojamiento. El indicador puede moverse entre una primera posición y una segunda posición. El indicador se extiende hacia afuera lateralmente desde el primer lado cuando el indicador se encuentra en la segunda posición. El indicador se conecta operativamente con la conexión, de modo que el movimiento hacia adelante de la conexión hace que el indicador se mueva hacia arriba desde la primera posición hasta la segunda posición, lo que permite que el indicador cambie el estado de un sensor en el dispositivo de formación de imágenes cuando el cartucho de tóner está instalado en el dispositivo de formación de imágenes.

Breve descripción de los dibujos

5

10

15

20

25

45

50

Los dibujos adjuntos incorporados y que forman una parte de la memoria descriptiva, ilustran diversos aspectos de la presente descripción, y junto con la descripción, sirven para explicar los principios de la presente descripción.

La Figura 1 es un diagrama de bloques de un sistema de formación de imágenes según una realización ilustrativa.

La Figura 2 es una vista en perspectiva de un cartucho de tóner y una unidad de formación de imágenes según una realización ilustrativa.

La Figura 3 es una vista en perspectiva frontal del cartucho de tóner que se muestra en la Figura 2.

30 La Figura 4 es una vista en perspectiva trasera del cartucho de tóner que se muestra en las Figuras 2 y 3.

La Figura 5 es una vista en despiece del cartucho de tóner que se muestra en las Figuras 2-4 que muestra un depósito para contener tóner.

La Figura 6 es una vista en perspectiva de una parte delantera del cartucho de tóner que se muestra en las Figuras 2-5 que muestra un puerto de salida según una realización ilustrativa.

Las Figuras 7A y 7B son vistas en perspectiva de una unidad de obturación del cartucho de tóner en una posición cerrada y una posición abierta, respectivamente, según una realización ilustrativa.

Las Figuras 8A y 8B son vistas en despiece de la unidad de obturación que se muestra en las Figuras 7A y 7B.

La Figura 9 es una vista en elevación lateral de un cartucho de tóner con una tapa de extremo omitida según una realización ilustrativa.

40 La Figura 10 es una vista en elevación lateral del cartucho de tóner durante la inserción en el dispositivo de formación de imágenes que muestra una proyección en el lado del cartucho de tóner en una primera posición y un sensor colocado para detectar la proyección según una realización ilustrativa.

La Figura 11 es una vista en elevación lateral del cartucho de tóner con la tapa de extremo omitida cuando el cartucho de tóner está completamente instalado en el dispositivo de formación de imágenes que muestra la proyección en la primera posición y el sensor colocado para detectar la proyección según con una realización ilustrativa.

La Figura 12 es una vista en elevación lateral del cartucho de tóner con la tapa de extremo omitida cuando el cartucho de tóner está completamente instalado en el dispositivo de formación de imágenes que muestra la proyección en una segunda posición y el sensor colocado para detectar la proyección según con una realización ilustrativa.

La Figura 13 es una vista en elevación lateral del cartucho de tóner cuando el cartucho de tóner está completamente instalado en el dispositivo de formación de imágenes que muestra la proyección en la segunda posición y el sensor colocado para detectar la proyección según con una realización ilustrativa.

La Figura 14 es una vista en perspectiva de un sensor colocado para detectar la proyección del cartucho de tóner

según otra realización ilustrativa.

5

15

35

45

La Figura 15 es una vista en elevación lateral del cartucho de tóner que muestra una proyección en el lado del cartucho de tóner en una primera posición según una segunda realización ilustrativa.

La Figura 16 es una vista en perspectiva frontal de un lado interno de una tapa de extremo del cartucho de tóner, que se muestra en la Figura 15, que muestra la proyección en la primera posición.

La Figura 17 es una vista en perspectiva frontal del lado interno de la tapa de extremo del cartucho de tóner, que se muestra en las Figuras 15 y 16, que muestra la proyección en una segunda posición.

La Figura 18 es una vista en perspectiva lateral del cartucho de tóner que muestra una proyección en el lado del cartucho de tóner en una primera posición según una tercera realización ilustrativa.

La Figura 19 es una vista en elevación lateral del cartucho de tóner, que se muestra en la Figura 18 con la tapa de extremo omitida, que muestra la proyección en la primera posición.

La Figura 20 es una vista en elevación lateral del cartucho de tóner, que se muestra en las Figuras 18 y 19 con la tapa de extremo omitida, que muestra la proyección en una segunda posición.

La Figura 21 es una vista en elevación lateral del cartucho de tóner que muestra una proyección en el lado del cartucho de tóner en una primera posición según una cuarta realización ilustrativa.

La Figura 22 es una vista en perspectiva del lado del cartucho de tóner, que se muestra en la Figura 21 con la tapa de extremo omitida, que muestra la provección en la primera posición.

La Figura 23 es una vista perspectiva del lado del cartucho de tóner, que se muestra en las Figuras 21 y 22 con la tapa de extremo omitida, que muestra la proyección en la segunda posición.

La Figura 24 es una vista en elevación lateral de un lado interno de una tapa de extremo del cartucho de tóner que muestra una proyección en el lado del cartucho de tóner en una primera posición según una quinta realización ilustrativa.

La Figura 25 es una vista en elevación lateral del lado interno de la tapa de extremo del cartucho de tóner, que se muestra en la Figura 24, que muestra la proyección en una segunda posición.

La Figura 26 es una vista en elevación lateral del cartucho de tóner que muestra una proyección en el lado del cartucho de tóner en una primera posición según una sexta realización ilustrativa.

La Figura 27 es una vista en perspectiva lateral del cartucho de tóner, que se muestra en la Figura 26 con la tapa de extremo ilustrada esquemáticamente mediante una línea discontinua, que muestra la proyección en la primera posición.

La Figura 28 es una vista en perspectiva lateral del cartucho de tóner, que se muestra en las Figuras 26 y 27 con la tapa de extremo ilustrada esquemáticamente mediante una línea discontinua, que muestra la proyección en una segunda posición.

La Figura 29 es una vista en elevación lateral del cartucho de tóner con la tapa de extremo omitida que muestra una primera conexión y una segunda conexión conectadas operativamente a la proyección según una realización ilustrativa con la segunda conexión desalineada con respecto a la primera conexión.

La Figura 30 es una vista en elevación lateral del cartucho de tóner, que se muestra en la Figura 29 con la tapa de extremo omitida, que muestra una conexión elevable que empuja la segunda conexión en alineación con la primera conexión según una realización ilustrativa.

La Figura 31 es una vista en elevación lateral del cartucho de tóner, que se muestra en las Figuras 29 y 30 con la tapa de extremo omitida, que muestra la primera conexión y la segunda conexión presionadas para mover la proyección desde una primera posición hasta una segunda posición según una realización ilustrativa.

Descripción detallada

En la siguiente descripción, se hace referencia a los dibujos adjuntos donde los números similares representan elementos similares. Las realizaciones se describen con suficiente detalle para permitir que los expertos en la técnica pongan en práctica la presente descripción. Se debe comprender que se pueden utilizar otras realizaciones y que se pueden realizar cambios mecánicos, eléctricos y de proceso sin desviarse del alcance de la presente descripción. Los ejemplos simplemente tipifican posibles variaciones. Algunas partes y características de algunas realizaciones se pueden incluir o sustituir en las otras. La siguiente descripción, por lo tanto, no debe tomarse en sentido limitante, y el alcance de la presente descripción está definido solamente por las reivindicaciones adjuntas y sus equivalentes.

50 A continuación, con referencia a los dibujos y, particularmente, a la Figura 1, se muestra una representación en

diagrama de bloques de un sistema de formación imágenes 20 según una realización ilustrativa. El sistema de formación de imágenes 20 incluye un dispositivo de formación de imágenes 22 y una computadora 24. El dispositivo de formación de imágenes 22 se comunica con la computadora 24 a través de un enlace de comunicaciones 26. Tal como se usa en la presente memoria, la expresión "enlace de comunicaciones" generalmente se refiere a cualquier estructura que facilita la comunicación electrónica entre múltiples componentes y puede funcionar mediante el uso de tecnología por cable o inalámbrica y puede incluir comunicaciones a través de Internet.

5

10

25

30

45

En la realización ilustrativa que se muestra en la Figura 1, el dispositivo de formación de imágenes 22 es una máquina multifunción (a veces denominada dispositivo todo en uno (AIO)) que incluye un controlador 28, un motor de impresión 30, una unidad de escaneo láser (LSU) 31, una unidad de formación de imágenes 200, un cartucho de tóner 100, una interfaz de usuario 36, un sistema de alimentación de medios 38, una bandeja de entrada de medios 39 y un sistema de escaneo 40. El dispositivo de formación de imágenes 22 puede comunicarse con la computadora 24 a través de un protocolo de comunicación estándar tal como, por ejemplo, bus de serie universal (USB), Ethernet o IEEE 802.xx. El dispositivo de formación de imágenes 22 puede ser, por ejemplo, una copiadora/impresora electrofotográfica que incluye un sistema de escaneo integrado 40 o una impresora electrofotográfica independiente.

El controlador 28 incluye una unidad de procesador y una memoria electrónica asociada 29. El procesador puede incluir uno o más circuitos integrados en forma de microprocesador o unidad de procesamiento central y puede formarse como uno o más circuitos integrados de aplicación específica (ASIC). La memoria 29 puede ser cualquier memoria volátil o no volátil o una combinación de ellas tal como, por ejemplo, memoria de acceso aleatorio (RAM), memoria de solo lectura (ROM), memoria flash y/o RAM no volátil (NVRAM). Alternativamente, la memoria 29 puede tener forma de una memoria separada (por ejemplo, RAM, ROM y/o NVRAM), un disco duro, una unidad de CD o DVD o cualquier dispositivo de memoria conveniente para su uso con el controlador 28. El controlador 28 puede ser, por ejemplo, un controlador combinado de impresora y escáner.

En el ejemplo de realización ilustrado, el controlador 28 se comunica con el motor de impresión 30 a través de un enlace de comunicaciones 50. El controlador 28 se comunica con la unidad de formación de imágenes 200 y el circuito de procesamiento 44 en esta a través de un enlace de comunicaciones 51. El controlador 28 se comunica con el cartucho de tóner 100 y el circuito de procesamiento 45 en este a través de un enlace de comunicaciones 52. El controlador 28 se comunica con el sistema de alimentación de medios 38 a través de un enlace de comunicaciones 53. El controlador 28 se comunica con el sistema de escaneo 40 a través de un enlace de comunicaciones 54. La interfaz de usuario 36 se acopla comunicativamente al controlador 28 a través de un enlace de comunicaciones 55. Los circuitos de procesamiento 44, 45 pueden proporcionar funciones de autenticación, seguridad, interbloqueos operativos, parámetros operativos e información de uso relacionados con la unidad de formación de imágenes 200 y el cartucho de tóner 100, respectivamente. El controlador 28 procesa los datos de impresión y escaneo y opera el motor de impresión 30 durante la impresión y el sistema de escaneo 40 durante el escaneo.

La computadora 24, que es opcional, puede ser, por ejemplo, una computadora personal, que incluye una memoria electrónica 60, tal como RAM, ROM y/o NVRAM, un dispositivo de entrada 62, tal como un teclado y/o un ratón, y un monitor de pantalla 64. La computadora 24 también incluye un procesador, interfaces de entrada/salida (E/S) y, puede incluir al menos un dispositivo de almacenamiento masivo de datos, tal como un disco duro, una unidad de CD-ROM y/o DVD (no se muestra). La computadora 24 también puede ser un dispositivo capaz de comunicarse con un dispositivo de formación de imágenes 22 distinto de una computadora personal tal como, por ejemplo, una tableta, un teléfono inteligente u otro dispositivo electrónico.

En el ejemplo de realización ilustrado, la computadora 24 incluye en su memoria un programa de software que incluye instrucciones de programa que funcionan como un controlador de imágenes 66, por ejemplo, un software de controlador de impresora/escáner, para el dispositivo de formación de imágenes 22. El controlador de imágenes 66 está en comunicación con el controlador 28 del dispositivo de formación de imágenes 22 a través del enlace de comunicaciones 26. El controlador de imágenes 66 facilita la comunicación entre el dispositivo de formación de imágenes 22 y la computadora 24. Un aspecto del controlador de imágenes 66 puede ser, por ejemplo, proporcionar datos de impresión formateados al dispositivo de formación de imágenes 22 y, más particularmente, al motor de impresión 30, para imprimir una imagen. Otro aspecto del controlador de imágenes 66 puede ser, por ejemplo, facilitar la recopilación de datos escaneados del sistema de escaneo 40.

50 En algunas circunstancias, puede ser conveniente operar el dispositivo de formación de imágenes 22 en un modo independiente. En el modo independiente, el dispositivo de formación de imágenes 22 puede funcionar sin la computadora 24. Por consiguiente, la totalidad o una parte del controlador de imágenes 66, o un controlador similar, puede ubicarse en el controlador 28 del dispositivo de formación de imágenes 22 para adaptar la funcionalidad de impresión y/o escaneo cuando funciona en el modo independiente.

El motor de impresión 30 incluye una unidad de escaneo láser (LSU) 31, un cartucho de tóner 100, una unidad de formación imágenes 200 y un fusor 37, todos montados dentro del dispositivo de formación de imágenes 22. La unidad de formación de imágenes 200 está montada de forma extraíble en el dispositivo de formación de imágenes 22 e incluye una unidad de revelado 202 que aloja un colector de tóner y un sistema de revelado de tóner. En una realización, el sistema de revelado de tóner utiliza lo que comúnmente se conoce como un sistema de revelado de un solo componente. En esta realización, el sistema de revelado de tóner incluye un rodillo de adición de tóner que

proporciona tóner desde el colector de tóner a un rodillo de revelado. Una racleta proporciona una capa de tóner uniforme dosificada sobre la superficie del rodillo de revelado. En otra realización, el sistema de revelado de tóner utiliza lo que comúnmente se conoce como un sistema de revelado de dos componentes. En esta realización, el tóner en el colector de tóner de la unidad de revelado 202 se mezcla con esferas portadoras magnéticas. Las esferas portadoras magnéticas pueden recubrirse con una película polimérica para proporcionar propiedades triboeléctricas para atraer el tóner hacia las esferas portadoras cuando el tóner y las esferas portadoras magnéticas se mezclan en el colector de tóner. En esta realización, la unidad de revelado 202 incluye un rodillo magnético que atrae las esferas portadoras magnéticas que tienen tóner sobre ellas hacia el rodillo magnético mediante el uso de campos magnéticos. La unidad de formación de imágenes 200 también incluye una unidad de limpieza 204 que aloja un tambor fotoconductor y un sistema de eliminación de tóner de desecho.

El cartucho de tóner 100 está montado de forma extraíble en el dispositivo de formación de imágenes 22 en una relación de acoplamiento con la unidad de revelado 202 de la unidad de formación de imágenes 200.

10

15

30

35

40

45

50

Un puerto de salida en el cartucho de tóner 100 se comunica con un puerto de entrada en la unidad de revelado 202, lo que permite que el tóner sea transferido periódicamente desde el cartucho de tóner 100 para reabastecer el colector de tóner en la unidad de revelado 202.

El proceso de impresión electrofotográfica es conocido en la técnica y, por lo tanto, se describe brevemente en la presente memoria. Durante una operación de impresión, la unidad de escaneo láser 31 crea una imagen latente en el tambor fotoconductor en la unidad de limpieza 204.

El tóner se transfiere desde el colector de tóner en la unidad de revelado 202 hasta la imagen latente en el tambor fotoconductor mediante el rodillo de revelado (en el caso de un sistema de revelado de un solo componente) o el rodillo magnético (en el caso de un sistema de revelado de dos componentes) para crear una imagen con tonalidad. La imagen con tonalidad se transfiere luego a una hoja de medios recibida por la unidad de formación imágenes 200 desde la bandeja de entrada de medios 39 para la impresión. El tóner puede transferirse directamente a la hoja de medios mediante el tambor fotoconductor o mediante un miembro de transferencia intermedio que recibe el tóner desde el tambor fotoconductor. El sistema de eliminación de tóner de desecho elimina los restos de tóner del tambor fotoconductor. La imagen de tóner se adhiere a la hoja de medios en el fusor 37 y luego se envía a una ubicación de salida o a una o más opciones de acabado, como una impresora a dos caras, una grapadora o un perforador.

Con referencia ahora a la Figura 2, se muestran el cartucho de tóner 100 y la unidad de formación de imágenes 200 según una realización ilustrativa. La unidad de formación de imágenes 200 incluye una unidad de revelado 202 y una unidad de limpieza 204 montadas en un marco común 206. La unidad de revelado 202 incluye un puerto de entrada de tóner 208 colocado para recibir el tóner desde el cartucho de tóner 100. Como se mencionó anteriormente, la unidad de formación de imágenes 200 y el cartucho de tóner 100 se instalan de forma extraíble en el dispositivo de formación de imágenes 22. La unidad de formación de imágenes 200 se inserta primero de forma deslizable en el dispositivo de formación de imágenes 22 y en el marco 206 en una relación de acoplamiento con la unidad de revelado 202 de la unidad de formación de imágenes 200, como lo indica la flecha que se muestra en la Figura 2. Esta disposición permite retirar y reinsertar fácilmente el cartucho de tóner 100 cuando se reemplaza un cartucho de tóner vacío 100 sin tener que retirar la unidad de formación de imágenes 200. La unidad de formación de imágenes 200 también se puede retirar fácilmente según se desee para mantener, reparar o reemplazar los componentes asociados con la unidad de revelado 202, la unidad de limpieza 204 o el marco 206 o para quitar un atasco de papel.

Con referencia a las Figuras 2-5, el cartucho de tóner 100 incluye un alojamiento 102 que tiene un depósito cerrado 104 (Figura 5) para almacenar tóner. El alojamiento 102 incluye una parte superior 106, una parte inferior 107, un primer y segundo lado 108, 109, una parte delantera 110 y una parte trasera 111. La parte delantera 110 del alojamiento 102 lleva durante la inserción del cartucho de tóner 100 hacia el dispositivo de formación de imágenes 22 y pistas traseras 111. En una realización, cada lado 108, 109 del alojamiento 102 incluye una tapa de extremo 112, 113 montada, por ejemplo, mediante sujetadores o un acoplamiento de ajuste a presión, a las paredes laterales 114, 115 de un cuerpo principal 116 del alojamiento 102. Un puerto de salida 118 en comunicación fluida con el depósito 104 se coloca en la parte delantera 110 del alojamiento 102 cerca del lado 108 para que salga tóner del cartucho de tóner 100. El alojamiento 102 puede incluir patas 120 en la parte inferior 107 para ayudar con la inserción del cartucho de tóner 100 en el dispositivo de formación de imágenes 22 y para sostener el alojamiento 102 cuando el cartucho de tóner 100 se coloca sobre una superficie plana.

Se puede proporcionar un mango 122 en la parte superior 106 o en la parte trasera 111 del alojamiento 102 para ayudar con la inserción y remoción del cartucho de tóner 100 hacia adentro y hacia afuera del dispositivo de formación de imágenes 22.

Los lados 108, 109 pueden incluir cada uno una guía de alineación 124 que se extiende hacia afuera desde el lado respectivo 108, 109 para ayudar con la inserción del cartucho de tóner 100 en el dispositivo de formación de imágenes 22. Las guías de alineación 124 se desplazan en ranuras de guía correspondientes en el dispositivo de formación de imágenes 22, que guían la inserción del cartucho de tóner 100 en el dispositivo de formación de imágenes 22. En el ejemplo de realización ilustrado, una guía de alineación 124 se coloca en el lado externo de cada tapa de extremo

112, 113. Las guías de alineación 124 pueden correr a lo largo de una dimensión de adelante hacia atrás del alojamiento 102, tal como se muestra en las Figuras 2-4. En el ejemplo de realización ilustrado, cada guía de alineación 124 incluye un miembro de aleta 124a que se extiende desde la parte delantera hasta la parte trasera en un lado respectivo 108, 109 del alojamiento 102. En el ejemplo de realización ilustrado, cada guía de alineación 124 también incluye una o más proyecciones redondeadas 124b formadas en la parte inferior del miembro de aleta 124a. Las proyecciones redondeadas 124b definen superficies de contacto en la parte inferior de la guía de alineación 124 que se desplazan sobre una superficie de guía correspondiente a medida que se inserta el cartucho de tóner 100 en el dispositivo de formación de imágenes 22. Sin embargo, la guía de alineación 124 puede tomar muchas otras formas adecuadas. Por ejemplo, en otra realización, la guía de alineación 124 incluye uno o más rebordes en cada lado 108, 109 del alojamiento 102 que se extienden desde la parte delantera hasta la parte trasera. En otra realización, la guía de alineación 124 incluye una o más clavijas o proyecciones redondeadas de cada lado 108, 109, similares a las proyecciones redondeadas 124b, que pueden estar separadas a lo largo de la dimensión de adelante hacia atrás del alojamiento 102.

Como se explica con mayor detalle a continuación, el cartucho de tóner 100 también incluye una proyección 170 en el lado 108 que se puede mover entre una primera posición y una segunda posición para indicar al controlador 28 que el cartucho de tóner 100 está instalado en el dispositivo de formación de imágenes 22.

Con referencia a la Figura 5, se monta una unidad de suministro de tóner 126 de forma giratoria dentro del depósito de tóner 104 con el primer y segundo extremo de un eje de accionamiento 128 de la unidad de suministro de tóner 126 que se extienden a través de aberturas alineadas en las paredes laterales 114, 115, respectivamente. El eje de accionamiento 128 incluye un eje de rotación 129. Se pueden proporcionar bujes en cada extremo del eje de accionamiento 128 donde el eje de accionamiento 128 pasa a través de las paredes laterales 114, 115. Un tren de accionamiento 130 está conectado operativamente con el eje de accionamiento 128 y puede colocarse dentro de un espacio formado entre la tapa de extremo 113 y la pared lateral 115. El tren de accionamiento 130 incluye un engranaje de interfaz principal 132 que se acopla con un sistema de accionamiento en el dispositivo de formación de imágenes 22 que proporciona torsión al engranaje de interfaz principal 132. Como se muestra en la Figura 3, en una realización, una parte delantera del engranaje de interfaz principal 132 está expuesta en la parte delantera 110 del alojamiento 102 cerca de la parte superior 106 del alojamiento 102, donde el engranaje de interfaz principal 132 se acopla al sistema de accionamiento en el dispositivo de formación de imágenes 22. Con referencia a la Figura 5, el tren de accionamiento 130 también incluye un engranaje de accionamiento 134 en un extremo del eje de accionamiento 128 que está conectado al engranaje de interfaz principal 132 directamente o a través de uno o más engranajes intermedios para hacer girar el eje de accionamiento 128.

Una barrena 136 que tiene un primer y un segundo extremo 136a, 136b y un tornillo helicoidal sin fin se coloca en un canal 138 que se extiende a lo largo de la parte delantera 110 del alojamiento 102 desde el lado 108 hasta el lado 109. El canal 138 puede moldearse integralmente como parte de la parte delantera 110 del cuerpo principal 116 o formarse como un componente separado que se une a la parte delantera 110 del cuerpo principal 116. El canal 138 generalmente tiene una orientación horizontal junto con el cartucho de tóner 100 cuando el cartucho de tóner 100 está instalado en el dispositivo de formación de imágenes 22. El puerto de salida 118 se coloca en la parte inferior del canal 138 de modo que la gravedad ayude a que salga tóner a través del puerto de salida 118. El primer extremo 136a de la barrena 136 se extiende a través de la pared lateral 115 y se proporciona un engranaje de accionamiento 137 del tren de accionamiento 130 en el primer extremo 136a que está conectado con el engranaje de interfaz principal 132 directamente o a través de uno o más engranajes intermedios. El canal 138 incluye una parte abierta 138a y puede incluir una parte cerrada 138b. La parte abierta 138a está abierta hacia el depósito de tóner 104 y se extiende desde el lado 109 hacia el segundo extremo 136b de la barrena 136. La parte cerrada 138b del canal 138 se extiende desde el lado 108 y finaliza en el segundo extremo 136b de la barrena 136. En esta realización, el puerto de salida 118 se coloca en la parte inferior de la parte cerrada 138b del canal 138.

Con referencia a la Figura 6, en algunas realizaciones, el cartucho de tóner 100 incluye un obturador 140 que regula si se permite la salida de tóner del cartucho de tóner 100 a través del puerto de salida 118. El obturador 140 se muestra con más detalle en las Figuras 7A, 7B, 8A y 8B. El obturador 140 puede girar entre una posición cerrada que se muestra en las Figuras 7A y 8A y una posición abierta que se muestra en las Figuras 6, 7B y 8B. El obturador 140 incluye un extremo abierto 140a que recibe el segundo extremo 136b de la barrena 136 en su interior. A medida que la barrena 136 gira, esta suministra tóner desde el canal 138 hasta el obturador 140. El obturador 140 incluye una abertura radial 140b conectada con el extremo abierto 140a mediante un canal interno en el obturador 140. La abertura radial 140b permite que el tóner salga del cartucho de tóner 100 a través del puerto de salida 118 como se explica con mayor detalle a continuación.

Se monta un miembro de retención 142 en la pared lateral 114 del cartucho de tóner 100 (Figura 6). En el ejemplo de realización ilustrado, el miembro de retención 142 es un componente separado unido al alojamiento 102; sin embargo, el miembro de retención 142 también puede moldearse integralmente como parte del alojamiento 102. El miembro de retención 142 incluye un buje 144 que recibe un extremo cerrado 140c del obturador 140. El extremo cerrado 140c del obturador 140 está conectado con una palanca 146 que abre y cierra el obturador 140. En el ejemplo de realización ilustrado, el extremo cerrado 140c del obturador 140 incluye una llave 148 y la palanca 146 incluye una ranura correspondiente 149. La llave 148 y la ranura 149 acoplan el obturador 140 a la palanca 146, de modo que la rotación de la palanca 146 abra y cierre el obturador 140. Se apreciará que esta configuración puede invertirse de modo que

la palanca 146 incluya una llave y el extremo cerrado 140c del obturador 140 incluya una ranura correspondiente. En la realización ilustrada, la palanca 146 está conectada al extremo cerrado 140c a través de un sujetador 150 que pasa a través de la ranura 149 y un orificio roscado 151 en el extremo cerrado 140c; sin embargo, la palanca 146 y el obturador 140 se pueden conectar por cualquier medio adecuado, por ejemplo, ajuste a presión. Se proporciona un poste 152 en el extremo distal de la palanca 146.

Cuando la palanca 146 está en una primera posición que se muestra en las Figuras 7A y 8A, el obturador 140 está en una posición cerrada con la abertura radial 140b colocada contra una superficie interna de la parte cerrada 138b del canal 138 para impedir que salga tóner del cartucho de tóner 100. Cuando la palanca 146 gira hacia una segunda posición que se muestra en las Figuras 7B y 8B, el obturador 140 gira hacia una posición abierta donde la abertura radial 140b está alineada con el puerto de salida 118 para permitir que salga tóner del cartucho de tóner 100. Cuando el obturador 140 está en la posición abierta, es posible suministrar tóner desde el depósito 104 del cartucho de tóner 100 a la unidad de formación de imágenes 200 al hacer girar la unidad de suministro de tóner 126 y la barrena 136 según se desee. Específicamente, a medida que gira la unidad de suministro de tóner 126, uno o más agitadores de tóner, tales como paletas, raspadores o similares, suministran tóner desde el depósito de tóner 104 a la parte abierta 138a del canal 138. A medida que gira la barrena 136, esta suministra el tóner recibido en el canal 138 al obturador 140 en la parte cerrada 138b del canal 138 a través del extremo abierto 140a. El tóner pasa a través del canal interno en el obturador 140 y sale por la abertura radial 140b y el puerto de salida 118 hacia el puerto de entrada correspondiente 208 en la unidad de revelado 202 (Figura 2). En una realización, el puerto de entrada 208 de la unidad de revelado 202 está rodeado por un sello de espuma 210 que atrapa el tóner residual e impide la fuga de tóner en la interfaz entre el puerto de salida 118 y el puerto de entrada 208.

La Figura 9 muestra el lado 108 del alojamiento 102 según una realización ilustrativa con la tapa de extremo 112 omitida. Se coloca una conexión 154 en el lado 108 del alojamiento 102 entre la tapa de extremo 112 y la pared lateral 114 que acciona la palanca 146 para abrir y cerrar el obturador 140 cuando el cartucho de tóner 100 está instalado en el dispositivo de formación de imágenes 22. La conexión 154 es un miembro alargado que se extiende desde un primer extremo 154a hasta un segundo extremo 154b de la conexión 154. La conexión 154 incluye una superficie de acoplamiento 155, tal como un área tipo botón en el primer extremo 154a, que está expuesta en la parte trasera 111 del alojamiento 102, tal como en una parte trasera de la tapa de extremo 112 junto a la pared lateral 114, tal como se muestra en la Figura 4. En una realización, la conexión 154 está conectada operativamente con el obturador 140 en el segundo extremo 154b para mover el obturador 140 desde la posición cerrada hasta la posición abierta cuando la conexión 154 se mueve en una dirección hacia adelante hacia la parte delantera 110 del alojamiento 102 cuando se presiona la superficie de acoplamiento 155. Por ejemplo, en la realización ilustrada, la conexión 154 está conectada en el segundo extremo 154b a la palanca 146, que abre y cierra el obturador 140. En el ejemplo de realización ilustrado, el segundo extremo 154b de la conexión 154 incluye un canal 156 que recibe el poste 152 que se extiende desde la palanca 146. Sin embargo, la conexión 154 puede conectarse operativamente al obturador 140 por cualquier medio adecuado y puede tomar otras formas según se desee.

La conexión 154 se desvía mediante uno o más miembros de desviación, tales como un resorte de extensión 157, hacia la parte trasera 111 del alojamiento 102 donde la superficie de acoplamiento 155 está expuesta, es decir, hacia la posición que se muestra en la Figura 9, para cerrar el obturador 140. La conexión 154 puede trasladarse en la dirección hacia adelante que se muestra mediante la flecha A en la Figura 9 cuando se presiona la superficie de acoplamiento 155 y se supera la fuerza de desviación. A medida que la conexión 154 se mueve hacia adelante, la palanca 146 hace girar el obturador de apertura 140. La conexión 154 incluye una ranura alargada 158 que recibe un poste correspondiente 159 en la tapa de extremo 112 o la pared lateral 114. El acoplamiento entre la ranura 158 y el poste 159 guía el movimiento de la conexión 154.

Después de que el cartucho de tóner 100 se inserta en el dispositivo de formación de imágenes 22, cuando se cierra una puerta de acceso al dispositivo de formación de imágenes 22, un émbolo u otra proyección que se extiende desde un lado interno de la puerta de acceso (o se conecta de otro modo a la puerta de acceso) presiona la superficie de acoplamiento 155 superando la fuerza de desviación en la conexión 154 y moviendo la conexión 154 hacia adelante hacia la parte delantera 110 haciendo que la palanca 146 gire y abra el obturador 140. Cuando la puerta de acceso al dispositivo de formación de imágenes 22 se abre para retirar el cartucho de tóner 100 del dispositivo de formación de imágenes 22, esta secuencia se invierte de manera tal que la desviación de la conexión 154 hace que la conexión 154 se mueva hacia atrás hacia la parte trasera 111 haciendo que la palanca 146 gire y cierre el obturador 140.

En algunas realizaciones, una conexión elevable 160 se coloca entre la tapa de extremo 112 y la pared lateral 114 que abre y cierra una cubierta 162 en el puerto de salida 118, tal como se describe e ilustra en la Patente de Estados Unidos n.º 8.649.710 titulada "Toner Cartridge having a Pivoting Exit Port Cover" ["Cartucho de tóner con una cubierta de puerto de salida giratoria"]. La cubierta 162 puede girar entre una posición cerrada donde una cara de sellado de la cubierta 162 se presiona contra una parte externa del puerto de salida 118 para atrapar el tóner residual dentro del puerto de salida 118 y una posición abierta (que se muestra en la Figura 6) donde la cubierta 162 gira hacia afuera desde el puerto de salida 118 y se coloca contra la parte delantera 110 del alojamiento 102 debajo del puerto de salida 118 con la cara de sellado de la cubierta 162 orientada hacia adelante desde la parte delantera 110 del alojamiento 102. La conexión 160 puede girar sobre un eje de rotación 161. La conexión 160 se extiende a lo largo de la pared lateral 114 desde su eje de rotación 161 hacia la parte delantera 110 del alojamiento 102. La conexión 160 incluye una superficie de acoplamiento 164, que está expuesta en una parte delantera 110 del alojamiento 102, tal como en

una parte delantera de la tapa de extremo 112 junto a la pared lateral 114, tal como se muestra en la Figura 3. En una realización, la conexión 160 está conectada operativamente a la cubierta 162 para mover la cubierta 162 desde la posición cerrada hasta la posición abierta cuando la superficie de acoplamiento 164 entra en contacto con un elemento de acoplamiento correspondiente en la unidad de formación de imágenes 200 a medida que se inserta el cartucho de tóner 100 en el dispositivo de formación de imágenes 22. Por ejemplo, en la realización ilustrada, una conexión de elevación 166 está conectada en un extremo 166a a la conexión 160 y en otro extremo 166b a una conexión giratoria 168, que está conectada a la cubierta 162. Sin embargo, la conexión 160 puede conectarse operativamente a la cubierta 162 por cualquier medio adecuado.

La conexión 160 está desviada hacia abajo, es decir, en sentido horario como se ve en la Figura 9, mediante uno o más miembros de desviación, tal como un resorte de torsión 169, para cerrar la cubierta 162. Cuando el cartucho de tóner 100 se inserta en el dispositivo de formación de imágenes 22, la superficie de acoplamiento 164 de la conexión 160 entra en contacto con una aleta u otro elemento de acoplamiento 212 en el marco 206 de la unidad de formación de imágenes 200 (Figura 2). El contacto entre el elemento de acoplamiento 212 y la superficie de acoplamiento 164 provoca que la conexión 160 gire hacia arriba en sentido antihorario como se ve en la Figura 9. A medida que la conexión 160 gira hacia arriba, la conexión 166 se eleva hacia arriba provocando que la conexión 168 gire en sentido horario como se ve en la Figura 9, lo que provoca que la cubierta 162 gire de la posición cerrada a la posición abierta. Cuando el cartucho de tóner 100 se separa de la unidad de formación de imágenes 200, esta secuencia se invierte de modo que la desviación en la conexión 160 provoca que la conexión 160 gire hacia abajo en sentido horario como se ve en la Figura 9, lo que provoca que la conexión 166 baje, la conexión 168 gire en sentido antihorario como se ve en la Figura 9 y la cubierta 162 gire y se cierre.

10

15

20

25

30

35

40

45

50

55

60

Se coloca una proyección 170 en el lado 108 del alojamiento 102 y se conecta operativamente a la conexión 154, de modo que la proyección 170 se mueve desde una primera posición (Figuras 9-11) hasta una segunda posición (Figuras 12 y 13) como resultado del movimiento hacia delante de la conexión 154. En el ejemplo de realización ilustrado, la proyección 170 se extiende hacia afuera lateralmente desde la palanca 146, que está conectada operativamente a la conexión 154 como se describió anteriormente. La proyección 170 puede estar desviada hacia su primera posición. Por ejemplo, la desviación aplicada a la conexión 154 por el resorte de extensión 157 puede, a su vez, desviar la proyección 170 hacia su primera posición. En la realización ilustrada, la proyección 170 tiene forma de reborde con forma de indicador; sin embargo, la proyección 170 puede tomar cualquier forma adecuada.

Con referencia a las Figuras 10-13, el movimiento de la proyección 170 desde su primera posición hasta su segunda posición cambia el estado de un sensor 300 (que se muestra esquemáticamente en líneas discontinuas) en el dispositivo de formación de imágenes 22 en comunicación con el controlador 28 y le envía una señal al controlador 28 de que el cartucho de tóner 100 está instalado en el dispositivo de formación de imágenes 22. Como se mencionó anteriormente, el dispositivo de formación de imágenes 22 incluye una ranura de guía 306 (que se muestra esquemáticamente en líneas discontinuas) en cada lado 108, 109 del cartucho de tóner 100 que recibe una quía de alineación 124 y guía el movimiento del cartucho de tóner 100 a medida que se inserta el cartucho de tóner 100 en el dispositivo de formación de imágenes 22. Específicamente, las guías de alineación 124 se montan en la parte superior de la quía inferior 307 de cada ranura de quía 306, de modo que el contacto entre las quías inferiores 307 y las superficies inferiores de las guías de alineación 124 defina la posición vertical del cartucho de tóner 100 a medida que se inserta el cartucho de tóner 100 en el dispositivo de formación de imágenes 22. La ranura de quía 306 también puede incluir una quía superior 308 para limitar el movimiento ascendente del cartucho de tóner 100 a medida que se inserta el cartucho de tóner 100 en el dispositivo de formación de imágenes 22 para guiar adicionalmente el cartucho de tóner 100 a su posición operativa en el dispositivo de formación de imágenes 22. El sensor 300 se coloca para detectar el movimiento de la proyección 170 desde su primera posición hasta su segunda posición. En el ejemplo de realización ilustrado en las Figuras 10-13, el sensor 300 es un sensor óptico que incluye un emisor óptico 302 colocado para emitir energía óptica hacia un receptor 303. El receptor 303 está configurado para detectar la presencia o ausencia de la energía óptica. El emisor 302 y el receptor 303 están separados entre sí por un espacio 304 a través del cual pasa la trayectoria óptica del sensor 300. En esta realización, el sensor 300 se coloca por encima de la ranura de guía 306 y se puede acceder al espacio 304 desde la ranura de guía 306 a través de una abertura 309 en la guía superior 308.

La Figura 10 muestra el cartucho de tóner 100 en una posición intermedia durante la inserción en el dispositivo de formación de imágenes 22 con la proyección 170 en su primera posición como resultado de la desviación en la conexión 154. En esta realización, cuando la proyección 170 está en su primera posición, la proyección 170 se extiende hacia afuera lateralmente desde el lado 108 y está alineada con la guía de alineación 124 desde la parte trasera hasta la parte delantera con respecto al alojamiento 102 como se muestra en la Figura 10, de modo que la proyección 170 se desplaza en la ranura de guía 306 durante la inserción del cartucho de tóner 100 en el dispositivo de formación de imágenes 22. En el ejemplo de realización ilustrado, la proyección 170 se extiende a través de una ranura 172 en la tapa de extremo 112 que está conformada para adaptarse al movimiento de proyección 170. En una realización, la tapa de extremo 112 también incluye una protección 174 colocada delante de la proyección 170 cuando la proyección 170 está en su primera posición. La protección 174 protege la proyección 170 del contacto con el dispositivo de formación de imágenes 22 en el caso de que el cartucho de tóner 100 no esté alineado correctamente con la ranura de guía 306 cuando se inserta el cartucho de tóner 100 en el dispositivo de formación de imágenes 22.

La Figura 11 muestra el cartucho de tóner 100 con la tapa de extremo 112 omitida por motivos de claridad en la

posición operativa final del cartucho de tóner 100 en el dispositivo de formación de imágenes 22 con la puerta de acceso al dispositivo de formación de imágenes 22 abierta, de modo que la conexión 154 no sea presionada. Como resultado, la proyección 170 está en su primera posición, en la ranura de guía 306, y la trayectoria óptica del sensor 300 no se ve interrumpida por la proyección 170.

Las Figuras 12 y 13 muestran el cartucho de tóner 100 (con la tapa de extremo 112 omitida en la Figura 12 y presente en la Figura 13) en su posición operativa final en el dispositivo de formación de imágenes 22 con la puerta de acceso al dispositivo de formación de imágenes 22 cerrada y la conexión 154 movida hacia adelante por el émbolo en el lado interno de la puerta de acceso. El movimiento hacia delante de la conexión 154 provoca que la proyección 170 se mueva hacia arriba hasta su segunda posición que se muestra en las Figuras 12 y 13. En la realización ilustrada, 10 cuando la proyección 170 está en su segunda posición, la proyección 170 bloquea la trayectoria óptica del sensor 300, cambiando de ese modo el estado del sensor 300. Específicamente, en el ejemplo de realización ilustrado, el movimiento hacia delante de la conexión 154 provoca que la palanca 146 gire en sentido antihorario como se ve en las Figuras 12 y 13. La proyección 170 se desplaza hacia arriba a lo largo de una trayectoria circular parcial definida por la rotación de la palanca 146. En su segunda posición, una parte superior de la proyección 170 se coloca más alta 15 que la parte inferior del canal 138 y más alta que el eje de rotación 129 del eje de accionamiento 128. Una parte superior de la proyección 170 también se coloca más alta que al menos una parte de la superficie superior de la guía de alineación 124 cuando la proyección 170 está en su segunda posición. En el ejemplo de realización ilustrado, en su segunda posición, una parte superior de la proyección 170 está alineada con el canal 138 de lado a lado con respecto al alojamiento 102 como se muestra en la Figura 13; sin embargo, la proyección 170 y el sensor 300 pueden colocarse más adelante o atrás en otras realizaciones. En el ejemplo de realización ilustrado, el movimiento hacia 20 delante de la conexión 154 también provoca que el obturador 140 se abra como se describió anteriormente. Cuando se abre la puerta de acceso al dispositivo de formación de imágenes 22, esta secuencia se invierte y la proyección 170 regresa a su primera posición, como se muestra en la Figura 11. Específicamente, cuando se abre la puerta de acceso al dispositivo de formación de imágenes 22, la conexión 154 se desplaza hacia atrás como resultado de la 25 desviación aplicada a la conexión 154. El movimiento hacia atrás de la conexión 154 provoca que la palanca 146 gire en sentido horario como se ve en las Figuras 12 y 13, lo que, a su vez, provoca que la proyección 170 se mueva hacia abajo hasta su primera posición y que el obturador 140 se cierre.

El movimiento hacia abajo de la proyección 170 desde su segunda posición hasta su primera posición permite que la gravedad ayude a que la proyección 170 regrese a su primera posición.

30 El estado cambiante del sensor 300 a causa del movimiento de la proyección 170 desde su primera posición hasta su segunda posición transmite una señal al controlador 28 del dispositivo de formación de imágenes 22 de que el cartucho de tóner 100 está completamente instalado en el dispositivo de formación de imágenes 22 y la puerta de acceso al dispositivo de formación de imágenes 22 está cerrada. En contraste, cuando se desbloquea la trayectoria óptica del sensor 300, el controlador 28 determina que el cartucho de tóner 100 no está completamente instalado en el dispositivo 35 de formación de imágenes 22 o que la puerta de acceso al dispositivo de formación de imágenes está abierta, lo que indica que el dispositivo de formación de imágenes 22 no está listo para la impresión. Además, cuando el cartucho de tóner 100 incluye un obturador 140 accionado por la conexión 154, el estado cambiante del sensor 300 a causa del movimiento de la proyección 170 desde su primera posición hasta su segunda posición transmite una señal al controlador 28 de que el obturador 140 está abierto y listo para suministrar tóner desde el depósito 104. Por 40 consiguiente, si la conexión 154 o la palanca 146 experimentan una falla mecánica que provoca que el obturador 140 no se abra en respuesta al cierre de la puerta de acceso al dispositivo de formación de imágenes 22, el controlador 28 reconocerá que el obturador 140 está cerrado y no podrá suministrar tóner desde el depósito 104. La proyección 170 se coloca en el mismo lado 108 del alojamiento 102 que el puerto de salida 118 en lugar de en el lado 109 para disminuir la distancia entre el puerto de salida 118 y la proyección 170, cuando la proyección 170 está en su segunda 45 posición, para garantizar que el puerto de salida 118 esté correctamente colocado para suministrar tóner al puerto de entrada 208 cuando el sensor 300 detecta la proyección 170.

Las configuraciones de la conexión 154, la proyección 170 y el sensor 300 no se limitan a la realización ilustrativa que se muestra en las Figuras 9-13. Son posibles otras configuraciones. Por ejemplo, la Figura 14 muestra un sensor 400 según otra realización ilustrativa. En esta realización, el sensor 400 está oculto por encima de la guía superior 308 de la ranura de guía 306, es decir, no es posible acceder al sensor 400 directamente a través de la abertura 309 en la guía superior 308. Un miembro intermedio, tal como una palanca acodada 404, se coloca para cambie el estado del sensor 400 en respuesta al movimiento de la proyección 170 desde su primera posición hasta su segunda posición y viceversa. La palanca acodada 404 puede girar en torno a un eje de giro 406 entre una primera posición de la palanca acodada 404 (que se muestra en la Figura 14) y una segunda posición de la palanca acodada 404 como lo indican las flechas en la Figura 14. La palanca acodada 404 incluye un brazo 408 al que se puede acceder desde abajo mediante la proyección 170 a través de la abertura 309 en la guía superior 308 y un indicador 410 que bloquea y desbloquea la trayectoria óptica del sensor 400 cuando gira la palanca acodada 404. La Figura 14 muestra la palanca acodada 404 en su primera posición con el brazo 408 bajo y el indicador 410 separado hacia afuera de la trayectoria óptica del sensor 400. En la realización ilustrada, la palanca acodada 404 está desviada hacia su primera posición mediante un elemento de desviación, tal como un resorte de torsión 412. Cuando el cartucho de tóner 100 está en su posición operativa final en el dispositivo de formación de imágenes 22 y la proyección 170 se mueve hacia arriba desde su primera posición hasta su segunda posición, la proyección 170 empuja el brazo 408 hacia arriba, superando la desviación del brazo 408 y haciendo que la palanca acodada 404 gire hacia la derecha como se ve en la Figura 14

50

55

60

hasta la segunda posición de la palanca acodada 404, donde el indicador 410 bloquea la trayectoria óptica del sensor 400. Cuando se abre la puerta de acceso al dispositivo de formación de imágenes 22 y la proyección 170 regresa de su segunda posición a su primera posición, la desviación en la palanca acodada 404 provoca que la palanca acodada 404 gire en sentido antihorario como se ve en la Figura 14 para regresar a la primera posición de la palanca acodada 404 donde el indicador 410 no bloquea la trayectoria óptica del sensor 400. Por consiguiente, la palanca acodada 404 permite que la proyección 170 cambie indirectamente el estado del sensor 400 cuando la proyección 170 se mueve desde su primera posición hasta su segunda posición y viceversa. Si bien el ejemplo de realización ilustrado en la Figura 14 muestra que el indicador 410 desbloquea la trayectoria óptica del sensor 400 cuando la proyección 170 está en su primera posición y bloquea la trayectoria óptica del sensor 400 cuando la proyección 170 está en su segunda posición, esta configuración puede invertirse como se desee.

10

15

20

25

30

35

40

45

50

55

60

En otra realización, la proyección en el cartucho de tóner 100 se traslada hacia arriba y hacia abajo entre su primera y segunda posición. Por ejemplo, las Figuras 15-17 muestran que el cartucho de tóner 100 tiene una proyección 570, según una realización ilustrativa, que se traslada hacia arriba y hacia abajo entre su primera y segunda posición. Como se muestra en la Figura 15, la proyección 570 se proyecta hacia afuera desde el lado 108 del cartucho de tóner 100 a través de una ranura vertical 572 en la tapa de extremo 112. Cuando la proyección 570 está en su primera posición, como se muestra en la Figura 15, la proyección 570 se coloca alineada con la guía de alineación 124 desde la parte trasera hasta la parte delantera con respecto al alojamiento 102 como se muestra en la Figura 15, de modo que la proyección 570 se desplaza en la ranura de guía 306 durante la inserción del cartucho de tóner 100 en el dispositivo de formación de imágenes 22, tal como se describió anteriormente.

Las Figuras 16 y 17 muestran un lado interno de la tapa de extremo 112 con la proyección 570 en su primera y segunda posición, respectivamente, y el cuerpo principal 116 del cartucho de tóner 100 omitido para mayor claridad. En esta realización, la proyección 570 se extiende hacia afuera lateralmente desde un miembro elevable 574 que está colocado entre la tapa de extremo 112 y la pared lateral 114. En el ejemplo de realización ilustrado, el miembro elevable 574 es retenido contra un lado interno de la tapa de extremo 112 mediante la colocación de lenguetas 576 que permiten que el miembro elevable 574 se mueva hacia arriba y hacia abajo, pero impide que el miembro elevable 574 se mueva en las dimensiones de adelante hacia atrás y de lado a lado del alojamiento 102. El miembro elevable 574 incluye una cornisa 578 que forma una superficie de contacto inferior del miembro elevable 574. La palanca 146 incluye una brida 580 que se extiende hacia afuera lateralmente desde esta, hacia la superficie interior de la tapa de extremo 112. La conexión 154 incluye una superficie de leva 582 en una parte superior de ella. Cuando la conexión 154 está en su posición desviada como se muestra en la Figura 16, la cornisa 578 del miembro elevable 574 se apoya en la parte superior de la brida 580 con la proyección 570 en su primera posición baja. Cuando se presiona la superficie de acoplamiento 155, tal como cuando la puerta de acceso al dispositivo de formación de imágenes 22 está cerrada, y la conexión 154 se mueve hacia adelante, la brida 580 gira hacia arriba a lo largo de una trayectoria circular parcial con la palanca 146 y la brida 580 ejerce una fuerza hacia arriba en la cornisa 578, lo que provoca que el miembro elevable 574 y la proyección 570 se trasladen hacia arriba desde la primera posición de la proyección 570 hacia la segunda posición de la proyección 570. A medida que la conexión 154 continúa moviéndose hacia adelante y la brida 580 continúa girando, la brida 580 avanza por delante de la cornisa 578, en cuyo punto la superficie de leva 582 entra en contacto con la cornisa 578 desde abajo. La superficie de la leva 582 está inclinada para continuar ejerciendo una fuerza hacia arriba en la cornisa 578, lo que provoca que el miembro elevable 574 continúe trasladándose hacia arriba hasta que la proyección 570 alcance su segunda posición como se muestra en la Figura 17. Cuando se elimina la fuerza sobre la superficie de acoplamiento 155, tal como cuando la puerta de acceso al dispositivo de formación de imágenes 22 está abierta, la conexión 154 se desplaza hacia atrás como resultado de la desviación aplicada a la conexión 154. El movimiento hacia atrás de la conexión 154 provoca que el miembro elevable 574 baje a medida que la superficie de leva 582 se aleja de la cornisa 578 y la brida 580 gira hacia abajo en contacto con la cornisa 578, lo que provoca que la cornisa 570 regrese a su primera posición. El miembro elevable 574 puede desviarse hacia abajo hacia la primera posición de la proyección 570 o el miembro elevable 574 puede depender de la gravedad hacer que la provección 570 regrese a su primera posición.

Las Figuras 18-20 muestran que el cartucho de tóner 100 tiene una proyección 670, según otra realización ilustrativa, que se traslada hacia arriba y hacia abajo entre su primera y segunda posición. Como se muestra en la Figura 18, la proyección 670 se proyecta hacia afuera desde el lado 108 del cartucho de tóner 100 a través de una ranura vertical 672 en la tapa de extremo 112. Cuando la proyección 670 está en su primera posición, como se muestra en la Figura 18, la proyección 670 se coloca alineada con la guía de alineación 124 desde la parte trasera hasta la parte delantera con respecto al alojamiento 102 como se muestra en la Figura 18, de modo que la proyección 670 se desplaza en la ranura de guía 306 durante la inserción del cartucho de tóner 100 en el dispositivo de formación de imágenes 22, tal como se describió anteriormente. En el ejemplo de realización ilustrado, la proyección 670 está colocada a lo largo de la dimensión de adelante hacia atrás del alojamiento 102 en una ruptura 674 en la guía de alineación 124.

Las Figuras 19 y 20 muestran el cartucho de tóner 100 con la tapa de extremo 112 omitida para mayor claridad y la proyección 670 en su primera y segunda posición, respectivamente. En esta realización, la proyección 670 se extiende hacia afuera lateralmente desde un miembro elevable 676 que está colocado entre la tapa de extremo 112 y la pared lateral 114. El miembro elevable 676 es retenido contra un lado interno de la tapa de extremo 112 mediante la colocación de lengüetas 677 que permiten que el miembro elevable 676 se mueva hacia arriba y hacia abajo, pero impide que el miembro elevable 676 se mueva en la dimensión de adelante hacia atrás del alojamiento 102. Una palanca acodada 678 se coloca entre la tapa de extremo 112 y la pared lateral 114. La palanca acodada 678 puede

girar en torno a un eje de giro 679. La palanca acodada 678 incluye un primer brazo 680 conectado a la conexión 154 y un segundo brazo 682 conectado al miembro elevable 676. Cuando se presiona la superficie de acoplamiento 155, tal como cuando se dosifica la puerta de acceso al dispositivo de formación de imágenes 22, el movimiento hacia delante de la conexión 154 provoca que la palanca acodada 678 gire en sentido antihorario como se ve en las Figuras 19 y 20 en torno al eje de giro 679. La rotación de la palanca acodada 678 provoca que el brazo 682 eleve el miembro elevable 676 hacia arriba, lo que provoca que la proyección 670 se traslade hacia arriba desde su primera posición hasta su segunda posición, como se muestra en la Figura 20. En el ejemplo de realización ilustrado, los brazos 680, 682 incluyen cada uno un poste 684 que es recibido por una ranura alargada 686 en la conexión 154 y el miembro elevable 676 que permite que los brazos 680, 682 giren en torno al eje de giro 679 a medida que se trasladan la conexión 154 y el miembro elevable 676. Esta configuración puede invertirse según se desee, de modo que la conexión 154 y el miembro elevable 676 incluyan cada uno un poste y los brazos 680, 682 incluyan cada uno una ranura alargada. Cuando se elimina la fuerza sobre la superficie de acoplamiento 155, tal como cuando la puerta de acceso al dispositivo de formación de imágenes 22 está abierta, la conexión 154 se desplaza hacia atrás como resultado de la desviación aplicada a la conexión 154. El movimiento hacia atrás de la conexión 154 provoca que la palanca acodada 678 gire hacia la derecha como se ve en las Figuras 19 y 20 en torno al eje de giro 679 que, a su vez, provoca que el miembro elevable 676 baje, haciendo que la proyección 670 regrese a su primera posición.

5

10

15

20

25

30

35

40

45

50

55

60

En otra realización, la proyección en el cartucho de tóner 100 gira hacia arriba y hacia afuera desde el lado 108 a medida que la proyección se mueve desde su primera posición hasta su segunda posición. Por ejemplo, las Figuras 21-23 muestran que el cartucho de tóner 100 tiene una proyección 770, según una realización ilustrativa, que gira hacia arriba y hacia afuera desde el lado 108 a medida que se desplaza desde la primera posición de la proyección 770 hasta la segunda posición de la proyección 770. Como se muestra en la Figura 21, cuando la proyección 770 está en su primera posición, la proyección 770 está metida dentro de la tapa de extremo 112, de modo que la proyección 770 no entra en contacto con los elementos del dispositivo de formación de imágenes 22 durante la inserción del cartucho de tóner 100 en el dispositivo de formación de imágenes 22. Cuando la proyección 770 se mueve desde su primera posición hasta su segunda posición, la proyección 770 se mueve hacia arriba y hacia afuera desde el lado 108 a través de una ranura 772 en la tapa de extremo 112.

Las Figuras 22 y 23 muestran un lado externo de la pared lateral 114 con la proyección 770 en su primera y segunda posición, respectivamente, y la tapa de extremo 112 omitida para mayor claridad. En esta realización, la proyección 770 está montada de forma giratoria en la tapa de extremo 112 e incluye una cola 774 que se coloca entre la tapa de extremo 112 y la pared lateral 114. La cola 774 incluye una superficie de leva 776 que está inclinada para hacer girar la proyección 770 hacia arriba y hacia afuera desde el lado 108 al recibir una fuerza directa desde una superficie de acoplamiento delantera 778 de la conexión 154. Específicamente, la superficie de leva 776 está inclinada verticalmente hacia arriba y hacia adentro lateralmente como se ve desde atrás hacia adelante en relación con el alojamiento 102. En el ejemplo de realización ilustrado, la superficie de acoplamiento delantera 778 está colocada en el frente de una extensión 779 desde la conexión 154. Cuando la conexión 154 está en su posición desviada como se muestra en la Figura 22, la proyección 770 se coloca en su primera posición metida dentro de la tapa de extremo 112 con la superficie de leva 776 en la trayectoria de la superficie de acoplamiento delantera 778 de la conexión 154. Cuando se presiona la superficie de acoplamiento 155, tal como cuando la puerta de acceso al dispositivo de formación de imágenes 22 está cerrada, y la conexión 154 se mueve hacia adelante, la superficie de acoplamiento delantera 778 se mueve hacia adelante para entrar en contacto con la superficie de leva 776. A medida que la conexión 154 continúa moviéndose hacia adelante con la superficie de acoplamiento delantera 778 en contacto con la superficie de leva 776, el ángulo de la superficie de leva 776 con respecto al movimiento de hacia adelante de la superficie de acoplamiento delantera 778 provoca que la proyección 770 gire hacia arriba y hacia afuera desde el lado 108 desde su primera posición hacia su segunda posición como se muestra en la Figura 23. Cuando se elimina la fuerza sobre la superficie de acoplamiento 155, tal como cuando la puerta de acceso al dispositivo de formación de imágenes 22 está abierta, la conexión 154 se desplaza hacia atrás como resultado de la desviación aplicada a la conexión 154. El movimiento hacia atrás de la conexión 154 provoca que la extensión 779 y la superficie de acoplamiento delantera 778 se muevan hacia atrás alejándose de la superficie de leva 776, provocando que la proyección 770 regrese a su primera posición. La proyección 770 puede desviarse hacia su primera posición, tal como mediante un resorte 780, o la proyección 770 puede depender de la gravedad para regresar a su primera posición.

Las Figuras 24 y 25 muestran que el cartucho de tóner 100 tiene una proyección 870, según otra realización ilustrativa, que gira hacia arriba y hacia afuera desde el lado 108 a medida que se desplaza desde la primera posición de la proyección 870 hasta la segunda posición de la proyección 870. Al igual que la proyección 770 descrita anteriormente, cuando la proyección 870 está en su primera posición, la proyección 870 está metida dentro de la tapa de extremo 112. La proyección 870 se mueve hacia arriba y hacia afuera desde el lado 108 a través de una ranura 872 en la tapa de extremo 112 cuando la proyección 870 se mueve desde su primera posición hasta su segunda posición. Las Figuras 24 y 25 muestran un lado interno de la tapa de extremo 112 con la proyección 870 en su primera y segunda posición, respectivamente, y el cuerpo principal 116 omitido para mayor claridad. En esta realización, la proyección 870 está montada de forma giratoria en la tapa de extremo 112 e incluye un barril giratorio 874 que se coloca en el lado interno de la tapa de extremo 112. El barril 874 incluye una ranura de contorno 876 en una superficie externa de este que se extiende desde la parte trasera del barril 874 hacia la parte delantera del barril 874. La conexión 154 incluye un poste 878 que se extiende hacia la superficie interna de la tapa de extremo 112 y está colocado en la ranura 876 del barril 874. La conexión 154 también puede incluir una ranura de guía alargada 880 que recibe un poste de guía

correspondiente 882 en la tapa de extremo 112 o la pared lateral 114. El acoplamiento entre la ranura de guía 880 y el poste de guía 882 guía el movimiento de la conexión 154. La ranura de guía 880 puede tener una trayectoria curva, tal como se ilustra, que permita que la conexión 154 suba y baje a medida que la conexión 154 se mueve hacia adelante o hacia atrás. Cuando la conexión 154 está en su posición desviada como se muestra en la Figura 24, la proyección 870 se coloca en su primera posición metida dentro de la tapa de extremo 112 con el poste 878 acoplado con una parte trasera de la ranura 876. Cuando se presiona la superficie de acoplamiento 155, tal como cuando la puerta de acceso al dispositivo de formación de imágenes 22 está cerrada, y la conexión 154 se mueve hacia adelante, el poste 878 se mueve hacia adelante en la ranura 876, lo que provoca que el barril 874 gire según el contorno de la ranura 876 como resultado de la fuerza ejercida sobre el barril 874 por el poste 878. La rotación del barril 874, a su vez, hace que la proyección 870 gire hacia arriba y hacia afuera desde el lado 108 desde su primera posición hacia su segunda posición, lo que se muestra en la Figura 25. Cuando se elimina la fuerza sobre la superficie de acoplamiento 155, tal como cuando la puerta de acceso al dispositivo de formación de imágenes 22 está abierta, la conexión 154 se desplaza hacia atrás como resultado de la desviación aplicada a la conexión 154. El movimiento hacia atrás de la conexión 154 provoca que el poste 878 se mueva hacia atrás en la ranura 876, lo que provoca que el barril 874 y la proyección 870 regresen a la primera posición de la proyección 870.

10

15

20

25

30

35

40

45

50

55

En otra realización, se puede acceder al espacio 304 entre el emisor 302 y el receptor 303 del sensor 300 desde el lado y la proyección en el cartucho de tóner 100 se traslada hacia afuera desde el lado 108 a medida que la proyección se mueve desde su primera posición hasta su segunda posición. Por ejemplo, las Figuras 26-28 muestran que el cartucho de tóner 100 tiene una proyección 970, según una realización ilustrativa, que se traslada hacia afuera desde el lado 108 a medida que se desplaza desde la primera posición de la proyección 970 hasta la segunda posición de la proyección 970. Tal como se muestra en la Figura 26, cuando la proyección 970 está en su primera posición, la proyección 970 está metida dentro de la tapa de extremo 112. Cuando la proyección 970 se mueve desde su primera posición hasta su segunda posición, la proyección 970 se traslada hacia afuera desde el lado 108 a través de una ranura 972 en la tapa de extremo 112.

Las Figuras 27 y 28 muestran un lado externo de la pared lateral 114 con la proyección 970 en su primera y segunda posición, respectivamente, donde la superficie externa de la tapa de extremo 112 se muestra esquemáticamente en línea discontinua para ilustrar más claramente el funcionamiento de la proyección 970. En esta realización, la proyección 970 está montada en el lado interno de la tapa de extremo 112 y está desviada, tal como mediante un resorte de compresión 974, hacia adentro hacia la pared lateral 114. La conexión 154 incluye una superficie de leva 976 que está colocada inclinada para empujar la proyección 970 hacia afuera lateralmente cuando la conexión 154 se mueve hacia adelante. Específicamente, la superficie de la leva 976 está inclinada hacia adentro lateralmente, tal como se ve desde atrás hacia adelante con respecto al alojamiento 102 como se ilustra. Cuando la conexión 154 está en su posición desviada como se muestra en la Figura 27, la proyección 970 se coloca en su primera posición metida dentro de la tapa de extremo 112 como resultado de la desviación en la proyección 970. Cuando se presiona la superficie de acoplamiento 155, tal como cuando la puerta de acceso al dispositivo de formación de imágenes 22 está cerrada, y la conexión 154 se mueve hacia adelante, la superficie de leva 976 se mueve hacia adelante y entra en contacto con una superficie interna 978 de la proyección 970. A medida que la conexión 154 continúa moviéndose hacia adelante con la superficie de leva 976 en contacto con la superficie interna 978, el ángulo de la superficie de leva 976 provoca que la proyección 970 se traslade hacia afuera desde el lado 108 desde su primera posición hacia su segunda posición como se muestra en la Figura 28. Por supuesto, la superficie interna 978 puede estar inclinada en lugar de, o correspondientemente con, la superficie de leva 976 para provocar que la proyección 970 se mueva desde su primera posición hasta su segunda posición. Cuando se elimina la fuerza sobre la superficie de acoplamiento 155. tal como cuando la puerta de acceso al dispositivo de formación de imágenes 22 está abierta, la conexión 154 se desplaza hacia atrás como resultado de la desviación aplicada a la conexión 154. El movimiento hacia atrás de la conexión 154 provoca que la superficie de leva 976 se mueva hacia atrás alejándose de la superficie interna 978 de la proyección 970, lo que provoca que la proyección 970 regrese a su primera posición.

En otra realización, la conexión 154 incluye un primer y un segundo miembro de conexión que cooperan para abrir el obturador 140 y para mover la proyección 170 desde su primera posición hasta su segunda posición. Por ejemplo, las Figuras 29-31 muestran que el cartucho de tóner 100 tiene una primera conexión 190 y una segunda conexión 191 según una realización ilustrativa. La tapa de extremo 112 se omite por motivos de claridad en las Figuras 29-31. La primera conexión 190 incluye la superficie de acoplamiento 155 y la segunda conexión 191 está conectada en un extremo a la palanca 146. En el ejemplo de realización ilustrado, la proyección 170 está configurada como se describió anteriormente con respecto a las Figuras 9-13; sin embargo, la proyección puede incluir cualquier construcción adecuada. En el ejemplo de realización ilustrado, la conexión 160 sirve como un interbloqueo que mueve la conexión 191 para que se alinee con la primera conexión 190 cuando la conexión 160 se eleva mediante el contacto entre la superficie de acoplamiento 164 y el elemento de acoplamiento 212 para impedir que se abra el obturador 140 a menos que el cartucho de tóner 100 esté instalado en el dispositivo de formación de imágenes 22 y acoplado a la unidad de formación de imágenes 200. En esta realización, la conexión 160 incluye un poste que se extiende hacia arriba 180 que eleva la segunda conexión 191 para alinearse con la primera conexión 190 cuando se eleva la conexión 160.

La primera conexión 190 y la segunda conexión 191 están desviadas mediante elementos de desviación respectivos hacia la parte trasera 111 del alojamiento 102, de modo que el obturador 140 se desvíe hacia la posición cerrada. Una superficie interna de la primera conexión 190 incluye un retén 184 (que se muestra en líneas discontinuas) que entra en contacto con un extremo trasero 186 de la segunda conexión 191 cuando la segunda conexión 191 está alineada

ES 2 700 461 T3

con la primera conexión 190 y la primera conexión 190 se mueve hacia adelante.

Las Figuras 29-31 ilustran secuencialmente el funcionamiento de las conexiones 190 y 191. La Figura 29 muestra la primera y la segunda conexión 190 y 191 y la conexión 160 en sus posiciones desviadas, con la segunda conexión 191 sin alinearse con la primera conexión 190. Si se presiona la superficie de acoplamiento 155 mientras que la segunda conexión 191 está desalineada con respecto a la primera conexión 190, el retén 184 de la primera conexión 190 se desplaza por encima y más allá del extremo trasero 186 de la segunda 191 sin entrar en contacto con el extremo trasero 186. Como resultado, si se presiona la superficie de acoplamiento 155 mientras que la segunda conexión 191 está desalineada con respecto a la primera conexión 190, la segunda conexión 191 permanece en su posición desviada, no se abre el obturador 140 y la proyección 170 permanece en su primera posición. Esto permite que el usuario cierre la puerta de acceso al dispositivo de formación de imágenes 22 con el cartucho de tóner 100 instalado, si la unidad de formación de imágenes 200 no está presente, sin abrir el obturador 140. Por consiguiente, si se presiona la superficie de acoplamiento 155 mientras que la segunda conexión 191 está desalineada con respecto a la primera conexión 190, la proyección 170 no cambia el estado del sensor, de modo que el sensor continúa indicando al controlador 28 que el dispositivo de formación de imágenes 22 no está listo para imprimir ya que la unidad de formación de imágenes 200 no está presente. La Figura 30 muestra la conexión 160 en su posición elevada, como cuando el cartucho de tóner 100 se acopla con la unidad de formación de imágenes 200 y el elemento de acoplamiento 212 entra en contacto con la superficie de acoplamiento 164. A medida que la conexión 160 se desplaza hacia arriba, el poste 180 entra en contacto con una superficie inferior 188 de la segunda conexión 191 y empuja la segunda conexión 191 hacia arriba para alinearse con la primera conexión 190 con el extremo trasero 186 de la segunda conexión 191 en la trayectoria del retén 184. La Figura 31 muestra la primera conexión 190 movida hacia adelante cuando se presiona la superficie de acoplamiento 155, tal como cuando la puerta de acceso al dispositivo de formación de imágenes 22 está cerrada. Cuando la primera conexión 190 se mueve hacia adelante y la segunda conexión 191 se alinea con la primera conexión 190, el elemento 184 entra en contacto con el extremo trasero 186 de la segunda conexión 191, superando la desviación en la segunda conexión 191 y empujando la segunda conexión 191 hacia adelante. El movimiento hacia delante de la segunda conexión 191 provoca que la palanca 146 gire para abrir el obturador 140 y mueva la proyección 170 desde su primera posición hasta su segunda posición como se describió anteriormente. Cuando el cartucho de tóner 100 se retira del dispositivo de formación de imágenes 22, esta secuencia se invierte. Cuando se abre la puerta de acceso al dispositivo de formación de imágenes 22, la primera conexión 190 y la segunda conexión 191 se retraen a sus posiciones desviadas cerrando el obturador 140 y moviendo la proyección 170 hasta su segunda posición. A medida que el usuario retira el cartucho de tóner 100 del dispositivo de formación de imágenes 22, el elemento de acoplamiento 212 en la unidad de formación de imágenes 200 se desacopla de la superficie de acoplamiento 164, lo que provoca que la conexión 160 baje hasta su posición desviada. A medida que baja la conexión 160, la segunda conexión 191 baja hasta que el extremo trasero 186 ya no se encuentre en la trayectoria del retén 184 en la primera conexión 190.

En otra realización, la proyección (tal como la proyección 170) en el cartucho de tóner 100 está conectada operativamente a la conexión 160, de modo que la proyección se desplaza desde su primera posición hasta su segunda posición cuando la conexión 160 entra en contacto con el elemento de acoplamiento 212 en el marco 206 de la unidad de formación de imágenes 200 para indicar cuando el cartucho de tóner 100 esté acoplado a la unidad de formación de imágenes 200. Sin embargo, en esta realización, la posición de la proyección no indica si la puerta de acceso al dispositivo de formación de imágenes 22 está abierta o cerrada o si el obturador 140 está abierto o cerrado.

Como se describió anteriormente, se apreciará que las configuraciones de la proyección en el cartucho de tóner 100 y el sensor correspondiente no se limitan a los ejemplos de realizaciones ilustrados. La descripción que antecede ilustra diversos aspectos de la presente descripción. No se pretende que esta sea exhaustiva. Más bien, se elige para ilustrar los principios de la presente descripción y su aplicación práctica.

45

10

15

20

25

30

REIVINDICACIONES

- 1. Un cartucho de tóner (100) para su uso en un dispositivo de formación de imágenes (22), que comprende:
- un alojamiento (102) con una parte superior (106), una parte inferior (107), una parte delantera (110) y una parte trasera (111) colocadas entre un primer lado (108) y un segundo lado (109) del alojamiento (102), el alojamiento (102) tiene un depósito (104) para contener tóner;

un puerto de salida (118) en comunicación fluida con el depósito (104) y orientado hacia abajo en la parte delantera (110) del alojamiento (102), cerca del primer lado (108) del alojamiento (102), para que salga el tóner del cartucho de tóner (100);

10 una conexión (154) sobre el primer lado (108) del alojamiento (102), caracterizada por que

la conexión (154) tiene una superficie de acoplamiento (155) a la que se puede acceder en la parte trasera (111) del alojamiento (102); y

una proyección (170) sobre el primer lado (108) del alojamiento (102), la proyección (170) se puede mover entre una primera posición y una segunda posición, la proyección (170) se extiende hacia afuera lateralmente desde el primer lado (108) cuando la proyección (170) está en la segunda posición, la proyección (170) está conectada operativamente a la conexión (154) de modo que la proyección (170) se mueve hacia arriba desde la primera posición hasta la segunda posición cuando la superficie de acoplamiento (155) recibe una fuerza directa hacia la parte delantera (110) del alojamiento (102) y la proyección (170) no se encuentra obstruida para entrar en contacto con un brazo (408) y empujarlo hacia arriba en un dispositivo de formación de imágenes (22) cuando la proyección (170) se mueve hacia arriba desde la primera posición hasta la segunda posición para cambiar el estado de un sensor (400) en el dispositivo de formación de imágenes (22).

2. El cartucho de tóner (100) según la reivindicación 1,

15

20

30

35

en donde la proyección (170) está desviada hacia la primera posición.

25 3. El cartucho de tóner (100) según la reivindicación 1 o la reivindicación 2,

en donde la conexión (154) está desviada hacia atrás hacia la parte trasera (111) del alojamiento (102).

4. El cartucho de tóner (100) según cualquiera de las reivindicaciones anteriores,

que comprende, además, una guía de alineación (124) que se extiende hacia afuera lateralmente sobre el primer lado (108) del alojamiento (102), en donde en la segunda posición una parte superior de la proyección (170) está colocada más alta que al menos una parte de una superficie superior de la guía de alineación (124).

5. El cartucho de tóner (100) según cualquiera de las reivindicaciones anteriores,

que comprende, además, una guía de alineación (124) que se extiende hacia afuera lateralmente sobre el primer lado (108) del alojamiento (102), en donde en la primera posición la proyección (170) se extiende hacia afuera lateralmente desde el primer lado (108) y está alineada con la guía de alineación (124) desde la parte trasera (111) hasta la parte delantera (110) del alojamiento (102).

6. El cartucho de tóner (100) según la reivindicación 5,

en donde la guía de alineación (124) se extiende desde la parte trasera (111) hasta la parte delantera (110) del alojamiento (102) sobre el primer lado (108) del alojamiento (102).

- 7. El cartucho de tóner (100) según la reivindicación 6,
- 40 en donde la guía de alineación (124) incluye una protección (174) colocada delante de la proyección (170) cuando la proyección (170) está en la primera posición.
 - 8. El cartucho de tóner (100) según cualquiera de las reivindicaciones anteriores,

en donde la proyección (170) se mueve hacia afuera lateralmente desde el primer lado (108) a medida que la proyección (170) se mueve desde la primera posición hasta la segunda posición.

45 9. El cartucho de tóner (100) según cualquiera de las reivindicaciones anteriores,

que comprende, además, un obturador (140) que puede moverse entre una posición cerrada que bloquea el puerto de salida (118), una posición abierta que desbloquea el puerto de salida (118), en donde el obturador (140) está conectado operativamente a la conexión (154) de modo que el obturador (140) se mueve desde la posición cerrada

ES 2 700 461 T3

hasta la posición abierta cuando la superficie de acoplamiento (155) recibe la fuerza directa hacia la parte delantera (110) del alojamiento (102).

- 10. El cartucho de tóner (100) según cualquiera de las reivindicaciones anteriores, que comprende, además:
- un canal (138) que corre a lo largo de la parte delantera (110) del alojamiento (102) entre el primer lado (108) y el segundo lado (109) en comunicación fluida con el puerto de salida (118), al menos una parte (138a) del canal (138) está abierta hacia el depósito (104); y una barrena (136) colocada en el canal (138), que se extiende a lo largo de la parte delantera (110) del alojamiento (102) entre el primer lado (108) y el segundo lado (109), la barrena (136) funciona para mover el tóner en el canal (138) hacia el puerto de salida (118),
- en donde, en la segunda posición, una parte superior de la proyección (170) se coloca más alta que una superficie inferior del canal (138).
 - 11. El cartucho de tóner (100) según cualquiera de las reivindicaciones anteriores, que comprende, además:
 - un canal (138) que corre a lo largo de la parte delantera (110) del alojamiento (102) entre el primer lado (108) y el segundo lado (109) en comunicación fluida con el puerto de salida (118), al menos una parte (138a) del canal (138) está abierta hacia el depósito (104); y una barrena (136) colocada en el canal (138), que se extiende a lo largo de la parte delantera (110) del alojamiento (102) entre el primer lado (108) y el segundo lado (109), la barrena (136) funciona para mover el tóner en el canal (138) hacia el puerto de salida (118), en donde, en la segunda posición, una parte superior de la proyección (170) se coloca alienada con el canal (138) desde el segundo lado (109) hasta el primer lado (108) del alojamiento (102).

15

- 12. El cartucho de tóner (100) según cualquiera de las reivindicaciones anteriores, que comprende, además:
- un canal (138) que corre a lo largo de la parte delantera (110) del alojamiento (102) entre el primer lado (108) y el segundo lado (109) en comunicación fluida con el puerto de salida (118), al menos una parte (138a) del canal (138) está abierta hacia el depósito (104); una barrena (136) colocada en el canal (138), que se extiende a lo largo de la parte delantera (110) del alojamiento (102) entre el primer lado (108) y el segundo lado (109), la barrena (136) funciona para mover el tóner en el canal (138) hacia el puerto de salida (118); y una unidad de suministro de tóner (126) colocada en el depósito (104) para suministrar tóner al canal (138), unidad de suministro de tóner (126) incluye un eje de accionamiento (128) montado de forma giratoria en el depósito (104), el eje de accionamiento (128) incluye un eje de rotación (129),
 - en donde, en la segunda posición, una parte superior de la proyección (170) se coloca más alta que el eje de rotación (129) del eje de accionamiento (128).

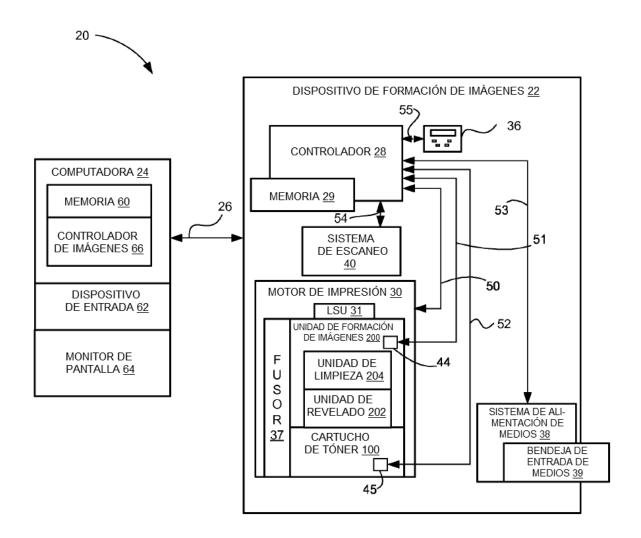
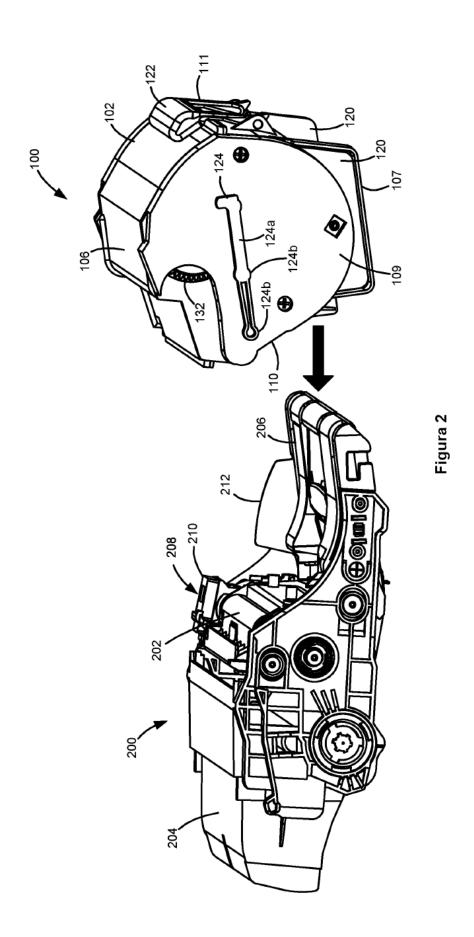



Figura 1

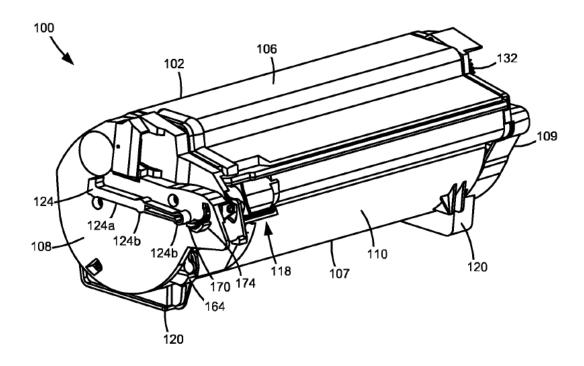
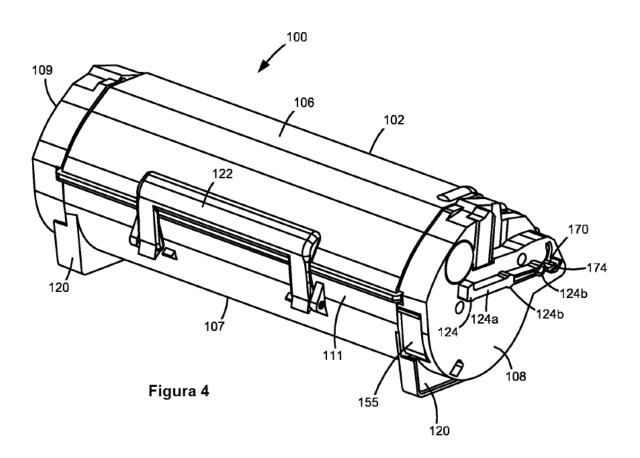
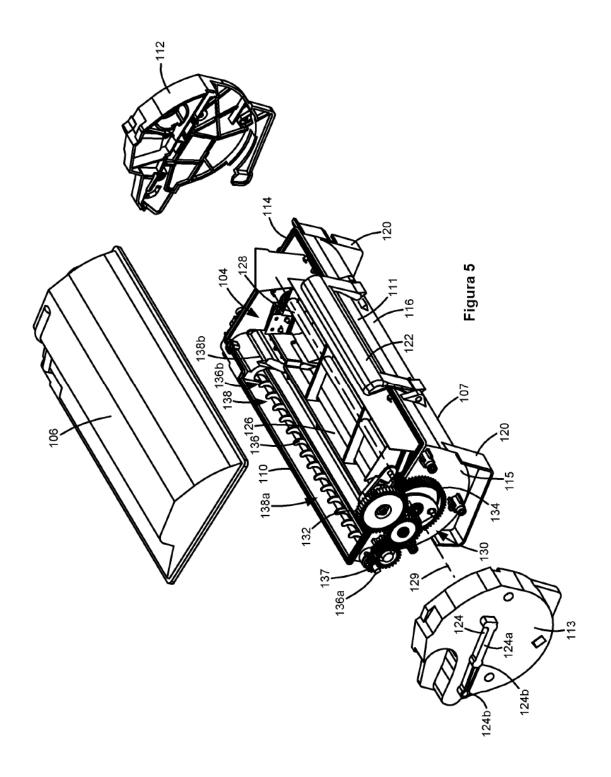




Figura 3

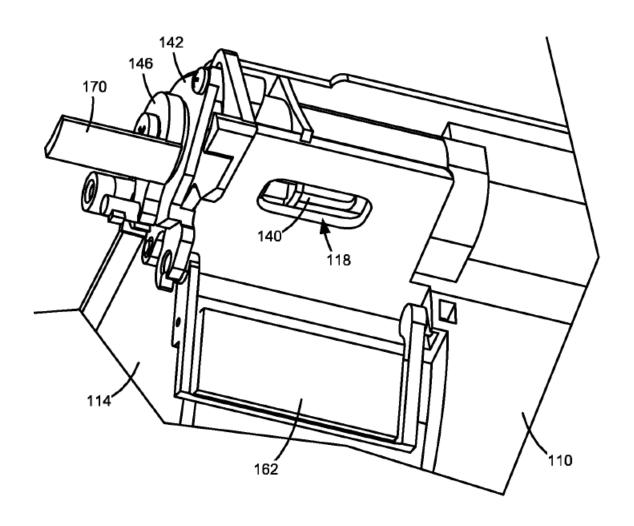
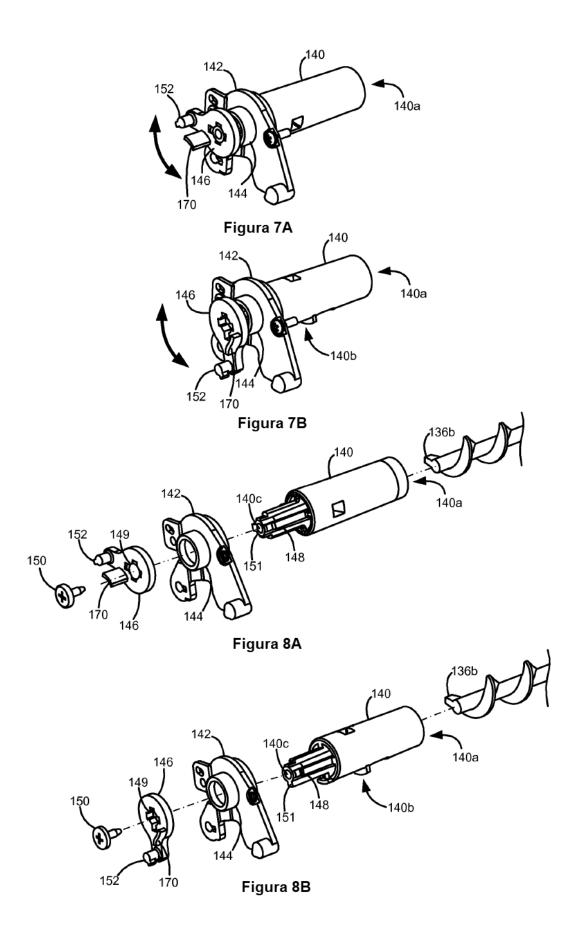



Figura 6

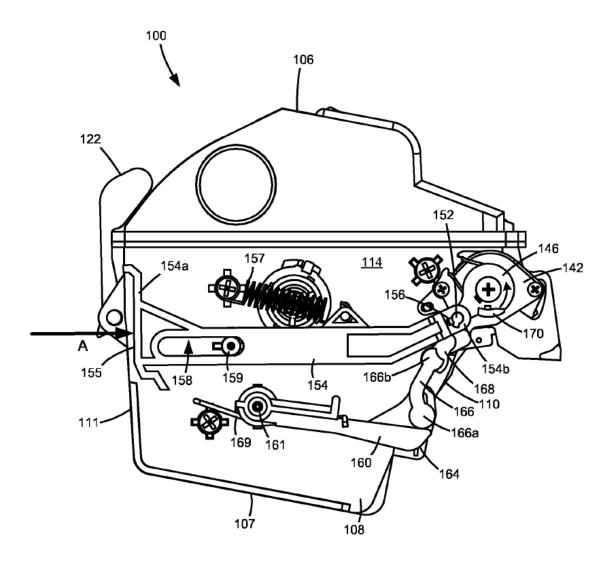
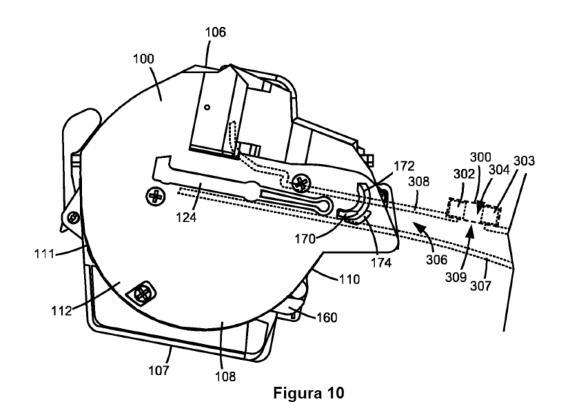



Figura 9

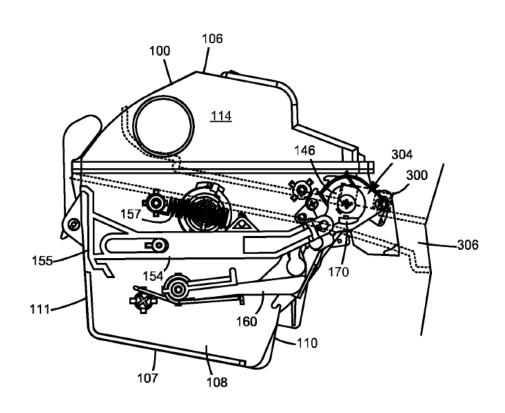


Figura 11

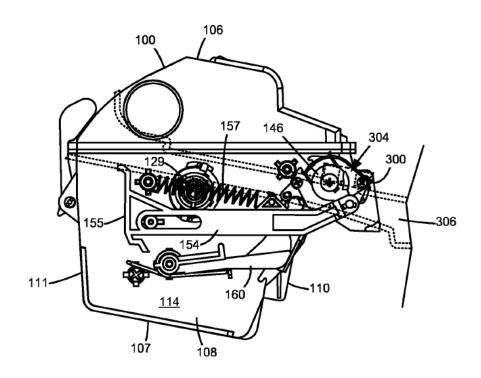


Figura 12

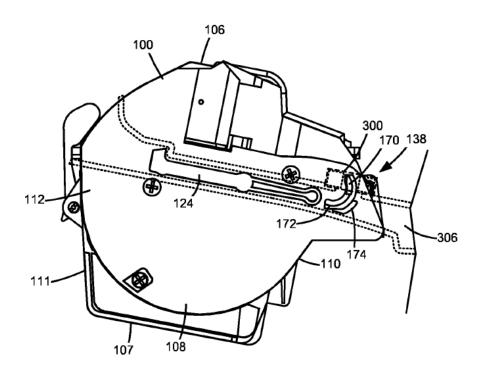


Figura 13

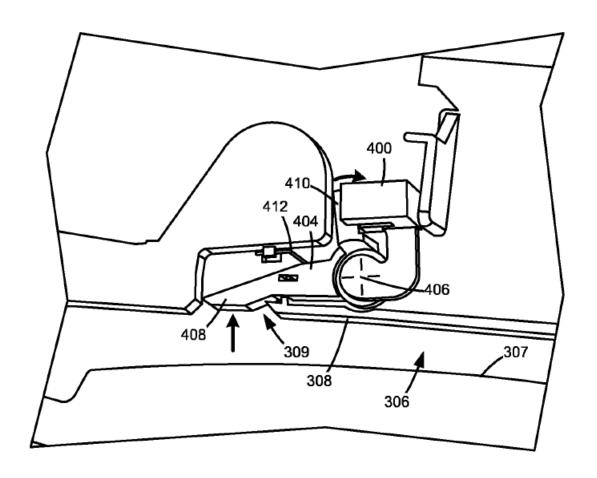


Figura 14

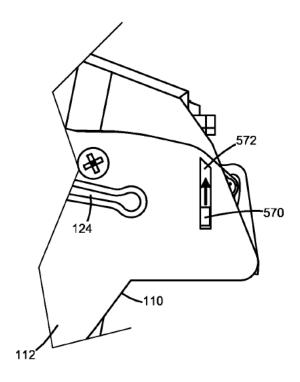


Figura 15

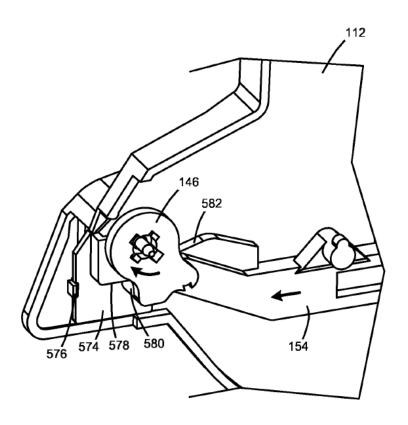


Figura 16

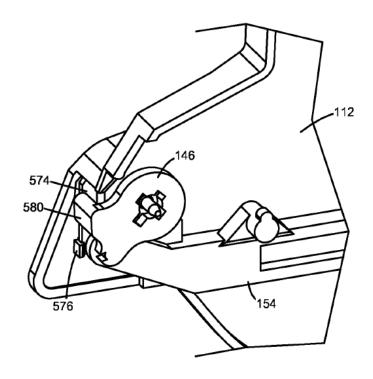


Figura 17

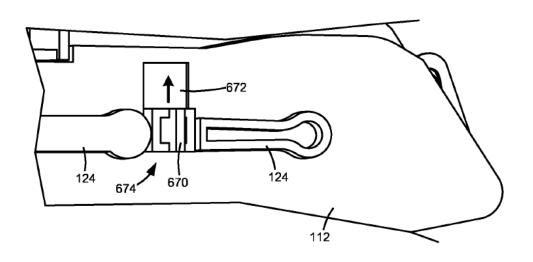
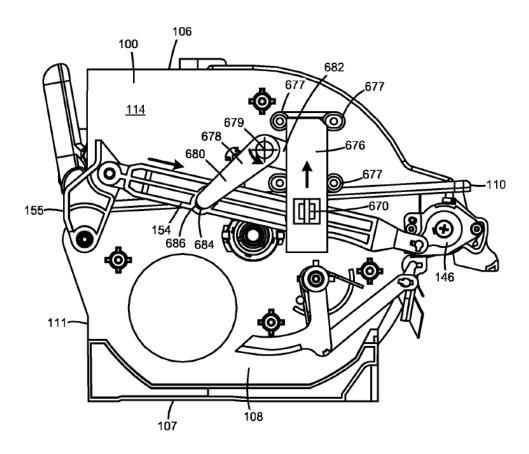
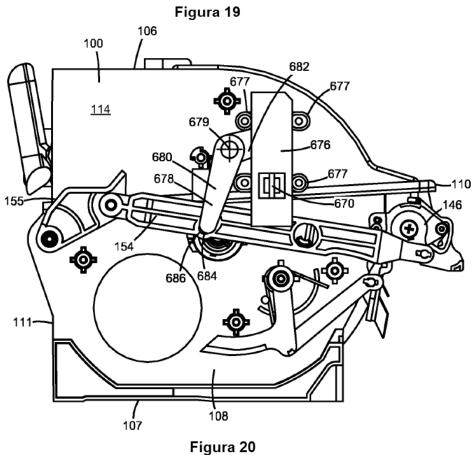




Figura 18

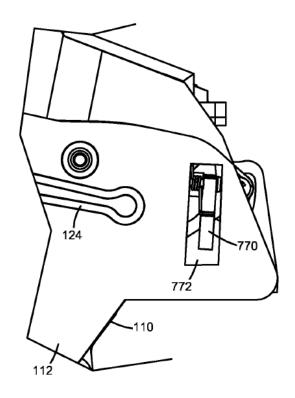


Figura 21

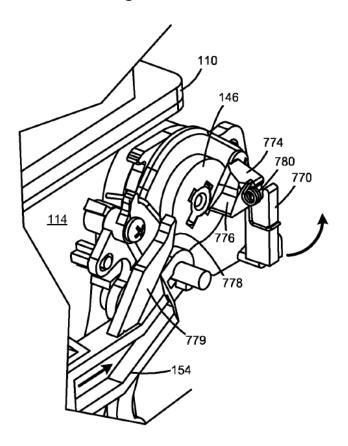


Figura 22

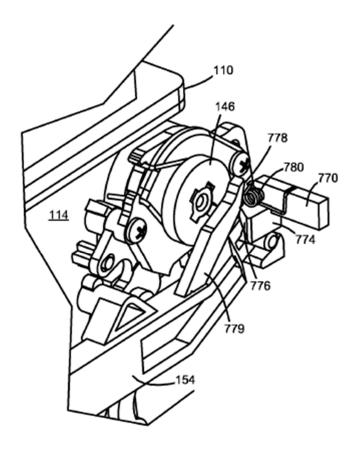


Figura 23

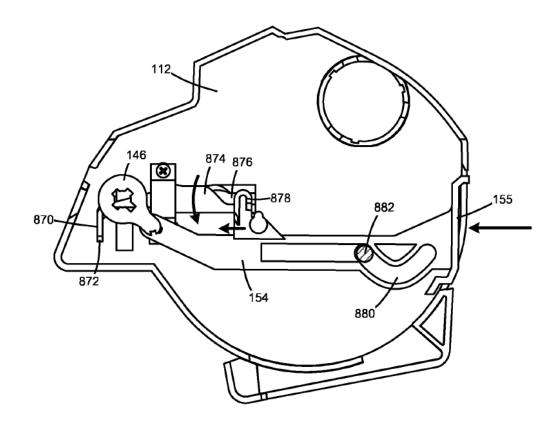


Figura 24

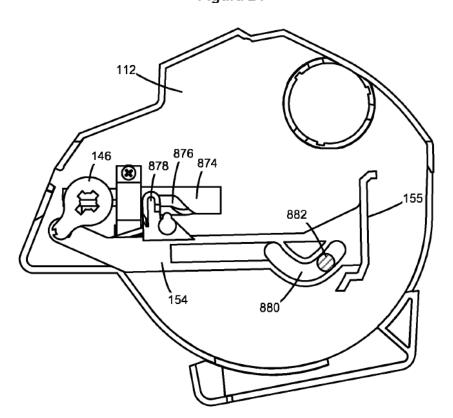


Figura 25

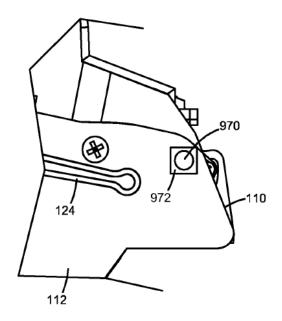


Figura 26

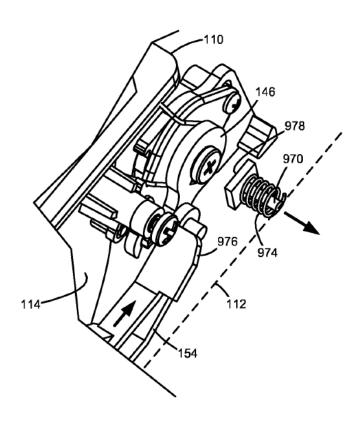


Figura 27

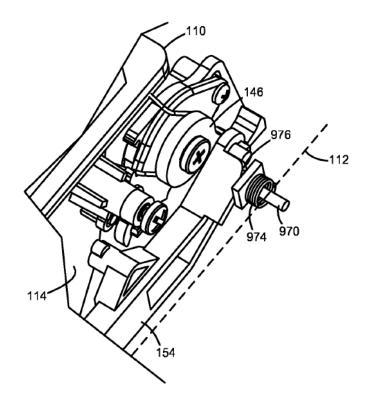


Figura 28

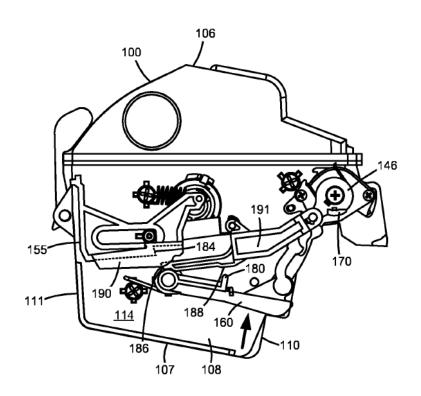


Figura 29

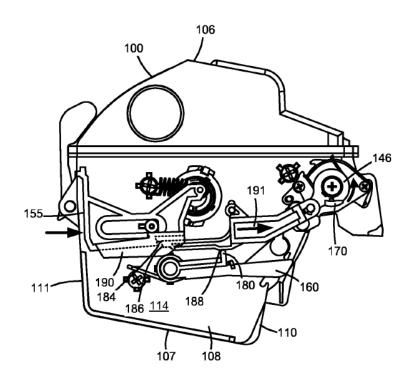


Figura 30

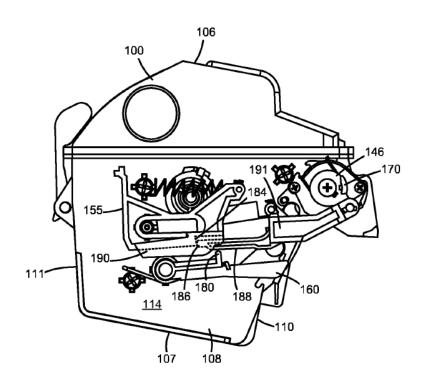


Figura 31