

OFICINA ESPAÑOLA DE PATENTES Y MARCAS

ESPAÑA

11 Número de publicación: 2 702 903

(51) Int. CI.:

C12N 15/82 (2006.01) C12N 15/113

(2010.01)

C07K 14/415 (2006.01)

(12)

TRADUCCIÓN DE PATENTE EUROPEA

T3

06.06.2014 PCT/DE2014/000310 (86) Fecha de presentación y número de la solicitud internacional:

(87) Fecha y número de publicación internacional: 24.12.2014 WO14202044

(96) Fecha de presentación y número de la solicitud europea: 06.06.2014 E 14750139 (9)

(97) Fecha y número de publicación de la concesión europea: 10.10.2018 EP 3011037

(54) Título: Gen de resistencia frente a rizomanía

(30) Prioridad:

17.06.2013 DE 102013010026

(45) Fecha de publicación y mención en BOPI de la traducción de la patente: 06.03.2019

(73) Titular/es:

KWS SAAT SE (100.0%) Grimsehlstr. 31 37555 Einbeck, DE

(72) Inventor/es:

TÖRJÈK, OTTO: **BORCHARDT, DIETRICH;** MECHELKE, WOLFGANG y LEIN, JENS CHRISTOPH

(74) Agente/Representante:

ISERN JARA, Jorge

DESCRIPCIÓN

Gen de resistencia frente a rizomanía

5 Campo de la invención

La presente invención se refiere a una molécula de ácido nucleico, que codifica un polipéptido, que está en disposición de otorgar una resistencia frente a un patógeno, en particular frente al "Beet Necrotic Yellow Vein Virus" (virus de las nervaduras amarillas y necróticas) en una planta, en particular del género *Beta*, en la que se expresa el polipéptido. Además, la invención se refiere a un polipéptido, que está en disposición de otorgar una resistencia frente a un patógeno en una planta, en particular una resistencia frente BNYVV en una planta del género *Beta*, en la que se expresa el polipéptido y que es codificado por la molécula de ácido nucleico de acuerdo con la invención. Además, la invención se refiere a una planta, célula vegetal, órgano vegetal, tejido vegetal, parte vegetal transgénica o a una semilla de una planta, que comprenden la molécula de ácido nucleico o partes de la misma así como a procedimientos para la producción de una planta o célula vegetal transgénica de este tipo. Además, la invención también incluye procedimientos para la detección de la molécula de ácido nucleico que otorga la resistencia así como procedimientos para la selección de plantas o células vegetales que presentan la molécula de ácido nucleico que otorga la resistencia.

Antecedentes de la invención

20

25

30

35

40

45

50

55

60

10

15

La rizomanía es la enfermedad económicamente de mayor importancia a nivel mundial de la remolacha azucarera, que puede causar pérdidas del 50 % y más en la cosecha. La enfermedad, que se denomina también "enfermedad de las nervaduras amarillas y necróticas", es causada por el "virus de las nervaduras amarillas y necróticas" (BNYVV, por sus siglas en inglés) y es transmitida por el protozoo con origen en el suelo Polymyxa betae. Una infección por BNYVV se manifiesta en una proliferación aumentada de las raíces delgadas y las raíces secundarias y en la configuración de un cuerpo radicular de un tamaño muy disminuido con un contenido reducido en azúcar. Las plantas infectadas muestran una menor absorción de aqua y, por tanto, son más sensibles frente a estrés por sequía. Cuando la infección se propaga a la totalidad de la planta se produce la coloración amarilla de las venas de la hoja, lesiones necróticas y manchas amarillas sobre las hojas. Ya que no es posible combatir curativamente la enfermedad, como en otras enfermedades víricas, el daño se puede evitar únicamente mediante el cultivo de variedades resistentes. Actualmente se han examinado en esencia tres genes principales contra la rizomanía: RZ-1 (denominado también "Holly"), RZ-2 y RZ-3. Además, en la bibliografía se describen otros genes de resistencia frente a la rizomanía, pero son de importancia menor. A este respecto, el gen de resistencia RZ-1 ya está incorporado en la mayoría de las líneas de cultivo (semilla parental y/o polinizador componentes parentales). Sin embargo, se ha mostrado que en regiones muy infectadas o en regiones con diversos patotipos de BNYVV (por ejemplo, Sohi & Maleki, 2004) la resistencia que es otorgada por RZ-1 no es suficiente. Por este motivo se ha propuesto, ya desde hace bastante tiempo, combinar RZ-1 con, por ejemplo, RZ-2 o RZ-3, RZ-2 v RZ-3 proceden de fuentes de Beta vulgaris subsp. maritima (WB42, WB41) v se mapean genéticamente en la misma región en el cromosoma 3 del genoma de la remolacha azucarera, mientras que RZ-1 se mapea al sur de RZ-2 y RZ-3, pero también en el cromosoma 3. Scholten et al. (1999) determinaron una distancia de 20-25 cM entre los genes principales RZ RZ-1 y RZ-2. Gidner et al. (2005) encuentran una menor distancia de 5 cM entre RZ-1 y RZ-2 y no descartan que RZ-2 y RZ-3 se mapeen en el mismo locus. Schmidlin et al. (2008) habían identificado mediante análisis de expresión en remolachas infectadas diferentes genes inducidos, pero que no se correspondían con RZ-2 o RZ-3. En el estudio de Larson et al. (2008) se detectaron con el método de MALDI-TOF-MS algunas proteínas inducidas por BNYVV en la remolacha azucarera, sin embargo, los investigadores no pudieron identificar las proteínas que son codificadas por RZ-1, RZ-2 o RZ-3. Además, la región de la secuencia, en particular alrededor de estos genes de resistencia, es repetitiva, lo que hace particularmente difícil el desarrollo de marcadores de diagnóstico. Así, hasta ahora no están disponibles públicamente ni mapas de marcadores de alta resolución ni genes candidato verificados para los genes mencionados de resistencia frente a la rizomanía. Además, hasta la fecha sique siendo completamente desconocido el trasfondo funcional de estos genes de resistencia RZ, es decir, la estructura genética.

Para un cultivo sostenible frente a rizomanía, que debe contrarrestar el riesgo de aislados de BNYVV que rompan la resistencia, es necesario identificar constantemente nuevos genes de resistencia e integrar los mismos en el acervo genético de las plantas de cultivo tales como remolachas azucareras.

Resumen de la invención

La presente invención se efectuó ante el trasfondo del estado de la técnica que se ha descrito anteriormente, siendo el objetivo de la presente invención facilitar una molécula de ácido nucleico y/o un polipéptido que esté en disposición de otorgar resistencia frente a rizomanía en una planta. Además, es objetivo facilitar una planta transgénica resistente a rizomanía así como un método para su producción. Además, es objetivo de la presente invención facilitar métodos para el aprovechamiento y el desarrollo de marcadores moleculares que posibiliten un cultivo eficiente frente a rizomanía y el desarrollo de nuevas líneas de plantas resistentes.

Las configuraciones de la presente invención que resuelven el objetivo se basan en el mapeo fino genético, la identificación, el aislamiento y la caracterización de un gen que procede del donador *Beta vulgaris* subsp. *maritima* y

que codifica un polipéptido o una proteína que está en disposición de otorgar resistencia frente a un patógeno en una planta en la que se expresa el polipéptido.

A continuación, en primer lugar se explican con mayor detalle algunas de las expresiones usadas en la presente solicitud: el término "aproximadamente" en relación con la indicación de una longitud de una secuencia de nucleótidos significa una desviación de +/- 200 pares de bases, preferentemente de +/- 100 pares de bases y de forma particularmente preferente de +/- 50 pares de bases.

5

10

15

20

25

30

35

40

45

50

55

60

65

Una "planta del género Beta" pertenece a la familia de las amarantáceas (Amaranthaceae). Entre estas plantas se encuentran plantas de las especies Beta macrocarpa, Beta vulgaris, Beta lomatogona, Beta macrorhiza, Beta corolliflora, Beta trigyna y Beta nana. Una planta de la especie Beta vulgaris es en particular una planta de la subespecie Beta vulgaris subsp. maritima (acelga silvestre) o Beta vulgaris subsp. vulgaris. Entre estas se encuentran por ejemplo Beta vulgaris subsp. vulgaris var. altissima (remolacha azucarera en el sentido estricto), Beta vulgaris ssp. vulgaris var. vulgaris (acelga), Beta vulgaris ssp. vulgaris var. conditiva (remolacha roja), Beta vulgaris ssp. vulgaris var. crassa/alba (remolacha forrajera).

Por "hibridar" o "hibridación" se entiende un proceso en el que una molécula de ácido nucleico monocatenaria se adosa a una cadena sustancialmente complementaria de ácido nucleico, es decir, establece con la misma emparejamiento de bases. Están descritos procedimientos convencionales para la hibridación, por ejemplo, en Sambrook et al. 2001. Preferentemente, por ello se entiende que al menos el 60 %, más preferentemente al menos el 65 %, el 70 %, el 75 %, el 80 % o el 85 %, de forma particularmente preferente el 90 %, el 91 %, el 92 %, el 93 %, el 94 %, el 95 %, el 96 %, el 97 %, el 98 % o el 99 % de las bases de la molécula de ácido nucleico establece un emparejamiento de bases con la cadena sustancialmente complementaria de ácido nucleico. La posibilidad de un adosamiento de este tipo depende de la rigurosidad de las condiciones de hibridación. El término "rigurosidad" se refiere a las condiciones de hibridación. Se da una alta rigurosidad cuando el emparejamiento de bases está dificultado, una baja rigurosidad, cuando está facilitado el emparejamiento de bases. La rigurosidad de las condiciones de hibridación depende, por ejemplo, de la concentración de sal o de la fuerza iónica y la temperatura. En general se puede aumentar la rigurosidad por un aumento de la temperatura y/o una reducción del contenido de sal. Se ha de entender por "condiciones de hibridación rigurosas" aquellas condiciones en las que una hibridación tiene lugar sobre todo solo entre moléculas homólogas de ácido nucleico. A este respecto, la expresión "condiciones de hibridación" no se refiere solo a las condiciones existentes durante el adosamiento en sí de los ácidos nucleicos, sino también a las condiciones existentes en las posteriores etapas de lavado. Son condiciones de hibridación rigurosas, por ejemplo, condiciones en las que hibridan sobre todo solo aquellas moléculas de ácido nucleico que presentan una identidad de secuencia de al menos el 70 %, preferentemente de al menos el 75 %, al menos el 80 %, al menos el 85 %, al menos el 90 % o al menos el 95 %. Son condiciones de hibridación rigurosas por ejemplo: hibridación en 4 x SSC a 65 °C y posterior lavado múltiple en 0.1 x SSC a 65 °C durante en total aproximadamente 1 hora. La expresión usada en el presente documento "condiciones de hibridación rigurosas" también puede significar: hibridación a 68 ºC en fosfato sódico 0,25 M, pH 7,2, el 7 % de SDS, EDTA 1 mM y el 1 % de BSA durante 16 horas y posterior lavado de dos veces con 2 x SSC y el 0,1 % de SDS a 68 °C. Preferentemente, una hibridación tiene lugar en condiciones rigurosas.

Por una "molécula de ácido nucleico aislada" se entiende una molécula de ácido nucleico separada de su entorno natural u original. La expresión comprende también una molécula de ácido nucleico producida sintéticamente. Por un "polipéptido aislado" se entiende un polipéptido separado de su entorno natural u original. La expresión comprende también un polipéptido producido sintéticamente.

Un "marcador molecular" es un ácido nucleico que es polimorfo en una población vegetal. Por ello, un marcador de este tipo está en disposición de detectar y de diferenciar distintos estados alélicos (alelos). Para ello se emplean procedimientos analíticos conocidos, tales como por ejemplo RFLP, AFLP, SNP, SSR o KASP. El término "marcador molecular" se refiere también a secuencias de nucleótidos que son complementarias o al menos en esencia complementarias u homólogas con respecto a secuencias genómicas, por ejemplo, ácidos nucleicos que se emplean como sondas o cebadores. Los marcadores que describen polimorfismos genéticos se pueden detectar mediante el uso de métodos bien establecidos. Estos son, por ejemplo, una amplificación específica de secuencia basada en PCR, una detección de 'Restriction Fragment Length Polymorphisms' (RFLP, polimorfismos de longitud de fragmentos de restricción), una detección de polimorfismos de polinucleótidos mediante 'Allele Specific Hybridization' (ASH, hibridación con especificidad de alelos), una detección secuencias variables amplificadas del genoma vegetal, una detección de una 'Self-Sustained Sequence Replication' (replicación de sequencia autosostenida), una detección de 'Simple Sequence Repeats' (SSR, repeticiones de sequencias simples), una detección de 'Single Nucleotide Polymorphisms' (SNP, polimorfismo de un solo nucleótido), o una detección de 'Amplified Fragment Length Polymorphisms' (AFLP, polimorfismos en la longitud de fragmentos amplificados). Además, también se conocen los métodos para la detección de 'Expressed Sequence Tags' (EST, marcadores de secuencia expresada) y marcadores de SSR derivados de secuencias de EST y 'Randomly Amplified Polymorphic DNA' (RAPD, ADN polimórfico amplificado de forma aleatoria).

Un "promotor" quiere decir una secuencia de ADN reguladora no traducida, típicamente cadena arriba de una región codificante, que incluye el sitio de unión para la ARN-polimerasa y que inicia la transcripción del ADN.

Un "patógeno" quiere decir un organismo que, en interacciones con una planta, conduce a síntomas de enfermedad en uno o varios órganos de la planta. Entre estos patógenos se encuentran, por ejemplo, organismos animales, fúngicos, bacterianos o víricos u oomicetos.

Por una "infección por patógeno" se ha de entender el momento más temprano en el que un patógeno interacciona con un tejido hospedador vegetal. Por ejemplo, en el caso de patógeno vírico BNYVV, el mismo se transmite por el protozoo *Polymyxa betae. Polymyxa* forma esporas que pueden perdurar en la tierra a lo largo de décadas. En estas esporas perdura también el virus. Cuando estas esporas latentes germinan hasta dar zooesporas móviles, el virus a través de las mismas puede llegar a células del tejido hospedador vegetal e interaccionar allí con el hospedador (Esser 2000).

Los "órganos" vegetales significan por ejemplo hojas, tallo, tronco, raíces, hipocótilo, brotes vegetativos, meristemos, embriones, anteras, óvulos o frutos. "Partes" vegetales quiere decir una agrupación de varios órganos, por ejemplo una flor o una semilla, o una parte de un órgano, por ejemplo, un corte transversal a través del brote. Los "tejidos" vegetales son, por ejemplo, tejido calloso, tejido de almacenamiento, tejido meristemático, tejido foliar, tejido de tallo, tejido radicular, tejido tumoral de planta o tejido reproductor. Por "células" vegetales se ha de entender, por ejemplo, células aisladas con una pared celular o agregados de las mismas o protoplastos.

15

25

30

35

40

45

50

55

El término "resistencia" se ha de entender de forma amplia y abarca el intervalo de la protección desde un retardo hasta la completa inhibición del desarrollo de la enfermedad. Un ejemplo de un patógeno de importancia es el virus de las nervaduras amarillas y necróticas (BNYVV). Preferentemente, una célula vegetal resistente de la invención o una planta resistente de la invención consigue una resistencia frente a BNYVV. Una resistencia frente a un patógeno es equivalente a una resistencia frente a la enfermedad que causa este patógeno, por ejemplo, una resistencia frente a BNYVV es también una resistencia frente a rizomanía.

Una "planta transgénica" se refiere a una planta en cuyo genoma se ha integrado al menos un ácido nucleico. A este respecto se puede tratar de un ácido nucleico heterólogo. Preferentemente, el ácido nucleico está integrado de forma estable, lo que significa que el ácido nucleico integrado permanece estable en la planta, se puede expresar y también se puede transmitir hereditariamente a los descendientes de manera estable.

La presente solicitud desvela una molécula de ácido nucleico, que codifica un polipéptido, que está en disposición de otorgar una resistencia frente a un patógeno en una planta, en la que se expresa el polipéptido. La molécula de ácido nucleico comprende una secuencia de nucleótidos que está seleccionada de

a) una secuencia de nucleótidos que codifica un polipéptido con una secuencia de aminoácidos de acuerdo con la SEQ ID NO: 2 o la SEQ ID NO: 3.

b) una secuencia de nucleótidos que comprende la secuencia codificante de la secuencia de ADN de acuerdo con la SEQ ID NO: 1,

c) una secuencia de nucleótidos que hibrida con la secuencia complementaria a la secuencia de nucleótidos de acuerdo con a) o b) en condiciones rigurosas,

d) una secuencia de nucleótidos que codifica un polipéptido que se deriva por sustitución, deleción y/o adición de uno o varios aminoácidos de la secuencia de aminoácidos que se codifica por la secuencia de nucleótidos de acuerdo con a) o b), de un polipéptido que se codifica por la secuencia de nucleótidos de acuerdo con a) o b),

e) una secuencia de nucleótidos que codifica un polipéptido que presenta una secuencia de aminoácidos que tiene una identidad de al menos el 60 % con una secuencia de aminoácidos que se codifica por la secuencia de nucleótidos de acuerdo con a) o b) o

f) una secuencia de nucleótidos que codifica al menos un dominio de unión a nucleótidos (NSB o NB-ARC) correspondiente a las posiciones de aminoácidos 168-227 de la SEQ ID NO: 2 o correspondiente a las posiciones de aminoácidos 182-241 de la SEQ ID NO: 3, al menos un dominio rico en leucina (LRR) correspondiente a las posiciones de aminoácidos 591-613 de la SEQ ID NO: 2 o correspondiente a las posiciones de aminoácidos 605-627 de la SEQ ID NO: 3 y/o al menos un dominio de repetición interna (IR) correspondiente a las posiciones de aminoácidos 1013-1072 de la SEQ ID NO: 2 o correspondiente a las posiciones de aminoácidos 1027-1086 de la SEQ ID NO: 3.

En el caso de la molécula de ácido nucleico se puede tratar de una molécula de ácido nucleico aislada. Preferentemente se trata de ADN y de forma particularmente preferente de ADNc (ADN codificante). Preferentemente, el polipéptido que se codifica por la molécula de ácido nucleico de acuerdo con la invención otorga una resistencia frente al patógeno vírico "virus de las nervaduras amarillas y necróticas" (BNYVV), que causa la enfermedad de las plantas rizomanía. Además, el polipéptido que se codifica por la molécula de ácido nucleico de acuerdo con la invención otorga en particular en una planta del género *Beta* una resistencia frente a un patógeno. Preferentemente, en el caso de la planta se trata de una planta de la especie *Beta vulgaris*, de forma particularmente preferente de una

planta de subespecie *Beta vulgaris* subsp. *maritima* o *Beta vulgaris* subsp. *vulgaris*; entre estas se encuentran por ejemplo los tipos de cultivo remolacha azucarera, remolacha roja, remolacha forrajera, acelga y acelga amarilla.

En una forma de realización de la molécula de ácido nucleico de acuerdo con la invención, la molécula de ácido nucleico comprende la secuencia de nucleótidos de acuerdo con a). La secuencia de aminoácidos de acuerdo con la SEQ ID NO: 2 del polipéptido codificado y/o de acuerdo con la SEQ ID NO: 3 del polipéptido codificado representa la proteína de resistencia del gen RZ-3. En este caso se trata de un gen/proteína de resistencia de tipo NBS-LRR, que está caracterizado por determinados motivos estructurales. La estructura general de tales proteínas de resistencia en plantas ya se ha examinado bien (Martin et al. 2003). Sin embargo, el principio de la configuración estructural en particular del denominado dominio LRR, que se considera el dominio de detección potencial de efectores patógenos la mayoría de las veces desconocidos, no es predecible. Por consiguiente, es imposible la identificación de un gen o proteína que otorga resistencia a BNYVV únicamente basándose en los motivos estructurales conocidos. La identificación del gen de resistencia RZ-3 tuvo lugar en el transcurso de un procedimiento de map-based-cloning (clonación basada en mapa) que requirió un mapeo y un mapeo fino genéticos intensivos de la región diana en la que se presupuso en primer lugar el gen de resistencia RZ-3. Los trabajos desarrollados se describen con más detalle más adelante.

La proteína de resistencia identificada pertenece al tipo NBS-LRR y presenta un dominio de unión a nucleótidos (NBS, conocido también por NB-ARC (nucleotide-binding adaptor shared by APAF-1, R proteins, and CED-4)) correspondiente a las posiciones de aminoácidos 168-227 de la SEQ ID NO: 2 o correspondiente a las posiciones de aminoácidos 182-241 de la SEQ ID NO: 3, un dominio rico en leucina (LRR) correspondiente a las posiciones de aminoácidos 591-613 de la SEQ ID NO: 2 o correspondiente a las posiciones de aminoácidos 605-627 de la SEQ ID NO: 3 y al menos un dominio de repetición interna (IR; dominio de Internal Repeat) correspondiente a las posiciones de aminoácidos 1013-1072 de la SEQ ID NO: 2 o correspondiente a las posiciones de aminoácidos 1027-1086 de la SEQ ID NO: 3. El dominio NBS es codificado por los nucleótidos 2019-2882 de la SEQ ID NO: 1, el dominio LRR, por los nucleótidos 3288-3356 de la SEQ ID NO: 1 y el dominio de IR, por los nucleótidos 4554-4871 de la SEQ ID NO: 1. El dominio NB-ARC es un dominio de unión a nucleótido central. Probablemente es un domino ATPasa funcional, que probablemente regula la actividad de una proteína de resistencia. El dominio NB-ARC se compone de tres subdominios: NB, ARC1 y ARC2. Son motivos característicos del dominio NB-ARC APAF-1 (apoptotic protease activating factor-1), que es responsable probablemente de la reacción de hipersensibilidad, hhGRExe. Walker-A o Ploop, Walker-B, GxP, RNBS-A a D y MHD (Ooijen et al., 2008). Algunos de los motivos mencionados ya se han podido identificar. En otra forma de realización de la molécula de ácido nucleico de acuerdo con la invención, la molécula de ácido nucleico comprende la secuencia de nucleótidos de acuerdo con b). La secuencia de nucleótidos comprende las secuencias codificantes de la secuencia de ADN de acuerdo con la SEQ ID NO: 1, que codifican las secuencias de aminoácidos de acuerdo con las SEQ ID NO: 2 y 3.

En otra forma de realización de la molécula de ácido nucleico de acuerdo con la invención, la molécula de ácido nucleico comprende la secuencia de nucleótidos de acuerdo con d). Esta secuencia de nucleótidos codifica un polipéptido que representa un derivado del polipéptido que se codifica por la secuencia de nucleótidos de acuerdo con a) o b). Un derivado del polipéptido representa una secuencia de aminoácidos derivada, que presenta al menos una sustitución, deleción o adición de uno o varios aminoácidos, conservándose la funcionalidad del polipéptido/proteína codificado. En el caso de la sustitución de un aminoácido por otro aminoácido con propiedades físico-químicas iguales o equivalentes o similares, se habla de una "sustitución conservadora" o "sustitución semiconservadora". Son ejemplos de propiedades físico-químicas de un aminoácido por ejemplo la hidrofobia o la carga. El experto en la materia sabe qué sustitución de aminoácidos representa una sustitución conservadora o semiconservadora. El conocimiento general además permite que el experto en la materia pueda detectar, identificar y comprobar qué deleciones y adiciones de aminoácidos son inocuas para la funcionalidad de la proteína de resistencia RZ-3 y en qué posiciones son posibles las mismas. El experto en la materia es consciente de que en el caso de la presente proteína NBS-LRR para modificaciones de la secuencia de aminoácidos (sustituciones, deleciones o adiciones de uno o varios aminoácidos) se debe conservar en particular la funcionalidad de los dominios conservados que se han definido anteriormente y que, por lo tanto, en esos dominios son posibles solo de forma limitada las anteriores modificaciones. La secuencia de nucleótidos de esta forma de realización codifica entonces un derivado o una secuencia de aminoácidos derivada cuando la secuencia de nucleótidos tiene una homología o una identidad al menos el 80 %, el 85 %, el 90 %, el 92 %, el 94 %, el 96 %, el 97 %, el 98 %, el 99 %, con la secuencia de nucleótidos de acuerdo con a) o b). Preferentemente, tales secuencias de nucleótidos que codifican un derivado o una secuencia de aminoácidos derivada se pueden generar directa o indirectamente (por ejemplo, a través de etapas de amplificación o replicación) a partir de una secuencia de nucleótidos de partida, que se corresponde a lo largo de toda la longitud o al menos en parte con la SEQ ID NO: 1 o con otra secuencia desvelada en el presente documento.

En otra forma de realización de la molécula de ácido nucleico de acuerdo con la invención, la molécula de ácido nucleico comprende la secuencia de nucleótidos de acuerdo con e). Esta secuencia de nucleótidos codifica un polipéptido que presenta una secuencia de aminoácidos que tiene una identidad de al menos el 80 %, el 85 %, el 90 %, el 92 %, 94 %, el 96 %, el 97 %, el 98 %, el 99 %, con una secuencia de aminoácidos que se codifica por la secuencia de nucleótidos de acuerdo con a) o b).

65

5

10

15

20

25

30

35

40

45

50

55

En otra forma de realización de la molécula de ácido nucleico de acuerdo con la invención, la molécula de ácido nucleico comprende la secuencia de nucleótidos de acuerdo con f). La secuencia de nucleótidos codifica un polipéptido que comprende al menos un dominio de unión a nucleótidos (NBS) correspondiente a las posiciones de aminoácidos 168-227 de la SEQ ID NO: 2 o correspondiente a las posiciones de aminoácidos 182-241 de la SEQ ID NO: 3, al menos un dominio rico en leucina (LRR) correspondiente a las posiciones de aminoácidos 591-613 de la SEQ ID NO: 2 o correspondiente a las posiciones de aminoácidos 605-627 de la SEQ ID NO: 3 y al menos un dominio de repetición interna (IR) correspondiente a las posiciones de aminoácidos 1013-1072 de la SEQ ID NO: 2 o correspondiente a las posiciones de aminoácidos 1027-1086 de la SEQ ID NO: 3. De forma particularmente preferente, estos dominios están presentes en el polipéptido de forma secuencial del extremo N al C en el orden NBS - LRR - IR, pudiendo estar presentes entre dominios en cada caso uno o varios aminoácidos adicionales.

10

15

20

25

30

35

40

45

50

55

60

65

La presente invención se refiere también a un polipéptido que esta disposición de otorgar una resistencia frente a un patógeno en una planta en la que se expresa el polipéptido y que se codifica por la molécula de ácido nucleico de acuerdo con la invención, siendo el patógeno preferentemente BNYVV y/o siendo la planta preferentemente una planta del género *Beta*, en particular una planta de la especie *Beta vulgaris*. De forma particularmente preferente, el polipéptido presenta una secuencia de aminoácidos de acuerdo con la SEQ ID NO: 2 o de acuerdo con la SEQ ID NO: 3. En el caso del polipéptido se puede tratar de un polipéptido aislado.

En otro aspecto, la presente invención se refiere a un vector que comprende la molécula de ácido nucleico de acuerdo con la invención. En el caso del vector se puede tratar de un plásmido, un cósmido, un fago o un vector de expresión, un vector de transformación, un vector lanzadera o un vector de clonación, puede ser bi- o monocatenario, lineal o circular o puede transformar un hospedador procariota o eucariota mediante integración en su genoma o de forma extra cromosómica. Preferentemente, la molécula de ácido nucleico de acuerdo con la invención está enlazada operativamente en un vector de expresión con una o varias secuencias reguladoras que permiten la transcripción y, opcionalmente, la expresión en una célula hospedadora procariota o eucariota. Por ejemplo, la molécula de ácido nucleico se encuentra bajo el control de un promotor adecuado o un terminador. Los promotores adecuados pueden ser promotores que se inducen de forma constitutiva (ejemplo: promotor 35S del "Cauliflower mosaic virus" (virus del mosaico de la coliflor) (Odell et al. 1985), son particularmente adecuados aquellos promotores que se pueden inducir por patógenos (ejemplo: promotor PR1 de perejil (Rushton et al., 1996). Son promotores inducibles por patógenos particularmente adecuados los promotores sintéticos o quiméricos que no se presentan en la naturaleza, están compuestos por varios elementos e incluyen un promotor mínimo y presentan, cadena arriba del promotor mínimo, al menos un elemento regulador en cis que sirve de sitio de unión para factores de transcripción especiales. Los promotores quiméricos se conciben según las exigencias deseadas y se inducen o reprimen mediante diferentes factores. Se encuentran ejemplos de tales promotores en los documentos WO 00/29592, WO 2007/147395 y WO 2013/091612. Un terminador adecuado es, por ejemplo, el terminador nos (Depicker et al., 1982).

Adicionalmente a los vectores que se han descrito anteriormente, la presente invención facilita también un procedimiento que comprende la incorporación de un vector descrito en una célula hospedadora. El vector se puede introducir por ejemplo mediante conjugación, movilización, transformación biolística, transformación mediada por *Agrobacterium*, transfección, transducción, infiltración al vacío o electroporación. Tales procedimientos, al igual que procedimientos para la preparación de los vectores descritos, son habituales para el experto en la materia (Sambrook et al. 2001).

En otro aspecto, la presente invención se refiere a una célula hospedadora que comprende la molécula de ácido nucleico de acuerdo con la invención o el vector de la presente invención. Una célula hospedadora en el sentido de la invención puede ser una célula procariota (por ejemplo, bacteriana) o una célula de levadura. Preferentemente, la célula hospedadora es un *Agrobacterium*, tal como *Agrobacterium tumefaciens* o *Agrobacterium rhizogenes*, que comprende la molécula de ácido nucleico de acuerdo con la invención o del vector de la presente invención. El experto en la materia conoce numerosos métodos, tales como conjugación o electroporación, con los que puede introducir la molécula de ácido nucleico de acuerdo con la invención o el vector de la presente invención en un *Agrobacterium* al igual que métodos, tales como diversos procedimientos de transformación (transformación biolística, transformación mediada por *Agrobacterium*), con los que puede introducir la molécula de ácido nucleico de acuerdo con la invención o el vector de la presente invención en una célula vegetal (Sambrook et al. 2001).

En otro aspecto, la presente invención se refiere a una célula vegetal transgénica, que comprende la molécula de ácido nucleico de acuerdo con la invención como transgén o el vector de la presente invención. Una célula vegetal transgénica de este tipo es por ejemplo una célula vegetal que se ha transformado con la molécula de ácido nucleico de acuerdo con la invención o con el vector de la presente invención, preferentemente de forma estable. En una configuración preferente de la célula vegetal transgénica, la molécula de ácido nucleico está enlazada operativamente con una o varias secuencias reguladoras que permiten la transcripción y, opcionalmente, la expresión en la célula vegetal. La construcción total de la molécula de ácido nucleico de acuerdo con la invención y la/las secuencias reguladoras representa entonces el transgén. Tales secuencias reguladoras son por ejemplo un promotor o un terminador. El experto en la materia conoce numerosos promotores y terminadores funcionales que se pueden aplicar en plantas. Preferentemente, una célula vegetal transgénica de la presente invención, en particular una célula de una planta del género *Beta*, con respecto a un patógeno, en particular BNYVV, presenta una mayor resistencia que una célula vegetal no transformada correspondiente (la célula vegetal sin el transgén). El nivel de la resistencia por ejemplo

frente a BNYVV se puede establecer en plantas del género *Beta* cualitativamente mediante determinación de notas de valoración (se conocen esquemas de notas de valoración para la planta del género *Beta* por el estado de la técnica, por ejemplo para remolachas azucareras Mechelke (1997)). Una mayor resistencia se muestra en una mejora de la resistencia en al menos una nota de valoración, en al menos dos notas de valoración, en al menos tres o más notas de valoración. Además, la presente invención se refiere también a un procedimiento para la producción de una célula vegetal transgénica de la presente invención que comprende una etapa de la introducción de la molécula de ácido nucleico de acuerdo con la invención o del vector de la presente invención en una célula vegetal. Por ejemplo, la introducción puede tener lugar mediante transformación, preferentemente mediante transformación estable. Las técnicas adecuadas para la introducción, tales como transformación biolística, transformación mediada por *Agrobacterium* o electroporación, son conocidas por el experto en la materia (Sambrook et al. 2001).

10

15

20

25

30

35

40

45

50

55

60

65

En otro aspecto, la presente invención se refiere a una planta transgénica o una parte de la misma, que comprende una célula vegetal transgénica que se ha descrito anteriormente. Una parte puede ser a este respecto una célula, un tejido, un órgano o una agrupación de varias células, tejidos u órganos. Una agrupación de varios órganos es por ejemplo una flor o una semilla. En una configuración particular, la invención se refiere a una semilla de la planta transgénica, comprendiendo la semilla la molécula de ácido nucleico de acuerdo con la invención como transgén. Preferentemente, una planta transgénica de la presente invención, en particular una planta del género Beta, muestra frente a un patógeno, en particular BNYVV, una mayor resistencia que una planta no transformada correspondiente (planta sin el transgén). Se puede establecer el nivel de la resistencia por ejemplo frente a BNYVV en plantas del género Beta cualitativamente mediante la determinación de notas de valoración (se conocen esquemas de notas de valoración para la planta del género Beta por el estado de la técnica, por ejemplo para remolachas azucareras Mechelke (1997)). Una mayor resistencia se muestra en una mejora de la resistencia en al menos una nota de valoración, en al menos dos notas de valoración, en al menos tres o más notas de valoración. Además, la invención facilita un procedimiento para la producción de una planta transgénica, que comprende una etapa de la introducción de la molécula de ácido nucleico de acuerdo con la invención o del vector de la presente invención en una célula vegetal y opcionalmente una etapa de la selección de una célula vegetal transgénica. Además, un procedimiento de este tipo para la producción de una planta transgénica está caracterizado por una etapa posterior, que incluye la regeneración de la planta transgénica a partir de la célula vegetal transgénica generada en la primera etapa. El experto en la materia conoce métodos para la regeneración por el estado de la técnica.

En otro aspecto, la presente invención se refiere también a un procedimiento para otorgar o aumentar una resistencia frente a un patógeno, en particular BNYVV, en una planta, preferentemente una planta del género *Beta*, que comprende una etapa de la transformación de una célula vegetal con la molécula de ácido nucleico de acuerdo con la invención o el vector de la presente invención. Preferentemente, este procedimiento conduce a una mejora de la resistencia en al menos una nota de valoración, de forma particularmente preferente a una mejora de la resistencia en al menos dos, tres o más notas de valoración. Se conocen esquemas de notas de valoración para la planta del género Beta por el estado de la técnica, por ejemplo para remolachas azucareras Mechelke (1977).

En otro aspecto, la presente invención se refiere a una secuencia reguladora de un promotor que controla la expresión de un gen, que comprende la molécula de ácido nucleico de acuerdo con la invención, caracterizada por que la secuencia reguladora está en disposición de mediar en o modular la expresión de una secuencia de ADN heteróloga como consecuencia de una infección por patógeno y la secuencia reguladora comprende una molécula de ácido nucleico con una secuencia de nucleótidos de acuerdo con la SEQ ID NO: 1 de los nucleótidos 1-1403. Preferentemente, la secuencia de ADN heteróloga es una secuencia de nucleótidos que codifica un componente de la defensa vegetal frente a patógenos (ejemplo: genes de resistencia (genes R) o genes que codifican enzimas que intervienen en la transferencia de señales, tales como cinasas o fosfatasas, así como proteína G) o que codifica un efecto patógeno (denominados genes de avirulencia (avr)). Además, la presente invención abarca una molécula de ADN recombinante que comprende la secuencia reguladora que se ha descrito anteriormente. Preferentemente, la molécula de ADN recombinante está enlazada operativamente con una secuencia de ADN heteróloga.

En otro aspecto, la presente invención se refiere a una célula hospedadora que está transformada con la secuencia reguladora que se ha descrito anteriormente o con la molécula de ADN recombinante mencionada, así como a una planta transgénica, tejido vegetal o célula vegetal que comprende la secuencia reguladora o la molécula de ADN recombinante como transgén. Además, la invención facilita un procedimiento para la producción de una célula vegetal transgénica, que comprende una etapa de la introducción de la secuencia reguladora de la invención o de la molécula de ADN recombinante y opcionalmente una etapa de la selección de una célula vegetal transgénica. Además, la invención facilita un procedimiento para la producción de una planta transgénica, que comprende una etapa de la introducción de la secuencia reguladora de la invención o de la molécula de ADN recombinante en una célula vegetal y opcionalmente una etapa de la selección de una célula vegetal transgénica. Además, un procedimiento de este tipo para la producción de una planta transgénica está caracterizado por una etapa posterior, que incluye la regeneración de la planta transgénica a partir de la célula vegetal transgénica generada en la primera etapa.

Como ya se ha indicado anteriormente, la identificación del gen de resistencia RZ-3 tuvo lugar en el transcurso de un proceso de clonación basada en mapa. El proceso realizado comprendía por ejemplo las etapas: mapeo fino genético, mapeo físico, generación de una población de escisión muy grande de más de 8000 descendientes de escisión F2, detección de recombinantes, desarrollo de marcadores en la región diana, secuenciación BAC comparativa en los

genotipos resistentes y sensibles, análisis bioinformáticos, predicciones de proteínas y comparaciones de las proteínas. Tales tediosos trabajos de desarrollo siempre son muy caros y es incierto si realmente se consigue identificar el gen. Después de la integración del locus de RZ-3 de *Beta vulgaris* subsp. *maritima* en una planta del género *Beta*, en concreto en la remolacha azucarera (*Beta vulgaris* subsp. *vulgaris* var. *altissima*), para realizar el seguimiento del segmento genómico RZ-3 en el mapeo fino se desarrollaron marcadores con un buen valor de diagnóstico, lo que resultó particularmente difícil, ya que la región diana es repetitiva a lo largo de amplias regiones. A pesar de esto se consiguió sorprendentemente el desarrollo de algunos pocos marcadores de diagnóstico, que en parte también funcionaban solo con una determinada técnica de marcador, tal como pirosecuencias, es decir, como un marcador PSQ o eran de alelos cero.

10

15

20

25

30

35

50

55

A pesar de estas dificultades técnicas, a través de un exhaustivo análisis mediante el uso de estos marcadores se pudo conseguir la limitación del locus de RZ-3 a una región genómica de 0,67 cM. Esto se corresponde con una longitud física de aproximadamente 340.000 pb. A pesar de intensos perfeccionamientos ya solo fue posible de forma limitada reducir adicionalmente la introgresión de *Beta vulgaris* subsp. *maritima* alrededor del gen con respaldo de marcador e identificar genes candidatos para el gen RZ-3. Sin embargo, en cualquier caso es deseable un acortamiento adicional de la introgresión desde el punto de vista de la cría para eliminar el "arrastre de ligamiento" (*Linkage Drag*) potencialmente presente, estrechamente acoplado con el gen RZ-3. En varias etapas mediante mapeo fino y con inclusión de información de secuencia de mapas físicos se pudo estrechar finalmente hasta una región diana de ya solo aproximadamente 0,07 cM. Sin embargo, esto solo fue posible al examinarse en total 8004 plantas, entre ellas plantas recombinantes informativas BC2S1 o BC2S2 que se analizaron de forma intensa con en cada caso 90-180 descendientes. Esto fue necesario debido a que la intensidad de la resistencia por motivos desconocidos no siempre fue inequívoca. Estos descendientes se genotiparon por plantas individuales y en paralelo se fenotiparon. Mediante procedimientos estadísticos (prueba t, análisis de potencia) se comprobaron los fenotipos de los recombinantes informativos (homocigotos resistentes – RR; heterocigotos resistentes - Rs; homocigotos sensibles - ss) y por tanto se realizaron deducciones con respecto al genotipo de los recombinantes informativos.

En la región diana relativamente pequeña de aproximadamente 38.000 pb se pudieron anotar en el genotipo sensible diez genes. Para esta región diana, de una biblioteca BAC resistente se identificaron clones solapantes con ayuda de nuevos marcadores que describen específicamente la región diana y finalmente se secuenciaron. Debido a la repetitividad de la región diana, la secuencia del genotipo sensible mostró numerosas secciones pequeñas con un contenido de secuencia desconocido. Por este motivo, el ensamblaje de las secuencias RR y ss fue particularmente exigente. A pesar de esto se pudo identificar un supuesto gen de resistencia. Este contenía en prácticamente todos los genotipos ss un retrotransposón con una longitud de aproximadamente 8000 pb entre el dominio LRR y el dominio IR, lo que no se pudo detectar en genotipos RR. Una secuencia de aminoácidos, predicha a partir de una supuesta secuencia de gen de resistencia muestra que el gen codifica probablemente una proteína NB-ARC-LRR. Se puede suponer que esta inserción del retrotransposón destruye la función del gen en genotipos ss sensibles, ya que separa el dominio de repetición interna (IR) de los otros dos dominios (NB-ARC y LRR).

La comparación del gen NBS-LRR en genotipos ss con aquel de genotipos RR mostró además polimorfismos de diagnóstico que se pueden obtener de las Figuras 1, 2 y 3. Basándose en estos polimorfismos en el gen NBS-LRR se desarrollaron marcadores y se ensayaron en un conjunto amplio de prácticamente 100 genotipos ss y RR. El patrón de marcadores, pero también la secuenciación comparativa en el gen diana han confirmado que la inserción está acoplada prácticamente siempre a la sensibilidad. Sin embargo, se encontraron pocos genotipos ss que no presentaban la inserción de retrotransposón y a pesar de ello eran sensibles. Estos genotipos ss se pudieron diferenciar sin embargo inequívocamente, mediante marcadores que describen los polimorfismos de diagnóstico de acuerdo con las Figuras 1, 2 y/o 3, de los genotipos RR.

En la población analizada se identificaron recombinantes en la región diana que muestran una recombinación entre el gen NBS-LRR y el supuesto gen anotado adyacente, situado cadena arriba, que podría codificar una proteína de repetición de anquirina. En el caso de dos plantas, las recombinaciones se pueden encontrar entre el gen NBS-LRR y el supuesto gen anotado adyacente, situado cadena arriba, que podría codificar una proteína DUF565 (proteína con función desconocida). Mediante el análisis de resistencia de la descendencia de todas estas plantas recombinantes (eliminación de un gen cadena arriba y cadena abajo del gen NBS-LRR) se pudo demostrar de forma muy inequívoca que el gen entre el gen de repetición de anquirina y el gen DUF565, en concreto el gen NBS-LRR caracterizado en este documento, es responsable de la resistencia en el genotipo RR. La Figura 4 muestra el mapa físico de la región diana RZ-3 con los marcadores desarrollados. Los datos de genotipos de ocho líneas recombinantes estrechas así como el análisis estadístico de su descendencia están representados en la Figura 5.

En otro aspecto, la presente invención se refiere a un procedimiento para la identificación de una molécula de ácido nucleico, que codifica una proteína, que está en disposición de otorgar una resistencia frente al patógeno BNYVV en una planta del género *Beta*, en la que se expresa la proteína. El procedimiento comprende la detección de la ausencia de una inserción en la secuencia de nucleótidos codificante de la molécula de ácido nucleico. Preferentemente, el procedimiento comprende la detección de la ausencia de una inserción, en particular de un retrotransposón, en la secuencia de nucleótidos codificante de la molécula de ácido nucleico. El retrotransposón puede tener la longitud por ejemplo de aproximadamente 500 pb, de aproximadamente 1000 pb, de aproximadamente 2000 pb, aproximadamente 4000 pb, aproximadamente 8000 pb o más de aproximadamente 8000 pb. En una configuración

5

10

15

20

25

30

35

40

45

50

55

60

65

particular del procedimiento, la molécula de ácido nucleico es la molécula de ácido nucleico de acuerdo con la invención tal como se ha descrito anteriormente y codifica en gen RZ-3 que otorga resistencia o un homólogo funcional de RZ-3. Preferentemente, en el caso de la planta del género Beta se trata Beta vulgaris subsp. maritima o Beta vulgaris subsp. vulgaris var. altissima (remolacha azucarera). El experto en la materia sabe los métodos que son adecuados para detectar la ausencia de la inserción. Por ejemplo, el experto en la materia, conociendo las moléculas de ácido nucleico de acuerdo con la invención desveladas en el presente documento, puede desarrollar marcadores moleculares que detecten la presencia o la ausencia de una inserción en la región que se ha descrito anteriormente en el gen NBS-LRR (procedimiento ilustrativo véase ejemplos). La presente invención incluye marcadores así como su uso para la detección de la presencia o ausencia de la inserción para la selección de plantas resistentes, particularmente resistentes a BNYVV, en particular Beta vulgaris subsp. maritima o Beta vulgaris subsp. vulgaris var. altissima (remolacha azucarera). Preferentemente, tales marcadores describen loci en los puntos de inserción del retrotransposón. Puntos de inserción quiere decir puntos de transición entre el ADN genómico y el retrotransposón en el lado 5' y/o 3' de la inserción. Los puntos de transición se tienen que definir ampliamente y los loci de marcador se pueden encontrar alejados menos de 1000 nucleótidos, preferentemente menos de 800 o 600 nucleótidos, de forma particularmente preferente menos de 400, 200, 150, 100, 50, 40, 30, 20 o 10 nucleótidos cadena arriba o cadena abajo de un punto de inserción en el ADN. Como alternativa o de forma complementaria a la etapa de la detección de la presencia o ausencia de una inserción en la secuencia de nucleótidos codificante de la molécula de ácido nucleico, el procedimiento puede comprender también la detección de al menos un polimorfismo de acuerdo con la Figura 1, 2 y/o 3, preferentemente de al menos dos o tres polimorfismos de acuerdo con la Figura 1, 2 y/o 3, de forma particularmente preferente de al menos cuatro o cinco o más polimorfismos de acuerdo con la Figura 1, 2 y/o 3 en la secuencia de nucleótidos codificante de la molécula de ácido nucleico de acuerdo con la invención mediante el uso de marcadores moleculares que detectan polimorfismos, en particular polimorfismos de diagnóstico. Preferentemente, esta detección tiene lugar mediante el uso de al menos un marcador molecular por polimorfismo, en particular por polimorfismo de diagnóstico. El experto en la materia sabe qué técnicas de marcador se deben aplicar para la detección de un correspondiente polimorfismo y cómo se construyen marcadores moleculares para ello (bibliografía). Además, la presente invención abarca marcadores moleculares que describen o detectan un polimorfismo de acuerdo con la Figura 1, 2 y/o 3 al igual que el uso de un marcador molecular para la detección de un polimorfismo de acuerdo con la Figura 1, 2 y/o 3. Además, los procedimientos de identificación anteriores representan también procedimientos para la selección de una planta que presenta una resistencia frente a BNYVV. El procedimiento para la selección comprende en una etapa final de la selección de una planta resistente.

Además, también se ha podido mostrar que el genotipo RR examinado , cadena arriba con respecto a RZ-3 (SEQ ID NO: 1), un segmento de secuencia de ADN genómico limitante de acuerdo con la SEQ ID NO: 4 y, cadena abajo con respecto a RZ-3 (SEQ ID NO: 1), un segmento de secuencia de ADN genómico limitante de acuerdo con la SEQ ID NO: 5, que están estrechamente acoplados al gen RZ-3 y, por tanto, son excelentemente adecuados como regiones de ADN para desarrollar marcadores de diagnóstico para RZ-3. Por lo tanto, la presente invención se refiere a un procedimiento para la selección de una planta que presenta una resistencia frente a BNYVV. El procedimiento para la selección comprende el uso de un marcador molecular en una secuencia de ADN de acuerdo con la SEQ ID NO: 4 y/o en una secuencia de ADN de acuerdo con la SEQ ID NO: 5 y una etapa final de la selección de una planta resistente. El experto en la materia sabe cómo, basándose en las informaciones de secuencia desveladas, desarrolla y emplea marcadores.

Mediante la presente invención se pueden conseguir además las siguientes ventajas para el cultivo y el desarrollo de nuevas líneas de plantas resistentes del género *Beta*: las informaciones de secuencias así como los polimorfismos identificados, que permiten una diferenciación entre alelos RR resistentes y SS sensibles del gen desvelado, hacen posible el desarrollo del marcador directamente en el gen, lo que, en particular en vista del desarrollo de líneas de élite optimizadas sin "arrastre de ligamiento", representa una facilitación significativa para el cultivador de plantas. Además, se puede usar el conocimiento acerca de la estructura secuencial para la identificación de otros genes de resistencia, en particular frente a rizomanía, que por ejemplo, en parte son homólogos.

El empleo desvelado en el presente documento del alelo génico resistente en enfoques genéticos cis o trans establece la posibilidad de desarrollar nuevas variedades resistentes del género *Beta*, que presentan mediante el efecto de dosis una mayor resistencia o en las que, mediante el apilamiento del gen desvelado con otros genes de resistencia, evitan una rotura de la resistencia y se puede optimizar la intensidad de la resistencia. Además son concebibles modificaciones del gen mediante *tilling* (lesiones locales inducidas de forma específica en genomas) o ingeniería genética dirigida para desarrollar nuevos alelos de resistencia.

Además, la presente invención se refiere al uso del alelo génico RZ-3 resistente identificado en una pila genética o molecular con otros elementos genéticos que pueden otorgar propiedades agronómicamente ventajosas en una planta. Por ello se puede aumentar claramente el valor económico de plantas de cultivo, al aumentarse por ejemplo el rendimiento de la cosecha o al generarse nuevas superficies de cultivo para una planta que previamente, entre otras cosas debido a factores bióticos tales como intensa presión por patógenos o factores abióticos tales como sequía, no quedaban disponibles para el cultivo de esta planta. Una propiedad agronómicamente ventajosa es por ejemplo una tolerancia frente a un herbicida tal como glifosato, glufosinato o inhibidores de ALS. El experto en la materia conoce por el estado de la técnica numerosos herbicidas adicionales y su aplicabilidad. Puede recurrir al estado de la técnica para obtener conocimiento acerca de los elementos genéticos que se deben usar y de qué forma para implementar

una correspondiente tolerancia a las plantas. Otro ejemplo de una propiedad agronómicamente ventajosa es una resistencia a patógenos adicional, pudiendo ser los patógenos por ejemplo insectos, virus, nematodos, bacterias u hongos. Mediante la combinación de diferentes resistencias/tolerancias a patógenos se puede conseguir por ejemplo una amplia defensa frente a patógenos para una planta, ya que los elementos genéticos pueden presentar efectos complementarios entre sí. Para esto, el experto en la materia conoce como elementos genéticos, por ejemplo, numerosos genes de resistencia. Otro ejemplo de una propiedad agronómicamente ventajosa es una tolerancia a frío o heladas. Las plantas que presentan esta propiedad se pueden sembrar ya antes en el año o podrían permanecer por ejemplo también durante más tiempo incluso a lo largo de periodos de heladas en el campo, lo que puede conducir por ejemplo a rendimientos aumentados. También en este caso el experto en la materia puede recurrir al estado de la técnica para encontrar elementos genéticos adecuados. Otros ejemplos de propiedades agronómicamente ventajosas son la eficiencia del uso de agua, eficiencia del uso de nitrógeno así como rendimiento. En el estado de la técnica se pueden encontrar elementos genéticos que se pueden emplear para otorgar tales propiedades.

El experto en la materia conoce además numerosas modificaciones para la defensa frente a patógenos. Aparte de las familias descritas con frecuencia con los genes R se podrían emplear ventajosamente el enfoque Avr/R, la complementación de gen Avr (documento WO 2013/127379), la autoactivación de un gen R (documento WO 2006/128444), el enfoque HIGS (*host induced gene silencing*, silenciamiento génico inducido por hospedador) (por ejemplo documento WO 2013/050024) o el enfoque VIGS (*virus induced gene silencing*, silenciamiento génico inducido por virus). En particular la autoactivación de un gen R podría ser de importancia para la presente invención. Para esto se debe crear un ácido nucleico que codifique una proteína de resistencia autoactivada para la generación de una resistencia frente a patógenos en plantas. Entonces, este ácido nucleico presenta solo una parte limitada de un gen de resistencia NBS-LRR como el gen RZ3, que se extiende desde el extremo 5' de la región codificante del gen de resistencia NBS-LRR cadena abajo hasta el comienzo del dominio NBS del gen de resistencia NBS-LRR, no siendo el gen de resistencia NBS-LRR ningún gen de resistencia TIR-NBS-LRR.

Además, la invención incluye también el uso del alelo génico RZ3 resistente, identificado con un procedimiento que se ha descrito anteriormente, para la combinación con una modificación anterior o con un elemento genético que se ha descrito anteriormente, que puede otorgar en una planta una o varias propiedades agronómicamente ventajosas.

Las configuraciones y formas de realización de la presente invención se describen a modo de ejemplo en referencia a las figuras y secuencias adjuntas:

Secuencias:

5

10

15

20

25

40

45

55

60

65

35 SEQ ID NO: 1 secuencia de ADN genómico del gen de resistencia RZ-3. La secuencia comprende del nucleótido 1 a 1403 la región reguladora del promotor

SEQ ID NO: 2 secuencia proteica predicha de la proteína de resistencia RZ-3 1

SEQ ID NO: 3 secuencia proteica predicha de la proteína de resistencia RZ-3 2

SEQ ID NO: 4 región cromosómica limitante con RZ-3 (SEQ ID NO: 1) cadena arriba

SEQ ID NO: 5 región cromosómica limitante con RZ-3 (SEQ ID NO: 1) cadena abajo

SEQ ID NO: 6 secuencia consenso de la secuencia genómica del gen RZ-3 en genotipos ss

SEQ ID NO: 7 secuencia diana en el gen RZ-3 de la construcción ARNi en el vector pZFN-C48-ARNi.

50 Figuras:

Fig. 1 A-I: comparación de secuencias de nucleótidos entre la secuencia consenso de la secuencia genómica del gen RZ-3 en genotipos ss (SEQ ID NO: 6) y el gen RZ-3 de los genotipos RR (SEQ ID NO: 1). Los polimorfismos de diagnóstico están aplicados en gris y resaltados en negrita. Están subrayados los polimorfismos que no son de diagnóstico. Los potenciales puntos de inicio de la transcripción en el gen están indicados con flechas. Conducen a dos variantes de polipéptidos RZ-3_1 y RZ-3_2. El punto del retrotransposón está indicado con un triángulo negro en la punta.

Fig. 2 A-L: comparación de secuencias de aminoácidos del polipéptido predicho de los genotipos RR (RZ-3_1; SEQ ID NO: 2) y polipéptidos de 22 genotipos ss diferentes. Los polimorfismos de diagnóstico están aplicados en gris y resaltados en negrita. Están subrayados los polimorfismos que no son de diagnóstico.

Fig. 3 A-L: comparación de secuencias de aminoácidos del polipéptido predicho de los genotipos RR (RZ-3_2; SEQ ID NO: 3) y polipéptidos de 22 genotipos ss diferentes. Los polimorfismos de diagnóstico están aplicados en gris y resaltados en negrita. Están subrayados los polimorfismos que no son de diagnóstico.

Fig. 4: Mapa físico de la región diana RZ-3. En la región diana representada del genotipo de referencia sensible se anotaron cinco genes ("2" (DUF565), "3" (proteína hipotética), "4" (gen candidato NBS-LRR), "5" (retrotransposón) y "6" (repetición de anquirina)). El gen candidato NBS-LRR ("4") incluye en la secuencia de referencia sensible una inserción de retrotransposón ("5"). Este retrotransposón está completamente ausente en la secuencia resistente, de tal manera que en el genotipo resistente ya solo se pueden anotar cuatro genes ("2", "3", "4" y "6"). Las posiciones de las recombinaciones más estrechas (recombinantes: 111T_3515/Z11007_03075 con cifra "7" y 111PB3645/ZR08093_05621 con cifra "8") están representadas por encima. Con su ayuda se pudo delimitar la región diana más corta "1". Los marcadores desarrollados para ello del análisis de recombinantes están reproducidos como rayas negras en la parte inferior de la figura. Para la validación del gen el enfoque de ARNi se seleccionó para el silenciamiento génico del alelo génico RZ-3 resistente un segmento génico ("9") en parte de la región de dominio "10" como secuencia diana.

Fig. 5: análisis de marcador de los recombinantes más estrechos en la región diana RZ-3 (las letras minúsculas con región enmarcada en negrita son datos de marcador generados por ordenador). Las ocho líneas recombinantes se fenotiparon y genotiparon con en total 1051 descendientes. Los descendientes se clasificaron mediante los datos de marcador en el gen candidato NBS-LRR o la región flanqueante de escisión en el caso de que el gen candidato NBS-RR fuese homocigoto RR o ss en 3 grupos (resistente homocigoto RR, heterocigoto Rs, sensible homocigoto ss). Al lado están reproducidos los correspondientes valores de ELISA. Una escisión o no escisión de los descendientes se comprobó con la prueba de T y la estadística de Wilcoxon según significancia. Mediante los resultados se pudo delimitar el gen candidato de forma muy inequívoca entre los marcadores s3e5800s01 y s3e5873s01.

Fig. 6: vector de transformación pZFN-C48-ARNi: promotor d35S; C48 s: orientación codificante de la secuencia C48; AtAAP6 intron2: intrón de aminoácido permeasa 6 de *Arabidopsis thaliana*; C48 as: orientación antisentido de la secuencia C48; Nos-T: terminador nos; sitio flanqueante LB: sitio flanqueante del borde izquierdo; sitio ZFN: sitio de reconocimiento de nucleasa con dedos de zinc (complementario); Pnos: promotor Nos; NPT: secuencia codificante; gen de neomicina fosfotransferasa (npt); pAG7: terminador pAG7; Bvpal3'UTR: región no traducida 3' del gen de *Beta vulgaris* Pal; LB: borde izquierdo; aadA: secuencia codificante; aminoglicósido-3"-adenililtransferasas (AAD); pVS1-REP: origen de replicación pVS1; ColE1 ori: origen de replicación ColE1; RB: borde derecho.

Ejemplos

5

10

15

20

25

30

35

40

45

50

55

65

Mapeo y mapeo fino del gen RZ-3 / mapa genético-físico La resistencia RZ-3 (denominada también resistencia C48 o C48) se mapeó en varias etapas mediante mapeo y mapeo fino en el cromosoma 3 entre 57,1 y 57,8 cM (mapa de referencia interna), es decir, a una distancia genética entre dos marcadores flanqueantes de 0,0741 cM en el mapa genético. Para el mapeo se examinaron en total 8004 plantas del cruce S504 (genotipo sensible) x T74 (genotipo resistente). En paralelo al mapeo QTL de C48 se desarrollaron, después de cada etapa de mapeo, de forma específica al objetivo nuevos marcadores informativos y se emplearon para limitar la región diana de C48.

Las coordenadas de mapeo fino se confirmaron adicionalmente con el análisis de los descendientes de los recombinantes informativos. Para esto se analizaron de forma intensiva plantas BC2S1 o BCS2S recombinantes informativas con, en cada caso, 90-180 descendientes. Estos descendientes se genotiparon por plantas individuales y se fenotiparon en paralelo. Mediante procedimientos estadísticos (prueba de t, análisis de potencia) se comprobaron los fenotipos de los recombinantes informativos (homocigoto resistente RR/heterocigoto Rs/homocigoto sensible ss) y, con ello, se realizaron deducciones con respecto al genotipo de los recombinantes informativos. Siempre que las clases de homocigotos de los descendientes (RR frente a ss) se diferencian en la resistencia, el gen se encuentra en la región heterocigota (Rs) de la planta parental; en caso contrario, en la región homocigota (RR o ss) de la planta parental.

Se generó un mapa físico para un genotipo sensible a rizomanía al proyectarse marcadores y sus posiciones genéticas en las secuencias de cromosomas. Con la limitación de la región QTL de C48, mediante la secuencia de referencia y secuenciaciones comparativas adicionales en genotipos resistentes (secuenciación de nueva generación y secuenciación de Sanger) se desarrollaron nuevos marcadores informativos.

La región identificada mediante el mapeo fino comprende una longitud de secuencia de 37996 pares de bases (posiciones de marcadores SNP flanqueantes) en la secuencia de referencia sensible. La colinealidad entre el mapa genético y el físico en la región diana no tiene contradicciones (secuencia de 12 marcadores en la región diana).

60 Identificación y secuenciación de clones BAC resistentes

Se ha desarrollado una genoteca BAC para un genotipo resistente RZ-3 (C48) seleccionado. Este banco BAC se muestreó con los marcadores aplicados en la región QTL de C48. Se encontraron varios clones BAC para la región diana que se ha identificado anteriormente. De los mismos se seleccionaron tres clones BAC de diferente longitud para la secuenciación, que abarcaron por completo la región diana. Los clones BAC se secuenciaron y mediante las lecturas de secuencia producidas se realizó un ensamblaje "de novo". Entre los cóntigos de secuencia resistentes

producidos, la mayor secuencia tenía una longitud de 110909 pb (34537 lecturas) y comprendía por completo la región diana.

Comparación de las secuencias sensibles y resistentes – evaluación de secuencia

La colinealidad de las dos secuencias ss y RR se comparó con la aplicación de diferentes herramientas de software. Para las dos secuencias resistentes y sensibles se llevó a cabo una anotación génica con los softwares Maker y Pedant. La anotación génica en las dos secuencias mostró el mismo orden de genes supuestos. Sin embargo, sorprendentemente se pudo detectar una marcada diferencia en uno de estos genes, en concreto en el gen de la presente invención (RZ-3). En el genotipo sensible, en este gen NBS-LRR identificado se pudo anotar un retrotransposón. La inserción del retrotransposón ocurrió en el gen entre los dos dominios del dominio LRR y el dominio IR. El genotipo resistente no presenta esta inserción y se reproduce en la SEQ ID NO: 1. Además, a continuación las secuencias polipeptídicas predichas se compararon y se valoraron (representadas en parte en, véase, las Fig. 2 y 3).

15 Secuenciación comparativa del gen candidato NB-ARC-LRR

5

10

20

25

30

35

40

45

50

60

65

El gen candidato NB-ARC-LRR se secuenció de forma comparativa en dos etapas. El punto de inserción de retrotransposón se verificó en un conjunto de genotipado con en total 92 genotipos resistentes y sensibles. Este análisis mostró que la totalidad de los genotipos resistentes no tenían inserción alguna de retrotransposón. De los genotipos sensibles se pudo detectar la inserción en más del 90 % de los casos. Con ello, la detección de la inserción parece estar acoplada al genotipo sensible. A causa de las contradicciones halladas (aproximadamente el 10 % de los genotipos sensibles remanentes sin inserción), sin embargo, la secuenciación en la segunda etapa se amplió para todo el gen delante del punto de inserción con región de promotor (SEQ ID NO: 1). En total se secuenciaron y compararon 31 genotipos resistentes y sensibles seleccionados, inclusive los genotipos contradictorios. Como resultado, todos los genotipos resistentes, que se debían a siete fuentes de resistencia diferentes, tenían una identidad del 100 % para los aproximadamente 4100 pares de bases comparados. Además se hallaron polimorfismos por completo de diagnóstico en la secuencia de nucleótidos, de los cuales varios conducen a sustituciones de aminoácidos en la secuencia de la proteína (véase las Figuras 1, 2 y 3). Algunas de estas sustituciones, particularmente en las regiones de dominio, podrían causar la pérdida de función de la proteína de resistencia identificada en los genotipos ss. Además se hallaron, asimismo en la región promotora, tres INDEL acoplados por completo con la resistencia (desequilibrio de ligamiento = 1) (Fig. 1). Estos INDEL se han de considerar también potenciales candidatos de la pérdida de función.

Verificación del gen mediante recombinantes estrechos

En la población analizada con 8004 plantas se identificaron 16 recombinantes en la región diana (región de mapeo fino con 37996 pares de bases). De estos 16 genotipos, 9 plantas contenían la recombinación entre la proteína NB-ARC-LRR y la proteína de repetición de anquirina adyacente en el lado derecho. En el caso de dos plantas, las recombinaciones son entre la proteína NB-ARC-LRR y la proteína DUF565 adyacente a la izquierda (proteína con función desconocida). Mediante el análisis de la descendencia de todas estas plantas recombinantes (distancia de un gen a la izquierda y a la derecha) se pudo demostrar de forma muy inequívoca que el gen se encuentra entre DUF565 y la proteína de repetición de anquirina, en concreto que solo es responsable de la resistencia la proteína NB-ARC.

Detección ilustrativa de la ausencia de la inserción de transposón

Para la detección de la inserción de retrotransposón se desarrollaron 3 combinaciones de cebador dominantes especiales. La primera y la segunda combinación de cebador están en disposición de detectar la inserción, ya que en cada caso un cebador de los dos pares de cebadores se encuentra en el retrotransposón (flanco izquierdo o derecho del retrotransposón) y el segundo cebador se une directamente delante o detrás del retrotransposón. Un tercer par de cebadores detecta la ausencia del retrotransposón al encontrar los cebadores delante y detrás del retrotransposón un sitio de unión. Un producto de PCR en condiciones convencionales solo se puede producir cuando falta el retrotransposón, de lo contrario con el retrotransposón el producto de PCR un tamaño demasiado grande y, de este modo, no se produciría ningún amplicón.

Verificación del gen mediante el enfoque de ARNi

Aparte de la verificación que se ha descrito anteriormente del gen mediante recombinantes estrechos se produjo también una detección adicional del efecto de resistencia del gen mediante ARN de interferencia. Para esto se transformó un genotipo de remolacha azucarera convencional resistente con una construcción de ADN que codifica un ARN en horquilla bicatenario. Este ARNbc estaba en disposición de causar después de la transcripción un silenciamiento génico que reduciría en su acción o inactivaría el alelo génico RZ-3 resistente, por lo que el genotipo de remolacha azucarera previamente resistente se haría sensible frente a rizomanía.

Para facilitar una construcción de ADN adecuada se seleccionó una región de secuencia diana definida del alelo génico RZ-3 resistente de 434 pares de bases de longitud (SEQ ID NO: 7; Figura 4), se amplificó mediante PCR y se clonó tanto en dirección codificante como antisentido en el vector pZFN, que es adecuado para la síntesis de

estructuras en horquilla (Fig. 6). Este vector presenta una promotor 35S de CaMV, un sitio de clonación múltiple, un intrón del gen AtAAP6, que codifica en Arabidopsis thaliana una aminoácido permeasa, otro sitio de clonación múltiple así como un terminador nos. La transformación de las remolachas azucareras con el vector facilitado se produjo según el protocolo de Lindsey y Gallois (1990) mediante el uso del antibiótico kanamicina como marcador de selección. Después de varias etapas de selección se comprobó la transformación exitosa en el brote transgénico a través de PCR mediante la detección de la presencia del gen nptll, del intrón AAP6 y las dos secuencias de borde de ADN-t (LB/RB) y la ausencia de vir. Los brotes positivos se multiplicaron de forma clonal in vitro hasta en cada caso 30 brotes, se arraigaron y se traspasaron en el invernadero a tierra. Aproximadamente 2 semanas después se trasplantaron las plantas transgénicas de remolacha azucarera a tierra contaminada con rizomanía, en la que se cultivaron durante 8 a 10 semanas. Como control en las mismas condiciones se cultivaron plantas no transformadas con el mismo trasfondo de transformación convencional genético resistente. Para la detección de la manifestación de rizomanía se cosecharon las raíces de las plantas de remolacha azucarera y se cuantificó mediante el ensayo de ELISA la infestación por BNYVV, indicando un bajo valor de ELISA una resistencia y un valor alto una sensibilidad (Mechelke 1997, Clark & Adams 1977). El valor de ELISA de las remolachas azucareras transformadas con un valor medio de 3.55 era significativamente mayor que el valor de ELISA del control que seguía siendo resistente con un valor medio de 1,27 y comparable al patrón sensible D108 ss (Tabla 1). Después, los resultados de los ensayos ELISA mostraron que mediante el silenciamiento génico específico del alelo RZ-3 resistente en el fondo de transformación, una planta previamente resistente se hizo sensible frente a BNYVV. Por consiguiente, el gen de la presente invención se pudo verificar inequívocamente como el gen de resistencia RZ3.

20

10

15

Tabla 1: Resultados del ensayo ELISA después análisis estadísticos (D108_ss = patrón sensible; 6921_RR = trasfondo de transformación resistente; 6921_ARNi = trasfondo de transformación resistente con ARNbc dirigido contra el gen RZ3).

	D108_ss	6921_RR	6921_ARNi				
n	6	25	64				
valor medio	3,98	1,27	3,55				
error típico	0,02	0,25	0,11				
desviación típica	0,06	1,24	0,87				
Prueba-T (nivel de significancia): p < 0,0001							

25

Referencias

Clark, M. F.; Adams, A. N. (1977): Characteristics of the microplate method of enzyme-linked immunosorbent assay for the detection of plant viruses. J. Gen. Virol. 34, 475-483

30

Depicker A, Stachel S, Dhaese P, Zambryski P, Goodman HM (1982) Nopaline synthase: transcript mapping and DNA sequence. J Mol Appl Genet. 1(6): 561-73.

35

Esser K (2000) Kryptogamen 1: Cyanobakterien Algen Pilze Flechten Praktikum und Lehrbuch. Springer-Verlag, Berlín, Heidelberg, 3^a ed. 2000.

Gidner S, Lennefors BL, Nilsson NO, Bensefelt J, Johansson E, Gyllenspetz U, Kraft T (2005) QTL mapping of BNYVV resistance from the WB41 source in sugar beet. Genome 48: 279-285.

40

Larson RL, Wintermantel WM, Hill A, Fortis L, Nunez A (2008) Proteome changes in sugar beet in response to Beet necrotic yellow vein virus. Physiological and Mol. Pl. Pathol. 72: 62-72.

Lindsey, K. y P. Gallois (1990) "Transformation of sugarbeet (*Beta vulgaris*) by *Agrobacterium tumefaciens*." Journal of experimental botany 41.5: 529-536.

45

Martin GB, Bogdanove AJ; Sessa G (2003) Understanding the functions of plant disease resistance proteins. Annual Review of Plant Biology 54: 23-61.

Mechelke W (1997) Probleme in der Rizomaniaresistenzzüchtung, Vorträge für Pflanzenzüchtung, Resistenzzüchtung bei Zuckerrüben, Gesellschaft für Pflanzenzüchtung e.V., 113-123.

50

Odell JT, Nagy F, Chua N-H (1985) Identification of DNA sequences required for activity of the cauliflower mosaic virus 35S promoter. Nature 313, 810-812

55

Rushton PJ, Torres JT, Parniske M, Wernert P, Hahlbrock K y Somssich IE (1996) Interaction of elicitor-induced DNA-binding proteins with elicitor response elements in the promoters of parsley PR1 genes. EMBO J. 15(20): 5690-5700.

Sambrook J, Russell DW (2001) Molecular Cloning. A laboratory manual, Cold Spring Harbor Laboratory Press, 3^a. ed. 2001.

60

Schmidlin LEDEB, Weyens G, Lefebvre M, Gilmer D (2008) Identification of differentially expressed root genes upon rhizomania disease. Mol. Plant Pathol. 9(6): 741 -51.

Scholten OE, Bock TSMD, Klein-Lankhorst RM, Lange W (1999) Inheritance of resistance to Beet necrotic yellow vein virus in Beta vulgaris conferred by a second gene for resistance. Theor. Appl. Genet. 99: 740-746.

Sohi HH, Maleki M (2004) Evidence for presence of types A and B of beet necrotic yellow vein virus (BNYVV) in Iran. Virus Genes 29(3): 353-8.

Van Ooijen G, Mayr G, Kasiem MMA, Albrecht M, Cornelissen BJC, Takken FLW (2008) Structure-function analysis of the NB-ARC domain of plant disease resistance proteins. Journal of Experimental Botany, 59(6): 1383-1397

WO/2000/29592 (Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V.). Chimeric promoters capable of mediating gene expression in plants upon pathogen infection and uses thereof.

WO/2006/128444 (KWS SAAT AG). AUTOACTIVATED RESISTANCE PROTEIN.

WO/2007/147395 (KWS SAAT AG). Pathogen induzierbarer synthetischer Promotor.

20 WO/2013/127379 (KWS SAAT AG). PATHOGEN-RESISTANT TRANSGENIC PLANT.

WO/2013/050024 (KWS SAAT AG). TRANSGENIC PLANT OF THE SPECIES *BETA VULGARIS* HAVING ENHANCED RESISTANCE TO CERCOSPORA.

25 WO/2013/091612 (KWS SAAT AG). NOVEL PLANT-DERIVED CIS-REGULATORY ELEMENTS FOR THE DEVELOPMENT OF PATHOGEN-RESPONSIVE CHIMERIC PROMOTORS.

LISTADO DE SECUENCIAS

30 <110> KWS SAAT AG

<120> Gen de resistencia frente a rizomanía.

<130 KWS 0209 PCT

35

15

<150> DE102013010026.7 <151 > 17-06-2013

<160>7

40

<170> Patentin versión 3.5

<210> 1 <211 > 5009

45 <212> ADN

<213> Beta vulgaris

<400> 1

caaatcttct	ggcatcaatg	gcggtgttgc	cgttcatcaa	tttaacatca	atggaggtaa	60
gagtcatgtt	ttttcaacaa	tataaaactt	atacttcctc	tgttctgttt	taaatgaaac	120
gtttgttttc	tcacgcaacc	caacccactt	ttttaataat	aaatattttt	agttgtgtgc	180
acgtaaaaaa	tataaaaaag	ttataatttg	atagtatctt	gtttgagatt	gtgattatta	240
agagagtcaa	gtctcacaat	attcgaaagt	ctacgtaatc	cacctcaaat	tgacgaagaa	300
aacaagcagg	aaaggattaa	gtaagttcgt	ggaaccacta	gaattgattt	tcaaatatag	360
ctctacctaa	tatatggcct	acttttaatt	ttaaataagg	agaaggtaat	gtgattagaa	420
acaaattggt	cttaaattat	tcattaagct	taataatgta	taaacataat	caagtgctat	480
cttcttttca	gggccgtctt	gaagattttg	gggcccggtt	ctattatgaa	aattgggccc	540
ctaaatttat	agaaaataaa	gatggaaggt	tagagttcta	aagatagaaa	gttgaaaatc	600
taaatataaa	tcattgacaa	atttattaag	ggtgagaaac	aagggtgttt	tcttcaaata	660
tgaagcaaaa	ttttcaaaat	aatacttcct	ccgtttctaa	ataagtgcaa	catttgcata	720
atgtttacta	ttcacagttt	aaactttaat	tagctttggt	gatttacatt	ttaggaaaaa	780
acatagtcat	gtgggatctt	gttagattcg	tctgaatgtg	aatttttta	atatcaactt	840
tttataattt	ttacttattg	ataattgaag	atattaatgg	ttaaaataat	gcattggcaa	900
acgtgaaaac	aagaagtgtt	gcacttattt	agaaacggag	gaagtatatt	ttgggccttt	960
ataattttgg	agaccctgcg	ctgttgggct	ccttgcacac	cttcatctac	ccctctgctt	1020
cttttgatac	aatttttcag	cgacatgatt	gtcgattgat	gcatatatta	ttgtatactc	1080
gatccatatt	gtttaagatg	aattgtttgt	ctttgatggt	ctccaatgca	tattttgtat	1140
acttaggaat	tctaattatg	tactattagt	agacattgag	atgaatacat	aattgccata	1200
atgaagtatg	attattttag	ttatatactt	tctccattcc	aaatatataa	atgtaacact	1260
tgtgtacttt	atgcgtacta	atgcataaca	acgtgcactc	tcatgtgttt	aattatatac	1320
tttttgagag	aagtgttaca	ttggggacca	tgggactgtg	tataatttga	ccgcaaaatc	1380

gaagtgtcgc	atttgattga	aaatggagag	agtagtatat	agatggaaca	cagcagagac	1440
tgctggtcat	ctttggccaa	caaacccaaa	attgatatta	atcccttatt	caggtcattt	1500
catctttttg	acacaaaatg	gatgttgtag	gcactgcgct	atctgctgcc	caatctctgt	1560
ttgcagccct	gcaaagttct	gagctcaaag	agatcctctc	gatctttggc	tacaaatccc	1620
gacttgatga	cctccaacgc	actgtctcta	ccatcaacgc	tgtattccgt	gatgctgaga	1680
ccaaacagga	gctcactcat	gaagcacagc	attggctcga	ggaactcaag	gatgctgtct	1740
ttgaagcaga	tgatctgttc	gacgagtttg	tcactcttgc	cgagcagaag	caacttgtag	1800
aggctggtgg	cagtctttcc	aaaaagatgc	gccaattctt	ttctgattcc	aacccccttg	1860
gcattgctta	taggatgtca	cgaggggtta	agaagatcaa	gaagaagttg	gatgctatcg	1920
cttacaatca	tcaatttagc	tttaagattg	atcttgagcc	tatgaaagag	agaaggctag	1980
agactggttc	tgtcgtgaac	gcaggtgata	tcattggaag	agaggacgac	ttggagaaga	2040
ttgtaggttt	gttgcttgat	tctaacatcc	aacgtgatgt	gtctttcctt	actattgtgg	2100
gaatgggagg	gttgggtaaa	actgctcttg	cccaactcgt	gtacaatgat	ccaagggtca	2160
gaactgcttt	tccattgaga	tgttggaatt	gtgtgtctga	tcaagatcaa	aagcaactag	2220
atgtgaaaga	aattttgggt	aagattctgg	ctacagctac	tggtaagaat	catgagggtt	2280
caaccatgga	tcaggtgcaa	acccaactac	gagaacaact	atgtggcaag	agatacttgc	2340
ttgttttgga	tgatgtatgg	aatgagaatc	ctaatcaatt	gcgtgatctg	gtagaattct	2400
tcatgggagg	tcgaagcaga	aattggattg	tggtaactac	gcgttcgcac	gagacagcga	2460
gaattataag	agatggtcca	ttgcacaagc	tccaaggttt	gtctgaggaa	aactcttggc	2520
gtttatttgt	caggtggacc	ttcggatcag	tgcaagcaaa	attccctaat	gactttatca	2580
tgattgcacg	agatatagtt	gacaaatgtg	ctcgaaaccc	tctggctata	agagtggtag	2640
gaagtctttt	gtgtggtcaa	gacaagagta	agtggctttc	atttcatgag	atcgatttag	2700
gcaacattag	aaagagccat	aatgatatca	tgccaatact	gaacctaagt	taccatcatc	2760
ttgaacctcc	aattaagaga	tgctttagtt	attgtgcagt	gtttccaaag	gatttcctta	2820
tagggaagca	gacgctgata	aacctctgga	tggcacaagg	ttatattgtt	ccgttagaca	2880
aagatcaaag	catagatgat	gctagtgagg	aatacatatc	aattttgttg	cggagatgtt	2940
ttttcgaaaa	tgtcggagca	gaaaaagatg	gtgttattaa	gatccatgat	ctcatgcatg	3000
atattgctca	aaatgtcatg	gggaaggagc	tttgtacgac	taaaaacatt	agtggcagct	3060
tggataaaag	tgttcgccat	ctatctcttg	ccagaactag	ttttgcaaga	tactctttca	3120
atgcaactca	tattcgctcc	tatttctgtg	ctggctactg	gtgtcaggat	gctgagataa	3180
accagttttc	agttgaggca	ttagtaccaa	actgtttgta	cctaagggca	atggacctcg	3240
cttggtcgaa	gataaaaagt	ttaccagact	cgattggtgg	attgttgcat	ttgaggtact	. 3300
tagatctttc	gtataacgaa	gatctggaag	tacttccaaa	ctcaattgct	aaactatata	3360
atctacaaac	cttacaattg	aagggttgca	agagattgga	agggttacca	aaacatttga	3420

~~~~	+		tocotcotta	coocoatata	25++2+2+65	2400
gcaggctggt	taagcttcaa	actttggata	tacatggttg	caacaatgta	acttatatgc	3480
ccaaaggcat	gggtaagttg	acttgccttc	acactctcag	taagtttata	gtgggtggag	3540
aagggagttg	ttcaagttgg	aagcaatgtt	ttgatgggtt	ggaagatcta	aaggctctca	3600
ataacctaaa	gggtcatctg	gaaatccaaa	tcaggtggcc	caaaaatact	acagatgctg	3660
tcaaagaaga	tgttacgagg	gaaggattat	acctgaatca	taaggaacat	ctcaatcaca	3720
ttgtggttga	ttttagatgt	gaggagggtg	gtggaagaat	ggatgatgag	gaagcaagaa	3780
gattgatgga	agagttgcgg	ccacatcctt	atcttgaaaa	tttggctgtg	aaagcatatt	3840
atggtgtgaa	aatgcctggt	tgggcaaccc	ttctcccaaa	tcttacagag	ctttttcttt	3900
ctgattgtgg	ggaactggag	aaccttccat	gcctgggaaa	cttggatcat	ctaaaagtcc	3960
tccgactttc	gcatttggca	aaattggagt	acattgaaga	agatagctca	tcagctaatt	4020
tcaggtgtag	gcctggacca	gaaagtgcag	gactatcatt	atacttcccc	tcccttgaac	4080
gccttgagtt	gaagcgtttg	tgtaagttaa	aaggatggag	gagaggggaa	gggttaggag	4140
atgatcacca	gccttttaat	gaaagcagca	gcaatacaca	agtccaatta	caattatgtc	4200
ttcctcaatt	gaagtcattg	agaatagaaa	gatgcccatt	gctgacattt	atgccgctgt	4260
gtcccaagac	agaaaaactg	catttagttg	tatttaatga	acgactccgg	atagtgcatg	4320
ctaagagaga	tgagaatttc	tatgctccat	tacattcatc	atcatctgat	cctgaaaacc	4380
cgaggaacac	tattcccatt	cccatgttta	gagaggtata	cataaacaat	gtggcgtggc	4440
taaattcgct	gcctatggag	gcttttaggt	gtctcactca	tatgacaata	aaaaacgacg	4500
aggtagagag	tttgggagaa	gttggagagg	tgtttcggag	ctgctcatct	tctttgcgat	4560
ccttgaatat	cacaggttgc	tccaacttaa	gaagtgtttc	tggagggctg	gagcatctca	4620
ctgctttgga	gatgttagaa	atatacgaca	cccataagct	gagtctatca	gaagacccag	4680
aaggtgttgt	gccatggaaa	tcccttcatc	actccctcag	ctacttgcaa	ctgatgaatc	4740
tcccacagct	ggtcaacctg	cctgattcga	tgcagttctt	ggctgccctc	cgaactcttt	4800
caatagtgca	ttgcactaaa	ctgcaatcag	tgccagattg	gatgcccaga	ctcacttctc	4860
tcaggaagct	tatggtttca	ttctgttccg	cacatctgga	gagaagatgc	caaaatccaa	4920
ctggggtgga	ctggcctaac	attcaacaca	tcccctccat	tgatgtcacc	tctagccttc	4980
ctaagtttt	agtgttgccg	tatgaatag				5009

<210> 2 <211 > 1163 5 <212> PRT <213> Beta vulgaris

<400>2

10

Ala Leu Gln Ser Ser Glu Leu Lys Glu Ile Leu Ser Ile Phe Gly Tyr 20 25 30 Lys Ser Arg Leu Asp Asp Leu Gln Arg Thr Val Ser Thr Ile Asn Ala 35 40 45 Val Phe Arg Asp Ala Glu Thr Lys Gln Glu Leu Thr His Glu Ala Gln 50 55 60 His Trp Leu Glu Glu Leu Lys Asp Ala Val Phe Glu Ala Asp Asp Leu 65 70 75 80 Phe Asp Glu Phe Val Thr Leu Ala Glu Gln Lys Gln Leu Val Glu Ala 85 90 95 Gly Gly Ser Leu Ser Lys Lys Met Arg Gln Phe Phe Ser Asp Ser Asn 100 105 110Pro Leu Gly Ile Ala Tyr Arg Met Ser Arg Gly Val Lys Lys Ile Lys 115 120 125 Lys Leu Asp Ala Ile Ala Tyr Asn His Gln Phe Ser Phe Lys Ile 130 135 140 Asp Leu Glu Pro Met Lys Glu Arg Arg Leu Glu Thr Gly Ser Val Val 145 150 155 Asn Ala Gly Asp Ile Ile Gly Arg Glu Asp Asp Leu Glu Lys Ile Val 165 170 175 Gly Leu Leu Asp Ser Asn Ile Gln Arg Asp Val Ser Phe Leu Thr  $180 \hspace{1cm} 185 \hspace{1cm} 190$ Ile Val Gly Met Gly Gly Leu Gly Lys Thr Ala Leu Ala Gln Leu Val 195 200 205 Tyr Asn Asp Pro Arg Val Arg Thr Ala Phe Pro Leu Arg Cys Trp Asn 210 220 Cys Val Ser Asp Gln Asp Gln Lys Gln Leu Asp Val Lys Glu Ile Leu 225 230 235 240 Gly Lys Ile Leu Ala Thr Ala Thr Gly Lys Asn His Glu Gly Ser Thr 245 250 255 Met Asp Gln Val Gln Thr Gln Leu Arg Glu Gln Leu Cys Gly Lys Arg 260 265 270 Tyr Leu Leu Val Leu Asp Asp Val Trp Asn Glu Asn Pro Asn Gln Leu 275 280 285

Arg Asp Leu Val Glu Phe Phe Met Gly Gly Arg Ser Arg Asn Trp Ile 290 295 300 Val Val Thr Thr Arg Ser His Glu Thr Ala Arg Ile Ile Arg Asp Gly 305 310 315 Pro Leu His Lys Leu Gln Gly Leu Ser Glu Glu Asn Ser Trp Arg Leu 325 330 335 Phe Val Arg Trp Thr Phe Gly Ser Val Gln Ala Lys Phe Pro Asn Asp 340 345 350Phe Ile Met Ile Ala Arg Asp Ile Val Asp Lys Cys Ala Arg Asn Pro 355 360 365 Leu Ala Ile Arg Val Val Gly Ser Leu Leu Cys Gly Gln Asp Lys Ser 370 380 Lys Trp Leu Ser Phe His Glu Ile Asp Leu Gly Asn Ile Arg Lys Ser 385 390 395 400 His Asn Asp Ile Met Pro Ile Leu Asn Leu Ser Tyr His His Leu Glu
405 410 415 Pro Pro Ile Lys Arg Cys Phe Ser Tyr Cys Ala Val Phe Pro Lys Asp 420 425 430 Phe Leu Ile Gly Lys Gln Thr Leu Ile Asn Leu Trp Met Ala Gln Gly 435 440 445 Tyr Ile Val Pro Leu Asp Lys Asp Gln Ser Ile Asp Asp Ala Ser Glu 450 460 Glu Tyr Ile Ser Ile Leu Leu Arg Arg Cys Phe Phe Glu Asn Val Gly 465 470 475 480 Ala Glu Lys Asp Gly Val Ile Lys Ile His Asp Leu Met His Asp Ile 485 490 495 Ala Gln Asn Val Met Gly Lys Glu Leu Cys Thr Thr Lys Asn Ile Ser 500 505 Gly Ser Leu Asp Lys Ser Val Arg His Leu Ser Leu Ala Arg Thr Ser 515 520 525 Phe Ala Arg Tyr Ser Phe Asn Ala Thr His Ile Arg Ser Tyr Phe Cys 530 540 Ala Gly Tyr Trp Cys Gln Asp Ala Glu Ile Asn Gln Phe Ser Val Glu 545 550 555

Ala Leu Val Pro Asn Cys Leu Tyr Leu Arg Ala Met Asp Leu Ala Trp 565 570 575 Ser Lys Ile Lys Ser Leu Pro Asp Ser Ile Gly Gly Leu Leu His Leu 580 590Arg Tyr Leu Asp Leu Ser Tyr Asn Glu Asp Leu Glu Val Leu Pro Asn 595 600 605 Ser Ile Ala Lys Leu Tyr Asn Leu Gln Thr Leu Gln Leu Lys Gly Cys 610 615 620Lys Arg Leu Glu Gly Leu Pro Lys His Leu Ser Arg Leu Val Lys Leu 625 630 635 640 Gln Thr Leu Asp Ile His Gly Cys Asn Asn Val Thr Tyr Met Pro Lys 645 650 655 Gly Met Gly Lys Leu Thr Cys Leu His Thr Leu Ser Lys Phe Ile Val 660 670 Gly Gly Glu Gly Ser Cys Ser Ser Trp Lys Gln Cys Phe Asp Gly Leu 675 680 685 Glu Asp Leu Lys Ala Leu Asn Asn Leu Lys Gly His Leu Glu Ile Gln 690 700 Ile Arg Trp Pro Lys Asn Thr Thr Asp Ala Val Lys Glu Asp Val Thr 705 710 715 720 Arg Glu Gly Leu Tyr Leu Asn His Lys Glu His Leu Asn His Ile Val Val Asp Phe Arg Cys Glu Glu Gly Gly Gly Arg Met Asp Asp Glu Glu
740 745 750 Ala Arg Arg Leu Met Glu Glu Leu Arg Pro His Pro Tyr Leu Glu Asn 755 760 765 Leu Ala Val Lys Ala Tyr Tyr Gly Val Lys Met Pro Gly Trp Ala Thr 770 775 780 Leu Leu Pro Asn Leu Thr Glu Leu Phe Leu Ser Asp Cys Gly Glu Leu 785 790 795 Glu Asn Leu Pro Cys Leu Gly Asn Leu Asp His Leu Lys Val Leu Arg 805 810 815 Leu Ser His Leu Ala Lys Leu Glu Tyr Ile Glu Glu Asp Ser Ser Ser

			820					825					830		
Ala	Asn	Phe 835	Arg	Cys	Arg	Pro	Gly 840	Pro	Glu	Ser	Ala	Gly 845	Leu	Ser	Leu
Tyr	Phe 850	Pro	Ser	Leu	Glu	Arg 855	Leu	Glu	Leu	Lys	Arg 860	Leu	Cys	Lys	Leu
Lys 865	GТу	Trp	Arg	Arg	Gly 870	Glu	Gly	Leu	Glу	Asp 875	Asp	His	Gln	Pro	Phe 880
Asn	Glu	Ser	Ser	Ser 885	Asn	⊤hr	Gln	Val	G]n 890	Leu	Gln	Leu	Cys	Leu 895	Pro
Gln	Leu	Lys	Ser 900	Leu	Arg	Ile	Glu	Arg 905	Cys	Pro	Leu	Leu	Thr 910	Phe	Met
Pro	Leu	Cys 915	Pro	Lys	Thr	Glu	Lys 920	Leu	нis	Leu	val	va1 925	Phe	Asn	Glu
Arg	Leu 930	Arg	Ile	∨al	His	Ala 935	Lys	Arg	Asp	Glu	Asn 940	Phe	Tyr	Ala	Pro
Leu 945	ніѕ	Ser	Ser	Ser	Ser 950	Asp	Pro	Glu	Asn	Pro 955	Arg	Asn	Thr	Ile	Pro 960
Ile	Pro	Met	Phe	Arg 965	Glu	Val	Tyr	Ile	Asn 970	Asn	Val	Ala	Trp	Leu 975	Asn
ser	Leu	Pro	мет 980	Glu	Аlа	Phe	Arg	Cys 985	Leu	Tħr	ніѕ	мет	⊤hr 990	Ile	Lys
Asn	Asp	G]u 995	Val	Glu	Ser	Leu	Gly 1000		ı Va	l Gly	y Gli	и Va 10	1 Р 05	he A	rg Se
Cys	Ser 1010		r Sei	- Lei	u Arg	9 Sei 10:	r Le 15	eu As	sn I	le T		ly 020	Cys	Ser /	Asn
Leu	Arg 1025	Ser	r Val	l Sei	r Gly	/ Gly 10		eu G	lu H	is Le		hr 035	Ala	Leu	Glu
Met	Leu 1040		ı Ile	э Туг	r Asp	Th:		is Ly	/S L	eu Se		eu 050	Ser (	Glu .	Asp
Pro	Glu 1055		y Va	l va ⁻	l Pro	7rp 100		ys Se	er Le	eu H		is 065	ser	Leu	Ser
Tyr	Leu 1070		ı Lei	ı Met	t Asr	Lei		ro G	ln Le	eu Va		sn oso	Leu	Pro A	Asp

Ser Met Gln Phe Leu Ala Ala Leu Arg Thr Leu Ser Ile Val His 1085 1090 1095

Cys Thr Lys Leu Gln Ser Val  $\mbox{ Pro Asp Trp Met Pro}$  Arg Leu Thr 1100 1110

Ser Leu Arg Lys Leu Met Val Ser Phe Cys Ser Ala His Leu Glu 1115 1120 1125

Arg Arg Cys Gln Asn Pro Thr Gly Val Asp Trp Pro Asn Ile Gln 1130 1140

His Ile Pro Ser Ile Asp Val Thr Ser Ser Leu Pro Lys Phe Leu 1145 1150 1155

Val Leu Pro Tyr Glu 1160

<210> 3 <211 > 1177 <212> PRT <213> Beta vulgaris

<400> 3

5

Met Glu Arg Val Val Tyr Arg Trp Asn Thr Ala Glu Thr Ala Gly His 1 10 15

Leu Trp Pro Thr Asn Pro Lys Leu Ile Leu Ile Pro Tyr Ser Ala Leu 20 25 30

Gln Ser Ser Glu Leu Lys Glu Ile Leu Ser Ile Phe Gly Tyr Lys Ser 35 40 45

Arg Leu Asp Asp Leu Gln Arg Thr Val Ser Thr Ile Asn Ala Val Phe 50 55 60

Arg Asp Ala Glu Thr Lys Gln Glu Leu Thr His Glu Ala Gln His Trp 65 70 75 80

Leu Glu Glu Leu Lys Asp Ala Val Phe Glu Ala Asp Asp Leu Phe Asp 85 90 95

Glu Phe Val Thr Leu Ala Glu Gln Lys Gln Leu Val Glu Ala Gly Gly
100 105 110

Ser Leu Ser Lys Lys Met Arg Gln Phe Phe Ser Asp Ser Asn Pro Leu 115 120 125

Gly Ile Ala Tyr Arg Met Ser Arg Gly Val Lys Lys Ile Lys Lys Lys 130 135 140

10

Leu Asp Ala Ile Ala Tyr Asn His Gln Phe Ser Phe Lys Ile Asp Leu 145 150 155 160 Glu Pro Met Lys Glu Arg Arg Leu Glu Thr Gly Ser Val Val Asn Ala 165 170 175 Gly Asp Ile Ile Gly Arg Glu Asp Asp Leu Glu Lys Ile Val Gly Leu 180 185 190 Leu Leu Asp Ser Asn Ile Gln Arg Asp Val Ser Phe Leu Thr Ile Val 195 200 205 Gly Met Gly Gly Leu Gly Lys Thr Ala Leu Ala Gln Leu Val Tyr Asn 210 215 220 Asp Pro Arg Val Arg Thr Ala Phe Pro Leu Arg Cys Trp Asn Cys Val 225 230 235 240 Ser Asp Gln Asp Gln Lys Gln Leu Asp Val Lys Glu Ile Leu Gly Lys 245 250 255 Ile Leu Ala Thr Ala Thr Gly Lys Asn His Glu Gly Ser Thr Met Asp 260 265 270 Gln Val Gln Thr Gln Leu Arg Glu Gln Leu Cys Gly Lys Arg Tyr Leu 275 280 285 Val Leu Asp Asp Val Trp Asn Glu Asn Pro Asn Gln Leu Arg Asp 290 295 300 Leu Val Glu Phe Phe Met Gly Gly Arg Ser Arg Asn Trp Ile Val Val 305 310 320 Thr Thr Arg Ser His Glu Thr Ala Arg Ile Ile Arg Asp Gly Pro Leu 325 330 His Lys Leu Gln Gly Leu Ser Glu Glu Asn Ser Trp Arg Leu Phe Val 340 345 350 Arg Trp Thr Phe Gly Ser Val Gln Ala Lys Phe Pro Asn Asp Phe Ile 355 360 365 Met Ile Ala Arg Asp Ile Val Asp Lys Cys Ala Arg Asn Pro Leu Ala 370 380 Ile Arg Val Val Gly Ser Leu Leu Cys Gly Gln Asp Lys Ser Lys Trp 385 390 395 400 Leu Ser Phe His Glu Ile Asp Leu Gly Asn Ile Arg Lys Ser His Asn 405 410 415

Asp Ile Met Pro Ile Leu Asn Leu Ser Tyr His His Leu Glu Pro Pro 420 425 430 Ile Lys Arg Cys Phe Ser Tyr Cys Ala Val Phe Pro Lys Asp Phe Leu 435 440 445 Ile Gly Lys Gln Thr Leu Ile Asn Leu Trp Met Ala Gln Gly Tyr Ile 450 460 val Pro Leu Asp Lys Asp Gln Ser Ile Asp Asp Ala Ser Glu Glu Tyr 465 470 480 Ile Ser Ile Leu Leu Arg Arg Cys Phe Phe Glu Asn Val Gly Ala Glu 485 490 495 Lys Asp Gly Val Ile Lys Ile His Asp Leu Met His Asp Ile Ala Gln
500 510 Asn Val Met Gly Lys Glu Leu Cys Thr Thr Lys Asn Ile Ser Gly Ser 515 520 525 Leu Asp Lys Ser Val Arg His Leu Ser Leu Ala Arg Thr Ser Phe Ala 530 540 Arg Tyr Ser Phe Asn Ala Thr His Ile Arg Ser Tyr Phe Cys Ala Gly 545 550 560 Tyr Trp Cys Gln Asp Ala Glu Ile Asn Gln Phe Ser Val Glu Ala Leu 565 570 575 Val Pro Asn Cys Leu Tyr Leu Arg Ala Met Asp Leu Ala Trp Ser Lys 580 585 Ile Lys Ser Leu Pro Asp Ser Ile Gly Gly Leu Leu His Leu Arg Tyr 595 600 605 Leu Asp Leu Ser Tyr Asn Glu Asp Leu Glu Val Leu Pro Asn Ser Ile 610 620 Ala Lys Leu Tyr Asn Leu Gln Thr Leu Gln Leu Lys Gly Cys Lys Arg 625 630 635 640 Leu Glu Gly Leu Pro Lys His Leu Ser Arg Leu Val Lys Leu Gln Thr 645 650 655 Leu Asp Ile His Gly Cys Asn Asn Val Thr Tyr Met Pro Lys Gly Met 660 670 Gly Lys Leu Thr Cys Leu His Thr Leu Ser Lys Phe Ile Val Gly Gly 675 680 685

Glu Gly Ser Cys Ser Ser Trp Lys Gln Cys Phe Asp Gly Leu Glu Asp 690 700 Leu Lys Ala Leu Asn Asn Leu Lys Gly His Leu Glu Ile Gln Ile Arg 705 710 715 720 Trp Pro Lys Asn Thr Thr Asp Ala Val Lys Glu Asp Val Thr Arg Glu 725 730 735 Gly Leu Tyr Leu Asn His Lys Glu His Leu Asn His Ile Val Val Asp 740 745 750 Phe Arg Cys Glu Glu Gly Gly Gly Arg Met Asp Asp Glu Glu Ala Arg 755 760 765 Leu Met Glu Glu Leu Arg Pro His Pro Tyr Leu Glu Asn Leu Ala 770 775 780 Val Lys Ala Tyr Tyr Gly Val Lys Met Pro Gly Trp Ala Thr Leu Leu 785 790 795 800 Pro Asn Leu Thr Glu Leu Phe Leu Ser Asp Cys Gly Glu Leu Glu Asn 805 810 815 Leu Pro Cys Leu Gly Asn Leu Asp His Leu Lys Val Leu Arg Leu Ser 820 825 830 His Leu Ala Lys Leu Glu Tyr Ile Glu Glu Asp Ser Ser Ser Ala Asn 835 840 845 Phe Arg Cys Arg Pro Gly Pro Glu Ser Ala Gly Leu Ser Leu Tyr Phe 850 860 Pro Ser Leu Glu Arg Leu Glu Leu Lys Arg Leu Cys Lys Leu Lys Gly 865 870 880 Trp Arg Arg Gly Glu Gly Leu Gly Asp Asp His Gln Pro Phe Asn Glu 885 890 895 Ser Ser Ser Asn Thr Gln Val Gln Leu Gln Leu Cys Leu Pro Gln Leu 900 910Lys Ser Leu Arg Ile Glu Arg Cys Pro Leu Leu Thr Phe Met Pro Leu 915 920 925 Cys Pro Lys Thr Glu Lys Leu His Leu Val Val Phe Asn Glu Arg Leu 930 940 Arg Ile Val His Ala Lys Arg Asp Glu Asn Phe Tyr Ala Pro Leu His

945		950	955	960
Ser	Ser Ser Ser Asp 965	Pro Glu As	sn Pro Arg Asn Thr Ile P 970	ro Ile Pro 975
Met	Phe Arg Glu Val 980	Tyr Ile As	sn Asn Val Ala Trp Leu A 985 9	sn Ser Leu 90
Pro	Met Glu Ala Phe 995		eu Thr His Met Thr Ile 000 1005	
Glu	val Glu Ser Le 1010	u Gly Glu 1015	Val Gly Glu Val Phe Ar 1020	g Ser Cys
Ser	Ser Ser Leu Ar 1025	g Ser Leu 1030	Asn Ile Thr Gly Cys Se 1035	r Asn Leu
Arg	Ser Val Ser Gl 1040	y Gly Leu 1045	Glu His Leu Thr Ala Le 1050	u Glu Met
Leu	Glu Ile Tyr As 1055	o Thr His 1060	Lys Leu Ser Leu Ser Gl 1065	u Asp Pro
Glu	Gly Val Val Pro 1070	o Trp Lys 1075	Ser Leu His His Ser Le 1080	u Ser Tyr
Leu	Gln Leu Met As 1085	n Leu Pro 1090	Gln Leu Val Asn Leu Pr 1095	o Asp Ser
Met	Gln Phe Leu Al 1100	a Ala Leu 1105	Arg Thr Leu Ser Ile Va 1110	Л His Cys
Thr	Lys Leu Gln Se 1115	r Val Pro 1120	Asp Trp Met Pro Arg Le	u Thr Ser
Leu	Arg Lys Leu Me 1130	t Val Ser 1135	Phe Cys Ser Ala His Le 1140	u Glu Arg
Arg	Cys Gln Asn Pr 1145	o Thr Gly 1150	val Asp Trp Pro Asn Il 1155	e Gln His
Ile	Pro Ser Ile As 1160	p Val Thr 1165	Ser Ser Leu Pro Lys Ph 1170	e Leu Val
Leu	Pro Tyr Glu 1175			

<210 4 <211 > 987 <212> ADN <213> Beta vulgaris

5

### <400>4

ttcctcttta	gatttccata	gatttgaaca	aattggggtg	attttcatag	attattcata	60
attctctctc	cataattctt	ctctctcttt	ctccatacat	ttttcattcg	caatactcag	120
gaactgagta	ttgggaattg	tccccagttg	tcaggttgat	gtgcagtaac	tttaagagaa	180
gactttcctc	tcatgcaaca	tgtccctgat	ctgttgcttg	atggtcgtca	tctcactatt	240
ctctaataag	ctcgatttgt	atgaaacaga	tgatactata	ttccgtttcg	tgcaatgtgc	300
acgaaacgga	atatagtatt	ttgtgcaagg	tgcacgaaac	ggattcgatt	gtttcgtgca	360
cattgcacga	aacggaatca	actgtttcat	gtagtctaca	cgaaacggaa	tcaattgttt	420
cgtgtagtct	acacgaaaca	gactaatcat	gcattacgaa	tcataattac	gaaaaaaaat	480
taacaacttg	aatcacaatg	acgaaaaaaa	attcagaaat	tatatcagat	tgaaattcga	540
ttgggtcaaa	attatggtcc	attaaatatc	aaattaaaat	ttgtagatct	tcaatgaagt	600
ttttatatc	taaccgttag	agaggaggag	agaatatttt	tagagagaga	aagggttttt	660
tagaaagaat	gtgataataa	gggtttttg	ggttttttt	aggctgcgtt	agtaaagtga	720
ggctgcattt	agcaaccttt	tttttttggt	aaatttcatt	tcctcgatga	acaaggaaac	780
gaaacggcga	gatggcggcg	ttggtggaat	ttcccggcga	aacgcagctt	cctttcgatt	840
catagttgcc	ataaatttgc	attttaccca	gatttcaaat	aatttttact	aattcgctca	900
aattgctcat	gaaattgttt	atttccgcaa	attttttgat	taacccctcc	agaatttgat	960
tcgcaaatat	ggcgaagcta	ttgagta				987

5 <210> 5 <211> 12364 <212> ADN <213> Beta vulgaris

10 <400>5

ttctgttccg	cacatctgga	gagaagatgc	caaaatccaa	ctggggtgga	ctggcctaac	60
attcaacaca	tccctccat	tgatgtcacc	tctagccttc	ctaagttttt	agtgttgccg	120
tatgaatagg	tatatacttc	tttggttttg	gttcgtgctt	ccatttagct	caaattggaa	180
atgagcgtat	ggcgtcagat	ggtgaccaat	ctgcagttat	tgcgctacgt	gtatgttctg	240
gtttatattg	atggcaatgt	tcaatagttc	attataatcc	caatcaaatt	tctttgtcca	300
ttgtttataa	tcccaaatcc	aatttctttg	gaagattgtg	ctgaggagag	cttgatgaag	360
gaacttgttt	aaggttttt	ctcttataga	ttatctttct	accattgttt	ataatcccaa	420
ctgcatcttg	gtctgagaag	gaattcaata	ttttttctag	ttttacttga	ggttaaggct	480
gtttataatc	acaggctttg	ccaatagtat	aatttttata	aagtactact	gtacagatta	540
tgtgaatctt	caaaggtttg	agagaatcgt	cctaaattca	tgtaaacttg	gagttaagga	600
gcaggaaatg	gagttacttc	aagtgttaat	gcaatcagct	caaaaaatta	ctaatacaga	660
acttattcat	atcacaactc	agaagccttt	ataaattata	aaaqtaqtaa	agatttcgtt	720

tcgaaagtat	tattcatatt	agagtacaat	gaataatttg	ctttggcaaa	gccatctgaa	780
ggtccttaag	aaatgtttag	tgcaggtgat	ttaacttgct	gtgattatgt	caccaggaga	840
acttgcttat	caaagaattc	agtagcaagt	tggtcgatac	tcgacagaac	atccttatca	900
aacatgttag	tgcagaggtc	agagcatgat	accctttcat	tagtattata	ttttacatta	960
ttaagaaata	tatttacatc	tgaaattata	tatgctgata	caataatctt	atgcattttg	1020
agttatacat	taaacacggt	gaaaaacatt	atttcgagca	tctgcatttg	tgcttgtggt	1080
tgtgtaatgg	taaattggca	attgcttgac	ctttgtttaa	ggctgggtaa	gctttcaaaa	1140
agttgaattg	tttagcagta	gatcagtaac	tatccaaaca	aagaccaagc	tatacgccaa	1200
ctgtttcttc	acgttcactg	tacaagtgtt	aaagtatctt	caatgggaat	accgaaatct	1260
aaagtcaatt	atccaattaa	tagtagtcaa	aagtcaaaca	tctctgtatg	aatatgtaga	1320
ttgaagagtt	tctgtatgca	ttcaattcaa	tgcaacaagt	tgtattcgtt	cacaccttat	1380
tacttggtca	aaagttgact	aattttacac	aaggaacttt	agcatcaatc	atcatcctac	1440
tatctacgag	ttgaaagaaa	cttgtacaaa	aacttgtttt	aaccctgata	cagttcagtt	1500
aagcctgttt	gttgatcagt	ctgcaatttg	aatcactcgt	ccactcgcat	gacttagtgt	1560
gcgatcttgt	gtctagtttt	ctcgagaccc	cgcctcctga	ccgtgcccag	cccaccccaa	1620
ccattcccag	ctctactagc	tagtatcagc	atacatggga	agagccagga	ctgtaagcat	1680
gtcgtttacc	gagtcacagc	tgctgtcagc	agcaggagat	ggagatgagg	aattcctaat	1740
acaagctctt	gctactcaac	ctattgatta	cttcctaacg	cggagcaaaa	acaaaaatgg	1800
tgaagaacat	tgcaatatta	tccacattgc	agtgttaaat	gaacaagcaa	agttcctcaa	1860
tcgagcattg	agtatattac	ccatctcaac	tctgcatctc	cttctctgtc	agcaagattt	1920
ttcctacttt	agctacaacc	ctcttcactg	tgcatcttta	cgaggtaact	ttgctattgt	1980
caagctcctc	gtcgagtttt	acgaatcatc	atcatcttct	tcttcgtcat	tggttgatcc	2040
aagctgtaag	ccatggttag	ccaaggatgt	gaacgggaag	acgcctttac	aggtggcttt	2100
ggataggggt	agaggtgaat	gtgcattaaa	aataatggga	ttagatgaag	aattgctttg	2160
taatatggtt	gataataaag	gtaacagccc	gctatttcaa	gctgtacaaa	gaggtagtga	2220
acaaattgct	atgaagatct	tggcatcagg	gcattcttat	agtactggtg	gcgagtatga	2280
gttgactccc	cttcatgttc	taccaaattg	ctcaggtgtg	tagtattgat	ttgtttttca	2340
atttgttaaa	atttcttacg	ctttctgtcc	cttaattttt	ctcacatgtg	ggtttgacac	2400
agacatttag	tgttaagagc	aacttcaatg	gtcagctatg	cactcttcta	acttagcttt	2460
ccacctcaac	tacattcaag	taacattagt	ttcaggctac	aacgtccttt	tgggtgcatt	2520
tcttcacttg	aacttatatc	aaaaccgagc	ttattactct	tgattggacc	taatcaacca	2580
tgatacgtgt	tttcgggaag	ttaacagttt	cctaatttag	ttttcttctg	tacaatttca	2640
agataactaa	taaagtatta	gcaatcttaa	ctataaaaaa	agaagaaaac	actagcctaa	2700
tatcatctga	tctgcagagg	aagtttgcga	acttctactt	gacaagcatc	cagaaatgat	2760

aaaagcagtc	gacaaaaatg	gacttacaat	cctacacaaa	tgggcaatga	tgggtaaact	2820
atggccattt	caatttcttt	taaagcaaga	aaaaagttct	aggttgagga	aggacttcat	2880
caacctttta	tgtgcaactg	agaagtcgac	aggcaacaat	cctttacaca	cagcagctta	2940
ttaccacaat	gaagaaactg	cgcaggttgt	gcagcttctt	gtagaagctt	atatagatgc	3000
taaggaacaa	ggagtggagc	ttcagccgag	cccttggaca	tgtgagaata	tagaaggaga	3060
tacacctttg	atggtatcct	taatcaacaa	acatgaaaaa	ttggcactgt	atttcatgtc	3120
tgtggatatg	gagaattcag	ttgtatatgc	aaccaagagt	gtactatatt	gtgctgtact	3180
gcgtggatgt	gatgaagttg	cagaagaaac	agtggcttca	gttgatcctg	cctgcttcag	3240
cttcatgcag	cttaaagacg	atggtgggcg	aaatgtcttg	catgttgcat	caaattgcac	3300
aggtgaggtg	agagtacctt	attgcttgta	tatctttctt	cttatttgaa	aaatcttgga	3360
ggaactaagc	acaagcaagg	ccaaggcttc	gtcgtgctgt	ggtgggctca	aagaaggcct	3420
atgcacagcc	tggcccacat	gggtgcaggc	ggcctcttta	agaaattgag	gaggccgaaa	3480
cacggctggc	tttttgggct	tgtgctcatt	ttcaaaattg	atgcccatta	cagcccacgg	3540
agcactgctg	tgatcttgtg	tcgtgagtca	tgacaggcca	gtaacgggct	tgtgctgggc	3600
aagtaatatg	gcataactat	ccttatcatt	atttataacc	ggaacatctc	atatatgcaa	3660
acctttaatt	ctgactttga	tcagtttatt	atagaacatg	gaaatcgaac	atatctcagc	3720
agcatattca	agctattgta	aacttcttta	aataattaag	gtggtagacg	tatatgcctt	3780
gtattatttc	tggtcaaaat	gagtatcagg	gaaatctaat	aaaacaattt	aatctttacc	3840
tatatagcaa	gaaaacagtt	gggattttga	aaacgggaaa	atcttgagtc	ccatccattt	3900
atttgcttca	ttaccacgga	actggggaaa	tttcacatac	ttgaagtttc	ggtgcttcat	3960
agattctaac	attgaagtgt	ttatacagag	agaacaggca	ccttgttggt	ggaaaagcta	4020
gcttggttga	tcaacgagcc	agatgatgat	ggaaagagac	cccttgatat	agcttcagaa	4080
gttggtaacg	catggcttat	aaaattactg	ctgacaaaag	acccttcctc	aaacacaagt	4140
gcgccatttg	cttggattga	agcatgtaaa	aaaggctact	tatcagcaat	acatgctttc	4200
atagaccatt	cccctgattt	tagaacattt	tgtctccaaa	gaaaagactc	tcctttacat	4260
cacatacaac	tgagaagtta	caaagaatac	caagaatttc	ttgctattcc	gttgattcaa	4320
gagatgaaaa	atatgctcga	tttcagtggt	tcaacgccct	tgcatcgagc	attagaacgt	4380
aaggatatcc	tccttgctga	agcactgctc	tctggcgatg	gggttcatag	aagcatcaaa	4440
gataaaaatg	gtaaaactgc	taccgacctg	ctagtaaagc	tgtgcgacca	agagtatgaa	4500
tgggtatgtg	tctccagtct	ccacctaatt	cttccaatct	agaaaactat	gattgcatta	4560
ggaaatactt	ctatgtcagt	tgtcactatc	atcccttgct	tgctataagt	ctacattgtc	4620
ttggcaaaaa	cataaaatga	gcataaatat	aaaggttaat	tttttctagg	gaaattgtac	4680
tgcgtatacc	ctaaactaga	atttgccaaa	taaccttaga	gattcaaaat	atatccataa	4740

ctattaactt tggctaattt	gtaatggttc	tctcttatac	aatttattga	ttcaaaccta	4800
tttctgctga ttaaacttga	tcattggtaa	tattgaagaa	aaattctcat	ggccttgcaa	4860
gacagtgaag tttccatgaa	tctcggaaaa	atgacagcca	caggataaaa	taagactgct	4920
ttagacagca tagtagctct	tatgttttac	tatatacaag	aatatgtaaa	agccttgatc	4980
tatgaaatga attgttctat	atatattatt	atggtgatat	gcaagctcct	tctttgaatt	5040
caatttcaaa caaaatgcag	gatactatgt	gcaaacgtac	acaaattagt	ccgtggctaa	5100
cgacaaacta tatcggaact	tcccttgcta	ataaggcctt	tagatacaca	ggcagtacaa	5160
gacttggtac aacaccatca	gcaggagaaa	tgcgtagcac	actttcagtc	gtagcagccc	5220
ttctagcaac ccttacattt	gcagctgggt	ttacacttcc	tggaggcctt	aacgaagata	5280
ctggcgaagc catcttagca	aagaaggttt	catttctagt	gtttatacta	gcagacacat	5340
acgcgatgtg ttgctccatg	ttggtgctgt	tctgcctcat	atggtctatg	gttagcgaca	5400
gagataagtc acttctactg	attgatcgaa	gtgttgtgat	actcgtccaa	tcactttatg	5460
gaacgttaat agcatttatg	gctggagttt	acactgctat	atcacacaag	tctttgtggg	5520
cagctattat agtcattgtt	atgtgctctt	tcgttgcgat	ttcagctaac	agagctattc	5580
tggataaagt gcttgataag	ttgatccctt	cggctgatag	taagagaaga	aattaaaccc	5640
agacactgga tggatgtctg	gatgatgtag	gctctcctat	aatctttcac	tatcttatga	5700
ttttggatat tactgtctgc	aaatgttaaa	ctcacacatt	gctattatag	ttctttgtta	5760
tgcaagtatg gattcaactc	tggactttgg	tcagtctggt	aactagttgc	agcccatgac	5820
cccaactttt agttattctt	atactacctc	tgttttgttt	ataatacatt	ggtacaaatc	5880
ttattcatgt tactagatga	acatgctaat	gactagtttt	ataatcggct	tgttagatgg	5940
agctctgagt acacatttga	aaaatatatc	taattaaaaa	tattaaaccg	actttaaact	6000
tgtacgatac atgagattat	aggaaataaa	gaatataagt	tttctaatta	ttatacggtt	6060
ttaggaaaat ttagcaatta	gtttagttat	tatattaatt	tgatacttag	attttcaatt	6120
agattatact agagtatata	aaatttccta	attatatgta	ttcggttttc	aatcagaaaa	6180
taatgattta gttttattat	aaaattaaat	tacttttttt	agacggtgct	tttctctcca	6240
aagtttcctc ctttattcac	acatgctaaa	catggaagaa	tatatgtagc	attattgttt	6300
tcacacatca ttttctaaag	gttgtatgat	tcttattcca	aagcaaatta	ccttcgataa	6360
tgttgttact cgatatctaa	taaaaaactt	ttccatagat	gatatcaaga	ccttaatgat	6420
tttaataatt atccaaataa	tcgccagagc	aactagtact	ttttaaacaa	taatatattt	6480
tttttgacaa tggggtaaac	aataatattt	cttacataaa	cattttcata	ttcttagggg	6540
gaaaaaccat taagaaaaat	gcatgtatct	attggatctc	tatacaagtt	tattttgata	6600
gttcgagccc taaattttgt	cagcaagtca	tatgtaagat	ttgtgtataa	actataaagt	6660
gaactattgt ttatttatta	gctatgaatt	aggtttcaca	aaatattata	taaagttgaa	6720
tgatgattaa cggaaactat	actgatatta	tcatttgaga	ttttctcttc	atgtaaaaga	6780

ccatttatct tatcccttat	ctctactagt	ctactttaag	ttcttgtgtt	atgtttaatt	6840
tttgtcatgt atttaccta	atgctagttt	tacattcaca	actccttttc	ttcactagag	6900
ctatttaaca tttcaaaata	cgctataatt	ttatattagc	aaatataaac	gtaatgatcg	6960
ggattcctta tatttttca	caaattatta	gaataggcgg	tctaatttt	acataaatta	7020
gatgaactta gaagtgaatt	tttcaaacaa	acccattcca	tttcactcta	acccaacact	7080
atcttagtca tcccttatct	tttgcttcct	ttgttttctt	gattctcgaa	ctacaacaga	7140
caattttaag aaataactc	gtatttttat	cgaacggatt	aaactagtca	ctaaatggat	7200
aaacaagtca ctgaatggg	tagtgaatgt	cattcacgaa	atagattaaa	ttggtcacga	7260
aatagagtca ctatattta	a aaaggtggca	tgttctctgc	tgaatattag	acttgcaccg	7320
tgcctaattt taaaagtag	g cgatatctta	caagacaact	gtcatttttc	cacttcccta	7380
ataatgagta atcatgttca	ı tgtatcatac	tccttgaaca	tgacatatat	atttttctag	7440
aatgaaaaat cacctaaca	aaaaagggga	accaattaga	aagagagaaa	gaaaagtaac	7500
acaaacaaca atcaaaaca	gaaaacaact	agcaaaattt	attaagtact	aattaataca	7560
tctagttacc taaaatgca	tctaattact	ttaaaaagtt	caaactccaa	caatagtgca	7620
aattagcata aacacttgt	acagcaagtt	gtgcaaactc	agacacacag	accacagaag	7680
gcggagtccc cacaccagag	gggcaactct	aatttctcca	acgtctcctt	tttctttctc	7740
ttcttctcct ttcatcttct	: ttgctttctc	cctccagaat	ctttctctct	cttccatttc	7800
caggtttctc tctcctcttc	tctgcttctt	attttttgaa	agatgcaaac	ttttactgaa	7860
atttatgttt tgaatagtg	tacttattgt	tatgctttaa	attctgagtt	gggtcacttt	7920
catttttgtt tgaatttaa	gggtttttgc	tgaattatgc	tctttttact	ccagtgaacg	7980
gtttttcagt ttctgggtg	taactgtatt	tagttaatta	agattggttt	gaattcaaaa	8040
aaaacttagg gtttactatt	ttccatgctt	aatctttatt	ttttaatgtc	tgaatatgta	8100
aaaatgtaaa aattctatg	tgaaaaactg	agtaaaatag	tatcaaatca	aagttttgaa	8160
gctttgaatt actgatatg	tgtagtttgg	tacttggttt	gatctgtgag	attattcata	8220
agatgctatc tttatttcc	gttttctttt	tagtgcaaat	attctgaata	aaatatgcat	8280
tagtttactt ttatatagaa	tataagtatt	tgggattcta	agttatggga	cactcaattt	8340
tatatgcaga tccagctgt	ccagactaga	ctaacttggt	agcttgagct	tcacttgttg	8400
tgcttggatc tgttaagct	ggaagttttg	ctgatttagc	gccatatgtt	ctagatgtat	8460
tgtattagtc aagtaaagt	ttgatatcga	aatttggacc	tttagtggca	taagagtggt	8520
ttattcttca tttagaatt	tgaccttgag	cttagttttg	gaattgagtg	gttgagaaac	8580
ttcaaacact ttggctttt	agtttattat	acccgggttt	ttattgagga	aggtagtgag	8640
aaagctccag gaaaatttg	ctcttgtgtc	tacagaaaag	tcacttagtc	ttctcctata	8700
attttgctgt aatcctggt	ctggacctct	aggctctgga	atggcagttg	gcaaaaacag	8760

cagtaacgct	ggatcattaa	ctcggccatg	tcattgtttc	aaggtggcaa	acttgaagga	8820
aactattttg	gatgctagcg	agacatccga	gttaaaagat	cgttatgttt	tgggagatca	8880
actaggttgg	gggcagtttg	gtgtgatccg	ggcatgtgct	gataagttta	ctggagaact	8940
actggcgtgc	aagtccattg	ccaaagatag	acttgtaaca	caagatgatg	ttcgaagtgt	9000
gaagctcgaa	atcgagatta	tgagcaagtt	gtccggtcat	cctcatgttg	tcgatctcaa	9060
agctgtttat	gaggaagaag	attatgtcca	cttggtgatg	gagctttgtg	ccggtgggga	9120
gttgttccac	cgattagaga	aacaaggaag	gtattgcgag	tctcaagcca	aagtcatctt	9180
caggcatcta	atgcaagtag	tcttgtattg	tcatgataat	ggtgttgttc	atagagattt	9240
gaagcctgaa	aatgttcttt	tggcaaccaa	gtcttcttct	tcgccaatta	aattagccga	9300
ttttggtctt	gctacatata	tcaaaccagg	tagaacactc	ttcttcatct	agtttgtgat	9360
tttagctgtg	ttactcggtc	tctttcaatt	cacctcaata	gctgtccatg	ttgaattttg	9420
gataatttga	tcaagtcagt	ctggccccta	aacatgttcc	tgcgcccaac	actaacagtg	9480
tcttaagcct	ttggttactg	gtcaagcagg	ggagagtttg	catgggacag	tggggagtcc	9540
tttctatata	gctcctgaag	ttctgtcagg	aggttacacc	caggctgctg	atgtatggag	9600
tgctggcgta	attctctaca	ttctcttgag	ttctatgcca	ccattttggg	ggaagacaaa	9660
gtcaaggata	tttgatgcag	ttcgagcagc	tgatctgcgc	ttcccttctg	aactttggga	9720
tcggatatca	gaacctgcca	aggagctgat	caggaaaatg	ctttgtgtag	atcctttgaa	9780
gcgcttgaca	gctgagcaag	ttttaggtat	atttttaatt	tttgcctcct	ttgctgaatt	9840
cagatgacag	ttatatgaca	cagtatacat	ttgtagaacc	caagtgtctg	aatagccaat	9900
caccaatgtc	tgacaagttt	tttttggctt	tcgattacaa	aatcatttat	tacatatttg	9960
cattaactgt	gttatttttg	acacattaca	tgaaatcttc	attgcttatt	tgtgattctt	10020
tgtgaattgc	tgtacattgg	aagctgctcc	cttttaacat	ttgagatgtc	cgtaagtggt	10080
gagtgtaact	catctgtccc	cacggagaca	aagcttttgg	atgattttag	gacaaatgca	10140
tttaacgttc	tcagcttatc	tgacaatgtt	atccatggtg	tccgtggaca	catgtaccaa	10200
cactaaacat	ctagtatttc	ttgttggttc	tttagttttg	ctggatatac	ttaagggcta	10260
aggctttatt	tttgttcctg	cagctcactc	atggatggaa	gaggttactg	tagctacgga	10320
agaatcacat	gaacatgatt	tggcctgctc	tgaacattta	aaaacccgag	atagctcatt	10380
ttcagcgtca	tgtatatcca	gggatcacga	tataagcttt	ggcactggat	ctgcggtaaa	10440
ttgtgaacct	caatctccaa	catttacgtg	cagatcttca	ttctcggcat	ttatggcgga	10500
accatccacc	cctaccctta	tatctgctgg	attttctttc	cgtagcagcg	gtgatttcac	10560
tgctcttgag	tttgtttctc	caattccttc	cttgcctagc	ttcacatttt	tcagccctag	10620
gtcagtagat	gagcatggaa	accaaaataa	ggtttttca	agcaacaggg	agaacactga	10680
cgaaattcat	acaggtaact	cacttttcta	tttgtaataa	tttgttattg	tcactgattc	10740
tctaatgtca	tttttgcatc	tctaggtctt	gtaacatttt	aaacgtcata	taaacatcca	10800

```
tgacatttta tgtattttgc tcaactttca agtatttttg tatgactttt aaactttcaa
                                                                    10860
 gttttatctg cgtataactt ttcatagcct aaccgtttct ctgttgtata agtatatgcg
                                                                     10920
                                                                     10980
 aaaaatcatt catcacatga attgtttgaa tctaatgttg gattgtgcag cctaaccaac
 tcqaqtttct taaaaaaaat tgttctqtaa ttcaattatg tcctccatat cttatctttc
                                                                    11040
                                                                    11100
 tttactttta aaqcactatt gagaaacaga agaaaacccc agtgtgacga ctgtcagatg
 11160
 aatatcatta gttccatcgt aagcttttaa agttatcaat tcataaaact agatctaatg
                                                                    11220
                                                                    11280
 cccatcgtat ttttagaagg ggccgacttg gagaagcgat ttgaatcacc tcattcatcg
 ctgtgctcag gaattgatgc tagggacctg aaagagaagt cagcagactc taagaggagt
                                                                    11340
                                                                    11400
 qqaqqaacaq qqqtqaqqat ttttqqqatc cataacaaga gaaataggac gattgggctt
 ggcgaattca accagcttga tattgtggtc actgaatctg tcatccgatg ggcgtcatgc
                                                                     11460
 acccacttac ctaccgcctc atcactcagg tcttctcttg tatgctgata atcatgggcc
                                                                    11520
gaccacaatg tatcaaatta acatcataaa tcatgatata aagttgggca acacgcaaac
                                                                     11580
 gtgtgaattc tactgctctg ctacaagatt gaagatataa tgggtttgag tcgcgtgtac
                                                                     11640
                                                                    11700
 tgttggtgat gatcatccca tattagagag ctaaatgtta gtaactacat tgtaatggat
 ctgcagaata agcagattct tcttcaaaag gtgtaaagca tggattttga aagcaatggt
                                                                    11760
 tttctcaacc tttttgatca tgatttagta gatatatata gggggctttt tgttcttatt
                                                                    11820
 agatgtgatt gttaagcctt cttcatgaac aaacataagc actggtgact tgtgggatgg
                                                                    11880
                                                                    11940
 tacatagaaa gagttccgtt tcatcgattt tgattttgtc cagatcctcc ttttctttcg
                                                                    12000
 aaaaaaqqqa aggagagtat ccgaaagatt acccattttg tattttcggt tgtctttaaa
 agattgatcc attacctttc ggacaatttg attcctataa tactcctatt tctctacttc
                                                                    12060
                                                                    12120
 atttcctgcc atatactact atactaaaga caaaattact taatacgaac ttaaaattaa
 gaggagaaac aaggtaaaat ttggtgagga tgatggagga atcatatgaa agcttacgca
                                                                    12180
 cattatatat ttgggagtat gatgtacact agttaatgaa gatcagacac ttttctatat
                                                                     12240
 cttttqattc qtatqttctt taataaatga agatggtata tttaaaattt cgtgtgtatt
                                                                    12300
 tgaaaatatc atgcacatta gacatccaag tctaagatta attcacaact atctatttt
                                                                    12360
                                                                     12364
 tttt
```

<210>6

```
<222> (621)..(696)
       <223> n es a, c, g o t
       <220>
5
       <221 > misc feature
       <222> (704)..(707)
       <223> n es a, c, g o t
       <220>
10
       <221 > misc_feature
       <222> (1115)..(1123)
       <223> n es a, c, g o t
       <220>
15
       <221 > misc feature
       <222> (1169)..(1170)
       <223> n es a, c, g o t
       <220>
       <221 > misc_feature
20
       <222> (1879)..(1880)
       <223> n es a, c, g o t
       <220>
25
       <221 > misc feature
       <222> (2194)..(2194)
       <223> n es a, c, g o t
       <400>6
30
                                                                                     60
         caaatcttct ggcatcaatg gcggtgttgc cgttcatcaw tttaacatca atggaggtaa
         gagtcatgtt ttttcaacaa tataaaactt atatgatttt tctgtttttc cccgtatctt
                                                                                    120
                                                                                    180
         gtttgagatt gtgattatta agagagtcaa gtctcacaat attcgaaagt ctacgtaatc
                                                                                    240
         cacctcaaat tgacgaagaa aacaagcagg aaaggattaa gtaagttcgt ggaaccayta
         qaattaattt tcaaatatag ctctacctaa tatatggcct acttttaatt ttaaataaga
                                                                                    300
         agaaggtaat gtgattagaa acaaattggt cttaaattat tcattaagct taataatgca
                                                                                    360
                                                                                    420
         taaactttat caagtgctat cttcttttca gggccgtctt gaagattttk ggkcccrgtt
         ctattatgaa aattgrgccc ctaaatttat asaaaataaa nnnnnnnnn nnnnnnnnn
                                                                                    480
                                                                                    540
         nnnnngatgg aaggttagag yyctaaagat agaaagttga aaatctaaat ataaatcatt
         gacaaattta ttaagggtga gaaacaaggg tgttttcttc aaatatgaag caaaattttc
                                                                                    600
                                                                                    660
         720
         nnnnnnnnn nnnnnnnnn nnnnnnnnn nnnnnncttc tttnnnntga tacaattttt
                                                                                    780
         sagcgacatg attgtcgatt gatgcttata ttattgtata ctcgatccat attgtttaag
                                                                                    840
         atgaattgtt tgtctttgat ggtctccaat gcatattttg tatwmttagg aattytaatt
         atgtactatt agtasayaty gagaygaata caraatygcc ataatgaagt atgattattt
                                                                                    900
                                                                                    960
         tarttatata ctttctccqt tccaaatata taartgtaac acttgtgtac tttatgcgta
         ctaatgcata ayaacgtgca ctctccygtg tttaattata tactttttga gagaagtgwt
                                                                                   1020
                                                                                   1080
          acattgggga ccatgggact gtgtataatt tgaccgcaaa atygaagtgt ygcatttgat
```

tgaaaaygga	garrgtagta	tatagrtgga	acacnnnnnn	nnntgctgrt	catctttggc	1140
caacaaaccm	aaaattgata	ttaatccynn	twwtymrgkw	yttttcatct	ttttgacaca	1200
aaatggatgt	tgtaggcwct	gcgctatctg	ctgcccaatc	tctgtttgca	gccctgcaaa	1260
gttctgagct	caaagagatc	ctctcgatct	ttggctacaa	atcccaactt	gatgacctcc	1320
aacgcaytgt	mtctaccatc	aaygctgtat	tccgtgatgc	tgagaccaaa	caggagctca	1380
ctcatgaagc	acarcattgg	ctcgaggaac	tcaaggatgc	tgtctttgaa	gcagatgatc	1440
tgttcgacga	gtttgtcact	cttgccgagc	agaagcaact	tgtagaggct	ggtggcagtc	1500
tttccaaaaa	gatgcgccaa	ttcttttctg	attccaaccc	ccttggcaty	gcttatarga	1560
tgtcacragg	ggttaagaag	atcaagaaga	agttggatgy	tatygcttac	aatcatcaat	1620
ttagctttaa	gattgatctt	gagcctataa	aagagagaag	gctcgagact	ggttctgtcg	1680
tgaacgcagg	tgatatcatt	ggaagagagg	atgacttgga	gaagatcgta	ggtttgttkc	1740
ttgattctaa	catccagcgt	gatgtgtctt	tccttackat	wgtgggaatg	ggagggttgg	1800
gtaaaactgc	tcttgcccaa	ctcgtgtaca	atgatccaag	ggtcagaact	gcttttccat	1860
tgagatgttg	gaattgtsnn	tctgatcaag	atcaaaakma	actagatgtg	aaagaaattt	1920
tgggtaagat	tctgtctaca	gctactggta	agaatcayra	gggttcaacc	atggatcakg	1980
tgcaaaccya	actacrrgaa	caactatgtg	gcaagagata	cttgcttgtt	ttggatgatg	2040
tatggaatga	gaatcctaat	caattgcgtr	wyytkgkwra	attcttcatg	ggaggtcaaa	2100
ggggaaattg	gattstggta	actacgcgtt	cgcaygagac	arcgagaatt	ataagagatg	2160
gtccattgca	caagctscaa	ggtttgtctg	arrnaaaact	yttggcgttt	atytgtaagg	2220
tggaccttcg	gatcagtgca	accaaaattc	cctaatgact	ttgtcatgat	tgcacgagat	2280
atagtygaca	aatgtgctcg	aaaccctytg	gctataagag	tggtaggaag	tcttttgtgt	2340
ggtcaagaca	agagtaagtg	gctttcattt	catgagatmt	gtttagccaa	cattagaaag	2400
agycataatg	atatcatgcy	aatactgaac	ctaagttacc	atcatcttga	acctccaatc	2460
akgagatgct	ttagttattg	tgcartgttt	ccaaaggatt	tccttatagg	gaagaagacg	2520
ttgataaacc	tttggatggc	acaaggttat	attgttccat	tagacaaaga	tcaaagcata	2580
gatgaygcta	gtgaggaata	catatcaatt	ttgytgcaga	gatgttttt	cgaaaacatc	2640
ggaacagaaa	aagatkatgt	tattaagata	catgatctca	tgcatgatat	tgctcaaaat	2700
gtcatgggga	aggagctttg	tacgacaaaa	aacattagtg	gcagcttgga	taaaaatgtt	2760
cgccatctat	ctcttgccag	aactagtttt	gcaagatact	ctttyaatgc	aactcatatt	2820
cgctccyatt	tctrtgctgg	ctactggtgt	caggawkctg	agataamcca	gttytcagtt	2880
gaggcattag	taccaaaytg	tttgtgccta	agggcattgk	acctsgcttg	gtcgaagata	2940
aaaagtktac	cagactcrat	tggtggattg	ttgcatttga	ggtacttaga	tctttcrtat	3000
aasgaagaty	tggaagtact	tccgaactca	attgcyaaac	tatataatct	rcaaacctta	3060
caattgaagg	gttgcaagag	attggaaggg	ttaycaaaac	atttgagcag	gctggttaag	3120

#### ES 2 702 903 T3

cttcaaactt	trgatatata	tggttgcaay	aatgtaactt	atatgcccaa	aggcatgggt	3180
aagatgactt	gccttcacac	tctcagtaag	tttatagtgg	gtggagaagg	garttgttca	3240
agttggaagm	aayggtttga	tgggcwggaa	gatctaaagg	ctctcaacaa	cctaaagggt	3300
catctggraa	tccaaatcag	gtggcccgaa	aatactacag	atgctgtcaa	ggaagatgtt	3360
aagagggaag	gattatacyt	gaatcataag	gaacatctca	atcacattgt	ggttgatttc	3420
agatgtgagg	agggtggtgg	aagaatggat	gatgaggaag	caagaagatt	gatggaagag	3480
ytgcggccac	atccttatct	tgaaaatttg	gctgtgaaag	cataytatgg	tgygaaaayg	3540
cctgrttggg	yaacccttct	yccaaatctt	acagagcttt	wtctttytga	ttgtggggaa	3600
yyggagwrcc	ttccatgcmt	gggaaacttg	gwtydtctra	amgtyctccg	rctttcgcat	3660
ttggcraaat	tggagtayat	tgragaagat	agcwcatcag	ctmwtttcag	ktktaggcct	3720
ggaccrgaaa	gtgcaggact	atcattatac	ttccctccc	ttgaackcct	tgagttgaag	3780
crtttgyrya	agttaaaagg	atggaggaga	rgggaagggt	taggagatga	tcaccagcct	3840
tttaatgaaa	gcagcagcaa	taagtcattg	agaatagaaa	gatgcccatt	gctgacattt	3900
atgccgctgt	gtcccaagac	agaaaaacdg	catttagttg	tatttaatga	aygactccgg	3960
atagtgcata	ctaaaggaga	tgagaatttc	tatgctccat	tacattcatc	atcatctgat	4020
cctgaaaacc	cgaggagcac	tattcccatt	cccatgttaa	gagaggtata	cataaacaat	4080
gtggcatggc	taaattcgct	gcctatggag	gcttttaggt	gtctcactca	tatgacaata	4140
aaaaacgaca	aggtagagag	tttgggagaa	gttggggagg	tgtttcggag	ctrctcatct	4200
tctttgcgat	ccttgaatat	cacaggttgc	tccaacttaa	gaagtgtttc	tggagggctg	4260
gagcatctca	ctrctttgga	gatkttagaa	atatacgaca	cccataagct	gagtctwtca	4320
gaagacccag	aaggtgttgt	gccatggaaa	tcccttcatc	actccctcag	ctacttgmaa	4380
ttgatgaatc	tcccwcagct	ggtcaacctg	cctgattcga	tgcagttctt	ggyctccctc	4440
caaacccttt	caatggtgca	ttgcagtaaa	ctggaatcag	tgccagattg	gatgcccmga	4500
ctcacttcyc	tcaggaagct	tatggtttca	ttctgttccg	cacatctgga	gagaagatgy	4560
caaaatccaa	ctggggtgga	ctggcctaac	attcaacaca	tccctscat	tgatgtcacc	4620
tctagccgtc	ctaagttttt	agtgttgccg	tatgaatag			4659

<210 7 <211 > 434 5 <212> ADN <213> Beta vulgaris

<400> 7

#### ES 2 702 903 T3

gaactcaagg	atgctgtctt	tgaagcagat	gatctgttcg	acgagtttgt	cactcttgcc	60
gagcagaagc	aacttgtaga	ggctggtggc	agtctttcca	aaaagatgcg	ccaattcttt	120
tctgattcca	acccccttgg	cattgcttat	aggatgtcac	gaggggttaa	gaagatcaag	180
aagaagttgg	atgctatcgc	ttacaatcat	caatttagct	ttaagattga	tcttgagcct	240
atgaaagaga	gaaggctaga	gactggttct	gtcgtgaacg	caggtgatat	cattggaaga	300
gaggacgact	tggagaagat	tgtaggtttg	ttgcttgatt	ctaacatcca	acgtgatgtg	360
tctttcctta	ctattgtggg	aatgggaggg	ttgggtaaaa	ctgctcttgc	ccaactcgtg	420
tacaatoato	caag					434

#### REIVINDICACIONES

- 1. Molécula de ácido nucleico, que codifica un polipéptido, que está en disposición de otorgar una resistencia frente a un patógeno en una planta en la que se expresa el polipéptido, caracterizada por que la molécula de ácido nucleico comprende una secuencia de nucleótidos que está seleccionada de
  - a) una secuencia de nucleótidos que codifica un polipéptido con una secuencia de aminoácidos de acuerdo con la SEQ ID NO: 2 o la SEQ ID NO: 3,
  - b) una secuencia de nucleótidos que comprende la secuencia codificante de la secuencia de ADN de acuerdo con la SEQ ID NO: 1.
  - c) una secuencia de nucleótidos que codifica un polipéptido que se deriva por sustitución, deleción y/o adición de un aminoácido de la secuencia de aminoácidos que se codifica por la secuencia de nucleótidos de acuerdo con a) o b), de un polipéptido que se codifica por la secuencia de nucleótidos de acuerdo con a) o b),
- d) una secuencia de nucleótidos que codifica un polipéptido que presenta una secuencia de aminoácidos que tiene una identidad de al menos el 80 % con una secuencia de aminoácidos que se codifica por la secuencia de nucleótidos de acuerdo con a) o b) o
  - e) una secuencia de nucleótidos que codifica al menos las posiciones de aminoácidos 168-227 de la SEQ ID NO: 2 y al menos las posiciones de aminoácidos 591-613 de la SEQ ID NO: 2 y al menos las posiciones de aminoácidos 1013-1072 de la SEQ ID NO: 2 o que codifica al menos las posiciones de aminoácidos 182-241 de la SEQ ID NO: 3, al menos las posiciones de aminoácidos 605-627 de la SEQ ID NO: 3 y al menos las posiciones de aminoácidos 1027-1086 de la SEQ ID NO: 3.
- 2. Vector que comprende la molécula de ácido nucleico de acuerdo con la reivindicación 1.

5

10

15

20

30

35

45

55

- 25 3. Célula procariota o célula de levadura que comprende la molécula de ácido nucleico de acuerdo con la reivindicación 1 o el vector de acuerdo con la reivindicación 2.
  - 4. Polipéptido que está en disposición de otorgar una resistencia frente a un patógeno en una planta en la que se expresa el polipéptido y que es codificado por la molécula de ácido nucleico de acuerdo con la reivindicación 1.
  - 5. Célula vegetal transgénica que comprende la molécula de ácido nucleico de acuerdo con la reivindicación 1 como transgén o el vector de acuerdo con la reivindicación 2.
  - 6. Planta transgénica o una parte de la misma que comprende una célula vegetal de acuerdo con la reivindicación 5.
  - 7. Semilla de la planta de acuerdo con la reivindicación 6, comprendiendo la semilla la molécula de ácido nucleico de acuerdo con la reivindicación 1 como transgén.
- 8. Procedimiento para la producción de una célula vegetal transgénica, caracterizado por que el procedimiento comprende una etapa de la introducción de la molécula de ácido nucleico de acuerdo con la reivindicación 1 o del vector de acuerdo con la reivindicación 2 en la célula vegetal.
  - 9. Procedimiento para la producción de una planta transgénica, caracterizado por que el procedimiento comprende las siguientes etapas
    - a) introducción de la molécula de ácido nucleico de acuerdo con la reivindicación 1 o del vector de acuerdo con la reivindicación 2 en una célula vegetal y
    - b) regeneración de la planta transgénica a partir de la célula vegetal transgénica de la etapa a).
- 50 10. Procedimiento para la identificación de una molécula de ácido nucleico, que codifica una proteína, que está en disposición de otorgar una resistencia frente al patógeno BNYVV en una planta del género *Beta* en la que se expresa la proteína, caracterizado por que el procedimiento comprende la siguiente etapa
  - i. detección de la ausencia de una inserción en la secuencia de nucleótidos codificante de la molécula de ácido nucleico de acuerdo con la reivindicación 1 o
    - ii. detección de al menos un polimorfismo de acuerdo con la Figura 1, 2 y/o 3 en la secuencia de nucleótidos codificante de la molécula de ácido nucleico de acuerdo con la reivindicación 1 mediante el uso de marcadores moleculares que detectan el polimorfismo.
- 11. Planta o una parte de la misma, que comprende una célula vegetal que presenta la molécula de ácido nucleico de acuerdo con la reivindicación 1, perteneciendo la planta o una parte de la misma al género *Beta* y a la subespecie *Beta vulgaris* ssp. *vulgaris* y no habiéndose obtenido la planta en exclusiva por un procedimiento en esencia biológico.
- 12. Marcador molecular para la selección de plantas resistentes a BNYVV que detecta un polimorfismo de acuerdo con la Figura 1, 2 o 3.

#### ES 2 702 903 T3

- 13. Uso de un marcador molecular de acuerdo con la reivindicación 12 para la selección de plantas resistentes a BNYVV que comprende
  - i) la detección de un polimorfismo de acuerdo con la Figura 1, 2 o 3  $\,$

5

- ii) que comprende la comprobación de la presencia o ausencia de una inserción en la secuencia de nucleótidos codificante de una molécula de ácido nucleico de acuerdo con la reivindicación 1.
- 14. Uso de un marcador molecular estrechamente acoplado con la molécula de ácido nucleico de acuerdo con la reivindicación 1 en una secuencia de ADN de acuerdo con la SEQ ID NO: 4 o en una secuencia de ADN de acuerdo con la SEQ ID NO: 5 en un procedimiento para la selección de una planta que presenta una resistencia frente a BNYVV.

## FIG 1 A

491 GGGCCGTCTTGAAGATTTTKGGKCCCRGTTCTATTATGAAAATTGRGCCCCCTAAATTTATASAAAATAAA GGGCCGTCTTGAAGATTTTGGGGCCCCGGTTCTATTATGAAAATTGGGCCCCTAAATTTATAGAAAATAAA	(391)	consenso-sensible secuencia resistente
421 acaaattggtcttaaattattcattaagcttaataggataaacgtgatcaagtgctatcttttca acaaattggtcttaaattattcattaagcttaataatggataaacgtgagatcaagtgctatcttttca	(321)	consenso-sensible secuencia resistente
420 TCAAATATAGCTCTACCTAATATATGGCCTACTTTTAATTTTTAAATAAGAAGGTAATGTGATTAGAA TCAAATATAGGCTCTACCTAATATATGGCCTACTTTTAATTTTAAATAAGGAGAAGGTAATGTGATTAGAA	(251) (351)	consenso-sensible secuencia resistente
350 CACCTCAAATTGACGAAGAAACAAGCAGGAAAGGATTAAGTAAG	(181) (281)	consenso-sensible secuencia resistente
211 Espetatettetttgagattgtgattattaagagagteaagteteaeatattegaaagtetaetea Atagetatettgtttgagattgtgattattaagagagteaagteteaeatattegaaagtetaegtaate	(114)	consenso-sensible secuencia resistente
210 VIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	(113) (141)	consenso-sensible secuencia resistente
140 TTTTCAACAATATAAAACTTATA <mark>EEEEEEEEEEEEEEEE</mark>	(71) (71)	consenso-sensible secuencia resistente
1 CAAATCTTCTGGCATCAATGGCGGTGTTGCCGTTCATCAWTTTAACATCAATGGAGGTAAGAGTCATGTT CAAATCTTCTGGCATCAATGGCGGTGTTGCCGTTCATCAATTAACATCAATGGAGGTAAGAGTCATGTT	(1)	consenso-sensible secuencia resistente

#### FIG 1B

630 1) NNNNNNNNNNNNNNNNNNNNNNNNNNNGATGGAAGGTTAGAGYYCTAAAGATAGAAAGTTGAAAATCTAAMT 1)GATGGAAGGTTAGAGTTCTAAAGATAGAAAGTTGAAAATCTAAAT	700 1) ATAAATCATTGACAAATTTATTAAGGGTGAGAACAAGGGTGTTTTCTTCAAATATGAAGCAAAATTTTC 5) ATAAATCATTGACAAATTTATTAAGGGTGAGAAACAAGGGTGTTTTTTTT	770 1) aaaataann <u>innnnnnnnnnnnnnnh</u>	940 ))	910 8)	911 1)	1050 NNNNTATAATTTTTGGNNNNNNNNNNNNNNNNNNNNNNN	1120 9) GATACAATTTTTSAGCGACATGATTGTCGATTGATGCATATTATTATTGTATACTCGATCCATATTGTTTA 6) GATACAATTTTTCAGCGACATGATTGTCGATTGATGCATATTATTGTATAGTACTCGATCCATATTGTTTA
(461)	(531)	(601) (676)	(610)	(648	(691)	(691) <u>1</u>	(709) (1026)
consenso-sensible secuencia resistente	consenso-sensible secuencia resistente	consenso-sensible secuencia resistente	consenso-sensible secuencia resistente	consenso-sensible secuencia resistente	consenso-sensible secuencia resistente	consenso-sensible secuencia resistente	consenso-sensible secuencia resistente

#### FIG 1

1611 CTCAAAGAGATCCTCTCGATCTTTGGCTACAATCCCAACTTGATGACCTCCAACGCAYTGTMTCTACCA CTCAAAGAGATCCTCTGGATCTTTGGCTACAAATCCCGACTTGATGACCTCCAACGCAGTGTGTCTTTACCA	(1269) (1584)	consenso-sensible secuencia resistente
1610 CAAAATGGATGTTGTAGGCWCTGCGCTATCTGCTGCCCAATCTCTGTTTGCAGCCCTGCAAAGTTCTGAG CAAAATGGATGTTGTAGGCACTGCTGCTGCTGCCCCAATCTCTGTTTGCAGCCCTGCAAAGTTCTGAG	(1199) (1514)	consenso-sensible secuencia resistente
1540 RTCATCTTTGGCCAACAAAACCMAAAATTGATATTAATCCYYTWWTYMRGKYWNNTTTCATCTTTTTGACA GTCATCTTTGGCCAACAAACCCAAAAATTGATATTAATCCCTTATTCAGGTCA-TTTCATCTTTTGACA	(1129)	consenso-sensible secuencia resistente
1470 AAATYGAAGTGTYGCATTTGATTGAAAAYGGAGARRGTAGTATATAGRTGGAACACNNNNNNNNTGCTG AAAT <u>C</u> GAAGTGT <u>C</u> GCATTTGATTGAAAA <u>T</u> GGAGA <u>GA</u> GTAGTATATAG <u>A</u> TGGAACAC <u>AGCAGAGAG</u> TGCTG	(1059) (1376)	consenso-sensible secuencia resistente
1331 TGTTTAATTATATATATTTTTGAGAGAGGAGTGWTACATTGGGGACCATGGGACTGTGTATAATTTGACCGCA TGTTTAATTATATATTTTTGAGAGAGAGTG <u>T</u> TACATTGGGGACCATGGGACTGTGTATAATTTGACCGCA	(989) (1306)	consenso-sensible secuencia resistente
1330 GITCCAAATATATAARIGTAACACTTGTGTACTTTATGCGTACTAATGCATAAYAACGTGCACTCTCGYG BITCCAAATATATAAATGTAAACACTTGTGTACTTTATGCGTACTAATGCATAACAAACGTGCACTCTCAYG	(919) (1236)	consenso-sensible secuencia resistente
1191 TTAGTASAYATYGAGAYGAATACARAATYGCCATAATGAAGTATGATTATTTTARTTATATACTTTCTCC TTAGTA <u>G</u> ACAT <u>T</u> GAATACA <u>T</u> AAT <u>T</u> GCCATAATGAAGTATGATTATTTTAGTTATATACTTTCTCC	(849)	consenso-sensible secuencia resistente
$1121\\ {\tt AGATGAATTGTTTTGTTTTGATGGTCTCCAATGCATATTTTGTAT} \underline{{\tt WM}} {\tt TAGGAATT\underline{Y}} {\tt TAATTATGTACTA}\\ {\tt AGATGAATTGTTTGTCTTTGATGGTCTCCAATGCATATTTTGTAT} \underline{{\tt AGATGAATT\underline{Y}}} {\tt TAGGAATT\underline{Y}} {\tt TAATTATGTACTA}\\$	(779)	consenso-sensible secuencia resistente

## FIG 1 D

consenso-sensible secuencia resistente	(1339)	$1750 \\ TCAA\underline{Y}GCTGTATTCCGTGATGCTGAGACCAAACAGGAGCTCACTCA$
consenso-sensible secuencia resistente	(1409)	1751 ACTCAAGGATGCTGTCTTTGAAGCAGATGATCTGTTCGACGAGTTTGTCACTCTTGCCGAGCAGAAGCAA ACTCAAGGATGCTGTCTTTGAAGCAGATGATCTGTTCGACGAGTTTGTCACTCTTGCCGAGCAGAAGCAA
consenso-sensible secuencia resistente	(1479)	1890 CTTGTAGAGGCTGGTGGCAGTCTTTCCAAAAGATGCGCCCAATTCTTTTCTGATTCCAACCCCCTTGGCA CTTGTAGAGGCTGGTGGCAGTCTTTCCAAAAGATGCGCCAATTCTTTTTTTGATTCCAACCCCCTTGGCA
consenso-sensible secuencia resistente	(1549) (1864)	1960 TYGCTTATARGATGTCACRAGGGGTTAAGAAGATCAAGAAGTTGGATGYTATYGCTTACAATCATCA T <u>T</u> GCTTATA <u>G</u> GATGTCAC <u>G</u> AGGGGTTAAGAAGATCAAGAAGAAGTTGGATG <u>C</u> TAT <u>C</u> GCTTACAATCATCA
consenso-sensible secuencia resistente	(1619) (1934)	2030 ATTTAGCTTTAAGATTGATCTTGAGCCTATAAAAGAGAGAAAGGCTGGAGACTGGTTCTGTCGTGAACGCA ATTTAGCTTTAAGATTGATCTTGAGCCTATGAAAGAGAAAGGCTAAGAACTGGTTCTGTCGTGAACGCA
consenso-sensible secuencia resistente	(1689) (2004)	2100 GGTGATATCATTGGAAGAGAGGAAGACTTGGAGAAGATGGTAGGTTTGTTKCTTGATTCTAACATCCAGC GGTGATATCATTGGAAGAGGAGGACTTGGAGAAGATAGTAGGTTTGTTGCTTGATTCTAACATCCAA
consenso-sensible secuencia resistente	(1759)	2170 GTGATGTGTCTTTCCTTACKATWGTGGGAATGGGAGGGTTGGGTAAAACTGCTCTTGCCCAACTCGTGTA GTGATGTGTCTTTCCTTACTATTGTGGAATGGGAGGGTTGGGTAAAACTGCTCTTGCCCAACTCGTGTA
consenso-sensible secuencia resistente	(1829) (2144)	2240 CAATGATCCAAGGGTCAGAACTGCTTTTCCATTGAGATGTTGGAATTGT <u>NNG</u> TCTGATCAAGATCAAAA <u>K</u> CAATGATCCAAGGGTCAGAACTGCTTTTCCATTGAGATGTTGGAAATTGT <u>GTG</u> TCTGATCAAGATCAAAA <u>G</u>

#### FIG 1

consenso-sensible secuencia resistente	(1899) (2214)	$2310 \\ \underline{\text{MAACTAGATGTGAAAAATTTTGGTAAGATTCTG}} \\ \underline{\text{CTACTAGTTGGTAAGAATTTTGGGTAAGATTCTG}} \\ \underline{\underline{\text{CAACTAGATGTGAAAAATTTTGGGTAAGATTCTG}} \\ \underline{\underline{\text{CAACTAGATGTGAAAAATTTTGGGTAAGATTCTG}} \\ \underline{\underline{\text{CAACTAGATGTGAAGAATTTTGGGTAAGATTCTG}} \\ \underline{\underline{\text{CAACTAGAAGAATTTTGGGTAAGATTCTG}} \\ \underline{\underline{\text{CAACTAGAAGAATCTAGAGATTCTG}} \\ \underline{\text{CAACTAGAAGAATCTAGAGATTCTAGAGATTCTAGAGAATCAAGAATCAAGAGAATCAAGAAGAATCAAGAAGAATCAAGAAGAATCAAGAAGAAAAAAAA$
consenso-sensible secuencia resistente	(1969) (2284)	2380 $CCATGGATCAKGTGCAAACCYAACTACRRGAACAACTATGTGGCAAGAGATACTTGCTTGTTTTGGATGA$ $CCATGGATCAGGTGCAAACCAACTACGAACAACTATGTGGCAAGAGATACTTGCTTG$
consenso-sensible secuencia resistente	(2039)	2450 TGTATGGAATGAGAATCCTAATCAATTGCGTDWYYTKGKWRAATTCTTCATGGGAGGTC <mark>A</mark> AAG <mark>GG</mark> GAAAAT TGTATGGAATGAGAATCCTAATCAATTGCGT <u>GATC</u> TGG <u>TAG</u> AATTCTTCATGGGAGGTC <mark>GAAGEA</mark> GAAAT
consenso-sensible secuencia resistente	(2109) (2424)	2520 TGGATTSTGGTAACTACGCGTTCGCAYGAGACARCGAGAATTATAAGAGATGGTCCATTGCACAAGCTSC TGGATTGTGGTAACTACGCGTTCGCACGGAGACAAGAATTATAAGAGATGGTCCATTGCACAAGCTCC
consenso-sensible secuencia resistente	(2179) (2494)	2521 AAGGTTTGTCTGA <u>RRN</u> AAAACTYTTGGCGTTTATYTGT <b>A</b> AGGTGGACCTTCGGATCAGTGCAAAAT AAGGTTTGTCTGA <u>GG</u> -AAAACT <u>C</u> TTGGCGTTTAT <u>T</u> TGT <mark>G</mark> AGGTGGACCTTCGGATCAGTGCAAGCAAAAT
consenso-sensible secuencia resistente	(2249)	2591 TCCCTAATGACTTTGTCATGATTGCACGAGATATAGTYGACAAATGTGCTCGAAACCCTYTGGCTATAAG TCCCTAATGACTTTATCATGATTGCACGAGATATAGTTGACAAATGTGCTCGAAACCCTCTGGGCTATAAG
consenso-sensible secuencia resistente	(2319) (2633)	2730 A <u>k</u> tggtaggaagtcttttgtgtggtcaagacaagagtaagtggctttcattca
consenso-sensible secuencia resistente	(2389) (2703)	2731 AACATTAGAAAGAGYCATAATGATATCATGCYAATACTGAACCTAAGTTACCATCATCTTGAACCTCCAAAACATTAGAAAGAGCCATAATGATATCATGCAATACTGAACCTGAAGTTACCATCATCTTGAACCTCCAA

#### FIG 1 F

consenso-sensible secuencia resistente	(2459) (2773)	2801 Teakgagatgctttagttattgtgcartgtttccaaaggatttccttatagggagaagaagatgataaa Taaagagatgctttagttattgtgcagtgtttccaaaggatttccttatagggaggg
consenso-sensible secuencia resistente	(2529) (2843)	2940 CCTMTGGATGGCACAAGGTTATATTGTTCCATTAGACAAAGATCAAAGCATAGATGAYGCTAGTGAGGAA CCTMTGGATGGCACAAGGTTATATTGTTCCATTAGACAAAGATCAAAGCATAGATGATGCTAGTGAGGAA
consenso-sensible secuencia resistente	(2599) (2913)	3010 TACATATCAATTTTG <u>Y</u> TGC <b>A</b> GAGATGTTTTTTCGAAAA <mark>CA</mark> TCGGA <b>A</b> CAGAAAAGATK <b>A</b> TGTTATTAAGA TACATATCAATTTTG <u>T</u> TGC <b>G</b> GAGATGTTTTTTCGAAAAAGACGGAGCAGAAAAAGAT <u>GG</u> TGTTATTAAGA
consenso-sensible secuencia resistente	(2669)	3080 TRCATGATCTCATGCATGATATTGCTCAAAATGTCATGGGGAAGGAGCTTTGTACGACAAAAAAAA
consenso-sensible secuencia resistente	(2739) (3053)	3150 TGGCAGCTTGGATAAAAATGTTCGCCATCTATCTCTTGCCAGAACTAGTTTTGCAAGATACTCTTTYAAT TGGCAGCTTGGATAAAAGTGTTCGCCATCTATCTCTTGCCAGAACTAGTTTTGCAAGATACTCTTTGAAT
consenso-sensible secuencia resistente	(2809) (3123)	3220 GCAACTCATATTCGCTCCYATTTCTRTGCTGGCTACTGGTGTCAGGAWKCTGAGATAAMCCAGTTYTCAG GCAACTCATATTCGCTCCTATTCTGTGCTGGCTACTGGTGTCAGGATGCTGAGATAAACCAGTTTTCAG
consenso-sensible secuencia resistente	(2879) (3193)	3290 TTGAGGCATTAGTACCAAAYTGTTTTGTGCCTAAGGGCAATGTGKACCTSGCTTGGTCGAAGATAAAAGTKT TTGAGGCATTAGTACCAAACTGTTTGTGCCTAAGGGCAATGTGACCTCGCTTGGTCGAAGATAAAAGTTT
consenso-sensible secuencia resistente	(2949) (3263)	3360 ACCAGACTCRATTGGTGGATTGTTGCATTTGAGGTACTTAGATCTTTCRTATAASGAAGATYTGGAAGTA ACCAGACTCGATTGGTGGATTGTTGAGGTACTTAGATCTTTCGTATAAGGAAGATCTGGAAGTA

## FIG 1 G

consenso-sensible secuencia resistente secuencia resistente secuencia resistente	(3019) (3089) (3403) (3473) (3229) (3543) (3513) (3683) (3683) (3509) (3509) (3509)	3361  CTTCCGAACTCAATTGCYAAACTATATAATCTRCAAACCTTACAATTGAAGGGTTGCAAGAGATTGGAAG  CTTCCGAACTCCAATTGCYAAACTATATAATCTRCAAACCTTACAATTGAAGGGTTGCAAGAGATTGGAAG  3431  GGTTAYCAAAACATTGGCAGGCTGGTTAAGCTTCAAACTTTGGATATTAGATGGTTGCAAYAATGTAAC  GGTTAACAAACATTTGAGCAGGCTGGTTAAGCTTCAAACTTTTGGATATTAGATGGTTGGAAA  3501  TTATATGCCCAAAGGCATGGGTAAGGTGACTTGCCTTCACACTCTCAGTAAGTTTATAGTGGTGGAGAA  TTATATGCCCAAAGGCATGGGTAAGGTGACTTGCCTTCACACTCTCAGTAAGTTTATAGTGGTGGAGAA  TTATATGCCCAAAGGCATGGGTAAGGTTTTGATGGGGGAAGATCTTAAAGGGCTTCAAAGGGGAGAAATTGTTCAAGTTGGAAGGAA
consenso-sensible secuencia resistente	(3019) (3333)	3430 CTTCCMACTCAATTGCYAAACTATATAATCTRCAAACCTTACAATTGAAGGGTTGCAAGAGATTGGAAG CTTCCMAACTCAATTGCTAAACTATATATCTACAACCTTACAATTGAAGGGTTGCAAGAGATTGGAAG
consenso-sensible secuencia resistente	(3089)	3500 GGTTAYCAAAACATTTGAGCAGGCTGGTTAAGCTTCAAACTTTRGATATAMATGGTTGCAAYAATGTAAC GGTTA <u>C</u> CAAAACATTTGAGCAGGCTGGTTAAGCTTCAAACTTT <u>G</u> GATATA <mark>G</mark> ATGGTTGCAA <u>C</u> AATGTAAC
consenso-sensible secuencia resistente	(3159) (3473)	atgcccaaàggcatgggtaag@tgacttgccttcacactctcagtaagtttatagggggggg
consenso-sensible secuencia resistente	(3229) (3543)	3640 GGGARTTGTTCAAGTTGGAAGMAAYGGTTTGATGGGWGGAAGATCTAAAGGCTCTCAAGAACCTAAAGG GGGAGTTGTTCAAGTTGGAAGCAATGMTTTGATGGGTGGGAAGATCTAAAGGCTCTCAAMAACCTAAAGG
consenso-sensible secuencia resistente	(3299) (3613)	3710 GTCATCTGGRAATCCAAATCAGGTGGCCCGAAAATACTACAGATGCTGTCAAGGAAGATGTTAAGGAGGGA GTCATCTGGAAATCCAAATCAGGTGGCCCAAATACTACAAAATGCTGTGTAAAGAAGATGTTAAGAGGA
consenso-sensible secuencia resistente	(3369)	$3780$ $AGGATTATAC \underline{Y}TGAATCATAAGGAACATCTCAATCACATTGTGGTTGATTT\overline{Q}AGATGTGAGGAGGGTGGT$ $AGGATTATAC \overline{C}TGAATCATAAGGAACATCTCAATCACATTGTGGTTGATTT\overline{Q}AGATGTGAGGAGGGTGGT$
consenso-sensible secuencia resistente	(3439)	3850 GGAAGAATGGATGAGGAAGCAAGAAGATTGATGGAAGAGYTGCGGCCCACATCCTTATCTTGAAAATT GGAAGAATGGATGATGAGGAAGCAAGAAGATTGATGGAAGAGTTGCGGCCCACATCCTTATCTTGAAAATT
consenso-sensible secuencia resistente	(3509) (3823)	3920 TGGCTGTGAAAGCATAYTATGGTGYGAAAAYGCCTGRTTGGGYAACCCTTCTYCCAAATCTTACAGAGCT TGGCTGTGAAAGCATATTATGGTG <u>T</u> GAAAA <u>T</u> GCCTG <u>G</u> TTGGG <u>C</u> AACCCTTCT <u>C</u> CCAAATCTTACAGAGCT

## FIG 1 H

consenso-sensible secuencia resistente	(3579) (3893)	3991 TTWTCTTTYTGATTGTGGGGAAYYGGAGWRCCTTCCATGCMTGGGAAACTTGGWTYDTCTRAAMGTYCTC TTTTCTTTCTGTGTGGGGAACTGGAAACTTCGATGCCTGGGAAACTTGGWTYDTCTRAAMGTYCTC TTTTCTTTCTTTTTTGTGGGGAACTGGAAACTTCGATGCCTGGGAAACTTGGAAACTTAAAAGTCCTC 3991
consenso-sensible secuencia resistente	(3649)	CGRCTTTCGCATTTGGCRAAATTGGAGTAYATTGRAGAAGATAGCWCATCAGCTMWTTTCAGKTKTAGGC CGACTTTCGCATTTGGCAAAATTGGAGTACATTGAAGAAGATAGCTCATCAGCTAAATTCAGGTGTAGGG
consenso-sensible secuencia resistente	(3719) (4033)	4130 CTGGACCRGAAAGTGCAGGACTATCATTATACTTCCCCTCCCTTGAACKCCTTGAGTTGAAGCRTTTGYR CTGGACCAGAAAGTGCAGGACTATCATTATACTTCCCCTCCCT
consenso-sensible secuencia resistente	(3789)	4131 Yaagttaaaaggatggaggagaggggaagggttaggagatgat
consenso-sensible secuencia resistente	(3859) (4173)	▼Inserción de retrotransposón AATAAGTCATTGAGAATAGAAAGGCCCATTGC AATACACAAGTCCAATTACAATTATGTCTTCCTCAATTGAAGATAGAAAGATGCCCATTGC
consenso-sensible secuencia resistente	(3893)	4340 TGACATTTATGCCGCTGTGTCCCAAGACAGAAAAACDGCATTTAGTTGTATTTAATGAAYGACTCCGGAT TGACATTTATGCCGCTGTGTCCCCAAGACAGAAAAC <u>T</u> GCATTTAGTTGTATTTAATGAA <u>C</u> GACTCCGGAT
consenso-sensible secuencia resistente	(3963) (4313)	4341 AGTGCATACTAAEGGAGATGAGAATTTCTATGCTCCATTACATTCATCATCATCTGATCCTGAAAACCCG AGTGCATGCTAAEGGAGATGAGAATTTCTATGCTCCATTACATTCATCATCTGATCTGATCTGAAAACCCG
consenso-sensible secuencia resistente	(4033) (4383)	4411 AGGAGCACTATTCCCATTCCCATGTTMAGAGAGGTATACATAAACAATGTGGCMTGGCTAAATTCGCTGC AGGAMCACTATTCCCATTCCCATGTTMAGAGGTATACATAAACAATGTGGCMTGGCTAAATTCGCTGC

#### FIG 1

		4481
consenso-sensible secuencia resistente	(4103) (4453)	CTATGGAGGCTTTTAGGTGTCTCACTCATATGACAATAAAAAACGACAAGGTAGAGGTTTGGGAGGAAGT CTATGGAGGCTTTTAGGTGTCTCCACTCATATGACAATAAAAAACGACGAGGAGGTAGAGGTTTGGGAGAAGT
consenso-sensible secuencia resistente	(4173) (4523)	4551 TGGGAGGTGTTTCGGAGCTRCTCATCTTCTTTGCGATCCTTGAATATCACAGGTTGCTCCAACTTAAGA TGGAGAGGTGTTTCGGAGCTGCTCTTCTTTGCGATCCTTGAATATCACAGGTTGCTCCAACTTAAGA
consenso-sensible secuencia resistente	(4243) (4593)	4621 AGTGTTTCTGGAGGGCTGGAGCATCTCACTRCTTTGGAGATKTTAGAAATATACGACACCCCATAAGCTGA AGTGTTTCTGGAGGGCTGGAGCATCTCACTGCTTTGGAGATGTTAGAAATATACGACACCCCATAAGCTGA
consenso-sensible secuencia resistente	(4313) (4663)	4760 GTCTWTCAGAAGACCCAGAAGGTGTTGTGCCATGGAAATCCCTTCATCACTCCCTCAGCTACTTGMAABT GTCTATCAGAAGACCCAGAAGGTGTTGTGCCATGGAAATCCCTTCATCACTCCTCCAGCTACTTGCAABT
consenso-sensible secuencia resistente	(4383) (4733)	4830 GATGAATCTCCCWCAGCTGGTCAACCTGCCTGATTCGATGCAGTTCTTGGY©TCCCTCCHAAC@CTTTCA GATGAATCTCCCACAGCTGGTCAACCTGCCTGATTCGATGCAGTTCTTGGCTGCCTCCGAACHCTTTCA
consenso-sensible secuencia resistente	(4453)	4831 ATGGGGCATTGCAGTAAACTGGAATCAGTGCCAGATTGGATGCCCMGACTCACTTCYCTCAGGAAGCTTA ATGGTGCATTGCAGTAAAACTGGAATCAGTGCCAGATTGGATGCCCAGACTCACTTCTCTCTC
consenso-sensible secuencia resistente	(4523) (4873)	4970 TGGTTTCATTCTGTTCCGCACATCTGGAGAGAGATG <u>Y</u> CAAAATCCAACTGGGGTGGACTGGCCTAACAT TGGTTTCATTCTGTTCCGCACATCTGGAGAAGATG <u>C</u> CAAAATCCAACTGGGGTGGACTGGCCTAACAT
consenso-sensible secuencia resistente	(4593) (4943)	4971 TCAACACATCCCCTSCATTGATGTCACCTCTAGCCGTCCTAAGTTTTTAGTGTTGCCGTATGAATAG TCAACACACCCCTCCATTGATGTCACCTCTAGCCGTCCTAAGTTTTTAGTGTTGCCGTATGAATAG

## FIG 2 A

MDVVGTALSAAQSLFAALQSSELKEILSIFGYKSQLDDLQRTVSTINAVFRDAETKQELTHEAQHWLEEL MDVVGTALSAAQSLFAALQSSELKEILSIFGYKSQLDDLQRTVSTINAVFRDAETKQELTHEAQHWLEEL MDVVGTALSAAQSLFAALQSSELKEILSIFGYKSQLDDLQRTVSTINAVFRDAETKQELTHEAQHWLEEL MDVVGTALSAAQSLFAALQSSELKEILSIFGYKSQLDDLQRTVSTINAVFRDAETKQELTHEAQHWLEEL MDVVGTALSAAQSLFAALQSSELKEILSIFGYKSQLDDLQRTVSTINAVFRDAETKQELTHEAQHWLEEL ---STINAVFRDAETKQELTHEAQHWLEEL MDVVGTALSAAQSLFAALQSSELKEILSIFGYKSQLDDLQRTVSTINAVFRDAETKQELTHEAQHWLEEL MDVVGTALSAAQSLFAALQSSELKEILSIFGYKSQLDDLQRTVSTINAVFRDAETKQELTHEAQHWLEEL MDVVGTALSAAQSLFAALQSSELKEILSIFGYKSQLDDLQRTVSTINAVFRDAETKQELTHEAQHWLEEL MDVVGTALSAAQSLFAALQSSELKEILSI FGYKSQLDDLQRTVSTINAVFRDAETKQELTHEAQHWLEEL MDVVGTALSAAQSLFAALQSSELKEILSI FGYKSQLDDLQRTVSTINAVFRDAETKQELTHEAQHWLEEL -----STINAVFRDAETKQELTHEAQHWLEEL MDVVGTALSAAOSLFAALOSSELKEILSIFGYKSOLDDLORTVSTINAVFRDAETKOELTHEAQHWLEEL MDVVGTALSAAQSLFAALQSSELKEILSI FGYKSQLDDLQRTVSTINAVFRDAETKQELTHEAQHWLEEL MDVVGTALSAAQSLFAALQSSELKEILSIFGYKSQLDDLQRTVSTINAVFRDAETKQELTHEAQHWLEEL MDVVGTALSAAQSLFAALQSSELKEILSIFGYKSQLDDLQRTVSTINAVFRDAETKQELTHEAQHWLEEL MDVVGTALSAAQSLFAALQSSELKEILSIFGYKSQLDDLQRTVSTINAVFRDAETKQELTHEAQHWLEEL MDVVGTALSAAQSLFAALQSSELKEILSIFGYKSQLDDLQRTVSTINAVFRDAETKQELTHEAQHWLEEL MDVVGTALSAAQSLFAALQSSELKEILSIFGYKSQLDDLQRTVSTINAVFRDAETKQELTHEAQHWLEEL MDVVGSALSAAQSLFAALQSSELKEILSIFGYKSQLDDLQRIVSTINAVFRDAETKQELTHEAQHWLEEL MDVVGTALSAAQSLFAALQSSELKEILSIFGYKSØLDDLQRTVSTINAVFRDAETKQELTHEAQHWLEEL MDVVGTALSAAQSLFAALQSSELKEILSIFGYKSQLDDLQRTVSTINAVFRDAETKQELTHEAQHWLEEL MDVVGSALSAAQSLFAALQSSELKEILSIFGYKSQLDDLQRIVSTINAVFRDAETKQELTHEAQHWLEEL (1) (1) (1) (1) (1)(1) (1) (1) (1)(1) (1) (1) (1) (1) sen. Secuencia res. sen Secuencia10 Secuencia19 Secuencia15 Secuencia18 Secuencia20 Secuencia11 Secuencia13 Secuencia16 Secuencia17 Secuencia12 Secuencia14 Secuencia21 Secuencia22 Secuencia2 Secuencia7 Secuencia8 Secuencia9 Secuencia5 Secuencia6 Secuencia3 Secuencia4 Secuencia

sen.

## FIG 2B

KDAVFEADDLFDE FVTLAEQKQLVEAGGSLSKKMRQFFSDSNPLGIAYRMSRGVKKIKKKLDAIAYNHQF KDAVFEADDLFDEFVTLAEQKQLVEAGGSLSKKMRQFFSDSNPLGIAYRMSRGVKKIKKKLDAIAYNHQF KDAVFEADDLFDEFVTLAEOKOLVEAGGSLSKKMROFFSDSNPLGIAYRMSRGVKKIKKKLDAIAYNHOF KDAVFEADDLFDEFVTLAEQKQLVEAGGSLSKKMRQFFSDSNPLGIAYRMSRGVKKIKKKLDAIAYNHQF KDAVFEADDLFDE FVTLAEQKQLVEAGGSLSKKMRQFFSDSNPLGIAYRMSRGVKKIKKKLDAIAYNHQF KDAVFEADDLFDEFVTLAEQKQLVEAGGSLSKKMRQFFSDSNPLGIAYRMSRGVKKIKKKLDAIAYNHQF KDAVFEADDLFDEFVTLAEQKQLVEAGGSLSKKMRQFFSDSNPLGIAYRMSRGVKKIKKKLDAIAYNHQF KDAVFEADDLFDEFVTLAEQKQLVEAGGSLSKKMRQFFSDSNPLGIAYRMSRGVKKIKKKLDAIAYNHQF KDAVFEADDLFDEFVTLAEQKQLVEAGGSLSKKMRQFFSDSNPLGIAYRMSRGVKKIKKKLDAIAYNHQF KDAVFEADDLFDEFVTLAEQKQLVEAGGSLSKKMRQFFSDSNPLGIAYRMSRGVKKIKKKLDAIAYNHQF KDAVFEADDLFDEFVTLAEQKQLVEAGGSLSKKMRQFFSDSNPLGIAYRMSRGVKKIKKKLDAIAYNHQF KDAVFEADDLFDEFVTLAEOKOLVEAGGSLSKKMRQFFSDSNPLGIAYRMSRGVKKIKKKLDAIAYNHOF KDAVFEADDLFDE FVTLAEQKQLVEAGGSLSKKMRQFFSDSNPLG1AYRMSRGLKK1KKKLDA1AYNHQF KDAV FEADDL FDE FVTLAE QKQLVEAGGSLSKKMRQ FFSDSN PLGIAYRMSRGVKK IKKKLDAIAYNHQ F KDAVFEADDLFDEFVTLAEQKQLVEAGGSLSKKMRQFFSDSNPLGIAYRMSRGVKKIKKKLDAIAYNHQF KDAVFEADDLFDEFVTLAEQKQLVEAGGSLSKKMRQFFSDSNPLGIAYKMSQGVKKIKKKLDVIAYNHQF KDAVFEADDLFDEFVTLAEOKOLVEAGGSLSKKMRQFFSDSNPLGIAYRMSRGVKKIKKKLDAIAYNHOF KDAVFEADDLFDEFVTLAEOKOLVEAGGSLSKKMROFFSDSNPLGIAYRMSRGVKKIKKKLDAIAYNHOF KDAVFEADDL FDE FVTLAEQKQLVEAGGSLSKKMRQFFSDSNPLGIAYRMSRGVKKIKKKLDAIAYNHQF KDAVFEADDLFDEFVTLAEQKQLVEAGGSLSKKMRQFFSDSNPLGIAYRMSRGVKKIKKKLDAIAYNHQF KDAVFEADDLFDEFVTLAEQKQLVEAGGSLSKKMRQFFSDSNPLGIAYRMSRGVKKIKKKLDAIAYNHQF KDAVFEADDLFDEFVTLAEQKQLVEAGGSLSKKMRQFFSDSNPLGIAYRMSRGVKKIKKKLDAIAYNHQF KDAVFEADDLFDEFVTLAEQKQLVEAGGSLSKKMRQFFSDSNPLGIAYKMSQGVKKIKKKLDVIAYNHQF (71)(71) (71) (71)(71)(28) (71)(71) (71)(71)(71)(28) (71)71) 71) 71) Secuencial0 sen. sen Secuencia res. Secuencia19 Secuencia20 Secuencia11 Secuencia12 Secuencia14 Secuencia16 Secuencia18 Secuencia13 Secuencia15 Secuencia22 Secuencia17 Secuencia21 Secuencia8 Secuencia4 Secuencia5 Secuencia6 Secuencia9 Secuencia2 Secuencia3 Secuencia7 Secuencia1

#### FIG 2 C

SFKIDLEPIKERRLETGSVVNAGDIIGREDDLEKIVGLLLDSNIQRDVSFLTIVGMGGLGKTALAQLVYN SFKI DLE PI KERRLETGSVVNAGDI IGREDDLEKI VGLLLDSNI QRDVS FLTI VGMGGLGKTALAQL VYN SFKIDLEPIKERRLETGSVVNAGDIIGREDDLEKIVGLLLDSNIORDVSFLTIVGMGGLGKTALAQLVYN SFKIDLEPIKERRLETGSVVNAGDIIGREDDLEKIVGLLLDSNIORDMSFLTIVGMGGLGKTALAQLVYN SFKIDLEPIKERRLETGSVVNAGDIIGREDDLEKIVGLLLDSNIQRDVSFLTIVGMGGLGKTALAQLVYN SFKIDLEPIKERRLETGSVVNAGDIIGREDDLEKIVGLLLDSNIQRDVSFLTIVGMGGLGKTALAQLVYN SFKIDLEPIKERRLETGSVVNAGDIIGREDDLEKIVGLFLDSNIQRDVSFLTIVGMGGLGKTALAQLVYN SFKIDLEPIKERRLETGSVVNAGDIIGREDDLEKIVGLFLDSNIQRDVSFLTIVGMGGLGKTALAQLVYN SFKIDLEPMKERRLETGSVVNAGDIIGREDDLEKIVGLLLDSNIQRDVSFLTIVGMGGLGKTALAQLVYN SFKIDLEPIKERRLETGSVVNAGDIIGREDDLEKIVGLLLDSNIQRDVSFLTIVGMGGLGKTALAQLVYN SFKIDLEPIKERRLETGSVVNAGDIIGREDDLEKIVGLLLDSNIORDVSFLTIVGMGGLGKTALAOLVYN SFKIDLEPIKERRLETGSVVNAGDIIGREDDLEKIVGLLLDSNIQRDVSFLTIVGMGGLGKTALAQLVYN SFKIDLEPIKERRLETGSVVNAGDIIGREDDLEKIVGLLLDSNIQRDVSFLTIVGMGGLGKTALAQLVYN SFKI DLEPIKERRLETGSVVNAGDI IGREDDLEKIVGLLLDSNI QRDVSFLTI VGMGGLGKTALAQLVYN SFKIDLEPIKERRLETGSVVNAGDIIGREDDLEKIVGLLLDSNIORDVSFLTIVGMGGLGKTALAQLVYN SFKIDLEPIKERRLETGSVVNAGDIIGREDDLEKIVGLLLDSNIQRDVSFLTIVGMGGLGKTALAQLVYN SFKIDLEPIKERRLETGSVVNAGDIIGREDDLEKIVGLLLDSNIORDVSFLTIVGMGGLGKTALAQLVYN SFKIDLEPIKERRLETGSVVNAGDIIGREDDLEKIVGLLLDSNIQRDVSFLTIVGMGGLGKTALAQLVYN SFKIDLEPIKERRLETGSVVNAGDIIGREDDLEKIVGLLLDSNIQRDVSFLTIVGMGGLGKTALAQLVYN SFKI DLE PIKERRLETGSVVNAGDI IGREDDLEKI VGLLLDSNI QRDVS FLTI VGMGGLGKTALAQLVYN SFKIDLEPIKERRLETGSVVNAGDIIGREDDLEKIVGLLLDSNIQRDVSFLTIVGMGGLGKTALAQLVYN SFKIDLEPIKERRLETGSVVNAGDIIGREDDLEKIVGLLLDSNIQRDVSFLTIVGMGGLGKTALAQLVYN SFKIDLEPIKERRLETGSVVNAGDIIGREDDLEKIVGLLLDSNIQRDVSFLTIVGMGGLGKTALAQLVYN (86) (141)(141)(141)(86) sen. (141) sen. (141) sen. (141) sen. (141) (141)(141) (141)(141)(141)(141)(141)sen. (141) sen. Secuencia res. Secuencia10 Secuencia15 Secuencia18 Secuencia19 Secuencia11 Secuencia13 Secuencia16 Secuencia17 Secuencia20 Secuencia12 Secuencia14 Secuencia21 Secuencia22 Secuencia9 Secuencia1 Secuencia4 Secuencia6 Secuencia7 Secuencia8 Secuencia2 Secuencia 5 Secuencia3

# FIG 2 D

211 DPRVRTAFPLRCWNCVSDQDQKQLDVKEILGKILAMTATGKNHEGSTMDQVQTQLREQLCGKRYLLVLDDV DPRVRTAFPLRCWNCVSDQDQKKLDVKEILGKILSTATGKNHEGSTMDHVQTQLREQLCGKRYLLVLDDV DPRVRTAFPLRCWNCVSDQDQKKLDVKEILGKILSTATGKNHEGSTMDHVQTQLQEQLCGKRYLLVLDDV	DPRVRTAFPLRCWNCVSDQDQKKLDVKEILGKILSTATGKNHEGSTMDHVQTQLQEQLCGKRYLLVLDDV DPRVRTAFPIRCWNCVSDODOKKIDVKFII.GKII.STATGKNHEGSTMDHVOTOI.OFOI.GGKRYII.VI.DDV	DPRVRTAFPLRCWNCVSDQDQKKLDVKEILGKILSTATGKNHEGSTMDHVQTQLQEQLCGKRYLLVLDDV	DPRVRTAFPLRCWNCVSDQDQKKLDVKEILGKILSTATGKNHEGSTMDHVQTQLREQLCGKRYLLVLDDV	DPRVRTAFPLRCWNCL*	DPRVRTAFPLRCWNCVSDQDOKKLDVKEILGKILSTATGKNHEGSTMDHVOTOLOEQLCGKRYLLVLDDV	DPRVRTAFPLRCWNCVSDQDQKKLDVKEILGKILSTATGKNHEGSTMDHVQTQLREQLCGKRYLLVLDDV	DPRVRTAFPLRCWNCVSDQDQKKLDVKEILGKILSTATGKNHEGSTMDHVQTQLREQLCGKRYLLVLDDV	DPRVRTAFPLRCWNCVSDQDQKKLDVKEILGKILSTATGKNHEGSTMDHVQTQLREQLCGKRYLLVLDDV	DPRVRTAFPLRCWNCL*	DPRVRTAFPLRCWNCVSDQDQKKLDVKE1LGK1LSTATGKNHEGSTMDHVQTQLREQLCGKRYLLVLDDV	DPRVRTAFPLRCWNCVSDQDQKKLDVKEILGKILSTATGKNHEGSTMDHVQTQLREQLCGKRYLLVLDDV	DPRVRTAFPLRCWNCVSDQDQKKLDVKEILGKILSTATGKNHEGSTMDHVQTQLREQLCGKRYLLVLDDV	DPRVRTAFPLRCWNCVSDQDQKKLDVKEILGKILSTATGKNHEGSTMDHVQTQLQEQLCGKRYLLVLDDV	DPRVRTAFPLRCWNCVFDQDQKQLDVKEILGKILSTATGKNHEGSTMDQVQTQLRE-LCGKRYLLVLDDV	DPRVRTAFPLRCWNCVSDQDQKKLDVKEILGKILSTATGKNHEGSTMDHVQTQLREQLCGKRYLLVLDDV	DPRVRTAFPLRCWNCVSDQDQKKLDVKE1LGK1LSTATGKNHEGSTMDHVQTQLREQLCGKRYLLVLDDV	DPRVRTAFPLRCWNCVSDQDQNQLDVKEILGKILSTATGKNHKGSTMDQVQTQLREQLCGKRYLLVLDDV	DPRVRTAFPLRCWNCVSDQDQNQLDVKEILGKILSTATGKNHKGSTMDQVQTQLREQLCGKRYLLVLDDV
(211) (211) (211)	(211)	(211)	(211)	(168)	(211)	(211)	(211)	(211)	(168)	(211)	(211)	(211)	(211)	(211)	(211)	(211)	(211)	(211)
Secuencia res. Secuencial sen Secuencia2 sen.	Secuencia3 sen.		Secuencia6 sen.	Secuencia7 sen.		Secuencial0 sen.	Secuenciall sen.	Secuencial2 sen.	Secuencial3 sen.	Secuencial4 sen.	Secuencial5 sen.	Secuencia16 sen.	Secuencial7 sen.	Secuencial8 sen.	Secuencial9 sen.	Secuencia20 sen.	Secuencia21 sen.	Secuencia22 sen.

# FIG 2 E

		281
Secuencia res.	(281)	WNENPNOLRDLVEFFMGGRESRNWIVVTTRSHETARIIRDGPLHKLOGLSEENSWRLFVRWTFGSVORKFP
Secuencial sen	(281)	WNENPNQLRYLVEFFMGGQRGNWIVVTTRSHETARIIRDGPLHKLQGLSEENSWRLFVRWTFGSVQPKFP
Secuencia2 sen.	(281)	WNENPNQLRXXXXFFMGGQRGNWIVVTTRSHETTRIIRDGPLHKLQGLSEENSWRLFVRWTFGSVQPKFP
Secuencia3 sen.	(281)	WNENPNQLRDLGKFFMGGQRGNWIVVTTRSHETTRIIRDGPLHKLQGLSEENSWRLFVRWTFGSVQPKFP
Secuencia4 sen.	(281)	WNENPNQLRDXVEFFMGGQRGNWIVVTTRSHETTRIIRDGPLHKLQGLSEENSWRLFVRWTFGSVQPKFP
Secuencia5 sen.	(281)	WNENPNQLXXXXXFFMGGQRGNWIVVTTRSHETTRIIRDGPLHKLQGLSEENSWRLFVRWTFGSVQPKFP
Secuencia6 sen.	(281)	WNENPNQLRIXVEFFMGGQRGNWIVVTTRSHETARIIRDGPLHKLQGLSEENSWRLFVRWTFGSVQPKFP
Secuencia7 sen.	(184)	
Secuencia8 sen.	(281)	WNENPNQLRXXXXFFMGGQRGNWIVVTTRSHETTRIIRDGPLHKLQGLSEENSWRLFVRWTFGSVQPKFP
Secuencia9 sen.	(281)	WNENPNQLRDXVEFFMGGQRGNWIVVTTRSHETTRIIRDGPLHKLQGLSEENSWRLFVRWTFGSVQPKFP
Secuencial0 sen.	(281)	WNENPNQLRYLVEFFMGGQRGNWIVVTTRSHETARIIRDGPLHKLQGLSEENSWRLFVRWTFGSVQPKFP
Secuenciall sen.	(281)	WNENPNQLRYLVEFFMGGQRGNWIVVTTRSHETARIIRDGPLHKLQGLSEENSWRLFVRWTFGSVQPKFP
Secuencial2 sen.	(281)	WNENPNQLXXXXXFFMGGQRGNWIVVTTRSHETARIIRDGPLHKLQGLSEENSWRLFVRWTFGSVQPKFP
Secuencia14 sen.	(281)	WNENPNQLRILVEFFMGGQRGNWIVVTTRSHETARIIRDGPLHKLQGLSEENSWRLFVRWTFGSVQPKFP
Secuencial5 sen.	(281)	WNENPNQLRXXXXFFMGGQRGNWIVVTTRSHETARIIRDGPLHKLQGLSEENSWRLFVRWTFGSVQPKFP
Secuencia16 sen.	(281)	WNENPNQLRXXVEFFMGGQRGNWIVVTTRSHETARIIRDGPLHKLQGLSEENSWRLFVRWTFGSVQPKFP
Secuencial7 sen.	(281)	WNENPNQLRDLVEFFMGGQRGNWIVVTTRSHETTRIIRDGPLHKLQGLSEENSWRLFVRWTFGSVQPKFP
Secuencia18 sen.	(280)	WNENPNQLRDLVEFFMGGQRGNWIVVTTRSHETARIIRDGPLHKLQGLSEENSWRLFVRWTFGSVQPKFP
Secuencial9 sen.	(281)	WNENPNQLRITUVEFFMXXXXXXXXXXXXXXXXXXXXXXXXXXXXQGLSEENSWRLFVRWTFGSVQPKFP
Secuencia20 sen.	(281)	WNENPNQLRDLVEFFMGGQRGNWIVVTTRSHETARIIRDGPLHKLQGLSEENSWRLFVRWTFGSVQPKFP
Secuencia21 sen.	(281)	WNENPNQLRDLVEFFMGXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
Secuencia22 sen.	(281)	WNENPNQLRXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

#### FIG 2 F

351 NDF聞MIARDIVDKCARNPLAIRVVGSLLCGQDKSKWLSFHEI的LGNIRKSHNDIMPILNLSYHHLEPPI图	NDFVMIARDIVDKCARNPLAIRVVGSLLCGQDKSKWLSFHEICLANIRKSHNDIMPILNLSYHHLEPPIR NDFVMIARDIVDKCARNPLAIRVVGSLLCGODKSKWLSFHEICLANIRKSHNDIMLILNLSYHHLEPPIR	NDFVMIARDIVDKCARNPLAIRVVGSLLCGQDKSKWLSFHEICLANIRKSHNDIMLILNLSYHHLEPPIR	NDFVMIARDIVDKCARNPLAIRVVGSLLCGQDKSKWLSFHEICLANIRKSHNDIMLILLNLSYHHLEPPIR	NDFVMIARDIVOKCARNPLAIRVVGSLLCGQDKSKWLSFHEICLANIRKSHNDIM_ILLNLSYHHLEPPIR	NDFVMIARDIVDKCARNPLAIRVVGSLLCGQDKSKWLSFHEICLANIRKSHNDIMPILNLSYHHLEPPIR	NDFVMIARDIVDKCARNPLAIRVVGSLLCGQDKSKWLSFHEICLANIRKSHNDIMLILNLSYHHLEPPIR	NDFVMIARDIVDKCARNPLAIRVVGSLLCGQDKSKWLSFHEICLANIRKSHNDIMLILNLSYHHLEPPIR	NDFVMIARDIVDKCARNPLAIRVVGSLLCGQDKSKWLSFHEICLANIRKSHNDIMPILNLSYHHLEPPIR	NDFVMIARDIVDKCARNPLAIRVVGSLLCGQDKSKWLSFHEICLANIRKSHNDIMPILNLSYHHLEPPIR	NDFVMIARDIVDKCARNPLAIRVVGSLLCGQDKSKWLSFHEICLANIRKSHNDIMPILNLSYHHLEPPIR	NDFVMIARDIVDKCARNPLAIRVVGSLLCGQDKSKWLSFHEICLANIRKSHNDIMPILNLSYHHLEPPIR	NDFVMIARDIVDKCARNPLAIRVVGSLLCGQDKSKWLSFHEICLANIRKSHNDIMPILNLSYHHLEPPIR	NDFVMIARDIVDKCARNPLAIRVVGSLLCGQDKSKWLSFHEICLANIRKSHNDIMPILNLSYHHLEPPIR	NDFVMIARDIVDKCARNPLAIRVVGSLLCGQDKSKWLSFHEICLANIRKSHNDIMLILNLSYHHLEPPIR	NDFVMIARDIVDKCARNPLAIRVVGSLLCGQDKSKWLSFHEICLANIRKSHNDIMPILNLSYHHLEPPIR	NDFVMIARDIVDKCARNPLAIRVVGSLLCGQDKSKWLSFHEICLANIRKSHNDIMPILNLSYHHLEPPIR	NDFVMIARDIVDKCARNPLAIRVVGSLLCGQDKSKWLSFHEICLANIRKSHNDIMPILNLSYHHLEPPIR	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXDKCARNPLAIRVVGSLLCGQDKSKWLSFHEXCLANIRKSHNDIMPILNLSYHHLEPPIR
(351)	(351)	(351)	(351)	(351)	(351)	(351)	(351)	(351)	(351)	(351)	(351)	(351)	(.351)	(351)	(350)	(351)	(351)	(333)	(351)
Secuencia res.	Secuencial sen Secuencia2 sen.	Secuencia3 sen.	Secuencia4 sen.	Secuencia5 sen.	Secuencia6 sen.	Secuencia8 sen.	Secuencia9 sen.	Secuencial0 sen.	Secuenciall sen.	Secuencial2 sen.	Secuencia14 sen.	Secuencial5 sen.	Secuencia16 sen.	Secuencial7 sen.	Secuencial8 sen.	Secuencial9 sen.	Secuencia20 sen.	Secuencia21 sen.	Secuencia22 sen.

## FIG 2 G

Secuencia r Secuencia2 Secuencia3 Secuencia3 Secuencia4 Secuencia5 Secuencia10 Secuencia11 Secuencia11 Secuencia11 Secuencia11 Secuencia11 Secuencia11 Secuencia11 Secuencia11 Secuencia12 Secuencia13 Secuencia13 Secuencia13 Secuencia13 Secuencia13 Secuencia13 Secuencia13 Secuencia13 Secuencia13 Secuencia13 Secuencia13
--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

### FIG 2 F

	491 560
Secuencia res. (491)	1) DIMHDIAQNVMGKELCTTKNISGSLDK\BVRHLSLARTSFARYSFNATHIRSYF\BAGYWCQDAEINQFSVE
Secuencial sen (491	1) DLMHDIAQNVMGKELCTTKNISGSLDKNVRHLSLARTSFARYSFNATHIRSYFYAGYWCQDAEINQFSVE
Secuencia2 sen. (491	1) DLMHDIAQNVMGKELCTTKNISGSLDKNVRHLSLARTSFARYSFNATHIRSYFYAGYWCQDAEIXQFSVE
Secuencia3 sen. (491	1) DIMHDIAQNVMGKELCTTKNISGSLDKNVRHLSLARTSFARYSFNATHIRSYFYAGYWCQDAEINQFSVE
Secuencia4 sen. (491	1) DIMHDIAQNVMGKELCTTKNISGSLDKNVRHLSLARTSFARYSFNATHIRSYFYAGYWCQDAEINQFSVE
Secuencia5 sen. (491	1) DLMHDIAQNVMGKELCTTKNISGSLDKNVRHLSLARTSFARYSFNATHIRSYFXAGYWCQDAEINQFSVE
Secuencia6 sen. (491	1) DLMHDIAQNVMGKELCTTKNISGSLDKNVRHLSLARTSFARYSFNATHIRSYFYAGYWCQDAEINQFSVE
Secuencia8 sen. (491	1) DLMHDIAQNVMGKELCTTKNISGSLDKNVRHLSLARTSFARYSFNATHIRSYFYAGYWCQDAEINQFSVE
Secuencia9 sen. (491	1) DLMHDIAQNVMGKELCTTKNISGSLDKNVRHLSLARTSFARYSFNATHIRSYFYAGYWCQDAEINQFSVE
SecuencialO sen. (491	1) DLMHDIAQNVMGKELCTTKNISGSLDKNVRHLSLARTSFARYSFNATHIRSYFYAGYWCQDAEINQFSVE
Secuenciall sen. (491	1) DLMHDIAQNVMGKELCTTKNISGSLDKNVRHLSLARTSFARYSFNATHIRSYFYAGYWCQDAEINQFSVE
Secuencial2 sen. (491	1) DLMHDIAQNVMGKELCTTKNISGSLDKNVRHLSLARTSFARYSFNATHIRSYFYAGYWCQDAEINQFSVE
Secuencial4 sen. (491	1) DLMHDIAQNVMGKELCTTKNISGSLDKNVRHLSLARTSFARYSFNATHIRSYFYAGYWCQDAEINQFSVE
Secuencial5 sen. (491	1) DLMHDIAQNVMGKELCTTKNISGSLDKNVRHLSLARTSFARYSFNATHIRSYFYAGYWCQDAEINQFSVE
Secuencia16 sen. (491	1) DLMHDIAQNVMGKELCTTKNISGSLDKNVRHLSLARTSFARYSFNATHIRSYFYAGYWCQDAEINQFSVE
Secuencial7 sen. (491	1) DIMHDIAQNVMGKELCTTKNISGSLDKNVRHLSLARTSFARYSFNATHIRSYFYAGYWCQDAEINQFSVE
Secuencial8 sen. (490)	)) DLMHDIAQNVMGKELCTTKNISGSLDKNVRHLSLARTSFARYSFNATHIRSYFYAGYWCQNAEINQFSVE
Secuencial9 sen. (491	1) DLMHDIAQNVMGKELCTTKNISGSLDKNVRHLSLARTSFARYSFNATHIRSYFYAGYWCQDAEINQFSVE
Secuencia20 sen. (491)	1) DLMHDIAQNVMGKELCTTKNISGSLDKNVRHLSLARTSFARYSFNATHIRSYFXAGYWCQDAEINQFSVE
Secuencia21 sen. (448	8) XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
Cernencia?? sen (491)	I) DIMHDIAONVMGKET.CTTKNISGSI.DKNVRHT.GI.XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

## FIG 2 I

		561
Secuencia res.	(561)	alvpncl <b>k</b> erakdlawskikslpdsiggllhlryldlsynedlevlpnsiaklynlotlolkgckrlegl
Secuencial sen	(561)	ALVPNCLCLRALDLAWSKIKSVPDSIGGLLHLRYLDLSYNEDLEVLPNSIAKLYNLQTLQLKGCKRLEGL
Secuencia2 sen.	(561)	ALVPNCLCLRALDLAWSKIKSVPDSIGGLLHLRYLDLSYNEDLEVLPNSIAKLYNLQTLQLKGCKRLEGL
Secuencia3 sen.	(561)	ALVPNCLCLRALDLAWSKIKSVPDSIGGLLHLRYLDLSYNEDLEVLPNSIAKLYNLQTLQLKGCKRLEGL
Secuencia4 sen.	(561)	ALVPNCLCLRALDLAWSKIKSVPDSIGGLLHLRYLDLSYNEDLEVLPNSIAKLYNLQTLQLKGCKRLEGL
Secuencia5 sen.	(561)	ALVPNCLCLRALDLAWSKIKSVPDSIGGLLHLRYLDLSYNEDLEVLPNSIAKLYNLQTLQLKGCKRLEGL
Secuencia6 sen.	(561)	ALVPNCLCLRALDLAWSKIKSVPDSIGGLLHLRYLDLSYNEDLEVLPNSIAKLYNLQTLQLKGCKRLEGL
Secuencia8 sen.	(561)	ALVPNCLCLRALDLAWSKIKSVPDSIGGLLHLRYLDLSYNEDLEVLPNSIAKLYNLQTLQLKGCKRLEGL
Secuencia9 sen.	(561)	ALVPNCLCLRALDLAWSKIKSVPDSIGGLLHLRYLDLSYNEDLEVLPNSIAKLYNLQTLQLKGCKRLEGL
SecuencialO sen.	(561)	ALVPNCLCLRALDLAWSKIKSVPDSIGGLLHLRYLDLSYNEDLEVLPNSIAKLYNLQTLQLKGCKRLEGL
Secuenciall sen.	(561)	ALVPNCLCLRALDLAWSKIKSVPDSIGGLLHLRYLDLSYNEDLEVLPNSIAKLYNLQTLQLKGCKRLEGL
Secuencial2 sen.	(561)	ALVPNCLCLRALDLAWSKIKSVPDSIGGLLHLRYLDLSYNEDLEVLPNSIAKLYNLQTLQLKGCKRLEGL
Secuencial4 sen.	(561)	ALVPNCLCLRALDLAWSKIKSVPDSIGGLLHLRYLDLSYNEDLEVLPNSIAKLYNLQTLQLKGCKRLEGL
Secuencial5 sen.	(561)	ALVPNCLCLRALDLAWSKIKSVPDSIGGLLHLRYLDLSYNEDLEVLPNSIAKLYNLQTLQLKGCKRLEGL
Secuencia16 sen.	(561)	ALVPNCLCLRALDLAWSKIKSVPDSIGGLLHLRYLDLSYNEDLEVLPNSIAKLYNLQTLQLKGCKRLEGL
Secuencial7 sen.	(561)	ALVPNCLCLRALDLAWSKIKSVPDSIGGLLHLRYLDLSYNEDLEVLPNSIAKLYNLQTLQLKGCKRLEGL
Secuencia18 sen.	(260)	ALVPNCLCLRALDLAWSKIKSVPDSIGGLLHLRYLD <u>I</u> SYNEDLEVLPNSIAKLYNLQTLQLKGCKRLEGL
Secuencial9 sen.	(561)	ALVPNCLCLRALDLAWSKIKSVPDSIGGLLHLRYLDLSYNEDLEVLPNSIAKLYNLQTLQLKGCKRLEGL
Secuencia20 sen.	(561)	ALVPNCLCLRALDLAWSKIKSVPDSIGGLLHLRYLDLSYNEDLEVLPNSIAKLYNLQTLQLKGCKRLEGL
Secuencia21 sen.	(504)	ALVPNCLCLRALDLAWSKIKSLPDSIGGLLHLRYLDLSYNEDLEVLPNSIAKLYNLQTLQLKGCKRLEGL
Secuencia22 sen.	(533)	XXXXNCLCLRALDLAWSKIKSLPDSIGGLLHLRYLDLSYNEDLEVLPNSIAKLYNLQTLQLKGCKRLEGL

#### FIG 2 J

700 PKHLSRLVKLQTLDIØGCNNVTYMPKGMGKØTCLHTLSKFIVGGEGSCSSWKQØFDGLEDLKALNNLKGH PKHLSRLVKLQTLDIYGCNNVTYMPKGMGKMTCLHTLSKFIVGGEGSCSSWKQWFDGQEDLKALNNLKGH PKHLSRLVKLQTLDIYGCNNVTYMPKGMGKMTCLHTLSKFIVGGEGSCSSWKQWFDGQEDLKALNNLKGH	PKHLSRLVKLQTLDIYGCNNVTYMPKGMGKMTCLHTLSKFIVGGEGSCSSWKQWFDGQEDLKALNNLKGH PKHLSRLVKLQTLDIYGCNNVTYMPKGMGKMTCLHTLSKFIVGGEGSCSSWKQWFDGQEDLKALNNLKGH PKHLSRLVKLQTLDIYGCNNVTYMPKGMGKMTCLHTLSKFIVGGEGSCSSWKQWFDGQEDLKALNNLKGH	PKHLSRLVKLQTLDIYGCNNVTYMPKGMGKMTCLHTLSKFIVGGEGSCSSWKQWFDGQEDLKALNNLKGH PKHLSRLVKLQTLDIYGCNNVTYMPKGMGKMTCLHTLSKFIVGGEGSCSSWKQWFDGQEDLKALNNLKGH	PKHĽSRLVKLQTLDI YGCNNVTYMPKGMGKMTCLHTLSKFI VGGEGSCSSWKQWFDGQEDLKALNNLKGH PKHLSRLVKLQTLDI YGCNNVTYMPKGMGKMTCLHTLSKFI VGGEGSCSSWKQWFDGQEDLKALNNLKGH	PKHLSRLVKLQTLDIYGCNNVTYMPKGMGKMTCLHTLSKFIVGGEGSCSSWKQWFDGQEDLKALNNLKGH PKHLSRLVKLOTLDIYGCNNVTYMPKGMGKMTCLHTLSKFIVGGEGSCSSWKOWFDGOEDLKALNNLKGH	PKHLSRLVKLÖTLDIYGCNNVTYMPKGMGKMTCLHTLSKFIVGGEGSCSSWKQWFDGQEDLKALNNLKGH PKHLSRLVKLOTLDIYGCNNVTYMPKGMGKMTCLHTLSKFIVGGEGSCSSWKOWFDGOEDLKALNNLKGH	PKHLSRLVKLQTLDIYGCNNVTYMPKGMGKMTCLHTLSKFIVGGEGSCSSWKQWFDGQEDLKALNNLKGH PKHLSRLVKLOTLDIYGCNNVTYMPKGMGKMTCLHTLSKFIVGGEGSCSSWKOWFDGOEDLKALNNLKGH	PKHLSRLVKLQTLD1YGCNNVTYMPKGMGKMTCLHTLSKFIVGGEGSCSSWKQWFDGLEDLKALNNLKGH	PKHLSRLVKLQTLDIYGCNNVTYMPKGMGKMTCLHTLSKFIVGGEGSCSSWKQWFDGQEDLKALNNLKGH PKHLSRLVKLQTLDIYGCNNVTYMPKGMGKMTCLHTLSKFIVGGEGSCSSWKQWFDGQEDLKALNNLKGH PKHLSRLVKLQTLDIYGCNNVTYMPKGMGKMTCLHTLSKFIVGGEGSCSSWKRRFDGLEDLKALNNLKGH PKHLSRLVKLQTLDIYGCNNVTYMPKGMGKMTCLHTLSKFIVGGEGSCSSWKKRFDGLEDLKALNNLKGH
(631) (631) (631)	(631) (631) (631)	(631) (631)	(631) (631)	(631) (631)	(631)	(631)	(630)	(631) (631) (574) (599)
Secuencia res. Secuencial sen Secuencia2 sen.	Secuencia3 sen. Secuencia4 sen. Secuencia5 sen.	Secuencia6 sen. Secuencia8 sen.	Secuencia9 sen. Secuencia10 sen.	Secuenciall sen.				Secuencial9 sen. Secuencia20 sen. Secuencia21 sen. Secuencia22 sen.

# FIG 2 K

		701
Secuencia res.	(701)	LEIQIRWPMNTTDAVKEDVMREGLYLNHKEHLNHIVVDFRCEEGGGRMDDEEARRLMEELRPHPYLENLA
Secuencial sen	(701)	LEIQIRWPENTTDAVKEDVKREGLYLNHKEHLNHIVVDFRCEEGGGRMDDEEARRLMEELRPHPYLENLA
Secuencia2 sen.	(701)	LEIQIRWPENTTDAVKEDVKREGLYLNHKEHLNHIVVD
Secuencia3 sen.	(701)	LEIQIRWPENTTDAVKEDVKREGLYLNHKEHLNHIVVD
Secuencia4 sen.	(701)	LEIQIRWPENTTDAVKEDVKREGLYLNHKEHLNHIVVD
Secuencia5 sen.	(701)	LEIQIRWPENTTDAVKEDVKREGLYLNH
Secuencia6 sen.	(701)	LEIQIRWPENTTDAVKEDVKREGLYLN
Secuencia8 sen.	(701)	LEIQIRWPENTTOAVKEDVKREGLYLNH
Secuencia9 sen.	(701)	LEIQIRWPENTTDAVKEDVKREGLYLNH
Secuencial0 sen.	(701)	LEIQIRWPENTTDAVKEDVKREGLYLNHKEHLNHIVVDFRCEEGGGRMDDEEARRLMEELRPHPYLENLA
Secuenciall sen.	(701)	LEIQIRWPENTTDAVKEDVKREGLYLNHKEHLNHIVVD
Secuencial2 sen.	(701)	LEIQIRWPENTTDAVKEDVKREGLYLNHKEHLNHIVVD
Secuencial4 sen.	(701)	LEIQIRWPENTIDAVKEDVKREGLYLNHKEHLNHIVVD
Secuencial5 sen.	(701)	LEIQIRWPENTTDAVKEDVKREGLYLNHKEHLNHIVVD
Secuencial6 sen.	(701)	LEIQIRWPENTTDAVKEDVKREGLYLNHKEHLNHIVVD
Secuencial7 sen.	(701)	LEIQIRWPENTTDAVKEDVKREGLYLNHKEHLNHIVVD
Secuencial8 sen.	(200)	LEIQIRWPENTTDVVKEDVKREGLYLNHKEHLNHIVVD
Secuencial9 sen.	(701)	LEIQIRWPENTTDAVKEDVKREGLYLNHKEHLNHIVVD
Secuencia20 sen.	(701)	LEIQIRWPENTTDAVKEDVKREGLYLNHKEHLNHIVVD
Secuencia21 sen.	(644)	LEIQIRWPENTTDAVKEDVKREGLYLNH
Secuencia22 sen.	(699)	LEIQIRWPENTTDAVKEDVKREGLYLNHKEHLNHIVVD

#### FIG 2

840 VKAYYGVKMPGWATLLPNLTELFLSDCGELENLPCLGNLDHLKVLRLSHLAKLEYIEEDSSSANFRCRPG VKAYYGAKMPGWATLLPNLTELYLSDCGESECLPCMGNLDCLKVLRLSHLAKLEYIEEDSTSANFSFRPG VKAYYGAKMPGWATLLPNLTELYLSDCGESECLPCMGNLDCLKVLRLSHLAKLEYIEEDSTSANFSFRPG	910 PESAGLSLYFPSLERLELKRLCKLKGWRRGEGLGDDHQPFNESSS>Ret.Ins <ntqvqlqlclpqlkslriercpllt pesaglslyfpslellelkrlhklkgwrrreglgddhqpfnesss="">Ret.Ins&lt;</ntqvqlqlclpqlkslriercpllt>	911 (911) FMPLCPKTEKLHLVVFNERLRIVHAKRDENFYAPLHSSSSDPENPRNTIPIPMFREVYINNVAWLNSLPM	1050 EAFRCLTHMTIKNDEVESLGEVGEVFRSCSSSLRSLNITGCSNLRSVSGGLEHLTALEMLEIYDTHKLSL	1051 SEDPEGVVPWKSLHHSLSYLQLMNLPQLVNLPDSMQFLAALRTLSIVHCTKLQSVPDWMPRLTSLRKLMV	1121 SFCSAHLERRCQNPTGVDWPNIQHIPSIDVTSSLPKFLVLPYE
(771) (771) (771)	(841) (841) (841)	(911)	(981)	(1051)	(1121)
Secuencia res. Secuencial sen. Secuencial0 sen.	Secuencia res. Secuencial sen. Secuencial0 sen.	Secuencia res.	Secuencia res.	Secuencia res.	Secuencia res.

## FIG 3 A

----STINAVFRDAETKQELTHEAQHWLEEL MERVVYRWN---TAGHLWPTNQKLILIPY-ALQSSELKEILSIFGYKSOLDDLORTVSTINAVFRDAETKQELTHEAQHWLEEL MERVVYRWNTAETAGHLWPTNPKLILIPYSALOSSELKEILSIFGYKSOLDDLORTVSTINAVFRDAETKOELTHEAOHWLEEL MERVVYRWNTAETAGHLWPTNPKLILIPYSALQSSELKEILSI FGYKSQLDDLQRTVSTINAVFRDAETKQELTHEAQHWLEEL MERVVYRWNTAETAGHLWPTNPKLILIPYSALQSSELKEILSIFGYKSQLDDLQRTVSTINAVFRDAETKQELTHEAQHWLEEL MERVVYRWNTAETAGHLWPTNPKLILIPYSALQSSELKEILSIFGYKSQLDDLQRTVSTINAVFRDAETKQELTHEAQHWLEEL MERVVYRWNTAETAGHLWPTNPKLILIPYSALQSSELKEILSIFGYKSQLDDLQRTVSTINAVFRDAETKQELTHEAQHWLEEL MERVVYRWN---TAGHLWPTNQKLILIPY-ALQSSELKEILSIFGYKSQLDDLQRTVSTINAVFRDAETKQELTHEAQHWLEEL MERVVYRWN---TAGHLWPTNQKLILIPYSALQSSELKEILSIFGYKSQLDDLQRTVSTINAVFRDAETKQELTHEAQHWLEEL MERVVYRWN---TAGHLWPTNQKLILIPYSALQSSELKEILSIFGYKSQLDDLQRTVSTINAVFRDAETKQELTHEAQHWLEEL ------STINAVFRDAETKQELTHEAQHWLEEL MERVVYRWN---TAGHLWPTNQKLILIPYSALQSSELKEILSIFGYKSQLDDLQRTVSTINAVFRDAETKQELTHEAQHWLEEL MERVVYRWN---TAGHLWPTNQKLILIPYSALQSSELKEILSIFGYKSQLDDLQRTVSTINAVFRDAETKQELTHEAQHWLEEL MERVVYRWN---TAGHLWPTNOKLILIPYSALOSSELKEILSIFGYKSOLDDLORTVSTINAVFRDAETKOELTHEAOHWLEEL MERVVYRWNTAETAGHLWPTNPKLILIPYSALQSSELKEILSI FGYKSQLDDLQRTVSTINAVFRDAETKQELTHEAQHWLEEL MERVVYRWNTAETAGHLWPTNPKLILIPYSALQSSELKEILSIFGYKSQLDDLQRTVSTINAVFRDAETKQELTHEAQHWLEEL MERVVYRWN---TAGHLWPTNQKLILIPYSALQSSELKEILSIFGYKSQLDDLQRTVSTINAVFRDAETKQELTHEAQHWLEEL MERVVYRWN---TAGHLWPTN<u>O</u>KLILIPYSALOSSELKEILSIFGYKSOLDDLORTVSTINAVFRDAETKOELTHEAQHWLEEL ----ALOSSELKEILSIFGYKSOLDDLORIVSTINAVFRDAETKOELTHEAOHWLEEL ----ALQSSELKEILSIFGYKSQLDDLQRIVSTINAVFRDAETKQELTHEAQHWLEEL MERVVYRWNTAETAGHLWPTNPKLILIPYSALQSSELKEILSIFGYKSØLDDLQRTVSTINAVFRDAETKQELTHEAQHWLEEL MERVVYRWN---TAGHLWPTNQKLILIPYSALQSSELKEILSIFGYKSQLDDLQRTVSTINAVFRDAETKQELTHEAQHWLEEL MERVVYRWNTAETAGHLWPTNPKLILIPYSALQSSELKEILSIFGYKSQLDDLQRTVSTINAVFRDAETKQELTHEAQHWLEEL (1)(7)(1)(1) (1)(1)(1) (1)(1) (1)(1)sen. sen. Secuencial0 sen. Secuencial sen Secuencia res. Secuencia18 Secuencia19 Secuencia13 Secuencia14 Secuencia15 Secuencia16 Secuencia17 Secuencia11 Secuencia12 Secuencia20 Secuencia21 Secuencia22 Secuencia8 Secuencia 5 Secuencia6 Secuencia7 Secuencia9 Secuencia3 Secuencia4 Secuencia2

## FIG 3 B

KDAVFEADDLFDEFVTLAEOKOLVEAGGSLSKKMRQFFSDSNPLGIAYRMSRGVKKIKKKLDAIAYNHQF KDAVFEADDLFDEFVTLAEQKQLVEAGGSLSKKMRQFFSDSNPLGIAYRMSRGVKKIKKKLDAIAYNHQF K DAV FEADDI F DE FVTLAE QK QLVEAGGSLSKK MR QFFSDSN PLGIAYR MSRGVKKIKKKLDAIAYNH QF KDAVFEADDLFDEFVTLAEQKQLVEAGGSLSKKMRQFFSDSNPLGIAYRMSRGLKKIKKKLDAIAYNHQF KDAVFEADDLFDEFVTLAEQKQLVEAGGSLSKKMRQFFSDSNPLGIAYRMSRGVKKIKKKLDAIAYNHQF KDAVFEADDLFDEFVTLAEQKQLVEAGGSLSKKMRQFFSDSNPLGIAYRMSRGVKKIKKKLDAIAYNHQF KDAVFEADDLFDEFVTLAEQKQLVEAGGSLSKKMRQFFSDSNPLGIAYKMSQGVKKIKKKLDVIAYNHQF KDAVFEADDLFDEFVTLAEQKQLVEAGGSLSKKMRQFFSDSNPLGIAYKMSQGVKKIKKKLDVIAYNHQF 71) 71) 71) 71) 71) 28) 71) 71) 71) (71)71) (28) 71) 71) sen. sen sen. sen. sen. sen. sen. Secuencia res. Secuencia10 Secuencia19 Secuencia13 Secuencia15 Secuencia16 Secuencia18 Secuencia11 Secuencia12 Secuencia14 Secuencia17 Secuencia20 Secuencia21 Secuencia22 Secuencia1 Secuencia5 Secuencia6 Secuencia8 Secuencia9 Secuencia3 Secuencia7 Secuencia2 Secuencia4

## FIG 3 C

SFKIDLEPIKERRLETGSVVNAGDIIGREDDLEKIVGL<u>F</u>LDSNIQRDVSFLTIVGMGGLGKTALAQLVYN SFKIDLEPIKERRLETGSVVNAGDIIGREDDLEKIVGL<u>F</u>LDSNIQRDVSFLTIVGMGGLGKTALAQLVYN SFKIDLEPIKERRLETGSVVNAGDIIGREDDLEKIVGLLLDSNIQRDVSFLTIVGMGGLGKTALAQLVYN SFKIDLEPIKERRLETGSVVNAGDIIGREDDLEKIVGLLLDSNIQRDVSFLTIVGMGGLGKTALAQLVYN SFKIDLEPIKERRLETGSVVNAGDIIGREDDLEKIVGLLLDSNIQRDVSFLTIVGMGGLGKTALAQLVYN S FKI DLEPI KERRLETGSVVNAGDI I GREDDLEKI VGLLLDSNI QRDVS FLTI VGMGGLGKTALAQLVYN SFKI DLE PI KERRLETGSVVNAGDI I GREDDLEKI VGLLLDSNI QRDVSFLTI VGMGGLGKTALAQLVYN SFKI DLE PI KERRLETGSVVNAGDI I GREDDLEKI VGLLLDSNI QRDVSFLTI VGMGGLGKTALAQLVYN SFKI DLEPI KERRLETGSVVNAGDI I GREDDLEKI VGLLLDSNI ORDVSFLTI VGMGGLGKTALAQLVYN SFKIDLEPIKERRLETGSVVNAGDIIGREDDLEKIVGLLLDSNIQRDVSFLTIVGMGGLGKTALAQLVYN SFKIDLEPWKERRLETGSVVNAGDIIGREDDLEKIVGLLLDSNIORDVSFLTIVGMGGLGKTALAOLVYN SFKI DLEPIKERRLETGSVVNAGDI I GREDDLEKI VGLLLDSNI QRDVSFLTI VGMGGLGKTALAQLVYN S FKI DLE PI KERRLETGSVVNAGD I I GREDDLEKI VGLLLDSNI ORDVSFLTI VGMGGLGKTALAQLVYN S FKI DLEPI KERRLETGSVVNAGDI I GREDDLEKI VGLLLDSNI ORDVSFLTI VGMGGLGKTALAQL VYN S FKI DLE PI KERRLETGSVVNAGDI I GREDDLEKI VGLLLDSNI QRDVSFLTI VGMGGLGKTALAQLVYN S FKI DLE PI KERRLETGS VVNAGDI I GREDDLEKI VGLLLDSNI QRDVS FLTI VGMGGLGKTALAQLVYN S FKI DLEPI KERRLETGSVVNAGD I I GREDDLEKI VGLLLDSNI QRDVS FLTI VGMGGLGKTALAQLVYN SFKIDLEPIKERRLETGSVVNAGDIIGREDDLEKIVGLLLDSNIQRDVSFLTIVGMGGLGKTALAQLVYN SFKIDLEPIKERRLETGSVVNAGDIIGREDDLEKIVGLLLDSNIQRDVSFLTIVGMGGLGKTALAQLVYN S FKI DLE PI KERRLETGS V V NAGDI I GREDDLEKI VGLLLDSNI ORDVS FLTI V GMGGLGKTALAQLVYN S FKI DLE PIKERRLETGSVVNAGDI I GREDDLEKI VGLLLDSNI QRDVS FLTI VGMGGLGKTALAQLVYN S FKI DLE PI KERRLETGSVVNAGDI I GREDDLEKI VGLLLDSNI ORDMSFLTI VGMGGLGKTALAQL VYN S FKI DLE PI KERRLETGSVVNAGDI I GREDDLEKI VGLLLDSNI QRDVS FLTI VGMGGLGKTALAQLVYN (141) (141)(141)(141)(86) (141)(141)(86) (141)(141)(141)(141)(141)(141)(141)(141) (141)(141)(141)(141)(141)(141)141) sen. sen Secuencia res. Secuencia10 Secuencia14 Secuencia15 Secuencia16 Secuencia11 Secuencia13 Secuencia19 Secuencia20 Secuencia22 Secuencia12 Secuencia17 Secuencia18 Secuencia21 Secuencia1 Secuencia9 Secuencia8 Secuencia 5 Secuencia2 Secuencia3 Secuencia4 Secuencia6 Secuencia7

sen.

### FIG 3 D

280 DPRVRTAFPLRCWNCVSDQDQKQLDVKEILGKILBTATGKNHEGSTMDQVQTQLREQLCGKRYLLVLDDV DPRVRTAFPLRCWNCVSDQDQKKLDVKEILGKILSTATGKNHEGSTMDHVQTQLREQLCGKRYLLVLDDV DPRVRTAFPLRCWNCVSDQDQKKLDVKEILGKILSTATGKNHEGSTMDHVQTQLQEQLCGKRYLLVLDDV DPRVRTAFPLRCWNCVSDQDQKKLDVKEILGKILSTATGKNHEGSTMDHVQTQLQEQLCGKRYLLVLDDV	DPRVRTAFPLRCWNCVSDQDQKKLDVKEILGKILSTATGKNHEGSTMDHVQTQLQEQLCGKRYLLVLDDV DPRVRTAFPLRCWNCVSDQDQKKLDVKEILGKILSTATGKNHEGSTMDHVQTQLQEQLCGKRYLLVLDDV DPRVRTAFPLRCWNCVSDQDQKKLDVKEILGKILSTATGKNHEGSTMDHVQTQLREQLCGKRYLLVLDDV	DPRVRTAFPLRCWNCVSDQDQKKLDVKEILGKILSTATGKNHEGSTMDHVQTQLQEQLCGKRYLLVLDDV DPRVRTAFPLRCWNCVSDQDQKKLDVKEILGKILSTATGKNHEGSTMDHVQTQLQEQLCGKRYLLVLDDV DPRVRTAFPLRCWNCVSDQDQKKLDVKEILGKILSTATGKNHEGSTMDHVQTQLREQLCGKRYLLVLDDV DPRVRTAFPLRCWNCVSDQDQKKLDVKEILGKILSTATGKNHEGSTMDHVQTQLREQLCGKRYLLVLDDV DPRVRTAFPLRCWNCVSDQDQKKLDVKEILGKILSTATGKNHEGSTMDHVQTQLREQLCGKRYLLVLDDV	DPRVRTAFPLRCWNCL*
(211) (211) (211) (211)	(211) (211) (211) (211)	(211) (211) (211) (211)	(168) (211) (211) (211) (211) (211) (211) (211) (211)
Secuencia res. Secuencial sen Secuencia2 sen. Secuencia3 sen.	Secuencia4 sen. Secuencia5 sen. Secuencia6 sen.	0 1 0	

# FIG 3 E

Secuencia res. (281) WNENPNOLRDLVEFFMGGRSBNWIVVTTRSHETARIIRDGPLHKLOGLSEENSWRLFVRWTFGSVORFFP Secuencial sen. (281) WNENPNOLRZXXXFFMGGORGNWIVVTTRSHETARIIRDGPLHKLOGLSEENSWRLFVRWTFGSVOPKFP Secuencias sen. (281) WNENPNOLRZXXXFFMGGORGNWIVVTTRSHETTRIIRDGPLHKLOGLSEENSWRLFVRWTFGSVOPKFP Secuencias sen. (281) WNENPNOLRDLGKFFMGGORGNWIVVTTRSHETTRIIRDGPLHKLOGLSEENSWRLFVRWTFGSVOPKFP Secuencias sen. (281) WNENPNOLRDXVEFFMGGORGNWIVVTTRSHETTRIIRDGPLHKLOGLSEENSWRLFVRWTFGSVOPKFP Secuencias sen. (281) WNENPNOLRXXXXXFFMGGORGNWIVVTTRSHETTRIIRDGPLHKLOGLSEENSWRLFVRWTFGSVOPKFP Secuencias sen. (281) WNENPNOLRIXVEFFMGGORGNWIVVTTRSHETTRIIRDGPLHKLOGLSEENSWRLFVRWTFGSVOPKFP Secuencias sen. (281) WNENPNOLRIXVEFFMGGORGNWIVVTTRSHETARIIRDGPLHKLOGLSEENSWRLFVRWTFGSVOPKFP
-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

# FIG 3 F

		351 420
Secuencia res.	(351)	NDFIIMIARDIVDKCARNPLAIRVVGSLLCGQDKSKWLSFHEIDLIGNIRKSHNDIMPILNLSYHHLEPPI
Secuencial sen	(351)	NDFVMIARDIVDKCARNPLAIRVVGSLLCGQDKSKWLSFHEICLANIRKSHNDIMPILNLSYHHLEPPIR
Secuencia2 sen.	(351)	NDFVMIARDIVDKCARNPLAIRVVGSLLCGQDKSKWLSFHEICLANIRKSHNDIMLILNLSYHHLEPPIR
Secuencia3 sen.	(351)	NDFVMIARDIVDKCARNPLAIRVVGSLLCGQDKSKWLSFHEICLANIRKSHNDIMLILNLSYHHLEPPIR
Secuencia4 sen.	(351)	NDFVMIARDIVDKCARNPLAIRVVGSLLCGQDKSKWLSFHEICLANIRKSHNDIMLILNLSYHHLEPPIR
Secuencia5 sen.	(351)	NDFVMIARDIVDKCARNPLAIRVVGSLLCGQDKSKWLSFHEICLANIRKSHNDIMLILNLSYHHLEPPIR
Secuencia6 sen.	(351)	NDFVMIARDIVDKCARNPLAIRVVGSLLCGQDKSKWLSFHEICLANIRKSHNDIMPILNLSYHHLEPPIR
Secuencia8 sen.	(351)	NDFVMIARDIVDKCARNPLAIRVVGSLLCGQDKSKWLSFHEICLANIRKSHNDIMLILNLSYHHLEPPIR
Secuencia9 sen.	(351)	NDFVMIARDIVDKCARNPLAIRVVGSLLCGQDKSKWLSFHEICLANIRKSHNDIMLILNLSYHHLEPPIR
Secuencial0 sen.	(351)	NDFVMIARDIVDKCARNPLAIRVVGSLLCGQDKSKWLSFHEICLANIRKSHNDIMPILNLSYHHLEPPIR
Secuenciall sen.	(351)	NDFVMIARDIVDKCARNPLAIRVVGSLLCGQDKSKWLSFHEICLANIRKSHNDIMPILNLSYHHLEPPIR
Secuencial2 sen.	(351)	NDFVMIARDIVDKCARNPLAIRVVGSLLCGQDKSKWLSFHEICLANIRKSHNDIMPILNLSYHHLEPPIR
Secuencia14 sen.	(351)	NDFVMIARDIVDKCARNPLAIRVVGSLLCGQDKSKWLSFHEICLANIRKSHNDIMPILNLSYHHLEPPIR
Secuencial5 sen.	(351)	NDFVMIARDIVDKCARNPLAIRVVGSLLCGQDKSKWLSFHEICLANIRKSHNDIMPILNLSYHHLEPPIR
Secuencial6 sen.	(351)	NDFVMIARDIVDKCARNPLAIRVVGSLLCGQDKSKWLSFHEICLANIRKSHNDIMPILNLSYHHLEPPIR
Secuencial7 sen.	(351)	NDFVMIARDIVDKCARNPLAIRVVGSLLCGQDKSKWLSFHEICLANIRKSHNDIMLILNLSYHHLEPPIR
Secuencial8 sen.	(350)	NDFVMIARDIVDKCARNPLAIRVVGSLLCGQDKSKWLSFHEICLANIRKSHNDIMPILNLSYHHLEPPIR
Secuencial9 sen.	(351)	NDFVMIARDIVDKCARNPLAIRVVGSLLCGQDKSKWLSFHEICLANIRKSHNDIMPILNLSYHHLEPPIR
Secuencia20 sen.	(351)	NDFVMIARDIVDKCARNPLAIRVVGSLLCGQDKSKWLSFHEICLANIRKSHNDIMPILNLSYHHLEPPIR
Secuencia21 sen.	(333)	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
Secuencia22 sen.	(351)	XXXXXXXXXXXDKCARNPLAIRVVGSLLCGQDKSKWLSFHEXCLANIRKSHNDIMPILNLSYHHLEPPIR

#### FIG 3 G

421 rcfsyca¶fpkdfligk@tlinlwmaqgyivpldkdqsiddaseeyisillBrcffenWg@ekdgvikih	RCFSYCAMFPKDFLIGKKTLINLWMAQGYIVPLDKDQSIDDASEEYISILLQRCFFENIGTEKDYVIKIH	RCFSYCAMFPKDF11GKKT1INLWMAQGYIVPLDKDQS1DDASEEYISILLQRCFFENIGTEKDYVIKIH	RCFSYCAMFPKDFLIGKKTLINLWMAQGYIVPLDKDQSIDDASEEYISILLQRCFFENIGTEKDYVIKIH	RCFSYCAMFPKDFLIGKKTLINLWMAQGYIVPLDKDQSIDDASEEYISILLQRCFFENIGTEKDYVIKIH	RCFSYCAMFPKDFLIGKKTLINLWMAQGYIVPLDKDQSIDDASEEYISILLQRCFFENIGTEKDYVIKIH	RCFSYCUVFPKDFLIGKKTLINLWMAQGYIVPLDKDQSIDDASEEYISILLQRCFFENIGTEKDDVIKIH	RCFSYCAMFPKDFLIGKKTLINLWMAQGYIVPLDKDQSIDDASEEYISILLQRCFFENIGTEKDYVIKIH	RCFSYCAMFPKDFLIGKKTLINLWMAQGYIVPLDKDQSIDDASEEYISILLQRCFFENIGTEKDYVIKIH	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	RCFSYCAVEPRDF1,IGKKT1,INI,WMAOGYIVP1,DKDOSIDDASEEYISI1,XORCFFENIGTEKDDV1KIH										
421 (421) RCF		(421) R	(420) R	(421) R	(421) R	(378) X	(421) R													
	sen (	sen. (	sen. (	sen. (	sen. (	sen. (	sen. (	sen. (	sen.	sen. (	sen. (	sen.								
Secuencia res.	Secuencial s	Secuencia2 s	Secuencia3 s	Secuencia4 s	Secuencia5 s	Secuencia6	Secuencia8 s	Secuencia9 s	Secuencial0 sen.	Secuencia11	Secuencia12	Secuencia14	Secuencia15	Secuencia16	Secuencia17	Secuencia18	Secuencia19	Secuencia20	Secuencia21	Secuencia 22

## FIG 3 H

560

090	VE	VE	VE	VE	××																	
4 y 1	DLMHDIAQNVMGKELCTTKNISGSLDKBVRHLSLARTSFARYSFNATHIRSYFBAGYWCQDAEINQFSVE	DLMHDIAQNVMGKELCTTKNISGSLDKNVRHLSLARTSFARYSFNATHIRSYFYAGYWCQDAEINQFSVE	DLMHDIAQNVMGKELCTTKNISGSLDKNVRHLSLARTSFARYSFNATHIRSYFYAGYWCQDAEIXQFSVE	DLMHDIAQNVMGKELCTTKNISGSLDKNVRHLSLARTSFARYSFNATHIRSYFYAGYWCQDAEINQFSVE	DLMHDIAQNVMGKELCTTKNISGSLDKNVRHLSLARTSFARYSFNATHIRSYFYAGYWCQDAEINQFSVE	DLMHDIAQNVMGKELCTIKNISGSLDKNVRHLSLARTSFARYSFNATHIRSYFXAGYWCQDAEINQFSVE	DLMHDIAQNVMGKELCTTKNISGSLDKNVRHLSLARTSFARYSFNATHIRSYFYAGYWCQDAEINQFSVE	DLMHDIAQNVMGKELCTTKNISGSLDKNVRHLSLARTSFARYSFNATHIRSYFYAGYWCQDAEINQFSVE	DLMHDIAQNVMGKELCTTKNISGSLDKNVRHLSLARTSFARYSFNATHIRSYFYAGYWCQDAEINQFSVE	DIMHDIAQNVMGKELCTTKNISGSLDKNVRHLSLARTSFARYSFNATHIRSYFYAGYWCQDAEINQFSVE	DLMHDIAQNVMGKELCTTKNISGSLDKNVRHLSLARTSFARYSFNATHIRSYFYAGYWCQDAEINQFSVE	DLMHDIAQNVMGKELCTTKNISGSLDKNVRHLSLARTSFARYSFNATHIRSYFYAGYWCQDAEINQFSVE	DLMHDIAQNVMGKELCTTKNISGSLDKNVRHLSLARTSFARYSFNATHIRSYFYAGYWCQDAEINQFSVE	DLMHDIAQNVMGKELCTTKNISGSLDKNVRHLSLARTSFARYSFNATHIRSYFYAGYWCQDAEINQFSVE	DLMHDIAQNVMGKELCTTKNISGSLDKNVRHLSLARTSFARYSFNATHIRSYFYAGYWCQDAEINQFSVE	DLMHDIAQNVMGKELCTTKNISGSLDKNVRHLSLARTSFARYSFNATHIRSYFYAGYWCQDAEINQFSVE	DLMHDIAQNVMGKELCTTKNISGSLDKNVRHLSLARTSFARYSFNATHIRSYFYAGYWCQ <u>N</u> AEINQFSVE	DLMHDIAQNVMGKELCTTKNISGSLDKNVRHLSLARTSFARYSFNATHIRSYFYAGYWCQDAEINQFSVE	DLMHDIAQNVMGKELCTTKNISGSLDKNVRHLSLARTSFARYSFNATHIRSYFXAGYWCQDAEINQFSVE	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	DLMHDIAQNVMGKELCTTKNISGSLDKNVRHLSLXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	
	(491)	(491)	(491)	(491)	(491)	(491)	(491)	(491)	(491)	(491)	(491)	(491)	(491)	(491)	(491)	(491)	(490)	(491)	(491)	(448)	(491)	
	Secuencia res. (	Secuencial sen (	Secuencia2 sen. (	Secuencia3 sen. (	Secuencia4 sen. (	Secuencia5 sen. (	Secuencia6 sen. (	Secuencia8 sen. (	Secuencia9 sen. (	Secuencial0 sen. (491	Secuenciall sen. (491	Secuencial2 sen. (491	Secuencial4 sen. (491	Secuencial5 sen. (491	Secuencia16 sen. (491	Secuencial7 sen. (491)	Secuencial8 sen. (490	Secuencial9 sen. (491	Secuencia20 sen. (491)	Secuencia21 sen. (448	Secuencia22 sen. (491)	

#### FIG 3

		561 630
Secuencia res.	(561)	ALVPNCLMLRAMDLAWSKIKSLPDSIGGLLHLRYLDLSYNEDLEVLPNSIAKLYNLQTLQLKGCKRLEGL
Secuencial sen	(561)	ALVPNCLCLRALDLAWSKIKSVPDSIGGLLHLRYLDLSYNEDLEVLPNSIAKLYNLQTLQLKGCKRLEGL
Secuencia2 sen.	(561)	ALVPNCLCLRALDLAWSKIKSVPDSIGGLLHLRYLDLSYNEDLEVLPNSIAKLYNLQTLQLKGCKRLEGL
Secuencia3 sen.	(561)	ALVPNCLCLRALDLAWSKIKSVPDSIGGLLHLRYLDLSYNEDLEVLPNSIAKLYNLQTLQLKGCKRLEGL
Secuencia4 sen.	(561)	ALVPNCLCLRALDLAWSKIKSVPDSIGGLLHLRYLDLSYNEDLEVLPNSIAKLYNLQTLQLKGCKRLEGL
Secuencia5 sen.	(561)	ALVPNCLCLRALDLAWSKIKSVPDSIGGLLHLRYLDLSYNEDLEVLPNSIAKLYNLQTLQLKGCKRLEGL
Secuencia6 sen.	(561)	ALVPNCLCLRALDLAWSKIKSVPDSIGGLLHLRYLDLSYNEDLEVLPNSIAKLYNLQTLQLKGCKRLEGL
Secuencia8 sen.	(561)	ALVPNCLCLRALDLAWSKIKSVPDSIGGLLHLRYLDLSYNEDLEVLPNSIAKLYNLQTLQLKGCKRLEGL
Secuencia9 sen.	(561)	ALVPNCLCLRALDLAWSKIKSVPDSIGGLLHLRYLDLSYNEDLEVLPNSIAKLYNLQTLQLKGCKRLEGL
Secuencial0 sen.	(561)	ALVPNCLCLRALDLAWSKIKSVPDSIGGLLHLRYLDLSYNEDLEVLPNSIAKLYNLQTLQLKGCKRLEGL
Secuenciall sen.	(561)	ALVPNCLCLRALDLAWSKIKSVPDSIGGLLHLRYLDLSYNEDLEVLPNSIAKLYNLQTLQLKGCKRLEGL
Secuencial2 sen.	(561)	ALVPNCLCLRALDLAWSKIKSVPDSIGGLLHLRYLDLSYNEDLEVLPNSIAKLYNLQTLQLKGCKRLEGL
Secuencia14 sen.	(561)	ALVPNCLCLRALDLAWSKIKSVPDSIGGLLHLRYLDLSYNEDLEVLPNSIAKLYNLQTLQLKGCKRLEGL
Secuencial5 sen.	(561)	ALVPNCLCLRALDLAWSKIKSVPDSIGGLLHLRYLDLSYNEDLEVLPNSIAKLYNLQTLQLKGCKRLEGL
Secuencia16 sen.	(561)	ALVPNCLCLRALDLAWSKIKSVPDSIGGLLHLRYLDLSYNEDLEVLPNSIAKLYNLQTLQLKGCKRLEGL
Secuencial7 sen.	(561)	ALVPNCLCLRALDLAWSKIKSVPDSIGGLLHLRYLDLSYNEDLEVLPNSIAKLYNLQTLQLKGCKRLEGL
	(260)	ALVPNCLCLRALDLAWSKIKSVPDSIGGLLHLRYLDISYNEDLEVLPNSIAKLYNLQTLQLKGCKRLEGL
	(561)	ALVPNCLCLRALDLAWSKIKSVPDSIGGLLHLRYLDLSYNEDLEVLPNSIAKLYNLQTLQLKGCKRLEGL
	(561)	ALVPNCLCLRALDLAWSKIKSVPDSIGGLLHLRYLDLSYNEDLEVLPNSIAKLYNLQTLQLKGCKRLEGL
Secuencia21 sen.	(504)	ALVPNCLCLRALDLAWSKIKSLPDSIGGLLHLRYLDLSYNEDLEVLPNSIAKLYNLQTLQLKGCKRLEGL
Secuencia22 sen.	(533)	XXXXNCLCLRALDLAWSKIKSLPDSIGGLLHLRYLDLSYNEDLEVLPNSIAKLYNLQTLQLKGCKRLEGL

#### FIG. 2

631

700

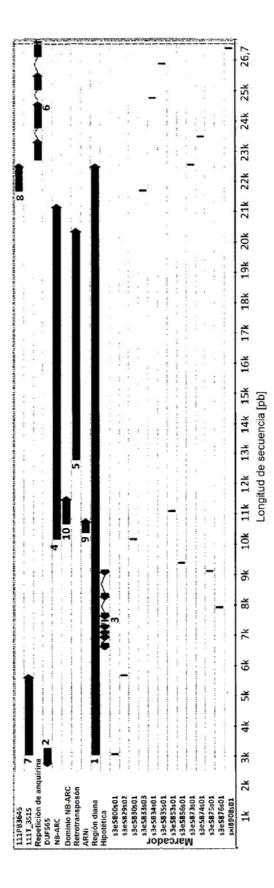
		100
Secuencia res.	(631)	PKHLSRLVKLQTLDI GGCNNVTYMPKGMGK GTCLHTLSKFIVGGEGSCSSWKO GFDG LEDLKALNNLKGH
Secuencial sen	(631)	PKHLSRLVKLQTLDIYGCNNVTYMPKGMGKMTCLHTLSKFIVGGEGSCSSWKQWFDGQEDLKALNNLKGH
Secuencia2 sen.	(631)	PKHLSRLVKLQTLDIYGCNNVTYMPKGMGKMTCLHTLSKFIVGGEGSCSSWKQWFDGQEDLKALNNLKGH
Secuencia3 sen.	(631)	PKHLSRLVKLQTLDIYGCNNVTYMPKGMGKMTCLHTLSKFIVGGEGSCSSWKQWFDGQEDLKALNNLKGH
Secuencia4 sen.	(631)	PKHLSRLVKLQTLDIYGCNNVTYMPKGMGKMTCLHTLSKFIVGGEGSCSSWKQWFDGQEDLKALNNLKGH
Secuencia5 sen.	(631)	PKHLSRLVKLQTLDIYGCNNVTYMPKGMGKMTCLHTLSKFIVGGEGSCSSWKQWFDGQEDLKALNNLKGH
Secuencia6 sen.	(631)	PKHLSRLVKLQTLDIYGCNNVTYMPKGMGKMTCLHTLSKFIVGGEGSCSSWKQWFDGQEDLKALNNLKGH
Secuencia8 sen.	(631)	PKHLSRLVKLQTLDIYGCNNVTYMPKGMGKMTCLHTLSKFIVGGEGSCSSWKQWFDGQEDLKALNNLKGH
Secuencia9 sen.	(631)	PKHLSRLVKLQTLDIYGCNNVTYMPKGMGKMTCLHTLSKFIVGGEGSCSSWKQWFDGQEDLKALNNLKGH
Secuencial0 sen.	(631)	PKHLSRLVKLQTLDI YGCNNVTYMPKGMGKMTCLHTLSKFIVGGEGSCSSWKQWFDGQEDLKALNNLKGH
Secuenciall sen.	(631)	PKHLSRLVKLQTLDIYGCNNVTYMPKGMGKMTCLHTLSKFIVGGEGSCSSWKQWFDGQEDLKALNNLKGH
Secuencial2 sen.	(631)	PKHLSRLVKLQTLDI YGCNNVTYMPKGMGKMTCLHTLSKFIVGGEGSCSSWKQWFDGQEDLKALNNLKGH
Secuencia14 sen.	(631)	PKHLSRLVKLQTLDI YGCNNVTYMPKGMGKMTCLHTLSKFIVGGEGSCSSWKQWFDGQEDLKALNNLKGH
Secuencial5 sen.	(631)	PKHLSRLVKLQTLDI YGCNNVTYMPKGMGKMTCLHTLSKFIVGGEGSCSSWKQWFDGQEDLKALNNLKGH
Secuencial6 sen.	(631)	PKHLSRLVKLQTLDIYGCNNVTYMPKGMGKMTCLHTLSKFIVGGEGSCSSWKQWFDGQEDLKALNNLKGH
Secuencial7 sen.	(631)	PKHLSRLVKLQTLDIYGCNNVTYMPKGMGKMTCLHTLSKFIVGGEGSCSSWKQWFDGQEDLKALNNLKGH
Secuencial8 sen.	(630)	PKHLSRLVKLQTLDIYGCNNVTYMPKGMGKMTCLHTLSKFIVGGEGSCSSWKQWFDGLEDLKALNNLKGH
Secuencial9 sen.	(631)	PKHLSRLVKLQTLDIYGCNNVTYMPKGMGKMTCLHTLSKFIVGGEGSCSSWKQWFDGQEDLKALNNLKGH
Secuencia20 sen.	(631)	PKHLSRLVKLQTLDI YGCNNVTYMPKGMGKMTCLHTLSKFIVGGEGSCSSWKQWFDGQEDLKALNNLKGH
Secuencia21 sen.	(574)	PKHLSRLVKLQTLDI YGCNNVTYMPKGMGKMTCLHTLSKFIVGGEGSCSSWKKRFDGLEDLKALNNLKGH
Secuencia22 sen.	(865)	PKHLSRLVKLQTLDIYGCNNVTYMPKGMGKMTCLHTLSKFIVGGEGSCSSWKKRFDGLEDLKALNNLKGH

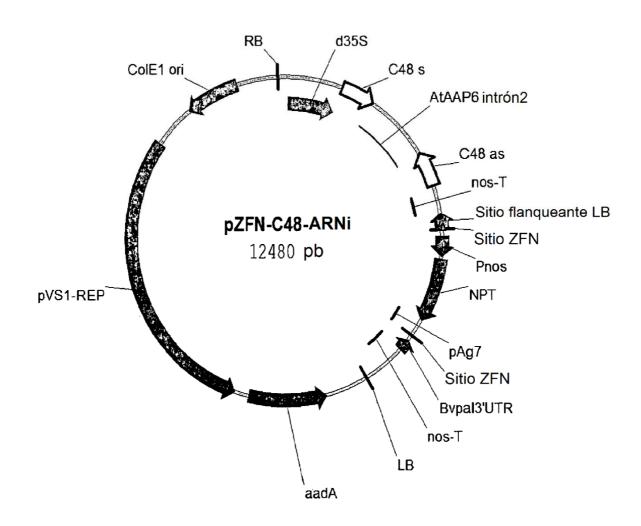
# FIG 3 K

770 701) I.R.TOTRWPKNTTDAVKEDVMREGI.YI.NHKEHI.NHTVVDFRCEEGGGRMDDEEARRI.MEEI.RPHPYI.ENIA	LEIC	701) LEIQIRWPENTTDAVKEDVKREGLYLNHKEHLNHIVVD	701) LEIQIRWPENTTDAVKEDVKREGLYLNHKEHLNHIVVD	701) LEIQIRWPENTTDAVKEDVKREGLYLNHKEHLNHIVVD	701) LEIQIRWPENTTDAVKEDVKREGLYLNH	01) LEIQIRWPENTTDAVKEDVKREGLYLN	_	701) LEIQIRWPENTTDAVKEDVKREGLYLNH	(701) LEIQIRWPENTTDAVKEDVKREGLYLNHKEHLNHIVVDFRCEEGGGRMDDEEARRLMEELRPHPYLENLA	01) LEIQIRWPENTTDAVKEDVKREGLYLNHKEHLNHIVVD	_	01) LEIQIRWPENTTDAVKEDVKREGLYLNHKEHLNHIVVD	_	701) LEIQIRWPENTTDAVKEDVKREGLYLNHKEHLNHIVVD	(701) LEIQIRWPENTTDAVKEDVKREGLYLNHKEHLNHIVVD	(700) LEIQIRWPENTTDVVKEDVKREGLYLNHKEHLNHIVVD	701) LEIQIRWPENTTDAVKEDVKREGLYLNHKEHLNHIVVD	(701) LEIQIRWPENTIDAVKEDVKREGLYLNHKEHLNHIVVD	(644) LEIQIRWPENTIDAVKEDVKREGLYLNH	(669) LEIQIRWPENTIDAVKEDVKREGLYLNHKEHLNHIVVD
(70	(70	(70	(70	(70	(70	(70	(70	(70	_	_	_		_	_	_	_			_	
Secuencia res.		Secuencia2 sen.	Secuencia3 sen.	Secuencia4 sen.	Secuencia5 sen.	Secuencia6 sen.	Secuencia8 sen.	Secuencia9 sen.	Secuencial0 sen.	Secuenciall sen.	Secuencial2 sen.	Secuencial4 sen.	Secuencial5 sen.	Secuencia16 sen.	Secuencial7 sen.	Secuencial8 sen.	Secuencial9 sen.	Secuencia20 sen.	Secuencia21 sen.	Secuencia22 sen.

#### FIG 3

840 VKAYYGVKMPGWATLLPNLTELELSDCGELENLPCLGNLDHLKVLRLSHLAKLEYIEEDSSSANFRCRPG VKAYYGAKMPGWATLLPNLTELYLSDCGESECLPCMGNLDCLKVLRLSHLAKLEYIEEDSTSANFSFRPG VKAYYGAKMPGWATLLPNLTELYLSDCGESECLPCMGNLDCLKVLRLSHLAKLEYIEEDSTSANFSFRPG	910 PESAGLSLYFPSLERLELKRLCKLKGWRRGEGLGDDHQPFNESSS>Ret.Ins <ntqvqlqlclpqlkslriercpllt PESAGLSLYFPSLELLELKRLHKLKGWRRREGLGDDHQPFNESSS&gt;Ret.Ins&lt;</ntqvqlqlclpqlkslriercpllt 	911 FMPLCPKTEKLHLVVFNERLRIVHAKRDENFYAPLHSSSSDPENPRNTIPIPMFREVYINNVAWLNSLPM	1050 EAFRCLTHMTIKNDEVESLGEVGEVFRSCSSSLRSLNITGCSNLRSVSGGLEHLTALEMLEIYDTHKLSL	1120 SEDPEGVVPWKSLHHSLSYLQLMNLPQLVNLPDSMQFLAALRTLSIVHCTKLQSVPDWMPRLTSLRKLMV	1121 SFCSAHLERRCQNPTGVDWPNIQHIPSIDVTSSLPKFLVLPYE
(771) (771) (771)	(841) (841) (841)	(911)	(981)	(1051)	(1121)
Secuencia res. Secuencial sen. Secuencial0 sen.	Secuencia res. Secuencial sen. Secuencial0 sen.	Secuencia res.	Secuencia res.	Secuencia res.	Secuencia res.





FIG 4

74

Ŋ
O
正

	5			_							_	
		Afirmación	nəg ləb nöiɔiɛo9	a la derecha de s3e5800s01	a la derecha de s3e5800s01	a la izquierda de \$3e5873501	a la izquierda de s3e5874501	a la izquierda de \$3e5834501	a la izquierda de s3e5834501	a la izquierda de \$3e5834501	a la izquierda de s3e5834s01	
			Wilcoxon	0,54	0,43	0,51	00'0	000	00'0	00'0	00'0	
		sión	Prueba de T	96'0	0,39	0,54	00'0	00'0	00'0	00'0	00'0	
		Escisión	סורר_RR-ss	0,165	-0,04	0,05	-1,313	-1,35	-1,48	-2,484	-1,31	
			Población se escinde	ou	ou	no	Š	Š	S,	S.	Š	
			Promedio ss	0,117	2,652	1,89	3,091	2,474	2,630	3,183	2,466	
		Elisa	Promedio Rs	0,107	2,736	2,09	2,397	1,683	1,845	1,455	1,786	
		Valores Elisa	Promedio RR	0,282	2,608	1,94	1,777	1,121	1,146	669'0	1,157	
		>	Promedio todos	0,161	2,686	2,00	2,334	1,703	1,848	1,776	1,736	
			se ab bebitneO	36	43	1	17	39	42	20	43	
		3S	Cantidad de Rs	19	94	30	28	97	87	45	76	
		Plantas	Cantidad de RR	45	40	14	23	=	45	13	20	
			Cantidad de descendiente	152	177	20	73	177	174	79	169	1051
	9442775		8365332xxx	8	۲	Ι	8	٨	8	8	В	
	8643646		1028068ix2	Ω	۷	I	8	4	8	8	8	
	964546		10e3683es	q	۷	I	8	۷	8	8	픠	
	6433793	l	10s4£83 <del>a</del> £8	۵	۷	π	8	٨	8	8	≖	
_	9432522	1	1024783 <del>9</del> £2	Ω	۲	Ŧ	8	•	I	I	≖	
	9691546		10287839 <i>6</i> 2	۵	۷	π	I	•	I	x	Ŧ	
1	음 St70Ete		83 <del>6</del> 2833803	q	⋖	۲	I	I	I	Ŧ	≖	ŀ
ón diana	9418784 (pb 9418784 9419705 9419705 9430745	I≒	10265859£8	q	⋖	۷	I	£	I	π	픠	ŀ
=	<u>∞</u> 4878149	cado	1 <b>0</b> 20283928	٩	٨	4	π	ᇁ	Ξ	Ξ	Ξ	l
1,5	E 1608146		f0e3585e£e	q	۲	٨	Ξ.	_	Ξ.	Ξ.	Ξ	
Pedi	9416551 PO SECPTP9	Mai	1022783e62	þ	۷,	۷	エ	_	ェ	エエ	Ξ	ľ
"	1 9 1333110		1023783952	8 1			Ξ	Ξ	Ξ.	Ξ.	킈	ļ
ı	1 0007770		1020082e2s 2026282e2s	Ī	_ _	٦	Ξ	Ξ	Ξ	I	Ξ	ŀ
Ь	9971146 7605046		te0900qm£e	۔	Ξ	٩	I	Ξ.	Ξ	Ξ	Ξ	l
	6774049		f080900mEs	Ŧ	Ξ	۷	I	I	Ξ	I	Ξ	
	9324296		Z0s66Z5eSs	٦	I	۵	x	Ξ	π	I	Ξ	l
	9354172		xxx66Zgegs	ч	Ξ	٩	I	I	I	π	I	l
				15	53	57	54	79	46			_
			Poblacić	1111_3515	111PB3553	111PB3857	111PB3645	111PB3579	1111983546	111PB3585	111PB3523	
			Línea Recombinante Población	ZR11007_03075	ZR08093_02718	ZR08093_04549	ZR08093_05621	ZR08093_03547	ZR08093_02513	ZR08093_03702	ZR08093_01718	
			\ <del>=</del> \ <u>\\</u>	~		-	-	. 4	. ~	1.4	1.4	



