

OFICINA ESPAÑOLA DE PATENTES Y MARCAS

ESPAÑA

11) Número de publicación: 2 704 697

51 Int. Cl.:

C12Q 1/37 (2006.01) C12N 9/10 (2006.01) C12N 9/50 (2006.01)

(12)

TRADUCCIÓN DE PATENTE EUROPEA

T3

(86) Fecha de presentación y número de la solicitud internacional: 05.08.2014 PCT/US2014/049805

(87) Fecha y número de publicación internacional: 12.02.2015 WO15021058

(96) Fecha de presentación y número de la solicitud europea: 05.08.2014 E 14752728 (7)

(97) Fecha y número de publicación de la concesión europea: 03.10.2018 EP 3030671

(54) Título: Proteínas genomodificadas con un sitio de escisión de proteasa

(30) Prioridad:

05.08.2013 US 201361862363 P 02.05.2014 US 201461987518 P

(45) Fecha de publicación y mención en BOPI de la traducción de la patente: 19.03.2019

(73) Titular/es:

GREENLIGHT BIOSCIENCES, INC. (100.0%) 200 Boston Avenue Suite 3100 Medford, MA 02155, US

(72) Inventor/es:

BLAKE, WILLIAM JEREMY y CUNNINGHAM, DREW S.

(74) Agente/Representante:

ISERN JARA, Jorge

DESCRIPCIÓN

Proteínas genomodificadas con un sitio de escisión de proteasa

5 Antecedentes de la invención

10

15

20

25

30

35

40

La ingeniería metabólica permite la producción de compuestos mediante manipulación de reacciones bioquímicas (por ejemplo, rutas biosintéticas) en una célula. No obstante, la producción de determinados compuestos puede entrar en conflicto con objetivos celulares esenciales. Por ejemplo, el desvío de nutrientes y energía para la producción de un compuesto puede dar como resultado una escasez de esos sustratos y cofactores para la producción de biomasa. El organismo genomodificado puede evolucionar alejándose de la producción del compuesto de interés o crecer de forma subóptima. Para abordar este problema, se han desarrollado sistemas sin células para la producción *in vitro* de compuestos mediante la expresión coordenada de proteínas en una ruta biosintética. Una salvedad de sistemas de bioproducción tanto *in vivo* como *in vitro* es que muchas proteínas clave que desvían el flujo de una ruta biosintética también son importantes o incluso esenciales para el crecimiento celular.

La supresión o inactivación de estas proteínas es con frecuencia difícil o imposible porque hacerlo da como resultado crecimiento o viabilidad celular reducida. Un modo de inactivar proteínas es mediante inactivación mediada por proteasa. Puede conseguirse inactivación mediada por proteasa de una proteína diana mediante la incorporación de un sitio de reconocimiento de proteasa en la secuencia de aminoácidos primaria de la proteína diana. El sitio de reconocimiento de proteasa puede incorporarse en la secuencia primaria de modo que la proteína resultante sea activa en ausencia de una proteasa que escinde el sitio de reconocimiento e inactiva en presencia de la proteasa. Dichas proteínas diana genomodificadas o recombinantes son particularmente útiles para la síntesis sin células de compuestos de interés.

El documento WO2006090385 describe inhibidores de proteína o péptido recombinantes de serina proteasa NS3 del virus de la hepatitis C (VHC). Baum *et al.* (Proc. Natl. Acad. Sci. USA, Vol. 87, págs. 10023-10027, diciembre de 1990) describe proteínas beta-galactosidasa recombinantes que comprenden "casetes de escisión" insertados con sitios de escisión de proteasa del virus de la inmunodeficiencia humana (VIH).

Sumario de la invención

La invención es como se define en las reivindicaciones adjuntas. Se proporcionan en el presente documento enzimas recombinantes que pueden inactivarse de forma selectiva durante la producción sin células *in vitro* de un compuesto. Se consigue inactivación selectiva de enzimas recombinantes introduciendo, entre dos codones (por ejemplo, dos codones adyacentes) en un gen que codifica la enzima recombinante, al menos una secuencia de nucleótidos que codifica una secuencia de reconocimiento de proteasa. Antes de la producción sin células *in vitro* de un compuesto, la proteasa afín (es decir, una proteasa que reconoce y escinde específicamente la secuencia de reconocimiento de proteasa en la proteína recombinante) se introduce, o activa, en el sistema sin células de modo que puede escindir la enzima recombinante, inactivándola de este modo. También se proporcionan en el presente documento métodos de producción y exploración de enzimas recombinantes que pueden inactivarse selectivamente y que conservan un nivel de actividad comparable a la de las enzimas de tipo silvestre.

En algunos aspectos de la invención, se proporcionan en el presente documento proteínas de fosfoglucosa isomerasa (Pgi) recombinantes con al menos una (o una) secuencia de reconocimiento de proteasa localizada entre dos aminoácidos (por ejemplo, dos aminoácidos adyacentes) de la proteína nativa. En otros aspectos, se proporcionan ácidos nucleicos que codifican las proteínas fosfoglucosa isomerasa recombinantes.

En algunas realizaciones, la proteína Pgi comprende la secuencia de la SEQ ID NO: 17. En determinadas realizaciones, la proteína Pgi puede comprender una secuencia que es 90 %, 95 %, 98 % o 99 % homóloga de la SEQ ID NO: 25. En algunas realizaciones, el ácido nucleico que codifica la proteína Pgi comprende la secuencia de la SEQ ID NO: 1. En determinadas realizaciones, el ácido nucleico que codifica la proteína Pgi puede comprender una secuencia que es 90 %, 95 %, 98 % o 99 % homóloga de la SEQ ID NO: 9.

55 Se desvelan en el presente documento proteínas de fosfotransacetilasa (Pta) recombinantes con al menos una (o una) secuencia de reconocimiento de proteasa localizada entre dos aminoácidos (por ejemplo, dos aminoácidos adyacentes) de la proteína nativa. También se desvelan en el presente documento ácidos nucleicos que codifican las proteínas de fosfotransacetilasa recombinantes.

La proteína Pta puede comprender la secuencia de la SEQ ID NO: 48. En determinadas realizaciones, la proteína Pta puede comprender una secuencia que es 90 %, 95 %, 98 % o 99 % homóloga de la SEQ ID NO: 48. El ácido nucleico que codifica la proteína Pta puede comprender la secuencia de la SEQ ID NO: 47. El ácido nucleico que codifica la proteína Pta puede comprender una secuencia que es 90 %, 95 %, 98 % o 99 % homóloga de la SEQ ID NO: 47.

ES 2 704 697 T3

Se desvelan en el presente documento proteínas de transcetolasa A (TktA) recombinantes con al menos una (o una) secuencia de reconocimiento de proteasa localizada entre dos aminoácidos (por ejemplo, dos aminoácidos adyacentes) de la proteína nativa. También se desvelan en el presente documento ácidos nucleicos que codifican las proteínas de transcetolasa A recombinantes.

5

La proteína TktA puede comprender la secuencia de la SEQ ID NO: 63. La proteína TktA puede comprender una secuencia que es 90 %, 95 %, 98 % o 99 % homóloga de la SEQ ID NO: 63. El ácido nucleico que codifica la proteína TktA puede comprender la secuencia de la SEQ ID NO: 57. El ácido nucleico que codifica la proteína TktA puede comprender una secuencia que es 90 %, 95 %, 98 % o 99 % homóloga de la SEQ ID NO: 57.

10

15

20

En algunas realizaciones, al menos una secuencia de reconocimiento de proteasa es una secuencia de reconocimiento de proteasa reconocida por una proteasa seleccionada del grupo que consiste en alanina carboxipeptidasa, astacina de *Armillaria mellea*, leucil aminopeptidasa bacteriana, procoagulante de cáncer, catepsina B, clostripaína, alanil aminopeptidasa de citosol, elastasa, endo-proteinasa Arg-C, enteroquinasa, gastricsina, gelatinasa, Gly-X carboxipeptidasa, glicil endopeptidasa, proteasa 3C de rinovirus humano, hipodermina C, serina endopeptidasa específica de Iga, leucil aminopeptidasa, leucil endopeptidasa, lysC, pro-X carboxipeptidasa lisosómica, lisil aminopeptidasa, metionil aminopeptidasa, mixobacteria, nardilisina, endopeptidasa E pancreática, picornaína 2A, picornaína 3C, proendopeptidasa, prolil aminopeptidasa, proproteína convertasa I, proproteína convertasa II, ruselisina, sacaropepsina, semenogelasa, activador de T-plasminógeno, trombina, calicreína tisular, virus del grabado del tabaco (TEV), togavirina, triptofanil aminopeptidasa, activador de U-plasminógeno, V8, venombina A, venombina AB y Xaa-pro aminopeptidasa.

En algunas realizaciones, al menos una secuencia de reconocimiento de proteasa es una secuencia de reconocimiento de proteasa reconocida por proteasa 3C de rinovirus humano. En algunas realizaciones, la secuencia de aminoácidos de la secuencia de reconocimiento de proteasa reconocida por proteasa 3C de rinovirus humano comprende la secuencia de la SEQ ID NO: 38. En algunas realizaciones, la secuencia de ácido nucleico de la secuencia de reconocimiento de proteasa reconocida por proteasa 3C de rinovirus humano comprende la secuencia de la SEQ ID NO: 37.

30

En algunas realizaciones, al menos una secuencia de reconocimiento de proteasa de la proteína Pgi se localiza después del aminoácido 410, 526, 527, 528, 529, 530, 531 o 532 de la secuencia de la SEQ ID NO: 17. En algunas realizaciones, al menos una secuencia de reconocimiento de proteasa de la proteína Pgi se localiza después del aminoácido 526 de la secuencia de la SEQ ID NO: 17. En algunas realizaciones, al menos una secuencia de reconocimiento de proteasa del ácido nucleico que codifica la proteína Pgi se localiza después de los codones 410, 526, 527, 528, 529, 530, 531 o 532 de la secuencia de la SEQ ID NO: 1. En algunas realizaciones, la secuencia de reconocimiento de proteasa del ácido nucleico que codifica la proteína Pgi se localiza después del codón 526 de la secuencia de la SEQ ID NO: 1.

40

35

Al menos una secuencia de reconocimiento de proteasa de la proteína Pta se puede localizar después del aminoácido 381, 382, 387 o 409 de la secuencia de la SEQ ID NO: 48. Al menos una secuencia de reconocimiento de proteasa de la proteína Pta se puede localizar después del aminoácido 381 de la secuencia de la SEQ ID NO: 48. Al menos una secuencia de reconocimiento de proteasa del ácido nucleico que codifica la proteína Pta se puede localizar después de los codones 381, 382, 387 o 409 de la secuencia de la SEQ ID NO: 47. La secuencia de reconocimiento de proteasa del ácido nucleico que codifica la proteína Pta se puede localizar después del codón 381 de la secuencia de la SEQ ID NO: 47.

45

50

Al menos una secuencia de reconocimiento de proteasa de la proteína TktA se puede localizar después del aminoácido 635, 636, 637, 638 o 640 de la secuencia de la SEQ ID NO: 63. Al menos una secuencia de reconocimiento de proteasa de la proteína TktA se puede localizar después del aminoácido 637 de la secuencia de la SEQ ID NO: 63. Al menos una secuencia de reconocimiento de proteasa del ácido nucleico que codifica la proteína TktA se puede localizar después de los codones 635, 636, 637, 638 o 640 de la secuencia de la SEQ ID NO: 57. La secuencia de reconocimiento de proteasa del ácido nucleico que codifica la proteína TktA se puede localizar después del codón 637 de la secuencia de la SEQ ID NO: 57.

60

55

En algunas realizaciones, al menos una secuencia de reconocimiento de proteána Pgi se puede localizar en una región C terminal de la proteína. Al menos una secuencia de reconocimiento de proteána de la proteína Pta se puede localizar en una región central o una región C terminal de la proteína. Al menos una secuencia de reconocimiento de proteána de la proteína TktA se puede localizar en una región central o una región C terminal de la proteína. En algunas realizaciones, al menos una secuencia de reconocimiento de proteána de la proteína Pgi se puede localizar en una región de bucle expuesta a disolvente de la proteína. Al menos una secuencia de reconocimiento de proteána de la proteína Pta se puede localizar en una región de bucle expuesta a disolvente de la proteína. Al menos una secuencia de reconocimiento de proteána TktA se puede localizar en una región de bucle expuesta a disolvente de la proteína.

65

Algunos aspectos de la invención proporcionan vectores que comprenden un ácido nucleico que codifica una proteína Pgi recombinante. Se desvelan en el presente documento vectores que comprenden un ácido nucleico que

codifica una proteína Pta recombinante. También se desvelan en el presente documento vectores que comprenden un ácido nucleico que codifica una proteína TktA recombinante. En algunas realizaciones, un vector puede ser un vector de clonación o un vector de expresión. En algunas realizaciones, un vector puede ser un plásmido, un fósmido, un fagémido, un genoma vírico o un cromosoma artificial. En determinadas realizaciones, un vector es un plásmido.

Otros aspectos de la invención proporcionan células que comprenden una cualquiera de las proteínas, ácidos nucleicos o vectores como se exponen en las reivindicaciones adjuntas y se describen en el presente documento. En algunas realizaciones, la célula es una célula bacteriana, una célula fúngica, una célula de mamífero o una célula vegetal. En algunas realizaciones, la célula es una célula bacteriana. En algunas realizaciones, la célula bacteriana es una célula de *Escherichia coli*.

Aspectos adicionales de la invención proporcionan células que expresan proteínas recombinantes con un sitio de escisión de proteasa como se describe en el presente documento. En determinadas realizaciones, la proteína recombinante es una proteína Pgi recombinante. Se contempla donde la proteína recombinante es una proteína Pta recombinante. En otras realizaciones determinadas, la proteína recombinante es una proteína TktA recombinante. También se contempla donde la célula es una célula bacteriana, una célula fúngica, una célula de mamífero o una célula vegetal. En determinadas realizaciones, la célula es una célula bacteriana tal como, por ejemplo, una célula de *Escherichia coli*.

También se proporcionan lisados de cualquiera de las células descritas en el presente documento.

5

10

15

20

25

30

35

60

65

También se proporcionan en el presente documento proteínas recombinantes con al menos una secuencia de reconocimiento de proteasa localizada entre dos aminoácidos (por ejemplo, dos aminoácidos adyacentes) de la proteína nativa en una región de bucle expuesta a disolvente de la proteína, en donde al menos una secuencia de reconocimiento de proteasa es escindida por una proteasa afín con especificidad de secuencia de reconocimiento individual y en donde la actividad de proteína recombinante en presencia de la proteasa afín se reduce en al menos 30 %, al menos 40 %, al menos 50 %, al menos 75 %, al menos 90 %, al menos 99 % o al menos 99.9 % (o es aproximadamente 70 %, aproximadamente 60 %, aproximadamente 50 %, aproximadamente 25 %, aproximadamente 10 %, aproximadamente 1 % o aproximadamente 0,1 %) de la actividad de proteína recombinante en ausencia de la proteasa afín. En algunas realizaciones, la actividad de la proteína recombinante en ausencia de la proteasa afín es suficiente para permitir el crecimiento de tipo silvestre de la célula. En algunas realizaciones, la actividad de la proteína recombinante en presencia de la proteasa afín se reduce en al menos 50 % en comparación con una proteína de control de tipo silvestre y en donde la actividad de la proteína recombinante en ausencia de la proteasa afín es al menos 80 % en comparación con una proteína de control de tipo silvestre. En algunas realizaciones, la proteína recombinante, en ausencia de la proteasa afín, mantiene una tasa de crecimiento celular de al menos 75 % de una tasa de crecimiento celular de tipo silvestre (por ejemplo, tasa de crecimiento de una célula sin la proteína recombinante).

40 También se proporcionan métodos de genomodificación de proteínas recombinantes (por ejemplo, proteínas Pgi recombinantes y/o proteínas Pta recombinantes y/o proteínas TktA recombinantes) con una secuencia de reconocimiento de proteasa. Los métodos pueden comprender las etapas de: (a) transformar células con una pluralidad de variantes de ácido nucleico, en donde cada variante de ácido nucleico contiene una secuencia de nucleótidos que codifica una proteína recombinante con al menos una secuencia de reconocimiento de proteasa 45 localizada entre dos aminoácidos (por ejemplo, dos aminoácidos adyacentes) de la proteína nativa y un ácido nucleico con una secuencia promotora inducible unida operativamente con una secuencia de nucleótidos que codifica una proteasa afín; (b) cultivar las células en condiciones no inductoras en medio que impide el crecimiento celular de proteínas recombinantes inactivas y recoger células con una tasa de crecimiento comparable a células de control de tipo silvestre; y (c) cultivar las células en condiciones que inducen la expresión de la proteasa afín y 50 recoger células que no crecen o que tienen una tasa de crecimiento reducida en comparación con células de control de tipo silvestre. En algunas realizaciones, las células se transforman con el ácido nucleico con una secuencia promotora inducible unida operativamente con una secuencia de nucleótidos que codifica una proteasa afín después de la etapa (b) y antes de la etapa (c). Los métodos comprenden además secuenciar las variantes de ácido nucleico de las células recogidas en la etapa (c) para identificar la localización de al menos una secuencia de reconocimiento 55 de proteasa.

Se contempla en el presente documento donde la proteína de tipo silvestre (por ejemplo, proteína Pgi y/o proteína Pta y/o proteína TktA) es necesaria para crecimiento celular y el genoma de la célula carece de una copia cromosómica del gen de tipo silvestre que codifica la proteína de tipo silvestre.

Se proporcionan en el presente documento métodos para genomodificar una pluralidad de variantes de ácido nucleico que codifican proteínas recombinantes. Los métodos pueden comprender insertar al menos una secuencia que codifica al menos una secuencia de reconocimiento de proteasa después de cada codón de un ácido nucleico que codifica una proteína diana para producir una pluralidad de variantes de ácido nucleico que codifican proteínas recombinantes, en donde cada proteína recombinante tiene una secuencia de reconocimiento de proteasa en una localización única en su secuencia de aminoácidos primaria. Los métodos pueden comprender además (a)

transformar células con la pluralidad de variantes de ácido nucleico y un ácido nucleico con una secuencia promotora inducible unida operativamente con una secuencia de nucleótidos que codifica una proteasa afín; (b) cultivar las células en condiciones no inductoras en medio que impide el crecimiento celular de proteínas recombinantes inactivas y recoger células con una tasa de crecimiento normal; y (c) cultivar las células en condiciones que inducen la expresión de la proteasa afín y recoger células que no crecen o que tienen una tasa de crecimiento reducida. En algunas realizaciones, las células se transforman con el ácido nucleico con una secuencia promotora inducible unida operativamente con una secuencia de nucleótidos que codifica una proteasa afín después de la etapa (b) y antes de la etapa (c). Los métodos comprenden además secuenciar las variantes de ácido nucleico de las células recogidas en la etapa (c) para identificar la localización de la secuencia de reconocimiento de proteasa.

En otros aspectos de la invención, se proporcionan en el presente documento pluralidades heterogéneas de variantes de ácido nucleico, en donde cada variante de ácido nucleico codifica una proteína recombinante que se modifica para incluir al menos una secuencia de reconocimiento de proteasa localizada entre dos aminoácidos (por ejemplo, dos aminoácidos adyacentes) de la secuencia nativa. En algunas realizaciones, una única secuencia de reconocimiento de proteasa se localiza entre dos aminoácidos de la proteína nativa.

En el presente documento también se proporcionan poblaciones de células heterogéneas, en donde cada célula de la población comprende una variante de ácido nucleico y en donde cada variante de ácido nucleico codifica una proteína recombinante que se modifica para incluir al menos una secuencia de reconocimiento de proteasa localizada entre dos aminoácidos (por ejemplo, dos aminoácidos adyacentes) de la secuencia nativa; y un ácido nucleico que codifica una proteasa afín unida operativamente a un promotor inducible. En algunas realizaciones, una única secuencia de reconocimiento de proteasa se localiza entre dos aminoácidos de la proteína nativa.

25 Breve descripción de los dibujos

10

15

20

35

55

60

65

No se pretende que los dibujos adjuntos estén dibujados a escala. Por razones de claridad, no puede marcarse cada componente en cada dibujo.

La Figura 1A muestra un esquema de un método ejemplar para preparar una proteína recombinante con una secuencia de reconocimiento de proteasa insertando la secuencia de reconocimiento de proteasa entre dos aminoácidos de la proteína recombinante.

La Figura 1B muestra un esquema de otro método ejemplar para preparar una proteína recombinante con una secuencia de reconocimiento de proteasa reemplazando aminoácidos nativos de la proteína recombinante con una secuencia de reconocimiento de proteasa.

La Figura 2 muestra un esquema de una modificación de uno de los métodos de la invención, donde una secuencia de reconocimiento de proteasa parcial se inserta entre dos aminoácidos de la proteína de tipo silvestre o codones de modo que la secuencia de reconocimiento completa se reconstituye en el producto final.

La Figura 3 es un diagrama del plásmido pGLA042.

40 La Figura 4 es un diagrama del plásmido pGLC217.

La Figura 5 muestra un gráfico de actividad proteica de fosfoglucosa isomerasa (Pgi) en lisados celulares en función del tiempo.

La Figura 6 muestra una estructura cristalina de Pgi que indica una localización de inserción de sitio de proteasa. La Figura 7 es un diagrama del plásmido pGLC089.

45 La Figura 8 es un diagrama del plásmido pGLC221.

La Figura 9 es una tabla que resume la cepa y datos de tasa de crecimiento (izquierda) y un gráfico de actividad de Pgi con y sin inducción de proteasa (derecha).

La Figura 10A muestra un gráfico de secreción de acetato en variantes de Pta con y sin inducción de proteasa.

La Figura 10B muestra un gráfico de secreción de lactato en variantes de Pta con y sin inducción de proteasa.

La Figura 11 muestra un gráfico de actividad proteica de fosfotransacetilasa (Pta) en lisados celulares con y sin inducción de proteasa.

La Figura 12 muestra una estructura cristalina de un dímero proteico de transcetolasa A (TktA). Los bucles destacados por una línea blanca discontinua (centro superior y centro izquierda) ilustran la localización en la que el motivo de secuencia de reconocimiento de proteasa de rinovirus humano (RVH) se insertó para permitir la desactivación mediada por proteasa de la proteína TktA.

Breve descripción del listado de secuencias

SEQ ID NO: 1 es una secuencia de nucleótidos de un gen pgi de tipo silvestre.

SEQ ID NO: 2 es una secuencia de nucleótidos de una variante del gen *pgi* con una secuencia de reconocimiento de 3C de rinovirus humano (RVH) insertada después del codón 108.

SEQ ID NO: 3 es una secuencia de nucleótidos de una variante del gen *pgi* con una secuencia de reconocimiento de 3C de RVH insertada después del codón 109.

SEQ ID NO: 4 es una secuencia de nucleótidos de una variante del gen *pgi* con una secuencia de reconocimiento de 3C de RVH insertada después del codón 110.

ES 2 704 697 T3

- SEQ ID NO: 5 es una secuencia de nucleótidos de una variante del gen *pgi* con una secuencia de reconocimiento de 3C de RVH insertada después del codón 138.
- SEQ ID NO: 6 es una secuencia de nucleótidos de una variante del gen *pgi* con una secuencia de reconocimiento de 3C de RVH insertada después del codón 410.
- 5 SEQ ID NO: 7 es una secuencia de nucleótidos de un variante del gen *pgi* con una secuencia de reconocimiento de 3C de RVH insertada después del codón 524.
 - SEQ ID NO: 8 es una secuencia de nucleótidos de una variante del gen *pgi* con una secuencia de reconocimiento de 3C de RVH insertada después del codón 525.
 - SEQ ID NO: 9 es una secuencia de nucleótidos de una variante del gen *pgi* con una secuencia de reconocimiento de 3C de RVH insertada después del codón 526.
 - SEQ ID NO: 10 es una secuencia de nucleótidos de una variante del gen *pgi* con una secuencia de reconocimiento de 3C de RVH insertada después del codón 527.
 - SEQ ID NO: 11 es una secuencia de nucleótidos de una variante del gen *pgi* con una secuencia de reconocimiento de 3C de RVH insertada después del codón 528.
- 15 SEQ ID NO: 12 es una secuencia de nucleótidos de una variante del gen *pgi* con una secuencia de reconocimiento de 3C de RVH insertada después del codón 529.
 - SEQ ID NO: 13 es una secuencia de nucleótidos de una variante del gen *pgi* con una secuencia de reconocimiento de 3C de RVH insertada después del codón 530.
 - SEQ ID NO: 14 es una secuencia de nucleótidos de una variante del gen *pgi* con una secuencia de reconocimiento de 3C de RVH insertada después del codón 531.
 - SEQ ID NO: 15 es una secuencia de nucleótidos de una variante del gen *pgi* con una secuencia de reconocimiento de 3C de RVH insertada después del codón 532.
 - SEQ ID NO: 16 es una secuencia de nucleótidos de una variante del gen *pgi* con una secuencia de reconocimiento de 3C de RVH insertada después del codón 545.
- 25 SEQ ID NO: 17 es una secuencia de aminoácidos de una proteína Pgi de tipo silvestre.

10

20

35

50

- SEQ ID NO: 18 es una secuencia de aminoácidos de una proteína Pgi codificada por SEQ ID NO: 2.
- SEQ ID NO: 19 es una secuencia de aminoácidos de una proteína Pgi codificada por SEQ ID NO: 3.
- SEQ ID NO: 20 es una secuencia de aminoácidos de una proteína Pgi codificada por SEQ ID NO: 4.
- SEQ ID NO: 21 es una secuencia de aminoácidos de una proteína Pgi codificada por SEQ ID NO: 5.
- 30 SEQ ID NO: 22 es una secuencia de aminoácidos de una proteína Pgi codificada por SEQ ID NO: 6.
 - SEQ ID NO: 23 es una secuencia de aminoácidos de una proteína Pgi codificada por SEQ ID NO: 7.
 - SEQ ID NO: 24 es una secuencia de aminoácidos de una proteína Pgi codificada por SEQ ID NO: 8.
 - SEQ ID NO: 25 es una secuencia de aminoácidos de una proteína Pgi codificada por SEQ ID NO: 9.
 - SEQ ID NO: 26 es una secuencia de aminoácidos de una proteína Pgi codificada por SEQ ID NO: 10.
 - SEQ ID NO: 27 es una secuencia de aminoácidos de una proteína Pgi codificada por SEQ ID NO: 11. SEQ ID NO: 28 es una secuencia de aminoácidos de una proteína Pgi codificada por SEQ ID NO: 12.
 - SEQ ID NO: 28 es una secuencia de aminoácidos de una proteína Pgi codificada por SEQ ID NO: 12. SEQ ID NO: 29 es una secuencia de aminoácidos de una proteína Pgi codificada por SEQ ID NO: 13.
 - SEQ ID NO: 30 es una secuencia de aminoácidos de una proteína Pgi codificada por SEQ ID NO: 14.
 - SEQ ID NO: 31 es una secuencia de aminoácidos de una proteína Pgi codificada por SEQ ID NO: 15.
- 40 SEQ ID NO: 32 es una secuencia de aminoácidos de una proteína Pgi codificada por SEQ ID NO: 16.
 - SEQ ID NO: 33 es una secuencia de nucleótidos de una proteasa 3C de RVH con codones optimizados.
 - SEQ ID NO: 34 es una secuencia de aminoácidos de una proteasa 3C de RVH con codones optimizados.
 - SEQ ID NO: 35 es una secuencia de nucleótidos de una proteasa 3C de RVH con codones optimizados con una secuencia líder de OmpA.
- 45 SEQ ID NO: 36 es una secuencia de aminoácidos de una proteasa 3C de RVH con codones optimizados con una secuencia líder de OmpA.
 - SEQ ID NO: 37 es una secuencia de nucleótidos de una secuencia de reconocimiento de proteasa 3C de RVH.
 - SEQ ID NO: 38 es una secuencia de aminoácidos de una secuencia de reconocimiento de proteasa 3C de RVH.
 - SEQ ID NO: 39 es una secuencia de aminoácidos de una secuencia de reconocimiento de proteasa 3C de RVH parcial.
 - SEQ ID NO: 40 es una secuencia de aminoácidos de una secuencia de reconocimiento de proteasa 3C de RVH parcial
 - SEQ ID NO: 41 es una secuencia de aminoácidos de una secuencia de reconocimiento de proteasa 3C de RVH parcial.
- 55 SEQ ID NO: 42 es una secuencia de aminoácidos de una secuencia de reconocimiento de proteasa 3C de RVH parcial.
 - SEQ ID NO: 43 es una secuencia de aminoácidos de una secuencia de reconocimiento de proteasa 3C de RVH parcial.
 - SEQ ID NO: 44 es una secuencia de aminoácidos de una secuencia de reconocimiento de proteasa 3C de RVH parcial.
 - SEQ ID NO: 45 es una secuencia de aminoácidos de una secuencia de reconocimiento de proteasa 3C de RVH parcial.
 - SEQ ID NO: 46 es una secuencia de aminoácidos de una secuencia líder de OmpA N-terminal.
 - SEQ ID NO: 47 es una secuencia de nucleótidos de un gen pta de tipo silvestre.
- 65 SEQ ID NO: 48 es una secuencia de aminoácidos de una proteína Pta de tipo silvestre.

- SEQ ID NO: 49 es una secuencia de nucleótidos de un variante del gen *pta* con una secuencia de reconocimiento de 3C de RVH insertada después del codón 381.
- SEQ ID NO: 50 es una secuencia de aminoácidos de una proteína Pta codificada por SEQ ID NO: 49.
- SEQ ID NO: 51 es una secuencia de nucleótidos de un variante del gen *pta* con una secuencia de reconocimiento de 3C de RVH insertada después del codón 382.
 - SEQ ID NO: 52 es una secuencia de aminoácidos de una proteína Pta codificada por SEQ ID NO: 51.
 - SEQ ID NO: 53 es una secuencia de nucleótidos de un variante del gen *pta* con una secuencia de reconocimiento de 3C de RVH insertada después del codón 387.
 - SEQ ID NO: 54 es una secuencia de aminoácidos de una proteína Pta codificada por SEQ ID NO: 53.
- SEQ ID NO: 55 es una secuencia de nucleótidos de un variante del gen *pta* con una secuencia de reconocimiento de 3C de RVH insertada después del codón 409.
 - SEQ ID NO: 56 es una secuencia de aminoácidos de una proteína Pta codificada por SEQ ID NO: 55.
 - SEQ ID NO: 57 es una secuencia de nucleótidos de un gen tktA de tipo silvestre.
- SEQ ID NO: 58 es una secuencia de nucleótidos de un variante del gen *tktA* con una secuencia de reconocimiento de 3C de RVH insertada después del codón 635.
 - SEQ ID NO: 59 es una secuencia de nucleótidos de un variante del gen *tktA* con una secuencia de reconocimiento de 3C de RVH insertada después del codón 636.
 - SEQ ID NO: 60 es una secuencia de nucleótidos de un variante del gen *tktA* con una secuencia de reconocimiento de 3C de RVH insertada después del codón 637.
- 20 SEQ ID NO: 61 es una secuencia de nucleótidos de un variante del gen *tktA* con una secuencia de reconocimiento de 3C de RVH insertada después del codón 638.
 - SEQ ID NO: 62 es una secuencia de nucleótidos de un variante del gen *tktA* con una secuencia de reconocimiento de 3C de RVH insertada después del codón 640.
 - SEQ ID NO: 63 es una secuencia de aminoácidos de una proteína TktA tipo silvestre.
- 25 SEQ ID NO: 64 es una secuencia de aminoácidos de una proteína TktA codificada por SEQ ID NO: 58.
 - SEQ ID NO: 65 es una secuencia de aminoácidos de una proteína TktA codificada por SEQ ID NO: 59.
 - SEQ ID NO: 66 es una secuencia de aminoácidos de una proteína TktA codificada por SEQ ID NO: 60.
 - SEQ ID NO: 67 es una secuencia de aminoácidos de una proteína TktA codificada por SEQ ID NO: 61.
 - SEQ ID NO: 68 es una secuencia de aminoácidos de una proteína TktA codificada por SEQ ID NO: 62.
- 30 SEQ ID NO: 69 es una secuencia de nucleótidos de una secuencia de reconocimiento de proteasa de RVH.
 - SEQ ID NO: 70 es una secuencia de aminoácidos de una proteína Pgi codificada por SEQ ID NO: 71.
 - SEQ ID NO: 71 es una secuencia de nucleótidos de una proteína Pgi.

35

- SEQ ID NO: 72 es una secuencia de aminoácidos de una proteína Pgi-HRV-l001 codificada por SEQ ID NO: 73.
- SEQ ID NO: 73 es una secuencia de nucleótidos de un variante del gen *pgi-hrv-l001* con una secuencia de reconocimiento de proteasa de RVH insertada después del primer codón ilustrado en la Figura 1A.
 - SEQ ID NO: 74 es una secuencia de aminoácidos de una proteína Pgi-HRV-I002 codificada por SEQ ID NO: 75.
 - SEQ ID NO: 75 es una secuencia de nucleótidos de un variante del gen *pgi-hrv-1002* con una secuencia de reconocimiento de proteasa de RVH insertada después del segundo codón ilustrado en la Figura 1A.
 - SEQ ID NO: 76 es una secuencia de aminoácidos de una proteína Pgi-HRV-I003 codificada por SEQ ID NO: 77.
- SEQ ID NO: 77 es una secuencia de nucleótidos de un variante del gen *pgi-hrv-1003* con una secuencia de reconocimiento de proteasa de RVH insertada después del tercer codón ilustrado en la Figura 1A.
 - SEQ ID NO: 78 es una secuencia de aminoácidos de una proteína Pgi-HRV-R001 codificada por SEQ ID NO: 79. SEQ ID NO: 79 es una secuencia de nucleótidos de un variante del gen *pgi-hrv-R001* con una sustitución de secuencia de reconocimiento de proteasa de RVH después del primer codón ilustrado en la Figura 2A.
- SEQ ID NO: 80 es una secuencia de aminoácidos de una proteína Pgi-HRV-R002 codificada por SEQ ID NO: 81. SEQ ID NO: 81 es una secuencia de nucleótidos de un variante del gen *pgi-hrv-R002* con una sustitución de secuencia de reconocimiento de proteasa de RVH después del segundo codón ilustrado en la Figura 2A.
 - SEQ ID NO: 82 es una secuencia de aminoácidos de una proteína Pgi-HRV-R003 codificada por SEQ ID NO: 83. SEQ ID NO: 83 es una secuencia de nucleótidos de un variante del gen *pgi-hrv-R003* con una sustitución de
- secuencia de reconocimiento de proteasa de RVH después del tercer codón ilustrado en la Figura 2A. SEQ ID NO: 84 es una secuencia de aminoácidos de una proteína Pgi-HRV-I005 codificada por SEQ ID NO: 85.
 - SEQ ID NO: 85 es una secuencia de animoacidos de una proteina Pgi-HRV-1005 conflicada por SEQ ID NO: 85. SEQ ID NO: 85 es una secuencia de nucleótidos de un variante del gen *pgi-hrv-1005* con una inserción de secuencia de reconocimiento de proteasa de RVH antes de una prolina.
 - SEQ ID NO: 86 es una secuencia de aminoácidos de una proteína Pgi-HRV-I015 codificada por SEQ ID NO: 87.
- SEQ ID NO: 87 es una secuencia de nucleótidos de un variante del gen *pgi-prv-l015* con una inserción de secuencia de reconocimiento de proteasa después de una leucina.

Descripción detallada de determinadas realizaciones de la invención

- Muchas proteínas clave en rutas biosintéticas son importantes para el crecimiento celular. La supresión o inactivación de estas proteínas es con frecuencia difícil o imposible porque hacerlo da como resultado crecimiento o viabilidad celular reducida, lo que hace que las células sean insatisfactorias para producir un compuesto de interés. La invención aborda este problema de inhibición del crecimiento celular proporcionando proteínas recombinantes (por ejemplo, enzimas) que están activas durante el crecimiento celular e inactivas durante la producción sin células
- 65 *in vitro* de un compuesto de interés. Las proteínas recombinantes genomodificadas por los métodos proporcionados en el presente documento tienen una secuencia de reconocimiento de proteasa localizada selectivamente en su

secuencia de aminoácidos primaria de modo que, a pesar de la presencia de la secuencia de reconocimiento, la actividad de la proteína recombinante es suficiente para permitir el crecimiento de tipo silvestre de la célula. Las proteínas recombinantes pueden inactivarse de forma selectiva mediante la introducción, expresión y/o activación de una proteasa afín, que escinde la proteína diana recombinante específicamente en la secuencia de reconocimiento de proteasa, haciendo de este modo a la proteína diana recombinante inactiva (o con actividad reducida). Por lo tanto, las proteínas recombinantes de la invención son útiles para genomodificar y/o alterar rutas biosintéticas para producir un compuesto de interés.

Las proteínas recombinantes y métodos proporcionados en el presente documento son útiles para genomodificar y alterar rutas metabólicas en una célula y un sistema sin células. Por ejemplo, la dirección a proteasa de las enzimas Pgi recombinantes de la invención permite el control del flujo de carbono entre la glucólisis y la ruta de pentosa fosfato en reacciones sin células sin alterar la función de esta enzima clave durante el crecimiento celular. Por lo tanto, la invención proporciona un modo de controlar el flujo metabólico mediante la manipulación de enzimas de rutas claves, incluyendo la manipulación para mantener o alterar la actividad celular de enzimas de rutas claves o enzimas competitivas.

Para producir proteínas recombinantes con una secuencia de reconocimiento de proteasa que tienen un nivel de actividad que permite el crecimiento de tipo silvestre de la célula, puede generarse una biblioteca de variantes de ácido nucleico, en donde cada variante de ácido nucleico codifica una proteína recombinante con al menos una secuencia de reconocimiento de proteasa localizada entre dos aminoácidos (por ejemplo, dos aminoácidos adyacentes) de la secuencia primaria de tipo silvestre de la proteína. A partir de esta biblioteca de variantes, se producen proteínas recombinantes y se exploran para determinar la actividad proteica en ausencia de proteasa e inactividad proteica en presencia de proteasa. Una población de células se transforma en primer lugar con la biblioteca de variantes de ácido nucleico. Para seleccionar proteínas recombinantes expresadas activas, las células se cultivan en medio que impide el crecimiento de proteínas recombinantes inactivas. Se supone que las células que no presentan defectos de crecimiento contienen una proteína recombinante activa, a pesar de la introducción de la secuencia de reconocimiento de proteasa, y se seleccionan para caracterización adicional. Para seleccionar células que contienen una proteína recombinante que puede inactivarse, puede introducirse en las células un ácido nucleico con una secuencia de promotor inducible unida operativamente con una secuencia de nucleótidos que codifica una proteasa afín. El ácido nucleico que codifica la proteasa afín inducible puede introducirse antes o después de la selección de proteína recombinante activa. Las células que contienen supuestamente proteína recombinante activa se cultivan después en condiciones que inducen la expresión de una proteasa afín. Se supone que las células que no crecen, o que crecen escasamente (por ejemplo, presentan defectos de crecimiento), contienen la proteína recombinante inactiva deseada y se seleccionan para caracterización y/o uso adicional. Las variantes de ácido nucleico de las células seleccionadas pueden amplificarse y secuenciarse para identificar la localización de la secuencia de reconocimiento de proteasa.

Proteínas y rutas metabólicas

5

10

15

20

25

30

35

60

40 Una "proteína" o "proteína de tipo silvestre", como se usa en el presente documento, se refiere a una molécula compuesta de aminoácidos unidos entre sí por enlaces peptídicos en una cadena lineal. Un aminoácido "nativo", como se usa en el presente documento, se refiere a un aminoácido en la secuencia de aminoácidos primaria de una proteína de tipo silvestre (es decir, no un aminoácido modificado o mutado). Una "proteína diana", como se usa en el presente documento, se refiere a una proteína de tipo silvestre de interés (es decir, no una proteína recombinante) o 45 una proteína para genomodificar con una secuencia de reconocimiento de proteasa como se describe en el presente documento. Una "proteína recombinante", como se usa en el presente documento, se refiere a una proteína procedente de ácido nucleico recombinante, que se forma artificialmente combinante ácido nucleico de diferentes fuentes. En algunas realizaciones, proteínas recombinantes de la invención difieren entre sí por que la localización de la secuencia de reconocimiento de proteasa individual es única de cada proteína recombinante. Por ejemplo, una 50 proteína recombinante puede tener una secuencia de reconocimiento de proteasa localizada después del primer aminoácido de la secuencia de aminoácidos primaria, otra proteína recombinante puede tener una secuencia de reconocimiento de proteasa localizada después del segundo aminoácido de la secuencia de aminoácidos primaria, pero otra proteína recombinante puede tener una secuencia de reconocimiento de proteasa localizada después del tercer aminoácido de la secuencia de aminoácidos primaria, y así sucesivamente. Por lo tanto, una pluralidad de 55 proteínas recombinantes es habitualmente una pluralidad heterogénea.

Las proteínas recombinantes de la invención pueden usarse para genomodificar rutas metabólicas o una secuencia de reacciones bioquímicas catalizadas por enzimas. Los ejemplos de rutas metabólicas que pueden genomodificarse de acuerdo con la invención incluyen, sin limitación, las implicadas en el metabolismo de carbohidratos, el metabolismo de lípidos, el metabolismo de aminoácidos y el metabolismo de energía. En algunas realizaciones, la ruta metabólica es glucólisis. En algunas realizaciones, la ruta metabólica es metabolismo de exceso de acetato. En algunas realizaciones, la ruta metabólica es la ruta de pentosa fosfato.

Fosfoglucosa isomerasa (Pgi)

10

15

25

30

35

60

En algunas realizaciones, la proteína diana es una enzima fosfoglucosa isomerasa (Pgi), por ejemplo, una enzima Pgi de Escherichia coli (E. coli). Esta enzima cataliza la interconversión de glucosa-6-fosfato y fructosa-6-fosfato y es la primera etapa comprometida en glucólisis. La inactivación de Pgi inhibe el crecimiento celular; sin embargo, la actividad de Pgi da como resultado el desvío de la glucosa a la ruta de glucólisis, lo que a su vez da como resultado una escasez de glucosa para producción sin células de compuestos de interés que proceden de ribosa. Un ácido nucleico que contiene el gen pgi que codifica enzima Pgi puede modificarse por cualquiera de los métodos proporcionados en el presente documento o conocidos en la técnica para generar una variante que comprende una secuencia de reconocimiento de proteasa. En algunas realizaciones, la secuencia de reconocimiento de proteasa usada es una secuencia de reconocimiento de proteasa 3C de rinovirus humano (RVH) (por ejemplo, SEQ ID NO: 37, SEQ ID NO: 38), aunque la invención no se limita a esta. En algunas realizaciones, la secuencia de reconocimiento de 3C de RVH se inserta en fase después de cada codón del gen pgi. En algunas realizaciones, La secuencia de reconocimiento de 3C de RVH se inserta después de cada codón del gen pgi, excluyendo el primer y/o último codón. En algunas realizaciones, la secuencia de reconocimiento de 3C de RVH se inserta después de los aminoácidos 2-5, 9, 24-25, 33-36, 58-59, 85-96, 105-111, 113-115, 137-141, 143-144, 146, 173-176, 196, 250-251, 254, 366-370, 398-399, 410-414, 447-451, 477, 526-532 o 545. En algunas realizaciones, la secuencia de reconocimiento de 3C de RVH se inserta después de al menos un, o cada, codón de las regiones de bucle expuestas a disolvente de la proteína Pgi.

En algunas realizaciones, las proteínas Pgi recombinantes de la invención contienen una secuencia de reconocimiento de 3C de RVH localizada después del aminoácido 108, 109, 110, 138, 410, 524, 525, 526, 527, 528, 529, 530, 531, 532 o 545. En algunas realizaciones, las variantes de Pgi de la invención comprenden una secuencia de aminoácidos seleccionada entre las SEQ ID NO: 18-32.

En algunas realizaciones, las variantes de ácido nucleico de *pgi* (por ejemplo, genes) de la invención contienen una secuencia de reconocimiento de 3C de RVH localizada después del codón 108, 109, 110, 138, 410, 524, 525, 526, 527, 528, 529, 530, 531, 532 o 545. En algunas realizaciones, las variantes de *pgi* de la invención comprenden una secuencia de nucleótidos seleccionada entre las SEQ ID NO: 2-16.

En algunas realizaciones, la secuencia de reconocimiento de 3C de RVH se inserta entre codones no adyacentes del gen *pgi*. En algunas realizaciones, la secuencia de reconocimiento de 3C de RVH reemplaza codones nativos del gen *pgi*. Por ejemplo, en algunas realizaciones, los ocho codones de la secuencia de reconocimiento de 3C de RVH (es decir, CTG GAA GTG CTG TTT CAG GGT CCG; SEQ ID NO: 37) pueden reemplazar ocho codones contiguos del gen *pgi*.

Fosfotransacetilasa (Pta)

- También se contempla una proteína diana de enzima fosfotransacetilasa (Pta), por ejemplo, una enzima Pta de Escherichia coli (E. coli). Esta enzima cataliza la interconversión reversible de acetil-CoA y acetil fosfato. Un ácido nucleico que contiene el gen pta que codifica enzima Pta puede modificarse por cualquiera de los métodos proporcionados en el presente documento o conocidos en la técnica para generar una variante que comprende una secuencia de reconocimiento de proteasa. La secuencia de reconocimiento de proteasa usada puede ser una secuencia de reconocimiento de proteasa 3C de rinovirus humano (RVH) (por ejemplo, SEQ ID NO: 37, SEQ ID NO: 38). La secuencia de reconocimiento de 3C de RVH se puede insertar en fase después de cada codón del gen pta. La secuencia de reconocimiento de 3C de RVH se puede insertar después de cada codón del gen pta, excluyendo el primer y/o último codón. La secuencia de reconocimiento de 3C de RVH se puede insertar después de al menos un, o cada, codón de las regiones de bucle expuestas a disolvente de la proteína Pta.
- Las proteínas Pta recombinantes pueden contener una secuencia de reconocimiento de 3C de RVH localizada después del aminoácido 381, 382, 387 o 409. Las variantes de Pgi pueden comprender una secuencia de aminoácidos seleccionada entre las SEQ ID NO: 50, SEQ ID NO: 52, SEQ ID NO: 54 y SEQ ID NO: 56.
- Las variantes de ácido nucleico de *pta* (por ejemplo, genes) pueden contener una secuencia de reconocimiento de 3C de RVH localizada después del codón 381, 382, 387 o 409. Las variantes de *pta* pueden comprender una secuencia de nucleótidos seleccionada entre las SEQ ID NO: 49, SEQ ID NO: 51, SEQ ID NO: 53 y SEQ ID NO: 55.
 - La secuencia de reconocimiento de 3C de RVH se puede insertar entre codones no adyacentes del gen *pta*. La secuencia de reconocimiento de 3C de RVH puede reemplazar codones nativos del gen *pta*. Por ejemplo, los ocho codones de la secuencia de reconocimiento de 3C de RVH (es decir, CTG GAA GTG CTG TTT CAG GGT CCG; SEQ ID NO: 37) pueden reemplazar ocho codones contiguos del gen *pta*.

Transcetolasa A (TktA)

También se contempla una proteína diana de enzima transcetolasa A (TktA), por ejemplo, una enzima TktA de Escherichia coli (E. coli). TktA, junto con transcetolasa B (TktB) catalizan dos reacciones de transferencia de cetol en ruta de pentosa fosfato. Un ácido nucleico que contiene el gen *tktA* que codifica enzima TktA puede modificarse por cualquiera de los métodos proporcionados en el presente documento o conocidos en la técnica para generar una variante que comprende una secuencia de reconocimiento de proteasa. La secuencia de reconocimiento de proteasa usada puede ser una secuencia de reconocimiento de proteasa 3C de rinovirus humano (RVH) (por ejemplo, SEQ ID NO: 37, SEQ ID NO: 38). La secuencia de reconocimiento de 3C de RVH se puede insertar en fase después de cada codón del gen *tktA*. La secuencia de reconocimiento de 3C de RVH se puede insertar después de cada codón del gen *tktA*, excluyendo el primer y/o último codón. La secuencia de reconocimiento de 3C de RVH se puede insertar después de al menos un, o cada, codón de las regiones de bucle expuestas a disolvente de la proteína TktA.

- Las proteínas TktA recombinantes pueden contener una secuencia de reconocimiento de 3C de RVH localizada después del aminoácido 635, 636, 637, 638 o 640. Las variantes de TktA pueden comprender una secuencia de aminoácidos seleccionada entre las SEQ ID NO: 64, SEQ ID NO: 65, SEQ ID NO: 66, SEQ ID NO: 67 y SEQ ID NO: 68
- Las variantes de ácido nucleico de *tktA* (por ejemplo, genes) pueden contener una secuencia de reconocimiento de 3C de RVH localizada después del codón 635, 636, 637, 638 o 640. Las variantes de *tktA* pueden comprender una secuencia de nucleótidos seleccionada entre las SEQ ID NO: 58, SEQ ID NO: 59, SEQ ID NO: 60, SEQ ID NO: 61 y SEQ ID NO: 62.
- La secuencia de reconocimiento de 3C de RVH se puede insertar entre codones no adyacentes del gen *tktA*. La secuencia de reconocimiento de 3C de RVH puede reemplazar codones nativos del gen *tktA*. Por ejemplo, los ocho codones de la secuencia de reconocimiento de 3C de RVH (es decir, CTG GAA GTG CTG TTT CAG GGT CCG; SEQ ID NO: 37) pueden reemplazar ocho codones contiguos del gen *tktA*.
- 25 Proteasas y secuencias de reconocimiento afines

Las proteínas de la invención pueden inactivarse mediante una cualquiera de una diversidad de proteasas que escinden en secuencias de reconocimiento específicas. Como se usa en el presente documento, "secuencia de reconocimiento de proteasa", en el contexto de una proteína, se refiere a una secuencia de aminoácidos que es reconocida y escindida por una proteasa afín. En el contexto de un ácido nucleico que codifica una proteína, una "secuencia de reconocimiento de proteasa" se refiere a una secuencia que codifica la secuencia de aminoácidos reconocida y escindida por una proteasa afín. Como se usa en el presente documento, "proteasa afín" se refiere a una proteasa que escinde y de este modo inactiva una proteína diana recombinante (por ejemplo, enzima). Las proteasas afines que pueden usarse en el presente documento incluyen las que tienen una secuencia de reconocimiento específica, individual, lo que significa que las proteasas escinden en o adyacente a una secuencia específica de uno o más aminoácidos. Por ejemplo, la proteasa 3C de rinovirus humano es altamente específica para la secuencia de reconocimiento Leu-Glu-Val-Leu-Phe-Gln-Gly-Pro (SEQ ID NO: 38). La proteasa reconoce esta secuencia y escinde después del resto de glutamina. La proteasa 3C de rinovirus humano habitualmente no reconoce ni escinde otras secuencias de reconocimiento aunque todas las proteasas son algo promiscuas y pueden reconocer y escindir otros sitios pero a una tasa muy reducida. En algunas realizaciones, las proteínas de la invención se preparan con una secuencia de reconocimiento de proteasa 3C de rinovirus humano genomodificada.

Otros ejemplos de proteasas que pueden usarse de acuerdo con la invención incluyen, sin limitación, alanina carboxipeptidasa, astacina de *Armillaria mellea*, leucil aminopeptidasa bacteriana, procoagulante de cáncer, catepsina B, clostripaína, alanil aminopeptidasa de citosol, elastasa, endoproteinasa Arg-C, enteroquinasa, gastricsina, gelatinasa, Gly-X carboxipeptidasa, glicil endopeptidasa, proteasa 3C de rinovirus humano, hipodermina C, serina endopeptidasa específica de Iga, leucil aminopeptidasa, leucil endopeptidasa, lysC, pro-X carboxipeptidasa lisosómica, lisil aminopeptidasa, metionil aminopeptidasa, mixobacteria, nardilisina, endopeptidasa E pancreática, picornaína 2A, picornaína 3C, proendopeptidasa, prolil aminopeptidasa, proproteína convertasa I, proproteína convertasa II, ruselisina, sacaropepsina, semenogelasa, activador de T-plasminógeno, trombina, calicreína tisular, virus del grabado del tabaco (TEV), togavirina, triptofanil aminopeptidasa, activador de U-plasminógeno, V8, venombina A, venombina AB y Xaa-pro aminopeptidasa (véase, Rawlings, S. D., *et al.*, Handbook of Proteolytic Enzymes, Academic Press, 2013, Science, Elsevier Ltd.). Otras proteasas pueden usarse de acuerdo con la invención.

Ácidos nucleicos

30

35

40

45

50

55

60

65

Se contemplan ácidos nucleicos que codifican las proteínas recombinantes (por ejemplo, proteínas Pgi recombinantes y/o proteínas Pta recombinantes y/o proteínas TktA recombinantes) descritas en el presente documento. Un "ácido nucleico", como se usa en el presente documento, se refiere a al menos dos nucleótidos (por ejemplo, adenina, timina, citosina, guanina, uracilo) unidos covalentemente entre sí. Un ácido nucleico de la invención contendrá en general enlaces fosfodiéster. Un ácido nucleico puede ser monocatenario (mc) o bicatenario (bc), ADN o ARN. En algunas realizaciones, el ácido nucleico está en forma de ADN genómico. Un "codón", como se usa en el presente documento, se refiere a un conjunto de tres nucleótidos adyacentes que codifican un aminoácido. Los codones de la invención se definen y numeran por el nucleótido inicial a partir del que comienza la traducción.

En algunas realizaciones, se preparan variantes de ácido nucleico bicatenario lineal (por ejemplo, ADN) de acuerdo con la invención. En algunos casos, las variantes de ácido nucleico bicatenarias lineales comprenden una secuencia génica variante que codifica una proteína recombinante con una secuencia de reconocimiento de proteasa así como al menos 30 pares de bases (pb) de nucleótidos de secuencia adicional cadena arriba del codón de inicio y al menos 30 pares de bases de nucleótidos de secuencia adicional cadena abajo del codón de terminación del gen, en donde cada secuencia adicional es homóloga del locus génico de tipo silvestre del genoma de la célula en la que se transformará el ácido nucleico. Como se usa en el presente documento, "gen de tipo silvestre" se refiere al gen de tipo silvestre que codifica la proteína de tipo silvestre que corresponde a la proteína recombinante con al menos un (o un) sitio de reconocimiento de proteasa. Por ejemplo, si la proteína diana es Pgi y la célula que se transforma es *E. coli*, el ácido nucleico contendrá una variante génica que codifica Pgi con al menos una secuencia de reconocimiento de proteasa, al menos 30 pb de secuencia adicional cadena arriba del codón de inicio de la variante génica y homóloga del locus *pgi* del genoma de *E. coli*. La secuencia adicional, en algunos casos, facilita la recombinación de la variante génica con la copia de tipo silvestre cromosómica del gen.

La invención abarca vectores que comprenden una variante de ácido nucleico como se expone en las reivindicaciones. Un "vector", como se usa en el presente documento, puede ser cualquiera de varios ácidos nucleicos en los que puede insertarse una secuencia o secuencias deseadas mediante restricción y ligamiento para transporte entre diferentes ambientes genéticos o para expresión en una célula. Los vectores están compuestos habitualmente de ADN aunque también están disponibles vectores de ARN. Los ejemplos de vectores de acuerdo con la invención incluyen, sin limitación, plásmidos, fósmidos, fagémidos, genomas víricos y cromosomas artificiales. En algunas realizaciones, se proporciona una variante de ácido nucleico de la invención en un vector de clonación recombinante. En algunas realizaciones, una variante de ácido nucleico de la invención se expresa en un vector de expresión recombinante.

Un vector de clonación de la invención es capaz de replicar de forma autónoma o integrado en el genoma de una célula. Un vector de clonación tiene una secuencia de restricción por endonucleasa en la que el vector puede cortarse de una manera que puede determinarse y en la que puede ligarse una secuencia de ADN deseada de modo que el nuevo vector recombinante conserva su capacidad para replicar en una célula. En el caso de plásmidos, puede producirse replicación de la secuencia deseada muchas veces a medida que aumenta el número de copias del plásmido en una célula tal como una bacteria o solamente una única vez por célula antes de que la célula se reproduzca por mitosis. En el caso de fagos, puede producirse replicación de forma activa durante una fase lítica o de forma pasiva durante una fase lisógena.

Un vector de expresión de la invención es uno en el que puede insertarse una secuencia codificante de ADN deseada mediante restricción y ligamiento de modo que se una de forma operativa con secuencias reguladoras y puede expresarse como un transcrito de ARN.

Como se usa en el presente documento, se dice que una secuencia codificante y secuencias reguladoras (por ejemplo, secuencias promotoras) están unidas "operativamente" cuando estén unidas de forma covalente de modo que se coloque la expresión o transcripción de la secuencia codificante bajo la influencia o el control de las secuencias reguladoras (por ejemplo, de modo que la secuencia reguladora "conduzca" el inicio de la transcripción y/o la expresión de la secuencia codificante). Si las secuencias codificantes van a traducirse a una proteína funcional, se considera que dos secuencias de ADN están unidas operativamente si la inducción de un promotor en las secuencias 5' reguladoras da como resultado la transcripción de la secuencia de codificación y si la naturaleza del enlace entre las dos secuencias de ADN no (1) da como resultado la introducción de una mutación de desplazamiento de marco, (2) interfiere con la capacidad de la región promotora de dirigir la transcripción de las secuencias codificantes o (3) interfiere con la capacidad del transcrito de ARN correspondiente para traducirse en una proteína. Por lo tanto, una región promotora estaría unida operativamente a una secuencia codificante si la región promotora puede efectuar la transcripción de esa secuencia de ADN de tal manera que el transcrito resultante pueda traducirse en la proteína o el polipéptido deseados.

Los vectores de la invención pueden comprender una secuencia marcadora para su uso en la identificación de células que se han transformado o transfectado o no con el vector. Los marcadores incluyen, por ejemplo, genes que codifican proteínas que aumentan o reducen la resistencia o sensibilidad a antibióticos (por ejemplo, genes de resistencia a ampicilina, genes de resistencia a kanamicina, genes de resistencia a neomicina, genes de resistencia a tetraciclina y genes de resistencia a cloranfenicol) u otros compuestos, genes que codifican enzimas con actividades detectables mediante ensayos convencionales conocidos en la técnica (por ejemplo, β-galactosidasa, luciferasa o fosfatasa alcalina) y genes que afectan visiblemente al fenotipo de células transformadas o transfectadas, hospedadores, colonias o placas (por ejemplo, proteína verde fluorescente). En algunas realizaciones, los vectores usados en el presente documento tienen capacidad de replicación autónoma y expresión de los productos génicos estructurales en los segmentos de ADN con los que están unidos de forma operativa.

Cuando un ácido nucleico que codifica cualquiera de las proteínas de la invención se expresa en una célula, puede usarse una diversidad de secuencias de control de la transcripción para dirigir su expresión. Por ejemplo, un ácido

nucleico de la invención puede contener un promotor, un potenciador y/o un terminador. Como alternativa, el vector en el que se inserta el ácido nucleico puede contener dichas secuencias reguladores.

Un "promotor", como se usa en el presente documento, se refiere a una región de control de una secuencia de ácido nucleico en la que se controlan el inicio y la tasa de transcripción del resto de una secuencia de ácido nucleico. Un promotor también puede contener subregiones en las que pueden unirse proteínas y moléculas reguladoras, tales como ARN polimerasa y otros factores de transcripción. Los promotores pueden ser constitutivos, inducibles, activables, reprimibles, específicos de tejido o cualquier combinación de los mismos. Un promotor conduce la expresión o conduce la transcripción de la secuencia de ácido nucleico que regula. Un promotor puede ser uno asociado de forma natural con un gen o una secuencia, como puede obtenerse aislando las secuencias 5' no codificantes localizadas cadena arriba del segmento codificante y/o exón de un gen o una secuencia dada. Dicho promotor puede denominarse "endógeno".

En algunas realizaciones, un segmento de ácido nucleico codificante puede situarse bajo el control de un promotor recombinante o heterólogo, que se refiere a un promotor que normalmente no está asociado con la secuencia de ácido nucleico codificada en su ambiente natural. Un potenciador recombinante o heterólogo se refiere a un potenciador no asociado normalmente con una secuencia de ácido nucleico en su ambiente natural. Dichos promotores o potenciadores pueden incluir promotores o potenciadores de otros genes; promotores o potenciadores aislados de cualquier otra célula procariota, vírica o eucariota; y promotores o potenciadores sintéticos que no son "de origen natural" tales como, por ejemplo, los que contienen diferentes elementos de diferentes regiones reguladoras de la transcripción y/o mutaciones que alteran la expresión mediante métodos de ingeniería genética que se conocen en la técnica. Además de producir secuencias de ácido nucleico de promotores y potenciadores de forma sintética, pueden producirse secuencias usando clonación recombinante y/o tecnología de amplificación de ácido nucleico, incluyendo reacción en cadena de la polimerasa (PCR). Asimismo, pueden usarse secuencias de control que dirigen la transcripción y/o expresión de secuencias en orgánulos no nucleares tales como mitocondrias, cloroplastos y similares, de acuerdo con la invención.

Un "promotor inducible", como se usa en el presente documento, es uno que se caracteriza iniciando o potenciando la actividad transcripcional cuando está en presencia de, influido por o en contacto con un inductor o agente inductor.

Un "inductor" o "agente inductor" puede ser endógeno o un compuesto o proteína normalmente exógeno que se administra de tal manera que sea activo en la inducción de la actividad de la transcripción del promotor inducible.

Los promotores inducibles adecuados para su uso de acuerdo con la invención incluyen cualquier promotor inducible descrito en el presente documento o conocido por un experto habitual en la materia. Los ejemplos de promotores inducibles incluyen, sin limitación, promotores química/bioquímicamente regulados y físicamente regulados tales como promotores regulados por isopropil β-D-1-tiogalactopiranósido (IPTG), promotores regulados por alcohol, promotores regulados por tetraciclina (por ejemplo, promotores sensibles a anhidrotetraciclina (aTc) y otros sistemas de promotores sensibles a tetraciclina, que incluyen una proteína represora de tetraciclina (tetR), una secuencia operadora de tetraciclina (tetO) y una proteína de fusión transactivadora de tetraciclina (tTA)), promotores regulados por esteroides (por ejemplo, promotores basados en el receptor de glucocorticoides de rata, receptor de estrógenos humano, receptores de ecdisona de polilla y promotores de la superfamilia del receptor de esteroides/retinoides/tiroides), promotores regulados por metales (por ejemplo, promotores procedentes de genes de metalotioneína (proteínas que se unen y secuestran iones metálicos) de levadura, ratón y ser humano), promotores regulados por patogenia (por ejemplo, inducidos por ácido salicílico, etileno o benzotiadiazol (BTH)), promotores inducidos por temperatura/calor (por ejemplo, promotores de choque térmico) y promotores regulados por luz (por ejemplo, promotores sensibles a la luz de células vegetales).

Los promotores inducibles adecuados para su uso de acuerdo con la invención pueden actuar en organismos hospedadores tanto procariotas como eucariotas. En algunas realizaciones, se usan promotores inducibles de mamífero. Los ejemplos de promotores inducibles de mamífero para su uso en el presente documento incluyen, sin limitación, PAct:PAIR de tipo promotor, PART, PBIT, PCR5, PCTA, PETR, PNIC, PPIP, PROP, PSPA /PSCA, PTET, PTtgR, PRep:PCuO de tipo promotor, PETR ON8, PNIC, PPIR ON, PSCA ON8, PTetO, PUREX8, PHyb:tetO7 - ETR8 -PhCMVmin de tipo promotor, tetO7 -PIR3 -ETR8 -PhCMVmin y scbR8 -PIR3 - PhCMVmin. En algunas realizaciones, pueden usarse promotores inducibles de otros organismos, así como promotores sintéticos diseñados para actuar en un hospedador procariota o eucariota. Los ejemplos de promotores inducibles no de mamífero para su uso en el presente documento incluyen, sin limitación, promotores de Lentivirus (por ejemplo, EFα, CMV, Sinapsina I humana (hSynI), CaMKIIα, hGFAP y TPH-2) y promotores de virus adenoasociados (por ejemplo, CaMKIIα (AAV5), hSynI (AAV2), hThy1 (AAV5), fSST (AAV1), hGFAP (AAV5, AAV8), MBP (AAV8), SST (AAV2)). Una característica funcional importante de los promotores inducibles contemplados es su capacidad de inducción por exposición a un inductor aplicado de forma externa.

Un promotor inducible adecuado para su uso de acuerdo con la invención puede ser inducido por (o reprimido por) una o más condiciones fisiológicas, tales como cambios en el pH, temperatura, radiación, presión osmótica, gradientes salinos, unión a superficie celular y la concentración de uno o más agentes inductores extrínsecos o intrínsecos. El inductor o agente inductor extrínseco puede comprender, sin limitación, aminoácidos y análogos de

aminoácidos, sacáridos y polisacáridos, ácidos nucleicos, activadores y represores de la transcripción de proteínas, citocinas, toxinas, compuestos a base de petróleo, compuestos que contienen metales, sales, iones, análogos de sustratos enzimáticos, hormonas o combinaciones de los mismos. Otros promotores inducibles pueden usarse de acuerdo con la invención.

5

10

15

En algunas realizaciones de la invención, un promotor puede usarse o no junto con un "potenciador", que se refiere a una secuencia reguladora de acción en *cis* implicada en la activación de la transcripción de una secuencia de ácido nucleico cadena abajo del promotor. Un potenciador puede ser uno asociado de forma natural con una secuencia de ácido nucleico, localizado cadena abajo o cadena arriba de esa secuencia. El potenciador puede localizarse en cualquier localización funcional antes o después del promotor y/o el ácido nucleico codificado.

Un "terminador" o una "secuencia terminadora", como se usa en el presente documento, es una secuencia de ácido nucleico que provoca que se detenga la transcripción. Un terminador puede ser unidireccional o bidireccional. Está comprendido por una secuencia de ADN implicada en terminación específica de un transcrito de ARN por una ARN polimerasa. Una secuencia terminadora evita la activación transcripcional de secuencias de ácido nucleico cadena abajo por promotores cadena arriba. Por lo tanto, en determinadas realizaciones, se contempla un terminador que finaliza la producción de un transcrito de ARN.

20

El tipo más habitualmente usado de terminador es un terminador directo. Cuando se coloca cadena abajo de una secuencia de ácido nucleico que habitualmente se transcribe, un terminador de la transcripción directo provocará que se anule la transcripción. En algunas realizaciones, pueden usarse terminadores de la transcripción bidireccionales, que habitualmente provocan que la transcripción termine en la cadena tanto directa como inversa. En algunas realizaciones, pueden usarse terminadores de la transcripción inversos, que habitualmente terminan la transcripción solamente en la cadena inversa.

25

30

En sistemas procariotas, los terminadores habitualmente quedan en dos categorías (1) terminadores rho-independientes y (2) terminadores rho-dependientes. Los terminadores rho-dependientes generalmente están compuestos de una secuencia palindrómica que forma un tallo-bucle rico en pares de bases G-C seguido de varias bases T. Los promotores adecuados para su uso de acuerdo con la invención incluyen cualquier terminador de la transcripción descrito en el presente documento o conocido por un experto habitual en la materia. Los ejemplos de terminadores incluyen, sin limitación, las secuencias de terminación de genes tales como, por ejemplo, el terminador de hormona del crecimiento bovina y secuencias de terminación víricas tales como, por ejemplo, el terminador de SV40, spy, yejM, secG-leuU, thrLABC, rrnB T1, hisLGDCBHAFI, metZWV, rrnC, xapR, aspA, y terminador de arcA. En algunas realizaciones, la señal de terminación puede ser una secuencia que no puede transcribirse o traducirse, tal como las resultantes de un truncamiento de secuencia. Otros terminadores pueden usarse de acuerdo con la invención.

35

40

En algunas realizaciones, se optimizan los codones de los ácidos nucleicos para expresión mejorada de las proteínas recombinantes de la invención. La optimización de codones, también denominada uso codónico preferente, se refiere a diferencias en la frecuencia de aparición de codones sinónimos en ADN codificante.

Células

45

50

Se contempla cualquier tipo de célula, incluyendo una célula procariota y una eucariota, que expresa de forma recombinante las proteínas proporcionadas en el presente documento. En algunas realizaciones, la célula es una célula bacteriana. En algunas realizaciones, la célula bacteriana es una célula de una bacteria del género *Escherichia*. En algunas realizaciones, la célula bacteriana es una célula de *Escherichia coli (E. coli)*. En algunas realizaciones, la célula es una célula fúngica, tal como, por ejemplo, una célula de levadura (por ejemplo, una célula de *Saccharomyces cerevisiae*). En algunas realizaciones, la célula es una célula de mamífero o una célula vegetal. Debería apreciarse que algunas células para su uso de acuerdo con la invención no contienen la copia cromosómica de tipo silvestre de un gen que codifica la proteína de tipo silvestre (por ejemplo, la proteína de tipo silvestre correspondiente a la proteína recombinante con una secuencia de reconocimiento de proteasa).

55

Las células proporcionadas en el presente documento, en algunas realizaciones, son células procariotas que pueden transformarse con cualquiera de los ácidos nucleicos de la invención. La transformación y la transfección son procesos por los que se introduce material genético exógeno en una célula procariota y en una célula eucariota, respectivamente. Puede conseguirse transformación mediante electroporación o por medios químicos. Las células para transformar están típicamente en un estado de competencia. Por lo tanto, en algunas realizaciones, las células proporcionadas en el presente documento son células electrocompetentes o químicamente competentes. Se conocen en la técnica una diversidad de células electrocompetentes y químicamente competentes y pueden usarse de acuerdo con la invención.

60

65

En algunas realizaciones, las células son células de *Escherichia coli* (*E. coli*) tales como, por ejemplo, células de *E. coli* JW3985-1 (Coli Genetic Shock Center; CHSC n.º 10867; Mol. Sys. Biol. 2:2006-08, 2006). Pueden usarse otras líneas celulares disponibles en el mercado y no disponibles en el mercado de acuerdo con la invención.

Las células de la invención pueden comprender marcadores seleccionables. Los marcadores seleccionables incluyen, sin limitación, genes que codifican proteínas que aumentan o reducen la resistencia o sensibilidad a antibióticos (por ejemplo, genes de resistencia a ampicilina, genes de resistencia a kanamicina, genes de resistencia a neomicina, genes de resistencia a tetraciclina y genes de resistencia a cloranfenicol) u otros compuestos, genes que codifican enzimas con actividades detectables mediante ensayos convencionales conocidos en la técnica (por ejemplo, β-galactosidasa, luciferasa o fosfatasa alcalina) y genes que afectan visiblemente al fenotipo de células transformadas o transfectadas, hospedadores, colonias o placas (por ejemplo, proteína verde fluorescente). Otros marcadores seleccionables pueden usarse de acuerdo con la invención.

10 Construcción de bibliotecas

15

20

25

30

35

40

45

50

55

60

65

Pueden usarse métodos desvelados en el presente documento para construir una biblioteca de las variantes de ácido nucleico proporcionadas en el presente documento. El diseño de biblioteca puede utilizar dos secuencias de nucleótidos - una que codifica la secuencia de aminoácidos primaria de la proteína diana y una que codifica la secuencia de reconocimiento de proteasa que se usará para inactivación de la proteína recombinante de la invención. La secuencia de reconocimiento de proteasa puede "avanzarse" a lo largo de la secuencia anterior en uno de dos métodos (FIG. 1A y 1B).

En un método, la secuencia de reconocimiento de proteasa puede insertarse después de múltiples codones de la secuencia de nucleótidos que codifica la proteína diana, produciendo de este modo una pluralidad de variantes de ácido nucleico, en donde cada variante de ácido nucleico contiene la secuencia de reconocimiento de proteasa localizada en una posición única entre dos codones nativos (FIG. 1A). En otro método, la secuencia de reconocimiento de proteasa puede reemplazar un número equivalente de nucleótidos en la secuencia que codifica la proteína diana, produciendo de este modo una pluralidad de variantes de ácido nucleico, en donde cada variante de ácido nucleico contiene la secuencia de reconocimiento de proteasa en lugar de un tramo equivalente de nucleótidos nativos (FIG. 1B).

En algunas realizaciones, la secuencia de reconocimiento de proteasa puede insertarse después de cada codón de la secuencia de ácido nucleico que codifica la proteína diana, produciendo de este modo una pluralidad de variantes de ácido nucleico, en donde cada variante de ácido nucleico contiene la secuencia de reconocimiento de proteasa localizada en una posición única entre dos codones nativos (por ejemplo, dos codones nativos adyacentes). En algunas realizaciones, la secuencia de reconocimiento de proteasa puede insertarse después de cada codón de la secuencia de ácido nucleico excluyendo el primer y/o último codón. Como alternativa, en algunas realizaciones, la secuencia de reconocimiento de proteasa puede insertarse después de cada segundo codón, después de cada tercer codón, después de cada cuarto codón, después de cada quinto codón, después de cada décimo codón o después de cada vigésimo codón. En algunas realizaciones, la secuencia de reconocimiento de proteasa puede insertarse aleatoriamente. En algunas realizaciones, la secuencia de reconocimiento de proteasa puede insertarse en una región particular del ácido nucleico, tal como, por ejemplo, la región N terminal o la región C terminal. En algunas realizaciones, la secuencia de reconocimiento de proteasa puede reemplazar codones contiguos de la secuencia de ácido nucleico que codifica la proteína diana. La "región N terminal" de una proteína, como se usa en el presente documento, puede hacer referencia al tramo de 100, 90, 80, 70, 60, 50, 40, 30, 20 o 10 aminoácidos localizados adyacentes al aminoácido 5' terminal. La "región C terminal" de una proteína, como se usa en el presente documento, puede hacer referencia al tramo de 100, 90, 80, 70, 60, 50, 40, 30, 20 o 10 aminoácidos localizados adyacentes al aminoácido 3' terminal. En cada realización, debe entenderse que cada variante de ácido nucleico contiene al menos una (o una) secuencia de reconocimiento de proteasa.

En algunas realizaciones, en donde la estructura de una proteína diana se conoce o puede predecirse, la secuencia de reconocimiento de proteasa puede insertarse en regiones correspondientes a regiones de bucle expuestas a disolvente de la proteína. Se ha descubierto que, en algunos casos, estas regiones de bucle expuestas a disolvente son tolerantes a la inserción de una secuencia de reconocimiento de proteasa que es fácilmente escindible. Por lo tanto, se proporcionan en el presente documento métodos para construir una biblioteca de ácidos nucleicos que contienen una secuencia de reconocimiento de proteasa en regiones correspondientes a regiones de bucle expuestas a disolvente de la proteína. Dichos métodos ahorran tiempo y el coste de preparar proteínas con una secuencia de reconocimiento de proteasa. En algunas realizaciones, puede ser ventajoso usar estrategias de construcción de bibliotecas basadas en la reacción en cadena de la polimerasa (PCR) que impiden la síntesis de las secuencias de ácido nucleico de tipo silvestre.

Debe entenderse que, en algunas realizaciones, puede ser ventajoso incorporar tanta de la secuencia de reconocimiento de proteasa como sea necesario para producir una secuencia de reconocimiento de longitud completa. Por ejemplo, si la secuencia de reconocimiento de proteasa comienza con una leucina y la secuencia se inserta después de una leucina, solamente puede insertarse una secuencia de reconocimiento parcial de modo que no se repita la leucina (FIG. 2). Asimismo, si el último aminoácido en la secuencia de reconocimiento de proteasa es una prolina y la secuencia de reconocimiento de proteasa se inserta antes de una prolina, solamente puede insertarse una secuencia de reconocimiento de proteasa parcial de modo que no se duplique la prolina. Por lo tanto, una proteína o ácido nucleico con una secuencia de reconocimiento de proteasa localizada entre dos aminoácidos o codones nativos (por ejemplo, dos aminoácidos o codones nativos adyacentes), respectivamente, abarca proteínas y

ácidos nucleicos con secuencias de reconocimiento de proteasa parciales insertadas entre dos aminoácidos o codones nativos de modo que la secuencia de reconocimiento completa se reconstituya en el producto final.

Construcción de cepas

5

10

15

Las variantes de ácido nucleico de la invención pueden transformarse en células recombinantes (por ejemplo, células bacterianas) para explorar con respecto a proteínas recombinantes óptimas (por ejemplo, activas e inactivables). Debe entenderse que las células usadas para exploración no son necesariamente las células usadas para expresar una proteína recombinante óptima para el fin de genomodificar, por ejemplo, una ruta metabólica de interés.

En algunas realizaciones, el genoma de las células puede modificarse para (a) suprimir o mutar la copia cromosómica de tipo silvestre (o endógena) de un gen que codifica la proteína diana y/o (b) incluir un medio para inducir expresión de proteasa afín citoplasmática. Esto último puede conseguirse añadiendo un gen que codifica la proteasa afín con un promotor inducible al genoma celular, o proporcionando un gen que codifica la proteasa afín con un promotor inducible en un vector, tal como, por ejemplo, un plásmido. Como alternativa, en algunas realizaciones, las células pueden carecer completamente de la proteasa afín, que puede después añadirse en una etapa de exploración/selección posterior. En algunas realizaciones, la proteasa afín se añade en forma purificada.

En algunas realizaciones, la célula recombinante se modifica para carecer de una copia cromosómica funcional del gen de tipo silvestre (es decir, el gen de tipo silvestre que codifica la proteína de tipo silvestre que corresponde a la proteína recombinante con el sitio de reconocimiento de proteasa) y se transforma con un plásmido que contiene variantes de ácido nucleico de la invención. Sin quedar ligado a teoría alguna, la supresión de la copia de tipo silvestre cromosómica del gen de la célula permite la complementación y ayuda a minimizar el fondo cuando el ácido nucleico se inserta mediante métodos de recombinación de baja eficacia (por ejemplo, cuando el crecimiento celular debido a la presencia de un gen de tipo silvestre compensatorio representa un falso positivo). En algunas realizaciones, la inclusión de un marcador seleccionable (por ejemplo, un marcador de resistencia a antibiótico) en las células, por ejemplo, en vector episómico que contiene una variante de ácido nucleico, puede reducir la tasa de falsos positivos.

30

En algunas realizaciones, las células pueden modificarse para suprimir genes de tipo silvestre que codifican proteínas con funciones similares a las de la proteína diana. Por ejemplo, en algunas realizaciones, se suprimen copias cromosómicas de genes que codifican isozimas de una enzima diana (es decir, enzimas que proporcionan función similar) de las células para minimizar el fondo en la etapa o las etapas de exploración/selección.

35

40

En algunas realizaciones, las células recombinantes se modifican para contener un sistema de recombinasa inducible tal como, por ejemplo, al menos un ácido nucleico que contiene los genes del sistema de recombinasa de fago lambda (λ) gamma (γ), beta (β) y exo. Por lo tanto, en algunas realizaciones, se usan métodos de genomodificación por recombinación (o ingeniería genética mediada por recombinación) para modificar las células recombinantes de la invención. Dichos sistemas de recombinación homólogos pueden usarse para introducir o suprimir copias cromosómicas de genes de tipo silvestre del genoma celular. También se contemplan y pueden usarse en el presente documento otros métodos de genomodificación por recombinación. La invención también contempla el uso de enzimas de restricción y ligasas para combinar secuencias de ácido nucleico en un orden especificado (Strachan, T., et al., Human Molecular Genetics, Capítulo 4, Garland Science, Nueva York, 1999).

45

Selección de actividad proteica

50 co dia procé co 55 cre co sil su tip 60 eje de

65

Las células recombinantes que expresan las variantes de ácido nucleico de la invención pueden cultivarse en medio selectivo en ausencia de una proteasa funcional para permitir la recuperación de proteínas recombinantes codificadas por las variantes de ácido nucleico. Por ejemplo, en algunas realizaciones, la actividad de la proteína diana puede ser necesaria para el crecimiento celular. Si la inserción de una secuencia de reconocimiento de proteasa afín afecta de forma adversa a la actividad de la proteína recombinante, después, supuestamente, las células presentarán defectos de crecimiento tales como, por ejemplo, una tasa de crecimiento reducida. En consecuencia, en esta etapa de exploración/selección, solamente se seleccionan las células con una tasa de crecimiento normal (o sin defectos de crecimiento) para caracterización adicional. Una "tasa de crecimiento normal", como se usa en el presente documento, se refiere a una tasa de crecimiento que es comparable a células de tipo silvestre de control. En algunas realizaciones, se considera que una célula tiene una "tasa de crecimiento normal" si su tasa de crecimiento está dentro de aproximadamente 15 % de la tasa de crecimiento de una célula de control de tipo silvestre (por ejemplo, célula con una variante de ácido nucleico/proteína recombinante de la invención). Por ejemplo, puede considerarse que una célula tiene una tasa de crecimiento normal si su tasa de crecimiento está dentro del 50 %, 40 %, 30 %, 25 %, 20 %, 15 %, 14 %, 13 %, 12 %, 11 %, 10 %, 9 %, 8 %, 7 %, 6 %, 5 %, 4 %, 3 %, 2 % o 1 % de la tasa de crecimiento de una célula de control de tipo silvestre. Una célula con un "defecto de crecimiento", como se usa en el presente documento, puede referirse a una célula que no consigue crecer o que tiene una tasa de crecimiento reducida mayor del 10 %, mayor del 15 %, mayor del 20 % o mayor del 25 % en comparación con la tasa de crecimiento de una célula de control de tipo silvestre.

El medio de crecimiento selectivo que puede usarse de acuerdo con la invención, en algunas realizaciones, puede depender de características particulares de las proteínas recombinantes, tales como la función específica de la proteína recombinante activa. Por ejemplo, cuando se cultiva proteína Pgi recombinante en medio mínimo en el que la única fuente de carbono disponible es glucosa, las células que contienen una variante de Pgi recombinante activa crecen bien, mientras que las células que contienen una variante de Pgi recombinante inactiva crecen mal. En algunas realizaciones, el medio selectivo usados puede depender del sustrato de la variante de Pgi recombinante. En algunas realizaciones, se usa un enfoque de "rescate" para producir condiciones de crecimiento selectivas, en las que la actividad de la proteína recombinante, que es necesaria para el crecimiento celular, se suprime del genoma de la célula (por ejemplo, se suprimen o mutan gen o genes que codifican la proteína o las proteínas de tipo silvestre), y después se introducen variantes de *pgi* de ácido nucleico en la célula. Las variantes de ácido nucleico que están activas deberían rescatar el crecimiento celular (por ejemplo, las células crecen) y las que están inactivas no deberían rescatar el crecimiento celular (por ejemplo, las células no crecen).

Selección de inactivación proteica

10

15

20

35

40

55

60

65

Las células que no presentan defectos de crecimiento se cultivan después en condiciones selectivas que inducen expresión de proteasa afín. Esta etapa permite la recuperación de células que presentan defectos de crecimiento.

Las células que presentan defectos de crecimiento portan supuestamente proteínas recombinantes que se inactivan en presencia de una proteasa afín funcional (y son activas en ausencia de una proteasa afín funcional). Estas células defectuosas en crecimiento se recuperan después y las variantes de ácido nucleico contenidas en las mismas se secuencian para caracterización adicional.

La caracterización adicional puede implicar la expresión de variantes de ácido nucleico seleccionadas en células que carecen de proteasa afín funcional. El crecimiento de estas células pueden después caracterizarse y los lisados producirse y recogerse. Los lisados pueden después ensayarse *in vitro* para pérdida de actividad proteica recombinante. Dichos ensayos pueden utilizar ensayos de actividad proteica tras la incubación con o sin proteasa afín purificada, exógena. Se conocen en la técnica diversos ensayos de actividad proteica, cualquiera de los cuales pueden usarse de acuerdo con la invención. El ensayo de actividad proteica seleccionado dependerá del tipo de proteína. En algunas realizaciones, la proteína recombinante que se inactiva más completa y rápidamente cuando se expone a proteasa puede seleccionarse para su uso adicional en, por ejemplo, genomodificación de rutas metabólicas de interés.

Las condiciones de inducción de proteasa afín dependerán del tipo de sistema promotor inducible elegido para conducir la expresión de la proteasa afín y se conocen en la técnica. Por ejemplo, isopropil β-D-1-tiogalactopiranósido (IPTG) puede añadirse a un sistema sin células *in vitro* para activar un promotor sensible a IPTG unido operativamente a la proteasa afín.

Se ilustran estos y otros aspectos por los siguientes ejemplos no limitantes.

Ejemplos

Ejemplo 1 - Enzimas fosfoglucosa isomerasa de Escherichia coli

- La enzima fosfoglucosa isomerasa (Pgi) de *Escherichia coli (E. coli)* cataliza la interconversión de glucosa-6-fosfato y fructosa-6-fosfato y es la primera etapa comprometida en glucólisis. La dirección a proteasa de esta enzima, sin alterar la función/actividad de esta enzima clave durante el crecimiento celular, permite controlar el flujo de carbono entre glucólisis y la ruta de pentosa fosfato en reacciones sin células.
- 50 Construcción de bibliotecas de variantes de Pgi

Se diseñó una biblioteca de ADN bicatenario lineal de 562 miembros y se construyó mediante reacción en cadena de la polimerasa (PCR), donde la secuencia del gen *pgi* de *E. coli* nativa (SEQ ID NO: 1) se modificó para incluir una secuencia de nucleótidos (SEQ ID NO: 37) que codifica la secuencia de reconocimiento de proteasa de ocho aminoácidos (SEQ ID NO: 38) de la proteasa 3C de rinovirus humano (RVH) (FIG. 1A y 1B). 547 miembros de la biblioteca contenían genes *pgi* mutantes con nucleótidos que codificaban la secuencia de reconocimiento de proteasa insertada después de cada uno de los 549 codones en el gen *pgi* de tipo silvestre (excluyendo los primer y último codones). Se crearon miembros adicionales de la biblioteca reemplazando la secuencia del gen *gpi* de tipo silvestre con una secuencia de nucleótidos que codifica los ocho aminoácidos de la secuencia de reconocimiento de proteasa. Estos miembros contenían reemplazos en el gen de tipo silvestre en 15 localizaciones diferentes que comienzan con los números de codones 244, 245, 357, 358, 359, 360, 361, 362, 363, 364, 365, 366, 367, 461, 462 (donde los números de codones corresponden al primer codón de la secuencia de reemplazo). Además de la secuencia codificante del gen, cada miembro de la biblioteca también contenía ramas de homología de 50 pb (por ejemplo, secuencia adicional de 50 pb cadena arriba del codón de inicio del gen y 50 pb cadena abajo del codón de terminación del gen que son homólogas del locus *pgi* de tipo silvestre del genoma de *E. coli*). Si la secuencia LEVLFQGP (SEQ ID NO: 38) fuera a insertarse después de los aminoácidos L, LE o LEV, solamente EVLFQGP

(SEQ ID NO: 39), VLFQGP (SEQ ID NO: 40) o LFQGP (SEQ ID NO: 41) se insertaron, respectivamente. De manera similar, si la secuencia fuera a insertarse antes de los aminoácidos P, GP o QGP, solamente LEVLFQG (SEQ ID NO: 42), LEVLFQ (SEQ ID NO: 43) o LEVLF (SEQ ID NO: 44) se insertaron, respectivamente. Además, si la inserción (o el reemplazo) fue entre los aminoácidos LP, por ejemplo, solamente EVLFQG (SEQ ID NO: 45) se insertó (o reemplazó).

Diseño de cepas

5

10

15

20

25

30

35

40

45

50

55

60

JW3985-1 de E. coli (Coli Genetic Stock Center; CGSC n.º 10867) de la colección Keio (Mol. Syst. Biol. 2006;2:2006-08) se seleccionó como la cepa para la exploración de biblioteca de Pgi. Esta cepa contiene un marcador de resistencia a kanamicina (KanR) en lugar del gen pgi. Para preparar la cepa para su uso en la exploración, se realizaron varias modificaciones. En primer lugar, se retiró KanR usando pCP20, que se obtuvo de E. coli BT340 (CGSC n.º 7629), empleando el método descrito por Datsenko y Wanner (Proc Natl Acad Sci USA. 6 Jun 2000;97(12):6640-45). El locus de pgi resultante de la cepa contenía las primeras tres bases y las últimas 21 bases del gen pgi, con una secuencia cicatriz corta entre medias. Dos plásmidos (pGLA042 y pGLC217; FIG. 3 y 4) se cotransformaron en esta cepa para crear la cepa final que se usó en la exploración de Pgi (GL12-085) mediante el enfoque de selección de alto rendimiento agrupado (descrito posteriormente). pGLA042 se creó a partir de pKD46 (obtenido de E. coli BW25113; GCSC n.º 7739) reemplazando el sistema de expresión inducible por arabinosa de pKD46 con el sistema de expresión de λ cl857-pR inducible por temperatura. Este cambio permite la expresión inducible por temperatura de los genes del sistema de recombinasa de fago λ γ, β, y exo de pGLA042. pGLC217 es un plásmido de bajo número de copias que proporciona expresión inducible por arabinosa de la proteasa 3C de RVH (con codones optimizados para expresión en E. coli; SEQ ID NO: 34), cuya traducción es facilitada por un sitio de unión a ribosoma fuerte. También se produjo una cepa que carece de pGLC217 (GL12-052) para su uso en enfoque de selección y ensayo individual (véase posteriormente).

Enfoque de selección y ensayo individual

El locus cromosómico de *pgi* en GL12-052 se recombinó con un subconjunto de 76 miembros de la biblioteca de ADN bicatenario, lineal, descrita anteriormente. Este subconjunto contenía la secuencia de reconocimiento de proteasa en regiones de bucle accesibles al disolvente de Pgi, como se predijo por su estructura cristalina (banco de datos de proteínas ID: 3NBU). Los miembros de bibliotecas de Pgi resultantes portaron inserciones de secuencias de reconocimiento de proteasa después de las siguientes posiciones en la secuencia de aminoácidos primaria de Pgi de tipo silvestre: 2-5, 9, 24-25, 33-36, 58-59, 85-96, 105-111, 113-115, 137-141, 143-144, 146, 173-176, 196, 250-251, 254, 366-370, 398-399, 410-414, 447-451, 477, 526-532.

GL12-052 se cultivó a 30 °C en LB de baja salinidad (caldo de lisogenia) (NaCl 0,5X) hasta una densidad óptica (DO) de 0,5. El cultivo se transfirió a un baño de agua a 42 °C y se agitó durante 15 minutos para inducir el sistema de recombinasa de pGLA042. Las células inducidas se hicieron electrocompetentes siguiendo métodos convencionales y se transformaron con la biblioteca de variantes de ácido nucleico. Cada miembro de biblioteca (o variante de ácido nucleico) se transformó individualmente (25 µl de células y 250 ng de miembro de biblioteca), o en subconjuntos de tres miembros, y se recuperó en 1 ml de LB de baja salinidad durante más de 1 h a 30 °C. Se sembraron placas de transformaciones recuperadas en medio de agar M9 complementado con glucosa 1 % (M9G). Las placas se incubaron a 30 °C durante 1,5-2 días. Las colonias resultantes representaron miembros de bibliotecas que contenían moléculas de Pgi activas a pesar de la inclusión de la secuencia de reconocimiento de proteasa. La región de Pgi de los genomas de estos miembros de las bibliotecas se amplificó por PCR y se secuenció. Después se verificaron las secuencias de las cepas en cultivos en matraces de agitación a pequeña escala con medio M9G a 37 °C para determinar sus tasas de crecimiento, proporcionando de este modo un método in vivo para evaluar la influencia de la inserción de secuencia de reconocimiento de proteasa en la actividad de Pgi. Las cepas con tasas de crecimiento en un intervalo de 15 % de la tasa de crecimiento de tipo silvestre se avanzaron para un segundo ciclo de exploración para determinar la susceptibilidad a inactivación de proteasa; se avanzaron 41 del subconjunto original de 76 miembros.

Para evaluar la susceptibilidad a proteasa, se crearon y ensayaron lisados clarificados *in vitro* para determinar la actividad de Pgi en presencia o ausencia de proteasa 3C de RVH exógena. Se dejaron crecer cultivos de M9G hasta una DO de 2, se sedimentaron (8000xg, 8 min., 4 °C), se lavaron (10 ml de PBS IX, 4 °C), se resuspendieron (12 ml de Tris-HCl 100 mM, pH 7,5, 4 °C), se lisaron (homogeneizador AVESTIN® Emulsiflex C3 a 103,39 MPa (15.000 psi)) y se clarificaron (22.000xg, 15 min, 4 °C). Se trataron lisados clarificados (100 µl) con ± 10 unidades de proteasa 3C de RVH exógena (ACCELAGEN™ H0101S) durante 4 horas a 37 °C y se ensayaron para determinar la actividad de Pgi. La actividad de Pgi se ensayó acoplando con glucosa-6-fosfato deshidrogenasa (G6PDH) y después de una reducción de nicotinamida adenina dinucleótido fosfato (NADP+) a una absorbancia de 340 nm durante cinco minutos a 37 °C. Las reacciones contenían Tris-HCl 100 mM (pH 7,5), MgSO₄ 8 mM, fructosa-6-fosfato 5 mM, NADP+ 1 mM, albúmina sérica bovina 0,25 mg/ml, 2,5 unidades de G6PDH purificada de *Leuconostoc mesenteroides* (MEGAZYME® E-GPDH5) y muestras de lisado/proteasa al 30 por ciento en volumen.

65 En última instancia, se seleccionaron 12 secuencias de genes *pgi* únicas, que contenían la secuencia de reconocimiento de 3C de RVH insertada después de los siguientes codones: 108, 109, 110, 138, 410, 526, 527, 528,

529, 530, 531 y 532. Estos 12 miembros del subconjunto de 76 miembros original mostraron tasas de crecimiento en medio M9G en un intervalo de 15 % de tipo silvestre y se inactivaron significativamente tras exposición a proteasa exógena (Tabla 1). La FIG. 5 muestra un tratamiento de ciclo temporal más largo con proteasa para un subconjunto de la biblioteca. Basándose en datos obtenidos de los experimentos descritos anteriormente, la variante de Pgi óptima contenía la secuencia de reconocimiento de 3C de RVH después del aminoácido 526 (también conocida como Pgi-HRV-I526).

Tabla 1: Comparación de tasas de crecimiento celular y actividad de Pgi.

Secuencia de reconocimiento de proteasa insertada después del		Actividad de Pgi (μmol/min/mg Actividad / Λ μ / tipo de proteína total) Δctividad / Λ tipo silve				
aminoácido n.º	μ (h ⁻¹)	silvestre			- proteasa	+ proteasa
Δ pgi	0,15	0,22	0	0		
tipo silvestre	0,68	1	2,31	2,37	1	1
108	0,60	0,88	2,16	2,03	0,94	0,86
109	0,71	1,04	2,54	1,86	1,10	0,78
110	0,70	1,03	2,13	1,99	0,92	0,84
138	0,58	0,86	0,62	0,37	0,27	0,16
410	0,59	0,87	1,16	0,96	0,50	0,41
526	0,66	0,97	1,92	0,44	0,83	0,19
527	0,70	1,03	1,93	1,42	0,84	0,60
528	0,65	0,96	1,04	0,63	0,45	0,26
529	0,66	0,97	1,48	1,19	0,64	0,50
530	0,68	1,00	0,77	0,29	0,33	0,12
531	0,62	0,91	1,29	0,67	0,56	0,28
532	0,69	1,01	1,15	0,52	0,50	0,22

Nota: Valor de ensayo de actividad de control de Δ pgi pequeño (0,089) restado de todas las actividades de Pgi indicadas

10 Enfoque de selección de alto rendimiento agrupada

El locus cromosómico de *pgi* en GL12-085 se recombinó con la biblioteca agrupada de 562 miembros (a concentraciones equimolares), usando los métodos descritos anteriormente. La biblioteca celular resultante se sembró en placas en medio de agar M9 que carecía de arabinosa y complementado con 34 μg/ml de cloranfenicol y glucosa 1 % (M9CG). Las células se sembraron en placas para obtener cobertura 5X de la biblioteca, lo que sumaba 11 placas con aproximadamente 250 células/placa, permitiendo de este modo siembra en placas repetida más fácil en la siguiente etapa del método. Estas placas de bibliotecas agrupadas se incubaron a 37 °C durante 1,5-2 días. Las colonias que representan miembros de bibliotecas que proporcionan Pgi activo se sembraron posteriormente en placas repetidas tanto en medo M9GC como en medio de agar M9 complementado con cloranfenicol 34 μg/ml, glucosa 1 % y arabinosa 2 % (M9CGA). Las placas repetidas se incubaron a 37 °C durante 1,5-2 días. Todas las colonias que estaban presentes en placas de M9CG pero no presentes en placas de M9CGA se recuperaron para análisis adicional.

La región de Pgi de los genomas de estas colonias se amplificó por PCR y se secuenció. Se identificaron siete secuencias de genes *pgi* únicas, que contenían la secuencia de reconocimiento de 3C de RVH insertada después de los siguientes codones: 524, 525, 526, 528, 529, 531 y 545. También se identificaron miembros 526, 528, 529 y 531 del subconjunto de 76 miembros usando el ensayo de exploración individual, descrito anteriormente.

Estructura cristalina de proteínas

Casi todas de las 15 variantes de Pgi obtenidas del individuo y exploraciones agrupadas se mapean en regiones de bucle expuestas a disolvente de la estructura cristalina publicada para Pgi (banco de datos de proteínas ID: 3NBU). Además, las variantes 526-532 corresponden a una región de bucle que precede a la hélice C-terminal de Pgi y las variantes 524-525 corresponden al extremo C-terminal de otra hélice, que posee actividad catalítica (FIG. 6). La escisión mediada por proteasa de una secuencia de reconocimiento insertada en la región 524-532 escindiría por lo tanto la hélice C-terminal y puede dar como resultado la malformación de la hélice catalítica precedente. La retirada de la hélice C-terminal es probablemente perjudicial porque Pgi es un dímero y esta hélice ayuda a "sujetar" el dímero unido.

40

35

15

20

25

Demostración de inactivación mediada por proteasa eficaz de Pgi diana

El gen *pgi* de *E. coli* BL21 (DE3) se reemplazó con *pgi-HRV-I526* (SEQ ID NO: 9). Esta cepa (GL12-116) se transformó individualmente con tres plásmidos: pACYCDuet-1, pGLC089 (FIG. 7) y pGLC221 (FIG. 8). pACYCDuet-1 es un plásmido de control de vector vacío de número de copias bajo, mientras que pGLC089 y pGLC221 son capaces de expresar proteasa 3C de RVH (con codones optimizados para expresión en *E. coli*) de un promotor T7 cuando se induce con isopropil β-D-1 tiogalactopiranósido (IPTG). El gen de proteasa de pGLC089 contiene secuencia adicional de modo que la proteasa 3C de RVH resultante posee un líder de OmpA N-terminal (MKKTAIAIAVALAGFATVAQA) (SEQ ID NO: 46) que secuestra la proteasa en el periplasma, mientras que el gen de proteasa de pGLC221 carece de dicho líder y se expresa en el citoplasma. Estas cepas se cultivaron en un medio de glucosa definido a 37 °C hasta fase semilogarítmica y se indujeron con IPTG 0,8 mM durante 2 horas. Se crearon lisados clarificados y se ensayaron posteriormente para determinar la actividad de Pgi (como se ha descrito anteriormente). La Tabla 2 muestra la tasa de crecimiento de cada cepa antes de la inducción y la actividad de Pgi medida en el lisado clarificado. Cuando se expresa proteasa 3C de RVH de forma citoplasmática, la tasa de crecimiento desciende en 40 % en comparación con la cepa que carece de proteasa, supuestamente debido a expresión filtrante de la proteasa antes de sobreexpresión inducida por IPTG.

Tabla 2: Comparación						
Secuencia líder de OmpA para inmovilización periplásmica	Preinducción μ(h ⁻¹)	Actividad de Pgi (µmol/min/mg de proteína total)				
sin proteasa	0,62	1,3				
N.°	0,38	-0,01				
Sí	0.55	0.01				

20 Ejemplo 2 - Enzimas fosfotransacetilasa de Escherichia coli

La enzima fosfotransacetilasa (Pta) (también denominada fosfato acetiltransferasa) de *Escherichia coli (E. coli)* cataliza la primera reacción comprometida de metabolismo de exceso de acetato:

25 acetil-CoA + fosfato ←→ acetil-fosfato + coenzima A

Se produce exceso de acetato en cultivos aeróbicos alimentados con glucosa rápidamente crecientes de *E. coli.* La acumulación de acetato secretado en medio de producción limita la tasa de crecimiento, la densidad de crecimiento y la producción de proteína recombinante, que es un problema típico en fermentación industrial. Las cepas con supresión de actividad de Pta crecen habitualmente 15-20 % más lento que sus homólogos de tipo silvestre y, aunque reducen la secreción de acetato, no resuelven el problema del exceso, ya que las cepas en su lugar secretan lactato y piruvato con efectos deletéreos similares. La dirección a proteasa de Pta en procesos de producción sin células previene la acumulación de acetato y desplaza el flujo de carbono al ciclo de ácido tricarboxílico, permitiendo al mismo tiempo que las cepas crezcan a tasas de crecimiento máximas más rápidas que sus homólogos con supresión de pta.

Construcción de bibliotecas de variantes de Pta

Se diseñó una biblioteca de ADN bicatenario lineal de 200 miembros y se construyó mediante reacción en cadena de la polimerasa (PCR), donde la secuencia del gen pta de E. coli nativa (SEQ ID NO: 47) se modificó para incluir una secuencia de nucleótidos (SEQ ID NO: 37) que codifica la secuencia de reconocimiento de proteasa de ocho aminoácidos (SEQ ID NO: 38) de la proteasa 3C de rinovirus humano (RVH). La secuencia de nucleótidos que codifica el motivo de reconocimiento de proteasa se insertó después de los siguientes codones en el gen pta de tipo silvestre: 350, 380-388, 401-405, 409-415, 426-431, 434-438, 446-465, 475-483, 490-495, 502-508, 511-518, 526-538, 544-549, 552-563, 577-586, 589-603, 615-620, 626-627, 629-632, 639-650, 653-660, 669-674, 681-687, 689-698, 709-713. Además de la secuencia codificante del gen, cada miembro de la biblioteca también contenía ramas de homología de 50 pares de bases (pb) (por ejemplo, secuencia adicional de 50 pb cadena arriba del codón de inicio del gen y 50 pb cadena abajo del codón de terminación del gen que son homólogas del locus pta de tipo silvestre del genoma de E. coli). Si la secuencia LEVLFQGP (SEQ ID NO: 38) fuera a insertarse después de los aminoácidos L, LE o LEV, solamente EVLFQGP (SEQ ID NO: 39), VLFQGP (SEQ ID NO: 40) o LFQGP (SEQ ID NO: 41) se insertaron, respectivamente. De manera similar, si la secuencia fuera a insertarse antes de los aminoácidos P, GP o QGP, solamente LEVLFQG (SEQ ID NO: 42), LEVLFQ (SEQ ID NO: 43) o LEVLF (SEQ ID NO: 44) se insertaron, respectivamente. Además, si la inserción fue entre los aminoácidos LP, por ejemplo, solamente EVLFQG (SEQ ID NO: 45) se insertó.

Diseño de cepas

5

10

15

30

35

40

45

50

55

60

Para la exploración de bibliotecas de Pta, se creó una versión modificada de JW2294-1 de *E. coli* (Coli Genetic Stock Center; CGSC n.º 9844) de la colección Keio (Mol. Syst. Biol. 2006; 2:2006-08). Para preparar la cepa para su uso en la exploración, el genoma de JW2294-1 se modificó de dos maneras, usando métodos descritos previamente en

el Ejemplo 1 para fosfoglucosa isomerasa. En primer lugar, el marcador de KanR, localizado en lugar del gen *pta*, se retiró, dejando un locus de *pta* que contenía las primeras tres bases y las últimas 21 bases del gen *pta*, con una secuencia cicatriz corta entre medias. En segundo lugar, el gen que codifica la acetil-CoA sintetasa (es decir, *acs*) se reemplazó con KanR, creando de este modo una cepa que carece de la capacidad de crecer en acetato como una única fuente de carbono y restaura la resistencia a kanamicina. El plásmido de recombinasa descrito previamente (pGLA042; Figura 3) se transformó en esta cepa para crear la cepa de exploración final (GL13-052), que se usó en un enfoque de selección y ensayo individual.

Enfoque de selección y ensayo individual

10

15

20

25

30

35

40

45

65

El locus cromosómico de *pta* en GL13-052 se recombinó individualmente con la biblioteca de ADN bicatenario, lineal, de 200 miembros, descrita anteriormente, que coloca la secuencia de reconocimiento de proteasa de RVH en regiones de bucle accesibles al disolvente predichas del dominio catalítico C-terminal de Pta. Como la estructura cristalina del Pta de *E. coli* aún no se ha determinado, las regiones de bucle anteriormente mencionadas se predijeron realizando un alineamiento de secuencias de aminoácidos del dominio catalítico C-terminal del Pta de *E. coli* con el de enzimas heterólogas con estructuras cristalinas publicadas (es decir, banco de datos de proteínas ID: 1R5J y 2AF3).

Se dejó crecer un cultivo de 2 litros (I) de GL13-052 hasta una densidad óptica a 600 nm de 0,5 a 30 °C en LB de baja salinidad (extracto de levadura 5 g/l, triptona 10 g/l, NaCl 5 g/l) que contiene kanamicina 10 μg/ml y carbenicilina 50 μg/ml. El cultivo se transfirió a un baño de agua a 42 °C y se agitó durante 30 minutos para inducir el sistema de recombinasa de pGLA042. Las células inducidas se hicieron electrocompetentes siguiendo métodos convencionales y se congelaron instantáneamente alícuotas de 50 μl en nitrógeno líquido y posteriormente se almacenaron a -80 °C antes de la recombinación con miembros de bibliotecas.

Cada ADN miembro de la biblioteca se transformó individualmente (25 µl de células y 50 ng de ADN miembro de la biblioteca) y se recuperó en 1 ml de LB de baja salinidad durante más de 3 horas a 30 °C. Se sembraron transformaciones recuperadas en placas en medio de agar M9 complementado con acetato 1 % y kanamicina 10 µg/ml y las placas se incubaron a 37 °C durante 2-3 días. Los acontecimientos de recombinación que produjeron colonias fueron representativos de miembros de biblioteca que contenían enzimas de Pta activas a pesar de la inclusión del motivo de secuencia de reconocimiento de proteasa. La región de Pta de los genomas de estos miembros de las bibliotecas se amplificó por PCR y se secuenció. Después se hicieron competentes y se transformaron cepas con secuencia verificada con pGLC217 para permitir la expresión inducible por arabinosa de proteasa de RVH. Las cepas también se transformaron con un plásmido de control (pGLC219), que es idéntico de pGLC217 excepto que el gen que codifica la proteasa de RVH se reemplazó con un gen que codifica la proteasa del virus del grabado del tabaco (TEV). Esta proteasa no escindirá variantes de Pta.

Para evaluar la susceptibilidad a proteasa *in vivo*, las tasas de crecimiento y secreción de acetato se midieron para cepas que contenían variantes de Pta viables que portaban pGLC217 o pGLC219 que se cultivaron a 37 °C en medio mínimo M9 que contenía glucosa 0,5 %, kanamicina 10 μg/ml y cloranfenicol 34 μg/ml. Estos cultivos se dejaron crecer ± arabinosa 2 % para sobreexpresar la proteasa. Por lo tanto, la tasa de crecimiento de cada variante de Pta viable se examinó en cuatro condiciones: (1) expresión de proteasa de TEV no inducida, (2) expresión de proteasa de TEV inducida por arabinosa, (3) expresión de proteasa de RVH no inducida y (4) expresión de proteasa de RVH inducida por arabinosa. Las condiciones (3) y (4) permiten que la desactivación de Pta mediada por proteasa se evalúe mediante la tasa de crecimiento, mientras que las condiciones (1) y (2) proporcionan un control para la carga metabólica ocasionada por el mantenimiento de plásmido y expresión de proteínas inducida por arabinosa. Como control positivo, se incluyó una cepa con *pta* de tipo silvestre en el estudio, mientras que una cepa con supresión de *pta* actuó como el control negativo.

Basándose en fenotipos de crecimiento y secreción de acetato en comparación con las cepas de control, en última instancia se seleccionaron cuatro variantes de Pta únicas de la biblioteca de 200 miembros. Estas variantes contenían el motivo de escisión de proteasa insertado después del aminoácido 381, 382, 387 y 409 (SEQ ID NO: 50, 52, 54, 56, codificadas respectivamente por SEQ ID NO: 49, 51, 53, 55). La Figura 10A muestra los datos de secreción de acetato y la Figura 10B muestra los datos de secreción de lactato para las variantes seleccionadas en comparación con el Pta de tipo silvestre y controles de pta. El control de Pta de tipo silvestre muestra un fenotipo de alto acetato y bajo lactato, mientras que el control de *pta* muestra el fenotipo opuesto. Por lo tanto, si una variante de Pta particular es susceptible a desactivación mediada por proteasa de RVH, debería mostrar alto acetato y bajo lactato en ausencia de inducción de proteasa de RVH, mostrando al mismo tiempo lo opuesto cuando se induce la proteasa de RVH. En los controles de proteasa de TEV, el acetato debería ser alto y el lactato debería ser bajo independientemente de la inducción, ya que la secuencia de reconocimiento de proteasa de TEV no está presente en las variantes de Pta. De manera clara, las variantes 381, 382, 387 y 409 cumplen estos criterios.

Para demostrar adicionalmente que estas variantes de Pta eran susceptibles a proteasa de RVH, se realizaron ensayos de actividad *in vitro*. La Figura 11 muestra la actividad de cada variante de Pta en presencia o ausencia de proteasa de RVH proporcionada de forma exógena después de incubación durante 30 minutos a 37 °C. En todos los casos, la actividad de Pta se redujo drásticamente tras la incubación con proteasa de RVH. La Variante 381 (SEQ ID

NO: 50) mostró el mejor equilibrio entre tener actividad casi de tipo silvestre y ser particularmente susceptible a desactivación mediada por proteasa.

Ejemplo 3 - Enzimas transcetolasa de Escherichia coli

5

15

20

60

65

Las isozimas transcetolasa mayor y menor (TktA y TktB, respectivamente) de *Escherichia coli (E. coli)* catalizan dos reacciones de transferencia de cetol reversibles en la ruta de pentosa fosfato:

fructosa-6-fosfato + gliceraldehído-3-fosfato ←→ eritrosa-4-fosfato + xilulosa-5-fosfato ribosa-5-10 fosfato + xilulosa-5-fosfato ←→ sedohetulosa-7-fosfato + gliceraldehído-3-fosfato

La actividad transcetolasa asegura un aporte adecuado de eritrosa-4-fosfato, un metabolito de carbono central clave necesario para la producción de los tres aminoácidos aromáticos así como varias vitaminas. Las cepas que carecen de actividad transcetolasa requieren complementación con compuestos procedentes de eritrosa-4-fosfato, tales como aminoácidos aromáticos y vitaminas. Incluso con dicha complementación, que puede ser costosa, el crecimiento hasta altas densidades celulares en fermentaciones es difícil. La transcetolasa también conecta la ruta de pentosa fosfato con la glucólisis, desviando pentosa fosfatos de la producción de nucleótidos excesiva cuando el flujo de glucosa es alto. La dirección a proteasa de transcetolasa, sin alterar significativamente su función crítica durante el crecimiento celular, beneficia la producción de moléculas procedentes de pentosa en reacciones sin células, ya que se evita que el flujo de ruta de pentosa fosfato alto se desvíe a la glucolisis. La estructura cristalina de transcetolasa se muestra en la Figura 12.

Construcción de bibliotecas de variante A de transcetolasa

Se diseñó una biblioteca de ADN bicatenario lineal de 200 miembros y se construyó mediante reacción en cadena de 25 la polimerasa (PCR), donde la secuencia del gen (tktA) de transcetolasa A de E. coli nativa (SEQ ID NO: 57) se modificó para incluir una secuencia de nucleótidos (SEQ ID NO: 37) que codifica la secuencia de reconocimiento de proteasa de ocho aminoácidos (SEQ ID NO: 38) de la proteasa de RVH. La secuencia de nucleótidos que codifica el motivo de reconocimiento de proteasa se insertó después de los siguientes codones en el gen tktA de tipo silvestre: 22-24, 43-55, 78-83, 88-110, 138-148, 172-175, 185-192, 196-200, 208-210, 218-220, 233-238, 245-257, 261-287, 294-296, 331-336, 350-354, 371-372, 388-403, 484-487, 508-511, 523-529, 544-551, 573-577, 591-593, 601-607, 30 624-627, 633-640, 648-651. Además de la secuencia codificante del gen, cada miembro de la biblioteca contenía también ramas de homología de 50 pares de bases (pb) (por ejemplo, 50 pb de secuencia adicional cadena arriba del codón de inicio del gen y 50 pb de secuencia adicional cadena abajo del codón de terminación del gen, cada 35 secuencia de 50 pb homóloga del locus tktA de tipo silvestre del genoma de E. coli). Para inserción de la secuencia LEVLFQGP (SEQ ID NO: 38) después de los aminoácidos L, LE o LEV, solamente EVLFQGP (SEQ ID NO: 39), VLFQGP (SEQ ID NO: 40) o LFQGP (SEQ ID NO: 41) se insertaron, respectivamente. De manera similar, para inserción de la secuencia LEVLFQGP (SEQ ID NO: 38) antes de los aminoácidos P, GP o QGP, solamente LEVLFQG (SEQ ID NO: 42), LEVLFQ (SEQ ID NO: 43) o LEVLF (SEQ ID NO: 44) se insertaron, respectivamente. 40 Además, para inserción de LEVLFQGP (SEQ ID NO: 38) entre los aminoácidos LP, por ejemplo, solamente EVLFQG (SEQ ID NO: 45) se insertó.

Diseño de cepas

Para la exploración de bibliotecas de TktA, se creó una versión modificada de JW5478-1 de *E. coli* (Coli Genetic Stock Center; CGSC n.º 11606) de la colección Keio (Mol. Syst. Biol. 2006; 2:2006-08). Para preparar la cepa para su uso en la exploración, el genoma de JW5478-1 se modificó de dos maneras usando métodos descritos en el Ejemplo 1. En primer lugar, el marcador de KanR, localizado en lugar del gen *tktA*, se retiró, dejando un locus de *tktA* que contenía las primeras 3 bases y las últimas 21 bases del gen *tktA*, con una secuencia cicatriz corta entre medias. En segundo lugar, el gen que codifica la transcetolasa menor *(tktB)* se reemplazó con KanR, creando de este modo una cepa que carece de ninguna actividad transcetolasa y restaura la resistencia a kanamicina. El plásmido de recombinasa, pGLA042, (FIG. 3) se transformó en esta cepa para crear la cepa de exploración final, GL13-050, que se usó en un enfoque de selección y ensayo individual.

55 Enfoque de selección y ensayo individual

El locus cromosómico de *tktA* en GL13-050 se recombinó individualmente con la biblioteca de ADN bicatenario, lineal, de 200 miembros, descrita anteriormente, que coloca la secuencia de reconocimiento de proteasa de RVH en regiones de bucle accesibles al disolvente de TktA, como se predijo por su estructura cristalina (banco de datos de proteínas ID: 1QGD) (véase FIG. 11).

Se dejó crecer un cultivo de 2 litros (I) de GL13-050 hasta una densidad óptica a 600 nm de 0,5 a 30 °C en un medio Vogel Bonner E (mVBE) modificado (sales mínimas VBE IX, glucosa al 0,4 %, casaminoácidos al 2 %, triptófano 1 mM, 2,3-dihidroxibenzoato 0,25 mM, p-aminobenzoato 30 μM, p-hidroxibenzoato 30 uM, piridoxina-HCl 5 μM, kanamicina 10 μg/ml). El cultivo se transfirió a un baño de agua a 42 °C y se agitó durante 30 minutos para inducir el sistema de recombinasa de pGLA042. Las células inducidas se hicieron electrocompetentes siguiendo métodos

convencionales y se congelaron instantáneamente alícuotas de 50 µl en nitrógeno líquido y posteriormente se almacenaron a -80 °C antes de la recombinación con miembros de bibliotecas.

Cada ADN miembro de la biblioteca se transformó individualmente (25 µl de células y 50 ng de ADN miembro de la biblioteca) y se recuperó en 1 ml de - LB de baja salinidad durante más de 3 horas a 30 °C. Se sembraron transformantes recuperados en placas en medio de agar M9 complementado con glucosa 1 % y kanamicina 10 µg/ml y las placas se incubaron a 37 °C durante 2-3 días. Las transformaciones/recombinaciones que produjeron colonias fueron representativas de miembros de bibliotecas que contenían moléculas de TktA activas a pesar de la inclusión del motivo de secuencia de reconocimiento de proteasa. La región de TktA de los genomas de estos miembros de bibliotecas se amplificó por PCR y se secuenció. Después se hicieron competentes y se transformaron cepas con secuencia verificada con pGLC217 para permitir la expresión inducible por arabinosa de proteasa de RVH. También se transformaron cepas con un plásmido de control, pGLC219, que es casi idéntico a pGLC217, con la diferencia de que el gen que codifica la proteasa de RVH se reemplazó con un gen que codifica la proteasa del virus del grabado del tabaco (TEV). Esta proteasa no escindirá variantes de TktA.

Para evaluar la susceptibilidad a proteasa *in vivo*, las tasas de crecimiento se midieron para cepas que contenían variantes de TktA viables que portaban pGLC217 o pGLC219 que se cultivaron a 37 °C en medio mínimo M9 que contenía glucosa 0,5 %, kanamicina 10 μg/ml y cloranfenicol 34 μg/ml. Estos cultivos se dejaron crecer ± arabinosa 2 % para sobreexpresar la proteasa. Por lo tanto, la tasa de crecimiento de cada variante de TktA viable se examinó en cuatro condiciones: (1) expresión de proteasa de TEV no inducida, (2) expresión de proteasa de TEV inducida por arabinosa, (3) expresión de proteasa de RVH no inducida y (4) expresión de proteasa de RVH inducida por arabinosa. Las condiciones (3) y (4) permitieron que la desactivación de TktA mediada por proteasa de RVH se evalúe mediante la tasa de crecimiento, mientras que las condiciones (1) y (2) proporcionaron un control para la carga metabólica ocasionada por el mantenimiento de plásmido y expresión de proteínas inducida por arabinosa.

Se seleccionaron cinco variantes de TktA únicas de la biblioteca de 200 miembros. Estas variantes seleccionadas contenían el motivo de escisión de proteasa de RVH insertado después del aminoácido 635, 636, 637, 638 y 640 (SEQ ID NO: 64-SEQ ID NO: 68, codificadas respectivamente por SEQ ID NO: 58-SEQ NO: 62). Como se muestra en la tabla 3, las variantes seleccionadas fueron capaces de apoyar el crecimiento en medio de glucosa mínimo cuando no se indujo expresión de proteasa de RVH pero su crecimiento se alteró significativamente cuando se indujo proteasa de RVH. Como muestran los controles de proteasa de TEV, la alteración del crecimiento ocasionada mediante inducción de proteasa no era simplemente el resultado de la complejidad de la sobreexpresión de proteínas. Por lo tanto, estas variantes de TktA fueron susceptibles a desactivación mediada por proteasa de RVH *in* vivo

Tabla 3. Tasas de crecimiento de variantes de TktA dirigibles a proteasa en medio de glucosa mínimo

Secuencia de reconocimiento de proteasa insertada después del	proteasa de TEV		proteasa de RVH	
aminoácido n.º	- inductor	+ inductor	- inductor	+ inductor
tipo silvestre	0,55	0,53	0,60	0,57
635	0,52	0,52	0,58	0,47
636	0,39	0,42	0,43	0,17
637	0,46	0,46	0,40	0,11
638	0,18	0,18	0,13	0,08
640	0,48	0,52	0,55	0,34

Estructura cristalina de proteínas

5

10

15

20

25

30

35

40

45

50

55

Según la estructura cristalina publicada para TktA (banco de datos de proteínas ID: 1QGD), las cinco variantes de TktA obtenidas de la exploración (Tabla 3) se mapean en el bucle que precede inmediatamente a la hélice C-terminal (FIG. 11). TktA es activo como un dímero y este bucle aparece en una interfaz de dimerización. Sin quedar ligado a teoría alguna, la escisión de este bucle por proteasa de RVH probablemente altere la capacidad de la TktA para dimerizar. De hecho, la dimerización de transcetolasa es limitante de la tasa en la formación de la enzima activa (J. Biol. Chem. 1981; 256:4877-83).

Todas las definiciones, como se definen y usan en el presente documento, deberían entenderse como preferentes sobre las definiciones de diccionario y/o los significados ordinarios de los términos definidos.

Debería entenderse que los artículos indefinidos "un" y "una", como se usan en el presente documento en la memoria descriptiva y en las reivindicaciones, a menos que se indique claramente lo contrario, significan "al menos uno"

Debería entenderse que la expresión "y/o", como se usa en el presente documento en la memoria descriptiva y en las reivindicaciones, significa "uno o ambos" de los elementos unidos de este modo, es decir, elementos que están presentes conjuntamente en algunos casos y presentes por separado en otros casos. Múltiples elementos

ES 2 704 697 T3

enumerados con "y/o" deberían interpretarse de la misma manera, es decir, "uno o más" de los elementos unidos de este modo. Pueden estar presentes opcionalmente otros elementos distintos de los elementos identificados específicamente por la cláusula "y/o", bien relacionados o no relacionados con los elementos identificados específicamente. Por lo tanto, como un ejemplo no limitante, una referencia a "A y/o B", cuando se usa junto con lenguaje abierto tal como "que comprende" puede hacer referencia, en una realización, solamente a A (opcionalmente incluyendo elementos distintos de B); en otra realización, solamente a B (opcionalmente incluyendo elementos); etc.

Como se usa en el presente documento en la memoria descriptiva y en las reivindicaciones, debería entenderse que "o" tiene el mismo significado que "y/o" como se ha definido anteriormente. Por ejemplo, cuando se separan artículos en una lista, "o" o "y/o" se interpretarán como inclusivos, es decir, la inclusión de al menos uno, pero también incluyendo más de uno, de varios o una lista de elementos y, opcionalmente, artículos no enumerados adicionales. Solamente términos que indiquen claramente lo contrario, tales como "solamente uno de" o "exactamente uno de", o, cuando se use en las reivindicaciones, "que consiste en", se referirán a la inclusión de exactamente un elemento de varios o una lista de elementos. En general, el término "o" como se usa en el presente documento solamente se interpretará como indicativo de alternativas exclusivas (es decir, "uno o el otro pero no ambos") cuando está precedido de expresiones de exclusividad, tales como "bien", "uno de", "solamente uno de", o "exactamente uno de". "Que consiste esencialmente en", cuando se usa en las reivindicaciones, tendrá su significado habitual usado en el campo de la ley de patentes.

Como se usa en el presente documento en la memoria descriptiva y en las reivindicaciones, debería entenderse que la expresión "al menos uno", en referencia a una lista de uno o más elementos, significa al menos un elemento seleccionado de uno cualquiera o más de los elementos en la lista de elementos, pero no necesariamente incluyendo al menos uno de todos y cada uno de los elementos enumerados específicamente en la lista de elementos y no excluyendo cualquier combinación de elementos en la lista de elementos. Esta definición también permite que puedan estar presentes opcionalmente elementos distintos de los elementos identificados específicamente en la lista de elementos a la que se refiere la expresión "al menos uno", bien relacionados o no relacionados con los elementos identificados específicamente. Por lo tanto, como ejemplo no limitante, "al menos uno de A y B" (o, de forma equivalente, "al menos uno de A o B", o, de forma equivalente "al menos uno de A y/o B") pueden referirse, en una realización, a al menos un, opcionalmente incluyendo más de uno, A, sin B presente (y opcionalmente incluyendo elementos distintos B); en otra realización, a al menos un, opcionalmente incluyendo más de uno, B, sin A presente (y opcionalmente incluyendo elementos distintos A); en otra realización más, a al menos un, opcionalmente incluyendo más de uno, B (y opcionalmente incluyendo otros elementos); etc.

25

30

35

40

45

También se debería entender que, a menos que se indique claramente lo contrario, en cualquier método desvelado en el presente documento que incluya más de una etapa o un acto, el orden de las etapas o los actos del método no está necesariamente limitado al orden en el que se enumeran las etapas o los actos del método.

En las reivindicaciones, así como en la memoria descriptiva anterior, debe entenderse que todas las expresiones transicionales tales como "que comprende", "que incluye", "que porta", "que tiene", "que contiene", "que implica", "que mantiene", "compuesto de", y similares son abiertas, es decir, significan incluyendo, pero sin limitación. Solamente las expresiones "que consiste en" y "que consiste esencialmente en" serán expresiones transicionales cerradas o semicerradas, respectivamente, como se expone en el Manual de la oficina de patente de los Estados Unidos de procedimientos de examen de patentes, Sección 2111.03.

LISTADO DE SECUENCIAS

SEQ ID NO:1

AATGAAAGACGTTACGATCGCCGATCTTTTTGCTAAAGACGGCGATCGTTTTTCTAAGTTCT CCGCAACCTTCGACGATCAGATGCTGGTGGATTACTCCAAAAACCGCATCACTGAAGAGACG CTCTGGCGAGAAGATCAACCGCACTGAAAACCGCGCGTGCTGCACGTAGCGCTGCGTAACC GTAGCAATACCCCGATTTTGGTTGATGGCAAAGACGTAATGCCGGAAGTCAACGCGGTGCTG GAGAAGATGAAAACCTTCTCAGAAGCGATTATTTCCGGTGAGTGGAAAGGTTATACCGGCAA AGCAATCACTGACGTAGTGAACATCGGGATCGGCGGTTCTGACCTCGGCCCATACATGGTGA ${\tt CCGAAGCTCTGCGTCCGTACAAAAACCACCTGAACATGCACTTTGTTTCTAACGTCGATGGG}$ ACTCACATCGCGGAAGTGCTGAAAAAAGTAAACCCGGAAACCACGCTGTTCTTGGTAGCATC TAAAACCTTCACCACTCAGGAAACTATGACCAACGCCCATAGCGCGCGTGACTGGTTCCTGA AAGCGGCAGGTGATGAAAAACACGTTGCAAAACACTTTGCGGCGCTTTCCACCAATGCCAAA GCCGTTGGCGAGTTTGGTATTGATACTGCCAACATGTTCGAGTTCTGGGACTGGGTTGGCGG ${\tt CCGTTACTCTTTGTGGTCAGCGATTGGCCTGTCGATTGTTCTCCCATCGGCTTTGATAACT}$ TCGTTGAACTGCTTTCCGGCGCACACGCGATGGACAAGCATTTCTCCACCACGCCTGCCGAG AAAAACCTGCCTGTACTGCTGGCGCTGATTGGCATCTGGTACAACAATTTCTTTGGTGCGGA AACTGAAGCGATTCTGCCGTATGACCAGTATATGCACCGTTTCGCGGCGTACTTCCAGCAGG GCAATATGGAGTCCAACGGTAAGTATGTTGACCGTAACGGTAACGTTGTGGATTACCAGACT GGCCCGATTATCTGGGGTGAACCAGGCACTAACGGTCAGCACGCGTTCTACCAGCTGATCCA CCAGGGAACCAAAATGGTACCGTGCGATTTCATCGCTCCGGCTATCACCCATAACCCGCTCT CTGATCACCAGAAACTGCTGTCTAACTTCTTCGCCCAGACCGAAGCGCTGGCGTTTGGT AAATCCCGCGAAGTGGTTGAGCAGGAATATCGTGATCAGGGTAAAGATCCGGCAACGCTTGA CTACGTGGTGCCGTTCAAAGTATTCGAAGGTAACCGCCCGACCAACTCCATCCTGCTGCGTG AAATCACTCCGTTCAGCCTGGGTGCGTTGATTGCGCTGTATGAGCACAAAATCTTTACTCAG GGCGTGATCCTGAACATCTTCACCTTCGACCAGTGGGGCGTGGAACTGGGTAAACAGCTGGC GAACCGTATTCTGCCAGAGCTGAAAGATGATAAAGAAATCAGCAGCCACGATAGCTCGACCA ATGGTCTGATTAACCGCTATAAAGCGTGGCGCGGTTAA

AGACGTTACGATCGCCGATCTTTTTGCTAAAGATGGTGATCGTTTTTCTAAGTTCTCCGCAACCTTCG ACGATCAGATGCTGGTGGATTACTCCAAAAACCGCATCACTGAAGAGACGCTGGCGAAATTACAGGAT TGAAAACCGCGCGTGCTGCACGTAGCGCTGCGTAACCGTAGCAATACCCCGCTGGAAGTGCTGTTTC AGGGTCCGATTTTGGTTGATGGCAAAGACGTAATGCCGGAAGTCAACGCGGTGCTGGAGAAGATGAAA ACCTTCTCAGAAGCGATTATTTCCGGTGAGTGGAAAGGTTATACCGGCAAAGCAATCACTGACGTAGT GAACATCGGGATCGGCGGTTCTGACCTCGGCCCATACATGGTGACCGAAGCTCTGCGTCCGTACAAAA ACCACCTGAACATGCACTTTGTTTCTAACGTCGATGGGACTCACATCGCGGAAGTGCTGAAAAAAGTA AACCCGGAAACCACGCTGTTCTTGGTAGCATCTAAAACCTTCACCACTCAGGAAACTATGACCAACGC CCATAGCGCGCGTGACTGGTTCCTGAAAGCGGCAGGTGATGAGAAGCACGTTGCAAAACACTTTGCGG CGCTTTCCACCAATGCCAAAGCCGTTGGCGAGTTTGGTATTGATACTGCCAACATGTTCGAGTTCTGG GACTGGGTTGGCGGCCGTTACTCTTTGTGGTCAGCGATTGGCCTGTCGATTGTTCTCTCCATCGGCTT TGATAACTTCGTTGAACTGCTTTCCGGCGCACACGCGATGGACAAGCATTTCTCCACCACGCCTGCCG GAAGCGATTCTGCCGTATGACCAGTATATGCACCGTTTCGCGGCGTACTTCCAGCAGGGCAATATGGA GTCCAACGGTAAGTATGTTGACCGTAACGGTAACGTTGTGGATTACCAGACTGGCCCGATTATCTGGG GTGAACCAGGCACTAACGGTCAGCACGCGTTCTACCAGCTGATCCACCAGGGAACCAAAATGGTACCG

TGCGATTTCATCGCTCCGGCTATCACCCATAACCCGCTCTCTGATCATCACCAGAAACTGCTGTCTAA
CTTCTTCGCCCAGACCGAAGCGCTGGCGTTTGGTAAATCCCGCGAAGTGGTTGAGCAGGAATATCGTG
ATCAGGGTAAAGATCCGGCAACGCTTGACTACGTGGTGCCGTTCAAAGTATTCGAAGGTAACCGCCCG
ACCAACTCCATCCTGCTGCGTGAAATCACTCCGTTCAGCCTGGGTGCGTTGATTGCGCTGTATGAGCA
CAAAATCTTTACTCAGGGCGTGATCCTGAACATCTTCACCTTCGACCAGTGGGGGCGTGGAACTGGGTA
AACAGCTGGCGAACCGTATTCTGCCAGAGCTGAAAGATGATAAAGAAATCAGCAGCCACGATAGCTCG
ACCAATGGTCTGATTAACCGCTATAAAGCGTGGCGCGGTtaa

5 SEQ ID NO:3

AATGAAAGACGTTACGATCGCCGATCTTTTTGCTAAAGATGGTGATCGTTTTTCTAAGTTCT CCGCAACCTTCGACGATCAGATGCTGGTGGATTACTCCAAAAACCGCATCACTGAAGAGACG CTCTGGCGAGAAGATCAACCGCACTGAAAACCGCGCGTGCTGCACGTAGCGCTGCGTAACC ATGCCGGAAGTCAACGCGGTGCTGGAGAAGATGAAAACCTTCTCAGAAGCGATTATTTCCGG TGAGTGGAAAGGTTATACCGGCAAAGCAATCACTGACGTAGTGAACATCGGGATCGGCGGTT CTGACCTCGGCCCATACATGGTGACCGAAGCTCTGCGTCCGTACAAAAACCACCTGAACATG CACTTTGTTTCTAACGTCGATGGGACTCACATCGCGGAAGTGCTGAAAAAAGTAAACCCGGA AACCACGCTGTTCTTGGTAGCATCTAAAACCTTCACCACTCAGGAAACTATGACCAACGCCC ATAGCGCGCGTGACTGGTTCCTGAAAGCGGCAGGTGATGAGAAGCACGTTGCAAAACACTTT GCGGCGCTTTCCACCAATGCCAAAGCCGTTGGCGAGTTTGGTATTGATACTGCCAACATGTT CGAGTTCTGGGACTGGGTTGGCGGCCGTTACTCTTTGTGGTCAGCGATTGGCCTGTCGATTG TTCTCTCCATCGGCTTTGATAACTTCGTTGAACTGCTTTCCGGCGCACACGCGATGGACAAG CATTTCTCCACCACGCCTGCCGAGAAAAACCTGCCTGTACTGCTGGCGCTGATTGGCATCTG GTACAACAATTTCTTTGGTGCGGAAACTGAAGCGATTCTGCCGTATGACCAGTATATGCACC GTTTCGCGGCGTACTTCCAGCAGGGCAATATGGAGTCCAACGGTAAGTATGTTGACCGTAAC GGTAACGTTGTGGATTACCAGACTGGCCCGATTATCTGGGGTGAACCAGGCACTAACGGTCA GCACGCGTTCTACCAGCTGATCCACCAGGGAACCAAAATGGTACCGTGCGATTTCATCGCTC CGGCTATCACCCATAACCCGCTCTCTGATCATCACCAGAAACTGCTGTCTAACTTCTTCGCC CAGACCGAAGCGCTGGCGTTTGGTAAATCCCGCGAAGTGGTTGAGCAGGAATATCGTGATCA GGGTAAAGATCCGGCAACGCTTGACTACGTGGTGCCGTTCAAAGTATTCGAAGGTAACCGCC CGACCAACTCCATCCTGCTGCGTGAAATCACTCCGTTCAGCCTGGGTGCGTTGATTGCGCTG TATGAGCACAAAATCTTTACTCAGGGCGTGATCCTGAACATCTTCACCTTCGACCAGTGGGG CGTGGAACTGGGTAAACAGCTGGCGAACCGTATTCTGCCAGAGCTGAAAGATGATAAAGAAA TCAGCAGCCACGATAGCTCGACCAATGGTCTGATTAACCGCTATAAAGCGTGGCGCGGTtaa

GCGCGCGTGACTGGTTCCTGAAAGCGGCAGGTGATGAGAAGCACGTTGCAAAACACTTTGCG GCGCTTTCCACCAATGCCAAAGCCGTTGGCGAGTTTGGTATTGATACTGCCAACATGTTCGA GTTCTGGGACTGGGTTGGCGGCCGTTACTCTTTGTGGTCAGCGATTGGCCTGTCGATTGTTC TCTCCATCGGCTTTGATAACTTCGTTGAACTGCTTTCCGGCGCACACGCGATGGACAAGCAT TTCTCCACCACGCCTGCCGAGAAAAACCTGCCTGTACTGCTGGCGCTGATTGGCATCTGGTA CAACAATTTCTTTGGTGCGGAAACTGAAGCGATTCTGCCGTATGACCAGTATATGCACCGTT AACGTTGTGGATTACCAGACTGGCCCGATTATCTGGGGTGAACCAGGCACTAACGGTCAGCA CGCGTTCTACCAGCTGATCCACCAGGGAACCAAAATGGTACCGTGCGATTTCATCGCTCCGG CTATCACCCATAACCCGCTCTCTGATCATCACCAGAAACTGCTGTCTAACTTCTTCGCCCAG ACCGAAGCGCTGGCGTTTGGTAAATCCCGCGAAGTGGTTGAGCAGGAATATCGTGATCAGGG TAAAGATCCGGCAACGCTTGACTACGTGGTGCCGTTCAAAGTATTCGAAGGTAACCGCCCGA GAGCACAAAATCTTTACTCAGGGCGTGATCCTGAACATCTTCACCTTCGACCAGTGGGGCGT GGAACTGGGTAAACAGCTGGCGAACCGTATTCTGCCAGAGCTGAAAGATGATAAAGAAATCA GCAGCCACGATAGCTCGACCAATGGTCTGATTAACCGCTATAAAGCGTGGCGCGGTtaa

SEQ ID NO:5

ATGAAAAACATCAACCCAGCCGCTGCCTGCCTGCCAGGCACTACAGAAACACTTCGATGA AATGAAAGACGTTACGATCGCCGATCTTTTTGCTAAAGATGGTGATCGTTTTTCTAAGTTCT CCGCAACCTTCGACGATCAGATGCTGGTGGATTACTCCAAAAACCGCATCACTGAAGAGACG CTCTGGCGAGAAGATCAACCGCACTGAAAACCGCGCGTGCTGCACGTAGCGCTGCGTAACC GTAGCAATACCCCGATTTTGGTTGATGGCAAAGACGTAATGCCGGAAGTCAACGCGGTGCTG GAGAAGATGAAAACCTTCTCAGAAGCGATTATTTCCGGTGAGCTGGAAGTGCTGTTTCAGGG TCCGTGGAAAGGTTATACCGGCAAAGCAATCACTGACGTAGTGAACATCGGGATCGGCGGTT CACTTTGTTTCTAACGTCGATGGGACTCACATCGCGGAAGTGCTGAAAAAAGTAAACCCGGA AACCACGCTGTTCTTGGTAGCATCTAAAACCTTCACCACTCAGGAAACTATGACCAACGCCC ATAGCGCGCGTGACTGGTTCCTGAAAGCGGCAGGTGATGAGAAGCACGTTGCAAAACACTTT GCGGCGCTTTCCACCAATGCCAAAGCCGTTGGCGAGTTTGGTATTGATACTGCCAACATGTT CGAGTTCTGGGACTGGGTTGGCGGCCGTTACTCTTTGTGGTCAGCGATTGGCCTGTCGATTG TTCTCTCCATCGGCTTTGATAACTTCGTTGAACTGCTTTCCGGCGCACACGCGATGGACAAG CATTTCTCCACCACGCCTGCCGAGAAAAACCTGCCTGTACTGCTGGCGCTGATTGGCATCTG GTACAACAATTTCTTTGGTGCGGAAACTGAAGCGATTCTGCCGTATGACCAGTATATGCACC GTTTCGCGGCGTACTTCCAGCAGGGCAATATGGAGTCCAACGGTAAGTATGTTGACCGTAAC GGTAACGTTGTGGATTACCAGACTGGCCCGATTATCTGGGGTGAACCAGGCACTAACGGTCA GCACGCGTTCTACCAGCTGATCCACCAGGGAACCAAAATGGTACCGTGCGATTTCATCGCTC CGGCTATCACCCATAACCCGCTCTCTGATCATCACCAGAAACTGCTGTCTAACTTCTTCGCC CAGACCGAAGCGCTGGCGTTTGGTAAATCCCGCGAAGTGGTTGAGCAGGAATATCGTGATCA GGGTAAAGATCCGGCAACGCTTGACTACGTGGTGCCGTTCAAAGTATTCGAAGGTAACCGCC CGACCAACTCCATCCTGCTGCGTGAAATCACTCCGTTCAGCCTGGGTGCGTTGATTGCGCTG TATGAGCACAAAATCTTTACTCAGGGCGTGATCCTGAACATCTTCACCTTCGACCAGTGGGG CGTGGAACTGGGTAAACAGCTGGCGAACCGTATTCTGCCAGAGCTGAAAGATGATAAAGAAA ${\tt TCAGCAGCCACGATAGCTCGACCAATGGTCTGATTAACCGCTATAAAGCGTGGCGCGGTtaa}$

ES 2 704 697 T3

SEQ ID NO:6

CCGCAACCTTCGACGATCAGATGCTGGTGGATTACTCCAAAAACCGCATCACTGAAGAGACG CTCTGGCGAGAAGATCAACCGCACTGAAAACCGCGCCGTGCTGCACGTAGCGCTGCGTAACC GTAGCAATACCCCGATTTTGGTTGATGGCAAAGACGTAATGCCGGAAGTCAACGCGGTGCTG GAGAAGATGAAAACCTTCTCAGAAGCGATTATTTCCGGTGAGTGGAAAGGTTATACCGGCAA AGCAATCACTGACGTAGTGAACATCGGGATCGGCGGTTCTGACCTCGGCCCATACATGGTGA $\tt CCGAAGCTCTGCGTCCGTACAAAAACCACCTGAACATGCACTTTGTTTCTAACGTCGATGGG$ ACTCACATCGCGGAAGTGCTGAAAAAAGTAAACCCGGAAACCACGCTGTTCTTGGTAGCATC TAAAACCTTCACCACTCAGGAAACTATGACCAACGCCCATAGCGCGCGTGACTGGTTCCTGA $\verb|AAGCGGCAGGTGATGAGAAGCACGTTGCAAAACACTTTGCGGCGCTTTCCACCAATGCCAAA||$ GCCGTTGGCGAGTTTGGTATTGATACTGCCAACATGTTCGAGTTCTGGGACTGGGTTGGCGG $\tt CCGTTACTCTTTGTGGTCAGCGATTGGCCTGTCGATTGTTCTCCCATCGGCTTTGATAACT$ TCGTTGAACTGCTTTCCGGCGCACACGCGATGGACAAGCATTTCTCCACCACGCCTGCCGAG AAAAACCTGCCTGTACTGCTGGCGCTGATTGGCATCTGGTACAACAATTTCTTTGGTGCGGA AACTGAAGCGATTCTGCCGTATGACCAGTATATGCACCGTTTCGCGGCGTACTTCCAGCAGG GCAATATGGAGTCCAACGGTAAGTATGTTGACCGTAACGGTAACGTTGTGGATTACCAGACT GGCCCGATTATCTGGGGTGAACCAGGCACTAACGGTCAGCACGCGTTCTACCAGCTGATCCA CCAGGGAACCAAAATGGTACCGTGCGATTTCATCGCTCCGGCTATCACCCATCTGGAAGTGC TGTTTCAGGGTCCGAACCCGCTCTCTGATCATCACCAGAAACTGCTGTCTAACTTCTTCGCC CAGACCGAAGCGCTGGCGTTTGGTAAATCCCGCGAAGTGGTTGAGCAGGAATATCGTGATCA GGGTAAAGATCCGGCAACGCTTGACTACGTGGTGCCGTTCAAAGTATTCGAAGGTAACCGCC CGACCAACTCCATCCTGCTGCGTGAAATCACTCCGTTCAGCCTGGGTGCGTTGATTGCGCTG TATGAGCACAAAATCTTTACTCAGGGCGTGATCCTGAACATCTTCACCTTCGACCAGTGGGG CGTGGAACTGGGTAAACAGCTGGCGAACCGTATTCTGCCAGAGCTGAAAGATGATAAAGAAA

5 SEQ ID NO:7

AATGAAAGACGTTACGATCGCCGATCTTTTTGCTAAAGATGGTGATCGTTTTTCTAAGTTCT $\tt CTCTGGCGAGAAGATCAACCGCACTGAAAACCGCGCGTGCTGCACGTAGCGCTGCGTAACC$ GTAGCAATACCCCGATTTTGGTTGATGGCAAAGACGTAATGCCGGAAGTCAACGCGGTGCTG GAGAAGATGAAAACCTTCTCAGAAGCGATTATTTCCGGTGAGTGGAAAGGTTATACCGGCAA AGCAATCACTGACGTAGTGAACATCGGGATCGGCGGTTCTGACCTCGGCCCATACATGGTGA CCGAAGCTCTGCGTCCGTACAAAAACCACCTGAACATGCACTTTGTTTCTAACGTCGATGGG ACTCACATCGCGGAAGTGCTGAAAAAAGTAAACCCGGAAACCACGCTGTTCTTGGTAGCATC TAAAACCTTCACCACTCAGGAAACTATGACCAACGCCCATAGCGCGCGTGACTGGTTCCTGA AAGCGGCAGGTGATGAGAAGCACGTTGCAAAACACTTTGCGGCCGCTTTCCACCAATGCCAAA GCCGTTGGCGAGTTTGGTATTGATACTGCCAACATGTTCGAGTTCTGGGACTGGGTTGGCGG $\tt CCGTTACTCTTTGTGGTCAGCGATTGGCCTGTCGATTGTTCTCTCCATCGGCTTTGATAACT$ TCGTTGAACTGCTTTCCGGCGCACACGCGATGGACAAGCATTTCTCCACCACGCCTGCCGAG $\verb|AAAAACCTGCCTGTACTGCTGGCGCTGATTGGCATCTGGTACAACAATTTCTTTGGTGCGGA|$ AACTGAAGCGATTCTGCCGTATGACCAGTATATGCACCGTTTCGCGGCGTACTTCCAGCAGG GCAATATGGAGTCCAACGGTAAGTATGTTGACCGTAACGGTAACGTTGTGGATTACCAGACT GGCCCGATTATCTGGGGTGAACCAGGCACTAACGGTCAGCACGCGTTCTACCAGCTGATCCA CCAGGGAACCAAAATGGTACCGTGCGATTTCATCGCTCCGGCTATCACCCCATAACCCGCTCT CTGATCATCACCAGAAACTGCTGTCTAACTTCTTCGCCCAGACCGAAGCGCTGGCGTTTGGT AAATCCCGCGAAGTGGTTGAGCAGGAATATCGTGATCAGGGTAAAGATCCGGCAACGCTTGA CTACGTGGTGCCGTTCAAAGTATTCGAAGGTAACCGCCCGACCAACTCCATCCTGCTGCGTG

AAATCACTCCGTTCAGCCTGGGTGCGTTGATTGCGCTGTATGAGCACAAAATCTTTACTCAG GGCGTGATCCTGAACATCTTCACCTTCGACCAGTGGGGCGTGGAACTGGGTAAACAGCTGGC GAACCGTATTCTGCCAGAGCTGGAAGTGCTGTTTCAGGGTCCGAAAGATGATAAAGAAATCA GCAGCCACGATAGCTCGACCAATGGTCTGATTAACCGCTATAAAGCGTGGCGCGGGTtaa

AATGAAAGACGTTACGATCGCCGATCTTTTTGCTAAAGATGGTGATCGTTTTTCTAAGTTCT CCGCAACCTTCGACGATCAGATGCTGGTGGATTACTCCAAAAACCGCATCACTGAAGAGACG CTCTGGCGAGAAGATCAACCGCACTGAAAACCGCGCGTGCTGCACGTAGCGCTGCGTAACC GTAGCAATACCCCGATTTTGGTTGATGGCAAAGACGTAATGCCGGAAGTCAACGCGGTGCTG GAGAAGATGAAAACCTTCTCAGAAGCGATTATTTCCGGTGAGTGGAAAGGTTATACCGGCAA AGCAATCACTGACGTAGTGAACATCGGGGATCGGCGGTTCTGACCTCGGCCCATACATGGTGA CCGAAGCTCTGCGTCCGTACAAAAACCACCTGAACATGCACTTTGTTTCTAACGTCGATGGG ACTCACATCGCGGAAGTGCTGAAAAAAGTAAACCCGGAAACCACGCTGTTCTTGGTAGCATC TAAAACCTTCACCACTCAGGAAACTATGACCAACGCCCATAGCGCGCGTGACTGGTTCCTGA AAGCGGCAGGTGATGAGAAGCACGTTGCAAAACACTTTGCGGCGCTTTCCACCAATGCCAAA GCCGTTGGCGAGTTTGGTATTGATACTGCCAACATGTTCGAGTTCTGGGACTGGGTTGGCGG CCGTTACTCTTTGTGGTCAGCGATTGGCCTGTCGATTGTTCTCCATCGGCTTTGATAACT TCGTTGAACTGCTTTCCGGCGCACACGCGATGGACAAGCATTTCTCCACCACGCCTGCCGAG AAAAACCTGCCTGTACTGCTGGCGCTGATTGGCATCTGGTACAACAATTTCTTTGGTGCGGA AACTGAAGCGATTCTGCCGTATGACCAGTATATGCACCGTTTCGCGGCGTACTTCCAGCAGG GCAATATGGAGTCCAACGGTAAGTATGTTGACCGTAACGGTAACGTTGTGGATTACCAGACT GGCCCGATTATCTGGGGTGAACCAGGCACTAACGGTCAGCACGCGTTCTACCAGCTGATCCA CCAGGGAACCAAAATGGTACCGTGCGATTTCATCGCTCCGGCTATCACCCATAACCCGCTCT CTGATCACCAGAAACTGCTGTCTAACTTCTTCGCCCAGACCGAAGCGCTGGCGTTTGGT AAATCCCGCGAAGTGGTTGAGCAGGAATATCGTGATCAGGGTAAAGATCCGGCAACGCTTGA CTACGTGGTGCCGTTCAAAGTATTCGAAGGTAACCGCCCGACCAACTCCATCCTGCTGCGTG AAATCACTCCGTTCAGCCTGGGTGCGTTGATTGCGCTGTATGAGCACAAAATCTTTACTCAG GGCGTGATCCTGAACATCTTCACCTTCGACCAGTGGGGCGTGGAACTGGGTAAACAGCTGGC GAACCGTATTCTGCCAGAGCTGAAACTGGAAGTGCTGTTTCAGGGTCCGGATGATAAAGAAA TCAGCAGCCACGATAGCTCGACCAATGGTCTGATTAACCGCTATAAAGCGTGGCGCGGTtaa

5 SEQ ID NO:9

TCGTTGAACTGCTTTCCGGCGCACACGCGATGGACAAGCATTTCTCCACCACGCCTGCCGAG
AAAAACCTGCCTGTACTGCTGGCGCTGATTGGCATCTGGTACAACAATTTCTTTGGTGCGGA
AACTGAAGCGATTCTGCCGTATGACCAGTATATGCACCGTTTCGCGGCGTACTTCCAGCAGG
GCAATATGGAGTCCAACGGTAAGTATGTTGACCGTAACGGTAACGTTGTGGATTACCAGACT
GGCCCGATTATCTGGGGTGAACCAGGCACTAACGGTCAGCACGCGTTCTACCAGCTGATCCA
CCAGGGAACCAAAATGGTACCGTGCGATTTCATCGCTCCGGCTATCACCCATAACCCGCTCT
CTGATCATCACCAGAAACTGCTGTCTAACTTCTTCGCCCAGACCGAAGCGCTGGCGTTTGGT
AAATCCCGCGAAGTGGTTGAGCAGGAATATCGTGATCAGGGTAAAGATCCGGCCAACGCTTGA
CTACGTGGTGCCGTTCAAAGTATTCGAAGGTAACCGCCCGACCAACTCCATCCTGCTGC
AAATCACTCCGTTCAGCCTGGGTGCGTTGATTGCGCTGTATGAGCACAAAATCTTTACTCAG
GGCGTGATCCTGAACATCTTCACCTTCGACCAGTGGGGCGTGGAACTGGGTAAACAGCTGGC
GAACCGTATTCTGCCAGAGCTGAAAGATCTGGAAGTGCTGTTTCAGGGTCCGGATAAAGAAA
TCAGCAGCCACGATAGCTCGACCAATGGTCTGATTAACCGCTATAAAGCGTGGCGCGGTtaa

SEQ ID NO:10

AATGAAAGACGTTACGATCGCCGATCTTTTTGCTAAAGATGGTGATCGTTTTTCTAAGTTCT CCGCAACCTTCGACGATCAGATGCTGGTGGATTACTCCAAAAACCGCATCACTGAAGAGACG CTCTGGCGAGAAGATCAACCGCACTGAAAACCGCGCGTGCTGCACGTAGCGCTGCGTAACC GTAGCAATACCCCGATTTTGGTTGATGGCAAAGACGTAATGCCGGAAGTCAACGCGGTGCTG GAGAAGATGAAAACCTTCTCAGAAGCGATTATTTCCGGTGAGTGGAAAGGTTATACCGGCAA AGCAATCACTGACGTAGTGAACATCGGGATCGGCGGTTCTGACCTCGGCCCATACATGGTGA CCGAAGCTCTGCGTCCGTACAAAAACCACCTGAACATGCACTTTGTTTCTAACGTCGATGGG ACTCACATCGCGGAAGTGCTGAAAAAAGTAAACCCGGAAACCACGCTGTTCTTGGTAGCATC TAAAACCTTCACCACTCAGGAAACTATGACCAACGCCCATAGCGCGCGTGACTGGTTCCTGA AAGCGGCAGGTGATGAGAAGCACGTTGCAAAACACTTTGCGGCGCTTTCCACCAATGCCAAA GCCGTTGGCGAGTTTGGTATTGATACTGCCAACATGTTCGAGTTCTGGGACTGGGTTGGCGG ${\tt CCGTTACTCTTTGTGGTCAGCGATTGGCCTGTCGATTGTTCTCCCATCGGCTTTGATAACT}$ TCGTTGAACTGCTTTCCGGCGCACACGCGATGGACAAGCATTTCTCCACCACGCCTGCCGAG AAAAACCTGCCTGTACTGCCGGCCTGATTGGCATCTGGTACAACAATTTCTTTGGTGCGGA AACTGAAGCGATTCTGCCGTATGACCAGTATATGCACCGTTTCGCGGCGTACTTCCAGCAGG GCAATATGGAGTCCAACGGTAAGTATGTTGACCGTAACGGTAACGTTGTGGATTACCAGACT GGCCCGATTATCTGGGGTGAACCAGGCACTAACGGTCAGCACGCGTTCTACCAGCTGATCCA CCAGGGAACCAAAATGGTACCGTGCGATTTCATCGCTCCGGCTATCACCCATAACCCGCTCT CTGATCACCAGAAACTGCTGTCTAACTTCTTCGCCCAGACCGAAGCGCTGGCGTTTGGT AAATCCCGCGAAGTGGTTGAGCAGGAATATCGTGATCAGGGTAAAGATCCGGCAACGCTTGA CTACGTGGTGCCGTTCAAAGTATTCGAAGGTAACCGCCCGACCAACTCCATCCTGCTGCGTG AAATCACTCCGTTCAGCCTGGGTGCGTTGATTGCGCTGTATGAGCACAAAATCTTTACTCAG GGCGTGATCCTGAACATCTTCACCTTCGACCAGTGGGGCGTGGAACTGGGTAAACAGCTGGC TCAGCAGCCACGATAGCTCGACCAATGGTCTGATTAACCGCTATAAAGCGTGGCGCGGTtaa

GTAGCAATACCCCGATTTTGGTTGATGGCAAAGACGTAATGCCGGAAGTCAACGCGGTGCTG GAGAAGATGAAAACCTTCTCAGAAGCGATTATTTCCGGTGAGTGGAAAGGTTATACCGGCAA AGCAATCACTGACGTAGTGAACATCGGGGTCGGCGGTTCTGACCTCGGCCCATACATGGTGA $\tt CCGAAGCTCTGCGTCCGTACAAAAACCACCTGAACATGCACTTTGTTTCTAACGTCGATGGG$ ACTCACATCGCGGAAGTGCTGAAAAAAGTAAACCCGGAAACCACGCTGTTCTTGGTAGCATC TAAAACCTTCACCACTCAGGAAACTATGACCAACGCCCATAGCGCGCGTGACTGGTTCCTGA AAGCGGCAGGTGATGAGAAGCACGTTGCAAAACACTTTGCGGCGCTTTCCACCAATGCCAAA GCCGTTGGCGAGTTTGGTATTGATACTGCCAACATGTTCGAGTTCTGGGACTGGGTTGGCGG $\tt CCGTTACTCTTTGTGGTCAGCGATTGGCCTGTCGATTGTTCTCCATCGGCTTTGATAACT$ TCGTTGAACTGCTTTCCGGCGCACACGCGATGGACAAGCATTTCTCCACCACGCCTGCCGAG AAAAACCTGCCTGTACTGCTGGCGCTGATTGGCATCTGGTACAACAATTTCTTTGGTGCGGA AACTGAAGCGATTCTGCCGTATGACCAGTATATGCACCGTTTCGCGGCGTACTTCCAGCAGG GCAATATGGAGTCCAACGGTAAGTATGTTGACCGTAACGTTAACGTTGTGGATTACCAGACT GGCCCGATTATCTGGGGTGAACCAGGCACTAACGGTCAGCACGCGTTCTACCAGCTGATCCA CCAGGGAACCAAAATGGTACCGTGCGATTTCATCGCTCCGGCTATCACCCCATAACCCGCTCT $\tt CTGATCATCACCAGAAACTGCTGTCTAACTTCTTCGCCCAGACCGAAGCGCTTGGCGTTTGGT$ AAATCCCGCGAAGTGGTTGAGCAGGAATATCGTGATCAGGGTAAAGATCCGGCAACGCTTGA $\tt CTACGTGGTGCCGTTCAAAGTATTCGAAGGTAACCGCCCGACCAACTCCATCCTGCTGCTG$ AAATCACTCCGTTCAGCCTGGGTGCGTTGATTGCGCTGTATGAGCACAAAATCTTTACTCAG GGCGTGATCCTGAACATCTTCACCTTCGACCAGTGGGGCGTGGAACTGGGTAAACAGCTGGC GAACCGTATTCTGCCAGAGCTGAAAGATGATAAACTGGAAGTGCTGTTTCAGGGTCCGGAAA TCAGCAGCCACGATAGCTCGACCAATGGTCTGATTAACCGCTATAAAGCGTGGCGCGGTtaa

SEQ ID NO:12

5

AATGAAAGACGTTACGATCGCCGATCTTTTTGCTAAAGATGGTGATCGTTTTTCTAAGTTCT CCGCAACCTTCGACGATCAGATGCTGGTGGATTACTCCAAAAACCGCATCACTGAAGAGACG CTCTGGCGAGAAGATCAACCGCACTGAAAACCGCGCCGTGCTGCACGTAGCGCTGCGTAACC GTAGCAATACCCCGATTTTGGTTGATGGCAAAGACGTAATGCCGGAAGTCAACGCGGTGCTG GAGAAGATGAAAACCTTCTCAGAAGCGATTATTTCCGGTGAGTGGAAAGGTTATACCGGCAA AGCAATCACTGACGTAGTGAACATCGGGATCGGCGGTTCTGACCTCGGCCCATACATGGTGA CCGAAGCTCTGCGTCCGTACAAAAACCACCTGAACATGCACTTTGTTTCTAACGTCGATGGG ACTCACATCGCGGAAGTGCTGAAAAAAGTAAACCCGGAAACCACGCTGTTCTTGGTAGCATC TAAAACCTTCACCACTCAGGAAACTATGACCAACGCCCATAGCGCGCGTGACTGGTTCCTGA AAGCGGCAGGTGATGAGAAGCACGTTGCAAAACACTTTGCGGCGCTTTCCACCAATGCCAAA GCCGTTGGCGAGTTTGGTATTGATACTGCCAACATGTTCGAGTTCTGGGACTGGGTTGGCGG ${\tt CCGTTACTCTTTGTGGTCAGCGATTGGCCTGTCGATTGTTCTCTCCATCGGCTTTGATAACT}$ TCGTTGAACTGCTTTCCGGCGCACACGCGATGGACAAGCATTTCTCCACCACGCCTGCCGAG AAAAACCTGCCTGTACTGCTGGCGCTGATTGGCATCTGGTACAACAATTTCTTTGGTGCGGA AACTGAAGCGATTCTGCCGTATGACCAGTATATGCACCGTTTCGCGGCGTACTTCCAGCAGG GCAATATGGAGTCCAACGGTAAGTATGTTGACCGTAACGGTAACGTTGTGGATTACCAGACT GGCCCGATTATCTGGGGTGAACCAGGCACTAACGGTCAGCACGCGTTCTACCAGCTGATCCA CCAGGGAACCAAAATGGTACCGTGCGATTTCATCGCTCCGGCTATCACCCCATAACCCGCTCT $\tt CTGATCATCACCAGAAACTGCTGTCTAACTTCTTCGCCCAGACCGAAGCGCTGGCGTTTGGT$ AAATCCCGCGAAGTGGTTGAGCAGGAATATCGTGATCAGGGTAAAGATCCGGCAACGCTTGA CTACGTGGTGCCGTTCAAAGTATTCGAAGGTAACCGCCCGACCAACTCCATCCTGCTGCGTG AAATCACTCCGTTCAGCCTGGGTGCGTTGATTGCGCTGTATGAGCACAAAATCTTTACTCAG GGCGTGATCCTGAACATCTTCACCTTCGACCAGTGGGGCGTGGAACTGGGTAAACAGCTGGC

AATGAAAGACGTTACGATCGCCGATCTTTTTGCTAAAGATGGTGATCGTTTTTCTAAGTTCT CCGCAACCTTCGACGATCAGATGCTGGTGGATTACTCCAAAAACCGCATCACTGAAGAGACG CTCTGGCGAGAAGATCAACCGCACTGAAAACCGCGCGTGCTGCACGTAGCGCTGCGTAACC GTAGCAATACCCCGATTTTGGTTGATGGCAAAGACGTAATGCCGGAAGTCAACGCGGTGCTG GAGAAGATGAAAACCTTCTCAGAAGCGATTATTTCCGGTGAGTGGAAAGGTTATACCGGCAA AGCAATCACTGACGTAGTGAACATCGGGATCGGCGGTTCTGACCTCGGCCCATACATGGTGA CCGAAGCTCTGCGTCCGTACAAAAACCACCTGAACATGCACTTTGTTTCTAACGTCGATGGG ACTCACATCGCGGAAGTGCTGAAAAAAGTAAACCCGGAAACCACGCTGTTCTTGGTAGCATC TAAAACCTTCACCACTCAGGAAACTATGACCAACGCCCATAGCGCGCGTGACTGGTTCCTGA AAGCGGCAGGTGATGAGAAGCACGTTGCAAAACACTTTGCGGCGCTTTCCACCAATGCCAAA GCCGTTGGCGAGTTTGGTATTGATACTGCCAACATGTTCGAGTTCTGGGACTGGGTTGGCGG ${\tt CCGTTACTCTTTGTGGTCAGCGATTGGCCTGTCGATTGTTCTCCATCGGCTTTGATAACT}$ TCGTTGAACTGCTTTCCGGCGCACACGCGATGGACAAGCATTTCTCCACCACGCCTGCCGAG AAAAACCTGCCTGTACTGCCGGCCTGATTGGCATCTGGTACAACAATTTCTTTGGTGCGGA AACTGAAGCGATTCTGCCGTATGACCAGTATATGCACCGTTTCGCGGCGTACTTCCAGCAGG GCAATATGGAGTCCAACGGTAAGTATGTTGACCGTAACGGTAACGTTGTGGATTACCAGACT GGCCCGATTATCTGGGGTGAACCAGGCACTAACGGTCAGCACGCGTTCTACCAGCTGATCCA CCAGGGAACCAAAATGGTACCGTGCGATTTCATCGCTCCGGCTATCACCCATAACCCGCTCT CTGATCATCACCAGAAACTGCTGTCTAACTTCTTCGCCCAGACCGAAGCGCTGGCGTTTGGT AAATCCCGCGAAGTGGTTGAGCAGGAATATCGTGATCAGGGTAAAGATCCGGCAACGCTTGA CTACGTGGTGCCGTTCAAAGTATTCGAAGGTAACCGCCCGACCAACTCCATCCTGCTGCGTG AAATCACTCCGTTCAGCCTGGGTGCGTTGATTGCGCTGTATGAGCACAAAATCTTTACTCAG GGCGTGATCCTGAACATCTTCACCTTCGACCAGTGGGGCGTGGAACTGGGTAAACAGCTGGC GAACCGTATTCTGCCAGAGCTGAAAGATGATAAAGAAATCCTGGAAGTGCTGTTTCAGGGTC CGAGCAGCCACGATAGCTCGACCAATGGTCTGATTAACCGCTATAAAGCGTGGCGCGGTtaa

5 SEQ ID NO:14

AATGAAAGACGTTACGATCGCCGATCTTTTTGCTAAAGATGGTGATCGTTTTTCTAAGTTCT CCGCAACCTTCGACGATCAGATGCTGGTGGATTACTCCAAAAACCGCATCACTGAAGAGACG CTCTGGCGAGAAGATCAACCGCACTGAAAACCGCGCGTGCTGCACGTAGCGCTGCGTAACC GTAGCAATACCCCGATTTTGGTTGATGGCAAAGACGTAATGCCGGAAGTCAACGCGGTGCTG GAGAAGATGAAAACCTTCTCAGAAGCGATTATTTCCGGTGAGTGGAAAGGTTATACCGGCAA AGCAATCACTGACGTAGTGAACATCGGGATCGGCGGTTCTGACCTCGGCCCATACATGGTGA CCGAAGCTCTGCGTCCGTACAAAAACCACCTGAACATGCACTTTGTTTCTAACGTCGATGGG ACTCACATCGCGGAAGTGCTGAAAAAAGTAAACCCGGAAACCACGCTGTTCTTGGTAGCATC TAAAACCTTCACCACTCAGGAAACTATGACCAACGCCCATAGCGCGCGTGACTGGTTCCTGA AAGCGGCAGGTGATGAGAAGCACGTTGCAAAACACTTTGCGGCGCTTTCCACCAATGCCAAA GCCGTTGGCGAGTTTGGTATTGATACTGCCAACATGTTCGAGTTCTGGGACTGGGTTGGCGG $\tt CCGTTACTCTTTGTGGTCAGCGATTGGCCTGTCGATTGTTCTCCATCGGCTTTGATAACT$ TCGTTGAACTGCTTTCCGGCGCACACGCGATGGACAAGCATTTCTCCACCACGCCTGCCGAG AAAAACCTGCCTGTACTGCCGGCCTGATTGGCATCTGGTACAACAATTTCTTTGGTGCGGA AACTGAAGCGATTCTGCCGTATGACCAGTATATGCACCGTTTCGCGGCGTACTTCCAGCAGG
GCAATATGGAGTCCAACGGTAAGTATGTTGACCGTAACGGTAACGTTGTGGATTACCAGACT
GGCCCGATTATCTGGGGTGAACCAGGCACTAACGGTCAGCACGCGTTCTACCAGCTGATCCA
CCAGGGAACCAAAATGGTACCGTGCGATTTCATCGCTCCGGCTATCACCCATAACCCGCTCT
CTGATCATCACCAGAAACTGCTGTCTAACTTCTTCGCCCAGACCGAAGCGCTGGCGTTTGGT
AAATCCCGCGAAGTGGTTGAGCAGGAATATCGTGATCAGGGTAAAGATCCGGCAACGCTTGA
CTACGTGGTGCCGTTCAAAGTATTCGAAGGTAACCGCCCGACCAACTCCATCCTGCTGCGTG
AAATCACTCCGTTCAGCCTGGGTGCGTTGATTGCGCTGTATGAGCACAAAATCTTTACTCAG
GGCGTGATCCTGAACATCTTCACCTTCGACCAGTGGGGCGTGGAACTGGGTAAACAGCTGGC
GAACCGTATTCTGCCAGAGCTGAAAGATGATAAAGAAATCAGCCTGGAAGTGCTGTTTCAGG
GTCCGAGCCACGATAGCTCGACCAATGGTCTGATTAACCGCTATAAAGCGTGGCGCGGTtaa

SEQ ID NO:15

AATGAAAGACGTTACGATCGCCGATCTTTTTGCTAAAGATGGTGATCGTTTTTCTAAGTTCT CCGCAACCTTCGACGATCAGATGCTGGTGGATTACTCCAAAAACCGCATCACTGAAGAGACG CTCTGGCGAGAAGATCAACCGCACTGAAAACCGCGCGTGCTGCACGTAGCGCTGCGTAACC GTAGCAATACCCCGATTTTGGTTGATGGCAAAGACGTAATGCCGGAAGTCAACGCGGTGCTG GAGAAGATGAAAACCTTCTCAGAAGCGATTATTTCCGGTGAGTGGAAAGGTTATACCGGCAA AGCAATCACTGACGTAGTGAACATCGGGGATCGGCGGTTCTGACCTCGGCCCATACATGGTGA CCGAAGCTCTGCGTCCGTACAAAAACCACCTGAACATGCACTTTGTTTCTAACGTCGATGGG ACTCACATCGCGGAAGTGCTGAAAAAAGTAAACCCGGAAACCACGCTGTTCTTGGTAGCATC TAAAACCTTCACCACTCAGGAAACTATGACCAACGCCCATAGCGCGCGTGACTGGTTCCTGA AAGCGGCAGGTGATGAGAAGCACGTTGCAAAACACTTTGCGGCGCTTTCCACCAATGCCAAA GCCGTTGGCGAGTTTGGTATTGATACTGCCAACATGTTCGAGTTCTGGGACTGGGTTGGCGG CCGTTACTCTTTGTGGTCAGCGATTGGCCTGTCGATTGTTCTCCCATCGGCTTTGATAACT TCGTTGAACTGCTTTCCGGCGCACACGCGATGGACAAGCATTTCTCCACCACGCCTGCCGAG AAAAACCTGCCTGTACTGCCGGCCTGATTGGCATCTGGTACAACAATTTCTTTGGTGCGGA AACTGAAGCGATTCTGCCGTATGACCAGTATATGCACCGTTTCGCGGCGTACTTCCAGCAGG GCAATATGGAGTCCAACGGTAAGTATGTTGACCGTAACGGTAACGTTGTGGATTACCAGACT GGCCCGATTATCTGGGGTGAACCAGGCACTAACGGTCAGCACGCGTTCTACCAGCTGATCCA CCAGGGAACCAAAATGGTACCGTGCGATTTCATCGCTCCGGCTATCACCCATAACCCGCTCT CTGATCATCACCAGAAACTGCTGTCTAACTTCTTCGCCCAGACCGAAGCGCTGGCGTTTGGT AAATCCCGCGAAGTGGTTGAGCAGGAATATCGTGATCAGGGTAAAGATCCGGCAACGCTTGA CTACGTGGTGCCGTTCAAAGTATTCGAAGGTAACCGCCCGACCAACTCCATCCTGCTGCGTG AAATCACTCCGTTCAGCCTGGGTGCGTTGATTGCGCTGTATGAGCACAAAATCTTTACTCAG GGCGTGATCCTGAACATCTTCACCTTCGACCAGTGGGGCGTGGAACTGGGTAAACAGCTGGC GAACCGTATTCTGCCAGAGCTGAAAGATGATAAAGAAATCAGCAGCCTGGAAGTGCTGTTTC AGGGTCCGCACGATAGCTCGACCAATGGTCTGATTAACCGCTATAAAGCGTGGCGCGGTtaa

ES 2 704 697 T3

SEQ ID NO:16

AGCAATCACTGACGTAGTGAACATCGGGGATCGGCGGTTCTGACCTCGGCCCATACATGGTGA CCGAAGCTCTGCGTCCGTACAAAAACCACCTGAACATGCACTTTGTTTCTAACGTCGATGGG ACTCACATCGCGGAAGTGCTGAAAAAAGTAAACCCGGAAACCACGCTGTTCTTGGTAGCATC TAAAACCTTCACCACTCAGGAAACTATGACCAACGCCCATAGCGCGCGTGACTGGTTCCTGA AAGCGGCAGGTGATGAGAAGCACGTTGCAAAACACTTTGCGGCGCTTTCCACCAATGCCAAA GCCGTTGGCGAGTTTGGTATTGATACTGCCAACATGTTCGAGTTCTGGGACTGGGTTGGCGG CCGTTACTCTTTGTGGTCAGCGATTGGCCTGTCGATTGTTCTCCATCGGCTTTGATAACT TCGTTGAACTGCTTTCCGGCGCACACGCGATGGACAAGCATTTCTCCACCACGCCTGCCGAG AAAAACCTGCCTGTACTGCCGGCCTGATTGGCATCTGGTACAACAATTTCTTTGGTGCGGA AACTGAAGCGATTCTGCCGTATGACCAGTATATGCACCGTTTCGCGGCGTACTTCCAGCAGG GCAATATGGAGTCCAACGGTAAGTATGTTGACCGTAACGGTAACGTTGTGGATTACCAGACT GGCCCGATTATCTGGGGTGAACCAGGCACTAACGGTCAGCACGCGTTCTACCAGCTGATCCA CCAGGGAACCAAAATGGTACCGTGCGATTTCATCGCTCCGGCTATCACCCATAACCCGCTCT CTGATCATCACCAGAAACTGCTGTCTAACTTCTTCGCCCAGACCGAAGCGCTGGCGTTTGGT AAATCCCGCGAAGTGGTTGAGCAGGAATATCGTGATCAGGGTAAAGATCCGGCAACGCTTGA CTACGTGGTGCCGTTCAAAGTATTCGAAGGTAACCGCCCGACCAACTCCATCCTGCTGCGTG AAATCACTCCGTTCAGCCTGGGTGCGTTGATTGCGCTGTATGAGCACAAAATCTTTACTCAG GGCGTGATCCTGAACATCTTCACCTTCGACCAGTGGGGCGTGGAACTGGGTAAACAGCTGGC GAACCGTATTCTGCCAGAGCTGAAAGATGATAAAGAAATCAGCAGCCACGATAGCTCGACCA ATGGTCTGATTAACCGCTATAAACTGGAAGTGCTGTTTCAGGGTCCGGCGTGGCGCGGTtaa

5 SEQ ID NO:17

MKNINPTQTAAWQALQKHFDEMKDVTIADLFAKDGDRFSKFSATFDDQMLVDYSKNRITEET LAKLQDLAKECDLAGAIKSMFSGEKINRTENRAVLHVALRNRSNTPILVDGKDVMPEVNAVL EKMKTFSEAIISGEWKGYTGKAITDVVNIGIGGSDLGPYMVTEALRPYKNHLNMHFVSNVDG THIAEVLKKVNPETTLFLVASKTFTTQETMTNAHSARDWFLKAAGDEKHVAKHFAALSTNAK AVGEFGIDTANMFEFWDWVGGRYSLWSAIGLSIVLSIGFDNFVELLSGAHAMDKHFSTTPAE KNLPVLLALIGIWYNNFFGAETEAILPYDQYMHRFAAYFQQGNMESNGKYVDRNGNVVDYQT GPIIWGEPGTNGQHAFYQLIHQGTKMVPCDFIAPAITHNPLSDHHQKLLSNFFAQTEALAFG KSREVVEQEYRDQGKDPATLDYVVPFKVFEGNRPTNSILLREITPFSLGALIALYEHKIFTQ GVILNIFTFDQWGVELGKQLANRILPELKDDKEISSHDSSTNGLINRYKAWRG

MKNINPTQTAAWQALQKHFDEMKDVTIADLFAKDGDRFSKFSATFDDQMLVDYSKNRITEET LAKLQDLAKECDLAGAIKSMFSGEKINRTENRAVLHVALRNRSNTPLEVLFQGPILVDGKDV MPEVNAVLEKMKTFSEAIISGEWKGYTGKAITDVVNIGIGGSDLGPYMVTEALRPYKNHLNM HFVSNVDGTHIAEVLKKVNPETTLFLVASKTFTTQETMTNAHSARDWFLKAAGDEKHVAKHF AALSTNAKAVGEFGIDTANMFEFWDWVGGRYSLWSAIGLSIVLSIGFDNFVELLSGAHAMDK HFSTTPAEKNLPVLLALIGIWYNNFFGAETEAILPYDQYMHRFAAYFQQGNMESNGKYVDRN GNVVDYQTGPIIWGEPGTNGQHAFYQLIHQGTKMVPCDFIAPAITHNPLSDHHQKLLSNFFA QTEALAFGKSREVVEQEYRDQGKDPATLDYVVPFKVFEGNRPTNSILLREITPFSLGALIAL YEHKIFTQGVILNIFTFDQWGVELGKQLANRILPELKDDKEISSHDSSTNGLINRYKAWRG

5 SEQ ID NO:19

MKNINPTQTAAWQALQKHFDEMKDVTIADLFAKDGDRFSKFSATFDDQMLVDYSKNRITEET LAKLQDLAKECDLAGAIKSMFSGEKINRTENRAVLHVALRNRSNTPILEVLFQGPLVDGKDV MPEVNAVLEKMKTFSEAIISGEWKGYTGKAITDVVNIGIGGSDLGPYMVTEALRPYKNHLNM HFVSNVDGTHIAEVLKKVNPETTLFLVASKTFTTQETMTNAHSARDWFLKAAGDEKHVAKHF

AALSTNAKAVGEFGIDTANMFEFWDWVGGRYSLWSAIGLSIVLSIGFDNFVELLSGAHAMDK HFSTTPAEKNLPVLLALIGIWYNNFFGAETEAILPYDQYMHRFAAYFQQGNMESNGKYVDRN GNVVDYQTGPIIWGEPGTNGQHAFYQLIHQGTKMVPCDFIAPAITHNPLSDHHQKLLSNFFA QTEALAFGKSREVVEQEYRDQGKDPATLDYVVPFKVFEGNRPTNSILLREITPFSLGALIAL YEHKIFTQGVILNIFTFDQWGVELGKQLANRILPELKDDKEISSHDSSTNGLINRYKAWRG

SEQ ID NO:20

10

MKNINPTQTAAWQALQKHFDEMKDVTIADLFAKDGDRFSKFSATFDDQMLVDYSKNRITEET LAKLQDLAKECDLAGAIKSMFSGEKINRTENRAVLHVALRNRSNTPILEVLFQGPVDGKDVM PEVNAVLEKMKTFSEAIISGEWKGYTGKAITDVVNIGIGGSDLGPYMVTEALRPYKNHLNMH FVSNVDGTHIAEVLKKVNPETTLFLVASKTFTTQETMTNAHSARDWFLKAAGDEKHVAKHFA ALSTNAKAVGEFGIDTANMFEFWDWVGGRYSLWSAIGLSIVLSIGFDNFVELLSGAHAMDKH FSTTPAEKNLPVLLALIGIWYNNFFGAETEAILPYDQYMHRFAAYFQQGNMESNGKYVDRNG NVVDYQTGPIIWGEPGTNGQHAFYQLIHQGTKMVPCDFIAPAITHNPLSDHHQKLLSNFFAQ TEALAFGKSREVVEQEYRDQGKDPATLDYVVPFKVFEGNRPTNSILLREITPFSLGALIALY EHKIFTQGVILNIFTFDQWGVELGKQLANRILPELKDDKEISSHDSSTNGLINRYKAWRG

SEQ ID NO:21

MKNINPTQTAAWQALQKHFDEMKDVTIADLFAKDGDRFSKFSATFDDQMLVDYSKNRITEET LAKLQDLAKECDLAGAIKSMFSGEKINRTENRAVLHVALRNRSNTPILVDGKDVMPEVNAVL EKMKTFSEAIISGELEVLFQGPWKGYTGKAITDVVNIGIGGSDLGPYMVTEALRPYKNHLNM HFVSNVDGTHIAEVLKKVNPETTLFLVASKTFTTQETMTNAHSARDWFLKAAGDEKHVAKHF AALSTNAKAVGEFGIDTANMFEFWDWVGGRYSLWSAIGLSIVLSIGFDNFVELLSGAHAMDK HFSTTPAEKNLPVLLALIGIWYNNFFGAETEAILPYDQYMHRFAAYFQQGNMESNGKYVDRN GNVVDYQTGPIIWGEPGTNGQHAFYQLIHQGTKMVPCDFIAPAITHNPLSDHHQKLLSNFFA QTEALAFGKSREVVEQEYRDQGKDPATLDYVVPFKVFEGNRPTNSILLREITPFSLGALIAL YEHKIFTQGVILNIFTFDQWGVELGKQLANRILPELKDDKEISSHDSSTNGLINRYKAWRG

MKNINPTQTAAWQALQKHFDEMKDVTIADLFAKDGDRFSKFSATFDDQMLVDYSKNRITEET LAKLQDLAKECDLAGAIKSMFSGEKINRTENRAVLHVALRNRSNTPILVDGKDVMPEVNAVL EKMKTFSEAIISGEWKGYTGKAITDVVNIGIGGSDLGPYMVTEALRPYKNHLNMHFVSNVDG THIAEVLKKVNPETTLFLVASKTFTTQETMTNAHSARDWFLKAAGDEKHVAKHFAALSTNAK AVGEFGIDTANMFEFWDWVGGRYSLWSAIGLSIVLSIGFDNFVELLSGAHAMDKHFSTTPAE KNLPVLLALIGIWYNNFFGAETEAILPYDQYMHRFAAYFQQGNMESNGKYVDRNGNVVDYQT GPIIWGEPGTNGQHAFYQLIHQGTKMVPCDFIAPAITHLEVLFQGPNPLSDHHQKLLSNFFA QTEALAFGKSREVVEQEYRDQGKDPATLDYVVPFKVFEGNRPTNSILLREITPFSLGALIAL YEHKIFTQGVILNIFTFDQWGVELGKQLANRILPELKDDKEISSHDSSTNGLINRYKAWRG

5 SEQ ID NO:23

MKNINPTQTAAWQALQKHFDEMKDVTIADLFAKDGDRFSKFSATFDDQMLVDYSKNRITEET LAKLQDLAKECDLAGAIKSMFSGEKINRTENRAVLHVALRNRSNTPILVDGKDVMPEVNAVL EKMKTFSEAIISGEWKGYTGKAITDVVNIGIGGSDLGPYMVTEALRPYKNHLNMHFVSNVDG THIAEVLKKVNPETTLFLVASKTFTTQETMTNAHSARDWFLKAAGDEKHVAKHFAALSTNAK AVGEFGIDTANMFEFWDWVGGRYSLWSAIGLSIVLSIGFDNFVELLSGAHAMDKHFSTTPAE KNLPVLLALIGIWYNNFFGAETEAILPYDQYMHRFAAYFQQGNMESNGKYVDRNGNVVDYQT GPIIWGEPGTNGQHAFYQLIHQGTKMVPCDFIAPAITHNPLSDHHQKLLSNFFAQTEALAFG

KSREVVEQEYRDQGKDPATLDYVVPFKVFEGNRPTNSILLREITPFSLGALIALYEHKIFTQ GVILNIFTFDQWGVELGKQLANRILPELEVLFQGPKDDKEISSHDSSTNGLINRYKAWRG

SEQ ID NO:24

10

MKNINPTQTAAWQALQKHFDEMKDVTIADLFAKDGDRFSKFSATFDDQMLVDYSKNRITEET LAKLQDLAKECDLAGAIKSMFSGEKINRTENRAVLHVALRNRSNTPILVDGKDVMPEVNAVL EKMKTFSEAIISGEWKGYTGKAITDVVNIGIGGSDLGPYMVTEALRPYKNHLNMHFVSNVDG THIAEVLKKVNPETTLFLVASKTFTTQETMTNAHSARDWFLKAAGDEKHVAKHFAALSTNAK AVGEFGIDTANMFEFWDWVGGRYSLWSAIGLSIVLSIGFDNFVELLSGAHAMDKHFSTTPAE KNLPVLLALIGIWYNNFFGAETEAILPYDQYMHRFAAYFQQGNMESNGKYVDRNGNVVDYQT GPIIWGEPGTNGQHAFYQLIHQGTKMVPCDFIAPAITHNPLSDHHQKLLSNFFAQTEALAFG KSREVVEQEYRDQGKDPATLDYVVPFKVFEGNRPTNSILLREITPFSLGALIALYEHKIFTQ GVILNIFTFDQWGVELGKQLANRILPELKLEVLFQGPDDKEISSHDSSTNGLINRYKAWRG

SEQ ID NO:25

MKNINPTQTAAWQALQKHFDEMKDVTIADLFAKDGDRFSKFSATFDDQMLVDYSKNRITEET LAKLQDLAKECDLAGAIKSMFSGEKINRTENRAVLHVALRNRSNTPILVDGKDVMPEVNAVL EKMKTFSEAIISGEWKGYTGKAITDVVNIGIGGSDLGPYMVTEALRPYKNHLNMHFVSNVDG THIAEVLKKVNPETTLFLVASKTFTTQETMTNAHSARDWFLKAAGDEKHVAKHFAALSTNAK AVGEFGIDTANMFEFWDWVGGRYSLWSAIGLSIVLSIGFDNFVELLSGAHAMDKHFSTTPAE KNLPVLLALIGIWYNNFFGAETEAILPYDQYMHRFAAYFQQGNMESNGKYVDRNGNVVDYQT GPIIWGEPGTNGQHAFYQLIHQGTKMVPCDFIAPAITHNPLSDHHQKLLSNFFAQTEALAFG KSREVVEQEYRDQGKDPATLDYVVPFKVFEGNRPTNSILLREITPFSLGALIALYEHKIFTQ GVILNIFTFDQWGVELGKQLANRILPELKDLEVLFQGPDKEISSHDSSTNGLINRYKAWRG

MKNINPTQTAAWQALQKHFDEMKDVTIADLFAKDGDRFSKFSATFDDQMLVDYSKNRITEET LAKLQDLAKECDLAGAIKSMFSGEKINRTENRAVLHVALRNRSNTPILVDGKDVMPEVNAVL EKMKTFSEAIISGEWKGYTGKAITDVVNIGIGGSDLGPYMVTEALRPYKNHLNMHFVSNVDG THIAEVLKKVNPETTLFLVASKTFTTQETMTNAHSARDWFLKAAGDEKHVAKHFAALSTNAK AVGEFGIDTANMFEFWDWVGGRYSLWSAIGLSIVLSIGFDNFVELLSGAHAMDKHFSTTPAE KNLPVLLALIGIWYNNFFGAETEAILPYDQYMHRFAAYFQQGNMESNGKYVDRNGNVVDYQT GPIIWGEPGTNGQHAFYQLIHQGTKMVPCDFIAPAITHNPLSDHHQKLLSNFFAQTEALAFG KSREVVEQEYRDQGKDPATLDYVVPFKVFEGNRPTNSILLREITPFSLGALIALYEHKIFTQ GVILNIFTFDQWGVELGKQLANRILPELKDDLEVLFQGPKEISSHDSSTNGLINRYKAWRG

5 SEQ ID NO:27

MKNINPTQTAAWQALQKHFDEMKDVTIADLFAKDGDRFSKFSATFDDQMLVDYSKNRITEET LAKLQDLAKECDLAGAIKSMFSGEKINRTENRAVLHVALRNRSNTPILVDGKDVMPEVNAVL EKMKTFSEAIISGEWKGYTGKAITDVVNIGIGGSDLGPYMVTEALRPYKNHLNMHFVSNVDG THIAEVLKKVNPETTLFLVASKTFTTQETMTNAHSARDWFLKAAGDEKHVAKHFAALSTNAK AVGEFGIDTANMFEFWDWVGGRYSLWSAIGLSIVLSIGFDNFVELLSGAHAMDKHFSTTPAE KNLPVLLALIGIWYNNFFGAETEAILPYDQYMHRFAAYFQQGNMESNGKYVDRNGNVVDYQT GPIIWGEPGTNGQHAFYQLIHQGTKMVPCDFIAPAITHNPLSDHHQKLLSNFFAQTEALAFG KSREVVEQEYRDQGKDPATLDYVVPFKVFEGNRPTNSILLREITPFSLGALIALYEHKIFTQ GVILNIFTFDQWGVELGKQLANRILPELKDDKLEVLFQGPEISSHDSSTNGLINRYKAWRG

SEQ ID NO:28

10

$$\label{thm:total} \begin{align} MKNINPTQTAAWQALQKHFDEMKDVTIADLFAKDGDRFSKFSATFDDQMLVDYSKNRITEET LAKLQDLAKECDLAGAIKSMFSGEKINRTENRAVLHVALRNRSNTPILVDGKDVMPEVNAVL EKMKTFSEAIISGEWKGYTGKAITDVVNIGIGGSDLGPYMVTEALRPYKNHLNMHFVSNVDG THIAEVLKKVNPETTLFLVASKTFTTQETMTNAHSARDWFLKAAGDEKHVAKHFAALSTNAK AVGEFGIDTANMFEFWDWVGGRYSLWSAIGLSIVLSIGFDNFVELLSGAHAMDKHFSTTPAE KNLPVLLALIGIWYNNFFGAETEAILPYDQYMHRFAAYFQQGNMESNGKYVDRNGNVVDYQT GPIIWGEPGTNGQHAFYQLIHQGTKMVPCDFIAPAITHNPLSDHHQKLLSNFFAQTEALAFG KSREVVEQEYRDQGKDPATLDYVVPFKVFEGNRPTNSILLREITPFSLGALIALYEHKIFTQ GVILNIFTFDQWGVELGKQLANRILPELKDDKE<math>\underline{LEVLFQGP}$$
ISSHDSSTNGLINRYKAWRG

SEQ ID NO:29

MKNINPTQTAAWQALQKHFDEMKDVTIADLFAKDGDRFSKFSATFDDQMLVDYSKNRITEET LAKLQDLAKECDLAGAIKSMFSGEKINRTENRAVLHVALRNRSNTPILVDGKDVMPEVNAVL EKMKTFSEAIISGEWKGYTGKAITDVVNIGIGGSDLGPYMVTEALRPYKNHLNMHFVSNVDG THIAEVLKKVNPETTLFLVASKTFTTQETMTNAHSARDWFLKAAGDEKHVAKHFAALSTNAK AVGEFGIDTANMFEFWDWVGGRYSLWSAIGLSIVLSIGFDNFVELLSGAHAMDKHFSTTPAE KNLPVLLALIGIWYNNFFGAETEAILPYDQYMHRFAAYFQQGNMESNGKYVDRNGNVVDYQT GPIIWGEPGTNGQHAFYQLIHQGTKMVPCDFIAPAITHNPLSDHHQKLLSNFFAQTEALAFG KSREVVEQEYRDQGKDPATLDYVVPFKVFEGNRPTNSILLREITPFSLGALIALYEHKIFTQ GVILNIFTFDQWGVELGKQLANRILPELKDDKEILEVLFQGPSSHDSSTNGLINRYKAWRG

MKNINPTQTAAWQALQKHFDEMKDVTIADLFAKDGDRFSKFSATFDDQMLVDYSKNRITEET LAKLQDLAKECDLAGAIKSMFSGEKINRTENRAVLHVALRNRSNTPILVDGKDVMPEVNAVL EKMKTFSEAIISGEWKGYTGKAITDVVNIGIGGSDLGPYMVTEALRPYKNHLNMHFVSNVDG THIAEVLKKVNPETTLFLVASKTFTTQETMTNAHSARDWFLKAAGDEKHVAKHFAALSTNAK AVGEFGIDTANMFEFWDWVGGRYSLWSAIGLSIVLSIGFDNFVELLSGAHAMDKHFSTTPAE KNLPVLLALIGIWYNNFFGAETEAILPYDQYMHRFAAYFQQGNMESNGKYVDRNGNVVDYQT GPIIWGEPGTNGQHAFYQLIHQGTKMVPCDFIAPAITHNPLSDHHQKLLSNFFAQTEALAFG KSREVVEQEYRDQGKDPATLDYVVPFKVFEGNRPTNSILLREITPFSLGALIALYEHKIFTQ GVILNIFTFDQWGVELGKQLANRILPELKDDKEISLEVLFQGPSHDSSTNGLINRYKAWRG

5 SEQ ID NO:31

MKNINPTQTAAWQALQKHFDEMKDVTIADLFAKDGDRFSKFSATFDDQMLVDYSKNRITEET LAKLQDLAKECDLAGAIKSMFSGEKINRTENRAVLHVALRNRSNTPILVDGKDVMPEVNAVL EKMKTFSEAIISGEWKGYTGKAITDVVNIGIGGSDLGPYMVTEALRPYKNHLNMHFVSNVDG THIAEVLKKVNPETTLFLVASKTFTTQETMTNAHSARDWFLKAAGDEKHVAKHFAALSTNAK AVGEFGIDTANMFEFWDWVGGRYSLWSAIGLSIVLSIGFDNFVELLSGAHAMDKHFSTTPAE KNLPVLLALIGIWYNNFFGAETEAILPYDQYMHRFAAYFQQGNMESNGKYVDRNGNVVDYQT GPIIWGEPGTNGQHAFYQLIHQGTKMVPCDFIAPAITHNPLSDHHQKLLSNFFAQTEALAFG KSREVVEQEYRDQGKDPATLDYVVPFKVFEGNRPTNSILLREITPFSLGALIALYEHKIFTQ GVILNIFTFDQWGVELGKQLANRILPELKDDKEISSLEVLFQGPHDSSTNGLINRYKAWRG

SEQ ID NO:32

10

MKNINPTQTAAWQALQKHFDEMKDVTIADLFAKDGDRFSKFSATFDDQMLVDYSKNRITEET LAKLQDLAKECDLAGAIKSMFSGEKINRTENRAVLHVALRNRSNTPILVDGKDVMPEVNAVL EKMKTFSEAIISGEWKGYTGKAITDVVNIGIGGSDLGPYMVTEALRPYKNHLNMHFVSNVDG THIAEVLKKVNPETTLFLVASKTFTTQETMTNAHSARDWFLKAAGDEKHVAKHFAALSTNAK AVGEFGIDTANMFEFWDWVGGRYSLWSAIGLSIVLSIGFDNFVELLSGAHAMDKHFSTTPAE KNLPVLLALIGIWYNNFFGAETEAILPYDQYMHRFAAYFQQGNMESNGKYVDRNGNVVDYQT GPIIWGEPGTNGQHAFYQLIHQGTKMVPCDFIAPAITHNPLSDHHQKLLSNFFAQTEALAFG KSREVVEQEYRDQGKDPATLDYVVPFKVFEGNRPTNSILLREITPFSLGALIALYEHKIFTQ GVILNIFTFDQWGVELGKQLANRILPELKDDKEISSHDSSTNGLINRYKLEVLFQGPAWRG

SEQ ID NO:33

SEQ ID NO:34

MGPEEEFGMSLIKHNSCVITTENGKFTGLGVYDRFVVVPTHADPGKEIQVDGITTKVIDSYI LYNKNGIKLEITVLKLDRNEKFRDIRRYIPNNEDDYPNCNLALLANQPEPTIINVGDVVSY(NILLSGNOTARMLKYSYPTKSGYCGGVLYKIGOVLGIHVGGNGRDGFSAMLLRSYFTDVO

5 SEQ ID NO:35

ATGAAAAAACGGCAATTGCGATAGCGGTTGCGCTAGCTGGTTTTGCCACGGTGGCGCAGGC TGGCCCAGAAGAATTCGGCATGAGCCTGATCAAGCATAACTCTTGCGTCATTACCACGG AGAATGGTAAGTTCACGGGCTTGGGCGTTTATGACCGTTTCGTCGTGGTTCCGACCCACGCT CTATAATAAGAACGGCATCAAGCTGGAAATCACGGTGCTGAAACTGGACCGTAATGAAAAGT TTCGTGATATCCGTCGCTATATTCCGAATAACGAGGATGACTACCCAAATTGCAATCTGGCG CTGCTGGCAAATCAGCCGGAACCGACGATCATCAACGTGGGTGACGTGGTGAGCTATGGCAA TATCCTGCTGAGCGGTAACCAGACCGCGCGTATGCTGAAGTATTCCTATCCGACGAAAAGCG GCTATTGCGGCGGCGTGCTCTATAAGATTGGTCAAGTCCTGGGCATCCACGTCGGCGGTAAT GGCCGCGATGGTTTCAGCGCGATGCTGCTGCGTAGCTATTTCACCGACGTCCAGTGATAA

SEQ ID NO:36

10

MKKTAIAIAVALAGFATVAOAGPEEEFGMSLIKHNSCVITTENGKFTGLGVYDRFVVVPTHA DPGKEIOVDGITTKVIDSYDLYNKNGIKLEITVLKLDRNEKFRDIRRYIPNNEDDYPNCNLA LLANQPEPTIINVGDVVSYGNILLSGNQTARMLKYSYPTKSGYCGGVLYKIGQVLGIHVGGN GRDGFSAMLLRSYFTDVQ

SEQ ID NO:37 CTGGAAGTGCTGTTTCAGGGTCCG

15

SEQ ID NO:38 **LEVLFQGP**

SEQ ID NO:39 20 **EVLFQGP**

> SEQ ID NO:40 **VLFQGP**

25 SEQ ID NO:41 **LFQGP**

> SEQ ID NO:42 **LEVLFQG**

30

SEQ ID NO:43 **LEVLFQ**

SEQ ID NO:44 35

LEVLF

SEQ ID NO:45 **EVLFQG**

40 SEQ ID NO:46

MKKTAIAIAVALAGFATVAQA

SEQ ID NO:47

GCACTTCCGTGCCGGTTCTCTGCTGGTGACTTCCGCAGACCGTCCTGACGTGCTGGTGGCCG ATGGACGCGCATTTCTAAACTGTGCGAACGTGCTTTCGCTACCGGCCTGCCGGTATTTAT GGTGAACACCAACACCTGGCAGACCTCTCTGAGCCTGCAGAGCTTCAACCTGGAAGTTCCGG TTGACGATCACGAACGTATCGAGAAAGTTCAGGAATACGTTGCTAACTACATCAACGCTGAC TTATCAGCTGACTTGCGCGCCAAAGCGGGCAAACGTATCGTACTGCCGGAAGGTGACG AACCGCGTACCGTTAAAGCAGCCGCTATCTGTGCTGAACGTGGTATCGCAACTTGCGTACTG GATTGAAATCGTTGATCCAGAAGTGGTTCGCGAAAGCTATGTTGGTCGTCTGGTCGAACTGC GTAAGAACAAGGCATGACCGAAACCGTTGCCCGCGAACAGCTGGAAGACAACGTGGTGCTC GGTACGCTGATGCTGGAACAGGATGAAGTTGATGGTCTGGTTTCCGGTGCTGTTCACACTAC CGCAAACACCATCCGTCCGCCGCTGCAGCTGATCAAAACTGCACCGGGCAGCTCCCTGGTAT $\tt CTTCCGTGTTCTTCATGCTGCCGGAACAGGTTTACGTTTACGGTGACTGTGCGATCAAC$ $\tt CCGGATCCGACCGCTGAACAGCTGGCAGAAATCGCGATTCAGTCCGCTGATTCCGCTGCGGC$ CTTCGGTATCGAACCGCGCGTTGCTATGCTCTCCTACTCCACCGGTACTTCTGGTGCAGGTA GCGACGTAGAAAAGTTCGCGAAGCAACTCGTCTGGCGCAGGAAAAACGTCCTGACCTGATG $\tt ATCGACGGTCCGCTGCAGTACGACGCTGCGGTAATGGCTGACGTTGCGAAATCCAAAGCGCC$ GAACTCTCCGGTTGCAGGTCGCGCTACCGTGTTCATCTTCCCGGATCTGAACACCGGTAACA CCACCTACAAAGCGGTACAGCGTTCTGCCGACCTGATCTCCATCGGGCCGATGCTGCAGGGT ATGCGCAAGCCGGTTAACGACCTGTCCCGTGGCGCACTGGTTGACGATATCGTCTACACCAT CGCGCTGACTGCGATTCAGTCTGCACAGCAGCAGTAA

SEQ ID NO:48

VSRIIMLIPTGTSVGLTSVSLGVIRAMERKGVRLSVFKPIAQPRTGGDAPDQTTTIVRANSS
TTTAAEPLKMSYVEGLLSSNQKDVLMEEIVANYHANTKDAEVVLVEGLVPTRKHQFAQSLNY
EIAKTLNAEIVFVMSQGTDTPEQLKERIELTRNSFGGAKNTNITGVIVNKLNAPVDEQGRTR
PDLSEIFDDSSKAKVNNVDPAKLQESSPLPVLGAVPWSFDLIATRAIDMARHLNATIINEGD
INTRRVKSVTFCARSIPHMLEHFRAGSLLVTSADRPDVLVAACLAAMNGVEIGALLLTGGYE
MDARISKLCERAFATGLPVFMVNTNTWQTSLSLQSFNLEVPVDDHERIEKVQEYVANYINAD
WIESLTATSERSRRLSPPAFRYQLTELARKAGKRIVLPEGDEPRTVKAAAICAERGIATCVL
LGNPAEINRVAASQGVELGAGIEIVDPEVVRESYVGRLVELRKNKGMTETVAREQLEDNVVL
GTLMLEQDEVDGLVSGAVHTTANTIRPPLQLIKTAPGSSLVSSVFFMLLPEQVYVYGDCAIN
PDPTAEQLAEIAIQSADSAAAFGIEPRVAMLSYSTGTSGAGSDVEKVREATRLAQEKRPDLM
IDGPLQYDAAVMADVAKSKAPNSPVAGRATVFIFPDLNTGNTTYKAVQRSADLISIGPMLQG
MRKPVNDLSRGALVDDIVYTIALTAIQSAQQQ

GAAGCTGCAAGAATCCAGCCCGCTGCCGGTTCTCGGCGCTGTGCCGTGGAGCTTTGACCTGA TCGCGACTCGTGCGATCGATATGGCTCGCCACCTGAATGCGACCATCATCAACGAAGGCGAC GCACTTCCGTGCCGGTTCTCTGCTGGTGACTTCCGCAGACCGTCCTGACGTGCTGGTGGCCG ATGGACGCGCGCATTTCTAAACTGTGCGAACGTGCTTTCGCTACCGGCCTGCCGGTATTTAT GGTGAACACCAACACCTGGCAGACCTCTCTGAGCCTGCAGAGCTTCAACCTGGAAGTTCCGG TTGACGATCACGAACGTATCGAGAAAGTTCAGGAATACGTTGCTAACTACATCAACGCTGAC TGGATCGAATCTCTGACTGCCACTTCTCTGGAAGTGCTGTTTCAGGGTCCGGAGCGCAGCCG TCGTCTGTCTCCGCCTGCGTTCCGTTATCAGCTGACTGAACTTGCGCGCAAAGCGGGCAAAC GTATCGTACTGCCGGAAGGTGACGAACCGCGTACCGTTAAAGCAGCCGCTATCTGTGCTGAA CGTGGTATCGCAACTTGCGTACTGCTGGGTAATCCGGCAGAGATCAACCGTGTTGCAGCGTC ${\tt TCAGGGTGTAGAACTGGGTGCAGGGATTGAAATCGTTGATCCAGAAGTGGTTCGCGAAAGCT}$ ATGTTGGTCGTCTGGTCGAACTGCGTAAGAACAAAGGCATGACCGAAACCGTTGCCCGCGAA CAGCTGGAAGACAACGTGGTGCTCGGTACGCTGATGCTGGAACAGGATGAAGTTGATGGTCT CTGCACCGGGCAGCTCCCTGGTATCTTCCGTGTTCTTCATGCTGCTGCCGGAACAGGTTTAC GTTTACGGTGACTGTGCGATCAACCCGGATCCGACCGCTGAACAGCTGGCAGAAATCGCGAT TCAGTCCGCTGATTCCGCTGCGGCCTTCGGTATCGAACCGCGCGTTGCTATGCTCTCCTACT CCACCGGTACTTCTGGTGCAGGTAGCGACGTAGAAAAAGTTCGCGAAGCAACTCGTCTGGCG CAGGAAAAACGTCCTGACCTGATGATCGACGGTCCGCTGCAGTACGACGCTGCGGTAATGGC TGACGTTGCGAAATCCAAAGCGCCGAACTCTCCGGTTGCAGGTCGCGCTACCGTGTTCATCT TCCCGGATCTGAACACCGGTAACACCACCTACAAAGCGGTACAGCGTTCTGCCGACCTGATC TCCATCGGGCCGATGCTGCAGGGTATGCGCAAGCCGGTTAACGACCTGTCCCGTGGCGCACT GGTTGACGATATCGTCTACACCATCGCGCTGACTGCGATTCAGTCTGCACAGCAGCAGTAA

5

SEQ ID NO:50

VSRIIMLIPTGTSVGLTSVSLGVIRAMERKGVRLSVFKPIAQPRTGGDAPDQTTTIVRANSS
TTTAAEPLKMSYVEGLLSSNQKDVLMEEIVANYHANTKDAEVVLVEGLVPTRKHQFAQSLNY
EIAKTLNAEIVFVMSQGTDTPEQLKERIELTRNSFGGAKNTNITGVIVNKLNAPVDEQGRTR
PDLSEIFDDSSKAKVNNVDPAKLQESSPLPVLGAVPWSFDLIATRAIDMARHLNATIINEGD
INTRRVKSVTFCARSIPHMLEHFRAGSLLVTSADRPDVLVAACLAAMNGVEIGALLLTGGYE
MDARISKLCERAFATGLPVFMVNTNTWQTSLSLQSFNLEVPVDDHERIEKVQEYVANYINAD
WIESLTATSLEVLFQGPERSRRLSPPAFRYQLTELARKAGKRIVLPEGDEPRTVKAAAICAE
RGIATCVLLGNPAEINRVAASQGVELGAGIEIVDPEVVRESYVGRLVELRKNKGMTETVARE
QLEDNVVLGTLMLEQDEVDGLVSGAVHTTANTIRPPLQLIKTAPGSSLVSSVFFMLLPEQVY
VYGDCAINPDPTAEQLAEIAIQSADSAAAFGIEPRVAMLSYSTGTSGAGSDVEKVREATRLA
QEKRPDLMIDGPLQYDAAVMADVAKSKAPNSPVAGRATVFIFPDLNTGNTTYKAVQRSADLI
SIGPMLQGMRKPVNDLSRGALVDDIVYTIALTAIQSAQQQ

ACATCACCGGCGTTATCGTTAACAAACTGAACGCACCGGTTGATGAACAGGGTCGTACTCGC CCGGATCTGTCCGAGATTTTCGACGACTCTTCCAAAGCTAAAGTAAACAATGTTGATCCGGC GAAGCTGCAAGAATCCAGCCCGCTGCCGGTTCTCGGCGCTGTGCCGTGGAGCTTTGACCTGA TCGCGACTCGTGCGATCGATATGGCTCGCCACCTGAATGCGACCATCATCAACGAAGGCGAC GCACTTCCGTGCCGGTTCTCTGCTGGTGACTTCCGCAGACCGTCCTGACGTGCTGGTGGCCG ATGGACGCGCATTTCTAAACTGTGCGAACGTGCTTTCGCTACCGGCCTGCCGGTATTTAT GGTGAACACCAACACCTGGCAGACCTCTCTGAGCCTGCAGAGCTTCAACCTGGAAGTTCCGG TTGACGATCACGAACGTATCGAGAAAGTTCAGGAATACGTTGCTAACTACATCAACGCTGAC TGGATCGAATCTCTGACTGCCACTTCTGAGCTGGAAGTGCTGTTTCAGGGTCCGCGCAGCCG TCGTCTGTCTCCGCCTGCGTTCCGTTATCAGCTGACTGAACTTGCGCGCAAAGCGGGCAAAC GTATCGTACTGCCGGAAGGTGACGAACCGCGTACCGTTAAAGCAGCCGCTATCTGTGCTGAA CGTGGTATCGCAACTTGCGTACTGCTGGGTAATCCGGCAGAGATCAACCGTGTTGCAGCGTC TCAGGGTGTAGAACTGGGTGCAGGGATTGAAATCGTTGATCCAGAAGTGGTTCGCGAAAGCT ATGTTGGTCGTCTGGTCGAACTGCGTAAGAACAAAGGCATGACCGAAACCGTTGCCCGCGAA CAGCTGGAAGACAACGTGGTGCTCGGTACGCTGATGCTGGAACAGGATGAAGTTGATGGTCT $\tt CTGCACCGGGCAGCTCCCTGGTATCTTCCGTGTTCTTCATGCTGCTGCCGGAACAGGTTTAC$ GTTTACGGTGACTGTGCGATCAACCCGGATCCGACCGCTGAACAGCTGGCAGAAATCGCGAT TCAGTCCGCTGATTCCGCTGCGGCCTTCGGTATCGAACCGCGCGTTGCTATGCTCTCCTACT CCACCGGTACTTCTGGTGCAGGTAGCGACGTAGAAAAAGTTCGCGAAGCAACTCGTCTGGCG CAGGAAAAACGTCCTGACCTGATGATCGACGGTCCGCTGCAGTACGACGCTGCGGTAATGGC TGACGTTGCGAAATCCAAAGCGCCGAACTCTCCGGTTGCAGGTCGCGCTACCGTGTTCATCT TCCCGGATCTGAACACCGGTAACACCCTACAAAGCGGTACAGCGTTCTGCCGACCTGATC TCCATCGGGCCGATGCTGCAGGGTATGCGCAAGCCGGTTAACGACCTGTCCCGTGGCGCACT GGTTGACGATATCGTCTACACCATCGCGCTGACTGCGATTCAGTCTGCACAGCAGCAGTAA

5 SEQ ID NO:52

VSRIIMLIPTGTSVGLTSVSLGVIRAMERKGVRLSVFKPIAQPRTGGDAPDQTTTIVRANSS
TTTAAEPLKMSYVEGLLSSNQKDVLMEEIVANYHANTKDAEVVLVEGLVPTRKHQFAQSLNY
EIAKTLNAEIVFVMSQGTDTPEQLKERIELTRNSFGGAKNTNITGVIVNKLNAPVDEQGRTR
PDLSEIFDDSSKAKVNNVDPAKLQESSPLPVLGAVPWSFDLIATRAIDMARHLNATIINEGD
INTRRVKSVTFCARSIPHMLEHFRAGSLLVTSADRPDVLVAACLAAMNGVEIGALLLTGGYE
MDARISKLCERAFATGLPVFMVNTNTWQTSLSLQSFNLEVPVDDHERIEKVQEYVANYINAD
WIESLTATSELEVLFQGPRSRRLSPPAFRYQLTELARKAGKRIVLPEGDEPRTVKAAAICAE
RGIATCVLLGNPAEINRVAASQGVELGAGIEIVDPEVVRESYVGRLVELRKNKGMTETVARE
QLEDNVVLGTLMLEQDEVDGLVSGAVHTTANTIRPPLQLIKTAPGSSLVSSVFFMLLPEQVY
VYGDCAINPDPTAEQLAEIAIQSADSAAAFGIEPRVAMLSYSTGTSGAGSDVEKVREATRLA
QEKRPDLMIDGPLQYDAAVMADVAKSKAPNSPVAGRATVFIFPDLNTGNTTYKAVQRSADLI
SIGPMLQGMRKPVNDLSRGALVDDIVYTIALTAIQSAQQQ

GAAATCGCTAAAACGCTGAATGCGGAAATCGTCTTCGTTATGTCTCAGGGCACTGACACCCC GGAACAGCTGAAAGAGCGTATCGAACTGACCCGCAACAGCTTCGGCGGTGCCAAAAACACCA ACATCACCGGCGTTATCGTTAACAAACTGAACGCACCGGTTGATGAACAGGGTCGTACTCGC ${\tt CCGGATCTGTCCGAGATTTTCGACGACTCTTCCAAAGCTAAAGTAAACAATGTTGATCCGGC}$ GAAGCTGCAAGAATCCAGCCCGCTGCCGGTTCTCGGCGCTGTGCCGTGGAGCTTTGACCTGA TCGCGACTCGTGCGATCGATATGGCTCGCCACCTGAATGCGACCATCATCAACGAAGGCGAC GCACTTCCGTGCCGGTTCTCTGCTGGTGACTTCCGCAGACCGTCCTGACGTGCTGGTGGCCG ATGGACGCGCGCATTTCTAAACTGTGCGAACGTGCTTTCGCTACCGGCCTGCCGGTATTTAT GGTGAACACCAACACCTGGCAGACCTCTCTGAGCCTGCAGAGCTTCAACCTGGAAGTTCCGG TTGACGATCACGAACGTATCGAGAAAGTTCAGGAATACGTTGCTAACTACATCAACGCTGAC TGGATCGAATCTCTGACTGCCACTTCTGAGCGCAGCCGTCGTCTGGAAGTGCTGTTTCAGGG TCCGTCTCCGCCTGCGTTCCGTTATCAGCTGACTTGACCTTGCGCGCAAAGCGGGCAAACGTA TCGTACTGCCGGAAGGTGACGAACCGCGTACCGTTAAAGCAGCCGCTATCTGTGCTGAACGT GGTATCGCAACTTGCGTACTGCTGGGTAATCCGGCAGAGATCAACCGTGTTGCAGCGTCTCA GGGTGTAGAACTGGGTGCAGGGATTGAAATCGTTGATCCAGAAGTGGTTCGCGAAAGCTATG TTGGTCGTCTGGTCGAACTGCGTAAGAACAAGGCATGACCGAAACCGTTGCCCGCGAACAG $\tt CTGGAAGACATGTGTTCTCGGTACGCTGATGCTGGAACAGGATGAAGTTGATGGTCTGGT$ $\tt CACCGGGCAGCTCCCTGGTATCTTCCGTGTTCTTCATGCTGCCGGGAACAGGTTTACGTT$ TACGGTGACTGTGCGATCAACCCGGATCCGACCGCTGAACAGCTGGCAGAAATCGCGATTCA GTCCGCTGATTCCGCTGCGGCCTTCGGTATCGAACCGCGCGTTGCTATGCTCTCCTACTCCA GAAAAACGTCCTGACCTGATGATCGACGGTCCGCTGCAGTACGACGCTGCGGTAATGGCTGA CGTTGCGAAATCCAAAGCGCCGAACTCTCCGGTTGCAGGTCGCGCTACCGTGTTCATCTTCC $\tt CGGATCTGAACACCGGTAACACCACCTACAAAGCGGTACAGCGTTCTGCCGACCTGATCTCC$ ATCGGGCCGATGCTGCAGGGTATGCGCAAGCCGGTTAACGACCTGTCCCGTGGCGCACTGGT TGACGATATCGTCTACACCATCGCGCTGACTGCGATTCAGTCTGCACAGCAGCAGTAA

5

SEQ ID NO:54

VSRIIMLIPTGTSVGLTSVSLGVIRAMERKGVRLSVFKPIAQPRTGGDAPDQTTTIVRANSS
TTTAAEPLKMSYVEGLLSSNQKDVLMEEIVANYHANTKDAEVVLVEGLVPTRKHQFAQSLNY
EIAKTLNAEIVFVMSQGTDTPEQLKERIELTRNSFGGAKNTNITGVIVNKLNAPVDEQGRTR
PDLSEIFDDSSKAKVNNVDPAKLQESSPLPVLGAVPWSFDLIATRAIDMARHLNATIINEGD
INTRRVKSVTFCARSIPHMLEHFRAGSLLVTSADRPDVLVAACLAAMNGVEIGALLLTGGYE
MDARISKLCERAFATGLPVFMVNTNTWQTSLSLQSFNLEVPVDDHERIEKVQEYVANYINAD
WIESLTATSERSRRLEVLFQGPSPPAFRYQLTELARKAGKRIVLPEGDEPRTVKAAAICAER
GIATCVLLGNPAEINRVAASQGVELGAGIEIVDPEVVRESYVGRLVELRKNKGMTETVAREQ
LEDNVVLGTLMLEQDEVDGLVSGAVHTTANTIRPPLQLIKTAPGSSLVSSVFFMLLPEQVYV
YGDCAINPDPTAEQLAEIAIQSADSAAAFGIEPRVAMLSYSTGTSGAGSDVEKVREATRLAQ
EKRPDLMIDGPLQYDAAVMADVAKSKAPNSPVAGRATVFIFPDLNTGNTTYKAVQRSADLIS
IGPMLQGMRKPVNDLSRGALVDDIVYTIALTAIQSAQQQ

GAAAGATGTGCTGATGGAAGAGATCGTCGCAAACTACCACGCTAACACCAAAGACGCTGAAG ${\tt TCGTTCTGGTTGAAGGTCTGGTCCCGACACGTAAGCACCAGTTTGCCCAGTCTCTGAACTAC}$ GAAATCGCTAAAACGCTGAATGCGGAAATCGTCTTCGTTATGTCTCAGGGCACTGACACCCC GGAACAGCTGAAAGAGCGTATCGAACTGACCCGCAACAGCTTCGGCGGTGCCAAAAACACCA ACATCACCGGCGTTATCGTTAACAAACTGAACGCACCGGTTGATGAACAGGGTCGTACTCGC CCGGATCTGTCCGAGATTTTCGACGACTCTTCCAAAGCTAAAGTAAACAATGTTGATCCGGC GAAGCTGCAAGAATCCAGCCCGCTGCCGGTTCTCGGCGCTGTGCCGTGGAGCTTTGACCTGA TCGCGACTCGTGCGATCGATATGGCTCGCCACCTGAATGCGACCATCATCAACGAAGGCGAC GCACTTCCGTGCCGGTTCTCTGCTGGTGACTTCCGCAGACCGTCCTGACGTGCTGGTGGCCG ATGGACGCGCGCATTTCTAAACTGTGCGAACGTGCTTTCGCTACCGGCCTGCCGGTATTTAT GGTGAACACCAACACCTGGCAGACCTCTCTGAGCCTGCAGAGCTTCAACCTGGAAGTTCCGG TTGACGATCACGAACGTATCGAGAAAGTTCAGGAATACGTTGCTAACTACATCAACGCTGAC TTATCAGCTGACTGAACTTGCGCGCAAAGCGGGCAAACGTATCGTACTGGAAGTGCTGTTTC AGGGTCCGGAAGGTGACGAACCGCGTACCGTTAAAGCAGCCGCTATCTGTGCTGAACGTGGT ATCGCAACTTGCGTACTGCTGGGTAATCCGGCAGAGATCAACCGTGTTGCAGCGTCTCAGGG TGTAGAACTGGGTGCAGGGATTGAAATCGTTGATCCAGAAGTGGTTCGCGAAAGCTATGTTG GTCGTCTGGTCGAACTGCGTAAGAACAAAGGCATGACCGAAACCGTTGCCCGCGAACAGCTG GAAGACAACGTGGTGCTCGGTACGCTGATGCTGGAACAGGATGAAGTTGATGGTCTGGTTTC CGGTGCTGTTCACACTACCGCAAACACCATCCGTCCGCCGCTGCAGCTGATCAAAACTGCAC $\tt CGGGCAGCTCCCTGGTATCTTCCGTGTTCTTCATGCTGCCGGAACAGGTTTACGTTTAC$ GGTGACTGTGCGATCAACCCGGATCCGACCGCTGAACAGCTGGCAGAAATCGCGATTCAGTC CGCTGATTCCGCTGCGGCCTTCGGTATCGAACCGCGCGTTGCTATGCTCTCCTACTCCACCG GTACTTCTGGTGCAGGTAGCGACGTAGAAAAAGTTCGCGAAGCAACTCGTCTGGCGCAGGAA AAACGTCCTGACCTGATGATCGACGGTCCGCTGCAGTACGACGCTGCGGTAATGGCTGACGT TGCGAAATCCAAAGCGCCGAACTCTCCGGTTGCAGGTCGCGCTACCGTGTTCATCTTCCCGG ATCTGAACACCGGTAACACCCTACAAAGCGGTACAGCGTTCTGCCGACCTGATCTCCATC GGGCCGATGCTGCAGGGTATGCGCAAGCCGGTTAACGACCTGTCCCGTGGCGCACTGGTTGA CGATATCGTCTACACCATCGCGCTGACTGCGATTCAGTCTGCACAGCAGCAGTAA

5 SEQ ID NO:56

VSRIIMLIPTGTSVGLTSVSLGVIRAMERKGVRLSVFKPIAQPRTGGDAPDQTTTIVRANSS
TTTAAEPLKMSYVEGLLSSNQKDVLMEEIVANYHANTKDAEVVLVEGLVPTRKHQFAQSLNY
EIAKTLNAEIVFVMSQGTDTPEQLKERIELTRNSFGGAKNTNITGVIVNKLNAPVDEQGRTR
PDLSEIFDDSSKAKVNNVDPAKLQESSPLPVLGAVPWSFDLIATRAIDMARHLNATIINEGD
INTRRVKSVTFCARSIPHMLEHFRAGSLLVTSADRPDVLVAACLAAMNGVEIGALLLTGGYE
MDARISKLCERAFATGLPVFMVNTNTWQTSLSLQSFNLEVPVDDHERIEKVQEYVANYINAD
WIESLTATSERSRRLSPPAFRYQLTELARKAGKRIVLEVLFQGPEGDEPRTVKAAAICAERG
IATCVLLGNPAEINRVAASQGVELGAGIEIVDPEVVRESYVGRLVELRKNKGMTETVAREQL
EDNVVLGTLMLEQDEVDGLVSGAVHTTANTIRPPLQLIKTAPGSSLVSSVFFMLLPEQVYVY
GDCAINPDPTAEQLAEIAIQSADSAAAFGIEPRVAMLSYSTGTSGAGSDVEKVREATRLAQE
KRPDLMIDGPLQYDAAVMADVAKSKAPNSPVAGRATVFIFPDLNTGNTTYKAVQRSADLISI
GPMLQGMRKPVNDLSRGALVDDIVYTIALTAIQSAQQQ

ATGTCCTCACGTAAAGAGCTTGCCAATGCTATTCGTGCGCTGAGCATGGACGCAGTACAGAA AGCCAAATCCGGTCACCCGGGTGCCCCTATGGGTATGGCTGACATTGCCGAAGTCCTGTGGC

GTGATTTCCTGAAACACACCCGCAGAATCCGTCCTGGGCTGACCGTGACCGCTTCGTGCTG TCCAACGGCCACGGCTCCATGCTGATCTACAGCCTGCTGCACCTCACCGGTTACGATCTGCC GATGGAAGAACTGAAAAACTTCCGTCAGCTGCACTCTAAAACTCCGGGTCACCCGGAAGTGG GTTACACCGCTGGTGTGGAAACCACCACCGGTCCGCTGGGTCAGGGTATTGCCAACGCAGTC GGTATGGCGATTGCAGAAAAAACGCTGGCGGCGCAGTTTAACCGTCCGGGCCACGACATTGT CGACCACTACACCTACGCCTTCATGGGCGACGCTGCATGATGGAAGGCATCTCCCACGAAG TTTGCTCTCTGGCGGGTACGCTGAAGCTGGGTAAACTGATTGCATTCTACGATGACAACGGT ATTTCTATCGATGGTCACGTTGAAGGCTGGTTCACCGACGACACCGCAATGCGTTTCGAAGC TTACGGCTGGCACGTTATTCGCGACATCGACGGTCATGACGCGGCATCTATCAAACGCGCAG TAGAAGAAGCGCGCGCAGTGACTGACAAACCTTCCCTGCTGATGTGCAAAACCATCATCGGT TTCGGTTCCCCGAACAAGCCGGTACCCACGACTCCCACGGTGCGCCGCTGGGCGACGCTGA AATTGCCCTGACCCGCGAACAACTGGGCTGGAAATATGCGCCGTTCGAAATCCCGTCTGAAA TCTATGCTCAGTGGGATGCGAAAGAAGCAGGCCAGGCGAAAGAATCCGCATGGAACGAGAAA TTCGCTGCTTACGCGAAAGCTTATCCGCAGGAAGCCGCTGAATTTACCCGCCGTATGAAAGG CGAAATGCCGTCTGACTTCGACGCTAAAGCGAAAGAGTTCATCGCTAAACTGCAGGCTAATC CGGCGAAAATCGCCAGCCGTAAAGCGTCTCAGAATGCTATCGAAGCGTTCGGTCCGCTGTTG CCGGAATTCCTCGGCGGTTCTGCTGACCTGGCGCCGTCTAACCTGACCCTGTGGTCTGGTTC TAAAGCAATCAACGAAGATGCTGCGGGTAACTACATCCACTACGGTGTTCGCGAGTTCGGTA TGACCGCGATTGCTAACGGTATCTCCCTGCACGGTGGCTTCCTGCCGTACACCTCCACCTTC CTGATGTTCGTGGAATACGCACGTAACGCCGTACGTATGGCTGCGCTGATGAAACAGCGTCA GGTGATGGTTTACACCCACGACTCCATCGGTCTGGGCGAAGACGGCCCGACTCACCAGCCGG TTGAGCAGGTCGCTTCTCTGCGCGTAACCCCGAACATGTCTACATGGCGTCCGTGTGACCAG GTTGAATCCGCGGTCGCGTGGAAATACGGTGTTGAGCGTCAGGACGGCCCGACCGCACTGAT CCTCTCCCGTCAGAACCTGGCGCAGCAGGAACGAACTGAAGAGCAACTGGCAAACATCGCGC GCGGTGGTTATGTGCTGAAAGACTGCGCCGGTCAGCCGGAACTGATTTTCATCGCTACCGGT CGTGGTGTCCATGCCGTCTACCGACGCATTTGACAAGCAGGATGCTGCTTACCGTGAATCCG TACTGCCGAAAGCGGTTACTGCACGCGTTGCTGTAGAAGCGGGTATTGCTGACTACTGGTAC AAGTATGTTGGCCTGAACGGTGCTATCGTCGGTATGACCACCTTCGGTGAATCTGCTCCGGC AGAGCTGCTGTTTGAAGAGTTCGGCTTCACTGTTGATAACGTTGTTGCGAAAGCAAAAGAAC TGCTGTAA

ATGTCCTCACGTAAAGAGCTTGCCAATGCTATTCGTGCGCTGAGCATGGACGCAGTACAGAA AGCCAAATCCGGTCACCCGGGTGCCCCTATGGGTATGGCTGACATTGCCGAAGTCCTGTGGC GTGATTTCCTGAAACACACCCGCAGAATCCGTCCTGGGCTGACCGTGACCGCTTCGTGCTG TCCAACGGCCACGGCTCCATGCTGATCTACAGCCTGCTGCACCTCACCGGTTACGATCTGCC GATGGAAGAACTGAAAAACTTCCGTCAGCTGCACTCTAAAACTCCGGGTCACCCGGAAGTGG GTTACACCGCTGGTGTGGAAACCACCACCGGTCCGCTGGGTCAGGGTATTGCCAACGCAGTC GGTATGGCGATTGCAGAAAAAACGCTGGCGGCGCAGTTTAACCGTCCGGGCCACGACATTGT CGACCACTACACCTACGCCTTCATGGGCGACGCTGCATGATGGAAGGCATCTCCCACGAAG TTTGCTCTCTGGCGGGTACGCTGAAGCTGGGTAAACTGATTGCATTCTACGATGACAACGGT ATTTCTATCGATGGTCACGTTGAAGGCTGGTTCACCGACGACACCGCAATGCGTTTCGAAGC TTACGGCTGGCACGTTATTCGCGACATCGACGGTCATGACGCGGCATCTATCAAACGCGCAG TAGAAGAAGCGCGCGCAGTGACTGACAAACCTTCCCTGCTGATGTGCAAAACCATCATCGGT TTCGGTTCCCCGAACAAGCCGGTACCCACGACTCCCACGGTGCGCCGCTGGGCGACGCTGA AATTGCCCTGACCCGCGAACAACTGGGCTGGAAATATGCGCCGTTCGAAATCCCGTCTGAAA TCTATGCTCAGTGGGATGCGAAAGAAGCAGGCCAGGCGAAAGAATCCGCATGGAACGAGAAA TTCGCTGCTTACGCGAAAGCTTATCCGCAGGAAGCCGCTGAATTTACCCGCCGTATGAAAGG CGAAATGCCGTCTGACTTCGACGCTAAAGCGAAAGAGTTCATCGCTAAACTGCAGGCTAATC

CGGCGAAAATCGCCAGCCGTAAAGCGTCTCAGAATGCTATCGAAGCGTTCGGTCCGCTGTTG ${\tt CCGGAATTCCTCGGCGGTTCTGCTGACCTGGCGCCGTCTAACCTGACCCTGTGGTCTGGTTC}$ TAAAGCAATCAACGAAGATGCTGCGGGTAACTACATCCACTACGGTGTTCGCGAGTTCGGTA TGACCGCGATTGCTAACGGTATCTCCCTGCACGGTGGCTTCCTGCCGTACACCTCCACCTTC CTGATGTTCGTGGAATACGCACGTAACGCCGTACGTATGGCTGCGCTGATGAAACAGCGTCA GGTGATGGTTTACACCCACGACTCCATCGGTCTGGGCGAAGACGGCCCGACTCACCAGCCGG TTGAGCAGGTCGCTTCTCTGCGCGTAACCCCGAACATGTCTACATGGCGTCCGTGTGACCAG GTTGAATCCGCGGTCGCGTGGAAATACGGTGTTGAGCGTCAGGACGGCCCGACCGCACTGAT CCTCTCCCGTCAGAACCTGGCGCAGCAGGAACGAACTGAAGAGCAACTGGCAAACATCGCGC GCGGTGGTTATGTGCTGAAAGACTGCGCCGGTCAGCCGGAACTGATTTTCATCGCTACCGGT CGTGGTGTCCATGCCGTCTACCGACGCATTTGACAAGCAGGATGCTGCTTACCGTGAATCCG TACTGCCGAAAGCGGTTACTGCACGCGTTGCTGTAGAAGCGGGTATTGCTGACTACTGGTAC AAGTATGTTGGCCTGAACGGTGCTATCGTCGGTATGACCACCTTCCTGGAAGTGCTGTTTCA GGGTCCGGGTGAATCTGCTCCGGCAGAGCTGCTGTTTGAAGAGTTCGGCTTCACTGTTGATA ACGTTGTTGCGAAAGCAAAAGAACTGCTGTAA

ATGTCCTCACGTAAAGAGCTTGCCAATGCTATTCGTGCGCTGAGCATGGACGCAGTACAGAA AGCCAAATCCGGTCACCCGGGTGCCCCTATGGGTATGGCTGACATTGCCGAAGTCCTGTGGC GTGATTTCCTGAAACACACCCGCAGAATCCGTCCTGGGCTGACCGTGACCGCTTCGTGCTG TCCAACGGCCACGGCTCCATGCTGATCTACAGCCTGCTGCACCTCACCGGTTACGATCTGCC GATGGAAGAACTGAAAAACTTCCGTCAGCTGCACTCTAAAACTCCGGGTCACCCGGAAGTGG GTTACACCGCTGGTGTGGAAACCACCACCGGTCCGCTGGGTCAGGGTATTGCCAACGCAGTC GGTATGGCGATTGCAGAAAAAACGCTGGCGGCGCAGTTTAACCGTCCGGGCCACGACATTGT CGACCACTACACCTACGCCTTCATGGGCGACGCTGCATGATGGAAGGCATCTCCCACGAAG TTTGCTCTCTGGCGGGTACGCTGAAGCTGGGTAAACTGATTGCATTCTACGATGACAACGGT ATTTCTATCGATGGTCACGTTGAAGGCTGGTTCACCGACGACACCGCAATGCGTTTCGAAGC TTACGGCTGGCACGTTATTCGCGACATCGACGGTCATGACGCGGCATCTATCAAACGCGCAG TAGAAGAAGCGCGCGCAGTGACTGACAAACCTTCCCTGCTGATGTGCAAAACCATCATCGGT TTCGGTTCCCCGAACAAGCCGGTACCCACGACTCCCACGGTGCGCCGCTGGGCGACGCTGA AATTGCCCTGACCCGCGAACAACTGGGCTGGAAATATGCGCCGTTCGAAATCCCGTCTGAAA TCTATGCTCAGTGGGATGCGAAAGAAGCAGCCCAGGCGAAAGAATCCGCATGGAACGAGAAA TTCGCTGCTTACGCGAAAGCTTATCCGCAGGAAGCCGCTGAATTTACCCGCCGTATGAAAGG CGAAATGCCGTCTGACTTCGACGCTAAAGCGAAAGAGTTCATCGCTAAACTGCAGGCTAATC CGGCGAAAATCGCCAGCCGTAAAGCGTCTCAGAATGCTATCGAAGCGTTCGGTCCGCTGTTG $\tt CCGGAATTCCTCGGCGGTTCTGCTGACCTGGCGCCGTCTAACCTGACCCTGTGGTCTGGTTC$ TAAAGCAATCAACGAAGATGCTGCGGGTAACTACATCCACTACGGTGTTCGCGAGTTCGGTA TGACCGCGATTGCTAACGGTATCTCCCTGCACGGTGGCTTCCTGCCGTACACCTCCACCTTC CTGATGTTCGTGGAATACGCACGTAACGCCGTACGTATGGCTGCGCTGATGAAACAGCGTCA GGTGATGGTTTACACCCACGACTCCATCGGTCTGGGCGAAGACGGCCCGACTCACCAGCCGG TTGAGCAGGTCGCTTCTCTGCGCGTAACCCCGAACATGTCTACATGGCGTCCGTGTGACCAG GTTGAATCCGCGGTCGCGTGGAAATACGGTGTTGAGCGTCAGGACGGCCCGACCGCACTGAT $\tt CCTCTCCCGTCAGAACCTGGCGCAGCAGGAACGAACTGAAGAGCAACTGGCAAACATCGCGC$ GCGGTGGTTATGTGCTGAAAGACTGCGCCGGTCAGCCGGAACTGATTTTCATCGCTACCGGT CGTGGTGTCCATGCCGTCTACCGACGCATTTGACAAGCAGGATGCTGCTTACCGTGAATCCG TACTGCCGAAAGCGGTTACTGCACGCGTTGCTGTAGAAGCGGGTATTGCTGACTACTGGTAC AAGTATGTTGGCCTGAACGGTGCTATCGTCGGTATGACCACCTTCGGTCTGGAAGTGCTGTT

 ${\tt TCAGGGTCCGGAATCTGCTCCGGCAGAGCTGCTGTTTGAAGAGTTCGGCTTCACTGTTGATA}$ ${\tt ACGTTGTTGCGAAAGCAAAAGAACTGCTGTAA}$

ATGTCCTCACGTAAAGAGCTTGCCAATGCTATTCGTGCGCTGAGCATGGACGCAGTACAGAA AGCCAAATCCGGTCACCCGGGTGCCCCTATGGGTATGGCTGACATTGCCGAAGTCCTGTGGC GTGATTTCCTGAAACACACCCGCAGAATCCGTCCTGGGCTGACCGTGACCGCTTCGTGCTG TCCAACGGCCACGGCTCCATGCTGATCTACAGCCTGCTGCACCTCACCGGTTACGATCTGCC GATGGAAGAACTGAAAAACTTCCGTCAGCTGCACTCTAAAACTCCGGGTCACCCGGAAGTGG GTTACACCGCTGGTGTGGAAACCACCACCGGTCCGCTGGGTCAGGGTATTGCCAACGCAGTC GGTATGGCGATTGCAGAAAAAACGCTGGCGGCGCAGTTTAACCGTCCGGGCCACGACATTGT CGACCACTACACCTACGCCTTCATGGGCGACGCTGCATGATGGAAGGCATCTCCCACGAAG TTTGCTCTCTGGCGGGTACGCTGAAGCTGGGTAAACTGATTGCATTCTACGATGACAACGGT ATTTCTATCGATGGTCACGTTGAAGGCTGGTTCACCGACGACACCGCAATGCGTTTCGAAGC TTACGGCTGGCACGTTATTCGCGACATCGACGGTCATGACGCGGCATCTATCAAACGCGCAG TAGAAGAAGCGCGCGCAGTGACTGACAAACCTTCCCTGCTGATGTGCAAAACCATCATCGGT TTCGGTTCCCCGAACAAGCCGGTACCCACGACTCCCACGGTGCGCCGCTGGGCGACGCTGA AATTGCCCTGACCCGCGAACAACTGGGCTGGAAATATGCGCCGTTCGAAATCCCGTCTGAAA TCTATGCTCAGTGGGATGCGAAAGAAGCAGGCCAGGCGAAAGAATCCGCATGGAACGAGAAA TTCGCTGCTTACGCGAAAGCTTATCCGCAGGAAGCCGCTGAATTTACCCGCCGTATGAAAGG CGAAATGCCGTCTGACTTCGACGCTAAAGCGAAAGAGTTCATCGCTAAACTGCAGGCTAATC CGGCGAAAATCGCCAGCCGTAAAGCGTCTCAGAATGCTATCGAAGCGTTCGGTCCGCTGTTG CCGGAATTCCTCGGCGGTTCTGCTGACCTGGCGCCGTCTAACCTGACCCTGTGGTCTGGTTC TAAAGCAATCAACGAAGATGCTGCGGGTAACTACATCCACTACGGTGTTCGCGAGTTCGGTA $\tt TGACCGCGATTGCTAACGGTATCTCCCTGCACGGTGGCTTCCTGCCGTACACCTCCACCTTC$ CTGATGTTCGTGGAATACGCACGTAACGCCGTACGTATGGCTGCGCTGATGAAACAGCGTCA GGTGATGGTTTACACCCACGACTCCATCGGTCTGGGCGAAGACGGCCCGACTCACCAGCCGG TTGAGCAGGTCGCTTCTCTGCGCGTAACCCCGAACATGTCTACATGGCGTCCGTGTGACCAG GTTGAATCCGCGGTCGCGTGGAAATACGGTGTTGAGCGTCAGGACGGCCCGACCGCACTGAT CCTCTCCCGTCAGAACCTGGCGCAGCAGGAACGAACTGAAGAGCAACTGGCAAACATCGCGC GCGGTGGTTATGTGCTGAAAGACTGCGCCGGTCAGCCGGAACTGATTTTCATCGCTACCGGT CGTGGTGTCCATGCCGTCTACCGACGCATTTGACAAGCAGGATGCTGCTTACCGTGAATCCG TACTGCCGAAAGCGGTTACTGCACGCGTTGCTGTAGAAGCGGGTATTGCTGACTACTGGTAC AAGTATGTTGGCCTGAACGGTGCTATCGTCGGTATGACCACCTTCGGTGAACTGGAAGTGCT GTTTCAGGGTCCGTCTGCTCCGGCAGAGCTGCTGTTTGAAGAGTTCGGCTTCACTGTTGATA ACGTTGTTGCGAAAGCAAAAGAACTGCTGTAA

5 SEQ ID NO:61

ATGTCCTCACGTAAAGAGCTTGCCAATGCTATTCGTGCGCTGAGCATGGACGCAGTACAGAA
AGCCAAATCCGGTCACCCGGGTGCCCCTATGGGTATGGCTGACATTGCCGAAGTCCTGTGGC
GTGATTTCCTGAAACACAACCCGCAGAATCCGTCCTGGGCTGACCGTGACCGCTTCGTGCT
TCCAACGGCCACGGCTCCATGCTGATCTACAGCCTGCTGCACCTCACCGGTTACGATCTGCC
GATGGAAGAACTGAAAAACTTCCGTCAGCTGCACTCTAAAACTCCGGGTCACCCGGAAGTGG
GTTACACCGCTGGTGTGGAAACCACCACCGGTCCGCTGGGTCAGGGTATTGCCAACGCAGTC
GGTATGGCGATTGCAGAAAAAAACGCTGGCGGGCGCAGTTTAACCGTCCGGGCCACGACATTGT
CGACCACTACACCTACGCCTTCATGGGCGACGGCTGCATGATGGAAGGCATCTCCCACGAAG
TTTGCTCTCTGGCGGGTACGCTGAAGCTGGTTAAACTGATTGCATTCTACGATGACAACGGT
ATTTCTATCGATGGTCACGTTGAAGCTGGTTCACCGACGACACCCCCAAGC

TTACGGCTGGCACGTTATTCGCGACATCGACGGTCATGACGCGGCATCTATCAAACGCGCAG TAGAAGAAGCGCGCGCAGTGACTGACAAACCTTCCCTGCTGATGTGCAAAACCATCATCGGT TTCGGTTCCCCGAACAAGCCGGTACCCACGACTCCCACGGTGCGCCGCTGGGCGACGCTGA AATTGCCCTGACCCGCGAACAACTGGGCTGGAAATATGCGCCGTTCGAAATCCCGTCTGAAA TCTATGCTCAGTGGGATGCGAAAGAAGCAGGCCAGGCGAAAGAATCCGCATGGAACGAGAAA TTCGCTGCTTACGCGAAAGCTTATCCGCAGGAAGCCGCTGAATTTACCCGCCGTATGAAAGG CGAAATGCCGTCTGACTTCGACGCTAAAGCGAAAGAGTTCATCGCTAAACTGCAGGCTAATC CGGCGAAAATCGCCAGCCGTAAAGCGTCTCAGAATGCTATCGAAGCGTTCGGTCCGCTGTTG $\tt CCGGAATTCCTCGGCGGTTCTGCTGACCTGGCGCCGTCTAACCTGACCCTGTGGTTC$ TAAAGCAATCAACGAAGATGCTGCGGGTAACTACATCCACTACGGTGTTCGCGAGTTCGGTA TGACCGCGATTGCTAACGGTATCTCCCTGCACGGTGGCTTCCTGCCGTACACCTCCACCTTC CTGATGTTCGTGGAATACGCACGTAACGCCGTACGTATGGCTGCGCTGATGAAACAGCGTCA GGTGATGGTTTACACCCACGACTCCATCGGTCTGGGCGAAGACGGCCCGACTCACCAGCCGG TTGAGCAGGTCGCTTCTCTGCGCGTAACCCCGAACATGTCTACATGGCGTCCGTGTGACCAG GTTGAATCCGCGGTCGCGTGGAAATACGGTGTTGAGCGTCAGGACGGCCCGACCGCACTGAT CCTCTCCCGTCAGAACCTGGCGCAGCAGGAACGAACTGAAGAGCAACTGGCAAACATCGCGC GCGGTGGTTATGTGCTGAAAGACTGCGCCGGTCAGCCGGAACTGATTTTCATCGCTACCGGT CGTGGTGTCCATGCCGTCTACCGACGCATTTGACAAGCAGGATGCTGCTTACCGTGAATCCG TACTGCCGAAAGCGGTTACTGCACGCGTTGCTGTAGAAGCGGGTATTGCTGACTACTGGTAC AAGTATGTTGGCCTGAACGGTGCTATCGTCGGTATGACCACCTTCGGTGAATCTCTGGAAGT GCTGTTTCAGGGTCCGGCTCCGGCAGAGCTGCTGTTTGAAGAGTTCGGCTTCACTGTTGATA ACGTTGTTGCGAAAGCAAAGAACTGCTGTAA

ATGTCCTCACGTAAAGAGCTTGCCAATGCTATTCGTGCGCTGAGCATGGACGCAGTACAGAA AGCCAAATCCGGTCACCCGGGTGCCCCTATGGGTATGGCTGACATTGCCGAAGTCCTGTGGC GTGATTTCCTGAAACACACCCGCAGAATCCGTCCTGGGCTGACCGTGACCGCTTCGTGCTG TCCAACGGCCACGGCTCCATGCTGATCTACAGCCTGCTGCACCTCACCGGTTACGATCTGCC GATGGAAGAACTGAAAAACTTCCGTCAGCTGCACTCTAAAACTCCGGGTCACCCGGAAGTGG GTTACACCGCTGGTGTGGAAACCACCACCGGTCCGCTGGGTCAGGGTATTGCCAACGCAGTC GGTATGGCGATTGCAGAAAAAACGCTGGCGGCGCAGTTTAACCGTCCGGGCCACGACATTGT CGACCACTACACCTACGCCTTCATGGGCGACGCTGCATGATGGAAGGCATCTCCCACGAAG TTTGCTCTCTGGCGGGTACGCTGAAGCTGGGTAAACTGATTGCATTCTACGATGACAACGGT ATTTCTATCGATGGTCACGTTGAAGGCTGGTTCACCGACGACACCGCAATGCGTTTCGAAGC TTACGGCTGGCACGTTATTCGCGACATCGACGGTCATGACGCGGCATCTATCAAACGCGCAG TAGAAGAAGCGCGCGCAGTGACTGACAAACCTTCCCTGCTGATGTGCAAAACCATCATCGGT TTCGGTTCCCCGAACAAGCCGGTACCCACGACTCCCACGGTGCGCCGCTGGGCGACGCTGA AATTGCCCTGACCCGCGAACAACTGGGCTGGAAATATGCGCCGTTCGAAATCCCGTCTGAAA TCTATGCTCAGTGGGATGCGAAAGAAGCAGGCCAGGCGAAAGAATCCGCATGGAACGAGAAA TTCGCTGCTTACGCGAAAGCTTATCCGCAGGAAGCCGCTGAATTTACCCGCCGTATGAAAGG CGAAATGCCGTCTGACTTCGACGCTAAAGCGAAAGAGTTCATCGCTAAACTGCAGGCTAATC CGGCGAAAATCGCCAGCCGTAAAGCGTCTCAGAATGCTATCGAAGCGTTCGGTCCGCTGTTG CCGGAATTCCTCGGCGGTTCTGCTGACCTGGCGCCGTCTAACCTGACCCTGTGGTCTGGTTC TAAAGCAATCAACGAAGATGCTGCGGGTAACTACATCCACTACGGTGTTCGCGAGTTCGGTA TGACCGCGATTGCTAACGGTATCTCCCTGCACGGTGGCTTCCTGCCGTACACCTCCACCTTC CTGATGTTCGTGGAATACGCACGTAACGCCGTACGTATGGCTGCGCTGATGAAACAGCGTCA GGTGATGGTTTACACCCACGACTCCATCGGTCTGGGCGAAGACGGCCCGACTCACCAGCCGG TTGAGCAGGTCGCTTCTCTGCGCGTAACCCCGAACATGTCTACATGGCGTCCGTGTGACCAG GTTGAATCCGCGGTCGCGTGGAAATACGGTGTTGAGCGTCAGGACGGCCCGACCGCACTGAT

5 SEQ ID NO:63

MSSRKELANAIRALSMDAVQKAKSGHPGAPMGMADIAEVLWRDFLKHNPQNPSWADRDRFVL SNGHGSMLIYSLLHLTGYDLPMEELKNFRQLHSKTPGHPEVGYTAGVETTTGPLGQGIANAV GMAIAEKTLAAQFNRPGHDIVDHYTYAFMGDGCMMEGISHEVCSLAGTLKLGKLIAFYDDNG ISIDGHVEGWFTDDTAMRFEAYGWHVIRDIDGHDAASIKRAVEEARAVTDKPSLLMCKTIIG FGSPNKAGTHDSHGAPLGDAEIALTREQLGWKYAPFEIPSEIYAQWDAKEAGQAKESAWNEK FAAYAKAYPQEAAEFTRRMKGEMPSDFDAKAKEFIAKLQANPAKIASRKASQNAIEAFGPLL PEFLGGSADLAPSNLTLWSGSKAINEDAAGNYIHYGVREFGMTAIANGISLHGGFLPYTSTF LMFVEYARNAVRMAALMKQRQVMVYTHDSIGLGEDGPTHQPVEQIASLRVTPNMSTWRPCDQ VESAVAWKYGVERQDGPTALILSRQNLAQQERTEEQLANIARGGYVLKDCAGQPELIFIATG SEVELAVAAYEKLTAEGVKARVVSMPSTDAFDKQDAAYRESVLPKAVTARVAVEAGIADYWY KYVGLNGAIVGMTTFGESAPAEQLFEEFGFTVDNVVAKAKALL

MSSRKELANAIRALSMDAVQKAKSGHPGAPMGMADIAEVLWRDFLKHNPQNPSWADRDRFVL SNGHGSMLIYSLLHLTGYDLPMEELKNFRQLHSKTPGHPEVGYTAGVETTTGPLGQGIANAV GMAIAEKTLAAQFNRPGHDIVDHYTYAFMGDGCMMEGISHEVCSLAGTLKLGKLIAFYDDNG ISIDGHVEGWFTDDTAMRFEAYGWHVIRDIDGHDAASIKRAVEEARAVTDKPSLLMCKTIIG FGSPNKAGTHDSHGAPLGDAEIALTREQLGWKYAPFEIPSEIYAQWDAKEAGQAKESAWNEK FAAYAKAYPQEAAEFTRRMKGEMPSDFDAKAKEFIAKLQANPAKIASRKASQNAIEAFGPLL PEFLGGSADLAPSNLTLWSGSKAINEDAAGNYIHYGVREFGMTAIANGISLHGGFLPYTSTF LMFVEYARNAVRMAALMKQRQVMVYTHDSIGLGEDGPTHQPVEQVASLRVTPNMSTWRPCDQ VESAVAWKYGVERQDGPTALILSRQNLAQQERTEEQLANIARGGYVLKDCAGQPELIFIATG SEVELAVAAYEKLTAEGVKARVVSMPSTDAFDKQDAAYRESVLPKAVTARVAVEAGIADYWY KYVGLNGAIVGMTTFLEVLFQGPGESAPAELLFEEFGFTVDNVVAKAKELL

SEQ ID NO:65

5

MSSRKELANAIRALSMDAVQKAKSGHPGAPMGMADIAEVLWRDFLKHNPQNPSWADRDRFVL SNGHGSMLIYSLLHLTGYDLPMEELKNFRQLHSKTPGHPEVGYTAGVETTTGPLGQGIANAV GMAIAEKTLAAQFNRPGHDIVDHYTYAFMGDGCMMEGISHEVCSLAGTLKLGKLIAFYDDNG ISIDGHVEGWFTDDTAMRFEAYGWHVIRDIDGHDAASIKRAVEEARAVTDKPSLLMCKTIIG FGSPNKAGTHDSHGAPLGDAEIALTREQLGWKYAPFEIPSEIYAQWDAKEAGQAKESAWNEK FAAYAKAYPQEAAEFTRRMKGEMPSDFDAKAKEFIAKLQANPAKIASRKASQNAIEAFGPLL PEFLGGSADLAPSNLTLWSGSKAINEDAAGNYIHYGVREFGMTAIANGISLHGGFLPYTSTF LMFVEYARNAVRMAALMKQRQVMVYTHDSIGLGEDGPTHQPVEQVASLRVTPNMSTWRPCDQ VESAVAWKYGVERQDGPTALILSRQNLAQQERTEEQLANIARGGYVLKDCAGQPELIFIATG SEVELAVAAYEKLTAEGVKARVVSMPSTDAFDKQDAAYRESVLPKAVTARVAVEAGIADYWY KYVGLNGAIVGMTTFGLEVLFOGPESAPAELLFEEFGFTVDNVVAKAKELL

10 SEQ ID NO:66

MSSRKELANAIRALSMDAVQKAKSGHPGAPMGMADIAEVLWRDFLKHNPQNPSWADRDRFVL SNGHGSMLIYSLLHLTGYDLPMEELKNFRQLHSKTPGHPEVGYTAGVETTTGPLGQGIANAV GMAIAEKTLAAQFNRPGHDIVDHYTYAFMGDGCMMEGISHEVCSLAGTLKLGKLIAFYDDNG ISIDGHVEGWFTDDTAMRFEAYGWHVIRDIDGHDAASIKRAVEEARAVTDKPSLLMCKTIIG FGSPNKAGTHDSHGAPLGDAEIALTREQLGWKYAPFEIPSEIYAQWDAKEAGQAKESAWNEK FAAYAKAYPQEAAEFTRRMKGEMPSDFDAKAKEFIAKLQANPAKIASRKASQNAIEAFGPLL PEFLGGSADLAPSNLTLWSGSKAINEDAAGNYIHYGVREFGMTAIANGISLHGGFLPYTSTF LMFVEYARNAVRMAALMKQRQVMVYTHDSIGLGEDGPTHQPVEQVASLRVTPNMSTWRPCDQ VESAVAWKYGVERQDGPTALILSRQNLAQQERTEEQLANIARGGYVLKDCAGQPELIFIATG SEVELAVAAYEKLTAEGVKARVVSMPSTDAFDKQDAAYRESVLPKAVTARVAVEAGIADYWY KYVGLNGAIVGMTTFGELEVLFQGPSAPAELLFEEFGFTVDNVVAKAKELL

MSSRKELANAIRALSMDAVQKAKSGHPGAPMGMADIAEVLWRDFLKHNPQNPSWADRDRFVL SNGHGSMLIYSLLHLTGYDLPMEELKNFRQLHSKTPGHPEVGYTAGVETTTGPLGQGIANAV GMAIAEKTLAAQFNRPGHDIVDHYTYAFMGDGCMMEGISHEVCSLAGTLKLGKLIAFYDDNG ISIDGHVEGWFTDDTAMRFEAYGWHVIRDIDGHDAASIKRAVEEARAVTDKPSLLMCKTIIG FGSPNKAGTHDSHGAPLGDAEIALTREQLGWKYAPFEIPSEIYAQWDAKEAGQAKESAWNEK FAAYAKAYPQEAAEFTRRMKGEMPSDFDAKAKEFIAKLQANPAKIASRKASQNAIEAFGPLL PEFLGGSADLAPSNLTLWSGSKAINEDAAGNYIHYGVREFGMTAIANGISLHGGFLPYTSTF LMFVEYARNAVRMAALMKQRQVMVYTHDSIGLGEDGPTHQPVEQVASLRVTPNMSTWRPCDQ VESAVAWKYGVERQDGPTALILSRQNLAQQERTEEQLANIARGGYVLKDCAGQPELIFIATG SEVELAVAAYEKLTAEGVKARVVSMPSTDAFDKQDAAYRESVLPKAVTARVAVEAGIADYWY KYVGLNGAIVGMTTFGESLEVLFQGPAPAELLFEEFGFTVDNVVAKAKELL

5 SEQ ID NO:68

MSSRKELANAIRALSMDAVQKAKSGHPGAPMGMADIAEVLWRDFLKHNPQNPSWADRDRFVL SNGHGSMLIYSLLHLTGYDLPMEELKNFRQLHSKTPGHPEVGYTAGVETTTGPLGQGIANAV GMAIAEKTLAAQFNRPGHDIVDHYTYAFMGDGCMMEGISHEVCSLAGTLKLGKLIAFYDDNG ISIDGHVEGWFTDDTAMRFEAYGWHVIRDIDGHDAASIKRAVEEARAVTDKPSLLMCKTIIG FGSPNKAGTHDSHGAPLGDAEIALTREQLGWKYAPFEIPSEIYAQWDAKEAGQAKESAWNEK FAAYAKAYPQEAAEFTRRMKGEMPSDFDAKAKEFIAKLQANPAKIASRKASQNAIEAFGPLL PEFLGGSADLAPSNLTLWSGSKAINEDAAGNYIHYGVREFGMTAIANGISLHGGFLPYTSTF LMFVEYARNAVRMAALMKQRQVMVYTHDSIGLGEDGPTHQPVEQVASLRVTPNMSTWRPCDQ VESAVAWKYGVERQDGPTALILSRQNLAQQERTEEQLANIARGGYVLKDCAGQPELIFIATG SEVELAVAAYEKLTAEGVKARVVSMPSTDAFDKQDAAYRESVLPKAVTARVAVEAGIADYWY KYVGLNGAIVGMTTFGESAPLEVLFOGPAELLFEEFGFTVDNVVAKAKELL

SEQ ID NO:69 CTGGAAGTGCTGTTTCAGGGTCCG

SEQ ID NO:70 MKNINPTQTAA

15 SEQ ID NO:71

ATGAAAAACATCAATCCAACGCAGACCGCTGCC

SEQ ID NO:72

MLEVLFQGPKNINPTQTAA

20

10

SEQ ID NO:73

ATGCTGGAAGTGCTGTTTCAGGGTCCGAAAAACATCAATCCAACGCAGACCGCTGCC

SEQ ID NO:74

25 MKLEVLFQGPNINPTQTAA

SEQ ID NO:75

ATGAAACTGGAAGTGCTGTTTCAGGGTCCGAACATCAATCCAACGCAGACCGCTGCC

30 SEQ ID NO:76

MKNLEVLFQGPINPTQTAA

SEQ ID NO:77

ATGAAAAACCTGGAAGTGCTGTTTCAGGGTCCGATCAATCCAACGCAGACCGCTGCC

35

SEQ ID NO:78 MLEVLFQGPAA

	SEQ ID NO:79 ATGCTGGAAGTGCTGTTTCAGGGTCCGGCTGCC
5	SEQ ID NO:80 MKLEVLFQGPA
	SEQ ID NO:81 ATGAAACTGGAAGTGCTGTTTCAGGGTCCGGCC
10	SEQ ID NO:82 MKNLEVLFQGP
45	SEQ ID NO:83 ATGAAAAACCTGGAAGTGCTGTTTCAGGGTCCG
15	SEQ ID NO:84 MKNINLEVLFQGPTQTAA
20	SEQ ID NO:85 ATGAAAAACATCAATCTGGAAGTGCTGTTTCAGGGTCCAACGCAGACCGCTGCC
	SEQ ID NO:86 TAAWQALEVLFQGPQKH
25	SEQ ID NO:87 ACCGCTGCCTGGCAGGCACTAGAAGTGCTGTTTCAGGGTCCGCAGAAACAC
30	LISTADO DE SECUENCIAS
	<110> GreenLight Biosciences, Inc. Blake, William J Cunningham, Drew S
35	<120> PROTEÍNAS GENOMODIFICADAS CON UN SITIO DE ESCISIÓN DE PROTEASA
	<130> G0830.70013WO00
40	<140> Todavía sin asignar <141> 05/08/2014
	<150> US 61/987.518 <151> 02/05/2014
45	<150> US 61/862.363 <151> 05/08/2013
	<160> 87
50	<170> Patentln versión 3.5
55	<210> 1 <211> 1650 <212> ADN <213> Secuencia artificial
	<220> <223> Oligonucleótido sintético
60	<400> 1

atgaaaaaca	tcaatccaac	gcagaccgct	gcctggcagg	cactacagaa	acacttcgat	60
gaaatgaaag	acgttacgat	cgccgatctt	tttgctaaag	acggcgatcg	tttttctaag	120
ttctccgcaa	ccttcgacga	tcagatgctg	gtggattact	ccaaaaaccg	catcactgaa	180
gagacgctgg	cgaaattaca	ggatctggcg	aaagagtgcg	atctggcggg	cgcgattaag	240
tcgatgttct	ctggcgagaa	gatcaaccgc	actgaaaacc	gcgccgtgct	gcacgtagcg	300
ctgcgtaacc	gtagcaatac	cccgattttg	gttgatggca	aagacgtaat	gccggaagtc	360
aacgcggtgc	tggagaagat	gaaaaccttc	tcagaagcga	ttatttccgg	tgagtggaaa	420
ggttataccg	gcaaagcaat	cactgacgta	gtgaacatcg	ggatcggcgg	ttctgacctc	480
ggcccataca	tggtgaccga	agctctgcgt	ccgtacaaaa	accacctgaa	catgcacttt	540
gtttctaacg	tcgatgggac	tcacatcgcg	gaagtgctga	aaaaagtaaa	cccggaaacc	600
acgctgttct	tggtagcatc	taaaaccttc	accactcagg	aaactatgac	caacgcccat	660
agcgcgcgtg	actggttcct	gaaagcggca	ggtgatgaaa	aacacgttgc	aaaacacttt	720
gcggcgcttt	ccaccaatgc	caaagccgtt	ggcgagtttg	gtattgatac	tgccaacatg	780
ttcgagttct	gggactgggt	tggcggccgt	tactctttgt	ggtcagcgat	tggcctgtcg	840
attgttctct	ccatcggctt	tgataacttc	gttgaactgc	tttccggcgc	acacgcgatg	900
gacaagcatt	tctccaccac	gcctgccgag	aaaaacctgc	ctgtactgct	ggcgctgatt	960
ggcatctggt	acaacaattt	ctttaataca	gaaactgaag	cgattctgcc	gtatgaccag	1020
	gtttcgcggc					1080
	acggtaacgt					1140
	gtcagcacgc			_		1200
	tcgctccggc					1260
	tcttcgccca					1320
	atcgtgatca					1380
	aaggtaaccg					1440
	cgttgattgc					1500
	ccttcgacca					1560
	tgaaagatga					1620
			ageagecacg	acagecegae	caacygoody	1650
accaaccyct	ataaagcgtg	gcycyyriaa				1000

<210> 2

<211> 1674

<212> ADN

<213> Secuencia artificial

60

1560

1620

1674

<220>

<223>Oligonucleótido sintético

<400> 2

5

atgaaaaaca tcaatccaac gcagaccgct gcctggcagg cactacagaa acacttcgat gaaatgaaag acgttacgat cgccgatctt tttgctaaag atggtgatcg tttttctaag 120 180 ttctccgcaa ccttcgacga tcagatgctg gtggattact ccaaaaaaccg catcactgaa gagacgctgg cgaaattaca ggatctggcg aaagagtgcg atctggcggg cgcgattaag 240 300 tegatgttet etggegagaa gateaacege actgaaaace gegeegtget geaegtageg ctgcgtaacc gtagcaatac cccgctggaa gtgctgtttc agggtccgat tttggttgat 360 420 ggcaaagacg taatgccgga agtcaacgcg gtgctggaga agatgaaaac cttctcagaa 480 gcgattattt ccggtgagtg gaaaggttat accggcaaag caatcactga cgtagtgaac ategggateg geggttetga ceteggeeca tacatggtga eegaagetet gegteegtae 540 aaaaaccacc tgaacatgca ctttgtttct aacgtcgatg ggactcacat cgcggaagtg 600 ctgaaaaaag taaacccgga aaccacgctg ttcttggtag catctaaaac cttcaccact 660 caggaaacta tgaccaacgc ccatagcgcg cgtgactggt tcctgaaagc ggcaggtgat 720 gagaagcacg ttgcaaaaca ctttgcggcg ctttccacca atgccaaagc cgttggcgag 780 tttggtattg atactgccaa catgttcgag ttctgggact gggttggcgg ccgttactct 840 ttgtggtcag cgattggcct gtcgattgtt ctctccatcg gctttgataa cttcgttgaa 900 ctgctttccg gcgcacacgc gatggacaag catttctcca ccacgcctgc cgagaaaaac 960 1020 ctgcctgtac tgctggcgct gattggcatc tggtacaaca atttctttgg tgcggaaact 1080 gaagcgattc tgccgtatga ccagtatatg caccgtttcg cggcgtactt ccagcagggc 1140 aatatggagt ccaacggtaa gtatgttgac cgtaacggta acgttgtgga ttaccagact ggcccgatta tctggggtga accaggcact aacggtcagc acgcgttcta ccagctgatc 1200 1260 caccagggaa ccaaaatggt accgtgcgat ttcatcgctc cggctatcac ccataacccg ctctctgatc atcaccagaa actgctgtct aacttcttcg cccagaccga agcgctggcg 1320 tttggtaaat cccgcgaagt ggttgagcag gaatatcgtg atcagggtaa agatccggca 1380 1440 acgcttgact acgtggtgcc gttcaaagta ttcgaaggta accgcccgac caactccatc 1500 ctgctgcgtg aaatcactcc gttcagcctg ggtgcgttga ttgcgctgta tgagcacaaa

10

atctttactc agggcgtgat cctgaacatc ttcaccttcg accagtgggg cgtggaactg

ggtaaacagc tggcgaaccg tattctgcca gagctgaaag atgataaaga aatcagcagc

cacgatagct cgaccaatgg tctgattaac cgctataaag cgtggcgcgg ttaa

	<210> 3
	<211> 1674
	<212> ADN
	<213> Secuencia artificial
5	
	<220>
	<223>Oligonucleótido sintético
	<400> 3
10	

. .

```
atgaaaaaca tcaatccaac gcagaccgct gcctggcagg cactacagaa acacttcgat
                                                                        60
                                                                       120
gaaatgaaag acgttacgat cgccgatctt tttgctaaag atggtgatcg tttttctaag
ttctccgcaa ccttcgacga tcagatgctg gtggattact ccaaaaaccg catcactgaa
                                                                       180
gagacgctgg cgaaattaca ggatctggcg aaagagtgcg atctggcggg cgcgattaag
                                                                       240
                                                                       300
tcgatgttct ctggcgagaa gatcaaccgc actgaaaacc gcgccgtgct gcacgtagcg
ctgcgtaacc gtagcaatac cccgattctg gaagtgctgt ttcagggtcc gttggttgat
                                                                       360
                                                                       420
ggcaaagacg taatgccgga agtcaacgcg gtgctggaga agatgaaaac cttctcagaa
gcgattattt ccggtgagtg gaaaggttat accggcaaag caatcactga cgtagtgaac
                                                                       480
                                                                       540
ategggateg geggttetga ceteggeeca tacatggtga eegaagetet gegteegtae
                                                                       600
aaaaaccacc tgaacatgca ctttgtttct aacgtcgatg ggactcacat cgcggaagtg
ctgaaaaaag taaacccgga aaccacgctg ttcttggtag catctaaaac cttcaccact
                                                                       660
caggaaacta tgaccaacgc ccatagcgcg cgtgactggt tcctgaaagc ggcaggtgat
                                                                       720
gagaagcacg ttgcaaaaca ctttgcggcg ctttccacca atgccaaagc cgttggcgag
                                                                       780
tttggtattg atactgccaa catgttcgag ttctgggact gggttggcgg ccgttactct
                                                                       840
ttgtggtcag cgattggcct gtcgattgtt ctctccatcg gctttgataa cttcgttgaa
                                                                       900
ctgctttccg gcgcacacgc gatggacaag catttctcca ccacgcctgc cgagaaaaac
                                                                       960
ctgcctgtac tgctggcgct gattggcatc tggtacaaca atttctttgg tgcggaaact
                                                                      1020
gaagcgattc tgccgtatga ccagtatatg caccgtttcg cggcgtactt ccagcagggc
                                                                      1080
aatatggagt ccaacggtaa gtatgttgac cgtaacggta acgttgtgga ttaccagact
                                                                      1140
                                                                      1200
ggcccgatta tctggggtga accaggcact aacggtcagc acgcgttcta ccagctgatc
caccagggaa ccaaaatggt accgtgcgat ttcatcgctc cggctatcac ccataacccg
                                                                      1260
ctctctgatc atcaccagaa actgctgtct aacttcttcg cccagaccga agcgctggcg
                                                                      1320
tttggtaaat cccgcgaagt ggttgagcag gaatatcgtg atcagggtaa agatccggca
                                                                      1380
acgcttgact acgtggtgcc gttcaaagta ttcgaaggta accgcccgac caactccatc
                                                                      1440
ctgctgcgtg aaatcactcc gttcagcctg ggtgcgttga ttgcgctgta tgagcacaaa
                                                                      1500
                                                                      1560
atctttactc agggcgtgat cctgaacatc ttcaccttcg accagtgggg cgtggaactg
ggtaaacagc tggcgaaccg tattctgcca gagctgaaag atgataaaga aatcagcagc
                                                                      1620
                                                                      1674
cacgatagct cgaccaatgg tctgattaac cgctataaag cgtggcgcgg ttaa
```

<210> 4

<211> 1671

<212> ADN

<213> Secuencia artificial

<220>

<223>Oligonucleótido sintético

<400> 4

atgaaaaaca	tcaatccaac	gcagaccgct	gcctggcagg	cactacagaa	acacttcgat	60
gaaatgaaag	acgttacgat	cgccgatctt	tttgctaaag	atggtgatcg	tttttctaag	120
ttctccgcaa	ccttcgacga	tcagatgctg	gtggattact	ccaaaaaccg	catcactgaa	180
gagacgctgg	cgaaattaca	ggatctggcg	aaagagtgcg	atctggcggg	cgcgattaag	240
tcgatgttct	ctggcgagaa	gatcaaccgc	actgaaaacc	gcgccgtgct	gcacgtagcg	300
ctgcgtaacc	gtagcaatac	cccgattttg	gaagtgctgt	ttcagggtcc	ggttgatggc	360
aaagacgtaa	tgccggaagt	caacgcggtg	ctggagaaga	tgaaaacctt	ctcagaagcg	420
attatttccg	gtgagtggaa	aggttatacc	ggcaaagcaa	tcactgacgt	agtgaacatc	480
gggatcggcg	gttctgacct	cggcccatac	atggtgaccg	aagctctgcg	tccgtacaaa	540
aaccacctga	acatgcactt	tgtttctaac	gtcgatggga	ctcacatcgc	ggaagtgctg	600
aaaaaagtaa	acccggaaac	cacgctgttc	ttggtagcat	ctaaaacctt	caccactcag	660
annactatan	002200002	taggggggt	ga gt ggt t gg	+ = = = = = = = = = = = = = = = = = = =	aggtgatgag	720
			gactggttcc			
aagcacgttg	caaaacactt	tgcggcgctt	tccaccaatg	ccaaagccgt	tggcgagttt	780
ggtattgata	ctgccaacat	gttcgagttc	tgggactggg	ttggcggccg	ttactctttg	840
tggtcagcga	ttggcctgtc	gattgttctc	tccatcggct	ttgataactt	cgttgaactg	900
ctttccggcg	cacacgcgat	ggacaagcat	ttctccacca	cgcctgccga	gaaaaacctg	960
cctgtactgc	tggcgctgat	tggcatctgg	tacaacaatt	tctttggtgc	ggaaactgaa	1020
gcgattctgc	cgtatgacca	gtatatgcac	cgtttcgcgg	cgtacttcca	gcagggcaat	1080
atggagtcca	acggtaagta	tgttgaccgt	aacggtaacg	ttgtggatta	ccagactggc	1140
ccgattatct	ggggtgaacc	aggcactaac	ggtcagcacg	cgttctacca	gctgatccac	1200
cagggaacca	aaatggtacc	gtgcgatttc	atcgctccgg	ctatcaccca	taacccgctc	1260
tctgatcatc	accagaaact	gctgtctaac	ttcttcgccc	agaccgaagc	gctggcgttt	1320
ggtaaatccc	gcgaagtggt	tgagcaggaa	tatcgtgatc	agggtaaaga	tccggcaacg	1380
cttgactacg	tggtgccgtt	caaagtattc	gaaggtaacc	gcccgaccaa	ctccatcctg	1440
ctgcgtgaaa	tcactccgtt	cagcctgggt	gcgttgattg	cgctgtatga	gcacaaaatc	1500
tttactcagg	gcgtgatcct	gaacatcttc	accttcgacc	agtggggcgt	ggaactgggt	1560
aaacagctgg	cgaaccgtat	tctgccagag	ctgaaagatg	ataaagaaat	cagcagccac	1620
gatagctcga	ccaatggtct	gattaaccgc	tataaagcgt	ggcgcggtta	a	1671

- <210> 5
- 5 <211> 1674
 - <212> ADN
 - <213> Secuencia artificial
 - <220>
- 10 <223>Oligonucleótido sintético

<400> 5

atgaaaaaca	tcaatccaac	gcagaccgct	gcctggcagg	cactacagaa	acacttcgat	60
gaaatgaaag	acgttacgat	cgccgatctt	tttgctaaag	atggtgatcg	tttttctaag	120
ttctccgcaa	ccttcgacga	tcagatgctg	gtggattact	ccaaaaaccg	catcactgaa	180
gagacgctgg	cgaaattaca	ggatctggcg	aaagagtgcg	atctggcggg	cgcgattaag	240
tcgatgttct	ctggcgagaa	gatcaaccgc	actgaaaacc	gcgccgtgct	gcacgtagcg	300
ctgcgtaacc	gtagcaatac	cccgattttg	gttgatggca	aagacgtaat	gccggaagtc	360
aacgcggtgc	tggagaagat	gaaaaccttc	tcagaagcga	ttatttccgg	tgagctggaa	420
gtgctgtttc	agggtccgtg	gaaaggttat	accggcaaag	caatcactga	cgtagtgaac	480
atcgggatcg	gcggttctga	cctcggccca	tacatggtga	ccgaagctct	gcgtccgtac	540
aaaaaccacc	tgaacatgca	ctttgtttct	aacgtcgatg	ggactcacat	cgcggaagtg	600
ctgaaaaaag	taaacccgga	aaccacgctg	ttcttggtag	catctaaaac	cttcaccact	660
caggaaacta	tgaccaacgc	ccatagcgcg	cgtgactggt	tcctgaaagc	ggcaggtgat	720
gagaagcacg	ttgcaaaaca	ctttgcggcg	ctttccacca	atgccaaagc	cgttggcgag	780
tttggtattg	atactgccaa	catgttcgag	ttctgggact	gggttggcgg	ccgttactct	840
ttgtggtcag	cgattggcct	gtcgattgtt	ctctccatcg	gctttgataa	cttcgttgaa	900
ctgctttccg	gcgcacacgc	gatggacaag	catttctcca	ccacgcctgc	cgagaaaaac	960
ctgcctgtac	tgctggcgct	gattggcatc	tggtacaaca	atttctttgg	tgcggaaact	1020
gaagcgattc	tgccgtatga	ccagtatatg	caccgtttcg	cggcgtactt	ccagcagggc	1080
aatatggagt	ccaacggtaa	gtatgttgac	cgtaacggta	acgttgtgga	ttaccagact	1140
ggcccgatta	tctggggtga	accaggcact	aacggtcagc	acgcgttcta	ccagctgatc	1200
caccagggaa	ccaaaatggt	accgtgcgat	ttcatcgctc	cggctatcac	ccataacccg	1260
ctctctgatc	atcaccagaa	actgctgtct	aacttcttcg	cccagaccga	agcgctggcg	1320
tttggtaaat	cccgcgaagt	ggttgagcag	gaatatcgtg	atcagggtaa	agatccggca	1380
acgcttgact	acgtggtgcc	gttcaaagta	ttcgaaggta	accgcccgac	caactccatc	1440
ctgctgcgtg	aaatcactcc	gttcagcctg	ggtgcgttga	ttgcgctgta	tgagcacaaa	1500
atctttactc	agggcgtgat	cctgaacatc	ttcaccttcg	accagtgggg	cgtggaactg	1560
ggtaaacagc	tggcgaaccg	tattctgcca	gagctgaaag	atgataaaga	aatcagcagc	1620
cacgatagct	cgaccaatgg	tctgattaac	cgctataaag	cgtggcgcgg	ttaa	1674

5

<210> 6

<211> 1674

<212> ADN

<213> Secuencia artificial

<220>

<223>Oligonucleótido sintético

<400> 6

atgaaaaaca	tcaatccaac	gcagaccgct	gcctggcagg	cactacagaa	acacttcgat	60
gaaatgaaag	acgttacgat	cgccgatctt	tttgctaaag	atggtgatcg	tttttctaag	120
ttctccgcaa	ccttcgacga	tcagatgctg	gtggattact	ccaaaaaccg	catcactgaa	180
gagacgctgg	cgaaattaca	ggatctggcg	aaagagtgcg	atctggcggg	cgcgattaag	240
tcgatgttct	ctggcgagaa	gatcaaccgc	actgaaaacc	gcgccgtgct	gcacgtagcg	300
ctgcgtaacc	gtagcaatac	cccgattttg	gttgatggca	aagacgtaat	gccggaagtc	360
aacgcggtgc	tggagaagat	gaaaaccttc	tcagaagcga	ttatttccgg	tgagtggaaa	420
ggttataccg	gcaaagcaat	cactgacgta	gtgaacatcg	ggatcggcgg	ttctgacctc	480
ggcccataca	tggtgaccga	agctctgcgt	ccgtacaaaa	accacctgaa	catgcacttt	540
gtttctaacg	tcgatgggac	tcacatcgcg	gaagtgctga	aaaaagtaaa	cccggaaacc	600
acgctgttct	tggtagcatc	taaaaccttc	accactcagg	aaactatgac	caacgcccat	660
agcgcgcgtg	actggttcct	gaaagcggca	ggtgatgaga	agcacgttgc	aaaacacttt	720
gcggcgcttt	ccaccaatgc	caaagccgtt	ggcgagtttg	gtattgatac	tgccaacatg	780
ttcgagttct	gggactgggt	tggcggccgt	tactctttgt	ggtcagcgat	tggcctgtcg	840
attgttctct	ccatcggctt	tgataacttc	gttgaactgc	tttccggcgc	acacgcgatg	900
gacaagcatt	tctccaccac	gcctgccgag	aaaaacctgc	ctgtactgct	ggcgctgatt	960
ggcatctggt	acaacaattt	ctttggtgcg	gaaactgaag	cgattctgcc	gtatgaccag	1020
tatatgcacc	gtttcgcggc	gtacttccag	cagggcaata	tggagtccaa	cggtaagtat	1080
gttgaccgta	acggtaacgt	tgtggattac	cagactggcc	cgattatctg	gggtgaacca	1140
ggcactaacg	gtcagcacgc	gttctaccag	ctgatccacc	agggaaccaa	aatggtaccg	1200
tgcgatttca	tcgctccggc	tatcacccat	ctggaagtgc	tgtttcaggg	tccgaacccg	1260
ctctctgatc	atcaccagaa	actgctgtct	aacttcttcg	cccagaccga	agcgctggcg	1320
tttggtaaat	cccgcgaagt	ggttgagcag	gaatatcgtg	atcagggtaa	agatccggca	1380
acgcttgact	acgtggtgcc	gttcaaagta	ttcgaaggta	accgcccgac	caactccatc	1440
ctgctgcgtg	aaatcactcc	gttcagcctg	ggtgcgttga	ttgcgctgta	tgagcacaaa	1500
atctttactc	agggcgtgat	cctgaacatc	ttcaccttcg	accagtgggg	cgtggaactg	1560
ggtaaacagc	tggcgaaccg	tattctgcca	gagctgaaag	atgataaaga	aatcagcagc	1620
cacqataqct	caaccaataa	tctcattaac	cactataaaa	cataacacaa	ttaa	1674

	<210> 7
	<211> 1671
	<212> ADN
	<213> Secuencia artificial
5	
	<220>
	<223>Oligonucleótido sintético
	<400> 7
10	

atgaaaaaca	tcaatccaac	gcagaccgct	gcctggcagg	cactacagaa	acacttcgat	60
gaaatgaaag	acgttacgat	cgccgatctt	tttgctaaag	atggtgatcg	tttttctaag	120
ttctccgcaa	ccttcgacga	tcagatgctg	gtggattact	ccaaaaaccg	catcactgaa	180
gagacgctgg	cgaaattaca	ggatctggcg	aaagagtgcg	atctggcggg	cgcgattaag	240
tcgatgttct	ctggcgagaa	gatcaaccgc	actgaaaacc	gcgccgtgct	gcacgtagcg	300
ctgcgtaacc	gtagcaatac	cccgattttg	gttgatggca	aagacgtaat	gccggaagtc	360
aacgcggtgc	tggagaagat	gaaaaccttc	tcagaagcga	ttatttccgg	tgagtggaaa	420
ggttataccg	gcaaagcaat	cactgacgta	gtgaacatcg	ggatcggcgg	ttctgacctc	480
	tggtgaccga					540
gtttctaacg	tcgatgggac	tcacatcgcg	gaagtgctga	aaaaagtaaa	cccggaaacc	600
	tggtagcatc					660
agcgcgcgtg	actggttcct	gaaagcggca	ggtgatgaga	agcacgttgc	aaaacacttt	720
gcggcgcttt	ccaccaatgc	caaagccgtt	ggcgagtttg	gtattgatac	tgccaacatg	780
ttcgagttct	gggactgggt	tggcggccgt	tactctttgt	ggtcagcgat	tggcctgtcg	840
attgttctct	ccatcggctt	tgataacttc	gttgaactgc	tttccggcgc	acacgcgatg	900
gacaagcatt	tctccaccac	gcctgccgag	aaaaacctgc	ctgtactgct	ggcgctgatt	960
ggcatctggt	acaacaattt	ctttggtgcg	gaaactgaag	cgattctgcc	gtatgaccag	1020
tatatgcacc	gtttcgcggc	gtacttccag	cagggcaata	tggagtccaa	cggtaagtat	1080
gttgaccgta	acggtaacgt	tgtggattac	cagactggcc	cgattatctg	gggtgaacca	1140
ggcactaacg	gtcagcacgc	gttctaccag	ctgatccacc	agggaaccaa	aatggtaccg	1200
tgcgatttca	tegeteegge	tatcacccat	aacccgctct	ctgatcatca	ccagaaactg	1260
ctgtctaact	tcttcgccca	gaccgaagcg	ctggcgtttg	gtaaatcccg	cgaagtggtt	1320
gagcaggaat	atcgtgatca	gggtaaagat	ccggcaacgc	ttgactacgt	ggtgccgttc	1380
aaagtattcg	aaggtaaccg	cccgaccaac	tccatcctgc	tgcgtgaaat	cactccgttc	1440
agcctgggtg	cgttgattgc	gctgtatgag	cacaaaatct	ttactcaggg	cgtgatcctg	1500
aacatcttca	ccttcgacca	gtggggcgtg	gaactgggta	aacagctggc	gaaccgtatt	1560
ctgccagagc	tggaagtgct	gtttcagggt	ccgaaagatg	ataaagaaat	cagcagccac	1620
gatagctcga	ccaatggtct	gattaaccgc	tataaagcgt	ggcgcggtta	a	1671

<210> 8

<211> 1674

<212> ADN

<213> Secuencia artificial

<220>

<223>Oligonucleótido sintético

<400> 8

5

atgaaaaaca tcaatccaac gcagaccgct gcctggcagg cactacagaa acacttcgat 60 gaaatgaaag acgttacgat cgccgatctt tttgctaaag atggtgatcg tttttctaag 120 180 ttctccgcaa ccttcgacga tcagatgctg gtggattact ccaaaaaaccg catcactgaa gagacgctgg cgaaattaca ggatctggcg aaagagtgcg atctggcggg cgcgattaag 240 300 tegatgttet etggegagaa gateaacege actgaaaace gegeegtget geaegtageg 360 ctgcgtaacc gtagcaatac cccgattttg gttgatggca aagacgtaat gccggaagtc aacgcggtgc tggagaagat gaaaaccttc tcagaagcga ttatttccgg tgagtggaaa 420 480 ggttataccg gcaaagcaat cactgacgta gtgaacatcg ggatcggcgg ttctgacctc ggcccataca tggtgaccga agctctgcgt ccgtacaaaa accacctgaa catgcacttt 540 600 gtttctaacg tcgatgggac tcacatcgcg gaagtgctga aaaaagtaaa cccggaaacc acqctqttct tqqtaqcatc taaaaccttc accactcaqq aaactatqac caacqcccat 660 720 agcgcgcgtg actggttcct gaaagcggca ggtgatgaga agcacgttgc aaaacacttt gcggcgcttt ccaccaatgc caaagccgtt ggcgagtttg gtattgatac tgccaacatg 780 840 ttcgagttct gggactgggt tggcggccgt tactctttgt ggtcagcgat tggcctgtcg 900 attgttctct ccatcggctt tgataacttc gttgaactgc tttccggcgc acacgcgatg gacaagcatt tetecaceae geetgeegag aaaaaeetge etgtaetget ggegetgatt 960 ggcatctggt acaacaattt ctttggtgcg gaaactgaag cgattctgcc gtatgaccag 1020 tatatgcacc gtttcgcggc gtacttccag cagggcaata tggagtccaa cggtaagtat 1080 gttgaccgta acggtaacgt tgtggattac cagactggcc cgattatctg gggtgaacca 1140 ggcactaacg gtcagcacgc gttctaccag ctgatccacc agggaaccaa aatggtaccg 1200 tgcgatttca tcgctccggc tatcacccat aacccgctct ctgatcatca ccagaaactg 1260 ctgtctaact tcttcgccca gaccgaagcg ctggcgtttg gtaaatcccg cgaagtggtt 1320 1380 gagcaggaat atcgtgatca gggtaaagat ccggcaacgc ttgactacgt ggtgccgttc aaagtattcg aaggtaaccg cccgaccaac tccatcctgc tgcgtgaaat cactccgttc 1440 1500 agcctgggtg cgttgattgc gctgtatgag cacaaaatct ttactcaggg cgtgatcctg aacatcttca ccttcgacca gtggggcgtg gaactgggta aacagctggc gaaccgtatt 1560 ctgccagagc tgaaactgga agtgctgttt cagggtccgg atgataaaga aatcagcagc 1620 1674 cacgatagct cgaccaatgg tctgattaac cgctataaag cgtggcgcgg ttaa

	<210> 9
	<211> 1674
	<212> ADN
	<213> Secuencia artificial
5	
	<220>
	<223>Oligonucleótido sintético
	100
4.0	<400> 9
10	

atgaaaaaca	tcaatccaac	gcagaccgct	gcctggcagg	cactacagaa	acacttcgat	60
gaaatgaaag	acgttacgat	cgccgatctt	tttgctaaag	atggtgatcg	tttttctaag	120
ttctccgcaa	ccttcgacga	tcagatgctg	gtggattact	ccaaaaaccg	catcactgaa	180
gagacgctgg	cgaaattaca	ggatctggcg	aaagagtgcg	atctggcggg	cgcgattaag	240
tcgatgttct	ctggcgagaa	gatcaaccgc	actgaaaacc	gcgccgtgct	gcacgtagcg	300
ctgcgtaacc	gtagcaatac	cccgattttg	gttgatggca	aagacgtaat	gccggaagtc	360
aacgcggtgc	tggagaagat	gaaaaccttc	tcagaagcga	ttatttccgg	tgagtggaaa	420
ggttataccg	gcaaagcaat	cactgacgta	gtgaacatcg	ggatcggcgg	ttctgacctc	480
ggcccataca	tggtgaccga	agctctgcgt	ccgtacaaaa	accacctgaa	catgcacttt	540
gtttctaacg	tcgatgggac	tcacatcgcg	gaagtgctga	aaaaagtaaa	cccggaaacc	600
acgctgttct	tggtagcatc	taaaaccttc	accactcagg	aaactatgac	caacgcccat	660
agcgcgcgtg	actggttcct	gaaagcggca	ggtgatgaga	agcacgttgc	aaaacacttt	720
gcggcgcttt	ccaccaatgc	caaagccgtt	ggcgagtttg	gtattgatac	tgccaacatg	780
ttcgagttct	gggactgggt	tggcggccgt	tactctttgt	ggtcagcgat	tggcctgtcg	840
attgttctct	ccatcggctt	tgataacttc	gttgaactgc	tttccggcgc	acacgcgatg	900
gacaagcatt	tctccaccac	gcctgccgag	aaaaacctgc	ctgtactgct	ggcgctgatt	960
ggcatctggt	acaacaattt	ctttggtgcg	gaaactgaag	cgattctgcc	gtatgaccag	1020
tatatgcacc	gtttcgcggc	gtacttccag	cagggcaata	tggagtccaa	cggtaagtat	1080
gttgaccgta	acggtaacgt	tgtggattac	cagactggcc	cgattatctg	gggtgaacca	1140
ggcactaacg	gtcagcacgc	gttctaccag	ctgatccacc	agggaaccaa	aatggtaccg	1200
tgcgatttca	tegeteegge	tatcacccat	aacccgctct	ctgatcatca	ccagaaactg	1260
ctgtctaact	tcttcgccca	gaccgaagcg	ctggcgtttg	gtaaatcccg	cgaagtggtt	1320
gagcaggaat	atcgtgatca	gggtaaagat	ccggcaacgc	ttgactacgt	ggtgccgttc	1380
aaagtattcg	aaggtaaccg	cccgaccaac	tccatcctgc	tgcgtgaaat	cactccgttc	1440
agcctgggtg	cgttgattgc	gctgtatgag	cacaaaatct	ttactcaggg	cgtgatcctg	1500
aacatcttca	ccttcgacca	gtggggcgtg	gaactgggta	aacagctggc	gaaccgtatt	1560
ctgccagagc	tgaaagatct	ggaagtgctg	tttcagggtc	cggataaaga	aatcagcagc	1620
cacgatagct	cgaccaatgg	tctgattaac	cgctataaag	cgtggcgcgg	ttaa	1674

<210> 10

<211> 1674

<212> ADN

<213> Secuencia artificial

<220>

<223>Oligonucleótido sintético

<400> 10

5

atgaaaaaca tcaatccaac gcagaccgct gcctggcagg cactacagaa acacttcgat 60 gaaatgaaag acgttacgat cgccgatctt tttgctaaag atggtgatcg tttttctaag 120 180 ttctccgcaa ccttcgacga tcagatgctg gtggattact ccaaaaaccg catcactgaa 240 gagacgctgg cgaaattaca ggatctggcg aaagagtgcg atctggcggg cgcgattaag 300 tcgatgttct ctggcgagaa gatcaaccgc actgaaaacc gcgccgtgct gcacgtagcg 360 ctgcgtaacc gtagcaatac cccgattttg gttgatggca aagacgtaat gccggaagtc 420 aacgcggtgc tggagaagat gaaaaccttc tcagaagcga ttatttccgg tgagtggaaa ggttataccg gcaaagcaat cactgacgta gtgaacatcg ggatcggcgg ttctgacctc 480 ggcccataca tggtgaccga agctctgcgt ccgtacaaaa accacctgaa catgcacttt 540 600 gtttctaacg tcgatgggac tcacatcgcg gaagtgctga aaaaagtaaa cccggaaacc 660 acgctgttct tggtagcatc taaaaccttc accactcagg aaactatgac caacgcccat 720 agcgcgcgtg actggttcct gaaagcggca ggtgatgaga agcacgttgc aaaacacttt 780 gcggcgcttt ccaccaatgc caaagccgtt ggcgagtttg gtattgatac tgccaacatg ttcgagttct gggactgggt tggcggccgt tactctttgt ggtcagcgat tggcctgtcg 840 900 attgttctct ccatcggctt tgataacttc gttgaactgc tttccggcgc acacgcgatg 960 gacaagcatt tetecaceae geetgeegag aaaaaeetge etgtaetget ggegetgatt ggcatctggt acaacaattt ctttggtgcg gaaactgaag cgattctgcc gtatgaccag 1020 1080 tatatgcacc gtttcgcggc gtacttccag cagggcaata tggagtccaa cggtaagtat 1140 gttgaccgta acggtaacgt tgtggattac cagactggcc cgattatctg gggtgaacca 1200 ggcactaacg gtcagcacgc gttctaccag ctgatccacc agggaaccaa aatggtaccg tgcgatttca tcgctccggc tatcacccat aacccgctct ctgatcatca ccagaaactg 1260 1320 ctgtctaact tcttcgccca gaccgaagcg ctggcgtttg gtaaatcccg cgaagtggtt 1380 gagcaggaat atcgtgatca gggtaaagat ccggcaacgc ttgactacgt ggtgccgttc aaagtattcg aaggtaaccg cccgaccaac tccatcctgc tgcgtgaaat cactccgttc 1440 agcctgggtg cgttgattgc gctgtatgag cacaaaatct ttactcaggg cgtgatcctg 1500 1560 aacatcttca ccttcgacca gtggggcgtg gaactgggta aacagctggc gaaccgtatt ctgccagagc tgaaagatga tctggaagtg ctgtttcagg gtccgaaaga aatcagcagc 1620 cacgataget egaceaatgg tetgattaac egetataaag egtggegegg ttaa 1674

	<210> 11	
	<211> 1674	
	<212> ADN	
	<213> Secuencia artificial	
5		
	<220>	
	<223>Oligonucleótido sintético	
	<400> 11	
10		
	atgaaaaaca tcaatccaac gcagaccgct gcctggcagg cactacagaa acacttcgat	60

gaaatgaaag	acgttacgat	cgccgatctt	tttgctaaag	atggtgatcg	tttttctaag	120
ttctccgcaa	ccttcgacga	tcagatgctg	gtggattact	ccaaaaaccg	catcactgaa	180
gagacgctgg	cgaaattaca	ggatctggcg	aaagagtgcg	atctggcggg	cgcgattaag	240
tcgatgttct	ctggcgagaa	gatcaaccgc	actgaaaacc	gcgccgtgct	gcacgtagcg	300
ctgcgtaacc	gtagcaatac	cccgattttg	gttgatggca	aagacgtaat	gccggaagtc	360
aacgcggtgc	tggagaagat	gaaaaccttc	tcagaagcga	ttatttccgg	tgagtggaaa	420
ggttataccg	gcaaagcaat	cactgacgta	gtgaacatcg	ggatcggcgg	ttctgacctc	480
ggcccataca	tggtgaccga	agctctgcgt	ccgtacaaaa	accacctgaa	catgcacttt	540
gtttctaacg	tcgatgggac	tcacatcgcg	gaagtgctga	aaaaagtaaa	cccggaaacc	600
acgctgttct	tggtagcatc	taaaaccttc	accactcagg	aaactatgac	caacgcccat	660
agcgcgcgtg	actggttcct	gaaagcggca	ggtgatgaga	agcacgttgc	aaaacacttt	720
gcggcgcttt	ccaccaatgc	caaagccgtt	ggcgagtttg	gtattgatac	tgccaacatg	780
ttcgagttct	gggactgggt	tggcggccgt	tactctttgt	ggtcagcgat	tggcctgtcg	840
attgttctct	ccatcggctt	tgataacttc	gttgaactgc	tttccggcgc	acacgcgatg	900
gacaagcatt	tctccaccac	gcctgccgag	aaaaacctgc	ctgtactgct	ggcgctgatt	960
ggcatctggt	acaacaattt	ctttggtgcg	gaaactgaag	cgattctgcc	gtatgaccag	1020
tatatgcacc	gtttcgcggc	gtacttccag	cagggcaata	tggagtccaa	cggtaagtat	1080
gttgaccgta	acggtaacgt	tgtggattac	cagactggcc	cgattatctg	gggtgaacca	1140
ggcactaacg	gtcagcacgc	gttctaccag	ctgatccacc	agggaaccaa	aatggtaccg	1200
tgcgatttca	tcgctccggc	tatcacccat	aacccgctct	ctgatcatca	ccagaaactg	1260
ctgtctaact	tcttcgccca	gaccgaagcg	ctggcgtttg	gtaaatcccg	cgaagtggtt	1320
gagcaggaat	atcgtgatca	gggtaaagat	ccggcaacgc	ttgactacgt	ggtgccgttc	1380
aaagtattcg	aaggtaaccg	cccgaccaac	tccatcctgc	tgcgtgaaat	cactccgttc	1440
agcctgggtg	cgttgattgc	gctgtatgag	cacaaaatct	ttactcaggg	cgtgatcctg	1500
aacatcttca	ccttcgacca	gtggggcgtg	gaactgggta	aacagctggc	gaaccgtatt	1560
ctgccagagc	tgaaagatga	taaactggaa	gtgctgtttc	agggtccgga	aatcagcagc	1620
cacgatagct	cgaccaatgg	tctgattaac	cgctataaag	cgtggcgcgg	ttaa	1674

<210> 12

<211> 1674

<212> ADN

<213> Secuencia artificial

<220>

<223>Oligonucleótido sintético

10

<400> 12

60	acacttcgat	cactacagaa	gcctggcagg	gcagaccgct	tcaatccaac	atgaaaaaca
120	tttttctaag	atggtgatcg	tttgctaaag	cgccgatctt	acgttacgat	gaaatgaaag
180	catcactgaa	ccaaaaaccg	gtggattact	tcagatgctg	ccttcgacga	ttctccgcaa
240	cgcgattaag	atctggcggg	aaagagtgcg	ggatctggcg	cgaaattaca	gagacgctgg
300	gcacgtagcg	gcgccgtgct	actgaaaacc	gatcaaccgc	ctggcgagaa	tcgatgttct
360	gccggaagtc	aagacgtaat	gttgatggca	cccgattttg	gtagcaatac	ctgcgtaacc
420	tgagtggaaa	ttatttccgg	tcagaagcga	gaaaaccttc	tggagaagat	aacgcggtgc
480	ttctgacctc	ggatcggcgg	gtgaacatcg	cactgacgta	gcaaagcaat	ggttataccg
540	catgcacttt	accacctgaa	ccgtacaaaa	agctctgcgt	tggtgaccga	ggcccataca
600	cccggaaacc	aaaaagtaaa	gaagtgctga	tcacatcgcg	tcgatgggac	gtttctaacg
660	caacgcccat	aaactatgac	accactcagg	taaaaccttc	tggtagcatc	acgctgttct
720	aaaacacttt	agcacgttgc	ggtgatgaga	gaaagcggca	actggttcct	agcgcgcgtg
780	tgccaacatg	gtattgatac	ggcgagtttg	caaagccgtt	ccaccaatgc	gcggcgcttt
840	tggcctgtcg	ggtcagcgat	tactctttgt	tggcggccgt	gggactgggt	ttcgagttct
900	acacgcgatg	tttccggcgc	gttgaactgc	tgataacttc	ccatcggctt	attgttctct
960	ggcgctgatt	ctgtactgct	aaaaacctgc	gcctgccgag	tctccaccac	gacaagcatt
1020	gtatgaccag	cgattctgcc	gaaactgaag	ctttggtgcg	acaacaattt	ggcatctggt
1080	cggtaagtat	tggagtccaa	cagggcaata	gtacttccag	gtttcgcggc	tatatgcacc
1140	gggtgaacca	cgattatctg	cagactggcc	tgtggattac	acggtaacgt	gttgaccgta
1200	aatggtaccg	agggaaccaa	ctgatccacc	gttctaccag	gtcagcacgc	ggcactaacg
1260	ccagaaactg	ctgatcatca	aacccgctct	tatcacccat	tegeteegge	tgcgatttca
1320	cgaagtggtt	gtaaatcccg	ctggcgtttg	gaccgaagcg	tcttcgccca	ctgtctaact
1380	ggtgccgttc	ttgactacgt	ccggcaacgc	gggtaaagat	atcgtgatca	gagcaggaat
1440	cactccgttc	tgcgtgaaat	tccatcctgc	cccgaccaac	aaggtaaccg	aaagtattcg
1500	cgtgatcctg	ttactcaggg	cacaaaatct	gctgtatgag	cgttgattgc	agcctgggtg
1560	gaaccgtatt	aacagctggc	gaactgggta	gtggggcgtg	ccttcgacca	aacatcttca
1620	gatcagcagc	ttcagggtcc	gaagtgctgt	taaagaactg	tgaaagatga	ctgccagagc
1674	ttaa	cataacacaa	cactataaaa	tctcattaac	caaccaataa	cacqataggt

<210> 13 <211> 1674 <212> ADN <213> Secuencia artificial

5

<223>Oligonucleótido sintético

<400> 13

10

60 atgaaaaaca tcaatccaac gcagaccgct gcctggcagg cactacagaa acacttcgat gaaatgaaag acgttacgat cgccgatctt tttgctaaag atggtgatcg tttttctaag 120 ttctccgcaa ccttcgacga tcagatgctg gtggattact ccaaaaaccg catcactgaa 180 gagacgctgg cgaaattaca ggatctggcg aaagagtgcg atctggcggg cgcgattaag 240 tcgatgttct ctggcgagaa gatcaaccgc actgaaaacc gcgccgtgct gcacgtagcg 300 ctgcgtaacc gtagcaatac cccgattttg gttgatggca aagacgtaat gccggaagtc 360 aacgcggtgc tggagaagat gaaaaccttc tcagaagcga ttatttccgg tgagtggaaa 420 480 ggttataccg gcaaagcaat cactgacgta gtgaacatcg ggatcggcgg ttctgacctc ggcccataca tggtgaccga agctctgcgt ccgtacaaaa accacctgaa catgcacttt 540 600 gtttctaacg tcgatgggac tcacatcgcg gaagtgctga aaaaagtaaa cccggaaacc acgctgttct tggtagcatc taaaaccttc accactcagg aaactatgac caacgcccat 660 agcgcgcgtg actggttcct gaaagcggca ggtgatgaga agcacgttgc aaaacacttt 720 780 gcggcgcttt ccaccaatgc caaagccgtt ggcgagtttg gtattgatac tgccaacatg ttcgagttct gggactgggt tggcggccgt tactctttgt ggtcagcgat tggcctgtcg 840 attgttctct ccatcggctt tgataacttc gttgaactgc tttccggcgc acacgcgatg 900 gacaagcatt tctccaccac gcctgccgag aaaaacctgc ctgtactgct ggcgctgatt 960 1020 ggcatctggt acaacaattt ctttggtgcg gaaactgaag cgattctgcc gtatgaccag 1080 tatatgcacc gtttcgcggc gtacttccag cagggcaata tggagtccaa cggtaagtat gttgaccgta acggtaacgt tgtggattac cagactggcc cgattatctg gggtgaacca 1140 1200 ggcactaacg gtcagcacgc gttctaccag ctgatccacc agggaaccaa aatggtaccg tgcgatttca tcgctccggc tatcacccat aacccgctct ctgatcatca ccagaaactg 1260 ctgtctaact tcttcgccca gaccgaagcg ctggcgtttg gtaaatcccg cgaagtggtt 1320 gagcaggaat atcgtgatca gggtaaagat ccggcaacgc ttgactacgt ggtgccgttc 1380 aaagtattcg aaggtaaccg cccgaccaac tccatcctgc tgcgtgaaat cactccgttc 1440 agcctgggtg cgttgattgc gctgtatgag cacaaaatct ttactcaggg cgtgatcctg 1500 aacatcttca ccttcgacca gtggggcgtg gaactgggta aacagctggc gaaccgtatt 1560 ctgccagagc tgaaagatga taaagaaatc ctggaagtgc tgtttcaggg tccgagcagc 1620 cacgataget egaceaatgg tetgattaac egetataaag egtggegegg ttaa 1674

	<210> 14
	<211> 1674
	<212> ADN
	<213> Secuencia artificial
5	
	<220>
	<223>Oligonucleótido sintético
	<400> 14
10	<400> 14
10	

atgaaaaaca	tcaatccaac	gcagaccgct	gcctggcagg	cactacagaa	acacttcgat	60
gaaatgaaag	acgttacgat	cgccgatctt	tttgctaaag	atggtgatcg	tttttctaag	120
ttctccgcaa	ccttcgacga	tcagatgctg	gtggattact	ccaaaaaccg	catcactgaa	180
gagacgctgg	cgaaattaca	ggatctggcg	aaagagtgcg	atctggcggg	cgcgattaag	240
tcgatgttct	ctggcgagaa	gatcaaccgc	actgaaaacc	gcgccgtgct	gcacgtagcg	300
ctgcgtaacc	gtagcaatac	cccgattttg	gttgatggca	aagacgtaat	gccggaagtc	360
aacgcggtgc	tggagaagat	gaaaaccttc	tcagaagcga	ttatttccgg	tgagtggaaa	420
ggttataccg	gcaaagcaat	cactgacgta	gtgaacatcg	ggatcggcgg	ttctgacctc	480
ggcccataca	tggtgaccga	agctctgcgt	ccgtacaaaa	accacctgaa	catgcacttt	540
gtttctaacg	tcgatgggac	tcacatcgcg	gaagtgctga	aaaaagtaaa	cccggaaacc	600
acgctgttct	tggtagcatc	taaaaccttc	accactcagg	aaactatgac	caacgcccat	660
agcgcgcgtg	actggttcct	gaaagcggca	ggtgatgaga	agcacgttgc	aaaacacttt	720
gcggcgcttt	ccaccaatgc	caaagccgtt	ggcgagtttg	gtattgatac	tgccaacatg	780
ttcgagttct	gggactgggt	tggcggccgt	tactctttgt	ggtcagcgat	tggcctgtcg	840
attgttctct	ccatcggctt	tgataacttc	gttgaactgc	tttccggcgc	acacgcgatg	900
gacaagcatt	tctccaccac	gcctgccgag	aaaaacctgc	ctgtactgct	ggcgctgatt	960
ggcatctggt	acaacaattt	ctttggtgcg	gaaactgaag	cgattctgcc	gtatgaccag	1020
tatatgcacc	gtttcgcggc	gtacttccag	cagggcaata	tggagtccaa	cggtaagtat	1080
gttgaccgta	acggtaacgt	tgtggattac	cagactggcc	cgattatctg	gggtgaacca	1140
ggcactaacg	gtcagcacgc	gttctaccag	ctgatccacc	agggaaccaa	aatggtaccg	1200
tgcgatttca	tegeteegge	tatcacccat	aacccgctct	ctgatcatca	ccagaaactg	1260
ctgtctaact	tcttcgccca	gaccgaagcg	ctggcgtttg	gtaaatcccg	cgaagtggtt	1320
gagcaggaat	atcgtgatca	gggtaaagat	ccggcaacgc	ttgactacgt	ggtgccgttc	1380
aaagtattcg	aaggtaaccg	cccgaccaac	tccatcctgc	tgcgtgaaat	cactccgttc	1440
agcctgggtg	cgttgattgc	gctgtatgag	cacaaaatct	ttactcaggg	cgtgatcctg	1500
aacatcttca	ccttcgacca	gtggggcgtg	gaactgggta	aacagctggc	gaaccgtatt	1560
ctgccagagc	tgaaagatga	taaagaaatc	agcctggaag	tgctgtttca	gggtccgagc	1620
cacgatagct	cgaccaatgg	tctgattaac	cgctataaag	cgtggcgcgg	ttaa	1674

<210> 15 <211> 1674

<212> ADN

<213> Secuencia artificial

<220> <223>Oligonucleótido sintético

<400> 15

5

	atgaaaaaca	tcaatccaac	gcagaccgct	gcctggcagg	cactacagaa	acacttcgat	60
	gaaatgaaag	acgttacgat	cgccgatctt	tttgctaaag	atggtgatcg	tttttctaag	120
	ttctccgcaa	ccttcgacga	tcagatgctg	gtggattact	ccaaaaaccg	catcactgaa	180
	gagacgctgg	r cgaaattaca	ggatctggcg	aaagagtgcg	atctggcggg	cgcgattaag	240
	tcgatgttct	ctggcgagaa	gatcaaccgc	actgaaaacc	gcgccgtgct	gcacgtagcg	300
	ctgcgtaacc	gtagcaatac	cccgattttg	gttgatggca	aagacgtaat	gccggaagtc	360
	aacgcggtgc	: tggagaagat	gaaaaccttc	tcagaagcga	ttatttccgg	tgagtggaaa	420
	ggttatacco	gcaaagcaat	cactgacgta	gtgaacatcg	ggatcggcgg	ttctgacctc	480
	ggcccataca	tggtgaccga	agctctgcgt	ccgtacaaaa	accacctgaa	catgcacttt	540
	gtttctaacq	tcgatgggac	tcacatcgcg	gaagtgctga	aaaaagtaaa	cccggaaacc	600
	acgctgttct	tggtagcatc	taaaaccttc	accactcagg	aaactatgac	caacgcccat	660
	agcgcgcgtg	actggttcct	gaaagcggca	ggtgatgaga	agcacgttgc	aaaacacttt	720
	gcggcgcttt	ccaccaatgc	caaagccgtt	ggcgagtttg	gtattgatac	tgccaacatg	780
	ttcgagttct	gggactgggt	tggcggccgt	tactctttgt	ggtcagcgat	tggcctgtcg	840
	attgttctct	ccatcggctt	tgataacttc	gttgaactgc	tttccggcgc	acacgcgatg	900
	gacaagcatt	tctccaccac	gcctgccgag	aaaaacctgc	ctgtactgct	ggcgctgatt	960
	ggcatctggt	acaacaattt	ctttggtgcg	gaaactgaag	cgattctgcc	gtatgaccag	1020
	tatatgcacc	gtttcgcggc	gtacttccag	cagggcaata	tggagtccaa	cggtaagtat	1080
	gttgaccgta	acggtaacgt	tgtggattac	cagactggcc	cgattatctg	gggtgaacca	1140
	ggcactaacg	gtcagcacgc	gttctaccag	ctgatccacc	agggaaccaa	aatggtaccg	1200
	tgcgatttca	tegeteegge	tatcacccat	aacccgctct	ctgatcatca	ccagaaactg	1260
	ctgtctaact	tcttcgccca	gaccgaagcg	ctggcgtttg	gtaaatcccg	cgaagtggtt	1320
	gagcaggaat	atcgtgatca	gggtaaagat	ccggcaacgc	ttgactacgt	ggtgccgttc	1380
	aaagtattcg	aaggtaaccg	cccgaccaac	tccatcctgc	tgcgtgaaat	cactccgttc	1440
	agcctgggtg	g cgttgattgc	gctgtatgag	cacaaaatct	ttactcaggg	cgtgatcctg	1500
	aacatcttca	ccttcgacca	gtggggcgtg	gaactgggta	aacagctggc	gaaccgtatt	1560
-	+~~~~	+~~~	+	200000	22ata=t=+	+ an agg+ = = =	1620
						tcagggtccg	
С	acgatagct	cgaccaatgg	tctgattaac	cgctataaag	cgtggcgcgg	ttaa	1674

10 <210> 16

<211> 1674 <212> ADN

<213> Secuencia artificial

<220> <223>Oligonucleótido sintético

<400> 16

5

atgaaaaaca	tcaatccaac	gcagaccgct	gcctggcagg	cactacagaa	acacttcgat	60
gaaatgaaag	acgttacgat	cgccgatctt	tttgctaaag	atggtgatcg	tttttctaag	120
ttctccgcaa	ccttcgacga	tcagatgctg	gtggattact	ccaaaaaccg	catcactgaa	180
gagacgctgg	cgaaattaca	ggatctggcg	aaagagtgcg	atctggcggg	cgcgattaag	240
tcgatgttct	ctggcgagaa	gatcaaccgc	actgaaaacc	gcgccgtgct	gcacgtagcg	300
ctgcgtaacc	gtagcaatac	cccgattttg	gttgatggca	aagacgtaat	gccggaagtc	360
aacgcggtgc	tggagaagat	gaaaaccttc	tcagaagcga	ttatttccgg	tgagtggaaa	420
ggttataccg	gcaaagcaat	cactgacgta	gtgaacatcg	ggatcggcgg	ttctgacctc	480
ggcccataca	tggtgaccga	agctctgcgt	ccgtacaaaa	accacctgaa	catgcacttt	540
gtttctaacg	tcgatgggac	tcacatcgcg	gaagtgctga	aaaaagtaaa	cccggaaacc	600
acgctgttct	tggtagcatc	taaaaccttc	accactcagg	aaactatgac	caacgcccat	660
agcgcgcgtg	actggttcct	gaaagcggca	ggtgatgaga	agcacgttgc	aaaacacttt	720
gcggcgcttt	ccaccaatgc	caaagccgtt	ggcgagtttg	gtattgatac	tgccaacatg	780
ttcgagttct	gggactgggt	tggcggccgt	tactctttgt	ggtcagcgat	tggcctgtcg	840
attgttctct	ccatcggctt	tgataacttc	gttgaactgc	tttccggcgc	acacgcgatg	900
gacaagcatt	tctccaccac	gcctgccgag	aaaaacctgc	ctgtactgct	ggcgctgatt	960
ggcatctggt	acaacaattt	ctttggtgcg	gaaactgaag	cgattctgcc	gtatgaccag	1020
tatatgcacc	gtttcgcggc	gtacttccag	cagggcaata	tggagtccaa	cggtaagtat	1080
gttgaccgta	acggtaacgt	tgtggattac	cagactggcc	cgattatctg	gggtgaacca	1140
ggcactaacg	gtcagcacgc	gttctaccag	ctgatccacc	agggaaccaa	aatggtaccg	1200
tgcgatttca	tcgctccggc	tatcacccat	aacccgctct	ctgatcatca	ccagaaactg	1260
ctgtctaact	tcttcgccca	gaccgaagcg	ctggcgtttg	gtaaatcccg	cgaagtggtt	1320
gagcaggaat	atcgtgatca	gggtaaagat	ccggcaacgc	ttgactacgt	ggtgccgttc	1380
aaagtattcg	aaggtaaccg	cccgaccaac	tccatcctgc	tgcgtgaaat	cactccgttc	1440
agcctgggtg	cgttgattgc	gctgtatgag	cacaaaatct	ttactcaggg	cgtgatcctg	1500
aacatcttca	ccttcgacca	gtggggcgtg	gaactgggta	aacagctggc	gaaccgtatt	1560
ctgccagagc	tgaaagatga	taaagaaatc	agcagccacg	atagctcgac	caatggtctg	1620
attaaccgct	ataaactgga	agtgctgttt	cagggtccgg	cgtggcgcgg	ttaa	1674

	<210> 1 <211> 5 <212> F <213> 5	649 PRT	ncia ar	tificial													
5	<220> <223> F	Polipép	itido si	intético	o												
10	<400> 1	7															
10		Met 1	Lys	Asn	Ile	Asn 5	Pro	Thr	Gln	Thr	Ala 10	Ala	Trp	Gln	Ala	Leu 15	Gln
		Lys	His	Phe	Asp 20	Glu	Met	Lys	Asp	Val 25	Thr	Ile	Ala	Asp	Leu 30	Phe	Ala
		Lys	Asp	Gly 35	Asp	Arg	Phe	Ser	Lys 40	Phe	Ser	Ala	Thr	Phe 45	Asp	Asp	Gln
		Met	Leu 50	Val	Asp	Tyr	Ser	Lys 55	Asn	Arg	Ile	Thr	Glu 60	Glu	Thr	Leu	Ala
		Lys 65	Leu	Gln	Asp	Leu	Ala 70	Lys	Glu	Cys	Asp	Leu 75	Ala	Gly	Ala	Ile	Lys 80
		Ser	Met	Phe	Ser	Gly 85	Glu	Lys	Ile	Asn	Arg 90	Thr	Glu	Asn	Arg	Ala 95	Val
		Leu	His	Val	Ala 100	Leu	Arg	Asn	Arg	Ser 105	Asn	Thr	Pro	Ile	Leu 110	Val	Asp
		Gly	Lys	Asp 115	Val	Met	Pro	Glu	Val 120	Asn	Ala	Val	Leu	Glu 125	Lys	Met	Lys
		Thr	Phe 130	Ser	Glu	Ala	Ile	Ile 135	Ser	Gly	Glu	Trp	Lys 140	Gly	Tyr	Thr	Gly
		Lys 145	Ala	Ile	Thr	Asp	Val 150	Val	Asn	Ile	Gly	Ile 155	Gly	Gly	Ser	Asp	Leu 160
		Gly	Pro	Tyr	Met	Val 165	Thr	Glu	Ala	Leu	Arg 170	Pro	Tyr	Lys	Asn	His 175	Leu

Asn Met His Phe Val Ser Asn Val Asp Gly Thr His Ile Ala Glu Val

			180					185					190		
Leu	Lys	Lys 195	Val	Asn	Pro	Glu	Thr 200	Thr	Leu	Phe	Leu	Val 205	Ala	Ser	Lys
Thr	Phe 210	Thr	Thr	Gln	Glu	Thr 215	Met	Thr	Asn	Ala	His 220	Ser	Ala	Arg	Asp
Trp 225	Phe	Leu	Lys	Ala	Ala 230	Gly	Asp	Glu	Lys	His 235	Val	Ala	Lys	His	Phe 240
Ala	Ala	Leu	Ser	Thr 245	Asn	Ala	Lys	Ala	Val 250	Gly	Glu	Phe	Gly	Ile 255	Asp
Thr	Ala	Asn	Met 260	Phe	Glu	Phe	Trp	Asp 265	Trp	Val	Gly	Gly	Arg 270	Tyr	Ser
Leu	Trp	Ser 275	Ala	Ile	Gly	Leu	Ser 280	Ile	Val	Leu	Ser	Ile 285	Gly	Phe	Asp
Asn	Phe 290	Val	Glu	Leu	Leu	Ser 295	Gly	Ala	His	Ala	Met 300	Asp	Lys	His	Phe
Ser 305	Thr	Thr	Pro	Ala	Glu 310	Lys	Asn	Leu	Pro	Val 315	Leu	Leu	Ala	Leu	11e 320
Gly	Ile	Trp	Tyr	Asn 325	Asn	Phe	Phe	Gly	Ala 330	Glu	Thr	Glu	Ala	Ile 335	Leu
Pro	Tyr	Asp	Gln 340	Tyr	Met	His	Arg	Phe 345	Ala	Ala	Tyr	Phe	Gln 350	Gln	Gly
Asn	Met	Glu 355	Ser	Asn	Gly	Lys	Tyr 360	Val	Asp	Arg	Asn	Gly 365	Asn	Val	Val
Asp	Tyr 370	Gln	Thr	Gly	Pro	Ile 375	Ile	Trp	Gly	Glu	Pro 380	Gly	Thr	Asn	Gly
Gln 385	His	Ala	Phe	Tyr	Gln 390	Leu	Ile	His	Gln	Gly 395	Thr	Lys	Met	Val	Pro 400
Cys	Asp	Phe	Ile	Ala 405	Pro	Ala	Ile	Thr	His 410	Asn	Pro	Leu	Ser	Asp 415	His
His	Gln	Lys	Leu 420	Leu	Ser	Asn	Phe	Phe 425	Ala	Gln	Thr	Glu	Ala 430	Leu	Ala

	Ph	e Gl	у Lу 43		r Ar	g Glu	ı Val	. Val 440		Gln	Glu	Tyr	Arg 445	Asp	Gln	Gly
	Ly	s As 45		o Al	a Thi	r Lei	1 Asp 455		Val	Val	Pro	Phe 460	Lys	Val	Phe	Glu
	G1 46	_	n Ar	g Pr	o Th	r Ası 470	n Ser	lle	Leu	Leu	Arg 475	Glu	Ile	Thr	Pro	Phe 480
	Se	r Le	u Gl	y Al	a Lei 48!		e Ala	Leu	Tyr	Glu 490	His	Lys	Ile	Phe	Thr 495	Gln
	Gl	y Va	1 I1	e Le		n Ile	∋ Phe	. Thr	Phe 505		Gln	Trp	Gly	Val 510	Glu	Leu
	G1	у Гу	s Gl 51		u Ala	a Ası	n Arg	7 Ile 520		Pro	Glu	Leu	Lys 525	Asp	Asp	Lys
	Gl	u I1 53		r Se	r His	s Asp	535		Thr	Asn	Gly	Leu 540	Ile	Asn	Arg	Tyr
	L у 54		a Tr	p Ar	g Gly	Y										
<210> 18 <211> 55 <212> PR <213> Se	T	ia arti	ficial													
<220> <223> Po	lipépti	do sin	ıtético													
<400> 18																
	Met 1	Lys	Asn	Ile	Asn 5	Pro	Thr	Gln	Thr	Ala 10	Ala	Trp	Gln	Ala	Leu 15	Gln
	Lys	His	Phe	Asp 20	Glu	Met	Lys	Asp	Val 25	Thr	Ile	Ala	Asp	Leu 30	Phe	Ala
	Lys	Asp	Gly 35	Asp	Arg	Phe	Ser	Lys 40	Phe	Ser	Ala	Thr	Phe 45	Asp	Asp	Gln
	Met	Leu 50	Val	Asp	Tyr	Ser	Lys 55	Asn	Arg	Ile	Thr	Glu 60	Glu	Thr	Leu	Ala
	Lys 65	Leu	Gln	Asp	Leu	Ala 70	Lys	Glu	Cys	Asp	Leu 75	Ala	Gly	Ala	Ile	Lys 80
	Ser	Mo+	Dhe	Sar	G1 v	Glu	Luc	Tle	Δer	Δτα	Thr	Gl 11	λen	۵ra	Δla	Val

5

10

				85					90					95	
Leu	His	Val	Ala 100	Leu	Arg	Asn	Arg	Ser 105	Asn	Thr	Pro	Leu	Glu 110	Val	Leu
Phe	Gln	Gly 115	Pro	Ile	Leu	Val	Asp 120	Gly	Lys	Asp	Val	Met 125	Pro	Glu	Val
Asn	Ala 130	Val	Leu	Glu	Lys	Met 135	Lys	Thr	Phe	Ser	Glu 140	Ala	Ile	Ile	Ser
Gly 145	Glu	Trp	Lys	Gly	Tyr 150	Thr	Gly	Lys	Ala	Ile 155	Thr	Asp	Val	Val	Asn 160
Ile	Gly	Ile	Gly	Gly 165	Ser	Asp	Leu	Gly	Pro 170	Tyr	Met	Val	Thr	Glu 175	Ala
Leu	Arg	Pro	Tyr 180	Lys	Asn	His	Leu	Asn 185	Met	His	Phe	Val	Ser 190	Asn	Val
Asp	Gly	Thr 195	His	Ile	Ala	Glu	Val 200	Leu	Lys	Lys	Val	Asn 205	Pro	Glu	Thr
Thr	Leu 210	Phe	Leu	Val	Ala	Ser 215	Lys	Thr	Phe	Thr	Thr 220	Gln	Glu	Thr	Met
Thr 225	Asn	Ala	His	Ser	Ala 230	Arg	Asp	Trp	Phe	Leu 235	Lys	Ala	Ala	Gly	Asp 240
Glu	Lys	His	Val	Ala 245	Lys	His	Phe	Ala	Ala 250	Leu	Ser	Thr	Asn	Ala 255	Lys
Ala	Val	Gly	Glu 260	Phe	Gly	Ile	Asp	Thr 265	Ala	Asn	Met	Phe	Glu 270	Phe	Trp
Asp	Trp	Val 275	Gly	Gly	Arg	Tyr	Ser 280	Leu	Trp	Ser	Ala	Ile 285	Gly	Leu	Ser
Ile	Val 290	Leu	Ser	Ile	Gly	Phe 295	Asp	Asn	Phe	Val	Glu 300	Leu	Leu	Ser	Gly
Ala 305	His	Ala	Met	Asp	Lys 310	His	Phe	Ser	Thr	Thr 315	Pro	Ala	Glu	Lys	Asn 320
Leu	Pro	Val	Leu	Leu 325	Ala	Leu	Ile	Gly	Ile 330	Trp	Tyr	Asn	Asn	Phe 335	Phe

Gly	Ala	Glu	Thr 340	Glu	Ala	Ile	Leu	Pro 345	Tyr	Asp	Gln	Tyr	Met 350	His	Arg
Phe	Ala	Ala 355	Tyr	Phe	Gln	Gln	Gly 360	Asn	Met	Glu	Ser	Asn 365	Gly	Lys	Tyr
Val	Asp 370	Arg	Asn	Gly	Asn	Val 375	Val	Asp	Tyr	Gln	Thr 380	Gly	Pro	Ile	Ile
Trp 385	Gly	Glu	Pro	Gly	Thr 390	Asn	Gly	Gln	His	Ala 395	Phe	Tyr	Gln	Leu	Ile 400
His	Gln	Gly	Thr	Lys 405	Met	Val	Pro	Cys	Asp 410	Phe	Ile	Ala	Pro	Ala 415	Ile
Thr	His	Asn	Pro 420	Leu	Ser	Asp	His	His 425	Gln	Lys	Leu	Leu	Ser 430	Asn	Phe
Phe	Ala	Gln 435	Thr	Glu	Ala	Leu	Ala 440	Phe	Gly	Lys	Ser	Arg 445	Glu	Val	Val
Glu	Gln 450	Glu	Tyr	Arg	Asp	Gln 455	Gly	Lys	Asp	Pro	Ala 460	Thr	Leu	Asp	Tyr
465					470					475			Asn		480
Leu	Leu	Arg	Glu	Ile 485	Thr	Pro	Phe	Ser	Leu 490	Gly	Ala	Leu	Ile	Ala 495	Leu
Tyr	Glu	His	Lys 500	Ile	Phe	Thr	Gln	Gly 505	Val	Ile	Leu	Asn	Ile 510	Phe	Thr
Phe	Asp	Gln 515	Trp	Gly	Val	Glu	Leu 520	Gly	Lys	Gln	Leu	Ala 525	Asn	Arg	Ile
	530					535					540		Asp	Ser	Ser
Thr 545	Asn	Gly	Leu	Ile	Asn 550	Arg	Tyr	Lys	Ala	Trp 555	Arg	Gly			

<210> 19 <211> 557

<212> PRT

<213> Secuencia artificial

5

<220> <223> Polipéptido sintético

<400> 19

Met 1	Lys	Asn	Ile	Asn 5	Pro	Thr	Gln	Thr	Ala 10	Ala	Trp	Gln	Ala	Leu 15	Gln
Lys	His	Phe	Asp 20	Glu	Met	Lys	Asp	Val 25	Thr	Ile	Ala	Asp	Leu 30	Phe	Ala
Lys	Asp	Gly 35	Asp	Arg	Phe	Ser	Lys 40	Phe	Ser	Ala	Thr	Phe 45	Asp	Asp	Gln
Met	Leu 50	Val	Asp	Tyr	Ser	Lys 55	Asn	Arg	Ile	Thr	Glu 60	Glu	Thr	Leu	Ala
Lys 65	Leu	Gln	Asp	Leu	Ala 70	Lys	Glu	Cys	Asp	Leu 75	Ala	Gly	Ala	Ile	Lys 80
Ser	Met	Phe	Ser	Gly 85	Glu	Lys	Ile	Asn	Arg 90	Thr	Glu	Asn	Arg	Ala 95	Val
Leu	His	Val	Ala 100	Leu	Arg	Asn	Arg	Ser 105	Asn	Thr	Pro	Ile	Leu 110	Glu	Val
Leu	Phe	Gln 115	Gly	Pro	Leu	Val	Asp 120	Gly	Lys	Asp	Val	Met 125	Pro	Glu	Val
Asn	Ala 130	Val	Leu	Glu	Lys	Met 135	Lys	Thr	Phe	Ser	Glu 140	Ala	Ile	Ile	Ser
Gly 145	Glu	Trp	Lys	Gly	Tyr 150	Thr	Gly	Lys	Ala	Ile 155	Thr	Asp	Val	Val	Asn 160
Ile	Gly	Ile	Gly	Gly 165	Ser	Asp	Leu	Gly	Pro 170	Tyr	Met	Val	Thr	Glu 175	Ala
Leu	Arg	Pro	Tyr 180	Lys	Asn	His	Leu	Asn 185	Met	His	Phe	Val	Ser 190	Asn	Val
Asp	Gly	Thr 195	His	Ile	Ala	Glu	Val 200	Leu	Lys	Lys	Val	Asn 205	Pro	Glu	Thr
Thr	Leu 210	Phe	Leu	Val	Ala	Ser 215	Lys	Thr	Phe	Thr	Thr 220	Gln	Glu	Thr	Met
Thr 225	Asn	Ala	His	Ser	Ala 230	Arg	Asp	Trp	Phe	Leu 235	Lys	Ala	Ala	Gly	Asp 240

Glu	Lys	His	Val	Ala 245	Lys	His	Phe	Ala	Ala 250	Leu	Ser	Thr	Asn	Ala 255	Lys
Ala	Val	Gly	Glu 260	Phe	Gly	Ile	Asp	Thr 265	Ala	Asn	Met	Phe	Glu 270	Phe	Trp
Asp	Trp	Val 275	Gly	Gly	Arg	Tyr	Ser 280	Leu	Trp	Ser	Ala	Ile 285	Gly	Leu	Ser
Ile	Val 290	Leu	Ser	Ile	Gly	Phe 295	Asp	Asn	Phe	Val	Glu 300	Leu	Leu	Ser	Gly
Ala 305	His	Ala	Met	Asp	Lys 310	His	Phe	Ser	Thr	Thr 315	Pro	Ala	Glu	Lys	As n 320
Leu	Pro	Val	Leu	Leu 325	Ala	Leu	Ile	Gly	11e 330	Trp	Tyr	Asn	Asn	Phe 335	Phe
Gly	Ala	Glu	Thr 340	Glu	Ala	Ile	Leu	Pro 345	Tyr	Asp	Gln	Tyr	Met 350	His	Arg
Phe	Ala	Ala 355	Tyr	Phe	Gln	Gln	Gly 360	Asn	Met	Glu	Ser	Asn 365	Gly	Lys	Tyr
Val	Asp 370	Arg	Asn	Gly	Asn	Val 375	Val	Asp	Tyr	Gln	Thr 380	Gly	Pro	Ile	Ile
Trp 385	Gly	Glu	Pro	Gly	Thr 390	Asn	Gly	Gln	His	Ala 395	Phe	Tyr	Gln	Leu	Ile 400
His	Gln	Gly	Thr	Lys 405	Met	Val	Pro		Asp 410		Ile	Ala	Pro	Ala 415	
Thr	His	Asn	Pro 420	Leu	Ser	Asp	His	His 425	Gln	Lys	Leu	Leu	Ser 430	Asn	Phe
Phe	Ala	Gln 435	Thr	Glu	Ala	Leu	Ala 440	Phe	Gly	Lys	Ser	Arg 445	Glu	Val	Val
Glu	Gln 450	Glu	Tyr	Arg	Asp	Gln 455	Gly	Lys	Asp	Pro	Ala 460	Thr	Leu	Asp	Tyr
Val 465	Val	Pro	Phe	Lys	Val 470	Phe	Glu	Gly	Asn	Arg 475	Pro	Thr	Asn	Ser	Ile 480
Leu	Leu	Arg	Glu	Ile 485	Thr	Pro	Phe	Ser	Leu 490	Gly	Ala	Leu	Ile	Ala 495	Leu

	Tyr	Glu	His	Lys 500	Ile	Phe	Thr	Gln	Gly 505	Val	Ile	Leu	Asn	Ile 510	Phe	Thr
	Phe	Asp	Gln 515	Trp	Gly	Val	Glu	Leu 520	Gly	Lys	Gln	Leu	Ala 525	Asn	Arg	Ile
	Leu	Pro 530	Glu	Leu	Lys	Asp	Asp 535	Lys	Glu	Ile	Ser	Ser 540	His	Asp	Ser	Ser
	Thr 545	Asn	Gly	Leu	Ile	Asn 550	Arg	Tyr	Lys	Ala	Trp 555	Arg	Gly			
<210> 2 <211> 5 <212> P <213> S	56 PRT	cia art	ificial													
<220> <223> P	olipép	tido sii	ntético	,												
<400> 2	0															
	Met 1	Lys	Asn	Ile	Asn 5	Pro	Thr	Gln	Thr	Ala 10	Ala	Trp	Gln	Ala	Leu 15	Gln
	Lys	His	Phe	Asp 20	Glu	Met	Lys	Asp	Val 25	Thr	Ile	Ala	Asp	Leu 30	Phe	Ala
	Lys	Asp	Gly 35	Asp	Arg	Phe	Ser	Lys 40	Phe	Ser	Ala	Thr	Phe 45	Asp	Asp	Gln
	Met	Leu 50	Val	Asp	Tyr	Ser	Lys 55	Asn	Arg	Ile	Thr	Glu 60	Glu	Thr	Leu	Ala
	Lys 65	Leu	Gln	Asp	Leu	A la 70	Lys	Glu	Cys	Asp	Leu 75	Ala	Gly	Ala	Ile	Lys 80
	Ser	Met	Phe	Ser	Gly 85	Glu	Lys	Ile	Asn	Arg 90	Thr	Glu	Asn	Arg	Ala 95	Val
	Leu	His	Val	Ala 100	Leu	Arg	Asn	Arg	Ser 105	Asn	Thr	Pro	Ile	Leu 110	Glu	Val
	Leu	Phe	Gln 115	Gly	Pro	Val	Asp	Gly 120	Lys	Asp	Val	Met	Pro 125	Glu	Val	Asn
	Ala	Val 130	Leu	Glu	Lys	Met	Lys 135	Thr	Phe	Ser	Glu	Ala 140	Ile	Ile	Ser	Gly

Glu 145	Trp	Lys	Gly	Tyr	Thr 150	Gly	Lys	Ala	Ile	Thr 155	Asp	Val	Val	Asn	Ile 160
Gly	Ile	Gly	Gly	Ser 165	Asp	Leu	Gly	Pro	Tyr 170	Met	Val	Thr	Glu	Ala 175	Leu
Arg	Pro	Tyr	Lys 180	Asn	His	Leu	Asn	Met 185	His	Phe	Val	Ser	Asn 190	Val	Asp
Gly	Thr	His 195	Ile	Ala	Glu	Val	Leu 200	Lys	Lys	Val	Asn	Pro 205	Glu	Thr	Thr
Leu	Phe 210	Leu	Val	Ala	Ser	Lys 215	Thr	Phe	Thr	Thr	Gln 220	Glu	Thr	Met	Thr
Asn 225	Ala	His	Ser	Ala	Arg 230	Asp	Trp	Phe	Leu	Lys 235	Ala	Ala	Gly	Asp	Glu 240
Lys	His	Val	Ala	Lys 245	His	Phe	Ala	Ala	Leu 250	Ser	Thr	Asn	Ala	Lys 255	Ala
Val	Gly	Glu	Phe 260	Gly	Ile	Asp	Thr	Ala 265	Asn	Met	Phe	Glu	Phe 270	Trp	Asp
Trp	Val	Gly 275	Gly	Arg	Tyr	Ser	Leu 280	Trp	Ser	Ala	Ile	Gly 285	Leu	Ser	Ile
Val	Leu 290	Ser	Ile	Gly	Phe	Asp 295	Asn	Phe	Val	Glu	Leu 300	Leu	Ser	Gly	Ala
His 305	Ala	Met	Asp	Lys	His 310	Phe	Ser	Thr	Thr	Pro 315	Ala	Glu	Lys	Asn	Leu 320
Pro	Val	Leu	Leu	Ala 325	Leu	Ile	Gly	Ile	Trp 330	Tyr	Asn	Asn	Phe	Phe 335	Gly
Ala	Glu	Thr	Glu 340	Ala	Ile	Leu	Pro	Tyr 345	Asp	Gln	Tyr	Met	His 350	Arg	Phe
Ala	Ala	Tyr 355	Phe	Gln	Gln	Gly	Asn 360	Met	Glu	Ser	Asn	Gly 365	Lys	Tyr	Val
Asp	Arg 370	Asn	Gly	Asn	Val	Val 375	Asp	Tyr	Gln	Thr	Gly 380	Pro	Ile	Ile	Trp
Gly 385	Glu	Pro	Gly	Thr	Asn 390	Gly	Gln	His	Ala	Phe 395	Tyr	Gln	Leu	Ile	His 400

	Gln	Gly	Thr	Lys	Met 405	Val	Pro	Cys	Asp	Phe 410	Ile	Ala	Pro	Ala	Ile 415	Thr
	His	Asn	Pro	Leu 420	Ser	Asp	His	His	Gln 425	Lys	Leu	Leu	Ser	Asn 430	Phe	Phe
	Ala	Gln	Thr 435	Glu	Ala	Leu	Ala	Phe 440	Gly	Lys	Ser	Arg	Glu 445	Val	Val	Glu
	Gln	Glu 450	Tyr	Arg	Asp	Gln	Gly 455	Lys	Asp	Pro	Ala	Thr 460	Leu	Asp	Tyr	Val
	Val 465	Pro	Phe	Lys	Val	Phe 470	Glu	Gly	Asn	Arg	Pro 475	Thr	Asn	Ser	Ile	Leu 480
	Leu	Arg	Glu	Ile	Thr 485	Pro	Phe	Ser	Leu	Gly 490	Ala	Leu	Ile	Ala	Leu 495	Tyr
	Glu	His	Lys	Ile 500	Phe	Thr	Gln	Gly	Val 505	Ile	Leu	Asn	Ile	Phe 510	Thr	Phe
	Asp	Gln	Trp 515	Gly	Val	Glu	Leu	Gly 520	Lys	Gln	Leu	Ala	Asn 525	Arg	Ile	Leu
	Pro	Glu 530	Leu	Lys	Asp	Asp	Lys 535	Glu	Ile	Ser	Ser	His 540	Asp	Ser	Ser	Thr
	Asn 545	Gly	Leu	Ile	Asn	A rg 550	Tyr	Lys	Ala	Trp	A rg 555	Gly				
<210> 2 <211> 5 <212> P <213> S	57 RT	cia art	ificial													
<220> <223> P	olipép	tido siı	ntético	1												
<400> 2°	1															
	Met 1	Lys	Asn	Ile	Asn 5	Pro	Thr	Gln	Thr	Ala 10	Ala	Trp	Gln	Ala	Leu 15	Gln
	Lys	His	Phe	Asp 20	Glu	Met	Lys	Asp	Val 25	Thr	Ile	Ala	Asp	Leu 30	Phe	Ala
	Lys	Asp	Gly 35	Asp	Arg	Phe	Ser	Lys 40	Phe	Ser	Ala	Thr	Phe 45	Asp	Asp	Gln

Met Leu Val Asp Tyr Ser Lys Asn Arg Ile Thr Glu Glu Thr Leu Ala 55 50 Lys Leu Gln Asp Leu Ala Lys Glu Cys Asp Leu Ala Gly Ala Ile Lys 70 Ser Met Phe Ser Gly Glu Lys Ile Asn Arg Thr Glu Asn Arg Ala Val Leu His Val Ala Leu Arg Asn Arg Ser Asn Thr Pro Ile Leu Val Asp 105 Gly Lys Asp Val Met Pro Glu Val Asn Ala Val Leu Glu Lys Met Lys 120 Thr Phe Ser Glu Ala Ile Ile Ser Gly Glu Leu Glu Val Leu Phe Gln 135 140 Gly Pro Trp Lys Gly Tyr Thr Gly Lys Ala Ile Thr Asp Val Val Asn 150 Ile Gly Ile Gly Gly Ser Asp Leu Gly Pro Tyr Met Val Thr Glu Ala 170 Leu Arg Pro Tyr Lys Asn His Leu Asn Met His Phe Val Ser Asn Val 185 Asp Gly Thr His Ile Ala Glu Val Leu Lys Lys Val Asn Pro Glu Thr Thr Leu Phe Leu Val Ala Ser Lys Thr Phe Thr Thr Gln Glu Thr Met 210 215 220 Thr Asn Ala His Ser Ala Arg Asp Trp Phe Leu Lys Ala Ala Gly Asp 225 230 235 Glu Lys His Val Ala Lys His Phe Ala Ala Leu Ser Thr Asn Ala Lys 245 250 255 Ala Val Gly Glu Phe Gly Ile Asp Thr Ala Asn Met Phe Glu Phe Trp 260 265 270 Asp Trp Val Gly Gly Arg Tyr Ser Leu Trp Ser Ala Ile Gly Leu Ser Ile Val Leu Ser Ile Gly Phe Asp Asn Phe Val Glu Leu Leu Ser Gly 290 295

Ala His	a Ala	Met	Asp	Lys 310	His	Phe	Ser	Thr	Thr 315	Pro	Ala	Glu	Lys	Asn 320
Leu Pro	Val	Leu	Leu 325	Ala	Leu	Ile	Gly	Ile 330	Trp	Tyr	Asn	Asn	Phe 335	Phe
Gly Ala	Glu	Thr 340	Glu	Ala	Ile	Leu	Pro 345	Tyr	Asp	Gln	Tyr	Met 350	His	Arg
Phe Ala	Ala 355	Tyr	Phe	Gln	Gln	Gly 360	Asn	Met	Glu	Ser	Asn 365	Gly	Lys	Tyr
Val Asp 370	_	Asn	Gly	Asn	Val 375	Val	Asp	Tyr	Gln	Thr 380	Gly	Pro	Ile	Ile
Trp Gly 385	, Glu	Pro	Gly	Thr 390	Asn	Gly	Gln	His	Ala 395	Phe	Tyr	Gln	Leu	Ile 400
His Glr	Gly	Thr	Lys 405	Met	Val	Pro	Cys	Asp 410	Phe	Ile	Ala	Pro	Ala 415	Ile
Thr His	. Asn	Pro 420	Leu	Ser	Asp	His	His 425	Gln	Lys	Leu	Leu	Ser 430	Asn	Phe
Phe Ala	Gln 435		Glu	Ala	Leu	Ala 440	Phe	Gly	Lys	Ser	Arg 445	Glu	Val	Val
Glu Glr 450		Tyr	Arg	Asp	Gln 455	Gly	Lys	Asp	Pro	Ala 460	Thr	Leu	Asp	Tyr
Val Val 465	. Pro	Phe	Lys	Val 470	Phe	Glu	Gly	Asn	Arg 475	Pro	Thr	Asn	Ser	Ile 480
Leu Lei	Arg	Glu	Ile 485	Thr	Pro	Phe	Ser	Leu 490	Gly	Ala	Leu	Ile	Ala 495	Leu
Tyr Glu	His	Lys 500	Ile	Phe	Thr	Gln	Gly 505	Val	Ile	Leu	Asn	Ile 510	Phe	Thr
Phe Asp	Gln 515	Trp	Gly	Val	Glu	Leu 520	Gly	Lys	Gln	Leu	Ala 525	Asn	Arg	Ile
Leu Pro		Leu	Lys	Asp	As p 535	Lys	Glu	Ile	Ser	Ser 540	His	Asp	Ser	Ser
Thr Asr	Gly	Leu	Ile	Asn 550	Arg	Tyr	Lys	Ala	Trp 555	Arg	Gly			

E	<210> 2 <211> 5 <212> F <213> 5	557 PRT	ıcia ar	tificial													
5	<220> <223> F	Polipép	tido si	ntético)												
10	<400> 2	22															
		Met 1	Lys	Asn	Ile	Asn 5	Pro	Thr	Gln	Thr	Ala 10	Ala	Trp	Gln	Ala	Leu 15	Gln
		Lys	His	Phe	Asp 20	Glu	Met	Lys	Asp	Val 25	Thr	Ile	Ala	Asp	Leu 30	Phe	Ala
		Lys	Asp	Gly 35	Asp	Arg	Phe	Ser	Lys 40	Phe	Ser	Ala	Thr	Phe 45	Asp	Asp	Gln
		Met	Leu 50	Val	Asp	Tyr	Ser	Lys 55	Asn	Arg	Ile	Thr	Glu 60	Glu	Thr	Leu	Ala
		Lys 65	Leu	Gln	Asp	Leu	Ala 70	Lys	Glu	Cys	Asp	Leu 75	Ala	Gly	Ala	Ile	Lys 80
		Ser	Met	Phe	Ser	Gly 85	Glu	Lys	Ile	Asn	Arg 90	Thr	Glu	Asn	Arg	Ala 95	Val
		Leu	His	Val	Ala 100	Leu	Arg	Asn	Arg	Ser 105	Asn	Thr	Pro	Ile	Leu 110	Val	Asp
		Gly	Lys	Asp 115	Val	Met	Pro	Glu	Val 120	Asn	Ala	Val	Leu	Glu 125	Lys	Met	Lys
		Thr	Phe 130	Ser	Glu	Ala	Ile	Ile 135	Ser	Gly	Glu	Trp	Lys 140	Gly	Tyr	Thr	Gly
		Lys 145	Ala	Ile	Thr	Asp	Val 150	Val	Asn	Ile	Gly	Ile 155	Gly	Gly	Ser	Asp	Leu 160
		Gly	Pro	Tyr	Met	Val 165	Thr	Glu	Ala	Leu	Arg 170	Pro	Tyr	Lys	Asn	His 175	Leu
		Asn	Met	His	Phe 180	Val	Ser	Asn	Val	Asp 185	Gly	Thr	His	Ile	Ala 190	Glu	Val
		Leu	Lys	Lys 195	Val	Asn	Pro	Glu	Thr 200	Thr	Leu	Phe	Leu	Val 205	Ala	Ser	Lys

	Thr	Phe 210	Thr	Thr	Gln	Glu	Thr 215	Met	Thr	Asn	Ala	His 220	Ser	Ala	Arg	Asp
	Trp 225	Phe	Leu	Lys	Ala	Ala 230	Gly	Asp	Glu	Lys	His 235	Val	Ala	Lys	His	Phe 240
	Ala	Ala	Leu	Ser	Thr 245	Asn	Ala	Lys	Ala	Val 250	Gly	Glu	Phe	Gly	Ile 255	Asp
	Thr	Ala	Asn	Met 260	Phe	Glu	Phe	Trp	Asp 265	Trp	Val	Gly	Gly	Arg 270	Tyr	Ser
	Leu	Trp	Ser 275	Ala	Ile	Gly	Leu	Ser 280	Ile	Val	Leu	Ser	Ile 285	Gly	Phe	Asp
	Asn	Phe 290	Val	Glu	Leu	Leu	Ser 295	Gly	Ala	His	Ala	Met 300	Asp	Lys	His	Phe
	Ser 305	Thr	Thr	Pro	Ala	Glu 310	Lys	Asn	Leu	Pro	Val 315	Leu	Leu	Ala	Leu	Ile 320
1	Gly	Ile	Trp	Tyr	Asn 325	Asn	Phe	Phe	Gly	A la 330	Glu	Thr	Glu	Ala	Ile 335	Leu
	Pro	Tyr	Asp	Gln 340	Tyr	Met	His	Arg	Phe 345	Ala	Ala	Tyr	Phe	Gln 350	Gln	Gly
•	Asn	Met	Glu 355	Ser	Asn	Gly	Lys	Tyr 360	Val	Asp	Arg	Asn	Gly 365	Asn	Val	Val
	Asp	Tyr 370	Gln	Thr	Gly	Pro	Ile 375	Ile	Trp	Gly	Glu	Pro 380	Gly	Thr	Asn	Gly
	Gln 385	His	Ala	Phe	Tyr	Gln 390	Leu	Ile	His	Gln	Gly 395	Thr	Lys	Met	Val	Pro 400
1	Cys	Asp	Phe	Ile	Ala 405	Pro	Ala	Ile	Thr	His 410	Leu	Glu	Val	Leu	Phe 415	Gln
	Gly	Pro	Asn	Pro 420	Leu	Ser	Asp	His	His 425	Gln	Lys	Leu	Leu	Ser 430	Asn	Phe
	Phe	Ala	Gln 435	Thr	Glu	Ala	Leu	Ala 440	Phe	Gly	Lys	Ser	Arg 445	Glu	Val	Val
1	Glu	Gln 450	Glu	Tyr	Arg	Asp	Gln 455	Gly	Lys	Asp	Pro	Ala 460	Thr	Leu	Asp	Tyr

	Val 465	Val	Pro	Phe	Lys	Val 470	Phe	Glu	Gly	Asn	Arg 475	Pro	Thr	Asn	Ser	Ile 480
	Leu	Leu	Arg	Glu	Ile 485	Thr	Pro	Phe	Ser	Leu 490	Gly	Ala	Leu	Ile	Ala 495	Leu
	Tyr	Glu	His	Lys 500	Ile	Phe	Thr	Gln	Gly 505	Val	Ile	Leu	Asn	Ile 510	Phe	Thr
	Phe	Asp	Gln 515	Trp	Gly	Val	Glu	Leu 520	Gly	Lys	Gln	Leu	Ala 525	Asn	Arg	Ile
	Leu	Pro 530	Glu	Leu	Lys	Asp	Asp 535	Lys	Glu	Ile	Ser	Ser 540	His	Asp	Ser	Ser
	Thr 545	Asn	Gly	Leu	Ile	A sn 550	Arg	Tyr	Lys	Ala	Trp 555	Arg	Gly			
<210> 2 <211> 5 <212> P <213> S	56 RT	cia art	ificial													
<220> <223> F																
<400> 2	3															
			Asn		Asn 5	Pro	Thr	Gln	Thr	Ala 10	Ala	Trp	Gln	Ala	Leu 15	Gln
	Met 1	Lys		Ile	5					10					15	
	Met 1 Lys	Lys His	Asn	Ile Asp 20	5 Glu	Met	Lys	Asp	Val 25	10 Thr	Ile	Ala	Asp	Leu 30	15 Phe	Ala
	Met 1 Lys	Lys His Asp	Asn Phe Gly	Ile Asp 20	5 Glu Arg	Met Phe	Lys Ser	Asp Lys 40	Val 25 Phe	10 Thr Ser	Ile Ala	Ala	Asp Phe 45	Leu 30 Asp	15 Phe Asp	A la Gln
	Met 1 Lys Lys	Lys His Asp Leu 50	Asn Phe Gly 35	Ile Asp 20 Asp	5 Glu Arg Tyr	Met Phe Ser	Lys Ser Lys 55	Asp Lys 40 Asn	Val 25 Phe Arg	10 Thr Ser	Ile Ala Thr	Ala Thr Glu 60	Asp Phe 45 Glu	Leu 30 Asp	15 Phe Asp Leu	Ala Gln Ala
	Met 1 Lys Lys Met	Lys His Asp Leu 50	Asn Phe Gly 35 Val	Ile Asp 20 Asp Asp	5 Glu Arg Tyr Leu	Met Phe Ser Ala 70	Lys Ser Lys 55	Asp Lys 40 Asn Glu	Val 25 Phe Arg	10 Thr Ser Ile	Ile Ala Thr Leu 75	Ala Thr Glu 60	Asp Phe 45 Glu	Leu 30 Asp Thr	15 Phe Asp Leu Ile	Ala Gln Ala Lys 80

Gly	Lys	Asp 115	Val	Met	Pro	Glu	Val 120	Asn	Ala	Val	Leu	Glu 125	Lys	Met	Lys
Thr	Phe 130	Ser	Glu	Ala	Ile	Ile 135	Ser	Gly	Glu	Trp	Lys 140	Gly	Tyr	Thr	Gly
Lys 145	Ala	Ile	Thr	Asp	Val 150	Val	Asn	Ile	Gly	Ile 155	Gly	Gly	Ser	Asp	Leu 160
Gly	Pro	Tyr	Met	Val 165	Thr	Glu	Ala	Leu	Arg 170	Pro	Tyr	Lys	Asn	His 175	Leu
Asn	Met	His	Phe 180	Val	Ser	Asn	Val	Asp 185	Gly	Thr	His	Ile	Ala 190	Glu	Val
Leu	Lys	Lys 195	Val	Asn	Pro	Glu	Thr 200	Thr	Leu	Phe	Leu	Val 205	Ala	Ser	Lys
Thr	Phe 210	Thr	Thr	Gln	Glu	Thr 215	Met	Thr	Asn	Ala	His 220	Ser	Ala	Arg	Asp
Trp 225	Phe	Leu	Lys	Ala	Ala 230	Gly	Asp	Glu	Lys	His 235	Val	Ala	Lys	His	Phe 240
Ala	Ala	Leu	Ser	Thr 245	Asn	Ala	Lys	Ala	Val 250	Gly	Glu	Phe	Gly	Ile 255	Asp
Thr	Ala	Asn	Met 260	Phe	Glu	Phe	Trp	Asp 265	Trp	Val	Gly	Gly	Arg 270	Tyr	Ser
Leu	Trp	Ser 275	Ala	Ile	Gly	Leu	Ser 280	Ile	Val	Leu	Ser	Ile 285	Gly	Phe	Asp
Asn	Phe 290	Val	Glu	Leu	Leu	Ser 295	Gly	Ala	His	Ala	Met 300	Asp	Lys	His	Phe
Ser 305	Thr	Thr	Pro	Ala	Glu 310	Lys	Asn	Leu	Pro	Val 315	Leu	Leu	Ala	Leu	11e 320
Gly	Ile	Trp	Tyr	Asn 325	Asn	Phe	Phe	Gly	Ala 330	Glu	Thr	Glu	Ala	Ile 335	Leu
Pro	Tyr	Asp	Gln 340	Tyr	Met	His	Arg	Phe 345	Ala	Ala	Tyr	Phe	Gln 350	Gln	Gly
Asn	Met	Glu 355	Ser	Asn	Gly	Lys	Tyr 360	Val	Asp	Arg	Asn	Gly 365	Asn	Val	Val

		Asp	Tyr 370	Gln	Thr	Gly	Pro	Ile 375	Ile	Trp	Gly	Glu	Pro 380	Gly	Thr	Asn	Gly
		Gln 385	His	Ala	Phe	Tyr	Gln 390	Leu	Ile	His	Gln	Gly 395	Thr	Lys	Met	Val	Pro 400
		Cys	Asp	Phe	Ile	Ala 405	Pro	Ala	Ile	Thr	His 410	Asn	Pro	Leu	Ser	Asp 415	His
		His	Gln	Lys	Leu 420	Leu	Ser	Asn	Phe	Phe 425	Ala	Gln	Thr	Glu	Ala 430	Leu	Ala
		Phe	Gly	Lys 435	Ser	Arg	Glu	Val	Val 440	Glu	Gln	Glu	Tyr	Arg 445	Asp	Gln	Gly
		Lys	Asp 450	Pro	Ala	Thr	Leu	Asp 455	Tyr	Val	Val	Pro	Phe 460	Lys	Val	Phe	Glu
		Gly 465	Asn	Arg	Pro	Thr	Asn 470	Ser	Ile	Leu	Leu	Arg 475	Glu	Ile	Thr	Pro	Phe 480
		Ser	Leu	Gly	Ala	Leu 485	Ile	Ala	Leu	Tyr	Glu 490	His	Lys	Ile	Phe	Thr 495	Gln
		Gly	Val	Ile	Leu 500	Asn	Ile	Phe	Thr	Phe 505	Asp	Gln	Trp	Gly	Val 510	Glu	Leu
		Gly	Lys	Gln 515	Leu	Ala	Asn	Arg	Ile 520	Leu	Pro	Glu	Leu	Glu 525	Val	Leu	Phe
		Gln	Gly 530	Pro	Lys	Asp	Asp	Lys 535	Glu	Ile	Ser	Ser	His 540	Asp	Ser	Ser	Thr
		Asn 545	Gly	Leu	Ile	Asn	Arg 550	Tyr	Lys	Ala	Trp	A rg 555	Gly				
5	<210> 2 <211> 5 <212> P <213> S	57 PRT	cia ar	tificial													
40	<220> <223> P	olipép	tido si	ntético)												
10	<400> 2	4															
		Met 1	Lys	Asn	Ile	Asn 5	Pro	Thr	Gln	Thr	Ala 10	Ala	Trp	Gln	Ala	Leu 15	Gln

Lys	His	Phe	Asp 20	Glu	Met	Lys	Asp	Val 25	Thr	Ile	Ala	Asp	Leu 30	Phe	Ala
Lys	Asp	Gly 35	Asp	Arg	Phe	Ser	Lys 40	Phe	Ser	Ala	Thr	Phe 45	Asp	Asp	Gln
Met	Leu 50	Val	Asp	Tyr	Ser	Lys 55	Asn	Arg	Ile	Thr	Glu 60	Glu	Thr	Leu	Ala
Lys 65	Leu	Gln	Asp	Leu	Ala 70	Lys	Glu	Cys	Asp	Leu 75	Ala	Gly	Ala	Ile	Lys 80
Ser	Met	Phe	Ser	Gly 85	Glu	Lys	Ile	Asn	Arg 90	Thr	Glu	Asn	Arg	Ala 95	Val
Leu	His	Val	Ala 100	Leu	Arg	Asn	Arg	Ser 105	Asn	Thr	Pro	Ile	Leu 110	Val	Asp
Gly	Lys	Asp 115	Val	Met	Pro	Glu	Val 120	Asn	Ala	Val	Leu	Glu 125	Lys	Met	Lys
Thr	Phe 130	Ser	Glu	Ala	Ile	Ile 135	Ser	Gly	Glu	Trp	Lys 140	Gly	Tyr	Thr	Gly
Lys 145	Ala	Ile	Thr	Asp	Val 150	Val	Asn	Ile	Gly	Ile 155	Gly	Gly	Ser	Asp	Leu 160
Gly	Pro	Tyr	Met	Val 165	Thr	Glu	Ala	Leu	Arg 170	Pro	Tyr	Lys	Asn	His 175	Leu
Asn	Met	His	Phe 180	Val	Ser	Asn	Val	Asp 185	Gly	Thr	His	Ile	Ala 190	Glu	Val
Leu	Lys	Lys 195	Val	Asn	Pro	Glu	Thr 200	Thr	Leu	Phe	Leu	Val 205	Ala	Ser	Lys
Thr	Phe 210	Thr	Thr	Gln	Glu	Thr 215	Met	Thr	Asn	Ala	His 220	Ser	Ala	Arg	Asp
Trp 225	Phe	Leu	Lys	Ala	Ala 230	Gly	Asp	Glu	Lys	His 235	Val	Ala	Lys	His	Phe 240
Ala	Ala	Leu	Ser	Thr 245	Asn	Ala	Lys	Ala	Val 250	Gly	Glu	Phe	Gly	Ile 255	Asp
Thr	Ala	Asn	Met 260		Glu	Phe	Trp	Asp		Val	Gly	Gly	Arg	Tyr	Ser

Leu	Trp	Ser 275	Ala	Ile	Gly	Leu	Ser 280	Ile	Val	Leu	Ser	Ile 285	Gly	Phe	Asp
Asn	Phe 290	Val	Glu	Leu	Leu	Ser 295	Gly	Ala	His	Ala	Met 300	Asp	Lys	His	Phe
Ser 305	Thr	Thr	Pro	Ala	Glu 310	Lys	Asn	Leu	Pro	Val 315	Leu	Leu	Ala	Leu	Ile 320
Gly	Ile	Trp	Tyr	Asn 325	Asn	Phe	Phe	Gly	Ala 330	Glu	Thr	Glu	Ala	Ile 335	Leu
Pro	Tyr	Asp	Gln 340	Tyr	Met	His	Arg	Phe 345	Ala	Ala	Tyr	Phe	Gln 350	Gln	Gly
Asn	Met	Glu 355	Ser	Asn	Gly	Lys	Tyr 360	Val	Asp	Arg	Asn	Gly 365	Asn	Val	Val
Asp	Tyr 370	Gln	Thr	Gly	Pro	Ile 375	Ile	Trp	Gly	Glu	Pro 380	Gly	Thr	Asn	Gly
Gln 385	His	Ala	Phe	Tyr	Gln 390	Leu	Ile	His	Gln	Gly 395	Thr	Lys	Met	Val	Pro 400
Cys	Asp	Phe	Ile	Ala 405	Pro	Ala	Ile	Thr	His 410	Asn	Pro	Leu	Ser	Asp 415	His
His	Gln	Lys	Leu 420	Leu	Ser	Asn	Phe	Phe 425	Ala	Gln	Thr	Glu	Ala 430	Leu	Ala
Phe	Gly	Lys 435	Ser	Arg	Glu	Val	Val 440	Glu	Gln	Glu	Tyr	Arg 445	Asp	Gln	Gly
Lys	Asp 450	Pro	Ala	Thr	Leu	Asp 455	Tyr	Val	Val	Pro	Phe 460	Lys	Val	Phe	Glu
Gly 465	Asn	Arg	Pro	Thr	Asn 4 70	Ser	Ile	Leu	Leu	Arg 475	Glu	Ile	Thr	Pro	Phe 480
Ser	Leu	Gly	Ala	Leu 485	Ile	Ala	Leu	Tyr	Glu 490	His	Lys	Ile	Phe	Thr 495	Gln
Gly	Val	Ile	Leu 500	Asn	Ile	Phe	Thr	Phe 505	Asp	Gln	Trp	Gly	Val 510	Glu	Leu
Gly	Lys	Gln	Leu	Ala	Asn	Arg	Ile	Leu	Pro	Glu	Leu	Lys	Leu	Glu	Val

				515					520					525			
		Leu	Phe 530	Gln	Gly	Pro	Asp	Asp 535	Lys	Glu	Ile	Ser	Ser 540	His	Asp	Ser	Ser
		Thr 545	Asn	Gly	Leu	Ile	A sn 550	Arg	Tyr	Lys	Ala	Trp 555	Arg	Gly			
5	<210> 25 <211> 557 <212> PRT <213> Secur	encia	artific	ial													
40	<220> <223> Polipe	éptido	sinté	tico													
10	<400> 25																
		Met 1	Lys	Asn	Ile	Asn 5	Pro	Thr	Gln	Thr	Ala 10	Ala	Trp	Gln	Ala	Leu 15	Gln
		Lys	His	Phe	Asp 20	Glu	Met	Lys	Asp	Val 25	Thr	Ile	Ala	Asp	Leu 30	Phe	Ala
		Lys	Asp	Gly 35	Asp	Arg	Phe	Ser	Lys 40	Phe	Ser	Ala	Thr	Phe 45	Asp	Asp	Gln
		Met	Leu 50	Val	Asp	Tyr	Ser	Lys 55	Asn	Arg	Ile	Thr	Glu 60	Glu	Thr	Leu	Ala
		Lys 65	Leu	Gln	Asp	Leu	Ala 70	Lys	Glu	Cys	Asp	Leu 75	Ala	Gly	Ala	Ile	Lys 80
		Ser	Met	Phe	Ser	Gly 85	Glu	Lys	Ile	Asn	Arg 90	Thr	Glu	Asn	Arg	Ala 95	Val
		Leu	His	Val	Ala 100	Leu	Arg	Asn	Arg	Ser 105	Asn	Thr	Pro	Ile	Leu 110	Val	Asp
		Gly	Lys	Asp 115	Val	Met	Pro	Glu	Val 120	Asn	Ala	Val	Leu	Glu 125	Lys	Met	Lys
		Thr	Phe 130	Ser	Glu	Ala	Ile	Ile 135	Ser	Gly	Glu	Trp	Lys 140	Gly	Tyr	Thr	Gly
		Lys 145	Ala	Ile	Thr	Asp	Val 150	Val	Asn	Ile	Gly	Ile 155	Gly	Gly	Ser	Asp	Leu 160
		Gly	Pro	Tyr	Met	Val 165	Thr	Glu	Ala	Leu	Arg 170	Pro	Tyr	Lys	Asn	His 175	Leu

Asn	Met	His	Phe 180	Val	Ser	Asn	Val	Asp 185	Gly	Thr	His	Ile	Ala 190	Glu	Val
Leu	Lys	Lys 195	Val	Asn	Pro	Glu	Thr 200	Thr	Leu	Phe	Leu	Val 205	Ala	Ser	Lys
Thr	Phe 210	Thr	Thr	Gln	Glu	Thr 215	Met	Thr	Asn	Ala	His 220	Ser	Ala	Arg	Asp
Trp 225	Phe	Leu	Lys	Ala	Ala 230	Gly	Asp	Glu	Lys	His 235	Val	Ala	Lys	His	Phe 240
Ala	Ala	Leu	Ser	Thr 245	Asn	Ala	Lys	Ala	Val 250	Gly	Glu	Phe	Gly	Ile 255	Asp
Thr	Ala	Asn	Met 260	Phe	Glu	Phe	Trp	Asp 265	Trp	Val	Gly	Gly	Arg 270	Tyr	Ser
Leu	Trp	Ser 275	Ala	Ile	Gly	Leu	Ser 280	Ile	Val	Leu	Ser	Ile 285	Gly	Phe	Asp
Asn	Phe 290	Val	Glu	Leu	Leu	Ser 295	Gly	Ala	His	Ala	Met 300	Asp	Lys	His	Phe
Ser 305	Thr	Thr	Pro	Ala	Glu 310	Lys	Asn	Leu	Pro	Val 315	Leu	Leu	Ala	Leu	Ile 320
Gly	Ile	Trp	Tyr	Asn 325	Asn	Phe	Phe	Gly	Ala 330	Glu	Thr	Glu	Ala	11e 335	Leu
Pro	Tyr	_	Gln 340	_	Met	His	_	Phe 345		Ala	Tyr		Gln 350		Gly
Asn	Met	Glu 355	Ser	Asn	Gly	Lys	Tyr 360	Val	Asp	Arg	Asn	Gly 365	Asn	Val	Val
Asp	Tyr 370	Gln	Thr	Gly	Pro	Ile 375	Ile	Trp	Gly	Glu	Pro 380	Gly	Thr	Asn	Gly
Gln 385	His	Ala	Phe	Tyr	Gln 390	Leu	Ile	His	Gln	Gly 395	Thr	Lys	Met	Val	Pro 400
Cys	Asp	Phe	Ile	Ala 405	Pro	Ala	Ile	Thr	His 410	Asn	Pro	Leu	Ser	Asp 415	His
His	Gln	Lys	Leu	Leu	Ser	Asn	Phe	Phe	Ala	Gln	Thr	Glu	Ala	Leu	Ala

				420					425					430		
	Phe	Gly	Lys 435		Arg	Glu	Val	Val 440	Glu	Gln	Glu	Tyr	Arg 445	Asp	Gln	Gly
	Lys	Asp 450		Ala	Thr	Leu	Asp 455	Tyr	Val	Val	Pro	Phe 460	Lys	Val	Phe	Glu
	Gly 465		Arg	Pro	Thr	Asn 470	Ser	Ile	Leu	Leu	Arg 475	Glu	Ile	Thr	Pro	Phe 480
	Ser	Leu	Gly	Ala	Leu 485	Ile	Ala	Leu	Tyr	Glu 490	His	Lys	Ile	Phe	Thr 495	Gln
	Gly	Val	Ile	Leu 500	Asn	Ile	Phe	Thr	Phe 505	Asp	Gln	Trp	Gly	Val 510	Glu	Leu
	Gly	Lys	Gln 515		Ala	Asn	Arg	Ile 520	Leu	Pro	Glu	Leu	Lys 525	Asp	Leu	Glu
	Val	Leu 530	Phe	Gln	Gly	Pro	Asp 535	Lys	Glu	Ile	Ser	Ser 540	His	Asp	Ser	Ser
	Thr 545		Gly	Leu	Ile	Asn 550	Arg	Tyr	Lys	Ala	Trp 555	Arg	Gly			
<210> 26 <211> 557 <212> PR1 <213> Sec	Ī	a artifi	cial													
<220> <223> Poli																
<400> 26																
	Met 1	Lys	Asn	Ile	Asn 5	Pro	Thr	Gln	Thr	Ala 10	Ala	Trp	Gln	Ala	Leu 15	Gln
	Lys	His	Phe	Asp 20	Glu	Met	Lys	Asp	Val 25	Thr	Ile	Ala	Asp	Leu 30	Phe	Ala
	Lys	Asp	Gly 35	Asp	Arg	Phe	Ser	Lys 40	Phe	Ser	Ala	Thr	Phe 45	Asp	Asp	Gln
	Met	Leu 50	Val	Asp	Tyr	Ser	Lys 55	Asn	Arg	Ile	Thr	Glu 60	Glu	Thr	Leu	Ala
	Lys 65	Leu	Gln	Asp	Leu	Ala 70	Lys	Glu	Cys	Asp	Leu 75	Ala	Gly	Ala	Ile	Lys 80

5

10

5	Ser	Met	Phe	Ser	Gly 85	Glu	Lys	Ile	Asn	Arg 90	Thr	Glu	Asn	Arg	Ala 95	Val
1	Leu	His	Val	Ala 100	Leu	Arg	Asn	Arg	Ser 105	Asn	Thr	Pro	Ile	Leu 110	Val	Asp
(Gly	Lys	Asp 115	Val	Met	Pro	Glu	Val 120	Asn	Ala	Val	Leu	Glu 125	Lys	Met	Lys
7	Thr	Phe 130	Ser	Glu	Ala	Ile	Ile 135	Ser	Gly	Glu	Trp	Lys 140	Gly	Tyr	Thr	Gly
	Lys 145	Ala	Ile	Thr	Asp	Val 150	Val	Asn	Ile	Gly	Ile 155	Gly	Gly	Ser	Asp	Leu 160
(Gly	Pro	Tyr	Met	Val 165	Thr	Glu	Ala	Leu	A rg 170	Pro	Tyr	Lys	Asn	His 175	Leu
2	Asn	Met	His	Phe 180	Val	Ser	Asn	Val	Asp 185	Gly	Thr	His	Ile	Ala 190	Glu	Val
]	Leu	Lys	Lys 195	Val	Asn	Pro	Glu	Thr 200	Thr	Leu	Phe	Leu	Val 205	Ala	Ser	Lys
7	Thr	Phe 210	Thr	Thr	Gln	Glu	Thr 215	Met	Thr	Asn	Ala	His 220	Ser	Ala	Arg	Asp
	Frp 225	Phe	Leu	Lys	Ala	Ala 230	Gly	Asp	Glu	Lys	His 235	Val	Ala	Lys	His	Phe 240
2	Ala	Ala	Leu	Ser	Thr 245	Asn	Ala	Lys	Ala	Val 250	Gly	Glu	Phe	Gly	Ile 255	Asp
7	Thr	Ala	Asn	Met 260	Phe	Glu	Phe	Trp	Asp 265	Trp	Val	Gly	Gly	Arg 270	Tyr	Ser
]	Leu	Trp	Ser 275	Ala	Ile	Gly	Leu	Ser 280	Ile	Val	Leu	Ser	Ile 285	Gly	Phe	Asp
2	Asn	Phe 290	Val	Glu	Leu	Leu	Ser 295	Gly	Ala	His	Ala	Met 300	Asp	Lys	His	Phe
	Ser 305	Thr	Thr	Pro	Ala	Glu 310	Lys	Asn	Leu	Pro	Val 315	Leu	Leu	Ala	Leu	Ile 320
,	21	T1~	Ф~~	Ттт	7 c.~	7 .c.∽	Dha	Dha	G1	7a 7 -	G1	Th~	G1 ···	7.1 ~	T1.	Lor

					325					330					335	
	Pro	Tyr	Asp	Gln 340	Tyr	Met	His	Arg	Phe 345	Ala	Ala	Tyr	Phe	Gln 350	Gln	Gly
	Asn	Met	Glu 355	Ser	Asn	Gly	Lys	Tyr 360	Val	Asp	Arg	Asn	Gly 365	Asn	Val	Val
	Asp	Tyr 370	Gln	Thr	Gly	Pro	Ile 375	Ile	Trp	Gly	Glu	Pro 380	Gly	Thr	Asn	Gly
	Gln 385	His	Ala	Phe	Tyr	Gln 390	Leu	Ile	His	Gln	Gly 395	Thr	Lys	Met	Val	Pro 400
	Cys	Asp	Phe	Ile	Ala 405	Pro	Ala	Ile	Thr	His 410	Asn	Pro	Leu	Ser	Asp 415	His
	His	Gln	Lys	Leu 420	Leu	Ser	Asn	Phe	Phe 425	Ala	Gln	Thr	Glu	Ala 430	Leu	Ala
	Phe	Gly	Lys 435	Ser	Arg	Glu	Val	Val 440	Glu	Gln	Glu	Tyr	Arg 445	Asp	Gln	Gly
	Lys	Asp 450	Pro	Ala	Thr	Leu	Asp 455	Tyr	Val	Val	Pro	Phe 460	Lys	Val	Phe	Glu
	Gly 465	Asn	Arg	Pro	Thr	Asn 470	Ser	Ile	Leu	Leu	Arg 475	Glu	Ile	Thr	Pro	Phe 480
	Ser	Leu	Gly	Ala	Leu 485	Ile	Ala	Leu	Tyr	Glu 490	His	Lys	Ile	Phe	Thr 495	Gln
	Gly	Val	Ile	Leu 500	Asn	Ile	Phe	Thr	Phe 505	Asp	Gln	Trp	Gly	Val 510	Glu	Leu
	Gly	Lys	Gln 515	Leu	Ala	Asn	Arg	Ile 520	Leu	Pro	Glu	Leu	Lys 525	Asp	Asp	Leu
	Glu	Val 530	Leu	Phe	Gln	Gly	Pro 535	Lys	Glu	Ile	Ser	Ser 540	His	Asp	Ser	Ser
	Thr 545	Asn	Gly	Leu	Ile	A sn 550	Arg	Tyr	Lys	Ala	Trp 555	Arg	Gly			
<210> 27 <211> 557 <212> PRT <213> Secue	encia	artifici	ial													
<220> <223> Polipé	éptido	sinté	tico													

10

5

<400> 27

Met 1	Lys	Asn	IIe	Asn 5	Pro	Thr	GIn	Thr	A1a 10	Ala	Trp	GIn	Ala	Leu 15	GIn
Lys	His	Phe	Asp 20	Glu	Met	Lys	Asp	Val 25	Thr	Ile	Ala	Asp	Leu 30	Phe	Ala
Lys	Asp	Gly 35	Asp	Arg	Phe	Ser	Lys 40	Phe	Ser	Ala	Thr	Phe 45	Asp	Asp	Gln
Met	Leu 50	Val	Asp	Tyr	Ser	Lys 55	Asn	Arg	Ile	Thr	Glu 60	Glu	Thr	Leu	Ala
Lys 65	Leu	Gln	Asp	Leu	Ala 70	Lys	Glu	Cys	Asp	Leu 75	Ala	Gly	Ala	Ile	Lys 80
Ser	Met	Phe	Ser	Gly 85	Glu	Lys	Ile	Asn	Arg 90	Thr	Glu	Asn	Arg	Ala 95	Val
Leu	His	Val	Ala 100	Leu	Arg	Asn	Arg	Ser 105	Asn	Thr	Pro	Ile	Leu 110	Val	Asp
Gly	Lys	Asp 115	Val	Met	Pro	Glu	Val 120	Asn	Ala	Val	Leu	Glu 125	Lys	Met	Lys
Thr	Phe 130	Ser	Glu	Ala	Ile	Ile 135	Ser	Gly	Glu	Trp	Lys 140	Gly	Tyr	Thr	Gly
Lys 145	Ala	Ile	Thr	Asp	Val 150	Val	Asn	Ile	Gly	Ile 155	Gly	Gly	Ser	Asp	160
Gly	Pro	Tyr	Met	Val 165	Thr	Glu	Ala	Leu	Arg 170	Pro	Tyr	Lys	Asn	His 175	Leu
Asn	Met	His	Phe 180	Val	Ser	Asn	Val	Asp 185	Gly	Thr	His	Ile	Ala 190	Glu	Val
Leu	Lys	Lys 195	Val	Asn	Pro	Glu	Thr 200	Thr	Leu	Phe	Leu	Val 205	Ala	Ser	Lys
Thr	Phe 210	Thr	Thr	Gln	Glu	Thr 215	Met	Thr	Asn	Ala	His 220	Ser	Ala	Arg	Asp
Tro	Phe	T. C 11	Lvs	Ala	Ala	Glv	Asp	G111	Lvs	His	Val	Ala	Lvs	His	Phe

225					230					235					240
Ala	Ala	Leu	Ser	Thr 245	Asn	Ala	Lys	Ala	Val 250	Gly	Glu	Phe	Gly	Ile 255	Asp
Thr	Ala	Asn	Met 260	Phe	Glu	Phe	Trp	Asp 265	Trp	Val	Gly	Gly	A rg 270	Tyr	Ser
Leu	Trp	Ser 275	Ala	Ile	Gly	Leu	Ser 280	Ile	Val	Leu	Ser	Ile 285	Gly	Phe	Asp
Asn	Phe 290	Val	Glu	Leu	Leu	Ser 295	Gly	Ala	His	Ala	Met 300	Asp	Lys	His	Phe
Ser 305	Thr	Thr	Pro	Ala	Glu 310	Lys	Asn	Leu	Pro	Val 315	Leu	Leu	Ala	Leu	Ile 320
Gly	Ile	Trp	Tyr	Asn 325	Asn	Phe	Phe	Gly	Ala 330	Glu	Thr	Glu	Ala	Ile 335	Leu
Pro	Tyr	Asp	Gln 3 4 0	Tyr	Met	His	Arg	Phe 345	Ala	Ala	Tyr	Phe	Gln 350	Gln	Gly
Asn	Met	Glu 355	Ser	Asn	Gly	Lys	Tyr 360	Val	Asp	Arg	Asn	Gly 365	Asn	Val	Val
Asp	Tyr 370	Gln	Thr	Gly	Pro	Ile 375	Ile	Trp	Gly	Glu	Pro 380	Gly	Thr	Asn	Gly
Gln 385	His	Ala	Phe	Tyr	Gln 390		Ile	His	Gln	_	Thr	_	Met	Val	Pro 400
Cys	Asp	Phe	Ile	Ala 405	Pro	Ala	Ile	Thr	His 410	Asn	Pro	Leu	Ser	Asp 415	His
His	Gln	Lys	Leu 420	Leu	Ser	Asn	Phe	Phe 425	Ala	Gln	Thr	Glu	Ala 430	Leu	Ala
Phe	Gly	Lys 435	Ser	Arg	Glu	Val	Val 440	Glu	Gln	Glu	Tyr	Arg 445	Asp	Gln	Gly
Lys	Asp 450	Pro	Ala	Thr	Leu	Asp 455	Tyr	Val	Val	Pro	Phe 460	Lys	Val	Phe	Glu
Gly 465	Asn	Arg	Pro	Thr	Asn 470	Ser	Ile	Leu	Leu	Arg 475	Glu	Ile	Thr	Pro	Phe 480

		Ser	Leu (Gly A		eu Il 85	e Ala	a Leu	Tyr	Glu 490	His	Lys	Ile 1		Thr (Gln
		Gly	Val		eu A	sn Il	e Phe	e Thr	Phe 505	Asp	Gln	Trp	_	Val (Glu :	Leu
		Gly		Gln I 515	eu A	la As	n Arq	J Ile 520		Pro	Glu		Lys 2 525	Asp i	Asp :	Lys
		Leu	Glu ' 530	Val I	eu Pl	he Gl	n Gly 535		Glu	Ile	Ser	Ser 540	His A	Asp :	Ser :	Ser
		Thr 545	Asn (Gly I	eu I	le As 55		J Tyr	Lys	Ala	Trp 555	Arg	Gly			
5	<210> 28 <211> 557 <212> PRT <213> Secue	ncia a	rtificia	I												
	<220> <223> Polipé	ntido s	sintétic	20												
10	<400> 28	pildo (on to the													
	Met 1	Lys	Asn	Ile	Asn 5	Pro	Thr	Gln	Thr	Ala 10	Ala	Trp	Gln	a Ala	15	u Gln
	Lys	His	Phe	Asp 20	Glu	Met	Lys	Asp	Val 25	Thr	Ile	Ala	Asp	30	ı Ph	e Ala
	Lys	Asp	Gly 35	Asp	Arg	Phe	Ser	Lys 40	Phe	Ser	Ala	Thr	Phe 45	Asp	As	p Gln
	Met	Leu 50	Val	Asp	Tyr	Ser	Lys 55	Asn	Arg	Ile	Thr	Glu 60	Glu	ı Thi	. Le	u Ala
	Lys 65	Leu	Gln	Asp	Leu	Ala 70	Lys	Glu	Cys	Asp	Leu 75	Ala	Gly	Ala	a Il	e Lys 80
	Ser	Met	Phe	Ser	Gly 85	Glu	Lys	Ile	Asn	Arg 90	Thr	Glu	Asn	Arç	y Al 95	a Val
	Leu	His	Val	Ala 100	Leu	Arg	Asn	Arg	Ser 105	Asn	Thr	Pro	Ile	Le: 11(l Asp
	Gly	Lys	Asp 115		Met	Pro	Glu	Val 120	Asn	Ala	Val	Leu	Glu 125	_	s Me	t Lys
	Thr	Phe	Ser	Glu	Ala	Ile	Ile	Ser	Gly	Glu	Trp	Lys	Gly	ту Ту	r Th	r Gly

	130					135					140				
Lys 145	Ala	Ile	Thr	Asp	Val 150	Val	Asn	Ile	Gly	Ile 155	Gly	Gly	Ser	Asp	Leu 160
Gly	Pro	Tyr	Met	Val 165	Thr	Glu	Ala	Leu	A rg 170	Pro	Tyr	Lys	Asn	His 175	Leu
Asn	Met	His	Phe 180	Val	Ser	Asn	Val	Asp 185	Gly	Thr	His	Ile	Ala 190	Glu	Val
Leu	Lys	Lys 195	Val	Asn	Pro	Glu	Thr 200	Thr	Leu	Phe	Leu	Val 205	Ala	Ser	Lys
Thr	Phe 210	Thr	Thr	Gln	Glu	Thr 215	Met	Thr	Asn	Ala	His 220	Ser	Ala	Arg	Asp
Trp 225	Phe	Leu	Lys	Ala	Ala 230	Gly	Asp	Glu	Lys	His 235	Val	Ala	Lys	His	Phe 240
Ala	Ala	Leu	Ser	Thr 245	Asn	Ala	Lys	Ala	Val 250	Gly	Glu	Phe	Gly	Ile 255	Asp
Thr	Ala	Asn	Met 260	Phe	Glu	Phe	Trp	Asp 265	Trp	Val	Gly	Gly	A rg 270	Tyr	Ser
Leu	Trp	Ser 275	Ala	Ile	Gly	Leu	Ser 280	Ile	Val	Leu	Ser	Ile 285	Gly	Phe	Asp
Asn	Phe 290	Val	Glu	Leu	Leu	Ser 295	Gly	Ala	His	Ala	Met 300	Asp	Lys	His	Phe
Ser 305	Thr	Thr	Pro	Ala	Glu 310	Lys	Asn	Leu	Pro	Val 315	Leu	Leu	Ala	Leu	Ile 320
Gly	Ile	Trp	Tyr	Asn 325	Asn	Phe	Phe	Gly	A la 330	Glu	Thr	Glu	Ala	Ile 335	Leu
Pro	Tyr	Asp	Gln 340	Tyr	Met	His	Arg	Phe 345	Ala	Ala	Tyr	Phe	Gln 350	Gln	Gly
Asn	Met	Glu 355	Ser	Asn	Gly	Lys	Tyr 360	Val	Asp	Arg	Asn	Gly 365	Asn	Val	Val
Asp	Tyr 370	Gln	Thr	Gly	Pro	Ile 375	Ile	Trp	Gly	Glu	Pro 380	Gly	Thr	Asn	Gly

Gln 385	His	Ala	Phe	Tyr	Gln 390	Leu	Ile	His	Gln	Gly 395	Thr	Lys	Met	Val	Pro 400
Cys	Asp	Phe	Ile	Ala 405	Pro	Ala	Ile	Thr	His 410	Asn	Pro	Leu	Ser	Asp 415	His
His	Gln	Lys	Leu 420	Leu	Ser	Asn	Phe	Phe 425	Ala	Gln	Thr	Glu	Ala 430	Leu	Ala
Phe	Gly	Lys 435	Ser	Arg	Glu	Val	Val 440	Glu	Gln	Glu	Tyr	Arg 445	Asp	Gln	Gly
Lys	Asp 450	Pro	Ala	Thr	Leu	Asp 455	Tyr	Val	Val	Pro	Phe 460	Lys	Val	Phe	Glu
Gly 465	Asn	Arg	Pro	Thr	Asn 470	Ser	Ile	Leu	Leu	Arg 475	Glu	Ile	Thr	Pro	Phe 480
Ser	Leu	Gly	Ala	Leu 485	Ile	Ala	Leu	Tyr	Glu 490	His	Lys	Ile	Phe	Thr 495	Gln
Gly	Val	Ile	Leu 500	Asn	Ile	Phe	Thr	Phe 505	Asp	Gln	Trp	Gly	Val 510	Glu	Leu
Gly	Lys	Gln 515	Leu	Ala	Asn	Arg	Ile 520	Leu	Pro	Glu	Leu	Lys 525	Asp	Asp	Lys
Glu	Leu 530	Glu	Val	Leu	Phe	Gln 535	Gly	Pro	Ile	Ser	Ser 540	His	Asp	Ser	Ser
Thr 545	Asn	Gly	Leu	Ile	As n 550	Arg	Tyr	Lys	Ala	Trp 555	Arg	Gly			
9 57 RT															
	cia art	ificial													

<210> <211> <212>

<213>

<220>

<400> 29

<223> Polipéptido sintético

5

10

Met Lys Asn Ile Asn Pro Thr Gln Thr Ala Ala Trp Gln Ala Leu Gln $1 \hspace{1cm} 5 \hspace{1cm} 10 \hspace{1cm} 15$

Lys His Phe Asp Glu Met Lys Asp Val Thr Ile Ala Asp Leu Phe Ala 20 25 30

Lys Asp Gly Asp Arg Phe Ser Lys Phe Ser Ala Thr Phe Asp Asp Gln

		35					40					45			
Met	Leu 50	Val	Asp	Tyr	Ser	Lys 55	Asn	Arg	Ile	Thr	Glu 60	Glu	Thr	Leu	Ala
Lys 65	Leu	Gln	Asp	Leu	Ala 70	Lys	Glu	Cys	Asp	Leu 75	Ala	Gly	Ala	Ile	Lys 80
Ser	Met	Phe	Ser	Gly 85	Glu	Lys	Ile	Asn	Arg 90	Thr	Glu	Asn	Arg	Ala 95	Val
Leu	His	Val	Ala 100	Leu	Arg	Asn	Arg	Ser 105	Asn	Thr	Pro	Ile	Leu 110	Val	Asp
Gly	Lys	Asp 115	Val	Met	Pro	Glu	Val 120	Asn	Ala	Val	Leu	Glu 125	Lys	Met	Lys
Thr	Phe 130	Ser	Glu	Ala	Ile	Ile 135	Ser	Gly	Glu	Trp	Lys 140	Gly	Tyr	Thr	Gly
Lys 145	Ala	Ile	Thr	Asp	Val 150	Val	Asn	Ile	Gly	Ile 155	Gly	Gly	Ser	Asp	Leu 160
Gly	Pro	Tyr	Met	Val 165	Thr	Glu	Ala	Leu	A rg 170	Pro	Tyr	Lys	Asn	His 175	Leu
Asn	Met	His	Phe 180	Val	Ser	Asn	Val	Asp 185	Gly	Thr	His	Ile	Ala 190	Glu	Val
Leu	Lys	Lys 195	Val	Asn	Pro	Glu	Thr 200	Thr	Leu	Phe	Leu	Val 205	Ala	Ser	Lys
Thr	Phe 210	Thr	Thr	Gln	Glu	Thr 215	Met	Thr	Asn	Ala	His 220	Ser	Ala	Arg	Asp
Trp 225	Phe	Leu	Lys	Ala	Ala 230	Gly	Asp	Glu	Lys	His 235	Val	Ala	Lys	His	Phe 240
Ala	Ala	Leu	Ser	Thr 245	Asn	Ala	Lys	Ala	Val 250	Gly	Glu	Phe	Gly	Ile 255	Asp
Thr	Ala	Asn	Met 260	Phe	Glu	Phe	Trp	Asp 265	Trp	Val	Gly	Gly	Arg 270	Tyr	Ser
Leu	Trp	Ser 275	Ala	Ile	Gly	Leu	Ser 280	Ile	Val	Leu	Ser	Ile 285	Gly	Phe	Asp

Asn Phe 290	Val Glu	Leu Le	ser 295	Gly	Ala	His	Ala	Met 300	Asp	Lys	His	Phe
Ser Thr	Thr Pro	Ala Gl	-	Asn	Leu	Pro	Val 315	Leu	Leu	Ala	Leu	Ile 320
Gly Ile	Trp Tyr	Asn As 325	n Phe	Phe	Gly	Ala 330	Glu	Thr	Glu	Ala	Ile 335	Leu
Pro Tyr	Asp Gln 340	Tyr Me	His	Arg	Phe 345	Ala	Ala	Tyr	Phe	Gln 350	Gln	Gly
Asn Met	Glu Ser 355	Asn Gl	y Lys	Tyr 360	Val	Asp	Arg	Asn	Gly 365	Asn	Val	Val
Asp Tyr 370	Gln Thr	Gly Pr	375	Ile	Trp	Gly	Glu	Pro 380	Gly	Thr	Asn	Gly
Gln His 3	Ala Phe	Tyr G1:		Ile	His	Gln	Gly 395	Thr	Lys	Met.	Val	Pro 400
Cys Asp	Phe Ile	Ala Pr 405	Ala	Ile	Thr	His 410	Asn	Pro	Leu	Ser	Asp 415	His
His Gln	Lys Leu 420	Leu Se	r Asn	Phe	Phe 425	Ala	Gln	Thr	Glu	Ala 430	Leu	Ala
Phe Gly	Lys Ser 435	Arg Gl	ı Val	Val 440	Glu	Gln	Glu	Tyr	Arg 445	Asp	Gln	Gly
Lys Asp : 450	Pro Ala	Thr Le	1 Asp 455	Tyr	Val	Val	Pro	Phe 460	Lys	Val	Phe	Glu
Gly Asn 3	Arg Pro	Thr As		Ile	Leu	Leu	Arg 475	Glu	Ile	Thr	Pro	Phe 480
Ser Leu	Gly Ala	Leu Il 485	e Ala	Leu	Tyr	Glu 490	His	Lys	Ile	Phe	Thr 495	Gln
Gly Val	Ile Leu 500	Asn Il	e Phe	Thr	Phe 505	Asp	Gln	Trp	Gly	Val 510	Glu	Leu
Gly Lys	Gln Leu 515	Ala As	n Arg	Ile 520	Leu	Pro	Glu	Leu	Lys 525	Asp	Asp	Lys
Glu Ile : 530	Leu Glu	Val Le	Phe 535	Gln	Gly	Pro	Ser	Ser 540	His	Asp	Ser	Ser

Thr Asn Gly Leu Ile Asn Arg Tyr Lys Ala Trp Arg Gly

5	<210> 30 <211> 557 <212> PRT <213> Secuen	ıcia artifi	icial													
10	<220> <223> Polipép	tido sint	ético													
	<400> 30															
	Met 1	Lys A	Asn 1	Ile	Asn 5	Pro	Thr	Gln	Thr	Ala 10	Ala	Trp	Gln	Ala	Leu 15	Gln
	Lys	His F		Asp 20	Glu	Met	Lys	Asp	Val 25	Thr	Ile	Ala	Asp	Leu 30	Phe	Ala
	Lys	Asp G	Gly <i>1</i> B5	Asp	Arg	Phe	Ser	Lys 40	Phe	Ser	Ala	Thr	Phe 45	Asp	Asp	Gln
	Met	Leu V 50	7al <i>I</i>	Asp	Tyr	Ser	Lys 55	Asn	Arg	Ile	Thr	Glu 60	Glu	Thr	Leu	Ala
	Lys 65	Leu G	3ln <i>I</i>	Asp	Leu	Ala 70	Lys	Glu	Cys	Asp	Leu 75	Ala	Gly	Ala	Ile	Lys 80
	Ser	Met F	he S		Gly 85	Glu	Lys	Ile	Asn	Arg 90	Thr	Glu	Asn	Arg	Ala 95	Val
	Leu	His V		Ala 100	Leu	Arg	Asn	Arg	Ser 105	Asn	Thr	Pro	Ile	Leu 110	Val	Asp
	Gly	Lys A	Asp V L15	Val	Met	Pro	Glu	Val 120	Asn	Ala	Val	Leu	Glu 125	Lys	Met	Lys
	Thr	Phe S	Ser (Glu	Ala	Ile	Ile 135	Ser	Gly	Glu	Trp	Lys 140	Gly	Tyr	Thr	Gly
	Lys 145	Ala I	[le]	Thr	Asp	Val 150	Val	Asn	Ile	Gly	Ile 155	Gly	Gly	Ser	Asp	Leu 160
	Gly	Pro I	Tyr N		Val 165	Thr	Glu	Ala	Leu	Arg 170	Pro	Tyr	Lys	Asn	His 175	Leu

Asn Met His Phe Val Ser Asn Val Asp Gly Thr His Ile Ala Glu Val 180 185 190

Leu	Lys	Lys 195	Val	Asn	Pro	Glu	Thr 200	Thr	Leu	Phe	Leu	Val 205	Ala	Ser	Lys
Thr	Phe 210	Thr	Thr	Gln	Glu	Thr 215	Met	Thr	Asn	Ala	His 220	Ser	Ala	Arg	Asp
Trp 225	Phe	Leu	Lys	Ala	Ala 230	Gly	Asp	Glu	Lys	His 235	Val	Ala	Lys	His	Phe 240
Ala	Ala	Leu	Ser	Thr 245	Asn	Ala	Lys	Ala	Val 250	Gly	Glu	Phe	Gly	Ile 255	Asp
Thr	Ala	Asn	Met 260	Phe	Glu	Phe	Trp	Asp 265	Trp	Val	Gly	Gly	Arg 270	Tyr	Ser
Leu	Trp	Ser 275	Ala	Ile	Gly	Leu	Ser 280	Ile	Val	Leu	Ser	Ile 285	Gly	Phe	Asp
Asn	Phe 290	Val	Glu	Leu	Leu	Ser 295	Gly	Ala	His	Ala	Met 300	Asp	Lys	His	Phe
Ser 305	Thr	Thr	Pro	Ala	Glu 310	Lys	Asn	Leu	Pro	Val 315	Leu	Leu	Ala	Leu	Ile 320
Gly	Ile	Trp	Tyr	Asn 325	Asn	Phe	Phe	Gly	Ala 330	Glu	Thr	Glu	Ala	Ile 335	Leu
Pro	Tyr	Asp	Gln 340	Tyr	Met	His	Arg	Phe 345	Ala	Ala	Tyr	Phe	Gln 350	Gln	Gly
Asn	Met	Glu 355	Ser	Asn	Gly	Lys	Tyr 360	Val	Asp	Arg	Asn	Gly 365	Asn	Val	Val
Asp	Tyr 370	Gln	Thr	Gly	Pro	Ile 375	Ile	Trp	Gly	Glu	Pro 380	Gly	Thr	Asn	Gly
Gln 385	His	Ala	Phe	Tyr	Gln 390	Leu	Ile	His	Gln	Gly 395	Thr	Lys	Met	Val	Pro 400
Cys	Asp	Phe	Ile	Ala 405	Pro	Ala	Ile	Thr	His 410	Asn	Pro	Leu	Ser	Asp 415	His
His	Gln	Lys	Leu 420	Leu	Ser	Asn	Phe	Phe 425	Ala	Gln	Thr	Glu	Ala 430	Leu	Ala

	Lys	Asp 450	Pro	Ala	Thr	Leu	Asp 455	Tyr	Val	Val	Pro	Phe 460	Lys	Val	Phe	Glu
	Gly 465	Asn	Arg	Pro	Thr	Asn 470	Ser	Ile	Leu	Leu	Arg 475	Glu	Ile	Thr	Pro	Phe 480
	Ser	Leu	Gly	Ala	Leu 485	Ile	Ala	Leu	Tyr	Glu 490	His	Lys	Ile	Phe	Thr 495	Gln
	Gly	Val	Ile	Leu 500	Asn	Ile	Phe	Thr	Phe 505	Asp	Gln	Trp	Gly	Val 510	Glu	Leu
	Gly	Lys	Gln 515	Leu	Ala	Asn	Arg	Ile 520	Leu	Pro	Glu	Leu	Lys 525	Asp	Asp	Lys
	Glu	Ile 530	Ser	Leu	Glu	Val	Leu 535	Phe	Gln	Gly	Pro	Ser 540	His	Asp	Ser	Ser
	Thr 545	Asn	Gly	Leu	Ile	As n 550	Arg	Tyr	Lys	Ala	Trp 555	Arg	Gly			
<210> 3 <211> 5 <212> F <213> 5	57 PRT	ıcia ar	tificial													
<220> <223> F	Polipép															
-400: O		tido si	ntético)												
<400> 3	1	tido si	ntético)												
<400> 3					Asn 5	Pro	Thr	Gln	Thr	Ala 10	Ala	Trp	Gln	Ala	Leu 15	Gln
<400> 3	Met 1	Lys	Asn	Ile	5					10					15	Gln Ala
<400> 3	Met 1 Lys	Lys His	Asn Phe	Ile Asp 20	5 Glu	Met	Lys	Asp	Val 25	10 Thr	Ile	Ala	Asp	Leu	15 Phe	Ala
<400>3	Met 1 Lys	Lys His	Asn Phe Gly 35	Ile Asp 20	5 Glu Arg	Met Phe	Lys Ser	Asp Lys 40	Val 25 Phe	10 Thr Ser	Ile Ala	Ala	Asp Phe 45	Leu 30	15 Phe Asp	Ala Gln
<400>3	Met 1 Lys Lys	Lys His Asp Leu 50	Asn Phe Gly 35 Val	Ile Asp 20 Asp	5 Glu Arg Tyr	Met Phe Ser	Lys Ser Lys 55	Asp Lys 40 Asn	Val 25 Phe Arg	Thr Ser	Ile Ala Thr	Ala Thr Glu 60	Asp Phe 45 Glu	Leu 30 Asp	15 Phe Asp	Ala Gln Ala

10

Leu	His	Val	Ala 100	Leu	Arg	Asn	Arg	Ser 105	Asn	Thr	Pro	Ile	Leu 110	Val	Asp
Gly	Lys	Asp 115	Val	Met	Pro	Glu	Val 120	Asn	Ala	Val	Leu	Glu 125	Lys	Met	Lys
Thr	Phe 130	Ser	Glu	Ala	Ile	Ile 135	Ser	Gly	Glu	Trp	Lys 140	Gly	Tyr	Thr	Gly
Lys 145	Ala	Ile	Thr	Asp	Val 150	Val	Asn	Ile	Gly	Ile 155	Gly	Gly	Ser	Asp	Leu 160
Gly	Pro	Tyr	Met	Val 165	Thr	Glu	Ala	Leu	Arg 170	Pro	Tyr	Lys	Asn	His 175	Leu
Asn	Met	His	Phe 180	Val	Ser	Asn	Val	Asp 185	Gly	Thr	His	Ile	Ala 190	Glu	Val
Leu	Lys	Lys 195	Val	Asn	Pro	Glu	Thr 200	Thr	Leu	Phe	Leu	Val 205	Ala	Ser	Lys
Thr	Phe 210	Thr	Thr	Gln	Glu	Thr 215	Met	Thr	Asn	Ala	His 220	Ser	Ala	Arg	Asp
Trp 225	Phe	Leu	Lys	Ala	Ala 230	Gly	Asp	Glu	Lys	His 235	Val	Ala	Lys	His	Phe 240
Ala	Ala	Leu	Ser	Thr 245	Asn	Ala	Lys	Ala	Val 250	Gly	Glu	Phe	Gly	Ile 255	Asp
Thr	Ala	Asn	Met 260	Phe	Glu	Phe	Trp	Asp 265	Trp	Val	Gly	Gly	Arg 270	Tyr	Ser
Leu	Trp	Ser 275	Ala	Ile	Gly	Leu	Ser 280	Ile	Val	Leu	Ser	Ile 285	Gly	Phe	Asp
Asn	Phe 290	Val	Glu	Leu	Leu	Ser 295	Gly	Ala	His	Ala	Met 300	Asp	Lys	His	Phe
Ser 305	Thr	Thr	Pro	Ala	Glu 310	Lys	Asn	Leu	Pro	Val 315	Leu	Leu	Ala	Leu	Ile 320
Gly	Ile	Trp	Tyr	Asn 325	Asn	Phe	Phe	Gly	Ala 330	Glu	Thr	Glu	Ala	Ile 335	Leu
Pro	Tyr	Asp	Gln 340	Tyr	Met	His	Arg	Phe 345	Ala	Ala	Tyr	Phe	Gln 350	Gln	Gly

	Asn	Met	Glu 355	Ser	Asn	Gly	Lys	Tyr 360	Val	Asp	Arg	Asn	Gly 365	Asn	Val	Val
	Asp	Tyr 370	Gln	Thr	Gly	Pro	Ile 375	Ile	Trp	Gly	Glu	Pro 380	Gly	Thr	Asn	Gly
	Gln 385	His	Ala	Phe	Tyr	Gln 390	Leu	Ile	His	Gln	Gly 395	Thr	Lys	Met	Val	Pro 400
	Cys	Asp	Phe	Ile	Ala 405	Pro	Ala	Ile	Thr	His 410	Asn	Pro	Leu	Ser	Asp 415	His
	His	Gln	Lys	Leu 420	Leu	Ser	Asn	Phe	Phe 425	Ala	Gln	Thr	Glu	Ala 430	Leu	Ala
	Phe	Gly	Lys 435	Ser	Arg	Glu	Val	Val 440	Glu	Gln	Glu	Tyr	Arg 445	Asp	Gln	Gly
	Lys	Asp 450	Pro	Ala	Thr	Leu	Asp 455	Tyr	Val	Val	Pro	Phe 460	Lys	Val	Phe	Glu
	Gly 465	Asn	Arg	Pro	Thr	Asn 470	Ser	Ile	Leu	Leu	Arg 475	Glu	Ile	Thr	Pro	Phe 480
	Ser	Leu	Gly	Ala	Leu 485	Ile	Ala	Leu	Tyr	Glu 490	His	Lys	Ile	Phe	Thr 495	Gln
	Gly	Val	Ile	Leu 500	Asn	Ile	Phe	Thr	Phe 505	Asp	Gln	Trp	Gly	Val 510	Glu	Leu
	Gly	Lys	Gln 515	Leu	Ala	Asn	Arg	Ile 520	Leu	Pro	Glu	Leu	Lys 525	Asp	Asp	Lys
	Glu	Ile 530	Ser	Ser	Leu	Glu	Val 535	Leu	Phe	Gln	Gly	Pro 540	His	Asp	Ser	Ser
	Thr 545	Asn	Gly	Leu	Ile	As n 550	Arg	Tyr	Lys	Ala	Trp 555	Arg	Gly			
<210> 32 <211> 55 <212> PI <213> So	57 RT	cia art	ificial													

10 <400> 32

<220>

<223> Polipéptido sintético

Met 1	Lys	Asn	Ile	Asn 5	Pro	Thr	Gln	Thr	Ala 10	Ala	Trp	Gln	Ala	Leu 15	Gln
Lys	His	Phe	Asp 20	Glu	Met	Lys	Asp	Val 25	Thr	Ile	Ala	Asp	Leu 30	Phe	Ala
Lys	Asp	Gly 35	Asp	Arg	Phe	Ser	Lys 40	Phe	Ser	Ala	Thr	Phe 45	Asp	Asp	Gln
Met	Leu 50	Val	Asp	Tyr	Ser	Lys 55	Asn	Arg	Ile	Thr	Glu 60	Glu	Thr	Leu	Ala
Lys 65	Leu	Gln	Asp	Leu	Ala 70	Lys	Glu	Cys	Asp	Leu 75	Ala	Gly	Ala	Ile	Lys 80
Ser	Met	Phe	Ser	Gly 85	Glu	Lys	Ile	Asn	Arg 90	Thr	Glu	Asn	Arg	Ala 95	Val
Leu	His	Val	Ala 100	Leu	Arg	Asn	Arg	Ser 105	Asn	Thr	Pro	Ile	Leu 110	Val	Asp
Gly	Lys	Asp 115	Val	Met	Pro	Glu	Val 120	Asn	Ala	Val	Leu	Glu 125	Lys	Met	Lys
Thr	Phe 130	Ser	Glu	Ala	Ile	Ile 135	Ser	Gly	Glu	Trp	Lys 140	Gly	Tyr	Thr	Gly
Lys 145	Ala	Ile	Thr	Asp	Val 150	Val	Asn	Ile	Gly	Ile 155	Gly	Gly	Ser	Asp	Leu 160
Gly	Pro	Tyr	Met	Val 165	Thr	Glu	Ala	Leu	Arg 170	Pro	Tyr	Lys	Asn	His 175	Leu
Asn	Met	His	Phe 180	Val	Ser	Asn	Val	Asp 185	Gly	Thr	His	Ile	Ala 190	Glu	Val
Leu	Lys	Lys 195	Val	Asn	Pro	Glu	Thr 200	Thr	Leu	Phe	Leu	Val 205	Ala	Ser	Lys
Thr	Phe 210	Thr	Thr	Gln	Glu	Thr 215	Met	Thr	Asn	Ala	His 220	Ser	Ala	Arg	Asp
Trp 225	Phe	Leu	Lys	Ala	Ala 230	Gly	Asp	Glu	Lys	His 235	Val	Ala	Lys	His	Phe 240
Ala	Ala	Leu	Ser	Thr 245	Asn	Ala	Lys	Ala	Val 250	Gly	Glu	Phe	Gly	Ile 255	Asp

Thr	Ala	Asn	Met 260	Phe	Glu	Phe	Trp	Asp 265	Trp	Val	Gly	Gly	Arg 270	Tyr	Ser
Leu	Trp	Ser 275	Ala	Ile	Gly	Leu	Ser 280	Ile	Val	Leu	Ser	Ile 285	Gly	Phe	Asp
Asn	Phe 290	Val	Glu	Leu	Leu	Ser 295	Gly	Ala	His	Ala	Met 300	Asp	Lys	His	Phe
Ser 305	Thr	Thr	Pro	Ala	Glu 310	Lys	Asn	Leu	Pro	val 315	Leu	Leu	Ala	Leu	Ile 320
Gly	Ile	Trp	Tyr	Asn 325	Asn	Phe	Phe	Gly	Ala 330	Glu	Thr	Glu	Ala	Ile 335	Leu
Pro	Tyr	Asp	Gln 340	Tyr	Met	His	Arg	Phe 345	Ala	Ala	Tyr	Phe	Gln 350	Gln	Gly
Asn	Met	Glu 355	Ser	Asn	Gly	Lys	Tyr 360	Val	Asp	Arg	Asn	Gly 365	Asn	Val	Val
Asp	Tyr 370	Gln	Thr	Gly	Pro	Ile 375	Ile	Trp	Gly	Glu	Pro 380	Gly	Thr	Asn	Gly
Gln 385	His	Ala	Phe	Tyr	Gln 390	Leu	Ile	His	Gln	Gly 395	Thr	Lys	Met	Val	Pro 400
Cys	Asp	Phe	Ile	Ala 405	Pro	Ala	Ile	Thr	His 410	Asn	Pro	Leu	Ser	Asp 415	His
His	Gln	Lys	Leu 420	Leu	Ser	Asn	Phe	Phe 425	Ala	Gln	Thr	Glu	Ala 430	Leu	Ala
Phe	Gly	Lys 435	Ser	Arg	Glu	Val	Val 440	Glu	Gln	Glu	Tyr	Arg 445	Asp	Gln	Gly
Lys	Asp 450	Pro	Ala	Thr	Leu	Asp 455	Tyr	Val	Val	Pro	Phe 460	Lys	Val	Phe	Glu
Gly 465	Asn	Arg	Pro	Thr	Asn 470	Ser	Ile	Leu	Leu	Arg 475	Glu	Ile	Thr	Pro	Phe 480
Ser	Leu	Gly	Ala	Leu 485	Ile	Ala	Leu	Tyr	Glu 490	His	Lys	Ile	Phe	Thr 495	Gln
Gly	Val	Ile	Leu 500	Asn	Ile	Phe	Thr	Phe 505	Asp	Gln	Trp	Gly	Val 510	Glu	Leu

Gly I	ys Gln Leu 515	Ala Asn Arg	Ile Leu Pro 520		Lys Asp Asp 525	Lys
	le Ser Ser	His Asp Ser 535	Ser Thr Ası	n Gly Leu 1 540	lle Asn Arg	Tyr
Lys 1 545	eu Glu Val	Leu Phe Gln 550	Gly Pro Ala	a Trp Arg 0 555	Gly	
<210> 33 <211> 558 <212> ADN <213> Secuencia	a artificial					
<223>Oligonucle	eótido sintético					
<400> 33						
atgggcccag	aagaagaatt	cggcatgagc	ctgatcaagc	ataactcttg	cgtcattacc	60
acggagaatg	gtaagttcac	gggcttgggc	gtttatgacc	gtttcgtcgt	ggttccgacc	120
cacgctgacc	cgggtaaaga	aatccaggtt	gacggtatca	cgaccaaagt	gattgatagc	180
tatgatctct	ataataagaa	cggcatcaag	ctggaaatca	cggtgctgaa	actggaccgt	240
aatgaaaagt	ttcgtgatat	ccgtcgctat	attccgaata	acgaggatga	ctacccaaat	300
tgcaatctgg	cgctgctggc	aaatcagccg	gaaccgacga	tcatcaacgt	gggtgacgtg	360
gtgagctatg	gcaatatcct	gctgagcggt	aaccagaccg	cgcgtatgct	gaagtattcc	420
tatccgacga	aaagcggcta	ttgcggcggc	gtgctctata	agattggtca	agtcctgggc	480
atccacgtcg	gcggtaatgg	ccgcgatggt	ttcagcgcga	tgctgctgcg	tagctatttc	540
accgacgtcc	agtgataa					558
<210> 34 <211> 184 <212> PRT <213> Secuencia	a artificial					

5

10

15

20

<220>

<400> 34

<223> Polipéptido sintético

Met 1	Gly	Pro	Glu	Glu 5	Glu	Phe	Gly	Met	Ser 10	Leu	Ile	Lys	His	Asn 15	Ser
Cys	Val	Ile	Thr 20	Thr	Glu	Asn	Gly	Lys 25	Phe	Thr	Gly	Leu	Gly 30	Val	Tyr
Asp	Arg	Phe	Val	Val	Val	Pro	Thr	His	Ala	Asp	Pro	Gly	Lys	Glu	Ile
		35					40					45			
Gln	Val 50	Asp	Gly	Ile	Thr	Thr 55	Lys	Val	Ile	Asp	Ser 60	Tyr	Asp	Leu	Туг
Asn 65	Lys	Asn	Gly	Ile	Lys 70	Leu	Glu	Ile	Thr	Val 75	Leu	Lys	Leu	Asp	Arg 80
Asn	Glu	Lys	Phe	Arg 85	Asp	Ile	Arg	Arg	Tyr 90	Ile	Pro	Asn	Asn	Glu 95	Asp
Asp	Tyr	Pro	Asn 100	Cys	Asn	Leu	Ala	Leu 105	Leu	Ala	Asn	Gln	Pro 110	Glu	Pro
Thr	Ile	Ile 115	Asn	Val	Gly	Asp	Val 120	Val	Ser	Tyr	Gly	Asn 125	Ile	Leu	Leu
Ser	Gly 130	Asn	Gln	Thr	Ala	Arg 135	Met	Leu	Lys	Tyr	Ser 140	Tyr	Pro	Thr	Lys
Ser 145	Gly	Tyr	Cys	Gly	Gly 150	Val	Leu	Tyr	Lys	Ile 155	Gly	Gln	Val	Leu	Gly 160
Ile	His	Val	Gly	Gly 165	Asn	Gly	Arg	Asp	Gly 170	Phe	Ser	Ala	Met	Leu 175	Leu
Arg	Ser	Tyr	Phe 180	Thr	Asp	Val	Gln								

<210> 35
<211> 618
5 <212> ADN
<213> Secuencia artificial
<220>
<223>Oligonucleótido sintético

<400> 35

atgaaaaaaa	cggcaattgc	gatagcggtt	gcgctagctg	gttttgccac	ggtggcgcag	60
gctggcccag	aagaagaatt	cggcatgagc	ctgatcaagc	ataactcttg	cgtcattacc	120
acggagaatg	gtaagttcac	gggcttgggc	gtttatgacc	gtttcgtcgt	ggttccgacc	180
cacgctgacc	cgggtaaaga	aatccaggtt	gacggtatca	cgaccaaagt	gattgatagc	240
tatgatctct	ataataagaa	cggcatcaag	ctggaaatca	cggtgctgaa	actggaccgt	300
aatgaaaagt	ttcgtgatat	ccgtcgctat	attccgaata	acgaggatga	ctacccaaat	360
tgcaatctgg	cgctgctggc	aaatcagccg	gaaccgacga	tcatcaacgt	gggtgacgtg	420
gtgagctatg	gcaatatcct	gctgagcggt	aaccagaccg	cgcgtatgct	gaagtattcc	480
tatccgacga	aaagcggcta	ttgcggcggc	gtgctctata	agattggtca	agtcctgggc	540
atccacgtcg	gcggtaatgg	ccgcgatggt	ttcagcgcga	tgctgctgcg	tagctatttc	600
accgacgtcc	agtgataa					618

<210> 36 <211> 204

<212> PRT

<213> Secuencia artificial

<220>

<223> Polipéptido sintético

10 <400> 36

	Met 1	Lys	Lys	Thr	Ala 5	Ile	Ala	Ile	Ala	Val 10	Ala	Leu	Ala	Gly	Phe 15	Ala
	Thr	Val	Ala	Gln 20	Ala	Gly	Pro	Glu	Glu 25	Glu	Phe	Gly	Met	Ser 30	Leu	Ile
	Lys	His	Asn 35	Ser	Cys	Val	Ile	Thr 40	Thr	Glu	Asn	Gly	Lys 45	Phe	Thr	Gly
	Leu	Gly 50	Val	Tyr	Asp	Arg	Phe 55	Val	Val	Val	Pro	Thr 60	His	Ala	Asp	Pro
	Gly 65	Lys	Glu	Ile	Gln	Val 70	Asp	Gly	Ile	Thr	Thr 75	Lys	Val	Ile	Asp	Ser 80
	Tyr	Asp	Leu	Tyr	Asn 85	Lys	Asn	Gly	Ile	Lys 90	Leu	Glu	Ile	Thr	Val 95	Leu
	Lys	Leu	Asp	Arg 100	Asn	Glu	Lys	Phe	Arg 105	Asp	Ile	Arg	Arg	Tyr 110	Ile	Pro
	Asn	Asn	Glu 115	Asp	Asp	Tyr	Pro	Asn 120	Cys	Asn	Leu	Ala	Leu 125	Leu	Ala	Asn
	Gln	Pro 130	Glu	Pro	Thr	Ile	Ile 135	Asn	Val	Gly	Asp	Val 140	Val	Ser	Tyr	Gly
	Asn 145	Ile	Leu	Leu	Ser	Gly 150	Asn	Gln	Thr	Ala	Arg 155	Met	Leu	Lys	Tyr	Ser 160
	Tyr	Pro	Thr	Lys	Ser 165	Gly	Tyr	Cys	Gly	Gly 170	Val	Leu	Tyr	Lys	Ile 175	Gly
	Gln	Val	Leu	Gly	Ile	His	Val	Gly	Gly	Asn	Gly	Arg	Asp	Gly	Phe	Ser
			18	30				18	35				1	90		
Ala Met I	_eu Le	u Arg	Ser T	yr Phe	Thr A	sp Va	l Gln 1	195 20	0							
<210> 37																

10 <220>

<212> ADN

5

<223>Oligonucleótido sintético

<213> Secuencia artificial

	<400> 37 ctggaagtgc tgtttcaggg tccg	24
5	<210> 38 <211> 8 <212> PRT <213> Secuencia artificial	
10	<220> <223> Polipéptido sintético	
	<400> 38	
		Leu Glu Val Leu Phe Gln Gly Pro
15		1
	<210> 39 <211> 7 <212> PRT <213> Secuencia artificial	
20	<220> <223> Polipéptido sintético	
0.5	<400> 39	
25		Glu Val Leu Phe Gln Gly Pro 1 5
30	<210> 40 <211> 6 <212> PRT <213> Secuencia artificial	
0.5	<220> <223> Polipéptido sintético	
35	<400> 40	
		Val Leu Phe Gln Gly Pro 1 5
40	<210> 41 <211> 5 <212> PRT <213> Secuencia artificial	
45	<220> <223> Polipéptido sintético	
	<400> 41	
		Leu Phe Gln Gly Pro
50		1 5
	<210> 42 <211> 7	
55	<212> PRT <213> Secuencia artificial	
	<220> <223> Polipéptido sintético	
60		

	<400> 42
	Leu Glu Val Leu Phe Gln Gly 1 5
5	<210> 43 <211> 6 <212> PRT <213> Secuencia artificial
10	<220> <223> Polipéptido sintético
	<400> 43
	Leu Glu Val Leu Phe Gln 1 5
15	<210> 44 <211> 5 <212> PRT <213> Secuencia artificial
20	<220> <223> Polipéptido sintético
25	<400>44 Leu Glu Val Leu Phe
	1 5
30	<210> 45 <211> 6 <212> PRT <213> Secuencia artificial
35	<220> <223> Polipéptido sintético
	<400> 45
	Glu Val Leu Phe Gln Gly 1 5
40	<210> 46 <211> 21 <212> PRT <213> Secuencia artificial
45	<220> <223> Polipéptido sintético
	<400> 46
	Met Lys Lys Thr Ala Ile Ala Ile Ala Val Ala Leu Ala Gly Phe Ala 1 5 10 15
	Thr Val Ala Gln Ala 20
50	40

<210> 47

<211> 2145 <212> ADN

<213> Secuencia artificial

5

<220>

<223>Oligonucleótido sintético

<400> 47

gtgtcccgta	ttattatgct	gatccctacc	ggaaccagcg	tcggtctgac	cagcgtcagc	60
cttggcgtga	tccgtgcaat	ggaacgcaaa	ggcgttcgtc	tgagcgtttt	caaacctatc	120
gctcagccgc	gtaccggtgg	cgatgcgccc	gatcagacta	cgactatcgt	gcgtgcgaac	180
tcttccacca	cgacggccgc	tgaaccgctg	aaaatgagct	acgttgaagg	tctgctttcc	240
agcaatcaga	aagatgtgct	gatggaagag	atcgtcgcaa	actaccacgc	taacaccaaa	300
gacgctgaag	tcgttctggt	tgaaggtctg	gtcccgacac	gtaagcacca	gtttgcccag	360
tctctgaact	acgaaatcgc	taaaacgctg	aatgcggaaa	tcgtcttcgt	tatgtctcag	420
ggcactgaca	ccccggaaca	gctgaaagag	cgtatcgaac	tgacccgcaa	cagcttcggc	480
ggtgccaaaa	acaccaacat	caccggcgtt	atcgttaaca	aactgaacgc	accggttgat	540
gaacagggtc	gtactcgccc	ggatctgtcc	gagattttcg	acgactcttc	caaagctaaa	600
gtaaacaatg	ttgatccggc	gaagctgcaa	gaatccagcc	cgctgccggt	tctcggcgct	660
gtgccgtgga	gctttgacct	gatcgcgact	cgtgcgatcg	atatggctcg	ccacctgaat	720
gcgaccatca	tcaacgaagg	cgacatcaat	actcgccgcg	ttaaatccgt	cactttctgc	780
gcacgcagca	ttccgcacat	gctggagcac	ttccgtgccg	gttctctgct	ggtgacttcc	840
gcagaccgtc	ctgacgtgct	ggtggccgct	tgcctggcag	ccatgaacgg	cgtagaaatc	900
ggtgccctgc	tgctgactgg	cggttacgaa	atggacgcgc	gcatttctaa	actgtgcgaa	960

cgtgctttcg	ctaccggcct	gccggtattt	atggtgaaca	ccaacacctg	gcagacctct	1020
ctgagcctgc	agagcttcaa	cctggaagtt	ccggttgacg	atcacgaacg	tatcgagaaa	1080
gttcaggaat	acgttgctaa	ctacatcaac	gctgactgga	tcgaatctct	gactgccact	1140
tctgagcgca	gccgtcgtct	gtctccgcct	gcgttccgtt	atcagctgac	tgaacttgcg	1200
cgcaaagcgg	gcaaacgtat	cgtactgccg	gaaggtgacg	aaccgcgtac	cgttaaagca	1260
gccgctatct	gtgctgaacg	tggtatcgca	acttgcgtac	tgctgggtaa	tccggcagag	1320
atcaaccgtg	ttgcagcgtc	tcagggtgta	gaactgggtg	cagggattga	aatcgttgat	1380
ccagaagtgg	ttcgcgaaag	ctatgttggt	cgtctggtcg	aactgcgtaa	gaacaaaggc	1440
atgaccgaaa	ccgttgcccg	cgaacagctg	gaagacaacg	tggtgctcgg	tacgctgatg	1500
ctggaacagg	atgaagttga	tggtctggtt	tccggtgctg	ttcacactac	cgcaaacacc	1560
atccgtccgc	cgctgcagct	gatcaaaact	gcaccgggca	gctccctggt	atcttccgtg	1620
ttcttcatgc	tgctgccgga	acaggtttac	gtttacggtg	actgtgcgat	caacccggat	1680
ccgaccgctg	aacagctggc	agaaatcgcg	attcagtccg	ctgattccgc	tgcggccttc	1740
ggtatcgaac	cgcgcgttgc	tatgctctcc	tactccaccg	gtacttctgg	tgcaggtagc	1800
gacgtagaaa	aagttcgcga	agcaactcgt	ctggcgcagg	aaaaacgtcc	tgacctgatg	1860
atcgacggtc	cgctgcagta	cgacgctgcg	gtaatggctg	acgttgcgaa	atccaaagcg	1920
ccgaactctc	cggttgcagg	tcgcgctacc	gtgttcatct	tcccggatct	gaacaccggt	1980
aacaccacct	acaaagcggt	acagcgttct	gccgacctga	tctccatcgg	gccgatgctg	2040
cagggtatgc	gcaagccggt	taacgacctg	tcccgtggcg	cactggttga	cgatatcgtc	2100
tacaccatcg	cgctgactgc	gattcagtct	gcacagcagc	agtaa		2145

<210> 48

<211> 714 <212> PRT

<213> Secuencia artificial

<220>

<223> Polipéptido sintético

10 <400> 48

5

Val Ser Arg Ile Ile Met Leu Ile Pro Thr Gly Thr Ser Val Gly Leu 1 5 10 15

Thr Ser Val Ser Leu Gly Val Ile Arg Ala Met Glu Arg Lys Gly Val 20 25 30

Ala	Pro 50	Asp	Gln	Thr	Thr	Thr 55	Ile	Val	Arg	Ala	Asn 60	Ser	Ser	Thr	Thr
Thr 65	Ala	Ala	Glu	Pro	Leu 70	Lys	Met	Ser	Tyr	Val 75	Glu	Gly	Leu	Leu	Ser 80
Ser	Asn	Gln	Lys	Asp 85	Val	Leu	Met	Glu	Glu 90	Ile	Val	Ala	Asn	Tyr 95	His
Ala	Asn	Thr	Lys 100	Asp	Ala	Glu	Val	Val 105	Leu	Val	Glu	Gly	Leu 110	Val	Pro
Thr	Arg	Lys 115	His	Gln	Phe	Ala	Gln 120	Ser	Leu	Asn	Tyr	Glu 125	Ile	Ala	Lys
Thr	Leu 130	Asn	Ala	Glu	Ile	Val 135	Phe	Val	Met	Ser	Gln 140	Gly	Thr	Asp	Thr
Pro 145	Glu	Gln	Leu	Lys	Glu 150	Arg	Ile	Glu	Leu	Thr 155	Arg	Asn	Ser	Phe	Gly 160
Gly	Ala	Lys	Asn	Thr 165	Asn	Ile	Thr	Gly	Val 170	Ile	Val	Asn	Lys	Leu 175	Asn
Ala	Pro	Val	Asp 180	Glu	Gln	Gly	Arg	Thr 185	Arg	Pro	Asp	Leu	Ser 190	Glu	Ile
Phe	Asp	Asp 195	Ser	Ser	Lys	Ala	Lys 200	Val	Asn	Asn	Val	Asp 205	Pro	Ala	Lys
Leu	Gln 210	Glu	Ser	Ser	Pro	Leu 215	Pro	Val	Leu	Gly	Ala 220	Val	Pro	Trp	Ser
Phe 225	Asp	Leu	Ile	Ala	Thr 230	Arg	Ala	Ile	Asp	Met 235	Ala	Arg	His	Leu	Asn 240
Ala	Thr	Ile	Ile	Asn 245	Glu	Gly	Asp	Ile	Asn 250	Thr	Arg	Arg	Val	Lys 255	Ser
Val	Thr	Phe	Cys 260	Ala	Arg	Ser	Ile	Pro 265	His	Met	Leu	Glu	His 270	Phe	Arg
Ala	Gly	Ser 275	Leu	Leu	Val	Thr	Ser 280	Ala	Asp	Arg	Pro	Asp 285	Val	Leu	Val
Ala	Ala 290	_	Leu	Ala	Ala	Met		Gly	Val	Glu	Ile	_	Ala	Leu	Leu

Leu 305	Thr	Gly	Gly	Tyr	Glu 310	Met	Asp	Ala	Arg	Ile 315	Ser	Lys	Leu	Cys	Glu 320
Arg	Ala	Phe	Ala	Thr 325	Gly	Leu	Pro	Val	Phe 330	Met	Val	Asn	Thr	Asn 335	Thr
Trp	Gln	Thr	Ser 340	Leu	Ser	Leu	Gln	Ser 345	Phe	Asn	Leu	Glu	Val 350	Pro	Val
Asp	Asp	His 355	Glu	Arg	Ile	Glu	Lys 360	Val	Gln	Glu	Tyr	Val 365	Ala	Asn	Tyr
Ile	Asn 370	Ala	Asp	Trp	Ile	Glu 375	Ser	Leu	Thr	Ala	Thr 380	Ser	Glu	Arg	Ser
Arg 385	Arg	Leu	Ser	Pro	Pro 390	Ala	Phe	Arg	Tyr	Gln 395	Leu	Thr	Glu	Leu	Ala 400
Arg	Lys	Ala	Gly	Lys 405	Arg	Ile	Val	Leu	Pro 410	Glu	Gly	Asp	Glu	Pro 415	Arg
Thr	Val	Lys	Ala 420	Ala	Ala	Ile	Cys	Ala 425	Glu	Arg	Gly	Ile	Ala 430	Thr	Cys
Val	Leu	Leu 435	Gly	Asn	Pro	Ala	Glu 440	Ile	Asn	Arg	Val	Ala 445	Ala	Ser	Gln
Gly	Val 450	Glu	Leu	Gly	Ala	Gly 455	Ile	Glu	Ile	Val	Asp 460	Pro	Glu	Val	Val
Arg 465	Glu	Ser	Tyr	Val	Gly 470	Arg	Leu	Val	Glu	Leu 4 75	Arg	Lys	Asn	Lys	Gly 480
Met	Thr	Glu	Thr	Val 485	Ala	Arg	Glu	Gln	Leu 490	Glu	Asp	Asn	Val	Val 495	Leu
Gly	Thr	Leu	Met 500	Leu	Glu	Gln	Asp	Glu 505	Val	Asp	Gly	Leu	Val 510	Ser	Gly
Ala	Val	His 515	Thr	Thr	Ala	Asn	Thr 520	Ile	Arg	Pro	Pro	Leu 525	Gln	Leu	Ile
Lys	Thr 530	Ala	Pro	Gly	Ser	Ser 535	Leu	Val	Ser	Ser	Val 540	Phe	Phe	Met	Leu
Leu	Pro	Glu	Gln	Val	Tyr	Val	Tyr	Gly	Asp	Cys	Ala	Ile	Asn	Pro	Asp

	545					550					555					560
	Pro	Thr	Ala	Glu	Gln 565	Leu	Ala	Glu	Ile	Ala 570	Ile	Gln	Ser	Ala	As p 575	Ser
	Ala	Ala	Ala	Phe 580	Gly	Ile	Glu	Pro	A rg 585	Val	Ala	Met	Leu	Ser 590	Tyr	Ser
	Thr	Gly	Thr 595	Ser	Gly	Ala	Gly	Ser 600	Asp	Val	Glu	Lys	Val 605	Arg	Glu	Ala
	Thr	Arg 610	Leu	Ala	Gln	Glu	Lys 615	Arg	Pro	Asp	Leu	Met 620	Ile	Asp	Gly	Pro
	Leu 625	Gln	Tyr	Asp	Ala	Ala 630	Val	Met	Ala	Asp	Val 635	Ala	Lys	Ser	Lys	Ala 640
	Pro	Asn	Ser	Pro	Val 645	Ala	Gly	Arg	Ala	Thr 650	Val	Phe	Ile	Phe	Pro 655	Asp
	Leu	Asn	Thr	Gly 660	Asn	Thr	Thr	Tyr	Lys 665	Ala	Val	Gln	Arg	Ser 670	Ala	Asp
	Leu	Ile	Ser 675	Ile	Gly	Pro	Met	Leu 680	Gln	Gly	Met	Arg	Lys 685	Pro	Val	Asn
	Asp	Leu 690	Ser	Arg	Gly	Ala	Leu 695	Val	Asp	Asp	Ile	Val 700	Tyr	Thr	Ile	Ala
	Leu 705	Thr	Ala	Ile	Gln	Ser 710	Ala	Gln	Gln	Gln						
<210> 4 <211> 2 <212> A <213> S	169 .DN	cia art	ificial													
<220> <223>O	ligonu	cleótid	o sinté	ético												
<400> 4	9															

gtgtcccgta	ttattatgct	gatccctacc	ggaaccagcg	tcggtctgac	cagcgtcagc	60
cttggcgtga	tccgtgcaat	ggaacgcaaa	ggcgttcgtc	tgagcgtttt	caaacctatc	120
gctcagccgc	gtaccggtgg	cgatgcgccc	gatcagacta	cgactatcgt	gcgtgcgaac	180
tcttccacca	cgacggccgc	tgaaccgctg	aaaatgagct	acgttgaagg	tetgetttee	240
agcaatcaga	aagatgtgct	gatggaagag	atcgtcgcaa	actaccacgc	taacaccaaa	300
gacgctgaag	tcgttctggt	tgaaggtctg	gtcccgacac	gtaagcacca	gtttgcccag	360

tctctgaact	acgaaatcgc	taaaacgctg	aatgcggaaa	tcgtcttcgt	tatgtctcag	420
ggcactgaca	ccccggaaca	gctgaaagag	cgtatcgaac	tgacccgcaa	cagcttcggc	480
ggtgccaaaa	acaccaacat	caccggcgtt	atcgttaaca	aactgaacgc	accggttgat	540
gaacagggtc	gtactcgccc	ggatctgtcc	gagattttcg	acgactcttc	caaagctaaa	600
gtaaacaatg	ttgatccggc	gaagctgcaa	gaatccagcc	cgctgccggt	tctcggcgct	660
gtgccgtgga	gctttgacct	gatcgcgact	cgtgcgatcg	atatggctcg	ccacctgaat	720
gcgaccatca	tcaacgaagg	cgacatcaat	actcgccgcg	ttaaatccgt	cactttctgc	780
gcacgcagca	ttccgcacat	gctggagcac	ttccgtgccg	gttctctgct	ggtgacttcc	840
gcagaccgtc	ctgacgtgct	ggtggccgct	tgcctggcag	ccatgaacgg	cgtagaaatc	900
ggtgccctgc	tgctgactgg	cggttacgaa	atggacgcgc	gcatttctaa	actgtgcgaa	960
cgtgctttcg	ctaccggcct	gccggtattt	atggtgaaca	ccaacacctg	gcagacctct	1020
ctgagcctgc	agagcttcaa	cctggaagtt	ccggttgacg	atcacgaacg	tatcgagaaa	1080
gttcaggaat	acgttgctaa	ctacatcaac	gctgactgga	tcgaatctct	gactgccact	1140
tctctggaag	tgctgtttca	gggtccggag	cgcagccgtc	gtctgtctcc	gcctgcgttc	1200
cgttatcagc	tgactgaact	tgcgcgcaaa	gcgggcaaac	gtatcgtact	gccggaaggt	1260
gacgaaccgc	gtaccgttaa	agcagccgct	atctgtgctg	aacgtggtat	cgcaacttgc	1320
gtactgctgg	gtaatccggc	agagatcaac	cgtgttgcag	cgtctcaggg	tgtagaactg	1380
ggtgcaggga	ttgaaatcgt	tgatccagaa	gtggttcgcg	aaagctatgt	tggtcgtctg	1440
gtcgaactgc	gtaagaacaa	aggcatgacc	gaaaccgttg	cccgcgaaca	gctggaagac	1500
aacgtggtgc	tcggtacgct	gatgctggaa	caggatgaag	ttgatggtct	ggtttccggt	1560
gctgttcaca	ctaccgcaaa	caccatccgt	ccgccgctgc	agctgatcaa	aactgcaccg	1620
ggcagctccc	tggtatcttc	cgtgttcttc	atgctgctgc	cggaacaggt	ttacgtttac	1680
ggtgactgtg	cgatcaaccc	ggatccgacc	gctgaacagc	tggcagaaat	cgcgattcag	1740
tccgctgatt	ccgctgcggc	cttcggtatc	gaaccgcgcg	ttgctatgct	ctcctactcc	1800
accggtactt	ctggtgcagg	tagcgacgta	gaaaaagttc	gcgaagcaac	tcgtctggcg	1860
caggaaaaac	gtcctgacct	gatgatcgac	ggtccgctgc	agtacgacgc	tgcggtaatg	1920
gctgacgttg	cgaaatccaa	agcgccgaac	tctccggttg	caggtcgcgc	taccgtgttc	1980
atcttcccgg	atctgaacac	cggtaacacc	acctacaaag	cggtacagcg	ttctgccgac	2040
ctgatctcca	tcgggccgat	gctgcagggt	atgcgcaagc	cggttaacga	cctgtcccgt	2100
ggcgcactgg	ttgacgatat	cgtctacacc	atcgcgctga	ctgcgattca	gtctgcacag	2160
cagcagtaa						2169

E	<210> <211> <211> <212> <213> <	722 PRT	cia art	ificial													
5	<220> <223>	Polipép	tido si	ntético)												
10	<400>	50															
		Val 1	Ser	Arg	Ile	Ile 5	Met	Leu	Ile	Pro	Thr 10	Gly	Thr	Ser	Val	Gly 15	Leu
		Thr	Ser	Val	Ser 20	Leu	Gly	Val	Ile	Arg 25	Ala	Met	Glu	Arg	Lys 30	Gly	Val
		Arg	Leu	Ser 35	Val	Phe	Lys	Pro	Ile 40	Ala	Gln	Pro	Arg	Thr 45	Gly	Gly	Asp
		Ala	Pro 50	Asp	Gln	Thr	Thr	Thr 55	Ile	Val	Arg	Ala	Asn 60	Ser	Ser	Thr	Thr
		Thr 65	Ala	Ala	Glu	Pro	Leu 70	Lys	Met	Ser	Tyr	Val 75	Glu	Gly	Leu	Leu	Ser 80
		Ser	Asn	Gln	Lys	Asp 85	Val	Leu	Met	Glu	Glu 90	Ile	Val	Ala	Asn	Tyr 95	His
		Ala	Asn	Thr	Lys 100	Asp	Ala	Glu	Val	Val 105	Leu	Val	Glu	Gly	Leu 110	Val	Pro
		Thr	Arg	Lys 115	His	Gln	Phe	Ala	Gln 120	Ser	Leu	Asn	Tyr	Glu 125	Ile	Ala	Lys
		Thr	Leu 130	Asn	Ala	Glu	Ile	Val 135	Phe	Val	Met	Ser	Gln 140	Gly	Thr	Asp	Thr
		Pro 145	Glu	Gln	Leu	Lys	Glu 150	Arg	Ile	Glu	Leu	Thr 155	Arg	Asn	Ser	Phe	Gly 160
		Gly	Ala	Lys	Asn	Thr 165	Asn	Ile	Thr	Gly	Val 170	Ile	Val	Asn	Lys	Leu 175	Asn
		Ala	Pro	Val	Asp 180	Glu	Gln	Gly	Arg	Thr 185	Arg	Pro	Asp	Leu	Ser 190	Glu	Ile
		Phe	Asp	Asp 195	Ser	Ser	Lys	Ala	Lys 200	Val	Asn	Asn	Val	Asp 205	Pro	Ala	Lys

Leu G	31n 210	Glu	Ser	Ser	Pro	Leu 215	Pro	Val	Leu	Gly	Ala 220	Val	Pro	Trp	Ser
Phe A 225	Asp	Leu	Ile	Ala	Thr 230	Arg	Ala	Ile	Asp	Met 235	Ala	Arg	His	Leu	Asn 240
Ala T	Chr	Ile	Ile	Asn 245	Glu	Gly	Asp	Ile	As n 250	Thr	Arg	Arg	Val	Lys 255	Ser
Val T	Chr	Phe	Cys 260	Ala	Arg	Ser	Ile	Pro 265	His	Met	Leu	Glu	His 270	Phe	Arg
Ala G	3ly	Ser 275	Leu	Leu	Val	Thr	Ser 280	Ala	Asp	Arg	Pro	Asp 285	Val	Leu	Val
Ala A	Ala 290	Cys	Leu	Ala	Ala	Met 295	Asn	Gly	Val	Glu	Ile 300	Gly	Ala	Leu	Leu
Leu T 305	ľhr	Gly	Gly	Tyr	Glu 310	Met	Asp	Ala	Arg	Ile 315	Ser	Lys	Leu	Cys	Glu 320
Arg A	Ala	Phe	Ala	Thr 325	Gly	Leu	Pro	Val	Phe 330	Met	Val	Asn	Thr	Asn 335	Thr
Trp G	Gln	Thr	Ser 340	Leu	Ser	Leu	Gln	Ser 345	Phe	Asn	Leu	Glu	Val 350	Pro	Val
Asp A	Asp	His 355	Glu	Arg	Ile	Glu	Lys 360	Val	Gln	Glu	Tyr	Val 365	Ala	Asn	Tyr
Ile A	Asn 370	Ala	Asp	Trp	Ile	Glu 375	Ser	Leu	Thr	Ala	Thr 380	Ser	Leu	Glu	Val
Leu P 385	?he	Gln	Gly	Pro	Glu 390	Arg	Ser	Arg	Arg	Leu 395	Ser	Pro	Pro	Ala	Phe 400
Arg I	ſyr	Gln	Leu	Thr 405	Glu	Leu	Ala	Arg	Lys 410	Ala	Gly	Lys	Arg	Ile 415	Val
Leu P	Pro	Glu	Gly 420	Asp	Glu	Pro	Arg	Thr 425	Val	Lys	Ala	Ala	Ala 430	Ile	Cys
Ala G	71	Ara	Glv	Ile	Ala	Thr	Cys	Val	Leu	Leu	Gly	Asn	Pro	Ala	Glu
	31U	435	1				440					445			

Glu 465	Ile	Val	Asp	Pro	Glu 470	Val	Val	Arg	Glu	Ser 475	Tyr	Val	Gly	Arg	Leu 480
Val	Glu	Leu	Arg	Lys 485	Asn	Lys	Gly	Met	Thr 490	Glu	Thr	Val	Ala	Arg 495	Glu
Gln	Leu	Glu	Asp 500	Asn	Val	Val	Leu	Gly 505	Thr	Leu	Met	Leu	Glu 510	Gln	Asp
Glu	Val	Asp 515	Gly	Leu	Val	Ser	Gly 520	Ala	Val	His	Thr	Thr 525	Ala	Asn	Thr
Ile	A rg 530	Pro	Pro	Leu	Gln	Leu 535	Ile	Lys	Thr	Ala	Pro 540	Gly	Ser	Ser	Leu
Val 545	Ser	Ser	Val	Phe	Phe 550	Met	Leu	Leu	Pro	Glu 555	Gln	Val	Tyr	Val	Tyr 560
Gly	Asp	Cys	Ala	Ile 565	Asn	Pro	Asp	Pro	Thr 570	Ala	Glu	Gln	Leu	Ala 575	Glu
Ile	Ala	Ile	Gln 580	Ser	Ala	Asp	Ser	Ala 585	Ala	Ala	Phe	Gly	Ile 590	Glu	Pro
Arg	Val	Ala 595	Met	Leu	Ser	Tyr	Ser 600	Thr	Gly	Thr	Ser	Gly 605	Ala	Gly	Ser
Asp	Val 610	Glu	Lys	Val	Arg	Glu 615	Ala	Thr	Arg	Leu	Ala 620	Gln	Glu	Lys	Arg
Pro 625	Asp	Leu	Met	Ile	Asp 630	Gly	Pro	Leu	Gln	Tyr 635	Asp	Ala	Ala	Val	Met 640
Ala	Asp	Val	Ala	Lys 645	Ser	Lys	Ala	Pro	Asn 650	Ser	Pro	Val	Ala	Gly 655	Arg
Ala	Thr	Val	Phe 660	Ile	Phe	Pro	Asp	Leu 665	Asn	Thr	Gly	Asn	Thr 670	Thr	Tyr
Lys	Ala	Val 675	Gln	Arg	Ser	Ala	Asp 680	Leu	Ile	Ser	Ile	Gly 685	Pro	Met	Leu
Gln	Gly 690	Met	Arg	Lys	Pro	Val 695	Asn	Asp	Leu	Ser	Arg 700	Gly	Ala	Leu	Val
Asp 705	Asp	Ile	Val	Tyr	Thr 710	Ile	Ala	Leu	Thr	Ala 715	Ile	Gln	Ser	Ala	Gln 720

Gln Gln

<210> 51 <211> 2169 <212> ADN <213> Secuencia artificial

<220>

<223>Oligonucleótido sintético

10 <400> 51

gtgtcccgta ttattatgct	gatccctacc	ggaaccagcg	tcggtctgac	cagcgtcagc	60
cttggcgtga tccgtgcaat	ggaacgcaaa	ggcgttcgtc	tgagcgtttt	caaacctatc	120
gctcagccgc gtaccggtgg	cgatgcgccc	gatcagacta	cgactatcgt	gcgtgcgaac	180
tcttccacca cgacggccgc	tgaaccgctg	aaaatgagct	acgttgaagg	tctgctttcc	240
agcaatcaga aagatgtgct	gatggaagag	atcgtcgcaa	actaccacgc	taacaccaaa	300
gacgctgaag tcgttctggt	tgaaggtctg	gtcccgacac	gtaagcacca	gtttgcccag	360
tctctgaact acgaaatcgc	taaaacgctg	aatgcggaaa	tcgtcttcgt	tatgtctcag	420
ggcactgaca ccccggaaca	gctgaaagag	cgtatcgaac	tgacccgcaa	cagcttcggc	480
ggtgccaaaa acaccaacat	caccggcgtt	atcgttaaca	aactgaacgc	accggttgat	540
gaacagggtc gtactcgccc	ggatctgtcc	gagattttcg	acgactcttc	caaagctaaa	600
gtaaacaatg ttgatccggc	gaagctgcaa	gaatccagcc	cgctgccggt	tctcggcgct	660
gtgccgtgga gctttgacct	gatcgcgact	cgtgcgatcg	atatggctcg	ccacctgaat	720
gcgaccatca tcaacgaagg	cgacatcaat	actcgccgcg	ttaaatccgt	cactttctgc	780
gcacgcagca ttccgcacat	gctggagcac	ttccgtgccg	gttctctgct	ggtgacttcc	840
gcagaccgtc ctgacgtgct	ggtggccgct	tgcctggcag	ccatgaacgg	cgtagaaatc	900
ggtgccctgc tgctgactgg	cggttacgaa	atggacgcgc	gcatttctaa	actgtgcgaa	960
cgtgctttcg ctaccggcct	gccggtattt	atggtgaaca	ccaacacctg	gcagacctct	1020
ctgagcctgc agagcttcaa	cctggaagtt	ccggttgacg	atcacgaacg	tatcgagaaa	1080
gttcaggaat acgttgctaa	ctacatcaac	gctgactgga	tcgaatctct	gactgccact	1140
tctgagctgg aagtgctgtt	tcagggtccg	cgcagccgtc	gtctgtctcc	gcctgcgttc	1200
cgttatcagc tgactgaact	tgcgcgcaaa	gcgggcaaac	gtatcgtact	gccggaaggt	1260
gacgaaccgc gtaccgttaa	agcagccgct	atctgtgctg	aacgtggtat	cgcaacttgc	1320
gtactgctgg gtaatccggc	agagatcaac	cgtgttgcag	cgtctcaggg	tgtagaactg	1380
ggtgcaggga ttgaaatcgt	tgatccagaa	gtggttcgcg	aaagctatgt	tggtcgtctg	1440

gtcgaactgc	gtaagaacaa	aggcatgacc	gaaaccgttg	cccgcgaaca	gctggaagac	1500
aacgtggtgc	tcggtacgct	gatgctggaa	caggatgaag	ttgatggtct	ggtttccggt	1560
gctgttcaca	ctaccgcaaa	caccatccgt	ccgccgctgc	agctgatcaa	aactgcaccg	1620
ggcagctccc	tggtatcttc	cgtgttcttc	atgctgctgc	cggaacaggt	ttacgtttac	1680
ggtgactgtg	cgatcaaccc	ggatccgacc	gctgaacagc	tggcagaaat	cgcgattcag	1740
tccgctgatt	ccgctgcggc	cttcggtatc	gaaccgcgcg	ttgctatgct	ctcctactcc	1800
accggtactt	ctggtgcagg	tagcgacgta	gaaaaagttc	gcgaagcaac	tcgtctggcg	1860
caggaaaaac	gtcctgacct	gatgatcgac	ggtccgctgc	agtacgacgc	tgcggtaatg	1920
gctgacgttg	cgaaatccaa	agcgccgaac	tctccggttg	caggtcgcgc	taccgtgttc	1980
atcttcccgg	atctgaacac	cggtaacacc	acctacaaag	cggtacagcg	ttctgccgac	2040
ctgatctcca	tcgggccgat	gctgcagggt	atgcgcaagc	cggttaacga	cctgtcccgt	2100
ggcgcactgg	ttgacgatat	cgtctacacc	atcgcgctga	ctgcgattca	gtctgcacag	2160
cagcagtaa						2169

<210> 52

<211> 722

<212> PRT

<213> Secuencia artificial

<220>

<223> Polipéptido sintético

10 <400> 52

Val	Ser	Arg	Ile	Ile	Met	Leu	Ile	Pro	Thr	${ t Gly}$	\mathtt{Thr}	Ser	Val	Gly	Leu
1				5					10					15	

- Thr Ser Val Ser Leu Gly Val Ile Arg Ala Met Glu Arg Lys Gly Val 20 25 30
- Arg Leu Ser Val Phe Lys Pro Ile Ala Gln Pro Arg Thr Gly Gly Asp 35 40 45
- Ala Pro Asp Gln Thr Thr Thr Ile Val Arg Ala Asn Ser Ser Thr Thr 50 60
- Thr Ala Ala Glu Pro Leu Lys Met Ser Tyr Val Glu Gly Leu Leu Ser 65 70 75 80
- Ser Asn Gln Lys Asp Val Leu Met Glu Glu Ile Val Ala Asn Tyr His 85 90 95
- Ala Asn Thr Lys Asp Ala Glu Val Val Leu Val Glu Gly Leu Val Pro 100 105 110

Thr	Arg	Lys 115	His	Gln	Phe	Ala	Gln 120	Ser	Leu	Asn	Tyr	Glu 125	Ile	Ala	Lys
Thr	Leu 130	Asn	Ala	Glu	Ile	Val 135	Phe	Val	Met	Ser	Gln 140	Gly	Thr	Asp	Thr
Pro 145	Glu	Gln	Leu	Lys	Glu 150	Arg	Ile	Glu	Leu	Thr 155	Arg	Asn	Ser	Phe	Gly 160
Gly	Ala	Lys	Asn	Thr 165	Asn	Ile	Thr	Gly	Val 170	Ile	Val	Asn	Lys	Leu 175	Asn
Ala	Pro	Val	Asp 180	Glu	Gln	Gly	Arg	Thr 185	Arg	Pro	Asp	Leu	Ser 190	Glu	Ile
Phe	Asp	Asp 195	Ser	Ser	Lys	Ala	Lys 200	Val	Asn	Asn	Val	Asp 205	Pro	Ala	Lys
Leu	Gln 210	Glu	Ser	Ser	Pro	Leu 215	Pro	Val	Leu	Gly	Ala 220	Val	Pro	Trp	Ser
Phe 225	Asp	Leu	Ile	Ala	Thr 230	Arg	Ala	Ile	Asp	Met 235	Ala	Arg	His	Leu	Asn 240
Ala	Thr	Ile	Ile	Asn 245	Glu	Gly	Asp	Ile	Asn 250	Thr	Arg	Arg	Val	Lys 255	Ser
Val	Thr	Phe	Cys 260	Ala	Arg	Ser	Ile	Pro 265	His	Met	Leu	Glu	His 270	Phe	Arg
Ala	Gly	Ser 275	Leu	Leu	Val	Thr	Ser 280	Ala	Asp	Arg	Pro	Asp 285	Val	Leu	Val
Ala	Ala 290	Cys	Leu	Ala	Ala	Met 295	Asn	Gly	Val	Glu	Ile 300	Gly	Ala	Leu	Leu
Leu 305	Thr	Gly	Gly	Tyr	Glu 310	Met	Asp	Ala	Arg	Ile 315	Ser	Lys	Leu	Cys	Glu 320
Arg	Ala	Phe	Ala	Thr 325	Gly	Leu	Pro	Val	Phe 330	Met	Val	Asn	Thr	Asn 335	Thr
Trp	Gln	Thr	Ser 340	Leu	Ser	Leu	Gln	Ser 345	Phe	Asn	Leu	Glu	Val 350	Pro	Val
Asp	Asp	His	Glu	Arg	Ile	Glu	Lys	Val	Gln	Glu	Tyr	Val	Ala	Asn	Tyr

		355					360					365			
Ile	As n 370	Ala	Asp	Trp	Ile	Glu 375	Ser	Leu	Thr	Ala	Thr 380	Ser	Glu	Leu	Glu
Val 385	Leu	Phe	Gln	Gly	Pro 390	Arg	Ser	Arg	Arg	Leu 395	Ser	Pro	Pro	Ala	Phe 400
Arg	Tyr	Gln	Leu	Thr 405	Glu	Leu	Ala	Arg	Lys 410	Ala	Gly	Lys	Arg	Ile 415	Val
Leu	Pro	Glu	Gly 420	Asp	Glu	Pro	Arg	Thr 425	Val	Lys	Ala	Ala	Ala 430	Ile	Cys
Ala	Glu	Arg 435	Gly	Ile	Ala	Thr	Cys 440	Val	Leu	Leu	Gly	Asn 445	Pro	Ala	Glu
Ile	Asn 450	Arg	Val	Ala	Ala	Ser 455	Gln	Gly	Val	Glu	Leu 460	Gly	Ala	Gly	Ile
Glu 465	Ile	Val	Asp	Pro	Glu 470	Val	Val	Arg	Glu	Ser 475	Tyr	Val	Gly	Arg	Leu 480
Val	Glu	Leu	Arg	Lys 485	Asn	Lys	Gly	Met	Thr 490	Glu	Thr	Val	Ala	Arg 495	Glu
Gln	Leu	Glu	Asp 500	Asn	Val	Val	Leu	Gly 505	Thr	Leu	Met	Leu	Glu 510	Gln	Asp
Glu	Val	Asp 515	Gly	Leu	Val	Ser	Gly 520	Ala	Val	His	Thr	Thr 525	Ala	Asn	Thr
Ile	Arg 530	Pro	Pro	Leu	Gln	Leu 535	Ile	Lys	Thr	Ala	Pro 540	Gly	Ser	Ser	Leu
Val 545	Ser	Ser	Val	Phe	Phe 550	Met	Leu	Leu	Pro	Glu 555	Gln	Val	Tyr	Val	Туг 560
Gly	Asp	Cys	Ala	Ile 565	Asn	Pro	Asp	Pro	Thr 570	Ala	Glu	Gln	Leu	Ala 575	Glu
Ile	Ala	Ile	Gln 580	Ser	Ala	Asp	Ser	Ala 585	Ala	Ala	Phe	Gly	Ile 590	Glu	Pro
Arg	Val	Ala	Met	Leu	Ser	Tyr	Ser		Gly	Thr	Ser	Gly	Ala	Gly	Ser

Asp Val Glu Lys Val Arg Glu Ala Thr Arg Leu Ala Gln Glu Lys Arg

		610					615					620					
	Pro 625	_	Leu	Met	Ile	Asp 630	Gly	Pro	Leu	Gln	Tyr 635	Asp	Ala	Ala	Val	Met 640	
	Ala	Asp	Val	Ala	Lys 645	Ser	Lys	Ala	Pro	Asn 650	Ser	Pro	Val	Ala	Gly 655	Arg	
	Ala	Thr	Val	Phe 660	Ile	Phe	Pro	Asp	Leu 665	Asn	Thr	Gly	Asn	Thr 670	Thr	Tyr	
	Lys	Ala	Val 675	Gln	Arg	Ser	Ala	Asp 680	Leu	Ile	Ser	Ile	Gly 685	Pro	Met	Leu	
	Gln	Gly 690	Met	Arg	Lys	Pro	Val 695	Asn	Asp	Leu	Ser	A rg 700	Gly	Ala	Leu	Val	
	Asp 705	_	Ile	Val	Tyr	Thr 710	Ile	Ala	Leu	Thr	Ala 715	Ile	Gln	Ser	Ala	Gln 720	
	Gln	Gln															
<21 <21	0> 53 1> 2166 2> ADN 3> Secuer	ncia ar	rtificial														
<22 <22	0> 3>Oligonu	cleótic	do sinte	ético													
<40	0> 53																
	gtgtccc	gta	ttatt	atgc	t ga	tccc	tacc	ggaa	ccag	cg t	cggt	ctgac	c cag	cgtc	agc		60
	cttggcg	tga	tccgt	gcaa	t gg	aacg	caaa	ggcg	ıttcg	tc t	gagc	gtttt	caa	acct	atc		120
	gctcagc	cgc	gtaco	cggtg	g cg	atgc	gada	gato	agac	ta c	gacta	atcgt	gcg	rtgcg	aac		180
	tcttcca	.cca	cgaco	gccg	c tg	aacc	gctg	aaaa	tgag	ct a	cgtt	gaago	, tct	gctt	tcc		240
	agcaatc	aga	aagat	gtgc	t ga	tgga	agag	atco	jtcgc	aa a	ctac	cacgo	taa	cacc	aaa		300
	gacgctg	aag	tcgtt	ctgg	t tg	aagg	tatg	gtac	cgac	ac g	taago	cacca	gtt	tgcc	cag		360
	tctctga	act	acgaa	atcg	c ta	aaac	gctg	aato	gcgga	aa t	cgtc	ttcgt	: tat	gtct	cag		420
	ggcactg	aca	cccc	ggaac	a gc	tgaa	agag	cgta	tcga	ac t	gacc	cgcaa	cag	rcttc	ggc		480
	ggtgcca	aaa	acaco	caaca	t ca	ccgg	cgtt	atco	jttaa	.ca a	actga	aacgo	acc	ggtt	gat		540

5

10

600

660

gaacagggtc gtactcgccc ggatctgtcc gagattttcg acgactcttc caaagctaaa

gtaaacaatg ttgatccggc gaagctgcaa gaatccagcc cgctgccggt tctcggcgct

gtgccgtgga	gctttgacct	gatcgcgact	cgtgcgatcg	atatggctcg	ccacctgaat	720
gcgaccatca	tcaacgaagg	cgacatcaat	actcgccgcg	ttaaatccgt	cactttctgc	780
gcacgcagca	ttccgcacat	gctggagcac	ttccgtgccg	gttctctgct	ggtgacttcc	840
gcagaccgtc	ctgacgtgct	ggtggccgct	tgcctggcag	ccatgaacgg	cgtagaaatc	900
ggtgccctgc	tgctgactgg	cggttacgaa	atggacgcgc	gcatttctaa	actgtgcgaa	960
cgtgctttcg	ctaccggcct	gccggtattt	atggtgaaca	ccaacacctg	gcagacctct	1020
ctgagcctgc	agagcttcaa	cctggaagtt	ccggttgacg	atcacgaacg	tatcgagaaa	1080
gttcaggaat	acgttgctaa	ctacatcaac	gctgactgga	tcgaatctct	gactgccact	1140
tctgagcgca	gccgtcgtct	ggaagtgctg	tttcagggtc	cgtctccgcc	tgcgttccgt	1200
tatcagctga	ctgaacttgc	gcgcaaagcg	ggcaaacgta	tcgtactgcc	ggaaggtgac	1260
gaaccgcgta	ccgttaaagc	agccgctatc	tgtgctgaac	gtggtatcgc	aacttgcgta	1320
ctgctgggta	atccggcaga	gatcaaccgt	gttgcagcgt	ctcagggtgt	agaactgggt	1380
gcagggattg	aaatcgttga	tccagaagtg	gttcgcgaaa	gctatgttgg	tcgtctggtc	1440
gaactgcgta	agaacaaagg	catgaccgaa	accgttgccc	gcgaacagct	ggaagacaac	1500
gtggtgctcg	gtacgctgat	gctggaacag	gatgaagttg	atggtctggt	ttccggtgct	1560
gttcacacta	ccgcaaacac	catccgtccg	ccgctgcagc	tgatcaaaac	tgcaccgggc	1620
agctccctgg	tatcttccgt	gttcttcatg	ctgctgccgg	aacaggttta	cgtttacggt	1680
gactgtgcga	tcaacccgga	tccgaccgct	gaacagctgg	cagaaatcgc	gattcagtcc	1740
gctgattccg	ctgcggcctt	cggtatcgaa	ccgcgcgttg	ctatgctctc	ctactccacc	1800
ggtacttctg	gtgcaggtag	cgacgtagaa	aaagttcgcg	aagcaactcg	tctggcgcag	1860
gaaaaacgtc	ctgacctgat	gatcgacggt	ccgctgcagt	acgacgctgc	ggtaatggct	1920
gacgttgcga	aatccaaagc	gccgaactct	ccggttgcag	gtcgcgctac	cgtgttcatc	1980
ttcccggatc	tgaacaccgg	taacaccacc	tacaaagcgg	tacagcgttc	tgccgacctg	2040
atctccatcg	ggccgatgct	gcagggtatg	cgcaagccgg	ttaacgacct	gtcccgtggc	2100
gcactggttg	acgatatcgt	ctacaccatc	gcgctgactg	cgattcagtc	tgcacagcag	2160
cagtaa						2166

5

<210> 54 <211> 721

<212> PRT

<213> Secuencia artificial

<220>

<223> Polipéptido sintético

10

<400> 54

Va 1	ıl S	Ser	Arg	Ile	Ile 5	Met	Leu	Ile	Pro	Thr 10	Gly	Thr	Ser	Val	Gly 15	Leu
Th	ır S	Ser	Val	Ser 20	Leu	Gly	Val	Ile	Arg 25	Ala	Met	Glu	Arg	Lys 30	Gly	Val
Ar	g I	eu	Ser 35	Val	Phe	Lys	Pro	Ile 40	Ala	Gln	Pro	Arg	Thr 45	Gly	Gly	Asp
Al		Pro 50	Asp	Gln	Thr	Thr	Thr 55	Ile	Val	Arg	Ala	Asn 60	Ser	Ser	Thr	Thr
Th 65		Ala	Ala	Glu	Pro	Leu 70	Lys	Met	Ser	Tyr	Val 75	Glu	Gly	Leu	Leu	Ser 80
Se	er A	Asn	Gln	Lys	Asp 85	Val	Leu	Met	Glu	Glu 90	Ile	Val	Ala	Asn	Tyr 95	His
Al	a A	Asn	Thr	Lys 100	Asp	Ala	Glu	Val	Val 105	Leu	Val	Glu	Gly	Leu 110	Val	Pro
Th	ır A	Arg	Lys 115	His	Gln	Phe	Ala	Gln 120	Ser	Leu	Asn	Tyr	Glu 125	Ile	Ala	Lys
Th		eu .30	Asn	Ala	Glu	Ile	Val 135	Phe	Val	Met	Ser	Gln 140	Gly	Thr	Asp	Thr
Pr 14		Slu	Gln	Leu	Lys	Glu 150	Arg	Ile	Glu	Leu	Thr 155	Arg	Asn	Ser	Phe	Gly 160
Gl	.y <i>P</i>	Ala	Lys	Asn	Thr 165	Asn	Ile	Thr	Gly	Val 170	Ile	Val	Asn	Lys	Leu 175	Asn
Al	a P	Pro	Val	Asp 180	Glu	Gln	Gly	Arg	Thr 185	Arg	Pro	Asp	Leu	Ser 190	Glu	Ile
Ph	ne A	Asp	Asp 195	Ser	Ser	Lys	Ala	Lys 200	Val	Asn	Asn	Val	Asp 205	Pro	Ala	Lys
Le		Sln 210	Glu	Ser	Ser	Pro	Leu 215	Pro	Val	Leu	Gly	Ala 220	Val	Pro	Trp	Ser
Ph 22		Asp	Leu	Ile	Ala	Thr 230	Arg	Ala	Ile	Asp	Met 235	Ala	Arg	His	Leu	Asn 240
Al	a I	hr	Ile	Ile	Asn 245		Gly	Asp	Ile	Asn 250		Arg	Arg	Val	Lys 255	

Val	Thr	Phe	Cys 260	Ala	Arg	Ser	Ile	Pro 265	His	Met	Leu	Glu	His 270	Phe	Arg
Ala	Gly	Ser 275	Leu	Leu	Val	Thr	Ser 280	Ala	Asp	Arg	Pro	Asp 285	Val	Leu	Val
Ala	Ala 290	Cys	Leu	Ala	Ala	Met 295	Asn	Gly	Val	Glu	Ile 300	Gly	Ala	Leu	Leu
Leu 305	Thr	Gly	Gly	Tyr	Glu 310	Met	Asp	Ala	Arg	Ile 315	Ser	Lys	Leu	Cys	Glu 320
Arg	Ala	Phe	Ala	Thr 325	Gly	Leu	Pro	Val	Phe 330	Met	Val	Asn	Thr	Asn 335	Thr
Trp	Gln	Thr	Ser 340	Leu	Ser	Leu	Gln	Ser 345	Phe	Asn	Leu	Glu	Val 350	Pro	Val
Asp	Asp	His 355	Glu	Arg	Ile	Glu	Lys 360	Val	Gln	Glu	Tyr	Val 365	Ala	Asn	Tyr
Ile	Asn 370	Ala	Asp	Trp	Ile	Glu 375	Ser	Leu	Thr	Ala	Thr 380	Ser	Glu	Arg	Ser
Arg 385	Arg	Leu	Glu	Val	Leu 390	Phe	Gln	Gly	Pro	Ser 395	Pro	Pro	Ala	Phe	Arg 400
Tyr	Gln	Leu	Thr	Glu 405	Leu	Ala	Arg	Lys	Ala 410	Gly	Lys	Arg	Ile	Val 415	Leu
Pro	Glu	Gly	Asp 420	Glu	Pro	Arg	Thr	Val 425	Lys	Ala	Ala	Ala	Ile 430	Cys	Ala
Glu	Arg	Gly 435	Ile	Ala	Thr	Cys	Val 440	Leu	Leu	Gly	Asn	Pro 445	Ala	Glu	Ile
Asn	Arg 450	Val	Ala	Ala	Ser	Gln 455	Gly	Val	Glu	Leu	Gly 460	Ala	Gly	Ile	Glu
Ile 465	Val	Asp	Pro	Glu	Val 470	Val	Arg	Glu	Ser	Tyr 475	Val	Gly	Arg	Leu	Val 480
Glu															
010	Leu	Arg	Lys	Asn 485	Lys	Gly	Met	Thr	Glu 490	Thr	Val	Ala	Arg	Glu 495	Gln

7	V al	Asp	Gly 515	Leu	Val	Ser	Gly	Ala 520	Val	His	Thr	Thr	Ala 525	Asn	Thr	Ile
1	Arg	Pro 530	Pro	Leu	Gln	Leu	Ile 535	Lys	Thr	Ala	Pro	Gly 540	Ser	Ser	Leu	Val
	Ser 545	Ser	Val	Phe	Phe	Met 550	Leu	Leu	Pro	Glu	Gln 555	Val	Tyr	Val	Tyr	Gly 560
2	Asp	Cys	Ala	Ile	Asn 565	Pro	Asp	Pro	Thr	Ala 570	Glu	Gln	Leu	Ala	Glu 575	Ile
2	Ala	Ile	Gln	Ser 580	Ala	Asp	Ser	Ala	Ala 585	Ala	Phe	Gly	Ile	Glu 590	Pro	Arg
7	V al	Ala	Met 595	Leu	Ser	Tyr	Ser	Thr 600	Gly	Thr	Ser	Gly	Ala 605	Gly	Ser	Asp
7	/al	Glu 610	Lys	Val	Arg	Glu	Ala 615	Thr	Arg	Leu	Ala	Gln 620	Glu	Lys	Arg	Pro
	Asp 625	Leu	Met	Ile	Asp	Gly 630	Pro	Leu	Gln	Tyr	Asp 635	Ala	Ala	Val	Met	Ala 640
2	Asp	Val	Ala	Lys	Ser 645	Lys	Ala	Pro	Asn	Ser 650	Pro	Val	Ala	Gly	Arg 655	Ala
י	[hr	Val	Phe	Ile 660	Phe	Pro	Asp	Leu	Asn 665	Thr	Gly	Asn	Thr	Thr 670	Tyr	Lys
1	Ala	Val	Gln 675	Arg	Ser	Ala	Asp	Leu 680	Ile	Ser	Ile	Gly	Pro 685	Met	Leu	Gln
Ó	Gly	Met 690	Arg	Lys	Pro	Val	Asn 695	Asp	Leu	Ser	Arg	Gly 700	Ala	Leu	Val	Asp
	Asp 705	Ile	Val	Tyr	Thr	Ile 710	Ala	Leu	Thr	Ala	Ile 715	Gln	Ser	Ala	Gln	Gln 720
(Gln															
<210> 55 <211> 216 <212> AD <213> Sec	63 N	cia art	ificial													
<220>																

<223>Oligonucleótido sintético

<400> 55

gtgtcccgta	ttattatgct	gatccctacc	ggaaccagcg	tcggtctgac	cagcgtcagc	60
cttggcgtga	tccgtgcaat	ggaacgcaaa	ggcgttcgtc	tgagcgtttt	caaacctatc	120
gctcagccgc	gtaccggtgg	cgatgcgccc	gatcagacta	cgactatcgt	gcgtgcgaac	180
tcttccacca	cgacggccgc	tgaaccgctg	aaaatgagct	acgttgaagg	tctgctttcc	240
agcaatcaga	aagatgtgct	gatggaagag	atcgtcgcaa	actaccacgc	taacaccaaa	300
gacgctgaag	tcgttctggt	tgaaggtctg	gtcccgacac	gtaagcacca	gtttgcccag	360
tctctgaact	acgaaatcgc	taaaacgctg	aatgcggaaa	tcgtcttcgt	tatgtctcag	420
ggcactgaca	ccccggaaca	gctgaaagag	cgtatcgaac	tgacccgcaa	cagcttcggc	480
ggtgccaaaa	acaccaacat	caccggcgtt	atcgttaaca	aactgaacgc	accggttgat	540
gaacagggtc	gtactcgccc	ggatctgtcc	gagattttcg	acgactcttc	caaagctaaa	600
gtaaacaatg	ttgatccggc	gaagctgcaa	gaatccagcc	cgctgccggt	tctcggcgct	660
gtgccgtgga	gctttgacct	gatcgcgact	cgtgcgatcg	atatggctcg	ccacctgaat	720
gcgaccatca	tcaacgaagg	cgacatcaat	actcgccgcg	ttaaatccgt	cactttctgc	780
gcacgcagca	ttccgcacat	gctggagcac	ttccgtgccg	gttctctgct	ggtgacttcc	840
gcagaccgtc	ctgacgtgct	ggtggccgct	tgcctggcag	ccatgaacgg	cgtagaaatc	900
ggtgccctgc	tgctgactgg	cggttacgaa	atggacgcgc	gcatttctaa	actgtgcgaa	960
cgtgctttcg	ctaccggcct	gccggtattt	atggtgaaca	ccaacacctg	gcagacctct	1020
ctgagcctgc	agagcttcaa	cctggaagtt	ccggttgacg	atcacgaacg	tatcgagaaa	1080
gttcaggaat	acgttgctaa	ctacatcaac	gctgactgga	tcgaatctct	gactgccact	1140
tctgagcgca	gccgtcgtct	gtctccgcct	gcgttccgtt	atcagctgac	tgaacttgcg	1200
cgcaaagcgg	gcaaacgtat	cgtactggaa	gtgctgtttc	agggtccgga	aggtgacgaa	1260
ccgcgtaccg	ttaaagcagc	cgctatctgt	gctgaacgtg	gtatcgcaac	ttgcgtactg	1320
ctgggtaatc	cggcagagat	caaccgtgtt	gcagcgtctc	agggtgtaga	actgggtgca	1380
gggattgaaa	tcgttgatcc	agaagtggtt	cgcgaaagct	atgttggtcg	tctggtcgaa	1440
ctgcgtaaga	acaaaggcat	gaccgaaacc	gttgcccgcg	aacagctgga	agacaacgtg	1500
gtgctcggta	cgctgatgct	ggaacaggat	gaagttgatg	gtctggtttc	cggtgctgtt	1560
cacactaccg	caaacaccat	ccgtccgccg	ctgcagctga	tcaaaactgc	accgggcagc	1620
tccctggtat	cttccgtgtt	cttcatgctg	ctgccggaac	aggtttacgt	ttacggtgac	1680
tgtgcgatca	acccggatcc	gaccgctgaa	cagctggcag	aaatcgcgat	tcagtccgct	1740
gattccgctg	cggccttcgg	tatcgaaccg	cgcgttgcta	tgctctccta	ctccaccggt	1800

acttctggtg caggtagcga c	egtagaaaaa	gttcgcgaag	caactcgtct	ggcgcaggaa	1860
aaacgtcctg acctgatgat c	cgacggtccg	ctgcagtacg	acgctgcggt	aatggctgac	1920
gttgcgaaat ccaaagcgcc g	gaactctccg	gttgcaggtc	gcgctaccgt	gttcatcttc	1980
ccggatctga acaccggtaa c	caccacctac	aaagcggtac	agcgttctgc	cgacctgatc	2040
tccatcgggc cgatgctgca g	gggtatgcgc	aagccggtta	acgacctgtc	ccgtggcgca	2100
ctggttgacg atatcgtcta c	caccatcgcg	ctgactgcga	ttcagtctgc	acagcagcag	2160
taa					2163

<210> 56

<211> 720

<212> PRT

<213> Secuencia artificial

<220>

<223> Polipéptido sintético

10

<400> 56

Val Ser Arg Ile Ile Met Leu Ile Pro Thr Gly Thr Ser Val Gly Leu 1 5 10 15

Thr Ser Val Ser Leu Gly Val Ile Arg Ala Met Glu Arg Lys Gly Val 20 25 30

Arg Leu Ser Val Phe Lys Pro Ile Ala Gln Pro Arg Thr Gly Gly Asp 35 40 45

Ala Pro Asp Gln Thr Thr Thr Ile Val Arg Ala Asn Ser Ser Thr Thr 50 55 60

Thr Ala Ala Glu Pro Leu Lys Met Ser Tyr Val Glu Gly Leu Leu Ser 65 70 75 80

Ser Asn Gln Lys Asp Val Leu Met Glu Glu Ile Val Ala Asn Tyr His 85 90 95

Ala Asn Thr Lys Asp Ala Glu Val Val Leu Val Glu Gly Leu Val Pro
100 105 110

Thr Arg Lys His Gln Phe Ala Gln Ser Leu Asn Tyr Glu Ile Ala Lys 115 120 125

Thr Leu Asn Ala Glu Ile Val Phe Val Met Ser Gln Gly Thr Asp Thr 130 135 140

Pro Glu Gln Leu Lys Glu Arg Ile Glu Leu Thr Arg Asn Ser Phe Gly

145					150					155					160
Gly	Ala	Lys	Asn	Thr 165	Asn	Ile	Thr	Gly	V al 170	Ile	Val	Asn	Lys	Leu 175	Asn
Ala	Pro	Val	Asp 180	Glu	Gln	Gly	Arg	Thr 185	Arg	Pro	Asp	Leu	Ser 190	Glu	Ile
Phe	Asp	Asp 195	Ser	Ser	Lys	Ala	Lys 200	Val	Asn	Asn	Val	Asp 205	Pro	Ala	Lys
Leu	Gln 210	Glu	Ser	Ser	Pro	Leu 215	Pro	Val	Leu	Gly	Ala 220	Val	Pro	Trp	Ser
Phe 225	Asp	Leu	Ile	Ala	Thr 230	Arg	Ala	Ile	Asp	Met 235	Ala	Arg	His	Leu	Asn 240
Ala	Thr	Ile	Ile	Asn 245	Glu	Gly	Asp	Ile	As n 250	Thr	Arg	Arg	Val	Lys 255	Ser
Val	Thr	Phe	Cys 260	Ala	Arg	Ser	Ile	Pro 265	His	Met	Leu	Glu	His 270	Phe	Arg
Ala	Gly	Ser 275	Leu	Leu	Val	Thr	Ser 280	Ala	Asp	Arg	Pro	Asp 285	Val	Leu	Val
Ala	Ala 290	Cys	Leu	Ala	Ala	Met 295	Asn	Gly	Val	Glu	Ile 300	Gly	Ala	Leu	Leu
Leu 305		Gly	Gly	_	Glu 310		Asp	Ala	Arg	Ile 315		Lys	Leu	Cys	Glu 320
Arg	Ala	Phe	Ala	Thr 325	Gly	Leu	Pro	Val	Phe 330	Met	Val	Asn	Thr	Asn 335	Thr
Trp	Gln	Thr	Ser 340	Leu	Ser	Leu	Gln	Ser 345	Phe	Asn	Leu	Glu	Val 350	Pro	Val
Asp	Asp	His 355	Glu	Arg	Ile	Glu	Lys 360	Val	Gln	Glu	Tyr	Val 365	Ala	Asn	Tyr
Ile	Asn 370	Ala	Asp	Trp	Ile	Glu 375	Ser	Leu	Thr	Ala	Thr 380	Ser	Glu	Arg	Ser
Arg 385	Arg	Leu	Ser	Pro	Pro 390	Ala	Phe	Arg	Tyr	Gln 395	Leu	Thr	Glu	Leu	Ala 400

Arg	Lys	Ala	Gly	Lys 405	Arg	Ile	Val	Leu	Glu 410	Val	Leu	Phe	Gln	Gly 415	Pro
Glu	Gly	Asp	Glu 420	Pro	Arg	Thr	Val	Lys 425	Ala	Ala	Ala	Ile	Cys 430	Ala	Glu
Arg	Gly	Ile 435	Ala	Thr	Cys	Val	Leu 440	Leu	Gly	Asn	Pro	Ala 445	Glu	Ile	Asn
Arg	Val 450	Ala	Ala	Ser	Gln	Gly 455	Val	Glu	Leu	Gly	Ala 460	Gly	Ile	Glu	Ile
Val 465	Asp	Pro	Glu	Val	Val 470	Arg	Glu	Ser	Tyr	Val 475	Gly	Arg	Leu	Val	Glu 480
Leu	Arg	Lys	Asn	Lys 485	Gly	Met	Thr	Glu	Thr 490	Val	Ala	Arg	Glu	Gln 495	Leu
Glu	Asp	Asn	Val 500	Val	Leu	Gly	Thr	Leu 505	Met	Leu	Glu	Gln	Asp 510	Glu	Val
Asp	Gly	Leu 515	Val	Ser	Gly	Ala	Val 520	His	Thr	Thr	Ala	Asn 525	Thr	Ile	Arg
Pro	Pro 530	Leu	Gln	Leu	Ile	Lys 535	Thr	Ala	Pro	Gly	Ser 540	Ser	Leu	Val	Ser
_															
5 4 5	Val	Phe	Phe	Met	Leu 550	Leu	Pro	Glu	Gln	Val 555	Tyr	Val	Tyr	Gly	Asp 560
545					550					555				Gly Ile 575	560
545 Cys	Ala	Ile	Asn	Pro 565	550	Pro	Thr	Ala	Glu 570	555 Gln	Leu	Ala	Glu	Ile	560
545 Cys Ile	Ala Gln	Ile Ser	Asn Ala 580	Pro 565 Asp	550 Asp Ser	Pro Ala	Thr Ala	Ala Ala 585	Glu 570 Phe	555 Gln Gly	Leu Ile	Ala Glu	Glu Pro 590	Ile 575	Ala Val
Cys Ile	Ala Gln Met	Ile Ser Leu 595	Asn Ala 580 Ser	Pro 565 Asp	550 Asp Ser	Pro Ala Thr	Thr Ala Gly 600	Ala Ala 585 Thr	Glu 570 Phe Ser	555 Gln Gly Gly	Leu Ile Ala	Ala Glu Gly 605	Glu Pro 590 Ser	Ile 575 Arg	560 Ala Val
Cys Ile Ala Glu	Ala Gln Met Lys 610	Ile Ser Leu 595 Val	Asn Ala 580 Ser	Pro 565 Asp Tyr	550 Asp Ser Ala	Pro Ala Thr Thr 615	Thr Ala Gly 600 Arg	Ala 585 Thr	Glu 570 Phe Ser	S55 Gln Gly Gly	Leu Ile Ala Glu 620	Ala Glu Gly 605 Lys	Glu Pro 590 Ser	Ile 575 Arg	560 Ala Val Val

Val Phe Ile Phe Pro Asp Leu Asn Thr Gly Asn Thr Thr Tyr Lys Ala 660 665 670

Val Gln Arg Ser Ala Asp Leu Ile Ser Ile Gly Pro Met Leu Gln Gly 675 680 685

Met Arg Lys Pro Val Asn Asp Leu Ser Arg Gly Ala Leu Val Asp Asp 690 695 700

Ile Val Tyr Thr Ile Ala Leu Thr Ala Ile Gln Ser Ala Gln Gln 705 710 715 720

<210> 57 <211> 1992

<212> ADN

<213> Secuencia artificial

<220>

5

10

<223>Oligonucleótido sintético

<400> 57

atgtcctcac gtaaagagct tgccaatgct attcgtgcgc tgagcatgga cgcagtacag 60 120 aaagccaaat ccggtcaccc gggtgcccct atgggtatgg ctgacattgc cgaagtcctg tggcgtgatt tcctgaaaca caacccgcag aatccgtcct gggctgaccg tgaccgcttc 180 gtgctgtcca acggccacgg ctccatgctg atctacagcc tgctgcacct caccggttac 240 gatctgccga tggaagaact gaaaaacttc cgtcagctgc actctaaaac tccgggtcac 300 ccggaagtgg gttacaccgc tggtgtggaa accaccaccg gtccgctggg tcagggtatt 360 420 gccaacgcag tcggtatggc gattgcagaa aaaacgctgg cggcgcagtt taaccgtccg ggccacgaca ttgtcgacca ctacacctac gccttcatgg gcgacggctg catgatggaa 480 ggcatctccc acgaagtttg ctctctggcg ggtacgctga agctgggtaa actgattgca 540 600 ttctacgatg acaacggtat ttctatcgat ggtcacgttg aaggctggtt caccgacgac accgcaatgc gtttcgaagc ttacggctgg cacgttattc gcgacatcga cggtcatgac 660 gcggcatcta tcaaacgcgc agtagaagaa gcgcgcgcag tgactgacaa accttccctg 720 ctgatgtgca aaaccatcat cggtttcggt tccccgaaca aagccggtac ccacgactcc 780 cacggtgcgc cgctgggcga cgctgaaatt gccctgaccc gcgaacaact gggctggaaa 840 900 tatgcgccgt tcgaaatccc gtctgaaatc tatgctcagt gggatgcgaa agaagcaggc caggcgaaag aatccgcatg gaacgagaaa ttcgctgctt acgcgaaagc ttatccgcag 960 gaagccgctg aatttacccg ccgtatgaaa ggcgaaatgc cgtctgactt cgacgctaaa 1020 gcgaaagagt tcatcgctaa actgcaggct aatccggcga aaatcgccag ccgtaaagcg 1080 tctcagaatg ctatcgaagc gttcggtccg ctgttgccgg aattcctcgg cggttctgct 1140

gacctggcgc cgtctaacct	gaccctgtgg	tctggttcta	aagcaatcaa	cgaagatgct	1200
gcgggtaact acatccacta	cggtgttcgc	gagttcggta	tgaccgcgat	tgctaacggt	1260
atctccctgc acggtggctt	cctgccgtac	acctccacct	tcctgatgtt	cgtggaatac	1320
gcacgtaacg ccgtacgtat	ggctgcgctg	atgaaacagc	gtcaggtgat	ggtttacacc	1380
cacgactcca tcggtctggg	cgaagacggc	ccgactcacc	agccggttga	gcaggtcgct	1440
tctctgcgcg taaccccgaa	catgtctaca	tggcgtccgt	gtgaccaggt	tgaatccgcg	1500
gtcgcgtgga aatacggtgt	tgagcgtcag	gacggcccga	ccgcactgat	cctctcccgt	1560
cagaacctgg cgcagcagga	acgaactgaa	gagcaactgg	caaacatcgc	gcgcggtggt	1620
tatgtgctga aagactgcgc	cggtcagccg	gaactgattt	tcatcgctac	cggttcagaa	1680
gttgaactgg ctgttgctgc	ctacgaaaaa	ctgactgccg	aaggcgtgaa	agcgcgcgtg	1740
gtgtccatgc cgtctaccga	cgcatttgac	aagcaggatg	ctgcttaccg	tgaatccgta	1800
ctgccgaaag cggttactgc	acgcgttgct	gtagaagcgg	gtattgctga	ctactggtac	1860
aagtatgttg gcctgaacgg	tgctatcgtc	ggtatgacca	ccttcggtga	atctgctccg	1920
gcagagctgc tgtttgaaga	gttcggcttc	actgttgata	acgttgttgc	gaaagcaaaa	1980
gaactgctgt aa					1992

<210> 58

<211> 2016

<212> ADN

<213> Secuencia artificial

<220>

<223>Oligonucleótido sintético

10

5

<400> 58

atgtcctcac gtaaagagct tgccaatgct attcgtgcgc tgagcatgga cgcagtacag 60 120 aaagccaaat ccggtcaccc gggtgcccct atgggtatgg ctgacattgc cgaagtcctg tggcgtgatt tcctgaaaca caacccgcag aatccgtcct gggctgaccg tgaccgcttc 180 gtgctgtcca acggccacgg ctccatgctg atctacagcc tgctgcacct caccggttac 240 gatctgccga tggaagaact gaaaaacttc cgtcagctgc actctaaaac tccgggtcac 300 ccggaagtgg gttacaccgc tggtgtggaa accaccaccg gtccgctggg tcagggtatt 360 gccaacgcag tcggtatggc gattgcagaa aaaacgctgg cggcgcagtt taaccgtccg 420 ggccacgaca ttgtcgacca ctacacctac gccttcatgg gcgacggctg catgatggaa 480 ggcatctccc acgaagtttg ctctctggcg ggtacgctga agctgggtaa actgattgca 540 ttctacgatg acaacggtat ttctatcgat ggtcacgttg aaggctggtt caccgacgac 600 accgcaatgc gtttcgaagc ttacggctgg cacgttattc gcgacatcga cggtcatgac 660

gcggcatcta	tcaaacgcgc	agtagaagaa	gcgcgcgcag	tgactgacaa	accttccctg	720
ctgatgtgca	aaaccatcat	cggtttcggt	tccccgaaca	aagccggtac	ccacgactcc	780
cacggtgcgc	cgctgggcga	cgctgaaatt	gccctgaccc	gcgaacaact	gggctggaaa	840
tatgcgccgt	tcgaaatccc	gtctgaaatc	tatgctcagt	gggatgcgaa	agaagcaggc	900
caggcgaaag	aatccgcatg	gaacgagaaa	ttcgctgctt	acgcgaaagc	ttatccgcag	960
gaagccgctg	aatttacccg	ccgtatgaaa	ggcgaaatgc	cgtctgactt	cgacgctaaa	1020
gcgaaagagt	tcatcgctaa	actgcaggct	aatccggcga	aaatcgccag	ccgtaaagcg	1080
tctcagaatg	ctatcgaagc	gttcggtccg	ctgttgccgg	aattcctcgg	cggttctgct	1140
gacctggcgc	cgtctaacct	gaccctgtgg	tctggttcta	aagcaatcaa	cgaagatgct	1200
gcgggtaact	acatccacta	cggtgttcgc	gagttcggta	tgaccgcgat	tgctaacggt	1260
atctccctgc	acggtggctt	cctgccgtac	acctccacct	tcctgatgtt	cgtggaatac	1320
gcacgtaacg	ccgtacgtat	ggctgcgctg	atgaaacagc	gtcaggtgat	ggtttacacc	1380
cacgactcca	tcggtctggg	cgaagacggc	ccgactcacc	agccggttga	gcaggtcgct	1440
tctctgcgcg	taaccccgaa	catgtctaca	tggcgtccgt	gtgaccaggt	tgaatccgcg	1500
gtcgcgtgga	aatacggtgt	tgagcgtcag	gacggcccga	ccgcactgat	cctctcccgt	1560
cagaacctgg	cgcagcagga	acgaactgaa	gagcaactgg	caaacatcgc	gcgcggtggt	1620
tatgtgctga	aagactgcgc	cggtcagccg	gaactgattt	tcatcgctac	cggttcagaa	1680
gttgaactgg	ctgttgctgc	ctacgaaaaa	ctgactgccg	aaggcgtgaa	agcgcgcgtg	1740
gtgtccatgc	cgtctaccga	cgcatttgac	aagcaggatg	ctgcttaccg	tgaatccgta	1800
ctgccgaaag	cggttactgc	acgcgttgct	gtagaagcgg	gtattgctga	ctactggtac	1860
aagtatgttg	gcctgaacgg	tgctatcgtc	ggtatgacca	ccttcctgga	agtgctgttt	1920
cagggtccgg	gtgaatctgc	tccggcagag	ctgctgtttg	aagagttcgg	cttcactgtt	1980
gataacgttg	ttgcgaaagc	aaaagaactg	ctgtaa			2016

<210> 59

<211> 2016

<212> ADN

<213> Secuencia artificial

<220>

<223>Oligonucleótido sintético

10 <400> 59

5

atgtcctcac gtaaagagct tgccaatgct attcgtgcgc tgagcatgga cgcagtacag 60
aaagccaaat ccggtcaccc gggtgcccct atgggtatgg ctgacattgc cgaagtcctg 120
tggcgtgatt tcctgaaaca caacccgcag aatccgtcct gggctgaccg tgaccgcttc 180
gtgctgtcca acggccacgg ctccatgctg atctacagcc tgctgcacct caccggttac 240

gatctgccga tggaagaact	gaaaaacttc	cgtcagctgc	actctaaaac	tccgggtcac	300
ccggaagtgg gttacaccgc	tggtgtggaa	accaccaccg	gtccgctggg	tcagggtatt	360
gccaacgcag tcggtatggc	gattgcagaa	aaaacgctgg	cggcgcagtt	taaccgtccg	420
ggccacgaca ttgtcgacca	ctacacctac	gccttcatgg	gcgacggctg	catgatggaa	480
ggcatctccc acgaagtttg	ctctctggcg	ggtacgctga	agctgggtaa	actgattgca	540
ttctacgatg acaacggtat	ttctatcgat	ggtcacgttg	aaggctggtt	caccgacgac	600
accgcaatgc gtttcgaagc	ttacggctgg	cacgttattc	gcgacatcga	cggtcatgac	660
gcggcatcta tcaaacgcgc	agtagaagaa	gcgcgcgcag	tgactgacaa	accttccctg	720
ctgatgtgca aaaccatcat	cggtttcggt	tccccgaaca	aagccggtac	ccacgactcc	780
cacggtgcgc cgctgggcga	cgctgaaatt	gccctgaccc	gcgaacaact	gggctggaaa	840
tatgcgccgt tcgaaatccc	gtctgaaatc	tatgctcagt	gggatgcgaa	agaagcaggc	900
caggcgaaag aatccgcatg	gaacgagaaa	ttcgctgctt	acgcgaaagc	ttatccgcag	960
gaagccgctg aatttacccg	ccgtatgaaa	ggcgaaatgc	cgtctgactt	cgacgctaaa	1020
gcgaaagagt tcatcgctaa	actgcaggct	aatccggcga	aaatcgccag	ccgtaaagcg	1080
tctcagaatg ctatcgaagc	gttcggtccg	ctgttgccgg	aattcctcgg	cggttctgct	1140
gacctggcgc cgtctaacct	gaccctgtgg	tctggttcta	aagcaatcaa	cgaagatgct	1200
gcgggtaact acatccacta	cggtgttcgc	gagttcggta	tgaccgcgat	tgctaacggt	1260
atctccctgc acggtggctt	cctgccgtac	acctccacct	tcctgatgtt	cgtggaatac	1320
gcacgtaacg ccgtacgtat	ggctgcgctg	atgaaacagc	gtcaggtgat	ggtttacacc	1380
cacgactcca tcggtctggg	cgaagacggc	ccgactcacc	agccggttga	gcaggtcgct	1440
tctctgcgcg taaccccgaa	catgtctaca	tggcgtccgt	gtgaccaggt	tgaatccgcg	1500
gtcgcgtgga aatacggtgt	tgagcgtcag	gacggcccga	ccgcactgat	cctctcccgt	1560
cagaacctgg cgcagcagga	acgaactgaa	gagcaactgg	caaacatcgc	gcgcggtggt	1620
tatgtgctga aagactgcgc	cggtcagccg	gaactgattt	tcatcgctac	cggttcagaa	1680
gttgaactgg ctgttgctgc	ctacgaaaaa	ctgactgccg	aaggcgtgaa	agcgcgcgtg	1740
gtgtccatgc cgtctaccga	cgcatttgac	aagcaggatg	ctgcttaccg	tgaatccgta	1800
ctgccgaaag cggttactgc	acgcgttgct	gtagaagcgg	gtattgctga	ctactggtac	1860
aagtatgttg gcctgaacgg	tgctatcgtc	ggtatgacca	ccttcggtct	ggaagtgctg	1920
tttcagggtc cggaatctgc	tccggcagag	ctgctgtttg	aagagttcgg	cttcactgtt	1980
gataacgttg ttgcgaaagc	aaaagaactg	ctgtaa			2016

<210> 60 <211> 2016

<212> ADN

<213> Secuencia artificial

<220>

<223>Oligonucleótido sintético

<400> 60

5

60 atgtcctcac gtaaagagct tgccaatgct attcgtgcgc tgagcatgga cgcagtacag aaagccaaat ccggtcaccc gggtgcccct atgggtatgg ctgacattgc cgaagtcctg 120 180 tggcgtgatt tcctgaaaca caacccgcag aatccgtcct gggctgaccg tgaccgcttc 240 gtgctgtcca acggccacgg ctccatgctg atctacagcc tgctgcacct caccggttac gatctgccga tggaagaact gaaaaacttc cgtcagctgc actctaaaac tccgggtcac 300 360 ccggaagtgg gttacaccgc tggtgtggaa accaccaccg gtccgctggg tcagggtatt 420 gccaacgcag tcggtatggc gattgcagaa aaaacgctgg cggcgcagtt taaccgtccg 480 ggccacgaca ttgtcgacca ctacacctac gccttcatgg gcgacggctg catgatggaa 540 ggcatctccc acgaagtttg ctctctggcg ggtacgctga agctgggtaa actgattgca ttctacgatg acaacggtat ttctatcgat ggtcacgttg aaggctggtt caccgacgac 600 accgcaatgc gtttcgaagc ttacggctgg cacgttattc gcgacatcga cggtcatgac 660 gcggcatcta tcaaacgcgc agtagaagaa gcgcgcgcag tgactgacaa accttccctg 720 ctgatgtgca aaaccatcat cggtttcggt tccccgaaca aagccggtac ccacgactcc 780 840 cacggtgcgc cgctgggcga cgctgaaatt gccctgaccc gcgaacaact gggctggaaa 900 tatgcgccgt tcgaaatccc gtctgaaatc tatgctcagt gggatgcgaa agaagcaggc 960 caggcgaaag aatccgcatg gaacgagaaa ttcgctgctt acgcgaaagc ttatccgcag gaagccgctg aatttacccg ccgtatgaaa ggcgaaatgc cgtctgactt cgacgctaaa 1020 gcgaaagagt tcatcgctaa actgcaggct aatccggcga aaatcgccag ccgtaaagcg 1080 1140 teteagaatg etategaage gtteggteeg etgttgeegg aatteetegg eggttetget 1200 gacctggcgc cgtctaacct gaccctgtgg tctggttcta aagcaatcaa cgaagatgct 1260 gcgggtaact acatccacta cggtgttcgc gagttcggta tgaccgcgat tgctaacggt atctccctgc acggtggctt cctgccgtac acctccacct tcctgatgtt cgtggaatac 1320 1380 gcacgtaacg ccgtacgtat ggctgcgctg atgaaacagc gtcaggtgat ggtttacacc cacgactcca tcggtctggg cgaagacggc ccgactcacc agccggttga gcaggtcgct 1440 tctctgcgcg taaccccgaa catgtctaca tggcgtccgt gtgaccaggt tgaatccgcg 1500 1560 gtcgcgtgga aatacggtgt tgagcgtcag gacggcccga ccgcactgat cctctcccgt

1620

1680

cagaacctgg cgcagcagga acgaactgaa gagcaactgg caaacatcgc gcgcggtggt

tatgtgctga aagactgcgc cggtcagccg gaactgattt tcatcgctac cggttcagaa

gttgaactgg	ctgttgctgc	ctacgaaaaa	ctgactgccg	aaggcgtgaa	agcgcgcgtg	1740
gtgtccatgc	cgtctaccga	cgcatttgac	aagcaggatg	ctgcttaccg	tgaatccgta	1800
ctgccgaaag	cggttactgc	acgcgttgct	gtagaagcgg	gtattgctga	ctactggtac	1860
aagtatgttg	gcctgaacgg	tgctatcgtc	ggtatgacca	ccttcggtga	actggaagtg	1920
ctgtttcagg	gtccgtctgc	tccggcagag	ctgctgtttg	aagagttcgg	cttcactgtt	1980
gataacgttg	ttgcgaaagc	aaaagaactg	ctgtaa			2016

<210> 61 <211> 2016

5

10

<211> 2016 <212> ADN

<213> Secuencia artificial

<220>

<223>Oligonucleótido sintético

<400> 61

atgtcctcac gtaaagagct tgccaatgct attcgtgcgc tgagcatgga cgcagtacag 60 aaagccaaat ccggtcaccc gggtgcccct atgggtatgg ctgacattgc cgaagtcctg 120 tggcgtgatt tcctgaaaca caacccgcag aatccgtcct gggctgaccg tgaccgcttc 180 240 gtgctgtcca acggccacgg ctccatgctg atctacagcc tgctgcacct caccggttac 300 gatctgccga tggaagaact gaaaaacttc cgtcagctgc actctaaaac tccgggtcac 360 ccggaagtgg gttacaccgc tggtgtggaa accaccaccg gtccgctggg tcagggtatt 420 gccaacgcag tcggtatggc gattgcagaa aaaacgctgg cggcgcagtt taaccgtccg ggccacgaca ttgtcgacca ctacacctac gccttcatgg gcgacggctg catgatggaa 480 ggcatctccc acquagtttg ctctctggcg ggtacgctga agctgggtaa actgattgca 540 600 ttctacgatg acaacggtat ttctatcgat ggtcacgttg aaggctggtt caccgacgac 660 accgcaatgc gtttcgaagc ttacggctgg cacgttattc gcgacatcga cggtcatgac 720 geggeateta teaaaegege agtagaagaa gegegegeag tgactgacaa acetteeetg ctgatgtgca aaaccatcat cggtttcggt tccccgaaca aagccggtac ccacgactcc 780 840 cacggtgcgc cgctgggcga cgctgaaatt gccctgaccc gcgaacaact gggctggaaa tatgcgccgt tcgaaatccc gtctgaaatc tatgctcagt gggatgcgaa agaagcaggc 900 960 caggcgaaag aatccgcatg gaacgagaaa ttcgctgctt acgcgaaagc ttatccgcag 1020 gaagccgctg aatttacccg ccgtatgaaa ggcgaaatgc cgtctgactt cgacgctaaa gcgaaagagt tcatcgctaa actgcaggct aatccggcga aaatcgccag ccgtaaagcg 1080 tctcagaatg ctatcgaagc gttcggtccg ctgttgccgg aattcctcgg cggttctgct 1140 1200 gacctggcgc cgtctaacct gaccctgtgg tctggttcta aagcaatcaa cgaagatgct

gcgggtaact	acatccacta	cggtgttcgc	gagttcggta	tgaccgcgat	tgctaacggt	1260
atctccctgc	acggtggctt	cctgccgtac	acctccacct	tcctgatgtt	cgtggaatac	1320
gcacgtaacg	ccgtacgtat	ggctgcgctg	atgaaacagc	gtcaggtgat	ggtttacacc	1380
cacgactcca	tcggtctggg	cgaagacggc	ccgactcacc	agccggttga	gcaggtcgct	1440
tctctgcgcg	taaccccgaa	catgtctaca	tggcgtccgt	gtgaccaggt	tgaatccgcg	1500
gtcgcgtgga	aatacggtgt	tgagcgtcag	gacggcccga	ccgcactgat	cctctcccgt	1560
cagaacctgg	cgcagcagga	acgaactgaa	gagcaactgg	caaacatcgc	gcgcggtggt	1620
tatgtgctga	aagactgcgc	cggtcagccg	gaactgattt	tcatcgctac	cggttcagaa	1680
gttgaactgg	ctgttgctgc	ctacgaaaaa	ctgactgccg	aaggcgtgaa	agcgcgcgtg	1740
gtgtccatgc	cgtctaccga	cgcatttgac	aagcaggatg	ctgcttaccg	tgaatccgta	1800
ctgccgaaag	cggttactgc	acgcgttgct	gtagaagcgg	gtattgctga	ctactggtac	1860
aagtatgttg	gcctgaacgg	tgctatcgtc	ggtatgacca	ccttcggtga	atctctggaa	1920
gtgctgtttc	agggtccggc	tccggcagag	ctgctgtttg	aagagttcgg	cttcactgtt	1980
gataacgttg	ttgcgaaagc	aaaagaactg	ctgtaa			2016

<210> 62 5 <211> 2016

<212> ADN

<213> Secuencia artificial

<220>

10 <223>Oligonucleótido sintético

<400> 62

atgtcctcac gtaaagagct tgccaatgct attcgtgcgc tgagcatgga cgcagtacag 60 aaagccaaat ccggtcaccc gggtgcccct atgggtatgg ctgacattgc cgaagtcctg 120 tggcgtgatt tcctgaaaca caacccgcag aatccgtcct gggctgaccg tgaccgcttc 180 240 gtgctgtcca acggccacgg ctccatgctg atctacagcc tgctgcacct caccggttac gatctgccga tggaagaact gaaaaacttc cgtcagctgc actctaaaac tccgggtcac 300 360 ccggaagtgg gttacaccgc tggtgtggaa accaccaccg gtccgctggg tcagggtatt gccaacgcag tcggtatggc gattgcagaa aaaacgctgg cggcgcagtt taaccgtccg 420 ggccacgaca ttgtcgacca ctacacctac gccttcatgg gcgacggctg catgatggaa 480 ggcatctccc acgaagtttg ctctctggcg ggtacgctga agctgggtaa actgattgca 540 600 ttctacgatg acaacggtat ttctatcgat ggtcacgttg aaggctggtt caccgacgac 660 accgcaatgc gtttcgaagc ttacggctgg cacgttattc gcgacatcga cggtcatgac 720 gcggcatcta tcaaacgcgc agtagaagaa gcgcgcgcag tgactgacaa accttccctg ctgatgtgca aaaccatcat cggtttcggt tccccgaaca aagccggtac ccacgactcc 780

cacggtgcgc cgctgggcga	cgctgaaatt	gccctgaccc	gcgaacaact	gggctggaaa	840
tatgcgccgt tcgaaatccc	gtctgaaatc	tatgctcagt	gggatgcgaa	agaagcaggc	900
caggcgaaag aatccgcatg	gaacgagaaa	ttcgctgctt	acgcgaaagc	ttatccgcag	960
gaageegetg aatttaeeeg	ccgtatgaaa	ggcgaaatgc	cgtctgactt	cgacgctaaa	1020
gcgaaagagt tcatcgctaa	actgcaggct	aatccggcga	aaatcgccag	ccgtaaagcg	1080
tctcagaatg ctatcgaago	gttcggtccg	ctgttgccgg	aattcctcgg	cggttctgct	1140
gacctggcgc cgtctaacct	gaccctgtgg	tctggttcta	aagcaatcaa	cgaagatgct	1200
gcgggtaact acatccacta	cggtgttcgc	gagttcggta	tgaccgcgat	tgctaacggt	1260
atctccctgc acggtggctt	cctgccgtac	acctccacct	tcctgatgtt	cgtggaatac	1320
gcacgtaacg ccgtacgtat	ggctgcgctg	atgaaacagc	gtcaggtgat	ggtttacacc	1380
cacgactcca tcggtctggg	cgaagacggc	ccgactcacc	agccggttga	gcaggtcgct	1440
tctctgcgcg taaccccgaa	catgtctaca	tggcgtccgt	gtgaccaggt	tgaatccgcg	1500
gtcgcgtgga aatacggtgt	tgagcgtcag	gacggcccga	ccgcactgat	cctctcccgt	1560
cagaacctgg cgcagcagga	acgaactgaa	gagcaactgg	caaacatcgc	gcgcggtggt	1620
tatgtgctga aagactgcgc	cggtcagccg	gaactgattt	tcatcgctac	cggttcagaa	1680
gttgaactgg ctgttgctgc	ctacgaaaaa	ctgactgccg	aaggcgtgaa	agcgcgcgtg	1740
gtgtccatgc cgtctaccga	cgcatttgac	aagcaggatg	ctgcttaccg	tgaatccgta	1800
ctgccgaaag cggttactgc	acgcgttgct	gtagaagcgg	gtattgctga	ctactggtac	1860
aagtatgttg gcctgaacgg	tgctatcgtc	ggtatgacca	ccttcggtga	atctgctccg	1920
ctggaagtgc tgtttcaggg	tccggcagag	ctgctgtttg	aagagttcgg	cttcactgtt	1980
gataacgttg ttgcgaaagc	aaaagaactg	ctgtaa			2016

<210> 63

<211> 663

<212> PRT

<213> Secuencia artificial

<220>

<223> Polipéptido sintético

10 <400> 63

5

Met Ser Ser Arg Lys Glu Leu Ala Asn Ala Ile Arg Ala Leu Ser Met 1 5 10 15

Asp Ala Val Gln Lys Ala Lys Ser Gly His Pro Gly Ala Pro Met Gly 20 25 30

Met Ala Asp Ile Ala Glu Val Leu Trp Arg Asp Phe Leu Lys His Asn

		35					40					45			
Pro	Gln 50	Asn	Pro	Ser	Trp	Ala 55	Asp	Arg	Asp	Arg	Phe 60	Val	Leu	Ser	Asn
Gly 65	His	Gly	Ser	Met	Leu 70	Ile	Tyr	Ser	Leu	Leu 75	His	Leu	Thr	Gly	Tyr 80
Asp	Leu	Pro	Met	Glu 85	Glu	Leu	Lys	Asn	Phe 90	Arg	Gln	Leu	His	Ser 95	Lys
Thr	Pro	Gly	His 100	Pro	Glu	Val	Gly	Tyr 105	Thr	Ala	Gly	Val	Glu 110	Thr	Thr
Thr	Gly	Pro 115	Leu	Gly	Gln	Gly	Ile 120	Ala	Asn	Ala	Val	Gly 125	Met	Ala	Ile
Ala	Glu 130	Lys	Thr	Leu	Ala	Ala 135	Gln	Phe	Asn	Arg	Pro 140	Gly	His	Asp	Ile
Val 145	Asp	His	Tyr	Thr	Tyr 150	Ala	Phe	Met	Gly	Asp 155	Gly	Cys	Met	Met	Glu 160
Gly	Ile	Ser	His	Glu 165	Val	Cys	Ser	Leu	A la 170	Gly	Thr	Leu	Lys	Leu 175	Gly
Lys	Leu	Ile	Ala 180	Phe	Tyr	Asp	Asp	Asn 185	Gly	Ile	Ser	Ile	Asp 190	Gly	His
Val	Glu	Gly 195	Trp	Phe	Thr	Asp	Asp 200	Thr	Ala	Met	Arg	Phe 205	Glu	Ala	Tyr
Gly	Trp 210	His	Val	Ile	Arg	Asp 215	Ile	Asp	Gly	His	Asp 220	Ala	Ala	Ser	Ile
Lys 225	Arg	Ala	Val	Glu	Glu 230	Ala	Arg	Ala	Val	Thr 235	Asp	Lys	Pro	Ser	Leu 240
Leu	Met	Cys	Lys	Thr 245	Ile	Ile	Gly	Phe	Gly 250	Ser	Pro	Asn	Lys	Ala 255	Gly
Thr	His	Asp	Ser 260	His	Gly	Ala	Pro	Leu 265	Gly	Asp	Ala	Glu	Ile 270	Ala	Leu
Thr	Arg	Glu 275	Gln	Leu	Gly	Trp	Lys 280	Tyr	Ala	Pro	Phe	Glu 285	Ile	Pro	Ser

Glu	Ile 290	Tyr	Ala	Gln	Trp	Asp 295	Ala	Lys	Glu	Ala	Gly 300	Gln	Ala	Lys	Glu
Ser 305	Ala	Trp	Asn	Glu	Lys 310	Phe	Ala	Ala	Tyr	Ala 315	Lys	Ala	Tyr	Pro	Gln 320
Glu	Ala	Ala	Glu	Phe 325	Thr	Arg	Arg	Met	Lys 330	Gly	Glu	Met	Pro	Ser 335	Asp
Phe	Asp	Ala	Lys 340	Ala	Lys	Glu	Phe	Ile 345	Ala	Lys	Leu	Gln	Ala 350	Asn	Pro
Ala	Lys	Ile 355	Ala	Ser	Arg	Lys	Ala 360	Ser	Gln	Asn	Ala	Ile 365	Glu	Ala	Phe
Gly	Pro 370	Leu	Leu	Pro	Glu	Phe 375	Leu	Gly	Gly	Ser	Ala 380	Asp	Leu	Ala	Pro
Ser 385	Asn	Leu	Thr	Leu	Trp 390	Ser	Gly	Ser	Lys	Ala 395	Ile	Asn	Glu	Asp	Ala 400
Ala	Gly	Asn	Tyr	Ile 405	His	Tyr	Gly	Val	Arg 410	Glu	Phe	Gly	Met	Thr 415	Ala
Ile	Ala	Asn	Gly 420	Ile	Ser	Leu	His	Gly 425	Gly	Phe	Leu	Pro	Tyr 430	Thr	Ser
Thr	Phe	Leu 435	Met	Phe	Val	Glu	Tyr 440	Ala	Arg	Asn	Ala	Val 445	Arg	Met	Ala
Ala	Leu 450	Met	Lys	Gln	Arg	Gln 455	Val	Met	Val	Tyr	Thr 460	His	Asp	Ser	Ile
Gly 465	Leu	Gly	Glu	Asp	Gly 470	Pro	Thr	His	Gln	Pro 475	Val	Glu	Gln	Ile	Ala 480
Ser	Leu	Arg	Val	Thr 485	Pro	Asn	Met	Ser	Thr 490	Trp	Arg	Pro	Cys	Asp 495	Gln
Val	Glu	Ser	Ala 500	Val	Ala	Trp	Lys	Tyr 505	Gly	Val	Glu	Arg	Gln 510	Asp	Gly
Pro	Thr	Ala 515	Leu	Ile	Leu	Ser	Arg 520	Gln	Asn	Leu	Ala	Gln 525	Gln	Glu	Arg
Thr	Glu 530	Glu	Gln	Leu	Ala	Asn 535	Ile	Ala	Arg	Gly	Gly 540	Tyr	Val	Leu	Lys

Asp 545	Cys	Ala	Gly	Gln	Pro 550	Glu	Leu	Ile	Phe	Ile 555	Ala	Thr	Gly	Ser	Glu 560
Val	Glu	Leu	Ala	Val 565	Ala	Ala	Tyr	Glu	Lys 570	Leu	Thr	Ala	Glu	Gly 575	Val
Lys	Ala	Arg	Val 580	Val	Ser	Met	Pro	Ser 585	Thr	Asp	Ala	Phe	Asp 590	Lys	Gln
Asp	Ala	Ala 595	Tyr	Arg	Glu	Ser	Val 600	Leu	Pro	Lys	Ala	Val 605	Thr	Ala	Arg
Val	Ala 610	Val	Glu	Ala	Gly	Ile 615	Ala	Asp	Tyr	Trp	Tyr 620	Lys	Tyr	Val	Gly
Leu 625	Asn	Gly	Ala	Ile	Val 630	Gly	Met	Thr	Thr	Phe 635	Gly	Glu	Ser	Ala	Pro 640
Ala	Glu	Gln	Leu	Phe 645	Glu	Glu	Phe	Gly	Phe 650	Thr	Val	Asp	Asn	Val 655	Val
Ala	Lys	Ala	Lys 660	Ala	Leu	Leu									

<210> 64

<211> 671

<212> PRT

<213> Secuencia artificial

<220>

10 <223> Polipéptido sintético

<400> 64

Met Ser Ser Arg Lys Glu Leu Ala Asn Ala Ile Arg Ala Leu Ser Met 1 5 10 15

Asp Ala Val Gln Lys Ala Lys Ser Gly His Pro Gly Ala Pro Met Gly 20 25 30

Met Ala Asp Ile Ala Glu Val Leu Trp Arg Asp Phe Leu Lys His Asn 35 40 45

Pro Gln Asn Pro Ser Trp Ala Asp Arg Asp Arg Phe Val Leu Ser Asn 50 55 60

Gly His Gly Ser Met Leu Ile Tyr Ser Leu Leu His Leu Thr Gly Tyr 65 70 75 80

Asp	Leu	Pro	Met	Glu 85	Glu	Leu	Lys	Asn	Phe 90	Arg	Gln	Leu	His	Ser 95	Lys
Thr	Pro	Gly	His 100	Pro	Glu	Val	Gly	Tyr 105	Thr	Ala	Gly	Val	Glu 110	Thr	Thr
Thr	Gly	Pro 115	Leu	Gly	Gln	Gly	Ile 120	Ala	Asn	Ala	Val	Gly 125	Met	Ala	Ile
Ala	Glu 130	Lys	Thr	Leu	Ala	Ala 135	Gln	Phe	Asn	Arg	Pro 140	Gly	His	Asp	Ile
Val 145	Asp	His	Tyr	Thr	Tyr 150	Ala	Phe	Met	Gly	Asp 155	Gly	Cys	Met	Met	Glu 160
Gly	Ile	Ser	His	Glu 165	Val	Cys	Ser	Leu	Ala 170	Gly	Thr	Leu	Lys	Leu 175	Gly
Lys	Leu	Ile	Ala 180	Phe	Tyr	Asp	Asp	Asn 185	Gly	Ile	Ser	Ile	Asp 190	Gly	His
Val	Glu	Gly 195	Trp	Phe	Thr	Asp	Asp 200	Thr	Ala	Met	Arg	Phe 205	Glu	Ala	Tyr
Gly	Trp 210	His	Val	Ile	Arg	Asp 215	Ile	Asp	Gly	His	Asp 220	Ala	Ala	Ser	Ile
Lys 225	Arg	Ala	Val	Glu	Glu 230	Ala	Arg	Ala	Val	Thr 235	Asp	Lys	Pro	Ser	Leu 240
Leu	Met	Cys	Lys	Thr 245	Ile	Ile	Gly	Phe	Gly 250	Ser	Pro	Asn	Lys	Ala 255	Gly
Thr	His	Asp	Ser 260	His	Gly	Ala	Pro	Leu 265	Gly	Asp	Ala	Glu	Ile 270	Ala	Leu
Thr	Arg	Glu 275	Gln	Leu	Gly	Trp	Lys 280	Tyr	Ala	Pro	Phe	Glu 285	Ile	Pro	Ser
Glu	Ile 290	Tyr	Ala	Gln	Trp	Asp 295	Ala	Lys	Glu	Ala	Gly 300	Gln	Ala	Lys	Glu
Ser 305	Ala	Trp	Asn	Glu	Lys 310	Phe	Ala	Ala	Tyr	Ala 315	Lys	Ala	Tyr	Pro	Glr 320
Glu	Ala	Ala	Glu	Phe 325	Thr	Arg	Arg	Met	Lys 330	Gly	Glu	Met	Pro	Ser 335	Asp

Phe	Asp	Ala	Lys 340	Ala	Lys	Glu	Phe	Ile 345	Ala	Lys	Leu	Gln	Ala 350	Asn	Pro
Ala	Lys	Ile 355	Ala	Ser	Arg	Lys	Ala 360	Ser	Gln	Asn	Ala	Ile 365	Glu	Ala	Phe
Gly	Pro 370	Leu	Leu	Pro	Glu	Phe 375	Leu	Gly	Gly	Ser	Ala 380	Asp	Leu	Ala	Pro
Ser 385	Asn	Leu	Thr	Leu	Trp 390	Ser	Gly	Ser	Lys	Ala 395	Ile	Asn	Glu	Asp	Ala 400
Ala	Gly	Asn	Tyr	Ile 405	His	Tyr	Gly	Val	Arg 410	Glu	Phe	Gly	Met	Thr 415	Ala
Ile	Ala	Asn	Gly 420	Ile	Ser	Leu	His	Gly 425	Gly	Phe	Leu	Pro	Tyr 430	Thr	Ser
Thr	Phe	Leu 435	Met	Phe	Val	Glu	Tyr 440	Ala	Arg	Asn	Ala	Val 445	Arg	Met	Ala
Ala	Leu 450	Met	Lys	Gln	Arg	Gln 455	Val	Met	Val	Tyr	Thr 460	His	Asp	Ser	Ile
Gly 465	Leu	Gly	Glu	Asp	Gly 470	Pro	Thr	His	Gln	Pro 475	Val	Glu	Gln	Val	Ala 480
Ser	Leu	Arg	Val	Thr 485	Pro	Asn	Met	Ser	Thr 490	Trp	Arg	Pro	Cys	Asp 495	Gln
Val	Glu	Ser	Ala 500	Val	Ala	Trp	Lys	Tyr 505	Gly	Val	Glu	Arg	Gln 510	Asp	Gly
Pro	Thr	Ala 515	Leu	Ile	Leu	Ser	Arg 520	Gln	Asn	Leu	Ala	Gln 525	Gln	Glu	Arg
Thr	Glu 530	Glu	Gln	Leu	Ala	As n 535	Ile	Ala	Arg	Gly	Gly 540	Tyr	Val	Leu	Lys
Asp 545	Cys	Ala	Gly	Gln	Pro 550	Glu	Leu	Ile	Phe	Ile 555	Ala	Thr	Gly	Ser	Glu 560
Val	Glu	Leu	Ala	Val 565	Ala	Ala	Tyr	Glu	Lys 570	Leu	Thr	Ala	Glu	Gly 575	Val
Lys	Ala	Arg	Val 580	Val	Ser	Met	Pro	Ser 585	Thr	Asp	Ala	Phe	Asp 590	Lys	Gln

As	p Al	a Ala 595	_	Arg	Glu	Ser	Val 600	Leu	Pro	Lys	Ala	Val 605	Thr	Ala	Arg
Va	1 A1 61	a Val	Glu	Ala	Gly	Ile 615	Ala	Asp	Tyr	Trp	Tyr 620	Lys	Tyr	Val	Gly
Le 62		n Gly	Ala	Ile	Val 630	Gly	Met	Thr	Thr	Phe 635	Leu	Glu	Val	Leu	Phe 640
G1	n Gl	y Pro	Gly	Glu 645	Ser	Ala	Pro	Ala	Glu 650	Leu	Leu	Phe	Glu	Glu 655	Phe
Gl	y Ph	e Thr	Val 660	Asp	Asn	Val	Val	Ala 665	Lys	Ala	Lys	Glu	Leu 670	Leu	
<210> 65 <211> 671 <212> PRT <213> Secu	encia	artificial													
<220> <223> Polip	éptido	sintétic	0												
<400> 65															
<u>м</u> е 1	et S	er Se	r Arg	Lys 5	Glu	Leu	Ala	Asn	Ala 10	Ile	Arg	Ala	Leu	Ser 15	Met
A	sp A	la Val	L Gln 20	Lys	Ala	Lys	Ser	Gly 25	His	Pro	Gly	Ala	Pro 30	Met	Gly
М	et A	la Asp 35) Ile	Ala	Glu	Val	Leu 40	Trp	Arg	Asp	Phe	Leu 45	Lys	His	Asn
P:	ro G:	ln Ası O	n Pro	Ser	Trp	Ala 55	Asp	Arg	Asp	Arg	Phe 60	Val	Leu	Ser	Asn
G:	_	is Gly	y Ser	Met	Leu 70	Ile	Tyr	Ser	Leu	Leu 75	His	Leu	Thr	Gly	Tyr 80
A	sp L	eu Pro) Met	Glu 85	Glu	Leu	Lys	Asn	Phe 90	Arg	Gln	Leu	His	Ser 95	Lys
T	nr P:	ro Gly	y His 100		Glu	Val	Gly	Tyr 105	Thr	Ala	Gly	Val	Glu 110	Thr	Thr
T	nr G	ly Pro		Gly	Gln	Gly	Ile 120	Ala	Asn	Ala	Val	Gly 125		Ala	Ile

Ala	Glu 130	Lys	Thr	Leu	Ala	Ala 135	Gln	Phe	Asn	Arg	Pro 140	Gly	His	Asp	Ile
Val 145	Asp	His	Tyr	Thr	Tyr 150	Ala	Phe	Met	Gly	Asp 155	Gly	Cys	Met	Met	Glu 160
Gly	Ile	Ser	His	Glu 165	Val	Cys	Ser	Leu	Ala 170	Gly	Thr	Leu	Lys	Leu 175	Gly
Lys	Leu	Ile	Ala 180	Phe	Tyr	Asp	Asp	Asn 185	Gly	Ile	Ser	Ile	Asp 190	Gly	His
Val	Glu	Gly 195	Trp	Phe	Thr	Asp	Asp 200	Thr	Ala	Met	Arg	Phe 205	Glu	Ala	Tyr
Gly	Trp 210	His	Val	Ile	Arg	Asp 215	Ile	Asp	Gly	His	Asp 220	Ala	Ala	Ser	Ile
Lys 225	Arg	Ala	Val	Glu	Glu 230	Ala	Arg	Ala	Val	Thr 235	Asp	Lys	Pro	Ser	Leu 240
Leu	Met	Cys	Lys	Thr 245	Ile	Ile	Gly	Phe	Gly 250	Ser	Pro	Asn	Lys	Ala 255	Gly
Thr	His	Asp	Ser 260	His	Gly	Ala	Pro	Leu 265	Gly	Asp	Ala	Glu	Ile 270	Ala	Leu
Thr	Arg	Glu 275	Gln	Leu	Gly	Trp	Lys 280	Tyr	Ala	Pro	Phe	Glu 285	Ile	Pro	Ser
Glu	Ile 290	Tyr	Ala	Gln	Trp	Asp 295	Ala	Lys	Glu	Ala	Gly 300	Gln	Ala	Lys	Glu
Ser 305	Ala	Trp	Asn	Glu	Lys 310	Phe	Ala	Ala	Tyr	Ala 315	Lys	Ala	Tyr	Pro	Gln 320
Glu	Ala	Ala	Glu	Phe 325	Thr	Arg	Arg	Met	Lys 330	Gly	Glu	Met	Pro	Ser 335	Asp
Phe	Asp	Ala	Lys 340	Ala	Lys	Glu	Phe	Ile 345	Ala	Lys	Leu	Gln	Ala 350	Asn	Pro
Ala	Lys	Ile 355	Ala	Ser	Arg	Lys	Ala 360	Ser	Gln	Asn	Ala	Ile 365	Glu	Ala	Phe
Gly	Pro 370	Leu	Leu	Pro	Glu	Phe 375	Leu	Gly	Gly	Ser	Ala 380	Asp	Leu	Ala	Pro

Ser 385	Asn	Leu	Thr	Leu	Trp 390	Ser	Gly	Ser	Lys	Ala 395	Ile	Asn	Glu	Asp	Ala 400
Ala	Gly	Asn	Tyr	Ile 405	His	Tyr	Gly	Val	Arg 410	Glu	Phe	Gly	Met	Thr 415	Ala
Ile	Ala	Asn	Gly 420	Ile	Ser	Leu	His	Gly 425	Gly	Phe	Leu	Pro	Tyr 430	Thr	Ser
Thr	Phe	Leu 435	Met	Phe	Val	Glu	Tyr 440	Ala	Arg	Asn	Ala	Val 445	Arg	Met	Ala
Ala	Leu 450	Met	Lys	Gln	Arg	Gln 455	Val	Met	Val	Tyr	Thr 460	His	Asp	Ser	Ile
Gly 465	Leu	Gly	Glu	Asp	Gly 470	Pro	Thr	His	Gln	Pro 475	Val	Glu	Gln	Val	Ala 480
Ser	Leu	Arg	Val	Thr 485	Pro	Asn	Met	Ser	Thr 490	Trp	Arg	Pro	Cys	Asp 495	Gln
Val	Glu	Ser	Ala 500	Val	Ala	Trp	Lys	Tyr 505	Gly	Val	Glu	Arg	Gln 510	Asp	Gly
Pro	Thr	Ala 515	Leu	Ile	Leu	Ser	Arg 520	Gln	Asn	Leu	Ala	Gln 525	Gln	Glu	Arg
Thr	Glu 530	Glu	Gln	Leu	Ala	Asn 535	Ile	Ala	Arg	Gly	Gly 540	Tyr	Val	Leu	Lys
Asp 545	Cys	Ala	Gly	Gln	Pro 550	Glu	Leu	Ile	Phe	Ile 555	Ala	Thr	Gly	Ser	Glu 560
Val	Glu	Leu	Ala	Val 565	Ala	Ala	Tyr	Glu	Lys 570	Leu	Thr	Ala	Glu	Gly 575	Val
Lys	Ala	Arg	Val 580	Val	Ser	Met	Pro	Ser 585	Thr	Asp	Ala	Phe	Asp 590	Lys	Gln
Asp	Ala	Ala 595	Tyr	Arg	Glu	Ser	Val 600	Leu	Pro	Lys	Ala	Val 605	Thr	Ala	Arg
Val	Ala 610	Val	Glu	Ala	Gly	Ile 615	Ala	Asp	Tyr	Trp	Tyr 620	Lys	Tyr	Val	Gly
Leu	Asn	Gly	Ala	Ile	Val	Gly	Met	Thr	Thr	Phe	Gly	Leu	Glu	Val	Leu

	62			630					635	5					640			
	Ph	e Gl	n Gl	-у Р		lu 45	Ser	Ala	Pro	Ala	Glu 650		ı Le	u Pl	ne G		51u 555	Phe
	Gl	y Ph	e Th		al A 60	sp 2	Asn	Val	Val	Ala 665	Lys	Ala	a Ly	s Gl	_	eu I 70	Leu	
5	<210> 66 <211> 671 <212> PRT <213> Secur	encia	artific	ial														
10	<220> <223> Polipe	éptido	sinté	tico														
10	<400> 66																	
		Met 1	Ser	Ser	Arg	Lys 5	Glu	Leu	Ala	Asn	Ala 10	Ile	Arg	Ala	Leu	Ser 15	Met	5
		Asp	Ala	Val	Gln 20	Lys	Ala	Lys	Ser	Gly 25	His	Pro	Gly	Ala	Pro 30	Met	Gly	7
		Met	Ala	Asp 35	Ile	Ala	Glu	Val	Leu 40	Trp	Arg	Asp	Phe	Leu 45	Lys	His	Ası	1
		Pro	Gln 50	Asn	Pro	Ser	Trp	Ala 55	Asp	Arg	Asp	Arg	Phe 60	Val	Leu	Ser	Ası	1
		Gly 65	His	Gly	Ser	Met	Leu 70	Ile	Tyr	Ser	Leu	Leu 75	His	Leu	Thr	Gly	Туз 80	£
		Asp	Leu	Pro	Met	Glu 85	Glu	Leu	Lys	Asn	Phe 90	Arg	Gln	Leu	His	Ser 95	Lys	3
		Thr	Pro	Gly	His 100	Pro	Glu	Val	Gly	Tyr 105	Thr	Ala	Gly	Val	Glu 110	Thr	Thi	£
		Thr	Gly	Pro 115	Leu	Gly	Gln	Gly	Ile 120	Ala	Asn	Ala	Val	Gly 125	Met	Ala	Ile	€
		Ala	Glu 130	Lys	Thr	Leu	Ala	Ala 135	Gln	Phe	Asn	Arg	Pro 140	Gly	His	Asp	Il€)
		Val 145	Asp	His	Tyr	Thr	Tyr 150		Phe	Met	Gly	Asp 155	Gly	Cys	Met	Met	Glu 160	
		Gly	Ile	Ser	His	Glu 165		Cys	Ser	Leu	Ala 170	Gly	Thr	Leu	Lys	Leu 175	_	7

Lys Leu Ile Ala Phe Tyr Asp Asp Asn Gly Ile Ser Ile Asp Gly His Val Glu Gly Trp Phe Thr Asp Asp Thr Ala Met Arg Phe Glu Ala Tyr 200 Gly Trp His Val Ile Arg Asp Ile Asp Gly His Asp Ala Ala Ser Ile 215 Lys Arg Ala Val Glu Glu Ala Arg Ala Val Thr Asp Lys Pro Ser Leu 235 Leu Met Cys Lys Thr Ile Ile Gly Phe Gly Ser Pro Asn Lys Ala Gly 250 Thr His Asp Ser His Gly Ala Pro Leu Gly Asp Ala Glu Ile Ala Leu 260 265 270 Thr Arg Glu Gln Leu Gly Trp Lys Tyr Ala Pro Phe Glu Ile Pro Ser 275 280 Glu Ile Tyr Ala Gln Trp Asp Ala Lys Glu Ala Gly Gln Ala Lys Glu 290 295 Ser Ala Trp Asn Glu Lys Phe Ala Ala Tyr Ala Lys Ala Tyr Pro Gln 305 310 315 320 Glu Ala Ala Glu Phe Thr Arg Arg Met Lys Gly Glu Met Pro Ser Asp 325 Phe Asp Ala Lys Ala Lys Glu Phe Ile Ala Lys Leu Gln Ala Asn Pro 340 Ala Lys Ile Ala Ser Arg Lys Ala Ser Gln Asn Ala Ile Glu Ala Phe 360 Gly Pro Leu Leu Pro Glu Phe Leu Gly Gly Ser Ala Asp Leu Ala Pro 370 375 Ser Asn Leu Thr Leu Trp Ser Gly Ser Lys Ala Ile Asn Glu Asp Ala 390 Ala Gly Asn Tyr Ile His Tyr Gly Val Arg Glu Phe Gly Met Thr Ala 410 Ile Ala Asn Gly Ile Ser Leu His Gly Gly Phe Leu Pro Tyr Thr Ser

			420					425					430		
Thr	Phe	Leu 435	Met	Phe	Val	Glu	Tyr 440	Ala	Arg	Asn	Ala	Val 445	Arg	Met	Ala
Ala	Leu 450	Met	Lys	Gln	Arg	Gln 455	Val	Met	Val	Tyr	Thr 460	His	Asp	Ser	Ile
Gly 465	Leu	Gly	Glu	Asp	Gly 470	Pro	Thr	His	Gln	Pro 475	Val	Glu	Gln	Val	Ala 480
Ser	Leu	Arg	Val	Thr 485	Pro	Asn	Met	Ser	Thr 490	Trp	Arg	Pro	Cys	Asp 495	Gln
Val	Glu	Ser	Ala 500	Val	Ala	Trp	Lys	Tyr 505	Gly	Val	Glu	Arg	Gln 510	Asp	Gly
Pro	Thr	Ala 515	Leu	Ile	Leu	Ser	Arg 520	Gln	Asn	Leu	Ala	Gln 525	Gln	Glu	Arg
Thr	Glu 530	Glu	Gln	Leu	Ala	Asn 535	Ile	Ala	Arg	Gly	Gly 540	Tyr	Val	Leu	Lys
Asp 545	Cys	Ala	Gly	Gln	Pro 550	Glu	Leu	Ile	Phe	Ile 555	Ala	Thr	Gly	Ser	Glu 560
Val	Glu	Leu	Ala	Val 565	Ala	Ala	Tyr	Glu	Lys 570	Leu	Thr	Ala	Glu	Gly 575	Val
Lys	Ala	Arg	Val 580	Val	Ser	Met	Pro	Ser 585	Thr	Asp	Ala	Phe	Asp 590	Lys	Gln
Asp	Ala	Ala 595	Tyr	Arg	Glu	Ser	Val 600	Leu	Pro	Lys	Ala	Val 605	Thr	Ala	Arg
Val	Ala 610	Val	Glu	Ala	Gly	Ile 615	Ala	Asp	Tyr	Trp	Tyr 620	Lys	Tyr	Val	Gly
Leu 625	Asn	Gly	Ala	Ile	Val 630	Gly	Met	Thr	Thr	Phe 635	Gly	Glu	Leu	Glu	Val 640
Leu	Phe	Gln	Gly	Pro 645	Ser	Ala	Pro	Ala	G1u 650	Leu	Leu	Phe	Glu	Glu 655	Phe
Gly	Phe	Thr	Val 660	Asp	Asn	Val	Val	Ala 665	Lys	Ala	Lys	Glu	Leu 670	Leu	

	<210> 67 <211> 671 <212> PRT <213> Secue	encia a	artifici	al													
5	<220> <223> Polipé	éptido	sintét	ico													
10	<400> 67																
10		Met 1	Ser	Ser	Arg	Lys 5	Glu	Leu	Ala	Asn	Ala 10	Ile	Arg	Ala	Leu	Ser 15	Met
		Asp	Ala	Val	Gln 20	Lys	Ala	Lys	Ser	Gly 25	His	Pro	Gly	Ala	Pro 30	Met	Gly
		Met	Ala	Asp 35	Ile	Ala	Glu	Val	Leu 40	Trp	Arg	Asp	Phe	Leu 45	Lys	His	Asn
		Pro	Gln 50	Asn	Pro	Ser	Trp	Ala 55	Asp	Arg	Asp	Arg	Phe 60	Val	Leu	Ser	Asn
		Gly 65	His	Gly	Ser	Met	Leu 70	Ile	Tyr	Ser	Leu	Leu 75	His	Leu	Thr	Gly	Tyr 80
		Asp	Leu	Pro	Met	Glu 85	Glu	Leu	Lys	Asn	Phe 90	Arg	Gln	Leu	His	Ser 95	Lys
		Thr	Pro	Gly	His 100	Pro	Glu	Val	Gly	Tyr 105	Thr	Ala	Gly	Val	Glu 110	Thr	Thr
		Thr	Gly	Pro 115	Leu	Gly	Gln	Gly	Ile 120	Ala	Asn	Ala	Val	Gly 125	Met	Ala	Ile
		Ala	Glu 130	Lys	Thr	Leu	Ala	Ala 135	Gln	Phe	Asn	Arg	Pro 140	Gly	His	Asp	Ile
		Val 145	Asp	His	Tyr	Thr	Tyr 150	Ala	Phe	Met	Gly	Asp 155	Gly	Cys	Met	Met	Glu 160
		Gly	Ile	Ser	His	Glu 165	Val	Cys	Ser	Leu	Ala 170	Gly	Thr	Leu	Lys	Leu 175	Gly
		Lys	Leu	Ile	Ala 180	Phe	Tyr	Asp	Asp	As n 185	Gly	Ile	Ser	Ile	Asp 190	Gly	His
		Val	Glu	Gly 195	Trp	Phe	Thr	Asp	Asp 200	Thr	Ala	Met	Arg	Phe 205	Glu	Ala	Tyr
		Gly	Trp	His	Val	Ile	Arg	Asp	Ile	Asp	Gly	His	Asp	Ala	Ala	Ser	Ile

	210					215					220				
Lys 225	Arg	Ala	Val	Glu	Glu 230	Ala	Arg	Ala	Val	Thr 235	Asp	Lys	Pro	Ser	Leu 240
Leu	Met	Cys	Lys	Thr 245	Ile	Ile	Gly	Phe	Gly 250	Ser	Pro	Asn	Lys	Ala 255	Gly
Thr	His	Asp	Ser 260	His	Gly	Ala	Pro	Leu 265	Gly	Asp	Ala	Glu	Ile 270	Ala	Leu
Thr	Arg	Glu 275	Gln	Leu	Gly	Trp	Lys 280	Tyr	Ala	Pro	Phe	Glu 285	Ile	Pro	Ser
Glu	Ile 290	Tyr	Ala	Gln	Trp	Asp 295	Ala	Lys	Glu	Ala	Gly 300	Gln	Ala	Lys	Glu
Ser 305	Ala	Trp	Asn	Glu	Lys 310	Phe	Ala	Ala	Tyr	Ala 315	Lys	Ala	Tyr	Pro	Gln 320
Glu	Ala	Ala	Glu	Phe 325	Thr	Arg	Arg	Met	Lys 330	Gly	Glu	Met	Pro	Ser 335	Asp
Phe	Asp	Ala	Lys 340	Ala	Lys	Glu	Phe	Ile 345	Ala	Lys	Leu	Gln	Ala 350	Asn	Pro
Ala	Lys	Ile 355	Ala	Ser	Arg	Lys	Ala 360	Ser	Gln	Asn	Ala	Ile 365	Glu	Ala	Phe
Gly	Pro 370	Leu	Leu	Pro	Glu	Phe 375	Leu	Gly	Gly	Ser	Ala 380	Asp	Leu	Ala	Pro
Ser 385	Asn	Leu	Thr	Leu	Trp 390	Ser	Gly	Ser	Lys	Ala 395	Ile	Asn	Glu	Asp	Ala 400
Ala	Gly	Asn	Tyr	Ile 405	His	Tyr	Gly	Val	Arg 410	Glu	Phe	Gly	Met	Thr 415	Ala
Ile	Ala	Asn	Gly 420	Ile	Ser	Leu	His	Gly 425	Gly	Phe	Leu	Pro	Tyr 430	Thr	Ser
Thr	Phe	Leu 435	Met	Phe	Val	Glu	Tyr 440	Ala	Arg	Asn	Ala	Val 445	Arg	Met	Ala
Ala	Leu 450	Met	Lys	Gln	Arg	Gln 455	Val	Met	Val	Tyr	Thr	His	Asp	Ser	Ile

Gl ₃ 465	, Leu	Gly	Glu	Asp	Gly 470	Pro	Thr	His	Gln	Pro 475	Val	Glu	Gln	Val	Ala 480
Sei	Leu	Arg	Val	Thr 485	Pro	Asn	Met	Ser	Thr 490	Trp	Arg	Pro	Cys	Asp 495	Gln
Val	. Glu	Ser	Ala 500	Val	Ala	Trp	Lys	Tyr 505	Gly	Val	Glu	Arg	Gln 510	Asp	Gly
Pro	Thr	Ala 515	Leu	Ile	Leu	Ser	Arg 520	Gln	Asn	Leu	Ala	Gln 525	Gln	Glu	Arg
Thi	Glu 530	Glu	Gln	Leu	Ala	Asn 535	Ile	Ala	Arg	Gly	Gly 540	Tyr	Val	Leu	Lys
As ₁ 545	Cys	Ala	Gly	Gln	Pro 550	Glu	Leu	Ile	Phe	Ile 555	Ala	Thr	Gly	Ser	Glu 560
Val	. Glu	Leu	Ala	Val 565	Ala	Ala	Tyr	Glu	Lys 570	Leu	Thr	Ala	Glu	Gly 575	Val
Lys	a Ala	Arg	Val 580	Val	Ser	Met	Pro	Ser 585	Thr	Asp	Ala	Phe	Asp 590	Lys	Gln
Ası	Ala	Ala 595	Tyr	Arg	Glu	Ser	Val 600	Leu	Pro	Lys	Ala	Val 605	Thr	Ala	Arg
Val	Ala 610	Val	Glu	Ala	Gly	Ile 615	Ala	Asp	Tyr	Trp	Tyr 620	Lys	Tyr	Val	Gly
Le: 625	ı Asn	Gly	Ala	Ile	Val 630	Gly	Met	Thr	Thr	Phe 635	Gly	Glu	Ser	Leu	Glu 640
Val	. Leu	Phe	Gln	Gly 645	Pro	Ala	Pro	Ala	Glu 650	Leu	Leu	Phe	Glu	Glu 655	Phe
Gly	7 Phe	Thr	Val 660	Asp	Asn	Val	Val	Ala 665	Lys	Ala	Lys	Glu	Leu 670	Leu	
<210> 68 <211> 671 <212> PRT <213> Secue	ncia ar	tificial													
<220> <223> Polipé	ptido si	ntético)												
<400> 68															

Met Ser Ser Arg Lys Glu Leu Ala Asn Ala Ile Arg Ala Leu Ser Met

5

1				5					10					15	
Asp	Ala	Val	Gln 20	Lys	Ala	Lys	Ser	Gly 25	His	Pro	Gly	Ala	Pro 30	Met	Gly
Met	Ala	Asp 35	Ile	Ala	Glu	Val	Leu 40	Trp	Arg	Asp	Phe	Leu 45	Lys	His	Asn
Pro	Gln 50	Asn	Pro	Ser	Trp	Ala 55	Asp	Arg	Asp	Arg	Phe 60	Val	Leu	Ser	Asn
Gly 65	His	Gly	Ser	Met	Leu 70	Ile	Tyr	Ser	Leu	Leu 75	His	Leu	Thr	Gly	Tyr 80
Asp	Leu	Pro	Met	Glu 85	Glu	Leu	Lys	Asn	Phe 90	Arg	Gln	Leu	His	Ser 95	Lys
Thr	Pro	Gly	His 100	Pro	Glu	Val	Gly	Tyr 105	Thr	Ala	Gly	Val	Glu 110	Thr	Thr
Thr	Gly	Pro 115	Leu	Gly	Gln	Gly	Ile 120	Ala	Asn	Ala	Val	Gly 125	Met	Ala	Ile
Ala	Glu 130	Lys	Thr	Leu	Ala	Ala 135	Gln	Phe	Asn	Arg	Pro 140	Gly	His	Asp	Ile
Val 145	Asp	His	Tyr	Thr	Tyr 150	Ala	Phe	Met	Gly	Asp 155	Gly	Cys	Met	Met	Glu 160
Gly	Ile	Ser	His	Glu 165	Val	Cys	Ser	Leu	A la 170	Gly	Thr	Leu	Lys	Leu 175	Gly
Lys	Leu	Ile	Ala 180	Phe	Tyr	Asp	Asp	Asn 185	Gly	Ile	Ser	Ile	Asp 190	Gly	His
Val	Glu	Gly 195	Trp	Phe	Thr	Asp	Asp 200	Thr	Ala	Met	Arg	Phe 205	Glu	Ala	Tyr
Gly	Trp 210	His	Val	Ile	Arg	Asp 215	Ile	Asp	Gly	His	Asp 220	Ala	Ala	Ser	Ile
Lys 225	Arg	Ala	Val	Glu	Glu 230	Ala	Arg	Ala	Val	Thr 235	Asp	Lys	Pro	Ser	Leu 240
Leu	Met	Cys	Lys	Thr	Ile	Ile	Gly	Phe	Gly	Ser	Pro	Asn	Lys	Ala	Gly

Thr	His	Asp	Ser 260	His	Gly	Ala	Pro	Leu 265	Gly	Asp	Ala	Glu	Ile 270	Ala	Leu
Thr	Arg	Glu 275	Gln	Leu	Gly	Trp	Lys 280	Tyr	Ala	Pro	Phe	Glu 285	Ile	Pro	Ser
Glu	Ile 290	Tyr	Ala	Gln	Trp	Asp 295	Ala	Lys	Glu	Ala	Gly 300	Gln	Ala	Lys	Glu
Ser 305	Ala	Trp	Asn	Glu	Lys 310	Phe	Ala	Ala	Tyr	Ala 315	Lys	Ala	Tyr	Pro	Gln 320
Glu	Ala	Ala	Glu	Phe 325	Thr	Arg	Arg	Met	Lys 330	Gly	Glu	Met	Pro	Ser 335	Asp
Phe	Asp	Ala	Lys 340	Ala	Lys	Glu	Phe	Ile 345	Ala	Lys	Leu	Gln	Ala 350	Asn	Pro
Ala	Lys	11e 355	Ala	Ser	Arg	Lys	Ala 360	Ser	Gln	Asn	Ala	11e 365	Glu	Ala	Phe
Gly	Pro 370	Leu	Leu	Pro	Glu	Phe 375	Leu	Gly	Gly	Ser	Ala 380	Asp	Leu	Ala	Pro
Ser 385	Asn	Leu	Thr	Leu	Trp 390	Ser	Gly	Ser	Lys	Ala 395	Ile	Asn	Glu	Asp	Ala 400
Ala	Gly	Asn	Tyr	Ile 405	His	Tyr	Gly	Val	Arg 410	Glu	Phe	Gly	Met	Thr 415	Ala
Ile	Ala		Gly 420		Ser		His	_	_		Leu			Thr	Ser
Thr	Phe	Leu 435	Met	Phe	Val	Glu	Tyr 440	Ala	Arg	Asn	Ala	Val 445	Arg	Met	Ala
Ala	Leu 450	Met	Lys	Gln	Arg	Gln 455	Val	Met	Val	Tyr	Thr 460	His	Asp	Ser	Ile
Gly 465	Leu	Gly	Glu	Asp	Gly 470	Pro	Thr	His	Gln	Pro 475	Val	Glu	Gln	Val	Ala 480
Ser	Leu	Arg	Val	Thr 485	Pro	Asn	Met	Ser	Thr 490	Trp	Arg	Pro	Cys	Asp 495	Gln
Val	Glu	Ser	Ala	Val	Ala	Trp	Lys	Tyr	Gly	Val	Glu	Arg	Gln	Asp	Gly

		Pro	Thr	Ala 515	Leu	Ile	Leu	Ser	A rg 520	Gln	Asn	Leu	Ala	Gln 525	Gln	Glu	Arg
		Thr	Glu 530	Glu	Gln	Leu	Ala	Asn 535	Ile	Ala	Arg	Gly	Gly 540	Tyr	Val	Leu	Lys
		Asp 545	Cys	Ala	Gly	Gln	Pro 550	Glu	Leu	Ile	Phe	Ile 555	Ala	Thr	Gly	Ser	Glu 560
		Val	Glu	Leu	Ala	Val 565	Ala	Ala	Tyr	Glu	Lys 570	Leu	Thr	Ala	Glu	Gly 575	Val
		Lys	Ala	Arg	Val 580	Val	Ser	Met	Pro	Ser 585	Thr	Asp	Ala	Phe	Asp 590	Lys	Gln
		Asp	Ala	Ala 595	Tyr	Arg	Glu	Ser	Val 600	Leu	Pro	Lys	Ala	Val 605	Thr	Ala	Arg
		Val	Ala 610	Val	Glu	Ala	Gly	Ile 615	Ala	Asp	Tyr	Trp	Tyr 620	Lys	Tyr	Val	Gly
		Leu 625	Asn	Gly	Ala	Ile	Val 630	Gly	Met	Thr	Thr	Phe 635	Gly	Glu	Ser	Ala	Pro 640
		Leu	Glu	Val	Leu	Phe 645	Gln	Gly	Pro	Ala	Glu 650	Leu	Leu	Phe	Glu	Glu 655	Phe
		Gly	Phe	Thr	Val 660	Asp	Asn	Val	Val	Ala 665	Lys	Ala	Lys	Glu	Leu 670	Leu	
5	<210> 6 <211> 2 <212> A <213> S	4 .DN	cia art	ificial													
	<220> <223>O	ligonud	cleótid	o sinté	ético												
10	<400> 6 ctggaag		tcagg	g tccg	2	24											
15	<210> 7 <211> 1 <212> P <213> S	1 RT	cia art	ificial													
20	<220> <223> P	olipép	tido sii	ntético	,												
	<400> 7	0															
				M ∈	et Ly	ys As	sn I	Le As	sn Pi	ro Tl	nr Gl	Ln Tl	nr Al		La		

```
<210> 71
         <211> 33
         <212> ADN
         <213> Secuencia artificial
 5
         <223>Oligonucleótido sintético
         <400> 71
10
         atgaaaaaca tcaatccaac gcagaccgct gcc 33
         <211> 19
         <212> PRT
15
         <213> Secuencia artificial
         <223> Polipéptido sintético
         <400> 72
20
                 Met Leu Glu Val Leu Phe Gln Gly Pro Lys Asn Ile Asn Pro Thr Gln
                                                                 10
                 Thr Ala Ala
         <210> 73
25
         <211> 57
         <212> ADN
         <213> Secuencia artificial
30
         <223>Oligonucleótido sintético
         atgctggaag tgctgtttca gggtccgaaa aacatcaatc caacgcagac cgctgcc 57
35
         <210> 74
         <211> 19
         <212> PRT
         <213> Secuencia artificial
         <220>
40
         <223> Polipéptido sintético
         <400> 74
                 Met Lys Leu Glu Val Leu Phe Gln Gly Pro Asn Ile Asn Pro Thr Gln
                                                                 10
                 Thr Ala Ala
45
         <210> 75
         <211> 57
         <212> ADN
50
         <213> Secuencia artificial
         <223>Oligonucleótido sintético
55
         atgaaactgg aagtgctgtt tcagggtccg aacatcaatc caacgcagac cgctgcc 57
```

```
<210> 76
         <211> 19
         <212> PRT
         <213> Secuencia artificial
 5
         <223> Polipéptido sintético
         <400> 76
10
                 Met Lys Asn Leu Glu Val Leu Phe Gln Gly Pro Ile Asn Pro Thr Gln
                                                                 10
                 Thr Ala Ala
         <210> 77
         <211> 57
15
         <212> ADN
         <213> Secuencia artificial
         <220>
         <223>Oligonucleótido sintético
20
         atgaaaaacc tggaagtgct gtttcagggt ccgatcaatc caacgcagac cgctgcc 57
         <210> 78
25
         <211> 11
         <212> PRT
         <213> Secuencia artificial
30
         <223> Polipéptido sintético
         <400> 78
                              Met Leu Glu Val Leu Phe Gln Gly Pro Ala Ala
35
         <210> 79
         <211> 33
         <212> ADN
         <213> Secuencia artificial
40
         <223>Oligonucleótido sintético
         <400> 79
45
         atgctggaag tgctgtttca gggtccggct gcc
         <210> 80
         <211> 11
         <212> PRT
50
         <213> Secuencia artificial
         <220>
         <223> Polipéptido sintético
         <400> 80
55
                              Met Lys Leu Glu Val Leu Phe Gln Gly Pro Ala
```

10

5

```
<210> 81
         <211> 33
         <212> ADN
         <213> Secuencia artificial
 5
         <223>Oligonucleótido sintético
         <400> 81
10
         atgaaactgg aagtgctgtt tcagggtccg gcc
                                             33
         <210> 82
         <211> 11
         <212> PRT
15
         <213> Secuencia artificial
         <220>
         <223> Polipéptido sintético
         <400> 82
20
                               Met Lys Asn Leu Glu Val Leu Phe Gln Gly Pro
                                                     5
         <210> 83
25
         <211> 33
         <212> ADN
         <213> Secuencia artificial
30
         <223>Oligonucleótido sintético
         <400>83
         atgaaaaacc tggaagtgct gtttcagggt ccg
35
         <210> 84
         <211> 18
         <212> PRT
         <213> Secuencia artificial
         <220>
40
         <223> Polipéptido sintético
         <400> 84
                  Met Lys Asn Ile Asn Leu Glu Val Leu Phe Gln Gly Pro Thr Gln Thr
                                                                  10
                                                                                             15
                  Ala Ala
45
         <210> 85
         <211> 54
         <212> ADN
         <213> Secuencia artificial
50
         <223>Oligonucleótido sintético
55
         atgaaaaaca tcaatctgga agtgctgttt cagggtccaa cgcagaccgc tgcc
                                                                     54
```

```
<210> 86
         <211> 17
         <212> PRT
         <213> Secuencia artificial
 5
         <223> Polipéptido sintético
         <400> 86
10
                 Thr Ala Ala Trp Gln Ala Leu Glu Val Leu Phe Gln Gly Pro Gln Lys
                 His
         <210> 87
         <211> 51
15
         <212> ADN
         <213> Secuencia artificial
         <223>Oligonucleótido sintético
20
         accgctgcct ggcaggcact agaagtgctg tttcagggtc cgcagaaaca c
                                                                   51
```

REIVINDICACIONES

1. Una proteína de fosfoglucosa isomerasa recombinante que comprende la secuencia de la SEQ ID NO: 17 con una secuencia de reconocimiento de proteasa localizada después del aminoácido 410, 524, 525, 526, 527, 528, 529, 530, 531, 532 o 545 de la secuencia de la SEQ ID NO: 17.

5

10

15

30

35

- 2. La proteína recombinante de la reivindicación 1, en donde la secuencia de reconocimiento de proteasa es reconocida por una proteasa seleccionada del grupo que consiste en alanina carboxipeptidasa, astacina de *Armillaria mellea*, leucil aminopeptidasa bacteriana, procoagulante de cáncer, catepsina B, clostripaína, alanil aminopeptidasa de citosol, elastasa, endoproteinasa Arg-C, enteroquinasa, gastricsina, gelatinasa, Gly-X carboxipeptidasa, glicil endopeptidasa, proteasa 3C de rinovirus humano, hipodermina C, serina endopeptidasa específica de Iga, leucil aminopeptidasa, leucil endopeptidasa, lysC, pro-X carboxipeptidasa lisosómica, lisil aminopeptidasa, metionil aminopeptidasa, mixobacteria, nardilisina, endopeptidasa E pancreática, picornaína 2A, picornaína 3C, proendopeptidasa, prolil aminopeptidasa, proproteína convertasa I, proproteína convertasa II, ruselisina, sacaropepsina, semenogelasa, activador de T-plasminógeno, trombina, calicreína tisular, virus del grabado del tabaco (TEV), togavirina, triptofanil aminopeptidasa, activador de U-plasminógeno, V8, venombina A, venombina AB y Xaa-pro aminopeptidasa.
- 3. La proteína recombinante de la reivindicación 2, en donde la secuencia de reconocimiento de proteasa es reconocida por proteasa 3C de rinovirus humano.
 - 4. La proteína recombinante de la reivindicación 3, en donde la secuencia de reconocimiento de proteasa 3C de rinovirus humano de la proteína recombinante comprende la secuencia de la SEQ ID NO: 38.
- 5. La proteína recombinante de una cualquiera de las reivindicaciones 1-4, en donde la secuencia de reconocimiento de proteasa se localiza después del aminoácido 526 de la secuencia de la SEQ ID NO: 17.
 - 6. La proteína recombinante de la reivindicación 5, en donde la proteína recombinante comprende la secuencia de la SEQ ID NO: 25.
 - 7. Un ácido nucleico que codifica una proteína de fosfoglucosa isomerasa recombinante y que comprende la secuencia de la SEQ ID NO: 1 con una secuencia de nucleótidos que codifica una secuencia de reconocimiento de proteasa localizada después de los codones 410, 524, 525, 526, 527, 528, 529, 530, 531, 532 o 545 de la secuencia de la SEQ ID NO: 1.
- 8. El ácido nucleico de la reivindicación 7, en donde la secuencia de reconocimiento de proteasa es la secuencia de reconocimiento de proteasa reconocida por una proteasa seleccionada del grupo que consiste en alanina carboxipeptidasa, astacina de *Armillaria mellea*, leucil aminopeptidasa bacteriana, procoagulante de cáncer, catepsina B, clostripaína, alanil aminopeptidasa de citosol, elastasa, endoproteinasa Arg-C, enteroquinasa, gastricsina, gelatinasa, Gly-X carboxipeptidasa, glicil endopeptidasa, proteasa 3C de rinovirus humano, hipodermina C, serina endopeptidasa específica de Iga, leucil aminopeptidasa, leucil endopeptidasa, lysC, pro-X carboxipeptidasa lisosómica, lisil aminopeptidasa, metionil aminopeptidasa, mixobacteria, nardilisina, endopeptidasa E pancreática, picornaína 2A, picornaína 3C, proendopeptidasa, prolil aminopeptidasa, proproteína convertasa I, ruselisina, sacaropepsina, semenogelasa, activador de T-plasminógeno, trombina, calicreína tisular, virus del grabado del tabaco (TEV), togavirina, triptofanil aminopeptidasa, activador de U-plasminógeno, V8, venombina A, venombina AB y Xaa-pro aminopeptidasa.
 - 9. El ácido nucleico de la reivindicación 8, en donde la secuencia de reconocimiento de proteasa es reconocida por proteasa 3C de rinovirus humano.
 - 10. El ácido nucleico de la reivindicación 9, en donde la secuencia de reconocimiento de proteasa 3C de rinovirus humano del ácido nucleico comprende la secuencia de la SEQ ID NO: 37.
- 11. El ácido nucleico de la reivindicación 7-10, en donde la secuencia de reconocimiento de proteasa se localiza después del codón 526 de la secuencia de la SEQ ID NO: 1.
 - 12. El ácido nucleico de la reivindicación 11, en donde el ácido nucleico comprende la secuencia de la SEQ ID NO: 9.
- 13. Un vector que comprende el ácido nucleico de una cualquiera de las reivindicaciones 7-12, opcionalmente en donde el vector es un vector de clonación o un vector de expresión, opcionalmente, en donde el vector es un plásmido, un fósmido, un fagémido, un genoma vírico o un cromosoma artificial, opcionalmente en donde el vector es un plásmido.

- 14. Una célula que comprende el vector de la reivindicación 13, opcionalmente en donde la célula es una célula bacteriana, una célula fúngica, una célula de mamífero o una célula vegetal, opcionalmente en donde la célula es una célula bacteriana, opcionalmente en donde la célula bacteriana es una célula de *Escherichia coli*.
- 5 15. Una célula que expresa la proteína recombinante de una cualquiera de las reivindicaciones 1-6.

FIGURA 1A

Secuencia de reconocimiento de proteasa de RVH

Aminoácidos: I E V I F Q G F (SEQID NO:38) Nucleótidos: CTG SEA GTG CTG TTT CAG GGT CCG (SEQID NO:69)

Pgi Secuencia de aminoácidos: * K N I N F I Q T & A ... (SEQ ID NO:70)

@@i Secuencia de nucleótidos: * A AAC ATC AAT COA ACC CAS ACC COT COT (SEQ ID NO:71)

SEQ ID Nos.:

Pgi-HRV-f002 Secuencia de aminoácidos: 11 K 1 3 V 1 3 V 2 V 1 N P T Q T 1 A A pgi-hrv-f002 Secuencia de nucleótidos: 120 AAA 010 040 010 011 000 001 000 001 000 001 000 0

FIGURA 1B

Secuencia de reconocimiento de proteasa de RVH

Aminoácidos: L R V L R Q G P (SEQID NO:38)

Nucleótidos: CTG GAA GTG CTG TTT CAG GGT CCG (SEQID NO:69)

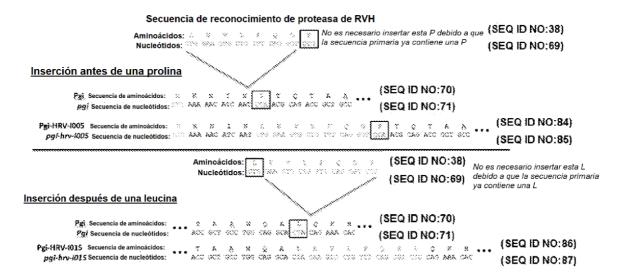
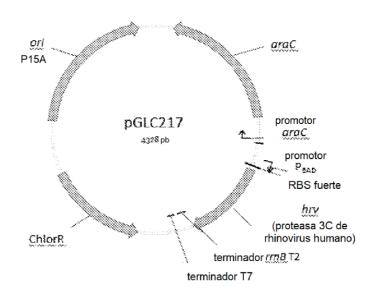
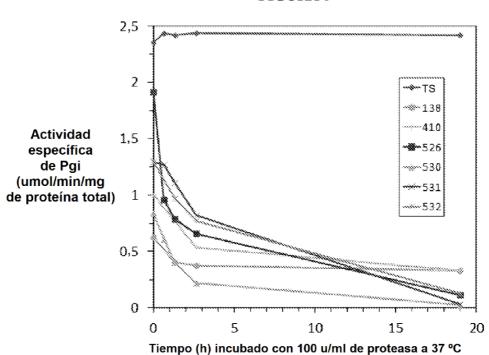
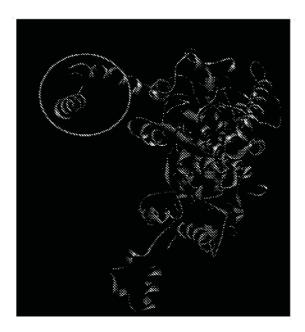
SEQ ID Nos.:

Pgi-HRV-R001 Secuencia de aminoácidos: 8 1 8 9 8 8 A A pgi-hrv-R001 Secuencia de nucleótidos: 88 8 8 8 8 8 8 79 79

Pgi-HRV-R003 Secuencia de aminoácidos: M K N I E 9 I F Q G P ... 82

pgi-hrv-R003 Secuencia de nucleótidos: MAA AAC CYG GAA GYG CYG GYT CAG GYG CYG

83

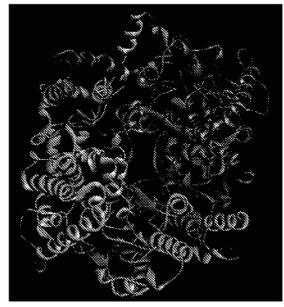


FIGURA 4

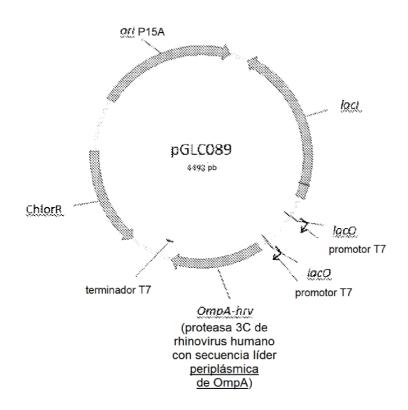
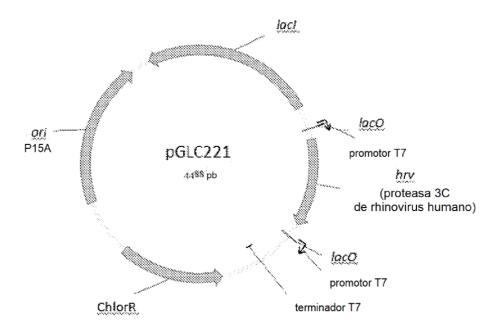
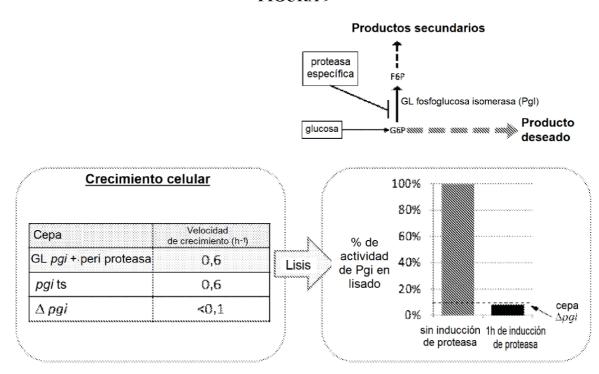
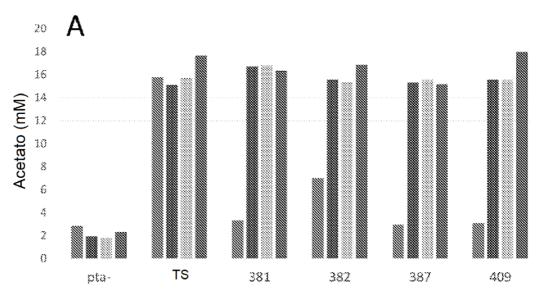
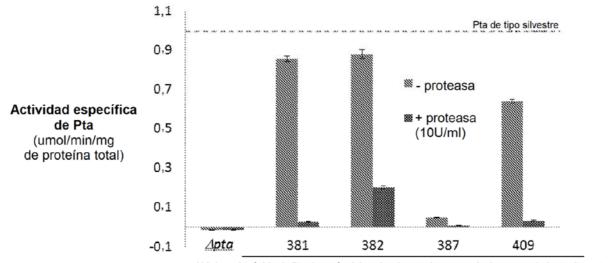
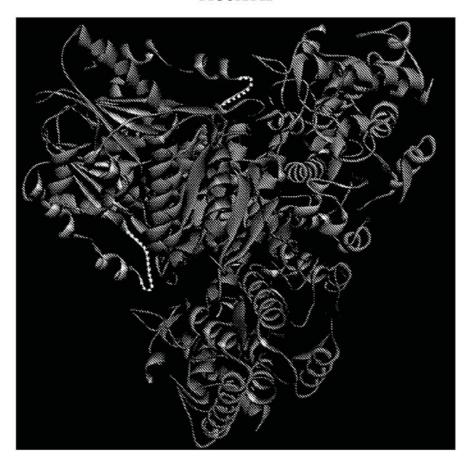






FIGURA 8


N.º de aminoácido de Pta después del cual se inserta la secuencia de reconocimiento de proteasa



N.º de aminoácido de Pta después del cual se inserta la secuencia de reconocimiento de proteasa

≫Proteasa de RVH inducida
≫Proteasa de RVH no inducida

FIGURA 11 $\label{eq:figura} \mbox{Actividad específica de Pta} \pm \mbox{proteasa de RVH durante 30 minutos a 37 °C}$

