

OFICINA ESPAÑOLA DE PATENTES Y MARCAS

ESPAÑA

(1) Número de publicación: 2 704 701

51 Int. Cl.:

C12Q 1/68 (2008.01) C12Q 1/6806 (2008.01)

(12)

TRADUCCIÓN DE PATENTE EUROPEA

T3

(96) Fecha de presentación y número de la solicitud europea: 01.12.2010 E 17180803 (3)
 (97) Fecha y número de publicación de la concesión europea: 24.10.2018 EP 3260555

(54) Título: Nuevo protocolo de preparación de bibliotecas de secuenciación

(30) Prioridad:

19.01.2010 US 296358 P 01.07.2010 US 360837 P 26.10.2010 US 407017 P 26.10.2010 US 455849 P

Fecha de publicación y mención en BOPI de la traducción de la patente: 19.03.2019

(73) Titular/es:

VERINATA HEALTH, INC. (100.0%) 800 Saginaw Drive Redwood City CA 94063, US

(72) Inventor/es:

RAVA, RICHARD P; CHINNAPPA, MANJULA; COMSTOCK, DAVID A.; HEILEK, GABRIELLE Y RHEES, BRIAN KENT

(74) Agente/Representante:

IZQUIERDO BLANCO, María Alicia

DESCRIPCIÓN

Nuevo protocolo de preparación de bibliotecas de secuenciación

5 2. ANTECEDENTES DE LA INVENCIÓN.

10

15

20

25

30

35

40

45

60

65

[0001] La detección y el diagnóstico prenatales son una parte rutinaria de la atención prenatal. Actualmente, el diagnóstico prenatal de afecciones genéticas y cromosómicas involucra pruebas invasivas, como la amniocentesis o el muestreo de vellosidades coriónicas (CVS), realizadas a partir de las 11 semanas de gestación y con un riesgo de aborto ≥ 1%. La existencia de ADN libre de células en circulación en la sangre materna (Lo et al., Lancet 350: 485-487 [1997]) se está explotando para desarrollar procesos no invasivos que utilizan ácidos nucleicos fetales de una muestra de sangre periférica materna para determinar anomalías del cromosoma fetal. (Fan HC y Quake SR Anal Chem 79: 7576-7579 [2007]; Fan et al., Proc Natl Acad Sci 105: 16266-16271 [2008]). Estos métodos ofrecen una fuente alternativa y más segura de material genético fetal para el diagnóstico prenatal, y podrían pronunciar de manera efectiva el final de los procedimientos invasivos.

[0002] La secuenciación de ácidos nucleicos está evolucionando rápidamente como una técnica de diagnóstico en el laboratorio clínico. Las aplicaciones que involucran la secuenciación se observan en varias áreas, incluidas las pruebas de cáncer que abarcan pruebas genéticas para la predisposición al cáncer y la evaluación de mutaciones genéticas en el cáncer; la genética abarca las pruebas de portador y el diagnóstico de enfermedades transmitidas genéticamente; y microbiología que abarca genotipos virales y secuencias asociadas con resistencia a fármacos.

[0003] El advenimiento de tecnologías de secuenciación de próxima generación (NGS) que permiten la secuenciación de genomas enteros en tiempo relativamente corto, ha proporcionado la oportunidad de comparar el material genético procedente de un cromosoma a ser comparada con la de otro sin los riesgos asociados con metodos de muestreo invasivo. Sin embargo, las limitaciones de los métodos existentes, que incluyen una sensibilidad insuficiente derivada de los niveles limitados de ADNcf, y el sesgo de secuenciación de la tecnología derivada de la naturaleza inherente de la información genómica, subyacen a la necesidad continua de métodos no invasivos que proporcionen cualquiera o todos de la especificidad, la sensibilidad y la aplicabilidad para diagnosticar de manera confiable las aneuploidías fetales en una variedad de entornos clínicos.

[0004] Ya que la secuenciación de ácido nucleico ha entrado en el área clínica para las pruebas de cáncer, organizaciones tales como la NCCLS (Consejo Nacional de Servicios de Laboratorio clínico) y la Asociación de la Citogenética Clínica han proporcionado pautas para la normalización de las pruebas basadas en secuenciación existentes que utilizan secuenciación de extensión de cebador, terminada en didesoxi, basada en PCR realizada en gel o capilar (NCCLS: Nucleic Acid Sequencing Methods in Diagnostic Laboratory Medicine MM9-A, Vol. 24 Núm. 40). Secuenciación de Sanger y QF-PCR (Asociación para la Sociedad de Citogenética Clínica y Genética Molecular Clínica, Guías de práctica para el análisis e interpretación de secuenciación de Sanger ratificada por el Comité disponible Ejecutivo de **CMGS** el de agosto de 2009. en la dirección cmgs.org/BPGs/pdfs%20current%20bpgs/Sequencingv2.pdf QF-PCR para el diagnóstico de las mejores guías de aneuploidía (2007) v2.01). Las directrices se basan en pruebas de consenso de varios protocolos y, entre otras cosas, tienen como objetivo reducir la aparición de eventos adversos en el laboratorio clínico, por ejemplo, mezclas de muestras, al tiempo que se preserva la calidad y la fiabilidad de los ensayos. Ya que los laboratorios clínicos ya están experimentando con NIPD, se desarrollarán procedimientos de calidad para implementar las nuevas tecnologías de secuenciación para proporcionar sistemas de atención de salud apropiados y seguros.

[0005] Chu et al. (Bioinformatics, 25 (10), mayo de 2009, páginas 1244-1250) describe un " Statistical model for whole genome sequencing and its application to minimally invasive diagnosis of fetal genetic disease".

[0006] La presente invención se refiere a métodos de secuenciación de nueva generación fiables que son aplicables al menos para la práctica de diagnóstico prenatal no invasivo, y abarca los procedimientos que aumentan la rapidez y la calidad de los métodos y reducir al mínimo la pérdida de material, y reducir la probabilidad de errores de muestra

3. RESUMEN DE LA INVENCION.

[0007] La invención se define por las reivindicaciones adjuntas. La invención proporciona un método para preparar una biblioteca de secuenciación a partir de una muestra de prueba que comprende moléculas de ácido nucleico, en donde el método comprende los pasos consecutivos de la reparación de los extremos, las colas de dA y el adaptador que ligan dichos ácidos nucleicos, y en donde dichos pasos consecutivos excluyen la purificación de los productos reparados de extremo antes de la etapa de colas de dA y excluyen la purificación de los productos de colas de dA antes de la etapa de ligadura adaptadora.

[0008] La invención también proporciona el uso de una biblioteca de secuenciación preparada de acuerdo con el método de la invención en un método de secuenciación de ácido nucleico.

[0009] La presente descripción también se refiere a métodos para determinar la aneuploidía y/o fracción fetal en muestras maternas comprenden ADNcf fetal y materna por secuenciación masiva en paralelo. El método comprende un protocolo novedoso para preparar bibliotecas de secuenciación que inesperadamente mejora la calidad del ADN de la biblioteca mientras que acelera el proceso de análisis de muestras para diagnósticos prenatales.

5

10

15

20

25

30

35

40

45

50

55

60

65

[0010] En una realización, se da a conocer en el presente documento un método para determinar una aneuploidía cromosómica fetal en una muestra de sangre materna que comprende una mezcla de moléculas de ácidos nucleicos fetales y maternos, en donde el método comprende: (a) preparar una biblioteca de secuenciación de la mezcla de moléculas de ácido nucleico maternas y fetales; en donde la preparación de dicha biblioteca comprende los pasos consecutivos de la reparación del extremo, la cola de dA y la unión del adaptador a dichos ácidos nucleicos; (b) secuenciar al menos una porción de las moléculas de ácido nucleico, obteniendo así información de secuencia para una pluralidad de moléculas de ácido nucleico maternas y fetales de una muestra de sangre materna; (c) usar la información de secuencia para obtener una dosis de cromosoma para un cromosoma aneuploide; y (d) comparar la dosis de cromosoma con al menos un valor umbral, y de ese modo identificar la presencia o ausencia de aneuploidía fetal

[0011] En otra realización, se da a conocer en el presente documento un método para determinar una aneuploidía cromosómica fetal en una muestra de sangre materna que comprende una mezcla de moléculas de ácidos nucleicos fetales y maternos, en donde el método comprende: (a) preparar una biblioteca de secuenciación de la mezcla de moléculas de ácido nucleico maternas y fetales; en donde la preparación de dicha biblioteca comprende las etapas consecutivas de reparación de extremos, colas de dA y ligadura con adaptador de dichos ácidos nucleicos; (b) secuenciar al menos una porción de las moléculas de ácido nucleico, obteniendo así información de secuencia para una pluralidad de moléculas de ácido nucleico maternas y fetales de una muestra de sangre materna; (c) usar la información de secuencia para obtener una dosis de cromosoma para un cromosoma aneuploide; y (d) comparar la dosis de cromosoma con al menos un valor umbral, y de ese modo identificar la presencia o ausencia de aneuploidía fetal. El método comprende además usar la información de secuencia para identificar un número de etiquetas de secuencia mapeadas para al menos un cromosoma normalizador y para un cromosoma aneuploide; y el uso del número de etiquetas de secuencia mapeadas identificadas para dicho cromosoma aneuploide y el número de etiquetas de secuencia mapeadas identificadas para al menos un cromosoma normalizador para calcular una dosis de cromosoma para dicho cromosoma aneuploide como una proporción del número de etiquetas de secuencia mapeadas identificadas para dicho cromosoma aneuploide y el número de etiquetas de secuencia mapeadas identificadas para al menos un cromosoma normalizador. Opcionalmente, el cálculo de la dosis cromosómica comprende (i) calcular una relación de densidad de etiqueta de secuencia para el cromosoma aneuploide, relacionando el número de etiquetas de secuencia mapeadas identificadas para el cromosoma aneuploide en el paso con la longitud de dicho cromosoma aneuploide; (ii) calcular una relación de densidad de etiqueta de secuencia para al menos un cromosoma normalizador, relacionando el número de etiquetas de secuencia mapeadas identificadas para dicho al menos un cromosoma normalizador con la longitud de al menos un cromosoma normalizador; y (iii) usar las relaciones de densidad de etiquetas de secuencia calculadas en los pasos (i) y (ii) para calcular una dosis de cromosoma para el cromosoma aneuploide, en donde la dosis de cromosoma se calcula como la proporción de la relación de densidad de etiquetas de secuencia para el cromosoma aneuploide y la relación de densidad de la etiqueta de secuencia para al menos un cromosoma normalizador.

[0012] En otra realización, se da a conocer en el presente documento un método para determinar una aneuploidía cromosómica fetal en una muestra de sangre materna que comprende una mezcla de moléculas de ácidos nucleicos fetales y maternos, en donde el método comprende: (a) preparar una biblioteca de secuenciación de la mezcla de moléculas de ácido nucleico maternas y fetales; en donde la preparación de dicha biblioteca comprende las etapas consecutivas de reparación de extremos, colas de dA y ligadura con adaptador de dichos ácidos nucleicos; (b) secuenciar al menos una porción de las moléculas de ácido nucleico, obteniendo así información de secuencia para una pluralidad de moléculas de ácido nucleico maternas y fetales de una muestra de sangre materna; (c) usar la información de secuencia para obtener una dosis de cromosoma para un cromosoma aneuploide; y (d) comparar la dosis de cromosoma con al menos un valor umbral, y de ese modo identificar la presencia o ausencia de aneuploidía fetal. El método comprende además usar la información de secuencia para identificar un número de etiquetas de secuencia mapeadas para al menos un cromosoma normalizador y para un cromosoma aneuploide; y el uso del número de etiquetas de secuencia mapeadas identificadas para dicho cromosoma aneuploide y el número de etiquetas de secuencia mapeadas identificadas para al menos un cromosoma normalizador para calcular una dosis de cromosoma para dicho cromosoma aneuploide como una proporción del número de etiquetas de secuencia mapeadas identificadas para dicho cromosoma aneuploide y el número de etiquetas de secuencia mapeadas identificadas para al menos un cromosoma normalizador. Al menos un cromosoma normalizador es un cromosoma que tiene la variabilidad más pequeña y/o la mayor diferenciabilidad. Opcionalmente, el cálculo de la dosis cromosómica comprende (i) calcular una relación de densidad de etiqueta de secuencia para el cromosoma aneuploide, relacionando el número de etiquetas de secuencia mapeadas identificadas para el cromosoma aneuploide en el paso con la longitud de dicho cromosoma aneuploide; (ii) calcular una relación de densidad de etiqueta de secuencia para al menos un cromosoma normalizador, relacionando el número de etiquetas de secuencia mapeadas identificadas para dicho al menos un cromosoma normalizador con la longitud de al menos un cromosoma normalizador; y (iii) usar las relaciones de densidad de etiquetas de secuencia calculadas en los pasos (i) y (ii) para calcular una dosis de cromosoma para el cromosoma aneuploide, en donde la dosis de cromosoma se

ES 2 704 701 T3

calcula como la proporción de la relación de densidad de etiquetas de secuencia para el cromosoma aneuploide y la relación de densidad de la etiqueta de secuencia para al menos un cromosoma normalizador.

5

10

15

20

25

30

35

40

45

50

55

[0013] En otra realización, se da a conocer en el presente documento un método para determinar una aneuploidía cromosómica fetal en una muestra de sangre materna comprende una mezcla de moléculas de ácidos nucleicos fetales y maternos, en donde el método comprende: (a) preparar una biblioteca de secuenciación de la mezcla de moléculas de ácido nucleico maternas y fetales; en donde la preparación de dicha biblioteca comprende las etapas consecutivas de reparación de extremos, colas de dA y ligadura con adaptador de dichos ácidos nucleicos; (b) secuenciar al menos una porción de las moléculas de ácido nucleico, obteniendo así información de secuencia para una pluralidad de moléculas de ácido nucleico maternas y fetales de una muestra de sangre materna; (c) usar la información de secuencia para obtener una dosis de cromosoma para un cromosoma aneuploide; y (d) comparar la dosis de cromosoma con al menos un valor umbral, y de ese modo identificar la presencia o ausencia de aneuploidía fetal. El método comprende además usar la información de secuencia para identificar un número de etiquetas de secuencia mapeadas para al menos un cromosoma normalizador y para un cromosoma aneuploide; y usando el número de etiquetas de secuencia mapeadas identificadas para dichos cromosomas aneuploides y el número de etiquetas de secuencia mapeadas identificadas para al menos un cromosoma normalizado para calcular una dosis de cromosoma para dicho cromosoma aneuploide como una proporción de la cantidad de etiquetas de secuencia mapeadas identificadas para dicho cromosoma aneuploide y el número de etiquetas de secuencia mapeadas identificadas para al menos un cromosoma normalizante. Opcionalmente, el cálculo de la dosis cromosómica comprende (i) calcular una relación de densidad de etiqueta de secuencia para el cromosoma aneuploide, relacionando el número de etiquetas de secuencia mapeadas identificadas para el cromosoma aneuploide en el paso con la longitud de dicho cromosoma aneuploide; (ii) calcular una relación de densidad de etiqueta de secuencia para al menos un cromosoma normalizador, relacionando el número de etiquetas de secuencia mapeadas identificadas para dicho al menos un cromosoma normalizador con la longitud de al menos un cromosoma normalizador; y (iii) usar las relaciones de densidad de etiquetas de secuencia calculadas en los pasos (i) y (ii) para calcular una dosis de cromosoma para el cromosoma aneuploide, en donde la dosis de cromosoma se calcula como la proporción de la relación de densidad de etiquetas de secuencia para el cromosoma aneuploide y la relación de densidad de la etiqueta de secuencia para al menos un cromosoma normalizador. En realizaciones en las que el cromosoma aneuploide es el cromosoma 21, al menos un cromosoma normalizante se selecciona entre el cromosoma 9, el cromosoma 1, el cromosoma 2, el cromosoma 11, el cromosoma 12 y el cromosoma 14. Alternativamente, el al menos un cromosoma normalizador para el cromosoma 21 es un grupo de cromosomas seleccionados entre el cromosoma 9, el cromosoma 1, el cromosoma 2, el cromosoma 11, el cromosoma 12 y el cromosoma 14. En realizaciones en las que el cromosoma aneuploide es el cromosoma 18, el al menos un cromosoma normalizador se selecciona del cromosoma 8, cromosoma 2, cromosoma 3, cromosoma 5, cromosoma 6, cromosoma 12 y cromosoma 14. Alternativamente, el al menos un cromosoma normalizador para el cromosoma 18 es un grupo de cromosomas seleccionados del cromosoma 8, cromosoma 2, cromosoma 3, cromosoma 5, cromosoma 6. el cromosoma 12 y el cromosoma 14. En realizaciones cuando el cromosoma aneuploide es el cromosoma 13, al menos un cromosoma normalizante se selecciona del cromosoma 2, cromosoma 3, cromosoma 4, cromosoma 5, cromosoma 6 y cromosoma 8. Alternativamente, el al menos un cromosoma normalizador para el cromosoma 13 es un grupo de cromosomas seleccionados del cromosoma 2, cromosoma 3, cromosoma 4, cromosoma 5, cromosoma 6 y cromosoma 8. En realizaciones en las que el cromosoma aneuploide es el cromosoma X, al menos un cromosoma normalizante se selecciona entre el cromosoma 2, el cromosoma 3, el cromosoma 4, el cromosoma 5, el cromosoma 6 y el cromosoma 8. Alternativamente, el al menos un cromosoma normalizador para el cromosoma X es un grupo de cromosomas seleccionados entre el cromosoma 2, el cromosoma 3, el cromosoma 4, el cromosoma 5, el cromosoma 6 y el cromosoma 8.

[0014] La muestra maternal utilizada en las realizaciones del método para determinar una aneuploidía cromosómica fetal es un fluido biológico seleccionado a partir de sangre, plasma, suero, orina y saliva. Preferiblemente, la muestra materna es una muestra de plasma. En algunas realizaciones, las moléculas de ácido nucleico comprendidas en la muestra materna son moléculas de ADN libres de células. En algunas realizaciones, los pasos consecutivos comprendidos en la preparación de la biblioteca de secuenciación se realizan en menos de una hora. Preferiblemente, los pasos consecutivos se realizan en ausencia de polietilenglicol. Más preferiblemente, los pasos consecutivos excluyen la purificación. La secuenciación de la biblioteca de secuenciación se realiza mediante los métodos de secuenciación de la próxima generación (NGS). En algunas realizaciones, la secuenciación comprende una amplificación. En otras realizaciones, la secuenciación es una secuenciación por síntesis con terminadores de tinte reversibles. En otras realizaciones, la secuenciación es una secuenciación masivamente paralela utilizando la secuenciación por ligadura. En otras realizaciones más, la secuenciación de una sola molécula.

[0015] En otra realización, se da a conocer en el presente documento un método para determinar la presencia o ausencia de una aneuploidía en una muestra materna que comprende una mezcla de moléculas de ácido nucleico fetal y materno, en donde el método comprende: (a) preparar una biblioteca de secuenciación a partir de la mezcla; en donde la preparación de dicha biblioteca comprende las etapas consecutivas de reparación de extremos, colas de dA y ligadura con adaptador de dichos ácidos nucleicos maternos y fetales; (b) secuenciar al menos una parte de la biblioteca de secuenciación, en la que la secuencia comprende proporcionar una pluralidad de etiquetas de secuencia; y (c) con base en la secuenciación, determinando la presencia o ausencia de aneuploidía en la muestra.

[0016] En otra realización, se da a conocer en el presente documento un método para determinar la presencia o ausencia de una aneuploidía cromosómica o parcial en una muestra materna que comprende una mezcla de ácidos nucleicos fetales y maternas, en donde el método comprende: (a) preparar una biblioteca de secuenciación de la mezcla; en donde la preparación de dicha biblioteca comprende las etapas consecutivas de reparación de extremos, colas de dA y ligadura con adaptador de dichos ácidos nucleicos maternos y fetales; (b) secuenciar al menos una parte de la biblioteca de secuenciación, en la que la secuencia comprende proporcionar una pluralidad de etiquetas de secuencia; y (c) en función de la secuenciación, la determinación de la presencia o ausencia de la aneuploidía cromosómica o parcial en la muestra.

[0017] En otra realización, se da a conocer en el presente documento un método para determinar la presencia o ausencia de una aneuploidía cromosómica en una muestra materna que comprende una mezcla de ácidos nucleicos fetales y maternas, en donde el método comprende: (a) preparar una biblioteca de secuenciación a partir de la mezcla; en donde la preparación de dicha biblioteca comprende las etapas consecutivas de reparación de extremos, colas de dA y ligadura con adaptador de dichos ácidos nucleicos maternos y fetales; (b) secuenciar al menos una parte de la biblioteca de secuenciación, en la que la secuencia comprende proporcionar una pluralidad de etiquetas de secuencia; y (c) con base en la secuenciación, determinando la presencia o ausencia de la aneuploidía

cromosómica en la muestra. Las aneuploidías cromosómicas que pueden determinarse de acuerdo con el método incluyen trisomía 8, trisomía 13, trisomía 15, trisomía 16, trisomía 18, trisomía 21, trisomía 22, monosomía X y XXX.

[0018] En otra realización, se da a conocer en el presente documento un método para determinar la presencia o ausencia de una aneuploidía cromosómica o parcial en una muestra materna que comprende una mezcla de ácidos nucleicos fetales y maternas, en donde el método comprende: (a) preparar una biblioteca de secuenciación de la mezcla; en donde la preparación de dicha biblioteca comprende las etapas consecutivas de reparación de extremos, colas de dA y ligadura con adaptador de dichos ácidos nucleicos maternos y fetales; (b) secuenciar al menos una parte de la biblioteca de secuenciación, en la que la secuencia comprende proporcionar una pluralidad de etiquetas de secuencia; y (c) en función de la secuenciación, la determinación de la presencia o ausencia del cromosoma o una aneuploidía parcial en la muestra que comprende calcular una dosis de cromosoma en función del número de dichas etiquetas de secuencia para un cromosoma de interés y para un cromosoma de normalización, y comparar dicha dosis a un valor umbral.

[0019] En otra realización, se da a conocer en el presente documento un método para determinar la presencia o ausencia de una aneuploidía cromosómica en una muestra materna que comprende una mezcla de ácidos nucleicos fetales y maternos, en donde el método comprende: (a) preparar una biblioteca de secuenciación a partir la mezcla; en donde la preparación de dicha biblioteca comprende las etapas consecutivas de reparación de extremos, colas de dA y ligadura con adaptador de dichos ácidos nucleicos maternos y fetales; (b) secuenciar al menos una parte de la biblioteca de secuenciación, en la que la secuencia comprende proporcionar una pluralidad de etiquetas de secuencia; y (c) basándose en la secuenciación, determinar la presencia o ausencia de la aneuploidía cromosómica en la muestra que comprende calcular una dosis cromosómica basada en el número de dichas etiquetas de secuencia para un cromosoma de interés y para un cromosoma normalizador, y comparar dicha dosis con un valor de umbral. Las aneuploidías cromosómicas que pueden determinarse de acuerdo con el método incluyen trisomía 8, trisomía 15, trisomía 16, trisomía 18, trisomía 21, trisomía 22, monosomía X y XXX.

[0020] La muestra maternal utilizada en las realizaciones del método para determinar la presencia o ausencia de una aneuploidía es un fluido biológico seleccionado a partir de sangre, plasma, suero, orina y saliva. Preferiblemente, la muestra materna es una muestra de plasma. En algunas realizaciones, las moléculas de ácido nucleico comprendidas en la muestra materna son moléculas de ADN libres de células. En algunas realizaciones, los pasos consecutivos comprendidos en la preparación de la biblioteca de secuenciación se realizan en menos de una hora. Preferiblemente, los pasos consecutivos excluyen la purificación. La secuenciación de la biblioteca de secuenciación se realiza mediante los métodos de secuenciación de la próxima generación (NGS). En algunas realizaciones, la secuenciación comprende una amplificación. En otras realizaciones, la secuenciación es una secuenciación masivamente paralela que usa la secuenciación por síntesis con terminadores de tinte reversibles. En otras realizaciones, la secuenciación es una secuenciación masivamente paralela utilizando la secuenciación por ligadura. En otras realizaciones más, la secuenciación es la secuenciación de una sola molécula.

[0021] En otra realización, se da a conocer en el presente documento un método para determinar la fracción de moléculas de ácidos nucleicos fetales en una muestra materna que comprende una mezcla de moléculas de ácido nucleico fetal y materno, en donde el método comprende: (a) amplificar una pluralidad de ácidos nucleicos diana polimórficos en una porción de la mezcla; (b) preparar una biblioteca de secuenciación del producto amplificado obtenido en la etapa (a), en la que la preparación de la biblioteca comprende las etapas consecutivas de reparación final, cola de dA y adaptador de ligadura de dichas moléculas de ácido nucleico maternas y fetales; (c) secuenciar al menos una parte de la biblioteca de secuenciación; y (d) basándose en dicha secuenciación, determinando la fracción de las moléculas de ácido nucleico fetal. Opcionalmente, el método puede comprender además determinar la presencia o ausencia de aneuploidía en la muestra materna.

[0022] En otra realización, se da a conocer en el presente documento un método para determinar la fracción de moléculas de ácidos nucleicos fetales en una muestra materna que comprende una mezcla de moléculas de ácido nucleico fetal y materno, en donde el método comprende: (a) amplificar una pluralidad de ácidos nucleicos diana polimórficos en una porción de la mezcla; (b) preparar una biblioteca de secuenciación del producto amplificado obtenido en la etapa (a), en donde la preparación de la biblioteca comprende las etapas consecutivas de reparación final, cola dA y adaptador de ligadura de dichas moléculas de ácido nucleico maternas y fetales; (c) secuenciar al menos una parte de la biblioteca de secuenciación; y (d) basándose en dicha secuenciación, determinando la fracción de las moléculas de ácido nucleico fetal. La determinación de la fracción comprende determinar el número de etiquetas de secuencia fetal y materna mapeadas a un genoma diana de referencia que comprende al menos un ácido nucleico polimórfico. Opcionalmente, el método puede comprender además determinar la presencia o ausencia de aneuploidía en la muestra materna.

[0023] En otra realización, se da a conocer en el presente documento un método para determinar la fracción de moléculas de ácidos nucleicos fetales en una muestra materna que comprende una mezcla de moléculas de ácido nucleico fetal y materno, en donde el método comprende: (a) amplificar una pluralidad de ácidos nucleicos diana polimórficos en una porción de la mezcla, en donde cada uno de dicha pluralidad de ácidos nucleicos diana polimórficos comprende al menos un polimorfismo de nucleótido único (SNP); (b) preparar una biblioteca de secuenciación del producto amplificado obtenido en la etapa (a), en la que la preparación de la biblioteca comprende las etapas consecutivas de reparación de extremos, colas de dA y ligadura con adaptador de dichas moléculas de ácido nucleico maternas y fetales; (c) secuenciar al menos una parte de la biblioteca de secuenciación; y (d) basándose en dicha secuenciación, determinando la fracción de las moléculas de ácido nucleico fetal. Opcionalmente, el método puede comprender además determinar la presencia o ausencia de aneuploidía en la muestra materna.

[0024] En otra realización, se da a conocer en el presente documento un método para determinar la fracción de moléculas de ácidos nucleicos fetales en una muestra materna que comprende una mezcla de moléculas de ácido nucleico fetal y materno, en donde el método comprende: (a) amplificar una pluralidad de ácidos nucleicos diana polimórficos en una porción de la mezcla, en donde cada uno de dicha pluralidad de ácidos nucleicos diana polimórficos comprende al menos un polimorfismo de nucleótido único (SNP); (b) preparar una biblioteca de secuenciación del producto amplificado obtenido en la etapa (a) en la que la preparación de la biblioteca comprende las etapas consecutivas de reparación final, cola dA y adaptador de ligadura de dichas moléculas de ácido nucleico maternas y fetales; (c) secuenciar al menos una parte de la biblioteca de secuenciación; y (d) basándose en dicha secuenciación, determinando la fracción de las moléculas de ácido nucleico fetal. La determinación de la fracción comprende determinar el número de etiquetas de secuencia fetal y materna mapeadas a un genoma diana de referencia que comprende al menos un ácido nucleico polimórfico. Opcionalmente, el método puede comprender además determinar la presencia o ausencia de aneuploidía en la muestra materna.

[0025] En otra realización, se da a conocer en el presente documento un método para determinar la fracción de moléculas de ácidos nucleicos fetales en una muestra materna que comprende una mezcla de moléculas de ácido nucleico fetal y materno, en donde el método comprende: (a) amplificar una pluralidad de ácidos nucleicos diana polimórficos en una porción de la mezcla, en donde cada uno de dicha pluralidad de ácido nucleico diana polimórfico comprende al menos una repetición corta en tándem (STR); (b) preparar una biblioteca de secuenciación del producto amplificado obtenido en la etapa (a), en la que la preparación de la biblioteca comprende las etapas consecutivas de reparación final, cola dA y adaptador de ligadura de dichas moléculas de ácido nucleico maternas y fetales; (c) secuenciar al menos una parte de la biblioteca de secuenciación; y (d) basándose en dicha secuenciación, determinando la fracción de las moléculas de ácido nucleico fetal. Opcionalmente, el método puede comprender además determinar la presencia o ausencia de aneuploidía en la muestra materna.

[0026] En otra realización, se da a conocer en el presente documento un método para determinar la fracción de moléculas de ácidos nucleicos fetales en una muestra materna que comprende una mezcla de moléculas de ácido nucleico fetal y materno, en donde el método comprende: (a) amplificar una pluralidad de ácidos nucleicos diana polimórficos en una porción de la mezcla, en donde cada uno de dicha pluralidad de ácido nucleico diana polimórfico comprende al menos una repetición corta en tándem (STR); (b) preparar una biblioteca de secuenciación del producto amplificado obtenido en la etapa (a), en la que la preparación de la biblioteca comprende las etapas consecutivas de reparación final, cola dA y adaptador de ligadura de dichas moléculas de ácido nucleico maternas y fetales; (c) secuenciar al menos una parte de la biblioteca de secuenciación; y (d) basándose en dicha secuenciación, determinando la fracción de las moléculas de ácido nucleico fetal. La determinación de la fracción comprende determinar el número de etiquetas de secuencia fetal y materna mapeadas a un genoma diana de referencia que comprende al menos un ácido nucleico polimórfico. Opcionalmente, el método puede comprender además determinar la presencia o ausencia de aneuploidía en la muestra materna.

[0027] En otra realización, se da a conocer en el presente documento un método para determinar la fracción de moléculas de ácidos nucleicos fetales en una muestra materna que comprende una mezcla de moléculas de ácido nucleico fetal y materno, en donde el método comprende: (a) amplificar una pluralidad de ácidos nucleicos diana polimórficos en una porción de la mezcla, en donde cada uno de la pluralidad de ácidos nucleicos diana polimórficos comprende al menos un polimorfismo de nucleótido (SNP); (b) preparar una biblioteca de secuenciación del

5

10

15

20

25

30

35

40

45

50

55

60

65

producto amplificado obtenido en la etapa (a), en la que la preparación de la biblioteca comprende las etapas consecutivas de reparación final, cola dA y adaptador de ligadura de dichas moléculas de ácido nucleico maternas y fetales; (c) secuenciar al menos una parte de la biblioteca de secuenciación; y (d) basándose en dicha secuenciación, determinando la fracción de las moléculas de ácido nucleico fetal. En realizaciones en las que cada uno de la pluralidad de ácidos nucleicos diana polimórficos comprende al menos un polimorfismo de un solo nucleótido (SNP), el SNP se selecciona de entre rs560681, rs1109037, rs9866013, rs13182883, rs13218440, rs7041158, rs740598, rs10773760, rs4530059, rs7205345, rs8078417, rs576261, rs2567608, rs430046, rs9951171, rs338882, rs10776839, rs9905977, rs1277284, rs258684, rs1347696, rs508485, rs9788670, rs8137254, rs3143, rs2182957, rs3739005, y rs530022. En realizaciones en las que cada uno de la pluralidad de ácidos nucleicos diana polimórficos comprende al menos un polimorfismo de nucleótido (SNP), el al menos un SNP es un SNP en tándem seleccionado de pares de SNP en tándem rs7277033-rs2110153; rs2822654-rs1882882; rs368657-rs376635; rs2822731-rs2822732; rs1475881-rs7275487; rs1735976-rs2827016; rs447340-rs2824097; rs418989-rs13047336; rs987980-rs987981; rs4143392-rs4143391; rs1691324-rs13050434; rs11909758-rs9980111; rs2826842-rs232414; rs9978999-rs9979175; rs1034346-rs12481852; rs7509629-rs2828358; rs1980969-rs1980970: rs7277036; rs9981121-rs2829696; rs455921-rs2898102; rs2898102-rs458848; rs961301-rs2830208; rs2174536rs11088023-rs11088024; rs1011734-rs1011733; rs2831244-rs9789838; rs8132769-rs2831440; rs8134080-rs2831524; rs4817219-rs4817220; rs2250911-rs2250997; rs2831899-rs2831900; rs2831902-rs2831903; rs11088086-rs2251447; rs2832040-rs11088088; rs2832141-rs2246777; rs2832959-rs9980934; rs2833735; rs933121-rs933122; rs2834140-rs12626953; rs2834485-rs3453; rs9974986-rs2834703; rs2776266rs2835001; rs1984014-rs1984015; rs7281674-rs2835316; rs13047304-rs13047322; rs2835545-rs4816551; rs2835735-rs2835736; rs13047608-rs2835826; rs2836550-rs2212596; rs2836660-rs2836661; rs465612-rs8131220; rs9980072-rs8130031; rs418359-rs2836926; rs7278447-rs7278858; rs385787-rs367001; rs367001-rs386095; rs2837296-rs2837297; y rs2837381-rs4816672. Opcionalmente, el método puede comprender además determinar la presencia o ausencia de aneuploidía en la muestra materna.

[0028] En otra realización, se da a conocer en el presente documento un método para determinar la fracción de moléculas de ácidos nucleicos fetales en una muestra materna que comprende una mezcla de moléculas de ácido nucleico fetal y materno, en donde el método comprende: (a) amplificar una pluralidad de ácidos nucleicos diana polimórficos en una porción de la mezcla, en donde cada uno de dicha pluralidad de ácido nucleico diana polimórfico comprende al menos una repetición corta en tándem (STR); (b) preparar una biblioteca de secuenciación del producto amplificado obtenido en la etapa (a), en la que la preparación de la biblioteca comprende las etapas consecutivas de reparación de extremos, colas de dA y ligadura con adaptador de dichas moléculas de ácido nucleico maternas y fetales; (c) secuenciar al menos una parte de la biblioteca de secuenciación; y (d) basado en dicha secuenciación, determinando la fracción del ácido nucleico fetal y moléculas. El al menos un STR se selecciona entre CSF1PO, FGA, TH01, vWA, D3S1358, D5S818, D7S820, D8S1179, D13S317, D16S539, D18S51, D21S11, D2S1338, Penta D, Penta E, D22S1045. D20S1082, D20S482, D18S853, D17S1301, D17S974, D14S1434, D12ATA63, D11S4463, D10S1435, D10S1248, D9S2157, D9S1122, D8S1115, D6S1017, D6S474, D5S2500, D4S2408, D4S2364, D3S4529, D3S3053, D2S1776, D2S441, D1S1677, D1S1627, y D1GATA113. Opcionalmente, el método puede comprender además determinar la presencia o ausencia de aneuploidía en la muestra materna.

[0029] En otra realización, se da a conocer en el presente documento un método para determinar la fracción de moléculas de ácidos nucleicos fetales en una muestra materna que comprende una mezcla de moléculas de ácido nucleico fetal y materno, en donde el método comprende: (a) amplificar una pluralidad de ácidos nucleicos diana polimórficos en una porción de la mezcla, en donde cada uno de la pluralidad de ácidos nucleicos diana polimórficos comprende al menos un polimorfismo de nucleótido (SNP); (b) preparar una biblioteca de secuenciación del producto amplificado obtenido en la etapa (a), en la que la preparación de la biblioteca comprende las etapas consecutivas de reparación de extremos, colas de dA y ligadura con adaptador de dichas moléculas de ácido nucleico maternas y fetales; (c) secuenciar al menos una parte de la biblioteca de secuenciación; y (d) basándose en dicha secuenciación, determinando la fracción de las moléculas de ácido nucleico fetal. La determinación de la fracción comprende determinar el número de etiquetas de secuencia fetal y materna mapeadas a un genoma diana de referencia que comprende al menos un ácido nucleico polimórfico. En realizaciones en las que cada uno de la pluralidad de ácidos nucleicos diana polimórficos comprende al menos un polimorfismo de un solo nucleótido (SNP). el SNP se selecciona de entre rs560681, rs1109037, rs9866013, rs13182883, rs13218440, rs7041158, rs740598, rs10773760, rs4530059, rs7205345, rs8078417, rs576261, rs2567608, rs430046, rs9951171, rs338882, rs10776839, rs9905977, rs1277284, rs258684, rs1347696, rs508485, rs9788670, rs8137254, rs3143, rs2182957, rs3739005, y rs530022. En realizaciones en las que cada uno de la pluralidad de ácidos nucleicos diana polimórficos comprende al menos un polimorfismo de nucleótido (SNP), el al menos un SNP es un SNP en tándem seleccionado de pares de SNP en tándem rs7277033-rs2110153; rs2822654-rs1882882; rs368657-rs376635; rs2822731rs2822732; rs1475881-rs7275487; rs1735976-rs2827016; rs447340-rs2824097; rs418989- rs13047336; rs987980rs987981; rs4143392- rs4143391; rs1691324- rs13050434; rs11909758-rs9980111; rs2826842-rs232414; rs9978999-rs9979175; rs1034346-rs12481852; rs7509629-rs2828358: rs1980969-rs1980970: rs4817013rs7277036; rs9981121-rs2829696; rs455921-rs2898102; rs2898102- rs458848; rs961301-rs2830208; rs2174536rs11088023-rs11088024; rs1011734-rs1011733; rs2831244-rs9789838; rs8132769-rs2831440; rs8134080-rs2831524; rs4817219-rs4817220; rs2250911-rs2250997; rs2831899-rs2831900; rs2831902-rs2831903; rs11088086-rs2251447; rs2832040-rs11088088; rs2832141-rs2246777; rs2832959 -rs9980934; rs2833734-

ES 2 704 701 T3

rs2833735; rs933121-rs933122; rs2834140-rs12626953; rs2834485-rs3453; rs9974986- rs2834703; rs2776266-rs2835001; rs1984014-rs1984015; rs7281674-rs2835316; rs13047304-rs13047322; rs2835545-rs4816551; rs2835735-rs2835736; rs13047608-rs2835826; rs2836550-rs2212596; rs2836660-rs2836661; rs465612-rs8131220; rs9980072-rs8130031; rs418359-rs2836926; rs7278447-rs7278858; rs385787-rs367001; rs367001-rs386095; rs2837296-rs2837297; y rs2837381-rs4816672. Opcionalmente, el método puede comprender además determinar la presencia o ausencia de aneuploidía en la muestra materna.

5

10

15

20

25

30

35

40

45

50

55

60

65

[0030] En otra realización, se da a conocer en el presente documento un método para determinar la fracción de moléculas de ácidos nucleicos fetales en una muestra materna que comprende una mezcla de moléculas de ácido nucleico fetal y materno, en donde el método comprende: (a) amplificar una pluralidad de ácidos nucleicos diana polimórficos en una porción de la mezcla, en donde cada uno de dicha pluralidad de ácido nucleico diana polimórfico comprende al menos una repetición corta en tándem (STR); (b) preparar una biblioteca de secuenciación del producto amplificado obtenido en la etapa (a), en la que la preparación de la biblioteca comprende las etapas consecutivas de reparación de extremos, colas de dA y ligadura con adaptador de dichas moléculas de ácido nucleico maternas y fetales; (c) secuenciar al menos una parte de la biblioteca de secuenciación; y (d) basándose en dicha secuenciación, determinando la fracción de las moléculas de ácido nucleico fetal. La determinación de la fracción comprende determinar el número de etiquetas de secuencia fetal y materna mapeadas a un genoma diana de referencia que comprende al menos un ácido nucleico polimórfico. El al menos un STR se selecciona entre CSF1PO, FGA, TH01, vWA, D3S1358, D5S818, D7S820, D8S1179, D13S317, D16S539, D18S51, D21S11, D2S1338, Penta D, Penta E, D22S1045, D20S1082, D20S482, D18S853, D17S1301, D17S974, D14S1434, D12ATA63, D11S4463, D10S1435, D10S1248, D9S2157, D9S1122, D8S1115, D6S1017, D6S474, D5S2500, D4S2408, D4S2364, D3S4529, D3S3053, D2S1776, D2S441, D1S1677, D1S1627, and D1GATA113. Opcionalmente, el método puede comprender además determinar la presencia o ausencia de aneuploidía en la muestra materna.

[0031] La muestra materna utilizada en las realizaciones del método para determinar la fracción de moléculas de ácido nucleico fetal, es un fluido biológico seleccionado de sangre, plasma, suero, orina y saliva. Preferiblemente, la muestra materna es una muestra de plasma. En algunas realizaciones, las moléculas de ácido nucleico comprendidas en la muestra materna son moléculas de ADN libres de células. En algunas realizaciones, los pasos consecutivos comprendidos en la preparación de la biblioteca de secuenciación se realizan en menos de una hora. Preferiblemente, los pasos consecutivos excluyen la purificación. La secuenciación de la biblioteca de secuenciación se realiza mediante los métodos de secuenciación de la próxima generación (NGS). En algunas realizaciones, la secuenciación comprende una amplificación. En otras realizaciones, la secuenciación es una secuenciación por síntesis con terminadores de tinte reversibles. En otras realizaciones, la secuenciación es una secuenciación masivamente paralela utilizando la secuenciación por ligadura. En otras realizaciones más, la secuenciación es la secuenciación de una sola molécula.

[0032] En otra realización, se da a conocer en el presente documento un medio legible por ordenador que tiene almacenado en el mismo instrucciones legibles por computadora para llevar a cabo el método para determinar la presencia o ausencia de una aneuploidía por ejemplo una aneuploidía cromosómica fetal, en una muestra de sangre materna que comprende una mezcla de moléculas de ácidos nucleicos fetales y maternos.

[0033] En una realización, el medio legible por ordenador que ha almacenado en el mismo instrucciones legibles por ordenador para llevar a cabo el método comprende las etapas de (a) utilizar información de la secuencia obtenida a partir de una pluralidad de moléculas de ácido nucleico fetal y materno en una muestra de plasma materno a identificar una serie de etiquetas de secuencia mapeadas para un cromosoma de interés; (b) usar información de secuencia obtenida de una pluralidad de moléculas de ácido nucleico materno y fetal en una muestra de plasma materno para identificar un número de etiquetas de secuencia mapeadas para al menos un cromosoma normalizador; (c) usar el número de etiquetas de secuencia mapeadas identificadas para un cromosoma de interés en el paso (a) y el número de etiquetas de secuencia mapeadas identificadas para el al menos un cromosoma normalizador en el paso (b) para calcular una dosis de cromosoma para dicho cromosoma de interés; y (d) comparar dicha dosis de cromosoma con al menos un valor umbral, y de ese modo identificar la presencia o ausencia de aneuploidía fetal. Los cromosomas de interés pueden ser cualquiera de los cromosomas 21, 13, 18 y X.

[0034] En otra realización, se da a conocer en el presente documento un sistema de procesamiento de ordenador que se adapta o configura para realizar el método para determinar la presencia o ausencia de una aneuploidía por ejemplo una aneuploidía cromosómica fetal, en una muestra de sangre materna comprende una mezcla de fetal y moléculas de ácidos nucleicos maternos.

[0035] En una realización, el sistema de procesamiento de ordenador está adaptado o configurado para realizar los pasos siguientes: (a) el uso de información de la secuencia obtenida a partir de una pluralidad de moléculas de ácido nucleico fetal y materno en una muestra de plasma materno para identificar un número de mapeado etiquetas de secuencia para un cromosoma de interés; (b) usar información de secuencia obtenida de una pluralidad de moléculas de ácido nucleico materno y fetal en una muestra de plasma materno para identificar un número de etiquetas de secuencia mapeadas para al menos un cromosoma normalizador; (c) usar el número de etiquetas de

secuencia mapeadas identificadas para un cromosoma de interés en el paso (a) y el número de etiquetas de secuencia mapeadas identificadas para al menos un cromosoma normalizado en el paso (b) para calcular una dosis de cromosoma para un cromosoma interesar; y (d) comparar dicha dosis de cromosoma con al menos un valor umbral, y de ese modo identificar la presencia o ausencia de aneuploidía fetal. Los cromosomas de interés pueden ser cualquiera de los cromosomas 21, 13, 18 y X.

[0036] En otra realización, se da a conocer en el presente documento un aparato adaptado o configurado para identificar la aneuploidía fetal en una muestra de plasma materno que comprende moléculas de ácido nucleico fetal y materno, y en donde dicho aparato comprende: (a) un dispositivo de secuenciación adaptado o configurado para secuenciar al menos una porción de las moléculas de ácido nucleico en una muestra de plasma materno que comprende moléculas de ácido nucleico materno y fetal, generando así información de secuencia; y (b) un sistema de procesamiento computacional configurado para realizar los siguientes pasos: (i) usar la información de secuencia generada por el dispositivo de secuenciación para identificar un número de etiquetas de secuenciación para identificar un número de etiquetas de secuencia mapeadas para al menos un cromosoma normalizador; (iii) usar el número de etiquetas de secuencia mapeadas identificadas para un cromosoma de interés en el paso (i) y el número de etiquetas de secuencia mapeadas identificadas para el al menos un cromosoma normalizador en el paso (ii) para calcular una dosis de cromosoma para un cromosoma interesar; y (iv) comparar dicha dosis de cromosoma con al menos un valor umbral, y de ese modo identificar la presencia o ausencia de aneuploidía fetal. Los cromosomas de interés pueden ser cualquiera de los cromosomas 21, 13, 18 y X.

[0037] Aunque los ejemplos en el presente documento se refieren a seres humanos y la lengua se dirige principalmente a las preocupaciones humanas, el concepto de esta invención es aplicable a genomas de cualquier planta o animal.

4. BREVE DESCRIPCIÓN DE LOS DIBUJOS

[0038]

5

10

15

20

25

30

35

40

45

50

55

60

65

La Figura 1 es un diagrama de flujo de un método 100 para determinar la presencia o ausencia de una aneuploidía cromosómica en una muestra de prueba que comprende una mezcla de ácidos nucleicos.

La Figura 2 es un diagrama de flujo de un método 200 para determinar simultáneamente la presencia o ausencia de aneuploidía y la fracción fetal en una muestra de prueba materna que comprende una mezcla de ácidos nucleicos fetales y maternos.

La Figura 3 es un diagrama de flujo de un método 300 para determinar simultáneamente la presencia o ausencia de aneuploidía fetal y la fracción fetal en una muestra de prueba de plasma materno enriquecida con ácidos nucleicos polimórficos.

La Figura 4 es un diagrama de flujo de un método 400 para determinar simultáneamente la presencia o ausencia de aneuploidía fetal y la fracción fetal en una muestra de prueba de ADNcf purificada materna que ha sido enriquecida con ácidos nucleicos polimórficos.

La Figura 5 es un diagrama de flujo de un método 500 para determinar simultáneamente la presencia o ausencia de aneuploidía fetal y la fracción fetal en una biblioteca de secuenciación construida a partir de ácidos nucleicos maternos y fetales derivados de una muestra de prueba materna y enriquecida con ácidos nucleicos polimórficos.

La Figura 6 es un diagrama de flujo de un método 600 para determinar la fracción fetal mediante la secuenciación de una biblioteca de ácidos nucleicos diana polimórficos amplificados a partir de una porción de una mezcla purificada de ácidos nucleicos maternos y fetales.

La Figura 7 muestra los electroferogramas de una biblioteca de secuenciación de ADNcf preparada de acuerdo con el protocolo abreviado descrito en el Ejemplo 2a (A), y el protocolo descrito en el Ejemplo 2b (B).

La Figura 8 muestra en el eje Y la proporción del número de etiquetas de secuencia asignadas a cada cromosoma (eje X) y el número total de etiquetas asignadas a todos los cromosomas (1-22, X e Y) para la muestra M11281 cuando la biblioteca se preparó utilizando el protocolo abreviado del Ejemplo 2a (♦) y cuando se preparó de acuerdo con el protocolo de longitud completa del Ejemplo 2b (■). También se muestran las relaciones de las etiquetas para la muestra M11297 obtenidas de la secuenciación de una biblioteca preparada de acuerdo con el protocolo abreviado del Ejemplo 2a (A) y de acuerdo con el protocolo de longitud completa del Ejemplo 2b (X).

La Figura 9 muestra la distribución de la dosis de cromosoma para el cromosoma 21 determinada a partir de la secuenciación del ADNfc extraído de un conjunto de 48 muestras de sangre obtenidas de sujetos humanos, cada una de ellas con un feto masculino o femenino. Dosis de cromosoma 21 para muestras de ensayo calificadas es decir, normales para el cromosoma 21 (O), y la trisomía 21 se muestran (Δ) para los cromosomas 1-12 y X (A), y para los cromosomas 1-22 y X (B).

La Figura 10 muestra la distribución de la dosis de cromosoma para el cromosoma 18 determinada a partir de la secuenciación del ADNfc extraído de un conjunto de 48 muestras de sangre obtenidas de sujetos humanos, cada uno de ellos con un feto masculino o femenino. Dosis de cromosoma 18 para muestras de ensayo cualificadas, es decir, normales para el cromosoma 18 (O), y la trisomía 18 (Δ) se muestran para los cromosomas 1-12 y X (**A**), y para los cromosomas 1-22 y X (**B**).

- La Figura 11 muestra la distribución de la dosis de cromosoma para el cromosoma 13 determinada a partir de la secuenciación del ADNfc extraído de un conjunto de 48 muestras de sangre obtenidas de sujetos humanos, cada una de ellas con un feto masculino o femenino. Dosis de cromosoma 13 para muestras de ensayo cualificadas, es decir, normales para el cromosoma 13 (O), y la trisomía 13 (Δ) se muestran para los cromosomas 1-12 y X (A), y para los cromosomas 13-21 y Y (B).
- La Figura 12 muestra la distribución de las dosis de cromosomas para el cromosoma X determinada a partir de la secuenciación del ADNfc extraído de un conjunto de 48 muestras de sangre analizadas de sujetos humanos, cada una de ellas con un feto masculino o femenino. Cromosoma X dosis para hombres (46, XY; (O)), mujeres (46, XX; (Δ)); se muestran muestras de monosomía X (45, X; (+)) y cariotipos complejos (Cplx (X)) para los cromosomas 1-12 y X (A) y para los cromosomas 1-22 y X (B). La Figura 13 muestra la distribución de las dosis de cromosomas para el cromosoma Y determinada a partir de la secuenciación del ADNfc extraído de un conjunto de 48 muestras de sangre de prueba obtenidas de sujetos humanos, cada una de ellas con un feto masculino o femenino. Dosis de cromosoma Y para hombres (46, XY; (Δ)), mujeres (46, XX; (O)); se muestran muestras de monosomía X (45, X; (+)) y cariotipos complejos (Cplx (X)) para los cromosomas 1-12 (A) y para los cromosomas 1-22 (B).
- La Figura 14 muestra el coeficiente de variación (CV) para los cromosomas 21 (■), 18 (●) y 13 (▲) que se determinó a partir de las dosis mostradas en las Figuras 9, 10 y 11, respectivamente.
- La Figura 15 muestra el coeficiente de variación (CV) para los cromosomas X (■) e Y (●) que se determinó a partir de las dosis mostradas en las Figuras 12 y 13, respectivamente.
- La Figura 16 muestra la secuencia de dosis (eje Y) para un segmento del cromosoma 11 (81000082-103000103bp) determinada a partir de la secuenciación del ADNcf extraído de un conjunto de 7 muestras calificadas (O) obtenidas y 1 muestra de prueba (♦) de mujeres embarazadas. Se identificó una muestra de un sujeto que llevaba un feto con una aneuploidía parcial del cromosoma 11 (♦).
 - La Figura 17 muestra un gráfico de la proporción del número de etiquetas de secuencia asignadas a cada cromosoma y el número total de etiquetas asignadas a todos los cromosomas (1-22, X e Y) obtenidos de la secuenciación de una biblioteca de ADNcf no enriquecida (●), y biblioteca ADNcf enriquecida con 5% (■) o 10% (◆) de biblioteca SNP multiplex amplificada.
 - La Figura 18 muestra un diagrama de barras que muestra la identificación de las secuencias polimórficas fetales y maternas (SNP) utilizadas para determinar la fracción fetal en una muestra de prueba. Se muestra el número total de lecturas de secuencia (eje Y) mapeadas a las secuencias SNP identificadas por números rs (eje X), y el nivel relativo de ácidos nucleicos fetales (*).
 - La Figura 19 representa una realización del uso de la fracción fetal para determinar los umbrales de corte para la detección de aneuploidía.
 - La Figura 20 ilustra la distribución de las dosis de cromosomas normalizados para el cromosoma 21 (A), el cromosoma 18 (B), el cromosoma 13 (C), el cromosoma X (D) y el cromosoma Y (E) en relación con la desviación estándar de la media (eje Y) para la dosis de cromosomas correspondiente en muestras no afectadas.

5. DESCRIPCIÓN DETALLADA DE LA INVENCIÓN

5

10

15

25

30

35

40

45

50

55

[0039] La descripción se refiere a métodos para determinar la presencia o ausencia de una aneuploidía por ejemplo aneuploidía cromosómica o parcial, y/o fracción fetal en muestras maternas que comprenden ácidos nucleicos fetales y maternos por secuenciación masiva en paralelo. El método comprende un nuevo protocolo para preparar bibliotecas de secuenciación que mejora inesperadamente la calidad del ADN de la biblioteca mientras que acelera el proceso de análisis de muestras para diagnósticos prenatales. Los métodos también permiten determinar las variaciones en el número de copias (CNV) de cualquier secuencia de interés en una muestra de prueba que comprende una mezcla de ácidos nucleicos que se conocen o se sospecha que difieren en la cantidad de una o más secuencias de interés, y/o la determinación de la fracción de una de al menos dos poblaciones de ácidos nucleicos contribuyó a la muestra por diferentes genomas. Las secuencias de interés incluyen secuencias genómicas que van desde cientos de bases hasta decenas de megabases hasta cromosomas completos que se sabe o se sospecha que están asociados con una condición genética o de enfermedad. Ejemplos de secuencias de interés incluyen cromosomas asociados con aneuploidías bien conocidas, por ejemplo, trisomía 21 y segmentos de cromosomas que se multiplican en enfermedades como el cáncer, por ejemplo, trisomía parcial 8 en la leucemia mieloide aguda. El método comprende un enfoque estadístico que tiene en cuenta la variabilidad acumulada que se deriva de la variabilidad relacionada con el proceso, intercromosómica o de inter-secuenciación. El método es aplicable para determinar la CNV de cualquier aneuploidía fetal, y se sabe o se sospecha que las CNV están asociadas con una variedad de afecciones médicas.

- [0040] A menos que se indique lo contrario, la práctica de la presente invención implica técnicas convencionales comúnmente utilizadas en biología molecular, microbiología, purificación de proteínas, ingeniería de proteínas, secuenciación de proteínas y ADN, y campos de ADN recombinante, que están dentro de los conocimientos de la técnica. Tales técnicas son conocidas por los expertos en la técnica y se describen en numerosos textos estándar y trabajos de referencia.
 - [0041] Los intervalos numéricos son inclusive de los números que definen el rango. Se pretende que cada limitación

numérica máxima dada a lo largo de esta especificación incluya todas las limitaciones numéricas inferiores, como si dichas limitaciones numéricas más bajas estuvieran expresamente escritas en este documento. Cada limitación numérica mínima dada a lo largo de esta especificación incluirá cada limitación numérica superior, como si tales limitaciones numéricas superiores estuvieran expresamente escritas en este documento. Cada rango numérico dado a lo largo de esta especificación incluirá cada rango numérico más estrecho que caiga dentro de un rango numérico más amplio, como si dichos rangos numéricos más estrechos estuvieran expresamente escritos aquí.

5.1 DEFINICIONES

10

5

[0042] Como se usa en este documento, los términos singulares "un", "una", "el" y "ella" incluyen la referencia plural a menos que el contexto indique claramente lo contrario. A menos que se indique lo contrario, los ácidos nucleicos se escriben de izquierda a derecha en la orientación de 5' a 3' y las secuencias de aminoácidos se escriben de izquierda a derecha en la orientación de amino a carboxi, respectivamente.

15

[0043] El término "evaluación" en el presente documento se refiere a la caracterización de la situación de una aneuploidía cromosómica por uno de los tres tipos de llamadas: "normal", "afectadas", y "no-llamadas". Por ejemplo, en presencia de trisomía, la llamada "normal" está determinada por el valor de un parámetro, por ejemplo, una dosis de cromosoma de prueba que está por debajo de un umbral de confiabilidad definido por el usuario, la llamada "afectada" está determinada por un parámetro, por ejemplo una dosis de cromosoma de prueba, que está por encima de un umbral de confiabilidad definido por el usuario, y el resultado de "no llamada" se determina mediante un parámetro, por ejemplo, una dosis de cromosoma de prueba, que se encuentra entre los umbrales de confiabilidad definidos por el usuario para hacer una llamada "normal" o "afectada".

20

25

[0044] El término "variación del número de copia" en el presente documento se refiere a la variación en el número de copias de una secuencia de ácido nucleico que es 1 kb o más grandes presentes en una muestra de prueba en comparación con el número de copias de la secuencia de ácido nucleico presente en una muestra cualificada. Una "variante del número de copias" se refiere a la secuencia de ácido nucleico de 1 kb o más en la que se encuentran las diferencias en los números de copias al comparar una secuencia de interés en la muestra de prueba con la presente en una muestra calificada. Las variantes/variaciones del número de copias incluyen supresiones, incluidas microdelecciones, inserciones, incluidas microinserciones, duplicaciones, multiplicaciones, inversiones, translocaciones y variantes complejas de sitios múltiples. La CNV abarca aneuploidías cromosómicas y aneuploidías parciales.

30

35

[0045] El término "aneuploidía" aquí se refiere a un desequilibrio de material genético causado por una pérdida o ganancia de un cromosoma, o una parte de un cromosoma.

[0046] El término "aneuploidía cromosómica" aquí se refiere a un desequilibrio de material genético causado por una pérdida o ganancia de un cromosoma completo, e incluye la aneuploidía de la línea germinal y aneuploidía mosaico.

40

[0047] El término "aneuploidía parcial" en el presente documento se refiere a un desequilibrio de material genético causado por una pérdida o ganancia de parte de un cromosoma, por ejemplo monosomía parcial y trisomía parcial, y abarca los desequilibrios que resultan de translocaciones, deleciones e inserciones.

[0048] El término "pluralidad" se usa en el presente documento en referencia a un número de moléculas de ácido

50

45

nucleico o secuencia de etiquetas que es suficiente para identificar diferencias significativas en la variación en el número de copias (e. G. Dosis de cromosomas) en muestras de ensayo y las muestras cualificados utilizando en Los métodos descritos en este documento. En algunas realizaciones, al menos aproximadamente 3 x 10⁶ etiquetas de secuencia, al menos aproximadamente 5 x 10⁶ etiquetas de secuencia, al menos aproximadamente 10 x 10⁶ etiquetas de secuencia, al menos aproximadamente 15 x 10⁶ etiquetas de secuencia, al menos aproximadamente 20 x 10⁶ etiquetas de secuencia, al menos aproximadamente 30 x 10⁶ etiquetas de secuencia, al menos aproximadamente 30 x 10⁶ etiquetas de secuencia, al menos aproximadamente 20 x 10⁶ etiquetas de secuencia, o al menos aproximadamente 50 x 10⁶ etiquetas de secuencia que comprenden entre 20 y 40 pb de lectura Se obtienen para cada muestra de prueba.

55

[0049] Los términos "polinucleótido", "ácido nucleico" y "moléculas de ácido nucleico" se usan indistintamente y se refieren a una secuencia unida covalentemente de nucleótidos (es decir, ribonucleótidos para ARN y desoxirribonucleótidos para ADN) en la que la posición 3' de la la pentosa de un nucleótido está unida por un grupo fosfodiéster a la posición 5' de la pentosa del siguiente, incluye secuencias de cualquier forma de ácido nucleico, incluidas, entre otras, moléculas de ARN, ADN y ADNcf. El término "polinucleótido" incluye, sin limitación, polinucleótido de cadena simple y doble.

60

65

[0050] El término "parte" se usa en el presente documento en referencia a la cantidad de información de la secuencia de moléculas de ácido nucleico fetal y materno en una muestra biológica que en cantidad suma a menos que la información de la secuencia de <1 genoma humano.

ES 2 704 701 T3

[0051] El término "muestra de ensayo" en el presente documento se refiere a una muestra que comprende una mezcla de ácidos nucleicos que comprenden al menos una secuencia de ácido nucleico cuyo número de copias es sospechoso de haber sufrido variación. Los ácidos nucleicos presentes en una muestra de prueba se conocen como "ácidos nucleicos de prueba".

5

[0052] El término "muestra calificado" aquí se refiere a una muestra que comprende una mezcla de ácidos nucleicos que están presentes en un número de copias conocido al que se comparan los ácidos nucleicos en una muestra de ensayo, y es una muestra que es normal, es decir no aneuploide, para la secuencia de interés, por ejemplo, una muestra calificada utilizada para identificar un cromosoma normalizador para el cromosoma 21 es una muestra que no es una muestra de trisomía 21.

15

10

[0053] El término "ácido nucleico calificado" se usa indistintamente con "secuencia calificada" es una secuencia contra la que se compara la cantidad de una secuencia de prueba o ensayo de ácido nucleico. Una secuencia calificada es una presente en una muestra biológica, preferiblemente en una representación conocida, es decir. Se conoce la cantidad de una secuencia calificada. Una "secuencia de interés calificada" es una secuencia calificada para la cual se conoce la cantidad en una muestra calificada, y es una secuencia que se asocia con una diferencia en la representación de la secuencia en un individuo con una condición médica.

20

[0054] El término "secuencia de interés" en el presente documento se refiere a una secuencia de ácido nucleico que está asociada con una diferencia en la secuencia de representación en individuos sanos frente a enfermos. Una secuencia de interés puede ser una secuencia en un cromosoma que está tergiversado, es decir, sobre o subrepresentado, en una enfermedad o condición genética. Una secuencia de interés también puede ser una porción de un cromosoma o un cromosoma. Por ejemplo, una secuencia de interés puede ser un cromosoma que está sobrerepresentado en una condición de aneuploidía, o un gen que codifica un supresor de tumores que está poco representado en un cáncer. Las secuencias de interés incluyen secuencias que están representadas de forma excesiva o insuficiente en la población total, o una subpoblación de células de un sujeto. Una "secuencia de interés calificada" es una secuencia de interés en una muestra calificada. Una "secuencia de prueba de interés" es una secuencia de interés en una muestra de prueba.

25

[0055] El término "secuencia normalizadora" aquí se refiere a una secuencia que muestra una variabilidad en el número de etiquetas de secuencia que se asignan a la misma entre las muestras y series de secuenciación que mejor se aproximan a las de la secuencia de interés para las que se utiliza como un parámetro de normalización, y eso puede diferenciar mejor una muestra afectada de una o más muestras no afectadas. Un "cromosoma de normalización" es un ejemplo de una "secuencia de normalización".

35

30

[0056] El término "diferenciabilidad" aquí se refiere a la característica de un cromosoma de normalización que permite distinguir una o más muestras no afectadas es decir, normales, de una o más muestras afectadas, es decir aneuploides.

40

[0057] El término "dosis de secuencia" en el presente documento se refiere a un parámetro que relaciona la densidad de etiqueta de secuencia de una secuencia de interés a la densidad de la etiqueta de una secuencia de normalización. Una "dosis de secuencia de prueba" es un parámetro que relaciona la densidad de la etiqueta de secuencia de una secuencia de interés, por ejemplo, el cromosoma 21, con la de una secuencia de normalización, por ejemplo, el cromosoma 9, determinado en una muestra de prueba. De manera similar, una "dosis de secuencia calificada" es un parámetro que relaciona la densidad de la etiqueta de secuencia de una secuencia de interés con la de una secuencia de normalización determinada en una muestra calificada.

50

45

[0058] El término "densidad de etiqueta de secuencia" en el presente documento se refiere al número de lecturas de secuencia que se asignan a una secuencia de referencia del genoma por ejemplo, la densidad de etiqueta de secuencia para el cromosoma 21 es el número de lecturas de secuencia generado por el método de secuenciación que es mapeado en el cromosoma 21 del genoma de referencia. El término "relación de densidad de etiqueta de secuencia" en el presente documento se refiere a la proporción del número de etiquetas de secuencia que se asignan a un cromosoma del genoma de referencia, por ejemplo el cromosoma 21, a la longitud del genosoma de referencia cromosoma 21.

55

[0059] El término "parámetro" en el presente documento se refiere a un valor numérico que caracteriza un conjunto de datos cuantitativos y/o una relación numérica entre los conjuntos de datos cuantitativos. Por ejemplo, una relación (o función de una relación) entre el número de etiquetas de secuencia asignadas a un cromosoma y la longitud del cromosoma al que se asignan las etiquetas, es un parámetro.

60

[0060] Los términos "valor umbral" y "valor umbral calificado" en el presente documento se refieren a cualquier número que se calcula usando un conjunto de datos de aceptación establecidos y sirve como un límite de diagnóstico de una variación del número de copias por ejemplo una aneuploidía, en un organismo. Si los resultados obtenidos de la práctica de los métodos descritos en este documento exceden un umbral, se puede diagnosticar a un sujeto con una variación en el número de copias, por ejemplo, trisomía 21.

65

ES 2 704 701 T3

[0061] El término "lectura" se refiere a una secuencia de ADN de longitud suficiente (p. ej., al menos aproximadamente 30 pb) que se puede utilizar para identificar una secuencia o región más grande, p. ej. que se pueden alinear y específicamente asignar a un cromosoma o región genómica o gen.

[0062] El término "etiqueta de secuencia" se usa aquí de forma intercambiable con el término "etiqueta de secuencia mapeada" para referirse a una lectura de secuencia que ha sido asignada específicamente es decir asignada, a una secuencia más grande, por ejemplo un genoma de referencia, por la alineación. Las etiquetas de secuencia asignadas se asignan de forma única a un genoma de referencia, es decir, se asignan a una única ubicación para el genoma de referencia. Las etiquetas que se pueden asignar a más de una ubicación en un genoma de referencia, es decir, las etiquetas que no se asignan de forma única, no se incluyen en el análisis.

[0063] Como se usa en el presente documento, los términos "alineado", "alineación", o "alinear" se refieren a una o más secuencias que se identifican como un partido en términos de la orden de sus moléculas de ácido nucleico a una secuencia conocida a partir de un genoma de referencia. Dicha alineación se puede hacer manualmente o mediante un algoritmo de computadora, siendo ejemplos de ello el programa de computadora Efficient Local Alignment of Nucleotide Data (ELAND) distribuido como parte de la tubería de Illumina Genomics Analysis. La coincidencia de una secuencia leída en alineación puede ser una coincidencia de secuencia del 100% o menos del 100% (coincidencia no perfecta).

15

30

35

40

45

55

60

[0064] Tal como se utiliza aquí, el término "genoma de referencia" se refiere a cualquier secuencia del genoma particular conocido, ya sea parcial o completa, de cualquier organismo o virus que puede ser utilizado para hacer referencia a secuencias identificadas a partir de un sujeto. Por ejemplo, un genoma de referencia utilizado para sujetos humanos, así como muchos otros organismos, se encuentra en el Centro Nacional de Información Biotecnológica en www.ncbi.nlm.nih.gov. Un "genoma" se refiere a la información genética completa de un organismo o virus, expresado en secuencias de ácidos nucleicos.

[0065] Los términos "genoma de secuencias diana artificiales" y "genoma de referencia artificial" en el presente documento se refieren a una agrupación de secuencias conocidas que abarcan alelos de sitios polimórficos conocidos. Por ejemplo, un "genoma de referencia de SNP" es un genoma de secuencias diana artificiales que comprende una agrupación de secuencias que abarcan alelos de SNP conocidos.

[0066] El término "secuencia clínicamente relevante" en el presente documento se refiere a una secuencia de ácido nucleico que se sabe o se sospecha que estar asociado o implicado con una condición genética o enfermedad. La determinación de la ausencia o presencia de una secuencia clínicamente relevante puede ser útil para determinar un diagnóstico o confirmar un diagnóstico de una afección médica, o proporcionar un pronóstico para el desarrollo de una enfermedad.

[0067] El término "derivado" cuando se usa en el contexto de un ácido nucleico o una mezcla de ácidos nucleicos, en este documento se refiere a los medios por los cuales el (los) ácido(s) nucleico(s) se obtiene(n) de la fuente de la que se originan. Por ejemplo, en una realización, una mezcla de ácidos nucleicos que se deriva de dos genomas diferentes significa que los ácidos nucleicos, por ejemplo, ADNcf, fueron liberados naturalmente por las células a través de procesos naturales como la necrosis o la apoptosis. En otra realización, una mezcla de ácidos nucleicos que se deriva de dos genomas diferentes significa que los ácidos nucleicos se extrajeron de dos tipos diferentes de células de un sujeto.

[0068] El término "muestra mixta" aquí se refiere a una muestra que contiene una mezcla de ácidos nucleicos, que se derivan de diferentes genomas.

[0069] El término "muestra materna" aquí se refiere a una muestra biológica obtenida de un sujeto embarazado, por ejemplo, una mujer.

[0070] El término "muestra materna original" en este documento se refiere a una muestra biológica obtenida de un sujeto embarazado, por ejemplo, una mujer, que sirve como fuente de la cual se extrae una porción para amplificar los ácidos nucleicos diana polimórficos. La "muestra original" puede ser cualquier muestra obtenida de un sujeto embarazado, y las fracciones procesadas de la misma, por ejemplo, una muestra de ADNcf purificada extraída de una muestra de plasma materno.

[0071] El término "fluido biológico" se refiere aquí a un líquido tomado de una fuente biológica e incluye, por ejemplo, sangre, suero, plasma, esputo, fluido de lavado, líquido cefalorraquídeo, orina, semen, sudor, lágrimas, saliva, y similares. Como se usa en el presente documento, los términos "sangre", "plasma" y "suero" abarcan expresamente las fracciones o porciones procesadas de los mismos. Del mismo modo, donde se toma una muestra de una biopsia, un hisopo, frotis, etc., la "muestra" abarca expresamente una fracción o porción transformadas derivadas de la biopsia, un hisopo, frotis, etc.

[0072] Los términos "ácidos nucleicos maternos" y "ácidos nucleicos fetales" en el presente documento se refieren a los ácidos nucleicos de una mujer embarazada y a los ácidos nucleicos del feto que son transportados por la hembra

embarazada, respectivamente.

5

10

20

25

55

60

[0073] Tal como se utiliza aquí, el término "correspondiente a" se refiere a una secuencia de ácido nucleico, por ejemplo, un gen o un cromosoma, que está presente en el genoma de diferentes temas, y que no necesariamente tienen la misma secuencia en todos los genomas, pero sirve para proporcionar la identidad en lugar de la información genética de una secuencia de interés, por ejemplo, un gen o cromosoma.

[0074] Tal como se utiliza aquí, el término "sustancialmente libre de células" abarca preparaciones de la muestra deseada de la que se eliminan los componentes que normalmente están asociados con ella. Por ejemplo, una muestra de plasma se vuelve esencialmente libre de células mediante la eliminación de células sanguíneas, por ejemplo, células rojas, que normalmente están asociadas con ella. En algunas realizaciones, se procesan muestras sustancialmente libres para eliminar las células que de otro modo contribuirían al material genético deseado que se va a analizar para una CNV.

15 **[0075]** Tal como se utiliza aquí, el término "fracción fetal" se refiere a la fracción de ácidos nucleicos fetales presentes en una muestra que comprende ácido nucleico fetal y materno.

[0076] Tal como se utiliza aquí, el término "cromosoma" se refiere al portador del gen herencia de soporte de una célula viva que se deriva de la cromatina y que comprende ADN y proteínas componentes (especialmente histonas). El sistema de numeración de cromosomas del genoma humano individual convencional reconocido internacionalmente se emplea aquí.

[0077] Tal como se utiliza aquí, el término "longitud de polinucleótido" se refiere a que el número absoluto de moléculas de ácido nucleico (nucleótidos) en una secuencia o en una región de un genoma de referencia. El término "longitud del cromosoma" se refiere a la longitud conocida del cromosoma dado en pares de bases, por ejemplo, proporcionado en el ensamblaje NCBI36/hg18 del cromosoma humano encontrado en la red mundial en genome.ucsc.edu/cgi-bin/hgTracks?hgsid=167155613 &chromInfoPage=

[0078] El término "sujeto" se refiere a un sujeto humano así como a un sujeto no humano tal como un mamífero, un invertebrado, un vertebrado, un hongo, una levadura, una bacteria y un virus. Aunque los ejemplos en este documento se refieren a seres humanos y el lenguaje se dirige principalmente a preocupaciones humanas, el concepto de esta invención es aplicable a genomas de cualquier planta o animal, y es útil en los campos de la medicina veterinaria, ciencias animales, laboratorios de investigación y otros.

- [0079] El término "condición" en este documento se refiere a "condición médica" como un término amplio que incluye todas las enfermedades y trastornos, pero pueden incluir lesiones y situaciones de salud normales, como el embarazo, que pueden afectar a la salud de una persona, se benefician de la asistencia médica, o tienen implicaciones para tratamientos médicos.
- 40 [0080] El término "cromosoma aneuploides" aquí se refiere a un cromosoma que está implicado en una aneuploidía.

[0081] El término "aneuploidía" aquí se refiere a un desequilibrio de material genético causado por una pérdida o ganancia de un todo cromosoma, o parte de un cromosoma.

45 **[0082]** Los términos "biblioteca" y "biblioteca de secuenciación" en el presente documento se refieren a una colección o pluralidad de moléculas de plantilla que comparten secuencias comunes en sus extremos 5' y secuencias comunes en sus extremos 3'.

[0083] Los términos "extremos romos" y de "reparación de extremos" se usan aquí de forma intercambiable para referirse a un proceso enzimático que se traduce en ambas cadenas de una molécula de ADN de doble cadena para terminar en un par de bases, y no incluye la purificación de productos de extremos romos de la enzima de extremos romos.

[0084] El término "cola de dA" aquí se refiere a un proceso enzimático que añade al menos una base de adenina al extremo 3' del ADN, y no incluye la purificación del producto dA de cola de la enzima de cola de dA.

[0085] El término "adaptador de ligadura" aquí se refiere a un proceso enzimático que se liga una secuencia adaptadora de ADN a los fragmentos de ADN, y no incluye purificar el producto ligado al adaptador de la enzima de ligadura.

[0086] El término "recipiente de reacción" se refiere aquí a un recipiente de cualquier forma, tamaño, capacidad o material que puede ser utilizado para el procesamiento de una muestra durante un laboratorio procedimiento por ejemplo, investigación o clínico.

[0087] El término "pasos consecutivos" se usa aquí en referencia a las sucesivas etapas enzimáticas de extremo romo de cola de dA y ADN ligado al adaptador que no están interpuestos por etapas de purificación.

[0088] Tal como se utiliza aquí, el término "purificado" se refiere a material (por ejemplo, un polinucleótido aislado) que está en un estado relativamente puro, por ejemplo, al menos aproximadamente el 80% puro, al menos aproximadamente el 85% puro, al menos aproximadamente el 95% puro, al menos aproximadamente el 95% puro, al menos aproximadamente el 98% puro, o incluso al menos aproximadamente el 99% puro.

5

10

15

20

25

30

35

55

60

65

[0089] Los términos "extraído", "recuperado", "aislado" y "separado", se refieren a un compuesto, proteína, célula, ácido nucleico o de aminoácidos que se retira de al menos un componente con el que está asociado de forma natural y se encuentra en la naturaleza.

[0090] El término "SNP en tándem" aquí se refiere a dos o más SNP que están presentes dentro de una secuencia de ácido nucleico diana polimórfico.

[0091] Los términos "ácido nucleico diana polimórfico", "secuencia polimórfica", "secuencia de ácido nucleico diana polimórfico" y "ácido nucleico polimórfico" se usan indistintamente en este documento para referirse a una secuencia de ácido nucleico por ejemplo, una secuencia de ADN, que comprende uno o más sitios polimórficos.

[0092] El término "sitio polimórfico" en el presente documento se refiere a un polimorfismo de nucleótido único (SNP), una pequeña escala deleción multi-base o de inserción, un polimorfismo de multi-nucleótidos (MNP) o una repetición corta en tándem (STR).

[0093] El término "pluralidad de ácidos nucleicos diana polimórficos" aquí se refiere a una serie de secuencias de ácido nucleico que comprende cada uno al menos un sitio polimórfico tal que al menos 1, 2, 3, 4,5, 6, 7, 8, 9, 10, 15, 20, 25, 30, 40 o más sitios polimórficos diferentes se amplifican a partir de los ácidos nucleicos diana polimórficos para identificar y/o cuantificar los alelos fetales presentes en muestras maternas que comprenden ácidos nucleicos fetales y maternos.

[0094] El término "enriquecer" en el presente documento se refiere al proceso de amplificación de ácidos nucleicos diana polimórficos contenidos en una porción de una muestra materna, y combinar el producto amplificado con el resto de la muestra maternal de la que se eliminó la porción.

[0095] El término "densidad de etiqueta de secuencia" en el presente documento se refiere al número de lecturas de secuencia que se asignan a una secuencia de referencia del genoma por ejemplo, la densidad de etiqueta de secuencia para el cromosoma 21 es el número de lecturas de secuencia generado por el método de secuenciación que es mapeado en el cromosoma 21 del genoma de referencia. El término "relación de densidad de etiqueta de secuencia" en el presente documento se refiere a la proporción del número de etiquetas de secuencia que se asignan a un cromosoma del genoma de referencia, por ejemplo el cromosoma 21, a la longitud del genosoma de referencia cromosoma 21.

40 [0096] Tal como se utiliza aquí, el término "amplificación en fase sólida", como se usa en el presente documento se refiere a cualquier reacción de amplificación de ácido nucleico aplicada en o en asociación con un soporte sólido tal que la totalidad o una parte de los productos amplificados se inmovilizan en el soporte sólido a medida que se forman. En particular, el término abarca la reacción en cadena de la polimerasa en fase sólida (PCR en fase sólida) y la amplificación isotérmica en fase sólida, que son reacciones análogas a la amplificación en fase de solución estándar, excepto que uno o ambos de los cebadores de amplificación directa e inversa se inmovilizan en el soporte 45 sólido. La PCR en fase sólida cubre sistemas como las emulsiones, en donde un cebador se ancla a una cuenta y el otro se encuentra en solución libre, y la formación de colonias en matrices de gel de fase sólida donde un cebador se ancla a la superficie y el otro se encuentra en solución libre. El término fase sólida, o superficie, se usa para significar una matriz plana en la que los cebadores se unen a una superficie plana, por ejemplo, portaobjetos de 50 microscopio de vidrio, sílice o plástico o dispositivos de células de flujo similares; perlas, en donde uno o dos cebadores se unen a las perlas y se amplifican las perlas; o una serie de cuentas sobre una superficie después de que las cuentas hayan sido amplificadas.

[0097] Como se usa en el presente documento, el término "grupo de cromosomas" aquí se refiere a un grupo de dos o más cromosomas.

[0098] Un "polimorfismo de nucleótido único" (SNP) se produce en un sitio polimórfico ocupado por un único nucleótido, que es el sitio de variación entre secuencias alélicas. El sitio suele ir precedido y seguido por secuencias altamente conservadas del alelo (por ejemplo, secuencias que varían en menos de 1/100 o 1/1000 miembros de las poblaciones). Un SNP generalmente surge debido a la sustitución de un nucleótido por otro en el sitio polimórfico. Una transición es el reemplazo de una purina por otra purina o una pirimidin por otra pirimidin. Una transversión es el reemplazo de una purina por una pirimidin o viceversa. Los SNP también pueden surgir de una eliminación de un nucleótido o una inserción de un nucleótido en relación con un alelo de referencia. Los polimorfismos de un solo nucleótido (SNP) son posiciones en las cuales dos bases alternativas ocurren con una frecuencia apreciable (>1%) en la población humana, y son el tipo más común de variación genética humana.

[0099] Tal como se utiliza aquí, el término "repetición corta en tándem" o "STR" tal como se utiliza aquí, se refiere a una clase de polimorfismos que se produce cuando un patrón de dos o más nucleótidos se repiten y las secuencias repetidas son directamente adyacentes entre sí. El patrón puede variar en longitud de 2 a 10 pares de bases (pb) (por ejemplo (CATG)n en una región genómica) y está típicamente en la región intrón no codificadora. Al examinar varios loci STR y al contar cuántas repeticiones de una secuencia STR específica en un locus dado, es posible crear un perfil genético único de un individuo.

[0100] Tal como se utiliza aquí, el término "miniSTR" aquí se refiere a la repetición en tándem de cuatro o más pares de bases que se extiende por menos de aproximadamente 300 pares de bases, menos de aproximadamente 250 aires de bases, menos de aproximadamente 200 pares de bases, menos de aproximadamente 150 pares de bases, menos de unos 100 pares de bases, menos de unos 50 pares de bases, o menos de unos 25 pares de bases. "miniSTRs" son STR que son amplificables a partir de plantillas ADNcf.

[0101] El término "tándem SNPs" aquí se refiere a dos o más SNPs que están presentes dentro de una secuencia de ácido nucleico diana polimórfico.

[0102] Tal como se utiliza aquí, el término "biblioteca enriquecida" en el presente documento se refiere a una biblioteca de secuenciación que comprende secuencias de ácido nucleico diana polimórfico amplificado. Un ejemplo de una biblioteca enriquecida es una biblioteca de secuenciación que comprende secuencias de ADNcf de origen natural y secuencias de ácido nucleico diana amplificadas. Una "biblioteca no enriquecida" en el presente documento se refiere a una biblioteca de secuenciación que no comprende, es decir, una biblioteca generada a partir de secuencias de ADNcf que ocurren naturalmente. Una "biblioteca polimórfica de ácidos nucleicos diana" es una biblioteca generada a partir de ácidos nucleicos diana amplificados".

[0103] Como se usa en este documento, el término "secuencias ADNcf de origen natural" en el presente documento se refiere a fragmentos ADNcf ya que están presentes en una muestra, y en contraste con fragmentos de ADN genómico que se obtienen por métodos de fragmentación descritos en este documento.

5.2 DESCRIPCION

5

10

15

20

30

35

40

45

50

55

60

65

[0104] La descripción se refiere a métodos para determinar la presencia o ausencia de una aneuploidía por ejemplo aneuploidía cromosómica o parcial, y/o fracción fetal en muestras maternas que comprenden ácidos nucleicos fetales y maternos por secuenciación masiva en paralelo. El método comprende un nuevo protocolo para preparar bibliotecas de secuenciación que mejora inesperadamente la calidad del ADN de la biblioteca mientras acelera el proceso de análisis de muestras para diagnósticos prenatales. Los métodos permiten determinar las variaciones en el número de copias (CNV) de cualquier secuencia de interés en una muestra de prueba que comprende una mezcla de ácidos nucleicos que se conocen o se sospecha que difieren en la cantidad de una o más secuencias de interés, y/o determinan la fracción de una de al menos dos poblaciones de ácidos nucleicos contribuyó a la muestra por diferentes genomas.

Métodos de secuenciación

[0105] En una realización, el método descrito aquí emplea la tecnología de secuenciación de próxima generación (NGS) en la que plantillas de ADN clonalmente amplificadas o moléculas de ADN individuales se secuencian de forma masiva en paralelo dentro de una célula de flujo (por ejemplo, como se describe en Volkerding et al. Clin Chem 55: 641-658 [2009]; Metzker M Nature Rev 11: 31-46 [2010]). Además de la información de secuencia de alto rendimiento, NGS proporciona información cuantitativa digital, en el sentido de que cada secuencia leída es una "etiqueta de secuencia" contable que representa una plantilla de ADN clonal individual o una molécula de ADN individual. Esta cuantificación permite a NGS expandir el concepto de PCR digital de conteo de moléculas de ADN libres de células (Fan et al., Proc Natl Acad Sci EE.UU. 105: 16266-16271 [2008]; Chiu et al., Proc Natl Acad Sci EE.UU. 2008; 105: 20458-20463 [2008]). Las tecnologías de secuenciación de NGS incluyen pirosecuenciación, secuenciación por síntesis con terminadores de tinte reversibles, secuenciación por ligadura de sonda de oligonucleótidos y secuenciación en tiempo real.

[0106] Algunas de las tecnologías de secuenciación están disponibles comercialmente, tales como la plataforma de secuenciación por hibridación de Affymetrix Inc. (Sunnyvale, CA) y las plataformas de secuenciación por síntesis a partir de 454 Life Sciences (Brad- ford, CT), Illumina/Solexa (Hayward, CA) y Helicos Biosciences (Cambridge, MA), y la plataforma de secuenciación por ligación de Applied Biosystems (Foster City, CA), como se describe a continuación. Además de la secuenciación de una sola molécula realizada mediante la secuenciación por síntesis de Helicos Biosciences, otras tecnologías de secuenciación de una sola molécula están abarcadas por el método de la invención e incluyen la tecnología SMRTTM de Pacific Biosciences, la tecnología Ion TorrentTM y la secuenciación de nanoporos en desarrollo. por ejemplo, por Oxford Nanoporo Technologies.

[0107] Mientras que el método automatizado de Sanger se considera una tecnología de "primera generación", la secuenciación de Sanger que incluye la secuenciación automática de Sanger también puede emplearse mediante el método de la invención. Los métodos de secuenciación adicionales que comprenden el uso de tecnologías de

ES 2 704 701 T3

obtención de imágenes de ácido nucleico en desarrollo, por ejemplo, microscopía de fuerza atómica (AFM) o microscopía electrónica de transmisión (TEM), también se incluyen en el método de la invención. Tecnologías de secuenciación ejemplares se describen a continuación.

[0108] En una realización, la tecnología de secuenciación de ADN que se utiliza en el método de la invención es la Secuenciación de Moléculas Únicas Verdaderas de Helicos (tSMS) (por ejemplo, como se describe en Harris TD et al., Science 320: 106-109 [2008]). En la técnica tSMS, una muestra de ADN se divide en cadenas de aproximadamente 100 a 200 nucleótidos, y se agrega una secuencia poliA al extremo 3' de cada cadena de ADN. Cada hebra se marca mediante la adición de un nucleótido de adenosina marcado de forma fluorescente. Las 10 cadenas de ADN se hibridan luego con una célula de flujo, que contiene millones de sitios de captura de oligo-T que se inmovilizan en la superficie de la célula de flujo. Las plantillas pueden tener una densidad de aproximadamente 100 millones de plantillas/cm². La célula de flujo se carga en un instrumento, por ejemplo, el secuenciador Heliscope™, y un láser ilumina la superficie de la célula de flujo, revelando la posición de cada plantilla. Una cámara CCD puede asignar la posición de las plantillas en la superficie de la célula de flujo. La plantilla de la etiqueta 15 fluorescente se escinde y se lava. La reacción de secuenciación comienza con la introducción de una ADN polimerasa y un nucleótido marcado con fluorescencia. El ácido nucleico oligo-T sirve como cebador. La polimerasa incorpora los nucleótidos marcados al cebador en una forma dirigida por la plantilla. Se eliminan la polimerasa y los nucleótidos no incorporados. Las plantillas que tienen incorporación directa del nucleótido marcado con fluorescencia se diferencian por la obtención de imágenes de la superficie de la célula de flujo. Después de la 20 obtención de imágenes, una etapa de escisión elimina la etiqueta fluorescente, y el proceso se repite con otros nucleótidos marcados con fluorescencia hasta que se alcanza la longitud de lectura deseada. La información de secuencia se recopila con cada paso de adición de nucleótidos.

[0109] En una realización, la tecnología de secuenciación de ADN que se utiliza en el método de la invención es la secuencia 454 (Roche) (por ejemplo, como se describe en Margulies, M. y otros, Nature 437:. 376-380 [2005]). La secuenciación 454 implica dos pasos. En el primer paso, el ADN se corta en fragmentos de aproximadamente 300-800 pares de bases, y los fragmentos son romos. Los adaptadores de oligonucleótidos se ligan a los extremos de los fragmentos. Los adaptadores sirven como cebadores para la amplificación y secuenciación de los fragmentos. Los fragmentos pueden unirse a las perlas de captura de ADN, por ejemplo, perlas recubiertas con estreptavidina usando, por ejemplo, el Adaptador B, que contiene la etiqueta 5'-biotina. Los fragmentos unidos a las perlas se amplifican por PCR dentro de gotitas de una emulsión de aceite-agua. El resultado son múltiples copias de fragmentos de ADN amplificados clonalmente en cada cuenta. En el segundo paso, las cuentas se capturan en pozos (tamaño pico-litro). La pirosecuenciación se realiza en cada fragmento de ADN en paralelo. La adición de uno o más nucleótidos genera una señal de luz que es grabada por una cámara CCD en un instrumento de secuenciación. La intensidad de la señal es proporcional al número de nucleótidos incorporados. La pirosecuenciación hace uso del pirofosfato (PPi) que se libera tras la adición de nucleótidos. El PPi se convierte en ATP por la ATP sulfurilasa en presencia de adenosina 5' fosfosulfato. La luciferasa usa ATP para convertir la luciferina en oxiluciferina, y esta reacción genera luz que se discierne y analiza.

25

30

35

55

60

65

40 [0110] En una realización, la tecnología de secuenciación de ADN que se utiliza en el método de la invención es la tecnología SOLiD™ (Applied Biosystems). En la secuenciación por ligación de SOLiD™, el ADN genómico se divide en fragmentos, y los adaptadores se unen a los extremos 5' y 3' de los fragmentos para generar una biblioteca de fragmentos. Alternativamente, pueden introducirse adaptadores internos ligando los adaptadores a los extremos 5' y 3' de los fragmentos, circularizando los fragmentos, digiriendo el fragmento circularizado para generar un adaptador interno, y uniendo adaptadores a los extremos 5' y 3' de los extremos resultantes. Fragmentos para generar una 45 biblioteca emparejada. A continuación, se preparan poblaciones de perlas clonales en microrreactores que contienen perlas, cebadores, plantilla y componentes de PCR. Después de la PCR, las plantillas se desnaturalizan y las perlas se enriquecen para separar las perlas con plantillas extendidas. Las plantillas en las perlas seleccionadas se someten a una modificación 3' que permite la unión a un portaobjetos de vidrio. La secuencia se puede determinar 50 por hibridación secuencial y ligación de oligonucleótidos parcialmente aleatorios con una base determinada central (o un par de bases) que se identifica por un fluoróforo específico. Después de registrar un color, el oligonucleótido ligado se escinde y se elimina, y luego se repite el proceso.

[0111] En una realización, la tecnología de secuenciación de ADN que se utiliza en el método de la invención es la tecnología de secuenciación de una sola molécula, en tiempo real (SMRT™) de Pacific Biosciences. En la secuenciación SMRT, la incorporación continua de nucleótidos marcados con colorante se visualiza durante la síntesis de ADN. Las moléculas de ADN polimerasa individuales se unen a la superficie inferior de los identificadores individuales de longitud de onda de modo cero (identificadores de ZMW) que obtienen información de la secuencia mientras que los nucleótidos fosforizados se incorporan a la cadena de cebadores en crecimiento. Una ZMW es una estructura de confinamiento que permite la observación de la incorporación de un solo nucleótido por la ADN polimerasa en el contexto de nucleótidos fluorescentes que se difunden rápidamente en una salida de la ZMW (en microsegundos). Se requieren varios milisegundos para incorporar un nucleótido en una hebra en crecimiento. Durante este tiempo, la etiqueta fluorescente se excita y produce una señal fluorescente, y la etiqueta fluorescente se separa. La identificación de la fluorescencia correspondiente del tinte indica qué base se incorporó. El proceso se repite.

[0112] En una realización, la tecnología de secuenciación de ADN que se utiliza en el método de la invención es secuenciación de nanoporos (por ejemplo, como se describe en Soni GV y Meller A. Clin Chem 53: 1996-2001 [2007]). Las técnicas de análisis de ADN de secuenciación de Nanoporo están siendo desarrolladas industrialmente por varias compañías, incluida Oxford Nanoporo Technologies (Oxford, Reino Unido). La secuenciación de nanoporos es una tecnología de secuenciación de una sola molécula mediante la cual una única molécula de ADN se secuencia directamente cuando pasa a través de un nanoporo. Un nanoporo es un agujero pequeño, del orden de 1 nanómetro de diámetro. La inmersión de un nanoporo en un fluido conductor y la aplicación de un potencial (voltaje) a través de él produce una ligera corriente eléctrica debido a la conducción de iones a través del nanoporo. La cantidad de corriente que fluye es sensible al tamaño y forma del nanoporo. A medida que una molécula de ADN pasa a través de un nanoporo, cada nucleótido en la molécula de ADN obstruye el nanoporo en un grado diferente, cambiando la magnitud de la corriente a través del nanoporo en diferentes grados. Por lo tanto, este cambio en la corriente, a medida que la molécula de ADN pasa a través del nanoporo, representa una lectura de la secuencia de ADN.

10

15

20

25

30

35

40

45

50

55

60

65

[0113] En una realización, la tecnología de secuenciación de ADN que se utiliza en el método de la invención es la matriz de transistor de efecto de campo sensible (chemFET) a los productos químicos (por ejemplo, como se describe en la Publicación de la Solicitud de Patente de Estados Unidos Nº 20090026082). En un ejemplo de la técnica, las moléculas de ADN se pueden colocar en cámaras de reacción, y las moléculas de plantilla se pueden hibridar con un cebador de secuenciación unido a una polimerasa. La incorporación de uno o más trifosfatos en una nueva cadena de ácido nucleico en el extremo 3' del cebador de secuenciación puede discernirse por un cambio en la corriente por parte de un chemFET. Una matriz puede tener múltiples sensores chemFET. En otro ejemplo, pueden unirse ácidos nucleicos individuales a las perlas, y los ácidos nucleicos pueden amplificarse en la perla, y las perlas individuales pueden transferirse a cámaras de reacción individuales en una matriz chemFET, teniendo cada cámara un sensor chemFET, y los ácidos nucleicos pueden secuenciarse.

[0114] En una realización, la tecnología de secuenciación de ADN que se utiliza en el método de la invención es el método de la Halcyon Molecular que utiliza microscopía electrónica de transmisión (TEM). El método, denominado Individual Molecule Placement Rapid Nano Transfer (IMPRNT), comprende utilizar imágenes de microscopía electrónica de transmisión de resolución de un solo átomo de ADN de alto peso molecular (150 kb o más) etiquetadas selectivamente con marcadores de átomos pesados y disponer estas moléculas en películas ultradelgadas en matrices paralelas ultra-densas (3nm de hebra a hebra) con espaciado constante de base a base. El microscopio electrónico se utiliza para obtener imágenes de las moléculas en las películas para determinar la posición de los marcadores de los átomos pesados y para extraer información de la secuencia de bases del ADN. El método se describe con más detalle en la publicación de patente PCT WO 2009/046445. El método permite secuenciar genomas humanos completos en menos de diez minutos.

101151 En una realización, la tecnología de secuenciación de ADN es la secuenciación de molécula única de lon Torrent, que combina la tecnología de semiconductores con una química de secuenciación simple para traducir directamente la información codificada químicamente (A, C, G, T) en información digital (0, 1) en un chip semiconductor. En la naturaleza, cuando un nucleótido se incorpora a una cadena de ADN por una polimerasa, se libera un ión de hidrógeno como un subproducto. Ion Torrent utiliza una matriz de alta densidad de pozos micromecanizados para realizar este proceso bioquímico de forma masivamente paralela. Cada pozo contiene una molécula de ADN diferente. Debajo de los pozos hay una capa sensible a los iones y, por debajo, un sensor de iones. Cuando un nucleótido, por ejemplo una C, se agrega a una plantilla de ADN y luego se incorpora a una hebra de ADN, se liberará un ion hidrógeno. La carga de ese ion cambiará el pH de la solución, que puede identificarse mediante el sensor de iones de lon Torrent. El secuenciador, esencialmente el medidor de pH de estado sólido más pequeño del mundo, llama a la base y va directamente de la información química a la información digital. El secuenciador de la máquina de genoma personal de Ion (PGMTM) luego inunda secuencialmente el chip con un nucleótido tras otro. Si el siguiente nucleótido que inunda el chip no coincide. No se registrará ningún cambio de voltaje y no se llamará ninguna base. Si hay dos bases idénticas en la cadena de ADN, el voltaje será doble y el chip registrará dos bases idénticas llamadas. La identificación directa permite el registro de la incorporación de nucleótidos en segundos.

[0116] Otros métodos de secuenciación incluyen PCR digital y secuenciación por hibridación. La reacción en cadena de la polimerasa digital (PCR digital o dPCR) se puede usar para identificar y cuantificar directamente los ácidos nucleicos en una muestra. La PCR digital se puede realizar en una emulsión. Los ácidos nucleicos individuales se separan, por ejemplo, en un dispositivo de cámara microfluídica, y cada lata nucleica se amplifica individualmente por PCR. Los ácidos nucleicos pueden separarse, por lo que hay un promedio de aproximadamente 0,5 ácidos nucleicos/pocillo, o no más de un ácido nucleico/pocillo. Se pueden utilizar diferentes sondas para distinguir los alelos fetales y los alelos maternos. Los alelos se pueden enumerar para determinar el número de copias. En la secuenciación por hibridación, la hibridación comprende poner en contacto la pluralidad de secuencias polinucleotídicas con una pluralidad de sondas polinucleotídicas, en donde cada una de la pluralidad de sondas polinucleotídicas puede unirse opcionalmente a un sustrato. El sustrato podría ser una superficie plana que comprende una serie de secuencias de nucleótidos conocidas. El patrón de hibridación con la matriz se puede usar para determinar las secuencias polinucleotídicas presentes en la muestra. En otras realizaciones, cada sonda está atada a un cordón, por ejemplo, un cordón magnético o similar. La hibridación a las perlas puede identificarse y

usarse para identificar la pluralidad de secuencias de polinucleótidos dentro de la muestra.

10

15

20

25

30

35

40

45

50

55

60

65

[0117] En una realización, el método emplea una secuenciación masiva paralela de millones de fragmentos de ADN utilizando la secuenciación de Illumina por síntesis y la química de la secuenciación basada en terminador reversible (por ejemplo, como se describe en Bentley et al., Nature 6: 53-59 [2009]). El ADN de plantilla puede ser ADN genómico, por ejemplo, ADNcf. En algunas realizaciones, el ADN genómico de células aisladas se utiliza como plantilla y se fragmenta en longitudes de varios cientos de pares de bases. En otras realizaciones, se utiliza ADNcf como plantilla, y no se requiere fragmentación ya que ADNcf existe como fragmentos cortos. Por ejemplo, el ADNcf fetal circula en el torrente sanguíneo como fragmentos de <300 pb, y se estima que el ADNcf materno circula como fragmentos de entre aproximadamente 0,5 y 1 Kb (Li et al., Clin Chem, 50: 1002-1011 [2004]). La tecnología de secuenciación de Illumina se basa en la unión de ADN genómico fragmentado a una superficie plana, ópticamente transparente sobre la cual se unen los anclajes de oligonucleótidos. El ADN de plantilla se repara en el extremo para generar extremos romos fosforilados en 5', y la actividad de la polimerasa del fragmento Klenow se usa para agregar una sola base A al extremo 3' de los fragmentos de ADN fosforilados romos. Esta adición prepara los fragmentos de ADN para la ligadura de los adaptadores de oligonucleótidos, que tienen un saliente de una sola base T en su extremo 3' para aumentar la eficiencia de la ligadura. Los oligonucleótidos adaptadores son complementarios a los anclajes de las células de flujo. En condiciones de dilución limitante, el ADN de plantilla monocatenaria modificada por adaptador se agrega a la célula de flujo y se inmoviliza por hibridación a los anclajes. Los fragmentos de ADN adjuntos se extienden y se amplifican en puente para crear una célula de flujo de secuenciación de densidad ultraalta con cientos de millones de agrupaciones, cada una de las cuales contiene ~ 1.000 copias de la misma plantilla. En una realización, el ADN genómico fragmentado aleatoriamente, por ejemplo, el ADNcf, se amplifica utilizando la PCR antes de someterse a la amplificación por grupos. Alternativamente, se utiliza una preparación de biblioteca genómica libre de amplificación, y el ADN genómico fragmentado aleatoriamente, por ejemplo, ADNcf se enriquece utilizando la amplificación de agrupación sola (Kozarewa et al., Nature Methods 6: 291-295 [2009]). Las plantillas se secuencian utilizando una robusta tecnología de secuenciación por síntesis de ADN de cuatro colores que emplea terminadores reversibles con tintes fluorescentes removibles. La identificación de fluorescencia de alta sensibilidad se logra mediante la excitación con láser y la óptica de reflexión interna total. Lecturas de secuencias cortas de aproximadamente 20-40 pb, p. ej., 36 pb, están alineadas con un genoma de referencia con repetición enmascarada y las diferencias genéticas se denominan mediante el uso de software de pipeline de análisis de datos especialmente desarrollado. Después de completar la primera lectura, las plantillas pueden regenerarse in situ para permitir una segunda lectura desde el extremo opuesto de los fragmentos. De este modo, según el método, se utiliza la secuenciación de un solo extremo o un extremo de los fragmentos de ADN. Se realiza la secuenciación parcial de los fragmentos de ADN presentes en la muestra, y se cuentan las etiquetas de secuencia que comprenden lecturas de longitud predeterminada, por ejemplo. 36 pb, que se asignan a un genoma de referencia conocido.

[0118] La longitud de la secuencia de lectura está asociada con la tecnología de secuenciación particular. Los métodos NGS proporcionan lecturas de secuencia que varían en tamaño desde decenas hasta cientos de pares de bases. En algunas realizaciones del método descrito en el presente documento, las lecturas de la secuencia son de aproximadamente 20 pb, aproximadamente 25 pb, aproximadamente 30 pb, aproximadamente 35 pb, aproximadamente 40 pb, aproximadamente 45 pb, aproximadamente 50 pb, aproximadamente 60 aproximadamente 65 pb, aproximadamente 70 pb, aproximadamente 75 pb, aproximadamente 80 pb, aproximadamente 85 pb, aproximadamente 90 pb, aproximadamente 95 pb, aproximadamente 100 pb, aproximadamente 110 pb, aproximadamente 120 pb, aproximadamente 130, aproximadamente 140 pb, aproximadamente 150 pb, aproximadamente 250 pb, aproximadamente 300 pb, aproximadamente 350 pb, aproximadamente 400 pb, aproximadamente 450 pb o aproximadamente 500 pb. Se espera que los avances tecnológicos permitan lecturas de un solo extremo de más de 500 pb, permitiendo lecturas de más de aproximadamente 1.000 pb cuando se generan lecturas de extremos emparejados. En una realización, las lecturas de secuencia son 36 pb. Otros métodos de secuenciación que pueden emplearse por el método de la invención incluyen los métodos de secuenciación de una sola molécula que pueden secuenciar moléculas de ácidos nucleicos >5000 pb. La cantidad masiva de salida de secuencia se transfiere mediante una tubería de análisis que transforma la salida de imágenes primarias del secuenciador en cadenas de bases. Un paquete de algoritmos integrados realiza los pasos principales de la transformación de datos primarios: análisis de imágenes, puntuación de intensidad, llamada de base v alineación.

[0119] En una realización, se lleva a cabo la secuenciación parcial de fragmentos de ADN presentes en la muestra, y las etiquetas de secuencia que comprende lecturas de longitud predeterminadas, por ejemplo 36 pb, que mapa para un genoma de referencia conocida se cuentan. Solo las lecturas de secuencia que se alinean de forma única con el genoma de referencia se cuentan como etiquetas de secuencia. En una realización, el genoma de referencia es la secuencia del genoma de referencia humano NCBI36/hg18, que está disponible en la web en genome.ucsc.edu/cgi-bin/hgGateway?org=Human&db=hg18&hgsid=166260105). Otras fuentes de información de secuencias públicas incluyen GenBank, dbEST, dbSTS, EMBL (Laboratorio Europeo de Biología Molecular) y DDBJ (el Banco de Datos de ADN de Japón). En otra realización, el genoma de referencia comprende la secuencia de genoma de referencia humano NCBI36/hg18 y un genoma de secuencias diana artificial, que incluye secuencias diana polimórficas, por ejemplo, un genoma de SNP que comprende las SEQ ID NO: 1-56. En otra realización más, el genoma de referencia es un genoma de secuencia diana artificial que comprende secuencias diana polimórficas, por ejemplo, secuencias de SNP de SEQ ID NO: 1-56.

[0120] El mapeo de las etiquetas de secuencia se logra comparando la secuencia de la etiqueta con la secuencia del genoma de referencia para determinar el origen cromosómico de la molécula de ácido nucleico secuenciado (por ejemplo, ADNcf), y no se necesita información específica de la secuencia genética. Hay una serie de algoritmos informáticos disponibles para alinear secuencias, incluyendo, entre otros, BLAST (Altschul et al., 1990), BLITZ (MPsrch) (Sturrock y collins, 1993), FASTA (Person & Lipman, 1988), BOWTIE (Langmead) et al., Genome Biology 10: R25.1-R25,10 [2009]), o ELAND (Illumina, Inc., San Diego, CA, EE.UU.). En una realización, un extremo de las copias expandidas clonalmente de las moléculas de ADNcrc de plasma se secuencia y procesa mediante análisis de alineación bioinformática para el Analizador del Genoma de Illumina, que utiliza el software Efficient Large Scale Alignment of Nucleotide Databases (ELAND). El análisis de la información de secuenciación para la determinación de aneuploidía puede permitir que un pequeño grado de desajuste (0-2 desajustes por etiqueta de secuencia) tenga en cuenta los polimorfismos menores que pueden existir entre el genoma de referencia y los genomas en la muestra mixta. El análisis de la información de secuenciación para la determinación de la fracción fetal puede permitir un pequeño grado de desajuste en función de la secuencia polimórfica. Por ejemplo, se puede permitir un pequeño grado de desajuste si la secuencia polimórfica es un STR. En los casos en que la secuencia polimórfica es un SNP, todas las secuencias que coinciden exactamente con cualquiera de los dos alelos en el sitio de SNP se cuentan primero y se filtran de las lecturas restantes, por lo que se puede permitir un pequeño grado de falta de coincidencia.

Preparación de la biblioteca de secuenciación

5

10

15

20

25

30

35

40

45

50

55

60

65

[0121] Secuenciadores de ADN de próxima generación, como los 454-FLX (Roche; en la dirección web 454.com), SOLiDTM3 (Applied Biosystems; en la dirección web solid.appliedbiosystems.com), y el Genome Analyzer (Illumina; http://www.ilumina.com/pages.ilmn?ID=204) han transformado el panorama de la genética a través de su capacidad para producir cientos de megabases de información de secuencia en una sola ejecución.

[0122] Los métodos de secuenciación requieren la preparación de bibliotecas de secuenciación. La preparación de la biblioteca de secuenciación implica la producción de una colección aleatoria de fragmentos de ADN modificados por adaptadores, que están listos para ser secuenciados. Las bibliotecas de secuenciación de polinucleótidos pueden prepararse a partir de ADN o ARN, incluidos equivalentes, análogos de ADN o ADNc, que es complementario o copia de ADN producido a partir de una plantilla de ARN, por ejemplo, por la acción de la transcriptasa inversa. Los polinucleótidos pueden originarse en la forma de ADN de doble cadena (ADNds) (por ejemplo, fragmentos de ADN genómico, productos de PCR y amplificación) o polinucleótidos que pueden haberse originado en forma de cadena simple, como ADN o ARN, y se han convertido en la forma de ADN de doble cadena. A modo de ejemplo, las moléculas de ARNm pueden copiarse en ADNc de doble cadena adecuados para usar en la preparación de una biblioteca de secuenciación. La secuencia precisa de las moléculas de polinucleótido primarias generalmente no es material para el método de preparación de bibliotecas, y puede ser conocida o desconocida. En una realización, las moléculas de polinucleótido son moléculas de ADN. Más particularmente, las moléculas de polinucleótido representan el complemento genético completo de un organismo, y son moléculas de ADN genómico, por ejemplo, moléculas de ADNnc, que incluyen secuencias tanto de intrones como de exones (secuencia codificadora), así como secuencias reguladoras no codificantes, tales como secuencias promotoras y potenciadoras. Aún más particularmente, las moléculas de polinucleótido primarias son moléculas de ADN genómico humano, por ejemplo, moléculas de ADNcf presentes en la sangre periférica de un sujeto preñado. La preparación de bibliotecas de secuenciación para algunas plataformas de secuenciación NGS requiere que los polinucleótidos sean de un rango específico de tamaños de fragmentos, por ejemplo, 0-1200 pb. Por lo tanto, puede requerirse la fragmentación de polinucleótidos, por ejemplo, ADN genómico. ADNcf existe como fragmentos de <300 pares de bases. Por lo tanto, la fragmentación de ADNcf no es necesaria para generar una biblioteca de secuenciación utilizando muestras de ADNcf. Fragmentación de moléculas de polinucleótidos por medios mecánicos p. ej. nebulización, sonicación e hidrosial, da como resultado fragmentos con una mezcla heterogénea de extremos romos y extremos sobresalientes en 3' y 5'. Ya sea que los polinucleótidos estén fragmentados a la fuerza o existan naturalmente como fragmentos, se convierten en ADN de extremos romos que tienen 5-fosfatos y 3'-hidroxilo.

[0123] Típicamente, los extremos de los fragmentos se reparan al final, es decir, con extremos romos utilizando métodos o kits conocidos en la técnica. Los fragmentos de extremos romos se pueden fosforilar mediantetratamiento enzimático, por ejemplo, utilizando polinucleótido quinasa. En algunas realizaciones, se agrega un único desoxinucleótido, por ejemplo, desoxiadenosina (A) a los extremos 3' de los polinucleótidos, por ejemplo, por la actividad de ciertos tipos de ADN polimerasa, como la Taq polimerasa o Klenow exo menos polimerasa. Los productos con cola de dA son compatibles con el saliente "T" presente en el extremo 3' de cada región dúplex de adaptadores a los que se ligan en una etapa posterior. Cola de dA evita la auto-ligación de ambos polinucleótidos de extremos romos, de manera que existe un sesgo hacia la formación de las secuencias ligadas al adaptador. Los polinucleótidos con cola de dA se ligan a secuencias de polinucleótidos adaptadores de doble cadena. Se puede usar el mismo adaptador para ambos extremos del polinucleótido, o se pueden utilizar dos conjuntos de adaptadores. Los métodos de ligación son conocidos en la técnica y utilizan enzimas ligasa, como la ADN ligasa, para enlazar covalentemente el adaptador al polinucleótido de cola dA. El adaptador puede contener un resto 5'-fosfato para facilitar la ligadura al 3'-OH diana. El polinucleótido con cola de dA contiene un resto 5'-fosfato, ya sea residual del proceso de cizallamiento, o agregado mediante una etapa de tratamiento enzimático, y se ha reparado

al final, y opcionalmente se ha extendido por una base o bases sobresalientes, para dar una 3'-OH adecuada para la ligadura. Los productos de la reacción de ligadura se purifican para eliminar los adaptadores no ligados, adaptadores que pueden estar ligados entre sí, y para seleccionar un rango de tamaños de plantillas para la generación de agrupaciones, que puede ir precedida de una amplificación, por ejemplo, una amplificación por PCR. La purificación de los productos de ligadura se puede obtener mediante métodos que incluyen electroforesis en gel e inmovilización reversible en fase sólida (SPRI).

[0124] Los protocolos estándar, por ejemplo, los protocolos para la secuenciación usando, por ejemplo, la plataforma Illumina, instruir a los usuarios para purificar los productos de reparación de extremos antes de cola de dA, y para purificar los productos de cola de dA antes de las etapas de adaptador de ligadura de la preparación de la biblioteca. La purificación de los productos reparados en el extremo y los productos con cola de dA eliminan las enzimas, tampones, sales y similares para proporcionar condiciones de reacción favorables para la etapa enzimática posterior. En una forma de realización, las etapas de reparación de extremos, ligadura de dA y ligadura del adaptador excluyen las etapas de purificación. Por lo tanto, en una realización, el método de la invención abarca la preparación de una biblioteca de secuenciación que comprende los pasos consecutivos de reparación de extremo, cola de dA y ligadura de adaptador. En las formas de realización para preparar bibliotecas de secuenciación que no requieren la etapa de seguimiento dA, por ejemplo, los protocolos para la secuenciación utilizando las plataformas de Roche 454 y SOLIDTM3, las etapas de reparación de extremos y ligadura del adaptador excluyen la etapa de purificación de los productos reparados antes de la adaptación de la ligación de adaptador.

20

25

30

35

40

15

5

10

[0125] En un paso siguiente de una realización del método, se prepara una reacción de amplificación. La etapa de amplificación introduce en las moléculas de plantilla ligadas por el adaptador las secuencias de oligonucleótidos requeridas para la hibridación con la célula de flujo. Los contenidos de una reacción de amplificación son conocidos por un experto en la técnica e incluyen sustratos apropiados (Como los dNTP), enzimas (por ejemplo, una polimerasa ADN) y componentes de tampón necesarios para una reacción de amplificación. Opcionalmente, se puede omitir la amplificación de polinucleótidos ligados al adaptador. En general, las reacciones de amplificación requieren al menos dos cebadores de amplificación, es decir, oligonucleótidos de cebador, que pueden ser idénticos, e incluyen una "porción específica del adaptador", capaz de hibridar con una secuencia de unión a cebador en la molécula de polinucleótido que se amplificará (o su complemento si la plantilla se ve como una sola hebra) durante el paso de recocido. Una vez formados, la biblioteca de plantillas preparada de acuerdo con los métodos descritos anteriormente se puede usar para la amplificación de ácido nucleico en fase sólida. El término "amplificación en fase sólida", como se usa en el presente documento, se refiere a cualquier reacción de amplificación de ácido nucleico llevada a cabo en o en asociación con un soporte sólido, de manera tal que todos o una parte de los productos amplificados se inmovilicen en el soporte sólido a medida que se forman. En particular, el término abarca la reacción en cadena de la polimerasa en fase sólida (PCR en fase sólida) y la amplificación isotérmica en fase sólida, que son reacciones análogas a la amplificación en fase de solución estándar, excepto que uno o ambos de los cebadores de amplificación directa e inversa se inmovilizan en el soporte sólido. La PCR en fase sólida cubre sistemas como las emulsiones, en donde un cebador se ancla a una perla y el otro se encuentra en solución libre, y la formación de colonias en matrices de gel de fase sólida donde un cebador se ancla a la superficie y el otro se encuentra en solución libre. Después de la amplificación, y las bibliotecas de secuenciación se pueden analizar mediante electroforesis capilar microfluídica para garantizar que la biblioteca esté libre de dímeros adaptadores o ADN de cadena sencilla. La biblioteca de moléculas de polinucleótido de plantilla es particularmente adecuada para uso en métodos de secuenciación en fase sólida. Además de proporcionar plantillas para la secuenciación en fase sólida y la PCR en fase sólida, las plantillas de biblioteca proporcionan plantillas para la amplificación del genoma completo.

45

50

55

[0126] En una realización, la biblioteca de polinucleótidos ligados al adaptador se somete a secuenciación masiva en paralelo, que incluye técnicas para la secuenciación de millones de fragmentos de ácidos nucleicos, por ejemplo, el uso de la unión de ADN genómico fragmentado aleatoriamente a una superficie plana, ópticamente transparente y amplificación de fase sólida para crear una célula de flujo de secuenciación de alta densidad con millones de agrupaciones. Los arreglos agrupados se pueden preparar usando un proceso de termociclado, como se describe en la patente WO9844151, o un proceso por el cual la temperatura se mantiene constante, y los ciclos de extensión y desnaturalización se realizan usando cambios de reactivos. El método de Solexa/Illumina al que se hace referencia aquí se basa en la unión de ADN genómico fragmentado aleatoriamente a una superficie plana, ópticamente transparente. Los fragmentos de ADN adjuntos se extienden y se amplifican en puente para crear una célula de flujo de secuenciación de densidad ultraalta con millones de agrupaciones que contienen miles de copias de la misma plantilla (WO 00/18957 y WO 98/44151). Las plantillas de grupos se secuencian utilizando una robusta tecnología de secuenciación por síntesis de ADN de cuatro colores que emplea terminadores reversibles con tintes fluorescentes removibles. Alternativamente, la biblioteca puede amplificarse en perlas en las que cada perla contiene un cebador de amplificación directa e inversa.

60

65

[0127] La secuenciación de las bibliotecas amplificadas se puede llevar a cabo usando cualquier técnica de secuenciación adecuada como se describe en el presente documento. En una realización, la secuenciación es una secuenciación masivamente paralela que usa secuenciación por síntesis con terminadores de tinte reversibles. En otras realizaciones, la secuenciación es una secuenciación masivamente paralela utilizando la secuenciación por ligación. En otras realizaciones, la secuenciación es la secuenciación de una sola molécula.

Determinación de la aneuploidía

5

10

15

20

25

30

35

40

45

50

55

60

65

[0128] La precisión requerida para determinar correctamente si una aneuploidía está presente o ausente en una muestra, se basa en parte en la variación del número de etiquetas de secuencia que se mapean en el genoma de referencia entre las muestras dentro de una secuenciación (variabilidad inter-cromosómica), y la variación del número de etiquetas de secuencia que se asignan al genoma de referencia en diferentes ejecuciones de secuenciación (variabilidad entre secuencias). Por ejemplo, las variaciones pueden ser particularmente pronunciadas para las etiquetas que se asignan a secuencias de referencia ricas en GC o pobres en GC. En una realización, el método utiliza la información de secuenciación para calcular la dosis de cromosoma, lo que explica de manera intrínseca la variabilidad acumulada derivada de la variabilidad inter-cromosómica, inter-secuenciación y dependiente de la plataforma. Las dosis de cromosomas se determinan a partir de la información de secuenciación, es decir, el número de etiquetas de secuencia, para la secuencia de interés, por ejemplo, el cromosoma 21, y el número de etiquetas de secuencia para una secuencia de normalización. La identificación de una secuencia de normalización se realiza en un conjunto de muestras calificadas que se sabe que no contienen una aneuploidía de la secuencia de interés. El diagrama de flujo proporcionado en la Figura 1 muestra una realización del método 100 mediante el cual se identifican secuencias normalizantes, por ejemplo, cromosomas normalizadores, y se determina la presencia o ausencia de una aneuploidía.

[0129] En el paso 110, se obtiene un conjunto de muestras maternas calificadas para identificar secuencias de normalización cualificadas, por ejemplo, cromosomas de normalización, y para proporcionar valores de varianza para el uso en la determinación de la identificación estadísticamente significativa de una aneuploidía en muestras de ensayo. En la etapa 110, una pluralidad de muestras biológicas calificadas se obtienen de una pluralidad de sujetos que se sabe que comprenden células que tienen un número de copias normal para cualquier secuencia de interés, por ejemplo, un cromosoma de interés tal como un cromosoma asociado con una aneuploidía. En una realización, las muestras calificadas se obtienen de madres embarazadas con un feto que se ha confirmado usando medios citogenéticos para tener un número normal de copias de cromosomas en relación con el cromosoma de interés. Las muestras maternas biológicas calificadas pueden ser muestras de fluidos biológicos, por ejemplo, muestras de plasma, o cualquier muestra adecuada como se describe anteriormente que contenga una mezcla de moléculas de ADNfc fetal y maternal. La muestra es una muestra materna que se obtiene de una mujer embarazada, por ejemplo, una mujer embarazada. Cualquier muestra biológica materna se puede usar como una fuente de ácidos nucleicos fetales y maternos que están contenidos en las células o que están "libres de células". En algunas realizaciones, es ventajoso obtener una muestra materna que comprenda ácidos nucleicos libres de células, por ejemplo, ADNcf. Preferiblemente, la muestra biológica materna es una muestra de fluido biológico. Un fluido biológico incluye, como ejemplos no limitativos, sangre, plasma, suero, sudor, lágrimas, esputo, orina, esputo, flujo de oído, linfa, saliva, líquido cefalorraquídeo, estragos, suspensión de médula ósea, flujo vaginal, lavado transcervical, líquido cerebral, ascitis, leche, secreciones de vías respiratorias, intestinales y genitourinarias, muestras de líquido amniótico y leucoforesis. En algunas realizaciones, la muestra de fluido biológico es una muestra que se puede obtener fácilmente mediante procedimientos no invasivos, por ejemplo, sangre, plasma, suero, sudor, lágrimas, esputo, orina, esputo, flujo del oído y saliva. En algunas realizaciones, la muestra biológica es una muestra de sangre periférica, o el plasma y/o sus fracciones de suero. En otra realización, la muestra es una mezcla de dos o más muestras biológicas, por ejemplo, una muestra biológica puede comprender dos o más muestras de un fluido biológico. Tal como se usa en el presente documento, los términos "sangre", "plasma" y "suero" abarcan expresamente las fracciones o partes procesadas de los mismos. En algunas realizaciones, la muestra biológica se procesa para obtener una fracción de muestra, por ejemplo, plasma, que contiene la mezcla de ácidos nucleicos maternos y fetales. En algunas realizaciones, la mezcla de ácidos nucleicos maternos y fetales se procesa adicionalmente a partir de la fracción de muestra, por ejemplo, plasma, para obtener una muestra que comprende una mezcla purificada de ácidos nucleicos maternos y fetales, por ejemplo, ADNcf. Los ácidos nucleicos libres de células, incluido el ADN libre de células, pueden obtenerse mediante diversos métodos conocidos en la técnica a partir de muestras biológicas que incluyen, entre otras, plasma, suero y orina (Fan et al., Proc Natl Acad Sci 105: 16266-16271). [2008]; Koide et al., Prenatal Diagnosis 25: 604-607 [2005]; Chen et al., Nature Med. 2:1033-1035 [1996]; Lo et al., Lancet 350: 485-487 [1997). Para separar el ADNfc de las células, fraccionamiento, centrifugación (p. ej., Centrifugación en gradiente de densidad), precipitación específica de ADN o clasificación de células y/o métodos de separación de células de alto rendimiento pueden ser utilizados. Los kits disponibles comercialmente para la separación manual y automática de ADNcf están disponibles (Roche Diagnostics, Indianapolis, IN, Qiagen, Valencia, CA, Macherey-Nagel, Duren, DE). En algunos casos, puede ser ventajoso fragmentar las moléculas de ácido nucleico en la muestra de ácido nucleico. La fragmentación puede ser aleatoria o específica, como se logra, por ejemplo, mediante la digestión con endonucleasas de restricción. Los métodos para la fragmentación aleatoria son bien conocidos en la técnica e incluyen, por ejemplo, la digestión con DNAsa limitada, el tratamiento con álcali y la cizalladura física. En una realización, los ácidos nucleicos de la muestra se obtienen a partir de ADNcf, que no está sujeto a fragmentación. En otras realizaciones, los ácidos nucleicos de la muestra se obtienen como ADN genómico, que se somete a fragmentación en fragmentos de aproximadamente 500 o más pares de bases, y a los cuales se pueden aplicar fácilmente los métodos de NGS. Se prepara una biblioteca de secuenciación a partir de ADN naturalmente fragmentado o fragmentado por la fuerza. En una realización, la preparación de la biblioteca de secuenciación comprende los pasos consecutivos de la reparación del extremo, la cola de dA y el ligamiento con adaptador de los fragmentos de ADN. En otra realización, la preparación de la biblioteca de secuenciación comprende los pasos consecutivos de la reparación final y la ligadura adaptadora de los fragmentos de ADN.

[0130] En el paso 120, al menos una porción de cada uno de todos los ácidos nucleicos calificados contenidos en las muestras maternas calificadas están secuenciados. Antes de la secuenciación, la mezcla de ácidos nucleicos fetales y maternos, por ejemplo, ADNcf purificado, se modifica para preparar una biblioteca de secuenciación para generar lecturas de secuencia de entre 20 y 40 pb, por ejemplo, 36 pb, que están alineadas con un genoma de referencia, por ejemplo, hg18. En algunas realizaciones, las lecturas de secuencias comprenden aproximadamente 20 pb, aproximadamente 25 pb, aproximadamente 30 pb, aproximadamente 35 pb, aproximadamente 40 pb, aproximadamente 45 pb, aproximadamente 50 pb, aproximadamente 55 pb, aproximadamente 65 pb, aproximadamente 70 pb, aproximadamente 75 pb, aproximadamente 80 pb, aproximadamente 85 pb, aproximadamente 70 pb, aproximadamente 75 pb, aproximadamente 100 pb, aproximadamente 110 pb, aproximadamente 120 pb, aproximadamente 130, aproximadamente 140 pb, aproximadamente 150 pb, aproximadamente 200 pb, aproximadamente 250 pb, aproximadamente 350 pb, aproximadam aproximadamente 400 pb, aproximadamente 450 pb, aproximadamente 500 pb. Se espera que los avances tecnológicos permitan lecturas de un solo extremo de más de 500 pb, permitiendo lecturas de más de aproximadamente 1.000 pb cuando se generan lecturas de extremos emparejados. En una realización, las lecturas de secuencia comprenden 36 pb. Las lecturas de secuencia se alinean con un genoma de referencia humano, y las lecturas que se asignan de forma única al genoma de referencia humano se cuentan como etiquetas de secuencia. En una realización, al menos aproximadamente 3×10^6 etiquetas de secuencia calificadas, al menos aproximadamente 5×10^6 etiquetas de secuencia calificadas, al menos aproximadamente 8×10^6 etiquetas de secuencia calificadas, al menos aproximadamente 10 x 106 etiquetas de secuencia calificadas, al menos aproximadamente 15 x 106 etiquetas de secuencia calificadas, al menos aproximadamente 20 x 106 etiquetas de secuencia calificadas, al menos aproximadamente 30 x 106 etiquetas de secuencia calificadas, al menos aproximadamente 40 x 106 etiquetas de secuencia calificadas, o al menos aproximadamente 50 x 106 las etiquetas de secuencia calificada que comprenden entre 20 y 40 pb de lectura se obtienen de lecturas que se asignan de forma única a un genoma de referencia.

10

15

20

25

30

35

40

45

50

65

[0131] En el paso 130, todas las etiquetas obtenidas a partir de la secuenciación de los ácidos nucleicos en las muestras maternas calificados se cuentan para determinar una densidad de etiqueta de secuencia calificada. En una realización, la densidad de la etiqueta de secuencia se determina como el número de etiquetas de secuencia calificadas asignadas a la secuencia de interés en el genoma de referencia. En otra realización, la densidad de etiquetas de secuencia calificada se determina como el número de etiquetas de secuencia calificadas asignadas a una secuencia de interés normalizada a la longitud de la secuencia de interés calificada a la que se asignan. Las densidades de etiqueta de secuencia que se determinan como una relación de la densidad de etiqueta con respecto a la longitud de la secuencia de interés se denominan en este documento relaciones de densidad de etiqueta. No se requiere la normalización de la longitud de la secuencia de interés, y puede incluirse como un paso para reducir el número de dígitos en un número para simplificarlo para la interpretación humana. Ya que todas las etiquetas de secuencia calificadas se mapean y se cuentan en cada una de las muestras calificadas, se determina la densidad de la etiqueta de secuencia para una secuencia de interés, por ejemplo, el cromosoma de interés, en las muestras calificadas, así como las densidades de la etiqueta de secuencia para secuencias adicionales a partir de las cuales secuencias normalizadas p. ej. cromosomas, se identifican posteriormente. En una realización, la secuencia de interés es un cromosoma que está asociado con una aneuploidía cromosómica, por ejemplo, el cromosoma 21, y la secuencia de normalización calificada es un cromosoma que no está asociado con una aneuploidía cromosómica y cuya variación en la densidad de la etiqueta de la secuencia se aproxima mejor que del cromosoma 21. Por ejemplo, una secuencia de normalización calificada es una secuencia que tiene la variabilidad más pequeña. En algunas realizaciones, la secuencia de normalización es una secuencia que distingue mejor una o más muestras calificadas de una o más muestras afectadas, es decir, la secuencia de normalización es una secuencia que tiene la mayor diferenciabilidad. El nivel de diferenciabilidad se puede determinar como una diferencia estadística entre las dosis de cromosomas en una población de muestras calificadas y las dosis de cromosomas en una o más muestras de prueba. En otra realización, la secuencia de interés es un segmento de un cromosoma asociado con una aneuploidía parcial, por ejemplo, una deleción o inserción cromosómica, o una translocación cromosómica deseguilibrada, y la secuencia normalizada es un segmento cromosómico que no está asociado con la aneuploidía parcial y cuya variación en la densidad de la etiqueta de secuencia se aproxima mejor a la del segmento cromosómico asociado con la aneuploidía parcial.

[0132] En el paso 140, en base a las densidades de etiquetas calificadas calculadas, una dosis de secuencia calificada para una secuencia de interés se determina como la relación de la densidad de etiqueta de secuencia para la secuencia de interés y la densidad de etiqueta de secuencia calificada para secuencias adicionales de las cuales se identifican posteriormente las secuencias normalizadoras. En una realización, las dosis para el cromosoma de interés, por ejemplo, el cromosoma 21, se determinan como una proporción de la densidad de la etiqueta de secuencia del cromosoma 21 y la densidad de la etiqueta de secuencia para cada uno de los cromosomas restantes, es decir, los cromosomas 1-20, cromosoma 22, cromosoma X y cromosoma Y (véase Ejemplos 3-5 y Figuras 9-15).

[0133] En el paso 145, una secuencia de normalización, por ejemplo, un cromosoma de normalización, se identifica por una secuencia de interés, por ejemplo el cromosoma 21, en una muestra calificada en base a las dosis de secuencia calculadas. El método identifica secuencias que inherentemente tienen características similares y que son propensas a variaciones similares entre las muestras y las ejecuciones de secuenciación, y que son útiles para

determinar las dosis de secuencia en muestras de prueba. En algunas realizaciones, la secuencia de normalización es la que mejor diferencia una muestra afectada, es decir, una muestra aneuploide, de una o más muestras calificadas. En otras realizaciones, una secuencia de normalización es una secuencia que muestra una variabilidad en el número de etiquetas de secuencia que se asignan a ella entre muestras y ejecuciones de secuenciación que se aproximan mejor a la secuencia de interés para la cual se utiliza como parámetro de normalización, y/o que puede diferenciar mejor una muestra afectada de una o más muestras no afectadas.

[0134] En algunas realizaciones, se identifica más de una secuencia de normalización. Por ejemplo, la variación, por ejemplo, el coeficiente de variación en la dosis de cromosoma para el cromosoma de interés 21 es mínimo cuando se utiliza la densidad de la etiqueta de secuencia del cromosoma 14. En otras realizaciones, se identifican dos, tres, cuatro, cinco, seis, siete, ocho o más secuencias de normalización para uso en la determinación de una dosis de secuencia para una secuencia de interés en una muestra de prueba.

[0135] En una realización, la secuencia de normalización para el cromosoma 21 se selecciona a partir del cromosoma 9, cromosoma 1, cromosoma 2, cromosoma 3, cromosoma 4, cromosoma 5, cromosoma 6, cromosoma 7, cromosoma 10, cromosoma 11, cromosoma 12, cromosoma 13, cromosoma 14, cromosoma 15, cromosoma 16 y cromosoma 17. Preferiblemente, la secuencia de normalización para el cromosoma 21 se selecciona del cromosoma 9, cromosoma 1, cromosoma 2, cromosoma 11, cromosoma 12 y cromosoma 14. Alternativamente, la secuencia de normalización para el cromosoma 21 es un grupo de cromosomas seleccionados del cromosoma 9, cromosoma 1, cromosoma 2, cromosoma 3, cromosoma 4, cromosoma 5, cromosoma 6, cromosoma 7, cromosoma 8, cromosoma 10, cromosoma 11, cromosoma 12, cromosoma 13, cromosoma 14, cromosoma 15, cromosoma 16 y cromosoma 17. En otras realizaciones, la secuencia de normalización para el cromosoma 21 es un grupo de cromosomas seleccionados del cromosoma 9, cromosoma 1, cromosoma 2, cromosoma 11, cromosoma 12 y cromosoma 12 y cromosoma 14.

[0136] En una realización, la secuencia de normalización para el cromosoma 18 se selecciona cromosoma 8, cromosoma 2, cromosoma 3, cromosoma 4, cromosoma 5, cromosoma 6, cromosoma 7, cromosoma 9, cromosoma 10, cromosoma 11, cromosoma 12, cromosoma 12 y el cromosoma 14. Preferiblemente, la secuencia de normalización para el cromosoma 18 es cromosoma 8, el cromosoma 2, el cromosoma 3, el cromosoma 5, el cromosoma 6, el cromosoma 12 y el cromosoma 14 seleccionados. Alternativamente, la secuencia de normalización para el cromosoma 18 es un grupo de los cromosomas seleccionados del cromosoma 8, cromosoma 2, cromosoma 3, cromosoma 4, cromosoma 5, cromosoma 6, cromosoma 7, cromosoma 9, cromosoma 10, cromosoma 11, cromosoma 12, cromosoma 13 y cromosoma 14. En otras realizaciones, la secuencia de normalización para el cromosoma 18 es un grupo de cromosomas seleccionados del cromosoma 8, cromosoma 2, cromosoma 3, cromosoma 5, cromosoma 6, cromosoma 12, y el cromosoma 14.

[0137] En una realización, la secuencia de normalización para el cromosoma X se selecciona entre el cromosoma 1, el cromosoma 2, el cromosoma 3, el cromosoma 4, el cromosoma 4, el cromosoma 7, el cromosoma 8, el cromosoma 16. Preferiblemente, la secuencia de normalización para el cromosoma X se selecciona entre el cromosoma 2, el cromosoma 3, el cromosoma 4, el cromosoma 5, el cromosoma 6 y el cromosoma 8. Alternativamente, la secuencia de normalización para el cromosoma X es un grupo de los cromosomas seleccionados del cromosoma 1, cromosoma 2, cromosoma 3, cromosoma 4, cromosoma 4, cromosoma 5, cromosoma 5, cromosoma 6, cromosoma 7, cromosoma 8, cromosoma 9, cromosoma 10, cromosoma 11, cromosoma 12, cromosoma 13, cromosoma 14, cromosoma 15, y cromosoma 16. En otras realizaciones, la secuencia de normalización para el cromosoma X es un grupo de cromosomas seleccionados entre el cromosoma 2, el cromosoma 3, el cromosoma 4, el cromosoma 5, el cromosoma 6 y el cromosoma 8.

[0138] En una realización, la secuencia de normalización para el cromosoma 13 es un cromosoma seleccionado del cromosoma 2, cromosoma 3, cromosoma 4, cromosoma 5, cromosoma 6, cromosoma 7, cromosoma 8, cromosoma 9, cromosoma 10, cromosoma 11, cromosoma 12, cromosoma 14, cromosoma 18 y cromosoma 21. Preferiblemente, la secuencia de normalización para el cromosoma 13 se selecciona de entre el cromosoma 2, cromosoma 3, cromosoma 4, cromosoma 5, cromosoma 6 y cromosoma 8. En otra realización, la secuencia normalizadora para el cromosoma 13 es un grupo de cromosoma seleccionados del cromosoma 2, cromosoma 3, cromosoma 4, cromosoma 6, cromosoma 7, cromosoma 8, cromosoma 9, cromosoma 10, cromosoma 11, cromosoma 12, cromosoma 14, cromosoma 18, y cromosoma 21. En otras realizaciones, la secuencia de normalización para el cromosoma 13 es un grupo de cromosomas seleccionados entre el cromosoma 2, el cromosoma 3, el cromosoma 4, el cromosoma 5, el cromosoma 6 y el cromosoma 8.

[0139] La variación en la dosis de cromosoma para el cromosoma Y es mayor que 30 independientemente de que se utiliza el cromosoma normalizador en la determinación de la dosis de cromosoma Y. Por lo tanto, cualquier cromosoma, o un grupo de dos o más cromosomas seleccionados de los cromosomas 1-22 y el cromosoma X se pueden usar como la secuencia de normalización para el cromosoma Y. En una realización, el al menos un cromosoma de normalización es un grupo de cromosomas que consiste en los cromosomas 1-22 y el cromosoma X. En otra realización, el al menos un cromosoma normalizador es un grupo de cromosomas seleccionados entre el cromosoma 2, el cromosoma 3, el cromosoma 4, el cromosoma 5 y el cromosoma 6.

[0140] Basado en la identificación de la(s) secuencia(es) de normalización en muestras calificadas, una dosis de secuencia se determina para una secuencia de interés en una muestra de prueba que comprende una mezcla de ácidos nucleicos derivados de genomas que difieren en una o más secuencias de interés.

5

25

30

35

40

45

50

55

60

65

[0141] En el paso **115,** una muestra de ensayo por ejemplo, muestra de plasma, que comprende ácidos nucleicos fetales y maternos por ejemplo ADNcf, se obtiene de un sujeto embarazado por ejemplo, una mujer embarazada, para la que debe determinarse la presencia o ausencia de una aneuploidía fetal.

[0142] Una biblioteca de secuenciación se preparó como se describe para el paso 120, y en el paso 125, al menos una porción de los ácidos nucleicos de prueba en la muestra de ensayo se secuencia para generar millones de lecturas de secuencia que comprende entre 20 y 500 pb por ejemplo de 36 pb. como en el paso 120, las lecturas generadas a partir de la secuenciación de los ácidos nucleicos en la muestra de prueba se mapean de forma única a un genoma de referencia humano y se cuentan. Como se describe en el paso 120, al menos aproximadamente 3 x 10⁶ etiquetas de secuencia calificadas, al menos aproximadamente 5 x 10⁶ etiquetas de secuencia calificadas, al menos aproximadamente 10 x 10⁶ etiquetas de secuencia calificadas, al menos aproximadamente 20 x 10⁶ etiquetas de secuencia calificadas, al menos aproximadamente 30 x 10⁶ etiquetas de secuencia calificadas, al menos aproximadamente 30 x 10⁶ etiquetas de secuencia calificadas, o al menos aproximadamente 50 x 10⁶ etiquetas de secuencia calificadas que comprenden entre 20 y 40 lecturas de pb se obtienen de lecturas que se asignan de forma única al genoma de referencia humano.

[0143] En el paso 135, todas las etiquetas obtenidas a partir de la secuenciación de los ácidos nucleicos en las muestras de ensayo se cuentan para determinar una densidad de etiqueta de secuencia de prueba. En una realización, el número de etiquetas de secuencia de prueba mapeadas a una secuencia de interés se normaliza a la longitud conocida de una secuencia de interés a la que se mapean para proporcionar una densidad de etiqueta de secuencia de prueba. Como se describe para las muestras calificadas, no se requiere la normalización a la longitud conocida de una secuencia de interés, y puede incluirse como un paso para reducir el número de dígitos en un número para simplificarlo para la interpretación humana. Ya que todas las etiquetas de secuencia de prueba mapeadas se cuentan en la muestra de prueba, se determina la densidad de etiqueta de secuencia para una secuencia de interés, por ejemplo, una secuencia clínicamente relevante, como el cromosoma 21, en las muestras de prueba, al igual que las densidades de etiqueta de secuencia para secuencias adicionales que corresponden a al menos una secuencia de normalización identificada en las muestras calificadas.

[0144] En el paso 150, basándose en la identidad de al menos una secuencia de normalización en las muestras calificadas, una dosis de secuencia de prueba se determina para una secuencia de interés en la muestra de ensayo. La dosis de secuencia, por ejemplo, la dosis de cromosoma, para una secuencia de interés en una muestra de prueba es una relación de la densidad de la etiqueta de secuencia determinada para la secuencia de interés en la muestra de prueba y la densidad de la etiqueta de secuencia de al menos una secuencia de normalización determinada en la muestra de prueba, en donde la secuencia de normalización en la muestra de prueba corresponde a la secuencia de normalización identificada en las muestras calificadas para la secuencia particular de interés. Por ejemplo, si se determina que la secuencia de normalización identificada para el cromosoma 21 en las muestras calificadas es el cromosoma 14, entonces la dosis de secuencia de prueba para el cromosoma 21 (secuencia de interés) se determina como la relación de la densidad de la etiqueta de secuencia para el cromosoma 21 y la densidad de la etiqueta de secuencia para el cromosoma 14 se determinó en la muestra de prueba. De manera similar, se determinan las dosis de cromosomas para los cromosomas 13, 18, X, Y y otros cromosomas asociados con aneuploidías cromosómicas. como se describió anteriormente, una secuencia de interés puede ser parte de un cromosoma, por ejemplo, un segmento de cromosoma. Por consiguiente, la dosis para un segmento cromosómico se puede determinar como la proporción de la densidad de la etiqueta de secuencia determinada para I segmento en la muestra de prueba y la densidad de la etiqueta de secuencia para el segmento de cromosoma normalizado en la muestra de prueba, en donde el segmento de normalización en la muestra de prueba corresponde al segmento de normalización identificado en las muestras calificadas para el segmento de interés particular.

[0145] En el paso 155, los valores de umbral son derivados de valores de desviación estándar establecidos para una pluralidad de dosis de secuencia calificadas. La clasificación precisa depende de las diferencias entre las distribuciones de probabilidad para las diferentes clases, es decir, el tipo de aneuploidía. Preferiblemente, los umbrales se eligen de la distribución empírica para cada tipo de aneuploidía, por ejemplo, trisomía 21. Los posibles valores de umbral que se establecieron para clasificar la trisomía 13, la trisomía 18, la trisomía 21 y las aneuploidías de monosomía X como se describe en los Ejemplos, que describen el uso de método para determinar las aneuploidías cromosómicas mediante la secuenciación del ADNfc extraído de una muestra materna que comprende una mezcla de ácidos nucleicos fetales y maternos.

[0146] En el paso 160, la variación del número de copias de la secuencia de interés por ejemplo, aneuploidía cromosómica o parcial, se determina en la muestra de ensayo mediante la comparación de la dosis de secuencia de prueba para la secuencia de interés a al menos un valor umbral establecido a partir de la secuencia cualificado dosis.

[0147] En el paso 160, la dosis calculada para una secuencia de prueba de interés se compara con el conjunto como los valores de umbral que se eligen de acuerdo con un umbral definido por el usuario de fiabilidad para clasificar la muestra como "normal", "afectada" o "no llamada" en el paso 165. Las muestras "sin llamada" son muestras para las que no se puede hacer un diagnóstico definitivo con fiabilidad.

[0148] Otra realización descrita en el presente documento es un método para proporcionar el diagnóstico prenatal de una aneuploidía cromosómica fetal en una muestra biológica que comprende moléculas de ácido nucleico fetal y materno. El diagnóstico se realiza sobre la base de recibir los datos de la secuenciación de al menos una parte de la mezcla de las moléculas de ácido nucleico materno y fetal derivadas de una muestra de prueba biológica, por ejemplo, una muestra de plasma materno, computando a partir de los datos de secuenciación una dosis de cromosoma normalizante para uno o más cromosomas de interés, determinando una diferencia estadísticamente significativa entre la dosis de cromosoma normalizante para el cromosoma de interés en la muestra de prueba y un valor umbral establecido en una pluralidad de muestras calificadas (normales), y proporcionando el diagnóstico prenatal basado en la diferencia estadística. como se describe en el paso 165 del método, se realiza un diagnóstico de normal o afectado. Se proporciona una "no llamada" en caso de que el diagnóstico de normal o afectado no se pueda realizar con confianza.

Determinación de la NVC para diagnósticos prenatales.

5

10

15

20

25

30

35

40

45

50

55

60

65

[0149] El ADN fetal libre de células y el ARN que circula en la sangre materna se pueden usar para el diagnóstico prenatal no invasivo temprano (NIPD) de un número creciente de afecciones genéticas, tanto para el manejo del embarazo como para ayudar a la toma de decisiones reproductivas. La presencia de ADN libre de células que circula en el torrente sanguíneo se conoce desde hace más de 50 años. Más recientemente, se descubrió la presencia de pequeñas cantidades de ADN fetal circulante en el torrente sanguíneo materno durante el embarazo (Lo et al., Lancet 350: 485-487 [1997]). Se cree que se origina a partir de células placentarias moribundas, el ADN fetal libre de células (ADNcf) consiste en fragmentos cortos que suelen tener menos de 200 pb de longitud (Chan et al., Clin Chem 50: 88-92 [2004]), que pueden ser discernidos desde las 4 semanas de gestación (Illanes et al., Early Human Dev 83: 563-566 [2007]), y se sabe que se eliminó de la circulación materna a las pocas horas de la administración (Lo et al., Am J Hum Genet 64: 218-224 [1999]). Además de ADNcf, los fragmentos de RNA fetal libre de células (ARNcf) también pueden discernirse en el torrente sanguíneo materno, que se originan a partir de genes que se transcriben en el feto o la placenta. La extracción y el posterior análisis de estos elementos genéticos fetales a partir de una muestra de sangre materna ofrece nuevas oportunidades para la NIPD.

[0150] El presente método es un método independiente de polimorfismo que para su uso en NIPD y que no requiere que el ADNcf fetal se distinga de la ADNcf materna para permitir la determinación de una aneuploidía fetal. En algunas realizaciones. la aneuploidía es una trisomía o monosomía cromosómica completa, o una trisomía o monosomía parcial. Las aneuploidías parciales son causadas por la pérdida o ganancia de parte de un cromosoma, y abarcan desequilibrios cromosómicos resultantes de translocaciones desequilibradas, inversiones desequilibradas, deleciones e inserciones. Por el momento, la aneuploidía conocida más común compatible con la vida es la trisomía 21, es decir, el síndrome de Down (SD), que se debe a la presencia de una parte o la totalidad del cromosoma 21. En raras ocasiones, la SD puede ser causada por un defecto hereditario o esporádico, por el cual se presenta un defecto adicional. Una copia de todo o parte del cromosoma 21 se une a otro cromosoma (generalmente el cromosoma 14) para formar un solo cromosoma aberrante. La SD se asocia con deterioro intelectual, graves dificultades de aprendizaje y el exceso de mortalidad causado por problemas de salud a largo plazo, como las enfermedades del corazón. Otras aneuploidías con importancia clínica conocida incluven el síndrome de Edward (trisomía 18) y el síndrome de Patau (trisomía 13), que con frecuencia son fatales en los primeros meses de vida. Las anomalías asociadas con la cantidad de cromosomas sexuales también son conocidas e incluyen monosomía X, por ejemplo, síndrome de Turner (XO) y síndrome de triple X (XXX) en partos femeninos y síndrome de Kleinefelter (XXY) y síndrome de XYY en partos masculinos, todos los cuales están asociados con diversos fenotipos incluyendo la esterilidad y la reducción de las habilidades intelectuales. El método de la divulgación se puede utilizar para diagnosticar estas y otras anomalías cromosómicas antes del nacimiento.

[0151] Según las realizaciones de la presente divulgación, la trisomía se selecciona de trisomía 21 (T21; Síndrome de Down), trisomía 18 (T18; Síndrome de Edward), trisomía 16 (T16), trisomía 22 (T22; Síndrome de ojo de gato), trisomía 15 (T15; Síndrome de Prader Willi), trisomía 13 (T13; Síndrome de Patau), trisomía 8 (T8; Síndrome de Warkany) y XXY (Síndrome de Kleinefelter), XYY o XXX trisomías. Se apreciará que varias otras trisomías y trisomías parciales se pueden determinar en ADNcf fetal de acuerdo con las enseñanzas de la presente invención. Estos incluyen, pero no se limitan a, trisomía parcial 1q32-44, trisomía 9 p con trisomía, mosaicismo de trisomía 4, trisomía 17p, trisomía parcial 4q26-qter, trisomía 9, trisomía parcial 2p, trisomía parcial 1q y/o trisomía parcial 6p/monosomia 6q.

[0152] El método de la presente descripción también se pueden utilizar para determinar monosomía X cromosómica, y monosomías parciales tales como, monosomía 13, monosomía 15, monosomía 16, monosomía 21, y monosomía 22, que son conocidas por estar involucradas en aborto involuntario. La monosomía parcial de los cromosomas que participan típicamente en la aneuploidía completa también se puede determinar por el método de la invención. La

monosomía 18p es un trastorno cromosómico raro en el que se elimina todo (o parte) del brazo corto (p) del cromosoma 18 (monosómico). El trastorno se caracteriza típicamente por estatura baja, grados variables de retraso mental, retrasos en el habla, malformaciones del cráneo y la región facial (craneofacial) y/o anomalías físicas adicionales. Los defectos craneofaciales asociados pueden variar mucho en rango y severidad de un caso a otro. Las afecciones causadas por los cambios en la estructura o el número de copias del cromosoma 15 incluyen el síndrome de Angelman y el síndrome de Prader-Willi, que implican una pérdida de la actividad genética en la misma parte del cromosoma 15, la región 15q11-q13. Se apreciará que varias translocaciones y microdeleciones pueden ser asintomáticas en el progenitor portador, pero pueden causar una enfermedad genética importante en la descendencia. Por ejemplo, una madre sana que lleva la microdeleción 15q11-q13 puede dar a luz a un niño con síndrome de Angelman, un trastorno neurodegenerativo grave. Por lo tanto, la presente invención se puede usar para identificar tal supresión en el feto. La monosomía parcial 13g es un trastorno cromosómico raro que se produce cuando falta una parte del brazo largo (g) del cromosoma 13 (monosómico). Los bebés que nacen con monosomía parcial 13q pueden presentar bajo peso al nacer, malformaciones de la cabeza y la cara (región craneofacial), anomalías esqueléticas (especialmente de las manos y los pies) y otras anomalías físicas. El retraso mental es característico de esta condición. La tasa de mortalidad durante la infancia es alta entre las personas nacidas con este trastorno. Casi todos los casos de monosomía parcial 13q ocurren al azar sin ninguna razón aparente (esporádica). El síndrome de deleción 22q11,2, también conocido como síndrome de DiGeorge, es un síndrome causado por la eliminación de una pequeña pieza del cromosoma 22. La eliminación (22 g11.2) ocurre cerca de la mitad del cromosoma en el brazo largo de uno de los par de cromosomas. Las características de este síndrome varían ampliamente, incluso entre los miembros de la misma familia, y afectan a muchas partes del cuerpo. Los signos y síntomas característicos pueden incluir defectos de nacimiento, como cardiopatía congénita, defectos en el paladar, más comúnmente relacionados con problemas neuromusculares con el cierre (insuficiencia velo-faríngea), problemas de aprendizaje, diferencias leves en la características faciales, e infecciones recurrentes. Las microdeleciones en la región cromosómica 22q11,2 se asocian con un riesgo 20 a 30 veces mayor de esquizofrenia. En una realización, el método de la invención se usa para determinar monosomías parciales que incluyen pero no se limitan a monosomía 18p, monosomía parcial del cromosoma 15 (15q11-q13), monosomía parcial 13q y monosomía parcial del cromosoma 22 también puede determinarse usando método. El Ejemplo 6 y la Figura 16 ilustran el uso del método de la divulgación para determinar esa presencia de una eliminación parcial del cromosoma 11.

[0153] El método de la divulgación también se puede utilizar para determinar cualquier aneuploidía si uno de los padres es un portador conocido de dicha anormalidad. Estos incluyen, pero no se limitan a, mosaico para un pequeño cromosoma marcador supernumerario (SMC); t(11;14)(p15;p13) translocación; translocación desequilibrada t(8;11)(p23.2;p15.5); microdeleción 11q23; supresión del síndrome de Smith-Magenis 17p11.2; deleción 22q13.3; microdeleción Xp22.3; supresión 10p14; microdeleción 20p, síndrome de Di-George [del(22) (q11.2q11,23)], síndrome de Williams (deleciones 7q11,23 y 7q36); supresión 1p36; micro-eliminación 2p; neurofibromatosis tipo 1 (17q11,2 microdeleción), deleción Yq; síndrome de Wolf-Hirschhorn (WHS, microdeleción 4p16.3); 1p36,2 microdeleción; supresión 11q14; 19q13,2 microdeleción; Rubinstein-Taybi (16 p13,3 microdeleción); microdeleción 7p21; síndrome de Miller-dieker (17p13.3), deleción 17p11.2; y microdeleción 2q37.

40 Determinación de la NVC de trastornos clínicos.

10

15

20

25

45

50

55

60

65

[0154] Además de la determinación temprana de defectos de nacimiento, los métodos descritos en el presente documento se pueden aplicar a la determinación de cualquier anomalía en la representación de secuencias genéticas dentro del genoma. Se ha demostrado que el plasma sanguíneo y el ADN sérico de pacientes con cáncer contienen cantidades medibles de ADN tumoral, que pueden recuperarse y usarse como fuente sustituta de ADN tumoral. Los tumores se caracterizan por aneuploidía, o números inapropiados de secuencias de genes o incluso cromosomas completos. La determinación de una diferencia en la cantidad de una secuencia dada, es decir, una secuencia de interés, en una muestra de un individuo puede, por lo tanto, usarse en el diagnóstico de una condición médica, por ejemplo, cáncer.

[0155] Las realizaciones de la divulgación proporcionan un método para evaluar la variación del número de copias de una secuencia de interés, por ejemplo, una secuencia clínicamente relevante, en una muestra de prueba que comprende una mezcla de ácidos nucleicos derivados de dos genomas diferentes, y que son conocidos o se sospecha que difieren en la cantidad de una o más secuencias de interés. La mezcla de ácidos nucleicos se deriva de dos o más tipos de células. En una realización, la mezcla de ácidos nucleicos se deriva de células normales y cancerosas derivadas de un sujeto que padece una afección médica, por ejemplo, cáncer.

[0156] Se cree que muchos tumores sólidos, como el cáncer de mama, progresan desde el inicio hasta la metástasis a través de la acumulación de varias aberraciones genéticas. [Sato et al., Cancer Res., 50: 7184-7189 [1990]; Jongsma et al., J Clin PAthol: Mol Path 55: 305-309 [2002])]. Dichas aberraciones genéticas, a medida que se acumulan, pueden conferir ventajas proliferativas, inestabilidad genética y la capacidad concomitante para desarrollar rápidamente la resistencia al fármaco, y una mayor angiogénesis, proteolisis y metástasis. Las aberraciones genéticas pueden afectar a los "genes supresores de tumores" recesivos o a los oncogenes de acción dominante. Se cree que las supresiones y la recombinación que conducen a la pérdida de heterocigosidad (LOH) desempeñan un papel importante en la progresión del tumor al descubrir alelos supresores de tumores mutados.

[0157] ADNcf se ha encontrado en la circulación de pacientes diagnosticados con tumores malignos que incluyen pero no se limitan a cáncer de pulmón (Pathak et al. Clin Chem 52: 1833-1842 [2006]), cáncer de próstata (Schwartzenbach et al. Clin Cancer Res 15: 1032-8 [2009]), y cáncer de mama (Schwartzenbach et al. Disponible en línea en breast-cancer-research.com/COn-ent/11/5/R71 [2009]). La identificación de las inestabilidades genómicas asociadas con los cánceres que pueden determinarse en la circulación del ADNcf en pacientes con cáncer es una herramienta potencial de diagnóstico y pronóstico. En una realización, el método de la divulgación evalúa la CNV de una secuencia de interés en una muestra que comprende una mezcla de ácidos nucleicos derivados de un sujeto que se sospecha o se sabe que tiene cáncer, por ejemplo, carcinoma, sarcoma, linfoma, leucemia, tumores de células germinales y blastoma. En una realización, la muestra es una muestra de plasma derivada (procesos) de sangre periférica y que comprende una mezcla de ADNcf derivado de células normales y cancerosas. En otra realización, la muestra biológica que se necesita para determinar si una CNV está presente se deriva de una mezcla de células cancerosas y no cancerosas de otros fluidos biológicos que incluyen, entre otros, suero, sudor, lágrimas, esputo, orina, esputo. flujo del oído, linfa, saliva, líquido cefalorraquídeo, estragos, suspensión de la médula ósea, flujo vaginal, lavado transcervical, líquido cerebral, ascitis, leche, secreciones de las vías respiratorias, tracto intestinal y genitourinario, y muestras de leucoforesis, o en biopsias de tejidos, hisopos o frotis.

10

15

20

25

30

35

40

45

50

55

60

65

[0158] La secuencia de interés es una secuencia de ácido nucleico que se sabe o se sospecha que desempeñar un papel en el desarrollo y/o progresión del cáncer. Los ejemplos de una secuencia de interés incluyen secuencias de ácidos nucleicos que se amplifican o eliminan en células cancerosas como se describe a continuación.

[0159] Los genes de acción dominante asociados con tumores sólidos humanos típicamente ejercen su efecto por sobreexpresión o expresión alterada. La amplificación de genes es un mecanismo común que conduce a la regulación positiva de la expresión génica. La evidencia de los estudios citogenéticos indica que se produce una amplificación significativa en más del 50% de los cánceres de mama humanos. En particular, la amplificación del receptor 2 del factor de crecimiento epidérmico humano protooncogénico (HER2) ubicado en el cromosoma 17 (17(17q21-q22)) produce una sobreexpresión de los receptores HER2 en la superficie celular, lo que lleva a una señalización excesiva y desregulada en cáncer de mama y otras neoplasias malignas (Park et al., Clinical Breast Cancer 8: 392-401 [2008]). Se ha encontrado que una variedad de oncogenes se amplifican en otras neoplasias malignas humanas. Ejemplos de la amplificación de oncogenes celulares en tumores humanos incluyen amplificaciones de: c-myc en la línea celular HL60 de leucemia promielocítica, y en líneas celulares de carcinoma de pulmón de células pequeñas, N-myc en neuroblastomas primarios (etapas III y IV), líneas celulares de neuroblastoma, línea celular de retinoblastoma y tumores primarios, líneas de carcinoma de pulmón de células pequeñas y tumores, L-myc en líneas de células de carcinoma de pulmón de células pequeñas y tumores, c-myb en leucemia mieloide aguda y en líneas de células de carcinoma de colon, c-erbb en células de carcinoma epidermoide, y gliomas primarios, cK-ras-2 en carcinomas primarios de pulmón, vejiga y recto, N-ras en la línea celular de carcinoma mamario (Varmus H., Ann Rev Genetics 18: 553-612 (1984) [citado en Watson et al. al., Molecular Biologia of the Gene (4^a ed.; Benjamin/Cummings Publishing co. 1987)].

[0160] Deleciones cromosómicas que implican genes supresores de tumores pueden desempeñar un papel importante en el desarrollo y progresión de tumores sólidos. El gen supresor de tumores más ampliamente caracterizado es el gen supresor de tumores del retinoblastoma (Rb-1), ubicado en el cromosoma 13q14. El producto del gen Rb-1, una fosfoproteína nuclear de 105 kDa, aparentemente desempeña un papel importante en la regulación del ciclo celular (Howe et al., Proc Natl Acad Sci (EE.UU.) 87: 5883-5887 [1990]). La expresión alterada o perdida de la proteína Rb es causada por la inactivación de ambos alelos genéticos ya sea a través de una mutación puntual o una deleción cromosómica. Se ha encontrado que las alteraciones del gen Rb-i están presentes no solo en los retinoblastomas sino también en otras neoplasias malignas como los osteosarcomas, el cáncer de pulmón de células pequeñas (Rygaard et al., Cancer Res 50: 5312-5317 [1990)]) y el cáncer de mama. Los estudios de polimorfismo de longitud de fragmentos de restricción (RFLP, por sus siglas en inglés) han indicado que estos tipos de tumores con frecuencia pierden heterocigosidad a 13q, lo que sugiere que uno de los alelos del gen Rb-1 se ha perdido debido a una deleción cromosómica macroscópica (Bowcock et al., Am J Hum). Genet, 46: 12 [1990]). Las anomalías del cromosoma 1, incluidas las duplicaciones, las eliminaciones y las translocaciones desequilibradas que involucran el cromosoma 6 y otros cromosomas asociados, indican que las regiones del cromosoma 1, en particular 1q21-1q32 y 1p11-13, pueden albergar oncogenes o genes supresores de tumores que son patogénicamente relevantes tanto para la enfermedad crónica como para la avanzada. Fases de las neoplasias mieloproliferativas (Caramazza et al., Eur J Hematol84: 191-200 [2010]). Las neoplasias mieloproliferativas también se asocian con deleciones del cromosoma 5. La pérdida completa o las deleciones intersticiales del cromosoma 5 son las anomalías cariotípicas más comunes en los síndromes mielodisplásicos (SMD). Los pacientes con del(5q)/5q-MDS aislada tienen un pronóstico más favorable que aquellos con defectos cariotípicos adicionales, que tienden a desarrollar neoplasmas mieloproliferativos (MPN) y leucemia mieloide aguda. La frecuencia de las eliminaciones desequilibradas del cromosoma 5 ha llevado a la idea de que 5q alberga uno o más genes supresores de tumores que tienen funciones fundamentales en el control del crecimiento de las células madre/progenitoras hematopoyéticas (HSCs/HPC). El mapeo citogenético de las regiones comúnmente eliminadas (CDR) centradas en 5q31 y 5q32 identificaron genes supresores de tumores candidatos, que incluyen la subunidad ribosomal RPS14, el factor de transcripción Egr1/Krox20 y la proteína de remodelación del citoesqueleto, alfa-catenina (Eisenmann et al., OnCOgene 28). 3429-3441 [2009]). Las estudios citogenéticos y alelotipados de tumores frescos y líneas celulares tumorales han demostrado que la pérdida alélica de varias regiones distintas en el cromosoma 3p, incluidas 3p25, 3p21-22, 3p21,3, 3p12-13 y 3p14, son las anomalías genómicas más tempranas y más frecuentes involucradas en un amplio espectro de cánceres epiteliales principales de pulmón, mama, riñón, cabeza y cuello, ovario, cuello uterino, colon, páncreas, esófago, vejiga y otros órganos. Varios genes supresores de tumores se han mapeado en la región del cromosoma 3p, y se cree que las deleciones intersticiales o la hipermetilación del promotor preceden a la pérdida del 3p o todo el cromosoma 3 en el desarrollo de carcinomas (Angeloni D., Briefings Functional Genomics 6:19- 39 [2007]).

[0161] Los recién nacidos y los niños con síndrome de Down (SD) a menudo presentan leucemia congénita transitoria y tienen un mayor riesgo de leucemia mieloide aguda y leucemia linfoblástica aguda. El cromosoma 21, que alberga alrededor de 300 genes, puede estar involucrado en numerosas aberraciones estructurales, por ejemplo, translocaciones, deleciones y amplificaciones, en leucemias, linfomas y tumores sólidos. Además, se han identificado genes ubicados en el cromosoma 21 que juegan un papel importante en la tumorigénesis. Las aberraciones somáticas tanto del cromosoma 21 como del cromosoma se asocian con leucemias, y genes específicos que incluyen RUNX1, TMPRSS2 y TFF, que se encuentran en 21q, desempeñan un papel en la tumorigénesis (gen de Fonatsch C, cromosomas, cáncer, 49: 497-508 [2010]).

[0162] En una realización, el método se refiere a un medio para evaluar la asociación entre la amplificación génica y el alcance de la evolución del tumor. La correlación entre la amplificación y/o la eliminación y la etapa o grado de un cáncer puede ser importante desde el punto de vista del pronóstico, ya que dicha información puede contribuir a la definición de un grado tumoral de base genética que predice mejor el curso futuro de la enfermedad con tumores más avanzados que tienen el peor pronóstico. Además, la información sobre la amplificación temprana y/o los eventos de eliminación puede ser útil para asociar esos eventos como predictores de la progresión posterior de la enfermedad. La amplificación de genes y las deleciones identificadas por el método pueden asociarse con otros parámetros conocidos como el grado del tumor, la histología, el índice de marcación Brd/Urd, el estado hormonal, la afectación nodal, el tamaño del tumor, la duración de la supervivencia y otras propiedades tumorales disponibles en estudios epidemiológicos y bioestadísticos. Por ejemplo, el ADN tumoral que se analizará con el método podría incluir hiperplasia atípica, carcinoma ductal in situ, cáncer en etapa I-III y ganglios linfáticos metastásicos para permitir la identificación de asociaciones entre amplificaciones y deleciones y etapa. Las asociaciones realizadas pueden posibilitar una efectiva intervención terapéutica. Por ejemplo, las regiones amplificadas consistentemente pueden contener un gen sobreexpresado, cuyo producto puede ser atacado terapéuticamente (por ejemplo, el receptor del factor de crecimiento de quinasa de tirosina, p185HER2).

[0163] El método puede ser utilizado para identificar eventos de amplificación y/o deleción que están asociados con la resistencia a fármacos mediante la determinación de la variación del número de copias de ácidos nucleicos a partir de cánceres primarios a los de células que han producido metástasis en otros sitios. Si la amplificación y/o eliminación de genes es una manifestación de inestabilidad cariotípica que permite un rápido desarrollo de la resistencia al fármaco, se esperaría más amplificación y/o eliminación en tumores primarios de pacientes quimiorresistentes que en tumores en pacientes quimiosensibles. Por ejemplo, si la amplificación de genes específicos es responsable del desarrollo de la resistencia al fármaco, se esperaría que las regiones que rodean a esos genes se amplifiquen consistentemente en células tumorales de derrames pleurales de pacientes quimiorresistentes pero no en los tumores primarios. El descubrimiento de asociaciones entre la amplificación y/o eliminación de genes y el desarrollo de resistencia farmacológica puede permitir la identificación de pacientes que se beneficiarán o no de la terapia adyuvante.

45 Determinación simultánea de aneuploidía y fracción fetal

5

10

15

20

25

30

35

40

50

55

[0164] En otra realización, el método permite la determinación simultánea de la fracción del componente de ácido nucleico fetal menor, es decir, fracción fetal, en una muestra que comprende una mezcla de ácidos nucleicos fetales y maternos. En particular, el método permite la determinación de la fracción de ADNcf contribuido por un feto a la mezcla de ADNcf fetal y materno en una muestra materna, por ejemplo, una muestra de plasma. La diferencia entre la fracción materna y fetal se determina por la contribución relativa de un alelo polimórfico derivado del genoma fetal a la contribución del correspondiente alelo polimórfico derivado del genoma materno. Las secuencias polimórficas se pueden usar junto con pruebas de diagnóstico clínicamente relevantes como control positivo de la presencia de ADNcf para resaltar los resultados falsos negativos o falsos positivos derivados de niveles bajos de ADNcf por debajo del límite de identificación. El método descrito es útil en un rango de edades gestacionales.

[0165] Las formas de realización ejemplares del método para determinar simultáneamente la fracción fetal y la presencia o ausencia de una aneuploidía se representan en las **Figuras 2-5** de la siguiente manera.

[0166] La Figura 2 proporciona un diagrama de flujo de una realización del método de la divulgación 200 para determinar simultáneamente una aneuploidía fetal y la fracción de ácidos nucleicos fetales en una muestra biológica materna. En la etapa 210, se obtiene de un sujeto una muestra de prueba que comprende una mezcla de ácidos nucleicos maternos y fetales. Las muestras de prueba incluyen muestras descritas en la etapa 110 de la realización del método 100. En algunas realizaciones, la muestra de prueba es una muestra de sangre periférica obtenida de una hembra embarazada, por ejemplo, una mujer. En la etapa 220, la mezcla de ácidos nucleicos presente en la muestra se enriquece para ácidos nucleicos diana polimórficos, comprendiendo cada uno un sitio polimórfico. En

algunas realizaciones, los ácidos nucleicos que están enriquecidos son ADNcf. Los ácidos nucleicos diana son segmentos de material genético que se sabe que comprenden al menos un sitio polimórfico. En algunas realizaciones, los ácidos nucleicos diana comprenden un SNP. En otras realizaciones, el ácido nucleico diana comprende un STR. En otras realizaciones más, los ácidos nucleicos diana comprenden un STR en tándem. El enriquecimiento de una mezcla de ácidos nucleicos maternos y fetales comprende la amplificación de secuencias diana de una porción de ácidos nucleicos contenidos en la muestra materna original, y la combinación parcial o total del producto amplificado con el resto de la muestra materna original. En la etapa 230, al menos una porción de la mezcla enriquecida se secuencia, se identifican las diferencias de secuencia derivadas de la naturaleza polimórfica de las secuencias diana, y la contribución relativa de las secuencias polimórficas derivadas del genoma fetal, es decir, la fracción fetal, se determina en la etapa 240. En algunas realizaciones, la muestra de prueba materna original es una muestra de fluido biológico, por ejemplo, plasma. En otras realizaciones, la muestra materna original es una fracción procesada de plasma que comprende ADNcf fetal y materno purificado.

Secuencias polimorfas

10

15

20

25

30

35

40

45

50

55

60

65

[0167] Los sitios polimórficos que están contenidos en los ácidos nucleicos diana incluyen, sin limitación, polimorfismos de un solo nucleótido (SNP), SNP en tándem, deleciones o inserciones multibásicas a pequeña escala, llamadas IN-DELS (también llamados polimorfismos de inserción de eliminación o DIP), polimorfismos multinucleótidos (MNP) y repeticiones cortas en tándem (STR). Los sitios polimórficos que se incluyen en el método de la enfermedad se ubican en cromosomas autosómicos, lo que permite la determinación de la fracción fetal independientemente del sexo del feto. Cualquier sitio polimórfico que pueda ser abarcado por las lecturas generadas por los métodos de secuenciación descritos en este documento se puede usar para determinar simultáneamente la fracción fetal y la presencia o ausencia de una aneuploidía en una muestra materna.

[0168] En una realización, la mezcla de ácidos nucleicos fetales y maternos en la muestra está enriquecida en ácidos nucleico diana que comprenden al menos un SNP. En algunas realizaciones, cada ácido nucleico diana comprende un al menos un SNP. Las secuencias de ácido nucleico diana que comprenden SNP están disponibles en bases de datos de acceso público que incluyen, entre otras, la base de datos de SNP humano en la dirección de Internet de wi.mit.edu, página NCBI dbSNP en la dirección de Internet ncbi.nlm.nih.gov, en la dirección de Internet lifesciences perkinelmer.com, la base de datos de SNP de Celera Human en la dirección de Internet de gran alcance celera.com, la base de datos de SNP del Grupo de Análisis del Genoma (GAN) en la dirección de Internet gan.iarc.fr. En una realización, los SNP elegidos para enriquecer el ADNcf fetal y materno se seleccionan del grupo de 92 SNP de identificación individual (IISNPs) descritos por Pakstis el al. (Pakstis et al. Hum Genet 127: 315-324 [2010]), que ha demostrado tener una variación muy pequeña en la frecuencia entre las poblaciones (F_{st}<0,06), y es altamente informativo en todo el mundo con una heterocigosidad promedia ≥ 0,4. Los SNP que están abarcados por el método de la divulgación incluyen los SNP vinculados y no vinculados. Cada ácido nucleico diana comprende al menos un sitio polimórfico, por ejemplo, un solo SNP, que difiere del presente en otro ácido nucleico diana para generar un panel de sitios polimórficos, por ejemplo SNP, que contienen un número suficiente de sitios polimórficos de los cuales al menos 1, al menos 2, al menos 3, al menos 4, al menos 5, al menos 6, al menos 7, al menos 8, al menos 9, al menos 10, al menos 11, al menos 12, al menos 13, al menos 14, al menos 15, al menos 16, al menos 17, al menos 18, al menos 19, al menos 20, al menos 25, al menos 30, al menos 35, al menos 40 o más son informativos. Por ejemplo, un panel de SNP puede configurarse para que incluya al menos un SNP informativo.

[0169] En una realización, las fuentes que son seleccionadas para la amplificación se seleccionan de entre rs560681, rs7041158, rs70478, rs7409098, rs74

[0170] En otras realizaciones, cada ácido nucleico diana comprende dos o más SNPs es decir, cada diana de ácido nucleico comprende SNPs en tándem. Preferiblemente, cada ácido nucleico diana comprende dos SNP en tándem. Los SNP en tándem se analizan como una sola unidad como haplotipos cortos, y se proporcionan aquí como conjuntos de dos SNP. Para identificar secuencias SNP en tándem adecuadas, se puede buscar en la base de datos del consorcio Internacional HapMap (The International HapMap Project, Nature 426: 789-796 [2003]). La base de datos está disponible en la web en hapmap.org. En una realización, los SNP en tándem que se dirigen a la amplificación se seleccionan de los siguientes conjuntos de pares en tándem de SNPs rs7277033-rs2110153; rs2822654-rs1882882; rs368657-rs376635; rs2822731-rs2822732; rs1475881-rs7275487; rs1735976-rs2827016; rs447340-rs2824097; rs418989-rs13047336; rs987980-rs987981; rs4143392-rs4143391; rs1691324-rs13050434; rs2826842-rs232414; rs1980969-rs1980970; rs11909758-rs9980111; rs9978999-rs9979175; rs12481852; rs7509629-rs2828358; rs4817013-rs7277036; rs9981121-rs2829696; rs455921-rs2898102; rs2898102rs458848; rs961301-rs2830208; rs2174536-rs458076; rs11088023-rs11088024; rs1011734-rs1011733; rs2831244rs9789838; rs8132769-rs2831440; rs8134080-rs2831524; rs4817219-rs4817220; rs2250911-rs2250997; rs2831899rs2831902-rs2831903; rs11088086-rs2251447; rs2832040-rs11088088; rs2831900; rs2832141-rs2246777; rs2832959 -rs9980934; rs2833734-rs2833735; rs933121-rs933122; rs2834140-rs12626953; rs2834485-rs3453; rs9974986-rs2834703; rs2776266-rs2835001; rs1984014-rs1984015; rs7281674-rs2835316; rs2835735-rs2835736; rs13047608-rs2835826; rs13047322; rs2835545-rs4816551; rs2836550-rs2212596; rs2836660-rs2836661; rs465612-rs8131220; rs9980072-rs8130031; rs418359-rs2836926; rs7278447-rs7278858; rs385787-rs367001; rs367001-rs386095; rs2837296-rs2837297; y rs2837381-rs4816672.

[0171] En otra realización, la mezcla de ácidos nucleicos fetales y maternos en la muestra está enriquecida en ácidos nucleicos diana que comprenden al menos un STR. Los loci STR se encuentran en casi todos los cromosomas del genoma y pueden amplificarse utilizando una variedad de cebadores de reacción en cadena de la polimerasa (PCR). Las repeticiones de tetranucleótidos se han preferido entre los científicos forenses debido a su fidelidad en la amplificación por PCR, aunque también se utilizan algunas repeticiones de tri- y pentanucleótidos. Se compila una lista completa de referencias, hechos e información de secuencias sobre los STR, los cebadores de PCR publicados, los sistemas múltiplex comunes y los datos de población relacionados en STRBase, a la que se puede acceder a través del Internet en ibm4.carb.nist.gov:8800/dna/home.htm. También se puede acceder a la información de secuencia de GenBank® (http://www2.ncbi.nlm.nih.gov/cgi-bin/genbank) para los loci STR de uso común a través de STRBase. La naturaleza polimórfica de las secuencias de ADN repetidas en tándem que se extienden por todo el genoma humano las ha convertido en importantes marcadores genéticos para los estudios de mapeo de genes, análisis de ligamiento y pruebas de identidad humana. Debido al alto polimorfismo de los STR, la mayoría de los individuos serán heterocigotos, es decir, la mayoría de las personas poseerán dos alelos (versiones) de cada uno heredado de cada padre, con un número diferente de repeticiones. Por lo tanto, la secuencia de STR fetal no hereditaria por maternidad diferirá en el número de repeticiones de la secuencia materna. La amplificación de estas secuencias de STR dará como resultado dos productos principales de amplificación correspondientes a los alelos maternos (y el alelo fetal de herencia materna) y un producto secundario correspondiente al alelo fetal de herencia no materna. Esta técnica se informó por primera vez en 2.000 (Pertl et al., Human Genetics 106: 45-49 [2002]) y posteriormente se desarrolló utilizando la identificación simultánea de múltiples regiones STR diferentes mediante PCR en tiempo real (Liu et al., Acta Obset Gyn Scand 86: 535-541 [2007]). Por lo tanto, la fracción de ácido nucleico fetal en una muestra materna también se puede determinar mediante la secuenciación de ácidos nucleicos diana polimórficos que comprenden STR, que varían entre los individuos en el número de unidades repetidas en tándem entre alelos. En una realización, la determinación simultánea de aneuploidía y fracción fetal comprende la secuenciación de al menos una porción de los ácidos nucleicos maternos y fetales presentes en una muestra materna que se ha enriquecido para secuencias polimórficas que comprenden STR. Dado que el tamaño del ADNcf fetal es <300 pb, las secuencias polimórficas comprenden miniSTR, que se puede amplificar para generar amplicones que tienen longitudes aproximadamente del tamaño de los fragmentos de ADN fetal circulantes. El método puede usar uno o una combinación de cualquier número de miniSTR informativos para determinar la fracción de ácido nucleico fetal. Por ejemplo, se puede utilizar cualquiera o una combinación de cualquier número de miniSTR, por ejemplo, los miniSTR descritos en la Tabla 22. En una realización, la fracción de ácido nucleico fetal en una muestra materna se realiza utilizando un método que incluye la determinación del número de copias del ácido nucleico materno y fetal presente en la muestra materna amplificando al menos una miniSTR autosómica elegida de CSF1PO, FGA, TH01, TPOX, vWA, D3S1358,D5S818, D7S820, D8S1179, D13S317, D16S539, D18S51, D21S11, Penta D, Penta E, D2S1338, D1S1677, D2S441, D4S2364, D10S1248, D14S1434, D22S1045, D22S1045, D20S1082, D20S482, D18S853, D17S1301, D17S974, D14S1434, D12ATA63, D11S4463, D10S1435, D10S1248, D9S2157, D9S1122, D8S1115, D6S1017, D6S474, D5S2500, D5S2500, D4S2408, D4S2364, D3S4529, D3S3053, D2S1776, D2S441, D1S1677, D1S1627, y D1GATA113. En otra realización, el al menos un miniSTR autosómico es el grupo de miniSTR CSF1PO, FGA, D13S317, D16S539, D18S51, D2S1338, D21S11 y D7S820.

40 [0172] El enriquecimiento de la muestra para los ácidos nucleicos diana se realiza mediante métodos que comprenden específicamente la amplificación de secuencias de ácido nucleico diana que comprenden el sitio polimórfico. La amplificación de las secuencias diana se puede realizar mediante cualquier método que utilice PCR o variaciones del método que incluyen, entre otros, la PCR asimétrica, la amplificación dependiente de helicasa, la PCR de arranque en caliente, la qPCR, la PCR en fase sólida y la PCR de toma de contacto. Alternativamente, la replicación de secuencias de ácido nucleico diana puede obtenerse mediante métodos independientes de la enzima, 45 por ejemplo, síntesis guímica en fase sólida utilizando las fosforamiditas. La amplificación de las secuencias diana se logra utilizando pares de cebadores, cada uno capaz de amplificar una secuencia de ácido nucleico diana que comprende el sitio polimórfico, por ejemplo, SNP, en una reacción de PCR multiplex. Las reacciones de PCR multiplex incluyen combinar al menos 2, al menos tres, al menos 3, al menos 5, al menos 10, al menos 15, al menos 50 20, al menos 25, al menos 30 al menos 30, al menos 35, al menos 40 o más conjuntos de cebadores en la misma reacción para cuantificar los ácidos nucleicos diana amplificados que comprenden al menos dos, al menos tres, al menos 5, al menos 10, al menos 15, al menos 20, al menos 25, al menos 30, al menos 30, al menos 35, al menos 40 o más sitios polimórficos en la misma reacción de secuenciación. Cualquier panel de conjuntos de cebadores puede configurarse para amplificar al menos una secuencia polimórfica informativa.

Amplificación de secuencias polimórficas.

10

15

20

25

30

35

55

60

65

[0173] Un número de cebadores de ácidos nucleicos están ya disponibles para amplificar fragmentos de ADN que contienen polimorfismos de SNP y sus secuencias se pueden obtener, por ejemplo, de las bases de datos identificadas anteriormente. También se pueden diseñar cebadores adicionales, por ejemplo, utilizando un método similar al publicado por Vieux, EF, Kwok, PY y Miller, RD en BioTechniques (junio de 2002), vol. 32. Suplemento: "SNPs: Discovery of Marker Disease, pp. 28-32. En una realización, al menos 1, al menos 2, al menos 3, al menos 4, al menos 5, al menos 6, al menos 7, al menos 8, al menos 9, al menos 10, al menos 11, al menos 12, al menos 13, al menos 14, al menos 15, al menos 16, al menos 17, al menos 18, al menos 19, al menos 20, al menos 25, al menos 30, al menos 35, al menos 40 o más conjuntos de cebadores se eligen para amplificar un ácido nucleico diana que comprende al menos un SNP informativo en una porción de una mezcla de ADNcf fetal y materno. Los

conjuntos son de: los primos incluyen los cebadores directos e inversos que abarcan al menos uno de los siguientes: los tipos de pasajes se incluyen entre los siguientes: los elementos que se incluyen entre los siguientes: los elementos que se incluyen entre los siguientes: rs9951171, rs338882, rs10776839, rs9905977, rs1277284, rs258684, rs1347696, rs508485, rs9788670, rs8137254, rs3182957, rs3182957, rs3182957 y rs3182957 y los conjuntos de cebadores que se utilizan para amplificar los SNP descritos en este documento se proporcionan en el Ejemplo 7 y en las Tablas 10 y 11, y se describen como SEQ ID NO: 57-112. En otra realización, el grupo de 13 conjuntos de cebadores SEQ ID NO: 57-82 se usa para amplificar un ácido nucleico diana que comprende al menos un SNP, por ejemplo, un solo SNP, en una porción de una mezcla de ADNcf fetal y materno.

10

15

20

25

30

35

40

45

50

55

60

65

[0174] En otra realización, al menos un conjunto de cebadores se usa para amplificar un ácido nucleico diana que comprenden cada uno al menos un tándem SNP por ejemplo, un conjunto de dos SNP en tándem, en una porción de una mezcla de ADNcf fetal y materna. En una realización, los conjuntos son de cebadores que comprenden cebadores directos e inversos que abarcan al menos un SNP en tándem informativo seleccionado de rs7277033rs2110153; rs2822654-rs1882882; rs368657-rs376635; rs2822731-rs2822732; rs1475881-rs7275487; rs1735976rs2827016; rs447340-rs2824097; rs418989-rs13047336; rs987980-rs987981; rs4143392-rs4143391; rs1691324rs11909758-rs9980111; rs2826842-rs232414; rs1980969-rs1980970; rs9978999-rs9979175: rs1034346-rs12481852; rs7509629-rs2828358; rs4817013-rs7277036; rs9981121-rs2829696; rs455921-rs2898102; rs2898102-rs458848; rs961301-rs2830208; rs2174536-rs458076; rs11088023-rs11088024; rs1011734-rs1011733; rs2831244-rs9789838; rs8132769-rs2831440; rs8134080-rs2831524; rs4817219-rs4817220; rs2250911-rs2250997; rs2831899-rs2831900; rs2831902-rs2831903; rs11088086-rs2251447; rs2832040-rs11088088; rs2832141rs2246777; rs2832959 -rs9980934; rs2833734-rs2833735; rs933121-rs933122; rs2834140-rs12626953; rs2834485rs3453; rs9974986-rs2834703; rs2776266-rs2835001; rs1984014-rs1984015; rs7281674-rs2835316; rs13047304rs2835545-rs4816551; rs2835735-rs2835736; rs13047608-rs2835826; rs2836550-rs2212596; rs2836660-rs2836661; rs465612-rs8131220; rs9980072-rs8130031; rs418359-rs2836926; rs7278447-rs7278858; rs385787-rs367001; rs367001-rs386095; rs2837296-rs2837297; y rs2837381-rs4816672. Los cebadores utilizados para amplificar las secuencias de destino que comprenden los SNP en tándem están diseñados para abarcar ambos sitios de SNP. Conjuntos ejemplares de cebadores utilizados para amplificar los SNP en tándem descritos en este documento se proporcionan en el Ejemplo 12 y se describen como SEQ ID NO: 197-310.

[0175] La amplificación de los ácidos nucleicos diana se realiza usando cebadores específicos de secuencia que permiten la amplificación específica de secuencia. Por ejemplo, los cebadores de PCR están diseñados para discriminar contra la amplificación de genes o parálogos similares que se encuentran en otros cromosomas aprovechando las diferencias de secuencia entre el ácido nucleico diana y cualquier parálisis de otros cromosomas. Los cebadores de PCR directos o inversos están diseñados para ser recocidos cerca del sitio de SNP y para amplificar una secuencia de ácido nucleico de longitud suficiente como para abarcarse en las lecturas generadas por métodos de secuenciación masivamente paralelos. Algunos métodos de secuenciación masivamente paralelos requieren que la secuencia de ácido nucleico tenga una longitud mínima (pb) para permitir la amplificación de puente que puede usarse opcionalmente antes de la secuenciación. Por lo tanto, los cebadores de PCR utilizados para amplificar los ácidos nucleicos diana están diseñados para amplificar secuencias que son de longitud suficiente para amplificarse en puente e identificar los SNP que están comprendidos en las lecturas de secuencia. En algunas realizaciones, el primero de los dos cebadores en el conjunto de cebadores que comprende el cebador directo y el inverso para amplificar el ácido nucleico diana está diseñado para identificar un único SNP presente dentro de una secuencia leída de aproximadamente 20 pb, aproximadamente 25 pb, aproximadamente 30 pb, aproximadamente 35 pb, aproximadamente 40 pb, aproximadamente 45 pb, aproximadamente 50 pb, aproximadamente 55 pb, aproximadamente 60 pb, aproximadamente 65 pb, aproximadamente 70 pb, aproximadamente 75 pb, aproximadamente 80 pb, aproximadamente 85 pb, aproximadamente 90 pb, aproximadamente 95 pb. aproximadamente 100 pb, aproximadamente 110 pb, aproximadamente 120 pb, aproximadamente 140 pb., aproximadamente 150 pb, aproximadamente 200 pb, aproximadamente 250 pb, aproximadamente 300 pb, aproximadamente 350 pb, aproximadamente 400 pb, aproximadamente 450 pb, o aproximadamente 500 pb. Se espera que los avances tecnológicos en tecnologías de secuenciación masivamente paralelas permitan lecturas de un solo extremo de más de 500 pb. En una realización, uno de los cebadores de PCR está diseñado para amplificar los SNP que se incluyen en lecturas de secuencia de 36 pb. El segundo cebador está diseñado para amplificar el ácido nucleico diana como un amplicón de longitud suficiente para permitir la amplificación del puente. En una realización, los cebadores de PCR a modo de ejemplo están diseñados para amplificar los ácidos nucleicos diana que contienen un solo SNP seleccionado de los SNPs rs560681, rs1109037, rs9866013, rs13182883, rs13218440, rs7041158, rs740598, rs10773760, rs 4530059, rs7205345, rs8078417, rs576261, rs2567608, rs430046, rs9951171, rs338882, rs10776839, rs9905977, rs1277284, rs258684, rs1347696, rs508485, rs9788670, rs8137254, rs3143, rs2182957, rs3739005, y rs530022. En otras realizaciones, los cebadores directo e inverso están diseñados para amplificar ácidos nucleicos diana, cada uno de los cuales comprende un conjunto de dos SNP en tándem, cada uno de los cuales está presente dentro de una secuencia leída de aproximadamente 20 pb, aproximadamente 25 pb, aproximadamente 30 pb, aproximadamente 35 pb, aproximadamente 40 pb, aproximadamente 45 pb, pb, aproximadamente 50 pb, aproximadamente 55 pb, aproximadamente 60 pb, aproximadamente 65 aproximadamente 70 pb, aproximadamente 75 pb, aproximadamente 80 pb, aproximadamente 85 pb, aproximadamente 90 pb, aproximadamente 95 pb, aproximadamente 100 pb, aproximadamente 110 pb, aproximadamente 120 pb, aproximadamente 130 pb, aproximadamente 150 pb, aproximadamente 150 pb, aproximadamente 200 pb, aproximadamente 250 pb, aproximadamente 300 pb, aproximadamente 350 pb, aproximadamente 400 pb, aproximadamente 450 pb, o aproximadamente 500 pb. En una realización, al menos uno de los cebadores está diseñado para amplificar el ácido nucleico diana que comprende un conjunto de dos SNP en tándem como un amplicón de longitud suficiente para permitir la amplificación del puente.

- [0176] Los SNP, SNP únicos o en tándem, están contenidos en amplicones de ácido nucleico diana amplificados de al menos aproximadamente 100 pb, al menos aproximadamente 150 pb, al menos aproximadamente 250 bp, o al menos aproximadamente 250 bp, o al menos aproximadamente 400 pb. En una realización, los ácidos nucleicos diana que comprenden un sitio polimórfico, por ejemplo, un SNP, se amplifican como amplicones de al menos aproximadamente 110 pb, y que comprenden un SNP dentro de 36 pb desde el extremo 3' o 5' del amplicón. En otra realización, los ácidos nucleicos diana que comprenden dos o más sitios polimórficos, por ejemplo, dos SNP en tándem, se amplifican como amplicones de al menos aproximadamente 110 pb, y que comprenden el primer SNP dentro de 36 pb desde el extremo 3' del amplicón, y/o el segundo SNP dentro de 36 pb desde el extremo 5' del amplicón.
- [0177] En una realización, al menos 1, al menos 2, al menos 3, al menos 4, al menos 5, al menos 6, al menos 7, al menos 8, al menos 9, al menos 10, al menos 11, al menos 12, al menos 13, al menos 14, al menos 15, al menos 16, al menos 17, al menos 18, al menos 19, al menos 20, al menos 25, al menos 30, al menos 35, al menos 40 o más conjuntos de cebadores se eligen para amplificar un ácido nucleico diana que comprende al menos un SNP en tándem informativo en una porción de una mezcla de ADNcf fetal y materno.

Amplificación de STR

20

25

30

35

40

45

50

55

60

65

[0178] Un número de cebadores de ácidos nucleicos están ya disponibles para amplificar fragmentos de ADN que contienen los RTS y sus secuencias se pueden obtener, por ejemplo, de las bases de datos identificadas anteriormente. Se han utilizado amplicones de PCR de varios tamaños para discernir las respectivas distribuciones de tamaño de las especies de ADN materno y fetal circulantes, y han demostrado que las moléculas de ADN fetal en el plasma de las mujeres embarazadas son generalmente más cortas que las moléculas de ADN maternas (Chan et al., Clin Chem. 50: 8892 [2004]). El fraccionamiento por tamaño del ADN fetal circulante ha confirmado que la longitud promedio de los fragmentos de ADN fetal circulante es <300 pb, mientras que el ADN materno se ha estimado entre aproximadamente 0,5 y 1 Kb (Li et al., Clin Chem, 50: 1002-1011 [2004]). Estos hallazgos son consistentes con los de Fan et al., quienes determinaron mediante el uso de NGS que el ADNcf fetal rara vez es >340 pb (Fan et al., Clin Chem 56: 1279-1286 [2010]). El método de la divulgación abarca la determinación de la fracción de ácido nucleico fetal en una muestra materna que se ha enriquecido con ácidos nucleicos diana, comprendiendo cada uno un miniSTR que comprende cuantificar al menos un alelo fetal y uno materno en un miniSTR polimórfico, que puede amplificarse para generar amplicones que tienen longitudes aproximadamente del tamaño de los fragmentos de ADN fetal circulantes.

[0179] En una realización, el método comprende determinar el número de copias de al menos un alelo fetal y al menos materno al menos en un miniSTR polimórfico que se amplifica para generar amplicones que son menos de aproximadamente 300 pb, menos de aproximadamente 250 pb. bp, menos de aproximadamente 200 bp, menos de aproximadamente 150 bp, menos de aproximadamente 100 bp, o menos de aproximadamente 50 bp. En otra realización, los amplicones que se generan al amplificar los miniSTR son menores que aproximadamente 300 pb. En otra realización, los amplicones que se generan al amplificar los miniSTR son menores que aproximadamente 250 pb. En otra realización, los amplicones que se generan al amplificar los miniSTR son menores que aproximadamente 200 pb. La amplificación del alelo informativo incluye el uso de cebadores miniSTR, que permiten la amplificación de los amplicones de tamaño reducido para discernir los alelos STR que son menos de aproximadamente 500 pb, menos de aproximadamente 450 pb, menos de aproximadamente 400 pb, menos de aproximadamente 350 pb, menos de unos 300 pares de bases (pb), menos de unos 250 pb, menos de unos 200 pb, menos de unos 150 pb, menos de unos 100 pb o menos de unos 50 pb. Los amplicones de tamaño reducido generados utilizando los cebadores miniSTR se conocen como miniSTR que se identifican de acuerdo con el nombre del marcador correspondiente al lugar al que se asignaron. En una realización, los cebadores miniSTR incluyen cebadores mini STR que han permitido la reducción máxima de tamaño en el tamaño del amplicón para los 13 loci coDIS STR además del D2S1338, Pentady pentaE que se encuentran en los kits STR disponibles comercialmente (Butler et al., J Forensic Sci 48: 1054-1064 [2003]), loci miniSTR que no están vinculados a los marcadores coDIS como lo describen coble y Butler (COble y Butler, J Forensic Sci 50: 43-53 [2005]), y otros minSTR que se han caracterizado en el NIST. La información sobre los miniSTRs caracterizados en NIST se puede acceder a través de Internet en cstl.nist.gov/biotech/strbase/newSTRs.htm. Se puede usar cualquier par o una combinación de dos o más pares de cebadores miniSTR para amplificar al menos un miniSTR. Por ejemplo, al menos un conjunto de cebadores se selecciona de los conjuntos de cebadores proporcionados en la Tabla 22 (Ejemplo 11) y se describe como SEQ ID NO: 113-196 se pueden usar para amplificar secuencias diana polimórficas que comprenden un STR.

[0180] El enriquecimiento de la muestra se obtiene amplificando los ácidos nucleicos diana contenidos en una porción de la mezcla de ácidos nucleicos maternos y fetales en la muestra original, y combinando al menos una porción o todo el producto amplificado con el resto de la muestra original no amplificada. El enriquecimiento comprende amplificar los ácidos nucleicos diana que están contenidos en una porción de muestra de fluido biológico. En una realización, la muestra que se enriquece es la fracción plasmática de una muestra de sangre

(consulte la Figura 3). Por ejemplo, una porción de una muestra de plasma materno original se usa para amplificar secuencias de ácido nucleico diana. Posteriormente, parte o la totalidad del producto amplificado se combina con la muestra de plasma original no amplificada restante, lo que lo enriquece (véase Ejemplo 10). En otra realización, la muestra que se enriquece es la muestra de ADNcf purificado que se extrae del plasma (consulte la Figura 4). Por ejemplo, el enriquecimiento comprende amplificar los ácidos nucleicos diana que están contenidos en una porción de una muestra original de mezcla purificada de ácidos nucleicos maternos y fetales, por ejemplo, ADNcf que se ha purificado de una muestra de plasma materno, y posteriormente combinar algunos o todos los amplificados producto con la muestra purificada original sin amplificar restante (véase Ejemplo 9). En otra realización más, la muestra que está enriquecida es una muestra de biblioteca de secuenciación preparada a partir de una mezcla purificada de ácidos nucleicos maternos y fetales (véase la Figura 5). Por ejemplo, el enriquecimiento comprende amplificar los ácidos nucleicos diana que están contenidos en una porción de una muestra original de mezcla purificada de ácidos nucleicos maternos y fetales, por ejemplo, el ADNcf que se ha purificado de una muestra de plasma materno, preparando una primera biblioteca de secuenciación de secuencias de ácido nucleico no amplificadas, preparando una segunda biblioteca de secuenciación de ácidos nucleicos diana polimórficos amplificados y, posteriormente, combinando parte o la totalidad de la segunda biblioteca de secuenciación con alguna o toda la primera biblioteca de secuenciación (véase Ejemplo 8). La cantidad de producto amplificado que se utiliza para enriquecer la muestra original se selecciona para obtener información de secuencia suficiente para determinar la presencia o ausencia de aneuploidía y la fracción fetal de la misma serie de secuencia. Al menos aproximadamente el 3%, al menos aproximadamente el 5%, al menos aproximadamente el 7%, al menos aproximadamente el 10%, al menos aproximadamente el 15%, al menos aproximadamente el 20%, al menos aproximadamente el 25%, al menos aproximadamente el 30% o más del número total de etiquetas de secuencia obtenidas de la secuenciación se asigna para determinar la fracción fetal.

10

15

20

25

30

35

40

45

50

55

60

65

[0181] En una realización, la etapa de enriquecer la mezcla de ácidos nucleicos fetales y maternos para los ácidos nucleicos diana polimórficos comprende la amplificación de los ácidos nucleicos diana en una porción de una muestra de ensayo, por ejemplo una muestra de ensayo de plasma, y la combinación de todos o una parte del producto amplificado con la muestra de prueba de plasma restante. La realización del método 300 se representa en el diagrama de flujo que se muestra en la Figura 3. En el paso 310, una muestra de prueba, por ejemplo, una muestra de fluido biológico, tal como una muestra de sangre, se obtiene de una mujer embarazada, y en el paso 320 una porción del ADNcf contenida en la fracción plasmática de la muestra de sangre se utiliza para amplificar ácidos nucleicos diana que comprenden sitios polimórficos, por ejemplo, SNP. En una realización, al menos aproximadamente el 1%, al menos aproximadamente el 1,5%, al menos aproximadamente el 2%, al menos aproximadamente el 10% del plasma materno se usó para amplificar los ácidos nucleicos diana. En el paso 330, una porción o la totalidad de los ácidos nucleicos diana amplificados se combinan con la mezcla de ADNcf fetal y materno presente en la muestra materna, y el ADNcf combinado y los ácidos nucleicos amplificados se purifican en el paso 340, y se usan para preparar una biblioteca que se secuenció en el paso 350. La biblioteca se preparó a partir de ADNcf purificado y que comprende al menos aproximadamente el 10%, al menos aproximadamente el 15%. al menos aproximadamente el 20%, al menos aproximadamente el 25%, al menos aproximadamente el 30%, al menos aproximadamente el 35% %, al menos aproximadamente el 40%, al menos aproximadamente el 45%, o al menos aproximadamente el 50% del producto amplificado. En el paso 360, se analizan los datos de las ejecuciones de secuenciación y se realiza la determinación simultánea de la fracción fetal y la presencia o ausencia de

[0182] En una realización, el paso de enriquecer la mezcla de ácidos nucleicos fetales y maternos para los ácidos nucleicos diana polimórficos comprende una pluralidad de ácidos nucleicos diana polimórficos en una porción de una mezcla de ácidos nucleicos fetales y maternos purificados a partir de una muestra de ensayo materna. En una realización, una porción de una mezcla de ácidos nucleicos maternos y fetales, por ejemplo, el ADNc, purificado de una muestra de plasma materno se usa para amplificar secuencias de ácido nucleico polimórfico, y una porción del producto amplificado se combina con la mezcla no amplificada de ácidos nucleicos fetales y maternos purificados, p. ej., ADNcf (véase Figura 4). La realización del método 400 se representa en el diagrama de flujo que se muestra en la Figura 4. En el paso 410, una muestra de prueba, por ejemplo, una muestra de fluido biológico, como una muestra de sangre, que comprende una mezcla de ácidos nucleicos maternos y fetales se obtiene de una mujer embarazada, y la mezcla de ácidos nucleicos maternos y fetales se purifica a partir de la fracción plasmática en el paso 420. Como se describió anteriormente, los métodos para la separación de ADN libre de células del plasma son bien conocidos. En el paso 430, una porción del ADNcf contenido en la muestra purificada se usa para amplificar ácidos nucleicos diana que comprenden sitios polimórficos, por ejemplo, SNP. Al menos aproximadamente el 5%, al menos aproximadamente el 10%, al menos aproximadamente el 15%, al menos aproximadamente el 20%, al menos aproximadamente el 25%, al menos aproximadamente el 30%, al menos aproximadamente el 35%, al menos aproximadamente el 40%, al menos aproximadamente el 45%, o al menos aproximadamente el 50% de ADNcf purificado se utiliza para amplificar los ácidos nucleicos diana. Preferiblemente, la amplificación de las secuencias diana se puede realizar mediante cualquier método que use PCR o variaciones del método que incluyen pero no se limitan a PCR asimétrica, amplificación dependiente de helicasa, PCR de arranque en caliente, gPCR, PCR en fase sólida y PCR de toma de contacto. En el paso 440, una porción, por ejemplo, al menos aproximadamente el 0,01% del producto amplificado se combina con la muestra de ADNc purificada no amplificada, y la mezcla de ácidos nucleicos maternos y fetales amplificados y no amplificados se secuencia en el paso 450. En una realización, se realiza la secuenciación utilizando cualquiera de las tecnologías NGS. En el paso 460, se analizan los datos de las secuencias de secuenciación y se realiza la determinación simultánea de la fracción fetal y la presencia o ausencia de aneuploidía como se describe en el paso **140** de la realización representada en la Figura 1.

[0183] En otra realización, el paso 220 de enriquecer la mezcla de ácidos nucleicos fetales y maternos para los ácidos nucleicos diana polimórficos (Figura 2) comprende la combinación de al menos una porción de una primera biblioteca de secuenciación de moléculas de ácido nucleico fetal y materno no amplificados con al menos una parte de una segunda biblioteca de secuenciación de ácidos nucleicos diana polimórficos amplificados. Por lo tanto, la muestra que se enriquece es la muestra de la biblioteca que se prepara para la secuenciación (Figura 5). El enriquecimiento de la muestra de la biblioteca para los ácidos nucleicos diana se realiza mediante métodos que comprenden amplificar específicamente las secuencias de ácido nucleico que comprenden el sitio polimórfico. En el paso 510, una muestra de prueba, por ejemplo, una muestra de fluido biológico tal como una muestra de sangre, que comprende una mezcla de ácidos nucleicos maternos y fetales, se obtiene de una mujer embarazada, y la mezcla de ácidos nucleicos maternos y fetales se purifica de la fracción plasmática en el paso 520. En el paso 530, una porción del ADNfc contenida en la muestra purificada se usa para amplificar ácidos nucleicos diana que comprenden sitios polimórficos, por ejemplo, SNP. Al menos aproximadamente el 5%, al menos aproximadamente el 10%, al menos aproximadamente el 15%, al menos aproximadamente el 20%, al menos aproximadamente el 25%, o al menos aproximadamente el 30% del ADNcf purificado se usa para amplificar secuencias de ácido nucleico diana. Preferiblemente, la amplificación de las secuencias diana se puede realizar mediante cualquier método que use PCR o variaciones del método que incluyen, entre otros, la PCR asimétrica, la amplificación dependiente de la helicasa, la PCR de arranque en caliente, la qPCR, la PCR en fase sólida y la PCR de toma de contacto. En el paso 540, los ácidos nucleicos diana amplificados que comprenden los sitios polimórficos, por ejemplo, SNP, se usan para preparar una biblioteca de secuenciación de ácido nucleico diana. De manera similar, la porción de ADNcf no amplificado purificado se usa para preparar una biblioteca de secuenciación primaria en el paso 550. En el paso 560, una porción de la biblioteca diana se combina con la biblioteca primaria generada a partir de la mezcla no amplificada de ácidos nucleicos, y la mezcla de los ácidos nucleicos fetales y maternos comprendidos en las dos bibliotecas se secuencian en el paso 570. La biblioteca enriquecida comprende al menos aproximadamente el 5%, al menos aproximadamente el 10%, al menos aproximadamente el 15%, al menos aproximadamente el 20%, o al menos aproximadamente el 25% de la biblioteca diana. En el paso 580, se analizan los datos de las secuencias de secuenciación y se realiza la determinación simultánea de la fracción fetal y la presencia o ausencia de aneuploidía como se describe en el paso 140 de la realización representada en la Figura 1.

Determinación de la aneuploidía a partir de la secuenciación de bibliotecas enriquecidas

10

15

20

25

30

60

65

35 **[0184]** La presencia o ausencia de aneuploidía se determina a partir de secuenciación de la biblioteca enriquecida para secuencias polimórficas diana como se describe para la biblioteca no enriquecida descrita en el método **100**.

Determinación de la fracción fetal a partir de la secuenciación de bibliotecas enriquecidas

40 [0185] La determinación de la fracción fetal en los pasos 240 (Figura 2), 360 (Figura 3), 480 (Figura 4), y 580 (Figura 5) se basa en el número total de etiquetas que se asignan al primer alelo y el número total de etiquetas que se asignan al segundo alelo en un sitio polimórfico informativo, por ejemplo, un SNP, contenido en un genoma de referencia. Por ejemplo, el genoma de referencia es la secuencia del genoma de referencia humano NCBI36/hg18, o el genoma de referencia comprende la secuencia del genoma de referencia humano NCBI36/hg18 y un genoma de secuencias diana artificial, que incluye las secuencias polimórficas diana. En una realización, el genoma artificial de 45 la diana abarca secuencias polimórficas que comprenden los SNPs rs560681, rs1109037, rs13182883, rs13218440, r as, rs1277284, rs258684, rs1347696, rs508485, rs9788670, rs8137254, rs3143, rs2182957, rs3739005 y rs530022. En una realización, el genoma artificial incluye las secuencias diana polimórficas de las SEQ ID NO: 1-56. En otra realización, el genoma artificial incluye las secuencias diana polimórficas de las SEQ ID NO: 1-26 (véase Ejemplo 7). 50 En otra forma de realización, el genoma artificial de diana abarca secuencias polimórficas que comprenden STR seleccionados de CSF1PO, FGA, TH01, TPOX, vWA, D3S1358,D5S818, D7S820, D8S1179, D13S317, D16S539, D18S51, D21S11, Penta D, Penta E, D2S1338, D1S1677, D2S441, D4S2364, D10S1248, D14S1434, D22S1045, D22S1045, D20S1082, D20S482, D18S853, D17S1301, D17S974, D14S1434, D12ATA63, D11S4463, D10S1435, D10S1248, D9S2157, D9S1122, D8S1115, D6S1017, D6S474, D5S2500, D5S2500, D4S2408, D4S2364, D3S4529, 55 D3S3053, D2S1776, D2S441, D1S1677, D1S1627, y D1GATA113. En otra realización más, el genoma diana artificial abarca secuencias polimórficas que comprenden uno o más SNP en tándem (SEQ ID NO: 1-56). La composición del genoma de las secuencias diana artificiales variará dependiendo de las secuencias polimórficas que se utilizan para determinar la fracción fetal. Por consiguiente, un genoma de secuencias diana artificiales no está limitado a las secuencias SNP o STR ejemplificadas en este documento.

[0186] El sitio informativo polimórfico por ejemplo SNP se identifica por la diferencia en las secuencias alélicas y la cantidad de cada uno de los posibles alelos. El ADNcf fetal está presente en una concentración que es <10% del ADNcf materno. Por lo tanto, la presencia de una contribución menor de un alelo a la mezcla de ácidos nucleicos maternos y fetales en relación con la contribución principal del alelo materno puede ser asignada al feto. Los alelos que se derivan del genoma materno se denominan aquí alelos principales, y los alelos que se derivan del genoma fetal se denominan aquí alelos menores. Los alelos que están representados por niveles similares de etiquetas de

secuencia mapeadas representan alelos maternos. Los resultados de un ejemplo de amplificación múltiple de ácidos nucleicos diana que comprenden SNP y derivados de una muestra de plasma materno se muestran en la **Figura 18**. Los SNP informativos se distinguen del cambio de un solo nucleótido en un sitio polimórfico predeterminado, y los alelos fetales se distinguen por su contribución menor relativa a la mezcla de ácidos nucleicos maternos y fetales en la muestra en comparación con la contribución principal a la mezcla por los ácidos nucleicos maternos, es decir, las secuencias de SNP son informativas cuando la madre es heterocigótica y está presente un tercer alelo paterno, lo que permite una comparación cuantitativa entre el alelo heredado maternalmente y el alelo heredado paternalmente para calcular la fracción fetal. Por consiguiente, la abundancia relativa de ADNcf fetal en la muestra materna se determina como un parámetro del número total de etiquetas de secuencia únicas mapeadas a la secuencia de ácido nucleico diana en un genoma de referencia para cada uno de los dos alelos del sitio polimórfico predeterminado. En una realización, la fracción de ácidos nucleicos fetales en la mezcla de ácidos nucleicos maternos y fetales se calcula para cada uno de los alelos informativos (alelo_x) de la siguiente manera:

% de fracción fetal alelo_x = ((Σ etiquetas de secuencia fetal para alelo_x) / (Σ etiquetas de secuencia materna para alelo_x)) x 100

y la fracción fetal para la muestra se calcula como el promedio de la fracción fetal de todos los alelos informativos. **[0187]** Opcionalmente, la fracción de ácidos nucleicos fetales en la mezcla de ácidos nucleicos fetales y maternos se calcula para cada uno de los alelos informativos (alelo_x) como sigue:

% de fracción fetal alelo_x = ((2 X Σ etiquetas de secuencia fetal para alelo_x) / (Σ etiquetas de secuencia materna para alelo_x)) x 100,

para compensar la presencia de 2 alelos fetales, uno de ellos enmascarado por el fondo materno.

10

15

20

25

30

35

60

65

[0188] La fracción fetal porcentual se calcula para al menos 1, al menos 2, al menos 3, al menos 4, al menos 5, al menos 6, al menos 7, al menos 8, al menos 9, al menos 10, al menos 11, al menos 12, al menos 13, al menos 14, al menos 15, al menos 16, al menos 17, al menos 18, al menos 19, al menos 20 o más alelos informativos. En una realización, la fracción fetal es la fracción fetal promedio determinada para al menos 3 alelos informativos.

[0189] De manera similar, la fracción fetal se puede calcular a partir del número de etiquetas asignadas a los alelos SNP en tándem, como se hace para los SNP únicos, pero teniendo en cuenta las etiquetas asignadas a los dos alelos SNP en tándem x e y están presentes en cada una de las secuencias de ácido nucleico polimórficas amplificadas que se amplifican para enriquecer las muestras, es decir

% de fracción fetal alelo_{x+y} = ((Σ etiquetas de secuencia fetal para alelo_{x-y}) / (Σ etiquetas de secuencia materna para alelo_{x-y})) x 100

[0190] Opcionalmente, la fracción de ácidos nucleicos fetales en la mezcla de ácidos nucleicos maternos y fetales se calcula para cada uno de los alelos informativos (alelo_{x-y}) de la siguiente manera:

% de fracción fetal $alelo_{x+y} = ((2 \text{ X } \Sigma etiquetas de secuencia fetal para <math>alelo_{x+y}) / (\Sigma etiquetas de secuencia materna para <math>alelo_{x+y})) \times 100$,

- [0191] Para compensar la presencia de 2 conjuntos de alelos fetales en tándem, uno de ellos enmascarado por el fondo materno. Las secuencias SNP en tándem son informativas cuando la madre es heterocigótica y está presente un tercer haplotipo paterno, lo que permite una comparación cuantitativa entre el haplotipo heredado maternalmente y el haplotipo heredado paternalmente para calcular la fracción fetal.
- [0192] La fracción fetal puede determinarse a partir de bibliotecas de secuenciación que comprenden secuencias amplificadas polimórficas diana que comprenden STR contando el número de etiquetas asignadas a un alelo mayor (materna) y menor (fetal). Las etiquetas comprenden secuencias de longitud suficiente para abarcar los alelos STR. Los alelos STR informativos pueden dar como resultado una o dos secuencias de etiquetas principales correspondientes a los alelos maternos (y el alelo fetal de herencia materna) y una secuencia de etiquetas secundaria correspondiente al alelo fetal de herencia no materna. La fracción fetal se calcula como una proporción del número de etiquetas asignadas a los alelos fetales y maternos.

Determinación de la fracción fetal por secuenciación masivamente paralela

[0193] Además de usar el presente método para determinar simultáneamente la fracción fetal y la aneuploidía, la fracción fetal se puede determinar independientemente de la determinación de aneuploidía como se describe aquí, pero se puede determinar de forma independiente y/o junto con otros métodos utilizados para la determinación de la aneuploidía, como los métodos descritos en las publicaciones de solicitud de patente US2010/0112575A1, US2009/0087847A1; US2009/0029377A1; US2008/0220422A1; US2008/0138809A1, US2008/0153090A1, y la patente de EE.UU. 7.645.576. El método para determinar la fracción fetal también se puede combinar con ensayos para determinar otras afecciones prenatales asociadas con la madre y/o el feto. Por ejemplo, el método se puede

utilizar junto con los análisis prenatales, por ejemplo, como se describe en las publicaciones de solicitud de patente de EE.UU. Números US2010/0112590A1, US2009/0162842A1, US2007/0207466A1 y US2001/0051341A1.

[0194] La Figura 6 muestra un diagrama de flujo de una realización del método de la enfermedad para determinar la fracción de ácidos nucleicos fetales en una muestra biológica materna mediante secuenciación masivamente paralela de ácidos nucleicos diana polimorfos amplificados por PCR independientemente de la determinación simultánea de aneuploidía. El método comprende la secuenciación de una biblioteca de secuenciación de ácido nucleico diana polimórfica como sique. En el paso 610 se obtiene de un sujeto una muestra materna que comprende una mezcla de ácidos nucleicos fetales y maternos. La muestra es una muestra materna que se obtiene de una mujer embarazada, por ejemplo, una mujer embarazada. Otras muestras maternas pueden ser de mamíferos, por ejemplo, vaca, caballo, perro o gato. Si el sujeto es un humano, la muestra se puede tomar en el primer o segundo trimestre del embarazo. Ejemplos de muestras biológicas maternas son las descritas anteriormente. En el paso 620, la mezcla de ácidos nucleicos fetales y maternos se procesa adicionalmente de la muestra de fracción por ejemplo, plasma, para obtener una muestra que comprende una mezcla purificada de ácidos nucleicos fetales y maternos por ejemplo ADNcf, como se describe para forma de realización 100. En el paso 630, una porción de la mezcla purificada de ADNcf fetal y materno se usa para amplificar una pluralidad de ácidos nucleicos diana polimórficos, cada uno de los cuales comprende un sitio polimórfico. Los sitios polimórficos que están contenidos en los ácidos nucleicos diana incluyen, sin limitación, polimorfismos de nucleótido único (SNP), SNP en tándem, eliminaciones o inserciones de múltiples bases a pequeña escala, llamadas IN-dELS (también llamados polimorfismos de inserción de deleción o DIP), Polimorfismos Multi-Nucleótidos (MNP), repeticiones cortas en tándem (STR), polimorfismo de longitud de fragmentos de restricción (RFLP), o un polimorfismo que comprende cualquier otro cambio de secuencia en un cromosoma. Las secuencias polimórficas ejemplares y los métodos para amplificarlas son como se describen para las realizaciones que se muestran en las Figuras 2-5. En algunas realizaciones, los sitios polimórficos se ubican en cromosomas autosómicos, lo que permite la determinación de la fracción fetal independientemente del sexo del feto. Los polimorfismos asociados con cromosomas distintos de los cromosomas 13, 18, 21 e Y también se pueden usar en los métodos descritos en este documento.

[0195] En el paso **640**, una porción o la totalidad de las secuencias polimórficas amplificadas se utilizan para preparar una biblioteca de secuenciación para la secuenciación de un modo paralelo como se describe. En una realización, la biblioteca se prepara para la secuenciación por síntesis utilizando la química de secuenciación basada en el terminador reversible de Illumina, como se describe en el Ejemplo 13. En el paso **640**, la información de secuencia que se necesita para determinar la fracción fetal se obtiene usando un método NGS. En el paso **650**, la fracción fetal se determina según el número total de etiquetas que se asignan al primer alelo y la cantidad total de etiquetas que se asignan al segundo alelo en un sitio polimórfico informativo, por ejemplo, un SNP, contenido en un genoma de referencia artificial, por ejemplo, un SNP genoma de referencia. Los genomas diana artificiales son como se describen aquí. Se identifican los sitios polimórficos informativos, y la fracción fetal se calcula como se describe.

[0196] La determinación de la fracción fetal de acuerdo con el presente se puede usar junto con pruebas de diagnóstico clínicamente relevantes como control positivo de la presencia de ADNcf para resaltar resultados falsos negativos o falsos positivos derivados de niveles bajos de ADNcf a continuación. El límite de identificación. En una realización, la información de la fracción fetal se puede usar para establecer umbrales y estimar el tamaño mínimo de la muestra en la detección de aneuploidía. Tal uso se describe en el Ejemplo 16 a continuación. La información de la fracción fetal se puede utilizar junto con la información de secuenciación. Por ejemplo, los ácidos nucleicos de una muestra libre de células, por ejemplo, una muestra materna de plasma o suero, pueden usarse para enumerar secuencias en una muestra. Las secuencias se pueden enumerar usando cualquiera de las técnicas de secuencia descritas anteriormente. El conocimiento de la fracción fetal se puede utilizar para establecer los umbrales de "corte" para llamar a los estados "aneuploidía", "normal" o "marginal/sin llamada" (incierto). Luego, se pueden realizar cálculos para estimar el número mínimo de secuencias requeridas para lograr una sensibilidad adecuada (es decir, la probabilidad de identificar correctamente un estado de aneuploidía).

[0197] Los presentes métodos se pueden aplicar para determinar la fracción de cualquier población de ácidos nucleicos en una mezcla de ácidos nucleicos aportados por diferentes genomas. Además de determinar la fracción contribuida a una muestra por dos individuos, por ejemplo, el feto y la madre que lleva el feto contribuyen con los diferentes genomas, los métodos pueden usarse para determinar la fracción de un genoma en una mezcla derivada de dos células diferentes de un individuo, por ejemplo, los genomas son contribuidos a la muestra por células cancerosas aneuploides y células euploides normales del mismo sujeto.

Composiciones y kits

10

15

20

25

30

35

40

45

50

55

60

65

[0198] También se describen en este documento composiciones y kits o sistemas de reactivos útiles para practicar los métodos descritos en el presente documento.

[0199] Las composiciones descritas en este documento pueden ser incluidas en kits para las mezclas de secuenciación masivamente paralelas de moléculas de ácidos nucleicos fetales y maternos por ejemplo ADNcf, presente en una muestra materna por ejemplo una muestra de plasma. Los kits comprenden una composición que comprende al menos un conjunto de cebadores para amplificar al menos un ácido nucleico diana polimórfico en

dichas moléculas de ácido nucleico materno y fetal. Los ácidos nucleicos polimórficos pueden comprender, sin limitación, polimorfismos de un solo nucleótido (SNP), SNP en tándem, deleciones o inserciones de múltiples bases a pequeña escala, llamadas IN-dELS (también denominados polimorfismos de inserción o DIP), polimorfismos de múltiples nucleótidos (MNP), repeticiones cortas en tándem (STR), polimorfismo de la longitud del fragmento de restricción (RFLP), o un polimorfismo que comprende cualquier otro cambio de secuencia en un cromosoma. Los métodos de secuenciación son métodos NGS de moléculas de ácido nucleico único o moléculas de ácido nucleico amplificadas clonalmente como se describe en el presente documento. Los métodos NGS son métodos de secuenciación masivamente paralelos que incluyen pirosecuenciación, secuenciación por síntesis con terminadores de colorante reversibles, secuenciación en tiempo real, secuenciación por ligadura de la sonda oligonucleótida o secuenciación de una sola molécula.

[0200] En una realización, la composición incluye cebadores para amplificar ácidos nucleicos diana polimórficos que comprenden cada uno al menos un SNP. El al menos un SNP se selecciona entre SNP rs560681, rs1109037, rs9866013, rs13182883, rs13218440, rs7041158, rs740598, rs10773760, rs 4530059, rs7205345, rs8078417, rs576261, rs2567608, rs430046, rs9951171, rs338882, rs10776839, rs9905977, rs1277284, rs258684, rs1347696, rs508485, rs9788670, rs8137254, rs3143, rs2182957, rs3739005 y rs530022. Los conjuntos correspondientes de cebadores para amplificar los SNP se proporcionan como SEQ ID NO: 57-112.

[0201] En otra realización, la composición comprende cebadores para amplificar ácidos nucleicos diana polimórficos que comprenden cada uno al menos un SNP en tándem. Los SNP en tándem ejemplares incluyen rs7277033rs2110153; rs2822654- rs1882882; rs368657-rs376635; rs2822731-rs2822732; rs1475881-rs7275487; rs1735976rs2827016; rs447340- rs2824097; rs418989- rs13047336; rs987980- rs987981; rs4143392- rs4143391; rs1691324rs13050434; rs11909758- rs9980111; rs2826842-rs232414; rs1980969-rs1980970; rs9978999-rs9979175; rs1034346-rs12481852; rs7509629- rs2828358; rs4817013-rs7277036; rs9981121-rs2829696; rs455921-rs2898102; rs2898102-rs458848; rs961301- rs2830208; rs2174536-rs458076; rs11088023-rs11088024; rs1011734-rs1011733; rs2831244-rs9789838; rs8132769- rs2831440; rs8134080-rs2831524; rs4817219-rs4817220; rs2250911-rs2250997; rs2831899-rs2831900; rs2831902- rs2831903; rs11088086-rs2251447; rs2832040-rs11088088; rs2832141rs2246777; rs2832959 -rs9980934; rs2833734-rs2833735; rs933121-rs933122; rs2834140-rs12626953; rs2834485rs3453; rs9974986-rs2834703; rs2776266-rs2835001; rs1984014-rs1984015; rs7281674-rs2835316; rs13047304rs13047322; rs2835545-rs4816551; rs2835735-rs2835736; rs13047608-rs2835826; rs2836550-rs2212596; rs2836660-rs2836661; rs465612-rs8131220; rs9980072-rs8130031; rs418359-rs2836926; rs7278447-rs7278858; rs385787-rs367001; rs367001-rs386095; rs2837296-rs2837297; y rs2837381-rs4816672. En una realización, la composición incluye cebadores para amplificar los SNP en tándem ejemplares descritos en el presente documento, y la composición comprende los cebadores ejemplares correspondientes de SEQ ID NO: 197-310.

[0202] En otra realización, la composición comprende cebadores para amplificar ácidos nucleicos diana polimórficos que comprenden cada uno al menos un STR. Los STR ejemplares incluyen CSF1PO, FGA, TH01, TPOX, vWA, D3S1358, D5S818, D7S820, D8S1179, D13S317, D16S539, D18S51, D21S11, D2S1338, Penta D, Penta E, D22S1045, D20S1082, D20S482, D18S853, D17S1301, D17S974, D14S1434, D12ATA63, D11S4463, D10S1435, D10S1248, D9S2157, D9S1122, D8S1115, D6S1017, D6S474, D5S2500, D4S2408, D4S2364, D3S4529, D3S3053, D2S1776, D2S441, D1S1677, D1S1627 y D1GATA113. En una realización, la composición incluye cebadores para amplificar los STR en tándem ejemplares descritos en el presente documento, y la composición comprende los cebadores ejemplares correspondientes de las SEQ ID NO: 113-196.

[0203] Los kits pueden contener una combinación de reactivos que incluye los elementos necesarios para realizar un ensayo de acuerdo con los métodos descritos en el presente documento. El sistema de reactivos se presenta en una forma comercial empaquetada, como una composición o mezcla donde la compatibilidad de los reactivos permitirá, en una configuración de dispositivo de prueba, o más típicamente como un kit de prueba, es decir, una combinación empaquetada de uno o más contenedores, dispositivos o dispositivos similares que contienen los reactivos necesarios y, de preferencia, incluyen instrucciones escritas para la realización de los ensayos. El kit descrito en el presente documento puede adaptarse para cualquier configuración de ensayo y puede incluir composiciones para realizar cualquiera de los diversos formatos de ensayo descritos en el presente documento. Los kits para determinar la fracción fetal comprenden composiciones que incluyen conjuntos de cebadores para amplificar ácidos nucleicos polimórficos presentes en una muestra materna como se describe y, cuando corresponde, los reactivos para purificar el ADNcf, están dentro del alcance de la divulgación. En una realización, un kit diseñado para permitir la cuantificación de secuencias polimórficas fetales y maternas, por ejemplo, STR y/o SNP y/o SNP en tándem, en una muestra de plasma de ADNcf, incluye al menos un conjunto de oligo-nucleótidos específicos de alelo específicos para un SNP seleccionado y/o región de repeticiones en tándem. Preferiblemente, el kit incluye una pluralidad de conjuntos de cebadores para amplificar un panel de secuencias polimórficas. Un kit puede comprender otros reactivos e/o información para genotipar o cuantificar alelos en una muestra (por ejemplo, tampones, nucleótidos, instrucciones). Los kits también incluyen una pluralidad de contenedores de tampones y reactivos apropiados.

Productos informaticos

65

10

15

20

25

30

35

40

45

50

55

[0204] La determinación de aneuploidía y/o la determinación de la fracción fetal se deriva computacionalmente de la gran cantidad de información de secuencia que se obtiene de acuerdo con los métodos descritos en el presente documento. En una realización, se describe en este documento un medio legible por computadora que tiene almacenado en él instrucciones legibles por computadora para determinar la presencia o ausencia de aneuploidía a partir de la información obtenida de la secuenciación de ácidos nucleicos fetales y maternos en una muestra materna. En una realización, el medio legible por computadora utiliza información de secuencia obtenida de una pluralidad de moléculas de ácido nucleico maternas y fetales en una muestra de plasma materno para identificar una serie de etiquetas de secuencia mapeadas para un cromosoma de interés y para un cromosoma de normalización. Utilizando el número de etiquetas de secuencia mapeadas identificadas para un cromosoma normalizador, el medio legible por computadora calcula una dosis de cromosoma para un cromosoma de interés; y compara la dosis de cromosoma con al menos un valor umbral, y de ese modo identifica la presencia o ausencia de aneuploidía fetal. Ejemplos de cromosomas de interés incluyen, sin limitación de los cromosomas 21, 13, 18 y X.

15 [0205] En otra realización, se da a conocer en el presente documento un sistema de procesamiento de ordenador que se adapta o configura para determinar la presencia o ausencia de aneuploidía de la información obtenida de la secuenciación Ácidos nucleicos fetales y maternos en una muestra materna. El sistema de procesamiento informático está adaptado o configurado para (a) utilizar información de secuencia obtenida de una pluralidad de moléculas de ácido nucleico maternas y fetales en una muestra de plasma materno para identificar una serie de 20 etiquetas de secuencia mapeadas para un cromosoma de interés; (b) utilizar la información de secuencia obtenida de una pluralidad de moléculas de ácido nucleico materno y fetal en una muestra de plasma materno para identificar una serie de etiquetas de secuencia mapeadas para al menos un cromosoma normalizador; (c) utilizar el número de etiquetas de secuencia mapeadas identificadas para un cromosoma de interés en el paso (a) y el número de etiquetas de secuencia mapeadas identificadas para al menos un cromosoma normalizador en el paso (b) para 25 calcular una dosis de cromosoma para un cromosoma de interés; y (d) comparar la dosis de cromosoma con al menos un valor de umbral y, de ese modo, identificar la presencia o ausencia de aneuploidía fetal. Los ejemplos de cromosomas de interés incluyen, sin limitación, los cromosomas 21, 13, 18 y X.

[0206] En otra realización, se da a conocer en el presente documento el aparato adaptado o configurado para 30 determinar la presencia o ausencia de aneuploidía de la información obtenida de la secuenciación de ácidos nucleicos fetales y maternos en una muestra materna. El aparato está adaptado o configurado para comprender (a) un dispositivo de secuenciación adaptado o configurado para secuenciar al menos una porción de las moléculas de ácido nucleico en una muestra de plasma materno que comprende moléculas de ácido nucleico materno y fetal, generando así información de secuencia; y (b) un sistema de procesamiento informático configurado para realizar 35 los pasos de: (i) utilizar la información de secuencia generada por el dispositivo de secuenciación para identificar un número de etiquetas de secuencia mapeadas para un cromosoma de interés; (ii) usar la información de secuencia generada por el dispositivo de secuenciación para identificar un número de etiquetas de secuencia mapeadas para al menos un cromosoma normalizador; (iii) usar el número de etiquetas de secuencia mapeadas identificadas para un cromosoma de interés en el paso (i) y el número de etiquetas de secuencia mapeadas identificadas para al 40 menos un cromosoma normalizador en el paso (ii) para calcular una dosis de cromosoma para un cromosoma interesar; y (iv) comparar dicha dosis de cromosoma con al menos un valor umbral, y de ese modo identificar la presencia o ausencia de aneuploidía fetal. Los ejemplos de cromosomas de interés incluyen, sin limitación, los cromosomas 21, 13, 18 y X.

45 **Ejemplo 1**

10

Procesamiento de muestras y extracción de ADNcf

[0207] Muestras de sangre periférica se obtuvieron de las mujeres embarazadas en su primer o segundo trimestre del embarazo y que fueron considerados en riesgo de aneuploidía fetal. El consentimiento informado se obtuvo de cada participante antes de la extracción de sangre. La sangre se extrajo antes de la amniocentesis o de las muestras de vellosidades coriónicas. El análisis del cariotipo se realizó con vellosidades coriónicas o muestras de amniocentesis para confirmar el cariotipo fetal.

[0208] Sangre periférica extraída de cada sujeto se recogió en tubos ACD. Un tubo de muestra de sangre (aproximadamente 6-9 ml/tubo) se transfirió a un tubo de centrifugación de baja velocidad de 15 ml. La sangre se centrifugó a 2640 rpm, 4°C durante 10 min usando la centrifuga Beckman Allegra 6 R y el modelo con rotor GA 3.8.

[0209] Para la extracción de plasma libre de células, la capa superior de plasma se transfirió a un tubo de centrífuga de 15 ml de alta velocidad y se centrifugó a 16.000 x g, 4°C durante 10 min usando centrífuga Beckman Coulter Avanti J-E, y rotor JA-14. Los dos pasos de centrifugación se realizaron dentro de las 72 h posteriores a la extracción de sangre. El plasma libre de células que comprende ADNcf se almacenó a -80°C y se descongeló solo una vez antes de la amplificación de ADNcf en plasma o para la purificación de ADNcf.

65 **[0210]** El ADN libre de células purificado (cfDNA) se extrajo del plasma libre de células utilizando el Mini kit de ADN en sangre QlAamp (Qiagen) esencialmente de acuerdo con las instrucciones del fabricante. Se añadieron un mililitro

de tampón AL y 100 µl de solución de proteasa a 1 ml de plasma. La mezcla se incubó durante 15 minutos a 56°C. Se añadió un mililitro de etanol al 100% a la digestión de plasma. La mezcla resultante se transfirió a mini columnas QIAamp que se ensamblaron con VacVálvulas y VacConectores que se proporcionan en el conjunto de columna QIAvac 24 Plus (Qiagen). Se aplicó vacío a las muestras y el ADNcf retenido en los filtros de la columna se lavó a vacío con 750 µl de tampón AW1, seguido de un segundo lavado con 750 µl de tampón AW24. La columna se centrifugó a 14.000 RPM durante 5 minutos para eliminar cualquier tampón residual del filtro. El ADNcf se eluyó con tampón AE mediante centrifugación a 14.000 RPM, y la concentración se determinó utilizando la Plataforma de cuantificación QubitTM (Invitrogen).

10 Ejemplo 2

15

20

25

30

35

40

45

50

55

60

65

Preparación y secuenciación de bibliotecas de secuenciación primarias y enriquecidas

a. Preparación de bibliotecas de secuenciación - protocolo abreviado

[0211] Todas las bibliotecas de secuenciación, es decir, las bibliotecas primarias y enriquecidas, se prepararon a partir de aproximadamente 2 ng de ADNcf purificado que se extraía de plasma materno. La preparación de la biblioteca se realizó utilizando los reactivos del conjunto de reactivos de ADN de preparación de muestra de ADN NEBNext™, serie 1 (número de pieza E6000L; New England Biolabs, Ipswich, MA), para Illumina® de la siguiente manera. Debido a que el ADN plasmático libre de células es de naturaleza fragmentada, no se realizó una fragmentación adicional por nebulización o sonicación en las muestras de ADN plasmático. Los salientes de aproximadamente 2 ng de fragmentos de ADNfc purificados contenidos en 40 µl se convirtieron en extremos romos fosforilados de acuerdo con el módulo de reparación del extremo NEBNext® incubando en un tubo de microcentrífuga de 1,5 ml el ADNcf con 5 µl de tampón de fosforilación 10X, 2 µl de mezcla de solución de desoxinucleótido (10 mM cada dNTP), 1 µl de una dilución 1:5 de ADN polimerasa I, 1 µl de ADN polimerasa T4 y 1 ul de quinasa de polinucleótido T4 proporcionada en el conjunto de reactivos de ADN de preparación de muestras de ADN NEBNext™ 1 durante 15 minutos a 20°C. Las enzimas se inactivaron por calor mediante la incubación de la mezcla de reacción a 75°C durante 5 minutos. La mezcla se enfrió a 4°C, y la cola de dA del ADN de extremos romos se realizó utilizando 10 µl de la mezcla maestra de cola de dA que contiene el fragmento Klenow (3' a 5' exo menos) (NEBNext™ DNA Sample Prep DNA Reagent Set 1), e incubación durante 15 minutos a 37°C. Posteriormente, el fragmento Klenow se inactivó por calor mediante la incubación de la mezcla de reacción a 75°C durante 5 minutos. Después de la inactivación del fragmento Klenow, se usó 1 µl de una dilución 1:5 de Oligo Mix del Adaptador Genómico de Illumina (Núm. de Parte 1000521; Illumina Inc., Hayward, CA) para ligar los adaptadores de Illumina (Adaptadores Y Sin Índice) al ADN con cola de dA utilizando 4 µl de la ligasa de ADN T4 provista en el conjunto de reactivos de ADN 1 de preparación de muestra de ADN NEBNext™, incubando la mezcla de reacción durante 15 minutos a 25°C. La mezcla se enfrió a 4°C y el ADNcf ligado con el adaptador se purificó a partir de adaptadores no dilatados, dímeros adaptadores y otros reactivos utilizando perlas magnéticas proporcionadas en el sistema de purificación Agencourt AMPure XP PCR (Parte Nº A63881; Beckman Coulter Genomics, Danvers, MA). Se realizaron dieciocho ciclos de PCR para enriquecer selectivamente el ADNcf ligado con adaptador (25 µl) utilizando la mezcla maestra de alta fidelidad Phusion ® (25 µl; Finnzymes, Woburn, MA) y los cebadores de PCR de Illumina (0,5 µm cada uno) complementarios a adaptadores (n.° de pieza 1000537 y 1000537). El ADN ligado con el adaptador se sometió a PCR (98°C durante 30 segundos; 18 ciclos de 98°C durante 10 segundos, 65°C durante 30 segundos y 72°C durante 30; extensión final a 72°C durante 5 minutos y manténgalo a 4°C) usando Illumina Genomic PCR Primers (números de pieza 100537 y 1000538) y la mezcla maestra PhusionHFPCR incluida en el conjunto de reactivos de ADN de preparación de muestras de ADN NEBNext™, conjunto 1, de acuerdo con las instrucciones del fabricante. El producto amplificado se purificó utilizando el sistema de purificación por PCR Agencourt AMPure XP (Agencourt Bioscience corporation, Beverly, MA) de acuerdo con las instrucciones del fabricante disponibles en www.beckmangenomics.com/products/AMPureXPProtocol 000387v001.pdf. El producto amplificado purificado se eluyó en 40 µl de Qiagen EB Buffer, y se analizó la concentración y la distribución de tamaños de las bibliotecas amplificadas utilizando el kit Agilent DNA 1000 para el bioanalizador 2100 (Agilent technologies Inc., Santa Clara, CA).

b. Preparación de bibliotecas de secuenciación de protocolo de longitud completa.

[0212] El protocolo de longitud completa descrito es esencialmente el protocolo estándar proporcionado por Illumina, y sólo difiere del protocolo Illumina en la purificación de la biblioteca amplificada: el protocolo Illumina instruye que la biblioteca amplificada se purificó usando electroforesis en gel, mientras que el protocolo aquí descrito usa perlas magnéticas para el mismo paso de purificación. Aproximadamente 2 ng de ADNcf purificado que se había extraído del plasma materno se usaron para preparar una biblioteca de secuenciación primaria utilizando el conjunto de reactivos 1 de ADN de preparación de muestra NEBNextTM (Nº de pieza E6000L; New England Biolabs, Ipswich, MA) para Illumina® esencialmente de acuerdo con las instrucciones del fabricante. Todos los pasos, excepto la purificación final de los productos ligados con adaptador, que se realizaron con perlas magnéticas y reactivos de Agencourt en lugar de la columna de purificación, se realizaron de acuerdo con el protocolo que acompaña a los reactivos NEBNextTM para la preparación de muestras para una biblioteca de ADN genómico secuenciada utilizando el Illumina® GAII. El protocolo NEBNextTM sigue esencialmente el proporcionado por Illumina, que está disponible en grcf.jhml.edu/hts/protocols/11257047 ChIP Sample Prep.pdf.

[0213] Los salientes de aproximadamente 2 ng de fragmentos de ADNcf purificados contenidos en 40 µl se convirtieron en extremos romos fosforilados de acuerdo con el módulo de reparación de extremo NEBNext® incubando los 40 µl de ADNcf con 5 µl de tampón de fosforilación 10X, 2 µl de mezcla de solución de desoxinucleótidos (10 mM cada dNTP), 1 µl de una dilución 1:5 de ADN polimerasa I, 1 µl de ADN polimerasa T4 y 1 ul de quinasa de polinucleótido T4 proporcionada en el conjunto de reactivos de ADN de preparación de muestra de NEBNext™ un tubo de microcentrífuga de 200 µl en un termociclador durante 30 minutos a 20°C. La muestra se enfrió a 4°C y se purificó utilizando una columna QIAQuick proporcionada en el kit de purificación por PCR QIAQuick (QIAGEN Inc., Valencia, CA) de la siguiente manera. La reacción de 50 µl se transfirió a un tubo de microcentrífuga de 1,5 ml y se agregaron 250 µl de tampón Qiagen PB. Los 300 µl resultantes se transfirieron a una columna QIAquick, que se centrifugó a 13.000 RPM durante 1 minuto en una microcentrífuga. La columna se lavó con 750 µl de Qiagen Buffer PE y se volvió a centrifugar. El etanol residual se eliminó mediante una centrifugación adicional durante 5 minutos a 13.000 RPM. El ADN se eluyó en 39 µl de Qiagen Buffer EB por centrifugación. La cola de dA de 34 µl del ADN de extremos romos se logró utilizando 16 µl de la mezcla maestra de colas de dA que contiene el fragmento Klenow (3' a 5' menos) (incubación de muestra de ADN NEBNext™ Conjunto 1 de reactivos de ADN), e incubación durante 30 minutos a 37°C de acuerdo con el NEBNext® dA-Tailing Module del fabricante. La muestra se enfrió a 4°C y se purificó utilizando una columna provista en el Kit de purificación de PCR MinElute (QIAGEN Inc., Valencia, CA) de la siguiente manera. Los 50 µl de reacción se transfirieron a 1,5 ml de tubo de microcentrífuga y se agregaron 250 µl de Qiagen Buffer PB. Los 300 µl se transfirieron a la columna MinElute, que se centrifugó a 13.000 RPM durante 1 minuto en una microcentrífuga. La columna se lavó con 750 µl de Qiagen Buffer PE y se volvió a centrifugar. El etanol residual se eliminó mediante una centrifugación adicional durante 5 minutos a 13.000 RPM. El ADN se eluyó en 15 µl de Qiagen Buffer EB por centrifugación. Diez microlitros del eluido de ADN se incubaron con 1 µl de una dilución 1:5 de la Illumina Genomic Adapter Oligo Mix (Parte Nº 1.000.521), 15 µl de 2X Quick Ligation Reaction Buffer, y 4 µl Quick T4 DNA Ligase, durante 15 minutos a 25°C según el módulo de ligadura rápida NEBNext®. La muestra se enfrió a 4°C y se purificó utilizando una columna MinElute de la siguiente manera. Ciento cincuenta microlitros de Qiagen Buffer PE se agregaron a la reacción de 30 µl, y todo el volumen se transfirió a una columna MinElute a una columna MinElute, que se centrifugó a 13.000 RPM durante 1 minuto en una microcentrífuga. La columna se lavó con 750 µl de Qiagen Buffer PE y se volvió a centrifugar. El etanol residual se eliminó mediante una centrifugación adicional durante 5 minutos a 13.000 RPM. El ADN se eluyó en 28 µl de Qiagen Buffer EB por centrifugación. Veintitrés microlitros del eluato de ADN ligado al adaptador se sometieron a 18 ciclos de PCR (98°C durante 30 segundos; 18 ciclos de 98°C durante 10 segundos, 65°C durante 30 segundos y 72°C durante 30; extensión final a 72°C durante 5 minutos, y mantener a 4°C) usando Illumina Genomic PCR Primers (números de pieza 100537 y 1000538) y la mezcla maestra de Phusion HF PCR proporcionada en el conjunto de reactivos de ADN de preparación de muestras de ADN NEBNext™, de acuerdo con las instrucciones del fabricante. El producto amplificado se purificó utilizando el sistema de purificación por PCR Agencourt AMPure XP (Agencourt Bioscience Corporation, Beverly, MA) de acuerdo con las instrucciones del fabricante disponibles en www.beckmangenomics.com/products/AMPureXPProtocol_000387v001.pdf. El sistema de purificación por PCR Agencourt AMPure XP elimina los dNTP, cebadores, dímeros de cebadores, sales y otros contaminantes no incorporados, y recupera los amplicones mayores de 100 pb. El producto amplificado purificado se eluyó de las perlas de Agencourt en 40 µl de Qiagen EB Buffer y se analizó la distribución de tamaños de las bibliotecas utilizando el kit Agilent DNA 1.000 para el bioanalizador 2100 (Agilent technologies Inc., Santa Clara, CA).

10

15

20

25

30

35

40

45

50

55

60

65

c. Análisis de las bibliotecas de secuenciación preparadas de acuerdo con los protocolos abreviados (a) y completos (b)

[0214] Los elctropherograms generados por el Bioanalizador se muestran en la Figura 7. La Figura 7 (A) muestra el electroferograma de la ADN de biblioteca preparada a partir de ADNcf purificada a partir de muestra de plasma M24228 utilizando el protocolo de longitud completa descrito en (a), y la Figura 7 (B) muestra el electroferograma del ADN de la biblioteca preparado a partir de ADNcf purificado de la muestra de plasma M24228 utilizando el protocolo de longitud completa descrito en (b). En ambas figuras, los picos 1 y 4 representan el marcador inferior de 15 pb y el marcador superior de 1.500, respectivamente; los números sobre los picos indican los tiempos de migración para los fragmentos de la biblioteca; y las líneas horizontales indican el umbral establecido para la integración. El electroforegrama en la Figura 7 (A) muestra un pico menor de fragmentos de 187 pb y un pico mayor de fragmentos de 263 pb. mientras que el electroferograma en la Figura 7 (B) muestra solo un pico a 265 pb. La integración de las áreas de los picos dio como resultado una concentración calculada de 0,40 ng/ul para el ADN del pico de 187 pb en la Figura 7 (A), una concentración de 7,34 ng/µl para el ADN del pico de 263 pb en la Figura 7 (A), y una concentración de 14,72 ng/µl para el ADN del pico de 265 pb en la Figura 7 (B). Se sabe que los adaptadores de Illumina que se ligaron al ADNcf tienen 92 pb, que cuando se sustraen del 265 pb, indican que el tamaño máximo de pfcNA es de 173 pb. Es posible que el pico menor a 187 pb represente fragmentos de dos cebadores que se ligaron de extremo a extremo. Los fragmentos de dos cebadores lineales se eliminan del producto de la biblioteca final cuando se usa el protocolo abreviado. El protocolo abreviado también elimina otros fragmentos más pequeños de menos de 187 pb. En este ejemplo, la concentración de ADNcf ligado con adaptador purificado es el doble que la del ADNcf ligado con adaptador producido utilizando el protocolo de longitud completa. Se ha observado que la concentración de los fragmentos de ADNcf ligados con el adaptador es siempre mayor que la obtenida utilizando el protocolo de longitud completa (datos no mostrados).

[0215] Por lo tanto, una ventaja de la preparación de la biblioteca de secuenciación utilizando el protocolo abreviado

es que la biblioteca obtenida consistentemente comprende sólo un pico principal en el intervalo 262-267bp mientras que la calidad de la biblioteca preparada usando el protocolo de longitud completa varía como se refleja por el número y la movilidad de picos distintos de los que representan el ADNcf. Los productos que no son de ADNcf ocuparían espacio en la célula de flujo y disminuirían la calidad de la amplificación del grupo y la imagen posterior de las reacciones de secuenciación, lo que subyace a la asignación general del estado de aneuploidía. Se demostró que el protocolo abreviado no afecta la secuenciación de la biblioteca (consulte la **Figura 8**).

[0216] Otra ventaja de la preparación de la biblioteca de secuenciación utilizando el protocolo abreviado es que los tres pasos enzimáticos de extremos romos, cola del dA, y el adaptador de la ligación, tardan menos de una hora para completar para apoyar la validación y la aplicación de un servicio de diagnostico de aneuploides rápida

[0217] Otra ventaja es que los tres pasos enzimáticos de extremos romos, cola de dA y ligadura del adaptador, se realizan en el mismo tubo de reacción, evitando así múltiples transferencias de muestras que potencialmente conducirían a la pérdida de material y, lo que es más importante, mezclar muestras y contaminación de la muestra.

Ejemplo 3

5

10

15

20

25

30

35

40

45

50

55

65

Secuenciación masiva paralela y determinación de aneuploidía

[0218] Muestras de sangre periférica se obtuvieron de mujeres embarazadas y ADNcf se purificó de la fracción de plasma como se describe en el Ejemplo 1. Todas las bibliotecas de secuenciación se prepararon utilizando el protocolo de preparación de biblioteca abreviado descrito en el Ejemplo 2. El ADN amplificado se secuenció utilizando Genoma Analizador de Illumina II para obtener lecturas de un solo extremo de 36 pb. Solo se necesitan aproximadamente 30 pb de información de secuencia aleatoria para identificar una secuencia como perteneciente a un cromosoma humano específico. Las secuencias más largas pueden identificar de forma única objetivos más particulares. En el presente caso, se obtuvo un gran número de lecturas de 36 pb, que cubren aproximadamente el 10% del genoma. La secuenciación del ADN de la biblioteca se realizó utilizando el Analizador de Genoma II (Illumina Inc., San Diego, CA, EE.UU.) según los protocolos estándar del fabricante. Las copias del protocolo para la secuenciación del genoma completo utilizando la tecnología Illumina/Solexa se pueden encontrar en BioTechniques.RTM. Protocol Guide 2007, publicado en diciembre de 2006: p. 29, y en la web en biotechniques.com/default.asp? page=Protocol&subsection=article_display&id=112378. La biblioteca de ADN se diluyó a InM y se desnaturalizó. El ADN de biblioteca (5 pM) se sometió a amplificación de grupo de acuerdo con el procedimiento descrito en Cluster Station User Guide y Cluster Station Operations Guide de Illumina, disponible en Internet en illumina.com/systems/genome analyzer/cluster station.ilmn. Al finalizar la secuenciación de la muestra, el "Software de control del secuenciador" de Illumina transfirió los archivos de imagen y de llamada base a un servidor Unix que ejecuta el software Illumina Analyzer Pipeline de Illumina versión 1.51. El programa Illumina "Gerald" se ejecutó para alinear secuencias con el genoma humano de referencia que se deriva del genoma hg18 proporcionado por el Centro Nacional de Información Biotecnológica (NCBI36/hg18, disponible en la web en http://genome.ucsc.edu/cgi-bin/hgGateway?org=Human&db=hg18&hgsid=166260105). Los datos de secuencia generados por el procedimiento anterior que se alinearon de forma única con el genoma se leyeron desde la salida de Gerald (archivos export.txt) por un programa (c2c.pl) que se ejecuta en una computadora que ejecuta el sistema operativo Linnux. Las alineaciones de secuencia con desajustes de base se permitieron e incluyeron en los recuentos de alineación solo si se alineaban de forma única con el genoma. Se excluyeron las alineaciones de secuencia con coordenadas de inicio y final idénticas (duplicados).

[0219] Entre aproximadamente 5 y 15 millones de etiquetas de 36 pb con 2 o menos desajustes se asignaron de forma única al genoma humano. Todas las etiquetas mapeadas se contaron e incluyeron en el cálculo de las dosis de cromosomas en las muestras de prueba y de calificación. Las regiones que se extienden desde la base 0 hasta la base 2 x 106, la base 10 x 106 hasta la base 13 x 106 y la base 23 x 106 hasta el final del cromosoma Y, se excluyeron específicamente del análisis porque las etiquetas derivadas de fetos masculinos o femeninos se asignan a estas regiones del cromosoma Y.

[0220] Se observó que alguna variación en el número total de etiquetas de secuencia mapeadas a cromosomas individuales a través de muestras secuenciadas en la misma serie (variación inter-cromosómica), pero se observó una variación substancialmente mayor entre las diferentes secuencias de secuenciación (variación de ejecución de inter-secuenciación).

Ejemplo 4

60 Dosis y varianza para los cromosomas 13, 18, 21, X e Y

[0221] Para examinar la extensión de la variación inter-cromosómica y de inter-secuenciación en el número de etiquetas de secuencia mapeadas para todos los cromosomas, plasma de ADNpc de la sangre periférica obtenido de 48 pacientes embarazadas voluntarias se extrajo y se secuenció como se describe en el Ejemplo 1, y se analizó como sigue.

[0222] Se determinó el número total de etiquetas de secuencias que fueron asignadas a cada cromosoma (densidad de etiqueta de secuencia). Alternativamente, el número de etiquetas de secuencia mapeadas puede normalizarse a la longitud del cromosoma para generar una relación de densidad de etiqueta de secuencia. La normalización a la longitud del cromosoma no es un paso necesario, y se puede realizar únicamente para reducir el número de dígitos en un número para simplificarlo para la interpretación humana. Las longitudes de cromosomas que se pueden usar para normalizar los recuentos de etiquetas de secuencia pueden ser las longitudes proporcionadas en Internet en gnome.ucsc.edu/goldenPath/stats.html#hg18.

5

10

15

20

25

30

35

65

[0223] La densidad de etiqueta de secuencia resultante para cada cromosoma estaba relacionado con la densidad de etiqueta de secuencia de cada uno de los cromosomas restantes para derivar una dosis de cromosoma cualificado, que se calculó como la relación de la densidad de etiqueta de secuencia para el cromosoma de interés por ejemplo, cromosoma 21, y la densidad de la etiqueta de secuencia de cada uno de los cromosomas restantes, es decir, los cromosomas 1-20, 22 y X. La Tabla 1 proporciona un ejemplo de la dosis de cromosoma calificada calculada para los cromosomas de interés 13, 18, 21, X e Y, determinada en una de las muestras calificadas. Las dosis de cromosomas se determinaron para todos los cromosomas en todas las muestras, y las dosis promedio para los cromosomas de interés 13, 18, 21, X e Y en las muestras calificadas se proporcionan en las Tablas 2 y 3, y se representan en las Figuras 9-13. Las Figuras 9-13 también representan las dosis de cromosomas para las muestras de prueba. Las dosis de cromosomas para cada uno de los cromosomas de interés en las muestras calificadas proporcionan una medida de la variación en el número total de etiquetas de secuencia mapeadas para cada cromosoma de interés en relación con la de cada uno de los cromosomas restantes. Así, las dosis de cromosomas calificadas pueden identificar el cromosoma o un grupo de cromosomas, es decir, un cromosoma normalizador, que tiene una variación entre las muestras más cercana a la variación del cromosoma de interés y que serviría como secuencias ideales para normalizar los valores para una evaluación estadística adicional. Las figuras 14 y 15 representan las dosis promedio calculadas de cromosomas determinadas en una población de muestras calificadas para los cromosomas 13, 18 y 21, y los cromosomas X e Y.

[0224] En algunos casos, el mejor cromosoma normalizador puede no tener la menor variación, pero puede tener una distribución de dosis calificadas que distinga mejor una muestra de prueba o muestras de las muestras calificadas, es decir, el mejor cromosoma normalizador puede no tener la más baja variación, pero puede tener la mayor diferenciabilidad. Por lo tanto, la diferenciabilidad explica la variación en la dosis de cromosoma y la distribución de las dosis en las muestras calificadas.

[0225] Las tablas 2 y 3 proporcionan el coeficiente de variación como la medida de la variabilidad y los valores de la prueba t de Student como una medida de la diferenciabilidad para los cromosomas 18, 21, X e Y, en donde, cuanto más pequeño sea el valor de la prueba T, mayor la diferenciabilidad. La diferenciabilidad para el cromosoma 13 se determinó como la proporción de la diferencia entre la dosis media del cromosoma en las muestras calificadas y la dosis para el cromosoma 13 en la única muestra de prueba T13, y la desviación estándar de la media de la dosis calificada.

40 **[0226]** Las dosis de cromosomas cualificados también sirven como la base para determinar los valores de umbral cuando la identificación de aneuploidías en muestras de ensayo como se describe en lo siguiente.

TABLA 1

osis de cromoso	onias camicada	11342, 46		5, 21, X e 1 (II -	· i, illuestia i
Cromosoma	chr 21	chr 18	chr 13	chr X	chrY
chr1	0,149901	0,306798	0,341832	0,490969	0,003958
chr2	0,15413	0,315452	0,351475	0,504819	0,004069
chr3	0,193331	0,395685	0,44087	0,633214	0,005104
chr4	0,233056	0,476988	0,531457	0,763324	0,006153
chr5	0,219209	0,448649	0,499882	0,717973	0,005787
chr6	0,228548	0,467763	0,521179	0,748561	0,006034
chr7	0,245124	0,501688	0,558978	0,802851	0,006472
chr8	0,256279	0,524519	0,584416	0,839388	0,006766
chr9	0,309871	0,634203	0,706625	1,014915	0,008181
chr10	0,25122	0,514164	0,572879	0,822817	0,006633
chr11	0,257168	0,526338	0,586443	0,8423	0,00679
chr12	0,275192	0,563227	0,627544	0,901332	0,007265
chr13	0,438522	0,897509	1	1,436285	0,011578
chr14	0,405957	0,830858	0,925738	1,329624	0,010718
chr15	0,406855	0,832697	0,927786	1,332566	0,010742
chr16	0,376148	0,769849	0,857762	1,231991	0,009931
chr17	0,383027	0,783928	0,873448	1,254521	0,010112
chr18	0,488599	1	1,114194	1,600301	0,0129
chr19	0,535867	1,096742	1,221984	1,755118	0,014148
chr20	0,467308	0,956424	1,065642	1,530566	0,012338
chr21	1	2,046668	2,280386	3,275285	0,026401
chr22	0,756263	1,547819	1,724572	2,476977	0,019966
chrX	0,305317	0,624882	0,696241	1	0,008061
chrY	37,87675	77,52114	86,37362	124,0572	1

TABLA 2

Dosis 13	de cromoso	mas califica	da, var	ianza y dife	erenciabilida	d para los cr	omoso	mas 21, 18 y
	21 (n=35)				18 (n=40)			
	Promedio	DesEst	CV	Prueba T	Promedio	DesEst	CV	Prueba T
chr1	0,15335	0,001997	1,30	3,18E-10	0,31941	0,008384	2,62	0,001675
chr2	0,15267	0,001966	1,29	9,87E-07	0,31807	0,001756	0,55	4,39E-05
chr3	0,18936	0,004233	2,24	1,04E-05	0,39475	0,002406	0,61	3,39E-05
chr4	0,21998	0,010668	4,85	0,000501	0,45873	0,014292	3,12	0,001349
chr5	0,21383	0,005058	2,37	1,43E-05	0,44582	0,003288	0,74	3,09E-05
chr6	0,22435	0,005258	2,34	1,48E-05	0,46761	0,003481	0,74	2,32E-05
chr7	0,24348	0,002298	0,94	2,05E-07	0,50765	0,004669	0,92	9,07E-05
chr8	0,25269	0,003497	1,38	1,52E-06	0,52677	0,002046	0,39	4,89E-05
chr9	0,31276	0,003095	0,99	3,83E-09	0,65165	0,013851	2,13	0,000559
chr10	0,25618	0,003112	1,21	2,28E-10	0,53354	0,013431	2,52	0,002137
chr11	0,26075	0,00247	0,95	1,08E-09	0,54324	0,012859	2,37	0,000998
chr12	0,27563	0,002316	0,84	2,04E-07	0,57445	0,006495	1,13	0,000125
chr13	0,41828	0,016782	4,01	0,000123	0,87245	0,020942	2,40	0,000164
chr14	0,40671	0,002994	0,74	7,33E-08	0,84731	0,010864	1,28	0,000149
chr15	0,41861	0,007686	1,84	1,85E-10	0,87164	0,027373	3,14	0,003862
chr16	0,39977	0,018882	4,72	7,33E-06	0,83313	0,050781	6,10	0,075458
chr17	0,41394	0,02313	5,59	0,000248	0,86165	0,060048	6,97	0,088579

chr18	0,47236	0,016627	3,52	1,3E-07				
chr19	0,59435	0,05064	8,52	0,01494	1,23932	0,12315	9,94	0,231139
chr20	0,49464	0,021839	4,42	2,16E-06	1,03023	0,058995	5,73	0,061101
chr21					2,03419	0,08841	4,35	2,81E-05
chr22	0,84824	0,070613	8,32	0,02209	1,76258	0,169864	9,64	0,181808
chrX	0,27846	0,015546	5,58	0,000213	0,58691	0,026637	4,54	0,064883

TABLA 3

2	0	
2	0	

	omosomas o 13 (n=47)	· · · · · · · · · · · · · · · · · · ·		•	X (n=19)			· ·
	Promedio	DesEst	CV	Dif	Promedio	DesEst	CV	Prueba T
chr1	0,36536	0,01775	4,86	1,904	0,56717	0.025988	4.58	0.001013
chr2	0,36400	0,009817	2,70	2,704	0,56753	0.014871	2.62	9.6E-08
chr3	0,45168	0,007809	1,73	3,592	0,70524	0.011932	1.69	6.13E-11
chr4	0,52541	0,005264	1,00	3,083	0,82491	0.010537	1.28	1.75E-15
chr5	0,51010	0,007922	1,55	3,944	0,79690	0.012227	1.53	1.29E-11
chr6	0,53516	0,008575	1,60	3,758	0,83594	0.013719	1.64	2.79E-11
chr7	0,58081	0,017692	3,05	2,445	0,90507	0.026437	2.92	7.41E-07
chr8	0,60261	0,015434	2,56	2,917	0,93990	0.022506	2.39	2.11E-08
chr9	0,74559	0,032065	4,30	2,102	1,15822	0.047092	4.07	0.000228
chr10	0,61018	0,029139	4,78	2,060	0,94713	0.042866	4.53	0.000964
chr11	0,62133	0,028323	4,56	2,081	0,96544	0.041782	4.33	0.000419
chr12	0,65712	0,021853	3,33	2,380	1,02296	0.032276	3.16	3.95E-06
chr13					1,56771	0,014258	0,91	2,47E-15
chr14	0,96966	0,034017	3,51	2,233	1,50951	0.05009	3.32	8.24E-06
chr15	0,99673	0,053512	5,37	1,888	1,54618	0.077547	5.02	0.002925
chr16	0,95169	0,080007	8,41	1,613	1,46673	0.117073	7.98	0.114232
chr17	0,98547	0,091918	9,33	1,484	1,51571	0.132775	8.76	0.188271
chr18	1,13124	0,040032	3,54	2,312	1,74146	0.072447	4.16	0.001674
chr19	1,41624	0,174476	12,32	1,306	2,16586	0.252888	11.68	0.460752
chr20	1,17705	0,094807	8,05	1,695	1,81576	0.137494	7.57	0.08801
chr21	2,33660	0,131317	5,62	1,927	3,63243	0.235392	6.48	0.00675
chr22	2,01678	0,243883	12,09	1,364	3,08943	0.34981	11.32	0.409449
chrX	0,66679	0,028788	4,32	1,114		•	•	
chr2-6	0,46751	0,006762	1,45	4,066				
chr3-6	0,50332	0,005161	1,03	5,260				
chr_tot		•	•		1,13209	0,038485	3,40	2,7E-05
	Y (n=26)							
	Promedio	DesEst	CV	Prueba T				
Chr 1-22, X	0,00734	0,002611	30,81	1,8E-12				

[0227] Los ejemplos de diagnósticos de T21, T13, T18 y un caso de síndrome de Turner obtenidos usando los cromosomas normalizadores, las dosis de cromosomas y la diferenciabilidad para cada uno de los cromosomas de interés se describen en el Ejemplo 3.

Ejemplo 5

Diagnóstico de la aneuploidía fetal mediante el uso de cromosomas normalizadores

[0228] Para aplicar el uso de dosis de cromosomas para evaluar la aneuploidía en una muestra de prueba biológica, se obtuvieron muestras de sangre materna de voluntarias embarazadas y se preparó el ADNcf, y se secuenció una

biblioteca de secuenciación según el Protocolo abreviado descrito en el Ejemplo 2 y analizado.

Trisomia 21

[0229] La Tabla 4 proporciona la dosis calculada para el cromosoma 21 en una muestra de prueba ejemplar (nº 11403). El umbral calculado para el diagnóstico positivo de la aneuploidía T21 se estableció en >2 desviaciones estándar de la media de las muestras calificadas (normales). Se proporcionó un diagnóstico para T21 basado en que la dosis de cromosoma en la muestra de prueba fue mayor que el umbral establecido. Los cromosomas 14 y 15 se usaron como cromosomas normalizadores en cálculos separados para mostrar que cualquiera de los cromosomas tiene la variabilidad más baja *p. ej.* el cromosoma 14, o un cromosoma que tiene la mayor diferenciabilidad *p. ej.* el cromosoma 15, se puede utilizar para identificar la aneuploidía. Trece muestras de T21 fueron identificadas usando las dosis de cromosomas calculadas y las muestras de aneuploidía eran T21 por cariotipo.

TABLA 4

15

20

30

35

10

5

Dosis de cro	mosoma para una aneupl	oidía T21 (muestra # 114	103, 47 XY +21)
Cromosoma	Densidad de la etiqueta de secuencia	Dosis de cromosoma para Chr 21	Límite
Chr21	333.660	0,419672	0.412696
Chr14	795.050	0,419072	0,412090
Chr21	333.660	0.441038	0.422079
Chr15	756.533	0,441036	0,433978

25 **Trisomia 18**

[0230] La Tabla 5 proporciona la dosis calculada para el cromosoma 18 en una muestra de prueba (nº 11390). El umbral calculado para el diagnóstico positivo de la aneuploidía T18 se estableció en 2 desviaciones estándar de la media de las muestras calificadas (normales). Se proporcionó un diagnóstico para T18 basado en que la dosis de cromosoma en la muestra de prueba fue mayor que el umbral establecido. El cromosoma 8 se utilizó como cromosoma normalizador. En este caso, el cromosoma 8 tuvo la variabilidad más baja y la mayor diferenciabilidad. Se identificaron ocho muestras de T18 utilizando dosis de cromosomas, y se confirmó que eran T18 por cariotipo.

[0231] Estos datos muestran que un cromosoma normalizador puede tener tanto la variabilidad más baja como la mayor diferencia.

TABLA 5

40

45

50

Dosis	de cromosoma para una aneuploidí	a T21 (muestra nº 11403, 47 XY	+21)
Cromosoma	Densidad de la etiqueta de secuencia	Dosis de cromosoma para Chr 21	Umbral
Chr18	602.506	0.595060	0 520067
Chr8	1.029.803	0,585069	0,530867

Trisomia 13

[0232] La tabla 6 proporciona la dosis calculada para el cromosoma 13 en una muestra de prueba (n° 51236). El umbral calculado para el diagnóstico positivo de aneuploidía T13 se estableció en 2 desviaciones estándar de la media de las muestras calificadas. Se proporcionó un diagnóstico para T13 basado en que la dosis de cromosoma en la muestra de prueba fue mayor que el umbral establecido. La dosis de cromosoma para el cromosoma 13 se calculó utilizando el cromosoma 5 o el grupo de cromosomas 3, 4, 5 y 6 como el cromosoma normalizador. Se identificó una muestra de T13.

55 TABLA 6

Dosis de ci	romosoma para una aneuploidía	T21 (muestra nº 11403, 47 XY -	+21)
Cromosoma	Densidad de la etiqueta de	Dosis de cromosoma para	Umbral
	secuencia	Chr 21	
Chr13	692.242	0,541343	0,52594
Chr5	1.278.749		
Chr13	692.242	0,530472	0,513647
Chr3-6	1.304.954		
[promedio]			

65

[0233] La densidad de etiqueta de secuencia para los cromosomas 3-6 es los recuentos promedio de etiqueta para los cromosomas 3-6.

[0234] Los datos muestran que la combinación de los cromosomas 3, 4, 5 y 6 proporciona una variabilidad menor que la del cromosoma 5, y la mayor diferenciabilidad que cualquiera de los otros cromosomas.

[0235] Por lo tanto, se puede usar un grupo de cromosomas como el cromosoma normalizador para determinar las dosis de cromosomas e identificar aneuploidías.

10 Síndrome de Turner (monosomía X)

15

20

25

40

50

55

60

65

[0236] La Tabla 7 proporciona la dosis calculada para los cromosomas X e Y en una muestra de prueba (nº 51238). El umbral calculado para el diagnóstico positivo del Síndrome de Turner (monosomía X) se estableció para el cromosoma X en < -2 desviaciones estándar de la media, y para la ausencia del cromosoma Y en < -2 desviaciones estándar de la media para muestras calificadas (normales).

TABLA 7

Dosis de cromosor	na para una aneuploidía de	Turners (XO) (muestra n.º 512	238, 45 X)
Cromosoma	Densidad de la etiqueta de secuencia	Dosis de cromosoma para Chr X y Chr Y	Umbral
ChrX	873.631	0,786642	0,803832
Chr4	1.110.582		
ChrY	1.321	0,001542101	0,00211208
Chr_Total (1-22, X) (promedio)	856.623.6		

[0237] Se comprobó que una muestra que tiene una dosis del cromosoma X menor que la del umbral conjunto tenía menos de un cromosoma X. Se determinó que la misma muestra tenía una dosis de cromosoma Y que era menor que el umbral establecido, lo que indica que la muestra no tenía un cromosoma Y. Por lo tanto, la combinación de dosis de cromosomas para X e Y se usó para identificar las muestras del Síndrome de Turner (monosomía X).

[0238] Por lo tanto, el método descrito en el presente documento permite la determinación de CNV de cromosomas. En particular, el método permite la determinación de aneuploidías cromosómicas por encima y por debajo de la representación mediante la secuenciación masiva en paralelo del plasma de la madre ADNcf y la identificación de cromosomas normalizados para el análisis estadístico de los datos de secuenciación. La sensibilidad y la fiabilidad del método permiten realizar pruebas precisas de aneuploidía en el primer y segundo trimestre.

Ejemplo 6

Determinación de la aneuploidía parcial.

[0239] Se aplicó el uso de dosis de secuencia para la evaluación de la aneuploidía parcial en una muestra de ensayo biológica de ADNcf que fue preparada a partir de plasma de sangre, y se secuenció como se describe en el Ejemplo 1. Se confirmó r cariotipo que la muestra se derivó de un sujeto con una eliminación parcial del cromosoma 11.

[0240] El análisis de los datos de secuenciación para la aneuploidía parcial (eliminación parcial del cromosoma 11, es decir, q21-q23) se realizó como se describe para las aneuploidías cromosómicas en los ejemplos anteriores. El mapeo de las etiquetas de secuencia al cromosoma 11 en una muestra de prueba reveló una notable pérdida de conteos de etiquetas entre los pares de bases 81000082-103000103 en el brazo q del cromosoma en relación con los conteos de etiquetas obtenidos para la secuencia correspondiente en el cromosoma 11 en las muestras calificadas (datos no mostrados). Las etiquetas de secuencia asignadas a la secuencia de interés en el cromosoma 11 (810000082-103000103bp) en cada una de las muestras calificadas, y las etiquetas de secuencia asignadas a todos los segmentos de 20 megabases en todo el genoma en las muestras calificadas, es decir, densidades de etiquetas de secuencia calificadas, se utilizaron para determinar las dosis de secuencias calificadas como relaciones de densidades de etiquetas en todas las muestras calificadas. La dosis media de secuencia, la desviación estándar y el coeficiente de variación se calcularon para los 20 segmentos de megabase en todo el genoma, y la secuencia de 20 megabase que tuvo la menor variabilidad fue la secuencia de normalización identificada en el cromosoma 5 (13000014-33000033bp) (véase tabla 8), que se utilizó para calcular la dosis para la secuencia de interés en la muestra de prueba (consulte la Tabla 9). La Tabla 8 proporciona la secuencia de dosis para la secuencia de interés en el cromosoma 11 (810000082-103000103bp) en la muestra de prueba que se calculó como la proporción de etiquetas de secuencia asignadas a la secuencia de interés y las etiquetas de secuencia asignadas a la secuencia de normalización identificada. La Figura 16 muestra las dosis de secuencia para la secuencia de interés en las 7

muestras calificadas (O) y la dosis de secuencia para la secuencia correspondiente en la muestra de prueba (◊). La media se muestra mediante la línea continua y el umbral calculado para el diagnóstico positivo de aneuploidía parcial que se estableció en 5 desviaciones estándar de la media se muestra mediante la línea discontinua. El diagnóstico de aneuploidía parcial se basó en que la dosis de secuencia en la muestra de prueba era inferior al umbral establecido. La muestra de prueba se verificó mediante cariotipo para tener una eliminación q21-q23 en el cromosoma 11.

[0241] Por lo tanto, además de la identificación de aneuploidías cromosómicas, el método de la descripción se puede utilizar para identificar aneuploidías parciales.

TABLA 8

20 **TABLA 9**

Dosis de secuenci	a de secuencia de inter	és (81000082-103000103) en el cr	omosoma
	11 (muestra de	e prueba 11206)	
Segmento de	Densidad de la	Dosis del segmento de	Umbral
cromosoma	etiqueta de secuencia	cromosoma para Chr 11 (q21-	
		q23)	
Chr11: 81000082-	27.052	1,0434313	1,1401347
103000103			
Chr5: 13000014-	25.926		
33000033			

Ejemplo 7

5

10

15

25

30

40

45

50

55

Determinación simultánea de aneuploidía y fracción fetal mediante secuenciación masivamente paralela: selección de SNP autosómicos para la determinación de fracción fetal

[0242] Un conjunto de 28 SNP autosómicos fueron seleccionados de una lista de 92 SNP (Pakstis et al, Hum Genet 127: 315-324 [2010]), y a partir de secuencias de SNP disponibles en Applied Biosystems en dirección de Internet appliedbiosystems.com, y validado para su uso en amplificación por PCR multiplexada y para secuenciación masivamente paralela para determinar la fracción fetal con o sin determinar simultáneamente la presencia o ausencia de aneuploidía. Los cebadores se diseñaron para hibridar con una secuencia cercana al sitio de los SNP en el ADNcf para asegurar que se incluya en la lectura de 36 pb generada a partir de la secuenciación masivamente paralela en el Analizador GII de Illumina, y para generar amplicones de longitud suficiente para sufrir una amplificación de puente durante la formación de racimos. Por lo tanto, los cebadores se diseñaron para generar amplicones que tenían al menos 110 pb, que cuando se combinaron con los adaptadores universales (Illumina Inc., San Diego, CA) utilizados para la amplificación de grupos, dieron como resultado moléculas de ADN de al menos 200 pb. Se identificaron secuencias de los cebadores, y conjuntos de cebadores, es decir, cebadores directo e inversos, fueron sintetizados por Integrated DNA Technologies (San Diego, CA), y se almacenaron como una solución de 1µM para ser utilizado para la amplificación de secuencias diana polimórficas como se describe en los Ejemplos 5-8. La Tabla 10 proporciona los números de ID de acceso de RefSNP (rs), los cebadores utilizados para amplificar la secuencia de ADNc de destino y las secuencias de los amplicones que comprenden los posibles alelos de SNP que se generarían utilizando los cebadores. Los SNP dados en la Tabla 10 se usaron para la amplificación simultánea de 13 secuencias diana en un ensayo multiplexado para determinar simultáneamente la fracción fetal y la presencia o ausencia de una aneuploidía en muestras de ADNcf derivadas de mujeres embarazadas. El panel proporcionado en la Tabla 10 es un panel de SNP ejemplar. Se pueden emplear menos o más SNP para enriquecer el ADN fetal y materno para ácidos nucleicos diana polimórficos. Los SNP adicionales que se pueden usar incluyen los SNP que figuran en la Tabla 11. Los SNP en la Tabla 11 se validaron en amplificaciones de PCR multiplex, y se secuenciaron con el analizador Genomell A como se describe anteriormente. Los alelos SNP en las Tablas 10 y 11 se muestran en negrita y están subrayados.

TABLA 10

NP para la Determi SNP ID	Panel SNP para la Determinación de Fracción Fetal SNP ID Chr	tal Amplicon: Alelo 1	Amplicon: Alelo 2	Primera secuencia de cebador, nombre y SEQ ID NO:	Secuencia de cebador inversa, nombre y SEQ ID NO:
	-	CACATGCACAGCCA GCAACCCTGTCAGC AGGAGTTCCCACA GTTTCTTTCTGAGAA CATCTGTTCAGGTTT CTCTCCATCTCTATT TACTCAGGTCACAG GACCTTGGGG (SEQ	CACATGCACAGCCA GCAACCCTGTCAGC AGGAGTTCCCACCA GTTTCTTTCTGAGAA CATCTGTTCAGGTTT CTCTCCATCTCTGTT TACTCAGGTCACAG GACCTTGGGG (SEQ	CACATGCA CAGCCAGC AACCC (rs560681_C 1_1_F; SEQ ID NO:57)	CCCCAAGGTC CTGTGACCTGA GT (rs560681_C1_1_ R; SEQ ID NO:58)
	2	TGAGGAAGTGAGGC TCAGAGGTAAGAA ACTTTGTCACAGAGG TGGTGAGGGTG GAGATTTTACACTCC CTGCCTCCCACACCA GTTTCTCCAGAGTGG AAAGACTTTCATCTC GCACTGGC (SEQ ID NO:3)	TGAGGAAGTGAGGC TCAGAGGGTAAGAA ACTITGTCACAGAGG TGGTGATGAGGGTG GAGATTTTACACTCC CTGCCTCCCACACAC GTTTCTCCGGAGTGG AAAGACTTTCATCTC GCACTGGCA (SEQ ID NO:4)	TGAGGAAG TGAGGCTC AGAGGGT (rs110937_C 2_1_F; SEQ ID NO:59)	TGCCAGTGCG AGATGAAAGT CTTT (rs110937_C2_1_ R; SEQ ID NO:60)
	ल	GTGCCTTCAGAACCT TTGAGATCTGATTCT ATTTTTAAAGCTTCT TAGAAGAGAGATTG CAAAGTGGGTTGTTT CTCTAGCCAGACAG GGCAGGCAAATAGG GGCAGGCAAATAGG GGTGGCTGGTGGGA TGGGA (SEQ ID NO:5)	GTGCCTTCAGAACCT TTGAGATCTGATTCT ATTTTTAAAGCTTCT TAGAAGAGAGTTG CAAAGTGGGTTGTTT CTCTAGCCAGACAG GGCAGGTAAATAGG GGCAGGTAAATAGG GGTGGCTGGTGGGA TGGGA (SEQ ID NO:6)	GTGCCTTC AGAACCTT TGAGATCT GAT (rs9866013 C3.1_F; SEQ ID NO:61)	TCCCATCCCAC CAGCCACC (rs9866013_C3_1 _R; SEQ_ID _N0:62)

CCTTTGTCCCA CCTCCCCACC (rs13182883_C5_ 1_R; SEQ ID NO:64)	CCATCCCAGCT GAGTATTCCA GGAG (rs13218440_C6_ 1_R; SEQ ID NO:66)	CCAGTGAGAA	GTGTCTTGGGT TGG (SEQ ID NO:68)
AGGTGTGT CTCTCTTTT GTGAGGGG (rs13182883_ C5_1_F; SEQ ID NO:63)	CCTCGCCT ACTGTGCT GTTTCTAA CC (rs13218440_ C6_1_F; SEQ ID NO:65)	AATTGCAA	TGGTGAGA GGTTGATG GT (SEQ ID NO:67)
AGGTGTGTCTCTTT TTGTGAGGGGAGGG GTCCTTCTGGCCTA GTAGAGGCCTGGC CTGCAGTGAGCATTC AAATCCTCGAGGAA CAGGGTGGGGAGGT GGGACAAAGG (SEQ ID NO:8)	CCTCGCCTACTGTGC TGTTTTCCCTGAAT CTCTTGAGTCTTTTT CTGCTGTGGACTGA AACTTGATCCTGAG ATTCACCTCTAGTCC CTCTGGGCAGCTCC TGGAATACTCAGTC TGGAATACTCAGCT TGGAATACTCAGCT TGGAATACTCAGCT	AATTGCAATGGTGA	GAGGTTGATGGTAA AATCAAACGGAACT TGTTATTTTGTCATT CTGATGGACTGGAA CTGAGGATTTTCAAT TTCCTTTCCAACCCA AGACACTTCTCACTG G (SEQ ID NO:12)
AGGTGTCTCTCTT TTGTGAGGGGAGG GTCCCTTCTGGCCTA GTAGAGGGCCTGGC CTGCAGTGAGCATTC AAATCCTCAAGGAA CAGGGTGGGGAGGT GGGACAAAGG (SEQ	CCTCGCCTACTGTGC TGTTTCTAACCATCA TGCTTTTCCCTGAAT CTCTTGAGTCTTTTT CTGCTGTGGACTGA AACTTGATCCTGAG ATTCACCTCTAGTCC TGGAATACTCAGCT GGGATGG (SEQ ID NO:9)	AATTGCAATGGTGA	GAGGTTGATGGTAA AATCAAACGGAACT TGTTATTTTGTCATT CTGATGGACTGGAA CTGAGGATTTTCAAT TTCCTCTCCAACCCA AGACACTTCTCACTG G (SEQ ID NO:11)
w	ω	0	
rs13182883	rs13218440	rs7041158	

GGTTTGAGCA GTTCTGAGAAT GTGGCT (SEQ ID NO:70)	CCCTTATCTGC TATGTGGCATA CTTGG (SEQ ID NO:72)	GCACCTGACA GGCACATCAG CG (SEQ ID NO:74)	
GAAATGCC TTCTCAGG TAATGGAA GGT (SEQ ID NO:69)	GAAATGCC TTCTCAGG TAATGGAA GGT (SEQ ID NO:69) ACCCAAAA CACTGGAG GGGCCT (SEQ ID NO:71)		
GAAATGCCTTCTCAG GTAATGGAAGGTTA TCCAAATATTTTTCG TAAGTATTTCAAATA GCAATGGCTCGTCTA TGGTTAGTCTCGCAG CCACATTCTCAGAAC TGCTCAAACC (SEQ	ACCCAAAACACTGG AGGGCCTCTTCTCA TTTTCGGTAGACTGC AAGTGTTAGCCGTC GGGACCAGCTTCTGT CTGGAAGTTCGTCA AATTGCAGTTAGGTC CAAGTATGCCACAT AGCAGATAGGTC SEQ ID NO:16)	GCACCAGAATTTAA ACAACGCTGACAAT AAATATGCAGTCGA TGATGACTTCCCAGA GCTCCAGAAGCAAC TCCAGCACACGGAG AGGCGCTGATGTGC CTGTCAGGTGC (SEQ ID NO:18)	
GAAATGCCTTCTCAG GTAATGGAAGGTTA TCCAAATATTTTTCG TAAGTATTTCAAATA GCAATGGCTCGTCTA TGGTTAGTCTCACAG CCACATTCTCAGAAC TGCTCAAACC (SEQ	ACCCAAAACACTGG AGGGGCCTCTTCTCA TITTCGGTAGACTGC AAGTGTTAGCCGTC GGGACCAGCTTCTGT CTGGAAGTTCGTCA AATTGCAGTTAAGTC CAAGTATGCCACAT AGCAGGTAGGTC SQUD NO:15)	GCACCAGAATTTAA ACAACGCTGACAAT AAATATGCAGTCGA TGATGACTTCCCAGA GCTCCAGAAGCAAC TCCAGCACACAG AGGCGCTGATGTGC CTGTCAGGTGC (SEQ ID NO:17)	
10	27	4	
rs740598	rs10773760	rs4530059	

GCACTAAGGA TGTGGAAGTCT AGTGTG (SEQ ID NO:76)	AGTGTGAGAA GAGCCTCAAG GACAGC (SEQ ID NO:78)	GTGGCAAAGG AGAGAGTTGT GAGG (SEQ ID NO:80)	
TGACTGTA TACCCCAG GTGCACCC (SEQ ID NO:75)	TGTACGTG GTCACCAG GGGACG (SEQ ID NO:77)	CAGTGGAC CCTGCTGC ACCTT (SEQ ID NO:79)	
TGACTGTATACCCCA GGTGCACCCTTGGGT CATCTCTATCATAGA ACTTATCTCACAGAG TATAAGAGCTGATTT CTGTGTCTGCCTGTC ACACTAGACTTCCAC ATCCTTAGTGC (SEQ ID NO:20)	TGTACGTGGTCACCA GGGGACGCCTGGCG CTGCGAGGGAGGCC CCGAGCCTCGTGCC CCGTGAAGCTTCAG CTCCCTCCTGGCT GTCCTTGAGGCTCTT GTCCTTGAGGCTCTT CTCACACT (SEQ ID	CAGTGGACCCTGCT GCACCTTTCCTCCCC TCCCATCAACCTCTT TTGTGCCTCCCCCTC CGTGTACCACCTTCT CTGTCACCACCTGT GCCTCACCACCTGT	CCTTTGCCAC (SEQ ID NO:24)
TGACTGTATACCCCA GGTGCACCCTTGGGT CATCTCTATCATAGA ACTTATCTCACAGAG TATAAGAGCTGATTT CTGTGTCTGCCTCTC ACACTAGACTTCCAC ACACTAGACTTCCAC ATCCTTAGTGC (SEQ ID NO:19)	TGTACGTGGTCACCA GGGGACGCCTGGCG CTGCGAGGGGGCC CCGAGCCTCGTGCCC CCGTGAAGCTTCAG CTCCCCTCCC	CAGTGGACCCTGCT GCACCTTTCCTCCCC TCCCATCAACCTCTT TTGTGCCTCCCCCTC CGTGTACCACCTTCT CTGTCACCACCTTCT CTGTCACCACCTTCT	CCTTTGCCAC (SEQ ID NO:23)
16	17	19	
rs7205345	rs8078417	rs576261	

		CAGTGGCATAGTAG	CAGTGGCATAGTAG		
		TCCAGGGGCTCCTCC	TCCAGGGGCTCCTCC		
		TCAGCACCTCCAGC	TCAGCACCTCCAGC	CAGTGGCA	
		ACCTTCCAGGAGGC	ACCTTCCAGGAGGC	TAGTAGTC	CCTCTCCGACA
rs2567608	20	AGCAGCGCAGGCAG	AGCAGCGCAGGCAG	CAGGGGCT	ACTTCCGCCG
		AGAACCCGCTGGAA	AGAACCCGCTGGAA	(SEQ ID	(SEQ ID NO:82)
		GAATCGGCGGAAGT	GGATCGGCGGAAGT	NO:81)	
		TGTCGGAGAGG (SEQ	TGTCGGAGAGG (SEQ		
		ID NO:25)	ID NO:26)		

TABLA 11

_	I		Ι	
	Secuencia de cebador inversa, nombre y SEQ ID NO:	TCCTCCCATTA AACCCAGCAC CT CT (rs430046_C!_1 R; SEQ ID NO:84)	CCTGTTCACTT GTGGCAGGGC A (rs9951171 Cl 1 -R; SEQ ID NO:86)	TCCAGCCCTTG TCCCAAACGT GT GT (rs338882_Cl_1_ R; SEQ ID NO:88)
	Primera secuencia de cebador, nombre y SEQ ID NO:	AGGTCTGG GGGCCGCT GAAT (rs430046_C 1_1_F; SEQ ID NO:83)	ACGGTTCT GTCCTGTA GGGGAGA (rs9951171_ C1_1_E; SEQ ID NO:85)	GCGCAGTC AGATGGC GTGC (rs33882_C 1_1_F; SEQ ID NO:87)
	Amplicon: Alelo Z	AGGTCTGGGGGCCGC TGAATGCCAAGCTGG GAATCTTAAATGTTA AGGAACAAGGTCATA CAATGAATGTTGGA TGTGAATTTTGAGGG TGGTGTTTTGAGGG TAGGTGCTGGGTTTA ATGGTGCTGGGTTTA ATGGGAGGA (SEQ ID	ACGGTTCTGTCCTGT AGGGGAGAAAGTCC TCGTTGTTCCTCTGGG ATGCAACATGAGAGA GCAGCACACTGAGAGA CCAGCACACTGAGAGA CCACAACTGAGAGA (SEQ ID NO:30)	GCGCAGTCAGATGGG CGTGCTCGCGTCTGT CTTCTCTCTCTCTGC TCTCTCGCTTCTTTT TCTCTCTTTCGTGTCC ACCTTCTTTCGTGTGC CTGTGCALACACACG TTTGGGACAAGGG CTGTGA (SEQ ID NO32)
	Amplicon: Alelo 1	AGGTCTGGGGGCC GCTGAATGCCAAGC TGGGAATCTAAAT GTTAAGGAACAAG GTTAAGGAACAAG GCTTGGGAACAAA GCTTGGGAGGTGAT TTCTGAGGGTGAT GCTGGGGTTAATGG GCTGGGGTTAATGG GAGGA (SEQ ID NO27)	ACGGTTCTGTCCTG TAGGGGAGAAAG TCCTCGTTGTTCCT CTCCGTTGTTCCT GAGAGAGCAGCAC ACTGAGGCTTTATG GATTGCCTTGCC	GCGCAGTCAGATG GGCGTCCTCGCTC TGTCTTCTCTCTCT CATTTTTCTCTCCT CTGTCTCCTCT CTGTCTCCTCT TTCGTCTCCTCT TTCGTCTCCTCT TTCGTCTCCTCT TTCGTCTCCTCT TTCGTCTCCTCT TTCGTCTCCTCT TTCGTCTCTCTC
nación de Fracción Fetal	Chr	16	18	5
Panel SNP para la Determinación de Fracción Fetal	SNPID	rs430046	IS9951171	IS336882

CGGCCAACTG GGGCTCTGATC (rs10778839_C1_ 1_R; SEQ_ID_ NO:90)		GGCAGAGGGG AAAGACGAAA GGA (1:89905977_C1_1 _R; SEQ ID NO:92)	AAGCACCATT CTAATGATTTT G G (rs1277284_C4_1 _R; SEQ ID NO:94)
GCCGGACC TGCGAAAT CCCAA (rs10776839 C1_1_F; SEQ ID NO:89)		AGCAGCCT CCCTCGAC TAGCT (rs9908977_ C1_1_F; SEQ ID NO:91)	TGGCATTG CCTGTAAT ATACATAG (rs1277284_ C4_1_F; SEQ ID NO:93)
GCCGGACCTGCGAAA TCCCAGAAATGCCAAA CATTCCCGCCTCACA TGATCCCAGAGAGAG GGGACCCAGTGTTCC CAGCTTGCAGCTGAG GAGCCCGAGTTTGCC	CAGTTGCCCG (SEQ ID NO:34)	AGCAGCCTCCCTCGA CTAGCTCACACTACG ATAAGGAAATTCAT GAGCTGGTGTCCAAG GAGGCTGGGTGACT CGTGGCTCAGTCAGC GTCAGCTCAGTCAGC GTCAGCTCAGTCAGC GTCTTCCCTTTC GTCTTCCCTTTC	TGGCATTGCCTGTAA TATACATAGCCATGG TTTTTTATAGGCAATT TAAGATGAATAGCTT CTAAACTATAGCTAA GTTTCATTACCCAG GAAGCTGAACTATAG CTACTTTGCCCAAA TCATTAGAATGGTGC TT (SEQ ID NO:38)
GCCGGACCTGCGA AATCCCAAAATGCC AAACATTCCCGCCT CACATGATCCCAGA GAGAGGGGACCA GTGTTCCCAGCTTG CAGCTGAGGAGCC CAGCTGAGGAGCC	GATCAGAGCCCCA GTTGCCCG (SEQ ID NO:33)	AGCAGCCTCCCTCG ACTAGCTCACACTA CGATAAGGAAAAT TCATGAGCTGGTGT CCAACGAGGGCTG GGTGACTCGTGGCT CAGTCAGCATCGTCTT CAGTCAGCAGCAGCAGCAGCAGCAGCAGCAGCAGCAGCAGCAGC	TGGCATTGCCTGTA ATATACATAGCCAT GGTTTTTATAGGC AATTTAAGATGAAT AGCTTCTAAACTAT AGATAAGTTTCATT ACCCCAGGAAGCT GAACTATAGCTACT TTACCCAAAATCAT TAGAATGGTGCT TAGAATGGTGCT (SEQ ID NO:37)
o o		17	4
rs10776839		rs9905977	rs1277284

GATCAGTTGTT GTTTCTATATT TCCTT (rs258684_C7_1_ R; SEQ ID NO:96)	CTGAACTGAA CAAAGAATTA AGGTC (rs1347696_C8_4 _F; SEQ ID NO:98)	GGGGTGGGAA TTAGACTCTG (rs508485_C11_1 _R; SEQ 1D _N0100)
ATGAAGCC TTCCACCA ACTG (18258684 C 7_1_F; SEQ ID NO:95)	ACAACAGA ATCAGGTG ATTGGA (rs1347696_ C8_4_F; SEQ ID NO:97)	TTGGGGTA AATTTTCA TTGTCA (rs508485 C 11_1_E; SEQ ID_NO:99)
ATGAAGCCTTCCACC AACTGCCTGTATGAC TCATCTGGGGACTTC TGCTCTATACTCCAAA GTGGCTTAGTCACTG CCAATGTATTTCCAT ATGAGGACGGTGAT TACTAAGGAAATATA GAAACAACAACTGAT C (SEQ ID NO:40)	ACAACAGAATCAGGT GATTGGAGAAAGAT CACAGGCCTAGGCAC CCAAGGCTTGAAGGA TGAAAGAATGAAAGA TGGACGGAAGAAAT TAGGACCTTAATTCTT TAGGACCTTAATTCTT TGGACCTTAATTCTT TGGACCTTAATTCTT TGTTCAGTTCA	TTGGGGTAAATTTTC ATTGAAATATGGGA ATTTAAATATACCAT CATCTACAAAGAATT CCACAGAGTTAAATA TCTTAAGTTAAACAC TTAAAATATTTGAT GCGTGATATTTTGAT GALAGATAAACCC (SEQ ID NO:44)
ATGAAGCCTTCCAC CAACTGCCTGTATG ACTCATCTGGGGAC TTCTGCTCTATACT CAAAGTGGCTTAGT CACTGCCAATGTAT TTCCATATGAGGGA CGATGATTACTAAG GAAATATAGAAAC AACAACTGATC (SEQ ID NO:39)	ACAACAGAATCAG GTGATTGGAGAAA AGATCACAGGCCTA GGCACCCAAGGCTT GAAGGATGAAAGA ATGAAAGATGAC GGAACAAAATTAG GACCTTAATTCTTT GTTCAGTTCA	TTGGGGTAAATTTT CATTGTCATATGTG GAATTTAAATATAC CATCATCTACAAAG AATTCCACAGAGTT AAATATCTTAAAGTT AAACACTTAAAATA AGTGTTTGCGTGAT ATTTGATGAGA TAAACAGAGGA TAAACAGAGGA TTCCCACCCC (SEQ ID NO:43)
	∞	-
rs258684	rs1347696	rs508485

GCAACATCGA GGTTTGTCAG G (rs9788670_c15_	2. R; SEQ ID SQ NO:102)	C ACCATGCTCAT GAGAATCC (rs8137254_c22_ 2_R; SEQ ID NO:104)	A CC CACAGCTTGA GGTTTCTTGTG (rs3143_c19_2_R; D SEQ ID NO:106)
TGCAATTCAAATCAG GAAGTATGACCAAAA GACAGAGAGATCTTTTT AAATCAGG	TGGATGATCCCTAGC CTAGCAATGCCTGGC AGCCATGCAGGTGCA ATGTCAACCTTAAAT AATGTCAAAATT CAGAGCTGACAAATT CAGAGCTGACAAACC TCGATGTTGC (SEQ ID NO:46)	CTGTGCTCTGCGAAT AGCTGCAGAAGT AGCTGCAGAAGT AAAGCAGAATGCTAA TGTCAAGTCCTGAGA TGTCAAGTCCTGAGA TGTCAAGTCCTGGGAC TGTCAAGTCCTGGGAC TGTGATTTTGG TCTGGTGCCATTTTGG TCTGGTGCCATTTTGG TCTGGTGCCATTTTGG TGTGCCATTTTGG TGTGCAGCAT TGTGCAGCAA TGTGCAGCAT TGTGCAGCAGC TGTGCAGCAT TGTGCAGCAGC TGTGCAGCAGCAGC TGTGCAGCAGCAGC TGTGCAGCAGCAGC TGTGCAGCAGCAGC TGTGCAGCAGCAGCAGC TGTGCAGCAGCAGCAGC TGTGCAGCAGCAGCAGCAGCAGCAGCAGCAGCAGCAGCAGCAG	TTTTTCCAGCCAACTC AAGGCCAAAAAAAT TTCTTAATATATATATATATGCGAGGGAGGG GAAGCAAAGGAGG GAAGCAAAGGAGG GAAGCAAAGGAGG GAAGCAAAGGAGA CAGGTAGTCCACAGA AAGG AAGG
TGCAATTCAAATCA GGAAGTATGACCA GAAAAAAAAAA	TTTTTGGATGATC CCTAGCCTAGCAAT GCCTGGCAGCCATG CAGGTGCAATGTCA ACCTTAAATAATGT ATTGCAAACTCAGA GCTGACAAACTCAGA GCTGACAAACTCAGA ATGCTGCAAACCTCG ATGCAAACTCAGA CAG ATGCAAACTCAGA CAG ATGCAAAACTCAGA CAG ATGCAAAACTCAGA CAG	CTGTGCTCTGCGAA TAGCTGCAGAAGTA ACTTGGGGACCCAA TTGAAAAGCAGAAT GCTAATGTCAAGTC TGTG CTGAGAACCAAGC CCTGGGACTCTGGT GCCATTTCGGATTC TCTC ACCAGGACTTCGGATTC GCCATGGATTC GCCATGGATTC GGGATTC GGG	TTTTTCCAGCCAAC TTTT TCAAGGCCAAAA AAATTTCTTAATAT TTCT AGTTATTATGCGAG GGAGGGGAAGCA AAGGAGGCACAGGT AATC AGGAGCACAGGT AGAAAAA AGGACACAGAATA AGACACAAGAAAA CTCAAAGCTGTG CTCAAGCTGTG
15		22	<u>6</u>
rs9788670		rs8137254	rs3143

TTTCTGGTTTG TGCAACAGG (rs2182957_c13_ 1_R; SEQ ID NO:108)	ACATCGATGA GCACAAAAAC AC (rs3739005_c2_2 _R; SEQ ID NO:110)	AGATATCCCTG GAACTGTTATT CC (rs530022_c1_2_R; SEQ ID NO:112)
TCTTCTCG TCCCTAA GCAA (rs2182957_c 13_1_F: SEQ ID NO:107)	CACATGGG GGCATTAA GAAT (183739005_6 2_2_F; SEQ ID NO:109)	GGGCTCTG AGGTGTGT GAAA (rs530022_c1 _2_F; SEQ ID NO:111)
TCTTCTCGTCCCTAA GCAAACAACATCCGC TTGCTTCTGTCTGTGT AACCACGCTTGGT GTGTGCACGCTTGGT GGGCCTCTGAGCCCC TGTTGCACAAACCAG AAA (SEQ ID NO:52)	CACATGGGGGCATTA AGAATCGCCCAGGGA GGAGGAGGAGGAAC GCGTGCTTTTCACATT TGCATTTGAATTTTTG AGTTCCCAGGATGTG TTTTTGTGCTCATCGA TGTT (SEQ ID NO:54)	GGGCTCTGAGGTGTG TGAAATAAAACAAA TGTCCATGTCTGTCCT TTTATGGCATTTTGGG ACTTTCAAA CATTTCAGACATGTA TCACAACACGAGGGA ATAACAGTTCCAGGG ATAACAGTTCCAGGG ATAACAGTTCCAGGG
TCTTCTCGTCCCT AAGCAACACAT CCGCTTGCTTCTGT CTGTGTAACCACAG TGAATGGGTGTGCA CGCTTGATGGCCC CGCTTGATGGCCC CGCTTGATGGCCC CGCTTGATGGCCC CTGAGCCCCTGTTG CACAACCAGAAA (SEQ ID NO:51)	CACATGGGGGCATT AAGAATCGCCCAG GGAGGAGGAGGAA GAACGCGTGCTTTT CACATTTGCATTTG AATTTTCGAGTTCC CAGGATGTGTTTT GTGCTCATCGATGT (SEQ ID NO:53)	GGGCTCTGAGGTGT GTGAAATAAAAAC AAATGTCCATGTCT GTCCTTTTATGGCA TTTTGGGACTTTAC ATTTCAAACATTTC AGACATGTATCAA ACACGAAGGAATA ACAGGTCCAGGGAT ACAGTTCCAGGGAT ACAGTTCCAGGGAT
13	2	-
rs2182957	rs3739005	rs530022

Ejemplo 8

5

10

15

20

25

30

35

40

45

50

Determinación simultánea de aneuploidía y fracción fetal: enriquecimiento de los ácidos nucleicos maternos y fetales en una muestra de la biblioteca de secuenciación de ADNcf.

[0243] Para determinar simultáneamente la fracción fetal y la presencia o ausencia de una aneuploidía en una muestra materna, se enriqueció una biblioteca de secuenciación primaria de ácidos nucleicos maternos y fetales para las secuencias de ácido nucleico diana polimórficas, y se secuenció como sigue.

[0244] ADNcf purificada se preparó a partir de una muestra de plasma materno como se describe en el Ejemplo 1. Se utilizó una primera porción de la muestra ADNcf purificado para preparar una biblioteca de secuenciación primaria utilizando el protocolo abreviado descrito en el Ejemplo 2. Una segunda porción de la ADNcf purificada la muestra se usó para amplificar secuencias de ácido nucleico diana polimórficas, es decir, SNP, y preparar una biblioteca de secuencia de destino de la siguiente manera. El ADNcf contenido en 5ul de ADNcf purificado se amplificó en un volumen de reacción de 50 µl que contenía 7,5 µl de una mezcla de cebador 1 µm (Tabla 5), 10 µl de NEB 5X Mastermix y 27 µl de aqua. El ciclo térmico se realizó con el Gene Amp9700 (Applied Biosystems). Usando las siguientes condiciones de ciclado: incubación a 95°C durante 1 minuto, seguido de 30 ciclos a 95°C durante 20 segundos, 68°C durante 1 minuto y 68°C durante 30s, seguido de una incubación final a 68°C durante 5 minutos. Se agregó una retención final a 4°C hasta que las muestras se retiraron para combinar con la porción no amplificada de la muestra de ADNc purificada. El producto amplificado se purificó utilizando el sistema de purificación por PCR Agencourt AMPure XP (Pieza Nº A63881; Beckman Coulter Genomics, Danvers, MA). Se agregó una retención final a 4°C hasta que las muestras se retiraron para preparar la biblioteca diana. El producto amplificado se analizó con un bioanalizador 2100 (Agilent Technologies, Sunnyvale, CA) y se determinó la concentración del producto amplificado. Una quinta parte del producto amplificado purificado se usó para preparar una biblioteca de secuenciación diana de ácidos nucleicos polimórficos amplificados como se describe en el Ejemplo 2. Las bibliotecas de secuenciación principal y la diana se diluyeron cada una a 10 nM, y la biblioteca diana se combinó en una proporción de 1:9 con la biblioteca de secuenciación para proporcionar una biblioteca de secuenciación enriguecida. La secuenciación de la biblioteca enriguecida se realizó como se describe en el Ejemplo. El análisis de los datos de secuenciación para determinar la aneuploidía se realizó como se describe en el Ejemplo 3 utilizando el genoma humano hg18 como genoma de referencia. El análisis de los datos de secuenciación para determinar la fracción fetal se realizó de la siguiente manera concomitante con el análisis para determinar la aneuploidía, se analizaron los datos de secuenciación para determinar la fracción fetal. Tras la transferencia de la imagen y los archivos de llamada base al servidor Unix que ejecuta la versión 1.51 del software Illumina "Genoma Analyzer Pipeline", como se describe en el Ejemplo 2c., las lecturas de 36 pb se alinearon con un "genoma SNP" utilizando el programa BOWTIE. El genoma de SNP se identificó como la agrupación de las secuencias de ADN polimórficas, es decir, las SEQ ID NO: 1-56, que abarcan los alelos de los 13 SNP descritos en la Tabla 10 en el Ejemplo 7. Sólo se utilizaron las lecturas que se asignaron de forma única al genoma de SNP para el análisis de la fracción fetal. Las lecturas que coincidían perfectamente con el genoma de SNP se contaron como etiquetas y se filtraron. De las lecturas restantes, solo las lecturas con uno o dos desajustes se contaron como etiquetas y se incluyeron en el análisis. Se contaron las etiquetas asignadas a cada uno de los alelos SNP y se determinó la fracción fetal. Aproximadamente un millón del número total de etiquetas de secuencia obtenidas de la secuenciación de la biblioteca enriquecida correspondió a las etiquetas que se asignan al genoma de referencia de SNP. La Figura 17 muestra un gráfico de la proporción del número de etiquetas de secuencia asignadas a cada cromosoma y el número total de etiquetas asignadas a todos los cromosomas (1-22, X e Y) obtenidos de la secuenciación de una biblioteca de ADNcf no enriquecida (•), y biblioteca ADNcf enriquecida con 5% (j) o 10% (♦) biblioteca SNP multiplex amplificada. El gráfico indica que la combinación de una biblioteca de secuencias polimórficas amplificadas con una biblioteca de secuencias no amplificadas de la muestra materna no afecta la información de secuenciación utilizada para determinar la aneuploidía. Los ejemplos de determinación de la fracción fetal para muestras obtenidas de sujetos que portan un feto con una aneuploidía cromosómica se dan en las Tablas 12, 13 y 14 a continuación.

a. Determinación de la fracción fetal

[0245] La fracción fetal se calculó como:

% fracción fetal alelo_x = ((Σ Etiquetas de secuencia fetal para alelo_x) / (Σ Etiquetas de secuencia materna para alelo_x)) x 100

donde alelo_x es un alelo informativo.

60

TABLA 12

Muestra ID		tal: determinación o	FRACCIÓN	
(Cariotipo)	SNP	ETIQUETAS SNP	FETAL (%)	
	rs13182883,1 Chr, 5 longitud=111 alelo=A	261		
	rs13182883,2 Chr,	5918	4,41	
	5 longitud=111 alelo=G			
	rs740598,1 Chr,10 longitud=114 alelo=A		7.30	
11409 (47,	rs740598,2 Chr,10 longitud=114 alelo=G	405		
XY+21)	rs8078417,1 Chr, 17 longitud=110 alelo=C	8189	6.74	
	rs8078417,2 Chr, 17 longitud=110 alelo=T	121470	0,74	
	rs576261,1 Chr,19 longitud=114 alelo=A	58342	7.00	
	rs576261,2 Chr,19 longitud=114 alelo=C		7,62	
Fracción Feta	I (Media <u>+</u> D.E.) = 6,53 <u>+</u> 1,45	1	-	
Muestra ID				
	rs1109037,1 Chr,2 longitud=126 alelo=A	12229	0.45	
	rs1109037,2 Chr,2 longitud=126 alelo=G	263	 2,15	
	rs13218440, 1 Chr,	55949		
	6 longitud=139 alelo=A		3,09	
95133 (47,	rs13218440,2 Chr, 6 longitud=139 alelo=G	1729		
XX+18)	rs7041158,1 Chr, 9 longitud=1117 alelo=C	7281	4,12	
	rs7041158,2 Chr,9 longitud=117 alelo=T	300	7	
	rs7205345,1 Chr, 16 longitud=116 alelo=C	53999	2 14	
	rs7205345,2 Chr, 16 longitud=116 alelo=G	1154	2,14	
Fetal Fraction	(Mean+D.E.) = 2,9+0,9	l		
Muestra ID	, , ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			
	rs13218440,1 Chr,	4440		
	6 longitud=139 alelo=A	1119	1 65	
	rs13218440,2 Chr, 6 longitud=139 alelo=G	67756	1,65	
5 4000	rs560681,1 Chr,1 longitud=111 alelo=A	14123	F 10	
51236 (46,XY+13)	rs560681,2 Chr,1 longitud=111 alelo=G	732	5,18	
(+ 0,∧1+13 <i>)</i>	rs7205345,1 Chr, 16 longitud=116 alelo=C	18176	4.00	
	rs7205345,2 Chr, 16 longitud=116 alelo=G	296	1,63	
	rs9866013,1 Chr,3 longitud=121 alelo=C	117	2,33	

Fracción fetal (Media+D.E.) = 2,9+0,9 Muestra ID 5 rs9866013.2|Chr. 31|longitud=121|alelo=T 5024 Fracción fetal (Media+D.E.) = 2,7+1,7 Muestra ID rs1109037.1|Chr.2|longitud=126|alelo=A 19841 10 1,80 rs1109037.2|Chr.2|longitud=126|alele=G 357 rs9866013.1|Chr. 31|longitud=121|alelo=C 12931 3.81 rs9866013.2IChr. 31|longitud=121|alelo=T 493 2800 rs7041158.1|Chr.9|longitud=117|alelo=C 54430 (45,XO) 4.25 15 rs7041158.2|Chr.9|longitud=117|alelo=T 119 12903 rs740598.1|Chr.10|longitud=114|alelo=A 4,87 rs740598.2|Chr.10|longitud=114|alelo=G 628 rs10773760.1|Chr. 12|longitud=128|alelo=A 46324 4,65 20 rs10773760.2|Chr. 12|longitud=128|alelo=G 2154 Fracción fetal (Media+D.E.) = 3,9+1,2

b. Determinación de la aneuploidía.

[0246] La determinación de la aneuploidía de los cromosomas 21, 13, 18 y X se realizó utilizando las dosis de cromosoma como se describe en el Ejemplo 4. La dosis de cromosoma calificada, la varianza y la diferenciabilidad para los cromosomas 21, 18, 13, X e Y se dan en las Tablas X y Y. La clasificación de los cromosomas normalizados identificados por las dosis de cromosomas determinadas a partir de la secuenciación de la biblioteca enriquecida fue la misma que la determinada por la secuenciación de una biblioteca primaria (no enriquecida) del Ejemplo 4. La **Figura 17** muestra la secuenciación de una biblioteca que ha sido enriquecida por secuencias diana de polimorfos. *p. ej.* SNP, no se ve afectada por la inclusión de los productos SNP amplificados.

TABLA 13

40	
45	
50	
55	
60	

65

25

30

Dosis de cromosomas calificada, varianza y diferenciabilidad para los cromosomas 21 y 18								
	21 (n = 35)		,	,	18 (n = 40)			
	Promedio	Des. Est.	CV	Prueba t	Promedio	Des. Est.	CV	Prueba t
chr1	0,15332	0,002129	1,39	1,06E-10	0,32451	0,008954	2,76	2,74E-03
chr2	0,15106	0,002053	1,36	8,52E-08	0,31984	0,001783	0,56	5,32E-05
chr3	0,18654	0,004402	2,36	8,07E-07	0,39511	0,002364	0,60	1,93E-05
chr4	0,21578	0,011174	5,18	1,47E-04	0,45714	0,014794	3,24	1,37E-03
chr5	0,21068	0,005332	2,53	1,08E-06	0,44626	0,003250	0,73	3,18E-05
chr6	0,22112	0,005453	2,47	1,74E-06	0,46818	0,003434	0,73	2,24E-05
chr7	0,24233	0,002314	0,96	2,39E-08	0,51341	0,005289	1,03	1,24E-04
chr8	0,24975	0,003772	1,51	1,06E-07	0,52898	0,002161	0,41	6,32E-05
chr9	0,31217	0,003050	0,98	1,60E-09	0,66100	0,014413	2,18	8,17E-04
chr10	0,25550	0,003164	1,24	2,42E-11	0,54091	0,013953	2,58	2,26E-03
chr11	0,26053	0,002596	1,00	1,32E-10	0,55158	0,013283	2,41	1,29E-03
chr12	0,27401	0,002061	0,75	1,40E-08	0,58032	0,007198	1,24	1,57E-04
chr13	0,41039	0,017637	4,30	3,09E-05	0,86961	0,021614	2,49	2,36E-04
chr14	0,40482	0,002908	0,72	1,10E-08	0,85732	0,011748	1,37	2,16E-04
chr15	0,41821	0,008238	1,97	1,24E-10	0,88503	0,029199	3,30	5,72E-03
chr16	0,40668	0,021232	5,22	2,91E-05	0,86145	0,056245	6,53	1,04E-01
chr17	0,42591	0,027001	6,34	5,85E-04	0,90135	0,068151	7,56	1,24E-01
chr18	0,46529	0,016239	3,49	8,02E-09				
chr19	0,63003	0,063272	10,04	3,30E-02	1,33522	0,150794	11,29	3,04E-01
chr20	0,49925	0,023907	4,79	1,65E-05	1,05648	0,064440	6,10	7,98E-02
chr21			_		2,06768	0,087175	4,22	5,10E-05
chr22	0,88726	0,083330	9,39	3,43E-02	1,87509	0,198316	10,58	2,43E-01
chrX	0,27398	0,016109	5,88	1,16E-04	0,58665	0,027280	4,65	7,50E-02

TABLA 14

	13 (n=47)				X (n=20)	X (n=20)			
	Avg	Stdev	CV	Diff	Avg	Stdev	CV	T Test	
chr1	0,37213	0,018589	5,00	2,41	0,58035	0,02706	4,66	5,68E-05	
chr2	0,36707	0,010067	2,74	3,03	0,57260	0,01432	2,50	1,53E-09	
chr3	0,45354	0,008121	1,79	3,67	0,70741	0,01126	1,59	9,04E-13	
chr4	0,52543	0,005306	1,01	2,39	0,82144	0,01192	1,45	5,86E-16	
chr5	0,51228	0,008273	1,61	3,95	0,79921	0,01100	1,38	2,32E-13	
chr6	0,53756	0,008901	1,66	3,91	0,83880	0,01261	1,50	3,64E-13	
chr7	0,58908	0,018508	3,14	2,83	0,91927	0,02700	2,94	1,86E-08	
chr8	0,60695	0,015797	2,60	3,05	0,94675	0,02173	2,30	3,40E-10	
chr9	0,75816	0,033107	4,37	2,59	1,18180	0,04827	4,08	9,63E-06	
chr10	0,62018	0,029891	4,82	2,56	0,96642	0,04257	4,40	4,55E-05	
chr11	0,63248	0,029204	4,62	2,55	0,98643	0,04222	4,28	1,82E-05	
chr12	0,66574	0,023047	3,46	2,76	1,03840	0,03301	3,18	1,26E-07	
chr13					1,56355	0,01370	0,88	6,33E-17	
chr14	0,98358	0,035331	3,59	2,67	1,58114	0,08076	5,11	2,29E-04	
chr15	1,01432	0,055806	5,50	2,39	1,53464	0,12719	8,29	2,01E-02	
chr16	0,98577	0,085933	8,72	2,17	1,61094	0,14829	9,21	2,68E-02	
chr17	1,03217	0,100389	9,73	2,13	1,74904	0,07290	4,17	1,62E-04	
chr18	1,13489	0,040058	3,53	2,62	2,38397	0,30515	12,80	1,07E-01	
chr19	1,52678	0,203732	13,34	1,98	1,88186	0,14674	7,80	1,56E-02	
chr20	1,20919	0,100371	8,30	2,27	3,71853	0,22406	6,03	4,21E-04	
chr21	2,38087	0,132418	5,56	2,29	3,35158	0,40246	12,01	8,66E-02	
chr22	2,14557	0,271281	12,64	2,13	0,58035	0,02706	4,66	5,68E-05	
chrX	0,66883	0,029157	4,36	1,04					
chr2-6	0,46965	0,006987	1,49	4,17					
chr3-6	0,50496	0,005373	1,06	5,16					
	Y (n=25)								
	Promedio	Des. Est.	CV	Prueba T					
Chr 1-22, X	0,00728	0,00227	31,19	1,30E-13					

[0247] La dosis del cromosoma 21 se determinó utilizando el cromosoma 14 como el cromosoma de normalización; La dosis del cromosoma 13 se determinó utilizando el grupo de los cromosomas 3, 4, 5 y 6 como el cromosoma normalizador; la dosis del cromosoma 18 se determinó utilizando el cromosoma 8 como cromosoma normalizador; y la dosis del cromosoma X se determinó utilizando el cromosoma 4 como cromosoma normalizador. Los umbrales se calcularon para ser 2 desviaciones estándar por encima y por debajo de la media determinada en las muestras calificadas.

[0248] La tabla 12 muestra los datos para la determinación de la fracción fetal en muestras ejemplares. Los valores de dosis de cromosomas calculados para los cromosomas 21, 18, 13, X e Y en muestras de prueba ejemplares correspondientes se dan en las Tablas 15, 16, 17 y 18, respectivamente.

Trisomia 21

[0249] La Tabla 8 proporciona la dosis calculada para el cromosoma 21 en la muestra de prueba (11409). El cromosoma 14 se utilizó como cromosomas normalizadores. El umbral calculado para el diagnóstico positivo de la aneuploidía T21 se estableció en 2 desviaciones estándar de la media de las muestras calificadas (normales). Se proporcionó un diagnóstico para T21 basado en que la dosis de cromosoma en la muestra de prueba fue mayor que el umbral establecido. Las doce muestras de T21 que se confirmaron como T21 por cariotipo se identificaron en una población de 48 muestras de sangre.

TABLA 15

Dosis de cromosoma para una aneuploidía T21						
Cromosoma	Densidad de etiqueta de secuencia	Dosis de cromosoma para Chr 21	Umbral			
Chr21	264.404	0.420409	0.440634			
Chr14	601.605	0,439498	0,410634			

Trisomia 18

5

10

15

20

25

30

35

45

60

[0250] La Tabla 9 proporciona la dosis calculada para el cromosoma 18 en una muestra de prueba (95133). El cromosoma 8 se utilizó como cromosoma normalizador. En este caso, el cromosoma 8 tuvo la variabilidad más baja y la mayor diferenciabilidad. El umbral calculado para el diagnóstico positivo de la aneuploidía T18 se estableció en >2 desviaciones estándar de la media de las muestras calificadas (no T18). Se proporcionó un diagnóstico para T18 basado en la dosis de cromosoma en la muestra de prueba es mayor que el umbral establecido. Se identificaron ocho muestras de T18 utilizando dosis de cromosomas, y se confirmó que eran T18 mediante cariotipo.

TABLA 16

Dosis de cromosoma para una aneuploidía T18					
Cromosoma	Densidad de etiqueta de secuencia	Dosis de cromosoma para Chr 18	Umbral		
Chr18	604.291	0.550724	0.522207		
Chr8	1.097.253	0,550731	0,533297		

Trisomia 13

[0251] Las Tablas 10 y 11 proporcionan la dosis calculada para el cromosoma 13 en una muestra de prueba (51236). El umbral calculado para el diagnóstico positivo de aneuploidía T13 se estableció en 2 desviaciones estándar de la media de las muestras calificadas (no T13). La dosis de cromosoma para el cromosoma 13 proporcionada en la Tabla 10 se calculó utilizando la densidad de la etiqueta de secuencia para el cromosoma 4 como el cromosoma normalizador, mientras que la dosis dada en la Tabla 11 se determinó utilizando el promedio de las relaciones de densidades de la etiqueta de secuencia para el grupo de cromosomas 3, 4, 5, y 6 como el cromosoma normalizante. Se proporcionó un diagnóstico para T13 basado en que la dosis de cromosoma en la muestra de prueba fue mayor que el umbral establecido. Se identificó una muestra de T13 utilizando dosis de cromosomas, y se confirmó que eran T13 mediante cariotipo.

[0252] Los datos muestran que la combinación de los cromosomas 3, 4, 5, y 6 proporcionan una variabilidad (1,06) que es similar a la del cromosoma 4 (1,01), lo que demuestra que un grupo de cromosomas se puede utilizar como cromosoma normalizador para determinar las dosis de cromosomas e identificar aneuploidías.

40 **TABLA 17**

Dosis de cromosoma para una aneuploidía T13					
Cromosom	na Densidad de la etiqueta de secuencia	Dosis de cromosoma para Chr 13	Umbral		
Chr13	669.872	-0.538140	0.526044		
Chr4	1.244.791	0,536140	0,536044		

TABLA 18

50	Dosis cro	omosómica para una aneuploidía T	13	
	Cromoso	ma Densidad de la etiqueta de secu	uencia Dosis de cromosoma	para Chr 13 Umbral
	Chr13	669.872		
	Chr3	1.385.881		
55	Chr4	1.244.791	0,532674	0,515706
	Chr5	1.229.257		
	Chr6	1.170.331		

Síndrome de Turner (monosomía X)

[0253] Se identificaron tres muestras con una dosis de cromosoma inferior a la del umbral establecido que tenían menos de un cromosoma X. Se determinó que las mismas muestras tenían una dosis de cromosoma Y que era menor que el umbral establecido, lo que indicaba que las muestras no tenían un cromosoma Y.

[0254] Las dosis calculadas para los cromosomas X e Y en la muestra de ensayo de monosomía X ejemplar (54430) se dan en la Tabla 12. El cromosoma 4 fue seleccionado como el cromosoma de normalización para calcular la dosis para el cromosoma X; y todos los cromosomas, es decir, 1-22, e Y, se utilizaron como los cromosomas normalizadores. El umbral calculado para el diagnóstico positivo del Síndrome de Turner (monosomía X) se estableció para el cromosoma X en < -2 desviaciones estándar de la media, y para la ausencia del cromosoma Y en <-2 desviaciones estándar de la media para muestras calificadas (no monosomia X).

TABLA 19

15

20

5

10

Dosis de cromosoma para un síndrome de Turner (monosomía X)						
Cromosoma	Densidad de la etiqueta de secuencia	Dosis de cromosoma para Chr X	Umbral			
ChrX	904.049	0,777990	0,797603			
Chr4	1.162.031					
ChrY	390	0,0004462	0,002737754			
Chr (1-22, X) (Promedio)	874.108,1					

25

30

35

45

50

55

[0255] De este modo, el método permite la determinación simultánea de aneuploidías cromosómicas y la fracción fetal por secuenciación masivamente paralela de una muestra materna que comprende una mezcla de ADNcf fetal y materno que se ha enriquecido para una pluralidad de secuencias polimórficas, comprendiendo cada una de ellas un SNP. En este ejemplo, la mezcla de ácidos nucleicos maternos y fetales se enriqueció mediante la combinación de una porción de una biblioteca de secuenciación que se construyó a partir de secuencias polimorfas maternas y fetales amplificadas con una biblioteca de secuenciación que se construyó a partir de la mezcla original de ADNcf fetal y materna no amplificada.

Ejemplo 9

Determinación simultánea de aneuploidía y fetal fracción: Enriquecimiento de los ácidos nucleicos maternos y fetales en una muestra de ADNcf purificada

[0256] Para enriquecer el ADNcf fetal y materno contenido en una muestra purificada de ADNcf extraída de una muestra de plasma materno, se usó una porción del ADNcf purificado para amplificar secuencias de ácido nucleico diana polimórficas, comprendiendo cada una de ellas un SNP seleccionado del panel de SNP dado en la Tabla 6.

[0257] Se obtuvo plasma libre de células de una muestra de sangre materna, y ADNcf se purificó a partir de la muestra de plasma como se describe en el Ejemplo 1. Se determinó que la concentración final era 92,8pg/µl.

[0258] El ADNcf contenido en 5 μl de ADNcf purificado se amplificó en un volumen de reacción de 50 μl que contenía 7,5 μl de una mezcla de cebador 1uM (Tabla 5), 10 μl de NEB 5X Mastermix y 27 μl de agua. El ciclo térmico se realizó con el Gene Amp9700 (Applied Biosystems). Usando las siguientes condiciones de ciclado: incubación a 95°C durante 1 minuto, seguido de 30 ciclos a 95°C durante 20 segundos, 68°C durante 1 minuto y 68°C durante 30s, seguido de una incubación final a 68°C durante 5 minutos. Se agregó una retención final a 4°C hasta que las muestras se retiraron para combinar con la porción no amplificada de la muestra de ADNc purificada. El producto amplificado se purificó utilizando el sistema de purificación por PCR Agencourt AMPure XP (Pieza N° A63881; Beckman Coulter Genomics, Danvers, MA), y la concentración se cuantificó utilizando el Nanodrop 2.000 (Thermo Scientific, Wilmington, DE). El producto de amplificación purificado se diluyó 1:10 en agua y se agregaron 0,9 μl (371 pg) a 40 μl de muestra de ADNcp purificada para obtener un pico del 10%. El ADNcf enriquecido fetal y materno presente en la muestra de ADNcf purificada se usó para preparar una biblioteca de secuenciación, y se secuenció como se describe en el Ejemplo 2.

[0259] La Tabla 13 proporciona los recuentos de etiquetas obtenidos para cada uno de los cromosomas 21, 18, 13, X e Y, es decir. densidad de la etiqueta de secuencia, y los recuentos de etiquetas obtenidos para las secuencias polimórficas informativas contenidas en el genoma de referencia de SNP, es decir, densidad de etiquetas SNP. Los datos muestran que la información de secuenciación puede obtenerse a partir de la secuenciación de una biblioteca única construida a partir de una muestra de ADNcf materna purificada que se ha enriquecido para secuencias que comprenden SNP para determinar simultáneamente la presencia o ausencia de aneuploidía y la fracción fetal. En el ejemplo dado, los datos muestran que la fracción de ADN fetal en la muestra de plasma AFR105 fue cuantificable a

partir de los resultados de la secuenciación de cinco SNP informativos y se determinó que era del 3,84%. Se proporcionan densidades de etiquetas de secuencia para los cromosomas 21, 13, 18, X e Y. La muestra AFR105 fue la única muestra que se sometió al protocolo de enriquecimiento de ADNcf purificado para secuencias polimórficas amplificadas. Por lo tanto, no se proporcionaron los coeficientes de variación y las pruebas de diferenciabilidad. Sin embargo, el ejemplo muestra que el protocolo de enriquecimiento proporciona los recuentos de etiquetas necesarios para determinar la aneuploidía y la fracción fetal a partir de un solo proceso de secuenciación.

TABLA 20

Determinación simultánea de aneuploidía y fracción fetal: Enriquecimiento de los ácidos

18

359529

Inafectado

Cromosoma

Cromosoma

13

388204

Inafectado

Cromosoma

572330

Inafectado

Cromosoma

Inafectado

2219

nucleicos maternos y fetales en una muestra de ADNcf purificada

178763

Inafectado

Cromosoma 21

10

Aneuploidía

secuencia Cariotipo

Fracción fetal

Densidad de la etiqueta de

5

15	
20	
25	

35

40

45

50

55

60

65

30

Ejemplo 10

DENSIDAD DE SNP FRACCIÓN FETAL (%) **ETIQUETA SNP** rs10773760.1|Chr.12|longitud=128|alelo=A 18903 2,81 rs10773760.2|Chr.12|longitud=128|alelo=G 532 rs1109037.1|Chr.2|longitud=126|alelo=A 347 5,43 6394 rs1109037.2|Chr.2|longitud=126|alelo=G rs2567608.1|Chr.20|longitud=110|alelo=A 94503 1,74 rs2567608.2|Chr.20|longitud=110|alelo=G 1649 rs7041158.1|Chr.9|longitud=117|alelo=C 107 5,61 rs7041158.2|Chr.9|longitud= 17|alelo=T 6 rs8078417.1|Chr.17|longitud=110|alelo=C 162668 3,61 rs8078417.2|Chr.17|longitud=110|alelo=T 5877 Fracción fetal (Media+D.E.) = 3,8+1,6

Determinación simultánea de aneuploidía y fracción fetal: enriquecimiento de ácidos nucleicos maternos y fetales en una muestra de plasma

[0260] Para enriquecer el ADNcf fetal y materno contenido en una muestra de plasma original derivada de una mujer embarazada, una porción de la muestra de plasma original se usó para amplificar secuencias de ácido nucleico diana polimórficas, comprendiendo cada una de ellas un SNP elegido del panel de SNP que figura en la Tabla 14, y una porción del producto amplificado se combinó con la muestra de plasma original restante.

[0261] ADNcf contenido en 15 µl de plasma libre de células se amplificó en un volumen de reacción de 50 µl que contenía 9 ul de una mezcla 1 µm de cebadores (15 plexTabla 5), 1 µl de polimerasa ADN de Phusion, 25 µl del tampón de PCR en sangre 2X Phusion que contiene trifosfatos de desoxinucleótidos (dNTPs: dATP, dCTP, dGTP y dTTP). El ciclo térmico se realizó con el Gene Amp9700 (Applied Biosystems) utilizando las siguientes condiciones de ciclo: incubación a 95°C durante 3 minutos, seguido de 35 ciclos a 95°C durante 20 segundos, 55°C durante 30 segundos y 70°C durante 1 minuto, seguido de una incubación final a 68°C durante 5 minutos. Se agregó una retención final a 4°C hasta que las muestras se retiraron para combinarlas con la porción no amplificada del plasma libre de células. El producto amplificado se diluyó 1:2 con aqua y se analizó utilizando el Bioanalizador. Se diluyeron 3 µl adicionales de producto amplificado con 11,85 µl de agua para obtener una concentración final de 2 ng/µl. Se combinaron 2,2 µl del producto amplificado diluido con la muestra de plasma restante. El ADNcf fetal y materno enriquecido presente en la muestra de plasma se purificó como se describe en el Ejemplo 1, y se usó para preparar una biblioteca de secuenciación. La secuenciación y el análisis de los datos de secuenciación se realizaron como se describe en los Ejemplos 2 y 3.

[0262] Los resultados se dan en la Tabla 21. En el ejemplo dado, los datos muestran que la fracción de ADN fetal en muestra de plasma SAC2517 fue cuantificable a partir de los resultados de la secuenciación de un SNP informativo y se determinó que era 9,5%. En el ejemplo dado, se demostró que la muestra SAC2517 por cariotipo no se ve afectada por las aneuploidías de los cromosomas 21, 13, 18, X e Y. Se proporcionan densidades de etiquetas de

secuencia para los cromosomas 21, 13, 18, X e Y. La muestra SAC2517 fue la única muestra que se sometió al protocolo de enriquecimiento de ADNcfc para secuencias polimórficas amplificadas. Por lo tanto, no se pudieron determinar los coeficientes de variación y las pruebas de diferenciabilidad. El ejemplo demuestra que enriquecer la mezcla de ADNcf fetal y materno presente en una muestra de plasma para las secuencias de ácido nucleico que comprenden al menos un SNP informativo puede usarse para proporcionar la secuencia necesaria y los recuentos de etiquetas de SNP para determinar la aneuploidía y la fracción fetal de un solo proceso de secuenciación.

TABLA 21

Determinación simultánea de maternos y fetales en una mue		fracción fetal:	enriq	uecim	iento de ácio	los nucleicos
Aneuploidía						
	Cromosoma 21	Cromosoma 18	Cromo 13	soma	Cromosoma x	Cromosoma Y
Densidad de la etiqueta de secuencia	183851	400582	470520	6	714055	2449
Cariotipo	Inafectado	Inafectado	Inafect	ado	Inafectado	Inafectado
Fracción Fetal						
SNP		RECUENTOS ETIQUETA	DE	FRAC	CIÓN FETAL ((%)
rs10773760.1 Chr.12 longitud=12	28 alelo=A	8536		9,49		
rs10773760.2 Chr.12 longitud =1	89924					

Ejemplo 11

5

Determinación simultánea de aneuploidía y fracción fetal en muestras maternas enriquecidas para secuencias polimórficas que comprenden STR

[0263] Para determinar simultáneamente la presencia o ausencia de una aneuploidía y la fracción fetal en una mezcla de ADNcf fetal y materno obtenida de una muestra materna, la mezcla se enriquece para secuencias polimórficas que comprenden STR, se secuencia y se analizan los datos. El enriquecimiento puede ser de una biblioteca de secuenciación como se describe en el Ejemplo 8, de una muestra de ADNcf purificada como se describe en el Ejemplo 9, o de una muestra de plasma como se describe en el Ejemplo 10. En cada caso, la información de secuenciación se obtiene de la secuenciación de una sola biblioteca, que permite determinar simultáneamente la presencia o ausencia de una aneuploidía y la fracción fetal. Preferiblemente, la biblioteca de secuenciación se prepara utilizando el protocolo abreviado proporcionado en el Ejemplo 2.

[0264] Los STR que se amplifican se seleccionan de los STR codis y no codis descritos en la Tabla 22, y la amplificación de las secuencias polimórficas de STR se obtiene utilizando los conjuntos correspondientes de cebadores proporcionados. Algunos de los STR se han descrito y/o analizado previamente para determinar la fracción fetal, se enumeran en la Tabla 22 y se describen en las solicitudes provisionales de EE.UU. 61/296.358 y 61/360.837.

50

30

35

40

45

55

60

TABLA 22

miniSTR de	CODIS y NON	-CODIS				
STR	Ubicación	Rango	Accesión	Secuencias de cebador		
Locus	de	de	de	(delantera/inversa)		
(Nombre	cromosoma	tamaño	GenBank			
de		(bp)				
marcador)						
Codis miniSTR loci*						
CSF1PO	5q33.1	89-129	X14720	ACAGTAACTGCCTTCATAGATAG		
				(CSF1PO_F; SEQ ID NO:113)		
				GTGTCAGACCCTGTTCTAAGTA		
				(CSF1PO_R; SEQ ID NO:114)		
FGA	4q31.3	125-	M64982	AAATAAAATTAGGCATATTTACAAGC		
		281		(FGA_F; SEQ ID NO:115)		
				GCTGAGTGATTTGTCTGTAATTG(FGA_R;		
				SEQ ID NO:116)		
TH01	11p15.5	51-98	D00269	CCTGTTCCTCCCTTATTTCCC(TH01_F;		
				SEQ ID NO:117)		
				GGGAACACAGACTCCATGGTG(TH01 R;		
				SEQ ID NO:118)		
TPOX	2p25.3	65-101	M68651	CTTAGGGAACCCTCACTGAATG(TPOX_F		
				; SEQ ID NO:119)		
				GTCCTTGTCAGCGTTTATTTGC(TPOX_		
				R; SEQ ID NO:120)		

miniSTR de	CODIS y NON	-CODIS		
STR Locus (Nombre	Ubicación de cromosoma	Rango de tamaño	Accesión de GenBank	Secuencias de cebador (delantera/inversa)
de	Gionnosonia	(bp)	Selibalik	
marcador))) 			
vWA	12p13.31	88-148	M25858	AATAATCAGTATGTGACTTGGATTGA(v
VVVA	12013.31	00-140	W25050	WA_F; SEQ ID NO:121) ATAGGATGGATGGATGGA(vW A_R; SEQ ID NO:122)
D3S1358	3p21.31	72-120	NT_005997	CAGAGCAAGACCCTGTCTCAT(D3S1358_F; SEQ ID NO:123) TCAACAGAGGCTTGCATGTAT(D3S1358_R; SEQ ID NO:124)
D5S818	5q23.2	81-117	AC008512	GGGTGATTTTCCTCTTTTGGT(D5S818_F; SEQ ID NO:125) AACATTTGTATCTTTATCTGTATCCTTAT TTAT(D5S818_R: SEO_ID NO:126)
D7S820	7q21.11	136- 176	AC004848	GAACACTTGTCATAGTTTAGAACGAAC (D7S820_F; SEQ ID NO:127) TCATTGACAGAATTGCACCA(D7S820_R; SEQ ID NO:128)
D8S1179	8q24.13	86-134	AF216671	TTTGTATTTCATGTGTACATTCGTATC(D 7S820_F; SEQ ID NO:129) ACCTATCCTGTAGATTATTTTCACTGTG (D7S820_R; SEQ ID NO:130)
D13S317	13q31.1	88-132	AL353628	TCTGACCCATCTAACGCCTA(D13S317_F; SEQ ID NO:131) CAGACAGAAAGATAGATAGATGATTGA (D13S317_R; SEQ ID NO:132)
D16S539	16q24.1	81-121	AC024591	ATACAGACAGACAGACAGGTG(D16S539_F; SEQ ID NO:133) GCATGTATCTATCATCCATCTCT(D16S53 9 R; SEQ ID NO:134)
D18S51	18q21.33	113- 193	AP001534	TGAGTGACAAATTGAGACCTT(D18S51_F; SEQ ID NO:135) GTCTTACAATAACAGTTGCTACTATT(D1 8S51_R; SEQ ID NO:136)
D21S11	21q21.1	153- 221	AP000433	ATTCCCCAAGTGAATTGC(D21S11_F; SEQ ID NO:137) GGTAGATAGACTGGATAGATAGACGA(D 21S11 R; SEQ ID NO:138)
D2S1338	2q35	90-142	AC01036	TGGAAACAGAAATGGCTTGG(D2S1338_F ;SEQ ID NO:139) GATTGCAGGAGGGAAGGAAG(D2S1338_ R; SEQ ID NO:140)
Penta D	21q22.3	94-167	AP001752	GAGCAAGACACCATCTCAAGAA(Penta D_F; SEQ ID NO:141) GAAATTTTACATTTATGTTTATGATTCTC T(Penta D_R; SEQ ID NO:142)
Penta E	15q26.2	80-175	AC027004	GGCGACTGAGCAAGACTC(Penta E _F; SEQ ID NO:143) GGTTATTAATTGAGAAAACTCCTTACA(P enta E _R; SEQ ID NO:144)
	ci no codis*			
D22S1045	22q12.3	82-115	AL022314 (17) F;	ATTTTCCCCGATGATAGTAGTCT(D22S1045_ SEQ ID NO:145) GCGAATGTATGATTGGCAATATTTTT(D22S 1045_R; SEQ ID NO:146)
D20S1082	20q13.2	73-101	AL158015	ACATGTATCCCAGAACTTAAAGTAAAC(D2 0S1082_F; SEQ ID NO:147) GCAGAAGGGAAAATTGAAGCTG(D20S1082 _R; SEQ ID NO: 148)
·			68	

miniSTR de CODIS y NON-CODIS					
STR Locus (Nombre de marcador)	Ubicación de cromosoma	Rango de tamaño (bp)	Accesión de GenBank	Secuencias de cebador (delantera/inversa)	
Codis minis	I STR loci*				
D20S482	20p13	85-126	AL121781 (14) F;	CAGAGACACCGAACCAATAAGA(D20S482_ SEQ ID NO:149) GCCACATGAATCAATTCCTATAATAAA (D20S482_R;SEQ ID NO:150)	
D18S853	18p11.31	82-104	AP005130 (11)	GCACATGTACCCTAAAACTTAAAAT(D18S8 53_F; SEQ ID NO:151) GTCAACCAAAACTCAACAAGTAGTAA(D18 S853_R; SEQ ID NO:152)	
D17S1301	17q25.1	114- 139	AC016888 (12)	AAGATGAAATTGCCATGTAAAAATA(D17S1 301_F; SEQ ID NO:153) GTGTGTATAACAAAATTCCTATGATGG(D17 S1301_R; SEQ ID NO:154)	
D17S974	17p13.1	114- 139	AC034303 (10)	GCACCCAAAACTGAATGTCATA(D17S974_F; SEQ ID NO:155) GGTGAGAGTGAGACCCTGTC(D17S974_R; SEQ ID NO:156)	
D14S1434	14q32.13	70-98	AL121612 (13)	TGTAATAACTCTACGACTGTCTGTCTG(D14 S1434_F; SEQ ID NO:157) GAATAGGAGGTGGATGGATGG(D14S1434_R; SEQ ID NO:158)	
D12ATA63	12q23.3	76-106	AC009771 (13)	GAGCGAGACCCTGTCTCAAG(D 12ATA63F; SEQ ID NO:159) GGAAAAGACATAGGATAGCAATTT(D12AT A63_R; SEQ ID NO:160)	
D11S4463	11q25	88 - 116	AP002806 (14)	TCTGGATTGATCTGTCTGTCC(D11S4463 F; SEQ ID NO:161) GAATTAAATACCATCTGAGCACTGAA(D11S 4463 R; SEQ ID NO:162)	
D10S1435	10p15.3	82-139	AL354747 (11)	TGTTATAATGCATTGAGTTTTATTCTG(D10S 1435_F; SEQ ID NO:163) GCCTGTCTCAAAAATAAAGAGATAGACA(D 10S1435_R; SEQ ID NO:164)	
D10S1248	10q26.3	79 - 123	AL391869 (13)	TTAATGAATTGAACAAATGAGTGAG(D 10S1 248_F; SEQ ID NO:165) GCAACTCTGGTTGTATTGTCTTCAT(D 1 0S12 48_R; SEQ ID NO:166)	
D9S2157	9q34.2	71 - 107	AL162417 (10)	CAAAGCGAGACTCTGTCTCAA(D9S2157_F; SEQ ID NO:167) GAAAATGCTATCCTCTTTGGTATAAAT(D9S 2157_R; SEQ ID NO:168)	
D9S1122	9q21.2	93 - 125	AL161789 (12)	GGGTATTTCAAGATAACTGTAGATAGG(D9 S1122_F; SEQ ID NO:168) GCTTCTGAAAGCTTCTAGTTTACC(D9S1122 _R; SEQ ID NO:170)	
D8S1115	8p11.21	63 - 96	AC090739 (9)	TCCACATCCTCACCAACAC(D8S1115_F; SEQ ID NO:171) GCCTAGGAAGGCTACTGTCAA(D8S11 15_R; SEQ ID NO:172)	
D6S1017	6p21.1	81 - 110	AL035588 (10)	CCACCCGTCCATTTAGGC(D6S1017_F; SEQ ID NO:173) GTGAAAAAGTAGATATAATGGTTGGTG(D6 S1017 _R; SEQ ID NO:174)	
D6S474	6q21	107- 136	AL357514 (17)	GGTTTTCCAAGAGATAGACCAATTA(D6S474_F; SEQ ID NO:175) GTCCTCTCATAAATCCCTACTCATATC(D6S 474_R; SEQ ID NO:176)	

		CODIS y NON-C		A	Occupation de calculation (Alberta Person
5	STR Locus (Nombre de marcador)	Ubicación de cromosoma	Rango de tamaño (bp)	Accesión de GenBank	Secuencias de cebador (directo/inversa)
	Codis miniST	R loci*			
10	D5S2500	5q11.2	85 - 126	AC008791 (17)	CTGTTGGTACATAATAGGTAGGTAGGT(D5S 2500_F; SEQ ID NO:177) GTCGTGGGCCCCATAAATC(D5S2500_R; SEQ ID NO:178)
15	D4S2408	4p15.1	85 - 109	AC110763 (9)	AAGGTACATAACAGTTCAATAGAAAGC(D4 S2408 _F; SEQ ID NO:179) GTGAAATGACTGAAAAATAGTAACCA(D4S 2408 _R; SEQ ID NO:180)
20	D4S2364	4q22.3	67-83	AC022317 (9)	CTAGGAGATCATGTGGGTATGATT(D4S2364 U_F; SEQ ID NO:181) GCAGTGAATAAATGAACGAATGGA(D4S236 4_R; SEQ ID NO:182)
	D3S4529	3p12.1	111- 139	AC117452 (13)	CCCAAAATTACTTGAGCCAAT(D3 S452_F; SEQ ID NO:183) GAGACAAAATGAAGAAACAGACAG(D3S45 2_R; SEQ ID NO:184)
25	D3S3053	3q26.31	84-108	AC069259 (9)	TCTTTGCTCTCATGAATAGATCAGT(D3S305 3_F; SEQ ID NO:185) GTTTGTGATAATGAACCCACTCAG(D3S3053 _R; SEQ ID NO:186)
30	D2S1776	2q24.3	127 - 161	AC009475 (11)	TGAACACAGATGTTAAGTGTATATG(D2S 1776_F; SEQ ID NO:187) GTCTGAGGTGGACAGTTATGAAA(D2S1776_ R; SEQ ID NO:188)
35	D2S441	2p14	78 - 110	AC079112 (12)	CTGTGGCTCATCTATGAAAACTT(D2S441_F; SEQ ID NO:189) GAAGTGGCTGTGGTGTTATGAT(D2S441_R; SEQ ID NO:190)
	D1S1677	1q23.3	81 - 117	AL513307 (15)	TTCTGTTGGTATAGAGCAGTGTTT(D1S1677 F; SEQ ID NO:191) GTGACAGGAAGGACGGAATG(D1S1677_R;
40	D1S1627	1p21.1	81-100	AC093119	SEQ ID NO:192) CATGAGGTTTGCAAATACTATCTTAAC(D1S
45				(13)	1627_F; SEQ ID NO:193) GTTTTAATTTTCTCCAAATCTCCA(D1S1627_ R; SEQ ID NO:194)
.0	D1GATA113	1p36.23	81 - 105	Z97987 (11)	TCTTAGCCTAGATAGATACTTGCTTCC(D1G ATA113_F; SEQ ID NO:195) GTCAACCTTTGAGGCTATAGGAA(D1GATA 113_R; SEQ ID NO:196)
50		J Forensic Sci (ication - 2006)	5:1054-106	64; Hill et al., F	Poster #44- 17th International Symposium on

[0265] Los miniSTR proporcionados en la Tabla 22 se han utilizado con éxito para determinar la fracción fetal en muestras de ADNcf de plasma obtenidas de mujeres embarazadas con fetos masculinos o femeninos, utilizando electroforesis capilar (consulte la Tabla 24 en el Ejemplo 15) para identificar y cuantificar los alelos de fetalidad y la maternidad. Por lo tanto, se espera que las secuencias polimórficas que comprenden otros STR, por ejemplo, los STR restantes de la Tabla 22 se puedan usar para determinar la fracción fetal mediante métodos de secuenciación masivamente paralelos.

55

60

65

[0266] La secuenciación de la biblioteca enriquecida para secuencias polimórficas de STR se realiza usando una tecnología NGS, por ejemplo, secuenciación masivamente paralela por síntesis. Las lecturas de secuencia de longitudes de al menos 100 pb se alinean con un genoma de referencia, por ejemplo, la secuencia del genoma humano de referencia NCBI36/hg18, y con un genoma de STR, y el número de etiquetas de secuencia asignadas al genoma humano de referencia y el genoma de referencia de STR obtenido para alelos informativos se utiliza para determinar la presencia o ausencia de aneuploidía y la fracción fetal, respectivamente. El genoma de referencia de

STR incluye las secuencias de amplicones amplificados a partir de los cebadores dados.

Ejemplo 12

5 Determinación simultánea de aneuploidía y fracción fetal mediante secuenciación masiva en paralelo de muestras maternas enriquecidas para secuencias polimórficas que comprenden SNP en tándem

[0267] Para determinar simultáneamente la aneuploidía y la fracción fetal en muestras maternas que comprenden ácidos nucleicos maternos y fetales, las muestras de plasma, las muestras de ADNcf purificadas y las muestras de 10 la biblioteca de secuenciación se enriquecen para las secuencias de ácido nucleico diana polimórficas, comprendiendo cada una de ellas un par de SNP en tándem seleccionados entre rs7277033-rs2110153: rs2822654rs1882882; rs368657-rs376635; rs2822731-rs2822732; rs1475881-rs7275487; rs1735976-rs2827016; rs447340rs2824097; rs418989-rs13047336; rs987980-rs987981; rs4143392-rs4143391; rs1691324-rs1305434; rs11909758rs9980111; rs2826842-rs232414; rs1980869-rs1980970; rs9978999-rs9979175; rs1034346-rs12481852; rs7509629-15 rs2828358; rs4817013-rs7277036; rs9981121-rs2829696; rs455921-rs2898102; rs2898102-rs458848; rs961301rs11088023-rs11088024; rs1011734-rs1011733; rs2831244-rs9789838; rs2174536-rs458076; rs8132769-rs2831440; rs8134080-rs2831524; rs4817219-rs4817220; rs2250911-rs2250997, rs2831899-rs2831900; rs2831902-rs2831903; rs11088086-rs2251447; rs2832040-rs11088088; rs2832141-rs2246777; rs9980934; rs2833734-rs2833735; rs933121-rs933122; rs2834140-rs12626953; rs2834485-rs3453; rs9974986rs2834703; rs2776266-rs2835001; rs1984014-rs1984015; rs7281674-rs2835316; rs13047304-rs13047322; 20 rs2835545-rs4816551; rs2835735-rs2835736; rs13047608-rs2835826; rs2836550-rs2212596; rs2836661; rs465612-rs8131220; rs9980072-rs8130031; rs418359-rs2836926; rs7278447-rs7278858; rs385787rs367001; rs367001-rs386095; rs2837296-rs2837297; y rs2837381-rs4816672. Los cebadores utilizados para amplificar las secuencias de destino que comprenden los SNP en tándem están diseñados para abarcar ambos 25 sitios de SNP. Por ejemplo, el cebador directo está diseñado para abarcar el primer SNP, y el cebador inverso está diseñado para abarcar el segundo par de SNP en tándem, es decir, cada uno de los sitios de SNP en el par en tándem se engloba dentro de los 36 pb generados por el método de secuenciación. La secuenciación de extremos emparejados se puede usar para identificar todas las secuencias que abarcan los sitios SNP en tándem. Los conjuntos ejemplares de cebadores que se utilizan para amplificar los SNP en tándem descritos en este documento son: rs7277033-rs2110153_F: TCCTGGAAACAAAGTATT (SEQ ID NO: 197) y rs7277033-rs2110153 R: 30 AACCTTACAACAAAGCTAGAA (SEQ ID NO:198), conjunto rs2822654-rsl882882 F: ACTAAGCCTTGGGGATCCAG (SEQ ID NO: 199) y rs2822654-rs1882882 R: TGCTGTGGAAATACTAAAAGG (SEQ ID NO:200), conjunto rs368657-rs376635_F:CTCCAGAGGTAATCCTGTGA (SEQ ID NO:201) y rs368657rs376635 R:TGGTGTGAGATGGTATCTAGG (SEQ ID NO:202), rs2822731-35 rs2822732 F:GTATAATCCATGAATCTTGTTT (SEQ ID NC:203) rs2822731rs1475881rs2822732 R:TTCAAATTGTATATAAGAGAGT (SEQ ID NO:204). rs7275487 F:GCAGGAAAGTTATTTTAAT NO:205) rs1475881-rs7275487 R:TGCTTGA-(SEQ ID GAAAGCTAACACTT (SEQ ID NO:206), rs1735976-rs2827016F:CAGTGTTTGGAAATTGTCTG (SEQ ID NO:207) y GGCACTGGGAGATTATTGTA (SEQ ID NO: rs447349-rs2824097 F: rs1735976-rs2827016 R: 208), 40 TCCTGTTGTTAAGTACACAT (SEQ ID NO: 209) y rs447349-rs2824097_R: GGGCCGTAATTACTTTTG (SEQ ID NO: 210), rs418989-rs13047336_F: ACTCAGTAGG CACTTTGTGTC (SEQ ID NO: 211) y rs418989-rs13047336_R: TCTTCCACCACACCAATC (SEQ ID NO: 212), rs987980-rs987981_F:TGGCTTTTCAAAGGTAAAA (SEQ ID NO:213) y rs987980-rs987981_R: GCAACGTTAACATCTGAATTT (SEQ ID NO:214), rs4143392-rs4143391_F: rs4143392-rs4143391 (SEQ ID NO: 215) y rs4143392-rs4143391 R: ATTTTATATGTCATGATCTAAG (SEQ ID NO: 216), rs1691324-rs13050434_F: AGAGATTACAGGTGTGAGC (SEQ ID NO: 217) y rs1691324-rs1305O434_R: 45 ATGATCCTCAACTGCCTCT (SEQ ID NO:218), rs11909758-rs9980111 F: TGAAACTCAAAAGAGAAAAG (SEQ ID NO:219) y rs11909758-rs9980111 R: ACAGATTTCTACTTAAAATT (SEQ ID NO:220), rs2826842-rs232414 F: TGAAACTCAAAAGAGAAAAG (SEQ ID NO:221) y rs2826842-rs232414_R: ACAGATTTCTACTTAAAATT (SEQ ID NO:22), rs2826842-rs232414_F: GCAAAGGGGTACTCTATGTA (SEQ_ID_NO:223) y rs2826842-rs232414_R: TATCGGGTCATCTTGTTAAA (SEQ ID NO:224), rs1980969-rs1980970 F: TCTAACAAAGCTCTGTCCAAAA (SEQ 50 ID NO:225) y rs1980969-rs1980970_R: CCACACTGAATAACTGGAACA (SEQ ID NO:226), rs9978999-GCAAGCAAGCTCTCTACCTTC rs9979175 F: NO:227) rs9978999-rs9979175 R: (SEQ ID TGTTCTTCCAAAATTCACATGC (SEQ ID NO:228), rs1034346-rs12481852 F; ATTTCACTATTCCTTCATTTT (SEQ ID NO:229) y rs1034346-rs12481852 R: TAATTGTTGCACACTAAATTAC (SEQ ID NO:230), rs4817013-55 rs7277036 F: AAAAAGCCACAGAAATCAGTC ID NO:231) rs4817013-rs7277036 R: (SEQ TTCTTATATCTCACTGGGCATT (SEQ ID NO:232), rs9981121rs2829696_F: GGATGGTAGAAGAAGAAAGG (SEQ ID NO:233) y rs9981121-rs2829696 R: GGATGGTAGAAGAGAAGAAGG (SEQ ID NO:234), rs455921-TGCAAAGATGCAGAACCAAC rs2898102 F: NO:235) rs455921-rs2898102 R: (SEQ ID TTTTGTTCCTTGTCCTGGCTGA (SEQ ID NO:236), rs2898102-rs458848 F: TGCAAAGATGCAGAACCAAC (SEQ 60 ID NO:237) y rs2898102rs458848 R: GCCTCCAGCTCTATCCAAGTT (SEQ ID NO:238), rs961301-rs2830208 F: CCTTAATATCTTCCCATGTCCA (SEQ ID NO:239) y rs961301-rs2830208_R: ATTGTTAGTGCCTCTTCTGCTT (SEQ ID NO:240), rs2174536-rs458076_F: GAGAAGTGAGGTCAGCAGCT (SEQ ID NO:241) y rs2174536rs458076 R: TTTCTAAATTTCCATTGAACAG (SEQ ID NO:242), rs11088023-rs11088024 F: GAAATTGGCAATCTGATTCT (SEQ ID NO:243) y rs11088023-rsl1088024_R: CAACTTGTCCTTTATTGATGT (SEQ ID NO:244), rs1011734-rs1011733 F: CTATGTTGATAAAACATTGAAA (SEQ ID NO:245) y rs1011734rs1011733_R: 65 GCCTGTCTGGAATATAGTTT (SEQ ID NO:246), rs2831244-rs9789838 F: CAGGGCATATAATCTAAGCTGT (SEQ 10

15

20

25

30

35

40

45

50

55

60

65

ID NO:247) y rs2831244-rs9789838 R: CAATGACTCTGAGTTGAGCAC (SEQ ID NO:248), rs8132769-ACTCTCCCCTCCCTCT NO:249) rs8132769-rs2831440 R: (SEQ ID TATGGCCCCAAAACTATTCT (SEQ ID NO:250), rs8134080-rs2831524_F: ACAAGTACTGGGCAGATTGA (SEQ ID NO:251) y rs8134080-rs2831524_R: GCCAGGTTTAGCTTTCAAGT (SEQ ID NO:252), rs4817219-rs4817220_F: TTTTATATCAGGAGAAACACTG (SEQ ID NO:253) y rs4817219-rs4817220_R: CCAGAATTTTGGAGGTTTAAT NO:254), rs2250911-rs2250997 F: TGTCATTCCTCCTTTATCTCCA (SEQ NO:255) rs2250911rs2250997_R: TTCTTTTGCCTCTCCCAAAG (SEQ NO:256), rs2831899-rs2831900 F: ID ACCCTGGCACAGTGTTGACT (SEQ ID NO:257) y rs2831899-rs2831900 R: TGGGCCTGAGTTGAGAAGAT (SEQ ID NO:258), rs2831902rs2831903 F: AATTTGTAAGTATGTGCAACG (SEQ ID NO:259) y rs2831902-rs2831903 R: TTTTTCCCATTTCCAACTCT (SEQ ID NO:260), rs11088086-rs2251447_F: AAAAGATGAGACAGGCAGGT (SEQ ID NO:261) y rs11088086-rs2251447 _R: ACCCCTGTGAATCTCAAAAT (SEQ ID NO:262), rs2832040-rs11088088_F: GCACTTGCTTCTATTGTTTGT (SEQ ID NO:263) y rs2832040-rs11088088_R: CCCTTCCTCTCTCTCCATTCT (SEQ ID NO:264), rs2832141-rs2246777_F: AGCACTGCAGGTA (SEQ ID NO:265) y rs2832141-rs2246777_R: ACAGATACCAAAGAACTGCAA (SEQ ID NO:266), rs2832959 rs980934_F: TGGACACCTTTCAACTTAGA (SEQ ID NO:267) y rs2832959 -rs9980934_R: GAACAGTAATGTTGAACTTTTT (SEQ ID NO:268), rs2833734-TCTTGCAAAAAGCTTAGCACA NO:269) rs2833734-rs2833735 R: (SEQ ID AAAAAGATCTCAAAGGGTCCA (SEQ ID NO:270), rs933121-rs933122_F: GCTTTTGCTGAACATCAAGT (SEQ ID NO:271) y rs933121-rs933122 R: CCTTCCAGCAGCATAGTCT (SEQ ID NO:272), rs2834140-rs12626953 F: AAATCCAGGATGTGCAGT (SEQ ID NO:273) y rs2834140-rsl2626953 R: ATGATGAGGTCAGTGGTGT (SEQ ID NO:274), rs2834485-rs3453_F: CATCACAGATCATAGTAAATGG (SEQ ID NO:275) y rs2834485-rs3453_R: AATTATTATTTTGCAGGCAAT (SEQ ID NO:276), rs9974986-rs2834703 F: CATGAGGCAAACACCTTTCC (SEQ ID NO:277) y rs9974986-rs2834703_R: GCTGGACTCAGGATAAAGAACA (SEQ ID NO:278), rs2776266-rs2835001_F: TGGAAGCCTGAGCTGACTAA (SEQ ID NO:279) y rs2776266-rs2835001_R:CCTTCTTTTCCCCCAGAATC (SEQ NO:281) y rs1984014-rs7281674-rs2835316_F: rs1984014rs1984015 F:TAGGAGAACAGAAGATCAGAG (SEQ ID rs1984015_R:AAAGACTATTGCTAAATGCTTG (SEQ ID NO:282), TAAGCGTAGGGCTGTGTGT (SEQ ID NO:283) yrs7281674-rs2835316_R: GGACGGATAGACTCCAGAAGG (SEQ ID NO:284), rs13047304-rs13047322 F: GAATGACCTTGGCACTTTTATCA (SEQ ID NO:285) y rs13047304-AAGGATAGAGATATACAGATGAATGGA (SEQ ID NO:286), rs2835735-rs2835736 F: CATGCACCGCGCAAATAC (SEQ ID NO:287) y rs2835735rs2835736_R: ATGCCTCACCCACAAACAC (SEQ ID NO:288), rs13047608-rs2835826_F: TCCAAGCCCTTCTCACTCAC (SEQ ID NO:289) y rs13047608-rs2835826_R: CTGGGACGTGACATTTTCT (SEQ ID NO:290), rs2836550rs2212596 F: CCCAGGAAGAGTGGAAAGATT (SEQ ID NO:291) y rs2836550-rs2212596_R: TTAGCTTGCATGTACCTGTGT (SEQ ID NO:292), rs2836660-rs2836661_F: AGCTAGATGGGGTGAATTTT (SEQ ID NO:293) y_R: TGGGCTGAGGGGAGATTC (SEQ ID NO:294), rs465612-ATCAAGCTAATTAATGTTATCT (SEQ ID NO:295) rs465612-rs8131220 R: AATGAATAAGGTCCTCAGAG (SEQ ID NO:296), rs9980072-rs8130031_F:TTTAATCTGATCATTGCCCTA (SEQ ID NO:297) y rs9980072-rs8130031_R: AGCTGTGGGTGACCTTGA (SEQ ID NO:298), rs418359-rs2836926_F: TGTCCCACCATTGTGTATTA (SEQ ID NO:299) y rs418359-rs2836926_R: TCAGACTTGAAGTCCAGGAT (SEQ ID NO:300), rs7278447-rs7278858 F: GCTTCAGGGGTGTTAGTTTT (SEQ ID NO:301) y rs7278447-rs7278858 R: CTTTGTGAAAAGTCGTCCAG (SEQ ID NO:302), rs385787rs367001_F:CCATCATGGAAAGCATGG (SEQ ID NO:303) y rs385787-rs367001 R: TCATCTCCATGACTGCACTA (SEQ ID NO:304), rs367001-rs386095 F: GAGATGACGGAGTAGCTCAT (SEQ ID NO:305) y rs367001rs386095_R: CCCAGCTGCACTGTCTAC (SEQ ID NO:306), rs2837296-rs2837297_F: TCTTGTTCCAATCACAGGAC (SEQ ID NO:307) y rs2837296-rs2837297_R: ATGCTGTTAGCTGAAGCTCT (SEQ ID NO:308), y rs2837381rs4816672_F: TGAAAGCTCCTAAAGCAGAG (SEQ ID NO:309) y rs2837381-rs4816672_R:TTGAAGAGATGTGCTATCAT (SEQ ID NO:310). Se pueden incluir secuencias de polinucleótidos, por ejemplo, secuencias de fijación de GC, para garantizar la hibridación específica de cebadores ricos en AT (Ghanta et al., PLOS ONA 5 (10): doi10,1371/journal.pone.0013184 [2010], disponible en Internet en plosone.org). Un ejemplo de una secuencia de fijación de GC que puede incluir 5' del cebador directo o 3' (SEQ ID NO: 311).

[0268] Preparación de la muestra y el enriquecimiento de la biblioteca de secuenciación ADNcf, una muestra ADNcf purificada, y una muestra de plasma se lleva a cabo de acuerdo con el método descrito en los Ejemplos 8, 9 y 10, respectivamente. Todas las bibliotecas de secuenciación se preparan como se describe en el Ejemplo 2a, y la secuenciación se realiza como se describe en el Ejemplo 2b e incluye la secuenciación de extremos pareados. El análisis de los datos de secuenciación para la determinación de la aneuploidía fetal se realiza como se describe en los Ejemplos 4 y 5. Concomitante al análisis para determinar la aneuploidía, los datos de secuenciación se analizan para determinar la fracción fetal de la siguiente manera. Tras la transferencia de la imagen y los archivos de llamada base al servidor Unix que ejecuta el software Illumina "Genome Analyzer Pipeline" versión 1.51 como se describe, las lecturas de 36 pb se alinean con un "genoma SNP en tándem" mediante el programa BOWTIE. El genoma de SNP en tándem se identifica como la agrupación de las secuencias de ADN que abarcan los alelos de los 58 pares de SNP en tándem descritos anteriormente. Solo las lecturas que se asignan de forma única al genoma de SNP en tándem se utilizan para el análisis de la fracción fetal. Las lecturas que coinciden perfectamente con el genoma SNP en tándem se cuentan como etiquetas y se filtran. De las lecturas restantes, solo las lecturas que tienen uno o dos desajustes se cuentan como etiquetas y se incluyen en el análisis. Las etiquetas asignadas a cada uno de los alelos SNP en tándem se cuentan, y la fracción fetal se determina esencialmente como se describe en el Ejemplo 6 anterior, pero se tienen en cuenta las etiquetas asignadas a los dos alelos x e y SNP en tándem presentes en cada una de las secuencias de ácido nucleico diana polimórficas amplificadas que se amplifican para enriquecer las muestras maternas, es decir. % fracción fetal alelo_{x+y} = $((\Sigma \text{etiquetas de secuencias fetales para alelo_{x+y})/(\Sigma \text{etiquetas de secuencias para alelo_{x+y})) x 100 Opcionalmente, la fracción de ácidos nucleicos fetales en la mezcla de ácidos nucleicos fetales y maternos se calculan para cada uno de los alelos informativos (alelo_{x+y}) de la siguiente manera:$

% fracción fetal alelo_{x+y} = ((2 X Σ etiquetas de secuencias fetales para alelo_{x+y}) / (Σ etiquetas de secuencias maternas para alelo_{x+y})) x 100,

para compensar la presencia de 2 conjuntos de alelos fetales en tándem, uno de ellos enmascarado por el fondo materno. Las secuencias SNP en tándem son informativas cuando la madre es heterocigótica y está presente un tercer haplotipo paterno, lo que permite una comparación cuantitativa entre el haplotipo heredado maternalmente y el haplotipo heredado paternalmente para calcular la fracción fetal mediante el cálculo de una relación de haplotipo (HR). El porcentaje de fracción fetal se calcula para al menos 1, al menos 2, al menos 3, al menos 4, al menos 5, al menos 6, al menos 7, al menos 8, al menos 9, al menos 10, al menos 11, al menos 12, al menos 13, al menos 14, al menos 15, al menos 16, al menos 17, al menos 18, al menos 19, al menos 20, al menos 25, al menos 30, al menos 40 o más conjuntos informativos de alelos en tándem. En una realización, la fracción fetal es la fracción fetal promedio determinada para al menos 3 conjuntos informativos de alelos en tándem.

Ejemplo 13

5

10

15

20

25

30

35

40

45

Determinación de la fracción fetal por secuenciación masivamente paralela de una biblioteca de destino que comprende ácidos nucleicos polimórficos que comprenden SNP

[0269] Para determinar la fracción de ADNcf fetal en una muestra materna, las secuencias de ácido nucleico polimórficas diana que comprenden cada una SNP se amplificaron y se usaron para preparar una biblioteca diana para la secuenciación masivamente paralela.

[0270] ADNcf se extrajo como se describe en el Ejemplo 1. Se preparó una biblioteca de secuenciación de la siguiente manera. El ADNcf contenido en 5 µl de ADNcf purificado se amplificó en un volumen de reacción de 50 µl que contenía 7,5 µl de una mezcla de cebador 1 µm (Tabla 10), 10 µl de NEB 5X Mastermix y 27 µl de agua. El ciclo térmico se realizó con el Gene Amp9700 (Applied Biosystems) utilizando las siguientes condiciones de ciclo: incubación a 95°C durante 1 minuto, seguido de 20-30 ciclos a 95°C durante 20 segundos, 68°C durante 1 minuto y 68°C durante 30s, seguido de una incubación final a 68°C durante 5 minutos. Se agregó una retención final a 4°C hasta que las muestras se retiraron para combinar con la porción no amplificada de la muestra de ADNc purificada. El producto amplificado se purificó utilizando el sistema de purificación por PCR Agencourt AMPure XP (Pieza Nº A63881; Beckman coulter Genomics, Danvers, MA), y la concentración se cuantificó utilizando el Nanodrop 2.000 (Thermo Scientific, Wilmington, DE). Se agregó una retención final a 4°C hasta que las muestras se retiraron para preparar la biblioteca diana. El producto amplificado se analizó con un bioanalizador 2100 (Agilent Technologies, Sunnyvale, CA) y se determinó la concentración del producto amplificado. Se preparó una biblioteca de secuenciación de ácidos nucleicos diana amplificados utilizando el protocolo abreviado descrito en el Ejemplo 2, y se secuenció de manera masivamente paralela utilizando secuenciación por síntesis con terminadores de colorantes reversibles y de acuerdo con el protocolo de Illumina. El análisis y el recuento de las etiquetas asignadas a un genoma de referencia que consta de 26 secuencias (13 pares cada uno que representa dos alelos) que comprenden un SNP, es decir, la SEQ ID NO: 1-56 se realizó como se describe.

[0271] La Tabla 23 proporciona los recuentos de etiquetas obtenidos a partir de la secuenciación de la biblioteca diana y la fracción fetal calculada derivada de los datos de secuenciación.

TABLA 23

de ácidos nucleicos polimórficos que comp	e secuenciación masivamente paralela prenden SNP	ue una bi
SNP	RECUENTOS DE ETIQUETA DE SNP	Fracción (%)
rs10773760.1 Chr.12 longitud=128 alelo=A	236590	1.00
rs10773760.2 Chr.12 longitud=128 alelo=G	4680	1,98
rs13182883.1 Chr.5 longitud=111 alelo=A	3607	4.00
rs13182883.2 Chr.5 longitud=111 alelo=G	72347	4,99
rs4530059.1 Chr.14 longitud=110 alelo=A	3698	1 51
rs4530059.1 Chr.14 longitud=110 alelo=G	239801	1,54
rs8078417.1 Chr.17 longitud=110 alelo=C	1E+06	2.66
rs8078417.2 Chr.17 longitud=110 alelo=T	50565	3,66

[0272] Los resultados muestran que las secuencias de ácidos nucleicos polimórficos que comprenden cada uno al menos un SNP pueden amplificarse a partir de ADNcf derivado de una muestra de plasma materno para construir una biblioteca que puede secuenciarse de forma masiva paralela para determinar la fracción de ácidos nucleicos fetales en la muestra materna. Los métodos de secuenciación masivamente paralelos para determinar la fracción fetal se pueden usar en combinación con otros métodos para proporcionar el diagnóstico de la aneuploidía fetal y otras pruebas prenatales.

10 **Ejemplo 14**

Determinación de la fracción fetal por secuenciación masivamente paralela de una biblioteca de destino que comprende ácidos nucleicos polimórficos que comprenden STR o SNP en tándem

- 15 [0273] La fracción fetal puede determinarse independientemente de la determinación de aneuploidía utilizando una biblioteca de destino que comprende SNP o STR en tándem como se describe para la biblioteca de destino SNP del Ejemplo 13. Para preparar una biblioteca de destino SNP en tándem, una porción de biblioteca de ADNcf purificada que comprende los ácidos nucleicos maternos y fetales se utiliza para amplificar las secuencias diana utilizando una mezcla de cebadores, por ejemplo, las Tablas 10 y 11. Para preparar una biblioteca STR, se utiliza una porción de una biblioteca de ADNcp purificada que comprende los ácidos nucleicos maternos y fetales una mezcla de cebadores, por ejemplo, la Tabla 22. La biblioteca diana de SNP en tándem se secuencia como se describe en el Ejemplo 12.
- [0274] Las bibliotecas diana se secuenciaron como se ha descrito, y la fracción fetal se determina a partir del número de etiquetas de secuencias asignadas al genoma de referencia STR o SNP en tándem que comprende respectivamente todos los posibles alelos STR o SNP en tándem abarcados por los cebadores. Los alelos informativos se identifican y la fracción fetal se determina utilizando el número de etiquetas mapeadas a los alelos de las secuencias polimórficas.

30 **Ejemplo 15**

55

60

65

Determinación de la fracción fetal por electroforesis capilar de secuencias polimórficas que comprenden

- [0275] Para determinar la fracción fetal en muestras maternas comprenden ADNcf fetal y materna, se recogieron muestras de sangre periférica de mujeres embarazadas con fetos de voluntarios ya sea hombre o mujer. Las muestras de sangre periférica se obtuvieron y procesaron para proporcionar un ADNf purificado como se describe en el Ejemplo 1
- 40 [0276] Se analizaron diez microlitros de las muestras de ADNc utilizando el kit de amplificación por PCR AmpF1STR® MiniFiler™ (Applied Biosystems, Foster City, CA) de acuerdo con las instrucciones del fabricante. Brevemente, el ADNcf contenido en 10 µl se amplificó en un volumen de reacción de 25 µl que contiene 5 µL de cebadores marcados con fluorescencia (Conjunto de cebador AmpF/STR® MiniFiler™), y la mezcla maestra AmpF/STR® MiniFiler™, que incluye AmpliTaq Gold® ADN polimerasa y tampón asociado, sal (MgC12 1,5 mM), y 200 µM trifosfatos de desoxinucleótidos (dNTPs: dATP, dCTP, dGTP y dTTP). Los cebadores marcados con 45 fluorescencia son cebadores directos que están marcados con tintes 6FAMTM, VICTM, NEDTM y PETTM. El ciclo térmico se realizó con el Gene Amp9700 (Applied Biosystems) utilizando las siguientes condiciones de ciclo: incubación a 95°C durante 10 minutos, seguido de 30 ciclos a 94°C durante 20 segundos, 59°C durante 2 minutos y 72°C durante 1 minuto, seguido de una incubación final a 60°C durante 45 minutos. Se agregó una retención final a 50 4°C hasta que las muestras se retiraron para su análisis. El producto amplificado se preparó diluyendo 1 µl de producto amplificado en 8,7 µl de Hi-di™ formamida (Applied Biosystems) y 0,3 µl de GeneScanTM-500 LIZ_estandar de tamaño interno (Applied Biosystems) y se analizó con un analizador genético ABI PRISM3130x1 (Applied Biosystems) utilizando recopilación de datos HID G5 POP4 (Applied Biosystems) y una matriz de capilares de 36 cm. Todo el genotipado se realizó con el software GeneMapper ID v3.2 (Applied Biosystems) utilizando

escaleras y cubetas y paneles alélicos provistos por el fabricante.

[0277] Todas las mediciones de genotipificación se realizaron en el Analizador genético Applied Biosystems 3130 x/, utilizando una "ventana" de ±0,5-nt en torno al tamaño obtenido para cada alelo para permitir la detección y la correcta asignación de alelos. Se determinó que cualquier alelo de muestra cuyo tamaño estaba fuera de la ventana ± 0,5-nt es OL, es decir, "Off Ladder". Los alelos OL son alelos de un tamaño que no está representado en la escalera alélica AmpF/STR® MiniFiler™ o un alelo que no corresponde a una escalera alélica, pero cuyo tamaño está justo fuera de una ventana debido a un error de medición. El umbral de altura de pico mínimo de >50 RFU se estableció en base a los experimentos de validación realizados para evitar la tipificación cuando es probable que los efectos estocásticos interfieran con la interpretación precisa de las mezclas. El cálculo de la fracción fetal se basa en promediar todos los marcadores informativos. Los marcadores informativos se identifican por la presencia de picos en el electroferograma que se encuentran dentro de los parámetros de los contenedores preestablecidos para los

STR que se analizan.

5

10

25

30

35

40

45

50

55

60

65

[0278] Los cálculos de la fracción fetal se realizaron utilizando la altura de pico promedio para alelos mayores y menores en cada locus STR determinado a partir de inyecciones por triplicado. Las reglas aplicadas al cálculo son:

- 1. los datos de alelos off-ladder (OL) para alelos no se incluyen en el cálculo; y
- 2. solo se incluyen en el cálculo las alturas de los picos derivadas de >50 RFU (unidades de fluorescencia relativa)
- 3. si solo está presente un contenedor, el marcador se considera no informativo; y
- 4. si se llama un segundo recipiente, pero los picos del primero y el segundo son dentro del 50-70% de sus unidades de fluorescencia relativa (RFU) en altura de pico, la fracción minoritaria no se mide y el marcador se considera no informativo.
- [0279] La fracción del alelo menor para cualquier marcador informativo dado se calcula dividiendo la altura del pico del componente menor por la suma de la altura del pico para el componente principal, y se expresó como un porcentaje se calculó primero para cada locus informativo como

fracción fetal = (Σaltura de pico de alelo menor / Σaltura de pico de alelo mayor)) X 100,

La fracción fetal para una muestra que comprende dos o más RTS informativos, se calcularía como el promedio de las fracciones fetales calculadas para los dos o más marcadores informativos.

[0280] La tabla 8 proporciona los datos obtenidos al analizar el ADNcf de una paciente embarazada de un feto masculino.

TABLA 24

STR	Alelo	Alelo 2	Alelo 3	Altura de Alelo 1	Altura de alelo 2	Altura de alelo 3	Fracción fetal	Fracción fetal (Media/STR)
AMEL	X	Y	3	3599	106	aleio 3	2,9	(Media/STIV)
	X	Y		3602	110		3,1	
	X	Y		3652	109		3,0	3,0
CSF1PO		12		2870	2730		0,0	0,0
CSF1PO		12		2924	2762			
CSF1PO		12		2953	2786			
D13S317		12		2621	2588			
D13S317		12		2680	2619			
D13S317		12		2717	2659			
D16S539	9	11		1056	1416			
D16S539	9	11		1038	1394			
D16S539	9	11		1072	1437			
D18S51	13	15		2026	1555			
D18S51	13	15		2006	1557			
D18S51	13	15		2050	1578			
D21S11	28	31,2		2450	61		2,5	
D21S11	28	31,2		2472	62		2,5	
D21S11	28	31,2		2508	67		2,7	2,6
D2S1338	20	23		3417	3017			
D2S1338	20	23		3407	3020			
D2S1338	20	23		3493	3055			
D7S820	9	12	13	2373	178	1123	5,1	
D7S820	9	12	13	2411	181	1140	5,1	
D7S820	9	12	13	2441	182	1156	5,1	5,1
FGA	17,2	22	25	68	1140	896	3,3	
FGA	17,2	22	25	68	1144	909	3,1	
FGA	17,2	22 = 3,5	25	68	1151	925	3,3	3,2

[0281] Los resultados muestran que ADNcf se puede utilizar para determinar la presencia o ausencia de ADN fetal como se indica por la detección de un componente menor en uno o más alelos STR, para determinar la fracción fetal por ciento, y para determinar el sexo del feto como se indica por la presencia o ausencia del alelo de Amelogenin.

Ejemplo 16

15

20

25

30

45

50

55

60

10 Uso de la fracción fetal para establecer umbrales y estimar el tamaño de muestra mínimo en la detección de aneuploidía

[0282] Los recuentos de coincidencias de secuencia con diferentes cromosomas se manipulan para generar una puntuación que variará con el número de copias cromosómicas que se puede interpretar para identificar la amplificación o eliminación cromosómica. Por ejemplo, tal puntuación podría generarse comparando la cantidad relativa de una secuencia de etiquetas en un cromosoma que experimenta cambios en el número de copias a un cromosoma que se sabe que es un euploide. Los ejemplos de puntuaciones que se pueden usar para identificar la amplificación o la eliminación incluyen, entre otros, los siguientes: recuentos del cromosoma de interés dividido por recuentos de otro cromosoma de la misma serie experimental, los recuentos del cromosoma de interés divididos por el total número de recuentos de la prueba experimental, comparación de recuentos de la muestra de interés versus una muestra de control separada. Sin pérdida de generalidad, se puede suponer que las puntuaciones aumentarán a medida que aumente el número de copias. El conocimiento de la fracción fetal se puede usar para establecer umbrales de "corte" para llamar estados de "aneuploidía", "normal" o "marginal" (incierto). Luego, se realizan cálculos para estimar el número mínimo de secuencias requeridas para lograr una sensibilidad adecuada (es decir, la probabilidad de identificar correctamente un estado de aneuploidía).

[0283] La Figura 19 es una gráfica de dos poblaciones diferentes de puntuaciones. El eje x es la puntuación y el eje y es la frecuencia. Las puntuaciones en muestras de cromosomas sin aneuploidía pueden tener una distribución que se muestra en la Figura 19A. La Figura 19B ilustra una distribución hipotética de una población de puntuaciones en muestras con un cromosoma amplificado. Sin pérdida de generalidad, los gráficos y las ecuaciones muestran el caso de una puntuación univariada donde la condición de aneuploidía representa una amplificación del número de copias. Los casos multivariados y/o las anomalías de reducción/eliminación son simples extensiones o reordenamientos de las descripciones dadas y pretenden caer dentro del alcance de esta técnica.

[0284] La cantidad de "solapamiento" entre las poblaciones puede determinar lo bien que se pueden discriminar los casos normales y aneuploidía. En general, el aumento de la fracción fetal, ff, aumenta el poder de discriminación al separar los dos centros de población (moviendo "C2", el "centro de puntuaciones de aneuploidía", y aumentando "d", lo que hace que las poblaciones se superpongan menos. Además, un aumento en el valor absoluto de la magnitud, m, (por ejemplo, tener cuatro copias del cromosoma en lugar de una trisomía) de la amplificación también aumentará la separación de los centros de población que conducen a un mayor poder (es decir, una mayor probabilidad de identificar correctamente los estados de aneuploidía).

[0285] Al aumentar el número de secuencias generadas, N, reduce las desviaciones estándar "sdevA" y/o "sdevB", la extensión de las dos poblaciones de puntuaciones, lo que también hace que las poblaciones se superpongan menos.

Configuración de umbrales y estimación del tamaño de la muestra

[0286] El siguiente procedimiento se puede usar para establecer "c", el valor crítico para llamar a los estados "aneuploidía", "normal" o "marginal" (incierto). Sin pérdida de generalidad, las pruebas estadísticas unilaterales se utilizan a continuación.

[0287] Primero, se decide una tasa de falsos positivos aceptable, FP (a veces también llamado "error de tipo I" o "especificidad"), que es la probabilidad de un falso positivo o una falsa llamada de aneuploidía. Por ejemplo, FP puede ser al menos, o aproximadamente 0,001, 0,002, 0,003, 0,004, 0,005, 0,006, 0,007, 0,009, 0,001, 0,02, 0,03, 0,04, 0,05, 0,06, 0,07, 0,08, 0,09, o 0,1.

[0288] Segundo, el valor de "c" se puede determinar resolviendo la ecuación: FP = integral desde C hasta el infinito de (f1 (x) dx).

$$FP = \int_{c}^{\infty} f 1(x) dx$$

65

(Ecuación 1)

[0289] Una vez que se ha determinado un valor crítico, c, las secuencias de números mínimos requeridas para lograr un cierto TP = tasa positiva verdadera puede ser estimada. La verdadera tasa positiva puede ser, por ejemplo, aproximadamente 0,5, 0.6, 0,7, 0,8 o 0,9. En una realización, la tasa positiva verdadera puede ser 0,8. En otras palabras, N es el número mínimo de secuencias requeridas para identificar el 100*TP de aneuploidía del tiempo. N= número mínimo tal que TP = integral de Ca infinito de f2(x,ff)dx > 0,8. N se determina resolviendo

10
$$\min_{N} s.t. \{TB \ge \int_{a}^{\infty} f2(x, N) dx\}$$
 (Ecuación 2)

[0290] En las pruebas estadísticas clásicas f1 y f2 son a menudo F, distribuciones F no centrales (un caso especial de t y distribuciones t no centrales) aunque esa no es una condición necesaria para esta aplicación.

Configuración de "niveles" de umbrales para dar más control de errores

[0291] Los umbrales también se pueden establecer en etapas utilizando los métodos anteriores. Por ejemplo, se puede establecer un umbral para la llamada de alta confianza de "aneuploidía", digamos ca, usando FP 0,001 y un umbral "marginal", digamos cb, usando FP 0,05. En este caso si Puntuación, S:

Algunas generalizaciones triviales que caen dentro del alcance de esta técnica

[0292] Diferentes valores para los umbrales tales como TP, FP, etc. pueden ser utilizados. Los procedimientos se pueden ejecutar en cualquier orden. Por ejemplo, uno puede comenzar con N y resolver para c, etc. Las distribuciones pueden depender de ff para que f1(x,N,ff), f2(x,N,ff) y/u otras variables. Las ecuaciones integrales anteriores se pueden resolver por referencia a tablas o por métodos computacionales iterativos. Se puede estimar un parámetro no central y se puede leer la potencia de las tablas estadísticas estándar. El poder estadístico y los tamaños de muestra pueden derivarse del cálculo o estimación de los cuadrados medios esperados. Se pueden usar distribuciones teóricas de forma cerrada como f, t, t no central, normal, etc. o estimaciones (kernel u otro) para modelar las distribuciones f1, f2. El ajuste de umbral empírico y la selección de parámetros utilizando curvas características del operador del receptor (ROC) se pueden usar y agrupar con la fracción fetal. Se pueden usar varias estimaciones de la distribución (varianza, desviación media absoluta, rango intercuartil, etc.). Se pueden utilizar varias estimaciones del centro de distribución (media, mediana, etc.). Se pueden utilizar pruebas estadísticas a dos caras en lugar de a un solo lado. La prueba de hipótesis simple se puede reformular como regresión lineal o no lineal. Los métodos combinatorios, la simulación (p. ej., monte carlo), la maximización (p. ej., la expectativa de maximización), los métodos iterativos u otros pueden usarse de forma independiente o junto con los anteriores para establecer la potencia estadística o los umbrales.

Ejemplo 17

5

15

20

25

30

35

40

45

50

55

60

65

Demostración de detección de aneuploidía

[0293] Los datos de secuenciación obtenidos para las muestras descritas en los Ejemplos 4 y 5, y mostrados en las figuras 9-13 se analizaron adicionalmente para ilustrar la sensibilidad del método para identificar con éxito aneuploidías en muestras maternas. Las dosis de cromosomas normalizados para los cromosomas 21, 18, 13, X e Y se analizaron como una distribución relativa a la desviación estándar de la media (eje Y) y se muestran en la Figura 20. El cromosoma de normalización utilizado se muestra como el denominador (eje X).

[0294] La Figura 20 (A) muestra la distribución de las dosis de cromosomas en relación con la desviación estándar de la media de la dosis del cromosoma 21 en las muestras (o) no afectadas (normal) y las muestras de trisomía 21 (T21; Δ) cuando se usa el cromosoma 14 como el cromosoma normalizador para el cromosoma 21. La Figura 20 (B) muestra la distribución de las dosis de cromosomas en relación con la desviación estándar de la media para la dosis del cromosoma 18 en las muestras no afectadas (o) y las muestras de trisomía 18 (T18; Δ) cuando usando el cromosoma 8 como el cromosoma normalizador para el cromosoma 18. La figura 20 (C) muestra la distribución de las dosis de cromosomas en relación con la desviación estándar de la media para la dosis del cromosoma 13 en las muestras no afectadas (o) y las muestras de trisomía 13 (T13; Δ), utilizando la densidad media de la etiqueta de secuencia del grupo de los cromosomas 3, 4, 5 y 6 como el cromosoma normalizador para determinar la dosis de cromosoma para el cromosoma 13. La Figura 20 (D) muestra la distribución de las dosis de cromosoma

relacionadas con la desviación estándar de la media para la dosis del cromosoma X en las muestras femeninas no afectadas (o), las muestras masculinas no afectadas (Δ) y las muestras de monosomía X (XO; +) cuando se utiliza el cromosoma 4 como cromosoma normalizador para el cromosoma X. La figura 20 (E) muestra la distribución de las dosis de cromosomas en relación con la desviación estándar de la media de la dosis del cromosoma Y en las muestras masculinas no afectadas (o), las muestras femeninas no afectadas (Δ) y las muestras de monosomía X (+), cuando se utiliza la densidad de etiqueta de secuencia promedio del grupo de cromosomas 1-22 y X como el cromosoma normalizador para determinar la dosis de cromosoma para el cromosoma Y.

[0295] Los datos muestran que la trisomía 21, trisomía 18, trisomía 13 eran claramente distinguibles de las muestras no afectadas (normales). Las muestras de monosomía X fueron fácilmente identificables por tener una dosis de cromosoma X claramente inferior a la de las muestras femeninas no afectadas (Figura 20 (D)) y por tener dosis de cromosoma Y claramente menores que las muestras masculinas no afectadas (Figura 20). (E)).

[0296] Por lo tanto, el método aquí descrito es sensible y específico para determinar la presencia o ausencia de aneuploidías cromosómicas en una muestra de sangre materna.

LISTADO DE SECUENCIAS

5

65

[0297] 20 <110> VERINATA HEALTH, INC. <120> NOVEL PROTOCOL FOR PREPARING SEQUENCING LIBRARIES 25 <130> P070843EP <150> 61/455.849 <151> 2010-10-26 <150> 61/407,017 30 <151> 2010-10-26 <150> 61/360,837 <151> 2010-07-01 35 <150> 61/296,358 <151> 2010-01-19 <160> 427 40 <170> PatentIn versión 3.5 <210> 1 <211> 111 45 <212> ADN <213> Homo sapiens <400> 1 50 cacatgcaca gccagcaacc ctgtcagcag gagttcccac cagtttcttt ctgagaacat 60 ctgttcaggt ttctctccat ctctatttac tcaggtcaca ggaccttggg g 111 55 <210> 2 <211> 111 <212> ADN <213> Homo sapiens <400> 2 60 cacatgcaca gccagcaacc ctgtcagcag gagttcccac cagtttcttt ctgagaacat 60

111

ctgttcaggt ttctctccat ctctgtttac tcaggtcaca ggaccttggg g

	<210> 3 <211> 126 <212> ADN <213> Homo sapiens	
5	<400> 3	
	tgaggaagtg aggctcagag ggtaagaaac tttgtcacag agctggtggt gagggtggag	60
10	attttacact ecetgeetee cacaceagtt tetecagagt ggaaagactt teatetegea	120
	ctggca	126
15	<210> 4 <211> 126 <212> ADN <213> Homo sapiens	
20	<400> 4	
25	tgaggaagtg aggctcagag ggtaagaaac tttgtcacag agctggtggt gagggtggag	60
20	attttacact ccctgcctcc cacaccagtt tctccggagt ggaaagactt tcatctcgca	120
	ctggca	126
30	<210> 5	
	<211> 121 <212> ADN <213> Homo sapiens	
35	<400> 5	
40	gtgccttcag aacctttgag atctgattct atttttaaag cttcttagaa gagagattgc	60
	aaagtgggtt gtttetetag eeagacaggg eaggeaaata ggggtggetg gtgggatggg	120
	a	121
45		
	<210> 6 <211> 121 <212> ADN	
50	<213> Homo sapiens	
	<400> 6	
55	gtgccttcag aacctttgag atctgattct atttttaaag cttcttagaa gagagattgc	60
	aaagtgggtt gtttctctag ccagacaggg caggtaaata ggggtggctg gtgggatggg	120
	a	121
60	<210> 7 <211> 111 <212> ADN <213> Homo sapiens	

	<400> 7	
5	aggtgtgtot etettttgtg aggggagggg teeettetgg eetagtagag ggeetggeet	60
	gcagtgagca ttcaaateet caaggaacag ggtggggagg tgggacaaag g	111
10	<210> 8 <211> 111 <212> ADN	
15	<213> Homo sapiens <400> 8	
20	aggtgtgtct ctcttttgtg aggggagggg tcccttctgg cctagtagag ggcctggcct	60 111
	gcagtyayca ticaaatcot cyayyaacay yytyyyyayy tyyyacaaay y	111
25	<210> 9 <211> 139 <212> ADN <213> Homo sapiens	
30	<400> 9	
35	cctcgcctac tgtgctgttt ctaaccatca tgcttttccc tgaatctctt gagtcttttt	60
00	ctgctgtgga ctgaaacttg atcctgagat tcacctctag tccctctgag cagcctcctg	120
	gaatactcag ctgggatgg	139
40	<210> 10 <211> 139 <212> ADN <213> Homo sapiens	
45	<400> 10	
50	cctcgcctac tgtgctgttt ctaaccatca tgcttttccc tgaatctctt gagtcttttt	60
50	ctgctgtgga ctgaaacttg atcctgagat tcacctctag tccctctggg cagcctcctg	120
	gaatactcag ctgggatgg	139
55	<210> 11 <211> 117 <212> ADN <213> Homo sapiens	
60	<400> 11	
	aattgcaatg gtgagaggtt gatggtaaaa tcaaacggaa cttgttattt tgtcattctg	60
	atggactgga actgaggatt ttcaatttcc tctccaaccc aagacacttc tcactgg	117

	<210> 12	
5	<211> 117	
	<212> ADN	
	<213> Homo sapiens	
	<400> 12	
10		
	aattgcaatg gtgagaggtt gatggtaaaa tcaaacggaa cttgttattt tgtcattctg	60
15		
	atggactgga actgaggatt ttcaatttcc tttccaaccc aagacacttc tcactgg	117
	<210> 13	
20	<211> 114	
	<212> ADN	
	<213> Homo sapiens	
	<400> 13	
25		
	gaaatgcctt ctcaggtaat ggaaggttat ccaaatattt ttcgtaagta tttcaaatag	60
	caatggctcg tctatggtta gtctcacagc cacattctca gaactgctca aacc	114
	caarggereg rerarggera greecatage cacarrerea gaacrgerea aacc	11.3
30		
	<210> 14	
	<211> 114 <212> ADN	
	<213> Homo sapiens	
35		
	<400> 14	
40	gaaatgcctt ctcaggtaat ggaaggttat ccaaatattt ttcgtaagta tttcaaatag	60
	caatggctcg tctatggtta gtctcgcagc cacattctca gaactgctca aacc	114
	<210> 15	
45	<211> 128	
	<212> ADN	
	<213> Homo sapiens	
	<400> 15	
50		
	acccaaaaca ctggaggggc ctcttctcat tttcggtaga ctgcaagtgt tagccgtcgg	60
	gaccagette tgtetggaag ttegteaaat tgeagttaag teeaagtatg eeacatagea	120
55	gataaggg	128
	<210> 16	
	<211> 128	
60	<212> ADN	
	<213> Homo sapiens	
	<400> 16	

	acceadaded etggaggge etetteteat titeggraga etgeaagtgi tageegtegg	60
5	gaccagette tgtetggaag ttegteaaat tgeagttagg teeaagtatg ceacatagea	120
	gataaggg	128
10	<210> 17 <211> 110 <212> ADN <213> Homo sapiens	
15	<400> 17	
	geaccagaat ttaaacaacg etgacaataa atatgeagte gatgatgaet teecagaget	60
20	ccagaagcaa ctccagcaca cagagaggcg ctgatgtgcc tgtcaggtgc	110
25	<210> 18 <211> 110 <212> ADN <213> Homo sapiens	
30	<400> 18	
	gcaccagaat ttaaacaacg ctgacaataa atatgcagtc gatgatgact tcccagagct	60
35	ccagaagcaa ctocagcaca cggagaggcg ctgatgtgcc tgtcaggtgc	110
40	<210> 19 <211> 116 <212> ADN <213> Homo sapiens <400> 19	
45		
	tgactgtata ccccaggtgc acccttgggt catctctatc atagaactta tctcacagag	60
50	tataagaget gatttetgtg tetgeetete acaetagaet tecaeateet tagtge	116
55	<210> 20 <211> 116 <212> ADN <213> Homo sapiens <400> 20	
60		
00	tgactgtata coccaggtgc accettgggt catetetate atagaactta teteacagag	60
	tataagaget gatttetgtg tetgeetgte acaetagaet tecacateet tagtge	116

	<210> 21 <211> 110 <212> ADN <213> Homo sapiens	
5	<400> 21	
10	tgtacgtggt caccagggga cgcctggcgc tgcgagggag gccccgagcc tcgtgccccc	60
	gtgaagette ageteeeste eeeggetgte ettgaggete tteteacaet	110
15	<210> 22 <211> 110 <212> ADN <213> Homo sapiens	
20	<400> 22	
	tgtacgtggt caccagggga cgcctggcgc tgcgagggag gccccgagcc tcgtgccccc	60
25	gtgaagette ageteeeste eetggetgte ettgaggete tteteacaet	110
30	<210> 23 <211> 114 <212> ADN <213> Homo sapiens	
35	<400> 23	
30	cagtggaccc tgctgcacct ttcctcccct cccatcaacc tcttttgtgc ctccccctcc	60
	gtgtaccacc ttctctgtca ccaaccctgg cctcacaact ctctcctttg ccac	114
40		
45	<210> 24 <211> 114 <212> ADN <213> Homo sapiens	
	<400> 24	
50	cagtggaccc tgctgcacct ttcctcccct cccatcaacc tcttttgtgc ctccccctcc	60
	gtgtaccacc ttctctgtca ccacccctgg cctcacaact ctctcctttg ccac	114
55	<210> 25 <211> 110 <212> ADN <213> Homo sapiens	
60	<400> 25	

	cagt	ggcata	gtagtccagg	ggctcctcct	cagcacctcc	agcaccttcc	aggaggcagc	60
5	agcg	caggca	gagaacccgc	tggaagaatc	ggcggaagtt	gtcggagagg		110
10	<210> 26 <211> 110 <212> ADN <213> Homo	sapiens						
	<400> 26							
15	cagto	ggcata	gtagtccagg	ggctcctcct	cagcacctcc	agcaccttcc	aggaggcagc	60
	agcg	caggca	gagaacccgc	tggaaggatc	ggcggaagtt	gtcggagagg		110
20	<210> 27 <211> 129 <212> ADN <213> Homo	saniens						
25	<400> 27	Capicilo						
	aggt	ctgggg	gccgctgaat	gccaagctgg	gaatcttaaa	tgttaaggaa	caaggtcata	60
30	caat	gaatgg	tgtgatgtaa	aagcttggga	ggtgatttct	gagggtaggt	gctgggttta	120
	atgg	gagga						129
35	<210> 28 <211> 129 <212> ADN <213> Homo	sapiens						
40	<400> 28							
	aggt	ctgggg	gccgctgaat	gccaagctgg	gaatcttaaa	tgttaaggaa	caaggtcata	60
45	caat	gaatgg	tgtgatgtaa	aagcttggga	ggtgattttt	gagggtaggt	gctgggttta	120
	atgg	gagga						129
50	<210> 29 <211> 107 <212> ADN <213> Homo	sapiens						
55	<400> 29							
						tctgggatgc	aacatgagag	60
60	agca	gcacac	tgaggcttta	tggattgccc	tgccacaagt	gaacagg		107
	<210> 30							

	<212> ADN <213> Homo sapiens	
5	<400> 30	
	acggttctgt cctgtagggg agaaaagtcc tcgttgttcc tctgggatgc aacatgagag	60
10	agcagcacac tgaggcttta tgggttgccc tgccacaagt gaacagg	107
15	<210> 31 <211> 127 <212> ADN <213> Homo sapiens	
	<400> 31	
20	gcgcagtcag atgggcgtgc tggcgtctgt cttctctctc tcctgctctc tggcttcatt	60
	ttteteteet tetgteteac ettetttegt gtgeetgtge acaeacacgt ttgggacaag	120
	ggctgga	127
25	<210> 32 <211> 127 <212> ADN <213> Homo sapiens	
30	<400> 32	
	gegeagteag atgggegtge tggegtetgt ettetetete teetgetete tggetteatt	60
35	ttteteteet tetgteteae ettetttegt gtgeetgtge atacacaegt ttgggacaag	120
	ggctgga	127
40	<210> 33 <211> 130 <212> ADN <213> Homo sapiens	
45	<400> 33	
	geoggaeetg egaaateeea aaatgeeaaa catteeegee teacatgate eeagagagag	60
50	gggacccagt gttcccagct tgcagctgag gagcccgagg ttgccgtcag atcagagccc	120
	cagttgcccg	130
55	<210> 34 <211> 130 <212> ADN <213> Homo sapiens	
60	<400> 34	

	Q	ccggacctg	cgaaatccca	aaatgccaaa	cattcccgcc	tcacatgatc	ccagagagag	60
	g	ggacccagt	gttcccagct	tgcagctgag	gagcccgagt	ttgccgtcag	atcagagccc	120
5	c	agttgcccg						130
	<210>							
10	<211> <212>							
		Homo sapie	ns					
	<400>	35						
15								
		agcagcctc	c ctcgactag	c tcacactac	g ataaggaaaa	ttcatgagct	ggtgtccaag	60
		gagggetgg	g tgactcgtg	g ctcagtcag	e atcaagatto	ctttcgtctt	teceetetge	120
20		C						121
	0.10	22						
	<210> <211>							
25	<212>							
	<213>	Homo sapie	ns					
	<400>	36						
30		annannnt n	a ataqeatea	o toacactac	r ataannaaa	ttoatoaoot	ggtgtccaag	60
							taccatatga	120
			y tyactcyty	y cccagccay	- gecaagaeee	. cccccyccc	coccetty	121
35		c						121
	<210>	37						
	<211>							
40	<212>							
40	<213>	Homo sapie	ns					
	<400>	37						
45								
45			-	7	g ttttttatag			60
				t cattacccc	a ggaagctgaa	ctatagctac	tttacccaaa	120
E 0		atcattaga	a tggtgctt					138
50								
	<210>							
	<211>							
55	<212> <213>	Homo sapie	ns					
-		•						
	<400>	3 8						

	tgg	cattgcc	tgtaatatac	atagccatgg	ttttttatag	gcaatttaag	atgaatagct	60
_	tct	aaactat	agataagttt	cattacccca	ggaagctgaa	ctatagctac	tttccccaaa	120
5	ato	attagaa	tggtgctt					138
10	<210> 39 <211> 136 <212> ADN <213> Hom							
	<400> 39							
15								
	atg	aagcctt	ccaccaactg	cctgtatgac	tcatctggg	g acttetgete	c tatactcaaa	60
	gtg	gcttagt	cactgccaat	gtatttccat	atgagggac	g atgattacta	a aggaaatata	120
20	gaa	acaacaa	ctgatc					136
25	<210> 40 <211> 136 <212> ADN <213> Hom							
	<400> 40							
30								
	ato	gaagcctt	ccaccaactg	cctgtatgad	tcatctggg	g acttctgct	c tatactcaaa	60
	gtç	gcttagt	cactgccaat	gtatttccat	: atgagggac	g gtgattact	a aggaaatata	120
35	gas	acaacaa	ctgatc					136
40	<210> 41 <211> 118 <212> ADN <213> Hom							
	<400> 41							
45								
	aca	aacagaat	caggtgattg	gagaaaaga	cacaggeet	a ggcacccaa	g gcttgaagga	60
	tga	aaagaatg	aaagatggac	ggaacaaaa	t taggacett	a attctttgt	t cagttcag	118
50								
55	<210> 42 <211> 118 <212> ADN <213> Hom							
	<400> 42							

5	acaacagaat caggtgattg gagaaaagat cacaggccta ggcacccaag gcttgaagga	60
5	tgaaagaatg aaagatggac ggaagaaaat taggacetta attetttgtt cagtteag	118
10	<210> 43 <211> 150 <212> ADN <213> Homo sapiens	
15	<400> 43	
	ttggggtaaa ttttcattgt catatgtgga atttaaatat accatcatct acaaagaatt	60
20	ccacagagtt aaatatetta agttaaacae ttaaaataag tgtttgegtg atattttgat	120
	gacagataaa cagagtctaa ttcccacccc	150
25	<210> 44 <211> 150 <212> ADN <213> Homo sapiens	
30	<400> 44	
	ttggggtaaa ttttcattgt catatgtgga atttaaatat accatcatct acaaagaatt	60
35	ccacagagtt aaatatctta agttaaacac ttaaaataag tgtttgcgtg atattttgat	120
	gatagataaa cagagtctaa ttcccacccc	150
40	<210> 45 <211> 145 <212> ADN <213> Homo sapiens	
45	<400> 45	
	tgcaattcaa atcaggaagt atgaccaaaa gacagagatc ttttttggat gatccctagc	60
50	ctagcaatgc ctggcagcca tgcaggtgca atgtcaacct taaataatgt attgcaaact	120
	cagagctgac aaacctcgat gttgc	145
55	<210> 46 <211> 145 <212> ADN <213> Homo sapiens	
60	<400> 46	

5								
		tgcaattcaa	atcaggaagt	atgaccaaaa	gacagagatc	ttttttggat	gatecetage	60
		ctagcaatgc	ctggcagcca	tgcaggtgca	atgtcaacct	taaataatgt	attgcaaatt	120
10		cagagctgac	aaacctcgat	gttgc				145
15	<210> 4 <211> 1 <212> A <213> F	24						
	<400> 4	-						
20								
20		ctgtgctctg	cgaatagctg	cagaagtaac	ttggggaccc	aaaataaagc	agaatgctaa	60
		tgtcaagtcc	tgagaaccaa	gccctgggac	tctggtgcca	tttcggattc	tccatgagca	120
25		tggt						124
30	<210> 4 <211> 1 <212> A <213> H	24 ADN Homo sapiens						
	44002 4	.0						
35		ctgtgctctg	cgaatagctg	cagaagtaac	ttggggaccc	aaaataaagc	agaatgctaa	60
		tgtcaagtcc	tgagaaccaa	gccctgggac	tctggtgcca	ttttggattc	tccatgagca	120
		tggt						124
40	<210> 4 <211> 1 <212> A	18						
45	<400> 4	•						
50		tttttccagc	caactcaagg	ccaaaaaaaa	tttcttaata	tagttattat	gcgagggag	60
		gggaagcaaa	ggagcacagg	tagtccacag	aataagacac	aagaaacctc	aagctgtg	118
55	<210> 5 <211> 1 <212> A <213> H	18						
60	<400> 5	50						
		tttttccag	c caactcaag	g ccaaaaaaa	a tttcttaata	ı tagttattat	gcgaggggag	60
		gggaagcaa	a ggagcacag	g tagtccacaq	g aataggacad	aagaaacctc	: aagctgtg	118

5	<210> 51 <211> 110 <212> ADN <213> Homo sapiens	
	<400> 51	
10	tettetegte ecetaageaa acaacateeg ettgettetg tetgtgtaac cacagtgaat	60
	gggtgtgcac gcttgatggg cctctgagcc cctgttgcac aaaccagaaa	110
15	<210> 52 <211> 110 <212> ADN <213> Homo sapiens	
20	<400> 52	
	tettetegte ecctaageaa acaacateeg ettgettetg tetgtgtaac eacagtgaat	60
25	gggtgtgcac gcttggtggg cctctgagec cctgttgcac aaaccagaaa	110
	<210> 53 <211> 110 <212> ADN <213> Homo sapiens	
30	<400> 53	
35	cacatggggg cattaagaat cgcccaggga ggaggaggga gaacgcgtgc ttttcacatt	60
	tgcatttgaa ttttcgagtt cccaggatgt gtttttgtgc tcatcgatgt	110
40	<210> 54 <211> 110 <212> ADN <213> Homo sapiens	
45	<400> 54	
	cacatggggg cattaagaat cgcccaggga ggaggaggga gaacgcgtgc ttttcacatt	60
50	tgcatttgaa tttttgagtt cccaggatgt gtttttgtgc tcatcgatgt	110
50	<210> 55 <211> 128 <212> ADN <213> Homo sapiens	
55	<400> 55	
60	gggctctgag gtgtgtgaaa taaaaacaaa tgtccatgtc tgtcctttta tggcattttg	60
	ggactttaca tttcaaacat ttcagacatg tatcacaaca cgaaggaata acagttccag	120
	ggatatet	128

5	<210> 56 <211> 128 <212> ADN <213> Homo sapiens	
	<400> 56	
10	gggctctgag gtgtgtgaaa taaaaacaaa tgtccatgtc tgtcctttta tggcattttg	60
	ggactttaca tttcaaacat ttcagacatg tatcacaaca cgagggaata acagttccag	120
15	ggatatet	128
20	<210> 57 <211> 21 <212> ADN <213> Secuencia artificial	
0.5	<220> <223> Descripción de secuencia artificial: Cebador sintético	
25	<400> 57 cacatgcaca gccagcaacc c 21	
30	<210> 58 <211> 23 <212> ADN <213> Secuencia artificial	
35	<220> <223> Descripción de secuencia artificial: Cebador sintético	
	<400> 58 ccccaaggtc ctgtgacctg agt 23	
40	<210> 59 <211> 23 <212> ADN <213> Secuencia artificial	
45	<220> <223> Descripción de secuencia artificial: Cebador sintético	
	<400> 59 tgaggaagtg aggctcagag ggt 23	
50	<210> 60 <211> 24 <212> ADN <213> Secuencia artificial	
55	<220> <223> Descripción de secuencia artificial: Cebador sintético	
60	<400> 60 tgccagtgcg agatgaaagt cttt 24	
	<210> 61 <211> 27 <212> ADN	

```
<213> Secuencia artificial
          <220>
          <223> Descripción de secuencia artificial: Cebador sintético
 5
          <400> 61
          gtgccttcag aacctttgag atctgat 27
          <210> 62
10
          <211> 20
          <212> ADN
          <213> Secuencia artificial
15
          <223> Descripción de secuencia artificial: Cebador sintético
          <400> 62
          tcccatccca ccagccaccc 20
20
          <210> 63
          <211> 25
          <212> ADN
          <213> Secuencia artificial
25
          <220>
          <223> Descripción de secuencia artificial: Cebador sintético
          <400>63
          aggtgtgtct ctcttttgtg agggg 25
30
          <210> 64
          <211> 21
          <212> ADN
          <213> Secuencia artificial
35
          <220>
          <223> Descripción de secuencia artificial: Cebador sintético
          <400> 64
40
          cettgtece acetececae e 21
          <210>65
          <211> 26
          <212> ADN
45
          <213> Secuencia artificial
          <220>
          <223> Descripción de secuencia artificial: Cebador sintético
50
          <400>65
          cctcgcctac tgtgctgttt ctaacc 26
          <210> 66
          <211> 25
55
          <212> ADN
          <213> Secuencia artificial
          <223> Descripción de secuencia artificial: Cebador sintético
60
          <400> 66
          ccatcccagc tgagtattcc aggag 25
```

```
<210> 67
          <211> 26
          <212> ADN
          <213> Secuencia artificial
 5
          <220>
          <223> Descripción de secuencia artificial: Cebador sintético
          <400> 67
10
          aattgcaatg gtgagaggtt gatggt 26
          <210> 68
          <211> 24
          <212> ADN
15
          <213> Secuencia artificial
          <220>
          <223> Descripción de secuencia artificial: Cebador sintético
20
          ccagtgagaa gtgtcttggg ttgg 24
          <210> 69
          <211> 27
25
          <212> ADN
          <213> Secuencia artificial
          <220>
          <223> Descripción de secuencia artificial: Cebador sintético
30
          <400>69
          gaaatgcctt ctcaggtaat ggaaggt 27
          <210> 70
          <211> 27
35
          <212> ADN
          <213> Secuencia artificial
          <220>
40
          <223> Descripción de secuencia artificial: Cebador sintético
          <400> 70
          ggtttgagca gttctgagaa tgtggct 27
45
          <210> 71
          <211> 22
          <212> ADN
          <213> Secuencia artificial
50
          <220>
          <223> Descripción de secuencia artificial: Cebador sintético
          <400> 71
          acccaaaaca ctggaggggc ct 22
55
          <210> 72
          <211> 27
          <212> ADN
          <213> Secuencia artificial
60
          <220>
          <223> Descripción de secuencia artificial: Cebador sintético
```

```
<400> 72
         cccttatctg ctatgtggca tacttgg 27
          <210> 73
          <211> 27
 5
          <212> ADN
          <213> Secuencia artificial
          <220>
10
          <223> Descripción de secuencia artificial: Cebador sintético
          <400> 73
         gcaccagaat ttaaacaacg ctgacaa 27
15
          <210> 74
          <211> 22
          <212> ADN
          <213> Secuencia artificial
          <220>
20
          <223> Descripción de secuencia artificial: Cebador sintético
          <400> 74
         gcacctgaca ggcacatcag cg 22
25
          <210> 75
          <211> 24
          <212> ADN
          <213> Secuencia artificial
30
          <223> Descripción de secuencia artificial: Cebador sintético
          <400> 75
35
          tgactgtata ccccaggtgc accc 24
          <210> 76
          <211> 27
          <212> ADN
40
          <213> Secuencia artificial
          <220>
          <223> Descripción de secuencia artificial: Cebador sintético
45
          <400> 76
          gcactaagga tgtggaagtc tagtgtg 27
          <210> 77
          <211> 22
50
          <212> ADN
          <213> Secuencia artificial
          <220>
          <223> Descripción de secuencia artificial: Cebador sintético
55
          <400> 77
          tgtacgtggt caccagggga cg 22
          <210> 78
60
          <211> 26
          <212> ADN
          <213> Secuencia artificial
```

```
<220>
          <223> Descripción de secuencia artificial: Cebador sintético
          <400> 78
 5
          agtgtgagaa gagcctcaag gacagc 26
          <210> 79
          <211> 21
          <212> ADN
          <213> Secuencia artificial
10
          <220>
          <223> Descripción de secuencia artificial: Cebador sintético
          <400> 79
15
          cagtggaccc tgctgcacct t 21
          <210> 80
          <211> 24
20
          <212> ADN
          <213> Secuencia artificial
          <220>
          <223> Descripción de secuencia artificial: Cebador sintético
25
         gtggcaaagg agagagttgt gagg 24
          <210> 81
          <211> 24
30
          <212> ADN
          <213> Secuencia artificial
          <220>
35
          <223> Descripción de secuencia artificial: Cebador sintético
          cagtggcata gtagtccagg ggct 24
40
          <210> 82
          <211> 21
          <212> ADN
          <213> Secuencia artificial
45
          <220>
          <223> Descripción de secuencia artificial: Cebador sintético
          <400> 82
          cctctccgac aacttccgcc g 21
50
          <210> 83
          <211> 20
          <212> ADN
          <213> Secuencia artificial
55
          <223> Descripción de secuencia artificial: Cebador sintético
          <400> 83
60
          aggtctgggg gccgctgaat 20
          <210> 84
          <211> 23
```

```
<212> ADN
          <213> Secuencia artificial
 5
          <223> Descripción de secuencia artificial: Cebador sintético
          <400> 84
          tcctcccatt aaacccagca cct 23
10
          <210> 85
          <211> 23
          <212> ADN
          <213> Secuencia artificial
15
          <220>
          <223> Descripción de secuencia artificial: Cebador sintético
          <400> 85
          acggttctgt cctgtagggg aga 23
20
          <210> 86
          <211> 22
          <212> ADN
          <213> Secuencia artificial
25
          <223> Descripción de secuencia artificial: Cebador sintético
          <400> 86
30
          cctgttcact tgtggcaggg ca 22
          <210> 87
          <211> 20
          <212> ADN
          <213> Secuencia artificial
35
          <223> Descripción de secuencia artificial: Cebador sintético
          <400> 87
40
          gcgcagtcag atgggcgtgc 20
          <210> 88
          <211> 23
          <212> ADN
45
          <213> Secuencia artificial
          <220>
          <223> Descripción de secuencia artificial: Cebador sintético
50
          <400>88
          tccagccctt gtcccaaacg tgt 23
          <210> 89
55
          <211> 21
          <212> ADN
          <213> Secuencia artificial
          <220>
60
          <223> Descripción de secuencia artificial: Cebador sintético
          <400>89
          gccggacctg cgaaatccca a 21
```

```
<210> 90
          <211> 21
          <212> ADN
 5
          <213> Secuencia artificial
          <220>
          <223> Descripción de secuencia artificial: Cebador sintético
10
          <400> 90
          cgggcaactg gggctctgat c 21
          <210> 91
          <211> 21
          <212> ADN
15
          <213> Secuencia artificial
          <220>
          <223> Descripción de secuencia artificial: Cebador sintético
20
          agcagcctcc ctcgactagc t 21
          <210> 92
          <211> 23
25
          <212> ADN
          <213> Secuencia artificial
          <220>
          <223> Descripción de secuencia artificial: Cebador sintético
30
          <400> 92
          ggcagaggg aaagacgaaa gga 23
          <210> 93
          <211> 24
35
          <212> ADN
          <213> Secuencia artificial
          <220>
40
          <223> Descripción de secuencia artificial: Cebador sintético
          <400> 93
          tggcattgcc tgtaatatac atag 24
45
          <210> 94
          <211> 23
          <212> ADN
          <213> Secuencia artificial
50
          <220>
          <223> Descripción de secuencia artificial: Cebador sintético
          <400> 94
          aagcaccatt ctaatgattt tgg 23
55
          <210> 95
          <211> 20
          <212> ADN
          <213> Secuencia artificial
60
          <220>
          <223> Descripción de secuencia artificial: Cebador sintético
```

```
<400>95
          atgaagcctt ccaccaactg 20
          <210> 96
          <211> 27
 5
          <212> ADN
          <213> Secuencia artificial
          <220>
10
          <223> Descripción de secuencia artificial: Cebador sintético
          <400> 96
         gatcagttgt tgtttctata tttcctt 27
15
          <210> 97
          <211> 22
          <212> ADN
          <213> Secuencia artificial
          <220>
20
          <223> Descripción de secuencia artificial: Cebador sintético
          <400> 97
          acaacagaat caggtgattg ga 22
25
          <210> 98
          <211> 25
          <212> ADN
          <213> Secuencia artificial
30
          <223> Descripción de secuencia artificial: Cebador sintético
          <400> 98
35
          ctgaactgaa caaagaatta aggtc 25
          <210> 99
          <211> 22
          <212> ADN
40
          <213> Secuencia artificial
          <220>
          <223> Descripción de secuencia artificial: Cebador sintético
45
         ttggggtaaa ttttcattgt ca 22
          <210> 100
          <211> 20
50
          <212> ADN
          <213> Secuencia artificial
          <220>
          <223> Descripción de secuencia artificial: Cebador sintético
55
          <400> 100
          ggggtgggaa ttagactctg 20
          <210> 101
60
          <211> 23
          <212> ADN
          <213> Secuencia artificial
```

```
<220>
          <223> Descripción de secuencia artificial: Cebador sintético
          <400> 101
 5
          tgcaattcaa atcaggaagt atg 23
          <210> 102
          <211> 20
          <212> ADN
          <213> Secuencia artificial
10
          <220>
          <223> Descripción de secuencia artificial: Cebador sintético
15
          <400> 102
          gcaacatcga ggtttgtcag 20
          <210> 103
          <211> 20
20
          <212> ADN
          <213> Secuencia artificial
          <220>
          <223> Descripción de secuencia artificial: Cebador sintético
25
          <400> 103
          ctgtgctctg cgaatagctg 20
          <210> 104
30
          <211> 20
          <212> ADN
          <213> Secuencia artificial
          <220>
35
          <223> Descripción de secuencia artificial: Cebador sintético
          <400> 104
          accatgctca tggagaatcc 20
40
          <210> 105
          <211> 20
          <212> ADN
          <213> Secuencia artificial
45
          <220>
          <223> Descripción de secuencia artificial: Cebador sintético
          <400> 105
          tttttccagc caactcaagg 20
50
          <210> 106
          <211> 21
          <212> ADN
          <213> Secuencia artificial
55
          <223> Descripción de secuencia artificial: Cebador sintético
          <400> 106
60
          cacagcttga ggtttcttgt g 21
          <210> 107
          <211> 20
```

```
<212> ADN
          <213> Secuencia artificial
          <220>
 5
          <223> Descripción de secuencia artificial: Cebador sintético
          <400> 107
          tcttctcgtc ccctaagcaa 20
10
          <210> 108
          <211> 20
          <212> ADN
          <213> Secuencia artificial
15
          <220>
          <223> Descripción de secuencia artificial: Cebador sintético
          <400> 108
          tttctggttt gtgcaacagg 20
20
          <210> 109
          <211> 20
          <212> ADN
          <213> Secuencia artificial
25
          <220>
          <223> Descripción de secuencia artificial: Cebador sintético
          <400> 109
30
          cacatggggg cattaagaat 20
          <210> 110
          <211> 22
          <212> ADN
          <213> Secuencia artificial
35
          <220>
          <223> Descripción de secuencia artificial: Cebador sintético
40
          <400> 110
          acatcgatga gcacaaaaac ac 22
          <210> 111
          <211> 20
45
          <212> ADN
          <213> Secuencia artificial
          <220>
          <223> Descripción de secuencia artificial: Cebador sintético
50
          <400> 111
          gggctctgag gtgtgtgaaa 20
          <210> 112
55
          <211> 24
          <212> ADN
          <213> Secuencia artificial
          <220>
60
          <223> Descripción de secuencia artificial: Cebador sintético
          <400> 112
          agatatccct ggaactgtta ttcc 24
```

```
<210> 113
          <211> 23
          <212> ADN
          <213> Secuencia artificial
 5
          <220>
          <223> Descripción de secuencia artificial: Cebador sintético
          <400> 113
10
          acagtaactg ccttcataga tag 23
          <210> 114
          <211> 22
          <212> ADN
15
          <213> Secuencia artificial
          <220>
          <223> Descripción de secuencia artificial: Cebador sintético
20
          gtgtcagacc ctgttctaag ta 22
          <210> 115
          <211> 26
25
          <212> ADN
          <213> Secuencia artificial
          <220>
          <223> Descripción de secuencia artificial: Cebador sintético
30
          <400> 115
          aaataaaatt aggcatattt acaagc 26
          <210> 116
35
          <211> 23
          <212> ADN
          <213> Secuencia artificial
          <220>
40
          <223> Descripción de secuencia artificial: Cebador sintético
          <400> 116
          gctgagtgat ttgtctgtaa ttg 23
          <210> 117
45
          <211> 21
          <212> ADN
          <213> Secuencia artificial
50
          <220>
          <223> Descripción de secuencia artificial: Cebador sintético
          <400> 117
          cctgttcctc ccttatttcc c 21
55
          <210> 118
          <211> 21
          <212> ADN
          <213> Secuencia artificial
60
          <220>
          <223> Descripción de secuencia artificial: Cebador sintético
```

```
<400> 118
         gggaacacag actccatggt g 21
          <210> 119
 5
          <211> 22
          <212> ADN
          <213> Secuencia artificial
          <220>
10
          <223> Descripción de secuencia artificial: Cebador sintético
          <400> 119
          cttagggaac cctcactgaa tg 22
15
          <210> 120
          <211> 22
          <212> ADN
          <213> Secuencia artificial
          <220>
20
          <223> Descripción de secuencia artificial: Cebador sintético
          <400> 120
         gtccttgtca gcgtttattt gc 22
25
          <210> 121
          <211> 26
          <212> ADN
          <213> Secuencia artificial
30
          <223> Descripción de secuencia artificial: Cebador sintético
          <400> 121
35
          aataatcagt atgtgacttg gattga 26
          <210> 122
          <211> 22
          <212> ADN
40
          <213> Secuencia artificial
          <220>
          <223> Descripción de secuencia artificial: Cebador sintético
45
          <400> 122
         ataggatgga tggatagatg ga 22
          <210> 123
          <211> 21
50
          <212> ADN
          <213> Secuencia artificial
          <220>
          <223> Descripción de secuencia artificial: Cebador sintético
55
          <400> 123
          cagagcaaga ccctgtctca t 21
          <210> 124
60
          <211> 21
          <212> ADN
          <213> Secuencia artificial
```

```
<220>
          <223> Descripción de secuencia artificial: Cebador sintético
          <400> 124
 5
          tcaacagagg cttgcatgta t 21
          <210> 125
          <211> 20
          <212> ADN
          <213> Secuencia artificial
10
          <220>
          <223> Descripción de secuencia artificial: Cebador sintético
15
          <400> 125
          gggtgatttt cctctttggt 20
          <210> 126
          <211> 33
20
          <212> ADN
          <213> Secuencia artificial
          <220>
          <223> Descripción de secuencia artificial: Cebador sintético
25
          <400> 126
          aacatttgta tctttatctg tatccttatt tat 33
          <210> 127
30
          <211> 27
          <212> ADN
          <213> Secuencia artificial
          <220>
35
          <223> Descripción de secuencia artificial: Cebador sintético
          <400> 127
          gaacacttgt catagtttag aacgaac 27
40
          <210> 128
          <211> 20
          <212> ADN
          <213> Secuencia artificial
45
          <220>
          <223> Descripción de secuencia artificial: Cebador sintético
          <400> 128
          tcattgacag aattgcacca 20
50
          <210> 129
          <211> 27
          <212> ADN
          <213> Secuencia artificial
55
          <223> Descripción de secuencia artificial: Cebador sintético
          <400> 129
60
          tttgtatttc atgtgtacat tcgtatc 27
          <210> 130
          <211> 28
```

```
<212> ADN
          <213> Secuencia artificial
 5
          <223> Descripción de secuencia artificial: Cebador sintético
          <400> 130
          acctatcctg tagattattt tcactgtg 28
10
          <210> 131
          <211> 20
          <212> ADN
          <213> Secuencia artificial
15
          <220>
          <223> Descripción de secuencia artificial: Cebador sintético
          <400> 131
          tctgacccat ctaacgccta 20
20
          <210> 132
          <211> 27
          <212> ADN
          <213> Secuencia artificial
25
          <223> Descripción de secuencia artificial: Cebador sintético
          <400> 132
30
          cagacagaaa gatagataga tgattga 27
          <210> 133
          <211> 21
          <212> ADN
          <213> Secuencia artificial
35
          <223> Descripción de secuencia artificial: Cebador sintético
40
          <400> 133
          atacagacag acagacaggt g 21
          <210> 134
          <211> 23
          <212> ADN
45
          <213> Secuencia artificial
          <220>
          <223> Descripción de secuencia artificial: Cebador sintético
50
          <400> 134
          gcatgtatct atcatccatc tct 23
          <210> 135
55
          <211> 21
          <212> ADN
          <213> Secuencia artificial
          <220>
60
          <223> Descripción de secuencia artificial: Cebador sintético
          <400> 135
          tgagtgacaa attgagacct t 21
```

```
<210> 136
          <211> 26
          <212> ADN
 5
          <213> Secuencia artificial
          <220>
          <223> Descripción de secuencia artificial: Cebador sintético
10
          gtcttacaat aacagttgct actatt 26
          <210> 137
          <211> 18
15
          <212> ADN
          <213> Secuencia artificial
          <220>
          <223> Descripción de secuencia artificial: Cebador sintético
20
          <400> 137
          attccccaag tgaattgc 18
          <210> 138
          <211> 26
25
          <212> ADN
          <213> Secuencia artificial
          <220>
30
          <223> Descripción de secuencia artificial: Cebador sintético
          <400> 138
          ggtagataga ctggatagat agacga 26
35
          <210> 139
          <211> 20
          <212> ADN
          <213> Secuencia artificial
40
          <220>
          <223> Descripción de secuencia artificial: Cebador sintético
          <400> 139
          tggaaacaga aatggcttgg 20
45
          <210> 140
          <211> 20
          <212> ADN
          <213> Secuencia artificial
50
          <220>
          <223> Descripción de secuencia artificial: Cebador sintético
          <400> 140
55
          gattgcagga gggaaggaag 20
          <210> 141
          <211> 22
          <212> ADN
60
          <213> Secuencia artificial
          <220>
          <223> Descripción de secuencia artificial: Cebador sintético
```

```
<400> 141
          gagcaagaca ccatctcaag aa 22
 5
          <210> 142
          <211> 30
          <212> ADN
          <213> Secuencia artificial
10
          <223> Descripción de secuencia artificial: Cebador sintético
          <400> 142
          gaaattttac atttatgttt atgattctct 30
15
          <210> 143
          <211> 18
          <212> ADN
          <213> Secuencia artificial
20
          <220>
          <223> Descripción de secuencia artificial: Cebador sintético
          <400> 143
25
          ggcgactgag caagactc 18
          <210> 144
          <211> 27
          <212> ADN
30
          <213> Secuencia artificial
          <220>
          <223> Descripción de secuencia artificial: Cebador sintético
35
          <400> 144
          ggttattaat tgagaaaact ccttaca 27
          <210> 145
          <211> 23
          <212> ADN
40
          <213> Secuencia artificial
          <220>
          <223> Descripción de secuencia artificial: Cebador sintético
45
          <400> 145
          attttccccg atgatagtag tct 23
          <210> 146
          <211> 26
50
          <212> ADN
          <213> Secuencia artificial
55
          <223> Descripción de secuencia artificial: Cebador sintético
          <400> 146
          gcgaatgtat gattggcaat attttt 26
60
          <210> 147
          <211> 27
          <212> ADN
          <213> Secuencia artificial
```

```
<220>
          <223> Descripción de secuencia artificial: Cebador sintético
 5
          <400> 147
          acatgtatcc cagaacttaa agtaaac 27
          <210> 148
          <211> 22
10
          <212> ADN
          <213> Secuencia artificial
          <220>
          <223> Descripción de secuencia artificial: Cebador sintético
15
          <400> 148
          gcagaaggga aaattgaagc tg 22
          <210> 149
20
          <211> 22
          <212> ADN
          <213> Secuencia artificial
          <220>
25
          <223> Descripción de secuencia artificial: Cebador sintético
          <400> 149
          cagagacacc gaaccaataa ga 22
30
          <210> 150
          <211> 27
          <212> ADN
          <213> Secuencia artificial
          <220>
35
          <223> Descripción de secuencia artificial: Cebador sintético
          <400> 150
          gccacatgaa tcaattccta taataaa 27
40
          <210> 151
          <211> 25
          <212> ADN
          <213> Secuencia artificial
45
          <220>
          <223> Descripción de secuencia artificial: Cebador sintético
          <400> 151
50
          gcacatgtac cctaaaactt aaaat 25
          <210> 152
          <211> 26
          <212> ADN
          <213> Secuencia artificial
55
          <223> Descripción de secuencia artificial: Cebador sintético
60
          <400> 152
          gtcaaccaaa actcaacaag tagtaa 26
          <210> 153
```

```
<211> 25
          <212> ADN
          <213> Secuencia artificial
 5
          <220>
          <223> Descripción de secuencia artificial: Cebador sintético
          aagatgaaat tgccatgtaa aaata 25
10
          <210> 154
          <211> 27
          <212> ADN
          <213> Secuencia artificial
15
          <220>
          <223> Descripción de secuencia artificial: Cebador sintético
          <400> 154
20
          gtgtgtataa caaaattcct atgatgg 27
          <210> 155
          <211> 22
          <212> ADN
25
          <213> Secuencia artificial
          <220>
          <223> Descripción de secuencia artificial: Cebador sintético
30
          <400> 155
          gcacccaaaa ctgaatgtca ta 22
          <210> 156
          <211> 20
          <212> ADN
35
          <213> Secuencia artificial
          <220>
          <223> Descripción de secuencia artificial: Cebador sintético
40
          <400> 156
          ggtgagagtg agaccctgtc 20
          <210> 157
          <211> 27
45
          <212> ADN
          <213> Secuencia artificial
          <223> Descripción de secuencia artificial: Cebador sintético
50
          <400> 157
          tgtaataact ctacgactgt ctgtctg 27
55
          <210> 158
          <211> 21
          <212> ADN
          <213> Secuencia artificial
60
          <223> Descripción de secuencia artificial: Cebador sintético
```

```
<400> 158
         gaataggagg tggatggatg g 21
          <210> 159
 5
          <211> 20
          <212> ADN
          <213> Secuencia artificial
          <220>
10
          <223> Descripción de secuencia artificial: Cebador sintético
          <400> 159
          gagcgagacc ctgtctcaag 20
15
          <210> 160
          <211> 24
          <212> ADN
          <213> Secuencia artificial
          <220>
20
          <223> Descripción de secuencia artificial: Cebador sintético
          <400> 160
          ggaaaagaca taggatagca attt 24
25
          <210> 161
          <211> 21
          <212> ADN
          <213> Secuencia artificial
30
          <223> Descripción de secuencia artificial: Cebador sintético
          <400> 161
35
          tctggattga tctgtctgtc c 21
          <210> 162
          <211> 26
          <212> ADN
40
          <213> Secuencia artificial
          <220>
          <223> Descripción de secuencia artificial: Cebador sintético
45
          <400> 162
          gaattaaata ccatctgagc actgaa 26
          <210> 163
          <211> 27
50
          <212> ADN
          <213> Secuencia artificial
          <220>
          <223> Descripción de secuencia artificial: Cebador sintético
55
          <400> 163
          tgttataatg cattgagttt tattctg 27
          <210> 164
60
          <211> 28
          <212> ADN
          <213> Secuencia artificial
```

```
<220>
          <223> Descripción de secuencia artificial: Cebador sintético
          <400> 164
 5
          gcctgtctca aaaataaaga gatagaca 28
          <210> 165
          <211> 25
          <212> ADN
          <213> Secuencia artificial
10
          <220>
          <223> Descripción de secuencia artificial: Cebador sintético
15
          <400> 165
          ttaatgaatt gaacaaatga gtgag 25
          <210> 166
          <211> 25
20
          <212> ADN
          <213> Secuencia artificial
          <220>
          <223> Descripción de secuencia artificial: Cebador sintético
25
          <400> 166
         gcaactctgg ttgtattgtc ttcat 25
          <210> 167
30
          <211> 21
          <212> ADN
          <213> Secuencia artificial
          <220>
35
          <223> Descripción de secuencia artificial: Cebador sintético
          <400> 167
          caaagcgaga ctctgtctca a 21
40
          <210> 168
          <211> 27
          <212> ADN
          <213> Secuencia artificial
45
          <220>
          <223> Descripción de secuencia artificial: Cebador sintético
          <400> 168
          gaaaatgcta tcctctttgg tataaat 27
50
          <210> 169
          <211> 27
          <212> ADN
          <213> Secuencia artificial
55
          <223> Descripción de secuencia artificial: Cebador sintético
          <400> 169
60
          gggtatttca agataactgt agatagg 27
          <210> 170
          <211> 24
```

```
<212> ADN
          <213> Secuencia artificial
          <220>
 5
          <223> Descripción de secuencia artificial: Cebador sintético
          <400> 170
          gcttctgaaa gcttctagtt tacc 24
10
          <210> 171
          <211> 19
          <212> ADN
          <213> Secuencia artificial
15
          <220>
          <223> Descripción de secuencia artificial: Cebador sintético
          <400> 171
          tccacatcct caccaacac 19
20
          <210> 172
          <211> 21
          <212> ADN
          <213> Secuencia artificial
25
          <223> Descripción de secuencia artificial: Cebador sintético
          <400> 172
30
          gcctaggaag gctactgtca a 21
          <210> 173
          <211> 18
          <212> ADN
          <213> Secuencia artificial
35
          <223> Descripción de secuencia artificial: Cebador sintético
40
          <400> 173
          ccacccgtcc atttaggc 18
          <210> 174
          <211> 27
          <212> ADN
45
          <213> Secuencia artificial
          <220>
          <223> Descripción de secuencia artificial: Cebador sintético
50
          <400> 174
          gtgaaaaagt agatataatg gttggtg 27
          <210> 175
55
          <211> 25
          <212> ADN
          <213> Secuencia artificial
          <220>
60
          <223> Descripción de secuencia artificial: Cebador sintético
          <400> 175
          ggttttccaa gagatagacc aatta 25
```

```
<210> 176
          <211> 27
          <212> ADN
 5
          <213> Secuencia artificial
          <220>
          <223> Descripción de secuencia artificial: Cebador sintético
10
          gtcctctcat aaatccctac tcatatc 27
          <210> 177
          <211> 27
15
          <212> ADN
          <213> Secuencia artificial
          <220>
          <223> Descripción de secuencia artificial: Cebador sintético
20
          <400> 177
          ctgttggtac ataataggta ggtaggt 27
          <210> 178
25
          <211> 19
          <212> ADN
          <213> Secuencia artificial
          <220>
30
          <223> Descripción de secuencia artificial: Cebador sintético
          <400> 178
          gtcgtgggcc ccataaatc 19
          <210> 179
35
          <211> 27
          <212> ADN
          <213> Secuencia artificial
40
          <220>
          <223> Descripción de secuencia artificial: Cebador sintético
          <400> 179
          aaggtacata acagttcaat agaaagc 27
45
          <210> 180
          <211> 26
          <212> ADN
          <213> Secuencia artificial
50
          <220>
          <223> Descripción de secuencia artificial: Cebador sintético
          <400> 180
55
          gtgaaatgac tgaaaaatag taacca 26
          <210> 181
          <211> 24
          <212> ADN
60
          <213> Secuencia artificial
          <220>
          <223> Descripción de secuencia artificial: Cebador sintético
```

```
<400> 181
         ctaggagatc atgtgggtat gatt 24
 5
          <210> 182
          <211> 24
          <212> ADN
          <213> Secuencia artificial
10
          <223> Descripción de secuencia artificial: Cebador sintético
          <400> 182
          gcagtgaata aatgaacgaa tgga 24
15
          <210> 183
          <211> 21
          <212> ADN
          <213> Secuencia artificial
20
          <220>
          <223> Descripción de secuencia artificial: Cebador sintético
          <400> 183
25
         cccaaaatta cttgagccaa t 21
          <210> 184
          <211> 24
          <212> ADN
30
          <213> Secuencia artificial
          <220>
          <223> Descripción de secuencia artificial: Cebador sintético
35
          <400> 184
          gagacaaaat gaagaaacag acag 24
          <210> 185
          <211> 25
40
          <212> ADN
          <213> Secuencia artificial
          <220>
          <223> Descripción de secuencia artificial: Cebador sintético
45
          <400> 185
          tctttgctct catgaataga tcagt 25
          <210> 186
          <211> 24
50
          <212> ADN
          <213> Secuencia artificial
          <220>
          <223> Descripción de secuencia artificial: Cebador sintético
55
          <400> 186
          gtttgtgata atgaacccac tcag 24
          <210> 187
60
          <211> 27
          <212> ADN
          <213> Secuencia artificial
```

```
<220>
          <223> Descripción de secuencia artificial: Cebador sintético
 5
          <400> 187
          tgaacacaga tgttaagtgt gtatatg 27
          <210> 188
          <211> 23
10
          <212> ADN
          <213> Secuencia artificial
          <220>
          <223> Descripción de secuencia artificial: Cebador sintético
15
          gtctgaggtg gacagttatg aaa 23
          <210> 189
20
          <211> 23
          <212> ADN
          <213> Secuencia artificial
          <220>
25
          <223> Descripción de secuencia artificial: Cebador sintético
          <400> 189
          ctgtggctca tctatgaaaa ctt 23
30
          <210> 190
          <211> 22
          <212> ADN
          <213> Secuencia artificial
          <220>
35
          <223> Descripción de secuencia artificial: Cebador sintético
          <400> 190
          gaagtggctg tggtgttatg at 22
40
          <210> 191
          <211> 24
          <212> ADN
          <213> Secuencia artificial
45
          <220>
          <223> Descripción de secuencia artificial: Cebador sintético
          <400> 191
50
          ttctgttggt atagagcagt gttt 24
          <210> 192
          <211> 20
          <212> ADN
55
          <213> Secuencia artificial
          <223> Descripción de secuencia artificial: Cebador sintético
60
          <400> 192
          gtgacaggaa ggacggaatg 20
          <210> 193
```

```
<211> 27
          <212> ADN
          <213> Secuencia artificial
 5
          <220>
          <223> Descripción de secuencia artificial: Cebador sintético
          <400> 193
          catgaggttt gcaaatacta tcttaac 27
10
          <210> 194
          <211> 24
          <212> ADN
          <213> Secuencia artificial
15
          <220>
          <223> Descripción de secuencia artificial: Cebador sintético
          <400> 194
20
          gttttaattt tctccaaatc tcca 24
          <210> 195
          <211> 27
          <212> ADN
25
          <213> Secuencia artificial
          <220>
          <223> Descripción de secuencia artificial: Cebador sintético
30
          <400> 195
          tcttagccta gatagatact tgcttcc 27
          <210> 196
          <211> 23
          <212> ADN
35
          <213> Secuencia artificial
          <220>
          <223> Descripción de secuencia artificial: Cebador sintético
40
          <400> 196
          gtcaaccttt gaggctatag gaa 23
          <210> 197
          <211> 19
45
          <212> ADN
          <213> Secuencia artificial
50
          <223> Descripción de secuencia artificial: Cebador sintético
          <400> 197
          tcctggaaac aaaagtatt 19
55
          <210> 198
          <211> 21
          <212> ADN
          <213> Secuencia artificial
60
          <223> Descripción de secuencia artificial: Cebador sintético
```

```
<400> 198
          aaccttacaa caaagctaga a 21
          <210> 199
 5
          <211> 20
          <212> ADN
          <213> Secuencia artificial
          <220>
10
          <223> Descripción de secuencia artificial: Cebador sintético
          <400> 199
          actaagcctt ggggatccag 20
15
          <210> 200
          <211> 21
          <212> ADN
          <213> Secuencia artificial
20
          <223> Descripción de secuencia artificial: Cebador sintético
          <400> 200
          tgctgtggaa atactaaaag g 21
25
          <210> 201
          <211> 20
          <212> ADN
          <213> Secuencia artificial
30
          <223> Descripción de secuencia artificial: Cebador sintético
          <400> 201
35
          ctccagaggt aatcctgtga 20
          <210> 202
          <211> 21
          <212> ADN
40
          <213> Secuencia artificial
          <223> Descripción de secuencia artificial: Cebador sintético
45
          <400> 202
          tggtgtgaga tggtatctag g 21
          <210> 203
          <211> 22
50
          <212> ADN
          <213> Secuencia artificial
          <220>
          <223> Descripción de secuencia artificial: Cebador sintético
55
          <400> 203
          gtataatcca tgaatcttgt tt 22
          <210> 204
60
          <211> 22
          <212> ADN
          <213> Secuencia artificial
```

```
<220>
          <223> Descripción de secuencia artificial: Cebador sintético
          <400> 204
 5
          ttcaaattgt atataagaga gt 22
          <210> 205
          <211> 20
          <212> ADN
          <213> Secuencia artificial
10
          <220>
          <223> Descripción de secuencia artificial: Cebador sintético
          <400> 205
15
          gcaggaaagt tattttaat 20
          <210> 206
          <211> 21
          <212> ADN
20
          <213> Secuencia artificial
          <223> Descripción de secuencia artificial: Cebador sintético
25
          <400> 206
          tgcttgagaa agctaacact t 21
          <210> 207
30
          <211> 20
          <212> ADN
          <213> Secuencia artificial
          <220>
35
          <223> Descripción de secuencia artificial: Cebador sintético
          <400> 207
          cagtgtttgg aaattgtctg 20
40
          <210> 208
          <211> 20
          <212> ADN
          <213> Secuencia artificial
45
          <220>
          <223> Descripción de secuencia artificial: Cebador sintético
          <400> 208
          ggcactggga gattattgta 20
50
          <210> 209
          <211> 20
          <212> ADN
          <213> Secuencia artificial
55
          <220>
          <223> Descripción de secuencia artificial: Cebador sintético
          <400> 209
60
          tcctgttgtt aagtacacat 20
          <210> 210
          <211> 18
          <212> ADN
```

```
<213> Secuencia artificial
          <220>
          <223> Descripción de secuencia artificial: Cebador sintético
 5
          <400> 210
          gggccgtaat tacttttg 18
          <210> 211
10
          <211> 21
          <212> ADN
          <213> Secuencia artificial
          <220>
15
          <223> Descripción de secuencia artificial: Cebador sintético
          <400> 211
          actcagtagg cactttgtgt c 21
20
          <210> 212
          <211> 18
          <212> ADN
          <213> Secuencia artificial
25
          <220>
          <223> Descripción de secuencia artificial: Cebador sintético
          <400> 212
          tcttccacca caccaatc 18
30
          <210> 213
          <211> 19
          <212> ADN
          <213> Secuencia artificial
35
          <220>
          <223> Descripción de secuencia artificial: Cebador sintético
          <400> 213
40
          tggcttttca aaggtaaaa 19
          <210> 214
          <211> 21
          <212> ADN
45
          <213> Secuencia artificial
          <220>
          <223> Descripción de secuencia artificial: Cebador sintético
50
          <400> 214
          gcaacgttaa catctgaatt t 21
          <210> 215
55
          <400> 215
          000
          <210> 216
          <211> 22
          <212> ADN
60
          <213> Secuencia artificial
```

```
<220>
          <223> Descripción de secuencia artificial: Cebador sintético
          <400> 216
 5
          attttatatg tcatgatcta ag 22
          <210> 217
          <211> 19
          <212> ADN
          <213> Secuencia artificial
10
          <220>
          <223> Descripción de secuencia artificial: Cebador sintético
15
          <400> 217
          agagattaca ggtgtgagc 19
          <210> 218
          <211> 19
20
          <212> ADN
          <213> Secuencia artificial
          <220>
          <223> Descripción de secuencia artificial: Cebador sintético
25
          <400> 218
          atgatectea actgeetet 19
          <210> 219
30
          <211> 20
          <212> ADN
          <213> Secuencia artificial
          <220>
35
          <223> Descripción de secuencia artificial: Cebador sintético
          <400> 219
          tgaaactcaa aagagaaaag 20
40
          <210> 220
          <211> 20
          <212> ADN
          <213> Secuencia artificial
45
          <220>
          <223> Descripción de secuencia artificial: Cebador sintético
          <400> 220
          acagatttct acttaaaatt 20
50
          <210> 221
          <211> 20
          <212> ADN
          <213> Secuencia artificial
55
          <220>
          <223> Descripción de secuencia artificial: Cebador sintético
          <400> 221
60
          tgaaactcaa aagagaaaag 20
          <210> 222
          <211> 20
```

```
<212> ADN
          <213> Secuencia artificial
 5
          <223> Descripción de secuencia artificial: Cebador sintético
          <400> 222
          acagatttct acttaaaatt 20
10
          <210> 223
          <211> 20
          <212> ADN
          <213> Secuencia artificial
15
          <220>
          <223> Descripción de secuencia artificial: Cebador sintético
          <400> 223
          gcaaaggggt actctatgta 20
20
          <210> 224
          <211> 20
          <212> ADN
          <213> Secuencia artificial
25
          <223> Descripción de secuencia artificial: Cebador sintético
          <400> 224
30
          tatcgggtca tcttgttaaa 20
          <210> 225
          <211> 22
          <212> ADN
          <213> Secuencia artificial
35
          <223> Descripción de secuencia artificial: Cebador sintético
          <400> 225
40
          tctaacaaag ctctgtccaa aa 22
          <210> 226
          <211> 21
          <212> ADN
45
          <213> Secuencia artificial
          <220>
          <223> Descripción de secuencia artificial: Cebador sintético
50
          <400> 226
          ccacactgaa taactggaac a 21
          <210> 227
55
          <211> 21
          <212> ADN
          <213> Secuencia artificial
          <220>
60
          <223> Descripción de secuencia artificial: Cebador sintético
          <400> 227
          gcaagcaagc tctctacctt c 21
```

```
<210> 228
          <211> 22
          <212> ADN
 5
          <213> Secuencia artificial
          <220>
          <223> Descripción de secuencia artificial: Cebador sintético
10
          tgttcttcca aaattcacat gc 22
          <210> 229
          <211> 21
15
          <212> ADN
          <213> Secuencia artificial
          <220>
          <223> Descripción de secuencia artificial: Cebador sintético
20
          <400> 229
          atttcactat tccttcattt t 21
          <210> 230
          <211> 22
25
          <212> ADN
          <213> Secuencia artificial
          <220>
30
          <223> Descripción de secuencia artificial: Cebador sintético
          <400> 230
          taattgttgc acactaaatt ac 22
          <210> 231
35
          <211> 21
          <212> ADN
          <213> Secuencia artificial
          <220>
40
          <223> Descripción de secuencia artificial: Cebador sintético
          <400> 231
          aaaaagccac agaaatcagt c 21
45
          <210> 232
          <211> 22
          <212> ADN
          <213> Secuencia artificial
50
          <220>
          <223> Descripción de secuencia artificial: Cebador sintético
          <400> 232
55
          ttcttatatc tcactgggca tt 22
          <210> 233
          <211> 22
          <212> ADN
60
          <213> Secuencia artificial
          <220>
          <223> Descripción de secuencia artificial: Cebador sintético
```

```
<400> 233
         ggatggtaga agagaagaaa gg 22
 5
          <210> 234
          <211> 22
          <212> ADN
          <213> Secuencia artificial
10
          <223> Descripción de secuencia artificial: Cebador sintético
          <400> 234
          ggatggtaga agagaagaaa gg 22
15
          <210> 235
          <211> 20
          <212> ADN
          <213> Secuencia artificial
20
          <220>
          <223> Descripción de secuencia artificial: Cebador sintético
          <400> 235
         tgcaaagatg cagaaccaac 20
25
          <210> 236
          <211> 22
          <212> ADN
30
          <213> Secuencia artificial
          <220>
          <223> Descripción de secuencia artificial: Cebador sintético
35
          <400> 236
          ttttgttcct tgtcctggct ga 22
          <210> 237
          <211> 20
40
          <212> ADN
          <213> Secuencia artificial
          <220>
          <223> Descripción de secuencia artificial: Cebador sintético
45
          <400> 237
          tgcaaagatg cagaaccaac 20
          <210> 238
50
          <211> 21
          <212> ADN
          <213> Secuencia artificial
          <220>
55
          <223> Descripción de secuencia artificial: Cebador sintético
          <400> 238
          gcctccagct ctatccaagt t 21
          <210> 239
60
          <211> 22
          <212> ADN
          <213> Secuencia artificial
```

```
<220>
          <223> Descripción de secuencia artificial: Cebador sintético
 5
          <400> 239
          ccttaatatc ttcccatgtc ca 22
          <210> 240
          <211> 22
10
          <212> ADN
          <213> Secuencia artificial
          <220>
          <223> Descripción de secuencia artificial: Cebador sintético
15
          attgttagtg cctcttctgc tt 22
          <210> 241
          <211> 20
20
          <212> ADN
          <213> Secuencia artificial
          <220>
25
          <223> Descripción de secuencia artificial: Cebador sintético
          <400> 241
          gagaagtgag gtcagcagct 20
30
          <210> 242
          <211> 22
          <212> ADN
          <213> Secuencia artificial
          <220>
35
          <223> Descripción de secuencia artificial: Cebador sintético
          <400> 242
          tttctaaatt tccattgaac ag 22
40
          <210> 243
          <211> 20
          <212> ADN
          <213> Secuencia artificial
45
          <220>
          <223> Descripción de secuencia artificial: Cebador sintético
          <400> 243
50
          gaaattggca atctgattct 20
          <210> 244
          <211> 21
          <212> ADN
          <213> Secuencia artificial
55
          <223> Descripción de secuencia artificial: Cebador sintético
60
          <400> 244
          caacttgtcc tttattgatg t 21
          <210> 245
```

```
<211> 22
          <212> ADN
          <213> Secuencia artificial
 5
          <220>
          <223> Descripción de secuencia artificial: Cebador sintético
          <400> 245
          ctatgttgat aaaacattga aa 22
10
          <210> 246
          <211> 20
          <212> ADN
          <213> Secuencia artificial
15
          <220>
          <223> Descripción de secuencia artificial: Cebador sintético
          <400> 246
20
          gcctgtctgg aatatagttt 20
          <210> 247
          <211> 22
          <212> ADN
25
          <213> Secuencia artificial
          <220>
          <223> Descripción de secuencia artificial: Cebador sintético
30
          <400> 247
          cagggcatat aatctaagct gt 22
          <210> 248
          <211> 21
          <212> ADN
35
          <213> Secuencia artificial
          <220>
          <223> Descripción de secuencia artificial: Cebador sintético
40
          <400> 248
          caatgactct gagttgagca c 21
          <210> 249
45
          <211> 18
          <212> ADN
          <213> Secuencia artificial
50
          <223> Descripción de secuencia artificial: Cebador sintético
          <400> 249
          actetetee teeetet 18
          <210> 250
55
          <211> 20
          <212> ADN
          <213> Secuencia artificial
60
          <220>
          <223> Descripción de secuencia artificial: Cebador sintético
```

```
<400> 250
         tatggccca aaactattct 20
          <210> 251
 5
          <211> 20
          <212> ADN
          <213> Secuencia artificial
          <220>
10
          <223> Descripción de secuencia artificial: Cebador sintético
          <400> 251
          acaagtactg ggcagattga 20
15
          <210> 252
          <211> 20
          <212> ADN
          <213> Secuencia artificial
          <220>
20
          <223> Descripción de secuencia artificial: Cebador sintético
          <400> 252
          gccaggttta gctttcaagt 20
25
          <210> 253
          <211> 22
          <212> ADN
          <213> Secuencia artificial
30
          <223> Descripción de secuencia artificial: Cebador sintético
          <400> 253
35
          ttttatatca ggagaaacac tg 22
          <210> 254
          <211> 21
          <212> ADN
40
          <213> Secuencia artificial
          <223> Descripción de secuencia artificial: Cebador sintético
45
          <400> 254
          ccagaatttt ggaggtttaa t 21
          <210> 255
          <211> 22
50
          <212> ADN
          <213> Secuencia artificial
          <220>
          <223> Descripción de secuencia artificial: Cebador sintético
55
          <400> 255
          tgtcattcct cctttatctc ca 22
          <210> 256
60
          <211> 20
          <212> ADN
          <213> Secuencia artificial
```

```
<220>
          <223> Descripción de secuencia artificial: Cebador sintético
          <400> 256
 5
          ttcttttgcc tctcccaaag 20
          <210> 257
          <211> 20
          <212> ADN
          <213> Secuencia artificial
10
          <220>
          <223> Descripción de secuencia artificial: Cebador sintético
15
          <400> 257
          accetggeae agtgttgact 20
          <210> 258
          <211> 20
20
          <212> ADN
          <213> Secuencia artificial
          <220>
          <223> Descripción de secuencia artificial: Cebador sintético
25
          <400> 258
          tgggcctgag ttgagaagat 20
          <210> 259
          <211> 21
30
          <212> ADN
          <213> Secuencia artificial
          <220>
35
          <223> Descripción de secuencia artificial: Cebador sintético
          <400> 259
          aatttgtaag tatgtgcaac g 21
          <210> 260
40
          <211> 20
          <212> ADN
          <213> Secuencia artificial
45
          <220>
          <223> Descripción de secuencia artificial: Cebador sintético
          <400> 260
          tttttcccat ttccaactct 20
50
          <210> 261
          <211> 20
          <212> ADN
          <213> Secuencia artificial
55
          <223> Descripción de secuencia artificial: Cebador sintético
          <400> 261
60
          aaaagatgag acaggcaggt 20
          <210> 262
          <211> 20
```

```
<212> ADN
          <213> Secuencia artificial
          <223> Descripción de secuencia artificial: Cebador sintético
 5
          <400> 262
          accctgtga atctcaaaat 20
10
          <210> 263
          <211> 21
          <212> ADN
          <213> Secuencia artificial
15
          <220>
          <223> Descripción de secuencia artificial: Cebador sintético
          <400> 263
          gcacttgctt ctattgtttg t 21
20
          <210> 264
          <211> 20
          <212> ADN
          <213> Secuencia artificial
25
          <223> Descripción de secuencia artificial: Cebador sintético
          <400> 264
30
          cccttcctct cttccattct 20
          <210> 265
          <211> 13
          <212> ADN
          <213> Secuencia artificial
35
          <223> Descripción de secuencia artificial: Cebador sintético
40
          <400> 265
          agcactgcag gta 13
          <210> 266
          <211> 21
          <212> ADN
45
          <213> Secuencia artificial
          <220>
          <223> Descripción de secuencia artificial: Cebador sintético
50
          <400> 266
          acagatacca aagaactgca a 21
          <210> 267
55
          <211> 20
          <212> ADN
          <213> Secuencia artificial
          <220>
60
          <223> Descripción de secuencia artificial: Cebador sintético
          <400> 267
          tggacacctt tcaacttaga 20
```

```
<210> 268
          <211> 22
          <212> ADN
 5
          <213> Secuencia artificial
          <220>
          <223> Descripción de secuencia artificial: Cebador sintético
10
          gaacagtaat gttgaacttt tt 22
          <210> 269
          <211> 21
15
          <212> ADN
          <213> Secuencia artificial
          <220>
          <223> Descripción de secuencia artificial: Cebador sintético
20
          <400> 269
          tcttgcaaaa agcttagcac a 21
          <210> 270
25
          <211> 21
          <212> ADN
          <213> Secuencia artificial
          <220>
30
          <223> Descripción de secuencia artificial: Cebador sintético
          <400> 270
          aaaaagatct caaagggtcc a 21
          <210> 271
35
          <211> 20
          <212> ADN
          <213> Secuencia artificial
40
          <220>
          <223> Descripción de secuencia artificial: Cebador sintético
          <400> 271
          gcttttgctg aacatcaagt 20
45
          <210> 272
          <211> 19
          <212> ADN
          <213> Secuencia artificial
50
          <220>
          <223> Descripción de secuencia artificial: Cebador sintético
          <400> 272
55
          ccttccagca gcatagtct 19
          <210> 273
          <211> 18
          <212> ADN
60
          <213> Secuencia artificial
          <220>
          <223> Descripción de secuencia artificial: Cebador sintético
```

```
<400> 273
          aaatccagga tgtgcagt 18
 5
          <210> 274
          <211> 19
          <212> ADN
          <213> Secuencia artificial
10
          <223> Descripción de secuencia artificial: Cebador sintético
          <400> 274
          atgatgaggt cagtggtgt 19
15
          <210> 275
          <211> 22
          <212> ADN
          <213> Secuencia artificial
20
          <220>
          <223> Descripción de secuencia artificial: Cebador sintético
          <400> 275
          catcacagat catagtaaat gg 22
25
          <210> 276
          <211> 21
          <212> ADN
30
          <213> Secuencia artificial
          <220>
          <223> Descripción de secuencia artificial: Cebador sintético
35
          <400> 276
          aattattatt ttgcaggcaa t 21
          <210> 277
          <211> 20
40
          <212> ADN
          <213> Secuencia artificial
          <220>
          <223> Descripción de secuencia artificial: Cebador sintético
45
          <400> 277
          catgaggcaa acacctttcc 20
          <210> 278
50
          <211> 22
          <212> ADN
          <213> Secuencia artificial
          <220>
55
          <223> Descripción de secuencia artificial: Cebador sintético
          <400> 278
          gctggactca ggataaagaa ca 22
          <210> 279
60
          <211> 20
          <212> ADN
          <213> Secuencia artificial
```

```
<220>
          <223> Descripción de secuencia artificial: Cebador sintético
 5
          <400> 279
          tggaagcctg agctgactaa 20
          <210> 280
          <211> 20
10
          <212> ADN
          <213> Secuencia artificial
          <220>
          <223> Descripción de secuencia artificial: Cebador sintético
15
          <400> 280
          ccttcttttc ccccagaatc 20
          <210> 281
20
          <211> 21
          <212> ADN
          <213> Secuencia artificial
          <220>
25
          <223> Descripción de secuencia artificial: Cebador sintético
          <400> 281
          taggagaaca gaagatcaga g 21
30
          <210> 282
          <211> 22
          <212> ADN
          <213> Secuencia artificial
          <220>
35
          <223> Descripción de secuencia artificial: Cebador sintético
          <400> 282
          aaagactatt gctaaatgct tg 22
40
          <210> 283
          <211> 20
          <212> ADN
          <213> Secuencia artificial
45
          <220>
          <223> Descripción de secuencia artificial: Cebador sintético
          <400> 283
50
          taagcgtagg gctgtgtgtg 20
          <210> 284
          <211> 21
          <212> ADN
          <213> Secuencia artificial
55
          <223> Descripción de secuencia artificial: Cebador sintético
60
          <400> 284
          ggacggatag actccagaag g 21
          <210> 285
```

```
<211> 23
          <212> ADN
          <213> Secuencia artificial
 5
          <220>
          <223> Descripción de secuencia artificial: Cebador sintético
          <400> 285
          gaatgacctt ggcactttta tca 23
10
          <210> 286
          <211> 27
          <212> ADN
          <213> Secuencia artificial
15
          <220>
          <223> Descripción de secuencia artificial: Cebador sintético
          <400> 286
20
          aaggatagag atatacagat gaatgga 27
          <210> 287
          <211> 18
          <212> ADN
25
          <213> Secuencia artificial
          <223> Descripción de secuencia artificial: Cebador sintético
30
          <400> 287
          catgcaccgc gcaaatac 18
          <210> 288
          <211> 19
          <212> ADN
35
          <213> Secuencia artificial
          <220>
          <223> Descripción de secuencia artificial: Cebador sintético
40
          <400> 288
          atgcctcacc cacaaacac 19
          <210> 289
          <211> 20
45
          <212> ADN
          <213> Secuencia artificial
50
          <223> Descripción de secuencia artificial: Cebador sintético
          <400> 289
          tccaagccct tctcactcac 20
          <210> 290
55
          <211> 20
          <212> ADN
          <213> Secuencia artificial
60
          <220>
          <223> Descripción de secuencia artificial: Cebador sintético
```

```
<400> 290
          ctgggacggt gacattttct 20
          <210> 291
 5
          <211> 21
          <212> ADN
          <213> Secuencia artificial
          <220>
10
          <223> Descripción de secuencia artificial: Cebador sintético
          <400> 291
          cccaggaaga gtggaaagat t 21
15
          <210> 292
          <211> 21
          <212> ADN
<213> Secuencia artificial
20
          <220>
          <223> Descripción de secuencia artificial: Cebador sintético
          <400> 292
          ttagcttgca tgtacctgtg t 21
25
          <210> 293
          <211> 20
          <212> ADN
          <213> Secuencia artificial
30
          <223> Descripción de secuencia artificial: Cebador sintético
          <400> 293
35
          agctagatgg ggtgaatttt 20
          <210> 294
          <211> 18
          <212> ADN
40
          <213> Secuencia artificial
          <220>
          <223> Descripción de secuencia artificial: Cebador sintético
45
          <400> 294
          tgggctgagg ggagattc 18
          <210> 295
          <211> 22
50
          <212> ADN
          <213> Secuencia artificial
          <223> Descripción de secuencia artificial: Cebador sintético
55
          <400> 295
          atcaagctaa ttaatgttat ct 22
          <210> 296
60
          <211> 20
          <212> ADN
          <213> Secuencia artificial
```

```
<220>
          <223> Descripción de secuencia artificial: Cebador sintético
          <400> 296
 5
          aatgaataag gtcctcagag 20
          <210> 297
          <211> 21
          <212> ADN
          <213> Secuencia artificial
10
          <220>
          <223> Descripción de secuencia artificial: Cebador sintético
          <400> 297
15
          tttaatctga tcattgccct a 21
          <210> 298
          <211> 18
20
          <212> ADN
          <213> Secuencia artificial
          <220>
          <223> Descripción de secuencia artificial: Cebador sintético
25
          <400> 298
          agctgtgggt gaccttga 18
          <210> 299
30
          <211> 20
          <212> ADN
          <213> Secuencia artificial
          <220>
35
          <223> Descripción de secuencia artificial: Cebador sintético
          <400> 299
          tgtcccacca ttgtgtatta 20
40
          <210> 300
          <211> 20
          <212> ADN
          <213> Secuencia artificial
45
          <220>
          <223> Descripción de secuencia artificial: Cebador sintético
          <400> 300
          tcagacttga agtccaggat 20
50
          <210> 301
          <211> 20
          <212> ADN
          <213> Secuencia artificial
55
          <223> Descripción de secuencia artificial: Cebador sintético
          <400> 301
60
          gcttcagggg tgttagtttt 20
          <210> 302
          <211> 20
```

```
<212> ADN
          <213> Secuencia artificial
 5
          <223> Descripción de secuencia artificial: Cebador sintético
          <400> 302
          ctttgtgaaa agtcgtccag 20
10
          <210> 303
          <211> 18
          <212> ADN
          <213> Secuencia artificial
15
          <220>
          <223> Descripción de secuencia artificial: Cebador sintético
          <400> 303
          ccatcatgga aagcatgg 18
20
          <210> 304
          <211> 20
          <212> ADN
          <213> Secuencia artificial
25
          <223> Descripción de secuencia artificial: Cebador sintético
          <400> 304
30
          tcatctccat gactgcacta 20
          <210> 305
          <211> 20
          <212> ADN
          <213> Secuencia artificial
35
          <223> Descripción de secuencia artificial: Cebador sintético
40
          <400> 305
          gagatgacgg agtagctcat 20
          <210> 306
          <211> 18
          <212> ADN
45
          <213> Secuencia artificial
          <220>
          <223> Descripción de secuencia artificial: Cebador sintético
50
          <400> 306
         cccagctgca ctgtctac 18
          <210> 307
55
          <211> 20
          <212> ADN
          <213> Secuencia artificial
          <220>
60
          <223> Descripción de secuencia artificial: Cebador sintético
          <400> 307
          tcttgttcca atcacaggac 20
```

<210> 308

```
<211> 20
         <212> ADN
 5
         <213> Secuencia artificial
         <220>
         <223> Descripción de secuencia artificial: Cebador sintético
10
         atgctgttag ctgaagctct 20
         <210> 309
         <211> 20
15
         <212> ADN
         <213> Secuencia artificial
         <220>
         <223> Descripción de secuencia artificial: Cebador sintético
20
         <400> 309
         tgaaagctcc taaagcagag 20
         <210> 310
25
         <211> 20
         <212> ADN
         <213> Secuencia artificial
         <220>
         <223> Descripción de secuencia artificial: Cebador sintético
30
         <400> 310
         ttgaagagat gtgctatcat 20
35
         <210> 311
         <211> 54
         <212> ADN
         <213> Secuencia artificial
40
         <220>
         <223> Descripción de secuencia artificial: Cebador sintético
         geogeetgea geoegegeee eeegtgeeee egeeeegeg eggee 54
45
         <210> 312
         <211> 601
         <212> ADN
         <213> Homo sapiens
50
                                                                                                    <400>
                catagtgaca ggtatatgcc caactaactg tggaaaacag ttctttcttt caaccttact
                                                                                             60
                                                                                                    312
                catcacctc acggtctgtt tatgaggctc tcctccacca gccagaaagg atgacgtgcc
                                                                                            120
55
                atacctgcaa aacttataca gcatcaacag aatgaatctt tccaacaagc cgaaacattg
                                                                                            180
                agtattgtgg cacagaatat gccccaccca ttactcaatc tagatatcct tttattccac
                                                                                            240
                cgtctcatga ttttcttttt cctggaaaac aaaagtattt ctttcatagc ccagctagca
                                                                                            300
60
                ygataaatca gcgagtcaga attctagctt tgttgtaagg ttttgcgaat atctgatcct
                                                                                            360
                cttattttgt acttttctat ttcctaggca aatctgagta tttcacccag ttttccttaa
                                                                                            420
                ctaggcattg aaaactcagt ttttttctta caaaccttca tgtcttcctg ctcatttgca
                                                                                            480
                cagtettate ttgcacetee tataaaatgg agaaacttga cattaaaacg taattttat
                                                                                            540
                tacattttga gggattccca gagaattttt ccccaatctc cttaggtagg gacttcttta
                                                                                             600
                                                                                             601
                c
```

5		
10	<210> 313 <211> 601 <212> ADN <213> Homo sapiens	
15	<400> 313	
	gtgggaacta tagtaaagaa gtccctacct aaggagattg gggaaaaatt ctctgggaat	60
20	ccctcaaaat gtaataaaaa ttacgtttta atgtcaagtt tctccatttt ataggaggtg	120
	caagataaga ctgtgcaaat gagcaggaag acatgaaggt ttgtaagaaa aaaactgagt	180
	tttcaatgcc tagttaagga aaactgggtg aaatactcag atttgcctag gaaatagaaa	240
25	agtacaaaat aagaggatca gatattegea aaacettaca acaaagetag aattetgaet	300
	ygctgattta tcgtgctagc tgggctatga aagaaatact tttgttttcc aggaaaaaga	360
	aaatcatgag acggtggaat aaaaggatat ctagattgag taatgggtgg ggcatattct	420
30	gtgccacaat actcaatgtt teggettgtt ggaaagatte attetgttga tgetgtataa	480
	gttttgcagg tatggcacgt catcetttet ggetggtgga ggagageete ataaacagae	540
	cgtgagggtg atgagtaagg ttgaaagaaa gaactgtttt ccacagttag ttgggcatat	600
35	a	601
40	<210> 314 <211> 650 <212> ADN <213> Homo sapiens	
45	<400> 314	
	tttattggtc ctgactggta caaatactga taaaaaggat tttaagatca tattcatact	60
	tttggggaat gagagccaca attaattaac aatgtctgcc atgagattgg atgcaagagt	120
50	atggcactca tactattcct acttctgtct aattacacta tttgtttctg tgtgcaaaaa	180
	tctttggtag gtggtggatg tgcccaagac acagggaaga aaaagaagta aacagggaag	240
	tacaacacag actctgaaat ggggcatcat ggaagacgga gctttgtcgt cttggtcttt	300
55	gctgtatatt cacttcctac aacagtgcta aataccttgt ggatgcttaa atatattaaa	360
	tgaatgcata aatgaaaaga gtaaataaag agtgtatatg aaagtatgta gataaaattc	420
60	ttcactaagc cttggggatc cagctgcttm aggactaaga ccgtatctag ctccttttag	480
00	tatttccaca gcatgccatg gagatacatg tttctgatta tatatgatac atggaaatta	540
	tatgttgttg aatgagtgat tgagtaaatg tgtactaggg cagctaatca taaatatttc	600
65	tactattgct aaaatgactg gatttatcca ttccttctga gagtttatac	650

5	<210> 315 <211> 626 <212> ADN <213> Homo sap	iens					
	<400> 315						
10							
	ctqcttaagg	actaagaccr	tatctagctc	cttttagtat	ttccacagca	tgccatggag	60
15	* **	-	-	*	-	gagtgattga	120
	gtaaatgtgt	actagggcag	ctaatcataa	atatttctac	tattgctaaa	atgactggat	180
	ttatccattc	cttctgagag	tttatactga	ttgcttatat	tgtatcaaat	accgtaactg	240
20	agggcaatgt	ttactcaaac	taatagcacc	attcaaattt	atgcaaacaa	taacactata	300
	tctttaaaat	gttttcacta	aaagctgcat	aaagagtgta	ttcaacaaca	atagaataat	360
0.5	tttacaatct	tttttcttgc	ttaatggcca	tttgtgcctt	ctgacatgct	gctagccatt	420
25	caaaggtcac	actaccttga	agttgaagat	caagacaaat	gattagactc	ataaaagaca	480
	aatcacgtct	ttctggacag	gtgattatta	ataattaatt	agcatttaaa	catgtattat	540
30	ttaagttctt	tttaagttat	aaagtctttg	atttgctaaa	cagtttaaat	aatgaataaa	600
	acataaaata	ataatagtta	ccattt				626
35	<210> 316 <211> 1113 <212> ADN						
40	<213> Homo sap <400> 316	iens					
45							
50							
55							
60							

caagagctgc	atctcactcc	aatttttctt	ctccctataa	ccttatctag	attcccagtt	60
gagggaaccg	atgacctaat	tcctctcagt	ttaaatgcaa	cacaggagca	aattccaaat	120
atctatgctg	gtcttgctgg	gattgcagaa	ccccagggtg	gttatcctcc	tccagaggta	180
atcctgtgat	cagcactaac	rccacatacc	agccctttca	tcagcttgtt	ggagaagcat	240
ctttacttcc	caccaagcag	tgacctagat	accatctcac	accagttaga	atcaggatca	300
ttaaaaagtc	aagaaaaaac	agatgctgaa	gaggatgtgg	agaaatagga	atgcttttac	360
actgttagtg	ggaatgtaaa	ttagttcaac	cattgtcaaa	gacagtgtgg	cgatccctca	420
cagatctaga	accagaaata	ccatttgacc	cagcaatccc	attactgggt	ctatacccaa	480
aggattataa	attactctac	tataaagaca	catgcacaca	tatgtttatt	gcagcaccat	540
tcacaatagc	aaagaattgc	aaccaaccct	aatgcccatc	aatgacagac	tggataaaga	600
aaatctggca	catatacacc	atggaatact	acgcagccat	aaaaaaggat	gagtttatgt	660
cctttacagg	gacatggatg	aagctggaaa	ccatcattct	cagcaaacta	acacaggaac	720
agaaaaccaa	acacatgttc	tcactcacaa	gtgggagttg	aacaatgaga	acacatggac	780
acagggaggg	gaacatcaca	caccactgct	tgtcaggggg	tggggggcta	ggggaaggat	840
agcattagga	gaaataccta	atgtagatga	agggttgatg	ggtgcagcaa	accaccatgg	900
catgtgtata	cctgtgtaac	aaacctccat	gttctgcacg	tgtatcccag	aacttaaagt	960
acaatacaaa	aaaaaaaaaa	agtgtaatcc	agtttacatt	ttcaaggtca	aagtgggtac	1020
		aagaagagaa	_			1080
		ttqtacccca		~	~	1113

5	<210> 317 <211> 1113 <212> ADN <213> Homo sap	iens					
10	<400> 317						
	ttcccagttg	agggaaccga	tgacctaatt	cctctcagtt	taaatgcaac	acaggagcaa	60
	attccaaata	tctatgctgg	tcttgctggg	attgcagaac	cccagggtgg	ttatcctcct	120
15	ccagaggtaa	tcctgtgatc	agcactaacg	ccacatacca	gccctttcat	cagcttgttg	180
	gagaagcatc	tttacttccc	rccaagcagt	gacctagata	ccatctcaca	ccagttagaa	240
20	tcaggatcat	taaaaagtca	agaaaaaaca	gatgctgaag	aggatgtgga	gaaataggaa	300
20	tgcttttaca	ctgttagtgg	gaatgtaaat	tagttcaacc	attgtcaaag	acagtgtggc	360
	gateceteae	agatotagaa	ccagaaatac	catttgaccc	agcaatccca	ttactgggtc	420
25	tatacccaaa	ggattataaa	ttactctact	ataaagacac	atgcacacat	atgtttattg	480
	cagcaccatt	cacaatagca	aagaattgca	accaacccta	atgcccatca	atgacagact	540
	ggataaagaa	aatctggcac	atatacacca	tggaatacta	cgcagccata	aaaaaggatg	600
30	agtttatgtc	ctttacaggg	acatggatga	agctggaaac	catcattctc	agcaaactaa	660
	cacaggaaca	gaaaaccaaa	cacatgttct	cactcacaag	tgggagttga	acaatgagaa	720
	cacatggaca	cagggagggg	aacatcacac	accactgctt	gtcagggggt	ggggggctag	780
35	gggaaggata	gcattaggag	aaatacctaa	tgtagatgaa	gggttgatgg	gtgcagcaaa	840
	ccaccatggc	atgtgtatac	ctgtgtaaca	aacctccatg	ttctgcacgt	gtatcccaga	900
40	acttaaagta	caatacaaaa	aaaaaaaaa	gtgtaatcca	gtttacattt	tcaaggtcaa	960
40	agtgggtaca	atgctatcta	tcttgggcta	agaagagaaa	aggaaaaatt	cttgctttaa	1020
	atcttagaag	tctggttttt	ttccctgttt	tgtaccccat	cctcttggtc	tctctagata	1080
45	tatttaagac	tcacatagga	cttgtctttt	cta			1113
40							
50							
55							
60							
00							

5	<210> 318 <211> 1001 <212> ADN <213> Homo sapiens	
10	<400> 318	
	tcatcaacta aatagttgat gaggggaaat tgttctgtat atgttcatac ttcagctaat	60
	caattaaaaa tgatgaaata ataagattac cattttgcaa acccctaatg caatgttgga	120
15	tccaggcaat gatcatcaat ggccactaaa atcacacaaa aggagataac cagaatatgt	180
20	gctttgtgat ggaagcatta aatacaacta atgagatatt gtttataaga aagaaaggaa	240
	gcaagaaagc aatcacacca agctctgtat ctagctacca catttaagga aaaaaagaga	300
	cagaagagca tgttaaatgt taccaagaag atacagtcag tcggaaaaaa tacagacaag	360
25	aaaatacaga gcaaaacaac ccagcttctt cagcaaatca atataaaaaa attttaagaa	420
	agagttaaag tataaactga gagacttcag aaacatatta tccaagtata atccatgaat	480
	cttgtttaaa tatagatcaa rtaaaccact ataccaaaaa catcaaaaga caactgggta	540
30	aattttttaa atgactagct atttgatgtt aaggaagtaa tgttactctc ttatatacaa	600
	tttgaaataa tctagcgagg agcagcaaat gtgcggctat gaggaagaaa cacaattggc	660
35	cattettgaa teattagetg gatggtgget atatgggggt agattttaet actetetaat	720
	tttacatata tttaaaatgt tccataataa attgttgagt tatcaaaaga aatatttcta	780
	tataatagct aaaattattt ataaaagtta gtggtctcat aactttattt atttatttac	840
40	ttattttgag accgagtete eetetgttat geaggetgga gtgeagtgge teeatetegg	900
	ctcactgcaa acttcacctc ctggattgaa gcgattctcc tgcctcagcc cccccgagta	960
	gctgggatta caggcttgca cccccacgcc cagctaattt t	1001
45	<210> 319 <211> 601 <212> ADN <213> Homo sapiens	
50		
55		

	<400> 319	
5	agctaccaca tttaaggaaa aaaagagaca gaagagcatg ttaaatgtta ccaagaagat	60
	acagtcagtc ggaaaaaata cagacaagaa aatacagagc aaaacaaccc agcttcttca	120
	gcaaatcaat ataaaaaaat tttaagaaag agttaaagta taaactgaga gacttcagaa	180
10	acatattatc caagtataat ccatgaatct tgtttaaata tagatcaaat aaaccactat	240
	accaaaaaca tcaaaagaca actgggtaaa ttttttaaat gactagctat ttgatgttaa	300
	rgaagtaatg ttactctctt atatacaatt tgaaataatc tagcgaggag cagcaaatgt	360
15	gcggctatga ggaagaaaca caattggcca ttcttgaatc attagctgga tggtggctat	420
	atgggggtag attttactac tctctaattt tacatatatt taaaatgttc cataataaat	480
00	tgttgagtta tcaaaagaaa tatttctata taatagctaa aattatttat aaaagttagt	540
20	ggtctcataa ctttatttat ttatttactt attttgagac cgagtctccc tctgttatgc	600
	a	601
30	<210> 320 <211> 601 <212> ADN <213> Homo sapiens <400> 320	
35	ccaactgatc taattagata aacttagtca atatatttga atcccacatt ccagcagcta	60
	ttttctccat ttgcttttat tgctgtttgt ggtgagtttg atatataatt ttaaggtgtt	120
	aacatcccta acttatgtat gggtacagct cataaatacg aacctgtgtc atgcaactca	180
40	tatatgactg tgttcaaaat aatgtgtatt agactgtaaa acgattttaa tattttaaat	240
	aacttteetg catttgtegg ttteageagg aaagttattt ttaataactt eeetgtattt	300
	sttggtttca gtattaatta atctcattaa tgctaaactt tgtgatccta ggttaaaaaa	360
45	catattcaag atagcttcag aatgtttggt atacaaatag gtctggctaa atataagtgt	420
	tagctttctc aagcatctaa atgctggcgg gcttttaaaa aaccagggct ttaaggagaa	480
	aacacctgct ctgtggtttt gtagcagata tgaagtattc aaatttctta ataaatagaa	540
50	aaagaaatat ataacagaaa caggttgcac ttgtctttct cattaagcag gtggttagta	600
	c	601
55	<210> 321	

<211> 501 <212> ADN

<400> 321

60

<213> Homo sapiens

	agctcataaa	tacgaacctg	tgtcatgcaa	ctcatatatg	actgtgttca	aaataatgtg	60
5	tattagactg	taaaacgatt	ttaatatttt	aaataacttt	cctgcatttg	tcggtttcag	120
	caggaaagtt	atttttaata	acttccctgt	atttgttggt	ttcagtatta	attaatctca	180
	ttaatgctaa	actttgtgat	cctaggttaa	aaaacatatt	caagatagct	tcagaatgtt	240
10	tggtatacaa	rtaggtctgg	ctaaatataa	gtgttagctt	tctcaagcat	ctaaatgctg	300
	gegggetttt	aaaaaaccag	ggctttaagg	agaaaacacc	tgctctgtgg	ttttgtagca	360
	gatatgaagt	attcaaattt	cttaataaat	agaaaaagaa	atatataaca	gaaacaggtt	420
15	gcacttgtct	ttctcattaa	gcaggtggtt	agtaccatta	tttgcattct	catagootta	480
	atatacattt	toottotota	g				501
20	<210> 322 <211> 601 <212> ADN <213> Homo sapie	ns					
25	<400> 322						
30 35							
40							
	ttttgagttt	ctactttagt	gtcttagtgc	tttctcgata	tgggagaatt	catgtcctcc	60
		atgcactaag					120
45		tcctacaata					180
	atagatttaa	ataattggtt	aactaaatac	taaagcaaat	tgctgcacgt	atcatttatt	240
	attcattgtg	tagaaagtgc	ctgactcagt	gtttggaaat	tgtctgactt	ttcctcatat	300
50	rtagtgtggt	ttcatgttat	tgtatataag	acctgacatg	aactctgttt	acaataatct	360
	cccagtgcca	taaagaccat	aataaataat	ataaccaatt	ggtttcttta	tgctgtcatt	420
55	tattagggca	tatggcatta	gtggaggatt	accttgtatt	acccatagtg	cttagagtat	480
	gaatcacaca	tgcaccttga	aggaaaagag	gtgcaatgta	ataagaaacc	agatattgaa	540
	aatgcaagtt	ttgttatgtt	attctgggta	tgttaacctt	tattcctgcc	ctccatatgc	600
60	a						601
	<210> 323 <211> 501						

<212> ADN <213> Homo sapiens <400> 323 5 aagaggtatc atgtctggtt cttgattagg tactaatctt gaaatactat cctacagtag 60 120 qttaqaqcac qtatatctcc tqataatata ttqaatatqa taqatttaaa taattqqtta 10 actaaatact aaagcaaatt gctgcacgta tcatttatta ttcattgtgt agaaagtgcc 180 240 tgactcagtg tttggaaatt gtctgacttt tcctcatata tagtgtggtt tcatgttatt 15 300 gtatataaga mctgacatga accctgttta caataatctc ccagtgccat aaagaccata ataaataata taaccaattq qtttctttat qctqtcattt attaqqqcat atqqcattaq 360 tggaggatta ccttgtatta cccatagtgc ttagagtatg aatcacacat gcaccttgaa 420 20 480 ttctgggtat gttaaccttt a 501 25 <210> 324 <211> 854 <212> ADN <213> Homo sapiens <400> 324 30 tttcagcact gagagccaga gtggaattgt ctccttcatt gccactgcct tcacgttttg 60 tgtgtcgtat ctgttttgtg atcactgaga cccaagaacc cccgacttgc cgacatacta 120 35 tgtggccccg agagaggact tgagctctct gggtttcatc attaccatca attaaataaa 180 caggacagta gcttcttcct tggattgtta atttaaggct ctggataata catgtaaccg 240 ccttatgata gagcagaatt gtaagtaggc tcatggtaga atcgttcaat gacatttccc 300 40 tttcctttgg gagaaacaga aattcacagg tctaattctt ttcctattaa tagttcctgr 360 ccattattcc agaactgtcc taaaggaatt ctttctcctt aaggacacca cctcccagga 420 480 gggtatttaa agatttgcac aggccgggca cggtggctca tgcttgtaat cccagcagtt 45 540 tgggaggcca aggcgggtgg atcacttgtg ctcaggggtt caagaccggc ctggccaaca tggtgaaacc ctatctctac taaaaacaca aaagttagct gggcctggct atgcatgcct 600 50 660 gtaattccag ctactcggga ggctgaggct ggagaatagc ttgaaccagg gaggtggaga 720 taacaqtgaq ctgaqatgcc actatgacac tccaqcctgq gtgacagagc aagactctct 55 ctcaaaaaaa aaaaaagatt tttatagtcc agtattcaac gttcatagta cacctttctt 780 atcctagtaa atcttctttt atcaaggtat atgatcccat atagtagtta actcttactc 840

65

60

ttactttatg acaa

854

5		
10	<210> 325 <211> 501 <212> ADN <213> Homo sapiens	
	<400> 325	
15	aaatacttac tattaaatat gagaaactgt ggtgtttatc ggtaagatcc acgaaggaag	60
	aagttttaaa gaaaaatact ttaaccgtgg aaaaaaaaa ctttaatgtc tattatcgaa	120
	taggggccgt aattactttt gcaaaataaa aaaacaaaca agactagcta tagtgtaaat	180
20	gtaatctgta tgctttttaa tgaaacaatt aagtaggttg cccatttaca attagcctga	240
	ttttctcctg ygtggtatta tgtgtactta acaacaggac ccagtggaaa ttcactcatt	300
	taacaaagtc tgcctacatg gtttcaaata tgggcctaac ttgaaaattc agtcataatt	360
25	aaatctaagg actaaaacaa atctgtataa aaagattctg ctaaataagg gaaaattcaa	420
	gtctagggct acattctgaa agatattgaa gtagaacctc tgcagcaaga ctaggcttgg	480
30	aaagtgcggg gaggagggaa a	501
35	<210> 326 <211> 601 <212> ADN <213> Homo sapiens	
	<400> 326	
40	ccacatcaga aacatgagga aattctacat ggtaaaaaca gcaacaacca aaaaatactt	60
	aaagtcaaca aaccaggaaa agacatctct gaatatagga atgccaaacc tttaacacaa	120
45	taaaacacag attatatttc agaaggctat attatatgtg tataccaaca tcaatatgtc	180
	cagagtaget geacagagtt ceatatttta gtetttataa gtteeeetee teaceetaet	240
	cagtaggeae tttgtgteta gaaaettetg tgtcaacagt tttccctctc tetggaatte	300
50	mtcaggacag aagtgattgg tgtggtggaa gagggttgtg ctaagagtga agttatatga	360
	aagtaggatg gaggttagca agtagttaaa gtccagaaag gcaataaggt gttaaggaag	420
	aacttttcca ttttacaggt ctgagcaagc aggaaatcaa ctctacaaac tttgaaactt	480
55	ggtaaatatg aaaacattot caataccatt tgtcatttaa taaatacaaa ttatactatt	540
	ttactgcttg catctagaag tttgtcaaag atctcgtctt aattattcat tgtgtcggcg	600
60	a	601
	<210> 327 <211> 601	

<212> ADN <213> Homo sapiens <400> 327 5 gacgagatct ttgacaaact tctagatgca agcagtaaaa tagtataatt tgtatttatt 60 aaatgacaaa tggtattgag aatgttttca tatttaccaa gtttcaaagt ttgtagagtt 120 10 gatttcctgc ttgctcagac ctgtaaaatg gaaaagttct tccttaacac cttattgcct 180 ttctggactt taactacttg ctaacctcca tcctactttc atataacttc actcttagca 240 300 caaccctctt ccaccacac aatcacttct gtcctgatga attccagaga gagggaaaac 15 ygttgacaca gaagtttcta gacacaaagt gcctactgag tagggtgagg aggggaactt 360 ataaagacta aaatatggaa ctctgtgcag ctactctgga catattgatg ttggtataca 420 catataatat agcettetga aatataatet gtgttttatt gtgttaaagg tttggcatte 480 20 540 ctatattcag agatgtcttt tcctggtttg ttgactttaa gtattttttg gttgttgctg 600 tttttaccat gtagaatttc ctcatgtttc tgatgtggaa agtataagaa tatcagccag 25 601 а <210> 328 <211> 811 30 <212> ADN <213> Homo sapiens <400> 328 35 60 taaataatct ctaattagta taatgggtgt tcttagtgca gtgggtactt ttaaagtgct ttgtggcttt tgatgaaaat tgtcttagta tttaaaactt tttcttaccc aattttttgt 120 40 tcccatcgaa ttagcaatgc tgtaaagaaa ggcatcttat tccatttttt gttgctataa 180 aggaatactt gaggctgggt aatttataaa gatgaaaagt ttatttggct cgcaattctg 240 gatggctgga aggttaagta ctgggccaca gcatctggtg ggggcctcga gctgcttcta 300 45 gtcataatgg aaggtgaagg gtgtaaagat catgtgacaa gggaggaaag aagagaagga 360 aggaggtgct ggttctttct atcaaccaat tcgcaagaga actaatagag aaagaactca 420 cttagccctg tgggaacaca ttaatctatt cataagggat ctggctgtat gatacaaaca 480 50 cctcccatta ggccccacct ccaaattgta tcccattggg gatcaaattt caaaaagaga 540 tttggaagga acaaacaaac catatctaag ccatagtaaa aggaatggct tttcaaaggt 600 55 aaaatttact ragtgtatta atattttacc aatttccagc caggagagta tgaatgttgc 660 attattacat tgctttgaaa caaagcatta gtcttaattc agaagtttaa attcagatgt 720 taacgttgca tatttaataa tgcacaacca gtactaaaat cctcattgaa atgacaaata 780 60 attttatttc gaatccctta tagaggttca c 811

<210> 329 <211> 811

<212> ADN <213> Homo sapiens <400> 329 5 60 tgtcttagta tttaaaactt tttcttaccc aattttttgt tcccatcgaa ttagcaatgc tgtaaagaaa ggcatcttat tccatttttt gttgctataa aggaatactt gaggctgggt 120 10 180 aatttataaa gatgaaaagt ttatttggct cgcaattctg gatggctgga aggttaagta ctgggccaca gcatctggtg ggggcctcga gctgcttcta gtcataatgg aaggtgaagg 240 300 gtgtaaagat catgtgacaa gggaggaaag aagagaagga aggaggtgct ggttctttct 15 360 atcaaccaat togcaagaga actaatagag aaagaactca cttagccctg tgggaacaca ttaatctatt cataagggat ctggctgtat gatacaaaca cctcccatta ggccccacct 420 ccaaattgta tcccattggg gatcaaattt caaaaagaga tttggaagga acaaacaaac 480 540 20 catatctaag ccatagtaaa aggaatggct tttcaaaggt aaaatttact aagtgtatta atattttacc aatttccagc caggagagta tgaatgttgc attattacat tgctttgaaa 600 caaaqcatta ktcttaattc aqaaqtttaa attcaqatqt taacqttqca tatttaataa 660 tgcacaacca gtactaaaat cctcattgaa atgacaaata attttatttc gaatccctta 720 25 780 tagaggttca caatgtttta acaatgtagt tttgactaaa tagaagtagt caaaacctgt cagattggaa atagtattta taaaacataa a 811 30 <210> 330 35 <211> 601 <212> ADN <213> Homo sapiens 40 <400> 330 60 gctcatcaat tttgacttaa gaaaattcta gcaacattta tagattttgc caaaattcag 120 cttcttccca aatcaatcta taagaaggct cttccttaaa cataattttt atatctatga 45 180 actgcactag catttactat atatttttat cactctcacc attactggat aataaataaa agctcattaa aagagttaac aaaacatatt tattttaggc atcctgaaaa aaagattcaa 240 ttttattatc atttctacaa taagtattga agaaaggaga atttaaatta cttcatatac 300 50 stgataaagg aaaacatatg caaggcaaat aaacatctta gatcatgaca tataaaataa 360 420 tagattatta ctaaagatta aaatactttc ttaagaatta aagcaattct aaaagcaata 55 gtaaataaca ttctttctag tgatcagaca ctggatacta tgtttgagat agacagtgaa 480 ttgggaatgt tgttttacag aagctcctac cttgcaagga caggcaagtt taaatgtcag 540

600

601

ctagaaaact atcttgagtt ttcagtaatg taagattttc ctattcaatt tcacacttta

5	<210> 331 <211> 601 <212> ADN <213> Homo sapiens	
	<400> 331	
10	agaaaattot agcaacattt atagattttg ccaaaattca gottottooc aaatcaatot	60
	ataagaaggc tcttccttaa acataatttt tatatctatg aactgcacta gcatttacta	120
15	tatattttta tcactctcac cattactgga taataaataa aagctcatta aaagagttaa	180
	caaaacatat ttattttagg catcctgaaa aaaagattca attttattat catttctaca	240
	ataagtattg aagaaaggag aatttaaatt acttcatata cctgataaag gaaaacatat	300
20	rcaaggcaaa taaacatctt agatcatgac atataaaata atagattatt actaaagatt	360
	aaaatacttt cttaagaatt aaagcaattc taaaagcaat agtaaataac attctttcta	420
	gtgatcagac actggatact atgtttgaga tagacagtga attgggaatg ttgttttaca	480
25	gaageteeta eettgeaagg acaggeaagt ttaaatgtea getagaaaac tatettgagt	540
	tttcagtaat gtaagatttt cctattcaat ttcacacttt aaattttata tatatata	600
30	a	601
35	<210> 332 <211> 1110 <212> ADN <213> Homo sapiens <400> 332	
40	tgtagaagtt cttatcactt cctggccttt tggctaagat caagtgtgaa atgtagaagt	60
	tcctctaagc tttacttccc tcaaaaacta gttttatctt gtcagcagga ttcacttaaa	120
45	aagacaaatt cagattatga atttttttct tttttacagg gtctgctctg ttgcccaggc	180
	tggagtgcag aggcacaatc tcggctcact gcagcctccg cctcctgggt tcaagcaatt	240
	ctettgeete ageeteeega gtaactggga ttacaggeat gtgeeaceae eeagetaatt	300
50	tttgtatttt tagtagagat ggggtttcac cacattggtc aggctggtct cgaactgctg	360
	gcctcaagtg atccacttgc ctcggcctcc caaagtgcag agattacagg tgtgagccac	420
	cgtgcccagc ctcataaccg tttcaactac tttttcactt gacaagcaga tgtgaagtta	480
55	acaaagtcac ccatatttga aataaagata gtatattcct ggggyaggca gaggcagttg aggatcatga aataactatg ttggcatagt tatttaggtg ttgatactgt tattatgcca	540 600
		300
60		

5

40		
10	ttgaaagtta aacagagaac cctctgggta catgttttat accaatgcac actatcttat	660
	tagtccctct cataatgtgc agtcatcatt actgttacgg gttgaggtgt ccccatcctc	720
15	tatgggacac ctctatgttg aagtctcaga ttccctagaa tctcagaatg tgaccttgtt	780
	tggaaacaga tttgctacag acgcaattag ttgagatgcg cttatatggg taggtcctaa	840
	ttcagtgact ggtgtcctta aaaaaatgga aatgtacaca cggtggtaga catgcataga	900
20	gggaagagag atggagaaaa tggtcaccta caagccaaag acaggggtct ggagcagatc	960
	cttccctcac agccctcaga aggaaccaat cttgccaata ccttgatttt ggacttccac	1020
	ctccagaact ataacacatt tetgttette aagcaatttg tagecatttg ttacagetaa	1080
25	tacaatcaca catagaaatg acttgtaaat	1110
30	<210> 333 <211> 691 <212> ADN <213> Homo sapiens <400> 333	
35		
33	taaaacatgt acccagaggg ttctctgttt aactttcaat ggcataataa cagtatcaac	60
	acctaaataa ctatgccaac atagttattt catgateete aactgeetet geetaeeeca	120
40	ggaatatact atctttattt caaatatggg tgactttgtt aacttcacat ctgcttgtca	180
	agtgaaaaag tagttgaaac rgttatgagg ctgggcacgg tggctcacac ctgtaatctc	240
	tgcactttgg gaggccgagg caagtggatc acttgaggcc agcagttcga gaccagcctg	300
45	accaatgtgg tgaaacccca tctctactaa aaatacaaaa attagctggg tggtggcaca	360
	tgeetgtaat eecagttaet egggaggetg aggeaagaga attgettgaa eecaggagge	420
	ggaggetgea gtgageegag attgtgeete tgeaeteeag eetgggeaae agageagaee	480
50	ctgtaaaaaa gaaaaaaatt cataatctga atttgtcttt ttaagtgaat cctgctgaca	540
	agataaaact agtttttgag ggaagtaaag cttagaggaa cttctacatt tcacacttga	600
	tettagecaa aaggecagga agtgataaga aettetaeat tttaagttat teacaagata	660
55	actattaatg aacctgaaat agtttgtaaa g	691
60	<210> 334 <211> 640 <212> ADN	

65

<213> Homo sapiens

<400> 334

5

10	aaaccttttt	cctgttttac	tattactaaa	ggtggcacaa	cagcaacctc	aacaactttg	60
	caccatgcca	acactgatgt	ttacacccag	cacagcattt	ttggtctcta	tttttattct	120
15	cctctgaatg	taatgaggat	tcctagatgg	ctagccaatt	cgaatattta	aggcaactga	180
	aagttagaat	gtttctgaaa	catagtgttg	ttgccagaga	gtacgaaagt	tttcaagaat	240
	atcoogcaat	tctgaaagta	савадаадсе	agattaaatg	aaataacact	ggcgaagttt	300
20		actctcatat					360
		gccatgtgtc	_				420
		ttataaaagg					480
25		gacaagagtt		_	_		540
		aatatgggta	-	-			600
30	_	aaataggcca	*		-		640
30							

<210> 335 <211> 919 35 <212> ADN <213> Homo sapiens

•

<400> 335

40

45

50

55

60

_	
2	

10		
10	tacacccage acageatttt tggtetetat ttttattete etetgaatgt aatgaggatt	60
	cctagatggc tagccaattc gaatatttaa ggcaactgaa agttagaatg tttctgaaac	120
15	atagtgttgt tgccagagag tacgaaagtt ttcaagaata tcgggcaatt ctgaaagtac	180
	aaagaagcca gattaaatga aataacactg gcgaagtttt agcaaggtga ctctcatata	240
	atgateatta teattaceae agttaaaaga aaagagttgt ttatgaaagg ceatgtgtet	300
20	gcaatgaaac tcaaaagaga aaagttaaca ggtgcaaaag gtagttttat tataaaagga	360
	gggtaggcaa caagaatatg tttaattttt cttccttttc atgagtaagg acaagagtkt	420
	catatatgtg aatattttta tttaatttta agtagaaatc tgtttttaaa atatgggtat	480
25	atgettattt gtgtaagtgt aagaaacaga agtaagtaca gcaaaccaga aataggecaa	540
	acactcctga gcataatttt acttggtaga ttattcctga aacttaagga atcatctttg	600
30	aactotttto otcacttgac ttocaggatt caccatgcac ttgtgatttt octttcattt	660
30	cactotoogt tootootoag tottttttto toocooaggt ottttttgtt catottaaac	720
	totaaatttt agaatatooc aggggtotgo ottoggoott otottttata totacactgg	780
35	cctcatacat aatcttaacc aagtcattat tttaaatacc tacaatatac tgaaaacttc	840
	taaatttgta ttttaattot tgacttotto catacagtot agatttgtat gtocataggo	900
	tgacatcatt ggctgatac	919
40		
45	<210> 336 <211> 1001 <212> ADN <213> Homo sapiens <400> 336	
	ttactaaata ttctccaaca aatatatact tagtatatac tattagtgat gcatgctttc	60
	cractadata tececcadea datatatace tagratatae tattagigat geatgetiic	90

5

10							
10	aaatatttgg	actatatcaa	tgaatgaaac	aaaaaattat	ttgcccttaa	ggagcttaga	120
	ttctaacaga	tggattcaga	tgatttttat	gccttatttc	gtaggtttaa	aagagcaatg	180
15	gggaaaaggg	aagaagagag	ggattgaaaa	tattgagaag	gttgggagac	ttagcaattt	240
	taagtaaggt	agtgagggta	ggttttattg	gcaaagtgat	ttttcagcag	agactgggaa	300
	agatgaacgt	ggtatcctgg	aggaaagcct	cccaggcaga	gttaagctgc	taacaaaagt	360
20	gcccttaggc	tggagtgggc	ttgtttgatt	aaggaacaaa	gaggtcagca	tggttgcact	420
	agagagaaaa	aatcagatgg	cgtaaggaga	tgaaatcaga	aagatacgag	gctaggcaaa	480
	ggggtactct	atgtaatgaa	yatgacctgg	cagtactgac	atctcctgag	ggactgttag	540
25	aagtgcagac	tcttgtatct	tttctcaagt	ctatgaaatc	tagacttcat	tttaacaaga	600
	tgacccgata	tttacataca	cattaaagtt	ccagaagcac	tgatataaca	cattgtaaga	660
30	tegeacagga	cttcaattct	ttttctggtt	tttagaggca	gtcctttggg	gtgttttgtg	720
50	tagagtataa	tgacctgaaa	tatctaggat	cactctagct	actatcttga	ggaaagagtg	780
	caataaggcg	gaacagttca	gaggcaatgg	tggtcttcta	aatgaaagac	acacagcact	840
35	caaaccaggc	agttgaggag	ggatgggaag	aagttgtcaa	attctagaca	tattttaaag	900
	gtagtgtcca	gagaatttcc	ttagatgcgt	aggaacatgg	aggataggac	atagggtgga	960
	aataaacgaa	ataaagaaac	tgaagctgat	tctgacattt	t		1001

40

<210> 337 <211> 1576 <212> ADN <213> Homo sapiens

<400> 337

50

55

60

5

10							
10	atacctttta	agtgacatcc	tagtgaatct	ccatttgtca	cgagacctca	agctttccag	60
	ttctggcaca	aagtgattac	tcataccatc	acttcaaaat	gatgattatc	ttcatttatt	120
15	ttagttatat	tgaacaaaat	atacatttaa	aaaatctaat	tactaaatat	tctccaacaa	180
	atatatactt	agtatatact	attagtgatg	catgctttca	aatatttgga	ctatatcaat	240
	gaatgaaaca	aaaaattatt	tgcccttaag	gagcttagat	tctaacagat	ggattcagat	300
20	gatttttatg	ccttatttcg	taggtttaaa	agagcaatgg	ggaaaaggga	agaagagagg	360
	gattgaaaat	attgagaagg	ttgggagact	tagcaatttt	aagtaaggta	gtgagggtag	420
	gttttattgg	caaagtgatt	tttcagcaga	gactgggaaa	gatgaacgtg	gtatcctgga	480
25	ggaaagcctc	ccaggcagag	ttaagctgct	aacaaaagtg	cccttaggct	ggagtgggct	540
	tgtttgatta	aggaacaaag	aggtcagcat	ggttgcacta	gagagaaaaa	atcagatggc	600
30	gtaaggagat	gaaatcagaa	agatacgagg	ctaggcaaag	gggtactcta	tgtaatgaac	660
30	atgacctggc	agtactgaca	tctcctgagg	gactgttaga	agtgcagact	cttgtatctt	720
	ttotoaarto	tatgaaatct	agacttcatt	ttaacaacat	gaggggatat	ttacatacac	780
35							840
		cagaagcact ttagaggcag					900
							960
40		actctagcta					1020
		ggtcttctaa					
		agttgtcaaa	_				1080
45		ggaacatgga					1140
		ctgacatttt					1200
		tcttgtttgg					1260
50		ccgtagaaat					1320
		aaatttaaaa					1380
55		gaataaataa					1440
55		atttacatat					1500
	_	agtgtgactt	ttctaaattt	atggggaatt	ttctacattg	tgttatggca	1560
60	ctactaaaaa	taataa					1576

6

65

<210> 338 <211> 1275 <212> ADN <213> Homo sapiens

<400> 338

5

10							
10	gtaaaactaa	ttataattaa	aatcaaaata	tttactgaac	ctacttactc	ctataatttg	60
	cgttgctggt	taaaacccag	ctataaaaat	tttgatcaaa	aatttttatt	ttgtaaatga	120
15	tctgacacag	cataaatgtt	aatcacattt	ctttatttta	tttgcagatt	aatttgagta	180
15	atttgaaaaa	ttattaatgt	tacttaatta	ctctcaacac	cttacagtgt	ctcctgtaag	240
	cactattggt	gatactgaat	ttaagttaca	tttaacaact	atcagaaaat	agtttttaaa	300
20	gtaaaaatta	tgatttggag	tttaccaact	aaatcttgtt	agctttcact	gcctctattg	360
20	agaagagcag	cagttcttat	cttcctcctt	tttattattt	aattaacaag	agattatttg	420
	tatcatagec	ataaaatcag	ttcaggtatt	acatgaacga	cacccctgac	tgcaatggtg	480
25	tagtttattg	tattagtcca	ttttcatgct	gctgataaag	acatacataa	gactgggtaa	540
25	tttataaaga	aatagaagtt	taacggactc	acagttccat	gtggctgggg	aagcctcaca	600
	atcatgatcg	aaggcaaaag	gcacatotta	catggcaaca	ggcaagagag	aatgagagcc	660
30	aagtgaaagg	agaaacccct	tataaaacct	tcagacctca	tgagacttat	tcactaccac	720
00	aagaacagta	tgtgagaaac	agtcccatga	tocagttato	tcccactggg	teceteceae	780
	cacacaaggg		o at was o the		at anat ann	~~~~~	84(
35			_				
33	actatatcat		_				900
	tgtgatcagc	tttggtgacc	atgatcagtg	aaatggttaa	ggaaatctac	agattttgta	960
	ggtttgtgcc	ttgacagacg	accggtatct	gtttctcttt	tcatgatgaa	gtatctaaca	1020
40	aagetetgte	caaaattttg	aatttctcgt	taaawgcatc	atgattatag	aacagaggtt	1080
	acaatcaatt	attcagtcac	acaatcactc	tcatcagtca	ttaaggtgca	tacctggtgt	1140
	tccagttatt	cagtgtggta	taacaaacta	cctggaactt	aatggcttga	aatagtcacc	1200
45	attacattat	gattgtccat	tetetgeate	aataattagg	atttggcaaa	gagggaatgg	1260
	tttgtttaca	gacag					1275
50	<210> 339 <211> 1275 <212> ADN						

60

55

<213> Homo sapiens

<400> 339

5

40							
10	gtaaaactaa	ttataattaa	aatcaaaata	tttactgaac	ctacttactc	ctataatttg	60
	cgttgctggt	taaaacccag	ctataaaaat	tttgatcaaa	aattttatt	ttgtaaatga	120
15	totgacacag	cataaatgtt	aatcacattt	ctttatttta	tttgcagatt	aatttgagta	180
. •	atttgaaaaa	ttattaatgt	tacttaatta	ctctcaacac	cttacagtgt	ctcctgtaag	240
	cactattggt	gatactgaat	ttaagttaca	tttaacaact	atcagaaaat	agtttttaaa	300
20	gtaaaaatta	tgatttggag	tttaccaact	aaatcttgtt	agctttcact	gcctctattg	360
	agaagagcag	cagttcttat	cttcctcctt	tttcttcttt	aattaacaag	agattatttg	420
	tatcatagcc	ataaaatcag	ttcaggtatt	acatgaacga	cacccctgac	tgcaatggtg	480
25	tagtttattg	tattagtcca	ttttcatgct	gctgataaag	acatacataa	gactgggtaa	540
	tttataaaga	aatagaagtt	taacggactc	acagttccat	gtggctgggg	aagcctcaca	600
00	atcatgatcg	aaggcaaaag	gcacatctta	catggcaaca	ggcaagagag	aatgagagcc	660
30	aagtgaaagg	agaaacccct	tataaaacct	tcagacctca	tgagacttat	tcactaccac	720
	aagaacagta	tgtgagaaac	agtcccatga	tccagttatc	teccaetggg	teceteceae	780
35	cacacaaggg	aattatggga	actgcaattc	aagatgaaat	gtgggtggaa	gcacaacgga	840
	actatatcat	gatcaaagca	ttattgtttt	ctctgataag	ctgatctaga	aagtgctgct	900
	tgtgatcagc	tttggtgacc	atgatcagtg	aaatggttaa	ggaaatctac	agattttgta	960
40	ggtttgtgcc	ttgacagacg	accggtatct	gtttctcttt	tcatgatgaa	gtatctaaca	1020
	aagctctgtc	caaaattttg	aatttctcgt	taaatgcatc	atgattatag	aacagaggtt	1080
	acaatcaatt	attcagtcac	acaatcactc	tcatcagtca	ttaaggtgcr	tacctggtgt	1140
45	tccagttatt	cagtgtggta	taacaaacta	cctggaactt	aatggcttga	aatagtcacc	1200
	attacattat	gattgtccat	tototgoato	aataattagg	atttggcaaa	gagggaatgg	1260
50	tttgtttaca	gacag					1275

<210> 340 <211> 1001 55 <212> ADN <213> Homo sapiens <400> 340

60

10							
10	gaaacaaaaa a	attgcttttt	atatattgat	atttttgcac	ggatttctta	ggattttcta	60
	tgtacatgac c	catgtcatct	gcaaatgaaa	tagttttatt	tctttatcaa	tccggatgaa	120
15	tttattaaaa t	tatcttgcc	taatttccca	aatagggcct	ccatgttgaa	cataagtggt	180
	ggcaagggtg a	atctgttgct	aatctcagtg	gatgatattc	agtgttttac	aatgatcttc	240
	gacagetetg g	gctgttaaat	tatcatagtc	tgtatggcct	aaacaaacaa	aatacttatg	300
20	attatggggg a	aggctgggat	atccaagatc	aagttgctgg	caggtctagc	aacctgccac	360
	tgggaagccc t	gcttcccag	ttttcagatg	gccaccttct	tatagtatct	tcaccaaaga	420
	tagggcagag a	agagcaagca	agctctctac	cttctcatat	aagggcacta	atcccaccat	480
25	gaaggegeea o	stgtcatgac	stgattatgt	cacaaagacc	ccggggcaaa	tattaccact	540
	gtgaggagta o	cagttttagc	atgtgaattt	tggaagaaca	caaacattta	gtacagagtg	600
30	actattaagt a	atgttattaa	ctatggagtt	tttgtaggca	ttttttaaca	cattgagaaa	660
30	gtttcctcta t	tcctacttt	tgttgagaag	tttttatgat	gacaaggcat	tacattttat	720
	ccaatgactt t	tctgtgtgt	attgagatga	ctgatttgtt	ctgccaattt	aaatccattg	780
35	ttgattctct c	ctaggatttt	ttttatttca	gttattaaat	ttttcaacag	gagaattact	840
	gtcttgttct t	tttttttgta	atttctgtcc	ccttactggt	attccatatt	taataaggca	900
	tcataatagt a	actcttcttt	agtttcttaa	agatggtttt	ctttagtttt	taacatattt	960
40	atgtctattt a	agaagtcttt	gttaagtctg	acatctgagc	t		1001
45	<210> 341 <211> 1001 <212> ADN <213> Homo sapiens	1					
	<400> 341						
50							
	ggatttetta g	gattttcta	tgtacatgac	catgtcatct	gcaaatgaaa	tagttttatt	60
55	tctttatcaa t	ccggatgaa	tttattaaaa	ttatcttgcc	taatttccca	aatagggcct	120
55	ccatgttgaa c	ataagtggt	ggcaagggtg	atctgttgct	aatctcagtg	gatgatattc	180

agtgttttac aatgatcttc gacagctctg gctgttaaat tatcatagtc tgtatggcct

aaacaaacaa aatacttatg attatggggg aggctgggat atccaagatc aagttgctgg

10								
10		caggtctagc	aacctgccac	tgggaagccc	tgcttcccag	ttttcagatg	gccaccttct	360
		tatagtatct	tcaccaaaga	tagggcagag	agagcaagca	agctctctac	cttctcatat	420
15		aagggcacta	atcccaccat	gaaggcgcca	ctgtcatgac	ctgattatgt	cacaaagacc	480
		ccggggcaaa	tattaccact	stgaggagta	cagttttagc	atgtgaattt	tggaagaaca	540
		caaacattta	gtacagagtg	actattaagt	atgttattaa	ctatggagtt	tttgtaggca	600
20		ttttttaaca	cattgagaaa	gtttcctcta	ttcctacttt	tgttgagaag	tttttatgat	660
		gacaaggcat	tacattttat	ccaatgactt	ttctgtgtgt	attgagatga	ctgatttgtt	720
		ctgccaattt	aaatccattg	ttgattctct	ctaggatttt	ttttatttca	gttattaaat	780
25		ttttcaacag	gagaattact	gtcttgttct	tttttttgta	atttctgtcc	ccttactggt	840
		attccatatt	taataaggca	tcataatagt	actcttcttt	agtttcttaa	agatggtttt	900
		ctttagtttt	taacatattt	atgtctattt	agaagtottt	gttaagtctg	acatotgago	960
30		tctctcaaag	tttctgctga	tttttttt	cctatgtttg	g		1001
35	<210> 342 <211> 701 <212> ADN <213> Hom							
	<400> 342	σσαριστισ						
	NHUU/ J42							

ggaaaccctg gcctcttgat cacactttcc tggagtttag tcccctctgc aatatgtacc tgggagtcat aagaaatgcc agttacaaaa acttcctgta cagatatcct agcactcaac tggaaaccgg ggagagtcac aattctgtct ttccagccat atgtaactga aatggagatc ttttcaccct gagccagggg tgatgggaaa gggagctggt catggctcaa tgtttagcct tttcttggtc ttcaagattt catagacatt cttaaataca tgtttctttc aatgaagttt gcccttagga caattcacag ctacattagg tacttttaa ataatacttt tgaccatccg tggttatttc attgaagaaa atctatagag cacctcagcc atcattccag aagtgactat cctcctcagt aatggttctt attctaattt taaatatcat tgatgtagaa cattctattt cactattcct tcattttatt rttatgggaa attatataca gttctccaga tttttaaagc cttgctaaca tgttttaagt cacacaaata ttcttctgtg ggaaaatgac agtaatttag tgtgcaacaa ttatatagaa ctatttttca aacttataaa cgaagtgaaa ttctaaataa aatcatttat caaacacaaa aatttgagcc agaataagga a

_	<210> 343 <211> 701 <212> ADN <213> Homo sapiens	
5	<400> 343	
	aatgccagtt acaaaaactt cctgtacaga tatcctagca ctcaactgga aaccggggag	60
10	agtcacaatt ctgtctttcc agccatatgt aactgaaatg gagatctttt caccctgagc	120
	caggggtgat gggaaaggga gctggtcatg gctcaatgtt tagccttttc ttggtcttca	180
	agatttcata gacattetta aatacatgtt tettteaatg aagtttgeee ttaggacaat	240
15	tcacagctac attaggtact ttttaaataa tacttttgac catccgtggt tatttcattg	300
	aagaaaatct atagagcacc tcagccatca ttccagaagt gactatcctc ctcagtaatg	360
20	gttcttattc taattttaaa tatcattgat gtagaacatt ctatttcact attccttcat	420
20	tttattatta tgggaaatta tatacagttc tccagatttt taaagccttg ctaacatgtt	480
	ttaagtcaca caaatattct yctgtgggaa aatgacagta atttagtgtg caacaattat	540
25	atagaactat ttttcaaact tataaacgaa gtgaaattct aaataaaatc atttatcaaa	600
	cacaaaaatt tgagccagaa taaggaatgt aaattacaat ttaaacacag attataaact	660
	atcttacttt taaaatgtta aaattcctaa cttgtttgaa a	701
30		
35	<210> 344 <211> 768 <212> ADN <213> Homo sapiens <400> 344	
40	ctaaaatcta ccattatatq atatccttcc caatacataa attaaaaaaa aaaacactqt	60
	agaggaaaaa gcaatatttt gaaatgatat gcttttcttt gtttgtcttc aaacaattac	120
	atcttcatca taatggttgt attagtctgt ttttacactg ctataaagaa ttgcctgaga	180
45	ctgagtaaca tataaagaaa aaagttttaa ttgaccacag tttcacaggc ttaataggaa	240
	gcatgactgg gaaacttaga atcatggcag aagaggaagg ggaagcaagg atcttcttca	300
	catggtagca ggagagagag cacaaagggg gacacgctac acactttcaa acaacgagat	360
50	ctcctgagaa ctctatcggg agaacagcaa gagggaagtt cacccctatg attcaatcag	420
	ctcccaccgg gcttctcccc tgacacatga ggaattacaa ttggatgaga gatttgggtg	480
	gggacacaca gacaaaccat atcaactgtc atggacttaa acaattgtct ttgaattgtc	540
55	tttttcata cttttatttg catctttyca ctaaaaagat gacacaaagt aatcctagtt	600
	tacatttttt accatgtaat tocatattac tttttcctga aagttactta tttttaaatc	660
60	tcaaagctct tcatacttat ggtttgatct gcacttacaa ctggatctca gaaagattga	720
	gove versever gyrrogarur gravetara veggareta gaadgartga	, _ 0

<210> 345

768

attctcccat cataccaagt tcatgtctct cactcttaat atttgttc

	<211> 701 <212> ADN <213> Homo sapiens						
5	<400> 345						
	aaatgatatg	cttttctttg	tttgtcttca	aacaattaca	tcttcatcat	aatggttgta	60
10	ttagtctgtt	tttacactgc	tataaagaat	tgcctgagac	tgagtaacat	ataaagaaaa	120
	aagttttaat	tgaccacagt	ttcacaggct	taataggaag	catgactggg	aaacttagaa	180
	tcatggcaga	agaggaaggg	gaagcaagga	tcttcttcac	atggtagcag	gagagagagc	240
15	acaaaggggg	acacgctaca	cactttcaaa	caacgagatc	tcctgagaac	tctatcggga	300
	gaacagcaag	agggaagttc	acccctatga	ttcaatcage	teceaceggg	cttctcccct	360
	gacacatgag	gaattacaat	tggatgagag	atttgggtgg	ggacacacag	acaaaccata	420
20	tcaactgtca	tggacttaaa	caattgtctt	tgaattgtct	tttttcatac	ttttatttgc	480
	atcttttcac	taaaaagatg	rcacaaagta	atcctagttt	acattttta	ccatgtaatt	540
25	ccatattact	ttttcctgaa	agttacttat	ttttaaatct	caaagctctt	catacttatg	600
20	gtttgatctg	cacttacaac	tggatctcag	aaagattgaa	ttctcccatc	ataccaagtt	660
	catgtetete	actcttaata	tttgttccca	agacaacaat	t		701
30	<210> 346 <211> 6758 <212> ADN <213> Homo sapie	ns					
35	<400> 346						
40							
45							
50							
55							
60							

agagtgggcc	attgttctga	ctagtctggg	gctccccaaa	gaactggtat	ctgtctcacc	60
tgactcagaa	caatgataag	gctgtagatc	tttttggaag	tctatgaaaa	caggcacaat	120
gaaggcagca	tgttagagat	ataattccac	aggaagatgc	caggtaaaac	aaaagagaaa	180
aagcaggaac	aagctgatta	ggaaatttgt	gatgactaaa	agtatataca	caagcccaaa	240
taagatactc	caaagatgtt	tgataggttc	tagatctcta	gatatactgc	tcaatgaaag	300
tgtccccctg	aacaaagcca	gtctgcaaag	actgggtgag	atgattttt	ttaaatgtca	360
agtctcagca	acaacaaaaa	tgacaagaca	tgcacagaag	caagaaaata	taacacaatc	420
aaagaaaaaa	aagccacaga	aatcagtcct	agagaaaacy	gatctatgag	ctgcctgaca	480
ataattataa	aataactatc	ataaaaatgc	ccagtgagat	ataagaaaac	acagacaact	540
aaatgaatca	ggaaaatgat	gcatgaacaa	aatgggcata	tcaacagaga	tggaaatgac	600
aaagataaac	aaacagaaat	tttggagctt	aaaaatacag	taagtaaagt	gaataattca	660
ctaaaaatat	tcaatagcag	actagatcag	gcagaagaaa	atatcaatga	acttgaagac	720
agatcatcaa	gtcagaggaa	caacagcaac	aaaaaagaat	gaaaaaagtg	aagacagcct	780
aagggactta	ggagtcagta	ccaaggaaat	caatatatac	gttatagatg	tatcagaaga	840
aaaagggaga	aaaatgaaaa	gaaagcatat	ttgaaaaaat	aatagctgaa	gaattctcaa	900
tttcaaagag	agaaattgat	atacaaattc	aagaagttca	aaagactcta	gccataataa	960

atctaaagag	actcacacta	agacatatta	tcatcaaact	gtcaaaatca	aagacaaaga	1020
attgtgaaat	ctgccaagga	aaagtgactc	atcacacata	agagatataa	cataagattg	1080
tcacaggatt	tctgaacaga	cactttgcag	gtcagaggga	agtagggtga	catattccag	1140
gtgctgaaag	aagaaaacac	cctgccaacc	aagaatatgg	catccagaaa	aactttccta	1200
gaagaatgaa	ggagaaattt	agactttccc	aaataaacaa	aagctgaggg	agttcattac	1260
taccagacct	gctctgcaaa	atgctaaaga	gaaaccttca	ggtgaaacaa	aaagatgcta	1320
gacagtaaca	caaaaccact	cataaataac	ttcttcagta	aaaataatac	atcgacaaat	1380
atggtaacct	gtattaatac	tggtgcacaa	attcactttc	aaattttata	aataagaatt	1440
taaaggatga	aaacatctaa	aactaactat	aaatctatat	aatgaatata	caatatataa	1500
aaaaatttgt	gatcacaata	acataaaatg	ggggaggtag	agctgtatag	gggtagagct	1560
tttgtatgca	attgaaatta	ccatcagttt	aaactgaact	gttataacat	taagatgttt	1620
tatgtaattg	caatggtaac	tatattctat	agaatatatt	aaaaagaaaa	agaaaatagg	1680
aagggaatca	aagcatgtcc	ttgtaaaaaa	gtcaatgaaa	gcaaaagaaa	ggcagaaaga	1740
gtgaaaagga	ggaataaaaa	gttataagac	ataaaaaaaa	tgaaaatagt	aatagtcctg	1800
ccatatcagt	aattacatta	aatataaatg	gattaaactc	cctaatcaaa	tcatagattg	1860
gtttgcaaga	actaacttta	caattaaaga	cacacagetg	acggtgaagg	gagaaaaaaa	1920
acttccatgc	agtgaccaaa	atagaggagg	gtggctgtat	tactgtcaga	caaaataaaa	1980
tttaagtcaa	aaactgttac	aagagtaaaa	gaagggcatt	atacagttaa	aaaagtaaat	2040
tegecaggea	gacacaacaa	ttataaatat	caatacataa	aaataagagc	tcctaaatat	2100
atgcagcaaa	cagacataat	tgaagaaaga	aataaatagc	taaaatggta	gaagacttta	2160
atacccccac	ttacaataat	gtataaaata	acaagacaga	atgtaaataa	aaatgtagag	2220
aatttgagca	acactgtaga	ccaattggac	ctaataaata	tactcagaat	aatccatcca	2280
accaaagcag	aaacagaata	tacattcttt	tcaagtacac	atttgacatt	ctctgggatt	2340
aactacatgt	tatgcaacaa	acaagtctca	acaatgttta	aaagtctgat	attacacaaa	2400
gtattgtttc	tgatgacgat	ggaaagaacc	tagaagccaa	tagcaaaaag	aaaatagaaa	2460
atccacacat	atgtggaaat	taaactacat	gcaattaagc	aaagggccaa	agaagaagaa	2520
gaaaaaagaa	aacaccgtga	aacaaataaa	aacaaaaata	cagcatatga	aaatgcatgg	2580
gatgcagcaa	aagtgatggt	aagagaaatg	tttatagtta	taaatgcaaa	ccttaaaaaa	2640
gaagaaagaa	aacaaaaata	ctcaaattaa	caactttaca	agtcaagaag	gtagagaaaa	2700
aagaacaaac	tataccaaaa	gctaacacag	aaagaaaaga	ataaagatta	aaaacaaaaa	2760
caatttaaaa	aatagcagaa	ctaaaagttg	gttctttgaa	aagatcaaca	gaattgacaa	2820

tttcttagct acattaagaa aaatacaaga ctcaaataac acaaatcagt ggtgaaaggg	2880
ggtattataa ctgatgccac agaaatacaa aaggatcata agggactact acaaattgta	2940
tgacaacaaa ttgagtaacc taggatacct tgataaattc caaaaaatgc acaatatact	3000
gaatcatgaa tacatgaccc ttataaatca agactaaatc ataaagaaat agaaaatatc	3060
aacagaccaa taattagtaa ggagaataaa ctagtaatca gaaacctccc aacaaagaaa	3120
agettaggae caaatggett taetggagaa ttetaccaae cattaaaagg ataattaaga	3180
ccaatcttcc tcaaactttt aaaacaaatg ttaaagagga ggaaactctt tcaatctcat	3240
tcataaggtc agcattatcc ttataccaaa accagacaaa gacactatta aaaaaactta	3300
gaccaatatc cctgatgaat ttcgatgcaa gaatcctcag caaaatacta tcaaacaatt	3360
caacagcata cttaaatgat tatatgctgt aatcaagatg catttattct ttgaatgcaa	3420
gtgtaattca acacataaaa ttcaatcaat gtaatacacc acattaacag aatgagagac	3480
aaaaaccaca taattatatc aactgatgca gaaaaaaatc tgacacagtt caacaccttt	3540
tgtgataaaa acactcaaca aactaggaaa agaaggaaac aactttaaca catcatatgc	3600
tcactgatga aaatctacaa gttctttata aaagatcagg aacaagacaa taatctgcat	3660
tgttaccact tctattatac gtagtattgg aagttctaat cagagcaaat taggcaagaa	3720
aaataaataa aaggcatcca aagtggaaag gaagtaaaat aatctctttt tacagatgat	3780
ataaccttag aattagaaaa tcctaaaaat ttcacatacc aagaaaaagc gtgttaaaat	3840
taataagtaa attcagcaag ttgactgata caaaatcaac acagaaagct cagttgtgtg	3900
tctgtgtgtc tcatacacta acaatgaaca atctgaaaag gagattaaga aaacaatttc	3960
atttacaata gcatcaggaa aaaaaataaa tacttaggaa caaacttaac caaggggttg	4020
gaatteetgt atactgaaaa etacaaatat tgeeaaaaga aaataaagga gacacaaata	4080
agtgatatgt ttttaatatg tccacccaaa gtgatcttca gattcaatga aatccctatc	4140
aaagttataa tggcattttt ctgcaggaat gtaaaaaattt atcctaaaat tcatatagaa	4200
tetetaggta eeetgaggge caaacaattt tgagaaaaaa aaaagaacaa aattggagga	4260
ctcacacttc cagattacaa gaatatttac aaattacata tttacaaaaa aaattacaaa	4320
gccacaataa tcaaaacaac gtgggatttg cataaaggca gatatataga ccagtggaat	4380
agtattgaga gtccagaaat aaacccttag gtatatcatc aaatgacatt tgacaaagtg	4440
ctggtaccac tcaatgggaa tgggacaatt tgttcaacaa atagagcaaa gaaaactaaa	4500
catccatgtg caaaagaata aatctggacc cttatattac actatagaca aaattaattc	4560
aaaatggatt aaagatctaa atgaaagatc taaaactata aaactcctag gagaaaacag	4620
aggaaaaatt tcatgctaat ttggcaacat tttgtgatgt gacaccaaaa gcagagtcaa	4680
taaaagcaaa aattagacag atggaaatcc atcatagttt ataacttttg gtcattaaag	4740

aacagtcaac	agagtgaaaa	ggcaatctat	aaaatggggg	aaaaacagaa	aatatgtgca	4800
aatcacagat	atctgatagg	ggattcatat	ccagaataaa	taaagaactc	ctatatctca	4860
acaacaaaaa	atctaatcca	atcaaaaaat	gggccaaggg	agtgaagata	catttctcca	4920
aagatgttat	acaaatggcc	aggaagcata	tgaaaagatg	ttcaatgtca	ctaatcatca	4980
gagaaatgca	aatcaaaacc	acagtgcaat	atcacttcac	attcattaga	atggcttctg	5040
tcatgaacaa	cagaaaataa	caagtgttga	tgagtgtgta	gagaaattga	gacctttata	5100
taattttggc	agaaattcaa	aatggtgcaa	ccactataaa	aaatgatatg	gaggtcctca	5160
aaaaattaaa	aatagaacta	ccatatgatc	cacaatccca	cctctgggta	catattcaaa	5220
agaattgaaa	gcagggtgtt	gaagatatat	ttgcacactc	tttatagcag	cactgttcac	5280
aatagccaag	agatgaaagt	aacccaaagg	ttcatgaagc	aatgaataaa	caaaatatat	5340
tatgtacata	gagtaaaata	ctgtgcagct	ttaaagagaa	aggaaatctt	atactatgct	5400
acaacatgaa	tggaacttta	gggcattata	gtaagtaaaa	taagccagtt	ttttttaaag	5460
gacaaataaa	cactatacga	ttctacttaa	gtatttaatg	ttgtcaaatt	tataaatata	5520
gaatgtagaa	tagtggttac	cctgagctgg	gggaaagggg	caaaggggaa	ttgttatttt	5580
aatgggtata	gtttcagttc	tgcaaaatga	aaaggttctg	gaaatctgtt	tcacaatgtt	5640
gtaaatataa	ttactctgaa	attgtacact	taaaaatggt	taagatgaca	aatagagttg	5700
tgatgtcttc	ttttgttatt	atatagaaaa	actttttcat	atgataatag	tctttgtttt	5760
taagctgact	ttgctgatat	taatataatc	cttccatttt	tctttaaaat	gctatatgct	5820
ttcacataat	tttgctttac	gttgatgtat	ttatacataa	ggtgggtttc	ttatagatac	5880
cacgttgtgt	gtctttttta	tctaagttga	tagacttgcc	ttttgttagg	gtatttaaat	5940
aatttatatt	taatgtaatt	attgatatag	ttgagtgtgt	tgatttttgt	tttctatttg	6000
ctccatctgt	tgttggttct	cattattcct	ctgtttctac	cttcttttgt	actaattatt	6060
atattttatt	atttttcatc	tcaactgttg	gcttattagc	cacattgctt	ttaaaatttt	6120
taatgattgc	tctagggttt	ataataaaca	aaatgttagc	attttctacc	atcaaatatt	6180
tttacactat	tcatgtatac	ttcaatttct	ttcttcccat	cctttgaact	atatcttcat	6240
acattttact	ctacatttgt	tataactcag	tgctttgaaa	gtcaattatt	tttgtctttg	6300
acagtcaatg	atttttaaag	agtttaacag	tgaaaaaaaa	tggctttcat	ctttttccat	6360
tagatttcat	actccttctg	cctgaagaat	ttcttttaat	agaccttgta	ctgcgggtct	6420
caggcaagaa	atteteteag	cctttgttgg	tttgaaaaac	tgcttattac	acctttgttt	6480
ttgaaagata	ttttcactag	gtatagaagt	ctgggttgac	agttctcatt	gtttgtcaca	6540
gcatttttaa	gatgcccatt	caattgtctt	gtcttgtata	attttggatt	agtctggtgt	6600

5							
	atttettace tt	tgttcctc	tctgtgcaat	gcttcaacca	tcccacttca	ggctgccttt	6660
	aagatgtttt ct	tttccctt	aatctttagt	ttttagctgg	ttgacagtga	cgcatctaag	6720
10	tgtagtgtat ga	iggttgctt	ttattgtcac	tgttgttg			6758
15	<210> 347 <211> 6758 <212> ADN <213> Homo sapiens						
	<400> 347						
20							

agagtgggcc	attgttctga	ctagtctggg	gctccccaaa	gaactggtat	ctgtctcacc	60
tgactcagaa	caatgataag	gctgtagatc	tttttggaag	tctatgaaaa	caggcacaat	120
gaaggcagca	tgttagagat	ataattccac	aggaagatgc	caggtaaaac	aaaagagaaa	180
aagcaggaac	aagctgatta	ggaaatttgt	gatgactaaa	agtatataca	caagcccaaa	240
taagatactc	caaagatgtt	tgataggttc	tagatotota	gatatactgc	tcaatgaaag	300
tgtccccctg	aacaaagcca	gtctgcaaag	actgggtgag	atgattttt	ttaaatgtca	360
agtctcagca	acaacaaaaa	tgacaagaca	tgcacagaag	caagaaaata	taacacaatc	420
aaagaaaaaa	aagccacaga	aatcagtcct	agagaaaact	gatctatgag	ctgcctgama	480
ataattataa	aataactatc	ataaaaatgc	ccagtgagat	ataagaaaac	acagacaact	540
aaatgaatca	ggaaaatgat	gcatgaacaa	aatgggcata	tcaacagaga	tggaaatgac	600
aaagataaac	aaacagaaat	tttggagctt	aaaaatacag	taagtaaagt	gaataattca	660
ctaaaaatat	tcaatagcag	actagatcag	gcagaagaaa	atatcaatga	acttgaagac	720
agatcatcaa	gtcagaggaa	caacagcaac	aaaaaagaat	gaaaaaagtg	aagacagcct	780
aagggactta	ggagtcagta	ccaaggaaat	caatatatac	gttatagatg	tatcagaaga	840
aaaagggaga	aaaatgaaaa	gaaagcatat	ttgaaaaaat	aatagctgaa	gaattctcaa	900
tttcaaagag	agaaattgat	atacaaattc	aagaagttca	aaagactcta	gccataataa	960
atctaaagag	actcacacta	agacatatta	tcatcaaact	gtcaaaatca	aagacaaaga	1020
attgtgaaat	ctgccaagga	aaagtgactc	atcacacata	agagatataa	cataagattg	1080
tcacaggatt	tctgaacaga	cactttgcag	gtcagaggga	agtagggtga	catattccag	1140
gtgctgaaag	aagaaaacac	cctgccaacc	aagaatatgg	catccagaaa	aactttccta	1200
gaagaatgaa	ggagaaattt	agactttccc	aaataaacaa	aagctgaggg	agttcattac	1260
taccagacct	gctctgcaaa	atgctaaaga	gaaaccttca	ggtgaaacaa	aaagatgcta	1320
gacagtaaca	caaaaccact	cataaataac	ttcttcagta	aaaataatac	atcgacaaat	1380
atggtaacct	gtattaatac	tggtgcacaa	attcactttc	aaattttata	aataagaatt	1440
taaaggatga	aaacatctaa	aactaactat	aaatctatat	aatgaatata	caatatataa	1500

aaaaatttgt	gatcacaata	acataaaatg	ggggaggtag	agctgtatag	gggtagagct	1560
tttgtatgca	attgaaatta	ccatcagttt	aaactgaact	gttataacat	taagatgttt	1620
tatgtaattg	caatggtaac	tatattctat	agaatatatt	aaaaagaaaa	agaaaatagg	1680
aagggaatca	aagcatgtcc	ttgtaaaaaa	gtcaatgaaa	gcaaaagaaa	ggcagaaaga	1740
gtgaaaagga	ggaataaaaa	gttataagac	ataaaaaaaa	tgaaaatagt	aatagtcctg	1800
ccatatcagt	aattacatta	aatataaatg	gattaaactc	cctaatcaaa	tcatagattg	1860
gtttgcaaga	actaacttta	caattaaaga	cacacagetg	acggtgaagg	gagaaaaaaa	1920
acttccatgc	agtgaccaaa	atagaggagg	gtggctgtat	tactgtcaga	caaaataaaa	1980
tttaagtcaa	aaactgttac	aagagtaaaa	gaagggcatt	atacagttaa	aaaagtaaat	2040
tegecaggea	gacacaacaa	ttataaatat	caatacataa	aaataagagc	tcctaaatat	2100
atgcagcaaa	cagacataat	tgaagaaaga	aataaatagc	taaaatggta	gaagacttta	2160
atacccccac	ttacaataat	gtataaaata	acaagacaga	atgtaaataa	aaatgtagag	2220
aatttgagca	acactgtaga	ccaattggac	ctaataaata	tactcagaat	aatccatcca	2280
accaaagcag	aaacagaata	tacattcttt	tcaagtacac	atttgacatt	ctctgggatt	2340
aactacatgt	tatgcaacaa	acaagtctca	acaatgttta	aaagtctgat	attacacaaa	2400
gtattgtttc	tgatgacgat	ggaaagaacc	tagaagccaa	tagcaaaaag	aaaatagaaa	2460
atccacacat	atgtggaaat	taaactacat	gcaattaagc	aaagggccaa	agaagaagaa	2520
gaaaaaagaa	aacaccgtga	aacaaataaa	aacaaaaata	cagcatatga	aaatgcatgg	2580
gatgcagcaa	aagtgatggt	aagagaaatg	tttatagtta	taaatgcaaa	ccttaaaaaa	2640
gaagaaagaa	aacaaaaata	ctcaaattaa	caactttaca	agtcaagaag	gtagagaaaa	2700
aagaacaaac	tataccaaaa	gctaacacag	aaagaaaaga	ataaagatta	aaaacaaaaa	2760
caatttaaaa	aatagcagaa	ctaaaagttg	gttctttgaa	aagatcaaca	gaattgacaa	2820
tttcttagct	acattaagaa	aaatacaaga	ctcaaataac	acaaatcagt	ggtgaaaggg	2880
ggtattataa	ctgatgccac	agaaatacaa	aaggatcata	agggactact	acaaattgta	2940
tgacaacaaa	ttgagtaacc	taggatacct	tgataaattc	caaaaaatgc	acaatatact	3000
gaatcatgaa	tacatgaccc	ttataaatca	agactaaatc	ataaagaaat	agaaaatatc	3060
aacagaccaa	taattagtaa	ggagaataaa	ctagtaatca	gaaacctccc	aacaaagaaa	3120
agcttaggac	caaatggctt	tactggagaa	ttctaccaac	cattaaaagg	ataattaaga	3180
ccaatcttcc	tcaaactttt	aaaacaaatg	ttaaagagga	ggaaactctt	tcaatctcat	3240
tcataaggtc	agcattatcc	ttataccaaa	accagacaaa	gacactatta	aaaaaactta	3300
gaccaatatc	cctgatgaat	ttcgatgcaa	gaatcctcag	caaaatacta	tcaaacaatt	3360
caacagcata	cttaaatgat	tatatgctgt	aatcaagatg	catttattct	ttgaatgcaa	3420

gtgtaattca	acacataaaa	ttcaatcaat	gtaatacacc	acattaacag	aatgagagac	3480
aaaaaccaca	taattatatc	aactgatgca	gaaaaaaatc	tgacacagtt	caacaccttt	3540
tgtgataaaa	acactcaaca	aactaggaaa	agaaggaaac	aactttaaca	catcatatgc	3600
tcactgatga	aaatctacaa	gttctttata	aaagatcagg	aacaagacaa	taatctgcat	3660
tgttaccact	tctattatac	gtagtattgg	aagttctaat	cagagcaaat	taggcaagaa	3720
aaataaataa	aaggcatcca	aagtggaaag	gaagtaaaat	aatctctttt	tacagatgat	3780
ataaccttag	aattagaaaa	tcctaaaaat	ttcacatacc	aagaaaaagc	gtgttaaaat	3840
taataagtaa	attcagcaag	ttgactgata	caaaatcaac	acagaaagct	cagttgtgtg	3900
tctgtgtgtc	tcatacacta	acaatgaaca	atctgaaaag	gagattaaga	aaacaatttc	3960
atttacaata	gcatcaggaa	aaaaaataaa	tacttaggaa	caaacttaac	caaggggttg	4020
gaattcctgt	atactgaaaa	ctacaaatat	tgccaaaaga	aaataaagga	gacacaaata	4080
agtgatatgt	ttttaatatg	tccacccaaa	gtgatcttca	gattcaatga	aatccctatc	4140
aaagttataa	tggcattttt	ctgcaggaat	gtaaaaattt	atcctaaaat	tcatatagaa	4200
tctctaggta	ccctgagggc	caaacaattt	tgagaaaaaa	aaaagaacaa	aattggagga	4260
ctcacacttc	cagattacaa	gaatatttac	aaattacata	tttacaaaaa	aaattacaaa	4320
gccacaataa	tcaaaacaac	gtgggatttg	cataaaggca	gatatataga	ccagtggaat	4380
agtattgaga	gtccagaaat	aaacccttag	gtatatcatc	aaatgacatt	tgacaaagtg	4440
ctggtaccac	tcaatgggaa	tgggacaatt	tgttcaacaa	atagagcaaa	gaaaactaaa	4500
catccatgtg	caaaagaata	aatctggacc	cttatattac	actatagaca	aaattaattc	4560
aaaatggatt	aaagatctaa	atgaaagatc	taaaactata	aaactcctag	gagaaaacag	4620
aggaaaaatt	tcatgctaat	ttggcaacat	tttgtgatgt	gacaccaaaa	gcagagtcaa	4680
taaaagcaaa	aattagacag	atggaaatcc	atcatagttt	ataacttttg	gtcattaaag	4740
aacagtcaac	agagtgaaaa	ggcaatctat	aaaatggggg	aaaaacagaa	aatatgtgca	4800
aatcacagat	atctgatagg	ggattcatat	ccagaataaa	taaagaactc	ctatatctca	4860
acaacaaaaa	atctaatcca	atcaaaaaat	gggccaaggg	agtgaagata	catttctcca	4920
aagatgttat	acaaatggcc	aggaagcata	tgaaaagatg	ttcaatgtca	ctaatcatca	4980
gagaaatgca	aatcaaaacc	acagtgcaat	atcacttcac	attcattaga	atggcttctg	5040
tcatgaacaa	cagaaaataa	caagtgttga	tgagtgtgta	gagaaattga	gacctttata	5100
taattttggc	agaaattcaa	aatggtgcaa	ccactataaa	aaatgatatg	gaggtcctca	5160
aaaaattaaa	aatagaacta	ccatatgatc	cacaatccca	cctctgggta	catattcaaa	5220
agaattgaaa	gcagggtgtt	gaagatatat	ttgcacactc	tttatagcag	cactgttcac	5280

5	aatagccaag	agatgaaagt	aacccaaagg	ttcatgaagc	aatgaataaa	caaaatatat	5340
	tatgtacata	gagtaaaata	ctgtgcagct	ttaaagagaa	aggaaatctt	atactatgct	5400
	acaacatgaa	tggaacttta	gggcattata	gtaagtaaaa	taagccagtt	tttttaaag	5460
10	gacaaataaa	cactatacga	ttctacttaa	gtatttaatg	ttgtcaaatt	tataaatata	5520
	gaatgtagaa	tagtggttac	cctgagctgg	gggaaagggg	caaaggggaa	ttgttatttt	5580
	aatgggtata	gtttcagttc	tgcaaaatga	aaaggttctg	gaaatctgtt	tcacaatgtt	5640
15	gtaaatataa	ttactctgaa	attgtacact	taaaaatggt	taagatgaca	aatagagttg	5700
	tgatgtcttc	ttttgttatt	atatagaaaa	actttttcat	atgataatag	tctttgtttt	5760
	taagctgact	ttgctgatat	taatataatc	cttccatttt	tctttaaaat	gctatatgct	5820
20	ttcacataat	tttgctttac	gttgatgtat	ttatacataa	ggtgggtttc	ttatagatac	5880
	cacgttgtgt	gtcttttta	tctaagttga	tagacttgcc	ttttgttagg	gtatttaaat	5940
25	aatttatatt	taatgtaatt	attgatatag	ttgagtgtgt	tgatttttgt	tttctatttg	6000
20	ctccatctgt	tgttggttct	cattattcct	ctgtttctac	cttcttttgt	actaattatt	6060
	atattttatt	atttttcatc	tcaactgttg	gcttattagc	cacattgctt	ttaaaatttt	6120
30	taatgattgc	tctagggttt	ataataaaca	aaatgttagc	attttctacc	atcaaatatt	6180
	tttacactat	tcatgtatac	ttcaatttct	ttcttcccat	cctttgaact	atatcttcat	6240
	acattttact	ctacatttgt	tataactcag	tgctttgaaa	gtcaattatt	tttgtctttg	6300
35	acagtcaatg	atttttaaag	agtttaacag	tgaaaaaaaa	tggctttcat	ctttttccat	6360
	tagatttcat	actecttctg	cctgaagaat	ttcttttaat	agaccttgta	ctgcgggtct	6420
	caggcaagaa	attctctcag	cctttgttgg	tttgaaaaac	tgcttattac	acctttgttt	6480
40	ttgaaagata	ttttcactag	gtatagaagt	ctgggttgac	agttctcatt	gtttgtcaca	6540
	gcattttaa	gatgcccatt	caattgtctt	gtcttgtata	attttggatt	agtctggtgt	6600
45	atttcttacc	tttgttcctc	tctgtgcaat	gcttcaacca	teccaettea	ggctgccttt	6660
45	aagatgtttt	cttttccctt	aatctttagt	ttttagctgg	ttgacagtga	cgcatctaag	6720
	tgtagtgtat	gaggttgctt	ttattgtcac	tgttgttg			6758

50

<210> 348 <211> 501

<212> ADN

<213> Homo sapiens

55

<400> 348

60

5	gacc	atgtta	tgacatttta	gtgcttgcta	agcagtaaat	actgacttac	tttcctgcta	60
	cact	cttcag	agcagaaaga	gaaatctaca	aaaagggcaa	tgtagttggg	atccaccaca	120
	gcct	tgagac	tgggccatgt	ttctacagct	tacccacatt	ttacccccac	tttctctgag	180
10	aaac	aatgca	aactggagaa	caaggtcaga	gaagttatct	tggatggtag	aagagaagaa	240
	agga	gaagaa	rggataagca	gaaaatcaaa	aagggcataa	aaaaattact	ggggaaaata	300
15	attc	ttagtc	actcaccatt	tcttatgttt	gtgaaaacag	aaacgaggag	caagtgttgt	360
	tgta	agaatt	gttcttgccc	ctcccctcc	accacccaca	tctgtcaagc	tatccctgtt	420
	tcac	tgtttc	ctctgcactc	tctattaact	tctttgtcct	cctcttttct	tttcctacag	480
20	caaa	gacttt	ttgtcatgtt	t				501
25	<210> 349 <211> 501 <212> ADN <213> Hom		as					
	<400> 349							
30								
	tgact	ttactt	tcctgctaca	ctcttcagag	cagaaagaga	aatctacaaa	aagggcaatg	60
25	tagtt	tgggat	ccaccacagc	cttgagactg	ggccatgttt	ctacagctta	cccacatttt	120
35	accc	ccactt	tctctgagaa	acaatgcaaa	ctggagaaca	aggtcagaga	agttatcttg	180
	gatgo	gtagaa	gagaagaaag	gagaagaaag	gataagcaga	aaatcaaaaa	gggcataaaa	240
40	aaatt	tactgg	rgaaaataat	tcttagtcac	tcaccatttc	ttatgtttgt	gaaaacagaa	300
	acgaç	ggagca	agtgttgttg	taagaattgt	tettgeeeet	cccctccac	cacccacatc	360
	tgtc	aagcta	tccctgtttc	actgtttcct	ctgcactctc	tattaacttc	tttgtcctcc	420
45	tcttt	ttattt	toctacagca	aagacttttt	gtcatgtttt	gtttcttttt	ctattgtttc	480
	tttc	cctttt	ctaatccttg	a				501
50	<210> 350 <211> 1148 <212> ADN <213> Hom		ns					
55	<400> 350							
60								

5	tatgagattt	aatgttaaga	aataaaatgt	aggatctaaa	acgtaatcta	tagcataatc	60
· ·	tcaaaaatgg	tttagaaatg	acataataat	acagacattt	gtgggtggta	ggattatgca	120
	tatttttata	tatttttaaa	tatattttc	aaaagcttcc	tataaagaat	gtaattcttt	180
10	cccaattcca	aatctagctt	aaacataatt	ttacaaaaat	tattctctca	gaatgtaaac	240
	tagtaccacc	tctatggaaa	acattatgga	gatttcctaa	agagttaaaa	gtagatctac	300
	catttgatcc	agcaatctta	atactgggta	tctacccgga	ggaaaagaag	tcattgtatg	360
15	aaaaagacac	ttgtacacat	atgtttacag	gaccacaatt	cacaaatgca	aagatgcaga	420
	accaacctaa	gtggccastg	actaatgaga	ggataaagaa	gatgtggcat	atatatatca	480
	gggactacta	ctcagccatt	acaaggaaca	aaataatgtc	ttttgcaaca	acttggatag	540
20	agctggaggc	cattattcta	agtaaagtaa	ttcaggaatt	ggaaaaccaa	aaaccgtatg	600
	ttetetetta	taagtgggaa	ctaagttagg	aataagcaaa	ggcacacaga	gggacatatt	660
25	ggactttaga	gactcacgag	gaggagggta	ataggggact	agggattaaa	agaaaaacta	720
	gacattaggt	acaaggtacc	ctacttaagt	gcactaaaat	ctcagaattc	accactacgt	780
	aattcaacta	agtaacaaga	aaccacttgt	accccaaaag	ctactgaaat	aaaaattatt	840
30	ctctcaaaaa	ttttaagccc	taaacttcag	ttcctattgt	ttatatttac	taagaaaaac	900
	aacagaaaac	actgttttaa	aaatggtgga	ttttttaag	gttaaaggta	tataagacag	960
	ctgcctaagg	aaacgcagat	acccctgtac	cttgttgttg	ttgttgtttt	tcactttttt	1020
35	aaaaaacata	gagatgggat	ctccttatgc	tgeecagget	tgtctcaaac	tectgagete	1080
	aagcaatcct	ctgacctcag	actctcaaag	ttttgggact	acaggcgaca	gtcaccatgc	1140
40	cagccaat						1148
40							

<210> 351 <211> 1148 45 <212> ADN <213> Homo sapiens

<400> 351

50

55

60

5							
5	tatgagattt	aatgttaaga	aataaaatgt	aggatctaaa	acgtaatcta	tagcataatc	60
	tcaaaaatgg	tttagaaatg	acataataat	acagacattt	gtgggtggta	ggattatgca	120
10	tatttttata	tatttttaaa	tatattttc	aaaagcttcc	tataaagaat	gtaattcttt	180
10	cccaattcca	aatctagctt	aaacataatt	ttacaaaaat	tattctctca	gaatgtaaac	240
	tagtaccacc	tctatggaaa	acattatgga	gatttcctaa	agagttaaaa	gtagatctac	300
15	catttgatcc	agcaatctta	atactgggta	tctacccgga	ggaaaagaag	tcattgtatg	360
	aaaaagacac	ttgtacacat	atgtttacag	gaccacaatt	cacaaatgca	aagatgcaga	420
	accaacctaa	gtggccactg	actaatgaga	ggataaagaa	gatgtggcat	atatayatca	480
20	gggactacta	ctcagccatt	acaaggaaca	aaataatgtc	ttttgcaaca	acttggatag	540
	agctggaggc	cattattcta	agtaaagtaa	ttcaggaatt	ggaaaaccaa	aaaccgtatg	600
	ttctctctta	taagtgggaa	ctaagttagg	aataagcaaa	ggcacacaga	gggacatatt	660
25	ggactttaga	gactcacgag	gaggagggta	ataggggact	agggattaaa	agaaaaacta	720
	gacattaggt	acaaggtacc	ctacttaagt	gcactaaaat	ctcagaattc	accactacgt	780
	aattcaacta	agtaacaaga	aaccacttgt	accccaaaag	ctactgaaat	aaaaattatt	840
30	ctctcaaaaa	ttttaagccc	taaacttcag	ttcctattgt	ttatatttac	taagaaaaac	900
	aacagaaaac	actgttttaa	aaatggtgga	tttttttaag	gttaaaggta	tataagacag	960
25	ctgcctaagg	aaacgcagat	acccctgtac	cttgttgttg	ttgttgtttt	tcacttttt	1020
35	aaaaaacata	gagatgggat	ctccttatgc	tgcccaggct	tgtctcaaac	tcctgagctc	1080
	aannaatnot	ctaacctcaa	actotoaaan	ttttgggact	acaggegaca	otcaccatoc	1140
40	_	ccyaccccay	accecaaay	ccccgggacc	acayycyaca	gecaccaege	1148
. •	cagccaat						1140
45	<210> 352						
	<211> 1148 <212> ADN						
	<213> Homo sapier	ns					

<400> 352

5		
Ü	tatgagattt aatgttaaga aataaaatgt aggatctaaa acgtaatcta tagcataatc	60
	tcaaaaatgg tttagaaatg acataataat acagacattt gtgggtggta ggattatgca	120
10	tatttttata tatttttaaa tatatttttc aaaagcttcc tataaagaat gtaattcttt	180
	cccaattcca aatctagctt aaacataatt ttacaaaaat tattctctca gaatgtaaac	240
	tagtaccacc tctatggaaa acattatgga gatttcctaa agagttaaaa gtagatctac	300
15	catttgatcc agcaatctta atactgggta tctacccgga ggaaaagaag tcattgtatg	360
	aaaaagacac ttgtacacat atgtttacag gaccacaatt cacaaatgca aagatgcaga	420
	accaacctaa gtggccactg actaatgaga ggataaagaa gatgtggcat atatayatca	480
20	gggactacta ctcagccatt acaaggaaca aaataatgtc ttttgcaaca acttggatag	540
	agctggaggc cattattcta agtaaagtaa ttcaggaatt ggaaaaccaa aaaccgtatg	600
0.5	ttotototta taagtgggaa otaagttagg aataagcaaa ggcacacaga gggacatatt	660
25	ggactttaga gactcacgag gaggagggta ataggggact agggattaaa agaaaaacta	720
	gacattaggt acaaggtacc ctacttaagt gcactaaaat ctcagaattc accactacgt	780
30	aattcaacta agtaacaaga aaccacttgt accccaaaag ctactgaaat aaaaattatt	840
	ctctcaaaaa ttttaagccc taaacttcag ttcctattgt ttatatttac taagaaaaac	900
	aacagaaaac actgttttaa aaatggtgga tttttttaag gttaaaggta tataagacag	960
35	ctgcctaagg aaacgcagat acccctgtac cttgttgttg ttgttgtttt tcacttttt	1020
	aaaaaacata gagatgggat ctccttatgc tgcccaggct tgtctcaaac tcctgagctc	1080
	aagcaatcct ctgacctcag actctcaaag ttttgggact acaggcgaca gtcaccatgc	1140
40	cagccaat	1148
45	<210> 353 <211> 1148 <212> ADN <213> Homo sapiens	
50	<400> 353	
	tatgagattt aatgttaaga aataaaatgt aggatctaaa acgtaatcta tagcataatc	60
55	tcaaaaatgg tttagaaatg acataataat acagacattt gtgggtggta ggattatgca	120
60		

5	tatttttata	tatttttaaa	tatatttttc	aaaagcttcc	tataaagaat	gtaattcttt	180
	cccaattcca	aatctagctt	aaacataatt	ttacaaaaat	tattctctca	gaatgtaaac	240
	tagtaccacc	tctatggaaa	acattatgga	gatttcctaa	agagttaaaa	gtagatctac	300
10	catttgatcc	agcaatctta	atactgggta	tctacccgga	ggaaaagaag	tcattgtatg	360
	aaaaagacac	ttgtacacat	atgtttacag	gaccacaatt	cacaaatgca	aagatgcaga	420
	accaacctaa	gtggccactg	actaatgaga	ggataaagaa	gatgtggcat	atatatatca	480
15	gggactactr	ctcagccatt	acaaggaaca	aaataatgtc	ttttgcaaca	acttggatag	540
	agctggaggc	cattattcta	agtaaagtaa	ttcaggaatt	ggaaaaccaa	aaaccgtatg	600
20	ttetetetta	taagtgggaa	ctaagttagg	aataagcaaa	ggcacacaga	gggacatatt	660
20	ggactttaga	gactcacgag	gaggagggta	ataggggact	agggattaaa	agaaaaacta	720
	gacattaggt	acaaggtacc	ctacttaagt	gcactaaaat	ctcagaattc	accactacgt	780
25	aattcaacta	agtaacaaga	aaccacttgt	accccaaaag	ctactgaaat	aaaaattatt	840
	ctctcaaaaa	ttttaagccc	taaacttcag	ttcctattgt	ttatatttac	taagaaaaac	900
	aacagaaaac	actgttttaa	aaatggtgga	ttttttaag	gttaaaggta	tataagacag	960
30	ctgcctaagg	aaacgcagat	acccctgtac	cttgttgttg	ttgttgtttt	tcacttttt	1020
	aaaaaacata	gagatgggat	ctccttatgc	tgcccaggct	tgtctcaaac	tectgagete	1080
	aagcaatcct	ctgacctcag	actctcaaag	ttttgggact	acaggcgaca	gtcaccatgc	1140
35	cagccaat						1148

<210> 354
40 <211> 611
<212> ADN
<213> Homo sapiens

<400> 354

5		
	caaaacctca accttccaga taagtctaag ggtgagaact tcacacaaga tgaataagaa	60
	ccaatttctt ccagggcgat gttgaacctg gaaatgaaag ccaatctctc ttggaaggcc	120
10	tggtttgtag aaatgtcagt ctttgtttca agctgtggga gaatgagaag caagacttta	180
	gggaaagagg aataaaatag atgtgcagaa ataacagagt gagaaagtct tcagggtgtc	240
	gctagcccta attgcaggca tccctgaatc ctagaccttg gattgcaaga gactccttaa	300
15	tatcttccca tgtccacatt tgcttcacat agtttgaatg tggcttctat tatatacaga	360
	tacaagattc aaatccaacc tctaygatga ctggtcttgt gaataagcag aagaggcact	420
00	aacaatatga cgtgagggat tcagggaaga gcactttctt gagcacatat cttccctggt	480
20	ctgccagctg tagtttatga aattccacaa tgaggatgaa atggaatcac catttacaga	540
	gtacteteca gatgtetaae eetaagetag gtacetteaa aatattatet agtttagata	600
25	atcaaccctt t	611
30	<210> 355 <211> 601 <212> ADN <213> Homo sapiens	
	<400> 355	
35		
	ttctctagtc caaagggttg attatctaaa ctagataata ttttgaaggt acctagctta	60
	gggttagaca tctggagagt actctgtaaa tggtgattcc atttcatcct cattgtggaa	120
40	tttcataaac tacagctggc agaccaggga agatatgtgc tcaagaaagt gctcttccct	180
	gaatccctca cgtcatattg ttagtgcctc ttctgcttat tcacaagacc agtcatcata	240
4.5	gaggttggat ttgaatcttg tatctgtata taatagaagc cacattcaaa ctatgtgaag	300
45	yaaatgtgga catgggaaga tattaaggag totottgcaa tocaaggtot aggattcagg	360
	gatgcctgca attagggcta gcgacaccct gaagactttc tcactctgtt atttctgcac	420
50	atctatttta ttcctctttc cctaaagtct tgcttctcat tctcccacag cttgaaacaa	480
	agactgacat ttctacaaac caggccttcc aagagagatt ggctttcatt tccaggttca	540
	acategeeet ggaagaaatt ggttettatt eatettgtgt gaagttetea eeettagaet	600
55	t	601
60	<210> 356 <211> 527 <212> ADN <213> Homo sapiens <400> 356	

getetagaat atggcattee agaagtggga tgetacaaat agteteattg agagteaact tgeacaatgt ategteetae cettacatea attetegaa caacteteet ttgeactee cettacatgta catgeataat aaatteetga aactettatg aagteatgga ataactteet tettatgtt cetatagtat catgaataat aaatteegae aactettatg aagteatgga ataactteet tettatagtee ceaaggaatg tettacageaatg tettacaetga teatagaatea teatagaatea teatagaatea geaageaag attgggaaaaa gtecaaggaa agtgaggtea geageegaa gecaceeeg teattagaa aageteaatg atggtaggt togtteegat geacaetge etoacagagt taaaaatgatg tgmaaggaac tgtteaatgg aaatttagaa atteeettt teeteaattt tagtgta 20	
cctatagtta catgoataat aaattotgac aactottatg aagtoatgga ataacttot tottatgttt octatcaatg toattagooc titatottgt tigagittoc atcagoaatg titteaagte ccaagateat toatgtatee acaageaatg atacgecaga tittgageaaa 15 taatactgaa tactatotta titteactge catgateaag geagtigga tigegeaaa gtocaagaga agtgaggtea geagetgeaa gecaceteeg toatitagaa aagetteatg atgatgtgt togittegat gigacaetgt oteacaagagt taaaatgatg tigaaaggaac tigiteaatgg aaattiagaa attictotti titoteaatti tagigta 20 tigiteaatgg aaattiagaa atticeetti titoteaatti tagigta 21 <210 > 357 2212 > ADN	60
tettatgttt cetateaatg teattagece titatettgt tigagtitee ateageaatg titteaagte ecaagateat teatgatee acaageaatg atacgeeaga tittggacaaa taatactgaa tactatetta titteactge catgateaag geagtgtgga tigetgeeaa gteeaagaga agtgaggtea geagetgeaa gecaceteeg teatitagaa aagetteatg atgatgtgt tegtitegat gigaeaetgt eteacaagagt taaaatgatg tgmaaggaae tgiteaatgg aaattiagaa attietetti tieteaatti tagtgta 20	120
ttttcaagtc ccaagatcat tcatgtatcc acaagcaatg atacgccaga tttggacaaa taatactgaa tactatctta ttttcactgc catgatcaag gcagtgtga ttgctgccaa gtccaagaga agtgaggtca gcagctgcaa gccacctccg tcatttagaa aagcttcatg atgtagtgtg togtttcgat gtgacactgt ctcacagagt taaaatgatg tgmaaggaac tgttcaatgg aaatttagaa atttctcttt ttctcaattt tagtgta 20	180
taatactgaa tactatotta tittoactgo catgatcaag goagtgtgga tigotgocaa gocaagaga agtgaggtca goagctgoaa gocacctcog toatitagaa aagcttoatg atgtagtgtg togtitogat gigacactgi otoacaagagt taaaatgatg tgmaaggaac tigticaatgg aaatttagaa attictotti titocaatti tagtgta 20	240
gtccaagaga agtgaggtca gcagctgcaa gccacctccg tcatttagaa aagcttcatg atgtagtgt togtttcgat gtgacactgt ctcacagagt taaaatgatg tgmaaggaac tgttcaatgg aaatttagaa atttctcttt ttctcaattt tagtgta 25	300
atgtagtgt togtttegat gtgacactgt ctcacagagt taaaatgatg tgmaaggaac tgttcaatgg aaatttagaa atttctcttt ttctcaattt tagtgta 25	360
tgttcaatgg aaatttagaa atttctcttt ttctcaattt tagtgta 25	420
<pre></pre>	480
25	527
25	
gaacaagatt ttcctgcttt taaaaatact acattaaagc tgaaaattta ggccaaaatt ttcaagtggt aatagttaca ggcaattcat ctttctggtc agaaaagggt gttactgcag ctatttctgc ctgaaactgg gtggcactac tactttttt ttttttttt taactgagca gacattttcc ttacactaaa attgagaaaa agagaaattt ctaaatttcc attgaacagt tccttgcaca tcattttaac tctgtgagac agtgtcacat cgaaacgaca cactacatca ygaagctttt ctaaatgacg gaggtggctt gcagctgctg acctcacttc tcttggactt ggcagcaatc cacactgcct tgatcatggc agtgaaaata agatagtatt cagtattatt tgtccaaatc tggcgtatca ttgcttgtgg atacatgaat gatcttggga cttgaaaaca ttgctgatgg aaactcaaac aagataaagg gctaatgaca ttgataggaa acataagaag aaagttattc catgacttca taagagttgt cagaatttat tatgcatgta actacagggg 210> 358 <211> 1001 <212> ADN	
ttcaagtggt aatagttaca ggcaattcat ctttctggtc agaaaagggt gttactgcag ctatttctgc ctgaaactgg gtggcactac tactttttt ttttttttt taactgagca gacattttcc ttacactaaa attgagaaaa agagaaattt ctaaatttcc attgaacagt tccttgcaca tcattttaac tctgtgagac agtgtcacat cgaaacgaca cactacatca ygaagctttt ctaaatgacg gaggtggctt gcagctgctg acctcacttc tcttggactt ggcagcaatc cacactgcct tgatcatggc agtgaaaata agatagtatt cagtattatt tgtccaaaatc tggcgtatca ttgcttgtgg atacatgaat gatcttggga cttgaaaaca ttgctgatgg aaactcaaac aagataaagg gctaatgaca ttgataggaa acataagaag aaagttattc catgacttca taagagttgt cagaatttat tatgcatgta actacagggg a	
ctatttctgc ctgaaactgg gtggcactac tactttttt tttttttt taactgagca gacattttcc ttacactaaa attgagaaaa agagaaattt ctaaatttcc attgaacagt tccttgcaca tcattttaac tctgtgagac agtgtcacat cgaaacgaca cactacatca ygaagctttt ctaaatgacg gaggtggctt gcagctgctg acctcacttc tcttggactt ggcagcaatc cacactgcct tgatcatggc agtgaaaata agatagtatt cagtattatt tgtccaaatc tggcgtatca ttgcttgtgg atacatgaat gatcttggga cttgaaaaca ttgctgatgg aaactcaaac aagataaagg gctaatgaca ttgataggaa acataagaag aaagttattc catgacttca taagagttgt cagaatttat tatgcatgta actacagggg 210> 358 <210> 358 <211> 1001 <212> ADN	6
gacattttcc ttacactaaa attgagaaaa agagaaattt ctaaatttcc attgaacagt 40 tccttgcaca tcattttaac tctgtgagac agtgtcacat cgaaacgaca cactacatca ygaagctttt ctaaatgacg gaggtggctt gcagctgctg acctcacttc tcttggactt ggcagcaatc cacactgcct tgatcatggc agtgaaaata agatagtatt cagtattatt 45 tgtccaaatc tggcgtatca ttgcttgtgg atacatgaat gatcttggga cttgaaaaca ttgctgatgg aaactcaaac aagataaagg gctaatgaca ttgataggaa acataagaag aaagttattc catgacttca taagagttgt cagaatttat tatgcatgta actacagggg 50 a <210> 358 <211> 1001 <212> ADN	12
tecttgeaca teatttaac tetgtgagac agtgteacat egaaacgaca cactacatea ygaagetttt etaaatgaeg gaggtggett geagetgetg aceteactte tettggaett ggeageaate eacactgeet tgateatgge agtgaaaata agatagtatt eagtattatt tgteeaaate tggegtatea ttgettgtgg atacatgaat gatettggga ettgaaaaca ttgetgatgg aaacteaaac aagataaagg getaatgaea ttgataggaa acataagaag aaagttatte eatgaettea taagagttgt eagaatttat tatgeatgta actacagggg a	18
ygaagettt ctaaatgacg gaggtggett geagetgetg accteaette tettggaett ggeageaate cacactgeet tgateatgge agtgaaaata agatagtatt eagtattatt tgtecaaate tggegtatea ttgettgtgg atacatgaat gatettggga ettgaaaaca ttgetgatgg aaacteaaac aagataaagg getaatgaca ttgataggaa acataagaag aaagttatte catgaettea taagagttgt eagaatttat tatgeatgta actacagggg a	24
ggcagcaatc cacactgcct tgatcatggc agtgaaaata agatagtatt cagtattatt 45 tgtccaaatc tggcgtatca ttgcttgtgg atacatgaat gatcttggga cttgaaaaca ttgctgatgg aaactcaaac aagataaagg gctaatgaca ttgataggaa acataagaag aaagttattc catgacttca taagagttgt cagaatttat tatgcatgta actacagggg 50 a <210> 358 <211> 1001 <212> ADN	30
tgtccaaatc tggcgtatca ttgcttgtgg atacatgaat gatcttggga cttgaaaaca ttgctgatgg aaactcaaac aagataaagg gctaatgaca ttgataggaa acataagaag aaagttattc catgacttca taagagttgt cagaatttat tatgcatgta actacagggg a <210>358 <211>1001 <212>ADN	36
ttgctgatgg aaactcaaac aagataaagg gctaatgaca ttgataggaa acataagaag aaagttattc catgacttca taagagttgt cagaatttat tatgcatgta actacagggg a <210> 358 <211> 1001 <212> ADN	42
aaagttattc catgacttca taagagttgt cagaatttat tatgcatgta actacagggg a <210> 358 <211> 1001 <212> ADN	48
50 a <210> 358 55 <211> 1001 <212> ADN	54
<210> 358 55 <211> 1001 <212> ADN	60
55 <211> 1001 <212> ADN	60
<400> 358 60	

5							
	gcttaatacc	tgagtgatgg	aatattctgt	tcaacaaacc	cctctgacat	aggtttgcct	60
	atataataaa	cctgttcatg	tactcctgaa	cctaaaagtt	taaaaaagat	tatgtagaaa	120
10	acccaaagga	atctataaaa	agtctactag	agctagagtg	attttaacaa	gatttcaata	180
	cacaaattca	aatgtctttc	tatatattaa	tgacaatcaa	caataaaatt	ttaaaacatt	240
	attaaagtat	aatgaaaata	tcaactgttt	agggagaaat	gtaacaagaa	tggtgaagga	300
15	cctatacact	aaaaagcttc	aatatgttgt	tgagattaac	tgaagaaggt	ctaaatagat	360
	tttttttca	tgtctcggaa	gacttaatat	gtgaagatac	caattcttcc	ccaaatgatc	420
	aacaggtgaa	atgcaatccc	aatcaaaatc	ccagcaatta	ttttaagggg	gaaattggca	480
20	atctgattct	aaaattcata	yggaaaaaaa	caatggagtt	agaataacta	aaacaagtcc	540
	gaaaaagaaa	aagaaatgga	ggactaatgc	tacctgattt	caagtcttat	cgtataaatc	600
25	tacatcaata	aaggacaagt	tggtattggg	ttaaagatag	ataaatacat	cagtggaata	660
20	gaatattgaa	tccagaataa	atccacacat	atatggataa	aaataccaga	caattcagtg	720
	gagatggttt	tgtttttaca	acaaatgtta	ctggaacaaa	ttgatatatg	tattagtcag	780
30	atatggctgc	cataacaaag	aaccacaaac	aggtggttta	aataatggaa	ataaatttcc	840
	tcagaattct	ggagtatgga	agcccaagat	caagttgctg	ggaggattcg	tttcttctga	900
	gtgtctcttt	ttttgatgac	agatgactat	cttttaccaa	tgtcttcact	tggttttccc	960
35	tctgtgtgtg	cctaggtcct	attctccaat	tectataagg	a		1001
	<210> 359 <211> 1001						
40	<212> ADN						
	<213> Homo sapie	15					
	<400> 359						

5	ctaaaagttt aaaaaagatt atgtagaaaa cccaaaggaa tctataaaaa gtctactaga	60
	gctagagtga ttttaacaag atttcaatac acaaattcaa atgtctttct atatattaat	120
	gacaatcaac aataaaattt taaaacatta ttaaagtata atgaaaatat caactgttta	180
10	gggagaaatg taacaagaat ggtgaaggac ctatacacta aaaagcttca atatgttgtt	240
	gagattaact gaagaaggtc taaatagatt ttttttcat gtctcggaag acttaatatg	300
45	tgaagatacc aattetteee caaatgatea acaggtgaaa tgeaateeca ateaaaatee	360
15	cagcaattat tttaaggggg aaattggcaa tctgattcta aaattcatat ggaaaaaaac	420
	aatggagtta gaataactaa aacaagtccg aaaaagaaaa agaaatggag gactaatgct	480
20	acctgatttc aagtcttatc rtataaatct acatcaataa aggacaagtt ggtattgggt	540
	taaagataga taaatacatc agtggaatag aatattgaat ccagaataaa tccacacata	600
	tatggataaa aataccagac aattcagtgg agatggtttt gtttttacaa caaatgttac	660
25	tggaacaaat tgatatatgt attagtcaga tatggctgcc ataacaaaga accacaaaca	720
	ggtggtttaa ataatggaaa taaattteet cagaattetg gagtatggaa geecaagate	786
	aagttgctgg gaggattcgt ttcttctgag tgtctctttt tttgatgaca gatgactatc	840
30	ttttaccaat gtcttcactt ggttttccct ctgtgtgtgc ctaggtccta ttctccaatt	900
	cctataagga aaccagtcat attggattag ggcccactct aatggcccca ttttacttgc	960
	attatctctt taaagacact atctccagat gtagccacac t	100
35		
40	<210> 360 <211> 1058 <212> ADN <213> Homo sapiens	
	<400> 360	
45	catgattage tatgetaett tecaetgete ttagtataet gagaggeage ataagtaaaa	60
	ctaaaatatc tgaagatagc aatagactat ttaaagtaga agaagtatgc tatttttgtt	120
50	ttgttttcat ttcgaaggaa atatgcaaag gtttattgag tatttcagct tctcttacag	180
	taggtttttt ttggattctt tctgtgtttg tctatgttga taaaacattg aaatgccata	240
	tageteaaag gteatteact taagaaatet aagtaetgat aacatettag eecegattet	300
55	tcataggcat tgttaagcct attataattt tggtwcagag agaaggtaaa ctatattcca	360
	gacaggcata taaagcaatt totootataa ttggagttoa ogaaaaatto acatatttot	420
	ttttaatagt aactctcaca gcaagaacat atgtttgtaa ataatacatc acagaatctt	480
60		

5							
3	attggcagad	c aaggaaattc	ctaaaatatt	ttttactgcc	acatcaatta	agatatataa	540
	aataccttat	t atagaagatg	tttgcaccca	ggccaaacaa	atcaaacaag	aatagaagca	600
10	ctgacagtct	t tatttcaaaa	ttggtttaac	ttgtatttac	aggatattgt	agtaccttat	660
	aaagttgati	t gctgattggc	cgtcttttac	agaattctgt	cagattgtta	ttatttcttg	720
	taaagattga	a ttcaaacaaa	taaaaattgt	caggattgga	tatgtcctat	agtgaggtgt	780
15	agttatgtca	a catgagattt	ttaattacaa	agaaatggaa	aataaaatga	gaatagaatt	840
	gagactecce	c tgtcacctca	caaatatgtt	gaaatacaat	gaaatttcca	aagatgttaa	900
00	agcatataaa	a gttgaataat	tcttattatg	tattaaactt	acagaaattt	aatttcttta	960
20	ctttataaga	a ggtagtgaaa	atataaaatt	aattatgaag	acagagtagt	cttagtcaga	1020
	catggcccta	a taaagcatat	teccattegt	tacatcaa			1058
25	<210> 361 <211> 1058 <212> ADN <213> Homo sapie	ens					
30	<400> 361						
35							
40							
45							
50							
50							
55							
60							

_							
5	catgattagc	tatgctactt	tccactgctc	ttagtatact	gagaggcagc	ataagtaaaa	60
	ctaaaatatc	tgaagatagc	aatagactat	ttaaagtaga	agaagtatgc	tatttttgtt	120
10	ttgttttcat	ttcgaaggaa	atatgcaaag	gtttattgag	tatttcagct	tctcttacag	180
	taggttttt	ttggattctt	tctgtgtttg	tctatgttga	taaaacattg	aaatgccaya	240
	tagctcaaag	gtcattcact	taagaaatct	aagtactgat	aacatcttag	ccccgattct	300
15	tcataggcat	tgttaagcct	attataattt	tggtacagag	agaaggtaaa	ctatattcca	360
	gacaggcata	taaagcaatt	tctcctataa	ttggagttca	cgaaaaattc	acatatttct	420
	ttttaatagt	aactctcaca	gcaagaacat	atgtttgtaa	ataatacatc	acagaatctt	480
20	attggcagac	aaggaaattc	ctaaaatatt	ttttactgcc	acatcaatta	agatatataa	540
	aataccttat	atagaagatg	tttgcaccca	ggccaaacaa	atcaaacaag	aatagaagca	600
25	ctgacagtct	tatttcaaaa	ttggtttaac	ttgtatttac	aggatattgt	agtaccttat	660
25	aaagttgatt	gctgattggc	cgtcttttac	agaattctgt	cagattgtta	ttatttcttg	720
	taaagattga	ttcaaacaaa	taaaaattgt	caggattgga	tatgtcctat	agtgaggtgt	780
30	agttatgtca	catgagattt	ttaattacaa	agaaatggaa	aataaaatga	gaatagaatt	840
	gagactcccc	tgtcacctca	caaatatgtt	gaaatacaat	gaaatttcca	aagatgttaa	900
	agcatataaa	gttgaataat	tottattatg	tattaaactt	acagaaattt	aatttcttta	960
35	ctttataaga	ggtagtgaaa	atataaaatt	aattatgaag	acagagtagt	cttagtcaga	1020
	catggcccta	taaagcatat	tcccattcgt	tacatcaa			1058
40	<210> 362						
	<211> 956 <212> ADN						
45	<213> Homo sapien	ıs					
45	<400> 362						

	aaaacaagga	acaaacaaac	aaaaatgtta	caaccgaaca	acagactttt	gagtcatgtt	60
				-			
	tcaggccaag	aggtgatgag	ttactgtagt	tgcttgagct	ggttggtgaa	atattacctg	120
10	gcaacaaaac	tgaaatagaa	ggtggcttag	taaaatgcag	attcagaatg	agtgccttaa	180
	ggttaaggca	tataagacca	aactgatttt	ctttttcacg	aggtcttcag	gtaaggccat	240
	tgtagaagat	accttgtttg	cgaacttcag	taaattactt	cacttgtctc	atattttcat	300
15	tttcaggatg	gaggettgag	attgaattgt	agtgcaatta	ggtaaatttt	tacccatttt	360
	aaatataata	ttaaaatatt	aattataaat	taccttattt	gaatctggaa	taatatttat	420
	tgcagggcat	ataatctaag	ctgtaaacgt	cctgtyagaa	gacaacatat	tcatcttgct	480
20	aaggtataag	ctatatgact	ggcactgtgc	tcaactcaga	gtcattgaat	gaacagtatt	540
	tatttaatct	atgaatgaga	gcacttcaag	tatacagaaa	gatatctcaa	aagattcagc	600
	cttacattgc	tcataacttc	aatgacttag	atgaaaacct	cctgaacatt	tttatcagtt	660
25	gtataggtac	cccaaatcat	aagggaatgt	ttatcaatta	gatgatgaaa	tggggatgca	720
	actacatcat	ggcaggctaa	agcaatagaa	tgactttgac	aagaggaaat	tacatagagg	780
	cacctgagtc	tcctaaacca	atttcaaagg	tatgagaggg	gggtgatata	aataaatagt	840
30	tgatagatga	aaaaactcag	aagttatagt	tgacagcaat	tttaatataa	tatgaaaaat	900
	gtggttggac	ttttagggaa	aaaaacctaa	taaaatctaa	tggaaattag	tggtcc	956
35							
	<210> 363 <211> 956						
	<212> ADN <213> Homo sapier	ns					
40	<400> 363						
45	caaccgaaca	acagactttt	gagtcatgtt	tcaggccaag	g aggtgatga	g ttactgtagt	60
	tgcttgagct	ggttggtgaa	atattacctg	gcaacaaaac	tgaaataga	a ggtggcttag	120
	taaaatgcag	attcagaatg	agtgccttaa	ggttaaggca	tataagacc	a aactgatttt	180
50	ctttttcacg	aggtcttcag	gtaaggccat	tgtagaagat	accttgttt	g cgaacttcag	240
	taaattactt	cacttgtctc	atattttcat	tttcaggatg	gaggettga	g attgaattgt	300
	agtgcaatta	ggtaaatttt	tacccatttt	aaatataata	ttaaaatat	t aattataaat	360
55	taccttattt	gaatctggaa	taatatttat	tgcagggcat	ataatctaa	g ctgtaaacgt	420
	cctgtcagaa	gacaacatat	tcatcttgct	aaggtrtaag	r ctatatgac	t ggcactgtgc	480
60							

5		
	tcaactcaga gtcattgaat gaacagtatt tatttaatct atgaatgaga gcacttcaag	540
	tatacagaaa gatatctcaa aagattcagc cttacattgc tcataacttc aatgacttag	600
10	atgaaaacct cctgaacatt tttatcagtt gtataggtac cccaaatcat aagggaatgt	660
	ttatcaatta gatgatgaaa tggggatgca actacatcat ggcaggctaa agcaatagaa	720
	tgactttgac aagaggaaat tacatagagg cacctgagtc tcctaaacca atttcaaagg	780
15	tatgagaggg gggtgatata aataaatagt tgatagatga aaaaactcag aagttatagt	840
	tgacagcaat tttaatataa tatgaaaaat gtggttggac ttttagggaa aaaaacctaa	900
	taaaatctaa tggaaattag tggtccactc atttctccac ctaggatgtt aaaaat	956
20		
25	<210> 364 <211> 601 <212> ADN <213> Homo sapiens <400> 364	
30	gtaaaacaca tagategetg tateettgtt eagtaageta eaacatacte gtateteetg	60
	aaatcctggg cttaaatcga ggtctcaaag gctttgtttt gttttgttgt atggttgtat	120
	ggtgagtgtg tgtgtgtgt tgtgtgtgtg tgtttattct cctgaaattc tcctcctcac	180
35	ttgacttaag ctaaaagata aacgtcctct tcctttcagc cacagatggt gatggataaa	240
	ttgaatgtca ttcacattat tcccttaaaa taaactctct ccctcccctc tcccgtctca	300
40	wccttgtccc tttctttata taatgggtaa tgcgttaatg tcagcagaat agttttgggg	360
40	ccataatggc aagtatcacg tggatggttt agcattgttt ttagaatgct gtgaatttgg	420
	gtatatgtga gttttgggga aagttttgca actatatgtt tgttaattaa atgaggacta	480
45	taaagtaata taaaattatg tttctggaac atattttgga agctataaag tcatctgtat	540
	ttattatcca cagacataat gtcattgttc aggtcctgca accttcttat aatcaacata	600
	С	601
50		
55	<210> 365 <211> 601 <212> ADN <213> Homo sapiens	
	<400> 365	
60		

5							
J	agtaagcta	c aacatactcg	tatctcctga	aatcctgggc	ttaaatcgag	gtctcaaagg	60
	ctttgtttt	g ttttgttgta	tggttgtatg	gtgagtgtgt	gtgtgtgtgt	gtgtgtgtgt	120
10	gtttattct	c ctgaaattct	cctcctcact	tgacttaagc	taaaagataa	acgtcctctt	180
	cctttcagc	c acagatggtg	atggataaat	tgaatgtcat	tcacattatt	cccttaaaat	240
	aaactctct	c catacastat	cccgtctcat	ccttgtccct	ttctttatat	aatgggtaat	300
15	kcgttaatg	t cagcagaata	gttttggggc	cataatggca	agtatcacgt	ggatggttta	360
	gcattgttt	t tagaatgctg	tgaatttggg	tatatgtgag	ttttggggaa	agttttgcaa	420
20	ctatatgtt	t gttaattaaa	tgaggactat	aaagtaatat	aaaattatgt	ttctggaaca	480
	tattttgga	a gctataaagt	catctgtatt	tattatccac	agacataatg	tcattgttca	540
	ggtcctgca	a ccttcttata	atcaacatac	gtgggcccag	ggattttatg	tatcttcgcc	600
25	t						601
30	<210> 366 <211> 1079 <212> ADN <213> Homo sapi <400> 366	ens					
35							
40							
45							
50							
55							
60							

5

10	gaatttatgg	tctgatggag	aagggaatca	ttaaagttct	atgtagtgag	atatccccaa	60
	ggggtgtatt	aggettacea	ccactggaat	ctggatagat	gaagacagag	tggcagggaa	120
	gtcgtattaa	ggttctgttt	ctgctgggag	ccacaggtcc	tcaggaagca	acaagtactg	180
15	ggcagattga	tactgtagct	rggctctagc	tctatacctc	tagaataaag	gttacaaact	240
	agcaacttga	aagctaaacc	tggcccacag	atatgtttta	tttggatatt	acactgtttt	300
	aaaaaatatt	accaacattt	aaaactggga	agttttatga	aaaaacccag	acttctggat	360
20	tctgttgaaa	aaaaaaatca	gaagatctgg	caatactgag	ctgacattcc	tatatgacaa	420
	caattggctg	gatctatgca	gcttctctcc	aaaaagcaaa	gaatgtgttc	ttgcttaaca	480
	cagtccccac	cactccctca	tattctccaa	tcctggacct	gagcgtcatt	tgctatgtat	540
25	cgccatttgc	catgaagttt	tacactctac	agaaatataa	tttttttgta	gaagactatg	600
-0	ctttaatcaa	gatcaggata	atataaagtg	agatctgaaa	gtggaaaaaa	gataaatgtc	660
	caacaatgat	agactggatt	aagaaaatgt	ggcacatata	caccgtggag	tactatgcag	720
30	ccaaaaaaaa	cgatgagttc	atgtcctttg	tagggacatg	gatgaagctg	gaaaccacca	780
50	ttctcagcaa	actatcgcaa	ggacaaaaaa	ccaaacgccg	catgttctca	ctcataggtg	840
	ggaattgaac	aatgagaaca	cttgggcaca	ggaaggggaa	catcacacac	cgggccctgt	900
25	tgtggggtgg	ggggaggagg	gagggatagc	atttggagat	atacctaatg	ttaaatgact	960
35	agtttctggg	tgcagcacac	catcatggca	catgtataca	tatgtaacta	acctgcacat	1020
	tgtgcacatg	taccctaaaa	cttaaagtat	aatttttaaa	aaaagatatt	ttcttatct	1079

40

45 <210> 367 <211> 501 <212> ADN <213> Homo sapiens

50 <400> 367

ataaattttc tcttccctca agaatttatg gtctgatgga gaagggaatc attaaagttc 60

55

	tatgtagtga gatatcccca aggggtgtat taggcttacc accactggaa tctggataga	120
5	tgaagacaga gtggcaggga agtcgtatta aggttctgtt tctgctggga gccacaggtc	180
	ctcaggaagc aacaagtact gggcagattg atactgtagc tgggctctag ctctatacct	240
	ctagaataaa kgttacaaac tagcaacttg aaagctaaac ctggcccaca gatatgtttt	300
10	atttggctct tacactgttt taaaaaaatat taccaacatt taaaactggg aagttttatg	360
	aaaaaaccca gacttctgga ttctgttgaa aaaaaaaatc agaagatctg gcaatactga	420
	gctgacattc ctatatgaca acaattggct ggatctatgc agcttctctc caaaaagcaa	480
15	agaatgtgtt cttgcttaac a	501
20	<210> 368 <211> 1001 <212> ADN <213> Homo sapiens <400> 368	
25		
	tgaagaagcc gcctggcttc ttgtttcttc tcatagcaaa atgcaatgag aaagagataa	60
30	tttgagaaaa gaaccgttta aacaaaaaga aaccaagaca taatgatttt ggaaattctc	120
30	agtttattca gactgcaaaa gatattaaaa taaagaaact cagtaacagg gatagataat	180
	ctaaagaaaa agcctaggac acggctgtag taaccttctg tttttatacc tcagcaattt	240
35	gctaatgcct caaaaagatc aaaagtactc aaatataaag ggctctttga agagattaga	300
	tttcctcaat caaaccaaag agcatcgagg aagcttaagg ttactgtccc tcacatatct	360
	cagcagaagg caaaaataga agactgatta tctaagaaag atctctgaaa gagtctcata	420
40	ttatggagtg aacccctgtg gcatacatgg gagacccact tggttcttga gaattttata	480
	tcaggagaaa cactgtcagt ytgtattgaa aggaacagag aaaatacgaa attaaagaag	540
45	actattaaac ctccaaaatt ctggcaggaa agaagcttac acagctactc agttgcaaag	600
40	atctgccact tttcatatac atgaaaggac tcagaggagg aagccacagg tttagaagga	660
	aaagctaaaa gcaacatcgt attagtcttg gatctaggaa cctaatttct ctagcagaat	720
50	ctagaaatgg cttgggacaa gtgattgttt ttttacctag gattttctcc ctcttgaaaa	780
	caggactgtc tgtaactatt atcctatgcc tgccctacca tcatatttca gaaacaggta	840
	acttatgttt tcactttcaa agattcacaa taaagagaaa ttgtacctca gaatggatta	900
55	taccagaget tteeteatge ataaattaaa taatttaggt tatgtgattt gaagettttg	960
	agtgggtgag gtgacatttt ggatgctgag ttggtgccgt a	1001
60		
65	<210> 369 <211> 1001 <212> ADN <213> Homo sapiens	

<400> 369

5							
	tcttctcata	gcaaaatgca	atgagaaaga	gataatttga	gaaaagaacc	gtttaaacaa	60
	aaagaaacca	agacataatg	attttggaaa	ttctcagttt	attcagactg	caaaagatat	120
10	taaaataaag	aaactcagta	acagggatag	ataatctaaa	gaaaaagcct	aggacacggc	180
	tgtagtaacc	ttctgttttt	atacctcage	aatttgctaa	tgcctcaaaa	agatcaaaag	240
	tactcaaata	taaagggctc	tttgaagaga	ttagatttcc	tcaatcaaac	caaagagcat	300
15	cgaggaagct	taaggttact	gtccctcaca	tatctcagca	gaaggcaaaa	atagaagact	360
	gattatctaa	gaaagatctc	tgaaagagtc	tcatattatg	gagtgaaccc	ctgtggcata	420
20	catgggagac	ccacttggtt	cttgagaatt	ttatatcagg	agaaacactg	tcagtctgta	480
	ttgaaaggaa	cagagaaaat	rcgaaattaa	agaagactat	taaacctcca	aaattctggc	540
	aggaaagaag	cttacacagc	tactcagttg	caaagatctg	ccacttttca	tatacatgaa	600
25	aggactcaga	ggaggaagcc	acaggtttag	aaggaaaagc	taaaagcaac	atcgtattag	660
	tcttggatct	aggaacctaa	tttctctagc	agaatctaga	aatggcttgg	gacaagtgat	720
	tgtttttta	cctaggattt	tctccctctt	gaaaacagga	ctgtctgtaa	ctattatcct	780
30	atgcctgccc	taccatcata	tttcagaaac	aggtaactta	tgttttcact	ttcaaagatt	840
	cacaataaag	agaaattgta	cctcagaatg	gattatacca	gagctttcct	catgcataaa	900
25	ttaaataatt	taggttatgt	gatttgaagc	ttttgagtgg	gtgaggtgac	attttggatg	960
35	ctgagttggt	gccgtagtga	gtccagaatt	ctgcggaact	t		1001
40	<210> 370 <211> 601 <212> ADN <213> Homo sapien	ıs					
45	<400> 370						

_	ctctagactc	ctcctgtatt	ttaatttagc	cacttttta	gggcctacaa	ttttagatct	60
5	ccacagggct	cttgaaactt	cttgaacctc	atcagtaaca	tgtccattag	tggcatgacc	120
	caagagttct	agaacatcta	ttcagcaagt	gtgtatctgg	taagtgaata	ttccttctat	180
10	gtgttccctt	ttgcatcaaa	ctacacactg	tcattcctcc	tttatctcca	aaagcttgaa	240
10	aattcctcac	ttgtatctca	ttatttatat	cttagaaaac	tgatcacctc	tgatgaatta	300
	raacggaatg	accaagcttt	gggagaggca	aaagaatctc	ggtgttaaag	actcagagtt	360
15	taagaagcaa	caaaaagatt	atacagatgt	gaatatgtga	ccttcctcca	ccagggcatg	420
	ttgccttgga	gtaagataat	ctaagcacac	acttcatagc	ctgagaacaa	ttttggaagt	480
	ctttgcttta	tggatattta	cataaagcaa	atatggatat	ttacctaaag	gctggaccaa	540
20	ggcctaattc	ctctagagcc	ccttgatcat	gaacaccatt	cctgtcatga	ttcttaaggt	600
	c						601
25	<210> 371 <211> 601 <212> ADN <213> Homo sapier	ns					
30	<400> 371						
	acaageteca	gccatggacg	caattccttc	tagaagcaaa	atttatctct	agactcctcc	60
35	tgtattttaa	tttagccact	tttttagggc	ctacaatttt	agatetecae	agggctcttg	120
	aaacttcttg	aacctcatca	gtaacatgtc	cattagtggc	atgacccaag	agttctagaa	180
	catctattca	gcaagtgtgt	atctggtaag	tgaatattcc	ttctatgtgt	tcccttttgc	240
40	atcaaactac	acactgtcat	tcctccttta	tctccaaaag	cttgaaaatt	cctcacttgt	300
	rtctcattct	ttctctctta	gaaaactgat	cacctctgat	gaattagaac	ggaatgacca	360
45	agctttggga	gaggcaaaag	aatctcggtg	ttaaagactc	agagtttaag	aagcaacaaa	420
40	aagattatac	agatgtgaat	atgtgacctt	cctccaccag	ggcatgttgc	cttggagtaa	480
	gataatctaa	gcacacactt	catagootga	gaacaatttt	ggaagtcttt	gctttatgga	540
50	tatttacata	aagcaaatat	ggatatttac	ctaaaggctg	gaccaaggcc	taattootot	600
	a						601
55	<210> 372 <211> 701 <212> ADN <213> Homo sapiens						
60	<400> 372						

	gaagatgcac tetaatgttt ttteeeagaa getetgtagg tttagetttt aeetttetgg	60
5	gtttgttttg ttttgttttt tgagatggag tcccactcgt gtcacccagg ctggagtaca	120
	atggtgcaat ctcggttcac tgcaacctcc acctcccggg ttcaagcaat tcccctgtct	180
	ccacctctcg agtagetggg atgggaggcg cctgccacca tacctggcta attttcatat	240
10	ttttagtaaa gatagggttt caccatgtta gccaggctgg tctcgaactc ctgacctcaa	300
	gtgatccacc cgcctcaget tcccaaagtg ctgggattac aggcgtgagc cactgcgccc	360
	agccctagct ttttggtcta tgattcctcc caaattaatt tctgtgaacc attaccttaa	420
15	gatgttgaga tttaatgtcc agaatctcat ttgttcacct ttgaaaatta agaaaccctg	480
	gcacagtgtt gactggagcc wcttacctta atagaaaata aagctcacat atatccataa	540
20	tgaaaagcag agaccagcac aaccatagte acctgacagt tttaaaatce aaggccagga	600
20	tottotoaac toaggoocac toacttacto cacaacatac ttottottto otoagcatot	660
	actacttgtg ctgggacctt ggtcttccca ttgttcatgt c	701
25		
30	<210> 373 <211> 701 <212> ADN <213> Homo sapiens <400> 373	
	<4002 373	
35	agatggagtc ccactcgtgt cacccaggct ggagtacaat ggtgcaatct cggttcactg	60
	caacetecae eteeegggtt caageaatte eeetgtetee acetetegag tagetgggat	120
	gggaggcgcc tgccaccata cctggctaat tttcatattt ttagtaaaga tagggtttca	180
40	ccatgttage caggetggte tegaacteet gaceteaagt gatecaeeeg eeteagette	240
	ccaaagtgct gggattacag gcgtgagcca ctgcgcccag ccctagcttt ttggtctatg	300
45	attectecca aattaattte tgtgaaccat tacettaaga tgttgagatt taatgtecag	360
43	aatctcattt gttcaccttt gaaaattaag aaaccctggc acagtgttga ctggagccac	420
	ttaccttaat agaaaataaa gctcacatat atccataatg aaaagcagag accagcacaa	480
50	ccatagtcac ctgacagttt waaaatccaa ggccaggatc ttctcaactc aggcccactc	540
	acttactcca caacatactt cttctttcct cagcatctac tacttgtgct gggaccttgg	600
	tetteccatt gtteatgtea ttetttteet cacagttece attetttet eeetgaaata	660
55	aagaaattte aaaatatace atgttteatg aaaaagacaa a	701
60	<210> 374 <211> 701 <212> ADN <213> Homo sapiens	
65	<400> 374	
65		

	gatttccacc	ctcaggtgat	ggggatggtt	gaacatccaa	cacctgaaac	aggacagacg	60
	atattgacag	tacttgttag	ttgcatataa	tcacagacca	gtggaaacag	atgaaccaca	120
5	cagggccaca	gcggggtttc	actggggaac	agagtgaaca	atcaggaggt	gtgggaggca	180
	ggtttagtag	tttaaagagg	ttgaggtgtc	cccctggatc	ccatgggagg	atcacattgg	240
10	ctcatttgaa	ttatcatacg	gactggcagg	gaactgaaat	cttctactca	gggataagca	300
10	gaaactgtcc	ctggtttcct	tgataaaaag	ggttgtttga	taggggacct	tatccatggg	360
	aggaaagtga	ggagggaaat	ttgtggctaa	gccattcaag	gccctcccag	ttttactaga	420
15	tgtcaaggca	gcacacgtaa	tattgggact	taattttagc	cacataacta	ataaatttgt	480
.0	aagtatgtgc	aacggctcac	rcttgcttcc	agaatggcac	ctaaaaaaca	gatttacctc	540
	tccccaaatt	cagatatgga	attaaatgta	atgtcaggaa	aattgtctaa	gagttggaaa	600
20	tgggaaaaaa	atgttcttt	ggtggagtta	tggactccag	aggttatcag	attctattga	660
	ataacgtact	tttgattgta	tttgtaacaa	ttaggctatt	t		701
25	<210> 375 <211> 1001 <212> ADN <213> Homo sapie	ns					
20	<400> 375						
30							
35							
40							
45							
50							
55							
55							
60							

	geatataate acagaceagt ggaaacagat gaaccacaca gggceacage ggggttteac	60
5	tggggaacag agtgaacaat caggaggtgt gggaggcagg tttagtagtt taaagaggtt	120
	gaggtgtccc cctggatccc atgggaggat cacattggct catttgaatt atcatacgga	180
	ctggcaggga actgaaatct tctactcagg gataagcaga aactgtccct ggtttccttg	240
10	ataaaaaggg ttgtttgata ggggacctta tccatgggag gaaagtgagg agggaaattt	300
10	gtggctaagc cattcaaggc cctcccagtt ttactagatg tcaaggcagc acacgtaata	360
	ttgggactta attttagcca cataactaat aaatttgtaa gtatgtgcaa cggctcacac	420
45	ttgcttccag aatggcacct aaaaaacaga tttacctctc cccaaattca gatatggaat	480
15	taaatgtaat gtcaggaaaa ytgtctaaga gttggaaatg ggaaaaaaat gttcttttgg	540
	tggagttatg gactccagag gttatcagat tctattgaat aacgtacttt tgattgtatt	600
	tgtaacaatt aggctatttg tgaactcggt aggggtagaa atcgagttgt agaaaatgga	660
20	tggtaatgca agtgattttt gaccatatca atgcaaatga attctgttgg tagaaatatt	720
	catttccaca ctgtagatga ccctaaacat atgtcattac attatatttt attgccttat	780
	agactattaa ccaattttga atcatacagt agcaaattta tttcagcatt cttgtgtgta	840
25	tgtgtttata tatacacgtg catatgtatt taagatatat aattgtatat tcttcaaatt	900
	cttctttgaa caggtttgaa cctcttatta gtttcctcat taaggaattt aataagacct	960
	ttaatgcatg tttgtatttt catgagagtc attattttac c	1001
30		
35	<210> 376 <211> 695 <212> ADN	
40	<213> Homo sapiens <400> 376	
	tgctccttca ttagtgcaat ggaacagcaa atcaggatac tttcacagtt ctcttaagtg	60
45	agcctagaag tggggagctg cttgttcaca aacttgaagc ctgaatatgt taatattctt	120
	tcagtggccg gacgcggtgg ctcatgcctg taatcccaac actttgggag gccgaggtag	180
50	gcagatcaac ctgaagtcag gagttcgagg ccagcctggc caacatggtg aaaccccacc	240
30	tgttggtctg tactaaaaat agaaaaatta gctgggcatg gtggcgcatg cctgtaatcc	300
	cagetaetea ggaggetgtg geagaagaat egeetgeace tgggaggeag aggttgettt	360
55	gagttgatat cgtgtcactg cactccagcc tgggcaacag agtgagatcc tttcagaaac	420
	ctgctgtctg tatttggata caattaaaaa aaaaaaaaag atgagacagg caggtgcgaa	480
	agaaataaaa gtcamaactg atccagttgg gaaactcaga attgacagtt acgtgtcctt	540
60		

5		
10	tcatttattg atattttgag attcacaggg gtttaaactt tatttttcca agactgaata	600
	gttcccacct cccttccata tataaaattt gagtagctgg ggagatttaa aagaggctcc	660
15	ccataaactc agaagttaaa agagacaagg gtccc	695
20	<210> 377 <211> 601 <212> ADN <213> Homo sapiens <400> 377	
25	aaccccacct gttggtctgt actaaaaata gaaaaattag ctgggcatgg tggcgcatgc	60
	ctgtaatccc agctactcag gaggctgtgg cagaagaatc gcctgcacct gggaggcaga	120
30	ggttgctttg agttgatatc gtgtcactgc actccagcct gggcaacaga gtgagatcct	180
	ttcagaaacc tgctgtctgt atttggatac aattaaaaaa aaaaaaaaga tgagacaggc	240
	aggtgcgaaa gaaataaaag tcacaactga tccagttggg aaactcagaa ttgacagtta	300
35	sgtgtccttt catttattga tattttgaga ttcacagggg tttaaacttt attcttccaa	360
	gactgaatag ttcccacctc ccttccatat ataaaatttg agtagctggg gagatttaaa	420
40	agaggetece cataaactea gaagttaaaa gagacaaggg teecagtaaa tacaaaatga	480
40	ttggggttga ggaggcagat tttctgtcct cagtgaagtt tgttggttgg ttggttggtt	540
	ggttggttaa ttggttggtt tttgagtcag ggtctcactt tgtcacccaa gctggagtgc	600
45	a	601
50	<210> 378 <211> 663 <212> ADN <213> Homo sapiens	
55	<400> 378	
55		

_	

40	tgtagcaaca	ggagggatga	gacccaaagg	tctgaaaagc	cagtatttta	agaagtcttg	60
10	gaaaatgtgg	aggttgaaaa	atctaacagg	agtgcttgct	tcagcagcaa	tttagagtag	120
	attagcatgg	cctctgcgcc	aggatgacat	gcacattcct	aaaagtgttc	cgtgttttaa	180
15	aaaaaagaga	gagacagaat	ctaaggggat	gtgtacattt	gctagagcta	ctataacaaa	240
	gtaccagagg	cagggtcact	tcaacaacag	aaatttattt	ctcacagttc	tggaggctag	300
	acgtccaaga	ttaaggtgtt	gactgggttg	aattcagccc	ataacaggaa	ataaggagtt	360
20	aaataaagca	cttgcttcta	ttgtttgtac	ctaaacttaa	cagaayacag	taagtaacaa	420
	gtcattggga	tgcagaaaag	aaaaaagaga	gtgaaggaag	gagagaaggt	gaagggagaa	480
	tggaagagag	gaagggaggg	aggaaagaaa	agtttgatga	atgattgcag	tctaaactgg	540
25	ttcaaacaag	agatcttgtt	taattaagga	attcatccca	tctctgccta	ttaggaggag	600
	gaaaaagtct	aaaatagaag	atggtgaaag	ttggatgacc	ccaggcatta	aggccattca	660
30	tct						663

<210> 379

<211> 662 <212> ADN

<213> Homo sapiens

<400> 379

40

35

	ttaagaagtc	ttggaaaatg	tggaggttga	aaaatctaac	aggagtgctt	gcttcagcag	60
	caatttagag	tagattagca	tggcctctgc	gccaggatga	catgcacatt	cctaaaagtg	120
45	ttccgtgttt	taaaaaaaag	agagagacag	aatctaaggg	gatgtgtaca	tttgctagag	180
	ctactataac	aaagtaccag	aggcagggtc	acttcaacaa	cagaaattta	tttctcacag	240
50	ttctggaggc	tagacgtcca	agattaaggt	gttgactggg	ttgaattcag	cccataacag	300
50	gaaataagga	gttaaataaa	gcacttgctt	ctattgtttg	tacctaaact	taacagaaca	360
	cagtaagtaa	caagtcattg	ggatgcagaa	aagaaaaaag	agagtgaagg	aaggagaraa	420
55	ggtgaaggga	gaatggaaga	gaggaaggga	gggaggaaag	aaaagtttga	tgaatgattg	480
	cagtctaaac	tggttcaaac	aagagatctt	gtttaattaa	ggaattcatc	ccatctctgc	540
	ctattaggag	gaggaaaaag	tctaaaatag	aagatggtga	aagttggatg	accccaggca	600
60	ttaaggccat	tcatctttaa	ctgttatgct	tggatcatgc	aaatgtgtct	ggtagctaca	660
	ag						662

	<210> 380 <211> 615 <212> ADN <213> Homo sapiens	
5	<400> 380	
10	ttccatacat tccttccaca ccattgccct taacctttca aattcctgct taaaactaat	60
	cccattttta tggctgacct caccctgtat caaaaactcc gacatccctt tacgacagag	120
	agcacaaact agtggtccaa aatgtcatgg gggtcttctc agagttgttt tttcaatcag	180
15	gaaattteac ataaaaatat ggatttetga tttetetttt aaaaacagaa aaacgageca	240
	ccagtgggag cactgcaggt atctgtgtga gaccygtact tcacaactcc tgctttccct	300
	ccataaagta gcttgcattt tccacattga ctttgcagtt ctttggtatc tgtattggtt	360
20	ttaagataat ttctactata tcacatatct cctcacagta caaagatatc attttctttc	420
	ccttttcttt ttaaaaaatt tgtattttta atttttgtgg gtacacagta gatatttatg	480
25	gggcatatga ggtattttat aggcatataa tatgtactag ggtaagtggg gtattcatca	540
25	cctcaagcat ttatcctttc tttgtgtaaa atatagcatt ttctgaacac tatgaatact	600
	taagtacaag gatca	615
30	<210> 381 <211> 994 <212> ADN	
35	<213> Homo sapiens <400> 381	
40		
45		
50		
55		

	tcaaagtgta	acaaatttcc	tttcctcata	aactagcaga	cattctatcc	cctcattatt	60
	gtaacacatt	tctaatatct	ttctcaaatt	gtcttcctgt	attacaatgc	actcaccttg	120
5	gcttagaatg	tctgagacaa	gaaaatctat	tcaccattcc	cacagatgac	teceteacte	180
	tcctcccaag	tcttccatac	attectteca	caccattgcc	cttaaccttt	caaattcctg	240
	cttaaaacta	atcccatttt	tatggctgac	ctcaccctgt	atcaaaaact	ccgacatccc	300
10	tttacgacag	agagcacaaa	ctagtggtcc	aaaatgtcat	gggggtcttc	tcagagttgt	360
	tttttcaatc	aggaaatttc	acataaaaat	atggatttct	gatttctctt	ttaaaaacag	420
	aaaaacgagc	caccagtggg	agcactgcag	gtatctgtgt	gagacctgta	cttcacaact	480
15	cctgctttcc	ctccataaag	yagcttgcat	tttccacatt	gactttgcag	ttctttggta	540
	tctgtattgg	ttttaagata	atttctacta	tatcacatat	ctcctcacag	tacaaagata	600
	tcattttctt	tcccttttct	ttttaaaaaa	tttgtatttt	taatttttgt	gggtacacag	660
20	tagatattta	tggggcatat	gaggtatttt	ataggcatat	aatatgtact	agggtaagtg	720
	gggtattcat	cacctcaagc	atttatcctt	tctttgtgta	aaatatagca	ttttctgaac	780
	actatgaata	cttaagtaca	aggatcaagt	cataggattt	ggaattgatt	tttaaaatat	840
25	gttgaccaaa	gtgctcttat	catcaaactt	aacatcacta	atgaaggatg	aacatcccaa	900
	atctgaaaat	ccaaaatcca	aaatgctcca	taatctaaaa	cttgttgagc	accaacatga	960
	tgcttaaagg	aaatgctcct	ggagcatttc	agat			994
30							
35							
	<210> 382 <211> 1001						
	<212> ADN	20					
40	<213> Homo sapie	115					
	<400> 382						
	ctatgagaaa	tatttttaaa	gtggttagga	acaattcata	gcactgacat	gttatcagta	60
45	aaaatagaag	aaaataaatt	aatattatga	aatattaatt	atatttcatt	aattatgtaa	120
	tatgaattat	gttttagctc	aaatatttcc	caagggacaa	ttaagtaaat	gaaaaataca	180
	cacagattaa	aataataaat	agagaaggag	atattaatga	ggtacaaaaa	gaaaaaatac	240
50	atgtaatcac	atgaaatgct	attatttgaa	agattaacaa	aacttgtaaa	ctacctgcta	300
	acttgatcaa	agaaaaaaat	cgagaaacca	tatgcgcaat	taatagtaag	agggaaataa	360
55	acattgaaac	agaagacatt	tgaaatacca	tataagactg	ggtttcagag	ctctatgtac	420
	gtaaattgat	aatgtcctgg	agaagtgcag	atgaccaaaa	tggacacctt	tcaacttaga	480

5		
	aatcataaac agattcattt ycttaaagtt aatgaaaaga attaacagac cctcctcaaa	540
10	aaagacatat atgcggccta caatcatatg aaaaaaagtt caacattact gttcattaga	600
	gaaatgcaaa tcaaaaccac aatgagatac catctcacac cagtcagaat ggctattatt	660
	aagaagtcaa aaaataaaag atgctggcga ggttgtggag aaaaaagaat gcttttatac	720
15	acttggtggg aatgtaaatt agttcagtca ttgtggaaga ctttgatgat tcctagaaga	780
	cctaaataca gaactactat ttgacccaac aatcccatta ctgggtatat actcaaatga	840
	ctataaatca ttctattata aagacacatg catggatatg ttcattacag cactatgcac	900
20	aatagcaaag acttggaatc aacatgaatg tecatcaatg atagactaga taaagaaaat	960
	gtggtacaca tataccatgg aatactatgc agccataaaa a	1001
0.5		
25	<210> 383	
	<211> 1001 <212> ADN	
30	<213> Homo sapiens	
00	<400> 383	
35	tcagtaaaaa tagaagaaaa taaattaata ttatgaaata ttaattatat ttcattaatt	60
	atgtaatatg aattatgttt tagctcaaat atttcccaag ggacaattaa gtaaatgaaa	120
	aatacacaca gattaaaata ataaatagag aaggagatat taatgaggta caaaaagaaa	180
40	aaatacatgt aatcacatga aatgctatta tttgaaagat taacaaaact tgtaaactac	240
	ctgctaactt gatcaaagaa aaaaatcgag aaaccatatg cgcaattaat agtaagaggg	300
	aaataaacat tgaaacagaa gacatttgaa ataccatata agactgggtt tcagagctct	360
45	atgtacgtaa attgataatg teetggagaa gtgeagatga eeaaaatgga eacettteaa	420
	cttagaaatc ataaacagat tcatttcctt aaagttaatg aaaagaatta acagaccctc	480
	ctcaaaaaag acatatatgc rgcctacaat catatgaaaa aaagttcaac attactgttc	540
50	attagagaaa tgcaaatcaa aaccacaatg agataccatc tcacaccagt cagaatggct	600
	attattaaga agtcaaaaaa taaaagatgc tggcgaggtt gtggagaaaa aagaatgctt	660
55	ttatacactt ggtgggaatg taaattagtt cagtcattgt ggaagacttt gatgatteet	720
55	agaagaccta aatacagaac tactatttga cccaacaatc ccattactgg gtatatactc	780
	aaatgactat aaatcattot attataaaga cacatgcatg gatatgttca ttacagcact	840
60	atgcacaata gcaaagactt ggaatcaaca tgaatgtcca tcaatgatag actagataaa	900
	gaaaatgtgg tacacatata ccatggaata ctatgcagcc ataaaaatga aggagatcat	960

65

gccctttgca gggacacgaa tagaggtgga ggccattatc c

5	<210> 384 <211> 501 <212> ADN <213> Homo sapiens	
	<400> 384	
10		
	agttgcttga aagcaaagtt ctcgcagtag ctctctatct agaaggaggc attttattta	60
	tgtaaggaag tcacctaaaa gaaaattcat ttgttatggt gtggctttaa gagttactta	120
15	cttttaatgg aatcccccag ataataataa attctgaaaa aaaaaaatca gaatcatggc	180
	atgttaaaac tggatacatt cctagaaata gatggaaact gctcttgcaa aaagcttagc	240
	acatgttaaa rcattttaga aacaatttgc caaagtttat ttagtctagt gatttcgaca	300
20	ggttaaatgg accetttgag atettttte etcaagtaca aaggeteaet tgettaatga	360
	acacagtece agaaaageag ggggetgaae ettggeteta eeatettaee taagatteta	420
	gagttagcaa agggtttcca caagcccaaa ttattatgtt taatcttttc aattatctgt	480
25	gaagcattag gttggtgcaa a	501
30	<210> 385 <211> 501 <212> ADN <213> Homo sapiens	
	<400> 385	
35		
	gaggcatttt atttatgtaa ggaagtcacc taaaagaaaa ttcatttgtt atggtgtggc	60
	tttaagagtt acttactttt aatggaatcc cccagataat aataaattct gaaaaaaaa	120
40	aatcagaatc atggcatgtt aaaactggat acattcctag aaatagatgg aaactgctct	180
	tgcaaaaagc ttagcacatg ttaaagcatt ttagaaacaa tttgccaaag tttatttagt	240
	ctagtgattt ygacaggtta aatggaccct ttgagatctt ttttcctcaa gtacaaaggc	300
45	tcacttgctt aatgaacaca gtcccagaaa agcagggggc tgaaccttgg ctctaccatc	360
	ttacctaaga ttctagagtt agcaaagggt ttccacaagc ccaaattatt atgtttaatc	420
	ttttcaatta totgtgaago attaggttgg tgcaaaagta actgcaggtt ttgacattaa	480
50	aactggcaaa aactgcaata a	501
55	<210> 386 <211> 703 <212> ADN <213> Homo sapiens	
	<400> 386	
60		

5

10	gacaccagtt agcatattgt cgcgggggag aggggtggga aaggcgagag aacagcatgt	60
	ggtccagagg ccatacccag atggaggctg cagtcagctc cccagtcaaa ggcaaagccc	120
	aagtcaaagc catgetteec tettgeecac etgeteeaat gecaeccaca gagagtgege	180
15	cacageteae aggatgeagg tetggttgaa tettaacaat aaetttgtaa gggaggtgte	240
	attageteca tteteetgge aggaggatga ggeteaagge agetaaagge ttttgetgaa	300
20	catcaagtgg tgagccagga ctcaawgcca gatcttcttg tttccctgtt aggtgtatgt	360
20	agcacaactg gtatctgcag actatgctgc tggaagggct agccgtcact gttatcacag	420
	cgactgctgc ctgagatatg ccaggtactg ctgcaagaag tttacaaata taagctcact	480
25	tgatcttcat aacatactac ctaggtacaa tcattatatt tatttgacag atacagagac	540
	agaggggaca cagaaaggat tagtaacttg ccccaaacca cacagccagc aaggtgtaag	600
	tgagcacctg cagtetagat gagacaccac tcaaaacgtc attttctgg cagccccgtg	660
30	cagttaccac agtggtcacc ccagtggtca gctaaaggcc aag	703
35	<210> 387 <211> 704 <212> ADN <213> Homo sapiens <400> 387	
40		
	gcatattgtc gcgggggaga ggggtgggaa aggcgagaga acagcatgtg gtccagaggc	60
	catacccaga tggaggctgc agtcagctcc ccagtcaaag gcaaagccca agtcaaagcc	120
45	atgetteeet ettgeeeace tgeteeaatg eeaceeacag agagtgegee acageteaca	180
	ggatgcaggt ctggttgaat cttaacaata actttgtaag ggaggtgtca ttagctccat	240
	totootggca ggaggatgag gotoaaggca gotaaaggot tttgctgaac atcaagtggt	300
50	gagccaggac tcaatgccag atcttcttgt ttccctgtta ggtgtwtgta gcacaactgg	360

tatctgcaga ctatgctgct ggaagggcta gccgtcactg ttatcacagc gactgctgcc

tgagatatgc caggtactgc tgcaagaagt ttacaaatat aagctcactt gatcttcata

acatactacc taggtacaat cattatattt atttgacaga tacagagaca gaggggacac

agaaaggatt agtaacttgc cccaaaccac acagccagca aggtgtaagt gagcacctgc agtctagatg agacaccact caaaacgtca tttttctggc agccccgtgc agttaccaca

gtggtcaccc cagtggtcag ctaaaggcca agcccaccgt ttct

<210> 388 <211> 975

55

60

420

480

540 600

660

	<212> ADN <213> Homo sapiens	
	<400> 388	
5	gacttaagac aagggggtet taatttgatt attttttet gttttatatg atttetatga	60
	aaactacaac aaaataaagt taattetatt taagtgactt tttaatgaat tgeetttgtt	120
	agaaaaaaaa ttaagtgttt ttgtctcact ctgtcaccca ggctggagca cagtggtgtg	180
10	atcatggctt actgcagcca tgacctcccg ggctcaggtg atcctcccac ctcagcttcc	240
	caaatagatg ggactacagt tgtgtgccac aacgcctggc taatttttgt attttttgt	300
15	agagacaggg tctcaccagg ttgcccaggc tgatcttgaa ctccttggct caagcgatcc	360
15	acccacctca gcctccctga gtgctgggat tacaggcatg agccagcgca cccagccaga	420
	attacatttt tttaaatggt actgtcctag aaaatccagg atgtgcagtg atcaygtatg	480
20	aatgcatgga cctgcacaca caggagtgaa caaaagaccc acccctgcca ggtcaccact	540
20	catateteae eccageeeae getageteae aetecteeee acacaceaet gaeeteatea	600
	ttgctaggta cccacttgac ttctcaacag gttcaagaca attggccttc ctcgtctctt	660
25	ctagaaacac cctcttttct gggctttgtg taacacctgg tctttctccc ctctctggcc	720
25	actteteage ttttettttt etttettet ttttttttt ttttttt	780
	tteetetaca teaagettgt eeaaceeaca geecaggaca getttgaatg eageetaaca	840
30	caaattogta agotttotta aaacattatg agatgtgtgt gtgtgtgtgt gtgtgtgtgt	900
30	gtgtgtgtgt gtgtgtgtgt gtttagctca tcagctatcg ttattgttag tgtattttat	960
	gtgtggccca agaca	975
35		
33		
40	<210> 389	
40	<211> 976	
	<212> ADN <213> Homo sapiens	
45	<400> 389	
45	V4007 369	
50		
50		
55		
JJ		
60		
-		

	gaccetteaa e	gaarrycci	Ligitagaaa	aaaaaccaay	cycccccgcc	ceaececyce	60
5	acccaggetg g	gagcacagtg	gtgtgatcat	ggcttactgc	agccatgacc	tcccgggctc	120
3	aggtgatect e	eccacctcag	cttcccaaat	agatgggact	acagttgtgt	gccacaacgc	180
	ctggctaatt t	ttgtatttt	tttgtagaga	cagggtctca	ccaggttgcc	caggctgatc	240
10	ttgaactcct t	ggctcaagc	gatccaccca	cctcagcctc	cctgagtgct	gggattacag	300
	gcatgagcca g	gcgcacccag	ccagaattac	attttttaa	atggtactgt	cctagaaaat	360
	ccaggatgtg c	cagtgatcac	gtatgaatgc	atggacctgc	acacacagga	gtgaacaaaa	420
15	gacccacccc t	gccaggtca	ccactcatat	ctcaccccag	cccacgctag	ctcacrctcc	480
	tccccacaca c	cactgacct	catcattgct	aggtacccac	ttgacttctc	aacaggttca	540
	agacaattgg c	ecttcctcgt	ctcttctaga	aacaccctct	tttctgggct	ttgtgtaaca	600
20	cctggtattt c	etaccetata	tggccacttc	tcagcttttc	tttttctttc	tttcttttt	660
	ttttttttt t	tttgccact	tectettect	ctacatcaag	cttgtccaac	ccacagccca	720
0.5	ggacagcttt g	gaatgcagcc	taacacaaat	tcgtaagctt	tcttaaaaca	ttatgagatg	780
25	tgtgtgtgtg t	gtgtgtgtg	tgtgtgtgtg	tgtgtgtgtg	tgtgtgttta	gctcatcagc	840
	tatcgttatt g	gttagtgtat	tttatgtgtg	gcccaagaca	tttcttcttc	cagtgtggcc	900
30	cagggaagcc a	aaagattgg	acacccctgc	tctacaacat	ctcaatatag	gcctttttca	960
00							07.0
	tgtttcattc t	agatt					976
35	<210> 390 <211> 801 <212> ADN <213> Homo sapiens						
40	<400> 390						
	atccagacgg t	gcccatact	ccctgctctg	tctagatggt	gtccacattc	cctgctccgt	60
	ctagactgtg c	ccatattcg	ctgctggctg	caaatgcgag	gagttgacag	cagcctcccc	120
45	tttacaaggc a	ggaggtgcc	actgttcgcc	attgtctcca	cctagggctt	cacttgcttt	180
	ctatctgcag a	catcagagg	gacccacatc	tctctgttct	gacacgctgt	gtgttgatgg	240
	cagagtttaa t	tatccacat	gcaatcttac	tttccttatt	cccaagtccg	tagggetgee	300
50	tcatcaaagc a	ttgtaagaa	ctgataacca	tcttctagaa	gtatcatagt	gatattaaga	360
	acacacatca c		_		_	_	420
EE	atgcattgtt g	tcctagcta	atgaatgcat	agagtattgc	ctgcaaaata	ataattgaga	480
55	ttctattttt a	agaagetta	gaacagtaca	tggtgcatag	caaagactct	gtgtatgtga	540
	agccagattt t				-		600
60	gttacttttc c						660
	gtgagtgaag a						720
	tgccttaaaa g						780
65	atatacetaa a					_ = = = = = = = = = = = = = = = = = = =	801

5	<210> 391 <211> 801 <212> AND <213> Homo sapiens	
	<400> 391	
10	ccctgctccg tctagactgt gcccatattc gctgctggct gcaaatgcga ggagttgaca	60
	gcagcetece etttacaagg caggaggtge caetgttege cattgtetee acetaggget	120
	tcacttgctt tctatctgca gacatcagag ggacccacat ctctctgttc tgacacgctg	180
15	tgtgttgatg gcagagttta attatccaca tgcaatctta ctttccttat tcccaagtcc	240
	gtggggctgc ctcatcaaag cattgtaaga actgataacc atcttctaga agtatcatag	300
20	tgatattaag aacacacatc acagatcata gtaaatggct ttaatttttt agcgaaatct	360
	cactactgca aatgcattgt tgtcctagct aatgaatgca yagagtattg cctgcaaaat	420
	aataattgag attctatttt taagaagctt agaacagtac atggtgcata gcaaagactc	480
25	tgtgtatgtg aagccagatt ttaaaaatatg gtaacaagtg tctgaaaata tgtggctcaa	540
	tttgtctccc ggttactttt ccctctcccc ctttaaaatg tagaggaagg agaagaagag	600
30	ataagaggtt tgtgagtgaa gacaagggcc ctttaaggcc tgggaagact aacgccatag	660
	ggatctccct ctgccttaaa aggcacagga atcttagtgg ggaaaaagaa gtggtgataa	720
	atagecagte egtgtgeetg gaatateaaa gteagtgegt geeagggate acaetgeggg	780
35	tcacgtgcac tctgggtctc t	801
40	<210> 392 <211> 601 <212> ADN <213> Homo sapiens	
45	<400> 392	
	ttggcctggg gctgattcct ccaaagcaat gtgtctcttc gcagagtctc ttagagctgc	60
	aaggcagtat gggatcatca gagaggatge taggaagett cagaaatgga ggteetggta	120
50	gaaagggtcc tttggcgtgg cctctgaaga gtccaaatgt gggacaagac cctccgaaag	180
	cggtggcctg gggagccaca ggtggggcag ccagcacgga agagggtggc tttgctacca	240
55	ttgggaaaac ttatcctcca catcctcatg aggcaaacac ctttcctacc ttaccgctcc	300
00	yeagtggeet ecctgttgee ttettattea agactaagae eetetagaat gttetttate	360
	ctgagtccag ctgattgtct atactaatat cagtacgggg tgtagatgag gacaaccagt	420
60	gtgcctggct gccaggcacc ccctccccaa accccaggag tttctggaac attccaactc	480
	tgcttgaggg tatccatgca gcatctacta ctgtgagcag gtggtctgat ctgtggaaaa	540
	cttctatgat tcacctgagg gtaactgccc tttgtgattt gaaagaatga tgctaacaga	600
65	a	601

	<210> 393					
	<211> 601 <212> ADN					
_	<213> Homo sapiens					
5	<400> 393					
	gcagagtete tta	agagetge aaggeagta	gggatcatca	gagaggatgc	taggaagctt	60
10	cagaaatgga ggl	tcctggta gaaagggtc	tttggcgtgg	cctctgaaga	gtccaaatgt	120
	gggacaagac cct	tccgaaag cggtggcct	g gggagccaca	ggtggggcag	ccagcacgga	180
4-	agagggtggc tt	tgctacca ttgggaaaa	ttatcctcca	catecteatg	aggcaaacac	240
15	ctttcctacc tta	accgctcc tcagtggcc	ccctgttgcc	ttcttattca	agactaagac	300
	yctctagaat gti	tctttatc ctgagtcca	g ctgattgtct	atactaatat	cagtacgggg	360
20	tgtagatgag gad	caaccagt gtgcctggc	gccaggcacc	ccctccccaa	accccaggag	420
	tttctggaac at	tecaacte tgettgagge	g tatocatgca	gcatctacta	ctgtgagcag	480
	gtggtctgat ctg	gtggaaaa cttctatga	tcacctgagg	gtaactgccc	tttgtgattt	540
25	gaaagaatga tgo	ctaacaga aagtgttgt	: atttctgaac	ttttctgaac	tctgcagcga	600
	g					601
30						
35	<210> 394 <211> 1001 <212> ADN <213> Homo sapiens					
	<400> 394					
40						
45						
50						
55						
60						

	agatttggat	ggggacacaa	aaccaaacca	tatcataggt	taaattgtgt	ctcccacccc	60
5	aaaaatgtgt	atgttgaagt	cctaaccttc	agtactcaga	atgtgacatt	atttggaaat	120
	agggtcattg	cagatggagt	tagttaagat	gaggtcatta	ggatgagtcc	ctaatccaat	180
	atgactggtg	ctcttacaaa	aaggggaagt	ttggacacag	agccatgcac	atgggtggga	240
10	agaatcccaa	atgaacggat	aggcagaggg	ttggagagat	gcatcaacaa	ggaacaccaa	300
	agattgccag	caacccccag	aagctggggg	agaggcctgg	aacagattct	ccctcacage	360
	ctgagaggaa	ccaagctggc	tgacaccttg	atctcaggtt	accggccttg	agaactgaga	420
15	gaccctgggt	ttctgttgtt	taagcctctc	agggtgcagc	actttattat	ggaagcctga	480
	gctgactaat	acaggtgtct	ytatatctca	ctgagggaaa	gtgacaggaa	agtaagaacc	540
20	atttatgtcc	aagagtccag	aggagtcaac	cagattctgg	gggaaaagaa	ggtacaatgc	600
20	tggcctctcc	atgcagccta	gtccccaaca	cttgtagggc	ccagggcaag	atctaaagca	660
	ctctctcacc	tatgcatcta	tatgctgtaa	ctcagataaa	caaactatta	aataatatat	720
25	gtgtcttgcc	tctcaatctg	acaattacac	ctttataata	gcaacatagg	aaaataacta	780
	aaactatggt	ttttaggcaa	ccaaatacca	gcaaaatgta	ataattccta	ttattagata	840
	tgtttaagtg	ttctgctggt	gggtcagcat	ctttggtaga	gtcataaaat	taaaatgtac	900
30	ataattaatt	aaatattata	tgtttattcc	ctaacattta	tttctgtcat	ttctttttc	960
	ttttttcag	acagtctcac	tcttttgccc	aggccggagt	g		1001
	ttttttcag	acagteteae	tettttgece	aggccggagt	g		1001
35		acagtctcac	tcttttgccc	aggccggagt	g		1001
	<210> 395 <211> 1001	acagtctcac	tcttttgccc	aggccggagt	g		1001
35	<210> 395		tcttttgccc	aggccggagt	g		1001
	<210> 395 <211> 1001 <212> ADN		tcttttgccc	aggccggagt	g		1001
35	<210> 395 <211> 1001 <212> ADN <213> Homo sapier		tcttttgccc	aggccggagt	g		1001
35	<210> 395 <211> 1001 <212> ADN <213> Homo sapier	ıs				ctcagaatgt	1001
35	<210> 395 <211> 1001 <212> ADN <213> Homo sapier <400> 395	os caccccaaaa	atgtgtatgt	tgaagteeta	accttcagta		
35	<210> 395 <211> 1001 <212> ADN <213> Homo sapier <400> 395	caccccaaaa ggaaataggg	atgtgtatgt tcattgcaga	tgaagtoota tggagttagt	accttcagta taagatgagg	tcattaggat	60
35	<210> 395 <211> 1001 <212> ADN <213> Homo sapier <400> 395 ttgtgtctcc gacattattt	caccccaaaa ggaaataggg tccaatatga	atgtgtatgt tcattgcaga ctggtgctct	tgaagtccta tggagttagt tacaaaaagg	accttcagta taagatgagg ggaagtttgg	tcattaggat	60 120
35 40 45	<210> 395 <211> 1001 <212> ADN <213> Homo sapier <400> 395 ttgtgtctcc gacattattt gagtccctaa	caccccaaaa ggaaataggg tccaatatga gtgggaagaa	atgtgtatgt tcattgcaga ctggtgctct tcccaaatga	tgaagteeta tggagttagt tacaaaaagg acggatagge	accttcagta taagatgagg ggaagtttgg agagggttgg	tcattaggat acacagagcc agagatgcat	60 120 180
35 40 45	<210> 395 <211> 1001 <212> ADN <213> Homo sapier <400> 395 ttgtgtctcc gacattattt gagtccctaa atgcacatgg	caccccaaaa ggaaataggg tccaatatga gtgggaagaa caccaaagat	atgtgtatgt tcattgcaga ctggtgctct tcccaaatga tgccagcaac	tgaagtccta tggagttagt tacaaaaagg acggataggc ccccagaagc	accttcagta taagatgagg ggaagtttgg agagggttgg tgggggagag	tcattaggat acacagagcc agagatgcat gcctggaaca	60 120 180 240
35 40 45	<210> 395 <211> 1001 <212> ADN <213> Homo sapier <400> 395 ttgtgtctcc gacattattt gagtccctaa atgcacatgg caacaaggaa	caccccaaaa ggaaataggg tccaatatga gtgggaagaa caccaaagat	atgtgtatgt tcattgcaga ctggtgctct tcccaaatga tgccagcaac	tgaagtccta tggagttagt tacaaaaagg acggataggc ccccagaagc	accttcagta taagatgagg ggaagtttgg agagggttgg tgggggagag	tcattaggat acacagagcc agagatgcat gcctggaaca	60 120 180 240 300
35 40 45	<210> 395 <211> 1001 <212> ADN <213> Homo sapier <400> 395 ttgtgtctcc gacattattt gagtccctaa atgcacatgg caacaaggaa	caccccaaaa ggaaataggg tccaatatga gtgggaagaa caccaaagat	atgtgtatgt tcattgcaga ctggtgctct tcccaaatga tgccagcaac	tgaagtccta tggagttagt tacaaaaagg acggataggc ccccagaagc	accttcagta taagatgagg ggaagtttgg agagggttgg tgggggagag	tcattaggat acacagagcc agagatgcat gcctggaaca	60 120 180 240 300

		gccttgagaa	ctgagagacc	ctgggtttct	gttgtttaag	cctctcaggg	tgcagcactt	420
_		tattatggaa	gcctgagctg	actaatacag	gtgtctctat	atctcactga	gggaaagtga	480
5		caggaaagta	agaaccattt	rtgtccaaga	gtccagagga	gtcaaccaga	ttctggggga	540
		aaagaaggta	caatgctggc	ctctccatgc	agcctagtcc	ccaacacttg	tagggcccag	600
10		ggcaagatct	aaagcactct	ctcacctatg	catctatatg	ctgtaactca	gataaacaaa	660
		ctattaaata	atatatgtgt	cttgcctctc	aatctgacaa	ttacaccttt	ataatagcaa	720
		cataggaaaa	taactaaaac	tatggttttt	aggcaaccaa	ataccagcaa	aatgtaataa	780
15		ttcctattat	tagatatgtt	taagtgttct	gctggtgggt	cagcatcttt	ggtagagtca	840
		taaaattaaa	atgtacataa	ttaattaaat	attatatgtt	tattccctaa	catttatttc	900
		tgtcatttct	tttttctttt	tttcagacag	tctcactctt	ttgcccaggc	cggagtgcag	960
20		tggcgtgatc	tcagctcact	gcaacctccg	cctcccaggt	t		1001
25	<212>	1218	ns					
30	<400>	∙ 396						
35								
40								
45								
50								
55								
60								

	gataaagaaa	ggtcatcctc	aatttcaatt	tactttatat	attctttgag	aggtaaccgt	60
_	gtcttatctc	cccccaaaat	tccttttaaa	aggaaatttc	caaagatgct	ctattctgtg	120
5	aataaagcat	tgtgccacag	ccgagaggat	ccagcaatga	acatgagatt	gcccttgatt	180
	cataaggtct	acaagctagt	aaggatagag	aacactttaa	aataaaaaaa	aatagtttt	240
10	ggtatattta	tattgtgtat	ttggtataat	tgagttttct	acattctcat	atatgtattt	300
10	catattttga	agaatatgca	gaaaataatc	aagcttccaa	ataaacattt	ttttttaaga	360
	actgcacaag	tgagaattta	ggagaacaga	agatcagagg	gctgcacrgg	ctaaactaga	420
15	caatgagccc	atgcaagtaa	gttaagagga	gaagcgggta	agtatgcacc	tgctttgtct	480
	aggtgaccag	caagcattta	gcaatagtct	tttcaaaaca	acagctcctt	atattgtcaa	540
	atctcaagaa	gtaatattta	tggttaaaaa	aatctcagac	ccaacagaaa	atccatgagg	600
20	gagatggttt	tggaaacgca	gaattttcag	ctatgatatc	cttttataaa	caagcagata	660
	ctttccccaa	atataattca	atgcctcagt	ctacctcctg	ctgaaaccac	taacaccacc	720
	actaaagctc	gactatatgg	gaaaatttag	gtgtcacttt	caaaatatgt	cctagcataa	780
25	aggcaattaa	aaaatgtaaa	gcaccaaaga	tgcaagagag	acataaatga	ataaaatatc	840
	tggcacgaaa	gttttcaaaa	gcttgggaat	ctgattcaaa	aaaaaataaa	atcagccaag	900
30	cagtgttagt	aagttagcca	atcaggtttc	aagaaggcag	aaagacaaaa	tcaacatcac	960
30	cagcatttga	caccgctact	gggggaaaaa	agggggatgg	agttcgttta	tggccttttt	1020
	aaaaatocca	ttacttggac	aanaotrata	асапапаапс	actocttatt	teacttetot	1080
35	_	tatcagagee			_		1140
	-		-	-	_		
		ggagatggta	araggeetge	Latggatgac	accetteetg	acataagttg	1200
40	tttcttgctt	tttctccc					1218

<210> 397 <211> 1218 45 <212> ADN <213> Homo sapiens

<400> 397

50

55

	gataaagaaa	ggtcatcctc	aatttcaatt	tactttatat	attctttgag	aggtaaccgt	60
E	gtcttatctc	ccccaaaat	tccttttaaa	aggaaatttc	caaagatgct	ctattctgtg	120
5	aataaagcat	tgtgccacag	ccgagaggat	ccagcaatga	acatgagatt	gcccttgatt	180
	cataaggtct	acaagctagt	aaggatagag	aacactttaa	aataaaaaaa	aatagtttt	240
10	ggtatattta	tattgtgtat	ttggtataat	tgagttttct	acattctcat	atatgtattt	300
	catattttga	agaatatgca	gaaaataatc	aagcttccaa	ataaacattt	ttttttaaga	360
	actgcacaag	tgagaattta	ggagaacaga	agatcagagg	gctgcacggg	ctaaactaga	420
15	caatgagece	atgcaagtaa	gttaagagga	gaagcgggta	agtatgcacc	tgctttgtct	480
	aggwgaccag	caagcattta	gcaatagtct	tttcaaaaca	acagotoott	atattgtcaa	540
	atctcaagaa	gtaatattta	tggttaaaaa	aatotcagac	ccaacagaaa	atccatgagg	600
20	gagatggttt	tggaaacgca	gaattttcag	ctatgatatc	cttttataaa	caagcagata	660
	ctttccccaa	atataattca	atgcctcagt	ctacctcctg	ctgaaaccac	taacaccacc	720
. -	actaaagctc	gactatatgg	gaaaatttag	gtgtcacttt	caaaatatgt	cctagcataa	780
25	aggcaattaa	aaaatgtaaa	gcaccaaaga	tgcaagagag	acataaatga	ataaaatatc	840
	tggcacgaaa	gttttcaaaa	gcttgggaat	ctgattcaaa	aaaaaataaa	atcagccaag	900
30	cagtgttagt	aagttagcca	atcaggtttc	aagaaggcag	aaagacaaaa	tcaacatcac	960
	cagcatttga	caccgctact	gggggaaaaa	agggggatgg	agttcgttta	tggccttttt	1020
	aaaaatgcca	ttacttggac	aagagtcata	acagagaagc	actgcttatt	tcagttctgt	1080
35	taactgtaaa	tatcagagcc	aacacccaga	aaaagttcac	cattagccaa	ttggttttgc	1140
	ctggccaatt	ggagatggta	ataggcctgc	tatggatgac	attctttctg	atataagttg	1200
	tttcttgctt	tttctccc					1218
40							

40

<210> 398 <211> 1072 <212> ADN

45 <213> Homo sapiens

<400> 398

50

55

60

5	cacttaaaag	ctctggaaac	ctacgagatt	atctttaaaa	tcgtggggac	caaatggctg	60
·	gccaaggact	tgtttctgta	caggtgcgat	tgcttctctg	ctgtgttcct	ttttattacc	120
	caagtaaccg	gtatttcagc	tcacaagatg	agaaaatgac	aaacaggcaa	aataagcgta	180
10	gggctgtgtg	tgcaacagtt	watcataaag	ccatcaccag	gagacgtcac	tgggcgcctt	240
	ctggagtcta	tccgtcctaa	ctttgctttc	tttcttttt	tttttaaatt	taagttctag	300
4-	ggtacatatg	cacaacgtgc	aggtttgtca	cacatgtata	catgtgccat	gttggtgtgc	360
15	tgcacccatt	aactcgtcat	ttacattagg	tgtatctcct	agtgctatcc	ctccccactc	420
	ccccgacccc	atgacaggcc	ccagtgtgtg	atgttcccct	tcctgtgtcc	aagtgttctc	480
20	attgttcaat	ccccacctat	gagtgagaac	atgccatgtt	tggttttttg	tccttgcgat	540
	agtttgctga	gaatgatggt	ttccagcttc	atccatgtcc	ctacaaagga	catgaactca	600
	tcctttttta	tggctacata	gtattccatg	gtgtatatgt	gccacatttt	cttaatccag	660
25	tctatcatcg	atggacattt	gggttggttc	caagtctttg	ctattgtgac	tagtgttgca	720
	ataaatatac	gtgtggatgt	gtctttatag	cagtttgatt	tataatcctt	tgggtatata	780
30	cccagtaacg	ggatggctgg	gtcaaatggt	atttctagtt	ctagatcctt	gaggaatcgc	840
	cacactgact	tccacaatgg	ttgaactagt	taacagtccc	accaacagtg	tgaaagtgtt	900
	cctatttctc	cacatcctct	ccagcacccc	attttgactt	tgctataagg	gaactttagc	960
35	atctgaacgt	gcggacagct	tcattgctgg	cttgttacgt	aacagtgttt	tgtgaccatc	1020
	tcatgtcata	cccacacatc	gaaaccagca	gtttaaatgg	ccagctgttt	gc	1072

<210> 399 <211> 1072 <212> ADN <213> Homo sapiens

<400> 399

_	agattatctt	taaaatcgtg	gggaccaaat	ggctggccaa	ggacttgttt	ctgtacaggt	60
5	gcgattgctt	ctctgctgtg	ttccttttta	ttacccaagt	aaccggtatt	tcagctcaca	120
	agatgagaaa	atgacaaaca	ggcaaaataa	gcgtagggct	gtgtgtgcaa	cagtttatca	180
10	taaagccatc	accaggagac	rtcactgggc	gccttctgga	gtctatccgt	cctaactttg	240
	ctttcttct	tttttttt	aaatttaagt	tctagggtac	atatgcacaa	cgtgcaggtt	300
	tgtcacacat	gtatacatgt	gccatgttgg	tgtgctgcac	ccattaactc	gtcatttaca	360
15	ttaggtgtat	ctcctagtgc	tatccctccc	cactcccccg	accccatgac	aggccccagt	420
	gtgtgatgtt	ccccttcctg	tgtccaagtg	ttctcattgt	tcaatcccca	cctatgagtg	480
	agaacatgcc	atgtttggtt	ttttgtcctt	gcgatagttt	gctgagaatg	atggtttcca	540
20							
		+ ~ + ~ ~ ~ + ~ ~ ~ ~		nakankaakk	***		600
	getteateea	Egeccetaca	aaggacacga	actcatcctt	cccaeggec	acatagtatt	
25	ccatggtgta	tatgtgccac	attttcttaa	tccagtctat	catcgatgga	catttgggtt	660
	ggttccaagt	ctttgctatt	gtgactagtg	ttgcaataaa	tatacgtgtg	gatgtgtctt	720
	tatagcagtt	tgatttataa	tcctttgggt	atatacccag	taacgggatg	gctgggtcaa	780
30	atggtatttc	tagttctaga	tccttgagga	ategecacae	tgacttccac	aatggttgaa	840
	ctagttaaca	gtcccaccaa	cagtgtgaaa	gtgttcctat	ttctccacat	cctctccagc	900
	accccatttt	gactttgcta	taagggaact	ttagcatctg	aacgtgcgga	cagcttcatt	960
35	gctggcttgt	tacgtaacag	tgttttgtga	ccatctcatg	tcatacccac	acatcgaaac	1020
	cagcagttta	aatggccagc	tgtttgcttg	tgaaaactcc	cctcggctgg	ct	1072
40	<210> 400 <211> 948 <212> ADN <213> Homo sapien	s					
45	<400> 400						

5	aaattttctt	tgctgaagtg	tcttttcaaa	tttttgcctt	ttaaaaaaaat	tgagttgtct	60
5	taatattgag	tcgtaaggtt	ctttatatat	tctggctata	tgtcctttgt	cagatatatg	120
	tcttgcaaat	attttctccc	agtctgtggc	ttaccttttc	catttttaaa	ctgtgtttta	180
10	taaaaaaaag	aagtttttt	agatcaaagt	ccattttaat	cattttttct	tttatagttc	240
	atgctttttg	tgtctcattt	aagaaatctt	tecctactec	aatgtcacaa	atatattete	300
	tgagaagctt	aacagttttt	gcaactaaat	ttaggtctat	gatccgtttt	gacttaattt	360
15	ttccatatgg	tgtcatgtaa	cagttgagat	ttttttccta	tgcaggcaga	tattcaatgg	420
	ttcaagtacc	atttattgaa	atggctatct	tttctccact	gaatgacctt	ggcactttta	480
	tcaaacatca	actggccaca	yacaggtgag	tctacttctg	gacacttacc	ctgttccatt	540
20	catctgtata	tctctatcct	tacaccaaca	cgcatagtct	tgaatactag	ggcaagttaa	600
	ttttaagatg	tctcctggat	atgtaaaaat	tatatctgag	ttgaactaca	gtttatttat	660
0.F	atatccaggc	agcaaataaa	tgtgagaatc	tggaggtgag	ggaagagatc	agagatacca	720
25	ccttggaaac	catcaattta	gagatgattc	ttaaggcagg	ggactaaggg	acactctgta	780
	ggacacagac	atagagaagg	gaaggggctg	cggcctgaac	accccacctg	catgeteact	840
30	cacatacttt	cgtcggcctg	tgttaacgaa	gtgctgggtc	tccccagcct	ctctcatctg	900
	taagcagtgc	caacaacgtc	caacacagtt	ccatccaatt	tggatctg		948

<210> 401 <211> 920 <212> ADN

<213> Homo sapiens

<400> 401

_	aatttttgcc 1	ttttaaaaaa	attgagttgt	cttaatattg	agtcgtaagg	ttctttatat	60
5	attetggeta 1	tatgtccttt	gtcagatata	tgtcttgcaa	atattttctc	ccagtctgtg	120
	gcttaccttt (tccattttta	aactgtgttt	tataaaaaaa	agaagtttt	ttagatcaaa	180
10	gtccatttta a	atcattttt	cttttatagt	tcatgctttt	tgtgtctcat	ttaagaaatc	240
	tttccctact (ccaatgtcac	aaatatattc	tctgagaagc	ttaacagttt	ttgcaactaa	300
	atttaggtct a	atgatccgtt	ttgacttaat	ttttccatat	ggtgtcatgt	aacagttgag	360
15	attttttcc 1	tatgcaggca	gatattcaat	ggttcaagta	ccatttattg	aaatggctat	420
	cttttctcca (ctgaatgacc	ttggcacttt	tatcaaacat	caactggcca	cacacaggtg	480
	agtctacttc (tggacactta	ycctgttcca	ttcatctgta	tatctctatc	cttacaccaa	540
20	cacgcatagt (cttgaatact	agggcaagtt	aattttaaga	tgtctcctgg	atatgtaaaa	600
	attatatctg a	agttgaacta	cagtttattt	atatatccag	gcagcaaata	aatgtgagaa	660
	tctggaggtg a	agggaagaga	tcagagatac	caccttggaa	accatcaatt	tagagatgat	720
25	tcttaaggca (ggggactaag	ggacactctg	taggacacag	acatagagaa	gggaaggggc	780
	tgcggcctga a	acaccccacc	tgcatgctca	ctcacatact	ttagtaggaa	tgtgttaacg	840
30	aagtgctggg 1	tctccccagc	ctctctcatc	tgtaagcagt	gccaacaacg	tccaacacag	900
00	ttccatccaa 1	tttggatctg					920
	<210> 402						
35	<211> 701 <212> ADN						
	<212> ADIN <213> Homo saniens	9					

<400> 402

5	tgtgctgctt	ccattccata	ggcacctgat	cctaagtgtt	aaccaatccc	agaactctcc	60
	ccttatttct	tgctgcatgt	tttgaattga	tgtgataaac	aatgtgattc	gagcgtctta	120
	actcagccta	tgagcctctc	tattctgtga	ctgctggaat	aggctgcttg	gccatgttct	180
10	tggaagctac	caccatatca	rggtaatttc	ccacacaaca	ttccagcccc	tgctttcccc	240
	totggootta	tctagggcca	ttccccaact	caggtgaatg	cagactccaa	atgtactgag	300
	ctgtgtgcag	gggccaggtg	caaatgcttt	ctgtgcatct	gcacatgctg	ttctacctgg	360
15	gaagtccttt	cctcctttca	cctattttta	octtaaacct	cagacatcat	ctaccctgga	420
	aagteettee	tgacctcacg	catctaagta	ggtaccaca	ataatcccta	tccatgcctt	480
20	ctatagtact	taacatggtg	acctttaatt	gttcatttac	ttagctctct	gctctcccac	540
20	actgtgaact	ccttacaaac	agggaatgtc	atctctgaat	gaatctttca	tctccatgta	600
	acacatgcct	ccaaccctac	ctagcacaca	atctggcata	taacaggcac	tcaataaacc	660
25	ttcaatgaat	gccttgatca	agtacaagga	acataagcaa	a		701
30	<210> 403 <211> 701 <212> ADN <213> Homo sapier	ns					
35	<400> 403						
	ttaaccaatc	ccagaactct	ccccttattt	cttgctgcat	gttttgaatt	gatgtgataa	60
	acaatgtgat	tcgagcgtct	taactcagcc	tatgagcctc	tctattctgt	gactgctgga	120
40	ataggctgct	tggccatgtt	cttggaaget	accaccatat	cagggtaatt	tcccacacaa	180
	cattccagcc	cctgctttcc	yctctggcct	tatctagggc	cattccccaa	ctcaggtgaa	240
45	tgcagactcc	aaatgtactg	agetgtgtge	aggggccagg	tgcaaatgct	ttctgtgcat	300
40	ctgcacatgc	tgttctacct	gggaagtcct	tteeteettt	cacctatttt	taccttaaac	360
	ctcagacatc	atctaccctg	gaaagtcctt	cctgacctca	cgcatctaag	taggtccccc	420
50	ccataatccc	tatccatgcc	ttctatagta	cttaacatgg	tgacctttaa	ttgttcattt	480
	acttagctct	ctgctctccc	acactgtgaa	ctccttacaa	acagggaatg	tcatctctga	540
	atgaatcttt	catctccatg	taacacatgc	ctccaaccct	acctagcaca	caatctggca	600
55	tataacaggc	actcaataaa	ccttcaatga	atgccttgat	caagtacaag	gaacataagc	660
	aaatttcctg	tggaaaaaaa	gaattgtatt	aagttctttg	g		701
60							
	<210> 404						
65	<211> 601 <212> ADN <213> Homo sapiel	ns					
	_10 1101110 040101						

<400> 404

5	atgttcactt acacatettt etttcactta attgaateet ttatttttgt ettagaatet	60
	tctgaatatt gaaaacagag aactatactg gaagaacata gtgtattaag actcatggag	120
	agggagatgt gatactgtgt cactgaggtc gttccagtca taggagaaat gttaccactg	180
10	gattgaggtc tggtacattt taaaagatga tttaattcta tgatatgtgt tcaacttgca	240
	ctaggatagt ttttactttc acctttgttc catgcaccgc gcaaatacct gggaaccctt	300
4.5	rttgcccaac tcaagagcca gagtcctctg tcatcatttt gcctctctcc taagtgacag	360
15	gactgagtgc agacttggtg tttgtgggtg aggcatgtgg actgacaggc aggcttcagt	420
	ttatttagcg agtgtgagcc ctggcaggaa gattctcttt ctctgcttgc caggttgagg	480
20	aggcctcatt aagcagtttg aacttgtggt tttggcgtgt ctagtcctgg tgcaggtggc	540
	ttggtatect cacaggeatt tetttggeet caccettggg gtgactgtte aettgtgttt	600
	a	601
25		
30	<210> 405 <211> 601 <212> ADN <213> Homo sapiens <400> 405	
35	tcttctgaat attgaaaaca gagaactata ctggaagaac atagtgtatt aagactcatg	60
	gagagggaga tgtgatactg tgtcactgag gtcgttccag tcataggaga aatgttacca	120
	ctggattgag gtctggtaca ttttaaaaga tgatttaatt ctatgatatg tgttcaactt	180
40	gcactaggat agtttttact ttcacctttg ttccatgcac cgcgcaaata cctgggaacc	240
	cttgttgccc aactcaagag ccagagtcct ctgtcatcat tttgcctctc tcctaagtga	300
4.5	saggactgag tgcagacttg gtgtttgtgg gtgaggcatg tggactgaca ggcaggcttc	360
45	agtttattta gegagtgtga gecetggeag gaagattete tttetetget tgeeaggttg	420
	aggaggcete attaageagt ttgaacttgt ggttttggeg tgtetagtee tggtgeaggt	480
50	ggcttggtat cctcacaggc atttctttgg cctcaccett ggggtgactg ttcacttgtg	540
	tttgagcggc tgggactcag taggttcact ggagtaggta tttctttaga gccactggcg	600
	g	601
55		
60	<210> 406 <211> 701 <212> ADN <213> Homo sapiens <400> 406	

	cageteettg geaageetge teetteeeca geaaatggaa acaceattet gaacacetgg	60
5	gcattgtctc tgatgtccct tttcatctcc ctactctcac acaatccage tgcctctctg	120
5	cettecaegg atattaagaa egteeaceat eteetgagte caagecette teaeteacet	180
	ctttcttgaa ctaatttctt yctgtttttt tccagtcctc ccttctgttc atgtctctcc	240
10	tetgeacact tecattitet ggiteagaaa atgicacegi eecagicaca etigeettat	300
	ggctgttgtg tcataaatac agttgacact tgaacaacat gggtttgaac tgcatggatt	360
	cacttataca catatttttt caatacaaat atatttaaaa attttggaga tttgcaacaa	420
15	tttgaaaaaa cttgcagatg aacagcatag catagaaata ttgaaaaaatt aagaaaaagg	480
	tatgtcatga atgcataaaa catatgcaga tactagtcta ttttaacctt tactgccata	540
	aaatatacac aaatotatta taaaaggtta aagtttatca aagottatgo acacaaacac	600
20	ttatagacca tatagggagc cattcagtag agagaaatgt aagcgaacgt aaaggtgtgc	660
	tatttaatca caactgcata cacactgtac cactgcacta a	701
25	<210> 407 <211> 701 <212> ADN <213> Homo sapiens	
30	<400> 407	
	gggcattgtc totgatgtcc ottttcatct coctactotc acacaatcca gotgcototc	60
35	tgccttccac ggatattaag aacgtccacc atctcctgag tccaagccct tctcactcac	120
	ctctttcttg aactaatttc tttctgtttt tttccagtcc tcccttctgt tcatgtctct	180
	cctctgcaca cttccatttt stggttcaga aaatgtcacc gtcccagtca cacttgcctt	240
40	atggctgttg tgtcataaat acagttgaca cttgaacaac atgggtttga actgcatgga	300
	ttcacttata cacatatttt ttcaatacaa atatatttaa aaattttgga gatttgcaac	360
	aatttgaaaa aacttgcaga tgaacagcat agcatagaaa tattgaaaaa ttaagaaaaa	420
45	ggtatgtcat gaatgcataa aacatatgca gatactagtc tattttaacc tttactgcca	480
	taaaatatac acaaatctat tataaaaggt taaagtttat caaagcttat gcacacaaac	540
	acttatagac catataggga gccattcagt agagagaaat gtaagcgaac gtaaaggtgt	600
50	getatttaat cacaactgca tacacactgt accactgcac taatttcaga gecaceteet	660
	gttgtgattg tggtgagccc aagtgttgtg aggatctgct t	701
55	<210> 408 <211> 501	
	<212> ADN	
60	<213> Homo sapiens <400> 408	
	100	

5	caggtagggt	aagcaaatga	acacaaattc	aaactcggaa	ttcaaaacca	gcctctgtgt	60
	attectgagg	accatactgt	ctgctaagtg	tagagaaagg	cacatcctgg	ttcaacagca	120
	gagaaagcaa	acaggaggca	ctttctgtga	gtcatctcca	ccacagggcc	ctctctttg	180
10	tgatccagcg	atacttgttc	acagtcaaag	cccaggaaga	gtggaaagat	taacctttgt	240
	gagecaaaco	rtgtgacact	tgattacttg	acagaactaa	teettetgte	ctgatgacag	300
4.5	aaattcaact	acacaggtac	atgcaagcta	atatctgttg	taatgcctcc	cagtttctct	360
15	ggagaattco	ttagtttcct	ggacatetet	gaaatgcaaa	gttttggcaa	cgagtctctg	420
	aattaaccto	tgaaaatctc	acccagccaa	gatggccttc	ttgagaagac	tgaagaacat	480
20	ggttggtttc	aggctgagct	g				501
25	<210> 409 <211> 604 <212> ADN <213> Homo sapie	ns					
	<400> 409						
30	cactttctgt	gagtcatctc	caccacaggg	ccctctcttt	tgtgatccag	cgatacttgt	60
	tcacagtcaa	agcccaggaa	gagtggaaag	attaaccttt	gtgagccaaa	ccgtgtgaca	120
35	cttgattact	tgacagaact	aatccttctg	tcctgatgac	agaamttcaa	ctacacaggt	180
	acatgcaago	: taatatotgt	tgtaatgcct	cccagtttct	ctggagaatt	ccttagtttc	240
	ctggacatct	ctgaaatgca	aagttttggc	aacgagtctc	tgaattaacc	tctgaaaatc	300
40	tcacccagco	: aagatggcct	tcttgagaag	actgaagaac	atggttggtt	tcaggctgag	360
	ctggaagtgç	tttacctccc	aggagaggtt	ccccacagtg	gtgtttaagg	catggggtgg	420
45	accaacacca	ggaagactca	gacatcacac	cacccacctt	caactcagtc	acatccacct	480
10	acattttctç	aaaacaaag	gcagtctccc	caaaaagcac	tgagactctt	gtgtaggtaa	540
	tctgagcaga	caccaacttc	ccagggcttc	cttttatcca	ggagagcttg	gctgttcttt	600
50	ttaa						604
55	<210> 410 <211> 701 <212> ADN <213> Homo sapie <400> 410	ns					

5		
	ctccttccgc catggttgta agtttcctga cgcctcccag tcatgcttcc cgtacagcct	60
	gcagaactgc gagtcaatga aatccctttt ctccacaaat tacccagtct caggtagttc	120
10	cttacagcag cgtgggaaca gactcaagag ctgaagcaag caaggccgtt agcaaggagc	180
	gggctgggga gagcactcca ggcagaggga acagccaggg ccagggcctt gagacagacg	240
	tgagccagga tatctgagga acagcagaga agccagtgtg gccgcagcta aatgaggaac	300
15	aatgtgtgag ttccctgggg cggccaaaac aaacaccacg gacgggggcc ttcaaccaca	360
	gacacegatt tecteacage tetggaggeg aaaagteeaa gaaaaetgea eggagtatet	420
	atgaggccct gatggagacc tgacctggtc cacacccatg gcctggcaag ctagatgggg	480
20	tgaattttca cotgocacag yogcaagtca aagocacogg ottototot otoootooca	540
	ttgctcctga cagccagggt taatattttg cctcatgtaa acagggaggc atccacccga	600
	gaatotocco toagoocaca taagototgo agagagggot gtgttgotoc agttoccaco	660
25	tggacatgag cactttgaag ggcagcttcc ctcccggggt c	701
30		
	<210> 411 <211> 612	
35	<212> ADN	
33	<213> Homo sapiens	
	<400> 411	
40		
	gggetgggga gagcaeteca ggeagaggga acageeaggg ecagggeett gagacagaeg	60
	tgagccagga tatctgagga acagcagaga agccagtgtg gccgcagcta aatgaggaac	120
45	aatgtgtgag ttccctgggg cggccaaaac aaacaccacg gacgggggcc ttcaaccaca	180
	gacaccgatt teeteacage tetggaggeg aaaagtecaa gaaaactgea eggagtatet	240
	atgaggeeet gatggagaee tgacetggte cacacecatg geetggeaag etagatgggg	300
50	tgaattttca cctgccacag tcgcaagtca aagccaccgg cttctctctt ctccctccca	360
	ttgctcctga cagccagggt taatattttg cctcatgtaa acagggaggc ayccacccga	420
	gaateteece teageeeaca taagetetge agagaggget gtgttgetee agtteeeace	480
55	tggacatgag cactttgaag ggcagcttcc ctcccggggt ctggctgagc tcagggtagg	540
	cgtcagtctg catggattgg atggaggaag gctgtgcgtg gcaggagatg acactgccct	600
60	tgggctgtgt gg	612
60		

	<210> 412 <211> 1001 <212> ADN <213> Homo sapiens	S					
5	<400> 412						
	ttggggaagg	aagcactggg	gggaaggaag	cactgggctt	gggacagggc	tgggcgctgc	60
10	ctcttcactg	gaccatgaca	aggttgttac	ctcaccaagg	agaggtgcaa	aaagcttagg	120
	ggcttggatt	tctagatttc	agtgccaact	atgccactta	ctggctttat	ccttggggaa	180
	tttatctact	ctgtgaccct	cagtttttt	atcttaatta	ttaatacata	cctcataatg	240
15	tgactgtgag	gattcactta	ataatatatg	gaaaaccata	gaatagtgcc	cagcatctag	300
	gaagtgccac	agcccccttc	agaagctagt	gaaacctgca	gaccactttt	cagagtgata	360
20	ttattatttt	tttctaggtt	tactgagtta	taattgaaaa	aataaaaatg	gaatatagat	420
20	gtacaacatg	aagctctgat	gcatatatcc	attgtgaaat	gatgaccaca	atcaagctaa	480
	ttaatgttat	ctatcacttc	wcatagttca	acctttttt	gtggtgagag	tactgaagat	540
25	ctactctctt	agcaattttc	aaatctaaaa	tacattatta	ttaacacagt	cactgtgccg	600
25	tacgttagct	ctgaggacct	tattcatttt	atacctaaaa	gtctgtatcc	tttaaccaac	660
	ctctcctaat	ttcccactgt	catccctact	gccacctctg	gtaaccagcc	ttctgctctg	720
30	tttctgagtc	caaccttctt	agattccaca	tatgagtgag	atcatgctgt	gcagtgtttg	780
	ttttctgtg	tctggcttgc	tttcacttag	cataatgtcc	tccaggtcca	cccatgttgt	840
	tgcaaatggc	agaatcttct	tcttgttaaa	gactgaataa	tatccctgtg	tgtgcgtgca	900
35	tgtgtgtgtg	tgtttgtgtg	tgtgtgtgta	tcacattttc	ttcatccatt	catccatcaa	960
	tggacactaa	gcactaaggt	tgattccgta	tcttggctat	t		1001
40	<210> 413 <211> 2480 <212> ADN						
45	<213> Homo sapiens	3					
	<400> 413						
50	aacattactt	. ggggaaggaa	gcactggggg	gaaggaagca	ctgggcttgg	gacagggctg	60
55							
60							

ggcgctgcct	cttcactgga	ccatgacaag	gttgttacct	caccaaggag	aggtgcaaaa	120
agcttagggg	cttggatttc	tagatttcag	tgccaactat	gccacttact	ggctttatcc	180
ttggggaatt	tatctactct	gtgaccctca	gtttttttat	cttaattatt	aatacatacc	240
tcataatgtg	actgtgagga	ttcacttaat	aatatatgga	aaaccataga	atagtgccca	300
gcatctagga	agtgccacag	ccccttcag	aagctagtga	aacctgcaga	ccacttttca	360
gagtgatatt	attattttt	tctaggttta	ctgagttata	attgaaaaaa	taaaaatgga	420
atatagatgt	acaacatgaa	gctctgatgc	atatatccat	tgtgaaatga	tgaccacaat	480
caagctaatt	aatgttatct	atcacttcac	atagttcaac	ctttttttgt	ggtgagagta	540
ctgaagatct	actctcttag	caattttcaa	atctaaaata	cattattatt	aacacagtca	600
ctgtgccrta	cgttagctct	gaggacctta	ttcattttat	acctaaaagt	ctgtatcctt	660
taaccaacct	ctcctaattt	cccactgtca	tccctactgc	cacctctggt	aaccagcctt	720
ctgctctgtt	tctgagtcca	accttcttag	attccacata	tgagtgagat	catgctgtgc	780
agtgtttgtt	tttctgtgtc	tggcttgctt	tcacttagca	taatgtcctc	caggtccacc	840
catgttgttg	caaatggcag	aatcttcttc	ttgttaaaga	ctgaataata	tccctgtgtg	900
tgcgtgcatg	tgtgtgtgtg	tttgtgtgtg	tgtgtgtatc	acattttctt	catccattca	960
tccatcaatg	gacactaagc	actaaggttg	attccgtatc	ttggctattg	tgaataatgc	1020
tgcaataaac	atatgagtcc	agatacctct	tcaagatact	gatttcattt	cctttaaata	1080
tatgcccaga	agtgggattg	ctggatcata	tggtagttct	atatttagta	tcttgaggaa	1140
tttccatact	gtttttcata	atgattgtag	caatctatat	tcccatcaac	agtgtacaag	1200
ggttccattt	tctacatggc	cttaccaacg	tttgttatca	cttatctttt	tgataataga	1260
tattctagca	ggtgtgaggt	ggtatctcat	tgtggtttta	atttgcattt	tcctgatgat	1320
tagtggtgta	gagcatcttt	tcatattccc	attggtaatt	cgtatatctt	cctttgagaa	1380
atatttattc	agatcttttg	cccattgtta	gctgagttat	atgtgagttg	gttttggttt	1440
gttgttgttt	tttgtttttg	ctattgagct	gagttccttg	tatattttgg	atattaaatc	1500
cttctcagct	gtatggttga	cagatacatt	cttgcattct	gtaagttgca	tctgtaggtt	1560
gcaacagagt	ctctttactc	tgttgattgc	ttgctttact	gtgtgaaagc	ttttttagct	1620
tgatgtaatt	gtgtttgtct	atttttgctt	ttgttgcttg	tacttttagt	gtcatatcca	1680
aaaagttatt	gcccagacca	gtgtcatccc	ctatgttttc	ttctagtaat	tttaaagttt	1740
caggtcttat	gtctatgtct	ttaatccatt	ttgagttaat	ttttgtgtag	ggtttaagat	1800
aagaatccaa	ttttatttt	attttttgta	tatggatatc	caatttcccc	aacaccattt	1860
attgaaaatt	ctatcctttc	tttgttgtgt	attaacatca	gaataatatt	tttaaataca	1920

5		
10		
15	taaaattcag aagatgacaa aggaaaccaa ttacattgaa atgcatacag agttataatt	1980
	ctgaaagagc aatatatgtg cctctttgta aacacatcat atatcaaact gcagtgaccg	2040
	ttctaacaac tattgcaatt tcaaagtcat gttgagtagg aggagtactt tgagattctg	2100
20	aaacaacgtt cttgtgctat gaaatatcca tgattttgat tggtgatggt atcccaggtc	2160
	ttgttaatgc tgctgtaatc tgttgcttcc attccatagt tgaataaaat gcttgatatc	2220
	tgttggaaat tagtaaaaat aaaaacgtat ttttttccat ccaagttcat tctcagaccc	2280
25	tgaagagtca cttctctgga ttctgcagca aagttcccag ctggggcagc aagatttagg	2340
	caattgaaaa gaacatacac cttgttctca gtggcaaacc acatggaaag ctttaaatgt	2400
	cagagaagaa ttctgccatt ttgctgactt ttttgtagtt ctcctaataa acaagtgtta	2460
30	agtgacaagc ttttcagagg	2480
35	<210> 414 <211> 601 <212> ADN <213> Homo sapiens <400> 414	
45	ccccccccc ccccgcagat ctcaggtggg catttttgaa cttaactaga taacaaaaca	60
	cagotaagac aagtootttt otooagcaaa gatggcaatg ototaataac totgagcata	120
	ttaaagatte teeaagaete tageetetge tgeaaaaaea catacaaata eetaetaeta	180
50	ctgctgctgt gatgatgatg atgacagcaa tagtgagaat attttaaata tgccaggcac	240
	ggtggcaact gctttccaaa tattatcata tttaatctga tcattgccct atgaggtagg	300
	ragtattctg attcccattt tataaataag gaacccgagg cttagagagc atcggtgact	360
55	tgttcaaggt cacccacagc tgtcaagtga cagaacttcg ataaaaatcc agactccttt	420
	aatggagtat ggagggaggt cagaaaacat aggaagtaag ggattgtgat tgacaatgtg	480
	teettgeaaa gggacaggtt aagagacaca agggeagetg tetgaggtgt gecatteace	540
60	agetteagga gagaagtgge aggetaeete eagetateea geeetateea geeaaggaag	600
60	C	601

<210> 415 <211> 601

<212> ADN <213> Homo sapiens <400> 415 5 10 caaaacacag ctaagacaag teetttete cagcaaagat ggcaatgete taataactet 60 120 gagcatatta aagattetee aagactetag cetetgetge aaaaacacat acaaatacet 15 actactactg ctgctgtgat gatgatgatg acagcaatag tgagaatatt ttaaatatgc 180 caggcacggt ggcaactgct ttccaaatat tatcatattt aatctgatca ttgccctatg 240 300 20 aggtagggag tattctgatt cccattttat aaataaggaa cccgaggctt agagagcatc 360 rgtgacttgt tcaaggtcac ccacagctgt caagtgacag aacttcgata aaaatccaga ctcctttaat ggagtatgga gggaggtcag aaaacatagg aagtaaggga ttgtgattga 420 25 caatgtgtcc ttgcaaaggg acaggttaag agacacaagg gcagctgtct gaggtgtgcc 480 attcaccage ttcaggagag aagtggcagg ctacctccag ctatccagee ctatccagee 540 aaggaagctt gggagacatg ttagttcccg ccttcatttc catcagcaac ctcaaagcca 600 30 C 601 35 <210> 416 <211> 5823 <212> ADN <213> Homo sapiens <400> 416 40 45 50 55

tatttcaggc	tttcttcttt	ctatggataa	gaaagctcct	caggtggcaa	caaaggccat	60
ttctttggaa	gcaggcatgg	catgtgacga	aaaaaagaca	tctcagaaaa	gagccaagaa	120
taagactgga	gagccactgt	cagagaacag	aaactgggct	taatcaagga	acatctcttg	180
ttcccagagt	aggaggctgg	caatatttc	tcactgaaat	ttcagaattg	ttatggacca	240
gtgactgctc	tatgtgttca	atttgttccc	ttttcaaatg	gaagcattta	ttgcagacga	300
cctgcctctg	tcccaccatt	gtgtattagg	tttgtagagy	gtagacaact	tgccttttta	360
gtttgtaggt	ttctgtatca	agagaagatg	tgtgtgggcc	taacctagat	tacaggatec	420
tggacttcaa	gtctgatata	atgactggat	gagactttga	ctgtcctaga	attgggatga	480
acatattttg	ccggtgggag	ggcgtgagta	attgcggtta	gagggcagac	tgtccctcac	540
acctattcct	tttcatggtg	ccttcccaaa	ctgcctctgg	aggtggccac	acaaatggct	600
ttggccattg	tgaccatggg	aaacttgatg	cagaggctgg	aaaaagcact	tgcatgtttc	660
tgtctcctct	cttgttcctc	tacaatcaca	agaaatgtct	aggcaggtct	gagcaggccc	720
aggctcatct	gccatggaag	aagaatggca	catggaagag	ggtcacattg	tcccaaccaa	780
gacgatccta	gaccagccag	gccccagttc	atggttcaag	acacatgaac	atagttgcac	840
gaaccaagat	tagttgtgta	tggcccagac	tagcagcagc	acccatccaa	cctacagact	900
ctgagaaata	aatactagtt	gtcttaagct	tccaagtttc	agtgtgagca	ttaggtagta	960
acagttaatg	aataagacag	ataatcattt	tatctgtctg	gatacttata	caatgatttc	1020
tatttttat	tgatacataa	tattttacat	attgctgggg	tacatgtgac	attttgctac	1080
atacatagaa	tgtgtaatga	tccagtcagg	atatctgagg	tgtccatcac	tttgagaatt	1140
tctcacttct	gtgtgttggg	aacaattcaa	gtcgtctctt	ctagttattt	taaaatatac	1200
aatacattgt	taactgtagt	cttttttatt	gaatgacagg	acttgtacct	tttatctaac	1260

tgtatgtttg	tatctattaa	gctagttctc	tttatccctg	cccctccta	cccactcact	1320
cttcccaacc	tctaacatgt	atcatcctat	tctatatctc	catgagatca	acttctttag	1380
ctcccacata	tgagcaaaaa	catatgatgt	ttgtctttct	gtgcccggtt	tatttcactt	1440
atgacctcca	tttccatcca	tgttactata	aatgacagga	tttcattctt	tttgtggcca	1500
aacagtattt	cattgtgtat	atatactaca	ttttctttat	ccattcatcc	attgatgaac	1560
acttacgttg	attccatatc	tttgctattg	tgaatggtgc	tgcaataaac	atgcacgtgc	1620
agttatccct	ttgatacact	gatttattt	cctttggata	aatacccagt	agtgagattg	1680
ctggatcata	cggtagttct	acttttagtt	tttgagacat	ttccatactt	ttccagtgtt	1740
tgtattaatt	tacattccca	tcaacaatgt	ataagatttc	cctttcctcc	acatecteae	1800
cagcatctgc	tattttttgt	ctttttaata	atagtcattc	taactggggt	gagaggatat	1860
ctcgctatgg	ttttgatttg	catttccctg	atatttaatg	atattgagca	tttcttcata	1920
taacctattg	gccatttgtg	tgtcttttt	tttttttt	tttttttga	gaattgtcta	1980
ctcatttttg	gctttttaaa	agatttattt	tttgttgttg	ttgagtttag	tgcatatcct	2040
ggatattagt	ctcttatctg	atgaagagtt	tgccaatatt	ttctcccatt	caacaggttg	2100
tctcttcatt	ctgttgactg	tttactttgc	tgtgcagaag	cactttatat	acagtcccat	2160
ttgtctattt	tttagtagtc	tatgcattta	aggteteage	cacaaaatct	ttgcctagac	2220
cagtcctaaa	gtgtttcccc	tatattttct	tctagtagtt	ttattgtttc	atgtcttata	2280
tttaagtcta	taatccattg	tgagttgatt	tttgtatatg	gtgagatagg	ggccttgttt	2340
cattcctctg	catatagata	tttaattttc	tcagcaccat	ttattgaagg	tgtccttccc	2400
tattgtatgt	tcttggtgcc	tttgtcaaaa	ttcagttggc	tataaatatg	tgaatttatt	2460
tctgggttct	ctatgtggtt	ccattagtct	atgtgtctat	ttttatacca	atatcatgct	2520
gttttgatta	ccatagcctt	gtaatatatt	ttgaagtcag	gtagtgtgat	gcctccagct	2580
ttgttctttt	tgctcaggat	tgctgtgcat	actctggctt	tttggttaca	tacaaatttc	2640
aggatttttg	tatttctgtg	aaaaatggca	ttagtatttt	gataggaatt	gcactggatc	2700
tgtatattgt	octggacaac	atggtcattt	taacaatatt	aattottota	atctatgagt	2760
atgagacgtc	ttcccacttg	tttgtgtcct	cttcaatttc	tttcattggt	gtttcataat	2820
ctcccttcta	caggcctttc	acctccttgg	ttaaattaat	tcctaggtat	ttttttgtag	2880
ctactgtaaa	tgggactgcc	ttctttctca	gctagttcat	ttttggtgca	tagaaaccct	2940
atttttgtat	gttcattttc	tatcctgcaa	cattaccaaa	tttgcttatc	agctttaagt	3000
gtgtattttg	ctttgcttgt	agagtcttct	ggtttctcta	aatgtaagac	gatgtcatct	3060
gcaaacgggg	acaatttgac	ttcctcttaa	aaatctgtat	gccttttatt	cctttctctt	3120

gcctgattgc	totggotota	cctccagtac	tatactgaat	aaaagtggta	aaagtgagca	3180
tccttccttg	tettgeteta	gttcttagag	gaaatacttt	cagtttttcc	ccactcagta	3240
tgatgttagc	tgtgggtcat	atatagcctt	tattatgtta	agatatgttt	cttctgtacc	3300
tggtttgttg	acagcttttt	atcataaaag	gatgtagaat	tttatcaaat	gttttttctg	3360
catctgttga	gataatcata	tggtttttgt	cattccttct	actgttgtga	tgtatcatgt	3420
ttattgattt	gtgtatgtta	aaccatcctt	gtgtccttgg	tataaattat	acttggtcat	3480
ggtgtattat	ctttttggca	tcctgtcgaa	ttgtttgcta	gctttttgtt	ttgttcttt	3540
tgagaatttt	tatgtctagg	ttccttagaa	acactggcct	gtagttctct	ttttgtgtgt	3600
gtgtccttgt	ctagtttggt	gtcagggaaa	tggtggtctt	gtagaatgag	ttgtttttc	3660
tttgattttt	ttgcaagagt	ttgaggagaa	tgggtattag	ttcttcttta	tgtggttggt	3720
caaattggca	gtgaattcat	tcagtcatga	gcttttcttt	ttttgggagg	gttctcatta	3780
ctgagttaat	cacactgctc	attactgatc	tgttcagatt	ttctatttct	tctggaatct	3840
cagtagttgt	atgtttccag	caatttatcc	atttcctcta	ggttttctag	tttggtagta	3900
tatagctatt	cataatagtc	tctgatgatc	ttttgtattt	ctgtgatatc	agttgtaatg	3960
tcttttcat	ttcctatttt	atttgggtct	tttcttgttt	agtctagcaa	ggggtttatc	4020
tattttatct	ttttgaagaa	ccaactttt	gtttcattga	ccctttctac	gtctttagtc	4080
tttatttcat	ttagatttgc	tctgaacttt	actatgtctt	tccttctaat	tttgggtttg	4140
gtttgttctt	ttctagttcc	ttgaggtgca	tcattgaatt	gtttctttga	tatctatcta	4200
ctcatttgat	gtaggtgttt	attgctatac	actotoccct	cctagagctc	attttgttgt	4260
gtcccatagg	tcttggtatg	ttgtttctat	tttcatttgt	ttcaaacatt	ttatttccat	4320
attaatttt	atcattcagg	aggagcatat	tatttaattc	ccatgtattt	gtatagtttc	4380
caaagttcct	cttatttcta	tttttactcc	attgtggtct	gagaagatac	ttcatatgat	4440
ttcaattttt	aaaaatttgt	caagacttgt	tttttgtcct	aacatatggt	ctatcctgga	4500
gaatgttcca	tgtgctgatg	agaaaaatgt	gtactcagca	gttgttgagt	aacatgttct	4560
acaaatatct	gttagatcca	tttggtctaa	agtctagttt	aaatccaatg	agtttttgtt	4620
aattttgtct	agatgatcat	gatctgagac	tgaggtgaag	tccccaacaa	ttatcgtgtt	4680
ggagtctacc	tctcttttta	aatctagaaa	tatttgcttt	ataaatccgg	gtggtctagt	4740
gttgggtgca	tatatttagt	tgttatttcc	tcattagatt	gatctcttta	ctattatata	4800
ataactgttt	actgcttctg	gcataaagtc	tgttttatgt	aagtacagcc	attcctgctt	4860
gagtttagta	ccatgttgac	aaagggatgc	atagagagtt	ggtaaagcat	gatttctggg	4920
tgtctgtgtg	aaggtgtttt	gagaagagtt	tagcatgagt	ctgtggagtg	agtgggaaga	4980
ttctccctca	atgtcagcag	gaaccatcca	tccactgggg	gcccaggtag	aaaaagatga	5040

10	agaaatggtg	aattototot	ctctcctgga	gctgggtcac	cattattatg	cccttgaaca	5100
	ggacatcaca	actccaggct	ctccagcctt	tggactccaa	gactgacacc	agtgcccctc	5160
	cccaattacc	ccaggccctc	aggcctttgg	cctaggattg	agacttacac	catcagcttc	5220
15	cctggttctg	aggcttctgg	acttgcactg	ggccatacta	ccagcatccc	agggtctcca	5280
	gcttgcagag	agcctgttgt	gggacttttc	agcctccata	atcaagtaag	ccaatttccc	5340
20	tggtatctat	atagatatac	aatcatgttt	tgcttaccag	cctgaaaaat	gtatcgctag	5400
20	atgagtctgt	cattgcataa	acatcatagt	gtacttacac	aaacctagat	tctatagcct	5460
	actacacacc	tagtctataa	acatgtacag	catgttactg	tactgaatat	tgtaggcaac	5520
25	tgtaacacaa	tggtgaatat	ttgcatattt	aaacatatct	tatcattaaa	aagatacagt	5580
	aaacataagg	tataaaagac	aaaaaccggc	acacctatat	agggcactta	ccataaatgc	5640
	agcttgcagg	actagaagtc	actcagggtg	agtcagtgag	cgaacgtgaa	ggcctaggtt	5700
30	attactgtcc	actacggtag	actttatcaa	cactgtacac	aggctacact	aaatttattt	5760
	tttaaaaatt	tgctctccaa	taataaatta	atcttcgcat	ccttttttg	ttgttcactg	5820
	tgg						5823

<210> 417 <211> 5823 <212> ADN <213> Homo sapiens

<400> 417

tatttcaggc	tttcttcttt	ctatggataa	gaaagctcct	caggtggcaa	caaaggccat	6
ttctttggaa	gcaggcatgg	catgtgacga	aaaaaagaca	tctcagaaaa	gagccaagaa	120
taagactgga	gagccactgt	cagagaacag	aaactgggct	taatcaagga	acatetettg	180
ttcccagagt	aggaggctgg	caatattttc	tcactgaaat	ttcagaattg	ttatggacca	240
gtgactgctc	tatgtgttca	atttgttccc	ttttcaaatg	gaagcattta	ttgcagacga	300
cctgcctctg	teceaceatt	gtgtattagg	tttgtagagt	gtagacaact	tgccttttta	360
gtttgtaggt	ttctgtatca	agagaagatg	tgtgtrggcc	taacctagat	tacaggatcc	420
tggacttcaa	gtctgatata	atgactggat	gagactttga	ctgtcctaga	attgggatga	480
acatattttg	ccggtgggag	ggcgtgagta	attgcggtta	gagggcagac	tgtccctcac	540
acctattcct	tttcatggtg	ccttcccaaa	ctgcctctgg	aggtggccac	acaaatggct	600
ttggccattg	tgaccatggg	aaacttgatg	cagaggctgg	aaaaagcact	tgcatgtttc	660
tgtctcctct	cttgttcctc	tacaatcaca	agaaatgtct	aggcaggtct	gagcaggccc	720
aggctcatct	gccatggaag	aagaatggca	catggaagag	ggtcacattg	teccaaceaa	780
gacgatecta	gaccagccag	accccaattc	atoottcaao	acacatgaac	ataqttqcac	840

gaaccaagat	tagttgtgta	tggcccagac	tagcagcagc	acccatccaa	cctacagact	900
ctgagaaata	aatactagtt	gtcttaagct	tccaagtttc	agtgtgagca	ttaggtagta	960
acagttaatg	aataagacag	ataatcattt	tatctgtctg	gatacttata	caatgatttc	1020
tattttttat	tgatacataa	tattttacat	attgctgggg	tacatgtgac	attttgctac	1080
atacatagaa	tgtgtaatga	tccagtcagg	atatctgagg	tgtccatcac	tttgagaatt	1140
teteacttet	gtgtgttggg	aacaattcaa	gtcgtctctt	ctagttattt	taaaatatac	1200
aatacattgt	taactgtagt	cttttttatt	gaatgacagg	acttgtacct	tttatctaac	1260
tgtatgtttg	tatctattaa	gctagttctc	tttatccctg	cccctccta	cccactcact	1320
cttcccaacc	tctaacatgt	atcatcctat	tctatatctc	catgagatca	acttctttag	1380
ctcccacata	tgagcaaaaa	catatgatgt	ttgtctttct	gtgcccggtt	tatttcactt	1440
atgacotoca	tttccatcca	tgttactata	aatgacagga	tttcattctt	tttgtggcca	1500
aacagtattt	cattgtgtat	atatactaca	ttttctttat	ccattcatcc	attgatgaac	1560
acttacgttg	attccatatc	tttgctattg	tgaatggtgc	tgcaataaac	atgcacgtgc	1620
agttatccct	ttgatacact	gatttatttt	cctttggata	aatacccagt	agtgagattg	1680
ctggatcata	cggtagttct	acttttagtt	tttgagacat	ttccatactt	ttccagtgtt	1740
tgtattaatt	tacattccca	tcaacaatgt	ataagatttc	cctttcctcc	acatcctcac	1800
cagcatctgc	tattttttgt	ctttttaata	atagtcattc	taactggggt	gagaggatat	1860
ctcgctatgg	ttttgatttg	catttccctg	atatttaatg	atattgagca	tttcttcata	1920
taacctattg	gccatttgtg	tgtcttttt	tttttttt	ttttttttga	gaattgtcta	1980
ctcatttttg	gctttttaaa	agatttattt	tttgttgttg	ttgagtttag	tgcatatect	2040
ggatattagt	ctcttatctg	atgaagagtt	tgccaatatt	ttctcccatt	caacaggttg	2100
tctcttcatt	ctgttgactg	tttcctttgc	tgtgcagaag	cactttatat	acagteceat	2160
ttgtctattt	tttagtagtc	tatgcattta	aggtctcagc	cacaaaatct	ttgcctagac	2220
cagtcctaaa	gtgtttcccc	tatattttct	tctagtagtt	ttattgtttc	atgtcttata	2280
tttaagtcta	taatccattg	tgagttgatt	tttgtatatg	gtgagatagg	ggccttgttt	2340
cattcctctg	catatagata	tttaattttc	tcagcaccat	ttattgaagg	tgtccttccc	2400
tattgtatgt	tattggtgca	tttgtcaaaa	ttcagttggc	tataaatatg	tgaatttatt	2460
tetgggttet	ctatgtggtt	ccattagtct	atgtgtctat	ttttatacca	atatcatgct	2520
gttttgatta	ccatagcctt	gtaatatatt	ttgaagtcag	gtagtgtgat	gcctccagct	2580
ttgttctttt	tgctcaggat	tgctgtgcat	actetggett	tttggttaca	tacaaatttc	2640
aggatttttg	tatttctgtg	aaaaatggca	ttagtatttt	gataggaatt	gcactggatc	2700

tgtatattgt	cctggacaac	atggtcattt	taacaatatt	aattcttcta	atctatgagt	2760
atgagacgtc	ttcccacttg	tttgtgtcct	cttcaatttc	tttcattggt	gtttcataat	2820
ctcccttcta	caggcctttc	acctccttgg	ttaaattaat	tcctaggtat	ttttttgtag	2880
ctactgtaaa	tgggactgcc	ttctttctca	gctagttcat	ttttggtgca	tagaaaccct	2940
atttttgtat	gttcattttc	tatcctgcaa	cattaccaaa	tttgcttatc	agctttaagt	3000
gtgtattttg	ctttgcttgt	agagtettet	ggtttctcta	aatgtaagac	gatgtcatct	3060
gcaaacgggg	acaatttgac	ttcctcttaa	aaatctgtat	gccttttatt	cctttctctt	3120
gcctgattgc	tctggctcta	cctccagtac	tatactgaat	aaaagtggta	aaagtgagca	3180
tecttecttg	tcttgctcta	gttcttagag	gaaatacttt	cagtttttcc	ccactcagta	3240
tgatgttagc	tgtgggtcat	atatagcctt	tattatgtta	agatatgttt	cttctgtacc	3300
tggtttgttg	acagcttttt	atcataaaag	gatgtagaat	tttatcaaat	gttttttctg	3360
catctgttga	gataatcata	tggtttttgt	cattccttct	actgttgtga	tgtatcatgt	3420
ttattgattt	gtgtatgtta	aaccatcctt	gtgtccttgg	tataaattat	acttggtcat	3480
ggtgtattat	ctttttggca	tcctgtcgaa	ttgtttgcta	gctttttgtt	ttgttctttt	3540
tgagaatttt	tatgtctagg	ttccttagaa	acactggcct	gtagttctct	ttttgtgtgt	3600
gtgtccttgt	ctagtttggt	gtcagggaaa	tggtggtctt	gtagaatgag	ttgtttttc	3660
tttgattttt	ttgcaagagt	ttgaggagaa	tgggtattag	ttcttcttta	tgtggttggt	3720
caaattggca	gtgaattcat	tcagtcatga	gcttttcttt	ttttgggagg	gttctcatta	3780
ctgagttaat	cacactgctc	attactgatc	tgttcagatt	ttctatttct	tctggaatct	3840
cagtagttgt	atgtttccag	caatttatcc	atttcctcta	ggttttctag	tttggtagta	3900
tatagctatt	cataatagtc	tctgatgatc	ttttgtattt	ctgtgatatc	agttgtaatg	3960
tcttttcat	ttcctatttt	atttgggtct	tttcttgttt	agtctagcaa	ggggtttatc	4020
tattttatct	ttttgaagaa	ccaacttttt	gtttcattga	ccctttctac	gtctttagtc	4080
tttatttcat	ttagatttgc	tctgaacttt	actatgtctt	teettetaat	tttgggtttg	4140
gtttgttctt	ttctagttcc	ttgaggtgca	tcattgaatt	gtttctttga	tatctatcta	4200
ctcatttgat	gtaggtgttt	attgctatac	actotoccot	cctagagete	cttttgttgt	4260
gtcccatagg	tcttggtatg	ttgtttctat	tttcatttgt	ttcaaacatt	ttatttccat	4320
attaatttt	atcattcagg	aggagcatat	tatttaattc	ccatgtattt	gtatagtttc	4380
caaagttcct	cttatttcta	tttttactcc	attgtggtct	gagaagatac	ttcatatgat	4440
ttcaattttt	aaaaatttgt	caagacttgt	tttttgtcct	aacatatggt	ctatcctgga	4500
gaatgttcca	tgtgctgatg	agaaaaatgt	gtactcagca	gttgttgagt	aacatgttct	4560
acaaatatct	gttagatcca	tttggtctaa	agtctagttt	aaatccaatg	agtttttgtt	4620

5

aattttgtct	agatgatcat	gatctgagac	tgaggtgaag	tccccaacaa	ttatcgtgtt	4680
ggagtctacc	tctcttttta	aatctagaaa	tatttgcttt	ataaatccgg	gtggtctagt	4740
gttgggtgca	tatatttagt	tgttatttcc	tcattagatt	gatctcttta	ctattatata	4800
ataactgttt	actgcttctg	gcataaagtc	tgttttatgt	aagtacagcc	attcctgctt	4860
gagtttagta	ccatgttgac	aaagggatgc	atagagagtt	ggtaaagcat	gatttctggg	4920
tgtctgtgtg	aaggtgtttt	gagaagagtt	tagcatgagt	ctgtggagtg	agtgggaaga	4980
ttctccctca	atgtcagcag	gaaccatcca	tccactgggg	gcccaggtag	aaaaagatga	5040
agaaatggtg	aattctctct	ctctcctgga	gctgggtcac	ccttcttctg	cccttgaaca	5100
ggacatcaca	actccaggct	ctccagcctt	tggactccaa	gactgacacc	agtgcccctc	5160
cccaattacc	ccaggccctc	aggcctttgg	cctaggattg	agacttacac	catcagcttc	5220
cctggttctg	aggettetgg	acttgcactg	ggccatacta	ccagcatccc	agggtctcca	5280
gcttgcagag	agcctgttgt	gggacttttc	agcctccata	atcaagtaag	ccaatttccc	5340
tggtatctat	atagatatac	aatcatgttt	tgcttaccag	cctgaaaaat	gtategetag	5400
atgagtctgt	cattgcataa	acatcatagt	gtacttacac	aaacctagat	tctatagcct	5460
actacacacc	tagtctataa	acatgtacag	catgttactg	tactgaatat	tgtaggcaac	5520
tgtaacacaa	tggtgaatat	ttgcatattt	aaacatatct	tatcattaaa	aagatacagt	5580
aaacataagg	tataaaagac	aaaaaccggc	acacctatat	agggcactta	ccataaatgc	5640
agcttgcagg	actagaagtc	actcagggtg	agtcagtgag	cgaacgtgaa	ggcctaggtt	5700
attactgtcc	actacggtag	actttatcaa	cactgtacac	aggetacact	aaatttattt	5760
tttaaaaatt	tgctctccaa	taataaatta	atcttcgcat	cctttttttg	ttgttcactg	5820
tgg						5823
	ggagtctacc gttgggtgca ataactgttt gagtttagta tgtctgtgtg ttctccctca agaaatggtg ggacatcaca cccaattacc cctggttctg gcttgcagag tggtatctat atgagtctgt actacacacc tgtaacaca aaacataagg agcttgcagg attactgtcc tttaaaaatt	ggagtetace tetetttta gttgggtgca tatatttagt ataactgttt actgettetg gagtttagta ccatgttgac tgtctgtgtg aaggtgttt ttctccctca atgtcagcag agaaatggtg aattetetet ggacatcaca actccagget cccaattace ccaggecete cctggttetg aggettetgg gettgcagag ageetgttgt tggtatetat atagatatac atgagtetgt cattgcataa actacacace tagteataa tgtaacaca tggtgaatat aaacataagg tataaaagae agettgcagg actaggagte attactgtce actacggtag tttaaaaatt tgetetecaa	ggagtctacc tctctttta aatctagaaa gttgggtgca tatatttagt tgttatttcc ataactgttt actgcttctg gcataaagtc gagtttagta ccatgttgac aaagggatgc tgtctgtgg aaggtgtttt gagaagagtt tctccctca atgtcagcag gaaccatcca agaaatggtg aattctctct ctccagcctt cccaattacc ccaggcctc aggccttgg agcttggag agctgtttg gggacttttc gctggttctg aggcttttgg acttgcactg gcttgcagag agcctgttgt gggacttttc tggtatctat atagatatac aatcatagt actacacac tagtcataa acatcatagt actacacac tagtcataa acatcatagt actacacac tagtcataa acatgtacag tgtaacacaa tggtgaatat ttgcatatt aaacataagg tataaaagac aaaaaccggc agcttgcagg actacggagg actacggtag acttacaa ttgaaaatt ttgcatatta ttaaaaatt tgctccaa taataaatta	ggagtetace tetetttta aatetagaaa tatttgettt gttgggtgea tatattagt tgttatttee teattagatt ataaetgttt actgettetg gcataaagte tgttttatgt gagtttagta ceatgttgac aaagggatge atagaaggtt tgteteetgtg aaggtgttt gagaagagtt tageatgagt tteteectea atgteageag gaaceateea teeaetgggg agaaatggtg aatteteete eteeagggt getgggteae ggacateaa acteeagget eteeaggett tggaeteeaa eecaattaee eeaggeeete aggeetttgg eetaggattg eetaggttetg aggetgtetg aggeettetg ggeetaeeta gettgeagag ageetgttgt gggaettte ageeteeata tggtatetat atagatatae aaetatgtt tgettaeeag atgagtetgt eattgeataa acateatagt gtaettaeae aetaeaeae tagteatata acateatagt gtaettaeae aetaeaeae tagteatata ttgeatatt aaaeatatet aaeaeataagg tataaaaagae aaaaaeegge aeaeeetatat ageettgeagg aetagagte aetaeaggt agteagtgag attaetgee aetaeeggtag aetaeaae ttaaaaatt tgeeteeaa taataaatta ateettgeat	ggagtctacc tctctttta aatctagaaa tatttgcttt ataaatccgg gttgggggca tatatttagt tgttatttcc tcattagatt gatctcttta ataactgttt actgcttctg gcataaagtc tgttttatgt aagtacagcc gagtttagta ccatgttgac aaagggatgc atagaaggtt ggtaaagcat tgtctgtgtg aaggtgttt gagaagagtt tagcatgagt ctgtggagtg ttctccctca atgtcagcag gaaccatcca tccactgggg gcccaggtag agaaatggtg aattctctct ctcctctgga gctgggtcac ccttcttctg ggacatcaca actccaggct ctccagcctt tggactccaa gactgacacc cccaattacc ccaggcctc aggccttgg cctaggattg agacttacac cctggttctg aggcttctgg acttgcactg ggccatacta ccagcatccc gcttgcagag agcctgttgt gggactttc agcctccata atcaagtaag tggtatctat atagatatac aatcatgtt tgcttaccag cctgaaaaat atgagtctgt cattgcataa acatcatagt gtacttacac aaacctagat actacacac tagtctataa acatcatagt gtacttacac aaacctagat tgtaacacaca tggtgaatat ttgcatatt aaacatatct tatcattaaa aaacataagg tataaaagac aaaaaccggc acacctatat agggcactta agcttgcagg actagaagtc actcagggtg agtcagtgag cgaacgtgaa attactgtcc actacggtag acttacaa cactggggtg agtcagtgag cgaacgtgaa attactgtcc actacggtag acttacaa cactggatca cctttttaaaaattactgcc actacggtag acttacaac aactcacct tttaaaaatt tgctctccaa taataaatta atctcgcat actactggtag acttacac acctgtacac aggctacact tttaaaaatt tgctctccaa taataaatta atcttcgcat cctttttttg	aattttgtot agatgateat gatetgagae tgaggtgaag teeceaacaa ttatetgttt ggagtetaec tetetttta aatetagaaa tatttgettt ataaateegg gtggtetagt gttgggtgea tatatttagt tgttatttee teattagatt gatetettta etaatataa ataaetgttt aetgettetg geataaagte tgttttatgt aagtacagee atteetggg tggettagtt gagtttagta eeatgttgae aaagggatge ataagaaggtt ggtaaaageat gatttetggg tgtetgtgtg aaggtgtttt gagaaagagtt tageatgagg eeeagggtag agtgggaaga tteteeceea atgeeagag gaaecateea teeactgggg geeeaggtag aaaaagatga agaaatggg aatteeteet eteeeagga getgggteae eettettetg eeeagatag agaaatagga acteeaggeet eteeageett tggaeteeaa gaettgaeae agggeetee eeeagatee eeeagatee eeegagtee eeeagatee eegagteete aggeettteg geeaataeta eeagaatee eateagette eetggtatetg aggeettetgg geeagateea eegagteetee aggeettee ataagataa acateatgtt tgettaeeag eetgaaaaat gtateegetag atgateetat atagatataa acateatagt gtaettaeea aaaectagat teetatageet actacacace tagtetataa acateatagt gtaettaeae aaaectagat teetatageet aaaacacacaa tggtgaatat ttgeatattt aaacatatet tateattaaa aagataeagt aaacacaaa tggtgaatat ttgeatattt aaacatatet tateattaaa aagataeagt aaacataagg actagaaga eettaeea acacggga ageetgagga eetaaaagg actacaggaga acteagggga agteagtgag egaacgtgaa ggeetaggtt attacatgee actacaggag acttateea aaacatatet tateattaaa aagataeagt aaacataagg actacacaca aggetaeaca aaaaccagge acacctatat agggeactta eetaaaatge aacactaggte acteaggtga agteagtgag egaacgtgaa ggeetaggtt attacatgee actacaggag acttataea aacteaggag acttateea aaggetaeac aaaattatt ttataaaaatt tgeteeceaa taaaaatta ttetaaaaatt tgeteeceaa taaaaatta ttetaaaaatt tgeteeceaa taaaaatta atettegeat eettttttg ttgtteaetg ttgg

50

<210> 418

<211> 707

<212> ADN

<213> Homo sapiens

<400> 418 55

60

10	aacggtgtca	gctggagtga	actcctgtgt	gtgcaaggcc	tgggtctcct	ggtcagacta	60
	ctttctatgg	gaaaggcata	gtgtatagtc	tatatactat	acataggggt	gctgggagga	120
	actggggttt	tcacagecag	ctttggtttt	cattaggttt	gtttagtttc	cattgcttca	180
15	ggggtgttag	ttttgtgttc	mcaactagat	tataaactcc	tcttgcattc	ctgatggcag	240
	tgacttgaag	gcatttattt	gaagaataat	agacatacag	aaaggggcgc	atgtcataaa	300
	ggtacagctg	gacgactttt	cacaaagtga	gcacatttgt	atgatcgatg	ttgagaccaa	360
20	gagcattcag	tggacaactc	ctttccagtt	actccacccc	actcccagtg	accatcattc	420
	tgacttctaa	ctgtgtagac	atgttttgct	tgttttgtac	tttacaaaca	tatctactct	480
25	attttaggtg	gctagacaat	gtgttttaca	atgctggcca	tgacagtgtt	tgaaagaata	540
	aaatggaatc	aaatagaatg	ggcagtatca	gagtgtgttg	cctgcctaag	aaatgttttg	600
	tgacattttg	gctttgggtc	tatttacaca	ttaaatctaa	gagcaccaga	atgtggtgtc	660
30	aaaatgtgtt	tggggatgaa	gatattctaa	agtcctgtag	taagcaa		707

<210> 419 <211> 712 <212> ADN <213> Homo sapiens

<400> 419

	cagactactt	tctatgggaa	aggcatagtg	tatagtctat	atactataca	taggggtgct	60
45	gggaggaact	ggggttttca	cagccagctt	tggttttcat	taggtttgtt	tagtttccat	120
	tgcttcaggg	gtgttagttt	tgtgttccca	actagattat	aaactcctct	tgcattcctg	180
50	atggcagtga	cttgaaggca	tttatttgaa	gaataataga	catacagaaa	ggggcrcatg	240
50	tcataaaggt	acagctggac	gacttttcac	aaagtgagca	catttgtatg	atcgatgttg	300
	agaccaagag	cattcagtgg	acaactcctt	tccagttact	ccaccccact	cccagtgacc	360
55	atcattctga	cttctaactg	tgtagacatg	ttttgcttgt	tttgtacttt	acaaacatat	420
	ctactctatt	ttaggtggct	agacaatgtg	ttttacaatg	ctggccatga	cagtgtttga	480
	aagaataaaa	tggaatcaaa	tagaatgggc	agtatcagag	tgtgttgcct	gcctaagaaa	540
60	tgttttgtga	cattttggct	ttgggtctat	ttacacatta	aatctaagag	caccagaatg	600
	tggtgtcaaa	atgtgtttgg	ggatgaagat	attctaaagt	cctgtagtaa	gcaatgcaaa	660
	acgttctgga	ggtgtttatt	aaacatttgt	ttgtagaatg	gagaggaaga	ca	712

<210> 420 <211> 1210 <212> ADN 5 <213> Homo sapiens <400> 420 aaagcagcac tgctctgcat tcagccttgc tacgtctcct tcagatgggc gcactagata 60 10 ctgagtgatg atcatgcctt gtctaggatc tcaccaagac agttcatgaa agagacagtg 120 cageteatgg aggagatggt geageteaca gagaggatgg tgecateatg gaaagcatgg 180 15 ggcagtcatg gagatgacgg rgtagctcat ggagaatata atgccatcat ggaaggcata 240 300 gtgcagtcat ggagatgatg gtgcagctca tggagaagat ggtgccatca tggaaggcat ggtgcaatca tggagtagac agtgcagctg ggccaagatt ctccctgact aagctcttct 360 20 caggcacctc tgagccgtcg tcttaactag gcctccagct tggcttgtga aaactgcaga 420 ctctcagcac aaatgatttg cctcctacat taagagactt aaataaacac ttgcatggct 480 25 qtqtttattt aaacaqctca aqqctqtqtc cctqqqatqa caatqactcc aqcccctaaa 540 attcctgctt gtgaaagctc attgctgaca gaaggatcta ccatttgttc cagccaacac 600 660 ctggtggcag gcagataggc cctgagcccc atttaagagc agttccttta gaaagcttgc 30 aattgtaaat cttttctctg cccatttgag atgtaaatct tctaccacct agaactgtct 720 780 teteaaggae etgtgagetg aeteaetgaa atgeaaacat teagggagat aacteeaete ctgtccccat gcgacggcga ggccctgact ttggtgggca ccttgctctt atttgcacca 840 35 ccacctcctg tcctaaagac atgagacgtt tgtctctcct ctggataagt gcctattaac 900 caacccaggt gtcctggtca catgaaccag tccagcctag cacctggcac tgcctttccc 960 tcagcacact ccagtctgta aaagtctcct tatggttgtt ttggcaaagt tgagcttagt 1020 40 taatgctaga ccccttctct actgcaatag ttactgctga ataaagtcta tccttaccac 1080 tttaactagt gttgggcttt gtttctcttt cataagctca tggagaagac aatgcagttc 1140 catcaagttt ctggctctta cactgctaac agtcagctct ggggtccctg agagggacag 1200 45 1210 actcacacca 50 210> 421 <211> 1194 <212> ADN <213> Homo sapiens <400> 421 55

65

5

10	gcattcagcc	ttgctacgtc	tccttcagat	gggcgcacta	gatactgagt	gatgatcatg	60
	ccttgtctag	gatctcacca	agacagttca	tgaaagagac	agtgcagctc	atggaggaga	120
	tggtgcagct	cacagagagg	atggtgccat	catggaaagc	atggggcagt	catggagatg	180
15	acggagtagc	tcatggagaa	kataatgcca	tcatggaagg	catagtgcag	tcatggagat	240
	gatggtgcag	ctcatggaga	agatggtgcc	atcatggaag	gcatggtgca	atcatggagt	300
00	agacagtgca	gctgggccaa	gattctccct	gactaagctc	ttctcaggca	cctctgagcc	360
20	gtcgtcttaa	ctaggcctcc	agcttggctt	gtgaaaactg	cagactetea	gcacaaatga	420
	tttgcctcct	acattaagag	acttaaataa	acacttgcat	ggctgtgttt	atttaaacag	480
25	ctcaaggctg	tgtccctggg	atgacaatga	ctccagcccc	taaaattcct	gcttgtgaaa	540
	gctcattgct	gacagaagga	tctaccattt	gttccagcca	acacctggtg	gcaggcagat	600
	aggccctgag	ccccatttaa	gagcagttcc	tttagaaagc	ttgcaattgt	aaatcttttc	660
30	tctgcccatt	tgagatgtaa	atcttctacc	acctagaact	gtcttctcaa	ggacctgtga	720
	gctgactcac	tgaaatgcaa	acattcaggg	agataactcc	actcctgtcc	ccatgcgacg	780
	gcgaggccct	gactttggtg	ggcaccttgc	tcttatttgc	accaccacct	cctgtcctaa	840
35	agacatgaga	cgtttgtctc	tcctctggat	aagtgcctat	taaccaaccc	aggtgtcctg	900
	gtcacatgaa	ccagtccagc	ctagcacctg	gcactgcctt	tccctcagca	cactccagtc	960
40	tgtaaaagtc	tccttatggt	tgttttggca	aagttgagct	tagttaatgc	tagacccctt	1020
	ctctactgca	atagttactg	ctgaataaag	tctatcctta	ccactttaac	tagtgttggg	1080
	ctttgtttct	ctttcataag	ctcatggaga	agacaatgca	gttccatcaa	gtttctggct	1140
45	cttacactgc	taacagtcag	ctctggggtc	cctgagaggg	acagactcac	acca	1194

<210> 422 50 <211> 1194 <212> ADN <213> Homo sapiens

<400> 422

60

55

5

10	gcattcagcc	ttgctacgtc	tccttcagat	gggcgcacta	gatactgagt	gatgatcatg	60
	ccttgtctag	gatctcacca	agacagttca	tgaaagagac	agtgcagctc	atggaggaga	120
	tggtgcagct	cacagagagg	atggtgccat	catggaaagc	atggggcagt	catggagatg	180
15	acggagtagc	tcatggagaa	kataatgcca	tcatggaagg	catagtgcag	tcatggagat	240
	gatggtgcag	ctcatggaga	agatggtgcc	atcatggaag	gcatggtgca	atcatggagt	300
00	agacagtgca	gctgggccaa	gattctccct	gactaagctc	ttctcaggca	cctctgagcc	360
20	gtcgtcttaa	ctaggcctcc	agcttggctt	gtgaaaactg	cagactetea	gcacaaatga	420
	tttgcctcct	acattaagag	acttaaataa	acacttgcat	ggctgtgttt	atttaaacag	480
25	ctcaaggctg	tgtccctggg	atgacaatga	ctccagcccc	taaaattcct	gcttgtgaaa	540
	gctcattgct	gacagaagga	tctaccattt	gttccagcca	acacctggtg	gcaggcagat	600
	aggccctgag	ccccatttaa	gagcagttcc	tttagaaagc	ttgcaattgt	aaatcttttc	660
30	tctgcccatt	tgagatgtaa	atcttctacc	acctagaact	gtcttctcaa	ggacctgtga	720
	gctgactcac	tgaaatgcaa	acattcaggg	agataactcc	actcctgtcc	ccatgcgacg	780
	gcgaggccct	gactttggtg	ggcaccttgc	tcttatttgc	accaccacct	cctgtcctaa	840
35	agacatgaga	cgtttgtctc	tcctctggat	aagtgcctat	taaccaaccc	aggtgtcctg	900
	gtcacatgaa	ccagtccagc	ctagcacctg	gcactgcctt	tccctcagca	cactccagtc	960
	tgtaaaagtc	tccttatggt	tgttttggca	aagttgagct	tagttaatgc	tagacccctt	1020
40	ctctactgca	atagttactg	ctgaataaag	tctatcctta	ccactttaac	tagtgttggg	1080
	ctttgtttct	ctttcataag	ctcatggaga	agacaatgca	gttccatcaa	gtttctggct	1140
45	cttacactgc	taacagtcag	ctctggggtc	cctgagaggg	acagactcac	acca	1194
TU							

<210> 423 <211> 1118 50 <212> ADN <213> Homo sapiens

<400> 423

55

60

10	accaagacag	ttcatgaaag	agacagtgca	gctcatggag	gagatggtgc	agctcacaga	60
	gaggatggtg	ccatcatgga	aagcatgggg	cagtcatgga	gatgacggag	tagctcatgg	120
	agaagataat	gccatcatgg	aaggcatagt	gcagtcatgg	agatgatggt	gcagctcatg	180
15	gagaagatgg	tgccatcatg	raaggcatgg	tgcaatcatg	gagtagacag	tgcagctggg	240
	ccaagattct	ccctgactaa	gctcttctca	ggcacctctg	agccgtcgtc	ttaactaggc	300
20	ctccagcttg	gcttgtgaaa	actgcagact	ctcagcacaa	atgatttgcc	tcctacatta	360
20	agagacttaa	ataaacactt	gcatggctgt	gtttatttaa	acagctcaag	gctgtgtccc	420
	tgggatgaca	atgactccag	cccctaaaat	tcctgcttgt	gaaagctcat	tgctgacaga	480
25	aggatetace	atttgttcca	gccaacacct	ggtggcaggc	agataggccc	tgagccccat	540
	ttaagagcag	ttootttaga	aagcttgcaa	ttgtaaatct	tttctctgcc	catttgagat	600
	gtaaatcttc	taccacctag	aactgtcttc	tcaaggacct	gtgagctgac	tcactgaaat	660
30	gcaaacattc	agggagataa	ctccactcct	gtccccatgc	gacggcgagg	ccctgacttt	720
	ggtgggcacc	ttgctcttat	ttgcaccacc	acctcctgtc	ctaaagacat	gagacgtttg	780
	teteteetet	ggataagtgc	ctattaacca	acccaggtgt	cctggtcaca	tgaaccagtc	840
35	cagcctagca	cctggcactg	cctttccctc	agcacactcc	agtctgtaaa	agtctcctta	900
	tggttgtttt	ggcaaagttg	agcttagtta	atgctagacc	ccttctctac	tgcaatagtt	960
40	actgctgaat	aaagtctatc	cttaccactt	taactagtgt	tgggctttgt	ttctctttca	1020
40	taagctcatg	gagaagacaa	tgcagttcca	tcaagtttct	ggctcttaca	ctgctaacag	1080
	tcagctctgg	ggtccctgag	agggacagac	tcacacca			1118
45	<210> 424 <211> 601 <212> ADN <213> Homo sapier	ns					
50	<400> 424						
	gtaggggcac	tgtctatact	ggctgcactc	tggccagtgc	tgtcccaacg	ctgacccctc	60
	tggaagctaa	tctggcttat	aatgaggatg	ctttctttag	aggggactct	ccatgcacag	120
55	cagaaaatcc	caatggagtg	gttcttccct	atgtccccaa	gggactggga	atattctttc	180
	agtaacaatg	gcccattggg	ggaagaagga	tgaaagtggg	gtgagagacg	tgaaatttgg	240
60	agaggtccct	caaagattgt	gatgtgcctc	tcttgttcca	atcacaggac	aggggtataa	300
	yggatttaat	ttgaaacacg	gggatgaatt	taactattca	cttcccaggt	agattcatca	360
	gggtctagag	cttcagctaa	cagcatgagg	aagattocaa	atgtgcccc	atcagcatag	420
65	gaactgggta	tgttgagtct	atggtctcat	aaaaccagaa	gaaggacaag	ggattgtggc	480

10	tccaggcttg	ggagcacctt	ttccttacca	tgggctacag	tatttattta	gggtaaagga	540
	aggaaactcc	tgaggtgcta	tggggtgcca	gcaatttgga	gcatcagtaa	ttcaatgtcc	600
15	С						601
10							
	<210> 425 <211> 601 <212> ADN						
20	<213> Homo sapier	IS					
	<400> 425						
25	acgctgacc	c ctctggaage	c taatctggct	tataatgagg	atgctttctt	tagaggggac	60
	tctccatgc	a cagcagaaa	a tcccaatgga	a gtggttcttc	cctatgtccc	caagggactg	120
	ggaatattc	t ttcagtaac	a atggcccatt	gggggaagaa	ggatgaaagt	ggggtgagag	180
30	acgtgaaat	t tggagaggt	c cctcaaagat	tgtgatgtgc	ctctcttgtt	ccaatcacag	240
	gacaggggt	a taacggctti	cctttgaaa	c acggggatga	atttaactat	tcacttccca	300
	rgtagattc	a tcagggtcta	a gagetteage	c taacagcatg	aggaagattc	caaatgtgcc	360
35	cccatcagc	a taggaactg	g gtatgttgag	g tctatggtct	cataaaacca	gaagaaggac	420
	aagggattg	t ggctccagg	c ttgggagcad	cttttcctta	. ccatgggcta	cagtatttat	480
	ttagggtaa	a ggaaggaaa	c teetgaggtq	g ctatggggtg	ccagcaattt	ggagcatcag	540
40	taattcaat	g tecetteage	c catgtgtatt	caactcctgc	tgtgggtgtg	gacttggtgc	600
	a						601
45	<210> 426 <211> 701 <212> ADN <213> Homo sapier	ıs					
50	<400> 426						

5

10	ttcctgggca	tcgtcatatt	ctgtaaaaca	aggaagctca	gcccagtgtg	ttctaacatg	60
	acctcctttc	tacatcctta	ggtgttgtta	tgcgtgaatc	acgtecece	aaaagacatg	120
	ttcatgtcct	aacccccagg	acctcagaat	gtgtgatctg	gtttggaaat	aaggtcatca	180
15	cagatgaaat	tagctaagac	aaggtcatat	tggaataggg	ttggccctta	atccactgtg	240
	actggtgtcc	ttttaagaag	aggacacaga	cacaggaggg	gagagggcca	tgggatgatg	300
20	caggtggaga	ctggagtgct	acagetgeaa	gcaaatacat	ttctgtgctg	tgaagccacc	360
20	catttggtgg	tactacgtta	aaacagctct	aggaaattaa	tacagatgtt	gcctgtattt	420
	ttgtttctca	tattactact	cattgtttta	atgatgactg	ttttattcat	taagttgaaa	480
25	gctcctaaag	cagagggacc	rtattttat	gtcccaactc	tccttaaggc	cttgcctatg	540
	atagcacatc	tcttcaatag	aattgtccta	actttaacag	agacaacttg	ggttatttaa	600
	tatggagaac	aaagggttaa	gctggtgcca	gatgggtttc	attttctcta	aatctggaac	660
30	caaaggcagc	aagtctatgg	ggtggacgga	gttcttagct	С		701

<210> 427 35 <211> 701 <212> ADN

<212> ADN <213> Homo sapiens

<400> 427

40

	caaggaagct	cagcccagtg	tgttctaaca	tgacctcctt	tctacatcct	taggtgttgt	60
	tatgcgtgaa	tcacgtcccc	ccaaaagaca	tgttcatgtc	ctaaccccca	ggacctcaga	120
45	atgtgtgatc	tggtttggaa	ataaggtcat	cacagatgaa	attagctaag	acaaggtcat	180
	attggaatag	ggttggccct	taatccactg	tgactggtgt	ccttttaaga	agaggacaca	240
	gacacaggag	gggagagggc	catgggatga	tgcaggtgga	gactggagtg	ctacagctgc	300
50	aagcaaatac	atttctgtgc	tgtgaagcca	cccatttggt	ggtactacgt	taaaacagct	360
	ctaggaaatt	aatacagatg	ttgcctgtat	ttttgtttct	catattacta	ctcattgttt	420
	taatgatgac	tgttttattc	attaagttga	aagctcctaa	agcagaggga	ccatattttt	480
55	atgtcccaac	tctccttaag	scottgocta	tgatagcaca	tctcttcaat	agaattgtcc	540
	taactttaac	agagacaact	tgggttattt	aatatggaga	acaaagggtt	aagctggtgc	600
60	cagatgggtt	tcattttctc	taaatctgga	accaaaggca	gcaagtctat	ggggtggacg	660
	gagttcttag	ctcaaccctt	tggtgaggta	agaagaagga	t		701

REIVINDICACIONES

- 1. Un método para preparar una biblioteca de secuenciación a partir de una muestra de prueba que comprende moléculas de ácido nucleico, en donde el método comprende los pasos consecutivos de la reparación de extremos, la cola de dA y el adaptador que ligan dichos ácidos nucleicos, y en el que dichos pasos consecutivos excluyen la purificación de los productos reparados de forma final antes de la etapa de la cola de dA y excluyen la purificación de los productos de cola de dA antes del paso de ligadura del adaptador.
- 2. El método de la Reivindicación 1, en el que dichos pasos consecutivos se realizan en ausencia de polietilenglicol.
- 3. El método de la Reivindicación 1 o la reivindicación 2, en el que dichos pasos consecutivos se realizan en menos de 1 hora.
- 4. El método de cualquier reivindicación precedente, en el que dichos ácidos nucleicos son moléculas de ADN.
- 5. El método de cualquier reivindicación precedente, en el que dichos ácidos nucleicos:
 - (i) son moléculas de ADN genómico; o
 - (ii) son moléculas de ADN genómico humano.
- **6.** El método de la Reivindicación 5, en el que dicho ADN genómico se somete a fragmentación antes de los pasos consecutivos de reparación final, cola de dA y adaptador que liga dichos ácidos nucleicos.
- 7. El método de cualquiera de las Reivindicaciones 1-5, en el que dichos ácidos nucleicos son moléculas de ADN libres de células (ADNcf) y no se someten a fragmentación antes de los pasos consecutivos de reparación final, colas de dA y ligadura con adaptador de dichos ácidos nucleicos .
 - 8. Uso de una biblioteca de secuenciación preparada según el método de cualquiera de las Reivindicaciones 1-7 en un método de secuenciación de ácido nucleico.
 - **9.** El uso de la Reivindicación 8, en el que dicho método de secuenciación es un método de secuenciación de próxima generación (NGS).
- 10. El uso de la Reivindicación 8, en el que dicho método de secuenciación es un método de secuenciación masivamente paralelo, y en el que opcionalmente:
 - (i) dicha secuenciación es una secuenciación masivamente paralela que utiliza secuenciación por síntesis con terminadores de tinte reversibles; o
 - (ii) dicha secuenciación es una secuenciación masivamente paralela utilizando la secuenciación por ligadura.
 - 11. El uso de la Reivindicación 8, en el que dicha secuencia comprende una amplificación.
 - 12. El uso de la Reivindicación 8, en el que dicha secuenciación es una secuenciación de una sola molécula.
 - **13.** El método de cualquiera de las Reivindicaciones 1-7 o el uso de cualquiera de las reivindicaciones 8-12, en el que la muestra:
- (a) es una muestra de plasma derivada de sangre periférica que comprende una mezcla de ADNcf derivado de
 50 células normales y cancerosas;
 - (b) se deriva de una mezcla de células cancerosas y no cancerosas de un fluido biológico seleccionado de suero, sudor, lágrimas, esputo, orina, flujo de oído, linfa, saliva, líquido cefalorraquídeo, lavados, suspensión de médula ósea, flujo vaginal, Lavado transcervical, líquido cerebral, ascitis, leche, secreciones de las vías respiratorias, intestinales y geniutinarias, y muestras de leucoforesis; o
- (c) se selecciona de biopsias de tejido, o frotis.

60

5

10

15

20

30

40

45

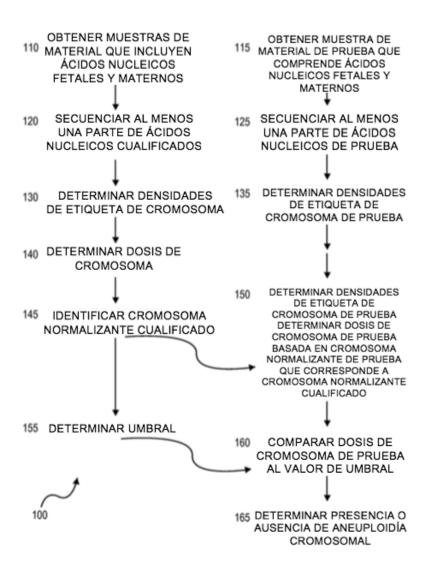


FIG. 1

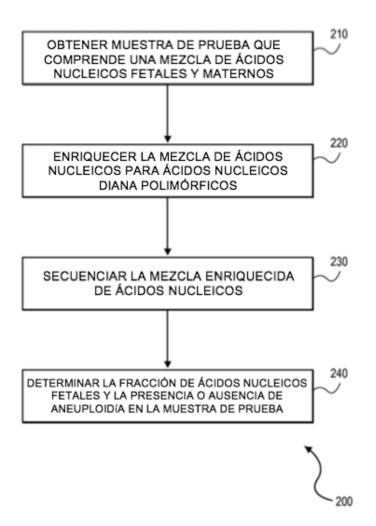
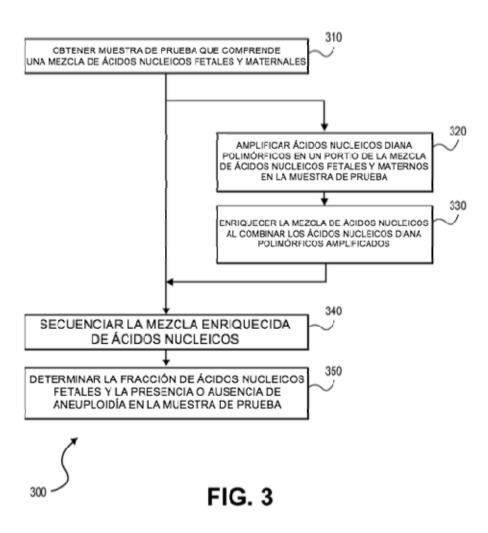
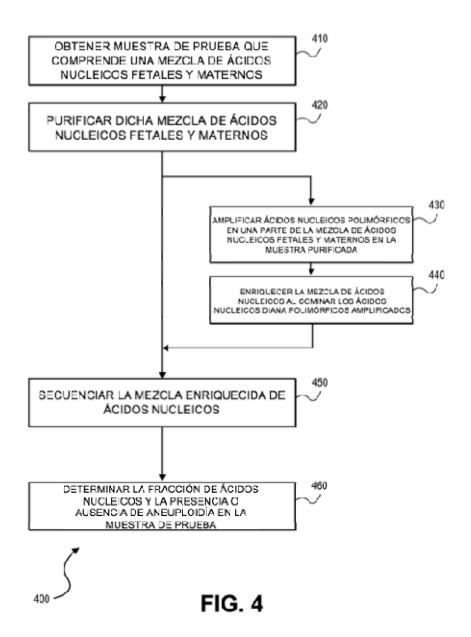




FIG. 2

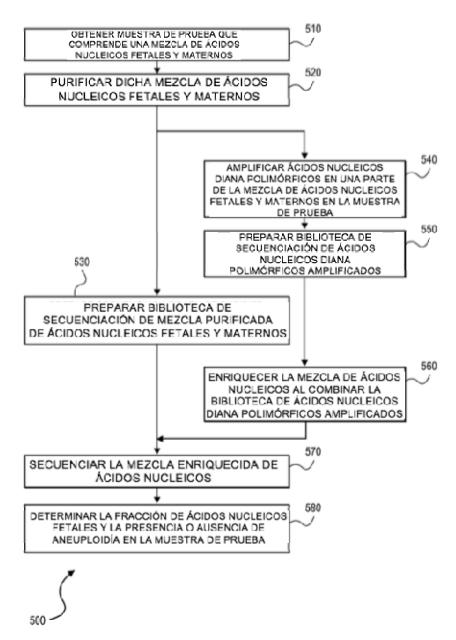
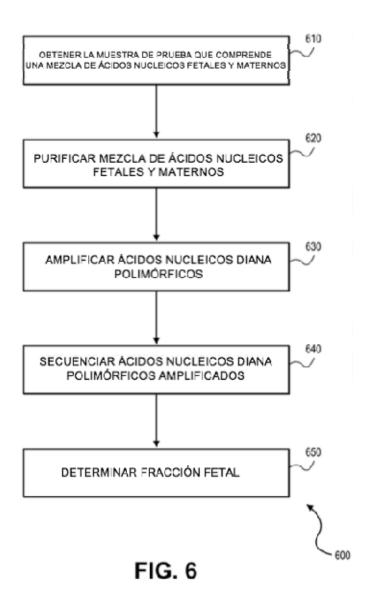
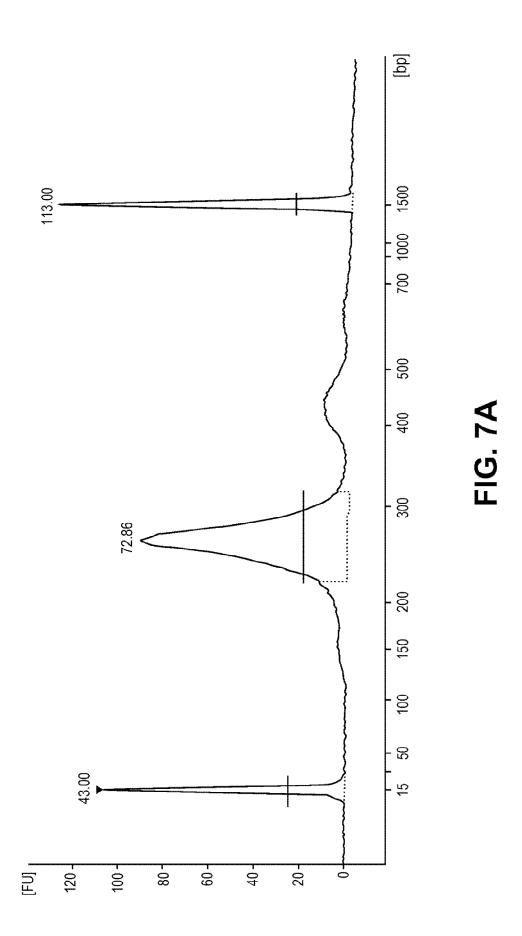
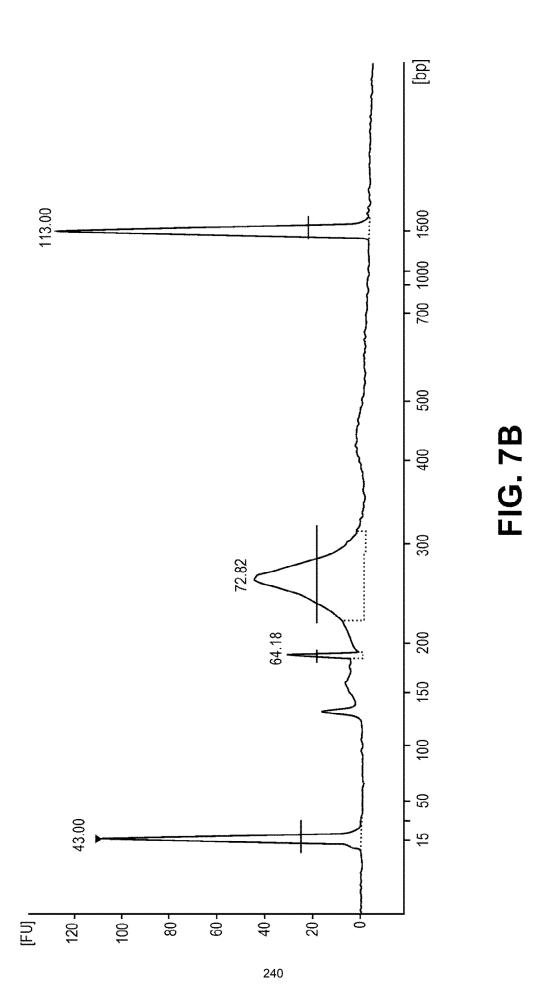





FIG. 5

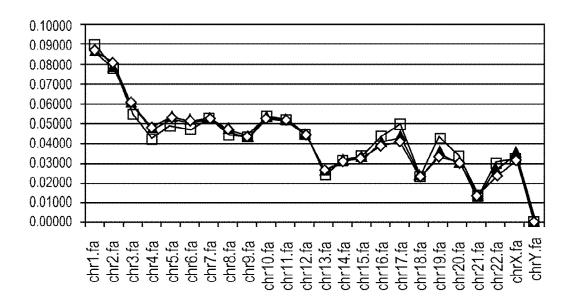


FIG. 8

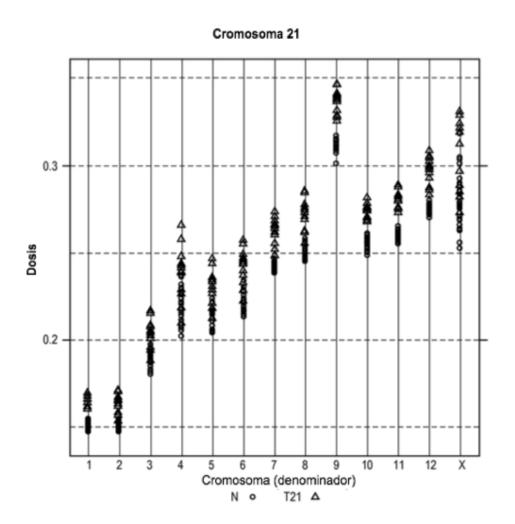
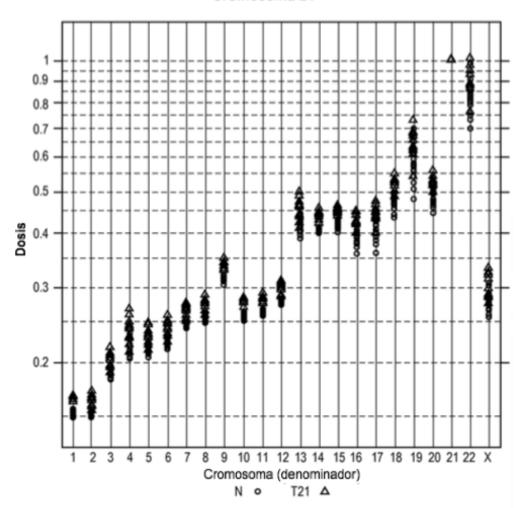
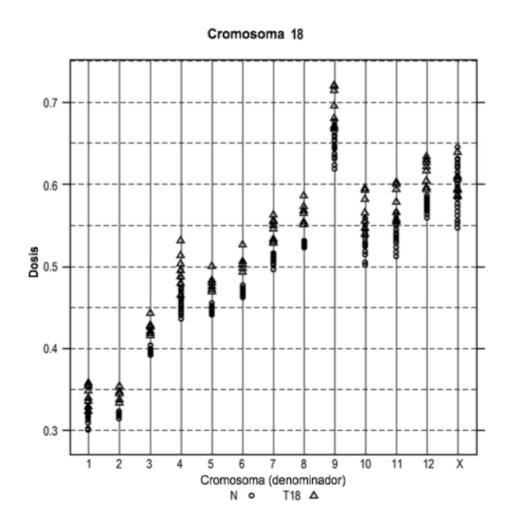
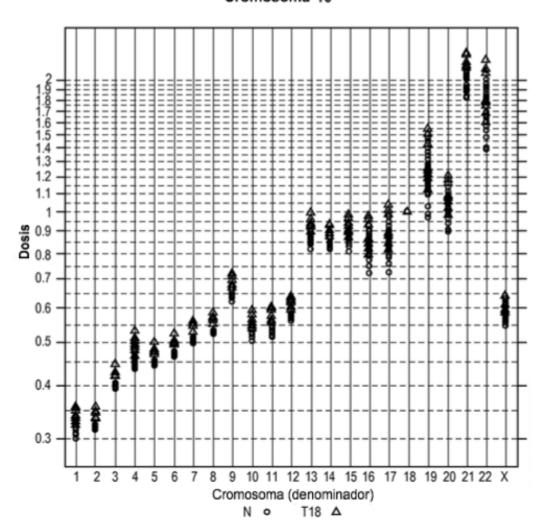


FIG. 9A

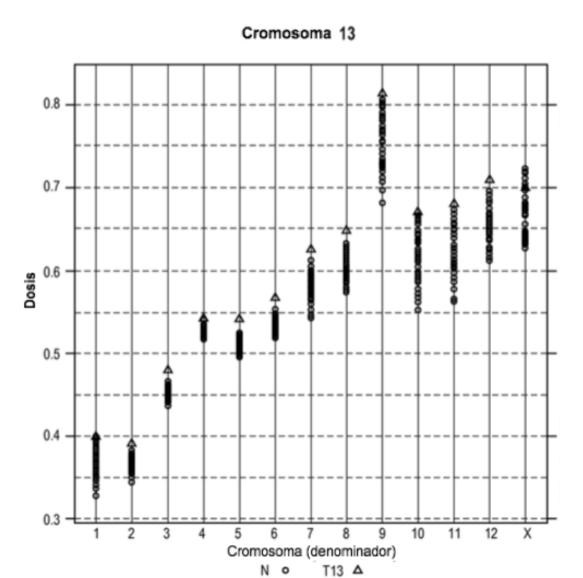

FIG. 9B

FIG. 10A

FIG. 10B

FIG. 11A

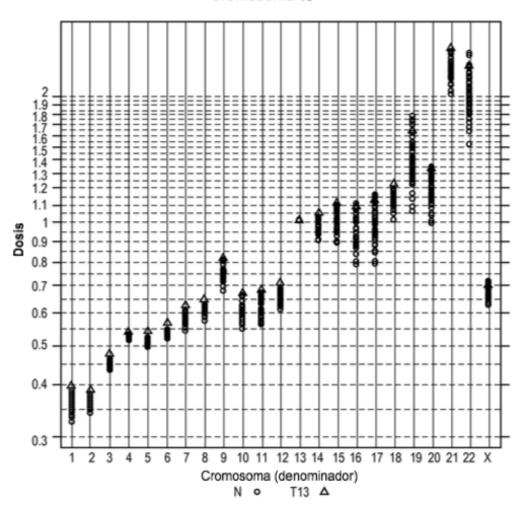


FIG. 11B

Cromosoma X

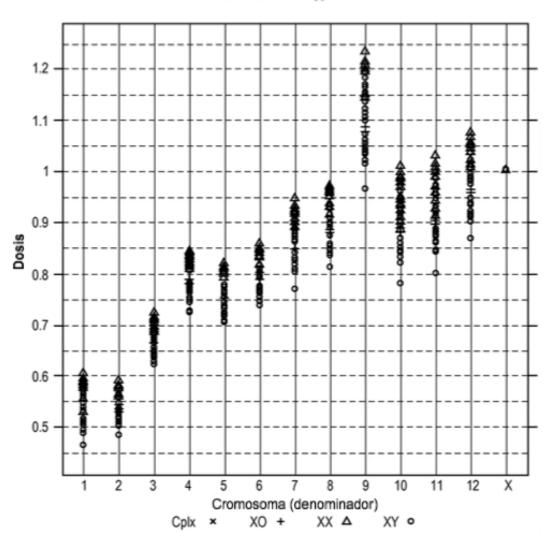


FIG. 12A

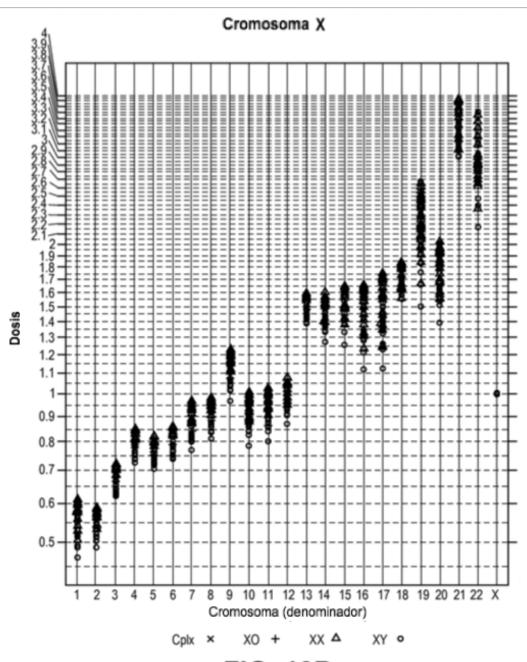


FIG. 12B

Cromosoma Y

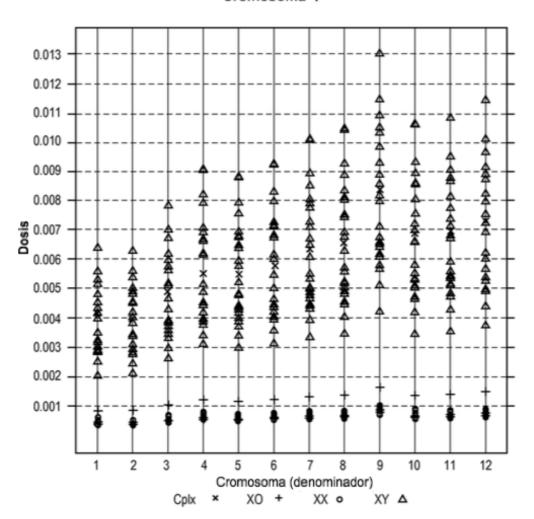


FIG. 13A

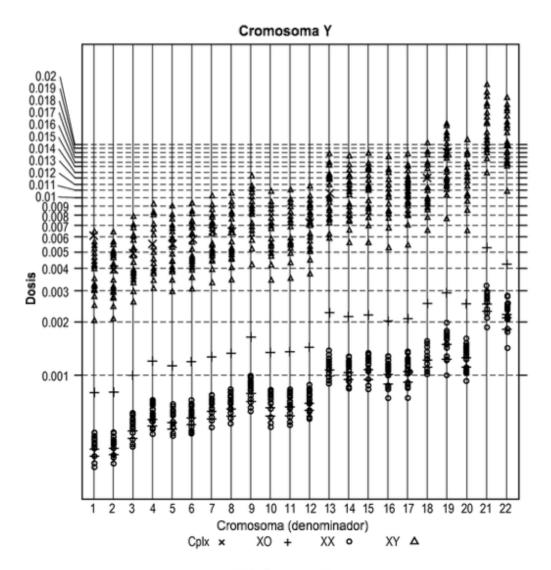


FIG. 13B

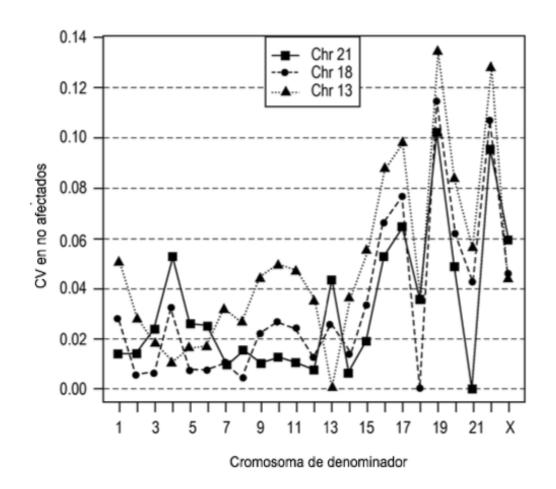


FIG. 14

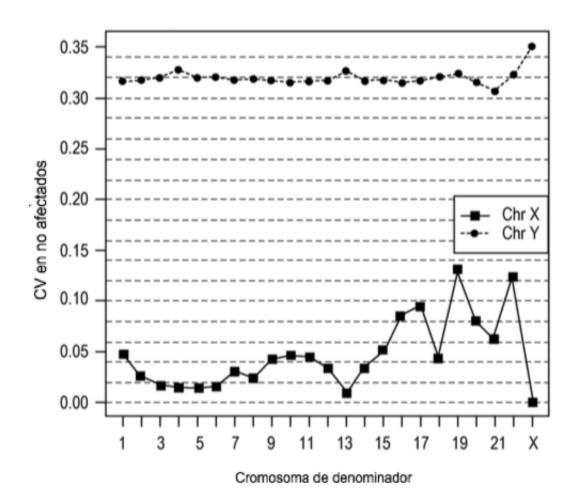


FIG. 15

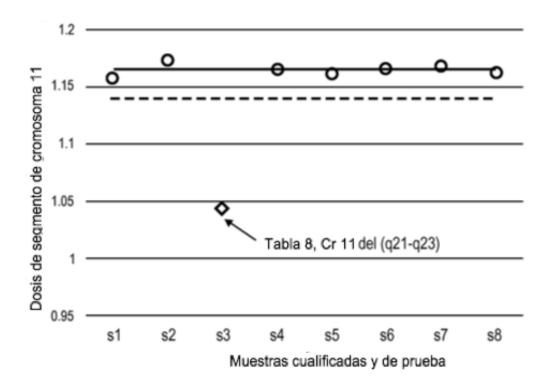


FIG. 16

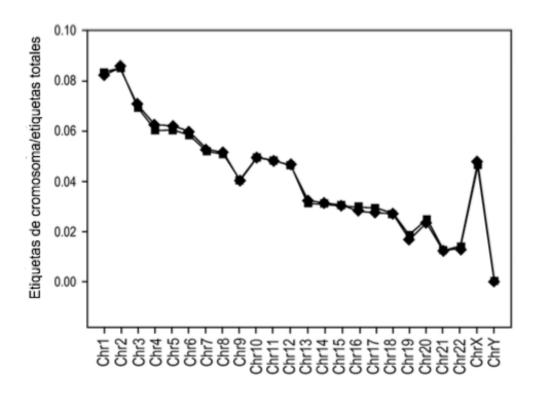


FIG. 17

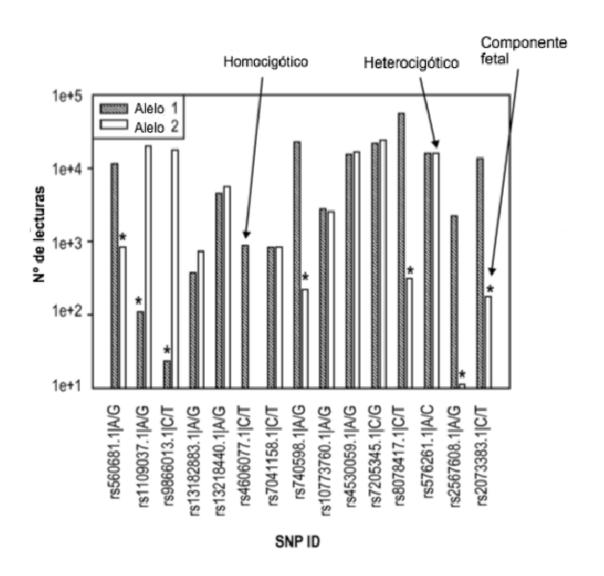


FIG. 18

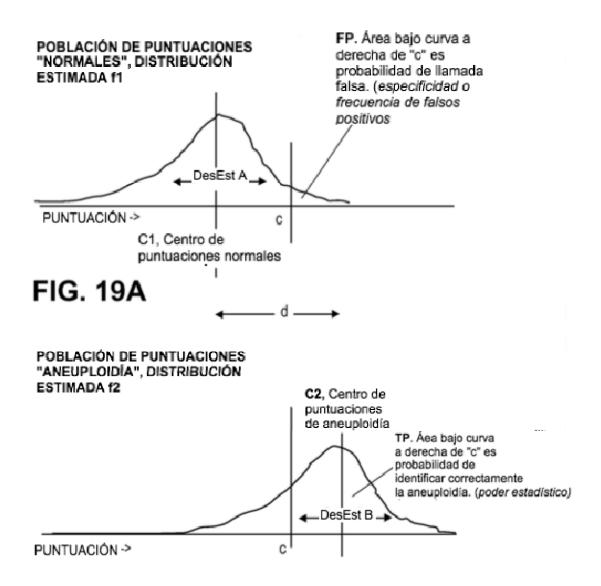


FIG. 19B

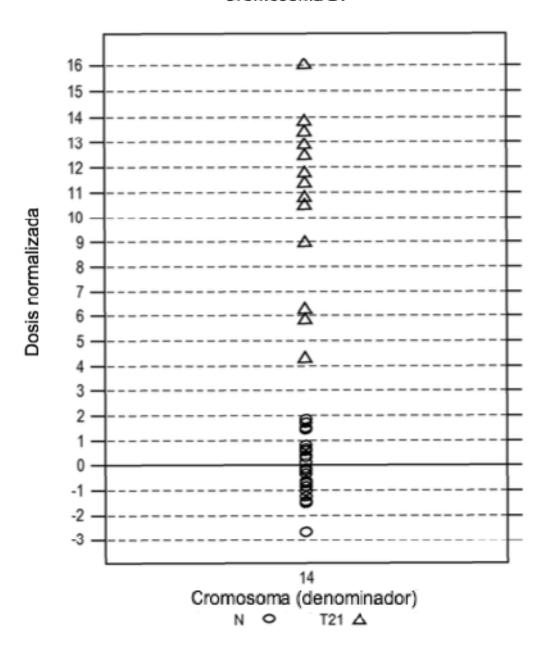
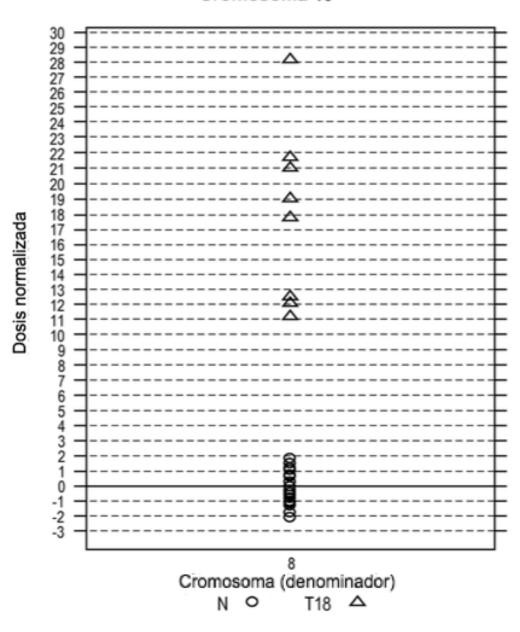
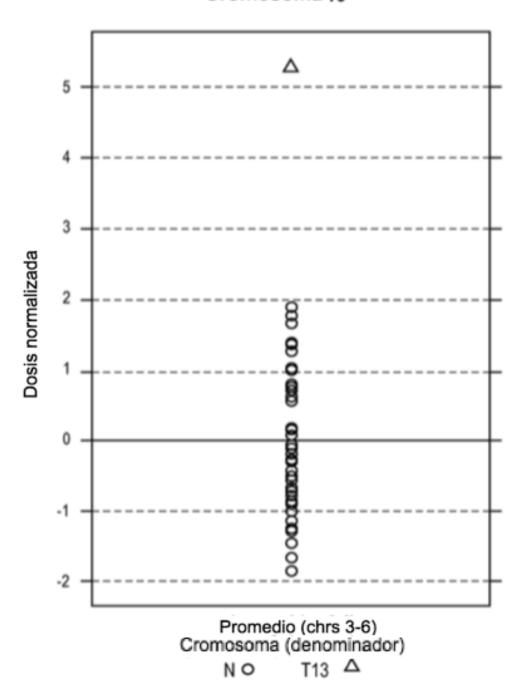




FIG. 20A

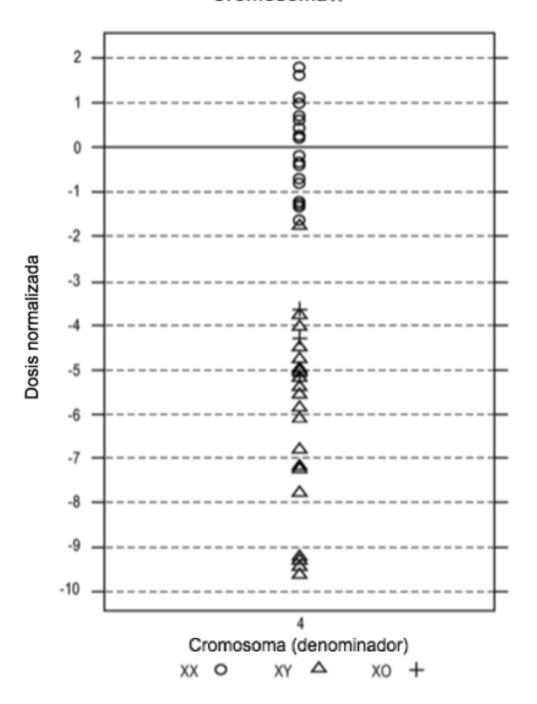


FIG. 20B

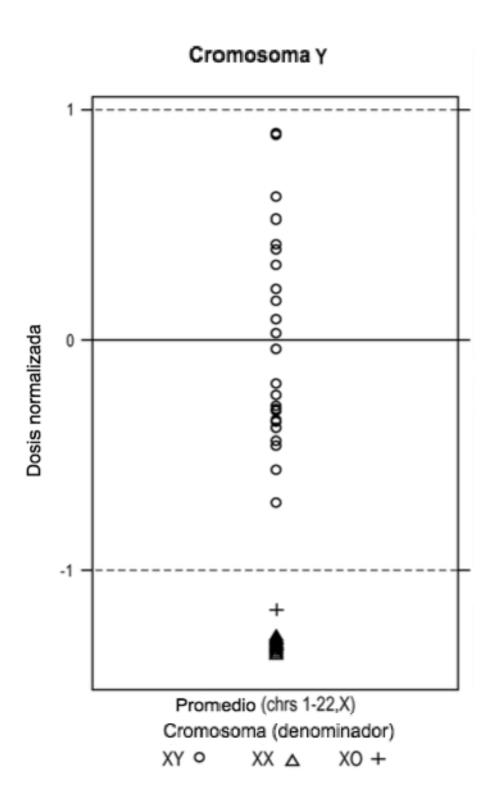


FIG. 20C

Cromosoma X

FIG. 20D

FIG. 20E