

OFICINA ESPAÑOLA DE PATENTES Y MARCAS

ESPAÑA

11) Número de publicación: 2 705 715

51 Int. Cl.:

B23Q 1/54 (2006.01)

(12)

TRADUCCIÓN DE PATENTE EUROPEA

T3

Fecha de presentación y número de la solicitud europea: 29.06.2016 E 16176823 (9)
Fecha y número de publicación de la concesión europea: 14.11.2018 EP 3112084

(54) Título: Cabezal de mecanización de giro doble

(30) Prioridad:

30.06.2015 IT UB20151811

(45) Fecha de publicación y mención en BOPI de la traducción de la patente: 26.03.2019

(73) Titular/es:

C.M.S. S.P.A. (100.0%) Via A. Locatelli, 123 24019 Zogno (BG), IT

(72) Inventor/es:

RINALDI, NICOLA; PESENTI, GINO y ALVANINI, MARCO

(74) Agente/Representante:

INGENIAS CREACIONES, SIGNOS E INVENCIONES, SLP

DESCRIPCIÓN

CABEZAL DE MECANIZACIÓN DE GIRO DOBLE

ANTECEDENTES DE LA INVENCIÓN

La invención se refiere a un cabezal de mecanización de giro doble, de forma específica, para mecanizar retirando material (por ejemplo, fresado, perforación, corte, entallado, acabado, etc.) en objetos hechos de un material que puede ser mecanizado (por ejemplo, madera, resina, material compuesto, aluminio, PVC, acero, aleación ligera, etc.).

5

10

15

20

25

30

45

De forma específica, aunque no exclusiva, es posible usar la invención de forma útil en un centro de mecanización de control numérico con cinco ejes controlados, de forma específica, para mecanizar superficies irregulares, especialmente para piezas a trabajar con formas y dimensiones no nominales, por ejemplo, piezas a trabajar obtenidas a partir de mecanización mecánica (prensado, doblado, calandrado, estiramiento, etc.) que no asegura en general la precisión de la pieza a trabajar.

Para llevar a cabo tareas de mecanización complejas en superficies irregulares, por ejemplo, en piezas a trabajar con formas y dimensiones no nominales, la técnica anterior comprende dispositivos flotantes que se montan en el soporte de herramientas, estando integrada la función de adaptación a la pieza a trabajar no regular en un eje de soporte de herramientas conectado al eje giratorio para obtener un movimiento de ajuste axial del eje giratorio, por ejemplo, mediante una conexión con ranuras con muelles para mantener un contacto con la pieza a trabajar.

No obstante, los dispositivos flotantes de la técnica anterior mencionados previamente presentan ciertos límites e inconvenientes. En primer lugar, el dispositivo flotante, en el que el movimiento de compensación se asigna a una parte móvil del soporte de herramientas, disminuye la rigidez del sistema de soporte de herramientas. En segundo lugar, el dispositivo flotante está sujeto a desgaste y, por lo tanto, a la formación no deseada de juegos excesivos, con una consecuente pérdida de precisión. Además, el dispositivo flotante pierde precisión y eficacia cuando el cabezal de giro doble dispone el eje giratorio de mecanización según una inclinación horizontal o determinada, ya que, en tal caso, debido a que el componente vertical del peso de la parte flotante que opera en la pieza a trabajar cambia significativamente, los muelles no pueden seguir asegurando una fuerza de contacto constante entre la herramienta y la pieza a trabajar y, por lo tanto, el movimiento de compensación resultante no es el movimiento deseado, de manera que, en el caso de una superficie irregular de la pieza a trabajar, la profundidad de mecanización puede ser diferente en zonas de la pieza a trabajar en las que la herramienta ha mecanizado con el eje vertical con respecto a zonas en las que la misma ha mecanizado con el eje horizontal o inclinado, lo que implica errores de mecanización.

FR 2 986 172 A1 describe un cabezal de mecanización de giro doble como el del preámbulo de la reivindicación 1.

RESUMEN DE LA INVENCIÓN

Un objetivo de la invención consiste en producir un cabezal de mecanización que permite superar uno o más de los anteriores límites e inconvenientes de la técnica anterior.

Una ventaja consiste en mecanizar retirando material a una altura de mecanización regular también en superficies irregulares de la pieza a trabajar.

Una ventaja consiste en tener un dispositivo de compensación para compensar posibles irregularidades de la superficie de la pieza a trabajar en el que la conexión entre la herramienta y el eje de la unidad de eje giratorio eléctrico es significativamente rígida, precisa y fiable con el paso del tiempo.

Una ventaja consiste en permitir una mecanización en la que la herramienta accionada por el eje giratorio siempre está a la altura correcta con respecto a la superficie de la pieza a trabajar.

Una ventaja consiste en la rigidez considerable del soporte de herramientas, gracias al hecho de que el movimiento de compensación de las irregularidades de la superficie de la pieza a trabajar no comprende ningún movimiento relativo de una parte del soporte de herramientas con respecto al motor de la unidad de eje giratorio eléctrico que acciona el soporte de herramientas.

Una ventaja consiste en dar a conocer un cabezal de mecanización para permitir mecanizar piezas a trabajar que no tienen una forma plana.

Una ventaja consiste en dar a conocer un cabezal de mecanización para retirar material dotado de una gran precisión también para superficies irregulares de piezas a trabajar con formas y dimensiones no nominales.

Una ventaja consiste en facilitar el ajuste del cabezal de mecanización con respecto a la pieza a trabajar.

Una ventaja consiste en dar a conocer un cabezal de mecanización estructuralmente sencillo y barato.

5

10

15

20

25

30

35

45

50

Una ventaja consiste en crear un cabezal de mecanización que es versátil y adaptable para su uso en piezas a trabajar con superficies irregulares y/o formas diferentes.

Dichos objetivos y ventajas, así como otros adicionales, se consiguen en su totalidad mediante el cabezal de mecanización según una o más de las reivindicaciones descritas más adelante.

En una realización, un cabezal de mecanización comprende al menos una unidad de control de eje y una unidad de eje giratorio eléctrico soportada por dicha unidad de control de eje, comprendiendo la unidad de eje giratorio eléctrico al menos un motor, al menos un soporte de herramientas accionado por dicho motor y medios de apoyo dispuestos para apoyarse en una pieza a trabajar y que mantienen una posición relativa deseada entre la pieza a trabajar y la herramienta, siendo posible compensar una posible irregularidad de la pieza a trabajar a través del efecto de un movimiento (deslizamiento lineal) de la totalidad de la unidad de eje giratorio eléctrico (incluyendo el motor, el soporte de herramientas y los medios de apoyo) con respecto a dicha unidad de control de eje.

En una realización, un cabezal de mecanización de giro doble comprende dos unidades de control de eje y una unidad de eje giratorio eléctrico que tiene un motor de accionamiento de soporte de herramientas, siendo capaz la unidad de eje giratorio eléctrico de realizar un movimiento (por ejemplo, deslizamiento lineal) con respecto a la unidad de control de eje que soporta la unidad de eje giratorio eléctrico, siendo adecuado este movimiento para compensar posibles irregularidades de la superficie de la pieza a trabajar a efectos de mantener una posición deseada relativa entre la pieza a trabajar y la herramienta accionada por la unidad de eje giratorio eléctrico.

En una realización, un cabezal de mecanización comprende al menos una unidad de control de eje, al menos una unidad de eje giratorio eléctrico soportada por dicha unidad de control de eje y al menos medios de apoyo dispuestos para apoyarse en una pieza a trabajar para mantener una posición relativa deseada entre la pieza a trabajar y una herramienta que gira mediante la unidad de eje giratorio eléctrico, formando dicha unidad de eje giratorio eléctrico (que comprende de forma específica un motor y/o una transmisión y/o un soporte de herramientas) y dichos medios de apoyo una unidad que tiene, en su conjunto, un movimiento (lineal) con respecto a dicha unidad de control de eje para mantener dicha posición relativa deseada a efectos de compensar posibles irregularidades de la pieza a trabajar.

En una realización, un cabezal de mecanización (de giro doble) comprende un dispositivo de compensación para compensar las irregularidades de la superficie de la pieza a trabajar, siendo asignado el movimiento de compensación a la totalidad de la unidad de eje giratorio eléctrico (incluyendo el motor de accionamiento de soporte de herramientas), que puede estar conectada a una unidad de control, que ajusta al menos un eje controlado del cabezal de mecanización, con al menos un grado de libertad (por ejemplo, con un movimiento lineal de deslizamiento).

BREVE DESCRIPCIÓN DE LOS DIBUJOS

Es posible mejorar la comprensión e implementación de la invención haciendo referencia a los dibujos adjuntos, que muestran algunas realizaciones de la misma a título de ejemplos no limitativos.

La figura 1 es una vista en perspectiva de una primera realización de un cabezal de giro doble según la invención.

40 La figura 2 es una vista lateral, en sección parcial, del cabezal de la figura 1.

La figura 3 es una vista en perspectiva de una segunda realización de un cabezal de giro doble según la invención.

La figura 4 es una vista lateral, en sección parcial, del cabezal de la figura 3.

La figura 5 es una vista en perspectiva de un grupo de elementos que forman el cabezal de giro doble de la figura 1 o el cabezal de giro doble de la figura 3.

La figura 6 muestra la misma vista de la figura 5 con algunas piezas no mostradas para una mejor observación de otras de sus piezas.

La figura 7 es una vista en perspectiva de un cabezal de giro doble de la figura 3 mientras el mismo mecaniza una pieza a trabajar con una forma curvada.

DESCRIPCIÓN DETALLADA

Haciendo referencia a las figuras mencionadas anteriormente, de forma general, se indica como 1 un cabezal de mecanización (de giro doble) para un centro de mecanización de control numérico, de forma específica,

para mecanizar piezas a trabajar hechas de madera, aluminio, plástico, materiales compuestos, etc. Por ejemplo, es posible usar el cabezal 1 para mecanizar (por ejemplo, fresar, perforar, cortar, entallar, acabar, etc.) piezas a trabajar con una forma compleja (con una forma curvada o no plana) y/o con superficies irregulares o superficies no nominales.

Por ejemplo, el centro de mecanización de control numérico puede ser un centro con cinco ejes X, Y, Z, C, A de mecanización controlados, en donde los tres ejes X, Y, Z están asociados a la parte del centro de mecanización que soporta el cabezal 1 de mecanización, mientras que los otros dos ejes C y A están asociados al cabezal.

El cabezal 1 de giro doble puede comprender, tal como sucede en esta realización, una primera unidad de 10 control de eje (de un primer eje controlado C, por ejemplo, un eje vertical) y una segunda unidad de control de eje (de un segundo eje controlado A que, por ejemplo, está inclinado 90° con respecto al primer eje controlado) soportada por la primera unidad de control del primer eje C. En el contexto de la presente descripción "unidad de control de eje" se define como la unidad que comprende los diversos medios para accionar el ajuste de un eje controlado, tal como, por ejemplo, el servomotor y los medios de detector 15 (codificador) para detectar el movimiento de al menos una pieza móvil accionada por el servomotor. Las unidades de control de eje (de los ejes C y A) del cabezal 1 de giro doble pueden comprender dos unidades de control de eje de tipo conocido y, en consecuencia, no se describen de forma más detallada. En general, cada unidad de control de eje puede comprender al menos un servomotor y una transmisión (reductor de velocidad) y/o medios de detector (codificador). En las figuras, de forma general, se indica como 2 un grupo que contiene al menos en parte los servomotores y/o las transmisiones y/o los medios de detector para 20 ajustar los dos ejes controlados C y A.

El cabezal 1 de giro doble puede comprender, tal como sucede en estas realizaciones, una unidad 3 de eje giratorio eléctrico que comprende al menos un eje giratorio (soporte 4 de herramientas) y un motor de accionamiento de eje giratorio. El motor (que puede ser de tipo conocido y, de acuerdo con ello, no se muestra de forma detallada) puede girar el soporte 4 de herramientas mediante una transmisión (por ejemplo, una transmisión de tipo conocido y no mostrada).

25

30

35

40

45

50

55

La unidad 3 de eje giratorio eléctrico (es decir, el grupo que incluye, tal como sucede en este caso, al menos un motor y un soporte 4 de herramientas, y una posible transmisión y/o una toma de fuerza) puede estar soportada por la segunda unidad de control del segundo eje A con posibilidad de movimiento (de forma específica, con al menos un grado de libertad, por ejemplo, con la posibilidad de llevar a cabo un deslizamiento lineal) con respecto a dicha segunda unidad de control, tal como se explicará de forma más detallada a continuación.

El cabezal 1 puede comprender medios 6 de apoyo soportados por al menos un elemento de la unidad 3 de eje giratorio eléctrico. Por ejemplo, los medios 6 de apoyo pueden montarse en el soporte 4 de herramienta para no quedar limitados al giro del soporte 4 de herramientas accionado por la unidad 3 de eje giratorio eléctrico. De forma específica, los medios 6 de apoyo pueden estar dispuestos para apoyarse en una pieza P a trabajar mecanizada a efectos de mantener una posición relativa deseada entre la pieza P a trabajar mecanizada y una herramienta 5 soportada por el soporte 4 de herramientas. Es posible compensar una posible irregularidad de la superficie mecanizada de la pieza a trabajar a través del efecto de dicho movimiento de compensación de la unidad 3 de eje giratorio eléctrico con respecto a la segunda unidad de control del eje A. Los medios 6 de apoyo (en la realización de las figuras 1 y 2 los medios 6 de apoyo tienen una parte de contacto de forma circular que rodea la herramienta 5, mientras que en la realización de las figuras 3 y 4 los medios 6 de apoyo tienen una parte de contacto que es prácticamente un contacto puntual dispuesto en el lado de la herramienta 5) pueden estar montados en el soporte 4 de herramientas para poder montarse y retirarse conjuntamente con la herramienta 5.

El movimiento de compensación mencionado anteriormente puede comprender, tal como sucede en esta realización, un movimiento lineal, de forma específica, un movimiento lineal paralelo con respecto a un eje de giro del soporte 4 de herramientas.

La unidad 3 de eje giratorio eléctrico puede estar conectada a la segunda unidad de control del eje A mediante medios 12 de guía de deslizamiento. De forma específica, el cabezal 1 puede comprender una corredera 10 que soporta la unidad 3 de eje giratorio eléctrico. Tal como sucede en este caso específico, la corredera 10 puede estar conectada de forma deslizable mediante los medios 12 de guía en una base 11 soportada por la segunda unidad de control del eje A. El movimiento de compensación mencionado anteriormente puede comprender de forma específica un deslizamiento lineal a lo largo de dichos medios 12 de guía.

Por ejemplo, la corredera 10 puede comprender al menos una parte en forma de placa. Por ejemplo, la base 11 puede comprender al menos una parte en forma de placa. De forma específica, dichas partes en forma de placa pueden estar orientadas en paralelo entre sí con la interposición de medios 17 de bloque desplazable.

El cabezal 1 puede comprender, tal como sucede en la realización descrita en este caso, medios 13 de accionamiento dispuestos para controlar dicho movimiento de compensación de la unidad 3 de eje giratorio eléctrico con respecto a la segunda unidad de control del eje A.

De forma específica, el cabezal 1 puede comprender medios de control electrónicos programables para controlar los medios 13 de accionamiento a efectos de ajustar la fuerza de contacto entre los medios 6 de apoyo y la pieza P a trabajar mecanizada.

5

20

25

55

De forma específica, los medios 13 de accionamiento pueden funcionar como medios elásticos (por fluido) que mantienen los medios 6 de apoyo presionados contra la pieza P a trabajar mecanizada con una fuerza de contacto elástica que es variable de manera controlada.

Por ejemplo, los medios 13 de accionamiento pueden comprender al menos un dispositivo de accionamiento lineal. De forma específica, los medios 13 de accionamiento pueden ser del tipo con fluido funcional de accionamiento. Los medios 13 de accionamiento pueden ser controlados mediante medios 8 de válvula (por ejemplo, de tipo proporcional). De forma específica los medios 13 de accionamiento pueden comprender al menos un dispositivo de accionamiento lineal por fluido de efecto doble dotado de al menos dos válvulas proporcionales (una para cada cámara) para ajustar la presión en dos cámaras funcionales opuestas del dispositivo de accionamiento de efecto doble.

De forma específica, los medios de control (electrónicos y programables) pueden comprender medios para ajustar la fuerza de contacto entre los medios 6 de apoyo y la pieza a trabajar. De forma específica, dichos medios de ajuste están configurados para ajustar dicha fuerza de contacto en función del ángulo del segundo eje A (en correspondencia con el ángulo de inclinación de la unidad 3 de eje giratorio eléctrico que controla el segundo eje A). Por ejemplo, dichos medios de ajuste pueden comprender instrucciones de programa de ordenador implementables mediante dichos medios de control.

En el caso específico, los medios de control electrónicos (por ejemplo, un microprocesador del centro de mecanización de control numérico) reciben una señal de medios de detector (por ejemplo, medios de codificador) asociados al segundo eje A. Esta señal indica el ángulo del segundo eje controlado A, es decir, el ángulo de inclinación de la unidad 3 de eje giratorio eléctrico alrededor del segundo eje controlado A, en otras palabras, el ángulo con el que el segundo eje controlado A ajusta la posición (angular) de la unidad 3 de eje giratorio eléctrico. De acuerdo con ello, esta señal puede ser variable durante la mecanización en función del ángulo de mecanización del segundo eje A.

Es posible programar los medios de control para controlar por retroalimentación los medios 13 de accionamiento según la señal mencionada anteriormente, de forma específica (en el caso de medios de accionamiento con fluido funcional), para ajustar la presión del fluido funcional en los medios 13 de accionamiento, a efectos de ajustar la fuerza de contacto entre los medios 6 de apoyo y la pieza a trabajar. De forma específica, la presión del fluido funcional (en las dos cámaras) de los medios 13 de accionamiento puede ser variable en función del ángulo de mecanización del segundo eje A (ángulo de inclinación de la unidad 3 de eje giratorio eléctrico), mediante el sistema de control de retroalimentación, a efectos de que dicha fuerza de contacto sea constantemente igual a un valor deseado independientemente del ángulo del segundo eje A. El valor deseado (punto de ajuste) de la presión del fluido funcional de los medios 13 de accionamiento (del que depende la fuerza de contacto eficaz entre los medios 6 de apoyo y la pieza a trabajar P) puede ser variable y ajustarse, en cada ocasión, en función de parámetros de mecanización, por ejemplo, según los materiales mecanizados, las tareas de mecanización, etc.

El cabezal 1 puede comprender, tal como sucede en esta realización, medios 14 de freno (por ejemplo, medios 14 de freno de accionamiento de fluido funcional) dispuestos para inmovilizar la unidad 3 de eje giratorio eléctrico con respecto al segundo eje A en una o más posiciones deseadas.

Por ejemplo, el cabezal 1 puede comprender medios 7 de soporte rodantes (cojinetes) para soportar de forma giratoria los medios 6 de apoyo en la unidad 3 de eje giratorio eléctrico, a efectos de montar los medios 6 de apoyo en la unidad 3 de eje giratorio eléctrico (de forma específica, en el soporte 4 de herramientas) sin limitar no obstante los medios 6 de apoyo con respecto al giro del soporte 4 de herramientas. De forma específica, los medios 6 de apoyo pueden estar soportados coaxialmente (en medios de soporte rodantes) con respecto al soporte 4 de herramientas alrededor de un eje de conexión que coincide con el eje del soporte 4 de herramientas.

El cabezal 1 puede comprender, tal como sucede en las realizaciones mostradas, medios anti-giro 9 (de tipo desmontable) para limitar los medios 6 de apoyo a una parte fija de la unidad 3 de eje giratorio eléctrico, a efectos de evitar el giro de los medios 6 de apoyo mediante la unidad 3 de eje giratorio eléctrico. Dichos medios anti-giro 9 pueden comprender, tal como sucede en estas realizaciones, una unión de lengüeta y ranura, con una parte (la lengüeta) de la unión integral con respecto a los medios 6 de apoyo y la otra parte (ranura) de la unión integral con respecto a la parte fija de la unidad 3 de eje giratorio eléctrico, o viceversa.

Tal como sucede en las realizaciones descritas en este caso, es posible que el soporte 4 de herramientas y

los medios 6 de apoyo formen una única unidad (que puede montarse y desmontarse como un único bloque). Además, esta unidad puede comprender los medios 7 de soporte rodantes y/o los medios anti-giro 9 (además de la herramienta 5, que puede conectarse al soporte 4 de herramientas).

En la realización de las figuras 1 y 2, los medios 6 de apoyo comprenden un cuerpo hueco (en forma de campana invertida) dotado de varias ventanas laterales, con una parte extrema (en contacto con la pieza a trabajar) que tiene una forma sustancialmente circular.

El cabezal 1 puede comprender, tal como sucede en la realización de las figuras 3 y 4, medios de disposición para ajustar la posición angular de los medios 6 de apoyo con respecto a la unidad 3 de eje giratorio eléctrico. De forma específica, estos medios de disposición pueden comprender medios 15 de transmisión dispuestos en la unidad 3 de eje giratorio eléctrico para controlar (por ejemplo, interponiendo medios 16 de transmisión de movimiento y medios 18 de soporte rodantes) el giro de los medios 6 de apoyo alrededor de los medios 7 de soporte rodantes.

En la realización de las figuras 3 y 4, los medios 6 de apoyo comprenden una parte extrema (en forma de diente) dispuesta en un lado del soporte 4 de herramientas. Esta parte extrema puede crear, tal como sucede en esta realización, una zona de contacto con un área muy limitada (zona de contacto puntual o precisa).

Los medios de disposición mencionados anteriormente permiten ajustar la posición circunferencial de la zona de contacto (puntual o precisa) de los medios 6 de apoyo con la pieza a trabajar, a efectos de seleccionar la posición angular más adecuada para obtener una mecanización correcta. Los medios 6 de apoyo con una parte de contacto puntual (figuras 3 y 4) y con ajuste de la posición angular pueden resultar especialmente ventajosos para mecanizar superficies cóncavas.

El cabezal 1 puede comprender, tal como sucede en estas realizaciones, medios 19 de ajuste de altura dispuestos para permitir a un operario ajustar (por ejemplo, manualmente) la altura de los medios 6 de apoyo con respecto a la herramienta 5 para definir, especialmente, la profundidad de mecanización de la herramienta. De forma específica, estos medios 19 de ajuste de altura pueden comprender un mecanismo de ajuste de posición axial, por ejemplo, del tipo de tornillo micrométrico o de otro tipo.

En uso, los medios 6 de apoyo se mantienen contra la superficie de la pieza a trabajar, en la proximidad inmediata de la zona donde funciona la herramienta 5, de forma específica, para obtener una mecanización mediante retirada de material a una profundidad predeterminada.

En el caso de una superficie irregular de la pieza a trabajar, la totalidad de la unidad 3 de eje giratorio eléctrico puede llevar a cabo un movimiento de compensación (en el caso específico, mediante deslizamiento en los medios 12 de guía) para mantener el contacto de los medios 6 de apoyo contra la pieza a trabajar, de forma específica, a efectos de que la profundidad de mecanización permanezca constante.

La fuerza de contacto entre los medios 6 de apoyo y la pieza a trabajar puede mantenerse sustancialmente constante gracias al control de los medios 13 de accionamiento, de forma específica, manteniendo la presión del fluido funcional controlada. Durante la mecanización, el ángulo de mecanización del segundo eje A controlado por el cabezal 1 podría variar, variando en consecuencia la fuerza de contacto debido al peso que actúa sobre la pieza P a trabajar mecanizada; la fuerza de contacto total puede permanecer constante gracias al sistema de retroalimentación de los medios de control, un sistema que variará la presión del fluido funcional de los medios 13 de accionamiento (según el ángulo del segundo eje controlado A) a efectos de mantener constante el resultado de las fuerzas consecuencia del peso y el empuje de los medios 13 de accionamiento.

Tal como se muestra en la figura 7, el cabezal 1 de mecanización permite llevar a cabo tareas de mecanización (de forma específica, en piezas a trabajar con una forma curvada) tanto en la parte central de la pieza a trabajar (ver figura 7, donde la mecanización ya se ha llevado a cabo) como en el borde de la pieza a trabajar (ver figura 7, donde la mecanización está llevándose a cabo), con la posibilidad de obtener las ventajas mencionadas anteriormente en ambos casos.

Leyendas

5

10

15

20

25

35

40

45

- 1 Cabezal de mecanización de giro doble con dos unidades de control de eje
- C primer eje controlado
- 50 A segundo eje controlado
 - 2 unidad con los servomotores de las unidades de control de los ejes C y A
 - 3 unidad de eje giratorio eléctrico
 - 4 soporte de herramientas

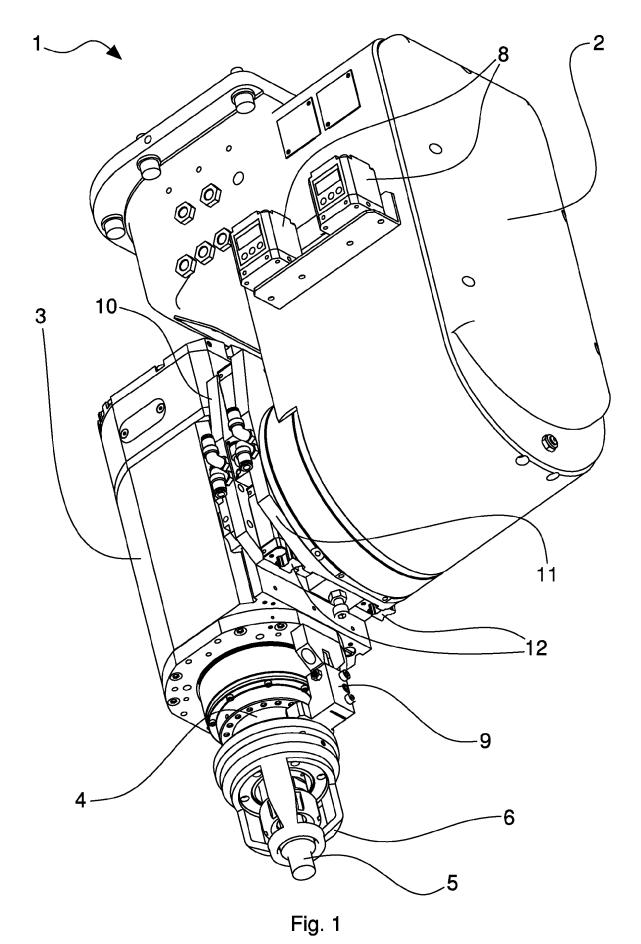
	5	herramienta
	6	medios de apoyo
	7	medios de soporte rodantes
	8	medios de válvula
5	9	medios anti-giro
	10	corredera de soporte
	11	base de soporte
	12	medios de guía
	13	medios de accionamiento
10	14	medios de freno
	15	medios de transmisión
	16	medios de transmisión de movimiento
	17	medios de bloque desplazable
	18	medios de soporte rodantes
15	19	medios de ajuste de altura
	Р	pieza a trabajar siendo mecanizada

REIVINDICACIONES

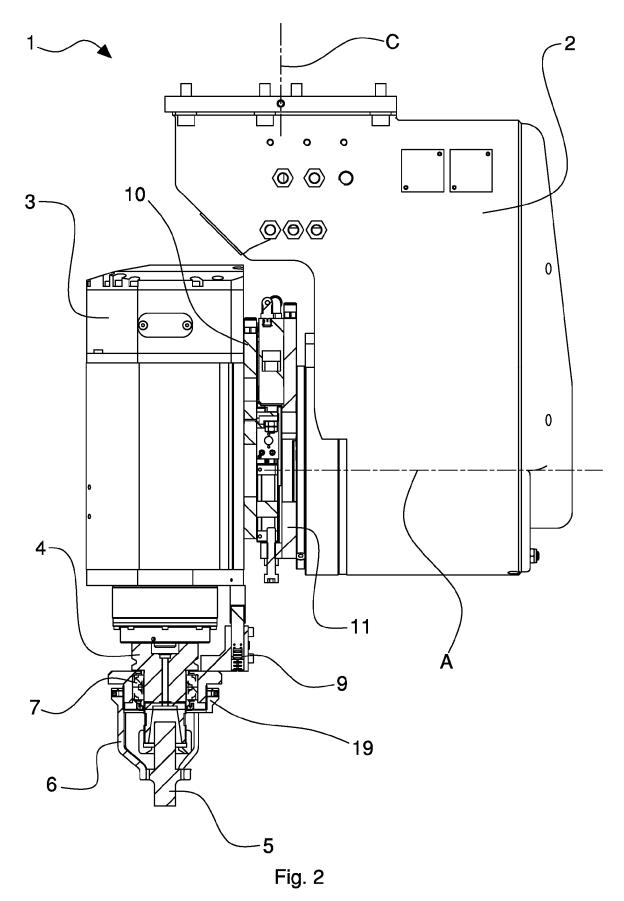
- 1. Cabezal (1) de mecanización de giro doble con dos ejes controlados (C; A), que comprende:
- una primera unidad de control de un primer eje (C);
- una segunda unidad de control de un segundo eje (A);
- una unidad (3) de eje giratorio eléctrico que tiene un motor para girar un soporte (4) de herramientas, estando soportada dicha unidad (3) de eje giratorio eléctrico por dicha segunda unidad de control con posibilidad de movimiento con al menos un grado de libertad con respecto a dicha segunda unidad de control:

caracterizado por el hecho de que además comprende

20


25

30


40

- medios (6) de apoyo soportados por dicha unidad (3) de eje giratorio eléctrico y dispuestos para apoyarse en una pieza a trabajar a efectos de mantener una posición relativa deseada entre la pieza (P) a trabajar y una herramienta (5) soportada por dicho soporte (4) de herramientas, en donde es posible compensar una posible irregularidad de la pieza (P) a trabajar mediante dicho movimiento de dicha unidad (3) de eje giratorio eléctrico con respecto a dicha segunda unidad de control para mantener el contacto de dichos medios (6) de apoyo contra la pieza a trabajar.
 - 2. Cabezal según la reivindicación 1, en donde dicho movimiento comprende un movimiento lineal paralelo con respecto a un eje de giro de dicho soporte (4) de herramientas.
 - 3. Cabezal según la reivindicación 1 o 2, en donde dicha unidad (3) de eje giratorio eléctrico está conectada a dicha segunda unidad de control del segundo eje (A) mediante medios (12) de guía de deslizamiento, comprendiendo dicho cabezal (1) una corredera (10) que soporta dicha unidad (3) de eje giratorio eléctrico, estando conectada dicha corredera (10) de forma deslizable mediante dichos medios (12) de guía en una base (11) soportada por dicha segunda unidad de control del segundo eje (A).
 - 4. Cabezal según la reivindicación 3, en donde dicha corredera (10) comprende al menos una parte en forma de placa, comprendiendo dicha base (11) al menos una parte en forma de placa, estando orientadas dichas partes en forma de placa en paralelo entre sí con la interposición de medios (17) de bloque desplazable.
 - 5. Cabezal según cualquiera de las reivindicaciones anteriores, que comprende medios (13) de accionamiento dispuestos para controlar dicho movimiento de dicha unidad (3) de eje giratorio eléctrico con respecto a dicha segunda unidad de control del segundo eje (A), comprendiendo dicho cabezal (1) medios de control electrónicos programables para controlar dichos medios (13) de accionamiento a efectos de ajustar la fuerza de contacto entre dichos medios (6) de apovo y la pieza a trabaiar.
 - 6. Cabezal según la reivindicación 5, en donde dichos medios (13) de accionamiento comprenden al menos un dispositivo de accionamiento lineal.
 - 7. Cabezal según la reivindicación 5 o 6, en donde dichos medios (13) de accionamiento son de tipo de accionamiento de fluido funcional y son controlados mediante medios (8) de válvula de tipo proporcional.
- 8. Cabezal según una cualquiera de las reivindicaciones 5 a 7, en donde dichos medios de control comprenden medios para ajustar la fuerza de contacto entre dichos medios (6) de apoyo y la pieza a trabajar en función de un ángulo de dicho segundo eje controlado (A).
 - 9. Cabezal según cualquiera de las reivindicaciones anteriores, que comprende medios (14) de freno dispuestos para inmovilizar dicha unidad (3) de eje giratorio eléctrico con respecto a dicho segundo eje (A) en una o más posiciones deseadas.
 - 10. Cabezal según cualquiera de las reivindicaciones anteriores, que comprende: medios (7) de soporte rodantes para soportar dichos medios (6) de apoyo en dicho soporte (4) de herramientas; y medios anti-giro (9) para fijar dichos medios (6) de apoyo a una parte fija de dicha unidad (3) de eje giratorio eléctrico para evitar que dichos medios (6) de apoyo giren mediante dicho soporte (4) de herramientas.
- 45 11. Cabezal según cualquiera de las reivindicaciones anteriores, que comprende: medios (7) de soporte rodantes para soportar dichos medios (6) de apoyo en dicho soporte (4) de herramientas; y medios de disposición para ajustar la posición angular de dichos medios (6) de apoyo con respecto a dicho soporte (4) de herramientas.
- 12. Cabezal según la reivindicación 11, en donde dichos medios de disposición comprenden medios (15) de transmisión dispuestos en dicha unidad (3) de eje giratorio eléctrico para girar dichos medios (6) de apoyo.
 - 13. Centro de mecanización de control numérico con cinco ejes controlados con al menos un cabezal (1) de

mecanización según cualquiera de las reivindicaciones anteriores.

10

11

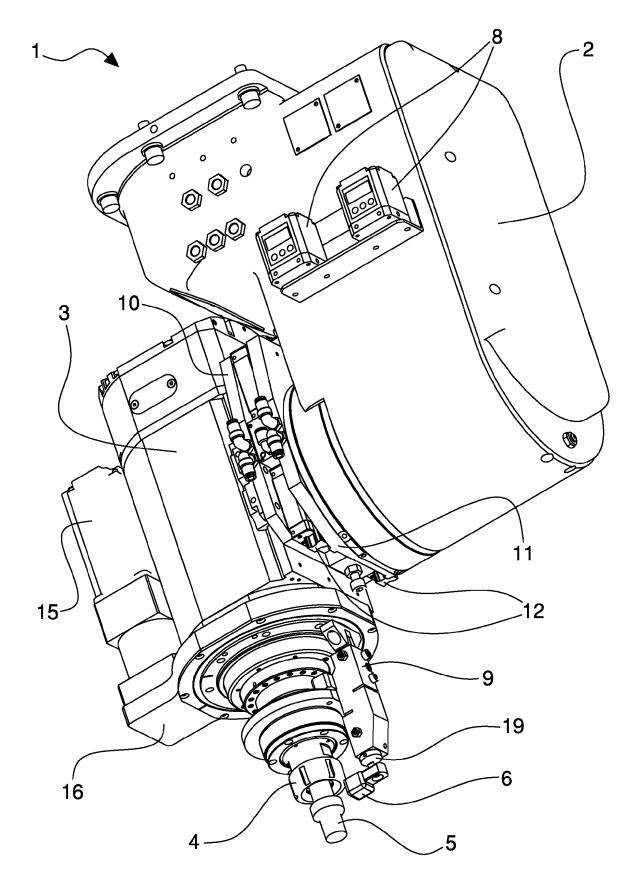


Fig. 3

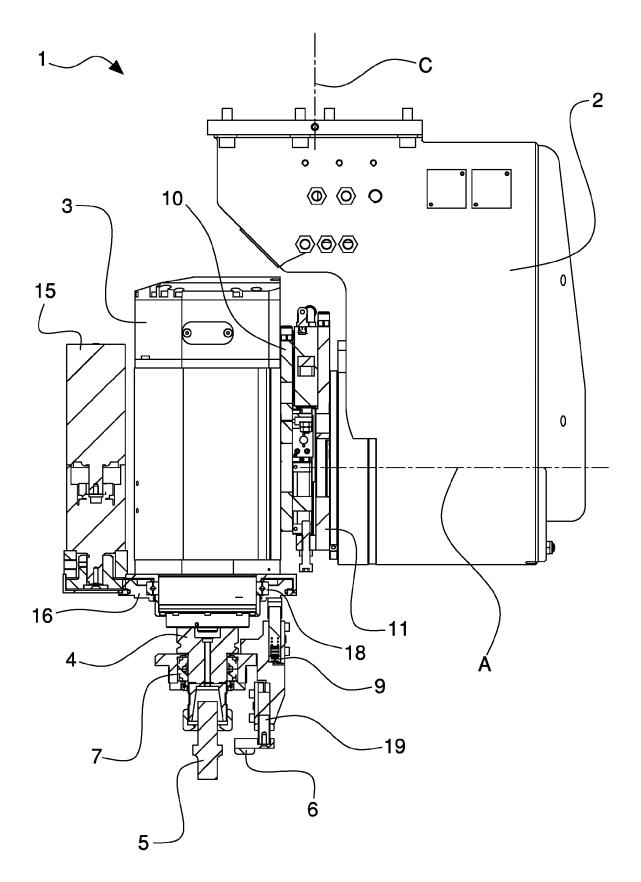


Fig. 4

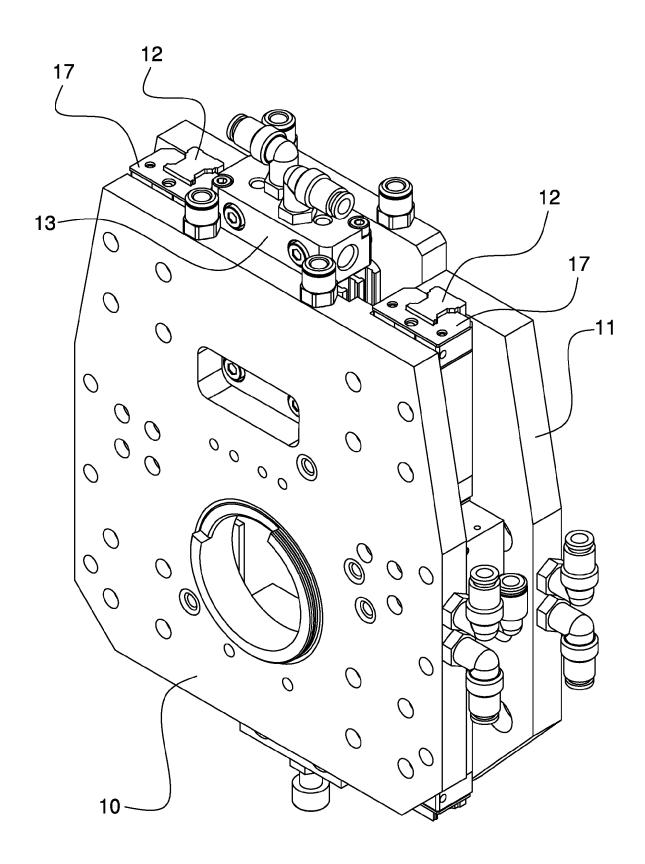


Fig. 5

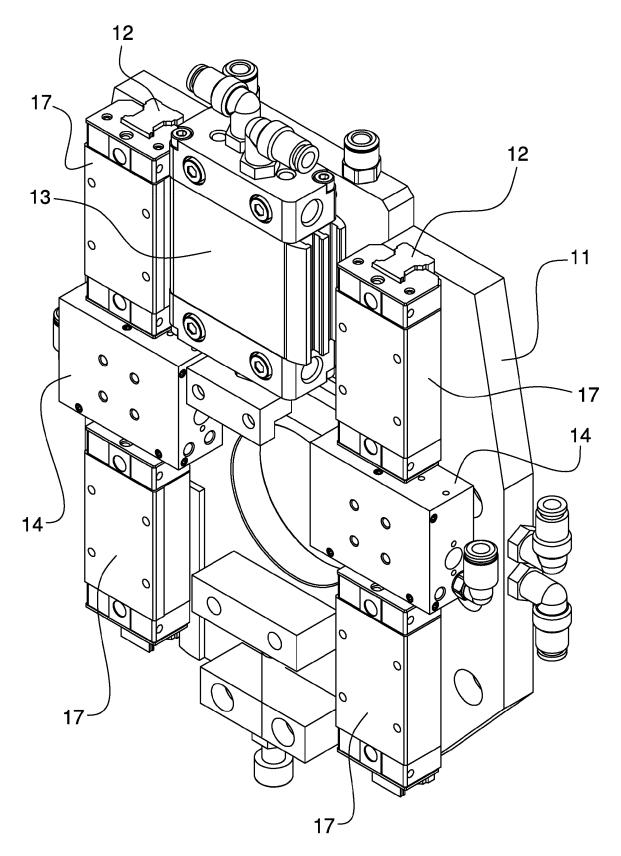
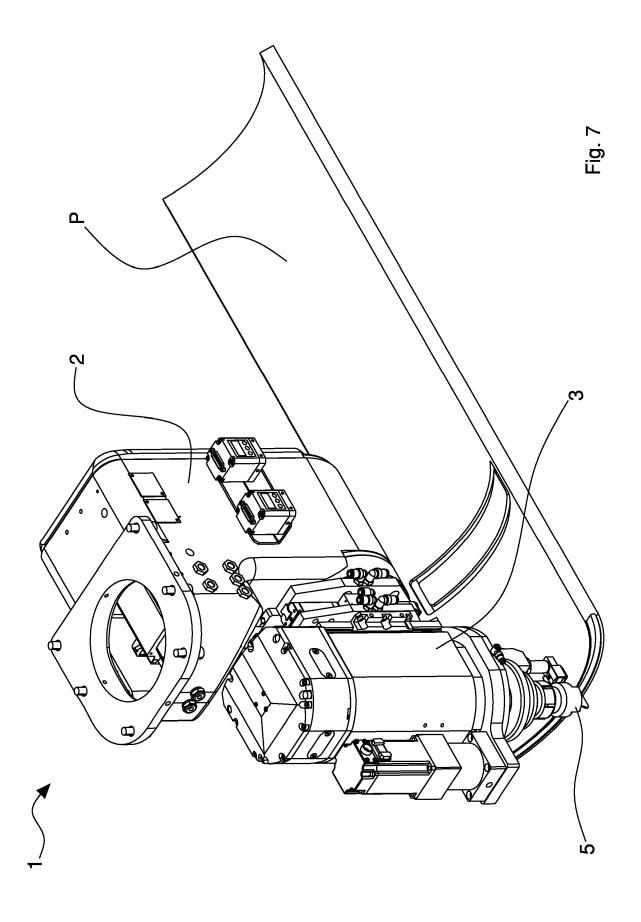



Fig. 6

