

OFICINA ESPAÑOLA DE PATENTES Y MARCAS

ESPAÑA

11) Número de publicación: 2 707 819

51 Int. Cl.:

G01B 5/08 (2006.01) G01B 5/12 (2006.01) G01B 5/06 (2006.01) G01B 7/12 (2006.01) G01B 21/10 (2006.01)

(12)

TRADUCCIÓN DE PATENTE EUROPEA

T3

86 Fecha de presentación y número de la solicitud internacional: 28.09.2011 PCT/FR2011/052269

(87) Fecha y número de publicación internacional: 05.04.2012 WO12042175

(96) Fecha de presentación y número de la solicitud europea: 28.09.2011 E 11779757 (1)

(97) Fecha y número de publicación de la concesión europea: 14.11.2018 EP 2622305

(54) Título: Dispositivo de inspección para las bocas y cuellos de recipientes

(30) Prioridad:

28.09.2010 FR 1057791

Fecha de publicación y mención en BOPI de la traducción de la patente: **05.04.2019**

(73) Titular/es:

TIAMA (100.0%) ZA des Plattes, 1 Chemin des Plattes 69390 Vourles, FR

(72) Inventor/es:

GARIN, JEAN-FRANÇOIS Y PITAVAL, DOMINIQUE

(74) Agente/Representante:

UNGRÍA LÓPEZ, Javier

DESCRIPCIÓN

Dispositivo de inspección para las bocas y cuellos de recipientes

15

20

50

- La presente invención se refiere al campo técnico de la inspección de objetos huecos o recipientes en el sentido general, tales como, por ejemplo, unas botellas, unos tarros, unos frascos, en concreto, de vidrio, con vistas a descubrir unos eventuales defectos dimensionales o de superficie presentados por un recipiente de este tipo.
- En el campo técnico de la inspección de recipientes, en concreto, de vidrio, está previsto después de su fabricación, realizar diferentes controles, en concreto, del gollete o de la boca del recipiente (diámetros interno/externo, estangueidad, altura) y del cuello del recipiente (diámetro interior, perfil interior, brochado).
 - Con el fin de realizar unas inspecciones de este tipo, se conoce que se utilizan uno o varios dispositivos que incluyen cada uno una cabeza de inspección destinada a bajarse sea sobre una distancia precisa en función de la naturaleza del recipiente, sea para entrar en contacto con el recipiente, sea para estar en apoyo sobre el recipiente durante el tiempo de la inspección. De manera clásica, una inspección de este tipo se realiza con la ayuda de una máquina que presenta sea una cinta transportadora lineal adaptada para mantener los recipientes en unas posiciones precisas, sea una cinta transportadora de estrellas, con un movimiento circular indexado para colocar los recipientes en relación con diferentes puestos de control. Cada cabeza de inspección se desplaza según un movimiento vertical alternativo para una cinta transportadora de estrellas, mientras que, para una cinta transportadora lineal, la cabeza de inspección presenta de forma suplementaria, un desplazamiento horizontal.
- La patente FR 2 818 748 describe un dispositivo de inspección que incluye una cabeza montada sobre una corredera horizontal que está fijada sobre un carro desplazado según unos movimientos alternativos verticales por 25 una correa montada entre una polea loca y una polea dirigida por un servomotor. Uno de los inconvenientes de un dispositivo de este tipo es la masa desplazada relativamente importante, lo que limita la velocidad y la aceleración de desplazamiento de la cabeza de inspección. De ello se desprende que la velocidad de inspección de los recipientes es limitada, lo que representa un inconveniente mayor en el proceso de producción en línea de recipientes. Otro inconveniente de un dispositivo de este tipo conocido aparece cuando la cabeza de inspección está destinada a 30 entrar en contacto con el recipiente. En efecto, el recorrido de la cabeza de inspección no está definido debido a la dispersión de altura de los recipientes y a los defectos que influyen sobre este recorrido como aquellos que no permiten que la cabeza de inspección descienda en el momento de una operación de brochado. También, teniendo en cuenta la indeterminación de este recorrido y de la masa cargada, puede producirse un choque importante entre la cabeza de inspección y el recipiente, lo que puede acarrear el deterioro del recipiente y/o de la cabeza de inspección. En conclusión, un dispositivo de este tipo no permite determinar la procedencia de los defectos 35 detectados.
- La patente GB 1 432 120 describe un dispositivo para inspeccionar los recipientes que incluye varios puestos de control, uno de los cuales tiene como objetivo controlar la conformidad dimensional de las bocas y de los cuellos de los recipientes. Este puesto de control incluye un equipamiento móvil dirigido por un sistema de motorización según un movimiento alternativo con respecto al bastidor del dispositivo, en una dirección de desplazamiento paralela al eje de simetría de los recipientes. Este equipamiento móvil está equipado con un calibre externo de control del exterior de la boca de los recipientes y con un calibre interno de control del interior de la boca y del cuello de los recipientes.
- 45 El dispositivo descrito por este documento GB 1 432 120 posee los mismos inconvenientes que el dispositivo de inspección descrito por la patente FR 2 818 748.
 - En el mismo sentido, la patente US 3 390 569 describe un aparato de inspección de las partes interna y externa de las bocas de recipientes. Este aparato incluye un equipamiento móvil provisto de una clavija de control destinada a entrar en apoyo sobre la parte interna de la boca y de una campana de control destinada a entrar en apoyo sobre la parte externa de la boca. Cuando la campana y la clavija están en apoyo sobre un recipiente, delimitan una cámara que está puesta en depresión para determinar si el recipiente es conforme o defectuoso.
- El aparato descrito por este documento US 390 569 posee los mismos inconvenientes que el dispositivo de inspección descrito por la patente FR 2 818 748.
 - Se conoce, igualmente, por la solicitud de patente FR 2 174 203 una máquina de inspección para las bocas y cuellos de recipientes que incluye un equipamiento móvil dirigido por un sistema de motorización según un movimiento alternativo cíclico con respecto a un bastidor de la máquina. El equipamiento móvil se desplaza según una dirección vertical paralela al eje de simetría de los recipientes. El equipamiento móvil está equipado con un calibre o gálibo de control del exterior de la boca. Este gálibo se monta en el extremo de un manguito inferior guiado en deslizamiento vertical alternativo con respecto al bastidor.
- El equipamiento móvil incluye, igualmente, un manguito superior montado coaxialmente en el interior del manguito inferior y provisto de un calibre o de un indicador de control del gollete. Este manguito superior está dirigido en desplazamiento vertical alternativo para asegurar el acoplamiento del indicador de control en el interior del gollete del

recipiente.

20

25

30

50

60

Cada manguito está provisto de un collarín destinado a pasar al interior de una muesca de una palanca cuando el gálibo y el indicador ocupan una posición correspondiente en un recipiente no defectuoso. Si el recipiente no respeta las tolerancias prescritas, uno y/u otro de los manguitos ocupa una posición en la que el collarín acciona la palanca que dispara un conmutador que indica que las dimensiones de la botella no responden a las tolerancias predeterminadas.

Un dispositivo de este tipo permite saber si el defecto detectado proviene del gollete o del exterior de la boca. No obstante, un dispositivo de este tipo no permite determinar la naturaleza del defecto dimensional detectado por el indicador como, por ejemplo, un gollete demasiado estrecho o demasiado grande y por el gálibo como, por ejemplo, una boca demasiado grande o demasiado pequeña.

Ahora bien, parece importante discriminar la naturaleza de los defectos presentados por los recipientes defectuosos para permitir actuar de la mejor manera sobre el procedimiento de fabricación de estos recipientes.

La patente US 4 798 096 describe un aparato de inspección que permite detectar la presencia de filamentos de vidrio en el interior de un recipiente de vidrio. Este aparato incluye una clavija móvil equipada en su extremo libre con una placa montada móvil con respecto a la clavija y con respecto a unos sensores de proximidad. El movimiento de la placa se detecta cuando encuentra unos filamentos de vidrio en el momento del movimiento de descenso de la clavija en el interior del recipiente.

Esta patente indica que este aparato de inspección es capaz de determinar si los filamentos de vidrio se extienden sea a partir del fondo del recipiente, sea entre las paredes internas del recipiente. No obstante, este aparato no está adaptado para determinar la conformidad dimensional de las bocas y/o de los cuellos de los recipientes.

El objeto de la presente invención tiene como objetivo remediar los inconvenientes del estado de la técnica proponiendo un dispositivo que permite inspeccionar a gran velocidad la boca y el cuello de recipientes para verificar la conformidad dimensional de las bocas y de los cuellos de los recipientes y conocer el tipo de defectos detectados.

Para alcanzar un objetivo de este tipo, el objeto de la invención se refiere a un dispositivo de inspección para las bocas y cuellos de recipientes. Según la invención, tal como se define por la reivindicación 1, el dispositivo de inspección incluye:

- un equipamiento móvil dirigido por un sistema de motorización según un movimiento alternativo con respecto a un bastidor, en una dirección de desplazamiento paralela al eje de simetría de los recipientes, estando el equipamiento móvil equipado con un calibre externo de control del exterior de la boca de los recipientes y con un calibre interno de control del interior de la boca y del cuello de los recipientes,
- un sistema de medida de la posición del equipamiento móvil con respecto al bastidor, en la dirección de
 desplazamiento, siendo las medidas de la posición del equipamiento móvil proporcionadas a una unidad de tratamiento,
 - un sistema de detección del contacto que interviene entre el calibre interno y el recipiente, en el momento del movimiento del equipamiento móvil, siendo las incidencias de contacto proporcionadas a la unidad de tratamiento,
- un sistema de detección del contacto que interviene entre el calibre externo y el recipiente, en el momento del movimiento del equipamiento móvil, siendo las incidencias de contacto proporcionadas a la unidad de tratamiento.
 - y una unidad de tratamiento adaptada para determinar la conformidad dimensional de las bocas y/o cuellos de los recipientes y los tipos de defectos para los recipientes dimensionalmente no conformes en función de las medidas de la posición del equipamiento móvil y de las incidencias de contacto entre los calibres y el recipiente.

Además, el dispositivo según la invención puede presentar, además, en combinación al menos una y/u otra de las siguientes características adicionales:

- el equipamiento móvil incluye un soporte móvil con respecto al que el calibre externo y el calibre interno están montados móviles según la dirección de desplazamiento e independientemente uno de otro,
 - el bastidor incluye un tubo extractor que presenta un primer extremo unido al bastidor y un segundo extremo opuesto al primero destinado a entrar en apoyo sobre el borde de la boca del recipiente en caso de subida accidental del recipiente, rebasando los calibres interno y externo el segundo extremo del tubo extractor, extendiéndose respectivamente en el interior y en el exterior de dicho tubo extractor,
 - la unidad de tratamiento realiza, en función de las medidas de la posición del equipamiento móvil y de las incidencias de contacto entre los calibres y el recipiente, unos cálculos que dan unas informaciones dimensionales complementarias sobre los cuellos y las bocas de los recipientes,
- la unidad de tratamiento calcula a partir de las informaciones suministradas por el sistema de medida y los sistemas de detección, la altura de los recipientes,
 - la unidad de tratamiento controla la inversión del sentido de desplazamiento del sistema de motorización, con la

- ayuda de las incidencias de contacto de uno y/u otro de los calibres con el recipiente,
- el dispositivo incluye unos mecanismos de amortiguación del contacto entre el recipiente y cada calibre y de retorno en posición de dichos calibres,
- los sistemas de detección del contacto incluyen unos sensores de presencia o de proximidad, preferentemente de tipo magnético,
 - el calibre interno incluye un vástago móvil con respecto al soporte y guiado en traslación en el interior de una camisa montada en el interior del tubo extractor, estando este vástago provisto en un primer extremo de una clavija de control y en su segundo extremo deportado con respecto a la clavija de control, de al menos una parte del sistema de detección del contacto que interviene entre el calibre interno y el recipiente,
- el calibre externo incluye una campana de control que rodea el tubo extractor y montada móvil con respecto al soporte del equipamiento móvil,
 - la campana de control está provista de al menos un eje móvil guiado con respecto al soporte móvil y provista en calidad de mecanismo de amortiguación, de al menos un resorte interpuesto entre la campana de control y el soporte, estando el eje móvil provisto de al menos una parte del sistema de detección del contacto que interviene entre el calibre externo y el recipiente,
 - el soporte móvil del equipamiento móvil incluye una pieza atravesada por el tubo extractor y que asegura el quiado del o de los ejes de quiado de la campana de control.
 - el soporte del equipamiento móvil incluye una cremallera conectada en uno de sus extremos a la pieza de guiado de la campana de control y en su extremo opuesto, a la camisa de guiado del vástago que soporta la clavija de control
 - la cremallera está dirigida en traslación alternativa por el sistema de motorización que incluye preferentemente un servomotor,
 - el sistema de motorización incluye un sensor de rotación que forma parte del sistema de medida de la posición del equipamiento móvil con respecto al bastidor,
- la clavija de control está montada sobre el vástago móvil con la ayuda de un sistema de acomodación pasiva para facilitar la inserción de la clavija de control en el interior de recipientes que presentan unos golletes inclinados o mal alineados.
 - el dispositivo incluye un sistema de fijación al chasis de una máquina de inspección, siendo el sistema de fijación acomodador para permitir una oscilación angular o en traslación entre dicho dispositivo y dicho chasis de la máquina, con vistas a facilitar la inserción de la clavija de control en el interior de recipientes que presentan unos golletes inclinados o mal alineados.

Otras diversas características se desprenden de la descripción hecha más abajo con referencia a los dibujos adjuntos que muestran, a título de ejemplos no limitativos, unas formas de realización del objeto de la invención.

La **Figura 1** es una vista en perspectiva que muestra ejemplo de realización de un dispositivo de inspección conforme a la invención.

Las **Figuras 2** y **3** son unas vistas en corte en elevación esquemáticas del dispositivo de inspección conforme a la invención en posición respectivamente alta y en posición de control de un recipiente.

Las **Figuras 4A** a **4H** son unas vistas en corte en elevación que muestran diferentes configuraciones del dispositivo de inspección que corresponden respectivamente a un control del diámetro de boca malo que corresponde a una boca demasiado grande, un destaponamiento correcto y un diámetro de boca correcto, un control del diámetro de boca malo que corresponde a una boca demasiado pequeña, un destaponamiento malo que corresponde a destaponamiento demasiado pequeño, un destaponamiento malo que corresponde a un destaponamiento demasiado grande, un destaponamiento malo que corresponde a un destaponamiento de cuello taponado, un despeje de los utillajes y una detección que corresponde a la ausencia de un recipiente.

Tal como se desprende esto más precisamente de las **Fig. 1** a **3**, el objeto de la invención se refiere a un dispositivo de inspección **1** que permite inspeccionar a gran velocidad, unos recipientes huecos **2** de cualquier naturaleza apropiada, por ejemplo, de cristal que presentan un eje de simetría **X**. De manera clásica, cada recipiente **2** presenta un cuello **3** provisto de una boca **4** que delimita interiormente una abertura **5** de acceso al interior del recipiente **2**. De manera más precisa, el dispositivo de inspección **1** permite controlar el cuello **3** y la boca **4** de recipientes **2** con el fin de determinar la conformidad dimensional de las bocas y de los cuellos de los recipientes y el tipo de defectos para los recipientes no conformes dimensionalmente.

El dispositivo de inspección 1 está destinado a equipar cualquier máquina de producción de recipientes que son conducidos a gran velocidad, en la perpendicular del dispositivo de inspección 1 con la ayuda de cualesquiera medios apropiados. La máquina de producción y los medios de admisión del recipiente hasta el dispositivo de inspección 1 y los medios de manipulación de los recipientes no se describen, ya que son bien conocidos por el experto en la materia y no forman parte precisamente del objeto de la invención. El dispositivo de inspección 1 está montado sobre el chasis de una máquina de inspección integrada o incorporada en la máquina de producción. En el ejemplo ilustrado, cabe indicar que los recipientes 2 se conducen en la perpendicular del sistema de inspección 1 estando en una posición erguida o vertical de manera que el eje X de simetría de la botella puede ser considerado como extendiéndose según una dirección vertical.

65

60

5

15

20

30

35

40

45

50

El dispositivo de inspección 1 incluye un equipamiento 6 móvil con respecto a un bastidor portante 7. El equipamiento móvil 6 está dirigido por un sistema de motorización 9 para asegurar el desplazamiento alternativo del equipamiento móvil en una dirección de desplazamiento paralela al eje de simetría X de los recipientes 2. En el ejemplo ilustrado, el equipamiento móvil 6 presenta, de este modo, para cada recipiente 2, un movimiento de descenso y un movimiento de subida según una dirección de desplazamiento vertical puesto que la botella 2 ocupa una posición erguida en el momento de su inspección por el dispositivo 1 según la invención. Por supuesto, el dispositivo 1 es apto para inspeccionar las botellas colocadas en unas posiciones diferentes.

Según una característica preferida de realización, el sistema de motorización 9 incluye un servomotor 10 cuyo cuerpo está fijado sobre el bastidor portante 7. El servomotor 10 está provisto de un piñón de salida 11 que coopera con una cremallera 12 que forma parte del equipamiento móvil 6. El servomotor 10 se pilota para dirigir en rotación el piñón de salida 11 en un sentido y en un sentido contrario para imprimir de manera cíclica, a la cremallera 12, un movimiento de descenso y un movimiento de subida, según el eje vertical.

- El equipamiento móvil 6 incluye un calibre externo 14 de control del exterior de la boca 4 de los recipientes y un calibre interno 15 de control del interior de la boca y del cuello de los recipientes 2. Como se explicará esto en la continuación de la descripción, los calibres 14, 15 son dirigidos en desplazamiento alternativo por el equipamiento móvil 6 para entrar en contacto con el recipiente 2 durante el movimiento de descenso del equipamiento móvil 6.
- Más precisamente, los calibres **14, 15** se montan de manera concéntrica y poseen un eje común de simetría **S** que se extiende según una dirección vertical de manera que, en posición de inspección, el eje de simetría **X** del recipiente **2** y el eje de simetría **S** estén alineados. En cada movimiento de descenso del equipamiento móvil **6** según el eje vertical **S**, los calibres **14, 15** controlan las dimensiones de la boca y del cuello del recipiente presente. El movimiento de subida del equipamiento móvil se aprovecha para quitar el recipiente controlado y para conducir el próximo recipiente que se debe inspeccionar.

Tal como se desprende esto más precisamente de las **Figuras 2** y **3**, el calibre externo **14** se presenta en forma de una campana de forma anular centrada sobre el eje de simetría **S**. El calibre externo **14** presenta un extremo inferior denominado de introducción **16** que delimita una abertura o un escariado de calibrado **17**. El diámetro interno de este escariado de calibrado **17** es igual al diámetro más grande que puede ser tolerado para la boca **4** de un recipiente. De este modo, como se ilustra en la **Fig. 4A**, si la boca **4** del recipiente presenta un diámetro superior al diámetro del escariado de calibrado **17** (boca demasiado grande), entonces la boca **4** del recipiente forma tope sobre el extremo inferior **16** del calibre externo **14**.

30

40

45

50

55

60

65

35 El escariado de calibrado **17** está limitado por un saliente interior **18** destinado a entrar en contacto o en apoyo sobre el borde o el reborde **4**₁ de la boca **4**.

Según una variante preferida de realización, el calibre externo 14 incluye, igualmente, una abertura o escariado de escape 19 dispuesta más allá del saliente 18 y que comunica con la abertura del calibrado 17 y que desemboca en el segundo extremo 20 del calibre externo opuesto al primer extremo inferior 16. Este escariado de escape 19 está provisto de un saliente de parada 21 situado entre el segundo extremo 20 y el saliente 18.

De este modo, el escariado de calibrado 17 y el escariado de escape 19 delimitan entre sí, el saliente anular 18 cuya anchura corresponde al intervalo de tolerancia para unas anchuras de bocas 4 conformes (Fig. 4B). Dicho de otra manera, en todos los casos en los que la boca 4 presenta un diámetro conforme, entonces el calibre externo 14 entra en apoyo por su saliente 18 sobre el reborde 4₁ de la boca 4. En el caso en el que la boca 4 presenta un diámetro inferior al diámetro del escariado de escape 19 (Fig. 4C), el escariado de escape 19 del calibre externo 14 recibe la boca 4 que, a continuación, entra en contacto con el calibre externo 14 sea con el extremo inferior 16 sea con el saliente de parada 21.

El calibre interno 15 se presenta en forma de una clavija o de un indicador montado en el interior del calibre externo 14 y de manera concéntrica con respecto al calibre externo 14. El calibre 15 que presenta una forma simétrica centrada sobre el eje de simetría S, delimita un tramo inferior 24 separado por un saliente 25 de un tramo superior 26. El diámetro del tramo superior 25 es superior al diámetro presentado por el tramo inferior 24. El diámetro del tramo inferior 24 presenta un diámetro que corresponde al diámetro mínimo que puede ser tolerado por el gollete del recipiente 2, mientras que el diámetro del tramo superior 26 corresponde al diámetro máximo que puede ser tolerado para el gollete del recipiente. De este modo, el saliente anular 25 que está delimitado entre los tramos superior 26 e inferior 24 presenta una anchura que corresponde al intervalo de tolerancia para el diámetro interno del cuello del recipiente. En el caso en el que el cuello 3 presenta un diámetro que está en el intervalo de tolerancia, el calibre interno 15 hace tope por su saliente 25 sobre el reborde 41 de la boca (Fig. 4B).

Según una variante preferida de realización, el calibre interno 15 incluye, igualmente a partir del tramo inferior 24 un tramo de extremo 27 que presenta un diámetro inferior con respecto al diámetro del tramo inferior 24. El tramo de extremo 27 posee un extremo libre 28 o de tope que presenta un chaflán. El tramo de extremo 27 delimita con el tramo inferior 24, un collar de empalme 27₁.

Cuando el cuello 3 del recipiente 2 presenta un diámetro demasiado pequeño, entonces, la clavija hace tope por su tramo de extremo 27 y en particular por su collar de empalme 27₁ sobre el recipiente 2 (Fig. 4D). Si el diámetro interno del cuello 3 es superior al diámetro máximo del intervalo de tolerancia, entonces el tramo superior 26 penetra en el interior del cuello 3 del recipiente 2 (Fig. 4E). Por otra parte, en el caso en el que el cuello del recipiente presenta un defecto de taponamiento (Fig. 4F), el calibre interno 15 hace tope al nivel del reborde de la boca, por el tramo de extremo 27.

Según una característica preferida de realización, un tubo extractor **29** se interpone entre el calibre externo **14** y el calibre interno **15**. Este tubo extractor **29** incluye un primer extremo **29**₁ fijado al bastidor **7** de manera que su eje de simetría longitudinal se encuentre superpuesto con el eje de simetría **S**. El tubo extractor **29** incluye un segundo extremo **29**₂ opuesto al primer extremo **29**₁, que se extiende entre el calibre interno **15** y el calibre externo **14**. Dicho de otra manera, el calibre externo **14** se extiende al exterior del tubo extractor **29**, mientras que el calibre interno **15** se extiende al interior del tubo extractor **29**.

10

25

30

50

55

60

El diámetro del tubo extractor **29** está adaptado para permitir entrar en contacto sobre el reborde **4**₁ de la boca **4** en caso de subida del recipiente con el equipamiento móvil **6** que permite despejar el recipiente con respecto al equipamiento móvil **6**. Por supuesto, el tubo extractor **29** presenta una longitud adaptada para permitir que los calibres **14**, **15** lleguen a extenderse más allá de su segundo extremo **29**₂ cuando los calibres entran en contacto con el recipiente **2**. En el mismo sentido, el espesor del tubo extractor **29** es reducido para no entorpecer el control de los calibres **14**, **15** destinados a entrar, igualmente, en apoyo sobre el reborde **4**₁ de la boca **4**.

Si el recipiente 2 se encuentra atrapado con uno y/u otro de los calibres, el recipiente 2 va a ser dirigido por el equipamiento móvil 6 en el momento de su movimiento de subida. En el momento de este movimiento de subida, el recipiente 2 hace tope, por su reborde 4₁, sobre el extremo inferior 29₂ del tubo extractor, lo que dirige la desunión del recipiente 2 con respecto al equipamiento móvil 6 que prosigue su movimiento de subida (Fig. 4G).

Debe destacarse que el calibre externo 14 y el calibre interno 15 detectan cada defecto a un nivel dado de su desplazamiento según el eje vertical que es diferente de un defecto al otro. De este modo, el calibre interno 15 ocupa, por ejemplo, una altitud más alta en el momento de la detección de un cuello taponado (Fig. 4F) con respecto a la altitud ocupada cuando el calibre interno 15 detecta un cuello con unas dimensiones correctas (Fig. 4B). Asimismo, el calibre externo 14 ocupa, en el momento de la detección de un diámetro de boca demasiado grande (Fig. 4A), una posición que tiene una altitud superior con respecto a la posición ocupada por dicho calibre externo 14 en el momento de la detección de un diámetro de boca demasiado pequeño (Fig. 4C).

El dispositivo de inspección 1 incluye, igualmente, un sistema 30 de medida de la posición del equipamiento móvil 6 con respecto al bastidor en la dirección de desplazamiento del equipamiento móvil. Este sistema 30 puede estar realizado por cualesquiera medios que permitan conocer la posición, según el eje de desplazamiento, del equipamiento móvil 6. Según una variante preferida de realización, el sistema de medida 30 incluye un sensor de posición que forma parte del servomotor 11. Un sistema de medida 30 de este tipo permite, de este modo, conocer la posición del equipamiento móvil 6 y, como continuación, de los calibres interno 15 y externo 14 con respecto al bastidor 7, según la dirección vertical en el ejemplo ilustrado. Dicho de otra manera, un sistema de medida 30 de este tipo permite dar según un punto de referencia de distancia que se establece según el eje vertical, la abscisa del equipamiento móvil 6 con respecto a un origen.

Este sistema de medida **30** está conectado a una unidad de tratamiento **31** de cualesquiera tipos conocidos de por sí, por ejemplo, que se presenta en forma de un microordenador. El sistema de medida **30** proporciona, de este modo, a la unidad de tratamiento **31**, las medidas de la posición del equipamiento móvil **6.** En la medida en que la posición de los calibres **14, 15** se conoce con respecto al equipamiento móvil **6,** la unidad de tratamiento **31** conoce la posición de los calibres **14, 15** con respecto al bastidor fijo.

El sistema de inspección 1 incluye, igualmente, un sistema 35 de detección del contacto que interviene entre el calibre interno 15 y el recipiente 2 en el momento del movimiento del equipamiento móvil 6. Este sistema de detección 35 está conectado a la unidad de tratamiento 31. La unidad de tratamiento 31 es apta, de este modo, para conocer las incidencias de contacto entre el calibre interno 15 y el recipiente 2.

El sistema de inspección 1 incluye, igualmente, un sistema de detección 37 del contacto que interviene entre el calibre externo 14 y el recipiente 2 en el momento del movimiento del equipamiento móvil 6. Este sistema de detección 37 está conectado a la unidad de tratamiento 31. Esta unidad de tratamiento 31 es apta, de este modo, para conocer las incidencias de contacto entre el calibre externo 14 y el recipiente 2.

Los sistemas de detección **35, 37** están realizados por cualesquiera medios apropiados. Preferentemente, cada sistema de detección **35, 37** incluye unos sensores de presencia o de proximidad, preferentemente de tipo magnético.

65 Según una variante ventajosa de realización, el calibre externo **14** y el calibre interno **15** se montan móviles según la dirección de desplazamiento de manera independiente uno de otro y con respecto al equipamiento móvil **6**. Dicho de

otra manera, debe comprenderse que cada calibre **14, 15** incluye una posibilidad de desplazamiento individual según la dirección de desplazamiento vertical en el momento del contacto del calibre con el recipiente **2.**

De manera ventajosa, el dispositivo de inspección 1 incluye un mecanismo 40 denominado interno de amortiguación del contacto entre el recipiente 2 y el calibre interno 15 y de retorno en posición de dicho calibre interno. El dispositivo de inspección 1 incluye, igualmente, un mecanismo 41 denominado externo de amortiguación del contacto entre el recipiente 2 y el calibre externo 14 y de retorno en posición del calibre externo. Cada mecanismo de amortiguación y de retorno 40, 41 es, de este modo, apto, por una parte, para amortiguar el contacto que interviene entre un calibre 14, 15 y el recipiente 2 y, por otra parte, para llevar cada calibre 14, 15 a su posición inicial o de reposo en ausencia de contacto con el recipiente 2.

10

15

20

25

30

35

65

Tal como se desprende esto más precisamente de las **Fig. 2** y **3**, el calibre externo **14** y el calibre interno **15** se montan móviles según la dirección de desplazamiento con respecto a un soporte **45** del equipamiento móvil **6**. Este soporte **45** que, por supuesto, es móvil con respecto al bastidor fijo **7** incluye la cremallera **12** cuyo extremo inferior se monta unida con una pieza **46** que asegura el mantenimiento y el guiado del calibre externo **14**. Esta pieza de guiado **46** se presenta en el ejemplo ilustrado, en forma de una placa provista de un agujero de paso **47** para el tubo extractor **29** que permite, de este modo, el movimiento de deslizamiento vertical de la placa **46** con respecto al tubo extractor **29** fijo. El extremo superior de la cremallera **12** se monta unido, por una pieza de enlace **48**, a una camisa de guiado **49** que se extiende sustancialmente de manera paralela a la cremallera **12**. Esta camisa **49** es guiada en deslizamiento vertical con respecto al bastidor **7** por unos órganos de guiado **50** de cualesquiera tipos conocidos de por sí. La camisa **49** está montada de manera que se extienda al menos en parte en el interior del tubo extractor **29**.

El soporte **45** está formado, de este modo, por la cremallera **12**, la pieza de enlace **48**, la camisa **49** y la placa **46**. El calibre externo **14** y el calibre interno **15** están montados móviles independientemente uno de otro con respecto a este soporte **45** y con la ayuda de un mecanismo de amortiguación y de retorno respectivamente **41**, **40**.

De este modo, el calibre externo 14 está provisto, en calidad de mecanismo de amortiguación y de retorno 41, de al menos uno y en el ejemplo ilustrado de tres ejes de guiado 52 montados móviles con respecto a la placa 46. Cada eje 52 está provisto de un resorte de retorno 53 interpuesto entre el calibre externo 14 y la placa 46 para llevar el calibre externo 14 a posición de reposo.

En ausencia de contacto entre el calibre externo 14 y la boca 4 de un recipiente, el calibre externo 14 ocupa, con respecto al soporte 45, una posición de reposo fijada por los resortes de retorno 53 y un tope llevado por los ejes 52 y que entran en apoyo sobre la placa 46 (Fig. 2). En el momento del contacto entre el calibre externo 14 y la boca 4, el calibre externo 14 se somete a un esfuerzo que conduce a una subida del calibre externo 14 con respecto al soporte 45, que conduce a la compresión de los resortes de retorno 53 (Fig. 3). En el momento de la subida del equipamiento móvil 6, el apoyo de la boca 4 sobre el calibre externo 14 desaparece, de manera que los resortes de retorno 53 provocan la vuelta del calibre externo 14 a su posición inicial de reposo.

- 40 El mecanismo de amortiguación y de retorno 40 incluye un vástago 60 que presenta un primer extremo inferior montado unido al calibre interno 15. Este vástago 60 está montado en el interior de la camisa 49 que asegura por cualesquiera medios de guiado apropiados 61, el guiado en deslizamiento del vástago 60 con respecto a la camisa 49.
- Este vástago 60 incluye ventajosamente entre el calibre interno 15 y el extremo inferior de la camisa 49, un resorte 63. En ausencia de contacto entre el calibre interno 15 y el recipiente 2, el resorte 63 actúa sobre el calibre interno 15 con el fin de que este último ocupe una posición de reposo con respecto a la camisa de guiado 49. El vástago 60 se mantiene en esta posición con la ayuda de un tope llevado por el vástago y que entra en apoyo sobre la camisa 49 (Fig. 2). En el caso de un apoyo del calibre interno 15 sobre la boca 4, el calibre interno 15 se somete a un esfuerzo que conduce a una subida del vástago 60 con respecto a la camisa de guiado 49 (Fig. 3). En el momento de la supresión del apoyo del calibre 15 sobre la boca 4, el resorte 63 tiende a llevar el calibre interno 15 a su posición inicial de reposo.
- Según una variante preferida de realización, el sistema de detección 37 del contacto que interviene entre el calibre externo 14 y el recipiente 2 se monta entre el soporte 45 y el calibre externo 14. De este modo, el sistema de detección 37 incluye una parte móvil 37₁ de detección montada sobre el extremo de un eje de guiado 52 y una parte fija 37₂ montada sobre la cremallera 12. Cuando interviene un contacto entre el calibre externo 14 y el recipiente 2, el eje 52 desliza con respecto a la cremallera 12 que conduce a una modificación de posición relativa entre las partes fija 37₂ y móvil 37₁ del sistema de detección (Fig. 3). De este modo, el sistema de detección 37 detecta la incidencia de contacto que interviene entre el calibre externo 14 y el recipiente 2.

Según una variante preferida de realización, el sistema de detección 35 del contacto que interviene entre el calibre externo 15 y el recipiente 2 se monta entre el soporte 45 y el calibre externo 15. Ventajosamente, este sistema de detección 35 está deportado con respecto al calibre interno 15. En efecto, el vástago 60 está equipado en su extremo opuesto del provisto del calibre interno 15, con una parte móvil 35₁ de detección que forma parte del sistema de detección 35 que incluye, igualmente, una parte fija 35₂ fijada sobre la pieza de enlace 48. Cuando

intervine un contacto entre el calibre interno 15 y el recipiente 2, el vástago 61 desliza con respecto a la pieza de enlace 48 que conduce a una modificación de posición relativa entre las partes fija 35₂ y móvil 35₁ del sistema de detección. De este modo, el sistema de detección 35 detecta las incidencias de contacto entre el calibre externo 15 y la boca del recipiente 2.

5

10

Las incidencias de contacto detectadas por los sistemas de detección 35, 37 se transmiten a la unidad de tratamiento 31 que es apta, a partir de las medidas suministradas por el sistema 30 de medida de la posición del equipamiento móvil 6, para determinar la conformidad dimensional de las bocas y de los cuellos de los recipientes 2. En efecto, cada posición de contacto de los calibres 14, 15 corresponde a un control dimensional diferente de la boca y del cuello del recipiente. Con la ayuda de una operación de calibración, es posible conocer la posición teórica vertical de los calibres 14, 15 que corresponden a un recipiente sin defecto y, como continuación, a un recipiente con defecto.

En la medida en que se conoce la posición del equipamiento móvil 6 con respecto al bastidor 7, es decir, también con respecto al plano de colocación de los recipientes 2, la unidad de tratamiento 31 es apta para determinar la altura de los recipientes a partir de la incidencia de contacto del calibre externo 14 sobre la boca del recipiente y/o de la incidencia de contacto del calibre interno 15.

El funcionamiento del dispositivo de inspección 1 deriva directamente de la descripción anterior.

20

25

30

35

Después de la admisión de un recipiente 2 en la perpendicular del dispositivo de inspección 1, el sistema de motorización 9 es pilotado para asegurar el descenso del equipamiento móvil 6. Desde que un calibre 14, 15 entra en contacto con el recipiente 2, el contacto se detecta con la ayuda del sistema de detección asociado 35, 37. En este instante, la unidad de tratamiento 31 conoce, con la ayuda del sistema de medida 30, la posición del calibre que entra en contacto con el recipiente, de manera que la unidad de tratamiento 31 es capaz de determinar la conformidad dimensional del recipiente y el tipo de defecto detectado para unos recipientes no conformes dimensionalmente. De forma ventajosa, la unidad de tratamiento 31 conoce, en función de las incidencias de contacto de los dos calibres 14, 15 y del sistema de medida 30, la posición del equipamiento móvil 6 en el momento de los contactos de los calibres 14, 15 con el recipiente 2. La unidad de tratamiento 31 efectúa, con la ayuda de estas medidas e incidencias, unos cálculos que dan unas informaciones dimensionales complementarias sobre los cuellos y las bocas de los recipientes 2 y en particular sobre los tipos de defectos presentados por los recipientes 2.

De este modo, en función de la posición vertical ocupada por cada uno de los calibres **14**, **15** cuando interviene al menos un contacto con el recipiente, la unidad de tratamiento **31** es apta para determinar precisamente la conformidad dimensional de la boca y del cuello del recipiente. Como se ha explicado anteriormente, en función de la posición vertical ocupada por cada uno de los calibres **14**, **15** cuando interviene al menos un contacto con el recipiente, la unidad de tratamiento **31** es apta para determinar precisamente la conformidad dimensional de la boca y del cuello del recipiente, ya que es posible determinar el tipo de defecto de entre los siguientes defectos:

- defecto de diámetro interior del cuello inferior a un diámetro mínimo tolerado (defecto denominado de brochado o PLUG o bore),
 - defecto de diámetro de destaponamiento inferior a un diámetro mínimo tolerado (defecto denominado de destaponamiento).
 - defecto de diámetro de destaponamiento superior a un diámetro máximo tolerado (defecto denominado de destaponamiento),
 - defectos de altura superior al máximo tolerado,
 - defectos de altura inferior al mínimo tolerado,
 - defecto de diámetro exterior inferior al mínimo tolerado,
 - defecto de diámetro exterior superior al máximo tolerado.

50

55

45

Cabe indicar que con la ayuda de las incidencias de contacto de uno y/u otro de los calibres 14, 15 con el recipiente 2, la unidad de tratamiento 31 puede, según la posición medida del equipamiento móvil 6, controlar la inversión del sentido de desplazamiento del sistema de motorización que tiene como objetivo hacer subir al equipamiento móvil 6. En la práctica, para unos recipientes conformes dimensionalmente, los calibres 14, 15 entran en contacto sustancialmente de manera simultánea con el recipiente 2. En caso de ausencia de un recipiente (Fig. 4H), ninguno de los sistemas de detección 35, 37 detecta un contacto. La unidad de tratamiento 31 es apta para controlar la subida del equipamiento móvil 6 pilotando el sistema de motorización 9, cuando el equipamiento móvil 6 alcanza una posición vertical baja determinada previamente.

60 El dispositivo de inspección **1** según la invención permite inspeccionar las bocas y los cuellos de cualesquiera tipos de recipientes. En la mayoría de los casos, el dispositivo de inspección **1** está montado sobre el chasis de una máquina de inspección cuyos medios de admisión son una cinta transportadora de estrella.

En teoría, cuando los recipientes 2 están posicionados con vistas a su control por el dispositivo de inspección 1, el eje de simetría X de los recipientes coincide con el eje de desplazamiento de los calibres 14 y 15. No obstante, en la práctica, hay que considerar que son posibles unos errores de posicionamiento de los recipientes o bien que unos

golletes de recipiente pueden estar inclinados. Por lo tanto, es necesario dar al dispositivo 1 una capacidad de acomodación o de elasticidad. Según una variante de la invención, el sistema de fijación del dispositivo 1 que conectan físicamente el bastidor 7 al chasis de la máquina de inspección, son capaces de flexibilidad, es decir, que permiten unos desplazamientos limitados del dispositivo 1 con respecto al chasis de la máquina de inspección. Los grados de libertad permitidos son sea dos rotaciones de ejes perpendiculares entre sí y perpendiculares al eje X, sea dos traslaciones perpendiculares entre sí y perpendiculares al eje X, sea unos movimientos más complejos tales como una trayectoria circular alrededor del eje de rotación de la estrella de la máquina y una traslación según un eje que pasa por el eje de rotación de la estrella. Estas fuerzas de retorno llevan automáticamente el dispositivo a reposo en una posición de alineación sobre el eje X teórico.

10

- Preferentemente, el sistema de fijación presenta una acomodación de carácter pasivo. En efecto, los medios materiales para proporcionar esta elasticidad son preferentemente unos soportes elásticos, es decir, en los que unas piezas de metal rígidas están enlazadas entre sí por unas piezas de material flexibles y elásticos o compresibles y resilientes, por ejemplo, unos polímeros, que permiten unas rotaciones según un eje horizontal tangencial a la estrella y un eje horizontal radial con respecto a la estrella, siendo la libertad de movimiento superior para la rotación de eje radial. No obstante, es posible prever unos subconjuntos mecánicos más complejos que comprenden unos quiados mecánicos, unos topes y unos resortes de retorno.
- Según una variante preferida de la invención, el vástago 60 se monta unido a la clavija interna 15 por medio de un sistema que presenta, igualmente, una cierta flexibilidad que permite que el calibre tome un ángulo limitado con el eje del vástago y/o el eje X, lo que facilita su inserción en el gollete. De este modo, la clavija de control 15 está montada sobre el vástago móvil 60 con la ayuda de un sistema de acomodación pasiva para facilitar la inserción de la clavija de control en el interior de recipientes 2 que presentan unos golletes inclinados o mal alineados.
- 25 La invención no se limita a los ejemplos descritos y representados, ya que se pueden aportar a ella diversas modificaciones sin salirse de su marco, tal como se define por las reivindicaciones.

REIVINDICACIONES

- 1. Dispositivo de inspección (1) para las bocas y cuellos de recipientes (2), que incluye un equipamiento móvil (6) dirigido por un sistema de motorización (9) según un movimiento alternativo con respecto a un bastidor (7), en una dirección de desplazamiento paralela al eje de simetría de un recipiente en el momento de su inspección por el dispositivo de inspección (1), estando el equipamiento móvil equipado con un calibre externo (14) de control del exterior de la boca de los recipientes y con un calibre interno (15) de control del interior de la boca y del cuello de los recipientes, caracterizado por que el dispositivo de inspección (1) incluye, además:
- una unidad de tratamiento (31),

15

20

25

40

- un sistema (30) de medida de la posición del equipamiento móvil (6) con respecto al bastidor, en la dirección de desplazamiento, siendo las medidas de la posición del equipamiento móvil proporcionadas a la unidad de tratamiento (31)
- un sistema de detección (35) del contacto que interviene entre el calibre interno (15) y el recipiente (2), en el momento del movimiento del equipamiento móvil (6), siendo las incidencias de contacto proporcionadas a la unidad de tratamiento (31),
 - un sistema de detección (37) del contacto que interviene entre el calibre externo (14) y el recipiente (2), en el momento del movimiento del equipamiento móvil, siendo las incidencias de contacto proporcionadas a la unidad de tratamiento (31),
 - estando la unidad de tratamiento (31) adaptada para determinar la conformidad dimensional de las bocas y/o cuellos de los recipientes y los tipos de defectos para los recipientes dimensionalmente no conformes en función de las medidas de la posición del equipamiento móvil (6) y de las incidencias de contacto entre los calibres (14, 15) y el recipiente (2).
- 2. Dispositivo de inspección según la reivindicación 1, **caracterizado por que** el equipamiento móvil (6) incluye un soporte móvil (45) con respecto al que el calibre externo (14) y el calibre interno (15) están montados móviles según la dirección de desplazamiento e independientemente uno de otro.
- 30 3. Dispositivo de inspección según la reivindicación 1, caracterizado por que el bastidor (7) incluye un tubo extractor (29) que presenta un primer extremo unido al bastidor (7) y un segundo extremo opuesto al primero destinado a entrar en apoyo sobre el borde de la boca (4) del recipiente (2) en caso de subida accidental del recipiente, rebasando los calibres interno (15) y externo (14) el segundo extremo del tubo extractor, extendiéndose respectivamente en el interior y en el exterior de dicho tubo extractor.
 - 4. Dispositivo de inspección según la reivindicación 1, caracterizado por que la unidad de tratamiento (31) realiza, en función de las medidas de la posición del equipamiento móvil (6) y de las incidencias de contacto entre los calibres (14, 15) y el recipiente (2), unos cálculos que dan unas informaciones dimensionales complementarias sobre los cuellos y las bocas de los recipientes (2).
 - 5. Dispositivo de inspección según la reivindicación 1 o 4, caracterizado por que la unidad de tratamiento (31) calcula a partir de las informaciones suministradas por el sistema de medida (30) y los sistemas de detección (35, 37), la altura de los recipientes.
- 45 6. Dispositivo de inspección según la reivindicación 1, 4 o 5, caracterizado por que la unidad de tratamiento (31) controla la inversión del sentido de desplazamiento del sistema de motorización (9), con la ayuda de las incidencias de contacto de uno y/u otro de los calibres (14, 15) con el recipiente (2).
- 7. Dispositivo de inspección según una de las reivindicaciones 1 a 6, **caracterizado por que** incluye unos mecanismos (**40, 41**) de amortiguación del contacto entre el recipiente (**2)** y cada calibre (**14, 15**) y de retorno en posición de dichos calibres.
 - 8. Dispositivo de inspección según la reivindicación 1, **caracterizado por que** los sistemas de detección (**35, 37**) del contacto incluyen unos sensores de presencia o de proximidad, preferentemente de tipo magnético.
 - 9. Dispositivo de inspección según una de las reivindicaciones 3 a 8, caracterizado por que el calibre interno (15) incluye un vástago (60) móvil con respecto al soporte (45) y guiado en traslación en el interior de una camisa (49) montada en el interior del tubo extractor (29), estando este vástago (60) provisto en un primer extremo de una clavija de control (15) y en su segundo extremo deportado con respecto a la clavija de control, de al menos una parte (35₁) del sistema de detección (35) del contacto que interviene entre el calibre (15) interno y el recipiente (2).
 - 10. Dispositivo de inspección según una de las reivindicaciones 3 a 8, caracterizado por que el calibre externo (14) incluye una campana de control que rodea el tubo extractor (29) y montada móvil con respecto al soporte (45) del equipamiento móvil.

65

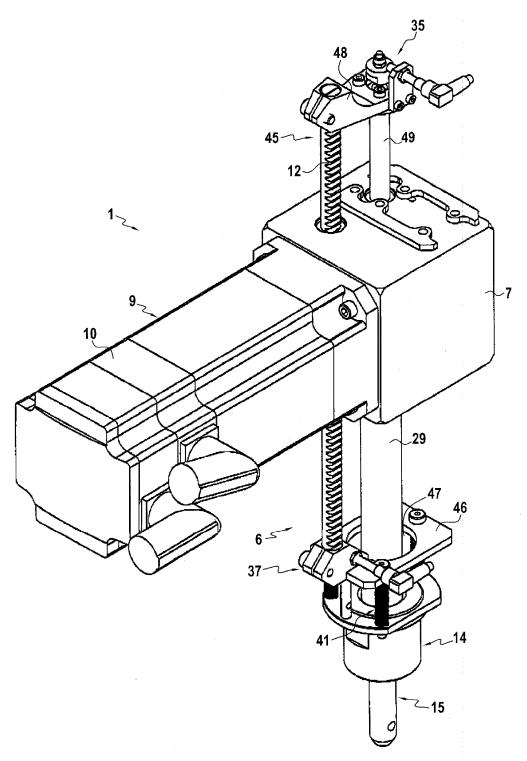
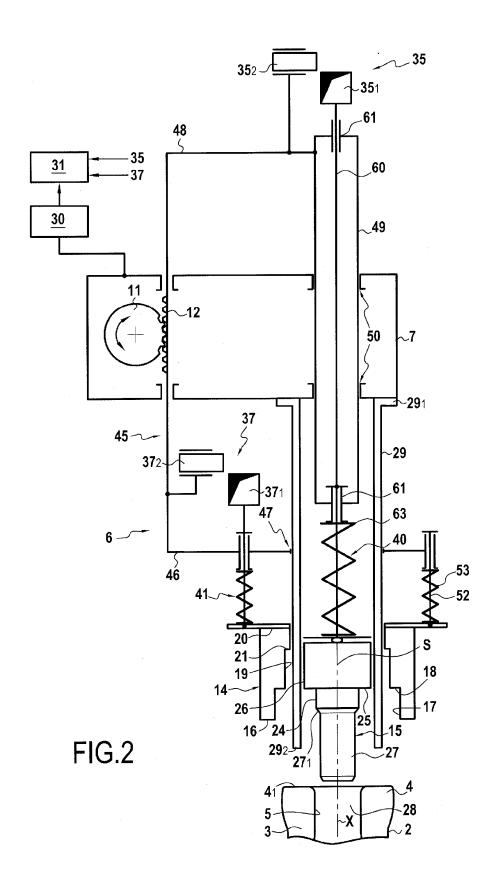
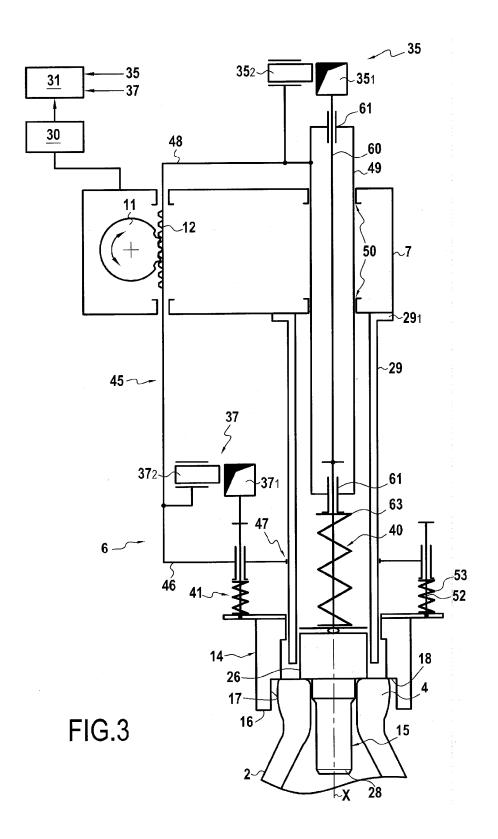
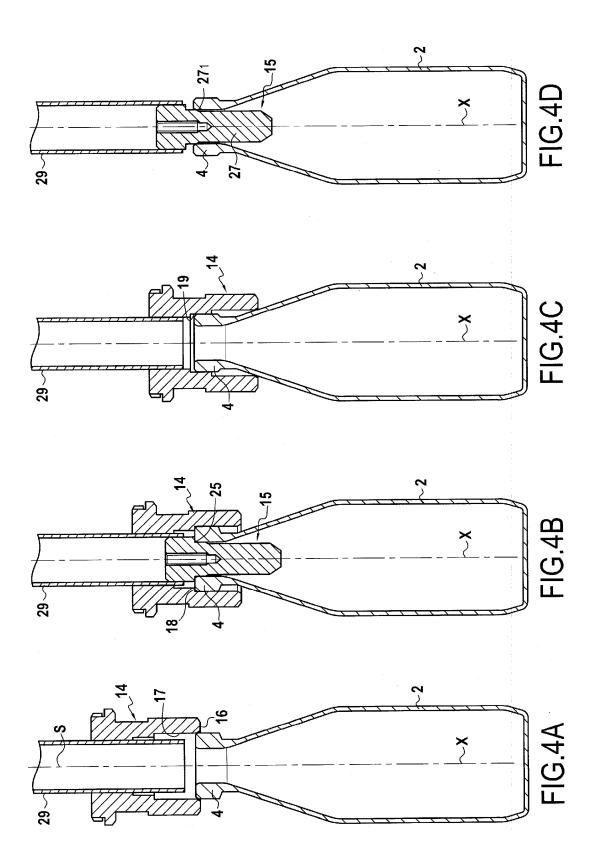
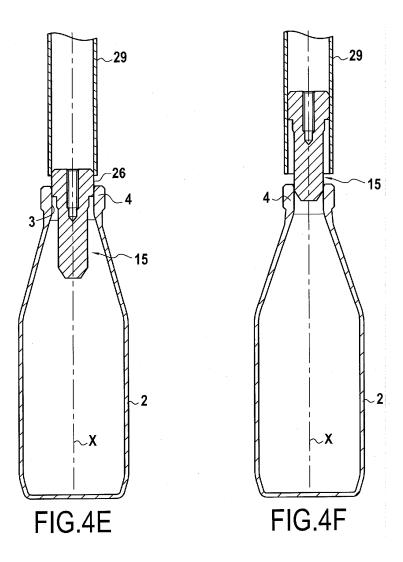
55

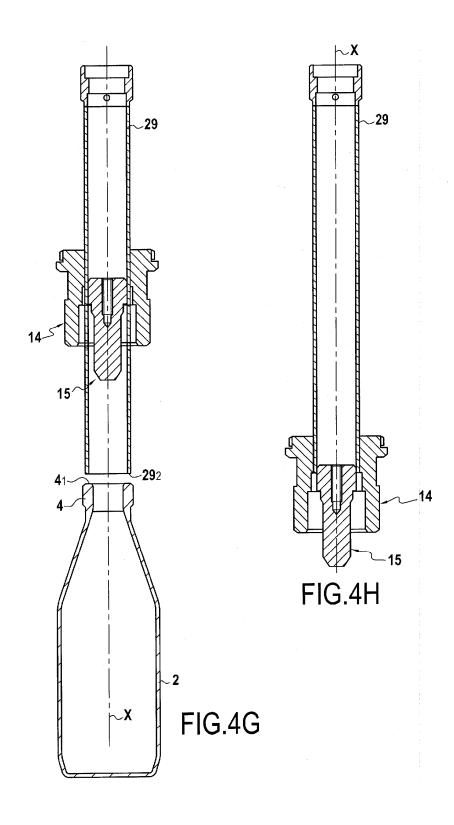
- 11. Dispositivo de inspección según la reivindicación 10, caracterizado por que la campana de control (14) está provista de al menos un eje móvil (52) guiado con respecto al soporte móvil (45) y provista en calidad de mecanismo de amortiguación (41), de al menos un resorte (53) interpuesto entre la campana de control y el soporte (45), estando el eje móvil provisto de al menos una parte (37₁) del sistema de detección (37) del contacto que interviene entre el calibre externo (14) y el recipiente (2).
- 12. Dispositivo de inspección según la reivindicación **11, caracterizado por que** el soporte móvil (**45**) del equipamiento móvil (**6**) incluye una pieza (**46**) atravesada por el tubo extractor (**29**) y que asegura el guiado del o de los ejes de guiado (**52**) de la campana de control.
- 13. Dispositivo de inspección según una de las reivindicaciones 2 a 12, **caracterizado por que** el soporte (**45**) del equipamiento móvil (**6**) incluye una cremallera (**12**) conectada en uno de sus extremos a la pieza (**46**) de guiado de la campana de control y en su extremo opuesto, a la camisa de guiado (**49**) del vástago (**61**) que soporta la clavija de control (**15**).

10

15

- 14. Dispositivo de inspección según la reivindicación 13, **caracterizado por que** la cremallera (**12**) está dirigida en traslación alternativa por el sistema de motorización (**9**) que incluye preferentemente un servomotor.
- 15. Dispositivo de inspección según la reivindicación 14, **caracterizado por que** el sistema de motorización (9) incluye un sensor de rotación que forma parte del sistema de medida (30) de la posición del equipamiento móvil (6) con respecto al bastidor (7).
- 16. Dispositivo de inspección según la reivindicación 9, **caracterizado por que** la clavija de control (**15**) está montada sobre el vástago móvil (**60**) con la ayuda de un sistema de acomodación pasiva para facilitar la inserción de la clavija de control en el interior de recipientes (**2**) que presentan unos golletes inclinados o mal alineados.
 - 17. Dispositivo de inspección según una de las reivindicaciones 1 a 16 caracterizado por que incluye un sistema de fijación al chasis de una máquina de inspección, siendo el sistema de fijación acomodador para permitir una oscilación angular o en traslación entre dicho dispositivo (1) y dicho chasis de la máquina, con vistas a facilitar la inserción de la clavija de control en el interior de recipientes (2) que presentan unos golletes inclinados o mal alineados.


FIG.1

