

OFICINA ESPAÑOLA DE PATENTES Y MARCAS

ESPAÑA

11) Número de publicación: 2 709 187

51 Int. CI.:

C12Q 1/68 (2008.01)

(12)

TRADUCCIÓN DE PATENTE EUROPEA

T3

86 Fecha de presentación y número de la solicitud internacional: 25.06.2014 PCT/US2014/044000

(87) Fecha y número de publicación internacional: 31.12.2014 WO14210097

(96) Fecha de presentación y número de la solicitud europea: 25.06.2014 E 14742404 (8)

(97) Fecha y número de publicación de la concesión europea: 05.12.2018 EP 3013977

(54) Título: Marcadores para predecir la resistencia a fármacos de lactona macrocíclica de la Dirofilaria immitis, el agente causal de la enfermedad del gusano del corazón

(30) Prioridad:

26.06.2013 US 201361839545 P

(45) Fecha de publicación y mención en BOPI de la traducción de la patente: 15.04.2019

(73) Titular/es:

ELANCO US INC. (50.0%) 2500 Innovation Way Greenfield, IN 46140, US y MCGILL UNIVERSITY (50.0%)

(72) Inventor/es:

PRICHARD, ROGER; BOURGUINAT, CATHERINE y GEARY, TIMOTHY

(74) Agente/Representante:

CARPINTERO LÓPEZ, Mario

DESCRIPCIÓN

Marcadores para predecir la resistencia a fármacos de lactona macrocíclica de la *Dirofilaria immitis*, el agente causal de la enfermedad del gusano del corazón

Campo

Se desvelan aspectos genéticos relacionados con la resistencia a endectocidas de lactona macrocíclica (LM) en parásitos nematodos (por ejemplo, *Dirofilaria immitis*). Se desvelan polimorfismos de único nucleótido dentro del genoma de *D. immitis* que, individualmente o en combinación, se correlacionan con un grado de respuesta reducido de los parásitos a las LM. Además, se desvelan procedimientos para la detección de estos parásitos, procedimientos para el tratamiento de estos parásitos y procedimientos y kits para la determinación del grado de respuesta de estos parásitos a las LM.

Antecedentes

La dirofilariosis es una parasitosis de animales y ocasionalmente de humanos, que puede ser el resultado de la infestación por una especie de *Dirofilaria* tal como *D. immitis, D. repens, D. tenuis, D. ursi, D. subdermata, D. lutrae, D. striata* y *D spectans*.

Dirofilaria immitis (gusano del corazón) es un nematodo parásito que habitualmente infesta perros, zorros, lobos, coyotes y gatos. Los gusanos del corazón pueden provocar lesiones vasculares graves y pueden ser mortales, especialmente en animales altamente activos.

El ciclo de vida de *D. immitis* es muy conocido (revisado en McCall y col., Adv. Parasitol. 66:193-285, 2008). En resumen, un mosquito puede infestarse cuando extrae sangre de un hospedador infectado (por ejemplo, un perro). En el mosquito, las microfilarias (mf) se desarrollan a la fase larvaria infecciosa. Cuando el mosquito infestado se alimenta, puede transmitir larvas a un nuevo hospedador (por ejemplo, otro perro). En el nuevo hospedador, las larvas continúan madurando entre ocho y diez semanas, después de lo cual se mueven al lado derecho de los pulmones y la arteria pulmonar, donde se convierten en adultos. Los gusanos adultos se aparean y las hembras producen huevos, los cuales se desarrollan en el útero para dar embriones largos y finos (microfilarias) que se liberan en el torrente sanguíneo. Un mosquito que tome el mf en circulación cuando extrae sangre del hospedador infestado comienza el ciclo de nuevo.

D. immitis puede encontrarse dondequiera se encuentre su vector, el mosquito. En general, D. immitis se puede encontrar en todo el mundo, pero es muy común en zonas con climas templados y cálidos.

Las lactonas macrocíclicas (LM) a menudo se prescriben como opción terapéutica o profilaxis en el tratamiento de *D. immitis* en aplicaciones veterinarias. Los ejemplos LM incluyen ivermectina (IVM), milbemicina oxima (MO), moxidectina (MOX) y selamectina (SLM). Sin embargo, la resistencia a las LM es común en una diversidad de nematodos parásitos y parece estar desarrollándose en *D. immitis*. Se han descrito varias pruebas para la detección de la resistencia a antihelmínticos en nematodos de ganado y de caballos, que incluyen, la prueba de reducción del recuento de huevos en materia fecal, la prueba de eclosión de huevos, la prueba de desarrollo de larvas en microagar y pruebas moleculares basadas en la resistencia a benzimidazol (revisado en Coles y col., Veterinary Parasitology 136:167-185, 2006). Prichard y col. (Patente europea EP 0979278) describe una secuencia de glucoproteína P en *Haemonchus contortus* que puede ser útil para el diagnóstico de la resistencia a LM en nematodos parásitos. Sin embargo, sigue habiendo una necesidad de procedimientos para detectar *D. immitis* (gusanos del corazón) que sean resistentes a una LM.

40 Sumario

20

25

30

35

Se han descubierto variaciones genéticas (por ejemplo, SNP) en los genomas de nematodos de *Dirofilaria* spp. que se relacionan con un grado de respuesta reducido de los nematodos a las lactonas macrocíclicas. En un ejemplo, el nematodo es *Dirofilaria immitis* (el agente causal del gusano del corazón en los animales). En un ejemplo, las lactonas macrocíclicas son ivermectina, selamectina, milbemicina oxima o moxidectina.

Se desvelan procedimientos para determinar el grado de respuesta de un nematodo de *Dirofilaria* spp. a una lactona macrocíclica. En un ejemplo, el procedimiento implica determinar el genotipo del nematodo en un sitio polimórfico en una molécula de ácido nucleico que incluye una o más de las SEQ ID NO: 1-127 del nematodo. En un ejemplo, la molécula de ácido nucleico posee al menos el 80 % de identidad de secuencia con una o más de las SEQ ID NO: 1-127. En otros ejemplos, la molécula de ácido nucleico posee al menos el 90 % o al menos el 95 % de identidad de secuencia con una o más de las SEQ ID NO: 1-127. En un ejemplo, la molécula de ácido nucleico incluye un fragmento que tiene una longitud de al menos 100 nucleótidos de una o más de las SEQ ID NO: 1-127 e incluye el sitio polimórfico. En otro ejemplo, la molécula de ácido nucleico incluye un fragmento que tiene una longitud de al menos 50 nucleótidos de una o más de las SEQ ID NO: 1-127 e incluye el sitio polimórfico. En un ejemplo, la molécula de ácido nucleico incluye un fragmento que tiene una longitud de al menos 100 nucleótidos y que posee al menos el 95 % de identidad de secuencia con una o más de las SEQ ID NO: 1-127 e incluye el sitio polimórfico. Por lo tanto, la invención proporciona un procedimiento para determinar el grado de respuesta de un nematodo de

Dirofilaria spp. a una lactona, comprendiendo el procedimiento determinar el genotipo del nematodo en un sitio polimórfico en una molécula de ácido nucleico, en el que la molécula de ácido nucleico comprende un fragmento que tiene una longitud de al menos 50 nucleótidos que posee al menos el 95 % de identidad de secuencia con la SEQ ID NO: 118 e incluye el sitio polimórfico.

En una realización del procedimiento, la presencia de un nucleótido alternativo en el sitio polimórfico en las moléculas de ácido nucleico indica que es probable que el nematodo sea resistente a la lactona macrocíclica. En una realización, el procedimiento puede incluir aislar la molécula de ácido nucleico del nematodo y, opcionalmente, purificar los ácidos nucleicos antes de determinar el genotipo del nematodo. En una realización del procedimiento, el genotipo del nematodo se determina por secuenciación de ADN, procedimientos basados en hibridación que incluyen oligonucleótidos específicos de alelo, análisis de micromatriz, procedimientos basados en enzimas, polimorfismo de conformación monocatenaria (SSCP), fusión de alta resolución (HRM, forma sigla de *high resolution melt*) o estrategias basadas en PCR, RT-PCR o gRT-PCR.

Se desvelan moléculas de ácido nucleico aisladas que comprenden una o más de las SEQ ID NO: 1-127. En un ejemplo, la molécula de ácido nucleico posee al menos el 80 % de identidad de secuencia con una o más de las SEQ ID NO: 1-127. En otros ejemplos, la molécula de ácido nucleico posee al menos el 90 % o al menos el 95 % de identidad de secuencia con una o más de las SEQ ID NO: 1-127. En un ejemplo, la molécula de ácido nucleico incluye un fragmento que tiene una longitud de al menos 100 nucleótidos de una o más de las SEQ ID NO: 1-127 e incluye el sitio polimórfico. En otro ejemplo, la molécula de ácido nucleico incluye un fragmento que tiene una longitud de al menos 50 nucleótidos de una o más de las SEQ ID NO: 1-127 e incluye el sitio polimórfico. En un ejemplo, la molécula de ácido nucleico incluye un fragmento que tiene una longitud de al menos 100 nucleótidos y que posee al menos el 95 % de identidad de secuencia con una o más de las SEQ ID NO: 1-127 e incluye el sitio polimórfico.

Se desvelan kits para determinar el grado de respuesta de un nematodo de *Dirofilaria* spp. a una lactona macrocíclica. En un ejemplo, el kit contiene una sonda que tiene la capacidad de determinar el genotipo del nematodo en un sitio polimórfico de una o más de las SEQ ID NO: 1-127. La sonda puede ser un oligonucleótido, un cebador o un aptámero. Utilizando el kit, se puede determinar el genotipo del nematodo, por ejemplo, por secuenciación de ADN, procedimientos basados en hibridación que incluyen el uso de oligonucleótidos específicos de alelo, análisis de micromatriz, procedimientos basados en enzimas, polimorfismo de conformación monocatenaria (SSCP), fusión de alta resolución (HRM) o estrategias basadas en PCR, RT-PCR o qRT-PCR.

30 Se desvelan procedimientos para seleccionar un tratamiento para tratar un animal infestado con un nematodo de *Dirofilaria* spp. En un ejemplo, el procedimiento implica determinar el genotipo del nematodo en un sitio polimórfico en una molécula de ácido nucleico que incluye una o más de las SEQ ID NO: 1-127 y seleccionar el tratamiento basándose en el genotipo del nematodo. En un ejemplo, la molécula de ácido nucleico posee al menos el 80 % de identidad de secuencia con una o más de las SEQ ID NO: 1-127. En otros ejemplos, la molécula de ácido nucleico posee al menos el 90 % o al menos el 95 % de identidad de secuencia con una o más de las SEQ ID NO: 1-127. En un ejemplo, la molécula de ácido nucleico incluye un fragmento que tiene una longitud de al menos 100 nucleótidos de una o más de las SEQ ID NO: 1-127 e incluye el sitio polimórfico. En un ejemplo, la molécula de ácido nucleico incluye un fragmento que tiene una longitud de al menos 50 nucleótidos de una o más de las SEQ ID NO: 1-127 e incluye el sitio polimórfico. En un ejemplo, la molécula de ácido nucleico incluye un fragmento que tiene una longitud de al menos 100 nucleótidos y que posee al menos el 95 % de identidad de secuencia con una o más de las SEQ ID NO: 1-127 e incluye el sitio polimórfico.

En un ejemplo, el procedimiento implica tratar al animal con uno o más agentes alternativos cuando se encuentra un nucleótido alternativo en el sitio polimórfico. Los agentes alternativos pueden incluir uno o más de una terapia basada en arsénico, dietilcarbamazina y antibióticos. En un ejemplo, el procedimiento puede incluir aislar la molécula de ácido nucleico del nematodo y, opcionalmente, purificar los ácidos nucleicos antes de determinar el genotipo del nematodo. En un ejemplo del procedimiento, el genotipo del nematodo se determina por secuenciación de ADN, procedimientos basados en hibridación que incluyen oligonucleótidos específicos de alelo, análisis de micromatriz, procedimientos basados en enzimas, polimorfismo de conformación monocatenaria (SSCP), fusión de alta resolución (HRM) o estrategias basadas en PCR, RT-PCR o gRT-PCR.

Breve descripción de los dibujos

La **Figura 1** ilustra las frecuencias de genotipo para el SNP dentro de cada uno de los marcadores indicados, para aislados susceptibles y con PDE. Los gráficos son representativos de los marcadores que también se designan como las SEQ ID NO: 1-109 dentro de la solicitud. Para los marcadores designados con un asterisco (*), el genotipo indicado muestra el análisis de la complementaria inversa de las secuencias mostradas como las SEQ ID NO: 1-109 dentro de la solicitud.

Descripción detallada

Definiciones

15

20

25

45

50

55

En el presente documento, "lactonas macrocíclicas" o "las LM" significa productos, o derivados químicos de los

mismos, de microorganismos del suelo que pertenecen al género *Streptomyces* incluyendo, pero sin limitación, avermectinas y milbemicinas. Estas moléculas se utilizan para tratar especies de endo- y ectoparásitos en una amplia diversidad de hospedadores. Las avermectinas en uso incluyen, sin limitación, ivermectina, abamectina, doramectina, eprinomectina y selamectina. Las milbemicinas disponibles incluyen, sin limitación, milbemicina oxima y moxidectina. Las lactonas macrocíclicas tienen un potente y amplio espectro antiparasitario a bajos niveles de dosis. Son activos frente a muchos nematodos inmaduros (incluyendo larvas hipobióticas) y artrópodos. Una única dosis terapéutica puede persistir en concentraciones suficientes para ser eficaz frente a infestaciones por nematodos durante períodos prolongados después del tratamiento.

Se desarrollaron tratamientos preventivos para el gusano del corazón con lactona macrocíclica (LM) para el tratamiento de perros y gatos, que todavía no estaban infestados, para prevenir el establecimiento de infestaciones en adultos teniendo como objetivo las fases del desarrollo L3/l4. Las lactonas macrocíclicas también tienen efectos en el estadio de microfilaria (L1). Los endectocidas de lactona macrocíclica tales como ivermectina (IVM), milbemicina oxima (MO), moxidectina (MOX) y selamectina (SLM) se utilizan durante la temporada de transmisión para la quimioprofilaxis del gusano del corazón en perros y gatos.

10

30

35

40

45

50

En el presente documento, "grado de respuesta" significa que un nematodo responde después de la exposición a una lactona macrocíclica (LM). En realizaciones de la invención, un nematodo puede responder siendo sensible o resistente a un LM. Sensibilidad a una LM significa que la lactona macrocíclica afecta negativamente al nematodo *D. immitis* expuesto. Por ejemplo, una LM puede ser mortal o casi mortal para al nematodo *D. immitis*, acortar su vida o inhibir su capacidad para reproducirse. La resistencia es la reducción en la eficacia de un fármaco, en el presente documento las LM, para curar una enfermedad o mejorar los síntomas (por ejemplo, la erradicación de los gusanos del corazón de un perro). Un nematodo *D. immitis* puede ser resistente a una LM si el fármaco destinado a neutralizarlo es ineficaz, menos eficaz o tiene una eficacia reducida. Un nematodo *D. immitis* también puede ser resistente a una LM si el fármaco, a una dosis específica destinada a neutralizarlo, tiene un efecto reducido. En realizaciones de la invención, el grado de respuesta de un nematodo a una lactona macrocíclica se puede determinar *in vivo* o *in vitro*.

En el presente documento, "pérdida de eficacia" o "PDE" significa que hay al menos una disminución percibida en el grado de respuesta de los nematodos a las LM. La disminución percibida en el grado de respuesta puede ser percibida o puede ser real. En un ejemplo, la disminución en el grado de respuesta de los nematodos a las LM puede ser real, en cuyo caso se puede decir que los nematodos son resistentes a las LM. En otro ejemplo, la disminución en el grado de respuesta de los nematodos a las LM puede ser percibida y no real. Por ejemplo, en el caso en que un perro infestado con gusanos del corazón se trate con las LM, con el fin de eliminar el gusano del corazón del perro, el dueño del perro puede no cumplir con la administración apropiada de las LM al perro. En ese caso, la infestación con el gusano del corazón podría no eliminarse del perro debido a que, por ejemplo, no se administraron dosis suficientes de las LM. El dueño del perro, u otro observador, puede creer erróneamente que las LM se administraron de manera adecuada al perro (por ejemplo, el dueño cree que le administró las LM como se le indicó, pero, en realidad, se omitieron administraciones, se administraron dosificaciones inadecuadas, etc.) y, debido a que los gusanos del corazón no fueron eliminados del perro, los parásitos de gusano del corazón son resistentes a las LM. En al menos algunos de estos casos, los gusanos del corazón no se eliminan del perro debido a la falta de cumplimiento del tratamiento. En estos casos, la presencia continua del gusano del corazón puede no deberse a la resistencia a la LM de los organismos del gusano del corazón (es decir, la disminución en el grado de respuesta de los parásitos del gusano del corazón es percibida y no es real). En los casos de PDE, generalmente no hay confirmación de que la infestación con el gusano del corazón sea realmente resistente a las LM.

En el presente documento, "resistente" o "resistencia confirmada" generalmente significa que se demostró que los organismos del gusano del corazón tienen al menos un grado de respuesta reducido a las LM. En un ejemplo, los perros infestados con gusanos del corazón se tratan con las LM, utilizando un régimen que se sabe que normalmente libra a los perros de la infestación por gusanos del corazón (es decir, no se cuestiona el cumplimiento del tratamiento con LM), pero el tratamiento no libra al perro de los organismos del gusano del corazón. Dichos organismos del gusano del corazón, que normalmente serían eliminados de los perros por cumplir el tratamiento, no se eliminan debido a su reducido grado de respuesta a la LM. Se dice que tales organismos del gusano del corazón son resistentes a las LM.

En un ejemplo, se puede decir que un nematodo *D. immitis* es resistente a una LM si menos de aproximadamente el 93 %, menos de aproximadamente el 87 %, menos de aproximadamente el 87 %, menos de aproximadamente el 87 %, menos de aproximadamente el 88 %, menos de aproximadamente el 81 %, menos de aproximadamente el 77 %, menos de aproximadamente el 75 %, menos de aproximadamente el 75 %, menos de aproximadamente el 67 %, menos de aproximadamente el 69 %, menos de aproximadamente el 63 %, menos de aproximadamente el 63 %, menos de aproximadamente el 61 %, menos de aproximadamente el 59 %, menos de aproximadamente el 57 %, menos de aproximadamente el 51 %, menos de aproximadamente el 51 %, menos de aproximadamente el 51 %, menos de aproximadamente el 40 %, menos de aproximadamente el 41 %, menos de aproximadamente el 45 %, menos de aproximadamente el 43 %, menos de aproximadamente el 43 %, menos de aproximadamente el 39 %, menos de aproximadamente el 30 %, menos de aproximadament

ES 2 709 187 T3

27 %, menos de aproximadamente el 25 %, menos de aproximadamente el 23 %, menos de aproximadamente el 21 %, menos de aproximadamente el 19 %, menos de aproximadamente el 17 %, menos de aproximadamente el 15 %, menos de aproximadamente el 13 %, menos de aproximadamente el 11 %, menos de aproximadamente el 9 %, menos de aproximadamente el 7 %, menos de aproximadamente el 5 %, menos de aproximadamente el 3 %, menos de aproximadamente el 1 % o si el 0 % de los nematodos murieron después de la exposición a una dosis o concentración DL₉₅ (una dosis o concentración letal de un fármaco que debería haber destruido al 95 % de los nematodos de *D. immitis*) de una lactona macrocíclica.

En otra realización, se puede decir que un nematodo *D. immitis* es sensible a una lactona macrocíclica si a los sumo aproximadamente el 5 %, a lo sumo aproximadamente el 4 %, a lo sumo aproximadamente el 3 %, a lo sumo aproximadamente el 2 %, a lo sumo aproximadamente el 1 % o si el 0 % de los nematodos sobrevivieron después de la exposición a una dosis o concentración DL₉₅ (una dosis o concentración letal de un fármaco que debería haber destruido al 95 % de los nematodos de *D. immitis*) de una lactona macrocíclica.

10

15

30

35

40

45

50

55

60

En el presente documento, "ácido nucleico", "secuencia de nucleótidos" o "molécula de ácido nucleico" puede referirse a un polímero de ADN y/o ARN que puede ser monocatenario o bicatenario y que contiene, opcionalmente, bases nucleotídicas sintéticas, no naturales o modificadas que tienen la capacidad de incorporarse en polímeros de ADN o ARN. Los "ácidos nucleicos", "secuencias de ácido nucleico" o "moléculas de ácido nucleico" puede abarcar genes, ADNc, ADN (por ejemplo, ADN genómico) y ARN codificado por un gen. Los ácidos nucleicos o secuencias de ácido nucleico pueden comprender al menos 3, al menos 10, al menos 100, al menos 1000, al menos 5000 o al menos 10000 nucleótidos o pares de bases.

Los "ácidos nucleicos", "secuencias de ácido nucleico" o "moléculas de ácido nucleico" pueden modificarse por cualquier medio químico y/o biológico conocido en la técnica, incluyendo, pero sin limitación, la reacción con cualquier producto químico conocido tales como agentes alquilantes, azúcares de oscurecimiento, etc.; conjugación a un grupo enlazador (por ejemplo PEG); metilación; oxidación; radiación ionizante; o la acción de carcinógenos químicos. Dichas modificaciones de ácido nucleico pueden producirse durante la síntesis o el procesamiento, o después del tratamiento con reactivos químicos conocidos en la técnica.

En el presente documento, una "molécula de ácido nucleico aislada" puede referirse a una molécula de ácido nucleico que no aparece en la naturaleza como parte de una secuencia polinucleotídica más grande; y/o puede estar sustancialmente exenta de otras moléculas de ácido nucleico u otros contaminantes que se encuentran en su entorno natural. Como se usa en el presente documento, una "molécula de ácido nucleico aislada" puede abarcar también moléculas de ácido nucleico producidas de forma recombinante o sintética.

En el presente documento, el término "identidad" o "idéntico" se refiere a la similitud de secuencia entre dos o más moléculas de polinucleótido, en una posición dentro de las moléculas, o en más de una posición dentro de las moléculas. La identidad se puede determinar comparando cada posición en las secuencias alineadas. Un grado de identidad entre las secuencias de ácido nucleico es una función del número de ácidos nucleicos idénticos o coincidentes en las posiciones compartidas por las secuencias, por ejemplo, a lo largo de una región específica. El alineamiento óptimo de las secuencias para las comparaciones de identidad se puede realizar utilizando una diversidad de algoritmos, como se conoce en la técnica. En un ejemplo, la identidad de secuencia se puede determinar utilizando el algoritmo muy conocido BLAST, disponible de forma pública (por ejemplo, BLASTn y BLASTp). En otra realización, el experto en la materia puede alinear fácil y adecuadamente cualquier secuencia dada y deducir la identidad/homología de secuencia mediante una simple inspección visual.

En el presente documento, "polimorfismos de único nucleótido" o "los SNP" se refiere a variaciones genéticas (o de no identidad) en ubicaciones específicas en un genoma (es decir, un sitio polimórfico). En general, en una posición específica en un genoma, la identidad de un nucleótido puede ser invariante o constante. En algunas posiciones en un genoma, sin embargo, la identidad de un nucleótido puede no ser invariante. En tales posiciones, puede haber un nucleótido presente en la posición en una frecuencia relativamente más alta que otros nucleótidos, cuando se analizan los genomas de distintos individuos dentro de una población. El nucleótido más comúnmente encontrado en tal posición puede denominarse el nucleótido de tipo silvestre en esta posición. Sin embargo, puede haber uno o más otros nucleótidos encontrados en esta posición en frecuencias relativamente más bajas. Estos nucleótidos pueden denominarse nucleótidos alternativos. Las frecuencias en las que se encuentran los nucleótidos alternativos pueden variar. En un ejemplo, los SNP descritos en el presente documento pueden desempeñar un papel en el grado de respuesta de los nematodos a las LM. En un ejemplo, los SNP pueden identificar o etiquetar una región de un genoma que puede desempeñar un papel en el grado de respuesta de los nematodos a las LM (es decir, el SNP en sí no está directamente implicado en el grado de respuesta a las LM alterado, pero puede estar genéticamente vinculado a cambios genéticos que están implicados en el grado de respuesta alterado). En un ejemplo, la presencia de uno o más de los SNP desvelados puede indicar que el parásito cuyo genoma contiene el uno o más de los SNP es menos sensible a las LM, en comparación con los parásitos que no tienen los SNP.

Como se usa en el presente documento, la expresión "sitio polimórfico" puede referirse a una región/ubicación específica en un ácido nucleico en la cual se observan dos o más secuencias de nucleótidos alternativas en un número significativo de muestras de ácido nucleico de una población de individuos. Un sitio polimórfico que es de un nucleótido de longitud se puede denominar en el presente documento un "polimorfismo de único nucleótido" o un

"SNP".

10

25

30

35

40

45

50

En el presente documento, "marcador" o "marcadores" generalmente se refiere a secuencias de ácido nucleico que pueden contener uno o más de los SNP. Estas secuencias de ácido nucleico pueden ser de distintas longitudes.

En el presente documento, "genotipo" se refiere a la constitución genética de una célula, un organismo o un individuo (es decir, la composición alélica específica del individuo), habitualmente con referencia a un personaje específico en consideración. En el contexto de la presente solicitud, genotipo generalmente se refiere a la identidad de los nucleótidos en posiciones de los SNP. En un ejemplo, un genotipo GG puede significar que en una posición específica de un gen (por ejemplo, un sitio polimórfico) que tiene dos alelos, el nucleótido en la misma ubicación en cada alelo es G (guanina). Los alelos son secuencias de ADN alternativas en el mismo locus físico, que pueden o no dar como resultado de forma directa distintos rasgos fenotípicos, pero que en general, dentro del contexto de la presente solicitud, se correlacionan con un grado de respuesta disminuido de los parásitos a las LM. En cualquier organismo diploide particular, con dos copias de cada cromosoma, el genotipo de cada gen comprende la pareja de alelos presentes en ese locus, que son iguales en homocigotos y distintos en los heterocigotos.

Los enfoques adecuados para su uso en la determinación del genotipo son conocidos en la técnica y pueden incluir, sin limitación, PCR, RT PCR, qRT PCR, SSCP e hibridación con oligonucleótidos específicos de alelo. Otros enfoques pueden incluir la hibridación de ácidos nucleicos a micromatrices de ADN o perlas, el polimorfismo de longitud de fragmentos de restricción (RFLP, forma siglada de *restriction fragment length polymorphism*), el polimorfismo de longitud de fragmentos de restricción terminales (t-RFLP, forma siglada de *terminal restriction fragment length polymorphism*), el polimorfismo de longitud del fragmentos amplificados (AFLP, forma siglada de *amplified fragment length polymorphism*) y amplificación de sonda dependiente de la ligamiento múltiple (MLPA, forma siglada de *multiplex ligation-dependent probe amplification*).

En el presente documento, "consiste esencialmente en" o "que consiste esencialmente en" significa que la secuencia de ácido nucleico puede incluir una o más bases nucleotídicas, incluso dentro de la secuencia o en uno o ambos extremos de la secuencia, pero que las bases nucleotídicas adicionales no afectan materialmente la función de la secuencia del ácido nucleico.

Genomas y los SNP

En un aspecto, la divulgación se refiere a moléculas de ácido nucleico aisladas que poseen al menos el 80 % de identidad de secuencia con las SEQ ID NO: 1-127, a lo largo de toda su longitud, y que comprenden los nucleótidos alternativos en la ubicación del SNP (es decir, el sitio polimórfico), indicándose los nucleótidos alternativos mediante el nucleótido subrayado en las SEQ ID NO: 1-127, como se desvela en la presente divulgación. Los nucleótidos alternativos generalmente tienen una menor frecuencia de aparición en las posiciones indicadas dentro de las secuencias, como se muestra en la Figura 1 y en la Tabla 1. En una realización de la divulgación, el genoma de un parásito nematodo, o de una población de parásitos, puede contener uno o más de los nucleótidos alternativos en los sitios polimórficos mostrados en las SEQ ID NO: 1-127. La presencia de estos nucleótidos alternativos generalmente se correlaciona con una sensibilidad reducida de los parásitos a las LM, en comparación con parásitos que no contienen los nucleótidos alternativos. Con más detalle, la invención se refiere a un procedimiento para determinar el grado de respuesta de un nematodo de *Dirofilaria* spp. a una lactona macrocíclica, comprendiendo el procedimiento determinar el genotipo del nematodo en un sitio polimórfico en una molécula de ácido nucleico, en el que la molécula de ácido nucleico comprende un fragmento que tiene una longitud de al menos 50 nucleótidos que posee al menos el 95 % de identidad de secuencia con la SEQ ID NO: 118 e incluye el sitio polimórfico.

Además se desvelan moléculas de ácido nucleico aisladas que comprenden, consisten en o consisten esencialmente en la secuencia representada en las SEQ ID NO: 1-127.

Una molécula de ácido nucleico desvelada en el presente documento puede comprender una secuencia que corresponde a la de las SEQ ID NO: 1-127 a lo largo de su longitud, y que contiene el nucleótido alternativo en el sitio de SNP (es decir, el sitio polimórfico). En realizaciones de la divulgación, la secuencia de ácido nucleico puede ser al menos aproximadamente el 80 %, al menos aproximadamente el 81 %, al menos aproximadamente el 82 %, al menos aproximadamente el 85 %, al menos aproximadamente el 85 %, al menos aproximadamente el 86 %, al menos aproximadamente el 87 %, al menos aproximadamente el 88 %, al menos aproximadamente el 90 %, al menos aproximadamente el 91 %, al menos aproximadamente el 91 %, al menos aproximadamente el 92 %, al menos aproximadamente el 93 %, al menos aproximadamente el 94 %, al menos aproximadamente el 95 %, al menos aproximadamente el 99 % o 100 % idéntica a las SEQ ID NO: 1-127, pero se aisló de un nematodo que tiene el nucleótido alternativo en la posición en cada secuencia, mostrada mediante el nucleótido subrayado como se desvela en la presente solicitud.

En otras realizaciones, la molécula de ácido nucleico desvelada en el presente documento puede comprender una parte o fragmento de, las SEQ ID NO: 1-127 que también contiene el sitio polimórfico y el nucleótido alternativo en el sitio polimórfico. En diversos Ejemplos, el fragmento de las SEQ ID NO: 1-127 pueden tener 5, 20, 15, 20, 25, 30, 35, 40, 45, 50, 60, 70, 80, 90, 100, 120, 140, 160, 180, 200, 220, 240, 260, 280, 300 o más nucleótidos de longitud.

Una molécula de ácido nucleico desvelada en el presente documento puede obtenerse de un nematodo *D. immitis* que contiene una o más de las SEQ ID NO: 1-127 como se desvela en la presente solicitud. Como se usa en el presente documento, "obtenido de" puede referirse a una molécula de ácido nucleico que se aisló de una fuente natural, por ejemplo, un nematodo de *Dirofilaria immitis*. Además puede referirse a una molécula de ácido nucleico hecha por el hombre, por ejemplo, de forma recombinante o sintetizada basándose en una molécula de ácido nucleico aislada de un nematodo *D. immitis*.

Detección de los SNP

10

15

Los SNP pueden detectarse mediante cualquier procedimiento que pueda determinar la identidad de un nucleótido en una posición específica en un genoma (por ejemplo, un sitio polimórfico) y que permita la comparación de las identidades de los nucleótidos en la posición específica del genoma entre individuos o poblaciones de individuos. Las diferencias en las identidades de los nucleótidos en una posición específica pueden ser indicativas de un SNP.

Para detectar los SNP se puede usar una diversidad de procedimientos. En un ejemplo, pueden usarse procedimientos basados en hibridación. Los procedimientos basados en hibridación generalmente se basan en la hibridación de sondas de ADN complementarias al sitio que contiene el SNP. En un procedimiento, la hibridación dinámica específica de alelos (DASH, forma siglada de *dynamic allele-specific hybridization*) se basa en diferencias en las temperaturas de fusión que son el resultado del emparejamiento de bases no coincidente. Mediante el diseño de sondas que hibridan de forma diferencial basándose en cambios de nucleótidos en los genomas diana, se pueden detectar los SNP.

En un ejemplo de un procedimiento basado en hibridación, pueden usarse balizas moleculares. Las balizas moleculares son sondas nucleotídicas monocatenarias, con un fluorocromo en un extremo y una molécula de inactivación de fluorocromo en el otro extremo, que puede formar una estructura de tallo-bucle y colocar el fluorocromo y la molécula de inactivación próximos entre sí. En ausencia de hibridación de una baliza molecular con una región del genoma, el fluorocromo se inactivará, debido a su proximidad cercana a la molécula de extinción. Cuando la baliza molecular hibrida con una región del genoma, en general, el fluorocromo no formará una estructura de tallo-bucle. En estas condiciones, el fluorocromo emitirá fluorescencia, debido a la distancia al fluorocromo aumentada de la molécula de inactivación.

En un ejemplo de un procedimiento basado en hibridación, se utilizan para la hibridación con los SNP micromatrices de oligonucleótidos, que son matrices de alta densidad que contienen cientos de miles de sondas. Comparando la hibridación diferencial con sondas redundantes, es posible detectar los SNP.

- En un ejemplo de detección de los SNP, pueden usarse procedimientos basados en enzimas. En un ejemplo de un procedimiento basado en enzimas para la detección de los SNP, se utilizan endonucleasas de restricción para digerir un ADN genómico. Determinando las longitudes de los fragmentos que son el resultado de la digestión, se puede determinar si la endonucleasa no logra escindir determinados sitios dentro de un genoma debido a un cambio de nucleótido (por ejemplo, un nucleótido alternativo) en la secuencia reconocida por la endonucleasa.
- En un ejemplo de un procedimiento basado en enzimas para la detección de los SNP, se utilizan procedimientos basados en PCR (reacción en cadena de la polimerasa). En un ejemplo de esto, se diseñan dos parejas de cebadores de forma que solo uno de ellos funcione en la amplificación de un sitio que contiene un SNP, dependiendo de si el SNP está presente. Los tamaños de los productos amplificados son distinguibles, informando, por lo tanto, qué pareja de cebadores funciona y si el SNP está presente.
- 40 En un ejemplo de un procedimiento basado en enzimas para la detección de los SNP, se diseñan sondas nucleotídicas para hibridar con un sitio genómico y producir una falta de coincidencia, ya sea esté presente o no un SNP en el sitio genómico específico. Se utiliza una endonucleasa (por ejemplo, endonucleasa Flap) que escinde una de las sondas, dependiendo de si existe una falta de coincidencia. Usando fluorocromos y moléculas de inactivación, unidos a una o más de las sondas, se pueden detectar los SNP.
- 45 En un ejemplo de un procedimiento basado en enzimas para la detección de los SNP, se utiliza extensión de cebadores. En este procedimiento, los cebadores hibridan con el ADN genómico inmediatamente corriente arriba del SNP. Después, se usa ADN polimerasa para extender el cebador en una reacción de minisecuenciación. La reacción de secuenciación determina la presencia de un SNP.
- En un ejemplo de un procedimiento basado en enzimas para la detección de los SNP, se usa la actividad 5'nucleasa de la ADN polimerasa Taq. Se realiza un ensayo TaqMan de forma simultánea con una reacción de PCR.
 El procedimiento se configura de modo que la reacción de PCR se extienda a través de un sitio que contiene un SNP y libere un fluorocromo de una sonda que hibrida con la región de SNP, dependiendo de si la sonda contiene una falta de coincidencia debido a la presencia del SNP.
- En un ejemplo de un procedimiento basado en enzimas para la detección de los SNP, se usa la ADN ligasa para ligar dos sondas, una que hibrida con un sitio de SNP en un genoma, dependiendo de si el SNP está presente, y una segunda sonda que hibrida adyacente al sitio de SNP. Si ambas sondas hibridan con el genoma sin faltas de coincidencia, la ligasa conectará las dos sondas, lo cual se puede medir.

Existen otros procedimientos de detección de los SNP, que incluyen, por ejemplo, detección de polimorfismos de conformación monocatenaria, electroforesis en gel con gradiente de temperatura para detectar faltas de coincidencia en la estructura secundaria debidas a los SNP, cromatografía líquida desnaturalizante de alto rendimiento para detectar estructuras secundarias con falta de coincidencia, análisis de fusión de alta resolución, uso de proteínas de unión a faltas de coincidencia y otros.

En un ejemplo de detección de los SNP, se puede obtener de un sujeto una muestra biológica que comprenda un nematodo *D. immitis*. El sujeto puede ser, sin limitación, un perro, zorro, lobo, coyote y gato. En el contexto de la invención, una muestra biológica puede ser cualquier muestra (por ejemplo, líquido corporal, excremento, órgano, tejido, etc.) procedente de un sujeto. La muestra biológica puede ser de un sujeto que se sabe que tiene, o se sospecha que tiene, una infestación por nematodos de *D. immitis*. El nematodo *D. immitis* puede aislarse de la muestra biológica con procedimientos y técnicas de separación convencionales.

Una muestra de ácido nucleico puede aislarse u obtenerse de un nematodo *D. immitis* antes de su uso. Los procedimientos para aislar ácidos nucleicos de organismos y tejidos son conocidos. Dichos procedimientos pueden incluir, pero sin limitación, extracción convencional de ADN, con digestión con proteinasa K seguida de extracción con fenol cloroformo, extracción con hidróxido de sodio y rotura física, seguido de purificación, por ejemplo, por centrifugación con cloruro de cesio o cromatografía líquida de alto rendimiento (HPLC); o el uso de kits comerciales. Una experto apreciaría que pueden usarse distintas estrategias para aislar una muestra de ácido nucleico de un nematodo *D. immitis* adulto en comparación con una microfilaria. En una realización de la invención, la muestra de ácido nucleico comprende ADN genómico.

Las secuencias de ácido nucleico de los ácidos nucleicos del parásito se pueden determinar usando uno cualquiera de los numerosos procedimientos conocidos en la técnica. En algunas técnicas, utilizando procedimientos basados en ordenador, las secuencias de partes separadas del genoma se ensamblan en representaciones del genoma lineal completo del parásito. En un ejemplo, se puede utilizar secuenciación masiva paralela. La secuenciación masiva paralela (también denominada "secuenciación de última generación") puede abarcar diversos procedimientos de secuenciación de ADN de alto rendimiento. Uno de estos procedimientos es el sistema HiSeq2000 de Illumina®.

A través de la comparación de secuencias de distintos parásitos o poblaciones de parásitos (por ejemplo, comparación de un genoma consenso o de referencia obtenido de parásitos sensibles a las LM con un genoma consenso o de referencia obtenido de parásitos resistentes a las LM), se pueden identificar los presuntos SNP.

Los presuntos SNP pueden analizarse adicionalmente. En un ejemplo, se utilizó análisis de SNP de alto rendimiento utilizando PCR combinada y espectrometría de masas MALDI-TOF (análisis Sequenom®). En general, este sistema utiliza la extensión de un cebador oligonucleotídico o una sonda utilizando nucleótidos de terminación de cadena para producir productos de PCR de distintos tamaños para cada alelo de un SNP. Los productos de PCR de distintos tamaños se analizan mediante espectrometría de masas MALDI-TOF.

SNP desvelados

5

10

15

En un ejemplo, los marcadores genéticos de *D. immitis* incluyen las siguientes secuencias (las SEQ ID NO: 1-109), donde los nucleótidos subrayados (es decir, los sitios polimórficos) indican la posición del nucleótido dentro del fragmento que se correlaciona con la resistencia a las LM (es decir, el nucleótido alternativo). En estas secuencias, el nucleótido en la posición subrayada es generalmente distinto del nucleótido encontrado en esta posición en organismos que no son resistentes a las LM (tipo silvestre). En las siguientes secuencias, el nucleótido subrayado en la secuencia indicada es el nucleótido alternativo que se correlaciona con la resistencia a las LM. En el encabezado de cada secuencia, se muestra el cambio de nucleótido del nucleótido de tipo silvestre al nucleótido alternativo (el alternativo correlaciona con la resistencia a la LM) en el sitio polimórfico (por ejemplo, C en el tipo silvestre y A en la secuencia alternativa se designa como C→A). Las frecuencias de genotipo para cada SNP en los sitios polimórficos se muestran en la **Figura 1.** En la **Figura 1**, para los marcadores designados con un asterisco (*), el gráfico presenta los genotipos de la secuencia complementaria inversa, en comparación con la secuencia de nucleótidos presentada en las SEQ ID NO: 1-109.

MARCADOR 617 (SEQ ID NO: 1); C→A

MARCADOR 714 (SEQ ID NO: 2); C→T

GACAAGCGTTGACGGGAGAGACGATATAATAATAAAGAAGGCATTGGGTATCAGAAG GCACAATCCAATTATAAATGCCAAGGCAAAATGAATAAAAATTTATGCTGACGATTTGA TCAATTACGAAGAATTTCCGATCGGCTCGAATCTT<u>I</u>GTTTGTATGTGCACTACTGTTA ACTTAATCTTTGTTTTATATACTTTTGCGTGTCATATATAATATATTCATGTCAACTGAT ACGTTATGATGTTTTTTTGTAAATTAAGTTGATCGGAAACCTGAAGTCTATTTCAAATT TAAGAAAT

MARCADOR 814 (SEQ ID NO: 3); T→C

MARCADOR 887 (SEQ ID NO: 4); C→T

MARCADOR 1514 (SEQ ID NO: 5); T→C

TCAACAGAAATCGAGATTCCAAAAAGTTTCCTACAAATACTTAATTATCAATGGATATT TAGTTTTGTTATCTGTTATCATAAGTTCTGCTTCTTACACGATTAAAAAATGTCCAAGAA TTTTTTACTATTCAAATGAGGGAAATAAAAAAACCAATGCCAATAATATCCAGAAACTAC ATACATCTTTTTTTCGAAGCTCATCTATTCCGGCCGAAAACAATGAAGAACATTAA AATTCTTAAAAGATAGTCTTAGCCTTTTCCTTGACCACTATCTTAACTGTCAGCGCTAA AATGT

MARCADOR 2557 (SEQ ID NO: 6); T→C

AATAGTCGTCTCATTACTTTTTGACTTTTATAATTCGAGAATCTTATGTAGTCCTTCACT TTACCCTTCTCTGTCGAACTAAGAATTACAGCATTATTTTCGAATTTAATGTGTAAAA GACAATAGCAGATTTTGTAATTTTGTGTTAACCTCACTTTATATTTCGCTTCATATCGT GACAGAGAATTACTATTTCAGAGAGATATTACTTGTCACCAGAGAATCTCCAGAAAAGAT TTTTATTTACGTCGGAAAAATGGACAAAAATGGTTTCTTATCATTAGCACTGATAGCTAG TTTCC

10 MARCADOR 3367 (SEQ ID NO: 7): G→A

MARCADOR 3488 (SEQ ID NO: 8); T→C

MARCADOR 4553 (SEQ ID NO: 9); C→T

MARCADOR 5266 (SEQ ID NO: 10); C→T

MARCADOR 5365 (SEQ ID NO: 11); G→A

ATGTTGAATTTTAATGAAACTTTTTCGGTGCATAAGCATTACAGATCTGTAAGCTGTGCAAACCCTGTTTCTTTGTAAATTGAAACAAAGATCATTTATTGTTTCCAGCGTCGATTT

MARCADOR 5667 (SEQ ID NO: 12); G→A

TTTGACACTTTCAGATACCTTACAAACTCATCTCCAGCACCCAATTTACAATATCGCTG CCTAAATAAAGAATTTATTCGGATATGAGACTGTAGTTTTCATTCCGTACCAATCATAG TAGAACAGATCTATAGCATGGTGTCCTACTAAAGTTGTGACTGGCTATTAAGTATGTG GGTGTTTTTACGTGTGCGTGGGTGTTTGTGCGTGTGCGTGTGCGTTTCTGCACAT ATTTTCGTGCGCGGGTGTCTGTGTGTGTCCGTTTGTATATGCCGAGTGTAGCTGTGTG TATGTTCTTG

10 MARCADOR 6568 A (SEQ ID NO: 13); G→C

CACTCATAATATCCTGTCAACAAACTCAGAAATCTGAATAAAATGACGCAAAAATGA CAAAAACATTTTATCAACCTTTTCTTCATCACTCCCCCGCATTTCCAATTTTCTTCCAA ACTGTTTTTGTCGTGCTACAAAGTCATCAGCCACTTCATTTTCTTCAAGATGGTTCGA GACGCCATTCTTGGATTCACCCCTTATTTCAACTGTTTCCGAAGTCCCAGCAGTTGAA GCTGAACCTAGCATTTATATCACCACCCGATGTCAAAAAAATGACAGCGGTCAGAGAA TACGACTTCC

MARCADOR 6568 B (SEQ ID NO: 14); G→A

GCTAGGTCAACAGTTGGTTTATTTGGACTTATACGATATTAAACATAATATCGCCTCAT ATACACAGAAATATCAAAAAAACGAACACAGCTAAATCGAAGAATACGAACAAATGTT TTAAAAATTATATTAAATCTTTTAATGCTCTCTACAATGTCGTATCTTCCCTTTTGTCTG TATTTCTCCTTTCGTTCCACCACTGCTATTTCTCATGCCTTTGAACTATGGTTCTCGTT GCGTCGAATTGTCCTCGAAACTGTTGTTCTGTCGAATTACGTCGAACTGCTGGACTT TGTCGG

MARCADOR 7633 (SEQ ID NO: 15); T→C

MARCADOR 9400 (SEQ ID NO: 16); T→C

ACAAATGCCATCGGGAGAGAAATATCGTTGGCGTACTGATCACATTGGCGGTATCAC
TTCTTTGAAAACTCCAGCTGGTATTGTGTATCATTTCATGCAATACGCTATTTTTGATC
GAATATGTCGACGGCGTAGTGTTTCATTTTCCAACGCATCTTACGTTGCGTGTATGGA
TGATGACGGACAATTATTGGAATATCAAACACCGGATCGATTGCATTCCGTAACCTTG
AAACGTGACATATATGGGAGAGTAGTGCAAATAACTTCAGATGGCGAAAATATTTTCT
TCGAATATGG

5

MARCADOR 9473 (SEQ ID NO: 17); C→G

ATAATATATTCCATTGATAATATTTTCATATTATGTGATGTTTGAAATTTTCTGCA ATTGCTACATTCCGATTAAAAACTTTTATTATCCGTACTGGAGAATTTTGCTTTTTTTG ACGGTTTGTTCAATAAGTTGTCAATATATTGTCTGCCTTAGTAAAACCTTTCTAATCTA TCCGTTCGAATTGGAAGTTGAAAGTTCAGCATCATTCTTTTAGTGAGGTGTTTAAGTT

GTTCAATAGATATTTAGAACGATCTCAATTAAAATCTTCTGAATGATTTTATGTTTT
TAT

MARCADOR 9858 (SEQ ID NO: 18); A→G

GCAGCACATTGCACACAGTAAACTGCAAACTGAATTAAGAGATATTGGGTTGAATTAT TTCTAATTTAAAAGGATATAATAAATGACTTTGATGATTGTTGATTTTAAGGTATCTCG GAAGACTCCATCAGTCTCAGTGCTCTAGCAATCGCTATAGGTACTAAAAGAAAAAGAAA AGATGTCTCGTTATTCACTTTGAAATGTACATATCAAATCATTTTGTCGTATGAAATTA AGTATATTATGTCTAATCGTATCATTCGAAATGAATTTACTGTCACTGTTAGAACTATT TAGGCAG

10

MARCADOR 10349 (SEQ ID NO: 19); A→G

MARCADOR 10520 (SEQ ID NO: 20); A→G

MARCADOR 10678 (SEQ ID NO: 21); A→T

MARCADOR 11676 (SEQ ID NO: 22); A→G

MARCADOR 11933 A (SEQ ID NO: 23); A→G

TCTGTTGTAAGTTTCACAATCCAGTTAATTTAAGCTCAGCTTATTTGAAATTTTCAACA AAATTACGAAAATTACTTTCTCGGTTCATTTTTTTCAACCACCAAATATTTAGCATAATT GGCCTGAAATCGTCAAAGTTTACAAACTTTTGTTCAGCAATCTTCTCTTACTACTAAACATGATTAACTTGTCGTCATACCAATCTCGTTTATAGCAAATTCTTTTCAAAAAA ACATTGCTACAAATTTTTTATATCGCATCATTTCAACACGCATAATTATTTTTCATATAGA AAA

10 <u>MARCADOR 11933 B (SEQ ID NO: 24); T→C</u>

MARCADOR 12716 (SEQ ID NO: 25); A→G

ATTAACTCTGAACCCAAAGACTGTTGGTTAAAATAAAGATCTATTTTAGTTATACATCT AACATTAAAGGTTTTCGTACGGAAACAAGTAGGTTTGATAATTTTCATGTAACTGTAAA GAACACCTGTGAAAGGGATCAGTAAAATTTGGGGGATGTAGCACGGAAATATGAAGC TGAGTGTTTTGTACCCAAAAGTTTTTCAAATCTGCGAAATAACGAGAGGTGTAATGAT CGTTTTTAACCAAATTTTTGATTCTAATCCTTCCCACAGTTTTGAAATTCAGTAAGCA TTTCTTTT

MARCADOR 12925 (SEQ ID NO: 26); T→C

TTGCAACAAATCAATAATAAAAGACTTGCGGCTAACAATATATTTGATTCTTTTTTACC
GTTATTATTATGACAGGTAATAATAGTATTACAAGCATATTTGTAGGTGTCAATTTTT
CAATTCAAATTTTCTTAATTCATTATTTCTCCTTAATAAATAGTCTTTCCATTTA
AGAATTAACTTTTTGAAATCTTTAATGAGAAGACACAAAAGATTCCGGATAATTTTGCA
TCATCTTTTCTATTTCGCGTTAGTATTTTATGTTTTCAACAGATTTTTATGATTTAACTA
TA

MARCADOR 13063 (SEQ ID NO: 27); C→T

MARCADOR 15000 A (SEQ ID NO: 28); T→A

MARCADOR 15000 B (SEQ ID NO: 29); A→G

10 MARCADOR 15709 A (SEQ ID NO: 30); T→C

MARCADOR 15709 B (SEQ ID NO: 31); T→A

AAATAATTCACTAATTTCTCATCATCAAATTATTTCGTACAATCGATAAATCAACGATTA
TAATAGCGAAGAGAATGAAAATTAATGTGGTGCACAGTATACGGACCCCATATACAAT
GTTCAACAGAGATGAACATTTTTTTTTCTATTAAAGTTTTCTGTTCGGCGAAAGAAGAC
ACTTTCTAACGATGCTTTCCTCCCAACTCCCCTTGCAATGATAGAGGATGCAGCCAA
GATTCGTCGACTCAAGCAGCATCACTCAACCGGCCATCACTTCGGGACCTTTTTCCC
TGCCTTTTA

MARCADOR 17333 (SEQ ID NO: 32); A→G

CATTGCGAATGACCGCTATGGAATATCAATTAGCAGATATTAATCGTGAATTAAGCAC ATTGGTGGAATTTTACGACCAAATCGAATTTCAAAAAATGCTACACTTGCAACATCA GCAACCATTGCAACATATAACAGTACTTCGATGCGTAATGTAAAAAAAGAAATGTAATG CATCTGAAAGCTGAAAATTCATCTGATATATTGAAGCAAAAGGTAAGATTATTTTAAG ATATCATTCTTGATGCTCTCATAATTTCTACATCAAATTTAATCAAACGATTCATTTATG TTCATTT

MARCADOR 18110 (SEQ ID NO: 33); C→T

MARCADOR 19999 (SEQ ID NO: 34); T→A

5

MARCADOR 20570 (SEQ ID NO: 35); T→C

10 MARCADOR 20587 (SEQ ID NO: 36); G→A

MARCADOR 20698 (SEQ ID NO: 37); T→C

MARCADOR 21554 (SEQ ID NO: 38); A→G

MARCADOR 22174 (SEQ ID NO: 39); A→C

MARCADOR 22254 (SEQ ID NO: 40); C→A

5

MARCADOR 22259 (SEQ ID NO: 41); A→G

GTTTCTTTGGTTTATCTCAGTAAGATTTGGGCGGAAATTTCAGTTATACTTTTCATTTC CATGTGCTGTTTTAAATTTCTTCCATATTAGTATAATTTTCAAATAATTGTAGCGTCACT GGTTTATTTAAGGATAACAGGTTGGACTGCAGTGGCTGAGAAGTGTCTTGCCGGTCA ATTGTTTGTTGGTGATCAACTTGTACGAGTTACTGATATCGACATATAAATACACGG CAAATTCCATTCGTTTCAGTACTGCATCAAAAACGGGATTATCGGTACTTTGTAAATC GCAGTAT

10 MARCADOR 24708 (SEQ ID NO: 42); C→T

MARCADOR 25276 A (SEQ ID NO: 43); A→G

AAAGAATGGTCAGCAAGATGTGGAAAATCGATTACTATAGTTGAAGTATGAATCGAAGAGGTTTTTTTAAATTCTAAGAGAACGAATAATCGGCAAAGAGAAAGTTGAGTAACCTT

MARCADOR 25443 (SEQ ID NO: 44); T→C

MARCADOR 26447 (SEQ ID NO: 45); G→A

ATGAGCTGATATTTGATATGCATATTAAAAATAGGGTAAATTACATTAAGTTAGATATC GTTCGGATAAATTAGATAGAAAAATGTTTACCAATTAGATCGCAATGATGTAAAATTT CACGTATTTTATTCTTAAGATTTATTTGCAAAATTCAAAAATATGTCTTATGAAAAATA ATATTTCTGTGAAGAACAAGGGACCGATTCACTTGATTTATTCGCAAACAATCGAAA TTCAAAATTAGTAATTTTAAATATTGCTTTATTCAAACCATACCAATAATAATTTGAGAG ATTT

MARCADOR 26730 (SEQ ID NO: 46); A→G

5

MARCADOR 26974 (SEQ ID NO: 47); C→T

10 MARCADOR 27080 A (SEQ ID NO: 48); A→G

MARCADOR 27349 (SEQ ID NO: 49); T→A

TTAGTATCGATATTATCACAAATGATATCACTTTCATCAATACTGGATACGATTTTATTA
GTATCATAATTTTGTGGCTCGCATTCCGAAAGTTTTACACGTAGAAGATTAACCTGCA
ATATGATTTATCATTTTCGAATATCCAACTTTGAAATAATTCGAAAATGTTGAAA
AATTTTGAAAAAATTGTTAACAAAATATTACAAAAATATCAAATGAAATTAAATAACTGTC

CATTTCAAAAAAAGAAGAAAATTATGAAATTACCAATTAAAAACAGGACTTATTAATT AAA

MARCADOR 27461 (SEQ ID NO: 50); G→T

TGTGGAAATAAAGTACAATTAATTGCTGTTCGCTTAATAATATTATTTTCATTCTTGGC
TTTTTTTTTCTTTCCCCGTGATATTATAAAAATATAGTTTTTAATTTTAACAAATCGTCAT
AATTATTTAAAAAAATACTGAGGTGAGTAAA<u>T</u>GTAATTGGTTGCTGGAAAAAAAAGTGGG
TGATGAGAGGGAAATGAAAGCAGAATAGTTTATGATTGCATCAAATTTCCTCCTTAAT
CTGTGATTAAAATCAAACAAAACCCGAAAAGTTTCTTCTTCTCCTTTTG
TTTCA

MARCADOR 29128 (SEQ ID NO: 51); T→C

MARCADOR 29168 (SEQ ID NO: 52); A→G

5

AGAAATATTAAACTTTGAAAAGATGTGACATGTTCTGTAACAAAAGCCCAAAATTTCGA CTGCTGCGGCTTGAAGTAAAATTTTGGAATATGCTACATCAGTAGTGCAACAGATGGT TCGATAAATAGTGGTAAGTGATGGGAATCCTAGGAATAGATGGGAATTGTATTTCAGA TATAAATTTGATGCATATTTTCATAGTTGATTATATCTACGATCACACGTTGAATATTCT AAAAGCAAACTGTAATTAACTAATTGAATTTGAAAATTTCCAAGAATTAAAATTGGTAA CAAAAA

MARCADOR 29455 (SEQ ID NO: 53); T→A

10 MARCADOR 29816 (SEQ ID NO: 54); G→A

ATATGAGTGTTACATGTACGTTACATGTAAATATTATATGTTATATGTAAAAATGTC ATGTATAGCATCTATTCACGTGTACGTACACGTGTATATACATATACATTGATACTTAA TACGTATACGCATGAATGAACAGATATTATATATTTTACGTACACATAGACTCACATGTAC CTCTGTATACGCATACATGTACAGATATATGTTTGACATACGTAAATTCATATATGCTT TTATTTATGCTTATATTAATTGTCACATACATGCCTTATATTTTCGTTGTTATAAACACA TAAA

MARCADOR 30575 (SEQ ID NO: 55); T→C

GAAAATAAAATTAGCTGAAAATATATGCGAGGTAAAGCACACAGAAGAATTAACTTAA GGTAATATATTGTAAGAATTTTTATATTCGGCGCACCTAATAATTTTTAGACCGCATAT GCCCAGTATTTGAAACTGGTAGCGCTGTTCGTACTTGCTGTTGTCCATGTTATGTATA TGATACCATTCCTAAATACTTTTGCGGCTGTGGTTTCCAGTGTTGATGTGACTGGTAT GATGCCTAACACTGGATCCTTCCATCTGCGGCATTTTGTTGAAATTCTTATTGATGTG AGCTGTTTA

MARCADOR 30991 (SEQ ID NO: 56); A→G

MARCADOR 31796 (SEQ ID NO: 57); A→G

CTGCTTAACTCTTTTCATTTTTCAGAGAATCTTCTCTAAAATTGTGAATTGATCCAAAC CAAAGAATATGGATAATGTGATTCGAATTCCTGGAATTTAGATTTTGAGAGTTTTGAA GTTTTTAAAGAGATTGAATTTCTGTGACCTTCTGGTATATTTGATGTCATTTCGGGATG CGTATTTTTGCCGAAAATTTTTGGCCTCACTGCAATCTTGTTAAAAGTCAAAAAAATTC AATCGTAGAATTTCGGGTTTACCTGATATTACTGGAAATCTCTGATCTTTGTTCTAGAT TGCTGT

MARCADOR 32164 (SEQ ID NO: 58); A→T

5

ATAAAGAATTTGCAACTCTGTATACCTTTTTGCAGTGCAAAAGCGGATGAATTCTTCA CTGCAGTGTGACAGATTCCTTTGATAAAATTGCTTCGTTCTTATGTAAACTTGGAAATT CTCGGTAGTTATGCTTTTGCTAGTTGAAAATGT<u>T</u>CTGCTCTTGTAAAACATGCAAAAA GAGATTATCTTTGTTCTATTATGGAAAGATTCTTTTGAAATTTTTGACGACTGAGAAGAC AAATTTTATCCCAACTTGTCATCTGCAATAAAAATTTTTCCTGACCTGTTTCTTAACCTT CCAAGT

MARCADOR 32223 (SEQ ID NO: 59); T→C

10 MARCADOR 34439 (SEQ ID NO: 60); T→C

MARCADOR 34903 (SEQ ID NO: 61): T→C

MARCADOR 35336 (SEQ ID NO: 62); A→G

AGATTCTGGTTATTATTGTATTTCTGATTTATTTAATCCCAACTTAAAGATTCATTGGCT ATTGTTTAGCATCTATATCAATTTTATAAATAAATAGTAATACCTGATGAAAAGCAATAA

MARCADOR 36040 (SEQ ID NO: 63); T→C

MARCADOR 37881 (SEQ ID NO: 64); T→C

5

MARCADOR 38622 A (SEQ ID NO: 65); C→A

10 MARCADOR 38622 B (SEQ ID NO: 66); C→T

MARCADOR 38622 C (SEQ ID NO: 67); C→T

AACTGCTAAAAAATTGAAACTAGTGTTAGATTGATAAGTGGGCAGATTAAAACCAATT GTGTTATTGGCCCGTTAATTAGTGACTCTGAATAGCTATGGCGAATCGTATAGTGTTG TACCGACGACGTATCTATCAAATGTCTGCCTTGT<u>I</u>AAATTTCGATGATAGTTTATGTG CCTATTATAGTTGTAACGAGTAACGGAGAATAAGGTTTCGACTCCGGAGAGGGAGCC TGAGTTGCCACATTCAAGGAAGGAAGCAGTCGCGAAGATTACCCACTCTTAGAATGA GGAAAGAGTGAC

MARCADOR 38622 D (SEQ ID NO: 68); C→T

AAAAATAAAAAGTTGAACAATGGGAATTACATCATTTTCATCTGAATGGTTTATTTCCT ATTCT

MARCADOR 39492 (SEQ ID NO: 69); T→C

MARCADOR 42291 (SEQ ID NO: 70); G→A

5

MARCADOR 42411 (SEQ ID NO: 71); A→T

10 MARCADOR 45689 (SEQ ID NO: 72); A→C

MARCADOR 45719 (SEQ ID NO: 73); G→A

GCATTTTAAGTTAAAAGTATCACGCTGCATGACACCTCACGTTTGCTATCTCAAATTG AGATTTCACACCGGAAAAAATTAAATTTTTCTAGCAATGTTTTAACTCCCTTATTAAAT ATTTATAGAAAATCGACTACTTAAAAAGAATTGACTAACATTTCTGAATCTCTGCAGAG ATTTATAGATGGATTAGCATCCTACAAGTTTTTATCTTTTTGCTATATTTCCATTATTTT

MARCADOR 46063 (SEQ ID NO: 74); T→A

TAATAATTAATATGCTCAAATTTCTTAATGAGAATATGTTCAGGATGAAGATGAAGTGA AAGAAATTGATAGATTGAGGAAGCAATTGCTAATTGAAACAGAACAGCTCGTTTCCAA TTCTCTTAAAGATTTACTGAAGAAAATTTATTATCCACTTGAAGAAGCTATTGATCTCA AAATTCATCAGAAATTAATTCAACAAATTGCTGCCTTGTTGAAGTGTATTAGTATCTTG **GATAA**

MARCADOR 47481 (SEQ ID NO: 75); C→G

ACCGCAAAATACCTAAAAATTTCTATAACAACGATTAACACGGCCTCGAACTGGAAGC ATATTAATCCATGCGTGGCTCAAACTTCAATCATAAAGACAAGATCTAGAGATCAACA CAAAATGGTGAATTGTTACCCTATCGTTGCTAAAGTTTGAGAGAAAAAAGTGCTAAAT CAAGTAGTACACCAAATTTAGTTAATATTAAGAAATCAATTTAGTACTGAATTTAAACA AATGAAATTTTACGATAAAATAAAAAGTACCTGATCAAACAGCGTCCTCCCGTTATTC CCATTGCT

MARCADOR 47722 A (SEQ ID NO: 76); C→T

TATAAGACTAGTAAACAGATCGTAATATAATAAATATCGATTTTATTTTAAATTTTCGAA AACTTCCAAATCTATCGATATGAAATTAAAGATCAATTTTTAATTTCCATAATATATTTA GATTCTATCCCAACATCACTCATCTTTATGTCAACTTATTTAATTCTCTTATTAACATTA TATTTCTTGTTTACAATGATAAATTTTATCAATTTTCTAATATGATAGAACATCTTCATC ATCTGAAGATATGCTTTTCTCATCTTTGTAACAATTCGTATCGCTTCTGATTTTACTTTC

MARCADOR 48750 B (SEQ ID NO: 77); G→A

GTTTTATTATTGCTTATTGAATAGTGATAATAACACTTTGATATGATATTGTTTTGTTGC ACAAAATTAAATATGAAAGGTTGAAGTCTTGACGAAACTTTCAAACACATTTCTCGAAT TTTCTCTGCAAAAATATCGTTACGATTTTTGGAAATTATGAAGTCCAAGAATTCAATCG **AATT**

10 MARCADOR 48750 C (SEQ ID NO: 78); G→A

CCTTGGATATTGTTCTTGACATCGTTGATCAGAAGGTCACCGTAGTGTTCGGTGAGC GAGATGGAATTGGACTCAGGTTTATTCTCCGTTTTTTTCATGTTTTTGAATTTTAGAGA GAAAATAATGTTTGTCTGAATGGTTAGCAAACTAATTAGTTTTTAAGTTATCAGGAACT CGAAGTATCTTCTTTTGCACTTCTTTAACCTTTTTCATCAAATTTTTTAACAGTAACAAG ATTTTTTTGAGAATTTTCAAAATATTTTTGACTTCTGATGATATTTGATGAGAAAACCAT CACTG

MARCADOR 48790 (SEQ ID NO: 79); A→C

MARCADOR 49731 (SEQ ID NO: 80); T→A

MARCADOR 49824 (SEQ ID NO: 81); T→C

TCCTTTTCATGATTTGTAGCTAACCAATAAGATGTGTATATGTTCATATATTTACTCTC CCCTGACTCTTTTACACTCTCATTCTCTCATTTGTTCATTTAGATAAGTAATATGCGCC TTTCTCTCCTGATTCTCCCAATCTTTCATCCCCTTCATCTCCAATCTTTCTCCCATTC

MARCADOR 49904 A (SEQ ID NO: 82); A→G

5

MARCADOR 50378 (SEQ ID NO: 83); A→G

TTGAGATATCAAATCAAGCGTTGCATATTTATAGTACACTGGTGTAGCTGAAATCGCG AAGAGAACACGAAAATCAGAGAAGTCAATGGTTCCTTTGTGTTGGATTTCACATGAAA GCATCCTTATGTTGTACATGCGTGATTACAATATGATACAAGATGTAAGCTAAAAAATT GTTTTATCTTTGTCTATGAGATGTAGTTCATACTCTATAATAAAGTCCCAACCCTTAAT TCTCATATTCACAACCGTATCAGAATCCAACACCAAACCATTATAAAGAATGTTCTTCG TCGAGGCG

10 <u>MARCADOR 51565 (SEQ ID NO: 84); C→T</u>

MARCADOR 58162 A (SEQ ID NO: 85); G→A

CAATCCCACAAATTCAGTGTGTCGGCGGGTCAGCGAAGGGAAAGTTTGAACCGAGG GTATGTACAAATTGTGATAATTTTGTGATGACGTAGTAAATTTCATAGTTTTGCATGCT TTAATGTTGATAGTCGCACAATCCTACGTTGATTAAATTTAGCTATTAGATATCCTACT AAATTATGTTGTTCATAATTTTTGTTTTTAAAATGCTCCACTTATATTTTCAGGTTGTGC AGTGCTACAATAGGGGTTATGACGGCAATGATGTCCAATGGGAGTGTAAAGCGGAAA TGAGCAATC

MARCADOR 58864 (SEQ ID NO: 86); T→C

MARCADOR 62666 A (SEQ ID NO: 87); G→A

MARCADOR 62666 B (SEQ ID NO: 88); A→T

5

MARCADOR 7060 (SEQ ID NO: 89); G→A

AAAATGTATCAAATTCTTCGATGCCATAAATTATACAGACTTGATTGGCATTTTTTCTA ACTTTCATCATGAACCATTCTATTTCTAAATTGATCCATTACAAAATCAACTTTGTGATA TCATCAATCTCAGTCATAACGAGAAATAATGATAATAAAGCGACTATCATTTGAATT TCCTGAATATTCAAGATGTAATTACATCTTTTTTTTAATGTAATCAAAATTTCTTGCCAT CAATAATTTTCAACATATGCTTTCATCGACTGCCTTATGCAGATCGTAATGATGACAG CCA

10 MARCADOR 12056 (SEQ ID NO: 90); T→C

MARCADOR 16261 (SEQ ID NO: 91); T→C

ATTTTTCCAGCAGAATTGTCATCAAAAATCCCATTTTTGATATCCTCTTCATCGAAAC
TTGCTCCTGAATCCAGAGAACAACGAAGAATGTGTAAATCTATTTCAGTAGCCTGCTC
ATTGTGCAATTCAGCGACTTTATTTCTGTGCTTCAAGCTAACTTCTTCATTATGCCACT
CCTCTTCTCTCGCTATTTTTTCGCTATCTAATTCAAAATCTTCGTCTGAAACGGAATCA
ACTCCTGACGATGTACTCGACACTGATAATATTTTCATGCCGATTTTTCTCTCAAACG
AATCTTT

MARCADOR 23195 (SEQ ID NO: 92); C→T

MARCADOR 28579 (SEQ ID NO: 93); T→C

MARCADOR 48869 (SEQ ID NO: 94); G→A

5

GGTTGGATCATTATCGACAGAACTTTAGAAGTTTCTTGATAAGGACGAAAAGAAGCAG CACCATTGCTGATCTAAACAAGGAAAAAAAGACCTTTTTTTGGAATATTGAAGTTTTTACT GATAGGTGCGTGCTGTGTACTGTGGGCATAAGTACAAGCTTCATGCTCCGCAGCGT GAATACGTGCTGCATGCATACTATGCAGTAAAGGTGCGTGTCGTATTGCTCAATAAG TGTATAAATTGCTGCTTTTCTTGCATAGTTAAATATTTTGTTTTCATTTTTCCGCTATT CAAAATAAT

MARCADOR 53021 (SEQ ID NO: 95); G→A

GTTGGGATTTCAGACTCTCACTCGGTGTCGTTTCACAGTGATATCTGAATCGAAGTCA CAAGCAGGTATGAATGCATAACAACTAATATCCATTGCAGAAACAAGGCAAAACTGA GAAGCTCGAGCAATATAGCTATAGAAGCTGGTACCACAGATGACATTACATGGTATTT CCATTTCAGCTTCACAAACATTGTAAATAGCTTGCTTCGATGATTCAATATCTCGTTCT ACGATATTCTTAAAGTAATTTTTATTTATTTGAAGTATAGATTACATCCATGTTCTATCT ATCATTTC

10 MARCADOR 7986 (SEQ ID NO: 96); G→A

TGTTCTGAACATCTCTTTTTGATTATCTTTTTTAATTCCTCCATTATTTTCGTTTTTTTCG TTGTGAATTAATATTGTTTGTCTTTGATTCAGATGATATTTTCGGATCGTAAATAGATG GCATCGGCATAAGCGTATTGAGAAGCATTCAATGGTGCACTCTTGCTTCTTTTTTT TGAAATCTTTCTCGATAATCAAATAAGTGCAGGATGCCAATCATTAACAATTTCGTTCC ACTTTTTCAGTTCTTATTCTTATAACACCACATCTCATTTGCAATTTTGTCGCCAATGAT

MARCADOR 48094 (SEQ ID NO: 97); C→T

TTTTTTCGAGGTCACTCTGGAAAAATAAATCATATTTTAAAAAGACATAAAATAAAAAA TATGTATATATAAGAAAATTTTTACTCTGAATTTCTTAAGAAAATTCTCGATTCTGTTTT CCATAAATTCCGGAATATGTTGTCCCTGAATTAAGAAATTCGACTCCTTGCACACCATT ATTTCGTCTAGTTCCTGTGAACAATGTAACCTGGAAATGAACACATAAACTGTAAT ATTTTGAGCTTAAAATAATTATGAGGATGCGAAACTGAAGATATTCATAAATGTTTAAA AAAAAA

MARCADOR 6568 (SEQ ID NO: 98); T→C

MARCADOR 17022 (SEQ ID NO: 99); C→T

MARCADOR 55751 A (SEQ ID NO: 100); A→G

TAGACAATATCATCCTTCCTTTTTTTTTGCTCAATTTCTCTGCTCATTGCTTTGATGATA ATGGTAGGTGGTATAATGAAACGAATAGATAATTGATGTTCGCAAACATTTGCTGTTA

MARCADOR 55751 B (SEQ ID NO: 101); A→G

10 MARCADOR 15893 (SEQ ID NO: 102); T→C

MARCADOR 25462 (SEQ ID NO: 103); C→T

MARCADOR 33494 (SEQ ID NO: 104); A→C

TAACGATCTGTATATCAATGGAATAATATTCAGTTCATGTTGTACTCGATATGAGATAG AATTACAATTTTGGAACAAGATAATCTCAACAGCTATTTTCAAGAATAGTTAAATTAGG ATACCATTCAAAGAAACTTTAAAAAAATGATTTCCATACATTAATGCTTTTTGTGTTTTCG CTCTCGACCAGAATCCAGGAATTGTCCATTATCATCAATTTGATTAACTTTTATCTTTA TTCTAATTCTTCAACATTTCTCTAATTGATATTCAACATTTTAATAAGTAAAAATT TA

5 MARCADOR 17935 (SEQ ID NO: 105); T→C

MARCADOR 48561 (SEQ ID NO: 106); C→T

ATTATTTTGTAGTTTTTCATTTTTAGTTCAATTTTCCTTTGCTTATTTTAAATATGCCAT TCTTTATTCAGACTCATAGCGAATGCATATGTTCATTAATTTTTTTAGTTACAGTTACAA ATTCTCAATTTCTCTTTAATCATTTTTTTTTCCAAAAATAGTCTGAGCACTCAACCATTC ATTCAACAATTGCAGCTTTTTTTATTGGAGCCTTGTCAAATTATCAATTCGTTTCCATG

TTTATTATTGAAATAAACGGTATTTAGGATAACGAAGTTCGCTTAGCTTCTTTGAC

MARCADOR 42003 (SEQ ID NO: 107); T→G

AAAAATTCAGGTAATGAGATCAGTAATTTTTTTTGGTCACTTTGCTGTTTCTTATCAGC TCATTGTTATCCATATCAAATGAGCGAAAGTGTGTATCACATATTGGCAGAGTGTAAT CTATGAAGATTTTGCGTATCAAAGTAATTATGAGAGAACTGATAATTTTATTTTAAAGT AGTAGAAAACTCGAATTAAGCTAATAAATAATCGGTTGATATCCATGAAATGAATTACT AATGAAATGGATAATTGAGTAATAACAAATGATATTCATGAAGAAAGGCAGGTTTTTTT TAATAG

MARCADOR 29566 (SEQ ID NO: 108); C→T

TATACTTAAAACAAGAAATACAATTAATGCCAATAGCAGAGTGAAACTTCTGAAAAATA ATGAGTTGAAAACTAGCAATTAATTAGAAATTTCAGAAACTTCTGAAAAAATACATTTTATTAGAAAATTTCAGAAACTTATGACTCCT CATGGCACTATCACAAAATGTTTGAAAAAAAATTGACAGCTCGCGTCGATTGCAAAAAAT CATGATTCCTGATATTTAGTATCGAACATGTGACAAATAATAAAAGACCTAACCATAA AGCACTGAAACAACTCGCGGAAACAAAAAAATTAATTTGCATAAACACGGGAATACGATC AGAAAAT

MARCADOR 33868 (SEQ ID NO: 109); G→A

26

En otro ejemplo, los marcadores genéticos de *D. immitis* incluyen las siguientes secuencias (las SEQ ID NO: 110-127), donde los nucleótidos subrayados (es decir, los sitios polimórficos) indican la posición del nucleótido de SNP dentro del fragmento que se correlaciona con la resistencia a las LM (es decir, el nucleótido alternativo). Los marcadores se identificaron después de la comparación de las frecuencias de genotipo entre individuos susceptibles e individuos resistentes a la LM confirmados. En estas secuencias, el nucleótido subrayado en la posición de SNP es generalmente distinto del nucleótido encontrado en esta posición en organismos que son resistentes a las LM (tipo silvestre). En las siguientes secuencias, el nucleótido en la posición de SNP en la secuencia indicada correlaciona con la resistencia a las LM. En el encabezado de cada secuencia, se muestra el cambio de nucleótido del nucleótido de tipo silvestre al nucleótido alternativo (el nucleótido alternativo correlaciona con la resistencia a la LM) en el sitio polimórfico.

MARCADOR 31307 (SEQ ID NO: 110); A→G

ATATGATAATAGTGAAACAATTCCATCACAATAAATATTATCGATTAGGAGATAAATTA ACATTGATGCCTCAATTTTGGTCAACAATATATATTTGCTATTAGCATTTTTATTAAATC GTTTTTATCTGACTTGACATAAATTGAAATAGAAAAAATTGAAATTCTTCTAAAAATTCTTGAAATACAAATACTTCTTAAATTTCTACATAAT GTATTGCGACAAAAATGCTAATGATTGGCTTATTATTATTTCGAATAATTTTTAATCAA A

MARCADOR 26225 (SEQ ID NO: 111); A→G

AGCTCGAAGATCGGACAAAATTTGTTCAGCTTGTTGCCTTGAGGCTTTAGTCTGAAAA GACACTTAAAAGTATAAACAAATTATATTCAAAAAATCTTATTTTGCATTTGCGTCTTAA TTTTTGCTTTTTGCAAAGTTTTTTCCGAGCAAGTTTTTTCTATCTTCGAAAAGATTATATC AATTAAAATTTCAATTTAAGCAATCATTGCCTCTTCGAGTTTCTGTTTCAGCAAATAAA TATCACCACCACGACGCTGTCGGAAGAAAGAAACGCCTTTCCCAATTTCTCGTCTCA ACTTTT

MARCADOR 47722 B (SEQ ID NO: 112); A→G

MARCADOR 58162 B (SEQ ID NO: 113); T→C

MARCADOR 17709 (SEQ ID NO: 114); T→C

10

MARCADOR 47141 (SEQ ID NO: 115); T→C

MARCADOR 48750 A (SEQ ID NO: 116): A→G

ATCGAAAAAAGATGATCTGATGACGGAAGGCGAAATGTCTGCAGAAGCTAAGATGAC GGAAGAAAAAGTGAAGAAATGAAAGAAGAAGCTGGTAAAACTCAGAAGGAATGTAA

AACTGGAGAATCGAAAAAAGATGATCTGATGACGGA<u>G</u>GGCGAAATGTCTAAAGAAGC TAAGATGTCGGAAGAAAAAAGTGAAGAAAAAGAAGAAGAAGAAGCTGATAAAACTCAGAA GGAATGTAAAACGGAAGAACGAAAAAAAAGACGATCTGACGACAGAAGAGGCGAAAAAATC TGAAGTAGATGAGCC

MARCADOR 63962 (SEQ ID NO: 117); A→G

5

ACTAATGATAAGAAACGGAGCCGACGATTTTAGGAAATGAATAATAACGACATTGACA ACCATTGTTAGAAAATTGATAGTACTGATAATAAAAGCTAGTTATAGAAAATTGATAAT AATAATAAAATTGCTGGTAGCAAATGTCTAGAAGTGATAATAAAATTAATGATAGCAAA TGGATTAGCAATGATAATTAAACTGATGATAGCGAATGGATTAGTAATGATAAAAAT TGATGATAGCAAATGACTAATAATGGTAATAAAAGTTAATGCTAGTGATAACTTGTATT TTAAGT

MARCADOR 6372 (SEQ ID NO: 118); A→G

ACAGTTTATAGTTACAATATTCTCCGGTGACTAACTGTATTTTACAACTTATAATTATA GATTACAAAATATATATATATAATTACAGTATTCTTAAGTGAATAACTATAC TTTACAGCTTACAGTTACAGTAGTTTTCTATGTTTTTGAATATTAATTTTACATGGTTTT TCCTAGTTTCAAAATTTTCAGATATTTTATGTGTTAAAGCAAATTATATTCGAGATATAAAAAAGTACTGGTCATATCTTACAATTCTCATCCTTCTATATTGGAAAGAATTGAGT

10 MARCADOR 15611 (SEQ ID NO: 119); T→C

MARCADOR 46432 (SEQ ID NO: 120); T→A

GCTGCCCGAATGTTACAATTAGGACGAAAGTAAAAGTAGTTGACTGTAGGTATGACG ATAAAGGAAAAATTTGTATCTTAAGACTTTACAATTTCTAAATATTACGTGTTTTATCGT GCTAACATCACGAATTCCATATTCACAAAAAAAAATTTTGTAGAACTCCATCTGGTTTGG ATGAATTTGCTACAGTTGAACTGGATGATGGAACGAAATTGCAAACATCTCTTATTGT TAGTATTTTCTAAATTCTGTGAAATTTTGCAACGGCATTCATGTTTAATTATTAATTTGG AGAAAG

MARCADOR 29594 (SEQ ID NO: 121); T→A

MARCADOR 26784 (SEQ ID NO: 122); G→C

MARCADOR 51661 (SEQ ID NO: 123); C→G

MARCADOR 7819 (SEQ ID NO: 124); G→C

10 MARCADOR 26704 (SEQ ID NO: 125); G→C

MARCADOR 14329 (SEQ ID NO: 126); C→A

TTTGATATGCAATCAACTAACCAAATCAGAATTCAATGCATTCTGATAAATTTCTTCAA TATCGTGCATCAATTCGACATCATATTTTGACAGTGATGCTACCTTTTTAGCCGTATTT CGGAAAAATATGAATTCAACCAGCTGCGTCCCAAAATTTAAGGCTGTAGCAAGTCCA GCAACAACCAGCCCTACAACTGAAAATTCTAAAAACTGGTTCACGTGCTTATCATTAA TAATTTCAACACTATCACTATCTCCACATGAACTTGATCGATTATAATTTAGTAGAACT GAAAAAAA

MARCADOR 56169 (SEQ ID NO: 127); T→G

Las frecuencias de genotipo para cada SNP (las SEQ ID NO: 110-127) en los sitios polimórficos se muestran en la Tabla 1. En un análisis, se compararon las diferencias de genotipo de individuos susceptibles con individuos resistentes confirmados. En un segundo análisis, se compararon las diferencias de genotipo de individuos susceptibles con individuos resistentes confirmados y con PDE agrupados.

Tabla 1. Las frecuencias de genotipo para los marcadores que representan las SEQ ID NO: 110-127

Locus de SNP CC TT CC TT CT TT B5.4% MARCADOR_31307* 100,0% 2,9% 11,7% 85.4% MARCADOR_26225* 0,7% 99,3% 1,3% 48,3% 50,3% MARCADOR_47722_B* 6,5% 1,3% 92,3% 22,7% 33,7% 43,6% MARCADOR_47722_B* 0,7% 1,5% 97,8% 26,7% 18,6% 54,7% MARCADOR_17709* 100,0% 74,1% 19,0% 6,8% MARCADOR_48750_A 100,0% 87,7% 11,7% 0,6% MARCADOR_83962 100,0% 87,7% 11,7% 0,6% MARCADOR_63962 100,0% 87,7% 11,7% 0,6% MARCADOR_15611* 90,2% 2,3% 7,5% 20,2% 49,7% 30,1% MARCADOR_15611* 90,5% 2,3% 7,5% 26,7% 32,9% 54,4% MARCADOR_26784 1,2% 8,7% 90,1% 12,7% 32,9% 54,4% MARC	HT valor p 85,4 % 6,3E-05 50,3 % 3,7E-21 43,6 % 5,0E-20 GG 4,3E-02 6,8 % 4,3E-02 4,7E-23 16,5 % 1,0E-03 30,1 % 1,8E-16		CT TT 85.8 82.6 % 87.7 % 82.6 % 82.5 % 57.6 % 14.7 % 54.6 % AG GG 17.5 % 15.1 % 27.7 % 3.5 % 24.8 % 21.0 % 11.8 % 6.2 %	valor p 5,7E-06 1,2E-23 2,9E-14 1,0E-18 NS 3,5E-16
100,0% 2,9% 11,7% 6,5% 1,3% 99,3% 1,3% 48,3% 0,7% 99,3% 22,7% 33,7% 0,7% 1,5% 97,8% 26,7% 18,6% 100,0% GG GG AA AG 100,0% 54,9% 26,7% 11,7% 90,2% 2,3% 7,5% 20,2% 49,7% 100,0% 90,5% 9,5% 53,3% 26,7% 1,2% 8,7% 90,1% 12,7% 32,9% 100,0% 16,8% 15,0% 100,0% 16,8% 15,0% 100,0% 16,8% 15,0% 100,0% 16,8% 15,0% 100,0% 16,8% 15,0% 100,0% 16,8% 15,0% 100,0% 16,8% 15,0% 100,0% 16,8% 15,2% 94,9% 19% 3,2% 45,2% 39,2% 32,2%				5,7E-06 1,2E-23 2,9E-14 1,0E-18 NS 3,5E-16 1.9E-17
0,7% 99,3% 1,3% 48,3% 6,5% 1,3% 92,3% 22,7% 33,7% 0,7% 1,5% 97,8% 26,7% 18,6% AA AG AG AA AG 100,0% 74,1% 19,0% 56,7% 43,3% 100,0% 87,7% 11,7% 87,7% 11,7% 90,2% 2,3% 7,5% 20,2% 49,7% 90,5% 9,5% 53,3% 26,7% AT AA AT TT AA AT 1,2% 8,7% 90,1% 12,7% 32,9% 100,0% 16,8% 7,2% 100,0% 16,8% 7,2% 100,0% 16,8% 7,2% 100,0% 16,8% 7,2% 100,0% 15,5% 39,4% 100,0% 15,5% 39,4%				1,2E-23 2,9E-14 1,0E-18 NS 3,5E-16 1.9E-17
6,5 % 1,3 % 92,3 % 22,7 % 33,7 % 0,7 % 1,5 % 97,8 % 26,7 % 18,6 % 40,0 % 40,0 % 56,7 % 17,8 100,0 % 56,7 % 11,7 % 50,2 % 20,2 % 49,7 % 50,5 % 20,2 % 49,7 % 50,5 % 20,2 % 49,7 % 50,5 % 51,2 % 51,2 % 51,2 % 51,2 % 51,2 % 51,2 % 51,2 % 51,2 % 51,0 %				2,9E-14 1,0E-18 NS 3,5E-16 1.9E-17
AA AG GG AA AG 100,0 % 74,1 % 19,0 % 100,0 % 56,7 % 43,3 % 100,0 % 57,5 % 28,7 % 90,2 % 2,3 % 7,5 % 20,2 % 49,7 % 90,5 % 9,5 % 53,3 % 26,7 % AT 1,2 % 8,7 % 90,1 % 12,7 % 32,9 % 100,0 % 1,2 % 90,1 % 12,7 % 32,9 % 1,2 % 8,7 % 90,1 % 12,7 % 32,9 % 100,0 % 1,9 % 3.2 % 45,5 % 39,4 %				1,0E-18 NS 3,5E-16 1.9E-17
AG GG AA AG 74,1 % 19,0 % 56,7 % 43,3 % 54,9 % 28,7 % 11,7 % 2,3 % 7,5 % 20,2 % 49,7 % AT TT AA AT 100,0 % 0,8 % 15,0 % 8,7 % 90,1 % 12,7 % 32,9 % 100,0 % 16,8 % 7,2 % 19 % 3,2 % 45,5 % 39,4 %				NS 3,5E-16 1.9E-17
74,1% 19,0% 56,7% 43,3% 54,9% 28,7% 87,7% 11,7% 2,3% 7,5% 20,2% 49,7% 9,5% 53,3% 26,7% AT T AA AT 100,0% 0,8% 15,0% 8,7% 90,1% 12,7% 32,9% 15,0%				NS 3,5E-16 1.9E-17
56,7 % 43,3 % 54,9 % 28,7 % 87,7 % 11,7 % 21,3 % 7,5 % 20,2 % 49,7 % 9,5 % 53,3 % 26,7 % 100,0 % 0,8 % 15,0 % 8,7 % 90,1 % 12,7 % 32,9 % 15,0 % 16,8 % 7,2 % 15,0 % 32,8 % 32,8 % 32,8 % 32,8 % 32,8 % 32,8 % 32,8 % 32,8 % 32,8 % 32,8 % 32,8 % 32,8 % 32,8 %				3,5E-16 1.9E-17
2,3 % 7,5 % 20,2 % 49,7 % 9,5 % 53,3 % 26,7 % 100,0 % 0,8 % 15,0 % 100,0 % 16,8 % 7,2 % 15,0 % 15,0 % 15,0 % 100,0 % 16,8 % 7,2 % 15,0 % 15,0 % 15,0 % 100,0 % 16,8 % 7,2 % 15,0 % 15,0 % 15,0 % 100,0 % 16,8 % 7,2 % 15,0 % 15,5 % 39,2 % 15,0 % 15,0 % 15,5 % 39,2 % 15,0			% %	1.9E-17
100,0% 87,7% 11,7% 90,2% 2,3% 7,5% 20,2% 49,7% 90,5% 53,3% 26,7% AA AT TT AA AT 100,0% 0,8% 15,0% 1,2% 8,7% 90,1% 12,7% 32,9% 100,0% 16,8% 7,2% 100,0% 45,5% 39,4% 94,9% 1,9% 3,2% 45,2% 39,2%			%	1
90,5 % 2,3 % 7,5 % 20,2 % 49,7 % 90,5 % AT TT AA AT AT 100,0 % 0,8 % 15,0 % 100,0 % 16,8 % 7,2 % 100,0 % 19,8 % 1,9 % 3,2 % 45,2 % 39,2 % 94,9 % 1,9 % 3,2 % 45,2 % 39,2 %			2	1,7E-05
90,5 % 9,5 % 53,3 % 26,7 % AA AT TT AA AT 100,0 % 0,8 % 15,0 % 15,0 % 1,2 % 8,7 % 90,1 % 12,7 % 32,9 % 100,0 % 16,8 % 7,2 % 100,0 % 45,5 % 39,4 % 94,9 % 1,9 % 3,2 % 45,2 % 39,2 %			32,9 % 31,3 %	2,0E-26
AA AT TT AA AT 100,0% 0,8% 15,0% 1,2% 8,7% 90,1% 12,7% 32,9% 100,0% 16,8% 7,2% 45,5% 39,4% 94,9% 1,9% 3,2% 45,2% 39,2%		47,7 % 15,8	15,9 % 36,4 %	6,9E-19
100,0% 0,8% 15,0% 1,2% 8,7% 90,1% 12,7% 32,9% 100,0% 16,8% 7,2% 45,5% 39,4% 94,9% 1,9% 3,2% 45,2% 39,2%	тт	A AA	АТ ТТ	
1,2 % 8,7 % 90,1 % 12,7 % 32,9 % 100,0 % 16,8 % 7,2 % 100,0 % 45,5 % 39,4 % 94,9 % 1,9 % 3,2 % 45,2 %	84,2 % 8,2E-05	3,2 % 10,3	10,3 % 86,5 %	3,0E-04
100,0 % 16,8 % 7,2 % 100,0 % 45,5 % 39,4 % 94,9 % 1,9 % 3,2 % 45,2 % 39,2 %	54,4 % 1,5E-12	12,4 % 20,8	20,8 % 66,8 %	1,4E-08
100,0 % 45,5 % 39,4 % 94,9 % 1,9 % 3.2 % 45,2 % 39,2 %	76,0 % 1,4E-07	4,4 % 1,01	4,4 % 85,4 %	1,0E-04
94.9 % 1.9 % 3.2 % 45.2 % 39.2 %	15,2 % 2,7E-23	48,9 % 29,0	29,0 % 22,1 %	2,7E-24
	15,7 % 3,1E-21	53,6 % 23,	23,5 % 23,0 %	3,1E-19
MARCADOR_26704* 90,4 % 4,5 % 5,1 % 70,2 % 27,4 % 2,4 %	2,4 % 2,5E-08	65,8 % 22,7	22,7 % 11,5 %	2,2E-09
AA AC CC AA AC CC	22	AA AA	AC CC	
MARCADOR_14329 1,1 % 6,1 % 92,8 % 6,4 % 14,0 % 79,7 %	79,7 % 9,9E-04	17,4 % 20,4	20,4 % 62,2 %	1,0E-13
GG GT TT GG GT TT	тт	9 99	ст тт	
MARCADOR_56169 100,0 % 16,0 % 1,3 % 82,7 %	82,7 % 5,0E-03	21,8 % 1,1	1,1% 77,1%	4,8E-04

Kits y procedimientos

5

10

30

35

40

45

50

55

En otros ejemplos, las sondas pueden proporcionarse a un usuario como un kit. Dicho kit puede contener una o más sondas. Por ejemplo, un kit puede comprender una sonda que tiene la capacidad de determinar el genotipo de un nematodo en una posición de SNP en uno de los fragmentos desvelados en el presente documento. El kit puede comprender adicionalmente uno o más reactivos, tampones, materiales de embalaje, instrucciones de uso del kit y recipientes para contener los componentes del kit.

Una sonda desvelada en el presente documento puede ser una o más moléculas que tengan la capacidad de unirse a, o asociarse con, la muestra de ácido nucleico para determinar el genotipo del nematodo en una o más posiciones específicas (por ejemplo, el sitio polimórfico) en los fragmentos desvelados en el presente documento. Por ejemplo, se pueden usar sondas para determinar si un nucleótido de tipo silvestre o alternativo está presente en la posición de SNP de uno o más de los fragmentos desvelados en el presente documento. Un ejemplo de sonda puede ser una molécula de ácido nucleico u oligonucleótido. Las sondas de ejemplo pueden contener un marcador o marcadores. Los marcadores de ejemplo pueden incluir marcadores radioactivos, marcadores enzimáticos y/o marcadores fluorescentes.

- Un oligonucleótido utilizado como sonda o cebador puede comprender cualquier tamaño, forma y composición que sea adecuada para su uso en el contexto de la invención. Preferentemente, un oligonucleótido de la invención puede comprender ADN, ARN, nucleótidos sintéticos, nucleótidos no naturales, nucleótidos modificados o combinaciones de uno o más de los mismos. En una realización, un oligonucleótido de la invención puede comprender ácidos nucleicos bloqueados y/o ácidos peptidonucleicos.
- En realizaciones de la divulgación, un oligonucleótido puede comprender una secuencia de al menos 5, al menos 10, al menos 15, al menos 20, al menos 25, al menos 30, al menos 35, al menos 40, al menos 45, al menos 50, al menos 55, al menos 60, al menos 65, al menos 70, al menos 75, al menos 80, al menos 85, al menos 90, al menos 95, al menos 100, al menos 125, al menos 150, al menos 175, al menos 200, al menos 250 o más nucleótidos.
- En otros ejemplos, un oligonucleótido puede abarcar, sin limitación, un cebador o más de un cebador, por ejemplo una pareja de cebadores, tal como un cebador directo y un cebador inverso.

Un cebador puede ser un oligonucleótido que puede usarse para iniciar la replicación del ADN. Normalmente, un cebador es un oligonucleótido corto que puede ser de aproximadamente 10, aproximadamente 15, aproximadamente 20, aproximadamente 25, aproximadamente 30, aproximadamente 35, aproximadamente 40, aproximadamente 45, aproximadamente 50, aproximadamente 55, aproximadamente 60, aproximadamente 65, aproximadamente 70, aproximadamente 75, aproximadamente 80, aproximadamente 85, aproximadamente 90, aproximadamente 95, aproximadamente 100 o más nucleótidos.

Se puede usar un cebador como parte de un estrategia para detectar el genotipo de un nematodo en una ubicación específica de un gen. Por ejemplo, un cebador puede ser útil en la amplificación de ADN tal como mediante PCR, RT-PCR y qRT-PCR, para el análisis posterior, tal como mediante transferencia de Southern, secuenciación, HRM (análisis de alta resolución de la temperatura de fusión) o SSCP (polimorfismo de conformación monocatenaria).

Como se usa en el presente documento, un "aptámero" puede ser un ácido nucleico o una molécula peptídica que se une a una diana molecular específica. Por ejemplo, en disolución, una cadena de nucleótidos puede formar interacciones intramoleculares que pliegan el aptámero en una forma tridimensional compleja. La forma de ese aptámero le permite unirse fuertemente contra la superficie de su molécula diana. Debido a la diversidad de formas moleculares que existen para las secuencias de nucleótidos y de aminoácidos, se pueden obtener aptámeros para una amplia variedad de dianas moleculares, que incluyen, pero sin limitación, moléculas de ácido nucleico, enzimas, proteínas de membrana, proteínas víricas, citocinas, factores de crecimiento e inmunoglobulinas.

Una sonda de la divulgación puede prepararse de acuerdo con técnicas convencionales conocidas por un experto. Por ejemplo, una sonda puede producirse de forma sintética, de forma recombinante o puede aislarse de una fuente natural. En una realización, la fuente puede ser una fuente biológica, por ejemplo, de un microorganismo (por ejemplo, una bacteria o virus), un animal (por ejemplo, un ratón, una rata, un conejo, una cabra o un ser humano) o una planta.

En el contexto de la divulgación, "una sonda" puede significar una sonda o más de una sonda. En los procedimientos de la invención pueden usarse de forma simultánea uno o más tipos de sondas. El diseño y producción de sondas se conocen en la materia. En general, una sonda puede producirse de forma recombinante, de forma sintética o aislarse de una fuente natural, por ejemplo, de una célula, un animal o una planta. Sin embargo, un experto en la materia apreciará que la producción de la sonda puede depender del tipo de sonda en cuestión. Una sonda preferente puede ser una molécula de ácido nucleico (por ejemplo, un cebador), con o sin un fluoróforo o colorante. Una sonda puede ser lineal o en forma de horquilla, con un fluoróforo, con o sin un desactivador u otro fluoróforo (por ejemplo, para el análisis por FRET). También podría ser un anticuerpo que reconozca específicamente la secuencia del ADN (o de la proteína). Otra sonda podría basarse en una molécula de ARN. Lo que se prefiera puede depender de consideraciones técnicas, la estabilidad, el coste, la facilidad de uso, etc.

En otros ejemplos, las sondas de la divulgación pueden proporcionarse a un usuario como un kit. Un kit de la divulgación puede contener una o más sondas de la divulgación.

Usos de los procedimientos y los kits

- Los procedimientos de la invención y los kits para llevar a cabo los procedimientos pueden tener aplicaciones en investigación, médicas e industriales. La invención encuentra una amplia aplicación en el tratamiento de los gusanos del corazón en animales infestados y en la detección de nematodos de D. immitis resistentes a la LM en una zona. Las aplicaciones representativas y no limitantes de la invención pueden incluir la detección, la cuantificación y/o el diagnóstico de la existencia de individuos o poblaciones de D. immitis que no son susceptibles a dosis normales de LM para profilaxis o terapia. En una realización, la capacidad de detectar y cuantificar las moléculas de ácido 10 nucleico de la invención es valiosa en la medida en que indicará a un veterinario en ejercicio modificar los regímenes quimioterapéuticos para animales infestados con nematodos de D. immitis que tienen un grado de respuesta reducido a las LM. La identificación de nemátodos de D. immitis resistentes a la LM puede indicar a un veterinario cambiar de la terapia con LM sola a una terapia que puede incluir un agente alternativo o agentes alternativos, tal como un adulticida (por ejemplo, fármacos basados en arsénico), dietilcarbamazina, antibióticos tales como la 15 tetraciclina y combinaciones de uno o más de los mismos, para lograr la curación y/o minimizar la propagación de la cepa resistente. Como alternativa, un veterinario puede ajustar la dosificación de una LM y/o un régimen de tratamiento que utiliza una LM, en el tratamiento de un animal infestado con un nematodo resistente a LM. Las tasas de dosis recomendadas típicas para los tratamientos preventivos con LM incluyen, por ejemplo, 6 µg/kg para ivermectina; 500 mg/kg para milbemicina oxima; 3 µg/kg (de forma mensual) de moxidectina; y 6 mg/kg para 20 selamectina. Un veterinario también puede combinar una o más de las estrategias de tratamiento y terapias citadas anteriormente en cualquier combinación adecuada para tratar a un animal infestado con un nematodo de Dirofilaria spp., por ejemplo, un nematodo D. immitis resistente a LM. Por ejemplo, un veterinario puede tratar a tal animal con un adulticida, tal como un fármaco basado en arsénico, y después seguir con un microfilaricida, tal como una LM o dietilcarbamazina.
- En un caso, se puede usar un fármaco basado en arsénico para tratar a un animal infestado con un nematodo *D. immitis* resistente a LM. Un fármaco basado en arsénico puede incluir, pero sin limitación, clorhidrato de melarsomina. El diclorhidrato de melarsomina puede usarse, por ejemplo, a una dosis de 2,5 mg/kg, dos veces, con una diferencia de 24 horas. Esto se puede repetir en 4 meses dependiendo de la respuesta al primer tratamiento y el estado, la edad y el uso del animal. Sin embargo, un experto entenderá que la dosis puede variar dependiendo de la gravedad de la infestación. Por ejemplo, un animal infestado, tal como un perro con enfermedad grave (clase 3), puede recibir una dosis y dejar que se recupere durante algunos meses antes de recibir la serie completa de 2 dosis.
 - En otro caso, se puede usar dietilcarbamazina para tratar a un animal infestado con un nematodo *D. immitis* resistente a LM. Puede usarse dietilcarbamazina, por ejemplo, a una dosis de 25 a 50 mg por cada 0,45 kilos de un animal. La duración de la administración puede depender de la afección que se esté tratando, la respuesta a la medicación y al desarrollo de cualquier efecto adverso.
 - En otro caso, se puede usar un antibiótico para tratar a un animal infestado con un nematodo *D. immitis* resistente a LM. Dicho antibiótico puede incluir, pero sin limitación, tetraciclina. Se puede usar una tetraciclina, tal como doxiciclina, que tiene como objetivo a los endosimbiontes de *Wolbachia* en *D. immitis*, por ejemplo, a una dosis de 10 mg/kg/día durante 40 días.
- 40 En un caso adicional, se puede usar otro agente antihelmíntico. Dicho otro agente antihelmíntico puede incluir, pero sin limitación, acaciasidas. Una acaciasida se puede usar, por ejemplo, a una dosis de 10 mg/kg/día durante 7 días.
 - En otra realización, la detección de poblaciones de nematodo *D. immitis* con los genotipos mencionados anteriormente puede indicar el uso de agentes alternativos, tales como dietilcarbamazina como profiláctico para proteger animales susceptibles, por ejemplo perros.
- 45 En un caso, se puede usar dietilcarbamazina para prevenir que un animal se infeste con un nematodo *D. immitis* resistente a LM. En este sentido, puede usarse dietilcarbamazina, por ejemplo, a una dosis de 3 mg por 0,45 kilos de un animal, una vez al día.
 - En otra realización, un kit de la divulgación puede ser útil como producto comercial en la detección de nematodos *D. immitis* resistentes a LM. Dicho producto puede ser adecuado para su uso por parte de, sin limitación, un veterinario, un médico, el propietario de un animal, un agricultor, el cuidador de un zoo, un epidemiólogo u otro consumidor que lo necesite.

Ejemplos

35

50

Los ejemplos tienen el fin de ilustrar un ejemplo y no deben interpretarse como limitaciones ilustrativas.

Ejemplo 1: poblaciones susceptibles y con LOE de parásitos de D. immitis utilizados en los estudios

55 Las diversas poblaciones susceptibles y con PDE de D. immitis utilizadas en estos estudios se describen a

continuación.

15

- a. <u>Aislados susceptibles de Misuri, EE.UU.</u> Se obtuvieron treinta y cinco (35) ejemplares adultos de *D. immitis* de dos perros procedentes de una perrera de Misuri. Se desconoce los antecedentes de los perros anterior a su llegada a la perrera. Los perros no se trataron posteriormente. Se creía que los aislados de *D. immitis* eran susceptibles a los tratamientos preventivos con LM para el gusano del corazón.
- b. <u>Aislados susceptibles de Gran Canaria, España.</u> Se obtuvieron setenta y un (71) ejemplares adultos de *D. immitis* de 12 perros procedentes de un refugio de Gran Canaria. Los perros nunca se expusieron a tratamientos preventivos con LM para el gusano del corazón y la prevención del gusano del corazón no se practica en esta región de Gran Canaria.
- 10 c. <u>Aislados susceptibles de Granada, IO.</u> Se obtuvieron diez (10) ejemplares adultos de *D. immitis* de 2 perros procedentes de Granada. Los perros se seleccionaron de zonas pobres y remotas de la isla, donde no se practica la prevención para el gusano del corazón LM.
 - d. <u>Aislados susceptibles de Italia.</u> Se obtuvieron seis (6) ejemplares adultos de *D. immitis* de la cuenca del Po en el norte de Italia. Se informa que la seroprevalencia de *D. immitis* en perros de esta zona es aproximadamente del 60-70 %. En esta zona se administran habitualmente a los perros tratamientos preventivos con LM del gusano del corazón. No obstante, no hay informes de PDE (pérdida de eficacia) en Italia.
 - e. <u>Aislado con pérdida de eficacia (PDE) caso 1.</u> Se aislaron microfilarias (mf) de un perro que se describió anteriormente (véase Bourguinat y col.; documento WO2011/120165). El perro era un mestizo de Labrador macho castrado, nacido en febrero de 2006, que pesaba aproximadamente 31 kg. Era un perro de rescate de Nueva Orleans, Luisiana, EE.UU., recogido por el equipo de rescate de Boudreaux, Nueva Orleans, y posteriormente trasladado a Canadá, donde fue adoptado en enero de 2008.
 - El perro se trasladó al Main West Animal Hospital (MWAH) en Welland, Ontario, el 6 de junio de 2008 (día 1) para una revisión. La sangre extraída del perro fue positiva con una prueba de antígeno del gusano del corazón (PetChek® PF; IDEXX Laboratories, Westbrook, Maine) y contenía microfilarias de *D. immitis*. El 11 de junio de 2008
- (día 6), se realizó una evaluación diagnóstica inicial (análisis de sangre, radiografías torácicas, examen físico, análisis de orina). La auscultación reveló un leve aumento de los sonidos respiratorios en los pulmones y un soplo cardíaco de grado III-IV/VI. El resto del examen físico fue normal. La radiografía torácica reveló agrandamiento moderado del lado derecho corazón y un patrón pulmonar intersticial en el campo pulmonar caudodorsal. Estos exámenes indicaron un diagnóstico de enfermedad de gusano del corazón de clase 2.
- 30 El tratamiento con adulticida se inició el 11 de junio de 2008 (día 6) con diclorhidrato de melarsomina intramuscular 2,5 mg/kg (Immiticide®; Merial Inc.). El tratamiento fue seguido por dos tratamientos intramusculares con diclorhidrato de melarsomina 2,5 mg/kg el 9 de julio y el 10 de julio (días 34, 35). Durante los siguientes 90 días, para eliminar las mf en circulación, se trató al perro en una ocasión con milbemicina oxima (MO) y en dos ocasiones con IVM (véase la Tabla 2). En los días 159 y 160, cuatro meses después de la última dosis de adulticida, el perro se trató nuevamente con diclorhidrato de melarsomina 2.5 mg/kg por vía intramuscular. El análisis diagnóstico posterior
- trató nuevamente con diclorhidrato de melarsomina 2,5 mg/kg por vía intramuscular. El análisis diagnóstico posterior y los tratamientos microfilaricidas se resumen en la Tabla 2. Durante el tratamiento del perro, se realizaron varias pruebas de antígeno del gusano del corazón, incluyendo DiroChek® (Synbiotics Corporation, San Diego, California) y PetChek® PF (IDEXX Laboratories, Westbrook, Maine), que son pruebas de ELISA en micropocillos, y and SNAP® PF (IDEXX Laboratories, Westbrook, Maine, una prueba en formato de membrana diseñada para el uso rápido en la consulta (véase la Tabla 2).
 - Para realizar la prueba de Knott, se mezclaron en un tubo de centrífuga 9 ml de formalina al 2 % y 1 ml de sangre (recogida en EDTA). La centrifugación se realizó en una centrífuga LW Scientific EZ Swing SK a 3000 rpm (604 m/s²) durante 5 min. El líquido sobrenadante se desechó. Se añadió una gota de solución de azul de metileno al 0,1 % al sedimento del fondo del tubo de centrífuga, se mezcló y se examinó una gota de la mezcla teñida al microscopio para detectar microfilarias de *D. immitis*. La Tabla 2 indica cuándo se llevó a cabo esta prueba y,
- 45 microscopio para detectar microfilarias de *D. immitis*. La Tabla 2 indica cuándo se llevó a cabo esta prueba y, cuando se determina, el nivel de microfilaremia.
 El perro se trató de la siguiente manera. Dos días después de la última de las tres dosis de diclorhidrato de melarsomina en julio de 2008 (es decir, el día 37), el perro mostró signos transitorios compatibles con la muerte de
- los gusanos del corazón adultos (temperatura rectal elevada, letargia, tos, sonidos respiratorios en los pulmones aumentados). Comenzando el día 41, estos signos se trataron con prednisona (Apo-Prednisona; Apotex, Toronto, ON, Canadá), 1,3 mg/kg dos veces al día durante 6 días. Después de la administración de milbemicina oxima (MO) 0,74 mg/kg en el día 74, de IVM 50 ug/kg por vía oral el día 95, y IVM 200 ug/kg por vía oral (4x la tasa de dosis microfilaricida normal) el día 125, el perro se mantuvo continuamente con microfilaremia. En el día 207, seis
- semanas después del segundo régimen de tratamiento con diclorhidrato de melarsomina, en los días 159 y 160, la prueba de Knott fue todavía positiva, por lo que el perro se trató nuevamente con 200 µ/kg de IVM por vía oral. Un mes después, en el día 242, una prueba de antígeno de *D. immitis* fue negativa, lo que confirmó que el perro estaba libre de gusanos adultos. Sin embargo, el perro todavía presentaba microfilaremia. Por lo tanto, comenzando el día 243, se le administró al perro por vía oral MO 0,74 mg/kg cada 2 semanas en cuatro ocasiones (véase la Tabla 2). A pesar de esto, el día 298 el perro permanecía con microfilaremia. Por lo tanto, se administró por vía oral MO
- 1,1 mg/kg en los días 298, 312, 326, 340 y 354. En el día 356, se extrajo sangre del perro y se examinó: las microfilarias aún estaban presentes y la prueba de antígeno de *D. immitis* seguía siendo negativa. En el día 375, se envió una muestra de sangre a Animal Health Laboratory, University of Guelph (AHLUG): la microfilaremia era de 6530 mf/ml y la prueba de antígeno era aún negativa (véase la Tabla 2). Como resultado, comenzando el día 384, se le administró al perro por vía oral MO 2,0 mg/kg una vez al día durante 7 días. En el día 420, el perro tenía una
- microfilaremia de 355 mf/ml. En el día 420, se trató otra vez al perro por vía oral con MO 2,0 mg/kg, y esto se continuó una vez al día durante 8 días. A pesar de este segundo régimen de dosis alta, en el día 480, aunque seguía

ES 2 709 187 T3

teniendo un resultado negativo con una prueba de antígeno del gusano del corazón, el perro tenía una microfilaremia de 1810 mf/ml.

La sangre se extrajo del perro el día 706 y se aisló ADN de las microfilarias agrupadas.

Tabla 2. Pruebas de diagnóstico y antecedentes de tratamiento para los perros entre 2008 y 2009

Fecha (día)	Nombre de la prueba de antígeno - resultado (+ve o - ve)	Dosificación del adulticida (melarsomina) *	Concentración de microfilarias en la sangre (mf/ml)	Dosificación de fármaco microfilaricida (por VO)	Comentarios
2008					
6 de junio (1)	PetChek +ve ^a		Prueba de Knott +ve ^a		
11 de junio (6)		2,5 mg/kg			Clasificado como enfermedad del gusano del corazón de clase 2
2008		0.5			
9 de julio (34)		2,5 mg/kg			
10 de julio (35)		2,5 mg/kg			
18 de agosto (74)				MO, 0,74 mg/kg	
3 de septiembre (90)			Prueba de Knott +veª		
8 de septiembre (95)				IVM, 50 µg/kg	
6 de octubre (123)			Prueba de Knott +ve ^a		
8 de octubre (125)				IVM, 200 mg/kg	
10 de noviembre (158)			Prueba de Knott +veª		
11 de noviembre (159)		2,5 mg/kg			
12 de noviembre (160)		2,5 mg/kg			
12 de diciembre (190)				MO, 0,74 mg/kg	
29 de diciembre (207)			Prueba de Knott +ve ^a		
30 de diciembre				ivm, 200 mg/kg	
(208)				.v, 200 mg/kg	
2009 2 de febrero (242)	SNAP -veª		Prueba de Knott +ve²≥ 100 ^b		Interpretación: sin gusanos del corazón adultos
3 de febrero (243)				MO, 0,74 mg/kg	
17 de febrero (257)				MO, 0,74 mg/kg	
3 de marzo (271)			Prueba de Knott +veª ≥ 100 ^b	MO, 0,74 mg/kg	
17 de marzo (285)			.3 = 100	MO, 0,74 mg/kg	
30 de marzo (298)			Prueba de Knott +ve ^a ≥ 100 ^b	MO, 1,1 mg/kg	
13 de abril			10 - 100	MO, 1,1 mg/kg	
2009					
27 de abril (326)				MO, 1,1 mg/kg	
28 de abril (327)			Prueba de Knott +veª		
11 de mayo (340)				MO, 1,1 mg/kg	
25 de mayo (354)				MO, 1,1 mg/kg	
	1				t

(continuación)

Fecha (día)	Nombre de la prueba de antígeno - resultado (+ve o - ve)	Dosificación del adulticida (melarsomina) *	Concentración de microfilarias en la sangre (mf/ml)	Dosificación de fármaco microfilaricida (por VO)	Comentarios
27 de mayo (356)	SNAP -ve ^a		Prueba de Knott +veª		Sin gusano del corazón adulto
8 de junio (368)				MO, 1,1 mg/kg	
15 de junio (375)	DiroChek -vec		Prueba de Knott +vec 6530		Sin gusano del corazón adulto
24 de junio (384)				MO, 2,0 mg/kg diarios durante 7 días	
30 de julio (420)			Prueba de Knott +ve ^c 355	MO, 2,0 mg/kg diarios durante 8 días	
28 de septiembre (480)	PetChek -ve ^a		Prueba de Knott +vec 1810		
2010					
12 de mayo (706)					Microfilarias recogidas para aislamiento de ADN

MO = milbemicina oxima (Interceptor®); IVM = ivermectina (inyección de Ivomec® para ganado vacuno, ovejas y cerdos, Merial Inc.); *Adulticida = Immiticide®; a = Main West Animal Hospital (es decir, llevado a cabo en el laboratorio); b = Idexx Laboratories; c = Animal Health Laboratory, University of Guelph.

f. <u>Aislado con PDE caso 2</u>. Se obtuvieron aproximadamente 9000 mf agrupadas de un perro de Mechanicsville, Virginia, que se había tratado con Interceptor® desde 2004 hasta 2008. En mayo de 2008, el perro fue positivo para antígeno del gusano del corazón y se le colocó Heartgard Plus (IVM/PIR) para un tratamiento de destrucción lento. En 2008, el perro seguía siendo positivo para antígeno del gusano del corazón y todavía presentaba microfilaremia. Del ensayo *in vitro* del Dr. Blagburn (Auburn University): la concentración de DL₉₅ para mf susceptibles produjo solo una destrucción del 10,5 % y 2x DL₉₅ produjo una destrucción del 13,6 % de mf.

5

10

15

20

25

30

- g. <u>Aislado con PDE caso 3</u>. Las mf agrupadas se obtuvieron de mf de baja respuesta de un ensayo de susceptibilidad a ivermectina *in vitro*. El perro era un animal infestado naturalmente propiedad de un cliente, de Monroe, Luisiana, seleccionado debido a que había estado en tratamiento preventivo con LM del gusano del corazón. El veterinario estaba convencido de que el cumplimiento del tratamiento no era un problema. La historia clínica del paciente indicaba que se habían proporcionado al cliente cantidades adecuadas del producto, basándose en el número y el peso de los animales objetivo en el hogar. El perro presentaba microfilaremia a pesar del hecho de que había estado bajo profilaxis con LM del gusano del corazón.
- h. Aislado con PDE caso 4. Las mf agrupadas se obtuvieron de un perro que tenía los antecedentes como se describe a continuación. Este perro callejero era originario del condado de Haywood, Tennessee, EE.UU., y se presentó como positivo para antígeno del gusano del corazón para una clínica local el 21 de enero de 2011. El perro fue castrado el 26 de enero de 2011. El 1 de febrero de 2011, se inició la terapia con doxiciclina (200 mg por vía oral dos veces al día) y prednisona (comprimido de 1 5 mg por vía oral cada dos días) y se continuó durante 30 días. El 2 de febrero, el 3 de marzo y el 4 de marzo de 2011, se administró una inyección de diclorhidrato de melarsomina (immiticida) (2,5 mg/kg). El 2 de febrero, el 3 de marzo y el 1 de abril de 2011, se administró una dosis oral de milbemicina oxima (Interceptor) (11,5 mg/comprimido). El 5 de abril de 2011, se realizó una prueba de Knott y fue positiva; se administró ivermectina por vía subcutánea a una dosis de 0,26 mg/kg. El 11 de abril de 2011, la prueba de Knott fue otra vez positiva; se administró ivermectina por vía subcutánea a una dosis de 0,39 mg/kg. Las pruebas de Knott se realizaron nuevamente el 19 y 26 de abril de 2011 y ambas fueron positivas. El 2 de mayo de 2011, la prueba de Knott fue nuevamente positiva y un frotis de sangre mostró microfilarias; Se administró al perro Advantage Multi® (imidacloprid al 2,5 %, moxidectina al 10 %). El 5 de mayo de 2011, un frotis de sangre fue positivo para microfilarias; en este momento, se recogieron microfilarias. El tratamiento repetido con adulticida llevó a la suposición de que el perro estaba libre de parásitos adultos. El 11 de junio de 2011, se administraron al perro 200 mg de dietilcarbamazina. No se observaron efectos secundarios del tratamiento. Al cabo de 7 días, el frotis de sangre no mostró mf. El perro fue adoptado el 18 de agosto de 2011 y se trasladó a Massachusetts.
- i. <u>Aislado con PDE caso 5</u>. Se obtuvieron mf agrupadas de un perro originario de West Monroe, Luisiana, EE.UU. Se trataba del perro de un veterinario. Los antecedentes implicaban el uso apropiado de milbemicina oxima y hubo varias pruebas negativas de antígeno del gusano del corazón en las revisiones anuales, hasta que una prueba fue positiva para antígeno del gusano del corazón y hubo presencia de mf en la sangre el 25 de septiembre de 2008. Se

realizó un ensayo de sensibilidad de microfilaria *in vitro* (laboratorio de B. Blagburn, Auburn University, Alabama) el 19 de noviembre de 2008. Los resultados del ensayo indicaron organismos resistentes a los fármacos. Se alimentaron mosquitos con muestras de sangre infestada procedentes de este perro original. Se usaron larvas L3 para infestar un segundo perro. En el momento de la infestación, el segundo perro había estado en tratamiento con ivermectina. Posteriormente, el segundo perro recibió cada semana 1 dosis de 3 µg de ivermectina/kg, seguido de 11 dosis de 6 µg de ivermectina/kg, seguido de 4 dosis de 12 µg de ivermectina/kg, seguido de 8 dosis de 24 µg de ivermectina/kg (interrumpido por durante una semana después de la 4ª dosis). Durante todo el período de dosificación semanal con ivermectina, el perro se mantuvo positivo para mf. Se recogieron microfilarias en las semanas 1 y 2 después de usar el último tratamiento en el análisis.

j. <u>Aislado con PDE caso 6.</u> Las muestras corresponden al segundo pase de parásito que proviene de un perro originario de Earle, Arkansas, EE.UU. El perro del aislado PDE-6 original recibió milbemicina oxima en 2004 y 2005, ivermectina/pirantel en 2006 y 2007, e ivermectina/praziquantel/pirantel (Iverhart Max™) en enero de 2008 y a principios de julio de 2008. El dueño manifestó que había sido constante con la profilaxis. Este perro dio negativo para antígeno del gusano del corazón en las revisiones anuales en 2005, 2006 y 2007. Este perro fue positivo para antígeno del gusano del corazón y presentó microfilaremia en el examen anual del 4 de noviembre de 2008. Los resultados del ensayo de microfilaria *in vitro* (laboratorio de B. Blagburn, Auburn University, AL) en este perro sugirieron resistencia. El perro de PDE-6 se infestó de forma experimental el 16 de noviembre de 2009 con larvas L3 obtenidas de mosquitos alimentados con sangre del primer pase. El perro del primer pase se infestó de forma experimental el 24 de febrero de 2009 con larvas L3 obtenidas de mosquitos alimentados con sangre de un perro infestado de forma natural (el perro del aislado LOE-6 original).

Ejemplo 2 - Aislamiento de ADN de los parásitos utilizados en los estudios

10

15

20

25

30

35

El ADN genómico de los gusanos adultos individuales se extrajo con el kit DNeasy™ de Qiagen (Qiagen Inc, Mississauga, Canadá). La extracción de ADN genómico de mf individuales se extrajo utilizando el kit QIAamp® DNA Micro de Qiagen. Para obtener suficiente ADN para el análisis, el ADN de mf se amplificó utilizando un kit Repli-g® de Qiagen, que permite amplificar el genoma completo a partir de una cantidad muy pequeña de ADN. Las Mf se aislaron por filtración a través de filtros con membrana de policarbonato a partir de sangre recién extraída.

Ejemplo 3 - Secuenciación de ADN, análisis e identificación de los SNP

El objetivo fue identificar los cambios genéticos (por ejemplo, variaciones de nucleótidos) presentes en las poblaciones de gusano del corazón con PDE que no estuvieran presentes en las poblaciones susceptibles de gusano del corazón. Las variaciones de nucleótidos en cualquiera de las poblaciones con PDE, en comparación con un genoma de referencia obtenido de los aislados susceptibles, indicarían posibles marcadores de SNP.

Inicialmente, los genomas de las poblaciones de gusano del corazón identificadas en los párrafos con las letras a-h del Ejemplo 2 anterior (aislados susceptibles de Misuri, Isla de Gran Canaria, Granada e Italia; aislados con PDE casos 1-4) se secuenciaron utilizando el sistema HiSeq2000 de Illumina®. La Tabla 3 muestra el número de lecturas y el número de bases que se secuenciaron para cada población. No se incluye en la Tabla 3 la información de las poblaciones de gusanos del corazón identificadas en los párrafos I y j (aislados resistentes de los casos con PDE 5 y 6).

Tabla 3.	La información d	e las lectura	s sobre los aislad	os utilizados para	la secuenciación de	l genoma completo
----------	------------------	---------------	--------------------	--------------------	---------------------	-------------------

Aislados	Número de lecturas	Número de bases
1 - susceptible	85.097.000	17.019.400.000
2 - susceptible	78.242.862	15.648.572.400
3 - susceptible	80.687.895	16.137.579.000
4 - susceptible	75.515.617	15.103.123.400
5 - PDE-1	82.417.743	16.483.548.600
6 - PDE-2	74.261.369	14.852.273.800
7 - PDE-3	79.894.844	15.978.968.800
8 - PDE-4	75.477.318	15.095.463.600

Los datos generados a partir de las muestras susceptibles a LM (aislados susceptibles de Misuri, Isla de Gran Canaria, Granada e Italia) se utilizaron para ensamblar el genoma, que después se usó como el genoma de referencia para el proyecto. Se agruparon todos los fragmentos individuales de las 4 poblaciones susceptibles. Para ensamblar el genoma se utilizó el programa informático Velvet aligner (http:www.molecularevolution.org/software/genomics/velvet). Las lecturas se filtraron eliminando/recortando las secuencias del adaptador, si se encontraban. Las lecturas se ordenaron a una longitud de Q30 de 32 pares de

bases. El valor predeterminado de inicio de Aligner es una longitud de 32 pares de bases y el número de lecturas fue concordante con el valor predeterminado. La Tabla 4 describe el ensamblaje del genoma de referencia utilizado para el estudio.

Tabla 4. Información sobre el ensamblaje del genoma de *D. immitis*

Número de cóntigos	22 966
el 50 % de los cóntigos son más largos que	28 928 pb
Longitud del cóntigo más largo	250 211 pb
Bases totales en los cóntigos	94 611 006 (94 Mb)
Número de cóntigos > 1 kb	6654
Bases totales en los cóntigos > 1 kb	90 045 376 pb (90 Mb)

5

10

15

20

25

30

40

Una vez obtenido el genoma de referencia del gusano del corazón a partir de las secuencias de los aislados/poblaciones susceptibles, se compararon los genomas de las poblaciones con PDE con el genoma de referencia, para identificar las diferencias y los posibles SNP. Como parte de este análisis, se demostró que los locus genéticos que contenían los posibles SNP no eran significativamente distintos entre las poblaciones susceptibles individuales (es decir, entre los aislados susceptibles de Misuri, Isla de Gran Canaria, Granada e Italia), además de no ser significativamente distintos entre las poblaciones con PDE individuales (PDE 1-4), pero fueron significativamente distintos entre las poblaciones susceptibles y las poblaciones con PDE. Para realizar este análisis, se utilizó el programa informático llamado PoPoolation2 (Kofler y col. Bioinformatics 27:3435-3436, 2011; http://bioinformatics.oxford-journals.org/content/27/24/3435). El programa precisa el uso de otros programas, tales como Perl (http://www.perl.org/), R (http://www.r-project.org/), bwa y Samtools. En primer lugar, se generó un archivo sincronizado, que contenía las frecuencias de nucleótidos para cada población en cada base en el genoma de referencia, después de filtrar en cuanto a la calidad de la bases, en un formato conciso. El archivo sincronizado generado con el programa PoPoolation2 contenía información detallada sobre el recuento de nucleótidos en los locus para cada una de las poblaciones. Los valores P se generaron con la prueba exacta de Fisher para todas las posibles comparaciones entre poblaciones. Para identificar los locus asociados con la resistencia a LM, los valores de p debían ser no estadísticamente significativos de forma simultánea (> 0,05) dentro de todas las muestras susceptibles y dentro de todas las muestras con PDE, y estadísticamente significativos (<0,05) entre todas las muestras susceptibles frente a todas las muestras con PDE. Trescientos treinta y ocho locus cumplieron con estos criterios, incluyendo 12 que tenían un valor de p de 10-5. Se analizaron mediante Blast (BlastN y BlastX) en el NCBI (http://blast.ncbi.nlm.nih.gov/Blast.cgi) y en la base de datos del genoma de filaria del Broad Institute (http://www.broadinstitute.org/annotation/genome/filarial_worms/ Blast.html) las regiones flanqueantes de 1000 pb que incluían cada locus que era estadísticamente distinto entre las muestras susceptibles y las muestras con PDE. para eliminar los locus ubicados en el ADN mitocondrial de Wolbachia o C. lupus familiaris. Los locus ubicados en lecturas con un polimorfismo muy alto (>2 nucleótidos y/o indeles) o baja cobertura (<10X) se eliminaron de un análisis adicional. Los recuentos de nucleótidos para cada locus de interés se analizaron individualmente para las poblaciones agrupadas, para garantizar que el aumento o la disminución en la frecuencia de nucleótidos fuera en la misma dirección para todas las muestras susceptibles o para todas las muestras con PDE. Los locus que mejor cumplían con los criterios se conservaron para un análisis de genotipo adicional en parásitos individuales, para evaluar las frecuencias alélicas reales en poblaciones que se habían caracterizado en términos de respuesta a la

A partir de estos análisis, se encontró que 186 locus eran significativamente distintos entre las muestras susceptibles y las muestras con PDE. Como este enfoque estaba basado en lecturas y frecuencias de nucleótidos de muestras agrupadas, estos locus se estudiaron adicionalmente (genotipado de SNP) utilizando poblaciones individuales (no agrupadas). A tal fin, se utilizó el análisis de frecuencia de SNP Sequenom®. Tabla 5, a continuación, muestra los orígenes del ADN utilizado en este análisis.

Tabla 5. Descripción de los aislados utilizados para el análisis por Sequenom

Muestras susceptibles = 181 aislados	Estado y/o país de origen	n.º de gusanos adultos individuales	n.º de microfilarias individuales	de los perros n.º
Sus1-Misuri	aislado de Misuri, EE.UU.		49	1
Sus2-Misuri	aislado de Misuri, EE.UU.		45	1
Gran Canaria	Gran Canaria, España	71		11
Granada	Granada, IO	10		2
Italia	Italia del Norte	6		

(continuación)

Muestras susceptibles = 181 aislados	Estado y/o país de origen	n.º de gusanos adultos individuales	n.º de microfilarias individuales	de los perros n.º
Muestras de baja respuesta = 244 aislados				
IPI 1E_1	Nueva Orleans, LA, EE.UU., se trasladó a Ontario, Canadá		56	1
LOE-2	Mechanicsville, VA, EE.UU.		35	1
LOE-3	Monroe, LA, EE.UU.		51	1
LOE-5	West Monroe, LA, EE.UU.		54	1
PDE-6	Earle, AR, EE.UU.	•	48	1

El análisis por Sequenom® está basado en PCR múltiple y en espectrometría de masas MALDI-TOF. El análisis por Sequenom® se utilizó para evaluar los 186 locus utilizando 425 muestras individuales (5 paneles con 36-38 SNP en cada panel). El diseño de cebadores para cada marcador de SNP se basó en el requisito de que los cebadores de elongación estén ubicados en una región no polimórfica de 15 pares de bases antes o después del SNP de interés. Todas las consultas al genoma se realizaron a ciegas (es decir, el origen de la muestra y los antecedentes de tratamiento del perro no se conocían durante el análisis). Se analizaron un total de 79050 genotipos. De los 186 posibles locus, se observó que 109 tenían ventajas técnicas para predecir la pérdida de eficacia de la LM. La población susceptible portaba más del 90 % del genotipo de tipo silvestre, mientras que la población con PDE tenía una frecuencia de genotipo del genotipo de tipo salvaje significativamente más baja. Estos 109 locus se desvelan en el presente documento como las SEQ ID NO: 1-109.

Ejemplo 4 - SNP adicionales de organismos resistentes confirmados

5

10

15

35

45

Las muestras con PDE, como se describe en el Ejemplo 1, se presume que son resistentes a las LM debido a los antecedentes de tratamiento con las LM de los perros y la presencia continua de organismos de gusano del corazón. Sin embargo, a pesar de los antecedentes de tratamiento, una explicación alternativa a la verdadera resistencia de los parásitos a la LM es el incumplimiento por parte del propietario del tratamiento con LM. Por lo tanto, se realizó un estudio en condiciones controladas de tratamiento con LM, para eliminar la posibilidad de incumplimiento del propietario en el tratamiento con LM, como una posible razón de la presencia de organismos de gusano del corazón en los perros.

20 Los organismos de gusano del corazón utilizados en los estudios de eficacia se obtuvieron de uno identificado como Jd2009 de Earle, Arkansas, EE.UU. Jd2009 recibió MO de forma mensual en 2004 y 2005, IVM/pirantel en 2006 y 2007, e IVM/praziquantel/pirantel en enero de 2008 hasta principios de julio de 2008. Jd2009 dio negativo para antígeno de GC en 2005, 2006 y 2007. Este perro fue positivo para antígeno del gusano del corazón y presentaba microfilaremia el 11 de abril de 2008, a pesar de un historial de cumplimiento de los tratamientos preventivos para el GC. En este momento se obtuvieron mf del perro con el consentimiento del propietario y se enviaron a la Auburn 25 University, donde se examinaron las mf en cuanto a la sensibilidad a IVM en un ensayo de respuesta a la concentración in vitro, que mide la migración (Blagburn, B., American Heartworm Society-13th Triennial State of the Heartworm Symposium, 2010). Estas mf fueron significativamente menos sensibles a IVM que las obtenidas de un perro infestado con una cepa de laboratorio de D. immitis que era completamente susceptible al fármaco. Las mf se 30 utilizaron en la Auburn University para infestar mosquitos y producir L3 que se usaron para infestar al perro Jd2009-1, que desarrolló una infestación manifiesta. En el ensayo de migración in vitro se demostró que las mf de este perro eran tan resistentes a LM como las mf de Jd2009.

Las L3 obtenidas de las mf recogidas de Jd2009-1 se usaron en la Auburn University para infectar a un segundo perro, Jd2009-2, y el perro se trató de forma mensual con Heartgard Plus® (IVM 0,006 - 0,013 mg/kg), 9 veces consecutivas. Se recuperaron gusanos adultos, lo que indica que el aislado de Jd2009-2 era resistente a la profilaxis con IVM. En un segundo estudio, los perros se expusieron a L3 de Jd2009-2 en el día 0 y se trataron de forma mensual durante 5 meses consecutivos con Heartgard Plus® (IVM 0,007 - 0,009 mg/kg; Estudio 1b). En la necropsia en el día 188, la eficacia fue del 71,3 %, lo que confirma la resistencia a la profilaxis con IVM en el aislado de Jd2009-2.

40 En otro estudio, los perros se expusieron a L3 el día 180, después de la inyección de ProHeart6®. En la necropsia en el día 150 después de la infestación, la eficacia fue del 21,6 %, lo que indica que el Jd2009-2 también era resistente a la formulación de MOX de acción prolongada ProHeart 6®, de la que se afirma que tiene una protección del 100 % durante 180 días después del tratamiento.

En otro estudio, el aislado de Jd2009-2 resistente a IVM confirmado se usó para determinar si la resistencia se extendía a otros tratamientos preventivos con LM del gusano del corazón. Ninguno de los otros tratamientos preventivos con LM para el gusano del corazón (MOX, MO y SEL), administrados como quimioprofilaxis de forma mensual según lo recomendado, fue completamente eficaz, es decir, después del tratamiento con cada una de estas LM utilizadas según lo recomendado, se infestó con *D. immitis* al menos un perro en los grupos de cuatro a seis

perros con estos tratamientos preventivos para el gusano del corazón.

Se usó ADN de organismos individuales procedente de dos aislados de Jd2009. El ADN de individuos de un grupo, llamado RES-1, provino de 4 perros del estudio con ProHeart6®, descrito anteriormente. El ADN de individuos de otro grupo, llamado RES-2, provino de 6 perros del estudio con Heartgard Plus®, descrito anteriormente.

El ADN se aisló de 115 gusanos adultos y 79 mf de las poblaciones RES-1 y RES-2, como se describe en el Ejemplo 5 2, y se analizó utilizando el análisis de frecuencia de SNP por Sequenom®, como se describe en el Ejemplo 3. De este análisis. 18 locus adicionales (de los 186 locus iniciales) fueron significativamente distintos entre las muestras susceptibles y las RES. Estos locus se desvelan en el presente documento como las SEQ ID NO: 110-127.

LISTADO DE SECUENCIAS

<110> McGill University Novartis Animal Health US, Inc. 10

> <120> Marcadores para predecir la resistencia a fármacos de lactona macrocíclica en Dirofilaria immitis, el agente causal de la enfermedad del gusano del corazón

<130> PAT055806-WO-PCT

<150> US 61/839.545

15 <151> 2013-06-26

<160> 127

<170> PatentIn versión 3.5

<210> 1

<211> 300

20 <212> ADN

<213> Dirofilaria immitis

<400> 1

aacataaaca t	attgaactg	aatcctgcaa	acagttctct	tataacgtga	accataacta	60
aatttagaga a	aatatgaaa	aagaaaaata	agttgctttt	gctcgtgcac	caactctaat	120
acccaggaaa t	caagaagtg	ataatgagta	atgtcatcat	tagattcagt	aattggtgac	180
actatcaata t	tattattat	tatacttaaa	aatacgacga	ccacttatcg	taacttaaag	240
catgcataat a	acgactgtca	tcatattaca	tttcttcaag	ttcgtattgg	acaagtgatt	300
.040- 0						

<210> 2 25

<211> 300

<212> ADN

<213> Dirofilaria immitis

<400> 2

60	tcagaaggca	gcattgggta	aataaagaag	acgatataat	gacgggagag	gacaagcgtt
120	tttgatcaat	atgctgacga	aataaaattt	aggcaaaatg	ataaatgcca	caatccaatt
180	ttaacttaat	tgcactactg	tgtttgtatg	ctcgaatctt	ttccgatcgg	tacgaagaat
240	gatacgttat	catgtcaact	ataatatatt	cgtgtcatat	tatacttttg	ctttgtttta
300	tttaagaaat	ctatttcaaa	aacctgaagt	gttgatcgga	tgtaaattaa	gatgttttt

30 <210> 3

<211> 300

<212> ADN

<213> Dirofilaria immitis

<400> 3

	ttttaggaaa	atggtgactg	tagagagata	ttatcggaac	gacaaggtcc	acttcgaacg	60
	ggtcttttat	tgtcgacgga	ttgtgaacca	agttttggca	ttcataatga	caggtagcta	120
	tttttccatc	atcccatttt	tgtattagtg	caagcaagtc	atgagtcgaa	agaaaatctc	180
	aaaagaaaaa	aatgaaattt	caggttcaaa	ggactgcgtc	cattattcgc	actggttgat	240
			gcggcaatgc				300
5	<210> 4 <211> 300 <212> ADN <213> Dirofilari	ia immitis					
	tcgattaaaa	attatcatco	ataaaattct	aaaatttatt	ttagtaaaat	tattattatt	60
	-	_	aaaattttaa		_		120
		_	agatatcgct	_	_		180
		_	attttccaga				240
			_				300
		ttacaatttt	ccactcgtgt	tgcatgtgtt	tetegacaaa	aattagttaa	300
10	<210> 5 <211> 300 <212> ADN <213> <i>Dirofilar</i>	ia immitis					
	<400> 5						
	tcaacagaaa	tcgagattcc	aaaaagtttc	ctacaaatac	ttaattatca	atggatattt	60
	agttttgtta	tctgttatca	taagttctgc	ttcttacacg	attaaaaatg	tccaagaatt	120
	ttttactatt	caaatgaggg	aaataaaaaa	ccaatgccaa	taatatccag	aaactacata	180
	catctttctt	ttttcgaagc	tcatctattc	cggccgaaaa	caatgaagaa	cattaaaatt	240
	cttaaaagat	agtcttagcc	ttttccttga	ccactatctt	aactgtcagc	gctaaaatgt	300
15	<210>6 <211> 300 <212> ADN <213> <i>Dirofilar</i>	ia immitis					
	<400> 6						
	aatagtcgtc	tcattacttt	ttgactttta	taattcgaga	atcttatgta	gtccttcact	60
	ttacccttct	tctgtcgaac	taagaattac	agcattattt	tcgaatttaa	tgtgtaaaag	120
	acaatagcag	attttgtaat	tttgtgttaa	cctcacttta	tatttcgctt	catatcgtga	180
	cagagaatta	ctatttcaga	gagtattact	tgtcaccaga	gaatctccag	aaagattttt	240
	atttacgtcg	gaaaatggac	aaaaatggtt	tcttatcatt	agcactgata	gctagtttcc	300
20	<210>7						

	<211> 300 <212> ADN <213> Dirofilaria immitis	
	<400> 7	
	tatctcttgt tgtgtgttct gcattgtatc aaagtgggta aattttgctt tagacgttga	60
	cttattgtct tttttaagtt atattctagt ccatgttttt ctctttgcaa atatttttt	120
	ccgccgccta tgattcattg ttttgtttgt aactctctat taagttgctt ttagtttgaa	180
	ttgtatcaaa atttcaaaca tttaaaatac gcactagcac tattttttct tatctcaatt	240
5	aagcgaatcc cggaacaaga tttaatcgat ttccgaatca caattaaatc actggaaaac	300
	<210>8 <211> 300 <212> ADN <213> Dirofilaria immitis	
10	<400> 8	
	attttcctta acaaatcatt ttcaaacgaa aaaacattaa aaagtgttaa aataaaatgg	60
	tgatattgat aagaaattaa ttcaacctgc atatcaattc ttgtagcggc cattttctta	120
	gcaagttcta tagcagctcg atccatatca ccttcttgct ctaatgtcaa ttccggttcc	180
	ggaatttttt ttattttgcc attcttcatc ttttttttat tttttactga tatagctata	240
	gaccctttct cccgtgcatg cctgtaggcc tgttctgata tacaggcttg tgaaccactg	300
15	<210>9 <211> 300 <212> ADN <213> Dirofilaria immitis	
	<400> 9	
	ttctggggta gttatacgga aaattagaca atgaagagaa tcaaaaaaca tgcgattttc	60
	aaacagagga actttggtac ttttgcctcg acttacttta ttttaaaacc catacaaaat	120
	aaatgtttca tttgattgat attgtcgtac taataattag agcttcaaca ttaggatttt	180
	aataaccttc aatttatttc agaatttaag aaacttacgt atggatggag aaaatataaa	240
	gaatggcgat gacaaataag atttgctatg aaaaaactaa tgccacaaga tccgaatgca	300
20	<210> 10 <211> 300 <212> ADN <213> Dirofilaria immitis	
	<400> 10	

	tttatgaaca	aaaataataa	aaattaggat	aacagatatc	aatttcttt	agctataaat	60
	atacgcttcg	attgaaaaaa	gctttcaaat	tataattaag	gcatacgtta	cgatatagac	120
	aattaagtcg	acattaatta	tttgaaatat	tttaaatttt	tttctctttc	tttttttcta	180
	ttctcttcca	aagtgtcaaa	tagttatgaa	attgtcagaa	gctaaaatga	taatattatt	240
	caagtttatt	acctaatctt	ttatcacctc	atttcttatc	atttatctga	aaatctaatc	300
5	<210> 11 <211> 300 <212> ADN <213> <i>Dirofilari</i>	a immitis					
	<400> 11						
	atgttgaatt	tttaatgaaa	ctttttcggt	gcataagcat	tacagatctg	taagctgtgc	60
	aaaccctgtt	tctttgtaaa	ttgaaacaaa	gatcatttat	tgtttccagc	gtcgatttga	120
	cctggataaa	tgtggtacca	aaagtagatg	acgagaggta	agtgcaaaca	aaatgcacaa	180
	aaatgatttt	gatgcactca	aatcattttt	aagttttgtg	caattttcca	ttttatagtt	240
	tcgtgatcgg	ttgttattca	tcaacttgat	tttgtttgtt	ttttgtgact	tatatttcat	300
10	<210> 12 <211> 300 <212> ADN <213> <i>Dirofilari</i>	a immitis					
	<400> 12						
	tttgacactt	tcagatacct	tacaaactca	tctccagcac	ccaatttaca	atatcgctgc	60
	ctaaataaag	aatttattcg	gatatgagac	tgtagttttc	attccgtacc	aatcatagta	120
	gaacagatct	atagcatggt	gtcctactaa	agttgtgact	ggctattaag	tatgtgggtg	180
	tttttacgtg	tgcgtgggtg	tttgtgcgtg	tgtgcgtgtg	cgtttctgca	catattttcg	240
	tgcgcggtgt	ctgtgtgtgt	ccgtttgtat	atgccgagtg	tagctgtgtg	tatgttcttg	300
15	<210> 13 <211> 300 <212> ADN <213> <i>Dirofilari</i>	a immitis					
	<400> 13						
	cactcataat	atacctgtca	acaaactcag	aaatctgaat	aaaatgacgc	aaaaatgaca	60
	aaaacatttt	atcaaccttt	tcttcatcac	tccccgcat	ttccaatttt	cttccaaact	120
	gtttttgtcg	tgctacaaag	tcatcagcca	cttcattttc	ttcaagatgg	ttcgagacgc	180
	cattcttgga	ttcacccctt	atttcaactg	tttccgaagt	cccagcagtt	gaagctgaac	240
	ctagcattta	tatcaccacc	cgatgtcaaa	aaatgacagc	ggtcagagaa	tacgacttcc	300
20	<210> 14 <211> 300 <212> ADN						

	<213> Dirofilari	a immitis					
	<400> 14						
	gctaggtcaa	cagttggttt	atttggactt	atacgatatt	aaacataata	tcgcctcata	60
	tacacagaaa	tatcaaaaaa	acgaacacag	ctaaatcgaa	gaatacgaac	aaatgtttta	120
	aaaattatat	taaatctttt	aatgctctct	acaatgtcgt	atcttccctt	ttgtctgtat	180
	ttctcctttc	gttccaccac	tgctatttct	catgcctttg	aactatggtt	ctcgttgcgt	240
	cgaattgtcc	tcgaaactgt	tgtttctgtc	gaattacgtc	gaactgctgg a	actttgtcgg	300
5	<210> 15 <211> 300 <212> ADN <213> <i>Dirofilaria</i>	a immitis					
	<400> 15						
	atatctcact	tctgacataa	attgaagtgg	cactgatttg	aatgaaatga	taaataaaat	60
	aaagacgaca	aggtagtgga	aaaaaaaga	ggagaaaaca	ccgtttagtt	ttggatgcaa	120
	gctcgaatct	gagttttctt	gcaaaccgta	cactgatcaa	ttttcttaca	caaacataag	180
	aaaaaaagaa	gtgattttac	tgtagctgta	tcgtataatt	caaatcatat	atatatatgt	240
10	ttcaataatc	tatacattta	tgtatatttt	tttttgaatg	gaacagtgaa	tgattttaaa	300
	<210> 16 <211> 300 <212> ADN <213> <i>Dirofilari</i>	a immitis					
15	<400> 16						
	acaaatgcca	tcgggagaga	aatatcgttg	gcgtactgat	cacattggcg	gtatcacttc	60
	tttgaaaact	ccagctggta	ttgtgtatca	tttcatgcaa	tacgctattt	ttgatcgaat	120
	atgtcgacgg	cgtagtgttt	cattttccaa	cgcatcttac	gttgcgtgta	tggatgatga	180
	cggacaatta	ttggaatatc	aaacaccgga	tcgattgcat	tccgtaacct	tgaaacgtga	240
	catatatggg	agagtagtgc	aaataacttc	agatggcgaa	aatattttct	tcgaatatgg	300
20	<210> 17 <211> 300 <212> ADN <213> <i>Dirofilaria</i>	a immitis					
	<400> 17						

	ataatatata tttccattga taatattttt catattatgt gatgtttgaa attttctgca	60
	attgctacat tccgattaaa aacttttatt atccgtactg gagaattttg cttttttttg	120
	acggtttgtt caataagttg tcaatatatt gtctgcctta gtaaaacctt tctaatctat	180
	ccgttcgaat tggaagttga aagttcagca tcattctttt agtgaggtgt ttaagttgtt	240
	caatagatat tatttagaac gatctcaatt aaaatcttct gaatgatttt atgttttat	300
5	<210> 18 <211> 300 <212> ADN <213> Dirofilaria immitis	
	<400> 18	
	gcagcacatt gcacacagta aactgcaaac tgaattaaga gatattgggt tgaattattt	60
	ctaatttaaa aggatataat aaatgacttt gatgattgtt gattttaagg tatctcggaa	120
	gactccatca gtctcagtgc tctagcaatc gctataggta ctaaaagaaa agaaaagatg	180
	tctcgttatt cactttgaaa tgtacatatc aaatcatttt gtcgtatgaa attaagtata	240
	ttatgtctaa tcgtatcatt cgaaatgaat ttactgtcac tgttagaact atttaggcag	300
10	<210> 19 <211> 300 <212> ADN <213> Dirofilaria immitis	
	<400> 19	
	agagttcaat cgccaagttg ttctttttct cgctcgcaga gatcaaaacg gtgttggcta	60
	tacactcatt catcaggctg tgatagacat ctcttagaat ttcagtgctt ttctggatga	120
	aaacattatt tctcaaacat gacacttaag gacaatagtg cgtgacttct ttgttaacgt	180
	acacgagaaa acaaaacaga tgatgcttgt tatcttggtg ataaatgtgt attcagaata	240
	atgttatata tetttgegtg acaaatatea tttegttata etteggatae geetttttat	300
15	<210> 20 <211> 300 <212> ADN <213> Dirofilaria immitis	
	<400> 20	
	aactttactt gaactttttt ggtgttcaat tttgaatatt ataccaacca ttcagaagac	60
	tgtatataga aatgaacctt caagaattaa tcgaaatttt tattaaaatc ttttatttga	120
	atatttcatt atttaaactc attactattt gcagtatatt attagatcta atgtagaaaa	180
	aaaaatcaga tggcaaaaat aatatcatag gtttgttttt aaaattcatt gcaaaattca	240
	gtgcgccgtt ccagtcgctc gtaattaccc tatccctgag ctttacaaaa agaatgcttt	300

	<210>21 <211> 300 <212> ADN <213> Dirofilaria immitis	
5	<400> 21	
	aggtatctag atagcataat aaattactac acaaaccgat ggaaacgcaa gtttggcgtt	60
	gcgtgttgat acaaaatatt agagccaagg atggtatcac atgtaaaact gcaattttgc	120
	tatttgttta aagcaaataa gaaataaata tttcgttctt attctttaat ttatttcatc	180
	agatggcttt gttataccat aattgtaaat ctgtcatatc ttaattgcgc aatagcccaa	240
	gattcttgta tattcttaca tttcacaatt tattttctta tttctagttt tagaattata	300
10	<210> 22 <211> 300 <212> ADN <213> Dirofilaria immitis	
	<400> 22	
	aatagctact cacagcttaa gttaactaat ggattettga atttatttaa gegtgtagtt	60
	aagcgattaa tatgatggat gcccagaatc gctttgtctt atagttttgt ctcgacagaa	120
	aggatgcatt gttgtcttga atttgttcaa gggaaaatta aataggtttc tttcaatgac	180
	tcctattaaa tttttttgaa tttaggcttg cattgcgtgt tctgatccac tattagcacg	240
	tacgggtatc gcagtgccat gtgatgcagc actatgcaaa aaccacctcc atgtcacttg	300
15	<210> 23 <211> 300 <212> ADN <213> Dirofilaria immitis	
	<400> 23	
	tctgttgtaa gtttcacaat ccagttaatt taagctcagc ttatttgaaa ttttcaacaa	60
	aattacgaaa attactttct cggttcattt ttttcaacca ccaaatattt agcataattg	120
	gcctgaaatc gtcaaagttt acaaactttt gttcagcaat cttctcttac tcttacaata	180
	aacatgatta acttgtcgtc ataccaatct cgtttatagc aaattctttt caaaaaaaca	240
	ttgctacaaa ttttatatcg catcatttca acacgcataa ttatttttca tatatgaaaa	300
20	<210> 24 <211> 300 <212> ADN <213> Dirofilaria immitis	
	<400> 24	

	ttcacaatcc	agttaattta	agctcagctt	atttgaaatt	ttcaacaaaa	ttacgaaaat	60
	tactttctcg	gttcattttt	ttcaaccacc	aaatatttag	cataattggc	ctgaaatcgt	120
	caaagtttac	aaacttttat	tcagcaatct	cctcttactc	ttacaataaa	catgattaac	180
	ttgtcgtcat	accaatctcg	tttatagcaa	attcttttca	aaaaaacatt	gctacaaatt	240
	ttatatcgca	tcatttcaac	acgcataatt	atttttcata	tatgaaaaac	catattataa	300
5	<210> 25 <211> 300 <212> ADN <213> <i>Dirofilar</i>	ia immitis					
	<400> 25						
	attaactctg	aacccaaaga	ctgttggtta	aaataaagat	ctattttagt	tatacatcta	60
	acattaaagg	ttttcgtacg	gaaacaagta	ggtttgataa	ttttcatgta	actgtaaaga	120
	acacctgtga	aagggatcag	taaaatttgg	gggatgtagc	acggaaatat	gaagctgagt	180
	gttttgtacc	caaaagtttt	tcaaatctgc	gaaataacga	gaggtgtaat	gatcgttttt	240
	aaccaaattt	tttgattcta	atccttccca	cagttttgaa	attcagtaag	catttctttt	300
10	<210> 26 <211> 300 <212> ADN <213> Dirofilar	ia immitis					
	<400> 26						
	ttgcaacaaa	. tcaataataa	aagacttgcg	gctaacaata	tatttgattc	ttttttaccg	60
	ttattattat	gacaggtaat	aatagtatta	caagcatatt	tgtaggtgtc	aatttttca	120
	attcaaattt	tcttaattca	ttatttcttc	ctttccttaa	taaatagtct	ttccatttaa	180
	gaattaactt	tttgaaatct	ttaatgagaa	gacacaaaag	attccggata	attttgcatc	240
	atcttttcta	. tttcgcgtta	gtattttatg	ttttcaacag	atttttatga	tttaactata	300
15	<210> 27 <211> 300 <212> ADN <213> <i>Dirofilar</i>	ia immitis					
	<400> 27						
	gataaaatgg	gttcttgtca	agctcatttg	gcatatcttc	gtcttctata	tttatatcct	60
	ttaatatctt	ctctttttc	aaattttcct	tcccgacgtt	ttccatatcg	acctctttct	120
	tcataaattt	atcttcctca	tttgcctcat	tttttgactt	ttcatccgtt	tcatccttat	180
	ttttctttt	ttcatctcct	attttacctt	ttcctttatc	aacttctatc	ttaactttct	240
	caatgttttt	tttattttct	ttcatctttt	tgttttcttc	tattgacata	ctataacaaa	300
20	<210> 28 <211> 300 <212> ADN						

	<213> Dirofilaria	immitis					
	<400> 28						
	ttttacgaac a	attatttca	taaaagattc	gtatttttga	ttagttttta	agaattttt	60
	tttattattt t	tagccaaca	aatatatttt	tcaaaattgt	taaatttgaa	attataaatt	120
	tcaactaaaa a	aaagcaaaa	agctaagcca	atagaaataa	catacatgtg	taatataaaa	180
	tataaagtat t	cgaaatgaa	aatcaaagtt	tcataacaaa	aaacaaaaa	tattctaacc	240
	ttttagattt c	atcaaaact	tcactaaaaa	gttaaattta	aattttcaaa	ttgttataca	300
5	<210> 29 <211> 300 <212> ADN <213> <i>Dirofilaria</i>	immitis					
	<400> 29						
	cgaacaatta	tttcataaaa	gattcgtatt	tttgattagt	ttttaagaat	tttttttat	60
	tatttttagc	caacaaatat	atttttcaaa	attgttaaat	ttgaaattat	aaatttcaac	120
	taaaaaaaag	caaaaagcta	agccattaga	gataacatac	atgtgtaata	taaaatataa	180
	agtattcgaa	atgaaaatca	aagtttcata	acaaaaaaca	aaaaatattc	taacctttta	240
	gatttcatca	aaacttcact	aaaaagttaa	atttaaattt	tcaaattgtt	atacaatgat	300
10	<210> 30 <211> 300 <212> ADN <213> <i>Dirofilaria</i>	immitis					
	<400> 30						
	tcaaagacaa	aatgaagaac	ttaacaaaaa	aaaggccaat	aaataaaggc	tatttcgtga	60
	aaaatctaaa	aaaaaaaga	tctgttcctt	tcgaatcaag	tgattcttcc	tactacattc	120
	gtgttgtaat	tcttacttgt	atacagtccc	cagtttttcg	acgataaaaa	acatttcgat	180
	aagtgagttt	gaattaattg	aattttaaaa	gatcataaaa	ataaaatcaa	aataaaaaga	240
15	ccaaaattaa	gtctgataat	tccagaaaac	acaataataa	atatacaaat	aataaaaact	300
	<210>31 <211> 300 <212> ADN <213> Dirofilaria	immitis					
20	<400> 31						
	aaataattca	ctaatttctc	atcatcaaat	tatttcgtac	aatcgataaa	tcaacgatta	60
	taatagcgaa	gagaatgaaa	attaatgtgg	tgcacagtat	acggacccca	tatacaatgt	120
	tcaacagaga	tgaacatttt	ttttctatta	aagttttctg	ttcggcgaaa	gaaagacact	180
	ttctaacgat	gctttcctcc	caactcccct	tgcaatgata	gaggatgcag	ccaagattcg	240
	tcgactcaag	cagcatcact	caaccggcca	tcacttcggg	acctttttcc	ctgcctttta	300

	<210> 32 <211> 300 <212> ADN <213> Dirofilaria immitis		
5	<400> 32		
	cattgcgaat gaccgctatg gaatatcaat tagcagatat taatcg	tgaa ttaagcacat 60	
	tggtggaatt tttacgacca aatcgaattt caaaaaatgc tacact	tgca acatcagcaa 120	
	ccattgcaac atataacagt acttcgatgc gtaatgtaaa aaagaa	atgt aatgcatctg 180	
	aaagctgaaa attcatctga tatattgaag caaaaggtaa gattat	tttt aagatatcat 240	
	tettgatget eteataattt etacateaaa tttaateaaa egatte	attt atgttcattt 300	
10	<210> 33 <211> 300 <212> ADN <213> Dirofilaria immitis		
	<400> 33		
	ttcttgttgt acctatcata gatgataact taagtaccaa tagcaa	atagt gcaacgatgc (60
	aaggattctg attaatgatt ataaaagttt aaccaatctt cttca	ttcct tctaatcaag 12	20
	agaaaaaaaa atgagaacat ttttatgaca tttgaagaaa ggcaat	ttat cgctgaaaat 18	30
	tctactgcga tatggaagta tcagatagag aaaataaata ttaaaa	atatg gatttcatac 24	40
	gaaaaatgat aaaagataat aatttacatt ttggtgcttt actga	tatga ttggagtatt 30	00
15	<210> 34 <211> 300 <212> ADN <213> <i>Dirofilaria immitis</i>		
	<400> 34		
	cgatattttt tggacgaatc aaaccttttt gggaaatcat ttgate	gtcac aagcatggtt (60
	tgagaaattt ttttccgaat tagttctgct aaaaatactc caaatq	gagtc tagtggaatt 12	20
	aagctaagca ccttaagtaa gttgagaaaa acgtttccat ttgact	taaca aggctagtat 18	30
	atcgacatga gacagaaatg gttattactt cactcacttc atgaag	gcgaa tacgaaatat 24	40
	ctgttcactt tagtttcaat ctactatttt accaataaac gtgtt	ctttt ccggataaat 30	00
20	<210> 35 <211> 300 <212> ADN <213> Dirofilaria immitis		
	<400> 35		

	tcttaattga	ttttcttaac	tcgaaacact	tgtcttgatt	actgtgctgt	actttatctt	60
	attaaattaa	ataatttcca	tgaccacttc	ataccattga	ccatcaaact	ttgatgaagt	120
	ttatgtgtga	agtgccaaac	aatcattcat	cccttcagtt	taacttattg	ctggtcaaat	180
	tcataaaaat	gcaaattatc	aagcagatag	taattcagtg	aacgtagcgt	attctcgaaa	240
	tttctttcct	tgtatttacc	ttatatagaa	caacgtatat	ttgtagcata	tattcaatat	300
5	<210> 36 <211> 300 <212> ADN <213> Dirofilar	ia immitis					
	<400> 36						
	tttctgagtt	tgcgttacag	cgccaaatct	tcacggagat	agataaaata	cttatcgtga	60
	aattttggcg	ccatgattta	aaaaacacgg	agataaaaat	aaaatgctta	tcggtgataa	120
	tttagcgcca	taatatgaat	gaattgaaaa	aacaatttga	gtagaaacat	gacatagagt	180
	tttcgttttc	tggctacgaa	aatggatgaa	tttttctgga	atcgaattca	gtcaaagaaa	240
	taggaacgtt	gttactaaat	gatcgaaaag	ctttctaaaa	ttaaatttat	gacgtctaag	300
10	<210> 37 <211> 300 <212> ADN <213> Dirofilar	ia immitis					
	<400> 37						
	atctaaatct	tcgttttata	gtggtaagac	ttccatttgc	tgcattcttg	caaattaagc	60
	tgttgaaaat	acttttttt	ttgatagatt	tccaatttaa	tcatattata	agaagaatta	120
	atttcgaata	gaatttttaa	atcatttaaa	ctttaagttt	taaaactaat	ataagttatg	180
	cagatttcgc	gaaaaagtct	catttgttaa	ttcaattatt	ccaaaatgta	ataattttat	240
	aaattcaaat	ttaaactact	actaacttct	gaagtcagga	gccagtagca	acaacgtaat	300
15	<210> 38 <211> 300 <212> ADN <213> <i>Dirofilar</i>	ia immitis					
	<400> 38						
	aactttacat	ttatattcaa	tttttttt	ttttgtttgt	tttagaaat	ttgaaaatgg	60
	gtactaatca	a gtgtcatttg	g cagcctctta	a gaccctcttt	ataacgaccg	attcgatgaa	120
	atacgtcato	aatatgccag	g tttattgttc	gggtggagaa	tgttttcaaa	agttgctgaa	180
	gtgatgaagt	: atagtgagaa	tgcaccttat	tcagcaccat	taagaagtaa	atttttgctt	240
	tggaatttga	a caaagacaaa	gcaggaagtt	gacaacgatg	, ttctgatgaa	acggtttcga	300
20	<210> 39 <211> 300 <212> ADN						

	<213> Dirofilaria immitis	
	<400> 39	
	gtctattttg gctgtcttct aataattcat tttgtaacct tttgaaatat gataaatgta	60
	gaaatttttt cttcctggtc tataatagtt taataatgtg ttgtagtaat agttttggtg	120
	ccgttgaaat atttcaatga tatgctatcg caaaattagg aattcaaatc aaggttacaa	180
	gataattcaa aaacaaacaa cgtaaaaatg aaataatttc ttcttcttac ttaccaacag	240
	gcatatcatc atcatcctca aattcatgac tatatttaac attgtcatat ttgaataatc	300
5	<210> 40 <211> 300 <212> ADN <213> Dirofilaria immitis	
	<400> 40	
	cgacgcaaaa atctttcaaa ttgtcaccca gttctctaag tgattccaat gatgttggta	60
	aacattctgc atgatgtacc gggtaatgaa ctaccaagtt gttttttgct tttaatacaa	120
	ctcgcaaaga ttctgaaaac catgaaatta agaaagatta aaataatctg aactcttttt	180
	ttcatttttc cttgaactta gcaatatact gagttggata aaatttagaa acgaaatttc	240
	gcaaatttat tcagtaaatt caggaaaact cggtttcggt attctaaata taaatagata	300
10	<210>41 <211> 300 <212> ADN <213> Dirofilaria immitis	
	<400> 41	
	gtttctttgg tttatctcag taagatttgg gcggaaattt cagttatact tttcatttcc	60
	atgtgctgtt ttaaatttct tccatattag tataattttc aaataattgt agcgtcactg	120
	gtttatttaa ggataacagg ttggactgca gtggctgaga agtgtcttgc cggtcaattg	180
	tttgttggtg atcaacttgt acgagttact gatatcgaca tatataatac acggcaaatt	240
15	ccattcgttt tcagtactgc atcaaaacg ggattatcgg tactttgtaa atcgcagtat	300
	<210> 42 <211> 300 <212> ADN <213> Dirofilaria immitis	
20	<400> 42	

	gacccctgct	cacaaggcag	ttcccacaga	caatcacaca	tctaatcaca	cacatcaact	60
	catccgacgt	aggctatcaa	taaggaaaat	tgcattgctt	tatcgtctaa	ctgtaataaa	120
	catctacata	atgaaattat	ttcgccacta	tgacaactaa	tatcgcccaa	tgcaaatatt	180
	tgtctcagag	ttattccctt	ttaacagctg	ttgaacgaat	agataggacg	tcatgtggat	240
	gatctacttg	tttcaaaggt	tgaggtaaca	catgaaacac	atgaaaacgg	taatttaaaa	300
5	<210> 43 <211> 300 <212> ADN <213> <i>Dirofilari</i>	ia immitis					
	<400> 43						
	aaagaatggt	cagcaagatg	tggaaaatcg	attactatag	ttgaagtatg	aatcgaagag	60
	gttttttaa	attctaagag	aacgaataat	cggcaaagag	aaagttgagt	aaccttattt	120
	tgccttgttt	tcagtcaatt	tataatatgc	ggttaattgt	gttaaagaaa	gtacaaggta	180
	tgaaatctaa	gccaagaaat	aagagaaaac	agctaatgat	tatttctgca	ttttttcttt	240
	ttcgacacaa	acttggaacc	agaatcaatt	gaactagtaa	tcagattttg	attattgctt	300
10	<210> 44 <211> 300 <212> ADN <213> <i>Dirofilari</i>	ia immitis					
	<400> 44						
	ttagattttg	ctgaagcatt	gttggttaga	tcgatgaaaa	tataattatg	agagattttg	60
	ttgaaattca	gcaacaaaat	tattattcat	gtcttcatgc	tgtcagtttt	gtttttattt	120
	cttctttgac	atcggttata	tttttgtctt	ccaacaatat	aaaaaaaaa	ttataatcaa	180
	ttggtaatca	aattaaaact	ctaattgtta	gctccctaaa	tcagctttaa	aaaaataatt	240
	gcttaattgg	tatttgctac	tattagcaaa	ctgaaactat	ccttttctcg	aatggtgaac	300
15	<210> 45 <211> 300 <212> ADN <213> <i>Dirofilari</i>	ia immitis					
	<400> 45						
	atgagctgat	atttgatatg	catattaaaa	atagggtaaa	ttacattaag	ttagatatcg	60
	ttcggataaa	ttaattagaa	aaaatgttta	ccaattagat	cgcaatgatg	taaaatttca	120
	cgtatttta	ttcttaagat	ttatttgcaa	aattcaaaaa	tatgtcttat	gaaaaataat	180
	atttctgtgt	aagaacaagg	gaccgattca	cttgatttat	tcgcaaacaa	tcgaaattca	240
	aaattagtaa	ttttaaatat	tgctttattc	aaaccatacc	aataataatt	tgagagattt	300
20	<210> 46 <211> 300 <212> ADN						

	<213> Dirofilaria	a immitis					
	<400> 46						
	attgattgat	tcaaataaga	aatttaaatt	atttcccctt	tttttcaaaa	gatttaacaa	60
	atattattta	tttgatctcc	tcgttcgttc	ttatcttttt	gattatcaat	ccatcctcct	120
	ccatcatata	gctaatttat	tttttgcatc	gtaaatcaat	tgatgtatga	ttgatttctt	180
	gattataaaa	agttagaaga	attgaattgc	ttaaatttaa	ttattgataa	tgaaatatta	240
	ttatatttca	aaatgatacg	aagaaatatg	acgatgataa	gagaaaatat	gatatttatc	300
5	<210> 47 <211> 300 <212> ADN <213> Dirofilaria	a immitis					
	<400> 47						
	tacgataagt	tattttattt	tacacatctc	catccttgac	tagtgtccgt	gccgactgtc	60
	ggacttgaac	cgacaaccta	ctaattacaa	gtcagttgct	ctacccaatt	gagctaagcc	120
	ggccatctag	aatgtgcgac	cccgtcgtgg	tacatcttct	ataatcgttt	ggtattcagg	180
	actctcttct	ttcgtgggtg	gaggatcttg	atacagttga	ctattaaaaa	tagggccttt	240
	gttagtctgt	tacaactcat	agacaaaggc	gacaatttta	gcttacatct	tacgttatgc	300
10	<210> 48 <211> 300 <212> ADN <213> <i>Dirofilaria</i>	a immitis					
	<400> 48						
	atggtagaaa	attatatgaa	aaaatatcat	actaaaaata	taacagattg	ttataaggta	60
	tggtttaaga	atttacaaca	attgattatt	tatgataaaa	aaaaaaaag	taaatcagtg	120
	aatcattaag	atagttatga	taagcagttt	gtattcggta	aagcgaatga	ttagaggaat	180
	tatgggacga	aacgtctata	acctattctc	aaacttttaa	tgagtatgac	gtgtcttgct	240
15	tgcttaaaat	tatttcaatg	atcatttcac	tttaccagta	tgatcatgat	tagacttgaa	300
	<210> 49 <211> 300 <212> ADN <213> <i>Dirofilaria</i>	a immitis					
20	<400> 49						
	ttagtatcga	tattatcaca	aatgatatca	ctttcatcaa	tactggatac	gattttatta	60
	gtatcataat	tttgtggctc	gcattccgaa	agttttacac	gtagaagatt	aacctgcaat	120
	atgatttatt	ttatcatttt	cgaatatcca	actttgaaat	aattcgaaaa	tgttgaaaaa	180
	ttttgaaaaa	ttgttaacaa	aatattacaa	aaatatcaaa	tgaaattaaa	taactgtcca	240
	tttcaaaaaa	agaagaaaaa	ttatgaaatt	accaattaaa	aacaggactt	attaattaaa	300
	<210> 50						

	<211> 300 <212> ADN <213> <i>Dirofilari</i>	ia immitis					
	<400> 50						
	tgtggaaata	aagtacaatt	aattgctgtt	cgcttaataa	tattatttc	attcttggct	60
	tttttttct	ttccccgtga	tattataaaa	tatagttttt	taattttaac	aaatcgtcat	120
	aattatttaa	aaaatactga	ggtgagtaaa	tgtaattggt	tgctggaaaa	aaagtgggtg	180
	atgagaggtg	aatgaaagca	gaatagttta	tgattgcatc	aaatttcctc	cttaatctgt	240
5	gattaaaatc	aaacaaaacc	cgaaaagttt	cttcttcgcc	tttttcttct	ctttgtttca	300
	<210>51 <211> 300 <212> ADN <213> <i>Dirofilari</i>	ia immitis					
10	<400> 51						
	cgaaatccgc	cgcgtgcatt	actttgcgct	tgttgattac	gacgcatttg	ttcgtcgttg	60
	ataaccttat	caatcatcat	acgtccgtta	cgtatgcaat	caacatcgcc	agttaggctg	120
	aaatcaaatg	gatggcgatg	atatcaaaaa	caaaaataag	gagtatttgc	tgaatcattt	180
	ctttttctgt	attattatca	aaattttctc	ctttccattg	tttccttctt	aatcaagtga	240
	atgctcattt	cattttgaaa	taatccaacg	taataattcc	ccatattccc	aattactttc	300
15	<210> 52 <211> 300 <212> ADN <213> <i>Dirofilari</i>	ia immitis					
	<400> 52						
	agaaatatta	aactttgaaa	agatgtgaca	tgttctgtaa	caaaagccca	aaatttcgac	60
	tgctgcggct	tgaagtaaaa	ttttggaata	tgctacatca	gtagtgcaac	agatggttcg	120
	ataaatagtg	gtaagtgatg	ggaatcctag	gaatagatgg	gaattgtatt	tcagatataa	180
	atttgatgca	tattttcata	gttgattata	tctacgatca	cacgttgaat	attctaaaag	240
	caaactgtaa	ttaactaatt	gaatttgaaa	atttccaaga	attaaaattg	gtaacaaaaa	300
20	<210> 53 <211> 300 <212> ADN <213> <i>Dirofilari</i>	ia immitis					
	<400> 53						

	attgtcagga atgagaagca agttttggat acttaaggga tgaatggaac acatacatgg	60
	cagaaaatgt tagtaatcaa accatttaaa ttacttagcc actatgctaa actttctaga	120
	agtatggttg aacgtttaaa aaccttcgca aaaattgtat tagattatct taatcttccc	180
	tacatcaaaa cagagaattt ttgttctacg acgtgagtct gcatgtatta aggaagttcg	240
	tatcatgacg taaatatcct gagtgattat tgaattcaga aaatgagctt tttcatttgg	300
5	<210> 54 <211> 300 <212> ADN <213> Dirofilaria immitis	
	<400> 54	
	atatgagtgt tacatgtgta cgttacatgt aaatattata tgttatatgt aaaaatgtca	60
	tgtatagcat ctattcacgt gtacgtacac gtgtatatac atatacattg atacttaata	120
	cgtatacgca tgaatgaaca gatattatat atttacgtac actagactca catgtacctc	180
	tgtatacgca tacatgtaca gatatatgtt tgacatacgt aaattcatat atgcttttat	240
	ttatgcttat attaattgtc acatacatgc cttatatttt cgttgttata aacacataaa	300
10	<210> 55 <211> 300 <212> ADN <213> Dirofilaria immitis	
	<400> 55	
	gaaaataaaa ttagctgaaa atatatgcga ggtaaagcac acagaagaat taacttaagg	60
	taatatattg taagaatttt tatattcggc gcacctaata atttttagac cgcatatgcc	120
	cagtatttga aactggtagc gctgttcgta cttgctgttg tccatgttat gtatatgata	180
	ccattcctaa atacttttgc ggctgtggtt tccagtgttg atgtgactgg tatgatgcct	240
	aacactggat ccttccatct gcggcatttt gttgaaattc ttattgatgt gagctgttta	300
15	<210> 56 <211> 300 <212> ADN <213> Dirofilaria immitis	
	<400> 56	
	caactgtgaa tcataaacat tacttaaatt aatgaagcta gttaacgaca aatatatttt	60
	tttatgtatc agtgctatca tataacataa aaacttactt tcattaataa atgagctcaa	120
	atattgactt ttgtccaaaa tgctcaaaat gtcgtcataa tatttgaaat gaagataatt	180
	tcacgctttt cgaagcctcc tctcacgtct tttaatcttc ttttcttctt cttgctctaa	240
	tggttctgcg aaaaaccacg gtgcaataat cactttccat aatttataca gtacataagc	300

	<210> 57 <211> 300 <212> ADN <213> <i>Dirofilari</i>	ia immitis					
5	<400> 57						
	ctgcttaact	cttttcattt	ttcagagaat	cttctctaaa	attgtgaatt	gatccaaacc	60
	aaagaatatg	gataatgtga	ttcgaattcc	tggaatttag	attttgagag	ttttgaagtt	120
	tttaaagaga	ttgaatttct	gtgaccttct	ggtatatttg	atgtcatttc	gggatgcgta	180
	tttttgccga	aaatttttgg	cctcactgca	atcttgttaa	aagtcaaaaa	aattcaatcg	240
	tagaatttcg	ggtttacctg	atattactgg	aaatctctga	tctttgttct	agattgctgt	300
10	<210> 58 <211> 300 <212> ADN <213> <i>Dirofilari</i>	ia immitis					
	<400> 58						
	ataaagaatt	tgcaactctg	tatacctttt	tgcagtgcaa	aagcggatga	attcttcact	60
	gcagtgtgac	agattccttt	gataaaattg	cttcgttctt	atgtaaactt	ggaaattctc	120
	ggtagttatg	cttttgctag	ttgaaaatgt	tctgctcttg	taaaacatgc	aaaaagagat	180
	tatctttgtt	ctattatgga	aagattcttt	tgaaattttg	acgactgaga	agacaaattt	240
	tatcccaact	tgtcatctgc	aataaaaatt	tttcctgacc	tgtttcttaa	ccttccaagt	300
15	<210> 59 <211> 300 <212> ADN <213> <i>Dirofilari</i>	ia immitis					
	<400> 59						
	aaaatcaaat	caatatgatc	agataactca	tacttatctt	actgaaaatt	cctcattcaa	60
	gggaaataaa	taattgcaat	tcttgattcc	gatcatggat	gattttcaag	caaattacca	120
	atgatatcta	tcgataacga	ttacagcata	cagctataac	ttattattga	ttgaattgat	180
	gaaaataatt	ttaccagaaa	tttatcaatg	tttatctcat	tgcagtatac	gatgtttagt	240
	gtgacaacac	tttttcttgg	aataattgtg	cataaatcat	tgattgcatt	tagtattgga	300
20	<210> 60 <211> 300 <212> ADN <213> <i>Dirofilari</i>	ia immitis					
	<400> 60						

	tcctgcccac	attctttcta	ctttagataa	tcaacaggag	ttagttgaaa	gagaagacta	60
	ggaacagttg	caacttctga	atctttctga	ctttctttcg	ttttgtaaat	tatttatttg	120
	tataaattta	aaattcgaag	agaaataatc	caaggtccaa	cttcttttc	tgttagttct	180
	tgcgaatgct	ccatcaaaat	gcaaaaatat	gattagaatt	ctgatggaaa	ttaacaaaat	240
	cgattagata	agaaaagtac	aaaacagaaa	ctaacttttt	ctcccatttt	catattatag	300
5	<210>61 <211> 300 <212> ADN <213> Dirofilar	ia immitis					
	<400> 61						
	tcattgcttt	aatacttttt	aacgagaatt	ttctcgatca	aaataagatc	tgcaattgat	60
	atacgtcaat	aagcgaacat	tagctgtatt	acacgctaat	attcacatat	gatgaacgtt	120
	gtaagcgtca	tacatcaaca	tatatccatc	cgataaataa	tgaccactac	acattgctac	180
	caaccatcct	atcccgccac	tatttgaaat	gaactgagaa	ggagttatcg	acacaggctt	240
	cctagcaacc	aaacaaaga	cgagacagat	gaatagatag	acagacagac	gaacatacaa	300
10	<210> 62 <211> 300 <212> ADN <213> Dirofilar	ia immitis					
	<400> 62						
	agattctggt	tattattgta	tttctgattt	atttaatccc	aacttaaaga	ttcattggct	60
	attgtttagc	atctatatca	attttataaa	taaatagtaa	tacctgatga	aaagcaataa	120
	ataattagat	gcaaatttta	attagataca	gtttgatgga	aaacattgaa	gccatgtaca	180
	actaatttat	gcatgttgaa	ttatgcatgc	ataattaatt	tatgcatgac	agcaagtttg	240
	gtataaaatt	aattttgtat	gaagataaaa	ttttataaat	aatgataata	atgctggtaa	300
15	<210> 63 <211> 300 <212> ADN <213> Dirofilar	ia immitis					
	<400> 63						
	attattgaaa	agaataatgt	agctaattag	ttgaagctgt	taaaagtaaa	gctaaaaaga	60
	tgatggaaat	tattcgtata	aacattcttt	gtaaacaaac	agtcatttct	gtgaataaac	120
	aattataatt	ataaacaata	cttttcaaga	caataaaaaa	attaggaagc	attgttgtga	180
	taatcaatag	ttgatagact	gtcaatgtat	ttttatcagt	cgtgctgctt	tttttccctt	240
	tcttgactca	tttattttat	tatttattga	tagaatgtca	atattctagt	catttgttat	300
20	<210> 64 <211> 300 <212> ADN <213> <i>Dirofilar</i>	ia immitis					

	<400> 64						
	atcttaactt	gctttaaaca	aataaattaa	aacagcccaa	tgttccaaga	aaaaaagata	60
	agttaaaagt	ggggtgtcca	aaaatttatg	aattgaattg	gacagttatt	cagatcctga	120
	aaatacgctt	ctctgatcac	tgcaaatatt	cccgataaat	aagtgaacat	taggttaatc	180
	ttaattttcc	cttaactttc	cttagccttt	tttaaatttt	tggattattc	aagcattttt	240
	attgcggtat	cgtttttgta	aaaaaaaag	tataattcaa	cattcaggct	cgacgttatg	300
5	<210> 65 <211> 300 <212> ADN <213> <i>Dirofilari</i>	ia immitis					
	<400> 65						
	aattaataaa	aagaaaggaa	tacgataaaa	tatctatttt	ttgaaactaa	tcaaacatat	60
	tcctcactgc	tcaccggata	gttgctttct	aattttacat	taagaaatat	atttttttt	120
	ttcaataagg	aaagttatgc	agactaggag	aattctactc	tgaagaagag	ataagcatgt	180
	tagaattatt	aaaatctatg	gaaatatcct	taaaagaatg	cctatagtag	ctctgatttc	240
	gaaaaaaaa	gcaaaaaaca	aaataacaaa	ttctgctcaa	ttgaaataaa	aaactttcct	300
10	<210> 66 <211> 300 <212> ADN <213> <i>Dirofilari</i>	ia immitis					
	<400> 66						
	taaaatatct	attttttgaa	actaatcaaa	catattcctc	actgctcacc	ggatagttgc	60
	tttctaattt	tacattaaga	aatatatttt	tttttttcaa	taaggaaagt	tatgcagact	120
	aggagcattc	tactctgaag	aagagataag	tatgttagaa	ttattaaaat	ctatggaaat	180
	atccttaaaa	gaatgcctat	agtagctctg	atttcgaaaa	aaaaagcaaa	aaacaaaata	240
15	acaaattctg	ctcaattgaa	ataaaaaact	ttccttcaac	ttccagcatc	actgctgtga	300
	<210> 67 <211> 300 <212> ADN <213> <i>Dirofilari</i>	ia immitis					
20	<400> 67						
	aactgctaaa	aaattgaaac	tagtgttaga	ttgataagtg	ggcagattaa	aaccaattgt	60
	gttattggcc	cgttaattag	tgactctgaa	tagctatggc	gaatcgtata	gtgttgtacc	120
	gacgacgtat	ctatcaaatg	tctgccttgt	taaatttcga	tgatagttta	tgtgcctatt	180
	atagttgtaa	cgagtaacgg	agaataaggt	ttcgactccg	gagagggagc	ctgagttgcc	240
	acattcaagg	aaggaagcag	tcgcgaagat	tacccactct	tagaatgagg	aaagagtgac	300
	<210> 68 <211> 300						

	<212> ADN <213> Dirofilari	ia immitis					
	<400> 68						
	gaaaactaag	aagtaagtga	aatttctaag	ttctttccca	gaaaggttag	atccaatatt	60
	tgttttcatt	ttagcatttt	tatccaatga	aaaatgtgcc	caataaatac	ttgtatatag	120
	tattgcattt	aaaaacttca	gaaagcacaa	tgagatctaa	gctcagaaat	atgacgaata	180
	ccaatccttt	tcctagtctt	accgcttctt	aacttttgtg	tcgctttata	aaaattaaaa	240
	ataaaaagtt	gaacaatggg	aattacatca	ttttcatctg	aatggtttat	ttcctattct	300
5	<210> 69 <211> 300 <212> ADN <213> <i>Dirofilari</i>	ia immitis					
10	<220> <221> misc_fea <222> (36)(45 <223> n es a, c	5)					
	<400> 69						
	cttccctagc	tatgcctttt	cgtcacttaa	gcttcnnnnn	nnnnntctag	ctacgtatcg	60
	ttatcattta	tgcttcttta	gctacgtttc	tccatcattt	atgcttccta	agctacgtat	120
	cttcatcact	tacgcttccc	tagctatgtc	ctttcgtcac	ttaagcttct	ttggctgcgt	180
	gtcttcatca	ttaatcttct	ttagctacgt	atcgttatca	tttacgcttc	cttagctacg	240
	tctttccatc	atttatgctt	cccaagctac	gtattttcat	catttatgct	tccttagata	300
15	<210> 70 <211> 300 <212> ADN <213> <i>Dirofilari</i>	ia immitis					
	<400> 70						
	gatcttaaaa	ttctatgaaa	cttcttctgc	atggtattgt	ttccaacaga	atataatgac	60
	aatagcaaca	gtattggtta	tataaaaata	ttgactgcag	caggattata	tttcaagttc	120
	ttttaatttc	atttatttat	tctttcattt	acttttactg	tttttatgtt	tttcttcttt	180
	aaaaaatatg	atttctctca	ctgttctctt	tcatctatct	atatttattt	gataattgct	240
20	tatatgataa	ctagctaaag	ggaaataaac	tttcagtcat	catagcttca	ttttagtaaa	300
	<210>71 <211> 300 <212> ADN <213> <i>Dirofilari</i>	ia immitis					
25	<400> 71						

	ctatactaat	cagtccacta	tccattttta	ggttgcaaaa	gttgcaatga	cggtttgatt	60
	tcatcctcca	atgcaatttt	gagtctcaat	ctcgagagat	agatcgatcg	cttttagctt	120
	gatttagctt	ggttaatgtt	gtgagggata	ttgggcagaa	attctgtcaa	gcgttactta	180
	atgaaatagt	aaatgatcac	tgatatttat	tgttaatgat	acttgagctc	tctagattat	240
	gaactggaag	gttttcgata	gaaataatcg	atacatatat	tagaatcgac	ttctttttc	300
5	<210> 72 <211> 300 <212> ADN <213> Dirofilari	ia immitis					
	<400> 72						
	tcatctttt	cacatttcat	ttaatcatca	ttttatcaat	tcctattttt	aaacaaattc	60
	ttttcaaata	ttctctcttt	ccttctcttt	ttgttttccg	cttattcatt	ctaatgatga	120
	acagatgtag	aaaatttgca	ttctattgct	cactacaatt	ttgagtagaa	tatatttaat	180
	tatttgattc	gagacagatg	gttatagcct	ttagcttcag	cttctcgttc	aaattaagta	240
	cttgtgacct	ttccaagtac	cattaaagct	ttcctgcgtt	tcctaattag	aaaaaaagg	300
10	<210> 73 <211> 300 <212> ADN <213> <i>Dirofilari</i>	ia immitis					
	<400> 73						
	gcattttaag	ttaaaagtat	cacgctgcat	gacacctcac	gtttgctatc	tcaaattgag	60
	taggttagaa	tcttttttg	gctactattc	aaatattaat	aataaattgc	tgcaaacaga	120
	tttcacaccg	gaaaaaaatt	aaatttttct	agcaatgttt	taactccctt	attaaatatt	180
	tatagaaaat	cgactactta	aaaagaattg	actaacattt	ctgaatctct	gcagagattt	240
	atagatggat	tagcatccta	caagttttta	tctttttgct	atatttccat	tattttttta	300
15	<210> 74 <211> 300 <212> ADN <213> Dirofilari	ia immitis					
	<400> 74						
	gataagacgt	cttattttgt	aataattcaa	aaattaatta	atatagaagt	aagatcttga	60
	taataattaa	tatgctcaaa	tttcttaatg	agaatatgtt	caggatgaag	atgaagtgaa	120
	agaaattgat	agattgagga	agcaattgct	aattgaaaca	gaacagctcg	tttccaattc	180
	tcttaaagat	ttactgaaga	aaatttatta	tccacttgaa	gaagctattg	atctcaaaat	240
	tcatcagaaa	ttaattcaac	aaattgctgc	cttgttgaag	tgtattagta	tcttggataa	300
20	<210> 75						

	<211> 300 <212> ADN <213> Dirofilar	ia immitis					
	<400> 75						
	accgcaaaat	acctaaaaat	ttctataaca	acgattaaca	cggcctcgaa	ctggaagcat	60
	attaatccat	gcgtggctca	aacttcaatc	ataaagacaa	gatctagaga	tcaacacaaa	120
	atggtgaatt	gttaccctat	cgttgctaaa	gtttgagaga	aaaaagtgct	aaatcaagta	180
	gtacaccaaa	tttagttaat	attaagaaat	caatttagta	ctgaatttaa	acaaatgaaa	240
5	ttttacgata	aaataaaaaa	gtacctgatc	aaacagcgtc	ctcccgttat	tcccattgct	300
	<210> 76 <211> 300 <212> ADN <213> Dirofilar	ia immitis					
10	<400> 76						
	tataagacta	gtaaacagat	cgtaatataa	taaatatcga	ttttatttta	aattttcgaa	60
	aacttccaaa	tctatcgata	tgaaattaaa	gatcaatttt	taatttccat	aatatattta	120
	gattctatcc	caacatcact	catctttatg	tcaacttatt	taattctctt	attaacatta	180
	tatttcttgt	ttacaatgat	aaattttatc	aattttctaa	tatgatagaa	catcttcatc	240
	atctgaagat	atgcttttct	catctttgta	acaattcgta	tcgcttctga	ttttactttc	300
15	<210> 77 <211> 300 <212> ADN <213> <i>Dirofilar</i>	ia immitis					
	<400> 77						
	gttttattat	tgcttattga	atagtgataa	taacactttg	atatgatatt	gttttgttgc	60
	gatcattgta	ttgattataa	ccttaattaa	acgaggatat	tatgggaaat	gtatttatta	120
	caaaattaaa	tatgaaaggt	tgaagtcttg	acgaaacttt	caaacacatt	tctcgaattt	180
	tctctgcaaa	aatatcgtta	cgatttttgg	aaattatgaa	gtccaagaat	tcaatcgaga	240
	gttcgccatg	tcactttggc	tagtttcgtt	tgtttttaat	atttcaatca	aaagtcaatt	300
20	<210> 78 <211> 300 <212> ADN <213> Dirofilan	ia immitis					
	<400> 78						

	ccttggatat	tgttcttgac	atcgttgatc	agaaggtcac	cgtagtgttc	ggtgagcgag	60
	atggaattgg	actcaggttt	attctccgtt	tttttcatgt	ttttgaattt	tagagagaaa	120
	ataatgtttg	tctgaatggt	tagcaaacta	attagttttt	aagttatcag	gaactcgaag	180
	tatcttcttt	tgcacttctt	taaccttttt	catcaaattt	tttaacagta	acaagatttt	240
	tttgagaatt	ttcaaaatat	ttttgacttc	tgatgatatt	tgatgagaaa	accatcactg	300
5	<210> 79 <211> 300 <212> ADN <213> Dirofilar	ia immitis					
	<400> 79						
	agagtattat	tatacatgat	gatgatgatg	atgatgatga	tgatgatgat	gatgatatga	60
	tgatgatgat	gatgatgatg	atatgatgat	gatgatgata	atgataatga	tgatgatgat	120
	gattaattgc	ttatttttaa	tgattgataa	ctttaaaaga	aatcattgaa	atttgatcga	180
	ataaaaattt	tcttaaaaaa	agcatttgct	atttatatag	taaacctata	aaaaattact	240
	tatttttatt	actaatattc	atttgattgt	atgaaagaga	agagaaaaaa	aacctttgca	300
10	<210> 80 <211> 300 <212> ADN <213> Dirofilar	ia immitis					
	<400> 80						
	tggtatcaca	gcactgggtt	taatttcaac	aatcggttga	cgatcttttc	gggatatgcc	60
	tatacccaga	aatgaacgta	tgccaaacga	tggtatgttt	gatgcaacag	acgacgtcaa	120
	cttaaaatgt	gtttttttt	caaaaattca	atatttttag	tttaaaattg	cacgtcagta	180
	aaaattaatt	cataataaat	ctctttgatt	tcttcgttct	ccttttttt	cagaaaaaat	240
	tgaaatttta	catacctgat	ttccaagagc	atataaagca	tcacttaaag	cattctgcga	300
15	<210>81 <211> 300 <212> ADN <213> Dirofilar	ia immitis					
20	<220> <221> misc_fe <222> (263)(2 <223> n es a, c	272)					
	<400> 81						
	tccttttca	t gatttgtago	taaccaataa	gatgtgtata	tgttcatata	tttactctcc	60
	cctgactct [.]	t ttacactctc	attctctcat	ttgttcattt	agataagtaa	tatgcgcctt	120
	tetetteet	g attctctcaa	tctttcatcc	cttcatctcc	tcaatctttc	tcccattctc	180
	tcaatcttt	c ctgcattgca	ttcattgatg	aaacacgata	gtattaataa	gcataatttg	240
	ataaattga	a ataattttt	ttnnnnnnn	nntcattctc	tcaatctttc	ctgcattgca	300

	<210> 82 <211> 300 <212> ADN <213> <i>Dirofilari</i>	ia immitis					
5	<400> 82						
	tttgaattaa	caaaatatta	acaattacaa	ctatttcgga	atttaattta	agaataattt	60
	aattaatcaa	tttcctattt	tgtattttaa	aaattaccac	aataattatg	taatttttgg	120
	gatatttgaa	actttgaaaa	aagtggtatt	gtatttgaga	ataaattaat	taatgtaatt	180
	cttgctgctc	atcgttccat	aacttacaaa	tatttctcgg	tattttattt	gagataattc	240
	ttatcatttc	ttccatagct	ttcaatatat	ttataactta	tttgtaatca	ctcttatcac	300
10	<210> 83 <211> 300 <212> ADN <213> <i>Dirofilari</i>	ia immitis					
	<400> 83						
	ttgagatatc	aaatcaagcg	ttgcatattt	atagtacact	ggtgtagctg	aaatcgcgaa	60
	gagaacacga	aaatcagaga	agtcaatggt	tcctttgtgt	tggatttcac	atgaaagcat	120
	ccttatgttg	tacatgcgtg	attacaatat	gatacaagat	gtaagctaaa	aattgtttta	180
	tctttgtcta	tgagatgtag	ttcatactct	ataataaagt	cccaaccctt	aattctcata	240
	ttcacaaccg	tatcagaatc	caacaccaaa	ccattataaa	gaatgttctt	cgtcgaggcg	300
15	<210> 84 <211> 300 <212> ADN <213> <i>Dirofilari</i>	ia immitis					
	<400> 84						
	ccactatcgc	ttacactttc	tttatcctgt	tcttcttcat	ctttcgtttt	ggactttatt	60
	ttactgtcag	gtgacaagca	aagtaacgat	gttggacttt	gcgaagatgt	ggatggtacg	120
	ctagaaaaaa	aatgaggatt	ggttaatatg	tctaattatt	acatcgcttt	tttttaaatc	180
	ttttctaaaa	ttaaactgaa	taatcaactt	atttgctatt	cagtttatct	tatttttat	240
	caacaaaatt	cgaggaaaca	aatcgcttat	cagaataatt	gttttgatca	acaaataaag	300
20	<210> 85 <211> 300 <212> ADN <213> <i>Dirofilari</i>	ia immitis					
	<400> 85						

	caatcccaca	aattcagtgt	gtcggcgggt	cagcgaaggg	aaagtttgaa	ccgagggtat	60
	gtacaaattg	tgataatttt	gtgatgacgt	agtaaatttc	atagttttgc	atgctttaat	120
	gttgatagtc	gcacaatcct	acgttgatta	aatttagcta	ttagatatcc	tactaaatta	180
	tgttgttcat	aatttttgtt	tttaaaatgc	tccacttata	ttttcaggtt	gtgcagtgct	240
	acaatagggg	ttatgacggc	aatgatgtcc	aatgggagtg	taaagcggaa	atgagcaatc	300
5	<210> 86 <211> 300 <212> ADN <213> <i>Dirofilan</i>	ia immitis					
	<400> 86						
	tcagataaat	tgtatttgat	gttaattcaa	agaagaaaaa	aataatcagt	agaatatgaa	60
	tcgaataata	ttcatacaac	cagtttattc	attattattc	acttttaacg	tctaaatgac	120
	gtagctacgc	ttttttctc	gctttcaagc	ctttactgac	caagattaat	gtacattctg	180
	ttgaacaaga	ttaatcgaca	ttctatcgat	caagatcaag	cttttactga	tcaagattaa	240
	taatgacatt	cttctgttga	tcaagattaa	tcgacattcc	attgatcaag	attaatcgac	300
10	<210> 87 <211> 300 <212> ADN <213> Dirofilar	ia immitis					
	<400> 87						
	ctctctaaaa	cctattggtc	actaaacttg	cactgactaa	aaactattgg	tcatcagact	60
	tgtgattcat	tgaaaagacc	gttagccgct	aaaattatga	ttcactaaaa	aaaatctatt	120
	gatcattaaa	tctgtaatca	ttgagaaact	acaatcattg	gtcattaagt	ttgtgctctc	180
	taaaacctat	tggtcattaa	actgactaaa	aactattggt	cactgaacct	agagtctatt	240
	aaaaaaaaa	tcattgtatc	aataaattta	ttgtttacta	tcaaatccat	tgattactga	300
15	<210> 88 <211> 300 <212> ADN <213> <i>Dirofilar</i>	ia immitis					
	<400> 88						
	tctaaaacct	attggtcact	aaacttgcac	tgactaaaaa	ctattggtca	tcagacttgt	60
	gattcattga	aaagaccgtt	agccgctaaa	attatgattc	actaaaaaaa	atctattgat	120
	cattaaatct	gtaatcattg	agaaactgca	ttcattggtc	attaagtttg	tgctctctaa	180
	aacctattgg	tcattaaact	gactaaaaac	tattggtcac	tgaacctaga	gtctattaaa	240
	aaaaaaatca	ttgtatcaat	aaatttattg	tttactatca	aatccattga	ttactgaata	300
20	<210> 89 <211> 300 <212> ADN <213> <i>Dirofilan</i>	ia immitis					

	<400> 89						
	aaaatgtatc	aaattcttcg	atgccataaa	ttatacagac	ttgattggca	ttttttctaa	60
	ctttcatcat	gaaccattct	atttctaaat	tgatccatta	caaaatcaac	tttgtgatat	120
	catcaatctc	agtcataacg	agaaataatg	ataatataaa	gcgactatca	tttgaatttc	180
	ctgaatattc	aagatgtaat	tacatctttt	ttttaatgta	atcaaaattt	cttgccatca	240
	ataattttc	aacatatgct	ttcatcgact	gccttatgca	gatcgtaatg	atgacagcca	300
5	<210> 90 <211> 300 <212> ADN <213> <i>Dirofilan</i>	ia immitis					
	<400> 90						
	attgattaaa	aagaatcaac	attaaatttt	tgatatagtc	gagaaatcct	tcgtgataat	60
	tcttttagaa	caattcttta	cactaaactt	gtatttactt	gcttattatt	tgtctaaaga	120
	tactaactat	ttgtcagtgg	aatttatgat	cttggcatta	ttgcatataa	cgctttccta	180
	aaatctgaaa	tttttcagta	ttttaaaaac	taagacgatt	attaaatatt	actcaaagct	240
	tagaactttg	attatactaa	tcaaatcaaa	aatttcatca	gcgatttttg	ttgtgtcatt	300
10	<210> 91 <211> 300 <212> ADN <213> <i>Dirofilan</i>	ia immitis					
	<400> 91						
	attttttcca	gcagaattgt	catcaaaaat	cccatttttg	atatcctctt	catcgaaact	60
	tgctcctgaa	tccagagaac	aacgaagaat	gtgtaaatct	atttcagtag	cctgctcatt	120
	gtgcaattca	gcgactttat	ttctgtgctt	caagctaact	tcttcattat	gccactcctc	180
	ttctctcgct	attttttcgc	tatctaattc	aaaatcttcg	tctgaaacgg	aatcaactcc	240
	tgacgatgta	ctcgacactg	ataatatttt	catgccgatt	tttctctcaa	acgaatcttt	300
15	<210> 92 <211> 300 <212> ADN <213> <i>Dirofilan</i>	ia immitis					
	<400> 92						
	gaatgaagag	caaaaaaata	gtcacgacca	cctgcaataa	aaacagcatc	tccgtaaaaa	60
	tgattgaatt	gattcccgaa	atacgagttt	atcaaattga	gaattatgca	aattaattat	120
	cagcatgcag	atttactgat	tttatatctc	tcataccgaa	attaaggtga	tgttttccat	180
	ttctttgttt	ccacaatgtc	ttctttgtga	atcgttttgg	atcaactatt	aatccgatcg	240
20	aatcaatcct	ccaaatatga	gtttattcaa	cgtaacaaaa	cattgtccga	gataatcaaa	300
	<210> 93 <211> 300						

	<212> ADN <213> Dirofilaria immitis	
	<400> 93	
	tggaaatttc gaaatcgaaa ggatgaagaa aaaggatcct tgatctatac attaaatatc	60
	accatatcaa ctagcatggc aagtcaaagt aatgttatca tttaaataaa aaagatgaat	120
	agtaggacta caggttatat tgttaaaagt cgacaaattt ggagtaattg acagagatca	180
	acgattaaat gtaatggatg atcttatctt cttttttcaa ctacgccaaa atgaaaataa	240
	caattgaatt tgtcgaataa gaaactaaca ttttgaaaat aagattgaac atttataaat	300
5	<210> 94 <211> 300 <212> ADN <213> Dirofilaria immitis	
	<400> 94	
	ggttggatca ttatcgacag aactttagaa gtttcttgat aaggacgaaa agaagcagca	60
	ccattgctga tctaaacaag gaaaaaagac cttttttgga atattgaagt ttttactgat	120
	aggtgcgtgc tgtgtactgt gggcataagt acaagcttca tgctccgcag cgtgaatacg	180
	tgctgcatgc atactatgca gtaaaggtgc gtgtcgtatt gctcaataag tgtataaatt	240
10	gctgcttttc ttgcatagtt aaatattttg ttttcatttt ttccgctatt caaaataaat	300
	<210> 95 <211> 300 <212> ADN <213> Dirofilaria immitis	
15	<400> 95	
	gttgggattt cagactctca ctcggtgtcg tttcacagtg atatctgaat cgaagtcaca	60
	agcaggtatg aatgcataac aactaatatc cattgcagaa acaaggcaaa actgagaagc	120
	tcgagcaata tagctataga agctggtacc acagatgaca ttacatggta tttccatttc	180
	agcttcacaa acattgtaaa tagcttgctt cgatgattca atatctcgtt ctacgatatt	240
	cttaaagtaa tttttattta tttgaagtat agattacatc catgttctat ctatcatttc	300
20	<210> 96 <211> 300 <212> ADN <213> Dirofilaria immitis	
	<400> 96	

	tgttctgaac	atctctttt	gattatcttt	tttaattcct	ccattattt	cgttttttc	60
	gttgtgaatt	aatattgttt	gtctttgatt	cagatgatat	tttcggatcg	taaatagatg	120
	gcatcggcat	aagcgtattg	agaagcatto	aatggtgcac	tcttgcttct	ttttttttg	180
	aaatctttct	cgataatcaa	ataagtgcag	gatgccaatc	attaacaatt	tcgttccact	240
	ttttcagttc	ttattcttat	aacaccacat	ctcatttgca	attttgtcgc	caatgatttt	300
5	<210> 97 <211> 300 <212> ADN <213> Dirofilaria	a immitis					
	<400> 97						
	ttttttcgag	gtcactctgg	aaaaataaat	catattttaa	aaagacataa	aataaaaaat	60
	atgtatatat	aagaaaattt	ttactctgaa	tttcttaaga	aaattctcga	ttctgttttc	120
	cataaattcc	ggaatatgtt	gtccctgaat	taagaattcg	attccttgca	caccattatt	180
	tcgtctagtt	cctgtgtgaa	caatgtaacc	tggaaatgaa	cacataaact	gtaatatttt	240
	gagcttaaaa	taattatgag	gatgcgaaac	tgaagatatt	cataaatgtt	taaaaaaaaa	300
10	<210> 98 <211> 300 <212> ADN <213> Dirofilaria	a immitis					
	<400> 98						
	gtccatgcat	tgcttttcgg	aagttagtgt	agattcagtg	aatatttaat	accagtctct	60
	ttctaattca	aaagagcctc	ccatttcttt	tttcagtttc	agtctctgaa	tcagagcgtg	120
	taatctacca	ctccattgcc	gaaaacagct	cgatgtattt	cctgctacgt	agtgtttaga	180
	attggcgtat	gccacttgct	cattattcgc	gcatgaagtg	taactgtgaa	tagaatgata	240
	ctactgttag	aagagaatgc	gttcacttta	tttaacatta	tactgattca	tttcttcttt	300
15	<210> 99 <211> 300 <212> ADN <213> Dirofilaria	a immitis					
	<400> 99						
	agtgaacgag	aaaaaacaga	agaagagata	gcacatcaag	atcgtgagaa	attaattaga	60
	caagaaaaag	ctcgtcttac	acaaatatat	caggttttct	ttttcttgct	ttcgaaagtt	120
	atttgaatta	tctcatttct	ttgaatttta	taagaaataa	tttaattttt	ttttgaaatt	180
	ttgcctattg	agctctaaat	tttgtaaaaa	gttttctagg	atgatgttag	caaagcaaaa	240
	aagaaatcca	aaagtgatgg	taacaaacag	gaagatttta	tagtgaggta	cgataatacg	300
20	<210> 100						

<211> 300

	<212> ADN <213> Dirofilari	ia immitis					
	<400> 100						
	tagacaatat	catccttcct	tttttttgc	tcaatttctc	tgctcattgc	tttgatgata	60
	atggtaggtg	gtataatgaa	acgaatagat	aattgatgtt	cgcaaacatt	tgctgttaaa	120
	tttcagtaaa	gaaattgacc	tttttgcttt	gtgttggatg	tttagcttca	ttttcttctt	180
	gttcattgtc	atattcattc	tctcaaaact	tcttgcttag	cgatgctaat	ataaatactg	240
	gaagaatgcc	tttgctttgt	tttagttgta	aatcatcacc	aaggtatttt	tttgcaaaat	300
5	<210> 101 <211> 300 <212> ADN <213> <i>Dirofilari</i>	ia immitis					
	<400> 101						
	aagatgaaac	taaaaaaaat	tatttcgaaa	aaaagaaaat	aaaattaatg	aaataaaagc	60
	aaaaatgaac	aaaccgtatt	aattttaaac	aataaacaat	atcgaaatcg	aaaaatggac	120
	tattattgat	gaactatatt	ttcaaaatgt	gaaaggtcaa	agtttgtttc	aattatgata	180
	aatacaattt	aaaataagat	taagctaaca	aataagttga	gcaaattgat	gaaacaaaca	240
10	aatcagaata	tattacagaa	aatgatataa	catgaaaata	tattagacca	attatttta	300
	<210> 102 <211> 300 <212> ADN <213> <i>Dirofilari</i>	ia immitis					
15	<400> 102						
	ttgaagtttt	cagataaact	ttgataaaaa	attgttctat	gaattctcaa	atttcaatta	60
	gtgatactta	tttcgaaggt	aattatgcct	gattgaatct	tcaatatcaa	caaaatgaaa	120
	attttagtat	gattgttaac	tcatacacct	ctaattaaag	gtattttctt	tatcccatga	180
	aatgaaaatt	tattaagaac	ttagaaagct	acggtatgcc	tttgatgcaa	aagaaagatt	240
	cattttcatt	aaatcatgtt	taaaaaaaag	agcaaagagc	aaaaggtgat	gaaagttttt	300
20	<210> 103 <211> 300 <212> ADN <213> <i>Dirofilari</i>	ia immitis					
	<400> 103						
	ttctatacga	aatatttgtc	tgccataaat	ctactcagga	actcgataca	tcaaaacata	60
	agtacgcttg	ctctttattt	ttcgtttgaa	aaataaatag	atcattttcg	cacttacatt	120
	tcaatttcaa	ttgctttatt	catatctttc	tgtttttact	tactggtatt	taacagtcgt	180
	tgttcacaat	ttaatgatct	atgaaacacc	atttaattgt	atttggacta	acttttcgac	240
	aagcaaaaga	ttaaaattgt	cttcagatac	agttataaat	ttacattoaa	gataaatgaa	300

	<210> 104 <211> 300 <212> ADN <213> Dirofilari	ia immitis					
5	<400> 104						
	taacgatctg	tatatcaatg	gaataatatt	cagttcatgt	tgtactcgat	atgagataga	60
	attacaattt	tggaacaaga	taatctcaac	agctattttc	aagaatagtt	aaattaggat	120
	accattcaaa	gaaactttaa	aaaatgattt	ccatacatta	atgctttttg	tgttttcgct	180
	ctcgaccaga	atccaggaat	tgtccattat	catcaatttg	attaactttt	atctttattc	240
	taattcttca	acatttctct	aattgatatt	agtttcaata	ttttaataag	taaaaattta	300
10	<210> 105 <211> 300 <212> ADN <213> <i>Dirofilari</i>	ia immitis					
	<400> 105						
	ataatgtgtt	attgatcaaa	ggatttttag	ttacctacca	gatggaaaaa	aagcaagttt	60
	acgaaaacag	aagttagcat	caactttcat	ccatggttac	accgtatata	atccaatcga	120
	ctcatacttt	atgttgatct	gattttatag	cagataacta	gttaccttgc	tcagcagcag	180
	ctaaatcctt	tctatttgct	taataacaga	aatattttc	attaacaaag	aaattatact	240
	ccgtgtttga	catttcattt	taatttcgtt	ccaaaaatga	aaaaagcttc	gtccggaaat	300
15	<210> 106 <211> 300 <212> ADN <213> <i>Dirofilari</i>	ia immitis					
	<400> 106						
	attattttgt	agtttttcat	tttttagttc	aattttcctt	tgcttatttt	aaatatgcca	60
	ttctttattc	agactcatag	cgaatgcata	tgttcattaa	tttttttagt	tacagttaca	120
	aattctcaat	ttctctttaa	tcatttttt	ttccaaaaat	agtctgagca	ctcaaccatt	180
	cattcaacaa	ttgcagcttt	ttttattgga	gccttgtcaa	attatcaatt	cgtttccatg	240
	tttattattg	aaataataaa	cggtatttag	gataacgaag	ttcgcttagc	ttctttgact	300
20	<210> 107 <211> 300 <212> ADN <213> Dirofilari	ia immitis					
	<400> 107						

	aaaaattcag	gtaatgagat	cagtaatttt	ttttggtcac	tttgctgttt	cttatcagct	60
	cattgttatc	catatcaaat	gagcgaaagt	gtgtatcaca	tattggcaga	gtgtaatcta	120
	tgaagatttt	gcgtatcaaa	gtaattatga	gagaactgat	aattttattt	taaagtagta	180
	gaaaactcga	attaagctaa	taaataatcg	gttgatatcc	atgaaatgaa	ttactaatga	240
	aatggataat	tgagtaataa	caaatgatat	tcatgaagaa	aggcaggttt	tttttaatag	300
5	<210> 108 <211> 300 <212> ADN <213> <i>Dirofilan</i>	ia immitis					
	<400> 108						
	tatacttaaa	acaagaaata	caattaatgc	caatagcaga	gtgaaacttc	tgaaaaataa	60
	tgagttgaaa	ctggtaaaat	taacatttta	ttagaaattt	cagaaactta	tgactcctca	120
	tggcactatc	acaaaatgtt	tgaaaaaaat	tgacagctcg	cgtcgattgc	aaaaatcatg	180
	attcctgata	tttagtatcg	aacatgtgac	aaataatata	aagacctaac	cataaagcac	240
	tgaaacaact	cgcggaaaca	aaaaattaat	ttgcataaac	acggaatacg	atcagaaaat	300
10	<210> 109 <211> 300 <212> ADN <213> <i>Dirofilan</i>	ia immitis					
	<400> 109						
	gaatttttt	agaaggcttg	aagtcgagaa	tattagagac	tatatcgaag	acttaaataa	60
	tcctggtaat	cttctgtatg	aatcaaaatt	acctcgaaca	gaaccattca	gcacatcacg	120
	agataattca	tggaatgaaa	ctagccaatc	agagcgttgt	aaaagaagaa	agttatgaaa	180
	tgaccttaaa	atcaatttaa	agcatgtcct	cgccatataa	gcgttgaaaa	gttaggatag	240
	aatcaattat	caaaaaaata	tgttaactag	atcttatcaa	tcaaaacatc	agaaggaaaa	300
15	<210> 110 <211> 300 <212> ADN <213> <i>Dirofilan</i>	ia immitis					
	<400> 110						
	atatgataat	agtgaaacaa	ttccatcaca	ataaatatta	tcgattagga (gataaattaa	60
	cattgatgcc	tcaattttgg	tcaacaatat	atatttgcta	ttagcatttt t	cattaaatcg	120
	tttttatctg	acttgacata	aattgaaata	gaaaaaattg	aatctgttcc (tgttagatt	180
	ttcttctaaa	aattcttgaa	atacaaataa	tttcttaaat	ttcaatattt d	ctacataatg	240
	tattgcgaca	aaaatgctaa	tgattggctt	attattattt	cgaataattt 1	ttaatcaaa	300
20	<210> 111 <211> 300 <212> ADN						

<213> Dirofilaria immitis

<400> 111 agctcgaaga tcggacaaaa tttgttcagc ttgttgcctt gaggctttag tctgaaaaga 60 120 cacttaaaag tataaacaaa ttatattcaa aaaatcttat tttgcatttg cgtcttaatt 180 tttgcttttt gcaaagtttt ttccgagcaa gtttttctat cttcgaaaag attatatcaa 240 ttaaaatttc aatttaagca atcattgcct cttcgagttt ctgtttcagc aaataaatat caccaccacg acgctgtcgg aagaaagaaa cgcctttccc aatttctcgt ctcaactttt 300 <210> 112 5 <211> 300 <212> ADN <213> Dirofilaria immitis <400> 112 taagaaagct gggagatttt ccaaaaacac tatttcccac gatttgttgt tttctatgat 60 caattettaa teaaaetetg aaatteteaa attttegatt tetateeaae ttetacatat 120 ttttttagaa aattcatatt tagcaaagct gagtgtagaa ataattcata cttgcaattc 180 atttttctta aattttcgaa tttcttaaaa aagtatttca aattacctac caattttgat 240 300 tggaaaattc gtggatgcta aaaattcaaa tcaaaatagt taaacagtat tcctaattgt 10 <210> 113 <211> 300 <212> ADN <213> Dirofilaria immitis <400> 113 aatttaaaaa acacatcgac attttgcggt acggtaatga ttgtttacag taactaaatg 60 tgtcctacgg tagtaatact cgtgtacgta atgaatgagt atagtgaccg gatatttcct 120 tcactagtag gcaatattaa gaagtatttt cattttcata ttctatctaa aataaaccga 180 240 taaaatggtt tttgaattat tactttttca ttgttatttt ttgatcctaa attgtaaaat 300 actgtaataa tttagctaat ttctatgatt ctattcaata tgcttaaatt aaaattctaa 15 <210> 114 <211> 300 <212> ADN <213> Dirofilaria immitis 20 <220> <221> misc feature <222> (63)..(72) <223> n es a, c, g o t <400> 114

	tcgtatttgt	tgtatgtaat	atagaaatat	tgtttaaatt	caatatgtag	aaaaaatttc	60
	tannnnnnnn	nnaattaatt	acatattaac	tcgtatttgt	tgtatgtaat	atagaaatat	120
	tgtttaaatt	caatatgtag	aaaaaatttc	cataataaag	acgaacagca	tttataatta	180
	tcaatgataa	gttgaaatta	attcatcaat	gataagttga	aattaattta	tttgaaataa	240
	tttctttgaa	attcgaatat	agacgagaat	tttttttt	ttgctaatcg	tttatcaaat	300
5	<210> 115 <211> 300 <212> ADN <213> Dirofilar	ia immitis					
	<400> 115						
	tctagcaata	. taaattacaa	gaatatgccg	tccaagtatt	tcagaattta	ttattaattt	60
	ggataataat	acattgtaaa	tactgcgtat	tctggattat	tatgcactgc	ataataacat	120
	gcaatttcgt	ctacatatcg	cgaataaacg	ccaaaagatt	tctcgataaa	agaaaatata	180
	agaattcgta	aatgaatgtt	gtgtcagaga	tatgtgttaa	ttcataagtc	aagatgttgt	240
	aaatcgatcc	atattagtaa	tcatatttac	gtgctcgtaa	ataaaagcgg	tgattcttgt	300
10	<210> 116 <211> 300 <212> ADN <213> Dirofilar	ia immitis					
	<400> 116						
	atcgaaaaaa	gatgatctga	tgacggaagg	cgaaatgtct	gcagaagcta	agatgacgga	60
	agaaaaaagt	gaagaaatga	aagaagaagc	tggtaaaact	cagaaggaat	gtaaaactgg	120
	agaatcgaaa	aaagatgatc	tgatgacgga	gggcgaaatg	tctaaagaag	ctaagatgtc	180
	ggaagaaaaa	agtgaagaaa	tgaaagaaga	agctgataaa	actcagaagg	aatgtaaaac	240
	ggaagaatcg	aaaaaagacg	atctgacgac	agaaggcgaa	aaatctgaag	tagatgagcc	300
15	<210> 117 <211> 300 <212> ADN <213> <i>Dirofilar</i>	ia immitis					
	<400> 117						
	actaatgata	agaaacggag	ccgacgattt	taggaaatga	ataataacga	cattgacaac	60
	cattgttaga	aaattgatag	tactgataat	aaaagctagt	tatagaaaat	tgataataat	120
	aataaaattg	ctggtagcaa	atgtctagaa	gtgataataa	aattaatgat	agcaaatgga	180
	ttagcaatga	taattaaact	gatgatagcg	aatggattag	taatgataat	aaaattgatg	240
	atagcaaatg	actaataatg	gtaataaaag	ttaatgctag	tgataacttg	tattttaagt	300

ES 2 709 187 T3

	<210> 118 <211> 300 <212> ADN <213> <i>Dirofilari</i>	ia immitis					
5	<400> 118						
	acagtttata	gttacaatat	tctccggtga	ctaactgtat	tttacaactt	ataattatag	60
	attacaaaat	atattatagt	agttttataa	ttacagtatt	cttaagtgaa	taactatact	120
	ttacagctta	cagttacagt	agttttctat	gtttttgaat	attaatttta	catggttttt	180
	cctagtttca	gtttcaaaat	tttcagatat	tttatgtgtt	aaagcaaatt	atattcgaga	240
	tataaaaagt	actggtcata	tcttacaatt	ctcatccttc	tatattggaa	agaattgagt	300
10	<210> 119 <211> 300 <212> ADN <213> Dirofilari	ia immitis					
	<400> 119						
	gtattgggac	cgcgtatcgg	gaaatctgaa	agaagtcttt	aacagtattt	taaatgaata	60
	attcaaatcg	ttacttctta	atatattaat	ttatgcgtat	atatgcagta	catagcattg	120
	cttaaattct	tatttttccg	cggttaaaac	cctatgtaag	ataagggagg	tgattgtatc	180
	tgcgccgtac	tccttgtttt	aatctacctg	cttgttgtat	atcctccaca	tattgtaact	240
	gcagcttcac	atttgcatat	atagtaaggg	catcgttgtc	tccagaagag	atatattatc	300
15	<210> 120 <211> 300 <212> ADN <213> <i>Dirofilari</i>	ia immitis					
	<400> 120						
	gctgcccgaa	tgttacaatt	aggacgaaag	taaaagtagt	tgactgtagg	tatgacgata	60
	aaggaaaaat	ttgtatctta	agactttaca	atttctaaat	attacgtgtt	ttatcgtgct	120
	aacatcacga	attccatatt	cacaaaaaa	attttgtaga	actccatctg	gtttggatga	180
	atttgctaca	gttgaactgg	atgatggaac	gaaattgcaa	acatctctta	ttgttagtat	240
	tttctaaatt	ctgtgaaatt	ttgcaacggc	attcatgttt	aattattaat	ttggagaaag	300
20	<210> 121 <211> 300 <212> ADN <213> Dirofilari	ia immitis					
	<400> 121						

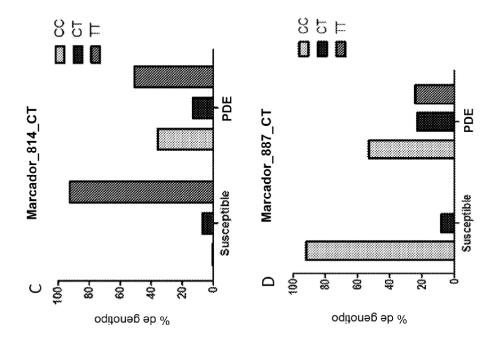
ES 2 709 187 T3

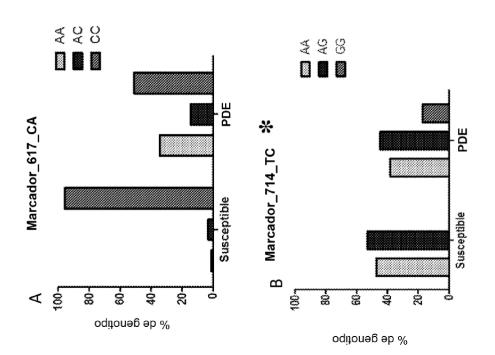
	aaataagca	a atccgaaagt	attacatata	cggactaaat	attgccattc	attcgggagt	60
	ataccattg	c aaccattggt	atttcatttg	atcgagaaaa	ctagtttttg	tagtttggga	120
	taaagagaa	a tggagagag	g aactttcatg	atcaatttct	ttacgtactg	aaattcattt	180
	ctatggatg	t totttttcta	a tttcattctc	ctcagcaaat	acagtccgaa	cagtcatcaa	240
	ataagtcta	a aaggcatgaa	a taatataaac	atcagcaact	ttttaaatga	atgcttatta	300
5	<210> 122 <211> 300 <212> ADN <213> Dirofilar	ia immitis					
	<400> 122						
	atttctataa	acatctcttg	cattgattaa	tttaacatgt	tgcaataaat	atttcttact	60
	tttgaatgta	tcatttacta	gaaaaaactt	caatcgagga	aataagtttt	aaaataaatt	120
	catatttgaa	ttcatgtcag	ttcaaaaatt	ctattactat	aatacatgto	tcttggttgt	180
	atctttttt	cttttgaaat	aatacaatca	aacggtttcc	taaattttca	tagacatcat	240
	attttaaaaa	aaaatgcatt	tgaaaatttt	cgaaaatcaa	tgaacttaat	tgatgaaaaa	300
10	<210> 123 <211> 300 <212> ADN <213> Dirofilar	ria immitis					
	<400> 123						
	gcatgtgtat	gtagtatttc	tttgtaaaca	acatatctaa	tctgtctgtc	cctttaacat	60
	tatagaatag	tcagttagtc	cgctatttat	tttaataaca	aaatatctca	cttaacttcc	120
	atttctttcc	taaataattt	tgtttcgcta	gatctttcct	ataattttca	aattttcaaa	180
	aatgaattaa	tcttttattt	atatatgtgt	atgtatgtgt	atgtatgtat	gtgtacgttg	240
	catatatgta	tatgtatgtg	tgtatgtgtg	tatatgtata	tgtatatgtg	tgtatgtgtg	300
15	<210> 124 <211> 300 <212> ADN <213> Dirofilar	ia immitis					
	<400> 124						
	tatgcataat	gtgcgaccag	ccaataatgt	cttcaaacca	taattatgca	gaaataaatt	60
	ttttccagaa	ataattttt	ttttttaca	tatacttccg	atctgtgaga	aaatacattt	120
	gaagtgaagt	gtgaagcaat	gctacttttt	caaacaacat	tgtgaaaatg	gattaaaacg	180
	caccaatgga	gcaagagatc	gtaagtttcg	ttccgcatgt	cctgtggcaa	cgtgtaaacc	240
	atccgttaac	gatatatgat	gtaaaagccg	acacacccaa	attaaaatcc	attataaaca	300
20	<210> 125 <211> 300 <212> ADN						

ES 2 709 187 T3

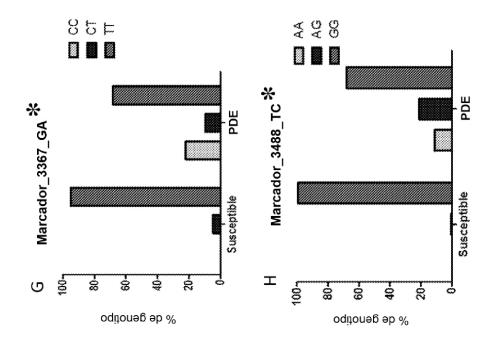
	<213> Dirofilaria immitis							
	<400> 125							
	aaatggatcg	tattcacttc	gtaagaactt	agtgaacgaa	aaatcaaacc	atcacaataa	60	
	ctttactttt	tttcttttt	tactaaacac	actatcctat	gaaaacaaaa	tgtccaaata	120	
	gattcatatg	ataatgaact	gtgaagttat	ccaatctatc	agttctcgaa	gagggaataa	180	
	ataaaaacat	taagcaaccc	accgatcttc	gctgaccatc	tccttcttca	ttagcaagaa	240	
	gcaaatcttg	tggtgatatt	tctgcaacca	tctgcaaaat	aaagcacgaa	aaattaagga	300	
5	<210> 126 <211> 300 <212> ADN <213> Dirofilari	ia immitis						
	<400> 126							
	tttgatatgc	aatcaactaa	ccaaatcaga	attcaatgca	ttctgataaa	tttcttcaat	60	
	atcgtgcatc	aattcgacat	catattttga	cagtgatgct	acctttttag	ccgtatttcg	120	
	gaaaaatatg	aattcaacca	gctgcgtccc	aaaatttaag	gctgtagcaa	gtccagcaac	180	
	aaccagccct	acaactgaaa	attctaaaaa	ctggttcacg	tgcttatcat	taataatttc	240	
	aacactatca	ctatctccac	atgaacttga	tcgattataa	tttagtagaa	ctgaaaaaaa	300	
10	<210> 127 <211> 300 <212> ADN <213> <i>Dirofilari</i>	ia immitis						
	<400> 127							
	acaaattcgt	tttaatattg	gattacattg	aaattgctga	aataaagtgg	aaatattgaa	60	
	aagcatttta	caatatttgt	taacaacatt	atatttaaag	aatatacacc	ttggtttaaa	120	
	tggtaaaata	atctcaagaa	ttttcattag	gttaattttt	ttttatttat	ttatattcac	180	
	aaaaaattgt	aaaagaaaac	aaaaacaaca	ataataacgg	tgacaacaac	aacaataata	240	
15	ataacaaaac	tatttgttgt	gattttgcag	cattgatgta	gtggggatct	tttggagcga	300	

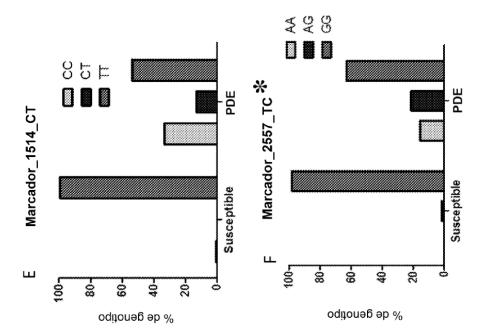
REIVINDICACIONES

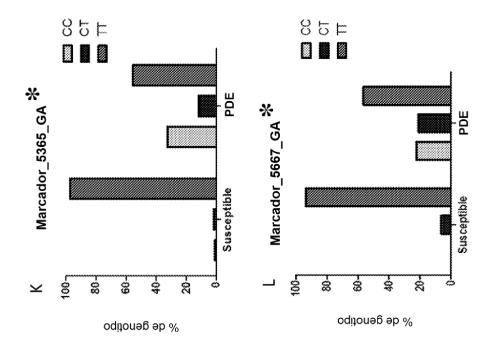

- 1. Un procedimiento de determinación del grado de respuesta de un nematodo de *Dirofilaria spp.* a una lactona macrocíclica, comprendiendo el procedimiento determinar el genotipo del nematodo en un sitio polimórfico en una molécula de ácido nucleico, en el que la molécula de ácido nucleico comprende un fragmento que tiene una longitud de al menos 50 nucleótidos que posee al menos el 95 % de identidad de secuencia con la SEQ ID NO: 118 e incluye el sitio polimórfico.
- 2. El procedimiento de la reivindicación 1, en el que la molécula de ácido nucleico comprende un fragmento que tiene una longitud de al menos 50 nucleótidos de la SEQ ID NO: 118 e incluye el sitio polimórfico.
- 3. El procedimiento de la reivindicación 1, en el que la molécula de ácido nucleico comprende un fragmento que tiene una longitud de al menos 100 nucleótidos de la SEQ ID NO: 118 e incluye el sitio polimórfico.

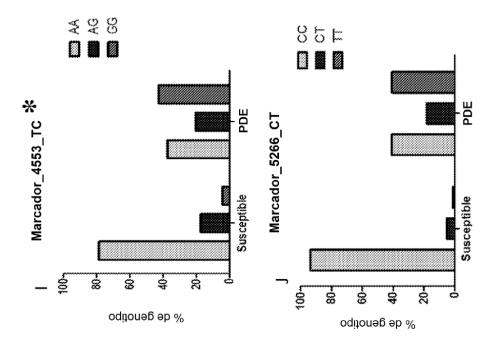

5

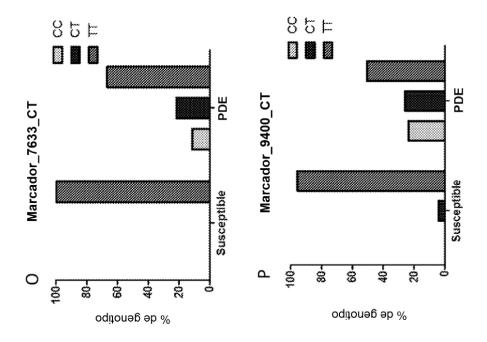
20

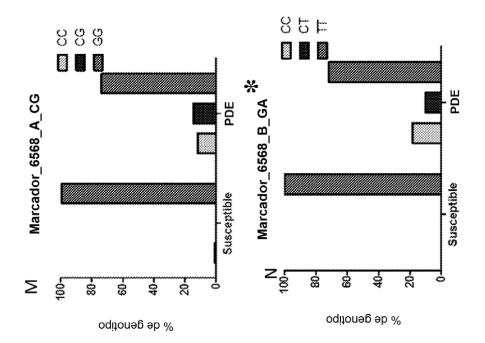

- 4. El procedimiento de la reivindicación 1, en el que la molécula de ácido nucleico comprende una secuencia que tiene al menos el 95 % de identidad de secuencia con la SEQ ID NO: 118.
- 5. El procedimiento de la reivindicación 1, comprendiendo el procedimiento determinar el genotipo del nematodo en un sitio polimórfico en una molécula de ácido nucleico que comprende la SEQ ID NO: 118.
- 15 6. El procedimiento de la reivindicación 1, comprendiendo el procedimiento determinar el genotipo del nematodo en un sitio polimórfico en una molécula de ácido nucleico que consiste en la SEQ ID NO: 118.
 - 7. El procedimiento de cualquier reivindicación precedente, en el que la presencia de un nucleótido alternativo en el sitio polimórfico indica que es probable que el nematodo sea resistente a la lactona macrocíclica.
 - 8. El procedimiento de cualquier reivindicación precedente, en el que el nematodo de *Dirofilaria spp.* es *Dirofilaria immitis*.
 - 9. El procedimiento de cualquier reivindicación precedente, en el que la lactona macrocíclica incluye ivermectina, selamectina, milbemicina oxima o moxidectina.
 - 10. El procedimiento de cualquier reivindicación precedente, que incluye aislar la molécula de ácido nucleico del nematodo y, opcionalmente, purificar los ácidos nucleicos antes de determinar el genotipo del nematodo.
- 25 11. El procedimiento de cualquier reivindicación precedente, en el que el genotipo del nematodo se determina por secuenciación de ADN, procedimientos basados en hibridación que incluyen oligonucleótidos específicos de alelo, análisis de micromatriz, procedimientos basados en enzimas, polimorfismo de conformación monocatenaria (SSCP), fusión de alta resolución (HRM) o estrategias basadas en PCR, RT-PCR o qRT-PCR.

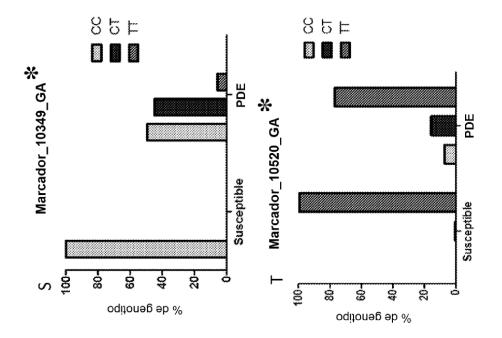


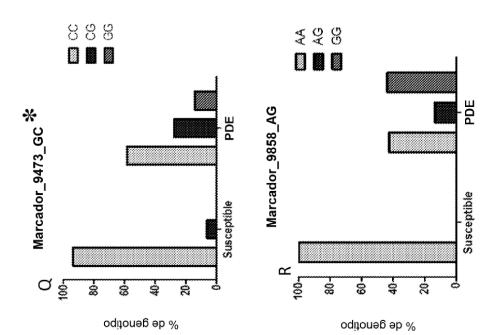


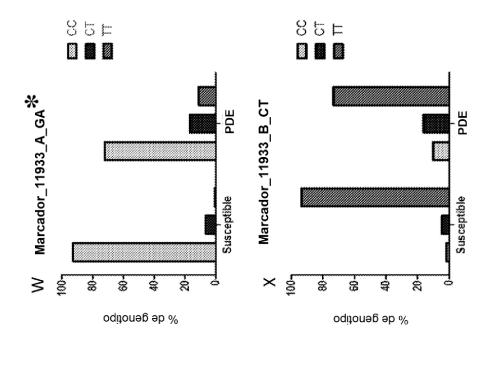


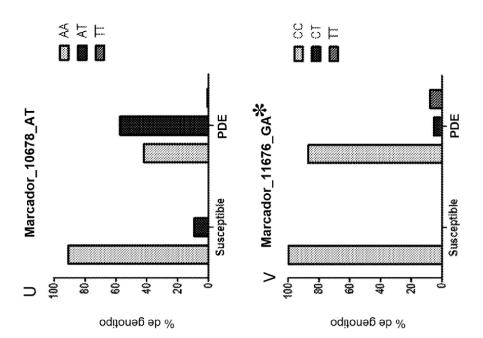


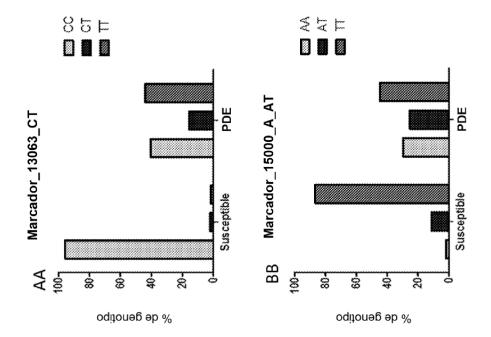


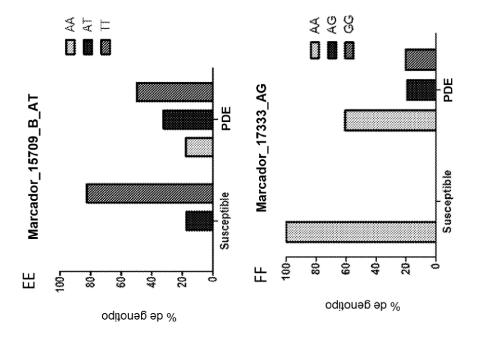


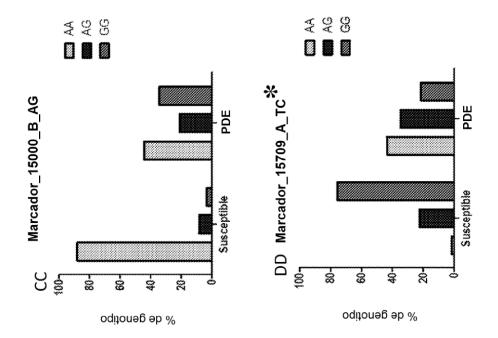


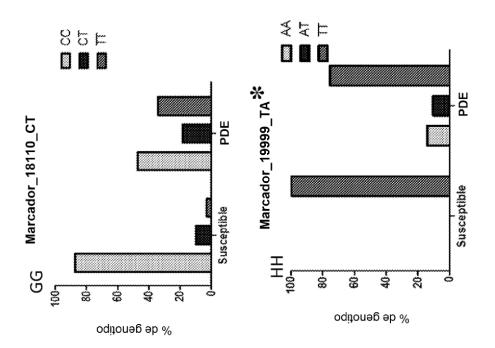


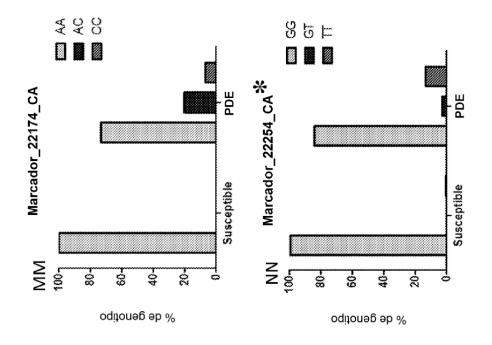


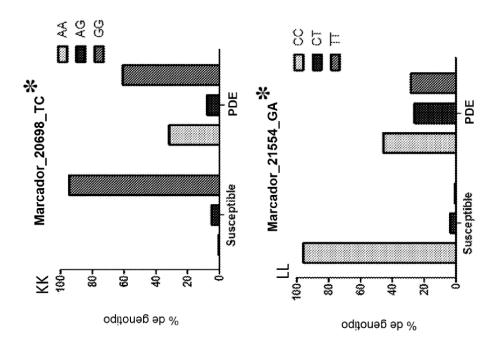


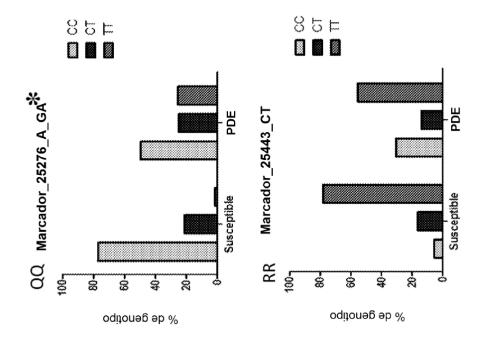


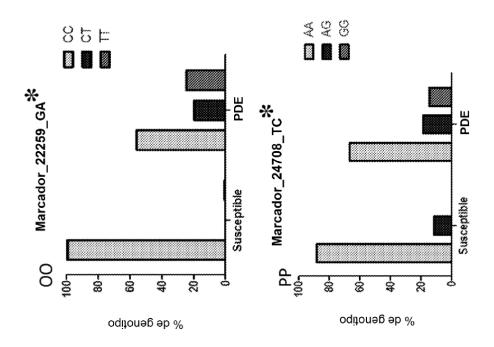


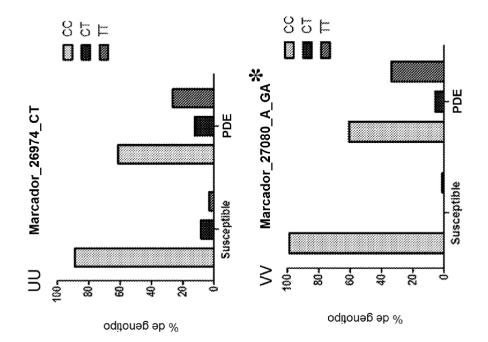


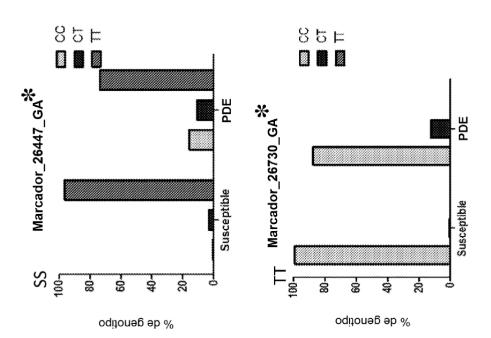


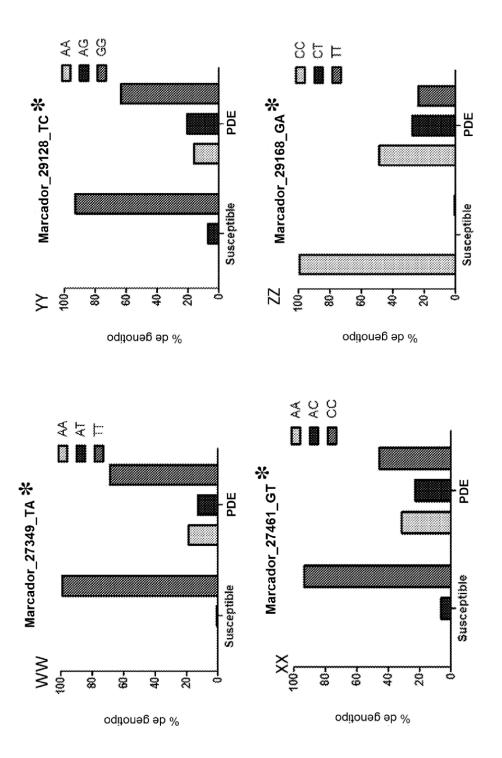


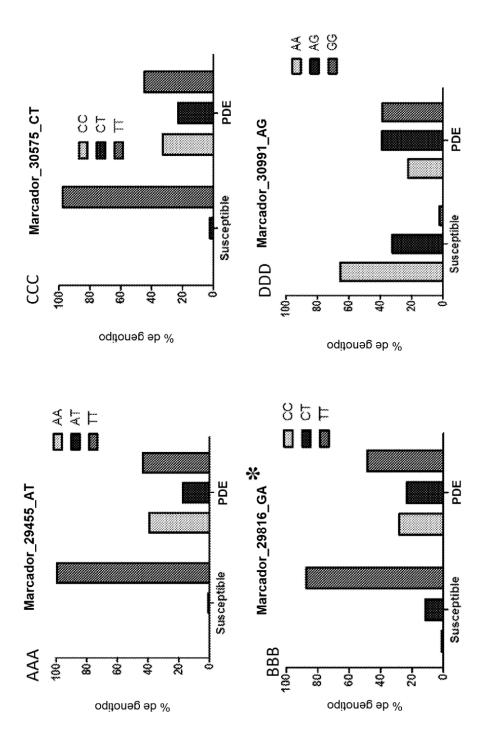


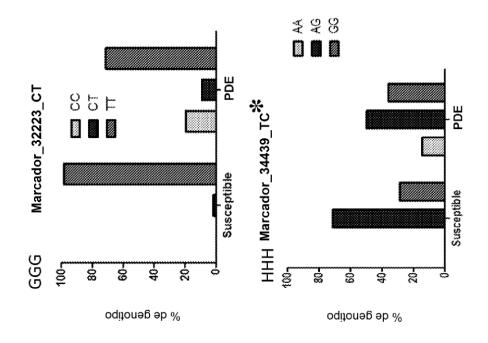


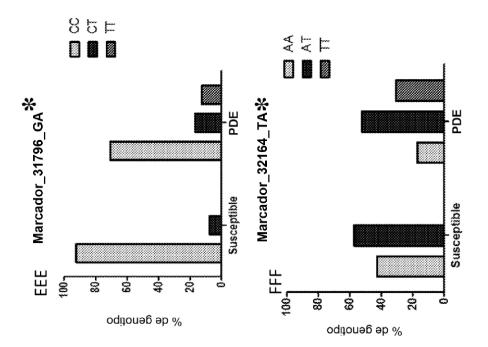


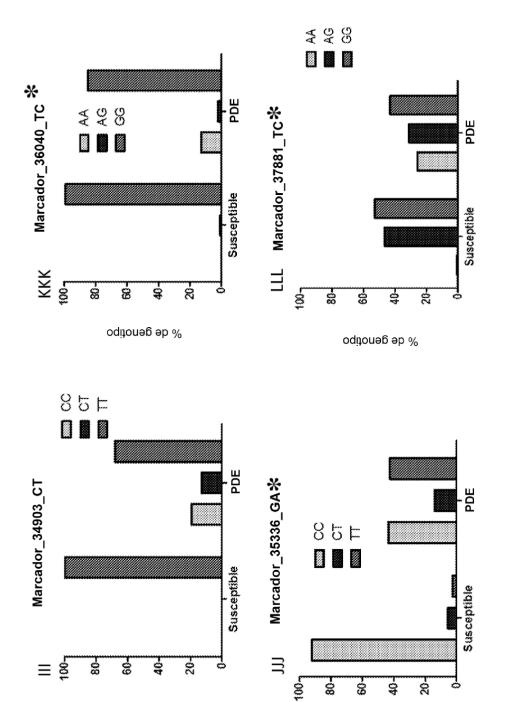


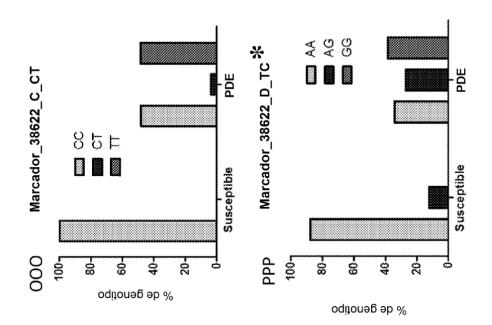


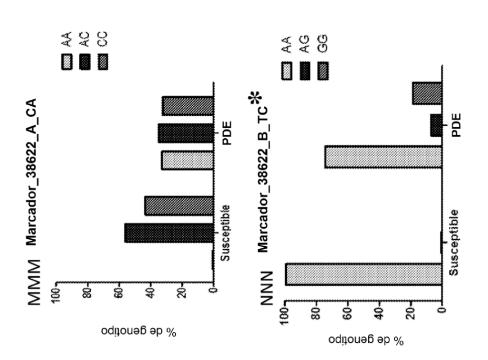




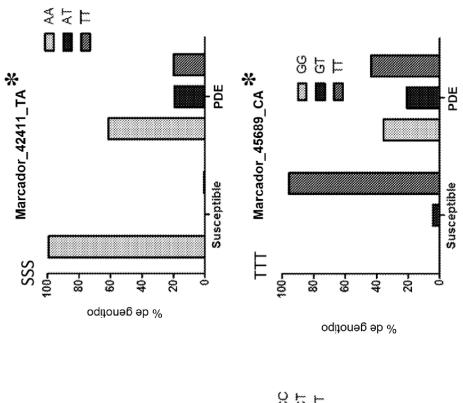








% de genotipo


% de genotipo

