

OFICINA ESPAÑOLA DE PATENTES Y MARCAS

ESPAÑA

11) Número de publicación: 2 709 216

(51) Int. CI.:

C12N 15/62 (2006.01) C12N 15/82 (2006.01) C12N 15/85 (2006.01) A01K 67/027 (2006.01) C07K 14/415 C12N 9/16 C12N 9/22 C12N 15/90 (2006.01) C07K 14/195 (2006.01)

(12) TRADUCCIÓN DE PATENTE EUROPEA

T3

06.06.2012 PCT/EP2012/060711 (86) Fecha de presentación y número de la solicitud internacional:

(87) Fecha y número de publicación internacional: 13.12.2012 WO12168304

(96) Fecha de presentación y número de la solicitud europea: 06.06.2012 E 12725813 (5)

10.10.2018 (97) Fecha y número de publicación de la concesión europea: EP 2718440

(54) Título: Proteínas que tienen actividad nucleasa, proteínas de fusión y usos de estas

(30) Prioridad:

07.06.2011 EP 11004635

(45) Fecha de publicación y mención en BOPI de la traducción de la patente: 15.04.2019

(73) Titular/es:

HELMHOLTZ ZENTRUM MÜNCHEN DEUTSCHES FORSCHUNGSZENTRUM FÜR GESUNDHEIT UND **UMWELT (GMBH) (100.0%)** Ingolstädter Landstrasse 1 85764 Neuherberg, DE

(72) Inventor/es:

KÜHN, RALF

(74) Agente/Representante:

SÁEZ MAESO, Ana

DESCRIPCIÓN

Proteínas que tienen actividad nucleasa, proteínas de fusión y usos de estas

5 La presente invención se refiere a las modalidades como se caracterizaron en las reivindicaciones; específicamente a una molécula de ácido nucleico que codifica (I) un polipéptido que tiene la actividad de una endonucleasa, que es (a) una molécula de ácido nucleico que codifica un polipéptido que consiste en la secuencia de aminoácidos de la sec. con núm. de ident.: 1; (b) una molécula de ácido nucleico que consiste en la secuencia de nucleótidos de la sec. con núm. de ident.: 2; (c) una molécula de ácido nucleico que codifica una endonucleasa, cuya secuencia de aminoácidos es al menos 70 % 10 idéntica a la secuencia de aminoácidos de la sec. con núm. de ident.: 1; (d) una molécula de ácido nucleico que consiste en una secuencia de nucleótidos que es al menos 50 % idéntica a la secuencia de nucleótidos de la sec. con núm. de ident.: 2; (e) una molécula de ácido nucleico que es degenerada con respecto a la molécula de ácido nucleico de (d); o (f) una molécula de ácido nucleico correspondiente a la molécula de ácido nucleico de cualquiera de (a) hasta (e) en donde T se reemplaza por U; (II) un fragmento del polipéptido de (I) que tiene la actividad de una endonucleasa. Además, la 15 presente invención se refiere a un vector que comprende la molécula de ácido nucleico y una proteína codificada por dicha molécula de ácido nucleico. Además, la invención se refiere a un método in vitro para modificar el genoma de una célula eucariótica y a un método para producir un vertebrado no humano o un mamífero no humano.

En esta descripción, se citan un número de documentos que incluyen las solicitudes de patentes y las instrucciones de los fabricantes. La descripción de esos documentos no se considera relevante para la patentabilidad de esta invención.

Las nucleasas, desde su descubrimiento a finales de los años 1960, permanecen como una de las herramientas más importantes para los biólogos moleculares. Las nucleasas son enzimas capaces de escindir los enlaces fosfodiéster entre las subunidades de nucleótidos de los ácidos nucleicos. Las enzimas que catalizan la escisión del ADN y del ARN son partes integrales de los principales procesos metabólicos del ADN, tales como la replicación del ADN, la recombinación del ADN, la reparación del ADN, la recombinación en un sitio específico y el empalme del ARN. Además, las actividades nucleasas son esenciales en el procesamiento y la maduración del ARN, en el ARN de interferencia y son componentes de los mecanismos de defensa microbiana.

30 El ARN y el ADN presentan solamente dos tipos de enlaces fosfodiéster para la escisión, 5'- o 3'- de un fosfato escindible y la química fundamental es la sustitución nucleofílica bimolecular. Sin embargo, las estructuras y los mecanismos catalíticos de las nucleasas de ARN y ADN son muy variados y complejos. Las nucleasas pueden ser endonucleasas o exonucleasas, específicas del ADN o del ARN, topoisomerasas, recombinasas, ribozimas, o enzimas de empalme del ARN. Su reacción puede dividirse en las tres etapas del ataque nucleofílico, la formación de un intermedio pentacovalente cargado negativamente y la rotura del enlace escindible. Las nucleasas utilizan una variedad de nucleófilos para escindir 35 un enlace fosfato escindible. Los nucleófilos más comunes son las moléculas de aqua desprotonadas por una base general para la hidrólisis directa. Para la escisión del ADN, las cadenas laterales de Ser, Tir e His sirven como nucleófilos para formar un intermedio covalente de ADN fosforil-proteína, que se resuelve posteriormente ya sea mediante la reacción de transferencia del fosforilo nuevamente al ADN durante la recombinación y topoisomerización, o mediante hidrólisis en 40 reacciones de escisión de dos etapas. Para permitir la degradación controlada o el procesamiento del ADN o ARN celular, las actividades de las nucleasas se regulan estrictamente mediante una rigurosa especificidad de sustrato, localización confinada, o mediante inhibidores potentes.

Por conveniencia, las nucleasas pueden clasificarse de acuerdo con su mecanismo catalítico en tres clases principales basado en su dependencia de iones metálicos (Yang, W. (2011). Q. Rev. Biophys. 44(1): 1-93). Estas clases de nucleasas dependientes de dos iones metálicos, de un ion metálico e independientes de metales se dividen, además, en familias o superfamilias de acuerdo con la conservación de la secuencia y la estructura y la diversidad funcional.

Endonucleasas de Restricción

25

45

65

Entre todas las tres clases catalíticas se encuentran diversas familias de endonucleasas de restricción. Las enzimas de restricción de tipo I, III y IV son maquinarias moleculares complejas y de múltiples subunidades que combinan múltiples actividades que incluyen la restricción, la metilación y la translocación de ADN, requieren cofactores adicionales (AdoMet, ATP o GTP), se unen a más de un sitio diana, y escinden por fuera de la secuencia de reconocimiento, con frecuencia a una distancia aleatoria. Las endonucleasas de restricción de tipo II son enzimas que reconocen secuencias cortas de ADN (generalmente de 4-8 pb de longitud) y escinden la diana en ambas hebras en, o muy cerca de, el sitio de reconocimiento. Las enzimas de restricción tipo II ortodoxas son homodiméricas, escinden dentro de secuencias palindrómicas, requieren iones Mg2+ y pueden actuar sobre copias únicas de sus dianas. Debido a su especificidad notablemente alta para reconocer y escindir sus secuencias diana, son de gran interés como las herramientas más frecuentemente usadas para la tecnología del ADN recombinante (Pingoud, A., M. Fuxreiter, y otros (2005). Cell Mol Life Sci 62(6): 685-707; Orlowski, J. y J. M. Bujnicki (2008). Nucleic Acids Res 36(11): 3552-69).

En la naturaleza, las REasas tipo II (endonucleasas de restricción) se encuentran en los organismos procarióticos, donde ellas forman sistemas de modificación por restricción con las ADN metiltransferasas de la misma o muy similar especificidad de sustrato. Las ADN metiltransferasas usan S-adenosilmetionina (AdoMet) como un donante del grupo metilo para modificar bases específicas en la secuencia diana, de esta manera las vuelve resistente a la escisión mediada por la enzima de restricción. Mientras que el ADN del propio sistema de Restricción-Modificación se protege contra la

autodegradación por la nucleasa, cualquier ADN extraño (por ejemplo, de los fagos) que invade la célula huésped y que carece de metilación, puede destruirse eficientemente. Para distinguir los componentes de los sistemas de modificación/restricción los nombres de las metilasas y nucleasas están precedidos de los prefijos 'M'. y 'R.' (por ejemplo, M.Fokl y R.Fokl).

5

10

15

20

Muchas endonucleasas de restricción de tipo II usadas comúnmente comparten el motivo conservado PD-(D/E)XK. Dicho motivo se encuentra, generalmente, en proteínas que interaccionan con moléculas de ácido nucleico tales como el ADN y no se limita a la presencia en nucleasas. Los tres residuos catalíticos se ubican cercanos entre sí en una horquilla β irregular. La primera D se ubica al inicio de la hebra primera y más corta, y la E y la K, separadas por un residuo hidrófobo x, en el medio de la hebra segunda y más larga. La primera D es la más conservada y coordina ambos iones metálicos, mientras que la segunda E puede reemplazarse por Q, D, N, H o S, y la tercera K puede reemplazarse por E, Q, D, S, N o T. Mediante la variación de las interfaces diméricas y, por lo tanto, de las posiciones relativas de los dos centros catalíticos, las endonucleasas diméricas pueden escindir el ADN para generar extremos romos o extremos escalonados con diversos salientes 5'- o 3'-. El módulo catalítico se aproxima invariablemente al ADN desde el lado del surco menor. y la unión a la secuencia específica se realiza mediante un módulo/subdominio separado en el surco mayor. Los dos primeros carboxilatos del motivo DEK coordinan los iones metálicos. El tercero, que generalmente se une al hidrógeno, tanto con el agua nucleófila como con el módulo de unión al ADN en el surco mayor, acopla el reconocimiento de la secuencia de ADN con la reacción de escisión. Los miembros de esta superfamilia tienen una secuencia primaria muy diversa y, por lo tanto, diferentes estructuras que rodean el núcleo catalítico. Las búsquedas en bases de datos con secuencias de enzimas de restricción, típicamente, no muestran similitud significativa con cualquier proteína, o una similitud muy alta (> 90 % de identidad) con unos pocos isosquizómeros, y ninguna similitud con otras proteínas. Esta distribución fuertemente sesgada de similitudes y disimilitudes dificultó el análisis de secuencia comparativa de todas las enzimas de restricción y planteó una interrogante acerca de si la diversidad de secuencias de aminoácidos de las endonucleasas de restricción indica evolución polifilética (convergencia) o divergencia extrema de un ancestro común.

25

30

Mientras que ~70 % de las endonucleasas de restricción pertenecen a la superfamilia PD-(D/E)XK, otros miembros de la superfamilia pueden ser monoméricos o tetraméricos e involucrarse en otros procesos tales como la reparación del ADN y la recombinación homóloga. Además de las endonucleasas, los miembros de esta superfamilia pueden ser, además, exonucleasas 5'- o 3'-. La fuente más completa de información sobre enzimas de restricción es la base de datos REBASE (http://rebase.neb.com) que enumera varios miles de enzimas caracterizadas funcionalmente y varios miles de enzimas putativas, deducidas a partir de comparaciones de secuencias o de análisis genómicos. Por lo tanto, existe una gran desproporción entre el número de secuencias conocidas o predichas y el número pequeño de ~50 proteínas caracterizadas experimentalmente con estructuras tridimensionales conocidas. En la actualidad, una gran fracción de enzimas putativas permanece sin ninguna predicción o dato experimental.

35

40

45

50

55

60

65

Las REasas tipo II se subdividen adicionalmente en numerosos tipos de acuerdo con la simetría de su sitio de reconocimiento. la organización estructural o la necesidad de cofactor. La mayoría de las enzimas de restricción usadas para el trabajo con el ADN recombinante pertenecen al Tipo IIP (P - palindrómico). Las enzimas **Tipo IIA** reconocen secuencias asimétricas, como Bpu10I, un dímero de subunidades no idénticas, cada una de las cuales es responsable de la escisión de una hebra del ADN. Las enzimas Tipo IIB escinden el ADN a ambos lados de la secuencia de reconocimiento, un ejemplo es Bpll que, en la hebra de arriba escinde 8 nucleótidos antes y 13 nucleótidos después de la secuencia de reconocimiento, mientras que en la hebra de abajo escinde 13 nucleótidos antes y 8 nucleótidos después de la secuencia de reconocimiento. Las enzimas Tipo IIC tienen dos dominios, uno de escisión y otro de modificación, dentro de un polipéptido. Las enzimas Tipo IIE, para una escisión eficaz, necesitan interaccionar con dos copias de sus secuencias de reconocimiento, una es la copia diana para la escisión, la otra copia sirve como un efector alostérico. Las enzimas Tipo IIE, como Nael, reconocen secuencias de nucleótidos palindrómicas de una manera similar a las enzimas Tipo IIP y escinden el ADN dentro de los límites de sus sitios de reconocimiento; sin embargo, poseen un dominio de unión al ADN separado para realizar una función alostérica. Las enzimas Tipo IIF típicamente, son endonucleasas de restricción homotetraméricas que, además, interaccionan con dos copias de su sitio de reconocimiento, pero escinden ambas de una manera concertada. Las enzimas Tipo IIG, esencialmente un subgrupo de enzimas tipo IIC, tienen dominios de escisión y de modificación dentro de un polipéptido. En general, son estimuladas por AdoMet, pero de cualquier otra manera se comportan como enzimas típicas Tipo II. Las enzimas Tipo IIH se comportan como las enzimas Tipo II, pero su organización genética se asemeia a los sistemas de Modificación/Restricción Tipo I. Las enzimas Tipo IIM reconocen una secuencia específica metilada y escinden el ADN en un sitio fijo. La enzima representativa más conocida es Dpnl que escinde Gm6ATC, Gm6ATm4C y Gm6ATm5C, pero no GATC, GATm4C, GATm5C o los sitios hemimetilados. Muchas otras enzimas de restricción son más o menos tolerantes a la metilación, pero para las enzimas Tipo IIM el grupo metilo es un elemento de reconocimiento esencial. Las enzimas ortodoxas Tipo IIP como EcoRI, reconocen secuencias de nucleótidos simétricas y escinden dentro de sus sitios de reconocimiento. Comparten un núcleo estructural común que comprende las cinco hojas-β mezcladas flanqueadas por α-hélices. Sin embargo, los sitios de unión al ADN de las enzimas Tipo IIP son muy diversos y generalmente forman un parche en la superficie de la proteína compuesto por residuos de aminoácidos ubicados en los diferentes elementos estructurales (α-hélices, hojas-β, lazos). Las enzimas ortodoxas Tipo IIP interaccionan con el ADN como homodímeros, y cada subunidad contribuye al reconocimiento de la mitad de la secuencia palindrómica. Las enzimas Tipo IIS escinden al menos una hebra del ADN diana fuera de la secuencia de reconocimiento. La enzima Tipo IIS mejor conocida es Fokl, que al igual que muchas otras enzimas Tipo IIS interacciona con dos sitios de reconocimiento antes de escindir el ADN. Las enzimas Tipo IIS son activas como homodímeros y están compuestas por dos dominios, uno responsable para el reconocimiento de las diana y el otro para la catálisis (que sirve, además, como el dominio de dimerización). Esto es evidente a partir de la estructura cristalina y de los estudios bioquímicos de Fokl (Bitinaite, J., D. A. Wah, y otros (1998). Proc Natl Acad Sci U S A 95(18): 10570-5; Wah, D. A., J. Bitinaite, y otros (1998). Proc Natl Acad Sci U S A 95(18): 10564-9). El análisis de la estructura cristalina de Fokl revela que está compuesta por un módulo de unión específico al ADN fusionado con el dominio de escisión que posee un núcleo catalítico de endonucleasa conservado pero escinde el ADN de una manera no específica. La arquitectura modular es característica, además, para la enzima Bfil de Tipo IIS, que está compuesta por dos dominios de unión al ADN fusionados al núcleo catalítico dimérico similar a la nucleasa no específica que pertenece a la familia de la fosfolipasa D. La presencia de un dominio nucleasa separado se ha informado, además, a partir de la estructura cristalina de la enzima Sdal Tipo IIP (Tamulaitiene, G., A. Jakubauskas, y otros (2006). Structure 14(9): 1389-400)

Enzimas de Restricción Modificadas y nucleasas quiméricas como herramientas para la edición del genoma

10

15

20

25

30

35

Las nucleasas que escinden las moléculas de ácido nucleico en sitios específicos en lugar de en sitios aleatorios son cada vez más importantes en las tecnologías emergentes tales como, por ejemplo, en la ingeniería genética y en la transformación génica. La transformación génica es un proceso en el cual una molécula de ADN introducida en una célula reemplaza el segmento cromosómico correspondiente mediante recombinación homóloga y, por lo tanto, presenta una forma precisa de manipular el genoma (Capecchi, M. R. (2005). Nat Rev Genet 6(6): 507-12). En el pasado, la aplicación de la transformación génica en células de mamíferos estuvo limitada por su baja eficiencia. Los experimentos en sistemas modelos demostraron que la frecuencia de recombinación homóloga de un vector de transformación génica aumenta fuertemente si se induce una rotura de doble hebra dentro de su secuencia diana cromosómica. Mediante el uso de la endonucleasa de direccionamiento de levadura I-Scel, que escinde el ADN en un sitio de reconocimiento de 18 pares de bases de longitud, se demostró inicialmente que la recombinación homóloga y la transformación génica se estimulan más de 1000 veces en células de mamíferos cuando se inserta un sitio de reconocimiento en un gen diana e I-Scel se expresa en esas células (Rouet, P., Smih, F., Jasin, M.; Mol Cell Biol 1994; 14: 8096-8106; Rouet, P., Smih, F. Jasin, M; Proc Natl Acad Sci USA 1994; 91: 6064-6068). En ausencia de un vector de transformación génica para la reparación dirigida mediante homología, frecuentemente las células cierran la ruptura de la doble hebra mediante uniones de extremos no homólogos (NHEJ). Dado que este mecanismo es propenso a errores, frecuentemente conduce a la deleción o la inserción de múltiples nucleótidos en el sitio de escisión. Si el sitio de escisión se ubica dentro de la región codificante de un gen, de esta manera es posible identificar y seleccionar mutantes que muestren mutaciones con desplazamiento del marco de lectura a partir de una población mutagenizada y que representen alelos inactivados no funcionales del gen diana.

Por lo tanto, las nucleasas de secuencia específica representan una herramienta importante para la biotecnología para modificar el genoma de organismos modelos o líneas celulares. Para generar las nucleasas que reconocen específicamente nuevas secuencias diana dentro de los genes, se siguieron dos enfoques basados en la modificación de las endonucleasas de direccionamiento naturales o en la fusión de un dominio de unión al ADN, natural o modificado por ingeniería genética, a un dominio nucleasa. Tales enzimas de restricción modificadas o nucleasas quiméricas pueden dirigirse a grandes sitios de ADN (hasta 36 pb) y pueden modificarse genéticamente para unirse a secuencias de ADN deseadas.

- Las endonucleasas de direccionamiento, tales como I-Scel de levaduras, son elementos genéticos naturales que catalizan su propia duplicación en alelos receptores mediante la generación de DSB en sitios específicos que inician su propia transferencia genética mediante recombinación homóloga. Una característica clave de estas enzimas es que crean roturas de la doble hebra en los sitios de reconocimiento que tienen una longitud de 14 a 40 pb. La principal limitación para el uso de endonucleasas de direccionamiento en la transformación génica es que cada enzima reconoce exclusivamente su secuencia diana natural. Mediante la ingeniería de proteínas se ha intentado modificar las endonucleasas de direccionamiento para reconocer nuevos sitios diana. En este trabajo, podrían hacerse modificaciones que alteren el sitio diana natural dentro de algunos nucleótidos, pero aún no es posible diseñar enzimas específicas para regiones diana completamente nuevas.
- 50 Debido a la dificultad para la manipulación de la secuencia de reconocimiento de las endonucleasas de direccionamiento, las nucleasas dedos de zinc (ZFN) son en la actualidad las nucleasas artificiales usadas más comúnmente para la ingeniería genética (Urnov, F. D., E. J. Rebar, y otros Nat Rev Genet 11(9): 636-46). Las nucleasas dedos de zinc se desarrollaron mediante la fusión del dominio de escisión, no específico de secuencia, de la endonucleasa de restricción Tipo IIS Fokl (dominio Fn) a un nuevo dominio de unión al ADN. La ventaja de las nucleasas dedos de zinc es que el 55 dominio dedos de zinc de unión al ADN puede modificarse para reconocer secuencias diana novedosas, que incluyen aquellas en los genes endógenos. Los módulos de proteínas conocidos como dedos de zinc se encuentran en el dominio de unión al ADN de la familia más abundante de factores de transcripción en la mayoría de los genomas eucarióticos. Cada dedo está compuesto por 30 aminoácidos, coordina un ion Zn2+ mediante el uso de dos cisteínas y dos residuos de histidina, y contacta principalmente con tres pares de bases de ADN. Dos características críticas de la estructura son 60 que cada dedo une su sitio diana de 3 pb independientemente y que cada nucleótido parece estar en contacto por una única cadena lateral de aminoácidos que se proyecta desde un extremo de la α-hélice hasta el surco mayor del ADN. Se diseñaron dedos individuales para reconocer muchos de los 64 tripletes diana diferentes, pero el mayor éxito ha sido el diseño de dedos de zinc para reconocer los tripletes 5'-GNN-3'. Aunque se han propuesto códigos de reconocimiento de dedos de zinc, actualmente no existe ningún código que resulte consistentemente en dedos de zinc con enlace de alta 65 afinidad. El perfeccionamiento de la especificidad de la unión de los dedos de zinc, tales como mediante el aumento del

número de dedos o mediante la construcción de proteínas de múltiples dedos que usan unidades de dos dedos, permanece como un área activa de investigación.

Mediante el uso de nucleasas dedos de zinc en ausencia de un vector de transformación génica para la reparación dirigida por homología, se generaron alelos inactivados en líneas de células de mamíferos y se obtuvieron ratas y peces cebra portadores de genes inactivados tras la expresión del ARNm de ZFN en embriones unicelulares (Santiago Y, Chan E, Liu PQ, Orlando S, Zhang L, Urnov FD, Holmes MC, Guschin D, Waite A, Miller JC, Rebar EJ, Gregory PD, Klug A, Collingwood TN.; Proc Natl Acad Sci U S A 2008; 105:5809-5814; Doyon Y, McCammon JM, Miller JC, Faraji F, Ngo C, Katibah GE, Amora R, Hocking TD, Zhang L, Rebar EJ, Gregory PD, Urnov FD, Amacher SL.; Nat Biotechnol 2008; 26:702-708; Geurts AM, Cost GJ, Freyvert Y, Zeitler B, Miller JC, Choi VM, Jenkins SS, Wood A, Cui X, Meng X, Vincent A, Lam S, Michalkiewicz M, Schilling R, Foeckler J, Kalloway S, Weiler H, Menoret S, Anegon I, Davis GD, Zhang L, Rebar EJ, Gregory PD, Urnov FD, Jacob HJ, Buelow R.; Science 2009; 325:433). Además, las nucleasas dedo de zinc se usaron en presencia de vectores de transformación génica exógenos que contienen regiones de homología con el gen diana para la reparación dirigida por homología de la ruptura de doble hebra a través de la conversión génica. Esta metodología se aplicó a la ingeniería genética en líneas de células de mamíferos y en la corrección génica en células humanas primarias (Urnov FD, Miller JC, Lee YL, Beausejour CM, Rock JM, Augustus S, Jamieson AC, Porteus MH, Gregory PD, Holmes MC.; Nature 2005; 435:646-651; Porteus MH, Baltimore D. 2003. Science 300:763; Hockemeyer D, Soldner F, Beard C, Gao Q, Mitalipova M, DeKelver RC, Katibah GE, Amora R, Boydston EA, Zeitler B, Meng X, Miller JC, Zhang L, Rebar EJ, Gregory PD, Urnov FD, Jaenisch R.; Nat Biotechnol 2009; 27:851-857).

20

25

30

5

10

15

Aunque el uso de las nucleasas dedos de zinc resulta en una mayor frecuencia de recombinación homóloga, se requieren esfuerzos y tiempos considerables para diseñar proteínas dedos de zinc que se unen a una nueva secuencia diana de ADN con alta eficiencia y que actúen como nucleasas de una secuencia específica. Además, durante mucho tiempo se ignoró que la naturaleza del dominio nucleasa de las nucleasas dedos de zinc, y de otras nucleasas quimérica, puede representar un factor de éxito igualmente importante para la actividad general de la proteína de fusión. La razón de esta desatención se basa en el hecho de que hasta la fecha solamente se encontró un único dominio nucleasa que retiene la actividad nucleasa dentro de un dominio de plegamiento de proteínas separado y que puede combinarse con los dominios de unión al ADN, para generar una proteína de fusión nucleasa de secuencia específica. Este dominio nucleasa se deriva de la enzima de restricción Fokl, Tipo IIS, que se ha caracterizado en detalle y se conoce que actúa como un dímero obligado (Bitinaite, J., D. A. Wah, y otros (1998). Proc Natl Acad Sci U S A 95(18): 10570-5; Wah, D. A., J. Bitinaite, y otros (1998). Proc Natl Acad Sci U S A 95(18): 10564-9). En la mayoría de las otras enzimas de restricción, el reconocimiento y la escisión del ADN se combinan en un solo dominio de proteína y no pueden separarse. Una excepción es la enzima Sdal que se ha caracterizado estructuralmente por poseer un dominio nucleasa separado (Tamulaitiene, G., A. Jakubauskas, v otros (2006). Structure 14(9): 1389-400). Además, no ha sido posible aislar mutantes que pierden el reconocimiento de ADN pero retienen la actividad de escisión del ADN.

40

35

Por lo tanto, debido a la falta de otros dominios nucleasas funcionales comparables, durante mucho tiempo fue esencialmente desconocido si las propiedades enzimáticas del dominio Fokl Fn pueden constituir un factor limitante para la actividad nucleasa del dominio Fn de las proteínas de fusión. Por ejemplo, la estructura intrínseca del dominio Fn puede restringir su actividad enzimática o la pequeña interfaz de dimerización de dos dominios Fn puede conducir a una interacción subóptima y a una baja tasa de escisión del sustrato de ADN.

45

Mediante mutagénesis dirigida, el dominio Fokl Fn se modificó genéticamente en las variantes KK y EL que actúan, preferentemente, como heterodímeros (Miller, J. C., M. C. Holmes, y otros (2007). Nat Biotechnol 25(7): 778-85). El uso de estas variantes proporciona la especificidad mejorada por la secuencia diana de las nucleasas dedos de zinc y disminuye la toxicidad en las células de mamíferos, ya que se reconocen y procesan menos secuencias genómicas fuera de la diana. Sin embargo, la actividad nucleasa global de las variantes KK y EL es, a lo máximo, comparable a la del dominio Fn de tipo silvestre.

Sólo muy recientemente se encontró que el dominio Fokl Fn de tipo silvestre exhibe ciertamente solo una actividad

50

enzimática nucleasa subóptima, que limita el uso de las nucleasas dedos de zinc para la modificación genética del genoma. En un estudio de evolución de proteínas dirigida, el dominio Fn se mutagenizó al azar y se sometió a un ensayo en E. coli basado en nucleasa capaz de seleccionar mutantes que exhiben una actividad enzimática aumentada (Guo, J., T. Gaj, y otros (2010), J Mol Biol 400(1): 96-107). Mediante este procedimiento, se hizo posible aislar mutantes que 55 exhiben una actividad de nucleasa > 10 veces más alta en comparación con el dominio Fn de tipo silvestre. Después del acoplamiento de estos mutantes a dominios dedos de zinc, tales proteínas de fusión mostraron un procesamiento de sustrato mejorado de tres a seis veces en células de mamíferos. Sin embargo, en la actualidad permanece desconocido si la actividad del dominio Fn puede mejorarse aún más o si la arquitectura intrínseca de la proteína del dominio Fn puede restringir cualquier mejora adicional.

60

65

Además de los dominios dedos de zinc de unión al ADN fusionados a los dominios nucleasa, muy recientemente se identificó, además, los dominios de unión al ADN de la proteína efectora TAL. En comparación con los motivos dedos de zinc, los elementos de repetición TAL dentro de las proteínas efectoras TAL proporcionan un nuevo tipo de dominio de unión al ADN que puede combinarse con un dominio nucleasa en nucleasas de secuencia específica. Una característica clave de los elementos peptídicos TAL se proporciona por su naturaleza moduladora. De esta manera, pueden generarse nuevas proteínas de unión al ADN en una secuencia específica mediante la combinación de solo cuatro elementos TAL

básicos que cada uno es específico para los nucleótidos A, C, G o T. Actualmente, solamente el dominio nucleasa de Fokl se usa exitosamente en la fusión con los dominios de unión al ADN de la proteína efectora TAL (Miller y otros (2010). Nat. Biotechnol. 29, 143-148).

5 En resumen, existe una necesidad continua de nucleasas que puedan usarse en diversos entornos experimentales, que incluyen su fusión a otras proteínas y la modificación del dominio nucleasa.

El problema técnico que subyace en la presente invención fue la identificación de alternativas y/o medios y métodos mejorados para escindir moléculas de ácido nucleico.

La solución a este problema técnico se logra al proporcionar las modalidades caracterizadas en las reivindicaciones.

10

15

20

25

60

65

En consecuencia, la presente invención se refiere en una primera modalidad a una molécula de ácido nucleico que codifica (I) un polipéptido que tiene la actividad de una endonucleasa, que es (a) una molécula de ácido nucleico que codifica un polipéptido que consiste en la secuencia de aminoácidos de la sec. con núm. de ident.: 1; (b) una molécula de ácido nucleico que consiste en la secuencia de nucleótidos de la sec. con núm. de ident.: 2; (c) una molécula de ácido nucleico que codifica una endonucleasa, cuya secuencia de aminoácidos es al menos 70 % idéntica a la secuencia de aminoácidos de la sec. con núm. de ident.: 1; (d) una molécula de ácido nucleico que consiste en una secuencia de nucleótidos que es al menos 50 % idéntica a la secuencia de nucleótidos de la sec. con núm. de ident.: 2; (e) una molécula de ácido nucleico que es degenerada con respecto a la molécula de ácido nucleico de (d); o (f) una molécula de ácido nucleico correspondiente a la molécula de ácido nucleico de cualquiera de (a) hasta (e) en donde T se reemplaza por U; (II) un fragmento del polipéptido de (I) que tiene la actividad de una endonucleasa.

De acuerdo con la presente invención el término "molécula de ácido nucleico" define una cadena molecular lineal que consiste en al menos (para cada una) 2, 5, 10, 25, 50, 75, 100, 250, 500, tal como al menos 750, 1000, o al menos 2500 o más nucleótidos. El grupo de moléculas designado en la presente descripción como "moléculas de ácido nucleico" comprende, además, genes completos. El término "molécula de ácido nucleico", en la presente descripción se usa indistintamente con el término "polinucleótido".

30 El término "molécula de ácido nucleico" de acuerdo con la presente invención incluye ADN, tal como ADNc o ADN genómico, de doble o simple hebra, y ARN. En este sentido, "ADN" (ácido desoxirribonucleico) se refiere a cualquier cadena o secuencia de los bloques de construcción químicos adenina (A), guanina (G), citosina (C) y timina (T), llamadas bases de nucleótidos, que están unidas sobre una cadena principal de azúcar desoxirribosa. El ADN puede tener una hebra de bases de nucleótidos, o dos hebras complementarias que pueden formar una estructura de doble hélice. El "ARN" (ácido ribonucleico) se refiere a cualquier cadena o secuencia de los bloques de construcción químicos adenina 35 (A), quanina (G), citosina (C) y uracilo (U), llamadas bases de nucleótidos, que se unen juntos en una cadena principal de azúcar ribosa. Típicamente, el ARN tiene una hebra de bases de nucleótidos. Además, se incluyen moléculas híbridas monocatenarias y bicatenarias, es decir, ADN-ARN. La molécula de ácido nucleico puede modificarse, además, por muchos medios conocidos en la técnica. Los ejemplos no limitantes de tales modificaciones incluyen la metilación, los 40 "capuchones", la sustitución de uno o más de los nucleótidos de origen natural con un análogo, y las modificaciones entre los nucleótidos, tales como por ejemplo, aquellas con enlaces no cargados (por ejemplo, fosfonatos de metilo, fosfotriésteres, fosforamidatos, carbamatos, etcétera) y con enlaces cargados (por ejemplo, fosforotioatos, fosforoditioatos, etcétera). Los polinucleótidos pueden contener una o más porciones adicionales unidas covalentemente, tales como, por ejemplo, proteínas (por ejemplo, nucleasas, toxinas, anticuerpos, péptidos señal, poli-L-lisina, etcétera), 45 intercaladores (por ejemplo, acridina, psoraleno, etcétera), agentes quelantes (por ejemplo, metales, metales radiactivos, hierro, metales oxidativos, etcétera), y agentes alquilantes. Los polinucleótidos pueden derivatizarse mediante la formación de un metil o etil fosfotriéster o un enlace alquilo fosforamidato. Se incluyen, además, moléculas que imitan el ácido nucleico conocidas en la técnica, tales como los derivados sintéticos o semisintéticos de ADN o ARN y los polímeros mixtos. Tales moléculas que imitan el ácido nucleico o los derivados de ácido nucleico de acuerdo con la invención 50 incluyen ácido nucleico fosforotioato, ácido nucleico fosforamidato, ácido ribonucleico 2'-O-metoxietilo, ácido nucleico morfolino, ácido nucleico hexitol (HNA), ácido nucleico peptídico (PNA) y ácido nucleico bloqueado (LNA) (ver Braasch y Corey, Chem Biol 2001, 8: 1). El LNA es un derivado de ARN en el que el anillo de ribosa se restringe por un enlace metileno entre el oxígeno-2' y el carbono-4'. Además, se incluyen los ácidos nucleicos que contienen bases modificadas, por ejemplo, tiouracilo, tioquanina y fluorouracilo. Típicamente, una molécula de ácido nucleico transporta la información 55 genética, que incluye la información usada por la maquinaria celular para producir proteínas y/o polipéptidos. La molécula de ácido nucleico de la invención puede comprender, adicionalmente, promotores, potenciadores, elementos de respuesta, secuencias de señal, secuencias de poliadenilación, intrones, regiones no codificantes 5' y 3' y similares.

El término "polipéptido", como se usa en la presente descripción indistintamente con el término "proteína", describe cadenas moleculares lineales de aminoácidos, que incluye las proteínas de cadena sencilla, que contienen más de 30 aminoácidos, mientras que el término "péptido" describe cadenas moleculares lineales de aminoácidos, que incluye las proteínas de cadena sencilla, que contienen menos de, y hasta 30 aminoácidos. Los polipéptidos pueden formar, además, oligómeros que consisten en al menos dos moléculas idénticas o diferentes. Las correspondientes estructuras de orden superior de tales multímeros son, según el caso, denominados homo o heterodímeros, homo o heterotrímeros, etcétera. Los polipéptidos de la invención pueden formar heteromultímeros u homomultímeros, tales como heterodímeros u homodímeros. Además, los peptidomiméticos de tales proteínas/polipéptidos donde los aminoácidos y/o los enlaces

peptídicos se reemplazaron por análogos funcionales, son además, comprendidos por la invención. Tales análogos funcionales incluyen todos los aminoácidos conocidos distintos de los 20 aminoácidos codificados por genes, tal como la selenocisteína. Los términos "polipéptido" y "proteína" se refieren, además, a polipéptidos y proteínas modificados naturalmente, donde la modificación se efectúa, por ejemplo, mediante glicosilación, acetilación, fosforilación, ubiquitinilación y modificaciones similares que se conocen bien en la técnica.

5

10

15

50

55

60

65

El término "un polipéptido que tiene la actividad de una endonucleasa", como se usa en la presente descripción, se refiere a un polipéptido que es capaz de escindir los enlaces fosfodiéster entre las subunidades de nucleótidos de ácidos nucleicos dentro de una cadena de polinucleótidos.

De acuerdo con la invención, la actividad enzimática endonucleasa se considera estable cuando, en las condiciones respectivas, la enzima es capaz de durar lo suficiente como para obtener el efecto deseado, específicamente, la escisión de su sustrato. Con respecto a esto, se observa que la actividad endonucleasa puede evaluarse como se describió en los ejemplos de la descripción o mediante métodos bien conocidos en la técnica. Por ejemplo, una molécula de ácido nucleico puede exponerse a una proteína cuya actividad endonucleasa debe evaluarse en condiciones que son adecuadas para la actividad enzimática endonucleasa. Después de la incubación, la composición que comprende la molécula de ácido nucleico (con o sin dicha proteína a evaluar) puede someterse a un ensayo para evaluar la longitud de una molécula de ácido nucleico tal como, por ejemplo, electroforesis en gel, para determinar si la molécula de ácido nucleico fue escindida.

20 De acuerdo con la presente invención, el término "porcentaje (%) de identidad de secuencia" describe el número de coincidencias ("aciertos") de nucleótidos/aminoácidos idénticos de dos o más secuencias de ácido nucleico o de aminoácido alineadas en comparación a la cantidad de nucleótidos o de residuos de aminoácidos que constituyen la longitud total de las secuencias modelos de ácido nucleico o aminoácidos. En otros términos, mediante el uso de una alineamiento, para dos o más secuencias o subsecuencias, puede determinarse el porcentaje de residuos de aminoácidos 25 o de nucleótidos que son iguales (por ejemplo, 95 % de identidad) cuando se comparan y se alinean las (sub)secuencias para obtener el máximo de correspondencia en una ventana de comparación, o en una región designada según lo medido mediante el uso de un algoritmo de comparación de secuencias como se conoce en la técnica, o cuando se realiza el alineamiento manualmente y se inspecciona visualmente. Esta definición se aplica, además, al complemento de cualquier secuencia para alinearse. El alineamiento y el análisis de la secuencia de aminoácidos en relación con la presente invención se realizaron mediante el uso del algoritmo de la NCBI BLAST (Stephen F. Altschul, Thomas L. Madden, Alejandro A. Schäffer, Jinghui Zhang, Zheng Zhang, Webb Miller, y David J. Lipman (1997), "Gapped BLAST and PSI-30 BLAST: a new generation of protein database search programs", Nucleic Acids Res. 25:3389-3402) y el programa informático del banco de trabajo principal CLC (versión 5.7.1; CLC bio, Aarhus, Dinamarca) que se usan, preferentemente, de acuerdo con esta invención. Preferentemente, se usan los parámetros estándar publicados (Altschul y otros, en el lugar citado). El experto en la técnica conoce la existencia de programas adicionales adecuados para alinear secuencias de 35 ácidos nucleicos. Un programa preferido para el alineamiento de las secuencia de ácido nucleico, de acuerdo con la invención, es el programa informático del banco de trabajo principal CLC que usa los parámetros de alineamientos estándar del programa informático (versión 5.7.1; CLC bio, Aarhus, Dinamarca).

Como se define en las modalidades anteriores en la presente descripción, la invención contempla determinadas identidades de secuencia de aminoácidos. Además, se contempla, con preferencia creciente, las identidades de secuencias de aminoácidos de al menos 75 %, al menos 80 %, al menos 85 %, al menos 90 %, al menos 95 %, al menos 97,5 %, al menos 98 %, al menos 98,5 %, al menos 99,5 %, al menos 99,8 %, y 100 % de identidad con la secuencia de aminoácidos respectiva de acuerdo con la invención.

Como se define en las modalidades anteriores en la presente descripción, la invención contempla determinadas identidades de secuencia de nucleótidos. Además, se contempla, con preferencia creciente, las identidades de secuencias de nucleótidos de al menos 55 %, al menos 60 %, al menos 65 %, al menos 70 %, al menos 75 %, al menos 80 %, al menos 85 %, al menos 90 %, al menos 95 %, al menos 97,5 %, al menos 98 %, al menos 98,5 %, al menos 99 %, al menos 99,5 %, al menos 99,5 %, al menos 99,8 %, y 100 % de identidad con respecto a la secuencia de ácido nucleico respectiva de acuerdo con la invención.

El experto en la técnica apreciará fácilmente que más de una molécula de ácido nucleico puede codificar el mismo polipéptido debido a la degeneración del código genético. La degeneración se debe a que un código de tripletes designa a 20 aminoácidos y un codón de parada. Debido a que existen cuatro bases que se utilizan para codificar la información genética, se necesitan codones de tripletes para producir al menos 21 códigos diferentes. Las 4³ posibilidades posibles para las bases en los tripletes proporcionan 64 codones posibles, lo que significa que alguna degeneración debe existir. Como un resultado, algunos aminoácidos están codificados por más de un triplete, es decir, por hasta seis. La degeneración surge principalmente a partir de alteraciones en la tercera posición en un triplete. Esto significa que las moléculas de ácido nucleico que tienen diferentes secuencias, pero que aún codifican el mismo polipéptido se contemplan y pueden emplearse de acuerdo con el método de la presente invención.

Los fragmentos de acuerdo con la presente invención son polipéptidos que tienen la actividad de una endonucleasa, como se define anteriormente en la presente descripción, y comprenden al menos 90 aminoácidos. Con respecto a esto, se prefiere, con preferencia creciente, que los fragmentos de acuerdo con la presente invención sean polipéptidos de al menos 100, al menos 125, al menos 150, al menos 200 aminoácidos, al menos 300 aminoácidos, al menos 400

aminoácidos. Los fragmentos del polipéptido de la invención, que retienen sustancialmente la actividad endonucleasa, incluyen truncamientos N-terminales, truncamientos C-terminales, sustituciones de aminoácidos, deleciones internas y adición de aminoácidos (ya sea internamente o en cualquier extremo de la proteína). Por ejemplo, las sustituciones de aminoácidos conservativas son conocidas en la técnica y pueden introducirse en la endonucleasa de la invención sin afectar sustancialmente la actividad endonucleasa, es decir, disminuir dicha actividad.

5

10

15

20

25

30

35

40

45

50

55

Como es evidente a partir de los ejemplos, el inventor fue capaz de identificar y aislar una nueva nucleasa, en particular el dominio endonucleasa, derivado de una cepa de Clostridium como se detalla más abajo. Específicamente, el inventor pudo establecer la utilidad del producto génico de un gen bacteriano putativo sin connotación funcional conocida como una secuencia de nucleasa inespecífica. La nucleasa novedosa puede emplearse en diversos entornos experimentales al igual que cualquier otra nucleasa. Por ejemplo, puede usarse para escindir aleatoriamente moléculas de ácido nucleico o, por ejemplo, en fusión con dominios de unión al ADN, para la escisión en un sitio específico de las moléculas de ácido nucleico. Es importante destacar que, como se describe más abajo y específicamente en los ejemplos, la endonucleasa novedosa puede usarse en combinación con los dominios de unión al ADN de la proteína efectora TAL como parte de una proteína de fusión para la escisión de ácidos nucleicos en una secuencia específica. Con respecto a esto, la nucleasa novedosa muestra su superioridad sobre las endonucleasas del estado de la técnica distintas de Fokl, que hasta el momento no pudieron mostrarse activas en las proteínas de fusión correspondientes. Brevemente, los inventores probaron el producto génico de dicho gen microbiano hipotético no caracterizado que designaron como "Clo051" (sec. con núm. de ident.: 17) y que se derivó del genoma de *Clostridium spec.* 7_2_43FAA (Secuencia de Referencia del NCBI: ZP_05132802.1; publicación/base de datos liberada en fecha: 9 de junio, de 2010), más específicamente su dominio nucleasa putativo (ver Figuras 5 y 6), por su actividad endonucleasa en combinación con el dominio de unión al ADN de una proteína efectora TAL. Además, se evaluaron diversas proteínas endonucleasas conocidas en combinación con los dominios de unión al ADN de la proteína efectora TAL, así como también otros dos genes microbianos hipotéticos. Sorprendentemente, solamente pudo demostrarse que el dominio nucleasa de Clo051 estaba activo, mientras que las otras proteínas de fusión no mostraron actividad (ver el Ejemplo 1 para los detalles). Los experimentos comparativos enfatizaron en el significado del descubrimiento de la presente invención en que se identificó una nucleasa novedosa que, además, exhibe actividad cuando se fusiona a los dominios de unión al ADN de las proteínas efectoras TAL. Las proteínas efectoras TAL se expresan por los patógenos de plantas del género Xanthomonas y reprograman las células huésped mediante la imitación de los factores de transcripción eucarióticos. Las proteínas efectoras TAL se caracterizan por un dominio central de repeticiones en tándem de 32 a 34 aminoácidos que constituyen un dominio de unión al ADN. El número y el orden de las repeticiones en una proteína efectora TAL determinan su actividad específica de unión al ADN. (Boch, J., y otros 2009 Science 326: 1509-12). Las secuencias de aminoácidos de las repeticiones son conservadas, excepto para dos residuos adyacentes altamente variables (en las posiciones 12 y 13) que determinan la especificidad hacia las bases del ADN A, G, C o T. La unión al ADN se realiza mediante el contacto de un nucleótido de la doble hélice del ADN con los residuos variables en la posición 12 y 13 dentro del motivo efector de TAL, lo que resulta en una correspondencia uno a uno entre las repeticiones secuenciales en las proteínas efectoras TAL y los nucleótidos secuenciales en el ADN diana. La unión a secuencias de ADN más largas se logra mediante la unión en tándem de varios de estos motivos efectores TAL para formar un "dominio de unión al ADN de una proteína efectora TAL". El uso de tales dominios de unión al ADN de las proteínas efectoras TAL para la creación de proteínas de fusión, motivo efector TAL nucleasa, que reconoce y escinde una secuencia diana específica depende de la creación adecuada de los dominios de unión al ADN de las proteínas efectoras TAL que pueden reconocer específicamente dicha diana particular. La ventaja de los elementos de repetición TAL, en comparación con, por ejemplo, los elementos dedos de zinc, se proporciona por su naturaleza verdaderamente modular. De esta manera, pueden generarse nuevas proteínas de unión al ADN en una secuencia específica a través de la combinación de los cuatro elementos básicos de TAL que son específicos para los nucleótidos A, C, G o T.

Es importante señalar que, en la presente invención, el dominio nucleasa Clo051 fusionado a los dominios de unión al ADN de las proteínas efectoras TAL se evaluó y se encontró que es activo en mamíferos, específicamente en cultivos de células humanas. Por lo tanto, la utilidad de las proteínas de fusión del dominio nucleasa Clo051 para la manipulación del ADN y de los genes, específicamente en células de mamíferos, pero sin limitación, se ha demostrado directamente en el sistema biológico que proporciona aplicaciones importantes para esta tecnología. Este hallazgo es de particular importancia debido a que los estudios sobre la función de las proteínas que se realizan en organismos eucarióticos inferiores, como, por ejemplo, levaduras, no permiten una conclusión definitiva acerca de la utilidad de la proteína en estudio en células de mamíferos. Por ejemplo, una proteína específica puede funcionar de manera óptima a 30° Celsius, la temperatura de crecimiento de la levadura, pero se vuelve inestable o se inactiva a 37° Celsius que es la temperatura corporal típica de los mamíferos. Además, el medio intracelular de, por ejemplo, las células de levadura, como la concentración de iones y de proteínas, la diversidad de proteínas y los mecanismos de degradación de proteínas, se distinguen del medio intracelular de las células de mamíferos.

Mientras que los ejemplos describen solamente el uso del dominio nucleasa de Clo051 (sec. con núm. de ident.: 1), por ejemplo, en combinación con los dominios de unión al ADN, el experto en la técnica apreciará que puede emplearse la secuencia completa de Clo051 como se establece en la sec. con núm. de ident.: 17 o los fragmentos más cortos de esta que tienen actividad endonucleasa y que comprenden la secuencia de aminoácidos de la sec. con núm. de ident.: 1. La secuencia de aminoácidos de la sec. con núm. de ident.: 17 como se ilustra, además, en la Figura 5.

En una modalidad preferida de la molécula de ácido nucleico de la invención, en (I)(c) en dicha secuencia de aminoácidos que tiene al menos un 70 % de identidad de secuencia con la sec. con núm. de ident.: 1 los residuos de aminoácidos P66, D67, D84 y/o K86 de la sec. con núm. de ident.: 1 no están modificados.

5

10

15

20

25

30

35

40

45

50

55

60

65

El dominio nucleasa de Clo051, al igual que muchas endonucleasas de restricción Tipo-II y, por ejemplo, la proteína MutH de reparación del ADN, comparte el motivo de secuencia conservada PD-(D/E)XK dentro del núcleo de su dominio catalítico. El núcleo sirve como un andamio para un sitio activo débilmente conservado, que comprende, típicamente, dos o tres residuos ácidos (Asp o Glu) y un residuo de Lys, que juntos forman el motivo catalítico bipartito distintivo [(P)D. Xn. (D/E)XK](donde X es cualquier aminoácido). Este motivo ha llevado a denominar a esta superfamilia de proteínas como 'PD-(D/E)XK'. El trabajo sobre las enzimas de restricción y las proteínas de reparación del ADN ha demostrado que los tres residuos catalíticos se ubican cercanos entre sí en una horquilla β irregular. La primera D se ubica al inicio de la hebra primera y más corta, y la E y la K, separadas por un residuo hidrófobo x, en el medio de la hebra segunda y más larga. El módulo catalítico se aproxima invariablemente al ADN desde el lado del surco menor, y la unión a la secuencia específica se realiza mediante un módulo/subdominio separado en el surco mayor. Los dos primeros carboxilatos del motivo DEK coordinan los iones metálicos. La primera D es la más conservada y coordina ambos iones metálicos, mientras que la segunda E puede reemplazarse por Q, D, N, H o S, y la tercera K puede reemplazarse por E, Q, D, S, N o T. El residuo de lisina en el motivo DEK conservado coordina el aqua nucleófila junto con el fosfato 3' al enlace escindible; la misma Lisina, además, se une al hidrógeno con un oxígeno carbonilo en el módulo de unión al ADN. Esta lisina, que es conservada en muchas endonucleasas de restricción y se reemplaza por Glu o Gln en BamHl y Bqlll, se ha propuesto como un sensor para la unión al ADN y un centro que acopla el reconocimiento de bases y la escisión del ADN (Lee y otros (2005). Molecular Cell 20, 155- 166; Orlowski, J. y J. M. Bujnicki (2008). Nucleic Acids Res 36(11): 3552-69).

La secuencia primaria del dominio nucleasa de Clo051 entre las posiciones E389 e Y587 de la secuencia de sec. con núm. de ident.: 17, es decir, la secuencia de la sec. con núm. de ident.: 1, exhibe una distribución única de los residuos de arginina (R) y lisina (K) cargados positivamente y de los residuos de glutamato (E) y aspartato (D) cargados negativamente (Figura 13). Estos residuos constituyen un paisaje tridimensional de cargas dentro del dominio Clo051 que determina la estructura terciaria única de esta nucleasa, como se muestra en el modelo estructural en la Figura 6. Determinados reemplazos de residuos polares versus no polares, o de residuos no polares contra residuos polares, por ejemplo en las posiciones S35 y/o R58 de la sec. con núm. de ident.: 1 (o S423 y R446 de la sec. con núm. de ident.: 17), alteran la estructura tridimensional de la cadena proteica y pueden resultar en un aumento de la actividad nucleasa. Tales reemplazos de aminoácidos pueden realizarse mediante ensayos de prueba y error o pueden seguir hipótesis específicas sobre el impacto estructural y funcional en el dominio nucleasa de Clo051. Alternativamente, un gran número de variantes mutagenizadas aleatoriamente de la región codificante del dominio nucleasa de Clo051 pueden ensamblarse en una biblioteca mediante PCR mutagénico, propenso a errores. Esta biblioteca de moléculas mutantes puede analizarse para detectar la presencia de variantes hiperactivas de nucleasa mediante un ensayo de selección fenotípico en células de E. coli.. levaduras o mamíferos que se acopla a una lectura de nucleasa funcional, por ejemplo, como se describió para la mejora de la recombinasa FLP (Buchholz y otros, Nat. Biotechnol. 16, 657-62, 1998). Tal selección funcional para variantes mejoradas de nucleasas puede resultar en el reemplazo de residuos únicos o múltiples que conduce a un aumento de la actividad nucleasa en comparación con la forma de tipo silvestre de Clo051.

Además, se contemplan modalidades donde más de un residuo de aminoácido P66, D67, D84 y/o K86 de la sec. con núm. de ident.: 1 no están modificados, tal como, por ejemplo, los tramos de aminoácidos, por ejemplo desde al menos P66 hasta al menos K86, al menos R64 hasta al menos Y88, al menos G62 hasta al menos E90, así como también desde L60 hasta al menos Y92 de la sec. con núm. de ident.: 1.

En una modalidad preferida de la invención, la molécula de ácido nucleico codifica, además, un dominio de unión al ADN.

En esta modalidad, la molécula de ácido nucleico de la invención codifica una proteína de fusión que tiene la actividad de una endonucleasa y comprende un dominio de unión al ADN y un dominio de escisión que comprende o consiste en el dominio endonucleasa novedoso. El término "proteína de fusión" es bien conocido en la técnica y tiene el mismo significado en la presente descripción. Específicamente, se refiere a una proteína generada mediante la unión de dos o más secuencias de ácido nucleico diana, por ejemplo, genes que originalmente codifican proteínas separadas, para crear un constructo de fusión. La traducción de dicho constructo de fusión resulta en una proteína única con las propiedades funcionales derivadas de dichas proteínas separadas. Las dos proteínas que dan lugar a la proteína de fusión pueden conectarse mediante un enlazador, tal como, por ejemplo, un péptido enlazador. En otras palabras, el dominio de unión al ADN y el dominio de escisión de las nucleasas pueden fusionarse directamente entre sí o pueden fusionarse a través de un enlazador.

El término "enlazador", como se usa de acuerdo con la presente invención, se refiere a una secuela de aminoácidos (es decir, péptidos enlazadores) así como también a enlazadores no peptídicos.

Los péptidos enlazadores, como se contempla por la presente invención, son péptidos o polipéptidos enlazadores de al menos 1 aminoácido en longitud. Preferentemente, los enlazadores son de 1 hasta 100 aminoácidos en longitud. Con mayor preferencia, los enlazadores son de 5 hasta 50 aminoácidos en longitud, e incluso con mayor preferencia, los enlazadores son de 10 hasta 20 aminoácidos en longitud. Es bien conocido por el experto en la técnica que la naturaleza, es decir, la longitud y/o la secuencia de aminoácidos del enlazador puede modificar o potenciar la estabilidad y/o la

solubilidad de la molécula. Por lo tanto, la longitud y la secuencia de un enlazador dependen de la composición de las porciones respectivas de la proteína de fusión.

El experto en la técnica conoce los métodos para evaluar la idoneidad de diferentes enlazadores. Por ejemplo, las propiedades de la molécula pueden probarse fácilmente mediante la evaluación de la actividad nucleasa, así como también la especificidad de unión al ADN de las porciones respectivas de la proteína de fusión para usarse en el método de la invención.

5

15

20

25

30

35

45

50

55

60

65

Se apreciará por el experto en la técnica que cuando la proteína de fusión se proporciona como una molécula de ácido nucleico que codifica la proteína de fusión en forma expresable, el enlazador es un péptido enlazador codificado, además, por dicha molécula de ácido nucleico.

El término "enlazador no peptídico", como se usa de acuerdo con la presente invención, se refiere a grupos de enlace que tienen dos o más grupos reactivos pero que excluyen los péptidos enlazadores como se definió anteriormente. Por ejemplo, el enlazador no peptídico puede ser un polímero que tiene grupos reactivos en ambos extremos, que se unen individualmente a grupos reactivos de las porciones individuales de la proteína de fusión, por ejemplo, un extremo amino, un residuo de lisina, un residuo de histidina o un residuo de cisteína. Los grupos reactivos del polímero incluyen un grupo aldehído, un grupo aldehído propiónico, un grupo aldehído butilo, un grupo maleimida, un grupo cetona, un grupo vinil sulfona, un grupo tiol, un grupo hidrazida, un grupo carbonildimidazol (CDI) un grupo carbonato de nitrofenilo (NPC), un grupo trisilato, un grupo isocianato y derivados de succinimida. Los ejemplos de derivados de succinimida incluyen propionato de succinimidilo (SPA), ácido succinimidil butanoico (SBA), carboximetilato de succinimidilo (SCM), succinimidil succinamida (SSA), succinimidil succinato (SS), succinimidil carbonato y N-hidroxi succinimida (NHS). Los grupos reactivos en ambos extremos del polímero no peptídico pueden ser iguales o diferentes. Por ejemplo, el polímero no peptídico puede tener un grupo maleimida en un extremo y un grupo aldehído en otro extremo. Preferentemente, el enlazador es un péptido enlazador. Con mayor preferencia, el péptido enlazador consiste en siete residuos de glicina.

Además, la proteína de fusión puede estar flanqueada en los extremos N o C terminal por secuencias adicionales no relacionadas a dichas proteínas en la proteína de fusión. De acuerdo con la presente invención, una proteína de fusión de la invención comprende un dominio de unión a ADN. El término "dominio de unión al ADN" tiene el mismo significado como se conoce en la técnica y se refiere a un motivo/conformación de secuencia dentro de una proteína que se une a los motivos del ADN. Los dominios de proteínas que pueden unirse específicamente a una secuencia de ácido nucleico incluyen, por ejemplo, repeticiones de dedos de zinc, el motivo hélice-giro-hélice (HTH) de los homeodominios, y el motivo cinta-hélice-hélice (RHH). La unión específica se refiere a la unión específica a una secuencia y es específica, cuando un dominio de unión al ADN estadísticamente solamente se une a una secuencia particular y no se une, o no se une esencialmente, a una secuencia no relacionada. El experto en la técnica conoce bien las secuencias que codifican los dominios de unión al ADN (Rohs y otros (2010). Annu. Rev. Biochem. 79, 233-269; Maeder y otros (2009). Nat. Protocols 10, 1471-1501).

En una modalidad más preferida de la molécula de ácido nucleico de la invención, el dominio de unión al ADN es un motivo efector TAL de una proteína efectora TAL.

Esta modalidad se refiere a una molécula de ácido nucleico que codifica, además, una nucleasa TAL. El término "nucleasa TAL", como se usa en la presente descripción, es bien conocido en la técnica y se refiere a una proteína de fusión que comprende un dominio de unión al ADN, en donde el dominio de unión al ADN comprende o consiste en motivos efectores TAL de una proteína efectora TAL y el dominio de escisión no específico de una nucleasa de restricción. La proteína de fusión de la invención que, además, se emplea en el método de la invención más abajo retiene, o retiene esencialmente, la actividad enzimática de la endonucleasa de la invención. De acuerdo con la presente invención, dicha actividad endonucleasa (además, denominada función) se retiene esencialmente si al menos se retiene el 60 % de la actividad biológica de la actividad endonucleasa. Preferentemente, se retiene al menos el 75 % o al menos el 80 % de la actividad endonucleasa. Más preferido es que se retiene al menos 90 % tal como al menos 95 %, incluso más preferido al menos 98 % tal como al menos 99 % de la actividad biológica de la endonucleasa. Lo más preferido es que la actividad biológica se retenga completamente, es decir, hasta el 100 %. Además, de acuerdo con la invención, se contemplan proteínas de fusión que tienen una actividad biológica aumentada en comparación con la endonucleasa cuando no está fusionada a un dominio de unión a ADN, es decir, más del 100 % de la actividad. Los métodos para evaluar la actividad biológica de las endonucleasas (de restricción) se conocen bien por el experto en la técnica e incluyen, sin limitación, la incubación de una endonucleasa con ADN recombinante y el análisis de los productos de la reacción mediante electroforesis en gel (Bloch KD.; Curr Protoc Mol Biol 2001; Capítulo 3:Unidad 3.2).

El término "proteína efectora TAL", como se usa en la presente descripción, se refiere a proteínas que pertenecen a la familia de proteínas TAL (similar a activador de la transcripción). Estas proteínas se expresan por los patógenos bacterianos de las plantas del género Xanthomonas. Los miembros de la gran familia de efectores TAL son factores clave de la virulencia de Xanthomonas y reprograman las células huésped mediante la imitación de los factores de transcripción eucarióticos. La patogenicidad de muchas bacterias depende de la inyección de proteínas efectoras a través de la secreción de tipo III en células eucarióticas para manipular los procesos celulares. Las proteínas efectoras TAL de Xanthomonas patogénicos de plantas son factores de virulencia importantes que actúan como activadores transcripcionales en el núcleo de la célula vegetal. PthXo1, una proteína efectora TAL de unas Xanthomonas patógena

de arroz, activa la expresión del gen del arroz Os8N3, que permite que Xanthomonas colonice las plantas de arroz. Las proteínas efectoras TAL se caracterizan por un dominio central de repeticiones en tándem, es decir, un dominio de unión al ADN, así como también señales de localización nuclear (NLS) y un dominio de activación transcripcional ácido. Los miembros de esta familia de efectores están altamente conservados y difieren principalmente en la secuencia de aminoácidos de sus repeticiones y en el número de repeticiones. El número y el orden de las repeticiones en una proteína efectora TAL determinan su actividad específica. Estas repeticiones son referidas en la presente descripción como "motivos efectores TAL". Un miembro ilustrativo de esta familia de efectores, AvrBs3 de Xanthomonas campestris pv. vesicatoria, contiene 17,5 repeticiones e induce la expresión de los genes UPA (regulado positivamente por AvrBs3), que incluye el gen de resistencia Bs3 en plantas de pimiento (Kay, y otros 2005 Mol Plant Microbe Interact 18(8): 838-48; Kay, S. y U. Bonas 2009 Curr Opin Microbiol 12(1): 37-43). Las repeticiones de AvrBs3 son esenciales para la unión al ADN de AvrBs3 y representan un tipo distinto de dominio de unión al ADN. El mecanismo de reconocimiento del ADN en una secuencia específica se dilucidó mediante estudios recientes de las proteínas AvrBs3, Hax2, Hax3 y Hax4 que revelaron el código de reconocimiento del ADN de los efectores TAL (Boch, J., y otros 2009 Science 326: 1509-12).

10

40

45

50

55

60

Los motivos o repeticiones efectores Tal son motivos de secuencia de proteína de 32 a 34 aminoácidos. Las secuencias 15 de aminoácidos de las repeticiones son conservadas, excepto para dos residuos adyacentes altamente variables (en las posiciones 12 y 13) que determinan la especificidad hacia las bases del ADN A, G, C o T. En otras palabras, la unión al ADN se realiza mediante el contacto de un nucleótido de la doble hélice del ADN con los residuos variables en la posición 12 y 13 dentro del motivo efector TAL de una proteína efectora TAL particular (Boch, J., y otros 2009 Science 326: 1509-20 12). Por lo tanto, se encontró una correspondencia uno a uno entre las repeticiones secuenciales en las proteínas efectoras TAL y los nucleótidos secuenciales en el ADN diana. Cada motivo efector TAL reconoce principalmente un solo nucleótido dentro del sustrato de ADN. Por ejemplo, la combinación de histidina en la posición 12 y ácido aspártico en la posición 13 se une específicamente a la citosina; la combinación de asparagina en ambas, la posición 12 y en la posición 13 se une específicamente a la guanina; la combinación de asparagina en la posición 12 e isoleucina en la posición 13 se une específicamente a la adenina y la combinación de asparagina en la posición 12 y la glicina en la posición 13 se une 25 específicamente a la timina. La unión a secuencias de ADN más largas se logra mediante la unión en tándem de varios de estos motivos efectores TAL para formar un "dominio de unión al ADN de una proteína efectora TAL". Por lo tanto, un dominio de unión al ADN de una proteína efectora TAL se refiere a los dominios de unión al ADN que se encuentran en las proteínas efectoras TAL de origen natural, así como también a los dominios de unión al ADN diseñados para unirse a 30 una secuencia de nucleótidos diana específica como se describió en los ejemplos más abajo. El uso de tales dominios de unión al ADN de las proteínas efectoras TAL para la generación de las proteínas de fusión-motivo efector TAL/ nucleasaque reconocen y escinden una secuencia diana específica depende de la generación adecuada de dominios de unión al ADN de las proteínas efectoras TAL que pueden reconocer específicamente dicha diana particular. Los métodos para la generación de dominios de unión al ADN de las proteínas efectoras TAL se conocen bien en la técnica (Zhang y otros (2011). Nat Biotechol. 29, 149-153; Cermak y otros (2011). Nucleic Acis Res. April 14, identificador de PubMed 21493687). 35

Preferentemente, el dominio de unión al ADN se deriva de los motivos efectores TAL que se encuentran en las proteínas efectoras TAL de origen natural, tales como por ejemplo las proteínas efectoras TAL seleccionadas del grupo que consiste en AvrBs3, Hax2, Hax3 o Hax4 (Bonas y otros 1989. Mol Gen Genet 218(1): 127-36; Kay y otros 2005 Mol Plant Microbe Interact 18(8): 838-48).

Se contemplan, de acuerdo con la presente invención, proteínas de fusión que se proporcionan como un dominio de unión al ADN de una proteína efectora TAL acoplada con un único dominio nucleasa. Estas proteínas monoméricas pueden combinarse para actuar como un dímero funcional para desarrollar actividad nucleasa a través de la cooperación de dos dominios nucleasa, cada uno de los cuales es parte de una proteína de fusión.

Preferentemente, la nucleasa TAL de acuerdo con la presente invención comprende más de uno, es decir, varios motivos efectores TAL, tal como al menos 12 motivos efectores TAL, tal como, por ejemplo, al menos 14 o al menos 16 motivos efectores TAL. Con mayor preferencia, la nucleasa TAL comprende al menos 18 motivos efectores TAL. En otras palabras, el dominio de unión al ADN de una proteína efectora TAL dentro de dicha proteína de fusión comprende al menos 18 motivos efectores TAL. En el caso de proteínas de fusión que consisten en dímeros, como se describió anteriormente, esto significa que cada monómero de proteína de fusión comprende al menos nueve motivos efectores TAL. Los métodos para evaluar la especificidad de unión al ADN de una proteína de fusión de acuerdo con la presente invención son conocidos por el experto en la técnica e incluyen, sin limitación, los ensayos de genes reporteros de la transcripción y los ensayos de cambio de movilidad electroforética (EMSA).

Preferentemente, el sitio de unión de la proteína de fusión es de hasta 500 nucleótidos, tal como hasta 250 nucleótidos, hasta 100 nucleótidos, hasta 50 nucleótidos, hasta 25 nucleótidos, hasta 10 nucleótidos tal como hasta 5 nucleótidos en el extremo 5' (es decir, 5') o en el extremo 3' (es decir 3') del nucleótidos(s) que es/son modificados de acuerdo con el método de la presente invención como se detalla más abajo.

En otra modalidad, la invención se refiere a un vector que codifica la molécula de ácido nucleico de la invención.

El término "vector" de acuerdo con la invención significa, preferentemente, un plásmido, cósmido, virus, bacteriófago u otro vector usado, por ejemplo, convencionalmente en ingeniería genética, que es portador de la molécula de ácido nucleico de la invención que codifica el péptido o la proteína de fusión de la invención. En consecuencia, la molécula de

ácido nucleico de la invención puede insertarse en diversos vectores disponibles comercialmente. Los ejemplos no limitantes incluyen, vectores de plásmidos procarióticos, tales como los de las series pUC, pBluescript (Stratagene), las series pET de vectores de expresión (Novagen) o pCRTOPO (Invitrogen) y vectores compatibles con la expresión en células de mamíferos como pREP (Invitrogen), pcDNA3 (Invitrogen), pCEP4 (Invitrogen), pMC1neo (Stratagene), pXT1 (Stratagene), pSG5 (Stratagene), EBO-pSV2neo, pBPV-1, pdBPVMMTneo, pRSVgpt, pRSVneo, pSV2-dhfr, plZD35, pLXIN, pSIR (Clontech), pIRES-EGFP (Clontech), pEAK-10 (Edge Biosystems) pTriEx-Hygro (Novagen) y pCINeo (Promega). Los ejemplos para los vectores de plásmidos adecuados para *Pichia pastoris* comprenden, por ejemplo, los plásmidos pAO815, pPIC9K y pPIC3.5K (todos de Invitrogen).

La molécula de ácido nucleico de la presente invención mencionada anteriormente puede insertarse, además, en vectores de manera que se genere una fusión traduccional (adicional) con otra molécula de ácido nucleico. Para este objetivo, puede aplicarse el PCR por extensión de superposición (por ejemplo Wurch, T., Lestienne, F., y Pauwels, P.J., A modified overlap extension PCR method to create chimeric genes in the absence of restriction enzymes, Biotechn. Techn. 12, 9, Sept. 1998, 653-657). Los productos que surgen de este proceso se denominan proteínas de fusión y se describirán adicionalmente más abajo. Las otras moléculas de ácido nucleico pueden codificar una proteína que puede, por ejemplo, aumentar la solubilidad y/o facilitar la purificación de la proteína codificada por la molécula de ácido nucleico de la invención. Los ejemplos no limitantes incluyen pET32, pET41, pET43. Los vectores pueden contener, además, un ácido nucleico expresable adicional que codifica para una o más chaperonas con el propósito de facilitar el plegamiento correcto de la proteína. Los huéspedes para la expresión bacteriana adecuados comprenden, por ejemplo, las cepas derivadas a partir de BL21 (tales como BL21 (DE3), BL21 (DE3)PlysS, BL21 (DE3)RIL, BL21 (DE3)PRARE) o Rosetta®.

Los plásmidos particularmente preferidos que pueden usarse para introducir el ácido nucleico que codifica el polipéptido de la invención, que tiene la actividad de una endonucleasa, en la célula huésped son: pUC18/19 (Roche Biochemicals), pBluescript II (Alting-Mees, y otros (1992). Meth. Enzymol., 216, 483-495), pKK-177-3H (Roche Biochemicals), pBTac2 (Roche Biochemicals), pKK223-3 (Amersham Pharmacia Biotech), pKK-233-3 (Stratagene) y pET (Novagen).

25

30

35

40

45

50

55

60

Para las técnicas de modificación de vectores, ver Sambrook y Russel, 2001. Generalmente, los vectores pueden contener uno o más orígenes de replicación (ori) y sistemas de herencia para la clonación o expresión, uno o más marcadores para la selección en el huésped, por ejemplo, de resistencia a antibióticos, y uno o más casetes de expresión. Los orígenes de replicación adecuados incluyen, por ejemplo, los orígenes de replicación Col E1, el SV40 viral y el M13.

Las secuencias codificantes insertadas en el vector pueden, por ejemplo, sintetizarse mediante métodos estándar, o aislarse a partir de fuentes naturales. La ligación de las secuencias codificantes a elementos reguladores de la transcripción y/o a otras secuencias codificantes de aminoácidos puede realizarse mediante el uso de métodos establecidos. Los elementos reguladores de la transcripción (partes de un casete de expresión) que aseguran la expresión en células procarióticas o eucarióticas se conocen bien por los expertos en la técnica. Estos elementos comprenden secuencias reguladoras que garantizan el inicio de la transcripción (por ejemplo, codón de inicio de la traducción, secuencias de terminación de la transcripción, promotores, potenciadores y/o aisladores), sitios internos de entrada ribosomal (IRES) y, opcionalmente, señales poli-A que garantizan la terminación de la transcripción y la estabilidad del transcrito. Los elementos reguladores adicionales pueden incluir potenciadores transcripcionales así como también traduccionales, y/o regiones promotoras heterólogas o asociadas naturalmente. Los elementos reguladores pueden ser elementos reguladores heterólogos. Preferentemente, la molécula de ácido nucleico de la invención se une operativamente a tales secuencias de control de la expresión que permiten la expresión en células procarióticas o eucarióticas. El vector puede comprender, además, secuencias de nucleótidos que codifican señales de secreción como elementos reguladores adicionales. Tales secuencias se conocen bien por el experto en la técnica. Además, en dependencia del sistema de expresión usado, las secuencias líder, capaces de dirigir el polipéptido expresado hacia un compartimento celular, pueden añadirse a la secuencia codificante de la molécula de ácido nucleico de la invención. Tales secuencias líder se conocen bien en la técnica. Los vectores diseñados específicamente permiten la transferencia de ADN entre diferentes huéspedes, tales como entre las células bacterianas-fúngicas o células bacterianas-animales.

La cotransfección con un marcador de selección, tal como kanamicina o genes de resistencia a la ampicilina para el cultivo en E. coli y otras bacterias, permite la identificación y el aislamiento de las células transfectadas. Los marcadores de selección para el cultivo de células de mamíferos son los genes de resistencia dhfr, gpt, neomicina, e higromicina. Además, el ácido nucleico transfectado puede amplificarse, para expresar grandes cantidades del polipéptido codificado. El marcador DHFR (dihidrofolato reductasa) es útil para desarrollar líneas celulares que portan varios cientos o incluso varios miles de copias del gen de interés. Otro marcador de selección útil es la enzima glutamina sintasa (GS) (Fisher y otros, Infect Immun. 1991 Oct;59(10):3562-5; Bebbington y otros, Biotechnology (N Y). 1992 Feb;10(2):169-75).

Mediante el uso de tales marcadores, las células se cultivan en medio selectivo y se seleccionan las células con la mayor resistencia.

En otra modalidad, la invención se refiere a una célula huésped que comprende, por ejemplo, como un resultado de la transformación, transducción, microinyección o transfección, la molécula de ácido nucleico o el vector de la invención.

Puede concebirse una diversidad de sistemas de expresión del huésped para expresar la secuencia codificante de la endonucleasa en una célula huésped mediante el uso de un vector adecuado.

La "célula huésped" de acuerdo con la invención puede producirse mediante la introducción de la molécula de ácido nucleico o el vector(es) de la invención en la célula huésped que, en su presencia, preferentemente, media la expresión de la molécula de ácido nucleico de la invención que codifica la endonucleasa de la invención. El huésped a partir del cual se deriva la célula huésped puede ser cualquier célula procariótica o eucariótica.

5

10

Una célula huésped eucariótica adecuada puede ser una célula de vertebrado, una célula de anfibio, una célula de pez, una célula de insecto, una célula de hongo/levadura, una célula de nemátodo o una célula vegetal. La célula de insecto puede ser una célula de *Spodoptera frugiperda*, una célula de *Drosophila* S2 o una célula de *Spodoptera* Sf9, la célula de hongo/levadura puede ser una célula de *Saccharomyces cerevisiae*, célula de *Pichia pastoris* o una célula de *Aspergillus*. Se prefiere que la célula de vertebrado sea una célula de mamífero tal como una célula humana, CHO, COS, 293 o células de melanoma de Bowes. La célula vegetal se selecciona, preferentemente, independientemente de una célula de *Anacardium, Anona, Arachis, Artocarpus, Asparagus, Atropa, Avena, Brassica, Carica, Citrus, Citrullus, Capsicum, Carthamus, Cocos, Coffea, Cucumis, Cucurbita, Daucus, Elaeis, Fragaria, Glycine, Gossypium, Helianthus, Heterocallis, Hordeum, Hyoseyamus, Lactuca, Linum, Lolium, Lupinus, Lycopersicon, Malus, Manihot, Majorana, Medicago, Nicotiana, Olea, Oryza, Panieum, Pannesetum, Passiflora, Persea, Phaseolus, Pistachia, Pisum, Pyrus, Prunus, Psidium, Raphanus, Ricinus, Secale, Senecio, Sinapis, Solanum, Sorghum, Theobromus, Trigonella, Triticum, Vicia, Vitis, Vignay Zea. La célula puede ser una parte de una línea celular. La célula vegetal puede, por ejemplo, derivarse a partir de la raíz, la hoja, la corteza, la aquia, el tronco o el tallo.*

20

15

Los procariotas adecuados (bacterias) útiles como huésped para la invención son aquellas que se usan generalmente para la clonación y/o la expresión, como E. coli (por ejemplo, las cepas de E coli BL21, HB101, DH5a, XL1 Blue, Y1090 y JM101), Salmonella typhimurium, Serratia marcescens, Burkholderia glumae, Pseudomonas putida, Pseudomonas fluorescens, Pseudomonas stutzeri, Streptomyces lividans, Lactococcus lactis, Mycobacterium smegmatis, Streptomyces o Bacillus subtilis. Los medios y condiciones de cultivo apropiados para las células huésped descritas anteriormente son conocidos en la técnica.

25

Los ejemplos preferidos para que la célula huésped sea modificada mediante ingeniería genética con la molécula de ácido nucleico o el vector(es) de la invención es una célula de levadura, *E. coli* y/o una especie del género *Bacillus* (por ejemplo, B. subtilis). La célula huésped más preferida es *Bacillus spec.*.

30

En una modalidad adicional, la invención se refiere a un método para producir una proteína o fusión que tiene la actividad de una endonucleasa como se definió anteriormente en la presente descripción que comprende las etapas: (a) cultivar la célula huésped de la invención y (b) aislar la proteína que se produce o la proteína de fusión que tiene la actividad de dicha endonucleasa.

35

40

Las condiciones adecuadas para el cultivo de un huésped procariótico o eucariótico se conocen bien por el experto en la técnica. Las condiciones adecuadas para cultivar E. coli DH18BΔkat E (Invitrogen), *Pichia pastoris* o *Aspergillus niger* son, por ejemplo, proporcionadas en los ejemplos de la invención. En general, las condiciones adecuadas para el cultivo de bacterias son las que facilitan el crecimiento de estas bajo aireación, en medio Luria Bertani (LB). Para aumentar el rendimiento y la solubilidad del producto de expresión, el medio puede tamponarse o complementarse con aditivos adecuados conocidos porque mejoran o facilitan ambos. La *E. coli* puede cultivarse desde 4 a aproximadamente 37 °C, la temperatura exacta o la secuencia de temperaturas depende de la molécula que se va a expresar en exceso. En general, *Aspergillus sp.* puede crecerse sobre agar Sabouraud dextrosa, o agar de patata dextrosa a aproximadamente de 10 °C a aproximadamente 40 °C, y preferentemente, a aproximadamente 25 °C. Se conocen las condiciones adecuadas para los cultivos de levadura, por ejemplo de Guthrie y Fink, "Guide to Yeast Genetics and Molecular Cell Biology" (2002); Academic Pr Inc.. El experto en la técnica es consciente, además, de todas estas condiciones y puede, adaptar estas condiciones aún más a las necesidades de una especie huésped particular y a los requisitos del polipéptido expresado. En el caso de que un promotor inducible controle el ácido nucleico de la invención en el vector presente en la célula huésped, la expresión del polipéptido puede inducirse mediante la adición de un agente inductor apropiado. Los protocolos y estrategias de expresión adecuados son conocidos por el experto en la técnica.

50

45

En dependencia del tipo de célula y de sus requisitos específicos, el cultivo de células de mamíferos puede realizarse, por ejemplo, en medio RPMI o DMEM que contiene FCS 10 % (v/v), L-glutamina 2mM y penicilina/estreptomicina 100 U/mL. Las células pueden mantenerse a 37 °C en una atmósfera saturada de agua, al 5 % de CO2.

55

Los protocolos de expresión adecuados para células eucarióticas se conocen bien por el experto en la técnica y pueden retomarse, por ejemplo, de Sambrook, 2001.

60

Los métodos de aislamiento del polipéptido producido se conocen bien en la técnica y comprenden, sin limitación, las etapas de los métodos tales como cromatografía de intercambio iónico, cromatografía de filtración en gel (cromatografía de exclusión por tamaño), cromatografía de afinidad, cromatografía líquida de alta presión (HPLC), HPLC de fase inversa, electroforesis en gel de disco o inmunoprecipitación, ver, por ejemplo, Sambrook, 2001.

65

La etapa de aislamiento de proteínas es, preferentemente, una etapa de la purificación de proteínas. La purificación de proteínas, de acuerdo con la invención, especifica un proceso o una serie de procesos destinados a aislar más aún el polipéptido de la invención a partir de una mezcla compleja, preferentemente, para la homogeneidad. Las etapas de

purificación, por ejemplo, explotan las diferencias en el tamaño de las proteínas, las propiedades fisicoquímicas y la afinidad de unión. Por ejemplo, las proteínas pueden purificarse de acuerdo con sus puntos isoeléctricos mediante su paso a través de un gel con un gradiente de pH o una columna de intercambio iónico. Además, las proteínas pueden separarse de acuerdo con su tamaño o peso molecular mediante cromatografía de exclusión por tamaño, o mediante el análisis de SDS-PAGE (electroforesis en gel de dodecil sulfato de sodio y poliacrilamida). En la técnica, con frecuencia las proteínas se purifican mediante el uso de 2D-PAGE y después se analizan más aún mediante la huella peptídica para establecer la identidad de la proteína. Esto es muy útil para fines científicos y los límites de detección para las proteínas son muy bajos, y para su análisis son suficientes las cantidades en nanogramos de proteína. Además, las proteínas pueden separarse por su polaridad/hidrofobicidad mediante cromatografía líquida de alto rendimiento o cromatografía de fase inversa. Por lo tanto, los métodos para la purificación de proteínas se conocen bien por el experto en la técnica.

Además, en una modalidad la invención se refiere a una proteína o proteína de fusión que tiene la actividad de una endonucleasa codificada por la molécula de ácido nucleico o vector de la invención.

Las definiciones para las proteínas o proteínas de fusión que tienen la actividad de una endonucleasa codificada por la molécula de ácido nucleico o el vector de la invención, proporcionadas en las modalidades anteriores, pertenecientes a la molécula de ácido nucleico o vector de la invención se aplican explícitamente, además, a esta modalidad.

10

25

30

35

40

45

50

55

60

65

Como una consecuencia de su actividad endonucleasa, otra modalidad de la invención se refiere al uso de la proteína o proteína de fusión de la invención para escindir una molécula de ácido nucleico, por ejemplo, en uno de los métodos de la invención descritos más abajo.

Adicionalmente, la presente invención se refiere, además, a un kit que comprende la molécula de ácido nucleico, la proteína y/o la proteína de fusión de la invención. Los diversos componentes del kit pueden empaquetarse en uno o más contenedores, tales como uno o más frascos. Los frascos pueden, además de los componentes, comprender conservantes o tampones para almacenamiento. Además, el kit puede contener las instrucciones para usar.

En otra modalidad, la invención se refiere a un método *in vitro* para modificar una secuencia diana en el genoma de una célula eucariótica, el método comprende la etapa: (a) introducir en dicha célula la molécula de ácido nucleico, el vector o la proteína o proteína de fusión como se define en las reivindicaciones.

El término "modificar" como se usa de acuerdo con la presente invención se refiere a manipulaciones genómicas aleatorias y en sitios específicos que resultan en cambios en la secuencia de nucleótidos del genoma del huésped eucariótico. Cuando se introduce la proteína de fusión de la invención, se logra la modificación en un sitio específico de dicha "secuencia diana" en el genoma a través del dominio de unión al ADN. Cuando solamente se introduce la proteína de la invención, la "secuencia diana" no es una secuencia específica, porque la endonucleasa novedosa no es específica de un sitio. Por lo tanto, la proteína de la invención puede usarse para introducir mutaciones aleatorias en un genoma, es decir, la "secuencia diana" se produce múltiples veces en el genoma y no depende de un motivo específico de una secuencia. El material genético que comprende estos cambios en su secuencia de nucleótidos es referido, además, en la presente descripción como la "secuencia diana modificada" cuando la modificación es en un sitio específico como, por ejemplo, en el caso de usar la proteína de fusión de la invención. El término "modificación" incluye, pero no se limita a, sustitución, inserción y deleción de uno o más nucleótidos dentro de la secuencia diana. En el proceso de recombinación homóloga, el producto final puede reflejar una deleción de secuencias. Como comprenderá el experto en la técnica, una recombinación homóloga, por otra parte, siempre incluye, además, la incorporación de material genético de la secuencia de ADN donante, que en esta modalidad, sin embargo, conduce a una deleción total. Se comprenderá por el experto en la técnica que, mediante la simple introducción de roturas de doble hebra en el genoma de una célula, pueden introducirse modificaciones que son el resultado de una recombinación homóloga (en la presencia y ausencia de secuencias donantes exógenas) o una reparación endógena del ADN, mecanismos tales como, por ejemplo, la reparación de ADN mediante la unión de extremos no homólogos (NHEJ), que es propensa a la introducción de pequeñas deleciones en el sitio de la rotura de doble hebra en el curso de la ligadura de los extremos rotos.

El término "sustitución", como se usa en la presente descripción, se refiere al reemplazo de nucleótidos con otros nucleótidos. El término incluye, por ejemplo, el reemplazo de nucleótidos individuales que resultan en mutaciones puntuales. Dichas mutaciones puntuales pueden conducir a un intercambio de aminoácidos en el producto proteico resultante, pero además, pueden no reflejarse a nivel de los aminoácidos. El término "sustitución" contempla, además, las mutaciones que resultan en el reemplazo de múltiples nucleótidos, tales como, por ejemplo, partes de genes, tales como partes de exones o intrones, así como también el reemplazo de genes completos.

El término "inserción" de acuerdo con la presente invención se refiere a la incorporación de uno o más nucleótidos en una molécula de ácido nucleico. El término "inserción" contempla, además, la inserción de partes de genes, tales como partes de exones o intrones, así como también la inserción de genes completos. Cuando el número de nucleótidos insertados no es divisible por tres, la inserción puede resultar en una mutación con desplazamiento del marco de lectura dentro de una secuencia codificante de un gen. Tales mutaciones con desplazamiento del marco de lectura alterarán los aminoácidos codificados por un gen después de la mutación. En algunos casos, tal mutación causará que la traducción activa del gen encuentre un codón de parada prematuro, lo que resulta en una terminación de la traducción y en la producción de una proteína truncada. Cuando el número de nucleótidos insertados es, en cambio, divisible por tres, la

inserción resultante es una "inserción en el marco de lectura". En este caso, el marco de lectura permanece intacto después de la inserción y la traducción probablemente se completará si los nucleótidos insertados no codifican para un codón de parada. Sin embargo, debido a los nucleótidos insertados, la proteína resultante contendrá, en dependencia del tamaño de la inserción, uno o varios aminoácidos nuevos que pueden afectar la función de la proteína.

10

5

El término "deleción" como se usa de acuerdo con la presente invención se refiere a la pérdida de nucleótidos o parte de genes, tales como exones o intrones, así como también a genes completos. Como se definió con respecto al término "inserción", la deleción de una cantidad de nucleótidos que no es divisible de manera equitativa entre tres, conducirá a una mutación con desplazamiento del marco de lectura que causa que todos los codones que se producen después de la deleción se lean incorrectamente durante la traducción, lo que produce, potencialmente, una proteína gravemente alterada y, muy probablemente, no funcional. Si una deleción no resulta en una mutación con desplazamiento del marco de lectura, es decir, debido a que el número de nucleótidos delecionados puede dividirse en tres, la proteína resultante no obstante se ve alterada, ya que carecerá, en dependencia del tamaño de la deleción, de varios aminoácidos que pueden afectar o efectuar la función de la proteína.

15

Las modificaciones definidas anteriormente no se limitan a las regiones codificantes en el genoma, sino que pueden ocurrir, además, en regiones no codificantes del genoma diana, por ejemplo, en regiones reguladoras tales como elementos promotores, o potenciadores, o en intrones.

20

25

Los ejemplos de modificaciones del genoma diana incluyen, sin ser limitantes, la introducción de mutaciones en un gen de tipo silvestre para analizar su efecto sobre la función del gen; el reemplazo de un gen completo con un gen mutado o, alternativamente, si la secuencia diana comprende mutaciones, la alteración de estas mutaciones para identificar que mutación es la causante de un efecto particular; la eliminación de genes completos o proteínas o la eliminación de elementos reguladores de genes o proteínas, así como también la introducción de asociados de fusión, tales como por ejemplo etiquetas de purificación tales como la etiqueta his o la etiqueta tap, etcétera. En el último caso, el término "adición" puede usarse, además, en lugar de "inserción" para describir la adición preferente de una etiqueta a un extremo de un polipéptido más que dentro de la secuencia de un polipéptido

El término "célula eucariótica", como se usa en la presente descripción, se refiere a cualquier célula de un organismo

eucariótico unicelular o multicelular, que incluye las células de animales como los vertebrados y de los hongos y plantas. Preferentemente, pero sin limitación, la célula es una célula de mamífero. El término "célula de mamífero", como se usa

dividirse y diferenciarse en diversos tipos de células especializadas, así como también autorrenovarse para producir más células madre. En los mamíferos hay dos tipos principales de células madre: células madre embrionarias y células madre adultas. Las células somáticas incluyen todas las células que no son gametos, gametocitos o células madre

35

40

30

en la presente descripción, se conoce bien en la técnica y se refiere a cualquier célula que pertenece a un animal que se agrupa en la clase de mamíferos. El término "célula", como se usa en relación con la presente descripción, puede referirse a una célula única y/o aislada o a una célula que es parte de una entidad multicelular, tal como un tejido, un organismo o a una célula de otro cultivo. En otras palabras, el método puede realizarse *in vivo*, *ex vivo* o *in vitro*. El método de la invención se realiza *in vitro*, como se define en las reivindicaciones. En dependencia del objetivo particular para lograrse a través de la modificación del genoma de una célula de mamífero, pueden usarse células de diferentes subclases de mamíferos, tales como prototerios o terios. Por ejemplo, dentro de la subclase de terios, preferentemente, células de animales de la subclase euteria, con mayor preferencia del orden primates, artiodactyla, perissodactyla, rodentia y lagomorpha se usan en el método de la invención como se detalla más abajo. Además, dentro de una especie, puede elegirse una célula para usar en el método de la invención basado en el tipo de tejido y/o la capacidad para diferenciarse igualmente en dependencia del objetivo para lograrse al modificar el genoma. Tres categorías básicas de células conforman el cuerpo de los mamíferos: células germinales, células somáticas y células madre. Una célula germinal es una célula que da lugar a gametos y, por lo tanto, es continua a través de las generaciones. Las células madre pueden

45

indiferenciadas. Las células de un mamífero pueden agruparse, además, por su capacidad para diferenciarse. Una célula totipotente (conocida además como omnipotente) es una célula que es capaz de diferenciarse en todos los tipos de células de un organismo adulto, que incluyen el tejido placentario, tal como un cigoto (ovocito fecundado) y blastómeros posteriores, mientras que las células pluripotentes, tales como células madre embrionarias, no pueden contribuir al tejido extraembrionario tal como la placenta, pero tienen el potencial de diferenciarse en cualquiera de las tres capas germinales endodermo, mesodermo y ectodermo. Las células progenitoras multipotentes tienen el potencial de dar lugar a células de

55

60

múltiples, pero número limitado de linajes celulares. Además, hay células oligopotentes que pueden desarrollarse solamente en unos pocos tipos de células y células unipotentes (a veces denominadas células precursoras) que pueden convertirse solamente en un tipo de célula. Hay cuatro tipos básicos de tejidos: tejido muscular, tejido nervioso, tejido conectivo y tejido epitelial del que pueden derivarse una célula que va a usarse en el método de la invención, tal como por ejemplo, células madre hematopoyéticas o células madre neuronales. En la medida en que se prevean células humanas para usar en el método de la invención, se prefiere que tal célula humana no se obtenga a partir de un embrión humano, en particular no a través de métodos que impliquen la destrucción de un embrión humano. Por otra parte, las células madre embrionarias humanas están a disposición de los expertos en la técnica, tal como las que se toman a partir de las líneas de células madre embrionarias existentes, comercialmente disponibles. En consecuencia, en la presente invención puede trabajarse con células madre embrionarias humanas sin necesidad de usar o destruir un embrión humano. Alternativamente, o en lugar de células madre embrionarias humanas, pueden usarse células pluripotentes que se asemejan a las células madre embrionarias tales como las células madre pluripotentes inducidas (iPS), cuya

65

generación se establece como estado de la técnica (Hargus G y otros, Proc Natl Acad Sci U S A 107:15921-15926;

Jaenisch R. y Young R., 2008, Cell 132:567-582; Saha K, y Jaenisch R., 2009, Cell Stem Cell 5:584-595).

5

El término "moléculas de ácido nucleico que codifican dicha proteína o proteína de fusión en forma expresable" se refiere a una molécula de ácido nucleico que, al expresarse en una célula o un sistema libre de células, resulta en una proteína funcional o proteína de fusión de la invención. Preferentemente, pero sin limitación, dicho ácido nucleico es ARNm. Alternativamente, pueden usarse el ADN que tiene señales de transcripción apropiadas para permitir la expresión, o el ADNo.

La introducción de la proteína, proteína de fusión, o de la molécula de ácido nucleico que codifica dicha proteína, y la 10 proteína de fusión en forma expresable dentro de una célula, pueden lograrse mediante los métodos conocidos en la técnica, y depende de la naturaleza de dichas proteínas o moléculas de ácido nucleico. Por ejemplo, y en el caso de la introducción de moléculas de ácido nucleico, dicha introducción puede lograrse mediante métodos basados en químicos (fosfato de calcio, liposomas, DEAE-dextrán, polietilenimina, nucleofección), métodos no químicos (electroporación, sonoporación, transfección óptica, electrotransferencia de genes, administración hidrodinámica), métodos basados en partículas (pistola de genes, magnetofección, impalefección) y métodos virales. Preferentemente, las moléculas de ácido 15 nucleico son para introducirse en el núcleo mediante métodos tales como, por ejemplo, microinyección o nucleofección. Los métodos para realizar la microinyección se conocen bien en la técnica y se describen, por ejemplo, en Nagy y otros (Nagy A, Gertsenstein M, Vintersten K, Behringer R., 2003. Manipulating the Mouse Embryo. Cold Spring Harbour, New York: Cold Spring Harbour Laboratory Press) así como también en los ejemplos de la presente descripción más abajo. El 20 experto en la técnica entiende que, en dependencia del método de introducción, puede ser ventajoso adaptar las moléculas de ADN. Por ejemplo, una molécula de ADN lineal puede ser más eficiente en los eventos de recombinación homóloga cuando se usa la electroporación como método para introducir dicha molécula de ADN en, por ejemplo, una célula de mamífero, mientras que una molécula de ADN circular puede ser más ventajosa cuando se inyectan las células.

Todas las definiciones y modalidades preferidas definidas anteriormente con respecto a la molécula de ácido nucleico, proteína o proteína de fusión de la invención se aplican, además, *mutatis mutandis* en el contexto del método de la invención.

De acuerdo con la presente invención, el término "secuencia diana en el genoma" se refiere a la ubicación genómica que se va a modificar por el método de la invención. La "secuencia diana en el genoma" comprende, pero no se restringe a los nucleótidos sujetos a la modificación particular. Además, y preferentemente con respecto a la proteína de fusión de la invención, el término "secuencia diana en el genoma" comprende, además, las regiones para la unión de secuencias homólogas de una segunda molécula de ácido nucleico. En otras palabras, el término "secuencia diana en el genoma" comprende, además, la secuencia que flanquea/rodea el nucleótido(s) pertinente que va a modificarse. En algunos casos, el término "secuencia diana" puede referirse, además, al gen completo que va a modificarse.

La unión específica se definió anteriormente en la presente descripción y garantiza que solamente las roturas de doble hebra se introduzcan dentro de dicha secuencia diana.

En una modalidad más preferida del método de la invención, la modificación de dicha secuencia diana es mediante recombinación homóloga con una secuencia de ácido nucleico donante, que comprende además la etapa: (b) introducir una molécula de ácido nucleico en dicha célula, en donde dicha molécula de ácido nucleico comprende dicha secuencia de ácido nucleico donante, en donde dicha secuencia de ADN donante está flanqueada hacia el extremo 5' por un primer elemento flanqueante y hacia el extremo 3' por un segundo elemento flanqueante, en donde dicho primer y segundo elementos flanqueantes son diferentes y en donde cada uno de dichos primer y segundo elementos flanqueantes son homólogos a una secuencia continua de ADN a cada lado de la rotura de la doble hebra introducida en (a) del método de la invención dentro de dicha secuencia diana en el genoma de dicha célula eucariótica.

El término "recombinación homóloga", se usa de acuerdo con las definiciones proporcionadas en la técnica. Por lo tanto, se refiere a un mecanismo de recombinación genética en el que dos hebras de ADN que comprenden secuencias de nucleótidos similares intercambian material genético. Las células usan la recombinación homóloga, durante la meiosis, donde esta sirve para reorganizar el ADN para crear un conjunto totalmente único de cromosomas haploides, pero además, para la reparación del ADN dañado, en particular para la reparación de roturas de doble hebra. El mecanismo de recombinación homóloga se conoce bien por el experto en la técnica y se ha descrito, por ejemplo, por Paques y Haber (Paques F, Haber JE.; Microbiol Mol Biol Rev 1999; 63:349-404). En el método de la presente invención, la recombinación homóloga de la secuencia donante se permite por la presencia de dicho primer y dicho segundo elemento flanqueante que se ubican hacia el extremo 5' (5') y hacia el extremo 3' (3'), respectivamente, de dicha secuencia de ADN donante cada uno de los cuales es homólogo a una secuencia de ADN continua dentro de dicha secuencia diana.

De acuerdo con la presente invención, el término "secuencia de ADN donante" se refiere a una secuencia de ADN que sirve como un molde en el proceso de recombinación homóloga y que porta la modificación que va a introducirse dentro la secuencia diana. Mediante el uso de esta secuencia de ADN donante como un molde, la información genética, que incluye las modificaciones, se copia en la secuencia diana dentro del genoma de la célula por medio de recombinación homóloga. En los ejemplos no limitantes, la secuencia de ácido nucleico donante puede ser esencialmente idéntica a la parte de la secuencia diana que va a reemplazarse, con la excepción de un nucleótido que difiere y resulta en la introducción de una mutación puntual después de la recombinación homóloga o esta puede consistir en un gen adicional

previamente no presente en la secuencia diana. Es concebible que la naturaleza de la secuencia de ADN donante, es decir, su longitud, composición de bases, similitud con la secuencia diana, dependa de cómo se modificará la secuencia diana, así como también el objetivo particular que se logrará mediante la modificación de la secuencia diana. Los expertos en la técnica entenderán que dicha secuencia de ADN donante está flanqueada por secuencias que son homólogas a las secuencias dentro de la secuencia diana para permitir que tenga lugar una recombinación homóloga que conduce a la incorporación de la secuencia de ADN donante en el genoma de dicha célula. Además de ser homólogos a una secuencia continua de ADN dentro del ADN genómico, el primer y el segundo elementos flanqueantes son diferentes para permitir que tenga lugar una recombinación homóloga dirigida.

El término "homólogo a una secuencia continua de ADN a cada lado de la rotura de doble hebra introducida en (a) del método de la invención dentro de dicha secuencia diana", de acuerdo con la presente invención, se refiere a regiones que tienen suficiente identidad de secuencia para asegurar la unión específica a las secuencias diana que se encuentran hacia los extremos 5' y 3' de la ubicación de la rotura de doble hebra. El término "homólogo" como se usa en la presente descripción puede intercambiarse con el término "idéntico" como se describe en la presente descripción en otra parte con respecto a los niveles variables de identidad de secuencia. Los métodos para evaluar el nivel de identidad entre dos secuencias de ácido nucleico se conocen bien en la técnica y se describieron anteriormente en la presente descripción. Estos métodos involucran programas, además de proporcionar un alineamiento de secuencia por pares, informan, además, el nivel de identidad de la secuencia (generalmente en porcentaje de identidad) y la probabilidad de que ocurra el alineamiento por azar (valor de P) y pueden usarse, además, para predecir la aparición de la unión específica.

20

25

30

35

40

Preferentemente, dicho primer y segundo elementos flanqueantes son "homólogos a una secuencia de ADN continua dentro de dicha secuencia diana" (denominados en la técnica, además, "brazos de homología") tienen una identidad de secuencia con la parte correspondiente de la secuencia diana de al menos 95 %, más preferido al menos 97 %, más preferido al menos 98 %, más preferido al menos 99 %, incluso más preferido al menos 99,9 % y el más preferido 100 %. Las identidades de secuencia definidas anteriormente se definen solamente con respecto a aquellas partes de la secuencia diana que sirven como sitios de unión para los brazos de homología, es decir, dicho primer y dicho segundo elementos flanqueantes. Por lo tanto, la identidad de secuencia global entre la secuencia diana completa y las regiones homólogas de la molécula de ácido nucleico de la etapa (b) del método de modificación de una secuencia diana de la presente invención puede diferir de las identidades de secuencia definidas anteriormente, debido a la presencia de la parte de la secuencia diana que va a reemplazarse por la secuencia de ADN donante.

Los elementos flanqueantes homólogos a la secuencia diana comprendida en la molécula de ADN tienen una longitud de al menos 170 pb cada uno. Preferentemente, cada uno de los elementos tienen una longitud de al menos 250 nucleótidos, al menos 300 nucleótidos, al menos 400 nucleótidos, al menos 500 nucleótidos, tal como al menos 600 nucleótidos, al menos 750 pb de nucleótidos, con mayor preferencia al menos 1000 nucleótidos, tal como al menos 1500 nucleótidos, incluso con mayor preferencia al menos 2000 nucleótidos y con la máxima preferencia al menos 2500 nucleótidos. La longitud máxima de los elementos homólogos a la secuencia diana comprendida en la molécula de ácido nucleico depende del tipo de vector de clonación usado y puede tener una longitud de hasta 20 000 nucleótidos en plásmidos de alto número de copias de E. coli que usan el origen de replicación col El (por ejemplo, pBluescript) o hasta una longitud de 300 000 nucleótidos cada uno en plásmidos que usan el origen del factor F (por ejemplo, en vectores BAC, tal como, por ejemplo, pTARBAC1).

Las moléculas de ADN que comprenden la secuencia de ADN donante y los elementos flanqueantes se modifican, necesariamente, si el sitio de unión a la nucleasa específica de un sitio (proteína de fusión) está contenido sin interrupciones dentro de uno de los elementos flanqueantes y, preferentemente, si el sitio de unión a la nucleasa específica de un sitio (proteína de fusión) se interrumpe por la secuencia donante, es decir, una parte en cada uno de los elementos flanqueantes, de manera que la proteína de fusión no introduzca una rotura de doble hebra en la secuencia del ADN donante como parte de una molécula de ADN. Cuando la proteína de fusión es una TAL o una nucleasa dedo de zinc, esto puede lograrse, por ejemplo, mediante una modificación ya sea en el motivo de unión o de escisión (ver Ejemplo 2, Figura 12).

Se apreciará por el experto en la técnica que dicha molécula de ADN para introducirse en la célula en el ítem (b) del método de la invención puede comprender toda una molécula de ácido nucleico (secuencia) que codifica dicha proteína de fusión en forma expresable y la molécula de ácido nucleico que comprende la secuencia de ácido nucleico donante y los elementos flanqueantes homólogos a la secuencia diana. Alternativamente, la molécula de ácido nucleico del ítem (b) puede ser una molécula de ácido nucleico distinta, para introducirse adicionalmente a las moléculas de ácido nucleico que codifican dicha proteína de fusión en forma expresable del ítem (a).

En una modalidad preferida del método de la invención se contempla, además, que dicha célula se analiza para la modificación exitosa de dicha secuencia diana en el genoma.

Los métodos para analizar la presencia o ausencia de una modificación se conocen bien en la técnica e incluyen, sin limitación, ensayos basados en la separación física de moléculas de ácido nucleico, ensayos de secuenciación, así como también ensayos de escisión y digestión, y análisis del ADN mediante la reacción en cadena de la polimerasa (PCR).

65

55

60

Los ejemplos de ensayos basados en la separación física de moléculas de ácido nucleico incluyen, sin limitación, MALDI-

TOF, electroforesis en gel de gradiente desnaturalizante y otros de tales métodos conocidos en la técnica, ver por ejemplo Petersen y otros, Hum. Mutat. 20 (2002) 253-259; Hsia y otros, Theor. Appl. Genet. 111 (2005) 218-225; Tost and Gut, Clin. Biochem. 35 (2005) 335-350; Palais y otros, Anal. Biochem. 346 (2005) 167-175.

Los ejemplos de ensayos de secuenciación comprenden, sin limitación, los métodos de análisis de secuencia mediante secuenciación directa, SSCP fluorescente en un secuenciador de ADN automatizado y pirosecuenciación. Estos procedimientos son comunes en la técnica, ver, por ejemplo, Adams y otros (Ed.), "Automated DNA Sequencing and Analysis", Academic Press, 1994; Alphey, "DNA Sequencing: From Experimental Methods to Bioinformatics", Springer Verlag Publishing, 1997; Ramon y otros, J. Transl. Med. 1 (2003) 9; Meng y otros., J. Clin. Endocrinol. Metab. 90 (2005) 3419-3422.

Los ejemplos de ensayos de escisión y digestión incluyen, sin limitación, ensayos de digestión de restricción, tales como ensayos de polimorfismo de longitud de fragmentos de restricción (ensayos de RFLP), ensayos de protección de RNasa, ensayos basados en métodos de escisión química y ensayos de escisión de desapareamientos mediante enzimas, ver por ejemplo Youil y otros, Proc. Natl. Acad. Sci. U.S.A. 92 (1995) 87-91; Todd y otros, J. Oral Maxil. Surg. 59 (2001) 660-667; Amar y otros, J. Clin. Microbiol. 40 (2002) 446-452.

Alternativamente, en vez de analizar las células para detectar la presencia o ausencia de la modificación deseada, en particular, en el caso de la modificación en una secuencia específica, las células modificadas exitosamente pueden seleccionarse mediante la incorporación de marcadores de selección apropiados. Los marcadores de selección incluyen marcadores de selección positivos y negativos, que se conocen bien en la técnica y se emplean habitualmente por el experto en la técnica. Los ejemplos no limitantes de marcadores de selección incluyen dhfr, gpt, neomicina, higromicina, dihidrofolato reductasa, G418 o glutamina sintasa (GS) (Murphy y otros, Biochem J. 1991, 227:277; Bebbington y otros, Bio/Technology 1992, 10:169). Mediante el uso de estos marcadores, las células se cultivan en medio selectivo y se seleccionan las células con la mayor resistencia. Se contemplan, además, los marcadores de selección positiva/negativa combinados, que pueden incorporarse en el genoma diana mediante recombinación homóloga o integración aleatoria. Después de la selección positiva, el primer casete que comprende el marcador de selección positiva flanqueado por sitios de reconocimiento de recombinasa se intercambia mediante intercambio de casete mediado por recombinasa contra un segundo casete sin marcador. Después, los clones que contienen el casete de intercambio deseado se obtienen mediante selección negativa.

En una modalidad preferida del método de la invención, la célula se selecciona a partir del grupo que consiste en una célula de mamífero o de vertebrado, una célula vegetal o una célula fúngica.

35 En otra modalidad preferida del método de la invención, la célula es un ovocito no humano.

15

20

25

30

40

55

60

65

Como se usa en la presente descripción, el término "ovocito" se refiere a la célula germinal femenina involucrada en la reproducción, es decir, el óvulo o la célula huevo. De acuerdo con la presente invención, el término "ovocito" comprende ambos, los ovocitos antes de la fecundación, así como también los ovocitos fecundados que, además, se denominan cigotos. Por lo tanto, el ovocito antes de la fecundación comprende solamente los cromosomas maternos, mientras que un ovocito después de la fecundación comprende los cromosomas maternos y paternos. Después de la fecundación, el ovocito permanece en un estado doble haploide durante varias horas, en ratones, por ejemplo, hasta 18 horas después de la fecundación. De acuerdo con la invención, el ovocito puede ser no humano.

Además, se describe un método en donde el ovocito no humano es un ovocito fecundado. El término "ovocito fecundado", como se usa en la presente descripción, se refiere a un ovocito después de la fusión con el esperma fecundante. Durante un período de muchas horas (tal como hasta 18 horas en ratones) después de la fecundación, el ovocito se encuentra en un estado doble haploide, que comprende un pronúcleo haploide materno y un pronúcleo haploide paterno. Después de la migración de los dos pronúcleos juntos, sus membranas se rompen y los dos genomas se condensan en cromosomas, de esta manera se reconstituye un organismo diploide. Preferentemente, el ovocito de mamífero o aviar no humano usado en el método descrito es un ovocito de mamífero o aviar fecundado en el estado doble haploide.

En el caso de los ovocitos para usarse como células en el método de la invención, la proteína, la proteína de fusión o la molécula de ácido nucleico que codifica dicha proteína o proteína de fusión se introducen en el ovocito mediante microinyección. La microinyección en el ovocito puede realizarse mediante inyección en el núcleo (antes de la fecundación), en el pronúcleo (después de la fecundación) y/o mediante la inyección en el citoplasma (tanto antes como después de la fecundación). Cuando se emplea un ovocito fecundado, la inyección en el pronúcleo se realiza, ya sea para un pronúcleo, o para ambos pronúcleos. La inyección de la nucleasa dedos-Tal o de un ADN que codifica la nucleasa dedos-Tal de la etapa (a) del método para modificar una secuencia diana de la presente invención es, preferentemente, dentro del núcleo/pronúcleo, mientras que la inyección de un ARNm que codifica la nucleasa dedos-Tal de la etapa (a) es, preferentemente, en el citoplasma. La inyección de la molécula de ácido nucleico de la etapa (b) es, preferentemente, dentro del núcleo/pronúcleo. Sin embargo, la inyección de la molécula de ácido nucleico de la etapa (b) puede realizarse, además, en el citoplasma cuando dicha molécula de ácido nucleico se proporciona como una secuencia de ácido nucleico que tiene una señal de localización nuclear, para asegurar su suministro dentro del núcleo/pronúcleo. Preferentemente, la microinyección se realiza mediante inyección tanto dentro del núcleo/pronúcleo como en el citoplasma. Por ejemplo, la aguja puede introducirse dentro del núcleo/pronúcleo y se inyecta una primera cantidad de la nucleasa dedos-Tal y/o la

molécula de ácido nucleico dentro del núcleo/pronúcleo. Mientras se retira la aguja del ovocito, se inyecta una segunda cantidad de la nucleasa dedos-Tal y/o la molécula de ácido nucleico en el citoplasma.

Los métodos para realizar la microinyección se conocen bien en la técnica y se describen, por ejemplo, en Nagy y otros (Nagy A, Gertsenstein M, Vintersten K, Behringer R., 2003. Manipulating the Mouse Embryo. Cold Spring Harbour, Nueva York: Cold Spring Harbour Laboratory Press) así como también en los ejemplos de la presente descripción más abajo. Se prefiere, además, que la molécula de ácido nucleico de la etapa (b) del método de la invención se introduzca (además) dentro de la célula mediante microinyección.

5

- En otra modalidad, la invención se refiere a un método para producir un vertebrado no humano o un mamífero no humano que porta una secuencia diana modificada en su genoma, el método comprende producir una célula no humana de acuerdo con los métodos descritos en la presente descripción. La presente descripción describe, además, la transferencia de una célula que se produce por el método de la invención dentro de un huésped femenino pseudo embarazada.
- El término "transferencia de una célula que se produce por el método de la invención dentro de un huésped femenino pseudo embarazada" incluye la transferencia de un ovocito fecundado pero, además, la transferencia de embriones de preimplantación de, por ejemplo, la etapa de 2 células, 4 células, 8 células, 16 células y blastocisto (70 a 100 células). Dichos embriones de preimplantación pueden obtenerse mediante el cultivo de la célula en condiciones apropiadas para que se convierta en un embrión de preimplantación. Además, la inyección o fusión de la célula con un blastocisto son métodos apropiados para obtener un embrión de preimplantación. Cuando la célula que se produce por el método de la invención es una célula somática, se requiere la derivación de células madre pluripotentes inducidas antes de transferir la célula a un huésped femenino tal como, por ejemplo, antes de cultivar la célula o inyección o fusión de la célula con un embrión de preimplantación. Los métodos para transferir un ovocito o un embrión preimplantado a una hembra pseudo embarazada se conocen bien en la técnica y se describen, por ejemplo, en Nagy y otros, (Nagy A, Gertsenstein M, Vintersten K, Behringer R., 2003. Manipulating the Mouse Embryo. Cold Spring Harbour, Nueva York: Cold Spring Harbour Laboratory Press).
- Se contempla además, de acuerdo con el método para producir un vertebrado no humano o un mamífero no humano que porta una secuencia diana modificada en su genoma, que se realice una etapa de análisis de la modificación genómica exitosa antes del trasplante en la hembra huésped. Como ejemplo no limitante, el ovocito puede cultivarse hasta la etapa de 2 células, 4 células o 8 células y una célula puede eliminarse sin destruir o alterar el embrión resultante. El análisis de la constitución genómica, por ejemplo, la presencia o ausencia de la modificación genómica, puede realizarse después mediante el uso, por ejemplo, de PCR o de técnicas de transferencia southern o cualquiera de los métodos descritos anteriormente en la presente descripción. Tales métodos de análisis de genotipificación exitoso antes del trasplante se conocen en la técnica y se describen, por ejemplo, en Peippo y otros (Peippo J, Viitala S, Virta J, Raty M, Tammiranta N, Lamminen T, Aro J, Myllymaki H, Vilkki J.; Mol Reprod Dev 2007; 74:1373-1378).
- Cuando la célula es un ovocito, el método para producir un vertebrado no humano o un mamífero no humano que porta una secuencia diana modificada en su genoma comprende (a) modificar la secuencia diana en el genoma de un ovocito de un vertebrado o mamífero de acuerdo con el método de la invención. La presente descripción describe, además, (b) transferir el ovocito que se obtiene en (a) a un huésped hembra pseudo embarazada; y, opcionalmente, (c) analizar la descendencia suministrada por el huésped hembra para detectar la presencia de la modificación.
- Para el método descrito para producir un vertebrado no humano o un mamífero no humano, se requiere la fecundación del ovocito. Dicha fecundación puede ocurrir antes de la modificación de la secuencia diana en la etapa (a) de acuerdo con el método descrito para producir un vertebrado no humano o un mamífero no humano, es decir, puede usarse un ovocito fecundado para el método de modificación de una secuencia diana. La fecundación puede realizarse, además, después de la modificación de la secuencia diana en la etapa (a), es decir, puede usarse un ovocito no fecundado para el método de modificación de una secuencia diana, en donde el ovocito se fecunda posteriormente antes de transferirlo a la hembra huésped pseudo embarazada.
 - La etapa de análisis para detectar la presencia de la modificación en la descendencia suministrada por el huésped hembra proporciona la información necesaria acerca de si el vertebrado no humano o el mamífero no humano producido porta, o no, la secuencia diana modificada en su genoma. Por lo tanto, la presencia de la modificación es indicativa de que dicha descendencia es portadora de una secuencia diana modificada en su genoma, mientras que la ausencia de la modificación es indicativa de que dicha descendencia no es portadora de la secuencia diana modificada en su genoma. Los métodos de análisis para detectar la presencia o ausencia de una modificación se detallaron anteriormente.
- El vertebrado no humano o el mamífero no humano producido por el método descrito es, entre otras cosas, útil para estudiar la función de los genes de interés y la expresión/resultado fenotípico de las modificaciones del genoma en tales animales. Se contempla, además, que los mamíferos no humanos pueden emplearse como modelos de enfermedades y para evaluar agentes/composiciones terapéuticas. Adicionalmente, el vertebrado no humano o el mamífero no humano puede usarse, además, para la cría de ganado.
- 65 El método descrito para producir un vertebrado no humano o un mamífero no humano comprende, además, cultivar la célula para formar un embrión de preimplantación o introducir la célula en un blastocisto antes de transferirla al huésped

hembra pseudo embarazada. Los métodos para cultivar la célula para formar un embrión de preimplantación o introducir la célula en un blastocisto se conocen bien en la técnica y, por ejemplo, se describen en Nagy y otros, en el lugar citado.

El término "introducir la célula en un blastocisto" como se usa en la presente descripción, abarca la inyección de la célula en un blastocisto así como también la fusión de una célula con un blastocisto. Los métodos para introducir una célula en un blastocisto se describen en la técnica, por ejemplo en Nagy y otros, en el lugar citado.

La presente descripción se refiere, además, a un animal vertebrado no humano o a un mamífero no humano que se obtienen mediante los métodos descritos anteriormente.

10

15

5

En una modalidad preferida de los métodos de la invención, la célula es de un mamífero no humano seleccionado del grupo que consiste en roedores, perros, félidos, primates, conejos, cerdos, o vacas o la célula es de un ave seleccionada del grupo que consiste en pollos, pavos, faisanes, patos, gansos, codornices y aves no voladoras, que incluyen avestruces, emúes y casuarios, o la célula es de un pez tal como, por ejemplo, un pez cebra, salmón, trucha, carpa común o carpa koi.

Todos los mamíferos, aves y peces descritos en la presente descripción se conocen bien por los expertos en la técnica y se definen taxonómicamente de acuerdo con la técnica anterior y el conocimiento general común de los expertos en la técnica.

20

Los ejemplos no limitantes de "roedores" son ratones, ratas, ardillas, ardillas ralladas, ardilla de la tierra, puercoespines, castores, hámster, jerbos, cobayas, degús, chinchillas, perritos de las praderas y marmotas.

25

Los ejemplos no limitantes de "perros" incluyen los miembros de la subespecie canis lupus familiaris, así como también lobos, zorros, chacales, y coyotes.

Los ejemplos no limitantes de "félidos" incluyen miembros de las dos subfamilias: las pantherinas, que incluyen leones, tigres, jaguares y leopardos y las felinas, que incluyen pumas, guepardos, gato cerval, linces, caracales, ocelotes y gatos domésticos.

30

El término "primates", como se usa en la presente descripción, se refiere a todos los monos, que incluyen, por ejemplo, cercopithecoid (mono del viejo mundo) o platyrrhine (mono del nuevo mundo), así como también lemures, tarseros, simios y monos tití (Callithrix jacchus).

35

40

Con respecto a las modalidades caracterizadas en esta descripción, en particular en las reivindicaciones, se pretende que cada modalidad mencionada en una reivindicación dependiente se combine con cada modalidad de cada reivindicación (independiente o dependiente) de la que depende dicha reivindicación dependiente. Por ejemplo, en el caso de una reivindicación independiente 1 que enumera 3 alternativas A, B y C, una reivindicación dependiente 2 que enumera 3 alternativas D, E y F y una reivindicación dependiente 3 de conformidad con las reivindicaciones 1 y 2 y que enumera 3 alternativas G, H y I, debe entenderse que la descripción describe de manera inequívoca las modalidades correspondientes a las combinaciones A, D, G; A, D, H; A, D, I; A, E, G; A, E, H; A, E, I; A, F, G; A, F, H; A, F, I; B, D, G; B, D, H; B, D, I; B, E, G; B, E, H; B, E, I; B, F, G; B, F, H; B, F, I; C, D, G; C, D, H; C, D, I; C, E, G; C, E, H; C, E, I; C, F, G; C, F, H; C, F, I, a menos que se mencione específicamente de cualquier otra manera.

De manera similar, y, además, en aquellos casos donde las reivindicaciones independientes y/o dependientes no

45

enumeren alternativas, se entiende que si las reivindicaciones dependientes se refieren nuevamente a una pluralidad de reivindicaciones anteriores, se considera que cualquier combinación de la materia cubierta de esta manera se describe explícitamente. Por ejemplo, en el caso de una reivindicación independiente 1, una reivindicación dependiente 2 que se refiere nuevamente a la reivindicación 1 y una reivindicación dependiente 3 que se refiere nuevamente a las 50 reivindicaciones 2 y 1, se deduce que la combinación de la materia de las reivindicaciones 3 y 1 se describe de manera clara e inequívoca, al igual que la combinación de la materia de las reivindicaciones 3, 2 y 1. En caso de que esté presente, además, una reivindicación dependiente 4 que se refiere a cualquiera de las reivindicaciones 1 a 3, se deduce que la combinación de la materia de las reivindicaciones 4 y 1, de las reivindicaciones 4, 2 y 1, de las reivindicaciones 4, 3 y 1, así como también de las reivindicaciones 4, 3, 2 y 1, se describen de manera clara e inequívoca.

55

60

65

Las Figuras muestran:

Figura 1: Vectores de expresión de Nucleasa-TAL.

La figura muestra la estructura y función de las proteínas de fusión Nucleasa-TAL, que consiste en un dominio de unión

al ADN en una secuencia específica y un dominio de escisión del ADN (nucleasa) no específico. El dominio de unión al ADN puede ensamblarse a partir de los cuatro tipos de elementos peptídicos de TAL, de 34 aminoácidos, que exhiben especificidad de unión contra uno de los nucleótidos del ADN a través de las posiciones de los aminoácidos 12 y 13 (NI -A; HD - C; NG - T; NN - G). Después de la unión del dominio del elemento TAL a la secuencia del ADN diana seleccionada, el dominio nucleasa de la proteína de fusión entra en contacto estrecho con la doble hebra del ADN, pero no escinde el ADN como un monómero de nucleasa. Solamente después de la unión de una segunda proteína de fusión Nucleasa-TAL a una segunda secuencia diana de ADN ubicada hacia el extremo 3' con respecto al sitio de unión de la primera proteína de fusión, la doble hebra de ADN se escinde a través de la cooperación de los dos dominios nucleasa que están en contacto estrecho.

5 Figura 2: Modificación de las secuencias genómicas inducida por la Nucleasa-TAL.

La figura muestra un par de proteínas de fusión Nucleasa-TAL que se unen en los extremos 5' y 3' con respecto al sitio diana seleccionado dentro de un gen diana genómico. Después de la creación de una rotura de doble hebra del ADN dentro del sitio diana, dos mecanismos competidores de reparación del ADN se activan fuertemente en las células: i) mediante recombinación homóloga, en presencia de un vector de transformación génica introducido externamente que comprende dos regiones de homología con el gen diana y una modificación/mutación genética prediseñada, la modificación planeada previamente se copia a partir del vector de transformación en el genoma; por esta vía, cualquier modificación génica dirigida (por ejemplo, inactivación génica, reemplazo génico) puede colocarse en el genoma, ii) mediante la vía de reparación por la unión de extremos no homólogos (NHEJ), los extremos de ADN libres se unen por ligación sin un molde de reparación; por esta vía, con frecuencia se pierde un número variable de nucleótidos (símbolo del cuchillo) antes de la ligación final y frecuentemente resulta en un alelo inactivado del gen diana.

Figura 3: Uso de Nucleasas-TAL para la transformación génica en líneas celulares de mamíferos y cigotos.

A: Para la generación de modificaciones génicas en líneas celulares de mamíferos, los vectores de transformación de Nucleasa-TAL pueden transfectarse junto con, o sin, un vector específico de transformación génica, en células en cultivo. Después de la expresión de la nucleasa y la reparación del ADN, una fracción de las células tratadas contiene la alteración génica deseada. Estas células pueden aislarse y cultivarse adicionalmente como una línea celular modificada genéticamente pura. B: Después de la microinyección del ARNm de Nucleasa-TAL, junto con o sin un vector de transformación génica específico, dentro de ovocitos de mamíferos fecundados (cigotos, aislados de hembras de tipo silvestre, por ejemplo, ratones) puede introducirse directamente un alelo inactivado (KO) o un gen de reemplazo (KI) en el genoma del embrión unicelular. Las hembras pseudo embarazadas suministran la descendencia a partir de ovocitos microinyectados. A la descendencia se le realiza una genotipificación para detectar la presencia de la modificación génica inducida. Los animales positivos se seleccionan para su reproducción ulterior con el propósito de establecer una cepa modificada genéticamente.

Figura 4: Vectores de expresión de Nucleasa-TAL.

El vector de expresión Nucleasa-TAL pCAG-Tal-nucleasa contiene una región del promotor CAG y una unidad transcripcional que comprende, el extremo 5' de un par central de sitios de restricción BsmBI, un codón de inicio de la 35 transcripción ATG (flecha), una secuencia de localización nuclear (NLS), una secuencia de etiqueta FLAG (FLAG), una secuencia enlazadora, un segmento codificante para 110 aminoácidos de la proteína TAL AvrBs3 (AvrN) y sus repeticiones invariables Tal en el N-terminal (r0.5). En el extremo 3' de los sitios de restricción BsmBl la unidad transcripcional contiene una repetición Tal invariable en el extremo C-terminal (rx.5), un segmento codificante para 44 40 aminoácidos derivados de la proteína Tal AvrBs3, unos sitios de restricción Pmel y Mlul para la inserción de las regiones codificantes de la nucleasa y una secuencia señal de poliadenilación (pA). Los segmentos de ADN codificantes para los elementos de repetición TAL pueden insertarse en los sitios BsmBl del pCAG-Tal-nucleasa para la expresión de proteínas de fusión Nucleasa-TAL variables. Para crear los vectores de expresión µArtTal1-nucleasa el arreglo ArtTal1 de los elementos de repetición TAL, que reconocen la secuencia diana especificada de 12 pb, se insertaron en los sitios BsmBI del pCAG-TAL-nucleasa. Cada repetición Tal de 34 aminoácidos se representa como un cuadrado que indica el código 45 de los aminoácidos de las repeticiones en las posiciones 12/13 que confieren la unión a uno de los nucleótidos del ADN de la secuencia diana (NI > A, NG > T, HD > C, NN > G) mostrada anteriormente. A continuación, las regiones codificantes del dominio nucleasa sintética se insertaron en los sitios Pmel y Mlul del pCAG-ArtTal1-nucleasa para obtener los vectores de expresión: A:pCAG-ArtTal1-Alw que incluye el dominio nucleasa de la endonucleasa de restricción Alwl, B: pCAG-ArtTal1-CleDORF que incluye el dominio nucleasa del gen CleDORF, C: pCAG-ArtTal1-Clo051 que incluye el dominio 50 nucleasa del gen Clo051, D:pCAG-ArtTal1-Mly que incluye el dominio nucleasa de la endonucleasa de restricción Mlyl, E: pCAG-ArtTal1-Pept071 que incluye el dominio nucleasa del gen Pept071, F: pCAG-ArtTal1-Sbf que incluye el dominio nucleasa de la endonucleasa de restricción Sbfl. G: pCAG-ArtTal1-Sdal que incluye el dominio nucleasa de la endonucleasa de restricción Sdal H: pCAG-ArtTal1-Sst que incluye el dominio nucleasa de la endonucleasa de restricción 55 Stsl, e I: pCAG-ArtTal1-Fok que incluye el dominio nucleasa de la endonucleasa de restricción Fokl

Figura 5: Secuencia de aminoácidos de la proteína Clo051

Secuencia de los 587 aminoácidos de la proteína Clo051 en el código de una letra. Se indican la metionina en la posición 1 (M1), la tirosina en la posición 587 (Y587) y el residuo 199 del dominio nucleasa entre las posiciones E389 e Y587. Además, se destacan las posiciones D455, D472 y K474 que son características del sitio activo conservado de la superfamilia de enzimas 'PD-(D/E)XK' que interaccionan con el ADN.

Figura 6: Estructura predicha de la proteína Clo051 y su dominio nucleasa.

65

10

La estructura terciaria de la proteína Clo051 se predijo a partir de su secuencia de aminoácidos (Figura 5) mediante el uso del programa informático I-TASSER. Las estructuras secundarias se muestran como regiones alfa-helicoidales y de hojas beta. Se destacan la metionina en la posición 1 (M1), el residuo de glutamato 389 (E389) y la tirosina 587 (Y587). La cadena de proteínas entre E389 e Y587 forma un dominio de plegamiento separado que actúa como una nucleasa.

Figura 7: Plásmidos reporteros de Nucleasa-TAL-y ensayo reportero de nucleasa.

5

10

15

20

25

30

35

40

45

50

55

A: Los plásmidos reporteros Nucleasa-TAL contienen una región del promotor de CMV, una secuencia codificante de 400 pb para el segmento del extremo N-terminal de β-galactosidasa y un codón de parada. Esta unidad es seguida por una región diana de unión a TAL que consiste en dos secuencias de reconocimiento orientadas inversas (subrayadas), separadas por una región espaciadora de 15 pb (NNN..), para el arreglo ArtTal1 (a), el arreglo TalRab1 (b), el arreglo TalRab2 (c), o una región de unión híbrida compuesta por una secuencia de reconocimiento ArtTal1 y una TalRab2 (d). La región diana Nucleasa-TAL es seguida por la región codificante completa para β-galactosidasa y una señal de poliadenilación (pA). Para evaluar la actividad nucleasa contra la secuencia diana un vector de expresión Nucleasa-TAL (Figura 4) se cotransfectó transitoriamente con su plásmido reportero correspondiente en células HEK 293. Después de la expresión de la proteína Nucleasa-TAL el plásmido reportero se abre mediante una rotura de doble hebra inducida por nucleasa dentro de la secuencia diana Nucleasa-TAL (símbolo de tijeras).

B: Las regiones de ADN adyacentes a la rotura de doble hebra son idénticas en 400 pb y pueden alinearse y recombinarse (X) mediante la reparación del ADN por recombinación homóloga. **C**: La recombinación homóloga de un plásmido reportero abierto resulta en un vector de expresión de β-galactosidasa funcional que produce la enzima β-galactosidasa. Después de dos días, las células transfectadas se lisaron y la actividad de la enzima en el lisado se determinó con un ensayo reportero de quimioluminiscencia. Los niveles de la emisión de luz catalizada por el reportero se miden e indican la actividad de la Nucleasa-TAL en comparación con las muestras que se transfectaron con el plásmido reportero solo.

Figura 8: Actividad de las proteínas de fusión Nucleasa-TAL en células HEK 293.

Para evaluar la actividad nucleasa de las proteínas de fusión de los dominio nucleasa-TAL, los vectores de expresión para las proteínas ArtTal1-Alwl, -CleDORF, - Clo051, -Mlyl, -Fokl, -Pept071, -Sbfl, -Sdal, y -Stsl (Figura 4) se transfectaron juntos con el plásmido reportero ArtTal1 (Figura 7) en células HEK 293. La actividad nucleasa específica contra la secuencia diana del plásmido reportero conduce a la recombinación homóloga y a la expresión de β-galactosidasa. Dos días después de la transfección, se lisaron las poblaciones celulares y se determinó la actividad de la β-galactosidasa con un ensavo reportero de quimioluminiscencia. Los niveles de emisión de luz se normalizaron en relación con la actividad de un plásmido de expresión de luciferasa cotransfectado (pLuciferasa) y se muestran en comparación con la actividad de un vector de expresión de β-galactosidasa control positivo. La barra para cada muestra transfectada representa el valor medio y la SD derivada de tres pocillos de cultivo transfectados a la par. A: La transfección del plásmido reportero ArtTal1 sin vector de expresión de nucleasa resulta en un bajo nivel de fondo de β-galactosidasa. La cotransfección de pCAG-ArtTal1-Alwl, -CleDORF, y -Mlyl con el plásmido reportero ArtTal1 no condujo a un aumento significativo de la expresión del reportero, lo que indica que las proteínas de fusión ArtTal1-Alwl, -CleDORF, y -Mlyl no exhiben actividad nucleasa. Por el contrario, la cotransfección del plásmido reportero ArtTal1 y el plásmido pCAG-ArtTal1-Clo051 resultó en un fuerte aumento de la expresión del reportero, lo que indica que la proteína de fusión ArtTal1-Clo051 exhibe actividad nucleasa específica de la secuencia diana en las células 293. B: En un experimento de transfección independiente, la cotransfección de pCAG-ArtTal1-Pept071, -Sbfl, -Sdal y -Sst con el plásmido reportero ArtTal1 no condujo a un aumento significativo de la expresión del reportero, en comparación con el plásmido reportero ArtTal1 solo, lo que indica que las proteínas de fusión ArtTal1-Pept071, -Sbfl, - Sdal, y -Stsl no exhiben actividad nucleasa. Por el contrario, la cotransfección de los plásmidos reportero ArtTal1 y pCAG-ArtTal1-Fokl resultó en un aumento de la expresión del reportero, lo que indica la actividad nucleasa de la proteína de fusión ArtTal1-Fokl en células 293.

Figura 9: Especificidad de la secuencia diana de la nucleasa ArtTal1-Clo051.

Para evaluar la especificidad de la nucleasa ArtTal1-Clo051 contra la secuencia diana prediseñada en comparación con las secuencias de ADN no relacionadas, el vector de expresión pCAG-ArtTal1-Clo051 se cotransfectó con el plásmido reportero ArtTal1 correspondiente o con los plásmidos reporteros TalRab1 o TalRab2 (Figura 7), que contienen secuencias diana no relacionadas, en células HEK 293. La actividad nucleasa fuerte se desarrolló solamente en la combinación específica del vector de expresión ArtTal1-Clo051 junto con el plásmido reportero ArtTal1, lo que indica que la nucleasa ArtTal1-Clo051 actúa específicamente contra la secuencia diana prediseñada.

Figura 10: Caracterización de la cooperatividad de proteínas de fusión nucleasa TAL-Clo051

A: Para evaluar la cooperatividad de los dominios nucleasa Clo051 de un par de proteínas de fusión TAL-Clo051, los vectores de expresión para las proteínas de fusión ArtTal1-Clo051 o TalRab2-Clo051 se cotransfectaron con el correspondiente plásmido reportero ArtTal1 o TalRab2 (Figura 7) y se comparó con la cotransfección con el plásmido reportero ArtTal1/TalRab2, que contiene una región diana híbrida (Figura 7). La actividad nucleasa significativa se desarrolló solamente en la combinación de vectores de expresión de Nucleasa-TAL con plásmidos reporteros que contienen dos copias idénticas e inversas de la secuencia diana del arreglo TAL correspondiente, pero no con el plásmido reportero ArtTal1/TalRab2 que contiene solamente una secuencia de unión única de las proteínas de fusión ArtTal1-

Clo051 y TalRab2-Clo051. Este resultado indica que dos dominios nucleasa Clo051 deben cooperar para inducir una rotura de doble hebra del ADN, mientras que un único dominio nucleasa Clo051 no actúa como una nucleasa. **B:** La cotransfección del plásmido reportero ArtTal1/TalRab2 con ambos vectores de expresión para ArtTal1-Clo051 y TalRab2-Clo051, pero no con ArtTal1-Clo051 o -Fok solo, resulta en una actividad nucleasa fuerte, en comparación con la transfección del plásmido reportero ArtTal1/TalRab2. Este resultado indica que la actividad nucleasa y la inducción de roturas de doble hebra en la región diana se producen solamente después de la unión de dos proteínas de fusión TAL-Clo051 y de la interacción de un par de dominios nucleasa Clo051.

Figura 11: Diseño de un par de proteínas de fusión TAL-Clo051 de acuerdo con la presente invención, que reconoce el gen Rab38 de ratón.

Nucleasa TAL que reconoce una secuencia diana dentro del exón 1 del gen de ratón *Rab38*. El trinucleótido que representa el codón 19 está subrayado. Se indica cada secuencia de 14 nucleótidos que se reconoce por una de las proteínas de fusión TAL-Clo051 indicadas, RabChtTal1- y RabChtTal2-Clo051. Las dos secuencias diana de 14 pb flanquean una secuencia espaciadora central de 15 pb que se escinde por los dominios nucleasa Clo051.

Figura 12: Estrategia para la modificación del gen de ratón *Rab38* en células ES y cigotos mediante el uso de proteínas de fusión TAL-Clo051.

Dentro del exón 1 del gen de tipo silvestre *Rab38* (Rab38 WT) se indica la posición de los sitios de unión para el par Nucleasa TAL RabChtTal1- y RabChtTal2-Clo051. El vector de transformación Rab38-cht contiene una región de homología 5' de 942 pb y una región de homología 3' de 2788 pb que flanquean los sitios de reconocimiento TAL de Rab38. Dentro del exón 1 el cambio de dos nucleótidos dentro del codón 19 (GTA) de *Rab38* produce una mutación chocolate (cht) sin sentido que codifica para valina (Val) en lugar de la glicina (Gly) de tipo silvestre (WT), y elimina un sitio de restricción BsaJI. En cada uno de los sitios adyacentes de reconocimiento TAL de Rab38 se introdujeron numerosas mutaciones silentes para evitar la unión de las proteínas TAL de Rab38 al vector de transformación. La inducción de una rotura de doble hebra dentro del gen de tipo silvestre *Rab38* por el par de proteínas RabChtTal estimula la recombinación homóloga con el vector de transformación Rab38-cht e integra la mutación chocolate sin sentido y las mutaciones silentes en el genoma.

ŭ

Figura 13: Aislamiento de mutantes hiperactivos de nucleasa Clo051.

15

30

35

40

45

50

La figura muestra la secuencia primaria del dominio nucleasa Clo051 entre las posiciones E389 e Y587. Se indica la distribución de los residuos arginina (R) y lisina (K) (cuadrados sólidos) cargados positivamente de y de los residuos glutamato (E) y aspartato (D) (círculos abiertos) cargados negativamente. Los triángulos indican las posiciones S423 y R446. Estos residuos constituyen un marco tridimensional de cargas dentro del dominio Clo051 que determina la estructura terciaria única de esta nucleasa, como se modeló en la estructura de la Figura 6. Determinados reemplazos de residuos polares versus no polares o de residuos no polares contra residuos polares, por ejemplo en las posiciones 423 y 446, cambian la estructura tridimensional de la cadena proteica y resulta en una actividad nucleasa que trabaja más eficientemente.

Figura 14: Actividad de la nucleasa ArtTal1-Clo051 sobre un reportero genómico en células HEK 293 Las células HEK293 que poseen copias genómicas integradas del constructo reportero pCMV-Rab-Reporter(hygro) se transfectaron con pBluescript o pCAG.ArtTal1-Clo051. La actividad nucleasa específica contra la secuencia diana del reportero conduce a la recombinación homóloga y a la expresión de 3-galactosidasa. Dos días después de la transfección, se fijaron las poblaciones celulares y se determinó la fracción de células que expresaban 3-galactosidasa mediante tinción histoquímica con X-Gal. A: Cultivo de células reporteras teñidas con X-Gal después de la transfección con pBluescript. B: Cultivo de células reporteras teñidas con X-Gal después de la transfección de nucleasa pCAG-ArtTal1-Clo051.

Ejemplo 1: Construcción de vectores de expresión y reporteros para Nucleasa Tal y detección de la actividad nucleasa específica

Construcción de vectores de expresión Nucleasa-TAL

Para la expresión de nucleasa-TAL en células de mamíferos, diseñamos el vector de expresión genérico pCAG-TALnucleasa (sec. con núm. de ident.: 3) (Figura 4), que contiene una región del promotor híbrida CAG y una unidad
transcripcional que comprende una secuencia codificante para un péptido N-terminal de 176 aminoácidos (sec. con núm.
de ident.: 4) de las proteínas de fusión Nucleasa TAL, ubicada en el extremo 5' de un par de sitios de restricción BsmBl.
Esta región N-terminal incluye un codón de inicio de la transcripción ATG, una secuencia de localización nuclear, una
secuencia de etiqueta FLAG, una secuencia enlazadora rica en glicina, un segmento codificante para 110 aminoácidos
de la proteína Tal AvrBs3 y la repetición Tal invariable del extremo N-terminal del efector TAL Hax3. En el extremo 3' de
los sitios centrales BsmBl, la unidad transcripcional contiene 78 codones (sec. con núm. de ident.: 5) que incluyen una
repetición TAL invariable del extremo C-terminal (34 aminoácidos) y 44 residuos derivados de la proteína TAL AvrBs3,
seguido por un sitio de restricción Pmel y Mlul para la inserción de una región codificante de nucleasa y por una secuencia
señal de poliadenilación (pA). Los segmentos de ADN codificantes para los arreglos de repeticiones TAL, diseñados para

unir una secuencia diana de nucleasa TAL pueden insertarse en los sitios BsmBI de pCAG-Tal-nucleasa en el marco de lectura con las regiones codificantes de los extremos 5' y 3' para la expresión de proteínas nucleasa TAL prediseñadas.

Para generar los vectores TAL-nucleasa para la expresión en células de mamíferos insertamos un segmento de ADN sintético con la región codificante de un arreglo de 12 repeticiones Tal, designado ArtTal1 (sec. con núm. de ident.: 6), en los sitios BsmBl de pCAG-TAL-nucleasa, para derivar el plásmido pCAG-ArtTal1-nucleasa (sec. con núm. de ident.: 7). El elemento TAL en el arreglo ArtTal1 reconoce la secuencia diana de ADN artificial 5'-ATTCTGGGACGT-3' (Figura 4). En otro ejemplo insertamos un segmento de ADN sintético con la región codificante de un arreglo de 14 repeticiones Tal, designado TalRab2 (sec. con núm. de ident.: 8), en los sitios BsmBI de pCAG-TAL-nucleasa, para derivar el plásmido pCAG-TalRab2-nucleasa (sec. con núm. de ident.: 9). El elemento TAL en el arreglo TalRab2 reconoce la secuencia diana 5'-GGTGGCCCGGTAGT-3' (Figura 7) que ocurre dentro del gen de ratón Rab38. Las secuencias diana TAL se seleccionaron de manera que las regiones de unión de las proteínas TAL fueran precedidas por un nucleótido T. Siguiendo la secuencia hacia el extremo 3' de la T inicial en dirección 5'>3', los dominios de unión al ADN específicos de TAL se combinaron juntos en arreglos de 12 (ArtTal1) (Figura 4), o 14 (TalRab2) elementos TAL. Cada motivo de elemento TAL consiste en 34 aminoácidos, la posición 12 y 13 de los cuales determina la especificidad hacia el reconocimiento de A, G, C o T dentro de la secuencia diana. Para derivar los dominios de unión al ADN del elemento TAL usamos el motivo efector TAL (repetición) #11 de la proteína Hax3 de Xanthomonas (Núm. de acceso del GenBank AY993938.1 (LTPEQVVAIASNIGGKQALETVQRLLPVLCQAHG) con los aminoácidos N12 e I13 para reconocer A, el motivo efector TAL (repetición) #5 (LTPQQVVAIASHDGGKQALETVQRLLPVLCQAHG) derivado de la proteína Hax3 con los aminoácidos H12 D13 para reconocer C, y el motivo efector TAL (repetición) (LTPQQVVAIASNGGGKQALETVQRLLPVLCQAHG) de la proteína Hax4 de Xanthomonas (Núm. de acceso del GenBank: AY993939.1) con los aminoácidos N12 y G13 para reconocer T. Para reconocer un nucleótido diana G usamos el motivo efector TAL (repetición) #4 de la proteína Hax4 con el reemplazo de los aminoácidos 12 por N y 13 por N (LTPQQVVAIASNNGGKQALETVQRLLPVLCQAHG).

A continuación, construimos proteínas de fusión del dominio de unión al ADN ArtTal1 con dominios de proteínas derivado de nucleasas conocidas o putativas y evaluamos si esas proteínas de fusión nucleasa-TAL son capaces de inducir una rotura en la doble hebra después de unirse al ADN mediante la región de reconocimiento TAL. Para este propósito, insertamos segmentos de ADN sintético que comprenden las regiones codificantes de ocho dominios de nucleasa putativos y el dominio conocido de nucleasa de Fokl (sec. con núm. de ident.: 10), en los sitios Pmel y Mlul del plásmido pCAG-ArtTal1-nucleasa. Entre los ocho dominios putativos de nucleasa seleccionamos dominios de las cinco enzimas de restricción conocidas Alwl (sec. con núm. de ident.: 11), Mlyl (sec. con núm. de ident.: 12), Sbfl (sec. con núm. de ident.: 13), Sdal (sec. con núm. de ident.: 14) y Stsl (sec. con núm. de ident.: 15). Además, seleccionamos dominios putativos de nucleasa de tres genes microbianos hipotéticos, aún no caracterizados, designados en la presente como 'CleDORF' (sec. con núm. de ident.: 16) (Secuencia de Referencia del NCBI: ZP 02080987.1, derivado a partir del genoma de Clostridium leptumDSM753), 'Clo051' (sec. con núm. de ident.: 17) (Secuencia de Referencia del NCBI: ZP_05132802.1, derivado a partir del genoma de *Clostridium spec.7_2_43FAA*) y 'Pept071' (sec. con núm. de ident.: 18) (Secuencia de Referencia del NCBI: ZP_07399918.1, derivado a partir del genoma de *Peptoniphilus duerdenii* ATCC BAA-1640). Estas proteínas se seleccionaron por los elementos de secuencia característicos que son compatibles con el sitio activo conservado de la superfamilia de enzimas 'PD-(D/E)XK' (Kosinski, J., y otros (2005). BMC Bioinformatics, 6,172) que interaccionan con el ADN (ver Figura 6 para la proteína Clo051). En particular, la proteína Clo051 de 587 residuos puede clasificarse como un miembro de la familia de proteína PD-(D/E)XK por la localización de los pares de aminoácidos P454/ D455 (motivo PD) y D472/ K474 (motivo DXK) (Figura 5). Para dilucidar si la proteína Clo051 contiene un dominio nucleasa separado, realizamos una predicción estructural tridimensional a partir de su secuencia de aminoácidos primaria mediante el uso del programa informático I-TASSER (Roy, A. y otros (2010). Nat Protoc., 5(4):725-38). Como se muestra en la Figura 6 la proteína Clo051 está compuesta por dos dominios de proteína. El dominio C-terminal de Clo051, que comienza aproximadamente con el residuo E389, contiene el motivo consenso de la familia PD-(D/E)XK y aparece como un dominio nucleasa no específico.

50 Para la expresión de estos dominios de proteínas en células de mamíferos usamos regiones codificantes sintéticas optimizadas de acuerdo con el uso de codones en mamíferos e insertamos segmentos que comprenden los dominios nucleasa putativos de Alwl (sec. con núm. de ident.: 19), CleDORF (sec. con núm. de ident.: 20), Clo051 (sec. con núm. de ident.: 1), Mlyl (sec. con núm. de ident.: 21), Pept071 (sec. con núm. de ident.: 22), Sbfl (sec. con núm. de ident.: 23), Sdal (sec. con núm. de ident.: 24), Stsl (sec. con núm. de ident.: 25) y el dominio nucleasa conocido de Fokl (sec. con 55 núm. de ident.: 26) dentro de los sitios Pmel y Mlul del plásmido pCAG-ArtTal1-nucleasa, para derivar los vectores de expresión pCAG-ArtTal1-Alwl (sec. con núm. de ident.: 27) (Figura 4A), pCAG-ArtTal1-CleDORF (sec. con núm. de ident.: 28) (Figura 4B), pCAG-ArtTal1-Clo051 (sec. con núm. de ident.: 29) (Figura 4C), pCAG-ArtTal1-Mlyl (sec. con núm. de ident.: 30) (Figura 4D), pCAG-ArtTal1-Pept071 (sec. con núm. de ident.: 31) (Figura 4E), pCAG-ArtTal1-Sbfl (sec. con núm. de ident.: 32) (Figura 4F), pCAG-ArtTal1-Stal (sec. con núm. de ident.: 33) (Figura 4G), pCAG-ArtTal1-Stal (sec. con núm. de ident.: 34) (Figura 4H), y pCAG-ArtTal1-Fokl (sec. con núm. de ident.: 35) (Figura 4I). Estos vectores de expresión codifican para las proteínas de fusión-TAL designadas como ArtTal1-Alwl (sec. con núm. de ident.: 36), ArtTal1-CleDORF (sec. con núm. de ident.: 37), ArtTal1-Clo051 (sec. con núm. de ident.: 38), ArtTal1-Mlyl (sec. con núm. de ident.: 39), ArtTal1-Pept071 (sec. con núm. de ident.: 40), ArtTal1-Sbfl (sec. con núm. de ident.: 41), ArtTal1-Sdal (sec. con núm. de ident.: 42), ArtTal1-Stsl (sec. con núm. de ident.: 43), y ArtTal1-Fokl (sec. con núm. de ident.: 44).

65

60

5

10

15

20

25

30

35

40

Construcción de plásmidos reporteros de nucleasa TAL

Para determinar la actividad y la especificidad del dominio nucleasa TAL de las proteínas de fusión en células de mamíferos, construimos plásmidos reporteros de nucleasa TAL que contienen dos copias de una secuencia diana de ADN TAL en orientación inversa, separadas por una región espaciadora de 15 nucleótidos (**Figuras 7a-d**). Esta configuración permite medir la actividad de un solo tipo de nucleasa TAL que interacciona como un homodímero de dos moléculas de proteínas que se unen al par inverso de las secuencias diana del plásmido reportero. Después de la unión al ADN y la interacción de dos dominios nucleasas, el ADN del plásmido reportero se escinde dentro de la región espaciadora de 15 pb y exhibe una rotura de doble hebra.

10

15

5

Los plásmidos reporteros de nucleasa TAL contienen una región promotora de CMV, una secuencia de 400 pb que codifica el segmento N-terminal de β-galactosidasa y un codón de parada. Esta unidad es seguida por la región diana de nucleasa TAL (que consiste en dos secuencias de reconocimiento de orientación inversa separadas por una región espaciadora de 15 pb) para las proteínas de fusión ArtTal1 en el plásmido reportero ArtTal1 (sec. con núm. de ident.: 45)(Figura. 7 a), por la secuencia diana no relacionada TalRab1 en el plásmido reportero TalRab1 (sec. con núm. de ident.: 46) (Figura 7 b), por la región diana para las proteínas de fusión TalRab2 en el plásmido reportero TalRab2 (sec. con núm. de ident.: 47) (Figura 8 c), o una región diana híbrida que contiene una copia de las secuencias de reconocimiento ArtTal1 y TalRab2 en el plásmido reportero ArtTal1/TalRab2 (sec. con núm. de ident.: 48) (Figura 8 d).

20

25

30

Dentro de estos plásmidos reporteros, las regiones diana de nucleasa TAL están seguidas por la región codificante completa de la β-galactosidasa y una señal de poliadenilación (pA). Para evaluar la actividad nucleasa contra la secuencia diana específica, un vector de expresión de nucleasa (**Figura 4**) se cotransfectó transitoriamente con su correspondiente plásmido reportero en células de mamíferos. Después de la expresión de la proteína nucleasa TAL, el plásmido reportero se abre mediante una rotura de doble hebra inducida por la nucleasa dentro de la secuencia diana de la nucleasa TAL (**Figura 7 A**). Las regiones de ADN adyacentes a la rotura de doble hebra son idénticas en 400 pb y pueden alinearse y recombinarse mediante la recombinación homóloga del proceso de reparación del ADN (**Figura 7 B**). La recombinación homóloga de un plásmido reportero abierto resultará posteriormente en una región codificante de β-galactosidasa funcional transcrita a partir del promotor de CMV que conduce a la producción de la proteína β-galactosidasa (**Figura 7 C**). En los lisados de las células transfectadas, puede determinarse la actividad enzimática de la β-galactosidasa mediante quimioluminiscencia y referir la actividad nucleasa de las proteínas de fusión TAL.

Para determinar la actividad y especificidad de las nucleasas TAL en células de mamíferos, electroporamos un millón de

Medición de la actividad y especificidad de la Nucleasa-TAL en células 293 humanas

35

40

células HEK 293 (ATCC #CRL-1573) (Graham FL, Smiley J, Russell WC, Nairn R., J. Gen. Virol. 36, 59-74, 1977) con 5 μg de ADN plasmídico de uno de los vectores de expresión de Nucleasa TAL (Figura 4) junto con 5 μg de uno de los plásmidos reporteros de Nucleasa TAL (Figura 7). Además, cada muestra recibió 5 μg del plásmido de expresión de luciferasa de luciérnaga pCMV-hLuc (sec. con núm. de ident.: 49) y se ajustó a una cantidad total de ADN de 20 μg con el ADN plasmídico pBluescript (pBS) (sec. con núm. de ident.: 50). Después de la transfección, las células se sembraron por triplicado en pocillos de una placa de cultivo de tejidos de 6 pocillos y se cultivaron durante dos días antes de comenzar el análisis. Para el análisis, las células transfectadas de cada pocillo se lisaron y se determinaron individualmente las actividades de las enzimas β-galactosidasa y luciferasa de los lisados mediante el uso de los ensayos reporteros quimioluminiscentes de acuerdo con las instrucciones del fabricante (Roche Applied Science, Alemania) en un luminómetro (Berthold Centro LB 960). Como control positivo transfectamos 5 μg del plásmido de expresión de β-galactosidasa pCMVβ (sec. con núm. de ident.: 51) con 15 μg de pBS, como control negativo se transfectaron 5 μg de pCMV-hLuc con 15 μg de pBS o 5 μg de pCMV-hLuc junto con 5 μg de un plásmido reportero de nucleasa TAL y 10 μg

45

actividad de luciferasa y el valor medio y la desviación estándar de la actividad de β-galactosidasa se calcularon y expresaron en comparación con el control positivo pCMVβ. En este tipo de ensayo de recombinación, el nivel de emisión de luz catalizada por la β-galactosidasa refleja la escisión y reparación de los plásmidos reporteros y, de esta manera,

de pBS. Los valores de β-galactosidasa por triplicado de cada muestra se normalizaron en relación con los niveles de

50

55

indica la actividad de las nucleasas TAL.

Como se muestra en la Figura 8 la transfección del plásmido reportero ArtTal1 solo resultó en niveles de fondo de β-galactosidasa. La cotransfección del plásmido reportero ArtTal1 con los vectores de expresión pCAG-ArtTal1-Alwl, - CleDORF, -Mlyl, -Pept071, -Sbfl, -Sdal, y -Stsl no revelaron ninguna actividad nucleasa significativa de las proteínas de fusión que codifican TAL (Figura 8), lo que indica que los dominios nucleasas seleccionados son incapaces de operar en combinación con los elementos TAL de unión al ADN. En contraste, la cotransfección del plásmido reportero ArtTal1 con los vectores de expresión pCAG-ArtTal1-Clo051 (Figura 8A) y - Fokl (Figura 8B) resultó en un aumento significativo de la actividad reportera, lo que indica que los dominios de proteínas seleccionados Fokl y Clo051 son capaces de funcionar como nucleasas en fusión con los elementos TAL de unión al ADN.

60

Dado que en ensayos repetidos, las fusiones de TAL con el dominio Clo051 parecía más activo en comparación a las fusiones con el dominio nucleasa de Fokl, creemos que el dominio Clo051 es el más adecuado para la construcción de Nucleasas TAL altamente activas.

65

Para definir si la nucleasa ArtTal1-Clo051 reconoce específicamente su secuencia diana dentro del plásmido reportero ArtTal1 (Figura 7a), el pCAG-ArtTal1-Clo051 se cotransfectó con el correspondiente plásmido reportero ArtTal1 o con los

plásmidos reporteros no relacionados TalRab1 o TalRab2 (**Figura 7b,c**) en células HEK 293. Como se muestra en la Figura 9 se detectó actividad reportera aumentada significativamente solamente a partir de la combinación específica de la nucleasa ArtTal-Clo051 con su correspondiente promotor, mientras que la cotransfección con plásmidos reporteros no relacionados no exhibe actividad nucleasa significativa. Estos resultados indican que el dominio nucleasa Clo051 en fusión con los elementos TAL de unión al ADN actúa en una secuencia diana de manera específica y que las secuencias diana no relacionadas no se procesan.

5

10

15

20

25

40

45

65

A continuación, caracterizamos si el dominio nucleasa Clo051, como un monómero, induce roturas de doble hebra recombinogénicas o si es necesario la interacción de dos dominios nucleasa como un dímero. Para este propósito, construimos el plásmido reportero híbrido ArtTal1/TalRab2-reportero (sec. con núm. de ident.: 48) (Figura 7d) que contiene una secuencia de reconocimiento ArtTal1 en el extremo 5' de la región espaciadora y una secuencia de reconocimiento TalRab2 en el extremo 3' de la región espaciadora. El arreglo TalRab2 (sec. con núm. de ident.: 8) está compuesto por 14 elementos TAL que reconocen la secuencia diana 5'-GĞTGGCCCGĞTAGT-3'. El dominio nucléasa Clo051 se clonó como una región codificante sintética en los sitios Pmel y Mlul del plásmido pCAG-TalRab2-nucleasa (sec. con núm. de ident.: 9) para derivar el vector de expresión pCAG-TalRab2-Clo051 (sec. con núm. de ident.: 52) para la expresión de la proteína TalRab2-Clo051 (sec. con núm. de ident.: 53). Como se muestra en la Figura 10A la cotransfección de pCAG-ArtTal1-Clo051 junto con el plásmido reportero ArtTal1 resultó en una expresión génica significativa del reportero. lo que indica la actividad nucleasa específica de la proteína de fusión ArtTal1-Clo051. Dado que los plásmidos reporteros ArtTal1 contienen dos secuencias de unión ArtTal1 inversas, la actividad nucleasa de ArtTal1-Clo051 puede resultar a partir de la acción de una proteína de fusión única o de la acción combinada de dos moléculas. Para distinguir entre estas posibilidades el pCAGArtTal1-Clo051 se cotransfectó con el plásmido reportero ArtTal1/TalRab2 que contiene solamente una secuencia de unión ArtTal1. Como se muestra en la Figura 10A la nucleasa ArtTal1-Clo051 no exhibe actividad nucleasa significativa sobre el reportero ArtTal1/TalRab2, lo que indica que para inducir una rotura en la doble hebra de ADN los dos dominios nucleasa Clo051 deben interaccionar como un dímero. Estos resultados se confirmaron con la nucleasa TalRab2-Clo051 que actúa sobre su correspondiente plásmido reportero TalRab2 pero no sobre el plásmido reportero híbrido ArtTal1/TalRab2 (Figura 10A). Como se esperaba, la proteína de fusión ArtTal1-Fokl igualmente no exhibe actividad nucleasa sobre el reportero ArtTal1/TalRab2 (Figura 10B).

A continuación, estudiamos si dos dominios nucleasa Clo051, que se fusionan a diferentes arreglos de los elementos TAL de unión al ADN, son capaces, además, de interaccionar e inducir roturas en la doble hebra. Para este propósito, los vectores de expresión pCAG-ArtTal1-Clo051 y pCAG-TalRab2-Clo051 se cotransfectaron junto con el plásmido reportero ArtTal1/TalRab2 y los resultados se compararon con la cotransfección del pCAG-ArtTal1-Clo051 junto con el reportero ArtTal1/TalRab2. Como se muestra en la Figura 10B, la actividad nucleasa significativa sobre el reportero ArtTal1/TalRab2 se desarrolló solamente mediante la coexpresión de las nucleasas ArtTal1- y TalRab2-Clo051, lo que indica que los dominios nucleasa Clo051 fusionados con diferentes arreglos de TAL son capaces de interaccionar e inducir una rotura en la doble hebra del ADN dentro de una región diana híbrida que contiene las secuencias de reconocimiento de dos arreglos TAL de unión al ADN distinguidos.

Ejemplo 2: Transformación del gen de ratón Rab38 en células ES y cigotos con nucleasas TAL-Clo051

Construcción de nucleasas TAL-Clo051 específicas de Rab38 y un vector de transformación

Para demostrar la funcionalidad de las proteínas de fusión nucleasa-dominio efector TAL de unión al ADN en células de mamíferos diseñamos un par de proteínas de fusión que reconocen una secuencia diana de ADN dentro del gen de ratón Rab38 (Figura 11). Las dos proteínas de fusión nucleasa-dominio efector TAL de unión al ADN son destinadas a unirse junto a la región del ADN diana bipartita e inducir una rotura en la doble hebra en la región espaciadora para estimular la recombinación homóloga en el locus diana en células de mamíferos.

El gen de ratón Rab38 codifica la proteína RAB38 que es un miembro de una familia de proteínas conocidas por tener un 50 papel crucial en el transporte vesicular. En ratones mutantes chocolate (cht) el intercambio de un solo nucleótido en la posición 146 (mutación G > T) dentro del primer exón de Rab38 conduce al reemplazo de glicina por valina en el codón 19 (Loftus, S.K., y otros, Proc Natl Acad Sci U S A, 2002. 99(7): p. 4471-6). Este reemplazo de aminoácido se ubica dentro del dominio de unión a GTP conservado de RAB38 y afecta la clasificación de la proteína relacionada con la tirosinasa 1 (TYRP1) en los melanosomas de los melanocitos Rab38cht/Rab38cht. La TYRP1 es una glicoproteína de membrana 55 melanosomal, que funciona como una enzima oxidasa 5,6-Dihidroxiindol-2-ácido carbónico para producir melanina y como un proveedor de estabilidad estructural para la tirosinasa en el complejo enzimático melanogénico. Se cree que TYRP1 transita desde la red trans-Golgi hasta los melanosomas en etapa II por medio de vesículas recubiertas de clatrina. La cantidad reducida de TYRP1 ubicada correctamente conduce a un deterioro de la producción de pigmento y al cambio del color del pelaje, de negro a marrón similar al chocolate, en ratones Rab38cht/Rab38cht. Dado que se conoce que las 60 mutaciones de los genes necesarios para la función de los melanocitos causan el albinismo oculocutáneo (OCD), tal como el síndrome de Hermansky-Pudlak en el hombre, el gen Rab38 es un locus candidato en los pacientes con OCD.

Nos propusimos introducir una fenocopia de la mutación chocolate en el codón 19 de *Rab38* mediante el uso de un par de nucleasas TAL (RabChtTal1- y RabChtTal2-Clo051) que cada una reconoce una secuencia diana de 14 pb ubicada en el extremo 5' y en el extremo 3' de una secuencia espaciadora de 15 pb dentro del exón 1 del gen *Rab38* (**Figura 11**). Para derivar los vectores de expresión para las nucleasas sintéticas RabChtTal1 y RabChtTal2-Clo051, las regiones

codificantes sintéticas para los dominios de unión al ADN RabChtTal1 y RabChtTal2 compuestos de 14 elementos TAL y el dominio nucleasa Clo051 se insertaron en el vector pCAG-TAL-nucleasa. El plásmido resultante pCAG-RabChtTal1-Clo051 (sec. con núm. de ident.: 54) codifica la proteína de fusión RabChtTal1-Clo051 (sec. con núm. de ident.: 55), y el plásmido pCAG-RabChtTal2-Clo051 (sec. con núm. de ident.: 56) codifica la proteína de fusión RabChtTal2-Clo051 (sec. con núm. de ident.: 57).

Para la modificación del gen Rab38 mediante recombinación homóloga en ovocitos fecundados, construimos el vector de transformación génica pRab38-chtTAL (Figura 12) (sec. con núm. de ident.: 58), que comprende dos regiones de homología que abarcan 942 y 2788 pb de la secuencia genómica que flanquean el exón 1 del gen de ratón Rab38 (sec. con núm. de ident.: 59). Para este propósito, los vectores con los brazos de homología 5' y 3' se amplificaron a partir del clon genómico BAC, RPCI-421G2 (derivado a partir del genoma de C57BL/6J, Imagenes GmbH, Berlín), mediante el uso de cebadores específicos de PCR. Dentro de la secuencia del codón 19, introdujimos dos cambios de nucleótidos que modifican el codón 19 de la secuencia de tipo silvestre GGT, que codifica para glicina, en GTA, que codifica para valina. Esta nueva mutación chocolate puede distinguirse de la mutación chocolate de origen natural, que exhibe un solo intercambio de nucleótidos dentro del codón 19 (GTT) que codifica para valina (Loftus, S.K., y otros, Proc Natl Acad Sci U S A, 2002. 99(7): p. 4471-6). Ambos alelos mutantes chocolate pueden distinguirse adicionalmente del alelo de tipo silvestre mediante análisis de restricción, ya que las mutaciones en el codón 19 eliminan un sitio de reconocimiento para la endonucleasa de restricción BsaJI (Figura 12). La región de reconocimiento de las nucleasas TAL se ubica en el extremo 3' del codón 19 (Figura 11). Para la construcción de la región de homología 3' del vector de transformación, cada secuencia de reconocimiento de 14 pb de la proteína de fusión TAL se modificó adicionalmente mediante la introducción de cambios de nucleótidos silentes que no alteran la secuencia de la proteína RAB38 (Figura 12), para evitar el procesamiento potencial del vector de transformación por las nucleasas TAL específicas de Rab38.

Para la modificación del gen *Rab38* mediante recombinación homóloga en células ES de ratón, modificamos el vector de transformación génica pRab38-chtTAL (Figura 12) mediante la inserción de un gen de resistencia a neomicina, como un marcador de selección, en la región espaciadora de la región de reconocimiento de la nucleasa-TAL, para derivar el vector de transformación pRab38-chtTAL-neo (sec. con núm. de ident.: 60).

Transformación del gen Rab38 en células ES y cigotos

10

15

20

30

35

40

45

65

Para demostrar la utilidad de las proteínas RabChtTal1- y RabChtTal2-Clo051 para la transformación génica en células de mamíferos (Figura 3) introdujimos los vectores de expresión o el ARNm codificante de las proteínas junto con el vector de transformación pRab38-chtTAL-neo en células ES de ratón o con el vector pRab38-chtTAL en ovocitos fecundados de ratón.

Para la transformación en células ES transfectamos las células ES IDG3.2 (Hitz, C. y otros Nucleic Acids Res. 35, e90, 2007) con el vector de transformación linealizado pRab38-chtTAL-neo junto con, o sin, los plásmidos de expresión de nucleasa TAL pCAG-RabChtTal1- y pCAG-RabChtTal2-Clo051. La transfección, selección, expansión y genotipificación de los clones de células ES resistentes a neomicina se realizó de acuerdo con los procedimientos estándar de detección de genes diana como se describió (Nagy A, Gertsenstein M, Vintersten K, Behringer R., 2003. Manipulating the Mouse Embryo. Cold Spring Harbour, New York: Cold Spring Harbour Laboratory Press). El análisis de los clones de células ES resistentes reveló que la expresión de las nucleasas TAL conduce a una tasa significativamente aumentada de recombinación homóloga en el gen Rab38 en células ES. Para la microinyección en ovocitos de ratón fecundados, el vector de ADN circular pRab38-chtTAL se mezcló *in vitro* con el transcrito de ARNm codificante de las proteínas RabChtTal1- y RabChtTal2-Clo051 en el tampón de inyección como se describió (Meyer, M., y otros, Proc Natl Acad Sci U S A. 107(34): p. 15022-6). El ARNm de TAL-nucleasa se prepara a partir de los plásmidos de expresión linealizados pCAG-RabChtTAl1- y pCAG-RabChtTal2-Clo051

Mediante la transcripción *in vitro* a partir del promotor T7 mediante el uso del kit mMessage mMachine (Ambion) de acuerdo con las instrucciones del fabricante. El ARNm se modificó adicionalmente mediante la adición de una cola de poli-A mediante el uso del kit de adición de Poli(A) y se purificó con las columnas MegaClear de Ambion. Finalmente, el ARNm se precipitó y disolvió en tampón de inyección.

Para aislar los ovocitos fecundados, los machos de la cepa C57BL/6 se aparean con hembras superovuladas de la cepa FVB. Para inducir la superovulación las hembras FVB de tres semanas de edad, 2 días antes del apareamiento, se trataron con suero de yeguas preñadas 2.5 IU (PMS), y con gonadotropina coriónica humana 2.5 IU (hCG) el día del apareamiento. Los ovocitos fecundados se aislaron de los oviductos de las hembras con tapón positivo y se microinyectaron en medio M2 (Sigma-Aldrich Inc Núm. Cat. M7167) con el ARNm de nucleasa TAL y la preparación del vector de transformación pRab38-chtTAL, en uno de los pronúcleos y el citoplasma de acuerdo con los procedimientos estándar (Nagy A, Gertsenstein M, Vintersten K, Behringer R., 2003. Manipulating the Mouse Embryo. Cold Spring Harbour, New York: Cold Spring Harbour Laboratory Press).

Después de la microinyección, los ARNm de nucleasa TAL se traducen en proteínas que inducen una rotura de doble hebra en uno o en ambos alelos de *Rab38* en una o más células del embrión en desarrollo. Este evento estimula la recombinación del vector de transformación pRab38-chtTAL con un alelo *Rab38* a través de las regiones de homología presentes en el vector y conduce a la inserción en un sitio específico del codón mutante 19 en el genoma, lo que resulta

en un alelo Rab38cht portador de la mutación chocolate (Figura 12). Los cigotos microinyectados se transfirieron a hembras pseudopreñadas para permitir su desarrollo ulterior en ratones vivos (Nagy A, Gertsenstein M, Vintersten K, Behringer R., 2003. Manipulating the Mouse Embryo. Cold Spring Harbour, New York. Cold Spring Harbour Laboratory Press). A partir de la descendencia resultante, se extrajo ADN genómico de las puntas de la cola para analizar la presencia del evento de recombinación homóloga deseado en el locus Rab38 mediante PCR. Este análisis se realizó mediante la amplificación por PCR de la región genómica que abarca el exón 1. La presencia de un alelo Rab38cht puede reconocerse después de la digestión de los productos del PCR con BsaJI, ya que la mutación Rab38cht en el codón 19 conduce a la eliminación de un sitio de restricción BsaJI que está presente en la secuencia de tipo silvestre.

- En un experimento de este tipo, se analizaron ratones derivados de cigotos microinyectados mediante un ensayo de PCR 10 de Rab38. Entre este grupo, la mayoría de los ratones exhibieron los dos alelos del genotipo normal Rab38 de tipo silvestre, mientras que algunos individuos albergaban un alelo de la mutación chocolate Rab38 prediseñada, como lo indica la ausencia del sitio de restricción BsaJl en el exón 1.
- En conjunto, fue posible introducir una modificación prediseñada en la región codificante del gen Rab38 mediante 15 recombinación homóloga asistida por la nucleasa TAL-Clo051 en células ES de ratón y ovocitos fecundados.
 - Ejemplo 3: Aislamiento de mutantes hiperactivos de nucleasa Clo051.

60

- 20 Como se muestra en la Figura 13 la secuencia primaria del dominio nucleasa Clo051 entre las posiciones E389 e Y587 exhibe una distribución única de residuos de arginina (R) y lisina (K) cargados positivamente y de residuos de glutamato (E) y aspartato (D) cargados negativamente. Estos residuos componen un panorama tridimensional de cargas dentro del dominio Clo051 que determina la estructura terciaria única de esta nucleasa, como se muestra en el modelo estructural en la Figura 6. Determinados reemplazos de residuos polares versus no polares o de residuos no polares contra residuos polares, por ejemplo en las posiciones 423 y 446, alteran la estructura tridimensional de la cadena proteica y puede 25 resultar en un aumento de la actividad nucleasa.
- Tales reemplazos de aminoácidos pueden realizarse mediante ensayos de prueba y error o pueden seguir hipótesis específicas sobre el impacto estructural y funcional en el dominio nucleasa de Clo051. Alternativamente, un gran número 30 de variantes mutagenizadas aleatoriamente de la región codificante del dominio nucleasa Clo051 pueden ensamblarse en una biblioteca mediante PCR mutagénica. Esta biblioteca de moléculas mutantes puede analizarse para detectar la presencia de variantes de nucleasa hiperactiva mediante un ensayo de selección fenotípica en células de levadura, de mamíferos o en E. coli que se acopla a una lectura de nucleasa funcional, por ejemplo, como se describió para la mejora de la recombinasa FLP (Buchholz y otros, Nat. Biotechnol. 16, 657-62, 1998). 35
 - Tal selección funcional para variantes mejoradas de nucleasas puede resultar en el reemplazo de, por ejemplo, el residuo 423 de una serina por una prolina y del residuo 446 de una arginina por un glutamato. Tales moléculas variantes pueden demostrar una actividad nucleasa superior en comparación con la forma de tipo silvestre Clo051.
- 40 Ejemplo 4: Recombinación inducida por nucleasa Clo051 de sustratos genómicos en células humanas
- La acción de la nucleasa Clo051 se evaluó adicionalmente en células HEK293 humanas sobre un constructo reportero genómico integrado. Para este propósito, el plásmido reportero ArtTal1 (Figura 7) se modificó mediante la inserción de un gen de resistencia a higromicina en la cadena plasmídica. Además, el marco de lectura de la β-galactosidasa se fusionó con la región codificante del gen de resistencia a la neomicina, lo que resulta en el plásmido reportero pCMV-Rab-45 Reportero(hygro) (sec. con núm. de ident.: 61). Para generar una línea celular que albergara el constructo reportero en su genoma, se electroporó ADN plasmídico reportero linealizado en células HEK 293 humanas (ATCC #CRL-1573) (Graham FL, Smiley J, Russell WC, Nairn R., J. Gen. Virol. 36, 59-74, 1977) y se seleccionaron y aislaron los clones resistentes a higromicina. Uno de los clones resistentes, que no mostró actividad de fondo del gen reportero, 293ArtTal-50 Rep#2, se escogió para el trabajo posterior.
- A continuación, se transfectaron un millón de células reporteras con 5 µg de ADN plasmídico del vector de expresión de nucleasa Tal, pCAG-ArtTal1-Clo051 (Figura 4) o con 5 µg del vector de clonación no relacionado pBluescript como control negativo. Después de la transfección, las células se sembraron en pocillos duplicados de una placa de cultivo de tejidos 55 de 6 pocillos y se cultivaron durante dos días antes de comenzar el análisis. Para el análisis, las células transfectadas de cada pocillo se fijaron durante 10 minutos con formaldehído al 4 % y se incubaron durante 4 horas con la solución de tinción de X-Gal (K3(FellI(CN)6) 5 mM, K4(Fell(CN)6) 5 mM, MgCl2 2 mM, X-Gal (5-bromo-cloro-3-indoil-β-Dgalactopiranósido) 1 mg/mL. Las células recombinadas que expresan el gen reportero se visualizaron mediante una tinción azul intracelular y se cuantificaron en imágenes fotográficas mediante el uso de la función de recuento de células del programa informático ImageJ (disponible en el sitio web con la dirección http://imagej.nih.gov/ij). Como se muestra en la Figura 14A, la transfección con el plásmido de control pBluescript no resultó en células reporteras positivas (> 0,1 %, 0 células positivas de 1076 células contadas). En contraste, la transfección de pCAG-ArtTal-1 resultó en una fracción sustancial de células que recombinaron la construcción reportera y expresaron β-galactosidasa (Figura 14 B). Según se cuantificó a partir de imágenes fotográficas, 42,7 % de las células reporteras (227 células positivas de 531 células contadas) mostraron una recombinación exitosa como lo indica la expresión del gen reportero. En conclusión, este

resultado indica que la proteína nucleasa ArtTal1-Clo051 puede procesar eficientemente una secuencia diana localizada dentro del ADN genómico de mamíferos.

LISTADO DE SECUENCIAS

5	<110> Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt (GmbH)																
	<110> Helmholtz 2	Zentru	ım Mi	ünche	en - D	eutsc	hes I	orsc	hungs	szenti	rum f	ür Ge	sund	heit u	nd Uı	mwelt	(GmbH)
	<120> Proteína que tiene actividad de nucleasa, proteínas de fusión y usos de estas																
10	<130> T2026 PCT <150> EP 11 00 4		;														
15	<151> 2011-06-07 <160> 61 <170> Patentin ve <210> 1		3.5														
	<211> 199																
20	<212> PRT																
	<213> Clostridium spec. 7_2_43 FAA <400> 1																
25		Glu 1	Gly	Ile	Lys	Ser 5	Asn	Ile	Ser	Leu	Leu 10	Lys	Asp	Glu	Leu	Arg 15	Gly
30		Gln	Ile	Ser	His 20	Ile	Ser	His	Glu	Tyr 25	Leu	Ser	Leu	Ile	Asp 30	Leu	Ala
35		Phe	Asp	Ser 35	Lys	Gln	Asn	Arg	Leu 40	Phe	Glu	Met	Lys	Val 45	Leu	Glu	Leu
00		Leu	Val 50	Asn	Glu	Tyr	Gly	Phe 55	Lys	Gly	Arg	His	Leu 60	Gly	Gly	Ser	Arg
40		Lys 65	Pro	Asp	Gly	Ile	Val 70	Tyr	Ser	Thr	Thr	Leu 75	Glu	Asp	Asn	Phe	Gly 80
45		Ile	Ile	Val	Asp	Thr 85	Lys	Ala	Tyr	Ser	Glu 90	Gly	Tyr	Ser	Leu	Pro 95	Ile
		Ser	Gln	Ala	Asp 100	Glu	Met	Glu	Arg	Tyr 105	Val	Arg	Glu	Asn	Ser 110	Asn	Arg
50		Asp	Glu	Glu 115	Val	Asn	Pro	Asn	Lys 120	Trp	Trp	Glu	Asn	Phe 125	Ser	Glu	Glu
55		Val	Lys 130	Lys	Tyr	Tyr	Phe	Val 135	Phe	Ile	Ser	Gly	Ser 140	Phe	Lys	Gly	Lys
60		Phe 145	Glu	Glu	Gln	Leu	Arg 150	Arg	Leu	Ser	Met	Thr 155	Thr	Gly	Val	Asn	Gly 160

		Se	r Al	a Val	Asn	Val 165	Val	Asn	Leu	Leu	Leu 170	_	Ala	Glu	Lys	Ile 175	Arg	
5		Se:	r Gl	y Glu	Met 180	Thr	Ile	Glu	Glu	Leu 185	Glu	Arg	Ala	Met	Phe 190	Asn	Asn	
10		Se	r Gl	u Phe 195		Leu	Lys	Tyr										
	<210> 2																	
15	<211> 597 <212> ADN <213> Clostr	idium spe	c. 7_	_2_43 F	-AA													
	<400> 2																	
20		gaaggca	tca	aaagc	aacat	t ct	cccto	cctg	aaag	gacga	ac t	ccgg	gggc	a ga	ttag	ccac		60
		attagto	acg	aatac	ctct	c cc	tcato	cgac	ctgg	gcttt	.cg a	tago	aagc	a ga	acag	gctc		120
. -		tttgaga	tga	aagtg	ctgg	a ac	tgcto	cgtc	aato	gagta	.cg g	gttc	aagg	g to	gaca	cctc		180
25		ggcggat	cta	ggaaa	ccaga	a cg	gcato	gtg	tata	igtac	ca c	cacto	gaag	a ca	actt	tggg		240
		atcattg	tgg	atacc	aagg	c at	actct	gag	ggtt	atag	tc t	gccc	attt	c ac	aggc	cgac		300
30		gagatgg	aac	ggtac	gtgc	g cg	agaad	ctca	aata	ıgaga	tg a	iggaa	gtca	a cc	ctaa	caag		360
		tggtggg	aga	actto	tctg	a gg	aagto	gaag	aaat	acta	.ct t	cgtc	ttta	t ca	.gcgg	gtcc		420
		ttcaagg	gta	aattt	gagga	a ac	agcto	cagg	agac	tgag	ca t	gact	accg	g cg	tgaa	tggc		480
35		agcgccg	tca	acgtg	gtca	a tc	tgcto	cctg	ggcg	gctga	aa a	gatt	.cgga	g cg	gaga	gatg		540
		accatcg	aag	agctg	gaga	g gg	caato	gttt	aata	atag	cg a	igttt	atcc	t ga	aata	С		597
40	<210> 3 <211> 5866 <212> ADN <213> Secue	encia artifi	cial															
45	<220> <223> pCAG	G-TAL-nuc	leasa	a														
	<400> 3																	
		ggcgcgc	gg	attcg	acatt	gat	tatt	gac	tagt	tatt	aa t	agta	atca	ıa tt	acgg	ggto	!	6
50		attagtto	cat a	agccc	atata	ı tg	gagtt	ccg	cgtt	acat	aa c	cttac	ggta	a at	ggcc	cgcc	;	12
		tggctgad	ccg	cccaa	cgaco	cco	egeco	att	gaco	rtcaa	ta a	atgad	gtat	g tt	ccca	tagt		18
55		aacgccaa	ata (gggact	tttcc	att	cgaco	rtca	atgg	gtgg	rag t	attt	acgo	jt aa	acto	rcca	L	24
-		cttggcaq	gta (catca	agtgt	ato	catat	gcc	aagt	acgo	cc o	cctat	tgac	g to	caato	racgg	Г	30
		taaatggo	cc (gcctg	gcatt	ato	gccca	ıgta	cato	racct	ta t	ggga	cttt	c ct	actt	ggca	l	36
30		gtacatct	ac	gtatta	agtca	tc	gctat	tac	cato	gtcg	ag g	gtgag	gaaac	a co	gttct	gctt	:	42

	cactctcccc	atctccccc	cctcccacc	cccaattttg	tatttattta	ttttttaatt	48
	attttgtgca	gcgatggggg	cgggggggg	gggggggcgc	gcgccaggcg	gggcggggcg	54
5	gggcgagggg	cggggcgggg	cgaggcggag	aggtgcggcg	gcagccaatc	agagcggcgc	60
	gctccgaaag	tttcctttta	tggcgaggcg	gcggcggcgg	cggccctata	aaaagcgaag	66
	cgcgcggcgg	gcgggagtcg	ctgcgcgctg	ccttcgcccc	gtgccccgct	ccgccgccgc	72
10	ctcgcgccgc	ccgccccggc	tctgactgac	cgcgttactc	ccacaggtga	gcgggcggga	78
	cggcccttct	cctccgggct	gtaattagcg	cttggtttaa	tgacggcttg	tttcttttct	84
	gtggctgcgt	gaaagccttg	aggggctccg	ggagggccct	ttgtgcgggg	gggagcggct	90
15	cggggggtgc	gtgcgtgtgt	gtgtgcgtgg	ggagcgccgc	gtgcggctcc	gcgctgcccg	96
	gcggctgtga	gcgctgcggg	cgcggcgcgg	ggctttgtgc	gctccgcagt	gtgcgcgagg	102
	ggagcgcggc	cgggggcggt	gccccgcggt	gcggggggg	ctgcgagggg	aacaaaggct	108
20	gcgtgcgggg	tgtgtgcgtg	ggggggtgag	cagggggtgt	gggcgcgtcg	gtcgggctgc	114
	aacccccct	gcacccccct	ccccgagttg	ctgagcacgg	cccggcttcg	ggtgcggggc	120
25	tccgtacggg	gcgtggcgcg	gggctcgccg	tgccgggcgg	ggggtggcgg	caggtggggg	126
25	tgccgggcgg	ggcggggccg	cctcgggccg	gggagggctc	gggggagggg	cgcggcggcc	132
	cccggagcgc	cggcggctgt	cgaggcgcgg	cgagccgcag	ccattgcctt	ttatggtaat	138
30	cgtgcgagag	ggcgcaggga	cttcctttgt	cccaaatctg	tgcggagccg	aaatctggga	144
00	ggegeegeeg	caccccctct	agcgggcgcg	gggcgaagcg	gtgcggcgcc	ggcaggaagg	150
	aaatgggcgg	ggagggcctt	cgtgcgtcgc	cgcgccgccg	teceettete	cctctccagc	156
35	ctcggggctg	tccgcggggg	gacggctgcc	ttcggggggg	acggggcagg	gcggggttcg	162
	gcttctggcg	tgtgaccggc	ggctctagag	cctctgctaa	ccatgttcat	gccttcttct	168
	ttttcctaca	gatccttaat	taataatacg	actcactata	ggggccgcca	ccatgggacc	174
40	taagaaaaag	aggaaggtgg	cggccgctga	ctacaaggat	gacgacgata	aaccaggtgg	180
	cggaggtagt	ggcggaggtg	gggtacccgc	cagtccagca	gcccaggtgg	atctgagaac	186
	cctcggctac	agccagcagc	agcaggagaa	gatcaaacca	aaggtgcggt	ccaccgtcgc	192
45	tcagcaccat	gaagcactgg	tggggcacgg	tttcacacac	gcccatattg	tggctctgtc	198
	tcagcatccc	gctgcactcg	ggactgtggc	cgtcaaatat	caggacatga	tcgccgctct	204
	gcctgaggca	acccacgaag	ccattgtggg	cgtcggaaag	cagtggagcg	gtgccagagc	210
50	actcgaagca	ctcctcaccg	tcgccgggga	actgcggggt	ccaccactcc	agtccggact	216
	ggacactgga	cagctgctga	agatcgctaa	acgcggcgga	gtgacagctg	tggaagctgt	222
	gcacgcttgg	aggaatgctc	tgacaggagc	cccactgaat	cttatgagac	gacgtctcac	228
55	ggcctgaccc	cacagcaggt	cgtcgctatt	gcttctaatg	gcggagggcg	gcctgctctg	234

	guguguuuug	cygocougoc	gcccaggccc	gaccecgece	cggccagacc	cycacccacc	
	aacgatcatc	tggtcgctct	cgcttgcctc	ggtggacggc	ccgctctgga	cgcagtcaaa	2460
5	aagggtctcc	cccatgctcc	cgcactgatc	aagagaacca	acaggagaat	tcctgaggga	2520
	tccgatcgtt	taaacgatca	cgcgtaaatg	attgcagatc	cactagttct	agaattccag	2580
	ctgagcgccg	gtcgctacca	ttaccagttg	gtctggtgtc	aaaaataata	ataaccgggc	2640
10	aggggggatc	tgcatggatc	tttgtgaagg	aaccttactt	ctgtggtgtg	acataattgg	2700
	acaaactacc	tacagagatt	taaagctcta	aggtaaatat	aaaatttta	agtgtataat	2760
	gtgttaaact	actgattcta	attgtttgtg	tattttagat	tccaacctat	ggaactgatg	2820
15	aatgggagca	gtggtggaat	gccagatcca	gacatgataa	gatacattga	tgagtttgga	2880
	caaaccacaa	ctagaatgca	gtgaaaaaaa	tgctttattt	gtgaaatttg	tgatgctatt	2940
	gctttatttg	taaccattat	aagctgcaat	aaacaagtta	acaacaacaa	ttgcattcat	3000
20	tttatgtttc	aggttcaggg	ggaggtgtgg	gaggttttt	aaagcaagta	aaacctctac	3060
	aaatgtggta	tggctgatta	tgatctgcgg	ccgccactgg	ccgtcgtttt	acaacgtcgt	3120
25	gactgggaaa	accctggcgt	tacccaactt	aatcgccttg	cagcacatcc	ccctttcgcc	3180
20	agctggcgta	atagcgaaga	ggcccgcacc	gatcgccctt	cccaacagtt	gcgcagcctg	3240
	aatggcgaat	ggaacgcgcc	ctgtagcggc	gcattaagcg	cggcgggtgt	ggtggttacg	3300
30	cgcagcgtga	ccgctacact	tgccagcgcc	ctagcgcccg	ctcctttcgc	tttcttccct	3360
	tcctttctcg	ccacgttcgc	cggctttccc	cgtcaagctc	taaatcgggg	gctcccttta	3420
	gggttccgat	ttagtgcttt	acggcacctc	gaccccaaaa	aacttgatta	gggtgatggt	3480
35	tcacgtagtg	ggccatcgcc	ctgatagacg	gtttttcgcc	ctttgacgtt	ggagtccacg	3540
	ttctttaata	gtggactctt	gttccaaact	ggaacaacac	tcaaccctat	ctcggtctat	3600
	tcttttgatt	tataagggat	tttgccgatt	tcggcctatt	ggttaaaaaa	tgagctgatt	3660
40	taacaaaaat	ttaacgcgaa	ttttaacaaa	atattaacgc	ttacaattta	ggtggcactt	3720
	ttcggggaaa	tgtgcgcgga	acccctattt	gtttattttt	ctaaatacat	tcaaatatgt	3780
	atccgctcat	gagacaataa	ccctgataaa	tgcttcaata	atattgaaaa	aggaagagta	3840
45	tgagtattca	acatttccgt	gtcgccctta	ttcccttttt	tgcggcattt	tgccttcctg	3900
	tttttgctca	cccagaaacg	ctggtgaaag	taaaagatgc	tgaagatcag	ttgggtgcac	3960
	gagtgggtta	catcgaactg	gatctcaaca	gcggtaagat	ccttgagagt	tttcgccccg	4020
50	aagaacgttt	tccaatgatg	agcactttta	aagttctgct	atgtggcgcg	gtattatccc	4080
	gtattgacgc	cgggcaagag	caactcggtc	gccgcataca	ctattctcag	aatgacttgg	4140
<i></i>	ttgagtactc	accagtcaca	gaaaagcatc	ttacggatgg	catgacagta	agagaattat	4200
55							

	gcagcgccgc	cacaaccacg	agegaeaaca	ccgcggccaa	cccacccccg	acaacgaccg	320
	gaggaccgaa	ggagctaacc	gcttttttgc	acaacatggg	ggatcatgta	actcgccttg	432
5	atcgttggga	accggagctg	aatgaagcca	taccaaacga	cgagcgtgac	accacgatgc	438
	ctgtagcaat	ggcaacaacg	ttgcgcaaac	tattaactgg	cgaactactt	actctagctt	444
	cccggcaaca	attaatagac	tggatggagg	cggataaagt	tgcaggacca	cttctgcgct	450
10	cggcccttcc	ggctggctgg	tttattgctg	ataaatctgg	agccggtgag	cgtgggtctc	456
	gcggtatcat	tgcagcactg	gggccagatg	gtaagccctc	ccgtatcgta	gttatctaca	462
15	cgacggggag	tcaggcaact	atggatgaac	gaaatagaca	gatcgctgag	ataggtgcct	468
-	cactgattaa	gcattggtaa	ctgtcagacc	aagtttactc	atatatactt	tagattgatt	474
	taaaacttca	tttttaattt	aaaaggatct	aggtgaagat	cctttttgat	aatctcatga	480
20	ccaaaatccc	ttaacgtgag	ttttcgttcc	actgagcgtc	agaccccgta	gaaaagatca	486
	aaggatcttc	ttgagatcct	ttttttctgc	gcgtaatctg	ctgcttgcaa	acaaaaaaac	492
	caccgctacc	agcggtggtt	tgtttgccgg	atcaagagct	accaactctt	tttccgaagg	498
25	taactggctt	cagcagagcg	cagataccaa	atactgtcct	tctagtgtag	ccgtagttag	504
	gccaccactt	caagaactct	gtagcaccgc	ctacatacct	cgctctgcta	atcctgttac	510
	cagtggctgc	tgccagtggc	gataagtcgt	gtcttaccgg	gttggactca	agacgatagt	516
30	taccggataa	ggcgcagcgg	tcgggctgaa	cggggggttc	gtgcacacag	cccagcttgg	522
	agcgaacgac	ctacaccgaa	ctgagatacc	tacagcgtga	gctatgagaa	agcgccacgc	528
35	ttcccgaagg	gagaaaggcg	gacaggtatc	cggtaagcgg	cagggtcgga	acaggagagc	534
	gcacgaggga	gcttccaggg	ggaaacgcct	ggtatcttta	tagtcctgtc	gggtttcgcc	540
	acctctgact	tgagcgtcga	tttttgtgat	gctcgtcagg	ggggcggagc	ctatggaaaa	546
10	acgccagcaa	cgcggccttt	ttacggttcc	tggccttttg	ctggcctttt	gctcacatgt	552
	tettteetge	gttatcccct	gattctgtgg	ataaccgtat	taccgccttt	gagtgagctg	558
	ataccgctcg	ccgcagccga	acgaccgagc	gcagcgagtc	agtgagcgag	gaagcggaag	564
15	agcgcccaat	acgcaaaccg	cctctccccg	cgcgttggcc	gattcattaa	tgcagctggc	570
	acgacaggtt	tcccgactgg	aaagcgggca	gtgagcgcaa	cgcaattaat	gtgagttagc	576
50	tcactcatta	ggcaccccag	gctttacact	ttatgcttcc	ggctcgtatg	ttgtgtggaa	582
,0	ttgtgagcgg	ataacaattt	cacacaggaa	acagctatga	ccatga		586
55	<210> 4 <211> 176 <212> PRT <213> Secuencia artificial						
80	<220> <223> Péptido N-terminal						
	<400> 4						

		Met 1	Gly	Pro	Lys	Lys 5	Lys	Arg	Lys	Val	Ala 10	Ala	Ala	Asp	Tyr	Lys 15	Asp
5		Asp	Asp	Asp	Lys 20	Pro	Gly	Gly	Gly	Gly 25	Ser	Gly	Gly	Gly	Gly 30	Val	Pro
10		Ala	Ser	Pro 35	Ala	Ala	Gln	Val	Asp 40	Leu	Arg	Thr	Leu	Gly 45	Tyr	Ser	Gln
		Gln	Gln 50	Gln	Glu	Lys	Ile	Lys 55	Pro	Lys	Val	Arg	Ser 60	Thr	Val	Ala	Gln
15		His 65	His	Glu	Ala	Leu	Val 70	Gly	His	Gly	Phe	Thr 75	His	Ala	His	Ile	Val 80
20		Ala	Leu	Ser	Gln	His 85	Pro	Ala	Ala	Leu	Gly 90	Thr	Val	Ala	Val	Lys 95	Tyr
25		Gln	Asp	Met	Ile 100	Ala	Ala	Leu	Pro	Glu 105	Ala	Thr	His	Glu	Ala 110	Ile	Val
		Gly	Val	Gly 115	Lys	Gln	Trp	Ser	Gly 120	Ala	Arg	Ala	Leu	Glu 125	Ala	Leu	Leu
30		Thr	Val 130	Ala	Gly	Glu	Leu	Arg 135	Gly	Pro	Pro	Leu	Gln 140	Ser	Gly	Leu	Asp
35		Thr 145	Gly	Gln	Leu	Leu	Lys 150	Ile	Ala	Lys	Arg	Gly 155	Gly	Val	Thr	Ala	Val 160
40		Glu	Ala	Val	His	Ala 165	Trp	Arg	Asn	Ala	Leu 170	Thr	Gly	Ala	Pro	Leu 175	Asn
45	<210> 5 <211> 78 <212> PRT <213> Secuencia a	artifici	al														
50	<220> <223> Péptido C-te	ermin	al														
	<400> 5	Leu 1	Thr	Pro	Gln	Gln 5	Val	Val	Ala	Ile	Ala 10	Ser	Asn	Gly	Gly	Gly 15	Arg
55		Pro	Ala	Leu	Glu 20	Ser	Ile	Val	Ala	Gln 25	Leu	Ser	Arg	Pro	Asp 30	Pro	Ala
60		Leu	Ala	Arg 35	Ser	Ala	Leu	Thr	Asn 40	Asp	His	Leu	Val	Ala 45	Leu	Ala	Cys
65		Leu	Gly 50	Gly	Arg	Pro	Ala	Leu 55	Asp	Ala	Val	Lys	Lys 60	Gly	Leu	Pro	His

		65	Pro	АТА	Leu	ше	70	Arg	Thr	Asn	Arg	75	тте	Pro	GIU		
5	<210> 6 <211> 408 <212> PRT <213> Secuencia a	artifici	ial														
10	<220> <223> ArtTall																
15	<400> 6	Leu 1	Thr	Pro	Glu	Gln 5	Val	Val	Ala	Ile	Ala 10	Ser	Asn	Ile	Gly	Gly 15	Lys
20		Gln	Ala	Leu	Glu 20	Thr	Val	Gln	Arg	Leu 25	Leu	Pro	Val	Leu	Cys 30	Gln	Ala
25		His	Gly	Leu 35	Thr	Pro	Gln	Gln	Val 40	Val	Ala	Ile	Ala	Ser 45	Asn	Gly	Gly
		Gly	Lys 50	Gln	Ala	Leu	Glu	Thr 55	Val	Gln	Arg	Leu	Leu 60	Pro	Val	Leu	Суз
30		Gln 65	Ala	His	Gly	Leu	Thr 70	Pro	Gln	Gln	Val	Val 75	Ala	Ile	Ala	Ser	Asn 80
35		Gly	Gly	Gly	Lys	Gln 85	Ala	Leu	Glu	Thr	Val 90	Gln	Arg	Leu	Leu	Pro 95	Val
40		Leu	Cys	Gln	Ala 100	His	Gly	Leu	Thr	Pro 105	Gln	Gln	Val	Val	Ala 110	Ile	Ala
		Ser	His	Asp 115	Gly	Gly	Lys	Gln	Ala 120	Leu	Glu	Thr	Val	Gln 125	Arg	Leu	Leu
45		Pro	Val 130	Leu		Gln							Gln 140		Val	Val	Ala
50		145		Ser			150	_				155					160
55				ı Ile		165					170					175	
00					180)				185					190		
60				195	i				200					205			
		Gli	n Val 210	L Val	Ala	ille	Ala	Ser 215		Asn	GIY	GLY	Lys 220		ата	Leu	GLu

		225	Val	GIN	Arg	Leu	230	PEO	Val	Leu	Cys	235	AIA	nis	GIY	Leu	240	
5		Pro	Gln	Gln	Val	Val 245	Ala	Ile	Ala	Ser	Asn 250	Asn	Gly	Gly	Lys	Gln 255	Ala	
10		Leu	Glu	Thr	Val 260	Gln	Arg	Leu	Leu	Pro 265	Val	Leu	Cys	Gln	Ala 270	His	Gly	
		Leu	Thr	Pro 275	Glu	Gln	Val	Val	Ala 280	Ile	Ala	Ser	Asn	Ile 285	Gly	Gly	Lys	
15		Gln	Ala 290	Leu	Glu	Thr	Val	G1n 295	Arg	Leu	Leu	Pro	Val 300	Leu	Cys	Gln	Ala	
20		His 305		Leu	Thr	Pro	Gln 310	Gln	Val	Val	Ala	Ile 315	Ala	Ser	His	Asp	Gly 320	
		Gly	Lys	Gln	Ala	Leu 325	Glu	Thr	Val	Gln	Arg 330	Leu	Leu	Pro	Val	Leu 335	Cys	
25		Gln	Ala	His	Gly 340	Leu	Thr	Pro	Gln	Gln 345	Val	Val	Ala	Ile	Ala 350	Ser	Asn	
30		Asn	Gly	Gly 355		Gln	Ala	Leu	Glu 360	Thr	Val	Gln	Arg	Leu 365	Leu	Pro	Val	
		Leu	Cys 370	Gln	Ala	His	Gly	Leu 375	Thr	Pro	Gln	Gln	Val 380	Val	Ala	Ile	Ala	
35		Ser 385	Asn	Gly	Gly	Gly	Lys 390	Gln	Ala	Leu	Glu	Thr 395	Val	Gln	Arg	Leu	Leu 400	
		Pro	Val	Leu	Cys	Gln	Ala	His	Gly									
40									405									
	<210> 7 <211> 7067																	
45	<212> ADN <213> Secuel	ncia artific	ial															
50	<220> <223> pCAG-	ArtTall-nu	ıclea	sa														
	<400> 7																	
		gacattg	att	atto	gact	agt	tatt	aata	igt a	aatc	aatt	ac g	gggt	catt	ta g	ttca	tagcc	60
55		catatat	gga	gtto	ccgc	gtt	acat	aact	ta o	eggt	aaat	gg c	ccg	ctg	gc t	gacc	gccca	120
		acgaccc	ccg	ccca	attg	acg	tcaa	taat	ga (cgta	tgtt	cc c	ataç	taad	cg c	caat	aggga	180
60		ctttcca																240
60		aagtgta				-	_			-	-		-				-	300
		ggcatta	-			-											-	360
65		tagtcat	-			-					-		-					420
00		cccccc	ctc	CCCS	CCC	cca	attt	tgta	icc t	tatt	tatt	tt t	taat	tatt	t t	gtgc	agcga	480

	tgggggggg gggggggg gggcgcgcgc caggcggggc ggggcggggc gaggggggg	540
	gcggggcgag gcggagaggt gcggcggcag ccaatcagag cggcgcgctc cgaaagtttc	600
5	cttttatggc gaggcggcgg cggcggcggc cctataaaaa gcgaagcgcg cggcgggcgg	660
	gagtegetge gegetgeett egeceegtge eeegeteege egeegeeteg egeegeeege	720
	cccggctctg actgaccgcg ttactcccac aggtgagcgg gcgggacggc ccttctcctc	780
10	cgggctgtaa ttagcgcttg gtttaatgac ggcttgtttc ttttctgtgg ctgcgtgaaa	840
	gccttgaggg gctccgggag ggccctttgt gcggggggga gcggctcggg gggtgcgtgc	900
	gtgtgtgtgt gcgtggggag cgccgcgtgc ggctccgcgc tgcccggcgg ctgtgagcgc	960
15	tgcgggcgcg gcgcggggct ttgtgcgctc cgcagtgtgc gcgaggggag cgcggccggg	1020
	ggcggtgccc cgcggtgcgg ggggggctgc gaggggaaca aaggctgcgt gcggggtgtg	1080
	tgcgtggggg ggtgagcagg gggtgtgggc gcgtcggtcg ggctgcaacc cccctgcac	1140
20	ccccctcccc gagttgctga gcacggcccg gcttcgggtg cggggctccg tacggggcgt	1200
	ggcgcggggc tcgccgtgcc gggcgggggg tggcggcagg tgggggtgcc gggcggggcg	1260
	gggccgcctc gggccgggga gggctcgggg gaggggcgcg gcggcccccg gagcgccggc	1320
25	ggctgtcgag gcgcggcgag ccgcagccat tgccttttat ggtaatcgtg cgagagggcg	1380
	cagggacttc ctttgtccca aatctgtgcg gagccgaaat ctgggaggcg ccgccgcacc	1440
	ccctctagcg ggcgcggggc gaagcggtgc ggcgccggca ggaaggaaat gggcggggag	1500
30	ggccttcgtg cgtcgccgcg ccgccgtccc cttctccctc tccagcctcg gggctgtccg	1560
	cggggggacg gctgccttcg ggggggacgg ggcagggcgg ggttcggctt ctggcgtgtg	1620
	accggcggct ctagagcctc tgctaaccat gttcatgcct tcttctttt cctacagatc	1680
35	cttaattaat aatacgactc actatagggg ccgccaccat gggacctaag aaaaagagga	1740
	aggtggcggc cgctgactac aaggatgacg acgataaacc aggtggcgga ggtagtggcg	1800
40	gaggtggggt acccgccagt ccagcagccc aggtggatct gagaaccctc ggctacagcc	1860
40	agcagcagca ggagaagatc aaaccaaagg tgcggtccac cgtcgctcag caccatgaag	1920
	cactggtggg gcacggtttc acacacgccc atattgtggc tctgtctcag catcccgctg	1980
45	cactogggac tgtggccgtc aaatatcagg acatgatcgc cgctctgcct gaggcaaccc	2040
45	acgaagccat tgtgggcgtc ggaaagcagt ggagcggtgc cagagcactc gaagcactcc	2100
	tcaccgtcgc cggggaactg cggggtccac cactccagtc cggactggac actggacagc	2160
50	tgctgaagat cgctaaacgc ggcggagtga cagctgtgga agctgtgcac gcttggagga	2220
50	atgototgao aggagococa otgaatotta otocagaaca ggtogtogoa atogoaagta	2280
	acatoggogg aaaacaggoo otogaaacog tocagagact cotoccogtg otgtgocagg	2340
55	cccacggact gaccccacag caggtggtcg ccatcgctag caacggcgga gggaagcagg	2400
55	ctctggagac cgtgcagagg ctgctccccg tcctgtgcca ggcacatggg ctcacacctc	2460
	agcaggtggt cgcaattgcc tccaatggtg gcggaaaaca ggccctggaa actgtgcaga	2520
60	gactgctccc cgtgctgtgc caggctcacg gtctcacacc ccagcaggtg gtcgctatcg	2580
50	catctcatga cgggggcaag caggcactgg agacagtgca gcggctgctc cctgtcctgt	2640
	gccaggccca cggactcact cctcagcagg tegtegccat tgctagtaac ggcggaggga	2700
65	aacaggetet ggaaacegtg cagegeetge teecegtget gtgecaagee caeggeetga	2760
00		

	ccc	cccagea	ggtggtegea	ategeeteaa	acaatggtgg	caagcaggee	ctggagactg	282
	tgo	cagcgact	gctcccagtg	ctgtgccagg	cccatggact	cacaccacag	caggtcgtcg	288
5	cta	attgcaag	caacaatgga	gggaaacagg	cactggaaac	agtccagagg	ctgctccccg	294
	tgo	ctgtgcca	agcgcatgga	ctcactcccc	agcaggtcgt	cgccatcgct	tccaataacg	300
	gcg	ggcaagca	ggccctggag	accgtccaga	gactgctccc	cgtgctgtgc	caagctcacg	306
10	gac	ctcacacc	tgagcaggtc	gtggcaatcg	cctctaacat	tggagggaaa	caggccctgg	312
	aaa	actgtaca	gcggctgctc	cccgtgctgt	gccaagcaca	cggactcact	ccacagcagg	318
	tog	gtggccat	tgcaagtcat	gacggaggca	agcaggccct	ggaaacagtg	cagcgcctgc	324
15	too	cctgtgct	gtgccaggct	catggtctga	ctcctcagca	ggtggtggcc	atogottoca	330
	aca	aatggagg	gaagcaggcc	ctggagaccg	tacagagact	gctccccgtg	ctgtgccaag	336
	ege	cacggtct	gacccctcag	caggtcgtcg	caatcgccag	caatggcggg	ggcaagcagg	342
20	cto	ctcgaaac	cgtccagcgg	ctcctcccag	tcctctgtca	ggctcacggc	ctgaccccac	348
	ago	caggtcgt	cgctattgct	tctaatggcg	gaggggggcc	tgctctggag	agcattgtgg	354
25	cto	cagctgtc	caggcccgat	cctgccctgg	ctagatccgc	actcactaac	gatcatctgg	360
	teç	getetege	ttgcctcggt	ggacggcccg	ctctggacgc	agtcaaaaag	ggtctccccc	366
	ato	gatacaga	actgatcaag	agaaccaaca	ggagaattcc	tgagggatcc	gatcgtttaa	372
30	acç	gatcacgc	gtaaatgatt	gcagatccac	tagttctaga	attccagctg	agcgccggtc	378
	gct	taccatta	ccagttggtc	tggtgtcaaa	aataataata	accgggcagg	ggggatctgc	384
	atq	ggatcttt	gtgaaggaac	cttacttctg	tggtgtgaca	taattggaca	aactacctac	390
35	age	agatttaa	agctctaagg	taaatataaa	atttttaagt	gtataatgtg	ttaaactact	396
	gat	ttctaatt	gtttgtgtat	tttagattcc	aacctatgga	actgatgaat	gggagcagtg	402
	gtç	ggaatgcc	agatccagac	atgataagat	acattgatga	gtttggacaa	accacaacta	408
40	gaa	atgcagtg	aaaaaaatgc	tttatttgtg	aaatttgtga	tgctattgct	ttatttgtaa	414
	cca	attataag	ctgcaataaa	caagttaaca	acaacaattg	cattcatttt	atgtttcagg	420
	tto	caggggga	ggtgtgggag	gttttttaaa	gcaagtaaaa	cctctacaaa	tgtggtatgg	426
45	ctq	gattatga	tctgcggccg	ccactggccg	tcgttttaca	acgtcgtgac	tgggaaaacc	432
	ctç	ggcgttac	ccaacttaat	cgccttgcag	cacatccccc	tttcgccagc	tggcgtaata	438
	gcq	gaagaggc	ccgcaccgat	cgcccttccc	aacagttgcg	cagcctgaat	ggcgaatgga	444
50	acç	gagaaatg	tagcggcgca	ttaagcgcgg	cgggtgtggt	ggttacgcgc	agcgtgaccg	450
	cta	acacttgc	cagogocota	gcgcccgctc	ctttcgcttt	cttcccttcc	tttctcgcca	456
	cgt	ttagaagg	ctttccccgt	caagototaa	atogggggct	ccctttaggg	ttccgattta	462
55	gtç	gctttacg	gcacctcgac	cccaaaaaac	ttgattaggg	tgatggttca	cgtagtgggc	468
	cat	tegecetg	atagacggtt	tttcgccctt	tgacgttgga	gtccacgttc	tttaatagtg	474
	gad	ctcttgtt	ccaaactgga	acaacactca	accctatctc	ggtctattct	tttgatttat	480
60	aaq	gggatttt	gccgatttcg	gcctattggt	taaaaaatga	gctgatttaa	caaaaattta	486

	acgcgaatt	t taacaaaata	ttaacgctta	caatttaggt	ggcacttttc	ggggaaatgt	4920
	gcgcggaac	cctatttgtt	tatttttcta	aatacattca	aatatgtatc	cgctcatgag	4980
5	acaataacc	c tgataaatgc	ttcaataata	ttgaaaaagg	aagagtatga	gtattcaaca	5040
	tttccgtgt	gcccttattc	ccttttttgc	ggcattttgc	cttcctgttt	ttgctcaccc	5100
	agaaacgct	g gtgaaagtaa	aagatgctga	agatcagttg	ggtgcacgag	tgggttacat	5160
10	cgaactgga	tctcaacagcg	gtaagateet	tgagagtttt	cgccccgaag	aacgttttcc	5220
	aatgatgag	acttttaaag	ttctgctatg	tggcgcggta	ttatcccgta	ttgacgccgg	5280
	gcaagagca	a ctcggtcgcc	gcatacacta	ttctcagaat	gacttggttg	agtactcacc	5340
15	agtcacaga	a aagcatctta	cggatggcat	gacagtaaga	gaattatgca	gtgctgccat	5400
	aaccatgag	t gataacactg	cggccaactt	acttctgaca	acgatcggag	gaccgaagga	5460
	gctaaccgc	t tttttgcaca	acatggggga	tcatgtaact	cgccttgatc	gttgggaacc	5520
20	ggagctgaa	t gaagccatac	caaacgacga	gcgtgacacc	acgatgcctg	tagcaatggc	5580
	aacaacgtt	g cgcaaactat	taactggcga	actacttact	ctagcttccc	ggcaacaatt	5640
25	aatagactg	g atggaggcgg	ataaagttgc	aggaccactt	ctgcgctcgg	cccttccggc	5700
20	tggctggtt	t attgctgata	aatctggagc	cggtgagcgt	gggtctcgcg	gtatcattgc	5760
	agcactggg	g ccagatggta	agccctcccg	tatcgtagtt	atctacacga	cggggagtca	5820
30	ggcaactat	g gatgaacgaa	atagacagat	cgctgagata	ggtgcctcac	tgattaagca	5880
	ttggtaact	g tcagaccaag	tttactcata	tatactttag	attgatttaa	aacttcattt	5940
	ttaatttaa	a aggatctagg	tgaagatcct	ttttgataat	ctcatgacca	aaatccctta	6000
35	acgtgagtt	t tcgttccact	gagcgtcaga	ccccgtagaa	aagatcaaag	gatcttcttg	6060
	agatecttt	t tttctgcgcg	taatctgctg	cttgcaaaca	aaaaaaccac	cgctaccagc	6120
	ggtggtttg	t ttgccggatc	aagagctacc	aactctttt	ccgaaggtaa	ctggcttcag	6180
40	cagagcgca	g ataccaaata	ctgtccttct	agtgtagccg	tagttaggcc	accacttcaa	6240
	gaactctgt	a gcaccgccta	catacctcgc	tctgctaatc	ctgttaccag	tggctgctgc	6300
	cagtggcga	t aagtcgtgtc	ttaccgggtt	ggactcaaga	cgatagttac	cggataaggc	6360
45	gcagcggtc	g ggctgaacgg	ggggttcgtg	cacacagccc	agcttggagc	gaacgaccta	6420
	caccgaact	g agatacctac	agcgtgagct	atgagaaagc	gccacgcttc	ccgaagggag	6480
	aaaggcgga	c aggtatccgg	taagcggcag	ggtcggaaca	ggagagcgca	cgagggagct	6540
50	tccaggggg	a aacgcctggt	atctttatag	tcctgtcggg	tttcgccacc	tctgacttga	6600
	gcgtcgatt	t ttgtgatgct	cgtcaggggg	gcggagccta	tggaaaaacg	ccagcaacgc	6660
E E	ggccttttt	a cggttcctgg	ccttttgctg	gccttttgct	cacatgttct	ttcctgcgtt	6720
55	atcccctga	t tctgtggata	accgtattac	cgcctttgag	tgagctgata	ccgctcgccg	6780
	cagccgaac	g accgagcgca	gcgagtcagt	gagcgaggaa	gcggaagagc	gcccaatacg	6840
60	caaaccgcc	t ctccccgcgc	gttggccgat	tcattaatgc	agctggcacg	acaggtttcc	6900
- •	cgactggaa	a gcgggcagtg	agcgcaacgc	aattaatgtg	agttagctca	ctcattaggc	6960
	accccaggc	t ttacacttta	tgcttccggc	tcgtatgttg	tgtggaattg	tgagcggata	7020
65	acaatttca	c acaggaaaca	gctatgacca	tgaggcgcgc	cggattc		7067

5	<210> 8 <211> 476 <212> PRT <213> Secuencia	artific	ial														
5	<220> <223> TalRab2																
10	<400> 8																
		Leu 1	Thr	Pro	Gln	Gln 5	Val	Val	Ala	Ile	Ala 10	Ser	Asn	Asn	Gly	Gly 15	Lys
15		Gln	Ala	Leu	Glu 20	Thr	Val	Gln	Arg	Leu 25	Leu	Pro	Val	Leu	Cys 30	Gln	Ala
20		His	Gly	Leu 35	Thr	Pro	Gln	Gln	Val 40	Val	Ala	Ile	Ala	Ser 45	Asn	Asn	Gly
25		Gly	Lys 50	Gln	Ala	Leu	Glu	Thr 55	Val	Gln	Arg	Leu	Leu 60	Pro	Val	Leu	Cys
25		Gln 65	Ala	His	Gly	Leu	Thr 70	Pro	Gln	Gln	Val	Val 75	Ala	Ile	Ala	Ser	Asn 80
30		Gly	Gly	Gly	Lys	Gln 85	Ala	Leu	Glu	Thr	Val 90	Gln	Arg	Leu	Leu	Pro 95	Val
35		Leu	Cys	Gln	Ala 100	His	Gly	Leu	Thr	Pro 105	Gln	Gln	Val	Val	Ala 110	Ile	Ala
		Ser	Asn	Asn 115	Gly	Gly	Lys	Gln	Ala 120	Leu	Glu	Thr	Val	Gln 125	Arg	Leu	Leu
40		Pro	Val 130	Leu	Cys	Gln	Ala	His 135	Gly	Leu	Thr	Pro	Gln 140	Gln	Val	Val	Ala
45		Ile 145	Ala	Ser	Asn	Asn	Gly 150	Gly	Lys	Gln	Ala	Leu 155	Glu	Thr	Val	Gln	Arg 160
50		Leu	Leu	Pro	Val	Leu 165	Суѕ	Gln	Ala	His	Gly 170	Leu	Thr	Pro	Gln	Gln 175	Val
		Val	Ala	Ile	Ala 180	Ser	His	Asp	Gly	Gly 185	Lys	Gln	Ala	Leu	Glu 190	Thr	Val
55		Gln	Arg	Leu 195	Leu	Pro	Val	Leu	Cys 200	Gln	Ala	His	Gly	Leu 205	Thr	Pro	Gln
60		Gln	Val 210	Val	Ala	Ile	Ala	Ser 215	His	Asp	Gly	Gly	Lys 220	Gln	Ala	Leu	Glu

		Thr 225	Val	Gln	Arg	Leu	Leu 230	Pro	Val	Leu	Cys	Gln 235	Ala	His	Gly	Leu	Thr 240
5		Pro	Gln	Gln	Val	Val 245	Ala	Ile	Ala	Ser	His 250	Asp	Gly	Gly	Lys	Gln 255	Ala
		Leu	Glu	Thr	Val 260	Gln	Arg	Leu	Leu	Pro 265	Val	Leu	Cys	Gln	Ala 270	His	Gly
10		Leu	Thr	Pro 275	Gln	Gln	Val	Val	A la 280	Ile	Ala	Ser	Asn	Asn 285	Gly	Gly	Lys
15		Gln	Ala 290	Leu	Glu	Thr	Val	Gln 295	Arg	Leu	Leu	Pro	Val 300	Leu	Cys	Gln	Ala
		His 305		Leu	Thr	Pro	Gln 310	Gln	Val	Val	Ala	Ile 315		Ser	Asn	Asn	Gly 320
20		Gly	Lys	Gln	Ala	Leu 325		Thr	Val	Gln	Arg 330	Leu	Leu	Pro	Val	Leu 335	Cys
		Gln	Ala	His	Gly 340		Thr	Pro	Gln	Gln 3 4 5	Val	Val	Ala	Ile	Ala 350	Ser	Asn
25		Gly	Gly	Gly 355		Gln	Ala	Leu	Glu 360		Val	Gln	Arg	Leu 365	Leu	Pro	Val
30		Leu	Cys 370	Gln	Ala	His	Gly	Leu 375	Thr	Pro	Glu	Gln	Val 380	Val	Ala	Ile	Ala
		Ser 385	Asn	Ile	Gly	Gly	Lys 390	Gln	Ala	Leu	Glu	Thr 395	Val	Gln	Arg	Leu	Leu 400
35		Pro	Val	Leu	Cys	Gln 405	Ala	His	Gly	Leu	Thr 410	Pro	Gln	Gln	Val	Val 415	Ala
40		Ile	Ala	Ser	Asn 420	Asn	Gly	Gly	Lys	Gln 425	Ala	Leu	Glu	Thr	Val 430	Gln	Arg
40		Leu	Leu	Pro 435	Val	Leu	Сув	Gln	Ala 440	His	Gly	Leu	Thr	Pro 445	Gln	Gln	Val
45		Val	Ala 450	Ile	Ala	Ser	Asn	Gly 455	Gly	Gly	Lys	Gln	Ala 460	Leu	Glu	Thr	Val
		Gln 465	Arg	Leu	Leu	Pro	Val 470	Leu	Cys	Gln	Ala	His 475	Gly				
50	<210> 9 <211> 7271 <212> ADN																
55	<213> Secuencia a <220> <223> pCAG-TalRa			sa													
	<400> 9																
60																	

	ggcgcgccgg	attcgacatt	gattattgac	tagttattaa	tagtaatcaa	ttacggggtc	60
	attagttcat	agcccatata	tggagttccg	cgttacataa	cttacggtaa	atggcccgcc	120
5	tggctgaccg	cccaacgacc	cccgcccatt	gacgtcaata	atgacgtatg	ttcccatagt	180
	aacgccaata	gggactttcc	attgacgtca	atgggtggag	tatttacggt	aaactgccca	240
	cttggcagta	catcaagtgt	atcatatgcc	aagtacgccc	cctattgacg	tcaatgacgg	300
10	taaatggccc	gcctggcatt	atgcccagta	catgacctta	tgggactttc	ctacttggca	360
	gtacatctac	gtattagtca	tcgctattac	catggtcgag	gtgagcccca	cgttctgctt	420
	cactctcccc	atctccccc	cctccccacc	cccaattttg	tatttattta	ttttttaatt	480
15	attttgtgca	gcgatggggg	cgggggggg	gggggggcgc	gcgccaggcg	gggcggggcg	540
	gggcgagggg	cggggcgggg	cgaggcggag	aggtgcggcg	gcagccaatc	agagcggcgc	600
	gctccgaaag	tttcctttta	tggcgaggcg	gcggcggcgg	cggccctata	aaaagcgaag	660
20	cgcgcggcgg	gcgggagtcg	ctgcgcgctg	ccttcgcccc	gtgccccgct	ccgccgccgc	720
	ctcgcgccgc	ccgccccggc	tctgactgac	cgcgttactc	ccacaggtga	gcgggcggga	780
	cggcccttct	cctccgggct	gtaattagcg	cttggtttaa	tgacggcttg	tttctttct	840
25	gtggctgcgt	gaaagccttg	aggggctccg	ggagggccct	ttgtgcgggg	gggagcggct	900
	cggggggtgc	gtgcgtgtgt	gtgtgcgtgg	ggagcgccgc	gtgcggctcc	gcgctgcccg	960
20	gcggctgtga	gcgctgcggg	cgcggcgcgg	ggctttgtgc	gctccgcagt	gtgcgcgagg	1020
30	ggagcgcggc	cgggggcggt	gccccgcggt	gcggggggg	ctgcgagggg	aacaaaggct	1080
	gcgtgcgggg	tgtgtgcgtg	ggggggtgag	cagggggtgt	gggcgcgtcg	gtcgggctgc	1140
35	aacccccct	gcacccccct	ccccgagttg	ctgagcacgg	cccggcttcg	ggtgcggggc	1200
33	tccgtacggg	gcgtggcgcg	gggctcgccg	tgccgggcgg	ggggtggcgg	caggtggggg	1260
	tgccgggcgg	ggcggggccg	cctcgggccg	gggagggctc	gggggagggg	cgcggcggcc	1320
40	cccggagcgc	cggcggctgt	cgaggcgcgg	cgagccgcag	ccattgcctt	ttatggtaat	1380
.0	cgtgcgagag	ggcgcaggga	cttcctttgt	cccaaatctg	tgcggagccg	aaatctggga	1440
	ggcgccgccg	caccccctct	agcgggcgcg	gggcgaagcg	gtgcggcgcc	ggcaggaagg	1500
45	aaatgggcgg	ggagggcctt	cgtgcgtcgc	cgcgccgccg	tccccttctc	cctctccagc	1560
	ctcggggctg	tccgcggggg	gacggctgcc	ttcggggggg	acggggcagg	gcggggttcg	1620
	gcttctggcg	tgtgaccggc	ggctctagag	cctctgctaa	ccatgttcat	gccttcttct	1680
50	ttttcctaca	gatccttaat	taataatacg	actcactata	ggggccgcca	ccatgggacc	1740
	taagaaaaag	aggaaggtgg	cggccgctga	ctacaaggat	gacgacgata	aaccaggtgg	1800
	cggaggtagt	ggcggaggtg	gggtacccgc	cagtccagca	gcccaggtgg	atctgagaac	1860
55	cctcggctac	agccagcagc	agcaggagaa	gatcaaacca	aaggtgcggt	ccaccgtcgc	1920
	tcagcaccat	gaagcactgg	tggggcacgg	tttcacacac	gcccatattg	tggctctgtc	1980
	tcagcatcco	gctgcactcg	ggactgtggc	cgtcaaatat	caggacatga	tegeegetet	2040
60	gcctgaggca	acccacgaag	ccattgtggg	cgtcggaaag	cagtggagcg	gtgccagagc	2100
	actcgaagca	ctcctcaccg	togoogggga	actgcggggt	ccaccactcc	agtccggact	2160
	ggacactgga	cagctgctga	agatogotaa	acgcggcgga	gtgacagctg	tggaagctgt	2220
65	gcacgcttgg	aggaatgctc	tgacaggagc	cccactgaat	ctgacacccc	agcaggtggt	2280

	ggccattgct	agcaacaatg	ggggcaagca	ggctctggag	acagtgcagc	gcctgctgcc	2340
	tgtgctgtgc	caggctcacg	gactgactcc	acagcaggtg	gtggccatcg	cttccaacaa	2400
5	tggagggaaa	caggctctgg	aaacagtgca	gaggctgctg	cccgtgctgt	gccaggctca	2460
	tggactgaca	cctcagcagg	togtogccat	tgcttctaac	ggcggaggga	agcaggctct	2520
	ggagactgtg	cagagactgc	tgccagtgct	gtgccaggcc	catggactga	ccctcagca	2580
10	ggtcgtggct	atcgctagta	acaatggcgg	aaaacaggct	ctggaaactg	tgcagcggct	2640
	gctccccgtg	ctgtgccagg	cccacggcct	cactccacag	caggtcgtcg	ctatcgcctc	2700
	taataacggg	ggcaagcagg	ctctggagac	agtacagcgc	ctgttacccg	tgctgtgcca	2760
15	ggcacacggc	ctcacacctc	agcaggtcgt	ggcaatcgct	tcccatgacg	gagggaaaca	2820
	ggctctggaa	acggtccaga	ggctgctccc	cgtgctgtgc	caageteaeg	gcctcacccc	2880
	tcagcaggtg	gtcgctattg	cttctcatga	tggcggaaag	caggetetgg	agaccgtgca	2940
20	gagactgcto	cctgtgctgt	gccaagccca	cggcctgact	ccacagcagg	tcgtggccat	3000
	cgctagtcat	gacgggggca	aacaggctct	ggaaacagta	cagcggctgt	tacccgtgct	3060
	gtgccaagco	catggcctca	cacctcagca	agtcgtcgct	atcgctagca	acaatggagg	3120
25	gaagcagget	ctggagacgg	tgcagcgcct	gctcccagtg	ctgtgccaag	ctcatggcct	3180
	cacccctcag	caagtcgtcg	caattgcttc	caataacggc	ggaaaacagg	ctctggaaac	3240
	cgtccagagg	ctgctgcccg	tgctgtgcca	agcacatggc	ttaactccac	agcaagtggt	3300
30	ggccattgct	tctaatgggg	gcggaaagca	ggccctggag	acagtccaga	gactgttgcc	3360
	cgtgctgtgc	caagcgcatg	gactgacacc	tgaacaggtc	gtcgctatcg	ctagtaatat	3420
	tgggggcaaa	caggccctgg	aaacagtgca	geggetgett	cccgtgctgt	gccaggcgca	3480
35	tggactcaca	ccccagcagg	tcgtcgcaat	cgcctctaat	aacggaggga	agcaggccct	3540
	ggaaaccgtg	cagagactgt	tacctgtgct	gtgccaggca	catggtctga	caccacagca	3600
40	ggtggtcgca	attgctagca	atggcggagg	gaagcaggcc	ctggagactg	tccagagact	3660
40	gctacccgtg	ctgtgccaag	cgcacggcct	gaccccacag	caggtcgtcg	ctattgcttc	3720
	taatggcgga	gggcggcctg	ctctggagag	cattgtggct	cagctgtcca	ggcccgatcc	3780
45	tgccctggct	agatccgcac	tcactaacga	tcatctggtc	gctctcgctt	gcctcggtgg	3840
45	acggcccgct	ctggacgcag	tcaaaaaggg	tctcccccat	gctcccgcac	tgatcaagag	3900
	aaccaacagg	agaattootg	agggatccga	tcgtttaaac	gatcacgcgt	aaatgattgc	3960
50	agatccacta	gttctagaat	tccagctgag	cgccggtcgc	taccattacc	agttggtctg	4020
00	gtgtcaaaaa	taataataac	cgggcagggg	ggatctgcat	ggatctttgt	gaaggaacct	4080
	tacttctgtg	gtgtgacata	attggacaaa	ctacctacag	agatttaaag	ctctaaggta	4140
55	aatataaaat	ttttaagtgt	ataatgtgtt	aaactactga	ttctaattgt	ttgtgtattt	4200
	tagattccaa	cctatggaac	tgatgaatgg	gagcagtggt	ggaatgccag	atccagacat	4260
	gataagatac	attgatgagt	ttggacaaac	cacaactaga	atgcagtgaa	aaaaatgctt	4320
60	tatttgtgaa	atttgtgatg	ctattgcttt	atttgtaacc	attataagct	gcaataaaca	4380
	agttaacaac	aacaattgca	ttcattttat	gtttcaggtt	cagggggagg	tgtgggaggt	4440
	tttttaaago	aagtaaaacc	tctacaaatg	tggtatggct	gattatgatc	tgcggccgcc	4500

	actggccgtc	gttttacaac	gtcgtgactg	ggaaaaccct	ggcgttaccc	aacttaatcg	4560
	ccttgcagca	catccccctt	tegecagetg	gcgtaatagc	gaagaggccc	gcaccgatcg	4620
5	cccttcccaa	cagttgcgca	gcctgaatgg	cgaatggaac	gogocotgta	goggogcatt	4680
	aagcgcggcg	ggtgtggtgg	ttacgcgcag	cgtgaccgct	acacttgcca	gegeeetage	4740
	gcccgctcct	ttcgctttct	toccttoctt	tctcgccacg	ttcgccggct	ttccccgtca	4800
10	agctctaaat	cgggggctcc	ctttagggtt	ccgatttagt	gctttacggc	acctcgaccc	4860
	caaaaaactt	gattagggtg	atggttcacg	tagtgggcca	tegecetgat	agacggtttt	4920
	tcgccctttg	acgttggagt	ccacgttctt	taatagtgga	ctcttgttcc	aaactggaac	4980
15	aacactcaac	cctatctcgg	tctattcttt	tgatttataa	gggattttgc	cgatttcggc	5040
	ctattggtta	aaaaatgagc	tgatttaaca	aaaatttaac	gcgaatttta	acaaaatatt	5100
	aacgcttaca	atttaggtgg	cacttttcgg	ggaaatgtgc	gcggaacccc	tatttgttta	5160
20	tttttctaaa	tacattcaaa	tatgtatccg	ctcatgagac	aataaccctg	ataaatgctt	5220
	caataatatt	gaaaaaggaa	gagtatgagt	attcaacatt	tccgtgtcgc	ccttattccc	5280
	ttttttgcgg	cattttgcct	tcctgttttt	gctcacccag	aaacgctggt	gaaagtaaaa	5340
25	gatgctgaag	atcagttggg	tgcacgagtg	ggttacatcg	aactggatct	caacagcggt	5400.
	aagatccttg	agagttttcg	ccccgaagaa	cgttttccaa	tgatgagcac	ttttaaagtt	5460
30	ctgctatgtg	gcgcggtatt	atcccgtatt	gacgccgggc	aagagcaact	cggtcgccgc	5520
30	atacactatt	ctcagaatga	cttggttgag	tactcaccag	tcacagaaaa	gcatcttacg	5580
	gatggcatga	cagtaagaga	attatgcagt	gctgccataa	ccatgagtga	taacactgcg	5640
35	gccaacttac	ttctgacaac	gatcggagga	ccgaaggagc	taaccgcttt	tttgcacaac	5700
	atgggggatc	atgtaactcg	ccttgatcgt	tgggaaccgg	agctgaatga	agccatacca	5760
	aacgacgagc	gtgacaccac	gatgcctgta	gcaatggcaa	caacgttgcg	caaactatta	5820
40	actggcgaac	tacttactct	agcttcccgg	caacaattaa	tagactggat	ggaggcggat	5880
	aaagttgcag	gaccacttct	gcgctcggcc	cttccggctg	gctggtttat	tgctgataaa	5940
	tctggagccg	gtgagcgtgg	gtctcgcggt	atcattgcag	cactggggcc	agatggtaag	6000
45	ccctcccgta	tcgtagttat	ctacacgacg	gggagtcagg	caactatgga	tgaacgaaat	6060
	agacagatcg	ctgagatagg	tgcctcactg	attaagcatt	ggtaactgtc	agaccaagtt	6120
	tactcatata	tactttagat	tgatttaaaa	cttcattttt	aatttaaaag	gatctaggtg	6180
50	aagatccttt	ttgataatct	catgaccaaa	atcccttaac	gtgagttttc	gttccactga	6240
	gcgtcagacc	ccgtagaaaa	gatcaaagga	tcttcttgag	atccttttt	tctgcgcgta	6300
	atctgctgct	tgcaaacaaa	aaaaccaccg	ctaccagcgg	tggtttgttt	gccggatcaa	6360
55	gagctaccaa	ctcttttcc	gaaggtaact	ggcttcagca	gagcgcagat	accaaatact	6420
	gtccttctag	tgtagccgta	gttaggccac	cacttcaaga	actctgtagc	accgcctaca	6480
	tacctcgctc	tgctaatcct	gttaccagtg	gctgctgcca	gtggcgataa	gtcgtgtctt	6540
60	accgggttgg	actcaagacg	atagttaccg	gataaggcgc	agcggtcggg	ctgaacgggg	6600
	ggttcgtgca	cacageceag	cttggagcga	acgacctaca	ccgaactgag	atacctacag	6660
	cgtgagctat	gagaaagcgc	cacgcttccc	gaagggagaa	aggcggacag	gtatccggta	6720
65	agcggcaggg	tcggaacagg	agagcgcacg	agggagcttc	cagggggaaa	cgcctggtat	6780

		ctttatag	tc ct	gtcg	ggtt	tcg	ccac	ctc	tgact	ttga	gc gt	cgat	tttt	t gto	gatgo	ctcg		6840
		tcaggggg	gc gg	agcc	tatg	gaa	aaac	gcc a	agca	acgc	gg c	ctttt	ttac	g gtt	taatq	gcc		6900
5		ttttgctg	gc ct	tttg	ctca	cat	gttc	ttt	cctg	cgtt	at c	cact	gatto	tgt	tggat	aac		6960
		cgtattac	cg cc	tttg	agtg	agc	tgat	acc (gctc	gccg	ca g	ccgaa	acga	c cga	agcgo	cagc		7020
		gagtcagt	ga go	gagg	aagc	gga	agag	cgc (ccaat	tacg	ca a	accgo	cctct	ccc	ccgcç	gcgt		7080
10		tggccgat	tc at	taat	gcag	ctg	gcac	gac	aggti	ttcc	og a	ctgga	aaago	ggg	gcagt	gag		7140
		cgcaacgc	aa tt	aatg	tgag	tta	gctc	act	catt	aggc	ac c	ccag	gatt	t aca	acttt	atg		7200
		cttccggc	tc gt	atgt	tgtg	tgg	aatt	gtg a	agcg	gata	ac a	attt	cacao	agg	gaaac	cagc		7260
15		tatgacca	tg a															727
20	<210> 10 <211> 583 <212> PRT																	
	<213> Flavoba	acterium ok	eanol	koites	3													
25	<400> 10																	
25		Met 1	Phe	Leu	Ser	Met 5	Val	Ser	Lys	Ile	Arg 10	Thr	Phe	Gly	Trp	Val 15	Gln	
30		Asr	Pro	Gly	Lys 20	Phe	Glu	Asn	Leu	Lys 25	Arg	Val	Val	Gln	Val 30	Phe	Asp	
35		Arq	Asn	Ser 35	Lys	Val	His	Asn	Glu 40	Val	Lys	Asn	Ile	Lys 45	Ile	Pro	Thr	
		Lev	Val 50	Lys	Glu	Ser	Lys	Ile 55	Gln	Lys	Glu	Leu	Val 60	Ala	Ile	Met	Asn	
40		G1r 65	His	Asp	Leu	Ile	Tyr 70	Thr	Tyr	Lys	Glu	Leu 75	Val	Gly	Thr	Gly	Thr 80	
45		Ser	Ile	Arg	Ser	G1u 85	Ala	Pro	Cys	_	Ala 90		Ile	Gln	Ala	Thr 95	Ile	
		Ala	Asp	Gln	Gly 100	Asn	Lys	Lys	Gly	Tyr 105	Ile	Asp	Asn	Trp	Ser 110	Ser	Asp	
50		Gly	Phe	Leu 115	_	Trp	Ala	His	Ala 120	Leu	Gly	Phe	Ile	Glu 125	Tyr	Ile	Asn	
55		Lys	Ser 130	_	Ser	Phe	Val	11e 135	Thr	Asp	Val	Gly	Leu 140	Ala	Tyr	Ser	Lys	
		Ser 145	Ala	Asp	Gly	Ser	Ala 150	Ile	Glu	Lys	Glu	Ile 155	Leu	Ile	Glu	Ala	Ile 160	
60		Ser	Ser	Tyr	Pro	Pro 165	Ala	Ile	Arg	Ile	Leu 170	Thr	Leu	Leu	Glu	Asp 175	Gly	
65		Glr	His	Leu	Thr 180	Lys	Phe	Asp	Leu	Gly 185	Lys	Asn	Leu	Gly	Phe 190	Ser	Gly	

	G1	lu Se	r Gl	-	e Thr	Ser	Leu	Pro 200	Glu	Gly	Ile		Leu 1 205	Asp T	hr L	eu
5	Al	la As	n Al	a Met	: Pro	Lys	Asp	Lys	Gly	Glu	Ile	Arg	Asn A	Asn T	rp G	lu
		210					215					220				
10	Gly 225	Ser	Ser	Asp	Lys	Tyr 230	Ala	Arg	Met	Ile	Gly 235	Gly	Trp	Leu	Asp	Lys 240
15	Leu	Gly	Leu	Val	Lys 245	Gln	Gly	Lys	Lys	Glu 250	Phe	Ile	Ile	Pro	Thr 255	Leu
	Gly	Lys	Pro	Asp 260	Asn	Lys	Glu	Phe	Ile 265	Ser	His	Ala	Phe	Lys 270	Ile	Thr
20	Gly	Glu	Gly 275	Leu	Lys	Val	Leu	Arg 280	Arg	Ala	Lys	Gly	Ser 285	Thr	Lys	Phe
25	Thr	Arg 290	Val	Pro	Lys	Arg	Val 295	Tyr	Trp	Glu	Met	Leu 300	Ala	Thr	Asn	Leu
30	Thr 305	Asp	Lys	Glu	Tyr	Val 310	Arg	Thr	Arg	Arg	Ala 315	Leu	Ile	Leu	Glu	Ile 320
	Leu	Ile	Lys	Ala	Gly 325	Ser	Leu	Lys	Ile	Glu 330	Gln	Ile	Gln	Asp	Asn 335	Leu
35	Lys	Lys	Leu	Gly 340	Phe	Asp	Glu	Val	Ile 345	Glu	Thr	Ile	Glu	Asn 350	Asp	Ile
40	Lys	Gly	Leu 355	Ile	Asn	Thr	Gly	Ile 360	Phe	Ile	Glu	Ile	Lys 365	Gly	Arg	Phe
45	Tyr	Gln 370	Leu	Lys	Asp	His	Ile 375	Leu	Gln	Phe	Val	Ile 380	Pro	Asn	Arg	Gly
	Val 385	Thr	Lys	Gln	Leu	Val 390	Lys	Ser	Glu	Leu	Glu 395	Glu	Lys	Lys	Ser	Glu 400
50	Leu	Arg	His	Lys	Leu 405	Lys	Tyr	Val	Pro	His 410	Glu	Tyr	Ile	Glu	Leu 415	Ile
55	Glu	Ile	Ala	Arg 420	Asn	Ser	Thr	Gln	Asp 425	Arg	Ile	Leu	Glu	Met 430	Lys	Val
	Met	Glu	Phe 435	Phe	Met	Lys	Val	Tyr 440	Gly	Tyr	Arg	Gly	Lys 445	His	Leu	Gly
60	Gly	Ser 450	Arg	Lys	Pro	Asp	Gly 455	Ala	Ile	Tyr	Thr	Val 460	Gly	Ser	Pro	Ile

		Asp 465	Tyr	· Gl	v Val	l Ile	47	-	p Th	r Lys	s Ala	47		r Gl	Ly G	Ly T		sn 80
5		Leu	Pro	. Il€	Gly	7 Gl: 48		a As _l	p Gl	u Met	Glr 490		д Ту	r Va	al G		lu A 95	sn
10		Gln	Thr	Arç	500	_	s Hi	s Il	e As:	n Pro 505		ı Glı	u Tr	рТі		ys V: 10	al T	'yr
45		Pro	Ser	Ser 515		L Th:	r Gl	u Ph	e Ly. 52	s Phe O	e Leu	ı Phe	e Va	1 Se 52		Ly H	is P	he
15		Lys	Gly 530		туі	Ly	s Ala	a G1: 53.		u Thi	r Arg	j Le	u As 54		is I	le T	hr A	sn
20		Cys 545	Asn	Gl3	Ala	a Vai	Lei 55		r Va	l Glı	ı Glu	1 Le 1		u II	Le G	Ly G	_	1u 60
25		Met	Ile	Lys	ala	56		r Le	u Th	r Leı	1 Glu 570		u Va	l Aı	ng A		ys P 75	he
		Asn	Asn	Gl	7 Glu 580		e As	n Ph	е									
30	<210> 11 <211> 558 <212> PRT <213> Acinetobact	ter Iw	offii		300													
35	<400> 11																	
		M 1		Ser	Thr	Trp	Leu 5	Leu	Gly	Asn		Thr 10	Val	Arg	Ser	Pro	Ph 15	e Arg
40		I	Leu	Ile		Gly 20	Leu	Lys	Val	Phe	Ala 25	Leu	Thr	Asn	Gly	7 Ası 30	o Il	e Arg
45		G	Sly		Lys 35	Glu	Lys	Glu	Leu	Val 40	Phe	Cys	Lys	Ala	Leu 45	ı Val	L Gl	u Gly
50		G	_	Ile 50	Ile	Ser	Ala	Ser	Phe 55	Glu	Ala	Glu	Asp	Thr	Ser	: Gly	y Ph	e Ser
			sp 55	Thr	Thr	Tyr	Ser	Val 70	Gly	Arg	Lys	Trp	Arg 75	Ser	: Ala	ı Leı	ı Gl	u Lys 80
55		I	eu	Gly	Phe	Ile	Glu 85	Gln	Phe	Asn	Gln	Ile 90	Tyr	Ile	. Leu	ı Thi	G1: 95	u Asn
60			Gly	, Arç	a Asr	Leu 100		Asn	Ser	Gln	Thr	Leu	Gln	Ser	Asp	Gln 110	Glu	Cys
			туз	Leu	115		Leu	Ile	Leu	Tyr 120	Ser	Tyr	Lys	Ala	Glu 125	Asn	Ser	Asp

	Asn	Pro 130	Gly	Gly	Phe	Phe	Ser 135	Pro	Leu	Met	Leu	Thr 140	Leu	His	Ile	Met
5	Lys 145	Glu	Leu	Glu	Ile	Arg 150	Thr	Gly	Ser	Ser	Arg 155	Ile	Ser	Phe	Gln	Glu 160
10	Met	Ala	Ala	Val	Ile 165	Gln	Leu	Thr	Phe	Ser 170	Tyr	Leu	Asp	Ile	Asn 175	Gln
15	Ser	Val	Asn	Glu 180	Ile	Leu	Thr	Ile	Arg 185	Ser	Asn	Arg	Gln	Ala 190	Ser	Leu
15	Ser	Lys	Lys 195	Lys	Phe	Asp	Arg	Glu 200	Leu	Tyr	Glu	Ser	Lys 205	Ser	Ser	Lys
20	Ala	Lys 210		Lys	Ala	Pro	Ser 215	Ile	Lys	Asp	Tyr	Ala 220	Asp	Thr	Asn	Leu
25	Arg 225	Tyr	Leu	Lys	Ser	Thr 230	Gly	Leu	Phe	Thr	Ala 235	Ser	Gly	Lys	Gly	Ile 240
	Cys	Phe	Ile	Asp	Asp 245	Lys	Lys	Ile	Val	Ile 250	Asp	Lys	Leu	Ile	Ala 255	Met
30	Tyr	Gly	Thr	Phe 260	Asp	Ile	Ser	Gln	Ser 265	Asp	Leu	Lys	Ile	Gln 270	Lys	Gly
35	Ala	Pro	Leu 275	Pro	Thr	Asp	His	Lys 280	Glu	Thr	Asn	Ile	Leu 285	Leu	Val	Glu
40	Gln	Leu 290	Glu	Glu	Thr	Leu	Asn 295	Arg	Asn	Arg	Ile	Leu 300	Phe	Glu	Lys	Asn
	Ser 305	Ser	Ile	λla	Gln	Ala 310	Pro	Ile	Gly	Glu	Ile 315	Lys	Asn	туг	Arg	Tyr 320
45	His	Leu	Glu	Glu	Leu 325	Leu	Phe	Glu	Asn	Asn 330	Glu	Lys	Lys	Phe	Ala 335	Glu
50	Asn	Gln	Lys	Asn 340	Glu	Trp	Asp	Glu	11e 345	Leu	Ala	Tyr	Met	Asp 350	Leu	Leu
55	Ile	Ser	Pro 355	Lys	Pro	Ile	Ser	Ile 360	Glu	Ile	Ala	Asp	Lys 365	Glu	Ile	Ser
	Ile	Pro 370		Gly	Glu	Arg	Pro 375	Ala	Tyr	Phe	Glu	Trp 380	Val	Leu	Trp	Arg
60	Ala 385	Phe	Leu	Ala	Leu	Asn 390	His	Leu	Ile	Ile	G1u 395	Pro	Gln	Gln	Cys	Arg 400
	Arg	Phe	Lys	Val	Asp 405	Gln	Asp	Phe	Lys	Pro 410	Ile	His	Asn	Ala	Pro 415	Gly

		Gly	Gly	Ala	Asp 420	Val	Ile	Phe	Glu	Tyr 425		Asn	Phe	Ly	s Il 43		u Gl	У
		Glu	Val	Thr 435	Leu	Thr	Ser	Asn	Ser 440	_	Gln	Glu	Ala	44		u Gl	y Gl	u
5		Pro	Val 450	Arg	Arg	His	Ile	Ala 455		Glu	Thr	Val	Asr 460		r Pr	o As	p Ly	s
10		Asp 465	Val	Tyr	Gly	Leu	Phe 470		Ala	Leu	Thr	11e 475	_	Th	r As	n Th	r Al 48	_
15		Glu	Thr	Phe	Arg	His 485	_	Ala	Trp	Tyr	His 490	Gln	Glu	ı Gl	u Le	u Me 49		р
		Val	Lys	Ile	Leu 500	Pro	Leu	Thr	Leu	G1u 505		Phe	Lys	Ly.	5 Ty		u Gl	u
20		Ser	Leu	Arg 515	Lys	Lys	Asn	Gln	Val 520		Thr	Gly	Ile	9 Ph		p Le	u Ly	s
25		Lys	Met 530	Met	Asp	Glu	Ser	Leu 535	-	Leu	Arg	Glu	540		u Th	r Al	a Pr	0
		Gln 545	Trp	Lys	Asn	Glu	11e 550		Asn	Lys	Phe	Ala 555		, Pr	o Il	е		
30	<210> 12 <211> 556																	
35	<212> PRT <213> Microcoo <400> 12	cus ly	ylae															
40		Me 1	et A	la Se	er L	eu S 5		ys T	hr I	ys F		Leu I	he (Gly	Phe	Thr	Ser 15	Pro
		A	rg T	hr I	le G 2	_	ys I	le 1	le F		31u 1 25	Leu /	Asp	Ile	Leu	Ser 30	Gln	Gln
45		P	he S	er G 3		ys V	al T	rp (31u <i>2</i> 10	Asn (3ln 1	le i	Asn	Phe 45	Phe	Asp	Ala
50		1	le P	_	sn S	er A	sp F		yr (lu (Sly S	Thr '		Tyr 60	Pro	Gln	Asp	Pro
55		6		eu A	la A	la A	-	sp A	arg 1	le 1	Thr 1	Arg i	Ala 1	Pro	Lys	Ala	Leu	Gly 80
		P	he I	le G	ln L		ys P	ro V	/al 1	le (Leu :	Thr :	Lys	Ala	Gly	Asn 95	Gln
60		L	eu V	al A		ln I 00	ys A	rg I	eu F		31u 1	Leu l	he '	Thr	Lys	Gln 110	Leu	Leu

	Lys	Phe	Gln 115	Leu	Pro	Ser	Pro	Tyr 120	His	Thr	Gln	Ser	Pro 125	Thr	Val	Asn
5	Phe	Asn 130	Val	Arg	Pro	Tyr	Leu 135	Glu	Leu	Leu	Arg	Leu 140	Ile	Asn	Glu	Leu
10	Gly 145	Ser	Ile	Ser	Lys	Thr 150	Glu	Ile	Ala	Leu	Phe 155	Phe	Leu	Gln	Leu	Val 160
	Asn	туг	Asn	Lys	Phe 165	Asp	Glu	Ile	Lys	Asn 170	Lys	Ile	Leu	Lys	Phe 175	Arg
15	Glu	Thr	Arg	Lys 180	Asn	Asn	Arg	Ser	Val 185	Ser	Trp	Lys	Thr	Tyr 190	Val	Ser
20	Gln	Glu	Phe 195	Glu	Lys	Gln	Ile	Ser 200	Ile	Ile	Phe	Ala	Asp 205	Glu	Val	Thr
	Ala	Lys 210	Asn	Phe	Arg	Thr	Arg 215	Glu	Ser	Ser	Asp	Glu 220	Ser	Phe	Lys	Lys
25	Phe 225	Val	Lys	Thr	Lys	Glu 230	Gly	Asn	Met	Lys	Asp 235	туг	Ala	Лsp	Ala	Phe 240
30	Phe	Arg	Tyr	Ile	Arg 245	Gly	Thr	Gln	Leu	Val 250	Thr	Ile	Asp	Lys	Asn 255	Leu
25	His	Leu	Lys	11e 260	Ser	Ser	Leu	Lys	G1n 265	Asp	Ser	Val	Asp	Phe 270	Leu	Leu
35	Lys	Asn	Thr 275	Asp	Arg	Asn	Ala	Leu 280	Asn	Leu	Ser	Leu	Met 285	Glu	Tyr	Glu
40	Asn	Tyr 290	Leu	Phe	Asp	Pro	Asp 295	Gln	Leu	Ile	Val	Leu 300	Glu	Asp	Asn	Ser
1 E	Gly 305	Leu	Ile	Asn	Ser	Lys 310	Ile	Lys	Gln	Leu	Asp 315	Asp	Ser	Ile	Asn	Val 320
45	Glu	Ser	Leu	Lys	Ile 325	Asp	Asp	Ala	Lys	Asp 330	Leu	Leu	Asn	Asp	Leu 335	Glu
50	Ile	Gln	Arg	Lys 340	Ala	Lys	Thr	Ile	Glu 3 4 5	Asp	Thr	Val	Asn	His 350	Leu	Lys
55	Leu	Arg	Ser 355	Asp	Ile	Glu	Asp	Ile 360	Leu	Asp	Val	Phe	Ala 365	Lys	Ile	Lys
	Lys	Arg 370	Asp	Val	Pro	Asp	Val 375	Pro	Leu	Phe	Leu	Glu 380	Trp	Asn	Ile	Trp
60	Arg 385	Ala	Phe	Ala	Ala	Leu 390	Asn	His	Thr	Gln	Ala 395	Ile	Glu	Gly	Asn	Phe 400
65	Ile	Val	Asp	Leu	Asp 405	Gly	Met	Pro	Leu	Asn 410	Thr	Ala	Pro	Gly	Lys 415	Lys

		Pro	Asp	Ile	Glu 420	Ile	Asn	Tyr	Gly	Ser 425	Phe	Ser	Cys	Ile	Val 430	Glu	Val	
5		Thr	Met	Ser 435	Ser	Gly	Glu	Thr	Gln 440	Phe	Asn	Met	Glu	Gly 445	Ser	Ser	Val	
10		Pro	Arg 450	His	Tyr	Gly	Asp	Leu 455	Val	Arg	Lys	Val	Asp 460	His	Asp	Ala	Tyr	
		Cys 465	Ile	Phe	Ile	Ala	Pro 470	Lys	Val	Ala	Pro	Gly 475	Thr	Lys	Ala	His	Phe 480	
15		Phe	Asn	Leu	Asn	Arg 485	Leu	Ser	Thr	Lys	His 490	Tyr	Gly	Gly	Lys	Thr 495	Lys	
20		Ile	Ile	Pro	Met 500	Ser	Leu	Asp	Asp	Phe 505	Ile	Cys	Phe	Leu	Gln 510	Val	Gly	
		Ile	Thr	His	Asn	Phe	Gln	Asp	Ile	Asn	Lys	Leu	Lys	Asn	Trp	Leu	Asp	
25				515					520					52	5			
		Asn	Leu 530	Ile	Asn	Phe	Asn	Leu 535		Ser	Glu	ı Asp	540		u Il	e Tr	p Ph	ne
30		Glu 545	Glu	Ile	Ile	Ser	Lys 550		Ser	Thr	Trp	555		•				
35	<210> 13 <211> 323 <212> PRT <213> Streptomyce	es spe	ec. Bf	-61														
40	<400> 13	Met 1	Asn	Ser	Ser	Asp 5	Gly	Ile	Asp	Gly	Thr	val	L Ala	a Se	r Il	e As	_	nr
45		Ala	Arg	Ala	Leu 20	Leu	Lys	Arg	Phe	Gly 25	Phe	a Ası	Al:	a Gl	n Ar		r As	sn
		Val	Arg	Ser 35	Ala	Val	Thr	Leu	Leu 40	Ala	Lev	a Ala	a Gl	y Le	_	s Pr	o Gi	Ly
50		Asp	Arg 50	Trp	Val	Asp	Ser	Thr 55	Thr	Pro	Arg	j Let	Gl ₂	y Va	1 G1:	n Ly	s Il	Le
55		Met 65	Asp	Trp	Ser	Gly	Glu 70	His	Trp	Ala	Lys	75	ту	r Al	a Th	r Gl	у Se 80	
		Arg	Glu	Asp	Phe	Arg 85	Lys	Lys	Thr	Leu	Arg 90	g Glr	Tr	o Va	l As	p As 95		Ly
60		Phe	Ala	Val	Leu 100	Asn	Ala	Asp	Asn	Leu 105		ıle	al:	a Th	r As		r Gl	Ln
65		Leu	Asn	Glu 115	Tyr	Cys	Leu	Ser	Asp 120		Ala	Let	ı Gl:	n Al 12		u Ar	g Al	La

		Tyr	Gly 130	Thr	Glu	Gly	Phe	Glu 135	Glu	Ser	Leu	Val	Val 140	Phe	Leu	Asp	Glu
5		Ala 145	Ser	Lys	Ala	Val	Lys 150	Ala	Arg	Ala	Glu	Ala 155	Leu	Gln	Ala	Ala	Met 160
10		Ile	Ser	Val	Asp	Leu 165	Pro	Gly	Gly	Glu	Glu 170	Phe	Leu	Leu	Ser	Pro 175	Ala
		Gly	Gln	Asn	Pro	Leu	Leu	Lys	Lys	Met	Val	Glu	Glu	Phe	Val	Pro	Arg.
15					180					185					190		
		Phe	Ala	Pro 195	Arg	Ser	Thr	Val	Leu 200	Tyr	Leu	Gly	Asp	Thr 205	Arg	Gly	Lys
20		His	Ser 210	Leu	Phe	Glu	Arg	Glu 215	Ile	Phe	Glu	Glu	Val 220	Leu	Gly	Leu	Thr
25		Phe 225	Asp	Pro	His	Gly	Arg 230	Met	Pro	Asp	Leu	Ile 235	Leu	His	Asp	Glu	Val 240
30		Arg	Gly	Trp	Leu	Phe 245	Leu	Met	Glu	Ala	Val 250	Lys	Ser	Lys	Gly	Pro 255	Phe
		Asp	Glu	Glu	Arg 260	His	Arg	Ser	Leu	Gln 265	Glu	Leu	Phe	Val	Thr 270	Pro	Ser
35		Ala	Gly	Leu 275	Ile	Phe	Val	Asn	Cys 280	Phe	Glu	Asn	Arg	Glu 285	Ser	Met	Arg
40		Gln	Trp 290	Leu	Pro	Glu	Leu	Ala 295	Trp	Glu	Thr	Glu	Ala 300	Trp	Val	Ala	Glu
45		Asp 305	Pro	Asp	His	Leu	Ile 310	His	Leu	Asn	Gly	Ser 315	Arg	Phe	Leu	Gly	Pro 320
		Tyr	Glu	Arg													
50	<210> 14 <211> 323 <212> PRT <213> Streptomyc	es dia	astatio	cus													
	<400> 14																
55		Met 1	Thr	Asn	Ser	Asn 5	Asp	Ile	Asp	Glu	Thr 10	Ala	Ala	Thr	Ile	Asp 15	Thr
60		Ala	Arg	Ala	Leu 20	Leu	Lys	Ser	Phe	Gly 25	Phe	Glu	Ala	Gln	Arg 30	His	Asn
65		Val	Arg	Ser 35	Ala	Val	Thr	Leu	Leu 40	Ala	Leu	Ala	Gly	Leu 45	Lys	Pro	Gly

	Asp	His 50	Trp	Ala	Asp	Ser	Thr 55	Thr	Pro	Arg	Leu	Gly 60	Val	Gln	Lys	Ile
5	Met	Asp	Trp	Ser	Gly	Ala	Tyr	Trp	Ala	Lys	Pro	Tyr	Ala	Thr	Gly	Ser
Ü	65					70					75					80
10	Arg	Glu	Asp	Phe	Arg 85	Lys	Lys	Thr	Leu	Arg 90	Gln	Trp	Val	Asp	Asn 95	Gly
15	Phe	Ala	Val	Leu 100	Asn	Pro	Asp	Asn	Leu 105	Asn	Ile	Ala	Thr	Asn 110	Ser	Gln
	Leu	Asn	Glu 115	Tyr	Cys	Leu	Ser	Asp 120	Glu	Ala	Ala	Gln	Ala 125	Ile	Arg	Ser
20	Tyr	Gly 130	Thr	Asp	Ala	Phe	Glu 135	Ser	Ala	Leu	Val	Asp 140	Phe	Leu	Ser	Lys
25	Ala 145	Ser	Asp	Thr	Val	Arg 150	Ala	Arg	Ala	Glu	Ala 155	Leu	Arg	Ala	Ala	Met 160
30	Ile	Ser	Val	Asp	Leu 165	Ala	Asp	Gly	Asp	Glu 170	Phe	Leu	Leu	Ser	Pro 175	Ala
	Gly	Gln	Asn	Pro 180	Leu	Leu	Lys	Lys	Met 185	Val	Glu	Glu	Phe	Met 190	Pro	Arg
35	Phe	Ala	Pro 195	Gly	Ala	Lys	Val	Leu 200	Tyr	Ile	Gly	Asp	Trp 205	Arg	Gly	Lys
40	His	Thr 210	Arg	Phe	Glu	Lys	Arg 215	Ile	Phe	Glu	Glu	Thr 220	Leu	Gly	Leu	Thr
45	Phe 225	Asp	Pro	His	Gly	Arg 230	Met	Pro	Asp	Leu	Val 235	Leu	His	Asp	Lys	Val 240
	Arg	Lys	Trp	Leu	Phe 245	Leu	Met	Glu	Ala	Val 250	Lys	Ser	Lys	Gly	Pro 255	Phe
50	Asp	Glu	Glu	Arg 260	His	Arg	Thr	Leu	Arg 265	Glu	Leu	Phe	Ala	Thr 270	Pro	Val
55	Ala	Gly	Leu 275	Val	Phe	Val	Asn	Cys 280	Phe	Glu	Asn	Arg	Glu 285	Ala	Met	Arg
60	Gln	Trp 290	Leu	Pro	Glu	Leu	Ala 295	Trp	Glu	Thr	Glu	Ala 300	Trp	Val	Ala	Asp
	Asp 305	Pro	Asp	His	Leu	Ile 310	His	Leu	Asn	Gly	Ser 315	Arg	Phe	Leu	Gly	Pro 320
CE.							Ty	r Gl	u Ar	:g						

	<210> 15 <211> 602																
5	<212> PRT <213> Streptoc	occus	sangı	uis													
	<400> 15																
10		Met 1	Thr	Ile	Ser	Ile 5	Asn	Glu	Tyr	Ser	Asp 10	Leu	Asn	Asn	Leu	Ala 15	Phe
15		Gly	Leu	Gly	Gln 20	Asp	Val	Ser	Gln	Asp 25	Leu	Lys	Glu	Leu	Val 30	Lys	Val
		Ala	Ser	Ile 35	Phe	Met	Pro	Asp	Ser 40	Lys	Ile	His	Lys	Trp 45	Leu	Ile	Asp
20		Thr	Arg 50	Leu	Glu	Glu	Val	Val 55	Thr	Asp	Leu	Asn	Leu 60	Arg	Tyr	Glu	Leu
25		Lys 65	Ser	Val	Ile	Thr	Asn 70	Thr	Pro	Ile	Ser	Val 75	Thr	Trp	Lys	Gln	Leu 80
30		Thr	Gly	Thr	Arg	Thr 85	Lys	Arg	Glu	Ala	Asn 90	Ser	Leu	Val	Gln	Ala 95	Val
		Phe	Pro	Gly	Gln 100	Cys	Ser	Arg	Leu	Ala 105	Ile	Val	Asp	Trp	Ala 110	Ala	Lys
35		Asn	Tyr	Val 115	Ser	Val	Ala	Val	Ala 120	Phe	Gly	Leu	Leu	Lys 125	Phe	His	Arg
40		Ala	Asp 130	Lys	Thr	Phe	Thr	Ile 135	Ser	Glu	Ile	Gly	Ile 140	Gln	Ala	Val	Lys
45		Leu 145	Tyr	Asp	Ser	Glu	Glu 150	Leu	Ala	Glu	Leu	Asp 155		Phe	Leu	Tyr	Glu 160
50		Arg	Leu	Leu	Glu	Tyr 165	Pro	Tyr	Ala	Ala	Trp 170	Leu	Ile	Arg	Leu	Leu 175	Gly
50		Asn	Gln	Pro	Ser 180	Lys	Gln	Phe	Ser	Lys 185	Phe	Asp	Leu	Gly	Glu 190	His	Phe
55		Gly	Phe	Ile 195	Asp	Glu	Leu	Gly	Phe 200	Glu	Thr	Ala	Pro	Ile 205	Glu	Ile	Phe
60		Leu	Asn 210	Gly	Leu	Ala	Gln	Ala 215	Glu	Ile	Asp	Gly	Asp 220	Lys	Thr	Ala	Ala
		Gln 225	Lys	Ile	Lys	Ser	Asn 230	Phe	Glu	Ser	Thr	Ser 235	Asp	Lys	туг	Met	Arg 240
C.F.																	

	Trp	Leu	Ala	Gly	Val 245	Leu	Val	Thr	Ala	Gly 250	Leu	Ala	Thr	Ser	Thr 255	Thr
5	Lys	Lys	Val	Thr 260	His	Thr	Tyr	Lys	Asn 265	Arg	Lys	Phe	Glu	Leu 270	Thr	Leu
10	Gly	Thr	Val 275	Tyr	Gln	Ile	Thr	Ala 280	Lys	Gly	Leu	Thr	Ala 285	Leu	Lys	Glu
15	Val	Asn 290	Gly	Lys	Ser	Arg	Tyr 295	Pro	Arg	Ser	Arg	Lys 300	Arg	Val	Met	Trp
	Glu 305	Phe	Leu	Ala	Thr	Lys 310	Asp	Lys	Glu	Ala	Ile 315	Ala	Lys	Lys	Thr	Ser 320
20	Arg	Ser	Leu	Met	Leu 325	Lys	His	Leu	Thr	Glu 330	Lys	Lys	Asn	Pro	11e 335	Gln
25	Ala	Glu	Val	11e 340	Ala	Thr	Leu	Ile	Asn 345	Thr	Азр	Tyr	Pro	Thr 350	Leu	Glu
30	Ile	Thr	Pro 355	Glu	Glu	Val	Ile	Asp 360	Asp	Cys	Ile	Gly	Leu 365	Asn	Arg	Ile
	Gly	Ile 370	Glu	Ile	Leu	Ile	Asp 375	Gly	Asp	Lys	Leu	Thr 380	Leu	Asn	Asp	Lys
35	Leu 385	Phe	Asp	Phe	Glu	Ile 390	Pro	Val	Gln	Lys	Asp 395	Val	Val	Leu	Glu	Lys 400
40	Ser	Asp	Ile	Glu	Lys 405	Phe	Lys	Asn	Gln	Leu 410	Arg	Thr	Glu	Leu	Thr 415	Asn
45	Ile	Авр	His	Ser 420	Tyr	Leu	Lys	Gly	Ile 425	Asp	Ile	Ala	Ser	Lys 430	Lys	Lys
	Thr	Ser	Asn 435		Glu	Asn	Thr	Glu 440		Glu	Ala	Ile	Ser 445		Lys	Ile
50		450					455					460				Asn
55	465	i				470					475					Asp 480
60		_			485					490					495	
- •			Thr	500				Ala	505 Pro				Asp	510 Asn		Tyr
65			515					520					525			

		Phe	Ala 530	Tyr	Val	Ser	Gly	Ser 535	Phe	Ser	Gly	Asn	Tyr 540	Lys	Glu	Gln	Leu
5		Gln 545	Lys	Phe	Arg	Gln	Asp 550	Thr	Asn	His	Leu	Gly 555	Gly	Ala	Leu	Glu	Phe 560
10		Val	Lys	Leu	Leu	Leu 565	Leu	Ala	Asn	Asn	Tyr 570	Lys	Thr	Gln	Lys	Met 575	Ser
15		Lys	Lys	Glu	Val 580	Lys	Lys	Ser	Ile	Leu 585	Asp	Tyr	Asn	Ile	Ser 590		Glu
		Glu	Tyr	Ala 595	Pro	Leu	Leu	Ala	Glu 600	Ile	Glu						
20	<210> 16 <211> 593 <212> PRT <213> Clostridium	ı leptu	ım														
25	<400> 16																
20		Met 1	Ile	His	Leu	Ile 5	Pro	Thr	Glu	Ala	Lys 10	Arg	Phe	Arg	Thr	Phe 15	Gly
30		Trp	Val	Gln	Asp 20	Pro	Ser	Asp	Phe	Arg 25	Ser	Leu	Cys	Asp	Val 30	Val	Ala
35		Ile	Phe	Asp 35	Glu	Thr	Ser	Leu	Lys 40	His	Gln	Glu	Leu	Ala 45	Gly	Gln	Val
40		Ile	Pro 50	Ala	Leu	Val	Glu	Glu 55	Arg	Asp	Gly	Arg	Gln 60	Arg	Leu	Leu	Asp
		Ala 65	Leu	Asn	Gln	Arg	Pro 70	Leu	Arg	Ile	Ser	Tyr 75	Thr	Asp	Leu	Val	Gly 80
45		Thr	Ser	Phe	Thr	Pro 85	Arg	Ser	Ala	Ala	Arg 90	Cys	Asn	Gly	Ile	Val 95	Gln
50		Ala	Ala	Val	Arg 100	_	Gln	Val	Arg	Pro 105	Phe	Ile	Gly	Asp	Trp 110	Pro	Ala
		Asp	Asn	Phe 115		Arg	Trp	Ala	His 120	Ala	Leu	Gly	Phe	Leu 125	Arg	Tyr	Gly
55		туг	Gln 130		Asp	Ala	Phe	Glu 135	Leu	Thr	Glu	Thr	Gly 140	Lys	Ala	Leu	Ala
60		Gln 145	Ala	Arg	Thr	Gln	Gly 150	Glu	Glu	Leu	Asn	Ser 155	Gln	Glu	Lys	Glu	Leu 160
65		Leu	Thr	Ser	Ala	Val 165	Leu	Ala	Tyr	Pro	Pro 170	Ala	Val	Arg	Ile	Leu 175	Ser

	Leu	Leu	Gly	Glu 180	Gly	Glu	Gly	Ala	His 185	Leu	Thr	Lys	Phe	Glu 190	Leu	Gly
5	Lys	Gln	Leu 195	Gly	Phe	Val	Gly	Glu 200	Asp	Gly	Phe	Thr	Ser 205	Leu	Pro	Gln
10	Thr	Val 210	Leu	Val	Arg	Ser	Leu 215	Ala	Ser	Ser	Lys	Asp 220	Ala	Lys	Glu	Lys
15	Asn 225	Lys	Met	Lys	Thr	Asp 230	Trp	Asp	Gly	Ser	Ser 235	Asp	Lys	туг	Ala	Arg 240
	Met	Ile	Ala	Lys	Trp 245	Leu	Glu	Lys	Leu	Gly 250	Leu	Val	Lys	Gln	G1u 255	Ala
20	Lys	Pro	Val	Thr 260	Val	Thr	Leu	Ala	Gly 265	Arg	Lys	Tyr	Thr	Glu 270	Ser	Ile
25	Gly	Gln	Ser 275	Tyr	Val	Ile	Thr	Gly 280	Leu	Gly	Ile	Thr	Ala 285	Leu	Asn	Arg
30	Thr	Leu 290	Gly	Lys	Ser	Arg	His 295	Lys	Arg	Ile	Pro	Lys 300	Asn	Val	Ser	Phe
30	G1u 305	Met	Met	Ala	Thr	Lys 310	Gly	Asp	Asp	Arg	Glu 315	Туг	Leu	Arg	Thr	Arg 320
35	Arg	Thr	Сув	Val	Leu 325	Lys	Ala	Val	Ser	G1u 330	Gly	Lys	Gly	Arg	Val 335	Ser
40	Tyr	Thr	Glu	Ile 340	Gln	Lys	Tyr	Leu	Glu 345	Ala	Leu	Gly	Leu	Gln 350	Glu	Asp
			355					360					365			Leu
45		370					375					380	Asp			
50	385					390					395		Leu			400
E E					405					410			Gln		415	
55	Phe	Glu		420 Lys	Val	Ile	Glu		425 Leu	Thr	Glu	Glu		430 Gly	Phe	Gln
60	Gly		435 His	Leu	Gly	Gly		440 Arg	Arg	Pro	Asp		445 Val	Leu	Tyr	Thr
65		_	Leu	Thr	Asp		455 Tyr	Gly	Ile	Ile		460 Asp	Thr	Lys	Ala	
	465					470					475					480

		Ser	Ser	Gly	Tyr	Ser 485	Leu	Pro	Ile	Ala	Gln 490	Ala	Asp	Glu	Met	G1u 495	Arg
5		Tyr	Val	Arg	G1u 500	Asn	Gln	Thr	Arg	Asp 505	Glu	Leu	Val	Asn	Pro 510	Asn	Gln
10		Trp	Trp	Glu 515	Asn	Phe	Glu	Asn	Gly 520	Leu	Gly	Thr	Phe	Tyr 525	Phe	Leu	Phe
		Val	Ala 530	Gly	His	Phe	Asn	Gly 535	Asn	Val	Gln	Ala	Gln 540	Leu	Glu	Arg	Ile
15		Ser 545	Arg	Asn	Thr	Gly	Val 550	Leu	Gly	Ala	Ala	Ala 555	Ser	Ile	Ser	Gln	Leu 560
20		Leu	Leu	Leu	Ala	Asp 565	Ala	Ile	Arg	Gly	Gly 570	Arg	Met	Asp	Arg	G1u 575	Arg
		Leu	Arg	His	Leu	Met	Phe	Gln	Asn	Glu	Glu	Phe	Leu	Leu	Glu	Gln	Glu
25					580					585					590)	
		Leu															
30	<210> 17 <211> 587 <212> PRT <213> Clostridium s	spec.	7_2_	43 F <i>i</i>	AΑ												
35	<400> 17																
	1700-17																
40	1700 17	Met 1	Ile	Asn	Ile	Ile 5	Asp	Val	Asn	Asn	Lys 10	Thr	Ile	Arg	Thr	Phe 15	Gly
40	1100 11	1	Ile Val			5					10					15	
40 45	1700 11	1 Trp	Val	Gln	Asn 20	5 Pro	Ser	Asn	Phe	Glu 25	10 Ser	Leu	Lys	Lys	Val 30	15 Val	
		1 Trp	Val Phe	Gln Asp 35	Asn 20	5 Pro	Ser	A sn Lys	Phe Thr 40	Glu 25 Tyr	Ser Asn	Leu Glu	Lys	Lys Lys 45	Val 30	Val	Ala
45		Trp	Val Phe Lys 50	Asp 35	Asn 20 Asn Leu	Pro Thr	Ser Ser Asp	Asn Lys Glu 55	Phe Thr 40	Glu 25 Tyr Asp	Ser Asn Gly	Leu Glu Gln	Lys Leu Lys 60	Lys Lys 45 Glu	Val 30 Asp	Val Lys Leu	Ala
45		Trp	Phe Lys 50	Asp 35 Lys	Asn Asn Leu	Pro Thr Val	Ser Ser Asp	Asn Lys Glu 55	Phe Thr 40 Arg	Glu 25 Tyr Asp	Ser Asn Gly Lys	Glu Gln Tyr 75	Lys Leu Lys 60 Cys	Lys Lys 45 Glu Asn	Val 30 Asp Leu	Val Lys Leu Val	Ala Lys Asn
45		Trp	Val Phe Lys 50 Leu	Gln Asp 35 Lys Asn	Asn 20 Asn Leu Ala	5 Pro Thr Val Asn Pro 85	Ser Asp Pro 70	Asn Lys Glu 55 Leu Ser	Thr 40 Arg Lys	Glu 25 Tyr Asp Ile	Ser Asn Gly Lys Arg	Glu Gln Tyr 75	Lys Leu Lys 60 Cys	Lys 45 Glu Asn	Val 30 Asp Leu Leu	Val Lys Leu Val Val	Ala Lys Asn Gly
45 50 55		Trp Ile Ile Ala 65 Thr	Val Phe Lys 50 Leu Ser	Asp 35 Lys Asn	Asn 20 Asn Leu Ala Thr Lys 100 Val	Pro Thr Val Asn Pro 85	Ser Asp Pro 70 Arg	Asn Lys Glu 55 Leu Ser	Phe Thr 40 Arg Lys	Glu 25 Tyr Asp Ile Ala Glu 105	Ser Asn Gly Lys Arg 90	Glu Gln Tyr 75 Cys	Lys 60 Cys Asn	Lys 45 Glu Asn Gly	Val 30 Asp Leu Ile	Val Lys Leu Val Val 95	Ala Lys Asn Gly 80

	Tyr	130		Asp	Thr	Phe	Glu 135		Thr	Asp	Val	Gly 140	Arg	Lys	Tyr	Val
5	Gln 145	Ser	Glu	Asp	Asp	Ser 150		Glu	Glu	Ser	Thr 155		Leu	Glu	Glu	Ala 160
10	Met	Leu	Ser	Tyr	Pro 165		Val	Ala	Arg	Val 170	Leu	Thr	Leu	Leu	Ser 175	Asn
15	Gly	Glu	His	Leu 180		Lys	Tyr	Glu	Ile 185	Gly	Lys	Lys	Leu	Gly 190	Phe	Val
15	Gly	Glu	Ala	Gly	Phe	Thr	Ser	Leu	Pro	Leu	Asn	Val	Leu	Ile	Met	Thr
20			195					200					205			
	Leu	Ala 210	Thr	Thr	Asp	Glu	Pro 215	Lys	Glu	Lys	Asn	Lys 220	Ile	Lys	Thr	Asp
25	Trp 225	Asp	Gly	Ser	Ser	Asp 230	Lys	Tyr	Ala	Arg	Met 235	Ile	Ser	Gly	Trp	Leu 240
30	Val	Lys	Leu	Gly	Leu 245	Leu	Val	Gln	Arg	Pro 250	Lys	Leu	Val	Thr	Val 255	Asp
35	Phe	Gly	_	Glu 260	Leu	Tyr	Ser	Glu	Thr 265	Ile	Gly	His	Ala	Tyr 270	Met	Ile
	Thr	Asp	Arg 275	Gly	Leu	Lys	Ala	Val 280	Arg	Arg	Leu	Leu	Gly 285	Ile	Asn	Lys
40	Val	Ala 290	Arg	Val	Ser	Lys	Asn 295	Val	Phe	Trp	Glu	Met 300	Leu	Ala	Thr	Lys
45	Gly 305	Ile	Asp	Lys	Asn	Tyr 310	Ile	Arg	Thr	Arg	Arg 315	Ala	Tyr	Ile	Leu	Lys 320
F0	Ile	Leu	Ile	Glu	Ser 325	Asn	Lys	Val	Leu	Thr 330	Leu	Glu	Asp	Ile	Lys 335	Gly
50	Lys	Leu	Lys	Leu 340	Ala	Ser	Ile	Asn	Glu 345	Ser	Ile	Asn	Thr	Ile 350	Lys	Asp
55	Asp	Ile	Asn 355	Gly	Leu	Ile	Asn	Thr 360	Gly	Ile	Asn	Ile	Lys 365	Ser	Glu	Thr
60	Thr	Gly 370	Tyr	Lys	Ile	Tyr	Asp 375	Ser	Ile	Asn	Asp	Phe 380	Ile	Ile	Pro	Lys

		Thr 385	Gly	Asp	Thr	Glu	Gly 390	Ile	Lys	Ser	Asn	Ile 395	Ser	Leu	Leu	Lys	Asp 400
5		Glu	Leu	Arg	Gly	Gln 405	Ile	Ser	His	Ile	Ser 410	His	Glu	Туг	Leu	Ser 415	Leu
10		Ile	Asp	Leu	Ala 420	Phe	Asp	Ser	Lys	Gln 425	Asn	Arg	Leu	Phe	Glu 430		Lys
		Val	Leu	Glu 435	Leu	Leu	Val	Asn	Glu 440	Tyr	Gly	Phe	Lys	Gly 445	Arg	His	Leu
15		Gly	Gly 450	Ser	Arg	Lys	Pro	Asp 455	Gly	Ile	Val	Tyr	Ser 460	Thr	Thr	Leu	Glu
20		Asp 465	Asn	Phe	Gly	Ile	Ile 470	Val	Asp	Thr	Lys	Ala 475	Tyr	Ser	Glu	Gly	Tyr 480
25		Ser	Leu	Pro	Ile	Ser 485	Gln	Ala	Asp	Glu	Met 490	Glu	Arg	Tyr	Val	Arg 495	Glu
		Asn	Ser	Asn	Arg 500	Asp	Glu	Glu	Val	Asn 505	Pro	Asn	Lys	Trp	Trp 510		Asn
30		Phe	Ser	Glu 515	Glu	Val	Lys	Lys	Tyr 520	Tyr	Phe	Val	Phe	Ile 525	Ser	Gly	Ser
35		Phe	Lys 530	Gly	Lys	Phe	Glu	Glu 535	Gln	Leu	Arg	Arg	Leu 540	Ser	Met	Thr	Thr
		Gly 545	Val	Asn	Gly	Ser	A la 550	Val	Asn	Val	Val	As n 555	Leu	Leu	Leu	Gly	Ala 560
40		Glu	Lys	Ile	Arg	Ser 565	Gly	Glu	Met	Thr	Ile 570	Glu	Glu	Leu	Glu	Arg 575	Ala
45		Met	Phe	Asn	Asn 580	Ser	Glu	Phe	Ile	Leu 585	Lys	Tyr					
50	<210> 18 <211> 589 <212> PRT <213> Peptoniphil	us du	erder	nii													
55	<400> 18																
		Me 1	t Ala	a Glu	ı Arg	Thr 5	Leu	Gly	Trp	Ile	Gln 10	Asn	Pro	Ser	Ser	Phe 15	Glu
60		As	n Le	ı Lys	Asn 20	val	Val	. Ser	Val	Phe 25	Asp	Lys	Asn	Ser	Asp 30	Ile	Tyr
65		Ly	s Gl	11e 35	e Leu	Asn	Thr	Lys	Leu 40	Pro	Lys	Leu	Val	Lys 45	Asp	Leu	Asp

	Leu	Gln 50	Asn	Lys	Leu	Ile	Ser 55	Glu	Leu	Glu	Lys	Asp 60	Pro	Leu	Glu	Met
5	Asp 65	Tyr	Val	Leu	Leu	Lys 70	Gly	His	Gly	Ile	Lys 75	Ser	Gly	Gln	Lys	Arg 80
10	Ala	Asp	Ala	Glu	Cys 85	Ser	Gly	Ile	Val	Gln 90	Ala	Ala	Ile	Thr	Thr 95	Gln
15	Gly	Gly	Arg	Ala 100	Tyr	Thr	Asp	Asp	Trp 105	Thr	Ala	Asp	Gly	Phe 110	Leu	Arg
10	Trp	Gly	Ile 115	Ser	Ile	Gly	Leu	Leu 120	Asp	Tyr	Asp	Thr	Glu 125	Lys	Asp	Thr
20	Val	Ser 130	Ile	Thr	Lys	Leu	Gly 135	Glu	Lys	Phe	Val	Lys 140	Ser	Asn	Ser	Glu
25	Asp 145	Ser	Asp	Lys	Glu	Ile 150	Leu	Ile	Ser	Ala	Phe 155	Leu	Ser	Tyr	Pro	Pro 160
	Ala	Val	Arg	Ile	Leu 165	Thr	Leu	Leu	Glu	Asn 170	Gly	Asp	His	Leu	Thr 175	Lys
30	Phe	Glu	Leu	Gly 180	Lys	Gln	Leu	Gly	Gly 185	Leu	Gly	Glu	Ala	Gly 190	Phe	Thr
35	Ser	Ile	Pro 195	Gln	Asp	Leu	Tyr	Ile 200	Gln	Ala	Ile	Glu	Leu 205	Ala	Ala	Asp
	Lys	Asp 210	Lys	Ala	Ser	Ile	Arg 215	Ser	Asn	Thr	Glu	Gly 220	Ser	Ala	Asp	Lys
40	Tyr 225	Ala	Arg	Met	Ile	Ser 230	Gly	Trp	Leu	Ser	Lys 235	Val	Gly	Leu	Ile	Gln 240
45	Arg	Ile	Gly	Lys	Glu 245	Val	Ser	Thr	Lys	Ile 250	Gly	Asp	Val	Glu	Tyr 255	Lys
50	Val	Asn	Ile	Gly 260	His	Ser	Phe	Arg	Ile 265	Thr	Leu	Asn	Gly	Ile 270	Lys	Glu
	Leu	Lys	Arg 275	Ala	Met	Gly	Leu	Ser 280	Ser	Tyr	Pro	Lys	Thr 285	Asp	Lys	Ile
55	Val	Tyr 290	Trp	Gln	Met	Leu	Ala 295	Thr	Lys	Gly	Lys	Asp 300	Arg	Asp	Tyr	Ile
60																

		Ser	Ile	Thr	Thr 340	Ile	Glu	Asp	Glu	Leu 345	Lys	Val	Ile	Glu	Ala 350	Met	Gly
5		Leu	Ser	Phe 355	Lys	His	Ser	Arg	A sn 360	Gly	Tyr	Val	Ile	Asp 365	Asp	Asn	Ile
10		Ile	Lys 370	Leu	Glu	Ile	Pro	Arg 375	Thr	Lys	Ile	Ser	Lys 380	Thr	Asn	Val	Leu
		Glu 385	Leu	Lys	Asp	Lys	Val 390	Arg	Asp	Lys	Leu	Lys 395	Tyr	Val	Asp	His	Arg 400
15		Tyr	Leu	Ala	Leu	Ile 405	Asp	Leu	Ala	Tyr	Asp 410	Gly	Thr	Ala	Asn	Arg 415	Asp
20		Phe	Glu	Ile	Gln 420	Thr	Ile	Asp	Leu	Leu 425	Ile	Asn	Glu	Leu	Lys 430	Phe	Lys
25		Gly	Val	Arg 435	Leu	Gly	Glu	Ser	Arg 440	Lys	Pro	Asp	Gly	Ile 445	Ile	Ser	Tyr
20		Asn	Ile 450	Asn	Gly	Val	Ile	Ile 455	Asp	Asn	Lys	Ala	Tyr 460	Ser	Thr	Gly	Tyr
30		Asn 465	Leu	Pro	Ile	Asn	Gln 470	Ala	Asp	Glu	Met	Ile 475	Arg	Tyr	Ile	Glu	Glu 480
35		Asn	Gln	Thr	Arg	Asp 485	Glu	Lys	Ile	Asn	Ser 490	Asn	Lys	Trp	Trp	Glu 495	Ser
		Phe	Asp	Asp	Lys 500	Val	Lys	Asp	Phe	Asn 505	Tyr	Leu	Phe	Val	Ser 510	Ser	Phe
40		Phe	Lys	Gly 515	Asn	Phe	Lys	Asn	Asn 520	Leu	Lys	His	Ile	Ala 525	Asn	Arg	Thr
4 5		Gly	Val 530	Ser	Gly	Gly	Ala	Ile 535	Asn	Val	Glu	Asn	Leu 540	Leu	Tyr	Phe	Ala
		Glu 545	Glu	Leu	Lys	Ala	Gly 550	Arg	Leu	Ser	Tyr	Val 555	Asp	Ser	Phe	Lys	Met 560
50		Tyr	Asp	Asn	Asp	Glu 565	Ile	Tyr	Val	Gly	Asp 570	Phe	Ser	Asp	Tyr	Ser 575	Tyr
55		Val	Lys	Phe	Ala 580	Ala	Glu	Glu	Glu	Gly 585	Glu	Tyr	Leu	Thr			
60	<210> 19 <211> 279 <212> PRT <213> Acinetobacter I	woffii															
	<400> 19																

	Lys 1	Glu	Thr	Asn	Ile 5	Leu	Leu	Val	Glu	Gln 10	Leu	Glu	Glu	Thr	Leu 15	Asn
5	Arg	Asn	Arg	Ile 20	Leu	Phe	Glu	Lys	Asn 25	Ser	Ser	Ile	Ala	Gln 30	Ala	Pro
10	Ile	Gly	Glu 35	Ile	Lys	Asn	Tyr	Arg 40	Tyr	His	Leu	Glu	Glu 45	Leu	Leu	Phe
	Glu	Asn 50	Asn	Glu	Lys	Lys	Phe 55	Ala	Glu	Asn	Gln	Lys 60	Asn	Glu	Trp	Asp
15	Glu 65	Ile	Leu	Ala	Tyr	Met 70	Asp	Leu	Leu	Ile	Ser 75	Pro	Lys	Pro	Ile	Ser 80
20	Ile	Glu	Ile	Ala	Asp 85	Lys	Glu	Ile	Ser	Ile 90	Pro	Ser	Gly	Glu	Arg 95	Pro
25	Ala	Tyr	Phe	Glu 100	Trp	Val	Leu	Trp	Arg 105	Ala	Phe	Leu	Ala	Leu 110	Asn	His
	Leu	Ile	Ile 115	Glu	Pro	Gln	Gln	Cys 120	Arg	Arg	Phe	Lys	Val 125	Asp	Gln	Asp
30	Phe	Lys 130	Pro	Ile	His	Asn	Ala 135	Pro	Gly	Gly	Gly	Ala 140	Asp	Val	Ile	Phe
35	Glu 1 4 5	Tyr	Glu	Asn	Phe	Lys 150	Ile	Leu	Gly	Glu	Val 155	Thr	Leu	Thr	Ser	Asn 160
40	Ser	Arg	Gln	Glu	Ala 165	Ala	Glu	Gly	Glu	Pro 170	Val	Arg	Arg	His	Ile 175	Ala
40	Val	Glu	Thr	Val 180	Asn	Thr	Pro	Asp	Lys 185	Asp	Val	Tyr	Gly	Leu 190	Phe	Leu
45	Ala	Leu	Thr 195	Ile	Asp	Thr	Asn	Thr 200	Ala	Glu	Thr	Phe	Arg 205	His	Gly	Ala
50		Tyr 210					215					220				
	225	Glu			_	230					235			_		240
55	Val	Glu	Thr	Gly	Ile 245	Phe	Asp	Leu	Lys	Lys 250	Met	Met	Asp	Glu	Ser 255	Leu
60	Lys	Leu	Arg	Glu 260	Thr	Leu	Thr	Ala	Pro 265	Gln	Trp	Lys	Asn	Glu 270	Ile	Thr
0.5	Asn	Lys	Phe 275	Ala	Arg	Pro	Ile									
65																

	<210> 20 <211> 201 <212> PRT <213> Clostridium le	eptum	า														
5	<400> 20																
10		Lys 1	Leu	Ala	Lys	Ser 5	Ser	Gln	Ser	Glu	Thr 10	Lys	Glu	Lys	Leu	Arg 15	Glu
		Lys	Leu	Arg	Asn 20	Leu	Pro	His	Glu	Tyr 25	Leu	Ser	Leu	Val	Asp 30	Leu	Ala
15		Tyr	Asp	Ser 35	Lys	Gln	Asn	Arg	Leu 40	Phe	Glu	Met	Lys	Val 45	Ile	Glu	Leu
20		Leu	Thr 50	Glu	Glu	Суз	Gly	Phe 55	Gln	Gly	Leu	His	Leu 60	Gly	Gly	Ser	Arg
25		Arg 65	Pro	Asp	Gly	Val	Leu 70	Tyr	Thr	Ala	Gly	Leu 75	Thr	Asp	Asn	Tyr	Gly 80
		Ile	Ile	Leu	Asp	Thr 85	Lys	Ala	Tyr	Ser	Ser 90	Gly	Tyr	Ser	Leu	Pro 95	Ile
30		Ala	Gln	Ala	Asp 100	Glu	Met	Glu	Arg	Tyr 105	Val	Arg	Glu	Asn	Gln 110	Thr	Arg
35		Asp	Glu	Leu 115	Val	Asn	Pro	Asn	Gln 120	Trp	Trp	Glu	Asn	Phe 125	Glu	Asn	Gly
40		Leu	Gly 130	Thr	Phe	Tyr	Phe	Leu 135	Phe	Val	Ala	Gly	His 140	Phe	Asn	Gly	Asn
		145					150	_				155		Gly			160
45		Ата	АТА	АІа	ser	11e 165	ser	GIN	ьеи	Leu	170	Leu	АТА	Asp	АТА	175	Arg
50		Gly	Gly	Arg	Met 180	Asp	Arg	Glu	Arg	Leu 185	Arg	His	Leu	Met	Phe 190	Gln	Asn
		Glu	Glu	Phe 195	Leu	Leu	Glu	Gln	Glu 200	Leu							
55	<210> 21 <211> 250 <212> PRT <213> Micrococcus	lylae															
60	<400> 21																

	Ile 1	Asn	Ser	Lys	Ile 5	Lys	Gln	Leu	Asp	Asp 10	Ser	Ile	Asn	Val	Glu 15	Ser
5	Leu	Lys	Ile	Asp 20	Asp	Ala	Lys	Asp	Leu 25	Leu	Asn	Asp	Leu	Glu 30	Ile	Gln
10	Arg	Lys	Ala 35	Lys	Thr	Ile	Glu	Asp 40	Thr	Val	Asn	His	Leu 45	Lys	Leu	Arg
	Ser	Asp 50	Ile	Glu	Asp	Ile	Leu 55	Asp	Val	Phe	Ala	Lys 60	Ile	Lys	Lys	Arg
15	Asp 65	Val	Pro	Asp	Val	Pro 70	Leu	Phe	Leu	Glu	Trp 75	Asn	Ile	Trp	Arg	Ala 80
20	Phe	Ala	Ala	Leu	Asn 85	His	Thr	Gln	Ala	Ile 90	Glu	Gly	Asn	Phe	Ile 95	Val
25	Asp	Leu	Asp	Gly 100	Met	Pro	Leu	Asn	Thr 105	Ala	Pro	Gly	Lys	Lys 110	Pro	Asp
	Ile	Glu	Ile 115	Asn	Tyr	Gly	Ser	Phe 120	Ser	Cys	Ile	Val	Glu 125	Val	Thr	Met
30	Ser	Ser 130	Gly	Glu	Thr	Gln	Phe 135	Asn	Met	Glu	Gly	Ser 140	Ser	Val	Pro	Arg
35	His 145	Tyr	Gly	Asp	Leu	Val 150	Arg	Lys	Val	Asp	His 155	Asp	Ala	Tyr	Cys	Ile 160
	Phe	Ile	Ala	Pro	Lys 165	Val	Ala	Pro	Gly	Thr 170	Lys	Ala	His	Phe	Phe 175	Asn
40	Leu	Asn	Arg	Leu 180	Ser	Thr	Lys	His	Tyr 185	Gly	Gly	Lys	Thr	Lys 190	Ile	Ile
45	Pro	Met	Ser 195	Leu	Asp	Asp	Phe	Ile 200	Cys	Phe	Leu	Gln	Val 205	Gly	Ile	Thr
50	His	Asn 210	Phe	Gln	Asp	Ile	Asn 215	Lys	Leu	Lys	Asn	Trp 220	Leu	Asp	Asn	Leu
	Ile 225	Asn	Phe	Asn	Leu	Glu 230	Ser	Glu	Asp	Glu	Glu 235	Ile	Trp	Phe	Glu	Glu 240
55	Ile	Ile	Ser	Lys	Ile 245	Ser	Thr	Trp	Ala	Ile 250						
60																

	<210> 22 <211> 213 <212> PRT <213> Peptoniph	ilus du	erder	nii													
5	<400> 22																
10		Lys 1	Ile	Ser	Lys	Thr 5	Asn	Val	Leu	Glu	Leu 10	Lys	Asp	Lys	Val	Arg 15	Asp
45		Lys	Leu	Lys	Tyr 20	Val	Asp	His	Arg	Tyr 25	Leu	Ala	Leu	Ile	Asp 30	Leu	Ala
15		Tyr	Asp	Gly 35	Thr	Ala	Asn	Arg	Asp 40	Phe	Glu	Ile	Gln	Thr 45	Ile	Asp	Leu
20		Leu	Ile 50	Asn	Glu	Leu	Lys	Phe 55	Lys	Gly	Val	Arg	Leu 60	Gly	Glu	Ser	Arg
25		Lys 65	Pro	Asp	Gly	Ile	Ile 70	Ser	Tyr	Asn	Ile	Asn 75	Gly	Val	Ile	Ile	Asp 80
		Asn	Lys	Ala	Tyr	Ser 85	Thr	Gly	Tyr	Asn	Leu 90	Pro	Ile	Asn	Gln	Ala 95	Asp
30		Glu	Met	Ile	Arg 100	Tyr	Ile	Glu	Glu	Asn 105	Gln	Thr	Arg	Asp	Glu 110	Lys	Ile
35		Asn	Ser	Asn 115	Lys	Trp	Trp	Glu	Ser 120	Phe	Asp	Asp	Lys	Val 125	Lys	Asp	Phe
40			130				Ser	135			_	_	140		_		
10		Leu 145	Lys	His	Ile	Ala	Asn 150	Arg	Thr	Gly	Val	Ser 155	Gly	Gly	Ala	Ile	Asn 160
45		Val	Glu	Asn	Leu	Leu 165	Tyr	Phe	Ala	Glu	Glu 170	Leu	Lys	Ala	Gly	A rg 175	Leu
50		Ser	Tyr	Val	Asp 180	Ser	Phe	Lys	Met	Tyr 185	Asp	Asn	Asp	Glu	Ile 190	Tyr	Val
		Gly	Asp	Phe 195	Ser	Asp	Tyr	Ser	Tyr 200	Val	Lys	Phe	Ala	Ala 205	Glu	Glu	Glu
55		Gly	Glu 210	Tyr	Leu	Thr											
60																	

5	<210> 23 <211> 163 <212> PRT <213> Strep	tomy	ces sp	ec. B	f-61													
3	<400> 23																	
10			Ile 1	Ser	Val	Asp	Leu 5	Pro	Gly	Gly	Glu	Glu 10	Phe	Leu	Leu	Ser	Pro 15	Ala
			Gly	Gln	Asn	Pro 20	Leu	Leu	Lys	Lys	Met 25	Val	Glu	Glu	Phe	Val 30	Pro	Arg
15			Phe	Ala	Pro 35	Arg	Ser	Thr	Val	Leu 40	Tyr	Leu	Gly	Asp	Thr 45	Arg	Gly	Lys
20			His	Ser 50	Leu	Phe	Glu	Arg	Glu 55	Ile	Phe	Glu	Glu	Val 60	Leu	Gly	Leu	Thr
25			Phe 65	Asp	Pro	His	Gly	Arg 70	Met	Pro	Asp	Leu	Ile 75	Leu	His	Asp	Glu	Val 80
			Arg	Gly	Trp	Leu	Phe 85	Leu	Met	Glu	Ala	Val 90	Lys	Ser	Lys	Gly	Pro 95	Phe
30			Asp	Glu	Glu	Arg 100	His	Arg	Ser	Leu	Gln 105	Glu	Leu	Phe	Val	Thr 110	Pro	Ser
35			Ala	Gly	Leu 115	Ile	Phe	Val	Asn	Cys 120	Phe	Glu	Asn	Arg	Glu 125	Ser	Met	Arg
40				130					135	_				140	_			Glu Pro
			145	110	nop		Бей	150		Бей	Aon	CLY	155		1116	Lea	OLY	160
45			Tyr	Glu	Arg													
50	<210> 24 <211> 163 <212> PRT <213> Strep	tomy	ces dia	astatio	cus													
	<400> 24	j																
55		Ile 1	Ser V	al A	sp Le 5	eu Al	a As	p Gly	, Asp	Glu 10	Phe	Leu	Leu		Pro A	la		
60		Gly	Gln A	sn P		eu Le	u Ly	s Lys	Met 25	Val	Glu	Glu	Phe	Met 30	Pro P	arg		
-		Phe	Ala P	ro G	ly Al	La Ly	s Va	1 Leu 40	ı Tyr	Ile	Gly	Asp	Trp 45	Arg	Gly I	ys		

5		His	s Thi	r Arç	g Phe	Glu	. Lys	Arç 55	, Ile	Phe	Glu	Glu	Thr 60	Leu	Gly	Leu	Thr
		Phe 65	e Ası	p Pro	His	Gly	Arg 70	Met	Pro	Asp	Leu	Val 75	Leu	His	Asp	Lys	Val 80
10		Arq	g Ly:	s Tr	Leu	Phe 85	e Leu	. Met	Glu	Ala	Val 90	Lys	Ser	Lys	Gly	Pro 95	Phe
15		Ası	p Glı	u Glu	Arg 100		Arg	Thr	Leu	Arg 105		Leu	Phe	Ala	Thr 110	Pro	Val
20		Ala	a Gly	y Let 115	ı Val	Phe	val	. Asr	120		Glu	Asn	Arg	Glu 125		Met	Arg
		Gli	n Tr		Pro	Glu	. Leu	135	_	Glu	Thr	Glu	Ala 140	_	Val	Ala	Asp
25		Ası 14		o Asp	His	Lev	11e 150		Leu	. Asn	Gly	Ser 155	_	Phe	Leu	Gly	Pro 160
30		Ty	r Glı	u Arç	Į												
35	<210> 25 <211> 208 <212> PRT <213> Streptoc	occus	sang	juis													
	<400> 25																
40		Asp 1	Val	Val	Leu	Glu 5	Lys	Ser	Asp	Ile	Glu 10	Lys	Phe	Lys	Asn	Gln 15	Leu
45		Arg	Thr	Glu	Leu 20	Thr	Asn	Ile	Asp	His 25	Ser	Tyr	Leu	Lys	Gly 30	Ile	Asp
		Ile	Ala	Ser 35	Lys	Lys	Lys	Thr	Ser 40	Asn	Val	Glu	Asn	Thr 45	Glu	Phe	Glu
50		Ala	Ile 50	Ser	Thr	Lys	Ile	Phe 55	Thr	Asp	Glu	Leu	Gly 60	Phe	Ser	Gly	Lys
55		His 65	Leu	Gly	Gly	Ser	Asn 70	Lys	Pro	Asp	Gly	Leu 75	Leu	Trp	Asp	Asp	Asp 80
60		Cys	Ala	Ile	Ile	Leu 85	Asp	Ser	Lys	Ala	Tyr 90	Ser	Glu	Gly	Phe	Pro 95	Leu
		Thr	Ala	Ser	His 100	Thr	Asp	Ala	Met	Gly 105	Arg	Tyr	Leu	Arg	Gln 110	Phe	Thr
65																	

5		G	lu A		ys G 15	lu G	lu I	le I	Lys	Pro 120		Tr	p Tr	p As	p Il 12	_	a Pr	o Glu
		H		eu A 30	sp A	sn T	hr T		Phe 135	Ala	Туз	· Va	l Se	r Gl 14	_	r Ph	e Se	r Gly
10			sn T	yr L	ys G	lu G		eu (31n	Lys	Phe	Ar	g G1 15		p Th	r As	n Hi	s Leu 160
15		G	ly G	ly A	la L		31u P .65	he V	Val	Lys	Lev	1 Le		u Le	u Al	a As	n As:	n Tyr 5
20					1	80					185	5				19	0	a Asp
		-	yr A		95	er 1	yr G	ii (JIU	200		PE	о те	и ње	20		u II.	e Glu
25	<210> 26 <211> 196 <212> PRT <213> Flavobact	terium	ı okea	anoko	ites													
30	<400> 26																	
		Gln 1	Leu	Val	Lys	Ser 5	Glu	Le	u G	lu (Lys 10	Lys	Ser	Glu	Leu	Arg 15	His
35		Lys	Leu	Lys	туг 20	Val	. Pro	Hi	s G		ryr 25	Ile	Glu	Leu	Ile	Glu 30	Ile	Ala
40		Arg	Asn	Ser 35	Thr	Gln	Asp	Ar	g I:		Leu	Glu	Met	Lys	Val 45	Met	Glu	Phe
45		Phe	Met 50	Lys	Val	Tyr	Gly	55		rg (Sly	Lys	His	Leu 60	Gly	Gly	Ser	Arg
		Lys 65	Pro	Asp	Gly	Ala	70	ту	r T	hr V	/al	Gly	Ser 75	Pro	Ile	Asp	Tyr	Gly 80
50		Val	Ile	Val	Asp	Thr 85	Lys	Al	а Т	yr S		Gly 90	Gly	Tyr	Asn	Leu	Pro 95	Ile
55		Gly	Gln	Ala	Asp 100		Met	Gli	n A	_	Cyr LOS	Val	Glu	Glu	Asn	Gln 110	Thr	Arg
00		Asn	Lys	His 115	Ile	Asn	Pro	Ası		lu 7 20	rp	Trp	Lys	Val	Tyr 125	Pro	Ser	Ser
60		Val	Thr 130		Phe	Lys	Phe	13:		he V	/al	Ser	Gly	His 140	Phe	Lys	Gly	Asn
65		Tyr 145	Lys	Ala	Gln	Leu	Thr 150		g L	eu <i>I</i>	Asn	His	Ile 155	Thr	Asn	Cys	Asn	Gly 160

		Ala	Val	Leu	Ser	Val 165	Glu	Glu	Leu	Leu	Ile 170	Gly	Gly	Glu	Met	Ile 175	Lys
5		Ala	Gly	Thr	Leu 180	Thr	Leu	Glu	Glu	Val 185	Arg	Arg	Lys	Phe	Asn 190	Asn	Gly
10		Glu	Ile	Asn 195	Phe												
15	<210> 27 <211> 7903 <212> ADN <213> Secuenci	ia artif	icial														
20	<220> <223> pCAG-Ar	tTall-A	Alwl														
	<400> 27																
25		gacat	ttgat	t att	gacta	agt t	attaa	ıtagt	aatc	aatta	c gg	ggtca	tta (gttcai	tagcc		60
		catat	tatgg	a gtt	ccgc	gtt a	cataa	ctta	cggt	aaatg	g cc	cgcct	ggc	tgacc	gccca		120
		acgao	cccc	g ccc	attga	acg t	caata	atga	cgta	tgttc	c ca	tagta	acg	ccaat	aggga		180
30		ctttc	ccatt	g acç	tcaat	gg g	tggaç	tatt	tacg	gtaaa	c tg	cccac	ttg	gcagt	acatc		240
		aagtç	gtatc	a tat	gccaa	agt a	cgccc	ccta	ttga	cgtca	a tg	acggt	aaa	tggcc	cgcct		300
		ggcat	tatg	c cca	gtaca	atg a	cctta	ıtggg	actt	tccta	c tt	ggcag	tac .	atcta	cgtat		360
35		tagto	catcg	c tat	tacca	atg g	tcgaç	gtga	gccc	cacgt	t ct	gcttc	act	ctccc	catct		420
		cccc	ccct	c ccc	accc	cca a	ttttç	tatt	tatt	tattt	t tt	aatta	ttt	tgtgc	agcga		480
		tgggg	ggcgg	g ggg	gggg	ggg g	ggcgc	gcgc	cagg	cgggg	c gg	ggcgg	ggc	gaggg	gcggg		540
40		gcggg	ggcga	g gcg	gagaç	ggt g	cggcg	gcag	ccaa	tcaga	g cg	gcgcg	ctc	cgaaa	gtttc		600
		ctttt	tatgg	c gag	gcgg	egg c	ggcgg	gggg	ccta	taaaa	a gc	gaagc	gcg	cggcg	ggcgg		660
		gagto	cgctg	c gcg	ctgc	ctt c	gcccc	gtgc	cccg	ctccg	c cg	ccgcc	tcg	cgccg	cccgc		720
45		cccgg	gctct	g act	gacco	gcg t	tacto	ccac	aggt	gagcg	g gc	gggac	ggc	ccttc	tcctc		780
		cgggc	ctgta	a tta	gagat	tg g	tttaa	tgac	ggct	tgttt	c tt	ttctg	tgg (ctgcg	tgaaa		840
		gcctt	gagg	g gct	ccgg	gag g	gccct	ttgt	gcgg	ggggg	a go	ggctc	ggg	gggtg	cgtgc		900
50		gtgtç	gtgtg	t gcg	tggg	gag c	gccgc	gtgc	ggct	ccgcg	c tg	cccgg	cgg	ctgtg	agcgc		960
		tgcgq	ggcgc	g gcg	cgggq	gct t	tgtgc	gctc	cgca	gtgtg	c gc	gaggg	gag	cgcgg	ccggg		1020
		ggcgg	gtgcc	c cgc	ggtg	gg g	ggggg	ctgc	gagg	ggaac	a aa	ggctg	cgt	gcggg	gtgtg		1080
55		tgcgt	gggg	g ggt	gagca	agg g	ggtgt	gggc	gcgt	cggtc	g gg	ctgca	acc	cccc	tgcac		1140
		cccc	ctccc	c gag	ttgct	ga g	cacgo	cccg	gctt	cgggt	g cg	gggct	ccg	tacgg	ggcgt		1200
		ggcgc	gggg	c tog	ccgt	gcc g	ggcgg	gggg	tggc	ggcag	g tg	ggggt	gcc	gggcg	gggcg		1260
60		gggco	egeet	c ggg	ccgg	gga g	ggcto	gggg	gagg	ggcgc	g go	ggccc	ccg	gagcg	ccggc		1320
		ggata	gtcga	g gcg	cggc	gag c	cgcaç	ccat	tgcc	tttta	t gg	taatc	gtg	cgaga	gggcg		1380
		caggq	gactt	c ctt	tgtc	cca a	atctç	tgcg	gage	cgaaa	t ct	gggag	gcg	ccgcc	gcacc		1440
65		cccto	ctago	a aac	gcgg	adc d	aagcg	gtgc	ggcg	ccggc	a gg	aagga	aat (gggcg	gggag		1500

	ggccttcgtq	gcgtcgccgcg	ccgccgtccc	cttctccctc	tccagcctcg	gggctgtccg	1560
	cgggggacq	gctgccttcg	ggggggacgg	ggcagggcgg	ggttcggctt	ctggcgtgtg	1620
5	accggcggct	ctagagcctc	tgctaaccat	gttcatgcct	tcttctttt	cctacagatc	1680
	cttaattaat	aatacgactc	actatagggg	ccgccaccat	gggacctaag	aaaaagagga	1740
	aggtggcggc	cgctgactac	aaggatgacg	acgataaacc	aggtggcgga	ggtagtggcg	1800
10	gaggtggggt	acccgccagt	ccagcagccc	aggtggatct	gagaaccctc	ggctacagcc	1860
	agcagcagca	ggagaagatc	aaaccaaagg	tgcggtccac	cgtcgctcag	caccatgaag	1920
45	cactggtggg	gcacggtttc	acacacgccc	atattgtggc	tctgtctcag	catcccgctg	1980
15	cactcgggac	tgtggccgtc	aaatatcagg	acatgatcgc	cgctctgcct	gaggcaaccc	2040
	acgaagccat	tgtgggcgtc	ggaaagcagt	ggagcggtgc	cagagcactc	gaagcactcc	2100
	tcaccgtcgc	cggggaactg	cggggtccac	cactccagtc	cggactggac	actggacagc	2160
20	tgctgaagat	cgctaaacgc	ggcggagtga	cagctgtgga	agctgtgcac	gcttggagga	2220
	atgetetgae	aggagcccca	ctgaatctta	ctccagaaca	ggtcgtcgca	atcgcaagta	2280
	acateggegg	aaaacaggcc	ctcgaaaccg	tccagagact	cctccccgtg	ctgtgccagg	2340
25	cccacggact	gaccccacag	caggtggtcg	ccatcgctag	caacggcgga	gggaagcagg	2400
	ctctggagac	cgtgcagagg	ctgctccccg	tcctgtgcca	ggcacatggg	ctcacacctc	2460
	agcaggtggt	cgcaattgcc	tccaatggtg	gcggaaaaca	ggccctggaa	actgtgcaga	2520
30	gactgctccc	cgtgctgtgc	caggctcacg	gtctcacacc	ccagcaggtg	gtcgctatcg	2580
	catctcatga	cgggggcaag	caggcactgg	agacagtgca	gcggctgctc	cctgtcctgt	2640
	gccaggccca	cggactcact	cctcagcagg	tcgtcgccat	tgctagtaac	ggcggaggga	2700
35	aacaggctct	ggaaaccgtg	cagcgcctgc	teccegtget	gtgccaagcc	cacggcctga	2760
	cccccagca	ggtggtcgca	atcgcctcaa	acaatggtgg	caagcaggcc	ctggagactg	2820
	tgcagcgact	gctcccagtg	ctgtgccagg	cccatggact	cacaccacag	caggtcgtcg	2880
40	ctattgcaag	caacaatgga	gggaaacagg	cactggaaac	agtccagagg	ctgctccccg	2940
	tgctgtgcca	agcgcatgga	ctcactcccc	agcaggtcgt	cgccatcgct	tccaataacg	3000
	gcggcaagca	ggccctggag	accgtccaga	gactgctccc	cgtgctgtgc	caagctcacg	3060
45	gactcacacc	tgagcaggtc	gtggcaatcg	cctctaacat	tggagggaaa	caggccctgg	3120
	aaactgtaca	gcggctgctc	cccgtgctgt	gccaagcaca	cggactcact	ccacagcagg	3180
	tegtggeeat	tgcaagtcat	gacggaggca	agcaggccct	ggaaacagtg	cagcgcctgc	3240
50	tecetgtget	gtgccaggct	catggtctga	ctcctcagca	ggtggtggcc	atcgcttcca	3300
	acaatggagg	gaagcaggcc	ctggagaccg	tacagagact	gctccccgtg	ctgtgccaag	3360
	cgcacggtct	gacccctcag	caggtcgtcg	caatcgccag	caatggcggg	ggcaagcagg	3420
55	ctctcgaaac	cgtccagcgg	ctcctcccag	tcctctgtca	ggctcacggc	ctgaccccac	3480
	agcaggtcgt	cgctattgct	tctaatggcg	gagggcggcc	tgctctggag	agcattgtgg	3540
	ctcagctgtc	caggcccgat	cctgccctgg	ctagatccgc	actcactaac	gatcatctgg	3600
60	tagatataga	ttgcctcggt	ggacggcccg	ctctggacgc	agtcaaaaag	ggtctcccc	3660
	atgeteeege	actgatcaag	agaaccaaca	ggagaattcc	tgagggatcc	gatcgtttaa	3720
	acaaagagac	taatatcctc	ctcgtcgagc	agctggaaga	gaccctcaat	cgcaatcgca	3780
65	ttctgtttga	aaagaactcc	tcaatcgcac	aggccccaat	tggcgagatc	aagaactacc	3840

	ggtatcacct	ggaggaactg	ctcttcgaga	acaatgaaaa	gaaatttgca	gagaaccaga	3900
	aaaatgagtg	ggacgaaatt	ctggcctaca	tggatctgct	catctcaccc	aagcctatca	3960
5	gcattgagat	cgctgacaaa	gaaatttcta	tcccaagtgg	ggagcgaccc	gcatatttcg	4020
	aatgggtgct	gtggagggca	tttctggccc	tcaaccacct	gatcattgag	ccccagcagt	4080
	gcaggagatt	caaggtcgac	caggacttca	agcctatcca	taatgctcca	ggcggagggg	4140
10	cagatgtgat	tttcgagtac	gaaaacttta	agatcctggg	cgaggtcacc	ctcacaagca	4200
	attcccgaca	ggaagcagct	gagggagaac	ccgtgcggcg	ccatattgcc	gtggagacag	4260
45	tcaacactcc	tgacaaggat	gtctatggac	tgttcctcgc	tctgaccatc	gacactaata	4320
15	ccgccgagac	atttcgacac	ggggcttggt	atcaccagga	ggaactgatg	gatgtgaaga	4380
	ttctccccct	gactctcgag	tccttcaaga	agtatctgga	atctctcaga	aagaaaaatc	4440
20	aggtggagac	aggaatcttt	gacctgaaga	aaatgatgga	tgaaagcctg	aagctccggg	4500
	aaaccctgac	cgcaccccag	tggaaaaatg	aaatcacaaa	caaattcgcc	agaccaatct	4560
	gaacgcgtaa	atgattgcag	atccactagt	tctagaattc	cagctgagcg	ccggtcgcta	4620
25	ccattaccag	ttggtctggt	gtcaaaaata	ataataaccg	ggcaggggg	atctgcatgg	4680
	atctttgtga	aggaacctta	cttctgtggt	gtgacataat	tggacaaact	acctacagag	4740
	atttaaagct	ctaaggtaaa	tataaaattt	ttaagtgtat	aatgtgttaa	actactgatt	4800
30	ctaattgttt	gtgtatttta	gattccaacc	tatggaactg	atgaatggga	gcagtggtgg	4860
	aatgccagat	ccagacatga	taagatacat	tgatgagttt	ggacaaacca	caactagaat	4920
	gcagtgaaaa	aaatgcttta	tttgtgaaat	ttgtgatgct	attgctttat	ttgtaaccat	4980
35	tataagctgc	aataaacaag	ttaacaacaa	caattgcatt	cattttatgt	ttcaggttca	5040
	gggggaggtg	tgggaggttt	tttaaagcaa	gtaaaacctc	tacaaatgtg	gtatggctga	5100
40	ttatgatctg	cggccgccac	tggccgtcgt	tttacaacgt	cgtgactggg	aaaaccctgg	5160
40	cgttacccaa	cttaatcgcc	ttgcagcaca	tececettte	gccagctggc	gtaatagcga	5220
	agaggcccgc	accgatcgcc	cttcccaaca	gttgcgcagc	ctgaatggcg	aatggaacgc	5280
45	gccctgtagc	ggcgcattaa	gcgcggcggg	tgtggtggtt	acgcgcagcg	tgaccgctac	5340
	acttgccagc	gccctagcgc	ccgctccttt	cgctttcttc	ccttcctttc	tegecaegtt	5400
	cgccggcttt	ccccgtcaag	ctctaaatcg	ggggctccct	ttagggttcc	gatttagtgc	5460
50	tttacggcac	ctcgacccca	aaaaacttga	ttagggtgat	ggttcacgta	gtgggccatc	5520
	gccctgatag	acggttttc	gccctttgac	gttggagtcc	acgttcttta	atagtggact	5580
	cttgttccaa	actggaacaa	cactcaaccc	tatctcggtc	tattcttttg	atttataagg	5640
55	gattttgccg	atttcggcct	attggttaaa	aaatgagctg	atttaacaaa	aatttaacgc	5700

	gaaccccaac	aaaacaccaa	cycccacaac	ccaggcggca	cccccgggg	aaacgcgcgc	3700
	ggaaccccta	tttgtttatt	tttctaaata	cattcaaata	tgtatccgct	catgagacaa	5820
5	taaccctgat	aaatgcttca	ataatattga	aaaaggaaga	gtatgagtat	tcaacatttc	5880
	cgtgtcgccc	ttattccctt	ttttgcggca	ttttgccttc	ctgtttttgc	tcacccagaa	5940
	acgctggtga	aagtaaaaga	tgctgaagat	cagttgggtg	cacgagtggg	ttacatcgaa	6000
10	ctggatctca	acagcggtaa	gatccttgag	agttttcgcc	ccgaagaacg	ttttccaatg	6060
	atgagcactt	ttaaagttct	gctatgtggc	gcggtattat	cccgtattga	cgccgggcaa	6120
15	gagcaactcg	gtcgccgcat	acactattct	cagaatgact	tggttgagta	ctcaccagtc	6180
15	acagaaaago	atcttacgga	tggcatgaca	gtaagagaat	tatgcagtgc	tgccataacc	6240
	atgagtgata	acactgcggc	caacttactt	ctgacaacga	tcggaggacc	gaaggagcta	6300
20	accgcttttt	tgcacaacat	gggggatcat	gtaactcgcc	ttgatcgttg	ggaaccggag	6360
	ctgaatgaag	ccataccaaa	cgacgagcgt	gacaccacga	tgcctgtagc	aatggcaaca	6420
	acgttgcgca	aactattaac	tggcgaacta	cttactctag	cttcccggca	acaattaata	6480
25	gactggatgg	aggcggataa	agttgcagga	ccacttctgc	gctcggccct	tccggctggc	6540
	tggtttattg	ctgataaatc	tggagccggt	gagcgtgggt	ctcgcggtat	cattgcagca	6600
	ctggggccag	atggtaagcc	ctcccgtatc	gtagttatct	acacgacggg	gagtcaggca	6660
30	actatggatg	aacgaaatag	acagatcgct	gagataggtg	cctcactgat	taagcattgg	6720
	taactgtcag	accaagttta	ctcatatata	ctttagattg	atttaaaact	tcatttttaa	6780
	tttaaaagga	tctaggtgaa	gatccttttt	gataatctca	tgaccaaaat	cccttaacgt	6840
35	gagttttcgt	tccactgagc	gtcagacccc	gtagaaaaga	tcaaaggatc	ttcttgagat	6900
	ccttttttc	tgcgcgtaat	ctgctgcttg	caaacaaaaa	aaccaccgct	accagcggtg	6960
40	gtttgtttgc	cggatcaaga	gctaccaact	ctttttccga	aggtaactgg	cttcagcaga	7020
	gcgcagatac	caaatactgt	ccttctagtg	tagccgtagt	taggccacca	cttcaagaac	7080
	tctgtagcac	cgcctacata	cctcgctctg	ctaatcctgt	taccagtggc	tgctgccagt	7140
45	ggcgataagt	cgtgtcttac	cgggttggac	tcaagacgat	agttaccgga	taaggcgcag	7200
	eggteggget	gaacgggggg	ttcgtgcaca	cagcccagct	tggagcgaac	gacctacacc	7260
	gaactgagat	acctacagcg	tgagctatga	gaaagcgcca	cgcttcccga	agggagaaag	7320
50	gcggacaggt	atccggtaag	cggcagggtc	ggaacaggag	agcgcacgag	ggagcttcca	7380
	gggggaaacg	cctggtatct	ttatagtcct	gtcgggtttc	gccacctctg	acttgagcgt	7440
	cgatttttgt	gatgctcgtc	aggggggcgg	agcctatgga	aaaacgccag	caacgcggcc	7500
55	ttttacggt	tcctggcctt	ttgctggcct	tttgctcaca	tgttctttcc	tgcgttatcc	7560
	cctgattctg	tggataaccg	tattaccgcc	tttgagtgag	ctgataccgc	tegeegeage	7620

	cga	aacgaccg	agcgcagcga	gtcagtgagc	gaggaagcgg	aagagcgccc	aatacgcaaa	7680
5	ccç	gcctctcc	ccgcgcgttg	gccgattcat	taatgcagct	ggcacgacag	gtttcccgac	7740
	tg	gaaagcgg	gcagtgagcg	caacgcaatt	aatgtgagtt	agctcactca	ttaggcaccc	7800
	caç	ggctttac	actttatgct	tccggctcgt	atgttgtgtg	gaattgtgag	cggataacaa	7860
10	ttt	tcacacag	gaaacagcta	tgaccatgag	gcgcgccgga	ttc		7903
15	<210> 28 <211> 760 <212> AD <213> Se <220>	69	tificial					
		AG-ArtTall	-CLEDORF					
20	<400> 28							
	gad	cattgatt	attgactagt	tattaatagt	aatcaattac	ggggtcatta	gttcatagcc	60
25	cat	atatgga	gttccgcgtt	acataactta	cggtaaatgg	cccgcctggc	tgaccgccca	120
25	acq	gacccccg	cccattgacg	tcaataatga	cgtatgttcc	catagtaacg	ccaataggga	180
	ctt	tccattg	acgtcaatgg	gtggagtatt	tacggtaaac	tgcccacttg	gcagtacatc	240
30	aag	gtgtatca	tatgccaagt	acgcccccta	ttgacgtcaa	tgacggtaaa	tggcccgcct	300
	ggo	cattatgc	ccagtacatg	accttatggg	actttcctac	ttggcagtac	atctacgtat	360
	tag	gtcatcgc	tattaccatg	gtcgaggtga	gccccacgtt	ctgcttcact	ctccccatct	420
35	ccc	ccccctc	cccaccccca	attttgtatt	tatttatttt	ttaattattt	tgtgcagcga	480
	tgg	gggcggg	aaaaaaaaa	gggcgcgcgc	caggcggggc	ggggcggggc	gaggggcggg	540
40	gcg	gggggag	gcggagaggt	gcggcggcag	ccaatcagag	cggcgcgctc	cgaaagtttc	600
	ctt	ttatggc	gaggcggcgg	cggcggcggc	cctataaaaa	gcgaagcgcg	cggcgggcgg	660
	gag	gtegetge	gcgctgcctt	cgccccgtgc	cccgctccgc	cgccgcctcg	cgccgcccgc	720
45	ccc	eggetetg	actgaccgcg	ttactcccac	aggtgagcgg	gcgggacggc	ccttctcctc	780
	cgg	ggctgtaa	ttagcgcttg	gtttaatgac	ggcttgtttc	ttttctgtgg	ctgcgtgaaa	840
	gad	cttgaggg	gctccgggag	ggccctttgt	gcgggggga	gcggctcggg	gggtgcgtgc	900
50	gto	gtgtgtgt	gcgtggggag	cgccgcgtgc	ggctccgcgc	tgcccggcgg	ctgtgagcgc	960
	tgo	egggegeg	gcgcggggct	ttgtgcgctc	cgcagtgtgc	gcgaggggag	cgcggccggg	1020
55	ggo	eggtgeee	cgcggtgcgg	ggggggctgc	gaggggaaca	aaggctgcgt	gcggggtgtg	1080
55	tgo	cgtggggg	ggtgagcagg	gggtgtgggc	gcgtcggtcg	ggctgcaacc	ccccctgcac	1140
	ccc	ccctcccc	gagttgctga	gcacggcccg	gcttcgggtg	cggggctccg	tacggggcgt	1200
60	ggo	egegggge	tegeegtgee	gggcgggggg	tggcggcagg	tgggggtgcc	gggcggggcg	1260

	gggccgcctc	gggccgggga	gggctcgggg	gaggggcgcg	gcggcccccg	gagcgccggc	1320
E	ggctgtcgag	gcgcggcgag	ccgcagccat	tgccttttat	ggtaatcgtg	cgagagggcg	1380
5	cagggacttc	ctttgtccca	aatctgtgcg	gagccgaaat	ctgggaggcg	ccgccgcacc	1440
	ccctctagcg	ggcgcggggc	gaagcggtgc	ggcgccggca	ggaaggaaat	gggcggggag	1500
10	ggccttcgtg	cgtcgccgcg	ccgccgtccc	cttctccctc	tccagcctcg	gggctgtccg	1560
10	cggggggacg	gctgccttcg	ggggggacgg	ggcagggcgg	ggttcggctt	ctggcgtgtg	1620
	accggcggct	ctagagcctc	tgctaaccat	gttcatgcct	tcttctttt	cctacagatc	1680
15	cttaattaat	aatacgactc	actatagggg	ccgccaccat	gggacctaag	aaaaagagga	1740
	aggtggcggc	cgctgactac	aaggatgacg	acgataaacc	aggtggcgga	ggtagtggcg	1800
	gaggtggggt	acccgccagt	ccagcagccc	aggtggatct	gagaaccctc	ggctacagcc	1860
20	agcagcagca	ggagaagatc	aaaccaaagg	tgcggtccac	cgtcgctcag	caccatgaag	1920
	cactggtggg	gcacggtttc	acacacgccc	atattgtggc	tctgtctcag	catcccgctg	1980
	cactcgggac	tgtggccgtc	aaatatcagg	acatgatcgc	cgctctgcct	gaggcaaccc	2040
25	acgaagccat	tgtgggcgtc	ggaaagcagt	ggagcggtgc	cagagcactc	gaagcactcc	2100
	tcaccgtcgc	cggggaactg	cggggtccac	cactccagtc	cggactggac	actggacagc	2160
	tgctgaagat	cgctaaacgc	ggcggagtga	cagctgtgga	agctgtgcac	gcttggagga	2220
30	atgctctgac	aggagcccca	ctgaatctta	ctccagaaca	ggtcgtcgca	atcgcaagta	2280
	acatcggcgg	aaaacaggcc	ctcgaaaccg	tccagagact	cctccccgtg	ctgtgccagg	2340
	cccacggact	gaccccacag	caggtggtcg	ccatcgctag	caacggcgga	gggaagcagg	2400
35	ctctggagac	cgtgcagagg	ctgctccccg	tcctgtgcca	ggcacatggg	ctcacacctc	2460
	agcaggtggt	cgcaattgcc	tccaatggtg	gcggaaaaca	ggccctggaa	actgtgcaga	2520
	gactgctccc	cgtgctgtgc	caggctcacg	gtctcacacc	ccagcaggtg	gtcgctatcg	2580
40	catctcatga	cgggggcaag	caggcactgg	agacagtgca	gcggctgctc	cctgtcctgt	2640
	gccaggccca	cggactcact	cctcagcagg	tcgtcgccat	tgctagtaac	ggcggaggga	2700
45	aacaggctct	ggaaaccgtg	cagcgcctgc	tccccgtgct	gtgccaagcc	cacggcctga	2760
45	cccccagca	ggtggtcgca	atcgcctcaa	acaatggtgg	caagcaggcc	ctggagactg	2820
	tgcagcgact	gctcccagtg	ctgtgccagg	cccatggact	cacaccacag	caggtcgtcg	2880
50	ctattgcaag	caacaatgga	gggaaacagg	cactggaaac	agtccagagg	ctgctccccg	2940
	tgctgtgcca	agcgcatgga	ctcactcccc	agcaggtcgt	cgccatcgct	tccaataacg	3000
	gcggcaagca	ggccctggag	accgtccaga	gactgctccc	cgtgctgtgc	caagctcacg	3060
55	gactcacacc	tgagcaggtc	gtggcaatcg	cctctaacat	tggagggaaa	caggccctgg	3120
	aaactgtaca	gcggctgctc	cccgtgctgt	gccaagcaca	cggactcact	ccacagcagg	3180

	ccgcggccac	cycaayccac	gacggaggca	agcaggeeee	ggaaacagcg	caycycctyc	J24
5	tccctgtgct	gtgccaggct	catggtctga	ctcctcagca	ggtggtggcc	atcgcttcca	330
5	acaatggagg	gaagcaggcc	ctggagaccg	tacagagact	gctccccgtg	ctgtgccaag	336
	cgcacggtct	gacccctcag	caggtcgtcg	caatcgccag	caatggcggg	ggcaagcagg	342
10	ctctcgaaac	cgtccagcgg	ctcctcccag	tcctctgtca	ggctcacggc	ctgaccccac	348
	agcaggtcgt	cgctattgct	tctaatggcg	gagggcggcc	tgctctggag	agcattgtgg	354
	ctcagctgtc	caggcccgat	cctgccctgg	ctagatccgc	actcactaac	gatcatctgg	360
15	tegetetege	ttgcctcggt	ggacggcccg	ctctggacgc	agtcaaaaag	ggtctccccc	366
	atgctcccgc	actgatcaag	agaaccaaca	ggagaattcc	tgagggatcc	gatcgtttaa	372
	acaagctcgc	aaagtcaagc	cagtccgaaa	caaaggaaaa	actcagagaa	aaactcagaa	378
20	acctgcccca	tgaatacctg	tccctcgtcg	acctggccta	cgattcaaag	cagaaccgcc	384
	tctttgagat	gaaagtgatc	gaactgctca	cagaggaatg	cgggttccag	ggtctgcacc	390
0.5	tcggcggaag	caggagacca	gacggcgtcc	tgtacaccgc	cggactcaca	gacaactatg	396
25	ggatcattct	ggatactaag	gcttacagct	ccggatattc	cctgcccatt	gcccaggctg	402
	acgagatgga	acggtacgtg	cgcgagaatc	agactagaga	tgaactggtc	aaccctaatc	408
30	agtggtggga	gaactttgaa	aatggcctgg	gaaccttcta	ttttctcttc	gtggctgggc	414
	atttcaacgg	taatgtccag	gcacagctgg	agcgaatcag	taggaatacc	ggcgtgctgg	420
	gagccgctgc	atctatcagt	cagctgctcc	tgctcgcaga	cgccattaga	gggggtcgga	426
35	tggatagaga	gagactgcgg	cacctcatgt	ttcagaacga	agagtttctg	ctggaacagg	432
	agctgtgaac	gcgtaaatga	ttgcagatcc	actagttcta	gaattccagc	tgagcgccgg	438
	tcgctaccat	taccagttgg	tctggtgtca	aaaataataa	taaccgggca	ggggggatct	444
40	gcatggatct	ttgtgaagga	accttacttc	tgtggtgtga	cataattgga	caaactacct	450
	acagagattt	aaagctctaa	ggtaaatata	aaattttaa	gtgtataatg	tgttaaacta	456
	ctgattctaa	ttgtttgtgt	attttagatt	ccaacctatg	gaactgatga	atgggagcag	462
45	tggtggaatg	ccagatccag	acatgataag	atacattgat	gagtttggac	aaaccacaac	468
	tagaatgcag	tgaaaaaaat	gctttatttg	tgaaatttgt	gatgctattg	ctttatttgt	474
50	aaccattata	agctgcaata	aacaagttaa	caacaacaat	tgcattcatt	ttatgtttca	480
30	ggttcagggg	gaggtgtggg	aggttttta	aagcaagtaa	aacctctaca	aatgtggtat	486
	ggctgattat	gatctgcggc	cgccactggc	cgtcgtttta	caacgtcgtg	actgggaaaa	492
55	ccctggcgtt	acccaactta	atcgccttgc	agcacatccc	cctttcgcca	gctggcgtaa	498
	tagcgaagag	gcccgcaccg	atcgcccttc	ccaacagttg	cgcagcctga	atggcgaatg	504

	gaacgcgccc	tgtagcggcg	cattaagcgc	ggcgggtgtg	gtggttacgc	gcagcgtgac	2100
_	cgctacactt	gccagcgccc	tagcgcccgc	teettteget	ttcttccctt	cctttctcgc	516
5	cacgttcgcc	ggctttcccc	gtcaagctct	aaatcggggg	ctccctttag	ggttccgatt	5220
	tagtgcttta	cggcacctcg	accccaaaaa	acttgattag	ggtgatggtt	cacgtagtgg	5280
10	gccatcgccc	tgatagacgg	tttttcgccc	tttgacgttg	gagtccacgt	tctttaatag	5340
10	tggactcttg	ttccaaactg	gaacaacact	caaccctatc	tcggtctatt	cttttgattt	5400
	ataagggatt	ttgccgattt	cggcctattg	gttaaaaaat	gagctgattt	aacaaaaatt	5460
15	taacgcgaat	tttaacaaaa	tattaacgct	tacaatttag	gtggcacttt	tcggggaaat	5520
	gtgcgcggaa	cccctatttg	tttattttc	taaatacatt	caaatatgta	tccgctcatg	5580
	agacaataac	cctgataaat	gcttcaataa	tattgaaaaa	ggaagagtat	gagtattcaa	564
20	catttccgtg	tcgcccttat	tcccttttt	gcggcatttt	gccttcctgt	ttttgctcac	5700
	ccagaaacgc	tggtgaaagt	aaaagatgct	gaagatcagt	tgggtgcacg	agtgggttac	5760
	atcgaactgg	atctcaacag	cggtaagatc	cttgagagtt	ttcgccccga	agaacgtttt	5820
25	ccaatgatga	gcacttttaa	agttctgcta	tgtggcgcgg	tattatcccg	tattgacgcc	5880
	gggcaagagc	aactcggtcg	ccgcatacac	tattctcaga	atgacttggt	tgagtactca	5940
	ccagtcacag	aaaagcatct	tacggatggc	atgacagtaa	gagaattatg	cagtgctgcc	6000
30	ataaccatga	gtgataacac	tgcggccaac	ttacttctga	caacgatcgg	aggaccgaag	6060
	gagctaaccg	cttttttgca	caacatgggg	gatcatgtaa	ctcgccttga	tcgttgggaa	6120
	ccggagctga	atgaagccat	accaaacgac	gagcgtgaca	ccacgatgcc	tgtagcaatg	6180
35	gcaacaacgt	tgcgcaaact	attaactggc	gaactactta	ctctagcttc	ccggcaacaa	624
	ttaatagact	ggatggaggc	ggataaagtt	gcaggaccac	ttctgcgctc	ggcccttccg	630
40	gctggctggt	ttattgctga	taaatctgga	gccggtgagc	gtgggtctcg	cggtatcatt	636
40	gcagcactgg	ggccagatgg	taagccctcc	cgtatcgtag	ttatctacac	gacggggagt	6420
	caggcaacta	tggatgaacg	aaatagacag	atcgctgaga	taggtgcctc	actgattaag	648
45	cattggtaac	tgtcagacca	agtttactca	tatatacttt	agattgattt	aaaacttcat	654
40	ttttaattta	aaaggatcta	ggtgaagatc	ctttttgata	atctcatgac	caaaatccct	660
	taacgtgagt	tttcgttcca	ctgagcgtca	gaccccgtag	aaaagatcaa	aggatettet	666
50	tgagatcctt	tttttctgcg	cgtaatctgc	tgcttgcaaa	caaaaaaacc	accgctacca	672
	gcggtggttt	gtttgccgga	tcaagagcta	ccaactcttt	ttccgaaggt	aactggcttc	678
	agcagagcgc	agataccaaa	tactgtcctt	ctagtgtagc	cgtagttagg	ccaccacttc	684
55	aagaactctg	tagcaccgcc	tacatacctc	gctctgctaa	tcctgttacc	agtggctgct	690
	gccagtggcg	ataagtcgtg	tcttaccggg	ttggactcaa	gacgatagtt	accggataag	696

		gcgcagcggt	cgggctgaac	ggggggttcg	tgcacacagc	ccagcttgga	gcgaacga	cc 7020	
5		tacaccgaac	tgagatacct	acagcgtgag	ctatgagaaa	gcgccacgct	tcccgaag	gg 7080	
5		agaaaggcgg	acaggtatcc	ggtaagcggc	agggtcggaa	caggagagcg	cacgaggg	ag 7140	
		cttccagggg	gaaacgcctg	gtatctttat	agtcctgtcg	ggtttcgcca	cctctgact	t 7200	
10		gagcgtcgat	ttttgtgatg	ctcgtcaggg	gggcggagcc	tatggaaaaa	cgccagcaa	ac 7260	
		gcggcctttt	tacggttcct	ggccttttgc	tggccttttg	ctcacatgtt	ctttcctg	eg 7320	
		ttatcccctg	attctgtgga	taaccgtatt	accgcctttg	agtgagctga	taccgctc	gc 7380	
15		cgcagccgaa	cgaccgagcg	cagcgagtca	gtgagcgagg	aagcggaaga	gcgcccaat	a 7440	
		cgcaaaccgc	ctctccccgc	gcgttggccg	attcattaat	gcagctggca	cgacaggti	t 7500	
		cccgactgga	aagcgggcag	tgagcgcaac	gcaattaatg	tgagttagct	cactcatta	ag 7560	
20		gcaccccagg	ctttacactt	tatgcttccg	gctcgtatgt	tgtgtggaat	tgtgagcg	ga 7620	
		taacaatttc	acacaggaaa	cagctatgac	catgaggcgc	gccggattc		7669	
25	<210> 29 <211> 7663 <212> ADN <213> Secu								
30	<220> <223> pCA0	G-ArtTall-Clo0	51						
	<400> 29								
35	•	gacattgatt	attgactag	t tattaata	gt aatcaat	tac ggggtc	atta gtt	catagcc	60
		catatatgga	gttccgcgt	t acataact	ta cggtaaa	tgg cccgcc	tggc tga	ccgccca	120
	;	acgacccccg	cccattgac	g tcaataat	ga cgtatgt	tcc catagt	aacg cca	ataggga	180
40		ctttccattg	acgtcaatg	g gtggagta	tt tacggta	aac tgccca	cttg gca	gtacatc	240
		aagtgtatca	tatgccaag	t acgccccc	ta ttgacgt	caa tgacgg	taaa tgg	cccgcct	300
	•	ggcattatgc	ccagtacat	g accttatg	gg actttcc	tac ttggca	gtac atc	tacgtat	360
45	-	tagtcatcgc	tattaccat	g gtcgaggt	ga gccccac	gtt ctgctt	cact ctc	cccatct	420
	(ccccccctc	cccaccccc	a attttgta	tt tatttat	ttt ttaatt	attt tgt	gcagcga	480
50		tgggggcggg	aaaaaaaaa	g gggcgcgc	gc caggcgg	ggc ggggcg	gggc gag	gggcggg	540
30	•	gcggggcgag	gcggagagg	t geggegge	ag ccaatca	gag cggcgc	gctc cga	aagtttc	600
	•	cttttatggc	gaggcggcg	g cggcggcg	gc cctataa	aaa gcgaag	cgcg cgg	cgggcgg	660
55	•	gagtcgctgc	gegetgeet	t cgccccgt	ga acagata	ege egeege	ctcg cgc	cgcccgc	720
30	•	cccggctctg	actgaccgc	g ttactccc	ac aggtgag	cgg gcggga	cggc cct	tctcctc	780
		cgggctgtaa	ttagcgctt	g gtttaatg	ac ggcttgt	ttc ttttct	ataa cta	cgtgaaa	840

	gccccgaggg	gccccgggag	ggccccccgc	gcgggggga	geggereggg	gggtgtgtgt	301
5	gtgtgtgtgt	gcgtggggag	cgccgcgtgc	ggctccgcgc	tgcccggcgg	ctgtgagcgc	960
3	tgcgggcgcg	gcgcggggct	ttgtgcgctc	cgcagtgtgc	gcgaggggag	cgcggccggg	1020
	ggcggtgccc	cgcggtgcgg	ggggggctgc	gaggggaaca	aaggctgcgt	gcggggtgtg	1080
10	tgcgtggggg	ggtgagcagg	gggtgtgggc	gcgtcggtcg	ggctgcaacc	cccctgcac	1140
	cccctcccc	gagttgctga	gcacggcccg	gcttcgggtg	cggggctccg	tacggggcgt	1200
	ggcgcggggc	tegeegtgee	gggcgggggg	tggcggcagg	tgggggtgcc	gggcggggcg	1260
15	gggaagaata	gggccgggga	gggctcgggg	gaggggcgcg	gcggcccccg	gagcgccggc	1320
	ggctgtcgag	gcgcggcgag	ccgcagccat	tgccttttat	ggtaatcgtg	cgagagggcg	1380
	cagggacttc	ctttgtccca	aatctgtgcg	gagccgaaat	ctgggaggcg	ccgccgcacc	1440
20	ccctctagcg	ggcgcggggc	gaagcggtgc	ggcgccggca	ggaaggaaat	gggcggggag	1500
	ggccttcgtg	cgtcgccgcg	aagaagtaaa	cttctccctc	tccagcctcg	gggctgtccg	1560
25	cggggggacg	gctgccttcg	ggggggacgg	ggcagggcgg	ggttcggctt	ctggcgtgtg	1620
	accggcggct	ctagagcctc	tgctaaccat	gttcatgcct	tcttctttt	cctacagatc	1680
	cttaattaat	aatacgactc	actatagggg	ccgccaccat	gggacctaag	aaaaagagga	1740
30	aggtggcggc	cgctgactac	aaggatgacg	acgataaacc	aggtggcgga	ggtagtggcg	1800
	gaggtggggt	acccgccagt	ccagcagccc	aggtggatct	gagaaccctc	ggctacagcc	1860
	agcagcagca	ggagaagatc	aaaccaaagg	tgcggtccac	cgtcgctcag	caccatgaag	1920
35	cactggtggg	gcacggtttc	acacacgccc	atattgtggc	tctgtctcag	catcccgctg	1980
	cactcgggac	tgtggccgtc	aaatatcagg	acatgatcgc	cgctctgcct	gaggcaaccc	2040
40	acgaagccat	tgtgggcgtc	ggaaagcagt	ggagcggtgc	cagagcactc	gaagcactcc	2100
40	tcaccgtcgc	cggggaactg	cggggtccac	cactccagtc	cggactggac	actggacagc	2160
	tgctgaagat	cgctaaacgc	ggcggagtga	cagctgtgga	agctgtgcac	gcttggagga	2220
45	atgctctgac	aggagcccca	ctgaatctta	ctccagaaca	ggtcgtcgca	atcgcaagta	228
	acatcggcgg	aaaacaggcc	ctcgaaaccg	tccagagact	cctccccgtg	ctgtgccagg	2340
	cccacggact	gaccccacag	caggtggtcg	ccatcgctag	caacggcgga	gggaagcagg	240
50	ctctggagac	cgtgcagagg	ctgctccccg	tcctgtgcca	ggcacatggg	ctcacacctc	2460
	agcaggtggt	cgcaattgcc	tccaatggtg	gcggaaaaca	ggccctggaa	actgtgcaga	2520
	gactgctccc	cgtgctgtgc	caggctcacg	gtctcacacc	ccagcaggtg	gtcgctatcg	2580
55	catctcatga	cgggggcaag	caggcactgg	agacagtgca	gcggctgctc	cctgtcctgt	2640
	gccaggccca	cggactcact	cctcagcagg	tcgtcgccat	tgctagtaac	ggcggaggga	270
60	aacaggctct	ggaaaccgtg	cagcgcctgc	tccccgtgct	gtgccaagcc	cacggcctga	276

	cccccagca	ggtggtegea	ategeeteaa	acaatggtgg	caagcaggcc	ctggagaetg	2820
5	tgcagcgact	gctcccagtg	ctgtgccagg	cccatggact	cacaccacag	caggtcgtcg	2880
	ctattgcaag	caacaatgga	gggaaacagg	cactggaaac	agtccagagg	ctgctccccg	2940
	tgctgtgcca	agcgcatgga	ctcactcccc	agcaggtcgt	cgccatcgct	tccaataacg	3000
10	gcggcaagca	ggccctggag	accgtccaga	gactgctccc	cgtgctgtgc	caagctcacg	3060
	gactcacacc	tgagcaggtc	gtggcaatcg	cctctaacat	tggagggaaa	caggccctgg	3120
	aaactgtaca	geggetgete	cccgtgctgt	gccaagcaca	cggactcact	ccacagcagg	3180
15	tcgtggccat	tgcaagtcat	gacggaggca	agcaggccct	ggaaacagtg	cagcgcctgc	3240
	tccctgtgct	gtgccaggct	catggtctga	ctcctcagca	ggtggtggcc	atcgcttcca	3300
20	acaatggagg	gaagcaggcc	ctggagaccg	tacagagact	gctccccgtg	ctgtgccaag	3360
20	cgcacggtct	gacccctcag	caggtcgtcg	caatcgccag	caatggcggg	ggcaagcagg	3420
	ctctcgaaac	cgtccagcgg	ctcctcccag	tcctctgtca	ggctcacggc	ctgaccccac	3480
25	agcaggtcgt	cgctattgct	tctaatggcg	gagggcggcc	tgctctggag	agcattgtgg	3540
	ctcagctgtc	caggcccgat	cctgccctgg	ctagatccgc	actcactaac	gatcatctgg	3600
	tegetetege	ttgcctcggt	ggacggcccg	ctctggacgc	agtcaaaaag	ggtctccccc	3660
30	atgctcccgc	actgatcaag	agaaccaaca	ggagaattcc	tgagggatcc	gatcgtttaa	3720
	acgaaggcat	caaaagcaac	atctccctcc	tgaaagacga	actccggggg	cagattagcc	3780
35	acattagtca	cgaatacctc	tccctcatcg	acctggcttt	cgatagcaag	cagaacaggc	3840
33	tctttgagat	gaaagtgctg	gaactgctcg	tcaatgagta	cgggttcaag	ggtcgacacc	3900
	tcggcggatc	taggaaacca	gacggcatcg	tgtatagtac	cacactggaa	gacaactttg	3960
40	ggatcattgt	ggataccaag	gcatactctg	agggttatag	tctgcccatt	tcacaggccg	4020
	acgagatgga	acggtacgtg	cgcgagaact	caaatagaga	tgaggaagtc	aaccctaaca	4080
	agtggtggga	gaacttctct	gaggaagtga	agaaatacta	cttcgtcttt	atcagcgggt	4140
45	ccttcaaggg	taaatttgag	gaacagctca	ggagactgag	catgactacc	ggcgtgaatg	4200
	gcagcgccgt	caacgtggtc	aatctgctcc	tgggcgctga	aaagattcgg	agcggagaga	4260
50	tgaccatcga	agagctggag	agggcaatgt	ttaataatag	cgagtttatc	ctgaaatact	4320
50	gaacgcgtaa	atgattgcag	atccactagt	tctagaattc	cagctgagcg	ccggtcgcta	4380
	ccattaccag	ttggtctggt	gtcaaaaata	ataataaccg	ggcaggggg	atctgcatgg	4440
55	atctttgtga	aggaacctta	cttctgtggt	gtgacataat	tggacaaact	acctacagag	4500
	atttaaagct	ctaaggtaaa	tataaaattt	ttaagtgtat	aatgtgttaa	actactgatt	4560
	ctaattgttt	gtgtatttta	gattccaacc	tatggaactg	atgaatggga	gcagtggtgg	4620

	aatgccagat	ccagacatga	taagatacat	tgatgagttt	ggacaaacca	caactagaat	4680
5	gcagtgaaaa	aaatgcttta	tttgtgaaat	ttgtgatgct	attgctttat	ttgtaaccat	4740
5	tataagctgc	aataaacaag	ttaacaacaa	caattgcatt	cattttatgt	ttcaggttca	4800
	gggggaggtg	tgggaggttt	tttaaagcaa	gtaaaacctc	tacaaatgtg	gtatggctga	4860
10	ttatgatctg	cggccgccac	tggccgtcgt	tttacaacgt	cgtgactggg	aaaaccctgg	4920
	cgttacccaa	cttaatcgcc	ttgcagcaca	tcccctttc	gccagctggc	gtaatagcga	4980
	agaggcccgc	accgatcgcc	cttcccaaca	gttgcgcagc	ctgaatggcg	aatggaacgc	5040
15	gccctgtagc	ggcgcattaa	gcgcggcggg	tgtggtggtt	acgcgcagcg	tgaccgctac	5100
	acttgccagc	gccctagcgc	ccgctccttt	cgctttcttc	ccttcctttc	tcgccacgtt	5160
	cgccggcttt	ccccgtcaag	ctctaaatcg	ggggctccct	ttagggttcc	gatttagtgc	5220
20	tttacggcac	ctcgacccca	aaaaacttga	ttagggtgat	ggttcacgta	gtgggccatc	5280
	gccctgatag	acggttttc	gccctttgac	gttggagtcc	acgttcttta	atagtggact	5340
	cttgttccaa	actggaacaa	cactcaaccc	tatctcggtc	tattcttttg	atttataagg	5400
25	gattttgccg	atttcggcct	attggttaaa	aaatgagctg	atttaacaaa	aatttaacgc	5460
	gaattttaac	aaaatattaa	cgcttacaat	ttaggtggca	cttttcgggg	aaatgtgcgc	5520
30	ggaaccccta	tttgtttatt	tttctaaata	cattcaaata	tgtatccgct	catgagacaa	5580
50	taaccctgat	aaatgcttca	ataatattga	aaaaggaaga	gtatgagtat	tcaacatttc	5640
	cgtgtcgccc	ttattccctt	ttttgcggca	ttttgccttc	ctgtttttgc	tcacccagaa	5700
35	acgctggtga	aagtaaaaga	tgctgaagat	cagttgggtg	cacgagtggg	ttacatcgaa	5760
	ctggatctca	acagcggtaa	gatccttgag	agttttcgcc	ccgaagaacg	ttttccaatg	5820
	atgagcactt	ttaaagttct	gctatgtggc	gcggtattat	cccgtattga	cgccgggcaa	5880
40	gagcaactcg	gtcgccgcat	acactattct	cagaatgact	tggttgagta	ctcaccagtc	5940
	acagaaaagc	atcttacgga	tggcatgaca	gtaagagaat	tatgcagtgc	tgccataacc	6000
	atgagtgata	acactgcggc	caacttactt	ctgacaacga	tcggaggacc	gaaggagcta	6060
45	accgcttttt	tgcacaacat	gggggatcat	gtaactcgcc	ttgatcgttg	ggaaccggag	6120
	ctgaatgaag	ccataccaaa	cgacgagcgt	gacaccacga	tgcctgtagc	aatggcaaca	6180
50	acgttgcgca	aactattaac	tggcgaacta	cttactctag	cttcccggca	acaattaata	6240
50	gactggatgg	aggcggataa	agttgcagga	ccacttctgc	gctcggccct	teeggetgge	6300
	tggtttattg	ctgataaatc	tggagccggt	gagcgtgggt	ctcgcggtat	cattgcagca	6360
55	ctggggccag	atggtaagcc	ctcccgtatc	gtagttatct	acacgacggg	gagtcaggca	6420
	actatggatg	aacgaaatag	acagatcgct	gagataggtg	cctcactgat	taagcattgg	6480
	taactgtcag	accaagttta	ctcatatata	ctttagattg	atttaaaact	tcatttttaa	6540

	tttaaaagga tetaggtgaa gateettttt gataatetea tgaeeaaaat eeettaaegt	0000
_	gagttttcgt tccactgagc gtcagacccc gtagaaaaga tcaaaggatc ttcttgagat	6660
5	ccttttttc tgcgcgtaat ctgctgcttg caaacaaaaa aaccaccgct accagcggtg	6720
	gtttgtttgc cggatcaaga gctaccaact ctttttccga aggtaactgg cttcagcaga	6780
10	gcgcagatac caaatactgt ccttctagtg tagccgtagt taggccacca cttcaagaac	6840
	tctgtagcac cgcctacata cctcgctctg ctaatcctgt taccagtggc tgctgccagt	6900
	ggcgataagt cgtgtcttac cgggttggac tcaagacgat agttaccgga taaggcgcag	6960
15	cggtcgggct gaacgggggg ttcgtgcaca cagcccagct tggagcgaac gacctacacc	7020
	gaactgagat acctacageg tgagetatga gaaagegeea egetteeega agggagaaag	7080
	gcggacaggt atccggtaag cggcagggtc ggaacaggag agcgcacgag ggagcttcca	7140
20	gggggaaacg cctggtatct ttatagtcct gtcgggtttc gccacctctg acttgagcgt	7200
	cgatttttgt gatgctcgtc aggggggcgg agcctatgga aaaacgccag caacgcggcc	7260
25	tttttacggt tcctggcctt ttgctggcct tttgctcaca tgttctttcc tgcgttatcc	7320
_0	cctgattctg tggataaccg tattaccgcc tttgagtgag ctgataccgc tcgccgcagc	7380
	cgaacgaccg agcgcagcga gtcagtgagc gaggaagcgg aagagcgccc aatacgcaaa	7440
30	cegeetetee eegegegttg geegatteat taatgeaget ggeaegaeag gttteeegae	7500
	tggaaagcgg gcagtgagcg caacgcaatt aatgtgagtt agctcactca ttaggcaccc	7560
	caggetttae aetttatget teeggetegt atgttgtgtg gaattgtgag eggataacaa	7620
35	tttcacacag gaaacageta tgaccatgag gcgcgccgga ttc	7663
40	<210> 30 <211> 7816 <212> ADN <213> Secuencia artificial	
	<220> <223> pCAG-ArtTall-Mlyl	
45	<400> 30	
	gacattgatt attgactagt tattaatagt aatcaattac ggggtcatta gttcatagcc	60
50	catatatgga gttccgcgtt acataactta cggtaaatgg cccgcctggc tgaccgccca	120
	acgacccccg cccattgacg tcaataatga cgtatgttcc catagtaacg ccaataggga	180
55	ctttccattg acgtcaatgg gtggagtatt tacggtaaac tgcccacttg gcagtacatc	240
00	aagtgtatca tatgccaagt acgcccccta ttgacgtcaa tgacggtaaa tggcccgcct	300
	ggcattatgc ccagtacatg accttatggg actttcctac ttggcagtac atctacgtat	360
60	tagtcatcgc tattaccatg gtcgaggtga gccccacgtt ctgcttcact ctccccatct	420

	ccccccctc	cccaccccca	attttgtatt	tatttatttt	ttaattattt	tgtgcagcga	480
5	tgggggcggg	adadadada	gggcgcgcgc	caggcggggc	ggggcggggc	gaggggggg	540
	gcggggcgag	gcggagaggt	gcggcggcag	ccaatcagag	cggcgcgctc	cgaaagtttc	600
	cttttatggc	gaggcggcgg	cggcggcggc	cctataaaaa	gcgaagcgcg	cggcgggcgg	660
10	gagtcgctgc	gcgctgcctt	cgccccgtgc	cccgctccgc	cgccgcctcg	cgccgcccgc	720
	cccggctctg	actgaccgcg	ttactcccac	aggtgagcgg	gcgggacggc	ccttctcctc	780
	cgggctgtaa	ttagcgcttg	gtttaatgac	ggcttgtttc	ttttctgtgg	ctgcgtgaaa	840
15	gccttgaggg	gctccgggag	ggccctttgt	gcgggggga	gcggctcggg	gggtgcgtgc	900
	gtgtgtgtgt	gcgtggggag	cgccgcgtgc	ggctccgcgc	tgcccggcgg	ctgtgagcgc	960
00	tgegggegeg	gcgcggggct	ttgtgcgctc	cgcagtgtgc	gcgaggggag	cgcggccggg	1020
20	ggcggtgccc	cgcggtgcgg	ggggggctgc	gaggggaaca	aaggctgcgt	gcggggtgtg	1080
	tgcgtgggg	ggtgagcagg	gggtgtgggc	gcgtcggtcg	ggctgcaacc	cccctgcac	1140
25	cccctccc	gagttgctga	gcacggcccg	gcttcgggtg	cggggctccg	tacggggcgt	1200
20	ggcgcggggc	tcgccgtgcc	gggcgggggg	tggcggcagg	tgggggtgcc	gggcggggcg	1260
	gggccgcctc	gggccgggga	gggctcgggg	gaggggcgcg	gcggcccccg	gagcgccggc	1320
30	ggctgtcgag	gcgcggcgag	ccgcagccat	tgccttttat	ggtaatcgtg	cgagagggcg	1380
	cagggacttc	ctttgtccca	aatctgtgcg	gagccgaaat	ctgggaggcg	ccgccgcacc	1440
	ccctctagcg	ggcgcggggc	gaagcggtgc	ggcgccggca	ggaaggaaat	gggcggggag	1500
35	ggccttcgtg	cgtcgccgcg	ccgccgtccc	cttctccctc	tccagcctcg	gggctgtccg	1560
	cgggggacg	gctgccttcg	ggggggacgg	ggcagggcgg	ggttcggctt	ctggcgtgtg	1620
	accggcggct	ctagagcctc	tgctaaccat	gttcatgcct	tcttctttt	cctacagatc	1680
40	cttaattaat	aatacgactc	actatagggg	ccgccaccat	gggacctaag	aaaaagagga	1740
	aggtggcggc	cgctgactac	aaggatgacg	acgataaacc	aggtggcgga	ggtagtggcg	1800
	gaggtggggt	acccgccagt	ccagcagccc	aggtggatct	gagaaccctc	ggctacagcc	1860
45	agcagcagca	ggagaagatc	aaaccaaagg	tgcggtccac	cgtcgctcag	caccatgaag	1920
	cactggtggg	gcacggtttc	acacacgccc	atattgtggc	tctgtctcag	catcccgctg	1980
	cactcgggac	tgtggccgtc	aaatatcagg	acatgatcgc	cgctctgcct	gaggcaaccc	2040
50	acgaagccat	tgtgggcgtc	ggaaagcagt	ggagcggtgc	cagagcactc	gaagcactcc	2100
	tcaccgtcgc	cggggaactg	cggggtccac	cactccagtc	cggactggac	actggacagc	2160
	tgctgaagat	cgctaaacgc	ggcggagtga	cagctgtgga	agctgtgcac	gcttggagga	2220
55	atgetetgae	aggagcccca	ctgaatctta	ctccagaaca	ggtcgtcgca	atcgcaagta	2280
	acateggegg	aaaacaggcc	ctcgaaaccg	tccagagact	cctccccgtg	ctgtgccagg	2340

	cccacggact	gaccccacag	caggraggrag	ccatcgctag	caacggcgga	gggaagcagg	240
5	ctctggagac	cgtgcagagg	ctgctccccg	tcctgtgcca	ggcacatggg	ctcacacctc	246
	agcaggtggt	cgcaattgcc	tccaatggtg	gcggaaaaca	ggccctggaa	actgtgcaga	2520
	gactgctccc	cgtgctgtgc	caggctcacg	gtctcacacc	ccagcaggtg	gtcgctatcg	2580
10	catctcatga	cgggggcaag	caggcactgg	agacagtgca	gcggctgctc	cctgtcctgt	2640
	gccaggccca	cggactcact	cctcagcagg	tcgtcgccat	tgctagtaac	ggcggaggga	2700
15	aacaggctct	ggaaaccgtg	cagcgcctgc	tccccgtgct	gtgccaagcc	cacggcctga	2760
15	cccccagca	ggtggtcgca	atcgcctcaa	acaatggtgg	caagcaggcc	ctggagactg	2820
	tgcagcgact	gctcccagtg	ctgtgccagg	cccatggact	cacaccacag	caggtcgtcg	2880
20	ctattgcaag	caacaatgga	gggaaacagg	cactggaaac	agtccagagg	ctgctccccg	294
	tgctgtgcca	agcgcatgga	ctcactcccc	agcaggtcgt	cgccatcgct	tccaataacg	300
	gcggcaagca	ggccctggag	accgtccaga	gactgctccc	cgtgctgtgc	caagctcacg	3060
25	gactcacacc	tgagcaggtc	gtggcaatcg	cctctaacat	tggagggaaa	caggccctgg	3120
	aaactgtaca	gcggctgctc	cccgtgctgt	gccaagcaca	cggactcact	ccacagcagg	3180
	tcgtggccat	tgcaagtcat	gacggaggca	agcaggccct	ggaaacagtg	cagcgcctgc	3240
30	tccctgtgct	gtgccaggct	catggtctga	ctcctcagca	ggtggtggcc	atcgcttcca	3300
	acaatggagg	gaagcaggcc	ctggagaccg	tacagagact	gctccccgtg	ctgtgccaag	3360
25	cgcacggtct	gacccctcag	caggtcgtcg	caatcgccag	caatggcggg	ggcaagcagg	3420
35	ctctcgaaac	cgtccagcgg	ctcctcccag	teetetgtea	ggctcacggc	ctgaccccac	348
	agcaggtcgt	cgctattgct	tctaatggcg	gagggcggcc	tgctctggag	agcattgtgg	354
40	ctcagctgtc	caggcccgat	cctgccctgg	ctagatccgc	actcactaac	gatcatctgg	3600
	tegetetege	ttgcctcggt	ggacggcccg	ctctggacgc	agtcaaaaag	ggtctccccc	3660
	atgctcccgc	actgatcaag	agaaccaaca	ggagaattcc	tgagggatcc	gatcgtttaa	3720
45	acatcaatag	caagatcaag	cagctggacg	atagcatcaa	cgtggagtcc	ctgaagattg	3780
	acgatgccaa	agatctgctg	aatgacctgg	agatccagcg	gaaggctaaa	accattgaag	3840
	atacagtgaa	ccacctgaag	ctgcgctccg	acatcgagga	tattctggac	gtgttcgcca	3900
50	aaatcaagaa	aagggatgtg	cccgacgtgc	ctctgttcct	ggagtggaat	atctggcggg	3960
	cctttgccgc	tctgaatcat	acccaggcta	tcgaagggaa	ctttattgtg	gacctggatg	4020
	gcatgcccct	gaatacagct	ccaggaaaga	aacccgatat	cgagattaac	tacggaagct	408
55	tctcctgcat	cgtggaagtg	actatgagct	ccggggagac	ccagtttaac	atggaaggct	414
	ctagtgtgcc	taggcactac	ggagacctgg	tgagaaaggt	ggaccatgat	gcctattgta	420

	tetteatige	ccctaaggtg	gerecaggga	Ctaaagctca	Cilciliaac	cigaalagge	420
5	tgtctacaaa	gcattatggc	ggaaagacta	agatcattcc	aatgagtctg	gacgatttca	432
	tctgctttct	gcaagtgggc	attacccaca	actttcagga	tatcaacaag	ctgaaaaatt	4380
	ggctggacaa	cctgattaac	ttcaatctgg	agtctgaaga	cgaggaaatc	tggtttgagg	444
10	aaatcatttc	taagatcagt	acatgggcca	tttgaacgcg	taaatgattg	cagatccact	4500
	agttctagaa	ttccagctga	gcgccggtcg	ctaccattac	cagttggtct	ggtgtcaaaa	4560
15	ataataataa	ccgggcaggg	gggatctgca	tggatctttg	tgaaggaacc	ttacttctgt	4620
	ggtgtgacat	aattggacaa	actacctaca	gagatttaaa	gctctaaggt	aaatataaaa	4680
	tttttaagtg	tataatgtgt	taaactactg	attctaattg	tttgtgtatt	ttagattcca	474
20	acctatggaa	ctgatgaatg	ggagcagtgg	tggaatgcca	gatccagaca	tgataagata	480
	cattgatgag	tttggacaaa	ccacaactag	aatgcagtga	aaaaaatgct	ttatttgtga	4860
	aatttgtgat	gctattgctt	tatttgtaac	cattataagc	tgcaataaac	aagttaacaa	4920
25	caacaattgc	attcatttta	tgtttcaggt	tcagggggag	gtgtgggagg	tttttaaag	4980
	caagtaaaac	ctctacaaat	gtggtatggc	tgattatgat	ctgcggccgc	cactggccgt	5040
00	cgttttacaa	cgtcgtgact	gggaaaaccc	tggcgttacc	caacttaatc	gccttgcagc	5100
30	acatccccct	ttcgccagct	ggcgtaatag	cgaagaggcc	cgcaccgatc	gcccttccca	5160
	acagttgcgc	agcctgaatg	gcgaatggaa	cgcgccctgt	agcggcgcat	taagcgcggc	522
35	gggtgtggtg	gttacgcgca	gcgtgaccgc	tacacttgcc	agegeeetag	egecegetee	528
	tttcgctttc	ttcccttcct	ttctcgccac	gttcgccggc	tttccccgtc	aagctctaaa	534
	tegggggete	cctttagggt	tccgatttag	tgctttacgg	cacctcgacc	ccaaaaaact	540
40	tgattagggt	gatggttcac	gtagtgggcc	atcgccctga	tagacggttt	ttcgcccttt	546
	gacgttggag	tccacgttct	ttaatagtgg	actcttgttc	caaactggaa	caacactcaa	5520
	ccctatctcg	gtctattctt	ttgatttata	agggattttg	ccgatttcgg	cctattggtt	5580
45	aaaaaatgag	ctgatttaac	aaaaatttaa	cgcgaatttt	aacaaaatat	taacgcttac	5640
	aatttaggtg	gcacttttcg	gggaaatgtg	cgcggaaccc	ctatttgttt	atttttctaa	570
50	atacattcaa	atatgtatcc	gctcatgaga	caataaccct	gataaatgct	tcaataatat	5760
30	tgaaaaagga	agagtatgag	tattcaacat	ttccgtgtcg	cccttattcc	cttttttgcg	5820
	gcattttgcc	ttcctgtttt	tgctcaccca	gaaacgctgg	tgaaagtaaa	agatgctgaa	5880
55	gatcagttgg	gtgcacgagt	gggttacatc	gaactggatc	tcaacagcgg	taagatcctt	5940
	gagagttttc	gccccgaaga	acgttttcca	atgatgagca	cttttaaagt	tctgctatgt	6000
	ggcgcggtat	tatcccgtat	tgacgccggg	caagagcaac	tcggtcgccg	catacactat	606
60	tctcagaatg	acttggttga	gtactcacca	gtcacagaaa	agcatcttac	ggatggcatg	612

		acagtaagag	aattatgcag	tgctgccata	accatgagtg	ataacactgc	ggccaactta	6180
5		cttctgacaa	cgatcggagg	accgaaggag	ctaaccgctt	ttttgcacaa	catgggggat	6240
		catgtaactc	gccttgatcg	ttgggaaccg	gagctgaatg	aagccatacc	aaacgacgag	6300
		cgtgacacca	cgatgcctgt	agcaatggca	acaacgttgc	gcaaactatt	aactggcgaa	6360
10		ctacttactc	tagcttcccg	gcaacaatta	atagactgga	tggaggcgga	taaagttgca	6420
		ggaccacttc	tgcgctcggc	ccttccggct	ggctggttta	ttgctgataa	atctggagcc	6480
15		ggtgagcgtg	ggtctcgcgg	tatcattgca	gcactggggc	cagatggtaa	gecetecegt	6540
		atcgtagtta	tctacacgac	ggggagtcag	gcaactatgg	atgaacgaaa	tagacagatc	6600
		gctgagatag	gtgcctcact	gattaagcat	tggtaactgt	cagaccaagt	ttactcatat	6660
20		atactttaga	ttgatttaaa	acttcatttt	taatttaaaa	ggatctaggt	gaagatcctt	6720
		tttgataatc	tcatgaccaa	aatcccttaa	cgtgagtttt	cgttccactg	agcgtcagac	6780
		cccgtagaaa	agatcaaagg	atcttcttga	gatccttttt	ttctgcgcgt	aatctgctgc	6840
25		ttgcaaacaa	aaaaaccacc	gctaccagcg	gtggtttgtt	tgccggatca	agagctacca	6900
		actcttttc	cgaaggtaac	tggcttcagc	agagcgcaga	taccaaatac	tgtccttcta	6960
30		gtgtagccgt	agttaggcca	ccacttcaag	aactctgtag	caccgcctac	atacctcgct	7020
30		ctgctaatcc	tgttaccagt	ggctgctgcc	agtggcgata	agtcgtgtct	taccgggttg	7080
		gactcaagac	gatagttacc	ggataaggcg	cagcggtcgg	gctgaacggg	gggttcgtgc	7140
35		acacagccca	gcttggagcg	aacgacctac	accgaactga	gatacctaca	gcgtgagcta	7200
		tgagaaagcg	ccacgcttcc	cgaagggaga	aaggcggaca	ggtatccggt	aagcggcagg	7260
		gtcggaacag	gagagcgcac	gagggagctt	ccagggggaa	acgcctggta	tctttatagt	7320
40		cctgtcgggt	ttcgccacct	ctgacttgag	cgtcgatttt	tgtgatgctc	gtcagggggg	7380
		cggagcctat	ggaaaaacgc	cagcaacgcg	gcctttttac	ggttcctggc	cttttgctgg	7440
4-		ccttttgctc	acatgttctt	tcctgcgtta	tcccctgatt	ctgtggataa	ccgtattacc	7500
45		gcctttgagt	gagctgatac	cgctcgccgc	agccgaacga	ccgagcgcag	cgagtcagtg	7560
		agcgaggaag	cggaagagcg	cccaatacgc	aaaccgcctc	tccccgcgcg	ttggccgatt	7620
50		cattaatgca	gctggcacga	caggtttccc	gactggaaag	cgggcagtga	gcgcaacgca	7680
		attaatgtga	gttagctcac	tcattaggca	ccccaggctt	tacactttat	gcttccggct	7740
		cgtatgttgt	gtggaattgt	gagcggataa	caatttcaca	caggaaacag	ctatgaccat	7800
55		gaggcgcgcc	ggattc					7816
	<210> 31 <211> 7705	5						

<212> ADN <213> Secuencia artificial 60

<223> pCAG-ArtTal1-Pept071

65 <400> 31

	gacattga	itt attgactagi	tattaatagt	aatcaattac	ggggtcatta	gttcatagcc	6(
5	catatatg	ga gttccgcgti	acataactta	cggtaaatgg	cccgcctggc	tgaccgccca	120
	acgacccc	cg cccattgac	g tcaataatga	cgtatgttcc	catagtaacg	ccaataggga	180
	ctttccat	tg acgtcaatg	g gtggagtatt	tacggtaaac	tgcccacttg	gcagtacatc	240
10	aagtgtat	ca tatgccaagt	acgeceecta	ttgacgtcaa	tgacggtaaa	tggcccgcct	300
	ggcattat	gc ccagtacate	g accttatggg	actttcctac	ttggcagtac	atctacgtat	360
15	tagtcato	gc tattaccato	g gtcgaggtga	gccccacgtt	ctgcttcact	ctccccatct	420
	ccccccc	tc cccaccccc	a attttgtatt	tatttattt	ttaattattt	tgtgcagcga	480
	tgggggcg	ada adadadadada	g gggegegege	caggcggggc	ggggcggggc	gaggggggg	540
20	geggggeg	gag gcggagaggt	geggeggeag	ccaatcagag	cggcgcgctc	cgaaagtttc	600
	cttttatg	gc gaggcggcg	g cggcggcggc	cctataaaaa	gcgaagcgcg	cggcgggcgg	660
	gagtcgct	ge gegetgeett	cgccccgtgc	cccgctccgc	cgccgcctcg	cgccgcccgc	720
25	cccggctc	tg actgaccgc	g ttactcccac	aggtgagcgg	gcgggacggc	ccttctcctc	780
	cgggctgt	aa ttagcgctt	g gtttaatgac	ggcttgtttc	ttttctgtgg	ctgcgtgaaa	840
30	gccttgag	gg gctccggga	g ggccctttgt	gcgggggga	gcggctcggg	gggtgcgtgc	900
30	gtgtgtgt	gt gcgtgggga	g cgccgcgtgc	ggctccgcgc	tgcccggcgg	ctgtgagcgc	960
	tgcgggcg	geg gegeggget	ttgtgcgctc	cgcagtgtgc	gcgaggggag	cgcggccggg	1020
35	ggcggtgc	cc cgcggtgcg	g ggggggctgc	gaggggaaca	aaggctgcgt	gcggggtgtg	1080
	tgcgtggg	ggg ggtgagcagg	g gggtgtgggc	gcgtcggtcg	ggctgcaacc	cccctgcac	1140
	cccctcc	cc gagttgctga	a gcacggcccg	gcttcgggtg	cggggctccg	tacggggcgt	1200
40	ggcgcggg	gc tcgccgtgc	gggcgggggg	tggcggcagg	tgggggtgcc	gggcggggcg	1260
	gggccgcc	tc gggccgggg	a gggctcgggg	gaggggcgcg	geggeeeeeg	gagcgccggc	1320
	ggctgtcg	gag gegeggega	g ccgcagccat	tgccttttat	ggtaatcgtg	cgagagggcg	1380
45	cagggact	tc ctttgtccc	a aatctgtgcg	gagccgaaat	ctgggaggcg	ccgccgcacc	1440
	ccctctag	ica aacacaaaa	gaagcggtgc	ggcgccggca	ggaaggaaat	gggcggggag	1500
50	ggccttcg	rtg cgtcgccgcq	g ccgccgtccc	cttctccctc	tccagcctcg	gggctgtccg	1560
	cggggga	cg getgeette	g ggggggacgg	ggcagggcgg	ggttcggctt	ctggcgtgtg	1620
	accggcgg	get etagageete	c tgctaaccat	gttcatgcct	tcttctttt	cctacagatc	1680
55	cttaatta	at aatacgacto	actatagggg	ccgccaccat	gggacctaag	aaaaagagga	1740

	aggrggcggc	cgctgactac	aaggatgacg	acgataaacc	aggtggcgga	ggtagtggcg	180
5	gaggtggggt	acccgccagt	ccagcagccc	aggtggatct	gagaaccctc	ggctacagcc	186
	agcagcagca	ggagaagatc	aaaccaaagg	tgcggtccac	cgtcgctcag	caccatgaag	1920
	cactggtggg	gcacggtttc	acacacgccc	atattgtggc	tctgtctcag	catcccgctg	1980
10	cactcgggac	tgtggccgtc	aaatatcagg	acatgatcgc	cgctctgcct	gaggcaaccc	2040
	acgaagccat	tgtgggcgtc	ggaaagcagt	ggagcggtgc	cagagcactc	gaagcactcc	210
15	tcaccgtcgc	cggggaactg	cggggtccac	cactccagtc	cggactggac	actggacagc	2160
10	tgctgaagat	cgctaaacgc	ggcggagtga	cagctgtgga	agctgtgcac	gcttggagga	2220
	atgctctgac	aggagcccca	ctgaatctta	ctccagaaca	ggtcgtcgca	atcgcaagta	2280
20	acatcggcgg	aaaacaggcc	ctcgaaaccg	tccagagact	cctccccgtg	ctgtgccagg	2340
	cccacggact	gaccccacag	caggtggtcg	ccatcgctag	caacggcgga	gggaagcagg	2400
	ctctggagac	cgtgcagagg	ctgctccccg	tcctgtgcca	ggcacatggg	ctcacacctc	2460
25	agcaggtggt	cgcaattgcc	tccaatggtg	gcggaaaaca	ggccctggaa	actgtgcaga	2520
	gactgctccc	cgtgctgtgc	caggctcacg	gtctcacacc	ccagcaggtg	gtcgctatcg	2580
	catctcatga	cgggggcaag	caggcactgg	agacagtgca	gcggctgctc	cctgtcctgt	2640
30	gccaggccca	cggactcact	cctcagcagg	tcgtcgccat	tgctagtaac	ggcggaggga	270
	aacaggctct	ggaaaccgtg	cagcgcctgc	tccccgtgct	gtgccaagcc	cacggcctga	2760
25	cccccagca	ggtggtcgca	atcgcctcaa	acaatggtgg	caagcaggcc	ctggagactg	282
35	tgcagcgact	gctcccagtg	ctgtgccagg	cccatggact	cacaccacag	caggtcgtcg	288
	ctattgcaag	caacaatgga	gggaaacagg	cactggaaac	agtccagagg	ctgctccccg	294
40	tgctgtgcca	agcgcatgga	ctcactcccc	agcaggtcgt	cgccatcgct	tccaataacg	300
	gcggcaagca	ggccctggag	accgtccaga	gactgctccc	cgtgctgtgc	caagctcacg	3060
	gactcacacc	tgagcaggtc	gtggcaatcg	cctctaacat	tggagggaaa	caggccctgg	3120
45	aaactgtaca	gcggctgctc	cccgtgctgt	gccaagcaca	cggactcact	ccacagcagg	3180
	tcgtggccat	tgcaagtcat	gacggaggca	agcaggccct	ggaaacagtg	cagcgcctgc	3240
	tccctgtgct	gtgccaggct	catggtctga	ctcctcagca	ggtggtggcc	atcgcttcca	3300
50	acaatggagg	gaagcaggcc	ctggagaccg	tacagagact	gctccccgtg	ctgtgccaag	3360
	cgcacggtct	gacccctcag	caggtcgtcg	caatcgccag	caatggcggg	ggcaagcagg	3420
55	ctctcgaaac	cgtccagcgg	ctcctcccag	tcctctgtca	ggctcacggc	ctgaccccac	348
55	agcaggtcgt	cgctattgct	tctaatggcg	gagggcggcc	tgctctggag	agcattgtgg	354
	ctcagctgtc	caggcccgat	cctgccctgg	ctagatccgc	actcactaac	gatcatctgg	360

	regererege	rigeereggi	ggacggcccg	ctctggacge	agicaaaaag	ggteteeee	3000
5	atgctcccgc	actgatcaag	agaaccaaca	ggagaattcc	tgagggatcc	gatcgtttaa	3720
	acaagatcag	caaaaccaat	gtgctggagc	tcaaggacaa	agtccgagat	aagctgaaat	3780
	acgtggacca	caggtatctg	gcactcatcg	acctcgccta	tgatgggacc	gctaacaggg	3840
10	acttcgaaat	ccagacaatt	gatctgctca	ttaatgagct	gaagtttaaa	ggggtcaggc	3900
	tcggtgaaag	tagaaagccc	gacggcatca	tttcatacaa	catcaatgga	gtgatcattg	3960
15	ataacaaggc	ttactctact	ggttataacc	tgcctattaa	tcaggccgac	gagatgatcc	4020
	ggtatattga	ggaaaatcag	acccgcgatg	aaaaaatcaa	ctccaataag	tggtgggagt	4080
	ctttcgacga	taaggtcaaa	gacttcaact	acctgtttgt	gagctccttc	tttaagggga	4140
20	actttaaaaa	caatctgaag	catatcgcta	acagaacagg	tgtcagcggc	ggagcaatta	4200
	acgtggagaa	tctgctctac	ttcgcagagg	aactgaaagc	cggccggctc	tcatatgtgg	4260
	atagctttaa	gatgtacgac	aacgatgaga	tctatgtcgg	cgacttctct	gattacagtt	4320
25	atgtgaagtt	tgccgctgag	gaagagggag	aatacctgac	ttgaacgcgt	aaatgattgc	4380
	agatccacta	gttctagaat	tccagctgag	cgccggtcgc	taccattacc	agttggtctg	4440
30	gtgtcaaaaa	taataataac	cgggcagggg	ggatctgcat	ggatctttgt	gaaggaacct	4500
30	tacttctgtg	gtgtgacata	attggacaaa	ctacctacag	agatttaaag	ctctaaggta	4560
	aatataaaat	ttttaagtgt	ataatgtgtt	aaactactga	ttctaattgt	ttgtgtattt	4620
35	tagattccaa	cctatggaac	tgatgaatgg	gagcagtggt	ggaatgccag	atccagacat	4680
	gataagatac	attgatgagt	ttggacaaac	cacaactaga	atgcagtgaa	aaaaatgctt	4740
	tatttgtgaa	atttgtgatg	ctattgcttt	atttgtaacc	attataagct	gcaataaaca	4800
40	agttaacaac	aacaattgca	ttcattttat	gtttcaggtt	cagggggagg	tgtgggaggt	4860
	tttttaaagc	aagtaaaacc	tctacaaatg	tggtatggct	gattatgatc	tgeggeegee	4920
4-	actggccgtc	gttttacaac	gtcgtgactg	ggaaaaccct	ggcgttaccc	aacttaatcg	4980
45	ccttgcagca	catccccctt	tcgccagctg	gcgtaatagc	gaagaggccc	gcaccgatcg	5040
	cccttcccaa	cagttgcgca	gcctgaatgg	cgaatggaac	gcgccctgta	gcggcgcatt	5100
50	aagcgcggcg	ggtgtggtgg	ttacgcgcag	cgtgaccgct	acacttgcca	gcgccctagc	5160
	gcccgctcct	ttcgctttct	tcccttcctt	tctcgccacg	ttcgccggct	ttccccgtca	5220
	agctctaaat	cgggggctcc	ctttagggtt	ccgatttagt	gctttacggc	acctcgaccc	5280
55	caaaaaactt	gattagggtg	atggttcacg	tagtgggcca	tcgccctgat	agacggtttt	5340
	tcgccctttg	acgttggagt	ccacgttctt	taatagtgga	ctcttgttcc	aaactggaac	5400
	aacactcaac	cctatctcgg	tctattcttt	tgatttataa	gggattttgc	cgatttcggc	5460
60	ctattggtta	aaaaatgagc	tgatttaaca	aaaatttaac	gcgaatttta	acaaaatatt	5520

	aacgcttaca	atttaggtgg	cacttttcgg	ggaaatgtgc	gcggaacccc	tatttgttta	5580
5	tttttctaaa	tacattcaaa	tatgtatccg	ctcatgagac	aataaccctg	ataaatgctt	5640
	caataatatt	gaaaaaggaa	gagtatgagt	attcaacatt	tccgtgtcgc	ccttattccc	5700
40	ttttttgcgg	cattttgcct	tcctgttttt	gctcacccag	aaacgctggt	gaaagtaaaa	5760
10	gatgctgaag	atcagttggg	tgcacgagtg	ggttacatcg	aactggatct	caacagcggt	5820
	aagatccttg	agagttttcg	ccccgaagaa	cgttttccaa	tgatgagcac	ttttaaagtt	5880
15	ctgctatgtg	gcgcggtatt	atcccgtatt	gacgccgggc	aagagcaact	cggtcgccgc	5940
	atacactatt	ctcagaatga	cttggttgag	tactcaccag	tcacagaaaa	gcatcttacg	6000
	gatggcatga	cagtaagaga	attatgcagt	gctgccataa	ccatgagtga	taacactgcg	6060
20	gccaacttac	ttctgacaac	gatcggagga	ccgaaggagc	taaccgcttt	tttgcacaac	6120
	atgggggatc	atgtaactcg	ccttgatcgt	tgggaaccgg	agctgaatga	agccatacca	6180
25	aacgacgagc	gtgacaccac	gatgcctgta	gcaatggcaa	caacgttgcg	caaactatta	6240
25	actggcgaac	tacttactct	agcttcccgg	caacaattaa	tagactggat	ggaggcggat	6300
	aaagttgcag	gaccacttct	gcgctcggcc	cttccggctg	gctggtttat	tgctgataaa	6360
30	tctggagccg	gtgagcgtgg	gtctcgcggt	atcattgcag	cactggggcc	agatggtaag	6420
	ccctcccgta	tcgtagttat	ctacacgacg	gggagtcagg	caactatgga	tgaacgaaat	6480
	agacagatcg	ctgagatagg	tgcctcactg	attaagcatt	ggtaactgtc	agaccaagtt	6540
35	tactcatata	tactttagat	tgatttaaaa	cttcattttt	aatttaaaag	gatctaggtg	6600
	aagateettt	ttgataatct	catgaccaaa	atcccttaac	gtgagttttc	gttccactga	6660
40	gcgtcagacc	ccgtagaaaa	gatcaaagga	tcttcttgag	atccttttt	tctgcgcgta	6720
40	atctgctgct	tgcaaacaaa	aaaaccaccg	ctaccagcgg	tggtttgttt	gccggatcaa	6780
	gagctaccaa	ctcttttcc	gaaggtaact	ggcttcagca	gagcgcagat	accaaatact	6840
45	gtccttctag	tgtagccgta	gttaggccac	cacttcaaga	actctgtagc	accgcctaca	6900
	tacctcgctc	tgctaatcct	gttaccagtg	gctgctgcca	gtggcgataa	gtcgtgtctt	6960
	accgggttgg	actcaagacg	atagttaccg	gataaggcgc	agcggtcggg	ctgaacgggg	7020
50	ggttcgtgca	cacagcccag	cttggagcga	acgacctaca	ccgaactgag	atacctacag	7080
	cgtgagctat	gagaaagcgc	cacgcttccc	gaagggagaa	aggcggacag	gtatccggta	7140
55	agcggcaggg	tcggaacagg	agagcgcacg	agggagcttc	cagggggaaa	cgcctggtat	7200
	ctttatagtc	ctgtcgggtt	tegecacete	tgacttgagc	gtcgattttt	gtgatgctcg	7260
	tcaggggggc	ggagcctatg	gaaaaacgcc	agcaacgcgg	cctttttacg	gttcctggcc	7320
60	ttttgctggc	cttttgctca	catgttcttt	cctgcgttat	cccctgattc	tgtggataac	7380

	cgtattaccg	cctttgagtg	agctgatacc	gctcgccgca	gccgaacgac	cgagcgcagc	7440
5	gagtcagtga	gcgaggaagc	ggaagagcgc	ccaatacgca	aaccgcctct	ccccgcgcgt	7500
	tggccgattc	attaatgcag	ctggcacgac	aggtttcccg	actggaaagc	gggcagtgag	7560
10	cgcaacgcaa	ttaatgtgag	ttagctcact	cattaggcac	cccaggcttt	acactttatg	7620
10	cttccggctc	gtatgttgtg	tggaattgtg	agcggataac	aatttcacac	aggaaacagc	7680
	tatgaccatg	aggcgcgccg	gattc				7705
15	<210> 32 <211> 7555 <212> ADN <213> Secuencia artific	sial					
20	<220> <223> pCAG-ArtTall-St	ofl					
	<400> 32						
25	gacattgatt	attgactagt	tattaatagt	aatcaattac	ggggtcatta	gttcatagcc	60
	catatatgga	gttccgcgtt	acataactta	cggtaaatgg	cccgcctggc	tgaccgccca	120
30	acgacccccg	cccattgacg	tcaataatga	cgtatgttcc	catagtaacg	ccaataggga	180
	ctttccattg	acgtcaatgg	gtggagtatt	tacggtaaac	tgcccacttg	gcagtacatc	240
	aagtgtatca	tatgccaagt	acgcccccta	ttgacgtcaa	tgacggtaaa	tggcccgcct	300
35	ggcattatgc	ccagtacatg	accttatggg	actttcctac	ttggcagtac	atctacgtat	360
	tagtcatcgc	tattaccatg	gtcgaggtga	gccccacgtt	ctgcttcact	ctccccatct	420
	ccccccctc	cccaccccca	attttgtatt	tatttatttt	ttaattattt	tgtgcagcga	480
40	tgggggcggg	aaaaaaaaaa	gggcgcgcgc	caggcggggc	ggggcggggc	gaggggcggg	540
	gcggggcgag	gcggagaggt	gcggcggcag	ccaatcagag	cggcgcgctc	cgaaagtttc	600
45	cttttatggc	gaggcggcgg	cggcggcggc	cctataaaaa	gcgaagcgcg	cggcgggcgg	660
10	gagtegetge	gcgctgcctt	cgccccgtgc	cccgctccgc	cgccgcctcg	cgccgcccgc	720
	cccggctctg	actgaccgcg	ttactcccac	aggtgagcgg	gcgggacggc	ccttctcctc	780
50	cgggctgtaa	ttagcgcttg	gtttaatgac	ggcttgtttc	ttttctgtgg	ctgcgtgaaa	840
	gccttgaggg	gctccgggag	ggccctttgt	gcggggggga	gcggctcggg	gggtgcgtgc	900
	gtgtgtgtgt	gcgtggggag	cgccgcgtgc	ggctccgcgc	tgcccggcgg	ctgtgagcgc	960
55	tgegggegeg	gcgcggggct	ttgtgcgctc	cgcagtgtgc	gcgaggggag	cgcggccggg	1020
	ggcggtgccc	cgcggtgcgg	ggggggctgc	gaggggaaca	aaggctgcgt	gcggggtgtg	1080
00	tgcgtggggg	ggtgagcagg	gggtgtgggc	gcgtcggtcg	ggctgcaacc	ccccctgcac	1140
60	cccctccc	gagttgctga	gcacggcccg	gcttcgggtg	cggggctccg	tacggggcgt	1200
	aacacaaaac	tcaccatacc	aaacaaaaaa	tagcagcaga	tgggggtgcc	agacagaaca	1260

	gggccgcccc	gggccgggga	gggcccgggg	gaggggcgcg	geggeeeeeg	gagegeegge	1320
5	ggctgtcgag	gcgcggcgag	ccgcagccat	tgccttttat	ggtaatcgtg	cgagagggcg	1380
	cagggacttc	ctttgtccca	aatctgtgcg	gagccgaaat	ctgggaggcg	ccgccgcacc	1440
10	ccctctagcg	ggcgcggggc	gaagcggtgc	ggcgccggca	ggaaggaaat	gggcggggag	1500
10	ggccttcgtg	cgtcgccgcg	ccgccgtccc	cttctccctc	tccagcctcg	gggctgtccg	1560
	cggggggacg	gctgccttcg	ggggggacgg	ggcagggcgg	ggttcggctt	ctggcgtgtg	1620
15	accggcggct	ctagagcctc	tgctaaccat	gttcatgcct	tcttctttt	cctacagatc	1680
	cttaattaat	aatacgactc	actatagggg	ccgccaccat	gggacctaag	aaaaagagga	1740
20	aggtggcggc	cgctgactac	aaggatgacg	acgataaacc	aggtggcgga	ggtagtggcg	1800
20	gaggtggggt	acccgccagt	ccagcagccc	aggtggatct	gagaaccctc	ggctacagcc	1860
	agcagcagca	ggagaagatc	aaaccaaagg	tgcggtccac	cgtcgctcag	caccatgaag	1920
25	cactggtggg	gcacggtttc	acacacgccc	atattgtggc	tctgtctcag	catcccgctg	1980
	cactcgggac	tgtggccgtc	aaatatcagg	acatgatcgc	cgctctgcct	gaggcaaccc	2040
00	acgaagccat	tgtgggcgtc	ggaaagcagt	ggagcggtgc	cagagcactc	gaagcactcc	2100
30	tcaccgtcgc	cggggaactg	cggggtccac	cactccagtc	cggactggac	actggacagc	2160
	tgctgaagat	cgctaaacgc	ggcggagtga	cagctgtgga	agctgtgcac	gcttggagga	2220
35	atgctctgac	aggagcccca	ctgaatctta	ctccagaaca	ggtcgtcgca	atcgcaagta	2280
	acatcggcgg	aaaacaggcc	ctcgaaaccg	tccagagact	cctccccgtg	ctgtgccagg	2340
	cccacggact	gaccccacag	caggtggtcg	ccatcgctag	caacggcgga	gggaagcagg	2400
40	ctctggagac	cgtgcagagg	ctgctccccg	tcctgtgcca	ggcacatggg	ctcacacctc	2460
	agcaggtggt	cgcaattgcc	tccaatggtg	gcggaaaaca	ggccctggaa	actgtgcaga	2520
45	gactgctccc	cgtgctgtgc	caggctcacg	gtctcacacc	ccagcaggtg	gtcgctatcg	2580
	catctcatga	cgggggcaag	caggcactgg	agacagtgca	gcggctgctc	cctgtcctgt	2640
	gccaggccca	cggactcact	cctcagcagg	tcgtcgccat	tgctagtaac	ggcggaggga	2700
50	aacaggctct	ggaaaccgtg	cagcgcctgc	tccccgtgct	gtgccaagcc	cacggcctga	2760
	cccccagca	ggtggtcgca	atcgcctcaa	acaatggtgg	caagcaggcc	ctggagactg	2820
55	tgcagcgact	gctcccagtg	ctgtgccagg	cccatggact	cacaccacag	caggtcgtcg	2880
	ctattgcaag	caacaatgga	gggaaacagg	cactggaaac	agtccagagg	ctgctccccg	2940
	tgctgtgcca	agcgcatgga	ctcactcccc	agcaggtcgt	cgccatcgct	tccaataacg	3000
60	gcggcaagca	ggccctggag	accgtccaga	gactgctccc	cgtgctgtgc	caagctcacg	3060
	gactcacacc	tgagcaggtc	gtggcaatcg	cctctaacat	tggagggaaa	caggccctgg	3120

	aaactgtaca	gcggctgctc	cccgtgctgt	gccaagcaca	cggactcact	ccacagcagg	3180
5	tcgtggccat	tgcaagtcat	gacggaggca	agcaggccct	ggaaacagtg	cagcgcctgc	3240
	tccctgtgct	gtgccaggct	catggtctga	ctcctcagca	ggtggtggcc	atcgcttcca	3300
40	acaatggagg	gaagcaggcc	ctggagaccg	tacagagact	gctccccgtg	ctgtgccaag	3360
10	cgcacggtct	gacccctcag	caggtcgtcg	caatcgccag	caatggcggg	ggcaagcagg	3420
	ctctcgaaac	cgtccagcgg	ctcctcccag	tcctctgtca	ggctcacggc	ctgaccccac	3480
15	agcaggtcgt	cgctattgct	tctaatggcg	gagggcggcc	tgctctggag	agcattgtgg	3540
	ctcagctgtc	caggcccgat	cctgccctgg	ctagatccgc	actcactaac	gatcatctgg	3600
	tcgctctcgc	ttgcctcggt	ggacggcccg	ctctggacgc	agtcaaaaag	ggtctcccc	3660
20	atgctcccgc	actgatcaag	agaaccaaca	ggagaattcc	tgagggatcc	gatcgtttaa	3720
	acatctctgt	ggacctgcca	ggcggagagg	aattcctgct	gagtccagcc	ggacagaacc	3780
25	ccctgctgaa	gaaaatggtg	gaggaattcg	tgccccggtt	tgataataga	agcaccgtgc	3840
23	tgtacctggg	ggacacaagg	ggcaagcact	ccctgttcga	gagagaaatc	tttgaggaag	3900
	tgctgggcct	gaccttcgat	cctcacggac	ggatgccaga	cctgattctg	catgatgagg	3960
30	tgagggggtg	gctgttcctg	atggaagccg	tgaagtctaa	aggccccttt	gatgaggaaa	4020
	ggcatagaag	cctgcaggag	ctgtttgtga	ctccttccgc	cggcctgatc	ttcgtgaact	4080
	gctttgagaa	tagggaatct	atgagacagt	ggctgcccga	gctggcttgg	gagaccgaag	4140
35	cctgggtggc	tgaagaccct	gatcacctga	ttcatctgaa	tggaagtcgg	tttctggggc	4200
	catatgagcg	ctgaacgcgt	aaatgattgc	agatccacta	gttctagaat	tccagctgag	4260
40	cgccggtcgc	taccattacc	agttggtctg	gtgtcaaaaa	taataataac	cgggcagggg	4320
	ggatctgcat	ggatctttgt	gaaggaacct	tacttctgtg	gtgtgacata	attggacaaa	4380
	ctacctacag	agatttaaag	ctctaaggta	aatataaaat	ttttaagtgt	ataatgtgtt	4440
45	aaactactga	ttctaattgt	ttgtgtattt	tagattccaa	cctatggaac	tgatgaatgg	4500
	gagcagtggt	ggaatgccag	atccagacat	gataagatac	attgatgagt	ttggacaaac	4560
	cacaactaga	atgcagtgaa	aaaaatgctt	tatttgtgaa	atttgtgatg	ctattgcttt	4620
50	atttgtaacc	attataagct	gcaataaaca	agttaacaac	aacaattgca	ttcattttat	4680
	gtttcaggtt	cagggggagg	tgtgggaggt	ttttaaagc	aagtaaaacc	tctacaaatg	4740
55	tggtatggct	gattatgatc	tgcggccgcc	actggccgtc	gttttacaac	gtcgtgactg	4800
	ggaaaaccct	ggcgttaccc	aacttaatcg	ccttgcagca	catccccctt	tegecagetg	4860
	gcgtaatagc	gaagaggccc	gcaccgatcg	cccttcccaa	cagttgcgca	gcctgaatgg	4920
60	cgaatggaac	gcgccctgta	gcggcgcatt	aagcgcggcg	ggtgtggtgg	ttacgcgcag	4980
	cgtgaccgct	acacttgcca	gcgccctagc	gcccgctcct	ttcgctttct	tecetteett	5040

	teregecacg	ttegeegget	tteeeegtea	agetetaaat	egggggetee	Cittagggit	3100
5	ccgatttagt	gctttacggc	acctcgaccc	caaaaaactt	gattagggtg	atggttcacg	5160
	tagtgggcca	tcgccctgat	agacggtttt	tcgccctttg	acgttggagt	ccacgttctt	5220
10	taatagtgga	ctcttgttcc	aaactggaac	aacactcaac	cctatctcgg	tctattcttt	5280
	tgatttataa	gggattttgc	cgatttcggc	ctattggtta	aaaaatgagc	tgatttaaca	5340
	aaaatttaac	gcgaatttta	acaaaatatt	aacgcttaca	atttaggtgg	cacttttcgg	5400
15	ggaaatgtgc	gcggaacccc	tatttgttta	tttttctaaa	tacattcaaa	tatgtatccg	5460
	ctcatgagac	aataaccctg	ataaatgctt	caataatatt	gaaaaaggaa	gagtatgagt	5520
20	attcaacatt	tccgtgtcgc	ccttattccc	ttttttgcgg	cattttgcct	tcctgttttt	5580
20	gctcacccag	aaacgctggt	gaaagtaaaa	gatgctgaag	atcagttggg	tgcacgagtg	5640
	ggttacatcg	aactggatct	caacagcggt	aagatccttg	agagttttcg	ccccgaagaa	5700
25	cgttttccaa	tgatgagcac	ttttaaagtt	ctgctatgtg	gcgcggtatt	atcccgtatt	5760
	gacgccgggc	aagagcaact	cggtcgccgc	atacactatt	ctcagaatga	cttggttgag	5820
20	tactcaccag	tcacagaaaa	gcatcttacg	gatggcatga	cagtaagaga	attatgcagt	5880
30	gctgccataa	ccatgagtga	taacactgcg	gccaacttac	ttctgacaac	gatcggagga	5940
	ccgaaggagc	taaccgcttt	tttgcacaac	atgggggatc	atgtaactcg	ccttgatcgt	6000
35	tgggaaccgg	agctgaatga	agccatacca	aacgacgagc	gtgacaccac	gatgcctgta	6060
	gcaatggcaa	caacgttgcg	caaactatta	actggcgaac	tacttactct	agcttcccgg	6120
	caacaattaa	tagactggat	ggaggcggat	aaagttgcag	gaccacttct	gegeteggee	6180
40	cttccggctg	gctggtttat	tgctgataaa	tctggagccg	gtgagcgtgg	gtctcgcggt	6240
	atcattgcag	cactggggcc	agatggtaag	ccctcccgta	tcgtagttat	ctacacgacg	6300
45	gggagtcagg	caactatgga	tgaacgaaat	agacagatcg	ctgagatagg	tgcctcactg	6360
	attaagcatt	ggtaactgtc	agaccaagtt	tactcatata	tactttagat	tgatttaaaa	6420
	cttcattttt	aatttaaaag	gatctaggtg	aagatccttt	ttgataatct	catgaccaaa	6480
50	atcccttaac	gtgagttttc	gttccactga	gcgtcagacc	ccgtagaaaa	gatcaaagga	6540
	tcttcttgag	atccttttt	tctgcgcgta	atctgctgct	tgcaaacaaa	aaaaccaccg	6600
55	ctaccagcgg	tggtttgttt	gccggatcaa	gagctaccaa	ctcttttcc	gaaggtaact	6660
	ggcttcagca	gagcgcagat	accaaatact	gtccttctag	tgtagccgta	gttaggccac	6720
	cacttcaaga	actctgtagc	accgcctaca	tacctcgctc	tgctaatcct	gttaccagtg	6780
60	gctgctgcca	gtggcgataa	gtcgtgtctt	accgggttgg	actcaagacg	atagttaccg	6840
	gataaggcgc	agcggtcggg	ctgaacgggg	ggttcgtgca	cacagcccag	cttggagcga	6900

	acgacctaca ccgaactgag atacctacag cgtgagctat gagaaagcgc cacgcttccc	6960
5	gaagggagaa aggcggacag gtatccggta agcggcaggg tcggaacagg agagcgcacg	7020
	agggagcttc cagggggaaa cgcctggtat ctttatagtc ctgtcgggtt tcgccacctc	7080
	tgacttgagc gtcgattttt gtgatgctcg tcaggggggc ggagcctatg gaaaaacgcc	7140
10	agcaacgcgg cctttttacg gttcctggcc ttttgctggc cttttgctca catgttcttt	7200
	cctgcgttat cccctgattc tgtggataac cgtattaccg cctttgagtg agctgatacc	7260
15	gctcgccgca gccgaacgac cgagcgcagc gagtcagtga gcgaggaagc ggaagagcgc	7320
	ccaatacgca aaccgcctct ccccgcgcgt tggccgattc attaatgcag ctggcacgac	7380
	aggtttcccg actggaaagc gggcagtgag cgcaacgcaa	7440
20	cattaggcac cccaggcttt acactttatg cttccggctc gtatgttgtg tggaattgtg	7500
	ageggataae aattteaeae aggaaaeage tatgaeeatg aggegegeeg gatte	7555
25	<210> 33 <211> 7555 <212> ADN <213> Secuencia artificial	
30	<220> <223> pCAG-ArtTall-Sda	
	<400> 33	
35	gacattgatt attgactagt tattaatagt aatcaattac ggggtcatta gttcatagcc	60
	catatatgga gttccgcgtt acataactta cggtaaatgg cccgcctggc tgaccgccca	120
	acgacccccg cccattgacg tcaataatga cgtatgttcc catagtaacg ccaataggga	180
40	ctttccattg acgtcaatgg gtggagtatt tacggtaaac tgcccacttg gcagtacatc	240
	aagtgtatca tatgccaagt acgcccccta ttgacgtcaa tgacggtaaa tggcccgcct	300
	ggcattatgc ccagtacatg accttatggg actttcctac ttggcagtac atctacgtat	360
45	tagtcatcgc tattaccatg gtcgaggtga gccccacgtt ctgcttcact ctccccatct	420
	ccccccctc cccaccccca attitgtatt tattiattit ttaattatti tgtgcagcga	480
50	tadadacada adadadadad adacacacac cyaacadadac adadcadadac ayaadaacada	540
	geggggegag geggagaggt geggeggeag eeaateagag eggegegete egaaagttte	600
	cttttatggc gaggeggegg eggeggegge eetataaaaa gegaagegeg eggegggegg	660
55	gagtegetge gegetgeett egeceegtge eeegeteege egeegeeteg egeegeeege	720
	cccggctctg actgaccgcg ttactcccac aggtgagcgg gcgggacggc ccttctcctc	780
	cgggctgtaa ttagcgcttg gtttaatgac ggcttgtttc ttttctgtgg ctgcgtgaaa	840
60	geettgaggg geteegggag ggeeetttgt geggggggga geggeteggg gggtgegtge	900
	gtgtgtgtgt gcgtggggag cgccgcgtgc ggctccgcgc tgcccggcgg ctgtgagcgc	960

	tgcgggcgcg	gcgcggggct	ttgtgcgctc	cgcagtgtgc	gcgaggggag	cgcggccggg	1020
5	ggcggtgccc	cgcggtgcgg	ggggggctgc	gaggggaaca	aaggctgcgt	gcggggtgtg	1080
	tgcgtggggg	ggtgagcagg	gggtgtgggc	gcgtcggtcg	ggctgcaacc	cccctgcac	1140
	cccctcccc	gagttgctga	gcacggcccg	gcttcgggtg	cggggctccg	tacggggcgt	1200
10	ggcgcggggc	tcgccgtgcc	gggcgggggg	tggcggcagg	tgggggtgcc	gggcggggcg	1260
	gggccgcctc	gggccgggga	gggctcgggg	gaggggcgcg	gcggcccccg	gagcgccggc	1320
15	ggctgtcgag	gcgcggcgag	ccgcagccat	tgccttttat	ggtaatcgtg	cgagagggcg	1380
	cagggacttc	ctttgtccca	aatctgtgcg	gagccgaaat	ctgggaggcg	ccgccgcacc	1440
	ccctctagcg	ggcgcggggc	gaagcggtgc	ggcgccggca	ggaaggaaat	gggcggggag	1500
20	ggccttcgtg	cgtcgccgcg	ccgccgtccc	cttctccctc	tccagcctcg	gggctgtccg	1560
	cggggggacg	gctgccttcg	ggggggacgg	ggcagggcgg	ggttcggctt	ctggcgtgtg	1620
	accggcggct	ctagagcctc	tgctaaccat	gttcatgcct	tcttctttt	cctacagatc	1680
25	cttaattaat	aatacgactc	actatagggg	ccgccaccat	gggacctaag	aaaaagagga	1740
	aggtggcggc	cgctgactac	aaggatgacg	acgataaacc	aggtggcgga	ggtagtggcg	1800
	gaggtggggt	acccgccagt	ccagcagccc	aggtggatct	gagaaccctc	ggctacagcc	1860
30	agcagcagca	ggagaagatc	aaaccaaagg	tgcggtccac	cgtcgctcag	caccatgaag	1920
	cactggtggg	gcacggtttc	acacacgccc	atattgtggc	tctgtctcag	catcccgctg	1980
35	cactcgggac	tgtggccgtc	aaatatcagg	acatgatcgc	cgctctgcct	gaggcaaccc	2040
33	acgaagccat	tgtgggcgtc	ggaaagcagt	ggagcggtgc	cagagcactc	gaagcactcc	2100
	tcaccgtcgc	cggggaactg	cggggtccac	cactccagtc	cggactggac	actggacagc	2160
40	tgctgaagat	cgctaaacgc	ggcggagtga	cagctgtgga	agctgtgcac	gcttggagga	2220
	atgctctgac	aggagcccca	ctgaatctta	ctccagaaca	ggtcgtcgca	atcgcaagta	2280
	acatcggcgg	aaaacaggcc	ctcgaaaccg	tccagagact	cctccccgtg	ctgtgccagg	2340
45	cccacggact	gaccccacag	caggtggtcg	ccatcgctag	caacggcgga	gggaagcagg	2400
	ctctggagac	cgtgcagagg	ctgctccccg	tcctgtgcca	ggcacatggg	ctcacacctc	2460
	agcaggtggt	cgcaattgcc	tccaatggtg	gcggaaaaca	ggccctggaa	actgtgcaga	2520
50	gactgctccc	cgtgctgtgc	caggctcacg	gtctcacacc	ccagcaggtg	gtcgctatcg	2580
	catctcatga	cgggggcaag	caggcactgg	agacagtgca	gcggctgctc	cctgtcctgt	2640
5 5	gccaggccca	cggactcact	cctcagcagg	tcgtcgccat	tgctagtaac	ggcggaggga	2700
55	aacaggctct	ggaaaccgtg	cagcgcctgc	tccccgtgct	gtgccaagcc	cacggcctga	2760
	cccccagca	ggtggtcgca	atcgcctcaa	acaatggtgg	caagcaggcc	ctggagactg	2820

	tgcagcgact	gctcccagtg	ctgtgccagg	cccatggact	cacaccacag	caggtcgtcg	2880
5	ctattgcaag	caacaatgga	gggaaacagg	cactggaaac	agtccagagg	ctgctccccg	2940
	tgctgtgcca	agcgcatgga	ctcactcccc	agcaggtcgt	cgccatcgct	tccaataacg	3000
	gcggcaagca	ggccctggag	accgtccaga	gactgctccc	cgtgctgtgc	caagctcacg	3060
10	gactcacacc	tgagcaggtc	gtggcaatcg	cctctaacat	tggagggaaa	caggccctgg	3120
	aaactgtaca	gcggctgctc	cccgtgctgt	gccaagcaca	cggactcact	ccacagcagg	3180
	tcgtggccat	tgcaagtcat	gacggaggca	agcaggccct	ggaaacagtg	cagegeetge	3240
15	tccctgtgct	gtgccaggct	catggtctga	ctcctcagca	ggtggtggcc	ategetteca	3300
	acaatggagg	gaagcaggcc	ctggagaccg	tacagagact	gctccccgtg	ctgtgccaag	3360
20	cgcacggtct	gacccctcag	caggtcgtcg	caatcgccag	caatggcggg	ggcaagcagg	3420
20	ctctcgaaac	cgtccagcgg	ctcctcccag	tcctctgtca	ggctcacggc	ctgaccccac	3480
	agcaggtcgt	cgctattgct	tctaatggcg	gagggcggcc	tgctctggag	agcattgtgg	3540
25	ctcagctgtc	caggcccgat	cctgccctgg	ctagatccgc	actcactaac	gatcatctgg	3600
20	tegetetege	ttgcctcggt	ggacggcccg	ctctggacgc	agtcaaaaag	ggtctcccc	3660
	atgctcccgc	actgatcaag	agaaccaaca	ggagaattcc	tgagggatcc	gatcgtttaa	3720
30	acattagcgt	ggacctcgcc	gatggagatg	agttcctgct	gagccccgct	ggacagaatc	3780
	ctctgctgaa	aaagatggtg	gaagaattta	tgccacgatt	cgcacctgga	gctaaggtgc	3840
	tgtacatcgg	cgactggcga	ggaaagcaca	cacggttcga	gaaacgcatt	tttgaggaaa	3900
35	ccctggggct	cacatttgat	ccacacggta	gaatgcccga	cctggtgctc	catgataagg	3960
	tccggaaatg	gctgttcctc	atggaggccg	tgaagagcaa	aggccctttt	gacgaggaaa	4020
	ggcatagaac	tctgcgggaa	ctcttcgcta	ccccagtcgc	aggactggtg	ttcgtcaact	4080
40	gctttgagaa	tcgagaagcc	atgaggcagt	ggctgcccga	gctcgcttgg	gagaccgaag	4140
	catgggtggc	cgacgaccct	gaccacctga	tccacctcaa	cgggagcaga	ttcctgggac	4200
	cctatgaaag	atgaacgcgt	aaatgattgc	agatccacta	gttctagaat	tccagctgag	4260
45	cgccggtcgc	taccattacc	agttggtctg	gtgtcaaaaa	taataataac	cgggcagggg	4320
	ggatctgcat	ggatctttgt	gaaggaacct	tacttctgtg	gtgtgacata	attggacaaa	4380
	ctacctacag	agatttaaag	ctctaaggta	aatataaaat	ttttaagtgt	ataatgtgtt	4440
50	aaactactga	ttctaattgt	ttgtgtattt	tagattccaa	cctatggaac	tgatgaatgg	4500
	gagcagtggt	ggaatgccag	atccagacat	gataagatac	attgatgagt	ttggacaaac	4560
	cacaactaga	atgcagtgaa	aaaaatgctt	tatttgtgaa	atttgtgatg	ctattgcttt	4620
55	atttgtaacc	attataagct	gcaataaaca	agttaacaac	aacaattgca	ttcattttat	4680
	gtttcaggtt	cagggggagg	tgtgggaggt	tttttaaagc	aagtaaaacc	tctacaaatg	4740

	tggtatggct	gattatgatc	tgcggccgcc	actggccgtc	gttttacaac	gtcgtgactg	480
5	ggaaaaccct	ggcgttaccc	aacttaatcg	ccttgcagca	catccccctt	tegecagetg	486
	gcgtaatagc	gaagaggccc	gcaccgatcg	cccttcccaa	cagttgcgca	gcctgaatgg	492
40	cgaatggaac	gcgccctgta	gcggcgcatt	aagcgcggcg	ggtgtggtgg	ttacgcgcag	498
10	cgtgaccgct	acacttgcca	gcgccctagc	gcccgctcct	ttcgctttct	tecetteett	504
	tctcgccacg	ttcgccggct	ttccccgtca	agctctaaat	cgggggctcc	ctttagggtt	510
15	ccgatttagt	gctttacggc	acctcgaccc	caaaaaactt	gattagggtg	atggttcacg	516
	tagtgggcca	tegecetgat	agacggtttt	tcgccctttg	acgttggagt	ccacgttctt	522
	taatagtgga	ctcttgttcc	aaactggaac	aacactcaac	cctatctcgg	tctattcttt	528
20	tgatttataa	gggattttgc	cgatttcggc	ctattggtta	aaaaatgagc	tgatttaaca	534
	aaaatttaac	gcgaatttta	acaaaatatt	aacgcttaca	atttaggtgg	cacttttcgg	540
	ggaaatgtgc	gcggaacccc	tatttgttta	tttttctaaa	tacattcaaa	tatgtatccg	546
25	ctcatgagac	aataaccctg	ataaatgctt	caataatatt	gaaaaaggaa	gagtatgagt	552
	attcaacatt	tccgtgtcgc	ccttattccc	ttttttgcgg	cattttgcct	tcctgttttt	558
	gctcacccag	aaacgctggt	gaaagtaaaa	gatgctgaag	atcagttggg	tgcacgagtg	564
30	ggttacatcg	aactggatct	caacagcggt	aagatccttg	agagttttcg	ccccgaagaa	570
	cgttttccaa	tgatgagcac	ttttaaagtt	ctgctatgtg	gcgcggtatt	atcccgtatt	576
35	gacgccgggc	aagagcaact	cggtcgccgc	atacactatt	ctcagaatga	cttggttgag	582
	tactcaccag	tcacagaaaa	gcatcttacg	gatggcatga	cagtaagaga	attatgcagt	588
	gctgccataa	ccatgagtga	taacactgcg	gccaacttac	ttctgacaac	gatcggagga	594
40	ccgaaggagc	taaccgcttt	tttgcacaac	atgggggatc	atgtaactcg	ccttgatcgt	600
	tgggaaccgg	agctgaatga	agccatacca	aacgacgagc	gtgacaccac	gatgcctgta	606
	gcaatggcaa	caacgttgcg	caaactatta	actggcgaac	tacttactct	agcttcccgg	612
45	caacaattaa	tagactggat	ggaggcggat	aaagttgcag	gaccacttct	gegeteggee	618
	cttccggctg	gctggtttat	tgctgataaa	tctggagccg	gtgagcgtgg	gtctcgcggt	624
	atcattgcag	cactggggcc	agatggtaag	ccctcccgta	tcgtagttat	ctacacgacg	630
50	gggagtcagg	caactatgga	tgaacgaaat	agacagatcg	ctgagatagg	tgcctcactg	636
	attaagcatt	ggtaactgtc	agaccaagtt	tactcatata	tactttagat	tgatttaaaa	642
5 5	cttcattttt	aatttaaaag	gatctaggtg	aagatccttt	ttgataatct	catgaccaaa	648
55	atcccttaac	gtgagttttc	gttccactga	gcgtcagacc	ccgtagaaaa	gatcaaagga	654
	tcttcttgag	atccttttt	tctgcgcgta	atctgctgct	tgcaaacaaa	aaaaccaccg	660

6660

ctaccagcgg tggtttgttt gccggatcaa gagctaccaa ctctttttcc gaaggtaact

5	ggcttcagca	gagcgcagat	accaaatact	gtccttctag	tgtagccgta	gttaggccac	6720
	cacttcaaga	actctgtagc	accgcctaca	tacctcgctc	tgctaatcct	gttaccagtg	6780
	gctgctgcca	gtggcgataa	gtcgtgtctt	accgggttgg	actcaagacg	atagttaccg	6840
10	gataaggcgc	agcggtcggg	ctgaacgggg	ggttcgtgca	cacagcccag	cttggagcga	6900
	acgacctaca	ccgaactgag	atacctacag	cgtgagctat	gagaaagcgc	cacgcttccc	6960
15	gaagggagaa	aggcggacag	gtatccggta	agcggcaggg	toggaacagg	agagcgcacg	7020
	agggagcttc	cagggggaaa	cgcctggtat	ctttatagtc	ctgtcgggtt	tcgccacctc	7080
	tgacttgagc	gtcgattttt	gtgatgctcg	tcaggggggc	ggagcctatg	gaaaaacgcc	7140
20	agcaacgcgg	cctttttacg	gttcctggcc	ttttgctggc	cttttgctca	catgttcttt	7200
	cctgcgttat	cccctgattc	tgtggataac	cgtattaccg	cctttgagtg	agctgatacc	7260
	gctcgccgca	gccgaacgac	cgagcgcagc	gagtcagtga	gcgaggaagc	ggaagagcgc	7320
25	ccaatacgca	aaccgcctct	ccccgcgcgt	tggccgattc	attaatgcag	ctggcacgac	7380
	aggtttcccg	actggaaagc	gggcagtgag	cgcaacgcaa	ttaatgtgag	ttagctcact	7440
30	cattaggcac	cccaggcttt	acactttatg	cttccggctc	gtatgttgtg	tggaattgtg	7500
30	agcggataac	aatttcacac	aggaaacagc	tatgaccatg	aggcgcgccg	gattc	7555
35	<210> 34 <211> 7690 <212> ADN <213> Secuencia artificial						
40	<220> <223> pCAG-ArtTall-Stsl						
	<400> 34						
45	gacattgatt	attgactagt	tattaatagt	aatcaattac	ggggtcatta	gttcatagcc	60
	catatatgga	gttccgcgtt	acataactta	cggtaaatgg	cccgcctggc	tgaccgccca	120
	acgacccccg	cccattgacg	tcaataatga	cgtatgttcc	catagtaacg	ccaataggga	180
50	ctttccattg	acgtcaatgg	gtggagtatt	tacggtaaac	tgcccacttg	gcagtacatc	240
	aagtgtatca	tatgccaagt	acgcccccta	ttgacgtcaa	tgacggtaaa	tggcccgcct	300
	ggcattatgc	ccagtacatg	accttatggg	actttcctac	ttggcagtac	atctacgtat	360
55	tagtcatcgc	tattaccatg	gtcgaggtga	gccccacgtt	ctgcttcact	ctccccatct	420
	ccccccctc	cccaccccca	attttgtatt	tatttatttt	ttaattattt	tgtgcagcga	480
60	tgggggcggg	aaaaaaaaaa	gggcgcgcgc	caggcggggc	ggggcggggc	gaggggcggg	540
55	gcggggcgag	gcggagaggt	gcggcggcag	ccaatcagag	cggcgcgctc	cgaaagtttc	600
	cttttatggc	gaggcggcgg	cggcggcggc	cctataaaaa	gcgaagcgcg	cggcgggcgg	660
65							

	gagtcgctgc	gcgctgcctt	cgccccgtgc	cccgctccgc	cgccgcctcg	cgccgcccgc	720
5	cccggctctg	actgaccgcg	ttactcccac	aggtgagcgg	gcgggacggc	ccttctcctc	780
	cgggctgtaa	ttagcgcttg	gtttaatgac	ggcttgtttc	ttttctgtgg	ctgcgtgaaa	840
40	gccttgaggg	gctccgggag	ggccctttgt	gcgggggga	gcggctcggg	gggtgcgtgc	900
10	gtgtgtgtgt	gcgtggggag	cgccgcgtgc	ggctccgcgc	tgcccggcgg	ctgtgagcgc	960
	tgcgggcgcg	gcgcggggct	ttgtgcgctc	cgcagtgtgc	gcgaggggag	cgcggccggg	1020
15	ggcggtgccc	cgcggtgcgg	ggggggctgc	gaggggaaca	aaggctgcgt	gcggggtgtg	1080
	tgcgtggggg	ggtgagcagg	gggtgtgggc	gcgtcggtcg	ggctgcaacc	ccccctgcac	1140
	cccctcccc	gagttgctga	gcacggcccg	gcttcgggtg	cggggctccg	tacggggcgt	1200
20	ggcgcggggc	tegeegtgee	gggcgggggg	tggcggcagg	tgggggtgcc	gggcggggcg	1260
	gggccgcctc	gggccgggga	gggctcgggg	gaggggggg	gcggcccccg	gagcgccggc	1320
	ggctgtcgag	gcgcggcgag	ccgcagccat	tgccttttat	ggtaatcgtg	cgagagggcg	1380
25	cagggacttc	ctttgtccca	aatctgtgcg	gagccgaaat	ctgggaggcg	ccgccgcacc	1440
	ccctctagcg	ggcgcggggc	gaagcggtgc	ggcgccggca	ggaaggaaat	gggcggggag	1500
	ggccttcgtg	cgtcgccgcg	ccgccgtccc	cttctccctc	tccagcctcg	gggctgtccg	1560
30	cggggggacg	gctgccttcg	ggggggacgg	ggcagggcgg	ggttcggctt	ctggcgtgtg	1620
	accggcggct	ctagagcctc	tgctaaccat	gttcatgcct	tcttctttt	cctacagatc	1680
35	cttaattaat	aatacgactc	actatagggg	ccgccaccat	gggacctaag	aaaaagagga	1740
33	aggtggcggc	cgctgactac	aaggatgacg	acgataaacc	aggtggcgga	ggtagtggcg	1800
	gaggtggggt	acccgccagt	ccagcagccc	aggtggatct	gagaaccctc	ggctacagcc	1860
40	agcagcagca	ggagaagatc	aaaccaaagg	tgcggtccac	cgtcgctcag	caccatgaag	1920
	cactggtggg	gcacggtttc	acacacgccc	atattgtggc	tctgtctcag	catcccgctg	1980
	cactcgggac	tgtggccgtc	aaatatcagg	acatgatcgc	cgctctgcct	gaggcaaccc	2040
45	acgaagccat	tgtgggcgtc	ggaaagcagt	ggagcggtgc	cagagcactc	gaagcactcc	2100
	tcaccgtcgc	cggggaactg	cggggtccac	cactccagtc	cggactggac	actggacagc	2160
	tgctgaagat	cgctaaacgc	ggcggagtga	cagctgtgga	agctgtgcac	gcttggagga	2220
50	atgctctgac	aggagcccca	ctgaatctta	ctccagaaca	ggtcgtcgca	atcgcaagta	2280
	acatcggcgg	aaaacaggcc	ctcgaaaccg	tccagagact	cctccccgtg	ctgtgccagg	2340
55	cccacggact	gaccccacag	caggtggtcg	ccatcgctag	caacggcgga	gggaagcagg	2400
55	ctctggagac	cgtgcagagg	ctgctccccg	tcctgtgcca	ggcacatggg	ctcacacctc	2460
	agcaggtggt	cgcaattgcc	tccaatggtg	gcggaaaaca	ggccctggaa	actgtgcaga	2520

	gactgctccc	cgtgctgtgc	caggctcacg	gtctcacacc	ccagcaggtg	gtcgctatcg	2580
5	catctcatga	cgggggcaag	caggcactgg	agacagtgca	gcggctgctc	cctgtcctgt	2640
	gccaggccca	cggactcact	cctcagcagg	tcgtcgccat	tgctagtaac	ggcggaggga	2700
	aacaggctct	ggaaaccgtg	cagcgcctgc	teccegtget	gtgccaagcc	cacggcctga	2760
10	cccccagca	ggtggtcgca	atcgcctcaa	acaatggtgg	caagcaggcc	ctggagactg	2820
	tgcagcgact	gctcccagtg	ctgtgccagg	cccatggact	cacaccacag	caggtcgtcg	2880
	ctattgcaag	caacaatgga	gggaaacagg	cactggaaac	agtccagagg	ctgctccccg	2940
15	tgctgtgcca	agcgcatgga	ctcactcccc	agcaggtcgt	cgccatcgct	tccaataacg	3000
	gcggcaagca	ggccctggag	accgtccaga	gactgctccc	cgtgctgtgc	caagctcacg	3060
20	gactcacacc	tgagcaggtc	gtggcaatcg	cctctaacat	tggagggaaa	caggccctgg	3120
20	aaactgtaca	gcggctgctc	cccgtgctgt	gccaagcaca	cggactcact	ccacagcagg	3180
	tcgtggccat	tgcaagtcat	gacggaggca	agcaggccct	ggaaacagtg	cagcgcctgc	3240
25	tccctgtgct	gtgccaggct	catggtctga	ctcctcagca	ggtggtggcc	atcgcttcca	3300
	acaatggagg	gaagcaggcc	ctggagaccg	tacagagact	gctccccgtg	ctgtgccaag	3360
	cgcacggtct	gacccctcag	caggtcgtcg	caatcgccag	caatggcggg	ggcaagcagg	3420
30	ctctcgaaac	cgtccagcgg	ctcctcccag	tcctctgtca	ggctcacggc	ctgaccccac	3480
	agcaggtcgt	cgctattgct	tctaatggcg	gagggcggcc	tgctctggag	agcattgtgg	3540
	ctcagctgtc	caggcccgat	cctgccctgg	ctagatccgc	actcactaac	gatcatctgg	3600
35	tegetetege	ttgcctcggt	ggacggcccg	ctctggacgc	agtcaaaaag	ggtctccccc	3660
	atgctcccgc	actgatcaag	agaaccaaca	ggagaattcc	tgagggatcc	gatcgtttaa	3720
	acgatgtggt	gctggagaaa	agcgacatcg	aaaaattcaa	gaaccagctg	aggaccgagc	3780
40	tgacaaatat	tgatcactcc	tacctgaagg	gaatcgacat	tgcctccaag	aaaaagacct	3840
	ctaacgtgga	gaatacagag	tttgaagcta	tctctactaa	gattttcacc	gatgaactgg	3900
	gcttcagcgg	gaaacatctg	ggcggaagca	ataagccaga	tggcctgctg	tgggacgatg	3960
45	actgcgccat	cattctggac	agtaaggctt	acagcgaggg	gttccccctg	acagcctccc	4020
	acactgacgc	tatgggcagg	tatctgagac	agtttactga	gcggaaagag	gaaatcaagc	4080
	ccacctggtg	ggatattgcc	cctgaacatc	tggacaacac	ctacttcgct	tatgtgagcg	4140
50	gctccttttc	tggaaattat	aaagagcagc	tgcagaagtt	ccgccaggat	acaaaccacc	4200
	tggggggcgc	cctggaattt	gtgaagctgc	tgctgctggc	taacaattac	aaaactcaga	4260
55	agatgtccaa	aaaggaggtg	aaaaagtcta	tcctggacta	taacattagt	tacgaggaat	4320
55	atgcccccct	gctggctgag	atcgaatgaa	cgcgtaaatg	attgcagatc	cactagttct	4380
	agaattccag	ctgagcgccg	gtcgctacca	ttaccagttg	gtctggtgtc	aaaaataata	4440

	ataaccgggc	aggggggatc	tgcatggatc	tttgtgaagg	aaccttactt	ctgtggtgtg	4500
5	acataattgg	acaaactacc	tacagagatt	taaagctcta	aggtaaatat	aaaatttta	4560
	agtgtataat	gtgttaaact	actgattcta	attgtttgtg	tattttagat	tccaacctat	4620
	ggaactgatg	aatgggagca	gtggtggaat	gccagatcca	gacatgataa	gatacattga	4680
10	tgagtttgga	caaaccacaa	ctagaatgca	gtgaaaaaaa	tgctttattt	gtgaaatttg	4740
	tgatgctatt	gctttatttg	taaccattat	aagctgcaat	aaacaagtta	acaacaacaa	4800
15	ttgcattcat	tttatgtttc	aggttcaggg	ggaggtgtgg	gaggttttt	aaagcaagta	4860
10	aaacctctac	aaatgtggta	tggctgatta	tgatctgcgg	ccgccactgg	ccgtcgtttt	4920
	acaacgtcgt	gactgggaaa	accctggcgt	tacccaactt	aatcgccttg	cagcacatcc	4980
20	ccctttcgcc	agctggcgta	atagcgaaga	ggcccgcacc	gatcgccctt	cccaacagtt	5040
	gcgcagcctg	aatggcgaat	ggaacgcgcc	ctgtagcggc	gcattaagcg	cggcgggtgt	5100
	ggtggttacg	cgcagcgtga	ccgctacact	tgccagcgcc	ctagcgcccg	ctcctttcgc	5160
25	tttcttccct	teettteteg	ccacgttcgc	cggctttccc	cgtcaagctc	taaatcgggg	5220
	gctcccttta	gggttccgat	ttagtgcttt	acggcacctc	gaccccaaaa	aacttgatta	5280
	gggtgatggt	tcacgtagtg	ggccatcgcc	ctgatagacg	gtttttcgcc	ctttgacgtt	5340
30	ggagtccacg	ttctttaata	gtggactctt	gttccaaact	ggaacaacac	tcaaccctat	5400
	ctcggtctat	tcttttgatt	tataagggat	tttgccgatt	tcggcctatt	ggttaaaaaa	5460
25	tgagctgatt	taacaaaaat	ttaacgcgaa	ttttaacaaa	atattaacgc	ttacaattta	5520
35	ggtggcactt	ttcggggaaa	tgtgcgcgga	acccctattt	gtttatttt	ctaaatacat	5580
	tcaaatatgt	atccgctcat	gagacaataa	ccctgataaa	tgcttcaata	atattgaaaa	5640
40	aggaagagta	tgagtattca	acatttccgt	gtcgccctta	ttcccttttt	tgcggcattt	5700
	tgccttcctg	tttttgctca	cccagaaacg	ctggtgaaag	taaaagatgc	tgaagatcag	5760
	ttgggtgcac	gagtgggtta	catcgaactg	gatctcaaca	gcggtaagat	ccttgagagt	5820
45	tttcgccccg	aagaacgttt	tccaatgatg	agcactttta	aagttctgct	atgtggcgcg	5880
	gtattatccc	gtattgacgc	cgggcaagag	caactcggtc	gccgcataca	ctattctcag	5940
	aatgacttgg	ttgagtactc	accagtcaca	gaaaagcatc	ttacggatgg	catgacagta	6000
50	agagaattat	gcagtgctgc	cataaccatg	agtgataaca	ctgcggccaa	cttacttctg	6060
	acaacgatcg	gaggaccgaa	ggagctaacc	gcttttttgc	acaacatggg	ggatcatgta	6120
	actcgccttg	atcgttggga	accggagctg	aatgaagcca	taccaaacga	cgagcgtgac	6180
55	accacgatgc	ctgtagcaat	ggcaacaacg	ttgcgcaaac	tattaactgg	cgaactactt	6240
	actctagctt	cccggcaaca	attaatagac	tggatggagg	cggataaagt	tgcaggacca	6300

	cricingly ageographic grant gr	050
5	cgtgggtctc gcggtatcat tgcagcactg gggccagatg gtaagccctc ccgtatcgta	642
	gttatctaca cgacggggag tcaggcaact atggatgaac gaaatagaca gatcgctgag	648
	ataggtgcct cactgattaa gcattggtaa ctgtcagacc aagtttactc atatatactt	654
10	tagattgatt taaaacttca tttttaattt aaaaggatct aggtgaagat cctttttgat	660
	aatctcatga ccaaaatccc ttaacgtgag ttttcgttcc actgagcgtc agaccccgta	666
15	gaaaagatca aaggatette ttgagateet tttttetge gegtaatetg etgettgeaa	672
	acaaaaaac caccgctacc agcggtggtt tgtttgccgg atcaagagct accaactctt	678
	tttccgaagg taactggctt cagcagagcg cagataccaa atactgtcct tctagtgtag	684
20	ccgtagttag gccaccactt caagaactct gtagcaccgc ctacatacct cgctctgcta	690
	atcctgttac cagtggctgc tgccagtggc gataagtcgt gtcttaccgg gttggactca	696
	agacgatagt taccggataa ggcgcagcgg tcgggctgaa cggggggttc gtgcacacag	702
25	cccagcttgg agcgaacgac ctacaccgaa ctgagatacc tacagcgtga gctatgagaa	708
	agcgccacgc ttcccgaagg gagaaaggcg gacaggtatc cggtaagcgg cagggtcgga	714
30	acaggagage geaegaggga gettecaggg ggaaaegeet ggtatettta tagteetgte	720
30	gggtttcgcc acctctgact tgagcgtcga tttttgtgat gctcgtcagg ggggcggagc	726
	ctatggaaaa acgccagcaa cgcggccttt ttacggttcc tggccttttg ctggcctttt	732
35	gctcacatgt tettteetge gttateeeet gattetgtgg ataacegtat tacegeettt	738
	gagtgagetg atacegeteg eegeageega aegaeegage geagegagte agtgagegag	744
	gaageggaag agegeeeaat aegeaaaeeg eeteteeeeg egegttggee gatteattaa	750
40	tgcagctggc acgacaggtt tcccgactgg aaagcgggca gtgagcgcaa cgcaattaat	756
	gtgagttage teacteatta ggeaceecag getttacaet ttatgettee ggetegtatg	762
	ttgtgtggaa ttgtgagcgg ataacaattt cacacaggaa acagctatga ccatgaggcg	768
45	cgccggattc	769
50	<210> 35 <211> 7654 <212> ADN <213> Secuencia artificial	
55	<220> <223> pCAG-ArtTal1-Fokl <400> 35	
	gacattgatt attgactagt tattaatagt aatcaattac ggggtcatta gttcatagcc	60
60	catatatgga gttccgcgtt acataactta cggtaaatgg cccgcctggc tgaccgccca	120
	acgacccccg cccattgacg tcaataatga cgtatgttcc catagtaacg ccaataggga	180

	CCCCC	catty	acgicaatgg	guggaguauu	cacygraaac	tycccactty	gcagtacatc	23
5	aagtg	tatca	tatgccaagt	acgcccccta	ttgacgtcaa	tgacggtaaa	tggcccgcct	30
	ggcat	tatgc	ccagtacatg	accttatggg	actttcctac	ttggcagtac	atctacgtat	36
	tagto	atcgc	tattaccatg	gtcgaggtga	gccccacgtt	ctgcttcact	ctccccatct	42
10	cccc	ccctc	cccaccccca	attttgtatt	tatttatttt	ttaattattt	tgtgcagcga	48
	tgggg	gcggg	aaaaaaaaa	gggcgcgcgc	caggcggggc	ggggcggggc	gaggggggg	54
15	gcggg	gcgag	gcggagaggt	gcggcggcag	ccaatcagag	cggcgcgctc	cgaaagtttc	60
10	ctttt	atggc	gaggcggcgg	cggcggcggc	cctataaaaa	gcgaagcgcg	cggcgggcgg	66
	gagto	gctgc	gcgctgcctt	cgccccgtgc	cccgctccgc	cgccgcctcg	cgccgcccgc	72
20	cccgg	ctctg	actgaccgcg	ttactcccac	aggtgagcgg	gcgggacggc	ccttctcctc	78
	cgggc	tgtaa	ttagcgcttg	gtttaatgac	ggcttgtttc	ttttctgtgg	ctgcgtgaaa	84
	gcctt	gaggg	gctccgggag	ggccctttgt	gcgggggga	gcggctcggg	gggtgcgtgc	90
25	gtgtg	tgtgt	gcgtggggag	cgccgcgtgc	ggctccgcgc	tgcccggcgg	ctgtgagcgc	96
	tgcgg	gcgcg	gcgcggggct	ttgtgcgctc	cgcagtgtgc	gcgaggggag	cgcggccggg	102
	ggcgg	tgccc	cgcggtgcgg	ggggggctgc	gaggggaaca	aaggctgcgt	gcggggtgtg	108
30	tgcgt	ggggg	ggtgagcagg	gggtgtgggc	gcgtcggtcg	ggctgcaacc	cccctgcac	114
	cccc	tcccc	gagttgctga	gcacggcccg	gcttcgggtg	cggggctccg	tacggggcgt	120
25	ggcgc	ggggc	tcgccgtgcc	gggcgggggg	tggcggcagg	tgggggtgcc	gggcggggcg	126
35	gggcc	gcctc	gggccgggga	gggctcgggg	gaggggcgcg	geggeeeeeg	gagcgccggc	132
	ggctg	tcgag	gcgcggcgag	ccgcagccat	tgccttttat	ggtaatcgtg	cgagagggcg	138
40	caggg	acttc	ctttgtccca	aatctgtgcg	gagccgaaat	ctgggaggcg	ccgccgcacc	144
	ccctc	tagcg	ggcgcggggc	gaagcggtgc	ggcgccggca	ggaaggaaat	gggcggggag	150
	ggcct	tcgtg	cgtcgccgcg	ccgccgtccc	cttctccctc	tccagcctcg	gggctgtccg	156
45	cgggg	ggacg	gctgccttcg	ggggggacgg	ggcagggcgg	ggttcggctt	ctggcgtgtg	162
	accgg	cggct	ctagagcctc	tgctaaccat	gttcatgcct	tcttctttt	cctacagatc	168
	cttaa	ttaat	aatacgactc	actatagggg	ccgccaccat	gggacctaag	aaaaagagga	174
50	aggtg	gcggc	cgctgactac	aaggatgacg	acgataaacc	aggtggcgga	ggtagtggcg	180
	gaggt	ggggt	acccgccagt	ccagcagccc	aggtggatct	gagaaccctc	ggctacagcc	186
	agcag	cagca	ggagaagatc	aaaccaaagg	tgcggtccac	cgtcgctcag	caccatgaag	192
55	cactg	gtggg	gcacggtttc	acacacgccc	atattgtggc	tctgtctcag	catcccgctg	198
	cacto	gggac	tgtggccgtc	aaatatcagg	acatgatcgc	cgctctgcct	gaggcaaccc	204

	acgaagccat	tgtgggcgtc	ggaaagcagt	ggagcggtgc	cagagcactc	gaagcactcc	2100
5	tcaccgtcgc	cggggaactg	cggggtccac	cactccagtc	cggactggac	actggacagc	2160
	tgctgaagat	cgctaaacgc	ggcggagtga	cagctgtgga	agctgtgcac	gcttggagga	2220
	atgctctgac	aggagcccca	ctgaatctta	ctccagaaca	ggtcgtcgca	atcgcaagta	2280
10	acatcggcgg	aaaacaggcc	ctcgaaaccg	tccagagact	cctccccgtg	ctgtgccagg	2340
	cccacggact	gaccccacag	caggtggtcg	ccatcgctag	caacggcgga	gggaagcagg	2400
	ctctggagac	cgtgcagagg	ctgctccccg	tcctgtgcca	ggcacatggg	ctcacacctc	2460
15	agcaggtggt	cgcaattgcc	tccaatggtg	gcggaaaaca	ggccctggaa	actgtgcaga	2520
	gactgctccc	cgtgctgtgc	caggctcacg	gtctcacacc	ccagcaggtg	gtcgctatcg	2580
20	catctcatga	cgggggcaag	caggcactgg	agacagtgca	gcggctgctc	cctgtcctgt	2640
20	gccaggccca	cggactcact	cctcagcagg	tcgtcgccat	tgctagtaac	ggcggaggga	2700
	aacaggctct	ggaaaccgtg	cagcgcctgc	tccccgtgct	gtgccaagcc	cacggcctga	2760
25	cccccagca	ggtggtcgca	atcgcctcaa	acaatggtgg	caagcaggcc	ctggagactg	2820
20	tgcagcgact	gctcccagtg	ctgtgccagg	cccatggact	cacaccacag	caggtcgtcg	2880
	ctattgcaag	caacaatgga	gggaaacagg	cactggaaac	agtccagagg	ctgctccccg	2940
30	tgctgtgcca	agcgcatgga	ctcactcccc	agcaggtcgt	cgccatcgct	tccaataacg	3000
	gcggcaagca	ggccctggag	accgtccaga	gactgctccc	cgtgctgtgc	caagctcacg	3060
	gactcacacc	tgagcaggtc	gtggcaatcg	cctctaacat	tggagggaaa	caggccctgg	3120
35	aaactgtaca	gcggctgctc	cccgtgctgt	gccaagcaca	cggactcact	ccacagcagg	3180
	tcgtggccat	tgcaagtcat	gacggaggca	agcaggccct	ggaaacagtg	cagcgcctgc	3240
	tccctgtgct	gtgccaggct	catggtctga	ctcctcagca	ggtggtggcc	atcgcttcca	3300
40	acaatggagg	gaagcaggcc	ctggagaccg	tacagagact	gctccccgtg	ctgtgccaag	3360
	cgcacggtct	gacccctcag	caggtcgtcg	caatcgccag	caatggcggg	ggcaagcagg	3420
	ctctcgaaac	cgtccagcgg	ctcctcccag	tcctctgtca	ggctcacggc	ctgaccccac	3480
45	agcaggtcgt	cgctattgct	tctaatggcg	gagggcggcc	tgctctggag	agcattgtgg	3540
	ctcagctgtc	caggcccgat	cctgccctgg	ctagatccgc	actcactaac	gatcatctgg	3600
	tegetetege	ttgcctcggt	ggacggcccg	ctctggacgc	agtcaaaaag	ggtctccccc	3660
50	atgctcccgc	actgatcaag	agaaccaaca	ggagaattcc	tgagggatcc	gatcgtttaa	3720
	accagctcgt	gaaaagcgaa	ctcgaagaaa	agaaaagtga	actgcggcac	aaactgaaat	3780
	acgtcccaca	tgaatacatt	gagctgatcg	agattgctag	gaactccacc	caggacagaa	3840
55	tcctcgagat	gaaagtgatg	gaattcttta	tgaaagtcta	cgggtatcgg	ggcaagcacc	3900
	tgggcggatc	tcgcaaacca	gatggggcaa	tctacactgt	gggtagtccc	atcgactatg	3960

	gcgtgattgt	cgataccaag	gcctacagtg	ggggttataa	tctgcccatt	ggacaggctg	4020
5	acgagatgca	gcgatacgtg	gaggaaaacc	agacaagaaa	taagcatatc	aaccccaatg	4080
	agtggtggaa	agtgtatcct	agctccgtca	ctgaattcaa	gtttctcttc	gtgtcaggcc	4140
	actttaaggg	aaactacaaa	gcacagctga	ccaggctcaa	tcatattaca	aactgcaatg	4200
10	gcgccgtgct	gagcgtcgag	gaactgctca	tcggcggaga	gatgatcaag	gccggcacac	4260
	tcaccctgga	ggaggtccgc	cgaaaattca	ataacgggga	aatcaacttc	tgaacgcgta	4320
15	aatgattgca	gatccactag	ttctagaatt	ccagctgagc	gccggtcgct	accattacca	4380
15	gttggtctgg	tgtcaaaaat	aataataacc	gggcaggggg	gatctgcatg	gatctttgtg	4440
	aaggaacctt	acttctgtgg	tgtgacataa	ttggacaaac	tacctacaga	gatttaaagc	4500
20	tctaaggtaa	atataaaatt	tttaagtgta	taatgtgtta	aactactgat	tctaattgtt	4560
	tgtgtatttt	agattccaac	ctatggaact	gatgaatggg	agcagtggtg	gaatgccaga	4620
	tccagacatg	ataagataca	ttgatgagtt	tggacaaacc	acaactagaa	tgcagtgaaa	4680
25	aaaatgcttt	atttgtgaaa	tttgtgatgc	tattgcttta	tttgtaacca	ttataagctg	4740
	caataaacaa	gttaacaaca	acaattgcat	tcattttatg	tttcaggttc	agggggaggt	4800
	gtgggaggtt	ttttaaagca	agtaaaacct	ctacaaatgt	ggtatggctg	attatgatct	4860
30	gcggccgcca	ctggccgtcg	ttttacaacg	tcgtgactgg	gaaaaccctg	gcgttaccca	4920
	acttaatcgc	cttgcagcac	atcccccttt	cgccagctgg	cgtaatagcg	aagaggcccg	4980
05	caccgatcgc	ccttcccaac	agttgcgcag	cctgaatggc	gaatggaacg	cgccctgtag	5040
35	cggcgcatta	agcgcggcgg	gtgtggtggt	tacgcgcagc	gtgaccgcta	cacttgccag	5100
	cgccctagcg	cccgctcctt	tcgctttctt	cccttccttt	ctcgccacgt	tcgccggctt	5160
40	tccccgtcaa	gctctaaatc	gggggctccc	tttagggttc	cgatttagtg	ctttacggca	5220
	cctcgacccc	aaaaaacttg	attagggtga	tggttcacgt	agtgggccat	cgccctgata	5280
	gacggttttt	cgccctttga	cgttggagtc	cacgttcttt	aatagtggac	tcttgttcca	5340
45	aactggaaca	acactcaacc	ctatctcggt	ctattcttt	gatttataag	ggattttgcc	5400
	gatttcggcc	tattggttaa	aaaatgagct	gatttaacaa	aaatttaacg	cgaattttaa	5460
	caaaatatta	acgcttacaa	tttaggtggc	acttttcggg	gaaatgtgcg	cggaacccct	5520
50	atttgtttat	ttttctaaat	acattcaaat	atgtatccgc	tcatgagaca	ataaccctga	5580
	taaatgcttc	aataatattg	aaaaaggaag	agtatgagta	ttcaacattt	ccgtgtcgcc	5640
	cttattccct	tttttgcggc	attttgcctt	cctgtttttg	ctcacccaga	aacgctggtg	5700
55	aaagtaaaag	atgctgaaga	tcagttgggt	gcacgagtgg	gttacatcga	actggatctc	5760
	aacagcggta	agatccttga	gagttttcgc	cccgaagaac	gttttccaat	gatgagcact	5820

	tttaaagttc	tgctatgtgg	cgcggtatta	tcccgtattg	acgccgggca	agagcaactc	5880
5	ggtcgccgca	tacactattc	tcagaatgac	ttggttgagt	actcaccagt	cacagaaaag	5940
	catcttacgg	atggcatgac	agtaagagaa	ttatgcagtg	ctgccataac	catgagtgat	6000
10	aacactgcgg	ccaacttact	tctgacaacg	atcggaggac	cgaaggagct	aaccgctttt	6060
10	ttgcacaaca	tgggggatca	tgtaactcgc	cttgatcgtt	gggaaccgga	gctgaatgaa	6120
	gccataccaa	acgacgagcg	tgacaccacg	atgcctgtag	caatggcaac	aacgttgcgc	6180
15	aaactattaa	ctggcgaact	acttactcta	gcttcccggc	aacaattaat	agactggatg	6240
	gaggcggata	aagttgcagg	accacttctg	cgctcggccc	ttccggctgg	ctggtttatt	6300
	gctgataaat	ctggagccgg	tgagcgtggg	tctcgcggta	tcattgcagc	actggggcca	6360
20	gatggtaagc	cctcccgtat	cgtagttatc	tacacgacgg	ggagtcaggc	aactatggat	6420
	gaacgaaata	gacagatcgc	tgagataggt	gcctcactga	ttaagcattg	gtaactgtca	6480
	gaccaagttt	actcatatat	actttagatt	gatttaaaac	ttcattttta	atttaaaagg	6540
25	atctaggtga	agatcctttt	tgataatctc	atgaccaaaa	tcccttaacg	tgagttttcg	6600
	ttccactgag	cgtcagaccc	cgtagaaaag	atcaaaggat	cttcttgaga	teetttttt	6660
••	ctgcgcgtaa	tctgctgctt	gcaaacaaaa	aaaccaccgc	taccagcggt	ggtttgtttg	6720
30	ccggatcaag	agctaccaac	tctttttccg	aaggtaactg	gcttcagcag	agcgcagata	6780
	ccaaatactg	tccttctagt	gtagccgtag	ttaggccacc	acttcaagaa	ctctgtagca	6840
35	ccgcctacat	acctcgctct	gctaatcctg	ttaccagtgg	ctgctgccag	tggcgataag	6900
	tcgtgtctta	ccgggttgga	ctcaagacga	tagttaccgg	ataaggcgca	geggteggge	6960
	tgaacggggg	gttcgtgcac	acagcccagc	ttggagcgaa	cgacctacac	cgaactgaga	7020
40	tacctacagc	gtgagctatg	agaaagcgcc	acgcttcccg	aagggagaaa	ggcggacagg	7080
	tatccggtaa	gcggcagggt	cggaacagga	gagcgcacga	gggagcttcc	agggggaaac	7140
	gcctggtatc	tttatagtcc	tgtcgggttt	cgccacctct	gacttgagcg	tcgatttttg	7200
45	tgatgctcgt	caggggggcg	gagcctatgg	aaaaacgcca	gcaacgcggc	ctttttacgg	7260
	ttcctggcct	tttgctggcc	ttttgctcac	atgttctttc	ctgcgttatc	ccctgattct	7320
	gtggataacc	gtattaccgc	ctttgagtga	gctgataccg	ctcgccgcag	ccgaacgacc	7380
50	gagcgcagcg	agtcagtgag	cgaggaagcg	gaagagcgcc	caatacgcaa	accgcctctc	7440
	cccgcgcgtt	ggccgattca	ttaatgcagc	tggcacgaca	ggtttcccga	ctggaaagcg	7500
FF	ggcagtgagc	gcaacgcaat	taatgtgagt	tagctcactc	attaggcacc	ccaggcttta	7560
55	cactttatgc	ttccggctcg	tatgttgtgt	ggaattgtga	gcggataaca	atttcacaca	7620
	ggaaacagct	atgaccatga	ggcgcgccgg	attc			7654

5	<210> 3 <211> 9 <212> 1 <213> 9	947 PRT	encia	artific	cial													
10	<220> <223> /		II-Alw	<i>'</i>														
					_	_	_	_	_	_					_	_	_	_
15			Met 1	GIĀ	Pro	ьys	Lys 5	Lys	Arg	ьys	vai	10	АІа	АІа	Asp	Tyr	Lys 15	Asp
			Asp	Asp	Asp	Lys 20	Pro	Gly	Gly	Gly	Gly 25	Ser	Gly	Gly	Gly	Gly 30	Val	Pro
20			Ala	Ser	Pro 35	Ala	Ala	Gln	Val	Asp 40	Leu	Arg	Thr	Leu	Gly 45	Tyr	Ser	Gln
25			Gln	Gln 50	Gln	Glu	Lys	Ile	Lys 55	Pro	Lys	Val	Arg	Ser 60	Thr	Val	Ala	Gln
30			His 65	His	Glu	Ala	Leu	Val 70	Gly	His	Gly	Phe	Thr 75	His	Ala	His	Ile	Val 80
			Ala	Leu	Ser	Gln	His 85	Pro	Ala	Ala	Leu	Gly 90	Thr	Val	Ala	Val	Lys 95	Tyr
35			Gln	Asp	Met	Ile 100	Ala	Ala	Leu	Pro	Glu 105	Ala	Thr	His	Glu	Ala 110	Ile	Val
40			Gly	Val	Gly 115	Lys	Gln	Trp	Ser	Gly 120	Ala	Arg	Ala	Leu	Glu 125	Ala	Leu	Leu
45			Thr	Val 130	Ala	Gly	Glu	Leu	Arg 135	Gly	Pro	Pro	Leu	Gln 140	Ser	Gly	Leu	Asp
70			Thr 145	Gly	Gln	Leu	Leu	Lys 150	Ile	Ala	Lys	Arg	Gly 155	Gly	Val	Thr	Ala	Val 160
50			Glu	Ala	Val	His	Ala 165	Trp	Arg	Asn	Ala	Leu 170	Thr	Gly	Ala	Pro	Leu 175	Asn
55			Leu	Thr	Pro	Glu 180	Gln	Val	Val	Ala	Ile 185	Ala	Ser	Asn	Ile	Gly 190	Gly	Lys
00			Gln	Ala	Leu 195	Glu	Thr	Val	Gln	A rg 200	Leu	Leu	Pro	Val	Leu 205	Cys	Gln	Ala
60			His	Gly	Leu	Thr	Pro	Gln	Gln	Val	Val	Ala	Ile	Ala	Ser	Asn	Gly	Gly

		210					215					220				
5	Gly 225	Lys	Gln	Ala	Leu	Glu 230	Thr	Val	Gln	Arg	Leu 235	Leu	Pro	Val	Leu	Cys 240
10	Gln	Ala	His	Gly	Leu 245	Thr	Pro	Gln	Gln	Val 250	Val	Ala	Ile	Ala	Ser 255	Asn
15	Gly	Gly	Gly	Lys 260	Gln	Ala	Leu	Glu	Thr 265	Val	Gln	Arg	Leu	Leu 270	Pro	Val
	Leu	Cys	Gln 275	Ala	His	Gly	Leu	Thr 280	Pro	Gln	Gln	Val	Val 285	Ala	Ile	Ala
20	Ser	His 290	Asp	Gly	Gly	Lys	Gln 295	Ala	Leu	Glu	Thr	Val 300	Gln	Arg	Leu	Leu
25	Pro 305	Val	Leu	Cys	Gln	Ala 310	His	Gly	Leu	Thr	Pro 315	Gln	Gln	Val	Val	Ala 320
30	Ile	Ala	Ser	Asn	Gly 325	Gly	Gly	Lys	Gln	Ala 330	Leu	Glu	Thr	Val	Gln 335	Arg
	Leu	Leu	Pro	Val 340	Leu	Cys	Gln	Ala	His 345	Gly	Leu	Thr	Pro	Gln 350	Gln	Val
35	Val	Ala	Ile 355	Ala	Ser	Asn	Asn	Gly 360	Gly	Lys	Gln	Ala	Leu 365	Glu	Thr	Val
40	Gln	Arg 370	Leu	Leu	Pro	Val	Leu 375	Cys	Gln	Ala	His	Gly 380	Leu	Thr	Pro	Gln
45	Gln 385	Val	Val	Ala	Ile	Ala 390	Ser	Asn	Asn	Gly	Gly 395	Lys	Gln	Ala	Leu	Glu 400
	Thr	Val	Gln	Arg	Leu 405	Leu	Pro	Val	Leu	Cys 410	Gln	Ala	His	Gly	Leu 415	Thr
50	Pro	Gln	Gln	Val 420	Val	Ala	Ile	Ala	Ser 425	Asn	Asn	Gly	Gly	Lys 430	Gln	Ala
55	Leu	Glu	Thr 435	Val	Gln	Arg	Leu	Leu 440	Pro	Val	Leu	Cys	Gln 445	Ala	His	Gly
60	Leu	Thr 450	Pro	Glu	Gln	Val	Val 455	Ala	Ile	Ala	Ser	Asn 460	Ile	Gly	Gly	Lys

5	Gln 465	Ala	Leu	Glu	Thr	Val 470	Gln	Arg	Leu	Leu	Pro 475	Val	Leu	Cys	Gln	Ala 480
	His	Gly	Leu	Thr	Pro 485	Gln	Gln	Val	Val	Ala 490	Ile	Ala	Ser	His	Asp 495	Gly
10	Gly	Lys	Gln	Ala 500	Leu	Glu	Thr	Val	Gln 505	Arg	Leu	Leu	Pro	Val 510	Leu	Cys
15	Gln	Ala	His 515	Gly	Leu	Thr	Pro	Gln 520	Gln	Val	Val	Ala	11e 525	Ala	Ser	Asn
20	Asn	Gly 530	Gly	Lys	Gln	Ala	Leu 535	Glu	Thr	Val	Gln	Arg 540	Leu	Leu	Pro	Val
	Leu 545	Cys	Gln	Ala	His	Gly 550	Leu	Thr	Pro	Gln	Gln 555	Val	Val	Ala	Ile	Ala 560
25	Ser	Asn	Gly	Gly	Gly 565	Lys	Gln	Ala	Leu	Glu 570	Thr	Val	Gln	Arg	Leu 575	Leu
30	Pro	Val	Leu	C ys 580	Gln	Ala	His	Gly	Leu 585	Thr	Pro	Gln	Gln	Val 590	Val	Ala
35	Ile	Ala	Ser 595	Asn	Gly	Gly	Gly	Arg 600	Pro	Ala	Leu	Glu	Ser 605	Ile	Val	Ala
	Gln	Leu 610	Ser	Arg	Pro	Asp	Pro 615	Ala	Leu	Ala	Arg	Ser 620	Ala	Leu	Thr	Asn
40	Asp 625	His	Leu	Val	Ala	Leu 630	Ala	Cys	Leu	Gly	Gly 635	Arg	Pro	Ala	Leu	Asp 640
45	Ala	Val	Lys	Lys	Gly 645	Leu	Pro	His	Ala	Pro 650	Ala	Leu	Ile	Lys	Arg 655	Thr
50	Asn	Arg	Arg	Ile 660	Pro	Glu	Gly	Ser	Asp 665	Arg	Leu	Asn	Lys	Glu 670	Thr	Asn
55	Ile	Leu	Leu 675	Val	Glu	Gln	Leu	Glu 680	Glu	Thr	Leu	Asn	Arg 685	Asn	Arg	Ile
55	Leu	Phe 690	Glu	Lys	Asn	Ser	Ser 695	Ile	Ala	Gln	Ala	Pro 700	Ile	Gly	Glu	Ile
60	Lys 705	Asn	Tyr	Arg	Tyr	His 710	Leu	Glu	Glu	Leu	Leu 715	Phe	Glu	Asn	Asn	Glu 720

5	Lys	Lys	Phe	Ala	Glu 725	Asn	Gln	Lys	Asn	Glu 730	Trp	Asp	Glu	Ile	Leu 735	Ala
3	Tyr	Met	Asp	Leu 740	Leu	Ile	Ser	Pro	Lys 745	Pro	Ile	Ser	Ile	Glu 750	Ile	Ala
10	Asp	Lys	Glu 755	Ile	Ser	Ile	Pro	Ser 760	Gly	Glu	Arg	Pro	Ala 765	Tyr	Phe	Glu
15	Trp	Val 770	Leu	Trp	Arg	Ala	Phe 775	Leu	Ala	Leu	Asn	His 780	Leu	Ile	Ile	Glu
20	Pro 785	Gln	Gln	Cys	Arg	A rg 790	Phe	Lys	Val	Asp	Gln 795	Asp	Phe	Lys	Pro	Ile 800
05	His	Asn	Ala	Pro	Gly 805	Gly	Gly	Ala	Asp	Val 810	Ile	Phe	Glu	Tyr	Glu 815	Asn
25	Phe	Lys	Ile	Leu 820	Gly	Glu	Val	Thr	Leu 825	Thr	Ser	Asn	Ser	Arg 830	Gln	Glu
30	Ala	Ala	Glu 835	Gly	Glu	Pro	Val	Arg 840	Arg	His	Ile	Ala	Val 845	Glu	Thr	Val
35	Asn	Thr 850	Pro	Asp	Lys	Asp	Val 855	Tyr	Gly	Leu	Phe	Leu 860	Ala	Leu	Thr	Ile
40	Asp 865	Thr	Asn	Thr	Ala	Glu 870	Thr	Phe	Arg	His	Gly 875	Ala	Trp	Tyr	His	Gln 880
	Glu	Glu	Leu	Met	Asp 885	Val	Lys	Ile	Leu	Pro 890	Leu	Thr	Leu	Glu	Ser 895	Phe
45	Lys	Lys	Tyr	Leu 900	Glu	Ser	Leu	Arg	Lys 905	Lys	Asn	Gln	Val	Glu 910	Thr	Gly
50	Ile	Phe	Asp 915	Leu	Lys	Lys	Met	Met 920	Asp	Glu	Ser	Leu	Lys 925	Leu	Arg	Glu
55	Thr	Leu 930	Thr	Ala	Pro	Gln	Trp 935	Lys	Asn	Glu	Ile	Thr 940	Asn	Lys	Phe	Ala
60	Arg 945	Pro	Ile													

5	<210> 37 <211> 869 <212> PRT <213> Secuencia a	artifici	al														
	<220> <223> ArtTall-CLE	DOR	F														
10	<400> 37																
		Met 1	Gly	Pro	Lys	Lys 5	Lys	Arg	Lys	Val	Ala 10	Ala	Ala	Asp	Tyr	Lys 15	Asp
15		Asp	Asp	Asp	Lys 20	Pro	Gly	Gly	Gly	Gly 25	Ser	Gly	Gly	Gly	Gly 30	Val	Pro
20		Ala	Ser	Pro 35	Ala	Ala	Gln	Val	Asp 40	Leu	Arg	Thr	Leu	Gly 45	Tyr	Ser	Gln
25		Gln	Gln 50	Gln	Glu	Lys	Ile	Lys 55	Pro	Lys	Val	Arg	Ser 60	Thr	Val	Ala	Gln
		His 65	His	Glu	Ala	Leu	Val 70	Gly	His	Gly	Phe	Thr 75	His	Ala	His	Ile	Val 80
30		Ala	Leu	Ser	Gln	His 85	Pro	Ala	Ala	Leu	Gly 90	Thr	Val	Ala	Val	Lys 95	Tyr
35		Gln	Asp	Met	Ile 100	Ala	Ala	Leu	Pro	Glu 105	Ala	Thr	His	Glu	Ala 110	Ile	Val
40		Gly	Val	Gly 115	Lys	Gln	Trp	Ser	Gly 120	Ala	Arg	Ala	Leu	Glu 125	Ala	Leu	Leu
		Thr	Val 130	Ala	Gly	Glu	Leu	Arg 135	Gly	Pro	Pro	Leu	Gln 140	Ser	Gly	Leu	Asp
45		Thr 145	Gly	Gln	Leu	Leu	Lys 150	Ile	Ala	Lys	Arg	Gly 155	Gly	Val	Thr	Ala	Val 160
50		Glu	Ala	Val	His	Ala 165	Trp	Arg	Asn	Ala	Leu 170	Thr	Gly	Ala	Pro	Leu 175	Asn
		Leu	Thr	Pro	Glu 180	Gln	Val	Val	Ala	Ile 185	Ala	Ser	Asn	Ile	Gly 190	Gly	Lys
55		Gln	Ala	Leu 195	Glu	Thr	Val	Gln	Arg 200	Leu	Leu	Pro	Val	Leu 205	Cys	Gln	Ala
60		His	Gly 210	Leu	Thr	Pro	Gln	Gln 215	Val	Val	Ala	Ile	Ala 220	Ser	Asn	Gly	Gly

	Gly 225	Lys	Gln	Ala	Leu	Glu 230	Thr	Val	Gln	Arg	Leu 235	Leu	Pro	Val	Leu	Cys 240
5	Gln	Ala	His	Gly	Leu 245	Thr	Pro	Gln	Gln	Val 250	Val	Ala	Ile	Ala	Ser 255	Asn
10	Gly	Gly	Gly	Lys 260	Gln	Ala	Leu	Glu	Thr 265	Val	Gln	Arg	Leu	Leu 270	Pro	Val
15	Leu	Cys	Gln 275	Ala	His	Gly	Leu	Thr 280	Pro	Gln	Gln	Val	Val 285	Ala	Ile	Ala
00	Ser	His 290	Asp	Gly	Gly	Lys	Gln 295	Ala	Leu	Glu	Thr	Val 300	Gln	Arg	Leu	Leu
20	Pro 305	Val	Leu	Cys	Gln	Ala 310	His	Gly	Leu	Thr	Pro 315	Gln	Gln	Val	Val	Ala 320
25	Ile	Ala	Ser	Asn	Gly 325	Gly	Gly	Lys	Gln	Ala 330	Leu	Glu	Thr	Val	Gln 335	Arg
30	Leu	Leu	Pro	Val 340	Leu	Cys	Gln	Ala	His 345	Gly	Leu	Thr	Pro	Gln 350	Gln	Val
35	Val	Ala	Ile 355	Ala	Ser	Asn	Asn	Gly 360	Gly	Lys	Gln	Ala	Leu 365	Glu	Thr	Val
	Gln	Arg 370	Leu	Leu	Pro	Val	Leu 375	Cys	Gln	Ala	His	Gly 380	Leu	Thr	Pro	Gln
40	Gln 385	Val	Val	Ala	Ile	Ala 390	Ser	Asn	Asn	Gly	Gly 395	Lys	Gln	Ala	Leu	Glu 400
45	Thr	Val	Gln	Arg	Leu 405	Leu	Pro	Val	Leu	Cys 410	Gln	Ala	His	Gly	Leu 415	Thr
50	Pro	Gln	Gln	Val 420	Val	Ala	Ile	Ala	Ser 425	Asn	Asn	Gly	Gly	Lys 430	Gln	Ala
	Leu	Glu	Thr 435	Val	Gln	Arg	Leu	Leu 440	Pro	Val	Leu	Cys	Gln 445	Ala	His	Gly
55	Leu	Thr 450	Pro	Glu	Gln	Val	Val 455	Ala	Ile	Ala	Ser	Asn 4 60	Ile	Gly	Gly	Lys
60	Gln 465	Ala	Leu	Glu	Thr	Val 470	Gln	Arg	Leu	Leu	Pro 475	Val	Leu	Cys	Gln	Ala 480

5	His	Gly	Leu	Thr	Pro 485	Gln	Gln	Val	Val	Ala 490	Ile	Ala	Ser	His	Asp 495	Gly
5	Gly	Lys	Gln	Ala 500	Leu	Glu	Thr	Val	Gln 505	Arg	Leu	Leu	Pro	Val 510	Leu	Cys
10	Gln	Ala	His 515	Gly	Leu	Thr	Pro	Gln 520	Gln	Val	Val	Ala	Ile 525	Ala	Ser	Asn
15	Asn	Gly 530	Gly	Lys	Gln	Ala	Leu 535	Glu	Thr	Val	Gln	Arg 540	Leu	Leu	Pro	Val
20	Leu 545	Cys	Gln	Ala	His	Gly 550	Leu	Thr	Pro	Gln	Gln 555	Val	Val	Ala	Ile	Ala 560
	Ser	Asn	Gly	Gly	Gly 565	Lys	Gln	Ala	Leu	Glu 570	Thr	Val	Gln	Arg	Leu 575	Leu
25	Pro	Val	Leu	Cys 580	Gln	Ala	His	Gly	Leu 585	Thr	Pro	Gln	Gln	Val 590	Val	Ala
30	Ile	Ala	Ser 595	Asn	Gly	Gly	Gly	Arg 600	Pro	Ala	Leu	Glu	Ser 605	Ile	Val	Ala
35	Gln	Leu 610	Ser	Arg	Pro	Asp	Pro 615	Ala	Leu	Ala	Arg	Ser 620	Ala	Leu	Thr	Asn
40	Asp 625	His	Leu	Val	Ala	Leu 630	Ala	Cys	Leu	Gly	Gly 635	Arg	Pro	Ala	Leu	Asp 640
	Ala	Val	Lys	Lys	Gly 645	Leu	Pro	His	Ala	Pro 650	Ala	Leu	Ile	Lys	Arg 655	Thr
45	Asn	Arg	Arg	Ile 660	Pro	Glu	Gly	Ser	Asp 665	Arg	Leu	Asn	Lys	Leu 670	Ala	Lys
50	Ser	Ser	Gln 675	Ser	Glu	Thr	Lys	Glu 680	Lys	Leu	Arg	Glu	Lys 685	Leu	Arg	Asn
55	Leu	Pro 690	His	Glu	Tyr	Leu	Ser 695	Leu	Val	Asp	Leu	Ala 700	Tyr	Asp	Ser	Lys
60	Gln 705	Asn	Arg	Leu	Phe	Glu 710	Met	Lys	Val	Ile	Glu 715	Leu	Leu	Thr	Glu	Glu 720
60	Cys	Gly	Phe	Gln	Gly	Leu	His	Leu	Gly	Gly	Ser	Arg	Arg	Pro	Asp	Gly
65																

						725					730					735	
5		Va]	. Leu	Tyr	Thr 740	Ala	Gly	Leu	Thr	Asp 745	Asn	Tyr	Gly	Ile	Ile 750	Leu	Asp
10		Thr	Lys	Ala 755	_	Ser	Ser	Gly	Tyr 760	Ser	Leu	Pro	Ile	Ala 765	Gln	Ala	Asp
15		Glu	1 Me t 770		Arg	Tyr	Val	Arg 775	Glu	Asn	Gln	Thr	Arg 780	Asp	Glu	Leu	Val
		Asr 785	Pro	Asn	Gln	Trp	Trp 790	Glu	Asn	Phe	Glu	A sn 795	Gly	Leu	Gly	Thr	Phe 800
20		Туг	Phe	Leu	Phe	Val 805	Ala	Gly	His	Phe	Asn 810	Gly	Asn	Val	Gln	Ala 815	Gln
25		Leu	ı Glu	Arg	Ile 820	Ser	Arg	Asn	Thr	Gly 825	Val	Leu	Gly	Ala	A la 830	Ala	Ser
00		Ile	e Ser	Gln 835		Leu	Leu	Leu	Ala 840	Asp	Ala	Ile	Arg	Gly 845	Gly	Arg	Met
30		Asp	850		Arg	Leu	Arg	His 855	Leu	Met	Phe	Gln	Asn 860	Glu	Glu	Phe	Leu
35		Le u 865	ı Glu	Gln	Glu	Leu											
40	<210> 38 <211> 867 <212> PRT <213> Secuencia	a artifi	cial														
45	<220> <223> ArtTal1-C	lo051															
	<400> 38																
50		Met 1	Gly	Pro	Lys	Lys 5	Lys	Arg	Lys	Val	Ala 10	Ala	Ala	Asp	Tyr	Lys 15	Asp
		Asp	Asp	Asp	Lys 20	Pro	Gly	Gly	Gly	Gly 25	Ser	Gly	Gly	Gly	Gly 30	Val	Pro
55		Ala	Ser	Pro 35	Ala	Ala	Gln	Val	Asp 40	Leu	Arg	Thr	Leu	Gly 45	Tyr	Ser	Gln
60		Gln	Gln 50	Gln	Glu	Lys	Ile	Lys 55	Pro	Lys	Val	Arg	Ser 60	Thr	Val	Ala	Gln

5	His 65	His	Glu	Ala	Leu	Val 70	Gly	His	Gly	Phe	Thr 75	His	Ala	His	Ile	Val 80
	Ala	Leu	Ser	Gln	His 85	Pro	Ala	Ala	Leu	Gly 90	Thr	Val	Ala	Val	Lys 95	Tyr
10	Gln	Asp	Met	Ile 100	Ala	Ala	Leu	Pro	Glu 105	Ala	Thr	His	Glu	Ala 110	Ile	Val
15	Gly	Val	Gly 115	Lys	Gln	Trp	Ser	Gly 120	Ala	Arg	Ala	Leu	Glu 125	Ala	Leu	Leu
20	Thr	Val 130	Ala	Gly	Glu	Leu	A rg 135	Gly	Pro	Pro	Leu	Gln 140	Ser	Gly	Leu	Asp
	Thr 145	Gly	Gln	Leu	Leu	Lys 150	Ile	Ala	Lys	Arg	Gly 155	Gly	Val	Thr	Ala	Val 160
25	Glu	Ala	Val	His	Ala 165	Trp	Arg	Asn	Ala	Leu 170	Thr	Gly	Ala	Pro	Leu 175	Asn
30	Leu	Thr	Pro	Glu 180	Gln	Val	Val	Ala	Ile 185	Ala	Ser	Asn	Ile	Gly 190	Gly	Lys
35	Gln	Ala	Leu 195	Glu	Thr	Val	Gln	Arg 200	Leu	Leu	Pro	Val	Leu 205	Cys	Gln	Ala
40	His	Gly 210	Leu	Thr	Pro	Gln	Gln 215	Val	Val	Ala	Ile	Ala 220	Ser	Asn	Gly	Gly
	Gly 225	Lys	Gln	Ala	Leu	Glu 230	Thr	Val	Gln	Arg	Leu 235	Leu	Pro	Val	Leu	Cys 240
45	Gln	Ala	His	Gly	Leu 245	Thr	Pro	Gln	Gln	Val 250	Val	Ala	Ile	Ala	Ser 255	Asn
50	Gly	Gly	Gly	Lys 260	Gln	Ala	Leu	Glu	Thr 265	Val	Gln	Arg	Leu	Leu 270	Pro	Val
55	Leu	Cys	Gln 275	Ala	His	Gly	Leu	Thr 280	Pro	Gln	Gln	Val	Val 285	Ala	Ile	Ala
	Ser	His 290	Asp	Gly	Gly	Lys	Gln 295	Ala	Leu	Glu	Thr	Val 300	Gln	Arg	Leu	Leu
60	Pro	Val	Leu	Cys	Gln	Ala	His	Gly	Leu	Thr	Pro	Gln	Gln	Val	Val	Ala

	305					310					315					320
5	Ile	Ala	Ser	Asn	Gly 325	Gly	Gly	Lys	Gln	Ala 330	Leu	Glu	Thr	Val	Gln 335	Arg
10	Leu	Leu	Pro	Val 340	Leu	Cys	Gln	Ala	His 345	Gly	Leu	Thr	Pro	Gln 350	Gln	Val
15	Val	Ala	Ile 355	Ala	Ser	Asn	Asn	Gly 360	Gly	Lys	Gln	Ala	Leu 365	Glu	Thr	Val
	Gln	Arg 370	Leu	Leu	Pro	Val	Leu 375	Cys	Gln	Ala	His	Gly 380	Leu	Thr	Pro	Gln
20	Gln 385	Val	Val	Ala	Ile	Ala 390	Ser	Asn	Asn	Gly	Gly 395	Lys	Gln	Ala	Leu	Glu 400
25	Thr	Val	Gln	Arg	Leu 405	Leu	Pro	Val	Leu	Cys 410	Gln	Ala	His	Gly	Leu 415	Thr
30	Pro	Gln	Gln	Val 420	Val	Ala	Ile	Ala	Ser 425	Asn	Asn	Gly	Gly	Lys 430	Gln	Ala
35	Leu	Glu	Thr 435	Val	Gln	Arg	Leu	Leu 440	Pro	Val	Leu	Cys	Gln 445	Ala	His	Gly
	Leu	Thr 450	Pro	Glu	Gln	Val	Val 455	Ala	Ile	Ala	Ser	Asn 460	Ile	Gly	Gly	Lys
40	Gln 465	Ala	Leu	Glu	Thr	Val 470	Gln	Arg	Leu	Leu	Pro 475	Val	Leu	Cys	Gln	Ala 480
45	His	Gly	Leu	Thr	Pro 485	Gln	Gln	Val	Val	Ala 490	Ile	Ala	Ser	His	Asp 495	Gly
50	Gly	Lys	Gln	Ala 500	Leu	Glu	Thr	Val	Gln 505	Arg	Leu	Leu	Pro	Val 510	Leu	Cys
	Gln	Ala	His 515	Gly	Leu	Thr	Pro	Gln 520	Gln	Val	Val	Ala	Ile 525	Ala	Ser	Asn
55	Asn	Gly 530	Gly	Lys	Gln	Ala	Leu 535	Glu	Thr	Val	Gln	A rg 540	Leu	Leu	Pro	Val
60	Leu 545	Cys	Gln	Ala	His	Gly 550	Leu	Thr	Pro	Gln	Gln 555	Val	Val	Ala	Ile	Ala 560

_	Ser	Asn	Gly	Gly	Gly 565	Lys	Gln	Ala	Leu	Glu 570	Thr	Val	Gln	Arg	Leu 575	Leu
5	Pro	Val	Leu	C ys 580	Gln	Ala	His	Gly	Leu 585	Thr	Pro	Gln	Gln	Val 590	Val	Ala
10	Ile	Ala	Ser 595	Asn	Gly	Gly	Gly	Arg 600	Pro	Ala	Leu	Glu	Ser 605	Ile	Val	Ala
15	Gln	Leu 610	Ser	Arg	Pro	Asp	Pro 615	Ala	Leu	Ala	Arg	Ser 620	Ala	Leu	Thr	Asn
20	Asp 625	His	Leu	Val	Ala	Leu 630	Ala	Cys	Leu	Gly	Gly 635	Arg	Pro	Ala	Leu	Asp 640
	Ala	Val	Lys	Lys	Gly 645	Leu	Pro	His	Ala	Pro 650	Ala	Leu	Ile	Lys	Arg 655	Thr
25	Asn	Arg	Arg	Ile 660	Pro	Glu	Gly	Ser	Asp 665	Arg	Leu	Asn	Glu	Gly 670	Ile	Lys
30	Ser	Asn	Ile 675	Ser	Leu	Leu	Lys	Asp 680	Glu	Leu	Arg	Gly	Gln 685	Ile	Ser	His
35	Ile	Ser 690	His	Glu	Tyr	Leu	Ser 695	Leu	Ile	Asp	Leu	A la 700	Phe	Asp	Ser	Lys
40	Gln 705	Asn	Arg	Leu	Phe	Glu 710	Met	Lys	Val	Leu	Glu 715	Leu	Leu	Val	Asn	Glu 720
	Tyr	Gly	Phe	Lys	Gly 725	Arg	His	Leu	Gly	Gly 730	Ser	Arg	Lys	Pro	Asp 735	Gly
45	Ile	Val	Tyr	Ser 740	Thr	Thr	Leu	Glu	Asp 745	Asn	Phe	Gly	Ile	Ile 750	Val	Asp
50	Thr	Lys	Ala 755	Tyr	Ser	Glu	Gly	Tyr 760	Ser	Leu	Pro	Ile	Ser 765	Gln	Ala	Asp
55	Glu	Met 770	Glu	Arg	Tyr	Val	A rg 775	Glu	Asn	Ser	Asn	A rg 780	Asp	Glu	Glu	Val
00	As n 785	Pro	Asn	Lys	Trp	Trp 790	Glu	Asn	Phe	Ser	Glu 795	Glu	Val	Lys	Lys	Tyr 800
60	Tyr	Phe	Val	Phe	Ile 805	Ser	Gly	Ser	Phe	Lys 810	Gly	Lys	Phe	Glu	Glu 815	Gln
65																

		Leu	Arg	Arg	Leu 820	Ser	Met	Thr	Thr	Gly 825	Val	Asn	Gly	Ser	A la 830	Val	Asn
5		Val	Val	Asn 835	Leu	Leu	Leu	Gly	Ala 840	Glu	Lys	Ile	Arg	Ser 845	Gly	Glu	Met
10		Thr	Ile 850	Glu	Glu	Leu	Glu	Arg 855	Ala	Met	Phe	Asn	Asn 860	Ser	Glu	Phe	Ile
15		Leu 865	Lys	Tyr													
20	<210> 39 <211> 918 <212> PRT <213> Secuence	cia arti	ificial														
	<220> <223> ArtTall-N	⁄llу															
25	<400> 39																
30		Met 1	Gly	Pro	Lys	Lys 5	Lys	Arg	Lys	Val	Ala 10	Ala	Ala	Asp	Tyr	Lys 15	Asp
50		Asp	Asp	Asp	Lys 20	Pro	Gly	Gly	Gly	Gly 25	Ser	Gly	Gly	Gly	Gly 30	Val	Pro
35		Ala	Ser	Pro 35	Ala	Ala	Gln	Val	Asp 40	Leu	Arg	Thr	Leu	Gly 45	Tyr	Ser	Gln
40		Gln	Gln 50	Gln	Glu	Lys	Ile	Lys 55	Pro	Lys	Val	Arg	Ser 60	Thr	Val	Ala	Gln
45		His 65	His	Glu	Ala	Leu	Val 70	Gly	His	Gly	Phe	Thr 75	His	Ala	His	Ile	Val 80
		Ala	Leu	Ser	Gln	His 85	Pro	Ala	Ala	Leu	Gly 90	Thr	Val	Ala	Val	Lys 95	Tyr
50		Gln	Asp	Met	Ile 100	Ala	Ala	Leu	Pro	Glu 105	Ala	Thr	His	Glu	Ala 110		Val
55		Gly	Val	Gly 115	Lys	Gln	Trp	Ser	Gly 120	Ala	Arg	Ala	Leu	Glu 125		Leu	Leu
60		Thr	Val 130	Ala	Gly	Glu	Leu	Arg 135	Gly	Pro	Pro	Leu	Gln 140	Ser	Gly	Leu	. Asp

5	Thr 145	Gly	Gln	Leu	Leu	Lys 150	Ile	Ala	Lys	Arg	Gly 155	Gly	Val	Thr	Ala	Val 160
J	Glu	Ala	Val	His	Ala 165	Trp	Arg	Asn	Ala	Leu 170	Thr	Gly	Ala	Pro	Leu 175	Asn
10	Leu	Thr	Pro	Glu 180	Gln	Val	Val	Ala	Ile 185	Ala	Ser	Asn	Ile	Gly 190	Gly	Lys
15	Gln	Ala	Leu 195	Glu	Thr	Val	Gln	A rg 200	Leu	Leu	Pro	Val	Leu 205	Cys	Gln	Ala
20	His	Gly 210	Leu	Thr	Pro	Gln	Gln 215	Val	Val	Ala	Ile	Ala 220	Ser	Asn	Gly	Gly
0.5	Gly 225	Lys	Gln	Ala	Leu	Glu 230	Thr	Val	Gln	Arg	Leu 235	Leu	Pro	Val	Leu	Cys 240
25	Gln	Ala	His	Gly	Leu 245	Thr	Pro	Gln	Gln	Val 250	Val	Ala	Ile	Ala	Ser 255	Asn
30	Gly	Gly	Gly	Lys 260	Gln	Ala	Leu	Glu	Thr 265	Val	Gln	Arg	Leu	Leu 270	Pro	Val
35	Leu	Суз	Gln 275	Ala	His	Gly	Leu	Thr 280	Pro	Gln	Gln	Val	Val 285	Ala	Ile	Ala
40	Ser	His 290	Asp	Gly	Gly	Lys	Gln 295	Ala	Leu	Glu	Thr	Val 300	Gln	Arg	Leu	Leu
	Pro 305	Val	Leu	Cys	Gln	Ala 310	His	Gly	Leu	Thr	Pro 315	Gln	Gln	Val	Val	Ala 320
45	Ile	Ala	Ser	Asn	Gly 325	Gly	Gly	Lys	Gln	Ala 330	Leu	Glu	Thr	Val	Gln 335	Arg
50	Leu	Leu	Pro	Val 340	Leu	Cys	Gln	Ala	His 345	Gly	Leu	Thr	Pro	Gln 350	Gln	Val
55	Val	Ala	Ile 355	Ala	Ser	Asn	Asn	Gly 360	Gly	Lys	Gln	Ala	Leu 365	Glu	Thr	Val
60	Gln	Arg 370	Leu	Leu	Pro	Val	Leu 375	Cys	Gln	Ala	His	Gly 380	Leu	Thr	Pro	Gln
	Gln 385	Val	Val	Ala	Ile	Ala 390	Ser	Asn	Asn	Gly	Gly 395	Lys	Gln	Ala	Leu	Glu 400
65																

_	Thr	Val	Gln	Arg	Leu 405	Leu	Pro	Val	Leu	Cys 410	Gln	Ala	His	Gly	Leu 415	Thr
5	Pro	Gln	Gln	Val 420	Val	Ala	Ile	Ala	Ser 425	Asn	Asn	Gly	Gly	Lys 430	Gln	Ala
10	Leu	Glu	Thr 435	Val	Gln	Arg	Leu	Leu 440	Pro	Val	Leu	Cys	Gln 445	Ala	His	Gly
15	Leu	Thr 450	Pro	Glu	Gln	Val	Val 455	Ala	Ile	Ala	Ser	Asn 460	Ile	Gly	Gly	Lys
20	Gln 465	Ala	Leu	Glu	Thr	Val 470	Gln	Arg	Leu	Leu	Pro 475	Val	Leu	Cys	Gln	Ala 480
	His	Gly	Leu	Thr	Pro 485	Gln	Gln	Val	Val	Ala 490	Ile	Ala	Ser	His	Asp 495	Gly
25	Gly	Lys	Gln	Ala 500	Leu	Glu	Thr	Val	Gln 505	Arg	Leu	Leu	Pro	Val 510	Leu	Cys
30	Gln	Ala	His 515	Gly	Leu	Thr	Pro	Gln 520	Gln	Val	Val	Ala	Ile 525	Ala	Ser	Asn
35	Asn	Gly 530	Gly	Lys	Gln	Ala	Leu 535	Glu	Thr	Val	Gln	A rg 540	Leu	Leu	Pro	Val
40	Leu 545	Cys	Gln	Ala	His	Gly 550	Leu	Thr	Pro	Gln	Gln 555	Val	Val	Ala	Ile	A la 560
40	Ser	Asn	Gly	Gly	Gly 565	Lys	Gln	Ala	Leu	Glu 570	Thr	Val	Gln	Arg	Leu 575	Leu
45	Pro	Val	Leu	Cys 580	Gln	Ala	His	Gly	Leu 585	Thr	Pro	Gln	Gln	Val 590	Val	Ala
50	Ile	Ala	Ser 595	Asn	Gly	Gly	Gly	Arg 600	Pro	Ala	Leu	Glu	Ser 605	Ile	Val	Ala
55	Gln	Leu 610	Ser	Arg	Pro	Asp	Pro 615	Ala	Leu	Ala	Arg	Ser 620	Ala	Leu	Thr	Asn
	Asp 625	His	Leu	Val	Ala	Leu 630	Ala	Cys	Leu	Gly	Gly 635	Arg	Pro	Ala	Leu	Asp 640
60	Ala	Val	Lys	Lys	Gly 645	Leu	Pro	His	Ala	Pro 650	Ala	Leu	Ile	Lys	Arg 655	Thr

_	Asn	Arg	Arg	Ile 660	Pro	Glu	Gly	Ser	Asp 665	Arg	Leu	Asn	Ile	Asn 670	Ser	Lys
5	Ile	Lys	Gln 675	Leu	Asp	Asp	Ser	Ile 680	Asn	Val	Glu	Ser	Leu 685	Lys	Ile	Asp
10	Asp	Ala 690	Lys	Asp	Leu	Leu	Asn 695	Asp	Leu	Glu	Ile	Gln 700	Arg	Lys	Ala	Lys
15	Thr 705	Ile	Glu	Asp	Thr	Val 710	Asn	His	Leu	Lys	Leu 715	Arg	Ser	Asp	Ile	Glu 720
20	Asp	Ile	Leu	Asp	Val 725	Phe	Ala	Lys	Ile	Lys 730	Lys	Arg	Asp	Val	Pro 735	Asp
	Val	Pro	Leu	Phe 740	Leu	Glu	Trp	Asn	Ile 745	Trp	Arg	Ala	Phe	Ala 750	Ala	Leu
25	Asn	His	Thr 755	Gln	Ala	Ile	Glu	Gly 760	Asn	Phe	Ile	Val	Asp 765	Leu	Asp	Gly
30	Met	Pro 770	Leu	Asn	Thr	Ala	Pro 775	Gly	Lys	Lys	Pro	Asp 780	Ile	Glu	Ile	Asn
35	Tyr 785	Gly	Ser	Phe	Ser	Cys 790	Ile	Val	Glu	Val	Thr 795	Met	Ser	Ser	Gly	Glu 800
	Thr	Gln	Phe	Asn	Met 805	Glu	Gly	Ser	Ser	Val 810	Pro	Arg	His	Tyr	Gly 815	Asp
40	Leu	Val	Arg	Lys 820	Val	Asp	His	Asp	Ala 825	Tyr	Cys	Ile	Phe	Ile 830	Ala	Pro
45	Lys	Val	Ala 835	Pro	Gly	Thr	Lys	Ala 840	His	Phe	Phe	Asn	Leu 845	Asn	Arg	Leu
50	Ser	Thr 850	Lys	His	Tyr	Gly	Gly 855	Lys	Thr	Lys	Ile	Ile 860	Pro	Met	Ser	Leu
	Asp 865	Asp	Phe	Ile	Cys	Phe 870	Leu	Gln	Val	Gly	Ile 875	Thr	His	Asn	Phe	Gln 880
55	Asp	Ile	Asn	Lys	Leu 885	Lys	Asn	Trp	Leu	Asp 890	Asn	Leu	Ile	Asn	Phe 895	Asn
60	Leu	Glu	Ser	Glu	Asp	Glu	Glu	Ile	Trp	Phe	Glu	Glu	Ile	Ile	Ser	Lys

						900					905					910	
5			Ile	Ser	Thr 915	Trp	Ala	Ile									
	<210> 40				713												
10	<211> 881 <212> PRT <213> Secuence	ia arti	ficial														
15	<220> <223> ArtTall-P	ept07	1														
	<400> 40																
20		Met 1	Gly	Pro	Lys	Lys 5	Lys	Arg	Lys	Val	Ala 10	Ala	Ala	Asp	Tyr	Lys 15	Asp
25		Asp	Asp	Asp	Lys 20	Pro	Gly	Gly	Gly	Gly 25	Ser	Gly	Gly	Gly	Gly 30	Val	Pro
		Ala	Ser	Pro 35	Ala	Ala	Gln	Val	Asp 40	Leu	Arg	Thr	Leu	Gly 45	Tyr	Ser	Gln
30		Gln	Gln 50	Gln	Glu	Lys	Ile	Lys 55	Pro	Lys	Val	Arg	Ser 60	Thr	Val	Ala	Gln
35		His 65	His	Glu	Ala	Leu	Val 70	Gly	His	Gly	Phe	Thr 75	His	Ala	His	Ile	Val 80
40		Ala	Leu	Ser	Gln	His 85	Pro	Ala	Ala	Leu	Gly 90	Thr	Val	Ala	Val	Lys 95	Tyr
45		Gln	Asp	Met	Ile 100	Ala	Ala	Leu	Pro	Glu 105	Ala	Thr	His	Glu	Ala 110	Ile	Val
43		Gly	Val	Gly 115	Lys	Gln	Trp	Ser	Gly 120	Ala	Arg	Ala	Leu	Glu 125	Ala	Leu	Leu
50		Thr	Val 130	Ala	Gly	Glu	Leu	Arg 135	Gly	Pro	Pro	Leu	Gln 140	Ser	Gly	Leu	Asp
55		Thr 145	Gly	Gln	Leu	Leu	Lys 150	Ile	Ala	Lys	Arg	Gly 155	Gly	Val	Thr	Ala	Val 160
60		Glu	Ala	Val	His	Ala 165	Trp	Arg	Asn	Ala	Leu 170	Thr	Gly	Ala	Pro	Leu 175	Asn
		Leu	Thr	Pro	Glu 180	Gln	Val	Val	Ala	Ile 185	Ala	Ser	Asn	Ile	Gly 190	Gly	Lys
65																	

5	Gln	Ala	Leu 195	Glu	Thr	Val	Gln	Arg 200	Leu	Leu	Pro	Val	Leu 205	Cys	Gln	Ala
3	His	Gly 210	Leu	Thr	Pro	Gln	Gln 215	Val	Val	Ala	Ile	Ala 220	Ser	Asn	Gly	Gly
10	Gly 225	Lys	Gln	Ala	Leu	Glu 230	Thr	Val	Gln	Arg	Leu 235	Leu	Pro	Val	Leu	Cys 240
15	Gln	Ala	His	Gly	Leu 245	Thr	Pro	Gln	Gln	Val 250	Val	Ala	Ile	Ala	Ser 255	Asn
20	Gly	Gly	Gly	Lys 260	Gln	Ala	Leu	Glu	Thr 265	Val	Gln	Arg	Leu	Leu 270	Pro	Val
	Leu	Cys	Gln 275	Ala	His	Gly	Leu	Thr 280	Pro	Gln	Gln	Val	Val 285	Ala	Ile	Ala
25	Ser	His 290	Asp	Gly	Gly	Lys	Gln 295	Ala	Leu	Glu	Thr	Val 300	Gln	Arg	Leu	Leu
30	Pro 305	Val	Leu	Cys	Gln	Ala 310	His	Gly	Leu	Thr	Pro 315	Gln	Gln	Val	Val	Ala 320
35	Ile	Ala	Ser	Asn	Gly 325	Gly	Gly	Lys	Gln	Ala 330	Leu	Glu	Thr	Val	Gln 335	Arg
	Leu	Leu	Pro	Val 340	Leu	Cys	Gln	Ala	His 345	Gly	Leu	Thr	Pro	Gln 350	Gln	Val
40	Val	Ala	Ile 355	Ala	Ser	Asn	Asn	Gly 360	Gly	Lys	Gln	Ala	Leu 365	Glu	Thr	Val
45	Gln	A rg 370	Leu	Leu	Pro	Val	Leu 375	Cys	Gln	Ala	His	Gly 380	Leu	Thr	Pro	Gln
50	Gln 385	Val	Val	Ala	Ile	Ala 390	Ser	Asn	Asn	Gly	Gly 395	Lys	Gln	Ala	Leu	Glu 400
	Thr	Val	Gln	Arg	Leu 405	Leu	Pro	Val	Leu	Cys 410	Gln	Ala	His	Gly	Leu 415	Thr
55	Pro	Gln	Gln	Val 420	Val	Ala	Ile	Ala	Ser 425	Asn	Asn	Gly	Gly	Lys 430	Gln	Ala
60	Leu	Glu	Thr	Val	Gln	Arg	Leu	Leu	Pro	Val	Leu	Cys	Gln	Ala	His	Gly

			435					440					445			
5	Leu	Thr 450	Pro	Glu	Gln	Val	Val 455	Ala	Ile	Ala	Ser	Asn 460	Ile	Gly	Gly	Lys
10	Gln 465	Ala	Leu	Glu	Thr	Val 470	Gln	Arg	Leu	Leu	Pro 475	Val	Leu	Cys	Gln	Ala 480
15	His	Gly	Leu	Thr	Pro 485	Gln	Gln	Val	Val	Ala 490	Ile	Ala	Ser	His	Asp 495	Gly
	Gly	Lys	Gln	Ala 500	Leu	Glu	Thr	Val	Gln 505	Arg	Leu	Leu	Pro	Val 510	Leu	Cys
20	Gln	Ala	His 515	Gly	Leu	Thr	Pro	Gln 520	Gln	Val	Val	Ala	Ile 525	Ala	Ser	Asn
25	Asn	Gly 530	Gly	Lys	Gln	Ala	Leu 535	Glu	Thr	Val	Gln	Arg 540	Leu	Leu	Pro	Val
30	Leu 545	Cys	Gln	Ala	His	Gly 550	Leu	Thr	Pro	Gln	Gln 555	Val	Val	Ala	Ile	A la
35	Ser	Asn	Gly	Gly	Gly 565	Lys	Gln	Ala	Leu	Glu 570	Thr	Val	Gln	Arg	Leu 575	Leu
	Pro	Val	Leu	Cys 580	Gln	Ala	His	Gly	Leu 585	Thr	Pro	Gln	Gln	Val 590	Val	Ala
40	Ile	Ala	Ser 595	Asn	Gly	Gly	Gly	Arg 600	Pro	Ala	Leu	Glu	Ser 605	Ile	Val	Ala
45	Gln	Leu 610	Ser	Arg	Pro	Asp	Pro 615	Ala	Leu	Ala	Arg	Ser 620	Ala	Leu	Thr	Asn
50	Asp 625	His	Leu	Val	Ala	Leu 630	Ala	Cys	Leu	Gly	Gly 635	Arg	Pro	Ala	Leu	Asp 640
55	Ala	Val	Lys	Lys	Gly 645	Leu	Pro	His	Ala	Pro 650	Ala	Leu	Ile	Lys	Arg 655	Thr
	Asn	Arg	Arg	Ile 660	Pro	Glu	Gly	Ser	Asp 665	Arg	Leu	Asn	Lys	Ile 670	Ser	Lys
60	Thr	Asn	Val 675	Leu	Glu	Leu	Lys	Asp 680	Lys	Val	Arg	Asp	Lys 685	Leu	Lys	Tyr

5		Val	Asp 690	His	Arg	Tyr	Leu	Ala 695	Leu	Ile	Asp	Leu	Ala 700	Tyr	Asp	Gly	Thr
ŭ		Ala 705	Asn	Arg	Asp	Phe	Glu 710	Ile	Gln	Thr	Ile	Asp 715	Leu	Leu	Ile	Asn	Glu 720
10		Leu	Lys	Phe	Lys	Gly 725	Val	Arg	Leu	Gly	Glu 730	Ser	Arg	Lys	Pro	Asp 735	Gly
15		Ile	Ile	Ser	Tyr 740	Asn	Ile	Asn	Gly	Val 745	Ile	Ile	Asp	Asn	Lys 750	Ala	Tyr
20		Ser	Thr	Gly 755	Tyr	Asn	Leu	Pro	Ile 760	Asn	Gln	Ala	Asp	Glu 765	Met	Ile	Arg
		Tyr	Ile 770	Glu	Glu	Asn	Gln	Thr 775	Arg	Asp	Glu	Lys	Ile 780	Asn	Ser	Asn	Lys
25		Trp 785	Trp	Glu	Ser	Phe	Asp 790	Asp	Lys	Val	Lys	As p 795	Phe	Asn	Tyr	Leu	Phe 800
30		Val	Ser	Ser	Phe	Phe 805	Lys	Gly	Asn	Phe	Lys 810	Asn	Asn	Leu	Lys	His 815	Ile
35		Ala	Asn	Arg	Thr 820	Gly	Val	Ser	Gly	Gly 825	Ala	Ile	Asn	Val	Glu 830	Asn	Leu
		Leu	Tyr	Phe 835	Ala	Glu	Glu	Leu	Lys 840	Ala	Gly	Arg	Leu	Ser 8 4 5	Tyr	Val	Asp
40		Ser	Phe 850	Lys	Met	Tyr	Asp	Asn 855	Asp	Glu	Ile	Tyr	Val 860	Gly	Asp	Phe	Ser
45		Asp 865	Tyr	Ser	Tyr	Val	Lys 870	Phe	Ala	Ala	Glu	Glu 875	Glu	Gly	Glu	Tyr	Leu 880
		Thr															
50	<210> 41 <211> 831 <212> PRT <213> Secuencia	artific	cial														
55	<220> <223> ArtTall-Sbf	:															
	<400> 41																
60		Met	Gly	Pro	Lys	Lys	Lys	Arg	Lys	Val	Ala	Ala	Ala	Asp	Tyr	Lys	Asp

	1				5					10					15	
5	Asp	Asp	Asp	Lys 20	Pro	Gly	Gly	Gly	Gly 25	Ser	Gly	Gly	Gly	Gly 30	Val	Pro
10	Ala	Ser	Pro 35	Ala	Ala	Gln	Val	Asp 40	Leu	Arg	Thr	Leu	Gly 45	Tyr	Ser	Gln
15	Gln	Gln 50	Gln	Glu	Lys	Ile	Lys 55	Pro	Lys	Val	Arg	Ser 60	Thr	Val	Ala	Gln
	His 65	His	Glu	Ala	Leu	Val 70	Gly	His	Gly	Phe	Thr 75	His	Ala	His	Ile	Val 80
20	Ala	Leu	Ser	Gln	His 85	Pro	Ala	Ala	Leu	Gly 90	Thr	Val	Ala	Val	Lys 95	Tyr
25	Gln	Asp	Met	Ile 100	Ala	Ala	Leu	Pro	Glu 105	Ala	Thr	His	Glu	Ala 110	Ile	Val
30	Gly	Val	Gly 115	Lys	Gln	Trp	Ser	Gly 120	Ala	Arg	Ala	Leu	Glu 125	Ala	Leu	Leu
	Thr	Val 130	Ala	Gly	Glu	Leu	Arg 135	Gly	Pro	Pro	Leu	Gln 140	Ser	Gly	Leu	Asp
35	Thr 145	Gly	Gln	Leu	Leu	Lys 150	Ile	Ala	Lys	Arg	Gly 155	Gly	Val	Thr	Ala	Val 160
40	Glu	Ala	Val	His	Ala 165	Trp	Arg	Asn	Ala	Leu 170	Thr	Gly	Ala	Pro	Leu 175	Asn
45	Leu	Thr	Pro	Glu 180	Gln	Val	Val	Ala	Ile 185	Ala	Ser	Asn	Ile	Gly 190	Gly	Lys
	Gln	Ala	Leu 195	Glu	Thr	Val	Gln	Arg 200	Leu	Leu	Pro	Val	Leu 205	Cys	Gln	Ala
50	His	Gly 210	Leu	Thr	Pro	Gln	Gln 215	Val	Val	Ala	Ile	Ala 220	Ser	Asn	Gly	Gly
55	Gly 225	Lys	Gln	Ala	Leu	Glu 230	Thr	Val	Gln	Arg	Leu 235	Leu	Pro	Val	Leu	Cys 240
60	Gln	Ala	His	Gly	Leu 245	Thr	Pro	Gln	Gln	Val 250	Val	Ala	Ile	Ala	Ser 255	Asn

	Gly	Gly	Gly	Lys 260	Gln	Ala	Leu	Glu	Thr 265	Val	Gln	Arg	Leu	Leu 270	Pro	Val
5	Leu	Cys	Gln 275	Ala	His	Gly	Leu	Thr 280	Pro	Gln	Gln	Val	Val 285	Ala	Ile	Ala
10	Ser	His 290	Asp	Gly	Gly	Lys	Gln 295	Ala	Leu	Glu	Thr	Val 300	Gln	Arg	Leu	Leu
15	Pro 305	Val	Leu	Cys	Gln	Ala 310	His	Gly	Leu	Thr	Pro 315	Gln	Gln	Val	Val	Ala 320
20	Ile	Ala	Ser	Asn	Gly 325	Gly	Gly	Lys	Gln	Ala 330	Leu	Glu	Thr	Val	Gln 335	Arg
	Leu	Leu	Pro	Val 340	Leu	Cys	Gln	Ala	His 345	Gly	Leu	Thr	Pro	Gln 350	Gln	Val
25	Val	Ala	Ile 355	Ala	Ser	Asn	Asn	Gly 360	Gly	Lys	Gln	Ala	Leu 365	Glu	Thr	Val
30	Gln	Arg 370	Leu	Leu	Pro	Val	Leu 375	Cys	Gln	Ala	His	Gly 380	Leu	Thr	Pro	Gln
35	Gln 385	Val	Val	Ala	Ile	Ala 390	Ser	Asn	Asn	Gly	Gly 395	Lys	Gln	Ala	Leu	Glu 400
40	Thr	Val	Gln	Arg	Leu 405	Leu	Pro	Val	Leu	Cys 410	Gln	Ala	His	Gly	Leu 415	Thr
	Pro	Gln	Gln	Val 420	Val	Ala	Ile	Ala	Ser 425	Asn	Asn	Gly	Gly	Lys 430	Gln	Ala
45	Leu	Glu	Thr 435	Val	Gln	Arg	Leu	Leu 440	Pro	Val	Leu	Cys	Gln 445	Ala	His	Gly
50	Leu	Thr 450	Pro	Glu	Gln	Val	Val 455	Ala	Ile	Ala	Ser	Asn 460	Ile	Gly	Gly	Lys
55	Gln 465	Ala	Leu	Glu	Thr	Val 470	Gln	Arg	Leu	Leu	Pro 475	Val	Leu	Cys	Gln	Ala 480
60	His	Gly	Leu	Thr	Pro 485	Gln	Gln	Val	Val	Ala 490	Ile	Ala	Ser	His	Asp 495	Gly
60	Gly	Lys	Gln	Ala 500	Leu	Glu	Thr	Val	Gln 505	Arg	Leu	Leu	Pro	Val 510	Leu	Cys
65																

	Gln	Ala	His 515	Gly	Leu	Thr	Pro	Gln 520	Gln	Val	Val	Ala	Ile 525	Ala	Ser	Asn
5	Asn	Gly 530	Gly	Lys	Gln	Ala	Leu 535	Glu	Thr	Val	Gln	Arg 540	Leu	Leu	Pro	Val
10	Leu 545	Сув	Gln	Ala	His	Gly 550	Leu	Thr	Pro	Gln	Gln 555	Val	Val	Ala	Ile	Ala 560
15	Ser	Asn	Gly	Gly	Gly 565	Lys	Gln	Ala	Leu	Glu 570	Thr	Val	Gln	Arg	Le u 575	Leu
20	Pro	Val	Leu	Cys 580	Gln	Ala	His	Gly	Leu 585	Thr	Pro	Gln	Gln	Val 590	Val	Ala
25	Ile	Ala	Ser 595	Asn	Gly	Gly	Gly	Arg 600	Pro	Ala	Leu	Glu	Ser 605	Ile	Val	Ala
20	Gln	Leu 610	Ser	Arg	Pro	Asp	Pro 615	Ala	Leu	Ala	Arg	Ser 620	Ala	Leu	Thr	Asn
30	Asp 625	His	Leu	Val	Ala	Leu 630	Ala	Cys	Leu	Gly	Gly 635	Arg	Pro	Ala	Leu	Asp 640
35	Ala	Val	Lys	Lys	Gly 645	Leu	Pro	His	Ala	Pro 650	Ala	Leu	Ile	Lys	Arg 655	Thr
40	Asn	Arg	Arg	Ile 660	Pro	Glu	Gly	Ser	Asp 665	Arg	Leu	Asn	Ile	Ser 670	Val	Asp
45	Leu	Pro	Gly 675	Gly	Glu	Glu	Phe	Leu 680	Leu	Ser	Pro	Ala	Gly 685	Gln	Asn	Pro
50	Leu	Leu 690	Lys	Lys	Met	Val	Glu 695	Glu	Phe	Val	Pro	Arg 700	Phe	Ala	Pro	Arg
	Ser 705	Thr	Val	Leu	Tyr	Leu 710	Gly	Asp	Thr	Arg	Gly 715	Lys	His	Ser	Leu	Phe 720
55	Glu	Arg	Glu	Ile	Phe 725	Glu	Glu	Val	Leu	Gly 730	Leu	Thr	Phe	Asp	Pro 735	His
60	Gly	Arg	Met	Pro 740	Asp	Leu	Ile	Leu	His 745	Asp	Glu	Val	Arg	Gly 750	Trp	Leu
65	Phe	Leu	Met 755	Glu	Ala	Val	Lys	Ser 760	Lys	Gly	Pro	Phe	Asp 765	Glu	Glu	Arg

5		Hi	s Ar 77	g Sei 0	Let	ı Glr	n Glu	1 Leu 775		Val	Thr	Pro	Ser 780	Ala	Gly	Leu	Ile
		Ph 78		l Asr	суя	s Phe	Glu 790		Arg	Glu	Ser	Met 795	Arg	Gln	Trp	Leu	Pro 800
10		G1	u Le	u Ala	Tr	9 Glu 805		Glu	Ala	Trp	Val 810	Ala	Glu	Asp	Pro	Asp 815	His
15		Le	u Il	e His	820		ı Gly	, Ser	Arg	Phe 825		Gly	Pro	Tyr	Glu 830	Arg	
20	<210> 42 <211> 831 <212> PRT <213> Secuen	cia ar	tificial														
	<220> <223> ArtTal1	-Sdal															
25	<400> 42																
30		Met 1	Gly	Pro	Lys	Lys 5	Lys	Arg	Lys	Val	Ala 10	Ala	Ala	Asp	Tyr	Lys 15	Asp
		Asp	Asp	Asp	Lys 20	Pro	Gly	Gly	Gly	Gly 25	Ser	Gly	Gly	Gly	Gly 30	Val	Pro
35		Ala	Ser	Pro 35	Ala	Ala	Gln	Val	Asp 40	Leu	Arg	Thr	Leu	Gly 45	Tyr	Ser	Gln
40		Gln	Gln 50	Gln	Glu	Lys	Ile	Lys 55	Pro	Lys	Val	Arg	Ser 60	Thr	Val	Ala	Gln
45		His 65	His	Glu	Ala	Leu		Gly				Thr 75	His	Ala	His	Ile	Val 80
50		Ala	Leu	Ser	Gln	His 85	Pro	Ala	Ala	Leu	Gly 90	Thr	Val	Ala	Val	Lys 95	Tyr
		Gln	Asp	Met	Ile 100	Ala	Ala	Leu	Pro	Glu 105	Ala	Thr	His	Glu	Ala 110		Val
55		Gly	Val	Gly 115	Lys	Gln	Trp	Ser	Gly 120	Ala	Arg	Ala	Leu	Glu 125	Ala	Leu	Leu
60		Thr	Val 130	Ala	Gly	Glu	Leu	Arg 135	Gly	Pro	Pro	Leu	Gln 140	Ser	Gly	Leu	Asp

5	Thr 145	Gly	Gln	Leu	Leu	Lys 150	Ile	Ala	Lys	Arg	Gly 155	Gly	Val	Thr	Ala	Val 160
3	Glu	Ala	Val	His	Ala 165	Trp	Arg	Asn	Ala	Leu 170	Thr	Gly	Ala	Pro	Leu 175	Asn
10	Leu	Thr	Pro	Glu 180	Gln	Val	Val	Ala	Ile 185	Ala	Ser	Asn	Ile	Gly 190	Gly	Lys
15	Gln	Ala	Leu 195	Glu	Thr	Val	Gln	A rg 200	Leu	Leu	Pro	Val	Leu 205	Cys	Gln	Ala
20	His	Gly 210	Leu	Thr	Pro	Gln	Gln 215	Val	Val	Ala	Ile	Ala 220	Ser	Asn	Gly	Gly
05	Gly 225	Lys	Gln	Ala	Leu	Glu 230	Thr	Val	Gln	Arg	Leu 235	Leu	Pro	Val	Leu	Cys 240
25	Gln	Ala	His	Gly	Leu 245	Thr	Pro	Gln	Gln	Val 250	Val	Ala	Ile	Ala	Ser 255	Asn
30	Gly	Gly	Gly	Lys 260	Gln	Ala	Leu	Glu	Thr 265	Val	Gln	Arg	Leu	Leu 270	Pro	Val
35	Leu	Суз	Gln 275	Ala	His	Gly	Leu	Thr 280	Pro	Gln	Gln	Val	Val 285	Ala	Ile	Ala
40	Ser	His 290	Asp	Gly	Gly	Lys	Gln 295	Ala	Leu	Glu	Thr	Val 300	Gln	Arg	Leu	Leu
	Pro 305	Val	Leu	Cys	Gln	Ala 310	His	Gly	Leu	Thr	Pro 315	Gln	Gln	Val	Val	Ala 320
45	Ile	Ala	Ser	Asn	Gly 325	Gly	Gly	Lys	Gln	Ala 330	Leu	Glu	Thr	Val	Gln 335	Arg
50	Leu	Leu	Pro	Val 340	Leu	Cys	Gln	Ala	His 345	Gly	Leu	Thr	Pro	Gln 350	Gln	Val
55	Val	Ala	Ile 355	Ala	Ser	Asn	Asn	Gly 360	Gly	Lys	Gln	Ala	Leu 365	Glu	Thr	Val
60	Gln	Arg 370	Leu	Leu	Pro	Val	Leu 375	Cys	Gln	Ala	His	Gly 380	Leu	Thr	Pro	Gln
	Gln 385	Val	Val	Ala	Ile	Ala 390	Ser	Asn	Asn	Gly	Gly 395	Lys	Gln	Ala	Leu	Glu 400
65																

5	Thr	Val	Gln	Arg	Leu 405	Leu	Pro	Val	Leu	Cys 410	Gln	Ala	His	Gly	Leu 415	Thr
Ü	Pro	Gln	Gln	Val 420	Val	Ala	Ile	Ala	Ser 425	Asn	Asn	Gly	Gly	Lys 430	Gln	Ala
10	Leu	Glu	Thr 435	Val	Gln	Arg	Leu	Leu 440	Pro	Val	Leu	Cys	Gln 445	Ala	His	Gly
15	Leu	Thr 450	Pro	Glu	Gln	Val	Val 455	Ala	Ile	Ala	Ser	Asn 460	Ile	Gly	Gly	Lys
20	Gln 465	Ala	Leu	Glu	Thr	Val 470	Gln	Arg	Leu	Leu	Pro 475	Val	Leu	Cys	Gln	Ala 480
25	His	Gly	Leu	Thr	Pro 485	Gln	Gln	Val	Val	Ala 490	Ile	Ala	Ser	His	Asp 495	Gly
25	Gly	Lys	Gln	Ala 500	Leu	Glu	Thr	Val	Gln 505	Arg	Leu	Leu	Pro	Val 510	Leu	Cys
30	Gln	Ala	His 515	Gly	Leu	Thr	Pro	Gln 520	Gln	Val	Val	Ala	Ile 525	Ala	Ser	Asn
35	Asn	Gly 530	Gly	Lys	Gln	Ala	Leu 535	Glu	Thr	Val	Gln	Arg 540	Leu	Leu	Pro	Val
40	Leu 545	Cys	Gln	Ala	His	Gly 550	Leu	Thr	Pro	Gln	Gln 555	Val	Val	Ala	Ile	Ala 560
45	Ser	Asn	Gly	Gly	Gly 565	Lys	Gln	Ala	Leu	Glu 570	Thr	Val	Gln	Arg	Leu 575	Leu
40	Pro	Val	Leu	Cys 580	Gln	Ala	His	Gly	Leu 585	Thr	Pro	Gln	Gln	Val 590	Val	Ala
50	Ile	Ala	Ser 595	Asn	Gly	Gly	Gly	Arg 600	Pro	Ala	Leu	Glu	Ser 605	Ile	Val	Ala
55	Gln	Leu 610	Ser	Arg	Pro	Asp	Pro 615	Ala	Leu	Ala	Arg	Ser 620	Ala	Leu	Thr	Asn
60	Asp 625	His	Leu	Val	Ala	Leu 630	Ala	Cys	Leu	Gly	Gly 635	Arg	Pro	Ala	Leu	Asp 640
	Ala	Val	Lys	Lys	Gly	Leu	Pro	His	Ala	Pro	Ala	Leu	Ile	Lys	Arg	Thr
65																

						645					650					655	
5		Asn	Arg	Arg	Ile 660	Pro	Glu	Gly	Ser	Asp 665	Arg	Leu	Asn	Ile	Ser 670	Val	Asp
10		Leu	Ala	Asp 675	Gly	Asp	Glu	Phe	Leu 680	Leu	Ser	Pro	Ala	Gly 685	Gln	Asn	Pro
15		Leu	Leu 690	Lys	Lys	Met	Val	Glu 695	Glu	Phe	Met	Pro	A rg 700	Phe	Ala	Pro	Gly
		Ala 705	Lys	Val	Leu	Tyr	Ile 710	Gly	Asp	Trp	Arg	Gly 715	Lys	His	Thr	Arg	Phe 720
20		Glu	Lys	Arg	Ile	Phe 725	Glu	Glu	Thr	Leu	Gly 730	Leu	Thr	Phe	Asp	Pro 735	His
25		Gly	Arg	Met	Pro 740	Asp	Leu	Val	Leu	His 745	Asp	Lys	Val	Arg	Lys 750	Trp	Leu
30		Phe	Leu	Met 755	Glu	Ala	Val	Lys	Ser 760	Lys	Gly	Pro	Phe	Asp 765	Glu	Glu	Arg
		His	Arg 770	Thr	Leu	Arg	Glu	Leu 775	Phe	Ala	Thr	Pro	Val 780	Ala	Gly	Leu	Val
35		Phe 785	Val	Asn	Cys	Phe	Glu 790	Asn	Arg	Glu	Ala	Met 795	Arg	Gln	Trp	Leu	Pro 800
40		Glu	Leu	Ala	Trp	Glu 805	Thr	Glu	Ala	Trp	Val 810	Ala	Asp	Asp	Pro	Asp 815	His
45		Leu	Ile		Leu 820		Gly	Ser		Phe 825		Gly	Pro		Glu 830		
50	<210> 43 <211> 876 <212> PRT <213> Secuence	cia art	ificial														
00	<220> <223> ArtTal1-		inolai														
55	<400> 43																
		Met 1	Gly	Pro	Lys	Lys 5	Lys	Arg	Lys	Val	Ala 10	Ala	Ala	Asp	Tyr	Lys 15	Asp
60		Asp	Asp	Asp	Lys 20	Pro	Gly	Gly	Gly	Gly 25	Ser	Gly	Gly	Gly	Gly 30	Val	Pro

5	Ala	Ser	Pro 35	Ala	Ala	Gln	Val	Asp 40	Leu	Arg	Thr	Leu	Gly 45	Tyr	Ser	Gln
10	Gln	Gln 50	Gln	Glu	Lys	Ile	Lys 55	Pro	Lys	Val	Arg	Ser 60	Thr	Val	Ala	Gln
	His 65	His	Glu	Ala	Leu	Val 70	Gly	His	Gly	Phe	Thr 75	His	Ala	His	Ile	Val 80
15	Ala	Leu	Ser	Gln	His 85	Pro	Ala	Ala	Leu	Gly 90	Thr	Val	Ala	Val	Lys 95	Tyr
20	Gln	Asp	Met	Ile 100	Ala	Ala	Leu	Pro	Glu 105	Ala	Thr	His	Glu	Ala 110	Ile	Val
25	Gly	Val	Gly 115	Lys	Gln	Trp	Ser	Gly 120	Ala	Arg	Ala	Leu	Glu 125	Ala	Leu	Leu
	Thr	Val 130	Ala	Gly	Glu	Leu	A rg 135	Gly	Pro	Pro	Leu	Gln 140	Ser	Gly	Leu	Asp
30	Thr 145	Gly	Gln	Leu	Leu	Lys 150	Ile	Ala	Lys	Arg	Gly 155	Gly	Val	Thr	Ala	Val 160
35	Glu	Ala	Val	His	Ala 165	Trp	Arg	Asn	Ala	Leu 170	Thr	Gly	Ala	Pro	Leu 175	Asn
40	Leu	Thr	Pro	Glu 180	Gln	Val	Val	Ala	Ile 185	Ala	Ser	Asn	Ile	Gly 190	Gly	Lys
	Gln	Ala	Leu 195	Glu	Thr	Val	Gln	Arg 200	Leu	Leu	Pro	Val	Leu 205	Cys	Gln	Ala
45	His	Gly 210	Leu	Thr	Pro	Gln	Gln 215	Val	Val	Ala	Ile	Ala 220	Ser	Asn	Gly	Gly
50	Gly 225	Lys	Gln	Ala	Leu	Glu 230	Thr	Val	Gln	Arg	Leu 235	Leu	Pro	Val	Leu	Cys 240
55	Gln	Ala	His	Gly	Leu 245	Thr	Pro	Gln	Gln	Val 250	Val	Ala	Ile	Ala	Ser 255	Asn
	Gly	Gly	Gly	Lys 260	Gln	Ala	Leu	Glu	Thr 265	Val	Gln	Arg	Leu	Leu 270	Pro	Val
60	Leu	Cys	Gln	Ala	His	Gly	Leu	Thr	Pro	Gln	Gln	Val	Val	Ala	Ile	Ala

5			275					280					285			
	Ser	His 290	Asp	Gly	Gly	Lys	Gln 295	Ala	Leu	Glu	Thr	Val 300	Gln	Arg	Leu	Leu
10	Pro 305	Val	Leu	Cys	Gln	Ala 310	His	Gly	Leu	Thr	Pro 315	Gln	Gln	Val	Val	Ala 320
15	Ile	Ala	Ser	Asn	Gly 325	Gly	Gly	Lys	Gln	Ala 330	Leu	Glu	Thr	Val	Gln 335	Arg
20	Leu	Leu	Pro	Val 340	Leu	Cys	Gln	Ala	His 345	Gly	Leu	Thr	Pro	Gln 350	Gln	Val
25	Val	Ala	Ile 355	Ala	Ser	Asn	Asn	Gly 360	Gly	Lys	Gln	Ala	Leu 365	Glu	Thr	Val
	Gln	Arg 370	Leu	Leu	Pro	Val	Leu 375	Cys	Gln	Ala	His	Gly 380	Leu	Thr	Pro	Gln
30	Gln 385	Val	Val	Ala	Ile	Ala 390	Ser	Asn	Asn	Gly	Gly 395	Lys	Gln	Ala	Leu	Glu 400
35	Thr	Val	Gln	Arg	Leu 405	Leu	Pro	Val	Leu	Cys 410	Gln	Ala	His	Gly	Leu 415	Thr
40	Pro	Gln	Gln	Val 420	Val	Ala	Ile	Ala	Ser 425	Asn	Asn	Gly	Gly	Lys 430	Gln	Ala
	Leu	Glu	Thr 435	Val	Gln	Arg	Leu	Leu 440	Pro	Val	Leu	Cys	Gln 445	Ala	His	Gly
45	Leu	Thr 450	Pro	Glu	Gln	Val	Val 455	Ala	Ile	Ala	Ser	Asn 460	Ile	Gly	Gly	Lys
50	Gln 465	Ala	Leu	Glu	Thr	Val 470	Gln	Arg	Leu	Leu	Pro 475	Val	Leu	Cys	Gln	Ala 480
55	His	Gly	Leu	Thr	Pro 485	Gln	Gln	Val	Val	Ala 490	Ile	Ala	Ser	His	Asp 495	Gly
60	Gly	Lys	Gln	Ala 500	Leu	Glu	Thr	Val	Gln 505	Arg	Leu	Leu	Pro	Val 510	Leu	Cys
	Gln	Ala	His 515	Gly	Leu	Thr	Pro	Gln 520	Gln	Val	Val	Ala	Ile 525	Ala	Ser	Asn

5	Asn	Gly 530	Gly	Lys	Gln	Ala	Leu 535	Glu	Thr	Val	Gln	Arg 540	Leu	Leu	Pro	Val
10	Leu 545	Cys	Gln	Ala	His	Gly 550	Leu	Thr	Pro	Gln	Gln 555	Val	Val	Ala	Ile	Ala 560
	Ser	Asn	Gly	Gly	Gly 565	Lys	Gln	Ala	Leu	Glu 570	Thr	Val	Gln	Arg	Leu 575	Leu
15	Pro	Val	Leu	Cys 580	Gln	Ala	His	Gly	Leu 585	Thr	Pro	Gln	Gln	Val 590	Val	Ala
20	Ile	Ala	Ser 595	Asn	Gly	Gly	Gly	Arg 600	Pro	Ala	Leu	Glu	Ser 605	Ile	Val	Ala
25	Gln	Leu 610	Ser	Arg	Pro	Asp	Pro 615	Ala	Leu	Ala	Arg	Ser 620	Ala	Leu	Thr	Asn
30	Asp 625	His	Leu	Val	Ala	Leu 630	Ala	Cys	Leu	Gly	Gly 635	Arg	Pro	Ala	Leu	Asp 640
50	Ala	Val	Lys	Lys	Gly 645	Leu	Pro	His	Ala	Pro 650	Ala	Leu	Ile	Lys	Arg 655	Thr
35	Asn	Arg	Arg	Ile 660	Pro	Glu	Gly	Ser	Asp 665	Arg	Leu	Asn	Asp	Val 670	Val	Leu
40	Glu	Lys	Ser 675	Asp	Ile	Glu	Lys	Phe 680	Lys	Asn	Gln	Leu	Arg 685	Thr	Glu	Leu
45	Thr	Asn 690	Ile	Asp	His	Ser	Tyr 695	Leu	Lys	Gly	Ile	Asp 700	Ile	Ala	Ser	Lys
	Lys 705	Lys	Thr	Ser	Asn	Val 710	Glu	Asn	Thr	Glu	Phe 715	Glu	Ala	Ile	Ser	Thr 720
50	Lys	Ile	Phe	Thr	Asp 725	Glu	Leu	Gly	Phe	Ser 730	Gly	Lys	His	Leu	Gly 735	Gly
55	Ser	Asn	Lys	Pro 740	Asp	Gly	Leu	Leu	Trp 745	Asp	Asp	Asp	Cys	Ala 750	Ile	Ile
60	Leu	Asp	Ser 755	Lys	Ala	Tyr	Ser	Glu 760	Gly	Phe	Pro	Leu	Thr 765	Ala	Ser	His
	Thr	Asp 770	Ala	Met	Gly	Arg	Tyr 775	Leu	Arg	Gln	Phe	Thr 790	Glu	Arg	Lys	Glu
65																

5		Glu 785	Ile	Lys	Pro	Thr	Trp 790	Trp	Asp	Ile	Ala	Pro 795	Glu	His	Leu	Asp	As 1	
10		Thr	Tyr	Phe	Ala	Tyr 805	Val	Ser	Gly	Ser	Phe 810	Ser	Gly	Asn	Tyr	Lys 815	Glı	a
		Gln	Leu	Gln	Lys 820	Phe	Arg	Gln	Asp	Thr 825	Asn	His	Leu	Gly	Gly 830	Ala	Le	a
15		Glu	Phe	Val 835	Lys	Leu	Leu	Leu	Leu 840	Ala	Asn	Asn	Tyr	Lys 845	Thr	Gln	Ly	s
20		Met	Ser 850	Lys	Lys	Glu	Val	Lys 855	Lys	Ser	Ile	Leu	Asp 860	Tyr	Asn	Ile	Se	r
25		Tyr 865	Glu	Glu	Tyr	Ala	Pro 870	Leu	Leu	Ala	Glu	Ile 875	Glu					
23	<210> 44 <211> 864 <212> PRT																	
30	<213> Secuencia <220>		al															
	<223> ArtTal1-Fol-	(I																
35	1100-11	Met 1	Gly	Pro	Lys	Lys 5	Lys	Arg	Lys	Val	. Ala	a Ala	a Al	a As	р Ту	r Ly 15		Asp
40		Asp	Asp	Asp	Lys 20	Pro	Gly	Gly	Gly	Gly 25	' Sei	: Gl	y Gl	y Gl	y Gl 30		al 1	Pro
45		Ala	Ser	Pro 35	Ala	Ala	Gln	Val	Asp 40	Leu	Arç	J Th	r Le	u Gl; 45	у Ту	r Se	er (Gln
		Gln	Gln 50	Gln	Glu	Lys	Ile	Lys 55	Pro	Lys	: Val	. Ar	g Se 60	r Th	r Va	1 A]	.a (Gln
50		His 65	His	Glu	Ala	Leu	Val 70	Gly	His	Gly	Phe	Th:	r Hi	s Al	a Hi	s Il		Val 80
55		Ala	Leu	Ser	Gln	His 85	Pro	Ala	Ala	. Leu	Gl ₃	7 Th:	r Va	l Al	a Va	1 Ly 95		Tyr
60		Gln	Asp	Met	Ile 100	Ala	Ala	Leu	Pro	Glu 105		ı Th	r Hi	s Gl	u Al 11		.e '	Val

5	Gly	Val	Gly 115	Lys	Gln	Trp	Ser	Gly 120	Ala	Arg	Ala	Leu	Glu 125	Ala	Leu	Leu
10	Thr	Val 130	Ala	Gly	Glu	Leu	Arg 135	Gly	Pro	Pro	Leu	Gln 140	Ser	Gly	Leu	Asp
	Thr 145	Gly	Gln	Leu	Leu	Lys 150	Ile	Ala	Lys	Arg	Gly 155	Gly	Val	Thr	Ala	Val 160
15	Glu	Ala	Val	His	Ala 165	Trp	Arg	Asn	Ala	Leu 170	Thr	Gly	Ala	Pro	Leu 175	Asn
20	Leu	Thr	Pro	Glu 180	Gln	Val	Val	Ala	Ile 185	Ala	Ser	Asn	Ile	Gly 190	Gly	Lys
25	Gln	Ala	Leu 195	Glu	Thr	Val	Gln	Arg 200	Leu	Leu	Pro	Val	Leu 205	Cys	Gln	Ala
	His	Gly 210	Leu	Thr	Pro	Gln	Gln 215	Val	Val	Ala	Ile	Ala 220	Ser	Asn	Gly	Gly
30	Gly 225	Lys	Gln	Ala	Leu	Glu 230	Thr	Val	Gln	Arg	Leu 235	Leu	Pro	Val	Leu	Cys 240
35	Gln	Ala	His	Gly	Leu 245	Thr	Pro	Gln	Gln	Val 250	Val	Ala	Ile	Ala	Ser 255	Asn
40	Gly	Gly	Gly	Lys 260	Gln	Ala	Leu	Glu	Thr 265	Val	Gln	Arg	Leu	Leu 270	Pro	Val
	Leu	Cys	Gln 275	Ala	His	Gly	Leu	Thr 280	Pro	Gln	Gln	Val	Val 285	Ala	Ile	Ala
45	Ser	His 290	Asp	Gly	Gly	Lys	Gln 295	Ala	Leu	Glu	Thr	Val 300	Gln	Arg	Leu	Leu
50	Pro 305	Val	Leu	Cys	Gln	Ala 310	His	Gly	Leu	Thr	Pro 315	Gln	Gln	Val	Val	Ala 320
	Ile	Ala	Ser	Asn	Gly 325	Gly	Gly	Lys	Gln	Ala 330	Leu	Glu	Thr	Val	Gln 335	Arg
55	Leu	Leu	Pro	Val 340	Leu	Cys	Gln	Ala	His 345	Gly	Leu	Thr	Pro	Gln 350	Gln	Val
60	Val	Ala	Ile 355	Ala	Ser	Asn	Asn	Gly 360	Gly	Lys	Gln	Ala	Leu 365	Glu	Thr	Val

5	Gln	A rg 370	Leu	Leu	Pro	Val	Leu 375	Cys	Gln	Ala	His	Gly 380	Leu	Thr	Pro	Gln
10	Gln 385	Val	Val	Ala	Ile	Ala 390	Ser	Asn	Asn	Gly	Gly 395	Lys	Gln	Ala	Leu	Glu 400
	Thr	Val	Gln	Arg	Leu 405	Leu	Pro	Val	Leu	Cys 410	Gln	Ala	His	Gly	Leu 415	Thr
15	Pro	Gln	Gln	Val 420	Val	Ala	Ile	Ala	Ser 425	Asn	Asn	Gly	Gly	Lys 430	Gln	Ala
20	Leu	Glu	Thr 435	Val	Gln	Arg	Leu	Leu 440	Pro	Val	Leu	Cys	Gln 445	Ala	His	Gly
25	Leu	Thr 450	Pro	Glu	Gln	Val	Val 455	Ala	Ile	Ala	Ser	Asn 460	Ile	Gly	Gly	Lys
	Gln 465	Ala	Leu	Glu	Thr	Val 470	Gln	Arg	Leu	Leu	Pro 475	Val	Leu	Cys	Gln	Ala 480
30	His	Gly	Leu	Thr	Pro 485	Gln	Gln	Val	Val	Ala 490	Ile	Ala	Ser	His	Asp 495	Gly
35	Gly	Lys	Gln	Ala 500	Leu	Glu	Thr	Val	Gln 505	Arg	Leu	Leu	Pro	Val 510	Leu	Cys
40	Gln	Ala	His 515	Gly	Leu	Thr	Pro	Gln 520	Gln	Val	Val	Ala	Ile 525	Ala	Ser	Asn
	Asn	Gly 530	Gly	Lys	Gln	Ala	Leu 535	Glu	Thr	Val	Gln	A rg 540	Leu	Leu	Pro	Val
45	Leu 545	Cys	Gln	Ala	His	Gly 550	Leu	Thr	Pro	Gln	Gln 555	Val	Val	Ala	Ile	Ala 560
50	Ser	Asn	Gly	Gly	Gly 565	Lys	Gln	Ala	Leu	Glu 570	Thr	Val	Gln	Arg	Leu 575	Leu
55	Pro	Val	Leu	Cys 580	Gln	Ala	His	Gly	Leu 585	Thr	Pro	Gln	Gln	Val 590	Val	Ala
	Ile	Ala	Ser 595	Asn	Gly	Gly	Gly	Arg 600	Pro	Ala	Leu	Glu	Ser 605	Ile	Val	Ala
60	Gln	Leu 610	Ser	Arg	Pro	Asp	Pro 615	Ala	Leu	Ala	Arg	Ser 620	Ala	Leu	Thr	Asn

5	Asp 625	His	Leu	Val	Ala	Leu 630	Ala	Cys	Leu	Gly	Gly 635	Arg	Pro	Ala	Leu	Asp 640
10	Ala	Val	Lys	Lys	Gly 645	Leu	Pro	His	Ala	Pro 650	Ala	Leu	Ile	Lys	A rg 655	Thr
	Asn	Arg	Arg	Ile 660	Pro	Glu	Gly	Ser	Asp 665	Arg	Leu	Asn	Gln	Leu 670	Val	Lys
15	Ser	Glu	Leu 675	Glu	Glu	Lys	Lys	Ser 680	Glu	Leu	Arg	His	Lys 685	Leu	Lys	Tyr
20	Val	Pro 690	His	Glu	Tyr	Ile	Glu 695	Leu	Ile	Glu	Ile	Ala 700	Arg	Asn	Ser	Thr
25	Gln 705	Asp	Arg	Ile	Leu	Glu 710	Met	Lys	Val	Met	Glu 715	Phe	Phe	Met	Lys	Val 720
30	Tyr	Gly	Tyr	Arg	Gly 725	Lys	His	Leu	Gly	Gly 730	Ser	Arg	Lys	Pro	Asp 735	Gly
	Ala	Ile	Tyr	Thr 740	Val	Gly	Ser	Pro	Ile 745	Asp	Tyr	Gly	Val	Ile 750	Val	Asp
35	Thr	Lys	Ala 755	Tyr	Ser	Gly	Gly	Tyr 760	Asn	Leu	Pro	Ile	Gly 765	Gln	Ala	Asp
40	Glu	Met 770	Gln	Arg	Tyr	Val	Glu 775	Glu	Asn	Gln	Thr	A rg 780	Asn	Lys	His	Ile
45	Asn 785	Pro	Asn	Glu	Trp	Trp 790	Lys	Val	Tyr	Pro	Ser 795	Ser	Val	Thr	Glu	Phe 800
50	Lys	Phe	Leu	Phe	Val 805	Ser	Gly	His	Phe	Lys 810	Gly	Asn	Tyr	Lys	Ala 815	Gln
50	Leu	Thr	Arg	Leu 820	Asn	His	Ile	Thr	Asn 825	Cys	Asn	Gly	Ala	Val 830	Leu	Ser
55	Val	Glu	Glu 835	Leu	Leu	Ile	Gly	Gly 840	Glu	Met	Ile	Lys	Ala 845	Gly	Thr	Leu
60	Thr	Leu 850	Glu	Glu	Val	Arg	Arg 855	Lys	Phe	Asn	Asn	Gly 860	Glu	Ile	Asn	Phe

<210> 45 <211> 7374 <212> ADN

<213> Secuencia artificial

5

<223> ArtTall-Reportero <400> 45

10	cgttacataa	cttacggtaa	atggcccgcc	tggctgaccg	cccaacgacc	cccgcccatt	60
		atgacgtatg					120
	atgggtggag	tatttacggt	aaactgccca	cttggcagta	catcaagtgt	atcatatgcc	180
15	aagtacgccc	cctattgacg	tcaatgacgg	taaatggccc	gcctggcatt	atgcccagta	240
	catgacctta	tgggactttc	ctacttggca	gtacatctac	gtattagtca	tcgctattac	300
	catggtgatg	cggttttggc	agtacatcaa	tgggcgtgga	tagcggtttg	actcacgggg	360
20	atttccaagt	ctccacccca	ttgacgtcaa	tgggagtttg	ttttggcacc	aaaatcaacg	420
	ggactttcca	aaatgtcgta	acaactccgc	cccattgacg	caaatgggcg	gtaggcgtgt	480
25	acggtgggag	gtctatataa	gcagagctcg	tttagtgaac	cgtcagatcg	cctggagacg	540
23	ccatccacgc	tgttttgacc	tccatagaag	acaccgggac	cgatccagcc	tccggactct	600
	agaggatccg	gtactcgacg	acactgcaga	gacctacttc	actaacaacc	ggtatggtcg	660
30	cgagtagctt	ggcactggcc	gtcgttttac	aacgtcgtga	ctgggaaaac	cctggcgtta	720
	cccaacttaa	tegeettgea	gcacatcccc	ctttcgccag	ctggcgtaat	agcgaagagg	780
	cccgcaccga	tegecettee	caacagttgc	gcagcctgaa	tggcgaatgg	cgctttgcct	840
35	ggtttccggc	accagaagcg	gtgccggaaa	gctggctgga	gtgcgatctt	cctgaggccg	900
	atactgtcgt	cgtcccctca	aactggcaga	tgcacggtta	cgatgcgccc	atctacacca	960
	acgtgaccta	tcccattacg	gtcaatccgc	cgtttgttcc	cacggagaat	ccgacgggtt	1020
40	gttactcgct	cacatttaat	gttgatgaaa	gctggctata	aaaccggtac	agttcggcca	1080
		attctgggac					1140
45	ttggcactgg	ccgtcgtttt	acaacgtcgt	gactgggaaa	accctggcgt	tacccaactt	1200
	aatcgccttg	cagcacatcc	ccctttcgcc	agctggcgta	atagcgaaga	ggcccgcacc	1260
	gatcgccctt	cccaacagtt	gcgcagcctg	aatggcgaat	ggcgctttgc	ctggtttccg	1320
50	gcaccagaag	cggtgccgga	aagctggctg	gagtgcgatc	ttcctgaggc	cgatactgtc	1380
	gtcgtcccct	caaactggca	gatgcacggt	tacgatgcgc	ccatctacac	caacgtgacc	1440
	tatcccatta	cggtcaatcc	gccgtttgtt	cccacggaga	atccgacggg	ttgttactcg	1500
55	ctcacattta	atgttgatga	aagctggcta	caggaaggcc	agacgcgaat	tatttttgat	1560
	ggcgttaact	cggcgtttca	tctgtggtgc	aacgggcgct	gggtcggtta	cggccaggac	1620
60	agtcgtttgc	cgtctgaatt	tgacctgagc	gcatttttac	gcgccggaga	aaaccgcctc	1680
00							

	gcggtgatgg	tgctgcgctg	gagtgacggc	agttatctgg	aagatcagga	tatgtggcgg	174
	atgagcggca	ttttccgtga	cgtctcgttg	ctgcataaac	cgactacaca	aatcagcgat	180
5	ttccatgttg	ccactcgctt	taatgatgat	ttcagccgcg	ctgtactgga	ggctgaagtt	186
	cagatgtgcg	gcgagttgcg	tgactaccta	cgggtaacag	tttctttatg	gcagggtgaa	192
	acgcaggtcg	ccagcggcac	cgcgcctttc	ggcggtgaaa	ttatcgatga	gcgtggtggt	198
10	tatgccgatc	gcgtcacact	acgtctgaac	gtcgaaaacc	cgaaactgtg	gagcgccgaa	204
	atcccgaatc	tctatcgtgc	ggtggttgaa	ctgcacaccg	ccgacggcac	gctgattgaa	210
4.5	gcagaagcct	gcgatgtcgg	tttccgcgag	gtgcggattg	aaaatggtct	gctgctgctg	216
15	aacggcaagc	cgttgctgat	tcgaggcgtt	aaccgtcacg	agcatcatcc	tctgcatggt	222
	caggtcatgg	atgagcagac	gatggtgcag	gatatcctgc	tgatgaagca	gaacaacttt	228
20	aacgccgtgc	gctgttcgca	ttatccgaac	catccgctgt	ggtacacgct	gtgcgaccgc	234
	tacggcctgt	atgtggtgga	tgaagccaat	attgaaaccc	acggcatggt	gccaatgaat	240
	cgtctgaccg	atgatccgcg	ctggctaccg	gcgatgagcg	aacgcgtaac	gcgaatggtg	246
25	cagcgcgatc	gtaatcaccc	gagtgtgatc	atctggtcgc	tggggaatga	atcaggccac	252
	ggcgctaatc	acgacgcgct	gtatcgctgg	atcaaatctg	tcgatccttc	ccgcccggtg	258
	cagtatgaag	gcggcggagc	cgacaccacg	gccaccgata	ttatttgccc	gatgtacgcg	264
30	cgcgtggatg	aagaccagcc	cttcccggct	gtgccgaaat	ggtccatcaa	aaaatggctt	270
	tcgctacctg	gagagacgcg	cccgctgatc	ctttgcgaat	acgcccacgc	gatgggtaac	276
	agtettggeg	gtttcgctaa	atactggcag	gcgtttcgtc	agtatccccg	tttacagggc	282
35	ggcttcgtct	gggactgggt	ggatcagtcg	ctgattaaat	atgatgaaaa	cggcaacccg	288
	tggtcggctt	acggcggtga	ttttggcgat	acgccgaacg	atcgccagtt	ctgtatgaac	294
40	ggtctggtct	ttgccgaccg	cacgccgcat	ccagcgctga	cggaagcaaa	acaccagcag	300
40	cagtttttcc	agttccgttt	atccgggcaa	accatcgaag	tgaccagcga	atacctgttc	306
	cgtcatagcg	ataacgagct	cctgcactgg	atggtggcgc	tggatggtaa	gccgctggca	312
45	agcggtgaag	tgcctctgga	tgtcgctcca	caaggtaaac	agttgattga	actgcctgaa	318
	ctaccgcagc	cggagagcgc	cgggcaactc	tggctcacag	tacgcgtagt	gcaaccgaac	324
	gcgaccgcat	ggtcagaagc	cgggcacatc	agcgcctggc	agcagtggcg	tctggcggaa	330
50	aacctcagtg	tgacgctccc	cgccgcgtcc	cacgccatcc	cgcatctgac	caccagcgaa	336
	atggatttt	gcatcgagct	gggtaataag	cgttggcaat	ttaaccgcca	gtcaggcttt	342
	ctttcacaga	tgtggattgg	cgataaaaaa	caactgctga	cgccgctgcg	cgatcagttc	348
55	acccgtgcac	cgctggataa	cgacattggc	gtaagtgaag	cgacccgcat	tgaccctaac	354

	geergggreg	aacgctggaa	ggeggeggge	Cattaccagg	ccgaagcagc	grigrigrag	3600
	tgcacggcag	atacacttgc	tgatgcggtg	ctgattacga	ccgctcacgc	gtggcagcat	3660
5	caggggaaaa	ccttatttat	cagccggaaa	acctaccgga	ttgatggtag	tggtcaaatg	3720
	gcgattaccg	ttgatgttga	agtggcgagc	gatacaccgc	atccggcgcg	gattggcctg	3780
	aactgccagc	tggcgcaggt	agcagagcgg	gtaaactggc	tcggattagg	gccgcaagaa	3840
10	aactatcccg	accgccttac	tgccgcctgt	tttgaccgct	gggatctgcc	attgtcagac	3900
	atgtataccc	cgtacgtctt	cccgagcgaa	aacggtctgc	gctgcgggac	gcgcgaattg	3960
	aattatggcc	cacaccagtg	gcgcggcgac	ttccagttca	acatcagccg	ctacagtcaa	4020
15	cagcaactga	tggaaaccag	ccatcgccat	ctgctgcacg	cggaagaagg	cacatggctg	4080
	aatatcgacg	gtttccatat	ggggattggt	ggcgacgact	cctggagccc	gtcagtatcg	4140
	gcggaattac	agctgagcgc	cggtcgctac	cattaccagt	tggtctggtg	tcaaaaataa	4200
20	taataaccgg	gcaggccatg	tctgcccgta	tttcgcgtaa	ggaaatccat	tatgtactat	4260
	ttaaaaaaca	caaacttttg	gatgttcggt	ttattctttt	tcttttactt	ttttatcatg	4320
25	ggagcctact	tcccgttttt	cccgatttgg	ctacatgaca	tcaaccatat	cagcaaaagt	4380
25	gatacgggta	ttatttttgc	cgctatttct	ctgttctcgc	tattattcca	accgctgttt	4440
	ggtctgcttt	ctgacaaact	cggcctcgac	tctaggcggc	cgcggggatc	cagacatgat	4500
30	aagatacatt	gatgagtttg	gacaaaccac	aactagaatg	cagtgaaaaa	aatgctttat	4560
	ttgtgaaatt	tgtgatgcta	ttgctttatt	tgtaaccatt	ataagctgca	ataaacaagt	4620
	taacaacaac	aattgcattc	attttatgtt	tcaggttcag	ggggaggtgt	gggaggtttt	4680
35	ttcggatcct	ctagagtcga	cctgcaggca	tgcaagcttg	gcgtaatcat	ggtcatagct	4740
	gtttcctgtg	tgaaattgtt	atccgctcac	aattccacac	aacatacgag	ccggaagcat	4800
	aaagtgtaaa	gcctggggtg	cctaatgagt	gagctaactc	acattaattg	cgttgcgctc	4860
40	actgcccgct	ttccagtcgg	gaaacctgtc	gtgccagctg	cattaatgaa	teggecaacg	4920
	cgcggggaga	ggcggtttgc	gtattgggcg	ctcttccgct	tcctcgctca	ctgactcgct	4980
	gcgctcggtc	gttcggctgc	ggcgagcggt	atcagctcac	tcaaaggcgg	taatacggtt	5040
45	atccacagaa	tcaggggata	acgcaggaaa	gaacatgtga	gcaaaaggcc	agcaaaaggc	5100
	caggaaccgt	aaaaaggccg	cgttgctggc	gtttttccat	aggctccgcc	cccctgacga	5160
	gcatcacaaa	aatcgacgct	caagtcagag	gtggcgaaac	ccgacaggac	tataaagata	5220
50	ccaggcgttt	cccctggaa	gctccctcgt	gcgctctcct	gttccgaccc	tgccgcttac	5280
	cggatacctg	tccgcctttc	tcccttcggg	aagcgtggcg	ctttctcata	gctcacgctg	5340
	taggtatctc	agttcggtgt	aggtcgttcg	ctccaagctg	ggctgtgtgc	acgaaccccc	5400
55	cgttcagccc	gaccgctgcg	ccttatccgg	taactatcgt	cttgagtcca	acccggtaag	5460

	acacgactta	regecacigg	cagcagccac	tggtaacagg	attagcagag	cgaggrargr	3320
	aggcggtgct	acagagttct	tgaagtggtg	gcctaactac	ggctacacta	gaaggacagt	5580
5	atttggtatc	tgcgctctgc	tgaagccagt	taccttcgga	aaaagagttg	gtagctcttg	5640
	atccggcaaa	caaaccaccg	ctggtagcgg	tggtttttt	gtttgcaagc	agcagattac	5700
	gcgcagaaaa	aaaggatctc	aagaagatcc	tttgatcttt	tctacggggt	ctgacgctca	5760
10	gtggaacgaa	aactcacgtt	aagggatttt	ggtcatgaga	ttatcaaaaa	ggatcttcac	5820
	ctagatcctt	ttaaattaaa	aatgaagttt	taaatcaatc	taaagtatat	atgagtaaac	5880
4.5	ttggtctgac	agttaccaat	gcttaatcag	tgaggcacct	atctcagcga	tctgtctatt	5940
15	tcgttcatcc	atagttgcct	gactccccgt	cgtgtagata	actacgatac	gggagggctt	6000
	accatctggc	cccagtgctg	caatgatacc	gcgagaccca	cgctcaccgg	ctccagattt	6060
20	atcagcaata	aaccagccag	ccggaagggc	cgagcgcaga	agtggtcctg	caactttatc	6120
	cgcctccatc	cagtctatta	attgttgccg	ggaagctaga	gtaagtagtt	cgccagttaa	6180
	tagtttgcgc	aacgttgttg	ccattgctac	aggcatcgtg	gtgtcacgct	cgtcgtttgg	6240
25	tatggcttca	ttcagctccg	gttcccaacg	atcaaggcga	gttacatgat	ccccatgtt	6300
	gtgcaaaaaa	gcggttagct	ccttcggtcc	tccgatcgtt	gtcagaagta	agttggccgc	6360
	agtgttatca	ctcatggtta	tggcagcact	gcataattct	cttactgtca	tgccatccgt	6420
30	aagatgcttt	tctgtgactg	gtgagtactc	aaccaagtca	ttctgagaat	agtgtatgcg	6480
	gcgaccgagt	tgctcttgcc	cggcgtcaat	acgggataat	accgcgccac	atagcagaac	6540
	tttaaaagtg	ctcatcattg	gaaaacgttc	ttcggggcga	aaactctcaa	ggatettace	6600
35	gctgttgaga	tccagttcga	tgtaacccac	tcgtgcaccc	aactgatctt	cagcatcttt	6660
	tactttcacc	agcgtttctg	ggtgagcaaa	aacaggaagg	caaaatgccg	caaaaaaggg	6720
40	aataagggcg	acacggaaat	gttgaatact	catactcttc	ctttttcaat	attattgaag	6780
40	catttatcag	ggttattgtc	tcatgagcgg	atacatattt	gaatgtattt	agaaaaataa	6840
	acaaataggg	gttccgcgca	catttccccg	aaaagtgcca	cctgacgtct	aagaaaccat	6900
45	tattatcatg	acattaacct	ataaaaatag	gcgtatcacg	aggccctttc	gtctcgcgcg	6960
	tttcggtgat	gacggtgaaa	acctctgaca	catgcagctc	ccggagacgg	tcacagcttg	7020
	tctgtaagcg	gatgccggga	gcagacaagc	ccgtcagggc	gcgtcagcgg	gtgttggcgg	7080
50	gtgtcggggc	tggcttaact	atgcggcatc	agagcagatt	gtactgagag	tgcaccatat	7140
	gcggtgtgaa	ataccgcaca	gatgcgtaag	gagaaaatac	cgcatcaggc	gccattcgcc	7200
	attcaggctg	cgcaactgtt	gggaagggcg	atcggtgcgg	gcctcttcgc	tattacgcca	7260
55	gctggcgaaa	gggggatgtg	ctgcaaggcg	attaagttgg	gtaacgccag	ggttttccca	7320
	gtcacgacgt	tgtaaaacga	cggccagtga	attcgagctt	gcatgcctgc	aggt	7374

<210> 46 <211> 7374 <212> ADN <213> Secuencia artificial 5 <223> TalRabl-Reportero <400> 46 10 cgttacataa cttacggtaa atggcccgcc tggctgaccg cccaacgacc cccgcccatt 60 gacgtcaata atgacgtatg ttcccatagt aacgccaata gggactttcc attgacgtca 120 atgggtggag tatttacggt aaactgccca cttggcagta catcaagtgt atcatatgcc 180 15 aagtacgccc cctattgacg tcaatgacgg taaatggccc gcctggcatt atgcccagta 240 300 catgacctta tgggactttc ctacttggca gtacatctac gtattagtca tcgctattac 20 catggtgatg cggttttggc agtacatcaa tgggcgtgga tagcggtttg actcacgggg 360 atttccaagt ctccacccca ttgacgtcaa tgggagtttg ttttggcacc aaaatcaacg 420 ggactttcca aaatgtcgta acaactccgc cccattgacg caaatgggcg gtaggcgtgt 480 25 acggtgggag gtctatataa gcagagctcg tttagtgaac cgtcagatcg cctggagacg 540 600 ccatccacgc tgttttgacc tccatagaag acaccgggac cgatccagcc tccggactct agaggatccg gtactcgacg acactgcaga gacctacttc actaacaacc ggtatggtcg 660 30 cgagtagctt ggcactggcc gtcgttttac aacgtcgtga ctgggaaaac cctggcgtta 720 780 cccaacttaa tcgccttgca gcacatcccc ctttcgccag ctggcgtaat agcgaagagg 35 840 cccgcaccga tcgcccttcc caacagttgc gcagcctgaa tggcgaatgg cgctttgcct ggtttccggc accagaagcg gtgccggaaa gctggctgga gtgcgatctt cctgaggccg 900 atactgtcgt cgtcccctca aactggcaga tgcacggtta cgatgcgccc atctacacca 960 40 acgtgaccta teccattacg gteaateege cgtttgttee caeggagaat eegacgggtt 1020 gttactcgct cacatttaat gttgatgaaa gctggctata aaaccggtac agttcggcca 1080 ccatggtcgt gtgcaccaaa acttttcaca ctcttctaag ttttggtgca cacgagtagc 1140 45 1200 ttggcactgg ccgtcgtttt acaacgtcgt gactgggaaa accctggcgt tacccaactt aatcgccttg cagcacatcc ccctttcgcc agctggcgta atagcgaaga ggcccgcacc 1260 1320 gatcgccctt cccaacagtt gcgcagcctg aatggcgaat ggcgctttgc ctggtttccg 50 gcaccagaag cggtgccgga aagctggctg gagtgcgatc ttcctgaggc cgatactgtc 1380 1440 gtcgtccct caaactggca gatgcacggt tacgatgcgc ccatctacac caacgtgacc 55 tatcccatta cggtcaatcc gccgtttgtt cccacggaga atccgacggg ttgttactcg 1500 ctcacattta atgttgatga aagctggcta caggaaggcc agacgcgaat tatttttgat 1560

145

60

	ggcgttaact	cggcgtttca	tctgtggtgc	aacgggcgct	gggtcggtta	cggccaggac	162
	agtcgtttgc	cgtctgaatt	tgacctgagc	gcatttttac	gcgccggaga	aaaccgcctc	1680
5	gcggtgatgg	tgctgcgctg	gagtgacggc	agttatctgg	aagatcagga	tatgtggcgg	1740
	atgagcggca	ttttccgtga	cgtctcgttg	ctgcataaac	cgactacaca	aatcagcgat	1800
	ttccatgttg	ccactcgctt	taatgatgat	ttcagccgcg	ctgtactgga	ggctgaagtt	1860
10	cagatgtgcg	gcgagttgcg	tgactaccta	cgggtaacag	tttctttatg	gcagggtgaa	1920
	acgcaggtcg	ccagcggcac	cgcgcctttc	ggcggtgaaa	ttatcgatga	gcgtggtggt	1980
4.5	tatgccgatc	gcgtcacact	acgtctgaac	gtcgaaaacc	cgaaactgtg	gagcgccgaa	2040
15	atcccgaatc	tctatcgtgc	ggtggttgaa	ctgcacaccg	ccgacggcac	gctgattgaa	210
	gcagaagcct	gcgatgtcgg	tttccgcgag	gtgcggattg	aaaatggtct	gctgctgctg	2160
20	aacggcaagc	cgttgctgat	tcgaggcgtt	aaccgtcacg	agcatcatcc	tctgcatggt	2220
	caggtcatgg	atgagcagac	gatggtgcag	gatatcctgc	tgatgaagca	gaacaacttt	2280
	aacgccgtgc	gctgttcgca	ttatccgaac	catccgctgt	ggtacacgct	gtgcgaccgc	2340
25	tacggcctgt	atgtggtgga	tgaagccaat	attgaaaccc	acggcatggt	gccaatgaat	2400
	cgtctgaccg	atgatccgcg	ctggctaccg	gcgatgagcg	aacgcgtaac	gcgaatggtg	2460
	cagcgcgatc	gtaatcaccc	gagtgtgatc	atctggtcgc	tggggaatga	atcaggccac	2520
30	ggcgctaatc	acgacgcgct	gtatcgctgg	atcaaatctg	tcgatccttc	ccgcccggtg	2580
	cagtatgaag	gcggcggagc	cgacaccacg	gccaccgata	ttatttgccc	gatgtacgcg	2640
	cgcgtggatg	aagaccagcc	cttcccggct	gtgccgaaat	ggtccatcaa	aaaatggctt	270
35	tcgctacctg	gagagacgcg	cccgctgatc	ctttgcgaat	acgcccacgc	gatgggtaac	276
	agtcttggcg	gtttcgctaa	atactggcag	gcgtttcgtc	agtatccccg	tttacagggc	282
40	ggcttcgtct	gggactgggt	ggatcagtcg	ctgattaaat	atgatgaaaa	cggcaacccg	288
40	tggtcggctt	acggcggtga	ttttggcgat	acgccgaacg	atcgccagtt	ctgtatgaac	2940
	ggtctggtct	ttgccgaccg	cacgccgcat	ccagcgctga	cggaagcaaa	acaccagcag	3000
45	cagtttttcc	agttccgttt	atccgggcaa	accatcgaag	tgaccagcga	atacctgttc	3060
	cgtcatagcg	ataacgagct	cctgcactgg	atggtggcgc	tggatggtaa	gccgctggca	3120
	agcggtgaag	tgcctctgga	tgtcgctcca	caaggtaaac	agttgattga	actgcctgaa	3180
50	ctaccgcagc	cggagagcgc	cgggcaactc	tggctcacag	tacgcgtagt	gcaaccgaac	3240
	gcgaccgcat	ggtcagaagc	cgggcacatc	agcgcctggc	agcagtggcg	tctggcggaa	330
	aacctcagtg	tgacgctccc	cgccgcgtcc	cacgccatcc	cgcatctgac	caccagcgaa	336
55	atggatttt	gcatcgagct	gggtaataag	cgttggcaat	ttaaccgcca	gtcaggcttt	342

	ctttcacaga	tgtggattgg	cgataaaaaa	caactgctga	cgccgctgcg	cgatcagttc	3480
	acccgtgcac	cgctggataa	cgacattggc	gtaagtgaag	cgacccgcat	tgaccctaac	3540
5	gcctgggtcg	aacgctggaa	ggcggcgggc	cattaccagg	ccgaagcagc	gttgttgcag	3600
	tgcacggcag	atacacttgc	tgatgcggtg	ctgattacga	ccgctcacgc	gtggcagcat	3660
	caggggaaaa	ccttatttat	cagccggaaa	acctaccgga	ttgatggtag	tggtcaaatg	3720
10	gcgattaccg	ttgatgttga	agtggcgagc	gatacaccgc	atccggcgcg	gattggcctg	3780
	aactgccagc	tggcgcaggt	agcagagcgg	gtaaactggc	tcggattagg	gccgcaagaa	3840
15	aactatcccg	accgccttac	tgccgcctgt	tttgaccgct	gggatctgcc	attgtcagac	3900
	atgtataccc	cgtacgtctt	cccgagcgaa	aacggtctgc	gctgcgggac	gcgcgaattg	3960
	aattatggcc	cacaccagtg	gcgcggcgac	ttccagttca	acatcagccg	ctacagtcaa	4020
20	cagcaactga	tggaaaccag	ccatcgccat	ctgctgcacg	cggaagaagg	cacatggctg	4080
	aatatcgacg	gtttccatat	ggggattggt	ggcgacgact	cctggagccc	gtcagtatcg	4140
	gcggaattac	agctgagcgc	cggtcgctac	cattaccagt	tggtctggtg	tcaaaaataa	4200
25	taataaccgg	gcaggccatg	tctgcccgta	tttcgcgtaa	ggaaatccat	tatgtactat	4260
	ttaaaaaaca	caaacttttg	gatgttcggt	ttattctttt	tcttttactt	ttttatcatg	4320
	ggagcctact	tcccgttttt	cccgatttgg	ctacatgaca	tcaaccatat	cagcaaaagt	4380
30	gatacgggta	ttatttttgc	cgctatttct	ctgttctcgc	tattattcca	accgctgttt	4440
	ggtctgcttt	ctgacaaact	cggcctcgac	tctaggcggc	cgcggggatc	cagacatgat	4500
35	aagatacatt	gatgagtttg	gacaaaccac	aactagaatg	cagtgaaaaa	aatgctttat	4 560
	ttgtgaaatt	tgtgatgcta	ttgctttatt	tgtaaccatt	ataagctgca	ataaacaagt	4620
	taacaacaac	aattgcattc	attttatgtt	tcaggttcag	ggggaggtgt	gggaggtttt	4680
40	ttcggatcct	ctagagtcga	cctgcaggca	tgcaagcttg	gcgtaatcat	ggtcatagct	4740
	gtttcctgtg	tgaaattgtt	atccgctcac	aattccacac	aacatacgag	ccggaagcat	4800
	aaagtgtaaa	gcctggggtg	cctaatgagt	gagctaactc	acattaattg	cgttgcgctc	4860
45	actgcccgct	ttccagtcgg	gaaacctgtc	gtgccagctg	cattaatgaa	tcggccaacg	4920
	cgcggggaga	ggcggtttgc	gtattgggcg	ctcttccgct	tcctcgctca	ctgactcgct	4980
	gcgctcggtc	gttcggctgc	ggcgagcggt	atcagctcac	tcaaaggcgg	taatacggtt	5040
50	atccacagaa	tcaggggata	acgcaggaaa	gaacatgtga	gcaaaaggcc	agcaaaaggc	5100
	caggaaccgt	aaaaaggccg	cgttgctggc	gtttttccat	aggctccgcc	cccctgacga	5160
55	gcatcacaaa	aatcgacgct	caagtcagag	gtggcgaaac	ccgacaggac	tataaagata	5220
	ccaggcgttt	ccccctggaa	gctccctcgt	gcgctctcct	gttccgaccc	tgccgcttac	5280
	cggatacctg	tccgcctttc	tecetteggg	aagcgtggcg	ctttctcata	gctcacgctg	5340

	caggiaticic	aguccggcgc	aggicgiccg	ccccaagety	ggccgcgc	acyaaccccc	3400
	cgttcagccc	gaccgctgcg	ccttatccgg	taactatcgt	cttgagtcca	acccggtaag	5460
5	acacgactta	tcgccactgg	cagcagccac	tggtaacagg	attagcagag	cgaggtatgt	5520
	aggcggtgct	acagagttct	tgaagtggtg	gcctaactac	ggctacacta	gaaggacagt	5580
	atttggtatc	tgcgctctgc	tgaagccagt	taccttcgga	aaaagagttg	gtagctcttg	5640
10	atccggcaaa	caaaccaccg	ctggtagcgg	tggtttttt	gtttgcaagc	agcagattac	5700
	gcgcagaaaa	aaaggatctc	aagaagatcc	tttgatcttt	tctacggggt	ctgacgctca	5760
15	gtggaacgaa	aactcacgtt	aagggatttt	ggtcatgaga	ttatcaaaaa	ggatcttcac	5820
	ctagatcctt	ttaaattaaa	aatgaagttt	taaatcaatc	taaagtatat	atgagtaaac	5880
	ttggtctgac	agttaccaat	gcttaatcag	tgaggcacct	atctcagcga	tctgtctatt	5940
20	tcgttcatcc	atagttgcct	gactccccgt	cgtgtagata	actacgatac	gggagggctt	6000
	accatctggc	cccagtgctg	caatgatacc	gcgagaccca	cgctcaccgg	ctccagattt	6060
05	atcagcaata	aaccagccag	ccggaagggc	cgagcgcaga	agtggtcctg	caactttatc	6120
25	cgcctccatc	cagtctatta	attgttgccg	ggaagctaga	gtaagtagtt	cgccagttaa	6180
	tagtttgcgc	aacgttgttg	ccattgctac	aggcatcgtg	gtgtcacgct	cgtcgtttgg	6240
30	tatggcttca	ttcagctccg	gttcccaacg	atcaaggcga	gttacatgat	ccccatgtt	6300
	gtgcaaaaaa	gcggttagct	ccttcggtcc	tccgatcgtt	gtcagaagta	agttggccgc	6360
	agtgttatca	ctcatggtta	tggcagcact	gcataattct	cttactgtca	tgccatccgt	6420
35	aagatgcttt	tctgtgactg	gtgagtactc	aaccaagtca	ttctgagaat	agtgtatgcg	6480
	gcgaccgagt	tgctcttgcc	cggcgtcaat	acgggataat	accgcgccac	atagcagaac	6540
40	tttaaaagtg	ctcatcattg	gaaaacgttc	ttcggggcga	aaactctcaa	ggatcttacc	6600
40	gctgttgaga	tccagttcga	tgtaacccac	tcgtgcaccc	aactgatctt	cagcatcttt	6660
	tactttcacc	agcgtttctg	ggtgagcaaa	aacaggaagg	caaaatgccg	caaaaaaggg	6720
45	aataagggcg	acacggaaat	gttgaatact	catactcttc	ctttttcaat	attattgaag	6780
	catttatcag	ggttattgtc	tcatgagcgg	atacatattt	gaatgtattt	agaaaaataa	6840
	acaaataggg	gttccgcgca	catttccccg	aaaagtgcca	cctgacgtct	aagaaaccat	6900
50	tattatcatg	acattaacct	ataaaaatag	gcgtatcacg	aggccctttc	gtctcgcgcg	6960
	tttcggtgat	gacggtgaaa	acctctgaca	catgcagctc	ccggagacgg	tcacagcttg	7020
<i>EE</i>	tctgtaagcg	gatgccggga	gcagacaagc	ccgtcagggc	gcgtcagcgg	gtgttggcgg	7080
55	gtgtcggggc	tggcttaact	atgcggcatc	agagcagatt	gtactgagag	tgcaccatat	7140
	gcggtgtgaa	ataccgcaca	gatgcgtaag	gagaaaatac	cgcatcaggc	gccattcgcc	7200

		attcaggctg	cgcaactgtt	gggaagggcg	atcggtgcgg	gcctcttcgc	tattacgcca	7260
		gctggcgaaa	gggggatgtg	ctgcaaggcg	attaagttgg	gtaacgccag	ggttttccca	7320
5		gtcacgacgt	tgtaaaacga	cggccagtga	attcgagctt	gcatgcctgc	aggt	7374
	<210> 47							
10	<211> 737 <212> AD <213> Sec		ıl					
15	<220> <223> Tall	Rab2-Reporter	ro					
	<400> 47							
		cgttacataa	cttacggtaa	atggcccgcc	tggctgaccg	cccaacgacc	cccgcccatt	60
20		gacgtcaata	atgacgtatg	ttcccatagt	aacgccaata	gggactttcc	attgacgtca	120
		atgggtggag	tatttacggt	aaactgccca	. cttggcagta	. catcaagtgt	atcatatgcc	180
25		aagtacgccc	cctattgacg	tcaatgacgg	taaatggccc	gcctggcatt	atgcccagta	240
		catgacctta	. tgggactttc	ctacttggca	. gtacatctac	gtattagtca	tcgctattac	300
		catggtgatg	cggttttggc	agtacatcaa	. tgggcgtgga	. tagcggtttg	actcacgggg	360
30		atttccaagt	ctccacccca	ttgacgtcaa	. tgggagtttg	ttttggcacc	aaaatcaacg	420
		ggactttcca	. aaatgtcgta	acaactccgc	cccattgacg	caaatgggcg	gtaggcgtgt	480
_		acggtgggag	gtctatataa	gcagagctcg	tttagtgaac	cgtcagatcg	cctggagacg	540
35		ccatccacgo	tgttttgacc	tccatagaag	acaccgggac	cgatccagcc	tccggactct	600
		agaggatccg	gtactcgacg	acactgcaga	. gacctacttc	actaacaacc	ggtatggtcg	660
40		cgagtagctt	ggcactggcc	gtcgttttac	aacgtcgtga	ctgggaaaac	cctggcgtta	720
		cccaacttaa	. tcgccttgca	gcacatcccc	ctttcgccag	ctggcgtaat	agcgaagagg	780
		cccgcaccga	tegecettee	caacagttgo	gcagcctgaa	tggcgaatgg	cgctttgcct	840
45		ggtttccggc	accagaagcg	gtgccggaaa	. gctggctgga	gtgcgatctt	cctgaggccg	900
		atactgtcgt	cgtcccctca	aactggcaga	. tgcacggtta	. cgatgcgccc	atctacacca	960
		acgtgaccta	teccattacg	gtcaatccgc	cgtttgttcc	cacggagaat	ccgacgggtt	1020
50		gttactcgct	cacatttaat	gttgatgaaa	. gctggctata	. aaaccggtac	agttcggcca	1080
		ccatggtcga	tggtggcccg	gtagttttca	. cactcttctc	actaccgggc	caccacgagt	1140
		agcttggcac	tggccgtcgt	tttacaacgt	cgtgactggg	aaaaccctgg	cgttacccaa	1200
55		cttaatcgcc	ttgcagcaca	tececettte	gccagctggc	gtaatagcga	agaggcccgc	1260
		accgatcgcc	cttcccaaca	gttgcgcagc	ctgaatggcg	aatggcgctt	tgcctggttt	1320
30		ccggcaccag	aagcggtgcc	ggaaagctgg	ctggagtgcg	atcttcctga	ggccgatact	1380
		gtcgtcgtcc	cctcaaactg	gcagatgcac	ggttacgatg	cgcccatcta	caccaacgtg	1440

	acctatecca	ttacggtcaa	teegeegttt	gtteecaegg	agaateegae	gggttgttac	1500
	tcgctcacat	ttaatgttga	tgaaagctgg	ctacaggaag	gccagacgcg	aattattttt	1560
5	gatggcgtta	actcggcgtt	tcatctgtgg	tgcaacgggc	gctgggtcgg	ttacggccag	1620
	gacagtcgtt	tgccgtctga	atttgacctg	agcgcatttt	tacgcgccgg	agaaaaccgc	1680
40	ctcgcggtga	tggtgctgcg	ctggagtgac	ggcagttatc	tggaagatca	ggatatgtgg	1740
10	cggatgagcg	gcattttccg	tgacgtctcg	ttgctgcata	aaccgactac	acaaatcagc	1800
	gatttccatg	ttgccactcg	ctttaatgat	gatttcagcc	gcgctgtact	ggaggctgaa	1860
15	gttcagatgt	gcggcgagtt	gcgtgactac	ctacgggtaa	cagtttcttt	atggcagggt	1920
	gaaacgcagg	tcgccagcgg	caccgcgcct	ttcggcggtg	aaattatcga	tgagcgtggt	1980
	ggttatgccg	atcgcgtcac	actacgtctg	aacgtcgaaa	acccgaaact	gtggagcgcc	2040
20	gaaatcccga	atctctatcg	tgcggtggtt	gaactgcaca	ccgccgacgg	cacgctgatt	2100
	gaagcagaag	cctgcgatgt	cggtttccgc	gaggtgcgga	ttgaaaatgg	tetgetgetg	2160
0.5	ctgaacggca	agccgttgct	gattcgaggc	gttaaccgtc	acgagcatca	tectetgeat	2220
25	ggtcaggtca	tggatgagca	gacgatggtg	caggatatcc	tgctgatgaa	gcagaacaac	2280
	tttaacgccg	tgcgctgttc	gcattatccg	aaccatccgc	tgtggtacac	gctgtgcgac	2340
30	cgctacggcc	tgtatgtggt	ggatgaagcc	aatattgaaa	cccacggcat	ggtgccaatg	2400
	aatcgtctga	ccgatgatcc	gcgctggcta	ccggcgatga	gcgaacgcgt	aacgcgaatg	2460
	gtgcagcgcg	atcgtaatca	cccgagtgtg	atcatctggt	cgctggggaa	tgaatcaggc	2520
35	cacggcgcta	atcacgacgc	gctgtatcgc	tggatcaaat	ctgtcgatcc	ttcccgcccg	2580
	gtgcagtatg	aaggcggcgg	agccgacacc	acggccaccg	atattatttg	cccgatgtac	2640
40	gcgcgcgtgg	atgaagacca	gcccttcccg	gctgtgccga	aatggtccat	caaaaaatgg	2700
40	ctttcgctac	ctggagagac	gcgcccgctg	atcctttgcg	aatacgccca	cgcgatgggt	2760
	aacagtcttg	gcggtttcgc	taaatactgg	caggcgtttc	gtcagtatcc	ccgtttacag	2820
45	ggcggcttcg	tctgggactg	ggtggatcag	tcgctgatta	aatatgatga	aaacggcaac	2880
	ccgtggtcgg	cttacggcgg	tgattttggc	gatacgccga	acgatcgcca	gttctgtatg	2940
	aacggtctgg	tctttgccga	ccgcacgccg	catccagcgc	tgacggaagc	aaaacaccag	3000
50	cagcagtttt	tccagttccg	tttatccggg	caaaccatcg	aagtgaccag	cgaatacctg	3060
	ttccgtcata	gcgataacga	gctcctgcac	tggatggtgg	cgctggatgg	taagccgctg	3120
EE	gcaagcggtg	aagtgcctct	ggatgtcgct	ccacaaggta	aacagttgat	tgaactgcct	3180
55	gaactaccgc	agccggagag	cgccgggcaa	ctctggctca	cagtacgcgt	agtgcaaccg	3240
	aacgcgaccg	catggtcaga	agccgggcac	atcagcgcct	ggcagcagtg	gcgtctggcg	3300

	gaaaacccca	gogogaogoo	ccccgccgcg	coccacgooa	ccccgcaccc	gaccaccage	5500
	gaaatggatt	tttgcatcga	gctgggtaat	aagcgttggc	aatttaaccg	ccagtcaggc	3420
5	tttctttcac	agatgtggat	tggcgataaa	aaacaactgc	tgacgccgct	gcgcgatcag	3480
	ttcacccgtg	caccgctgga	taacgacatt	ggcgtaagtg	aagcgacccg	cattgaccct	3540
	aacgcctggg	tcgaacgctg	gaaggcggcg	ggccattacc	aggccgaagc	agcgttgttg	3600
10	cagtgcacgg	cagatacact	tgctgatgcg	gtgctgatta	cgaccgctca	cgcgtggcag	3660
	catcagggga	aaaccttatt	tatcagccgg	aaaacctacc	ggattgatgg	tagtggtcaa	3720
15	atggcgatta	ccgttgatgt	tgaagtggcg	agcgatacac	cgcatccggc	gcggattggc	3780
	ctgaactgcc	agctggcgca	ggtagcagag	cgggtaaact	ggctcggatt	agggccgcaa	3840
	gaaaactatc	ccgaccgcct	tactgccgcc	tgttttgacc	gctgggatct	gccattgtca	3900
20	gacatgtata	ccccgtacgt	cttcccgagc	gaaaacggtc	tgcgctgcgg	gacgcgcgaa	3960
	ttgaattatg	gcccacacca	gtggcgcggc	gacttccagt	tcaacatcag	ccgctacagt	4020
25	caacagcaac	tgatggaaac	cagccatcgc	catctgctgc	acgcggaaga	aggcacatgg	4080
25	ctgaatatcg	acggtttcca	tatggggatt	ggtggcgacg	actcctggag	cccgtcagta	4140
	tcggcggaat	tacagctgag	cgccggtcgc	taccattacc	agttggtctg	gtgtcaaaaa	4200
30	taataataac	cgggcaggcc	atgtctgccc	gtatttcgcg	taaggaaatc	cattatgtac	4260
	tatttaaaaa	acacaaactt	ttggatgttc	ggtttattct	ttttctttta	ctttttatc	4320
	atgggagcct	acttcccgtt	tttcccgatt	tggctacatg	acatcaacca	tatcagcaaa	4380
35	agtgatacgg	gtattatttt	tgccgctatt	tctctgttct	cgctattatt	ccaaccgctg	4440
	tttggtctgc	tttctgacaa	actcggcctc	gactctaggc	ggccgcgggg	atccagacat	4500
40	gataagatac	attgatgagt	ttggacaaac	cacaactaga	atgcagtgaa	aaaaatgctt	4560
40	tatttgtgaa	atttgtgatg	ctattgcttt	atttgtaacc	attataagct	gcaataaaca	4620
	agttaacaac	aacaattgca	ttcattttat	gtttcaggtt	cagggggagg	tgtgggaggt	4680
45	tttttcggat	cctctagagt	cgacctgcag	gcatgcaagc	ttggcgtaat	catggtcata	4740
	gctgtttcct	gtgtgaaatt	gttatccgct	cacaattcca	cacaacatac	gagccggaag	4800
	cataaagtgt	aaagcctggg	gtgcctaatg	agtgagctaa	ctcacattaa	ttgcgttgcg	4860
50	ctcactgccc	gctttccagt	cgggaaacct	gtcgtgccag	ctgcattaat	gaatcggcca	4920
	acgcgcgggg	agaggcggtt	tgcgtattgg	gcgctcttcc	gcttcctcgc	tcactgactc	4980
55	gctgcgctcg	gtcgttcggc	tgcggcgagc	ggtatcagct	cactcaaagg	cggtaatacg	5040
5 5	gttatccaca	gaatcagggg	ataacgcagg	aaagaacatg	tgagcaaaag	gccagcaaaa	5100
	ggccaggaac	cgtaaaaagg	ccgcgttgct	ggcgttttc	cataggctcc	gcccccctga	5160
60	cgagcatcac	aaaaatcgac	gctcaagtca	gaggtggcga	aacccgacag	gactataaag	5220

	acaccaggcg	ttttttttt	gaageteeet	cgcgcccc	cccgccccga	cccigccgct	3200
	taccggatac	ctgtccgcct	ttctcccttc	gggaagcgtg	gcgctttctc	atagctcacg	5340
5	ctgtaggtat	ctcagttcgg	tgtaggtcgt	tcgctccaag	ctgggctgtg	tgcacgaacc	5400
	ccccgttcag	cccgaccgct	gcgccttatc	cggtaactat	cgtcttgagt	ccaacccggt	5460
10	aagacacgac	ttatcgccac	tggcagcagc	cactggtaac	aggattagca	gagcgaggta	5520
10	tgtaggcggt	gctacagagt	tcttgaagtg	gtggcctaac	tacggctaca	ctagaaggac	5580
	agtatttggt	atctgcgctc	tgctgaagcc	agttaccttc	ggaaaaagag	ttggtagctc	5640
15	ttgatccggc	aaacaaacca	ccgctggtag	cggtggtttt	tttgtttgca	agcagcagat	5700
	tacgcgcaga	aaaaaaggat	ctcaagaaga	tcctttgatc	ttttctacgg	ggtctgacgc	5760
	tcagtggaac	gaaaactcac	gttaagggat	tttggtcatg	agattatcaa	aaaggatctt	5820
20	cacctagatc	cttttaaatt	aaaaatgaag	ttttaaatca	atctaaagta	tatatgagta	5880
	aacttggtct	gacagttacc	aatgcttaat	cagtgaggca	cctatctcag	cgatctgtct	5940
25	atttcgttca	tccatagttg	cctgactccc	cgtcgtgtag	ataactacga	tacgggaggg	6000
	cttaccatct	ggccccagtg	ctgcaatgat	accgcgagac	ccacgctcac	cggctccaga	6060
	tttatcagca	ataaaccagc	cagccggaag	ggccgagcgc	agaagtggtc	ctgcaacttt	6120
30	atccgcctcc	atccagtcta	ttaattgttg	ccgggaagct	agagtaagta	gttcgccagt	6180
	taatagtttg	cgcaacgttg	ttgccattgc	tacaggcatc	gtggtgtcac	gctcgtcgtt	6240
35	tggtatggct	tcattcagct	ccggttccca	acgatcaagg	cgagttacat	gatcccccat	6300
33	gttgtgcaaa	aaagcggtta	gctccttcgg	tcctccgatc	gttgtcagaa	gtaagttggc	6360
	cgcagtgtta	tcactcatgg	ttatggcagc	actgcataat	tctcttactg	tcatgccatc	6420
40	cgtaagatgc	ttttctgtga	ctggtgagta	ctcaaccaag	tcattctgag	aatagtgtat	6480
	gcggcgaccg	agttgctctt	gcccggcgtc	aatacgggat	aataccgcgc	cacatagcag	6540
	aactttaaaa	gtgctcatca	ttggaaaacg	ttcttcgggg	cgaaaactct	caaggatctt	6600
45	accgctgttg	agatccagtt	cgatgtaacc	cactcgtgca	cccaactgat	cttcagcatc	6660
	ttttactttc	accagcgttt	ctgggtgagc	aaaaacagga	aggcaaaatg	ccgcaaaaaa	6720
50	gggaataagg	gcgacacgga	aatgttgaat	actcatactc	ttcctttttc	aatattattg	6780
	aagcatttat	cagggttatt	gtctcatgag	cggatacata	tttgaatgta	tttagaaaaa	6840
	taaacaaata	ggggttccgc	gcacatttcc	ccgaaaagtg	ccacctgacg	tctaagaaac	6900
55	cattattatc	atgacattaa	cctataaaaa	taggcgtatc	acgaggccct	ttcgtctcgc	6960
	gcgtttcggt	gatgacggtg	aaaacctctg	acacatgcag	ctcccggaga	cggtcacagc	7020
00	ttgtctgtaa	gcggatgccg	ggagcagaca	agcccgtcag	ggcgcgtcag	cgggtgttgg	7080

	cgggtgtcgg	g ggctggctta	actatgcggc	atcagagcag	attgtactga	gagtgcacca	7140
	tatgcggtgt	gaaataccgc	acagatgcgt	aaggagaaaa	taccgcatca	ggcgccattc	7200
5	gccattcago	g ctgcgcaact	gttgggaagg	gcgatcggtg	cgggcctctt	cgctattacg	7260
	ccagctggc	g aaagggggat	gtgctgcaag	gcgattaagt	tgggtaacgc	cagggttttc	7320
10	ccagtcacga	a cgttgtaaaa	cgacggccag	tgaattcgag	cttgcatgcc	tgcaggt	7377
10 15	<210> 48 <211> 7383 <212> ADN <213> Secuencia artificia <220> <223> ArtTal1/TalRab2-l						
20	<400> 48						
_0	cgttacataa	cttacggtaa	atggcccgcc	tggctgaccg	cccaacgacc	cccgcccatt	60
	gacgtcaata	atgacgtatg	ttcccatagt	aacgccaata	gggactttcc	attgacgtca	120
25	atgggtggag	tatttacggt	aaactgccca	cttggcagta	catcaagtgt	atcatatgcc	180
	aagtacgccc	cctattgacg	tcaatgacgg	taaatggccc	gcctggcatt	atgcccagta	240
20	catgacctta	tgggactttc	ctacttggca	gtacatctac	gtattagtca	tcgctattac	300
30	catggtgatg	cggttttggc	agtacatcaa	tgggcgtgga	tagcggtttg	actcacgggg	360
	atttccaagt	ctccacccca	ttgacgtcaa	tgggagtttg	ttttggcacc	aaaatcaacg	420
35	ggactttcca	aaatgtcgta	acaactccgc	cccattgacg	caaatgggcg	gtaggcgtgt	480
	acggtgggag	gtctatataa	gcagagctcg	tttagtgaac	cgtcagatcg	cctggagacg	540
	ccatccacgc	tgttttgacc	tccatagaag	acaccgggac	cgatccagcc	tccggactct	600
40	agaggatccg	gtactcgagg	acactgcaga	gacctacttc	actaacaacc	ggtatggtcg	660
	cgagtagctt	ggcactggcc	gtcgttttac	aacgtcgtga	ctgggaaaac	cctggcgtta	720
45	cccaacttaa	tcgccttgca	gcacatcccc	ctttcgccag	ctggcgtaat	agcgaagagg	780
	cccgcaccga	tcgcccttcc	caacagttgc	gcagcctgaa	tggcgaatgg	cgctttgcct	840
	ggtttccggc	accagaagcg	gtgccggaaa	gctggctgga	gtgcgatctt	cctgaggccg	900
50	atactgtcgt	cgtcccctca	aactggcaga	tgcacggtta	cgatgcgccc	atctacacca	960
	acgtgaccta	tcccattacg	gtcaatccgc	cgtttgttcc	cacggagaat	ccgacgggtt	1020
55	gttactcgct	cacatttaat	gttgatgaaa	gctggctata	aaaccggtac	agttcggcca	1080
) ()	ccatggtcgt	attctgggac	gtttttcaca	ctcttctaaa	ctaccgggcc	accacgggtc	1140
	gcgagtagct	tggcactggc	cgtcgtttta	caacgtcgtg	actgggaaaa	ccctggcgtt	1200
60	acccaactta	atcgccttgc	agcacatccc	cctttcgcca	gctggcgtaa	tagcgaagag	1260
	acceacea	atcoccette	ccaacagttg	cacaacctaa	atggggaatg	gegetttgee	1320

	tggttteegg	caccagaage	ggtgeeggaa	agetggetgg	agtgegatet	teetgaggee	1360
	gatactgtcg	tcgtcccctc	aaactggcag	atgcacggtt	acgatgcgcc	catctacacc	1440
5	aacgtgacct	atcccattac	ggtcaatccg	ccgtttgttc	ccacggagaa	tccgacgggt	1500
	tgttactcgc	tcacatttaa	tgttgatgaa	agctggctac	aggaaggcca	gacgcgaatt	1560
10	atttttgatg	gcgttaactc	ggcgtttcat	ctgtggtgca	acgggcgctg	ggtcggttac	1620
10	ggccaggaca	gtcgtttgcc	gtctgaattt	gacctgagcg	catttttacg	cgccggagaa	1680
	aaccgcctcg	cggtgatggt	gctgcgctgg	agtgacggca	gttatctgga	agatcaggat	1740
15	atgtggcgga	tgagcggcat	tttccgtgac	gtctcgttgc	tgcataaacc	gactacacaa	1800
	atcagcgatt	tccatgttgc	cactcgcttt	aatgatgatt	tcagccgcgc	tgtactggag	1860
	gctgaagttc	agatgtgcgg	cgagttgcgt	gactacctac	gggtaacagt	ttctttatgg	1920
20	cagggtgaaa	cgcaggtcgc	cagcggcacc	gcgcctttcg	gcggtgaaat	tatcgatgag	1980
	cgtggtggtt	atgccgatcg	cgtcacacta	cgtctgaacg	tcgaaaaccc	gaaactgtgg	2040
25	agcgccgaaa	tcccgaatct	ctatcgtgcg	gtggttgaac	tgcacaccgc	cgacggcacg	2100
	ctgattgaag	cagaagcctg	cgatgtcggt	ttccgcgagg	tgcggattga	aaatggtctg	2160
	ctgctgctga	acggcaagcc	gttgctgatt	cgaggcgtta	accgtcacga	gcatcatcct	2220
30	ctgcatggtc	aggtcatgga	tgagcagacg	atggtgcagg	atatcctgct	gatgaagcag	2280
	aacaacttta	acgccgtgcg	ctgttcgcat	tatccgaacc	atccgctgtg	gtacacgctg	2340
35	tgcgaccgct	acggcctgta	tgtggtggat	gaagccaata	ttgaaaccca	cggcatggtg	2400
33	ccaatgaatc	gtctgaccga	tgateegege	tggctaccgg	cgatgagcga	acgcgtaacg	2460
	cgaatggtgc	agcgcgatcg	taatcacccg	agtgtgatca	tctggtcgct	ggggaatgaa	2520
40	tcaggccacg	gcgctaatca	cgacgcgctg	tatcgctgga	tcaaatctgt	cgatccttcc	2580
	cgcccggtgc	agtatgaagg	cggcggagcc	gacaccacgg	ccaccgatat	tatttgcccg	2640
	atgtacgcgc	gcgtggatga	agaccagccc	ttcccggctg	tgccgaaatg	gtccatcaaa	2700
45	aaatggcttt	cgctacctgg	agagacgcgc	ccgctgatcc	tttgcgaata	cgcccacgcg	2760
	atgggtaaca	gtcttggcgg	tttcgctaaa	tactggcagg	cgtttcgtca	gtatccccgt	2820
50	ttacagggcg	gcttcgtctg	ggactgggtg	gatcagtcgc	tgattaaata	tgatgaaaac	2880
	ggcaacccgt	ggtcggctta	cggcggtgat	tttggcgata	cgccgaacga	tcgccagttc	2940
	tgtatgaacg	gtctggtctt	tgccgaccgc	acgccgcatc	cagcgctgac	ggaagcaaaa	3000
55	caccagcagc	agtttttcca	gttccgttta	tccgggcaaa	ccatcgaagt	gaccagcgaa	3060
	tacctgttcc	gtcatagcga	taacgagctc	ctgcactgga	tggtggcgct	ggatggtaag	3120
60	ccgctggcaa	gcggtgaagt	gcctctggat	gtcgctccac	aaggtaaaca	gttgattgaa	3180

	ctgcctgaac taccgcagec ggagagegec gggcaactet ggete	acagt acgegrageg	324
	caaccgaacg cgaccgcatg gtcagaagcc gggcacatca gegcc	tggca gcagtggcgt	330
5	ctggcggaaa acctcagtgt gacgctcccc gccgcgtccc acgcc	atccc gcatctgacc	336
	accagegaaa tggatttttg categagetg ggtaataage gttgg	caatt taaccgccag	342
	tcaggctttc tttcacagat gtggattggc gataaaaaac aactg	ctgac gccgctgcgc	348
10	gatcagttca cccgtgcacc gctggataac gacattggcg taagt	gaagc gacccgcatt	354
	gaccetaacg cetgggtega acgetggaag geggegggee attac	caggc cgaagcagcg	360
15	ttgttgcagt gcacggcaga tacacttgct gatgcggtgc tgatt	acgac cgctcacgcg	366
	tggcagcatc aggggaaaac cttatttatc agccggaaaa cctac	cggat tgatggtagt	372
	ggtcaaatgg cgattaccgt tgatgttgaa gtggcgagcg ataca	ccgca tccggcgcgg	378
20	attggcctga actgccagct ggcgcaggta gcagagcggg taaac	tggct cggattaggg	384
	ccgcaagaaa actatcccga ccgccttact gccgcctgtt ttgac	cgctg ggatctgcca	390
	ttgtcagaca tgtatacccc gtacgtcttc ccgagcgaaa acggt	ctgcg ctgcgggacg	396
25	cgcgaattga attatggccc acaccagtgg cgcggcgact tccag	ttcaa catcagccgc	402
	tacagtcaac agcaactgat ggaaaccagc catcgccatc tgctg	cacgc ggaagaaggc	408
30	acatggctga atatcgacgg tttccatatg gggattggtg gcgac	gactc ctggagcccg	414
	tcagtatcgg cggaattaca gctgagcgcc ggtcgctacc attac	cagtt ggtctggtgt	420
	caaaaataat aataaccggg caggccatgt ctgcccgtat ttcgc	gtaag gaaatccatt	426
35	atgtactatt taaaaaacac aaacttttgg atgttcggtt tattc	ttttt cttttacttt	432
	tttatcatgg gagcctactt cccgtttttc ccgatttggc tacat	gacat caaccatatc	438
	agcaaaagtg atacgggtat tatttttgcc gctatttctc tgttc	tcgct attattccaa	444
40	cegetgtttg gtetgettte tgacaaaete ggeetegaet etagg	cggcc gcggggatcc	450
	agacatgata agatacattg atgagtttgg acaaaccaca actag	aatgc agtgaaaaaa	456
45	atgetttatt tgtgaaattt gtgatgetat tgetttattt gtaac	catta taagctgcaa	462
70	taaacaagtt aacaacaaca attgcattca ttttatgttt caggt	tcagg gggaggtgtg	468
	ggaggttttt teggateete tagagtegae etgeaggeat geaag	cttgg cgtaatcatg	474
50	gtcatagctg tttcctgtgt gaaattgtta tccgctcaca attcc	acaca acatacgagc	480
	cggaagcata aagtgtaaag cctggggtgc ctaatgagtg agcta	actca cattaattgc	486
	gttgegetea etgeeegett teeagteggg aaacetgteg tgeea	gctgc attaatgaat	492
55	cggccaacgc gcggggagag gcggtttgcg tattgggcgc tcttc	cgctt cctcgctcac	498
	tgactcgctg cgctcggtcg ttcggctgcg gcgagcggta tcagc	tcact caaaggcggt	504
60	aatacggtta tccacagaat caggggataa cgcaggaaag aacat	gtgag caaaaggcca	510
00			

	gcaaaaggcc	aggaaccgta	aaaaggeege	grigerggeg	tttttccata	ggeteegeee	2160
	ccctgacgag	catcacaaaa	atcgacgctc	aagtcagagg	tggcgaaacc	cgacaggact	5220
5	ataaagatac	caggcgtttc	cccctggaag	ctccctcgtg	cgctctcctg	ttccgaccct	5280
	gccgcttacc	ggatacctgt	ccgcctttct	cccttcggga	agcgtggcgc	tttctcatag	5340
10	ctcacgctgt	aggtatctca	gttcggtgta	ggtcgttcgc	tccaagctgg	gctgtgtgca	5400
	cgaacccccc	gttcagcccg	accgctgcgc	cttatccggt	aactatcgtc	ttgagtccaa	5460
	cccggtaaga	cacgacttat	cgccactggc	agcagccact	ggtaacagga	ttagcagagc	5520
15	gaggtatgta	ggcggtgcta	cagagttctt	gaagtggtgg	cctaactacg	gctacactag	5580
	aaggacagta	tttggtatct	gcgctctgct	gaagccagtt	accttcggaa	aaagagttgg	5640
20	tagctcttga	tccggcaaac	aaaccaccgc	tggtagcggt	ggttttttg	tttgcaagca	5700
	gcagattacg	cgcagaaaaa	aaggatctca	agaagatcct	ttgatctttt	ctacggggtc	5760
	tgacgctcag	tggaacgaaa	actcacgtta	agggattttg	gtcatgagat	tatcaaaaag	5820
25	gatcttcacc	tagatccttt	taaattaaaa	atgaagtttt	aaatcaatct	aaagtatata	5880
	tgagtaaact	tggtctgaca	gttaccaatg	cttaatcagt	gaggcaccta	tctcagcgat	5940
30	ctgtctattt	cgttcatcca	tagttgcctg	actccccgtc	gtgtagataa	ctacgatacg	6000
	ggagggctta	ccatctggcc	ccagtgctgc	aatgataccg	cgagacccac	gctcaccggc	6060
	tccagattta	tcagcaataa	accagccagc	cggaagggcc	gagcgcagaa	gtggtcctgc	6120
35	aactttatcc	gcctccatcc	agtctattaa	ttgttgccgg	gaagctagag	taagtagttc	6180
	gccagttaat	agtttgcgca	acgttgttgc	cattgctaca	ggcatcgtgg	tgtcacgctc	6240
40	gtcgtttggt	atggcttcat	tcagctccgg	ttcccaacga	tcaaggcgag	ttacatgatc	6300
	ccccatgttg	tgcaaaaaag	cggttagctc	cttcggtcct	ccgatcgttg	tcagaagtaa	6360
	gttggccgca	gtgttatcac	tcatggttat	ggcagcactg	cataattctc	ttactgtcat	6420
45	gccatccgta	agatgctttt	ctgtgactgg	tgagtactca	accaagtcat	tctgagaata	6480
	gtgtatgcgg	cgaccgagtt	gctcttgccc	ggcgtcaata	cgggataata	ccgcgccaca	6540
50	tagcagaact	ttaaaagtgc	tcatcattgg	aaaacgttct	tcggggcgaa	aactctcaag	6600
	gatcttaccg	ctgttgagat	ccagttcgat	gtaacccact	cgtgcaccca	actgatcttc	6660
	agcatctttt	actttcacca	gcgtttctgg	gtgagcaaaa	acaggaaggc	aaaatgccgc	6720
55	aaaaaggga	ataagggcga	cacggaaatg	ttgaatactc	atactcttcc	tttttcaata	6780
	ttattgaagc	atttatcagg	gttattgtct	catgagcgga	tacatatttg	aatgtattta	6840
60	gaaaaataaa	caaatagggg	ttccgcgcac	atttccccga	aaagtgccac	ctgacgtcta	6900
	agaaaccatt	attatcatga	cattaaccta	taaaaatagg	cqtatcacqa	ggccctttca	6960

	tetegegegt tteggtgatg aeggtgaaaa eetetgaeae atgeagetee eggagaeggt	7020
	cacagettgt etgtaagegg atgeegggag cagacaagee egteagggeg egteageggg	7080
5	tgttggcggg tgtcggggct ggcttaacta tgcggcatca gagcagattg tactgagagt	7140
	gcaccatatg cggtgtgaaa taccgcacag atgcgtaagg agaaaatacc gcatcaggcg	7200
10	ccattcgcca ttcaggctgc gcaactgttg ggaagggcga tcggtgcggg cctcttcgct	7260
10	attacgccag ctggcgaaag ggggatgtgc tgcaaggcga ttaagttggg taacgccagg	7320
	gttttcccag tcacgacgtt gtaaaacgac ggccagtgaa ttcgagcttg catgcctgca	7380
15	ggt	7383
20	<210> 49 <211> 5566 <212> ADN <213> Secuencia artificial <220> <223> pCMV-hLuc	
25	<400> 49	
	ggtaccgagc tcttacgcgt gctagcccgg gctcgaggag cttggcccat tgcatacgtt	60
30	gtatccatat cataatatgt acatttatat tggctcatgt ccaacattac cgccatgttg	120
	acattgatta ttgactagtt attaatagta atcaattacg gggtcattag ttcatagccc	180
	atatatggag ttccgcgtta cataacttac ggtaaatggc ccgcctggct gaccgcccaa	240
35	cgacccccgc ccattgacgt caataatgac gtatgttccc atagtaacgc caatagggac	300
	tttccattga cgtcaatggg tggagtattt acgctaaact gcccacttgg cagtacatca	360
40	agtgtatcat atgccaagta cgccccctat tgacgtcaat gacggtaaat ggcccgcctg	420
40	gcattatgcc cagtacatga ccttatggga ctttcctact tggcagtaca tctacgtatt	480
	agtcatcgct attaccatgg tgatgcggtt ttggcagtac atcaatgggc gtggatagcg	540
45	gtttgactca cggggatttc caagtctcca ccccattgac gtcaatggga gtttgttttg	600
	gcaccaaaat caacgggact ttccaaaatg tcgtaacaac tccgccccat tgacgcaaat	660
	gggcggtagg cgtgtacggt gggaggtcta tataagcaga gctcgtttag tgaaccgtca	720
50	gatcgcctgg agacgccatc cacgctgttt tgacctccat agaagacacc gggaccgatc	780
	cageeteege ggeeeegaat tagettggea tteeggtaet gttggtaaag eeaceatgga	840
55	agacgccaaa aacataaaga aaggcccggc gccattctat ccgctggaag atggaaccgc	900
	tggagagcaa ctgcataagg ctatgaagag atacgccctg gttcctggaa caattgcttt	960
	tacagatgca catatcgagg tggacatcac ttacgctgag tacttcgaaa tgtccgttcg	1020
60	gttggcagaa gctatgaaac gatatgggct gaatacaaat cacagaatcg tcgtatgcag	1080
	tgaaaactct cttcaattct ttatgccggt gttgggcgcg ttatttatcg gagttgcagt	1140

	cycycccycy	aacgacaccc	acaacgaacg	cgaactgccc	aacagtatgg	gcacccgca	1200
	gcctaccgtg	gtgttcgttt	ccaaaaaggg	gttgcaaaaa	attttgaacg	tgcaaaaaaa	1260
5	gctcccaatc	atccaaaaaa	ttattatcat	ggattctaaa	acggattacc	agggatttca	1320
	gtcgatgtac	acgttcgtca	catctcatct	acctcccggt	tttaatgaat	acgattttgt	1380
10	gccagagtcc	ttcgataggg	acaagacaat	tgcactgatc	atgaactcct	ctggatctac	1440
10	tggtctgcct	aaaggtgtcg	ctctgcctca	tagaactgcc	tgcgtgagat	tctcgcatgc	1500
	cagagatcct	atttttggca	atcaaatcat	tccggatact	gcgattttaa	gtgttgttcc	1560
15	attccatcac	ggttttggaa	tgtttactac	actcggatat	ttgatatgtg	gatttcgagt	1620
	cgtcttaatg	tatagatttg	aagaagagct	gtttctgagg	agccttcagg	attacaagat	1680
	tcaaagtgcg	ctgctggtgc	caaccctatt	ctccttcttc	gccaaaagca	ctctgattga	1740
20	caaatacgat	ttatctaatt	tacacgaaat	tgcttctggt	ggcgctcccc	tctctaagga	1800
	agtcggggaa	gcggttgcca	agaggttcca	tctgccaggt	atcaggcaag	gatatgggct	1860
25	cactgagact	acatcagcta	ttctgattac	acccgagggg	gatgataaac	cgggcgcggt	1920
	cggtaaagtt	gttccatttt	ttgaagcgaa	ggttgtggat	ctggataccg	ggaaaacgct	1980
	gggcgttaat	caaagaggcg	aactgtgtgt	gagaggtcct	atgattatgt	ccggttatgt	2040
30	aaacaatccg	gaagcgacca	acgccttgat	tgacaaggat	ggatggctac	attctggaga	2100
	catagcttac	tgggacgaag	acgaacactt	cttcatcgtt	gaccgcctga	agtctctgat	2160
35	taagtacaaa	ggctatcagg	tggctcccgc	tgaattggaa	tccatcttgc	tccaacaccc	2220
30	caacatcttc	gacgcaggtg	tegeaggtet	tecegaegat	gacgccggtg	aacttcccgc	2280
	cgccgttgtt	gttttggagc	acggaaagac	gatgacggaa	aaagagatcg	tggattacgt	2340
40	cgccagtcaa	gtaacaaccg	cgaaaaagtt	gcgcggagga	gttgtgtttg	tggacgaagt	2400
	accgaaaggt	cttaccggaa	aactcgacgc	aagaaaaatc	agagagatcc	tcataaaggc	2460
	caagaagggc	ggaaagatcg	ccgtgtaatt	ctagagtcgg	ggcggccggc	cgcttcgagc	2520
45	agacatgata	agatacattg	atgagtttgg	acaaaccaca	actagaatgc	agtgaaaaaa	2580
	atgctttatt	tgtgaaattt	gtgatgctat	tgctttattt	gtaaccatta	taagctgcaa	2640
50	taaacaagtt	aacaacaaca	attgcattca	ttttatgttt	caggttcagg	gggaggtgtg	2700
	ggaggttttt	taaagcaagt	aaaacctcta	caaatgtggt	aaaatcgata	aggatccgtc	2760
	gaccgatgcc	cttgagagcc	ttcaacccag	tcagctcctt	ccggtgggcg	cggggcatga	2820
55	ctatcgtcgc	cgcacttatg	actgtcttct	ttatcatgca	actcgtagga	caggtgccgg	2880
	cagcgctctt	ccgcttcctc	gctcactgac	tegetgeget	cggtcgttcg	gctgcggcga	2940
60	gcggtatcag	ctcactcaaa	ggcggtaata	cggttatcca	cagaatcagg	ggataacgca	3000
00							

	ggaaagaaca	cycyaycaaa	aggecageaa	aaggccagga	accycaaaaa	ggccgcgccg	3000
	ctggcgtttt	tccataggct	ccgcccccct	gacgagcatc	acaaaaatcg	acgctcaagt	3120
5	cagaggtggc	gaaacccgac	aggactataa	agataccagg	cgtttccccc	tggaagctcc	3180
	ctcgtgcgct	ctcctgttcc	gaccctgccg	cttaccggat	acctgtccgc	ctttctccct	3240
10	tcgggaagcg	tggcgctttc	tcatagctca	cgctgtaggt	atctcagttc	ggtgtaggtc	3300
10	gttcgctcca	agctgggctg	tgtgcacgaa	cccccgttc	agcccgaccg	ctgcgcctta	3360
	tccggtaact	atcgtcttga	gtccaacccg	gtaagacacg	acttatcgcc	actggcagca	3420
15	gccactggta	acaggattag	cagagcgagg	tatgtaggcg	gtgctacaga	gttcttgaag	3480
	tggtggccta	actacggcta	cactagaaga	acagtatttg	gtatctgcgc	tctgctgaag	3540
	ccagttacct	tcggaaaaag	agttggtagc	tcttgatccg	gcaaacaaac	caccgctggt	3600
20	agcggtggtt	tttttgtttg	caagcagcag	attacgcgca	gaaaaaaagg	atctcaagaa	3660
	gatcctttga	tcttttctac	ggggtctgac	gctcagtgga	acgaaaactc	acgttaaggg	3720
	attttggtca	tgagattatc	aaaaaggatc	ttcacctaga	tccttttaaa	ttaaaaatga	3780
25	agttttaaat	caatctaaag	tatatatgag	taaacttggt	ctgacagtta	ccaatgctta	3840
	atcagtgagg	cacctatctc	agcgatctgt	ctatttcgtt	catccatagt	tgcctgactc	3900
30	cccgtcgtgt	agataactac	gatacgggag	ggcttaccat	ctggccccag	tgctgcaatg	3960
	ataccgcgag	acccacgctc	accggctcca	gatttatcag	caataaacca	gccagccgga	4020
	agggccgagc	gcagaagtgg	tcctgcaact	ttatccgcct	ccatccagtc	tattaattgt	4080
35	tgccgggaag	ctagagtaag	tagttcgcca	gttaatagtt	tgcgcaacgt	tgttgccatt	4140
	gctacaggca	tcgtggtgtc	acgctcgtcg	tttggtatgg	cttcattcag	ctccggttcc	4200
	caacgatcaa	ggcgagttac	atgatccccc	atgttgtgca	aaaaagcggt	tagctccttc	4260
40	ggtcctccga	tcgttgtcag	aagtaagttg	gccgcagtgt	tatcactcat	ggttatggca	4320
	gcactgcata	attctcttac	tgtcatgcca	tccgtaagat	gcttttctgt	gactggtgag	4380
45	tactcaacca	agtcattctg	agaatagtgt	atgcggcgac	cgagttgctc	ttgcccggcg	4440
	tcaatacggg	ataataccgc	gccacatagc	agaactttaa	aagtgctcat	cattggaaaa	4500
	cgttcttcgg	ggcgaaaact	ctcaaggatc	ttaccgctgt	tgagatccag	ttcgatgtaa	4560
50	cccactcgtg	cacccaactg	atcttcagca	tcttttactt	tcaccagcgt	ttctgggtga	4620
	gcaaaaacag	gaaggcaaaa	tgccgcaaaa	aagggaataa	gggcgacacg	gaaatgttga	4680
	atactcatac	tcttcctttt	tcaatattat	tgaagcattt	atcagggtta	ttgtctcatg	4740
55	agcggataca	tatttgaatg	tatttagaaa	aataaacaaa	taggggttcc	gcgcacattt	4800
	ccccgaaaag	tgccacctga	cgcgccctgt	agcggcgcat	taagcgcggc	gggtgtggtg	4860
60	gttacgcgca	gcgtgaccgc	tacacttgcc	agegeeetag	cgcccgctcc	tttcgctttc	4920

	ttcccttcct	ttctcgccac	gttcgccggc	tttccccgtc	aagctctaaa	tcgggggctc	4980
	cctttagggt	tccgatttag	tgctttacgg	cacctcgacc	ccaaaaaact	tgattagggt	5040
5	gatggttcac	gtagtgggcc	atcgccctga	tagacggttt	ttcgcccttt	gacgttggag	5100
	tccacgttct	ttaatagtgg	actcttgttc	caaactggaa	caacactcaa	ccctatctcg	5160
10	gtctattctt	ttgatttata	agggattttg	ccgatttcgg	cctattggtt	aaaaaatgag	5220
10	ctgatttaac	aaaaatttaa	cgcgaatttt	aacaaaatat	taacgcttac	aatttgccat	5280
	tcgccattca	ggctgcgcaa	ctgttgggaa	gggcgatcgg	tgcgggcctc	ttcgctatta	5340
15	cgccagccca	agctaccatg	ataagtaagt	aatattaagg	tacgggaggt	acttggagcg	5400
	gccgcaataa	aatatcttta	ttttcattac	atctgtgtgt	tggttttttg	tgtgaatcga	5460
20	tagtactaac	atacgctctc	catcaaaaca	aaacgaaaca	aaacaaacta	gcaaaatagg	5520
20	ctgtccccag	tgcaagtgca	ggtgccagaa	catttctcta	tcgata		5566

<210> 50 25 <211> 2961 <212> ADN

<213> Secuencia artificial

<220> 30 <223> pBS <400> 50

35	gtaaaacgac	ggccagtgag	cgcgcgtaat	acgactcact	atagggcgaa	ttggagctcc	60
	accgcggtgg	cggccgctct	agaactagtg	gatcccccgg	gctgcaggaa	ttcgatatca	120
40	agcttatcga	taccgtcgac	ctcgaggggg	ggcccggtac	ccagcttttg	ttccctttag	180
	tgagggttaa	ttgcgcgctt	ggcgtaatca	tggtcatagc	tgtttcctgt	gtgaaattgt	240
	tatccgctca	caattccaca	caacatacga	gccggaagca	taaagtgtaa	agcctggggt	300
45	gcctaatgag	tgagctaact	cacattaatt	gcgttgcgct	cactgcccgc	tttccagtcg	360
	ggaaacctgt	cgtgccagct	gcattaatga	atcggccaac	gcgcggggag	aggcggtttg	420
	cgtattgggc	gctcttccgc	ttcctcgctc	actgactcgc	tgcgctcggt	cgttcggctg	480
50	cggcgagcgg	tatcagctca	ctcaaaggcg	gtaatacggt	tatccacaga	atcaggggat	540
	aacgcaggaa	agaacatgtg	agcaaaaggc	cagcaaaagg	ccaggaaccg	taaaaaggcc	600
55	gcgttgctgg	cgtttttcca	taggctccgc	cccctgacg	agcatcacaa	aaatcgacgc	660
	tcaagtcaga	ggtggcgaaa	cccgacagga	ctataaagat	accaggcgtt	tccccctgga	720
	agctccctcg	tgcgctctcc	tgttccgacc	ctgccgctta	ccggatacct	gtccgccttt	780
60	ctcccttcgg	gaagcgtggc	gctttctcat	agctcacgct	gtaggtatct	cagttcggtg	840
	taggtcgttc	gctccaagct	gggctgtgtg	cacgaacccc	ccgttcagcc	cgaccgctgc	900

	geeccaceeg	graderateg	tettgagtee	aacccggcaa	gacacgaccc	accyccaccy	30
	gcagcagcca	ctggtaacag	gattagcaga	gcgaggtatg	taggcggtgc	tacagagttc	102
5	ttgaagtggt	ggcctaacta	cggctacact	agaaggacag	tatttggtat	ctgcgctctg	108
	ctgaagccag	ttaccttcgg	aaaaagagtt	ggtagctctt	gatccggcaa	acaaaccacc	114
	gctggtagcg	gtggttttt	tgtttgcaag	cagcagatta	cgcgcagaaa	aaaaggatct	120
10	caagaagatc	ctttgatctt	ttctacgggg	tctgacgctc	agtggaacga	aaactcacgt	126
	taagggattt	tggtcatgag	attatcaaaa	aggatettea	cctagatcct	tttaaattaa	132
	aaatgaagtt	ttaaatcaat	ctaaagtata	tatgagtaaa	cttggtctga	cagttaccaa	138
15	tgcttaatca	gtgaggcacc	tatctcagcg	atctgtctat	ttcgttcatc	catagttgcc	144
	tgactccccg	tcgtgtagat	aactacgata	cgggagggct	taccatctgg	ccccagtgct	150
	gcaatgatac	cgcgagaccc	acgctcaccg	gctccagatt	tatcagcaat	aaaccagcca	156
20	gccggaaggg	ccgagcgcag	aagtggtcct	gcaactttat	ccgcctccat	ccagtctatt	162
	aattgttgcc	gggaagctag	agtaagtagt	tcgccagtta	atagtttgcg	caacgttgtt	168
25	gccattgcta	caggcatcgt	ggtgtcacgc	tcgtcgtttg	gtatggcttc	attcagctcc	174
25	ggttcccaac	gatcaaggcg	agttacatga	tcccccatgt	tgtgcaaaaa	agcggttagc	180
	taattaggta	ctccgatcgt	tgtcagaagt	aagttggccg	cagtgttatc	actcatggtt	186
30	atggcagcac	tgcataattc	tcttactgtc	atgccatccg	taagatgctt	ttctgtgact	192
00	ggtgagtact	caaccaagtc	attctgagaa	tagtgtatgc	ggcgaccgag	ttgctcttgc	198
	ccggcgtcaa	tacgggataa	taccgcgcca	catagcagaa	ctttaaaagt	gctcatcatt	204
35	ggaaaacgtt	cttcggggcg	aaaactctca	aggatcttac	cgctgttgag	atccagttcg	210
	atgtaaccca	ctcgtgcacc	caactgatct	tcagcatctt	ttactttcac	cagcgtttct	216
	gggtgagcaa	aaacaggaag	gcaaaatgcc	gcaaaaaagg	gaataagggc	gacacggaaa	222
40	tgttgaatac	tcatactctt	cctttttcaa	tattattgaa	gcatttatca	gggttattgt	228
	ctcatgagcg	gatacatatt	tgaatgtatt	tagaaaaata	aacaaatagg	ggttccgcgc	234
	acatttcccc	gaaaagtgcc	acctaaattg	taagcgttaa	tattttgtta	aaattcgcgt	240
45	taaatttttg	ttaaatcagc	tcatttttta	accaataggc	cgaaatcggc	aaaatccctt	246
	ataaatcaaa	agaatagacc	gagatagggt	tgagtgttgt	tccagtttgg	aacaagagtc	252
	cactattaaa	gaacgtggac	tccaacgtca	aagggcgaaa	aaccgtctat	cagggcgatg	258
50	gcccactacg	tgaaccatca	ccctaatcaa	gttttttggg	gtcgaggtgc	cgtaaagcac	264
	taaatcggaa	ccctaaaggg	agcccccgat	ttagagcttg	acggggaaag	ccggcgaacg	270
	tggcgagaaa	ggaagggaag	aaagcgaaag	gagcgggcgc	tagggcgctg	gcaagtgtag	276
55	cggtcacgct	gcgcgtaacc	accacacccg	ccgcgcttaa	tgcgccgcta	cagggcgcgt	282
	cccattcgcc	attcaggctg	cgcaactgtt	gggaagggcg	atcggtgcgg	gcctcttcgc	288
60	tattacgcca	gctggcgaaa	gggggatgtg	ctgcaaggcg	attaagttgg	gtaacgccag	294
60	ggttttccca	gtcacgacgt	t				296

<210> 51 <211> 7164 <212> ADN <213> Secuencia artificial 5 <220> <223> pCMVbeta <400> 51

10

60 gaattcgagc ttgcatgcct gcaggtcgtt acataactta cggtaaatgg cccgcctggc 120 tgaccgccca acgacccccg cccattgacg tcaataatga cgtatgttcc catagtaacg 15 ccaataggga ctttccattg acgtcaatgg gtggagtatt tacggtaaac tgcccacttg 180 qcaqtacatc aaqtqtatca tatqccaaqt acqccccta ttqacqtcaa tqacqqtaaa 240 tggcccgcct ggcattatgc ccagtacatg accttatggg actttcctac ttggcagtac 300 20 360 atctacgtat tagtcatcgc tattaccatg gtgatgcggt tttggcagta catcaatggg cgtggatagc ggtttgactc acggggattt ccaagtctcc accccattga cgtcaatggg 420 25 480 agtttgtttt ggcaccaaaa tcaacgggac tttccaaaat gtcgtaacaa ctccgcccca ttgacgcaaa tgggcggtag gcgtgtacgg tgggaggtct atataagcag agctcgttta 540 600 gtgaaccgtc agatcgcctg gagacgccat ccacgctgtt ttgacctcca tagaagacac 30 cgggaccgat ccagcctccg gactctagag gatccggtac tcgaggaact gaaaaaccag 660 aaagttaact ggtaagttta gtctttttgt cttttatttc aggtcccgga tccggtggtg 720 35 gtgcaaatca aagaactgct cctcagtgga tgttgccttt acttctaggc ctgtacggaa 780 840 gtgttacttc tgctctaaaa gctgcggaat tgtacccgcg gccgcaattc ccggggatcg 900 aaagagcctg ctaaagcaaa aaagaagtca ccatgtcgtt tactttgacc aacaagaacg 40 960 tgattttcgt tgccggtctg ggaggcattg gtctggacac cagcaaggag ctgctcaagc qcqatcccqt cqttttacaa cqtcqtqact qqqaaaaccc tqqcqttacc caacttaatc 1020 45 gccttgcagc acatececet ttegecaget ggcgtaatag cgaagaggee cgcacegate 1080 gcccttccca acagttgcgc agcctgaatg gcgaatggcg ctttgcctgg tttccggcac 1140 cagaagcggt gccggaaagc tggctggagt gcgatcttcc tgaggccgat actgtcgtcg 1200 50 tcccctcaaa ctggcagatg cacggttacg atgcgcccat ctacaccaac gtaacctatc 1260 ccattacggt caatccgccg tttgttccca cggagaatcc gacgggttgt tactcgctca 1320 55 catttaatgt tgatgaaagc tggctacagg aaggccagac gcgaattatt tttgatggcg 1380

60

	ttaactcggc	gtttcatctg	tggtgcaacg	ggcgctgggt	cggttacggc	caggacagtc	1440
5	gtttgccgtc	tgaatttgac	ctgagcgcat	ttttacgcgc	cggagaaaac	cgcctcgcgg	1500
	tgatggtgct	gcgttggagt	gacggcagtt	atctggaaga	tcaggatatg	tggcggatga	1560
	gcggcatttt	ccgtgacgtc	tcgttgctgc	ataaaccgac	tacacaaatc	agcgatttcc	1620
10	atgttgccac	tcgctttaat	gatgatttca	gccgcgctgt	actggaggct	gaagttcaga	1680
	tgtgcggcga	gttgcgtgac	tacctacggg	taacagtttc	tttatggcag	ggtgaaacgc	1740
	aggtcgccag	cggcaccgcg	cctttcggcg	gtgaaattat	cgatgagcgt	ggtggttatg	1800
15	ccgatcgcgt	cacactacgt	ctgaacgtcg	aaaacccgaa	actgtggagc	gccgaaatcc	1860
	cgaatctcta	tcgtgcggtg	gttgaactgc	acaccgccga	cggcacgctg	attgaagcag	1920
20	aagcctgcga	tgtcggtttc	cgcgaggtgc	ggattgaaaa	tggtctgctg	ctgctgaacg	1980
	gcaagccgtt	gctgattcga	ggcgttaacc	gtcacgagca	tcatcctctg	catggtcagg	2040
	tcatggatga	gcagacgatg	gtgcaggata	tcctgctgat	gaagcagaac	aactttaacg	2100
25	ccgtgcgctg	ttcgcattat	ccgaaccatc	cgctgtggta	cacgctgtgc	gaccgctacg	2160
	gcctgtatgt	ggtggatgaa	gccaatattg	aaacccacgg	catggtgcca	atgaatcgtc	2220
00	tgaccgatga	tccgcgctgg	ctaccggcga	tgagcgaacg	cgtaacgcga	atggtgcagc	2280
30	gcgatcgtaa	tcacccgagt	gtgatcatct	ggtcgctggg	gaatgaatca	ggccacggcg	2340
	ctaatcacga	cgcgctgtat	cgctggatca	aatctgtcga	tccttcccgc	ccggtgcagt	2400
35	atgaaggcgg	cggagccgac	accacggcca	ccgatattat	ttgcccgatg	tacgcgcgcg	2460
	tggatgaaga	ccagcccttc	ccggctgtgc	cgaaatggtc	catcaaaaaa	tggctttcgc	2520
	tacctggaga	gacgcgcccg	ctgatccttt	gcgaatacgc	ccacgcgatg	ggtaacagtc	2580
40	ttggcggttt	cgctaaatac	tggcaggcgt	ttcgtcagta	tccccgttta	cagggcggct	2640
	tcgtctggga	ctgggtggat	cagtcgctga	ttaaatatga	tgaaaacggc	aacccgtggt	2700
45	cggcttacgg	cggtgatttt	ggcgatacgc	cgaacgatcg	ccagttctgt	atgaacggtc	2760
40	tggtctttgc	cgaccgcacg	ccgcatccag	cgctgacgga	agcaaaacac	cagcagcagt	2820
	ttttccagtt	ccgtttatcc	gggcaaacca	tcgaagtgac	cagcgaatac	ctgttccgtc	2880
50	atagcgataa	cgagctcctg	cactggatgg	tggcgctgga	tggtaagccg	ctggcaagcg	2940
	gtgaagtgcc	tctggatgtc	gctccacaag	gtaaacagtt	gattgaactg	cctgaactac	3000
	cgcagccgga	gagcgccggg	caactctggc	tcacagtacg	cgtagtgcaa	ccgaacgcga	3060
55	ccgcatggtc	agaagccggg	cacatcagcg	cctggcagca	gtggcgtctg	gcggaaaacc	3120
	tcagtgtgac	gctccccgcc	gcgtcccacg	ccatcccgca	tctgaccacc	agcgaaatgg	3180
60	atttttgcat	cgagctgggt	aataagcgtt	ggcaatttaa	ccgccagtca	ggctttcttt	3240
	cacagatgtg	gattggcgat	aaaaacaac	tgctgacgcc	gctgcgcgat	cagttcaccc	3300

	gtgcaccgct	ggataacgac	attggcgtaa	gtgaagcgac	ccgcattgac	cctaacgcct	3360
5	gggtcgaacg	ctggaaggcg	gcgggccatt	accaggccga	agcagcgttg	ttgcagtgca	3420
	cggcagatac	acttgctgat	gcggtgctga	ttacgaccgc	tcacgcgtgg	cagcatcagg	3480
	ggaaaacctt	atttatcagc	cggaaaacct	accggattga	tggtagtggt	caaatggcga	3540
10	ttaccgttga	tgttgaagtg	gcgagcgata	caccgcatcc	ggcgcggatt	ggcctgaact	3600
	gccagctggc	gcaggtagca	gagcgggtaa	actggctcgg	attagggccg	caagaaaact	3660
15	atcccgaccg	ccttactgcc	gcctgttttg	accgctggga	tctgccattg	tcagacatgt	3720
10	ataccccgta	cgtcttcccg	agcgaaaacg	gtctgcgctg	cgggacgcgc	gaattgaatt	3780
	atggcccaca	ccagtggcgc	ggcgacttcc	agttcaacat	cagccgctac	agtcaacagc	3840
20	aactgatgga	aaccagccat	cgccatctgc	tgcacgcgga	agaaggcaca	tggctgaata	3900
	tcgacggttt	ccatatgggg	attggtggcg	acgactcctg	gagcccgtca	gtatcggcgg	3960
0.5	aattacagct	gagcgccggt	cgctaccatt	accagttggt	ctggtgtcaa	aaataataat	4020
25	aaccgggcag	gccatgtctg	cccgtatttc	gcgtaaggaa	atccattatg	tactatttaa	4080
	aaaacacaaa	cttttggatg	ttcggtttat	tctttttctt	ttactttttt	atcatgggag	4140
30	cctacttccc	gtttttcccg	atttggctac	atgacatcaa	ccatatcagc	aaaagtgata	4200
	cgggtattat	ttttgccgct	atttctctgt	tctcgctatt	attccaaccg	ctgtttggtc	4260
	tgctttctga	caaactcggc	ctcgactcta	ggcggccgcg	gggatccaga	catgataaga	4320
35	tacattgatg	agtttggaca	aaccacaact	agaatgcagt	gaaaaaaatg	ctttatttgt	4380
	gaaatttgtg	atgctattgc	tttatttgta	accattataa	gctgcaataa	acaagttaac	4440
40	aacaacaatt	gcattcattt	tatgtttcag	gttcaggggg	aggtgtggga	ggttttttcg	4500
	gatcctctag	agtcgacctg	caggcatgca	agcttggcgt	aatcatggtc	atagctgttt	4560
	cctgtgtgaa	attgttatcc	gctcacaatt	ccacacaaca	tacgagccgg	aagcataaag	4620
45	tgtaaagcct	ggggtgccta	atgagtgagc	taactcacat	taattgcgtt	gcgctcactg	4680
	cccgctttcc	agtcgggaaa	cctgtcgtgc	cagctgcatt	aatgaatcgg	ccaacgcgcg	4740
50	gggagaggcg	gtttgcgtat	tgggcgctct	teegetteet	cgctcactga	ctcgctgcgc	4800
30	tcggtcgttc	ggctgcggcg	agcggtatca	gctcactcaa	aggcggtaat	acggttatcc	4860
	acagaatcag	gggataacgc	aggaaagaac	atgtgagcaa	aaggccagca	aaaggccagg	4920
55	aaccgtaaaa	aggccgcgtt	gctggcgttt	ttccataggc	tccgccccc	tgacgagcat	4980
	cacaaaaatc	gacgctcaag	tcagaggtgg	cgaaacccga	caggactata	aagataccag	5040
	gcgtttcccc	ctggaagctc	cctcgtgcgc	tataatgtta	cgaccctgcc	gcttaccgga	5100
60	tacctgtccg	cctttctccc	ttcgggaagc	gtggcgcttt	ctcatagctc	acgctgtagg	5160

	tatttagtt	cggcgcaggc	cycccycccc	aagctgggct	grgrgcacga	accecegee	322
5	cagcccgacc	gctgcgcctt	atccggtaac	tatcgtcttg	agtccaaccc	ggtaagacac	5280
5	gacttatcgc	cactggcagc	agccactggt	aacaggatta	gcagagcgag	gtatgtaggc	5340
	ggtgctacag	agttcttgaa	gtggtggcct	aactacggct	acactagaag	gacagtattt	5400
10	ggtatctgcg	ctctgctgaa	gccagttacc	ttcggaaaaa	gagttggtag	ctcttgatcc	5460
	ggcaaacaaa	ccaccgctgg	tagcggtggt	ttttttgttt	gcaagcagca	gattacgcgc	5520
	agaaaaaaag	gatctcaaga	agatcctttg	atcttttcta	cggggtctga	cgctcagtgg	5580
15	aacgaaaact	cacgttaagg	gattttggtc	atgagattat	caaaaaggat	cttcacctag	5640
	atccttttaa	attaaaaatg	aagttttaaa	tcaatctaaa	gtatatatga	gtaaacttgg	5700
	tctgacagtt	accaatgctt	aatcagtgag	gcacctatct	cagcgatctg	tctatttcgt	5760
20	tcatccatag	ttgcctgact	ccccgtcgtg	tagataacta	cgatacggga	gggcttacca	5820
	tctggcccca	gtgctgcaat	gataccgcga	gacccacgct	caccggctcc	agatttatca	5880
0.5	gcaataaacc	agccagccgg	aagggccgag	cgcagaagtg	gtcctgcaac	tttatccgcc	5940
25	tccatccagt	ctattaattg	ttgccgggaa	gctagagtaa	gtagttcgcc	agttaatagt	6000
	ttgcgcaacg	ttgttgccat	tgctacaggc	atcgtggtgt	cacgctcgtc	gtttggtatg	6060
30	gcttcattca	gctccggttc	ccaacgatca	aggcgagtta	catgatecee	catgttgtgc	6120
	aaaaagcgg	ttagctcctt	cggtcctccg	atcgttgtca	gaagtaagtt	ggccgcagtg	6180
	ttatcactca	tggttatggc	agcactgcat	aattctctta	ctgtcatgcc	atccgtaaga	6240
35	tgcttttctg	tgactggtga	gtactcaacc	aagtcattct	gagaatagtg	tatgcggcga	6300
	ccgagttgct	cttgcccggc	gtcaatacgg	gataataccg	cgccacatag	cagaacttta	6360
	aaagtgctca	tcattggaaa	acgttcttcg	gggcgaaaac	tctcaaggat	cttaccgctg	6420
40	ttgagatcca	gttcgatgta	acccactcgt	gcacccaact	gatcttcagc	atcttttact	6480
	ttcaccagcg	tttctgggtg	agcaaaaaca	ggaaggcaaa	atgccgcaaa	aaagggaata	6540
	agggcgacac	ggaaatgttg	aatactcata	ctcttccttt	ttcaatatta	ttgaagcatt	6600
45	tatcagggtt	attgtctcat	gagcggatac	atatttgaat	gtatttagaa	aaataaacaa	6660
	ataggggttc	cgcgcacatt	tccccgaaaa	gtgccacctg	acgtctaaga	aaccattatt	6720
50	atcatgacat	taacctataa	aaataggcgt	atcacgaggc	cctttcgtct	cgcgcgtttc	6780
	ggtgatgacg	gtgaaaacct	ctgacacatg	cagctcccgg	agacggtcac	agcttgtctg	6840
	taagcggatg	ccgggagcag	acaagcccgt	cagggcgcgt	cagcgggtgt	tggcgggtgt	6900
55	cggggctggc	ttaactatgc	ggcatcagag	cagattgtac	tgagagtgca	ccatatgcgg	6960
	tgtgaaatac	cgcacagatg	cgtaaggaga	aaataccgca	tcaggcgcca	ttcgccattc	7020
	aggctgcgca	actgttggga	agggcgatcg	gtgcgggcct	cttcgctatt	acgccagctg	7080
60	gcgaaagggg	gatgtgctgc	aaggcgatta	agttgggtaa	cgccagggtt	ttcccagtca	7140
	cgacgttgta	aaacgacggc	cagt				7164

<210> 52
<211> 7867
<212> ADN
5
<213> Secuencia artificial
<220>
<223> pCAG-TalRab2-Clo051
10
<400> 52

ggcgcgccgg attcgacatt gattattgac tagttattaa tagtaatcaa ttacggggtc 60 15 attagttcat agcccatata tggagttccg cgttacataa cttacggtaa atggcccgcc 120 tggctgaccg cccaacgacc cccqcccatt gacgtcaata atgacgtatg ttcccatagt 180 aacqccaata qqqactttcc attqacqtca atqqqtqqaq tatttacqqt aaactqccca 240 20 300 cttggcagta catcaagtgt atcatatgcc aagtacgccc cctattgacg tcaatgacgg 360 taaatggccc gcctggcatt atgcccagta catgacctta tgggactttc ctacttggca 25 420 gtacatctac gtattagtca tcgctattac catggtcgag gtgagcccca cgttctgctt cactetecee ateteceece ecteceeace eccaattttg tatttattta ttttttaatt 480 attttgtgca gcgatggggg cggggggggg ggggggcgc gcgccaggcg gggcggggcg 540 30 600 qqqcqaqqqq cqqqqq cqaqqcqqaq aqqtqcqqcq qcaqccaatc aqaqcqqcqc gctccgaaag tttcctttta tggcgaggcg gcggcggcgg cggccctata aaaagcgaag 660 720 cgcgcggcgg gcgggagtcg ctgcgcgctg ccttcgcccc gtgccccgct ccgccgccgc 35 780 ctcgcgccgc ccgccccggc tctgactgac cgcgttactc ccacaggtga gcggggga eggeeettet eeteeggget gtaattageg ettggtttaa tgaeggettg tttetttet 840 40 gtggctgcgt gaaagccttg aggggctccg ggagggccct ttgtgcgggg gggagcggct 900 cggggggtgc gtgcgtgtgt gtgtgcgtgg ggagcgccgc gtgcggctcc gcgctgcccg 960 1020 geggetgtga gegetgeggg egeggegegg ggetttgtge geteegeagt gtgegegagg 45 ggagcgcggc cgggggcggt gccccgcggt gcggggggg ctgcgagggg aacaaaggct 1080 gcgtgcgggg tgtgtgcgtg ggggggtgag cagggggtgt gggcgcgtcg gtcgggctgc 1140 50 1200 aacccccct gcaccccct ccccgagttg ctgagcacgg cccggcttcg ggtgcggggc tccgtacggg gcgtggcgcg gggctcgccg tgccgggcgg ggggtggcgg caggtggggg 1260 1320 tgccgggcgg ggcggggccg cctcgggccg gggagggctc gggggagggg cgcggcgcc 55 cccggagcgc cggcggctgt cgaggcgcgg cgagccgcag ccattgcctt ttatggtaat 1380

60

65

cgtgcgagag ggcgcaggga cttcctttgt cccaaatctg tgcggagccg aaatctggga

	ggcgccgccg	caccccctct	agcgggcgcg	gggcgaagcg	gtgcggcgcc	ggcaggaagg	150
5	aaatgggcgg	ggagggcctt	cgtgcgtcgc	cgcgccgccg	tccccttctc	cctctccagc	156
	ctcggggctg	tccgcggggg	gacggctgcc	ttcggggggg	acggggcagg	gcggggttcg	1620
10	gcttctggcg	tgtgaccggc	ggctctagag	cctctgctaa	ccatgttcat	gccttcttct	1680
10	ttttcctaca	gatccttaat	taataatacg	actcactata	ggggccgcca	ccatgggacc	1740
	taagaaaaag	aggaaggtgg	cggccgctga	ctacaaggat	gacgacgata	aaccaggtgg	1800
15	cggaggtagt	ggcggaggtg	gggtacccgc	cagtccagca	gcccaggtgg	atctgagaac	1860
	cctcggctac	agccagcagc	agcaggagaa	gatcaaacca	aaggtgcggt	ccaccgtcgc	1920
	tcagcaccat	gaagcactgg	tggggcacgg	tttcacacac	gcccatattg	tggctctgtc	1980
20	tcagcatccc	gctgcactcg	ggactgtggc	cgtcaaatat	caggacatga	tegeegetet	2040
	gcctgaggca	acccacgaag	ccattgtggg	cgtcggaaag	cagtggagcg	gtgccagagc	210
0.5	actcgaagca	ctcctcaccg	tcgccgggga	actgcggggt	ccaccactcc	agteeggaet	216
25	ggacactgga	cagctgctga	agatcgctaa	acgcggcgga	gtgacagctg	tggaagctgt	2220
	gcacgcttgg	aggaatgctc	tgacaggagc	cccactgaat	ctgacacccc	agcaggtggt	228
30	ggccattgct	agcaacaatg	ggggcaagca	ggctctggag	acagtgcagc	gcctgctgcc	2340
	tgtgctgtgc	caggctcacg	gactgactcc	acagcaggtg	gtggccatcg	cttccaacaa	240
	tggagggaaa	caggctctgg	aaacagtgca	gaggctgctg	cccgtgctgt	gccaggctca	246
35	tggactgaca	cctcagcagg	tcgtcgccat	tgcttctaac	ggcggaggga	agcaggetet	2520
	ggagactgtg	cagagactgc	tgccagtgct	gtgccaggcc	catggactga	cccctcagca	2580
	ggtcgtggct	atcgctagta	acaatggcgg	aaaacaggct	ctggaaactg	tgcagcggct	264
40	gctccccgtg	ctgtgccagg	cccacggcct	cactccacag	caggtcgtcg	ctatcgcctc	270
	taataacggg	ggcaagcagg	ctctggagac	agtacagcgc	ctgttacccg	tgctgtgcca	276
45	ggcacacggc	ctcacacctc	agcaggtcgt	ggcaatcgct	tcccatgacg	gagggaaaca	2820
40	ggctctggaa	acggtccaga	ggctgctccc	cgtgctgtgc	caagctcacg	gcctcacccc	2880
	tcagcaggtg	gtcgctattg	cttctcatga	tggcggaaag	caggctctgg	agaccgtgca	294
50	gagactgctc	cctgtgctgt	gccaagccca	cggcctgact	ccacagcagg	tcgtggccat	3000
	cgctagtcat	gacgggggca	aacaggctct	ggaaacagta	cagcggctgt	tacccgtgct	3060
	gtgccaagcc	catggcctca	cacctcagca	agtcgtcgct	atcgctagca	acaatggagg	3120
55	gaagcaggct	ctggagacgg	tgcagcgcct	gctcccagtg	ctgtgccaag	ctcatggcct	3180
	cacccctcag	caagtcgtcg	caattgcttc	caataacggc	ggaaaacagg	ctctggaaac	324
60	cgtccagagg	ctgctgcccg	tgctgtgcca	agcacatggc	ttaactccac	agcaagtggt	330
60	ggccattgct	tctaatgggg	gcggaaagca	ggccctggag	acagtccaga	gactgttgcc	336

	cgtgctgtgc	caagcgcatg	gactgacacc	tgaacaggtc	gtcgctatcg	ctagtaatat	3420
5	tgggggcaaa	caggccctgg	aaacagtgca	gcggctgctt	cccgtgctgt	gccaggcgca	3480
	tggactcaca	ccccagcagg	tcgtcgcaat	cgcctctaat	aacggaggga	agcaggccct	3540
10	ggaaaccgtg	cagagactgt	tacctgtgct	gtgccaggca	catggtctga	caccacagca	3600
10	ggtggtcgca	attgctagca	atggcggagg	gaagcaggcc	ctggagactg	tccagagact	3660
	gctacccgtg	ctgtgccaag	cgcacggcct	gaccccacag	caggtcgtcg	ctattgcttc	3720
15	taatggcgga	gggcggcctg	ctctggagag	cattgtggct	cagctgtcca	ggcccgatcc	3780
	tgccctggct	agatccgcac	tcactaacga	tcatctggtc	gctctcgctt	gcctcggtgg	3840
	acggcccgct	ctggacgcag	tcaaaaaggg	tctcccccat	gctcccgcac	tgatcaagag	3900
20	aaccaacagg	agaattcctg	agggatccga	tcgtttaaac	gaaggcatca	aaagcaacat	3960
	ctccctcctg	aaagacgaac	tccgggggca	gattagccac	attagtcacg	aatacctctc	4020
25	cctcatcgac	ctggctttcg	atagcaagca	gaacaggctc	tttgagatga	aagtgctgga	4080
	actgctcgtc	aatgagtacg	ggttcaaggg	tcgacacctc	ggcggatcta	ggaaaccaga	4140
	cggcatcgtg	tatagtacca	cactggaaga	caactttggg	atcattgtgg	ataccaaggc	4200
30	atactctgag	ggttatagtc	tgcccatttc	acaggccgac	gagatggaac	ggtacgtgcg	4260
	cgagaactca	aatagagatg	aggaagtcaa	ccctaacaag	tggtgggaga	acttctctga	4320
35	ggaagtgaag	aaatactact	tcgtctttat	cagcgggtcc	ttcaagggta	aatttgagga	4380
	acagctcagg	agactgagca	tgactaccgg	cgtgaatggc	agcgccgtca	acgtggtcaa	4440
	tetgeteetg	ggcgctgaaa	agattcggag	cggagagatg	accatcgaag	agctggagag	4500
40	ggcaatgttt	aataatagcg	agtttatcct	gaaatactga	acgcgtaaat	gattgcagat	4560
	ccactagttc	tagaattcca	gctgagcgcc	ggtcgctacc	attaccagtt	ggtctggtgt	4620
45	caaaaataat	aataaccggg	caggggggat	ctgcatggat	ctttgtgaag	gaaccttact	4680
45	tctgtggtgt	gacataattg	gacaaactac	ctacagagat	ttaaagctct	aaggtaaata	4740
	taaaattttt	aagtgtataa	tgtgttaaac	tactgattct	aattgtttgt	gtattttaga	4800
50	ttccaaccta	tggaactgat	gaatgggagc	agtggtggaa	tgccagatcc	agacatgata	4860
	agatacattg	atgagtttgg	acaaaccaca	actagaatgc	agtgaaaaaa	atgctttatt	4920
	tgtgaaattt	gtgatgctat	tgctttattt	gtaaccatta	taagctgcaa	taaacaagtt	4980
55	aacaacaaca	attgcattca	ttttatgttt	caggttcagg	gggaggtgtg	ggaggttttt	5040
	taaagcaagt	aaaacctcta	caaatgtggt	atggctgatt	atgatctgcg	gccgccactg	5100
60	gccgtcgttt	tacaacgtcg	tgactgggaa	aaccctggcg	ttacccaact	taatcgcctt	5160
	gcagcacatc	cccctttcgc	cagctggcgt	aatagcgaag	aggcccgcac	cgatcgccct	5220

	tcccaacagt	tgcgcagcct	gaatggcgaa	tggaacgcgc	cctgtagcgg	cgcattaagc	5280
5	gcggcgggtg	tggtggttac	gcgcagcgtg	accgctacac	ttgccagcgc	cctagcgccc	5340
	gctcctttcg	ctttcttccc	ttcctttctc	gccacgttcg	ccggctttcc	ccgtcaagct	5400
40	ctaaatcggg	ggctcccttt	agggttccga	tttagtgctt	tacggcacct	cgaccccaaa	5460
10	aaacttgatt	agggtgatgg	ttcacgtagt	gggccatcgc	cctgatagac	ggtttttcgc	5520
	cctttgacgt	tggagtccac	gttctttaat	agtggactct	tgttccaaac	tggaacaaca	5580
15	ctcaacccta	tctcggtcta	ttcttttgat	ttataaggga	ttttgccgat	ttcggcctat	5640
	tggttaaaaa	atgagctgat	ttaacaaaaa	tttaacgcga	attttaacaa	aatattaacg	5700
	cttacaattt	aggtggcact	tttcggggaa	atgtgcgcgg	aacccctatt	tgtttatttt	5760
20	tctaaataca	ttcaaatatg	tatccgctca	tgagacaata	accctgataa	atgcttcaat	5820
	aatattgaaa	aaggaagagt	atgagtattc	aacatttccg	tgtcgccctt	attccctttt	5880
25	ttgcggcatt	ttgccttcct	gtttttgctc	acccagaaac	gctggtgaaa	gtaaaagatg	5940
25	ctgaagatca	gttgggtgca	cgagtgggtt	acatcgaact	ggatctcaac	agcggtaaga	6000
	tccttgagag	ttttcgcccc	gaagaacgtt	ttccaatgat	gagcactttt	aaagttctgc	6060
30	tatgtggcgc	ggtattatcc	cgtattgacg	ccgggcaaga	gcaactcggt	cgccgcatac	6120
	actattctca	gaatgacttg	gttgagtact	caccagtcac	agaaaagcat	cttacggatg	6180
	gcatgacagt	aagagaatta	tgcagtgctg	ccataaccat	gagtgataac	actgcggcca	6240
35	acttacttct	gacaacgatc	ggaggaccga	aggagctaac	cgcttttttg	cacaacatgg	6300
	gggatcatgt	aactcgcctt	gatcgttggg	aaccggagct	gaatgaagcc	ataccaaacg	6360
40	acgagcgtga	caccacgatg	cctgtagcaa	tggcaacaac	gttgcgcaaa	ctattaactg	6420
	gcgaactact	tactctagct	tcccggcaac	aattaataga	ctggatggag	gcggataaag	6480
	ttgcaggacc	acttctgcgc	teggeeette	cggctggctg	gtttattgct	gataaatctg	6540
45	gagccggtga	gcgtgggtct	cgcggtatca	ttgcagcact	ggggccagat	ggtaagccct	6600
	cccgtatcgt	agttatctac	acgacgggga	gtcaggcaac	tatggatgaa	cgaaatagac	6660
50	agatcgctga	gataggtgcc	tcactgatta	agcattggta	actgtcagac	caagtttact	6720
50	catatatact	ttagattgat	ttaaaacttc	atttttaatt	taaaaggatc	taggtgaaga	6780
	tcctttttga	taatctcatg	accaaaatcc	cttaacgtga	gttttcgttc	cactgagcgt	6840
55	cagaccccgt	agaaaagatc	aaaggatctt	cttgagatcc	tttttttctg	cgcgtaatct	6900
	gctgcttgca	aacaaaaaa	ccaccgctac	cagcggtggt	ttgtttgccg	gatcaagagc	6960
	taccaactct	ttttccgaag	gtaactggct	tcagcagagc	gcagatacca	aatactgtcc	7020
60	ttctagtgta	gccgtagtta	ggccaccact	tcaagaactc	tgtagcaccg	cctacatacc	7080
	tcgctctgct	aatcctgtta	ccagtggctg	ctgccagtgg	cgataagtcg	tgtcttaccg	7140

		ggttg	gact	c aa	gacg	atag	tta	ccgg	ata	aggc	gcag	cg q	gtcgg	gctg	a ac	gggg	ggtt		7200
5		cgtgc	acac	a gc	ccag	cttg	gag	cgaa	cga	ccta	cacc	ga a	actga	gata	c ct	acag	cgtg		7260
		agcta	tgag	a aa	gcgc	cacg	ctt	cccg	aag	ggag	aaag	gc q	gaca	ggta	t cc	ggta	agcg		7320
40		gcagg	gtcg	g aa	cagg	agag	cgc	acga	ggg	agct	tcca	gg (ggaa	acgc	c tg	gtat	cttt		7380
10		atagto	cctg	t cg	ggtt	tcgc	cac	ctct	gac	ttga	gcgt	cg a	tttt	tgtg	a tg	ctcg	tcag		7440
		ggggg	cgga	g cc	tatg	gaaa	aac	gcca	gca	acgc	ggcc	tt t	ttac	ggtt	c ct	ggcc	tttt		7500
15		gctgg	cctt	t tg	ctca	catg	ttc	tttc	ctg	cgtt	atcc	cc t	gatt	ctgt	g ga	taac	cgta		7560
		ttacco	gcct [.]	t tg	agtg	agct	gat	accg	ctc	gccg	cagc	cg a	acga	ccga	g cg	cago	gagt		7620
		cagtg	agcg	a gg	aagc	ggaa	gag	cgcc	caa	tacg	caaa	cc ç	gaata	tccc	c gc	gcgt	tggc		7680
20		cgatt	catt	a at	gcag	ctgg	cac	gaca	ggt	ttcc	cgac	tg q	gaaag	cggg	c ag	tgag	cgca		7740
		acgca	atta	a tg	tgag	ttag	ctc	actc	att	aggc	accc	ca ç	gatt	taca	c tt	tatg	cttc		7800
~ =		cggct	cgta	t gt	tgtg	tgga	att	gtga	gcg	gata	acaa	tt t	caca	cagg	a aa	.cagc	tatg		7860
25		accat	ga																7867
30	<210> 53 <211> 935 <212> PRT <213> Secuence	cia artific	cial																
35	<220> <223> TalRab2	-Clo051																	
	<400> 53																		
40			Met 1	Gly	Pro	Lys	Lys 5	Lys	Arg	Lys	Val	Ala 10	Ala	Ala	Asp	Tyr	Lys 15	Asp	
			Asp	Asp	Asp	Lys 20	Pro	Gly	Gly	Gly	Gly 25	Ser	Gly	Gly	Gly	Gly 30	Val	Pro	
45			Ala	Ser	Pro 35	Ala	Ala	Gln	Val	Asp 40	Leu	Arg	Thr	Leu	Gly 45	Tyr	Ser	Gln	
50			Gln	Gln 50	Gln	Glu	Lys	Ile	Lys 55	Pro	Lys	Val	Arg	Ser 60	Thr	Val	Ala	Gln	
55			His 65	His	Glu	Ala	Leu	Val 70	Gly	His	Gly	Phe	Thr 75	His	Ala	His	Ile	Val 80	
			Ala	Leu	Ser	Gln	His 85	Pro	Ala	Ala	Leu	Gly 90	Thr	Val	Ala	Val	Lys 95	Tyr	
60			Gln	Asp	Met	Ile	Ala	Ala	Leu	Pro	Glu	Ala	Thr	His	Glu	Ala	Ile	Val	

5				100					105					110		
J	Gly	Val	Gly 115	Lys	Gln	Trp	Ser	Gly 120	Ala	Arg	Ala	Leu	Glu 125	Ala	Leu	Leu
10	Thr	Val 130	Ala	Gly	Glu	Leu	Arg 135	Gly	Pro	Pro	Leu	Gln 140	Ser	Gly	Leu	Asp
15	Thr 145	Gly	Gln	Leu	Leu	Lys 150	Ile	Ala	Lys	Arg	Gly 155	Gly	Val	Thr	Ala	Val 160
	Glu	Ala	Val	His	Ala 165	Trp	Arg	Asn	Ala	Leu 170	Thr	Gly	Ala	Pro	Leu 175	Asn
20	Leu	Thr	Pro	Gln 180	Gln	Val	Val	Ala	Ile 185	Ala	Ser	Asn	Asn	Gly 190	Gly	Lys
25	Gln	Ala	Leu 195	Glu	Thr	Val	Gln	Arg 200	Leu	Leu	Pro	Val	Leu 205	Cys	Gln	Ala
30	His	Gly 210	Leu	Thr	Pro	Gln	Gln 215	Val	Val	Ala	Ile	Ala 220	Ser	Asn	Asn	Gly
	Gly 225	Lys	Gln	Ala	Leu	Glu 230	Thr	Val	Gln	Arg	Leu 235	Leu	Pro	Val	Leu	Cys 240
35	Gln	Ala	His	Gly	Leu 245	Thr	Pro	Gln	Gln	Val 250	Val	Ala	Ile	Ala	Ser 255	Asn
40	Gly	Gly	Gly	Lys 260	Gln	Ala	Leu	Glu	Thr 265	Val	Gln	Arg	Leu	Leu 270	Pro	Val
	Leu	Cys	Gln 275	Ala	His	Gly	Leu	Thr 280	Pro	Gln	Gln	Val	Val 285	Ala	Ile	Ala
45	Ser	Asn 290	Asn	Gly	Gly	Lys	Gln 295	Ala	Leu	Glu	Thr	Val 300	Gln	Arg	Leu	Leu
50	Pro 305	Val	Leu	Cys	Gln	Ala 310	His	Gly	Leu	Thr	Pro 315	Gln	Gln	Val	Val	Ala 320
55	Ile	Ala	Ser	Asn	Asn 325	Gly	Gly	Lys	Gln	Ala 330	Leu	Glu	Thr	Val	Gln 335	Arg
	Leu	Leu	Pro	Val 340	Leu	Cys	Gln	Ala	His 345	Gly	Leu	Thr	Pro	Gln 350	Gln	Val
60																

5	Val	Ala	Ile 355	Ala	Ser	His	Asp	Gly 360	Gly	Lys	Gln	Ala	Leu 365	Glu	Thr	Val
	Gln	A rg 370	Leu	Leu	Pro	Val	Leu 375	Cys	Gln	Ala	His	Gly 380	Leu	Thr	Pro	Gln
10	Gln 385	Val	Val	Ala	Ile	Ala 390	Ser	His	Asp	Gly	Gly 395	Lys	Gln	Ala	Leu	Glu 400
15	Thr	Val	Gln	Arg	Leu 405	Leu	Pro	Val	Leu	Cys 410	Gln	Ala	His	Gly	Leu 415	Thr
20	Pro	Gln	Gln	Val 420	Val	Ala	Ile	Ala	Ser 425	His	Asp	Gly	Gly	Lys 430	Gln	Ala
	Leu	Glu	Thr 435	Val	Gln	Arg	Leu	Leu 440	Pro	Val	Leu	Cys	Gln 445	Ala	His	Gly
25	Leu	Thr 450	Pro	Gln	Gln	Val	Val 455	Ala	Ile	Ala	Ser	Asn 460	Asn	Gly	Gly	Lys
30	Gln 465	Ala	Leu	Glu	Thr	Val 470	Gln	Arg	Leu	Leu	Pro 475	Val	Leu	Cys	Gln	Ala 480
35	His	Gly	Leu	Thr	Pro 485	Gln	Gln	Val	Val	Ala 490	Ile	Ala	Ser	Asn	Asn 495	Gly
	Gly	Lys	Gln	Ala 500	Leu	Glu	Thr	Val	Gln 505	Arg	Leu	Leu	Pro	Val 510	Leu	Суѕ
40	Gln	Ala	His 515	Gly	Leu	Thr	Pro	Gln 520	Gln	Val	Val	Ala	Ile 525	Ala	Ser	Asn
45	Gly	Gly 530	Gly	Lys	Gln	Ala	Leu 535	Glu	Thr	Val	Gln	Arg 540	Leu	Leu	Pro	Val
50	Leu 545	Cys	Gln	Ala	His	Gly 550	Leu	Thr	Pro	Glu	Gln 555	Val	Val	Ala	Ile	Ala 560
	Ser	Asn	Ile	Gly	Gly 565	Lys	Gln	Ala	Leu	Glu 570	Thr	Val	Gln	Arg	Leu 575	Leu
55	Pro	Val	Leu	Cys 580	Gln	Ala	His	Gly	Leu 585	Thr	Pro	Gln	Gln	Val 590	Val	Ala
60	Ile	Ala	Ser 595	Asn	Asn	Gly	Gly	Lys 600	Gln	Ala	Leu	Glu	Thr 605	Val	Gln	Arg

5	Leu	Leu 610	Pro	Val	Leu	Cys	Gln 615	Ala	His	Gly	Leu	Thr 620	Pro	Gln	Gln	Val
10	Val 625	Ala	Ile	Ala	Ser	Asn 630	Gly	Gly	Gly	Lys	Gln 635	Ala	Leu	Glu	Thr	Val 640
10	Gln	Arg	Leu	Leu	Pro 645	Val	Leu	Сув	Gln	Ala 650	His	Gly	Leu	Thr	Pro 655	Gln
15	Gln	Val	Val	A la 660	Ile	Ala	Ser	Asn	Gly 665	Gly	Gly	Arg	Pro	A la 670	Leu	Glu
20	Ser	Ile	Val 675	Ala	Gln	Leu	Ser	Arg 680	Pro	Asp	Pro	Ala	Leu 685	Ala	Arg	Ser
25	Ala	Leu 690	Thr	Asn	Asp	His	Leu 695	Val	Ala	Leu	Ala	Cys 700	Leu	Gly	Gly	Arg
	Pro 705	Ala	Leu	Asp	Ala	Val 710	Lys	Lys	Gly	Leu	Pro 715	His	Ala	Pro	Ala	Leu 720
30	Ile	Lys	Arg	Thr	A sn 725	Arg	Arg	Ile	Pro	Glu 730	Gly	Ser	Asp	Arg	Leu 735	Asn
35	Glu	Gly	Ile	Lys 740	Ser	Asn	Ile	Ser	Leu 745	Leu	Lys	Asp	Glu	Leu 750	Arg	Gly
40	Gln	Ile	Ser 755	His	Ile	Ser	His	Glu 760	Tyr	Leu	Ser	Leu	Ile 765	Asp	Leu	Ala
45	Phe	Asp 770	Ser	Lys	Gln	Asn	Arg 775	Leu	Phe	Glu	Met	Lys 780	Val	Leu	Glu	Leu
	Leu 785	Val	Asn	Glu	Tyr	Gly 790	Phe	Lys	Gly	Arg	His 795	Leu	Gly	Gly	Ser	A rg 800
50	Lys	Pro	Asp	Gly	Ile 805	Val	Tyr	Ser	Thr	Thr 810	Leu	Glu	Asp	Asn	Phe 815	Gly
55	Ile	Ile	Val	Asp 820	Thr	Lys	Ala	Tyr	Ser 825	Glu	Gly	Tyr	Ser	Leu 830	Pro	Ile
60	Ser	Gln	Ala 835	Asp	Glu	Met	Glu	A rg 840	Tyr	Val	Arg	Glu	Asn 8 4 5	Ser	Asn	Arg
	Asp	Glu 850	Glu	Val	Asn	Pro	Asn 855	Lys	Trp	Trp	Glu	Asn 860	Phe	Ser	Glu	Glu
65																

5		Val 865	Lys	Lys	Tyr	Tyr	Phe 870	Val	Phe	Ile	Ser	Gly 875	Ser	Phe	Lys	Gly	Lys 880	
		Phe	Glu	Glu	Gln	Leu 885	Arg	Arg	Leu	Ser	Met 890	Thr	Thr	Gly	Val	As n 895	Gly	
10		Ser	Ala	Val	Asn 900	Val	Val	Asn	Leu	Leu 905	Leu	Gly	Ala	Glu	Lys 910	Ile	Arg	
15		Ser	Gly	Glu 915	Met	Thr	Ile	Glu	Glu 920	Leu	Glu	Arg	Ala	Met 925	Phe	Asn	Asn	
20		Ser	Glu 930	Phe	Ile	Leu	Lys	Tyr 935										
25	<210> 54 <211> 7867 <212> ADN <213> Secuence	cia artificial																
30	<220> <223> pCAG-R	RabChtTal1	-Clo0	51														
	<400> 54																	
		ggcgcgcc	gg a	ttcg	acatt	gat	tatt	gac	tagti	tatta	aa ta	igtaa	tcaa	ttad	cgggg	gtc		60
35		attagtto	at a	igccc	atata	ı tgo	gagtt	ccg	cgtta	acata	a ct	tacg	gtaa	atg	gaaag	gcc		120
		tggctgac	cg c	ccaa	cgaco	ccc	cgccc	att	gacgi	tcaat	a at	gacg	tatg	ttc	ccata	igt		180
40		aacgccaa	ıta g	ggac	tttco	att	gacg	tca	atgg	gtgga	ag ta	ttta	cggt	aaad	ctgco	cca		240
		cttggcag	rta c	atca	agtgt	ato	catat	gcc	aagta	acgco	ec co	tatt	gacg	tcaa	atgad	cgg		300
		taaatggo	ecc g	cctg	gcatt	ato	JCCCa	.gta	catga	acctt	a to	ggac	tttc	ctad	cttgg	J Ca		360
45		gtacatct	ac g	tatt	agtca	ı teç	ctat	tac	catg	gtcga	ıg gt	gagc	ccca	cgti	tctg	ett		420
		cactctcc	cc a	tctc	cccc	c cct	cccc	acc	ccca	atttt	g ta	ttta	ttta	ttti	tttaa	att		480
5 0		attttgtg	rca g	rcgat	gggg	g cgg	gggg	ggg	gggg	gggcg	ge ge	gcca	ggcg	ggg	cgggg	gcg		540
50		gggcgagg	igg c	gggg	cgggg	g cga	aggcg	gag	aggt	gcggc	g go	agcc	aatc	agaq	gcggc	cgc		600
		gctccgaa	ag t	ttcc	tttta	ı tgo	gcgag	gcg	gcgg	cggcc	ag co	igaca	tata	aaaa	agcga	aag		660
55		cgcgcggc	gg g	cggg	agtc	g cto	gcgcg	ctg	cctt	egeed	cc gt	gccc	cgct	ccg	ccgcc	cgc		720
		ctcgcgcc	gc c	cgcc	ccggo	tct	gact	gac	cgcgt	ttact	.c cc	acag	gtga	gcg	ggcgg	gga		780
		cggccctt	ct c	ctcc	gggct	gta	atta	.gcg	cttg	gttta	aa to	acgg	cttg	ttt	ctttt	cct		840
60		gtggctgc	gt g	raaag	cctto	g ago	ggct	ccg	ggag	ggcco	et tt	gtgc	gggg	ggga	agcgg	gct		900
		caaaaaat	מכ מ	rt aca	tatat	· ata	at aca	taa	σσασσ	ממממ	ac at	acaa	ataa	aca	ataco	rca		960

	geg	ggctgtga	gegetgeggg	egeggegegg	ggetttgtge	geteegeagt	grgegegagg	102
5	gga	agcgcggc	cgggggcggt	gccccgcggt	gcggggggg	ctgcgagggg	aacaaaggct	108
	gcg	gtgcgggg	tgtgtgcgtg	ggggggtgag	cagggggtgt	gggcgcgtcg	gtcgggctgc	114
10	aac	cccccct	gcacccccct	ccccgagttg	ctgagcacgg	cccggcttcg	ggtgcggggc	120
10	tco	cgtacggg	gcgtggcgcg	gggctcgccg	tgccgggcgg	ggggtggcgg	caggtggggg	126
	tgo	ccgggcgg	ggcggggccg	cctcgggccg	gggagggctc	gggggagggg	cgcggcggcc	132
15	ccc	eggagege	cggcggctgt	cgaggcgcgg	cgagccgcag	ccattgcctt	ttatggtaat	138
	cgt	gcgagag	ggcgcaggga	cttcctttgt	cccaaatctg	tgcggagccg	aaatctggga	144
	ggc	geegeeg	caccccctct	agcgggcgcg	gggcgaagcg	gtgcggcgcc	ggcaggaagg	150
20	aaa	atgggcgg	ggagggcctt	cgtgcgtcgc	cgcgccgccg	tccccttctc	cctctccagc	156
	cto	eggggetg	tccgcggggg	gacggctgcc	ttcggggggg	acggggcagg	geggggtteg	162
0.5	gct	tctggcg	tgtgaccggc	ggctctagag	cctctgctaa	ccatgttcat	gccttcttct	168
25	ttt	tcctaca	gatccttaat	taataatacg	actcactata	ggggccgcca	ccatgggacc	174
	taa	agaaaaag	aggaaggtgg	cggccgctga	ctacaaggat	gacgacgata	aaccaggtgg	180
30	cgg	gaggtagt	ggcggaggtg	gggtacccgc	cagtccagca	gcccaggtgg	atctgagaac	186
	cct	cggctac	agccagcagc	agcaggagaa	gatcaaacca	aaggtgcggt	ccaccgtcgc	192
	tca	agcaccat	gaagcactgg	tggggcacgg	tttcacacac	gcccatattg	tggctctgtc	198
35	tca	agcatece	gctgcactcg	ggactgtggc	cgtcaaatat	caggacatga	tegeegetet	204
	gco	ctgaggca	acccacgaag	ccattgtggg	cgtcggaaag	cagtggagcg	gtgccagagc	210
	act	cgaagca	ctcctcaccg	tcgccgggga	actgcggggt	ccaccactcc	agtccggact	216
40	gga	acactgga	cagctgctga	agatcgctaa	acgcggcgga	gtgacagctg	tggaagctgt	222
	gca	acgcttgg	aggaatgctc	tgacaggagc	cccactgaat	cttacacccg	aacaggtggt	228
45	ggo	ccatcgct	agtaacattg	ggggcaaaca	ggctctggaa	acagtacagc	ggctgttacc	234
.0	tgt	gctgtgc	caggctcatg	gcctcacacc	tcagcaggtc	gtcgcaatcg	cctccaatgg	240
	cgg	gagggaag	caggccctgg	aaacggtgca	gagactgtta	ccagtgctgt	gccaggccca	246
50	tgg	gcctaaca	ccccagcagg	tggtggccat	cgccagccac	gacggcggca	agcaggccct	252
	gga	aaccgtg	cagaggctgc	tgcctgtgct	gtgccaggct	catggcctga	cacctgagca	258
	ggt	cgtcgcc	atcgccagca	acatcggcgg	caagcaggcc	ctggaaaccg	tgcagaggct	264
55	gct	gccagtg	ctgtgccagg	cccatggctt	aacacccgaa	caggtggtgg	ccatcgcttc	270
	taa	atattggg	ggcaagcagg	ccctggaaac	agtccagaga	ctgttgcctg	tgctgtgcca	276
60	ggo	ctcatggc	ttgacacctc	agcaggtcgt	cgctatcgcc	tctaataagg	ggggcaagca	282
OU	ggo	ctctggag	acagtacagc	gcctgttacc	agtgctgtgc	caggcccacg	ggctcacacc	288

	ccagcaggtg	gtggcaatcg	cttcccatga	cggagggaaa	caggctctgg	aaacggtcca	2940
5	gaggctgctc	cctgtgctgt	gccaggctca	cggtctaaca	ccccagcagg	tggtggccat	3000
	tgctagcaac	aatgggggca	agcaggctct	ggagacagtg	cagcgcctgc	tgcctgtgct	3060
10	gtgccaggct	catggcctca	cacctcagca	ggtcgtcgcc	atcgccagcc	acgacggcgg	3120
	caagcaggcc	ctggaaaccg	tgcagaggct	gctgccagtg	ctgtgccagg	cccatggcct	3180
	aacaccccag	caggtggtgg	caatcgcctc	caatggcgga	gggaagcagg	ccctggaaac	3240
15	ggtgcagaga	ctgttacctg	tgctgtgcca	ggctcatggc	ctgacacctg	agcaggtcgt	3300
	cgctatcgct	agcaatatcg	gagggaagca	ggctctggaa	actgtccagc	gcctgctccc	3360
20	agtgctgtgc	caggcccatg	gcttaacacc	ccagcaggtg	gtggcaattg	ctagcaatgg	3420
20	cggagggaag	caggccctgg	agactgtcca	gagactgcta	cctgtgctgt	gccaggctca	3480
	tggcttgaca	cctcagcagg	tcgtcgctat	cgcctctaat	aaggggggca	agcaggctct	3540
25	ggagacagta	cagcgcctgt	taccagtgct	gtgccaggcc	cacgggctca	caccccagca	3600
	ggtggtggcc	atcgccagca	acggcggcgg	caagcaggcc	ctggaaaccg	tgcagaggct	3660
	gctgcctgtg	ctgtgccagg	ctcacggcct	gaccccacag	caggtcgtcg	ctattgcttc	3720
30	taatggcgga	gggcggcctg	ctctggagag	cattgtggct	cagctgtcca	ggcccgatcc	3780
	tgccctggct	agatccgcac	tcactaacga	tcatctggtc	gctctcgctt	gcctcggtgg	3840
35	acggcccgct	ctggacgcag	tcaaaaaggg	tctcccccat	gctcccgcac	tgatcaagag	3900
	aaccaacagg	agaattcctg	agggatccga	tcgtttaaac	gaaggcatca	aaagcaacat	3960
	ctccctcctg	aaagacgaac	teegggggea	gattagecae	attagtcacg	aatacctctc	4020
40	cctcatcgac	ctggctttcg	atagcaagca	gaacaggctc	tttgagatga	aagtgctgga	4080
	actgctcgtc	aatgagtacg	ggttcaaggg	tcgacacctc	ggcggatcta	ggaaaccaga	4140
45	cggcatcgtg	tatagtacca	cactggaaga	caactttggg	atcattgtgg	ataccaaggc	4200
	atactctgag	ggttatagtc	tgcccatttc	acaggccgac	gagatggaac	ggtacgtgcg	4260
	cgagaactca	aatagagatg	aggaagtcaa	ccctaacaag	tggtgggaga	acttctctga	4320
50	ggaagtgaag	aaatactact	tcgtctttat	cagcgggtcc	ttcaagggta	aatttgagga	4380
	acagctcagg	agactgagca	tgactaccgg	cgtgaatggc	agcgccgtca	acgtggtcaa	4440
55	tctgctcctg	ggcgctgaaa	agattcggag	cggagagatg	accatcgaag	agctggagag	4500
33	ggcaatgttt	aataatagcg	agtttatcct	gaaatactga	acgcgtaaat	gattgcagat	4560
	ccactagttc	tagaattcca	gctgagcgcc	ggtcgctacc	attaccagtt	ggtctggtgt	4620
60	caaaaataat	aataaccggg	caggggggat	ctgcatggat	ctttgtgaag	gaaccttact	4680
	tctgtggtgt	gacataattg	gacaaactac	ctacagagat	ttaaagctct	aaggtaaata	4740

	taaaattttt	aagtgtataa	tgtgttaaac	tactgattct	aattgtttgt	gtattttaga	4800
5	ttccaaccta	tggaactgat	gaatgggagc	agtggtggaa	tgccagatcc	agacatgata	4860
	agatacattg	atgagtttgg	acaaaccaca	actagaatgc	agtgaaaaaa	atgctttatt	4920
10	tgtgaaattt	gtgatgctat	tgctttattt	gtaaccatta	taagctgcaa	taaacaagtt	4980
10	aacaacaaca	attgcattca	ttttatgttt	caggttcagg	gggaggtgtg	ggaggttttt	5040
	taaagcaagt	aaaacctcta	caaatgtggt	atggctgatt	atgatctgcg	gccgccactg	5100
15	gccgtcgttt	tacaacgtcg	tgactgggaa	aaccctggcg	ttacccaact	taatcgcctt	5160
	gcagcacatc	cccctttcgc	cagctggcgt	aatagcgaag	aggcccgcac	cgatcgccct	5220
	tcccaacagt	tgcgcagcct	gaatggcgaa	tggaacgcgc	cctgtagcgg	cgcattaagc	5280
20	gcggcgggtg	tggtggttac	gcgcagcgtg	accgctacac	ttgccagcgc	cctagegeee	5340
	gctcctttcg	ctttcttccc	ttcctttctc	gccacgttcg	ccggctttcc	ccgtcaagct	5400
25	ctaaatcggg	ggctcccttt	agggttccga	tttagtgctt	tacggcacct	cgaccccaaa	5460
	aaacttgatt	agggtgatgg	ttcacgtagt	gggccatcgc	cctgatagac	ggtttttcgc	5520
	cctttgacgt	tggagtccac	gttctttaat	agtggactct	tgttccaaac	tggaacaaca	5580
30	ctcaacccta	tctcggtcta	ttcttttgat	ttataaggga	ttttgccgat	ttcggcctat	5640
	tggttaaaaa	atgagctgat	ttaacaaaaa	tttaacgcga	attttaacaa	aatattaacg	5700
25	cttacaattt	aggtggcact	tttcggggaa	atgtgcgcgg	aacccctatt	tgtttatttt	5760
35	tctaaataca	ttcaaatatg	tatccgctca	tgagacaata	accctgataa	atgcttcaat	5820
	aatattgaaa	aaggaagagt	atgagtattc	aacatttccg	tgtcgccctt	attccctttt	5880
40	ttgcggcatt	ttgccttcct	gtttttgctc	acccagaaac	gctggtgaaa	gtaaaagatg	5940
	ctgaagatca	gttgggtgca	cgagtgggtt	acatcgaact	ggatctcaac	agcggtaaga	6000
	tccttgagag	ttttcgcccc	gaagaacgtt	ttccaatgat	gagcactttt	aaagttctgc	6060
45	tatgtggcgc	ggtattatcc	cgtattgacg	ccgggcaaga	gcaactcggt	cgccgcatac	6120
	actattctca	gaatgacttg	gttgagtact	caccagtcac	agaaaagcat	cttacggatg	6180
50	gcatgacagt	aagagaatta	tgcagtgctg	ccataaccat	gagtgataac	actgcggcca	6240
30	acttacttct	gacaacgatc	ggaggaccga	aggagctaac	cgcttttttg	cacaacatgg	6300
	gggatcatgt	aactcgcctt	gatcgttggg	aaccggagct	gaatgaagcc	ataccaaacg	6360
55	acgagcgtga	caccacgatg	cctgtagcaa	tggcaacaac	gttgcgcaaa	ctattaactg	6420
	gcgaactact	tactctagct	teceggeaac	aattaataga	ctggatggag	gcggataaag	6480
	ttgcaggacc	acttctgcgc	teggeeette	cggctggctg	gtttattgct	gataaatctg	6540
60	gagccggtga	gcgtgggtct	cgcggtatca	ttgcagcact	ggggccagat	ggtaagccct	6600
	cccgtatcgt	agttatctac	acgacgggga	gtcaggcaac	tatggatgaa	cgaaatagac	6660

		agatc	gctga	gat	aggto	gcc ·	tcact	gatta	agc	attgg	rta a	actgt	cagac	caa	gttta	act	6720
5		catat	atact	tta	gatto	gat ·	ttaaa	actto	att	tttaa	tt 1	taaaa	ggato	: tag	gtgaa	aga	6780
		tcctt	tttga	taa	tctca	atg a	accaa	aatco	ctt	aacgt	ga (gtttt	cgttc	cac	tgag	egt	6840
10		cagac	cccgt	aga	aaaga	atc a	aaagg	atctt	ctt	gagat	.cc 1	ttttt.	ttctg	cgc	gtaat	tct	6900
10		gctgc	ttgca	aac	aaaaa	aaa	ccacc	gctac	cag	cggtg	gt 1	ttgtt [.]	tgccg	gat	caaga	agc	6960
		tacca	actct	ttt	tccga	aag	gtaac	tggct	tca	.gcaga	.gc (gcaga	tacca	aat	actg	taa	7020
15		ttcta	gtgta	gcc	gtagt	ta (ggcca	ccact	tca	.agaac	tc 1	tgtag	cacco	cct	acata	acc	7080
		tcgct	ctgct	aat	cctgt	ta	ccagt	ggctg	ctg	ccagt	gg (cgata	agtcg	, tgt	ctta	ccg	7140
		ggttg	gacto	aag	acgat	ag ·	ttacc	ggata	agg	cgcag	cg (gtcgg	gctga	acg	gggg	gtt	7200
20		cgtgc	acaca	gcc	cagct	tg (gagcg	aacga	cct	acacc	ga a	actga	gatac	: cta	cagc	gtg	7260
		agcta	tgaga	aag	cgcca	acg (cttcc	cgaag	gga	.gaaag	gc (ggaca	ggtat	ccg	gtaaq	gcg	7320
25		gcagg	gtcgg	aac	aggag	gag	cgcac	gaggg	agc	ttcca	gg (gggaa	acgcc	: tgg	tatci	ttt	7380
25		atagt	cctgt	cgg	gttto	cgc (cacct	ctgac	ttg	agcgt	.cg a	atttt:	tgtga	tga	tcgt	cag	7440
		ggggg	cggag	cct	atgga	aaa	aacgc	cagca	acg	cggcc	tt t	tttac	ggtto	: ctg	gccti	ttt	7500
30		gctgg	ccttt	tgc	tcaca	atg ·	ttctt	tcctg	cgt	tatcc	icc t	tgatt	ctgtg	gat	aacc	gta	7560
		ttacc	gcctt	. tga	gtgag	gct (gatac	cgctc	gcc	gcagc	cg a	aacga	ccgag	cgc	agcga	agt	7620
		cagtg	agcga	gga	agcgg	gaa (gagcg	cccaa	tac	gcaaa	cc (gcctc	tacac	gcg	cgtt	ggc	7680
35		cgatt	catta	atg	cagct	gg (cacga	caggt	ttc	ccgac	tg	gaaag	cgggc	agt	gagc	gca	7740
		acgca	attaa	tgt	gagtt	ag	ctcac	tcatt	agg	caccc	ca	ggctt [.]	tacac	: ttt	atgct	ttc	7800
40		cggct	cgtat	gtt	gtgtg	gga i	attgt	gagcg	gat	aacaa	tt 1	tcaca	cagga	aac	agcta	atg	7860
40		accat	ga														7867
45	<210> 55 <211> 935 <212> PRT <213> Secuence	cia artifi	cial														
50	<220> <223> RabCht1	「al1-Clo	051														
50	<400> 55																
55		Met 1	Gly	Pro	Lys	Lys 5	Lys	Arg	Lys	Val .	Ala 10	Ala	Ala	Asp	Tyr	Lys 15	Asp
60		Asp	Asp	Asp	Lys 20	Pro	Gly	Gly	Gly	Gly 25	Ser	Gly	Gly	Gly	Gly 30	Val	Pro
00		Ala	Ser	Pro	Ala	Ala	Gln	Val	Asp	Leu .	Arg	Thr	Leu	Gly	Tyr	Ser	Gln
									_		_			_			

_			35					40					45			
5	Gln	Gln 50	Gln	Glu	Lys	Ile	Lys 55	Pro	Lys	Val	Arg	Ser 60	Thr	Val	Ala	Gln
10	His 65	His	Glu	Ala	Leu	Val 70	Gly	His	Gly	Phe	Thr 75	His	Ala	His	Ile	Val 80
15	Ala	Leu	Ser	Gln	His 85	Pro	Ala	Ala	Leu	Gly 90	Thr	Val	Ala	Val	Lys 95	Tyr
20	Gln	Asp	Met	Ile 100	Ala	Ala	Leu	Pro	Glu 105	Ala	Thr	His	Glu	Ala 110	Ile	Val
	Gly	Val	Gly 115	Lys	Gln	Trp	Ser	Gly 120	Ala	Arg	Ala	Leu	Glu 125	Ala	Leu	Leu
25	Thr	Val 130	Ala	Gly	Glu	Leu	Arg 135	Gly	Pro	Pro	Leu	Gln 140	Ser	Gly	Leu	Asp
30	Thr 145	Gly	Gln	Leu	Leu	Lys 150	Ile	Ala	Lys	Arg	Gly 155	Gly	Val	Thr	Ala	Val 160
35	Glu	Ala	Val	His	Ala 165	Trp	Arg	Asn	Ala	Leu 170	Thr	Gly	Ala	Pro	Leu 175	Asn
40	Leu	Thr	Pro	Glu 180	Gln	Val	Val	Ala	Ile 185	Ala	Ser	Asn	Ile	Gly 190	Gly	Lys
	Gln	Ala	Leu 195	Glu	Thr	Val	Gln	Arg 200	Leu	Leu	Pro	Val	Leu 205	Cys	Gln	Ala
45	His	Gly 210	Leu	Thr	Pro	Gln	Gln 215	Val	Val	Ala	Ile	Ala 220	Ser	Asn	Gly	Gly
50	Gly 225	Lys	Gln	Ala	Leu	Glu 230	Thr	Val	Gln	Arg	Leu 235	Leu	Pro	Val	Leu	Cys 240
55	Gln	Ala	His	Gly	Leu 245	Thr	Pro	Gln	Gln	Val 250	Val	Ala	Ile	Ala	Ser 255	His
	Asp	Gly	Gly	Lys 260	Gln	Ala	Leu	Glu	Thr 265	Val	Gln	Arg	Leu	Leu 270	Pro	Val
60	Leu	Cys	Gln 275	Ala	His	Gly	Leu	Thr 280	Pro	Glu	Gln	Val	Val 285	Ala	Ile	Ala

5	Ser	Asn 290	Ile	Gly	Gly	Lys	Gln 295	Ala	Leu	Glu	Thr	Val 300	Gln	Arg	Leu	Leu
	Pro 305	Val	Leu	Cys	Gln	Ala 310	His	Gly	Leu	Thr	Pro 315	Glu	Gln	Val	Val	Ala 320
10	Ile	Ala	Ser	Asn	Ile 325	Gly	Gly	Lys	Gln	Ala 330	Leu	Glu	Thr	Val	Gln 335	Arg
15	Leu	Leu	Pro	Val 340	Leu	Cys	Gln	Ala	His 345	Gly	Leu	Thr	Pro	Gln 350	Gln	Val
20	Val	Ala	Ile 355	Ala	Ser	Asn	Lys	Gly 360	Gly	Lys	Gln	Ala	Leu 365	Glu	Thr	Val
25	Gln	Arg 370	Leu	Leu	Pro	Val	Leu 375	Cys	Gln	Ala	His	Gly 380	Leu	Thr	Pro	Gln
20	Gln 385	Val	Val	Ala	Ile	Ala 390	Ser	His	Asp	Gly	Gly 395	Lys	Gln	Ala	Leu	Glu 400
30	Thr	Val	Gln	Arg	Leu 405	Leu	Pro	Val	Leu	Cys 410	Gln	Ala	His	Gly	Leu 415	Thr
35	Pro	Gln	Gln	Val 420	Val	Ala	Ile	Ala	Ser 425	Asn	Asn	Gly	Gly	Lys 430	Gln	Ala
40	Leu	Glu	Thr 435	Val	Gln	Arg	Leu	Leu 440	Pro	Val	Leu	Cys	Gln 445	Ala	His	Gly
	Leu	Thr 450	Pro	Gln	Gln	Val	Val 455	Ala	Ile	Ala	Ser	His 460	Asp	Gly	Gly	Lys
45	Gln 465	Ala	Leu	Glu	Thr	Val 470	Gln	Arg	Leu	Leu	Pro 475	Val	Leu	Cys	Gln	Ala 480
50	His	Gly	Leu	Thr	Pro 485	Gln	Gln	Val	Val	Ala 490	Ile	Ala	Ser	Asn	Gly 495	Gly
55	Gly	Lys	Gln	Ala 500	Leu	Glu	Thr	Val	Gln 505	Arg	Leu	Leu	Pro	Val 510	Leu	Cys
	Gln	Ala	His 515	Gly	Leu	Thr	Pro	Glu 520	Gln	Val	Val	Ala	Ile 525	Ala	Ser	Asn
60	Ile	Gly 530	Gly	Lys	Gln	Ala	Leu 535	Glu	Thr	Val	Gln	Arg 540	Leu	Leu	Pro	Val

5	Leu 545	Cys	Gln	Ala	His	Gly 550	Leu	Thr	Pro	Gln	Gln 555	Val	Val	Ala	Ile	Ala 560
	Ser	Asn	Gly	Gly	Gly 565	Lys	Gln	Ala	Leu	Glu 570	Thr	Val	Gln	Arg	Leu 575	Leu
10	Pro	Val	Leu	Cys 580	Gln	Ala	His	Gly	Leu 585	Thr	Pro	Gln	Gln	Val 590	Val	Ala
15	Ile	Ala	Ser 595	Asn	Lys	Gly	Gly	Lys 600	Gln	Ala	Leu	Glu	Thr 605	Val	Gln	Arg
20	Leu	Leu 610	Pro	Val	Leu	Cys	Gln 615	Ala	His	Gly	Leu	Thr 620	Pro	Gln	Gln	Val
25	Val 625	Ala	Ile	Ala	Ser	Asn 630	Gly	Gly	Gly	Lys	Gln 635	Ala	Leu	Glu	Thr	Val 640
25	Gln	Arg	Leu	Leu	Pro 645	Val	Leu	Cys	Gln	Ala 650	His	Gly	Leu	Thr	Pro 655	Gln
30	Gln	Val	Val	Ala 660	Ile	Ala	Ser	Asn	Gly 665	Gly	Gly	Arg	Pro	Ala 670	Leu	Glu
35	Ser	Ile	Val 675	Ala	Gln	Leu	Ser	A rg 680	Pro	Asp	Pro	Ala	Leu 685	Ala	Arg	Ser
40	Ala	Leu 690	Thr	Asn	Asp	His	Leu 695	Val	Ala	Leu	Ala	Cys 700	Leu	Gly	Gly	Arg
	Pro 705	Ala	Leu	Asp	Ala	Val 710	Lys	Lys	Gly	Leu	Pro 715	His	Ala	Pro	Ala	Leu 720
45	Ile	Lys	Arg	Thr	Asn 725	Arg	Arg	Ile	Pro	Glu 730	Gly	Ser	Asp	Arg	Leu 735	Asn
50	Glu	Gly	Ile	Lys 740	Ser	Asn	Ile	Ser	Leu 745	Leu	Lys	Asp	Glu	Leu 750	Arg	Gly
55	Gln	Ile	Ser 755	His	Ile	Ser	His	Glu 760	Tyr	Leu	Ser	Leu	Ile 765	Asp	Leu	Ala
	Phe	Asp 770	Ser	Lys	Gln	Asn	A rg 775	Leu	Phe	Glu	Met	Lys 780	Val	Leu	Glu	Leu
60	Le u 785	Val	Asn	Glu	Tyr	Gly 790	Phe	Lys	Gly	Arg	His 795	Leu	Gly	Gly	Ser	Arg 800

5		туѕ	PIO	Asp	GIY	805	Val	TÀL	ser	THE	810	ьеu	GIU	Asp	ASII	815	СТА	
		Ile	Ile	Val	Asp 820	Thr	Lys	Ala	Tyr	Ser 825	Glu	Gly	Tyr	Ser	Leu 830	Pro	Ile	
10		Ser	Gln	Ala 835	Asp	Glu	Met	Glu	Arg 840	Tyr	Val	Arg	Glu	Asn 8 4 5	Ser	Asn	Arg	
15		Asp	Glu 850	Glu	Val	Asn	Pro	Asn 855	Lys	Trp	Trp	Glu	Asn 860	Phe	Ser	Glu	Glu	
20	v	Val 865	Lys	Lys	Tyr	Tyr	Phe 870	Val	Phe	Ile	Ser	Gly 875	Ser	Phe	Lys	Gly	Lys 880	
		Phe	Glu	Glu	Gln	Leu 885	Arg	Arg	Leu	Ser	Met 890	Thr	Thr	Gly	Val	As n 895	Gly	
25		Ser	Ala	Val	A sn 900	Val	Val	Asn	Leu	Leu 905	Leu	Gly	Ala	Glu	Lys 910	Ile	Arg	
30		Ser	Gly	Glu 915	Met	Thr	Ile	Glu	Glu 920	Leu	Glu	Arg	Ala	Met 925	Phe	Asn	Asn	
35		Ser	Glu 930	Phe	Ile	Leu	Lys	Tyr 935										
40	<210> 56 <211> 7867 <212> ADN <213> Secuer	ncia artificial																
45	<220> <223> pCAG- <400> 56	RabChtTal2-	Clo05	51														
		ggcgcgccg	g at	tcga	.catt	gat	tatt	gac	tagt	tatt	aa t	agta	atca	a tt	acgg	ggto	!	60
50		attagttca	t ag	ccca	tata	. tgg	agtt	.ccg	cgtt	acat	aa c	ttac	ggta	a at	ggcc	cgcc	!	120
		tggctgaco																180 240
55		aacgccaat					_				_				_			300
		taaatggco																360
60		gtacatcta	.c gt	atta	.gtca	. tcg	ctat	tac	catg	gtcg	ag g	gtgag	racac	a co	rttct	gctt	<u>.</u>	420
		cactctccc	c at	ctcc	cccc	cct	cccc	acc	ccca	attt	tg t	attt	attt	a tt	tttt	aatt	:	480

	attttgtgca	gcgatggggg	cdddddddd	gggggggcgc	gcgccaggcg	gggcggggcg	540
5	gggcgagggg	cggggcgggg	cgaggcggag	aggtgcggcg	gcagccaatc	agagcggcgc	600
	gctccgaaag	tttcctttta	tggcgaggcg	gcggcggcgg	cggccctata	aaaagcgaag	660
10	cgcgcggcgg	gcgggagtcg	ctgcgcgctg	ccttcgcccc	gtgccccgct	ccgccgccgc	720
10	ctcgcgccgc	ccgccccggc	tctgactgac	cgcgttactc	ccacaggtga	gcgggcggga	780
	cggcccttct	cctccgggct	gtaattagcg	cttggtttaa	tgacggcttg	tttctttct	840
15	gtggctgcgt	gaaagccttg	aggggctccg	ggagggccct	ttgtgcgggg	gggagcggct	900
	cggggggtgc	gtgcgtgtgt	gtgtgcgtgg	ggagcgccgc	gtgcggctcc	gcgctgcccg	960
	gcggctgtga	gcgctgcggg	cgcggcgcgg	ggctttgtgc	gctccgcagt	gtgcgcgagg	1020
20	ggagcgcggc	cgggggcggt	gccccgcggt	gcggggggg	ctgcgagggg	aacaaaggct	1080
	gcgtgcgggg	tgtgtgcgtg	ggggggtgag	cagggggtgt	gggcgcgtcg	gtcgggctgc	1140
o.=	aacccccct	gcacccccct	ccccgagttg	ctgagcacgg	cccggcttcg	ggtgcggggc	1200
25	tccgtacggg	gcgtggcgcg	gggctcgccg	tgccgggcgg	ggggtggcgg	caggtggggg	1260
	tgccgggcgg	ggcggggccg	cctcgggccg	gggagggctc	gggggagggg	cgcggcggcc	1320
30	cccggagcgc	cggcggctgt	cgaggcgcgg	cgagccgcag	ccattgcctt	ttatggtaat	1380
	cgtgcgagag	ggcgcaggga	cttcctttgt	cccaaatctg	tgcggagccg	aaatctggga	1440
	ggcgccgccg	caccccctct	agcgggcgcg	gggcgaagcg	gtgcggcgcc	ggcaggaagg	1500
35	aaatgggcgg	ggagggcctt	cgtgcgtcgc	cgcgccgccg	tccccttctc	cctctccagc	1560
	ctcggggctg	tccgcggggg	gacggctgcc	ttcggggggg	acggggcagg	gcggggttcg	1620
	gattatggag	tgtgaccggc	ggctctagag	cctctgctaa	ccatgttcat	gccttcttct	1680
40	ttttcctaca	gatccttaat	taataatacg	actcactata	ggggccgcca	ccatgggacc	1740
	taagaaaaag	aggaaggtgg	cggccgctga	ctacaaggat	gacgacgata	aaccaggtgg	1800
45	cggaggtagt	ggcggaggtg	gggtacccgc	cagtccagca	gcccaggtgg	atctgagaac	1860
40	cctcggctac	agccagcagc	agcaggagaa	gatcaaacca	aaggtgcggt	ccaccgtcgc	1920
	tcagcaccat	gaagcactgg	tggggcacgg	tttcacacac	gcccatattg	tggctctgtc	1980
50	tcagcatccc	gctgcactcg	ggactgtggc	cgtcaaatat	caggacatga	tcgccgctct	2040
	gcctgaggca	acccacgaag	ccattgtggg	cgtcggaaag	cagtggagcg	gtgccagagc	2100
	actcgaagca	ctcctcaccg	tcgccgggga	actgcggggt	ccaccactcc	agtccggact	2160
55	ggacactgga	cagctgctga	agatcgctaa	acgcggcgga	gtgacagctg	tggaagctgt	2220
	gcacgcttgg	aggaatgctc	tgacaggagc	cccactgaat	cttacacccc	agcaggtggt	2280
60	ggccattgct	agcaacaatg	ggggcaagca	ggctctggag	acagtgcagc	gcctgctgcc	2340
60	tgtgctgtgc	caggctcatg	gcctcacacc	tcagcaggtc	gtcgccattg	cttctaacaa	2400

	tggagggaag	caggctctgg	agactgtgca	gagactgctg	ccagtgctgt	gccaggccca	2460
5	tggcctaaca	ccccagcagg	tggtggccat	cgccagccac	gacggcggca	agcaggccct	2520
	ggaaaccgtg	cagaggctgc	tgcctgtgct	gtgccaggct	catggcctga	cacctcagca	2580
10	ggtcgtcgcc	atcgccagcc	acgacggcgg	caagcaggcc	ctggaaaccg	tgcagaggct	2640
	gctgccagtg	ctgtgccagg	cccatggctt	aacaccccag	caggtggtgg	ccatcgctag	2700
	tcatgacggg	ggcaaacagg	ctctggaaac	agtacagcgg	ctgttacctg	tgctgtgcca	2760
15	ggctcatggc	ttgacacctc	agcaggtcgt	cgctatcgcc	tctaataagg	ggggcaagca	2820
	ggctctggag	acagtacagc	gcctgttacc	agtgctgtgc	caggcccacg	ggctcacacc	2880
	ccagcaggtg	gtggcaattg	cttccaataa	gggcggaaaa	caggctctgg	aaaccgtcca	2940
20	gaggctgctg	cctgtgctgt	gccaggctca	cggtctaaca	ccccagcagg	tggtggccat	3000
	cgcttccaac	ggagggggca	aacaggctct	ggaaacagtg	cagaggctgc	tgcctgtgct	3060
25	gtgccaggct	catggcctca	cacctgagca	ggtcgtcgcc	atcgccagca	acatcggcgg	3120
	caagcaggcc	ctggaaaccg	tgcagaggct	gctgccagtg	ctgtgccagg	cccatggcct	3180
	aacaccccag	caggtggtgg	caattgcttc	caataagggc	ggaaaacagg	ctctggaaac	3240
30	cgtccagagg	ctgctgcctg	tgctgtgcca	ggctcatggc	ctgacacctc	agcaggtcgt	3300
	cgcaatcgcc	tccaatggcg	gagggaagca	ggccctggaa	acggtgcaga	gactgttacc	3360
35	agtgctgtgc	caggcccatg	gcttaacacc	ccagcaggtg	gtggcaatcg	cctctaataa	3420
33	gggagggaag	caggccctgg	aaaccgtgca	gagactgtta	cctgtgctgt	gccaggctca	3480
	tggcttgaca	cctcagcagg	tegtegetat	cgctagtcat	gatggcggaa	aacaggctct	3540
40	ggaaactgtg	cagcggctgc	tcccagtgct	gtgccaggcc	cacgggctca	caccccagca	3600
	ggtggtggcc	atcgccagca	acaagggcgg	caagcaggcc	ctggaaaccg	tgcagaggct	3660
	gctgcctgtg	ctgtgccagg	ctcacggcct	gaccccacag	caggtcgtcg	ctattgcttc	3720
45	taatggcgga	gggcggcctg	ctctggagag	cattgtggct	cagctgtcca	ggcccgatcc	3780
	tgccctggct	agatccgcac	tcactaacga	tcatctggtc	gctctcgctt	gcctcggtgg	3840
50	acggcccgct	ctggacgcag	tcaaaaaggg	tctcccccat	gctcccgcac	tgatcaagag	3900
	aaccaacagg	agaattcctg	agggatccga	tcgtttaaac	gaaggcatca	aaagcaacat	3960
	ctccctcctg	aaagacgaac	tccgggggca	gattagccac	attagtcacg	aatacctctc	4020
55	cctcatcgac	ctggctttcg	atagcaagca	gaacaggctc	tttgagatga	aagtgctgga	4080
	actgctcgtc	aatgagtacg	ggttcaaggg	tcgacacctc	ggcggatcta	ggaaaccaga	4140
60	cggcatcgtg	tatagtacca	cactggaaga	caactttggg	atcattgtgg	ataccaaggc	4200
60	atactctgag	ggttatagtc	tgcccatttc	acaggccgac	gagatggaac	ggtacgtgcg	4260

	cgagaactca	aatagagatg	aggaagtcaa	ccctaacaag	tggtgggaga	acttctctga	4320
5	ggaagtgaag	aaatactact	tcgtctttat	cagcgggtcc	ttcaagggta	aatttgagga	4380
	acagctcagg	agactgagca	tgactaccgg	cgtgaatggc	agcgccgtca	acgtggtcaa	4440
40	tctgctcctg	ggcgctgaaa	agattcggag	cggagagatg	accatcgaag	agctggagag	4500
10	ggcaatgttt	aataatagcg	agtttatcct	gaaatactga	acgcgtaaat	gattgcagat	4560
	ccactagttc	tagaattcca	gctgagcgcc	ggtcgctacc	attaccagtt	ggtctggtgt	4620
15	caaaaataat	aataaccggg	caggggggat	ctgcatggat	ctttgtgaag	gaaccttact	4680
	tctgtggtgt	gacataattg	gacaaactac	ctacagagat	ttaaagctct	aaggtaaata	4740
	taaaattttt	aagtgtataa	tgtgttaaac	tactgattct	aattgtttgt	gtattttaga	4800
20	ttccaaccta	tggaactgat	gaatgggagc	agtggtggaa	tgccagatcc	agacatgata	4860
	agatacattg	atgagtttgg	acaaaccaca	actagaatgc	agtgaaaaaa	atgctttatt	4920
25	tgtgaaattt	gtgatgctat	tgctttattt	gtaaccatta	taagctgcaa	taaacaagtt	4980
25	aacaacaaca	attgcattca	ttttatgttt	caggttcagg	gggaggtgtg	ggaggttttt	5040
	taaagcaagt	aaaacctcta	caaatgtggt	atggctgatt	atgatctgcg	geegeeactg	5100
30	gccgtcgttt	tacaacgtcg	tgactgggaa	aaccctggcg	ttacccaact	taatcgcctt	5160
	gcagcacatc	cccctttcgc	cagctggcgt	aatagcgaag	aggcccgcac	cgatcgccct	5220
	tcccaacagt	tgcgcagcct	gaatggcgaa	tggaacgcgc	cctgtagcgg	cgcattaagc	5280
35	gcggcgggtg	tggtggttac	gcgcagcgtg	accgctacac	ttgccagcgc	cctagcgccc	5340
	gctcctttcg	ctttcttccc	ttcctttctc	gccacgttcg	ccggctttcc	ccgtcaagct	5400
40	ctaaatcggg	ggatacattt	agggttccga	tttagtgctt	tacggcacct	cgaccccaaa	5460
40	aaacttgatt	agggtgatgg	ttcacgtagt	gggccatcgc	cctgatagac	ggtttttcgc	5520
	cctttgacgt	tggagtccac	gttctttaat	agtggactct	tgttccaaac	tggaacaaca	5580
45	ctcaacccta	tctcggtcta	ttcttttgat	ttataaggga	ttttgccgat	ttcggcctat	5640
	tggttaaaaa	atgagctgat	ttaacaaaaa	tttaacgcga	attttaacaa	aatattaacg	5700
	cttacaattt	aggtggcact	tttcggggaa	atgtgcgcgg	aacccctatt	tgtttatttt	5760
50	tctaaataca	ttcaaatatg	tatccgctca	tgagacaata	accctgataa	atgcttcaat	5820
	aatattgaaa	aaggaagagt	atgagtattc	aacatttccg	tgtcgccctt	attccctttt	5880
	ttgcggcatt	ttgccttcct	gtttttgctc	acccagaaac	gctggtgaaa	gtaaaagatg	5940
55	ctgaagatca	gttgggtgca	cgagtgggtt	acatcgaact	ggatctcaac	agcggtaaga	6000
	tccttgagag	ttttcgcccc	gaagaacgtt	ttccaatgat	gagcactttt	aaagttctgc	6060
60	tatgtggcgc	ggtattatcc	cgtattgacg	ccgggcaaga	gcaactcggt	cgccgcatac	6120
	actattctca	gaatgacttg	gttgagtact	caccagtcac	agaaaagcat	cttacggatg	6180

	gcatgacagt	aagagaatta	tgcagtgctg	ccataaccat	gagtgataac	actgeggeea	6240
5	acttacttct	gacaacgatc	ggaggaccga	aggagctaac	cgcttttttg	cacaacatgg	6300
	gggatcatgt	aactcgcctt	gatcgttggg	aaccggagct	gaatgaagcc	ataccaaacg	6360
10	acgagcgtga	caccacgatg	cctgtagcaa	tggcaacaac	gttgcgcaaa	ctattaactg	6420
	gcgaactact	tactctagct	tcccggcaac	aattaataga	ctggatggag	gcggataaag	6480
	ttgcaggacc	acttctgcgc	tcggcccttc	cggctggctg	gtttattgct	gataaatctg	6540
15	gagccggtga	gcgtgggtct	cgcggtatca	ttgcagcact	ggggccagat	ggtaagccct	6600
	cccgtatcgt	agttatctac	acgacgggga	gtcaggcaac	tatggatgaa	cgaaatagac	6660
20	agatcgctga	gataggtgcc	tcactgatta	agcattggta	actgtcagac	caagtttact	6720
	catatatact	ttagattgat	ttaaaacttc	atttttaatt	taaaaggatc	taggtgaaga	6780
	tcctttttga	taatctcatg	accaaaatcc	cttaacgtga	gttttcgttc	cactgagcgt	6840
25	cagaccccgt	agaaaagatc	aaaggatctt	cttgagatcc	tttttttctg	cgcgtaatct	6900
	gctgcttgca	aacaaaaaa	ccaccgctac	cagcggtggt	ttgtttgccg	gatcaagagc	6960
30	taccaactct	ttttccgaag	gtaactggct	tcagcagagc	gcagatacca	aatactgtcc	7020
30	ttctagtgta	gccgtagtta	ggccaccact	tcaagaactc	tgtagcaccg	cctacatacc	7080
	tegetetget	aatcctgtta	ccagtggctg	ctgccagtgg	cgataagtcg	tgtcttaccg	7140
35	ggttggactc	aagacgatag	ttaccggata	aggcgcagcg	gtcgggctga	acggggggtt	7200
	cgtgcacaca	gcccagcttg	gagcgaacga	cctacaccga	actgagatac	ctacagcgtg	7260
	agctatgaga	aagcgccacg	cttcccgaag	ggagaaaggc	ggacaggtat	ccggtaagcg	7320
40	gcagggtcgg	aacaggagag	cgcacgaggg	agcttccagg	gggaaacgcc	tggtatcttt	7380
	atagtcctgt	cgggtttcgc	cacctctgac	ttgagcgtcg	atttttgtga	tgctcgtcag	7440
45	gggggcggag	cctatggaaa	aacgccagca	acgcggcctt	tttacggttc	ctggcctttt	7500
	gctggccttt	tgctcacatg	ttctttcctg	cgttatcccc	tgattctgtg	gataaccgta	7560
	ttaccgcctt	tgagtgagct	gataccgctc	gccgcagccg	aacgaccgag	cgcagcgagt	7620
50	cagtgagcga	ggaagcggaa	gagcgcccaa	tacgcaaacc	gcctctcccc	gcgcgttggc	7680
	cgattcatta	atgcagctgg	cacgacaggt	ttcccgactg	gaaagcgggc	agtgagcgca	7740
55	acgcaattaa	tgtgagttag	ctcactcatt	aggcacccca	ggctttacac	tttatgcttc	7800
	cggctcgtat	gttgtgtgga	attgtgagcg	gataacaatt	tcacacagga	aacagctatg	7860
	accatga						7867
60							

5	<210> 57 <211> 935 <212> PRT <213> Secuencia art	tificial															
10	<220> <223> RabChtTal2-0 <400> 57	Clo05	1														
		Met 1	Gly	Pro	Lys	Lys 5	Lys	Arg	Lys	Val	Ala 10	Ala	Ala	Asp	Tyr	Lys 15	Asp
15		Asp	Asp	Asp	Lys 20	Pro	Gly	Gly	Gly	Gly 25	Ser	Gly	Gly	Gly	Gly 30	Val	Pro
20		Ala	Ser	Pro 35	Ala	Ala	Gln	Val	Asp 40	Leu	Arg	Thr	Leu	Gly 45	Tyr	Ser	Gln
25		Gln	Gln 50	Gln	Glu	Lys	Ile	Lys 55	Pro	Lys	Val	Arg	Ser 60	Thr	Val	Ala	Gln
30		His 65	His	Glu	Ala	Leu	Val 70	Gly	His	Gly	Phe	Thr 75	His	Ala	His	Ile	Val 80
		Ala	Leu	Ser	Gln	His 85	Pro	Ala	Ala	Leu	Gly 90	Thr	Val	Ala	Val	Lys 95	Tyr
35		Gln	Asp	Met	Ile 100	Ala	Ala	Leu	Pro	Glu 105	Ala	Thr	His	Glu	Ala 110	Ile	Val
40		Gly	Val	Gly 115	Lys	Gln	Trp	Ser	Gly 120	Ala	Arg	Ala	Leu	Glu 125	Ala	Leu	Leu
45		Thr	Val 130	Ala	Gly	Glu	Leu	Arg 135	Gly	Pro	Pro	Leu	Gln 140	Ser	Gly	Leu	Asp
50		Thr 145	Gly	Gln	Leu	Leu	Lys 150	Ile	Ala	Lys	Arg	Gly 155	Gly	Val	Thr	Ala	Val 160
50		Glu	Ala	Val	His	Ala 165	Trp	Arg	Asn	Ala	Leu 170	Thr	Gly	Ala	Pro	Leu 175	Asn
55		Leu	Thr	Pro	Gln 180	Gln	Val	Val	Ala	Ile 185	Ala	Ser	Asn	Asn	Gly 190	Gly	Lys
60		Gln	Ala	Leu 195	Glu	Thr	Val	Gln	Arg 200	Leu	Leu	Pro	Val	Leu 205	Cys	Gln	Ala
65		His	Gly 210	Leu	Thr	Pro	Gln	Gln 215	Val	Val	Ala	Ile	Ala 220	Ser	Asn	Asn	Gly

5	Gly 225	Lys	Gln	Ala	Leu	Glu 230	Thr	Val	Gln	Arg	Leu 235	Leu	Pro	Val	Leu	Cys 240
	Gln	Ala	His	Gly	Leu 245	Thr	Pro	Gln	Gln	Val 250	Val	Ala	Ile	Ala	Ser 255	His
10	Asp	Gly	Gly	Lys 260	Gln	Ala	Leu	Glu	Thr 265	Val	Gln	Arg	Leu	Leu 270	Pro	Val
15	Leu	Cys	Gln 275	Ala	His	Gly	Leu	Thr 280	Pro	Gln	Gln	Val	Val 285	Ala	Ile	Ala
20	Ser	His 290	Asp	Gly	Gly	Lys	Gln 295	Ala	Leu	Glu	Thr	Val 300	Gln	Arg	Leu	Leu
25	Pro 305	Val	Leu	Cys	Gln	Ala 310	His	Gly	Leu	Thr	Pro 315	Gln	Gln	Val	Val	Ala 320
	Ile	Ala	Ser	His	Asp 325	Gly	Gly	Lys	Gln	Ala 330	Leu	Glu	Thr	Val	Gln 335	Arg
30	Leu	Leu	Pro	Val 340	Leu	Cys	Gln	Ala	His 345	Gly	Leu	Thr	Pro	Gln 350	Gln	Val
35	Val	Ala	Ile 355	Ala	Ser	Asn	Lys	Gly 360	Gly	Lys	Gln	Ala	Leu 365	Glu	Thr	Val
40	Gln	A rg 370	Leu	Leu	Pro	Val	Leu 375	Cys	Gln	Ala	His	Gly 380	Leu	Thr	Pro	Gln
45	Gln 385	Val	Val	Ala	Ile	Ala 390	Ser	Asn	Lys	Gly	Gly 395	Lys	Gln	Ala	Leu	Glu 400
	Thr	Val	Gln	Arg	Leu 405	Leu	Pro	Val	Leu	Cys 410	Gln	Ala	His	Gly	Leu 415	Thr
50	Pro	Gln	Gln	Val 420	Val	Ala	Ile	Ala	Ser 425	Asn	Gly	Gly	Gly	Lys 430	Gln	Ala
55	Leu	Glu	Thr 435	Val	Gln	Arg	Leu	Leu 440	Pro	Val	Leu	Cys	Gln 445	Ala	His	Gly
60	Leu	Thr 450	Pro	Glu	Gln	Val	Val 455	Ala	Ile	Ala	Ser	Asn 460	Ile	Gly	Gly	Lys
	Gln 465	Ala	Leu	Glu	Thr	Val 470	Gln	Arg	Leu	Leu	Pro 475	Val	Leu	Cys	Gln	Ala 480
65																

5	His	Gly	Leu	Thr	Pro 485	Gln	Gln	Val	Val	Ala 490	Ile	Ala	Ser	Asn	Lys 495	Gly
	Gly	Lys	Gln	A la 500	Leu	Glu	Thr	Val	Gln 505	Arg	Leu	Leu	Pro	Val 510	Leu	Cys
10	Gln	Ala	His 515	Gly	Leu	Thr	Pro	Gln 520	Gln	Val	Val	Ala	Ile 525	Ala	Ser	Asn
15	Gly	Gly 530	Gly	Lys	Gln	Ala	Leu 535	Glu	Thr	Val	Gln	Arg 540	Leu	Leu	Pro	Val
20	Leu 545	Cys	Gln	Ala	His	Gly 550	Leu	Thr	Pro	Gln	Gln 555	Val	Val	Ala	Ile	Ala 560
	Ser	Asn	Lys	Gly	Gly 565	Lys	Gln	Ala	Leu	Glu 570	Thr	Val	Gln	Arg	Leu 575	Leu
25	Pro	Val	Leu	Cys 580	Gln	Ala	His	Gly	Leu 585	Thr	Pro	Gln	Gln	Val 590	Val	Ala
30	Ile	Ala	Ser 595	His	Asp	Gly	Gly	Lys 600	Gln	Ala	Leu	Glu	Thr 605	Val	Gln	Arg
35	Leu	Leu 610	Pro	Val	Leu	Cys	Gln 615	Ala	His	Gly	Leu	Thr 620	Pro	Gln	Gln	Val
40	Val 625	Ala	Ile	Ala	Ser	Asn 630	Lys	Gly	Gly	Lys	Gln 635	Ala	Leu	Glu	Thr	Val 640
	Gln	Arg	Leu	Leu	Pro 645	Val	Leu	Cys	Gln	Ala 650	His	Gly	Leu	Thr	Pro 655	Gln
45	Gln	Val	Val	A la 660	Ile	Ala	Ser	Asn	Gly 665	Gly	Gly	Arg	Pro	Ala 670	Leu	Glu
50	Ser	Ile	Val 675	Ala	Gln	Leu	Ser	A rg 680	Pro	Asp	Pro	Ala	Leu 685	Ala	Arg	Ser
55	Ala	Leu 690	Thr	Asn	Asp	His	Leu 695	Val	Ala	Leu	Ala	Cys 700	Leu	Gly	Gly	Arg
	Pro 705	Ala	Leu	Asp	Ala	Val 710	Lys	Lys	Gly	Leu	Pro 715	His	Ala	Pro	Ala	Leu 720
60	Ile	Lys	Arg	Thr	Asn 725	Arg	Arg	Ile	Pro	Glu 730	Gly	Ser	Asp	Arg	Leu 735	Asn

		Glu	Gly	Ile	Lys 740	Ser	Asn	Ile	Ser	Leu 745	Leu	Lys	Asp	Glu	Leu 750	Arg	Gly
5		Gln	Ile	Ser 755	His	Ile	Ser	His	Glu 760	Tyr	Leu	Ser	Leu	Ile 765	Asp	Leu	Ala
10		Phe	Asp 770	Ser	Lys	Gln	Asn	A rg 775	Leu	Phe	Glu	Met	Lys 780	Val	Leu	Glu	Leu
15		Leu 785	Val	Asn	Glu	Tyr	Gly 790	Phe	Lys	Gly	Arg	His 795	Leu	Gly	Gly	Ser	A rg 800
20		Lys	Pro	Asp	Gly	Ile 805	Val	Tyr	Ser	Thr	Thr 810	Leu	Glu	Asp	Asn	Phe 815	Gly
		Ile	Ile	Val	Asp 820	Thr	Lys	Ala	Tyr	Ser 825	Glu	Gly	Tyr	Ser	Leu 830	Pro	Ile
25		Ser	Gln	Ala 835	Asp	Glu	Met	Glu	Arg 840	Tyr	Val	Arg	Glu	Asn 845	Ser	Asn	Arg
30		Asp	Glu 850	Glu	Val	Asn	Pro	Asn 855	Lys	Trp	Trp	Glu	As n 860	Phe	Ser	Glu	Glu
35		Val 865	Lys	Lys	Tyr	Tyr	Phe 870	Val	Phe	Ile	Ser	Gly 875	Ser	Phe	Lys	Gly	Lys 880
		Phe	Glu	Glu	Gln	Leu 885	Arg	Arg	Leu	Ser	Met 890	Thr	Thr	Gly	Val	Asn 895	Gly
40		Ser	Ala	Val	Asn 900	Val	Val	Asn	Leu	Leu 905	Leu	Gly	Ala	Glu	Lys 910	Ile	Arg
45		Ser	Gly	Glu 915	Met	Thr	Ile	Glu	Glu 920	Leu	Glu	Arg	Ala	Met 925	Phe	Asn	Asn
50		Ser	Glu 930	Phe	Ile	Leu	Lys	Tyr 935									
55	<210> 58 <211> 6607 <212> ADN <213> Secuencia art	ificial															
	<220> <223> pRab38-chtTA	AL															
60	<400> 58																

5	caccgcatta	ccctgggcgt	tgaaaccgaa	gaagacctgg	atttgaaata	ggcgttttct	60
	ttacatttct	aaagtgggac	tcctcacttg	taaaaggaaa	aataatgata	cttttaagac	120
	ttccaggatg	actaaatggt	gtgtatgaga	agatttataa	acatctgccg	ctacttacaa	180
10	tgataagacc	acttgtgtgt	tgttcagctt	ggagaattta	ggataggagt	ggaggctgaa	240
	agaaaagtaa	gcccttagca	tttcctctca	ggtggcctct	actttaggtc	attaacagtt	300
	gaataggcgc	taagagatag	cattaccact	ttatagaagc	ccaggcaaaa	ggagattaaa	360
15	gggtttgcct	aaattctttc	aactctaagg	gccagagaag	acctaagtct	actgctttgc	420
	tgtttctcaa	ggtctcccca	actttacaac	actgtgtggg	tggcaacagg	gcttaatagc	480
20	ctcagaagac	ctgggtattt	ttcgacactc	agttctctcc	ccggcagaac	gtggaaaaca	540
20	aaatccacat	aagtttgtgt	catggacggg	aggcgagaga	aaaatctctg	tgaaaggagt	600
	aaagcactgt	gcaaatacca	gcttgacagg	cagtagcact	ggggtcccgg	gtcctttagc	660
25	ttccagtccc	aggagttgct	cttgtctcct	cccactctgg	agtccgcaga	gtaggaagga	720
	ggattaaacc	cgggggagga	gttccgcacc	agctccctat	cctgcgccag	cacgcctagc	780
	ctaagcgccc	acatagagct	ccggtctccg	tcggtgccca	gccccggctg	tgcttcccag	840
30	agcaagctcc	aggctccgca	agacccgcgg	gcctccagga	tgcagacacc	tcacaaggag	900
	cacctgtaca	agctgctggt	gatcggcgac	ctggtagtgg	gcaagaccag	cattattaaa	960
	cggtacgtgc	atcaaaattt	ctcctctcat	tatcgagcca	ccattggtgt	ggacttcgcg	1020
35	ctgaaggtgc	tccactggga	cccagagacg	gtggtgcgct	tgcagctctg	ggacattgct	1080
	ggtgagcgat	cagagcagcg	cgcaacgggt	gagggtggag	tgagccagtg	aggagttcgg	1140
40	gggtgaaggt	tcggggagtg	gaaaatgact	tttcagtcgg	ttccagtccc	gggacccttg	1200
40	agtgcaatca	agcaggagat	ccggatcgcc	tgggcgctcc	actcttggaa	agtttggctt	1260
	aatggcttgg	aaacctgatt	tcaaagaaat	ggaagtgttt	tctttcttt	ctttcctttt	1320
45	tttttttt	tttttttttt	ttgctgttgt	ttctgttgga	gtcgtcccca	ctctacctgt	1380
	aacttctaga	taacttcgct	ggctctcact	ggctgtgaga	aagcgaacca	ctttctcctg	1440
	ggattcttgg	gtgcagagaa	ggctgtcgcc	tggactcaca	aggagattgt	agtcgcattc	1500
50	ttgtttcatt	ctagtccttt	tctggacaca	ggtagccgcg	acttggccca	gagtatctca	1560
	cgtggctttc	atccttcgtg	tttagagggg	aagcccctag	gaaatttaag	aaggagcagg	1620
	attatcttag	gaatttagtt	tctttcaaat	ctcactacta	tcatctcctt	gcttattggc	1680
55	ctcttcagtc	agaaaaattt	gagatgctaa	atttgtatac	atctagaacg	aactatctct	1740
	tctcactcca	ctcccctctt	ccccatctct	cttccgtctc	cctccatcct	tggctatctc	1800
60	ttcttcactt	tccatttcaa	acaggagact	gtgtatgttt	tttaggaaaa	cattaaaaaa	1860
50	aaaaccacaa	aaacaaaaac	aaaacggaga	cagggtcccg	tcatgtaact	ctgctaacct	1920

5	•	atateaaget	gacettgace	teatagagae	ccacttgcct	etgeeteeet	agaggcaagg	1300
	•	gtcggggtta	tggtgatgtt	aatgtcgttt	gctttaagat	tccttgattt	gatcttggtg	2040
	,	tattttttga	gaaatctaaa	gtatgaaatc	agagtttgac	taacagcttc	taccagctcc	2100
10	•	tagccacaat	aaagactgag	gcaggctata	gttagtgctc	aatactgggt	cctacctggc	2160
	•	tgcttgtaac	ctgggcatgc	ctagcattct	agatgctaac	tcaccaaagc	agtagcattt	2220
	1	taagctgcaa	atggctaggc	agcgacagct	caagaatctt	cttgctttgg	agttttaaac	2280
15	,	tccaatgaga	ttttccatga	tccctttcaa	ataaccctac	ttaatctctc	ttcatagccc	2340
		acagtaccaa	gaagcctttg	ataagctctg	gattgaaaag	aagcagttct	ttttcaaaag	2400
20	•	atgtgctcat	ttgaactagt	gcatttccct	ggaaacactt	tgccaggact	tgagatgggc	2460
	•	actaagaagg	aaaattcctc	aaaggacatg	tacagtcttg	agatgcattc	gcttctgtag	2520
	•	ccatgagctt	gctggtcttg	agataaggtt	agttggtgta	gctaggttca	tggtttggag	2580
25	,	tctttggcag	ttctagagaa	gcatgagcta	ttagagactt	ggagattgca	tcaagtagag	2640
	•	ccttttgagc	ttttcactgt	gtacctgggc	cctctgtcgc	tgcacgtttt	agtgtctgaa	2700
	•	atgtctttca	gctgtagcag	ttttctcggg	accccagttt	aaaatagctt	actgtttaaa	2760
30		agatgtagct	gtagctagca	ttattgaact	agcataatta	tagtctaaat	agcattatgt	2820
		cttcagcctt	gttatatgtt	ggtgagtttt	agtttcctct	tctaaacggg	aagaacagaa	2880
25	•	agatgtaatg	attctgagct	tccagagtga	gacacctcta	gagagaaata	ccttcttctg	2940
35	•	aagactaccg	tgtgattaca	gataaattct	gatatctttg	tttagctttt	gatatctata	3000
		aacagggagt	gtattttatc	tctccaaatg	agagaagaat	aaacaataat	gcaaggtaaa	3060
40	•	ggcaatagtg	ctacactcta	ggagttacca	ctctttgtac	atttatttat	aaatactaag	3120
		caagaggaac	atgccataca	tacactgact	aagtcctaac	aagtggcagt	tcttatatca	3180
	•	cacatttatc	ttgccctcaa	atgccagtcc	agcatcagtt	tagtctcatg	catttggcag	3240
45		cataaggcag	tttgagttcc	acacttgctc	tcagaagcaa	tttaactccc	acacttggga	3300
		atcctttcct	aagccacagt	ttcagaccaa	agttttggtg	aaggctataa	tcacagaagt	3360
	•	ctgcacaagt	agggagtctg	aaggatctga	gctccattca	gcagtcagag	cggcatccaa	3420
50	•	ccccaaggta	atgctcagct	cactttgata	acttcaagct	caaaggccct	gaactgctga	3480
	•	gttggaggtt	gaaagatgtt	tgggtaaaag	caaggtaatt	ggcggatagg	atggttgtaa	3540
55	•	cgtaattgtt	tcaagttgta	ttagagacct	ctgggttcta	aggggatatg	aaatccaacc	3600
55	,	tccactctcc	actgagattc	aagttaggtt	aagtatgcct	ttgagtaccc	tcaagtcaca	3660
	•	gcatgccact	ctccttttct	taactctaat	atgtatctat	aaagaacggg	tagtagtcaa	3720
60	•	ctgagtcgac	ggtatcgata	agcttgatcc	agcttttgtt	ccctttagtg	agggttaatt	3780

5	gcgcgcttgg	cgtaatcatg	gtcatagctg	tttcctgtgt	gaaattgtta	tccgctcaca	3840
-	attccacaca	acatacgagc	cggaagcata	aagtgtaaag	cctggggtgc	ctaatgagtg	3900
	agctaactca	cattaattgc	gttgcgctca	ctgcccgctt	tccagtcggg	aaacctgtcg	3960
10	tgccagctgc	attaatgaat	cggccaacgc	gcggggagag	gcggtttgcg	tattgggcgc	4020
	tcttccgctt	cctcgctcac	tgactcgctg	cgctcggtcg	ttcggctgcg	gcgagcggta	4080
	tcagctcact	caaaggcggt	aatacggtta	tccacagaat	caggggataa	cgcaggaaag	4140
15	aacatgtgag	caaaaggcca	gcaaaaggcc	aggaaccgta	aaaaggccgc	gttgctggcg	4200
	tttttccata	ggctccgccc	ccctgacgag	catcacaaaa	atcgacgctc	aagtcagagg	4260
	tggcgaaacc	cgacaggact	ataaagatac	caggcgtttc	cccctggaag	ctccctcgtg	4320
20	cgctctcctg	ttccgaccct	gccgcttacc	ggatacctgt	ccgcctttct	cccttcggga	4380
	agcgtggcgc	tttctcatag	ctcacgctgt	aggtatctca	gttcggtgta	ggtcgttcgc	4440
25	tccaagctgg	gctgtgtgca	cgaacccccc	gttcagcccg	accgctgcgc	cttatccggt	4500
20	aactatcgtc	ttgagtccaa	cccggtaaga	cacgacttat	cgccactggc	agcagccact	4560
	ggtaacagga	ttagcagagc	gaggtatgta	ggcggtgcta	cagagttctt	gaagtggtgg	4620
30	cctaactacg	gctacactag	aaggacagta	tttggtatct	gcgctctgct	gaagccagtt	4680
	accttcggaa	aaagagttgg	tagctcttga	tccggcaaac	aaaccaccgc	tggtagcggt	4740
	ggttttttg	tttgcaagca	gcagattacg	cgcagaaaaa	aaggatctca	agaagatcct	4800
35	ttgatctttt	ctacggggtc	tgacgctcag	tggaacgaaa	actcacgtta	agggattttg	4860
	gtcatgagat	tatcaaaaag	gatcttcacc	tagatccttt	taaattaaaa	atgaagtttt	4920
	aaatcaatct	aaagtatata	tgagtaaact	tggtctgaca	gttaccaatg	cttaatcagt	4980
40	gaggcaccta	tctcagcgat	ctgtctattt	cgttcatcca	tagttgcctg	actccccgtc	5040
	gtgtagataa	ctacgatacg	ggagggctta	ccatctggcc	ccagtgctgc	aatgataccg	5100
45	cgagacccac	gctcaccggc	tccagattta	tcagcaataa	accagccagc	cggaagggcc	5160
40	gagcgcagaa	gtggtcctgc	aactttatcc	gcctccatcc	agtctattaa	ttgttgccgg	5220
	gaagctagag	taagtagttc	gccagttaat	agtttgcgca	acgttgttgc	cattgctaca	5280
50	ggcatcgtgg	tgtcacgctc	gtcgtttggt	atggcttcat	tcagctccgg	ttcccaacga	5340
	tcaaggcgag	ttacatgatc	ccccatgttg	tgcaaaaaag	cggttagctc	cttcggtcct	5400
	ccgatcgttg	tcagaagtaa	gttggccgca	gtgttatcac	tcatggttat	ggcagcactg	5460
55	cataattctc	ttactgtcat	gccatccgta	agatgctttt	ctgtgactgg	tgagtactca	5520
	accaagtcat	tctgagaata	gtgtatgcgg	cgaccgagtt	gctcttgccc	ggcgtcaata	5580
	cgggataata	ccgcgccaca	tagcagaact	ttaaaagtgc	tcatcattgg	aaaacgttct	5640
60	tcggggcgaa	aactctcaag	gatettaceg	ctgttgagat	ccagttcgat	gtaacccact	5700

	cgtgcaccca actgatcttc agcatctttt actttcacca gcgtttctgg gtgagcaaaa	5/60
	acaggaaggc aaaatgccgc aaaaaaggga ataagggcga cacggaaatg ttgaatactc	5820
5	atactcttcc tttttcaata ttattgaagc atttatcagg gttattgtct catgagcgga	5880
	tacatatttg aatgtattta gaaaaataaa caaatagggg ttccgcgcac atttccccga	5940
10	aaagtgccac ctaaattgta agcgttaata ttttgttaaa attcgcgtta aatttttgtt	6000
10	aaatcagctc attttttaac caataggccg aaatcggcaa aatcccttat aaatcaaaag	6060
	aatagaccga gatagggttg agtgttgttc cagtttggaa caagagtcca ctattaaaga	6120
15	acgtggactc caacgtcaaa gggcgaaaaa ccgtctatca gggcgatggc ccactacgtg	6180
	aaccatcacc ctaatcaagt tttttggggt cgaggtgccg taaagcacta aatcggaacc	6240
20	ctaaagggag cccccgattt agagcttgac ggggaaagcc ggcgaacgtg gcgagaaagg	6300
20	aagggaagaa agcgaaagga gcgggcgcta gggcgctggc aagtgtagcg gtcacgctgc	6360
	gegtaaceae cacaceegee gegettaatg egeegetaca gggegegtee cattegeeat	6420
25	tcaggctgcg caactgttgg gaagggcgat cggtgcgggc ctcttcgcta ttacgccagc	6480
	tggcgaaagg gggatgtgct gcaaggcgat taagttgggt aacgccaggg ttttcccagt	6540
	cacgacgttg taaaacgacg gccagtgagc gcgcgtaata cgactcacta tagggcgaat	6600
30	tggagct	6607
35 40	<210> 59 <211> 202 <212> ADN <213> Mus musculus <400> 59	
40	atgcagacac ctcacaagga gcacctgtac aagctgctgg tgatcggcga cctgggtgtg	60
	ggcaagacca gcattatcaa gcgctatgtg caccaaaact tctcctcgca ctaccgggcc	120
45	accattggtg tggacttcgc gctgaaggtg ctccactggg acccagagac ggtggtgcgc	180
	ttgcagctct gggacattgc tg	202
50	<210> 60 <211> 8218 <212> ADN <213> Secuencia artificial	202
55	<220> <223> pRab38-chtTAL-neo	
	<400> 60	
60	caccgcatta ccctgggcgt tgaaaccgaa gaagacctgg atttgaaata ggcgttttct	60
	ttacatttct aaagtgggac tcctcacttg taaaaggaaa aataatgata cttttaagac	120
05	ttccaggatg actaaatggt gtgtatgaga agatttataa acatctgccg ctacttacaa	180
65		

	tgataagacc	acttgtgtgt	tgttcagctt	ggagaattta	ggataggagt	ggaggctgaa	240
5	agaaaagtaa	gcccttagca	tttcctctca	ggtggcctct	actttaggtc	attaacagtt	300
	gaataggcgc	taagagatag	cattaccact	ttatagaagc	ccaggcaaaa	ggagattaaa	360
	gggtttgcct	aaattctttc	aactctaagg	gccagagaag	acctaagtct	actgctttgc	420
10	tgtttctcaa	ggtctcccca	actttacaac	actgtgtggg	tggcaacagg	gcttaatagc	480
	ctcagaagac	ctgggtattt	ttcgacactc	agttctctcc	ccggcagaac	gtggaaaaca	540
	aaatccacat	aagtttgtgt	catggacggg	aggcgagaga	aaaatctctg	tgaaaggagt	600
15	aaagcactgt	gcaaatacca	gcttgacagg	cagtagcact	ggggtcccgg	gtcctttagc	660
	ttccagtccc	aggagttgct	cttgtctcct	cccactctgg	agtccgcaga	gtaggaagga	720
20	ggattaaacc	cgggggagga	gttccgcacc	agctccctat	cctgcgccag	cacgcctagc	780
20	ctaagcgccc	acatagagct	ccggtctccg	tcggtgccca	gccccggctg	tgcttcccag	840
	agcaagctcc	aggctccgca	agacccgcgg	gcctccagga	tgcagacacc	tcacaaggag	900
25	cacctgtaca	agctgctggt	gatcggcgac	ctggtagtgg	gcaagaccag	cattattaaa	960
	cggtacgtgc	atcaaaatac	cgggtagggg	aggcgctttt	cccaaggcag	tctggagcat	1020
	gcgctttagc	agccccgctg	ggcacttggc	gctacacaag	tggcctctgg	cctcgcacac	1080
30	attccacatc	caccggtagg	cgccaaccgg	ctccgttctt	tggtggcccc	ttcgcgccac	1140
	cttctactcc	tcccctagtc	aggaagttcc	cccccgcccc	gcagctcgcg	tcgtgcagga	1200
35	cgtgacaaat	ggaagtagca	cgtctcacta	gtctcgtgca	gatggacagc	accgctgagc	1260
33	aatggaagcg	ggtaggcctt	tggggcagcg	gccaatagca	gctttgctcc	ttcgctttct	1320
	gggctcagag	gctgggaagg	ggtgggtccg	ggggcgggct	caggggcggg	ctcaggggcg	1380
40	gggcgggcgc	ccgaaggtcc	tccggaggcc	cggcattctg	cacgcttcaa	aagcgcacgt	1440
	ctgccgcgct	gttctcctct	tcctcatctc	cgggcctttc	gacctgcagc	caatatggga	1500
	tcggccattg	aacaagatgg	attgcacgca	ggttctccgg	ccgcttgggt	ggagaggcta	1560
45	ttcggctatg	actgggcaca	acagacaatc	ggctgctctg	atgccgccgt	gttccggctg	1620
	tcagcgcagg	ggcgcccggt	tctttttgtc	aagaccgacc	tgtccggtgc	cctgaatgaa	1680
50	ctgcaggacg	aggcagcgcg	gctatcgtgg	ctggccacga	cgggcgttcc	ttgcgcagct	1740
50	gtgctcgacg	ttgtcactga	agcgggaagg	gactggctgc	tattgggcga	agtgccgggg	1800
	caggatctcc	tgtcatctca	ccttgctcct	gccgagaaag	tatccatcat	ggctgatgca	1860
55	atgcggcggc	tgcatacgct	tgatccggct	acctgcccat	tcgaccacca	agcgaaacat	1920
		gagcacgtac					1980
		aggggctcgc					2040
60		2222 3-					

	gacggcgatg	atctcgtcgt	gacccatggc	gatgcctgct	tgccgaatat	catggtggaa	2100
5	aatggccgct	tttctggatt	catcgactgt	ggccggctgg	gtgtggcgga	ccgctatcag	2160
5	gacatagcgt	tggctacccg	tgatattgct	gaagagcttg	gcggcgaatg	ggctgaccgc	2220
	ttcctcgtgc	tttacggtat	cgccgctccc	gattcgcagc	gcatcgcctt	ctatcgcctt	2280
10	cttgacgagt	tcttctgagg	ggatcaattc	tctagagctc	gctgatcagc	ctcgactgtg	2340
	ccttctagtt	gccagccatc	tgttgtttgc	ccctcccccg	tgccttcctt	gaccctggaa	2400
	ggtgccactc	ccactgtcct	ttcctaataa	aatgaggaaa	ttgcatcgca	ttgtctgagt	2460
15	aggtgtcatt	ctattctggg	gggtggggtg	gggcaggaca	gcaaggggga	ggattgggaa	2520
	gacaatagca	ggcatgctgg	ggatgcggtg	ggctctatgg	cttctgaggc	ggaaagaacc	2580
00	agctggggtt	tctcctctca	ttatcgagcc	accattggtg	tggacttcgc	gctgaaggtg	2640
20	ctccactggg	acccagagac	ggtggtgcgc	ttgcagctct	gggacattgc	tggtgagcga	2700
	tcagagcagc	gcgcaacggg	tgagggtgga	gtgagccagt	gaggagttcg	ggggtgaagg	2760
25	ttcggggagt	ggaaaatgac	ttttcagtcg	gttccagtcc	cgggaccctt	gagtgcaatc	2820
	aagcaggaga	tccggatcgc	ctgggcgctc	cactcttgga	aagtttggct	taatggcttg	2880
	gaaacctgat	ttcaaagaaa	tggaagtgtt	ttctttctt	tctttccttt	ttttttttt	2940
30	tttttttct	tttgctgttg	tttctgttgg	agtcgtcccc	actctacctg	taacttctag	3000
	ataacttcgc	tggctctcac	tggctgtgag	aaagcgaacc	actttctcct	gggattcttg	3060
	ggtgcagaga	aggctgtcgc	ctggactcac	aaggagattg	tagtcgcatt	cttgtttcat	3120
35	tctagtcctt	ttctggacac	aggtagccgc	gacttggccc	agagtatctc	acgtggcttt	3180
	catcettegt	gtttagaggg	gaagccccta	ggaaatttaa	gaaggagcag	gattatctta	3240
40	ggaatttagt	ttctttcaaa	tctcactact	atcatctcct	tgcttattgg	cctcttcagt	3300
40	cagaaaaatt	tgagatgcta	aatttgtata	catctagaac	gaactatctc	ttctcactcc	3360
	actcccctct	tccccatctc	tcttccgtct	ccctccatcc	ttggctatct	cttcttcact	3420
45	ttccatttca	aacaggagac	tgtgtatgtt	ttttaggaaa	acattaaaaa	aaaaaccaca	3480
	aaaacaaaaa	caaaacggag	acagggtccc	gtcatgtaac	tctgctaacc	tatatcaagc	3540
	tgaccttgac	ctcatagaga	cccacttgcc	tetgeeteee	tagaggcaag	ggtcggggtt	3600
50	atggtgatgt	taatgtcgtt	tgctttaaga	ttccttgatt	tgatcttggt	gtattttttg	3660
	agaaatctaa	agtatgaaat	cagagtttga	ctaacagctt	ctaccagete	ctagccacaa	3720
	taaagactga	ggcaggctat	agttagtgct	caatactggg	tcctacctgg	ctgcttgtaa	3780
55	cctgggcatg	cctagcattc	tagatgctaa	ctcaccaaag	cagtagcatt	ttaagctgca	3840
	aatggctagg	cagcgacagc	tcaagaatct	tcttgctttg	gagttttaaa	ctccaatgag	3900
60	attttccatg	atccctttca	aataacccta	cttaatctct	cttcatagcc	cacagtacca	3960

	agaageettt	gataagetet	ggattgaaaa	gaageagete	tttttcaaaa	gatgtgetea	4020
5	tttgaactag	tgcatttccc	tggaaacact	ttgccaggac	ttgagatggg	cactaagaag	4080
	gaaaattcct	caaaggacat	gtacagtctt	gagatgcatt	cgcttctgta	gccatgagct	4140
	tgctggtctt	gagataaggt	tagttggtgt	agctaggttc	atggtttgga	gtctttggca	4200
10	gttctagaga	agcatgagct	attagagact	tggagattgc	atcaagtaga	gccttttgag	4260
	cttttcactg	tgtacctggg	ccctctgtcg	ctgcacgttt	tagtgtctga	aatgtctttc	4320
15	agctgtagca	gttttctcgg	gaccccagtt	taaaatagct	tactgtttaa	aagatgtagc	4380
15	tgtagctagc	attattgaac	tagcataatt	atagtctaaa	tagcattatg	tcttcagcct	4440
	tgttatatgt	tggtgagttt	tagtttcctc	ttctaaacgg	gaagaacaga	aagatgtaat	4500
20	gattctgagc	ttccagagtg	agacacctct	agagagaaat	accttcttct	gaagactacc	4560
	gtgtgattac	agataaattc	tgatatcttt	gtttagcttt	tgatatctat	aaacagggag	4620
	tgtattttat	ctctccaaat	gagagaagaa	taaacaataa	tgcaaggtaa	aggcaatagt	4680
25	gctacactct	aggagttacc	actctttgta	catttattta	taaatactaa	gcaagaggaa	4740
	catgccatac	atacactgac	taagtcctaa	caagtggcag	ttcttatatc	acacatttat	4800
30	cttgccctca	aatgccagtc	cagcatcagt	ttagtctcat	gcatttggca	gcataaggca	4860
00	gtttgagttc	cacacttgct	ctcagaagca	atttaactcc	cacacttggg	aatcctttcc	4920
	taagccacag	tttcagacca	aagttttggt	gaaggctata	atcacagaag	tctgcacaag	4980
35	tagggagtct	gaaggatctg	agctccattc	agcagtcaga	gcggcatcca	accccaaggt	5040
	aatgctcagc	tcactttgat	aacttcaagc	tcaaaggccc	tgaactgctg	agttggaggt	5100
	tgaaagatgt	ttgggtaaaa	gcaaggtaat	tggcggatag	gatggttgta	acgtaattgt	5160
40	ttcaagttgt	attagagacc	tctgggttct	aaggggatat	gaaatccaac	ctccactctc	5220
	cactgagatt	caagttaggt	taagtatgcc	tttgagtacc	ctcaagtcac	agcatgccac	5280
45	tctccttttc	ttaactctaa	tatgtatcta	taaagaacgg	gtagtagtca	actgagtcga	5340
	cggtatcgat	aagcttgatc	cagcttttgt	tccctttagt	gagggttaat	tgcgcgcttg	5400
	gcgtaatcat	ggtcatagct	gtttcctgtg	tgaaattgtt	atccgctcac	aattccacac	5460
50	aacatacgag	ccggaagcat	aaagtgtaaa	gcctggggtg	cctaatgagt	gagctaactc	5520
	acattaattg	cgttgcgctc	actgcccgct	ttccagtcgg	gaaacctgtc	gtgccagctg	5580
	cattaatgaa	tcggccaacg	cgcggggaga	ggcggtttgc	gtattgggcg	ctcttccgct	5640
55	tectegetea	ctgactcgct	gcgctcggtc	gttcggctgc	ggcgagcggt	atcagctcac	5700
	tcaaaggcgg	taatacggtt	atccacagaa	tcaggggata	acgcaggaaa	gaacatgtga	5760
60	gcaaaaggcc	agcaaaaggc	caggaaccgt	aaaaaggccg	cgttgctggc	gtttttccat	5820

	aggctccgcc	cccctgacga	gcatcacaaa	aatcgacgct	caagtcagag	gtggcgaaac	5880
5	ccgacaggac	tataaagata	ccaggcgttt	ccccctggaa	gctccctcgt	gcgctctcct	5940
•	gttccgaccc	tgccgcttac	cggatacctg	tccgcctttc	tcccttcggg	aagcgtggcg	6000
	ctttctcata	gctcacgctg	taggtatctc	agttcggtgt	aggtcgttcg	ctccaagctg	6060
10	ggctgtgtgc	acgaaccccc	cgttcagccc	gaccgctgcg	ccttatccgg	taactatcgt	6120
	cttgagtcca	acccggtaag	acacgactta	tcgccactgg	cagcagccac	tggtaacagg	6180
	attagcagag	cgaggtatgt	aggcggtgct	acagagttct	tgaagtggtg	gcctaactac	6240
15	ggctacacta	gaaggacagt	atttggtatc	tgcgctctgc	tgaagccagt	taccttcgga	6300
	aaaagagttg	gtagctcttg	atccggcaaa	caaaccaccg	ctggtagcgg	tggtttttt	6360
20	gtttgcaagc	agcagattac	gcgcagaaaa	aaaggatctc	aagaagatcc	tttgatcttt	6420
	tctacggggt	ctgacgctca	gtggaacgaa	aactcacgtt	aagggatttt	ggtcatgaga	6480
	ttatcaaaaa	ggatcttcac	ctagatcctt	ttaaattaaa	aatgaagttt	taaatcaatc	6540
25	taaagtatat	atgagtaaac	ttggtctgac	agttaccaat	gcttaatcag	tgaggcacct	6600
	atctcagcga	tctgtctatt	tcgttcatcc	atagttgcct	gactccccgt	cgtgtagata	6660
00	actacgatac	gggagggctt	accatctggc	cccagtgctg	caatgatacc	gcgagaccca	6720
30	cgctcaccgg	ctccagattt	atcagcaata	aaccagccag	ccggaagggc	cgagcgcaga	6780
	agtggtcctg	caactttatc	cgcctccatc	cagtctatta	attgttgccg	ggaagctaga	6840
35	gtaagtagtt	cgccagttaa	tagtttgcgc	aacgttgttg	ccattgctac	aggcatcgtg	6900
	gtgtcacgct	cgtcgtttgg	tatggcttca	ttcagctccg	gttcccaacg	atcaaggcga	6960
	gttacatgat	cccccatgtt	gtgcaaaaaa	gcggttagct	ccttcggtcc	tccgatcgtt	7020
40	gtcagaagta	agttggccgc	agtgttatca	ctcatggtta	tggcagcact	gcataattct	7080
	cttactgtca	tgccatccgt	aagatgcttt	tctgtgactg	gtgagtactc	aaccaagtca	7140
4E	ttctgagaat	agtgtatgcg	gcgaccgagt	tgctcttgcc	cggcgtcaat	acgggataat	7200
45	accgcgccac	atagcagaac	tttaaaagtg	ctcatcattg	gaaaacgttc	ttcggggcga	7260
	aaactctcaa	ggatcttacc	gctgttgaga	tccagttcga	tgtaacccac	tcgtgcaccc	7320
50	aactgatctt	cagcatcttt	tactttcacc	agcgtttctg	ggtgagcaaa	aacaggaagg	7380
	caaaatgccg	caaaaaaggg	aataagggcg	acacggaaat	gttgaatact	catactcttc	7440
	ctttttcaat	attattgaag	catttatcag	ggttattgtc	tcatgagcgg	atacatattt	7500
55	gaatgtattt	agaaaaataa	acaaataggg	gttccgcgca	catttccccg	aaaagtgcca	7560
	cctaaattgt	aagcgttaat	attttgttaa	aattcgcgtt	aaatttttgt	taaatcagct	7620
60	cattttttaa	ccaataggcc	gaaatcggca	aaatccctta	taaatcaaaa	gaatagaccg	7680
00	agatagggtt	gagtgttgtt	ccagtttgga	acaagagtcc	actattaaag	aacgtggact	7740

		ccaacgtcaa	agggcgaaaa	accgtctatc	agggcgatgg	cccactacgt	gaaccatcac	7800
5		cctaatcaag	ttttttgggg	tcgaggtgcc	gtaaagcact	aaatcggaac	cctaaaggga	7860
		gcccccgatt	tagagcttga	cggggaaagc	cggcgaacgt	ggcgagaaag	gaagggaaga	7920
		aagcgaaagg	agcgggcgct	agggcgctgg	caagtgtagc	ggtcacgctg	cgcgtaacca	7980
10		ccacacccgc	cgcgcttaat	gcgccgctac	agggcgcgtc	ccattcgcca	ttcaggctgc	8040
		gcaactgttg	ggaagggcga	tcggtgcggg	cctcttcgct	attacgccag	ctggcgaaag	8100
15		ggggatgtgc	tgcaaggcga	ttaagttggg	taacgccagg	gttttcccag	tcacgacgtt	8160
		gtaaaacgac	ggccagtgag	cgcgcgtaat	acgactcact	atagggcgaa	ttggagct	8218
20	<210> 61 <211> 9989 <212> ADN <213> Secue	ncia artificial						
25	<220> <223> pCMV	-Rab-Reportero	(higro)					
25	<400> 61							
		gaattcgagc	ttgcatgcct	gcaggtcgtt	acataactta	cggtaaatgg	cccgcctggc	60
30		tgaccgccca	acgacccccg	cccattgacg	tcaataatga	cgtatgttcc	catagtaacg	120
		ccaataggga	ctttccattg	acgtcaatgg	gtggagtatt	tacggtaaac	tgcccacttg	180
35		gcagtacatc	aagtgtatca	tatgccaagt	acgcccccta	ttgacgtcaa	tgacggtaaa	240
		tggcccgcct	ggcattatgc	ccagtacatg	accttatggg	actttcctac	ttggcagtac	300
		atctacgtat	tagtcatcgc	tattaccatg	gtgatgcggt	tttggcagta	catcaatggg	360
40		cgtggatagc	ggtttgactc	acggggattt	ccaagtctcc	accccattga	cgtcaatggg	420
		agtttgtttt	ggcaccaaaa	tcaacgggac	tttccaaaat	gtcgtaacaa	ctccgcccca	480
45		ttgacgcaaa	tgggcggtag	gcgtgtacgg	tgggaggtct	atataagcag	agctcgttta	540
.0		gtgaaccgtc	agatcgcctg	gagacgccat	ccacgctgtt	ttgacctcca	tagaagacac	600
		cgggaccgat	ccagcctccg	gactctagag	gatccggtac	tcgaggacac	tgcagagacc	660
50		tacttcacta	acaaccggta	tggtcgccag	tagcttggca	ctggccgtcg	ttttacaacg	720
		tcgtgactgg	gaaaaccctg	gcgttaccca	acttaatcgc	cttgcagcac	atcccccttt	780
55		cgccagctgg	cgtaatagcg	aagaggcccg	caccgatcgc	ccttcccaac	agttgcgcag	840
00		cctgaatggc	gaatggcgct	ttgcctggtt	tccggcacca	gaagcggtgc	cggaaagctg	900
		gctggagtgc	gatcttcctg	aggccgatac	tgtcgtcgtc	ccctcaaact	ggcagatgca	960
60		cggttacgat	gcgcccatct	acaccaacgt	gacctatccc	attacggtca	atccgccgtt	1020
		tgttcccacg	gagaatccga	cgggttgtta	ctcgctcaca	tttaatgttg	atgaaagctg	1080

	gccacaaaac	cygcacagee	cygccaccac	ggccgcacca	agegeratge	gcaccaaaac	
5	ttctcctcgc	actaccgggc	caccattggt	cgagtagctt	ggcactggcc	gtcgttttac	120
	aacgtcgtga	ctgggaaaac	cctggcgtta	cccaacttaa	tcgccttgca	gcacatcccc	1260
	ctttcgccag	ctggcgtaat	agcgaagagg	cccgcaccga	tcgcccttcc	caacagttgc	1320
10	gcagcctgaa	tggcgaatgg	cgctttgcct	ggtttccggc	accagaagcg	gtgccggaaa	1380
	gctggctgga	gtgcgatctt	cctgaggccg	atactgtcgt	cgtcccctca	aactggcaga	1440
	tgcacggtta	cgatgcgccc	atctacacca	acgtgaccta	tcccattacg	gtcaatccgc	150
15	cgtttgttcc	cacggagaat	ccgacgggtt	gttactcgct	cacatttaat	gttgatgaaa	1560
	gctggctaca	ggaaggccag	acgcgaatta	tttttgatgg	cgttaactcg	gcgtttcatc	162
20	tgtggtgcaa	cgggcgctgg	gtcggttacg	gccaggacag	tcgtttgccg	tctgaatttg	1680
20	acctgagcgc	atttttacgc	gccggagaaa	accgcctcgc	ggtgatggtg	ctgcgctgga	174
	gtgacggcag	ttatctggaa	gatcaggata	tgtggcggat	gagcggcatt	ttccgtgacg	1800
25	tctcgttgct	gcataaaccg	actacacaaa	tcagcgattt	ccatgttgcc	actcgcttta	186
	atgatgattt	cagccgcgct	gtactggagg	ctgaagttca	gatgtgcggc	gagttgcgtg	1920
	actacctacg	ggtaacagtt	tctttatggc	agggtgaaac	gcaggtcgcc	agcggcaccg	1980
30	cgcctttcgg	cggtgaaatt	atcgatgagc	gtggtggtta	tgccgatcgc	gtcacactac	2040
	gtctgaacgt	cgaaaacccg	aaactgtgga	gcgccgaaat	cccgaatctc	tatcgtgcgg	210
	tggttgaact	gcacaccgcc	gacggcacgc	tgattgaagc	agaagcctgc	gatgtcggtt	216
35	tccgcgaggt	gcggattgaa	aatggtctgc	tgctgctgaa	cggcaagccg	ttgctgattc	2220
	gaggcgttaa	ccgtcacgag	catcatcctc	tgcatggtca	ggtcatggat	gagcagacga	228
40	tggtgcagga	tatcctgctg	atgaagcaga	acaactttaa	cgccgtgcgc	tgttcgcatt	234
	atccgaacca	tccgctgtgg	tacacgctgt	gcgaccgcta	cggcctgtat	gtggtggatg	240
	aagccaatat	tgaaacccac	ggcatggtgc	caatgaatcg	tctgaccgat	gatccgcgct	246
45	ggctaccggc	gatgagcgaa	cgcgtaacgc	gaatggtgca	gcgcgatcgt	aatcacccga	2520
	gtgtgatcat	ctggtcgctg	gggaatgaat	caggccacgg	cgctaatcac	gacgcgctgt	2580
	atcgctggat	caaatctgtc	gateetteee	gcccggtgca	gtatgaaggc	ggcggagccg	264
50	acaccacggc	caccgatatt	atttgcccga	tgtacgcgcg	cgtggatgaa	gaccagccct	270
	tcccggctgt	gccgaaatgg	tccatcaaaa	aatggctttc	gctacctgga	gagacgcgcc	276
E.E.	cgctgatcct	ttgcgaatac	gcccacgcga	tgggtaacag	tcttggcggt	ttcgctaaat	2820
55	actggcaggc	gtttcgtcag	tatccccgtt	tacagggcgg	cttcgtctgg	gactgggtgg	288
	atcagtcgct	gattaaatat	gatgaaaacg	gcaacccgtg	gtcggcttac	ggcggtgatt	294
60	ttggcgatac	gccgaacgat	cgccagttct	gtatgaacgg	tctggtcttt	gccgaccgca	300

	cgccgcatcc	agcgctgacg	gaagcaaaac	accagcagca	gtttttccag	ttccgtttat	3060
5	ccgggcaaac	catcgaagtg	accagcgaat	acctgttccg	tcatagcgat	aacgagctcc	3120
	tgcactggat	ggtggcgctg	gatggtaagc	cgctggcaag	cggtgaagtg	cctctggatg	3180
	togotocaca	aggtaaacag	ttgattgaac	tgcctgaact	accgcagccg	gagagcgccg	3240
10	ggcaactctg	gctcacagta	cgcgtagtgc	aaccgaacgc	gaccgcatgg	tcagaagccg	3300
	ggcacatcag	cgcctggcag	cagtggcgtc	tggcggaaaa	cctcagtgtg	acgctccccg	3360
45	ccgcgtccca	cgccatcccg	catctgacca	ccagcgaaat	ggatttttgc	atcgagctgg	3420
15	gtaataagcg	ttggcaattt	aaccgccagt	caggctttct	ttcacagatg	tggattggcg	3480
	ataaaaaaca	actgctgacg	ccgctgcgcg	atcagttcac	ccgtgcaccg	ctggataacg	3540
20	acattggcgt	aagtgaagcg	acccgcattg	accctaacgc	ctgggtcgaa	cgctggaagg	3600
	cggcgggcca	ttaccaggcc	gaagcagcgt	tgttgcagtg	cacggcagat	acacttgctg	3660
	atgcggtgct	gattacgacc	gctcacgcgt	ggcagcatca	ggggaaaacc	ttatttatca	3720
25	gccggaaaac	ctaccggatt	gatggtagtg	gtcaaatggc	gattaccgtt	gatgttgaag	3780
	tggcgagcga	tacaccgcat	ccggcgcgga	ttggcctgaa	ctgccagctg	gcgcaggtag	3840
30	cagagcgggt	aaactggctc	ggattagggc	cgcaagaaaa	ctatcccgac	cgccttactg	3900
	ccgcctgttt	tgaccgctgg	gatctgccat	tgtcagacat	gtataccccg	tacgtcttcc	3960
	cgagcgaaaa	cggtctgcgc	tgcgggacgc	gcgaattgaa	ttatggccca	caccagtggc	4020
35	gcggcgactt	ccagttcaac	atcagccgct	acagtcaaca	gcaactgatg	gaaaccagcc	4080
	atcgccatct	gctgcacgcg	gaagaaggca	catggctgaa	tatcgacggt	ttccatatgg	4140
40	ggattggtgg	cgacgactcc	tggagcccgt	cagtatcggc	ggaattccag	ctgagcgccg	4200
40	gtcgctacca	ttaccagttg	gtctggtgtc	aggggatccc	ccgggctgca	gccaatatgg	4260
	gatcggccat	tgaacaagat	ggattgcacg	caggttctcc	ggccgcttgg	gtggagaggc	4320
45	tattcggcta	tgactgggca	caacagacaa	teggetgete	tgatgccgcc	gtgttccggc	4380
	tgtcagcgca	ggggcgcccg	gttctttttg	tcaagaccga	cctgtccggt	gccctgaatg	4440
	aactgcagga	cgaggcagcg	cggctatcgt	ggctggccac	gacgggcgtt	ccttgcgcag	4500
50	ctgtgctcga	cgttgtcact	gaagcgggaa	gggactggct	gctattgggc	gaagtgccgg	4560
	ggcaggatct	cctgtcatct	caccttgctc	ctgccgagaa	agtatccatc	atggctgatg	4620
55	caatgcggcg	gctgcatacg	cttgatccgg	ctacctgccc	attcgaccac	caagcgaaac	4680
	atcgcatcga	gcgagcacgt	actcggatgg	aagccggtct	tgtcgatcag	gatgatctgg	4740
	acgaagagca	tcaggggctc	gcgccagccg	aactgttcgc	caggctcaag	gcgcgcatgc	4800
60	ccgacggcga	ggatctcgtc	gtgacccatg	gcgatgcctg	cttgccgaat	atcatggtgg	4860

	aaaatggccg	cttttctgga	ttcatcgact	gtggccggct	gggtgtggcg	gaccgctatc	4920
5	aggacatagc	gttggctacc	cgtgatattg	ctgaagagct	tggcggcgaa	tgggctgacc	4980
	gcttcctcgt	gctttacggt	atcgccgctc	ccgattcgca	gcgcatcgcc	ttctatcgcc	5040
	ttcttgacga	gttcttctga	ggggatcaat	tctctagagc	tcgctgatca	gcctcgactg	5100
10	tgccttctag	ttgccagcca	tctgttgttt	gcccctcccc	cgtgccttcc	ttgaccctgg	5160
	aaggtgccac	tcccactgtc	ctttcctaat	aaaatgagga	aattgcatcg	cattgtctga	5220
	gtaggtgtca	ttctattctg	gggggtgggg	tggggcagga	cagcaagggg	gaggattggg	5280
15	aagacaatag	caggcatgct	ggggatgcgg	tgggctctat	ggcttctgag	acggaaagaa	5340
	ccagctgggg	ctcgatcctc	tagagtcgac	gtttgatctg	atatcatcga	tgaattctac	5400
20	cgggtagggg	aggcgctttt	cccaaggcag	tctggagcat	gcgctttagc	ageceegetg	5460
	ggcacttggc	gctacacaag	tggcctctgg	cctcgcacac	attccacatc	caccggtagg	5520
	cgccaaccgg	ctccgttctt	tggtggcccc	ttcgcgccac	cttctactcc	tcccctagtc	5580
25	aggaagttcc	ccccgcccc	gcagctcgcg	tcgtgcagga	cgtgacaaat	ggaagtagca	5640
	cgtctcacta	gtctcgtgca	gatggacagc	accgctgagc	aatggaagcg	ggtaggcctt	5700
	tggggcagcg	gccaatagca	gctttgctcc	ttcgctttct	gggctcagag	gctgggaagg	5760
30	ggtgggtccg	ggggcgggct	caggggcggg	ctcaggggcg	gggcgggcgc	ccgaaggtcc	5820
	tccggaggcc	cggcattctg	cacgcttcaa	aagcgcacgt	ctgccgcgct	gttctcctct	5880
35	tcctcatctc	cgggcctttc	gaccgatcca	gccgccacca	tgaaaaagcc	tgaactcacc	5940
33	gcgacgtctg	tcgagaagtt	tctgatcgaa	aagttcgaca	gcgtctccga	cctgatgcag	6000
	ctctcggagg	gcgaagaatc	tcgtgctttc	agcttcgatg	taggagggcg	tggatatgtc	6060
40	ctgcgggtaa	atagctgcgc	cgatggtttc	tacaaagatc	gttatgttta	teggeaettt	6120
	gcatcggccg	cgctcccgat	tccggaagtg	cttgacattg	gggaattcag	cgagagcctg	6180
	acctattgca	tctcccgccg	tgcacagggt	gtcacgttgc	aagacctgcc	tgaaaccgaa	6240
45	ctgcccgctg	ttctgcagcc	ggtcgcggag	gccatggatg	cgatcgctgc	ggccgatctt	6300
	agccagacga	gcgggttcgg	cccattcgga	ccgcaaggaa	tcggtcaata	cactacatgg	6360
50	cgtgatttca	tatgcgcgat	tgctgatccc	catgtgtatc	actggcaaac	tgtgatggac	6420
50	gacaccgtca	gtgcgtccgt	cgcgcaggct	ctcgatgagc	tgatgctttg	ggccgaggac	6480
	tgccccgaag	tccggcacct	cgtgcacgcg	gatttcggct	ccaacaatgt	cctgacggac	6540
55	aatggccgca	taacagcggt	cattgactgg	agcgaggcga	tgttcgggga	ttcccaatac	6600
	gaggtcgcca	acatcttctt	ctggaggccg	tggttggctt	gtatggagca	gcagacgcgc	6660
	tacttcgagc	ggaggcatcc	ggagcttgca	ggatcgccgc	ggctccgggc	gtatatgctc	6720
60	cgcattggtc	ttgaccaact	ctatcagagc	ttggttgacg	gcaatttcga	tgatgcagct	6780

	tgggcgcagg	gtcgatgcga	cgcaatcgtc	cgatccggag	ccgggactgt	cgggcgtaca	6840
5	caaatcgccc	gcagaagcgc	ggccgtctgg	accgatggct	gtgtagaagt	actcgccgat	6900
	agtggaaacc	gacgccccag	cactcgtccg	agggcaaagg	aatagtcgag	aaattgatga	6960
	tctattaaac	aataaagatg	tccactaaaa	tggaagtttt	tcctgtcata	ctttgttaag	7020
10	aagggtgaga	acagagtacc	tacattttga	atggaaggat	tggagctacg	ggggtgggg	7080
	tggggtggga	ttagataaat	gcctgctctt	tactgaaggc	tctttactat	tgctttatga	7140
15	taatgtttca	tagttggata	tcataattta	aacaagcaaa	accaaattaa	gggccagctc	7200
	attcctccca	ctcatgatct	atagatcaaa	catgcatgaa	gttcctattc	cgaagttcct	7260
	attctctaga	aagtatagga	acttcataaa	acctgcaggc	atgcaagcga	tcgcggccgg	7320
20	ccaaggcccg	cggggccact	agttctagag	cggccagctt	ggcgtaatca	tggtcatagc	7380
	tgtttcctgt	gtgaaattgt	tatccgctca	caattccaca	caacatacga	gccggaagca	7440
25	taaagtgtaa	agcctggggt	gcctaatgag	tgagctaact	cacattaatt	gcgttgcgct	7500
25	cactgcccgc	tttccagtcg	ggaaacctgt	cgtgccagct	gcattaatga	atcggccaac	7560
	gcgcggggag	aggcggtttg	cgtattgggc	gctcttccgc	ttcctcgctc	actgactcgc	7620
30	tgcgctcggt	cgttcggctg	cggcgagcgg	tatcagctca	ctcaaaggcg	gtaatacggt	7680
	tatccacaga	atcaggggat	aacgcaggaa	agaacatgtg	agcaaaaggc	cagcaaaagg	7740
	ccaggaaccg	taaaaaggcc	gcgttgctgg	cgtttttcca	taggctccgc	cccctgacg	7800
35	agcatcacaa	aaatcgacgc	tcaagtcaga	ggtggcgaaa	cccgacagga	ctataaagat	7860
	accaggcgtt	tccccctgga	ageteeeteg	tgegetetee	tgttccgacc	ctgccgctta	7920
40	ccggatacct	gtccgccttt	ctcccttcgg	gaagcgtggc	gctttctcat	agctcacgct	7980
	gtaggtatct	cagttcggtg	taggtcgttc	gctccaagct	gggctgtgtg	cacgaacccc	8040
	ccgttcagcc	cgaccgctgc	gccttatccg	gtaactatcg	tcttgagtcc	aacccggtaa	8100
45	gacacgactt	atcgccactg	gcagcagcca	ctggtaacag	gattagcaga	gcgaggtatg	8160
	taggcggtgc	tacagagttc	ttgaagtggt	ggcctaacta	cggctacact	agaaggacag	8220
50	tatttggtat	ctgcgctctg	ctgaagccag	ttaccttcgg	aaaaagagtt	ggtagctctt	8280
	gatccggcaa	acaaaccacc	gctggtagcg	gtggttttt	tgtttgcaag	cagcagatta	8340
	cgcgcagaaa	aaaaggatct	caagaagatc	ctttgatctt	ttctacgggg	tctgacgctc	8400
55	agtggaacga	aaactcacgt	taagggattt	tggtcatgag	attatcaaaa	aggatcttca	8460
	cctagatcct	tttaaattaa	aaatgaagtt	ttaaatcaat	ctaaagtata	tatgagtaaa	8520
60	cttggtctga	cagttaccaa	tgcttaatca	gtgaggcacc	tatctcagcg	atctgtctat	8580
60	ttcgttcatc	catagttgcc	tgactccccg	tcgtgtagat	aactacgata	cgggagggct	8640

	taccatctgg	ccccagtgct	gcaatgatac	cgcgagaccc	acgctcaccg	gctccagatt	8700
5	tatcagcaat	aaaccagcca	gccggaaggg	ccgagcgcag	aagtggtcct	gcaactttat	8760
	ccgcctccat	ccagtctatt	aattgttgcc	gggaagctag	agtaagtagt	tcgccagtta	8820
	atagtttgcg	caacgttgtt	gccattgcta	caggcatcgt	ggtgtcacgc	tcgtcgtttg	8880
10	gtatggcttc	attcagctcc	ggttcccaac	gatcaaggcg	agttacatga	tcccccatgt	8940
	tgtgcaaaaa	agcggttagc	tccttcggtc	ctccgatcgt	tgtcagaagt	aagttggccg	9000
15	cagtgttatc	actcatggtt	atggcagcac	tgcataattc	tcttactgtc	atgccatccg	9060
	taagatgctt	ttctgtgact	ggtgagtact	caaccaagtc	attctgagaa	tagtgtatgc	9120
00	ggcgaccgag	ttgctcttgc	ccggcgtcaa	tacgggataa	taccgcgcca	catagcagaa	9180
20	ctttaaaagt	gctcatcatt	ggaaaacgtt	cttcggggcg	aaaactctca	aggatcttac	9240
	cgctgttgag	atccagttcg	atgtaaccca	ctcgtgcacc	caactgatct	tcagcatctt	9300
25	ttactttcac	cagcgtttct	gggtgagcaa	aaacaggaag	gcaaaatgcc	gcaaaaagg	9360
	gaataagggc	gacacggaaa	tgttgaatac	tcatactctt	cctttttcaa	tattattgaa	9420
20	gcatttatca	gggttattgt	ctcatgagcg	gatacatatt	tgaatgtatt	tagaaaaata	9480
30	aacaaatagg	ggttccgcgc	acatttcccc	gaaaagtgcc	acctgacgtc	taagaaacca	9540
	ttattatcat	gacattaacc	tataaaaata	ggcgtatcac	gaggcccttt	cgtctcgcgc	9600
35	gtttcggtga	tgacggtgaa	aacctctgac	acatgcagct	cccggagacg	gtcacagctt	9660
	gtctgtaagc	ggatgccggg	agcagacaag	cccgtcaggg	cgcgtcagcg	ggtgttggcg	9720
40	ggtgtcgggg	ctggcttaac	tatgcggcat	cagagcagat	tgtactgaga	gtgcaccata	9780
40	tgcggtgtga	aataccgcac	agatgcgtaa	ggagaaaata	ccgcatcagg	cgccattcgc	9840
	cattcaggct	gcgcaactgt	tgggaagggc	gatcggtgcg	ggcctcttcg	ctattacgcc	9900
45	agctggcgaa	agggggatgt	gctgcaaggc	gattaagttg	ggtaacgcca	gggttttccc	9960
	agtcacgacg	ttgtaaaacg	acggccagt				9989

Reivindicaciones

10

15

35

45

- 1. Una molécula de ácido nucleico que codifica
- 5 (I) un polipéptido que tiene la actividad de una endonucleasa, que es
 - (a) una molécula de ácido nucleico que codifica un polipéptido que consiste en la secuencia de aminoácidos de la sec. con núm. de ident.:1;
 - la sec. con num. de ident.: r; (b) una molécula de ácido nucleico que consiste en la secuencia de nucleótidos de la sec. con núm. de ident.: 2;
 - (c) una molécula de ácido nucleico que codifica una endonucleasa, cuya secuencia de aminoácidos es al menos
 - 70 % idéntica a la secuencia de aminoácidos de la sec. con núm. de ident.:1;
 - (d) una molécula de ácido nucleico que consiste en una secuencia de nucleótidos que es al menos 50 % idéntica a la secuencia de nucleótidos de la sec. con núm. de ident.: 2;
 - (e) una molécula de ácido nucleico que es degenerada con respecto a la molécula de ácido nucleico de (d); o
 - (f) una molécula de ácido nucleico correspondiente a la molécula de ácido nucleico de cualquiera de (a) hasta
 - (e) en donde T se reemplaza por U;
 - (II) un fragmento del polipéptido de (I) que tiene la actividad de una endonucleasa.
- 20 2. La molécula de ácido nucleico de conformidad con la reivindicación 1, en donde en (I)(c) en dicha secuencia de aminoácidos que tiene al menos 70 % de identidad de secuencia con respecto a la sec. con núm. de ident.: 1 los residuos de aminoácidos P66, D67, D84 y/o K86 de la sec. con núm. de ident.: 1 no están modificados.
- 3. La molécula de ácido nucleico de conformidad con la reivindicación 1 o 2 que codifica, además, un dominio de unión al ADN.
 - 4. La molécula de ácido nucleico de conformidad con la reivindicación 3, en donde el dominio de unión al ADN es un motivo efector TAL de una proteína efectora TAL.
- 30 5. Un vector que comprende la molécula de ácido nucleico de conformidad con cualquiera de las reivindicaciones 1 a 4.
 - 6. Una célula huésped que comprende la molécula de ácido nucleico de conformidad con cualquiera de las reivindicaciones 1 a 4 o el vector de conformidad con la reivindicación 5.
 - 7. Una proteína o proteína de fusión que tiene la actividad de una endonucleasa en donde dicha proteína o proteína de fusión está codificada por la molécula de ácido nucleico de conformidad con cualquiera de las reivindicaciones 1 a 4 o el vector de conformidad con la reivindicación 5.
- 40 8. Un método para la modificación *in vitro* de una secuencia diana en el genoma de una célula eucariótica, el método comprende la etapa:
 - (a) introducir en dicha célula la molécula de ácido nucleico de conformidad con la reivindicación 3 o 4, el vector de conformidad con la reivindicación 5 o la proteína o proteína de fusión de conformidad con la reivindicación 7.
- 9. El método de conformidad con la reivindicación 8, en donde la modificación de dicha secuencia diana es mediante recombinación homóloga con una secuencia de ácido nucleico donante, que comprende, además, la etapa:
- (b) introducir una molécula de ácido nucleico en dicha célula, en donde dicha molécula de ácido nucleico comprende dicha secuencia de ácido nucleico donante, en donde dicha secuencia de ADN donante está flanqueada en el extremo 5' por un primer elemento flanqueante y en el extremo 3' por un segundo elemento flanqueante, en donde dicho primer y segundo elementos flanqueantes son diferentes y en donde cada uno de dichos primer y segundo elementos flanqueantes son homólogos a una secuencia de ADN continua sobre ambos lados de la doble hebra introducidas en (a) de conformidad con la reivindicación 8 dentro de dicha secuencia diana en el genoma de dicha célula eucariótica.
 - 10. El método de conformidad con las reivindicaciones 8 o 9, en donde dicha célula se analiza para determinar la modificación exitosa de dicha secuencia diana en el genoma.
- El método de conformidad con cualquiera de las reivindicaciones 8 a 10, en donde la célula se selecciona a partir del grupo que consiste en una célula de mamífero o vertebrado, una célula vegetal o una célula de hongo.
 - 12. El método de conformidad con cualquiera de las reivindicaciones 8 a 11, en donde la célula es un ovocito no humano.

E 14 El métado do conformidad con qualquiero de los reivindiaceignes 9 o 12 en dende la célula co colecciones	a partir
5 14. El método de conformidad con cualquiera de las reivindicaciones 8 a 13, en donde la célula se selecciona del grupo que consiste en roedores, perros, félidos, primates, conejos, cerdos, vacas, pollos, pavos, fe patos, gansos, codornices, avestruz, emúes, casuarios y pez cebra.	aisanes,
 Un método para producir la proteína o proteína de fusión de conformidad con la reivindicación 7 que cor las etapas: (a) cultivar la célula huésped de conformidad con la reivindicación 6 y (b) aislar la proteína o de fusión que se produce. 	
15	
20	
25	
30	
35	
40	
45	
50	
55	
60	
65	

| Figura 1

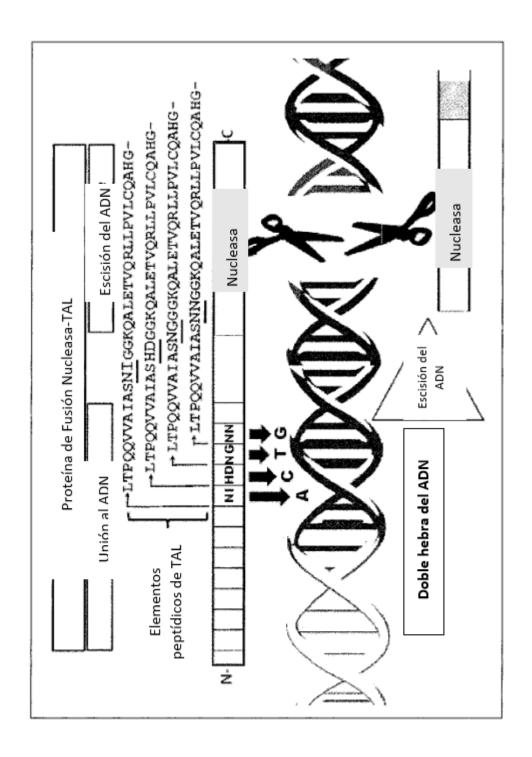


Figura 2

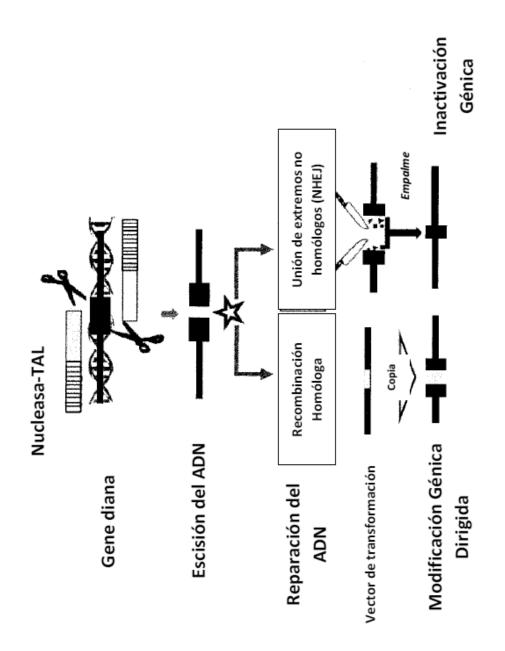


Figura 3

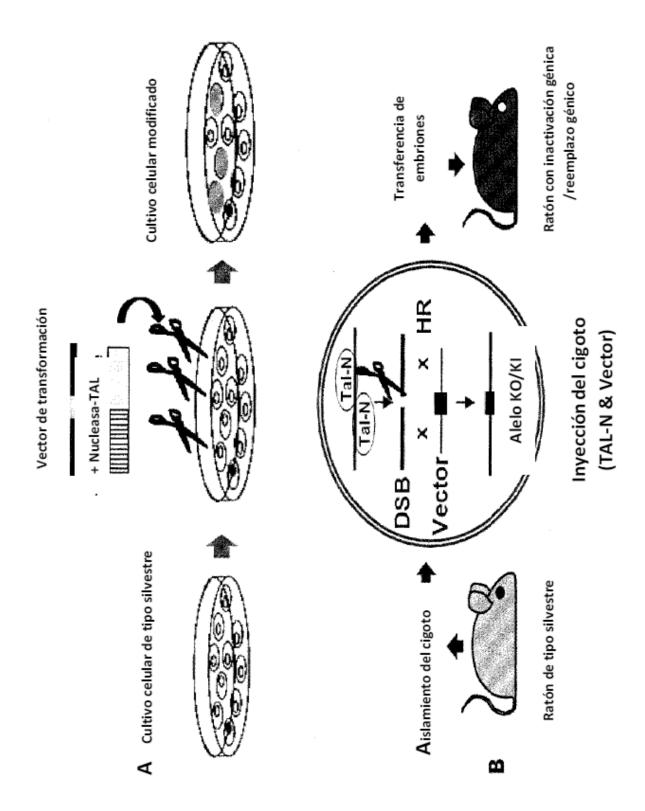


Figura 4

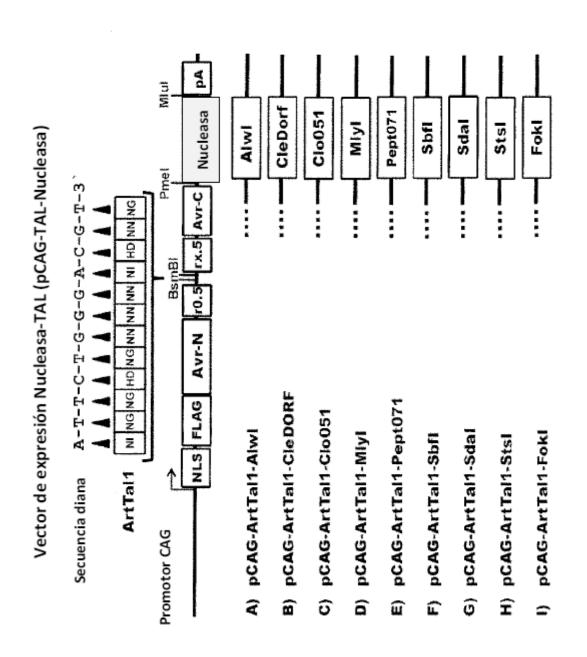


Figura 5

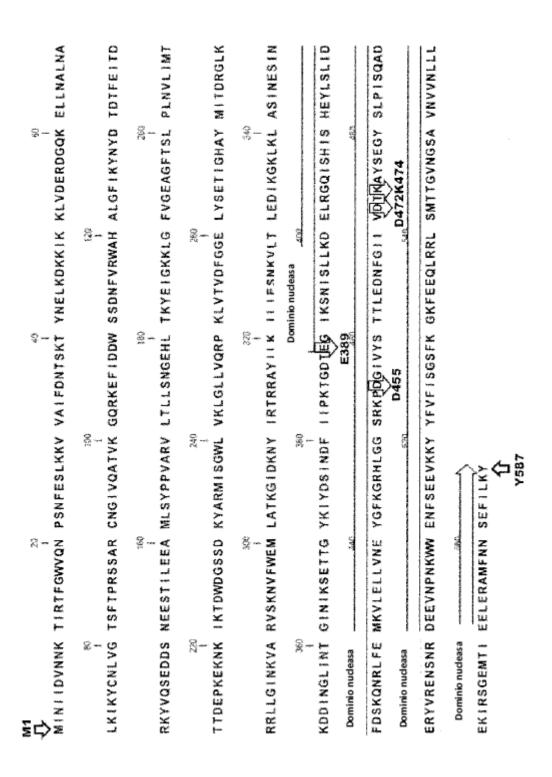


Figura 6

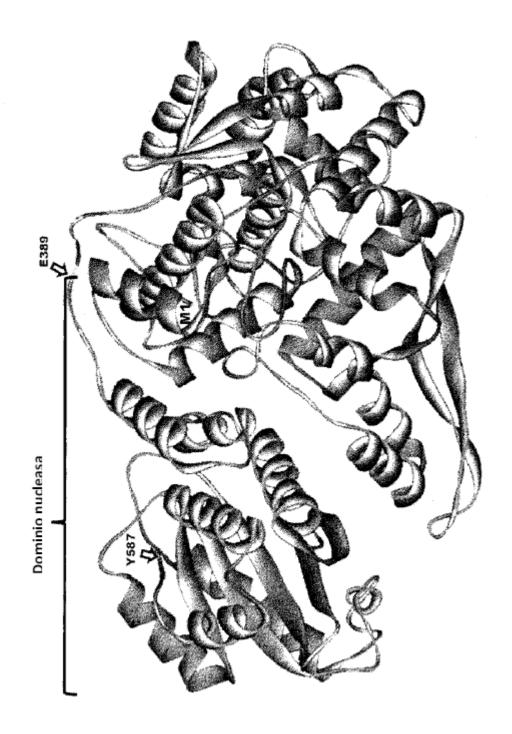


Figura 7

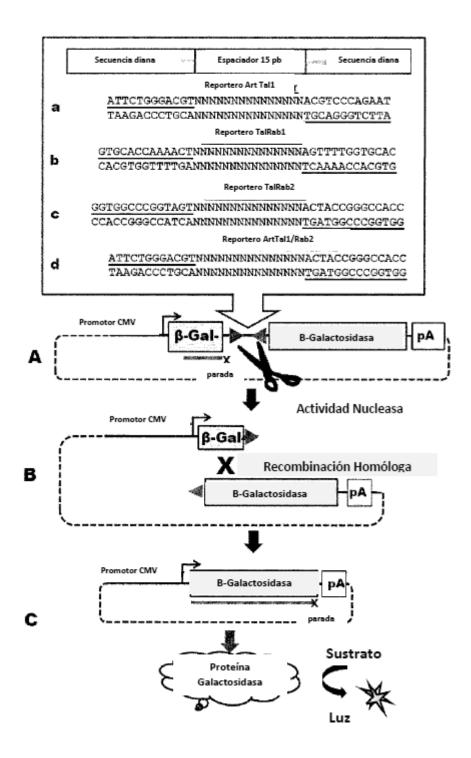
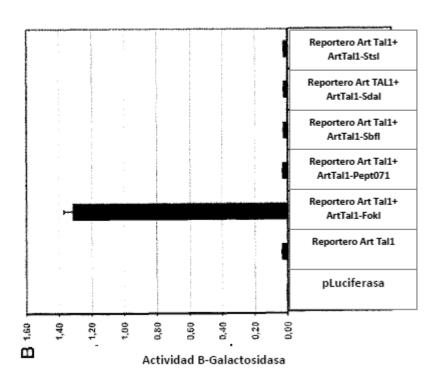



Figura 8

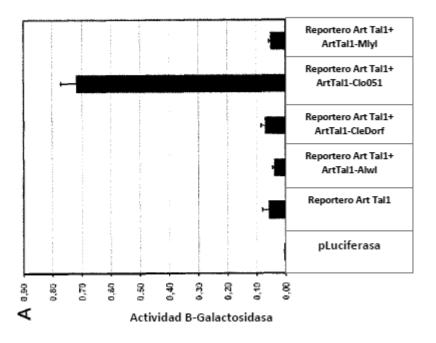


Figura 9

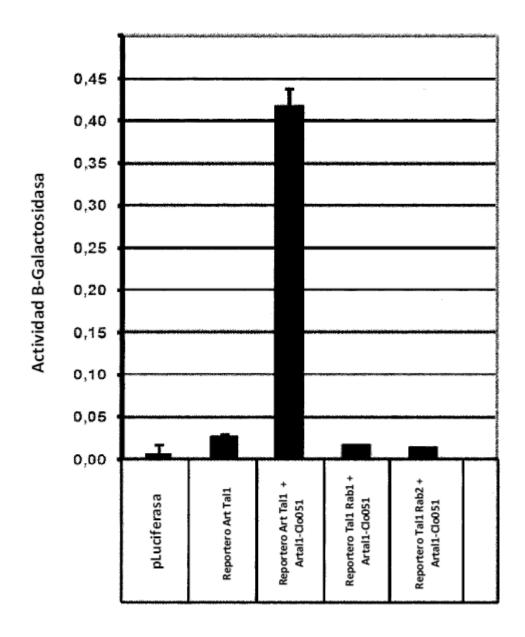


Figura 10

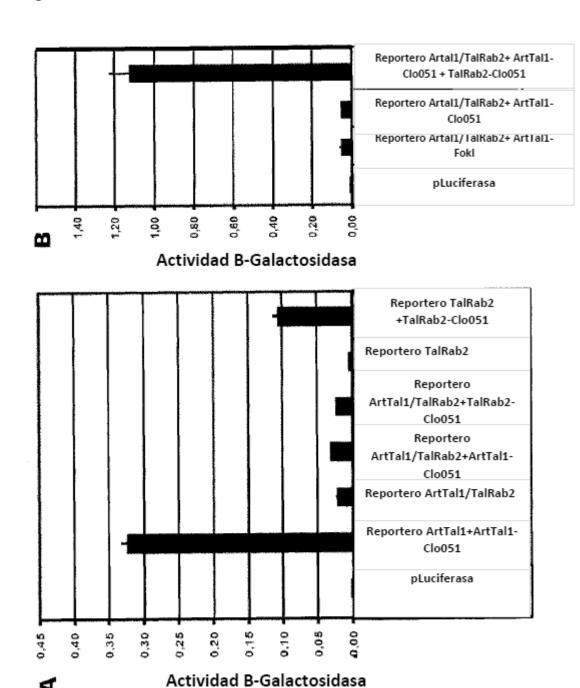


Figura 11

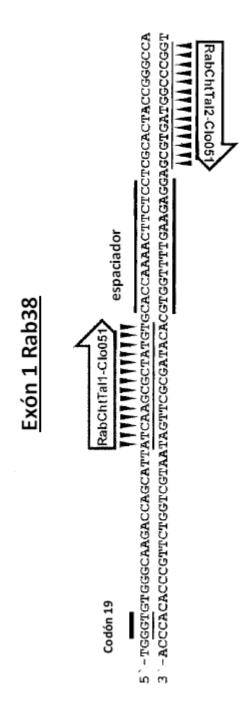


Figura 12

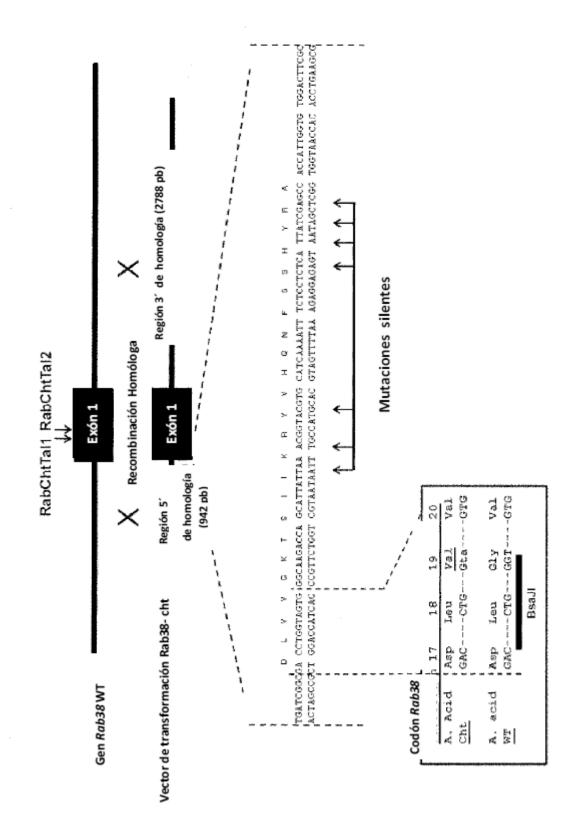


Figura 13

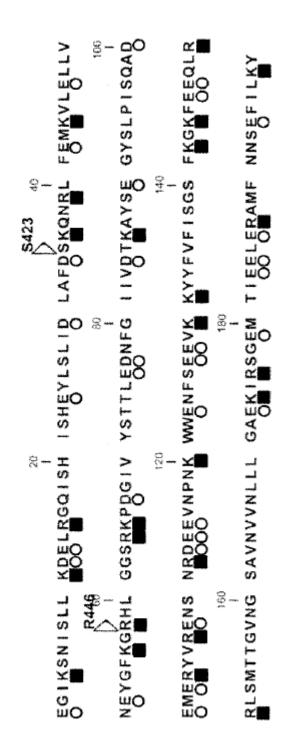
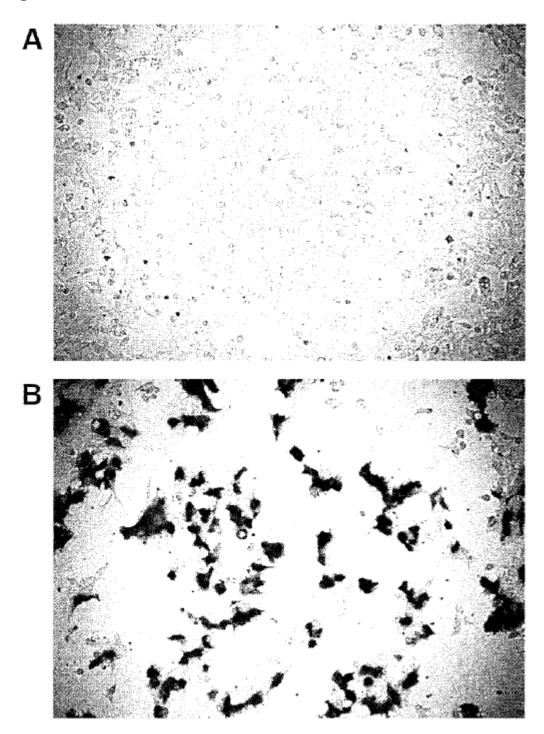



Figura 14

