

OFICINA ESPAÑOLA DE PATENTES Y MARCAS

ESPAÑA

①Número de publicación: **2 711 165**

61 Int. Cl.:

C12P 21/00 (2006.01) C12N 9/10 (2006.01) C07K 16/00 (2006.01) C12N 15/80 (2006.01)

(12)

TRADUCCIÓN DE PATENTE EUROPEA

T3

86 Fecha de presentación y número de la solicitud internacional: 10.07.2014 PCT/EP2014/064818

(87) Fecha y número de publicación internacional: 15.01.2015 WO15004239

96 Fecha de presentación y número de la solicitud europea: 10.07.2014 E 14738496 (0)

97 Fecha y número de publicación de la concesión europea: 28.11.2018 EP 3019621

54 Título: Producción de glucoproteínas que tienen una ocupación del sitio de N-glucosilación aumentada

(30) Prioridad:

10.07.2013 EP 13175997

45 Fecha de publicación y mención en BOPI de la traducción de la patente: 30.04.2019

73) Titular/es:

GLYKOS FINLAND OY (100.0%) Viikinkaari 6 00790 Helsinki, FI

(72) Inventor/es:

NATUNEN, JARI; LANDOWSKI, CHRISTOPHER; SALOHEIMO, MARKKU; OSTERMEIER, CHRISTIAN; SOMMER, BENJAMIN PATRICK y WAHL, RAMON

(74) Agente/Representante:

CAMPELLO ESTEBARANZ, Reyes

DESCRIPCIÓN

Producción de glucoproteínas que tienen una ocupación del sitio de N-glucosilación aumentada

5 CAMPO TÉCNICO

La presente divulgación se refiere a composiciones y métodos útiles para la producción de proteínas heterólogas, por ejemplo, anticuerpos recombinantes, en células fúngicas filamentosas.

10 ANTECEDENTES

La modificación postraduccional de proteínas eucariotas, particularmente proteínas terapéuticas tales como inmunoglobulinas, a menudo es necesaria para el plegamiento y la función apropiados de las proteínas. Debido a que los sistemas de expresión procariotas estándar carecen de la maquinaria adecuada necesaria para tales modificaciones, deben usarse sistemas de expresión alternativos en la producción de estas proteínas terapéuticas. Incluso cuando las proteínas eucariotas no tienen modificaciones postraduccionales, los sistemas de expresión procariotas a menudo carecen de las proteínas chaperonas necesarias para un plegamiento adecuado. La levadura y los hongos son opciones atractivas para expresar proteínas, ya que se pueden cultivar fácilmente a gran escala en medios sencillos, lo que permite bajos costes de producción, y la levadura y los hongos tienen maquinaria 20 postraduccional y chaperonas que realizan funciones similares a las de las células de mamíferos. Además, hay herramientas disponibles para manipular la composición genética relativamente simple de las células de levadura y fúngicas, así como las células eucariotas más complejas, tales como las células de mamíferos o de insecto (De Pourcq et al., Appl Microbiol Biotechnol, 87(5):1617-31).

- 25 Sin embargo, las modificaciones postraduccionales que se producen en levaduras y hongos pueden seguir siendo una preocupación para la producción de una proteína terapéutica recombinante. En particular, la insuficiente N-glucosilación es uno de los mayores obstáculos a superar en la producción de productos biofarmacéuticos para aplicaciones humanas en hongos.
- 30 Se ha demostrado que la N-glucosilación, que se refiere a la unión de la molécula de azúcar a un átomo de nitrógeno de una cadena lateral de asparagina, modula la farmacocinética y la farmacodinámica de las proteínas terapéuticas.
- Cuando las proteínas recombinantes se expresan en células fúngicas filamentosas, tales como las células del hongo 35 *Trichoderma*, la proporción de sitios de N-glucosilación que de hecho están glucosilados, es generalmente menor que para la misma proteína expresada en un sistema de mamífero, tal como las células CHO.
- El documento WO2011/106389, titulado "Methods for increasing N-glycosylation site occupancy on therapeutic glycoproteins produced in *Pichia pastoris*", describe células de *Pichia pastoris* que sobreexpresan oligotransferasa 40 heteróloga de subunidad única, y son capaces de producir glucoproteínas con N-glucosilación mejorada.
 - De manera similar, Choi et al. describen la N-glucosilación mejorada de proteínas recombinantes mediante la expresión heteróloga de oligotransferasa heteróloga de subunidad única (Choi et al., Appl Microbiol Biotechnol, 95(3): 671-82).
 - Los mismos autores también han descrito, en el documento WO2013062939, métodos para aumentar la ocupación de N-glicanos y reducir la producción de N-glicanos híbridos en cepas de Pichia pastoris que carecen de actividad de alfa-1,3-manosiltransferasa (alteración de Alg3p).
- 50 Faltan informes de sistemas de expresión de células fúngicas que expresen N-glicanos fucosilados de tipo humano. De hecho, debido al enfoque de la industria en la tecnología de cultivo de células de mamífero durante tanto tiempo, los sistemas de expresión de células fúngicas tal como *Trichoderma*, no están tan bien establecidos para la producción de proteínas terapéuticas como el cultivo de células de mamífero y, por lo tanto, padecen inconvenientes cuando se expresan proteínas de mamífero. En particular, sigue existiendo la necesidad en la técnica de células fúngicas filamentosas mejoradas, tales como células del hongo *Trichoderma*, que puedan producir de manera estable proteínas heterólogas con una mayor ocupación del sitio de N-glucosilación, preferiblemente a altos niveles de expresión.

RESUMEN

ES 2 711 165 T3

La invención se define en las reivindicaciones.

La presente divulgación se refiere a métodos mejorados para producir glucoproteínas con un aumento de la 5 ocupación del sitio de N-glucosilación en sistemas de expresión fúngicos filamentosos, y más específicamente, glucoproteínas, tales como anticuerpos o inmunoglobulinas relacionadas o proteínas de fusión.

La presente divulgación se basa, en parte, en el descubrimiento sorprendente de que las células fúngicas filamentosas, tales como las células de *Trichoderma*, pueden modificarse genéticamente para expresar la actividad 10 de oligosacaril transferasa, sin afectar adversamente al rendimiento de las glucoproteínas producidas.

Por consiguiente, en un primer aspecto, la divulgación se refiere a una célula fúngica filamentosa que comprende

- i. una o más mutaciones que reducen o eliminan una o más actividades de proteasa endógena en
 comparación con una célula fúngica filamentosa parental que no tiene dicha mutación o mutaciones,
 - ii. un polinucleótido que codifica una subunidad catalítica heteróloga de la oligosacaril transferasa, y
 - iii. un polinucleótido que codifica una glucoproteína heteróloga,

en la que dicha subunidad catalítica de oligosacaril transferasa se selecciona de subunidades catalíticas de 20 oligosacaril transferasa de *Leishmania*.

En una forma de realización, dicha célula fúngica filamentosa tiene al menos una reducción de dos veces, preferiblemente al menos una reducción de tres veces, incluso más preferiblemente al menos una reducción de cuatro veces, al menos una reducción de cinco veces, en la actividad de proteasa total en comparación con una 25 célula fúngica filamentosa parental que no tiene la mutación o mutaciones deficientes en proteasa.

En una forma de realización de la divulgación, dicha célula fúngica filamentosa es una célula de *Trichoderma, Neurospora, Myceliophthora, Chrysosporium, Aspergillus*, o *Fusarium*.

30 En una forma de realización de la invención, el polinucleótido que codifica la subunidad catalítica heteróloga de la oligosacaril transferasa comprende una secuencia de ácido nucleico seleccionada del grupo que consiste en la SEQ ID NO: 2, SEQ ID NO: 9, SEQ ID NO: 88 y SEQ ID NO: 90 o un polinucleótido que codifica un polipéptido variante funcional que tiene al menos un 50%, al menos un 60%, al menos un 70% de identidad, al menos un 80% de identidad, al menos un 90% de identidad, o al menos un 95% de identidad con la SEQ ID NO: 1, SEQ ID NO: 8, SEQ 35 ID NO: 89 o SEQ ID NO: 91, teniendo dicho polipéptido variante funcional actividad de oligosacariltransferasa.

En otra forma de realización, dicho polinucleótido que codifica la subunidad catalítica heteróloga de oligosacaril transferasa está bajo el control de un promotor para la expresión constitutiva de dicha oligosacaril transferasa en dicha célula.

40 En una forma de realización de la divulgación, la ocupación del sitio de N-glucosilación de la glucoproteína heteróloga expresada en una célula fúngica filamentosa es de al menos el 80%, al menos el 90%, al menos el 95%, al menos el 99%, o el 100%.

45 En una forma de realización específica, la ocupación del sitio de N-glucosilación de la glucoproteína heteróloga es de al menos el 95% y las glucoformas Man3, Man5, G0, G1 y/o G2 representan al menos el 50% de los N-glicanos neutros totales de la glucoproteína heteróloga.

En una forma de realización de la divulgación, la célula fúngica filamentosa es una célula de *Trichoderma*, por 50 ejemplo, *Trichoderma reesei*, y dicha célula comprende mutaciones que reducen o eliminan la actividad de

- las tres proteasas endógenas pep1, tsp1, y slp1;
- las tres proteasas endógenas gap1, slp1, y pep1;

55

- las tres proteasas endógenas seleccionadas del grupo que consiste en pep1, pep2, pep3, pep4, pep5, pep8, pep9, pep11, pep12, tsp1, slp1, slp2, slp3, slp7, gap1 y gap2;
- de tres a seis proteasas seleccionadas del grupo que consiste en pep1, pep2, pep3, pep4, pep5, tsp1, slp1, slp2, slp3, gap1 y gap2;
- de siete a diez proteasas seleccionadas del grupo que consiste en pep1, pep2, pep3, pep4, pep5, pep7, pep8, pep9, tsp1, slp1, slp2, slp3, slp5, slp6, slp7, slp8, tsp1, gap1 y gap2.

En una forma de realización, la célula fúngica comprende además una mutación en el gen que codifica ALG3 que reduce o elimina la expresión de ALG3 correspondiente en comparación con el nivel de expresión del gen ALG3 en una célula parental que no tiene tal mutación.

En una forma de realización, la célula fúngica comprende además un polinucleótido que codifica un dominio catalítico de N-acetilglucosaminiltransferasa I y un dominio catalítico de N-acetilglucosaminiltransferasa II.

En una forma de realización, la célula fúngica comprende además uno o más polinucleótidos que codifican un 10 polipéptido seleccionado del grupo que consiste en:

- i. α1. 2 manosidasa:
- ii. dominio catalítico de N-acetilglucosaminiltransferasa I;
- iii. α-manosidasa II;
- 15 iv. dominio catalítico de N-acetilglucosaminiltransferasa II;
 - v. B1.4 galactosiltransferasa; y,
 - vi. fucosiltransferasa.

En una forma de realización de la divulgación, la glucoproteína heteróloga es una glucoproteína de mamífero. 20

En una forma de realización específica, dicha glucoproteína de mamífero se selecciona del grupo que consiste en un anticuerpo, una inmunoglobulina o una fusión de proteínas que comprende el fragmento Fc de una inmunoglobulina.

En otra forma de realización específica, dicha glucoproteína de mamífero es un anticuerpo terapéutico.

25

En otro aspecto, la divulgación también se refiere a un método para aumentar la ocupación del sitio de Nglucosilación de la glucoproteína heteróloga producida en una célula huésped fúngica filamentosa, que comprende:

- a) proporcionar una célula huésped fúngica filamentosa, por ejemplo, una célula de Trichoderma, que tiene 30 un gen STT3D de Leishmania que codifica una subunidad catalítica de oligosacaril transferasa, o una variante funcional de la misma, y un polinucleótido que codifica una glucoproteína heteróloga,
 - b) cultivar la célula huésped en condiciones apropiadas para la expresión del gen STT3D o su variante funcional, o dicha variante funcional, y la producción de la glucoproteína heteróloga;
- 35 en el que las glucoproteínas heterólogas expresadas presentan una mayor ocupación del sitio de N-glucosilación en comparación con las glucoproteínas heterólogas expresadas en una célula fúngica filamentosa parental correspondiente que no expresa dicha subunidad catalítica de oligosacaril transferasa.

La divulgación también se refiere a un método para producir una composición de glucoproteína heteróloga, con un 40 aumento de la ocupación del sitio de N-glucosilación, que comprende:

- a) proporcionar una célula fúngica filamentosa, por ejemplo, una célula de Trichoderma, que tiene un gen STT3D de Leishmania que codifica una subunidad catalítica de oligosacaril transferasa, o una variante funcional de la misma, y un polinucleótido que codifica una glucoproteína heteróloga,
- b) cultivar la célula en condiciones apropiadas para la expresión del gen STT3D o su variante funcional, y la 45 producción de la composición de glucoproteína heteróloga; y,
 - c) recuperar y, opcionalmente, purificar la composición de glucoproteína heteróloga.

En ciertas formas de realización del método de la divulgación, dicho gen STT3D de Leishmania que codifica una 50 subunidad catalítica de oligosacaril transferasa comprende una secuencia de ácido nucleico seleccionada del grupo que consiste en la SEQ ID NO: 2, SEQ ID NO: 9, SEQ ID NO: 88 y SEQ ID NO: 90, o un polinucleótido que codifica un polipéptido variante funcional que tiene al menos un 50%, al menos un 60%, al menos un 70% de identidad, al menos un 80% de identidad, al menos un 90% de identidad, o al menos un 95% de identidad con la SEQ ID NO: 1, SEQ ID NO: 8. SEQ ID NO: 89 o SEQ ID NO: 91, teniendo dicho polipéptido variante funcional actividad de 55 oligosacariltransferasa.

En una forma de realización, dicho polinucleótido que codifica dicha glucoproteína heteróloga comprende además un polinucleótido que codifica el dominio catalítico de CBH1 y el enlazador como una proteína portadora y/o el promotor cbh1.

En una forma de realización de la divulgación, el cultivo es en un medio comprende un inhibidor de proteasa.

En una forma de realización específica, el cultivo es en un medio que comprende uno o dos inhibidores de proteasa 5 seleccionados de SBTI y quimiostatina.

En una forma de realización del método de la divulgación, la ocupación del sitio de N-glucosilación de la composición de glucoproteína producida es de al menos el 80%, al menos el 90%, al menos el 95%, al menos el 99% o el 100%.

10

En un aspecto, la divulgación también se refiere a una composición de glucoproteína obtenible mediante el método descrito anteriormente.

En un aspecto, la divulgación se refiere a una composición de anticuerpo obtenible por el método descrito 15 anteriormente.

En una forma de realización, la divulgación se refiere a la composición de anticuerpo descrita anteriormente, en la que la ocupación del sitio de N-glucosilación es de al menos el 80%, al menos el 90%, al menos el 95%, al menos el 99% o el 100%.

20

25

En una forma de realización, la divulgación se refiere a la composición de anticuerpo descrita anteriormente, en la que dicha composición de anticuerpo comprende, además, como una glucoforma principal, ya sea:

- i. Manα3[Manα6(Manα3)Manα6]Manβ4GlcNAβ4GlcNAc (glucoforma Man5);
- ii. GlcNAcβ2Manα3[Manα6(Manα3)Manα6]Manβ4GlcNAβ4GlcNAc (glucoforma GlcNAcMan5);
 - iii. Manα6(Manα3)Manβ4GlcNAβ4GlcNAc (glucoforma Man3);
 - iv. Manα6(GlcNAcβ2Manα3)Manβ4GlcNAβ4GlcNAc (glucoforma GlcNAcMan3); o,
 - v. N-glicanos de tipo complejo seleccionados de la glucoforma G0, G1, o G2.

30 DESCRIPCIÓN DE LAS FIGURAS

- **Figura 1.** Diseño de casete de expresión esquemático para STT3 de Leishmania major dirigido al locus de xilanasa 1.
- **Figura 2.** Espectros ejemplares de la cepa parental M317 (pyr4- de M304) y clon STT3 de L. major 26B-a (M421). K significa lisina.
 - Figura 3. Mapa esquemático de los casetes de expresión de STT3.
 - Figura 4. Estructuras de glicano producidas en cepas Δalg3.
- Figura 5. Datos de actividad de proteasa normalizada de sobrenadantes de cultivo de los sobrenadantes de deleción de proteasa y la cepa parental. La actividad de la proteasa se midió a pH 5,5 en las primeras 5 cepas y a pH 4,5 en las últimas tres cepas de deleción. La actividad de proteasa es contra la caseína verde fluorescente. La cepa de deleción de seis proteasas tiene solo el 6% de la cepa parental de tipo silvestre y la actividad de la proteasa de la cepa de deleción de 7 proteasas fue aproximadamente un 40% menor que la actividad de la cepa de deleción de 6 proteasas.

45 **DESCRIPCIÓN DETALLADA**

Definiciones

Como se usa en el presente documento, un "sistema de expresión" o una "célula huésped" se refiere a la célula que 50 está modificada genéticamente para permitir la transcripción, traducción y plegamiento apropiado de un polipéptido o una proteína de interés, típicamente de proteína de mamífero.

El término "polinucleótido" u "oligonucleótido" o "ácido nucleico", como se usa en el presente documento, se refiere típicamente a un polímero de al menos dos nucleótidos unidos por un enlace fosfodiéster y puede consistir en ribonucleótidos o desoxinucleótidos o sus derivados que pueden introducirse en una célula huésped para la modificación genética de dicha célula huésped. Por ejemplo, un polinucleótido puede codificar una secuencia codificante de una proteína, y/o comprender secuencias de control o reguladoras de una secuencia codificante de una proteína, tales como secuencias potenciadoras o promotoras o terminador. Un polinucleótido puede comprender, por ejemplo, la secuencia codificante nativa de un gen o sus fragmentos, o secuencias variantes que se

han optimizado para la expresión génica óptima en una célula huésped específica (por ejemplo, para tener en cuenta el sesgo del codón).

Como se usa en el presente documento, el término "optimizado" con referencia a un polinucleótido significa que un polinucleótido se ha alterado para codificar una secuencia de aminoácidos usando codones que se prefieren en la célula u organismo de producción, por ejemplo, una célula fúngica filamentosa tal como una célula de *Trichoderma*. Las secuencias de nucleótidos heterólogas que se transfectan en una célula huésped típicamente se optimizan para retener completamente, o lo máximo posible, la secuencia de aminoácidos codificada originalmente por la secuencia de nucleótidos original (no optimizada). Las secuencias optimizadas en el presente documento se han diseñado para tener codones que se prefieren en la célula u organismo de producción correspondiente, por ejemplo, la célula fúngica filamentosa. Las secuencias de aminoácidos codificadas por secuencias de nucleótidos optimizadas también pueden denominarse optimizadas.

Como se usa en el presente documento, un "péptido" o un "polipéptido" es una secuencia de aminoácidos que incluye una pluralidad de residuos de aminoácidos polimerizados consecutivos. El péptido o polipéptido puede incluir residuos de aminoácidos modificados, residuos de aminoácidos de origen natural no codificados por un codón, y residuos de aminoácidos de origen no natural. Como se usa en el presente documento, una "proteína" puede referirse a un péptido o un polipéptido o una combinación de más de un péptido o polipéptido ensamblados juntos por enlaces covalentes o no covalentes. A menos que se especifique, el término "proteína" puede incluir una o más secuencias de aminoácidos con sus modificaciones postraduccionales, y en particular con modificaciones de Omanosilación o N-glicano.

Como se usa en el presente documento, el término "glucoproteína" se refiere a una proteína que comprende al menos un glicano ligado a N unido al menos a un residuo de asparagina de una proteína, o al menos una manosa unida al menos a una serina o treonina que da como resultado la O-manosilación. Dado que las glucoproteínas según se producen en un sistema de expresión de célula huésped se producen normalmente como una mezcla de diferentes patrones de glucosilación, los términos "glucoproteína" o "composición de glucoproteína" incluyen las mezclas de glucoproteínas según se producen por una célula huésped, con diferentes patrones de glucosilación, a menos que se definan específicamente.

Los términos "N-glucosilación" u "actividad de oligosacaril transferasa" se usan en el presente documento para referirse al enlace covalente de al menos una cadena de oligosacáridos al nitrógeno de amida de cadena lateral del residuo de asparagina (Asn) de un polipéptido.

30

35 Como se usa en el presente documento, "glicano" se refiere a una cadena de oligosacáridos que puede unirse a un vehículo tal como un aminoácido, péptido, polipéptido, lípido o un conjugado de extremo reductor. En ciertas formas de realización, la divulgación se refiere a glicanos unidos a N ("N-glicano") conjugados a un sitio de N-glucosilación polipeptídica tal como -Asn-Xaa-Ser/Thr- mediante un enlace N a nitrógeno de amida de cadena lateral de un residuo de asparagina (Asn), donde Xaa es cualquier residuo de aminoácido excepto Pro. La divulgación puede relacionarse adicionalmente con los glicanos como parte de las estructuras lipídicas precursoras de dolicol-fosfooligosacáridos (Dol-P-P-OS), que son precursores de los glicanos unidos a N en el retículo endoplásmico de células eucariotas. Los oligosacáridos precursores están unidos desde su extremo reductor a dos residuos de fosfato en el lípido dolicol. Por ejemplo, la α3-manosiltransferasa Alg3 modifica el precursor de Dol-P-P-oligosacáridos de los N-glicanos. Generalmente, las estructuras de glicano descritas en el presente documento son estructuras terminales de dicano, donde los residuos no reductores no están modificados por otro residuo o residuos de monosacáridos.

Como se usa a lo largo de la presente divulgación, la nomenclatura de glucolípidos y carbohidratos es esencialmente de acuerdo con las recomendaciones de la IUPAC-IUB Commission on Biochemical Nomenclature (por ejemplo, Carbohydrate Res. 1998, 312, 167; Carbohydrate Res. 1997, 297, 1; Eur. J. Biochem. 1998, 257, 29). Se supone que Gal (galactosa), Glc (glucosa), GlcNAc (N-acetilglucosamina), GalNAc (N-acetilgalactosamina), Man (manosa) y Neu5Ac son de la configuración D, Fuc de la configuración L, y todas las unidades de monosacáridos en forma de piranosa (D-Galp, D-Glcp, D-GlcpNAc, D-GalpNAc, D-Manp, L-Fucp, D-Neup5Ac). El grupo amina es como se define para la galactosa natural y las glucosaminas en la posición 2 de GalNAc o GlcNAc. Los enlaces glucosídicos se muestran parcialmente en la nomenclatura más corta y en parte en la más larga, los enlaces de los residuos de SA/Neu5X de ácido siálico α3 y α6 significan lo mismo que α2-3 y α2-6, respectivamente, y para los residuos de monosacáridos de hexosa α1-3, α1-6, β1-2, β1-3, β1-4 y β1-6 se pueden acortar como α3, α6, β2, β3, β4 y β6, respectivamente. Lactosamina se refiere a N-acetil-lactosamina de tipo II, Galβ4GlcNAc, y/o N-acetil-lactosamina de tipo I. Galβ3GlcNAc y ácido siálico (SA) se refieren a ácido N-acetilneuramínico (Neu5Ac), ácido N-glicolilneuramínico (Neu5Gc), o cualquier otro ácido siálico natural que incluya derivados de Neu5X. El ácido siálico

se conoce como NeuNX o Neu5X, donde preferiblemente X es Ac o Gc. Ocasionalmente, Neu5Ac/Gc/X puede denominarse NeuNAc/NeuNGc/NeuNX.

Los azúcares que constituyen típicamente los N-glucanos encontrados en la glucoproteína de mamífero, incluyen, 5 sin limitación, N-acetilglucosamina (abreviada en lo sucesivo aquí como "GlcNAc"), manosa (abreviada en lo sucesivo aquí como "Glc"), galactosa (abreviada en lo sucesivo aquí como "Gal"), y ácido siálico (abreviada en lo sucesivo aquí como "Neu5Ac"). Los N-glicanos comparten un pentasacárido común conocido como la estructura "central" Man₃GlcNAc₂ (Manα6(Manα3)Manβ4GlcNAβ4GlcNAc, denominado Man3).

l O

En algunas formas de realización, el glicano Man3 o su derivado Manα6(GlcNAcβ2Manα3)Manβ4GlcNAβ4GlcNAc es la glucoforma principal. Cuando una fucosa está unida a la estructura central, del núcleo, preferiblemente unida en α6 a GlcNAc de extremo reductor, el N-glicano o el núcleo de N-glicano, puede representarse como Man₃GlcNAc₂(Fuc). En una forma de realización, el N-glicano principal es 15 Manα3[Manα6(Manα3)Manα6]Manβ4GlcNAβ4GlcNAc (Man5).

Los N-glicanos de tipo híbrido preferidos comprenden GlcNAc β 2Man α 3[Man α 6(Man α 3)Man α 6]Man β 4GlcNA β 4GlcNAc ("GlcNAcMan5"), o derivados b4-galactosilados de los mismos, glucoforma Gal β 4GlcNAcMan3, G1, G2, o GalGlcNAcMan5.

20

- Un "N-glicano complejo" se refiere a un N-glicano que tiene al menos un residuo de GlcNAc, opcionalmente por el residuo de GlcNAc β 2, en el brazo terminal de 1,3 manosa de la estructura central y al menos un residuo de GlcNAc, opcionalmente por el residuo de GlcNAc β 2, en el brazo de 1,6 manosa terminal de la estructura central.
- 25 Dichos N-glicanos complejos incluyen, sin limitación, GlcNAc₂Man₃GlcNAc₂ (también denominado como glucoforma GO), Gal₁GlcNAc₂Man₃GlcNAc₂ (también denominado como glucoforma G1), y Gal₂GlcNAc₂Man₃GlcNAc₂ (también denominado como glucoforma G2), y sus glufoformas fucosiladas centrales FG0, FG1 y FG2, respectivamente, GlcNAc₂Man₃GlcNAc₂(Fuc), Gal₁GlcNAc₂Man₃GlcNAc₂(Fuc), y Gal₂GlcNAc₂Man₃GlcNAc₂(Fuc).
- 30 Como se usa en el presente documento, la expresión "N-glicano neutro" tiene su significado general en la técnica. Se refiere a N-glicanos no sialilados. En contraste, los N-glicanos sialilados son ácidos.
- "Aumento" o "Actividad reducida de una enzima endógena": La célula fúngica filamentosa puede tener niveles de actividad aumentados o reducidos de diversas enzimas endógenas. Se puede proporcionar un nivel reducido de actividad mediante la inhibición de la actividad de la enzima endógena con un inhibidor, un anticuerpo, o similares. En ciertas formas de realización, la célula fúngica filamentosa está modificada genéticamente de manera que aumenta o reduce la actividad de diversas enzimas endógenas. "Modificado genéticamente" se refiere a cualquier método de ADN o ARN recombinante utilizado para crear una célula huésped procariota o eucariota que expresa un polipéptido a niveles elevados, a niveles reducidos, o de forma mutada. En otras palabras, la célula huésped se ha transfectado, transformado o transducido con una molécula de polinucleótido recombinante y, por lo tanto, se ha alterado para que la célula altere la expresión de una proteína deseada.

Las "modificaciones genéticas" que dan como resultado una disminución o deficiencia en la expresión génica, en la función del gen, o en la función del producto génico (es decir, la proteína codificada por el gen) pueden denominarse 45 inactivación (completa o parcial), desactivación, eliminación, alteración, interrupción, bloqueo, silenciamiento o regulación descendente, o atenuación de la expresión de un gen. Por ejemplo, una modificación genética en un gen que da como resultado una disminución en la función de la proteína codificada por dicho gen, puede ser el resultado de una eliminación completa del gen (es decir, el gen no existe, y por lo tanto, la proteína no existe), una mutación en el gen que da como resultado una traducción incompleta (interrupción) o sin traducción de la proteína (por 50 ejemplo, la proteína no se expresa), o una mutación en el gen que disminuye o anula la función natural de la proteína (por ejemplo, se expresa una proteína que ha disminuido o no tiene actividad o acción enzimática). Más específicamente, la referencia a la disminución de la acción de las proteínas analizadas en el presente documento generalmente se refiere a cualquier modificación genética en la célula huésped en cuestión, lo que da como resultado una disminución de la expresión y/o la funcionalidad (actividad biológica) de las proteínas e incluye una 55 actividad disminuida de las proteínas (por ejemplo, disminución de la catálisis), aumento de la inhibición o degradación de las proteínas, así como una reducción o eliminación de la expresión de las proteínas. Por ejemplo, la acción o actividad de una proteína puede disminuir bloqueando o reduciendo la producción de la proteína, reduciendo la acción de la proteína, o inhibiendo la acción de la proteína. También son posibles combinaciones de algunas de estas modificaciones. El bloqueo o la reducción de la producción de una proteína puede incluir colocar el gen que codifica la proteína bajo el control de un promotor que requiere la presencia de un compuesto inductor en el medio de crecimiento. Al establecer condiciones de tal forma que el inductor se agote del medio, la expresión del gen que codifica la proteína (y, por lo tanto, de la síntesis de proteínas) podría desactivarse. El bloqueo o la reducción de la acción de una proteína también podría incluir el uso de un enfoque de tecnología de escisión similar al descrito en la patente de Estados Unidos número 4.743.546. Para utilizar este enfoque, el gen que codifica la proteína de interés se clona entre secuencias genéticas específicas que permiten la escisión controlada y específica del gen del genoma. La escisión podría ser provocada, por ejemplo, por un cambio en la temperatura de cultivo del cultivo, como en la patente de Estados Unidos número 4.743.546, o por alguna otra señal física o nutricional.

- 10 En general, de acuerdo con la presente divulgación, se hace un aumento o una disminución en una característica dada de una proteína mutante o modificada (por ejemplo, actividad enzimática) con referencia a la misma característica de una proteína parental (es decir, normal, no modificada) que se deriva del mismo organismo (de la misma fuente o secuencia precursora), que se mide o se establece en las mismas condiciones o equivalentes. De manera similar, un aumento o disminución en una característica de una célula huésped modificada genéticamente 15 (por ejemplo, la expresión y/o la actividad biológica de una proteína, o la producción de un producto) se realiza con referencia a la misma característica de una célula huésped de tipo silvestre de la misma especie, y preferiblemente la misma cepa, en las mismas condiciones o equivalentes. Dichas condiciones incluyen el ensayo o las condiciones de cultivo (por ejemplo, componentes del medio, temperatura, pH, etc.) en la que se mide la actividad de la proteína (por ejemplo, expresión o actividad biológica) u otra característica de la célula huésped, así como el tipo de ensayo 20 utilizado, la célula huésped que se evalúa, etc. Como se ha analizado anteriormente, las condiciones equivalentes son condiciones (por ejemplo, condiciones de cultivo) que son similares, pero no necesariamente idénticas (por ejemplo, se pueden tolerar algunos cambios conservadores en las condiciones), y que no cambian sustancialmente el efecto sobre el crecimiento celular o la expresión enzimática o la actividad biológica en comparación con una comparación realizada en las mismas condiciones. 25
- Preferiblemente, una célula huésped modificada genéticamente que tiene una modificación genética que aumenta o disminuye (reduce) la actividad de una proteína dada (por ejemplo, una proteasa) tiene un aumento o disminución, respectivamente, en la actividad o la acción (por ejemplo, expresión, producción y/o actividad biológica) de la proteína, en comparación con la actividad de la proteína en una célula huésped parental (que no tiene dicha modificación genética), de al menos aproximadamente el 5%, y más preferiblemente al menos aproximadamente el 10%, 15%, 20%, 25%, 30%, 35%, 40%, 45%, 50%, 55 60%, 65%, 70%, 75 80%, 85 90%, 95%, o cualquier porcentaje, en todos los números enteros entre el 5% y el 100% (por ejemplo, 6%, 7%, 8%, etc.).
- En otro aspecto de la divulgación, una célula huésped modificada genéticamente que tiene una modificación genética que aumenta o disminuye (reduce) la actividad de una proteína dada (por ejemplo, una proteasa) tiene un aumento o disminución, respectivamente, en la actividad o acción (por ejemplo, expresión, producción y/o actividad biológica) de la proteína, en comparación con la actividad de la proteína de tipo silvestre en una célula huésped parental, de al menos aproximadamente 2 veces, y más preferiblemente al menos aproximadamente 5 veces, 10 veces, 20 veces, 30 veces, 40 veces, 50 veces, 75 veces, 100 veces, 125 veces, 150 veces, o cualquier aumento en todos los números enteros comenzando desde al menos aproximadamente 2 veces (por ejemplo, 3 veces, 4 veces, 5 veces, 6 veces, etc.).
- Como se usa en el presente documento, los términos "idéntico" o "identidad porcentual", en el contexto de dos o más secuencias de ácido nucleico o aminoácido, se refieren a dos o más secuencias o subsecuencias que son las mismas. Dos secuencias son "sustancialmente idénticas" si dos secuencias tienen un porcentaje especificado de residuos de aminoácidos o nucleótidos que son iguales (es decir, 29% de identidad, opcionalmente 30%, 40%, 45%, 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95%, 99% o 100% de identidad en una región específica, o, cuando no se específica, en toda la secuencia), cuando se comparan y se alinean para la máxima correspondencia sobre una ventana de comparación, o región designada de acuerdo con lo medido utilizando uno de los siguientes algoritmos de comparación de secuencias o por alineación manual e inspección visual. Opcionalmente, la identidad existe sobre una región que tiene al menos aproximadamente 50 nucleótidos (o 10 aminoácidos) de longitud, o más preferiblemente sobre una región que tiene de 100 a 500 o 1000 o más nucleótidos (o 20, 50, 200 o más) aminoácidos) de longitud.
- 55 Para la comparación de secuencias, típicamente una secuencia actúa como una secuencia de referencia, con la que se comparan las secuencias de ensayo. Cuando se usa un algoritmo de comparación de secuencias, las secuencias de ensayo y de referencia se introducen en un ordenador, las coordenadas de la subsecuencia se designan, si es necesario, y se designan los parámetros del programa de algoritmos de secuencia. Se pueden usar los parámetros predeterminados del programa, o se pueden designar parámetros alternativos. El algoritmo de comparación de

secuencia calcula entonces el porcentaje de identidades de secuencia para las secuencias de ensayo en relación con la secuencia de referencia, basándose en los parámetros del programa. Al comparar dos secuencias para la identidad, no es necesario que las secuencias sean contiguas, pero cualquier brecha conlleva una penalización que reducirá el porcentaje de identidad global. Para blastn, los parámetros predeterminados son penalización de apertura por Gap = 5, y penalización de extensión por Gap = 2. Para blastp, los parámetros predeterminados son penalización de apertura por Gap = 11, y penalización de extensión por Gap = 1.

Una "ventana de comparación", como se usa en el presente documento, incluye una referencia a un segmento de una cualquiera de las varias posiciones contiguas que incluyen, pero sin limitación, de 20 a 600, normalmente de aproximadamente 50 a aproximadamente 200, más normalmente de aproximadamente 100 a aproximadamente 150 en las que una secuencia puede compararse con una secuencia de referencia del mismo número de posiciones contiguas después de que las dos secuencias estén alineadas de manera óptima. Los métodos de alineamiento de secuencias para comparación se conocen bien en la técnica. El alineamiento óptico de secuencias para comparación se puede realizar, por ejemplo, mediante el algoritmo de homología local de Smith y Waterman (1981), mediante el algoritmo de alineamiento de homología de Needleman y Wunsch (1970) J Mol Biol 48(3):443-453, por el método de búsqueda de similitud de Pearson y Lipman (1988) Proc Natl Acad Sci USA 85(8):2444-2448, mediante implementaciones computarizadas de estos algoritmos (GAP, BESTFIT, FASTA, y TFASTA en el paquete de software de Wisconsin Genetics, Genetics Computer Group, 575 Science Dr., Madison, WI), o por alineamiento manual e inspección visual [véanse, por ejemplo, Brent et al., (2003) Current Protocols in Molecular Biology, John Wiley & Sons, Inc. (Ringbou Ed)].

Dos ejemplos de algoritmos que son adecuados para determinar el porcentaje de identidad de secuencia y la similitud de secuencia son los algoritmos BLAST y BLAST 2.0, que se describen en Altschul et al. (1997) Nucleic Acids Res 25(17):3389-3402 y Altschul et al. (1990) J. Mol Biol 215(3)-403-410, respectivamente. El software para realizar los análisis BLAST está disponible públicamente a través del National Center for Biotechnology Information. El programa BLASTN (para secuencias de nucleótidos) utiliza como valores predeterminados una longitud de palabra (W) de 11, una expectativa (E) de 10, M = 5, N = -4 y una comparación de ambas cadenas. Para las secuencias de aminoácidos, el programa BLASTP utiliza como valores predeterminados una longitud de palabra de 3, y una expectativa (E) de 10, y alineamientos (B)de matriz de puntuación BLOSUM62 [véase Henikoff y Henikoff, 30 (1992) Proc Natl Acad Sci USA 89(22):10915-10919] de 50, expectativa (E) de 10, M = 5, N = -4, y una comparación de ambas cadenas.

El algoritmo BLAST también realiza un análisis estadístico de la similitud entre dos secuencias (véase, por ejemplo, Karlin y Altschul, (1993) Proc Natl Acad Sci USA 90(12):5873-5877). Una medida de similitud proporcionada por el algoritmo BLAST es la probabilidad de la suma más pequeña (P(N)), que proporciona una indicación de la probabilidad por la cual una coincidencia entre dos secuencias de nucleótidos o aminoácidos se produciría por casualidad. Por ejemplo, un ácido nucleico se considera similar a una secuencia de referencia si la probabilidad de la suma más pequeña en una comparación del ácido nucleico de ensayo con el ácido nucleico de referencia es menor de aproximadamente 0,2, más preferiblemente menor de aproximadamente 0,01, y más preferiblemente 40 menor de aproximadamente 0,001.

"Variante funcional" o "gen homólogo funcional" como se usa en el presente documento se refiere a una secuencia codificante o una proteína que tiene una similitud de secuencia con una secuencia de referencia, típicamente, de al menos el 30%, 40%, 50%, 60%, 70%, 80%, 90% o el 95% de identidad con la secuencia codificante de referencia o proteína, y que conserva sustancialmente la misma función que dicha secuencia codificante de referencia o proteína. Una variante funcional puede conservar la misma función, pero con una actividad reducida o aumentada. Las variantes funcionales incluyen variantes naturales, por ejemplo, homólogos de diferentes especies o variantes artificiales, resultantes de la introducción de una mutación en la secuencia codificante. La variante funcional puede ser una variante con solo mutaciones modificadas de manera conservadora.

Las "mutaciones modificadas de manera conservadora", como se usan en el presente documento, incluyen sustituciones individuales, deleciones o adiciones a una secuencia de aminoácidos codificada que dan como resultado la sustitución de un aminoácido con un aminoácido químicamente similar. Las tablas de sustitución conservadora que proporcionan aminoácidos funcionalmente similares se conocen bien en la técnica. Dichas variantes modificadas de manera conservadora son, además, y no excluyen, variantes polimórficas, homólogos interespecies y alelos de la divulgación. Los siguientes ocho grupos contienen aminoácidos que son sustituciones conservadoras entre sí: 1) alanina (A), glicina (G); 2) ácido aspártico (D), ácido glutámico (E); 3) asparagina (N), glutamina (Q); 4) arginina (R), lisina (K); 5) isoleucina (I), leucina (L), metionina (M), valina (V); 6) fenilalanina (F), tirosina (Y), triptófano (W); 7) serina (S), treonina (T); y 8) cisteína (C), metionina (M) (véase, por ejemplo, Creighton,

Proteins (1984)).

Células fúngicas filamentosas

5 Como se usa en el presente documento, "células fúngicas filamentosas" incluyen células de todas las formas filamentosas de la subdivisión Eumycota y Oomycota (según se define por Hawksworth et al., In, Ainsworth and Bisby's Dictionary of The Fungi, 8ª edición, 1995, CAB International, University Press, Cambridge, Reino Unido). Las células fúngicas filamentosas se caracterizan en general por una pared micelial compuesta por quitina, celulosa, glucano, quitosano, manano, y otros polisacáridos complejos. El crecimiento vegetativo es por elongación de hifas y el catabolismo carbónico es necesariamente aeróbico. Por el contrario, el crecimiento vegetativo por levaduras tales como Saccharomyces cerevisiae se produce por el brote de un talo unicelular y el catabolismo carbónico puede ser fermentativo.

Preferiblemente, la célula fúngica filamentosa no se ve afectada adversamente por la transducción de las secuencias de ácido nucleico necesarias, la expresión posterior de las proteínas (por ejemplo, proteínas de mamíferos), o los compuestos intermedios resultantes. Los métodos generales para alterar genes y cultivar células fúngicas filamentosas se divulgan, por ejemplo, para Penicillium, en Kopke et al. (2010) Appl Environ Microbiol. 76(14):4664-74. doi: 10.1128/AEM.00670-10, para Aspergillus, en Maruyama y Kitamoto (2011), Methods in Molecular Biology, vol. 765, DOI10.1007/978-1-61779-197-0_27; para Neurospora, en Collopy et al. (2010) Methods Mol Biol. 2010;638:33-40. doi: 10.1007/978-1-60761-611-5_3; y para *Myceliophthora* o *Chrysosporium* PCT/NL2010/000045 y PCT/EP98/06496.

Los ejemplos de células fúngicas filamentosas adecuadas incluyen, sin limitación, células de una cepa de Acremonium, Aspergillus, Fusarium, Humicola, Mucor, Myceliophthora, Neurospora, Penicillium, Scytalidium, 25 Thielavia, Tolypocladium, o Trichodermal Hypocrea.

En ciertas formas de realización, la célula fúngica filamentosa es de una cepa de *Trichoderma* sp., *Acremonium, Aspergillus, Aureobasidium, Cryptococcus, Chrysosporium, Chrysosporium lucknowense, Filibasidium, Fusarium, Gibberella, Magnaporthe, Mucor, Myceliophthora, Myrothecium, Neocallimastix, Neurospora, Paecilomyces, 30 Penicillium, Piromyces, Schizophyllum, Talaromyces, Thermoascus, Thielavia, o Tolypocladium.*

En algunas formas de realización, la célula fúngica filamentosa es una cepa de *Myceliophthora o Chrysosporium, Neurospora, Aspergillus, Fusarium* o *Trichoderma*.

35 Las células fúngicas de Aspergillus de la presente divulgación pueden incluir, sin limitación, Aspergillus aculeatus, Aspergillus awamori, Aspergillus clavatus, Aspergillus flavus, Aspergillus foetidus, Aspergillus fumigatus, Aspergillus japonicus, Aspergillus nidulans, Aspergillus niger, Aspergillus oryzae, o Aspergillus terreus.

Las células fúngicas de Neurospora de la presente divulgación pueden incluir, sin limitación, Neurospora crassa.

Las células fúngicas de *Myceliophthora* de la presente divulgación pueden incluir, sin limitación, *Myceliophthora* thermophila.

En una forma de realización preferida, la célula fúngica filamentosa es una célula fúngica de *Trichoderma*. Las células fúngicas de *Trichoderma* de la presente divulgación pueden derivarse de una cepa de *Trichoderma* de tipo silvestre o un mutante de la misma. Los ejemplos de células fúngicas de *Trichoderma* adecuadas incluyen, sin limitación, *Trichoderma harzianum, Trichoderma koningii, Trichoderma longibrachiatum, Trichoderma reesei, Trichoderma atroviride, Trichoderma virens, Trichoderma viride; y una forma sexual alternativa de las mismas (es decir, <i>Hypocrea*).

En una forma de realización más preferida, la célula fúngica filamentosa es *Trichoderma reesei*, y, por ejemplo, cepas derivadas de ATCC 13631 (QM 6a), ATCC 24449 (mutante de radiación 207 de QM 6a), ATCC 26921 (QM 9414; mutante de ATCC 24449), VTT-D-00775 (Selinheimo et al., FEBS J., 2006, 273: 4322-4335), Rut-C30 (ATCC 56765), RL-P37 (NRRL 15709) o aislado de T. harzianum T3 (Wolffhechel, H., 1989).

La divulgación descrita en el presente documento se refiere a una célula fúngica filamentosa, por ejemplo, seleccionada de células de *Trichoderma*, *Neurospora*, *Myceliophthora* o *Chrysosporium*, tal como una célula fúngica de *Trichoderma reesei*, que comprende:

10

วบ

50

40

55

- i. una o más mutaciones que reducen o eliminan una o más actividades de proteasa endógena en comparación con una célula fúngica filamentosa parental que no tiene dicha mutación o mutaciones,
- ii. un polinucleótido que codifica una subunidad catalítica heteróloga de la oligosacaril transferasa, y
- iii. un polinucleótido que codifica una glucoproteína heteróloga,

en la que dicha subunidad catalítica de oligosacaril transferasa se selecciona de subunidades catalíticas de oligosacaril transferasa de *Leishmania*.

Proteasas con actividad reducida

10

Se ha encontrado que la reducción de la actividad de la proteasa permite aumentar sustancialmente la producción de una proteína de mamífero heteróloga. De hecho, dichas proteasas encontradas en células fúngicas filamentosas que expresan una proteína heteróloga normalmente catalizan una degradación significativa de la proteína recombinante expresada. Por lo tanto, al reducir la actividad de las proteasas en las células fúngicas filamentosas que expresan una proteína heteróloga, la estabilidad de la proteína expresada aumenta, dando como resultado un mayor nivel de producción de la proteína y, en algunas circunstancias, una mejora de la calidad de la proteína producida (por ejemplo, de longitud completa en lugar de degradada).

Las proteasas incluyen, sin limitación, proteasas aspárticas, serina proteasas de tipo tripsina, proteasas de subtilisina, proteasas glutámicas, y proteasas de sedolisina. Dichas proteasas pueden identificarse y aislarse a partir de células fúngicas filamentosas y ensayarse para determinar si la reducción de su actividad afecta a la producción de un polipéptido recombinante a partir de la célula fúngica filamentosa. Los métodos para identificar y aislar proteasas son bien conocidos en la técnica e incluyen, sin limitación, cromatografía de afinidad, ensayos de zimogramas, y electroforesis en gel. Después, se puede ensayar una proteasa identificada eliminando el gen que codifica la proteasa identificada de una célula fúngica filamentosa que expresa un polipéptido recombinante, tal como un polipéptido heterólogo o de mamífero, y determinando si la deleción produce una disminución en la actividad de la proteasa total de la célula, y un aumento en el nivel de producción del polipéptido recombinante expresado. Los métodos para eliminar genes, medir la actividad de proteasa total, y medir los niveles de proteína producida se conocen bien en la técnica e incluyen los métodos descritos en el presente documento.

30

Proteasas aspárticas

Las proteasas aspárticas son enzimas que usan un residuo de aspartato para la hidrólisis de los enlaces peptídicos en polipéptidos y proteínas. Típicamente, las proteasas aspárticas contienen dos residuos de aspartato altamente conservados en su sitio activo que son óptimamente activos a pH ácido. Las proteasas aspárticas de organismos eucariotas tal como los hongos *Trichoderma* incluyen pepsinas, catepsinas y reninas. Dichas proteasas aspárticas tienen una estructura de dos dominios, que se cree que surge de la duplicación génica ancestral. Consistente con tal evento de duplicación, el pliegue total de cada dominio es similar, aunque las secuencias de los dos dominios han comenzado a divergir. Cada dominio contribuye con uno de los residuos de aspartato catalíticos. El sitio activo está en una hendidura formada por los dos dominios de las proteasas aspárticas. Las proteasas aspárticas eucariotas incluyen además puentes disulfuro conservados, que pueden ayudar en la identificación de los polipéptidos como proteasas de ácido aspártico.

Se han identificado diez proteasas aspárticas en células fúngicas de *Trichoderma*: pep1 (tre74156); pep2 (tre53961); pep3 (tre121133); pep4 (tre77579), pep5 (tre81004), y pep7 (tre58669), pep8 (tre122076), pep9 (tre79807), pep11 (121306), y pep12 (tre119876).

Los ejemplos de proteasas aspárticas adecuadas incluyen, sin limitación, pep1 de *Trichoderma reesei* (SEQ ID NO: 22), pep2 de Trichoderma reesei (SEQ ID NO: 18), pep3 de Trichoderma reesei (SEQ ID NO: 19); pep4 de Trichoderma reesei (SEQ ID NO: 20), pep5 de Trichoderma reesei (SEQ ID NO: 21) y pep7 de Trichoderma reesei (SEQ ID NO:23), EGR48424 pep8 de Trichoderma reesei (SEQ ID NO:85), *pep9* de Trichoderma reesei (SEQ ID NO:87), EGR49498 *pep11 de Trichoderma reesei* (SEQ ID NO:86), EGR52517 *pep12* de Trichoderma reesei (de SEQ ID NO:35), y homólogos de las mismas. Los ejemplos de homólogos de proteasas pep1, pep2, pep3, pep4, pep5, pep7, pep8, pep11 y pep12 identificadas en otros organismos también se describen en el documento PCT/EP/2013/050186.

55 Serina proteasas de tipo tripsina

Las serina proteasas de tipo tripsina son enzimas con una especificidad de sustrato similar a la de la tripsina. Las serina proteasas de tipo tripsina usan un residuo de serina para la hidrólisis de los enlaces peptídicos en polipéptidos y proteínas. Típicamente, las serina proteasas de tipo tripsina escinden enlaces peptídicos después de

un residuo de aminoácido cargado positivamente. Las serina proteasas de tipo tripsina de organismos eucariotas tales como los hongos *Trichoderma*, incluyen la tripsina 1, la tripsina 2 y la mesotripsina. Dichas serina proteasas de tipo tripsina generalmente contienen una tríada catalítica de tres residuos de aminoácidos (tal como histidina, aspartato y serina) que forman un relé de carga que sirve para hacer que el sitio activo sea nucleófilo. Las serina proteasas de tripsina eucariotas incluyen además un "orificio de oxianión" formado por los átomos de hidrógeno de amida del esqueleto de glicina y serina, que pueden ayudar en la identificación de los polipéptidos como serina proteasas de tipo tripsina.

Se ha identificado una serina proteasa de tipo tripsina en células fúngicas de *Trichoderma*: tsp1 (tre73897). Como se 10 analiza en el documento PCT/EP/2013/050186, se ha demostrado que tsp1 tiene un impacto significativo en la expresión de glucoproteínas recombinantes, tales como las inmunoglobulinas.

Los ejemplos de proteasas tsp1 adecuadas incluyen, sin limitación, tsp1 de *Trichoderma reesei* (SEQ ID NO: 24) y homólogos de las mismas. Los ejemplos de homólogos de proteasas tsp1 identificadas en otros organismos se 15 describen en el documento PCT/EP/2013/050186.

Subtilisina proteasas

Las subtilisina proteasas son enzimas con especificidad de sustrato similar a la de la subtilisina. Las subtilisina 20 proteasas usan un residuo de serina para la hidrólisis de los enlaces peptídicos en polipéptidos y proteínas. Generalmente, las subtilisina proteasas son serina proteasas que contienen una tríada catalítica de los tres aminoácidos aspartato, histidina y serina. La disposición de estos residuos catalíticos se comparte con la subtilisina prototípica de Bacillus licheniformis. Las subtilisina proteasas de organismos eucariotas tales como los hongos *Trichoderma*, incluyen furina, MBTPS1 y TPP2. Las serina proteasas de tipo tripsina eucariotas incluyen además un 25 residuo de ácido aspártico en el orificio de oxianión.

Se han identificado siete subtilisina proteasas en células fúngicas de *Trichoderma*: slp1 (tre51365); slp2 (tre123244); slp3 (tre123234); slp5 (tre64719), slp6 (tre121495), slp7 (tre123865), y slp8 (tre58698). La subtilisina proteasa *slp7* se parece también a la sedolisina proteasa *tpp1*.

Los ejemplos de proteasas slp adecuadas incluyen, sin limitación, slp1 de *Trichoderma reesei* (SEQ ID NO: 25), slp2 (SEQ ID NO: 26); slp3 (SEQ ID NO: 27); slp5 (SEQ ID NO: 28), slp6 (SEQ ID NO: 29), slp7 (SEQ ID NO: 30), y slp8 (SEQ ID NO: 31), y homólogos de las mismas. Los ejemplos de homólogos de proteasas slp identificadas en otros organismos se describen en el documento PCT/EP/2013/050186.

Proteasas glutámicas

30

50

Las proteasas glutámicas son enzimas que hidrolizan los enlaces peptídicos en polipéptidos y proteínas. Las proteasas glutámicas son insensibles a la pepstatina A, por lo que a veces se las denomina proteasas ácidas 40 insensibles a la pepstatina. Si bien las proteasas glutámicas se agruparon previamente con las proteasas aspárticas y a menudo se denominaron proteasas ácidas, recientemente se ha encontrado que las proteasas glutámicas tienen residuos de sitios activos muy diferentes a las proteasas aspárticas.

Se han identificado dos proteasas glutámicas en células fúngicas de *Trichoderma*: gap1 (tre69555) y gap2 45 (tre106661).

Los ejemplos de proteasas gap adecuadas incluyen, sin limitación, gap de *Trichoderma reesei* (SEQ ID NO: 32), gap2 de *Trichoderma reesei* (SEQ ID NO: 33), y homólogos de las mismas. Los ejemplos de homólogos de proteasas gap identificadas en otros organismos se describen en el documento PCT/EP/2013/050186.

Sedolisina proteasas y homólogos de proteasas

Las sedolisina proteasas son enzimas que usan un residuo de serina para la hidrólisis de los enlaces peptídicos en polipéptidos y proteínas. Las sedolisina proteasas generalmente contienen una tríada catalítica única de serina, glutamato y aspartato. Las sedolisina proteasas también contienen un residuo de aspartato en el orificio de oxianión. Las sedolisina proteasas de organismos eucariotas tales como los hongos de *Trichoderma* incluyen la tripeptidil peptidasa.

Los ejemplos de proteasas tpp1 adecuadas incluyen, sin limitación, tpp1 de Trichoderma reesei tre82623 (SEQ ID

NO: 34) y homólogos de la misma. Los ejemplos de homólogos de proteasas tpp1 identificadas en otros organismos se describen en el documento PCT/EP/2013/050186.

Como se usa en referencia a la proteasa, el término "homólogo" se refiere a una proteína que tiene actividad de 5 proteasa y muestra una similitud de secuencia con una secuencia de proteasa conocida (de referencia). Los homólogos pueden identificarse mediante cualquier método conocido en la técnica, preferiblemente, usando la herramienta BLAST para comparar una secuencia de referencia con una segunda secuencia o fragmento de una secuencia o con una base de datos de secuencias. Como se describe en la sección "Definiciones", BLAST comparará secuencias basadas en el porcentaje de identidad y similitud.

Preferiblemente, una proteasa homóloga tiene al menos un 30% de identidad con (opcionalmente un 30%, 40%, 45%, 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95%, 99% o un 100% de identidad sobre una región especificada, o, cuando no se especifica, sobre toda la secuencia), cuando se compara con una de las secuencias de proteasa enumeradas anteriormente, incluyendo pep1, pep2, pep3, pep4, pep5, pep7, pep8, pep9, pep11, pep12, 15 tsp1, slp1, slp2, slp3, slp5, slp6, slp7, slp8, tpp1, gap1 y gap2 de T. reesei. Las proteasas homólogas correspondientes de N. crassa y M. thermophila se muestran en la SEQ ID NO: 136-169.

Reducción de la actividad de proteasas en la célula fúngica filamentosa de la divulgación

- 20 Las células fúngicas filamentosas de acuerdo con la divulgación tienen actividad reducida de al menos una proteasa endógena, típicamente 2, 3, 4, 5 o más, con el fin de mejorar la estabilidad y la producción de la proteína con una mayor ocupación del sitio de N-glucosilación en dicha célula fúngica filamentosa, preferiblemente en una célula de *Trichoderma*.
- 25 La actividad de proteasa total se puede medir de acuerdo con los métodos estándar en la técnica y, por ejemplo, como se describe en el presente documento utilizando el kit de ensayo de proteasa (kit de ensayo de proteasa QuantiCleave, Pierce N.º 23263) con caseína succinilada como sustrato.
- La actividad de las proteasas encontradas en células fúngicas filamentosas puede reducirse por cualquier método 30 conocido por los expertos en la técnica. En algunas formas de realización, la actividad reducida de las proteasas se consigue reduciendo la expresión de la proteasa, por ejemplo, mediante la modificación del promotor o ARNi.
- En formas de realización adicionales, la expresión reducida o eliminada de las proteasas es el resultado de polinucleótidos antisentido o construcciones de ARNi que son específicas para cada uno de los genes que codifican cada una de las proteasas. En una forma de realización, una construcción de ARNi es específica para un gen que codifica una proteasa aspártica tal como una proteasa de tipo pep, una serina proteasas de tipo tripsina, tal como una tsp1, una proteasa glutámica, tal como una proteasa de tipo gap, una subtilisina proteasa, tal como una proteasa de tipo slp, o una sedolisina proteasa, tal como una proteasa tpp1 o slp7. En una forma de realización, una construcción de ARNi es específica para el gen que codifica una proteasa de tipo slp. En una forma de realización, una construcción de ARNi es específica para el gen que codifica slp2, slp3, slp5 o slp6. En una forma de realización, una construcción de ARNi es específica para dos o más proteasas. En una forma de realización, dos o más
- proteasas son una cualquiera de las proteasas de tipo pep, una cualquiera de las serina proteasas de tipo tripsina, una cualquiera de las proteasas de tipo slp, una cualquiera de las proteasas de tipo gap y/o una cualquiera de las sedolisina proteasas. En una forma de realización, dos o más proteasas son slp2, slp3, slp5 y/o slp6. En una forma 45 de realización, la construcción de ARNi comprende una cualquiera de las siguientes secuencias de ácido nucleico

(véase también el documento PCT/EP/2013/050186).

10

Secuencia diana de ARNi
GCACACTTTCAAGATTGGC (SEQ ID NO: 15)
GTACGGTGTTGCCAAGAAG (SEQ ID NO: 16)

GTTGAGTACATCGAGCGCGACAGCATTGTGCACACCATGCTTCCCCTCGAGTC CAAGGACAGCATCATCGTTGAGGACTCGTGCAACGGCGAGACGGAGAAGCAG GCTCCCTGGGGTCTTGCCCGTATCTCTCACCGAGAGACGCTCAACTTTGGCTC CTTCAACAAGTACCTCTACACCGCTGATGGTGGTGAGGGTGTTGATGCCTATGT CATTGACACCGGCACCAACATCGAGCACGTCGACTTTGAGGGTCGTGCCAAGT

GGGGCAAGACCATCCCTGCCGGCGATGAGGACGAGGACGGCAACGGCCACG GCACTCACTGCTCTGGTACCGTTGCTGGTAAGAAGTACGGTGTTGCCAAGAAG GCCCACGTCTACGCCGTCAAGGTGCTCCGATCCAACGGATCCGGCACCATGTC TGACGTCGTCAAGGGCGTCGAGTACG (SEQ ID NO:17)

En otras formas de realización, la actividad reducida de las proteasas se consigue modificando el gen que codifica la proteasa. Los ejemplos de dichas modificaciones incluyen, sin limitación, una mutación, tal como una eliminación o alteración del gen que codifica dicha actividad de proteasa endógena.

Por consiguiente, la divulgación se refiere a una célula fúngica filamentosa, tal como una célula de *Trichoderma*, que tiene una mutación que reduce o elimina al menos una actividad de proteasa endógena en comparación con una célula fúngica filamentosa parental que no tiene tal mutación deficiente en proteasa, comprendiendo dicha célula fúngica filamentosa además un polinucleótido que codifica una subunidad catalítica heteróloga de la oligosacaril 10 transferasa de *Leishmania*.

La mutación por deleción o interrupción incluye, sin limitación, mutación knock-out, una mutación de truncamiento, una mutación puntual, una mutación sin sentido, una mutación de sustitución, una mutación de desplazamiento de marco, una mutación de inserción, una mutación de duplicación, una mutación de amplificación, una mutación de translocación, o una mutación de inversión, y que da como resultado una reducción de la actividad de proteasa correspondiente. Los métodos para generar al menos una mutación en un gen codificante de proteasas de interés se conocen bien en la técnica e incluyen, sin limitación, mutagénesis aleatoria y cribado, mutagénesis de sitio dirigido, mutagénesis por PCR, mutagénesis por inserción, mutagénesis guímica e irradiación.

- 20 En ciertas formas de realización, se modifica una porción del gen que codifica la proteasa, tal como la región que codifica el dominio catalítico, la región codificante, o una secuencia de control requerida para la expresión de la región codificante. Tal secuencia de control del gen puede ser una secuencia promotora o una parte funcional de la misma, es decir, una parte que sea suficiente para afectar a la expresión del gen. Por ejemplo, una secuencia promotora puede inactivarse dando como resultado que no haya expresión o un promotor más débil puede sustituirse por la secuencia promotora nativa para reducir la expresión de la secuencia codificante. Otras secuencias de control para una posible modificación incluyen, sin limitación, una secuencia líder, una secuencia propeptídica, una secuencia señal, un terminador de la transcripción, y un activador de la transcripción.
- Los genes que codifican proteasa que están presentes en células fúngicas filamentosas también pueden modificarse 30 utilizando técnicas de eliminación de genes para eliminar o reducir la expresión del gen. Las técnicas de deleción génica permiten la eliminación parcial o completa del gen, eliminando así su expresión. En tales métodos, la eliminación del gen se puede lograr mediante recombinación homóloga utilizando un plásmido que se ha construido para contener de forma contigua las regiones 5' y 3' que flanquean el gen.
- 35 Los genes que codifican proteasas que están presentes en células fúngicas filamentosas también pueden modificarse introduciendo, sustituyendo y/o eliminando uno o más nucleótidos en el gen, o una secuencia de control de los mismos requerida para la transcripción o traducción del gen. Por ejemplo, los nucleótidos pueden insertarse o eliminarse para la introducción de un codón de terminación, la eliminación del codón de inicio, o un desplazamiento de marco del marco de lectura abierto. Tal modificación se puede lograr mediante métodos conocidos en la técnica, que incluyen, sin limitación, mutagénesis de sitio dirigido y mutagénesis generada por peR (véanse, por ejemplo, Botstein y Shortie, 1985, Science 229: 4719; Lo et al., 1985, Proceedings of the National Academy of Sciences USA 81: 2285; Higuchi et al., 1988, Nucleic Acids Research 16: 7351; Shimada, 1996, Meth. Mol. Bioi. 57: 157; Ho et al., 1989, Gene 77: 61; Horton et al., 1989, Gene 77: 61; y Sarkar y Sommer, 1990, BioTechniques 8: 404).
- 45 Además, los genes que codifican la proteasa que están presentes en las células fúngicas filamentosas pueden modificarse mediante técnicas de alteración génica insertando en el gen una construcción disruptiva de ácido nucleico que contiene un fragmento de ácido nucleico homólogo al gen que creará una duplicación de la región de homología e incorporará una construcción de ácido nucleico entre las regiones duplicadas. Tal alteración génica puede eliminar la expresión del gen si la construcción insertada separa el promotor del gen de la región codificante o interrumpe la secuencia codificante de tal forma que da como resultado un producto génico no funcional. Una construcción disruptiva puede ser simplemente un gen marcador seleccionable acompañado de las regiones 5' y 3' homólogas al gen. El marcador seleccionable permite la identificación de transformantes que contienen el gen alterado.

Los genes que codifican proteasa que están presentes en células fúngicas filamentosas también pueden modificarse por el proceso de conversión génica (véase, por ejemplo, Iglesias y Trautner, 1983, Molecular General Genetics 189:5 73-76). Por ejemplo, en la conversión del gen, una secuencia de nucleótidos correspondiente al gen se mutageniza *in vitro* para producir una secuencia de nucleótidos defectuosa, que luego se transforma en una cepa de 5 *Trichoderma* para producir un gen defectuoso. Por recombinación homóloga, la secuencia de nucleótidos defectuosa reemplaza al gen endógeno. Puede ser deseable que la secuencia de nucleótidos defectuosa también contenga un marcador para la selección de transformantes que contienen el gen defectuoso.

Los genes codificantes de proteasa de la presente divulgación que están presentes en células fúngicas filamentosas que expresan un polipéptido recombinante también pueden modificarse mediante técnicas antisentido establecidas que utilizan una secuencia de nucleótidos complementaria a la secuencia de nucleótidos del gen (véase, por ejemplo, Parish y Stoker, 1997, FEMS Microbiology Letters 154: 151-157). En particular, la expresión del gen por células fúngicas filamentosas puede reducirse o inactivarse introduciendo una secuencia de nucleótidos complementaria a la secuencia de nucleótidos del gen, que puede transcribirse en la cepa y es capaz de hibridar con 15 el ARNm producido en las células. En condiciones que permiten que la secuencia de nucleótidos antisentido complementaria se hibride con el ARNm, por lo tanto, la cantidad de proteína traducida se reduce o elimina.

Los genes que codifican proteasas que están presentes en células fúngicas filamentosas también pueden modificarse por mutagénesis aleatoria o específica usando métodos bien conocidos en la técnica, incluyendo, sin 20 limitación, mutagénesis química (véase, por ejemplo, Hopwood, The Isolation of Mutants in Methods in Microbiology (J.R. Norris y D.W. Ribbons, eds.) págs. 363-433, Academic Press, Nueva York, 25 1970). La modificación del gen se puede realizar sometiendo las células fúngicas filamentosas a mutagénesis y cribando las células mutantes en las que la expresión del gen se ha reducido o inactivado. La mutagénesis, que puede ser específica o aleatoria, puede realizarse, por ejemplo, mediante el uso de un agente mutagenizante físico o químico adecuado, el uso de un 25 oligonucleótido adecuado, sometiendo la secuencia de ADN a mutagénesis generada por peR, o cualquier combinación de las mismas. Los ejemplos de agentes mutagenizantes físicos y químicos incluyen, sin limitación, irradiación ultravioleta (UV), hidroxilamina, N-metil-N'-nitro-N-nitrosoguanidina (MNNG), N-metil-N'-nitrosogaunidina (NTG) O-metil hidroxilamina, ácido nitroso, metanosulfonato de etil (EMS), bisulfito sódico, ácido fórmico y análogos de nucleótidos. Cuando se usan dichos agentes, la mutagénesis se realiza típicamente incubando las células fúngicas filamentosas, tales como células de *Trichoderma*, a mutagenizar en presencia del agente mutagenizante de elección en condiciones adecuadas, y luego seleccionando mutantes que muestran una expresión reducida o nula del gen.

En ciertas formas de realización, la al menos una mutación o modificación en un gen codificante de proteasa de la presente divulgación da como resultado una proteasa modificada que no tiene actividad de proteasa detectable. En otras formas de realización, la al menos una modificación en un gen que codifica proteasa de la presente divulgación da como resultado una proteasa modificada que tiene al menos un 25% menos, al menos un 50% menos, al menos un 75% menos, al menos un 90%, al menos 95%, o un mayor porcentaje menos de actividad de proteasa en comparación con una proteasa no modificada correspondiente.

Las células fúngicas filamentosas o células fúngicas de *Trichoderma* de la presente divulgación pueden tener actividad proteasa reducida o no detectable de al menos tres, o al menos cuatro proteasas seleccionadas del grupo que consiste en pep1, pep2, pep3, pep4, pep5, pep8, pep9, pep11, pep12, tsp1, slp1, slp2, slp3, slp5, slp6, slp7, gap1 y gap2. En una forma de realización preferida, una célula fúngica filamentosa de acuerdo con la divulgación es una célula fúngica filamentosa que tiene una deleción o alteración en al menos 3 o 4 proteasas endógenas, dando como resultado una actividad no detectable para dichas proteasas endógenas eliminadas o alteradas y que además comprende un polinucleótido que codifica una subunidad catalítica heteróloga de oligosacaril transferasa de *Leishmania*.

50 En ciertas formas de realización, la célula fúngica filamentosa o la célula de *Trichoderma*, tiene una actividad de proteasa reducida o no detectable en pep1, tsp1, y slp1. En otras formas de realización, la célula fúngica filamentosa o la célula de *Trichoderma*, tiene una actividad de proteasa reducida o no detectable en gap1, slp1, y pep1. En ciertas formas de realización, la célula fúngica filamentosa o la célula de *Trichoderma*, tiene una actividad de proteasa reducida o no detectable en slp2, pep1 y gap1. En ciertas formas de realización, la célula fúngica filamentosa o la célula de *Trichoderma*, tiene una actividad de proteasa reducida o no detectable en slp2, pep1, gap1 y pep4. En ciertas formas de realización, la célula fúngica filamentosa o la célula de *Trichoderma*, tiene una actividad de proteasa reducida o no detectable en slp2, pep1, gap1, pep4 y slp1. En ciertas formas de realización, la célula fúngica filamentosa o la célula de *Trichoderma*, tiene una actividad de proteasa reducida o no detectable en slp2, pep1, gap1, pep4, slp1, y slp3. En ciertas formas de realización, la célula fúngica filamentosa o la célula de cielula de realización, la célula fúngica filamentosa o la célula de cielula de realización, la célula fúngica filamentosa o la célula de cielula de realización, la célula fúngica filamentosa o la célula de cielula de realización, la célula fúngica filamentosa o la célula de cielula de realización, la célula fúngica filamentosa o la célula de realización.

Trichoderma, tiene una actividad de proteasa reducida o no detectable en slp2, pep1, gap1, pep4, slp1, slp3, y pep3. En ciertas formas de realización, la célula fúngica filamentosa o la célula de Trichoderma, tiene una actividad de proteasa reducida o no detectable en slp2, pep1, gap1, pep4, slp1, slp3, pep3 y pep2. En ciertas formas de realización, la célula fúngica filamentosa o la célula de Trichoderma, tiene una actividad de proteasa reducida o no 5 detectable en slp2, pep1, gap1, pep4, slp1, slp3, pep3, pep2 y pep5. En ciertas formas de realización, la célula fúngica filamentosa o la célula de Trichoderma, tiene una actividad de proteasa reducida o no detectable en slp2, pep1, gap1, pep4, slp1, slp3, pep3, pep2, pep5 y tsp1. En ciertas formas de realización, la célula fúngica filamentosa o la célula de Trichoderma, tiene una actividad de proteasa reducida o no detectable en slp2, pep1, gap1, pep4, slp1, slp3, pep3, pep5, tsp1 y slp7. En ciertas formas de realización, la célula fúngica filamentosa o la célula 10 de Trichoderma, tiene una actividad de proteasa reducida o no detectable en slp2, pep1, gap1, pep4, slp1, slp3, pep3, pep5, tsp1, slp7 y slp8. En ciertas formas de realización, la célula fúngica filamentosa o la célula de Trichoderma, tiene una actividad de proteasa reducida o no detectable en slp2, pep1, gap1, pep4, slp1, slp3, pep3, pep2, pep5, tsp1, slp7, slp8 y gap2. En ciertas formas de realización, la célula fúngica filamentosa o la célula de Trichoderma, tiene una actividad de proteasa reducida o no detectable en al menos tres proteasas endógenas 15 seleccionadas del grupo que consiste en pep1, pep2, pep3, pep4, pep5, pep8, pep9, pep11, pep12, tsp1, slp2, slp3, slp7, gap1 y gap2. En ciertas formas de realización, la célula fúngica filamentosa o la célula de *Trichoderma*, tiene una actividad de proteasa reducida o no detectable en al menos tres a seis proteasas endógenas seleccionadas del grupo que consiste en pep1, pep2, pep3, pep4, pep5, tsp1, slp1, slp2, slp3, gap1 y gap2. En ciertas formas de realización, la célula fúngica filamentosa o la célula de Trichoderma, tiene una actividad de proteasa reducida o no 20 detectable en al menos siete a diez proteasas endógenas seleccionadas del grupo que consiste en pep1, pep2, pep3, pep4, pep5, pep7, pep8, tsp1, slp1, slp2, slp3, slp5, slp6, slp7, slp8, tpp1, gap1 y gap2.

Expresión de subunidades catalíticas heterólogas de oligosacaril transferasa en células fúngicas filamentosas

25

50

Como se usa en el presente documento, la expresión "oligosacaril transferasa" u OST se refiere al complejo enzimático que transfiere un oligosacárido de 14 azúcares de dolicol a la proteína naciente. Es un tipo de glucosiltransferasa. El azúcar Glc3Man9GlcNAc2 está unido a un residuo de asparagina (Asn) en la secuencia Asn-X-Ser o Asn-X-Thr, donde X es cualquier aminoácido excepto prolina. Esta secuencia se denomina un secuón de 30 glucosilación. La reacción catalizada por OST es la etapa central en la ruta de glucosilación ligada a N.

En la mayoría de los eucariotas, OST es un complejo hetero-oligomérico compuesto por ocho proteínas diferentes, en el que se cree que el componente STT3 es la subunidad catalítica.

35 De acuerdo con la presente descripción, la subunidad catalítica heteróloga de oligosacaril transferasa se selecciona de subunidades catalíticas de oligosacaril transferasa de *Leishmania*. Hay cuatro parálogos de STT3 en el protozoo parásito *Leishmania*, denominados STT3A, STT3B, STT3C y STT3D.

En una forma de realización, la subunidad catalítica heteróloga de oligosacaril transferasa es STT3D de *Leishmania* 40 *major* (que tiene la secuencia de aminoácidos que se expone en la SEQ ID No:1).

En otra forma de realización, la subunidad catalítica heteróloga de oligosacaril transferasa es STT3D de *Leishmania infantum* (que tiene la secuencia de aminoácidos que se expone en la SEQ ID No:8).

45 En otra forma de realización, la subunidad catalítica heteróloga de oligosacaril transferasa es STT3D de *Leishmania braziliensis* (que tiene la secuencia de aminoácidos que se expone en la SEQ ID No:89).

En otra forma de realización, la subunidad catalítica heteróloga de oligosacaril transferasa es STT3D de *Leishmania mexicana* (que tiene la secuencia de aminoácidos que se expone en la SEQ ID No:91).

En otra forma de realización más, la subunidad catalítica heteróloga de la oligosacaril transferasa es un polipéptido variante funcional que tiene al menos un 50%, preferiblemente al menos un 60%, incluso más preferiblemente al menos un 70%, 80%, 90%, 95% de identidad con SEQ ID NO: 1, SEQ ID NO: 8, SEQ ID NO: 89 o SEQ ID NO: 91.

55 En otra forma de realización más, la subunidad catalítica heteróloga de la oligosacaril transferasa es un polipéptido variante funcional que tiene al menos un 50%, preferiblemente al menos un 60%, incluso más preferiblemente al menos un 70%, 80%, 90%, 95% de identidad con SEQ ID NO: 1 o SEQ ID NO: 8.

En una forma de realización de la presente divulgación, el polinucleótido que codifica la subunidad catalítica

ES 2 711 165 T3

heteróloga de oligosacaril transferasa comprende la SEQ ID NO:2.

SEQ ID NO:2 es una versión optimizada por codón del gen STT3D de L major (gi389594572|XM_003722461.1).

- 5 En una forma de realización de la presente divulgación, el polinucleótido que codifica la subunidad catalítica heteróloga de oligosacaril transferasa comprende la SEQ ID NO:9.
 - SEQ ID NO:9 es una versión optimizada por codón del gen STT3D de L major (gi339899220|XM_003392747.1|).
- 10 En una forma de realización de la divulgación, el polinucleótido que codifica la subunidad catalítica heteróloga de oligosacaril transferasa comprende la SEQ ID NO:88 o una variante o la SEQ ID NO: 88 que se ha optimizado por codón para la expresión en células fúngicas filamentosas tal como Trichoderma reesei.
- En una forma de realización de la divulgación, el polinucleótido que codifica la subunidad catalítica heteróloga de 15 oligosacaril transferasa comprende la SEQ ID NO:90 o una variante o la SEQ ID NO: 90 que se ha optimizado por codón para la expresión en células fúngicas filamentosas tal como Trichoderma reesei.
- En una forma de realización de la divulgación, el polinucleótido que codifica una subunidad catalítica heteróloga de oligosacaril transferasa comprende un polinucleótido que codifica un polipéptido variante funcional de STT3D de 20 Leishmania major, Leishmania infantum, Leishmania braziliens o Leishmania mexicana que tiene al menos un 50%, preferiblemente al menos un 60%, incluso más preferiblemente al menos un 70%, 80%, 90%, 95% de identidad con la SEQ ID NO:1, SEQ ID NO:8, SEQ ID NO:89 o SEQ ID NO:91.
- En una forma de realización de la divulgación, el polinucleótido que codifica una subunidad catalítica heteróloga de 25 oligosacaril transferasa comprende un polinucleótido que codifica un polipéptido variante funcional de STT3D de *Leishmania major* o *Leishmania infantum* que tiene al menos un 50%, preferiblemente al menos un 60%, incluso más preferiblemente al menos un 70%, 80%, 90%, 95% de identidad con la SEQ ID NO:1 o SEQ ID NO:8.
- En una forma de realización de la divulgación, el polinucleótido que codifica una subunidad catalítica heteróloga de 30 oligosacaril transferasa está bajo el control de un promotor para la expresión constitutiva de dicha oligosacaril transferasa es dicha célula fúngica filamentosa.
- Los promotores que se pueden usar para la expresión de la oligosacaril transferasa incluyen promotores constitutivos tales como gpd o cDNA1, promotores de enzimas de glucosilación endógena y glucosiltransferasas 35 tales como manosiltransferasas que sintetizan N-glicanos en el Golgi o el RE, y promotores inducibles de proteínas endógenas de alto rendimiento, tal como el promotor cbh1.

En una forma de realización de la divulgación, dicho promotor es el promotor cDNA1 de Trichoderma reesei.

40 Aumento de la ocupación del sitio de N-glucosilación en células fúngicas filamentosas de la divulgación

Las células fúngicas filamentosas de acuerdo con la divulgación tienen una actividad aumentada de oligosacárido transferasa, con el fin de aumentar la ocupación del sitio de N-glucosilación.

- 45 La ocupación del sitio de N-glucosilación se puede medir mediante métodos estándar en la técnica (por ejemplo, Schulz y Aebi (2009) Analysis of Glycosylation Site Occupancy Reveals a Role for Ost3p and Ost6p in Site-specific N-Glycosylation Efficiency, Molecular & Cellular Proteomics, 8:357-364, o Millward et al. (2008), Effect of constant and variable domain glycosylation on pharmacokinetics of therapeutic antibodies in mice, Biologicals, 36:41-47, Forno et al. (2004) N- and O-linked carbohydrates and glycosylation site occupancy in recombinant human granulocyte-macrophage colony-stimulating factor secreted by a Chinese hamster ovary cell line, Eur. J. Biochem. 271: 907-919) o métodos como se describen en el presente documento en los Ejemplos.
- La ocupación del sitio de N-glucosilación se refiere al porcentaje molar (o % en moles) de las glucoproteínas heterólogas que están N-glucosiladas con respecto al número total de glucoproteínas heterólogas producidas por la célula fúngica filamentosa (como se describe en el Ejemplo 1 a continuación).

En una forma de realización de la divulgación, la ocupación del sitio de N-glucosilación es de al menos el 95%, y las glucoformas Man3, Man5, G0, G1 y/o G2 representan al menos el 50% de los N-glicanos neutros totales de la glucoproteína heteróloga.

El porcentaje de diversas glucoformas con respecto a los N-glicanos neutros totales de la glucoproteína heteróloga se puede medir, por ejemplo, como se describe en el documento WO2012069593.

- 5 En una forma de realización, la proteína heteróloga con ocupación del sitio de N-glucosilación aumentada se selecciona del grupo que consiste en:
 - a) una inmunoglobulina, tal como IgG,
 - b) una cadena ligera o pesada de una inmunoglobulina,
- 10 c) una cadena pesada o una cadena ligera de un anticuerpo,
 - d) un anticuerpo monocatenario,
 - e) un anticuerpo camélido,
 - f) un anticuerpo monomérico o multimérico de un solo dominio,
 - g) un fragmento FAb, un fragmento FAb2, y
- h) sus fragmentos de unión a antígeno.

30

Métodos para producir glucoproteínas con un aumento de la ocupación del sitio de N-glucosilación y N-glicanos de tipo mamífero

20 Las células fúngicas filamentosas de acuerdo con la presente divulgación pueden ser útiles, en particular, para producir una composición de glucoproteínas heteróloga, tal como una composición de anticuerpo, con una mayor ocupación del sitio de N-glucosilación y N-glucanos de tipo mamífero, tales como complejos de N-glicanos. Por consiguiente, en un aspecto, la célula fúngica filamentosa se modifica genéticamente adicionalmente para producir un N-glicano de tipo mamífero, permitiendo de este modo la producción *in vivo* de glucoproteína o composición de 25 anticuerpos con una mayor ocupación del sitio de N-glucosilación y con N-glicano de tipo mamífero como glucoformas principales de dicha glucoproteína o anticuerpo.

En ciertas formas de realización, este aspecto incluye métodos para producir glucoproteínas o anticuerpos con N-glicanos de tipo mamífero en una célula de *Trichoderma*.

En cierta forma de realización, la glucoproteína o anticuerpo comprende, como glucoforma principal, el N-glicano de tipo mamífero que tiene la fórmula [{Galβ4}_xGlcNAcβ2]_zManα3([{Galβ4}_yGlcNAcβ2]_wManα6)Manβ4GlcNAcβ[Fucα6]_aGlcNAc, donde () define una ramificación en la estructura, donde [] o {} definen una parte de la estructura del glicano presente o ausente en una secuencia lineal, y donde a, x, y, z y w son 0 o 1, independientemente. En una forma de realización, w y z son 1, yx e y son 0 para una estructura G0 no galactosilada; tanto x como y son 1 para una estructura G2; y solo uno de x o y es 1 para una estructura G1. Cuando a es 1, la estructura está fucosilada en el núcleo, tal como un glicano FG0, FG1 o FG2.

- 40 En ciertas formas de realización, la glucoproteína o el anticuerpo comprende, como una glucoforma principal, un N-glicano de tipo mamífero seleccionado del grupo que consiste en:
 - i. Manα3[Manα6(Manα3)Manα6]Manβ4GlcNAβ4GlcNAc (glucoforma Man5);
 - ii. GlcNAcβ2Manα3[Manα6(Manα3)Manα6]Manβ4GlcNAβ4GlcNAc (glucoforma GlcNAcMan5);
- 45 iii. Manα6(Manα3)Manβ4GlcNAβ4GlcNAc (glucoforma Man3);
 - iv. Manα6(GlcNAcβ2Manα3)Manβ4GlcNAβ4GlcNAc (GlcNAcMan3) o,
 - v. N-glicanos de tipo complejo seleccionados de la glucoforma G0, G1, o G2.

En una forma de realización, la glucoproteína o la composición del anticuerpo con N-glicanos de tipo mamífero, preferiblemente producidos por una cepa knock-out de alg3, incluyen glucoformas que esencialmente carecen o están desprovistas de glicanos Manα3[Manα6(Manα3)Manα6]Manβ4GlcNAβ4GlcNAc (Man5). En formas de realización específica, la célula fúngica filamentosa produce glucoproteínas heterólogas o anticuerpos con, como glucoforma principal, la estructura de N-glicano trimanosilo Manα3[Manα6]Manβ4GlcNAcβ4GlcNAc. En otras formas de realización, la célula fúngica filamentosa produce glucoproteínas o anticuerpos con, como glucoforma principal, la estructura de N-glicano GO GlcNAcβ2Manα3[GlcNAcβ2Manα6]Manβ4GlcNAcβ4GlcNAc.

En ciertas formas de realización, la célula fúngica filamentosa de la divulgación produce una glucoproteína o composición de anticuerpo con una mezcla de diferentes N-glicanos.

En algunas formas de realización, el N-glicano Man3GlcNAc2 (es decir, Manα3[Manα6]Manβ4GlcNAcβ4GlcNAc) representa al menos el 10%, al menos el 20%, al menos el 30%, al menos el 40%, al menos el 50%, al menos el 60%, al menos el 70%, al menos el 80%, al menos el 90% o más de los N-glicanos neutros totales (% en moles) de la glucoproteína heteróloga o anticuerpo, como se expresa en las células fúngicas filamentosas de la 5 divulgación.

En otras formas de realización, el N-glicano GlcNAc2Man3 (por ejemplo, G0 GlcNAcβ2Manα3[GlcNAcβ2Manα6]Manβ4GlcNAcβ4GlcNAc) representa al menos el 10%, al menos el 20%, al menos el al menos el 30%, al menos el 40%, al menos el 50%, al menos el 60%, al menos el 70%, al menos el 80%, al menos el 90% o más de los N-glicanos neutros totales (% en moles) de la glucoproteína heteróloga o anticuerpo, como se expresa en las células fúngicas filamentosas de la divulgación.

En otras formas de realización, el N-glicano GalGlcNAc2Man3GlcNAc2 (por ejemplo, N-glicano G1) representa al menos el 10%, al menos el 20%, al menos el al menos el 30%, al menos el 40%, al menos el 50%, al menos el 60%, al menos el 70%, al menos el 80%, al menos el 90% o más de los N-glicanos neutros totales (% en moles) de la glucoproteína heteróloga o anticuerpo, como se expresa en las células fúngicas filamentosas de la divulgación.

En otras formas de realización, el N-glicano Gal2GlcNAc2Man3GlcNAc2 (por ejemplo, N-glicano G2) representa al menos el 10%, al menos el 20%, al menos el 30%, al menos el 40%, al menos el 50%, al menos el 60%, 20 al menos el 70%, al menos el 80%, al menos el 90% o más de los N-glicanos neutros totales (% en moles) de la glucoproteína heteróloga o anticuerpo, como se expresa en las células fúngicas filamentosas de la divulgación.

En otras formas de realización, el N-glicano de tipo complejo representa al menos el 10%, al menos el 20%, al menos el 30%, al menos el 40%, al menos el 50%, al menos el 60%, al menos el 70%, al menos el 80%, 25 al menos el 90% o más de los N-glicanos neutros totales (% en moles) de una glucoproteína heteróloga o anticuerpo, como se expresa en las células fúngicas filamentosas de la divulgación.

En otras formas de realización, el N-glicano de tipo híbrido representa al menos el 10%, al menos el 20%, al menos el al menos el 30%, al menos el 40%, al menos el 50%, al menos el 60%, al menos el 70%, al menos el 80%, al menos el 90% o más de los N-glicanos neutros totales (% en moles) de una glucoproteína heteróloga o anticuerpo, como se expresa en las células fúngicas filamentosas de la divulgación.

En otras formas de realización, menos del 0,5%, 0,1%, 0,05%, o menos del 0,01% del N-glicano de la composición de glucoproteína heteróloga o la composición de anticuerpo producida por la célula huésped de la divulgación, 35 comprende galactosa. En ciertas formas de realización, ninguno de los N-glicanos comprende galactosa.

Las estructuras Neu5Gc y Gala- (Galα3Galβ4GlcNAc terminal de extremo no reductor) son modificaciones xenoantigénicas (derivadas de animales) conocidas de anticuerpos que se producen en células animales, tales como células CHO. Las estructuras pueden ser antigénicas y, por lo tanto, dañinas incluso a bajas concentraciones.

40 Los hongos filamentosos de la presente divulgación carecen de rutas biosintéticas para producir las estructuras terminales Neu5Gc y Gala. En una forma de realización que puede combinarse con las formas de realización anteriores, menos del 0,1%, 0,01%, 0,001% o el 0% de los N-glicanos y/o O-glicanos de la composición de glucoproteína o anticuerpo comprende la estructura Neu5Gc y/o Gala. En una forma de realización que puede combinarse con las formas de realización anteriores, menos del 0,1%, 0,01%, 0,001% o el 0% de los N-glicanos y/o O-glicanos de la composición de glucoproteína heteróloga o anticuerpo comprende la estructura Neu5Gc y/o Gala.

Las células fúngicas filamentosas de la presente divulgación carecen de genes para producir proteínas heterólogas fucosiladas. En una forma de realización que puede combinarse con las formas de realización anteriores, menos del 0,1%, 0,01%, 0,001% o el 0% del N-glicano de la composición de glucoproteína o anticuerpo comprende estructuras 50 de fucosa central.

La estructura Galβ4GlcNAc terminal de N-glicano de glicanos producidos por las células de mamífero afecta a la bioactividad de los anticuerpos y la Galβ3GlcNAc puede ser una estructura xenoantigénica de las proteínas producidas por células vegetales. En una forma de realización que puede combinarse con una o más de las formas de realización anteriores, menos del 0,1%, 0,01%, 0,001% o el 0% de N-glicano de la composición de glucoproteína heteróloga o de anticuerpo comprende epítopos de galactosa terminales Galβ3/4GlcNAc.

La glicación es una modificación postraduccional común de proteínas, que es resultado de la reacción química entre los azúcares reductores, tal como glucosa, y los grupos amino primarios en la proteína. La glicación se produce

normalmente en pH neutro o ligeramente alcalino en condiciones de cultivo celular, por ejemplo, cuando se producen anticuerpos en células CHO y se analizan Zhang et al. (2008) Unveiling a glycation hot spot in a recombinant humanized monoclonal antibody. Anal Chem. 80(7):2379-2390). Dado que los hongos filamentosos de la presente divulgación se cultivan típicamente en pH ácido, se reduce la aparición de glicación. En una forma de 5 realización que puede combinarse con las formas de realización anteriores, menos del 1,0%, 0,5%, 0,1%, 0,01%, 0,001%, o el 0% de la composición de glucoproteína heteróloga o de anticuerpo comprende estructuras de glicación.

En una forma de realización, la composición de glucoproteína, tal como un anticuerpo carece de una, dos, tres, cuatro, cinco o seis de las estructuras seleccionadas del grupo de Neu5Gc, Galα3Galβ4GlcNAc terminal, 10 Galβ4GlcNAc terminal, Galβ3GlcNAc terminal, fucosa ligada al núcleo y estructuras de glicación.

En ciertas formas de realización, dicha proteína de glucoproteína con N-glicano de tipo mamífero, como se produce en la célula fúngica filamentosa de la divulgación, es una proteína terapéutica. Las proteínas terapéuticas pueden incluir inmunoglobulina, o una fusión de proteínas que comprende un fragmento Fc u otras glucoproteínas terapéuticas, tales como anticuerpos, eritropoyetinas, interferones, hormonas del crecimiento, albúminas o albúmina sérica, enzimas, o factores de coagulación de la sangre y pueden ser útiles en el tratamiento de seres humanos o animales. Por ejemplo, las glucoproteínas con N-glicano de tipo mamífero producidas por la célula fúngica filamentosa de acuerdo con la divulgación pueden ser una glucoproteína terapéutica tal como rituximab.

20 Los procedimientos para producir glucoproteínas con N-glicanos de tipo mamífero en células fúngicas filamentosas también se describen, por ejemplo, en el documento WO2012/069593.

En un aspecto, la célula fúngica filamentosa de acuerdo con la divulgación que se ha descrito anteriormente, se modifica genéticamente además para imitar la ruta tradicional de las células de mamíferos, a partir de N-glicanos 25 Man5 como sustrato aceptor para GnTI, y va seguido secuencialmente de etapas de reacción de GnT1, manosidasa II y GnTII (en lo sucesivo aquí denominada la "ruta tradicional" para producir glucoformas GO). En una variante, se usa una sola enzima recombinante que comprende los dominios catalíticos de GnTI y GnTII.

Como alternativa, en un segundo aspecto, la célula fúngica filamentosa de acuerdo con la divulgación como se ha 30 descrito anteriormente se modifica genéticamente adicionalmente para tener una expresión reducida en alg3, permitiendo la producción de N-glicanos Man₃GlcNAc₂ centrales, como sustrato aceptor para reacciones posteriores de GnTl y GnTll y evitando la necesidad de las enzimas manosidasa α1,2 o manosidasa II (la ruta "alg3" reducida). En una variante, se usa una sola enzima recombinante que comprende los dominios catalíticos de GnTl y GnTll.

35 En dichas formas de realización para imitar la ruta tradicional para producir glucoproteínas con N-glicanos de tipo mamífero, una célula fúngica filamentosa que expresa Man₅, tal como la cepa de T. reesei, puede transformarse con una enzima de fusión GnTI o GnTII/GnTI usando integración aleatoria o por integración dirigida a un sitio conocido que no afecte a la glucosilación de Man5. Se seleccionan las cepas que sintetizan N-glicano GlcNAcMan5 para la producción de proteínas que tienen uno o más glicanos de tipo híbrido. Las cepas seleccionadas se transforman 40 adicionalmente con un dominio catalítico de una manosidasa de tipo manosidasa II capaz de escindir las estructuras Man5 para generar GlcNAcMan3 para la producción de proteínas que tienen la correspondiente glucoforma GlcNAcMan3 o su derivado o derivados. En ciertas formas de realización, las enzimas de tipo manosidasa II pertenecen a la familia de glucósido hidrolasa 38 (cazy.org/GH38_all.html). Las enzimas caracterizadas incluyen las enzimas enumeradas en cazy.org/GH38_characterized.html. Las enzimas especialmente útiles son las enzimas de 45 tipo Golgi que escinden las glucoproteínas, tales como las de la subfamilia α-manosidasa II (Man2A1; ManA2). Los ejemplos de dichas enzimas incluyen la enzima humana AAC50302, una enzima de D. melanogaster (Van den Elsen J.M. et al (2001) EMBO J. 20: 3008-3017), aquellas con la estructura 3D de acuerdo con la referencia 1BTY de PDB, y otras en referencia al dominio catalítico en PDB. Para la expresión citoplásmica, el dominio catalítico de la manosidasa se fusiona típicamente con un péptido de direccionamiento N-terminal (por ejemplo, como se divulga en 50 la Sección anterior) o se expresa con estructuras de direccionamiento de Golgi endógenas animales o vegetales de enzimas manosidasa II de animales o plantas. Después de la transformación con el dominio catalítico de una manosidasa de tipo manosidasa II, se seleccionan cepas que producen GlcNAcMan3 (si se expresa GnTI), o se seleccionan cepas que producen eficazmente GlcNAc2Man3 (si se expresa una fusión de GnTI y GnTII). Para las cepas que producen GlcNAcMan3, dichas cepas se transforman además con un polinucleótido que codifica un 55 dominio catalítico de GnTII y se seleccionan cepas transformantes que son capaces de producir GlcNAc2Man3GlcNAc2.

En dicha forma de realización para imitar la ruta tradicional, la célula fúngica filamentosa es una célula fúngica filamentosa como se define en secciones anteriores, y comprende además uno o más polinucleótidos que codifican

un polipéptido seleccionado del grupo que consiste en:

- i) α1.2 manosidasa.
- ii) dominio catalítico de N-acetilglucosaminiltransferasa I,
- 5 iii) α manosidasa II,
 - iv) dominio catalítico de N-acetilglucosaminiltransferasa II,
 - v) β1,4 galactosiltransferasa, y,
 - vi) fucosiltransferasa.
- 10 En formas de realización que utilizan la ruta alg3 reducida, la célula fúngica filamentosa, tal como una célula de Trichoderma, tiene un nivel reducido de actividad de una dolicil-P-Man:Man(5)GlcNAc(2)-PP-dolicil manosiltransferasa en comparación con el nivel de actividad en una célula huésped parental. Dolicil-P-Man:Man(5)GlcNAc(2)-PP-dolicil manosiltransferasa (EC 2.4.1.130) transfiere un residuo de alfa-D-manosil de dolicil-fosfato D-manose en un oligosacárido unido a lípidos de membrana. Típicamente, la enzima dolicil-P-Man:Man(5)GlcNAc(2)-PP-dolicil manosiltransferasa se codifica por un gen alg3. En ciertas formas de realización, la célula fúngica filamentosa para producir glucoproteínas con N-glicanos de tipo mamífero tiene un nivel reducido de expresión de un gen alg3 en comparación con el nivel de expresión en una cepa parental.
- Más preferiblemente, la célula fúngica filamentosa comprende una mutación de *alg3*. El gen ALG3 puede mutarse por cualquier medio conocido en la técnica, tal como mutaciones puntuales o la deleción de todo el gen alg3. Por ejemplo, la función de la proteína alg3 se reduce o se elimina mediante la mutación de *alg3*. En ciertas formas de realización, el gen *alg3* se altera o se elimina de la célula fúngica filamentosa, tal como la célula de *Trichoderma*. En ciertas formas de realización, la célula fúngica filamentosa es una célula de *T. reesei*. SEQ ID NOs: 36 y 37 proporcionan las secuencias de ácidos nucleicos y aminoácidos del gen *alg3* en *T. reesei*, respectivamente. En una forma de realización, la célula fúngica filamentosa se usa para la producción de una glucoproteína, en la que el uno o más glicanos comprenden o consisten en Manα3[Manα6]Manβ4GlcNAcβ4GlcNAc, y/o una variante alargada del extremo no reductor del mismo.
- En ciertas formas de realización, la célula fúngica filamentosa tiene un nivel reducido de actividad de una alfa-1,6-30 manostiltransferasa en comparación con el nivel de actividad en una cepa parental. La alfa-1,6-manosiltransferasa (EC 2.4.1.232) transfiere un residuo de alfa-D-manosilo de GDP-manosa a un oligosacárido unido a proteínas, formando una unión alfa-(1->6)-D-manosil-D-manosa de inicio del alargamiento en el aparato de Golgi. Típicamente, la enzima alfa-1,6-manosiltransferasa está codificada por un gen *och1*. En ciertas formas de realización, la célula fúngica filamentosa tiene un nivel reducido de expresión de un gen *och1* en comparación con el nivel de expresión en una célula fúngica filamentosa parental. En ciertas formas de realización, el gen *och1* se elimina de la célula fúngica filamentosa.
- Las células fúngicas filamentosas utilizadas en los métodos para producir glucoproteína con N-glicanos de tipo mamífero pueden contener además un polinucleótido que codifica un dominio catalítico de N-acetilglucosaminiltransferasa I (GnTI) que cataliza la transferencia de N-acetilglucosamina a un Manα3 terminal y un polinucleótido que codifica un dominio catalítico de N-acetilglucosaminiltransferasa II (GnTII), que cataliza la N-acetilglucosamina a un residuo de Manα6 terminal de un glicano aceptor para producir un N-glicano complejo. En una forma de realización, dichos polinucleótidos que codifican GnTI y GnTII están unidos para producir una sola fusión de proteína que comprende ambos dominios catalíticos de GnTI y GnTII.
- Como se divulga en el presente documento, N-acetilglucosaminiltransferasa I (GlcNAc-TI; GnTI; EC 2.4.1.101) cataliza la reacción UDP-N-acetil-D-glucosamina + 3-(alfa-D-manosil)-beta-D-manosil-R <=> UDP + 3-(2-(N-acetil-beta-D-glucosaminil)-alfa-D-manosil)-beta-D-manosil-R, donde R representa el resto del oligosacárido unido a N en el receptor de glicano. Un dominio catalítico de N-acetilglucosaminiltransferasa I es cualquier porción de una enzima N-acetilglucosaminiltransferasa I que es capaz de catalizar esta reacción. Las enzimas GnTI se enumeran en la base de datos CAZy en la familia de glucosiltransferasa 13 (cazy.org/GT13_all). La especie caracterizada enzimáticamente incluye A. thaliana AAR78757.1 (documento US6 653 459), C. elegans AAD03023.1 (Chen S. et al J. Biol.Chem 1999;274(1):288-97), D. melanogaster AAF57454.1 (Sarkar & Schachter Biol Chem. 2001 Feb;382(2):209-17); C. griseus AAC52872.1 (Puthalakath H. et al J. Biol.Chem 1996 271(44):27818-22); H. sapiens AAA52563.1 (Kumar R. et al Proc Natl Acad Sci U S A. 1990 Dec;87(24):9948-52); M. auratus AAD04130.1 (Opat As et al Biochem J. 1998 Dec 15;336 (Pt 3):593-8), (incluyendo un ejemplo de mutante de desactivación), Conejo, O. cuniculus AAA31493.1 (Sarkar M et al. Proc Natl Acad Sci U S A. 1991 Jan 1;88(1):234-8). Las secuencias de aminoácidos para las enzimas N-acetilglucosaminiltransferasa I de diversos organismos se describen, por ejemplo, en el documento PCT/EP2011/070956. Se pueden encontrar ejemplos adicionales de enzimas activas

caracterizadas en cazy.org/GT13 characterized. La estructura 3D del dominio catalítico de GnTI de conejo se definió mediante cristalografía de rayos X en Unligil UM et al. EMBO J. 2000 Oct 16;19(20):5269-80. Las estructuras del Protein Data Bank (PDB) para GnTl son 1FO8, 1FO9, 1FOA, 2AM3, 2AM4, 2AM5, y 2APC. En ciertas formas de realización, el dominio catalítico de N-acetilglucosaminiltransferasa I es de la enzima N-acetilglucosaminiltransferasa 5 I humana (SEQ ID NO: 38) o variantes de la misma. En ciertas formas de realización, el dominio catalítico de Nacetilglucosaminiltransferasa I contiene una secuencia al menos un 70%, al menos un 75%, al menos un 80%, al menos un 85%, al menos un 90%, al menos un 95%, al menos un 96%, al menos un 97%, al menos un 98%, al menos un 99%, o un 100% idéntica a los residuos de aminoácidos 84-445 de SEQ ID NO: 38. En algunas formas de realización, puede usarse una secuencia más corta como dominio catalítico (por ejemplo, residuos de aminoácidos 10 105-445 de la enzima humana o residuos de aminoácidos 107-447 de la enzima de conejo; Sarkar et al. (1998) Glycoconjugate J 15:193-197). Las secuencias adicionales que se pueden usar como dominio catalítico de GnTI incluyen residuos de aminoácidos de aproximadamente el aminoácido 30 a 445 de la enzima humana o cualquier dominio del tallo C-terminal que comienza entre el residuo de aminoácido 30 a 105 y continúa hasta aproximadamente el aminoácido 445 de la enzima humana, o la secuencia homóloga correspondiente de otra GnTI 15 o una variante catalíticamente activa, o mutante de la misma. El dominio catalítico puede incluir partes N-terminales de la enzima, tal como la totalidad o parte del dominio del tallo, el dominio transmembrana o el dominio citoplásmico.

Como se divulga en el presente documento, N-acetilglucosaminiltransferasa II (GlcNAc-TII; GnTII; EC 2.4.1.143) cataliza la reacción UDP-N-acetil-D-glucosamina + 6-(alfa-D-manosil)-beta-D-manosil-R <=> UDP + 6-(2-(N-acetil-20 beta-D-glucosaminil)-alfa-D-manosil)-beta-D-manosil-R, donde R representa el resto del oligosacárido unido a N en el receptor de glicano. Un dominio catalítico de N-acetilglucosaminiltransferasa II es cualquier porción de una enzima N-acetilglucosaminiltransferasa II que es capaz de catalizar esta reacción. Las secuencias de aminoácidos para enzimas N-acetilglucosaminiltransferasa II de diversos organismos se enumeran en el documento WO2012069593. En ciertas formas de realización, el dominio catalítico de N-acetilglucosaminiltransferasa II es de la enzima N-25 acetilglucosaminiltransferasa II humana (SEQ ID NO: 39) o variantes de la misma. Se enumeran especies GnTII adicionales en la base de datos CAZy en la familia de glucosiltransferasa 16 (cazy.org/GT16 all). Las especies caracterizadas enzimáticamente incluyen GnTII de C. elegans, D. melanogaster, Homo sapiens (NP_002399.1), Rattus norvegicus, Sus scrofa (cazy.org/GT16_characterized). En ciertas formas de realización, el dominio catalítico de N-acetilglucosaminiltransferasa II contiene una secuencia que es al menos un 70%, al menos un 75%, al menos 30 un 80%, al menos un 85%, al menos un 90%, al menos un 95%, al menos un 96%, al menos un 97%, al menos un 98%, al menos un 99%, o un 100% idéntica a los residuos de aminoácidos de aproximadamente 30 a aproximadamente 447 de SEQ ID NO: 39. El dominio catalítico puede incluir partes N-terminales de la enzima, tal como la totalidad o parte del dominio del tallo, el dominio transmembrana o el dominio citoplásmico.

35 En las formas de realización en las que la célula fúngica filamentosa contiene una proteína de fusión de la divulgación, la proteína de fusión puede contener además un espaciador entre el dominio catalítico de N-acetilglucosaminiltransferasa I y el dominio catalítico de N-acetilglucosaminiltransferasa II. En ciertas formas de realización, el espaciador es un espaciador EGIV, un espaciador 2xG4S, un espaciador 3xG4S, o un espaciador CBHI. En otras formas de realización, el espaciador contiene una secuencia de un dominio del tallo.

Para la expresión en el RE/Golgi, el dominio catalítico de N-acetilglucosaminiltransferasa I y/o de N-acetilglucosaminiltransferasa II se fusiona típicamente con un péptido de direccionamiento o una parte de una proteína del RE o de Golgi temprana, o se expresa con estructuras de direccionamiento de RE endógenas de una enzima N-acetilglucosaminiltransferasa animal o vegetal. En ciertas formas de realización preferidas, el dominio 45 catalítico de N-acetilglucosaminiltransferasa I y/o N-acetilglucosaminiltransferasa II contiene cualquiera de los péptidos de direccionamiento de la divulgación como se describe en la sección titulada "Secuencias de direccionamiento". Preferiblemente, el péptido de direccionamiento está unido al extremo N-terminal del dominio catalítico. En algunas formas de realización, el péptido de direccionamiento contiene cualquiera de los dominios del tallo de la divulgación como se describe en la sección titulada "Secuencias de direccionamiento". En ciertas formas de realización preferidas, el péptido de direccionamiento es un péptido de direccionamiento Kre2/Mnt1. En otras formas de realización, el péptido de direccionamiento contiene además un dominio transmembrana unido al extremo N-terminal del dominio del tallo. En formas de realización en las que el péptido de direccionamiento contiene además un dominio transmembrana, el péptido de direccionamiento puede contener además un dominio citoplásmico unido al extremo N-terminal del dominio transmembrana.

Las células fúngicas filamentosas también pueden contener un polinucleótido que codifica un transportador UDP-GlcNAc. El polinucleótido que codifica el transportador UDP-GlcNAc puede ser endógeno (es decir, naturalmente presente) en la célula huésped, o puede ser heterólogo a la célula fúngica filamentosa.

En ciertas formas de realización, la célula fúngica filamentosa puede contener además un polinucleótido que codifica una α-1,2-manosidasa. El polinucleótido que codifica la α-1,2-manosidasa puede ser endógeno en la célula huésped, o puede ser heterólogo a la célula huésped. Los polinucleótidos heterólogos son especialmente útiles para una célula huésped que expresa glicanos ricos en manosa transferidos desde el Golgi al RE sin una escisión eficaz de la exo-α-2-manosidasa. La α-1,2-manosidasa puede ser una enzima del tipo manosidasa I que pertenece a la familia de glucósido hidrolasa 47 (cazy.org/GH47_all.html). En ciertas formas de realización, la α-1,2-manosidasa es una enzima enumerada en cazy.org/GH47_characterized.html. En particular, la α-1,2-manosidasa puede ser una enzima de tipo RE que escinde las glucoproteínas, tales como las enzimas en la subfamilia de las enzimas α-manosidasa I de RE EC 3.2.1.113. Los ejemplos de tales enzimas incluyen α-2-manosidasa 1B humana (AAC26169), una combinación de manosidasas de RE de mamífero, o una enzima fúngica filamentosa tal como α-1,2-manosidasa (MDS1) (*T. reesei* AAF34579; Maras M et al J Biotech. 77, 2000, 255, o Trire 45717). Para la expresión en el RE, el dominio catalítico de la manosidasa se fusiona típicamente con un péptido de direccionamiento, tal como HDEL, KDEL, o parte de una proteína de RE o de Golgi temprana, o se expresa con estructuras de direccionamiento al RE endógenas de una enzima manosidasa I animal o vegetal.

En ciertas formas de realización, la célula fúngica filamentosa también puede contener además un polinucleótido que codifica una galactosiltransferasa. Las galactosiltransferasas transfieren residuos galactosilo unidos a β a un residuo N-acetilglucosaminilo terminal. En ciertas formas de realización, la galactosiltransferasa es una β-1,4-20 galactosiltransferasa. Generalmente, las β-1,4-galactosiltransferasas pertenecen a la familia de glucosiltransferasa 7 de CAZy (cazy.org/GT7_all.html) e incluyen β-N-acetilglucosaminil-glucopéptido β-1,4-galactosiltransferasa (EC 2.4.1.38), que también se conoce como N-acetilactosamina sintasa (EC 2.4.1.90). Las subfamilias útiles incluyen β4-GalT1, β 4-GalT-II, -III, -IV, -V, y -VI, tal como β 4-GalTI o β 4GalT-II, -III, -IV, -V, y -VI de mamífero o ser humano, o cualquier combinación de las mismas. β 4-GalTII, β 4-GalTII, o β 4-GalTIII son especialmente útiles para la 25 galactosilación de las estructuras de GlcNAcβ2 terminal en N-glicanos, tales como GlcNAcMan3, GlcNAc2Man3, o GlcNAcMan5 (Guo S. et al. Glycobiology 2001, 11:813-20). La estructura tridimensional de la región catalítica es conocida (por ejemplo, (2006) J.Mol.Biol. 357: 1619-1633), y la estructura se ha representado en la base de datos del PDB con el código 2FYD. La base de datos CAZy incluye ejemplos de ciertas enzimas. Las enzimas caracterizadas también se enumeran en la base de datos CAZy en cazy.org/GT7_characterized.html. Los ejemplos 30 de enzimas β4GalT útiles incluyen β4GalT1, por ejemplo, la enzima bovina de Bos taurus AAA30534.1 (Shaper N.L. et al Proc. Natl. Acad. Sci. U.S.A. 83 (6), 1573-1577 (1986)), una enzima humana (Guo S. et al. Glycobiology 2001, 11:813-20), y una enzima de Mus musculus AAA37297 (Shaper, N.L. et al. 1998 J. Biol. Chem. 263 (21), 10420-10428); enzimas β4GalTII tales como β4GalTII humana BAA75819.1, Cricetulus griseus de hámster chino AAM77195, enzima de *Mus musculus* BAA34385, y pez Medaka japonés *Oryzias latipes* BAH36754; y enzimas β4GalTIII tales como β4GalTIII humana BAA75820.1, *Cricetulus griseus* de hámster chino AAM77196 y enzima de Mus musculus AAF22221.

La galactosiltransferasa puede expresarse en la membrana plasmática de la célula huésped. Puede usarse un péptido de orientación heterólogo, tal como un péptido Kre2 descrito en Schwientek J.Biol. Chem 1996 3398. Los promotores que se pueden usar para la expresión de la galactosiltransferasa incluyen promotores constitutivos tales como gpd, promotores de enzimas de glucosilación endógena y glucosiltransferasas tales como manosiltransferasas que sintetizan N-glicanos en el Golgi o el RE, y promotores inducibles de proteínas endógenas de alto rendimiento, tal como el promotor cbh1.

- 45 En ciertas formas de realización de la divulgación, donde la célula fúngica filamentosa contiene un polinucleótido que codifica una galactosiltransferasa, la célula fúngica filamentosa también contiene un polinucleótido que codifica una epimerasa UDP-Gal 4 y/o un transportador UDP-Gal. En ciertas formas de realización de la divulgación en las que la célula fúngica filamentosa contiene un polinucleótido que codifica una galactosiltransferasa, puede usarse lactosa como fuente de carbono en lugar de glucosa cuando se cultiva la célula huésped. El medio de cultivo puede estar entre pH 4,5 y 7,0 o entre 5,0 y 6,5. En ciertas formas de realización de la divulgación donde la célula fúngica filamentosa contiene un polinucleótido que codifica una galactosiltransferasa y un polinucleótido que codifica una epimerasa UDP-Gal 4 y/o un transportador UDP-Gal, se puede añadir un catión divalente tal como Mn2+, Ca2+ o Mg2+ al medio de cultivo celular.
- 55 Por consiguiente, en ciertas formas de realización, la célula fúngica filamentosa de la divulgación, por ejemplo, seleccionada de células de *Neurospora, Trichoderma, Myceliophthora, Aspergillus, Fusarium* o *Chrysosporium*, y más preferiblemente una célula de *Trichoderma reesei*, puede comprender las siguientes características:
 - a) una mutación en al menos una proteasa endógena que reduce o elimina la actividad de dicha proteasa

endógena, preferiblemente la actividad de proteasa de dos o tres o más proteasas endógenas se reduce, por ejemplo, proteasas pep1, tsp1, gap1 y/o slp1, con el fin de mejorar la producción o estabilidad de una glucoproteína heteróloga a producir,

- b) un polinucleótido que codifica una subunidad catalítica heteróloga de oligosacaril transferasa, preferiblemente de SEQ ID NO:2 o NO:9,
- c) un polinucleótido que codifica una glucoproteína que tiene al menos una asparagina, preferiblemente una glucoproteína heteróloga, tal como una inmunoglobulina, un anticuerpo o una fusión de proteínas que comprende el fragmento Fc de una inmunoglobulina.
- d) opcionalmente, una deleción o alteración del gen alg3,
- e) opcionalmente, un polinucleótido que codifica el dominio catalítico de la N-acetilglucosaminiltransferasa I y un polinucleótido que codifica el dominio catalítico de la N-acetilglucosaminiltransferasa II,
 - f) opcionalmente, un polinucleótido que codifica β1,4 galactosiltransferasa,
 - g) opcionalmente, un polinucleótido o polinucleótidos que codifican la epimerasa y/o el transportador UDP-Gal 4.

Secuencias de direccionamiento

5

15

En ciertas formas de realización, las enzimas recombinantes, tales como α1,2 manosidasas, GnTI, u otras glucosiltransferasas introducidas en las células fúngicas filamentosas, incluyen un péptido de direccionamiento unido 20 a los dominios catalíticos. El término "unido" como se usa en el presente documento significa que dos polímeros de residuos de aminoácidos en el caso de un polipéptido, o dos polímeros de nucleótidos en el caso de un polinucleótido están acoplados directamente adyacentes entre sí o están dentro del mismo polipéptido o polinucleótido, pero están separados por residuos de aminoácidos o nucleótidos intermedios. Un "péptido de direccionamiento", como se usa en el presente documento, se refiere a cualquier número de residuos de 25 aminoácidos consecutivos de la proteína recombinante que son capaces de localizar la proteína recombinante en el retículo endoplásmico (RE) o el aparato de Golgi (Golgi) dentro de la célula huésped. El péptido de direccionamiento puede ser N-terminal o C-terminal a los dominios catalíticos. En ciertas formas de realización, el péptido de direccionamiento proporciona unión a un componente del RE o de Golgi, tal como a una enzima manosidasa II. En otras formas de realización, el péptido de direccionamiento proporciona unión directa a la membrana de RE o Golgi.

Los componentes del péptido de direccionamiento pueden provenir de cualquier enzima que normalmente reside en el RE o el aparato de Golgi. Dichas enzimas incluyen manosidasas, manosiltransferasas, glucosiltransferasas, proteínas de Golgi tipo 2, y enzimas MNN2, MNN4, MNN6, MNN9, MNN10, MNS1, KRE2, VAN1, y OCH1. Dichas enzimas pueden provenir de una levadura o de una especie de hongo tales como las de *Acremonium, Aspergillus, Aureobasidium, Cryptococcus, Chrysosporium, Chrysosporium lucknowense, Filobasidium, Fusarium, Gibberella, Humicola, Magnaporthe, Mucor, Myceliophthora, Myrothecium, Neocallimastix, Neurospora, Paecilomyces, Penicillium, Piromyces, Schizophyllum, Talaromyces, Thermoascus, Thielavia, Tolypocladium, y Trichoderma. Las secuencias para dichas enzimas se pueden encontrar en la base de datos de secuencias del GenBank.*

En ciertas formas de realización, el péptido de direccionamiento proviene de la misma enzima y organismo que uno de los dominios catalíticos de la proteína recombinante. Por ejemplo, si la proteína recombinante incluye un dominio catalítico de GnTII humano, el péptido de direccionamiento de la proteína recombinante es de la enzima GnTII humana. En otras formas de realización, el péptido de direccionamiento puede provenir de una enzima y/u organismo diferente como los dominios catalíticos de la proteína recombinante.

Los ejemplos de diversos péptidos de direccionamiento para su uso en el direccionamiento de proteínas al RE o Golgi que pueden usarse para dirigir las enzimas recombinantes incluyen: Péptido N-terminal Kre2/Mnt1 fusionado a galactosiltransferasa (Schwientek, JBC 1996, 3398), HDEL para la localización de manosidasa en el RE de células de levadura para producir Man5 (Chiba, JBC 1998, 26298-304; Callewaert, FEBS Lett 2001, 173-178), péptido dirigido a OCH1 fusionado al dominio catalítico de GnTl (Yoshida et al, Glycobiology 1999, 53-8), péptido de levadura N-terminal de Mns1 fusionado a α2-manosidasa (Martinet et al, Biotech Lett 1998, 1171), porción N-terminal de Kre2 unido a dominio catalítico de GnTl ο β4GalT (Vervecken, Appl. Environ Microb 2004, 2639-46), diversos enfoques revisados en Wildt and Gerngross (Nature Rev Biotech 2005, 119), GnTl de longitud completa en Aspergillus nidulans (Kalsner et al, Glycocon. J 1995, 360-370), GnTl de longitud completa en Aspergillus oryzae (Kasajima et al, Biosci Biotech Biochem 2006, 2662-8), porción de estructura de localización Sec12 de levadura fusionada a GnTl de C. elegans en Aspergillus (Kainz et al 2008), porción N-terminal de Mnn9 de levadura fusionada a GnTl humano en Aspergillus (Kainz et al 2008), porción N-terminal de Mnn10 de Aspergillus fusionada a GnTl

ES 2 711 165 T3

humano (Kainz et al, Appl. Environ Microb 2008, 1076-86), y GnTI de longitud completa humano en *T. reesei* (Maras et al, FEBS Lett 1999, 365-70).

En ciertas formas de realización, el péptido de direccionamiento es una porción N-terminal del péptido de 5 direccionamiento Mnt1/Kre2 que tiene la secuencia de aminoácidos de SEQ ID NO: 40 (por ejemplo, codificada por el nucleótido de la SEQ ID NO:41). En ciertas formas de realización, el péptido de direccionamiento se selecciona de GNT2, KRE2, de tipo KRE2, Och1, Anp1, Van1 humanos como se muestra en la Tabla 1 a continuación:

Tabla 1: Secuencia de aminoácidos de péptidos de direccionamiento			
Proteína	TreID	Secuencia de aminoácidos	
GNT2 humano	-	MRFRIYKRKVLILTLVVAACGFVLWSSNGRQR KNEALAPPLLDAEPARGAGGRGGDHP (SEQ ID NO:42)	
KRE2	21576	MASTNARYVRYLLIAFFTILVFYFVSNSKYEGV DLNKGTFTAPDSTKTTPK (SEQ ID NO:43)	
de tipo KRE2	69211	MAIARPVRALGGLAAILWCFFLYQLLRPSSSY NSPGDRYINFERDPNLDPTG (SEQ ID NO:44)	
Och1	65646	MLNPRRALIAAAFILTVFFLISRSHNSESASTS (SEQ ID NO:45)	
Anp1	82551	MMPRHHSSGFSNGYPRADTFEISPHRFQPRA TLPPHRKRKRTAIRVGIAVVVILVLVLWFGQPR SVASLISLGILSGYDDLKLE (SEQ ID NO:46)	
Van1	81211	MLLPKGGLDWRSARAQIPPTRALWNAVTRTR FILLVGITGLILLLWRGVSTSASE (SEQ ID NO:47)	

Otros ejemplos de secuencias que pueden usarse para los péptidos de direccionamiento incluyen las secuencias de direccionamiento como se describe en el documento WO2012/069593.

Las secuencias no caracterizadas pueden ensayarse para su uso como péptidos de direccionamiento expresando enzimas de la ruta de glucosilación en una célula huésped, donde una de las enzimas contiene la secuencia no caracterizada como único péptido de direccionamiento, y midiendo los glicanos producidos en vista de la localización del citoplasma de la biosíntesis de glucanos (por ejemplo, como en Schwientek JBC 1996 3398), o expresando una 10 proteína indicadora fluorescente fusionada con el péptido de direccionamiento, y analizando la localización de la proteína en el Golgi mediante inmunofluorescencia o fraccionando las membranas citoplásmicas del Golgi y midiendo la localización de la proteína.

Métodos para producir una glucoproteína que tiene un aumento de la ocupación del sitio de N-glucosilación

15

25

Las células fúngicas filamentosas como se han descrito anteriormente son útiles en métodos para producir una composición de glucoproteína con un aumento de la ocupación del sitio de N-glucosilación.

Por consiguiente, en otro aspecto, la divulgación se refiere a un método para producir una composición de 20 glucoproteína con un aumento de la ocupación del sitio de N-glucosilación, que comprende

- a) proporcionar una célula fúngica filamentosa, por ejemplo, una célula de *Trichoderma*, que tiene un gen STT3D de *Leishmania* que codifica una subunidad catalítica de oligosacaril transferasa, o una variante funcional de la misma, y un polinucleótido que codifica una glucoproteína heteróloga,
- b) cultivar la célula en condiciones apropiadas para la expresión del gen STT3D o su variante funcional, y la producción de la glucoproteína heteróloga; y,
- c) recuperar dicha composición de glucoproteína y, opcionalmente, purificar la composición de glucoproteína heteróloga.

En formas de realización específicas del método, la célula fúngica filamentosa comprende una o más mutaciones que reducen o eliminan una o más actividades de proteasa endógena en comparación con una célula fúngica filamentosa parental que no tiene dicha mutación o mutaciones, como se ha descrito anteriormente.

- 5 En los métodos de la divulgación, ciertos medios de crecimiento incluyen, por ejemplo, medios comunes preparados en el mercado tales como caldo Luria-Bertani (LB), caldo Sabouraud Dextrose (SD) o caldo de medio de levadura (YM). También se pueden usar otros medios de crecimiento definidos o sintéticos, y un experto en la técnica de microbiología o ciencia de la fermentación conocerá el medio apropiado para el crecimiento de la célula huésped particular. El medio de cultivo típicamente tiene el medio mínimo de *Trichoderma reesei* (Penttilä et al., 1987, Gene 61, 155-164) como base, complementado con sustancias que inducen el promotor de producción, tal como lactosa, celulosa, grano usado o soforosa. Los intervalos de temperatura y otras condiciones adecuadas para el crecimiento se conocen en la técnica (véase, por ejemplo, Bailey y Ollis 1986). En ciertas formas de realización, el pH del cultivo celular está entre 3,5 y 7,5, entre 4,0 y 7,0, entre 4,5 y 6,5, entre 5 y 5,5, o en 5.5. En ciertas formas de realización, para producir un anticuerpo, la célula fúngica filamentosa o la célula fúngica de *Trichoderma* se cultiva en un
 - En algunas formas de realización de la divulgación, el método comprende cultivar en un medio que comprende uno o dos inhibidores de proteasa.
- 20 En una forma de realización específica de la divulgación, el método comprende cultivar en un medio que comprende uno o dos inhibidores de la proteasa seleccionados de SBTI y quimiostatina.

15 intervalo de pH seleccionado de 4,7 a 6,5; pH 4,8 a 6,0; pH 4,9 a 5,9; y pH 5,0 a 5,8.

- En algunas formas de realización, la glucoproteína es una glucoproteína heteróloga, preferiblemente una glucoproteína de mamífero. En otras formas de realización, la glucoproteína heteróloga es una glucoproteína de 25 origen no mamífero.
- En ciertas formas de realización, una glucoproteína de mamífero se selecciona de una inmunoglobulina, una cadena pesada o ligera de inmunoglobulina o anticuerpo, un anticuerpo monoclonal, un fragmento Fab, un fragmento de anticuerpo F(ab')2, un anticuerpo monocatenario, un anticuerpo de dominio único monomérico o multimérico, un 30 anticuerpo camélido, o sus fragmentos de unión a antígeno.
 - Un fragmento de una proteína, como se usa en el presente documento, consiste en al menos 10, 20, 30, 40, 50, 60, 70, 80, 90, 100 aminoácidos consecutivos de una proteína de referencia.
- 35 Como se usa en el presente documento, una "inmunoglobulina" se refiere a una proteína multimérica que contiene una cadena pesada y una cadena ligera unidas de forma covalente y capaces de combinarse específicamente con el antígeno. Las moléculas de inmunoglobulina son una gran familia de moléculas que incluyen varios tipos de moléculas tales como IgM, IgD, IgG, IgA e IgE.
- 40 Como se usa en el presente documento, un "anticuerpo" se refiere a moléculas de inmunoglobulina intactas, así como a fragmentos de las mismas que son capaces de unirse a un antígeno. Estas incluyen moléculas de anticuerpos híbridos (quiméricos) (véanse, por ejemplo, Winter et al. Nature 349:293-99225, 1991; y la Pat. de Estados Unidos N.º 4.816.567 226); moléculas F(ab')2; heterodímeros no covalentes; construcciones de fragmentos de anticuerpos diméricos y triméricos; moléculas de anticuerpos humanizados (véanse, por ejemplo, Riechmann et al. Nature 332, 323-27, 1988; Verhoeyan et al. Science 239, 1534-36, 1988; y el documento GB 2.276.169); y gualquior fragmento funcional extensidos a partir do talos moléculas, así como anticuerpos extensidos a través do
- cualquier fragmento funcional obtenido a partir de tales moléculas, así como anticuerpos obtenidos a través de procesos no convencionales, tales como presentación de fagos o ratones transgénicos. Preferiblemente, los anticuerpos son anticuerpos clásicos con región Fc. Los métodos de fabricación de anticuerpos se conocen bien en la técnica.
 - En formas de realización adicionales, el rendimiento de la glucoproteína de mamífero, por ejemplo, el anticuerpo, es de al menos 0,5, al menos 1, al menos 2, al menos 3, al menos 4 o al menos 5 gramos por litro.
- En ciertas formas de realización, la glucoproteína de mamífero es un anticuerpo, opcionalmente, IgG1, IgG2, IgG3 o 1gG4. En formas de realización adicionales, el rendimiento del anticuerpo es de al menos 0,5, al menos 1, al menos 2, al menos 3, al menos 4 o al menos 5 gramos por litro. En formas de realización adicionales, la glucoproteína de mamífero es un anticuerpo, y el anticuerpo contiene al menos el 70%, al menos el 80%, al menos el 90%, al menos el 95%, o al menos el 98% de un extremo C y extremo N de anticuerpo natural sin residuos de aminoácidos adicionales. En otras formas de realización, la glucoproteína de mamífero es un anticuerpo, y el anticuerpo contiene

al menos el 70%, al menos el 80%, al menos el 90%, al menos el 95%, o al menos el 98% de un extremo C y un extremo N de anticuerpo natural que no carece de ningún residuo de aminoácido C-terminal o N-terminal.

En ciertas formas de realización donde la glucoproteína de mamífero (por ejemplo, el anticuerpo) se purifica del cultivo celular, el cultivo que contiene la glucoproteína de mamífero contiene fragmentos de polipéptidos que constituyen un porcentaje en masa que es menor del 50%, menor del 40%, menor del 30%, menor del 20% o menor del 10% de la masa de los polipéptidos producidos. En ciertas formas de realización preferidas, la glucoproteína de mamífero es un anticuerpo, y los fragmentos de polipéptidos son fragmentos de cadena pesada y/o fragmentos de cadena ligera. En otras formas de realización, cuando la glucoproteína de mamífero es un anticuerpo y el anticuerpo se purifica a partir del cultivo celular, el cultivo que contiene el anticuerpo contiene cadenas pesadas libres y/o cadenas ligeras libres que constituyen un porcentaje en masa que es inferior al 50%, inferior al 40%, inferior al 30%, inferior al 20% o inferior al 10% de la masa del anticuerpo producido. Los métodos para determinar el porcentaje en masa de fragmentos de polipéptidos se conocen bien en la técnica e incluyen, medir la intensidad de la señal de un gel SDS.

15

En otras formas de realización, la glucoproteína heteróloga (por ejemplo, el anticuerpo) con un aumento de la ocupación del sitio de N-glucosilación, por ejemplo, el anticuerpo, comprende la estructura de N-glicano trimanosilo Manα3[Manα6]Manβ4GlcNAcβ4GlcNAc. formas En algunas de realización. Manα3[Manα6]Manβ4GlcNAcβ4GlcNAc representa al menos el 20%, 30%; 40%, 50%; 60%, 70%, 80% (% en moles) 20 o más, de los N-glicanos totales de la composición de glucoproteína heteróloga (por ejemplo, el anticuerpo) obtenida por los métodos de la divulgación. En otras formas de realización, la glucoproteína heteróloga (por ejemplo, el anticuerpo) comprende la estructura de N-glicano G0 GlcNAcβ2Manα3[ĞlcNAcβ2Manα6]Manβ4GlcNAcβ4GlcNAc. En otras formas de realización, la estructura de la glucoforma G0 no fucosilada representa al menos el 20%, 30%; 40%, 50%; 60%, 70%, 80% (% en moles) o más, de los N-glicanos totales de la composición de glucoproteína 25 heteróloga (por ejemplo, el anticuerpo) obtenida por los métodos de la divulgación. En otras formas de realización, los N-glicanos galactosilados representan menos (% en moles) del 0,5%, 0,1%, 0,05%, 0,01% de los N-glicanos totales del cultivo, y/o de la glucoproteína heteróloga con un aumento de la ocupación del sitio de N-glucosilación. En ciertas formas de realización, el cultivo o la glucoproteína heteróloga, por ejemplo, un anticuerpo, no comprende N-glicanos galactosilados.

30

En ciertas formas de realización de cualquiera de los métodos descritos, el método incluye la etapa adicional de proporcionar uno o más, dos o más, tres o más, cuatro o más, o cinco o más inhibidores de la proteasa. En ciertas formas de realización, los inhibidores de la proteasa son péptidos que se expresan conjuntamente con la glucoproteína de mamífero. En otras formas de realización, los inhibidores inhiben al menos dos, al menos tres o al menos cuatro proteasas de una familia de proteasas seleccionada de proteasas aspárticas, serina proteasas de tipo tripsina, subtilisina proteasas y proteasas glutámicas.

En ciertas formas de realización de cualquiera de los métodos divulgados, la célula fúngica filamentosa o la célula fúngica de Trichoderma también contiene una proteína portadora. Como se usa en el presente documento, una 40 "proteína portadora" es porción de una proteína que es endógena y altamente secretada por una célula fúngica filamentosa o una célula fúngica de Trichoderma. Las proteínas portadoras adecuadas incluyen, sin limitación, las de mananasa I de T. reesei (Man5A o MANI), celobiohidrolasa II de T. reesei (Cel6A o CBHII) (véase, por ejemplo, Paloheimo et al Appl. Environ. Microbiol. 2003 December; 69(12): 7073-7082) o celobiohidrolasa de T. reesei (CBHI). En algunas formas de realización, la proteína portadora es CBH1. En otras formas de realización, la proteína 45 portadora es una proteína CBH1 de T. reesei truncada que incluye la región central de CBH1 y parte de la región enlazadora de CBH1. En algunas formas de realización, un vehículo tal como una celobiohidrolasa o su fragmento, se fusiona con una cadena ligera de anticuerpo y/o una cadena pesada de anticuerpo. En algunas formas de realización, un polipéptido de fusión vehículo-anticuerpo comprende un sitio de escisión Kex2. En ciertas formas de realización, Kex2, u otra enzima de escisión de vehículo, es endógeno a una célula fúngica filamentosa. En ciertas 50 formas de realización, la proteasa de escisión de vehículo es heterologa a la célula fúngica filamentosa, por ejemplo, otra proteína Kex2 derivada de levadura o una proteasa TEV. En ciertas formas de realización, la enzima de escisión de vehículo se sobreexpresa. En ciertas formas de realización, el vehículo consiste en aproximadamente 469 a 478 aminoácidos de la parte N-terminal de la proteína CBH1 de T. reesei GenBank N.º de acceso EGR44817.1.

55 En una forma de realización, el polinucleótido que codifica la glucoproteína heteróloga (por ejemplo, el anticuerpo) comprende además un polinucleótido que codifica el dominio catalítico de CBH1 y el enlazador como una proteína portadora y/o el promotor cbh1.

En ciertas formas de realización, la célula fúngica filamentosa de la divulgación sobreexpresa la proteasa KEX2. En

ES 2 711 165 T3

una forma de realización, la glucoproteína heteróloga (por ejemplo, el anticuerpo) se expresa como una construcción de fusión que comprende un polipéptido fúngico endógeno, un sitio de proteasa tal como un sitio de escisión Kex2, y la proteína heteróloga tal como una cadena pesada y/o ligera del anticuerpo. Se han descrito combinaciones útiles de 2-7 aminoácidos que preceden al sitio de escisión de Kex2, por ejemplo, en Mikosch et al. (1996) J. Biotechnol. 5 52:97-106; Goller et al. (1998) Appl Environ Microbiol. 64:3202-3208; Spencer et al. (1998) Eur. J. Biochem. 258:107-112; Jalving et al. (2000) Appl. Environ. Microbiol. 66:363-368; Ward et al. (2004) Appl. Environ. Microbiol. 70:2567-2576; Ahn et al. (2004) Appl. Microbiol. Biotechnol. 64:833-839; Paloheimo et al. (2007) Appl Environ Microbiol. 73:3215-3224; Paloheimo et al. (2003) Appl Environ Microbiol. 69:7073-7082; y Margolles-Clark et al. (1996) Eur J Biochem. 237:553-560.

10

La descripción se refiere además a la composición de glucoproteínas, por ejemplo, la composición de anticuerpo, obtenible u obtenida por el método como se ha divulgado anteriormente.

En otras formas de realización específicas, dicha composición de glucoproteína o de anticuerpo comprende además 15 como el 50%, 60%, 70% o el 80% (% en moles de N-glicano neutro), de la siguiente glucoforma:

- (i) Manα3[Manα6(Manα3)Manα6]Manβ4GlcNAβ4GlcNAc (glucoforma Man5);
- (ii) GlcNAcβ2Manα3[Manα6(Manα3)Manα6]Manβ4GlcNAβ4GlcNAc, o variante β 4-galactosilada de la misma:
- 20 (iii) Manα6(Manα3)Manβ4GlcNAβ4GlcNAc;
 - (iv) Manα6(GlcNAcβ2Manα3)Manβ4GlcNAβ4GlcNAc, o variante β4-galactosilada de la misma: o,
 - (v) N-glicanos de tipo complejo seleccionados de la glucoforma G0, G1, o G2.

En algunas formas de realización, la glucoforma de N-glicano de acuerdo con iii-v comprende menos del 15%, 10%, 25 7%, 5%, 3%, 1% o 0,5%, o está desprovista de glicano Man5 como se ha definido en i) anteriormente.

EJEMPLOS

ENSAYOS FUNCIONALES

30

Ensayo para medir la actividad proteasa total de las células de la divulgación

Las concentraciones de proteína se determinaron a partir de muestras de sobrenadante del día 2-7 de 1x-7x cepas deficientes en proteasa (descritas en el documento PCT/EP2013/050126) de acuerdo con el kit de ensayo de proteasa EnzChek (Molecular probes N.º E6638, sustrato de caseína verde fluorescente). En resumen, los sobrenadantes se diluyeron en tampón de citrato de sodio para igualar la concentración de proteína total y se añadieron cantidades iguales de los sobrenadantes diluidos en una placa negra de 96 pocillos, utilizando 3 pocillos duplicados por muestra. La solución de caseína FL diluida hecha en tampón de citrato de sodio se añadió a cada sobrenadante que contenía un pocillo y las placas se incubaron cubiertas en una bolsa de plástico a 37°C. La fluorescencia de los pocillos se midió después de 2, 3 y 4 horas. Las lecturas se hicieron en el lector de placas fluorescente de Varioskan utilizando una excitación de 485 nm y una emisión de 530 nm. Algunas mediciones de la actividad de la proteasa se realizaron utilizando caseína succinilada (kit de ensayo de proteasa QuantiCleave, Pierce N.º 23263) de acuerdo con el protocolo del fabricante.

45 La deleción individual de pep1 redujo la actividad de la proteasa 1,7 veces, la deleción doble de pep1/tsp1 redujo la actividad de la proteasa 2 veces, la triple deleción de pep1/tsp1/slp1 redujo la actividad de la proteasa 3,2 veces, la deleción cuádruple de pep1/tsp1/slp1/gap1 redujo la actividad de la proteasa 7,8 veces en comparación con la cepa M124 de tipo silvestre, la deleción quíntuple de pep1/tsp1/slp1/gap1/gap2 redujo la actividad de la proteasa 10 veces, la deleción séxtuple de pep1/tsp1/slp1/gap1/gap2/pep4 redujo la actividad de la proteasa 15,9 veces, y la deleción séptuple de pep1/tsp1/slp1/gap1/gap2/pep4/pep3 redujo la actividad de la proteasa 18,2 veces.

La Figura 5 representa gráficamente datos de actividad de proteasa normalizados de sobrenadantes de cultivo de cada uno de los sobrenadantes de deleción de proteasas (mutante de deleción de 1 a 7 veces) y la cepa parental sin deleciones de proteasas. La actividad de la proteasa se midió a pH 5,5 en las primeras 5 cepas y a pH 4,5 en las últimas tres cepas de deleción. La actividad de proteasa es contra la caseína verde fluorescente. La cepa de deleción de proteasas séxtuple tiene solo el 6% de la cepa parental de tipo silvestre y la actividad de la proteasa de la cepa de deleción de proteasas séptuple fue aproximadamente un 40% menor que la actividad de la cepa de deleción de proteasas séxtuple.

Ensayo para medir la ocupación del sitio de N-glucosilación en una composición de glucoproteína

Se digieren 10 - 30 µg de anticuerpo con 13,4 - 30 U de FabRICATOR (Genovis), +37°C, 60 min durante una noche, produciendo un fragmento F(ab')2 y un fragmento Fc por una molécula de anticuerpo. Las muestras digeridas se purifican utilizando la placa de filtro Poros R1 (Glyken corp.) y los fragmentos Fc se analizan para determinar la ocupación del sitio de N-glicano utilizando MALDI-TOF MS. El porcentaje de ocupación de un Fc en el sitio es el promedio de dos valores: el que se obtiene a partir de los valores de intensidad de los picos (carga simple y doble) y el otro del área de los picos (carga simple y doble); ambos valores se calculan como señal glucosilada dividida por la suma de señales no glucosiladas y glucosiladas.

EJEMPLO 1 - Generación de STT3 de L. major que expresa T. reesei

La secuencia codificante de oligosacaril transferasa 3D de *Leishmania major* (anterior GenBank N.º XP_843223.1, nuevo XP_003722509.1; SEQ ID NO: 1) se optimizó por codón para determinar la expresión de *Trichoderma reesei* (secuencia de ácidos nucleicos optimizada por codón SEQ ID NO: 2). La secuencia codificante optimizada se sintetizó junto con el promotor cDNA1 (SEQ ID NO: 3) y la secuencia flanqueante del terminador TrpC (SEQ ID NO: 4). El gen STT3 de *Leishmania major* se eliminó del vector de clonación optimizado utilizando la digestión con enzimas de restricción Pacl. El vector de entrada de expresión también se digirió con Pacl y se desfosforiló con fosfatasa alcalina de ternera. El gen STT3 y el vector digerido se separaron con electroforesis en gel de agarosa y los fragmentos correctos se aislaron del gel con un kit de extracción de gel (Qiagen) de acuerdo con el protocolo del fabricante. El gen STT3 de *Leishmania major* purificado se ligó en el vector de expresión con ADN ligasa T4. La reacción de ligación se transformó en *E. coli* DH5α químicamente competente y se hizo crecer en placas de selección de ampicilina (100 μg/ml). Las preparaciones de plásmidos Miniprep se hicieron a partir de varias colonias. La presencia del inserto del gen STT3 de *Leishmania major* se comprobó mediante la digestión de los plásmidos preparados con digestión con Pacl y se secuenciaron varios clones positivos para verificar la orientación del gen. Se eligió un clon correctamente orientado como el vector final pTTv201.

El casete de expresión contenía el promotor constitutivo *cDNA1* de *Trichoderma reesei* para dirigir la expresión de STT3 de *Leishmania major*. La secuencia del terminador incluida en el casete era el terminador TrpC de *Aspergillus* 30 *niger*. El casete de expresión se dirigió al locus xilanasa 1 (*xyn1*, tre74223) utilizando la secuencia de la xilanasa 1 de los flancos 5' y 3' del gen (SEQ ID NO: 5 y SEQ ID NO: 6). Estas secuencias se incluyeron en el casete para permitir que el casete se integrara en el locus *xyn1* a través de recombinación homóloga. El casete contenía un marcador de bucle pequeño pyr4 para la selección. El gen *pyr4* codifica la orotidina-5'-monofosfato (OMP) descarboxilasa de *T. reesei* (Smith, J.L., et al., 1991, Current Genetics 19:27-33) y es necesario para la síntesis de la uridina. Las cepas deficientes para la actividad de la OMP descarboxilasa no pueden crecer en un medio mínimo sin la complementación con uridina (es decir, son auxotrofas de uridina).

Para preparar el vector para la transformación, el vector se cortó con Pmel para liberar el casete de expresión (Figura 1). La digestión se separó con electroforesis en gel de agarosa y el fragmento correcto se aisló del gel con un kit de extracción de gel (Qiagen) de acuerdo con el protocolo del fabricante. El ADN del casete de expresión purificado (5 μg) se transformó luego en protoplastos de la cepa M317 de *Trichoderma reesei* (M317 se ha descrito en la Solicitud de Patente Internacional N.º PCT/EP2013/050126; M317 es pyr4- de M304 y comprende una cadena ligera de MAB01 fusionada al vehículo CBH1 truncado de *T. reesei* con la secuencia de escisión de Kex2 NVISKR, cadena pesada de MAB01 fusionada a vehículo CBH1 truncado de *T. reesei* con la secuencia de escisión de Kex2 AXE1 [DGETVVKR], Δ*pep1*Δ*tsp1*Δ*slp1*, y sobreexpresión de KEX2 de *T. reesei*). La preparación de protoplastos y la transformación se realizaron de acuerdo con los métodos en Penttilä et al. (1987, Gene 61:155-164) y Gruber et al (1990, Curr. Genet. 18:71-76) para la selección de pyr4. Los protoplastos transformados se colocaron en placas de medio mínimo de *Trichoderma* (TrMM).

50 Los transformantes se sembraron luego en placas TrMM con TritonX-100 al 0,1%. Los transformantes que crecieron rápidamente a medida que las siembras selectivas se cribaron por PCR utilizando los cebadores enumerados en la Tabla 1. El ADN de los micelios se purificó y se analizó mediante PCR para observar la integración de los flancos 5' y 3' del casete y la existencia del ORF de xilanasa 1. El casete se dirigió al locus de xilanasa 1; por lo tanto, el marco de lectura abierto no estaba presente en los transformantes integrados de manera positiva. Para cribar la integración 5', se usó la secuencia fuera del flanco de integración 5' para crear un cebador directo que amplificará el ADN genómico que flanquea xyn1 y el cebador inverso se realizó a partir de la secuencia en el promotor de ADNc del casete. Para verificar la correcta integración del casete en el flanco 3', se realizó un cebador directo desde la secuencia fuera del flanco de integración 3' que amplificaría el ADN genómico que flanquea xyn1 y el cebador inverso se realizó a partir de la secuencia del inverso se realizó a partir de la secuencia en el marcador pyr4. Por lo tanto, un cebador amplificará la secuencia del

ADN genómico fuera del casete y el otro amplificará la secuencia del ADN en el casete. Las secuencias de cebador se enumeran en la Tabla 1. Las cuatro cepas finales que muestran una integración adecuada y una deleción de orf xyn1 se denominaron M420-M423.

5 Se realizaron cultivos en matraz de agitación para cuatro de las cepas productoras de STT3 (M420-M423) para evaluar las características de crecimiento y para proporcionar muestras para el análisis de ocupación del sitio de glucosilación. Los cultivos en matraz de agitación se realizaron en TrMM, 40 g/l de lactosa, 20 g/l de extracto de grano usado, 9 g/l de casaminoácidos, PIPPS 100 mM, pH 5,5. La expresión de STT3 de *L. major* no afectó al crecimiento negativamente cuando se comparó con la cepa parental M304 (Tablas 2 y 3). El peso seco de las 10 células para los transformantes de expresión de STT3 parece ser ligeramente superior en comparación con la cepa parental M304.

Tabla 1: Lista de cebadores usados para el cribado por PCR de los transformantes STT3.

Cebadores de cribado del flanco 5':	Producto de 1205 pb
T403_Xyn1_5'flank_fwd	CCGCGTTGAACGGCTTCCCA ID NO:48)
T140_cDNA1 promoter_rev	TAACTTGTACGCTCTCAGTTCGAG (SEQ ID NO:49)
Cebadores de cribado del flanco 3':	Producto de 1697 pb
T404_Xyn1 3'flank fwd	GCGACGGCGACCCATTAGCA ID NO:50)
T028_Pyr4_flank_rev	CATCCTCAAGGCCTCAGAC (SEQ ID NO:51)
Cebadores de orf de xilanasa 1:	Producto de 589 pb
T405_Xyn1_orf_screen_fwd	TGCGCTCTCACCAGCATCGC ID NO:52)
T406_Xyn1_orf_screen_rev	GTCCTGGGCGAGTTCCGCAC (SEQ ID NO:53)

Tabla 2: Peso seco celular de cultivos en matraz de agitación grandes.

Peso seco celular (g/l)			
	día 3	día 5	día 7
M304	2,3	3,3	4,3
M420	3,7	4,3	5,4
M421	3,7	4,6	6,3
M422	3,8	4,5	5,4
M423	3,7	4,6	5,7

Tabla 3: Valores de pH de cultivos en matraz de agitación grandes.

Valores	de pH		
	día 3	día 5	día 7
M304	5,6	6,1	6,2
M420	6,1	6,1	6,1
M421	6,0	5,9	6,0
M422	6,1	6,1	6,2
M423	6,1	6,1	6,1

Análisis de ocupación del sitio

20

Se cultivaron cuatro transformantes [pTTv201; 17A-a (M420), 26B-a (M421), 65B-a (M422) y 97A-a (M423)] y su cepa parental (M317) en matraces de agitación y las muestras se recogieron en los puntos de tiempo del día 5 y 7. El anticuerpo MAB01 se purificó a partir de sobrenadantes de cultivo utilizando una placa de 96 pocillos Protein G HP MultiTrap (GE Healthcare) de acuerdo con las instrucciones del fabricante. El anticuerpo se eluyó con tampón de citrato 0,1 M, pH 2,6 y se neutralizó con Tris 2 M, pH 9. La concentración se determinó a través de la absorbancia UV en un espectrofotómetro frente a la curva estándar MAB01. Se digirieron 10 µg de anticuerpo con 13,4 U de FabRICATOR (Genovis), + 37°C, 60 min, produciendo un fragmento F(ab')2 y un fragmento Fc. Las muestras digeridas se purificaron utilizando una placa de filtro Poros R1 (Glyken corp.) y los fragmentos Fc se analizaron para determinar la ocupación del sitio de N-glicano utilizando MALDI-TOF MS (Figura 2).

La sobreexpresión de STT3 de *Leishmania major* mejoró la cobertura del sitio en comparación con la cepa parental. El mejor clon se volvió a cultivar en tres matraces de agitación paralelos cada uno y los resultados del análisis fueron comparables con el primer análisis. En comparación con la cepa parental, las señales Fc y Fc + K están prácticamente ausentes en los clones de STT3.

35

15

La diferencia en la ocupación del sitio entre la cepa parental y todos los clones de STT3 de *L. major* fue significativa (Figura 2). Debido a que las señales provenientes de Fc o Fc + K estaban prácticamente ausentes, la ocupación del sitio de N-glicano de MAB01 en estos cultivos en matraz de agitación fue del 100% (Tabla 4).

Tabla 4: Análisis de la ocupación del sitio de la cepa parental M317 y cuatro transformantes de STT3 de *L. major*. Los promedios se han calculado a partir del área y la intensidad a partir de señales de carga simple y doble de tres muestras paralelas.

	M317	17A-a	26B-a	65B-a	97A-a
Estado de glucosilación	% promedio				
No glucosilado	13,0	0,0	0,0	0,0	0,0
Glucosilado	87,0	100,0	100,0	100,0	100,0

Cultivos de fermentador

10

30

35

Se cultivaron tres clones de STT3 (L. major) (M420, M421 y M422), así como la cepa parental M304 en un fermentador. Las muestras en los puntos de tiempo de los días 3, 4, 5, 6 y 7 se recogieron y el análisis de ocupación del sitio se realizó para el anticuerpo purificado. Las cepas de sobreexpresión de STT3 y la respectiva cepa de control (M304) se cultivaron en fermentaciones discontinuas durante 7 días, en medio que contenía extracto de levadura al 2%, celulosa al 4%, celobiosa al 4%, sorbosa al 2%, 5 g/l de KH2PO4 y 5 g/l de (NH4)2SO4. El pH del cultivo se controló a pH 5,5 (ajustado con NH3OH). La temperatura se cambió de 28°C a 22°C a las 48 horas transcurridas del tiempo de proceso. Las fermentaciones se realizaron en 4 reactores de vasos de vidrio paralelos de 2 l con un volumen de cultivo de 1 l. Se tomaron muestras de sobrenadante de cultivo durante el transcurso de las ejecuciones y se almacenaron a -20°C. El anticuerpo MAB01 se purificó y se digirió con FabRICATOR como se ha 20 descrito anteriormente. Los títulos de anticuerpo se muestran en la Tabla 5.

Resultados

La ocupación del sitio en la cepa parental M304 fue inferior al 60%, pero en todos los clones de STT3 analizados, la ocupación del sitio había aumentado hasta el 98% (Tabla 6).

Tabla 5: Títulos de anticuerpo MAB01 de las cepas M420, M421 y M422 de LmSTT3 y su cepa parental M304.

	Título g/l				
Cepa	d3	d4	d5	d6	d7
M304	0,225	0,507	0,981	1,52	1,7
M420	0,758	1,21	1,55	1,71	1,69
M421	0,76	1,24	1,54	1,67	1,6
M422	0,65	1,07	1,43	1,56	1,54

Tabla 6: Las ocupaciones del sitio de N-glucosilación del anticuerpo MAB01 de las cepas de LmSTT3 M420, M421 y M422 y su cepa parental M304.

:	,	,	- 1		
	% de ocupación del sitio				
Cepa	d3 d4 d5 d6 d7				
M304	48,0	47,7	47,7	46,3	55,4
M420	97,8	97,5	96,9	94,3	94,6
M421	96,1	90,8	91,5	89,7	95,6
M422	94.4	88.5	80.9	83.6	75.2

En conclusión, la sobreexpresión del gen STT3D de *L. major* aumentó la ocupación del sitio de N-glucosilación del 46%-87% en la cepa parental al 98%-100% en transformantes que tenían STT3 de *Leishmania* en condiciones de matraz de agitación o de cultivo de fermentación.

La sobreexpresión del gen STT3D de *L. major* aumentó significativamente la ocupación del sitio de N-glucosilación en cepas productoras de un anticuerpo como una proteína heteróloga. Los títulos de anticuerpo no variaron significativamente entre los transformantes que tenían STT3 y la cepa parental.

40 EJEMPLO 2 - Generación de cepas de *T. reesei* que expresan STT3 a partir de *T. vaginalis*, *L. infantums* o *E. histolytica*

Las secuencias codificantes de la oligosacaril transferasa de Trichomonas vaginalis, Leishmania infantum y Entamoeba histolytica (STT3; secuencias de aminoácidos T. vaginalis SEQ ID NO: 7, L. infantum SEQ ID NO: 8, y É. histolytica SEQ ID NO: 10) se optimizaron por codón para determinar la expresión de Trichoderma reesei (ácido núcloeico de L. infantum optimizado por codón SEQ ID NO: 9). Las secuencias codificantes optimizadas se 5 sintetizaron junto con la secuencia flanqueante del terminador cbh1 de T. reesei (SEQ ID NO: 11). Los plásmidos que contenían los genes STT3 bajo el promotor constitutivo cDNA1, con terminador cbh1, el marcador de bucle pequeño pyr4, y las regiones flanqueantes alg3 (SEQ ID NO: 12 y SEQ ID NO: 13) se clonaron mediante recombinación homóloga de levadura como se describe en el documento WO2012/069593. El fragmento Notl del plásmido pTTv38 se usó como esqueleto del vector. Este vector contiene los flancos alg3 (tre104121) 5' y 3' del gen 10 para permitir que el casete de expresión se integre en el locus alg3 mediante recombinación homóloga en T. reesei y el plásmido se ha descrito en el documento WO2012/069593. Los genes STT3 se eliminaron de los vectores de clonación utilizando la digestión con enzimas de restricción Sfil. El promotor cdna1 y los fragmentos del terminador cbh1 se crearon mediante PCR, utilizando plásmidos pTTv163 y pTTv166 como plantillas, respectivamente. El marcador de bucle pequeño pyr4 se extrajo del plásmido pTTv142 por digestión con Notl (el plásmido pTTv142 que 15 tiene un dominio catalítico GNT2 humano fusionado con el péptido de direccionamiento MNT1/KRE2 de T. reesei se ha descrito en el documento WO2012/069593). El gen pyr4 codifica la orotidina-5'-monofosfato (OMP) descarboxilasa de T. reesei (Smith, J.L., et al., 1991, Current Genetics 19:27-33) y es necesario para la síntesis de la uridina. Las cepas deficientes para la actividad de la OMP descarboxilasa no pueden crecer en un medio mínimo sin la complementación con uridina (es decir, son auxotrofas de uridina). Los cebadores usados para la clonación se 20 enumeran en la Tabla 7. Los fragmentos digeridos y los productos de PCR se separaron con electroforesis en gel de agarosa y los fragmentos correctos se aislaron del gel con un kit de extracción de gel (Qiagen) de acuerdo con el protocolo del fabricante. Los plásmidos se construyeron utilizando el método de recombinación homóloga de levadura, utilizando oligonucleótidos superpuestos para la recombinación del gap entre el marcador pyr4 y el flanco 3' de alg3 como se describe en el documento WO2012/069593. El ADN plasmídico se rescató de la levadura y se 25 transformó en E. coli TOP10 electrocompetente que se cultivó en placas de selección de ampicilina (100 µg/ml). Las preparaciones de plásmidos Miniprep se hicieron a partir de varias colonias. La presencia de los genes STT3 de Trichomonas vaginalis y Leishmania infantum se confirmó digiriendo los plásmidos preparados con BgllI-Kpnl, mientras que el plásmido Entamoeba histolytica se digirió con HindIII-Kpnl. Los clones positivos se secuenciaron para verificar las secuencias plasmídicas. Se eligió un clon correcto de Trichomonas vaginalis para ser el vector final 30 pTTv321, y los clones correctos de Leishmania infantum y Entamoeba histolytica se eligieron para ser los vectores pTTv322 y pTTv323, respectivamente. Los cebadores utilizados para la secuenciación de los vectores se enumeran en la Tabla 8.

Tabla 7: Lista de cebadores usados para los vectores de clonación pTTv321, pTTv322 v pTTv323.

Fragmento	Cebador	Secuencia de cebador
Promotor <i>cDNA1</i> , pTTv321	T1177_pTTv321_1	AGATTTCAGTCTCTCACCACTCACCTGAGTTGCCT CTCTCGGTCTGAAGGACGTGGAATGATG (SEQ ID NO:54)
	T1178_pTTv321_2	GCAGGGTGATGAGCTGGATCACCTTGACGGTGTT
		GCCCATGTTGAGAGAAGTTGTTGGATTGATCA (SEQ ID NO:55)
Promotor <i>cDNA1</i> , pTTv322	T1177_pTTv321_1	AGATTTCAGTCTCTCACCACTCACCTGAGTTGCCT CTCTCGGTCTGAAGGACGTGGAATGATG (SEQ ID NO:56)
	T1183_pTTv322_1	

		CAGAGCCGCTATCGCCGAGGAGGTTGCCCTTCTT GCCCATGTTGAGAGAAGTTGTTGGATTGATCA (SEQ ID NO:57)
Promotor aDNA1 nTTv222	T1177_pTTv321_1	AGATTTCAGTCTCTCACCACTCACCTGAGTTGCCT CTCTCGGTCTGAAGGACGTGGAATGATG (SEQ ID NO:58)
Promoter <i>cDNA1</i> , pTTv323	T1184_pTTv323_1	TCTTGAGGATGAGCTGGACGAGGGTCTTGAAAAA GCCCATGTTGAGAGAAGTTGTTGGATTGATCA (SEQ ID NO:59)
	T1179_pTTv321_3	AGCTCCGTGGCGAAAGCCTGA (SEQ ID NO:60)
Terminador <i>cbh1</i>	T1180_pTTv321_4	CAGCCGCAGCCTCAGCCTCTCAGCCTCATCAG CCGCGGCCGCCAACTTTGCGTCCCTTGTGACG (SEQ ID NO:61)
oligos de solapamiento en flanco 3'	T1181_pTTv321_5	GCAACGAGAGCAGAGCAGTAGTCGATGCTA GGCGGCCGCGGGCAGTATGCCGGATGGCTGGCT TATACAGGCA (SEQ ID NO:62)
pyr4-alg3	T1182_pTTv321_6	TGCCTGTATAAGCCAGCCATCCGGCATACTGCCC GCGGCCGCCTAGCATCGACTACTGCTGCT CTCGTTGC (SEQ ID NO:63)

Tabla 8: Lista de cebadores usados para los vectores de secuenciación pTTv321, pTTv322 y pTTv323.

Cebador	Secuencia
T027_Pyr4_orf_start_rev	TGCGTCGCCGTCTCGCTCCT (SEQ ID NO:64)
T061_pyr4_orf_screen_2F	TTAGGCGACCTCTTTTTCCA (SEQ ID NO:65)
T143_cDNA1 promoter_seqF3	CGAGGAAGTCTCGTGAGGAT (SEQ ID NO:66)
T410_alg3_5-flank_F	CAGCTAAACCGACGGGCCA (SEQ ID NO:67)
T1153_cbh1_term_start_rev	GACCGTATATTTGAAAAGGG (SEQ ID NO:68)

Para preparar los vectores para la transformación, los vectores se cortaron con *Pmel* para liberar los casetes de expresión (Figura 3). Los fragmentos se separaron con electroforesis en gel de agarosa y el fragmento correcto se aisló del gel con un kit de extracción de gel (Qiagen) de acuerdo con el protocolo del fabricante. El ADN del casete de expresión purificado se transformó entonces en protoplastos de M317 de *Trichoderma reesei*. La preparación de protoplastos y la transformación se realizaron esencialmente de acuerdo con los métodos en Penttilä et al. (1987,

Gene 61:155-164) y Gruber et al (1990, Curr. Genet. 18:71-76) para la selección de *pyr4*. Los protoplastos transformados se colocaron en placas de medio mínimo de *Trichoderma* (TrMM) que contenían sorbitol.

Los transformantes se sembraron luego en placas TrMM con TritonX-100 al 0,1%. Los transformantes que crecieron rápidamente a medida que las siembras selectivas se cribaron por PCR utilizando los cebadores enumerados en la Tabla 9. El ADN de los micelios se purificó y se analizó mediante PCR para observar la integración de los flancos 5' y 3' del casete y la existencia del ORF de *alg3*. El casete se dirigió al locus *alg3*; por lo tanto, el marco de lectura abierto no estaba presente en los transformantes integrados de manera positiva, purificados en clones de células individuales. Para cribar la integración 5', se usó la secuencia fuera del flanco de integración 5' para crear un cebador directo que amplificará el ADN genómico que flanquea *alg3* y el cebador inverso se realizó a partir de la secuencia en el promotor de *cDNA1* del casete. Para verificar la correcta integración del casete en el flanco 3', se realizó un cebador inverso a partir de una secuencia fuera del flanco de integración 3' que amplificaría el ADN genómico que flanquea *alg3* y el cebador directo se realizó a partir de la secuencia en el marcador *pyr4*. Por lo tanto, un cebador amplificará la secuencia del ADN genómico fuera del casete y el otro amplificará la secuencia del ADN en el casete.

Tabla 9: Lista de cebadores utilizados para el cribado por PCR de transformantes de T. reesei.

Cebadores de cribado del flanco 5':	Producto de 1165 pb		
T066_104121_5int	GATGTTGCGCCTGGGTTGAC (SEQ ID NO:69)		
T140_cDNA1 promoter_seqR1	TAACTTGTACGCTCTCAGTTCGA (SEQ ID NO:70)		
Cebadores de cribado del flanco 3':	Producto de 1469 pb		
T026_Pyr4_orf_5rev2	CCATGAGCTTGAACAGGTAA (SEQ ID NO:71)		
T068_104121_3int	GATTGTCATGGTGTACGTGA (SEQ ID NO:72)		
Cebadores ORF alg3:	Producto de 689 pb		
T767_alg3_del_F	CAAGATGGAGGGCGGCACAG (SEQ ID NO:73)		
T768_alg3_del_R	GCCAGTAGCGTGATAGAGAAGC (SEQ ID NO:74)		
Cebadores ORF alg3:	Producto de 1491 pb		
T069_104121 _5orf_pcr	GCGTCACTCATCAAAACTGC (SEQ ID NO:75)		
T070_104121_3orf_pcr	CTTCGGCTTCGATGTTTCA (SEQ ID NO:76)		

Se cultivaron cuatro cepas finales, cada una de las cuales mostró una integración adecuada y una eliminación de 20 ORF *alg3* en matraces de agitación grandes en medio TrMM complementado con 40 g/l de lactosa, 20 g/l de extracto de grano usado, 9 g/l de casaminoácidos y PIPPS 100 mM, pH 5,5. El crecimiento de las cepas pTTv321 y pTTv323 fue algo más lento que en la cepa parental M304 (Tabla 10). Tres de cada cuatro clones de *Leishmania infantum* pTTv322 crecieron algo mejor que la cepa parental.

25 Tabla 10. Mediciones del peso seco celular (en g/l) de las cepas parentales M304 y cepas que expresan STT3.

Cepa	3 días	5 días	7 días
M304	3,06	3,34	4,08
pTTv321 #18-9-2	2,54	2,89	2,52
pTTv321 #18-9-10	2,44	3,03	2,65
pTTv321#18-12-1	2,43	3,12	2,86
pTTv321 #18-12-2	2,84	3,49	3,39
pTTv322#60-2	3,02	3,42	3,63
pTTv322#60-6	3,37	4,45	4,68
pTTv322#60-12	3,30	4,15	4,29
pTTv322#60-14	2,92	3,90	4,39
pTTv323#37-4-1	2,29	2,27	2,59
pTTv323#37-4-14	1,88	2,08	2,69
pTTv323#37-11-3	2,15	2,27	2,62
pTTv323#37-11-8	1,92	2,25	2,62

Ocupación del sitio y análisis de glicanos

A partir de muestras de sobrenadante del día 5, se purificó MAB01 usando una placa de filtro de 96 pocillos Protein 30 G HP MultiTrap (GE Healthcare) de acuerdo con las instrucciones del fabricante. Se cargaron aprox. 1,4 ml de sobrenadante de cultivo y el volumen de elución fue de 230 µl. Las concentraciones de anticuerpos se determinaron a través de la absorbancia UV contra la curva estándar MAB01.

Para el análisis de ocupación del sitio, se tomaron 16-20 μg de anticuerpo MAB01 purificado y los anticuerpos se digirieron, se purificaron y se analizaron como se describe en el ejemplo 1. La ocupación del sitio al 100% se logró con los clones STT3 de *Leishmania infantum* 60-6, 60-12 y 60-14 (Tabla 11). En los transformantes STT3 de *T. vaginalis* y *E. histolytica*, la ocupación del sitio fue baja y en estos últimos, los anticuerpos parecieron degradarse, lo que resultó en que no se pudo realizar un análisis de la ocupación del sitio para una cepa.

Tabla 11. Ocupación del sitio de N-glucosilación de anticuerpos de variantes de STT3 y M304 parental el día

5.							
M304							
Estado de glucosilación	%						
No glucosilado	8						
Glucosilado	92						
STT3 de Trichomonas vaginalis, Δalg3	18-9-2	18-9-10	18-12-1	18-12-2			
Estado de glucosilación	%	%	%	%			
No glucosilado	75	71	69	64			
Glucosilado	25	29	31	36			
Glucosilado	18	n.d.	27	14			
STT3 de <i>Leishmania infantum</i> , ∆alg3	60-2	60-6	60-12	60-14			
Estado de glucosilación	%	%	%	%			
No glucosilado	38	0	0	0			
Glucosilado	62	100	100	100			
STT3 de Entamoeba histolytica, Δalg3	37-4-1	37-4-14	37-11-3	37-11-8			
Estado de glucosilación	%	%	%	%			
No glucosilado	82	n.d.	73	86			

10

Estos resultados muestran que la sobreexpresión de la subunidad catalítica de *Leishmania infantum* es capaz de aumentar la ocupación del sitio de N-glucosilación en células de fúngicas filamentosas, hasta el 100%.

En contraste, los genes STT3 de *Trichomonas vaginalis* o *Entamoeba histolytica* no producen una alta ocupación del 15 sitio de N-glucosilación.

Los N-glicanos se analizaron a partir de tres de los clones de STT3 de *Leishmania infantum*. Las reacciones de PNGasa F se realizaron con 20 µg de anticuerpo MAB01 como se describe en los ejemplos y los N-glicanos liberados se analizaron con MALDI-TOF MS. Las tres cepas produjeron aproximadamente el 25% de N-glicano 20 Man3 unido a MAB01, mientras que la glucoforma Hex6 representa aproximadamente el 60% de los N-glicanos unidos a MAB01 (Tabla 12).

Tabla 12: N-glicanos neutros y análisis de ocupación del sitio de MAB01 de clones de STT3 de *L. infantum* STT3 el día 5.

STT3 de Leishmania infantum, Δalg3							
Clones		60-6	60-12	60-14			
Corto	m\z	%	%	%			
Man3	933,3	25,9	26,4	25,9			
Man4	1095,4	9,4	9,3	9,0			
Man5	1257,4	6,5	6,1	7,6			
Hex6	1419,5	58,3	58,2	57,5			
Fc		0	0	0			
Fc+Gn		0	0	0			
Glucosilado		100	100	100			

25

Esto muestra que las glucoformas Man3, G0, G1 y/o G2 representan al menos el 25% del total de N-glicanos neutros de MAB01 en 3 clones diferentes que sobreexpresan STT3 de L. infantum. La Figura 4 muestra las estructuras de glicano de Man3, Man4, Man5 y Hex6 producidas en las cepas Δ alg3. "Fc" significa un fragmento Fc (sin ningún N-

glicano) y "Fc+Gn" significa un fragmento Fc con una N-acetilglucosamina unida (la posible actividad de la enzima Endo T podría escindir los N-glicanos de un Fc+Gn resultante de Fc).

EJEMPLO 3 - Generación de cepas Δalg3 de cepas que expresan MAB01

15

20

40

El marcador de acetamida del plásmido de deleción *alg3* de pTTv38 se cambió al marcador *pyr4*. Los vectores pTTv38 y pTTv142 se digirieron con *Not*l y los fragmentos se separaron con electroforesis en gel de agarosa. Los fragmentos correctos se aislaron del gel con un kit de extracción de gel (Qiagen) de acuerdo con el protocolo del fabricante. El marcador de bucle pequeño *pyr4* purificado de pTTv142 se ligó al plásmido pTTv38 con ADN ligasa 10 T4. La reacción de ligación se transformó en *E. coli* TOP10 electrocompetente y se hizo crecer en placas de selección de ampicilina (100 µg/ml). Las preparaciones de plásmidos Miniprep se hicieron a partir de cuatro colonias. La orientación del marcador se confirmó secuenciando los clones con los cebadores enumerados en la Tabla 13. Se eligió un clon con el marcador en dirección invertida para ser el vector final pTTv324.

Tabla 13. Lista de cebadores usados para los vectores de secuenciación pTTv324.

Cebador	Secuencia
T027_Pyr4_orf_start_rev	TGCGTCGCCGTCTCGCTCCT (SEQ ID NO:77)
T060_pyr4_orf_screen_1F	TGACGTACCAGTTGGGATGA (SEQ ID NO:78)

Se generó una cepa *pyr4* de la cepa de expresión de STT3 de *Leishmania major* M420 en bucle corto con el marcador *pyr4* mediante la selección de 5-FOA como se describe en la Solicitud de Patente Internacional N.º PCT/EP2013/050126. Una cepa *pyr4* fue designada con el número M602.

Para preparar los vectores para la transformación, el vector pTTv324 se cortó con *Pmel* para liberar el casete de deleción. Los fragmentos se separaron con electroforesis en gel de agarosa y el fragmento correcto se aisló del gel con un kit de extracción de gel (Qiagen) de acuerdo con el protocolo del fabricante. El ADN del casete de deleción purificado se transformó entonces en protoplastos de M317 y M602 de *Trichoderma reesei*. La preparación de protoplastos, la transformación y la colocación en placas de los protoplastos se realizaron como se ha descrito anteriormente.

Los transformantes se sembraron luego en placas TrMM con TritonX-100 al 0,1%. Los transformantes que crecieron rápidamente a medida que las siembras selectivas se cribaron por PCR utilizando los cebadores enumerados en la Tabla 14. El ADN de los micelios se purificó y se analizó mediante PCR para observar la integración de los flancos 5' y 3' del casete y la existencia del ORF de *alg3*. El casete se dirigió al locus *alg3*; por lo tanto, el marco de lectura abierto no estaba presente en los transformantes integrados de manera positiva, purificados en clones de células individuales. Para cribar la integración 5', se usó la secuencia fuera del flanco de integración 5' para crear un cebador directo que amplificará el ADN genómico que flanquea *alg3* y el cebador inverso se realizó a partir de la secuencia en el marcador *pyr4* del casete. Para verificar la correcta integración del casete en el flanco 3', se realizó un cebador inverso a partir de una secuencia fuera del flanco de integración 3' que amplificaría el ADN genómico que flanquea *alg3* y el cebador directo se realizó a partir de la secuencia en el marcador *pyr4*. Por lo tanto, un cebador amplificará la secuencia del ADN genómico fuera del casete y el otro amplificará la secuencia del ADN en el casete.

Tabla 14: Lista de cebadores utilizados para el cribado por PCR de transformantes de T. reesei.

Cebadores de cribado del flanco 5':	Producto de 1455 pb
T066_104121_5int	GATGTTGCGCCTGGGTTGAC (SEQ ID NO:79)
T060_pyr4_orf_screen_1F	TGACGTACCAGTTGGGATGA (SEQ ID NO:80)
Cebadores de cribado del flanco 3':	Producto de 1433 pb
T027_Pyr4_orf_start_rev	TGCGTCGCCGTCTCGCTCCT (SEQ ID NO:81)
T068_104121_3int	GATTGTCATGGTGTACGTGA (SEQ ID NO:82)
Cebadores ORF alg3:	Producto de 689 pb
T767_alg3_del_F	CAAGATGGAGGGCGGCACAG (SEQ ID NO:83)
T768_alg3_del_R	GCCAGTAGCGTGATAGAGAAGC (SEQ ID NO:84)

Se cultivaron dos cepas M602 y siete cepas M317 que mostraban una integración adecuada y una eliminación de ORF *alg*3 en matraces de agitación grandes en medio TrMM complementado con 40 g/l de lactosa, 20 g/l de extracto 45 de grano usado, 9 g/l de casaminoácidos y PIPPS 100 mM, pH 5,5 (Tabla 15). La cepa M317 19.13 y 19.20 se designaron con los números M697 y M698, respectivamente, y las cepas M602 1.22 y 11.18 se designaron con los

números M699 y M700, respectivamente.

Tabla 15 Mediciones de peso seco celular (en g/l) de las cepas parentales M304 y la cepa de expresión de STT3 M420 y los transformantes de deleción *alg3*.

Сера	3 días	5 días	7 días
M602 1.22	3,63	3,23	3,79
M602 11.18	3,52	3,74	4,12
M317 19.1	3,64	3,84	4,22
M317 19.5	3,54	3,87	4,31
M317 19.6	3,72	3,66	4,78
M317 19.13	3,63	3,21	4,06
M317 19.20	3,97	4,28	5,09
M317 19.43	3,77	4,02	4,18
M317 19.44	3,58	3,78	4,17
M420	3,31	3,69	5,57
M304	2,55	2,99	4,09

Ocupación del sitio y análisis de glicanos

5

15

20

Dos transformantes de la sobreexpresión de STT3 de *Leishmania major* en la cepa de deleción de *alg3* [pTTv324; 1.22 (M699) y 11.18 (M700)] y siete transformantes con deleción de *alg3* [M317, pyr4- de M304; clones 19.1, 19.5, 19.6, 19.13 (M697), 19.20 (M698), 19.43 y 19.44], y sus cepas parentales M420 y M304 se cultivaron en matraces de agitación en TrMM, lactosa al 4%, extracto de grano usado al 2%, casaminoácidos al 0,9%, PIPPS 100 mM, pH 5,5. El anticuerpo MAB01 se purificó y se analizó a partir de los sobrenadantes del cultivo del día 5 como se describe en el Ejemplo 1, excepto que se digirieron 30 μg de anticuerpo con 80,4 U de FabRICATOR (Genovis), +37°C, durante una noche, para producir los fragmentos F(ab')2 y Fc.

En ambos clones con deleción de *alg3* y sobreexpresión de LmSTT3, la ocupación del sitio fue del 100% (Tabla 16). Sin LmSTT3, la cobertura del sitio varió entre el 56 y el 71% en los clones de deleción de *alg3*. La ocupación del sitio mejorada se mostró también en la cepa parental M420 en comparación con M304, ambas con glucosilación de tipo silvestre.

Tabla 16: La ocupación del sitio de las muestras de matraz de agitación. El análisis falló en los clones M317 19.5 y 19.6.

		13.3 y 13.0.	
Cepa	Clon	Explicación	% de ocupación del sitio
M602	1,22	M304 LmSTT3 Δalg3	100
M602	11,18	M304 LmSTT3 Δalg3	100
M317	19,1	M304 Δalg3	71
M317	19,13	M304 Δalg3	62
M317	19,2	M304 Δalg3	56
M317	19,43	M304 Δalg3	63
M317	19,44	M304 Δalg3	60
M420		Cepa parental M304 LmSTT3	100
M304		Cepa parental	89

Para el análisis de N-glucano, se purificó MAB01 a partir de los sobrenadantes del cultivo del día 7 como se ha descrito anteriormente y se liberaron N-glicanos de EtOH precipitado y anticuerpo desnaturalizado con SDS usando PNGase F (Prozyme) en tampón de fosfato de sodio 20 mM, pH 7,3, en una reacción de una noche a +37°C. Los N-glicanos liberados se purificaron con Hypersep C18 e Hypersep Hypercarb (Thermo Scientific) y se analizaron con MALDI-TOF MS.

30 Los niveles de Man3 estaban en el intervalo del 21 al 49%, mientras que la principal glucoforma en los clones de M602 y M317 era Hex6 (Tabla 17). Los niveles de Man5 fueron aproximadamente del 73% en las cepas que expresaban glucosilación de tipo silvestre (M304) y LmSTT3 (M420).

Tabla 17. Proporciones relativas de N-glucanos neutros del anticuerpo purificado de los clones M602 y M317 y cepas parentales M420 y M304. Cepas parentales M304 72,8 0,0 16,4 7,9 2,4 M420 0,0 0,8 72,5 15,6 7,2 3.2 % 19,44 48,6 9,4 34,6 9,9 0,0 0,7 19,43 24,6 61,8 7,5 0,2 5,6 0,0 19,2 M317 34,9 51,4 0,0 0,0 6,7 19,13 37,5 45,8 9,7 0,8 7,6 45,4 19,1 39,7 9,0 6,2 0,0 8,1 11,18 27,3 56,6 0,2 0,0 8,7 M602 1,22 21,1 63,1 9,5 5,8 0,2 0.0 % 1095,4 1257,4 933,3 1581,5 1419,5 1743.6 m\z Man6/Hex6 Man8/Hex8 Man7/Hex7 Man3 Man4 Corto Man5 Hex6HexNAc2 Hex7HexNAc2 Hex3HexNAc2 Hex5HexNAc2 Hex8HexNAc2 Hex4HexNAc2 Composición

0,0

0,0

0,0

0,0

1905,6

Man9/Hex9

Hex9HexNAc2

Fermentación y ocupación del sitio

La cepa de deleción *alg3* de STT3 de *L. major* M699 (pTTv324; clon 1.22) y la cepa M698 con deleción de *alg3* [M317, *pyr4*- de M304; clon 19.20], y la cepa parental M304 se fermentaron en YE al 2%, celulosa al 4%, celobiosa 5 al 8%, sorbosa al 4%. Las muestras se recogieron el día 3, 4, 5 y 6. El anticuerpo MAB01 se purificó y se analizó a partir de los sobrenadantes del cultivo del día 5 como se describe en el Ejemplo 1, excepto que se digirieron 30 μg de anticuerpo con 80,4 U de FabRICATOR (Genovis), +37°C, durante una noche, para producir los fragmentos F(ab')2 y Fc.

10 Resultados

En la cepa M699, la ocupación del sitio fue más del 90% en todos los puntos de tiempo (Tabla 18). Sin LmSTT3, la cobertura del sitio varió entre el 29-37% en la cepa M698. En la cepa parental M304, la cobertura del sitio varió entre el 45-57%. El día 6, los títulos de MAB01 fueron 1,2 y 1,3 g/l para las cepas M699 y M698, respectivamente, y 1,8 g/l en la cepa parental M304.

Tabla 18. Títulos de anticuerpo MAB01 y resultados del análisis de ocupación del sitio de las cepas fermentadas M699 y M698 y la cepa parental M304.

M699	d3	d4	d5	d6
Título g/l	0,206	0,361	0,685	1,22
Estado de glucosilación	%	%	%	%
No glucosilado	2,4	6,8	8,0	8,5
Glucosilado	97,6	93,2	92,0	91,5
Fc + Gn	0,0	0,0	0,0	0,0
M698	d3	d4	d5	d6
Título g/l	0,252	0,423	0,8	1,317
Estado de glucosilación	%	%	%	%
No glucosilado	63,0	70,8	64,3	65,8
Glucosilado	37,0	29,2	35,7	34,2
Fc + Gn	0,0	0,0	0,0	0,0
M304	d3	d4	d5	d6
Título g/l	0,589	0,964	1,41	1,79
Estado de glucosilación	%	%	%	%
No glucosilado	45,9	43,3	n.d.	54,9
Glucosilado	54,1	56,7	n.d.	45,1
Fc + Gn	0,0	0,0	n.d.	0,0

²⁰ En conclusión, la sobreexpresión de la subunidad catalítica de STT3 de *Leishmania* es capaz de aumentar la ocupación del sitio de N-glucosilación en células fúngicas filamentosas Δalg3 hasta el 91,5-100%.

La Tabla 19 a continuación recapitula las diferentes cepas utilizadas en los Ejemplos:

Base de datos	Vector	Clon	Cepa transformada	Locus, aleatorio o K/o	Proteasas k/o	Descripción	Selección de tr.	Marcadores en la cepa
M44					Ninguno	Cepa base		Ninguno
M124				K/o mus53	Ninguno	deleción mus53 de M44		pyr4
M127				pyr4- de M124	Ninguno	cepa negativa a pyr4 de M124		pyr4-
M181	pTTv71	9-20A- 1	M127	K/o pep1	pep1	deleción pep1	pyr4	pyr4
M194	pTTv42	13- 172D	M181	K/o tsp1	pep1 tsp1	deleción pep1 tsp1	bar	bar/pyr4
M252	79/66vTTq	6.14A	M194	loci cbh1 egl1	pep1 tsp1	MAB01 LC NVISKR/HC AXE1	AmdS/HvqR	AmdS/HygR/bar/pyr4
M284	5-FOA de M252	3A	pyr4- de M252	Mutación espontánea	pep1 tsp1	Cepa negativa a pyr4 de M252	ounguiu	AmdS/Hyg R/bar/pyr4-
M304	pTTv128	12A	M284	K/o slp1, Kex2 o/e	pep1 tsp1 slp1	Sobreexpresión de Kex2 nativo, del slp1	pyr4	AmdS/HyaR/bar/pyr4
M317	5-FOA de M304	1A	pyr4- de M304	bucle pequeño de pyr4	pep1 tsp1 slp1	cepa negativa a pyr4 de M304	Ninguno	AmdS/Hyg R/bar/pyr4-
M420	pTTv201	17A-a	M317	xilanasa 1	pep1 tsp1 slp1	Oligosacaril transferasa de stt3 de <i>Leishmania major</i>	pyr4	AmdS/HygR/bar/pyr4
M421	pTTv201	26B-a	M317	xilanasa 1	pep1 tsp1 slp1	Oligosacaril transferasa de stt3 de <i>Leishmania major</i>	pyr4	AmdS/Hyg R/bar/pyr4
M422	pTTv201	65B-a	M317	xilanasa 1	pep1 tsp1 slp1	Oligosacaril transferasa de stt3 de <i>Leishmania major</i>	pyr4	AmdS/Hyg R/bar/pyr4
M423	pTTv201	97A-a	M317	xilanasa 1	pep1 tsp1 slp1	Oligosacaril transferasa de stt3 de <i>Leishmania major</i>	pyr4	AmdS/HygR/bar/pyr4
M602	5-FOA de M420	2A	pyr4- de M420	bucle pequeño de pyr4	pep1 tsp1 slp1	cepa negativa a pyr4 de M420	ounguuo	AmdS/HygR/bar/pyr4-
M698	pTTv324	19,20	M317	alg3	pep1 tsp1 slp1	Deleción de alg3	pyr4	AmdS/Hyg R/bar/pyr4
M699	pTTv324	1,22	M602	egla	pep1 tsp1 slp1	Deleción de alg3	pyr4	AmdS/HygR/bar/pyr4
M800	pTTv322	9-09	M317	alg3	pep1 tsp1 slp1	Leishmania infantum STT3, cDNA1p cbh1t	pyr4	AmdS/Hyg R/bar/pyr4

Σ	1801	pTTv322 (60-12	M317	alg3	slp1	cDNA1p cbh1t	pyr4	AmdS/HygR/bar/pyr4	
Σ	M802	pTTv322	60-14	M317	alg3	pep1 tsp1 slp1	Leishmania infantum STT3, cDNA1p cbh1t	pyr4	AmdS/Hyg R/bar/pyr4	
Las Las	cepas de formas d	<i>Trichoderma</i> e e realización ir	que tienen ncluyen tan	-as cepas de <i>Trichoderma</i> que tienen STT3 (M420-M423) sor -as formas de realización incluyen también cepas deficientes) son deficientes en proteasa triple (proses en proteasas de orden superior.	proteasa triple (p orden superior.	as cepas de <i>Trichoderma</i> que tienen STT3 (M420-M423) son deficientes en proteasa triple (pep1, tsp1, slp1), así como deficientes en xilanasa 1, cbh1, y egl1. Las formas de realización incluyen también cepas deficientes en proteasas de orden superior.	s en xilanasa 1, α	sbh1, y egl1.	

LISTA DE SECUENCIAS

-1	14	Λ.	Nον	ort:	. ^	\sim
< 1	ľ	(1)>	I/I/O/	/arti	SA	(-

5 <120> Producción de glucoproteínas que tienen una ocupación del sitio de N-glucosilación aumentada

<130> NOVA 0005 WO

<160> 91

10

15

<170> PatentIn versión 3.5

<210> 1

<211> 857

<212> PRT

<213> Leishmania major

<400> 1

Met Gly Lys Arg Lys Gly Asn Ser Leu Gly Asp Ser Gly Ser Ala Ala 1 5 10 15

Thr Ala Ser Arg Glu Ala Ser Ala Gln Ala Glu Asp Ala Ala Ser Gln 20 25 30

Thr Lys Thr Ala Ser Pro Pro Ala Lys Val Ile Leu Leu Pro Lys Thr 35 40 45

Leu Thr Asp Glu Lys Asp Phe Ile Gly Ile Phe Pro Phe Pro Phe Trp 50 60

Pro Val His Phe Val Leu Thr Val Val Ala Leu Phe Val Leu Ala Ala 65 70 75 80

Ser Cys Phe Gln Ala Phe Thr Val Arg Met Ile Ser Val Gln Ile Tyr 85 90 95

Gly Tyr Leu Ile His Glu Phe Asp Pro Trp Phe Asn Tyr Arg Ala Ala 100 105 110

Glu Tyr Met Ser Thr His Gly Trp Ser Ala Phe Phe Ser Trp Phe Asp 115 120 125

Tyr Met Ser Trp Tyr Pro Leu Gly Arg Pro Val Gly Ser Thr Thr Tyr 130 135 140

Pro Gly Leu Gln Leu Thr Ala Val Ala Ile His Arg Ala Leu Ala Ala 145 150 155 160

Ala Gly Met Pro Met Ser Leu Asn Asn Val Cys Val Leu Met Pro Ala 165 170 175

Trp	Pne	СТА	180	тте	Ата	THE	АІА	185	Leu	Ата	Pne	Cys	190	Tyr	GIU
Ala	Ser	Gly 195	Ser	Thr	Val	Ala	Ala 200	Ala	Ala	Ala	Ala	Leu 205	Ser	Phe	Ser
Ile	Ile 210	Pro	Ala	His	Leu	Met 215	Arg	Ser	Met	Ala	Gly 220	Glu	Phe	Asp	Asn
G1u 225	Суѕ	Ile	Ala	Val	Ala 230	Ala	Met	Leu	Leu	Thr 235	Phe	Tyr	Cys	Trp	Val 240
Arg	Ser	Leu	Arg	Thr 245	Arg	Ser	Ser	Trp	Pro 250	Ile	Gly	Val	Leu	Thr 255	Gly
Val	Ala	Tyr	Gly 260	Tyr	Met	Ala	Ala	Ala 265	Trp	Gly	Gly	Tyr	Ile 270	Phe	Val
Leu	Asn	Met 275	Val	Ala	Met	His	Ala 280	Gly	Ile	Ser	Ser	Met 285	Val	Asp	Trp
Ala	Arg 290	Asn	Thr	Tyr	Asn	Pro 295	Ser	Leu	Leu	Arg	Ala 300	Tyr	Thr	Leu	Phe
Tyr 305	Val	Val	Gly	Thr	Ala 310	Ile	Ala	Val	Суз	Val 315	Pro	Pro	Val	Gly	Met 320
Ser	Pro	Phe	Lys	Ser 325	Leu	Glu	Gln	Leu	Gly 330	Ala	Leu	Leu	Val	Leu 335	Val
Phe	Leu	Cys	Gly 340	Leu	Gln	Val	Cys	Glu 345	Val	Leu	Arg	Ala	Arg 350	Ala	Gly
		355			Arg		360					365	_		
	370			Ī	Val	375					380				
385	_	-		Ī	Pro 390				-	395	-				400
				405	Gly				410					415	
Gln	Pro	Ala	Ser 420	Pro	Glu	Ala	Met	Trp 425	Ala	Phe	Leu	His	Val 430	Cys	Gly

Val	Thr	Trp 435	Gly	Leu	Gly	Ser	11e 440	Val	Leu	Ala	Val	Ser 445	Thr	Phe	Val
His	Tyr 450	Ser	Pro	Ser	Lys	Val 455	Phe	Trp	Leu	Leu	Asn 460	Ser	Gly	Ala	Val
Tyr 465	Tyr	Phe	Ser	Thr	Arg 470	Met	Ala	Arg	Leu	Leu 475	Leu	Leu	Ser	Gly	Pro 480
Ala	Ala	Cys	Leu	Ser 485	Thr	Gly	Ile	Phe	Val 490	Gly	Thr	Ile	Leu	Glu 495	Ala
Ala	Val	Gln	Leu 500	Ser	Phe	Trp	Asp	Ser 505	Asp	Ala	Thr	Lys	Ala 510	Lys	Lys
Gln	Gln	Lys 515	Gln	Ala	Gln	Arg	His 520	Gln	Arg	Gly	Ala	Gly 525	Lys	Gly	Ser
Gly	Arg 530	Asp	Asp	Ala	Lys	As n 535	Ala	Thr	Thr	Ala	Arg 540	Ala	Phe	Cys	Asp
Val 545	Phe	Ala	Gly	Ser	Ser 550	Leu	Ala	Trp	Gly	His 555	Arg	Met	Val	Leu	Ser 560
Ile	Ala	Met	Trp	Ala 565	Leu	Val	Thr	Thr	Thr 570	Ala	Val	Ser	Phe	Phe 575	Ser
Ser	Glu	Phe	Ala 580	Ser	His	Ser	Thr	Lys 585	Phe	Ala	Glu	Gln	Ser 590	Ser	Asn
Pro	Met	Ile 595	Val	Phe	Ala	Ala	Val 600	Val	Gln	Asn	Arg	Ala 605	Thr	Gly	Lys
Pro	Met 610	Asn	Leu	Leu	Val	Asp 615	Asp	Tyr	Leu	Lys	Ala 620	Tyr	Glu	Trp	Leu
Arg 625	Asp	Ser	Thr	Pro	Glu 630	Asp	Ala	Arg	Val	Leu 635	Ala	Trp	Trp	Asp	Tyr 640
Gly	Tyr	Gln	Ile	Thr 645	Gly	Ile	Gly	Asn	Arg 650	Thr	Ser	Leu	Ala	Asp 655	Gly
Asn	Thr	Trp	Asn 660	His	Glu	His	Ile	Ala 665	Thr	Ile	Gly	Lys	Met 670	Leu	Thr
Sor	Dro	17 a 1	₩a1	Gla	Δla	Hie	Sor	T.011	17a 1	Ara	Hie	Mot	Δla	Acr	Тугт

Val	Leu 690	Ile	Trp	Ala	Gly	Gln 695	Ser	Gly	Asp	Leu	Met 700	Lys	Ser	Pro	His	
Met 705	Ala	Arg	Ile	Gly	Asn 710	Ser	Val	Tyr	His	Asp 715	Ile	Cys	Pro	Asp	Asp 720	
Pro	Leu	Cys	Gln	Gln 725	Phe	Gly	Phe	His	Arg 730	Asn	Asp	Tyr	Ser	Arg 735	Pro	
Thr	Pro	Met	Met 740	Arg	Ala	Ser	Leu	Leu 745	Tyr	Asn	Leu	His	Glu 750	Ala	Gly	
Lys	Arg	Lys 755	Gly	Val	Lys	Val	Asn 760	Pro	Ser	Leu	Phe	Gln 765	Glu	Val	Tyr	
Ser	Ser 770	Lys	Tyr	Gly	Leu	Val 775	Arg	Ile	Phe	Lys	Val 780	Met	Asn	Val	Ser	
Ala 785	Glu	Ser	Lys	Lys	Trp 790	Val	Ala	Asp	Pro	Ala 795	Asn	Arg	Val	Cys	His 800	
Pro	Pro	Gly	Ser	Trp 805	Ile	Cys	Pro	Gly	Gln 810	Tyr	Pro	Pro	Ala	Lys 815	Glu	
Ile	Gln	Glu	Met 820	Leu	Ala	His	Arg	Val 825	Pro	Phe	Asp	Gln	Val 830	Thr	Asn	
Ala	Asp	Arg 835	Lys	Asn	Asn	Val	Gly 840	Ser	Tyr	Gln	Glu	Glu 845	Tyr	Met	Arg	
Arg	Met 850	Arg	Glu	Ser	Glu	As n 855	Arg	Arg								
<210: <211: <212: <213:	> 257 > AD	N	ınia n	najor												
<400: aatg		ag o	cgcaa	aggg	ca ac	cageo	etege	g oga	cago	egge	agco	iccdo	cca c	ccqc	ctcacg	60
															cctgc	120
caag	gtca	atc o	ctcct	gcc	ca aç	gacco	ctcac	c cga	cgaç	gaag	gact	tcat	.cg q	gcato	cttccc	180
gtto	ccgt	tc t	ggco	ccgto	cc ac	ette	gtaat	cac	cgto	egte	gaad	etett	cg t	cct	cgccgc	240
cago	tgct	tc o	caggo	cctt	ca co	egte	egcat	gat	cago	cgtc	caga	atcta	acg q	gctad	cctcat	300

ccacgagttc	gacccctggt	tcaactaccg	agccgccgag	tacatgagca	cccacggctg	360
gtccgccttt	ttcagctggt	tcgactacat	gagctggtat	ccgctcggcc	gacccgtcgg	420
cagcaccacc	taccccggcc	tccagctcac	cgccgtggcc	atccatcgag	ccctcgccgc	480
tgccggcatg	cctatgagcc	tcaacaacgt	ctgcgtcctc	atgcccgcct	ggttcggcgc	540
cattgcgacc	gccaccctcg	cgttctgcac	ctacgaggcc	agcggctcta	cagtggccgc	600
tgccgcggct	gccctcagct	tcagcatcat	ccccgcccac	ctcatgcgct	ccatggccgg	660
cgagttcgac	aacgagtgca	ttgccgtcgc	cgccatgctc	ctcaccttct	actgctgggt	720
ccgcagcctc	cgcacgcgca	gcagctggcc	catcggcgtc	ctgaccggcg	tcgcctacgg	780
ctacatggct	gccgcctggg	gcggctacat	cttcgtcctc	aacatggtgg	ccatgcacgc	840
cggcatcagc	agcatggtcg	actgggcccg	caacacctac	aaccccagcc	tgctccgcgc	900
ctacaccctc	ttctacgtcg	tcggcaccgc	cattgccgtc	tgcgtccccc	ccgtcggcat	960
gagccccttc	aagagcctcg	agcagctcgg	cgccctcctc	gtcctggtct	ttctgtgcgg	1020
cctccaggtc	tgcgaggtcc	tccgagcccg	agccggcgtc	gaggtccgct	ctcgcgccaa	1080
cttcaagatc	cgcgtccgcg	tctttagcgt	catggccggc	gtggccgccc	tcgccatctc	1140
tgtcctcgcc	cccaccggct	acttcggccc	cctcagcgtc	cgagtgcgcg	ccctgttcgt	1200
cgagcacacc	cgcaccggca	accccctcgt	cgacagcgtc	gccgagcacc	agcccgccag	1260
ccccgaggcc	atgtgggcct	ttctccacgt	ctgcggcgtc	acctggggcc	tcggcagcat	1320
cgtcctggcc	gtcagcacct	tcgtccacta	cageceeage	aaggtctttt	ggctcctcaa	1380
ctctggcgcc	gtctactact	tctcgacccg	aatggcccgc	ctcctcctcc	tgtccggccc	1440
tgccgcctgc	ctgagcaccg	gcatcttcgt	cggcacgatc	ctcgaggccg	ccgtccagct	1500
cagcttctgg	gacagcgacg	ccaccaaggc	caagaagcag	cagaagcagg	cccagcgcca	1560
ccagcgaggc	gctggcaagg	gctctggccg	cgacgacgcc	aagaacgcga	cgaccgcccg	1620
agccttctgc	gacgtctttg	ccggcagcag	cctcgcctgg	ggccaccgca	tggtcctctc	1680
gatcgccatg	tgggcgctcg	tcacgacaac	ggccgtcagc	ttcttcagca	gcgagttcgc	1740
cagccacagc	accaagttcg	ccgagcagag	cagcaacccc	atgatcgtct	ttgccgccgt	1800
cgtccagaac	cgcgccaccg	gcaagccgat	gaacctcctc	gtcgacgact	acctcaaggc	1860
ctacgagtgg	ctccgcgaca	gcacccctga	ggacgcccgc	gtcctggcct	ggtgggacta	1920
cggctaccag	atcaccggca	tcggcaaccg	caccagcctc	gccgacggca	acacctggaa	1980
ccacgagcac	attgccacca	tcggcaagat	gctcaccagc	ccggtcgtcg	aggcccacag	2040
cctcgtccgc	cacatggccg	actacgtcct	catctgggct	ggccagagcg	gcgacctcat	2100
gaagtccccc	cacatggccc	gcatcggcaa	cagcgtctac	cacgacatct	gccccgacga	2160
ccccctctgc	cagcagttcg	gcttccaccg	caacgactac	agccgcccca	ccccgatgat	2220

	gcgcgccagc	ctcctctaca	acctccacga	ggccggcaag	cgaaagggcg	tcaaggtcaa	2280
	cccctcgctg	ttccaggagg	tctacagcag	caagtacggc	ctggtccgca	tcttcaaggt	2340
	catgaacgtc	agcgccgaga	gcaagaagtg	ggtcgccgat	cccgccaacc	gagtctgcca	2400
	ccccctggc	agctggatct	gccctggcca	gtaccctccc	gccaaggaaa	tccaggagat	2460
	gctcgcccac	cgcgtcccgt	tcgaccaggt	caccaacgcc	gaccgcaaga	acaacgtcgg	2520
	cagctaccaa	gaggagtaca	tgcgccgcat	gcgcgagagc	gagaaccgcc	gctag	2575
5	<210> 3 <211> 50 <212> ADN <213> Trichoo	derma reesei					
10	<400> 3 accaaagact ttt	ttgatcaa tccaa	caact tctctcaac	ct taattaaatc	50		
10	<210> 4 <211> 48 <212> ADN <213> Asperg	gillus niger					
15	<400> 4 ttaattaaga too	acttaac gttactg	yaaa tcatcaaac	ca gcttgacg	48		
20	<210> 5 <211> 1000 <212> ADN <213> Trichoo	derma reesei					
	<400> 5 caagtcttcg	tactctatcg	aagtctcgcc	ttacgtactt	gatctgctgt	ctttcgtgtc	60
	cggtcaacat	atactcgcac	acattagccc	cagcagaaca	tgtcgtcggc	ataaaaggcc	120
	aattcagatc	gcagataaca	aaatgctacc	agcatctgtc	tagttgtgga	gatatgaagg	180
	ggtatttcag	gctttctttg	tgggaataaa	gagagaaaga	gagacttaca	ggagctctag	240
	gcttcgtagc	ccctgcgttc	ttagttcgca	atgccgtgaa	agcagctaca	tctaccaaga	300
	cactcgtgca	tcgtctattt	tatttgttac	atgctgggaa	tttccgggac	attgtttaag	360
	gatgactagg	ttcagccgtt	aaagaatgga	aggccatggc	ttgtccctct	gtggcaagtc	420
	attgcactcc	aaggccttct	cctgtactag	tcctacaatt	ctgcagcaaa	tggcctcaag	480
	caactacgta	aaactccatg	agattgcaga	tgcggcccac	tggaatacaa	catcctccgc	540
	aagtccgaca	tgaagcccct	tgacttgatt	ggcaggctaa	atgcgacatc	ttagccggat	600
	gcaccccaga	tctggggaac	gcgccgcttg	aggcccgaag	cgccgggttc	gatgcattac	660
	tgccatattt	cagcagttaa	ctaggaccgg	cttgtgtcga	tattgcgggt	ggcgttcaat	720
25	ctattccccc	actectatee	catttaatca	gatacctgga	agacatactt	tagggaaaat	780

	gccaagcttc	gaggatactg	tacgagccgc	tttcaacctc	acttgatgat	gtctgagttt	840
	catcaagaga	attgaagtca	aagctcaaat	catgatgtga	agaggttttg	aatgtggaag	900
	aattctgcat	atataaagcc	atggaagaag	acgtaaaact	gagacagcaa	gctcaactgc	960
	atagtatcga	cttcaaggaa	aacacgcaca	aataatcatc			1000
5	<210> 6 <211> 1000 <212> ADN <213> Trichoo	derma reesei					
	<400> 6 aggggtttga	gctggtatgt	agtattgggg	tggttagtga	gttaacttga	cagactgcac	60
	tttggcaaca	gagccgacga	ttaagagatt	gctgtcatgt	aactaaagta	gcctgccttt	120
	gacgctgtat	gctcatgata	catgcgtgac	atcgaaatat	atcagccaaa	gtatccgtcc	180
	ggcgacatgc	ccatcaacta	tattgaagtc	agaaacacac	tgtccctctt	ccctcctatg	240
	cttttacaag	ctgctcctct	atccgccccc	acagtccctt	gttcatatac	cccgaaagcc	300
	aaaagtttcc	atccttgtcc	ttgcccatga	tcgggaagcc	gtttggtagc	acgatacccc	360
	actgattatt	ctgtatatag	atcggtgaac	ccgatttccc	accctcccta	ctgggctgaa	420
	gcacagctgc	agaaaagtcc	aagtcgaaca	gctttgcctt	gccccaattt	gacaacgtaa	480
	tcatgtgcat	gttgccgttg	ccgaagaaag	gcggaatcct	cccgctagat	cctcgccaca	540
	tagcgaaaaa	ggcttctacc	tgagaccgag	ttcccagttc	ttgaatcgcg	gttcgagtag	600
	cagcagcaat	ataactcagc	ggcttctcaa	atatgtggtg	caccggcagt	agcacgttga	660
	tgaagccggt	accgttggag	acatatggca	cccctttcgg	cagcagatcc	gtctctagac	720
	actttcgtag	agagtatgcg	ttgttgatga	caaccgtcct	ctggctattc	gctggcagat	780
	gtgaagtggc	aactttgatc	caccaggcgc	agagaacatc	gccttcagtc	aagaaagtgt	840
	tttctgcgcc	ctcggactca	agctcactga	ttgcctcttt	gcgaaggttc	tcaatgaaag	900
	atccaggaac	acaaagcatg	cgattctctt	gcgctcggaa	gagatcgagg	acattgttga	960
10	tcccatactg	ggccagccca	aacattgaca	agcgccgaga			1000
	<210> 7 <211> 688 <212> PRT <213> Trichol	monas vaginal	is				
15	<400> 7 Met Gly Ass 1	n Thr Val Ly 5	ys Val Ile (Gln Leu Ile 10	Thr Leu Le	u Leu Ser 15	

Cys Leu Leu Ala Phe Leu Ile Arg Gln Phe Ala Asn Val Val Asn Glu

			20					25					30		
Pro	Ile	Ile 35	His	Glu	Phe	Asp	Pro 40	His	Phe	Asn	Trp	Arg 45	Cys	Thr	Gln
Tyr	Ile 50	Asp	Thr	His	Gly	Leu 55	Tyr	Glu	Phe	Leu	Gly 60	Trp	Phe	Asp	Asn
Ile 65	Ser	Trp	Tyr	Pro	Gln 70	Gly	Arg	Pro	Val	Gly 75	Glu	Thr	Ala	Tyr	Pro 80
Gly	Leu	Met	Tyr	Thr 85	Ser	Ala	Ile	Val	Lys 90	Trp	Ala	Leu	Gln	Lys 95	Ile
His	Ile	Ile	Val 100	Asp	Leu	Arg	Asn	Ile 105	Cys	Val	Phe	Met	Gly 110	Pro	Ser
Val	Ser	Ile 115	Leu	Ser	Val	Leu	Val 120	Ala	Phe	Leu	Phe	Gly 125	Glu	Leu	Val
Gly	Ser 130	Ala	Gln	Leu	Gly	Thr 135	Leu	Phe	Gly	Ala	Ile 140	Thr	Ser	Phe	Ile
Pro 145	Gly	Met	Ile	Ser	Arg 150	Ser	Val	Gly	Gly	Ala 155	Tyr	Asp	Tyr	Glu	Cys 160
Ile	Gly	Leu	Phe	Ile 165	Ile	Val	Leu	Ser	Leu 170	Tyr	Thr	Phe	Ala	Leu 175	Ala
Leu	Lys	Ser	Gly 180	Ser	Ile	Leu	Leu	Ser 185	Val	Ile	Ala	Ala	Phe 190	Ala	Tyr
Ser	Tyr	Leu 195	Ala	Leu	Thr	Trp	Gly 200	Gly	Tyr	Val	Phe	Val 205	Ser	Asn	Cys
Ile	Pro 210	Leu	Phe	Ala	Ala	Gly 215	Leu	Val	Ala	Ile	Gly 220	Arg	Tyr	Ser	Trp
Arg 225	Leu	His	Ile	Thr	Tyr 230	Ser	Ile	Trp	Phe	Ile 235	Val	Ala	Ser	Ile	Leu 240
Thr	Ala	Gln	Ile	Pro 245	Phe	Ile	Gly	Asp	Lys 250	Ile	Leu	Lys	Lys	Pro 255	Glu
His	Phe	Ala	Met		Gly	Thr	Phe	Leu 265	Val	Met	Gln	Ile	Trp	Gly	Phe

Phe	Thr	Phe 275	Ile	Lys	Ser	Arg	Phe 280	Ser	Pro	Thr	Thr	Tyr 285	Asn	Ser	Val
Ala	Ile 290	Thr	Ser	Ile	Leu	Ile 295	Leu	Pro	Ser	Phe	Leu 300	Leu	Leu	Met	Ile
Thr 305	Val	Gly	Met	Ser	Thr 310	Gly	Leu	Leu	Gly	Gly 315	Phe	Ser	Gly	Arg	Leu 320
Leu	Gln	Met	Phe	Asp 325	Pro	Thr	Tyr	Ala	Ala 330	Lys	Asn	Val	Pro	11e 335	Ile
Asn	Ser	Val	Ala 340	Glu	His	Gln	Pro	Thr 345	Ala	Trp	Val	Lys	Tyr 350	Tyr	Ser
Asp	Cys	Glu 355	Leu	Phe	Ile	Phe	Phe 360	Phe	Pro	Leu	Gly	Ala 365	Tyr	Ile	Val
Ile	Ser 370	Ser	Leu	Ile	Arg	Thr 375	Gln	Lys	Thr	Lys	Asp 380	Gln	Thr	Glu	Leu
Lys 385	Arg	Ala	Glu	Thr	Leu 390	Leu	Leu	Leu	Phe	Ile 395	Tyr	Gly	Phe	Ser	Thr 400
Leu	Tyr	Phe	Ala	Ser 405	Ile	Met	Val	Arg	Leu 410	Val	Leu	Val	Phe	Thr 415	Pro
Ala	Leu	Val	Phe 420	Val	Ala	Gly	Ile	Ala 425	Ile	His	Gln	Leu	Leu 430	Arg	Glu
Ser	Phe	Lys 435	Gln	Lys	Ser	Phe	Leu 440	His	Pro	Val	Ser	Leu 445	Thr	Met	Ile
Ile	Leu 450	Thr	Phe	Ile	Ile	Cys 455	Leu	His	Gly	Val	Leu 460	His	Ala	Thr	His
Phe 465	Ala	Суз	Tyr	Ser	Tyr 470	Ser	Gly	Asp	His	Leu 475	His	Phe	Asn	Ile	Met 480
Thr	Pro	Arg	Gly	Val 485	Glu	Thr	Ser	Asp	Asp 490	Tyr	Arg	Glu	Gly	Tyr 495	Arg
Trp	Leu	Thr	Glu 500	Asn	Thr	Tyr	Arg	Asp 505	Asp	Ile	Val	Met	Ser 510	Trp	Trp

Asp Tyr Gly Tyr Gln Ile Thr Ser Met Gly Asn Arg Gly Cys Ile Ala 515 520 525

	Asp	Gly 530	Asn	Thr	Asn	Asn	Phe 535	Thr	His	Ile	Gly	Ile 540	Ile	Gly	Met	Ala
	Met 545	Ser	Ser	Pro	Glu	Pro 550	Ile	Ser	Trp	Arg	Ile 555	Ala	Arg	Leu	Met	Asn 560
	Val	Lys	Tyr	Met	Leu 565	Val	Ile	Phe	Gly	Gly 570	Ala	Ala	Gln	Tyr	Ser 575	Gly
	Asp	Asp	Ile	As n 580	Lys	Phe	Leu	Trp	Met 585	Pro	Arg	Ile	Ala	His 590	Gln	Thr
	Phe	Asp	Asn 595	Ile	Thr	Gly	Glu	Met 600	Tyr	Gln	Ile	Pro	Tyr 605	Arg	His	Ile
	Val	Gly 610	Glu	Ser	Met	Thr	Lys 615	Asn	Met	Thr	Leu	Ser 620	Met	Met	Phe	Lys
	Phe 625	Cys	Tyr	Asn	Asn	Tyr 630	Lys	Tyr	Tyr	Gln	Pro 635	His	Pro	Gln	Phe	Pro 640
	Thr	Gly	Tyr	Asp	Leu 645	Thr	Arg	Arg	Thr	Ser 650	Ile	Pro	Asn	Ile	Lys 655	Asp
	Ile	Ser	Met	Ser 660	Gln	Phe	Thr	Glu	Ala 665	Phe	Thr	Thr	Lys	Asn 670	Trp	Ile
	Val	Arg	Ile 675	Tyr	Lys	Val	Gly	Asp 680	Asp	Pro	Gln	Trp	Asn 685	Arg	Val	Tyr
	<210 <211	> 8 > 836	3													
5	<212	> PR	T													
	<213	> Lei	shma	ınıa ır	าาสกเเ	ım										
	<400	-	T.vs	T.vs	Glv	Asn	T. 11	T.e.11	Glv	Asn	Ser	Glv	Ser	Δla	Ala	Thr
	1	O ₁	-70	-40	5		200	200	01,	10	501	01,	501		15	
	Ala	Ser	Pro	Pro 20	Ala	Asn	Met	Ile	Leu 25	Leu	Pro	Lys	Thr	Pro 30	Ile	Asp
	Thr	Lys	Asp 35	Phe	Ile	Gly	Ile	Phe 40	Ser	Phe	Pro	Phe	Trp 45	Pro	Val	Arg
10	Phe	Val 50	Val	Thr	Val	Val	Ala 55	Leu	Phe	Val	Val	Gly 60	Ala	Ser	Cys	Phe

65	Ата	Pne	THE	vai	70	Met	Thr	ser	vai	75	iie	TYT	сту	Tyr	80
Ile	His	Glu	Phe	Asp 85	Pro	Trp	Phe	Asn	Tyr 90	Arg	Ala	Ala	Glu	Tyr 95	Met
Ser	Thr	His	Gly 100	Trp	Ser	Ala	Phe	Phe 105	Ser	Trp	Phe	Asp	Tyr 110	Met	Ser
Trp	Туг	Pro 115	Leu	Gly	Arg	Pro	Val 120	Gly	Ser	Thr	Thr	Tyr 125	Pro	Gly	Leu
Gln	Leu 130	Thr	Ala	Val	Ala	Ile 135	His	Arg	Ala	Leu	Ala 140	Ala	Ala	Gly	Met
Pro 145	Met	Ser	Leu	Asn	Asn 150	Val	Cys	Val	Leu	Met 155	Pro	Ala	Trp	Phe	Gly 160
				165					170					175	Gly
			180		Ala			185					190		
		195		-	Ser		200	_			_	205		-	
	210					215			_	_	220				Leu _
225					Trp 230					235					240
				245	Ala				250					255	
			260		Ī			265					270	-	Asn
	_	275			Leu Val		280					285	_		
	290					295					300				
305	Set	пеп	GIU	3111	Leu 310	GTĀ	nta.	пец	пеп	315	Ten	۷ат	L 116	теп	320

Gly	Leu	Gln	Ala	Cys 325	Glu	Val	Phe	Arg	Ala 330	Arg	Ala	Gly	Val	Glu 335	Val
Arg	Ser	Arg	Ala 340	Asn	Phe	Lys	Ile	Arg 345	Val	Arg	Val	Phe	Ser 350	Val	Met
Ala	Gly	Val 355	Ala	Ala	Leu	Ala	Ile 360	Ala	Val	Leu	Ala	Pro 365	Thr	Gly	Tyr
Phe	Gly 370	Pro	Leu	Ser	Val	Arg 375	Val	Arg	Ala	Leu	Phe 380	Val	Glu	His	Thr
Arg 385	Thr	Gly	Asn	Pro	Leu 390	Val	Asp	Ser	Val	Ala 395	Glu	His	Gln	Pro	Ala 400
Gly	Pro	Glu	Ala	Met 405	Trp	Ser	Phe	Leu	His 410	Val	Cys	Gly	Val	Thr 415	Trp
Gly	Leu	Gly	Ser 420	Ile	Val	Leu	Ala	Leu 425	Ser	Thr	Phe	Val	His 430	Tyr	Ala
Pro	Ser	Lys 435	Leu	Phe	Trp	Leu	Leu 440	Asn	Ser	Gly	Ala	Val 445	Tyr	Tyr	Phe
Ser	Thr 450	Arg	Met	Ala	Arg	Leu 455	Leu	Leu	Leu	Ser	Gly 460	Pro	Ala	Ala	Cys
Leu 465	Ser	Thr	Gly	Ile	Phe 470	Val	Gly	Thr	Ile	Leu 475	Glu	Ala	Ala	Val	Gln 480
Leu	Ser	Phe	Trp	Asp 485	Ser	Asp	Ala	Thr	Lys 490	Ala	Arg	Lys	Gln	Gln 495	Lys
Pro	Ala	Gln	Arg 500	His	Arg	Arg	Gly	Ala 505	Gly	Lys	Asp	Ser	Asp 510	Arg	Asp
Asp	Ala	Glu 515	Ser	Ala	Thr	Thr	Ala 520	Arg	Thr	Leu	Cys	Asp 525	Val	Phe	Ala
Gly	Ser 530	Pro	Leu	Ala	Trp	Gly 535	His	Arg	Met	Val	Leu 540	Phe	Ile	Ala	Val
Trp 545	Ala	Leu	Val	Thr	Thr 550	Thr	Ala	Val	Ser	Phe 555	Phe	Ser	Ser	Asp	Phe 560
Ala	Ser	His	Ser	Thr	Thr	Phe	Ala	Glu	Gln	Ser	Ser	Asn	Pro	Met	Ile

				565					570					575	
Val	Phe	Ala	Ala 580	Val	Val	Gln	Asn	Arg 585	Ala	Thr	Gly	Lys	Pro 590	Met	Asn
Ile	Leu	Val 595	Asp	Asp	Tyr	Leu	Arg 600	Ser	Tyr	Ile	Trp	Leu 605	Arg	Asp	Asn
Thr	Pro 610	Glu	Asp	Ala	Arg	Ile 615	Leu	Ala	Trp	Trp	Asp 620	Tyr	Gly	Tyr	Gln
Ile 625	Thr	Gly	Ile	Gly	Asn 630	Arg	Thr	Ser	Leu	Ala 635	Asp	Gly	Asn	Thr	Trp 640
Asn	His	Glu	His	Ile 645	Ala	Thr	Ile	Gly	Lys 650	Met	Leu	Thr	Ser	Pro 655	Val
Ala	Glu	Ala	His 660	Ser	Leu	Val	Arg	His 665	Met	Ala	Asp	Tyr	Val 670	Leu	Ile
Trp	Ala	Gly 675	Gln	Ser	Gly	Asp	Leu 680	Met	Lys	Ser	Pro	His 685	Met	Ala	Arg
Ile	Gly 690	Asn	Ser	Val	Tyr	His 695	Asp	Ile	Cys	Pro	His 700	Asp	Pro	Leu	Cys
Gln 705	Gln	Phe	Gly	Phe	Tyr 710	Arg	Asn	Asp	Tyr	Ser 715	Arg	Pro	Thr	Pro	Met 720
Met	Arg	Ala	Ser	Leu 725	Leu	Tyr	Asn	Leu	His 730	Glu	Val	Gly	Lys	Thr 735	Lys
Gly	Val	Lys	Val 740	Asp	Pro	Ser	Leu	Phe 745	Gln	Glu	Val	Tyr	Ser 750	Ser	Lys
Tyr	Gly	Leu 755	Val	Arg	Val	Phe	Lys 760	Val	Met	Asn	Val	Ser 765	Glu	Glu	Ser
Lys	Lys 770	Trp	Val	Ala	Asp	Pro 775	Ala	Asn	Arg	Val	Cys 780	His	Pro	Pro	Gly
Ser 785	Trp	Ile	Cys	Pro	Gly 790	Gln	Tyr	Pro	Pro	Ala 795	Lys	Glu	Ile	Gln	Glu 800
Met	Leu	Ala	His	Arg 805		Pro	Phe	_	Gln 810		Glu	Lys	Val	Asp 815	Arg

Lys Asn His Val Gly Ser Tyr His Glu Glu Tyr Met Arg Arg Met Arg 820 825 830

Glu Ser Glu Ser 835

<210>9

5

<211> 2511 <212> ADN

<213> Leishmania infantum

<400>9

60 atgggcaaga agggcaacct cctcggcgat agcggctctg ctgccaccgc cagcccccct gccaacatga tcctgctccc caagaccccc atcgacacca aggacttcat cggcatcttc 120 agetteeegt tetggeeegt eegettegte gteacegteg tegeeetett egtegtegge 180 gccagctgct tccaggcctt caccgtccgc atgaccagcg tccagatcta cggctacctc 240 300 atccacgagt tcgacccttg gttcaactac cgagccgccg agtacatgag cacccacggc 360 tggtccgcct ttttcagctg gttcgactat atgagctggt atcccctcgg ccgacccgtc ggcagcacca cctaccccgg cctccagctc accgctgtcg ccatccaccg agccctcgct 420 480 gcggctggca tgcccatgag cctcaacaac gtctgcgtcc tcatgcccgc ctggttcggc 540 gccattgcga ccgccaccct cgcgttctgc acctacgagg ccagcggcag cacagtggct gctgccgctg cggccctcag cttcagcatc atccccgccc acctcatgcg cagcatggcc 600 ggcgagttcg acaacgagtg cattgccgtc gccgccatgc tcctcacctt ctactgctgg 660 gtccgctccc tccgcacccg cagcagctgg cccatcggcg tcctcaccgg ggtcgcctac 720 780 ggctacatgg tggccgcctg gggcggctac atcttcgtcc tcaacatggt cgccatgcac gccggcatca gcagcatggt cgactgggcc cgcaacacct acaaccccag cctgctccgc 840 gcctacaccc tcttctacgt cgtcggcacc gccattgccg tctgcgtccc ccccgtcggc 900 960 atgagecect teaagageet egageagete ggagegetge tegteetggt etttetgtge 1020 ggcctccagg cctgcgaggt ctttcgcgcc cgagccggcg tcgaggtccg cagccgcgcc aacttcaaga tccgcgtccg cgtgttcagc gtcatggccg gcgtcgccgc cttggctatc 1080 geogtecteg ecceacegg etacttegge ecceteageg teegegtgeg egecetgtte 1140 gtcgagcaca cccgcaccgg caatcccctg gtcgacagcg tcgccgagca ccagcctgcc 1200 1260 ggccctgagg ccatgtggtc gttcctccac gtctgcggcg tcacctgggg cctcggatcc atcgtcctgg ccctcagcac cttcgtccac tacgccccca gcaagctgtt ctggctcctc 1320 aactetggcg ccgtctacta cttctcgacc cgaatggccc gcctcctgct cctcagcggc 1380 cctgccgcct gcctcagcac cggcatcttc gtgggcacca tcctcgaggc cgccgtccag 1440 ctcagcttct gggacagcga cgccaccaag gcccgcaagc agcagaagcc tgcccagcgc 1500

caccgacggg	gagccggcaa	ggatagcgac	cgcgacgacg	ccgagtctgc	caccaccgcc	1560
cgcaccctct	gcgacgtctt	tgccggcagc	cccctcgcct	ggggccaccg	catggtcctc	1620
ttcattgccg	tgtgggccct	cgtcacgacg	accgccgtca	gcttcttcag	cagcgacttc	1680
gccagccaca	gcaccacctt	cgccgagcag	agcagcaacc	ccatgatcgt	ctttgccgcc	1740
gtcgtccaga	accgcgccac	cggcaagccg	atgaacatcc	tcgtcgacga	ctacctccgc	1800
agctacatct	ggctccgcga	caacaccccc	gaggacgccc	gcatcctcgc	ctggtgggac	1860
tacggctacc	agatcaccgg	catcggcaac	cgcaccagcc	tcgccgacgg	caacacctgg	1920
aaccacgagc	acattgccac	catcggcaag	atgctcacca	gccccgtcgc	cgaggcccac	1980
agcctcgtcc	gccacatggc	cgactacgtc	ctcatctggg	ctggccagag	cggcgacctc	2040
atgaagtccc	cccacatggc	ccgcatcggc	aacagcgtct	accacgacat	ctgccccac	2100
gaccccctct	gccagcagtt	cggcttctac	cgcaacgact	acagccgccc	caccccgatg	2160
atgcgcgcca	gcctcctcta	caacctccac	gaggtcggca	agaccaaggg	cgtcaaggtc	2220
gaccccagcc	tcttccaaga	ggtctacagc	agcaagtacg	gcctcgtgcg	cgtgttcaag	2280
gtcatgaacg	tcagcgaaga	gtccaagaag	tgggtcgcgg	accccgccaa	cagggtctgc	2340
cacccccctg	gcagctggat	ctgccctggc	cagtaccctc	ccgccaaaga	gatccaagag	2400
atgctcgccc	accgcgtccc	gttcgaccag	gtcgagaagg	tcgaccgcaa	gaaccacgtc	2460
ggctcctacc	acgaagagta	catgcgccgc	atgcgcgaga	gcgagagctg	a	2511
<210> 10 <211> 721						

<;

<212> PRT

<213> Entamoeba histolytica

<400> 10

Met Gly Phe Phe Lys Thr Leu Val Gln Leu Ile Leu Lys Asn Ile Gly 1 5 10 15

Ile Thr Leu Ile Cys Ile Ile Ala Phe Ser Ser Arg Leu Tyr Ser Ile 20 25 30

Ile Met Tyr Glu Ala Ile Ile His Glu Phe Asp Pro Tyr Phe Asn Phe 35 40 45

Arg Ala Thr Lys Tyr Leu Val Glu His Gly Pro Thr Ala Phe Met Asn 50 60

Trp Phe Asp Pro Asp Ser Trp Tyr Pro Leu Gly Arg Asn Ile Gly Thr 65 70 75 80

Thr	Val	Phe	Pro	Gly 85	Leu	Met	Phe	Thr	Ser 90	Ala	Phe	Ile	Phe	Lys 95	Phe
Leu	Ala	Tyr	Phe 100	Asn	Leu	Ile	Ile	Asp 105	Val	Arg	Leu	Ile	Cys 110	Val	Cys
Met	Gly	Pro 115	Ile	Tyr	Ser	Val	Ile 120	Thr	Сув	Ile	Val	Ala 125	Tyr	Leu	Phe
Gly	Ser 130	Arg	Val	His	Ser	Asp 135	Arg	Ala	Gly	Leu	Phe 140	Ala	Ala	Ala	Leu
Ile 145	Ser	Val	Val	Pro	Gly 150	Tyr	Met	Ser	Arg	Ser 155	Val	Ala	Gly	Ser	Tyr 160
Asp	Tyr	Glu	Cys	Ile 165	Ser	Ile	Thr	Ile	Leu 170	Ile	Leu	Thr	Phe	Tyr 175	Leu
Trp	Ile	Glu	Ala 180	Val	His	Asn	Asn	Ser 185	Pro	Ile	Leu	Ser	Ala 190	Val	Thr
Ala	Leu	Ser 195	Tyr	Phe	Tyr	Met	Ala 200	Ser	Thr	Trp	Gly	Ala 205	Tyr	Val	Phe
Ile	Asn 210	Asn	Ile	Ile	Pro	Leu 215	His	Val	Leu	Ile	Ser 220	Ile	Phe	Суз	Gly
Phe 225	Tyr	Asn	Lys	Lys	Leu 230	Tyr	Ser	Суз	Tyr	Ser 235	Ile	Tyr	Tyr	Ile	Phe 240
Ala	Thr	Ile	Leu	Ser 245	Met	Gln	Val	Pro	Phe 250	Ile	Asn	Tyr	Val	Pro 255	Ile
Arg	Ser	Ser	Glu 260	His	Ile	Gly	Ala	Met 265	Gly	Val	Phe	Gly	Ile 270	Cys	Gln
Leu	Ile	Glu 275	Leu	Tyr	Ser	Leu	Ile 280	His	Lys	Leu	Leu	Gly 285	Gln	Lys	Lys
Thr	Val 290	Glu	Leu	Ile	Lys	Lys 295	Val	Leu	Met	Gly	Ser 300	Val	Ile	Ile	Gly
Ile 305	Ile	Met	Val	Leu	Ile 310	Leu	Ile	Lys	Lys	Gly 315	Tyr	Ile	Ser	Ala	Trp 320
Ser	Gly	Arg	Phe	Tyr 325	Ala	Leu	Phe	Asp	Pro 330	Thr	Phe	Ala	Lys	Lys 335	Asn

Ile	Pro	Leu	11e 340	Val	Ser	Val	Ser	Glu 345	His	Gln	Pro	Ala	Asn 350	Trp	Ala
Ser	Tyr	Phe 355	Phe	Asp	Leu	His	Cys 360	Leu	Ile	Val	Ile	Ala 365	Pro	Ala	Gly
Leu	Tyr 370	Tyr	Сув	Phe	Lys	Lys 375	Phe	Asp	Phe	Asn	Met 380	Leu	Phe	Leu	Ile
Ile 385	Tyr	Ser	Val	Ser	Val 390	Phe	Tyr	Phe	Ser	Cys 395	Val	Met	Ser	Arg	Leu 400
Val	Leu	Ile	Leu	Ala 405	Pro	Ala	Ile	Cys	Leu 410	Leu	Ser	Gly	Ile	Ala 415	Leu
Ala	Glu	Phe	Phe 420	Thr	Gln	Ile	Gln	Lys 425	Gln	Leu	Glu	Ser	Thr 430	Leu	Lys
Met	Val	Phe 435	Lys	Ser	Asn	Lys	Lys 440	Gln	Gln	Gln	Gln	Gln 445	Ser	Asn	Glu
Pro	Thr 450	Thr	Lys	Ile	Glu	Lys 455	Glu	Lys	Arg	Lys	Ile 460	His	Pro	Pro	Lys
Lys 465	Glu	Gln	Asn	Asn	Glu 470	Lys	Ser	Phe	Ile	Ser 475	Glu	Phe	Ile	Ile	Phe 480
Ile	Ile	Met	Thr	Ile 485	Val	Gly	Ile	Leu	Leu 490	Ile	Ile	Phe	Leu	Phe 495	Lys
Phe	Phe	Glu	Tyr 500	Ser	Ile	Gln	Met	Ser 505	Lys	Asn	Tyr	Ser	Ser 510	Pro	Ser
Val	Val	Leu 515	Tyr	Gly	Asn	His	Gly 520	Gly	Lys	Gln	Ile	Ala 525	Phe	Asp	Asp
Tyr	A rg 530	Glu	Ala	Tyr	Arg	Trp 535	Leu	Ala	His	Asn	Thr 540	Pro	Glu	Gly	Ser
Arg 545	Val	Met	Ser	Trp	Trp 550	Asp	Tyr	Gly	Tyr	Gln 555	Ile	Ser	His	Leu	Ala 560
Asn	Arg	Thr	Val	Ile 565	Val	Asp	Asn	Asn	Thr 570	Trp	Asn	Asn	Ser	His 575	Ile

Ala Leu Thr Gly Asn Val Met Ala Ser Arg Glu Glu Asp Ala Met Lys 580 585 590

Thr Ile Arg Asp Leu Asp Val Asp Tyr Leu Leu Val Val Phe Gly Gly

		595		600			605		
	Tyr Leu 610	Gly Tyr	Ser Ser	Asp Asp 615	Ile Asn	Lys Phe 620	Leu Trp	Met Ile	
	Arg Ile (Gly Ala	Gly Val 630	Asn Pro	Ser Leu	Asn Glu 635	Asn Asn	Tyr Tyr 640	
	Asn His A	Asn Ala	Tyr Thr 645	Val Ala	Asp Pro 650	Ser Asp	Thr Phe	Lys Tyr 655	
	Ser Met 1	Met Tyr 660	Lys Met	Cys Tyr	His Asn 665	Phe Tyr	Lys Ala 670	Ser Asn	
	Gly Tyr	Arg Ala 675	Gly Met	Asp Ala 680	Val Arg	Arg Glu	Val Ile 685	Glu Glu	
	Gln Thr	Tyr Phe	_	Ile Gln 695	Glu Ala	Phe Thr 700	Ser Gln	His Trp	
	Val Val 7	Arg Ile	Tyr Lys 710	Val Asn	Lys Pro	Asn Pro 715	Ile Asp	Ser Leu 720	
	Leu								
5	<210> 11 <211> 40 <212> ADN <213> Trick		reesei						
10	<400> 11 agctccgtgg	cgaaagc	ctg acgcac	cggt agatt	cttgg 40				
	<210> 12 <211> 1000 <212> ADN	1							
15	<213> Artif <220> <223> Ceb								
	<400> 12 gttgggcte	ga ggccç	statcg ga	gggacggc	, gtgagga	attg aggo	oggagga g	gatgaagggg	60
	gatgatgg	gg agacç	ıgtggt tg	ttgtgcat	: aattato	ggc atgo	egggatg g	gggtatcag 1	.20
	gggtcgta	tg ggtgt	gcgga ga	gggttgtc	gagttgg	gtgg aggg	ggattgt g	gaggggatga 1	.80
20	gcggatgt	tt ttgat	gtttt ga	ctgctcgc	ctttgac	ctcg atto	etgatae g	ggacactttt 2	40

cgacctttgt	ttctccaaga	tggccctgta	cagtcagatt	gatagaggag	catgtataat	300
tcattgccgg	ttgccgtccc	gtttccaagc	agaaagccac	tgttgagaag	caacgtgctt	360
tgacgaaagt	cgtggctcac	tactcaaatc	tctccacact	catacattgt	gtttcagtca	420
aaacactttg	gcaaccaaga	cgtgggaggg	agtatctgca	tcttttctca	tcggcaagct	480
atctgactcg	attgagaaga	tgcgtggttc	atatcacctg	gccgttggag	gtttcttcct	540
aggcagtcgc	tctgttctcc	ttctataaag	aactccatcg	ttcttgaata	cctctttggc	600
cttcaagctc	gatagtattg	aacccattct	tcactcatgc	tgctcatcat	tccacctccc	660
tcaagttggg	tgtcgttgag	tacctagtgt	acataagcgg	gtctatgcat	ttaaaggggt	720
atcttcacca	ccagcaatat	ccacacttct	aggctccacg	ttgcacataa	cgaaaccaaa	780
acagctaaac	cgacgggcca	atttcacgcg	catcttcatc	gacgaagcga	gcgacagcga	840
agccgatacg	caaatcctct	tcagacaagc	tcaactcggc	caagcctcat	gttttgccaa	900
cggaaccctg	cacaagtcgg	ctggcattaa	agaggaaagg	agaacagaaa	gagagtgagc	960
agatttcagt	ctctcaccac	tcacctgagt	tgcctctctc			1000
<210> 13 <211> 1001 <212> ADN <213> Artificia	al					
<220> <223> Cebado	or					
<400> 13 gggcagtatg	ccggatggct	ggcttataca	ggcaaaaacc	accttcttca	ttcttcattc	60
ttcgtcttct	tcttcttctt	cctcctcatc	gtcggtaggc	ggcagctttc	ccacattgga	120
gtcgctctcc	tcgtcgctga	gttcctcgac	cgtcttttcg	aattcctttg	gcctggagtc	180
atcataatag	tttaatacac	gtttagagta	tagagagaaa	aaataagggg	gaaaaagacg	240
caaatcatac	cagtacggct	gcttccgcca	gagcttctcg	tcgcgcacga	ccttgataat	300
ctcgccaaag	gccctgctgt	cctgcgtgcc	gacgggatat	ccctcggcca	ggacgtagcc	360
gccgcgcttg	atccagacgg	tgttgcgcag	gcgctgggcg	agctcgagga	cgacgtgctt	420
cttgctgggc	atctcgcagg	tgtagaggtt	gttgccctcg	ggcttcagga	cgcgcacaat	480
ggcctgcgtc	ggctcgaggg	catcgggagg	cgtgagggcc	tcttgtgtgg	cggcaaggac	540
atttcgcttc	ggcttaccca	tggctgcgag	tctttggggt	cgattcggtg	atactatctg	600
atcccaagaa	aaaagagaca	aaatttcatt	gttgttgatt	ggaaaataaa	ctggggccgt	660
gatggagggg	cagctttatc	gataggacgg	ggatttctcg	aataggaaaa	taaaacccct	720
				cgaaaccgct		780

	aactagaagt	aaggtaccta	tccataagct	atcacgatga	tatagaaggc	atggatgtat	840
	tgcaaaagcg	aattgttaga	cgccccaatg	ggaggcttgg	tggggttatc	ggtttacgaa	900
	atacttgaat	caatgcatta	ttaatctatc	cattaggcat	tttggcgttc	accagaccgt	960
	ttgactcacc	gatatcgttc	gtggtggtac	tcggccagat	g		1001
5	<210> 14 <211> 19 <212> ADN <213> Artificia	al					
10	<220> <223> Cebad	or					
10	<400> 14 gcacactttc aag	gattggc	19				
15	<210> 15 <211> 19 <212> ADN <213> Artificia	al					
20	<220> <223> Cebad	or					
	<400> 15 gcacactttc aag	gattggc	19				
25	<210> 16 <211> 19 <212> ADN <213> Artificia	al					
30	<220> <223> Cebad	or					
25	<400> 16 gtacggtgtt gcc	aagaag	19				
35	<210> 17 <211> 448 <212> ADN						
40	<213> Artificia <220>						
	<223> Cebad	or					
	<400> 17 gttgagtaca	tcgagcgcga	cagcattgtg	cacaccatgc	ttcccctcga	gtccaaggac	60
	agcatcatcg	ttgaggactc	gtgcaacggc	gagacggaga	agcaggctcc	ctggggtctt	120
	gcccgtatct	ctcaccgaga	gacgctcaac	tttggctcct	tcaacaagta	cctctacacc	180
	gctgatggtg	gtgagggtgt	tgatgcctat	gtcattgaca	ccggcaccaa	catcgagcac	240
15	atcaacttta	agggt cgt gg	caagtgggg	aadacdatoo	ctaccaaaa?	taaaaacaaa	300

gacg	gcaa	rca d	gccac	cggca	ac to	cacto	gctct	ggt	acco	ıttg	ctg	gtaaq	gaa (gtace	ggtgti	t 360
gcca	agaa	igg d	ccac	cgtct	a co	gaagt	caaq	ggto	gata	gat	ccaa	acgga	atc (cggca	accat	g 420
tctg	acgt	.cg t	caaç	gggcg	gt co	gagta	acg									448
<210 <211 <212 <213	> 399 > PR	Т	erma	reese	ei											
<400 Met 1		Pro	Ser	Phe 5	Gly	Ser	Phe	Leu	Val 10	Thr	Val	Leu	Ser	Ala 15	Ser	
Met	Ala	Ala	Gly 20	Ser	Val	Ile	Pro	Ser 25	Thr	Asn	Ala	Asn	Pro 30	Gly	Ser	
Phe	Glu	Ile 35	Lys	Arg	Ser	Ala	Asn 40	Lys	Ala	Phe	Thr	Gly 45	Arg	Asn	Gly	
Pro	Leu 50	Ala	Leu	Ala	Arg	Thr 55	Tyr	Ala	Lys	Tyr	Gly 60	Val	Glu	Val	Pro	
Lys 65	Thr	Leu	Val	Asp	Ala 70	Ile	Gln	Leu	Val	Lys 75	Ser	Ile	Gln	Leu	Ala 80	
Lys	Arg	Asp	Ser	Ala 85	Thr	Val	Thr	Ala	Thr 90	Pro	Asp	His	Asp	Asp 95	Ile	
Glu	Tyr	Leu	Val 100	Pro	Val	Lys	Ile	Gly 105	Thr	Pro	Pro	Gln	Thr 110	Leu	Asn	
Leu	Asp	Phe 115	Asp	Thr	Gly	Ser	Ser 120	Asp	Leu	Trp	Val	Phe 125	Ser	Ser	Asp	
Val	Asp 130	Pro	Thr	Ser	Ser	Gln 135	Gly	His	Asp	Ile	Tyr 140	Thr	Pro	Ser	Lys	
Ser 145	Thr	Ser	Ser	Lys	Lys 150	Leu	Glu	Gly	Ala	Ser 155	Trp	Asn	Ile	Thr	Туг 160	
Gly	Asp	Arg	Ser	Ser 165	Ser	Ser	Gly	Asp	V al 170	Tyr	His	Asp	Ile	Val 175	Ser	
Val	Gly	Asn	Leu 180	Thr	Val	Lys	Ser	Gln 185	Ala	Val	Glu	Ser	Ala 190	Arg	Asn	

Val Ser Ala Gln Phe Thr Gln Gly Asn Asn Asp Gly Leu Val Gly Leu 195 $$ 200 $$ 205 $$

	Ala	Phe 210	Ser	Ser	Ile	Asn	Thr 215	Val	Lys	Pro	Thr	Pro 220	Gln	Lys	Thr	Trp
	Tyr 225	Asp	Asn	Ile	Val	Gly 230	Ser	Leu	Asp	Ser	Pro 235		Phe	Val	Ala	Asp 240
	Leu	Arg	His	Asp	Thr 245	Pro	Gly	Ser	Tyr	His 250	Phe	Gly	Ser	Ile	Pro 255	
	Glu	Ala	Ser	Lys 260	Ala	Phe	Tyr	Ala	Pro 265	Ile	Asp	Asn	Ser	Lys 270	_	Phe
	Trp	Gln	Phe 275	Ser	Thr	Ser	Ser	Asn 280	Ile	Ser	Gly	Gln	Phe 285		Ala	Val
	Ala	Asp 290	Thr	Gly	Thr	Thr	Leu 295	Leu	Leu	Ala	Ser	Asp 300	Asp	Leu	Val	Lys
	Ala 305	Tyr	Tyr	Ala	Lys	Val 310	Gln	Gly	Ala	Arg	Val 315		Val	Phe	Leu	Gly 320
	Gly	Tyr	Val	Phe	Asn 325	Cys	Thr	Thr	Gln	Leu 330	Pro	Asp	Phe	Thr	Phe 335	
	Val	Gly	Glu	Gly 340	Asn	Ile	Thr	Val	Pro 345	Gly	Thr	Leu	Ile	As n 350	_	Ser
	Glu	Ala	Gly 355	Asn	Gly	Gln	Cys	Phe 360	Gly	Gly	Ile	Gln	Pro 365		Gly	Gly
	Leu	Pro 370	Phe	Ala	Ile	Phe	Gly 375	Asp	Ile	Ala	Leu	Lys 380	Ala	Ala	Tyr	Val
	Ile 385		Asp		Gly		Lys		Val	Gly	Trp 395		Gln	Lys	Lys	
5	<212	> 452 :> PR		erma ı	reese	i										
10	<400 Met 1		Ala	Ile	Leu 5	Gln	Ala	Gln	Ala	Lys 10	Phe	Arg	Leu	_	Arg 15	Gly

L€	eu (Gln	Lys	Ile 20	Thr	Ala	Val	Arg	Asn 25	Lys	Asn	Tyr	Lys	Arg 30	His	Gly
Pr	o :	Lys	Ser 35	Tyr	Val	Tyr	Leu	Leu 40	Asn	Arg	Phe	Gly	Phe 45	Glu	Pro	Thr
Ly		Pro 50	Gly	Pro	Tyr	Phe	Gln 55	Gln	His	Arg	Ile	His 60	Gln	Arg	Gly	Leu
A1 65		His	Pro	Asp	Phe	Lys 70	Ala	Ala	Val	Gly	Gly 75	Arg	Val	Thr	Arg	Gln 80
Ly	rs '	Val	Leu	Ala	Lys 85	Lys	Val	Lys	Glu	Asp 90	Gly	Thr	Val	Asp	Ala 95	Gly
Gl	-y :	Ser	Lys	Thr 100	Gly	Glu	Val	Asp	Ala 105	Glu	Asp	Gln	Gln	As n 110	Asp	Ser
Gl	.u '	Tyr	Leu 115	Cys	Glu	Val	Thr	Ile 120	Gly	Thr	Pro	Gly	Gln 125	Lys	Leu	Met
Le		Asp 130	Phe	Asp	Thr	Gly	Ser 135	Ser	Asp	Leu	Trp	Val 140	Phe	Ser	Thr	Glu
Le 14		Ser	Lys	His	Leu	Gln 150	Glu	Asn	His	Ala	Ile 155	Phe	Asp	Pro	Lys	Lys 160
Se	er :	Ser	Thr	Phe	Lys 165	Pro	Leu	Lys	Asp	Gln 170	Thr	Trp	Gln	Ile	Ser 175	Tyr
G1	-y ²	Asp	Gly	Ser 180	Ser	Ala	Ser	Gly	Thr 185	Cys	Gly	Ser	Asp	Thr 190	Val	Thr
L€	eu (Gly	Gly 195	Leu	Ser	Ile	Lys	Asn 200	Gln	Thr	Ile	Glu	Leu 205	Ala	Ser	Lys
L€		Ala 210	Pro	Gln	Phe	Ala	Gln 215	Gly	Thr	Gly	Asp	Gly 220	Leu	Leu	Gly	Leu
A1 22		Trp	Pro	Gln	Ile	Asn 230	Thr	Val	Gln	Thr	Asp 235	Gly	Arg	Pro	Thr	Pro 240
Al	.a 2	Asn	Thr	Pro	Val 245	Ala	Asn	Met	Ile	Gln 250	Gln	Asp	Asp	Ile	Pro 255	Ser
As	sp i	Ala	Gln	Leu 260	Phe	Thr	Ala	Ala	Phe 265	Tyr	Ser	Glu	Arg	Asp 270	Glu	Asn

Ala	Glu	Ser 275	Phe	Tyr	Thr	Phe	Gly 280	Tyr	Ile	Asp	Gln	Asp 285	Leu	Val	Ser
Ala	Ser 290	Gly	Gln	Glu	Ile	Ala 295	Trp	Thr	Asp	Val	Asp 300	Asn	Ser	Gln	Gly
Phe 305	Trp	Met	Phe	Pro	Ser 310	Thr	Lys	Thr	Thr	Ile 315	Asn	Gly	Lys	Asp	Ile 320
Ser	Gln	Glu	Gly	Asn 325	Thr	Ala	Ile	Ala	Asp 330	Thr	Gly	Thr	Thr	Leu 335	Ala
Leu	Val	Ser	Asp 340	Glu	Val	Cys	Glu	Ala 345	Leu	Tyr	Lys	Ala	Ile 350	Pro	Gly
Ala	Lys	Tyr 355	Asp	Asp	Asn	Gln	Gln 360	Gly	Tyr	Val	Phe	Pro 365	Ile	Asn	Thr
Asp	Ala 370	Ser	Ser	Leu	Pro	Glu 375	Leu	Lys	Val	Ser	Val 380	Gly	Asn	Thr	Gln
Phe 385	Val	Ile	Gln	Pro	Glu 390	Asp	Leu	Ala	Phe	Ala 395	Pro	Ala	Asp	Asp	Ser 400
Asn	Trp	Tyr	Gly	Gly 405	Val	Gln	Ser	Arg	Gly 410	Ser	Asn	Pro	Phe	Asp 415	Ile
Leu	Gly	Asp	Val 420	Phe	Leu	Lys	Ser	Val 425	Tyr	Ala	Ile	Phe	Asp 430	Gln	Gly
Asn	Gln	Arg 435	Phe	Gly	Ala	Val	Pro 440	Lys	Ile	Gln	Ala	Lys 445	Gln	Asn	Leu
Gln	Pro 450	Pro	Gln												
<210 <211 <212 <213	> 395 > PR	Т	erma	reese	ei										
<400 Met 1		Ser	Ala	Leu 5	Leu	Ala	Ala	Ala	Ala 10	Leu	Val	Gly	Ser	Ala 15	Gln
Ala	Gly	Ile	His 20	Lys	Met	Lys	Leu	Gln 25	Lys	Val	Ser	Leu	Glu 30	Gln	Gln

- Leu Glu Gly Ser Ser Ile Glu Ala His Val Gln Gln Leu Gly Gln Lys 35 40 45
- Tyr Met Gly Val Arg Pro Thr Ser Arg Ala Glu Val Met Phe Asn Asp 50 60
- Lys Pro Pro Lys Val Gln Gly Gly His Pro Val Pro Val Thr Asn Phe 65 70 75 80
- Met Asn Ala Gln Tyr Phe Ser Glu Ile Thr Ile Gly Thr Pro Pro Gln 85 90 95
- Ser Phe Lys Val Val Leu Asp Thr Gly Ser Ser Asn Leu Trp Val Pro 100 105 110
- Ser Gln Ser Cys Asn Ser Ile Ala Cys Phe Leu His Ser Thr Tyr Asp 115 120 125
- Ser Ser Ser Ser Thr Tyr Lys Pro Asn Gly Ser Asp Phe Glu Ile 130 135 140
- His Tyr Gly Ser Gly Ser Leu Thr Gly Phe Ile Ser Asn Asp Val Val 145 150 160
- Thr Ile Gly Asp Leu Lys Ile Lys Gly Gln Asp Phe Ala Glu Ala Thr 165 170 175
- Ser Glu Pro Gly Leu Ala Phe Ala Phe Gly Arg Phe Asp Gly Ile Leu 180 185 190
- Gly Leu Gly Tyr Asp Thr Ile Ser Val Asn Gly Ile Val Pro Pro Phe 195 200 205
- Tyr Gln Met Val Asn Gln Lys Leu Ile Asp Glu Pro Val Phe Ala Phe 210 215 220
- Tyr Leu Gly Ser Ser Asp Glu Gly Ser Glu Ala Val Phe Gly Gly Val 225 230 235 240
- Asp Asp Ala His Tyr Glu Gly Lys Ile Glu Tyr Ile Pro Leu Arg Arg 245 250 255
- Lys Ala Tyr Trp Glu Val Asp Leu Asp Ser Ile Ala Phe Gly Asp Glu 260 265 270
- Val Ala Glu Leu Glu Asn Thr Gly Ala Ile Leu Asp Thr Gly Thr Ser 275 280 285

	Gly 305	Ala	Lys	Lys	Gly	Phe 310	Gly	Gly	Gln	Tyr	Thr 315	Val	Asp	Суѕ	Ser	Lys 320
	Arg	Asp	Ser	Leu	Pro 325	Asp	Ile	Thr	Phe	Ser 330	Leu	Ala	Gly	Ser	Lys 335	Tyr
	Ser	Leu	Pro	Ala 340	Ser	Asp	Tyr	Ile	Ile 345	Glu	Met	Ser	Gly	Asn 350	Cys	Ile
	Ser	Ser	Phe 355	Gln	Gly	Met	Asp	Phe 360	Pro	Glu	Pro	Val	Gly 365	Pro	Leu	Val
	Ile	Leu 370	Gly	Asp	Ala	Phe	Leu 375	Arg	Arg	Tyr	Tyr	Ser 380	Val	Tyr	Asp	Leu
	Gly 385	Arg	Asp	Ala	Val	Gly 390	Leu	Ala	Lys	Ala	Lys 395					
5	<212	> 426 > PR	Т	erma	reese	ei										
	<400 Met 1		Phe	His	Ala 5	Ala	Ala	Leu	Thr	Leu 10	Ala	Cys	Leu	Ala	Ser 15	Ser
	Ala	Ser	Ala	Gly 20	Val	Ala	Gln	Pro	Arg 25	Ala	Asp	Glu	Val	Glu 30	Ser	Ala
	Glu	Gln	Gly 35	Lys	Thr	Phe	Ser	Leu 40	Glu	Gln	Ile	Pro	Asn 45	Glu	Arg	Tyr
	Lys	Gly 50	Asn	Ile	Pro	Ala	Ala 55	Tyr	Ile	Ser	Ala	Leu 60	Ala	Lys	Tyr	Ser
	Pro 65	Thr	Ile	Pro	Asp	Lys 70	Ile	Lys	His	Ala	Ile 75	Glu	Ile	Asn	Pro	Asp 80
	Leu	His	Arg	Lys	Phe 85	Ser	Lys	Leu	Ile	Asn 90	Ala	Gly	Asn	Met	Thr 95	Gly
10	Thr	Ala	Val	Ala 100	Ser	Pro	Pro	Pro	Gly 105	Ala	Asp	Ala	Glu	Tyr 110	Val	Leu

110	Vai	115	116	GLY	1111	FIO	120	GIII	1111	пеп	110	125	ASII	Leu	rop
Thr	Gly 130	Ser	Ser	Asp	Leu	Trp 135	Val	Ile	Ser	Thr	Asp 140	Thr	Tyr	Pro	Pro
Gln 145	Val	Gln	Gly	Gln	Thr 150	Arg	Tyr	Asn	Val	Ser 155	Ala	Ser	Thr	Thr	Ala 160
Gln	Arg	Leu	Ile	Gly 165	Glu	Ser	Trp	Val	Ile 170	Arg	Tyr	Gly	Asp	Gly 175	Ser
Ser	Ala	Asn	Gly 180	Ile	Val	Tyr	Lys	Asp 185	Arg	Val	Gln	Ile	Gly 190	Asn	Thr
		195	Gln				200					205			
	210	-	Asp			215		-			220				
225			Thr		230		-	-		235		-			240
	_		Gln	245					250					255	_
			Gly 260					265					270		
		275	Ile		_		280					285			
	290		Val			295					300				_
305			Val		310					315					320
			Asn	325					330					335	
			Ser 340					345					350		
Thr	Leu	Pro	Asp	Phe	Ala	Phe	Gly	Leu	Gly	Asn	Tyr	Arg	Gly	Val	Ile

360 355 365 Pro Gly Ser Tyr Ile Asn Tyr Gly Arg Met Asn Lys Thr Tyr Cys Tyr Gly Gly Ile Gln Ser Ser Glu Asp Ala Pro Phe Ala Val Leu Gly Asp 390 395 Ile Ala Leu Lys Ala Gln Phe Val Val Phe Asp Met Gly Asn Lys Val 410 Val Gly Phe Ala Asn Lys Asn Thr Asn Val <210> 22 <211> 407 <212> PRT <213> Trichoderma reesei <400> 22 Met Gln Thr Phe Gly Ala Phe Leu Val Ser Phe Leu Ala Ala Ser Gly 10 Leu Ala Ala Ala Leu Pro Thr Glu Gly Gln Lys Thr Ala Ser Val Glu Val Gln Tyr Asn Lys Asn Tyr Val Pro His Gly Pro Thr Ala Leu Phe Lys Ala Lys Arg Lys Tyr Gly Ala Pro Ile Ser Asp Asn Leu Lys Ser 55 Leu Val Ala Ala Arg Gln Ala Lys Gln Ala Leu Ala Lys Arg Gln Thr Gly Ser Ala Pro Asn His Pro Ser Asp Ser Ala Asp Ser Glu Tyr Ile Thr Ser Val Ser Ile Gly Thr Pro Ala Gln Val Leu Pro Leu Asp Phe 100 Asp Thr Gly Ser Ser Asp Leu Trp Val Phe Ser Ser Glu Thr Pro Lys Ser Ser Ala Thr Gly His Ala Ile Tyr Thr Pro Ser Lys Ser Ser Thr

135

Ser Lys Lys Val Ser Gly Ala Ser Trp Ser Ile Ser Tyr Gly Asp Gly

10

130

145					150					155					160
Ser	Ser	Ser	Ser	Gly 165	Asp	Val	Tyr	Thr	Asp 170	Lys	Val	Thr	Ile	Gly 175	Gly
Phe	Ser	Val	As n 180	Thr	Gln	Gly	Val	Glu 185	Ser	Ala	Thr	Arg	Val 190	Ser	Thr
Glu	Phe	Val 195	Gln	Asp	Thr	Val	Ile 200	Ser	Gly	Leu	Val	Gly 205	Leu	Ala	Phe
Asp	Ser 210	Gly	Asn	Gln	Val	Arg 215	Pro	His	Pro	Gln	Lys 220	Thr	Trp	Phe	Ser
Asn 225	Ala	Ala	Ser	Ser	Leu 230	Ala	Glu	Pro	Leu	Phe 235	Thr	Ala	Asp	Leu	Arg 240
His	Gly	Gln	Asn	Gly 245	Ser	Tyr	Asn	Phe	Gly 250	Tyr	Ile	Asp	Thr	Ser 255	Val
Ala	Lys	Gly	Pro 260	Val	Ala	Tyr	Thr	Pro 265	Val	Asp	Asn	Ser	Gln 270	Gly	Phe
Trp	Glu	Phe 275	Thr	Ala	Ser	Gly	Tyr 280	Ser	Val	Gly	Gly	Gly 285	Lys	Leu	Asn
Arg	Asn 290	Ser	Ile	Asp	Gly	Ile 295	Ala	Asp	Thr	Gly	Thr 300	Thr	Leu	Leu	Leu
Leu 305	Asp	Asp	Asn	Val	Val 310	Asp	Ala	Tyr	Tyr	Ala 315	Asn	Val	Gln	Ser	Ala 320
Gln	Tyr	Asp	Asn	Gln 325	Gln	Glu	Gly	Val	Val 330	Phe	Asp	Cys	Asp	Glu 335	Asp
Leu	Pro	Ser	Phe 340	Ser	Phe	Gly	Val	Gly 345	Ser	Ser	Thr	Ile	Thr 350	Ile	Pro
Gly	Asp	Leu 355	Leu	Asn	Leu	Thr	Pro 360	Leu	Glu	Glu	Gly	Ser 365	Ser	Thr	Cys
Phe	Gly 370	Gly	Leu	Gln	Ser	Ser 375	Ser	Gly	Ile	Gly	Ile 380	Asn	Ile	Phe	Gly
Asp 385	Val	Ala	Leu	Lys	Ala 390	Ala	Leu	Val	Val	Phe 395	Asp	Leu	Gly	Asn	Glu 400
Arg	Leu	Gly	Trp	Ala 405	Gln	Lys									

5	<212	> 446 > PR > Tric		erma ı	eese	i										
5	<400 Met 1		Leu	Pro	Val 5	Pro	Leu	Arg	Glu	His 10	Asp	Leu	Pro	Phe	Leu 15	Lys
	Glu	Lys	Arg	Lys 20	Leu	Pro	Ala	Asp	Asp 25	Ile	Pro	Ser	Gly	Thr 30	Tyr	Thr
	Leu	Pro	Ile 35	Ile	His	Ala	Arg	Arg 40	Pro	Lys	Leu	Ala	Ser 45	Arg	Ala	Ile
	Glu	Val 50	Gln	Val	Glu	Asn	Arg 55	Ser	Asp	Val	Ser	Tyr 60	Tyr	Ala	Gln	Leu
	Asn 65	Ile	Gly	Thr	Pro	Pro 70	Gln	Thr	Val	Tyr	Ala 75	Gln	Ile	Asp	Thr	Gly 80
	Ser	Phe	Glu	Leu	Trp 85	Val	Asn	Pro	Asn	Cys 90	Ser	Asn	Val	Gln	Ser 95	Ala
	Asp	Gln	Arg	Phe 100	Cys	Arg	Ala	Ile	Gly 105	Phe	Tyr	Asp	Pro	Ser 110	Ser	Ser
	Ser	Thr	Ala 115	Asp	Val	Thr	Ser	Gln 120	Ser	Ala	Arg	Leu	Arg 125	Tyr	Gly	Ile
	Gly	Ser 130	Ala	Asp	Val	Thr	Tyr 135	Val	His	Asp	Thr	Ile 140	Ser	Leu	Pro	Gly
	Ser 145	Gly	Ser	Gly	Ser	Lys 150	Ala	Met	Lys	Ala	Val 155	Gln	Phe	Gly	Val	Ala 160
	Asp	Thr	Ser	Val	Asp 165	Glu	Phe	Ser	Gly	Ile 170	Leu	Gly	Leu	Gly	Ala 175	Gly
	Asn	Gly	Ile	Asn 180	Thr	Glu	Tyr	Pro	Asn 185	Phe	Val	Asp	Glu	Leu 190	Ala	Ala

<210> 23

Gln Gly Val Thr Ala Thr Lys Ala Phe Ser Leu Ala Leu Gly Ser Lys 195 $\,$

Ala	Glu 210	Glu	Glu	Gly	Val	Ile 215	Ile	Phe	Gly	Gly	Val 220	Asp	Thr	Ala	Lys
Phe 225	His	Gly	Glu	Leu	Ala 230	His	Leu	Pro	Ile	Val 235	Pro	Ala	Asp	Asp	Ser 240
Pro	Asp	Gly	Val	Ala 245	Arg	Tyr	Trp	Val	Lys 250	Met	Lys	Ser	Ile	Ser 255	Leu
Thr	Pro	Pro	Pro 260	Pro	Ser	Ser	Ser	Gly 265	Ser	Thr	Asp	Asp	Asn 270	Asn	Asn
Lys	Pro	Val 275	Ala	Phe	Pro	Gln	Thr 280	Ser	Met	Thr	Val	Phe 285	Leu	Asp	Ser
Gly	Ser 290	Thr	Leu	Thr	Leu	Leu 295	Pro	Pro	Ala	Leu	Val 300	Arg	Gln	Ile	Ala
Ser 305	Ala	Leu	Gly	Ser	Thr 310	Gln	Thr	Asp	Glu	Ser 315	Gly	Phe	Phe	Val	Val 320
Asp	Cys	Ala	Leu	Ala 325	Ser	Gln	Asp	Gly	Thr 330	Ile	Asp	Phe	Glu	Phe 335	Asp
Gly	Val	Thr	Ile 340	Arg	Val	Pro	Tyr	Ala 345	Glu	Met	Ile	Arg	Gln 350	Val	Ser
Thr	Leu	Pro 355	Pro	His	Cys	Tyr	Leu 360	Gly	Met	Met	Gly	Ser 365	Thr	Gln	Phe
Ala	Leu 370	Leu	Gly	Asp	Thr	Phe 375	Leu	Arg	Ser	Ala	Tyr 380	Ala	Val	Phe	Asp
Leu 385	Thr	Ser	Asn	Val	Val 390	His	Leu	Ala	Pro	Tyr 395	Ala	Asn	Cys	Gly	Thr 400
Asn	Val	Lys	Ser	Ile 405	Thr	Ser	Thr	Ser	Ser 410	Leu	Ser	Asn	Leu	Val 415	Gly
Thr	Cys	Asn	Asp 420	Pro	Ser	Lys	Pro	Ser 425	Ser	Ser	Pro	Ser	Pro 430	Ser	Gln
Thr	Pro	Ser 435	Ala	Ser	Pro	Ser	Ser 440	Thr	Ala	Thr	Gln	Lys 445	Ala		
<210	> 24														
<211	> 259)													
<212	> PR	T													
<213	> Tric	hode	rma	2299	i										

<400 Met 1		Pro	Ala	Ser 5	Gln	Val	Val	Ser	Ala 10	Leu	Met	Leu	Pro	Ala 15	Leu
Ala	Leu	Gly	Ala 20	Ala	Ile	Gln	Pro	Arg 25	Gly	Ala	Asp	Ile	Val 30	Gly	Gly
Thr	Ala	Ala 35	Ser	Leu	Gly	Glu	Phe 40	Pro	Tyr	Ile	Val	Ser 45	Leu	Gln	Asn
Pro	Asn 50	Gln	Gly	Gly	His	Phe 55	Cys	Gly	Gly	Val	Leu 60	Val	Asn	Ala	Asn
Thr 65	Val	Val	Thr	Ala	Ala 70	His	Cys	Ser	Val	Val 75	Tyr	Pro	Ala	Ser	Gln 80
Ile	Arg	Val	Arg	Ala 85	Gly	Thr	Leu	Thr	Trp 90	Asn	Ser	Gly	Gly	Thr 95	Leu
Val	Gly	Val	Ser 100	Gln	Ile	Ile	Val	Asn 105	Pro	Ser	Tyr	Asn	Asp 110	Arg	Thr
Thr	Asp	Phe 115	Asp	Val	Ala	Val	Trp 120	His	Leu	Ser	Ser	Pro 125	Ile	Arg	Glu
Ser	Ser 130	Thr	Ile	Gly	Tyr	Ala 135	Thr	Leu	Pro	Ala	Gln 140	Gly	Ser	Asp	Pro
Val 145	Ala	Gly	Ser	Thr	Val 150	Thr	Thr	Ala	Gly	Trp 155	Gly	Thr	Thr	Ser	Glu 160
Asn	Ser	Asn	Ser	Ile 165	Pro	Ser	Arg	Leu	A sn 170	Lys	Val	Ser	Val	Pro 175	Val
Val	Ala	Arg	Ser 180	Thr	Cys	Gln	Ala	Asp 185	Tyr	Arg	Ser	Gln	Gly 190	Leu	Ser
Val	Thr	Asn 195	Asn	Met	Phe	Cys	Ala 200	Gly	Leu	Thr	Gln	Gly 205	Gly	Lys	Asp
Ser	Cys 210	Ser	Gly	Asp	Ser	Gly 215	Gly	Pro	Ile	Val	Asp 220	Ala	Asn	Gly	Val
Leu 225	Gln	Gly	Val	Val	Ser 230	Trp	Gly	Ile	Gly	Cys 235	Ala	Glu	Ala	Gly	Phe 240
Pro	Gly	Val	Tyr	Thr 245	Arg	Ile	Gly	Asn	Phe 250	Val .	Asn	Tyr :		Asn (€ln

Asn Leu Ala

<210> 25 <211> 882 <212> PRT <213> Trichoder	ma reesei				
<400> 25 Met Val Arg S 1	Ser Ala Leu 5	Phe Val Ser	Leu Leu Ala 10	Thr Phe Ser Gly 15	
	Arg Val Ser 20	Gly His Gly 25	Ser Lys Ile	Val Pro Gly Ala 30	
Tyr Ile Phe 6 35	Glu Phe Glu	Asp Ser Gln 40	Asp Thr Ala	Asp Phe Tyr Lys 45	
Lys Leu Asn G 50	Gly Glu Gly	Ser Thr Arg 55	Leu Lys Phe 60	Asp Tyr Lys Leu	
Phe Lys Gly V 65	Val Ser Val 70	Gln Leu Lys	Asp Leu Asp 75	Asn His Glu Ala 80	
Lys Ala Gln G	Gln Met Ala 85	Gln Leu Pro	Ala Val Lys 90	Asn Val Trp Pro 95	
	Ile Asp Ala 100	Pro Asn Pro 105	Lys Val Glu	Trp Val Ala Gly	
Ser Thr Ala P 115	Pro Thr Leu	Glu Ser Arg 120	Ala Ile Lys	Lys Pro Pro Ile 125	
Pro Asn Asp S	Ser Ser Asp	Phe Pro Thr 135	His Gln Met 140	Thr Gln Ile Asp	
Lys Leu Arg A	Ala Lys Gly 150	Tyr Thr Gly	Lys Gly Val 155	Arg Val Ala Val	
Ile Asp Thr G	Gly Ile Asp 165	Tyr Thr His	Pro Ala Leu 170	Gly Gly Cys Phe 175	
	Cys Leu Val 180	Ser Phe Gly 185	Thr Asp Leu	Val Gly Asp Asp	

Tyr	Thr	Gly 195	Phe	Asn	Thr	Pro	Val 200	Pro	Asp	Asp	Asp	Pro 205	Val	Asp	Cys
Ala	Gly 210	His	Gly	Ser	His	Val 215	Ala	Gly	Ile	Ile	Ala 220	Ala	Gln	Glu	Asn
Pro 225	Tyr	Gly	Phe	Thr	Gly 230	Gly	Ala	Pro	Asp	Val 235	Thr	Leu	Gly	Ala	Tyr 240
Arg	Val	Phe	Gly	Cys 245	Asp	Gly	Gln	Ala	Gly 250	Asn	Asp	Val	Leu	11e 255	Ser
Ala	Tyr	Asn	Gln 260	Ala	Phe	Glu	Asp	Gly 265	Ala	Gln	Ile	Ile	Thr 270	Ala	Ser
Ile	Gly	Gly 275	Pro	Ser	Gly	Trp	Ala 280	Glu	Glu	Pro	Trp	Ala 285	Val	Ala	Val
Thr	Arg 290	Ile	Val	Glu	Ala	Gly 295	Val	Pro	Cys	Thr	Val 300	Ser	Ala	Gly	Asn
Glu 305	Gly	Asp	Ser	Gly	Leu 310	Phe	Phe	Ala	Ser	Thr 315	Ala	Ala	Asn	Gly	Lys 320
Lys	Val	Ile	Ala	Val 325	Ala	Ser	Val	Asp	Asn 330	Glu	Asn	Ile	Pro	Ser 335	Val
Leu	Ser	Val	Ala 340	Ser	Tyr	Lys	Ile	Asp 345	Ser	Gly	Ala	Ala	G1n 350	Asp	Phe
Gly	Tyr	Val 355	Ser	Ser	Ser	Lys	Ala 360	Trp	Asp	Gly	Val	Ser 365	Lys	Pro	Leu
_	370		Ser		_	375					380	_	_		
Leu 385	Pro	Asp	Ser	Thr	Pro 390	Asp	Leu	Ser	Asp	Tyr 395	Ile	Val	Leu	Val	Arg 400
Arg	Gly	Thr	Суѕ	Thr 405	Phe	Val	Gln	Lys	Ala 410	Gln	Asn	Val	Ala	Ala 415	Lys
Gly	Ala	Lys	Tyr 420	Leu	Leu	Tyr	Tyr	Asn 425	Asn	Ile	Pro	Gly	Ala 430	Leu	Ala

Val Asp Val Ser Ala Val Pro Glu Ile Glu Ala Val Gly Met Val Asp 435 $$ 440 $$ 445

Asp	450	THE	GIY	АІА	rnr	455	тте	АТА	АІА	Leu	1460	Asp	GIY	цуs	rnr
Val 465	Thr	Leu	Thr	Leu	Thr 470	Asp	Pro	Ile	Glu	Ser 475	Glu	Lys	Gln	Ile	Gln 480
Phe	Ser	Asp	Asn	Pro 485	Thr	Thr	Gly	Gly	Ala 490	Leu	Ser	Gly	Tyr	Thr 495	Thr
Trp	Gly	Pro	Thr 500	Trp	Glu	Leu	Asp	Val 505	Lys	Pro	Gln	Ile	Ser 510	Ser	Pro
Gly	Gly	As n 515	Ile	Leu	Ser	Thr	Tyr 520	Pro	Val	Ala	Leu	Gly 525	Gly	Tyr	Ala
Thr	Leu 530	Ser	Gly	Thr	Ser	Met 535	Ala	Cys	Pro	Leu	Thr 540	Ala	Ala	Ala	Val
Ala 545	Leu	Ile	Gly	Gln	Ala 550	Arg	Gly	Thr	Phe	Asp 555	Pro	Ala	Leu	Ile	Asp 560
Asn	Leu	Leu	Ala	Thr 565	Thr	Ala	Asn	Pro	Gln 570	Leu	Phe	Asn	Asp	Gly 575	Glu
Lys	Phe	Tyr	Asp 580	Phe	Leu	Ala	Pro	Val 585	Pro	Gln	Gln	Gly	Gly 590	Gly	Leu
Ile	Gln	Ala 595	Tyr	Asp	Ala	Ala	Phe 600	Ala	Thr	Thr	Leu	Leu 605	Ser	Pro	Ser
Ser	Leu 610	Ser	Phe	Asn	Asp	Thr 615	Asp	His	Phe	Ile	Lys 620	Lys	Lys	Gln	Ile
Thr 625	Leu	Lys	Asn	Thr	Ser 630	Lys	Gln	Arg	Val	Thr 635	Tyr	Lys	Leu	Asn	His 640
Val	Pro	Thr	Asn	Thr 645	Phe	Tyr	Thr	Leu	Ala 650	Pro	Gly	Asn	Gly	Tyr 655	Pro
Ala	Pro	Phe	Pro 660	Asn	Asp	Ala	Val	Ala 665	Ala	His	Ala	Asn	Leu 670	Lys	Phe
Asn	Leu	Gln 675	Gln	Val	Thr	Leu	Pro 680	Ala	Gly	Arg	Ser	Ile 685	Thr	Val	Asp
Val	Phe	Pro	Thr	Pro	Pro	Ara	Asp	Val	Asp	Ala	Lvs	Ara	Leu	Ala	Leu

	Trp 705	Ser	Gly	Tyr	Ile	Thr 710	Val	Asn	Gly	Thr	Asp 715		Thr	Ser	Leu	Ser 720
	Val	Pro	Tyr	Gln	Gly 725	Leu	Thr	Gly	Ser	Leu 730	His	Lys	Gln	Lys	Val 735	
	Tyr	Pro	Glu	Asp 740	Ser	Trp	Ile	Ala	Asp 745	Ser	Thr	Asp	Glu	Ser 750		Ala
	Pro	Val	Glu 755	Asn	Gly	Thr	Val	Phe 760	Thr	Ile	Pro	Ala	Pro 765	_	Asn	Ala
	Gly	Pro 770	Asp	Asp	Lys	Leu	Pro 775	Ser	Leu	Val	Val	Ser 780		Ala	Leu	Gly
	Ser 785	Arg	Tyr	Val	Arg	Val 790	Asp	Leu	Val	Leu	Leu 795		Ala	Pro	Pro	His 800
	Gly	Thr	Lys	Leu	Lys 805	Thr	Val	Lys	Phe	Leu 810	Asp	Thr	Thr	Ser	Ile 815	_
	Gln	Pro	Ala	Gly 820	Ser	Pro	Leu	Leu	Trp 825	Ile	Ser	Arg	Gly	* Ala 830		Pro
	Ile	Ala	Trp 835	Thr	Gly	Glu	Leu	Ser 840	Asp	Asn	Lys	Phe	Ala 845		Pro	Gly
	Thr	Tyr 850	Lys	Ala	Val	Phe	His 855	Ala	Leu	Arg	Ile	Phe 860	_	Asn	Glu	Lys
	Lys 865	Lys	Glu	Asp	Trp	Asp 870	Val	Ser	Glu	Ser	Pro 875		Phe	Thr	Ile	Lys 880
	Tyr	Ala														
5	<212	> 26 > 54 ² > PR > Tric	Т	erma i	reese	i										
	<400 Met 1		Ser	Val	Val 5	Ala	Leu	Ser	Met	Ala 10	Ala	Val	Ala	Gln	Ala 15	Ser
10	Thr	Phe	Gln	Ile	Gly	Thr	Ile	His	Glu	Lys	Ser	Ala	Pro	Val	Leu	Ser

			20					25					30		
Asn	Val	Glu 35	Ala	Asn	Ala	Ile	Pro 40	Asp	Ala	Tyr	Ile	Ile 45	Lys	Phe	Lys
Asp	His 50	Val	Gly	Glu	Asp	Asp 55	Ala	Ser	Lys	His	His 60	Asp	Trp	Ile	Gln
Ser 65	Ile	His	Thr	Asn	Val 70	Glu	Gln	Glu	Arg	Leu 75	Glu	Leu	Arg	Lys	Arg 80
Ser	Asn	Val	Phe	Gly 85	Ala	Asp	Asp	Val	Phe 90	Asp	Gly	Leu	Lys	His 95	Thr
Phe	Lys	Ile	Gly 100	Asp	Gly	Phe	Lys	Gly 105	Tyr	Ala	Gly	His	Phe 110	His	Glu
Ser	Val	Ile 115	Glu	Gln	Val	Arg	Asn 120	His	Pro	Asp	Val	Glu 125	Tyr	Ile	Glu
Arg	Asp 130	Ser	Ile	Val	His	Thr 135	Met	Leu	Pro	Leu	Glu 140	Ser	Lys	Asp	Ser
Ile 145	Ile	Val	Glu	Asp	Ser 150	Cys	Asn	Gly	Glu	Thr 155	Glu	Lys	Gln	Ala	Pro 160
Trp	Gly	Leu	Ala	Arg 165	Ile	Ser	His	Arg	Glu 170	Thr	Leu	Asn	Phe	Gly 175	Ser
Phe	Asn	Lys	Tyr 180	Leu	Tyr	Thr	Ala	Asp 185	Gly	Gly	Glu	Gly	Val 190	Asp	Ala
Tyr	Val	Ile 195	Asp	Thr	Gly	Thr	Asn 200	Ile	Glu	His	Val	Asp 205	Phe	Glu	Gly
Arg	Ala 210	Lys	Trp	Gly	Lys	Thr 215	Ile	Pro	Ala	Gly	Asp 220	Glu	Asp	Glu	Asp
Gly 225	Asn	Gly	His	Gly	Thr 230	His	Cys	Ser	Gly	Thr 235	Val	Ala	Gly	Lys	Lys 240
Tyr	Gly	Val	Ala	Lys 245	Lys	Ala	His	Val	Tyr 250	Ala	Val	Lys	Val	Leu 255	Arg
Ser	Asn	Gly	Ser 260	Gly	Thr	Met	Ser	Asp 265	Val	Val	Lys	Gly	Val 270	Glu	Tyr

Ala Ala Leu Ser His Ile Glu Gln Val Lys Lys Ala Lys Lys Gly Lys 280 Arg Lys Gly Phe Lys Gly Ser Val Ala Asn Met Ser Leu Gly Gly Gly 295 Lys Thr Gln Ala Leu Asp Ala Ala Val Asn Ala Ala Val Arg Ala Gly Val His Phe Ala Val Ala Ala Gly Asn Asp Asn Ala Asp Ala Cys Asn Tyr Ser Pro Ala Ala Ala Thr Glu Pro Leu Thr Val Gly Ala Ser Ala Leu Asp Asp Ser Arg Ala Tyr Phe Ser Asn Tyr Gly Lys Cys Thr Asp Ile Phe Ala Pro Gly Leu Ser Ile Gln Ser Thr Trp Ile Gly Ser Lys Tyr Ala Val Asn Thr Ile Ser Gly Thr Ser Met Ala Ser Pro His Ile 390 Cys Gly Leu Leu Ala Tyr Tyr Leu Ser Leu Gln Pro Ala Gly Asp Ser 410 Glu Phe Ala Val Ala Pro Ile Thr Pro Lys Lys Leu Lys Glu Ser Val 425 Ile Ser Val Ala Thr Lys Asn Ala Leu Ser Asp Leu Pro Asp Ser Asp Thr Pro Asn Leu Leu Ala Trp Asn Gly Gly Gly Cys Ser Asn Phe Ser 455 Gln Ile Val Glu Ala Gly Ser Tyr Thr Val Lys Pro Lys Gln Asn Lys Gln Ala Lys Leu Pro Ser Thr Ile Glu Glu Leu Glu Glu Ala Ile Glu 490 Gly Asp Phe Glu Val Val Ser Gly Glu Ile Val Lys Gly Ala Lys Ser Phe Gly Ser Lys Ala Glu Lys Phe Ala Lys Lys Ile His Asp Leu Val Glu Glu Glu Ile Glu Glu Phe Ile Ser Glu Leu Ser Glu 535

_	<212	> 27 > 391 > PR > Tric	Т	erma ı	reese	i										
5	<400 Met 1		Leu	Ser	Val 5	Leu	Leu	Ser	Val	Leu 10	Pro	Leu	Val	Leu	Ala 15	Ala
	Pro	Ala	Ile	Glu 20	Lys	Arg	Ala	Glu	Pro 25	Ala	Pro	Leu	Leu	Val 30	Pro	Thr
	Thr	Lys	His 35	Gly	Leu	Val	Ala	Asp 40	Lys	Tyr	Ile	Val	Lys 45	Phe	Lys	Asp
	Gly	Ser 50	Ser	Leu	Gln	Ala	Val 55	Asp	Glu	Ala	Ile	Ser 60	Gly	Leu	Val	Ser
	Asn 65	Ala	Asp	His	Val	Tyr 70	Gln	His	Val	Phe	Arg 75	Gly	Phe	Ala	Ala	Thr 80
	Leu	Asp	Lys	Glu	Thr 85	Leu	Glu	Ala	Leu	Arg 90	Asn	His	Pro	Glu	Val 95	Asp
	Tyr	Ile	Glu	Gln 100	Asp	Ala	Val	Val	Lys 105	Ile	Asn	Ala	Tyr	Val 110	Ser	Gln
	Thr	Gly	Ala 115	Pro	Trp	Gly	Leu	Gly 120	Arg	Ile	Ser	His	Lys 125	Ala	Arg	Gly
	Ser	Thr 130	Thr	Tyr	Val	Tyr	Asp 135	Asp	Ser	Ala	Gly	Ala 140	Gly	Thr	Cys	Ser
	Tyr 145	Val	Ile	Asp	Thr	Gly 150	Val	Asp	Ala	Thr	His 155	Pro	Asp	Phe	Glu	Gly 160
	Arg	Ala	Thr	Leu	Leu 165	Arg	Ser	Phe	Val	Ser 170	Gly	Gln	Asn	Thr	Asp 175	Gly
	Asn	Gly	His	Gly 180	Thr	His	Val	Ser	Gly 185	Thr	Ile	Gly	Ser	Arg 190	Thr	Tyr

Gly Val Ala Lys Lys Thr Gln Ile Tyr Gly Val Lys Val Leu Asp Asn 195 $\,$

	210					215					220				
Ala 225	Ser	Asp	Ser	Gln	Thr 230	Arg	Asn	Cys	Pro	Asn 235	Gly	Ser	Val	Ala	2
Met	Ser	Leu	Gly	Gly 245	Gly	Tyr	Thr	Ala	Ser 250	Val	Asn	Gln	Ala	Ala 255	1
Arg	Leu	Ile	Gln 260	Ala	Gly	Val	Phe	Leu 265	Ala	Val	Ala	Ala	Gly 270	Asn	
Gly	Val	Asp 275	Ala	Arg	Asn	Thr	Ser 280	Pro	Ala	Ser	Glu	Pro 285	Thr	Val	(
Thr	Val 290	Gly	Ala	Ser	Thr	Ser 295	Ser	Asp	Ala	Arg	Ala 300	Ser	Phe	Ser	
Tyr 305	Gly	Ser	Val	Val	Asp 310	Ile	Phe	Ala	Pro	Gly 315	Gln	Asp	Ile	Leu	
Thr	Trp	Pro	Asn	Arg 325	Gln	Thr	Asn	Thr	Ile 330	Ser	Gly	Thr	Ser	Met 335	•
Thr	Pro	His	Ile 340	Val	Gly	Leu	Gly	Ala 345	Tyr	Leu	Ala	Gly	Leu 350	Glu	
Phe	Ser	Asp 355	Pro	Gln	Ala	Leu	Cys 360	Ala	Arg	Ile	Gln	Ser 365	Leu	Ala	
Arg	A sn 370	Leu	Leu	Ser	Gly	Ile 375	Pro	Ser	Gly	Thr	Ile 380	Asn	Ala	Ile	
Phe 385	Asn	Gly	Asn	Pro	Ser 390	Gly									
<212	> 387 > PR		erma	reese	ei										
Met	> 28 Gly	Leu	Val	_	Asn	Pro	Phe	Ala		Asn	Ile	Ile	Pro		
1				5					10					15	
		17a 1	₩a1	Тиг	Aen	Asn	Ser	Phe	Glv	Glu	G111	Ala	Tle	Ser	

- Lys Gln Ala Gln Phe Ala Ala Lys Ile Ala Lys Arg Asn Leu Gly Lys 35 40 45
- Arg Gly Leu Phe Gly Asn Glu Leu Ser Thr Ala Ile His Ser Phe Ser 50 60
- Met His Thr Trp Arg Ala Met Ala Leu Asp Ala Asp Asp Ile Met Ile 65 70 75 80
- Lys Asp Ile Phe Asp Ala Glu Glu Val Ala Tyr Ile Glu Ala Asp Thr 85 90 95
- Lys Val Gln His Ala Ala Leu Val Ala Gln Thr Asn Ala Ala Pro Gly
 100 105 110
- Leu Ile Arg Leu Ser Asn Lys Ala Val Gly Gly Gln Asn Tyr Ile Phe 115 120 125
- Asp Asn Ser Ala Gly Ser Asn Ile Thr Ala Tyr Val Val Asp Thr Gly 130 135 140
- Ile Arg Ile Thr His Ser Glu Phe Glu Gly Arg Ala Thr Phe Gly Ala 145 150 155 160
- Asn Phe Val Asn Asp Asp Thr Asp Glu Asn Gly His Gly Ser His Val 165 170 175
- Ala Gly Thr Ile Gly Gly Ala Thr Phe Gly Val Ala Lys Asn Val Glu 180 185 190
- Leu Val Ala Val Lys Val Leu Asp Ala Asp Gly Ser Gly Ser Asn Ser 195 200 205
- Gly Val Leu Asn Gly Met Gln Phe Val Val Asn Asp Val Gln Ala Lys 210 215 220
- Lys Arg Ser Gly Lys Ala Val Met Asn Met Ser Leu Gly Gly Ser Phe 225 235 240
- Ser Thr Ala Val Asn Asn Ala Ile Thr Ala Leu Thr Asn Ala Gly Ile $245 \hspace{1.5cm} 250 \hspace{1.5cm} 255$
- Val Pro Val Val Ala Ala Gly Asn Glu Asn Gln Asp Thr Ala Asn Thr 260 265 270
- Ser Pro Gly Ser Ala Pro Gln Ala Ile Thr Val Gly Ala Ile Asp Ala 275 280 285

Ile	Asp	Thr	Ala	Val 325	Leu	Ser	Gly	Thr	Ser 330	Met	Ala	Ser	Pro	His 335	Val
Ala	Gly	Leu	Ala 340	Ala	Tyr	Leu	Met	Ala 345	Leu	Glu	Gly	Val	Ser 350	Asn	Val
Asp	Asp	Val 355	Ser	Asn	Leu	Ile	Lys 360	Asn	Leu	Ala	Ala	Lys 365	Thr	Gly	Ala
Ala	Val 370	Lys	Gln	Asn	Ile	Ala 375	Gly	Thr	Thr	Ser	Leu 380	Ile	Ala	Asn	Asn
Gly 385	Asn	Phe													
<211 <212	> 29 > 409 > PR > Tri	Т	erma	reese	ei										
	> 29 Ala	Ser	Leu	Arg 5	Arg	Leu	Ala	Leu	Tyr 10	Leu	Gly	Ala	Leu	Leu 15	Pro
Ala	Val	Leu	Ala 20	Ala	Pro	Ala	Val	Asn 25	Tyr	Lys	Leu	Pro	Glu 30	Ala	Val
Pro	Asn	Lys 35	Phe	Ile	Val	Thr	Leu 40	Lys	Asp	Gly	Ala	Ser 45	Val	Asp	Thr
Asp	Ser 50	His	Leu	Thr	Trp	Val 55	Lys	Asp	Leu	His	Arg 60	Arg	Ser	Leu	Gly
Lys 65	Arg	Ser	Thr	Ala	Gly 70	Val	Glu	Lys	Thr	Tyr 75	Asn	Ile	Asp	Ser	Trp 80
Asn	Ala	Tyr	Ala	Gly 85	Glu	Phe	Asp	Glu	Glu 90	Thr	Val	Lys	Gln	Ile 95	Lys
Ala	Asn	Pro	Asp 100	Val	Ala	Ser	Val	Glu 105	Pro	Asp	Tyr	Ile	Met 110	Trp	Leu

Ser	Asp	Ile 115	Val	Glu	Asp	Lys	Arg 120	Ala	Leu	Thr	Thr	Gln 125	Thr	Gly	Ala
Pro	Trp 130	Gly	Leu	Gly	Thr	Val 135	Ser	His	Arg	Thr	Pro 140	Gly	Ser	Thr	Ser
Tyr 145	Ile	Tyr	Asp	Thr	Ser 150	Ala	Gly	Ser	Gly	Thr 155	Phe	Ala	Tyr	Val	Val 160
Asp	Ser	Gly	Ile	Asn 165	Ile	Ala	His	Gln	Gln 170	Phe	Gly	Gly	Arg	Ala 175	Ser
Leu	Gly	Tyr	Asn 180	Ala	Ala	Gly	Gly	Asp 185	His	Val	Asp	Thr	Leu 190	Gly	His
Gly	Thr	His 195	Val	Ser	Gly	Thr	Ile 200	Gly	Gly	Ser	Thr	Tyr 205	Gly	Val	Ala
Lys	Gln 210	Ala	Ser	Leu	Ile	Ser 215	Val	Lys	Val	Phe	Gln 220	Gly	Asn	Ser	Ala
Ser 225	Thr	Ser	Val	Ile	Leu 230	Asp	Gly	Tyr	Asn	Trp 235	Ala	Val	Asn	Asp	Ile 240
Val	Ser	Arg	Asn	Arg 245	Ala	Ser	Lys	Ser	Ala 250	Ile	Asn	Met	Ser	Leu 255	Gly
Gly	Pro	Ala	Ser 260	Ser	Thr	Trp	Ala	Thr 265	Ala	Ile	Asn	Ala	Ala 270	Phe	Asn
Lys	Gly	Val 275	Leu	Thr	Ile	Val	Ala 280	Ala	Gly	Asn	Gly	Asp 285	Ala	Leu	Gly
Asn	Pro 290	Gln	Pro	Val	Ser	Ser 295	Thr	Ser	Pro	Ala	Asn 300	Val	Pro	Asn	Ala
Ile 305	Thr	Val	Ala	Ala	Leu 310	Asp	Ile	Asn	Trp	Arg 315	Thr	Ala	Ser	Phe	Thr 320
Asn	Tyr	Gly	Ala	Gly 325	Val	Asp	Val	Phe	Ala 330	Pro	Gly	Val	Asn	Ile 335	Leu
Ser	Ser	Trp	Ile 340	Gly	Ser	Asn	Thr	Ala 345	Thr	Asn	Thr	Ile	Ser 350	Gly	Thr

Ser Met Ala Thr Pro His Val Val Gly Leu Ala Leu Tyr Leu Gln Ala

			355					360					365			
	Leu	Glu 370	Gly	Leu	Ser	Thr	Pro 375	Thr	Ala	Val	Thr	Asn 380	Arg	Ile	Lys	Ala
	Leu 385	Ala	Thr	Thr	Gly	A rg 390	Val	Thr	Gly	Ser	Leu 395	Asn	Gly	Ser	Pro	Asn 400
	Thr	Leu	Ile	Phe	Asn 405	Gly	Asn	Ser	Ala							
5	<212)> 30 > 55! !> PR !> Tri	T	erma	reese	ei										
	<400 Met 1)> 30 Ar g	Ala	Cys	Leu 5	Leu	Phe	Leu	Gly	Ile 10	Thr	Ala	Leu	Ala	Thr 15	Ala
	Ile	Pro	Ala	Leu 20	Lys	Pro	Pro	His	Gly 25	Ser	Pro	Asp	Arg	Ala 30	His	Thr
	Thr	Gln	Leu 35	Ala	Lys	Val	Ser	Ile 40	Ala	Leu	Gln	Pro	Glu 45	Cys	Arg	Glu
	Leu	Leu 50	Glu	Gln	Ala	Leu	His 55	His	Leu	Ser	Asp	Pro 60	Ser	Ser	Pro	Arg
	Tyr 65	Gly	Arg	Tyr	Leu	Gly 70	Arg	Glu	Glu	Ala	Lys 75	Ala	Leu	Leu	Arg	Pro 80
	Arg	Arg	Glu	Ala	Thr 85	Ala	Ala	Val	Lys	Arg 90	Trp	Leu	Ala	Arg	Ala 95	Gly
	Val	Pro		His 100	_		Leu		_	_		Phe				Arg
	Thr	Leu	Ala 115	Glu	Lys	Ala	Gln	Ala 120	Leu	Leu	Gly	Phe	Glu 125	Tyr	Asn	Ser
	Thr	Leu 130	Gly	Ser	Gln	Thr	Ile 135	Ala	Ile	Ser	Thr	Leu 140	Pro	Gly	Lys	Ile
	Arg 145	Lys	His	Val	Met	Thr 150	Val	Gln	Tyr	Val	Pro 155	Leu	Trp	Thr	Glu	Ala 160

10

Asp Trp Glu Glu Cys Lys Thr Ile Ile Thr Pro Ser Cys Leu Lys Arg

				165					170					175	
Leu	Tyr	His	Val 180	Asp	Ser	Tyr	Arg	Ala 185	Lys	Tyr	Glu	Ser	Ser 190	Ser	Leu
Phe	Gly	Ile 195	Val	Gly	Phe	Ser	Gly 200	Gln	Ala	Ala	Gln	His 205	Asp	Glu	Leu
Asp	Lys 210	Phe	Leu	His	Asp	Phe 215	Ala	Pro	Tyr	Ser	Thr 220	Asn	Ala	Asn	Phe
Ser 225	Ile	Glu	Ser	Val	Asn 230	Gly	Gly	Gln	Ser	Pro 235	Gln	Gly	Met	Asn	Glu 240
Pro	Ala	Ser	Glu	Ala 245	Asn	Gly	Asp	Val	Gln 250	Tyr	Ala	Val	Ala	Met 255	Gly
Tyr	His	Val	Pro 260	Val	Arg	Tyr	Tyr	Ala 265	Val	Gly	Gly	Glu	Asn 270	His	Asp
Ile	Ile	Pro 275	Asp	Leu	Asp	Leu	Val 280	Asp	Thr	Thr	Glu	Glu 285	Tyr	Leu	Glu
Pro	Phe 290	Leu	Glu	Phe	Ala	Ser 295	His	Leu	Leu	Asp	Leu 300	Asp	Asp	Asp	Glu
Leu 305	Pro	Arg	Val	Val	Ser 310	Ile	Ser	Tyr	Gly	Ala 315	Asn	Glu	Gln	Leu	Phe 320
Pro	Arg	Ser	Tyr	Ala 325	His	Gln	Val	Cys	Asp 330	Met	Phe	Gly	Gln	Leu 335	Gly
Ala	Arg	Gly	Val 340	Ser	Ile	Val	Val	Ala 345	Ala	Gly	Asp	Leu	Gly 350	Pro	Gly
Val	Ser	Cys 355	Gln	Ser	Asn	Asp	Gly 360	Ser	Ala	Arg	Pro	Lys 365	Phe	Ile	Pro
Ser	Phe 370	Pro	Ala	Thr	Cys	Pro 375	Tyr	Val	Thr	Ser	Val 380	Gly	Ser	Thr	Arg
Gly 385	Ile	Met	Pro	Glu	Val 390	Ala	Ala	Ser	Phe	Ser 395	Ser	Gly	Gly	Phe	Ser 400
Asp	Tyr	Phe	Ala	Arg		Ala	Trp	Gln	Asp	_	Ala	Val	Gly	Ala	Tyr

	Arg	Gly	Phe 435	Pro	Asp	Val	Ala	Ala 440	Gln	Gly	Val	Asn	Phe 445	Arg	Phe	Arg
	Ala	His 450	Gly	Asn	Glu	Ser	Leu 455	Ser	Ser	Gly	Thr	Ser 460	Leu	Ser	Ser	Pro
	Val 465	Phe	Ala	Ala	Leu	Ile 470	Ala	Leu	Leu	Asn	Asp 4 75	His	Arg	Ser	Lys	Ser 480
	Gly	Met	Pro	Pro	Met 485	Gly	Phe	Leu	Asn	Pro 490	Trp	Ile	Tyr	Thr	Val 495	Gly
	Ser	His	Ala	Phe 500	Thr	Asp	Ile	Ile	Glu 505	Ala	Arg	Ser	Glu	Gly 510	Cys	Pro
	Gly	Gln	Ser 515	Val	Glu	Tyr	Leu	Ala 520	Ser	Pro	Tyr	Ile	Pro 525	Asn	Ala	Gly
	Trp	Ser 530	Ala	Val	Pro	Gly	Trp 535	Asp	Pro	Val	Thr	Gly 540	Trp	Gly	Thr	Pro
	Leu 545	Phe	Asp	Arg	Met	Leu 550	Asn	Leu	Ser	Leu	Val 555					
5		> 388 > PR	T	erma	reese	ei										
	<400 Met 1	-	Trp	Leu	Lys 5	Lys	Leu	Ala	Leu	Val 10	Leu	Leu	Ala	Ile	Val 15	Pro
	Tyr	Ala	Thr	Ala 20	Ser	Pro	Ala	Leu	Ser 25	Pro	Arg	Ser	Arg	Glu 30	Ile	Leu
	Ser	Leu	Glu 35	Asp	Leu	Glu	Ser	Glu 40	Asp	Lys	Tyr	Val	Ile 45	Gly	Leu	Lys
	Gln	Gly 50	Leu	Ser	Pro	Thr	Asp 55	Leu	Lys	Lys	His	Leu 60	Leu	Arg	Val	Ser
10	Ala 65	Val	Gln	Tyr	Arg	Asn 70	Lys	Asn	Ser	Thr	Phe 75	Glu	Gly	Gly	Thr	Gly 80

Val	Lys	Arg	Thr	Tyr 85	Ala	Ile	Gly	Asp	Tyr 90	Arg	Ala	Tyr	Thr	Ala 95	Val
Leu	Asp	Arg	Asp 100	Thr	Val	Arg	Glu	Ile 105	Trp	Asn	Asp	Thr	Leu 110	Glu	Lys
Pro	Pro	Trp 115	Gly	Leu	Ala	Thr	Leu 120	Ser	Asn	Lys	Lys	Pro 125	His	Gly	Phe
Leu	Туг 130	Arg	Tyr	Asp	Lys	Ser 135	Ala	Gly	Glu	Gly	Thr 140	Phe	Ala	Tyr	Val
Leu 145	Asp	Thr	Gly	Ile	Asn 150	Ser	Lys	His	Val	Asp 155	Phe	Glu	Gly	Arg	Ala 160
Tyr	Met	Gly	Phe	Ser 165	Pro	Pro	Lys	Thr	Glu 170	Pro	Thr	Asp	Ile	Asn 175	Gly
His	Gly	Thr	His 180	Val	Ala	Gly	Ile	Ile 185	Gly	Gly	Lys	Thr	Phe 190	Gly	Val
	-	195	Thr				200		-			205	-	-	
Ala	Thr 210	Thr	Ser	Thr	Leu	Met 215	Glu	Gly	Leu	Glu	Trp 220	Ala	Val	Asn	Asp
225			Lys		230					235					240
			Tyr	245					250					255	
			11e 260					265		_			270		
		275	Ile				280					285			
	290		Ser			295					300				
305			Ile		310					315					320
ser	Tnr	Asn	Thr	Ala 325	Tnr	Arg	va⊥	Leu	330	GLY	Tnr	ser	Met	Ala 335	Ala

Pro His Val Ala Gly Leu Ala Leu Tyr Leu Met Ala Leu Glu Glu Phe

Asp Ser Thr Gln Lys Leu Thr Asp Arg Ile Leu Gln Leu Gly Met Lys 355

Asn	Lys 370	Val	Val	Asn	Leu	Met 375	Thr	Asp	Ser	Pro	Asn 380	Leu	Ile	Ile	His
Asn 385	Asn	Val	Lys												
<210 <211 <212 <213	> 256 > PR	Т	erma	reese	ei										
<400 Met 1	-	Ile	Ala	Gly 5	Val	Ala	Leu	Ser	A la 10	Leu	Leu	Cys	Ala	Asp 15	Thi
Val	Leu	Ala	Gly 20	Val	Ala	Gln	Asp	Arg 25	Gly	Leu	Ala	Ala	Arg 30	Leu	Ala
Arg	Arg	Ala 35	Gly	Arg	Arg	Ser	Ala 40	Pro	Phe	Arg	Asn	Asp 45	Thr	Ser	His
Ala	Thr 50	Val	Gln	Ser	Asn	Trp 55	Gly	Gly	Ala	Ile	Leu 60	Glu	Gly	Ser	Gl
Phe 65	Thr	Ala	Ala	Ser	Ala 70	Thr	Val	Asn	Val	Pro 75	Arg	Gly	Gly	Gly	Gl ₃ 80
Ser	Asn	Ala	Ala	Gly 85	Ser	Ala	Trp	Val	Gly 90	Ile	Asp	Gly	Ala	Ser 95	Суя
Gln	Thr	Ala	Ile 100	Leu	Gln	Thr	Gly	Phe 105	Asp	Trp	Tyr	Gly	Asp 110	Gly	Thi
Tyr	Asp	Ala 115	Trp	Tyr	Glu	Trp	Tyr 120	Pro	Glu	Phe	Ala	Ala 125	Asp	Phe	Sei
Gly	Ile 130	Asp	Ile	Arg	Gln	Gly 135	Asp	Gln	Ile	Ala	Met 140	Ser	Val	Val	Ala
Thr 145	Ser	Leu	Thr	Gly	Gly 150	Ser	Ala	Thr	Leu	Glu 155	Asn	Leu	Ser	Thr	Gl ₃

Gln Lys Val Thr Gln Asn Phe Asn Arg Val Thr Ala Gly Ser Leu Cys 165 170 170 175

	Glu	Thr	Ser	Ala 180	Glu	Phe	Ile	Ile	Glu 185	Asp	Phe	Glu	Glu	Cys 190	Asn	Ser
	Asn	Gly	Ser 195	Asn	Cys	Gln	Pro	Val 200	Pro	Phe	Ala	Ser	Phe 205	Ser	Pro	Ala
	Ile	Thr 210	Phe	Ser	Ser	Ala	Thr 215	Ala	Thr	Arg	Ser	Gly 220	Arg	Ser	Val	Ser
	Leu 225	Ser	Gly	Ala	Glu	Ile 230	Thr	Glu	Val	Ile	Val 235	Asn	Asn	Gln	Asp	Leu 240
	Thr	Arg	Cys	Ser	Val 245	Ser	Gly	Ser	Ser	Thr 250	Leu	Thr	Cys	Ser	Tyr 255	Val
5	<212)> 33 > 236 !> PR !> Tri	T	erma	reese	ei										
	<400 Met 1)> 33 As p	Ala	Ile	Arg 5	Ala	Arg	Ser	Ala	Ala 10	Arg	Arg	Ser	Asn	Arg 15	Phe
	Gln	Ala	Gly	Ser 20	Ser	Lys	Asn	Val	Asn 25	Gly	Thr	Ala	Asp	Val 30	Glu	Ser
	Thr	Asn	Trp 35	Ala	Gly	Ala	Ala	Ile 40	Thr	Thr	Ser	Gly	Val 45	Thr	Glu	Val
	Ser	Gly 50	Thr	Phe	Thr	Val	Pro 55	Arg	Pro	Ser	Val	Pro 60	Ala	Gly	Gly	Ser
	Ser 65	Arg	Glu	Glu	Tyr	Cys 70	Gly	Ala	Ala	Trp	Val 75	Gly	Ile	Asp	Gly	Ty r 80
	Ser	Asp	Ala	Asp	Leu 85	Ile	Gln	Thr	Gly	Val 90	Leu	Trp	Cys	Val	Glu 95	Asp
	Gly	Glu	Tyr	Leu 100	Tyr	Glu	Ala	Trp	Tyr 105	Glu	Tyr	Leu	Pro	Ala 110	Ala	Leu
10	Val	Glu	Tyr 115	Ser	Gly	Ile	Ser	Val 120	Thr	Ala	Gly	Ser	Val 125	Val	Thr	Val

	Ala 130	Thr	Lys	Thr	Gly	Thr 135	Asn	Ser	Gly	Val	Thr 140	Thr	Leu	Thr	Ser
Gly 145	Gly	Lys	Thr	Val	Ser 150	His	Thr	Phe	Ser	Arg 155	Gln	Asn	Ser	Pro	Leu 160
Pro	Gly	Thr	Ser	Ala 165	Glu	Trp	Ile	Val	Glu 170	Asp	Phe	Thr	Ser	Gly 175	Ser
Ser	Leu	Val	Pro 180	Phe	Ala	Asp	Phe	Gly 185	Ser	Val	Thr	Phe	Thr 190	Gly	Ala
Thr	Ala	Val 195	Val	Asn	Gly	Ala	Thr 200	Val	Thr	Ala	Gly	Gly 205	Asp	Ser	Pro
Val	Ile 210	Ile	Asp	Leu	Glu	Asp 215	Ser	Arg	Gly	Asp	Ile 220	Leu	Thr	Ser	Thr
Thr 225	Val	Ser	Gly	Ser	Thr 230	Val	Thr	Val	Glu	Tyr 235	Glu				
<211)> 34 > 612 2> PR														
	3> Trio)> 34	chode	erma	reese	ei										
<400	3> Trio 34 Ala					Leu	Arg	Leu	A la 10	Ser	Leu	Leu	Ser	Leu 15	Val
<400 Met 1)> 34	Lys	Leu	Ser 5	Thr				10					15	
<400 Met 1 Ser)> 34 A la	Lys Gln	Leu Val 20	Ser 5 Ser	Thr Ala	Ser	Val	His 25	10 Leu	Leu	Glu	Ser	Leu 30	15 Glu	Lys
<400 Met 1 Ser)> 34 Ala Val	Lys Gln His 35	Leu Val 20 Gly	Ser 5 Ser Trp	Thr Ala Lys	Ser Ala	Val Ala 40	His 25 Glu	10 Leu Thr	Leu Pro	Glu Ser	Ser Pro 45	Leu 30 Ser	15 Glu Ser	Lys Gln
<400 Met 1 Ser Leu)> 34 Ala Val Pro	Lys Gln His 35 Leu	Leu Val 20 Gly	Ser 5 Ser Trp	Thr Ala Lys Ala	Ser Ala Leu 55	Val Ala 40 Thr	His 25 Glu Gln	10 Leu Thr	Leu Pro Asn	Glu Ser Ile 60	Ser Pro 45	Leu 30 Ser	Glu Ser Leu	Lys Gln Glu
<400 Met 1 Ser Leu Ile Ser 65	Val	Lys Gln His 35 Leu	Leu Val 20 Gly Gln	Ser 5 Ser Trp Val	Thr Ala Lys Ala Val	Ser Ala Leu 55	Val Ala 40 Thr	His 25 Glu Gln Pro	10 Leu Thr Gln	Leu Pro Asn Ser 75	Glu Ser Ile 60 Ser	Ser Pro 45 Asp	Leu 30 Ser Gln Tyr	Glu Ser Leu Gly	Lys Glu Lys 80

Туг	Thr	Lys 115	Gln	Gly	Ser	Ser	Ile 120	Trp	Phe	Gln	Thr	Asn 125	Ile	Ser	Thr
Ala	130	Ala	Met	Leu	Ser	Thr 135	Asn	Phe	His	Thr	Tyr 140	Ser	Asp	Leu	Thr
Gly 145	Ala	Lys	Lys	Val	Arg 150	Thr	Leu	Lys	Tyr	Ser 155	Ile	Pro	Glu	Ser	Leu 160
Il∈	: Gly	His	Val	Asp 165	Leu	Ile	Ser	Pro	Thr 170	Thr	Tyr	Phe	Gly	Thr 175	Thr
Lys	Ala	Met	Arg 180	Lys	Leu	Lys	Ser	Ser 185	Gly	Val	Ser	Pro	Ala 190	Ala	Asp
Ala	Leu	Ala 195	Ala	Arg	Gln	Glu	Pro 200	Ser	Ser	Cys	Lys	Gly 205	Thr	Leu	Val
Ph∈	Glu 210	Gly	Glu	Thr	Phe	Asn 215	Val	Phe	Gln	Pro	Asp 220	Cys	Leu	Arg	Thr
Glu 225	Tyr	Ser	Val	Asp	Gly 230	Tyr	Thr	Pro	Ser	Val 235	Lys	Ser	Gly	Ser	Arg 240
Il€	Gly	Phe	Gly	Ser 245	Phe	Leu	Asn	Glu	Ser 250	Ala	Ser	Phe	Ala	Asp 255	Gln
Ala	Leu	Phe	Glu 260	Lys	His	Phe	Asn	Ile 265	Pro	Ser	Gln	Asn	Phe 270	Ser	Val
Val	. Leu	Ile 275	Asn	Gly	Gly	Thr	Asp 280	Leu	Pro	Gln	Pro	Pro 285	Ser	Asp	Ala
Asr	Asp 290	Gly	Glu	Ala	Asn	Leu 295	Asp	Ala	Gln	Thr	Ile 300	Leu	Thr	Ile	Ala
His 305	Pro	Leu	Pro	Ile	Thr 310	Glu	Phe	Ile	Thr	Ala 315	Gly	Ser	Pro	Pro	Tyr 320
Phe	Pro	Asp	Pro	Val 325	Glu	Pro	Ala	Gly	Thr 330	Pro	Asn	Glu	Asn	G1u 335	Pro
туг	Leu	Gln	Tyr 340	Tyr	Glu	Phe	Leu	Leu 345	Ser	Lys	Ser	Asn	Ala 350	Glu	Ile
Pro	Gln	Val 355	Ile	Thr	Asn	Ser	Tyr 360	Gly	Asp	Glu	Glu	Gln 365	Thr	Val	Pro

Arg	Ser 370	Tyr	Ala	Val	Arg	Val 375	Cys	Asn	Leu	Ile	Gly 380	Leu	Leu	Gly	Leu
Arg 385	Gly	Ile	Ser	Val	Leu 390	His	Ser	Ser	Gly	Asp 395	Glu	Gly	Val	Gly	Ala 400
Ser	Cys	Val	Ala	Thr 405	Asn	Ser	Thr	Thr	Pro 410	Gln	Phe	Asn	Pro	Ile 415	Phe
Pro	Ala	Thr	Cys 420	Pro	Tyr	Val	Thr	Ser 425	Val	Gly	Gly	Thr	Val 430	Ser	Phe
Asn	Pro	Glu 435	Val	Ala	Trp	Ala	Gly 440	Ser	Ser	Gly	Gly	Phe 445	Ser	Tyr	Tyr
Phe	Ser 450	Arg	Pro	Trp	Tyr	Gln 455	Gln	Glu	Ala	Val	Gly 460	Thr	Tyr	Leu	Glu
Lys 465	Tyr	Val	Ser	Ala	Glu 470	Thr	Lys	Lys	Tyr	Tyr 475	Gly	Pro	Tyr	Val	Asp 480
Phe	Ser	Gly	Arg	Gly 485	Phe	Pro	Asp	Val	Ala 490	Ala	His	Ser	Val	Ser 495	Pro
Asp	Tyr	Pro	Val 500	Phe	Gln	Gly	Gly	Glu 505	Leu	Thr	Pro	Ser	Gly 510	Gly	Thr
Ser	Ala	A la 515	Ser	Pro	Val	Val	Ala 520	Ala	Ile	Val	Ala	Leu 525	Leu	Asn	Asp
Ala	Arg 530	Leu	Arg	Glu	Gly	Lys 535	Pro	Thr	Leu	Gly	Phe 540	Leu	Asn	Pro	Leu
Ile 545	Tyr	Leu	His	Ala	Ser 550	Lys	Gly	Phe	Thr	Asp 555	Ile	Thr	Ser	Gly	Gln 560
Ser	Glu	Gly	Cys	Asn 565	Gly	Asn	Asn	Thr	Gln 570	Thr	Gly	Ser	Pro	Leu 575	Pro
Gly	Ala	Gly	Phe 580	Ile	Ala	Gly	Ala	His 585	Trp	Asn	Ala	Thr	Lys 590	Gly	Trp
Asp	Pro	Thr 595	Thr	Gly	Phe	Gly	Val 600	Pro	Asn	Leu	Lys	Lys 605	Leu	Leu	Ala
Leu	Val	Arg	Phe												
610)														

5

<210> 35

<211> 477 <212> PRT <213> Trichoderma reesei

5 <400>35 Met Arg Phe Val Gln Tyr Val Ser Leu Ala Gly Leu Phe Ala Ala Ala 1 10 15

Thr Val Ser Ala Gly Val Val Thr Val Pro Phe Glu Lys Arg Asn Leu 20 25 30

Asn Pro Asp Phe Ala Pro Ser Leu Leu Arg Arg Asp Gly Ser Val Ser 35 40 45

Leu Asp Ala Ile Asn Asn Leu Thr Gly Gly Gly Tyr Tyr Ala Gln Phe 50 55

Ser Val Gly Thr Pro Pro Gln Lys Leu Ser Phe Leu Leu Asp Thr Gly 65 70 75 80

Ser Ser Asp Thr Trp Val Asn Ser Val Thr Ala Asp Leu Cys Thr Asp 85 90 95

Glu Phe Thr Gln Gln Thr Val Gly Glu Tyr Cys Phe Arg Gln Phe Asn 100 105 110

Pro Arg Arg Ser Ser Ser Tyr Lys Ala Ser Thr Glu Val Phe Asp Ile 115 120 125

Thr Tyr Leu Asp Gly Arg Arg Ile Arg Gly Asn Tyr Phe Thr Asp Thr 130 135 140

Val Thr Ile Asn Gln Ala Asn Ile Thr Gly Gln Lys Ile Gly Leu Ala 145 150 155 160

Leu Gln Ser Val Arg Gly Thr Gly Ile Leu Gly Leu Gly Phe Arg Glu

Asn Glu Ala Ala Asp Thr Lys Tyr Pro Thr Val Ile Asp Asn Leu Val
180 185 190

Ser Gln Lys Val Ile Pro Val Pro Ala Phe Ser Leu Tyr Leu Asn Asp 195 200 205

Leu Gln Thr Ser Gln Gly Ile Leu Leu Phe Gly Gly Val Asp Thr Asp

	210					215					220				
Lys 225	Phe	His	Gly	Gly	Leu 230	Ala	Thr	Leu	Pro	Leu 235	Gln	Ser	Leu	Pro	Pro 240
Ser	Ile	Ala	Glu	Thr 245	Gln	Asp	Ile	Val	Met 250	Tyr	Ser	Val	Asn	Leu 255	Asp
Gly	Phe	Ser	Ala 260	Ser	Asp	Val	Asp	Thr 265	Pro	Asp	Val	Ser	Ala 270	Lys	Ala
Val	Leu	Asp 275	Ser	Gly	Ser	Thr	Ile 280	Thr	Leu	Leu	Pro	Asp 285	Ala	Val	Val
Gln	Glu 290	Leu	Phe	Asp	Glu	Tyr 295	Asp	Val	Leu	Asn	Ile 300	Gln	Gly	Leu	Pro
Val 305	Pro	Phe	Ile	Asp	Cys 310	Ala	Lys	Ala	Asn	Ile 315	Lys	Asp	Ala	Thr	Phe 320
Asn	Phe	Lys	Phe	Asp 325	Gly	Lys	Thr	Ile	Lys 330	Val	Pro	Ile	Asp	Glu 335	Met
Val	Leu	Asn	Asn 340	Leu	Ala	Ala	Ala	Ser 345	Asp	Glu	Ile	Met	Ser 350	Asp	Pro
Ser	Leu	Ser 355	Lys	Phe	Phe	Lys	Gly 360	Trp	Ser	Gly	Val	Cys 365	Thr	Phe	Gly
Met	Gly 370	Ser	Thr	Lys	Thr	Phe 375	Gly	Ile	Gln	Ser	Asp 380	Glu	Phe	Val	Leu
Leu 385	Gly	Asp	Thr	Phe	Leu 390	Arg	Ser	Ala	Tyr	Val 395	Val	Tyr	Asp	Leu	Gln 400
Asn	Lys	Gln	Ile	Gly 405	Ile	Ala	Gln	Ala	Thr 410	Leu	Asn	Ser	Thr	Ser 415	Ser
Thr	Ile	Val	Glu 420	Phe	Lys	Ala	Gly	Ser 425	Lys	Thr	Ile	Pro	Gly 430	Pro	Ala
Ser	Thr	Gly 435	Asp	Asp	Ser	Asp	Asp 440	Ser	Ser	Asp	Asp	Ser 445	Asp	Glu	Asp
Ser	Ala 450	Gly	Ala	Ala	Leu	His 455	Pro	Thr	Phe	Ser	Ile 460	Ala	Leu	Ala	Gly
Thr 465	Leu	Phe	Thr	Ala	Val 470	Ser	Met	Met	Met	Ser 475	Val	Leu			

<210> 36

<400> 37

15

<211> 1263 <212> ADN <213> Trichoderma reesei 5 <400> 36 atggcgtcac tcatcaaaac tgccgtggac attgccaacg gccgccatgc gctgtccaga 60 tatgtcatct ttgggctctg gcttgcggat gcggtgctgt gcgggctgat tatctggaaa 120 gtgccttata cggaaatcga ctgggtcgcc tacatggagc aagtcaccca gttcgtccac 180 240 ggagagcgag actaccccaa gatggagggc ggcacagggc ccctggtgta tcccgcggcc catgtgtaca tctacacagg gctctactac ctgacgaaca agggcaccga catcctgctg 300 gcgcagcagc tctttgccgt gctctacatg gctactctgg cggtcgtcat gacatgctac 360 tccaaggcca aggtcccgcc gtacatcttc ccgcttctca tcctctccaa aagacttcac 420 agogtottcg tootgagatg ottoaacgac tgottcgccg cottottcct otggotctgc 480 atcttcttct tccagaggcg agagtggacc atcggagctc tcgcatacag catcggcctg 540 600 ggcgtcaaaa tgtcgctgct actggttctc cccgccgtgg tcatcgtcct ctacctcggc cgcggcttca agggcgccct gcggctgctc tggctcatgg tgcaggtcca gctcctcctc 660 gccataccct tcatcacgac aaattggcgc ggctacctcg gccgtgcatt cgagctctcg 720 780 aggcagttca agtttgaatg gacagtcaat tggcgcatgc tgggcgagga tctgttcctc agcogggct tctctatcac gctactggca tttcacgcca tcttcctcct cgcctttatc 840 900 ctcggccggt ggctgaagat tagggaacgg accgtactcg ggatgatccc ctatgtcatc cgattcagat cgccctttac cgagcaggaa gagcgcgcca tctccaaccg cgtcgtcacg 960 cccggctatg tcatgtccac catcttgtcg gccaacgtgg tgggactgct gtttgcccgg 1020 1080 tctctgcact accagttcta tgcatatctg gcgtgggcga ccccctatct cctgtggacg 1140 gcctgcccca atcttttggt ggtggccccc ctctgggcgg cgcaagaatg ggcctggaac gtcttcccca gcacgcctct tagctcgagc gtcgtggtga gcgtgctggc cgtgacggtg 1200 gccatggcgt ttgcaggttc aaatccgcag ccacgtgaaa catcgaagcc gaagcagcac 1260 1263 taa <210> 37 10 <211> 420 <212> PRT <213> Trichoderma reesei

Met Ala Ser Leu Ile Lys Thr Ala Val Asp Ile Ala Asn Gly Arg His

1				5					10					15	
Ala	Leu	Ser	Arg 20	Tyr	Val	Ile	Phe	Gly 25	Leu	Trp	Leu	Ala	Asp 30	Ala	Val
Leu	Cys	Gly 35	Leu	Ile	Ile	Trp	Lys 40	Val	Pro	Tyr	Thr	Glu 45	Ile	Asp	Trp
Val	Ala 50	Tyr	Met	Glu	Gln	Val 55	Thr	Gln	Phe	Val	His 60	Gly	Glu	Arg	Asp
Tyr 65	Pro	Lys	Met	Glu	Gly 70	Gly	Thr	Gly	Pro	Leu 75	Val	Tyr	Pro	Ala	Ala 80
His	Val	Tyr	Ile	Tyr 85	Thr	Gly	Leu	Tyr	Tyr 90	Leu	Thr	Asn	Lys	Gly 95	Thr
Asp	Ile	Leu	Leu 100	Ala	Gln	Gln	Leu	Phe 105	Ala	Val	Leu	Tyr	Met 110	Ala	Thr
Leu	Ala	Val 115	Val	Met	Thr	Cys	Tyr 120	Ser	Lys	Ala	Lys	Val 125	Pro	Pro	Tyr
Ile	Phe 130	Pro	Leu	Leu	Ile	Leu 135	Ser	Lys	Arg	Leu	His 140	Ser	Val	Phe	Val
Leu 145	Arg	Cys	Phe	Asn	Asp 150	Cys	Phe	Ala	Ala	Phe 155	Phe	Leu	Trp	Leu	Cys 160
Ile	Phe	Phe	Phe	Gln 165	Arg	Arg	Glu	Trp	Thr 170	Ile	Gly	Ala	Leu	Ala 175	Tyr
Ser	Ile	Gly	Leu 180	Gly	Val	Lys	Met	Ser 185	Leu	Leu	Leu	Val	Leu 190	Pro	Ala
Val	Val	Ile 195	Val	Leu	Tyr	Leu	Gly 200	Arg	Gly	Phe	Lys	Gly 205	Ala	Leu	Arg
Leu	Leu 210	Trp	Leu	Met	Val	Gln 215	Val	Gln	Leu	Leu	Leu 220	Ala	Ile	Pro	Phe
Ile 225	Thr	Thr	Asn	Trp	Arg 230	Gly	Tyr	Leu	Gly	Arg 235	Ala	Phe	Glu	Leu	Ser 240
Arg	Gln	Phe	Lys	Phe 245	Glu	Trp	Thr	Val	Asn 250	Trp	Arg	Met	Leu	Gly 255	Glu

Asp Leu Phe Leu Ser Arg Gly Phe Ser Ile Thr Leu Leu Ala Phe His

Ala Ile Phe Leu Leu Ala Phe Ile Leu Gly Arg Trp Leu Lys Ile Arg

		275					280					285			
Glu	Arg 290	Thr	Val	Leu	Gly	Met 295	Ile	Pro	Tyr	Val	Ile 300	Arg	Phe	Arg	Ser
Pro 305	Phe	Thr	Glu	Gln	Glu 310	Glu	Arg	Ala	Ile	Ser 315	Asn	Arg	Val	Val	Thr 320
Pro	Gly	Tyr	Val	Met 325	Ser	Thr	Ile	Leu	Ser 330	Ala	Asn	Val	Val	Gly 335	Leu
Leu	Phe	Ala	Arg 340	Ser	Leu	His	Tyr	Gln 345	Phe	Tyr	Ala	Tyr	Leu 350	Ala	Trp
Ala	Thr	Pro 355	Tyr	Leu	Leu	Trp	Thr 360	Ala	Cys	Pro	Asn	Leu 365	Leu	Val	Val
Ala	Pro 370	Leu	Trp	Ala	Ala	Gln 375	Glu	Trp	Ala	Trp	Asn 380	Val	Phe	Pro	Ser
Thr 385	Pro	Leu	Ser	Ser	Ser 390	Val	Val	Val	Ser	Val 395	Leu	Ala	Val	Thr	Val 400
Ala	Met	Ala	Phe	Ala 405	Gly	Ser	Asn	Pro	Gln 410	Pro	Arg	Glu	Thr	Ser 415	Lys
Pro	Lys	Gln	His 420												
<211 <212	> 38 > 445 > PR > Ho	Т	apien	s											
	> 38 Leu	Lys	Lys	Gln 5	Ser	Ala	Gly	Leu	Val 10	Leu	Trp	Gly	Ala	Ile 15	Leu
Phe	Val	Ala	Trp 20	Asn	Ala	Leu	Leu	Leu 25	Leu	Phe	Phe	Trp	Thr 30	Arg	Pro
Ala	Pro	Gly 35	Arg	Pro	Pro	Ser	Val 40	Ser	Ala	Leu	Asp	Gly 45	Asp	Pro	Ala

Ser	Leu 50	Thr	Arg	Glu	Val	Ile 55	Arg	Leu	Ala	Gln	Asp 60	Ala	Glu	Val	Glu
Leu 65	Glu	Arg	Gln	Arg	Gly 70	Leu	Leu	Gln	Gln	Ile 75	Gly	Asp	Ala	Leu	Ser 80
Ser	Gln	Arg	Gly	Arg 85	Val	Pro	Thr	Ala	Ala 90	Pro	Pro	Ala	Gln	Pro 95	Arg
Val	Pro	Val	Thr 100	Pro	Ala	Pro	Ala	Val 105	Ile	Pro	Ile	Leu	Val 110	Ile	Ala
Cys	Asp	Arg 115	Ser	Thr	Val	Arg	Arg 120	Cys	Leu	Asp	Lys	Leu 125	Leu	His	Tyr
Arg	Pro 130	Ser	Ala	Glu	Leu	Phe 135	Pro	Ile	Ile	Val	Ser 140	Gln	Asp	Cys	Gly
His 145	Glu	Glu	Thr	Ala	Gln 150	Ala	Ile	Ala	Ser	Tyr 155	Gly	Ser	Ala	Val	Thr 160
His	Ile	Arg	Gln	Pro 165	Asp	Leu	Ser	Ser	Ile 170	Ala	Val	Pro	Pro	Asp 175	His
Arg	Lys	Phe	Gln 180	Gly	Tyr	Tyr	Lys	Ile 185	Ala	Arg	His	Tyr	Arg 190	Trp	Ala
Leu	Gly	Gln 195	Val	Phe	Arg	Gln	Phe 200	Arg	Phe	Pro	Ala	Ala 205	Val	Val	Val
Glu	Asp 210	Asp	Leu	Glu	Val	Ala 215	Pro	Asp	Phe	Phe	Glu 220	Tyr	Phe	Arg	Ala
Thr 225	Tyr	Pro	Leu	Leu	Lys 230	Ala	Asp	Pro	Ser	Leu 235	Trp	Cys	Val	Ser	Ala 240
Trp	Asn	Asp	Asn	Gly 245	Lys	Glu	Gln	Met	Val 250	Asp	Ala	Ser	Arg	Pro 255	Glu
Leu	Leu	Tyr	Arg 260	Thr	Asp	Phe	Phe	Pro 265	Gly	Leu	Gly	Trp	Leu 270	Leu	Leu

Ala Glu Leu Trp Ala Glu Leu Glu Pro Lys Trp Pro Lys Ala Phe Trp

His Gly Gln Phe Phe Asp Gln His Leu Lys Phe Ile Lys Leu Asn Gln 325

Ala Tyr Asp Arg Asp Phe Leu Ala Arg Val Tyr Gly Ala P 355 360 365 Gln Val Glu Lys Val Arg Thr Asn Asp Arg Lys Glu Leu G 370 375 380	Gly Glu Val
	_
	Ala Lys Ala
Arg Val Gln Tyr Thr Gly Arg Asp Ser Phe Lys Ala Phe A 385 390 395	400
Leu Gly Val Met Asp Asp Leu Lys Ser Gly Val Pro Arg A 405 410	Ala Gly Tyr 415
Arg Gly Ile Val Thr Phe Gln Phe Arg Gly Arg Arg Val H 420 425 4	His Leu Ala 4 30
Pro Pro Leu Thr Trp Glu Gly Tyr Asp Pro Ser Trp Asn 435 440 445	
<210> 39 <211> 447 5 <212> PRT <213> Homo sapiens	
<400>39 Met Arg Phe Arg Ile Tyr Lys Arg Lys Val Leu Ile Leu T 1 5 10	Thr Leu Val 15
Val Ala Ala Cys Gly Phe Val Leu Trp Ser Ser Asn Gly A 20 25 3	Arg Gln Arg 30
Lys Asn Glu Ala Leu Ala Pro Pro Leu Leu Asp Ala Glu P 35 40 45	Pro Ala Arg
Gly Ala Gly Gly Arg Gly Gly Asp His Pro Ser Val Ala V 50 55 60	Val Gly Ile
Arg Arg Val Ser Asn Val Ser Ala Ala Ser Leu Val Pro A 65 70 75	Ala Val Pro 80

GIN	Pro	GIU	АІА	85	ASN	ьeu	rnr	ьеu	90	Tyr	Arg	ser	ьеu	95	Tyr
Gln	Leu	Asn	Phe 100	Asp	Gln	Thr	Leu	Arg 105	Asn	Val	Asp	Lys	Ala 110	Gly	Thr
Trp	Ala	Pro 115	Arg	Glu	Leu	Val	Leu 120	Val	Val	Gln	Val	His 125	Asn	Arg	Pro
Glu	Туг 130	Leu	Arg	Leu	Leu	Leu 135	Asp	Ser	Leu	Arg	Lys 140	Ala	Gln	Gly	Ile
Asp 145	Asn	Val	Leu	Val	Ile 150	Phe	Ser	His	Asp	Phe 155	Trp	Ser	Thr	Glu	Ile 160
Asn	Gln	Leu	Ile	Ala 165	Gly	Val	Asn	Phe	Cys 170	Pro	Val	Leu	Gln	Val 175	Phe
Phe	Pro	Phe	Ser 180	Ile	Gln	Leu	Tyr	Pro 185	Asn	Glu	Phe	Pro	Gly 190	Ser	Asp
Pro	Arg	Asp 195	Cys	Pro	Arg	Asp	Leu 200	Pro	Lys	Asn	Ala	Ala 205	Leu	Lys	Leu
Gly	Cys 210	Ile	Asn	Ala	Glu	Tyr 215	Pro	Asp	Ser	Phe	Gly 220	His	Tyr	Arg	Glu
Ala 225	Lys	Phe	Ser	Gln	Thr 230	Lys	His	His	Trp	Trp 235	Trp	Lys	Leu	His	Phe 240
Val	Trp	Glu	Arg	Val 245	Lys	Ile	Leu	Arg	Asp 250	Tyr	Ala	Gly	Leu	Ile 255	Leu
Phe	Leu	Glu	Glu 260	Asp	His	Tyr	Leu	Ala 265	Pro	Asp	Phe	Tyr	His 270	Val	Phe
Lys	Lys	Met 275	Trp	Lys	Leu	Lys	Gln 280	Gln	Glu	Cys	Pro	Glu 285	Cys	Asp	Val
Leu	Ser 290	Leu	Gly	Thr	Tyr	Ser 295	Ala	Ser	Arg	Ser	Phe 300	Tyr	Gly	Met	Ala
Asp 305	Lys	Val	Asp	Val	Lys 310	Thr	Trp	Lys	Ser	Thr 315	Glu	His	Asn	Met	Gly 320
Leu	Ala	Leu	Thr	Arg		Ala	Tyr		Lys 330		Ile	Glu	Cys	Thr	

Thr Phe Cys Thr Tyr Asp Asp Tyr Asn Trp Asp Trp Thr Leu Gln Tyr 340

	Leu	Thr	Val 355	Ser	Cys	Leu	Pro	Lys 360	Phe	Trp	Lys	Val	Leu 365	Val	Pro	Gln
	Ile	Pro 370	Arg	Ile	Phe	His	Ala 375	Gly	Asp	Cys	Gly	Met 380	His	His	Lys	Lys
	Thr 385	Cys	Arg	Pro	Ser	Thr 390	Gln	Ser	Ala	Gln	Ile 395	Glu	Ser	Leu	Leu	Asn 400
	Asn	Asn	Lys	Gln	Tyr 405	Met	Phe	Pro	Glu	Thr 410	Leu	Thr	Ile	Ser	Glu 415	Lys
	Phe	Thr	Val	Val 420	Ala	Ile	Ser	Pro	Pro 425	Arg	Lys	Asn	Gly	Gly 430	Trp	Gly
	Asp	Ile	Arg 435	Asp	His	Glu	Leu	Cys 440	Lys	Ser	Tyr	Arg	Arg 445	Leu	Gln	
5		> 85 > PR	.T chode	erma	reese	ei										
	<400 Met 1		Ser	Thr	Asn 5	Ala	Arg	Tyr	Val	Arg 10	Tyr	Leu	Leu	Ile	Ala 15	Phe
	Phe	Thr	Ile	Leu 20	Val	Phe	Tyr	Phe	Val 25	Ser	Asn	Ser	Lys	Tyr 30	Glu	Gly
	Val	Asp	Leu 35	Asn	Lys	Gly	Thr	Phe 40	Thr	Ala	Pro	Asp	Ser 45	Thr	Lys	Thr
	Thr	Pro 50	Lys	Pro	Pro	Ala	Thr 55	Gly	Asp	Ala	Lys	Asp 60	Phe	Pro	Leu	Ala
	Leu 65	Thr	Pro	Asn	Asp	Pro 70	Gly	Phe	Asn	Asp	Leu 75	Val	Gly	Ile	Ala	Pro 80
10	Gly	Pro	Arg	Met	Asn 85											
10		> 25 > AD	N													
15	<213 <400		chode	erma	reese	el										

60

atggcgtcaa caaatgcgcg ctatgtgcgc tatctactaa tcgccttctt cacaatcctc

	gtct	tcta	ct t	tgto	etcca	a tt	caaa	gtat	gag	ggcg	gtcg	atct	caac	aa q	gggca	cctt	2	120
	acag	ctcc	gg a	ttcc	gacca	aa ga	acgac	cacca	aac	geege	ccag	ccac	etgge	ga t	gcca	aagao	2	180
	tttc	ctct	.gg c	ccto	gacgo	cc ga	aacga	tcca	ggc	ettea	acg	acct	cgto	gg d	catco	rctccc	2	240
	ggcc	ctcg	raa t	gaac	3													255
5	<210><211><211><212><213>	> 58 > PR		apien	s													
	<400> Met 1		Phe	Arg	Ile 5	Tyr	Lys	Arg	Lys	Val 10	Leu	Ile	Leu	Thr	Leu 15	Val		
	Val .	Ala	Ala	Cys 20	Gly	Phe	Val	Leu	Trp 25	Ser	Ser	Asn	Gly	Arg 30	Gln	Arg		
	Lys	Asn	Glu 35	Ala	Leu	Ala	Pro	Pro 40	Leu	Leu	Asp	Ala	Glu 45	Pro	Ala	Arg		
10	Gly	Ala 50	Gly	Gly	Arg	Gly	Gly 55	Asp	His	Pro								
_	<210><211><211><212><213>	> 51 > PR		erma	reese	ei												
15	<400> Met 1	_	Ser	Thr	Asn 5	Ala	Arg	Tyr	Val	Arg 10	Tyr	Leu	Leu	Ile	Ala 15	Phe		
	Phe	Thr	Ile	Leu 20	Val	Phe	Tyr	Phe	Val 25	Ser	Asn	Ser	Lys	Tyr 30	Glu	Gly		
	Val .	Asp	Leu 35	Asn	Lys	Gly	Thr	Phe 40	Thr	Ala	Pro	Asp	Ser 45	Thr	Lys	Thr		
	Thr	Pro 50	Lys															
20	<210><211><211><212><213>	> 52 > PR		erma	reese	ei												
	<400>	> 44																

	Met 1	Ala	Ile	Ala	Arg 5	Pro	Val	Arg	Ala	Leu 10	Gly	Gly	Leu	Ala	Ala 15	Ile
	Leu	Trp	Cys	Phe 20	Phe	Leu	Tyr	Gln	Leu 25	Leu	Arg	Pro	Ser	Ser 30	Ser	Tyr
	Asn	Ser	Pro 35	Gly	Asp	Arg	Tyr	Ile 40	Asn	Phe	Glu	Arg	Asp 45	Pro	Asn	Leu
	Asp	Pro 50	Thr	Gly												
5	<210 <211 <212 <213	> 33 > PR		erma	reese	ei										
	<400 Met 1		Asn	Pro	Arg 5	Arg	Ala	Leu	Ile	Ala 10	Ala	Ala	Phe	Ile	Leu 15	Thr
	Val	Phe	Phe	Leu 20	Ile	Ser	Arg	Ser	His 25	Asn	Ser	Glu	Ser	Ala 30	Ser	Thr
10	Ser															
10	<210 <211 <212 <213	> 84 > PR		erma	reese	ei										
15	<400 Met 1		Pro	Arg	His 5	His	Ser	Ser	Gly	Phe 10	Ser	Asn	Gly	Tyr	Pro 15	Arg
	Ala	Asp	Thr	Phe 20	Glu	Ile	Ser	Pro	His 25	Arg	Phe	Gln	Pro	Arg 30	Ala	Thr
	Leu	Pro	Pro 35	His	Arg	Lys	Arg	Lys 40	Arg	Thr	Ala	Ile	Arg 45	Val	Gly	Ile
	Ala	Val 50	Val	Val	Ile	Leu	Val 55	Leu	Val	Leu	Trp	Phe 60	Gly	Gln	Pro	Arg
	Ser 65	Val	Ala	Ser	Leu	Ile 70	Ser	Leu	Gly	Ile	Leu 75	Ser	Gly	Tyr	Asp	Asp 80
20	<210 <211 <212	- > 47 > 55 > PR														
25	<213	- III	JIOUE	ıııla	eese	;1										

	<pre><400> 47 Met Leu Leu Pro Lys Gly Gly Leu Asp Trp Arg Ser Ala Arg Ala Gln 1</pre>
	Ile Pro Pro Thr Arg Ala Leu Trp Asn Ala Val Thr Arg Thr Arg Phe 20 25 30
	Ile Leu Leu Val Gly Ile Thr Gly Leu Ile Leu Leu Trp Arg Gly 35 40 45
	Val Ser Thr Ser Ala Ser Glu 50 55
5	<210> 48 <211> 20 <212> ADN <213> Artificial
10	<220> <223> Cebador
	<400> 48 ccgcgttgaa cggcttccca 20
15	<210> 49 <211> 24 <212> ADN <213> Artificial
20	<220> <223> Cebador
25	<400> 49 taacttgtac gctctcagtt cgag 24
20	<210> 50 <211> 20 <212> ADN <213> Artificial
30	<220> <223> Cebador
35	<400> 50 gcgacggcga cccattagca 20
40	<210> 51 <211> 19 <212> ADN <213> Artificial
	<220> <223> Cebador
45	<400> 51 catceteaag geeteagae 19

_	<210> 52 <211> 20 <212> ADN <213> Artificial	
5	<220> <223> Cebador	
10	<400> 52 tgcgctctca ccagcatcgc 20	
15	<210> 53 <211> 20 <212> ADN <213> Artificial	
	<220> <223> Cebador	
20	<400> 53 gtcctgggcg agttccgcac 20	
25	<210> 54 <211> 63 <212> ADN <213> Artificial	
30	<220> <223> Cebador	
30	<400> 54 agatttcagt ctctcaccac tcacctgagt tgcctctctc ggtctgaagg acgtggaatg	60
	atg	63
35	<210> 55 <211> 66 <212> ADN <213> Artificial	
40	<220> <223> Cebador	
	<400> 55 gcagggtgat gagctggatc accttgacgg tgttgcccat gttgagagaa gttgttggat	60
	tgatca	66
45	<210> 56 <211> 63 <212> ADN <213> Artificial	
50	<220> <223> Cebador	
	<400> 56 agatttcagt ctctcaccac tcacctgagt tgcctctctc ggtctgaagg acgtggaatg	60
	atg	63

5	<210> 57 <211> 66 <212> ADN <213> Artificial	
	<220> <223> Cebador	
10	<400> 57 cagageeget ategeogagg aggttgeeet tettgeecat gttgagagaa gttgttggat	60
	tgatca	66
15	<210> 58 <211> 63 <212> ADN <213> Artificial	
20	<220> <223> Cebador	
20	<400>58 agatttcagt ctctcaccac tcacctgagt tgcctctctc ggtctgaagg acgtggaatg	60
	atg	63
25	<210> 59 <211> 66 <212> ADN <213> Artificial	
30	<220> <223> Cebador	
	<400> 59 tcttgaggat gagctggacg agggtcttga aaaagcccat gttgagagaa gttgttggat	60
	tgatca	66
35	<210> 60 <211> 21 <212> ADN <213> Artificial	
40	<220> <223> Cebador	
45	<400> 60 agctccgtgg cgaaagcctg a 21	
45	<210> 61 <211> 66 <212> ADN <213> Artificial	
50	<220> <223> Cebador	
	<400> 61	

	cagccgcagc ct	cagcctct	ctcagcctca	tcagccgcgg	ccgccaactt	tgcgtccctt	60
	gtgacg						66
5	<210> 62 <211> 76 <212> ADN <213> Artificial						
10	<220> <223> Cebador						
.0	<400> 62 gcaacgagag ca	agagcagca	gtagtcgatg	ctaggcggcc	gcgggcagta	tgccggatgg	60
	ctggcttata ca	aggca					76
15	<210> 63 <211> 76 <212> ADN <213> Artificial						
20	<220> <223> Cebador						
	<400> 63 tgcctgtata ag	gccagccat	ccggcatact	gcccgcggcc	gcctagcatc	gactactgct	60
	gctctgctct cg	gttgc					76
25	<210> 64 <211> 20 <212> ADN <213> Artificial						
30	<220> <223> Cebador						
35	<400> 64 tgcgtcgccg tctcgc	ctcct	20				
	<210> 65 <211> 20 <212> ADN <213> Artificial						
40	<220> <223> Cebador						
45	<400> 65 ttaggcgacc tcttttt	cca	20				
50	<210> 66 <211> 20 <212> ADN <213> Artificial						
	<220> <223> Cebador						

	<400> 66 cgaggaagtc tcgtgaggat	20
5	<210> 67 <211> 19 <212> ADN <213> Artificial	
10	<220> <223> Cebador	
	<400> 67 cagctaaacc gacgggcca	19
15	<210> 68 <211> 20 <212> ADN <213> Artificial	
20	<220> <223> Cebador	
25	<400> 68 gaccgtatat ttgaaaaggg	20
	<210> 69 <211> 20 <212> ADN <213> Artificial	
30	<220> <223> Cebador	
35	<400> 69 gatgttgcgc ctgggttgac	20
40	<210> 70 <211> 23 <212> ADN <213> Artificial	
	<220> <223> Cebador	
45	<400> 70 taacttgtac gctctcagtt cga	23
50	<210> 71 <211> 20 <212> ADN <213> Artificial	
5.E	<220> <223> Cebador	
55	<400> 71 ccatgagctt gaacaggtaa	20
	<210> 72	

	<211> 20 <212> ADN <213> Artificial	
5	<220> <223> Cebador	
10	<400> 72 gattgtcatg gtgtacgtga	20
	<210> 73 <211> 20 <212> ADN <213> Artificial	
15	<220> <223> Cebador	
20	<400> 73 caagatggag ggcggcacag	20
25	<210> 74 <211> 22 <212> ADN <213> Artificial	
	<220> <223> Cebador	
30	<400> 74 gccagtagcg tgatagagaa gc	22
35	<210> 75 <211> 20 <212> ADN <213> Artificial	
40	<220> <223> Cebador	
40	<400> 75 gcgtcactca tcaaaactgc	20
45	<210> 76 <211> 19 <212> ADN <213> Artificial	
50	<220> <223> Cebador	
	<400> 76 cttcggcttc gatgtttca 19	
55	<210> 77 <211> 20 <212> ADN <213> Artificial	

	<220> <223> Cebador	
5	<400> 77 tgcgtcgccg tctcgctcct	20
10	<210> 78 <211> 20 <212> ADN <213> Artificial	
	<220> <223> Cebador	
15	<400> 78 tgacgtacca gttgggatga	20
20	<210> 79 <211> 20 <212> ADN <213> Artificial	
25	<220> <223> Cebador	
25	<400> 79 gatgttgcgc ctgggttgac	20
30	<210> 80 <211> 20 <212> ADN <213> Artificial	
35	<220> <223> Cebador	
	<400> 80 tgacgtacca gttgggatga	20
40	<210> 81 <211> 20 <212> ADN <213> Artificial	
45	<220> <223> Cebador	
50	<400> 81 tgcgtcgccg tctcgctcct	20
30	<210> 82 <211> 20 <212> ADN <213> Artificial	
55	<220> <223> Cebador	
	<400> 82	

	gattgtcatg gtgtacgtga	20					
5	<210> 83 <211> 20 <212> ADN <213> Artificial						
10	<220> <223> Cebador						
10	<400> 83 caagatggag ggcggcacag	20					
15	<210> 84 <211> 22 <212> ADN <213> Artificial						
20	<220> <223> Cebador						
	<400> 84 gccagtagcg tgatagagaa gc	22					
25	<210> 85 <211> 488 <212> PRT <213> Trichoderma reesei						
30	<400> 85 Met Arg Ala Ser Pro Leu A 1 5	Ala Val Ala	a Gly Val i	Ala Leu	Ala	Ser 15	Ala

Ala Gln Ala Gln Val Val Gln Phe Asp Ile Glu Lys Arg His Ala Pro

Gly Asp Leu Thr Ser Ile Asp Ile Ile Ser Pro Asn Gly Gly Lys Thr

230

Ser Thr Gly Ser Ile Leu Phe Gly Gly Ile Asp Thr Glu Lys Tyr His

Leu Ile Asn Ser Val Ala Phe Ser Leu Trp Leu Asn Asp Leu Asp Ala 195 200 205

- Phe Thr Glu Phe Ala Val Asn Leu Tyr Ser Val Gln Ala Thr Ser Pro
- Ser Gly Thr Asp Thr Leu Ser Thr Ser Glu Asp Thr Leu Ile Ala Val 260 265 270

Leu	Asp	Ser 275	Gly	Thr	Thr	Leu	Thr 280	Tyr	Leu	Pro	Gln	Asp 285	Met	Ala	Glu
Glu	Ala 290	Trp	Asn	Glu	Val	Gly 295	Ala	Glu	Tyr	Ser	Asn 300	Glu	Leu	Gly	Leu
Ala 305	Val	Val	Pro	Cys	Ser 310	Val	Gly	Asn	Thr	Asn 315	Gly	Phe	Phe	Ser	Phe 320
Thr	Phe	Ala	Gly	Thr 325	Asp	Gly	Pro	Thr	Ile 330	Asn	Val	Thr	Leu	Ser 335	Glu
Leu	Val	Leu	Asp 340	Leu	Phe	Ser	Gly	Gly 345	Pro	Ala	Pro	Arg	Phe 350	Ser	Ser
Gly	Pro	Asn 355	Lys	Gly	Gln	Ser	Ile 360	Cys	Glu	Phe	Gly	Ile 365	Gln	Asn	Gly
Thr	Gly 370	Ser	Pro	Phe	Leu	Leu 375	Gly	Asp	Thr	Phe	Leu 380	Arg	Ser	Ala	Phe
Val 385	Val	Tyr	Asp	Leu	Val 390	Asn	Asn	Gln	Ile	Ala 395	Ile	Ala	Pro	Thr	Asn 400
Phe	Asn	Ser	Thr	Arg 405	Thr	Asn	Val	Val	Ala 410	Phe	Ala	Ser	Ser	Gly 415	Ala
Pro	Ile	Pro	Ser 420	Ala	Thr	Ala	Ala	Pro 425	Asn	Gln	Ser	Arg	Thr 430	Gly	His
Ser	Ser	Ser 435	Thr	His	Ser	Gly	Leu 440	Ser	Ala	Ala	Ser	Gly 445	Phe	His	Asp
Gly	Asp 450	Asp	Glu	Asn	Ala	Gly 455	Ser	Leu	Thr	Ser	Val 460	Phe	Ser	Gly	Pro
Gly 465	Met	Ala	Val	Val	Gly 470	Met	Thr	Ile	Cys	Tyr 475	Thr	Leu	Leu	Gly	Ser 480
Ala	Ile	Phe	Gly	Ile 485	Gly	Trp	Leu								

<400> 86

<213> Trichoderma reesei

<210> 86 <211> 761 <212> PRT

Met 1	Arg	Ser	Thr	Leu 5	Tyr	Gly	Leu	Ala	Ala 10	Leu	Pro	Leu	Ala	Ala 15	Gln
Ala	Leu	Glu	Phe 20	Ile	Asp	Asp	Thr	Val 25	Ala	Gln	Gln	Asn	Gly 30	Ile	Met
Arg	Tyr	Thr 35	Leu	Thr	Thr	Thr	Lys 40	Gly	Ala	Thr	Ser	Lys 45	His	Leu	His
Arg	Arg 50	Gln	Asp	Ser	Ala	A sp 55	Leu	Met	Ser	Gln	Gln 60	Thr	Gly	Tyr	Phe
Tyr 65	Ser	Ile	Gln	Leu	Glu 70	Ile	Gly	Thr	Pro	Pro 75	Gln	Ala	Val	Ser	Val 80
Asn	Phe	Asp	Thr	Gly 85	Ser	Ser	Glu	Leu	Trp 90	Val	Asn	Pro	Val	Cys 95	Ser
Lys	Ala	Thr	Asp 100	Pro	Ala	Phe	Cys	Lys 105	Thr	Phe	Gly	Gln	Tyr 110	Asn	His
Ser	Thr	Thr 115	Phe	Val	Asp	Ala	Lys 120	Ala	Pro	Gly	Gly	Ile 125	Lys	Tyr	Gly
Thr	Gly 130	Phe	Val	Asp	Phe	Asn 135	Tyr	Gly	Tyr	Asp	Tyr 140	Val	Gln	Leu	Gly
Ser 145	Leu	Arg	Ile	Asn	Gln 150	Gln	Val	Phe	Gly	Val 155	Ala	Thr	Asp	Ser	Glu 160
Phe	Ala	Ser	Val	Gly 165	Ile	Leu	Gly	Ala	Gly 170	Pro	Asp	Leu	Ser	Gly 175	Trp
Thr	Ser	Pro	Tyr 180	Pro	Phe	Val	Ile	Asp 185	Asn	Leu	Val	Lys	Gln 190	Gly	Phe
Ile	Lys	Ser 195	Arg	Ala	Phe	Ser	Leu 200	Asp	Ile	Arg	Gly	Leu 205	Asp	Ser	Asp
Arg	Gly 210	Ser	Val	Thr	Tyr	Gly 215	Gly	Ile	Asp	Ile	Lys 220	Lys	Phe	Ser	Gly
Pro 225	Leu	Ala	Lys	Lys	Pro 230	Ile	Ile	Pro	Ala	Ala 235	Gln	Ser	Pro	Asp	Gly 240
Tyr	Thr	Arg	Tyr	Trp 245	Val	His	Met	Asp	Gly 250	Met	Ser	Ile	Thr	Lys 255	Glu

Asp	GTĀ	ser	260	Pne	GIU	тте	Pne	265	цуs	Pro	ASN	сту	270	Pro	vai
Leu	Leu	Asp 275	Ser	Gly	Tyr	Thr	Val 280	Ser	Thr	Leu	Pro	Gly 285	Pro	Leu	Met
Asp	Lys 290	Ile	Leu	Glu	Ala	Phe 295	Pro	Ser	Ala	Arg	Leu 300	Glu	Ser	Thr	Ser
Gly 305	Asp	Tyr	Ile	Val	Asp 310	Cys	Asp	Ile	Ile	Asp 315	Thr	Pro	Gly	Arg	Val 320
Asn	Phe	Lys	Phe	Gly 325	Asn	Val	Val	Val	Asp 330	Val	Glu	Tyr	Lys	Asp 335	Phe
Ile	Trp	Gln	Gln 340	Pro	Asp	Leu	Gly	Ile 345	Cys	Lys	Leu	Gly	Val 350	Ser	Gln
Asp	Asp	As n 355	Phe	Pro	Val	Leu	Gly 360	Asp	Thr	Phe	Leu	Arg 365	Ala	Ala	Tyr
Val	Val 370	Phe	Asp	Trp	Asp	Asn 375	Gln	Glu	Val	His	Ile 380	Ala	Ala	Asn	Glu
Asp 385	Cys	Gly	Asp	Glu	Leu 390	Ile	Pro	Ile	Gly	Ser 395	Gly	Pro	Asp	Ala	11e 400
Pro	Ala	Ser	Ala	Ile 405	Gly	Lys	Cys	Ser	Pro 410	Ser	Val	Lys	Thr	Asp 415	Thr
Thr	Thr	Ser	Val 420	Ala	Glu	Thr	Thr	Ala 425	Thr	Ser	Ala	Ala	Ala 430	Ser	Thr
Ser	Glu	Leu 435	Ala	Ala	Thr	Thr	Ser 440	Glu	Ala	Ala	Thr	Thr 445	Ser	Ser	Glu
Ala	Ala 450	Thr	Thr	Ser	Ala	Ala 455	Ala	Glu	Thr	Thr	Ser 460	Val	Pro	Leu	Asn
Thr 465	Ala	Pro	Ala	Thr	Thr 470	Gly	Leu	Leu	Pro	Thr 475	Thr	Ser	His	Arg	Phe 480
Ser	Asn	Gly	Thr	Ala 485	Pro	Tyr	Pro	Ile	Pro 490	Ser	Leu	Ser	Ser	Val 495	Ala

Ala Ala Ala Gly Ser Ser Thr Val Pro Ser Glu Ser Ser Thr Gly Ala

			500					505					510		
Ala	Ala	Ala 515	Gly	Thr	Thr	Ser	Ala 520	Ala	Thr	Gly	Ser	Gly 525	Ser	Gly	Ser
Gly	Ser 530	Gly	Asp	Ala	Thr	Thr 535	Ala	Ser	Ala	Thr	Tyr 540	Thr	Ser	Thr	Phe
Thr 545	Thr	Thr	Asn	Val	Tyr 550	Thr	Val	Thr	Ser	Cys 555	Pro	Pro	Ser	Val	Thr 560
Asn	Cys	Pro	Val	Gly 565	His	Val	Thr	Thr	Glu 570	Val	Val	Val	Ala	Tyr 575	Thr
Thr	Trp	Cys	Pro 580	Val	Glu	Asn	Gly	Pro 585	His	Pro	Thr	Ala	Pro 590	Pro	Lys
Pro	Ala	Ala 595	Pro	Glu	Ile	Thr	Ala 600	Thr	Phe	Thr	Leu	Pro 605	Asn	Thr	Tyr
Thr	Cys 610	Ser	Gln	Gly	Lys	Asn 615	Thr	Cys	Ser	Asn	Pro 620	Lys	Thr	Ala	Pro
Asn 625	Val	Ile	Val	Val	Thr 630	Pro	Ile	Val	Thr	Gln 635	Thr	Ala	Pro	Val	Val 640
Ile	Pro	Gly	Ile	Ala 645	Ala	Pro	Thr	Pro	Thr 650	Pro	Ser	Val	Ala	Ala 655	Ser
Ser	Pro	Ala	Ser 660	Pro	Ser	Val	Val	Pro 665	Ser	Pro	Thr	Ala	Pro 670	Val	Ala
Thr	Ser	Pro 675	Ala	Gln	Ser	Ala	Tyr 680	Tyr	Pro	Pro	Pro	Pro 685	Pro	Pro	Glu
His	Ala 690	Val	Ser	Thr	Pro	Val 695	Ala	Asn	Pro	Pro	Ala 700	Val	Thr	Pro	Ala
Pro 705	Ala	Pro	Phe	Pro	Ser 710	Gly	Gly	Leu	Thr	Thr 715	Val	Ile	Ala	Pro	Gly 720
Ser	Thr	Gly	Val	Pro 725	Ser	Gln	Pro	Ala	Gln 730	Ser	Gly	Leu	Pro	Pro 735	Val
Pro	Ala	Gly	Ala 740	Ala	Gly	Phe	Arg	Ala 745	Pro	Ala	Ala	Val	Ala 750	Leu	Leu
Ala	Gly	Ala 755	Val	Ala A	Ala <i>I</i>		eu L '60	eu							

_	<212	> 526 > PR		erma ı	reese	i										
5	<400 Met 1	-	Pro	Asn	Ser 5	Val	Leu	Leu	Ala	Pro 10	Leu	Ala	Leu	Tyr	Ala 15	Ser
	Gly	Ala	Leu	Ala 20	Phe	Tyr	Pro	Tyr	Thr 25	Pro	Pro	Trp	Leu	Lys 30	Glu	Leu
	Glu	Glu	His 35	Asn	Ala	Gly	Glu	Ala 40	Lys	Arg	Ser	Ala	Asp 45	Asn	Gly	Leu
	Thr	Phe 50	Asp	Ile	Lys	Arg	Arg 55	Ala	Ser	Arg	Arg	Ala 60	Pro	Ala	Ser	Gln
	Glu 65	Glu	Lys	Ala	Ala	Trp 70	Gln	Ala	Ala	Leu	Leu 75	Ser	His	Lys	Tyr	Ser 80
	Glu	Ser	Val	Thr	Pro 85	Ser	Pro	Ser	Pro	Asp 90	Thr	Thr	Leu	Ser	Lys 95	Arg
	Asp	Asn	Gln	Phe 100	Ser	Ile	Leu	Lys	Ala 105	Val	Asp	Pro	Asp	Ala 110	Pro	Asn
	Thr	Ala	Gly 115	Leu	Ala	Gln	Asp	Gly 120	Thr	Asp	Tyr	Ser	Tyr 125	Phe	Val	Gln
	Ala	Ser 130	Leu	Gly	Ser	Lys	Lys 135	Thr	Lys	Leu	Tyr	Met 140	Leu	Leu	Asp	Thr
	Gly 145	Ala	Gly	Ser	Ser	Trp 150	Val	Met	Gly	Thr	As p 155	Cys	Val	Ser	Glu	Ala 160
	Cys	Ser	Leu	His	Asp 165	Ser	Phe	Gly	Pro	Glu 170	Asp	Ser	Asp	Thr	Leu 175	Lys
	Thr	Ser		Lys	_	Phe			Ala		Gly	Ser	_	Ala	Val	Ser

Gly Ser Leu Val Asn Asp Thr Ile Glu Val Ala Gly Met Ser Leu Thr 195

Tyr	Gln 210	Phe	Gly	Leu	Ala	His 215	Asn	Thr	Ser	Ser	Asp 220	Phe	Val	His	Phe
Ala 225	Phe	Asp	Gly	Ile	Leu 230	Gly	Met	Ser	Met	Asn 235	Ser	Gly	Ala	Asn	Glu 240
Asn	Phe	Leu	Ser	Ala 245	Leu	Glu	Gly	Ala	Gly 250	Leu	Leu	Asp	Lys	Ser 255	Ile
Phe	Ser	Val	Ala 260	Leu	Ala	Arg	Ala	Ser 265	Asp	Gly	His	Asn	Asp 270	Gly	Glu
Val	Thr	Phe 275	Gly	Ala	Thr	Asn	Pro 280	Ser	Arg	Tyr	Thr	Gly 285	Asp	Ile	Thr
Tyr	Thr 290	Pro	Ile	Pro	Ser	Gly 295	Thr	Asp	Trp	Ser	Ile 300	Pro	Leu	Asp	Asp
Met 305	Ser	Tyr	Asn	Gly	Lys 310	Lys	Gly	Asn	Val	Gly 315	Gly	Ile	Asn	Ala	Tyr 320
Ile	Asp	Thr	Gly	Thr 325	Ser	Tyr	Met	Phe	Gly 330	Pro	Ser	Lys	Asn	Val 335	Lys
Ala	Leu	His	Ala 340	Val	Ile	Asp	Gly	Ala 345	Lys	Ser	Ser	Asp	Gly 350	Ile	Thr
Trp	Thr	Val 355	Pro	Суѕ	Asp	Thr	Thr 360	Thr	Pro	Leu	Val	Val 365	Thr	Phe	Ser
Gly	Val 370	Asp	Phe	Ala	Ile	Ser 375	Pro	Lys	Asp	Trp	Ile 380	Ser	Pro	Lys	Asp
Ser 385	Ser	Gly	Lys	Cys	Thr 390	Ser	Asn	Val	Tyr	Gly 395	Tyr	Glu	Val	Val	Ser 400
Gly	Ser	Trp	Leu	Phe 405	Gly	Asp	Thr	Phe	Leu 410	Lys	Asn	Val	Tyr	Ala 415	Val
Phe	Asp	Lys	Glu 420	Gln	Met	Arg	Ile	Gly 425	Lys	Thr	Ser	Pro	Arg 430	Ala	Thr
Ser	Pro	Ser 435	Ser	Pro	Ala	Pro	Thr 440	Arg	Thr	Pro	Ser	Pro 445	Ala	Thr	Thr
Ser	Pro	Ser	Ser	Ala	Ser	Thr	Pro	Gly	Ser	Thr	Pro	Thr	Thr	Ser	Ser

Thr Arg Thr Ala Arg Pro Ser Thr Ser Ala Pro Ser Gly Thr Ser Ser 465 470 475 480

Thr Gly Ala Pro Ser Pro Ser Ala Ser Ala Asn Arg Asp Val Leu Arg
485 490 495

Ala Lys Arg Ile Asn Met Leu Lys Ser Ile Ser Ser Phe Trp His Asp 500 505 510

Pro Cys Cys Cys Leu Phe Leu His Val Ser Ile Ser Ser Thr 515 520 525

<210> 88 <211> 2559

<212> ADN

5

<213> Leishmania mexicana

<400> 88

60 atggggaaaa ataaggcaaa ttcagtggcc gactccggct ctgcggcaac cgcacctcgt gaageteetg cecaageeaa agatgeegee ceacaageee agacegeate tecacegeet 120 aagaagactt tgttgcccaa aacgctaaca gatgagacgg aatttgtcgg catctttccg 180 240 ttccctttct ggccagtacg gttcgtcgtt acggtggtgg cactcttcgg cttaggcgcc agctgcctcc aagccttcac ggttcgcatg acctcggtta agatttacgg atacctgatc 300 360 cacgagttcg acccgtggtt caactaccgc gctgccgagt acatgtccac gcacggctgg tecgeettet teagetggtt egactacatg agetggtace egetgggeeg eecegtegge 420 tccaccacgt accegggect gcagttcact gccgtcgcca ttcaccgcgc actggcggct 480 540 gccggcatcc cgatgtctct caacgacgtg tgtgtgctga tcccggcgtg gtttggcgcc ategetaceg etettetgge tetttgeaeg taegaageea gtgggtegae ggtggegee 600 gccgctgccg ccctctcctt ctccatcatc ccagcccacc tgatgcggtc catggcgggt 660 gagttcgaca acgagtgcat cgccgtcgcc gccatgctgc tcaccttcta ctgctgggtg 720 cgctcgctgc gcacgcggtc ctcgtggccc atcggcgtcc tcaccggtgt cgcctacggc 780 tacatggtgg cggcgtgggg cggctacatt ttcgtgctca acatggttgc catgcatgcc 840 ggcatatcat cgatggtgga ctgggcccgc aacacgtaca acccgtcgct gctgcgtgca 900 960 tacacgctgt tctacgttgt cggcaccgcc atcgccgtgt gcgtgccgcc agtggggatg tegecettea agtegetgga geagetgggt gegetgetgg tgettgtett eetgtgeggg 1020 ctgcaggtgt gcgaggtgct gcgggcacgc gccggtgtcg aggttcgctc tcgcgcgaac 1080 ttcaagatcc gcgcgcgct cttcagcgcg atggctggcg gggctgcgct tgcaatcgcg 1140 ctgctggcac cgagggggta cttcgggccc ctttcggctc gtgtgcgtgc gctgttcgtg 1200

gagcacacgc	gcactggcaa	tccgctggtc	gactcggtcg	ccgaacatca	acccgccagc	1260
cctgaggcaa	tgtggtcgtt	tcttcacgtg	tgcggcgtga	catggggctt	gggcttcatt	1320
gtgcttgctg	tctcaacgtt	cgtgaactac	tccccgtcga	aggtcttctg	ggtactgaac	1380
tctggtgccg	tgtactactt	cagcacccgc	atggctcggc	tgctgcttct	ctccggtccc	1440
gctgcgtgtc	tgtccactgg	cattttcgtg	ggggcaattc	tggaagcagc	ggtgcagctc	1500
agcttttggg	acagtgatgc	gacaaaggcc	aagccccaga	agcagaccca	acgccaccag	1560
aggggggctc	gtaaggacaa	caagcgaaat	gacgctgaga	gcggaatgac	cgcgctctca	1620
ctttgcgaca	tcgtgtccgg	tagctctctg	gcttggggcc	atcgtatggt	gctgtgcatc	1680
gctatgtggg	ctctcgtgac	gacaaccgtg	gtgaccttca	tcagttccgg	tttcgcgtcc	1740
cactcactaa	aatttgcgga	gcagtcgtca	aatccgatga	ttgttttcgc	ggcctccgtg	1800
ccaaaccgtg	caacaggcaa	gcctatgatg	atattggtgg	atgactacct	gcacagctat	1860
ctctggctgc	gcgataacac	acccaggagt	gcgcgcattt	tggcctggtg	ggactacggc	1920
taccagatca	caggcatcgg	caaccgcacc	tcgctggccg	atggcaacac	ctggaaccac	1980
gagcacatcg	ccaccatcgg	caagatgttg	acgtcgcccg	tggcggaggc	gcactcgctg	2040
gtgcgccaca	tggccgacta	cgtcctcatc	tgggctgggc	agagcggaga	cttgatgaag	2100
tcaccgcaca	tggcgcgcat	cggcaacagt	gtgtaccacg	acatctgccc	caacgacccg	2160
ctgtgccagc	aattcggctt	ttacagaaat	gattaccatc	gtccaacacc	gatgatgcgg	2220
gcgtcgctgc	tgtacaacct	gcacgaggcc	gggaaaacag	cggccgtgaa	ggtggaccca	2280
tccctctttc	aggaggtgta	ctcgtccaag	tacggcctgg	tgcgcatctt	caaggtcatg	2340
aacgtgagcg	cggagagcaa	gaagtgggtt	gctgacccgg	caaaccgcgt	gtgccgcccg	2400
cctgggtcgt	ggatctgccc	cgggcagtac	ccgccggcga	aggagatcca	ggagatgctg	2460
gcacaccggg	tctccttcga	tcaggtggac	aaggacaaga	agcgcaaggc	gacgtaccac	2520
gaggagtaca	tgcgccggat	gcgtgaaaac	gagatctga			2559
	cctgaggcaa gtgcttgctg tctggtgccg gctgcgtgtc agcttttggg agggggctc ctttgcgaca gctatgtggg cactcactaa ccaaaccgtg ctctggctgc taccagatca gagcacatcg gtgcgcaca tcaccgcaca ctgtgccagc gcgtcgctgc tccctcttc aacgtgagcg cctgggtcgt	cctgaggcaa tgtggtcgtt gtgcttgctg tctcaacgtt tctggtgccg tgtactactt gctgcgtgtc tgtccactgg agcttttggg acagtgatgc agggggctc gtaaggacaa ctttgcgaca tcgtgtccgg gctatgtggg ctctcgtgac cactcactaa aatttgcgga ccaaaccgtg caacaggcaa ctctggctgc gcgataacac taccagatca caggcatcgg gagcacatcg ccaccatcgg gtgcgcaca tggccgcat tcaccgcaca tggcgcgcat ctgtgccagc aattcggctt gcgtcgctgc tgtacaacct tccctcttc aggaggtgta acctgggtcgt ggatctgcc gcacaccggg tggatcgcac cctgggtcgt tggatcgcac cctgggtcgt tggatctgcc gcacaccggg tctccttcga	cctgaggcaa tgtggtcgtt tcttcacgtg gtgcttgctg tctcaacgtt cgtgaactac tctggtgccg tgtactactt cagcacccgc gctgcgtgtc tgtccactgg cattttcgtg agcttttggg acagtgatgc gacaaaggcc agggggctc gtaaggacaa caagcgaaat ctttgcgaca tcgtgtccgg tagctctctg gctatgtggg ctctcgtgac gacaaccgtg cactcactaa aatttgcgga gcagtcgtca ccaaaccgtg caacaggcaa gcctatgatg ctctggctgc gcgataacac acccaggagt taccagatca caggcatcgg caaccgcacc gagcacatcg ccaccatcgg caagatgttg gtgcgcaca tggccgacta cggcaacagt tcaccgcaca tggcgcgcat cggcaacagt ctgtgccagc aattcggctt ttacagaaat gcgtcgctgc tgtacaacct gcaccgaggc tccctctttc aggaggtgta ctcgtcaag aacgtgagcg cggagagcaa gaagtgggtt cctgggtcgt tgccccc cgggcagtac gcacaccggg tctccttcga tcaggtggac	cctgaggcaa tgtggtcgtt tcttcacgtg tgcggcgtga gtgcttgctg tctcaacgtt cgtgaactac tccccgtcga tctggtgccg tgtactactt cagcacccgc atggctcggc gctgcgtgtc tgtccactgg cattttcgtg ggggcaattc agcttttggg acagtgatgc gacaaaggcc aagccccaga aggggggctc gtaaggacaa caagcgaaat gacgctgaga ctttgcgaca tcgtgtccgg tagctctctg gcttggggcc gctatgtggg ctctcgtgac gacaaccgtg gtgaccttca cactcactaa aatttgcgga gcagtcgtca aatccgatga ctctggctgc gcgataacac acccaggagt gcgcgattt taccagatca caggcatcg caaccggagt gcgcgcattt taccagatca caggcatcg caaccgcacc tcgctggccg gdgcgcacac tggccgacta cgccacac tgggcgcgc gtgcgcacac tggccgcat cggcaacagt gtgtaccacg ctgtgccaca tggccgcat cggcaacagt gtgtaccacg ctgtgccaca tggcgcgat cgcaacagt gtgtaccacg ctgtgccaca tgtacaacct gcaccgagcc gggaaaacag tccctctttc aggaggtgta ctcgtccaag tacggcctgg cacggtcgc cggaagacaa gaagtggtt gctgacccgg cctgggtcgt ggatctgcc cgggcagtac ccgccggcga	cctgaggcaa tgtggtcgtt tcttcacgtg tgcggcgtga catgggcgttg gtgcttgctg tctcaacgtt cgtgaactac tccccgtcga aggtcttctg tctggtgccg tgtactactt cagcacccgc atggctcgcc tggaagcac agcttttggg acagtgatgc gacaaaggcc aagcccaga agcagacca aggggggctc gtaaggacaa caagcgaaat gacgccaga agcagacca ctttgcgaca tcgtgtccgg tagctcttctg gcttggggcc atcgtatggt gctatgtggg ctctcgtgac gacaaccgtg gtgaccttca tcagttcgg cactcactaa aatttgcgga gcagtcgtca aatccgatga ttgtttcgc ccaaaccgtg caacaggcaa gcctatgatg atattggtg taccagatca caggcatac acccaggagt gcgcgcattt tggcctggtg taccagatca caggcatcg caaccgcacc tcgctggccg atggcaacac gagcacatcg ccaccatcgg caacacgcacc tcgctggccg atggcaacac gagcacatcg ccaccatcgg caacagtgtg acgtcgcatt tggccggggg gtgcgcaca tggccgacta cgccaccac tggctggcc acatcgccc ctgtgccaca tggccgcat cggcaacagt gtgtaccacc actggcgg gtgcgcaca tggccgcat cggcaacagt gtgtaccacc actgcgccc ctgtgccagc aattcggctt ttacagaaat gattaccatc gtccaacacc gcgtcgctgc tgtacaacct gcacgaggcc gggaaaacaa cggccgtgaa tccctctttc aggagtgta ctcgtcaag tacggcctgg tgcgcatct aacgtgagcg cggaagcaa gaagtggtt gctgacccgg caaaccgcgt cctgggtcgt ggatctgcc cgggcagtac ccgccggcga aggagatca gcacaccggg tctcttcga tcaggcagtac ccgccggcga aggagatca	qaqaacaaqq qaactqqqaa tccqqtqqt qactcqqtqq ccqaacatca acccqcaaqq cctqqqqaa tqtqqttq tcttcacqqt tqcqqqqq aqqtcttqqq qqqactqq tctcqqqqqqqqqq

_

<210> 89 <211> 852 <212> PRT

<213> Leishmania mexicana

<400> 89

Met Gly Lys Asn Lys Ala Asn Ser Val Ala Asp Ser Gly Ser Ala Ala 1 5 10 15

Thr Ala Pro Arg Glu Ala Pro Ala Gln Ala Lys Asp Ala Ala Pro Gln 20 25 30

Ala Gln Thr Ala Ser Pro Pro Pro Lys Lys Thr Leu Leu Pro Lys Thr

		35					40					45			
Leu	Thr 50	Asp	Glu	Thr	Glu	Phe 55	Val	Gly	Ile	Phe	Pro 60	Phe	Pro	Phe	Trp
Pro 65	Val	Arg	Phe	Val	Val 70	Thr	Val	Val	Ala	Leu 75	Phe	Gly	Leu	Gly	Ala 80
Ser	Cys	Leu	Gln	Ala 85	Phe	Thr	Val	Arg	Met 90	Thr	Ser	Val	Lys	Ile 95	Tyr
Gly	Tyr	Leu	Ile 100	His	Glu	Phe	Asp	Pro 105	Trp	Phe	Asn	Tyr	Arg 110	Ala	Ala
Glu	Tyr	Met 115	Ser	Thr	His	Gly	Trp 120	Ser	Ala	Phe	Phe	Ser 125	Trp	Phe	Asp
Tyr	Met 130	Ser	Trp	Tyr	Pro	Leu 135	Gly	Arg	Pro	Val	Gly 140	Ser	Thr	Thr	Tyr
Pro 145	Gly	Leu	Gln	Phe	Thr 150	Ala	Val	Ala	Ile	His 155	Arg	Ala	Leu	Ala	Ala 160
Ala	Gly	Ile	Pro	Met 165	Ser	Leu	Asn	Asp	Val 170	Cys	Val	Leu	Ile	Pro 175	Ala
Trp	Phe	Gly	Ala 180	Ile	Ala	Thr	Ala	Leu 185	Leu	Ala	Leu	Cys	Thr 190	Tyr	Glu
Ala	Ser	Gly 195	Ser	Thr	Val	Ala	Ala 200	Ala	Ala	Ala	Ala	Leu 205	Ser	Phe	Ser
Ile	Ile 210	Pro	Ala	His	Leu	Met 215	Arg	Ser	Met	Ala	Gly 220	Glu	Phe	Asp	Asn
Glu 225	Cys	Ile	Ala	Val	Ala 230	Ala	Met	Leu	Leu	Thr 235	Phe	Tyr	Cys	Trp	Val 240
Arg	Ser	Leu	Arg	Thr 245	Arg	Ser	Ser	Trp	Pro 250	Ile	Gly	Val	Leu	Thr 255	Gly
Val	Ala	Tyr	Gly 260	Tyr	Met	Val	Ala	Ala 265	Trp	Gly	Gly	Tyr	Ile 270	Phe	Val
Leu	Asn	Met 275	Val	Ala	Met	His	Ala 280	Gly	Ile	Ser	Ser	Met 285	Val	Asp	Trp

Ala Arg Asn Thr Tyr Asn Pro Ser Leu Leu Arg Ala Tyr Thr Leu Phe 295 300 Tyr Val Val Gly Thr Ala Ile Ala Val Cys Val Pro Pro Val Gly Met Ser Pro Phe Lys Ser Leu Glu Gln Leu Gly Ala Leu Leu Val Leu Val Phe Leu Cys Gly Leu Gln Val Cys Glu Val Leu Arg Ala Arg Ala Gly Val Glu Val Arg Ser Arg Ala Asn Phe Lys Ile Arg Ala Arg Val Phe Ser Ala Met Ala Gly Gly Ala Ala Leu Ala Ile Ala Leu Leu Ala Pro Arg Gly Tyr Phe Gly Pro Leu Ser Ala Arg Val Arg Ala Leu Phe Val Glu His Thr Arg Thr Gly Asn Pro Leu Val Asp Ser Val Ala Glu His Gln Pro Ala Ser Pro Glu Ala Met Trp Ser Phe Leu His Val Cys Gly Val Thr Trp Gly Leu Gly Phe Ile Val Leu Ala Val Ser Thr Phe Val Asn Tyr Ser Pro Ser Lys Val Phe Trp Val Leu Asn Ser Gly Ala Val Tyr Tyr Phe Ser Thr Arg Met Ala Arg Leu Leu Leu Ser Gly Pro 470 475 Ala Ala Cys Leu Ser Thr Gly Ile Phe Val Gly Ala Ile Leu Glu Ala Ala Val Gln Leu Ser Phe Trp Asp Ser Asp Ala Thr Lys Ala Lys Pro 500 505 Gln Lys Gln Thr Gln Arg His Gln Arg Gly Ala Arg Lys Asp Asn Lys Arg Asn Asp Ala Glu Ser Gly Met Thr Ala Leu Ser Leu Cys Asp Ile

Val 545	Ser	Gly	Ser	Ser	Leu 550	Ala	Trp	Gly	His	Arg 555	Met	Val	Leu	Cys	11e 560
Ala	Met	Trp	Ala	Leu 565	Val	Thr	Thr	Thr	Val 570	Val	Thr	Phe	Ile	Ser 575	Ser
Gly	Phe	Ala	Ser 580	His	Ser	Leu	Lys	Phe 585	Ala	Glu	Gln	Ser	Ser 590	Asn	Pro
Met	Ile	Val 595	Phe	Ala	Ala	Ser	Val 600	Pro	Asn	Arg	Ala	Thr 605	Gly	Lys	Pro
Met	Met 610	Ile	Leu	Val	Asp	Asp 615	Tyr	Leu	His	Ser	Tyr 620	Leu	Trp	Leu	Arg
Asp 625	Asn	Thr	Pro	Arg	Ser 630	Ala	Arg	Ile	Leu	Ala 635	Trp	Trp	Asp	Tyr	Gly 640
			Thr	645					650					655	
			His 660					665		_	_		670		
		675	Glu				680					685			
	690	-	Ala	Ī		695	_	-			700				
705			Gly		710					715					720
	-		Gln	725			-	_	730					735	
			Arg 740					745					750		
		755	Val	-		-	760					765		-	
	770	-	Gly			775			-		780				
Glu 785	Ser	Lys	Lys	Trp	Val 790	Ala	Asp	Pro	Ala	Asn 795	Arg	Val	Cys	Arg	Pro 800

Pro Gly Ser Trp Ile Cys Pro Gly Gln Tyr Pro Pro Ala Lys Glu Ile 805 810 815

Gln Glu Met Leu Ala His Arg Val Ser Phe Asp Gln Val Asp Lys Asp 820 825 830

Lys Lys Arg Lys Ala Thr Tyr His Glu Glu Tyr Met Arg Arg Met Arg 835 840 845

Glu Asn Glu Ile 850

<210> 90 <211> 2565

<212> ADN

5

<213> Leishmania braziliensis

<400> 90

atgggtaaga agaaagcaat tccgtcgggc agcgtcggcc ctgcgacaac cacctcccgt 60 120 gaagetecag geaaagaega aggtgeetee caaceegeea agaetgeage tetgeeggtg aagccctttg tgttgcccaa cacgctgaca gacgaggagg agtttgttgg catctttccc 180 tgccctttct ggccagtgcg atttgtcatc acagtgatgg cactcgtcct cttgggtgcc 240 agctgtatcc gcgccttcac gattcgcatg ctatccgttc agctttatgg ctacatcatc 300 cacgagttcg acccgtggtt caactaccgc gccgccgagt acatgtccgc gcacggctgg 360 tecgeettet teagetggtt egactacatg agetggtace egetgggeeg eecegttgge 420 accaccacgt acccgggcct gcagctcacc gccgttgcca tccaccgcgc attggcggct 480 gccggggtgc cgatgtctct caacaacgtg tgcgtgctga tccccgcgtg gtatggtgcc 540 atcgctactg ctatcctggc cctttgcgct tacgaggtca gtaggtcaat ggtagcggcg 600 gctgttgctg cactctcatt ctccatcatt ccagcacacc tgatgcggtc catggcgggc 660 gagttcgaca acgagtgcat cgccgttgca gccatgctcc tcaccttcta cttgtgggta 720 cgctcgctgc gcacgcggtg ctcgtggccc atcggcatcc tcaccggtat cgcctacggc 780 tacatggtgg cggcqtgggg cggatacatt tttgtgctca acatggttgc catgcacgcc 840 ggcatatcat cgatggtcga ctgggctcgc aacacgtaca acccgtcgct gctgcgcgca 900 960 tacgcgctgt tctacgttgt cggcaccgcc atcgccacgc gcgtgccgcc tgtggggatg tegecettea ggtegetgga geagetgggt gegetggegg tgeteetett eetgtgeggg 1020 ctgcaggcct gcgaggtgtt tcgcgcacgg gccgacgtcg aggttcgctc ccgcgcgaac 1080 ttcaagatcc gcatgcgtgc cttcagcgtg atggctggcg tgggtgcgct tgcaatcgcg 1140 gtgctgtcgc cgaccgggta ctttggcccc ctcacggctc gtgtgcgtgc gctgttcatg 1200

```
1260
gagcacacgc gcactggcaa tccgctggtc gactcggtcg ctgagcacca ccccgccagt
cctgaggcga tgtggacatt tcttcacgtg tgcggcgtga cttggggttt gggctccatt
                                                                    1320
gttcttcttg tgtcgttgct ggtggactac tcctcggcaa agctcttttg gctgatgaac
                                                                    1380
                                                                    1440
tctggtgccg tgtactattt cagcacccgc atgtcacgac tgctgcttct cacgggcccc
gctgcgtgtc tgtccactgg ctgtttcgtg gggacattac tggaagcggc gatacagttc
                                                                    1500
accttctggt ccagcgatgc aacaaaggcc aaaaaacagc aagagacaca acttcaccaa
                                                                    1560
                                                                    1620
aagggcgcgc gcaagcatag cgaccggagt aactctaaga atgcactgac tgtgcgtaca
ttgggcgacg tcttgaggag tacctctctg gcatggggtc atcgcatggt gctctgcttc
                                                                    1680
                                                                    1740
gctatgtggg ctcttgttat tacagtcgcg gtgtgcctct tgggttccga tttcacttcc
catgcaacga tgtttgcaag gcagacgtcg aacccgctga ttgtctttgc aaccgtgctg
                                                                    1800
cgagaccgcg ctaccggcaa gccaacacag gtattggtgg atgactacct gcgcagctat
                                                                    1860
ctctggctgc gcgacaacac gcccagaaat gcgcgcgtgc tgtcctggtg ggactacggc
                                                                    1920
taccagatca caggtatcgg caaccgcacc tcgctggccg atggcaacac ctggaaccac
                                                                    1980
gagcacatcg ccaccatcgg caagatgctg acgtcgcccg tggcggaggc gcactcactg
                                                                    2040
2100
tegeegeaca tggegegeat tggeaacage gtgtaceacg acatetgeec caacgacecg
                                                                    2160
ctttgccagc atttcggctt ttacaagaac gatcgcaatc gcccaaaacc gatgatgcgc
                                                                    2220
                                                                    2280
gcgtcgctgc tgtacaacct gcacgaggcc ggacgaagcg cgggtgtgaa ggtggacccg
tccctctttc aggaagtgta ctcatccaag tacggcctgg tgcgcatctt caaggtcatg
                                                                    2340
                                                                    2400
aacgtgagcg cggagagcaa gaagtgggtg gctgacccgg caaaccgcgt gtgccacccg
cctgggtcgt ggatctgccc cgggcagtac ccgccggcga aggagatcca ggagatgctg
                                                                    2460
gcgcaccgcg tcccctttga ccatgtgaac agcttcagtc ggaaaaaggc cgggtcttat
                                                                    2520
                                                                    2565
catgaagaat acatgcgccg gatgcgtgaa gagcaggacc gatga
```

5

<210> 91 <211> 854 <212> PRT

<213> Leishmania braziliensis

<400> 91

Met Gly Lys Lys Ala Ile Pro Ser Gly Ser Val Gly Pro Ala Thr

Thr Thr Ser Arg Glu Ala Pro Gly Lys Asp Glu Gly Ala Ser Gln Pro 20 25 30

40 Leu Thr Asp Glu Glu Glu Phe Val Gly Ile Phe Pro Cys Pro Phe Trp Pro Val Arg Phe Val Ile Thr Val Met Ala Leu Val Leu Leu Gly Ala Ser Cys Ile Arg Ala Phe Thr Ile Arg Met Leu Ser Val Gln Leu Tyr Gly Tyr Ile Ile His Glu Phe Asp Pro Trp Phe Asn Tyr Arg Ala Ala Glu Tyr Met Ser Ala His Gly Trp Ser Ala Phe Phe Ser Trp Phe Asp Tyr Met Ser Trp Tyr Pro Leu Gly Arg Pro Val Gly Thr Thr Thr Tyr Pro Gly Leu Gln Leu Thr Ala Val Ala Ile His Arg Ala Leu Ala Ala 150 Ala Gly Val Pro Met Ser Leu Asn Asn Val Cys Val Leu Ile Pro Ala Trp Tyr Gly Ala Ile Ala Thr Ala Ile Leu Ala Leu Cys Ala Tyr Glu Val Ser Arg Ser Met Val Ala Ala Ala Val Ala Ala Leu Ser Phe Ser Ile Ile Pro Ala His Leu Met Arg Ser Met Ala Gly Glu Phe Asp Asn 215 Glu Cys Ile Ala Val Ala Ala Met Leu Leu Thr Phe Tyr Leu Trp Val

Ala Lys Thr Ala Ala Leu Pro Val Lys Pro Phe Val Leu Pro Asn Thr

Leu Asn Met Val Ala Met His Ala Gly Ile Ser Ser Met Val Asp Trp 275 280 285

Arg Ser Leu Arg Thr Arg Cys Ser Trp Pro Ile Gly Ile Leu Thr Gly

Ile Ala Tyr Gly Tyr Met Val Ala Ala Trp Gly Gly Tyr Ile Phe Val

230

245

Ala Arg Asn Thr Tyr Asn Pro Ser Leu Leu Arg Ala Tyr Ala Leu Phe 295 300 Tyr Val Val Gly Thr Ala Ile Ala Thr Arg Val Pro Pro Val Gly Met 310 Ser Pro Phe Arg Ser Leu Glu Gln Leu Gly Ala Leu Ala Val Leu Leu Phe Leu Cys Gly Leu Gln Ala Cys Glu Val Phe Arg Ala Arg Ala Asp Val Glu Val Arg Ser Arg Ala Asn Phe Lys Ile Arg Met Arg Ala Phe Ser Val Met Ala Gly Val Gly Ala Leu Ala Ile Ala Val Leu Ser Pro Thr Gly Tyr Phe Gly Pro Leu Thr Ala Arg Val Arg Ala Leu Phe Met Glu His Thr Arg Thr Gly Asn Pro Leu Val Asp Ser Val Ala Glu His His Pro Ala Ser Pro Glu Ala Met Trp Thr Phe Leu His Val Cys Gly Val Thr Trp Gly Leu Gly Ser Ile Val Leu Leu Val Ser Leu Leu Val Asp Tyr Ser Ser Ala Lys Leu Phe Trp Leu Met Asn Ser Gly Ala Val Tyr Tyr Phe Ser Thr Arg Met Ser Arg Leu Leu Leu Thr Gly Pro 470 475 Ala Ala Cys Leu Ser Thr Gly Cys Phe Val Gly Thr Leu Leu Glu Ala Ala Ile Gln Phe Thr Phe Trp Ser Ser Asp Ala Thr Lys Ala Lys Lys 500 505 Gln Gln Glu Thr Gln Leu His Gln Lys Gly Ala Arg Lys His Ser Asp Arg Ser Asn Ser Lys Asn Ala Leu Thr Val Arg Thr Leu Gly Asp Val

Leu Arg Ser Thr Ser Leu Ala Trp Gly His Arg Met Val Leu Cys Phe 550 Ala Met Trp Ala Leu Val Ile Thr Val Ala Val Cys Leu Leu Gly Ser Asp Phe Thr Ser His Ala Thr Met Phe Ala Arg Gln Thr Ser Asn Pro 585 Leu Ile Val Phe Ala Thr Val Leu Arg Asp Arg Ala Thr Gly Lys Pro Thr Gln Val Leu Val Asp Asp Tyr Leu Arg Ser Tyr Leu Trp Leu Arg Asp Asn Thr Pro Arg Asn Ala Arg Val Leu Ser Trp Trp Asp Tyr Gly Tyr Gln Ile Thr Gly Ile Gly Asn Arg Thr Ser Leu Ala Asp Gly Asn 650 Thr Trp Asn His Glu His Ile Ala Thr Ile Gly Lys Met Leu Thr Ser Pro Val Ala Glu Ala His Ser Leu Val Arg His Met Ala Asp Tyr Val Leu Ile Trp Ala Gly Gln Gly Gly Asp Leu Met Lys Ser Pro His Met Ala Arg Ile Gly Asn Ser Val Tyr His Asp Ile Cys Pro Asn Asp Pro Leu Cys Gln His Phe Gly Phe Tyr Lys Asn Asp Arg Asn Arg Pro Lys Pro Met Met Arg Ala Ser Leu Leu Tyr Asn Leu His Glu Ala Gly Arg Ser Ala Gly Val Lys Val Asp Pro Ser Leu Phe Gln Glu Val Tyr Ser Ser Lys Tyr Gly Leu Val Arg Ile Phe Lys Val Met Asn Val Ser Ala Glu Ser Lys Lys Trp Val Ala Asp Pro Ala Asn Arg Val Cys His Pro

 785
 790
 795
 800

 Pro Gly Ser Trp 805
 11e 805
 Pro Gly Gly Gln 795
 Pro Pro Pro Ala Lys Glu 815
 11e 815

 Gln Glu Met 820
 Leu Ala His Arg Val Pro 825
 Phe 825
 His Val Asn 830
 Ser Phe 830

 Ser Arg 835
 Lys Ala Gly Ser 840
 Fish 840
 Glu Glu Glu Tyr Met 845
 Arg Arg Met 845

 Arg Glu Glu Glu Gln Asp Arg
 Arg His Sub From 1950
 Fish 840
 Fish 840
 Fish 840

REIVINDICACIONES

- 1. Una célula de Trichoderma o Myceliophthora que comprende
- 5 i. una o más mutaciones que reducen o eliminan una o más actividades de proteasa endógena en comparación con una célula de Trichoderma o Myceliophthora parental que no tiene dicha mutación o mutaciones.
 - ii. un polinucleótido que codifica una subunidad catalítica heteróloga de la oligosacaril transferasa, y
 - iii. un polinucleótido que codifica una glucoproteína heteróloga,
- en la que dicha subunidad catalítica de oligosacaril transferasa se selecciona de subunidades catalíticas de oligosacaril transferasa de *Leishmania*, en la que la ocupación del sitio de N-glucosilación de la glucosilación heteróloga expresada en la célula de Trichoderma o Myceliophotora es de al menos un 90%, y en la que dicha célula de Trichoderma o Myceliophthora tiene al menos una reducción de dos veces en la actividad de la proteasa total en comparación con una célula de Trichoderma o Myceliophthora parental que no tiene la actividad de proteasa reduciendo o eliminando la mutación o mutaciones, y en la que la glucoproteína heteróloga es una glucoproteína de mamífero y en la que el rendimiento de la glucoproteína de mamífero es de al menos 1 gramo por litro.
- 2. La célula de Trichoderma o Myceliophthora de la reivindicación 1, en la que dicho polinucleótido que codifica la subunidad catalítica heteróloga de oligosacaril transferasa comprende un ácido nucleico seleccionado del grupo que consiste en la SEQ ID NO: 2, SEQ ID NO: 9, SEQ ID NO: 88 y SEQ ID NO: 90 o un polinucleótido que codifica un polipéptido variante funcional que tiene al menos un 50%, al menos un 60%, al menos un 70% de identidad, al menos un 80% de identidad, al menos un 90% de identidad, o al menos un 95% de identidad con la SEQ ID NO: 1, SEQ ID NO: 8, SEQ ID NO: 89 o SEQ ID NO: 91, teniendo dicho polipéptido variante funcional actividad de oligosacariltransferasa.
- 3. La célula de Trichoderma o Myceliophthora de una cualquiera de las reivindicaciones anteriores, en la que la ocupación del sitio de N-glucosilación de la glucoproteína heteróloga es de al menos el 95% y las glucoformas Man3, Man5, G0, G1 y/o G2 representan al menos el 50% de los N-glicanos neutros totales de la glucoproteína 30 heteróloga.
 - 4. La célula de Trichoderma o Myceliophthora de una cualquiera de las reivindicaciones anteriores, en la que dicha célula es, por ejemplo, *Trichoderma reesei*, y dicha célula comprende mutaciones que reducen o eliminan la actividad de
- las tres proteasas endógenas pep1, tsp1, y slp1;
 - las tres proteasas endógenas gap1, slp1, y pep1;
 - las tres proteasas endógenas seleccionadas del grupo que consiste en pep1, pep2, pep3, pep4, pep5, pep8, pep9, pep11, pep12, tsp1, slp1, slp2, slp3, slp7, gap1 y gap2;
- de tres a seis proteasas seleccionadas del grupo que consiste en pep1, pep2, pep3, pep4, pep5, tsp1, slp1, slp2, slp3, gap1 y gap2; o,
 - de siete a diez proteasas seleccionadas del grupo que consiste en pep1, pep2, pep3, pep4, pep5, pep7, pep8, tsp1, slp1, slp2, slp3, slp5, slp6, slp7, slp8, tsp1, gap1 y gap2.
- 45 5. La célula de Trichoderma o Myceliophtora de una cualquiera de las reivindicaciones anteriores, en la que la célula de Trichoderma comprende además una mutación en el gen que codifica ALG3 que reduce o elimina la expresión de ALG3 correspondiente en comparación con el nivel de expresión del gen ALG3 en una célula parental que no tiene tal mutación.
- 50 6. La célula de Trichoderma o Myceliophthora de una cualquiera de las reivindicaciones anteriores, que comprende además un polinucleótido que codifica un dominio catalítico de N-acetilglucosaminiltransferasa I y un dominio catalítico de N-acetilglucosaminiltransferasa II.
- 7. La célula de Trichoderma o Myceliophthora de una cualquiera de las reivindicaciones anteriores, que 55 comprende además uno o más polinucleótidos que codifican un polipéptido seleccionado del grupo que consiste en:
 - i. α1, 2 manosidasa;
 - ii. dominio catalítico de N-acetilglucosaminiltransferasa I;
 - iii. α-manosidasa II;

- iv. dominio catalítico de N-acetilglucosaminiltransferasa II;
- v. β1,4 galactosiltransferasa; y,
- vi. fucosiltransferasa.

- 5 8. Un método para producir una glucoproteína heteróloga con una mayor ocupación del sitio de N-glucosilación, que comprende
 - a) proporcionar una célula de Trichoderma o Myceliophthora, que tiene un gen STT3D de *Leishmania* que codifica una subunidad catalítica de oligosacaril transferasa, y un polinucleótido que codifica dicha glucoproteína heteróloga,
 - b) cultivar la célula en condiciones apropiadas para la expresión del gen STT3D, y la producción de la glucoproteína heteróloga; y,
 - c) recuperar y, opcionalmente, purificar la glucoproteína heteróloga,
- 15 en el que dicha célula de Trichoderma o Myceliophthora comprende una o más mutaciones que reducen o eliminan una o más actividades de proteasa endógena en comparación con una célula de Trichoderma o Myceliophthora parental que no tiene dicha mutación o mutaciones, y en el que la ocupación del sitio de N-glucosilación de la glucoproteína heteróloga expresada en la célula de Trichoderma o Myceliophthora es de al menos el 90 %, y en el que la glucoproteína heteróloga es una glucoproteína de mamífero, y en el que el rendimiento de la glucoproteína de mamífero es de al menos 1 gramo por litro.
 - 9. El método de la reivindicación 8, en el que dicha glucoproteína es un anticuerpo.
- 10. El método de una cualquiera de las reivindicaciones 8 a 9, en el que dicha célula huésped de 25 Trichoderma o Myceliophthora es la célula como se define en cualquiera de las reivindicaciones 1-7.
- 11. El método de una cualquiera de las reivindicaciones 8 a 10, en el que dicho gen STT3D de *Leishmania* que codifica una subunidad catalítica de oligosacaril transferasa comprende una secuencia de ácido nucleico seleccionada del grupo que consiste en la SEQ ID NO:2, SEQ ID NO:9, SEQ ID NO: 88 y SEQ ID NO: 90 o un 30 polinucleótido que codifica un polipéptido variante funcional que tiene al menos un 50%, al menos un 60%, al menos un 70% de identidad, al menos un 80% de identidad, al menos un 90% de identidad, o al menos un 95% de identidad con la SEQ ID NO:1, SEQ ID NO:8, SEQ ID NO: 89 o SEQ ID NO: 91, teniendo dicho polipéptido variante funcional actividad de oligosacariltransferasa.

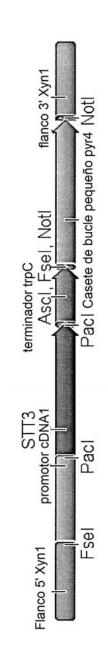
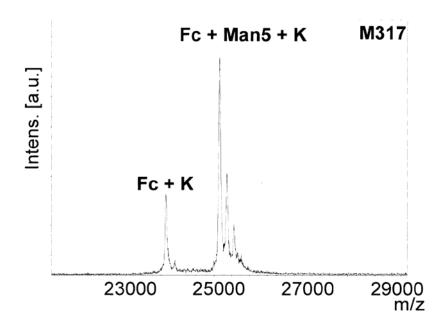



Figura 1

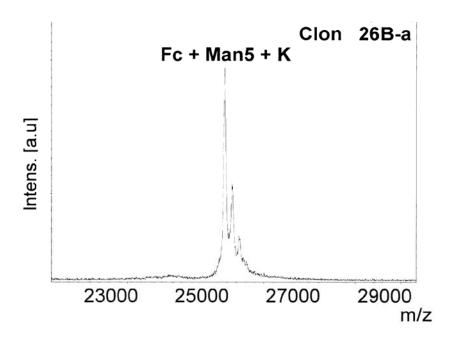


Figura 2

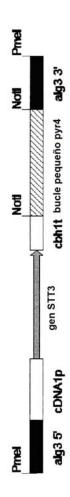
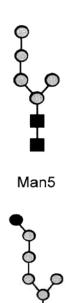



Figura 3

Hex6

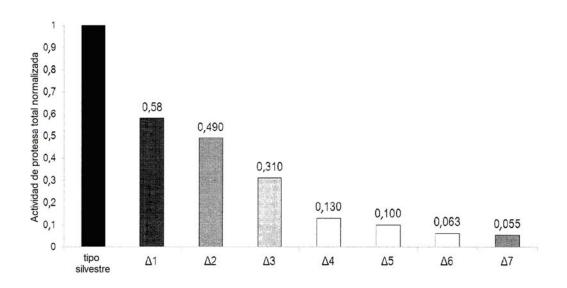


Figura 5