

OFICINA ESPAÑOLA DE PATENTES Y MARCAS

ESPAÑA

①Número de publicación: 2 711 498

51 Int. Cl.:

A61K 35/17 (2015.01) C12N 5/0783 (2010.01)

(12)

TRADUCCIÓN DE PATENTE EUROPEA

T3

(86) Fecha de presentación y número de la solicitud internacional: 13.02.2015 PCT/EP2015/053162

(87) Fecha y número de publicación internacional: 20.08.2015 WO15121454

96 Fecha de presentación y número de la solicitud europea: 13.02.2015 E 15706399 (1)

(97) Fecha y número de publicación de la concesión europea: 19.09.2018 EP 3105317

(54) Título: Células para inmunoterapia diseñadas mediante ingeniería genética para dirigir un antígeno presente en células inmunitarias y células patológicas

(30) Prioridad:

14.02.2014 DK 201470076

Fecha de publicación y mención en BOPI de la traducción de la patente: **06.05.2019**

(73) Titular/es:

CELLECTIS (100.0%) 8, rue de la Croix Jarry 75013 Paris, FR

(72) Inventor/es:

DUCHATEAU, PHILIPPE y POIROT, LAURENT

(74) Agente/Representante:

ARIAS SANZ, Juan

DESCRIPCIÓN

Células para inmunoterapia diseñadas mediante ingeniería genética para dirigir un antígeno presente en células inmunitarias y células patológicas

Campo de la invención

5

10

15

20

25

30

35

40

60

La presente invención se refiere a métodos para desarrollar mediante ingeniería genética linfocitos T, preferentemente no alorreactivos, para inmunoterapia, que están provistos con receptores de antígenos quiméricos que se dirigen un marcador antigénico que es común a las células patológicas y a las células inmunitarias (por ejemplo: CD38).

El método comprende expresar un CAR dirigido contra dicho marcador antigénico e inactivar los genes en los linfocitos T que contribuyen a la presencia de dicho marcador antigénico sobre la superficie de dichos linfocitos T. Esta inactivación se lleva a cabo normalmente utilizando transgenes que codifican las endonucleasas guiadas por ARN (por ejemplo: Cas9/CRISPR), meganucleasas, nucleasas de dedo de cinc o nucleasas TAL. Los linfocitos T diseñados mediante ingeniería genética dirigen su actividad inmunitaria hacia células infectadas malignas o células inmunitarias defectivas, evitando a la vez su destrucción mutua, la autoestimulación o la agregación. La invención abre el camino a estrategias de inmunoterapia convencionales y adoptivas asequibles utilizando células inmunitarias para el tratamiento del cáncer, infecciones y enfermedades autoinmunitarias.

Antecedentes de la invención

La inmunoterapia adoptiva, que implica la transferencia de células inmunitarias específicas de antígenos autólogas generadas ex vivo, es una estrategia prometedora para tratar las infecciones víricas y el cáncer. Los linfocitos T utilizados para la inmunoterapia adoptiva, por ejemplo, se pueden generar tanto mediante expansión de linfocitos T específicos de antígenos como por redirección de los linfocitos T mediante ingeniería genética (Park, Rosenberg et al. 2011).

Se han generado satisfactoriamente novedosas especificidades en los linfocitos T mediante la transferencia genética de receptores de linfocitos T transgénicos o receptores de antígenos quiméricos (CAR) (Jena, Dotti et al. 2010). Los CAR son receptores sintéticos que consisten en un resto de direccionamiento que está asociado con uno o más dominios de señalización en una única molécula de fusión. En general, el resto de unión de un CAR consiste en un dominio de unión a antígeno de un anticuerpo monocatenario (scFv), que comprende los fragmentos ligeros y variables de un anticuerpo monoclonal unidos mediante un enlazador flexible. Los restos de unión basados en los dominios del receptor o el ligando se han usado también satisfactoriamente. Los dominios de señalización para los CAR de primera generación se derivan de la región citoplásmica de CD3zeta o de las cadenas gamma del receptor Fc. Los CAR de primera generación se ha mostrado que redirigen satisfactoriamente la citotoxicidad de los linfocitos T, sin embargo, fracasaron en proporcionar una expansión prolongada y una actividad antitumoral *in vivo*. Los dominios de señalización procedentes de moléculas coestimuladoras que incluyen CD28, OX-40 (CD134), y 4-1BB (CD137) se han añadido solos (segunda generación) o en combinación (tercera generación) para potenciar la supervivencia y aumentar la proliferación de linfocitos T modificados por CAR. Los CAR han permitido de forma satisfactoria redirigir los linfocitos T contra antígenos expresados en la superficie de células tumorales procedentes de diversas neoplasias malignas, incluyendo linfomas y tumores sólidos (Jena, Dotti et al. 2010).

45 El protocolo actual para el tratamiento de pacientes utilizando inmunoterapia adoptiva se basa en la transferencia de células autólogas. En este enfoque, los linfocitos T se recuperan de pacientes, modificados genéticamente o seleccionados ex vivo, cultivados in vitro a fin de amplificar el número de células si es necesario y finalmente infundirse en el paciente. Además de la infusión de linfocitos, el hospedador puede manipularse de otras maneras que soporten el injerto de los linfocitos T o su participación en una respuesta inmunitaria, por ejemplo, el preacondicionamiento (con 50 radiación o quimioterapia) y la administración de factores de crecimiento de linfocitos (tales como IL-2). Cada paciente recibe un tratamiento fabricado individualmente, utilizando los propios linfocitos del paciente (es decir, una terapia autóloga). Las terapias autólogas se enfrentan a sustanciales obstáculos técnicos y logísticos para la aplicación práctica, su generación requiere caras instalaciones específicas y personal experto, deben generarse en un tiempo corto tras el diagnóstico de un paciente, y en muchos casos, el pretratamiento del paciente ha dado como resultado 55 una función inmunitaria degradada, de tal manera que los linfocitos del paciente pueden ser poco funcionales y están presentes en cantidades muy bajas. Debido a estos obstáculos, la preparación de células autólogas de cada paciente es efectivamente un nuevo producto, dando como resultado variaciones sustanciales en la eficacia y la seguridad.

Idealmente, se desearía usar una terapia normalizada en la que las células terapéuticas alogénicas podría prefabricarse, caracterizarse en detalle, y estar disponible para la administración inmediata a pacientes. Por alogénico se entiende que las células se obtienen a partir de individuos que pertenecen a la misma especie pero que son genéticamente diferentes. Sin embargo, el uso de células alogénicas actualmente tiene muchos inconvenientes. En hospedadores inmunocompetentes, las células alogénicas se rechazan rápidamente, un proceso denominado rechazo de injerto contra el hospedador (HvG), y este limita sustancialmente la eficacia de las células transferidas. En hospedadores inmunocompetentes, las células alogénicas son capaces de injertarse, pero sus especificidades por los receptores endógenos de los linfocitos T (TCR) pueden reconocer el tejido hospedador como extraño, dando como

resultado la enfermedad del hospedador contra el injerto (GvHD), que puede conducir a un daño grave del tejido y a la muerte.

Con el fin de proporcionar linfocitos T alogénicos, los inventores divulgaron anteriormente un método para diseñar genéticamente linfocitos T, en el que diferentes genes efectores, en particular aquellos que codifican receptores de los linfocitos T, se inactivaron utilizando nucleasas TAL específicas, conocidas mejor bajo la marca comercial TALEN™ (Cellectis, 8, rue de la Croix Jarry, 75013 PARÍS). Este método ha demostrado ser muy eficaz en células primarias que utilizan la transfección de ARN como parte de una plataforma que permite la producción en masa de linfocitos T alogénicos (documento WO 2013/176915; Torikai et al. Blood, 2012, 119(24):5697-705).

10

15

20

CD38 (agrupación de diferenciación 38), conocida también como ADP ribosa hidrolasa cíclica es una glicoproteína que se encuentra sobre la superficie de muchas células inmunitarias (glóbulos blancos), en particular linfocitos T, incluyendo CD4+, CD8+, linfocitos B y linfocitos citolíticos naturales. CD38 funciona también en la adhesión celular, la transducción de la señal y la señalización del calcio. La información estructural acerca de esta proteína se puede encontrar en una base de datos UniProtKB/Swiss-Prot con la referencia P28907. En seres humanos, la proteína CD38 está codificada por el gen CD38 que está localizado en el cromosoma 4. CD38 es una ectoenzima multifuncional que cataliza la síntesis y la hidrólisis de la ADP-ribosa cíclica (cADPR) procedentes de NAD+ a ADP-ribosa. Estos productos de reacción se consideran esenciales para la regulación del Ca2+ intracelular. Además, la pérdida de la función de CD38 se asoció con respuestas inmunitarias alteradas y trastornos metabólicos (Malavasi F., et al. (2008). "Evolution and function of the ADP ribosyl cyclase/CD38 gene family in physiology and pathology". *Physiol. Rev.* 88(3): 841-86)

841-86).

Mihara et al. (J limmunother, 2009, 32(7):737-743) divulgan inmunoterapia mediadora de los linfocitos T activados con

25

un receptor quimérico contra CD38 en linfoma no de Hodgkin de linfocitos B.

__

Mihara et al. (Leukemia, 2012, 26(2):365-7) divulga inmunoterapia de linfocitos T con un receptor quimérico contra CD38 que es eficaz en la eliminación de las células de mieloma.

30 di

Por otra parte, la proteína CD38 es un marcador de la infección por VIH, leucemias, mielomas, tumores sólidos, diabetes mellitus de tipo II y metabolismo óseo, así como algunas otras dolencias determinadas genéticamente. En particular, se ha utilizado un marcador de pronóstico en la leucemia (Ibrahim, S. et *al.* (2001) CD38 expression as an important prognostic factor in B-cell chronic lymphocytic leukemia. *Blood* 98:181-186).

35

Aunque, las células que expresan CD38, así como muchos otros marcadores antigénicos referidos en la Tabla 4, tales como CD70 y CS1 podrían considerarse como dianas atractivas para los CAS, el hecho de que dichos marcadores antigénicos se expresen también en la superficie de la mayoría de linfocitos T, ha impedido significativamente la selección de estos marcadores para llevar a cabo la inmunoterapia.

40 m

Los inventores aquí proporcionas estrategias para la inmunoterapia que implican células patológicas que expresan marcadores antigénicos específicos presentes también en la superficie de los linfocitos T, al igual, por ejemplo, que los linfocitos B positivos para CD38 malignos que producen leucemia, CD70 y CS1.

Sumario de la invención

50

La presente invención divulga métodos para diseñar mediante ingeniería genética linfocitos T previstos para dirigirse a células patológicas, mientras que dichas células patológicas expresan uno o varios marcadores antigénicos que están también presentes sobre la superficie de los linfocitos T. Los Ejemplos de dichos marcadores antigénicos se encuentran en la Tabla 4. Un ejemplo de dicho marcador antigénico es CD38. Otros ejemplos son CD70 y CS1. Por marcador antigénico se entiende la proteína completa o un fragmento inmunorreactivo de la misma.

De acuerdo con la invención, los linfocitos T se diseñan mediante ingeniería genética a fin de inactivar la expresión de los genes que codifican dichos marcadores antigénicos, o que están implicados en la presentación de dicho marcador antigénico sobre la superficie de la célula.

55 E

Esta inactivación se lleva a cabo preferentemente mediante una modificación del genoma, más concretamente mediante la expresión en el linfocito T de una endonucleasa específica de corte raro capaz de dirigirse a un locus genético directa o indirectamente implicado en la producción o presentación de dicho marcador antigénico en la superficie del linfocito T. Se pueden usar diferentes tipos de endonucleasas de corte raro, tales como meganucleasas, nucleasas TAL, nucleasas de dedos de cinc (ZFN), o endonucleasas guiadas por ARN/ADN análogas a Cas9/CRISPR o Argonauta.

60

Los linfocitos T están dotados con al menos un receptor de antígeno quimérico (CAR) que permite una unión específica de dichas células que transportan dicho marcador antigénico dirigido.

65 De

De acuerdo con una realización, los linfocitos T se pueden diseñar mediante ingeniería genética para hacerlos alogénicos, especialmente, eliminando los genes implicados en el autoreconocimiento, tales como aquellos, por

ejemplo, que codifican los componentes de los receptores de los linfocitos T (TCR) o el complejo HLA.

La presente invención abarca las células o líneas de células aisladas que comprenden las modificaciones genéticas que se muestran en la descripción detallada, los ejemplos y las figuras, así como cualquiera de las proteínas, polipéptidos o vectores útiles para diseñar mediante ingeniería genética dichos linfocitos T.

Como resultado de la invención, los linfocitos T diseñados mediante ingeniería genética pueden usarse como productos terapéuticos, idealmente como un producto "disponible en existencias", en métodos para tratar o prevenir el cáncer, las infecciones o una enfermedad autoinmunitaria.

Los linfocitos T preferidos de acuerdo con la presente invención son aquellos que dan como resultado fenotipos:

- [CAR dirigiéndose a un marcador antigénico de la Tabla 4]⁺[marcador antigénico de la tabla 4]⁻ tal como los siguientes:
- [CAR CD38]⁺[CD38]⁻, preferentemente también [TCR] negativo;
- [CAR CD70]⁺[CD70]⁻, preferentemente también [TCR] negativo;
- [CAR CS1]⁺[CS1]⁻, preferentemente también [TCR] negativo; para su uso como productos terapéuticos, preferentemente alogénicos.

Breve descripción de las figuras y tablas

10

15

30

35

40

45

50

55

60

65

- 25 **Figura 1:** Representación esquemática de un linfocito T diseñado mediante ingeniería genética de acuerdo con la presente invención alterado para CD38 y provisto con un receptor de antígeno quimérico (representado como un CAR monocatenario) que se dirige a una célula maligna que transporta el marcador antigénico CD38.
 - Figura 2: Representación esquemática de un receptor de antígeno multisubunidad.
 - **Figura 3:** Representación esquemática de una estrategia terapéutica de acuerdo con la invención que combina linfocitos T provistos con un CAR multisubunidad y un anticuerpo biespecífico en circulación. En este aspecto concreto, el receptor presente en la cadena extracelular del CAR multisubunidad está compuesto de un epítopo que es reconocido por un anticuerpo biespecífico. Se pretende que el anticuerpo biespecífico se una a dicho epítopo por una parte y el marcador antigénico por la otra para facilitar la unión del linfocito T a la célula patológica.
 - **Figura 4:** Representación esquemática de una estrategia terapéutica de acuerdo con la invención que combina linfocitos T provistos con un CAR multisubunidad y un anticuerpo monoclonal en circulación. En este aspecto concreto, el receptor presente en la cadena extracelular del CAR multisubunidad está compuesto, por ejemplo, de un receptor de Fc previsto para unirse a un anticuerpo monoclonal que se dirige contra el marcador antigénico. El anticuerpo monoclonal aumenta la oportunidad de unión de los linfocitos T a las células patológicas.
 - **Figura 5:** Representación esquemática de una estrategia terapéutica de acuerdo con la invención que combina linfocitos T provistos con un CAR multisubunidad que comprende dos dominios celulares extracelulares y un anticuerpo biespecífico en circulación. En este aspecto concreto, los dominios celulares extracelulares se localizan en distintas subunidades. Estos dominios están respectivamente compuestos de un epítopo que es reconocido por un anticuerpo biespecífico y por un receptor que se dirige a un antígeno. El receptor se dirige contra un primer marcador antigénico, mientras que el anticuerpo biespecífico se pretende que se una al epítopo y un segundo marcador antigénico. Este presenta como objetivo dirigirse selectivamente a células patológicas que transportan en su superficie el primer y el segundo marcadores antigénicos.
 - **Figura 6:** la exposición es similar a la Figura 5, pero los dominios de estimulación y coestimulación (respectivamente, los dominios de proteínas 4-1BB y CD3zeta) se han intercambiado para modular la intensidad de la activación del linfocito T resultante de la unión del receptor del antígeno quimérico con la célula patológica.
 - **Figura 7:** la exposición es similar a la Figura 5, pero los dominios de estimulación y coestimulación (respectivamente, los dominios de proteínas 4-1BB y CD3zeta) se han intercambiado, y un dominio CD3zeta se ha añadido para aumentar la intensidad de la activación del linfocito T resultante de la unión del receptor del antígeno quimérico con la célula patológica.
 - **Figura 8:** Representación esquemática de una estrategia terapéutica de acuerdo con la invención que combina linfocitos T provistos con un CAR multisubunidad que comprende dos dominios celulares extracelulares y un anticuerpo monoclonal en circulación. En este aspecto concreto, los dominios celulares extracelulares se localizan en distintas subunidades. Estos dominios están respectivamente compuestos de un dominio de unión a antígeno que se dirige a un marcador antigénico y un receptor de Fc previsto para unirse a un anticuerpo monoclonal que se dirige contra un segundo marcador antigénico. Este presenta como objetivo dirigirse selectivamente a células patológicas

que transportan en su superficie el primer y el segundo marcadores antigénicos.

- **Figura 9:** expresión de CD38 por linfocitos T activados. **A.** Expresión de CD38 por linfocitos T en el día 6 tras la activación de perlas revestidas con CD3/CD28 + IL2. **B.** Análisis longitudinal de la expresión de CD38 por linfocitos T durante 17 días tras la activación.
- **Figura 10** Inactivación génica (KO) en el gen CD38: **A.** en el exón de CD38 de la secuencia **1** de 3 diferentes TALEN (T2, T4 y T5) diseñados para inactivar génicamente Cd38 en los linfocitos T. **B.** Expresión de CD38 en los linfocitos T tras la transfección con el TALEN CD38ex1_T2. **C.** Tinción de CD38 para controlar la purificación de los linfocitos T CD38 KO.
- **Figura 11:** CD38 CAR: **A.** Representación de las 3 versiones de los CAR diseñadas. **B.** Nivel de expresión de CD38 por las líneas de células diana.
- 15 **Figura 12:** Experimento de sincronización para el diseño mediante ingeniería genética de los linfocitos T CAR CS1+ y KO CS1 y su posterior ensayo;
 - Figura 13: Construcciones de T01, T02 y T03 con las repeticiones TAL utilizadas para el gen KO de CS1;
- Figura 14: Localización diana para los TAL T01, T02 y T03 en el gen CS1 (SLAMF7). T01 y T02 se dirigen al exón 1 (Figura 14A), mientras que T03 se dirige al exón 2 (Figura 14B).
- Figura 15A: La medición del porcentaje de viabilidad de las células diana para TALEn transfectado o TALEn no transfectado combinado con CAR+ o células no transducidas: muestra una viabilidad celular reducida de las células CS1(+) cuando se cultivaron simultáneamente con linfocitos T CAR+, aunque no se observó impacto sobre la viabilidad de las células CS1(-).
 - **Figura 15B:** Medición del porcentaje de lisis específica de células (CS1+) calculado usando los datos de citometría de flujo. Se muestra que la lisis específica de células es 2 veces mayor cuando los linfocitos T se han transfectado con TALEn que se dirige al gen CS1 antes de la transducción de CAR.
 - **Figura 16:** Resultados del análisis FACS del experimento de actividad citotóxica, que muestra que las eficacias de transducción son mayores en células transfectadas simuladas que en células que se han transfectado con TALEn que se dirige CS1 (NTD: no transducido).
 - **Figura 17:** Resultados del análisis FACS cuando las diferentes muestras se reactivaron con perlas CD3/CD28 en DII tras la transducción, mostrando las eficacias de transducción y los niveles de expresión de CD8/CS1 en cada muestra. Se observó un aumento en los niveles de CS1 tras la reactivación en células transfectadas simuladas, mientras que una baja cantidad de células son capaces de expresar CS1 en las poblaciones transfectadas con TALEn.
 - Tabla 1: Programas de citopulsos diferentes utilizados para la electroporación de linfocitos T.
 - Tabla 2: Secuencias diana adecuadas para el ARN guía utilizando Cas9 en linfocitos T
- 45 Tabla 3: Lista de genes que codifican proteínas checkpoint inmunitarias
 - **Tabla 4:** Agrupación de marcadores antigénicos de diferenciación (CD) que se encuentra que se expresan sobre la superficie de los linfocitos T, siendo característico de diferentes tipos de tumores.
- Tabla 5 a 13: Principales marcadores antigénicos superficiales expresados en linfocitos T, expresándose en exceso en células de tumores sólidos de diversos tipos de cánceres. Los marcadores antigénicos superficiales se identificaron como explicados en el Ejemplo 1.
 - Tabla 5: células tumorales de colon;
 - Tabla 6: células tumorales de mama;
 - Tabla 7: células tumorales del tracto digestivo;
- 60 Tabla 8: células tumorales renales;

10

30

35

40

55

65

- Tabla 9: células tumorales hepáticas;
- Tabla 10: células tumorales de pulmón;
- Tabla 11: células tumorales de ovario;

5

- Tabla 12: células tumorales de páncreas;
- Tabla 13: células tumorales de próstata;

10

15

20

25

30

35

50

- Tabla 14: Principales marcadores antigénicos superficiales expresados en linfocitos T, expresándose en exceso en células tumorales de fluidos de diversos tipos de cánceres (LLA, LMA, LMC, SMD, LLC, CTRL). Los marcadores antigénicos superficiales se identificaron como explicados en el Ejemplo 1.
 - Tabla 15: Secuencias de las dianas de CD38 y TALEN ensayadas para la inactivación de CD38;
 - **Tabla 16:** Secuencias de las dos dianas diferentes de CD38 y de las TALEN correspondientes para su inactivación;
 - **Tabla 17:** Secuencias de las cadenas VH y VL de los anticuerpos scFv dirigidos contra CD38 daratumumab y MOR202 y de los CDR específicos para las cadenas VH y VL
 - **Tabla 18:** Secuencia polipeptídica de 3 estructuras diferentes de CAR dirigidos contra CD38 basados en el scFv daratumumab y de los componentes individuales utilizados;
 - Tabla 19: Secuencias de VH y VL de los anticuerpos scFv dirigidos contra CS1;
 - **Tabla 20:** Secuencia polipeptídica de CAR dirigidos contra CS1 basados en las versiones V1, V2 y V3 en la Figura 11A;
 - **Tabla 21:** Secuencias de la diana CS1 y las TALEN para su inactivación;
- Tabla 22: Secuencias de la diana CD70 y las TALEN para su inactivación;
 - **Tabla 23:** Secuencias de polinucleótidos y ácidos nucleicos de las cadenas de VH y VL de los scFV de los anticuerpos Ab4, Ab8, y 1F6 dirigidos contra CD70;
 - **Tabla 24:** Secuencia polipeptídica de CAR dirigidos contra CD70 basados en las versiones V1, V2 y V3 en la Figura 11A

Descripción detallada de la invención

Salvo que se defina específicamente en el presente documento, todos los términos técnicos y científicos utilizados tienen el mismo significado que entiende habitualmente un experto en la materia en el campo de la terapia génica, bioquímica, genética, y biología molecular.

- Todos los métodos y materiales similares o equivalentes a los descritos en el presente documento se pueden usar en la práctica o el ensayo de la presente invención, con los métodos y materiales adecuados que se describen en el presente documento. Todas las publicaciones, solicitudes de patente, patentes y otras referencias mencionadas en el presente documento se incorporan por referencia en su totalidad. En caso de conflicto, prevalecerá la presente memoria descriptiva, incluyendo las definiciones. Además, los materiales, métodos y ejemplos son únicamente ilustrativos y no se pretende que sean limitantes, a menos que se especifique lo contrario.
 - La práctica de la presente invención empleará, a menos que se indique otra cosa, técnicas convencionales de biología celular, cultivo celular, biología molecular, biología transgénica, microbiología, ADN recombinante e inmunología, que están comprendidas en los conocimientos del experto en la materia. Tales técnicas se explican por completo en la bibliografía. Véase, por ejemplo, Current Protocols in Molecular Biology (Frederick M. AUSUBEL, 2000, Wiley and son Inc, Library of Congress, EE. UU.); Molecular Cloning: A Laboratory Manual, Tercera Edición, (Sambrook et al, 2001, Cold Spring Harbor, Nueva York: Cold Spring Harbor Laboratory Press); Oligonucleotide Synthesis (M. J. Gait ed., 1984); Mullis et al. patente de EE.UU. n.º 4.683.195; Nucleic Acid Hybridization (B. D. Harries & S. J. Higgins eds. 1984); Transcription And Translation (B. D. Hames & S. J. Higgins eds. 1984); Culture Of Animal Cells (R. I. Freshney, Alan R. Liss, Inc., 1987); Immobilized Cells And Enzymes (IRL Press, 1986); B. Perbal, A Practical Guide To Molecular
- Alan R. Liss, Inc., 1987); Immobilized Cells And Enzymes (IRL Press, 1986); B. Perbal, A Practical Guide To Molecular Cloning (1984); la serie, Methods In ENZYMOLOGY (J. Abelson and M. Simon, eds. principales, Academic Press, Inc., Nueva York), específicamente, Vols.154 y 155 (Wu et al. eds.) y Vol. 185, "Gene Expression Technology" (D. Goeddel, ed.); Gene Transfer Vectors For Mammalian Cells (J. H. Miller and M. P. Calos eds., 1987, Cold Spring Harbor Laboratory); Immunochemical Methods In Cell And Molecular Biology (Mayer and Walker, ed., Academic Press, Londres, 1987); Handbook Of Experimental Immunology, Volúmenes I-IV (D. M. Weir and C. C. Blackwell, eds., 1986);
- 60 Londres, 1987); Handbook Of Experimental Immunology, Volúmenes I-IV (D. M. Weir and C. C. Blackwell, eds., 1986); y Manipulating the Mouse Embryo, (Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y., 1986).

En un aspecto general, la presente invención se refiere a métodos para nuevas estrategias de inmunoterapia adoptivas en el tratamiento de enfermedades vinculadas con el desarrollo de células patológicas, tales como cáncer, infecciones y enfermedades autoinmunitarias.

Como principal objetivo de la invención está la posibilidad de dirigir células patológicas que trasportan marcadores antigénicos específicos en común con linfocitos T. Por célula patológica se entiende cualesquiera tipos de células presentes en un paciente, las cuales se consideran causantes del deterioro de la salud.

5 En general, las células patológicas son células malignas o infectadas que necesitan reducirse o eliminarse para obtener la remisión de un paciente.

En una primera realización, el método de la invención se refiere a un método ex vivo de preparar linfocitos T adecuados para inmunoterapia que comprende la etapa de:

10

- (a) Inactivar genéticamente un gen en un linfocito T, que está implicado en la expresión o presentación de un marcador antigénico, sabiéndose que dicho marcador antigénico está presente sobre la superficie de dicho linfocito T y la célula patológica;
- 15 (b) Expresar en dicho linfocitos T un transgén que codifica un receptor de antígeno quimérico dirigido contra dicho marcador antigénico presente en la superficie de dicha célula patológica.

Los linfocitos T de acuerdo con la invención están provistos con un receptor de antígeno quimérico dirigido a un marcador antigénico que se expresa comúnmente por las células patológicas y las células inmunitarias, o conocido por estar presentes sobre la superficie de dichos linfocitos T. La expresión "conocido por estar presente" significa que se notifica que el marcador antigénico se encuentra sobre la superficie de los linfocitos T que crecen en condiciones naturales *in vivo*, especialmente en la sangre, pero no necesariamente cuando se cultivan *in vitro*. En cualquier caso, el método de la invención da como resultado la ausencia del marcador antigénico sobre la superficie del linfocito T, evitando por tanto que el receptor del antígeno quimérico reaccione con la superficie del linfocito T diseñado mediante ingeniería genética. A este respecto, el método puede incluir una etapa adicional de purificar los linfocitos T resultantes excluyendo las células que presentan dicho marcador antigénico sobre su superficie.

Como se muestra en la tabla 4, la presente invención se refiere a un número importante de candidatos de marcadores antigénicos indicados para expresarse por las células tumorales, pero también por los linfocitos T. Algunos de ellos, tales como CD38, se han usado como marcadores específicos en métodos diagnósticos durante un tiempo, especialmente con respecto a las células patológicas de la leucemia, pero no en terapia. De hecho, aunque se identificaron estos marcadores en la técnica como marcadores muy específicos, podrían no utilizarse como dianas para la inmunoterapia debido a que los anticuerpos dirigidos contra estos marcadores habrían destruido o interferido los linfocitos T del paciente. Los presentes inventores han establecido que CS1 y CD70 están también presentes sobre la superficie de los linfocitos T y que expresan que los CAR que se dirigen a CS1 y CD70 en dichos linfocitos T dan lugar a su agotamiento (véase el ejemplo 2).

De acuerdo con una realización preferida de la invención, la inactivación génica de la etapa a) del método anterior se lleva a cabo utilizando una endonucleasa de corte raro.

40

45

30

35

Inactivando un gen, se pretende que el gen de interés no se exprese en forma de proteína funcional. En realizaciones concreta, la modificación genética del método se basa en la expresión, en células proporcionadas para diseñar mediante ingeniería genética, de una endonucleasa de corte raro de tal manera que la misma cataliza la escisión en un gen dirigido inactivando por tanto dicho gen dirigido. La rotura de la hebra de ácido nucleico provocada por endonucleasa se repara habitualmente a través de mecanismos distintos de recombinación homóloga o por unión de extremos no homóloga (NHEJ). Sin embargo, la NHEJ es un proceso de reparación imperfecto que a menudo da como resultado cambios en la secuencia de ADN en el sitio de la escisión. Los mecanismos implican la reunión de lo que queda de los dos extremos de ADN a través de religadura directa (Critchlow y Jackson 1998) o a través de la denominada unión de extremos mediada por microhomología (Ma, Kim et al., 2003; Ma, Kim et al. 2003). la reparación a través de la unión de extremos no homóloga (NHEJ) a menudo da como resultado pequeñas inserciones o deleciones, y se puede utilizar para la creación de inactivaciones génicas específicas. Dicha modificación puede ser una sustitución, deleción, o adición de al menos un nucleótido. Las células en las que se ha producido un evento de mutagénesis inducida por escisión, es decir, un evento de mutagénesis consecutivo a un evento NHEJ, se pueden identificar y/o seleccionar por métodos bien conocidos en la materia.

55

60

65

50

La expresión "endonucleasa de corte raro" se refiere a una enzima natural o variante capaz de catalizar la hidrólisis (escisión) de enlaces entre ácidos nucleico en una molécula de ADN o ARN, preferentemente una molécula de ADN. Particularmente, dicha nucleasa puede ser una endonucleasa, más preferentemente una nucleasa de corte raro que es muy específica, reconociendo sitios diana de ácido nucleico que varían de 10 a 45 pares de bases (pb) de longitud, variando usualmente de 10 a 35 pares de bases de longitud, más normalmente de 12 a 20 pares de bases. La endonucleasa de acuerdo con la presente invención reconoce a secuencias de polinucleótidos específicas, denominadas adicionalmente "secuencias diana" y escinde el ácido nucleico en el interior de estas secuencias diana o en secuencias adyacentes a las mismas, dependiendo de la estructura molecular de dicha endonucleasa. La endonucleasa de corte raro puede reconocer y generar una rotura monocatenaria o bicatenaria en secuencias de polinucleótidos específicas.

En una realización concreta, dicha endonucleasa de corte raro de acuerdo con la presente invención es una endonucleasa guiada por ARN tal como el complejo Cas9/CRISPR. Las endonucleasas guiadas por ARN constituyen una nueva generación de la herramienta de diseño mediante ingeniería genética del genoma donde una endonucleasa se asocia con una molécula de ARN. En este sistema, la secuencia nucleotídica de la molécula de ARN determina la especificidad de la diana y activa la endonucleasa (Gasiunas, Barrangou et al. 2012; Jinek, Chylinski et al. 2012; Cong, Ran et al. 2013; Mali, Yang et al. 2013).

Cas 9

20

25

30

35

40

45

50

55

Cas9, denominada también Csn1 (COG3513), es una proteína grande que participa tanto en la biogénesis de ARNcr como en la destrucción del ADN invasor. Se ha descrito Cas9 en diferentes especies bacterianas tales como *S. thermophilus, Listeria innocua* (Gasiunas, Barrangou et *al.* 2012; Jinek, Chylinski et *al.* 2012) y *S. Pyogenes* (Deltcheva, Chylinski et *al.* 2011). la proteína Cas9 (>1200 aminoácidos) contiene dos dominios de nucleasa previstos, concretamente el dominio de la nucleasa HNH (análogo a McrA) que está localizado en la parte intermedia de la proteína y un dominio de la nucleasa análogo a RuvC dividido (pliegue H de la ARNasa) (Makarova, Grishin et *al.* (2006).

Por "Cas9" se entiende una endonucleasa diseñada mediante ingeniería genética o un homólogo de Cas9 que es capaz de procesar una secuencia de ácido nucleico diana. En una realización concreta, Cas9 puede inducir una escisión en la secuencia diana de ácido nucleico que puede corresponder tanto a una rotura bicatenaria como a una rotura monocatenaria. La variante de Cas9 puede ser una endonucleasa Cas9 que no existe naturalmente en la naturaleza y que se obtiene por diseño mediante ingeniería genética de proteínas o mediante mutagénesis aleatoria. Las variantes de Cas9 de acuerdo con la invención pueden obtenerse, por ejemplo, mediante mutaciones, es decir, deleciones de, o inserciones o sustituciones de al menos un resto en la secuencia de aminoácidos de una endonucleasa Cas9 de S. pyogenes (COG3513). En los aspectos del marco de la presente invención, dichas variantes de Cas9 siguen siendo funcionales, es decir, retienen la capacidad de procesar una secuencia de ácido nucleico diana. Las variantes de Cas9 pueden ser también homólogas de Cas9 de S. pyogenes que comprenden deleciones de, o inserciones o sustituciones de, al menos un resto en la secuencia de aminoácidos de Cas9 de S. pyogenes. Se puede realizar cualquier combinación de deleción, inserción y sustitución para llegar a la construcción final, con la condición que la construcción final posea la actividad deseada, en particular, la capacidad de unirse a un ARN guía o secuencia de ácido nucleico diana.

El motivo RuvC/ARNasaH incluye proteínas que muestran un amplio espectro de funciones nucleolíticas, actuando tanto en ARN como en ADN (ARNasaH, RuvC, transposasas de ADN e integrasas retrovíricas, y el dominio PIWI de las proteínas Argonauta). En la presente invención, el dominio catalítico RuvC de la proteína Cas9 puede caracterizarse por el motivo de secuencia: D-[I/L]-G-X-X-S-X-G-W-A, en el que X representa uno cualquiera de los 20 aminoácidos naturales e [I/L] representa isoleucina o leucina. En otros términos, la presente invención se refiere a la variante Cas9 que comprende al menos la secuencia D-[I/L]-G-X-X-S-X-G-W-A, en el que X representa uno cualquiera de los 20 aminoácidos naturales e [I/L] representa isoleucina o leucina.

El motivo HNH es característico de muchas nucleasas que actúan sobre el ADN bicatenario, incluidas las colicinas, las enzimas de restricción y las endonucleasas de asentamiento. El dominio HNH (SMART ID: SM00507, nomenclatura SCOP: familia HNH) está asociado con una serie de proteínas de unión al ADN, que realizan una diversidad de funciones de unión y corte. Las que tienen una función conocida están implicadas en una serie de procesos celulares que incluyen la toxicidad bacteriana, funciones de asentamiento en intrones de los grupos I y II e inteínas, recombinación, reordenamiento de ADN controlado por desarrollo, empaquetamiento de fagos y actividad de endonucleasa de restricción (Dalgaard, Klar et al. 1997). Estas proteínas se encuentran en virus, arqueobacterias, eubacterias y eucariotas. Curiosamente, como con los motivos LAGLI-DADG y los GIY-YIG, el motivo HNH a menudo se asocia con dominios de endonucleasa de elementos autopropagantes como inteínas, intrones de Grupo I y Grupo II (Dalgaard, Klar et al. 1997). El dominio HNH se puede caracterizar por la presencia de un resto Asp/His conservado flanqueado por restos His (amino terminales) e His/Asp/Glu (carboxilo terminales) conservados a cierta distancia. Un número considerable de estas proteínas también puede tener un motivo CX2C en cualquier lado del resto Asp/His central. Estructuralmente, el motivo HNH aparece como una horquilla central de hojas plegadas β torsionadas, que están flanqueadas en cada lado por una hélice α (Kleanthous, Kuhlmann et al. 1999). El dominio HNH grande de Cas9 está representado por la SEQ ID NO.5. En la presente invención, el motivo HNH puede caracterizarse por el motivo de secuencia: Y-X-X-D-H-X-X-P-X-S-X-X-X-D-X-S, en el que X representa uno cualquiera de los 20 aminoácidos naturales. La presente invención se refiere a una variante de Cas9 que comprende al menos la secuencia Y-X-X-D-H-X-X-P-X-S-X-X-D-X-S en la que X representa uno cualquiera de los 20 aminoácidos naturales.

La presente invención puede ser de particular interés para facilitar modificaciones en el gen multiplexado dirigido y crear un sistema de nucleasa inducible mediante la introducción del ARN guía en las células Cas9. Para el fin de la presente invención, los inventores han establecido que la proteína Cas9 puede dividirse en dos dominios RuvC y HNH de Cas9 divididos separados que pueden procesar la secuencia de ácido nucleico diana juntos o por separado con el ARN guía.

También, los dominios RuvC y HNH de diferentes endonucleasas guiadas por ARN u homólogos de Cas pueden

ensamblarse para mejorar la eficacia o la especificidad de la nucleasa. Los dominios de diferentes especies pueden estar tanto divididos en dos proteínas como fusionados entre sí para formar una variante de la proteína Cas. El sistema Cas9 dividido se considera particularmente adecuado para un método inducible de direccionamiento del genoma y para evitar el efecto tóxico potencial de la expresión en exceso de Cas9 en la célula. De hecho, se puede introducir un primer dominio de Cas9 en la célula, preferentemente transformando de madera estable dicha célula con un transgén que codifica dicho dominio dividido. A continuación, la parte dividida complementaria de Cas9 puede introducirse en la célula, de tal manera que las dos partes divididas se reensamblan en la célula para reconstituir una proteína Cas9 funcional en el tiempo deseado.

10 La reducción del tamaño del Cas9 dividido en comparación con el Cas9 natural facilita la vectorización y la administración en la célula, por ejemplo, utilizando péptidos de penetración en células. La reordenación de dominios de diferentes proteínas Cas, permite modular la especificidad y la actividad de la nucleasa, por ejemplo, dirigiendo motivos PAM, que son ligeramente diferentes de Cas9 de S. pyogenes.

15 Sistema Cas9 dividido

20

25

30

50

La caracterización previa de los dominios RuvC and HNH ha incitado a los inventores a diseñas mediante ingeniería genética la proteína Cas9 para crear la proteína Cas9 dividida. Sorprendentemente, los inventores mostraron que estas dos Cas9 divididas podrían procesar juntas o por separado el ácido nucleico diana. Esta observación permite el desarrollo de un nuevo sistema Cas9 que utiliza la proteína Cas9 dividida. Cada uno de los dominios Cas9 divididos puede prepararse y usarse por separado. Por lo tanto, este sistema dividido presenta varias ventajas para la vectorización y la administración de la endonucleasa guiada por ARN en linfocitos T, permitiendo la administración de una proteína más corta y/o inactiva, y es particularmente adecuado para inducir el diseño mediante ingeniería genética en linfocitos T en el tiempo deseado y limitando por tanto la potencial toxicidad de una nucleasa Cas9 integrada.

Por "Cas9 dividido" se entiende aquí una forma reducida o truncada de una proteína Cas9 o variante de Cas9, que comprende tanto un dominio RuvC como un dominio HNH, pero no ambos de estos dominios. Dicho "Cas9 dividido" puede utilizarse independientemente con el ARN guía o de una manera complementaria, al igual por ejemplo que, un Cas9 dividido que proporciona un dominio RuvC y otro que proporciona el dominio HNH. Se pueden usar diferentes endonucleasas guiadas por ARN dividido junto con cualquier dominio RuvC y/o NHN.

Cada dominio de Cas9 dividido puede derivarse del mismo o de diferentes homólogos de Cas9. Se han identificado muchos homólogos de Cas9 en las bases de datos genómicas.

- Dichos dominios de Cas9 divididos (dominios RuvC y HNH) pueden introducirse de forma simultánea o secuencial en la célula de tal manera que dicho(s) dominio(s) de Cas9 dividido(s) procesa(n) la secuencia de ácido nucleico en la célula. Dichos dominios de Cas9 divididos y el ARNguía pueden introducirse en la célula utilizando péptidos de penetración celular u otros métodos de transfección como se describe en otra parte en el presente documento.
- En otro aspecto de la invención, solo un dominio de Cas9 dividido, denominado Cas9 compacto se introduce en dicha célula. De hecho, de forma sorprendente, los inventores mostraron que el dominio de Cas9 dividido que comprende el motivo RuvC como se ha descrito anteriormente es capaz de escindir una secuencia de ácido nucleico diana, independientemente del dominio dividido que comprende el motivo HNH. Por lo tanto, se podría establecer que el ARN guía no necesita la presencia del dominio HNH para unirse a la secuencia de ácido nucleico diana y es suficientemente estable para unirse mediante el dominio RuvC dividido. En una realización preferida, dicho dominio de Cas9 dividido solo es capaz de capturar dicha secuencia de ácido nucleico diana.
 - Cada dominio dividido puede fusionarse con al menos un dominio activo en el extremo N y/ el extremo C, dicho dominio activo se puede seleccionar entre el grupo que consiste en: nucleasa (por ejemplo, endonucleasa o exonucleasa), polimerasa, quinasa, fosfatasa, metilasa, desmetilasa, acetilasa, desacetilasa, topoisomerasa, integrasa, transposasa, ligasa, helicasa, recombinasa, activador de la transcripción (por ejemplo, VP64, VP16), inhibidor de la transcripción (por ejemplo; KRAB), enzima procesadora del extremo de ADN (por ejemplo, Trex2, Tdt), molécula indicadora (por ejemplo, proteínas fluorescentes, lacZ, luciferasa).
- El dominio HNH es responsable de la captura de una hebra del ADN bicatenario diana y el dominio de pliegue de ARNasaH análogo a RuvC está implicado en la captura de la otra hebra (que comprende el motivo PAM) del ácido nucleico diana bicatenario (Jinek, Chylinski et al. 2012). Sin embargo, en Cas9 natural, estos dos dominios dan como resultado una escisión roma del ADN invasor dentro de la misma secuencia diana (protoespaciador) en las inmediaciones de la PAM (Jinek, Chylinski et al. 2012). Cas 9 puede ser una nickasa e induce un evento de captura en diferentes secuencias diana.

Como ejemplo no limitante, Cas9 o Cas9 dividido puede comprender una mutación (o mutaciones) en los restos catalíticos de los dominios HNH o análogos a RuvC, para inducir un evento de captura en diferentes secuencias diana. Como ejemplo no limitante, los restos catalíticos de la proteína Cas9 son aquellos correspondientes a los aminoácidos D10, D31, H840, H868, N882 y N891 o las posiciones alineadas utilizando el método CLUSTALW en homólogos de miembros de la familia Cas. Cualquiera de estos restos puede reemplazarse por cualquier otro aminoácido,

preferentemente por un resto de alanina. La mutación en los restos catalíticos significa la sustitución por otros aminoácidos, o la deleción o adición de aminoácidos que inducen la inactivación de al menos un dominio catalítico de cas9. (cf. En una realización concreta, Cas9 o Cas9 dividido puede comprender una o varias de las mutaciones anteriores. En otra realización concreta, Cas9 dividido comprende solo uno de los dos dominios catalíticos RuvC y HNH. En la presente invención, se puede utilizar Cas9 de diferentes especies, homólogos de Cas9, Cas9 diseñada mediante ingeniería genética y las variantes funcionales de la misma. La invención prevé el uso de las endonucleasas guiadas por ARN o de las variantes de endonucleasas guiadas por ARN dividido para realizar la escisión del ácido nucleico en una secuencia genética de interés.

10 Preferentemente, las variantes de Cas9 de acuerdo con la invención tienen una secuencia de aminoácidos que comparte al menos el 70 %, preferentemente al menos un 80 %, más preferente al menos un 90%, e incluso más preferentemente un 95% de identidad con Cas9 de S. *Pyogenes* (COG3513).

Meganucleasas

15

25

30

35

50

55

60

65

La endonucleasa de corte raro puede ser también una endonucleasa de rastreo, conocida también con el nombre de meganucleasa. Dichas endonucleasas de rastreo son bien conocidas en la técnica (Stoddard 2005). Las endonucleasas de rastreo son muy específicas, reconociendo sitios diana de ADN que varían de 12 a 45 pares de bases (pb) de longitud, variando usualmente de 14 a 40 pares de bases de longitud. La endonucleasa de rastreo de acuerdo con la invención puede corresponder, por ejemplo, a una endonucleasa LAGLIDADG, a una endonucleasa HNH, o a una endonucleasa GIY-YIG. La endonucleasa de rastreo preferida de acuerdo con la presente invención puede ser una variante l-*Crel*. Una "variante" de endonucleasa, es decir, una endonucleasa que no existe naturalmente en la naturaleza y se obtiene por diseño mediante ingeniería genética o por mutagénesis aleatoria puede unir

en la naturaleza y se obtiene por diseño mediante ingeniería genética o por mutagénesis aleatoria puede unir secuencias de ADN diferentes procedentes de las reconocidas por endonucleasas naturales (véase la solicitud internacional W02006/097854).

Dicha endonucleasa de corte raro puede ser una endonucleasa de unión a ADN modular. Por nucleasa de unión a ADN modular se entiende cualquier proteína de fusión que comprende al menos un dominio catalítico de una endonucleasa y al menos un dominio o proteína que especifica una secuencia de ácido nucleico diana. El dominio de unión a ADN es generalmente un dominio de unión a ARN o ADN formado polipéptido plegado de forma independiente o un dominio de proteína que contiene al menos un motivo que reconoce polinucleótidos bicatenarios o monocatenarios. Se han descrito en la técnica muchos de dichos polipéptidos que tienen la capacidad de unirse a secuencias de ácido nucleico específicas. Dichos dominios de unión comprenden a menudo, a modo de ejemplos no limitantes, dominios de hélice a hélice, dominios de cremallera de leucina, dominios de hélice alados, dominios de hélice-bucle-hélice, dominios de secuencia HMG, dominios de la inmunoglobulina, dominio B3 o dominio de dedo de cinc diseñado mediante ingeniería genética.

Nucleasas de dedo de cinc

Se desarrolló inicialmente para escindir el ADN in vitro, Las "nucleasas de dedo de cinc" (ZFN son una fusión entre el dominio de escisión de la enzima de restricción de tipo IIS, Fokl, y un dominio de reconocimiento del ADN que contiene 3 o más motivos C2H2 de dedo de cinc. La heterodimerización en una posición concreta en el ADN de los dos ZFN individuales en orientación precisa y la separación produce una rotura bicatenaria (DSB) en el ADN. Se ha notificado extensamente en la técnica el uso de dichas endonucleasas quiméricas como se ha revisado por Urnov et al. (Genome editing with engineered zinc finger nucleases (2010) *Nature reviews Genetics* 11:636-646).

Las ZFN convencionales se fusionan al dominio de escisión en el extremo C de cada dominio de dedo de cinc. A fin de permitir que los dos dominios de escisión dimericen y escindan el ADN, las dos ZFN individuales se unen a hebras opuestas de ADN con sus extremos C alejados entre sí una determinada distancia. Las secuencias enlazadoras más comúnmente utilizadas entre el dominio de dedo de cinc y el dominio de escisión requieren que el borde 5' de cada sitio de unión esté separado por 5 a 7 pb.

El método más directo para generar nuevas matrices de dedos de cinc es combinar módulos de dedos de cinc más pequeños de especificidad conocida. El proceso de ensamblaje modular más común implica combinar tres dedos de cinc separados que pueden reconocer una secuencia de ADN de 3 pares de bases para generar una matriz de 3 dedos que puede reconocer un sitio diana de 9 pares de bases. Se han usado numerosos métodos de selección para generar matrices de dedos de cinc capaces de dirigir secuencias deseadas. Los esfuerzos de selección iniciales utilizaron la expresión en fagos para seleccionar proteínas que se unen a un ADN diana dado procedente de un combinado grande de matrices de dedo de cinc parcialmente aleatorizadas. Esfuerzos más recientes han utilizado un sistema de levadura híbrida, un sistema de una bacteria hibrida y dos sistemas híbridos, y células de mamíferos.

Nucleasas TAL

"Nucleasa TALE" o "nucleasa MBBBD" se refiere a proteínas diseñadas mediante ingeniería genética que son el resultado de la fusión de un dominio de unión a ADN derivado normalmente de proteínas efectoras análogas al activador de la transcripción (TALE) o un dominio de unión base por base modular (MBBBD), con un dominio catalítico

que tiene actividad endonucleasa. Dicho dominio suele proceder de enzimas, tales como por ejemplo I-Tevl, ColE7, NucA y Fok-I. La nucleasa TALE puede formarse en formas monoméricas o diméricas dependiendo del dominio catalítico seleccionado (documento WO2012138927). Dichas nucleasas TALE diseñadas mediante ingeniería genética están comercialmente disponibles con el nombre comercial TALEN™ (Cellectis, 8 rue de la Croix Jarry, 75013 Paris, Francia).

De acuerdo con una realización preferida de la invención, el dominio de unión a ADN se deriva de un efector análogo al activador de la transcripción (TALE), en el que la especificidad de la secuencia viene dada por una serie de 33-35 repeticiones de aminoácidos que se originan a partir de las proteínas bacterianas AvrBs3, PthXo1, AvrHah1, PthA, Tal1c de *Xanthomonas* o *Ralstonia* como ejemplos no limitantes.

Estas repeticiones difieren esencialmente en dos posiciones de aminoácidos que especifican una interacción con un par de bases (Boch, Scholze et al. 2009; Moscou y Bogdanove 2009). Cada par de bases en el ADN diana se pone en contacto por una única repetición, con la especificidad resultante de dos variantes de aminoácidos de la repetición (el dipéptido variable de la repetición así denominado, (RVD). Los dominios de unión a TALE pueden comprender además un dominio de traslocación en el extremo N responsable del requerimiento de una primera base de timina (TO) de la secuencia dirigida y un dominio en el extremo C que contiene señales de localización nuclear (NLS). Un dominio de unión a ácido nucleico de TALE corresponde generalmente a un núcleo de una estructura principal de TALE diseñado mediante ingeniería genética que comprende una pluralidad de secuencias de repetición de TALE, comprendiendo cada repetición un RVD específico de cada base de nucleótidos de un sitio de reconocimiento de TALE. En la presente invención, cada secuencia de repetición de TALE de dicho núcleo de la estructura principal está constituido por 30 a 42 aminoácidos, más preferentemente 33 o 34 en el que dos aminoácidos críticos (el dipéptido variable de la repetición así denominado, RVD) localizado en las posiciones 12 y 13 media el reconocimiento de un nucleótido de dicha secuencia del sitio de unión a TALE; equivalente a dos aminoácidos críticos que pueden localizarse en posiciones diferentes de 12 y 13, especialmente en la secuencia de repetición de TALE con más de 33 o 34 aminoácidos de longitud. Preferentemente, los RVD asociados con el reconocimiento de diferentes nucleótidos son HD para reconocer C, NG para reconocer T, NI para reconocer A, NN para reconocer G o A. En otra realización, los aminoácidos críticos 12 y 13 pueden estar mutados hacia otros restos de aminoácidos a fin de modular su especificidad hacia los nucleótidos A, T, C y G, y en particular para potenciar su especificidad. Un dominio de unión al ácido nucleico de TALE comprende normalmente entre 8 y 30 secuencias de repetición de TALE. Más preferentemente, dicho núcleo de estructura principal de la presente invención comprende entre 8 y 20 secuencias de repetición de TALE; de nuevo más preferentemente 15 secuencias de repetición de TALE. Este puede comprender también una única secuencia de repetición de TALE truncada adicional constituida por 20 aminoácidos localizados en el extremo C de dicho conjunto de secuencias de repetición de TALE, es decir, una secuencia de repetición semi-Tale en el extremo C adicional.

Se pueden usar otros dominios de unión a ADN diseñados mediante ingeniería genética como secuencias alternativas para formar dominios de unión de ácidos nucleicos específicos basa por base modulares así denominados (MBBBD) como se describe en el documento WO 2014/018601. Dicho MBBBD puede diseñarse mediante ingeniería genética, por ejemplo, a partir de proteínas identificadas recientemente, concretamente proteínas EAV36_BURRH, E5AW43_BURRH, E5AW45_BURRH y E5AW46_BURRH procedentes del genoma secuenciado recientemente del hongo endosimbionte *Burkholderia Rhizoxinica* (Lackner, Moebius et al. 2011). Estos polipéptidos de unión a ácido nucleico comprenden módulos de aproximadamente 31 a 33 aminoácidos que son específicos de base. Estos módulos presentan menos de 40% de identidad de la secuencia con repeticiones comunes de TALE de *Xanthomonas* y presentan más variabilidad en la secuencia de polipéptidos. Los diferentes dominios de las anteriores proteínas (módulos, extremos N y C) de *Burkholderia* y *Xanthomonas* son útiles para diseñar mediante ingeniería genética nuevas proteínas o estructuras principales que tengan propiedades de unión con las secuencias de ácido nucleico específicas y pueden combinarse para formar proteínas TALE-MBBBD quiméricas.

A modo de ejemplos, la presente invención abarca un método para diseñar mediante ingeniería genética los linfocitos

T a fin de inactivar la expresión de los genes que codifican marcadores antigénicos tales como CD38, CS1 y CD70
utilizando nucleasas TALE específicas.

Particularmente adecuadas para la realización de la invención, las nucleasas TALE tales como las de la SEQ ID NO: 2-3;5-6;8-9, SEQ ID NO: 64-65;67-68;70-71 y SEQ ID NO: 73-74;76-77;79-80 para los genes CD38, CS1 y CD70, respectivamente. Estas nucleasas TALE específicas, su secuencia diana y el protocolo utilizado se presentan más a fondo en los Ejemplos 1-3 siguientes.

Métodos de administración

10

15

20

25

30

35

40

45

55

Los inventores han considerado cualesquiera medios conocidos en la técnica para permitir la administración en el interior de las células o los compartimentos subcelulares de dichas células los polinucleótidos que expresan las endonucleasas, sus posibles coefectores (por ejemplo, ARN o ADN guía asociado con Cas9 o las nucleasas Argonauta) así como los receptores de antígenos quiméricos. Estos medios incluyen la transducción vírica, la electroporación y también los medios de administración liposómicos, transportadores poliméricos, transportadores químicos, lipoplexos, poliplexos, dendrímeros, nanopartículas, emulsiones, la ruta de la endocitosis o fagocitosis natural como ejemplos no limitantes.

Como una realización preferida de la invención, los polinucleótidos que codifican las endonucleasas de la presente invención se transfectan en el ARNm a fin de obtener la expresión transitoria y evitar la integración cromosómica del ADN extraño, por ejemplo, mediante electroporación. Los inventores han determinado diferentes condiciones óptimas para la electroporación del ARNm en los linfocitos T presentados en la Tabla 1. El inventor utilizó la tecnología cytoPulse que permite, mediante el uso de campos eléctricos pulsados, para permeabilizar transitoriamente las células vivas para la administración de material en las células (patente de EE.UU. 6.010.613 y el documento WO 2004/083379). Se puede modificar la duración del pulso, la intensidad así como el intervalo entre pulsos a fin de alcanzar las mejores condiciones para una eficacia de transfección alta con mortalidad mínima. Básicamente, los primeros pulsos del campo eléctrico alto permiten la formación del poro, mientras que los posteriores pulsos del campo eléctrico menor permiten el movimiento del polinucleótido en la célula. En un aspecto de la presente invención, el inventor describe las etapas que conducen a la consecución de >95% de eficacia de la transfección del ARNm en linfocitos T, y el uso del protocolo de electroporación para expresar transitoriamente diferentes tipos de proteínas en los linfocitos T. En particular, la invención se refiere a un método para transformar los linfocitos T que comprende poner en contacto dicho linfocito T con ARN y aplicar al linfocito T una secuencia de pulso ágil que consiste en:

15

10

- (a) un pulso eléctrico con un intervalo de voltaje de 2250 a 3000 V por centímetro, una anchura de pulso de 0,1 ms y un intervalo de pulso de 0,2 a 10 ms entre los pulsos eléctricos de la etapa (a) y (b);
- (b) un pulso eléctrico con un intervalo de voltaje de 2250 a 3000 V con una anchura de pulso de 100 ms y un intervalo de pulso de 100 ms entre el pulso eléctrico de la etapa (b) y el primer pulso eléctrico de la etapa (c); y
 - (c) 4 pulsos eléctricos con un voltaje de 325 V con una anchura de pulso de 0,2 ms y un intervalo de pulso de 2 ms entre cada uno de los 4 pulsos eléctricos.
- En una realización concreta, el método para transformar el linfocito T comprende poner en contacto dicho linfocito T con ARN y aplicar al linfocito T una secuencia de pulso ágil que consiste en:
 - (a) un pulso eléctrico con un voltaje de 2250, 2300, 2350, 2400, 2450, 2500, 2500, 2400, 2450, 2500, 2600, 2700, 2800, 2900 o 3000V por centímetro, una anchura de pulso de 0,1 ms y un intervalo de pulso de 0,2, 0,5, 1, 2, 3, 4, 5, 6, 7, 8, 9 o 10 ms entre los pulsos eléctricos de la etapa (a) y (b);
 - (b) un pulso eléctrico con un intervalo de voltaje de 2250, de 2250, 2300, 2350, 2400, 2450, 2500, 2500, 2500, 2600, 2700, 2800, 2900 o 3000V con una anchura de pulso de 100 ms y un intervalo de pulso de 100 ms entre el pulso eléctrico de la etapa (b) y el primer pulso eléctrico de la etapa (c); y
- 35

30

- (c) 4 pulsos eléctricos con un voltaje de 325 V con una anchura de pulso de 0,2 ms y un intervalo de pulso de 2 ms entre cada uno de los 4 pulsos eléctricos.
- Se divulgan en la presente solicitud cualesquiera valores incluidos en el intervalo de valor descrito anteriormente. El medio de electroporación puede ser cualquier medio adecuado conocido en la técnica. Preferentemente, el medio de electroporación tiene una conductividad en un intervalo que se extiende desde 0,01 a 1,0 miliSiemens.

Tabla 1: Se utilizaron diferentes programas de citopulsos para determinar el voltaje mínimo requerido para la electroporación en linfocitos T derivados de PBMC.

		G	rupo 1			G	rupo 2			(Grupo 3	
Programa de citopulsos	Pulsos	٧	duración (ms)	Intervalo (ms)	Pulsos	V	duración (ms)	Intervalo (ms)	Pulsos	٧	duración (ms)	Intervalo (ms)
1	1	600	0,1	0,2	1	600	0,1	100	4	130	0,2	2
2	1	900	0,1	0,2	1	900	0,1	100	4	130	0,2	2
3	1	1200	0,1	0,2	1	1200	0,1	100	4	130	0,2	2
4	1	1200	0,1	10	1	900	0,1	100	4	130	0,2	2
5	1	900	0,1	20	1	600	0,1	100	4	130	0,2	2

45

50

Transducción vírica

De acuerdo con la presente invención, el uso de vectores retrovíricos y más preferentemente de vectores lentivíricos es particularmente adecuado para expresar los receptores del antígeno quiméricos en los linfocitos T. Son bien conocidos en la técnica los métodos para la transducción vírica (Walther et *al.* (2000) Viral Vectors for Gene Transfer. *Drugs.* 60(2):249-271). Los vectores víricos integradores permiten la integración estable de los polinucleótidos en el genoma de los linfocitos T y expresar los receptores del antígeno quimérico durante un periodo de tiempo más largo.

Linfocitos T no alorreactivos

10

30

40

Aunque el método que se describe en el presente documento podría llevarse a cabo *in vivo* como parte de una terapia génica, por ejemplo, utilizando vectores víricos que se dirigen a linfocitos T en la circulación de la sangre, que incluirían secuencias genéticas que expresan una endonucleasa de corte raro junto con otras secuencias genéticas que expresan un CAR, se pretende que el método de la invención se practique *ex vivo* en linfocitos T cultivados obtenibles de pacientes o donantes. Los linfocitos T diseñados mediante ingeniería genética *ex vivo* pueden tanto reimplantarse en un paciente a partir de donde se originan, como parte de un tratamiento autólogo, como usarse como parte de un tratamiento alogénico. En este último caso, es preferible diseñar mediante ingeniería genética adicionalmente la célula para hacerlas no alorreactivas para asegurar su injerto adecuado. Por consiguiente, el método de la invención puede incluir etapas adicionales de procurar los linfocitos T de un donante e inactivar los genes del mismo implicados en el reconocimiento de MHC y/o de ser dianas de fármacos inmunosupresores tal como se describe, por ejemplo, en el documento WO 2013/176915.

15 Los receptores de los linfocitos T (TCR) son receptores de la superficie celular que participan en la activación de los linfocitos T en respuesta a la presentación del antígeno. El TCR está constituido generalmente de dos cadenas, alfa y beta, que se ensamblan para formar un heterodímero y se asocian con las subunidades transductoras de CD3 para formar el complejo receptor de los linfocitos T presente sobre la superficie de la célula. Cada cadena alfa y beta del TCR consiste en una región variable en el extremo N análoga a inmunoglobulina (V) y una región constante (C), un dominio transmembrana hidrófobo y un dominio citoplásmico corto. Como para las moléculas de inmunoglobulina, la 20 región variable de las cadenas alfa y beta se genera por la recombinación de V(D)J, creando una gran diversidad de especificidades antigénicas en la población de linfocitos T. Sin embargo, en contraste con las inmunoglobulinas que reconocen el antígeno intacto, los linfocitos T se activan por fragmentos peptídicos procesados en asociación con una molécula de MHC, introduciendo una dimensión extra al reconocimiento del antígeno por las células, conocida como 25 restricción de MHC. El reconocimiento de las disparidades de MHC entre el donante y el receptor mediante el receptor de los linfocitos T conduce a la proliferación de linfocitos T y al desarrollo potencial de GVHD. Se ha mostrado que la expresión de la superficie normal de TCR depende de la síntesis y el ensamblaie coordinado de los siete componentes del complejo (Ashwell y Klusner 1990). La inactivación de TCRalfa o TCRbeta puede dar como resultado la eliminación del TCR de la superficie de los linfocitos T evitando el reconocimiento del aloantígeno y por tanto de GVHD.

Por lo tanto, todavía, de acuerdo con la invención, el injerto de los linfocitos T puede mejorarse inactivando al menos un gen que codifica un componente TCR. TCR se vuelve no funcional en las células inactivando el gen de TCR alfa y/o el(los) gen(es) de TCR beta.

Con respecto al uso del sistema Cas9/CRISPR, los inventores han determinado secuencias diana adecuadas en los 3 exones que codifican TCR, permitiendo una reducción significativa de la toxicidad en las células vivas, reteniendo a la vez la eficacia de la escisión. En la Tabla 2 se indican las secuencias diana preferidas (+ para la relación menor de células negativas para TCR, ++ para la relación intermedia, +++ para la relación mayor).

Tabla 2: Secuencias diana adecuadas para el ARN quía utilizando Cas9 en linfocitos T

labla 2: Se	cuencias o	diana ad	decuadas para el ARN guía utilizando Cas	en linto	citos I
TCR del exón	Posición	Hebra	Secuencia genómica diana	SEQ ID	Eficacia
Ex1	78	-1	GAGAATCAAAATCGGTGAATAGG	102	+++
Ex3	26	1	TTCAAAACCTGTCAGTGATTGGG	103	+++
Ex1	153	1	TGTGCTAGACATGAGGTCTATGG	104	+++
Ex3	74	-1	CGTCATGAGCAGATTAAACCCGG	105	+++
Ex1	4	-1	TCAGGGTTCTGGATATCTGTGGG	106	+++
Ex1	5	-1	GTCAGGGTTCTGGATATCTGTGG	107	+++
Ex3	33	-1	TTCGGAACCCAATCACTGACAGG	108	+++
Ex3	60	-1	TAAACCCGGCCACTTTCAGGAGG	109	+++
Ex1	200	-1	AAAGTCAGATTTGTTGCTCCAGG	110	++
Ex1	102	1	AACAAATGTGTCACAAAGTAAGG	111	++
Ex1	39	-1	TGGATTTAGAGTCTCTCAGCTGG	112	++
Ex1	59	-1	TAGGCAGACAGACTTGTCACTGG	113	++
Ex1	22	-1	AGCTGGTACACGGCAGGGTCAGG	114	++
Ex1	21	-1	GCTGGTACACGGCAGGGTCAGGG	115	++
Ex1	28	-1	TCTCTCAGCTGGTACACGGCAGG	116	++
Ex3	25	1	TTTCAAAACCTGTCAGTGATTGG	117	++

TCR del exón	Posición	Hebra	Secuencia genómica diana	SEQ ID	Eficacia
Ex3	63	-1	GATTAAACCCGGCCACTTTCAGG	118	++
Ex2	17	-1	CTCGACCAGCTTGACATCACAGG	119	++
Ex1	32	-1	AGAGTCTCTCAGCTGGTACACGG	120	++
Ex1	27	-1	CTCTCAGCTGGTACACGGCAGGG	121	++
Ex2	12	1	AAGTTCCTGTGATGTCAAGCTGG	122	++
Ex3	55	1	ATCCTCCTGAAAGTGGCCGG	123	++
Ex3	86	1	TGCTCATGACGCTGCGGCTGTGG	124	++
Ex1	146	1	ACAAAACTGTGCTAGACATGAGG	125	+
Ex1	86	-1	ATTTGTTTGAGAATCAAAATCGG	126	+
Ex2	3	-1	CATCACAGGAACTTTCTAAAAGG	127	+
Ex2	34	1	GTCGAGAAAAGCTTTGAAACAGG	128	+
Ex3	51	-1	CCACTTTCAGGAGGAGGATTCGG	129	+
Ex3	18	-1	CTGACAGGTTTTGAAAGTTTAGG	130	+
Ex2	43	1	AGCTTTGAAACAGGTAAGACAGG	131	+
Ex1	236	-1	TGGAATAATGCTGTTGTTGAAGG	132	+
Ex1	182	1	AGAGCAACAGTGCTGTGGCCTGG	133	+
Ex3	103	1	CTGTGGTCCAGCTGAGGTGAGGG	134	+
Ex3	97	1	CTGCGGCTGTGGTCCAGCTGAGG	135	+
Ex3	104	1	TGTGGTCCAGCTGAGGTGAGGGG	136	+
Ex1	267	1	CTTCTTCCCCAGCCCAGGTAAGG	137	+
Ex1	15	-1	ACACGGCAGGGTCAGGGTTCTGG	138	+
Ex1	177	1	CTTCAAGAGCAACAGTGCTGTGG	139	+
Ex1	256	-1	CTGGGGAAGAAGGTGTCTTCTGG	140	+
Ex3	56	1	TCCTCCTGAAAGTGGCCGGG	141	+
Ex3	80	1	TTAATCTGCTCATGACGCTGCGG	142	+
Ex3	57	-1	ACCCGGCCACTTTCAGGAGGAGG	143	+
Ex1	268	1	TTCTTCCCCAGCCCAGGTAAGGG	144	+
Ex1	266	-1	CTTACCTGGGCTGGGGAAGAAGG	145	+
Ex1	262	1	GACACCTTCTTCCCCAGCCCAGG	146	+
Ex3	102	1	GCTGTGGTCCAGCTGAGGTGAGG	147	+
Ex3	51	1	CCGAATCCTCCTCCTGAAAGTGG	148	+

Los antígenos de MHC son también proteínas que juegan un papel principal en las reacciones de trasplante. El rechazo está mediado por linfocitos T que reaccionan a los antígenos de histocompatibilidad en la superficie de los tejidos implantados, y el grupo más grande de estos antígeno es el de los antígenos de histocompatibilidad mayor (MHC). Estas proteínas en la superficie de todos los vertebrados superiores y se denominan antígenos HLA (para los antígenos de leucocitos humanos) en células humanas. al igual que TCR, las proteínas MHC tiene un papel vital en la estimulación de los linfocitos T. Las células presentadoras de antígenos (a menudo células dendríticas) expresan péptidos que son los productos de degradación de proteínas extrañas sobre la superficie celular del MHC. En presencia de una señal coestimuladora, el linfocito T se activa, y actuará en una célula diana que también expresa el mismo complejo de péptido/MHC. Por ejemplo, un linfocito T auxiliar estimulado dirigirá un macrófago que expresa un antígeno junto con su MHC, o un linfocito T citotóxico (LTC) actuará en una célula infectada por virus expresando péptidos víricos extraños.

Por lo tanto, a fin de proporcionar menos linfocitos T alorreactivos, el método de la invención puede comprender además la etapa de inactivar o mutar un gen HLA.

10

La agrupación de genes HLA de clase I en seres humanos comprende tres loci mayores, B, C y A, así como varios loci menores. Las agrupación HLA de clase II comprende también tres loci mayores, DP, DQ y DR, y ambas agrupaciones de genes de clase I y clase II son polimórficas, porque existe varios alelo diferentes en los genes de

clase y clase II en la población. Existen también algunas proteínas accesorias que juegan también un papel en el funcionamiento de HLA. Las subunidades Tapi y Tap2 son partes del complejo transportador TAP que es esencial en la carga de antígenos peptídicos sobre los complejos HLA de la clase I, y las subunidades proteosómicas LMP2 y LMP7 juegan papeles en la degradación proteolítica de antígenos en péptidos para expresar en HLA. La reducción en LMP7 ha mostrado reducir la cantidad de MHC de clase I en la superficie de la célula, quizá a través de una ausencia de estabilización (Fehling et al. (1999) Science 265:1234-1237). Además de TAP y LMP, existe un gen de la tapasina, cuyo producto forma un puente entre el complejo TAP y las cadenas de HLA de clase I y potencia la carga del péptido. La reducción en la tapasina da como resultado células con ensamblaje de MHC de clase I alterado, expresión reducida de la superficie celular de MHC de clase I y respuestas inmunitarias alteradas (Grandea et al. (2000) *Immunity* 13:213-222 y Garbi et al. (2000) *Nat. Immunol.* 1:234-238). Cualquiera de los anteriores genes puede inactivarse como parte de la presente invención como se divulga, por ejemplo, en el documento WO 2012/012667.

Métodos para diseñar mediante ingeniería genética linfocitos T resistentes a fármacos:

- Para mejorar la terapia contra el cáncer y el injerto selectivo de linfocitos T alogénicos, se puede conferir resistencia al fármaco a los linfocitos T diseñados mediante ingeniería genética para protegerlos de los efectos secundarios tóxicos de los agentes quimioterapéuticos o inmunosupresores. De hecho, los inventores han observado que la mayoría de los pacientes se trataron con agentes quimioterapéuticos y agentes inmunosupresores como cuidado médico normal, antes de recibir la inmunoterapia de linfocitos T. También se encuentra que pueden aprovecharse estos tratamientos para ayudar a la selección de los linfocitos T diseñados mediante ingeniería genética, añadiendo tanto fármacos quimioterapéuticos en medio de cultivo para la expansión de las células ex vivo antes del tratamiento, como obteniendo una expansión selectiva de los linfocitos T diseñados mediante ingeniería genética *in vivo* en pacientes bajo inmunoterapia o tratamientos inmunosupresores.
- 25 También la resistencia al fármaco de los linfocitos T permite su enriquecimiento *in vivo* o *ex vivo*, puesto que los linfocitos T que expresan el gen de la resistencia a fármacos, sobrevivirán y se multiplicarán con respecto a las células sensibles a fármacos. En particular, la presente invención se refiere a un método para diseñar mediante ingeniería genética linfocitos T alogénicos y resistencia a fármacos resistentes para la inmunoterapia que comprenden:
- 30 (a) Proporcionar un linfocito T;

10

35

50

- (b) Seleccionar al menos un fármaco;
- (c) Modificar el linfocito T para conferir resistencia al fármaco a dicho linfocito T;
- (d) Expandir dicho linfocito T diseñado mediante ingeniería genética en presencia de dicho fármaco, y opcionalmente, las etapas anteriores pueden combinarse con las etapas de los métodos como se ha descrito previamente.
- Se puede conferir resistencia al fármaco a un linfocito T inactivado uno o más genes responsables de la sensibilidad de la célula al fármaco (gen(es) de sensibilización al fármaco), tal como el gen de la hipoxantina-guanina fosforribosil transferasa (HPRT) (Genbank: M26434.1). En particular, HPRT puede inactivarse en linfocitos T diseñados mediante ingeniería genética para conferir resistencia a un metabolito citostático, la 6-tioguanina (6TG) que se convierte por HPRT en el nucleótido de tioguanina citotóxica y que se usa normalmente para tratar pacientes con cáncer, in particular leucemias (Hacke, Treger et al. 2013). Otro ejemplo es si la inactivación del CD3 expresada normalmente en la superficie del linfocito T puede conferir resistencia a anticuerpos dirigidos contra CD3 tales como teplizumab.
 - Puede conferirse también resistencia a fármacos a los linfocitos T expresando un gen de resistencia a fármacos. Dicho gen de resistencia a fármacos se refiere a una secuencia de ácidos nucleico que codifica la "resistencia" a un agente, tal como un agente quimioterapéutico (por ejemplo, metotrexato). En otras palabras, la expresión del gen de resistencia a fármacos en una célula permite la proliferación de las células en presencia del agente en una extensión mayor que la proliferación de una célula correspondiente sin el gen de resistencia a fármacos. Un gen de resistencia a fármacos de la invención puede codificar la resistencia a antimetabolitos, metotrexato, vinblastina, cisplatino, agentes alquilantes, antraciclinas, antibióticos citotóxicos, anti-inmunofilinas, sus análogos o derivados, y similares.
- Se han identificado variantes alélicas de diversos genes tales como dihidrofolato reductasa (DHFR), inosina monofosfato deshidrogenasa 2 (IMPDH2), calcineurina o metilguanina transferasa (MGMT) por conferir resistencia a fármacos a una célula. Dicho gen de resistencia a fármacos puede expresarse en la célula tanto introduciendo un transgén que codifica dicho gen en la célula como integrando dicho gen de resistencia a fármacos en el genoma de la célula mediante recombinación homóloga. Se han identificado algunos genes de resistencia a fármacos diferentes que pueden utilizarse potencialmente para conferir resistencia a fármacos a las células dirigidas (Takebe, Zhao et al. 2001; Sugimoto, Tsukahara et al. 2003; Zielske, Reese et al. 2003; Nivens, Felder et al. 2004; Bardenheuer, Lehmberg et al. 2005; Kushman, Kabler et al. 2007).
- DHFR es una enzima implicada en la regulación de la cantidad de tetrahidrofolato en la célula y es esencial para la síntesis de ADN. Los análogos de folato tales como metotrexato (MTX) inhiben DHFR y se usan por tanto como agentes antineoplásicos en escenarios clínicos. Se han descrito diferentes forma mutantes de DHFR que tienen una

resistencia aumentada a la inhibición por antifolatos utilizada en terapia. En una realización concreta, el gen de resistencia a fármacos de acuerdo con la presente invención puede ser una secuencia de ácido nucleico que codifica una forma mutante de DFHR natural humano (GenBank: AAH71996.1) que comprende al menos una mutación que confiere resistencia a un tratamiento con antifolato, tal como metotrexato. En una realización concreta, la forma mutante de DHFR comprende al menos un aminoácido mutado en la posición G15, L22, F31 o F34, preferentemente en las posiciones L22 o F31 ((Schweitzer, Dicker et al. 1990); solicitud internacional WO 94/24277; patente de Estados Unidos US 6.642.043).

Como se usa en el presente documento, "agente antifolato" o "análogos de folato" se refiere a una molécula dirigida para interferir con la ruta metabólica del folato en algún nivel. Los ejemplos de agentes antifolato incluyen, por ejemplo, metotrexato (MTX); aminopterina; trimetrexato (Neutrexin™); edatrexato; ácido N10-propargil-5,8-dideazafólico (CB3717); ZD1694 (Tumodex), ácido 5,8-didesazaisofólico (IAHQ); ácido 5,10-didesazatetrahidrofólico (DDATHF); Ácido 5-desazafólico; PT523 (N alfa-(4-amino-4-desoxipteroil)-N delta-hemiftaloil-L-ornitina); 10-etill-10-desazaaminopterina (DDATHF, lomatrexol); piritrexim; 10-EDAM; ZD1694; GW1843; Pemetrexato y PDX (10-propargil-10-deaazaaminopterina).

Otro ejemplo de gen de resistencia a fármacos puede ser también una forma mutante o modificada de la ionisina-5'monofosfato deshidrogenasa II (IMPDH2), una enzima limitante de la velocidad en la síntesis *de novo* de los
nucleótidos de guanosina. La forma mutante o modificada de IMPDH2 es un gen de resistencia al inhibidor de IMPDH.

Los inhibidores de IMPDH pueden ser ácido micofenólico (MPA) o su profármaco micofenalato de mofetilo (MMF). El
IMPDH2 mutante puede comprender al menos una, preferentemente dos mutaciones en el sitio de unión a MAP del
IMPDH2 humano natural (NP_000875.2) que conduce a una resistencia significativamente aumentada al inhibidor de
IMPDH. Las mutaciones están preferentemente en las posiciones T333 y/o S351 (Yam, Jensen et al. 2006; Sangiolo,
Lesnikova et al. 2007; Jonnalagadda, Brown et al. 2013). En una realización concreta, el resto de treonina en la
posición 333 se sustituye con un resto de isoleucina y el resto de serina en la posición 351 se sustituye con un resto
de tirosina.

Otro gen de resistencia a fármacos es la forma mutante de calcineurina. Calcineurina (PP2B) es una serina/treonina proteína fosfatasa que se expresa de forma ubicua que está implicada en muchos procesos biológicos y que es 30 fundamental para la activación de los linfocitos T. La calcineurina es un heterodímero compuesto de una subunidad catalítica (CnA; tres isoformas) y una subunidad reguladora (CnB; dos isoformas). Tras el encaje del receptor de los linfocitos T, la calcineurina desfosforila el factor de transcripción NFAT, permitiendo a este translocarse en el núcleo y activar el gen diana clave tal como IL2. FK506 en complejo con FKBP12, o ciclosporina A (CsA) en complejo con CyPÁ bloquea el accesos NFAT al sitio activo de la calcineurina, evitando su desfosforilación e inhibiendo por tanto la activación de los linfocitos T (Brewin, Mancao et al. 2009). El gen de resistencia a fármacos de la presente invención 35 puede ser una secuencia de ácido nucleico que codifica una forma mutante de la calcineurina resistente a inhibidores de la calcineurina tales como FK506 y/o CsA. En una realización concreta, dicha forma mutante puede comprender al menos un aminoácido mutado del heterodímero de calcineurina a natural en las posiciones: V314, Y341, M347, T351, W352, L354, K360, preferentemente mutaciones dobles en las posiciones T351 y L354 o V314 e Y341. La 40 correspondencia de las posiciones de aminoácidos descritas en el presente documento se expresa frecuentemente en términos de las posiciones de los aminoácidos de la forma del heterodímero de calcineurina humana natural (GenBank: ACX34092.1).

En otra realización concreta, dicha forma mutante puede comprender al menos un aminoácido mutado del heterodímero de calcineurina b natural en las posiciones: V120, N123, L124 o K125, preferentemente mutaciones dobles en las posiciones L124 y K125. La correspondencia de las posiciones de aminoácidos descritas en el presente documento se expresa con frecuencia en términos de las posiciones de los aminoácidos de la forma del polipéptido del heterodímero de calcineurina b humana natural (GenBank: ACX34095.1).

Otro gen de resistencia a fármacos es 0(6)-metilguanina metiltransferasa (MGMT) que codifica la alquil guanina transferasa humana (hAGT). AGT es una proteína reparadora del ADN que confiere resistencia a los efectos citotóxicos de los agentes alquilantes, tales como nitrosoureas y temozolomida (TMZ). 6-bencilguanina (6-BG) es un inhibidor de AGT que potencia la toxicidad de la nitrosourea y se administra simultáneamente con TMZ para potenciar los efectos citotóxicos de este agente. Algunas formas mutantes de MGMT que codifican variantes de AGT son muy resistentes a la inactivación por 6-BG, pero retienen su capacidad de reparar el daño del ADN (Maze, Kurpad et al. 1999). En una realización concreta, la forma mutante de AGT puede comprender un aminoácido mutado de la posición P140 de AGT natural (UniProtKB: P16455).

Otro gen de resistencia a fármacos puede ser el gen de la proteína 1 de resistencia a multifármacos (MDR1). Este gen codifica una glicoproteína de membrana, conocida como glicoproteína-P (P-GP) implicada en el transporte de subproductos metabólicos a través de la membrana celular. La proteína P-Gp presenta una amplia especificidad hacia algunos agentes quimioterapéuticos no relacionados estructuralmente. Por lo tanto, puede conferirse resistencia a fármacos a las células mediante la expresión de una secuencia de ácido nucleico que codifica MDR-1 (NP_000918).

El gen de resistencia a fármacos puede ser también a antibióticos citotóxicos, tal como el gen *ble* o el gen *mcrA*. La expresión ectópica del gen *ble* o del gen *mcrA* en células inmunitarias proporciona una ventaja selectiva cuando se

expone al agente quimioterapéutico, respectivamente la bleomicina o la mitomicina C.

Los linfocitos T pueden también hacerse resistente a los agentes inmunosupresores. Un agente inmunosupresor es un agente que suprime la función inmunitaria por uno de los varios mecanismos de acción. En otras palabras, un agente inmunosupresor es un papel jugado por un compuesto que presenta una capacidad de disminuir la extensión y/o la voracidad de una respuesta inmunitaria. Como ejemplo no limitante, un agente inmunosupresor puede ser un inhibidor de calcineurina, una diana de rapamicina, un bloqueante de la cadena α de interleuquina-2, un inhibidor de la inosina monofosfato deshidrogenasa, un inhibidor de la ácido dihidrofólico reductasa, un corticoesteroide o un antimetabolito inmunosupresor. Los inmunosupresores citotóxicos clásicos actúan inhibiendo la síntesis de ADN. Otros pueden actuar mediante la activación de los linfocitos T o inhibiendo la activación de las células auxiliares. El método de acuerdo con la invención permite conferir resistencia inmunosupresora a los linfocitos T para inmunoterapia inactivando la diana del agente inmunosupresor en los linfocitos T. A modo de ejemplos no limitantes, las dianas para el agente inmunosupresor puede ser un receptor de un agente inmunosupresor tal como: CD52, un receptor glucocorticoide (RG), un miembro de los genes de la familia FKBP y un miembro de los genes de la familia ciclofilina.

15

20

25

30

10

En los hospedadores inmunocompetentes, las células alogénicas son normalmente rechazadas rápidamente por el sistema inmunitario del hospedador. Se ha demostrado que, los leucocitos alogénicos presentes en productos sanguíneo no irradiados persistirá durante no más de 5 a 6 días. Por lo tanto, para evitar el rechazo de las células alogénicas, el sistema inmunitario del hospedador debe suprimirse eficazmente. Los glucocorticoesteroides son ampliamente utilizados terapéuticamente para la inmunosupresión. Esta clase de hormonas esteroides se une al receptor glucocorticoide (RG) presente en el citosol de los linfocitos T dando como resultado la translocación en el núcleo y la unión de los motivos de ADN específicos que regulan la expresión de numerosos genes implicados en el proceso inmunológico. El tratamiento de los linfocitos T con esteroides glucocorticoides da como resultado niveles reducidos de producción de citoquinas que conducen a la anergia de los linfocitos T e interfieren en la activación de los linfocitos T. Alemtuzumab, también conocido como CAMPATH1-H, es un anticuerpo monoclonal humanizado que se dirige a CD52, una glicoproteína de 12 aminoácidos unida a glicosilfosfatidil-inositol- (GPI) (Waldmann y Hale, 2005). CD52 se expresa a altos niveles en los linfocitos T y B y a niveles menores en los monocitos mientras que está ausente en los granulocitos y los precursores de la médula ósea. El tratamiento con Alemtuzumab, un anticuerpo monoclonal humanizado dirigido contra CD52, ha mostrado inducir un rápido agotamiento de linfocitos y monocitos en circulación. Se usa frecuentemente en el tratamiento de linfomas de linfocitos T y en determinados casos como parte de un régimen de acondicionamiento para el trasplante. Sin embargo, en el caso de inmunoterapia adoptiva, el uso de fármacos inmunosupresores tendrá también un efecto perjudicial sobre los linfocitos T terapéuticos introducidos. Por lo tanto, para usar eficazmente una estrategia de inmunoterapia adoptiva en estas condiciones, las células introducidas necesitarían ser resistentes al tratamiento inmunosupresor.

35

40

45

50

Como una realización preferida de las etapas anteriores, dicho gen de la etapa (b), específico para un tratamiento inmunosupresor, es CD52, y el tratamiento inmunosupresor de la etapa (d) comprende un anticuerpo humanizado que se dirige al antígeno CD52. Como realización diferente, dicho gen de la etapa (b), específico para un tratamiento inmunosupresor, es un receptor glucocorticoide (RG) y el tratamiento inmunosupresor de la etapa (d) comprende un corticoesteroide tal como dexametasona. Como realización diferente, dicho gen diana de la etapa (b), específico para un tratamiento inmunosupresor, es un miembro de los genes de la familia FKBP o una variante del mismo y el tratamiento inmunosupresor de la etapa (d) comprende FK506, conocido también como tacrolimus o fujimicina. Como realización diferente, dicho miembro de los genes de la familia FKBP es FKBP12 o una variante del mismo. Como realización diferente, dicho gen de la etapa (b), específico para un tratamiento inmunosupresor, es un miembro de los genes de la familia ciclofilina o una variante del mismo y el tratamiento inmunosupresor de la etapa (d) comprende ciclosporina.

E

En una realización particular de la invención, la etapa de modificación genética del método se basa en la inactivación de dos genes seleccionados entre el grupo que consiste en CD52 y RG, CD52 y TCR alfa, CDR52 y TCR beta, RG y TCR alfa, RG y TCR beta, TCR alfa y TCR beta. En otra realización, la etapa de modificación genética del método se basa en la inactivación de más de dos genes. La modificación genética está preferentemente operada ex vivo utilizando al menos dos guías de ARN que se dirigen a diferentes genes.

Inactivando un gen, se pretende que el gen de interés no se exprese en forma de proteína funcional.

55

60

65

Diseño mediante ingeniería genética de linfocitos T muy activos para inmunoterapia

De acuerdo con la presente invención, los linfocitos T se pueden seleccionar entre el grupo que consiste en linfocitos T inflamatorios, linfocitos T citotóxicos, linfocitos T reguladores o linfocitos T auxiliares. En otra realización, dicha célula puede derivarse del grupo que consiste el linfocitos T CD4+ y linfocitos T CD8+. Se pueden extraer de la sangre o derivarse de citoblastos. Los citoblastos pueden ser citoblastos adultos, embriocitoblastos, más concretamente, citoblastos no humanos, citoblastos del cordón umbilical, células progenitoras, citoblastos de la médula ósea, citoblastos pluripotentes inducidos, citoblastos totipotentes o hemocitoblastos. las células humanas representativas son células CD34+. Antes de la expansión y de la modificación genética de las células de la invención, se puede obtener una fuente de células de un sujeto mediante una variedad de métodos no limitantes. Se pueden obtener linfocitos T de numerosas fuentes no limitantes, incluyendo células mononucleares de sangre periférica, médula ósea,

tejido de ganglios linfáticos, cordón umbilical, tejido del timo, tejido de un sitio de infección, fluido ascítico, derrame pleural, tejido del bazo, y tumores. En determinadas realizaciones de la presente invención, se puede usar cualquier número de líneas de linfocitos T disponible y conocido por los expertos en la materia. En otra realización, dicha célula puede derivarse de un donante sano, de un paciente al que se ha diagnosticado cáncer o un paciente al que se ha diagnosticado una infección. En otra realización, dicha célula es parte de una población mixta de células que presentan diferentes características fenotípicas. En el alcance de la presente invención se abarca también una línea de células obtenidas a partir de un linfocito T transformado de acuerdo con el método anteriormente descrito.

Como un aspecto adicional de la invención, los linfocitos T de acuerdo con la invención pueden diseñarse además mediante ingeniería, preferentemente mediante ingeniería genética, para potenciar su actividad y/o activación, especialmente, modulando la expresión de las proteínas implicadas en la regulación global de los linfocitos, denominados "checkpoints inmunitarios".

Check points inmunitarios

15

20

25

30

35

Las personas normalmente expertas en la materia entenderán, que la expresión "checkpoints inmunitarios" significa un grupo de moléculas expresadas por linfocitos T. Estas moléculas sirven eficazmente como "frenos" para modular por defecto o inhibir una respuesta inmunitaria. Las moléculas checkpoint inmunitarias incluyen, aunque no de forma limitativa la de Muerte programada 1 (PD-1, conocida también como PDCD1 o CD279, número de registro: NM 005018), Antígeno 4 de linfocito T citotóxico (CTLA-4, también conocido como CD152, GenBank, número de registro AF414120.1), LAG3 (también conocida como CD223, número de registro: NM 002286.5), Tim3 (también conocida como HAVCR2, GenBank, número de registro: JX049979.1), BTLA (también conocida como CD272, número de registro: NM 181780.3), BY55 (también conocida como CD160, GenBank, número de registro: CR541888.1), TIGIT (también conocida como IVSTM3, número de registro: NM_173799), LAIR1 (también conocida como CD305, GenBank, número de registro: CR542051.1, {Meyaard, 1997 n.º 122}), SIGLEC10 (GeneBank, número de registro: AY358337.1), 2B4 (también conocida como CD244, número de registro: NM 001166664.1), PPP2CA, PPP2CB, PTPN6, PTPN22, CD96, CRTAM, SIGLEC7 (Nicoll, 1999 n.º 123), SIGLEC9 (Zhang, 2000 n.º 124; kehara, 2004 n.º 125}, TNFRSF10B, TNFRSF10A, CASP8, CASP10, CASP3, CASP6, CASP7, FADD, FAS, TGFBRII, TGFRBRI, SMAD2, SMAD3, SMAD4, SMAD10, SKI, SKIL, TGIF1, IL10RA, IL10RB, HMOX2, IL6R, IL6ST, EIF2AK4, CSK, PAG1, SIT1, FOXP3, PRDM1, BATF {Quigley, 2010 n.º 121}, GUCY1A2, GUCY1A3, GUCY1B2, GUCY1B3 que inhibe directamente las células inmunitarias. Por ejemplo, CTLA-4 es una proteína de la superficie celular expresada en determinados linfocitos T CD4 y CD8; cuando se encaja por sus ligandos (B7-1 y B7-2) sobre las células presentadoras de antígenos. La función de activación y efectora de los linfocitos T están inhibidas. Por tanto, la presente invención se refiere a un método para diseñar mediante ingeniería genética linfocitos T, especialmente para inmunoterapia, que comprende modificar genéticamente linfocitos T inactivando al menos una proteína implicada en el checkpoint inmunitario, en particular PD1 y/o CTL-4 o cualesquiera proteínas checkpoint inmunitarias referidas en la Tabla 3.

Tabla 3: Lista de genes que codifican proteínas checkpoint inmunitarias.

Ru	ta	Genes que pueden inactivarse en la ruta	
	CTLA4(CD152)	CTLA4, PPP2CA, PPP2CB, PTPN6, PTPN22	
	PDCD1 (PD-1, CD279)	PDCD1	
	CD223 (lag3)	LAG3	
	HAVCR2 (tim3)	HAVCR2	
	BTLA(cd272)	BTLA	
	CD160(by55)	CD160	
receptores coinhibidores		TIGIT	
	familia IgSF	CD96	
		CRTAM	
	LAIRI(cd305)	LAIR1	
	SIGLECs	SIGLEC7	
	OIOLLO3	SIGLEC9	
	CD244(2b4)	CD 244	
Receptores de muerte	TRAIL	TNFRSF10B, TNFRSF10A, CASP8, CASP10, CASP3, CASP6, CASP7	
	FAS	FADD, FAS	
	Señalización de TGF-beta	TGFBRII, TGFBRI, SMAD2, SMAD3, SMAD4, SMAD10, SKI, SKIL, TGIF1	
Señalización de la citoquina	Señalización de IL10	IL10RA, IL10RB, HMOX2	
	Señalización de IL6	IL6R, IL6ST	

Ru	ta	Genes que pueden inactivarse en la ruta
Privación de arginina/triptófano		EIF2AK4
Prevención de la señalización		CSK, PAG1
de TCR		SIT1
Treg inducido	Treg inducido	FOXP3
Factores de transcripción que controlan el agotamiento	Factores de transcripción que controlan el agotamiento	PRDM1 (=blimp1, los heterocigóticos controla la infección vírica crónica mejor que wt o KO condicional)
	_	BATF
tolerancia mediada por hipoxia	ciclasa guanilada inducida por iNOS	GUCY1A2, GUCY1A3, GUCY1B2, GUCY1B3

Linfocitos T diseñados mediante ingeniería genética que expresan receptores de antígenos quiméricos contra células patológicas

Los receptores de antígenos quiméricos introducidos en los linfocitos T de acuerdo con la invención pueden adoptar diferentes diseños tales como unos CAR monocatenarios o multicatenarios. Estos diferentes diseños permiten diversas estrategias para mejorar la especificidad y la eficacia de la unión hacia las células patológicas dirigidas. Algunas de estas estrategias se ilustran en las figuras de la presente solicitud. Los CAR monocatenarios son la versión más clásica en la técnica. Las arquitecturas CAR multicatenarias se desarrollaron por el solicitante para permitir la modulación de la actividad de los linfocitos T en términos de especificidad e intensidad. Las múltiples subunidades pueden acoger dominios de coestimulación adicionales o mantener dichos dominios a una distancia, así como otros tipos de receptores, mientras que la arquitectura monocatenaria clásica se puede considerar algunas veces como demasiado sensible y menos permisiva a interacciones multiespecíficas.

15 CAR monocatenario

20

40

50

La inmunoterapia adoptiva, que implica la transferencia de linfocitos T específicos de antígenos autólogos generados ex vivo, es una estrategia prometedora para tratar las infecciones víricas y el cáncer. Los linfocitos T utilizados para la inmunoterapia adoptiva se pueden generar tanto por expansión de los linfocitos T específicos de antígenos como por redirección de los linfocitos T mediante ingeniería genética (Park, Rosenberg et al. 2011). La transferencia de linfocitos T específicos de antígenos víricos es un procedimiento bien establecido utilizado para el tratamiento del trasplante asociado a las infecciones víricas y neoplasias malignas relacionadas con virus raros. De manera similar, el aislamiento y la transferencia de linfocitos T específicos de tumores ha mostrado ser satisfactorio en el tratamiento del melanoma.

25 Se han generado satisfactoriamente novedosas especificidades en los linfocitos T mediante la transferencia genética de receptores de linfocitos T transgénicos o receptores de antígenos quiméricos (CAR) (Jena, Dotti et al. 2010). Los CAR son receptores sintéticos que consisten en un resto de direccionamiento que está asociado con uno o más dominios de señalización en una única molécula de fusión. En general, el resto de unión de un CAR consiste en un dominio de unión a antígeno de un anticuerpo monocatenario (scFv), que comprende los fragmentos ligeros y variables de un anticuerpo monoclonal unidos mediante un enlazador flexible. Los restos de unión basados en los dominios del receptor o el ligando se han usado también satisfactoriamente. Los dominios de señalización para los CAR de primera generación se derivan de la región citoplásmica de CD3zeta o de las cadenas gamma del receptor Fc. Los CAR de primera generación se ha mostrado que redirigen satisfactoriamente la citotoxicidad de los linfocitos T. Sin embargo. fracasaron en proporcionar una expansión prolongada y una actividad antitumoral in vivo. Los dominios de señalización 35 procedentes de moléculas coestimuladoras que incluyen CD28, OX-40 (CD134), y 4-1BB (CD137) se han añadido solos (segunda generación) o en combinación (tercera generación) para potenciar la supervivencia y aumentar la proliferación de linfocitos T modificados por CAR. Los CAR han permitido de forma satisfactoria redirigir los linfocitos T contra antígenos expresados en la superficie de células tumorales procedentes de diversas neoplasias malignas, incluyendo linfomas y tumores sólidos (Jena, Dotti et al. 2010).

Además del CAR que se dirige al marcador antigénico, que es común con las células patológicas y los linfocitos T, tales como CD38, Se prevé que exprese CAR adicionales dirigidos hacia otros marcadores antigénicos no necesariamente expresados por los linfocitos T, con el fin de potenciar la especificidad de los linfocitos T.

Los ejemplos de receptores de antígenos quiméricos que se pueden expresar adicionalmente que se pueden expresar adicionalmente por los linfocitos T para crear células multiespecíficas, son receptores antigénicos dirigidos contra marcadores antigénicos de mieloma múltiple o leucemia linfoblástica, tales como TNFRSF17 (UNIPROT Q02223), SLAMF7 (UNIPROT Q9NQ25), GPRC5D (UNIPROT Q9NZD1), FKBP11 (UNIPROT Q9NYL4), KAMP3, ITGA8 (UNIPROT P53708), y FCRL5 (UNIPROT Q68SN8).

Como ejemplos adicionales, el antígeno de la diana puede ser de cualquier agrupación de moléculas de diferenciación (por ejemplo, CD16, CD64, CD78, CD96, CLL1, CD116, CD117, CD71, CD45, CD71, CD123 y CD138), un antígeno

superficial asociado a tumor, tal como ErbB2 (HER2/neu), antígeno carcinoembrionario (CEA), molécula de adhesión a células epiteliales (EpCAM), receptor de factor de crecimiento epidérmico (EGFR), EGFR variante III (EGFRvIII), CD19, CD20, CD30, CD40, disialogangliósido GD2, mucina del conducto epitelial, gp36, TAG-72, glicoesfingolípidos, antígeno asociado a glioma, β-gonadotropina coriónica humana, alfafetoproteína (AFP), AFP reactiva a lectina, tiroglobulina, RAGE-1, MN-CA IX, transcriptasa inversa de la telomerasa humana, RU1, RU2 (AS), carboxil esterasa intestinal, mut hsp70-2, M-CSF, prostase, antígeno específico de prostase (AEP), PAP, NY-ÈSO-1, LAGA-1a, p53, prosteína, PSMA, supervivencia y telomerasa, antígeno tumoral-1 de carcinoma de próstata (PCTA-1), MAGE, ELF2M, neutrófilo elastasa, efrina B2, CD22, factor de crecimiento de la insulina (IGF1)-I, IGF-II, receptor de IGFI, mesotelina, una molécula del complejo mayor de histocompatibilidad (MHC) que presenta un epítopo antigénico específico de tumor, 5T4, ROR1, Nkp30, NKG2D, antígenos de tumores estromales, el extradominio A (EDA) y el extradominio B (EDB) de la fibronectina y el dominio A1 de tenascina-C (TnC A1) y la proteína asociada a fibroblasto (fap); un antígeno específico de linaje o específico de tejido tal como CD3, CD4, CD8, CD24, CD25, CD33, CD34, CD133, CD138, CTLA-4, B7-1 (CD80), B7-2 (CD86), GM-CSF, receptores de citoquinas, endoglina, una molécula del complejo mayor de histocompatibilidad (CMH), BCMA (CD269, TNFRSF 17), o un antígeno superficial específico de virus tal como un antígeno específico del VIH (tal como VIH gpl20); un antígeno específico del VEB, un antígeno específico del CMV, un antígeno específico del VPH, un antígeno específico del virus de Lasse, un antígeno específico del virus de la gripe así como cualquier derivado o variante de estos marcadores superficiales. Los antígenos no son necesariamente antígenos de marcadores superficiales, pero pueden ser también antígenos pequeños endógenos presentados por HLA de clase I en la superficie de las células.

20

10

15

A modo de ejemplos, la presente invención abarca CAR monocatenarios que se dirigen específicamente al marcador de la superficie celular, tales como CD38, CS1 y/o CD70 como se describe en los ejemplos, junto con una inactivación de los genes que codifican respectivamente CD38, CS1 y/o CD70 en las células que expresan dichos CARS.

Como ejemplo específico, las cadenas VH y VL del scFv dirigido contra CD38 comparten al menos un 80%, preferentemente 90% y más preferentemente 95% de identidad con respectivamente la SEQ ID NO:10 y 12 y la SEQ ID NO:11 y 13.

Como ejemplo específico, el anticuerpo o la unión al epítopo en el antígeno CD38, caracterizada porque dicho anticuerpo o fragmento de unión a epítopo del mismo comprende al menos una cadena pesada y al menos una cadena ligera, en el que dicha cadena pesada comprende tres regiones determinantes de la complementariedad secuenciales que tienen secuencias de aminoácidos representadas por las SEQ ID NOS: 14-17, y en las que dicha cadena ligera comprende tres regiones determinantes de la complementariedad secuenciales que tienen secuencias de aminoácidos representadas por las SEQ ID NOS: 21-23.

35

40

45

30

En otro ejemplo específico, el anticuerpo o la unión al epítopo en el antígeno CD38, caracterizada porque dicho anticuerpo o fragmento de unión a epítopo del mismo comprende al menos una cadena pesada y al menos una cadena ligera, en el que dicha cadena pesada comprende tres regiones determinantes de la complementariedad secuenciales que tienen secuencias de aminoácidos representadas por las SEQ ID NOS: 18-20, y en las que dicha cadena ligera comprende tres regiones determinantes de la complementariedad secuenciales que tienen secuencias de aminoácidos representadas por las SEQ ID NOS: 24-26.

En otro ejemplo específico, las cadenas VH y VL del scFv dirigido contra CS1 comparten al menos un 80%, preferentemente 90% y más preferentemente 95% de identidad con respectivamente la SEQ ID NO:38-40-42-44-46 y la SEQ ID NO: 39-41-42-45-46.

En otro ejemplo más específico, las cadenas VH y VL del scFv dirigido contra CD70 comparten al menos un 80%, preferentemente un 90% y más preferentemente un 95% de identidad al nivel del polinucleótido o ácido nucleico con respectivamente la SEQ ID NO:81-82; 85-86; 89-91 y la SEQ ID NO: 83-84; 87-88; 91-92.

50

En una realización, la invención abarca un polinucleótido que codifica un único CAR dirigido contra CD38 que comparte al menos un 80%, preferentemente un 90% y más preferentemente un 95% de identidad con la SEQ ID NO: 35-37. En otra realización, la invención abarca un polinucleótido que codifica un único CAR dirigido contra CS1 que comparte al menos un 80%, preferentemente un 90% y más preferentemente un 95% de identidad con la SEQ ID NO: 48-62.

55

En otra realización más, la invención abarca un polinucleótido que codifica un único CAR dirigido contra CD70 que comparte al menos un 80%, preferentemente un 90% y más preferentemente un 95% de identidad con la SEQ ID NO: 93-101.

La presente invención se dirige más concretamente a los linfocitos T que están provistos con un CAR que presenta alguna identidad con aquellos descritos en la presente solicitud y que transportaría mutaciones inducidas por la endonucleasa de corte raro en un gen que codifica el marcador celular dirigido por dicha CAR (es decir, el CAR presenta afinidad con el producto de dicho gen inactivado). Por identidad se entiende al menos 70%, preferentemente 80%, más preferentemente 90% e incluso más preferentemente 95% de identidad con el polinucleótido o polipéptido como se determina por el software tal como FASTA, o BLAST que está disponible como parte del paquete de análisis de la secuencia GCG (University of Wisconsin, Madison, Wis.). Las "identidades" de BLASTP muestran el número y

la fracción de restos totales en las parejas de secuencias de alta puntuación que son idénticas. Las secuencias de aminoácidos que tienen estos grados de identidad o similitud o cualquier grado intermedio de identidad o similitud con las secuencias de aminoácidos divulgadas en el presente documento se contemplan y están abarcadas por esta divulgación. Se aplica lo mismo con respecto a las secuencias de polinucleótidos utilizando BLASTN.

CAR multisubunidad

5

10

15

20

25

35

40

45

Los receptores de antígenos quiméricos de la técnica anterior introducidos en los linfocitos T están formados por polipéptidos monocatenarios que necesitan el agregado en serie de los dominios de señalización. Sin embargo, el movimiento de los dominios de señalización desde su posición en la yuxtamembrana natural puede interferir con su función, para superar este inconveniente, el solicitante diseñó recientemente un CAR multicatenario derivado de FcɛRI para permitir la posición normal de la yuxtamembrana de todos los dominios de señalización relevantes. En esta nueva arquitectura, el dominio de unión a IgE de alta afinidad de la cadena FcɛRI alfa está sustituido por un dominio de unión a ligando extracelular tal como scFv para redirigir la especificidad de los linfocitos T contra las dianas celulares y las colas de los extremos N y/o C de la cadena FcɛRI beta se usan para colocar señales coestimuladoras en las posiciones normales de la yuxtamembrana.

Por consiguiente, el CAR expresado por los linfocitos T diseñados mediante ingeniería genética de acuerdo con la invención puede ser un receptor de antígeno quimérico multicatenario (CAR) adaptado particularmente para la producción y expansión de los linfocitos T diseñados mediante ingeniería genética de la presente invención. Dichos CAR multicatenarios comprenden al menos dos de los siguientes componentes:

- a) un polipéptido que comprende el dominio transmembrana de la cadena FcεRI alfa y un dominio de unión a ligando extracelular,
- b) un polipéptido que comprende una parte de la cola citoplásmica del extremo N y el extremo C y el dominio transmembrana de la cadena FcɛRI beta y/o
- c) al menos dos polipéptidos que comprende cada uno una parte de la cola intracitoplásmica y el dominio transmembrana de la cadena FcεRI gamma, por lo cual, diferentes polipéptidos se multimerizan juntos de forma espontánea para formar CAR diméricos, triméricos o tetraméricos.

De acuerdo con dichas arquitecturas, los dominios de unión a ligando y los dominios de señalización nacen en polipéptidos separados. Los diferentes polipéptidos se anclan en la membrana en proximidad cercana permitiendo interacciones entre sí. En dichas arquitecturas, los dominios de señalización y coestimuladores pueden estar en posiciones en la yuxtamembrana (es decir, adyacentes a la membrana celular en el lado interno de esta), que se considera que permite la función mejorada de los dominios coestimuladores. La arquitectura multisubunidad ofrece también más flexibilidad y posibilidades de diseñar CAR con más control sobre la activación de los linfocitos T. Por ejemplo, es posible incluir algunos dominios de reconocimiento de antígenos extracelulares que tienen diferente especificidad para obtener una arquitectura CAR multiespecífica. Es también posible controlar la relación relativa entre las diferentes subunidades en el CAR multicatenario. Este tipo de arquitectura se ha descrito recientemente por el solicitante en el documento PCT/US2013/058005 (WO2014/039523).

El ensamblaje de diferentes cadenas como parte de un único CAR multicatenario se hace posible, por ejemplo, utilizando diferentes cadena alfa, beta y gamma del receptor de alta afinidad para IgE (FcɛRI) (Metzger, Alcaraz et al. 1986) al cual se fusionan los dominios de señalización y coestimuladores. La cadena gamma comprende una región transmembrana y una cola citoplásmica que contienen un motivo de activación basado en tirosina inmunorreceptora (ITAM) (Cambier 1995).

50 El CAR multicatenario puede comprender algunos dominios de unión a ligando extracelulares, para unir simultáneamente diferentes elementos en la diana aumentando por tanto la activación y la función de los linfocitos T. En una realización, los dominios de unión a ligando extracelulares pueden colocarse en tándem o en el mismo polipéptido transmembrana, y opcionalmente pueden separarse por un enlazador. En otra realización, dichos dominios de unión a ligando extracelulares diferentes pueden colocarse diferente polipéptidos transmembrana que componen 55 el CAR multicatenario. En otra realización, la presente invención se refiere a una población de CAR multicatenarios que comprenden cada uno diferentes dominios de unión a ligando extracelulares. en particular, la presente invención se refiere a un método de diseñar mediante ingeniería genética linfocitos T que comprende proporcionar un linfocito T y que expresan en la superficie de dicha célula una población de CAR multicatenarios comprendiendo cada uno diferentes dominios de unión a ligando extracelulares. En otra realización concreta, la presente invención se refiere a 60 un método de diseñar mediante ingeniería genética linfocitos T que comprende proporcionar un linfocito T e introducir en dicha célula polinucleótidos que codifican polipéptidos que componen una población de CAR multicatenarios comprendiendo cada uno diferentes dominios de unión a ligando extracelulares. En una realización concreta, el método de diseñar mediante ingeniería genética un linfocito T comprende expresar en la superficie de la célula al menos una parte de una cadena FcɛRl beta y/o gamma fusionada con un dominio de transducción de la señal y algunas partes de las cadenas FcɛRI alfa fusionadas a diferentes dominios de unión a ligando extracelulares. En una 65 realización más concreta, dicho método comprende introducir en dicha célula al menos un polinucleótido que codifica una parte de la cadena FcɛRI beta y/o gamma fusionada a un dominio de transducción de la señal y algunas cadenas FcɛRI alfa fusionadas a diferentes dominios de unión a ligando extracelulares. Por población de CAR multicatenarios, se entiende al menos dos, tres, cuatro, cinco, seis o más CAR multicatenarios comprendiendo cada uno diferentes dominios de unión a ligando extracelulares. Los diferentes dominios de unión a ligando extracelulares de acuerdo con la presente invención pueden unirse preferentemente de forma simultánea a diferentes elementos en la diana aumentando por tanto la activación y función de los linfocitos T.

La presente invención se refiere también a un linfocito T aislado que comprende una población de CAR multicatenarios que comprenden cada uno diferentes dominios de unión a ligando extracelulares.

El dominio de transducción de la señal o dominio de señalización intracelular del CAR multicatenario de la invención es responsable de la señalización intracelular tras la unión del dominio de unión a ligando extracelular con la diana dando como resultado la activación de los linfocitos T y la respuesta inmunitaria. En otras palabras, el dominio de transducción de la señal es responsable de la activación de al menos una de las funciones efectoras normales del linfocito T en la que se expresa el CAR multicatenario. Por ejemplo, la función efectora de un linfocito T puede ser una actividad citolítica o actividad auxiliar que incluye la secreción de citoquinas.

En la presente solicitud, la expresión " dominio de transducción de la señal" se refiere a la porción de una proteína que transduce la señal de la función de señalización efectora y dirige la célula para llevar a cabo una función especializada.

Los ejemplos preferidos de dominio de transducción de la señal para su uso en CAR monocatenarios o multicatenarios pueden ser las secuencias citoplásmicas del receptor de Fc o del receptor de los linfocitos T y los correceptores que actúan en concierto para iniciar la transducción de la señal tras el encaje del receptor antigénico, así como cualquier derivado o variante de estas secuencias y cualquier secuencia sintética que tenga la misma capacidad funcional. El dominio de transducción de la señal comprende dos clases distintas de secuencia de señalización citoplásmica, aquellas que inician la activación primaria dependiente del antígeno, y aquellas que actúan de una manera independiente al antígeno para proporcionar una señal secundaria o coestimuladora. La secuencia de señalización citoplásmica primaria puede comprender motivos de señalización que se conocen como motivos de activación basados en la tirosina inmunorreceptora de los ITAM. Los ITAM son motivos de señalización bien definidos que se encuentran en la cola intracitoplásmica de una variedad de receptores que sirven como sitios de unión para las tirosina quinasas de clase syk/zap70. Los ejemplos de ITAM utilizados en la invención pueden incluir como ejemplos no limitantes aquellos derivados de TCRzeta, FcRgamma, FcRbeta, FcRépsilon, CD3gamma, CD3delta, CD3épsilon, CD5, CD22, CD79a, CD79b y CD66d. En una realización preferida, el dominio de transducción de la señalización del CAR multicatenario puede comprender el dominio de señalización CD3zeta, o el dominio intracitoplásmico de las cadenas FcɛRl beta o gamma.

En una realización concreta, el dominio de transducción de la señal del CAR multicatenario de la presente invención comprende una molécula de señalización coestimuladora. Una molécula coestimuladora es una molécula de la superficie celular diferente de un receptor antigénico o sus ligandos que se requiere para una respuesta inmunitaria eficaz.

Los dominios de unión a ligando pueden ser cualquier receptor antigénico utilizado anteriormente, y referido a, con respecto a un CAR monocatenario referido en la bibliografía, en particular scFv de los anticuerpos monoclonales. Se incorporan por referencia los CAR biespecíficos o multiespecíficos que se describen en el documento WO 2014/4011988.

De forma similar a la descrita anteriormente con respecto a los CAR monocatenarios, la presente invención abarca linfocitos T provistos con CAR multicatenarios que se dirigen específicamente a un marcador superficial celular tal como CD38, CS1 o CD70. De acuerdo con una realización preferida de la invención, los CAR descritos anteriormente se expresan en linfocitos T, mientras que la inactivación de los genes endógenos que codifican dicho(s) marcador(es) superficial(es) está inducida por la expresión de una endonucleasa de corte raro.

Activación y expansión de linfocitos T

10

15

20

25

30

35

40

45

50

El método de acuerdo con la invención incluye generalmente una etapa adicional de activar y/o expandir los linfocitos T. Esto se puede llevar a cabo antes o después de la modificación genética de los linfocitos T, utilizando los métodos que se describen, por ejemplo, en las patentes de Estados Unidos 6.352.694; 6.534.055; 6.905.680; 6.692.964; 5.858.358; 6.887.466; 6.905.681; 7.144.575; 7.067.318; 7.172.869; 7.232.566; 7.175.843; 5.883.223; 6.905.874; 6.797.514; 6.867.041; y en la publicación de solicitud de patente de Estados Unidos n.º 20060121005. De acuerdo con estos métodos, Los linfocitos T de la invención pueden expandirse por contacto con una superficie que tiene unida a la misma un agente que estimula una señal asociada con un complejo CD3 TCR y un ligando que estimula una molécula coestimuladora sobre la superficie de los linfocitos T.

En particular, las poblaciones de linfocitos T pueden estimularse *in vitro* tal como por contacto con un anticuerpo dirigido contra CD3, o un fragmento de unión a antígeno del mismo, o un anticuerpo dirigido contra CD2 inmovilizado sobre una superficie, o por contacto con un activador de la proteína quinasa C (por ejemplo, briostatina) junto con un

ionóforo de calcio. Para la coestimulación de una molécula accesoria sobre la superficie de los linfocitos T, se usa un ligando que se une a la molécula accesoria. Por ejemplo, una población de linfocitos T puede ponerse en contacto con un anticuerpo dirigido contra CD3 y un anticuerpo dirigido contra CD28, en condiciones adecuadas para estimular la proliferación de los linfocitos T. Para estimular la proliferación tanto de los linfocitos T CD4+ como de los linfocitos T CD8+, un anticuerpo dirigido contra CD3 y un anticuerpo dirigido contra CD28. Por ejemplo, los agentes que proporcionan cada señal pueden estar en solución o acoplados a una superficie. Como puede apreciar fácilmente las personas normalmente expertas en la materia, la relación de partículas a células puede depender del tamaño de partículas relativo a la célula diana. En realizaciones adicionales de la presente invención, las células, tales como linfocitos T, se combinan con perlas revestidas con un agente, las perlas y las células se separan posteriormente, y a 10 continuación se cultivan las células. En una realización alternativa, antes del cultivo, las perlas y las células revestidas con agente no se separan, sino que se cultivan juntas. Las proteínas de la superficie celular pueden estar ligadas permitiendo que las perlas paramagnéticas a las cuales se unen anti-CD3 y anti-CD28 (3x28 perlas) para poner en contacto los linfocitos T. en una realización, las células (por ejemplo, 4 a 10 linfocitos T) y las perlas (por ejemplo, las perlas paramagnéticas DYNABEADS* M-450 CD3/CD28 T en una relación de 1:1) se combinan en un tampón. 15 preferentemente PBS (sin cationes divalentes tales como. calcio y magnesio). De nuevo, las personas normalmente expertas en la materia pueden apreciar fácilmente cualquier concentración celular que pueda usarse. La mezcla puede cultivarse durante varias horas (aproximadamente 3 horas) a aproximadamente 14 días o cualquier valor entero horario comprendido entre los anteriores. En otra realización, la mezcla puede cultivarse durante 21 días. Las condiciones adecuadas para el cultivo de linfocitos T incluyen un medio adecuado (por ejemplo, medio esencial mínimo o medio 20 RPMI 1640 o, X-vivo 5, (Lonza)) que puede contener los factores necesarios para la proliferación y la viabilidad, incluyendo suero (por ejemplo, suero de feto de bovino o suero humano), interleuquina-2 (IL-2), insulina, IFN-g, 1L-4, 1L-7, GM-CSF, -10, -2, 1L-15, TGFp, y TNF- o cualesquiera otros aditivos para el crecimiento de las células conocidos por el experto en la materia. Otros aditivos para el crecimiento de las células incluyen, aunque no de forma limitativa, un tensioactivo, plasmanate, y agentes reductores tales como N-acetil-cisteína y 2-mercaptoetanol. Los medios pueden incluir RPMI 1640, A1M-V, DMEM, MEM, a-MEM, F-12, X-Vivo 1, y X-Vivo 20, Optimizer, con aminoácidos 25 añadidos, piruvato de sodio, y vitaminas, tanto exento de suero como suplementado con una cantidad adecuada de suero (o plasma) o un conjunto definido de hormonas, y/o una cantidad de citoquina(s) suficiente para el crecimiento y la expansión de los linfocitos T. Antibióticos, por ejemplo, penicilina y estreptomicina, se incluyen solo en cultivos experimentales, no en cultivos de células que son para infundirse en un sujeto. Las células diana se mantienen en las 30 condiciones necesarias para soportar el crecimiento, por ejemplo, una temperatura (por ejemplo, 37º C) y atmósfera (por ejemplo, aire más CO2 al 5%) adecuadas. Los linfocitos T que se han expuesto a tiempos de estimulación variados pueden presentar diferentes características.

En otra realización concreta, dichas células pueden expandirse mediante cultivo simultáneo con tejido o células.

35 Dichas células pueden también expandirse *in vivo*, por ejemplo, en la sangre del sujeto tras administrar dichas células en el sujeto.

Aplicaciones terapéuticas

45

40 Los linfocitos T obtenibles mediante los diferentes métodos descritos anteriormente se pretende que se usen como un medicamento para tratar, entre otros, cáncer, infecciones o enfermedades inmunitarias en un paciente que lo necesite.

Dicho tratamiento puede ser mejorante, curativo o profiláctico. Puede ser tanto parte de un tratamiento de inmunoterapia autóloga como parte de un tratamiento de inmunoterapia alogénica. Por autólogo, se entiende que las células, la línea de células o la población de células usadas para tratar pacientes se originan a partir de dicho paciente o de un donante compatible con el antígeno de leucocitos humano (HLA). Por alogénico se entiende que las células o la población de células usadas para tratar pacientes no se originan de dicho paciente sino de un donante.

Los linfocitos T diseñados mediante ingeniería genética de acuerdo con uno de los métodos anteriores se pueden combinar, congelar, y administrar a uno o varios pacientes. Cuando se preparan de forma no alorreactiva, están disponibles como un producto terapéutico "disponible en existencias", los que significa que se pueden infundir de manera universal a pacientes que lo necesitan.

Dichos tratamientos se prevén principalmente para los pacientes a los que se ha diagnosticado cáncer, infección vírica, trastornos autoinmunitarios o enfermedad de injerto contra hospedador (GvHD). Los cánceres son preferentemente leucemias y linfomas, que tienen tumores fluidos, pero se pueden referir también a tumores sólidos. Los tipos de cánceres que se van a tratar con los CAR de la invención incluyen, aunque no de forma limitativa, carcinoma, blastoma, y sarcoma y determinadas leucemias o neoplasias malignas linfoides, tumores benignos y malignos y neoplasias malignas por ejemplo, sarcomas, carcinomas, y melanomas. Se incluyen también tumores/cánceres en personas adultas y tumores/cánceres pediátricos.

La presente invención proporciona en las Tablas 4 a 14 ejemplos de marcadores antigénicos, que pueden dirigirse con las células diseñadas mediante ingeniería genética de la invención para tratar diferentes tipos de cánceres.

65 Los marcadores antigénicos preferidos usados para la inmunoterapia de la presente invención son, de forma más concreta, CD38, CD319 (CS1) y CD70.

Los linfocitos T actuales, cuando se proveen con los CAR específicos dirigidos contra las propias células inmunitarias del paciente, especialmente los linfocitos T, permiten la inhibición o regulación de dichas células, lo que es una etapa clave para tratar las enfermedades autoinmunitarias, tales como la poliartritis reumatoide, lupus eritematoso sistémico, síndrome de Sjögren, esclerodermia, fibromialgia, miositis, espondilitis anquilosante, diabetes de tipo insulinodependiente, tiroiditis de Hashimoto, enfermedad de Addison, enfermedad de Crohn, enfermedad celíaca, esclerosis lateral amiotrófica (ELA) y esclerosis múltiple (EM). Por consiguiente, la presente invención abarca los linfocitos T de la invención para su uso en un método para tratar una enfermedad inmunitaria dirigiendo dichos linfocitos T diseñados mediante ingeniería genética contra los propios linfocitos T del paciente.

Los anteriores tratamientos pueden tener lugar en combinación con una o más terapias seleccionadas entre el grupo de terapias de anticuerpos, quimioterapia, terapia de citoquinas, terapia de células dendríticas, terapia génica, terapia hormonal, terapia de luz láser y radioterapia.

15

20

25

30

35

40

45

60

Los linfocitos T diseñados mediante ingeniería genética tal como se ha descrito anteriormente, cuando se vuelven resistentes a los fármacos quimioterapéuticos y a los fármacos inmunosupresores que se usan como atención médica habitual, especialmente metotrexato y la combinación de fludarabina y ciclofosfamida, son particularmente adecuados para tratar varias formas e cáncer. De hecho, la presente invención se basa preferentemente en células o poblaciones de células. En este aspecto, se espera que la quimioterapia y/o el tratamiento inmunosupresor deba ayudar la selección y la expansión de los linfocitos T diseñados mediante ingeniería genética in vivo.

En determinadas realizaciones de la presente invención, las células son para su uso en la administración a un paciente junto con (por ejemplo, antes, simultáneamente o después) cualquier número de modalidades de tratamiento relevantes, incluyendo, aunque no de forma limitativa el tratamiento con agentes, tales como la terapia antivírica, Tratamiento con cidofivir e interleuquina-2, citarabina (conocida también como ARA-C) o nataliziimab para pacientes con EM o tratamiento efaliztimab para pacientes con psoriasis u otros tratamientos para pacientes con PML. En realizaciones adicionales, los linfocitos T de la invención pueden ser para su uso en combinación con quimioterapia, radiación, agentes inmunosupresores, tales como ciclosporina, azatioprina, metotrexato, micofenolato, y FK506, anticuerpos, u otros agentes inmunosupresores tales como CAMPATH, anticuerpos dirigidos contra CD3 u otras terapias de anticuerpos, citoxina, fludaribina, ciclosporina, FK506, rapamicina, ácido micoplienólico, esteroides, FR901228, citoquinas, e irradiación. Estos fármacos inhiben tanto la fosfatasa dependiente de calcio, calcineurina (ciclosporina y FK506) como inhiben la quinasa p70S6 que es importante para la señalización inducida por el factor de crecimiento (rapamicina) (Liu et al., Cell 66:807-815, 1 1; Henderson et al., Immun. 73:316-321, 1991; Bierer et al., Citrr. Opin. mm n. 5:763-773, 93). En una realización adicional, las composiciones celulares de la presente invención son para su uso en la administración a un paciente junto con (por ejemplo, antes, simultáneamente o después) del trasplante de médula ósea, la terapia supresora de linfocitos T que utiliza cualquiera de los agentes quimioterapéuticos tales como, fludarabina, radioterapia de haces externos (XRT), ciclofosfamidas, o anticuerpos tales como OKT3 o CAMPATH. En otra realización, las composiciones celulares de la presente invención son para su uso en la administración tras la terapia supresora de linfocitos B tal como los agentes que reaccionan con CD20, por ejemplo, Rituxan. Por ejemplo, los sujetos pueden experimentar un tratamiento convencional con una alta dosis de quimioterapia seguido por transporte de citoblastos de sangre periférica. En determinadas realizaciones, tras el transplante, los sujetos pueden recibir una infusión de linfocitos T expandidos de la presente invención. En un ejemplo adicional, las células expandidas se administran antes o tras la cirugía. Dichas células modificadas obtenidas mediante uno cualquiera de los métodos descritos aquí pueden ser para su uso en el tratamiento de pacientes que lo necesitan frente al rechazo de hospedador contra injerto y la enfermedad de injerto contra hospedador (GvHD); por tanto, en el alcance de la presente invención son células modificadas obtenibles mediante el método de la invención para su uso en un método de tratar pacientes que lo necesitan frente al rechazo de hospedador contra inierto (HvG) y la enfermedad de injerto contra hospedador (GvHD) que comprende tratar a dicho paciente administrando a dicho paciente una cantidad eficaz de células modificadas que comprende los genes TCR alfa y/o TCR beta inactivados.

Dichos linfocitos T de la invención pueden experimentar una expansión sólida de linfocitos T *in vivo* tras la administración a un paciente, y pueden persistir en los fluidos corporales durante un lapso de tiempo prolongado, preferentemente durante una semana, más preferentemente durante 2 semanas, incluso más preferentemente durante al menos un mes. Aunque los linfocitos T de acuerdo con la invención se espera que persistan durante estos periodos, se pretende que su duración en el cuerpo del paciente no exceda de un año, preferentemente 6 meses, más preferentemente 2 meses, e incluso más preferentemente un mes.

La administración de las células o la población de células de acuerdo con la presente invención puede llevarse a cabo de una manera convencional, incluyendo por inhalación mediante aerosol, inyección, ingestión, transfusión, implante o trasplante. Las composiciones descritas en el presente documento pueden administrarse a un paciente por vía subcutánea, intradérmica, intratumoral, intranodal, intramedular, intramuscular, mediante inyección intravenosa o intralinfática, o por vía intraperitoneal. En una realización, las composiciones celulares de la presente invención se administran preferentemente mediante inyección intravenosa.

La administración de las células o población de células puede consistir en la administración de 10⁴-10⁹ células por kg
de peso corporal, preferentemente 10⁵ a 10⁶ células/kg de peso corporal incluyendo todos los valores enteros de
cantidades de células comprendidos en los intervalos citados. Las células o población de células se pueden administrar

en una o más dosis. En otra realización, dicha cantidad eficaz de células se administra como una única dosis. En otra realización, dicha cantidad eficaz de células se administra como más de una dosis durante un lapso de tiempo. El calendario de administración está comprendido en el criterio del médico a cargo del tratamiento y depende de la dolencia clínica del paciente. Las células o población de células se pueden obtener a partir de cualquier fuente, tal como un banco de sangre o un donante. Aunque las necesidades individuales varían, la determinación de los intervalos óptimos de cantidades eficaces de un tipo de célula dado para una enfermedad o dolencias concretas se encuentra comprendido en los conocimientos del experto en la materia. una cantidad eficaz significa una cantidad que proporciona un beneficio terapéutico o profiláctico deseado. La dosificación administrada será dependiente de la edad, la salud y el peso del receptor, el tipo de tratamiento concurrente, si lo hubiera, la frecuencia del tratamiento y la naturaleza del efecto deseado.

Dicha cantidad eficaz de células o composición que comprende aquellas células puede administrarse por vía parenteral. Dicha administración puede ser una administración intravenosa. Dicha administración puede llevarse a cabo directamente mediante inyección en un tumor.

10

15

25

30

45

50

55

65

Identificación del marcador antigénico superficial expresado en la superficie de los linfocitos T, mientras se expresa en exceso es tumores sólidos implicados en diferentes tipos de cánceres (Tablas 5 a 13)

Los inventores usaron datos de la micromatriz BioGPS procedentes de un panel de datos de una micromatriz de tejidos cancerosos normales (Atlas de genes U133A/GNF1H humanos) que se puede descargar de los datos uniprot de BioGPS (Tumores primarios humanos (U95)) que contienen la localización subcelular.

Los inventores dibujaron la distribución de valores provenientes de tejidos normales y determinaron un valor umbral de 5 para la expresión relativa.

Los inventores exploraron todos los genes ensayados con micromatrices (44.000 sondas que representan aproximadamente 13.000 genes) y comprobaron su localización en la membrana (se descartaron las proteínas no denominadas proteínas de membranas). Se comprobó la expresión de los linfocitos T CD8+ a partir de la base de datos BioGPS. Los genes se relacionaron de acuerdo con el tipo de cáncer cuando la expresión correspondiente fue la más alta (Tablas 5 a 13).

Identificación del marcador antigénico superficial expresado en la superficie de los linfocitos T, mientras se expresa en exceso en diferentes tumores fluidos de la sangre (Tabla 14)

Para este estudio, no estuvieron disponibles los datos de secuenciación del ARN y por tanto se usaron datos de micromatrices que se obtuvieron a partir de un gran estudio del consorcio MILE (Innovaciones de micromatrices en leucemia), implicando 11 laboratorios (http://www.ngrl.org.uk/wessex/downloads/tm08/TM08-S4-I_KenMills.pdf - Haferlach et al. 2010, http://www.ncbi.nlm.nih.gov/pubmed/20406941). Estos datos brutos incluyen resultados de LLA (leucemia linfoblástica aguda), LMA (leucemia mielógena aguda), LLC (leucemia linfoblástica crónica) y LMC (leucemia mielógena crónica) y SMD (síndrome mielodisplásico). Los inventores usaron también de forma normal los datos de uniprot para la localización subcelular.

Los inventores dibujaron en primer lugar la distribución global de los valores de todos los genes en todos los tejidos estudiados. A continuación, para tener una idea del nivel necesario para la expresión, los inventores tomaron una lista de genes que se expresaban en algunos tumores fluidos y para los cuales están disponibles anticuerpos terapéuticos (CD52, CD 20, CD33, CD19, CD25, CD44, CD47, CD96, CD116, CD117, CD135, TIM-3). Para cada gen, los inventores observaron el valor obtenido en el tumor en que se expresaba. A continuación, los inventores calcularon el promedio para cada tumor y el par de genes para el cual el gen parece proporcionar una proteína de membrana celular (localización de la membrana celular + descripción de al menos un dominio transmembrana en la proteína). Los inventores descartaron genes para los cuales la expresión en todos los tejidos estuvo por debajo de este umbral de 0,15. Los inventores enumeraron y clasificaron en la Tabla 14, aquellos genes cuya expresión relativa en los linfocitos T estuvo por encima de 0,2. Por lo tanto, La Tabla 4 proporciona presuntos candidatos de marcadores antigénicos para el direccionamiento de células de tumores fluidos según la invención, en particular, para tratar la LLA, LMA, LLC, LMC y SMD.

Ejemplo de etapas para diseñar mediante ingeniería genética linfocitos T de acuerdo con la invención para inmunoterapia

Para una mejor comprensión de la invención, se proporciona a continuación un ejemplo de los pasos a seguir para producir linfocitos T dirigidos contra las células de leucemia positivas para CD38:

 Proporcionar linfocitos T a partir de un cultivo celular o procedentes de una muestra de sangre de un paciente individual o de un banco de sangre y activar dichos linfocitos T utilizando perlas de activador C28 dirigidas contra CD3 (Dynabeads®). Las perlas proporcionan las señales primarias y las señales coestimuladoras que se requieren para la activación y expansión de los linfocitos T.

- 2. Transducir dichas células con un vector retrovírico que comprende un transgén que codifica un receptor de un antígeno quimérico consistente en la fusión del dominio de activación CD3zeta, Dominio de coestimulación 4-1BB, un dominio transmembrana y una bisagra procedente de CD28 fusionados con una secuencia que codifica la cadena variable de un anticuerpo dirigido contra CD38. Para la mejora de la seguridad del linfocito T transformado, puede introducirse adicionalmente un gen sensible a rituximab como se describe en el documento WO 2013/153391 en el vector lentivírico separados por dos secuencias de separación de T2A.
- 3. (opcionalmente) Diseñar mediante ingeniería genética linfocitos T no alorreactivos y/o resistentes:

5

30

35

- a) Es posible inactivar TCR alfa en dichas células para eliminar el TCR desde la superficie de la célula y evitar el reconocimiento del tejido hospedador como extraño por el TCR alogénico y evitar por tanto la GvHD siguiendo los protocolos que se muestran en el documento WO 2013/176915.
- b) Es también posible inactivar un gen que codifica la diana para un agente inmunosupresor o un fármaco quimioterapéutico para volver dichas células resistente al tratamiento inmunosupresor o quimioterapéutico para evitar el rechazo al injerto sin alterar los linfocitos T trasplantados. En este ejemplo, la diana de los agentes inmunosupresores es CD52 y el agente inmunosupresor es un anticuerpo monoclonal humanizado dirigido contra CD52 (por ejemplo: Alemtuzumab) como se describe en el documento WO 2013/176915.
- 4. Se llevó a cabo la inactivación del gen electroporando linfocitos T con ARNm que codifica la endonucleasa específica de TAL (TALEN™ Cellectis, 8 rue de la Croix Jarry, Francia). Los linfocitos T inactivados se clasificaron utilizando perlas magnéticas. Por ejemplo, Los linfocitos T que expresan todavía el gen dirigido (por ejemplo, CD38, CD70 y CD70) se pueden eliminar mediante fijación sobre una superficie sólida, y las células inactivadas no se exponen al estrés de pasarse a través de una columna. Este método aumenta ligeramente la concentración de linfocitos T adecuados diseñados mediante ingeniería genética.
 - 5. Expansión *in vitro* de linfocitos T diseñados mediante ingeniería genética antes de la administración a un paciente o *in vivo* tras la administración a un paciente mediante la estimulación del complejo CD3. Antes de la etapa de administración, los pacientes pueden someterse a un tratamiento inmunosupresor tal como CAMPATH1-H, un anticuerpo monoclonal humanizado dirigido contra CD52.
 - 6. Opcionalmente, se exponen dichas células con anticuerpos biespecíficos ex vivo antes de la administración a un paciente o *in vivo* tras la administración a un paciente para poner las células diseñadas mediante ingeniería genética en proximidad con un antígeno diana.
 - Análisis funcional de los linfocitos T diseñados mediante ingeniería genética electroporados con un ARNm monocistrónico que codifica un receptor de antígeno quimérico monocatenario dirigido contra CD38 (CAR CD38):
- Para verificar que el genoma diseñado mediante ingeniería genética no afecta la capacidad de los linfocitos T diseñados mediante ingeniería genética de presentar actividad antitumoral, especialmente, cuando se proporciona con un receptor de un antígeno quimérico (CAR CD38), Los linfocitos T diseñados mediante ingeniería genética se incubaron durante 4 horas con células Daudi que expresan CD38 en su superficie. La regulación en exceso de la superficie celular de CD107a, un marcador de la liberación de gránulos citotóxicos por los linfocitos T (denominado desgranulación) se midió mediante un análisis de citometría de flujo (Betts, Brenchley et al. 2003).
- 24 horas después de la electroporación, se tiñeron las células con un colorante de viabilidad fijable eFluor-780 y un fragmento F(ab')2 de cabra conjugado con PE dirigido IgG de ratón específico para evaluar la expresión de la superficie celular del CAR en las células vivas. La gran mayoría de linfocitos T vivos alterados genéticamente por CD38, expresan el CAR en su superficie. Los linfocitos T se cultivaron simultáneamente con células Daudi (CD38+) durante 6 horas y se analizaron mediante citometría de flujo para detectar la expresión del marcador de desgranulación CD107a en su superficie (Betts, Brenchley et al. 2003).
- Los resultados mostraron que CD38 alteró los linfocitos T manteniendo la misma capacidad de desgranular en respuesta a PMA/ionomicina (control positivo) o células Daudi CD38+. La regulación en exceso de CD107 es dependiente de la presencia de un CD38+. Estos datos sugieren que el genoma diseñado mediante ingeniería genética de los linfocitos T actuales no tuvo impacto negativo sobre la capacidad de los linfocitos T de desarrollar una respuesta antitumoral controlada.

	Tabla 4: Agrupación de marca	narcadores antigénio) que se encuentra que se expr	esan sobre la superficie de los linfocitos T
Antígeno	Otros nombres	Estructura	Distribución principal	Función
CD1a	Т6	IgSF, análogo a MHC	timocitos corticales, células de Langerhans, DC	presentación de antígenos, Con beta2m
CD1b	Т6	IgSF, análogo a MHC	timocitos corticales, células de Langerhans, DC	presentación de antígenos, Con beta2m
CD1c	T6	IgSF, análogo a MHC	timocitos corticales, células de Langerhans, DC, subgrupo de linfocitos B	presentación de antígenos, Con beta2m
CD1d		IgSF, análogo a MHC	epitelio intestinal, subgrupo de linfocitos B, mono bajas, DC	presentación de antígenos, Con beta2m
CD3 gamma, CD3 delta	Т3	IgSF	T, subgrupo de timocitos	con TCR, expresión superficial de TCR / transducción de la señal
CD3 épsilon	Т3	IgSF	T, subgrupo de timocitos	con TCR, expresión superficial de TCR / transducción de la señal
CD4	Т4	IgSF	subgrupo de timocitos, subgrupo de linfocitos T, mono, mac	T, correceptor de MHC de clase II, receptor de VIH, diferenciación / activación de linfocitos T
CD5	Т1, Тр67	Secuestrante del R SF	timocitos, subgrupo de linfocitos T, B B-CLL	receptor CD72, señalización de TCR o BCR, interacción de linfocitos T-B
CD7		IgSF	progenitores hematopoyéticos, timocitos, T, NK	coestimulación de linfocitos T
CD8a	T8, Leu-2	IgSF	subgrupo de timocitos, subgrupo de linfocitos T, NK	correceptor de MHC de clase I, receptor para algún VIH-1 mutado, diferenciación / activación de linfocitos T
CD8b		IgSF	subgrupo de timocitos, subgrupo de linfocitos T	
CD9	p24, MRP-1	TM4SF	pre-B, eosinófilos, basófilos, plaquetas, Tact	adhesión y migración celular
CD10	CALLA, NEP, gp100	TM de tipo II	precursores de linfocitos B, precursores de linfocitos T, neutrófilos	metaloproteinasa de unión a cinc, desarrollo de linfocitos B
CD11a	LFA-1, integrina famil alfaL integ	familia de integrinas	linfa, gran, mono, mac	receptor CD11a / CD18 para ICAM-1, -2,-3, adhesión intercelular, coestimulación de linfocitos T
CD11b	Mac-1, integrina fami alfaM integ	familia de integrinas	células mieloides, NK	se une a CD54, ECM, iC3b
CD11c	p150, 95, CR4, integrina alfaX	familia de integrinas	DC, células mieloides, NK, B, subgrupo de linfocitos T	se une a CD54, fibrinógeno e iC3b
CD13	Aminopeptidasa N, APN	TM de tipo II	células mieloides	metaloproteinasa de unión a cinc, procesamiento del antígeno, receptor para las cepas de coronavirus
CD14	LPS-R	unido a GPI	mono, mac, células de Langerhans, gran bajos	receptor para LPS/LBP, reconocimiento de LPS
CD15	Lewis-x, Lex	СНО	neutrófilos, eosinófilos, mono	adhesión
CD16a	FcgammaRIIIA	IgSF	neutrófilos, mac, NK	componente del receptor de Fc de baja afinidad, fagocitosis y ADCC
CD16b	FcgammaRIIIB	IgSF	neutrófilos	componente del receptor de Fc de baja afinidad,

Antígeno	Otros nombres	Estructura	Distribución principal	Función
			34	fagocitosis y ADCC
CD20	B1, Bp35	TM4SF	B, subgrupo de linfocitos T	activación de linfocitos B
CD21	C3DR, CR2, VEB-R	CR2, CCRSF	B, FDC, subgrupo de linfocitos T	complemento de C3d y receptor del VEB, complejo con CD19 y CD81, correceptor de BCR
CD22	BL-CAM, Siglec-2	lgSF, sialoadhesinas	8	adhesión, B-mono, interacciones de linfocitos B-T
CD23	FcépsilonRII	lectina de tipo C	B, mac activado, eosinófilos, FDC, plaquetas ra	receptor CD19-CD21-CD81, receptor de IgE de baja afinidad, transducción de la señal
CD24	BA-1	unido a GPI	timocitos, eritrocitos, linfocitos periféricos, mieloide	se une a selectina P
CD25	Tac, p55	TM de tipo I	Tact, Bact, precursores de linfocitos	IL-2Ralfa, con IL-2Rbeta y gamma para formar un complejo de alta afinidad
CD31	PECAM-1	lgSF	mono, plaquetas, gran, endotelial, subgrupo de re linfocitos	receptor CD38, adhesión
CD33	p67, Siglec-3	lgSF, sialoadhesinas	precursores mieloides, mono, gran, DC, mastocitos, a Tact	adhesión
CD37		TM4SF	B, T bajo, gran bajos	transducción de la señal
CD38	T10		niveles variables en la mayoría de células e hematopoyéticas, expresión elevada en células plasmáticas, B y Tact	ecto-ADP-ribosil ciclasa, activación celular
CD40		TNFRSF	B, mono, mac, FDC, endotelial, subgrupo de linfocitos π Τ a	receptor CD154, diferenciación / coestimulación de linfocitos B, cambio de isotipo, rescates de linfocitos B a partir de la apoptosis
CD43	Leucosialina, sialoforina	Sialomucina, TM de tipo I	leucocitos, excepto los linfocitos B plaquetas bajas	restantes, inhibición de la interacción de los linfocitos T, CD54R, adhesión
CD44	H-CAM, Pgp-1	familia de las hialadherinas	células hematopoyéticas y no hematopoyéticas, excepto plaquetas, hepatocitos, testículos	se une a ácido hialurónico, adhesión
CD45	LCA, T200, B220		células hematopoyéticas, isoformas múltiples ti procedentes de un corte y empalme alternativo	múltiples tirosina fosfatasa, señales de TCR y BCR potenciadas ivo
CD45RA			B, subgrupo de linfocitos T (no expuesto is anteriormente a tratamiento), mono	expuesto isoforma del exón A de CD45
CD45RB			subgrupo de linfocitos T, B, mono, mac, gran	isoformas del exón B de CD45
CD45RO			Tact, T con memoria, subgrupo de linfocitos B, mono, is mac, gran	isoforma de CD45 que carece de A, B, exones C
CD46	MCP	CCRSF	células nucleadas p	proteína cofactora de la membrana, se une a C3b y C4b permitiendo la degradación por el Factor I, receptor del virus del sarampión
CD47	IAP	IgSF	células hematopoyéticas, epitelial, endotelial, a	adhesión de leucocitos, migración, activación

4 11 11 11 11				
Antigeno	Otros nombres	Estructura	Distribución principal	Función
			fibroblastos, otros tejidos	
CD48	Blast-1	IgSF	amplio, todos los leucocitos	adhesión celular
CD52	CAMPATH-1		timocitos, T, B (sin células plasmáticas), mono, mac	
CD53		TM4SF	leucocitos, DC, osteoblastos, osteoclastos	transducción de la señal
CD55	DAF	unido a GPI	hematopoyético, endotelial	se une a C3b, regulación del complemento
CD56	NCAM	IgSF	NK, subgrupo de linfocitos T, neuronas, algunas leucemias linfocíticas granulares grandes, leucemias mieloides	adhesión
CD57	HNK-1, Leu-7		subgrupo de linfocitos NK, subgrupo de linfocitos T	
CD58	LFA-3	IgSF	hematopoyético, células	receptor de CD2, adhesión
CD59	Protectina, inhibidor de MAC	unido a GPI	hematopoyético, células	se une al complemento C8 y C9, bloquea el ensamblaje del complejo de ataque de la membrana
CD60a	GD3	сно	subgrupo de linfocitos T, plaquetas, epitelio tímico, astrocitos	estimulación simultánea
CD63	LIMP, LAMP-3	TM4SF	plaquetas activadas, mono, mac	proteínas de membrana lisosómicas, se mueve a la superfície de la célula tras la activación
CD68	Macrosialina, gp110	Sialomucina	intracelularmente en mono, mac, neutrófilos, basófi mieloides, hígado	en mono, mac, neutrófilos, basófilos, linfocitos grandes, mastocitos, DC, precursores
69CO	AIM	lectina de tipo C	Tact, B, NK y gran, timocitos, plaquetas, células de transducción de la señal Langerhans	transducción de la señal
CD70	Ki-24	TNFSF	Bact y Tact	ligando de CD27, coestimulación de linfocitos T y linfocitos B
CD74	II, cadena invariante		B, mac, mono, células de Langerhans, DC, Tact	tráfico y función de MHC de clase II
CD79a	lga	IgSF	В	componente de BCR, expresión superficial de BCR y transducción de la señal
CD79b	dgl	IgSF	В	componente de BCR, expresión superficial de BCR y transducción de la señal
CD81	TAPA-1	TM4SF	T, B, NK, timocitos, DC, endotelial, fibroblastos, neuroblastomas, melanomas	complejo con CD19 y CD21, señalización, coestimulación de linfocitos T
CD82	R2	TM4SF	leucocitos	transducción de la señal
CD83	HB15	IgSF	Bact y Tact, DC, células de Langerhans	
CDw84			mono, plaquetas, B, subgrupo de linfocitos T, subgrupo de mac	
CD86	B70, B7-2	IgSF	mono, DC, Bact y Tact	se une a CD28, CD152, coestimulación de linfocitos T
CD87	UPA-R	unido a GPI	gran, mono, NK, Tact, endotelial, fibroblastos	receptor del activador del plasminógeno de la

Antígeno	Otros nombres	Estructura	Distribución principal	Función
				uroquinasa, invasión de células inflamatorias, metástasis
CD90	Thy-1	IgSF, unido a GPI	subgrupo CD34+ hematopoyético, neuronas	hemocitoblastos y diferenciación de neuronas
CD94	KP43	lectina de tipo C	NK, subgrupo de linfocitos T	complejo con NKG2, inhibe la función de los linfocitos NK
CD95	Apo-1, Fas	TNFRSF	linfa (elevada tras la activación), mono, neutrófilos	receptor de FasL (CD178), apoptosis
CD96	TACTILE	IgSF	NK, Tact	adhesión de linfocitos T y NK activados
CD97		TM7SF	Bact y Tact, mono, gran	
CD98	4F2		T, B, NK, gran, todas las líneas celulares humanas	activación celular
CD99	MIC2, E2		leucocitos	activación de linfocitos T, adhesión
CD100			células hematopoyéticas excepto células inmaduras de médula ósea, RBC y plaquetas	adhesión celular, activación celular
CD103	HML-1, alfa6, integrina alfaE	familia de integrinas	linfocitos intraepiteliales, subgrupo de linfocitos, linfocitos activados	con integrina beta7, se une a E-caderina, búsqueda/retención linfática
CD107a	LAMP-1		plaquetas activadas, T, endotelial, tumores metastásicos	una proteína de membrana lisosómica
CD107b	LAMP-2		plaquetas activadas, T, endotelial, tumores metastásicos	tumores una proteína de membrana lisosómica
CD109			Tact y plaquetas, subgrupo de CD34+, endotelial	
CD123	IL-3R	CRSF	subgrupo de linfocitos, basófilos, progenitores hematopoyéticos, mac, DC, megacariocitos	IL-3Ralfa, Con CDw131
CD146	MUC18, S-endo	IgSF	endotelial, melanomas, FDC, Tact	adhesión
CD154	CD40L, gp39, TRAP	TNFSF	Tact	ligando de CD40, coestimulación de linfocitos B y DC
CD158a	p58.1	lgSF, familia KIR	subgrupo de linfocitos NK, subgrupo de linfocitos T	inhibición de la actividad citolítica de los linfocitos NK, receptor de NH específico de MHC de clase l
CD158b	p58.2	lgSF, familia KIR	subgrupo de linfocitos NK, subgrupo de linfocitos T	inhibición de la actividad citolítica de los linfocitos NK, receptor de NH específico de MHC de clase I
CD163	130kD	Secuestrante del receptor SF	mono, mac	
CD164	MGC-24	epitelial, mono, recuento de linfocitos bajo, células estromales de la médula ósea, precursores de	interacción de células estromales-células precursoras hematopoyéticas	hematopoyéticas

Antígono	Otroe nombroe	Estr. 101. 20	Dietribuoja neinoinal	
		CD34+		
CD168	RHAMM		mono, subgrupo de linfocitos T, subgrupo de timocitos, intracelularmente en células de cáncer de mama	adhesión, migración tumoral, metástasis
CD171	ב	IgSF	SNC, SNP, células gliales, mono, subgrupo de linfocitos T, B, DC, algunas células tumorales humanas	morfogénesis del riñón, arquitectura de los ganglios linfáticos, coestimulación de linfocitos T, neurohistogénesis, interacción homotípica, se une a CD9, CD24, CD56, CD142, CD166, integrinas
CD177	NB1		subgrupos de neutrófilos	
CD178	FasL, CD95L	TNFSF	Tact, testículos	ligando de CD95, apoptosis, privilegio inmunitario, forma soluble en suero
CD180	RP-105	LRRF, familia TLR	subgrupo de linfocitos B, mono, DC	activación de linfocitos B, señalización de LPS, Con MD-1
CD182	CXCR2, IL-8RB	familia GPCR1	neutrófilos, basófilos, NK, subgrupo de linfocitos T, mono	la unión de IL-8 induce la quimiotaxia de neutrófilos
CD185	CXCR5, BLR1	familia GPCR1	linfocitos B maduros y células de linfoma de Burkitt	con quimioquina BLC, posible función reguladora en linfomagénesis de Burkitt y/o diferenciación de linfocitos B, activación de linfocitos B maduros
CD191	CCR1, MIP- 1alfaR, RANTES- R	familia GPCR1	T, mono, subgrupo de citoblastos	se une a las quimioquinas de tipo C-C y transduce la señal aumentando los niveles iónicos de calcio intracelular
CD193	CCR3, CKR3	familia GPCR1	eosinófilos, expresión menor en neutrófilos y mono, subgrupo de linfocitos T	se une a eotaxina, eotaxina-3, MCP-3, MCP-4, RANTES y MIP-1 delta, correceptor alternativo con CD4 para la infección por VIH-1
CD196	CCR6, receptor de LARC, DRY6	familia GPCR1	subgrupo de linfocitos T, B, subgrupo de DC	se une a MIP-3alfa/LARC
CD197	CCR7		subgrupo de linfocitos T, subgrupo de DC	6Cquina y receptor MIP-2beta
CD200	OX-2		timocitos, endotelial, B, Tact	inhibición de la respuesta inmunitaria
CD209	DC-SIGN		subgrupo de DC	receptor de ICAM-3, proteína de unión a VIH-1
CD227	MUC1, EMA	familia de la mucina, TM de tipo I	epitelial, subgrupo de citoblastos, FDC, mono, subgrupo de linfocitos B, algunos mielomas	adhesión, señalización, se une a CD169, CD54, y selectinas
CD231	TALLA-1, A15	TM4SF	leucemias de linfocitos T, neuroblastomas, neuronas marcador	marcador para la leucemia linfoblástica aguda de

Antígeno	Ofros nombres	Fetructura	Distribución principal	Finción
				linfocitos T
CD246	ALK, Ki-1		leucemias de linfocitos T anaplásicas, intestino delgado, testículos, cerebro, no en linfocitos normales	desarrollo del cerebro, implicado en linfomas ALK
CD254	TRANCE, RANKL, OPGL	TNFSF	ganglio linfático y Tact de células estromales de MO	se une a OPG y RANK, diferenciación de osteoclastos, potencia las DC para estimular la proliferación de linfocitos T no expuestos anteriormente a tratamiento
CD263	TRAIL-R3, DcR1, LIT		linfocitos de sangre periférica	receptor para TRAIL, pero carece del dominio de muerte
CD272	BTLA	IgSF	Tact, B, permanece en Th1	receptor de HVEM, respuesta inhibidora
CD273	B7DC, PD-L2, PDCD1L2	IgSF	subgrupo de DC, mono, mac	receptor de PD-1, coestimulación o supresión de la proliferación de linfocitos T
CD276	В7-Н3	familia B7, ASV	DC y mono cultivadas in vitro, Tact, tejido mamario	estimulación, activación de linfocitos T
CD277	BT3.1, butirofilina SF3 A1, BTF5	familia B7/BT,	ASV T, B, NK, mono, DC, endotelial, células CD34+, líneas activación de linfocitos T de células tumorales	activación de linfocitos T
CD279	PD1, SLEB2		Tact y Bact	receptores B7-H1 y B7-DC, enfermedad autoinmunitaria y tolerancia periférica
CD298	subunidad beta3 de la Na+/K+- ATPasa		amplio	transporte de iones de sodio y potasio a través de la membrana
CD300a	CMRF35H, IRC1,IRp60	IgSF, ASV	NK, mono, neutrófilos, subgrupo de linfocitos T y B y desconocido líneas de células linfocíticas, LMA	desconocido
CD300c	CMRF35A, LIR	IgSF	mono, neutrófilos, líneas de células monocíticas, desconocido subgrupo de linfocitos B y T	desconocido
CD304	BDCA4, neuropilina 1	familia de la semaforina	neuronas, Treg CD4+/CD25+, DC, endoteliales y tumorales	células interactúa con VEGF165 y las semaforinas, correceptor con plexina, vía guía de los axones, angiogénesis, supervivencia celular, migración
CD305	LAIR1	IgSF, ASV	NK, B, T, mono	receptor inhibidor en los linfocitos NK y T
CD314	NKG2D, KLR	receptor análogo a la lectina de tipo II	NK, CD8 + activado, NK1.1+ T, algunas células mieloides	se une a MHC de clase I, MICA, MICB, Rae1 y ULBP4, activa la citolisis y la producción de citoquinas, estimulación simultánea
CD317	BST2, HM1.24	Tipo II	B, T, NK, mono, DC, linea celular de fibroblastos, mieloma	crecimiento de linfocitos pre-B, expresados en exceso en múltiple
CD319	CS1, CRACC, SLAMF7	familia del receptor SLAM	CRACC, familia del receptor linfocitos B, células dendríticas, NK, NKT SLAM	mieloma múltiple

Tabla 5: marcadores antigénicos expresados sobre la superficie de células de tumor de colon y linfocitos T

Antígeno	Nombre de la proteína	Expresión relativa en linfocitos T	Expresión relativa en células de cáncer de colon
EPCAM	Molécula de adhesión a células epiteliales	2,97	13,99
IFITM1	Proteína 1 transmembrana inducida por interferón	10,55	13,06
CLDN4	Claudina-4	2,87	11,62
CDH17	Caderina-17	1,85	11,52
CEACAM1	Molécula 1 de adhesión celular relacionada con el antígeno carcinoembriónico	3,33	10,84
SLC26A3	Intercambiador de anión cloruro	2,57	10,59
ATP1A1	Subunidad alfa-1 de la ATPasa que transporta sodio/potasio	9,28	10,51
SI	Isomaltasa	2,86	10,46
ABCB1	Proteína 1 de resistencia a multifármacos	6,09	10,24
KCNQ1	Miembro 1 de la subfamilia KQT del canal de potasio dependiente de voltaje	3,36	9,99
FCGRT	subunidad p51 grande del receptor FcRN de IgG	4,8	9,98
EPHB3	Receptor 3 de la efrina de tipo B	5,23	9,74
DSG2	Desmogleína-2	3,04	8,5
EPHB4	Receptor 4 de la efrina de tipo B	6,5	8,44
GUCY2C	Receptor de la enterotoxina estable al calor	2,23	8,05
EPHA2	Receptor 2 de la efrina de tipo A	2,8	7,95
LY6G6D	Proteína G6f del locus del complejo del antígeno 6 linfocitario	2,02	7,91
CD97	subunidad beta del antígeno de CD97	7,7	7,87
SIGMAR1	Receptor 1 intracelular sigma mo opiodeo	4,58	7,85
EREG	Epirregulina	2,93	6,9
FAIM2	Proteína salvavidas 2	2,94	6,82
PIGR	Componente secretor	4,2	6,8
SLC7A6	transportador 2 de aminoácidos Y+L	8,06	6,55
SCNN1D	subunidad delta del canal de sodio sensible a amilorida	1,77	5,74
GPR35	Receptor 35 acoplado a proteína G	1,98	5,5
ABCG2	Miembro 2 de la subfamilia G del casete de unión a ATP	1,79	5,35
LPAR4	Receptor 4 del ácido lisofosfatídico	2,93	5,05
GPR161	Receptor 161 acoplado a proteína G	2,71	4,96
CD1C	Glicoproteína CD1c de la superficie de los linfocitos T	2,73	4,89
SGCA	Alfa-sarcoglicano	2,32	4,84
CD22	Receptor CD22 de linfocitos B	4,12	4,75
CD22	Receptor CD22 de linfocitos B	3,58	4,75
CD22	Receptor CD22 de linfocitos B	2,73	4,75
CD22	Receptor CD22 de linfocitos B	2,14	4,75
SLC22A18	Miembro 18 de la familia 22 del transportador de soluto	2,32	4,62
HTR7	Receptor 7 de la 5-hidroxitriptamina	3,02	4,46
LCT	Florizin hidrolasa	2,32	4,24
CD33	Antígeno de CD33 de la superficie de células mieloides	3,42	4,14
			•
PVR	Receptor de poliovirus	5,07	4,07

Antígeno	Nombre de la proteína	Expresión relativa en linfocitos T	Expresión relativa en células de cáncer de colon
P2RY2	Purinorreceptor 2 de P2Y	2,15	3,97
CHRNB2	Subunidad beta-2 del receptor de la acetilcolina neuronal	6,31	3,88
PTGDR	Receptor D2 de prostaglandinas	4,08	3,65
NCR1	Receptor 1 estimulador de la citotoxicidad natural	2,63	3,33
GYPA	Glicoforina-A	3,18	3,31
TNFRSF8	Miembro 8 de la superfamilia del receptor del factor de necrosis tumoral	2	2,75
KEL	Glicoproteína del grupo sanguíneo Kell	1,93	2,48
EDA	Ectodisplasina-A, forma secretada	2,7	2,42
ACE	Enzima convertidora de la angiotensina, forma soluble	2,39	2,19
DRD2	Receptor de la dopamina D(2)	2,49	1,97
CXCR3	Receptor de tipo 3 de la quimioquina C-X-C	4,19	1,66
MC2R	Receptores de la hormona adrenocorticotrópica	1,94	1,43

Tabla 6: marcadores antigénicos expresados sobre la superficie de células de tumor de mama y linfocitos T

Antígeno	Nombre de la proteína	Expresión relativa en linfocitos T	Expresión relativa en células de cáncer de colon
ABCA8	Miembro 8 de la subfamilia A del casete de unión a ATP	3,15	7,73
ABCC10	Proteína 7 asociada a resistencia a multifármacos	6,48	5,29
ABCC6	Proteína 6 asociada a resistencia a multifármacos	2,67	2,17
ACCN2	Canal 1 de iones sensibilizado a ácido	3,62	2,49
ADAM12	Proteína 12 que contiene el dominio de la desintegrina y la metaloproteinasa	4,96	7,72
ADCYAP1R1	Receptor de tipo I del polipéptido activador de la adenilato ciclasa de la pituitaria	2,17	2,88
ADRA1A	Receptor alfa-1 A adrenérgico	3,31	4,85
ADRA1B	Receptor alfa-1 B adrenérgico	1,49	1,6
ADRA1D	Receptor alfa-1 D adrenérgico	2,39	3,38
ADRA2A	Receptor alfa-2A adrenérgico	2,64	1,79
ADRB3	Receptor beta-3 adrenérgico	2,36	2,16
AGER	Receptor específico del producto final de glicosilación avanzada	2,85	2,38
AGTR2	Receptor de la angiotensina II de tipo-2	3,08	3,7
ALK	Receptor de la tirosina quinasa ALK	4,97	4,27
ANO3	Anoctamina-3	2,39	3,69
ANPEP	Aminopeptidasa N	3,26	10,78
APLNR	Receptor de la apelina	2,47	2,06
AQP2	Acuaporina-2	2,12	1,43
ATP10A	ATPasa VA transportadora del fosfolípido probable	3,96	6,02
ATP2B2	ATPasa 4 transportadora del calcio de la membrana plasmática	2,75	4,81
ATP2B3	ATPasa 3 transportadora del calcio de la membrana plasmática	3,7	4,14
ATP4A	Cadena 1 de la ATPasa alfa transportadora de potasio	1,56	11,49
ATP4B	Subunidad beta de la ATPasa transportadora de potasio	2,49	13,56

Antígeno	Nombre de la proteína	Expresión relativa en linfocitos T	Expresión relativa en células de cáncer de colon
ATP6V0A2	Isoforma 2 de la subunidad a de 116 kDa de la ATPasa de protones de tipo V	2,51	2,57
ATRN	Atractina	4,09	9,44
AVPR1A	Receptor V1a de la vasopresina	2,52	4,03
AVPR1B	Receptor V1b de la vasopresina	2,97	3,32
AVPR2	Receptor V2 de la vasopresina	2,68	2,93
BAI1	Inhibidor 1 de la angiogénesis específico de cerebro	2,73	0,33
BAI2	Inhibidor 2 de la angiogénesis específico de cerebro	2,34	4,14
BAI3	Inhibidor 3 de la angiogénesis específico de cerebro	2,73	4,76
BDKRB1	Receptor de la bradiquinina B1	2,07	3,28
BRS3	Subtipo-3 del receptor de la bombesina	2,74	4,12
BTF3	Miembro A2 de la subfamilia 3 de la butirofilina	11,29	13,02
C18orf1	Proteína 4 que contiene el dominio del receptor de clase A de la lipoproteína de baja densidad	3,18	8,45
C3AR1	Receptor quimiotáctico de la anafilatoxina C3a	3,04	5,15
C6orf105	Proteína reguladora de TFPI dependiente de andrógeno	2,34	3,84
CASR	Receptor sensibilizador del calcio extracelular	2,52	5
CCBP2	Receptor 2 de la guimioguina atípica	1,72	3,29
CCKAR	Receptor de tipo A de la colecistoquinina	2,46	3
CCKBR	Receptor de tipo B de la gastrina/colecistoquinina	2,25	5,66
CCR2	Receptor de tipo 2 de la quimioquina C-C	5,94	3,56
CCR3	Receptor de tipo 3 de la quimioquina C-C	1,89	4,17
CCR6	Receptor de tipo 2 de la quimioquina C-C	3,33	5,23
CCR8	Receptor de tipo 8 de la quimioquina C-C	2,28	3,93
CCR9	Receptor de tipo 9 de la quimioquina C-C	1,68	1,98
CD1A	Glicoproteína CD1a de la superficie de los linfocitos	1,98	4,88
CD1B	T Glicoproteína CD1b de la superficie de los linfocitos T	2,35	4,94
CD1D	Glicoproteína CD1d presentadora de antígenos	2,82	4,96
CD300C	Molécula 6 análoga a CMRF35	2,04	5,04
CD4	Glicoproteína CD4 de la superficie de los linfocitos	2,84	6,17
CD40LG	ligando de CD40, forma soluble	2,1	3,49
CD5	Glicoproteína CD5 de la superficie de los linfocitos	3,14	1,01
CD63	antígeno de CD63	8,6	13,18
CD84	miembro 5 de la familia SLAM	4,7	3,17
CDH15	Caderina-15	2,07	3,55
CDH19	Protocaderina-16	2,82	8,4
CDH22	Caderina-22	3	4,9
CDH8	Caderina-8	3,63	5,87
CDON	Molécula de adhesión celular relacionada/regulada por defecto por oncogenes	2,35	3,61
CHRNA4	Subunidad alfa-4 del receptor de la acetilcolina neuronal	2,14	3,33
CHRNA5	Subunidad alfa-5 del receptor de la acetilcolina neuronal	2,2	4,88

Antígeno	Nombre de la proteína	Expresión relativa en linfocitos T	Expresión relativa en células de cáncer de colon
CHRNA6	Subunidad alfa-6 del receptor de la acetilcolina neuronal	2,26	4,93
CHRNB3	Subunidad beta-3 del receptor de la acetilcolina neuronal	1,85	3,91
CHRNE	Subunidad épsilon del receptor de la acetilcolina	2,56	2,83
CLDN3	Claudina-3	2,91	13,56
CLDN7	Claudina-7	1,89	12,87
CLDN8	Claudina-8	2,46	10,67
CLDN9	Claudina-9	1,74	1,69
CLEC4M	Miembro M de la familia 4 del dominio de lectina de tipo C	2,7	3,32
CMKLR1	Receptor 1 análogo a quimioquina	2,62	5
CNNM2	Transportador CNNM2 de metales	2,47	5,32
CNR2	Receptor 2 cannabinoideo	2,38	3,66
CRHR1	Receptor 1 del factor liberador de corticotropina	2,15	10,71
CRHR2	Receptor 2 del factor liberador de corticotropina	2,32	6,44
CSF1	Factor 1 estimulador de colonias de macrófagos procesados	5,63	7,61
CSF1R	Receptor del factor 1 estimulador de colonias de macrófagos	2,2	4,02
CSF3R	Receptor del factor estimulador de colonias de granulocitos	1,85	2,8
CX3CL1	Fractalquina procesada	2,35	9,31
CXCR5	Receptor de tipo 5 de la quimioquina C-X-C	2,07	6,06
DAGLA	Diacilglicerol lipasa alfa específica de Sn1	2,6	2,11
DRD1	Receptor de la dopamina D(1A)	2,67	5,71
DRD3	Receptor de la dopamina D(3)	2,72	4,99
DRD4	Receptor de la dopamina D(4)	1,49	0,89
DRD5	Receptor de la dopamina D(1B)	2,26	4,91
DSC2	Desmocolina-2	2,26	11,12
DSCAM	Molécula de adhesión celular del síndrome de Down	2,54	3,76
DSG1	Desmogleína-1	2,62	7,71
EMR2	Receptor de tipo 2 de la hormona análoga a mucina que contiene un módulo análogo a EGF	2,25	3,38
EPHA5	Receptor 5 de la efrina de tipo A	2,42	7,48
EPHA7	Receptor 7 de la efrina de tipo A	2,61	4,87
ERBB3	Receptor de la proteína tirosina quinasa erbB-3	2,39	12,76
F2RL2	Receptor 3 activado por proteinasa	3,2	5,16
FAM168B	Inhibidor del recrecimiento de neuritas asociado a mielina	8,34	11,16
FAP	Seprasa	1,87	10,15
FAS	Miembro 6 de la superfamilia del receptor del factor de necrosis tumoral	5,68	7,24
FASLG	Dominio intracelular FasL	2,23	2,66
FCAR	Receptor Fc de la inmunoglobulina alfa	2,8	3,85
FCER1A	Subunidad alfa del receptor épsilon de inmunoglobulina de alta afinidad	2,54	4,59
FCGR2A	Receptor II-a de la región Fc de la inmunoglobulina gamma de baja afinidad	2,77	8,81

Antígeno	Nombre de la proteína	Expresión relativa en linfocitos T	Expresión relativa en células de cáncer de colon
FCGR2B	Receptor II-b de la región Fc de la inmunoglobulina gamma de baja afinidad	2,46	5,35
FGFR2	Receptor 2 del factor de crecimiento de fibroblastos	4,01	9,83
FGFR4	Receptor 4 del factor de crecimiento de fibroblastos	2,56	7,42
FLT3LG	Ligando de la tirosina quinasa 3 relacionada con Fms	7,86	4,37
FPR1	Receptor de fMet-Leu-Phe	3,38	5,92
FPR3	Receptor 3 del péptido de N-formilo	1,91	2,61
FSHR	Receptor de la hormona estimuladora del folículo	1,89	3,78
FZD5	Frizzled-5	2,82	5,2
FZD5	Frizzled-5	1,81	5,2
FZD9	Frizzled-9	2,66	3,16
GABRA1	Subunidad alfa-1 del receptor del ácido gamma-aminobutírico	2,2	6,26
GABRA5	Subunidad alfa-5 del receptor del ácido gamma-aminobutírico	2,49	3,24
GABRA6	Subunidad alfa-6 del receptor del ácido gamma- aminobutírico	2,54	2,98
GABRB1	Subunidad beta-1 del receptor del ácido gamma- aminobutírico	1,89	2,37
GABRB2	Subunidad beta-2 del receptor del ácido gamma- aminobutírico	2,26	3,89
GABRG3	Subunidad gamma-3 del receptor del ácido gamma-aminobutírico	2,23	2,85
GABRP	Subunidad pi del receptor del ácido gamma- aminobutírico	2,93	12,34
GABRR1	Subunidad rho-1 del receptor del ácido gamma- aminobutírico	2,35	3,47
GABRR2	Subunidad rho-2 del receptor del ácido gamma- aminobutírico	4,16	5,43
GALR2	Receptor de tipo 2 de la galanina	1,85	0,46
GALR3	Receptor de tipo 3 de la galanina	0,68	0,48
GCGR	Receptor del glucagón	1,38	3,4
GHRHR	Receptor de la hormona liberadora de hormona de crecimiento (GHRH	1,61	3,49
GJA5	Proteína alfa-5 de unión a Gap	1,72	2,05
GJA8	Proteína alfa-8 de unión a Gap	2,39	6,51
GJC1	Proteína delta-3 de unión a Gap	1,94	3,89
GLP1R	Receptor del péptido 1 análogo a glucagón	5,72	3,41
GLRA1	Subunidad alfa-1 del receptor de glicina	2,15	3,87
GLRA3	Subunidad alfa-3 del receptor de glicina	3,19	3,1
GNRHR	Receptor de la hormona liberadora de gonadotropina	2,72	4,1
GPNMB	Glicoproteína NMB transmembrana	2,14	13,94
GPR1	Receptor 1 acoplado a proteína G	3,83	4,1
GPR135	Receptor 135 acoplado a proteína G probable	4,15	1,91
GPR143	Receptor 143 acoplado a proteína G	1,93	3,65
GPR15	Receptor 15 acoplado a proteína G	1,81	4,41
GPR17	Receptor del nucleótido uracilo/cisteinil leucotrieno	1,93	1,74
GPR171	Receptor 171 acoplado a proteína G probable	7,73	6,32

Antígeno	Nombre de la proteína	Expresión relativa en linfocitos T	Expresión relativa en células de cáncer de colon
GPR18	Receptor de la N-araquidonil glicina	7,05	3,52
GPR182	Receptor 182 acoplado a proteína G	1,66	1,29
GPR19	Receptor 19 acoplado a proteína G probable	1,89	5,26
GPR20	Receptor 20 acoplado a proteína G	2,02	2,53
GPR3	Receptor 3 acoplado a proteína G	3,01	5,36
GPR31	Receptor del ácido 12-(S)-hidroxi-5,8,10,14-eicosatetraenoico	1,63	1,64
GPR37L1	Receptor GPR37L1 de la prosaposina	2,23	4
GPR39	Receptor 39 acoplado a proteína G	1,81	1,36
GPR44	Receptor 2 de prostaglandinas D2	2	2,32
GPR45	Receptor 45 acoplado a proteína G probable	2,78	5,31
GPR6	Receptor 6 acoplado a proteína G	2,56	3,38
GPR65	Receptor de la psicosina	6,59	4,5
GPR68	Receptor 1 acoplado a proteína G de cáncer de ovario	2,12	1,09
GPR98	Receptor 98 acoplado a proteína G	1,89	4,7
GRIA1	Receptor 1 del glutamato	4,17	4,77
GRIA3	Receptor 3 del glutamato	2,51	6,83
GRIK2	Receptor ionotrópico del glutamato, kainato 5	2,56	4,94
GRIK3	Receptor ionotrópico del glutamato, kainato 3	2,05	3,58
GRIN1	Receptor ionotrópico del glutamato, NMDA 1	4,52	1,49
GRIN2B	Receptor ionotrópico del glutamato, NMDA 2B	2,22	3,56
GRIN2C	Receptor ionotrópico del glutamato, NMDA 2C	2,56	3,37
GRM1	Receptor 1 metabotrópico del glutamato	3,21	3,69
GRM2	Receptor 2 metabotrópico del glutamato	2,04	0,44
GRM3	Receptor 3 metabotrópico del glutamato	2,39	3,41
GRM4	Receptor 4 metabotrópico del glutamato	5,2	3,78
GRM5	Receptor 5 metabotrópico del glutamato	2,26	5,28
GRM7	Receptor 7 metabotrópico del glutamato	2,86	3,07
GYPB	Glicoforina-B	2,43	4,02
HBP1	Proteína 1 de unión a lipoproteína de alta densidad anclada en glicosilfosfatidilinositol	7,32	9,27
HCRTR2	Receptor de tipo 2 de la orexina	2,32	2,42
HTR1B	Receptor 1B de la 5-hidroxitriptamina	2,82	3,51
HTR1D	Receptor 1D de la 5-hidroxitriptamina	2,29	2,33
HTR1E	Receptor 1E de la 5-hidroxitriptamina	1,72	2,4
HTR2A	Receptor 2A de la 5-hidroxitriptamina	2,1	3,67
HTR2C	Receptor 2C de la 5-hidroxitriptamina	2,49	5,18
HTR4	Receptor 4 de la 5-hidroxitriptamina	3,86	4,25
ICAM4	Molécula de adhesión intercelular 4	2,51	2,16
ICOS	Coestimulador inducible por linfocitos T	3,91	3,86
IL6R	Subunidad alfa del receptor de la interleuquina-6	4,24	3,08
IL6R	Subunidad alfa del receptor de la interleuquina-6	2,64	3,08
IL6ST	Subunidad beta del receptor de la interleuquina-6	9,43	12,67
IL9R	Receptor de interleuquina-9	2,71	2,86
ITGB3	Integrinas beta-3	4,16	3,69
KCNA3	Miembro 3 de la subfamilia A del canal de potasio dependiente de voltaje	2,09	4,9

Antígeno	Nombre de la proteína	Expresión relativa en linfocitos T	Expresión relativa en células de cáncer de colon
KCND2	Miembro 2 de la subfamilia D del canal de potasio dependiente de voltaje	2,67	4,25
KCNH1	Miembro 1 de la subfamilia H del canal de potasio dependiente de voltaje	2,31	4,48
KCNJ4	Rectificador interno del canal de potasio 4	2,43	3,49
KCNMA1	Subunidad alfa-1 del canal de potasio activado por calcio	2,35	7,17
KCNS1	Miembro 1 de la subfamilia S del canal de potasio dependiente de voltaje	5,66	6,49
KCNV2	Miembro 2 de la subfamilia V del canal de potasio dependiente de voltaje	2,38	4,06
KIR2DL4	Receptor 2DL4 análogo a inmunoglobulina de los linfocitos citolíticos naturales	1,68	3,31
KIR3DL1	Receptor 3DL1 análogo a inmunoglobulina de los linfocitos citolíticos naturales	2,56	2,73
KIR3DL3	Receptor 3DL3 análogo a inmunoglobulina de los linfocitos citolíticos naturales	1,7	3,06
KLRG1	Miembro 1 de la subfamilia G del receptor análogo a lectina de los linfocitos citolíticos naturales	8,3	5,76
LAMP1	Glicoproteína 1 de membrana asociada a lisosomas	10,9	13,6
LHCGR	Receptor de la hormona coriogonadotrópica de lutropina	2,23	4,92
LNPEP	Leucil-cistinil aminopeptidasa, Forma sérica durante el embarazo	2,68	5,05
LPAR2	Receptor 2 del ácido lisofosfatídico	5,5	4,23
LRIG2	Repeticiones ricas en leucina y dominios análogos a inmunoglobulina de la proteína 2	3,35	5,48
LRRTM2	Repetición rica en leucina de la proteína 2 neuronal transmembrana	2,42	4,24
LTB4R	Receptor 1 del Leucotrieno B4	4,96	2,26
MAS1	Protooncogen Mas	1,91	3,11
MC1R	Receptor de la hormona estimuladora de melanocitos	2,94	0,96
MC5R	Receptor 5 de la melanocortina	2,28	1,63
MEP1B	Subunidad beta de la meprina A	2,61	3,87
MFSD5	Transportador del anión molibdato	1,98	4,72
MOG	glicoproteínas de oligodendrocitos de mielina	3,08	4,74
MTNR1B	Receptor de la melatonina de tipo 1B	1,61	1,67
MUC1	Subunidad beta de la mucina-1 Proteína tirosina quinasa del receptor del músculo	2,73	13,68
MUSK	esquelético	2,39	4,75
NCAM2	Molécula de adhesión a células neurales 2	2,12	4,49
NCR2	Receptor 2 estimulador de la citotoxicidad natural	4,79	7,09
NCR3	Receptor 3 estimulador de la citotoxicidad natural	4,55	2,74
NIPA2	Transportador NIPA2 de magnesio	6,77	3,9
NLGN1	Neuroligina-1	2,62	7,71
NLGN4Y	Neuroligina-4, unida a Y	2,52	5,26
NMBR	Receptor de neuromedina-B	1,68	2,47
NPHS1	Nefrina	2,74	4,33
NPY2R	Receptor del neuropéptido Y de tipo 2	2,68	4,43
NPY5R	Receptor del neuropéptido Y de tipo 5	2,38	5,05

Antígeno	Nombre de la proteína	Expresión relativa en linfocitos T	Expresión relativa en células de cáncer de colon
NTSR2	Receptor de la neurotensina de tipo 2	1,72	3
OPRD1	Receptor opioideo de tipo delta	2,26	2,14
OPRL1	Receptor de la nociceptina	2,31	1,51
OPRM1	Receptor opioideo de tipo-mu	3,18	4,01
OR10H3	Receptor olfatorio 10H3	1,63	4,02
OR1E1	Receptor olfatorio 1E1	3,04	4,77
OR2F1	Receptor olfatorio 2F1	2,64	5,73
OR2F2	Receptor olfatorio 2F2	2,19	2,3
OR2H1	Receptor olfatorio 2H1	3,39	3,82
OR2H2	Receptor olfatorio 2H2	3,79	6,37
OR2J2	Receptor olfatorio 2J2	2,41	2,16
OR2J2	Receptor olfatorio 2J2	1,93	2,16
OR5I1	Receptor olfatorio 511	1,85	2,8
OR7E24	Receptor olfatorio 7E24	2,5	3,47
P2RX7	Purinorreceptor 7 de P2X	2,36	2,15
PANX1	Pannexina-1	2,14	4,38
PCDHA9	Protocaderina alfa -9	2,82	3,56
PCDHB11	Protocaderina beta-11	1,91	5,23
PCDHGA8	Protocaderina gamma-A8	3,13	4,48
PLA2R1	Receptor de la fosfolipasa A2 secretora soluble	2,91	5,16
PLXNA3	Plexina-A3	2,42	3,25
POP1	Sustancia epicárdica de los vasos sanguíneos	1,74	2,59
PPYR1	Receptor del neuropéptido Y de tipo 4	2,2	2,75
PTGER1	receptor del subtipo EP1 de prostaglandina E2	1,96	0,94
PTGFR	Receptor F2-alfa de prostaglandinas	2,75	4,89
PTGIR	Receptor de la prostaciclina	2,78	2,12
PTPRJ	Receptor de la proteína tirosina fosfatasa de tipo eta	2,63	4,6
PTPRR	Receptor de la proteína tirosina fosfatasa de tipo R	2,47	9,99
PVRL1	Proteína 1 relacionada con el receptor de poliovirus	2,52	4,51
PVRL2	Proteína 2 relacionada con el receptor de poliovirus	3,84	10,05
ROS1	Proteína tirosina quinasa del protooncogen ROS	2,93	3,38
S1PR2	Receptor 2 de la esfingosina 1-fosfato	1,74	1,17
S1PR4	Receptor 4 de la esfingosina 1-fosfato	4	0,21
SCNN1B	subunidad beta del canal de sodio sensible a amilorida	1,89	3,16
SCNN1G	subunidad gamma del canal de sodio sensible a amilorida	2,23	2,61
SEMA4D	Semaforina-4D	10,66	1,56
SEMA6A	Semaforina-6A	4,55	7,81
SEMA6C	Semaforina-6C	5,02	3,73
SGCB	Beta-sarcoglicano	2,69	3,45
SGCB	Beta-sarcoglicano	2,04	3,45
SLC12A3	Miembro 3 de la familia 12 del transportador de soluto	2,26	3,36
SLC14A1	Transportador de urea 1	2,97	6,21
SLC14A2	Transportador de urea 2	2,85	4,4
SLC16A1	Transportador de monocarboxilato 1	3,46	8,84
SLC16A2	Transportador de monocarboxilato 8	1,77	5,17

Antígeno	Nombre de la proteína	Expresión relativa en linfocitos T	Expresión relativa en células de cáncer de colon
SLC16A6	Transportador de monocarboxilato 7	2,41	11,66
SLC22A1	Miembro 1 de la familia 22 del transportador de soluto	2,95	11,61
SLC22A6	Miembro 6 de la familia 22 del transportador de soluto	2,26	2,53
SLC5A12	Transportador de monocarboxilato 2 acoplado a sodio	2,98	4,45
SLC6A1	Transportador GABA 1 dependiente de sodio y cloruro	2,45	4,3
SLC6A4	Transportador de serotonina dependiente de sodio	2,17	2,66
SLC6A6	Transportador de taurina dependiente de sodio y cloruro	2,54	4,13
SLC7A7	Transportador 1 de aminoácidos Y+L	2,22	9,78
SLC8A1	Intercambiador 1 de sodio/calcio	2,07	2,36
SLC9A1	Intercambiador 1 de sodio/hidrógeno	3,15	5,54
SLC9A3	Intercambiador 3 de sodio/hidrógeno	2,12	3,15
SLCO1A2	Miembro 1A2 de la familia de transportadores aniónicos orgánicos del transportador de solutos	3,87	4,98
SLCO2B1	Miembro 2B1 de la familia de transportadores aniónicos orgánicos del transportador de solutos	4,43	8,92
SORT1	Sortilina	2,93	4,6
SSTR2	Receptor de la somatostatina de tipo 2	3,08	4,47
SSTR3	Receptor de la somatostatina de tipo 3	2,23	1,5
SSTR4	Receptor de la somatostatina de tipo 4	1,83	1,53
SSTR5	Receptor de la somatostatina de tipo 5	2,57	1,47
TACR1	Receptor de la sustancia P	2,66	3,2
TACR3	Receptor de neuromedina-K	2,32	5,7
TLR6	Receptor 6 de tipo Toll	2,2	4,58
TMPRSS6	Proteína serina 6 transmembrana	4,02	3,69
TNFSF11	Miembro 11 de la superfamilia del ligando del factor de necrosis tumoral,	2,57	5,18
TNFSF14	Miembro 14 de la superfamilia del ligando del factor de necrosis tumoral,	3,34	2,83
	forma soluble		
TPO	Peroxidasa tiroidea	1,96	1,89
TRAT1	Adaptador 1 transmembrana asociado al receptor de linfocitos T	7,51	5,29
TRHR	Receptor de la hormona liberadora de tirotropina	2	4,18
TRPM1	Miembro 1 de la subfamilia M del canal de cationes potencial del receptor transitorio	2,43	5,22
TSHR	Receptor de tirotropina	2,9	4,87
TSHR	Receptor de tirotropina	2,12	4,87
UNC93A	Proteína A homóloga de unc-93	2,64	4,94
VIPR2	Receptor 2 del polipéptido intestinal vasoactivo	2,58	3,37
ZP2	Proteína 2 procesadora de esperma de la zona pelúcida	1,94	3,55

Tabla 7: marcadores antigénicos expresados sobre la superficie de células de tumor digestivo y linfocitos T

Antígeno	Nombre de la proteína	Expresión relativa en linfocitos T	Expresión relativa en células de cáncer de colon
ACVR1B	Receptor de la activina de tipo-1 B	5,16	10,48
AMIGO2	Proteína 2 inducida por anfoterina	6,73	8,2
ATP1B1	Subunidad beta-1 de la ATPasa que transporta sodio/potasio	2,64	12,31
ATP8B1	ATPasa IC transportadora del fosfolípido probable	8,22	2,17
CCR7	Receptor de tipo 7 de la quimioquina C-C	10,25	11,52
CD164	Proteína 24 del núcleo de sialomucina	10,27	12,12
CD180	antígeno de CD180	2,5	6,47
CD40	Miembro 5 de la superfamilia del receptor del factor de necrosis tumoral	5,02	6
CD53	Antígeno CD53 de la superficie de leucocitos	10,79	11,3
CD79A	Cadena de la proteína alfa asociada a complejo del receptor del antígeno de los linfocitos B	3,74	9,17
CD79B	cadena beta de la proteína asociada a complejo de receptor de antígeno de los linfocitos B	3,6	6,66
CD8B	Cadena beta de la glicoproteína CD8 de la superficie de los linfocitos T	8,43	2,62
CELSR1	Receptor 1 de tipo G de siete pasos de la caderina EGF LAG	2,72	8,68
CLCN5	Transportador 5 intercambiador de H(+)/CI(-)	2,71	4,97
CLDN18	Claudina-18	3,05	14,51
CLIC1	Proteína 1 del canal intracelular de cloruro	9,94	13,83
COL13A1	Cadena alfa-1 (XIII) de colágeno	2,96	6,24
DIO3	Yodotironina desyodinasa de tipo III	2,04	2,9
EDNRA	Receptor de la endotelina-1	2,9	8,96
EMR1	Receptor de tipo 1 de la hormona análoga a mucina que contiene un módulo análogo a EGF	1,83	7,29
ENPP1	Nucleótido pirofosfatasa	2,57	9,66
EPHB1	Receptor 1 de la efrina de tipo B	2,02	6,33
EPHB1	Receptor 1 de la efrina de tipo B	1,81	6,33
F2R	Receptor 1 activado por proteinasa	3,04	9,78
F2RL1	Receptor 2 activado por proteinasa, escisión alternativa en 2	3,31	9,47
FCER2	Forma soluble del receptor Fc de la inmunoglobulina épsilon de baja afinidad	2,49	8,77
GABBR1	Subunidad 1 del receptor de tipo B del ácido gamma-aminobutírico	5,1	8,52
GABRA3	Subunidad alfa-3 del receptor del ácido gamma-aminobutírico	2,12	3,84
GPR183	Receptor 183 acoplado a proteína G	4,79	10,22
GPR37	Receptor GPR37 de la prosaposina	3,1	8,23
GPRC5A	Proteína 3 inducida por ácido retinoico	1,87	13,69
GRPR	Receptor del péptido liberador de gastrina	2,04	3,35
GYPC	Glicoforina-C	9,22	7,58
IL1R2	Receptor de tipo 2 de la interleuquina-1, forma soluble	2,82	12,83
KIAA0319	Proteína KIAA0319 asociada a dislexia	2,43	5,61
LAMP2	Glicoproteína 2 de membrana asociada a lisosomas	4,05	11,29

Antígeno	Nombre de la proteína	Expresión relativa en linfocitos T	Expresión relativa en células de cáncer de colon
LRP8	Proteína 8 relacionada con el receptor de lipoproteínas de baja densidad	4,24	8,84
LSR	Receptor de lipoproteínas estimulado por lipolisis	4,99	11,48
MICB	Secuencia B relacionada con el polipéptido MHC de clase I	5,27	9,89
MMP16	Metaloproteinasa-16 de matriz	3,19	6,18
MS4A1	Antígeno CD20 de linfocitos B	2,15	8,02
MYOF	Mioferlina	2,41	11,56
NAT1	Transportador 3 de aminoácidos neutros acoplados a sodio	3,49	12,09
NFASC	Neurofascina	3,78	8,28
NPY1R	Receptor del neuropéptido Y de tipo 1	2,32	6,93
OR2B6	Receptor olfatorio 2B6	2,78	4,24
P2RY10	Presunto purinoceptor 10 de P2Y	3,39	6,62
PCDH1	Protocaderina-1	4,45	10,07
PROM1	Prominina-1	2,52	11,77
PSEN1	Presenilina-1 CTF12	2,94	8,83
PTGER2	Receptor del subtipo EP2 de prostaglandina E2	6,33	6,74
PTGER4	Receptor del subtipo EP4 de prostaglandina E2	8,62	5,12
PTPRK	Receptor de la proteína tirosina fosfatasa de tipo kappa	2,14	10,9
RET	Fragmento de 120 kDa de la caderina RET anclado a la membrana celular extracelular	2,38	12,3
SERINC3	Incorporador 3 de la serina	7,93	12,01
SIT1	Transportador XTRP3 dependiente de sodio y cloruro	5,92	4,82
SLAMF1	Molécula de señalización de la activación linfocítica	4,4	9,03
SLC29A1	Transportador 1 equilibrante de nucleósidos	2,07	6,12
SLC39A6	Transportador ZIP6 de cinc	6,69	15,23
SLC7A5	Subunidad 1 del transportador grande de aminoácidos neutros	3,79	10,98
STX4	Sintaxina-4	5,68	7,67
TGFBR3	Receptor del factor beta de crecimiento transformante de tipo 3	7,55	7,29
TGOLN2	Proteína 2 de membrana de la red integral trans- Golgi	9,59	11,3
TLR1	Receptor 1 de tipo Toll	2,34	4,57
TMED10	Proteína 10 que contiene el dominio emp24 transmembrana	9,34	12,24
TMEM97	Proteína 97 transmembrana	2,75	9,02
TNF	Factor de necrosis tumoral, forma soluble	1,63	3,18
TNFRSF17	Miembro 17 de la superfamilia del receptor del factor de necrosis tumoral	1,89	10,47
TNFRSF1B	Proteína 2 de unión al factor de necrosis tumoral	5,51	9,4
VDAC1	Proteína 1 del canal selectivo de aniones dependiente de voltaje	6,52	11,5

Tabla 8: marcadores antigénicos expresados sobre la superficie de células de tumor renal y linfocitos T

Antígeno	8: marcadores antigénicos expresados sobre la supe Nombre de la proteína	Expresión relativa en linfocitos T	Expresión relativa en células de cáncer de colon
ADORA3	Receptor A3 de la adenosina	1,89	4,56
ATP11A	ATPasa IH transportadora del fosfolípido probable	3,62	8,8
BSG	Basigina	4,77	11,34
BTN3A2	Miembro A2 de la subfamilia 3 de la butirofilina	10,86	8,19
C10orf72	Proteína 4 que contiene el dominio del conjunto V y el dominio transmembrana	2,04	6,85
CADM3	Molécula de adhesión celular 3	3,57	6,39
CD8A	Cadena alfa de la glicoproteína CD8 de la superficie de los linfocitos T	10,35	6,6
CDH16	Caderina-16	2,17	7,09
CDH4	Caderina-4	2,15	3,6
CDH5	Caderina-5	2,5	9,55
CHL1	Proteína análoga a la molécula L1 de adhesión a células neurales procesada	2,69	10,43
CHRNB1	Subunidad beta del receptor de la acetilcolina	2,12	3,6
CLIC4	Proteína 4 del canal intracelular de cloruro	3,34	13,12
CNR1	Receptor 1 cannabinoideo	2,26	5,64
CRIM1	Proteína 1 de la neurona motora rica en cisteína procesada	3,57	12,39
CSPG4	Condroitina sulfato proteoglicano 4	3,33	6,59
CYBB	Cadena pesada del citocromo b-245	2,86	8,07
EDNRB	Receptor de la endotelina B	3,04	8,97
FLT1	Receptor 1 del factor de crecimiento endotelial vascular	2,75	8,5
FZD1	Frizzled-1	2,72	7,59
GJC2	Proteína gamma-2 de unión a Gap	2,09	2,94
GLRB	Subunidad beta del receptor de glicina	2,51	7,15
GPER	Receptor 1 del estrógeno acoplado a proteína G	2,34	8,64
GPM6A	Glicoproteína M6-a de la membrana neuronal	2,95	6,88
GPR162	Receptor 162 acoplado a proteína G probable	2,75	2,81
GPR4	Receptor 4 acoplado a proteína G	2,93	8,09
GRM8	Receptor 8 metabotrópico del glutamato	3,43	8,25
HLA-DPB1	Antígeno de histocompatibilidad de HLA de clase II, cadena beta 1 de DP	9,93	13,99
HTR6	Receptor 6 de la 5-hidroxitriptamina	4,83	10,07
INSR	Subunidad beta del receptor de insulina	3,44	8,95
ITM2B	Péptido Bri23	11,16	12,19
KCNJ1	Rectificador interno del canal de potasio 1 sensible a ATP	2,5	4,17
KDR	Receptor 2 del factor de crecimiento endotelial vascular	2,99	9,95
KL	Péptido Klotho	2,83	7,59
LAIR1	Receptor 1 análogo a inmunoglobulina asociada a leucocitos	5,64	4,25
MFAP3	Glicoproteína 3 asociada a micofibrillas	3,7	7,3
MFAP3L	Proteína de tipo 3 asociada a micofibrillas	3,44	8,7
MICA	Secuencia A relacionada con el polipéptido MHC de clase I	4,07	2,01
NCAM1	Molécula de adhesión a células neurales 1	2,45	7,31

Antígeno	Nombre de la proteína	Expresión relativa en linfocitos T	Expresión relativa en células de cáncer de colon
NOTCH3	Dominio intracelular Notch 3	3,21	12,41
NOTCH4	Dominio intracelular Notch 4	5,89	8,84
OLR1	Receptor 1 de la lipoproteína de baja densidad oxidada, forma soluble	2,84	8,41
P2RY14	Purinorreceptor 14 de P2Y	2,63	4,63
PCDH17	Protocaderina-17	1,7	7,36
PDGFRB	Receptor beta del factor de crecimiento derivado de plaquetas	2,68	10,48
PECAM1	Molécula de adhesión a células endoteliales plaquetarias	7,7	10,85
PLXND1	Plexina-D1	5,02	11,68
PPAP2B	Lípido fosfato fosfohidrolasa 3	4,17	12,46
PTAFR	Receptor del factor de activación plaquetaria	3,01	4,81
PTGER3	Receptor del subtipo EP3 de prostaglandina E2	4,76	10,26
PTH1R	Receptor del péptido relacionado la hormona paratiroidea/hormona paratiroidea	2,35	7,31
RAMP3	Proteína 3 modificadora de la actividad del receptor	1,79	8,84
ROR2	Receptor ROR2 transmembrana de la proteína tirosina quinasa	3,2	5,98
S1PR1	Receptor 1 de la esfingosina 1-fosfato	5,17	6,51
SCARB1	Miembro 1 del receptor de clase B secuestrante	3,01	10,4
SLC13A3	Miembro 3 de la familia 13 del transportador de soluto	3,32	7,89
SLC16A4	Transportador de monocarboxilato 5	2,88	12,54
SLC17A3	Proteína 4 de transporte de fosfato dependiente de sodio	1,58	11,55
SLC28A1	cotransportador 1 de sodio/nucleósido	4,76	6,3
SLC2A5	Familia 2 del transportador de solutos, Miembro 5 del transportador de glucosa facilitado	2,74	8,5
SLC39A14	Transportador ZIP14 de cinc	2,66	11,63
SLC6A13	Transportador GABA 2 dependiente de sodio y cloruro	2,75	7,44
SLC7A8	Subunidad 2 del transportador grande de aminoácidos neutros	5,03	10,46
SLCO2A1	Miembro 2A1 de la familia de transportadores aniónicos orgánicos del transportador de solutos	3,46	8,06
TBXA2R	Receptor del tromboxano A2	4,01	3,64
TGFBR2	Receptor de tipo-2 de TGF-beta	10,41	10,94
THSD7A	Proteína 7A que contiene el dominio de tipo-1 de la trombospondina	3,05	8
TIE1	Receptor Tie-1 de la proteína tirosina quinasa	2,04	4,41
TNFRSF1A	Proteína 1 de unión al factor de necrosis tumoral	6,84	10,52
TNFSF12	Miembro 12 de la superfamilia del ligando del factor de necrosis tumoral, forma secretada	4,35	4,1
VAMP5	Proteína 5 de membrana asociada a vesículas	3,49	6,18

Tabla 9: marcadores antigénicos expresados sobre la superficie de células de tumor de hígado y linfocitos T

Antígeno	Nombre de la proteína	Expresión relativa en linfocitos T	Expresión relativa en células de cáncer de colon
ABCB4	Proteína 3 de resistencia a multifármacos	2,02	3,7
ADAM10	Proteína 10 que contiene el dominio de la desintegrina y la metaloproteinasa	9,42	9,41
ATR	Receptor 1 de la toxina del ántrax	6,98	9,9
BST2	Antígeno 2 estromal de médula ósea	7,38	12,45
BTN3A3	Miembro A3 de la subfamilia 3 de la butirofilina	9,72	7,48
C9	Componente del complemento C9b	2,41	10,52
CHRND	Subunidad delta del receptor de la acetilcolina	2,43	4,05
CLDN14	Claudina-14	2,79	2,4
EPOR	Receptor de la eritropoyetina	4,67	10,55
ERBB2	Receptor de la proteína tirosina quinasa erbB-2	2,36	14,12
F2RL3	Receptor 4 activado por proteinasa	2,17	2,61
GJB1	Proteína beta-1 de unión a Gap	2,96	9,4
GPR126	Receptor 126 acoplado a proteína G	2,23	11,32
IL1R1	Receptor de tipo 1 de la interleuquina-1, forma soluble	2,88	12,57
ITGB1	Integrinas beta-1	8,76	13,48
NAALADL1	Proteína análoga a dipeptidasa ácida unida a alfa N-acetilada	3,03	1,46
OR7A5	Receptor olfatorio 7A5	1,51	3,83
SGCD	Delta-sarcoglicano	3,99	7,21
SIGLEC6	Lectina 6 análoga a Ig de unión a ácido siálico	3,57	3,49
SLC38A3	Transportador 3 de aminoácidos neutros acoplados a sodio	1,89	8,91
TFR2	Proteína 2 del receptor de la transferrina	2,74	10,47

Tabla 10: marcadores antigénicos expresados sobre la superficie de células de tumor de pulmón y linfocitos T

Antígeno	Nombre de la proteína	Expresión relativa en linfocitos T	Expresión relativa en células de cáncer de colon
ABCB6	Miembro 6 de la subfamilia B del casete de unión a ATP, mitocondrial	2,88	9,82
ABCC1	Proteína 1 asociada a resistencia a multifármacos	7,05	8,16
ACCN1	Canal 2 de iones sensibilizado a ácido	2,25	0,8
ADAM23	Proteína 23 que contiene el dominio de la desintegrina y la metaloproteinasa	2,51	4,73
ADORA1	Receptor A1 de la adenosina	4,49	8,22
ADORA2B	Receptor A2b de la adenosina	1,66	7,5
AJAP1	Proteína 1 asociada a unión adherente	1,85	6,24
APLP1	C30	2,22	6,02
AQP3	Acuaporina-3	8,38	13,88
ATP10D	ATPasa VD transportadora del fosfolípido probable	2,43	7,4
ATP1A3	Subunidad alfa-3 de la ATPasa que transporta sodio/potasio	3,01	3,13
ATP1B2	Subunidad beta-2 de la ATPasa que transporta sodio/potasio	3,21	3,8
ATP1B3	Subunidad beta-3 de la ATPasa que transporta sodio/potasio	8,6	14,26
AXL	Receptor UFO de la proteína tirosina quinasa	2,51	9,58
BEST1	Bestrofina-1	2,49	4,44

Antígeno	Nombre de la proteína	Expresión relativa en linfocitos T	Expresión relativa en células de cáncer de colon
BTC	Betacelulina	2,86	4,59
BTN3A1	Miembro A1 de la subfamilia 3 de la butirofilina	10,66	11,63
CALCR	Receptor de la calcitonina	2,95	8,62
CALCRL	Receptor de tipo 1 del péptido relacionado con el gen de la calcitonina	2,12	7,67
CCR1	Receptor de tipo 1 de la quimioquina C-C	2,63	9,77
CD163	CD163 soluble	2,66	8,76
CD300A	Molécula 8 análoga a CMRF35	7,96	4,23
CD300A	Molécula 8 análoga a CMRF35	2,29	4,23
CD68	Macrosialina	4,02	8,92
CD74	Cadena gamma del antígeno de histocompatibilidad de HLA de clase II	9,1	13,44
CD86	Activación de linfocitos T por CD86	2,93	5,04
CHRNA3	Subunidad alfa-3 del receptor de la acetilcolina neuronal	2,54	4,62
CHRNA3	Subunidad alfa-3 del receptor de la acetilcolina neuronal	2	4,62
CKAP4	Proteína 4 asociada a citoesqueleto	6,15	11,94
CLCA2	Regulador 2 del canal de cloruro activado por calcio, forma de 35 kDa	2,99	9,81
CLDN5	Claudina-5	3,66	7,73
CLSTN1	CTF1-alfa	8,26	12,51
CNIH3	Homólogo 3 de la proteína del pepinillo	2,7	6,09
COMT	Catecol O-metiltransferasa	7,78	12,13
CSPG5	Condroitina sulfato proteoglicano 5	2,84	5,69
CXCR6	Receptor de tipo 6 de la quimioquina C-X-C	3,16	3,91
CXCR7	Receptor 3 de la quimioquina atípica	2,5	8,95
DCHS1	Protocaderina-16	4,29	2,28
DSC3	Desmocolina-2	2,82	8,95
DSG3	Desmogleína-3	2,23	10,73
EGFR	Receptor del factor de crecimiento epidérmico	3,8	10,92
FAT2	Protocaderina Fat 2	2,25	9,29
FCER1G	Subunidad gamma del receptor épsilon de inmunoglobulina de alta afinidad	3,13	8,96
FCGR1A	Receptor Fcl de la inmunoglobulina gamma de alta afinidad	2,09	9,65
FLT4	Receptor 3 del factor de crecimiento endotelial vascular	3,19	3,36
FPR2	Receptor 2 del péptido de N-formilo	2,9	7,14
FURINA	Furina	6,42	7,5
FZD6	Frizzled-6	2,64	10,45
GABBR2	Subunidad 2 del receptor de tipo B del ácido gamma-aminobutírico	3,79	9,19
GABRB3	Subunidad beta-3 del receptor del ácido gamma- aminobutírico	2,46	8,83
GABRD	Subunidad delta del receptor del ácido gamma- aminobutírico	1,72	1,67
GABRE	Subunidad épsilon del receptor del ácido gamma- aminobutírico	1,85	9,18
GIPR	Receptor polipeptídico inhibidor gástrico	3,43	5,37

Antígeno	Nombre de la proteína	Expresión relativa en linfocitos T	Expresión relativa en células de cáncer de colon
GJA1	Proteína alfa-1 de unión a Gap	2,84	12,65
GJB3	Proteína beta-3 de unión a Gap	3,72	3,79
GJB5	Proteína beta-5 de unión a Gap	1,77	6,69
GLRA2	Subunidad alfa-2 del receptor de glicina	2,26	6,15
GPR109B	Receptor 3 del ácido hidroxicarboxílico	1,77	2,91
GPR12	Receptor 12 acoplado a proteína G	2	1,76
GPR176	Receptor 176 acoplado a proteína G probable	2,05	3,86
GPR50	Receptor relacionado con la melatonina	2,26	3,16
GRIK1	Receptor ionotrópico del glutamato, kainato 1	4,66	5,65
GRIN2D	Receptor ionotrópico del glutamato, NMDA 2D	2,17	2,32
HCRTR1	Receptor de tipo 1 de la orexina	2,34	3,56
HLA-DPA1	Antígeno de histocompatibilidad de HLA de clase II, cadena alfa 1 de DP	8,31	12,86
HLA-DQA1	Antígeno de histocompatibilidad de HLA de clase II, cadena alfa 1 de DQ	2,35	11,44
HLA-DQB1	Antígeno de histocompatibilidad de HLA de clase II, cadena beta 1 de DQ	7,4	12,71
HLA-DRA	Antígeno de histocompatibilidad de HLA de clase II, cadena alfa de DR	6,42	14,18
HLA-DRB4	Antígeno de histocompatibilidad de HLA de clase II, cadena beta 4 de DR	2,72	11,24
IGSF9B	Homólogo B de proteína de tortuga	3,92	2,81
IL1RAP	Proteína accesoria del receptor de la interleuquina-	3,99	11,4
IL1RL1	Receptor de tipo 1 de la interleuquina-1	2,55	5,15
IL4R	Subunidad alfa del receptor de la interleuquina-4 soluble	4,15	9,56
IL7R	Subunidad alfa del receptor de la interleuquina-7	11,62	11,26
ITGA6	Cadena alfa-6 ligera de integrinas	7,99	12,76
JPH3	Junctophilin-3	2,34	2,5
KCNS3	Miembro 3 de la subfamilia S del canal de potasio dependiente de voltaje	2,45	8,91
KIT	Kit de receptores del factor de crecimiento de mastocitos/citoblastos	2,85	8,67
KITLG	Ligando de KIT soluble	2,58	7,27
LILRB3	Miembro 3 de la subfamilia B del receptor análogo a la inmunoglobulina leucocitaria	5,65	8,03
LILRB4	Miembro 4 de la subfamilia B del receptor análogo a la inmunoglobulina leucocitaria	3,12	10,44
LPAR1	Receptor 1 del ácido lisofosfatídico	4,12	5,47
LPHN3	Latrofilina-3	2,85	6,43
MMP24	Metaloproteinasa-24 de matriz procesada	5,19	5,73
MPZ	Proteína PO de mielina	2,56	3,63
MUC4	Cadena beta de mucina-4	3,04	10,34
NCKAP1L	Proteína de tipo 1 asociada a Nck	6,69	7,51
NKG7	Proteína NKG7	10,92	3,66
N0TCH2	Dominio intracelular Notch 2	6,62	6,22
NRCAM	Molécula de adhesión a células neuronales	2,78	8,16
NRG2	Neuregulina-2	3,55	9,22
NRXN1	Neurexina-1	2,56	5,33

Antígeno	Nombre de la proteína	Expresión relativa en linfocitos T	Expresión relativa en células de cáncer de colon
NTRK2	Receptor de los factores de crecimiento BDNF/NT-3	2,56	10,7
NTSR1	Receptor de la neurotensina de tipo 1	1,74	9,74
P2RY1	Purinorreceptor 1 de P2Y	2,34	7,62
P2RY6	Purinorreceptor 6 de P2Y	4,27	5,79
PCDH8	Protocaderina-8	2,67	9,29
PCDHA3	Protocaderina alfa -3	2,14	3,54
PIK3IP1	Proteína 1 de interacción con la fosfoinositido-3- quinasa	8,68	3,47
PLXNA2	Plexina-A2	2,88	7,3
PRR4	Proteína 4 relacionada con el receptor de poliovirus procesado	3,24	8,02
PTPRE	Receptor de la proteína tirosina fosfatasa de tipo épsilon	6,03	7,92
PTPRO	Receptor de la proteína tirosina fosfatasa de tipo U	10,46	9,01
PTPRU	Receptor de la proteína tirosina fosfatasa de tipo U	3,72	6,18
RABAC1	Proteína 1 del aceptor Rab prenilado	7,54	8,82
SCTR	Receptor de la secretina	2,2	2,48
SECTM1	Proteína 1 transmembrana y secretada	2,42	6,9
SGCE	Épsilon-sarcoglicano	2,15	9,65
SGCG	Gamma-sarcoglicano	2,56	5,74
SLC16A3	Transportador de monocarboxilato 4	5,89	12,72
SLC16A7	Transportador de monocarboxilato 2	5,39	6,97
SLC20A2	Transportador 2 de fosfato dependiente de sodio	2,51	12,69
SLC26A4	Pendrina	3,57	9,39
SLC2A1	Familia 2 del transportador de solutos, Miembro 1 del transportador de glucosa facilitado	5,1	5,83
SLC4A7	Cotransportador 3 de bicarbonato de sodio	4,89	8,7
SLCO3A1	Miembro 3A1 de la familia de transportadores aniónicos orgánicos del transportador de solutos	4,87	7,91
SYNE2	Nesprina-2	9,43	10,43
TACR2	Receptor de sustancia-K	2,23	6,68
TFRC	Proteína 1 del receptor de la transferrina, forma sérica	7,32	14,31
TMEFF1	Tomorregulina-1	3,22	5,05
TMPRSS11D	Cadena catalítica 11D de la serina proteasa transmembrana	2,35	8,32

Tabla 11: marcadores antigénicos expresados sobre la superficie de células de tumor de ovario y linfocitos T;

Antígeno	Nombre de la proteína	Expresión relativa en linfocitos T	Expresión relativa en células de cáncer de colon
ACVR2B	Receptor de la activina de tipo-2B	2,1	4,26
ADAM28	Proteína 28 que contiene el dominio de la desintegrina y la metaloproteinasa	2,83	9,22
ADRA2C	Receptor alfa-2C adrenérgico	4,6	5,13
ATP2B1	ATPasa 1 transportadora del calcio de la membrana plasmática	5,3	11,49
ATP2B4	ATPasa 4 transportadora del calcio de la membrana plasmática	8,21	10,1
ATP7A	ATPasa 1 transportadora de cobre	3,91	7,31
CD200	Glicoproteína de membrana OX-2	2,83	10,51

Antígeno	Nombre de la proteína	Expresión relativa en linfocitos T	Expresión relativa en células de cáncer de colon
CD47	Antígeno CD47 de la superficie de leucocitos	9,88	10,42
CDH12	Caderina-12	2,31	5,91
CDH18	Caderina-18	2,28	4,79
CDH2	Caderina-2	3,72	11,97
CDH6	Caderina-6	2,77	8,68
CDIPT	CDP-diacilglicerolinositol 3-fosfatidiltransferasa	8,88	10,73
CELSR2	Receptor 2 de tipo G de siete pasos de la caderina EGF LAG	2,66	8,38
CHRNA1	Subunidad alfa del receptor de la acetilcolina	2,42	5,71
CLSTN3	Calsintenina-3	3,87	4,54
CX3CR1	Receptor 1 de la quimioquina CX3C	9	11,42
DDR1	Receptor 1 que contiene el dominio de la discoidina epitelial	3,83	12,36
EPHA1	Receptor 1 de la efrina de tipo A	2,02	5,96
EPHA4	Receptor 4 de la efrina de tipo A	2,39	8,56
ERBB4	Dominio intracelular ERBB4	2,29	9,76
FGFR1	Receptor 1 del factor de crecimiento de fibroblastos	5,42	11,4
FGFR3	Receptor 3 del factor de crecimiento de fibroblastos	2,95	11,35
FZD2	Frizzled-2	1,91	8,06
FZD7	Frizzled-7	2,55	10,24
GJA4	Proteína alfa-4 de unión a Gap	2,04	6,7
GPR125	Receptor 125 acoplado a proteína G probable	2,35	7,88
GPR56	Fragmento del extremo C de GPR56	8,6	11,27
GPR64	Receptor 64 acoplado a proteína G	2,04	8,57
GPRC5B	Miembro B del grupo 5 de la familia C del receptor acoplado a la proteína G	1,96	10,29
GRIA2	Receptor 2 del glutamato	1,96	11,78
GRIK5	Receptor ionotrópico del glutamato, kainato 5	5,79	3,36
GRIN2A	Receptor ionotrópico del glutamato, NMDA 2A	1,68	2,96
HEG1	Homólogo 1 de la proteína HEG	4,8	10,1
HRH1	Receptor H1 de la histamina	2,31	6,26
HTR3A	Receptor 3A de la 5-hidroxitriptamina	2,1	9,35
IFITM2	Proteína 2 transmembrana inducida por interferón	10,27	11,36
IFITM3	Proteína 3 transmembrana inducida por interferón	8,55	13,48
KCNH2	Miembro 2 de la subfamilia H del canal de potasio dependiente de voltaje	2,09	5,36
KCNJ12	Rectificador interno del canal de potasio 12 sensible a ATP	2,29	2,21
L1CAM	Molécula L1 de adhesión a células neurales	2,61	8,73
LGR5	Receptor 5 acoplado a la proteína-G que contiene repeticiones ricas en leucina	2,45	12,12
LPHN1	Latrofilina-1	4,5	5,56
LPHN1	Latrofilina-1	1,63	5,56
LPHN2	Latrofilina-2	1,93	7,14
MGA	Glucoamilasa	5,15	5,65
NE01	Neogenina	1,85	10,31

Antígeno	Nombre de la proteína	Expresión relativa en linfocitos T	Expresión relativa en células de cáncer de colon
NPTN	Neuroplastina	8,46	13,14
NRG1	Neuregulina-1	2,61	6,53
NTRK1	Receptor del factor de crecimiento nervioso de alta afinidad	2,09	2,49
PCDH7	Protocaderina-7	2,89	8,52
PCDH9	Protocaderina-9	2,99	6,15
PDGFRA	Receptor alfa del factor de crecimiento derivado de plaquetas	3,69	8,44
PDGFRA	Receptor alfa del factor de crecimiento derivado de plaquetas	2,26	8,44
PLXNB1	Plexina-B1	2,26	6,71
PLXNB2	Plexina-B2	3,1	10,68
PODXL	Podocalixina	2,73	11,41
PRSS8	Cadena pesada de prostasina	2,07	10,77
PTH2R	Receptor 2 de la hormona paratiroidea	1,85	8,67
PVRL3	Proteína 3 relacionada con el receptor de poliovirus	2,56	10,15
SCNN1A	Subunidad alfa del canal de sodio sensible a amilorida	5,97	10,63
SLC29A2	Transportador 2 equilibrante de nucleósidos	2,93	1,89
SSPN	Sarcospan	3,49	9,16
STAR	Receptor de la enterotoxina estable al calor	2,36	7,13
TGFA	Factor alfa de crecimiento trasformante	2,64	1,71
TMED1	Proteína 1 que contiene el dominio emp24 transmembrana	4,79	9,3
TMEM59	Proteína 59 transmembrana	8,83	12,74
TNFRSF25	Miembro 25 de la superfamilia del receptor del factor de necrosis tumoral	7,53	4,27
TYR03	Receptor TYR03 de la proteína tirosina quinasa	4,11	10,27
UPK2	Uroplakina-2	2,29	7,49

Tabla 12: marcadores antigénicos expresados sobre la superficie de células de tumor páncreas y linfocitos T

Antígeno	Nombre de la proteína	Expresión relativa en linfocitos T	Expresión relativa en células de cáncer de colon
ADAM9	Proteína 9 que contiene el dominio de la desintegrina y la metaloproteinasa	3,49	10,99
B4GALT1	Beta-1,4-galactosiltransferasa 1 procesada	7,44	8,99
BDKRB2	Receptor de la bradiquinina B2	2,52	4,44
CA9	Anhidrasa carbónica 9	3,34	11,9
CACNA1C	Subunidad alfa-1C del canal de calcio de tipo-L dependiente de voltaje	2,36	4,54
CD58	Antígeno 3 asociado a la función de los linfocitos	6,51	8,16
CDH11	Caderina-11	2,85	10,38
CDH3	Caderina-3	1,96	10,91
CFTR	Regulador de la conductancia transmembrana de la fibrosis quística	3,12	11,45
CHRNB4	Subunidad beta-4 del receptor de la acetilcolina neuronal	2,38	0,66
CLDN10	Claudina-10	2,36	11,5
CXCR4	Receptor de tipo 4 de la quimioquina C-X-C	11,74	10,98
DAG1	Beta-distroglicano	5,65	10,98

Antígeno	Nombre de la proteína	Expresión relativa en linfocitos T	Expresión relativa en células de cáncer de colon
DDR2	Receptor 2 que contiene el dominio de la discoidina	2,34	8
DMPK	Miotonina-proteína quinasa	3,7	4,21
FAT1	Protocaderina Fat 1, forma nuclear	3,3	12,45
HTR2B	Receptor 2B de la 5-hidroxitriptamina	2,22	7,73
LDLR	Receptor de lipoproteína de baja densidad	2,93	12,14
NCKAP1	Proteína 1 asociada a Nck	3,34	11,99
PMP22	Proteína 22 de mielina periférica	2,09	10,66
PNPLA2	Proteína 2 que contiene el dominio de la fosfolipasa análogo a patatina	5,46	3,45
PNPLA2	Proteína 2 que contiene el dominio de la fosfolipasa análogo a patatina	2,35	3,45
TEK	Receptor de la angiopoietina-1	3,87	8,52
TGFBR1	Receptor de tipo-1 de TGF-beta	2,17	4,3

Tabla 13: marcadores antigénicos expresados sobre la superficie de células de tumor de próstata y linfocitos T

Antígeno	Nombre de la proteína	Expresión relativa en linfocitos T	Expresión relativa en células de cáncer de colon
ACCN3	Canal 3 de iones sensibilizado a ácido	2,47	2,03
ADRB1	Receptor beta-1 adrenérgico	2,85	5,09
ADRB2	Receptor beta-2 adrenérgico	5,74	9,43
AGTR1	Receptor de la angiotensina II de tipo-1	2,81	11,62
APLP2	Proteína 2 análoga a amiloide	7,06	13,06
ATP1A2	Subunidad alfa-2 de la ATPasa que transporta sodio/potasio	3,07	7,55
ATP8A1	ATPasa IA transportadora del fosfolípido probable	7,23	9,16
CADM1	Molécula de adhesión celular 1	4,42	12,28
CHRM3	Receptor M3 de la acetilcolina muscarínica	1,85	9,23
CHRNA2	Subunidad alfa-2 del receptor de la acetilcolina neuronal	2,83	5,34
CXADR	Receptor de coxsackievirus y adenovirus	3,31	12,74
DPP4	Forma soluble de la dipeptidil peptidasa 4	6,42	11,22
ECE1	Enzima 1 convertidora de la endotelina	7,14	4,7
ENPP4	Bis(5'-adenosil)-trifosfatasa ENPP4	6,57	7,49
EPHA3	Receptor 3 de la efrina de tipo A	2,84	7,85
ERG	Miembro 2 de la subfamilia H del canal de potasio dependiente de voltaje	2,72	11,3
FAM38A	Componente 1 del canal de iones mecanosensible de tipo piezo	8,4	9,57
FOLH1	Glutamato carboxipeptidasa 2	2,96	13,18
GABRA2	Subunidad alfa-2 del receptor del ácido gamma-aminobutírico	3	6,42
GHR	Proteína de unión a la hormona del crecimiento	2,52	6,84
GPM6B	Glicoproteína M6-b de membrana neuronal	3,22	6,56
GPR116	Receptor 116 acoplado a proteína G probable	3,69	10,09
HBEGF	Factor de crecimiento análogo a EGF de unión a heparina	2,87	8,12
JAM3	Molécula C de adhesión a la unión	4,29	7,26
KCND3	Miembro 3 de la subfamilia D del canal de potasio dependiente de voltaje	3,09	9,77
LIFR	Receptor del factor inhibidor de la leucemia	2,71	6,8

Antígeno	Nombre de la proteína	Expresión relativa en linfocitos T	Expresión relativa en células de cáncer de colon
LRBA	Proteína de anclaje de tipo beige sensible a lipopolisacáridos	5,35	9,26
MME	Neprilisina	2,62	8,05
NOV	Plexina-A1	2,43	10,41
NRP1	Neuropilina-1	3,17	7,85
OPRK1	Receptor opioideo de tipo-kappa	2,07	4,92
PLXNB3	Plexina-B3	2,57	3,59
PPAP2A	Lípido fosfato fosfohidrolasa 1	3,6	11,55
SCAMP5	Proteína 5 de membrana asociada a transportador secretor	3,03	8,43
SLC23A2	Miembro 2 de la familia 23 del transportador de soluto	3,55	7,04
SLC2A4	Familia 2 del transportador de solutos, Miembro 4 del transportador de glucosa facilitado	2,67	5,96
SLC36A1	Transportador 1 de aminoácidos acoplado a protones	3,38	9,28
SLC4A4	Cotransportador 1 de bicarbonato de sodio electrogénico	3,14	11,29
STIM1	Molécula 1 de interacción estromal	3,68	6,51
TMPRSS2	Cadena catalítica 2 de la serina proteasa transmembrana	2,67	9,63
TRPV6	Miembro 6 de la subfamilia V del canal de cationes potencial del receptor transitorio	4,84	8,09
VIPR1	Receptor 1 del polipéptido intestinal vasoactivo	4,41	7,73
YIPF3	Proteína YIPF3, forma III de 36 kDa	4	4,3

Tabla 14: marcadores antigénicos expresados sobre la superficie de los linfocitos T y expresado en exceso en células de tumores fluidos (LLA, LMA, LMC, SMD, LLC, CTRL)

Antígeno	Nombre de la proteína	Expresión relativa en linfocitos T
CD63	antígeno de CD63	0,83
CXCR4	Receptor de tipo 4 de la quimioquina C-X-C	0,82
IFITM2	Proteína 2 transmembrana inducida por interferón	0,82
ITM2B	Péptido Bri23	0,81
BTF3	Miembro A2 de la subfamilia 3 de la butirofilina	0,8
HLA-DRB1	Antígeno de histocompatibilidad de HLA de clase II, Cadena beta de DRB1-12	0,79
HLA-DRA	Antígeno de histocompatibilidad de HLA de clase II, cadena alfa de DR	0,78
IFITM3	Proteína 3 transmembrana inducida por interferón	0,78
NKG7	Proteína NKG7	0,78
FCER1G	Subunidad gamma del receptor épsilon de inmunoglobulina de alta afinidad	0,78
IFITM1	Proteína 1 transmembrana inducida por interferón	0,76
NPTN	Neuroplastina	0,76
GYPC	Glicoforina-C	0,76
GPR160	Receptor 160 acoplado a proteína G probable	0,76
HLA-DPB1	Antígeno de histocompatibilidad de HLA de clase II, cadena beta 1 de DP	0,75
BRI3	CT-BRI3	0,75
SLC38A2	Transportador 2 de aminoácidos neutros acoplados a sodio	0,74
C5AR1	Receptor 1 quimiotáctico de la anafilatoxina C5a	0,74
CDIPT	CDP-diacilglicerolinositol 3-fosfatidiltransferasa	0,73

Antígeno	Nombre de la proteína	Expresión relativa en linfocitos T
TNFSF13B	Miembro 13b de la superfamilia del ligando del factor de necrosis tumoral, forma soluble	0,73
CSF3R	Receptor del factor estimulador de colonias de granulocitos	0,73
HLA-DPA1	Antígeno de histocompatibilidad de HLA de clase II, cadena alfa 1 de DP	0,71
CD164	Proteína 24 del núcleo de sialomucina	0,71
CD97	subunidad beta del antígeno de CD97	0,7
C3AR1	Receptor quimiotáctico de la anafilatoxina C3a	0,69
P2RY8	Purinorreceptor 8 de P2Y	0,68
BSG	Basigina	0,68
APLP2	Proteína 2 análoga a amiloide	0,67
TFRC	Proteína 1 del receptor de la transferrina, forma sérica	0,67
MGAM	Glucoamilasa	0,67
GYPA	Glicoforina-A	0,67
TMED10	Proteína 10 que contiene el dominio emp24 transmembrana	0,66
FCGRT	subunidad p51 grande del receptor FcRN de IgG	0,66
CKAP4	Proteína 4 asociada a citoesqueleto	0,66
DYSF	Disferlina	0,66
SPPL2A	Peptidasa del péptido de señalización análoga a 2A	0,65
LAMP2	Glicoproteína 2 de membrana asociada a lisosomas	0,65
SLC7A5	Subunidad 1 del transportador grande de aminoácidos neutros	0,65
TNFRSF1B	Proteína 2 de unión al factor de necrosis tumoral	0,64
TREM1	Receptor de estimulación expresado en células mieloides 1	0,64
GPR183	Receptor 183 acoplado a proteína G	0,63
SERINC3	Incorporador 3 de la serina	0,63
CD58	Antígeno 3 asociado a la función de los linfocitos	0,63
GYPB	Glicoforina-B	0,63
RABAC1	Proteína 1 del aceptor Rab prenilado	0,62
KCNH2	Miembro 2 de la subfamilia H del canal de potasio dependiente de voltaje	0,62
FPR1	Receptor de fMet-Leu-Phe	0,62
P2RY13	Purinorreceptor 13 de P2Y	0,62
CLEC5A	Miembro A de la familia 5 del dominio de lectina de tipo C	0,62
SLC7A7	Transportador 1 de aminoácidos Y+L	0,61
MICB	Secuencia B relacionada con el polipéptido MHC de clase I	0,61
CD300LF	Molécula 1 análoga a CMRF35	0,61
GJB6	Proteína beta-6 de unión a Gap	0,61
ATP1A1	Subunidad alfa-1 de la ATPasa que transporta sodio/potasio	0,6
PTGER4	Receptor del subtipo EP4 de prostaglandina E2	0,6
CD8A	Cadena alfa de la glicoproteína CD8 de la superficie de los linfocitos T	0,6
PTGER2	Receptor del subtipo EP2 de prostaglandina E2	0,6
GPR97	Receptor 97 acoplado a proteína G probable	0,6
IMP3	Peptidasa del péptido de señalización análoga a 2A	0,59
LAMP1	Glicoproteína 1 de membrana asociada a lisosomas	0,59
LILRB3	Miembro 3 de la subfamilia B del receptor análogo a la inmunoglobulina leucocitaria	0,59
GPR109B	Receptor 3 del ácido hidroxicarboxílico	0,59
SAT2	Transportador 2 de aminoácidos neutros acoplados a sodio	0,58
GPR65	Receptor de la psicosina	0,58
AMICA1	Molécula análoga a la de adhesión a la unión	0,58

Antígeno	Nombre de la proteína	Expresión relativa en linfocitos T
PAG1	Microdominios 1 enriquecidos con fosfoproteínas asociadas con glicoesfingolípidos	0,58
ENPP4	Bis(5'-adenosil)-trifosfatasa ENPP4	0,57
SLC40A1	Miembro 1 de la familia 40 del transportador de soluto	0,57
OLR1	Receptor 1 de la lipoproteína de baja densidad oxidada, forma soluble	0,57
LRRC33	Regulador negativo de especies de oxígeno reactivas	0,56
IL7R	Subunidad alfa del receptor de la interleuquina-7	0,56
LAIR1	Receptor 1 análogo a inmunoglobulina asociada a leucocitos	0,56
ITM2C	CT-BRI3	0,56
GPR84	Receptor 84 acoplado a proteína G	0,56
SLC12A7	Miembro 7 de la familia 12 del transportador de soluto	0,55
PTAFR	Receptor del factor de activación plaquetaria	0,55
CD33	Antígeno de CD33 de la superficie de células mieloides	0,55
SLC22A16	Miembro 16 de la familia 22 del transportador de soluto	0,55
CCR7	Receptor de tipo 7 de la quimioquina C-C	0,54
TLR1	Receptor 1 de tipo Toll	0,54
TGOLN2	Proteína 2 de membrana de la red integral trans-Golgi	0,54
YIPF3	Proteína YIPF3, forma III de 36 kDa	0,54
BST2	Antígeno 2 estromal de médula ósea	0,54
MAGT1	Proteína 1 transportadora de magnesio	0,54
TMEM173	Proteína estimuladora de los genes del interferón	0,54
ERMAP	Proteína asociada con la membrana eritroidea	0,54
CEACAM1	Molécula 1 de adhesión celular relacionada con el antígeno carcinoembriónico	0,54
NIPA2	Transportador NIPA2 de magnesio	0,53
PECAM1	Molécula de adhesión a células endoteliales plaquetarias	0,53
CD1D	Glicoproteína CD1d presentadora de antígenos	0,53
TMEM59	Proteína 59 transmembrana	0,53
NCKAP1L	Proteína de tipo 1 asociada a Nck	0,53
FAS	Miembro 6 de la superfamilia del receptor del factor de necrosis tumoral	0,53
IL6R	Subunidad alfa del receptor de la interleuquina-6	0,53
TNFRSF1A	Proteína 1 de unión al factor de necrosis tumoral	0,53
KEL	Glicoproteína del grupo sanguíneo Kell	0,53
TMEM149	Receptor 1 de la familia análoga a IGF	0,52
SLC3A2	Cadena pesada del antígeno superficial de células 4F2	0,52
ORAI1	Proteína 1 del canal de calcio activada por la liberación del calcio	0,52
XKR8	Proteína 8 relacionada con XK, forma procesada	0,52
C9orf46	Receptor del plasminógeno (KT)	0,52
TMEM127	Proteína 127 transmembrana	0,52
SLC2A1	Familia 2 del transportador de solutos, Miembro 1 del transportador de glucosa facilitado	0,52
FCGR1B	Receptor FcIB de la inmunoglobulina gamma de alta afinidad	0,52
CXCR2	Receptor de tipo 2 de la quimioquina C-X-C	0,52
IL4R	Subunidad alfa del receptor de la interleuquina-4 soluble	0,51
HSD17B7	3-ceto-esteroide reductasa	0,51
SEMA4D	Semaforina-4D	0,51
ZDHHC5	Palmitoiltransferasa ZDHHC5	0,51
ADRB2	Receptor beta-2 adrenérgico	0,51
S1PR4	Receptor 4 de la esfingosina 1-fosfato	0,51

PILRA Receptor 1 del Leucotrieno B4 O.51 SORT1 Sortilina SCORT1 Sortilina SLCO4C1 Miembro 4C1 de la familia de transportadores aniónicos orgánicos del transportador de solutos ANO10 Anoctamina-10 O.51 ANO10 Anoctamina-10 O.51 ANO10 Anoctamina-10 O.55 CLSTM1 CTF1-alfa RECEPTO Terbelina 2 rombolide inactiva O.5 CCR1 Receptor de tipo 1 de la quimioquina C-C EPCAM Molécula de adhesión a células epiteliales PNPLA2 Proteina 2 rue contiene el dominio de la fosfolipasa análogo a patatina O.49 SLC12A6 Miembro 6 de la familia 12 del transportador de soluto O.49 SLC12A6 Miembro 6 de la familia 12 del transportador de soluto O.49 SLC12A6 Miembro 6 de la familia 12 del transportador de soluto O.49 SLC30A1 Transportador 1 de cinc O.49 EPOR Receptor 7 acopidado a proteina G probable POR Receptor 2 acopidado a proteina G probable O.49 EPOR Receptor 2 de conjudado a proteina G probable POR Receptor 2 de conjudado a proteina G probable Antigeno de histocompatibilidad de HLA de clase II, cadena beta 1 de DQ O.48 HBP1 proteina 1 de unión a lipoproteina de alta densidad anciada en glicosifiosfatidilinositol O.48 RAG1AP1 Transportador 5 WEET 1 de azúcar O.48 RAG1AP1 Transportador SWEET 1 de azúcar O.48 CXCL16 Moltivo C-X-C de la quimioquina 16 SCLC14A1 Transportador de urea 1 O.48 Proteina 2 de aproteina generalilia A del casete de unión a ATP O.48 RAG1AP1 Transportador de urea 1 O.49 O.40 O.	Antígeno	Nombre de la proteína	Expresión relativa en linfocitos T
SORT1 Sortilina SLCO4C1 Miembro 4C1 de la familia de transportadores aniónicos orgánicos del transportador de solutos ANO10 Anoctamina-10 CLSTN1 CTF1-alfa RO5. RECEPTO 4 Troteína 2 romboide inactiva O,5 CCR1 Receptor de tipo 1 de la quimioquina C-C EPCAM Molecula de adhesión a células epiteliales PNPLA2 Proteína 2 que contiene el dominio de la fosfolipasa análogo a patatina O,49 SLC12A6 Miembro 6 de la familia 12 del transportador de soluto O,49 SLC30A1 Transportador 1 de cinc GPR27 Receptor de tipo 1 de la eritropoyetina CAPPA Receptor 27 acoplado a proteína G probable EPOR Receptor de la eritropoyetina CAPPA Cadena de la proteína alfa asociada a complejo del receptor del antígeno de los inificottos B HLA-DQB1 Antígeno de histocompatibilidad de HLA de clase II, cadena beta 1 de DQ O,48 HBP1 Proteína 1 de unión a lipoproteína de alta densidad anciada en glicosifiosfatidilinositol ABCA7 Miembro 7 de la subfamilia A del casete de unión a ATP O,48 RAG1AP1 Transportador 6 urea 1 CXCL16 Motivo C-X-C de la quimicquina 16 CXCL16 Motivo C-X-C de la quimicquina 16 GXCL16 Motivo C-X-C de l	PILRA	Receptor alfa de tipo 2 análogo a la inmunoglobulina emparejada	0,51
SLCO4C1 Miembro 4C1 de la familia de transportadores aniónicos orgánicos de transportador de solutos ANO10 ANO10 ANO10 ANO110 CLSTN11 CTF1-alfa RHBDF2 Proteína 2 romboide inactiva CCR1 Receptor de tipo 1 de la quimioquina C-C EPCAM Molécula de adhesión a células epiteliales Proteína 2 que contiene el dominio de la fosfolipasa análogo a patatina O,49 SLC32A6 Miembro 6 de la familia 12 del transportador de soluto O,49 SLC30A1 Transportador 1 de cinc GPR27 Receptor de la e farmilia 12 del transportador de soluto O,49 SLC30A1 Transportador 1 de cinc GPR27 Receptor de la eritropoyentina CD79A Cadena de la proteína alfa asociada a complejo del receptor del antigeno de los infocitos B HLA-DQB1 Alfigeno de histocompatibilidad de HLA de clase II, cadena beta 1 de DQ O,48 HBP1 Alfigeno de histocompatibilidad de HLA de clase II, cadena beta 1 de DQ O,48 HBP1 Miembro 7 de la subfamilia A del casete de unión a ATP O,48 ABCA7 Miembro 7 de la subfamilia A del casete de unión a ATP O,48 RAG1AP1 Transportador SWEET 1 de azuicar O,48 SLC14A1 Transportador de urea 1 TGFBR2 Receptor de la porteína dife de leucocitos O,48 SLC14A1 Transportador de urea 1 O,48 SLC14A1 Transportador de urea 1 Miembro 7 de la superficie de leucocitos O,47 MFSD5 Transportador de urea 1 O,47 MFSD5 Transportador de la noli molibdato N,47 MFSD5 Transportador de la noli molibdato O,47 MFSD5 Transportador de la nión molibdato N,47 MFSD5 Transportador de la nión molibdato N,47 MFSD5 Transportador de la nión molibdato N,47 MFSD5 Transportador 3 de aninocidos neutros acoplados a sodio O,46 SLC26A11 Transportador 3 de aninocidos neutros acoplados a sodio O,46 SLC36A11 Transportador 3 de aninocidos neutros acoplados a sodio O,46 SLC39A4 Transportador 3 de aninocidos neutros acoplados a sodio O,46 SLC39A4 Transportador 3 de aninocidos neutros acoplados a sodio O,46 SLC39A4 Transportador 3 de aninocidos neutros acoplados a sodio O,46 SLC39A4 Transportador 3 de aninocidos n	LTB4R	Receptor 1 del Leucotrieno B4	0,51
NO10 Anoctamina-10 0,51	SORT1	Sortilina	0,51
CLSTN1 CTF1-alfa CTF1-alfa O,5 RHBDF2 Proteina 2 romboide inactiva O,5 CCR1 Receptor de tipo 1 de la quimioquina C-C EPCAM Molécula de adhesión a células epiteliales O,5 RNPLA2 Proteina 2 que contiene el dominio de la fosfolipasa análogo a patatina O,49 SLC12A6 Miembro 6 de la familia 12 del transportador de soluto O,49 SLC3A61 Transportador 1 de cinc O,49 GPR27 Receptor 27 acoplado a proteína G probable O,49 EPCR Receptor 27 acoplado a proteína G probable O,49 EPCR Receptor de la entropoyetina O,49 CD79A Cadena de la proteína alfa asociada a complejo del receptor del antigeno de los linfocitos B HLA-DQB1 Antigeno de histocompatibilidad de HLA de clase III, cadena beta 1 de DQ O,48 HBP1 Proteína 1 de unión a lipoproteína de alta densidad anclada en glicosifiosfatidilinositol ABCA7 Miembro 7 de la subfamilia A del casete de unión a ATP O,48 ARGIAP11 Transportador SWEET 1 de azúcar O,48 CCCL 16 Motivo C-X-C de la quimioquina 16 O,48 SLC14A1 Transportador de urea 1 O,48 SLC14A1 Transportador de urea 1 O,48 Transportador de urea 1 O,47 KFSD5 Transportador de urea 1 O,47 KFSD5 Transportador de la nión molibdato O,47 KFSD5 Transportador del anión molibdato O,47 KFSD5 Transportador del anión molibdato D,47 KFSD5 Transportador del anión molibdato O,47 KFSD5 Transportador del anión molibdato O,47 KFSD5 Transportador del anión molibdato O,47 KFSD6 Transportador del anión molibdato O,47 KFSD7 Proteína GAPT O,47 KFSD8 APPasa 4 transportadora del calcio de la membrana plasmática O,47 KFSD8 Transportador del anión molibdato O,47 KFSD6 Transportador GAPT O,47 KFSD6 Transportador GAPT O,47 KFSD7 Singatora APPasa 1 transportadora del calcio de la membrana plasmática O,46 KTX4 Sintaxina-4 O,46 KTX4 Sintaxina-4 O,46 KTX5 Singatora APPasa 6 la superfamilia 7 transmembrana O,46 KTX4 Sintaxina-4 O,46 KTX6 Singatora APPa de cinc Singatora Code O,46 KTX6 Singatora Code O,46 KTX6 Singatora Code O,46 KTX6 Singatora D,46 KTX6 Singatora O,46 KTX6 Singatora O,4	SLCO4C1		0,51
RHBDF2 Proteina 2 romboide inactiva 0,5 CCR1 Receptor de tipo 1 de la quimioquina C-C 0,5 EPCAM Molécula de adhesión a células epiteliales 0,5 PNPLA2 Proteina 2 que contiene el dominio de la fosfolipasa análogo a patatina 0,49 SLC12A6 Miembro 6 de la familia 12 del transportador de soluto 0,49 SLC30A1 Transportador 1 de cinc 0,49 SLC30A1 Transportador 1 de cinc 0,49 EPCR Receptor 27 acoplado a proteína G probable 0,49 EPCR Receptor 28 acoplado a proteína G probable 0,49 EPCR Receptor 29 acoplado a proteína G probable 0,49 EPCR Receptor 29 acoplado a proteína 0,49 EPCR Receptor 30,49 EPCR Receptor 30,49 EPCR Receptor 30,48 HLA-DQB1 Antígeno de histocompatibilidad de HLA de clase II, cadena beta 1 de DQ 0,48 HBP1 Proteína 1 de unión a lipoproteína de alta densidad anclada en glicosilfosfatidilinositol 0,48 ERCA7 Miembro 7 de la subfamilia A del casete de unión a ATP 0,48 RAG1AP1 Transportador SWEET 1 de azúcar 0,48 ERCA7 Antígeno CD47 de la superficie de leucocitos 0,48 ENCA14A1 Transportador SWEET 1 de azúcar 0,48 ENCA14A1 Transportador de urea 1 0,48 ENCENA14 Transportador de urea 1 0,48 ENCENA14 Proteína de anclaje de tipo bejes esnsible a lipopolisacáridos 0,47 ENEBA Proteína de anclaje de tipo bejes esnsible a lipopolisacáridos 0,47 ENEBA Proteína de anclaje de tipo bejes esnsible a lipopolisacáridos 0,47 ENESD Transportador del anión molibdato 0,47 ENESD Transportador de aniones sulfato independientes de sodio 0,46 ENESTA ATPasa 1 transportador de la calcio de la membrana plasmática 0,47 ENESD Transportador de aniones sulfato independientes de sodio 0,46 ENESTA Sintaxina-4 0,46 ENESTA Sintaxina-4 0,46 ENESTA Sintaxina-4 0,46 EN	ANO10	Anoctamina-10	0,51
CCR1 Receptor de tipo 1 de la quimioquina C-C EPCAM Molécula de adhesión a células epiteliales D,5 EPCAM Molécula de adhesión a células epiteliales D,5 SLC12A6 Miembro 6 de la familia 12 del transportador de soluto D,49 SLC3QA1 Transportador 1 de cinc GPR27 Receptor 27 acopiado a proteína G probable D,49 SLC3QA1 Transportador 1 de cinc GPR27 Receptor 27 acopiado a proteína G probable D,49 CD79A Receptor 27 acopiado a proteína G probable D,49 CD79A Receptor 28 de la entropoyetina CD79A Cadena de la proteína alfa asociada a complejo del receptor del antígeno de los linfocitos B HLA-DQB1 Antígeno de histocompatibilidad de HLA de clase II, cadena beta 1 de DQ O,48 HBP1 Proteína 1 de unión a lipoproteína de alta densidad anciada en gilcosifiosfatidilnositol ABCA7 Miembro 7 de la subfamilia A del casete de unión a ATP O,48 RAG1AP1 Transportador SWEET 1 de azúcar CD47 Antígeno CD47 de la superfície de leucocitos O,48 CXCL16 Motivo C-X-C de la quimioquina 16 CXCL16 Motivo C-X-C de la quimioquina 16 CXCL16 Receptor de tipo-2 de TGF-beta CREDA Proteína de anciaje de tipo beige sensible a lipopolisacáridos O,47 CRELT Miembro 19L de la superfamilia del receptor del factor de necrosis tumoral AFEAB A Proteína de anciaje de tipo beige sensible a lipopolisacáridos O,47 CRELT Miembro 19L de la superfamilia del receptor del factor de necrosis tumoral O,47 CAPT Proteína GAPT Proteína GAPT Proteína GAPT Proteína GAPT Proteína GAPT Proteína GAPT NFAM1 Molécula 1 de activación de NFAT ATP2B1 ATPasa 1 transportadora del calcio de la membrana plasmática O,47 CAPT D Proteína GAPT NFAM1 Molécula 1 de activación de NFAT ATP2B1 ATPASA 1 transportadora del calcio de la membrana plasmática O,46 CSTX4 Sintaxina-4 NAT1 Transportador 3 de aminoácidos neutros acopiados a sodio O,46 CSTX4 Sintaxina-4 NAT1 Transportador 3 de aminoácidos neutros acopiados a sodio O,46 CSTY2 Sinaptotagmina-2 CARCAR Receptor FC de la immunoglobulina alfa CACAR Receptor FC de la immunoglobulina alfa CACAR Receptor FC de la immunoglobulina alfa CACAR Receptor FC de l	CLSTN1	CTF1-alfa	0,5
EPCAM Molécula de adhesión a células epiteliales 0,5 PNPLA2 Proteina 2 que contiene el dominio de la fosfolipasa análogo a patatina 0,49 SLC12A6 Miembro 6 de la familia 12 del transportador de soluto 0,49 SLC30A1 Transportador 1 de cinc 0,49 GPR27 Receptor 27 acoplado a proteína G probable 0,49 EPOR Receptor de la eritropoyetina 0,49 CD79A Cadena de la proteína alfa asociada a complejo del receptor del antígeno de los linfocitos B HLA-DOB1 Antígeno de histocompatibilidad de HLA de clase II, cadena beta 1 de DQ 0,48 HBP1 Proteína 1 de unión a lipoproteína de alta densidad anclada en glicosiliosfatidilinositol ABCA7 Miembro 7 de la subfamilia A del casete de unión a ATP 0,48 RAG1AP1 Transportador SWEET 1 de azúcar 0,48 CXCL16 Motivo C-X-C de la quimioquina 16 0,48 SLC14A1 Transportador de urea 1 0,48 SLC14A1 Transportador de urea 1 0,48 SLC14A1 Transportador de urea 1 0,48 TGFBR2 Receptor de tipo-2 de TGF-beta 0,47 LRBA Proteína de anclaje de tipo beige sensible a lipopolisacáridos 0,47 MFSD5 Transportador del anión molibdato 0,47 RELT Miembro 19L de la superfamilia del receptor del factor de necrosis tumoral 0,47 RTP2B4 ATPasa 4 transportadora del calcio de la membrana plasmática 0,47 RTP2B4 ATPasa 4 transportadora del calcio de la membrana plasmática 0,47 RTP2B4 ATPasa 1 transportadora del calcio de la membrana plasmática 0,47 NFAM1 Molécula 1 de activación de NFAT 0,47 NFAM1 Molécula 1 de activación de NFAT 0,46 STM1 Transportador 3 de aminoácidos neutros acoplados a sodio 0,46 STM2 Sintaxina-4 0,46 STM3 Sintaxina	RHBDF2	Proteína 2 romboide inactiva	0,5
PNPLA2 Proteína 2 que contiene el dominio de la fosfolipasa análogo a patatina 0,49 SLC12A6 Miembro 6 de la familia 12 del transportador de soluto 0,49 SLC30A1 Transportador 1 de cinc 0,49 GPR27 Receptor 27 acoplado a proteína G probable 0,49 GPR27 Receptor 27 acoplado a proteína G probable 0,49 GPR27 Receptor de la eritropoyetina 0,49 CD79A Cadena de la proteína alfa asociada a complejo del receptor del antígeno de los linfocitos B HLA-DQB1 Antígeno de histocompatibilidad de HLA de clase II, cadena beta 1 de DQ 0,48 HBP1 proteína 1 de unión a lipoproteína de alta densidad anclada en glicosifiosfatidilinositol A Miembro 7 de la subfamilia A del casete de unión a ATP 0,48 RAG1AP1 Transportador SWEET 1 de azúcar 0,48 RAG1AP1 Transportador SWEET 1 de azúcar 0,48 CXCL16 Motivo C-X-C de la quimioquiana 16 0,48 SLC14A1 Transportador de urea 1 0,48 RECEPTOR RECE	CCR1	Receptor de tipo 1 de la quimioquina C-C	0,5
SLC12A6 Miembro 6 de la familia 12 del transportador de soluto 0,49 SLC3OA1 Transportador 1 de cinc 0,49 GPR27 Receptor 27 acoplado a proteína G probable 0,49 EPOR Receptor 28 Receptor 29 acoplado a proteína G probable 0,49 CD79A Receptor de la eritropoyetina 0,49 CD79A Cadena de la proteína alfa asociada a complejo del receptor del antílgeno de los linfocitos B HLA-DQB1 Antígeno de histocompatibilidad de HLA de clase II, cadena beta 1 de DQ 0,48 HBP1 Proteína 1 de unión a lipoproteína de alta densidad anclada en glicosifiosfatidilinositol Miembro 7 de la subfamilia A del casete de unión a ATP 0,48 RAC1AP1 Transportador SWEET 1 de azúcar 0,48 RAC1AP1 Transportador SWEET 1 de azúcar 0,48 CXCL 16 Motivo C-X-C de la quimiciquina 16 0,48 SLC14A1 Transportador de urea 1 0,48 TGFBR2 Receptor de tipo-2 de TGF-beta 0,47 LRBA Proteína de anclaje de tipo beige sensible a lipopolisacáridos 0,47 MFSD5 Transportador del anión molibdato 0,47 RELT Miembro 19L de la superfianilia del receptor del factor de necrosis tumoral 0,47 ATP2B4 ATPasa 4 transportadora del calcio de la membrana plasmática 0,47 FURINA Furina 0,47 RFAM1 Molécula 1 de activación de NFAT 0,47 NFAM1 Molécula 1 de activación de NFAT 0,47 NFAM1 ATPasa 1 transportadora del calcio de la membrana plasmática 0,46 SLC26A11 Transportador de aniones sulfato independientes de sodio 0,46 STX4 Sintaxina-4 0,46 SLC39A4 Transportador 2IP4 de cinc 0,46 SLC39A4 Transportador 2IP4 de cinc 0,46 SLC39A4 Transportador 2IP4 de cinc 0,46 SESYT2 Sinaptotagmina-2 0,46 SEMA4A Semaforina-4A 0,46 CYBB Cadena pesada del citocromo b-245 FCAR Receptor Fc de la immunoglobulina alfa GABBR1 Subunida 1 de interacción estroma 1 acidio sádico 0,45 SIGLEC10 Lectina 10 análoga a lg de unión a ácido sádico 0,45	EPCAM	Molécula de adhesión a células epiteliales	0,5
SLC30A1 Transportador 1 de cinc 0,49 GPR27 Receptor 27 acoplado a proteína G probable 0,49 EPOR Receptor de la eritropoyetina 0,49 CD79A Receptor de la eritropoyetina 0,49 CD79A Cadena de la proteína alfa asociada a complejo del receptor del antígeno de los linfocitos B HLA-DQB1 Antígeno de histocompatibilidad de HLA de clase II, cadena beta 1 de DQ 0,48 HBP1 Proteína 1 de unión a lipoproteína de alta densidad anclada en glicosiliosfatidilinositol ABCA7 Miembro 7 de la subfamilia A del casete de unión a ATP 0,48 RAG1AP1 Transportador SWEET 1 de azúcar 0,48 CD47 Antígeno CD47 de la superficie de leucocitos 0,48 CXCL16 Motivo C-X-C de la quimicquina 16 0,48 SLC14A1 Transportador de urea 1 0,48 SLC14A1 Transportador de urea 1 0,48 SLC14A1 Transportador de urea 1 0,47 TGFBR2 Receptor de tipo-2 de TGF-beta 0,47 KRBA Proteína de anclaje de tipo beige sensible a lipopolisacáridos 0,47 RELT Miembro 19L de la superfamilia del receptor del factor de necrosis tumoral 0,47 ATP2B4 ATPasa 4 transportadora del calcio de la membrana plasmática 0,47 FURINA Furina 0,47 FURINA Furina 0,47 ATP2B1 ATPasa 1 transportadora del calcio de la membrana plasmática 0,47 ATP2B1 ATPasa 1 transportadora del calcio de la membrana plasmática 0,46 STX4 Sintaxina-4 0,46 STX4 Sintaxina-4 0,46 STIM1 Molécula 1 de activación de NFAT 0,46 STIM1 Molécula 1 de interacción estromal 0,46 STIM1 Molécula 1 de interacción estromal 0,46 STIM1 Molécula 1 de interacción estromal 0,46 SLC36A11 Transportador 3 de aminoácidos neutros acoplados a sodio 0,46 STM7SF3 Miembro 3 de la superfamilia 7 transmembrana 0,46 SEMA4A Semaforina-4A 0,46 CYBB Cadena pesada del citocromo b-245 FCAR Receptor Fc de la inmunoglobulina alfa 0,46 GABBR1 Subunidad 1 del receptor de tipo B del ácido gamma-aminobutírico 0,45 SIGLEC10 Lectina 10 análoga a lg de unión a ácido siálico 0,45	PNPLA2	Proteína 2 que contiene el dominio de la fosfolipasa análogo a patatina	0,49
GPR27 Receptor 27 acoplado a proteína G probable 0,49 EPOR Receptor de la eritropoyetina 0,49 CD79A Cadena de la proteína alfa asociada a complejo del receptor del antígeno de los linfocitos B 0,48 HLA-DQB1 Antígeno de histocompatibilidad de HLA de clase II, cadena beta 1 de DQ 0,48 HBP1 Proteína 1 de unión a lipoproteína de alta densidad anclada en glicosiliósatidilinosito 0,48 ABCA7 Miembro 7 de la subfamilia A del casete de unión a ATP 0,48 RAG1AP1 Transportador SWEET 1 de azúcar 0,48 CD47 Antígeno CD47 de la superficie de leucocitos 0,48 CXCL16 Motivo C-X-C de la quimioquina 16 0,48 SLC14A1 Transportador de urea 1 0,48 GFBR2 Receptor de tipo-2 de TGF-beta 0,47 LRBA Proteína de anclaje de tipo beige sensible a lipopolisacáridos 0,47 MFSD5 Transportador del anión molibdato 0,47 RELT Miembro 19L de la superfamilia del receptor del factor de necrosis tumoral 0,47 FURINA Furina 0,47 GAPT Proteína GAPT 0,47 <	SLC12A6	Miembro 6 de la familia 12 del transportador de soluto	0,49
EPOR Receptor de la eritropoyetina 0,49 CD79A Cadena de la proteína alfa asociada a complejo del receptor del antigeno de los linfocitos B HLA-DQB1 Antigeno de histocompatibilidad de HLA de clase II, cadena beta 1 de DQ 0,48 HBP1 Proteína 1 de unión a lipoproteína de alta densidad anclada en glicosifiosfatidilinositol ABCA7 Miembro 7 de la subfamilia A del casete de unión a ATP 0,48 RAG1AP1 Transportador SWEET 1 de azúcar 0,48 RAG1AP1 Transportador SWEET 1 de azúcar 0,48 CD47 Antígeno CD47 de la superficie de leucocitos 0,48 CXCL16 Motivo C-X-C de la quimioquina 16 0,48 SLC14A1 Transportador de urea 1 0,47 LRBA Proteína de anclaje de tipo beige sensible a lipopolisacáridos 0,47 LRBA Proteína de anclaje de tipo beige sensible a lipopolisacáridos 0,47 MFSD5 Transportador del anión molibdato 0,47 RELT Miembro 19L de la superfamilia del receptor del factor de necrosis tumoral 0,47 ATP2B4 ATPasa 4 transportadora del calcio de la membrana plasmática 0,47 FURINA Furina 0,47 GAPT Proteína GAPT 0,47 NFAM1 Molécula 1 de activación de NFAT 0,47 ATP2B1 ATPasa 1 transportadora del calcio de la membrana plasmática 0,46 SLC26A11 Transportador de aniones sulfato independientes de sodio 0,46 STIM1 Molécula 1 de interacción estromal 0,46 SLC3994 Transportador 3 de aminoácidos neutros acoplados a sodio 0,46 SLC3994 Transportador 21P4 de cinc 0,46 SLC3994 Transportador 21P4 de cinc 0,46 SLC3994 Sintaxina-4 0,46 SEMA4A Semaforina-4A 0,46 CYBB Cadena pesada del citocromo b-245 FCAR Receptor FC de la inmunoglobulina alfa GABBR1 Subunidad 1 del receptor de lipo B del ácido gamma-aminobutírico 0,45 SIGLEC10 Lectina 10 análoga a lg de unión a ácido siálico 0,45	SLC30A1	Transportador 1 de cinc	0,49
CD79A Cadena de la proteína alfa asociada a complejo del receptor del antígeno de los linfocitos B HLA-DQB1 Antígeno de histocompatibilidad de HLA de clase II, cadena beta 1 de DQ 0,48 HBP1 Proteína 1 de unión a lipoproteína de alta densidad anclada en glicosilfosfatidilinositol ABCA7 Miembro 7 de la subfamilia A del casete de unión a ATP 0,48 RAG1AP1 Transportador SWEET 1 de azúcar 0,48 CXCL16 Motivo C-X-C de la quimioquina 16 0,48 SLC14A1 Transportador de urea 1 0,48 SLC14A1 Transportador de urea 1 0,48 SLC14A1 Transportador de urea 1 0,47 LRBA Proteína de anclaje de tipo beige sensible a lipopolisacáridos 0,47 MFSD5 Transportador del anión molibdato RELT Miembro 19L de la superfamilia del receptor del factor de necrosis tumoral 0,47 ATP2B4 ATPasa 4 transportadora del calcio de la membrana plasmática 0,47 FURINA Furina 30,47 MOIÉCULA 1 de activación de NFAT ATP2B1 ATPasa 1 transportadora del calcio de la membrana plasmática 0,47 NFAM1 Molécula 1 de activación de NFAT ATP2B1 ATPasa 1 transportadora del calcio de la membrana plasmática 0,46 SLC26A11 Transportador de aniones sulfato independientes de sodio 0,46 STX4 Sintaxina-4 0,46 NAT1 Transportador 3 de aminoácidos neutros acoplados a sodio 0,46 STX1 Sinaportador 2 del calcio estromal 0,46 STX1 Sinaportador 2 del calcio estromal 0,46 STX1 Transportador 2 del calcio estromal 0,46 CYBB Cadena pesada del citocromo b-245 0,46 COBS Antígeno CD53 de la superficie de leucocitos 0,45 SIGLEC10 Lectina 10 análoga a lg de unión a ácido siálico 0,45	GPR27	Receptor 27 acoplado a proteína G probable	0,49
HLA-DQB1 Antigeno de histocompatibilidad de HLA de clase II, cadena beta 1 de DQ 0,48 HBP1 Proteína 1 de unión a lipoproteína de alta densidad anclada en gilcosiflosfatidilinositol 0,48 ABCA7 Miembro 7 de la subfamilia A del casete de unión a ATP 0,48 RAG1AP1 Transportador SWEET 1 de azúcar 0,48 CD47 Antigeno CD47 de la superfície de leucocitos 0,48 CCXCL16 Motivo C-X-C de la quimioquina 16 0,48 SLC14A1 Transportador de urea 1 0,48 SLC14A1 Transportador de urea 1 0,47 IRBA Proteína de anclaje de tipo beige sensible a lipopolisacáridos 0,47 MFSD5 Transportador del ainón molibdato 0,47 MFSD5 Transportador del anión molibdato 0,47 ATP2B4 ATPasa 4 transportadora del calcio de la membrana plasmática 0,47 FURINA Furina 0,47 ATP2B4 ATPasa 1 transportadora del calcio de la membrana plasmática 0,47 NFAM1 Molécula 1 de activación de NFAT 0,47 ATP2B1 ATPasa 1 transportadora del calcio de la membrana plasmática 0,46 SLC26A11 Transportador de aniones sulfato independientes de sodio 0,46 STX4 Sintaxina-4 0,46 STX4 Sintaxina-4 0,46 SLC39A4 Transportador 3 de aminoácidos neutros acoplados a sodio 0,46 STX1 Sinaportador 2IP4 de cinc 0,46 SESYT2 Sinapotagmina-2 0,46 TMSF3 Miembro 3 de la superfamilia 7 transmembrana 0,46 SEMA4A Semaforina-4A 0,46 CYBB Cadena pesada del citocromo b-245 0,46 GABBR1 Subunidad 1 del receptor de lipos del daido gamma-aminobutírico 0,45 SIGLEC10 Lectina 10 análoga a lg de unión a ácido siálico 0,45	EPOR	Receptor de la eritropoyetina	0,49
HBP1 Proteina 1 de unión a lipoproteína de alta densidad anclada en glicosifiosfatidilinositol ABCA7 Miembro 7 de la subfamilia A del casete de unión a ATP 0,48 RAG1AP1 Transportador SWEET 1 de azúcar 0,48 CD47 Antígeno CD47 de la superficie de leucocitos 0,48 CXCL16 Motivo C-X-C de la quimioquina 16 0,48 SLC14A1 Transportador de urea 1 0,48 SLC14A1 Transportador de urea 1 0,48 TGFBR2 Receptor de tipo-2 de TGF-beta 0,47 IRBA Proteína de anclaje de tipo beige sensible a lipopolisacáridos 0,47 MFSD5 Transportador del anión molibato 0,47 RELT Miembro 19L de la superfamilia del receptor del factor de necrosis tumoral 0,47 ATP2B4 ATPasa 4 transportadora del calcio de la membrana plasmática 0,47 FURINA Furina 0,47 GAPT Proteína GAPT 0,47 NFAM1 Molécula 1 de activación de NFAT 0,47 ATP2B1 ATPasa 1 transportadora del calcio de la membrana plasmática 0,46 SLC26A11 Transportador de aniones sulfato independientes de sodio 0,46 STX4 Sintaxina-4 0,46 NAT1 Transportador 3 de aminoácidos neutros acoplados a sodio 0,46 STM1 Molécula 1 de interacción estromal 0,46 STM1 Molécula 1 de interacción estromal 0,46 STM1 Molécula 1 de interacción estromal 0,46 SCSYT2 Sinaptotagmina-2 0,46 TM7SF3 Miembro 3 de la superfamilia 7 transmembrana 0,46 CYBB Cadena pesada del citocromo b-245 CCAB Antígeno CD53 de la superficie de leucocitos 0,45 SIGLEC10 Lectina 10 análoga a lg de unión a ácido siálico 0,45	CD79A	Cadena de la proteína alfa asociada a complejo del receptor del antígeno	0,48
ABCA7 Miembro 7 de la subfamilia A del casete de unión a ATP 0,48 RAG1AP1 Transportador SWEET 1 de azúcar 0,48 CD47 Antígeno CD47 de la superficie de leucocitos 0,48 CXCL16 Motivo C-X-C de la quimioquina 16 0,48 SLC14A1 Transportador de urea 1 0,48 SLC14A1 Transportador de urea 1 0,48 TGFBR2 Receptor de tipo-2 de TGF-beta 0,47 LRBA Proteína de anclaje de tipo beige sensible a lipopolisacáridos 0,47 MFSD5 Transportador del anión molibidato 0,47 RELT Miembro 19L de la superfamilia del receptor del factor de necrosis tumoral 0,47 ATP2B4 ATPasa 4 transportadora del calcio de la membrana plasmática 0,47 FURINA Furina 0,47 GAPT Proteína GAPT 0,47 NFAM1 Molécula 1 de activación de NFAT 0,47 ATP2B1 ATPasa 1 transportadora del calcio de la membrana plasmática 0,46 SLC26A11 Transportador de aniones sulfato independientes de sodio 0,46 STX4 Sintaxina-4 0,46 STX4 Sintaxina-4 0,46 STM1 Molécula 1 de interacción estromal 0,46 STM1 Molécula 1 de interacción estromal 0,46 STM2 Sinaptotagmina-2 0,46 STM3 Miembro 3 de la superfamilia 7 transmembrana 0,46 SEYT2 Sinaptotagmina-2 0,46 TM7SF3 Miembro 3 de la superfamilia 7 transmembrana 0,46 CYBB Cadena pesada del citocromo b-245 FCAR Receptor Fc de la inmunoglobulina alfa 0,46 GABBR1 Subunidad 1 del receptor de tipo B del ácido gamma-aminobutírico 0,45 SIGLEC10 Lectina 10 análoga a lg de unión a ácido siálico 0,46 SIGLEC10 Lectina 10 análoga a lg de unión a ácido siálico	HLA-DQB1	Antígeno de histocompatibilidad de HLA de clase II, cadena beta 1 de DQ	0,48
RAG1AP1 Transportador SWEET 1 de azúcar 0,48 CD47 Antígeno CD47 de la superficie de leucocitos 0,48 CXCL16 Motivo C-X-C de la quimioquina 16 SLC14A1 Transportador de urea 1 0,48 SLC14A1 Transportador de urea 1 0,48 TGFBR2 Receptor de tipo-2 de TGF-beta 0,47 LRBA Proteína de anclaje de tipo beige sensible a lipopolisacáridos 0,47 MFSD5 Transportador del anión molibdato 0,47 RELT Miembro 19L de la superfamilia del receptor del factor de necrosis tumoral 0,47 ATP2B4 ATPasa 4 transportadora del calcio de la membrana plasmática 0,47 FURINA Furina 0,47 GAPT Proteína GAPT 0,47 NFAM1 Molécula 1 de activación de NFAT 0,47 ATP2B1 ATPasa 1 transportadora del calcio de la membrana plasmática 0,46 SLC26A11 Transportador de aniones sulfato independientes de sodio 0,46 STX4 Sintaxina-4 0,46 NAT1 Transportador 3 de aminoácidos neutros acoplados a sodio 0,46 STIM1 Molécula 1 de interacción estromal 0,46 SLC39A4 Transportador ZIP4 de cinc 0,46 SYT2 Sinaptotagmina-2 0,46 TM7SF3 Miembro 3 de la superfamilia 7 transmembrana 0,46 SEMA4A Semaforina-4A 0,46 CYBB Cadena pesada del citocromo b-245 FCAR Receptor Fc de la immunoglobulina alfa 0,46 GABBR1 Subunidad 1 del receptor de tipo B del ácido gamma-aminobutírico 0,45 SIGLEC10 Lectina 10 análoga a lg de unión a ácido siálico 0,45	HBP1	Proteína 1 de unión a lipoproteína de alta densidad anclada en	0,48
CD47 Antígeno CD47 de la superficie de leucocitos 0,48 CXCL16 Motivo C-X-C de la quimioquina 16 0,48 SLC14A1 Transportador de urea 1 0,48 TGFBR2 Receptor de tipo-2 de TGF-beta 0,47 LRBA Proteína de anclaje de tipo beige sensible a lipopolisacáridos 0,47 MFSD5 Transportador del anión molibdato 0,47 RELT Miembro 19L de la superfamilia del receptor del factor de necrosis tumoral 0,47 ATP2B4 ATPasa 4 transportadora del calcio de la membrana plasmática 0,47 FURINA Furina 0,47 GAPT Proteína GAPT 0,47 NFAM1 Molécula 1 de activación de NFAT 0,47 ATP2B1 ATPasa 1 transportadora del calcio de la membrana plasmática 0,46 SLC26A11 Transportador de aniones sulfato independientes de sodio 0,46 STX4 Sintaxina-4 0,46 NAT1 Transportador 3 de aminoácidos neutros acoplados a sodio 0,46 STIM1 Molécula 1 de interacción estromal 0,46 SLC39A4 Transportador ZIP4 de cinc 0,46 ESYT2 Sinaptotagmina-2 0,46 TM7SF3 Miembro 3 de la superfamilia 7 transmembrana 0,46 SEMA4A Semaforina-4A 0,46 CYBB Cadena pesada del citocromo b-245 FCAR Receptor Fc de la inmunoglobulina alfa 0,46 GABBR1 Subunidad 1 del receptor de tipo B del ácido gamma-aminobutírico 0,45 SIGLEC10 Lectina 10 análoga a lg de unión a ácido siálico 0,45	ABCA7	Miembro 7 de la subfamilia A del casete de unión a ATP	0,48
CXCL16 Motivo C-X-C de la quimioquina 16 SLC14A1 Transportador de urea 1 Q,48 SLC14A1 Transportador de urea 1 Q,47 LRBA Receptor de tipo-2 de TGF-beta LRBA Proteína de anclaje de tipo beige sensible a lipopolisacáridos Q,47 MFSD5 Transportador del anión molibdato RELT Miembro 19L de la superfamilia del receptor del factor de necrosis tumoral ATP2B4 ATPasa 4 transportadora del calcio de la membrana plasmática Q,47 FURINA Furina GAPT Proteína GAPT NFAM1 Molécula 1 de activación de NFAT ATP2B1 ATPasa 1 transportadora del calcio de la membrana plasmática SLC26A11 Transportador de aniones sulfato independientes de sodio Q,46 STX4 Sintaxina-4 Q,46 NAT1 Transportador 3 de aminoácidos neutros acoplados a sodio Q,46 SLC39A4 Transportador ZIP4 de cinc ESYT2 Sinaptotagmina-2 Q,46 TM7SF3 Miembro 3 de la superfamilia 7 transmembrana Q,46 SEMA4A Semaforina-4A Q,46 CYBB Cadena pesada del citocromo b-245 FCAR Receptor Fc de la inmunoglobulina alfa GABBR1 Subunidad 1 del receptor de tipo B del ácido gamma-aminobutírico Q,45 SIGLEC10 Lectina 10 análoga a lg de unión a ácido siálico Q,45 SIGLEC10 Lectina 10 análoga a lg de unión a ácido siálico Q,45	RAG1AP1	Transportador SWEET 1 de azúcar	0,48
SLC14A1 Transportador de urea 1 0,48 TGFBR2 Receptor de tipo-2 de TGF-beta 0,47 LRBA Proteína de anclaje de tipo beige sensible a lipopolisacáridos 0,47 MFSD5 Transportador del anión molibdato 0,47 RELT Miembro 19L de la superfamilia del receptor del factor de necrosis tumoral 0,47 ATP2B4 ATPasa 4 transportadora del calcio de la membrana plasmática 0,47 FURINA Furina 0,47 GAPT Proteína GAPT 0,47 NFAM1 Molécula 1 de activación de NFAT 0,47 ATP2B1 ATPasa 1 transportadora del calcio de la membrana plasmática 0,46 SLC26A11 Transportador de aniones sulfato independientes de sodio 0,46 STX4 Sintaxina-4 0,46 NAT1 Transportador 3 de aminoácidos neutros acoplados a sodio 0,46 STIM1 Molécula 1 de interacción estromal 0,46 SLC39A4 Transportador ZIP4 de cinc 0,46 ESYT2 Sinaptotagmina-2 0,46 TM7SF3 Miembro 3 de la superfamilia 7 transmembrana 0,46 SEMA4A Semaforina-4A 0,46 CYBB Cadena pesada del citocromo b-245 FCAR Receptor Fc de la inmunoglobulina alfa 0,45 GABBR1 Subunidad 1 del receptor de tipo B del ácido gamma-aminobutírico 0,45 SIGLEC10 Lectina 10 análoga a lg de unión a ácido siálico 0,45	CD47	Antígeno CD47 de la superficie de leucocitos	0,48
TGFBR2Receptor de tipo-2 de TGF-beta0,47LRBAProteína de anclaje de tipo beige sensible a lipopolisacáridos0,47MFSD5Transportador del anión molibdato0,47RELTMiembro 19L de la superfamilia del receptor del factor de necrosis tumoral0,47ATP2B4ATPasa 4 transportadora del calcio de la membrana plasmática0,47FURINAFurina0,47GAPTProteína GAPT0,47NFAM1Molécula 1 de activación de NFAT0,47ATP2B1ATPasa 1 transportadora del calcio de la membrana plasmática0,46SLC26A11Transportador de aniones sulfato independientes de sodio0,46STX4Sintaxina-40,46NAT1Transportador 3 de aminoácidos neutros acoplados a sodio0,46STIM1Molécula 1 de interacción estromal0,46SLC39A4Transportador ZIP4 de cinc0,46ESYT2Sinaptotagmina-20,46TM7SF3Miembro 3 de la superfamilia 7 transmembrana0,46SEMA4ASemaforina-4A0,46CYBBCadena pesada del citocromo b-2450,46FCARReceptor Fc de la inmunoglobulina alfa0,46GABBR1Subunidad 1 del receptor de tipo B del ácido gamma-aminobutírico0,45GC53Antígeno CD53 de la superficie de leucocitos0,45SIGLEC10Lectina 10 análoga a Ig de unión a ácido siálico0,45	CXCL16	Motivo C-X-C de la quimioquina 16	0,48
LRBA Proteína de anclaje de tipo beige sensible a lipopolisacáridos 0,47 MFSD5 Transportador del anión molibdato 0,47 RELT Miembro 19L de la superfamilia del receptor del factor de necrosis tumoral 0,47 ATP2B4 ATPasa 4 transportadora del calcio de la membrana plasmática 0,47 FURINA Furina 0,47 GAPT Proteína GAPT 0,47 NFAM1 Molécula 1 de activación de NFAT 0,47 ATP2B1 ATPasa 1 transportadora del calcio de la membrana plasmática 0,46 SLC26A11 Transportador de aniones sulfato independientes de sodio 0,46 STX4 Sintaxina-4 0,46 NAT1 Transportador 3 de aminoácidos neutros acoplados a sodio 0,46 STIM1 Molécula 1 de interacción estromal 0,46 SLC39A4 Transportador ZIP4 de cinc 0,46 ESYT2 Sinaptotagmina-2 0,46 TM7SF3 Miembro 3 de la superfamilia 7 transmembrana 0,46 SEMA4A Semaforina-4A 0,46 CYBB Cadena pesada del citocromo b-245 FCAR Receptor Fc de la inmunoglobulina alfa 0,46 GABBR1 Subunidad 1 del receptor de tipo B del ácido gamma-aminobutírico 0,45 SIGLEC10 Lectina 10 análoga a lg de unión a ácido siálico 0,45	SLC14A1	Transportador de urea 1	0,48
MFSD5 Transportador del anión molibdato 0,47 RELT Miembro 19L de la superfamilia del receptor del factor de necrosis tumoral 0,47 ATP2B4 ATPasa 4 transportadora del calcio de la membrana plasmática 0,47 FURINA Furina 0,47 GAPT Proteína GAPT 0,47 NFAM1 Molécula 1 de activación de NFAT 0,47 ATP2B1 ATPasa 1 transportadora del calcio de la membrana plasmática 0,46 SLC26A11 Transportador de aniones sulfato independientes de sodio 0,46 STX4 Sintaxina-4 0,46 NAT1 Transportador 3 de aminoácidos neutros acoplados a sodio 0,46 STIM1 Molécula 1 de interacción estromal 0,46 SLC39A4 Transportador ZIP4 de cinc 0,46 ESYT2 Sinaptotagmina-2 0,46 TM7SF3 Miembro 3 de la superfamilia 7 transmembrana 0,46 SEMA4A Semaforina-4A 0,46 CYBB Cadena pesada del citocromo b-245 FCAR Receptor Fc de la immunoglobulina alfa 0,46 GABBR1 Subunidad 1 del receptor de tipo B del ácido gamma-aminobutírico 0,45 SIGLEC10 Lectina 10 análoga a lg de unión a ácido siálico 0,45	TGFBR2	Receptor de tipo-2 de TGF-beta	0,47
RELT Miembro 19L de la superfamilia del receptor del factor de necrosis tumoral 0,47 ATP2B4 ATPasa 4 transportadora del calcio de la membrana plasmática 0,47 FURINA Furina 0,47 GAPT Proteína GAPT 0,47 NFAM1 Molécula 1 de activación de NFAT 0,47 ATP2B1 ATPasa 1 transportadora del calcio de la membrana plasmática 0,46 SLC26A11 Transportador de aniones sulfato independientes de sodio 0,46 STX4 Sintaxina-4 0,46 NAT1 Transportador 3 de aminoácidos neutros acoplados a sodio 0,46 STIM1 Molécula 1 de interacción estromal 0,46 SLC39A4 Transportador ZIP4 de cinc 0,46 ESYT2 Sinaptotagmina-2 0,46 TM7SF3 Miembro 3 de la superfamilia 7 transmembrana 0,46 SEMA4A Semaforina-4A 0,46 CYBB Cadena pesada del citocromo b-245 FCAR Receptor Fc de la immunoglobulina alfa 0,46 GABBR1 Subunidad 1 del receptor de tipo B del ácido gamma-aminobutírico 0,45 SIGLEC10 Lectina 10 análoga a lg de unión a ácido siálico 0,45	LRBA	Proteína de anclaje de tipo beige sensible a lipopolisacáridos	0,47
ATP2B4 ATPasa 4 transportadora del calcio de la membrana plasmática 0,47 FURINA Furina 0,47 GAPT Proteína GAPT 0,47 NFAM1 Molécula 1 de activación de NFAT 0,47 ATP2B1 ATPasa 1 transportadora del calcio de la membrana plasmática 0,46 SLC26A11 Transportador de aniones sulfato independientes de sodio 0,46 STX4 Sintaxina-4 0,46 NAT1 Transportador 3 de aminoácidos neutros acoplados a sodio 0,46 STIM1 Molécula 1 de interacción estromal 0,46 SLC39A4 Transportador ZIP4 de cinc 0,46 ESYT2 Sinaptotagmina-2 0,46 TM7SF3 Miembro 3 de la superfamilia 7 transmembrana 0,46 SEMA4A Semaforina-4A 0,46 CYBB Cadena pesada del citocromo b-245 FCAR Receptor Fc de la inmunoglobulina alfa 0,46 GABBR1 Subunidad 1 del receptor de tipo B del ácido gamma-aminobutírico 0,45 SIGLEC10 Lectina 10 análoga a lg de unión a ácido siálico 0,45	MFSD5		0,47
ATP2B4 ATPasa 4 transportadora del calcio de la membrana plasmática 0,47 FURINA Furina 0,47 GAPT Proteína GAPT 0,47 NFAM1 Molécula 1 de activación de NFAT 0,47 ATP2B1 ATPasa 1 transportadora del calcio de la membrana plasmática 0,46 SLC26A11 Transportador de aniones sulfato independientes de sodio 0,46 STX4 Sintaxina-4 0,46 NAT1 Transportador 3 de aminoácidos neutros acoplados a sodio 0,46 STIM1 Molécula 1 de interacción estromal 0,46 SLC39A4 Transportador ZIP4 de cinc 0,46 ESYT2 Sinaptotagmina-2 0,46 TM7SF3 Miembro 3 de la superfamilia 7 transmembrana 0,46 SEMA4A Semaforina-4A 0,46 CYBB Cadena pesada del citocromo b-245 FCAR Receptor Fc de la inmunoglobulina alfa 0,46 GABBR1 Subunidad 1 del receptor de tipo B del ácido gamma-aminobutírico 0,45 SIGLEC10 Lectina 10 análoga a lg de unión a ácido siálico 0,45	RELT	Miembro 19L de la superfamilia del receptor del factor de necrosis tumoral	0,47
FURINA Furina 0,47 GAPT Proteína GAPT 0,47 NFAM1 Molécula 1 de activación de NFAT 0,47 ATP2B1 ATPasa 1 transportadora del calcio de la membrana plasmática 0,46 SLC26A11 Transportador de aniones sulfato independientes de sodio 0,46 STX4 Sintaxina-4 0,46 NAT1 Transportador 3 de aminoácidos neutros acoplados a sodio 0,46 STIM1 Molécula 1 de interacción estromal 0,46 SLC39A4 Transportador ZIP4 de cinc 0,46 ESYT2 Sinaptotagmina-2 0,46 TM7SF3 Miembro 3 de la superfamilia 7 transmembrana 0,46 SEMA4A Semaforina-4A 0,46 CYBB Cadena pesada del citocromo b-245 FCAR Receptor Fc de la inmunoglobulina alfa 0,46 GABBR1 Subunidad 1 del receptor de tipo B del ácido gamma-aminobutírico 0,45 SIGLEC10 Lectina 10 análoga a lg de unión a ácido siálico 0,45	ATP2B4	·	0,47
NFAM1 Molécula 1 de activación de NFAT 0,47 ATP2B1 ATPasa 1 transportadora del calcio de la membrana plasmática 0,46 SLC26A11 Transportador de aniones sulfato independientes de sodio 0,46 STX4 Sintaxina-4 0,46 NAT1 Transportador 3 de aminoácidos neutros acoplados a sodio 0,46 STIM1 Molécula 1 de interacción estromal 0,46 SLC39A4 Transportador ZIP4 de cinc 0,46 ESYT2 Sinaptotagmina-2 0,46 TM7SF3 Miembro 3 de la superfamilia 7 transmembrana 0,46 SEMA4A Semaforina-4A 0,46 CYBB Cadena pesada del citocromo b-245 FCAR Receptor Fc de la inmunoglobulina alfa 0,46 GABBR1 Subunidad 1 del receptor de tipo B del ácido gamma-aminobutírico 0,45 CD53 Antígeno CD53 de la superficie de leucocitos 0,45 SIGLEC10 Lectina 10 análoga a lg de unión a ácido siálico 0,45	FURINA	Furina	0,47
NFAM1 Molécula 1 de activación de NFAT 0,47 ATP2B1 ATPasa 1 transportadora del calcio de la membrana plasmática 0,46 SLC26A11 Transportador de aniones sulfato independientes de sodio 0,46 STX4 Sintaxina-4 0,46 NAT1 Transportador 3 de aminoácidos neutros acoplados a sodio 0,46 STIM1 Molécula 1 de interacción estromal 0,46 SLC39A4 Transportador ZIP4 de cinc 0,46 ESYT2 Sinaptotagmina-2 0,46 TM7SF3 Miembro 3 de la superfamilia 7 transmembrana 0,46 SEMA4A Semaforina-4A 0,46 CYBB Cadena pesada del citocromo b-245 FCAR Receptor Fc de la inmunoglobulina alfa 0,46 GABBR1 Subunidad 1 del receptor de tipo B del ácido gamma-aminobutírico 0,45 CD53 Antígeno CD53 de la superficie de leucocitos 0,45 SIGLEC10 Lectina 10 análoga a lg de unión a ácido siálico 0,45	GAPT	Proteína GAPT	0,47
SLC26A11 Transportador de aniones sulfato independientes de sodio STX4 Sintaxina-4 NAT1 Transportador 3 de aminoácidos neutros acoplados a sodio STIM1 Molécula 1 de interacción estromal SLC39A4 Transportador ZIP4 de cinc SYT2 Sinaptotagmina-2 TM7SF3 Miembro 3 de la superfamilia 7 transmembrana SEMA4A Semaforina-4A CYBB Cadena pesada del citocromo b-245 FCAR Receptor Fc de la inmunoglobulina alfa GABBR1 Subunidad 1 del receptor de tipo B del ácido gamma-aminobutírico CD53 Antígeno CD53 de la superficie de leucocitos SIGLEC10 Lectina 10 análoga a lg de unión a ácido siálico 0,46	NFAM1	Molécula 1 de activación de NFAT	
SLC26A11 Transportador de aniones sulfato independientes de sodio STX4 Sintaxina-4 0,46 NAT1 Transportador 3 de aminoácidos neutros acoplados a sodio STIM1 Molécula 1 de interacción estromal SLC39A4 Transportador ZIP4 de cinc ESYT2 Sinaptotagmina-2 0,46 TM7SF3 Miembro 3 de la superfamilia 7 transmembrana SEMA4A Semaforina-4A CYBB Cadena pesada del citocromo b-245 FCAR Receptor Fc de la inmunoglobulina alfa GABBR1 Subunidad 1 del receptor de tipo B del ácido gamma-aminobutírico CD53 Antígeno CD53 de la superficie de leucocitos SIGLEC10 Lectina 10 análoga a lg de unión a ácido siálico 0,46	ATP2B1	ATPasa 1 transportadora del calcio de la membrana plasmática	0,46
STX4 Sintaxina-4 0,46 NAT1 Transportador 3 de aminoácidos neutros acoplados a sodio 0,46 STIM1 Molécula 1 de interacción estromal 0,46 SLC39A4 Transportador ZIP4 de cinc 0,46 ESYT2 Sinaptotagmina-2 0,46 TM7SF3 Miembro 3 de la superfamilia 7 transmembrana 0,46 SEMA4A Semaforina-4A 0,46 CYBB Cadena pesada del citocromo b-245 FCAR Receptor Fc de la inmunoglobulina alfa 0,46 GABBR1 Subunidad 1 del receptor de tipo B del ácido gamma-aminobutírico 0,45 CD53 Antígeno CD53 de la superficie de leucocitos 0,45 SIGLEC10 Lectina 10 análoga a lg de unión a ácido siálico 0,45	SLC26A11		0,46
STIM1Molécula 1 de interacción estromal0,46SLC39A4Transportador ZIP4 de cinc0,46ESYT2Sinaptotagmina-20,46TM7SF3Miembro 3 de la superfamilia 7 transmembrana0,46SEMA4ASemaforina-4A0,46CYBBCadena pesada del citocromo b-2450,46FCARReceptor Fc de la inmunoglobulina alfa0,46GABBR1Subunidad 1 del receptor de tipo B del ácido gamma-aminobutírico0,45CD53Antígeno CD53 de la superficie de leucocitos0,45SIGLEC10Lectina 10 análoga a lg de unión a ácido siálico0,45	STX4		<u> </u>
STIM1Molécula 1 de interacción estromal0,46SLC39A4Transportador ZIP4 de cinc0,46ESYT2Sinaptotagmina-20,46TM7SF3Miembro 3 de la superfamilia 7 transmembrana0,46SEMA4ASemaforina-4A0,46CYBBCadena pesada del citocromo b-2450,46FCARReceptor Fc de la inmunoglobulina alfa0,46GABBR1Subunidad 1 del receptor de tipo B del ácido gamma-aminobutírico0,45CD53Antígeno CD53 de la superficie de leucocitos0,45SIGLEC10Lectina 10 análoga a lg de unión a ácido siálico0,45	NAT1	Transportador 3 de aminoácidos neutros acoplados a sodio	0,46
SLC39A4 Transportador ZIP4 de cinc 0,46 ESYT2 Sinaptotagmina-2 0,46 TM7SF3 Miembro 3 de la superfamilia 7 transmembrana 0,46 SEMA4A Semaforina-4A 0,46 CYBB Cadena pesada del citocromo b-245 0,46 FCAR Receptor Fc de la inmunoglobulina alfa 0,46 GABBR1 Subunidad 1 del receptor de tipo B del ácido gamma-aminobutírico 0,45 CD53 Antígeno CD53 de la superficie de leucocitos 0,45 SIGLEC10 Lectina 10 análoga a lg de unión a ácido siálico 0,45		·	<u> </u>
ESYT2 Sinaptotagmina-2 0,46 TM7SF3 Miembro 3 de la superfamilia 7 transmembrana 0,46 SEMA4A Semaforina-4A 0,46 CYBB Cadena pesada del citocromo b-245 0,46 FCAR Receptor Fc de la inmunoglobulina alfa 0,46 GABBR1 Subunidad 1 del receptor de tipo B del ácido gamma-aminobutírico 0,45 CD53 Antígeno CD53 de la superficie de leucocitos 0,45 SIGLEC10 Lectina 10 análoga a lg de unión a ácido siálico 0,45	SLC39A4	Transportador ZIP4 de cinc	<u> </u>
TM7SF3Miembro 3 de la superfamilia 7 transmembrana0,46SEMA4ASemaforina-4A0,46CYBBCadena pesada del citocromo b-2450,46FCARReceptor Fc de la inmunoglobulina alfa0,46GABBR1Subunidad 1 del receptor de tipo B del ácido gamma-aminobutírico0,45CD53Antígeno CD53 de la superficie de leucocitos0,45SIGLEC10Lectina 10 análoga a lg de unión a ácido siálico0,45		•	
SEMA4ASemaforina-4A0,46CYBBCadena pesada del citocromo b-2450,46FCARReceptor Fc de la inmunoglobulina alfa0,46GABBR1Subunidad 1 del receptor de tipo B del ácido gamma-aminobutírico0,45CD53Antígeno CD53 de la superficie de leucocitos0,45SIGLEC10Lectina 10 análoga a Ig de unión a ácido siálico0,45		•	<u> </u>
CYBB Cadena pesada del citocromo b-245 0,46 FCAR Receptor Fc de la inmunoglobulina alfa 0,46 GABBR1 Subunidad 1 del receptor de tipo B del ácido gamma-aminobutírico 0,45 CD53 Antígeno CD53 de la superficie de leucocitos 0,45 SIGLEC10 Lectina 10 análoga a lg de unión a ácido siálico 0,45			
FCAR Receptor Fc de la inmunoglobulina alfa 0,46 GABBR1 Subunidad 1 del receptor de tipo B del ácido gamma-aminobutírico 0,45 CD53 Antígeno CD53 de la superficie de leucocitos 0,45 SIGLEC10 Lectina 10 análoga a Ig de unión a ácido siálico 0,45			<u> </u>
GABBR1 Subunidad 1 del receptor de tipo B del ácido gamma-aminobutírico 0,45 CD53 Antígeno CD53 de la superficie de leucocitos 0,45 SIGLEC10 Lectina 10 análoga a Ig de unión a ácido siálico 0,45		·	
CD53 Antígeno CD53 de la superficie de leucocitos 0,45 SIGLEC10 Lectina 10 análoga a lg de unión a ácido siálico 0,45		·	<u> </u>
SIGLEC10 Lectina 10 análoga a Ig de unión a ácido siálico 0,45			<u> </u>
	S1PR1	Receptor 1 de la esfingosina 1-fosfato	0,45
BTN3A2 Miembro A2 de la subfamilia 3 de la butirofilina 0,45			<u> </u>

PIKSIP1 Proteína 1 de interacción con la fosfoinositido-3-quinasa 0,45 FAM168B Inhibidor del recrecimiento de neuritas asociado a mielina 0,45 LPAR2 Receptor 2 del adoi losfosfatidico 0,45 ATP183 Subunidad beta-3 de la ATPasa que transporta sodio/potasio 0,45 FLVCR1 le roteína 1 relacionada con el receptor del subgrupo C del virus de la leucemia felina 0,45 SECTM1 Proteína 1 transmembrana y secretada 0,45 SLC38A5 Transportador 5 de aminoacidos neutros acopiados a sodio 0,45 SLC38A5 Transportador 5 de aminoacidos neutros acopiados a sodio 0,45 SLC38A5 Transportador 5 de aminoacidos neutros acopiados a sodio 0,44 LMBR1L Proteína LMBR1L Proteína 1 asociada a resistencia a multifármacos 0,44 SLC22A18 Miembro 18 de la familia 22 del transportador de soluto 0,44 SEC21 Proteína LMBR1L 2 del transportador de soluto 0,44 SLC22A18 Miembro 18 de la familia 22 del transportador de soluto 0,44 SCSF1R Receptor del factor 1 estimulador de colonias de macrófagos 0,44 SCSF1R Receptor de tipo 1 de la hormona análoga a mucina que contiene un módulo analogo a EGF FRE2 Receptor 2 del péptido de N-formilo 0,44 KIT KIT de receptores del factor de crecimiento de mastocitos/citoblastos 0,44 MS4A1 Antigeno CD20 de linfocitos B 0,43 MICA Secuencia A relacionada con el polipéptido MHC de clase I 0,43 GPR172A Familia 52 del transportador de solutos, Transportador de la riboflavina, miembro 2 metalogo a legra de solutos Abambro 1 de la desintegrina y la metaloproteinasa 1 que contiene el dominio de la desintegrina y la metaloproteinasa 1 que contiene el dominio de la desintegrina y la metaloproteinasa 1 que contiene el dominio de la desintegrina y la metaloproteinasa 1 que contiene el dominio de la desintegrina y la metaloproteinasa 1 que contiene el dominio de la desintegrina y la metaloproteinasa 1 que contiene el dominio de la desintegrina y la metaloproteinasa 1 que contiene el dominio de la desintegrina y la metaloproteinasa 1 que contiene el dominio empreca transportador de solutos 0,43 Miembro 3 A1 de la familia 26 del transportador	Antígeno	Nombre de la proteína	Expresión relativa en linfocitos T
FAM168B Inhibidor del recrecimiento de neuritas asociado a mielina 0,45 LPAR2 Receptor 2 del acido lisofosfatidico 0,45 ATP183 Subunidad beta-3 de la ATPasa que transporta sodio/potasio 0,45 FLVCR1 Proteina 1 relacionada con el receptor del subgrupo C del virus de la leucemia felina 5 SECTM1 Proteina 1 relacionada con el receptor del subgrupo C del virus de la leucemia felina 5 SECSIM3 Proteina 1 transmembrana y secretada 0,45 SLC38AS Transportador 5 de aminoacidos neutros acoplados a sodio 0,45 SLC38AS Transportador 5 de aminoacidos neutros acoplados a sodio 0,44 LIMBR1L Proteina LIMBR1L 0,44 ABCC1 Proteina 1 asociada a resistencia a multifarmacos 0,44 SLC22A18 Miembro 18 de la familia 22 del transportador de soluto 0,44 CSF1R Receptor del factor 1 estimulador de colonias de macrófagos 0,44 EMR1 análogo a EGF FPR2 Receptor de tipo 1 de la hormona análoga a mucina que contiene un módulo análogo a EGF FPR2 Receptor 2 del péptido de N-formilo 0,44 KIT Kit de receptores del factor de crecimiento de mastocitos/citoblastos 0,44 MSA41 Antigeno CD20 de linfocios B 0,43 MICA Secuencia A relacionada con el polipéptido MHC de clase I 0,43 MICA Secuencia A relacionada con el polipéptido MHC de clase I 0,43 MICA Secuencia A relacionada con el polipéptido MHC de clase I 0,43 MICA Molécula A de adhesión a la unión 0,43 ADAM10 Proteina 10 que contiene el dominio de la desintegrina y la metaloproteinasa 0,43 MCOLN1 Molécula A de adhesión a la unión 0,43 MCOLN1 Mucolipina-1 0 que contiene el dominio de la desintegrina y la metaloproteinasa 0,43 MCOLN1 Mucolipina-1 10 que contiene el dominio de la desintegrina y la metaloproteinasa 0,43 MCOLN1 Mucolipina-1 1 del canal de lones mecanosensible de tipo piezo 0,43 MCOLN1 Mucolipina-1 1 del canal de lones mecanosensible de tipo piezo 0,43 MCOLN1 Mercero de la familia 26 del transportador de soluto 0,43 MCOLN1 Mucolipina-1 1 del canal de lones mecanosensible de tipo piezo 0,43 MCOLN1 Miembro 3A1 de la familia de transportador se aniónicos orgánicos del transportador de solutos 0,43 MC	NOTCH2	Dominio intracelular Notch 2	0,45
LPAR2 Receptor 2 del ácido ilsofosfatídico 0,45 ATP183 Subunidad beta-3 de la ATPasa que transporta sodio/potasio 0,45 FLVCR1 Proteina 1 relacionada con el receptor del subgrupo C del virus de la leucemia felina 0,45 SECTM1 Proteina 1 transmembrana y secretada 0,45 SECTM1 Proteina 1 transmembrana y secretada 0,45 SECTM1 Proteina 1 transmembrana y secretada 0,44 SEC38A5 Transportador 5 de aminoácidos neutros acoplados a sodio 0,45 GPR18 Receptor de la N-araquidonil glicina 0,44 LIMBRTL Proteina LMBR1L 0,44 SEC21 Proteina 1 asociada a resistencia a multifarmacos 0,44 SEC22A18 Miembro 18 de la familia 22 del transportador de soluto 0,44 SEC22A18 Miembro 18 de la familia 22 del transportador de soluto 0,44 SEC7 Receptor del factor 1 estimulador de colonias de macrófagos 0,44 SEMR1 Receptor del factor 1 estimulador de colonias de macrófagos 0,44 SEMR1 Receptor del factor 1 estimulador de colonias de macrófagos 0,44 SEMR1 Receptor del factor 1 estimulador de colonias de macrófagos 0,44 MS4A1 Antigeno CD20 de linfocitos B 0,43 MICA Secuencia A relacionada con el polipéptido MHC de clase I 0,43 MS4A1 Antigeno CD20 de linfocitos B 0,43 MICA Secuencia A relacionada con el polipéptido MHC de clase I 0,43 GPR172A familia 52 del transportador de solutos, Transportador de la riboflavina, miembro 2 F1R Molécula A de adhesión a la unión 0,43 ADAM10 Proteina 10 que contiene el dominio de la desintegrina y la metaloproteinasa 10 que contiene el dominio de la desintegrina y la metaloproteinasa 10 que contiene el dominio de la desintegrina y la metaloproteinasa 10 que contiene el dominio de la desintegrina y la metaloproteinasa 10 que contiene el dominio de la desintegrina y la metaloproteinasa 10 que contiene el dominio de la desintegrina y la metaloproteinasa 10 que contiene el dominio de la desintegrina y la metaloproteinasa 10 que contiene el dominio empta del proteina 10 que contiene 10 que 10	PIK3IP1	Proteína 1 de interacción con la fosfoinositido-3-quinasa	0,45
ATP1B3 Subunidad beta-3 de la ATPasa que transporta sodio/potasio 0,45 FLVCR1 Proteina 1 relacionada con el receptor del subgrupo C del virus de la leucemia felina 0,45 SECTM1 Proteina 1 transmembrana y secretada 0,45 SLC38A5 Transportador 5 de aminoacidos neutros acopiados a sodio 0,45 SLC38A5 Transportador 5 de aminoacidos neutros acopiados a sodio 0,44 LMBR1L Proteina LMBR1L 0,44 LMBR1L Proteina LMBR1L 0,44 ABCC1 Proteina 1 asociada a resistencia a multifármacos 0,44 SLC22A18 Miembro 18 de la familia 22 del transportador de soluto 0,44 CSF1R Receptor del factor 1 estimulador de colonias de macrófagos 0,44 EMR1 análogo a EGF FPR2 Receptor 2 del péptido de N-formilo 0,44 KIT Kit de receptores del factor de crecimiento de mastocitos/citoblastos 0,43 MICA Secuencia A relacionada con el polipéptido MHC de clase I 0,43 GPR172A familia 52 del transportador de solutos, Transportador de la riboflavina, miembro 2 6 FFIR Molécula A de adhesión a la unión 0,43 ADAM10 Proteína 10 que contiene el dominio de la desintegrina y la metalogroteinas 6 FAM38A Componente 1 del canal de iones mecanosensible de tipo piezo 0,43 MCOLINI Mucolipina-1 0,43 MCOLINI Micolipina-1 1 de la quimioquina C-X-C 0,43 MCOLINI Receptor I de la región Fc de la immunogiobulina gamma de baja afinidad 0,42 SLC16A6 Transportador de monoca	FAM168B	Inhibidor del recrecimiento de neuritas asociado a mielina	0,45
FLVCR1 Proteina 1 relacionada con el receptor del subgrupo C del virus de la leucemia felina SECTM1 Proteina 1 transmembrana y secretada 0,45 SLC38A5 Transportador 5 de aminoácidos neutros acoplados a sodio 0,45 GPR18 Receptor de la N-arquidoni glicina 0,44 LMBR1L 0,44 LMBR1L 0,44 ABCC1 Proteina 1 asociada a resistencia a multifármacos 0,44 SLC22A18 Miembro 18 de la familia 22 del transportador de soluto 0,44 SLC22A18 Receptor de la N-ariulador de colonias de macrófagos 0,44 SLC22A18 Receptor de la politica de la familia 22 del transportador de soluto 0,44 Receptor de tipo 1 de la hormona análoga a mucina que contiene un módulo análogo a EGF 0,44 Receptor de tipo 1 de la hormona análoga a mucina que contiene un módulo análogo a EGF 0,44 Receptor 2 del péptido de N-formilo 0,44 KIT Kit de receptores del factor de crecimiento de mastocitos/citoblastos 0,44 MS4A1 Antígeno CD20 de linfocitos B 0,43 Secuencia A relacionada con el polipéptido MHC de clase I 0,43 Familia 52 del transportador de solutos, Transportador de la riboflavina, miembro 2 Recuencia A relacionada con el polipéptido MHC de clase I 0,43 Molécula A de adhesión a la unión 0,43 Proteina 10 que contiene el dominio de la desintegrina y la metaloproteinasa 0,43 Macrosialina 0,43 Miembro 2 Miembro 6 de la familia 26 del transportador de soluto 0,43 Miembro 6 de la familia 26 del transportador de soluto 0,43 Miembro 3A1 de la familia 26 del transportadores aniónicos orgánicos del transportador de soluto 0,43 Miembro 3A1 de la familia 26 del transportadores aniónicos orgánicos del transportador de soluto 0,43 Miembro 3A1 de la familia 26 del transportadores aniónicos orgánicos del transportador de solutos 0,43 Miembro 3A1 de la familia de transportadores aniónicos orgánicos del transportador de solutos 0,43 Miembro 3A1 de la familia 26 del transportadores aniónicos orgánicos del transportador de solutos 0,43 Miembro 3A1 de la familia 26 del transportadores aniónicos orgánicos del transportador de receptor de tipo 1 de la quimioquina C-X-C 0,43 CXCR1 Recept	LPAR2	Receptor 2 del ácido lisofosfatídico	0,45
SECTMI elucemia felina 0.45 SECTMI Proteína 1 transmembrana y secretada 0.45 SLC38A5 Transportador 5 de aminoácidos neutros acoplados a sodio 0.45 GPR18 Receptor de la N-araquidonil glicina 0.44 LIMBRTL Proteína LMBRTL 0.44 SLC22A18 Miembro 18 de la familia 22 del transportador de soluto 0.44 SLC22A18 Miembro 18 de la familia 22 del transportador de soluto 0.44 SLC22A18 Miembro 18 de la familia 22 del transportador de soluto 0.44 SLC22A18 Receptor del factor 1 estimulador de colonias de macrófagos 0.44 SLC2EA18 Receptor del factor 1 estimulador de colonias de macrófagos 0.44 SLC2EA18 Receptor del factor 1 estimulador de colonias de macrófagos 0.44 EMR1 Receptor de tipo 1 de la hormona análoga a mucina que contiene un módulo análoga a EGF 0.44 KIT Kit de receptores del factor de crecimiento de mastocitos/citoblastos 0.44 MS4A1 Antigeno CD20 de infocitos B 0.43 MICA Secuencia A relacionada con el polipéptido MHC de clase 0.43 MICA Secuencia A relacionada con el polipéptido MHC de clase 0.43 MICA Secuencia A relacionada con el polipéptido MHC de clase 0.43 MICA Secuencia A relacionada con el polipéptido MHC de clase 0.43 MICA Molécula A de adhesión a la unión 0.43 MADAM10 Proteína 10 que contiene el dominio de la desintegrina y la metaloproteínasa 0.43 MCDA1 Mucolipina-1 0.43 MCOLN1 Mucolipina-1 0.43 MCOLN1 Mucolipina-1 0.43 MICONA Miembro 3A1 de la familia de transportador de soluto 0.43 MCOLN1 Mucolipina-1 0.43 MIEMBRO 3A1 de la familia de transportadores aniónicos orgánicos del transportador de solutos 0.43 MICONA Molécula de adhesión intercelular 4 0.43 MOHECULA 0.43 0.43 MICONA Molécula de adhesión intercelular 4 0.43 MOHECULA 0.44 0.44 0.44 MOHECULA 0.42 0.43 MICONA Molécula 0.44 0.44	ATP1B3	Subunidad beta-3 de la ATPasa que transporta sodio/potasio	0,45
SLC38A5 Transportador 5 de aminoácidos neutros acoplados a sodio 0,45 GPR18 Receptor de la N-araquidonil glicina 0,44 LMBR1L Proteina LMBR1L 0,44 ABCC1 Proteina 1 asociada a resistencia a multifármacos 0,44 SLC22A18 Miembro 18 de la familia 22 del transportador de soluto 0,44 CSF1R Receptor del factor 1 estimulador de colonias de macrófagos 0,44 EMR1 Receptor del factor 1 estimulador de colonias de macrófagos 0,44 EMR1 Receptor del factor 1 estimulador de colonias de macrófagos 0,44 EMR1 Receptor del factor 1 estimulador de colonias de macrófagos 0,44 EMR1 Receptor 2 del péptido de N-formilo 0,44 KIT Kit de receptores del factor de crecimiento de mastocitos/citoblastos 0,44 MS4A1 Antígeno CD20 de linfocitos B 0,43 MICA Secuencia A relacionada con el polipéptido MHC de clase 1 0,43 GPR172A Familia 52 del transportador de solutos, Transportador de la riboflavina, miembro 2 F11R Molécula A de adhesión a la unión 0,43 ADAM10 Proteina 10 que contiene el dominio de la desintegrina y la metaloproteinasa 0,43 CORDO Macrosialina 0,43 SLC26A6 Miembro 6 de la familia 26 del transportador de soluto 0,43 MCOLN1 Mucolipina-1 0,43 SLC26A6 Miembro 6 de la familia de transportadores aniónicos orgánicos del transportador de solutos 0,43 MCOLN1 Mucolipina-1 0,43 CCACR1 Receptor de tipo 1 de la quimioquina C-X-C 0,43 CD300A Molécula de adhesión intercelular 4 0,43 CCACR1 Receptor de tipo 1 de la quimioquina C-X-C 0,43 CD300A Molécula 8 análoga a CMRF35 0,43 CLG16A6 Transportador de monocarboxilato 7 0,42 TMED1 Proteina 1 análoga a RELT 0,43 CCRCR2 Receptor II-c de la región Fc de la inmunoglobulina gamma de baja afinidad 0,42 SLC16A6 Transportador de monocarboxilato 7 0,42 TMED1 Proteina 1 que contiene el dominio emp24 transmembrana 0,42 CCB6 Activación de linfocitos 7 por CD86 0,42 SLC16A6 Transportador de monocarboxilato 7 0,42 TMED1 Proteina 1 que contiene el dominio emp24 transmembrana 0,42 CD86 Activación de linfocitos 7 por CD86 0,42 SLC16A7 Transportador 1 equilibrante de nucleósidos 0,42 SLC16A14 Transportador 1 equilibran	FLVCR1	·	0,45
GPR18 Receptor de la N-araquidonil glicina 0,44 LMBR1L Proteina LMBR1L 0,44 ABCC1 Proteina 1 asociada a resistencia a multifármacos 0,44 SLC22A18 Miembro 18 de la familia 22 del transportador de soluto 0,44 CSF1R Receptor del factor 1 estimulador de colonias de macrófagos 0,44 EMR1 Receptor del factor 1 estimulador de colonias de macrófagos 0,44 EMR1 Receptor de lipo 1 de la hormona análoga a mucina que contiene un módulo análogo a EGF FPR2 Receptor 2 del péptido de N-formilo 0,44 KIT Kit de receptores del factor de crecimiento de mastocitos/citoblastos 0,44 MS4A1 Antígeno CD20 de linfocitos B 0,43 MICA Secuencia A relacionada con el polipéptido MHC de clase 1 0,43 GPR172A familia 52 del transportador de solutos, Transportador de la riboflavina, miembro 2 F11R Molécula A de adhesión a la unión 0,43 ADAM10 Proteina 10 que contiene el dominio de la desintegrina y la metaloproteinasa 6 FAM38A Componente 1 del canal de iones mecanosensible de tipo piezo 0,43 CD68 Macrosialina 0,43 SLC26A6 Miembro 6 de la familia 26 del transportador de soluto 0,43 MCOLN1 Mucolipina-1 0,43 SLC26A6 Miembro 6 de la familia de transportadores aniónicos orgánicos del transportador de solutos 0,43 CXCR1 Receptor de tipo 1 de la quimioquina C-X-C 0,43 CXCR1 Receptor de tipo 1 de la quimioquina C-X-C 0,43 CXCR1 Receptor de tipo 1 de la quimioquina C-X-C 0,43 CXCR1 Proteina 1 análoga a RELT 0,43 CXCR1 Transportador de solutos 0,42 CXCR1 Receptor II-c de la región Fc de la immunoglobulina gamma de baja afinidad 0,42 SLC16A6 Activación de infocitos T por CD86 0,42 CXCR1 Familia 2 del transportador de solutos 0,42 CXCR1 Receptor II-c de la región Fc de la immunoglobulina gamma de baja afinidad 0,42 CXCR1 Familia 2 del transportador de solutos, Miembro 5 del transportador de glucosa facilitado 0,42 CXCR1 Familia 2 del transportador de solutos, Miembro 5 del transportador de glucosa facilitado 0,42	SECTM1	Proteína 1 transmembrana y secretada	0,45
LMBR1L Proteína LMBR1L 0,44 ABCC1 Proteína 1 asociada a resistencia a multifármacos 0,44 ABCC1 Proteína 1 asociada a resistencia a multifármacos 0,44 SLC22A18 Miembro 18 de la familia 22 del transportador de soluto 0,44 CSF1R Receptor del factor 1 estimulador de colonias de macrófagos 0,44 EMR1 Receptor del tipo 1 de la hormona análoga a mucina que contiene un módulo análogo a EGF Receptor 2 del péptido de N-formilo 0,44 KIT Kit de receptores del factor de crecimiento de mastocitos/citoblastos 0,44 MS4A1 Antígeno CD20 de linfocitos B 0,43 MICA Secuencia A relacionada con el polipéptido MHC de clase I 0,43 GPR172A Familia 52 del transportador de solutos, Transportador de la riboflavina, miembro 2 F11R Molécula A de adhesión a la unión 0,43 ADAM10 Proteína 10 que contiene el dominio de la desintegrina y la metaloproteinasa FAM38A Componente 1 del canal de iones mecanosensible de tipo piezo 0,43 CD68 Macrosialina 0,43 MCOLN1 Mucolipina-1 0,43 MCOLN1 Mucolipina-1 0,43 MCOLN1 Mucolipina-1 0,43 MCOLN1 Mucolipina-1 0,43 MCOLN1 Miembro 3A1 de la familia de transportador de soluto 0,43 MCOLN1 Miembro 3A1 de la familia de transportadores aniónicos orgánicos del transportador de soluto 0,43 MCOLN1 Molécula de adhesión intercelular 4 0,43 MCAM4 Molécula 8 análoga a CMRF35 0,43 RELL1 Proteína 1 análoga a CMRF35 0,43 RELL1 Proteína relacionada con tapasina 0,42 CCGRA Receptor de tipo 1 de la quimioquina C-X-C 0,43 RELL1 Proteína relacionada con tapasina 0,42 CD86 Activación de linfocitos T por CD86 0,42 SLC16A6 Transportador de monocarboxilato 7 0,42 TMED1 Proteína 1 que contiene el dominio emp24 transmembrana 0,42 CD86 Activación de linfocitos T por CD86 0,42 SLC28A5 familia 2 del transportador de solutos, Miembro 5 del transportador de glucosa facilitado 0,42 SLC28A1 Transportador de monocarboxilato 4 0,42 PARY2 Purinorreceptor 2 de P2Y 0,42 SUCNR1 Receptor 1 del succinato 0,42	SLC38A5	Transportador 5 de aminoácidos neutros acoplados a sodio	0,45
ABCC1 Proteína 1 asociada a resistencia a multifármacos 0,44 SLC22A18 Miembro 18 de la familia 22 del transportador de soluto 0,44 CSF1R Receptor del fiactor 1 estimulador de colonias de macrófagos 0,44 EMR1 Receptor del fiactor 1 estimulador de colonias de macrófagos 0,44 EMR1 Receptor del tipo 1 de la hormona análoga a mucina que contiene un módulo análogo a EGF FPR2 Receptor 2 del péptido de N-formilo 0,44 KIT Kit de receptores del factor de crecimiento de mastocitos/citoblastos 0,44 MS4A1 Antígeno CD20 de linfocitos B 0,43 MICA Secuencia A relacionada con el polipéptido MHC de clase 1 0,43 GPR172A Familia 52 del transportador de solutos, Transportador de la riboflavina, miembro 2 Familia 52 del transportador de solutos, Transportador de la riboflavina, miembro 2 Familia 52 del transportador de solutos, Transportador de la riboflavina del metaloproteinasa FAM38A Componente 1 del canal de iones mecanosensible de tipo piezo 0,43 CD68 Macrosialina 0,43 SLC26A6 Miembro 6 de la familia 26 del transportador de soluto 0,43 MCOLN1 Mucolipina-1 0,43 SLC03A1 Miembro 3A1 de la familia de transportadores aniónicos orgánicos del transportador de solutos 10,43 CXCR1 Receptor de tipo 1 de la quimioquina C-X-C 0,43 CD300A Molécula 8 análoga a CMRF35 0,43 TAPBPL Proteína 1 análoga a RELT 0,43 TAPBPL Proteína 1 análoga a RELT 0,43 TAPBPL Proteína 1 análoga a CMRF35 0,43 TARBPL Proteína relacionada con tapasina 0,42 CD86 Activación de linfocitos T por CD86 0,42 SLC16A6 Transportador de monocarboxilato 7 0,42 TMED1 Proteína 1 rque contiene el dominio emp24 transmembrana 0,42 SLC2A5 familia 2 del transportador de solutos, Miembro 5 del transportador de glucosa facilitado 0,42 SLC2A5 Familia 2 del transportador de solutos, Miembro 5 del transportador de glucosa facilitado 0,42 SLC2A61 Transportador 1	GPR18	Receptor de la N-araquidonil glicina	0,44
SLC22A18 Miembro 18 de la familia 22 del transportador de soluto O,44 CSF1R Receptor del factor 1 estimulador de colonias de macrófagos O,44 EMR1 Receptor de tipo 1 de la hormona análoga a mucina que contiene un módulo análogo a EGF FPR2 Receptor 2 del péptido de N-formilo KIT Kit de receptores del factor de crecimiento de mastocitos/citoblastos O,44 MS4A1 Antígeno CD20 de linfocitos B MICA Secuencia A relacionada con el polipéptido MHC de clase I O,43 GPR172A Familia 52 del transportador de solutos, Transportador de la riboflavina, miembro 2 Familia 52 del transportador de solutos, Transportador de la riboflavina, miembro 2 Fala Molécula A de adhesión a la unión O,43 ADAM10 Proteína 10 que contiene el dominio de la desintegrina y la metaloproteinasa FAM38A Componente 1 del canal de iones mecanosensible de tipo piezo O,43 CCD68 Macrosialina SLC26A6 Miembro 6 de la familia 26 del transportador de soluto Mucolipina-1 SLC03A1 Miembro 3A1 de la familia de transportadores aniónicos orgánicos del transportador de solutos PPAP2B Lípido fosfato fosfohidrolasa 3 ICAM4 Molécula de adhesión intercelular 4 O,43 CCXCR1 Receptor de tipo 1 de la quimioquina C-X-C O,43 CD300A Molécula 8 análoga a CMR785 O,43 RELL1 Proteína 1 análoga a RELT O,43 TAPBPL Proteína relacionada con tapasina PCGR2C Receptor II-c de la región Fc de la inmunoglobulina gamma de baja afinidad O,42 SLC16A6 Transportador de monocarboxilato 7 O,42 TMED1 Proteína 1 que contiene el dominio emp24 transmembrana O,42 SLC16A6 Transportador de monocarboxilato 7 Transportador de monocarboxilato 7 Transportador de monocarboxilato 4 SLC2A5 Familia 2 del transportador de solutos, Miembro 5 del transportador de glucosa facilitado SLC29A1 Transportador de monocarboxilato 4 Transportador 1 equilibrante de nucleósidos SLC29A1 Transportador de monocarboxilato 4 O,42 PZRY2 Purinorreceptor 2 de P2Y O,42 SUCNR1 Receptor 1 del succinato	LMBR1L	Proteína LMBR1L	0,44
CSF1R Receptor del factor 1 estimulador de colonias de macrófagos 0,44 EMR1 Receptor de tipo 1 de la hormona análoga a mucina que contiene un módulo análogo a EGF Receptor 2 del péptido de N-formilo 0,44 KIT Kit de receptores del factor de crecimiento de mastocitos/citoblastos 0,44 MS4A1 Antigeno CD20 de linfocitos B 0,43 MS4A1 Antigeno CD20 de linfocitos B 0,43 GPR172A Familia 52 del transportador de solutos, Transportador de la riboflavina, miembro 2 F11R Molécula A de adhesión a la unión 0,43 ADAM10 Proteína 10 que contiene el dominio de la desintegrina y la metaloproteinasa 0,43 FAM38A Componente 1 del canal de iones mecanosensible de tipo piezo 0,43 SLC26A6 Miembro 6 de la familia 26 del transportador de soluto 0,43 MCOLN1 Mucolipina-1 0,43 SLC26A6 Miembro 3A1 de la familia de transportadores aniónicos orgánicos del transportador de solutos 0,43 MCOLN1 Mucolipina-1 0,43 SLC3A1 Miembro 3A1 de la familia de transportadores aniónicos orgánicos del transportador de solutos 0,43 CXCR1 Receptor de tipo 1 de la quimioquina C-X-C 0,43 CXCR1 Receptor de tipo 1 de la quimioquina C-X-C 0,43 RELL1 Proteína 1 análoga a RELT 0,43 RELL1 Proteína 1 análoga a RELT 0,43 TAPBPL Proteína 1 que contiene el dominio emp24 transmembrana 0,42 CCGR2 Receptor II-c de la región Fc de la inmunoglobulina gamma de baja afinidad 0,42 TAPBPL Proteína 1 que contiene el dominio emp24 transmembrana 0,42 CD86 Activación de linfocitos T por CD86 0,42 SLC16A3 Transportador de monocarboxilato 7 0,42 TIMED1 Proteína 1 que contiene el dominio emp24 transmembrana 0,42 SLC2A5 Familia 2 del transportador de solutos, Miembro 5 del transportador de glucosa facilitado 0,42 SLC2A5 Familia 2 del transportador de solutos, Miembro 5 del transportador de glucosa facilitado 0,42 SLC2A5 Pamilia 2 del transportador de solutos, Miembro 5 del transportador de glucosa facilitado 0,42 SLC2A5 Pamilia 2 del transportador de solutos, Miembro 5 del transportador de glucosa facilitado 0,42 SLC2A6 Pamilia 2 del transportador de solutos, Miemb	ABCC1	Proteína 1 asociada a resistencia a multifármacos	0,44
EMR1 Receptor de tipo 1 de la hormona análoga a mucina que contiene un módulo análogo a EGF FPR2 Receptor 2 del péptido de N-formilo KIT Kit de receptores del factor de crecimiento de mastocitos/citoblastos 0,44 MS4A1 Antígeno CD20 de linfocitos B 0,43 MICA Secuencia A relacionada con el polipéptido MHC de clase I 0,43 GPR172A Familia 52 del transportador de solutos, Transportador de la riboflavina, miembro 2 Familia 52 del transportador de solutos, Transportador de la riboflavina, miembro 2 F11R Molécula A de adhesión a la unión 0,43 ADAM10 Proteína 10 que contiene el dominio de la desintegrina y la metaloproteinasa FAM38A Componente 1 del canal de iones mecanosensible de tipo piezo 0,43 CD68 Macrosialina 0,43 SLC26A6 Miembro 6 de la familia 26 del transportador de soluto 0,43 MCOLN1 Mucolipina-1 0,43 SLCO3A1 Miembro 3A1 de la familia de transportadores aniónicos orgánicos del transportador de solutos PPAP2B Lipido fosfato fosfohidrolasa 3 10,43 CXCR1 Receptor de tipo 1 de la quimioquina C-X-C 0,43 CD300A Molécula de adhesión intercelular 4 0,43 CXCR1 Receptor de tipo 1 de la quimioquina C-X-C 0,43 RELL1 Proteína 1 análoga a RELT 0,43 RELL1 Proteína 1 análoga a RELT 0,43 TAPBPL Proteína relacionada con tapasina FCGR2C Receptor II-c de la región Fc de la imunoglobulina gamma de baja afinidad 0,42 SLC16A6 Transportador de monocarboxilato 7 0,42 SLC16A6 Transportador de monocarboxilato 7 0,42 SLC16A6 Familia 2 del transportador de solutos, Miembro 5 del transportador de glucosa facilitado SLC2A5 Familia 2 del transportador de solutos, Miembro 5 del transportador de glucosa facilitado SLC2A91 Transportador 1 de unocarboxilato 14 PCRY2 Purinorreceptor 2 de P2Y 0,42 SUCNR1 Receptor 1 del succinato	SLC22A18	Miembro 18 de la familia 22 del transportador de soluto	0,44
EINITI análogo a EGF FPR2 Receptor 2 del péptido de N-formilo 0,44 KIT Kit de receptores del factor de crecimiento de mastocitos/citoblastos 0,44 MS4A1 Antígeno CD20 de linfocitos B 0,43 MICA Secuencia A relacionada con el polipéptido MHC de clase I 0,43 GPR172A Familia 52 del transportador de solutos, Transportador de la riboflavina, miembro 2 Fill Molécula A de adhesión a la unión 0,43 ADAM10 Proteína 10 que contiene el dominio de la desintegrina y la metaloproteinasa FAM38A Componente 1 del canal de iones mecanosensible de tipo piezo 0,43 SLC26A6 Miembro 6 de la familia 26 del transportador de soluto 0,43 MCOLN1 Mucolipina-1 0,43 SLC03A1 Miembro 3A1 de la familia de transportadores aniónicos orgánicos del transportador de soluto 10,43 LCO3A1 Lípido fosfato fosfohidrolasa 3 0,43 LCAM4 Molécula de adhesión intercelular 4 0,43 CXCR1 Receptor de tipo 1 de la quimioquina C-X-C 0,43 CD300A Molécula 8 análoga a CMRF35 0,43 TAPBPL Proteína 1 análoga a RELT 0,43 TAPBPL Proteína 1 que contiene el dominio emp24 transmembrana 0,42 CCGR2 Receptor II-c de la región Fc de la inmunoglobulina gamma de baja afinidad 0,42 SLC16A6 Transportador de monocarboxilato 7 0,42 TMED1 Proteína 1 que contiene el dominio emp24 transmembrana 0,42 CCB86 Activación de linfocitos T por CD86 0,42 SLC26A5 Familia 2 del transportador de solutos, Miembro 5 del transportador de 0,42 SLC2A5 Familia 2 del transportador de solutos, Miembro 5 del transportador de 0,42 SLC2A5 Familia 2 del transportador de solutos, Miembro 5 del transportador de 0,42 SLC29A1 Transportador de monocarboxilato 1 Transportador	CSF1R	Receptor del factor 1 estimulador de colonias de macrófagos	0,44
FPR2 Receptor 2 del péptido de N-formilo 0,44 KIT Kit de receptores del factor de crecimiento de mastocitos/citoblastos 0,44 MS4A1 Antígeno CD20 de linfocitos B 0,43 MS4A1 Antígeno CD20 de linfocitos B 0,43 MICA Secuencia A relacionada con el polipéptido MHC de clase I 0,43 GPR172A Familia 52 del transportador de solutos, Transportador de la riboflavina, miembro 2 F11R Molécula A de adhesión a la unión 0,43 ADAM10 Proteína 10 que contiene el dominio de la desintegrina y la metaloproteinasa 0,43 COmponente 1 del canal de iones mecanosensible de tipo piezo 0,43 CD68 Macrosialina 0,43 KLC26A6 Miembro 6 de la familia 26 del transportador de soluto 0,43 MCOLN1 Mucolipina-1 0,43 SLC03A1 Miembro 3A1 de la familia de transportadores aniónicos orgánicos del transportador de solutos 0,43 Lípido fosfato fosfohidrolasa 3 0,43 ICAM4 Molécula de adhesión intercelular 4 0,43 CXCR1 Receptor de tipo 1 de la quimioquina C-X-C 0,43 RELL1 Proteína 1 análoga a RELT 0,43 RELL1 Proteína 1 análoga a RELT 0,43 FCGR2C Receptor II-c de la región Fc de la inmunoglobulina gamma de baja afinidad 0,42 SLC16A6 Transportador de monocarboxilato 7 0,42 SLC16A3 Transportador de monocarboxilato 7 0,42 SLC26A5 Familia 2 del transportador de solutos, Miembro 5 del transportador de glucosa facilitado 0,42 SLC2A5 Familia 2 del transportador de solutos, Miembro 5 del transportador de glucosa facilitado 0,42 SLC29A1 Transportador de monocarboxilato 14 0,42 PZRY2 Purinorreceptor 2 de PZY 0,42 SUCNR1 Receptor 1 del succinato 0,42	EMR1		0,44
MS4A1 Antígeno CD20 de linfocitos B MICA Secuencia A relacionada con el polipéptido MHC de clase I O,43 MICA Secuencia A relacionada con el polipéptido MHC de clase I O,43 GPR172A Familia 52 del transportador de solutos, Transportador de la riboflavina, miembro 2 F11R Molécula A de adhesión a la unión ADAM10 Proteína 10 que contiene el dominio de la desintegrina y la metaloproteinasa FAM38A Componente 1 del canal de iones mecanosensible de tipo piezo O,43 CCD68 Macrosialina SLC26A6 Miembro 6 de la familia 26 del transportador de soluto MCOLN1 Mucolipina-1 SLC03A1 Miembro 3A1 de la familia de transportadores aniónicos orgánicos del transportador de solutos PPAP2B Lípido fosfato fosfohidrolasa 3 ICAM4 Molécula de adhesión intercelular 4 CXCR1 Receptor de tipo 1 de la quimioquina C-X-C D300A Molécula 8 análoga a CMRF35 RELL1 Proteína 1 análoga a RELT TAPBPL Proteína relacionada con tapasina PCCR2C Receptor II-c de la región Fc de la inmunoglobulina gamma de baja afinidad O,42 FCGR2C Receptor II-c de la región Fc de la inmunoglobulina gamma de baja afinidad O,42 SLC16A6 Transportador de monocarboxilato 7 TMED1 Proteína 1 que contiene el dominio emp24 transmembrana O,42 SLC2A5 Familia 2 del transportador de solutos, Miembro 5 del transportador de glucosa facilitado SLC28A1 Transportador 1 equilibrante de nucleósidos SLC29A1 Transportador 1 equilibrante de nucleósidos SLC28Y2 Purinorreceptor 2 de P2Y O,42 SUCNR1 Receptor 1 del succinato	FPR2	Receptor 2 del péptido de N-formilo	0,44
MICA Secuencia A relacionada con el polipéptido MHC de clase I 0,43 GPR172A Familia 52 del transportador de solutos, Transportador de la riboflavina, miembro 2 Familia 52 del transportador de solutos, Transportador de la riboflavina, miembro 2 Molécula A de adhesión a la unión 0,43 ADAM10 Proteína 10 que contiene el dominio de la desintegrina y la metaloproteinasa 0,43 FAM38A Componente 1 del canal de iones mecanosensible de tipo piezo 0,43 CD68 Macrosialina 0,43 KCD68 Miembro 6 de la familia 26 del transportador de soluto 0,43 MCOLN1 Mucolipina-1 0,43 SLC03A1 Miembro 3A1 de la familia de transportadores aniónicos orgánicos del transportador de solutos 10,43 MCACH Molécula de adhesión intercelular 4 0,43 CXCR1 Receptor de tipo 1 de la quimioquina C-X-C 0,43 CD300A Molécula 8 análoga a CMRF35 0,43 RELL1 Proteína 1 análoga a RELT 0,43 TAPBPL Proteína 1 análoga a RELT 0,43 TAPBPL Proteína 1 eracionada con tapasina 0,42 SLC16A6 Transportador de monocarboxilato 7 0,42 SLC16A6 Transportador de monocarboxilato 4 0,42 SLC2A5 Familia 2 del transportador de solutos, Miembro 5 del transportador de glucosa facilitado 0,42 SLC2A5 Familia 2 del transportador de nucleósidos 0,42 SLC2A7 PerRy2 Purinorreceptor 2 de P2Y 0,42 SUCNR1 Receptor 1 del succinato 0,42 SUCNR1 Receptor 1 del succinato 0,42 SUCNR1 Receptor 1 del succinato 0,42	KIT	Kit de receptores del factor de crecimiento de mastocitos/citoblastos	0,44
GPR172A Familia 52 del transportador de solutos, Transportador de la riboflavina, miembro 2 F11R Molécula A de adhesión a la unión ADAM10 Proteína 10 que contiene el dominio de la desintegrina y la metaloproteinasa FAM38A Componente 1 del canal de iones mecanosensible de tipo piezo 0,43 CD68 Macrosialina 0,43 SLC26A6 Miembro 6 de la familia 26 del transportador de soluto 0,43 MCOLN1 Mucolipina-1 0,43 SLCO3A1 Miembro 3A1 de la familia de transportadores aniónicos orgánicos del transportador de solutos 0,43 LIpido fosfato fosfohidrolasa 3 0,43 ICAM4 Molécula de adhesión intercelular 4 0,43 CXCR1 Receptor de tipo 1 de la quimioquina C-X-C 0,43 CD300A Molécula 8 análoga a CMRF35 0,43 RELL1 Proteína 1 análoga a RELT 0,43 TAPBPL Proteína 1 análoga a RELT 0,43 TAPBPL Proteína 1 de argión Fc de la inmunoglobulina gamma de baja afinidad 0,42 SLC16A6 Transportador de monocarboxilato 7 0,42 TMED1 Proteína 1 que contiene el dominio emp24 transmembrana 0,42 CD86 Activación de linfocitos T por CD86 0,42 SLC16A3 Transportador de monocarboxilato 4 0,42 SLC2A5 Familia 2 del transportador de solutos, Miembro 5 del transportador de glucosa facilitado 1,42 SLC2RY2 Purinorreceptor 2 de P2Y 0,42 SUCNR1 Receptor 1 del succinato 0,42 SUCNR1 Receptor 1 del succinato 0,42 SUCNR1 Receptor 1 del succinato 0,42	MS4A1	Antígeno CD20 de linfocitos B	0,43
Familia 52 del transportador de solutos, Transportador de la riboflavina, miembro 2 F11R Molécula A de adhesión a la unión ADAM10 Proteína 10 que contiene el dominio de la desintegrina y la metaloproteinasa FAM38A Componente 1 del canal de iones mecanosensible de tipo piezo O,43 CD68 Macrosialina SLC26A6 Miembro 6 de la familia 26 del transportador de soluto Mucolipina-1 SLCO3A1 Miembro 3A1 de la familia de transportadores aniónicos orgánicos del transportador de solutos PPAP2B Lípido fosfato fosfohidrolasa 3 ICAM4 Molécula de adhesión intercelular 4 CXCR1 Receptor de tipo 1 de la quimioquina C-X-C CD300A Molécula 8 análoga a CMRF35 RELL1 Proteína 1 análoga a RELT O,43 TAPBPL Proteína 1 análoga a RELT Proteína 1 análoga a RELT O,43 SLC16A6 Transportador de monocarboxilato 7 O,42 SLC16A3 Transportador de monocarboxilato 4 SLC2A5 Familia 2 del transportador de solutos, Miembro 5 del transportador de glucosa facilitado SLC2A1 Transportador de monocarboxilato 14 SLC2A5 Familia 2 del transportador de nucleósidos O,42 SLC16A14 Transportador de monocarboxilato 14 PCRY2 PUrinorreceptor 2 de P2Y O,42 SUCNR1 Receptor 1 del succinato O,43 CORDONA Molécula 8 análoga a CMRF35 O,43 CORDONA M	MICA	Secuencia A relacionada con el polipéptido MHC de clase I	0,43
ADAM10 Proteína 10 que contiene el dominio de la desintegrina y la metaloproteinasa FAM38A Componente 1 del canal de iones mecanosensible de tipo piezo 0,43 CD68 Macrosialina 0,43 SLC26A6 Miembro 6 de la familia 26 del transportador de soluto 0,43 MCOLN1 Mucolipina-1 0,43 SLC03A1 Miembro 3A1 de la familia de transportadores aniónicos orgánicos del transportador de solutos PPAP2B Lípido fosfato fosfohidrolasa 3 ICAM4 Molécula de adhesión intercelular 4 0,43 CXCR1 Receptor de tipo 1 de la quimioquina C-X-C 0,43 CD300A Molécula 8 análoga a CMRF35 RELL1 Proteína 1 análoga a RELT 10,43 TAPBPL Proteína relacionada con tapasina FCGR2C Receptor II-c de la región Fc de la inmunoglobulina gamma de baja afinidad 0,42 SLC16A6 Transportador de monocarboxilato 7 0,42 TMED1 Proteína 1 que contiene el dominio emp24 transmembrana 0,42 CD86 Activación de linfocitos T por CD86 10,42 SLC16A3 Transportador de monocarboxilato 4 SLC2A5 Familia 2 del transportador de solutos, Miembro 5 del transportador de glucosa facilitado SLC29A1 Transportador 1 equilibrante de nucleósidos 0,42 SLC16A14 Transportador de monocarboxilato 14 10,42 P2RY2 Purinorreceptor 2 de P2Y 0,42 SUCNR1 Receptor 1 del succinato	GPR172A	Familia 52 del transportador de solutos, Transportador de la riboflavina,	0,43
FAM38A Componente 1 del canal de iones mecanosensible de tipo piezo 0,43 CD68 Macrosialina 0,43 SLC26A6 Miembro 6 de la familia 26 del transportador de soluto 0,43 MCOLN1 Mucolipina-1 0,43 SLC03A1 Miembro 3A1 de la familia de transportadores aniónicos orgánicos del transportador de solutos 0,43 PPAP2B Lípido fosfato fosfohidrolasa 3 0,43 ICAM4 Molécula de adhesión intercelular 4 0,43 CXCR1 Receptor de tipo 1 de la quimioquina C-X-C 0,43 CD300A Molécula 8 análoga a CMRF35 0,43 RELL1 Proteína 1 análoga a RELT 0,43 TAPBPL Proteína relacionada con tapasina 0,42 FCGR2C Receptor II-c de la región Fc de la inmunoglobulina gamma de baja afinidad 0,42 SLC16A6 Transportador de monocarboxilato 7 0,42 TMED1 Proteína 1 que contiene el dominio emp24 transmembrana 0,42 CD86 Activación de linfocitos T por CD86 SLC16A3 Transportador de monocarboxilato 4 0,42 SLC2A5 Familia 2 del transportador de solutos, Miembro 5 del transportador de 0,42 SLC29A1 Transportador 1 equilibrante de nucleósidos 0,42 SLC16A14 Transportador de monocarboxilato 14 0,42 P2RY2 Purinorreceptor 2 de P2Y 0,42 SUCNR1 Receptor 1 del succinato 0,42 SUCNR1 Receptor 1 del succinato 0,42	F11R	Molécula A de adhesión a la unión	0,43
FAM38A Componente 1 del canal de iones mecanosensible de tipo piezo 0,43 CD68 Macrosialina 0,43 SLC26A6 Miembro 6 de la familia 26 del transportador de soluto 0,43 MCOLN1 Mucolipina-1 0,43 SLC03A1 Miembro 3A1 de la familia de transportadores aniónicos orgánicos del transportador de solutos 0,43 PPAP2B Lípido fosfato fosfohidrolasa 3 0,43 ICAM4 Molécula de adhesión intercelular 4 0,43 CXCR1 Receptor de tipo 1 de la quimioquina C-X-C 0,43 CD300A Molécula 8 análoga a CMRF35 0,43 RELL1 Proteína 1 análoga a RELT 0,43 TAPBPL Proteína relacionada con tapasina 0,42 FCGR2C Receptor II-c de la región Fc de la inmunoglobulina gamma de baja afinidad 0,42 SLC16A6 Transportador de monocarboxilato 7 0,42 TMED1 Proteína 1 que contiene el dominio emp24 transmembrana 0,42 CD86 Activación de linfocitos T por CD86 0,42 SLC16A3 Transportador de monocarboxilato 4 0,42 SLC2A5 Familia 2 del transportador de solutos, Miembro 5 del transportador de glucosa facilitado 0,42 SLC29A1 Transportador 1 equilibrante de nucleósidos 0,42 SLC16A14 Transportador de monocarboxilato 14 0,42 P2RY2 Purinorreceptor 2 de P2Y 0,42 SUCNR1 Receptor 1 del succinato 0,42 SUCNR1 Receptor 1 del succinato 0,42	ADAM10		0,43
SLC26A6 Miembro 6 de la familia 26 del transportador de soluto 0,43 MCOLN1 Mucolipina-1 0,43 SLC03A1 Miembro 3A1 de la familia de transportadores aniónicos orgánicos del transportador de solutos 0,43 PPAP2B Lípido fosfato fosfohidrolasa 3 0,43 ICAM4 Molécula de adhesión intercelular 4 0,43 CXCR1 Receptor de tipo 1 de la quimioquina C-X-C 0,43 CD300A Molécula 8 análoga a CMRF35 0,43 RELL1 Proteína 1 análoga a RELT 0,43 TAPBPL Proteína relacionada con tapasina 0,42 FCGR2C Receptor II-c de la región Fc de la inmunoglobulina gamma de baja afinidad 0,42 SLC16A6 Transportador de monocarboxilato 7 0,42 TMED1 Proteína 1 que contiene el dominio emp24 transmembrana 0,42 CD86 Activación de linfocitos T por CD86 0,42 SLC16A3 Transportador de monocarboxilato 4 0,42 SLC2A5 Familia 2 del transportador de solutos, Miembro 5 del transportador de 0,42 SLC29A1 Transportador 1 equilibrante de nucleósidos 0,42 SLC16A14 Transportador de monocarboxilato 14 0,42 P2RY2 Purinorreceptor 2 de P2Y 0,42 SUCNR1 Receptor 1 del succinato 0,42	FAM38A		0,43
MCOLN1 Mucolipina-1 0,43 SLCO3A1 Miembro 3A1 de la familia de transportadores aniónicos orgánicos del transportador de solutos PPAP2B Lípido fosfato fosfohidrolasa 3 0,43 ICAM4 Molécula de adhesión intercelular 4 0,43 CXCR1 Receptor de tipo 1 de la quimioquina C-X-C 0,43 CD300A Molécula 8 análoga a CMRF35 0,43 RELL1 Proteína 1 análoga a RELT 0,43 TAPBPL Proteína relacionada con tapasina 0,42 FCGR2C Receptor II-c de la región Fc de la inmunoglobulina gamma de baja afinidad 0,42 SLC16A6 Transportador de monocarboxilato 7 0,42 TMED1 Proteína 1 que contiene el dominio emp24 transmembrana 0,42 CD86 Activación de linfocitos T por CD86 0,42 SLC16A3 Transportador de monocarboxilato 4 0,42 SLC2A5 Familia 2 del transportador de solutos, Miembro 5 del transportador de glucosa facilitado 0,42 SLC29A1 Transportador de monocarboxilato 14 0,42 SLC16A14 Transportador de monocarboxilato 14 0,42 P2RY2 Purinorreceptor 2 de P2Y 0,42 SUCNR1 Receptor 1 del succinato 0,42	CD68	Macrosialina	0,43
MCOLN1 Mucolipina-1 0,43 SLCO3A1 Miembro 3A1 de la familia de transportadores aniónicos orgánicos del transportador de solutos PPAP2B Lípido fosfato fosfohidrolasa 3 0,43 ICAM4 Molécula de adhesión intercelular 4 0,43 CXCR1 Receptor de tipo 1 de la quimioquina C-X-C 0,43 CD300A Molécula 8 análoga a CMRF35 0,43 RELL1 Proteína 1 análoga a RELT 0,43 TAPBPL Proteína relacionada con tapasina 0,42 FCGR2C Receptor II-c de la región Fc de la inmunoglobulina gamma de baja afinidad 0,42 SLC16A6 Transportador de monocarboxilato 7 0,42 TMED1 Proteína 1 que contiene el dominio emp24 transmembrana 0,42 CD86 Activación de linfocitos T por CD86 0,42 SLC16A3 Transportador de monocarboxilato 4 0,42 SLC2A5 Familia 2 del transportador de solutos, Miembro 5 del transportador de glucosa facilitado 0,42 SLC29A1 Transportador de monocarboxilato 14 0,42 SLC16A14 Transportador de monocarboxilato 14 0,42 P2RY2 Purinorreceptor 2 de P2Y 0,42 SUCNR1 Receptor 1 del succinato 0,42	SLC26A6	Miembro 6 de la familia 26 del transportador de soluto	0,43
SLCO3A1 Miembro 3A1 de la familia de transportadores aniónicos orgánicos del transportador de solutos PPAP2B Lípido fosfato fosfohidrolasa 3 ICAM4 Molécula de adhesión intercelular 4 CXCR1 Receptor de tipo 1 de la quimioquina C-X-C CD300A Molécula 8 análoga a CMRF35 RELL1 Proteína 1 análoga a RELT TAPBPL Proteína relacionada con tapasina FCGR2C Receptor II-c de la región Fc de la inmunoglobulina gamma de baja afinidad SLC16A6 Transportador de monocarboxilato 7 TMED1 Proteína 1 que contiene el dominio emp24 transmembrana CD86 Activación de linfocitos T por CD86 SLC16A3 Transportador de monocarboxilato 4 SLC2A5 Familia 2 del transportador de solutos, Miembro 5 del transportador de glucosa facilitado SLC16A14 Transportador de monocarboxilato 14 CRESC P2RY2 Purinorreceptor 2 de P2Y SUCNR1 Receptor 1 del succinato	MCOLN1		0,43
PPAP2B Lípido fosfato fosfohidrolasa 3 0,43 ICAM4 Molécula de adhesión intercelular 4 0,43 CXCR1 Receptor de tipo 1 de la quimioquina C-X-C 0,43 CD300A Molécula 8 análoga a CMRF35 0,43 RELL1 Proteína 1 análoga a RELT 0,43 TAPBPL Proteína relacionada con tapasina 0,42 FCGR2C Receptor II-c de la región Fc de la inmunoglobulina gamma de baja afinidad 0,42 SLC16A6 Transportador de monocarboxilato 7 0,42 TMED1 Proteína 1 que contiene el dominio emp24 transmembrana 0,42 CD86 Activación de linfocitos T por CD86 0,42 SLC16A3 Transportador de monocarboxilato 4 0,42 SLC2A5 Familia 2 del transportador de solutos, Miembro 5 del transportador de glucosa facilitado 0,42 SLC29A1 Transportador 1 equilibrante de nucleósidos 0,42 SLC16A14 Transportador de monocarboxilato 14 0,42 P2RY2 Purinorreceptor 2 de P2Y 0,42 SUCNR1 Receptor 1 del succinato 0,42		Miembro 3A1 de la familia de transportadores aniónicos orgánicos del	·
ICAM4 Molécula de adhesión intercelular 4 0,43 CXCR1 Receptor de tipo 1 de la quimioquina C-X-C 0,43 CD300A Molécula 8 análoga a CMRF35 0,43 RELL1 Proteína 1 análoga a RELT 0,43 TAPBPL Proteína relacionada con tapasina 0,42 FCGR2C Receptor II-c de la región Fc de la inmunoglobulina gamma de baja afinidad 0,42 SLC16A6 Transportador de monocarboxilato 7 0,42 TMED1 Proteína 1 que contiene el dominio emp24 transmembrana 0,42 CD86 Activación de linfocitos T por CD86 0,42 SLC16A3 Transportador de monocarboxilato 4 0,42 SLC2A5 Familia 2 del transportador de solutos, Miembro 5 del transportador de glucosa facilitado 0,42 SLC29A1 Transportador 1 equilibrante de nucleósidos 0,42 SLC16A14 Transportador de monocarboxilato 14 0,42 P2RY2 Purinorreceptor 2 de P2Y 0,42 SUCNR1 Receptor 1 del succinato 0,42	PPAP2B		0,43
CXCR1 Receptor de tipo 1 de la quimioquina C-X-C CD300A Molécula 8 análoga a CMRF35 RELL1 Proteína 1 análoga a RELT O,43 TAPBPL Proteína relacionada con tapasina FCGR2C Receptor II-c de la región Fc de la inmunoglobulina gamma de baja afinidad SLC16A6 Transportador de monocarboxilato 7 MED1 Proteína 1 que contiene el dominio emp24 transmembrana CD86 Activación de linfocitos T por CD86 SLC16A3 Transportador de monocarboxilato 4 SLC2A5 Familia 2 del transportador de solutos, Miembro 5 del transportador de glucosa facilitado SLC29A1 Transportador 1 equilibrante de nucleósidos SLC16A14 Transportador de monocarboxilato 14 P2RY2 Purinorreceptor 2 de P2Y SUCNR1 Receptor 1 del succinato 0,43 0,42 0,42 0,42 0,42 0,42 0,42 0,42 0,42 0,42 0,42 0,42 0,42	ICAM4		0,43
CD300A Molécula 8 análoga a CMRF35 0,43 RELL1 Proteína 1 análoga a RELT 0,43 TAPBPL Proteína relacionada con tapasina 0,42 FCGR2C Receptor II-c de la región Fc de la inmunoglobulina gamma de baja afinidad 0,42 SLC16A6 Transportador de monocarboxilato 7 0,42 TMED1 Proteína 1 que contiene el dominio emp24 transmembrana 0,42 CD86 Activación de linfocitos T por CD86 0,42 SLC16A3 Transportador de monocarboxilato 4 0,42 SLC2A5 Familia 2 del transportador de solutos, Miembro 5 del transportador de glucosa facilitado 0,42 SLC29A1 Transportador 1 equilibrante de nucleósidos 0,42 SLC16A14 Transportador de monocarboxilato 14 0,42 SLC16A14 Receptor 1 del succinato 0,42 SUCNR1 Receptor 1 del succinato 0,42			· ·
RELL1 Proteína 1 análoga a RELT 0,43 TAPBPL Proteína relacionada con tapasina 0,42 FCGR2C Receptor II-c de la región Fc de la inmunoglobulina gamma de baja afinidad 0,42 SLC16A6 Transportador de monocarboxilato 7 0,42 TMED1 Proteína 1 que contiene el dominio emp24 transmembrana 0,42 CD86 Activación de linfocitos T por CD86 0,42 SLC16A3 Transportador de monocarboxilato 4 0,42 SLC2A5 Familia 2 del transportador de solutos, Miembro 5 del transportador de glucosa facilitado 0,42 SLC29A1 Transportador 1 equilibrante de nucleósidos 0,42 SLC16A14 Transportador de monocarboxilato 14 0,42 P2RY2 Purinorreceptor 2 de P2Y 0,42 SUCNR1 Receptor 1 del succinato 0,42	CD300A		· ·
TAPBPL Proteína relacionada con tapasina 0,42 FCGR2C Receptor II-c de la región Fc de la inmunoglobulina gamma de baja afinidad 0,42 SLC16A6 Transportador de monocarboxilato 7 0,42 TMED1 Proteína 1 que contiene el dominio emp24 transmembrana 0,42 CD86 Activación de linfocitos T por CD86 0,42 SLC16A3 Transportador de monocarboxilato 4 0,42 SLC2A5 Familia 2 del transportador de solutos, Miembro 5 del transportador de glucosa facilitado 0,42 SLC29A1 Transportador 1 equilibrante de nucleósidos 0,42 SLC16A14 Transportador de monocarboxilato 14 0,42 P2RY2 Purinorreceptor 2 de P2Y 0,42 SUCNR1 Receptor 1 del succinato 0,42			·
FCGR2C Receptor II-c de la región Fc de la inmunoglobulina gamma de baja afinidad 0,42 SLC16A6 Transportador de monocarboxilato 7 0,42 TMED1 Proteína 1 que contiene el dominio emp24 transmembrana 0,42 CD86 Activación de linfocitos T por CD86 0,42 SLC16A3 Transportador de monocarboxilato 4 0,42 SLC2A5 Familia 2 del transportador de solutos, Miembro 5 del transportador de glucosa facilitado 0,42 SLC29A1 Transportador 1 equilibrante de nucleósidos 0,42 SLC16A14 Transportador de monocarboxilato 14 0,42 P2RY2 Purinorreceptor 2 de P2Y 0,42 SUCNR1 Receptor 1 del succinato 0,42			· ·
SLC16A6 Transportador de monocarboxilato 7 0,42 TMED1 Proteína 1 que contiene el dominio emp24 transmembrana 0,42 CD86 Activación de linfocitos T por CD86 0,42 SLC16A3 Transportador de monocarboxilato 4 0,42 SLC2A5 Familia 2 del transportador de solutos, Miembro 5 del transportador de glucosa facilitado 0,42 SLC29A1 Transportador 1 equilibrante de nucleósidos 0,42 SLC16A14 Transportador de monocarboxilato 14 0,42 P2RY2 Purinorreceptor 2 de P2Y 0,42 SUCNR1 Receptor 1 del succinato 0,42		·	·
TMED1 Proteína 1 que contiene el dominio emp24 transmembrana 0,42 CD86 Activación de linfocitos T por CD86 0,42 SLC16A3 Transportador de monocarboxilato 4 0,42 SLC2A5 Familia 2 del transportador de solutos, Miembro 5 del transportador de glucosa facilitado 0,42 SLC29A1 Transportador 1 equilibrante de nucleósidos 0,42 SLC16A14 Transportador de monocarboxilato 14 0,42 P2RY2 Purinorreceptor 2 de P2Y 0,42 SUCNR1 Receptor 1 del succinato 0,42			·
CD86 Activación de linfocitos T por CD86 0,42 SLC16A3 Transportador de monocarboxilato 4 0,42 SLC2A5 Familia 2 del transportador de solutos, Miembro 5 del transportador de glucosa facilitado 0,42 SLC29A1 Transportador 1 equilibrante de nucleósidos 0,42 SLC16A14 Transportador de monocarboxilato 14 0,42 P2RY2 Purinorreceptor 2 de P2Y 0,42 SUCNR1 Receptor 1 del succinato 0,42		·	· ·
SLC16A3 Transportador de monocarboxilato 4 0,42 SLC2A5 Familia 2 del transportador de solutos, Miembro 5 del transportador de glucosa facilitado 0,42 SLC29A1 Transportador 1 equilibrante de nucleósidos 0,42 SLC16A14 Transportador de monocarboxilato 14 0,42 P2RY2 Purinorreceptor 2 de P2Y 0,42 SUCNR1 Receptor 1 del succinato 0,42		·	· ·
SLC2A5 Familia 2 del transportador de solutos, Miembro 5 del transportador de glucosa facilitado SLC29A1 Transportador 1 equilibrante de nucleósidos SLC16A14 Transportador de monocarboxilato 14 P2RY2 Purinorreceptor 2 de P2Y SUCNR1 Receptor 1 del succinato 0,42		·	·
SLC29A1 Transportador 1 equilibrante de nucleósidos 0,42 SLC16A14 Transportador de monocarboxilato 14 0,42 P2RY2 Purinorreceptor 2 de P2Y 0,42 SUCNR1 Receptor 1 del succinato 0,42		Familia 2 del transportador de solutos, Miembro 5 del transportador de	·
SLC16A14 Transportador de monocarboxilato 14 0,42 P2RY2 Purinorreceptor 2 de P2Y 0,42 SUCNR1 Receptor 1 del succinato 0,42	SLC29A1	-	0.42
P2RY2 Purinorreceptor 2 de P2Y 0,42 SUCNR1 Receptor 1 del succinato 0,42			
SUCNR1 Receptor 1 del succinato 0,42		·	· · · · · · · · · · · · · · · · · · ·
		·	
	BTN3A1	Miembro A1 de la subfamilia 3 de la butirofilina	0,41

Antígeno	Nombre de la proteína	Expresión relativa en linfocitos T
LAT2	Miembro 2 de la familia de enlazadores para la activación de linfocitos T	0,41
PLXND1	Plexina-D1	0,41
ECE1	Enzima 1 convertidora de la endotelina	0,41
TGFBR1	Receptor de tipo-1 de TGF-beta	0,41
CCRL2	Receptor de tipo 2 de la quimioquina C-C	0,41
TFR2	Proteína 2 del receptor de la transferrina	0,41
SLC44A1	Proteína 1 análoga al transportador de colina	0,41
ITGA6	Cadena alfa-6 ligera de integrinas	0,41
PMP22	Proteína 22 de mielina periférica	0,41
LAX1	Adaptador 1 transmembrana de linfocitos	0,4
AMIGO2	Proteína 2 inducida por anfoterina	0,4
SLC38A1	Transportador 1 de aminoácidos neutros acoplados a sodio	0,4
SLC41A1	Miembro 1 de la familia 41 del transportador de soluto	0,4
C2orf89	Metaloproteasa TIKI1	0,4
ABCC10	Proteína 7 asociada a resistencia a multifármacos	0,4
CLDN15	Claudina-15	0,4
SLC39A6	Transportador ZIP6 de cinc	0,4
SLC16A5	Transportador de monocarboxilato 6	0,4
TTYH3	Homólogo 3 de la proteína tweety	0,4
ATP7A	ATPasa 1 transportadora de cobre	0,4
COMT	Catecol O-metiltransferasa	0,4
SLC17A5	Sialina	0,4
TMIGD2	Proteína 2 que contiene el dominio transmembrana y de la inmunoglobulina	0,4
CLEC7A	Miembro A de la familia 7 del dominio de lectina de tipo C	0,4
SLC31A1	Proteína 1 de captación del cobre de alta afinidad	0,4
LRRC4	Proteína 4 que contiene repeticiones ricas en leucina	0,4
P2RY10	Presunto purinoceptor 10 de P2Y	0,39
ATP10D	ATPasa VD transportadora del fosfolípido probable	0,39
BTN3A3	Miembro A3 de la subfamilia 3 de la butirofilina	0,39
LIME1	Adaptador 1 transmembrana que interactúa con Lck	0,39
TNF	Factor de necrosis tumoral, forma soluble	0,39
PAQR8	Receptor beta de la progestina de membrana	0,39
OXER1	Receptor 1 oxoeicosanoide	0,39
TRAT1	Adaptador 1 transmembrana asociado al receptor de linfocitos T	0,39
GPBAR1	Receptor 1 de los ácidos biliares acoplado a la proteína G	0,39
SLC36A1	Transportador 1 de aminoácidos acoplado a protones	0,39
PTPRE	Receptor de la proteína tirosina fosfatasa de tipo épsilon	0,39
PROM1	Prominina-1	0,39
CD74	Cadena gamma del antígeno de histocompatibilidad de HLA de clase II	0,38
CNST	Consortina	0,38
TMEM49	Proteína 1 de membrana de vacuolas	0,38
CLIC4	Proteína 4 del canal intracelular de cloruro	0,38
NAALADL1	Proteína análoga a dipeptidasa ácida unida a alfa N-acetilada	0,38
ANTXR2	Receptor 2 de la toxina del ántrax	0,38
FGFR1	Receptor 1 del factor de crecimiento de fibroblastos	0,38
IL1RAP	Proteína accesoria del receptor de la interleuquina-1	0,38
ATP1B2	Subunidad beta-2 de la ATPasa que transporta sodio/potasio	0,38
i '	and the second second second second	- 1

Antígeno	Nombre de la proteína	Expresión relativa en linfocitos T
CLEC12A	Miembro A de la familia 12 del dominio de lectina de tipo C	0,38
HLA-DQA1	Antígeno de histocompatibilidad de HLA de clase II, cadena alfa 1 de DQ	0,37
B4GALT1	Beta-1,4-galactosiltransferasa 1 procesada	0,37
CNNM3	Transportador CNNM3 de metales	0,37
ATP1B1	Subunidad beta-1 de la ATPasa que transporta sodio/potasio	0,37
SLC39A1	Transportador ZIP1 de cinc	0,37
ATRN	Atractina	0,37
CYSLTR1	Receptor 1 del cisteinil leucotrieno	0,37
TRPV2	Miembro 2 de la subfamilia V del canal de cationes potencial del receptor transitorio	0,37
SLC27A1	Proteína 1 transportadora de ácidos grasos de cadena larga	0,37
GPR171	Receptor 171 acoplado a proteína G probable	0,37
DAGLB	Diacilglicerol lipasa beta específica de Sn1	0,37
KCNQ1	Miembro 1 de la subfamilia KQT del canal de potasio dependiente de voltaje	0,37
FZD6	Frizzled-6	0,37
CSF2RA	Subunidad alfa del receptor del factor estimulador de colonias de granulocitos-macrófagos	0,37
PTH2R	Receptor 2 de la hormona paratiroidea	0,37
MARCH1	Proteína E3 ubiquitina ligase MARCH1	0,36
BACE2	Beta-secretasa 2	0,36
CD5	Glicoproteína CD5 de la superficie de los linfocitos T	0,36
TMEM219	Receptor de la proteína 3 de unión al factor de crecimiento de tipo insulina	0,36
XPR1	Receptor 1 de retrovirus xenotrópicos y politrópicos	0,36
CD1C	Glicoproteína CD1c de la superficie de los linfocitos T	0,36
CNNM2	Transportador CNNM2 de metales	0,36
TMEM88	Proteína 88 transmembrana	0,36
ICOS	Coestimulador inducible por linfocitos T	0,36
KLRG1	Miembro 1 de la subfamilia G del receptor análogo a lectina de los linfocitos citolíticos naturales	0,36
LRP8	Proteína 8 relacionada con el receptor de lipoproteínas de baja densidad	0,36
F2R	Receptor 1 activado por proteinasa	0,36
HM13	Antígeno H13 de histocompatibilidad menor	0,36
EMR2	Receptor de tipo 2 de la hormona análoga a mucina que contiene un módulo análogo a EGF	0,36
TREML1	Proteína del transcrito 1 análogo a Trem	0,36
C17orf60	Alergina-1	0,36
GPR146	Receptor 146 acoplado a proteína G probable	0,36
SLAMF6	miembro 6 de la familia SLAM	0,35
SLC7A6	Transportador 2 de aminoácidos Y+L	0,35
RELL2	Proteína 2 análoga a RELT	0,35
LGR6	Receptor 6 acoplado a la proteína-G que contiene repeticiones ricas en leucina	0,35
PANX1	Pannexina-1	0,35
C18orf1	Proteína 4 que contiene el dominio del receptor de clase A de la lipoproteína de baja densidad	0,35
SLMAP	Proteína asociada con la membrana sarcolémica	0,35
CCR5	Receptor de tipo 5 de la quimioquina C-C	0,35
MUC1	Subunidad beta de la mucina-1	0,35
EMR3	Subunidad beta del receptor de tipo 3 de la hormona análoga a mucina que contiene un módulo análogo a EGF	0,35

Antígeno	Nombre de la proteína	Expresión relativa en linfocitos T
COL23A1	Cadena alfa-1 (XXIII) de colágeno	0,35
OR2W3	Receptor olfatorio 2W3	0,35
LNPEP	Leucil-cistinil aminopeptidasa, Forma sérica durante el embarazo	0,34
PRR7	Proteína 7 rica en prolina	0,34
NOTCH1	Dominio intracelular Notch 1	0,34
RFT1	Familia 52 del transportador de solutos, Transportador de la riboflavina, miembro 1	0,34
TNFRSF25	Miembro 25 de la superfamilia del receptor del factor de necrosis tumoral	0,34
ANO6	Anoctamina-6	0,34
AQP3	Acuaporina-3	0,34
ADAM9	Proteína 9 que contiene el dominio de la desintegrina y la metaloproteinasa	0,34
INSR	Subunidad beta del receptor de insulina	0,34
FZD5	Frizzled-5	0,34
ERG	Miembro 2 de la subfamilia H del canal de potasio dependiente de voltaje	0,34
MME	Neprilisina	0,34
FCGR2B	Receptor II-b de la región Fc de la inmunoglobulina gamma de baja afinidad	0,33
LSR	Receptor de lipoproteínas estimulado por lipolisis	0,33
DDR1	Receptor 1 que contiene el dominio de la discoidina epitelial	0,33
CNR2	Receptor 2 cannabinoideo	0,33
ATR	Receptor 1 de la toxina del ántrax	0,33
P2RY14	Purinorreceptor 14 de P2Y	0,33
VEZT	Vezatina	0,33
ALG10B	Presunta Dol-P-Glc:Glc(2)Man(9)GlcNAc(2)-PP-Dol alfa-1,2-glicosiltransferasa	0,33
PAQR7	Receptor alfa de la progestina de membrana	0,33
FLT3LG	Ligando de la tirosina quinasa 3 relacionada con Fms	0,33
CD40LG	ligando de CD40, forma soluble	0,33
FCGR2A	Receptor II-a de la región Fc de la inmunoglobulina gamma de baja afinidad	0,33
CLDN12	Claudina-12	0,33
GP6	glucoproteína plaquetaria VI	0,33
EPHB4	Receptor 4 de la efrina de tipo B	0,33
SEMA4C	Semaforina-4C	0,33
CD300C	Molécula 6 análoga a CMRF35	0,33
PEAR1	Receptor 1 de agregación endotelial plaquetaria	0,33
FFAR2	Receptor 2 de ácidos grasos libres	0,33
SLC2A6	Familia 2 del transportador de solutos, Miembro 6 del transportador de glucosa facilitado	0,32
TMEM150A	Proteína transmembrana 150A	0,32
ANO8	Anoctamina-8	0,32
CD200R1	Receptor 1 de la glicoproteína CD200 superficial celular	0,32
FCER1A	Subunidad alfa del receptor épsilon de inmunoglobulina de alta afinidad	0,32
BEST1	Bestrofina-1	0,32
CLDN5	Claudina-5	0,32
SLC47A1	Proteína 1 de extrusión de toxinas y multifármacos	0,32
SLC5A10	cotransportador 5 de sodio/glucosa	0,32
CD40	Miembro 5 de la superfamilia del receptor del factor de necrosis tumoral	0,31
ANO9	Anoctamina-9	0,31
CLEC2D	Miembro D de la familia 2 del dominio de lectina de tipo C	0,31
VIPR1	Receptor 1 del polipéptido intestinal vasoactivo	0,31

Antígeno	Nombre de la proteína	Expresión relativa en linfocitos T
SLC16A7	Transportador de monocarboxilato 2	0,31
UTS2R	Receptor de la urotensina-2	0,31
CLSTN3	Calsintenina-3	0,31
GPR35	Receptor 35 acoplado a proteína G	0,31
SYT15	Sinaptotagmina-15	0,31
FAM57A	Proteína FAM57A	0,31
CD8B	Cadena beta de la glicoproteína CD8 de la superficie de los linfocitos T	0,31
IL17RC	Receptor C de la interleuquina-17	0,31
GLDN	Gliomedina	0,31
FZD2	Frizzled-2	0,31
KCNA3	Miembro 3 de la subfamilia A del canal de potasio dependiente de voltaje	0,3
MGA	Glucoamilasa	0,3
GPR1	Receptor 1 acoplado a proteína G	0,3
IL6ST	Subunidad beta del receptor de la interleuquina-6	0,3
PCDHGB5	Protocaderina gamma-B5	0,3
OR1I1	Receptor olfatorio 111	0,3
PTH1R	Receptor del péptido relacionado la hormona paratiroidea/hormona paratiroidea	0,3
NLGN2	Neuroligina-2	0,3
MMP24	Metaloproteinasa-24 de matriz procesada	0,3
CDH22	Caderina-22	0,3
TNFRSF8	Miembro 8 de la superfamilia del receptor del factor de necrosis tumoral	0,3
CHRNG	Subunidad gamma del receptor de la acetilcolina	0,3
PSEN1	Presenilina-1 CTF12	0,3
GPR114	Receptor 114 acoplado a proteína G probable	0,3
PLXNB2	Plexina-B2	0,3
CHRNA2	Subunidad alfa-2 del receptor de la acetilcolina neuronal	0,3
GPR34	Receptor 34 acoplado a proteína G probable	0,3
LPAR6	Receptor 6 del ácido lisofosfatídico	0,3
ATP8A1	ATPasa IA transportadora del fosfolípido probable	0,3
FZD1	Frizzled-1	0,3
CCR2	Receptor de tipo 2 de la quimioquina C-C	0,3
P2RY1	Purinorreceptor 1 de P2Y	0,3
SLC16A9	Transportador de monocarboxilato 9	0,3
C20orf103	Glicoproteína 5 de membrana asociada a lisosomas	0,3
ADORA2B	Receptor A2b de la adenosina	0,3
CLEC12B	Miembro B de la familia 12 del dominio de lectina de tipo C	0,3
FCRL3	Proteína 3 análoga al receptor Fc	0,29
CD180	antígeno de CD180	0,29
TIGIT	Inmunorreceptor de linfocitos T con dominios de Ig e ITIM	0,29
PPAP2A	Lípido fosfato fosfohidrolasa 1	0,29
ATP11C	ATPasa IG transportadora del fosfolípido probable	0,29
TNFRSF17	Miembro 17 de la superfamilia del receptor del factor de necrosis tumoral	0,29
TNFSF12	Miembro 12 de la superfamilia del ligando del factor de necrosis tumoral, forma secretada	0,29
TBXA2R	Receptor del tromboxano A2	0,29
OR3A3	Receptor olfatorio 3A3	0,29
GPR153	Receptor 153 acoplado a proteína G probable	0,29

Antígeno	Nombre de la proteína	Expresión relativa en linfocitos T
ATP11A	ATPasa IH transportadora del fosfolípido probable	0,29
LRFN1	Proteína 1 que contiene el dominio de tipo III de la fibronectina y repeticiones ricas en leucina	0,29
OR51B2	Receptor olfatorio 51B2	0,29
KCNS1	Miembro 1 de la subfamilia S del canal de potasio dependiente de voltaje	0,29
OR12D2	Receptor olfatorio 12D2	0,29
GRM4	Receptor 4 metabotrópico del glutamato	0,29
NE01	Neogenina	0,29
DRD5	Receptor de la dopamina D(1 B)	0,29
PLXDC1	Dominio de la plexina que contiene la proteína 1	0,29
GPR157	Receptor 157 acoplado a proteína G probable	0,29
CD300LB	Molécula 7 análoga a CMRF35	0,29
MARVELD1	Proteína 1 que contiene el dominio MARVEL	0,29
MFAP3	Glicoproteína 3 asociada a micofibrillas	0,29
CHRNB1	Subunidad beta del receptor de la acetilcolina	0,29
PVRL2	Proteína 2 relacionada con el receptor de poliovirus	0,29
F2RL1	Receptor 2 activado por proteinasa, escisión alternativa en 2	0,29
GPR124	Receptor 124 acoplado a proteína G	0,29
BACE1	Beta-secretasa 1	0,29
C6orf105	Proteína reguladora de TFPI dependiente de andrógeno	0,28
CXCR3	Receptor de tipo 3 de la quimioquina C-X-C	0,28
IGSF8	Miembro 8 de la superfamilia de la inmunoglobulina	0,28
ATP8B1	ATPasa IC transportadora del fosfolípido probable	0,28
TP53I13	Proteína 13 inducible por la proteína p53 tumoral	0,28
MC1R	Receptor de la hormona estimuladora de melanocitos	0,28
CD84	miembro 5 de la familia SLAM	0,28
CALHM1	Proteína 1 moduladora de la homeostasia del calcio	0,28
CHRNA6	Subunidad alfa-6 del receptor de la acetilcolina neuronal	0,28
CDH10	Caderina-10	0,28
SLC16A1	Transportador de monocarboxilato 1	0,28
GPRC5D	Miembro D del grupo 5 de la familia C del receptor acoplado a la proteína G	0,28
AGER	Receptor específico del producto final de glicosilación avanzada	0,28
FASLG	Dominio intracelular FasL	0,28
GPR56	Fragmento del extremo C de GPR56	0,28
SIGLEC1	Sialoadhesina	0,28
KIR2DL5A	Receptor 2DL5A análogo a inmunoglobulina de los linfocitos citolíticos naturales	0,28
PLB1	Lisofosfolipasa	0,28
CD200	Glicoproteína de membrana OX-2	0,27
ADAM28	Proteína 28 que contiene el dominio de la desintegrina y la metaloproteinasa	0,27
SIT1	Transportador XTRP3 dependiente de sodio y cloruro	0,27
SLC23A2	Miembro 2 de la familia 23 del transportador de soluto	0,27
CCR10	Receptor de tipo 10 de la quimioquina C-C	0,27
PRR4	Proteína 4 relacionada con el receptor de poliovirus procesado	0,27
GJD2	Proteína delta-2 de unión a Gap	0,27
SLC2A8	Familia 2 del transportador de solutos, Miembro 8 del transportador de glucosa facilitado	0,27

Antígeno	Nombre de la proteína	Expresión relativa en linfocitos T
CD209	antígeno de CD209	0,27
CD274	ligando 1 de la muerte celular programada 1	0,27
PROM2	Prominina-2	0,27
ATP6V0A2	Isoforma 2 de la subunidad a de 116 kDa de la ATPasa de protones de tipo V	0,27
MPZ	Proteína P0 de mielina	0,27
TNFRSF18	Miembro 18 de la superfamilia del receptor del factor de necrosis tumoral	0,27
MFSD2A	Proteína 2A que contiene el dominio de la superfamilia del facilitador mayor	0,27
HEG1	Homólogo 1 de la proteína HEG	0,27
OXTR	Receptor de la oxitocina	0,27
CD99L2	Proteína 2 análoga al antígeno CD99	0,27
LILRB4	Miembro 4 de la subfamilia B del receptor análogo a la inmunoglobulina leucocitaria	0,27
SMAGP	Glicoproteína de adhesión a células pequeñas	0,27
OR51I2	Receptor olfatorio 5112	0,27
LY6G6D	Proteína G6f del locus del complejo del antígeno 6 linfocitario	0,27
KCNQ4	Miembro 4 de la subfamilia KQT del canal de potasio dependiente de voltaje	0,27
HRH2	Receptor H2 de la histamina	0,27
SLC39A2	Transportador ZIP2 de cinc	0,27
CLDN10	Claudina-10	0,27
GPM6B	Glicoproteína M6-b de membrana neuronal	0,27
STEAP4	Metalorreductasa STEAP4	0,27
APOLD1	Proteína 1 que contiene el dominio L de la apolipoproteína	0,27
S1PR3	Receptor 3 de la esfingosina 1-fosfato	0,27
SGMS2	Fosfatidilcolina:ceramida colinafosfotransferasa 2	0,27
KIR2DS5	Receptor 2DS5 análogo a inmunoglobulina de los linfocitos citolíticos naturales	0,27
STAR	Receptor de la enterotoxina estable al calor	0,27
NIPA1	Transportador NIPA1 de magnesio	0,26
CNNM4	Transportador CNNM4 de metales	0,26
SLAMF1	Molécula de señalización de la activación linfocítica	0,26
KIAA1919	Transportador 1 de glucosa dependiente de sodio	0,26
TLR6	Receptor 6 de tipo Toll	0,26
CRB3	Homólogo 3 de los agregados de proteínas	0,26
SLC12A9	Miembro 9 de la familia 12 del transportador de soluto	0,26
GPR68	Receptor 1 acoplado a proteína G de cáncer de ovario	0,26
OR51J1	Receptor olfatorio 51J1	0,26
TREML2	Proteína del transcrito 2 análogo a Trem	0,26
GPR176	Receptor 176 acoplado a proteína G probable	0,26
FLVCR2	Proteína 2 relacionada con el receptor del subgrupo C del virus de la leucemia felina	0,26
LPAR1	Receptor 1 del ácido lisofosfatídico	0,26
PANX2	Pannexina-2	0,26
SLC6A6	Transportador de taurina dependiente de sodio y cloruro	0,26
PROKR2	Receptor 2 de la prokineticina	0,26
CLDN9	Claudina-9	0,26
MYOF	Mioferlina	0,26
LY6G6F	Proteína G6f del locus del complejo del antígeno 6 linfocitario	0,26
ESAM	Molécula de adhesión selectiva a células endoteliales	0,26

Antígeno	Nombre de la proteína	Expresión relativa en linfocitos T
NCR3	Receptor 3 estimulador de la citotoxicidad natural	0,25
HLA-DQB2	Antígeno de histocompatibilidad de HLA de clase II, cadena beta 2 de DQ	0,25
SLC4A5	Cotransportador 4 de bicarbonato de sodio electrogénico	0,25
P2RY4	Purinorreceptor 4 de P2Y	0,25
ABCB1	Proteína 1 de resistencia a multifármacos	0,25
SLC9A1	Intercambiador 1 de sodio/hidrógeno	0,25
CELSR2	Receptor 2 de tipo G de siete pasos de la caderina EGF LAG	0,25
SYT8	Sinaptotagmina-8	0,25
PCDHA9	Protocaderina alfa -9	0,25
TMEM204	Proteína 204 transmembrana	0,25
PTPRJ	Receptor de la proteína tirosina fosfatasa de tipo eta	0,25
GRPR	Receptor del péptido liberador de gastrina	0,25
SEMA6B	Semaforina-6B	0,25
CLCN5	Transportador 5 intercambiador de H(+)/CI(-)	0,25
GLRA2	Subunidad alfa-2 del receptor de glicina	0,25
PLVAP	Proteína asociada a vesícula del plasmalema	0,25
ACVR1B	Receptor de la activina de tipo-1 B	0,25
JAM3	Molécula C de adhesión a la unión	0,25
LDLRAD3	Proteína 3 que contiene el dominio del receptor de clase A de la lipoproteína de baja densidad	0,25
XG	Glicoproteína Xg	0,25
SLC2A11	Familia 2 del transportador de solutos, Miembro 11 del transportador de glucosa facilitado	0,24
PCDH9	Protocaderina-9	0,24
VAMP5	Proteína 5 de membrana asociada a vesículas	0,24
CDHR2	Miembro 2 de la familia relacionada con caderina	0,24
DRD2	Receptor de la dopamina D(2)	0,24
LRIG2	Repeticiones ricas en leucina y dominios análogos a inmunoglobulina de la proteína 2	0,24
RAMP3	Proteína 3 modificadora de la actividad del receptor	0,24
SLC39A14	Transportador ZIP14 de cinc	0,24
STRA6	Estimulado por el ácido retinoico del gen 6 de la proteína homóloga	0,24
ADRA2C	Receptor alfa-2C adrenérgico	0,24
CLDN19	Claudina-19	0,24
CX3CR1	Receptor 1 de la quimioquina CX3C	0,24
CD79B	cadena beta de la proteína asociada a complejo de receptor de antígeno de los linfocitos B	0,24
KIR2DL2	Receptor 2DL2 análogo a inmunoglobulina de los linfocitos citolíticos naturales	0,24
CXCR7	Receptor 3 de la quimioquina atípica	0,24
OR5L2	Receptor olfatorio 5L2	0,24
LRRC52	Proteína 52 que contiene repeticiones ricas en leucina	0,24
JPH1	Junctophilin-1	0,24
ADORA1	Receptor A1 de la adenosina	0,24
GPRC5C	Miembro C del grupo 5 de la familia C del receptor acoplado a la proteína G	0,24
RET	Fragmento de 120 kDa de la caderina RET anclado a la membrana celular extracelular	0,24
PVR	Receptor de poliovirus	0,24
ITGB3	Integrinas beta-3	0,24

Antígeno	Nombre de la proteína	Expresión relativa en linfocitos T
PTGIR	Receptor de la prostaciclina	0,24
LPHN1	Latrofilina-1	0,24
OR10J1	Receptor olfatorio 10J1	0,24
MFAP3L	Proteína de tipo 3 asociada a micofibrillas	0,24
GPNMB	Glicoproteína NMB transmembrana	0,24
CELSR3	Receptor 3 de tipo G de siete pasos de la caderina EGF LAG	0,23
CCR6	Receptor de tipo 2 de la quimioquina C-C	0,23
DMPK	Miotonina-proteína quinasa	0,23
UPK3B	Uroplakina-3b	0,23
OR1D2	Receptor olfatorio 1D2	0,23
OR7D2	Receptor olfatorio 7D2	0,23
ITGB1	Integrinas beta-1	0,23
HRH3	Receptor H3 de la histamina	0,23
GRIN2C	Receptor ionotrópico del glutamato, NMDA 2C	0,23
KIR3DL1	Receptor 3DL1 análogo a inmunoglobulina de los linfocitos citolíticos naturales	0,23
EPHB2	Receptor 2 de la efrina de tipo B	0,23
OR2S2	Receptor olfatorio 2S2	0,23
KIR2DL4	Receptor 2DL4 análogo a inmunoglobulina de los linfocitos citolíticos naturales	0,23
CNNM1	Transportador CNNM1 de metales	0,23
MARVELD2	Proteína 2 que contiene el dominio MARVEL	0,23
CXCR6	Receptor de tipo 6 de la quimioquina C-X-C	0,23
NOV	Plexina-A1	0,23
ABCB6	Miembro 6 de la subfamilia B del casete de unión a ATP, mitocondrial	0,23
PVRL1	Proteína 1 relacionada con el receptor de poliovirus	0,23
SLC46A2	Homólogo tímico del cotransportador estromal	0,23
ADORA3	Receptor A3 de la adenosina	0,23
GPR125	Receptor 125 acoplado a proteína G probable	0,23
CD22	Receptor CD22 de linfocitos B	0,22
FZD3	Frizzled-3	0,22
LPAR5	Receptor 5 del ácido lisofosfatídico	0,22
TMEM8B	Proteína transmembrana 8B	0,22
PLXNA1	Plexina-A1	0,22
NPFFR1	Receptor 1 del neuropéptido FF	0,22
SEZ6L2	Proteína 2 del tipo de convulsión 6	0,22
LRRTM2	Repetición rica en leucina de la proteína 2 neuronal transmembrana	0,22
SLC16A11	Transportador de monocarboxilato 11	0,22
GRIK5	Receptor ionotrópico del glutamato, kainato 5	0,22
SYT6	Sinaptotagmina-6	0,22
TMEM102	Proteína 102 transmembrana	0,22
OR8B8	Receptor olfatorio 8B8	0,22
GJB1	Proteína beta-1 de unión a Gap	0,22
GRM6	Receptor 6 metabotrópico del glutamato	0,22
C20orf54	Familia 52 del transportador de solutos, Transportador de la riboflavina, miembro 3	0,22
OR52D1	Receptor olfatorio 52D1	0,22
SLC46A1	Transportador de folato acoplado a protones	0,22
DSC2	Desmocolina-2	0,22

Antígeno	Nombre de la proteína	Expresión relativa en linfocitos T
FAT1	Protocaderina Fat 1, forma nuclear	0,22
GCGR	Receptor del glucagón	0,22
POP1	Sustancia epicárdica de los vasos sanguíneos	0,22
CXADR	Receptor de coxsackievirus y adenovirus	0,22
ABCC6	Proteína 6 asociada a resistencia a multifármacos	0,22
GJA1	Proteína alfa-1 de unión a Gap	0,22
CXCR5	Receptor de tipo 5 de la quimioquina C-X-C	0,21
ABCB4	Proteína 3 de resistencia a multifármacos	0,21
CTLA4	Proteína 4 de linfocitos T citotóxicos	0,21
TRPV1	Miembro 1 de la subfamilia V del canal de cationes potencial del receptor transitorio	0,21
MRGPRX4	Miembro X4 del receptor acoplado a la proteína G relacionada con Mas	0,21
SIGLEC6	Lectina 6 análoga a Ig de unión a ácido siálico	0,21
IL9R	Receptor de interleuquina-9	0,21
CHRNB2	Subunidad beta-2 del receptor de la acetilcolina neuronal	0,21
PDGFRB	Receptor beta del factor de crecimiento derivado de plaquetas	0,21
TMPRSS11D	Cadena catalítica 11D de la serina proteasa transmembrana	0,21
CDH24	Caderina-24	0,21
PRRT2	Proteína 2 transmembrana rica en prolina	0,21
GALR3	Receptor de tipo 3 de la galanina	0,21
OR51I1	Receptor olfatorio 5111	0,21
PTPRU	Receptor de la proteína tirosina fosfatasa de tipo U	0,21
LPAR4	Receptor 4 del ácido lisofosfatídico	0,21
ZNRF3	Proteína E3 ubiquitina ligase ZNRF3	0,21
P2RY6	Purinorreceptor 6 de P2Y	0,21
AGTR1	Receptor de la angiotensina II de tipo-1	0,21
GPR182	Receptor 182 acoplado a proteína G	0,21
PODXL	Podocalixina	0,21
BDKRB1	Receptor de la bradiquinina B1	0,21
DCHS1	Protocaderina-16	0,21
GRIN3B	Receptor ionotrópico del glutamato, NMDA 3B	0,21
PTGDR	Receptor D2 de prostaglandinas	0,21
PVRL4	Proteína 4 relacionada con el receptor de poliovirus procesado	0,21
GPR77	Receptor 2 quimiotáctico de la anafilatoxina C5a	0,21
PARM1	Proteína 1 análoga a mucina regulada por el andrógeno de próstata	0,21
OR10H1	Receptor olfatorio 10H1	0,21
OR10D3	Presunto receptor olfatorio 10D3	0,21
TNFSF14	Miembro 14 de la superfamilia del ligando del factor de necrosis tumoral, forma soluble	0,21
FCRL5	Proteína 5 análoga al receptor Fc	0,2
RNF43	Proteína E3 ubiquitina ligase RNF43	0,2
AMIGO1	Proteína 1 inducida por anfoterina	0,2
OR1F1	Receptor olfatorio 1F1	0,2
SLCO4A1	Miembro 4A1 de la familia de transportadores aniónicos orgánicos del transportador de solutos	0,2
TTYH2	Homólogo 2 de la proteína tweety	0,2
GABRR2	Subunidad rho-2 del receptor del ácido gamma-aminobutírico	0,2
GJD3	Proteína delta-3 de unión a Gap	0,2
GRID1	Receptor ionotrópico del glutamato, delta-1	0,2

Antígeno	Nombre de la proteína	Expresión relativa en linfocitos T
CLDN1	Claudina-1	0,2
SLC6A13	Transportador GABA 2 dependiente de sodio y cloruro	0,2
SLC30A8	Transportador 8 de cinc	0,2
KIR2DL3	Receptor 2DL3 análogo a inmunoglobulina de los linfocitos citolíticos naturales	0,2
GPR78	Receptor 78 acoplado a proteína G	0,2
UPK2	Uroplakina-2	0,2
CLDN14	Claudina-14	0,2
EDA	Ectodisplasina-A, forma secretada	0,2
PTGER1	Receptor del subtipo EP1 de prostaglandina E2	0,2
TRPV5	Miembro 5 de la subfamilia V del canal de cationes potencial del receptor transitorio	0,2
PRIMA1	Anclaje de membrana 1 rico en prolina	0,2
GJA9	Proteína alfa-9 de unión a Gap	0,2
SLC7A3	Transportador 3 de aminoácidos catiónicos	0,2
SSTR2	Receptor de la somatostatina de tipo 2	0,2
CD1A	Glicoproteína CD1a de la superficie de los linfocitos T	0,2
SLC7A8	Subunidad 2 del transportador grande de aminoácidos neutros	0,2
CLIC6	Proteína 6 del canal intracelular de cloruro	0,2
EPHA8	Receptor 8 de la efrina de tipo A	0,2
SLC20A2	Transportador 2 de fosfato dependiente de sodio	0,2
SCNN1A	Subunidad alfa del canal de sodio sensible a amilorida	0,2
OR51B6	Receptor olfatorio 51B6	0,2
OR14J1	Receptor olfatorio 14J1	0,2
OR10C1	Receptor olfatorio 10C1	0,2
OPRL1	Receptor de la nociceptina	0,2
CCR9	Receptor de tipo 9 de la quimioquina C-C	0,2
JPH4	Junctophilin-4	0,2
HTR1E	Receptor 1E de la 5-hidroxitriptamina	0,2
MC3R	Receptor 3 de la melanocortina	0,2
CD163L1	Secuestrante del receptor de la proteína M160 de tipo 1 rica en cisteína	0,2
SEZ6	Homólogo de la proteína 6 de las convulsiones	0,2
PRSS8	Cadena pesada de prostasina	0,2
CDH26	Proteína 26 análoga a caderina	0,2
ODZ1	Péptido asociado al extremo C de la teneurina	0,2
FGFR3	Receptor 3 del factor de crecimiento de fibroblastos	0,2

Ejemplo 1 INACTIVACIÓN GÉNICA (KO) EN EL GEN CD38 Y EXPRESIÓN DE CAR DIRIGIDO CONTRA CD38

Presentación de la ADP ribosa hidrolasa cíclica diana de CD38

CD38 es una glicoproteína que se encuentra en la superficie de muchas células inmunitarias, incluyendo células de mieloma múltiple (MM) que expresan un alto nivel de CD38 en una gran mayoría de pacientes. CD38 es una diana validada para las MM dado que muchos estudios han mostrado la destrucción eficaz de las células CD38+ MM procedentes de pacientes y las líneas de células CD38+ MM utilizando mAb dirigidos contra CD38 por CDC y ADCC (Ellis, J. H. K. et al, Journal of Immunology, 1995, 155 (2), 925-937). Daratumumab es un anticuerpo monoclonal CD38 humano terapéutico que induce la destrucción del mieloma múltiple y otros tumores hematológicos (De Weers, M. y col., *J Immunol 2011 186:1840-1848*). En algunos estudios, Se ha mostrado que CD38 se expresa también mucho por los linfocitos T activados (Sandoval-Montes CJ et al., 2005, Leukoc Biol. 77(4):513-21).

15 Expresión de CD38 por los linfocitos T

5

10

Se analizó la expresión de CD38 por los linfocitos T tras la utilización de perlas de CD3/CD28 y la estimulación de IL-

2 mediante FACS cada 3-4 días durante 17 días. Se observó que más del 90% de linfocitos T se expresan entre el día 6 y el día 17 después de la activación (Figura 10B).

Por lo tanto, a fin de evitar la destrucción de los linfocitos T activados por CAR+ dirigido contra CD38 necesita evitarse la expresión superficial de los linfocitos T CD38 en los linfocitos T. Esto puede llevarse a cabo mediante la inactivación del gen CD38 utilizando nucleasas TALE. TALEN es una marca comercial propia del solicitante (Cellectis, 8 rue de la Croix Jarry, 75013 PARÍS) que designa un formato personalizado de nucleasas TAL.

Estrategia para la inactivación génica (KO) de CD38

10

Se diseñaron y produjeron nucleasas TALE heterodiméricas que se dirigían a dos secuencias de 17 pb de longitud separadas por un separador de 13 pb en el gen CD38. Cada semidiana se reconoció por las repeticiones de las nucleasas semi TALE relacionadas en la Tabla 15 siguiente y en la Figura 10A.

Tabla 15: Secuencias de las dianas de CD38 y TALEN ensayadas para la inactivación del antígeno CD38

Nombre	TALEN L/R	SEQ ID n.º	Secuencia de ácido nucleico o secuencia polipeptídica	
Diana de CD38	N/A	1	TGAGGTGGGTTGGCGAC taaggcgcaccgg TGGGCACTGCGGGGACA	
CD38ex1_T2-L1			MGDPKKKRKVIDYPYDVPDYAIDIADLRTLGYSQQQQEKIKPKVRSTV	
TALEN			AQHHEALVGHGFTHAHIVALSQHPAALGTVAVKYQDMIAALPEATHE	
			AIVGVGKQWSGARALEALLTVAGELRGPPLQLDTGQLLKIAKRGGVTA	
			VEAVHAWRNALTGAPLNLTPQQVVAIASNNGGKQALETVQRLLPVL	
			CQAHGLTPEQVVAIASNIGGKQALETVQALLPVLCQAHGLTPQQVVAI	
			ASNNGGKQALETVQRLLPVLCQAHGLTPQQVVAIASNNGGKQALET	
			VQRLLPVLCQAHGLTPQQVVAIASNGGGKQALETVQRLLPVLCQAHG	
			LTPQQVVAIASNNGGKQALETVQRLLPVLCQAHGLTPQQVVAIASNN	
			GGKQALETVQRLLPVLCQAHGLTPQQVVAIASNNGGKQALETVQRLL	
			PVLCQAHGLTPQQVVAIASNGGGKQALETVQRLLPVLCQAHGLTPQ	
			QVVAIASNGGGKQALETVQRLLPVLCQAHGLTPQQVVAIASNNGGK	
			QALETVQRLLPVLCQAHGLTPQQVVAIASNNGGKQALETVQRLLPVL	
			CQAHGLTPEQVVAIASHDGGKQALETVQRLLPVLCQAHGLTPQQVV	
			AIASNNGGKQALETVQRLLPVLCQAHGLTPEQVVAIASNIGGKQALET	
			VQALLPVLCQAHGLTPQQVVAIASNGGGRPALESIVAQLSRPDPALAA	
			LTNDHLVALACLGGRPALDAVKKGLGDPISRSQLVKSELEEKKSELRHK	
			LKYVPHEYIELIEIARNSTQDRILEMKVMEFFMKVYGYRGKHLGGSRKP	
			DGAIYTVGSPIDYGVIVDTKAYSGGYNLPIGQADEMQRYVEENQTRN	
			KHINPNEWWKVYPSSVTEFKFLFVSGHFKGNYKAQLTRLNHITNCNG	
			AVLSVEELLIGGEMIKAGTLTLEEVRRKFNNGEINFAAD	

Nombre	TALEN	SEQ ID	Secuencia de ácido nucleico o secuencia polipeptídica
Nombre CD38ex1_T2-R1 TALEN	TALEN L/R R	SEQ ID n.°	MGDPKKKRKVIDKETAAAKFERQHMDSIDIADLRTLGYSQQQQEKIKP KVRSTVAQHHEALVGHGFTHAHIVALSQHPAALGTVAVKYQDMIAAL PEATHEAIVGVGKQWSGARALEALLTVAGELRGPPLQLDTGQLLKIAK RGGVTAVEAVHAWRNALTGAPLNLTPQQVVAIASNNGGKQALETV QRLLPVLCQAHGLTPQQVVAIASNNGGKQALETV QRLLPVLCQAHGLTPEQVVAIASHDGGKQALETVQRLLPVLCQAHGLTPEQVVAIASHDG GKQALETVQRLLPVLCQAHGLTPEQVVAIASHDG GKQALETVQRLLPVLCQAHGLTPQQV VAIASNNGGKQALETVQRLLPVLCQAHGLTPEQVVAIASHDGGKQALETVQRLLPVLCQAHGLTPQQV VAIASNNGGKQALETVQRLLPVLCQAHGLTPEQVVAIASNIGGKQALETVQALLPVLCQAH GLTPQQVVAIASNNGGKQALETVQRLLPVLCQAHGLTPQQVVAIASN GGGKQALETVQRLLPVLCQAHGLTPQQVVAIASNNGGKQALETVQR LLPVLCQAHGLTPEQVVAIASNNGGKQALETVQR LLPVLCQAHGLTPEQVVAIASNNGGKQALETVQR LLPVLCQAHGLTPEQVVAIASHDGGKQALETVQR LLPVLCQAHGLTPEQVVAIASHDGGKQ ALETVQR LLPVLCQAHGLTPEQVVAIASHDGKQ ALETVQR LLPVLCQAHGLTPCQVVAIASHDGGKQ ALETVQR LTPCQVVAIASHDGGKQ ALETVQR LTPCQVVAIASHDG ATT ATT ATT ATT ATT ATT ATT A
			SRKPDGAIYTVGSPIDYGVIVDTKAYSGGYNLPIGQADEMQRYVEENQ TRNKHINPNEWWKVYPSSVTEFKFLFVSGHFKGNYKAQLTRLNHITNC
			NGAVLSVEELLIGGEMIKAGTLTLEEVRRKFNNGEINFAAD

Cada construcción de nucleasa TALE se subclonó utilizando la digestión con la enzima de restricción en un vector de expresión de mamíferos bajo el control del promotor T7. Se sintetizaron los ARNm que codificaban la nucleasa TALE escindiendo CD38 a partir de plásmidos que transportaban la secuencia de codificación en la dirección 3' del promotor T7.

5

Los linfocitos T purificados se activaron durante 72 horas con perlas revestidas con anti CD3/CD28 y se transfectó IL-2 recombinante mediante electroporación (Cytopulse) con cada uno de los 2 ARNm (10 µg cada uno) que codifican la mitad de las nucleasas CD38ex1_T2 TALE. Para investigar, las líneas de células CD38 KO, se evaluó el porcentaje de linfocitos T negativos para CD38 mediante citometría en el día 3, 6, 10 y 13 días después la transfección de ARNm de TALEN. Se observó que el 15% de los linfocitos T transfectados eran deficientes para CD38 (Figura 10 C) y esta deficiencia fue estable durante 13 días después de la transfección.

Tabla 16: Secuencias de las dos dianas diferentes de CD38 y de las TALEN correspondientes para su inactivación

Nombre	TALEN		Secuencia de ácido nucleico o secuencia de repeticiones
	L/R	n.º	
CD38ex1_T4	N/A	4	TGCGAGTTCAGCCCGGtgtccggggacaaacccTGCTGCCGGCTCTCTA
CD38ex1_T4-L TALEN	L	5	MGDPKKKRKVIDYPYDVPDYAIDIADLRTLGYSQQQQEKIKPKVRSTVA QHHEALVGHGFTHAHIVALSQHPAALGTVAVKYQDMIAALPEATHEA IVGVGKQWSGARALEALLTVAGELRGPPLQLDTGQLLKIAKRGGVTAV EAVHAWRNALTGAPLNLTPQQVVAIASNGGGKQALETVQRLLPVLCQ AHGLTPEQVVAIASNNGGKQALETVQALLPVLCQAHGLTPQQVVAIA SHDGGKQALETVQRLLPVLCQAHGLTPQQVVAIASNNGGKQALETVQ RLLPVLCQAHGLTPQQVVAIASNIGGKQALETVQRLLPVLCQAHGLTP QQVVAIASNNGGKQALETVQRLLPVLCQAHGLTPQQVVAIASNGGGK QALETVQRLLPVLCQAHGLTPQQVVAIASNGGGKQALETVQRLLPVLC QAHGLTPQQVVAIASHDGGKQALETVQRLLPVLCQAHGLTPQQVVAI ASNIGGKQALETVQRLLPVLCQAHGLTPQQVVAIASNNGGKQALETV QRLLPVLCQAHGLTPQQVVAIASHDGGKQALETVQRLLPVLCQAHGL TPEQVVAIASHDGGKQALETVQRLLPVLCQAHGLTPQQVVAIASHDG GKQALETVQRLLPVLCQAHGLTPEQVVAIASNNGGKQALETVQALLPV LCQAHGLTPQQVVAIASNNGGKQALETVQRLLPVLCQAHGLTPEQVV AIASNGGGRPALESIVAQLSRPDPALAALTNDHLVALACLGGRPALDAV KKGLGDPISRSQLVKSELEEKKSELRHKLKYVPHEYIELIEIARNSTQDRIL EMKVMEFFMKVYGYRGKHLGGSRKPDGAIYTVGSPIDYGVIVDTKAYS GGYNLPIGQADEMQRYVEENQTRNKHINPNEWWKVYPSSVTEFKFLF VSGHFKGNYKAQLTRLNHITNCNGAVLSVEELLIGGEMIKAGTLTLEEV RRKFNNGEINFAAD
CD38ex1_T4-R TALEN	R	6	MGDPKKKRKVIDKETAAAKFERQHMDSIDIADLRTLGYSQQQQEKIKP KVRSTVAQHHEALVGHGFTHAHIVALSQHPAALGTVAVKYQDMIAAL PEATHEAIVGVGKQWSGARALEALLTVAGELRGPPLQLDTGQLLKIAK RGGVTAVEAVHAWRNALTGAPLNLTPQQVVAIASNGGGKQALETVQ RLLPVLCQAHGLTPQQVVAIASNNGGKQALETVQRLLPVLCQAHGLTP EQVVAIASHDGGKQALETVQRLLPVLCQAHGLTPEQVVAIASNGGGK QALETVQRLLPVLCQAHGLTPEQVVAIASNNGGKQALETVQRLLPVLC QAHGLTPEQVVAIASHDGGKQALETVQRLLPVLCQAHGLTPQQVVAI ASHDGGKQALETVQRLLPVLCQAHGLTPEQVVAIASNNGGKQALETV QRLLPVLCQAHGLTPEQVVAIASNNGGKQALETVQALLPVLCQAHGLT PQQVVAIASHDGGKQALETVQRLLPVLCQAHGLTPQQVVAIASNGGG KQALETVQRLLPVLCQAHGLTPQQVVAIASHDGGKQALETVQRLLPVL CQAHGLTPEQVVAIASNGGGKQALETVQRLLPVLCQAHGLTPEQVVAI ASHDGGKQALETVQRLLPVLCQAHGLTPEQVVAI ASHDGGKQALETVQRLLPVLCQAHGLTPEQVVAI ASHDGGKQALETVQRLLPVLCQAHGLTPEQVVAI ASHDGGKQALETVQRLLPVLCQAHGLTPEQVVAIASNGGGKQALETV QRLLPVLCQAHGLTPQQVVAIASNIGGRPALESIVAQLSRPDPALAALT NDHLVALACLGGRPALDAVKKGLGDPISRSQLVKSELEEKKSELRHKLKY VPHEYIELIEIARNSTQDRILEMKVMEFFMKVYGYRGKHLGGSRKPDG AIYTVGSPIDYGVIVDTKAYSGGYNLPIGQADEMQRYVEENQTRNKHI NPNEWWKVYPSSVTEFKFLFVSGHFKGNYKAQLTRLNHITNCNGAVLS VEELLIGGEMIKAGTLTLEEVRRKFNNGEINFAAD
Diana de CD38ex1_T5	N/A	7	TGATCCTCGTCGTGGTgctcgcggtggtcgtccCGAGGTGGCGCCAGCA

Nombre	TALEN L/R	SEQ ID n.°	Secuencia de ácido nucleico o secuencia de repeticiones
CD38ex1_T5-L	L	8	MGDPKKKRKVIDYPYDVPDYAIDIADLRTLGYSQQQQEKIKPKVRSTVA
TALEN			QHHEALVGHGFTHAHIVALSQHPAALGTVAVKYQDMIAALPEATHEA
			IVGVGKQWSGARALEALLTVAGELRGPPLQLDTGQLLKIAKRGGVTAV
			EAVHAWRNALTGAPLNLTPQQVVAIASNGGGKQALETVQRLLPVLCQ
			AHGLTPEQVVAIASNNGGKQALETVQALLPVLCQAHGLTPQQVVAIA
			SNIGGKQALETVQRLLPVLCQAHGLTPQQVVAIASNGGGKQALETVQ
			RLLPVLCQAHGLTPQQVVAIASHDGGKQALETVQRLLPVLCQAHGLTP
			QQVVAIASHDGGKQALETVQRLLPVLCQAHGLTPQQVVAIASNGGGK
			QALETVQRLLPVLCQAHGLTPQQVVAIASHDGGKQALETVQRLLPVLC
			QAHGLTPQQVVAIASNNGGKQALETVQRLLPVLCQAHGLTPQQVVAI
			ASNGGGKQALETVQRLLPVLCQAHGLTPQQVVAIASHDGGKQALETV
			QRLLPVLCQAHGLTPQQVVAIASNNGGKQALETVQRLLPVLCQAHGL
			TPEQVVAIASNGGGKQALETVQRLLPVLCQAHGLTPQQVVAIASNNG
			GKQALETVQRLLPVLCQAHGLTPEQVVAIASNNGGKQALETVQALLPV
			LCQAHGLTPQQVVAIASNGGGRPALESIVAQLSRPDPALAALTNDHLV
			ALACLGGRPALDAVKKGLGDPISRSQLVKSELEEKKSELRHKLKYVPHEY
			IELIEIARNSTQDRILEMKVMEFFMKVYGYRGKHLGGSRKPDGAIYTVG
			SPIDYGVIVDTKAYSGGYNLPIGQADEMQRYVEENQTRNKHINPNEW
			WKVYPSSVTEFKFLFVSGHFKGNYKAQLTRLNHITNCNGAVLSVEELLI
			GGEMIKAGTLTLEEVRRKFNNGEINFAAD
CD38ex1_T5-R	R	9	MGDPKKKRKVIDKETAAAKFERQHMDSIDIADLRTLGYSQQQQEKIKP
TALEN			KVRSTVAQHHEALVGHGFTHAHIVALSQHPAALGTVAVKYQDMIAAL
			PEATHEAIVGVGKQWSGARALEALLTVAGELRGPPLQLDTGQLLKIAK
			RGGVTAVEAVHAWRNALTGAPLNLTPQQVVAIASHDGGKQALETVQ
			RLLPVLCQAHGLTPQQVVAIASNNGGKQALETVQRLLPVLCQAHGLTP
			EQVVAIASNIGGKQALETVQRLLPVLCQAHGLTPEQVVAIASNNGGKQ
			ALETVQRLLPVLCQAHGLTPEQVVAIASNNGGKQALETVQRLLPVLCQ
			AHGLTPEQVVAIASNGGGKQALETVQRLLPVLCQAHGLTPQQVVAIAS
			NNGGKQALETVQRLLPVLCQAHGLTPEQVVAIASNNGGKQALETVQR
			LLPVLCQAHGLTPEQVVAIASHDGGKQALETVQALLPVLCQAHGLTPQ
			QVVAIASNNGGKQALETVQRLLPVLCQAHGLTPQQVVAIASHDGGKQ
			ALETVQRLLPVLCQAHGLTPQQVVAIASHDGGKQALETVQRLLPVLCQ
			AHGLTPEQVVAIASNIGGKQALETVQRLLPVLCQAHGLTPEQVVAIAS
			NNGGKQALETVQRLLPVLCQAHGLTPEQVVAIASHDGGKQALETVQR
			LLPVLCQAHGLTPQQVVAIASNIGGRPALESIVAQLSRPDPALAALTND
			HLVALACLGGRPALDAVKKGLGDPISRSQLVKSELEEKKSELRHKLKYVP
			HEYIELIEIARNSTQDRILEMKVMEFFMKVYGYRGKHLGGSRKPDGAIY
			TVGSPIDYGVIVDTKAYSGGYNLPIGQADEMQRYVEENQTRNKHINPN
			EWWKVYPSSVTEFKFLFVSGHFKGNYKAQLTRLNHITNCNGAVLSVEE
			LLIGGEMIKAGTLTLEEVRRKFNNGEINFAAD

Estrategia para la expresión del CAR dirigido contra CD38

Estructura y composición de los CAR dirigidos contra CD38

En la Tabla 17 se presentan la cadena VH y VL del scFv dirigido contra CD38. La SEQ ID NO:10-11 corresponde al anticuerpo humanizado dirigido contra CD38 daratumumab (Genmab) y la SEQ ID NO: 12-13 al MOR202 (o MOR03087) tal como se describe en la patente US 8.263.746B.

La SEQ ID NO:14-20 y la SEQ ID NO:21-26 corresponden a la secuencia de CDR para respectivamente la cadena VH (HCDR) y la cadena VL (LCDR) tal como se describe en la solicitud WO 2008/047242.

Tabla 17: Secuencias de las cadenas VH y VL de los anticuerpos scFv dirigidos contra CD38 daratumumab, MOR202 y de las CDR específicas para las cadenas VH y VL.

VI						ecíficas para las cadenas VH y VL.
GLEWVSAISGSGGTYYADSVKGRFTISRDNSKNTLYLQMNSLR AEDTAVYFCAKDKILWFGEPVEDYWGGGTLVTVSSASTKGPSV FPLAPSSKSTSGGTAALGCLVKDYFPEPVTVSWNSGALTSGVHT FPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVNHKPSNTKVDKR VEPKSCDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEV TCVVVDVSHEDPEVKFNWVVDGVEVHNAKTKPREEQYNSTYR VVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPR PQVYTLPPSREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPE NNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEA LHNHYTQKSLSLSPGK VL 11 EIVLTQSPATLSLSPGERATLSCRASQSVSSYLAWVQQKPGQAP RILLYDASNRATGIPARFSGSGSGTDFTLTISSLEPEDFAVYYCQQ RSNWPPTFGQGTKVEIKRTVAAPSVFIFPPSDEQLKSGTASVVCL LNNFYPREAKVQWKVDNALQSGNSQESVTEQDSKDSTYSLSST LTISKADVEKHKVVACEVTHQGLSSPVTKSFNRGEC MOR202 (0 VH 12 QVQLVESGGGLVQPGGSLRLSCAASGFTFSSYYMNWVRQAPG KGLEWVSGISGDPSNTYYADSVKGRFTISRDNSKNTLYLQMNSL RAEDTAVYYCARDLPLVYTGFAYWGQGTRLVTVSS VL 13 DIELTQPPSVSVAPGGTARISCSGDNICHTHYYVYWYQQKPGQAP VLVIYGDSKRPSGIPERFSGSNSGNTATLTISGTQAEDEADYYCQ TYTGGASLVFGGGTKLTVLGQ HCDR1-1 VH 14 GFFSSYYMN HCDR2 VH 16 GISGDPSNTYYADSVKG HCDR3 VH 17 DLPLVYTGFAY HCDR4 VH 18 DYWMQ HCDR5 VH 19 TIYPGDGDTGYAQKFK HCDR6 VH 20 GDYYGSNSLDY LCDR1 VL 21 SGDNLRHYVYY LCDR2 VL 22 GDSKRPS LCDR3 VL 23 QTYTGGASL LCDR4 VL 24 KASQDVSTVVA	Nombre		VH o		ID	Polipéptido o secuencia de ácido nucleico
AEDTAVYFCAKDKILWFGEPVFDYWGQGTLVTVSSASTKGPSV	Daratumumab	VH		10		EVQLLESGGGLVQPGGSLRLSCAVSGFTFNSFAMSWVRQAPGK
FPLAPSSKSTSGGTAALGCLVKDYFPEPVTVSWNSGALTSGVHT						GLEWVSAISGSGGGTYYADSVKGRFTISRDNSKNTLYLQMNSLR
FPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVNHKPSNTKVDKR						AEDTAVYFCAKDKILWFGEPVFDYWGQGTLVTVSSASTKGPSV
VEPKSCDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEV						FPLAPSSKSTSGGTAALGCLVKDYFPEPVTVSWNSGALTSGVHT
TCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTYR VVSVLTVLHQDWLNGKEVKCKVSNKALPAPIEKTISKAKGQPRE PQVYTLPSREMTKNQVSLTCLVKGFYPSDIAVEWESNGQPE NYNKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEA LHNHYTQKSLSLSPGK VL 11 EIVLTQSPATLSLSPGERATLSCRASQSVSSYLAWYQQKPGQAP RLLIVDASNRATGIPARFSGSGSGTDFTLTISSLEPEDFAVYYCQQ RSNWPPTFGQGTKKVEIKRTVAAPSVFIFPPSDEQLKSGTASVVCL LNNFYPREAKVQWKVDNALQSGNSQESVTEQDSKDSTYSLSST LTLSKADYEKHKVYACEVTHQGLSSPVTKSFNRGEC MOR202 (o VH 12 QVQLVESGGGLVQPGGSLRLSCAASGFTFSSYYMNWVRQAPG KGLEWVSGISGDPSNTYYADSVKGRFTISRDNSKNTLYLQMNSL RAEDTAVYYCARDLPLVYTGFAYWQQGTLVTVSS VL 13 DIELTQPPSVSVAPGQTARISCSGDNLRHYYVWWYQQKPGQAP VLVIYGDSKRPSGIPERFSGSNSGNTATLTISGTQAEDEADIYYCQ TYTGGASLVFGGGTKLTVLGQ HCDR1-1 VH 14 GFTFSSYYMN HCDR2 VH 15 SYYMN HCDR2 VH 16 GISGDPSNTYYADSVKG HCDR3 VH 17 DLPLVYTGFAY HCDR3 VH 17 DLPLVYTGFAY HCDR4 VH 18 DYWMQ HCDR5 VH 19 TIYPGDGDTGYAQKFK HCDR6 VH 20 GDYYGSNSLDY LCDR1 VL 21 SGDNLRHYVYY LCDR2 VL 22 GDSKRPS LCDR3 VL 23 QTYTGGASL LCDR4 VL 24 KASQDVSTVVA						FPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVNHKPSNTKVDKR
VVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPRE PQVYTLPPSREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPE NNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEA LHNHYTQKSLSLSPGK VL 11 EIVLTQSPATLSLSPGERATLSCRASQSVSSYLAWYQQKPGQAP RLLIVDASNRATGIPARFSGSGSGTDFTLTISSLEPEDFAVYYCQQ RSNWPPTFGQTKVEIKRTVAAPSVFIFPPSDEQLKSGTASVVCL LNNFYPREAKVQWKVDNALQSGNSQESVTEQDSKDSTYSLSST LTLSKADYEKHKVYACEVTHQGLSSPVTKSFNRGEC WOR202 MOR03087) VL 12 QVQLVESGGGLVQPGGSLRLSCAASGFTFSSYYMNWVRQAPG KGLEWVSGISGDPSNTYYADSVKGRFTISRDNSKNTLYLQMNSL RAEDTAVYYCARDLPLVYTGFAYWGQGTLVTVSS VL 13 DIELTQPPSVSVAPGQTARISCSGDNLRHYVVYWYQQKPGQAP VLVIYGDSKRPSGIPERFSGSNSGNTATLTISGTQAEDEADYYCQ TYTGGASLVFGGGTKLTVLGQ HCDR1-1 VH 14 GFTFSSYYMN HCDR1-2 VH 15 SYYMN HCDR2 VH 16 GISGDPSNTYYADSVKG HCDR3 VH 17 DLPLVYTGFAY HCDR4 VH 18 DYWMQ HCDR5 VH 19 TIYPGDGDTGYAQKFK HCDR6 VH 20 GDYYGSNSLDY LCDR1 VL 21 SGDNLRHYVVY LCDR2 VL 22 GDSKRPS LCDR3 VL 23 QTYTGGASL LCDR4 VL 24 KASQDVSTVVA LCDR5 VL 24 KASQDVSTVVA						VEPKSCDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEV
PQVYTLPPSREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPE NNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEA LHNHYTQKSLSLSPGK VL 11 EIVLTQSPATLSLSPGERATLSCRASQSVSSYLAWYQQKPGQAP RLLIVDASNRATGIPARFSGSGSGTDFTLTISSLEPEDFAVYYCQQ RSNWPPTFGQGTKVEIKRTVAAPSVFIFPPSDEQLKSGTASVVCL LNNFYPREAKVQWKVDNALQSGNSQESVTEQDSKDSTYSLSST LTLSKADYEKHKVYACEVTHQGLSSPVTKSFNRGEC MOR202 MOR202 MOR202 MOR203 VL 12 QVQLVESGGGLVQPGGSLRLSCAASGFTFSSYYMNWVRQAPG KGLEWVSGISGDPSNTYYADSVKGRFTISRDNSKNTLYLQMNSL RAEDTAVYYCARDLPLVYTGFAYWGQGTLVTVSS VL 13 DIELTQPPSVSVAPGQTARISCSGDNLRHYYVYWQQKPGQAP VLVIYGDSKRPSGIPERFSGSNSGNTATLTISGTQAEDEADYYCQ TYTGGASLVFGGGTKLTVLGQ HCDR1-1 VH 14 GFTFSSYYMN HCDR2 VH 16 GISGDPSNTYYADSVKG HCDR3 VH 17 DLPLVYTGFAY HCDR4 VH 18 DYWMQ HCDR5 VH 19 TIYPGDGDTGYAQKFK HCDR6 VH 20 GDYYGSNSLDY LCDR1 VL 21 SGDNLRHYYVY LCDR2 VL 22 GDSKRPS LCDR3 VL 23 QTYTGGASL LCDR4 VL 24 KASQDVSTVVA						`
NNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEA LHNHYTQKSLSLSPGK VL 11 EIVLTQSPATLSLSPGERATLSCRASQSVSSYLAWYQQKPGQAP RLIIYDASNRATGIPARFSGSGSGTDFTLTISSLEPEDFAVYYCQQ RSNWPPTFGQGTKVEIKRTVAAPSVFIFPPSDEQLKSGTASVVCL LNNFYPREAKVQWKVDNALQSGNSQESVTEQDSKDSTYSLSST LTLSKADYEKHKVYACEVTHQGLSSPVTKSFNRGEC MOR202 MOR202 MOR03087) (0 VH 12 QVQLVESGGGLVQPGGSLRLSCAASGFTFSSYYMNWVRQAPG KGLEWYSGISGDPSNTYYADSVKGRFTISRDNSKNTLYLQMNSL RAEDTAVYYCARDLPLVYTGFAYWGQGTLVTVSS VL 13 DIELTQPPSVSVAPGQTARISCSGDNLRHYYVYWYQQKPGQAP VLVIYGDSKRPSGIPERFSGNSGNTATLTISGTQAEDEADYYCQ TYTGGASLVFGGGTKLTVLGQ HCDR1-1 VH 14 GFTFSSYYMN HCDR2 VH 15 SYYMN HCDR2 VH 16 GISGDPSNTYYADSVKG HCDR3 VH 17 DLPLVYTGFAY HCDR4 VH 18 DYWMQ HCDR5 VH 19 TIYPGDGDTGYAQKFK HCDR6 VH 20 GDYYGSNSLDY LCDR1 VL 21 SGDNLRHYYVY LCDR2 VL 22 GDSKRPS LCDR3 VL 23 QTYTGGASL KASQDVSTVVA LCDR4 VL 24 KASQDVSTVVA						
LHNHYTQKSLSLSPGK						
VL						· · · · · · · · · · · · · · · · · · ·
RILLIYDASNRATGIPARFSGSGSGTDFTLTISSLEPEDFAVYYCQQ RSNWPPTFQQGTKVEIKRTVAAPSVFIFPPSDEQLKSGTASVVCL LNNFYPREAKVQWKVDNALQSGNSQESVTEQDSKDSTYSLSST LTLSKADYEKHKVYACEVTHQGLSSPVTKSPNRGEC MOR202 (o VH 12 QVQLVESGGGLVQPGGSLRLSCAASGFTFSSYYMNWVRQAPG KGLEWVSGISGDPSNTYYADSVKGRFTISRDNSKNTLYLQMINSL RAEDTAVYYCARDLPLVYTGFAYWGQGTLVTVSS VL 13 DIELTQPPSVSVAPGQTARISCSGDNLRHYYVYWQQKPGQAP VLVIYGDSKRPSGIPERFSGSNSGNTATLTISGTQAEDEADYYCQ TYTGGASLVFGGGTKLTVLGQ HCDR1-1 VH 14 GFTFSSYYMN HCDR2 VH 15 SYYMN HCDR2 VH 16 GISGDPSNTYYADSVKG HCDR3 VH 17 DLPLVYTGFAY HCDR4 VH 18 DYWMQ HCDR4 VH 18 DYWMQ HCDR5 VH 19 TIYPGDGDTGYAQKFK HCDR6 VH 20 GDYYGSNSLDY LCDR1 VL 21 SGDNLRHYYVY LCDR2 VL 22 GDSKRPS LCDR3 VL 23 QTYTGGASL LCDR4 VL 24 KASQDVSTVVA LCDR5 VL 25 SASYRYI		VI		11		· · · · · · · · · · · · · · · · · · ·
RSNWPPTFGQGTKVEIKRTVAAPSVFIFPPSDEQLKSGTASVVCL LNNFYPREAKVQWKVDNALQSGNSQESVTEQDSKDSTYSLSST LTLSKADYEKHKVYACEVTHQGLSSPVTKSFNRGEC		V L		' '		
LINNFYPREAKVQWKVDNALQSGNSQESVTEQDSKDSTYSLSST LTLSKADYEKHKVYACEVTHQGLSSPVTKSFNRGEC MOR202 MOR03087) (0 VH						
NOR202						
KGLEWVSGISGDPSNTYYADSVKGRFTISRDNSKNTLYLQMNSL RAEDTAVYYCARDLPLVYTGFAYWGQGTLVTVSS						LTLSKADYEKHKVYACEVTHQGLSSPVTKSFNRGEC
RAEDTAVYYCARDLPLVYTGFAYWGQGTLVTVSS VL 13 DIELTQPPSVSVAPGQTARISCSGDNLRHYYVYWYQQKPGQAP VLVIYGDSKRPSGIPERFSGSNSGNTATLTISGTQAEDEADYYCQ TYTGGASLVFGGGTKLTVLGQ HCDR1-1 VH 14 GFTFSSYYMN HCDR1-2 VH 15 SYYMN HCDR2 VH 16 GISGDPSNTYYADSVKG HCDR3 VH 17 DLPLVYTGFAY HCDR4 VH 18 DYWMQ HCDR5 VH 19 TIYPGDGDTGYAQKFK HCDR6 VH 20 GDYYGSNSLDY LCDR1 VL 21 SGDNLRHYYVY LCDR2 VL 22 GDSKRPS LCDR3 VL 23 QTYTGGASL LCDR4 VL 24 KASQDVSTVVA LCDR5 VL 25 SASYRYI		VH		12		QVQLVESGGGLVQPGGSLRLSCAASGFTFSSYYMNWVRQAPG
VL 13 DIELTQPPSVSVAPGQTARISCSGDNLRHYYVYWYQQKPGQAP VLVIYGDSKRPSGIPERFSGSNSGNTATLTISGTQAEDEADYYCQ TYTGGASLVFGGGTKLTVLGQ HCDR1-1 VH 14 GFTFSSYYMN HCDR1-2 VH 15 SYYMN HCDR2 VH 16 GISGDPSNTYYADSVKG HCDR3 VH 17 DLPLVYTGFAY HCDR4 VH 18 DYWMQ HCDR5 VH 19 TIYPGDGDTGYAQKFK HCDR6 VH 20 GDYYGSNSLDY LCDR1 VL 21 SGDNLRHYYVY LCDR2 VL 22 GDSKRPS LCDR3 VL 23 QTYTGGASL LCDR4 VL 24 KASQDVSTVVA LCDR5 VL 25 SASYRYI	MOR03087)					KGLEWVSGISGDPSNTYYADSVKGRFTISRDNSKNTLYLQMNSL
VLVIYGDSKRPSGIPERFSGSNSGNTATLTISGTQAEDEADYYCQ TYTGGASLVFGGGTKLTVLGQ HCDR1-1 VH 14 GFTFSSYYMN HCDR1-2 VH 15 SYYMN HCDR2 VH 16 GISGDPSNTYYADSVKG HCDR3 VH 17 DLPLVYTGFAY HCDR4 VH 18 DYWMQ HCDR5 VH 19 TIYPGDGDTGYAQKFK HCDR6 VH 20 GDYYGSNSLDY LCDR1 VL 21 SGDNLRHYYVY LCDR2 VL 22 GDSKRPS LCDR3 VL 23 QTYTGGASL LCDR4 VL 24 KASQDVSTVVA LCDR5 VL 25 SASYRYI						RAEDTAVYYCARDLPLVYTGFAYWGQGTLVTVSS
HCDR1-1 VH 14 GFTFSSYYMN HCDR1-2 VH 15 SYYMN HCDR2 VH 16 GISGDPSNTYYADSVKG HCDR3 VH 17 DLPLVYTGFAY HCDR4 VH 18 DYWMQ HCDR5 VH 19 TIYPGDGDTGYAQKFK HCDR6 VH 20 GDYYGSNSLDY LCDR1 VL 21 SGDNLRHYYVY LCDR2 VL 22 GDSKRPS LCDR3 VL 23 QTYTGGASL LCDR4 VL 24 KASQDVSTVVA LCDR5 VL 25 SASYRYI		VL		13		, , , , , , , , , , , , , , , , , , , ,
HCDR1-1						
HCDR1-2	LIODRA 4			4.4		· · · · · · · · · · · · · · · · · · ·
HCDR2						
HCDR3						
HCDR4 VH 18 DYWMQ HCDR5 VH 19 TIYPGDGDTGYAQKFK HCDR6 VH 20 GDYYGSNSLDY LCDR1 VL 21 SGDNLRHYYVY LCDR2 VL 22 GDSKRPS LCDR3 VL 23 QTYTGGASL LCDR4 VL 24 KASQDVSTVVA LCDR5 VL 25 SASYRYI	HCDR2					
HCDR5 VH 19 TIYPGDGDTGYAQKFK HCDR6 VH 20 GDYYGSNSLDY LCDR1 VL 21 SGDNLRHYYVY LCDR2 VL 22 GDSKRPS LCDR3 VL 23 QTYTGGASL LCDR4 VL 24 KASQDVSTVVA LCDR5 VL 25 SASYRYI	HCDR3			17		DLPLVYTGFAY
HCDR6 VH 20 GDYYGSNSLDY LCDR1 VL 21 SGDNLRHYYVY LCDR2 VL 22 GDSKRPS LCDR3 VL 23 QTYTGGASL LCDR4 VL 24 KASQDVSTVVA LCDR5 VL 25 SASYRYI	HCDR4	VH		18		DYWMQ
LCDR1 VL 21 SGDNLRHYYVY LCDR2 VL 22 GDSKRPS LCDR3 VL 23 QTYTGGASL LCDR4 VL 24 KASQDVSTVVA LCDR5 VL 25 SASYRYI	HCDR5	VH		19		TIYPGDGDTGYAQKFK
LCDR2 VL 22 GDSKRPS LCDR3 VL 23 QTYTGGASL LCDR4 VL 24 KASQDVSTVVA LCDR5 VL 25 SASYRYI	HCDR6	VH		20		GDYYGSNSLDY
LCDR3 VL 23 QTYTGGASL LCDR4 VL 24 KASQDVSTVVA LCDR5 VL 25 SASYRYI	LCDR1	VL		21		SGDNLRHYYVY
LCDR4 VL 24 KASQDVSTVVA LCDR5 VL 25 SASYRYI	LCDR2	VL		22		GDSKRPS
LCDR5 VL 25 SASYRYI	LCDR3	VL		23		QTYTGGASL
	LCDR4	VL				
LCDR6 VL 26 QQHSPPYT	LCDR5					
	LCDR6	VL		26		QQHSPPYT

Para el scFv daratumumab se han diseñado tres diferentes construcciones CAR (GMB005-V1 y V2 y V3) tales como las presentadas en la Figura 11A y se presenta su secuencia en la Tabla 18 siguiente. Las tres construcciones comparten los mismos componentes, en términos de péptidos de señalización (CD8α), enlazador GS (entre las cadenas VH y VL de scFv), dominio transmembrana (TM), dominio 4-1BB coestimulador, y dominio de activación CD3ζ (secuencias presentadas en la Tabla 18). Sus diferencias proceden de la elección de la bisagra (Tabla 18):

10 V1: bisagra de FcRlla

V2: bisagra de CD8a

V3: bisagra de IgG1

15

Tabla 18: Secuencia polipeptídica de 3 estructuras diferentes de los CAR dirigidos contra CD38 basados en el scFv daratumumab y de los componentes individuales utilizados

		umumab y de los componentes individuales utilizados
Nombre del CAR	SEQ ID n.º	
CD8α-Péptido de señalización (PS)	27	MALPVTALLLPLALLLHAARP
enlazador GS	28	GGGGSGGGGGS
bisagra de FCRIIα	29	GLAVSTISSFFPPGYQ
bisagra de CD8α	30	TTTPAPRPPTPAPTIASQPLSLRPEACRPAAGGAVHTRGLDFACDIYIWAPLAGTCGVLL LSLVITLYC
bisagra de IgG1	31	EPKSPDKTHTCPPCPAPPVAGPSVFLFPPKPKDTLMIARTPEVTCVVVDVSHEDPEVKF NWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPI EKTISKAKGQPREPQVYTLPPSRDELTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNY KTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK
dominio TM	32	IYIWAPLAGTCGVLLLSLVITLYC
dominio 4-1 BB coestimulador	33	KRGRKKLLYIFKQPFMRPVQTTQEEDGCSCRFPEEEEGGCEL
Dominio de activación CD3ζ	34	RVKFSRSADAPAYQQGQNQLYNELNLGRREEYDVLDKRRGRDPEMGGKPRRKNPQE GLYNELQKDKMAEAYSEIGMKGERRRGKGHDGLYQGLSTATKDTYDALHMQALPPR
GMB005-V1 CAR	35	PLALLLHAARPEVQLLESGGGLVQPGGSLRLSCAVSGFTFNSFAMSWVRQAPG KGLEWVSAISGSGGGTYYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYF CAKDKILWFGEPVFDYWGQGTLVTVSSASGGGGSGGGSGGGSEIVLTQSP ATLSLSPGERATLSCRASQSVSSYLAWYQQKPGQAPRLLIYDASNRATGIPARFS GSGSGTDFTLTISSLEPEDFAVYYCQQRSNWPPTFGQGTKVEIKGLAVSTISSFF PPGYQIYIWAPLAGTCGVLLLSLVITLYCKRGRKKLLYIFKQPFMRPVQTTQEED GCSCRFPEEEEGGCELRVKFSRSADAPAYQQGQNQLYNELNLGRREEYDVLDK RRGRDPEMGGKPRRKNPQEGLYNELQKDKMAEAYSEIGMKGERRRGKGHD GLYQGLSTATKDTYDA
GMB005-V2 CAR	36	PLALLLHAARPEVQLLESGGGLVQPGGSLRLSCAVSGFTFNSFAMSWVRQAPG KGLEWVSAISGSGGGTYYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYF CAKDKILWFGEPVFDYWGQGTLVTVSSASGGGGSGGGSGGGSEIVLTQSP ATLSLSPGERATLSCRASQSVSSYLAWYQQKPGQAPRLLIYDASNRATGIPARFS GSGSGTDFTLTISSLEPEDFAVYYCQQRSNWPPTFGQGTKVEIKTTTPAPRPPT PAPTIASQPLSLRPEACRPAAGGAVHTRGLDFACDIYIWAPLAGTCGVLLLSLVI TLYCKRGRKKLLYIFKQPFMRPVQTTQEEDGCSCRFPEEEEGGCELRVKFSRSA DAPAYQQGQNQLYNELNLGRREEYDVLDKRRGRDPEMGGKPRRKNPQEGLY NELQKDKMAEAYSEIGMKGERRRGKGHDGLYQGLSTATKDTYDA
GMB005-V3 CAR	37	PLALLLHAARPEVQLLESGGGLVQPGGSLRLSCAVSGFTFNSFAMSWVRQAPG KGLEWVSAISGSGGGTYYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYF CAKDKILWFGEPVFDYWGQGTLVTVSSASGGGGSGGGSGGGSEIVLTQSP ATLSLSPGERATLSCRASQSVSSYLAWYQQKPGQAPRLLIYDASNRATGIPARFS GSGSGTDFTLTISSLEPEDFAVYYCQQRSNWPPTFGQGTKVEIKEPKSPDKTHT CPPCPAPPVAGPSVFLFPPKPKDTLMIARTPEVTCVVVDVSHEDPEVKFNWYV DGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPI EKTISKAKGQPREPQVYTLPPSRDELTKNQVSLTCLVKGFYPSDIAVEWESNGQ PENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQ KSLSLSPGKIYIWAPLAGTCGVLLLSLVITLYCKRGRKKLLYIFKQPFMRPVQTTQ EEDGCSCRFPEEEEGGCELRVKFSRSADAPAYQQGQNQLYNELNLGRREEYDV LDKRRGRDPEMGGKPRRKNPQEGLYNELQKDKMAEAYSEIGMKGERRRGKG HDGLYQGLSTATKDTYDA

Cribados

15

20

Se transfectaron TALEN de CD38 en el día 4 después de la activación. 3 días después, las células deficientes en CD38 se clasificaron mediante selección negativa y se transfectaron 3 días después con los ARNm de los CAR dirigidos contra CD38. Las moléculas CAR generadas se cribarán a continuación para la actividad de expresión y desgranulación hacia la expresión de CDR38 de las líneas de células diana tras la transfección transitoria del ARNm de CAR. Las líneas de células diana que expresan diferentes niveles de expresión de CD38 (Figura 11B) se usarán para el ensayo de actividad:

- U266 CD38+ y U266 CD38- obtenidas mediante separación magnética utilizando microperlas dirigidas contra CD38
 - L363, una línea de células de mieloma múltiple que expresan niveles intermedios de CD38
 - Daudi, una línea de células derivada de linfoma de Burkitt que expresa niveles altos de CD38
 - K562, una línea de células negativa para CD38 derivada de leucemia mielógena crónica.

Al primer cribado seguirá una segunda etapa de cribado en la que se ensayarán numerosos candidatos seleccionados para su capacidad de inducir la desgranulación, liberación de IFNy y actividad citotóxica específica hacia las líneas de células diana seleccionadas. A continuación se reducirá la selección de candidatos y se evaluarán algunos candidatos seleccionados para la producción de vectores de lentivirus y la actividad de CAR en linfocitos T CD38 KO que expresan de forma estable los CAR.

Ejemplo 2 ACTIVIDAD DEL CAR DIRIGIDO CONTRA CS1 EN EL CONTEXTO DE CS1 KO

Presentación de la diana de CS1

Mieloma múltiple (MM) es una neoplasia maligna de linfocitos B caracterizada por la expansión clónica anómala de las células plasmática (PC) en la médula ósea, con unos 21.700 nuevos casos estimados y 10.710 muertes de MM identificadas en los Estados Unidos en 2012 (Siegel R, et al. Cancer J Clin 2012 62:10-29). En 2013, se ha estimado que se diagnosticarán de nuevo 22.350 individuos con MM en los Estados Unidos y que morirán de este 10.710 personas, que representan el 20% de las muertes de todas las neoplasias malignas hematológicas. A pesar del uso

de inhibidores del proteosoma y de fármacos inmunomoduladores, que han mejorado la supervivencia global (Palumbo A, et al. *Leukemia* 2009 23:449-456), MM sigue siendo una neoplasia maligna incurable (Podar K, et al. *Leukemia* 2009 23:10-24) para la cual se necesitan urgentemente novedosas estrategias terapéuticas.

La glicoproteína CS1 de la superficie celular (denominada también en la bibliografía SLAMF7, CD319 o CRACC - Secuencia de referencia NCBI: NP_067004.3) se expresa mucho y de forma muy ubicua sobre la superficie de las células de mieloma (Hsi ED, et al. Clin Cancer Res 2008 14:2775-84). CS1 se expresa a niveles muy bajos en la mayoría de células inmunoefectoras, incluyendo los linfocitos citolíticos naturales (NK), algunos subgrupos de linfocitos T, y linfocitos B normales, y es casi indetectable en células mieloides (Hsi ED, et al. Clin Cancer Res 2008 14:2775-84). De forma destacable, CS1 se expresa de forma minoritaria en hemocitoblastos humanos (Hsi ED, et al. Clin Cancer Res 2008 14:2775-84), que se pueden usar para el trasplante de citoblastos para tratar neoplasias malignas hematológicas, incluyendo MM. Las funciones de CS1 en MM siguen sin entenderse de forma completa, y se ha documentado que CS1 puede jugar un papel en la adhesión de células de mieloma, crecimiento clonógeno, y tumorigenicidad (Benson DM Jr, et al. J Clin Oncol 2012 30:2013-5; Tai YT, et al. Blood 2009 113:4309-18).

Estructura del CAR dirigido contra CS1

Las mismas estructuras V1, V2 y V3 se diseñan tal como en el Ejemplo 1 para el CAR monocatenario diana del antígeno dirigido contra CD38, con los mismos componentes en términos de bisagra, dominio transmembrana, dominios de coactivación y dominios de transducción (tales como los representados gráficamente en la Figura 11A y las secuencias que se muestran en la Tabla 18).

En la Tabla 19 se presentan las cadenas VH y VL del scFv dirigido contra CS1. La SEQ ID NO:38-40-42-44-46 y la SEQ ID NO:39-41-43-45-47 corresponden respectivamente a la cadena VH y la cadena VL del scFv Luc63, Luc90, Luc34, LucX1 y LucX2 de murino.

En la Tabla 20 se presentan los CAR dirigidos contra CS1 con el anterior scFv; basándose estos CAR en las versiones V1, V2 y V3 de la Figura 11A, en la que se usan respectivamente la bisagra FcERγ corta, la bisagra CD8α media y la bisagra IgG1 larga. Las partes subrayadas corresponden a las cadenas VH y VL de scFv unidas por un enlazador.

60

55

45

50

Tabla 19: Secuencias de las cadenas VH y VL de los anticuerpos scFv dirigidos contra CS1

Nombre			Secuencia polipeptídica
Luc63	VH	38	EVKLLESGGGLVQPGGSLKLSCAASGFDFSRYWMSWVRQAPGKGLEWIG EINPDSSTINYTPSLKDKFIISRDNAKNTLYLQMSKVRSEDTALYYCARPDGN YWYFDVWGAGTTVTVSS
	VL	39	DIVMTQSHKFMSTSVGDRVSITCKASQDVGIAVAWYQQKPGQSPKLLIY WASTRHTGVPDRFTGSGSGTDFTLTISNVQSEDLADYFCQQYSSYPYTFGG GTKLEIK
Luc90	VH	40	QVQLQQPGAELVRPGASVKLSCKASGYSFTTYWMNWVKQRPGQGLEWI GMIHPSDSETRLNQKFKDKATLTVDKSSSTAYMQLSSPTSEDSAVYYCARS TMIATRAMDYWGQGTSVTVSS
	VL	41	DIVMTQSQKSMSTSVGDRVSITCKASQDVITGVAWYQQKPGQSPKLLIYS ASYRYTGVPDRFTGSGSGTDFTFTISNVQAEDLAVYYCQQHYSTPLTFGAG TKLELK
Luc34	VH	42	QVQLQQSGAELARPGASVKLSCKASGYTFTSYWMQWVKQRPGQGLEWI GAIYPGDGDTRYTQKFKGKATLTADKSSSTAYMQLSSLASEDSAVYYCARG KVYYGSNPFAYWGQGTLVTVSA
	VL	43	DIQMTQSSSYLSVSLGGRVTITCKASDHINNWLAWYQQKPGNAPRLLISG ATSLETGVPSRFSGSGSGKDYTLSITSLQTEDVATYYCQQYWSTPWTFGGG TKLEIK
LucX1	VH	44	QVQLQQSGPELVKPGASVKISCKASGYAFSSSWMNWVKQRPGQGLEWI GRIYPGDGDTKYNGKFKGKATLTADKSSSTAYMQLSSLTSVDSAVYFCARS TMIATGAMDYWGQGTSVTVSS
	VL	45	ETTVTQSPASLSMAIGEKVTIRCITSTDIDDDMNWYQQKPGEPPKLLISEGN TLRPGVPSRFSSSGYGTDFVFTIENMLSEDVADYYCLQSDNLPLTFGGGTKL EIK
LucX2	VH	46	QVQLQQSGPELVKPGASVKISCKASGYAFSSSWMNWVKQRPGQGLEWI GRIYPGDGDTKYNGKFKGKATLTADKSSSTAYMQLSSLTSVDSAVYFCARS TMIATGAMDYWGQGTSVTVSS
	VL	47	DIVMTQSHKFMSTSVGDRVSITCKASQDVSTAVAWYQQKPGQSPKLLIYS ASYRYTGVPDRFTGSGSGTDFTFTISSVQAEDLAVYYCQQHYSTPPYTFGG GTKLEIK

Tabla 20: Secuencia polipeptídica de CAR dirigidos contra CS1 basados en las versiones V1, V2 y V3 en la Figura 11A

Nombre del CAR	SEQ ID n.º	Secuencia polipeptídica
Luc63-V1 CAR	48	MALPVTALLLPLALLLHAARPEVKLLESGGGLVQPGGSLKLSCAASGFDFSRYWMSWVRQAPGKGL EWIGEINPDSSTINYTPSLKDKFIISRDNAKNTLYLQMSKVRSEDTALYYCARPDGNYWYFDVWGAG TTVTVSSGGGGSGGGGSGGGSDIVMTQSHKFMSTSVGDRVSITCKASQDVGIAVAWYQQKPGQ SPKLLIYWASTRHTGVPDRFTGSGSGTDFTLTISNVQSEDLADYFCQQYSSYPYTFGGGTKLEIKGLAV STISSFFPPGYQKRGRKKLLYIFKQPFMRPVQTTQEEDGCSCRFPEEEEGGCELRVKFSRSADAPAYQ QGQNQLYNELNLGRREEYDVLDKRRGRDPEMGGKPRRKNPQEGLYNELQKDKMAEAYSEIGMKG ERRRGKGHDGLYQGLSTATKDTYDALHMQALPPR
Luc63-V2 CAR	49	MALPVTALLLPLALLLHAARPEVKLLESGGGLVQPGGSLKLSCAASGFDFSRYWMSWVRQAPGKGL EWIGEINPDSSTINYTPSLKDKFIISRDNAKNTLYLQMSKVRSEDTALYYCARPDGNYWYFDVWGAG TTVTVSSGGGGSGGGGGGGGGSDIVMTQSHKFMSTSVGDRVSITCKASQDVGIAVAWYQQKPGQ SPKLLIYWASTRHTGVPDRFTGSGSGTDFTLTISNVQSEDLADYFCQQYSSYPYTFGGGTKLEIKTTTP APRPPTPAPTIASQPLSLRPEACRPAAGGAVHTRGLDFACDIYIWAPLAGTCGVLLLSLVITLYCKRGR KKLLYIFKQPFMRPVQTTQEEDGCSCRFPEEEEGGCELRVKFSRSADAPAYQQGQNQLYNELNLGR REEYDVLDKRRGRDPEMGGKPRRKNPQEGLYNELQKDKMAEAYSEIGMKGERRRGKGHDGLYQG LSTATKDTYDALHMQALPPR

Nombre del CAR	SEQ ID n.º	Secuencia polipeptídica
Luc63-V3 CAR	50	MALPVTALLLPLALLLHAARPEVKLLESGGGLVQPGGSLKLSCAASGFDFSRYWMSWVRQAPGKGL EWIGEINPDSSTINYTPSLKDKFIISRDNAKNTLYLQMSKVRSEDTALYYCARPDGNYWYFDVWGAG TTVTVSSGGGGSGGGGGGGGGGGSDIVMTQSHKFMSTSVGDRVSITCKASQDVGIAVAWYQQKPGQ SPKLLIYWASTRHTGVPDRFTGSGSGTDFTLTISNVQSEDLADYFCQQYSSYPYTFGGGTKLEIKEPKS PDKTHTCPPCPAPPVAGPSVFLFPPKPKDTLMIARTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHN AKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPS RDELTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQG NVFSCSVMHEALHNHYTQKSLSLSPGKKRGRKKLLYIFKQPFMRPVQTTQEEDGCSCRFPEEEEGGC ELRVKFSRSADAPAYQQGQNQLYNELNLGRREEYDVLDKRRGRDPEMGGKPRRKNPQEGLYNELQ KDKMAEAYSEIGMKGERRRGKGHDGLYQGLSTATKDTYDALHMQALPPR
Luc90-V1 CAR	51	MALPVTALLLPLALLLHAARPQVQLQQPGAELVRPGASVKLSCKASGYSFTTYWMNWVKQRPGQ GLEWIGMIHPSDSETRLNQKFKDKATLTVDKSSSTAYMQLSSPTSEDSAVYYCARSTMIATRAMDY WGQGTSVTVSSGGGGSGGGGSGGGSDIVMTQSQKSMSTSVGDRVSITCKASQDVITGVAWYQ QKPGQSPKLLIYSASYRYTGVPDRFTGSGSGTDFTFTISNVQAEDLAVYYCQQHYSTPLTFGAGTKLEL KGLAVSTISSFFPPGYQKRGRKKLLYIFKQPFMRPVQTTQEEDGCSCRFPEEEEGGCELRVKFSRSAD APAYQQGQNQLYNELNLGRREEYDVLDKRRGRDPEMGGKPRRKNPQEGLYNELQKDKMAEAYSE IGMKGERRRGKGHDGLYQGLSTATKDTYDALHMQALPPR
Luc90-V2 CAR	52	MALPVTALLLPLALLLHAARPQVQLQQPGAELVRPGASVKLSCKASGYSFTTYWMNWVKQRPGQ <u>GLEWIGMIHPSDSETRLNQKFKDKATLTVDKSSSTAYMQLSSPTSEDSAVYYCARSTMIATRAMDY</u> <u>WGQGTSVTVSS</u> GGGSGGGGSGGGS <u>DIVMTQSQKSMSTSVGDRVSITCKASQDVITGVAWYQ</u> <u>QKPGQSPKLLIYSASYRYTGVPDRFTGSGSGTDFTFTISNVQAEDLAVYYCQQHYSTPLTFGAGTKLEL</u> <u>KTTTPAPRPPTPAPTIASQPLSLRPEACRPAAGGAVHTRGLDFACDI</u> YIWAPLAGTCGVLLLSLVITLYC KRGRKKLLYIFKQPFMRPVQTTQEEDGCSCRFPEEEEGGCELRVKFSRSADAPAYQQGQNQLYNEL NLGRREEYDVLDKRRGRDPEMGGKPRRKNPQEGLYNELQKDKMAEAYSEIGMKGERRRGKGHDG LYQGLSTATKDTYDALHMQALPPR
Luc90-V3 CAR	53	MALPVTALLLPLALLLHAARPQVQLQQPGAELVRPGASVKLSCKASGYSFTTYWMNWVKQRPGQ GLEWIGMIHPSDSETRLNQKFKDKATLTVDKSSSTAYMQLSSPTSEDSAVYYCARSTMIATRAMDY WGQGTSVTVSSGGGGSGGGGGGGGGGGGGGGGGGGGGGGGG
Luc34-V1 CAR	54	MALPVTALLLPLALLLHAARPQVQLQQSGAELARPGASVKLSCKASGYTFTSYWMQWVKQRPGQG LEWIGAIYPGDGDTRYTQKFKGKATLTADKSSSTAYMQLSSLASEDSAVYYCARGKVYYGSNPFAYW GQGTLVTVSAGGGGSGGGGSGGGSDIQMTQSSSYLSVSLGGRVTITCKASDHINNWLAWYQQK PGNAPRLLISGATSLETGVPSRFSGSGSGKDYTLSITSLQTEDVATYYCQQYWSTPWTFGGGTKLEIK GLAVSTISSFFPPGYQKRGRKKLLYIFKQPFMRPVQTTQEEDGCSCRFPEEEEGGCELRVKFSRSADA PAYQQGQNQLYNELNLGRREEYDVLDKRRGRDPEMGGKPRRKNPQEGLYNELQKDKMAEAYSEI GMKGERRRGKGHDGLYQGLSTATKDTYDALHMQALPPR
Luc34-V2 CAR	55	MALPVTALLLPLALLLHAARPQVQLQQSGAELARPGASVKLSCKASGYTFTSYWMQWVKQRPGQG LEWIGAIYPGDGDTRYTQKFKGKATLTADKSSSTAYMQLSSLASEDSAVYYCARGKVYYGSNPFAYW GQGTLVTVSAGGGGSGGGGSGGGSGDIQMTQSSSYLSVSLGGRVTITCKASDHINNWLAWYQQK PGNAPRLLISGATSLETGVPSRFSGSGSGKDYTLSITSLQTEDVATYYCQQYWSTPWTFGGGTKLEIK TTTPAPRPPTPAPTIASQPLSLRPEACRPAAGGAVHTRGLDFACDIYIWAPLAGTCGVLLLSLVITLYCK RGRKKLLYIFKQPFMRPVQTTQEEDGCSCRFPEEEEGGCELRVKFSRSADAPAYQQGQNQLYNELN LGRREEYDVLDKRRGRDPEMGGKPRRKNPQEGLYNELQKDKMAEAYSEIGMKGERRRGKGHDGL YQGLSTATKDTYDALHMQALPPR

Nombre del CAR	SEQ ID n.°	Secuencia polipeptídica
Luc34-V3 CAR	56	MALPVTALLLPLALLLHAARPQVQLQQSGAELARPGASVKLSCKASGYTFTSYWMQWVKQRPGQG LEWIGAIYPGDGDTRYTQKFKGKATLTADKSSSTAYMQLSSLASEDSAVYYCARGKVYYGSNPFAYW GQGTLVTVSAGGGGSGGGGSGGGGSDIQMTQSSSYLSVSLGGRVTITCKASDHINNWLAWYQQK PGNAPRLLISGATSLETGVPSRFSGSGSGKDYTLSITSLQTEDVATYYCQQYWSTPWTFGGGTKLEIK EPKSPDKTHTCPPCPAPPVAGPSVFLFPPKPKDTLMIARTPEVTCVVVDVSHEDPEVKFNWYVDGVE VHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYT LPPSRDELTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRW QQGNVFSCSVMHEALHNHYTQKSLSLSPGKRGRKKLLYIFKQPFMRPVQTTQEEDGCSCRFPEEE EGGCELRVKFSRSADAPAYQQGQNQLYNELNLGRREEYDVLDKRRGRDPEMGGKPRRKNPQEGLY NELQKDKMAEAYSEIGMKGERRRGKGHDGLYQGLSTATKDTYDALHMQALPPR
LucX1-V1 CAR	57	MALPVTALLLPLALLLHAARPQVQLQQSGPELVKPGASVKISCKASGYAFSSSWMNWVKQRPGQG LEWIGRIYPGDGDTKYNGKFKGKATLTADKSSSTAYMQLSSLTSVDSAVYFCARSTMIATGAMDYW GQGTSVTVSSGGGGSGGGGSGGGSETTVTQSPASLSMAIGEKVTIRCITSTDIDDDMNWYQQKP GEPPKLLISEGNTLRPGVPSRFSSSGYGTDFVFTIENMLSEDVADYYCLQSDNLPLTFGGGTKLEIKGL AVSTISSFFPPGYQKRGRKKLLYIFKQPFMRPVQTTQEEDGCSCRFPEEEEGGCELRVKFSRSADAPA YQQGQNQLYNELNLGRREEYDVLDKRRGRDPEMGGKPRRKNPQEGLYNELQKDKMAEAYSEIGM KGERRRGKGHDGLYQGLSTATKDTYDALHMQALPPR
LucX1-V2 CAR	58	MALPVTALLLPLALLLHAARPQVQLQQSGAELARPGASVKLSCKASGYTFTSYWMQWVKQRPGQG LEWIGAIYPGDGDTRYTQKFKGKATLTADKSSSTAYMQLSSLASEDSAVYYCARGKVYYGSNPFAYW GQGTLVTVSAGGGGSGGGGSGGGGSDIQMTQSSSYLSVSLGGRVTITCKASDHINNWLAWYQQK PGNAPRLLISGATSLETGVPSRFSGSGSGKDYTLSITSLQTEDVATYYCQQYWSTPWTFGGGTKLEIK TTTPAPRPPTPAPTIASQPLSLRPEACRPAAGGAVHTRGLDFACDIYIWAPLAGTCGVLLLSLVITLYCK RGRKKLLYIFKQPFMRPVQTTQEEDGCSCRFPEEEEGGCELRVKFSRSADAPAYQQGQNQLYNELN LGRREEYDVLDKRRGRDPEMGGKPRRKNPQEGLYNELQKDKMAEAYSEIGMKGERRRGKGHDGL YQGLSTATKDTYDALHMQALPPR
LucX1-V3 CAR	59	MALPVTALLLPLALLLHAARPQVQLQQSGPELVKPGASVKISCKASGYAFSSSWMNWVKQRPGQG LEWIGRIYPGDGDTKYNGKFKGKATLTADKSSSTAYMQLSSLTSVDSAVYFCARSTMIATGAMDYW GQGTSVTVSSGGGGSGGGGSGGGGSETTVTQSPASLSMAIGEKVTIRCITSTDIDDDMNWYQQKP GEPPKLLISEGNTLRPGVPSRFSSSGYGTDFVFTIENMLSEDVADYYCLQSDNLPLTFGGGTKLEIKEPK SPDKTHTCPPCPAPPVAGPSVFLFPPKPKDTLMIARTPEVTCVVVDVSHEDPEVKFNWYVDGVEVH NAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLP PSRDELTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQ GNVFSCSVMHEALHNHYTQKSLSLSPGKKRGRKKLLYIFKQPFMRPVQTTQEEDGCSCRFPEEEEGG CELRVKFSRSADAPAYQQGQNQLYNELNLGRREEYDVLDKRRGRDPEMGGKPRRKNPQEGLYNEL QKDKMAEAYSEIGMKGERRRGKGHDGLYQGLSTATKDTYDALHMQALPPR
LucX2-V1 CAR	60	MALPVTALLLPLALLLHAARPQVQLQQSGPELVKPGASVKISCKASGYAFSSSWMNWVKQRPGQG LEWIGRIYPGDGDTKYNGKFKGKATLTADKSSSTAYMQLSSLTSVDSAVYFCARSTMIATGAMDYW GQGTSVTVSSGGGGSGGGSGGGSGDIVMTQSHKFMSTSVGDRVSITCKASQDVSTAVAWYQQ KPGQSPKLLIYSASYRYTGVPDRFTGSGSGTDFTFTISSVQAEDLAVYYCQQHYSTPPYTFGGGTKLEI KGLAVSTISSFFPPGYQKRGRKKLLYIFKQPFMRPVQTTQEEDGCSCRFPEEEEGGCELRVKFSRSAD APAYQQGQNQLYNELNLGRREEYDVLDKRRGRDPEMGGKPRRKNPQEGLYNELQKDKMAEAYSE IGMKGERRRGKGHDGLYQGLSTATKDTYDALHMQALPPR
LucX2-V2 CAR	61	MALPVTALLLPLALLLHAARPQVQLQQSGPELVKPGASVKISCKASGYAFSSSWMNWVKQRPGQG LEWIGRIYPGDGDTKYNGKFKGKATLTADKSSSTAYMQLSSLTSVDSAVYFCARSTMIATGAMDYW GQGTSVTVSSGGGGSGGGSGGGSGDIVMTQSHKFMSTSVGDRVSITCKASQDVSTAVAWYQQ KPGQSPKLLIYSASYRYTGVPDRFTGSGSGTDFTFTISSVQAEDLAVYYCQQHYSTPPYTFGGGTKLEI KTTTPAPRPPTPAPTIASQPLSLRPEACRPAAGGAVHTRGLDFACDIYIWAPLAGTCGVLLLSLVITLYC KRGRKKLLYIFKQPFMRPVQTTQEEDGCSCRFPEEEEGGCELRVKFSRSADAPAYQQGQNQLYNEL NLGRREEYDVLDKRRGRDPEMGGKPRRKNPQEGLYNELQKDKMAEAYSEIGMKGERRRGKGHDG LYQGLSTATKDTYDALHMQALPPR

Nombre del CAR	SEQ ID n.º	Secuencia polipeptídica
LucX2-V3 CAR	62	MALPVTALLLPLALLLHAARPQVQLQQSGPELVKPGASVKISCKASGYAFSSSWMNWVKQRPGQG LEWIGRIYPGDGDTKYNGKFKGKATLTADKSSSTAYMQLSSLTSVDSAVYFCARSTMIATGAMDYW GQGTSVTVSSGGGGSGGGGSGGGSGDIVMTQSHKFMSTSVGDRVSITCKASQDVSTAVAWYQQ KPGQSPKLLIYSASYRYTGVPDRFTGSGSGTDFTFTISSVQAEDLAVYYCQQHYSTPPYTFGGGTKLEI KEPKSPDKTHTCPPCPAPPVAGPSVFLFPPKPKDTLMIARTPEVTCVVVDVSHEDPEVKFNWYVDG VEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQV YTLPPSRDELTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSR WQQGNVFSCSVMHEALHNHYTQKSLSLSPGKKRGRKKLLYIFKQPFMRPVQTTQEEDGCSCRFPEE EEGGCELRVKFSRSADAPAYQQGQNQLYNELNLGRREEYDVLDKRRGRDPEMGGKPRRKNPQEGL YNELQKDKMAEAYSEIGMKGERRRGKGHDGLYQGLSTATKDTYDALHMQALPPR

Estrategia para el diseño mediante ingeniería genética del CAR CS1+ y KO CS1

- CS1 se expresa a altos niveles en células plasmacitoides de pacientes con mieloma múltiple, haciendo de este una interesante diana para el desarrollo de CAR. Los linfocitos T, especialmente el subgrupo CD8, expresan bajos niveles de CS1, lo que es un inconveniente para el desarrollo de CAR de linfocitos T, debido a que podrían destruirse cuando expresan un CAR dirigido contra CS1.
- En este ejemplo, los inventores evaluaron la actividad del CAR Luc90-v2 (la secuencia se muestra en la Tabla 20) en linfocitos T humanos que, o bien se transfectaron de forma simulada, como se transfectaron con un TALEN que se dirigía al gen CS1 (SLAMF7), para observar si se potenció la actividad de CAR cuando se alteró el gen CS1 en los linfocitos T CAR+. En la Figura 12 se muestra el curso del experimento.
- Los linfocitos T se purificaron a partir de muestras de capa leucocitaria y se activaron utilizando perlas revestidas de CD3/CD28. Se cotransfectaron las células 72h después de la activación con 10 µg de ARNm el T01_izquierda TAL y 10 µg del ARNm que codifica el T01_derecha TAL. Se muestran las secuencias de los TAL en la Tabla 21 siguiente y las construcciones de plásmidos (T01, T02 y T03) con las repeticiones que se muestran en la Figura 13.
- La Figura 14 muestra la localización diana de los TAL T01, T02 y T03 en el gen CS1 (SLAMF7): T01 y T02 se dirigen al exón 1 (Figura 14A), mientras que T03 se dirige al exón 2 (Figura 14B).

Tabla 21: Secuencias de la diana CS1 y las TALEN para su inactivación

Manakas			de la diana CST y las TALEN para su inactivación					
Nombre	TALEN L/R SEQ ID n.º Secuencia de ácido nucleico							
Diana de T01	Diana de T01 63 TGACTTCCAGAGAGCAATATGGCTGGTTCC							
			ACCCTCA					
	L	64	TGACTTCCAGAGAGCAA					
	R	65	AACATGCCTCACCCTCA					
Diana de T02		66	TTCCAGAGAGCAATATGGCTGGTTCCCCAACATGCCTCACCC					
			TCATCTA					
	L	67	TTCCAGAGAGCAATATG					
	R	68	TGCCTCACCCTCATCTA					
Diana de T03		69	TTGACTCTATTGTCTGGACCTTCAACACACCCCTCTTGTCAC					
			CATACA					
	L	70	TTGACTCTATTGTCTGG					
	R	71	CCTCTTGTCACCATACA					

³ días después de la transfección de TALEn, se transdujeron las células con un vector lentivírico recombinante que impulsa la expresión L90-v2 CAR lejos de un promotor EFla. El vector lentivírico se construye de una manera tal que se acopla la expresión de CAR con la expresión de la BFP (Proteína Fluorescente Azul) a través de un péptido que se salta el ribosoma. El CAR L90-v2 está constituido por un dominio de unión extracelular que reconoce la diana de CS1 (scFv L90) seguido por regiones bisagra y transmembrana derivadas de la proteína hCD8α. La porción intracelular de la molécula contiene un dominio coestimulador derivado de 41BB, seguido por el dominio de señalización CD3γ (secuencias presentadas en la Tabla 18-19-20 previa para los componentes individuales, las secuencias de scFv y CAR respectivamente).

Se evaluó la eficacia de la transducción 6 días después de la transducción mediante citometría de flujo, tras la expresión de BFP. Se tiñeron también las células con anticuerpos dirigidos contra CD8 y dirigidos contra CS1.

Resultados

Expresión de CAR CS1+

Los resultados de la Figura 16 muestran que las eficacias de transducción son mayores en células transfectadas simuladas que en células que se han transfectado con TALEn que se dirige al gen CS1. Esto es probablemente debido a la destrucción específica de células de linfocitos T que expresan CS1 no transducido, aunque esta población no está afectada cuando las células no expresan ya CS1 como consecuencia de la alteración del gen impulsada por TALEN.

No se observaron diferencias en los niveles de CS1 en este punto temporal entre TALEN o las células transfectadas simuladas (transfección del control negativo sin plásmido), debido a que los niveles de CS1 disminuyen en el tiempo tras la activación inicial de linfocitos T. Por otro lado, se observó una disminución significativa en el % de linfocitos CD8+ en células transfectadas simuladas que expresan CAR en comparación con células CAR+ transfectadas con TALEN, indicando que se ha eliminado una alta proporción de linfocitos CD8+ por los linfocitos T CAR+.

Evaluación de la actividad citotóxica

20

25

30

35

5

10

15

Se evaluó la actividad citotóxica de estas células 8 días después de la transducción de CAR, cultivando simultáneamente la misma cantidad de células bien con una línea de células que expresan CS1 (células L363) o como una línea de células del control negativo que carece de CS1 (MOLM13). Se midió la viabilidad de las líneas de células diana mediante citometría de flujo 4h después del inicio de los cultivos simultáneos de células. Los resultados que se muestran en la Figura 15A muestran una viabilidad celular reducida de las células CS1(+) cuando se cultivaron simultáneamente con linfocitos T CAR+, aunque no se observó impacto sobre la viabilidad de las células CS1(-). Se calculó la lisis celular específica usando los datos de citometría de flujo, y fue 2 veces mayor cuando las células se han transfectado con TALEn que se dirige al gen CS1 antes de la transducción de CAR (Figura 15B). Debe considerarse que el impacto puede ser incluso mayor, debido a que la cantidad de linfocitos T CAR+ presentes en los cultivos simultáneos es mayor cuando las células se transfectaron de forma simulada (véanse los datos de citometría de flujo de la Figura 16). Los resultados del experimento son los siguientes:

- para la muestra de NTD simulada, el % de células BFP+ es 0.1% y la cantidad de linfocitos CD8+ es del 53.9%;
- para la muestra de TALEn/NTD, el % de células BFP+ es 0,2% y la cantidad de linfocitos CD8+ es del 49,5%;
- para la muestra de L90-2 simulada, el % de células BFP+ es 94% y la cantidad de linfocitos CD8+ es del 1,8%;
- para la muestra de TALEn /L90-2, el % de células BFP+ es del 61% y la cantidad de linfocitos CD8+ es del 8,3%.

Las eficacias de transducción son mayores en células transfectadas simuladas que en células que se han transfectado con TALEn que se dirige al gen CS1 (NTD: no transducido).

40

45

50

Reactivación tras la transducción

A fin de confirmar que se ha alterado el gen CS1 e linfocitos T transfectados con TALEn, las diferentes muestras se reactivaron con perlas CD3/CD28 en DII tras la transducción. 72 h después de la reactivación, las células se tiñeron con anticuerpos dirigidos contra CD8 y anticuerpos dirigidos contra CS1 y se analizó la expresión mediante citometría de flujo.

La Figura 17 muestra las eficacias de transducción y los niveles de expresión de CD8/CS1 en cada muestra. Como se muestra en el panel inferior, se observó un aumento en los niveles de CS1 tras la reactivación en células transfectadas simuladas, mientras que una baja cantidad de células son capaces de expresar CS1 en las poblaciones transfectadas con TALEn.

Los resultados del experimento son los siguientes:

- para la muestra de NTD simulada, el % de células BFP+ es el 0,01%, CS1 se expresa en el 65,2% de células y la cantidad de linfocitos CD8+ es del 80,7%;
 - para la muestra de TALEn/NTD, el % de células BFP+ es el 0,2%, CS1 se expresa e el 9,7% de células y la cantidad de linfocitos CD8+ es del 78,8%;
- para la muestra de L90-2 simulada, el % de células BFP+ es el 94%, CS1 se expresa en el 37,5% de células y la cantidad de linfocitos CD8+ es del 16%.
 - para la muestra de TALEn /L90-2, la intensidad de BFP es del 61%, la expresión de CS1 es 8,5% y la expresión de CD8 es del 68,5%.

Se observó un aumento en los niveles de CS1 tras la reactivación en células transfectadas simuladas, mientras que una baja cantidad de células son capaces de expresar CS1 en las poblaciones transfectadas con TALEn.

En conjunto, estos resultados indican que el gen CS1 se alteró en linfocitos T transfectados con TALEn, y que esto potencia la actividad citotóxica de las células CAR+ dirigidas contra CS1, preservando principalmente los linfocitos T CD8+ citotóxicos.

Ejemplo 3: DIANA DE CD70

Presentación de la diana de CD70

CD70 es una citoquina que se une a CD27 y es parte de la familia TNF (Goodwin R.G. et al, 1993, Cell 73:447-456). 10 Esta proteína tiene un papel en las respuestas adaptativas de los linfocitos T, induce la proliferación de linfocitos T coestimulados y potencia la generación de linfocitos T citolíticos. Su número de registro es P32970 (Uniprot). Algunos estudios tales como en SchLirch, C. et al. (J. Clin. Invest., 2012; doi:10.1172/JCI45977) sugieren que el bloqueo de las interacciones de CD27-CD70 podría ayudar a tratar la leucemia mielógena crónica (LMC).

Estrategia para CD70 KO 15

20

35

Se llevará a cabo la misma estrategia para la KO del gen CD70 como en el Ejemplo 1 y el Ejemplo 2. Se diseñaron nucleasas TALE heterodiméricas que se dirigían a dos secuencias de 49 pb de longitud separadas por un separador de 15 pb en el gen CD70 y una nucleasa TALE que se dirigía a una secuencia de 57 pb de longitud separadas por un separador de 23 pb. Cada semidiana se reconoció por las repeticiones de las nucleasas semi TALE relacionadas en la Tabla 22 siguiente.

TALEN SEQ ID Secuencia de ácido nucleico Nombre n.º L/R 72 TGGTCTTTCTTCCAGTgggacgtagctgagcTGCAGCTGAATCACACA 73 Diana 1 TALEN L **TGGTCTTTTCTTCCAGT** 74 R **TGCAGCTGAATCACACA** Diana 2 TALEN 75 TGGTGATCTGCCTCGTGgtgtgcatccagcgcTTCGCACAGGCTCAGCA L 76 TGGTGATCTGCCTCGTG 77 R TTCGCACAGGCTCAGCA 78 Diana 3 TALEN TGCGGGCTGCTTTGGTCccattggtcgcgggcttggtgatCTGCCTCGTGGTG **TGCA** 79 L TGCGGGCTGCTTTGGTC R

Tabla 22: Secuencias de la diana CD70 y las TALEN para su inactivación

25 Estrategia para la expresión de CAR dirigido contra CD70

80

Se llevará a cabo la misma estrategia para expresar un CAR dirigido contra CD70 tal como en el Ejemplo 1 y en el Eiemplo 2.

30 Las mismas estructuras V1, V2 y V3 se diseñaron tal como en el Ejemplo 1-2 con los mismos componentes en términos de un péptido de señalización, un enlazador entre las cadenas VH y VL, un dominio transmembrana, dominios de coactivación y dominios de transducción (se muestran las arquitecturas generales en la Figura 11A, y las secuencias para los componentes individuales que se muestran en la Tabla 18). Solo la bisagra difiere entre las 3 versiones V1, V2 y V3, en la que se usan respectivamente la bisagra FcERy corta, la bisagra CD8α media y la bisagra IgG1 larga.

CTGCCTCGTGGTGTGCA

En la Tabla 23 se presentan la cadena VH y VL del scFv dirigido contra CD70. La SEQ ID NO: 81-82, 85-86, 89-90 y la SEQ ID NO: 83-84, 87-88, 91-92 corresponden respectivamente a la cadena VH y la cadena VL del scFv Ab4, Ab8 de AMGEN y 1F6 de Seattle Genetics.

En la Tabla 24 se presentan los CAR dirigidos contra CD70 con el anterior scFv; basándose estos CAR en las versiones 40 V1, V2 y V3 de acuerdo con la Figura 11A, en la que se usan respectivamente una bisagra FcEy corta, una bisagra CD8 media y una bisagra IgG1 larga.

Tabla 23: Secuencias de polinucleótidos y ácidos nucleicos de las cadenas de VH y VL de los scFV de los anticuerpos Ab4, Ab8, y 1F6 dirigidos contra CD70

Anticuerpos Ab4, Ab8, y 1F6 dirigidos contra CD70 Nombre Cadena VH o VL SEQ ID n.º Secuencia de polipéptido o de ácido nucleico					
			Secuencia de polipéptido o de ácido nucleico		
Ab4	VH	81	QVQLVESGGGVVQPGRSLRLSCAASGFTFSNYGIHWVRQAPGKGLE		
	ļ		WVAVIWYDGSNKYYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAV		
	ļ		YYCARDGGYSGYDSGFDYWGQGTLVTVSS		
		82	caggtgcagctggtggagtctgggggggggggtggtccagcctgggaggtccctgagactctcctgt		
			gcagcgtctggattcaccttcagtaactatggcatacactgggtccgccaggctccaggcaaggg		
			gctggagtgggtggcagttatatggtatgatggaagtaataaata		
			gccgattcaccatctccagagacaattccaagaacacgctgtatctgcaaatgaacagcctgaga		
			gccgaggacacggctgtgtattactgtgcgagagatggaggatatagtggctacgattcggggttt		
			gactactggggccagggaaccctggtcaccgtctcctcagctagcaccaagggcccatccgtcttc		
			cccctggcaccctcctccaagagcacctctgggggcacagcggccctgggctgcctggtcaagga		
			ctacttccccgaaccggtgacggtgtcgtggaactcaggcgccctgaccagcggcgtgcacacctt		
			cccggctgtcctacagtcctcaggactctactccctcagcagcgtggtgaccgtgccctccagcag		
			cttgggcacccagacctacatctgcaacgtgaatcacaagcccagcaacaccaaggtggacaag		
			aaagttgagcccaaatcttgtgacaaaactcacacatgcccaccgtgcccagcacctgaactcct		
			ggggggaccgtcagtcttcctcttcccccaaaacccaaggacaccctcatgatctcccggacccc		
			tgaggtcacatgcgtggtggtggacgtgagccacgaagaccctgaggtcaagttcaactggtacg		
			tggacggcgtggaggtgcataatgccaagacaaagccgcgggaggagcagtacaacagcacgt		
			accgtgtggtcagcgtcctcaccgtcctgcaccaggactggctgaatggcaaggagtacaagtgc		
	ļ		aaggtctccaacaaagccctcccagccccatcgagaaaaccatctccaaagccaaagggcagc		
			cccgagaaccacaggtgtacaccctgcccccatcccgggaggagatgaccaagaaccaggtcag		
	ļ		cctgacctgcctggtcaaaggcttctatcccagcgacatcgccgtggagtgggagagcaatgggc		
	ļ		agccggagaacaactacaagaccacgcctcccgtgctggactccgacggctccttcttcctctata		
	ļ		gcaagctcaccgtggacaagagcaggtggcagcagggggaacgtcttctcatgctccgtgatgcat		
	ļ		gaggctctgcacaaccactacacgcagaagagcctctccctgtctccgggtaaatga		
	VL	83	DIVMTQSPLSLPVTPGEPASISCRSSQSLLNSNGYNYLDWYLQKPGQS		
			PQFLIYLGSYRASGVPDRFSGSGSGTDFTLRISRVEAEDVGVYYCIQTLQ		
	ļ		TPFTFGPGTKVDIK		
		84			
	ļ	04	Gatattgtgatgactcagtctccactctccctgcccgtcacccctggagagaccggcctccatctcct		
			gcaggtctagtcagagcctcctgaatagtaatggatacaactatttggattggtacctgcagaagc		
			cagggcagtctccacagttcctgatctatttgggttcttatcgggcctccgggggtccctgacaggttc		
	ļ		agtggcagtggatcaggcacagattttacactgagaatcagcagagtggaggctgaggatgttgg		
			ggtttattactgtatacaaactctacaaactccattcactttcggccctgggaccaaagtggatatc		
			aaacgtacggtggctgcaccatctgtcttcatcttcccgccatctgatgagcagttgaaatctggaa		
			ctgcctctgttgtgtgcctgctgaataacttctatcccagagaggccaaagtacagtggaaggtgg		
	ļ		ataacgccctccaatcgggtaactcccaggagagtgtcacagagcaggacagcaaggacagcac		
			ctacagcctcagcagcaccctgacgctgagcaaagcagactacgagaaacacaaagtctacgcc		
	ļ		tgcgaagtcacccatcagggcctgagctcgcccgtcacaaagagcttcaacaggggagagtgtta		
			gtcctca53ggactctactccctcagcagcgtggtgaccgtgccctccagcagcttgggcacccag		
			acctacatctgcaacgtgaatcacaagcccagcaacaccaaggtggacaagaaagttgagccca		
	ļ		aatcttgtgacaaaactcacacatgcccaccgtgcccagcacctgaactcctgggggggaccgtca		
			gtcttcctcttcccccaaaacccaaggacaccctcatgatctcccggacccctgaggtcacatgc		
			gtggtggtggacgtgagccacgaagaccctgaggtcaagttcaactggtacgtggacggcgtgga		
			ggtgcataatgccaagacaaagccgcgggaggagcagtacaacagcacgtaccgtgtggtcagc		
			gtcctcaccgtcctgcaccaggactggctgaatggcaaggagtacaagtgcaaggtctccaacaa		
	<u> </u>		agccctcccagcccccatcgagaaaaccatctccaaagccaaagggcagccccgagaaccacag		
			gtgtacaccctgccccatcccgggaggagatgaccaagaaccaggtcagcctgacctgctggt		
	<u> </u>		caaaggcttctatcccagcgacatcgccgtggagtgggagagcaatgggcagccggagaacaac		
			tacaagaccacgcctcccgtgctggactccgacggctccttcttcctctatagcaagctcaccgtgg		
			acaagagcaggtggcagcaggggaacgtcttctcatgctccgtgatgcatgaggctctgcacaac		
			cactacacgcagaagagcctctccctgtctccgggtaaa		
	ı				

Nombre	Cadena VH o VL	SEQ ID n.º	Secuencia de polipéptido o de ácido nucleico							
Ab8	VH	85	QVQLVESGGGVVQPGRSLRLSCAASGFTFSSYGMHWVRQAPGKGLE WVAVIWYDGSDKYFADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAV YYCARDGIAGARYVYFDYWGQGTLVTVSS							
		86	caggtgcagctggtggagtctgggggaggcgtggtccagcctgggaggtccctgagactctcctgt gcagcgtctggattcaccttcagtagctatggcatgcactgggtccgccaggctccaggcaaggg gctggagtgggtggcagttatatggtatgatggaagtgataaatactttgcagactccgtgaaggg ccgattcaccatctccagagacaattccaagaacacgctgtatctgcaaatgaacagcctgagag ccgaggacacggctgtattactgtgcgagagatgggatagcaggagctcgctacgtctactttg actactggggccagggaaccctggtcaccgtctcctcagctagcaccaagggcccatccgtctcc ccctggcaccctcctcccaagagcaccttggggcacagcggccctgggcggccaggaccaccttccccggaccggtgacggtgccggtgcacaccttc ccggctgtcctacagtctcaggactcaccttc ccggctgtcctacagtcctcaggactctactccct							
	VL	87	DIQMTQSPSSLSASVGDRVTITCRASQGISNYLAWFQQKPGKAPKSLIY AASSLQGGVPSKFSGSGSGTDFTLTISSLQPEDFATYYCQQYYNYPFTF GPGTTVDIK							
		88	gacatccagatgacccagtctccatcctccctgtctgcatctgtaggagacagagtcaccatcactt gtcgggcgagtcagggcattagcaattatttagcctggtttcagcagaaaccagggaaagcccct aagtccctgatctatgctgcatccagtttgcaaggtggggtcccatcaaagttcagcggcagtgga tctgggacagatttcactctcaccatcagcagcctgcagcctgaagattttgcaacttattactgcc aacaatattataattacccattcactttcggccctgggaccacagtggataccaacgtaggtgg ctgcaccatctgcttcatcttcccgccatctgatgagcagttgaaatctggaactgcctctgttgtg tgcctgctgaataacttctatcccagagagggccaaagtacagtggaaggtggataacgccctcca atcgggtaactcccaggagagtgtcacagagcaggacagcaaggacagcacctacagcctcagcagcaccctgaggcaggc							
1F6	VH	89	QIQLVQSGPEVKKPGETVKISCKASGYTFTNYGMNWVKQAPGKGLK WMGINTYTGEPTYADAFKGRFAFSLETSASTAYLQINNLKNEDTATYF CARDYGDYGMDYWGQGTSVTVSS							
		90	atggcttgggtgtggaccttgctattcctgatggcagctgcccaaagtgcccaagcacagatccag ttggtgcagtctggacctgaggtgaagaagcctggaggagacagtcaagatctcctgcaaggcttc tgggtataccttcacaaactatggaatgaactgggtgaagcaggctccaggaaagggtttaaagt ggatgggctggataaacacctacactggagaggccaacatatgctgatgccttcaagggacggttt gccttctctttggaaacctctgccagcactgcctatttgcagatcaacaacctcaaaaatgaggac acggctacatatttctgtgcaagagactacggcgactatggtatggactactggggtcaaggaac ctcagtcaccgtctcctca							
	VL	91	DIVLTQSPASLAVSLGQRATISCRASKSVSTSGYSFMHWYQQKPGQPP KLLIYLASNLESGVPARFSGSGSGTDFTLNIHPVEEEDAATYYCQHSREV PWTFGGGTKLEIKR							
		92	atggagacagacacactcctgttatgggtactgctgctctgggttccaggttccactggtgacattg tgctgacacagtctcctgcttccttagctgtatctctggggcagagggccaccatctcatgcagggc cagcaaaagtgtcagtacatctggctatagttttatgcactggtatcaacagaaaccaggacagc cacccaaactcctcatctatcttgcatccaacctagaatctggggtccctgccaggttcagtggcag tgggtctgggacagacttcaccctcaacatccatcctgtggaggaggaggatgctgcaacctatta ctgtcagcacagtagggaggttccgtggacgttcggtggaggcaccaagctggaaatcaaacgg							

Tabla 24: Secuencias polipeptídicas de CAR dirigidos contra CD70 basados en las versiones V1, V2 y V3 de acuerdo con la Figura 11A

Nombre del CAR Secuencia polipeptídica Ab4-V1 CAR 93 MALPVTALLLPLALLLHAARPQVQLVESGGGVVQPGRSLRLSCAASGFTFSI QAPGKGLEWVAVIWYDGSNKYYADSVKGRFTISRDNSKNTLYLQMNSL YCARDGGYSGYDSGFDYWGQGTLVTVSSGGGGSGGGGGGSDIVMT PGEPASISCRSSQSLLNSNGYNYLDWYLQKPGQSPQFLIYLGSYRASGVP GTDFTLRISRVEAEDVGVYYCIQTLQTPFTFGPGTKVDIKGLAVSTISSFFPP AGTCGVLLLSLVITLYCKRGRKKLLYIFKQPFMRPVQTTQEEDGCSCRFPEEEEGG ADAPAYQQGQNQLYNELNLGRREEYDVLDKRRGRDPEMGGKPRRKNPQEGLT	RAEDTAVY TQSPLSLPVT PDRFSGSGS GYQIYIWAPL
QAPGKGLEWVAVIWYDGSNKYYADSVKGRFTISRDNSKNTLYLQMNSL YCARDGGYSGYDSGFDYWGQGTLVTVSSGGGSGGGGSGGGSDIVM PGEPASISCRSSQSLLNSNGYNYLDWYLQKPGQSPQFLIYLGSYRASGVP GTDFTLRISRVEAEDVGVYYCIQTLQTPFTFGPGTKVDIKGLAVSTISSFFPP AGTCGVLLLSLVITLYCKRGRKKLLYIFKQPFMRPVQTTQEEDGCSCRFPEEEEGG ADAPAYQQGQNQLYNELNLGRREEYDVLDKRRGRDPEMGGKPRRKNPQEGL	LRAEDTAVY TQSPLSLPVT PDRFSGSGS GYQIYIWAPL
PGEPASISCRSSQSLLNSNGYNYLDWYLQKPGQSPQFLIYLGSYRASGVP GTDFTLRISRVEAEDVGVYYCIQTLQTPFTFGPGTKVDIKGLAVSTISSFFPP AGTCGVLLLSLVITLYCKRGRKKLLYIFKQPFMRPVQTTQEEDGCSCRFPEEEEGG ADAPAYQQGQNQLYNELNLGRREEYDVLDKRRGRDPEMGGKPRRKNPQEGL	DRFSGSGS GYQIYIWAPL
GTDFTLRISRVEAEDVGVYYCIQTLQTPFTFGPGTKVDIK <u>GLAVSTISSFFPP</u> AGTCGVLLLSLVITLYCKRGRKKLLYIFKQPFMRPVQTTQEEDGCSCRFPEEEEGG ADAPAYQQGQNQLYNELNLGRREEYDVLDKRRGRDPEMGGKPRRKNPQEGL	<u>GYQ</u> IYIWAPL
ADAPAYQQGQNQLYNELNLGRREEYDVLDKRRGRDPEMGGKPRRKNPQEGL	CELRVKESRS
AEAYSEIGMKGERRRGKGHDGLYQGLSTATKDTYDALHMQALPPR Ab4-V2 CAR 94 MALPYTALLPLALLPLALLHAARPOVOLVESGGGVVOPGRSLRLSCAASGETESI	ADVICUIDAD ID
Ab4-V2 CAR 94 MALPVTALLLPLALLLHAARPQVQLVESGGGVVQPGRSLRLSCAASGFTFSI QAPGKGLEWVAVIWYDGSNKYYADSVKGRFTISRDNSKNTLYLQMNSL	
YCARDGGYSGYDSGFDYWGQGTLVTVSSGGGGSGGGSGGGSDIVM	
PGEPASISCRSSQSLLNSNGYNYLDWYLQKPGQSPQFLIYLGSYRASGVP	-
GTDFTLRISRVEAEDVGVYYCIQTLQTPFTFGPGTKVDIKTTTPAPRPPTPA	PTIASQPLSL
RPEACRPAAGGAVHTRGLDFACDIYIWAPLAGTCGVLLLSLVITLYCKRGRKKLLY	YIFKQPFMRP
VQTTQEEDGCSCRFPEEEEGGCELRVKFSRSADAPAYQQGQNQLYNELNLGRR	REEYDVLDKR
RGRDPEMGGKPRRKNPQEGLYNELQKDKMAEAYSEIGMKGERRRGKGHDGL	YQGLSTATK
DTYDALHMQALPPR	
Ab4-V3 CAR 95 MALPVTALLLPLALLLHAARPQVQLVESGGGVVQPGRSLRLSCAASGFTFSI	
QAPGKGLEWVAVIWYDGSNKYYADSVKGRFTISRDNSKNTLYLQMNSL	RAEDTAVY
YCARDGGYSGYDSGFDYWGQGTLVTVSSGGGGSGGGGGGGSDIVM	TQSPLSLPVT
PGEPASISCRSSQSLLNSNGYNYLDWYLQKPGQSPQFLIYLGSYRASGVP	DRFSGSGS
GTDFTLRISRVEAEDVGVYYCIQTLQTPFTFGPGTKVDIK <u>EPKSPDKTHTCP</u>	PCPAPPVAG
<u>PSVFLFPPKPKDTLMIARTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKI</u>	<u>PREEQYNSTY</u>
<u>RVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSF</u>	
LTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQ	
MHEALHNHYTQKSLSLSPGKIYIWAPLAGTCGVLLLSLVITLYCKRGRKKLLYIFKC	
TQEEDGCSCRFPEEEEGGCELRVKFSRSADAPAYQQGQNQLYNELNLGRREEYI DPEMGGKPRRKNPQEGLYNELQKDKMAEAYSEIGMKGERRRGKGHDGLYQG ALHMQALPPR	
Ab8-V1 CAR 96 MALPYTALLLPLALLLHAARPQVQLVESGGGVVQPGRSLRLSCAASGFTFSS	SYGMHWV
RQAPGKGLEWVAVIWYDGSDKYFADSVKGRFTISRDNSKNTLYLQMNS	SLRAEDTAV
YYCARDGIAGARYVYFDYWGQGTLVTVSSGGGGSGGGGGGGGSDIQM	ITQSPSSLSA
SVGDRVTITCRASQGISNYLAWFQQKPGKAPKSLIYAASSLQGGVPSKFS	SGSGSGTDF
TLTISSLQPEDFATYYCQQYYNYPFTFGPGTTVDIKGLAVSTISSFFPPGYQIY	
GVLLLSLVITLYCKRGRKKLLYIFKQPFMRPVQTTQEEDGCSCRFPEEEEGGCELR	
AYQQGQNQLYNELNLGRREEYDVLDKRRGRDPEMGGKPRRKNPQEGLYNELO	QKDKMAEAY
SEIGMKGERRRGKGHDGLYQGLSTATKDTYDALHMQALPPR	
Ab8-V2 CAR 97 MALPVTALLLPLALLLHAARPQVQLVESGGGVVQPGRSLRLSCAASGFTFSS	SYGMHWV
RQAPGKGLEWVAVIWYDGSDKYFADSVKGRFTISRDNSKNTLYLQMNS	SLRAEDTAV
YYCARDGIAGARYVYFDYWGQGTLVTVSSGGGGSGGGSGGGSDIQM	ITQSPSSLSA
SVGDRVTITCRASQGISNYLAWFQQKPGKAPKSLIYAASSLQGGVPSKFS	GSGSGTDF
TLTISSLQPEDFATYYCQQYYNYPFTFGPGTTVDIK <u>TTTPAPRPPTPAPTIAS</u>	QPLSLRPEAC
RPAAGGAVHTRGLDFACDIYIWAPLAGTCGVLLLSLVITLYCKRGRKKLLYIFKQP	FMRPVQTTQ
EEDGCSCRFPEEEEGGCELRVKFSRSADAPAYQQGQNQLYNELNLGRREEYDVI	LDKRRGRDPE
MGGKPRRKNPQEGLYNELQKDKMAEAYSEIGMKGERRRGKGHDGLYQGLSTA	ATKDTYDALH
MQALPPR	

Nombre del CAR	SEQ ID NO:	Secuencia polipeptídica
Ab8-V3 CAR	98	MALPVTALLLPLALLLHAARPQVQLVESGGGVVQPGRSLRLSCAASGFTFSSYGMHWV RQAPGKGLEWVAVIWYDGSDKYFADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAV YYCARDGIAGARYVYFDYWGQGTLVTVSSGGGGSGGGGSGGGGSDIQMTQSPSSLSA SVGDRVTITCRASQGISNYLAWFQQKPGKAPKSLIYAASSLQGGVPSKFSGSGSGTDF TLTISSLQPEDFATYYCQQYYNYPFTFGPGTTVDIKEPKSPDKTHTCPPCPAPPVAGPSVFL FPPKPKDTLMIARTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVS VLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSRDELTKNQVSLTCL VKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHE ALHNHYTQKSLSLSPGKIYIWAPLAGTCGVLLLSLVITLYCKRGRKKLLYIFKQPFMRPVQTTQEE DGCSCRFPEEEEGGCELRVKFSRSADAPAYQQGQNQLYNELNLGRREEYDVLDKRRGRDPEM GGKPRRKNPQEGLYNELQKDKMAEAYSEIGMKGERRRGKGHDGLYQGLSTATKDTYDALHM QALPPR
1F6 V1 CAR	99	MALPVTALLLPLALLLHAARPQIQLVQSGPEVKKPGETVKISCKASGYTFTNYGMNWVK QAPGKGLKWMGINTYTGEPTYADAFKGRFAFSLETSASTAYLQINNLKNEDTATYFC ARDYGDYGMDYWGQGTSVTVSSGGGGSGGGSGGGSDIVLTQSPASLAVSLGQRA TISCRASKSVSTSGYSFMHWYQQKPGQPPKLLIYLASNLESGVPARFSGSGSGTDFTL NIHPVEEEDAATYYCQHSREVPWTFGGGTKLEIKRGLAVSTISSFFPPGYQIYIWAPLAGT CGVLLLSLVITLYCKRGRKKLLYIFKQPFMRPVQTTQEEDGCSCRFPEEEEGGCELRVKFSRSADA PAYQQGQNQLYNELNLGRREEYDVLDKRRGRDPEMGGKPRRKNPQEGLYNELQKDKMAEA YSEIGMKGERRRGKGHDGLYQGLSTATKDTYDALHMQALPPR
1F6 V2 CAR	100	MALPVTALLLPLALLLHAARPQIQLVQSGPEVKKPGETVKISCKASGYTFTNYGMNWVK QAPGKGLKWMGINTYTGEPTYADAFKGRFAFSLETSASTAYLQINNLKNEDTATYFC ARDYGDYGMDYWGQGTSVTVSSGGGGSGGGSGGGSDIVLTQSPASLAVSLGQRA TISCRASKSVSTSGYSFMHWYQQKPGQPPKLLIYLASNLESGVPARFSGSGSGTDFTL NIHPVEEEDAATYYCQHSREVPWTFGGGTKLEIKR <u>TTTPAPRPPTPAPTIASQPLSLRPEA</u> CRPAAGGAVHTRGLDFACDIYIWAPLAGTCGVLLLSLVITLYCKRGRKKLLYIFKQPFMRPVQTT QEEDGCSCRFPEEEEGGCELRVKFSRSADAPAYQQGQNQLYNELNLGRREEYDVLDKRRGRD PEMGGKPRRKNPQEGLYNELQKDKMAEAYSEIGMKGERRRGKGHDGLYQGLSTATKDTYDA LHMQALPPR
1F6 V3 CAR	101	MALPVTALLLPLALLLHAARPQIQLVQSGPEVKKPGETVKISCKASGYTFTNYGMNWVK QAPGKGLKWMGINTYTGEPTYADAFKGRFAFSLETSASTAYLQINNLKNEDTATYFC ARDYGDYGMDYWGQGTSVTVSSGGGGSGGGSGGGSDIVLTQSPASLAVSLGQRA TISCRASKSVSTSGYSFMHWYQQKPGQPPKLLIYLASNLESGVPARFSGSGSGTDFTL NIHPVEEEDAATYYCQHSREVPWTFGGGTKLEIKREPKSPDKTHTCPPCPAPPVAGPSVF LFPPKPKDTLMIARTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVV SVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSRDELTKNQVSLTCL VKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHE ALHNHYTQKSLSLSPGKIYIWAPLAGTCGVLLLSLVITLYCKRGRKKLLYIFKQPFMRPVQTTQEE DGCSCRFPEEEEGGCELRVKFSRSADAPAYQQGQNQLYNELNLGRREEYDVLDKRRGRDPEM GGKPRRKNPQEGLYNELQKDKMAEAYSEIGMKGERRRGKGHDGLYQGLSTATKDTYDALHM QALPPR

BIBLIOGRAFÍA

10

Bardenheuer, W., K. Lehmberg, et al. (2005). "Resistance to cytarabine and gemcitabine and in vitro selection of transduced cells after retroviral expression of cytidine deaminase in human hematopoietic progenitor cells." <u>Leukemia</u> **19** (12): 2281-8.

Betts, M. R., J. M. Brenchley, et al. (2003). "Sensitive and viable identification of antigen-specific CD8+ T cells by a flow cytometric assay for degranulation." <u>J Immunol Methods</u> **281** (1-2): 65-78.

Boch, J., H. Scholze, et al. (2009). "Breaking the code of DNA binding specificity of TAL-type III effectors." <u>Science</u> **326** (5959): 1509-12.

- Brewin, J., C. Mancao, et al. (2009). "Generation of EBV-specific cytotoxic T cells that are resistant to calcineurin inhibitors for the treatment of posttransplantation lymphoproliferative disease." <u>Blood 114</u> (23): 4792-803.
- Cambier, J.C. (1995) "Antigen and Fc Receptor Signaling: The Awesome Power of the Immunoreceptor Tyrosine-1 Based Activation Motif (ITAM)" The Journal of Immunology **155** (7) 3281-3285.
 - Cong, L., F. A. Ran, et al. (2013). "Multiplex genome engineering using CRISPR/Cas systems." <u>Science</u> **339** (6121): 819-23.
- 10 Critchlow, S. E. y S. P. Jackson (1998). "DNA end-joining: from yeast to man." Trends Biochem Sci 23 (10): 394-8.
 - Dalgaard, J. 1., A. J. Klar, et al. (1997). "Statistical modeling and analysis of the LAGLIDADG family of site-specific endonucleases and identification of an intein that encodes a site-specific endonuclease of the HNH family." <u>Nucleic Acids Res</u> **25** (22): 4626-38.
- Deltcheva, E., K. Chylinski, et al. (2011). "CRISPR RNA maturation by trans-encoded small RNA and host factor RNase III." Nature **471** (7340): 602-7.
- Garneau, J. E., M. E. Dupuis, et al. (2010). "The CRISPR/Cas bacterial immune system cleaves bacteriophage and plasmid DNA." Nature **468** (7320): 67-71.
 - Gasiunas, G., R. Barrangou, et al. (2012). "Cas9-crRNA ribonucleoprotein complex mediates specific DNA cleavage for adaptive immunity in bacteria." Proc Natl Acad Sci U S A 109 (39): E2579-86.
- Hacke, K., J. A. Treger, et al. (2013). "Genetic modification of mouse bone marrow by lentiviral vector-mediated delivery of hypoxanthine-Guanine phosphoribosyltransferase short hairpin RNA confers chemoprotection against 6-thioguanine cytotoxicity." Transplant Proc **45** (5): 2040-4.
- Jena, B., G. Dotti, et al. (2010). "Redirecting T-cell specificity by introducing a tumor-specific chimeric antigen receptor." 30 <u>Blood</u> **116** (7): 1035-44.
 - Jinek, M., K. Chylinski, et al. (2012). "A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity." <u>Science</u> **337** (6096): 816-21.
- Jonnalagadda, M., C. E. Brown, et al. (2013). "Engineering human T cells for resistance to methotrexate and mycophenolate mofetil as an in vivo cell selection strategy." PLoS One **8** (6): e65519.
- Kushman, M. E., S. L. Kabler, et al. (2007). "Expression of human glutathione S-transferase P1 confers resistance to benzo[a]pyrene or benzo[a]pyrene-7,8-dihydrodiol mutagenesis, macromolecular alkylation and formation of stable N2-Gua-BPDE adducts in stably transfected V79MZ cells co-expressing hCYPIAI." Carcinogenesis **28** (1): 207-14.
 - Lackner, G., N. Moebius, et al. (2011). "Complete genome sequence of Burkholderia rhizoxinica, an Endosymbiont of Rhizopus microsporus." <u>J Bacteriol</u> **193** (3): 783-4.
- 45 Ma, J. L., E. M. Kim, et al. (2003). "Yeast Mrell and Radi proteins define a Ku-independent mechanism to repair double-strand breaks lacking overlapping end sequences." <u>Mol Cell Biol</u> **23** (23): 8820-8.
 - Mak, A. N., P. Bradley, et al. (2012). "The crystal structure of TAL effector PthXo1 bound to its DNA target." <u>Science</u> **335** (6069): 716-9.
- Mali, P., L. Yang, et al. (2013). "RNA-guided human genome engineering via Cas9." Science 339 (6121): 823-6.

50

65

- Metzger, H. et al. (1986) "The Receptor with High Affinity for Immunoglobulin E" <u>Annual Review of Immunology</u>. 4: 419-470
- 55 Moscou, M. J. y A. J. Bogdanove (2009). "A simple cipher governs DNA recognition by TAL effectors." <u>Science</u> **326** (5959): 1501.
- Nivens, M. C., T. Felder, et al. (2004). "Engineered resistance to camptothecin and antifolates by retroviral coexpression of tyrosyl DNA phosphodiesterase-I and thymidylate synthase." Cancer Chemother Pharmacol **53** (2): 107-15.
 - Park, T. S., S. A. Rosenberg, et al. (2011). "Treating cancer with genetically engineered T cells." <u>Trends Biotechnol</u> **29** (11): 550-7.
- Sangiolo, D., M. Lesnikova, et al. (2007). "Lentiviral vector conferring resistance to mycophenolate mofetil and

sensitivity to ganciclovir for in vivo T-cell selection." Gene Ther 14 (21): 1549-54.

Schweitzer, B. I., A. P. Dicker, et al. (1990). "Dihydrofolate reductase as a therapeutic target." Faseb J 4 (8): 2441-52.

5 Sugimoto, Y., S. Tsukahara, et al. (2003). "Drug-selected co-expression of P-glycoprotein and gp91 in vivo from an MDRI-bicistronic retrovirus vector Ha-MDR-IRES-gp91." <u>J Gene Med</u> **5** (5): 366-76.

Takebe, N., S. C. Zhao, et al. (2001). "Generation of dual resistance to 4-hydroperoxycyclophosphamide and methotrexate by retroviral transfer of the human aldehyde dehydrogenase class 1 gene and a mutated dihydrofolate reductase gene." Mol Ther 3 (1): 88-96.

Waldmann H. y Hale G. (2005) "CAMPATH: from concept to clinic". Phil. Trans. R. Soc. B 360: 1707-1711.

Yam, P., M. Jensen, et al. (2006). "Ex vivo selection and expansion of cells based on expression of a mutated inosine monophosphate dehydrogenase 2 after HIV vector transduction: effects on lymphocytes, monocytes, and CD34+ stem cells." Mol Ther **14** (2): 236-44.

Zielske, S. P., J. S. Reese, et al. (2003). "In vivo selection of MGMT (P140K) lentivirus-transduced human NOD/SCID repopulating cells without pretransplant irradiation conditioning." J Clin Invest **112** (10): 1561-70.

LISTADO DE SECUENCIAS

20

<110> CELLECTIS

25 <120> CÉLULAS PARA INMUNOTERAPIA DISEÑADAS MEDIANTE INGENIERÍA GENÉTICA PARA DIRIGIR ANTÍGENOS PRESENTES EN CÉLULAS INMUNITARIAS Y CÉLULAS PATOLÓGICAS

<130> P81400737PCT00

30 <150> PA201470076

<151> 14/02/2014

<160> 101

35 <170> PatentIn versión 3.5

<210> 1

<211> 47

<212> ADN

40 <213> homo sapiens

<220>

<223> CD38 diana

45 <400> 1

tgaggtgggt tggcgactaa ggcgcaccgg tgggcactgc ggggaca

47

<210> 2

50 <211> 936

<212> PRT

<213> secuencia artificial

<220>

55 <223> CD38ex1_T2-L1 TALEN

<400> 2

Met	Gly	Asp	Pro	Lys	Lys	Lys	Arg	Lys	Val	Ile	Asp	Tyr	Pro	Tyr	Asp
1				5					10					15	

- Val Pro Asp Tyr Ala Ile Asp Ile Ala Asp Leu Arg Thr Leu Gly Tyr 20 25 30
- Ser Gln Gln Gln Glu Lys Ile Lys Pro Lys Val Arg Ser Thr Val 35 40 45
- Ala Gln His His Glu Ala Leu Val Gly His Gly Phe Thr His Ala His 50 55 60
- Ile Val Ala Leu Ser Gln His Pro Ala Ala Leu Gly Thr Val Ala Val 65 70 75 80
- Lys Tyr Gln Asp Met Ile Ala Ala Leu Pro Glu Ala Thr His Glu Ala 85 90 95

Ile	Val	Gly	Val 100	Gly	Lys	Gln	Trp	Ser 105	Gly	Ala	Arg	Ala	Leu 110	Glu	Ala
Leu	Leu	Thr 115	Val	Ala	Gly	Glu	Leu 120	Arg	Gly	Pro	Pro	Leu 125	Gln	Leu	Asp
Thr	Gly 130	Gln	Leu	Leu	Lys	Ile 135	Ala	Lys	Arg	Gly	Gly 140	Val	Thr	Ala	Val
Glu 145	Ala	Val	His	Ala	Trp 150	Arg	Asn	Ala	Leu	Thr 155	Gly	Ala	Pro	Leu	Asn 160
Leu	Thr	Pro	Gln	Gln 165	Val	Val	Ala	Ile	Ala 170	Ser	Asn	Asn	Gly	Gly 175	Lys
Gln	Ala	Leu	Glu 180	Thr	Val	Gln	Arg	Leu 185	Leu	Pro	Val	Leu	Cys 190	Gln	Ala
His	Gly	Leu 195	Thr	Pro	Glu	Gln	Val 200	Val	Ala	Ile	Ala	Ser 205	Asn	Ile	Gly
Gly	Lys 210	Gln	Ala	Leu	Glu	Thr 215	Val	Gln	Ala	Leu	Leu 220	Pro	Val	Leu	Cys
Gln 225	Ala	His	Gly	Leu	Thr 230	Pro	Gln	Gln	Val	Val 235	Ala	Ile	Ala	Ser	Asn 240
Asn	Gly	Gly	Lys	Gln 245	Ala	Leu	Glu	Thr	Val 250	Gln	Arg	Leu	Leu	Pro 255	Val
Leu	Cys	Gln	Ala 260	His	Gly	Leu	Thr	Pro 265	Gln	Gln	Val	Val	Ala 270	Ile	Ala
Ser	Asn	Asn 275	Gly	Gly	Lys	Gln	Ala 280	Leu	Glu	Thr	Val	Gln 285	Arg	Leu	Leu
Pro	Val 290	Leu	Cys	Gln	Ala	His 295	Gly	Leu	Thr	Pro	Gln 300	Gln	Val	Val	Ala
Ile 305	Ala	Ser	Asn	Gly	Gly 310	Gly	Lys	Gln	Ala	Leu 315	Glu	Thr	Val	Gln	Arg 320
Leu	Leu	Pro	Val	Leu 325	Cys	Gln	Ala	His	Gly 330	Leu	Thr	Pro	Gln	Gln 335	Val
Val	Ala	Ile	Ala 340	Ser	Asn	Asn	Gly	Gly 345	Lys	Gln	Ala	Leu	Glu 350	Thr	Val

Gln Arg Leu Leu Pro Val Leu Cys Gln Ala His Gly Leu Thr Pro Gln Gln Val Val Ala Ile Ala Ser Asn Asn Gly Gly Lys Gln Ala Leu Glu Thr Val Gln Arg Leu Leu Pro Val Leu Cys Gln Ala His Gly Leu Thr Pro Gln Gln Val Val Ala Ile Ala Ser Asn Asn Gly Gly Lys Gln Ala Leu Glu Thr Val Gln Arg Leu Leu Pro Val Leu Cys Gln Ala His Gly Leu Thr Pro Gln Gln Val Val Ala Ile Ala Ser Asn Gly Gly Gly Lys Gln Ala Leu Glu Thr Val Gln Arg Leu Leu Pro Val Leu Cys Gln Ala His Gly Leu Thr Pro Gln Gln Val Val Ala Ile Ala Ser Asn Gly Gly Gly Lys Gln Ala Leu Glu Thr Val Gln Arg Leu Leu Pro Val Leu Cys Gln Ala His Gly Leu Thr Pro Gln Gln Val Val Ala Ile Ala Ser Asn Asn Gly Gly Lys Gln Ala Leu Glu Thr Val Gln Arg Leu Leu Pro Val Leu Cys Gln Ala His Gly Leu Thr Pro Gln Gln Val Val Ala Ile Ala Ser Asn Asn Gly Gly Lys Gln Ala Leu Glu Thr Val Gln Arg Leu Leu Pro Val Leu Cys Gln Ala His Gly Leu Thr Pro Glu Gln Val Val Ala Ile Ala Ser His Asp Gly Gly Lys Gln Ala Leu Glu Thr Val Gln Arg Leu Leu Pro Val Leu Cys Gln Ala His Gly Leu Thr Pro Gln Gln Val

			595					600					605			
Va		Ala 510	Ile	Ala	Ser	Asn	Asn 615	Gly	Gly	Lys	Gln	Ala 620	Leu	Glu	Thr	Val
G1 62		Arg	Leu	Leu	Pro	Val 630	Leu	Cys	Gln	Ala	His 635	Gly	Leu	Thr	Pro	Glu 640
Gl	.n V	al	Val	Ala	Ile 645	Ala	Ser	Asn	Ile	Gly 650	Gly	Lys	Gln	Ala	Leu 655	Glu
Th	ır V	/al	Gln	Ala 660	Leu	Leu	Pro	Val	Leu 665	Cys	Gln	Ala	His	Gly 670	Leu	Thr
Pr	o G	Sln	Gln 675	Val	Val	Ala	Ile	Ala 680	Ser	Asn	Gly	Gly	Gly 685	Arg	Pro	Ala
Le		51u 590	Ser	Ile	Val	Ala	Gln 695	Leu	Ser	Arg	Pro	Asp 700	Pro	Ala	Leu	Ala
A 1		eu	Thr	Asn	Asp	His 710	Leu	Val	Ala	Leu	Ala 715	Cys	Leu	Gly	Gly	A rg 720
Pr	o A	Ala	Leu	Asp	Ala 725	Val	Lys	Lys	Gly	Leu 730	Gly	Asp	Pro	Ile	Ser 735	Arg
Se	er G	Sln	Leu	Val 740	Lys	Ser	Glu	Leu	Glu 745	Glu	Lys	Lys	Ser	Glu 750	Leu	Arg
Hi	s I	ys	Leu 755	Lys	Tyr	Val	Pro	His 760	Glu	Tyr	Ile	Glu	Leu 765	Ile	Glu	Ile
Al		Arg 770	Asn	Ser	Thr	Gln	Asp 775	Arg	Ile	Leu	Glu	Met 780	Lys	Val	Met	Glu
Ph 78		he	Met	Lys	Val	Tyr 790	Gly	Tyr	Arg	Gly	Lys 795	His	Leu	Gly	Gly	Ser 800
Ar	g I	ùуs	Pro	Asp	Gly 805	Ala	Ile	Tyr	Thr	Val 810	Gly	Ser	Pro	Ile	Asp 815	Tyr
G1	у V	7al	Ile	Val 820	Asp	Thr	Lys	Ala	Tyr 825	Ser	Gly	Gly	Tyr	Asn 830	Leu	Pro
Il	.e G	31y	Gln 835	Ala	Asp	Glu	Met	Gln 840	Arg	Tyr	Val	Glu	Glu 845	Asn	Gln	Thr

	Arg	A sn 850	Lys	His	Ile	Asn	Pro 855	Asn	Glu	Trp	Trp	Lys 860	Val	Tyr	Pro	Ser
	Ser 865	Val	Thr	Glu	Phe	Lys 870	Phe	Leu	Phe	Val	Ser 875	Gly	His	Phe	Lys	Gly 880
	Asn	Tyr	Lys	Ala	Gln 885	Leu	Thr	Arg	Leu	Asn 890	His	Ile	Thr	Asn	Cys 895	Asn
	Gly	Ala	Val	Leu 900	Ser	Val	Glu	Glu	Leu 905	Leu	Ile	Gly	Gly	Glu 910	Met	Ile
	Lys	Ala	Gly 915	Thr	Leu	Thr	Leu	Glu 920	Glu	Val	Arg	Arg	Lys 925	Phe	Asn	Asn
	Gly	Glu 930	Ile	Asn	Phe	Ala	Ala 935	Asp								
3 94 P		cia arti	ficial													
·C	D38ex	(1_T2-	R1 TA	ALEN												
• 3																
	Met 1	Gly	Asp	Pro	Lys 5	Lys	Lys	Arg	Lys	Val 10	Ile	Asp	Lys	Glu	Thr 15	Ala
	Ala	Ala	Lys	Phe 20	Glu	Arg	Gln	His	Met 25	Asp	Ser	Ile	Asp	Ile 30	Ala	Asp
	Leu	Arg	Thr 35	Leu	Gly	Tyr	Ser	Gln 40	Gln	Gln	Gln	Glu	Lys 45	Ile	Lys	Pro
	Lys	Val 50	Arg	Ser	Thr	Val	Ala 55	Gln	His	His	Glu	Ala 60	Leu	Val	Gly	His
	Gly 65	Phe	Thr	His	Ala	His 70	Ile	Val	Ala	Leu	Ser 75	Gln	His	Pro	Ala	Ala 80
	Leu	Gly	Thr	Val	Ala 85	Val	Lys	Tyr	Gln	Asp 90	Met	Ile	Ala	Ala	Leu 95	Pro
	Glu	Ala	Thr	His	Glu	Ala	Ile	Val	Gly 105	Val	Gly	Lys	Gln	Trp 110	Ser	Gly
				100					103							

<210> <211> <212>

<213>

<220> <223>

<400>

5

10

		115					120					125			
Pro	Pro 130	Leu	Gln	Leu	Asp	Thr 135	Gly	Gln	Leu	Leu	Lys 140	Ile	Ala	Lys	Arg
Gly 145	Gly	Val	Thr	Ala	Val 150	Glu	Ala	Val	His	Ala 155	Trp	Arg	Asn	Ala	Leu 160
Thr	Gly	Ala	Pro	Leu 165	Asn	Leu	Thr	Pro	Gln 170	Gln	Val	Val	Ala	Ile 175	Ala
Ser	Asn	Asn	Gly 180	Gly	Lys	Gln	Ala	Leu 185	Glu	Thr	Val	Gln	Arg 190	Leu	Leu
Pro	Val	Leu 195	Cys	Gln	Ala	His	Gly 200	Leu	Thr	Pro	Gln	Gln 205	Val	Val	Ala
Ile	Ala 210	Ser	Asn	Gly	Gly	Gly 215	Lys	Gln	Ala	Leu	Glu 220	Thr	Val	Gln	Arg
Leu 225	Leu	Pro	Val	Leu	Cys 230	Gln	Ala	His	Gly	Leu 235	Thr	Pro	Glu	Gln	Val 240
Val	Ala	Ile	Ala	Ser 245	His	Asp	Gly	Gly	Lys 250	Gln	Ala	Leu	Glu	Thr 255	Val
Gln	Arg	Leu	Leu 260	Pro	Val	Leu	Cys	Gln 265	Ala	His	Gly	Leu	Thr 270	Pro	Glu
Gln	Val	Val 275	Ala	Ile	Ala	Ser	His 280	Asp	Gly	Gly	Lys	Gln 285	Ala	Leu	Glu
Thr	Val 290	Gln	Arg	Leu	Leu	Pro 295	Val	Leu	Cys	Gln	Ala 300	His	Gly	Leu	Thr
Pro 305	Glu	Gln	Val	Val	Ala 310	Ile	Ala	Ser	His	Asp 315	Gly	Gly	Lys	Gln	Ala 320
Leu	Glu	Thr	Val	Gln 325	Arg	Leu	Leu	Pro	Val 330	Leu	Cys	Gln	Ala	His 335	Gly
Leu	Thr	Pro	Glu 340	Gln	Val	Val	Ala	Ile 345	Ala	Ser	His	Asp	Gly 350	Gly	Lys
Gln	Ala	Leu 355	Glu	Thr	Val	Gln	Arg 360	Leu	Leu	Pro	Val	Leu 365	Cys	Gln	Ala

His	Gly 370	Leu	Thr	Pro	Gln	Gln 375	Val	Val	Ala	Ile	Ala 380	Ser	Asn	Asn	Gly
Gly 385	Lys	Gln	Ala	Leu	Glu 390	Thr	Val	Gln	Arg	Leu 395	Leu	Pro	Val	Leu	Cys 400
Gln	Ala	His	Gly	Leu 405	Thr	Pro	Glu	Gln	Val 410	Val	Ala	Ile	Ala	Ser 415	His
Asp	Gly	Gly	Lys 420	Gln	Ala	Leu	Glu	Thr 425	Val	Gln	Arg	Leu	Leu 430	Pro	Val
Leu	Cys	Gln 435	Ala	His	Gly	Leu	Thr 440	Pro	Glu	Gln	Val	Val 445	Ala	Ile	Ala
Ser	Asn 450	Ile	Gly	Gly	Lys	Gln 455	Ala	Leu	Glu	Thr	Val 460	Gln	Ala	Leu	Leu
Pro 465	Val	Leu	Cys	Gln	Ala 470	His	Gly	Leu	Thr	Pro 475	Gln	Gln	Val	Val	Ala 480
Ile	Ala	Ser	Asn	Asn 485	Gly	Gly	Lys	Gln	Ala 490	Leu	Glu	Thr	Val	Gln 495	Arg
Leu	Leu	Pro	Val 500	Leu	Cys	Gln	Ala	His 505	Gly	Leu	Thr	Pro	Gln 510	Gln	Val
Val	Ala	Ile 515	Ala	Ser	Asn	Gly	Gly 520	Gly	Lys	Gln	Ala	Leu 525	Glu	Thr	Val
Gln	A rg 530	Leu	Leu	Pro	Val	Leu 535	Cys	Gln	Ala	His	Gly 540	Leu	Thr	Pro	Gln
Gln 545	Val	Val	Ala	Ile	A la 550	Ser	Asn	Asn	Gly	Gly 555	Lys	Gln	Ala	Leu	Glu 560
Thr	Val	Gln	Arg	Leu 565	Leu	Pro	Val	Leu	Cys 570	Gln	Ala	His	Gly	Leu 575	Thr
Pro	Glu	Gln	Val 580	Val	Ala	Ile	Ala	Ser 585	His	Asp	Gly	Gly	Lys 590	Gln	Ala
Leu	Glu	Thr 595	Val	Gln	Arg	Leu	Leu 600	Pro	Val	Leu	Cys	Gln 605	Ala	His	Gly
Leu	Thr 610	Pro	Glu	Gln	Val	Val 615	Ala	Ile	Ala	Ser	His 620	Asp	Gly	Gly	Lys

Gln Ala Leu 625	Glu Thr	Val Gln 630	Arg Le	u Leu Pr 63		Leu Cys	Gln	Ala 640
His Gly Leu	Thr Pro 645	Glu Gln	Val Va	1 Ala Il 650	e Ala	Ser His	Asp 655	Gly
Gly Lys Gln	Ala Leu 660	Glu Thr	Val Gla	_	u Leu	Pro Val 670		Cys
Gln Ala His 675	Gly Leu	Thr Pro	Gln Gl: 680	n Val Va		Ile Ala 685	Ser	Asn
Gly Gly Gly 690	Arg Pro	Ala Leu 695	Glu Se	r Ile Va	1 Ala 700	Gln Leu	Ser	Arg
Pro Asp Pro 705	Ala Leu	Ala Ala 710	Leu Th	r Asn As 71		Leu Val	Ala	Leu 720
Ala Cys Leu	Gly Gly 725	Arg Pro	Ala Le	u Asp Al 730	a Val	Lys Lys	Gly 735	Leu
Gly Asp Pro	Ile Ser 740	Arg Ser	Gln Le	_	s Ser	Glu Leu 750		Glu
Lys Lys Ser 755	Glu Leu	Arg His	Lys Le	u Lys Ty		Pro His 765	Glu	Tyr
Ile Glu Leu 770	Ile Glu	Ile Ala 775	Arg As	n Ser Th	r Gln 780	Asp Arg	Ile	Leu
Glu Met Lys 785	Val Met	Glu Phe 790	Phe Me	t Lys Va 79	_	Gly Tyr	Arg	Gly 800
Lys His Leu	Gly Gly 805	Ser Arg	Lys Pr	o Asp Gl 810	y Ala	Ile Tyr	Thr 815	Val
Gly Ser Pro	Ile Asp 820	Tyr Gly	Val Ile 82		p Thr	Lys Ala 830	_	Ser
Gly Gly Tyr 835	Asn Leu	Pro Ile	Gly Gl: 840	n Ala As	p Glu	Met Gln 845	Arg	Tyr
Val Glu Glu 850	Asn Gln	Thr Arg 855	Asn Ly	s His Il	e Asn 860	Pro Asn	Glu	Trp
Trp Lys Val	Tyr Pro	Ser Ser 870	Val Th	r Glu Ph 87		Phe Leu	Phe	Val 880

Ser Gly His Phe Lys Gly Asn Tyr Lys Ala Gln Leu Thr Arg Leu Asn

His Ile Thr Asn Cys Asn Gly Ala Val Leu Ser Val Glu Glu Leu Leu Ile Gly Gly Glu Met Ile Lys Ala Gly Thr Leu Thr Leu Glu Glu Val 915 920 Arg Arg Lys Phe Asn Asn Gly Glu Ile Asn Phe Ala Ala Asp 930 935 <210> 4 <211>49 5 <212> PRT <213> homo sapiens <223> CD38ex1_T4 diana 10 <400> 4 Thr Gly Cys Gly Ala Gly Thr Thr Cys Ala Gly Cys Cys Gly Gly Thr Gly Thr Cys Cys Gly Gly Gly Gly Ala Cys Ala Ala Ala Cys Cys Cys Thr Gly Cys Thr Gly Cys Cys Gly Gly Cys Thr Cys Thr Cys Thr Ala 15 <210> 5 <211> 970 <212> PRT <213> secuencia artificial 20 <223> CD38ex1 T4-L TALEN <400> 5 Met Gly Asp Pro Lys Lys Lys Arg Lys Val Ile Asp Tyr Pro Tyr Asp 5 15 Val Pro Asp Tyr Ala Ile Asp Ile Ala Asp Leu Arg Thr Leu Gly Tyr 20 30 25 Ser Gln Gln Gln Glu Lys Ile Lys Pro Lys Val Arg Ser Thr Val 25

		35					40					45			
Ala	Gln 50	His	His	Glu	Ala	Leu 55	Val	Gly	His	Gly	Phe 60	Thr	His	Ala	His
Ile 65	Val	Ala	Leu	Ser	Gln 70	His	Pro	Ala	Ala	Leu 75	Gly	Thr	Val	Ala	Val 80
Lys	Tyr	Gln	Asp	Met 85	Ile	Ala	Ala	Leu	Pro 90	Glu	Ala	Thr	His	Glu 95	Ala
Ile	Val	Gly	Val 100	Gly	Lys	Gln	Trp	Ser 105	Gly	Ala	Arg	Ala	Leu 110	Glu	Ala
Leu	Leu	Thr 115	Val	Ala	Gly	Glu	Leu 120	Arg	Gly	Pro	Pro	Leu 125	Gln	Leu	Asp
Thr	Gly 130	Gln	Leu	Leu	Lys	Ile 135	Ala	Lys	Arg	Gly	Gly 140	Val	Thr	Ala	Val
Glu 145	Ala	Val	His	Ala	Trp 150	Arg	Asn	Ala	Leu	Thr 155	Gly	Ala	Pro	Leu	Asn 160
Leu	Thr	Pro	Gln	Gln 165	Val	Val	Ala	Ile	Ala 170	Ser	Asn	Gly	Gly	Gly 175	Lys
Gln	Ala	Leu	Glu 180	Thr	Val	Gln	Arg	Leu 185	Leu	Pro	Val	Leu	Cys 190	Gln	Ala
His	_	Leu 195		Pro	Glu	Gln	Val 200		Ala	Ile	Ala	Ser 205		Asn	Gly
Gly	Lys 210	Gln	Ala	Leu	Glu	Thr 215	Val	Gln	Ala	Leu	Leu 220	Pro	Val	Leu	Cys
Gln 225	Ala	His	Gly	Leu	Thr 230	Pro	Gln	Gln	Val	Val 235	Ala	Ile	Ala	Ser	His 240
Asp	Gly	Gly	Lys	Gln 245	Ala	Leu	Glu	Thr	Val 250	Gln	Arg	Leu	Leu	Pro 255	Val
Leu	Cys	Gln	Ala 260	His	Gly	Leu	Thr	Pro 265	Gln	Gln	Val	Val	Ala 270	Ile	Ala
Ser	Asn	Asn 275	Gly	Gly	Lys	Gln	Ala 280	Leu	Glu	Thr	Val	Gln 285	Arg	Leu	Leu

Pro	Val 290	Leu	Cys	Gln	Ala	His 295	Gly	Leu	Thr	Pro	Gln 300	Gln	Val	Val	Ala
Ile 305	Ala	Ser	Asn	Ile	Gly 310	Gly	Lys	Gln	Ala	Leu 315	Glu	Thr	Val	Gln	Arg 320
Leu	Leu	Pro	Val	Leu 325	Cys	Gln	Ala	His	Gly 330	Leu	Thr	Pro	Gln	Gln 335	Val
Val	Ala	Ile	Ala 340	Ser	Asn	Asn	Gly	Gly 345	Lys	Gln	Ala	Leu	Glu 350	Thr	Val
Gln	Arg	Leu 355	Leu	Pro	Val	Leu	Cys 360	Gln	Ala	His	Gly	Leu 365	Thr	Pro	Gln
Gln	Val 370	Val	Ala	Ile	Ala	Ser 375	Asn	Gly	Gly	Gly	Lys 380	Gln	Ala	Leu	Glu
Thr 385	Val	Gln	Arg	Leu	Leu 390	Pro	Val	Leu	Cys	Gln 395	Ala	His	Gly	Leu	Thr 400
Pro	Gln	Gln	Val	Val 405	Ala	Ile	Ala	Ser	Asn 410	Gly	Gly	Gly	Lys	Gln 415	Ala
Leu	Glu	Thr	Val 420	Gln	Arg	Leu	Leu	Pro 425	Val	Leu	Cys	Gln	Ala 430	His	Gly
Leu	Thr	Pro 435	Gln	Gln	Val	Val	Ala 440	Ile	Ala	Ser	His	Asp 445	Gly	Gly	Lys
Gln	Ala 450	Leu	Glu	Thr	Val	Gln 455	Arg	Leu	Leu	Pro	Val 460	Leu	Cys	Gln	Ala
His 465	Gly	Leu	Thr	Pro	Gln 470	Gln	Val	Val	Ala	Ile 475	Ala	Ser	Asn	Ile	Gly 480
Gly	Lys	Gln	Ala	Leu 485	Glu	Thr	Val	Gln	Arg 490	Leu	Leu	Pro	Val	Leu 495	Cys
Gln	Ala	His	Gly 500	Leu	Thr	Pro	Gln	Gln 505	Val	Val	Ala	Ile	Ala 510	Ser	Asn
Asn	Gly	Gly 515	Lys	Gln	Ala	Leu	Glu 520	Thr	Val	Gln	Arg	Leu 525	Leu	Pro	Val
Leu	Cys 530	Gln	Ala	His	Gly	Leu 535	Thr	Pro	Gln	Gln	Val 540	Val	Ala	Ile	Ala

Ser Hi 545	s Asp	Gly	Gly	Lys 550	Gln	Ala	Leu	Glu	Thr 555	Val	Gln	Arg	Leu	Leu 560
Pro Va	l Leu	Cys	Gln 565	Ala	His	Gly	Leu	Thr 570	Pro	Glu	Gln	Val	Val 575	Ala
Ile Al	a Ser	His 580	Asp	Gly	Gly	Lys	Gln 585	Ala	Leu	Glu	Thr	Val 590	Gln	Arg
Leu Le	u Pro 595		Leu	Cys	Gln	Ala 600	His	Gly	Leu	Thr	Pro 605	Gln	Gln	Val
Val Al 61		Ala	Ser	His	Asp 615	Gly	Gly	Lys	Gln	Ala 620	Leu	Glu	Thr	Val
Gln Ar 625	g Leu	Leu	Pro	Val 630	Leu	Cys	Gln	Ala	His 635	Gly	Leu	Thr	Pro	Glu 640
Gln Va	l Val	Ala	Ile 645	Ala	Ser	Asn	Asn	Gly 650	Gly	Lys	Gln	Ala	Leu 655	Glu
Thr Va	ıl Gln	Ala 660	Leu	Leu	Pro	Val	Leu 665	Cys	Gln	Ala	His	Gly 670	Leu	Thr
Pro Gl	n Gln 675		Val	Ala	Ile	Ala 680	Ser	Asn	Asn	Gly	Gly 685	Lys	Gln	Ala
Leu Gl		Val	Gln	Arg	Leu 695	Leu	Pro	Val	Leu	Cys 700	Gln	Ala	His	Gly
Leu Th	r Pro	Glu	Gln	Val 710	Val	Ala	Ile	Ala	Ser 715	Asn	Gly	Gly	Gly	Arg 720
Pro Al	a Leu	Glu	Ser 725	Ile	Val	Ala	Gln	Leu 730	Ser	Arg	Pro	Asp	Pro 735	Ala
Leu Al	a Ala	Leu 740	Thr	Asn	Asp	His	Leu 745	Val	Ala	Leu	Ala	Cys 750	Leu	Gly
Gly Ar	g Pro 755		Leu	Asp	Ala	Val 760	Lys	Lys	Gly	Leu	Gly 765	Asp	Pro	Ile
Ser Ar	_	Gln	Leu	Val	Lys 775	Ser	Glu	Leu	Glu	Glu 780	Lys	Lys	Ser	Glu
Leu Ar 785	g His	Lys	Leu	Lys 790	Tyr	Val	Pro	His	Glu 795	Tyr	Ile	Glu	Leu	Ile 800

	Glu	Ile	Ala	Arg	Asn 805	Ser	Thr	Gln	Asp	Arg 810	Ile	Leu	Glu	Met	Lys 815	Val
	Met	Glu	Phe	Phe 820	Met	Lys	Val	Tyr	Gly 825	Tyr	Arg	Gly	Lys	His 830	Leu	Gly
	Gly	Ser	Arg 835	Lys	Pro	Asp	Gly	Ala 840	Ile	Tyr	Thr	Val	Gly 845	Ser	Pro	Ile
	Asp	Tyr 850	Gly	Val	Ile	Val	Asp 855	Thr	Lys	Ala	Tyr	Ser 860	Gly	Gly	Tyr	Asn
	Leu 865	Pro	Ile	Gly	Gln	Ala 870	Asp	Glu	Met	Gln	Arg 875	Tyr	Val	Glu	Glu	Asn 880
	Gln	Thr	Arg	Asn	Lys 885	His	Ile	Asn	Pro	As n 890	Glu	Trp	Trp	Lys	Val 895	Tyr
	Pro	Ser	Ser	Val 900	Thr	Glu	Phe	Lys	Phe 905	Leu	Phe	Val	Ser	Gly 910	His	Phe
	Lys	Gly	Asn 915	Tyr	Lys	Ala	Gln	Leu 920	Thr	Arg	Leu	Asn	His 925	Ile	Thr	Asn
	Cys	Asn 930	Gly	Ala	Val	Leu	Ser 935	Val	Glu	Glu	Leu	Leu 940	Ile	Gly	Gly	Glu
	Met 945	Ile	Lys	Ala	Gly	Thr 950	Leu	Thr	Leu	Glu	Glu 955	Val	Arg	Arg	Lys	Phe 960
	Asn	Asn	Gly	Glu	Ile 965	Asn	Phe	Ala	Ala	Asp 970						
<210> 6 <211> 9 <212> F <213> s	42 PRT	cia art	ificial													
<220> <223> C	D38e	x1_T4	-R TAI	LEN												
<400> 6																
	Met 1	Gly	Asp	Pro	Lys 5	Lys	Lys	Arg	Lys	Val 10	Ile	Asp	Lys	Glu	Thr 15	Ala
	Ala	Ala	Lys	Phe 20	Glu	Arg	Gln	His	Met 25	Asp	Ser	Ile	Asp	Ile 30	Ala	Asp

Leu	Arg	Thr 35	Leu	Gly	Tyr	Ser	Gln 40	Gln	Gln	Gln	Glu	Lys 45	Ile	Lys	Pro
Lys	Val 50	Arg	Ser	Thr	Val	Ala 55	Gln	His	His	Glu	Ala 60	Leu	Val	Gly	His
Gly 65	Phe	Thr	His	Ala	His 70	Ile	Val	Ala	Leu	Ser 75	Gln	His	Pro	Ala	Ala 80
Leu	Gly	Thr	Val	Ala 85	Val	Lys	Tyr	Gln	Asp 90	Met	Ile	Ala	Ala	Leu 95	Pro
Glu	Ala	Thr	His 100	Glu	Ala	Ile	Val	Gly 105	Val	Gly	Lys	Gln	Trp 110	Ser	Gly
Ala	Arg	Ala 115	Leu	Glu	Ala	Leu	Leu 120	Thr	Val	Ala	Gly	Glu 125	Leu	Arg	Gly
Pro	Pro 130	Leu	Gln	Leu	Asp	Thr 135	Gly	Gln	Leu	Leu	Lys 140	Ile	Ala	Lys	Arg
Gly 145	Gly	Val	Thr	Ala	Val 150	Glu	Ala	Val	His	Ala 155	Trp	Arg	Asn	Ala	Leu 160
Thr	Gly	Ala	Pro	Leu 165	Asn	Leu	Thr	Pro	Gln 170	Gln	Val	Val	Ala	Ile 175	Ala
Ser	Asn	Gly	Gly 180	Gly	Lys	Gln	Ala	Leu 185	Glu	Thr	Val	Gln	Arg 190	Leu	Leu
Pro	Val	Leu 195	Cys	Gln	Ala	His	Gly 200	Leu	Thr	Pro	Gln	Gln 205	Val	Val	Ala
Ile	Ala 210	Ser	Asn	Asn	Gly	Gly 215	Lys	Gln	Ala	Leu	Glu 220	Thr	Val	Gln	Arg
Leu 225	Leu	Pro	Val	Leu	Cys 230	Gln	Ala	His	Gly	Leu 235	Thr	Pro	Glu	Gln	Val 240
Val	Ala	Ile	Ala	Ser 245	His	Asp	Gly	Gly	Lys 250	Gln	Ala	Leu	Glu	Thr 255	Val
Gln	Arg	Leu	Leu 260	Pro	Val	Leu	Cys	Gln 265	Ala	His	Gly	Leu	Thr 270	Pro	Glu
Gln	Val	Val 275	Ala	Ile	Ala	Ser	Asn 280	Gly	Gly	Gly	Lys	Gln 285	Ala	Leu	Glu

Tì	ır	Val 290	Gln	Arg	Leu	Leu	Pro 295	Val	Leu	Cys	Gln	Ala 300	His	Gly	Leu	Thr
Pr 30		Glu	Gln	Val	Val	Ala 310	Ile	Ala	Ser	Asn	Asn 315	Gly	Gly	Lys	Gln	Ala 320
Le	∍u	Glu	Thr	Val	Gln 325	Arg	Leu	Leu	Pro	Val 330	Leu	Cys	Gln	Ala	His 335	Gly
L€	∍u	Thr	Pro	Glu 340	Gln	Val	Val	Ala	Ile 345	Ala	Ser	His	Asp	Gly 350	Gly	Lys
G]	Ln	Ala	Leu 355	Glu	Thr	Val	Gln	A rg 360	Leu	Leu	Pro	Val	Leu 365	Cys	Gln	Ala
Hi	İs	Gly 370	Leu	Thr	Pro	Gln	Gln 375	Val	Val	Ala	Ile	Ala 380	Ser	His	Asp	Gly
G1 38	-	Lys	Gln	Ala	Leu	Glu 390	Thr	Val	Gln	Arg	Leu 395	Leu	Pro	Val	Leu	Cys 400
G1	Ln	Ala	His	Gly	Leu 405	Thr	Pro	Glu	Gln	Val 410	Val	Ala	Ile	Ala	Ser 415	Asn
As	sn	Gly	Gly	Lys 420	Gln	Ala	Leu	Glu	Thr 425	Val	Gln	Arg	Leu	Leu 430	Pro	Val
L€	∍u	Cys	Gln 435	Ala	His	Gly	Leu	Thr 440	Pro	Glu	Gln	Val	Val 445	Ala	Ile	Ala
Se	er	Asn 450	Asn	Gly	Gly	Lys	Gln 455	Ala	Leu	Glu	Thr	Val 460	Gln	Ala	Leu	Leu
Pr 46		Val	Leu	Cys	Gln	Ala 470	His	Gly	Leu	Thr	Pro 475	Gln	Gln	Val	Val	Ala 480
11	Le	Ala	Ser	His	Asp 485	Gly	Gly	Lys	Gln	Ala 490	Leu	Glu	Thr	Val	Gln 495	Arg
L€	∍u	Leu	Pro	Val 500	Leu	Cys	Gln	Ala	His 505	Gly	Leu	Thr	Pro	Gln 510	Gln	Val
Va	al	Ala	Ile 515	Ala	Ser	Asn	Gly	Gly 520	Gly	Lys	Gln	Ala	Leu 525	Glu	Thr	Val
G]	Ln	Arg	Leu	Leu	Pro	Val	Leu	Cys	Gln	Ala	His	Gly	Leu	Thr	Pro	Gln

	530					535					540				
Gln 545	Val	Val	Ala	Ile	Ala 550	Ser	His	Asp	Gly	Gly 555	Lys	Gln	Ala	Leu	Glu 560
Thr	Val	Gln	Arg	Leu 565	Leu	Pro	Val	Leu	Cys 570	Gln	Ala	His	Gly	Leu 575	Thr
Pro	Glu	Gln	Val 580	Val	Ala	Ile	Ala	Ser 585	Asn	Gly	Gly	Gly	Lys 590	Gln	Ala
Leu	Glu	Thr 595	Val	Gln	Arg	Leu	Leu 600	Pro	Val	Leu	Cys	Gln 605	Ala	His	Gly
Leu	Thr 610	Pro	Glu	Gln	Val	Val 615	Ala	Ile	Ala	Ser	His 620	Asp	Gly	Gly	Lys
Gln 625	Ala	Leu	Glu	Thr	Val 630	Gln	Arg	Leu	Leu	Pro 635	Val	Leu	Cys	Gln	Ala 640
His	Gly	Leu	Thr	Pro 645	Glu	Gln	Val	Val	Ala 650	Ile	Ala	Ser	Asn	Gly 655	Gly
Gly	Lys	Gln	Ala 660	Leu	Glu	Thr	Val	Gln 665	Arg	Leu	Leu	Pro	Val 670	Leu	Cys
Gln	Ala	His 675	Gly	Leu	Thr	Pro	Gln 680	Gln	Val	Val	Ala	Ile 685	Ala	Ser	Asn
	Gly 690	_	Arg		Ala			Ser			Ala 700		Leu	Ser	Arg
Pro 705	Asp	Pro	Ala	Leu	Ala 710	Ala	Leu	Thr	Asn	Asp 715	His	Leu	Val	Ala	Leu 720
Ala	Cys	Leu	Gly	Gly 725	Arg	Pro	Ala	Leu	Asp 730	Ala	Val	Lys	Lys	Gly 735	Leu
Gly	Asp	Pro	Ile 740	Ser	Arg	Ser	Gln	Leu 745	Val	Lys	Ser	Glu	Leu 750	Glu	Glu
Lys	Lys	Ser 755	Glu	Leu	Arg	His	Lys 760	Leu	Lys	Tyr	Val	Pro 765	His	Glu	Tyr
Ile	Glu 770	Leu	Ile	Glu	Ile	Ala 775	Arg	Asn	Ser	Thr	Gln 780	Asp	Arg	Ile	Leu

Glu Met Lys Val Met Glu Phe Phe Met Lys Val Tyr Gly Tyr Arg Gly Lys His Leu Gly Gly Ser Arg Lys Pro Asp Gly Ala Ile Tyr Thr Val Gly Ser Pro Ile Asp Tyr Gly Val Ile Val Asp Thr Lys Ala Tyr Ser 820 825 Gly Gly Tyr Asn Leu Pro Ile Gly Gln Ala Asp Glu Met Gln Arg Tyr 835 840 Val Glu Glu Asn Gln Thr Arg Asn Lys His Ile Asn Pro Asn Glu Trp 850 855 860 Trp Lys Val Tyr Pro Ser Ser Val Thr Glu Phe Lys Phe Leu Phe Val 865 Ser Gly His Phe Lys Gly Asn Tyr Lys Ala Gln Leu Thr Arg Leu Asn 885 890 His Ile Thr Asn Cys Asn Gly Ala Val Leu Ser Val Glu Glu Leu Leu 900 Ile Gly Gly Glu Met Ile Lys Ala Gly Thr Leu Thr Leu Glu Glu Val 915 920 Arg Arg Lys Phe Asn Asn Gly Glu Ile Asn Phe Ala Ala Asp 930 935 <210> 7 <211>49 <212> PRT <213> homo sapiens <223> CD38ex1 T5 <400> 7 Thr Gly Ala Thr Cys Cys Thr Cys Gly Thr Cys Gly Thr Gly Gly Thr Gly Cys Thr Cys Gly Cys Gly Gly Thr Gly Gly Thr Cys Gly Thr Cys 25 20 Cys Cys Gly Ala Gly Gly Thr Gly Gly Cys Gly Cys Cys Ala Gly Cys 40

5

10

<220>

Ala

<210>8 <211> 936 <212> PRT 5 <213> secuencia artificial <220> <223> CD38ex1_T5-L TALEN 10 <400> 8 Met Gly Asp Pro Lys Lys Lys Arg Lys Val Ile Asp Tyr Pro Tyr Asp Val Pro Asp Tyr Ala Ile Asp Ile Ala Asp Leu Arg Thr Leu Gly Tyr 20 25 Ser Gln Gln Gln Glu Lys Ile Lys Pro Lys Val Arg Ser Thr Val 40 45 Ala Gln His His Glu Ala Leu Val Gly His Gly Phe Thr His Ala His 50 55 Ile Val Ala Leu Ser Gln His Pro Ala Ala Leu Gly Thr Val Ala Val 70 Lys Tyr Gln Asp Met Ile Ala Ala Leu Pro Glu Ala Thr His Glu Ala 85 90 Ile Val Gly Val Gly Lys Gln Trp Ser Gly Ala Arg Ala Leu Glu Ala Leu Leu Thr Val Ala Gly Glu Leu Arg Gly Pro Pro Leu Gln Leu Asp 115 120 Thr Gly Gln Leu Leu Lys Ile Ala Lys Arg Gly Gly Val Thr Ala Val 130 135 Glu Ala Val His Ala Trp Arg Asn Ala Leu Thr Gly Ala Pro Leu Asn 145 150 Leu Thr Pro Gln Gln Val Val Ala Ile Ala Ser Asn Gly Gly Gly Lys 165 Gln Ala Leu Glu Thr Val Gln Arg Leu Leu Pro Val Leu Cys Gln Ala 180

200

195

His Gly Leu Thr Pro Glu Gln Val Val Ala Ile Ala Ser Asn Asn Gly

Gly	Lys 210	Gln	Ala	Leu	Glu	Thr 215	Val	Gln	Ala	Leu	Leu 220	Pro	Val	Leu	Cys
Gln 225	Ala	His	Gly	Leu	Thr 230	Pro	Gln	Gln	Val	Val 235	Ala	Ile	Ala	Ser	Asn 240
Ile	Gly	Gly	Lys	Gln 245	Ala	Leu	Glu	Thr	Val 250	Gln	Arg	Leu	Leu	Pro 255	Val
Leu	Cys	Gln	Ala 260	His	Gly	Leu	Thr	Pro 265	Gln	Gln	Val	Val	Ala 270	Ile	Ala
Ser	Asn	Gly 275	Gly	Gly	Lys	Gln	Ala 280	Leu	Glu	Thr	Val	Gln 285	Arg	Leu	Leu
Pro	Val 290	Leu	Cys	Gln	Ala	His 295	Gly	Leu	Thr	Pro	Gln 300	Gln	Val	Val	Ala
Ile 305	Ala	Ser	His	Asp	Gly 310	Gly	Lys	Gln	Ala	Leu 315	Glu	Thr	Val	Gln	Arg 320
Leu	Leu	Pro	Val	Leu 325	Cys	Gln	Ala	His	Gly 330	Leu	Thr	Pro	Gln	Gln 335	Val
Val	Ala	Ile	Ala 340	Ser	His	Asp	Gly	Gly 345	Lys	Gln	Ala	Leu	Glu 350	Thr	Val
Gln	Arg	Leu 355	Leu	Pro	Val	Leu	Cys 360	Gln	Ala	His	Gly	Leu 365	Thr	Pro	Gln
Gln	Val 370	Val	Ala	Ile	Ala	Ser 375	Asn	Gly	Gly	Gly	Lys 380	Gln	Ala	Leu	Glu
Thr 385	Val	Gln	Arg	Leu	Leu 390	Pro	Val	Leu	Cys	Gln 395	Ala	His	Gly	Leu	Thr 400
Pro	Gln	Gln	Val	Val 405	Ala	Ile	Ala	Ser	His 410	Asp	Gly	Gly	Lys	Gln 415	Ala
Leu	Glu	Thr	Val 420	Gln	Arg	Leu	Leu	Pro 425	Val	Leu	Cys	Gln	Ala 430	His	Gly
Leu	Thr	Pro 435	Gln	Gln	Val	Val	Ala 440	Ile	Ala	Ser	Asn	Asn 445	Gly	Gly	Lys
Gln	Ala	Leu	Glu	Thr	Val	Gln	Arg	Leu	Leu	Pro	Val	Leu	Cys	Gln	Ala

	450					455					460				
His 465	Gly	Leu	Thr	Pro	Gln 470	Gln	Val	Val	Ala	Ile 475	Ala	Ser	Asn	Gly	Gly 480
Gly	Lys	Gln	Ala	Leu 485	Glu	Thr	Val	Gln	Arg 490	Leu	Leu	Pro	Val	Leu 495	Cys
Gln	Ala	His	Gly 500	Leu	Thr	Pro	Gln	Gln 505	Val	Val	Ala	Ile	Ala 510	Ser	His
Asp	Gly	Gly 515	Lys	Gln	Ala	Leu	Glu 520	Thr	Val	Gln	Arg	Leu 525	Leu	Pro	Val
Leu	Cys 530	Gln	Ala	His	Gly	Leu 535	Thr	Pro	Gln	Gln	Val 540	Val	Ala	Ile	Ala
Ser 5 4 5	Asn	Asn	Gly	Gly	Lys 550	Gln	Ala	Leu	Glu	Thr 555	Val	Gln	Arg	Leu	Leu 560
Pro	Val	Leu	Cys	Gln 565	Ala	His	Gly	Leu	Thr 570	Pro	Glu	Gln	Val	Val 575	Ala
Ile	Ala	Ser	As n 580	Gly	Gly	Gly	Lys	Gln 585	Ala	Leu	Glu	Thr	Val 590	Gln	Arg
Leu	Leu	Pro 595	Val	Leu	Суѕ	Gln	Ala 600	His	Gly	Leu	Thr	Pro 605	Gln	Gln	Val
Val	Ala 610	Ile	Ala	Ser	Asn		_	_	Lys		Ala 620	Leu	Glu	Thr	Val
Gln 625	Arg	Leu	Leu	Pro	Val 630	Leu	Cys	Gln	Ala	His 635	Gly	Leu	Thr	Pro	Glu 640
Gln	Val	Val	Ala	Ile 645	Ala	Ser	Asn	Asn	Gly 650	Gly	Lys	Gln	Ala	Leu 655	Glu
Thr	Val	Gln	Ala 660	Leu	Leu	Pro	Val	Leu 665	Cys	Gln	Ala	His	Gly 670	Leu	Thr
Pro	Gln	Gln 675	Val	Val	Ala	Ile	Ala 680	Ser	Asn	Gly	Gly	Gly 685	Arg	Pro	Ala
Leu	Glu 690	Ser	Ile	Val	Ala	Gln 695	Leu	Ser	Arg	Pro	Asp 700	Pro	Ala	Leu	Ala

A la 705	Leu	Thr	Asn	Asp	His 710	Leu	Val	Ala	Leu	Ala 715	Cys	Leu	Gly	Gly	Arg 720
Pro	Ala	Leu	Asp	Ala 725	Val	Lys	Lys	Gly	Leu 730	Gly	Asp	Pro	Ile	Ser 735	Arg
Ser	Gln	Leu	Val 740	Lys	Ser	Glu	Leu	Glu 745	Glu	Lys	Lys	Ser	Glu 750	Leu	Arg
His	Lys	Leu 755	Lys	Tyr	Val	Pro	His 760	Glu	Tyr	Ile	Glu	Leu 765	Ile	Glu	Ile
Ala	A rg 770	Asn	Ser	Thr	Gln	Asp 775	Arg	Ile	Leu	Glu	Met 780	Lys	Val	Met	Glu
Phe 785	Phe	Met	Lys	Val	Tyr 790	Gly	Tyr	Arg	Gly	Lys 795	His	Leu	Gly	Gly	Ser 800
Arg	Lys	Pro	Asp	Gly 805	Ala	Ile	Tyr	Thr	Val 810	Gly	Ser	Pro	Ile	Asp 815	Tyr
Gly	Val	Ile	Val 820	Asp	Thr	Lys	Ala	Tyr 825	Ser	Gly	Gly	Tyr	Asn 830	Leu	Pro
Ile	Gly	Gln 835	Ala	Asp	Glu	Met	Gln 840	Arg	Tyr	Val	Glu	Glu 845	Asn	Gln	Thr
Arg	Asn 850	Lys	His	Ile	Asn	Pro 855	Asn	Glu	Trp	Trp	Lys 860	Val	Tyr	Pro	Ser
Ser 865	Val	Thr	Glu	Phe	Lys 870	Phe	Leu	Phe	Val	Ser 875	Gly	His	Phe	Lys	Gly 880
Asn	Tyr	Lys	Ala	Gln 885	Leu	Thr	Arg	Leu	Asn 890	His	Ile	Thr	Asn	Cys 895	Asn
Gly	Ala	Val	Leu 900	Ser	Val	Glu	Glu	Leu 905	Leu	Ile	Gly	Gly	Glu 910	Met	Ile
Lys	Ala	Gly 915	Thr	Leu	Thr	Leu	Glu 920	Glu	Val	Arg	Arg	Lys 925	Phe	Asn	Asn
Gly	Glu 930	Ile	Asn	Phe	Ala	Ala 935	Asp								

<210> 9 <211> 942 <212> PRT

5

40405		
<213>	secuencia	artificiai

<220>

<223> CD38ex1_T5-R TALEN

<400> 9

5

Met Gly Asp Pro Lys Lys Lys Arg Lys Val Ile Asp Lys Glu Thr Ala 1 5 10 15

Ala Ala Lys Phe Glu Arg Gln His Met Asp Ser Ile Asp Ile Ala Asp 20 25 30

Leu Arg Thr Leu Gly Tyr Ser Gln Gln Gln Gln Glu Lys Ile Lys Pro 35 40 45

Lys Val Arg Ser Thr Val Ala Gln His His Glu Ala Leu Val Gly His 50 55 60

Gly Phe Thr His Ala His Ile Val Ala Leu Ser Gln His Pro Ala Ala 65 70 75 80

Leu Gly Thr Val Ala Val Lys Tyr Gln Asp Met Ile Ala Ala Leu Pro 85 90 95

Glu Ala Thr His Glu Ala Ile Val Gly Val Gly Lys Gln Trp Ser Gly
100 105 110

Ala Arg Ala Leu Glu Ala Leu Leu Thr Val Ala Gly Glu Leu Arg Gly 115 120 125

Pro Pro Leu Gln Leu Asp Thr Gly Gln Leu Leu Lys Ile Ala Lys Arg 130 135 140

Gly Gly Val Thr Ala Val Glu Ala Val His Ala Trp Arg Asn Ala Leu 145 150 155 160

Thr Gly Ala Pro Leu Asn Leu Thr Pro Gln Gln Val Val Ala Ile Ala 165 170 175

Ser His Asp Gly Gly Lys Gln Ala Leu Glu Thr Val Gln Arg Leu Leu 180 185 190

Pro Val Leu Cys Gln Ala His Gly Leu Thr Pro Gln Gln Val Val Ala 195 200 205

Ile Ala Ser Asn Asn Gly Gly Lys Gln Ala Leu Glu Thr Val Gln Arg 210 215 220

Leu 225	Leu	Pro	Val	Leu	Cys 230	Gln	Ala	His	Gly	Leu 235	Thr	Pro	Glu	Gln	Val 240
Val	Ala	Ile	Ala	Ser 245	Asn	Ile	Gly	Gly	Lys 250	Gln	Ala	Leu	Glu	Thr 255	Val
Gln	Arg	Leu	Leu 260	Pro	Val	Leu	Cys	Gln 265	Ala	His	Gly	Leu	Thr 270	Pro	Glu
Gln	Val	Val 275	Ala	Ile	Ala	Ser	Asn 280	Asn	Gly	Gly	Lys	Gln 285	Ala	Leu	Glu
Thr	Val 290	Gln	Arg	Leu	Leu	Pro 295	Val	Leu	Cys	Gln	Ala 300	His	Gly	Leu	Thr
Pro 305	Glu	Gln	Val	Val	Ala 310	Ile	Ala	Ser	Asn	Asn 315	Gly	Gly	Lys	Gln	Ala 320
Leu	Glu	Thr	Val	Gln 325	Arg	Leu	Leu	Pro	Val 330	Leu	Cys	Gln	Ala	His 335	Gly
Leu	Thr	Pro	Glu 340	Gln	Val	Val	Ala	Ile 345	Ala	Ser	Asn	Gly	Gly 350	Gly	Lys
Gln	Ala	Leu 355	Glu	Thr	Val	Gln	Arg 360	Leu	Leu	Pro	Val	Leu 365	Cys	Gln	Ala
His	Gly 370	Leu	Thr	Pro	Gln	Gln 375	Val	Val	Ala	Ile	Ala 380	Ser	Asn	Asn	Gly
Gly 385	Lys	Gln	Ala	Leu	Glu 390	Thr	Val	Gln	Arg	Leu 395	Leu	Pro	Val	Leu	Cys 400
Gln	Ala	His	Gly	Leu 405	Thr	Pro	Glu	Gln	Val 410	Val	Ala	Ile	Ala	Ser 415	Asn
Asn	Gly	Gly	Lys 420	Gln	Ala	Leu	Glu	Thr 425	Val	Gln	Arg	Leu	Leu 430	Pro	Val
Leu	Cys	Gln 435	Ala	His	Gly	Leu	Thr 440	Pro	Glu	Gln	Val	Val 445	Ala	Ile	Ala
Ser	His 450	Asp	Gly	Gly	Lys	Gln 455	Ala	Leu	Glu	Thr	Val 460	Gln	Ala	Leu	Leu
Pro 465	Val	Leu	Cys	Gln	Ala 470	His	Gly	Leu	Thr	Pro 475	Gln	Gln	Val	Val	Ala 480

Ile	Ala	Ser	Asn	Asn 485	Gly	Gly	Lys	Gln	Ala 490	Leu	Glu	Thr	Val	Gln 495	Arg
Leu	Leu	Pro	Val 500	Leu	Cys	Gln	Ala	His 505	Gly	Leu	Thr	Pro	Gln 510	Gln	Val
Val	Ala	Ile 515	Ala	Ser	His	Asp	Gly 520	Gly	Lys	Gln	Ala	Leu 525	Glu	Thr	Val
Gln	A rg 530	Leu	Leu	Pro	Val	Leu 535	Cys	Gln	Ala	His	Gly 540	Leu	Thr	Pro	Gln
Gln 545	Val	Val	Ala	Ile	Ala 550	Ser	His	Asp	Gly	Gly 555	Lys	Gln	Ala	Leu	Glu 560
Thr	Val	Gln	Arg	Leu 565	Leu	Pro	Val	Leu	Cys 570	Gln	Ala	His	Gly	Leu 575	Thr
Pro	Glu	Gln	Val 580	Val	Ala	Ile	Ala	Ser 585	Asn	Ile	Gly	Gly	Lys 590	Gln	Ala
Leu	Glu	Thr 595	Val	Gln	Arg	Leu	Leu 600	Pro	Val	Leu	Cys	Gln 605	Ala	His	Gly
Leu	Thr 610	Pro	Glu	Gln	Val	Val 615	Ala	Ile	Ala	Ser	Asn 620	Asn	Gly	Gly	Lys
Gln 625	Ala	Leu	Glu	Thr	Val 630	Gln	Arg	Leu	Leu	Pro 635	Val	Leu	Cys	Gln	Ala 640
His	Gly	Leu	Thr	Pro 645	Glu	Gln	Val	Val	Ala 650	Ile	Ala	Ser	His	Asp 655	Gly
Gly	Lys	Gln	Ala 660	Leu	Glu	Thr	Val	Gln 665	Arg	Leu	Leu	Pro	Val 670	Leu	Cys
Gln	Ala	His 675	Gly	Leu	Thr	Pro	Gln 680	Gln	Val	Val	Ala	Ile 685	Ala	Ser	Asn
Ile	Gly 690	Gly	Arg	Pro	Ala	Leu 695	Glu	Ser	Ile	Val	Ala 700	Gln	Leu	Ser	Arg
Pro 705	Asp	Pro	Ala	Leu	Ala 710	Ala	Leu	Thr	Asn	Asp 715	His	Leu	Val	Ala	Leu 720
Ala	Cys	Leu	Gly	Gly 725	Arg	Pro	Ala	Leu	Asp 730	Ala	Val	Lys	Lys	Gly 735	Leu
							110	`							

Gly Asp Pro Ile Ser Arg Ser Gln Leu Val Lys Ser Glu Leu Glu Glu Lys Lys Ser Glu Leu Arg His Lys Leu Lys Tyr Val Pro His Glu Tyr 760 Ile Glu Leu Ile Glu Ile Ala Arg Asn Ser Thr Gln Asp Arg Ile Leu 770 775 780 Glu Met Lys Val Met Glu Phe Phe Met Lys Val Tyr Gly Tyr Arg Gly 795 785 790 800 Lys His Leu Gly Gly Ser Arg Lys Pro Asp Gly Ala Ile Tyr Thr Val 805 810 Gly Ser Pro Ile Asp Tyr Gly Val Ile Val Asp Thr Lys Ala Tyr Ser 820 825 Gly Gly Tyr Asn Leu Pro Ile Gly Gln Ala Asp Glu Met Gln Arg Tyr 840 835 Val Glu Glu Asn Gln Thr Arg Asn Lys His Ile Asn Pro Asn Glu Trp 850 Trp Lys Val Tyr Pro Ser Ser Val Thr Glu Phe Lys Phe Leu Phe Val 865 870 875 Ser Gly His Phe Lys Gly Asn Tyr Lys Ala Gln Leu Thr Arg Leu Asn 885 890 His Ile Thr Asn Cys Asn Gly Ala Val Leu Ser Val Glu Glu Leu Leu 900 905 Ile Gly Gly Glu Met Ile Lys Ala Gly Thr Leu Thr Leu Glu Glu Val 915 920 Arg Arg Lys Phe Asn Asn Gly Glu Ile Asn Phe Ala Ala Asp 930 935 <210> 10 <211> 451 <212> PRT <213> secuencia artificial <223> Daratumumab-cadena VH

5

10

<400> 10

Val 1	Gln	Leu	Leu	Glu 5	Ser	Gly	Gly	Gly	Leu 10	Val	Gln	Pro	Gly	Gly 15	Ser
Leu	Arg	Leu	Ser 20	Cys	Ala	Val	Ser	Gly 25	Phe	Thr	Phe	Asn	Ser 30	Phe	Ala
Met	Ser	Trp 35	Val	Arg	Gln	Ala	Pro 40	Gly	Lys	Gly	Leu	Glu 45	Trp	Val	Ser
Ala	Ile 50	Ser	Gly	Ser	Gly	Gly 55	Gly	Thr	Tyr	Tyr	Ala 60	Asp	Ser	Val	Lys
Gly 65	Arg	Phe	Thr	Ile	Ser 70	Arg	Asp	Asn	Ser	Lys 75	Asn	Thr	Leu	Tyr	Leu 80
Gln	Met	Asn	Ser	Leu 85	Arg	Ala	Glu	Asp	Thr 90	Ala	Val	Tyr	Phe	Cys 95	Ala
Lys	Asp	Lys	Ile 100	Leu	Trp	Phe	Gly	Glu 105	Pro	Val	Phe	Asp	Tyr 110	Trp	Gly
Gln	Gly	Thr 115	Leu	Val	Thr	Val	Ser 120	Ser	Ala	Ser	Thr	Lys 125	Gly	Pro	Ser
Val	Phe 130	Pro	Leu	Ala	Pro	Ser 135	Ser	Lys	Ser	Thr	Ser 140	Gly	Gly	Thr	Ala
Ala 145	Leu	Gly	Cys	Leu	Val 150	Lys	Asp	Tyr	Phe	Pro 155	Glu	Pro	Val	Thr	Val 160
Ser	Trp	Asn	Ser	Gly 165	Ala	Leu	Thr	Ser	Gly 170	Val	His	Thr	Phe	Pro 175	Ala
Val	Leu	Gln	Ser 180	Ser	Gly	Leu	Tyr	Ser 185	Leu	Ser	Ser	Val	Val 190	Thr	Val
Pro	Ser	Ser 195	Ser	Leu	Gly	Thr	Gln 200	Thr	Tyr	Ile	Cys	Asn 205	Val	Asn	His
Lys	Pro 210	Ser	Asn	Thr	Lys	Val 215	Asp	Lys	Arg	Val	Glu 220	Pro	Lys	Ser	Cys
Asp 225	Lys	Thr	His	Thr	Cys 230	Pro	Pro	Cys	Pro	Ala 235	Pro	Glu	Leu	Leu	Gly 240
Gly	Pro	Ser	Val	Phe	Leu	Phe	Pro	Pro	Lys 250	Pro	Lys	Asp	Thr	Leu 255	Met

Ile Ser Arg Thr Pro Glu Val Thr Cys Val Val Val Asp Val Ser His 265 Glu Asp Pro Glu Val Lys Phe Asn Trp Tyr Val Asp Gly Val Glu Val 280 His Asn Ala Lys Thr Lys Pro Arg Glu Glu Gln Tyr Asn Ser Thr Tyr 295 Arg Val Val Ser Val Leu Thr Val Leu His Gln Asp Trp Leu Asn Gly 305 310 315 320 Lys Glu Tyr Lys Cys Lys Val Ser Asn Lys Ala Leu Pro Ala Pro Ile 330 325 335 Glu Lys Thr Ile Ser Lys Ala Lys Gly Gln Pro Arg Glu Pro Gln Val 340 345 350 Tyr Thr Leu Pro Pro Ser Arg Glu Glu Met Thr Lys Asn Gln Val Ser 360 Leu Thr Cys Leu Val Lys Gly Phe Tyr Pro Ser Asp Ile Ala Val Glu 370 375 Trp Glu Ser Asn Gly Gln Pro Glu Asn Asn Tyr Lys Thr Thr Pro Pro 385 390 395 Val Leu Asp Ser Asp Gly Ser Phe Phe Leu Tyr Ser Lys Leu Thr Val 405 Asp Lys Ser Arg Trp Gln Gln Gly Asn Val Phe Ser Cys Ser Val Met 420 425 430 His Glu Ala Leu His Asn His Tyr Thr Gln Lys Ser Leu Ser Leu Ser 435 440 445 Pro Gly Lys 450 <210> 11 <211> 214 <212> PRT <213> secuencia artificial <223> Daratumumab-cadena VL

5

10

<220>

<400> 11

Glu Ile Val Leu Thr Gln Ser Pro Ala Thr Leu Ser Leu Ser Pro Gly 5 10 Glu Arg Ala Thr Leu Ser Cys Arg Ala Ser Gln Ser Val Ser Ser Tyr Leu Ala Trp Tyr Gln Gln Lys Pro Gly Gln Ala Pro Arg Leu Leu Ile Tyr Asp Ala Ser Asn Arg Ala Thr Gly Ile Pro Ala Arg Phe Ser Gly Ser Gly Ser Gly Thr Asp Phe Thr Leu Thr Ile Ser Ser Leu Glu Pro Glu Asp Phe Ala Val Tyr Tyr Cys Gln Gln Arg Ser Asn Trp Pro Pro 90 Thr Phe Gly Gln Gly Thr Lys Val Glu Ile Lys Arg Thr Val Ala Ala 100 105 110 Pro Ser Val Phe Ile Phe Pro Pro Ser Asp Glu Gln Leu Lys Ser Gly Thr Ala Ser Val Val Cys Leu Leu Asn Asn Phe Tyr Pro Arg Glu Ala Lys Val Gln Trp Lys Val Asp Asn Ala Leu Gln Ser Gly Asn Ser Gln 145 150 Glu Ser Val Thr Glu Gln Asp Ser Lys Asp Ser Thr Tyr Ser Leu Ser 165 170 Ser Thr Leu Thr Leu Ser Lys Ala Asp Tyr Glu Lys His Lys Val Tyr 180 185 Ala Cys Glu Val Thr His Gln Gly Leu Ser Ser Pro Val Thr Lys Ser 200

<210> 12

<211> 120

<212> PRT

<213> secuencia artificial

210

Phe Asn Arg Gly Glu Cys

<220>

<223> MOR202-cadena VH

<400> 12

		Gln 1	Val	Gln	Leu	Val 5	Glu	Ser	Gly	Gly	Gly 10	Leu	Val	Gln	Pro	Gly 15	Gly
		Ser	Leu	Arg	Leu 20	Ser	Cys	Ala	Ala	Ser 25	Gly	Phe	Thr	Phe	Ser 30	Ser	Tyr
		Tyr	Met	Asn 35	Trp	Val	Arg	Gln	Ala 40	Pro	Gly	Lys	Gly	Leu 45	Glu	Trp	Val
		Ser	Gly 50	Ile	Ser	Gly	Asp	Pro 55	Ser	Asn	Thr	Tyr	Tyr 60	Ala	Asp	Ser	Val
		Lys 65	Gly	Arg	Phe	Thr	Ile 70	Ser	Arg	Asp	Asn	Ser 75	Lys	Asn	Thr	Leu	Tyr 80
		Leu	Gln	Met	Asn	Ser 85	Leu	Arg	Ala	Glu	Asp 90	Thr	Ala	Val	Tyr	Tyr 95	Cys
		Ala	Arg	Asp	Leu 100	Pro	Leu	Val	Tyr	Thr 105	Gly	Phe	Ala	Tyr	Trp 110	Gly	Gln
5		Gly	Thr	Leu 115	Val	Thr	Val	Ser	Ser 120								
	<210> 13 <211> 10 <212> Pl <213> se	09 RT	cia arti	ficial													
10	<220> <223> M	OR20	2-cade	ena VI	_												
1.5	<400> 13	3															
15		Asp 1	Ile	Glu	Leu	Thr 5	Gln	Pro	Pro	Ser	Val 10	Ser	Val	Ala	Pro	Gly 15	Gln
		Thr	Ala	Arg	Ile 20	Ser	Cys	Ser	Gly	Asp 25	Asn	Leu	Arg	His	Tyr 30	Tyr	Val
		Tyr	Trp	Tyr 35	Gln	Gln	Lys	Pro	Gly 40	Gln	Ala	Pro	Val	Leu 45	Val	Ile	Tyr
		Gly	Asp 50	Ser	Lys	Arg	Pro	Ser 55	Gly	Ile	Pro	Glu	Arg 60	Phe	Ser	Gly	Ser
		Asn	Ser	Glv	Asn	Thr	Δla	Thr	T. 11	Thr	Tle	Ser	Glv	Thr	Gln	Δla	Glu

65 70 75 80 Asp Glu Ala Asp Tyr Tyr Cys Gln Thr Tyr Thr Gly Gly Ala Ser Leu 85 90 Val Phe Gly Gly Gly Thr Lys Leu Thr Val Leu Gly Gln <210> 14 <211> 10 5 <212> PRT <213> secuencia artificial <220> <223> HCDR1-1 - cadena VH 10 <400> 14 Gly Phe Thr Phe Ser Ser Tyr Tyr Met Asn 10 15 <210> 15 <211> 5 <212> PRT <213> secuencia artificial <220> 20 <223> HCDR1-2 - cadena VH <400> 15 Ser Tyr Tyr Met Asn 5 25 1 <210> 16 <211> 17 <212> PRT 30 <213> secuencia artificial <223> HCDR2 - cadena VH 35 <400> 16 Gly Ile Ser Gly Asp Pro Ser Asn Thr Tyr Tyr Ala Asp Ser Val Lys 5 10 Gly <210> 17 40 <211> 11 <212> PRT <213> secuencia artificial <220> 45 <223> HCDR3 - cadena VH <400> 17 Asp Leu Pro Leu Val Tyr Thr Gly Phe Ala Tyr 5

```
<210> 18
       <211>5
       <212> PRT
       <213> secuencia artificial
 5
       <220>
       <223> HCDR4 - cadena VH
       <400> 18
10
                                          Asp Tyr Trp Met Gln
                                          1
       <210> 19
        <211> 16
       <212> PRT
15
       <213> secuencia artificial
       <220>
       <223> HCDR5 - cadena VH
20
        <400> 19
               Thr Ile Tyr Pro Gly Asp Gly Asp Thr Gly Tyr Ala Gln Lys Phe Lys
                                                            10
25
       <210> 20
        <211> 11
       <212> PRT
        <213> secuencia artificial
30
       <220>
       <223> HCDR6 - cadena VH
       <400> 20
                            Gly Asp Tyr Tyr Gly Ser Asn Ser Leu Asp Tyr
                                               5
35
       <210> 21
        <211> 11
       <212> PRT
40
       <213> secuencia artificial
       <220>
       <223> LCDR1 - cadena VH
45
       <400> 21
                            Ser Gly Asp Asn Leu Arg His Tyr Tyr Val Tyr
       <210> 22
       <211> 7
50
        <212> PRT
        <213> secuencia artificial
       <220>
       <223> LCDR2 - cadena VH
55
       <400> 22
                                     Gly Asp Ser Lys Arg Pro Ser
                                     1
60
```

```
<210> 23
        <211>9
        <212> PRT
        <213> secuencia artificial
 5
        <220>
        <223> LCDR3 - cadena VH
        <400> 23
10
                                 Gln Thr Tyr Thr Gly Gly Ala Ser Leu
        <210> 24
        <211> 11
15
        <212> PRT
        <213> secuencia artificial
        <220>
        <223> LCDR4 - cadena VH
20
        <400> 24
                            Lys Ala Ser Gln Asp Val Ser Thr Val Val Ala
                                                5
25
        <210> 25
        <211> 7
        <212> PRT
        <213> secuencia artificial
30
        <220>
        <223> LCDR5 - cadena VH
        <400> 25
                                      Ser Ala Ser Tyr Arg Tyr Ile
35
        <210> 26
        <211>8
        <212> PRT
40
        <213> secuencia artificial
        <223> LCDR6 - cadena VH
45
        <400> 26
                                    Gln Gln His Ser Pro Pro Tyr Thr
        <210> 27
50
        <211> 21
        <212> PRT
        <213> secuencia artificial
        <223> CD8 y n.º 945;-Péptido de señalización (PS)
55
        <400> 27
```

Met Ala Leu Pro Val Thr Ala Leu Leu Pro Leu Ala Leu Leu Leu

```
5
             His Ala Ala Arg Pro
                           20
       <210> 28
       <211> 15
       <212> PRT
5
       <213> secuencia artificial
       <220>
       <223> Enlazador GS
10
       <400> 28
                Gly Gly Gly Ser Gly Gly Gly Ser Gly Gly Gly Ser
                                  5
                                                                              15
15
       <210> 29
       <211> 16
       <212> PRT
       <213> homo sapiens
20
       <220>
       <223> FCRII y n.º 945; bisagra
       <400> 29
              Gly Leu Ala Val Ser Thr Ile Ser Ser Phe Phe Pro Pro Gly Tyr Gln
                                                      10
25
                               5
                                                                            15
       <210> 30
       <211>69
       <212> PRT
30
       <213> homo sapiens
       <220>
       <223> CD8 y n.º 945; bisagra
35
       <400> 30
              Thr Thr Pro Ala Pro Arg Pro Pro Thr Pro Ala Pro Thr Ile Ala
              1
                                5
                                                      10
                                                                            15
              Ser Gln Pro Leu Ser Leu Arg Pro Glu Ala Cys Arg Pro Ala Ala Gly
                           20
                                                  25
                                                                        30
              Gly Ala Val His Thr Arg Gly Leu Asp Phe Ala Cys Asp Ile Tyr Ile
                       35
                                             40
                                                                   45
              Trp Ala Pro Leu Ala Gly Thr Cys Gly Val Leu Leu Leu Ser Leu Val
                  50
                                         55
              Ile Thr Leu Tyr Cys
              65
       <210> 31
40
       <211> 231
```

	<212> P <213> h		apiens	8													
5	<220> <223> b	isagra	de Ig	G1													
	<400> 3	1															
		Glu 1	Pro	Lys	Ser	Pro 5	Asp	Lys	Thr	His	Thr 10	Cys	Pro	Pro	Cys	Pro 15	Ala
		Pro	Pro	Val	Ala 20	Gly	Pro	Ser	Val	Phe 25	Leu	Phe	Pro	Pro	Lys 30	Pro	Lys
		Asp	Thr	Leu 35	Met	Ile	Ala	Arg	Thr 40	Pro	Glu	Val	Thr	Cys 45	Val	Val	Val
		Asp	Val 50	Ser	His	Glu	Asp	Pro 55	Glu	Val	Lys	Phe	Asn 60	Trp	Tyr	Val	Asp
		Gly 65	Val	Glu	Val	His	Asn 70	Ala	Lys	Thr	Lys	Pro 75	Arg	Glu	Glu	Gln	Tyr 80
		Asn	Ser	Thr	Tyr	Arg 85	Val	Val	Ser	Val	Leu 90	Thr	Val	Leu	His	Gln 95	Asp

		Pro	Ala	Pro 115	Ile	Glu	Lys	Thr	Ile 120	Ser	Lys	Ala	Lys	Gly 125	Gln	Pro	Arg
		Glu	Pro 130	Gln	Val	Tyr	Thr	Leu 135	Pro	Pro	Ser	Arg	Asp 140	Glu	Leu	Thr	Lys
		Asn 145	Gln	Val	Ser	Leu	Thr 150	Cys	Leu	Val	Lys	Gly 155	Phe	Tyr	Pro	Ser	Asp 160
		Ile	Ala	Val	Glu	Trp 165	Glu	Ser	Asn	Gly	Gln 170	Pro	Glu	Asn	Asn	Tyr 175	Lys
		Thr	Thr	Pro	Pro 180	Val	Leu	Asp	Ser	Asp 185	Gly	Ser	Phe	Phe	Leu 190	Tyr	Ser
		Lys	Leu	Thr 195	Val	Asp	Lys	Ser	Arg 200	Trp	Gln	Gln	Gly	As n 205	Val	Phe	Ser
		Cys	Ser 210	Val	Met	His	Glu	Ala 215	Leu	His	Asn	His	Tyr 220	Thr	Gln	Lys	Ser
		Leu 225	Ser	Leu	Ser	Pro	Gly 230	Lys									
5	<210> 3 <211> 2 <212> P <213> h	4 PRT	apiens	6													
10	<220> <223> d	ominic	TM														
10	<400> 3	2															
		Ile 1	Tyr	Ile	Trp	Ala 5	Pro	Leu	Ala	Gly	Thr 10	Cys	Gly	Val	Leu	Leu 15	Leu
		Ser	Leu	Val	Ile 20	Thr	Leu	Tyr	Cys								
15	<210> 3 <211> 4 <212> P <213> h	2 PRT	apiens	5													
20	<220> <223> d	ominic	4-1 E	3В соє	stimul	ador											
	<400> 3	3															
25		Lys 1	Arg	Gly	Arg	Lys 5	Lys	Leu	Leu	Tyr	Ile 10	Phe	Lys	Gln	Pro	Phe 15	Met

Arg Pro Val Gln Thr Thr Gln Glu Glu Asp Gly Cys Ser Cys Arg Phe

20 30 Pro Glu Glu Glu Gly Gly Cys Glu Leu 40 <210> 34 <211> 112 5 <212> PRT <213> homo sapiens <220> <223> CD3 y n.º 950; dominio de activación 10 <400> 34 Arg Val Lys Phe Ser Arg Ser Ala Asp Ala Pro Ala Tyr Gln Gln Gly 5 10 Gln Asn Gln Leu Tyr Asn Glu Leu Asn Leu Gly Arg Arg Glu Glu Tyr 20 25 30 Asp Val Leu Asp Lys Arg Gly Arg Asp Pro Glu Met Gly Gly Lys 35 40 Pro Arg Arg Lys Asn Pro Gln Glu Gly Leu Tyr Asn Glu Leu Gln Lys 50 55 Asp Lys Met Ala Glu Ala Tyr Ser Glu Ile Gly Met Lys Gly Glu Arg 75 Arg Arg Gly Lys Gly His Asp Gly Leu Tyr Gln Gly Leu Ser Thr Ala 85 Thr Lys Asp Thr Tyr Asp Ala Leu His Met Gln Ala Leu Pro Pro Arg 100 105 110 <210> 35 15 <211> 442 <212> PRT <213> secuencia artificial 20 <220> <223> GMB005-V1 CAR <400> 35 Pro Leu Ala Leu Leu His Ala Arg Pro Glu Val Gln Leu Leu 5 10 25

Glu	Ser	Gly	Gly 20	Gly	Leu	Val	Gln	Pro 25	Gly	Gly	Ser	Leu	Arg 30	Leu	Ser
Cys	Ala	Val 35	Ser	Gly	Phe	Thr	Phe 40	Asn	Ser	Phe	Ala	Met 45	Ser	Trp	Val
Arg	Gln 50	Ala	Pro	Gly	Lys	Gly 55	Leu	Glu	Trp	Val	Ser 60	Ala	Ile	Ser	Gly
Ser 65	Gly	Gly	Gly	Thr	Tyr 70	Tyr	Ala	Asp	Ser	Val 75	Lys	Gly	Arg	Phe	Thr 80
Ile	Ser	Arg	Asp	Asn 85	Ser	Lys	Asn	Thr	Leu 90	Tyr	Leu	Gln	Met	Asn 95	Ser
Leu	Arg	Ala	Glu 100	Asp	Thr	Ala	Val	Tyr 105	Phe	Cys	Ala	Lys	Asp 110	Lys	Ile
Leu	Trp	Phe 115	Gly	Glu	Pro	Val	Phe 120	Asp	Tyr	Trp	Gly	Gln 125	Gly	Thr	Leu
Val	Thr 130	Val	Ser	Ser	Ala	Ser 135	Gly	Gly	Gly	Gly	Ser 140	Gly	Gly	Gly	Gly
Ser 145	Gly	Gly	Gly	Gly	Ser 150	Glu	Ile	Val	Leu	Thr 155	Gln	Ser	Pro	Ala	Thr
Leu	Ser	Leu	Ser	Pro 165	Gly	Glu	Arg	Ala	Thr 170	Leu	Ser	Cys	Arg	Ala 175	Ser
Gln	Ser	Val	Ser 180	Ser	Tyr	Leu	Ala	Trp 185	Tyr	Gln	Gln	Lys	Pro 190	Gly	Gln
Ala	Pro	Arg 195	Leu	Leu	Ile	Tyr	Asp 200	Ala	Ser	Asn	Arg	Ala 205	Thr	Gly	Ile
Pro	Ala 210	Arg	Phe	Ser	Gly	Ser 215	Gly	Ser	Gly	Thr	Asp 220	Phe	Thr	Leu	Thr
Ile 225	Ser	Ser	Leu	Glu	Pro 230	Glu	Asp	Phe	Ala	Val 235	Tyr	Tyr	Cys	Gln	Gln 240
Arg	Ser	Asn	Trp	Pro 245	Pro	Thr	Phe	Gly	Gln 250	Gly	Thr	Lys	Val	Glu 255	Ile
Taze	G1 v	Lou	7.1.5	17 n 1	Sor	Thr	Tlo	Sar	Sar	Dhc	Dhc	Drc	Dro	G1 vz	Фтт

				260					265					270		
	Gln	Ile	Tyr 275	Ile	Trp	Ala	Pro	Leu 280	Ala	Gly	Thr	Cys	Gly 285	Val	Leu	Leu
	Leu	Ser 290	Leu	Val	Ile	Thr	Leu 295	Tyr	Cys	Lys	Arg	Gly 300	Arg	Lys	Lys	Leu
	Leu 305	Tyr	Ile	Phe	Lys	Gln 310	Pro	Phe	Met	Arg	Pro 315	Val	Gln	Thr	Thr	Gln 320
	Glu	Glu	Asp	Gly	Cys 325	Ser	Cys	Arg	Phe	Pro 330	Glu	Glu	Glu	Glu	Gly 335	Gly
	Cys	Glu	Leu	Arg 340	Val	Lys	Phe	Ser	Arg 345	Ser	Ala	Asp	Ala	Pro 350	Ala	Tyr
	Gln	Gln	Gly 355	Gln	Asn	Gln	Leu	Tyr 360	Asn	Glu	Leu	Asn	Leu 365	Gly	Arg	Arg
	Glu	Glu 370	Tyr	Asp	Val	Leu	Asp 375	Lys	Arg	Arg	Gly	Arg 380	Asp	Pro	Glu	Met
	Gly 385	Gly	Lys	Pro	Arg	Arg 390	Lys	Asn	Pro	Gln	Glu 395	Gly	Leu	Tyr	Asn	Glu 400
	Leu	Gln	Lys	Asp	Lys 405	Met	Ala	Glu	Ala	Tyr 410	Ser	Glu	Ile	Gly	Met 415	Lys
	Gly	Glu	Arg	Arg 420	Arg	Gly	Lys	Gly	His 425	Asp	Gly	Leu	Tyr	Gln 430	Gly	Leu
	Ser	Thr	Ala 435	Thr	Lys	Asp	Thr	Tyr 440	Asp	Ala						
<210> 36 <211> 47 <212> P <213> se	71 RT	cia arti	ficial													
<220> <223> G	MB00	5-V2 (CAR													
<400> 36	6															
	Pro 1	Leu	Ala	Leu	Leu 5	Leu	His	Ala	Ala	Arg 10	Pro	Glu	Val	Gln	Leu 15	Leu
	Glu	Ser	Gly	Gly 20	Gly	Leu	Val	Gln	Pro 25	Gly	Gly	Ser	Leu	Arg 30	Leu	Ser

Cys	Ala	Val 35	Ser	Gly	Phe	Thr	Phe 40	Asn	Ser	Phe	Ala	Met 45	Ser	Trp	Val
Arg	Gln 50	Ala	Pro	Gly	Lys	Gly 55	Leu	Glu	Trp	Val	Ser 60	Ala	Ile	Ser	Gly
Ser 65	Gly	Gly	Gly	Thr	Tyr 70	Tyr	Ala	Asp	Ser	Val 75	Lys	Gly	Arg	Phe	Thr 80
Ile	Ser	Arg	Asp	Asn 85	Ser	Lys	Asn	Thr	Leu 90	Tyr	Leu	Gln	Met	Asn 95	Ser
Leu	Arg	Ala	Glu 100	Asp	Thr	Ala	Val	Tyr 105	Phe	Cys	Ala	Lys	Asp 110	Lys	Ile
Leu	Trp	Phe 115	Gly	Glu	Pro	Val	Phe 120	Asp	Tyr	Trp	Gly	Gln 125	Gly	Thr	Leu
Val	Thr 130	Val	Ser	Ser	Ala	Ser 135	Gly	Gly	Gly	Gly	Ser 140	Gly	Gly	Gly	Gly
Ser 145	Gly	Gly	Gly	Gly	Ser 150	Glu	Ile	Val	Leu	Thr 155	Gln	Ser	Pro	Ala	Thr 160
Leu	Ser	Leu	Ser	Pro 165	Gly	Glu	Arg	Ala	Thr 170	Leu	Ser	Суѕ	Arg	Ala 175	Ser
Gln	Ser	Val	Ser 180	Ser	Tyr	Leu	Ala	Trp 185	Tyr	Gln	Gln	Lys	Pro 190	Gly	Gln
Ala	Pro	A rg 195	Leu	Leu	Ile	Tyr	Asp 200	Ala	Ser	Asn	Arg	Ala 205	Thr	Gly	Ile
Pro	Ala 210	Arg	Phe	Ser	Gly	Ser 215	Gly	Ser	Gly	Thr	Asp 220	Phe	Thr	Leu	Thr
Ile 225	Ser	Ser	Leu	Glu	Pro 230	Glu	Asp	Phe	Ala	Val 235	Tyr	Tyr	Cys	Gln	Gln 240
Arg	Ser	Asn	Trp	Pro 245	Pro	Thr	Phe	Gly	Gln 250	Gly	Thr	Lys	Val	Glu 255	Ile
Lys	Thr	Thr	Thr 260	Pro	Ala	Pro	Arg	Pro 265	Pro	Thr	Pro	Ala	Pro 270	Thr	Ile
Ala	Ser	Gln	Pro	Leu	Ser	Leu	Arg	Pro	Glu	Ala	Cys	Arg	Pro	Ala	Ala

		275					280					285			
Gly	Gly 290	Ala	Val	His	Thr	Arg 295	Gly	Leu	Asp	Phe	Ala 300	Cys	Asp	Ile	Tyr
Ile 305	Trp	Ala	Pro	Leu	Ala 310	Gly	Thr	Cys	Gly	Val 315	Leu	Leu	Leu	Ser	Leu 320
Val	Ile	Thr	Leu	Tyr 325	Cys	Lys	Arg	Gly	Arg 330	Lys	Lys	Leu	Leu	Tyr 335	Ile
Phe	Lys	Gln	Pro 340	Phe	Met	Arg	Pro	Val 345	Gln	Thr	Thr	Gln	Glu 350	Glu	Asp
Gly	Cys	Ser 355	Cys	Arg	Phe	Pro	Glu 360	Glu	Glu	Glu	Gly	Gly 365	Cys	Glu	Leu
Arg	Val 370	Lys	Phe	Ser	Arg	Ser 375	Ala	Asp	Ala	Pro	Ala 380	Tyr	Gln	Gln	Gly
Gln 385	Asn	Gln	Leu	Tyr	Asn 390	Glu	Leu	Asn	Leu	Gly 395	Arg	Arg	Glu	Glu	Tyr 400
Asp	Val	Leu	Asp	Lys 405	Arg	Arg	Gly	Arg	Asp 410	Pro	Glu	Met	Gly	Gly 415	Lys
Pro	Arg	Arg	Lys 420	Asn	Pro	Gln	Glu	Gly 425	Leu	Tyr	Asn	Glu	Leu 430	Gln	Lys
Asp	Lys	Met 435	Ala	Glu	Ala	Tyr	Ser 440	Glu	Ile	Gly	Met	Lys 445	Gly	Glu	Arg
Arg	Arg 450	Gly	Lys	Gly	His	Asp 455	Gly	Leu	Tyr	Gln	Gly 460	Leu	Ser	Thr	Ala
Thr 465	Lys	Asp	Thr	Tyr	Asp 470	Ala									
<210> 37 <211> 657 <212> PRT <213> secuen	cia art	ificial													
<220> <223> GMB00	5-V3 (CAR													
<400> 37															

Pro Leu Ala Leu Leu His Ala Ala Arg Pro Glu Val Gln Leu Leu

Glu	Ser	Gly	Gly 20	Gly	Leu	Val	Gln	Pro 25	Gly	Gly	Ser	Leu	Arg 30	Leu	Ser
Cys	Ala	Val 35	Ser	Gly	Phe	Thr	Phe 40	Asn	Ser	Phe	Ala	Met 45	Ser	Trp	Val
Arg	Gln 50	Ala	Pro	Gly	Lys	Gly 55	Leu	Glu	Trp	Val	Ser 60	Ala	Ile	Ser	Gly
Ser 65	Gly	Gly	Gly	Thr	Tyr 70	Tyr	Ala	Asp	Ser	Val 75	Lys	Gly	Arg	Phe	Thr 80
Ile	Ser	Arg	Asp	Asn 85	Ser	Lys	Asn	Thr	Leu 90	Tyr	Leu	Gln	Met	Asn 95	Ser
Leu	Arg	Ala	Glu 100	Asp	Thr	Ala	Val	Tyr 105	Phe	Cys	Ala	Lys	Asp 110	Lys	Ile
Leu	Trp	Phe 115	Gly	Glu	Pro	Val	Phe 120	Asp	Tyr	Trp	Gly	Gln 125	Gly	Thr	Leu
Val	Thr 130	Val	Ser	Ser	Ala	Ser 135	Gly	Gly	Gly	Gly	Ser 140	Gly	Gly	Gly	Gly
Ser 145	Gly	Gly	Gly	Gly	Ser 150	Glu	Ile	Val	Leu	Thr 155	Gln	Ser	Pro	Ala	Thr 160
Leu	Ser	Leu	Ser	Pro 165	Gly	Glu	Arg	Ala	Thr 170	Leu	Ser	Cys	Arg	Ala 175	Ser
Gln	Ser	Val	Ser 180	Ser	Tyr	Leu	Ala	Trp 185	Tyr	Gln	Gln	Lys	Pro 190	Gly	Gln
Ala	Pro	Arg 195	Leu	Leu	Ile	Tyr	Asp 200	Ala	Ser	Asn	Arg	Ala 205	Thr	Gly	Ile
Pro	Ala 210	Arg	Phe	Ser	Gly	Ser 215	Gly	Ser	Gly	Thr	Asp 220	Phe	Thr	Leu	Thr
Ile 225	Ser	Ser	Leu	Glu	Pro 230	Glu	Asp	Phe	Ala	Val 235	Tyr	Tyr	Cys	Gln	Gln 240
Arg	Ser	Asn	Trp	Pro 245	Pro	Thr	Phe	Gly	Gln 250	Gly	Thr	Lys	Val	Glu 255	Ile
Lys	Glu	Pro	Lys	Ser	Pro	Asp	Lys	Thr	His	Thr	Cys	Pro	Pro	Cys	Pro

			260					265					270		
Ala	Pro	Pro 275	Val	Ala	Gly	Pro	Ser 280	Val	Phe	Leu	Phe	Pro 285	Pro	Lys	Pro
Lys	Asp 290	Thr	Leu	Met	Ile	Ala 295	Arg	Thr	Pro	Glu	Val 300	Thr	Cys	Val	Val
Val 305	Asp	Val	Ser	His	Glu 310	Asp	Pro	Glu	Val	Lys 315	Phe	Asn	Trp	Tyr	Val 320
Asp	Gly	Val	Glu	Val 325	His	Asn	Ala	Lys	Thr 330	Lys	Pro	Arg	Glu	Glu 335	Gln
Tyr	Asn	Ser	Thr 340	Tyr	Arg	Val	Val	Ser 345	Val	Leu	Thr	Val	Leu 350	His	Gln
Asp	Trp	Leu 355	Asn	Gly	Lys	Glu	Tyr 360	Lys	Cys	Lys	Val	Ser 365	Asn	Lys	Ala
Leu	Pro 370	Ala	Pro	Ile	Glu	Lys 375	Thr	Ile	Ser	Lys	Ala 380	Lys	Gly	Gln	Pro
Arg 385	Glu	Pro	Gln	Val	Tyr 390	Thr	Leu	Pro	Pro	Ser 395	Arg	Asp	Glu	Leu	Thr 400
Lys	Asn	Gln	Val	Ser 405	Leu	Thr	Cys	Leu	Val 410	Lys	Gly	Phe	Tyr	Pro 415	Ser
Asp	Ile	Ala	Val 420	Glu	Trp	Glu	Ser	Asn 425	Gly	Gln	Pro	Glu	Asn 430	Asn	Tyr
Lys	Thr	Thr 435	Pro	Pro	Val	Leu	Asp 440	Ser	Asp	Gly	Ser	Phe 445	Phe	Leu	Tyr
Ser	Lys 450	Leu	Thr	Val	Asp	Lys 455	Ser	Arg	Trp	Gln	Gln 460	Gly	Asn	Val	Phe
Ser 465	Cys	Ser	Val	Met	His 470	Glu	Ala	Leu	His	Asn 475	His	Tyr	Thr	Gln	Lys 480
Ser	Leu	Ser	Leu	Ser 485	Pro	Gly	Lys	Ile	Tyr 490	Ile	Trp	Ala	Pro	Leu 495	Ala
Gly	Thr	Cys	Gly 500	Val	Leu	Leu	Leu	Ser 505	Leu	Val	Ile	Thr	Leu 510	Tyr	Cys

	Lys	Arg	Gly 515	Arg	Lys	Lys	Leu	Leu 520	Tyr	Ile	Phe	Lys	Gln 525	Pro	Phe	Met
	Arg	Pro 530	Val	Gln	Thr	Thr	Gln 535	Glu	Glu	Asp	Gly	Cys 540	Ser	Cys	Arg	Phe
	Pro 545	Glu	Glu	Glu	Glu	Gly 550	Gly	Cys	Glu	Leu	A rg 555	Val	Lys	Phe	Ser	Arg
	Ser	Ala	Asp	Ala	Pro 565	Ala	Tyr	Gln	Gln	Gly 570	Gln	Asn	Gln	Leu	Tyr 575	Asn
	Glu	Leu	Asn	Leu 580	Gly	Arg	Arg	Glu	Glu 585	Tyr	Asp	Val	Leu	Asp 590	Lys	Arg
	Arg	Gly	Arg 595	Asp	Pro	Glu	Met	Gly 600	Gly	Lys	Pro	Arg	Arg 605	Lys	Asn	Pro
	Gln	Glu 610	Gly	Leu	Tyr	Asn	Glu 615	Leu	Gln	Lys	Asp	Lys 620	Met	Ala	Glu	Ala
	Tyr 625	Ser	Glu	Ile	Gly	Met 630	Lys	Gly	Glu	Arg	Arg 635	Arg	Gly	Lys	Gly	His
	Asp	Gly	Leu	Tyr	Gln 645	Gly	Leu	Ser	Thr	Ala 650	Thr	Lys	Asp	Thr	Tyr 655	Asp
	Ala															
<210> 3 <211> 1 <212> F <213> n	19 PRT	usculu	s													
<220> <223> L	uc63-	caden:	a VH													
<400> 3		oddorii	u VII													
	Glu 1	Val	Lys	Leu	Leu 5	Glu	Ser	Gly	Gly	Gly 10	Leu	Val	Gln	Pro	Gly 15	Gly
	Ser	Leu	Lys	Leu 20	Ser	Cys	Ala	Ala	Ser 25	Gly	Phe	Asp	Phe	Ser 30	Arg	Tyr
	Trp	Met	Ser 35	Trp	Val	Arg	Gln	Ala 40	Pro	Gly	Lys	Gly	Leu 45	Glu	Trp	Ile
	Gly	Glu 50	Ile	Asn	Pro	Asp	Ser 55	Ser	Thr	Ile	Asn	Tyr 60	Thr	Pro	Ser	Leu

70

65

Lys Asp Lys Phe Ile Ile Ser Arg Asp Asn Ala Lys Asn Thr Leu Tyr

80

Leu Gln Met Ser Lys Val Arg Ser Glu Asp Thr Ala Leu Tyr Tyr Cys 95 85 90 Ala Arg Pro Asp Gly Asn Tyr Trp Tyr Phe Asp Val Trp Gly Ala Gly 100 105 110 Thr Thr Val Thr Val Ser Ser 115 <210> 39 <211> 107 <212> PRT 5 <213> mus musculus <220> <223> Luc63-cadena VL 10 <400>39 Asp Ile Val Met Thr Gln Ser His Lys Phe Met Ser Thr Ser Val Gly 1 5 10 Asp Arg Val Ser Ile Thr Cys Lys Ala Ser Gln Asp Val Gly Ile Ala 20 25 30 Val Ala Trp Tyr Gln Gln Lys Pro Gly Gln Ser Pro Lys Leu Leu Ile 35 40 45 Tyr Trp Ala Ser Thr Arg His Thr Gly Val Pro Asp Arg Phe Thr Gly 50 55 60 Ser Gly Ser Gly Thr Asp Phe Thr Leu Thr Ile Ser Asn Val Gln Ser 70 75 80 Glu Asp Leu Ala Asp Tyr Phe Cys Gln Gln Tyr Ser Ser Tyr Pro Tyr 85 90 95 Thr Phe Gly Gly Gly Thr Lys Leu Glu Ile Lys 100 15 <210> 40 <211> 120 <212> PRT <213> mus musculus 20 <220> <223> Luc90-cadena VH <400>40

	Gln 1	Val	Gln	Leu	Gln 5	Gln	Pro	Gly	Ala	Glu 10	Leu	Val	Arg	Pro	Gly 15	Ala
	Ser	Val	Lys	Leu 20	Ser	Cys	Lys	Ala	Ser 25	Gly	Tyr	Ser	Phe	Thr 30	Thr	Tyr
	Trp	Met	Asn 35	Trp	Val	Lys	Gln	Arg 40	Pro	Gly	Gln	Gly	Leu 45	Glu	Trp	Ile
	Gly	Met 50	Ile	His	Pro	Ser	Asp 55	Ser	Glu	Thr	Arg	Leu 60	Asn	Gln	Lys	Phe
	Lys 65	Asp	Lys	Ala	Thr	Leu 70	Thr	Val	Asp	Lys	Ser 75	Ser	Ser	Thr	Ala	Tyr 80
	Met	Gln	Leu	Ser	Ser 85	Pro	Thr	Ser	Glu	Asp 90	Ser	Ala	Val	Tyr	Tyr 95	Cys
	Ala	Arg	Ser	Thr 100	Met	Ile	Ala	Thr	Arg 105	Ala	Met	Asp	Tyr	Trp 110	Gly	Gln
	Gly	Thr	Ser 115	Val	Thr	Val	Ser	Ser 120								
Ρ	07 RT	usculu	s													
Lı	uc90-	caden	a VL													
4	1															
	Asp 1	Ile	Val	Met	Thr 5	Gln	Ser	Gln	Lys	Ser 10	Met	Ser	Thr	Ser	Val 15	Gly
	Asp	Arg	Val	Ser 20	Ile	Thr	Cys	Lys	Ala 25	Ser	Gln	Asp	Val	Ile 30	Thr	Gly
	Val	Ala	Trp 35	Tyr	Gln	Gln	Lys	Pro 40	Gly	Gln	Ser	Pro	Lys 45	Leu	Leu	Ile
	Tyr	Ser 50	Ala	Ser	Tyr	Arg	Tyr 55	Thr	Gly	Val	Pro	Asp 60	Arg	Phe	Thr	Gly
	Ser 65	Gly	Ser	Gly	Thr	Asp 70	Phe	Thr	Phe	Thr	Ile 75	Ser	Asn	Val	Gln	Ala 80

<210> <211> <212> <213>

<220> <223>

<400>

5

85

Glu Asp Leu Ala Val Tyr Tyr Cys Gln Gln His Tyr Ser Thr Pro Leu

90

Thr Phe Gly Ala Gly Thr Lys Leu Glu Leu Lys <210> 42 <211> 121 <212> PRT 5 <213> mus musculus <220> <223> Luc34-cadena VH 10 <400> 42 Gln Val Gln Leu Gln Gln Ser Gly Ala Glu Leu Ala Arg Pro Gly Ala 5 15 10 Ser Val Lys Leu Ser Cys Lys Ala Ser Gly Tyr Thr Phe Thr Ser Tyr 20 25 30 Trp Met Gln Trp Val Lys Gln Arg Pro Gly Gln Gly Leu Glu Trp Ile 35 Gly Ala Ile Tyr Pro Gly Asp Gly Asp Thr Arg Tyr Thr Gln Lys Phe 50 55 60 Lys Gly Lys Ala Thr Leu Thr Ala Asp Lys Ser Ser Ser Thr Ala Tyr Met Gln Leu Ser Ser Leu Ala Ser Glu Asp Ser Ala Val Tyr Tyr Cys 85 90 95 Ala Arg Gly Lys Val Tyr Tyr Gly Ser Asn Pro Phe Ala Tyr Trp Gly 105 100 110 Gln Gly Thr Leu Val Thr Val Ser Ala 115 120 15 <210> 43 <211> 107 <212> PRT <213> mus musculus <220> 20 <223> Luc34-cadena VL <400> 43 Asp Ile Gln Met Thr Gln Ser Ser Ser Tyr Leu Ser Val Ser Leu Gly 25

	1				5					10					15	
	Gly	Arg	Val	Thr 20	Ile	Thr	Cys	Lys	Ala 25	Ser	Asp	His	Ile	Asn 30	Asn	Trp
	Leu	Ala	Trp 35	Tyr	Gln	Gln	Lys	Pro 40	Gly	Asn	Ala	Pro	Arg 45	Leu	Leu	Ile
	Ser	Gly 50	Ala	Thr	Ser	Leu	Glu 55	Thr	Gly	Val	Pro	Ser 60	Arg	Phe	Ser	Gly
	Ser 65	Gly	Ser	Gly	Lys	Asp 70	Tyr	Thr	Leu	Ser	Ile 75	Thr	Ser	Leu	Gln	Thr 80
	Glu	Asp	Val	Ala	Thr 85	Tyr	Tyr	Cys	Gln	Gln 90	Tyr	Trp	Ser	Thr	Pro 95	Trp
	Thr	Phe	Gly	Gly 100	Gly	Thr	Lys	Leu	Glu 105	Ile	Lys					
<210> 4 <211> 1 <212> P <213> m	20 PRT	usculu	s													
<220> <223> L	ucX1-	caden	a VH													
<400> 4	4															
	Gln 1	Val	Gln	Leu	Gln 5	Gln	Ser	Gly	Pro	Glu 10	Leu	Val	Lys	Pro	Gly 15	Ala
	Ser	Val	Lys	Ile 20	Ser	Cys	Lys	Ala	Ser 25	Gly	Tyr	Ala	Phe	Ser 30	Ser	Ser
	Trp	Met	Asn 35	Trp	Val	Lys	Gln	Arg 40	Pro	Gly	Gln	Gly	Leu 45	Glu	Trp	Ile
	Gly	Arg 50	Ile	Tyr	Pro	Gly	Asp 55	Gly	Asp	Thr	Lys	Tyr 60	Asn	Gly	Lys	Phe
	Lys 65	Gly	Lys	Ala	Thr	Leu 70	Thr	Ala	Asp	Lys	Ser 75	Ser	Ser	Thr	Ala	Tyr 80
	Met	Gln	Leu	Ser	Ser 85	Leu	Thr	Ser	Val	Asp 90	Ser	Ala	Val	Tyr	Phe 95	Cys
	Ala	Arg	Ser	Thr	Met	Ile	Ala	Thr	Gly 105	Ala	Met	Asp	Tyr	Trp 110	Gly	Gln

Gly Thr Ser Val Thr Val Ser Ser 115 120

<210> 45 <211> 107 <212> PRT

<213> mus musculus

<220>

<223> LucX1-cadena VL

10 <400> 45

5

Glu Thr Thr Val Thr Gln Ser Pro Ala Ser Leu Ser Met Ala Ile Gly
1 5 10 15

Glu Lys Val Thr Ile Arg Cys Ile Thr Ser Thr Asp Ile Asp Asp Asp 20 25 30

Met Asn Trp Tyr Gln Gln Lys Pro Gly Glu Pro Pro Lys Leu Leu Ile 35 40 45

Ser Glu Gly Asn Thr Leu Arg Pro Gly Val Pro Ser Arg Phe Ser Ser 50 55 60

Ser Gly Tyr Gly Thr Asp Phe Val Phe Thr Ile Glu Asn Met Leu Ser 65 70 75 80

Glu Asp Val Ala Asp Tyr Tyr Cys Leu Gln Ser Asp Asn Leu Pro Leu 85 90 95

Thr Phe Gly Gly Thr Lys Leu Glu Ile Lys
100 105

15 <210> 46

<211> 120

<212> PRT

<213> mus musculus

20 <220>

25

<223> LucX2-cadena VH

<400> 46

Gln Val Gln Leu Gln Gln Ser Gly Pro Glu Leu Val Lys Pro Gly Ala 1 5 10 15

Ser Val Lys Ile Ser Cys Lys Ala Ser Gly Tyr Ala Phe Ser Ser Ser 20 25 30

Trp Met Asn Trp Val Lys Gln Arg Pro Gly Gln Gly Leu Glu Trp Ile

		35					40					45			
Gly	Arg 50	Ile	Tyr	Pro	Gly	Asp 55	Gly	Asp	Thr	Lys	Tyr 60	Asn	Gly	Lys	Ph€
Lys 65	Gly	Lys	Ala	Thr	Leu 70	Thr	Ala	Asp	Lys	Ser 75	Ser	Ser	Thr	Ala	Ty r
Met	Gln	Leu	Ser	Ser 85	Leu	Thr	Ser	Val	Asp 90	Ser	Ala	Val	Tyr	Phe 95	Суз
Ala	Arg	Ser	Thr 100	Met	Ile	Ala	Thr	Gly 105	Ala	Met	Asp	Tyr	Trp 110	Gly	Gln
Gly	Thr	Ser 115	Val	Thr	Val	Ser	Ser 120								
210> 47 211> 108 212> PRT 213> mus mi 220>	usculu	S													
<223> LucX2-	caden	a VL													
	Ile	Val	Met	Thr 5	Gln	Ser	His	Lys	Phe 10	Met	Ser	Thr	Ser	Val 15	Gly
Asp	Arg	Val	Ser 20	Ile	Thr	Cys	Lys	Ala 25	Ser	Gln	Asp	Val	Ser 30	Thr	Ala
Val	Ala	Trp 35	Tyr	Gln	Gln	Lys	Pro 40	Gly	Gln	Ser	Pro	Lys 45	Leu	Leu	Ile
Tyr	Ser 50	Ala	Ser	Tyr	Arg	Tyr 55	Thr	Gly	Val	Pro	Asp 60	Arg	Phe	Thr	Gly
Ser 65	Gly	Ser	Gly	Thr	Asp 70	Phe	Thr	Phe	Thr	Ile 75	Ser	Ser	Val	Gln	Ala 80
Glu	Asp	Leu	Ala		Tyr	Tyr	Cys	Gln	Gln 90	His	Tyr	Ser	Thr	Pro 95	Pro
				85					50					,,	

15 <210> 48 <211> 432 <212> PRT

5

<213> secuencia artificial

<220>

5

<223> Luc63-V1 CAR

<400> 48

Met Ala Leu Pro Val Thr Ala Leu Leu Leu Pro Leu Ala Leu Leu Leu 1 5 10 15

His Ala Arg Pro Glu Val Lys Leu Leu Glu Ser Gly Gly Leu
20 25 30

Val Gln Pro Gly Gly Ser Leu Lys Leu Ser Cys Ala Ala Ser Gly Phe 35 40 45

Asp Phe Ser Arg Tyr Trp Met Ser Trp Val Arg Gln Ala Pro Gly Lys 50 55 60

Gly Leu Glu Trp Ile Gly Glu Ile Asn Pro Asp Ser Ser Thr Ile Asn 65 70 75 80

Tyr Thr Pro Ser Leu Lys Asp Lys Phe Ile Ile Ser Arg Asp Asn Ala 85 90 95

Lys Asn Thr Leu Tyr Leu Gln Met Ser Lys Val Arg Ser Glu Asp Thr 100 105 110

Ala Leu Tyr Tyr Cys Ala Arg Pro Asp Gly Asn Tyr Trp Tyr Phe Asp 115 120 125

Val Trp Gly Ala Gly Thr Thr Val Thr Val Ser Ser Gly Gly Gly 130 135 140

Ser Gly Gly Gly Ser Gly Gly Gly Gly Ser Asp Ile Val Met Thr 145 150 155 160

Gln Ser His Lys Phe Met Ser Thr Ser Val Gly Asp Arg Val Ser Ile 165 170 175

Thr Cys Lys Ala Ser Gln Asp Val Gly Ile Ala Val Ala Trp Tyr Gln 180 185 190

Gln Lys Pro Gly Gln Ser Pro Lys Leu Leu Ile Tyr Trp Ala Ser Thr 195 200 205

Arg His Thr Gly Val Pro Asp Arg Phe Thr Gly Ser Gly Ser Gly Thr 210 215 220

Asp Phe Thr Leu Thr Ile Ser Asn Val Gln Ser Glu Asp Leu Ala Asp 225 230 Tyr Phe Cys Gln Gln Tyr Ser Ser Tyr Pro Tyr Thr Phe Gly Gly Gly 250 245 255 Thr Lys Leu Glu Ile Lys Gly Leu Ala Val Ser Thr Ile Ser Ser Phe 260 265 Phe Pro Pro Gly Tyr Gln Lys Arg Gly Arg Lys Leu Leu Tyr Ile 280 275 Phe Lys Gln Pro Phe Met Arg Pro Val Gln Thr Thr Gln Glu Glu Asp 290 295 Gly Cys Ser Cys Arg Phe Pro Glu Glu Glu Glu Gly Gly Cys Glu Leu 305 310 Arg Val Lys Phe Ser Arg Ser Ala Asp Ala Pro Ala Tyr Gln Gln Gly 325 Gln Asn Gln Leu Tyr Asn Glu Leu Asn Leu Gly Arg Arg Glu Glu Tyr 340 345 350 Asp Val Leu Asp Lys Arg Arg Gly Arg Asp Pro Glu Met Gly Gly Lys 355 360 365 Pro Arg Arg Lys Asn Pro Gln Glu Gly Leu Tyr Asn Glu Leu Gln Lys 370 375 Asp Lys Met Ala Glu Ala Tyr Ser Glu Ile Gly Met Lys Gly Glu Arg 385 390 Arg Arg Gly Lys Gly His Asp Gly Leu Tyr Gln Gly Leu Ser Thr Ala 405 Thr Lys Asp Thr Tyr Asp Ala Leu His Met Gln Ala Leu Pro Pro Arg 420 425 430 <210>49 <211> 485 <212> PRT <213> secuencia artificial <220> <223> Luc63-V2 CAR

10

<400>49

Met 1	Ala	Leu	Pro	Val 5	Thr	Ala	Leu	Leu	Leu 10	Pro	Leu	Ala	Leu	Leu 15	Leu
His	Ala	Ala	Arg 20	Pro	Glu	Val	Lys	Leu 25	Leu	Glu	Ser	Gly	Gly 30	Gly	Leu
Val	Gln	Pro 35	Gly	Gly	Ser	Leu	Lys 40	Leu	Ser	Cys	Ala	Ala 45	Ser	Gly	Phe
Asp	Phe 50	Ser	Arg	Tyr	Trp	Met 55	Ser	Trp	Val	Arg	Gln 60	Ala	Pro	Gly	Lys
Gly 65	Leu	Glu	Trp	Ile	Gly 70	Glu	Ile	Asn	Pro	Asp 75	Ser	Ser	Thr	Ile	Asn 80
Tyr	Thr	Pro	Ser	Leu 85	Lys	Asp	Lys	Phe	Ile 90	Ile	Ser	Arg	Asp	Asn 95	Ala
Lys	Asn	Thr	Leu 100	Tyr	Leu	Gln	Met	Ser 105	Lys	Val	Arg	Ser	Glu 110	Asp	Thr
Ala	Leu	Tyr 115	Tyr	Cys	Ala	Arg	Pro 120	Asp	Gly	Asn	Tyr	Trp 125	Tyr	Phe	Asp
Val	Trp 130	Gly	Ala	Gly	Thr	Thr 135	Val	Thr	Val	Ser	Ser 140	Gly	Gly	Gly	Gly
Ser 145	Gly	Gly	Gly	Gly	Ser 150	Gly	Gly	Gly	Gly	Ser 155	Asp	Ile	Val	Met	Thr 160
Gln	Ser	His	Lys	Phe 165	Met	Ser	Thr	Ser	Val 170	Gly	Asp	Arg	Val	Ser 175	Ile
Thr	Cys	Lys	Ala 180	Ser	Gln	Asp	Val	Gly 185	Ile	Ala	Val	Ala	Trp 190	Tyr	Gln
Gln	Lys	Pro 195	Gly	Gln	Ser	Pro	Lys 200	Leu	Leu	Ile	Tyr	Trp 205	Ala	Ser	Thr
Arg	His 210	Thr	Gly	Val	Pro	Asp 215	Arg	Phe	Thr	Gly	Ser 220	Gly	Ser	Gly	Thr
Asp 225	Phe	Thr	Leu	Thr	Ile 230	Ser	Asn	Val	Gln	Ser 235	Glu	Asp	Leu	Ala	Asp 240
Tyr	Phe	Cys	Gln	Gln 245	Tyr	Ser	Ser	Tyr	Pro	Tyr	Thr	Phe	Gly	Gly 255	Gly

Thr	Lys	Leu	Glu 260	Ile	Lys	Thr	Thr	Thr 265	Pro	Ala	Pro	Arg	Pro 270	Pro	Thr
Pro	Ala	Pro 275	Thr	Ile	Ala	Ser	Gln 280	Pro	Leu	Ser	Leu	Arg 285	Pro	Glu	Ala
Cys	Arg 290	Pro	Ala	Ala	Gly	Gly 295	Ala	Val	His	Thr	Arg 300	Gly	Leu	Asp	Phe
Ala 305	Cys	Asp	Ile	Tyr	Ile 310	Trp	Ala	Pro	Leu	Ala 315	Gly	Thr	Cys	Gly	Val 320
Leu	Leu	Leu	Ser	Leu 325	Val	Ile	Thr	Leu	Tyr 330	Cys	Lys	Arg	Gly	A rg 335	Lys
Lys	Leu	Leu	Tyr 340	Ile	Phe	Lys	Gln	Pro 345	Phe	Met	Arg	Pro	Val 350	Gln	Thr
		355	Glu				360					365			
_	370		Glu			375	_				380				
385	_		Gln		390					395					400
			Glu	405	_			_	410					415	
			Gly 420					425					430		
		435	Gln		_	_	440				_	445			_
	450		Glu			455					460				
Gly 465	Leu	ser	Thr	Ala	Thr 470	Lys	Asp	Thr	Tyr	Asp 475	Ala	Leu	HIS	Met	Gln 480

<210> 50 <211> 647 <212> PRT

Ala Leu Pro Pro Arg

<213> secuencia artificial

<220>

5

<223> Luc63-V3 CAR

<400> 50

Met Ala Leu Pro Val Thr Ala Leu Leu Leu Pro Leu Ala Leu Leu Leu 1 5 10 15

His Ala Arg Pro Glu Val Lys Leu Leu Glu Ser Gly Gly Leu
20 25 30

Val Gln Pro Gly Gly Ser Leu Lys Leu Ser Cys Ala Ala Ser Gly Phe 35 40 45

Asp Phe Ser Arg Tyr Trp Met Ser Trp Val Arg Gln Ala Pro Gly Lys 50 55 60

Gly Leu Glu Trp Ile Gly Glu Ile Asn Pro Asp Ser Ser Thr Ile Asn 65 70 75 80

Tyr Thr Pro Ser Leu Lys Asp Lys Phe Ile Ile Ser Arg Asp Asn Ala 85 90 95

Lys Asn Thr Leu Tyr Leu Gln Met Ser Lys Val Arg Ser Glu Asp Thr 100 105 110

Ala Leu Tyr Tyr Cys Ala Arg Pro Asp Gly Asn Tyr Trp Tyr Phe Asp 115 120 125

Val Trp Gly Ala Gly Thr Thr Val Thr Val Ser Ser Gly Gly Gly 130 135 140

Ser Gly Gly Gly Ser Gly Gly Gly Gly Ser Asp Ile Val Met Thr 145 150 155 160

Gln Ser His Lys Phe Met Ser Thr Ser Val Gly Asp Arg Val Ser Ile 165 170 175

Thr Cys Lys Ala Ser Gln Asp Val Gly Ile Ala Val Ala Trp Tyr Gln 180 185 190

Gln Lys Pro Gly Gln Ser Pro Lys Leu Leu Ile Tyr Trp Ala Ser Thr 195 200 205

Arg His Thr Gly Val Pro Asp Arg Phe Thr Gly Ser Gly Ser Gly Thr 210 215 220

Asp 225	Phe	Thr	Leu	Thr	Ile 230	Ser	Asn	Val	Gln	Ser 235	Glu	Asp	Leu	Ala	Asp 240
Tyr	Phe	Cys	Gln	Gln 245	Tyr	Ser	Ser	Tyr	Pro 250	Tyr	Thr	Phe	Gly	Gly 255	Gly
Thr	Lys	Leu	Glu 260	Ile	Lys	Glu	Pro	Lys 265	Ser	Pro	Asp	Lys	Thr 270	His	Thr
Cys	Pro	Pro 275	Cys	Pro	Ala	Pro	Pro 280	Val	Ala	Gly	Pro	Ser 285	Val	Phe	Leu
Phe	Pro 290	Pro	Lys	Pro	Lys	Asp 295	Thr	Leu	Met	Ile	Ala 300	Arg	Thr	Pro	Glu
Val 305	Thr	Cys	Val	Val	Val 310	Asp	Val	Ser	His	Glu 315	Asp	Pro	Glu	Val	Lys 320
Phe	Asn	Trp	Tyr	Val 325	Asp	Gly	Val	Glu	Val 330	His	Asn	Ala	Lys	Thr 335	Lys
Pro	Arg	Glu	Glu 340	Gln	Tyr	Asn	Ser	Thr 345	Tyr	Arg	Val	Val	Ser 350	Val	Leu
Thr	Val	Leu 355	His	Gln	Asp	Trp	Leu 360	Asn	Gly	Lys	Glu	Tyr 365	Lys	Cys	Lys
Val	Ser 370	Asn	Lys	Ala	Leu	Pro 375	Ala	Pro	Ile	Glu	Lys 380	Thr	Ile	Ser	Lys
Ala 385	Lys	Gly	Gln	Pro	Arg 390	Glu	Pro	Gln	Val	Tyr 395	Thr	Leu	Pro	Pro	Ser 400
Arg	Asp	Glu	Leu	Thr 405	Lys	Asn	Gln	Val	Ser 410	Leu	Thr	Cys	Leu	Val 415	Lys
Gly	Phe	Tyr	Pro 420	Ser	Asp	Ile	Ala	Val 425	Glu	Trp	Glu	Ser	Asn 430	Gly	Gln
Pro	Glu	Asn 435	Asn	Tyr	Lys	Thr	Thr 440	Pro	Pro	Val	Leu	Asp 445	Ser	Asp	Gly
Ser	Phe 450	Phe	Leu	Tyr	Ser	Lys 455	Leu	Thr	Val	Asp	Lys 460	Ser	Arg	Trp	Gln
Gln	Gly	Asn	Val	Phe	Ser	Cys	Ser	Val	Met	His	Glu	Ala	Leu	His	Asn

	465					470					475					480
	His	Tyr	Thr	Gln	Lys 485	Ser	Leu	Ser	Leu	Ser 490	Pro	Gly	Lys	Lys	Arg 495	Gly
	Arg	Lys	Lys	Leu 500	Leu	Tyr	Ile	Phe	Lys 505	Gln	Pro	Phe	Met	A rg 510	Pro	Val
	Gln	Thr	Thr 515	Gln	Glu	Glu	Asp	Gly 520	Cys	Ser	Cys	Arg	Phe 525	Pro	Glu	Glu
	Glu	Glu 530	Gly	Gly	Cys	Glu	Leu 535	Arg	Val	Lys	Phe	Ser 540	Arg	Ser	Ala	Asp
	Ala 545	Pro	Ala	Tyr	Gln	Gln 550	Gly	Gln	Asn	Gln	Leu 555	Tyr	Asn	Glu	Leu	A sn 560
	Leu	Gly	Arg	Arg	Glu 565	Glu	Tyr	Asp	Val	Leu 570	Asp	Lys	Arg	Arg	Gly 575	Arg
	Asp	Pro	Glu	Met 580	Gly	Gly	Lys	Pro	Arg 585	Arg	Lys	Asn	Pro	Gln 590	Glu	Gly
	Leu	Tyr	Asn 595	Glu	Leu	Gln	Lys	Asp 600	Lys	Met	Ala	Glu	Ala 605	Tyr	Ser	Glu
	Ile	Gly 610	Met	Lys	Gly	Glu	Arg 615	Arg	Arg	Gly	Lys	Gly 620	His	Asp	Gly	Leu
	Tyr 625	Gln	Gly	Leu	Ser	Thr 630	Ala	Thr	Lys	Asp	Thr 635	Tyr	Asp	Ala	Leu	His 640
	Met	Gln	Ala	Leu	Pro 645	Pro	Arg									
<210> 5 <211> 4 <212> F <213> s	33 PRT	cia ar	tificial													
<220> <223> L	.uc90-	V1 CA	۱R													
<400> 5	1															
	Met 1	Ala	Leu	Pro	Val 5	Thr	Ala	Leu	Leu	Leu 10	Pro	Leu	Ala	Leu	Leu 15	Leu
	His	Ala	Ala	Arg 20	Pro	Gln	Val	Gln	Leu 25	Gln	Gln	Pro	Gly	Ala 30	Glu	Leu

Val	Arg	Pro 35	Gly	Ala	Ser	Val	Lys 40	Leu	Ser	Cys	Lys	Ala 45	Ser	Gly	Tyr
Ser	Phe 50	Thr	Thr	Tyr	Trp	Met 55	Asn	Trp	Val	Lys	Gln 60	Arg	Pro	Gly	Gln
Gly 65	Leu	Glu	Trp	Ile	Gly 70	Met	Ile	His	Pro	Ser 75	Asp	Ser	Glu	Thr	Arg 80
Leu	Asn	Gln	Lys	Phe 85	Lys	Asp	Lys	Ala	Thr 90	Leu	Thr	Val	Asp	Lys 95	Ser
Ser	Ser	Thr	Ala 100	Tyr	Met	Gln	Leu	Ser 105	Ser	Pro	Thr	Ser	Glu 110	Asp	Ser
Ala	Val	Tyr 115	Tyr	Cys	Ala	Arg	Ser 120	Thr	Met	Ile	Ala	Thr 125	Arg	Ala	Met
Asp	Tyr 130	Trp	Gly	Gln	Gly	Thr 135	Ser	Val	Thr	Val	Ser 140	Ser	Gly	Gly	Gly
Gly 145	Ser	Gly	Gly	Gly	Gly 150	Ser	Gly	Gly	Gly	Gly 155	Ser	Asp	Ile	Val	Met 160
Thr	Gln	Ser	Gln	Lys 165	Ser	Met	Ser	Thr	Ser 170	Val	Gly	Asp	Arg	Val 175	Ser
Ile	Thr	Cys	Lys 180	Ala	Ser	Gln	Asp	Val 185	Ile	Thr	Gly	Val	Ala 190	Trp	Tyr
Gln	Gln	Lys 195	Pro	Gly	Gln	Ser	Pro 200	Lys	Leu	Leu	Ile	Tyr 205	Ser	Ala	Ser
Tyr	Arg 210	Tyr	Thr	Gly	Val	Pro 215	Asp	Arg	Phe	Thr	Gly 220	Ser	Gly	Ser	Gly
Thr 225	Asp	Phe	Thr	Phe	Thr 230	Ile	Ser	Asn	Val	Gln 235	Ala	Glu	Asp	Leu	Ala 240
Val	Tyr	Tyr	Cys	Gln 245	Gln	His	Tyr	Ser	Thr 250	Pro	Leu	Thr	Phe	Gly 255	Ala
Gly	Thr	Lys	Leu 260	Glu	Leu	Lys	Gly	Leu 265	Ala	Val	Ser	Thr	Ile 270	Ser	Ser
Phe	Phe	Pro	Pro	Gly	Tyr	Gln	Lys	Arg	Gly	Arg	Lys	Lys	Leu	Leu	Tyr

		275					280					285			
Ile	Phe 290	Lys	Gln	Pro	Phe	Met 295	Arg	Pro	Val	Gln	Thr 300	Thr	Gln	Glu	Glu
Asp 305	Gly	Cys	Ser	Cys	A rg 310	Phe	Pro	Glu	Glu	Glu 315	Glu	Gly	Gly	Cys	Glu 320
Leu	Arg	Val	Lys	Phe 325	Ser	Arg	Ser	Ala	Asp 330	Ala	Pro	Ala	Tyr	Gln 335	Gln
Gly	Gln	Asn	Gln 340	Leu	Tyr	Asn	Glu	Leu 345	Asn	Leu	Gly	Arg	A rg 350	Glu	Glu
Tyr	Asp	Val 355	Leu	Asp	Lys	Arg	A rg 360	Gly	Arg	Asp	Pro	Glu 365	Met	Gly	Gly
Lys	Pro 370	Arg	Arg	Lys	Asn	Pro 375	Gln	Glu	Gly	Leu	Tyr 380	Asn	Glu	Leu	Gln
Lys 385	Asp	Lys	Met	Ala	Glu 390	Ala	Tyr	Ser	Glu	Ile 395	Gly	Met	Lys	Gly	Glu 400
Arg	Arg	Arg	Gly	Lys 405	Gly	His	Asp	Gly	Leu 410	Tyr	Gln	Gly	Leu	Ser 415	Thr
Ala	Thr	Lys	Asp 420	Thr	Tyr	Asp	Ala	Leu 425	His	Met	Gln	Ala	Leu 430	Pro	Pro
Arg															
<210> 52 <211> 486 <212> PRT <213> secuer	ncia art	tificial													
<220> <223> Luc90-	V2 CA	١R													
<400> 52															
Met 1	Ala	Leu	Pro	Val 5	Thr	Ala	Leu	Leu	Leu 10	Pro	Leu	Ala	Leu	Leu 15	Leu
His	Ala	Ala	Arg 20	Pro	Gln	Val	Gln	Leu 25	Gln	Gln	Pro	Gly	Ala 30	Glu	Leu
Val	Arg	Pro 35	Gly	Ala	Ser	Val	Lys 40	Leu	Ser	Cys	Lys	Ala 45	Ser	Gly	Tyr

Ser	Phe 50	Thr	Thr	Tyr	Trp	Met 55	Asn	Trp	Val	Lys	Gln 60	Arg	Pro	Gly	Gln
Gly 65	Leu	Glu	Trp	Ile	Gly 70	Met	Ile	His	Pro	Ser 75	Asp	Ser	Glu	Thr	Arg 80
Leu	Asn	Gln	Lys	Phe 85	Lys	Asp	Lys	Ala	Thr 90	Leu	Thr	Val	Asp	Lys 95	Ser
Ser	Ser	Thr	Ala 100	Tyr	Met	Gln	Leu	Ser 105	Ser	Pro	Thr	Ser	Glu 110	Asp	Ser
Ala	Val	Tyr 115	Tyr	Cys	Ala	Arg	Ser 120	Thr	Met	Ile	Ala	Thr 125	Arg	Ala	Met
Asp	Tyr 130	Trp	Gly	Gln	Gly	Thr 135	Ser	Val	Thr	Val	Ser 140	Ser	Gly	Gly	Gly
Gly 145	Ser	Gly	Gly	Gly	Gly 150	Ser	Gly	Gly	Gly	Gly 155	Ser	Asp	Ile	Val	Met 160
Thr	Gln	Ser	Gln	Lys 165	Ser	Met	Ser	Thr	Ser 170	Val	Gly	Asp	Arg	Val 175	Ser
Ile	Thr	Cys	Lys 180	Ala	Ser	Gln	Asp	Val 185	Ile	Thr	Gly	Val	Ala 190	Trp	Tyr
Gln	Gln	Lys 195	Pro	Gly	Gln	Ser	Pro 200	Lys	Leu	Leu	Ile	Tyr 205	Ser	Ala	Ser
Tyr	Arg 210	Tyr	Thr	Gly	Val	Pro 215	Asp	Arg	Phe	Thr	Gly 220	Ser	Gly	Ser	Gly
Thr 225	Asp	Phe	Thr	Phe	Thr 230	Ile	Ser	Asn	Val	Gln 235	Ala	Glu	Asp	Leu	Ala 240
Val	Tyr	Tyr	Cys	Gln 245	Gln	His	Tyr	Ser	Thr 250	Pro	Leu	Thr	Phe	Gly 255	Ala
Gly	Thr	Lys	Leu 260	Glu	Leu	Lys	Thr	Thr 265	Thr	Pro	Ala	Pro	Arg 270	Pro	Pro
Thr	Pro	Ala 275	Pro	Thr	Ile	Ala	Ser 280	Gln	Pro	Leu	Ser	Leu 285	Arg	Pro	Glu
Ala	Cys	Arg	Pro	Ala	Ala	Gly	Gly	Ala	Val	His	Thr	Arg	Gly	Leu	Asp

		290					295					300				
	Phe 305	Ala	Cys	Asp	Ile	Tyr 310	Ile	Trp	Ala	Pro	Leu 315	Ala	Gly	Thr	Cys	Gly 320
	Val	Leu	Leu	Leu	Ser 325	Leu	Val	Ile	Thr	Leu 330	Tyr	Cys	Lys	Arg	Gly 335	Arg
	Lys	Lys	Leu	Leu 340	Tyr	Ile	Phe	Lys	Gln 345	Pro	Phe	Met	Arg	Pro 350	Val	Gln
	Thr	Thr	Gln 355	Glu	Glu	Asp	Gly	Cys 360	Ser	Cys	Arg	Phe	Pro 365	Glu	Glu	Glu
	Glu	Gly 370	Gly	Cys	Glu	Leu	Arg 375	Val	Lys	Phe	Ser	Arg 380	Ser	Ala	Asp	Ala
	Pro 385	Ala	Tyr	Gln	Gln	Gly 390	Gln	Asn	Gln	Leu	Tyr 395	Asn	Glu	Leu	Asn	Leu 400
	Gly	Arg	Arg	Glu	Glu 405	Tyr	Asp	Val	Leu	Asp 410	Lys	Arg	Arg	Gly	Arg 415	Asp
	Pro	Glu	Met	Gly 420	Gly	Lys	Pro	Arg	Arg 425	Lys	Asn	Pro	Gln	Glu 430	Gly	Leu
	Tyr	Asn	Glu 435	Leu	Gln	Lys	Asp	Lys 440	Met	Ala	Glu	Ala	Tyr 445	Ser	Glu	Ile
	Gly		Lys	Gly	Glu	Arg	_	_	Gly	_	_		Asp	Gly	Leu	Tyr
	Gln 465	Gly	Leu	Ser	Thr	Ala 470	Thr	Lys	Asp	Thr	Tyr 475	Asp	Ala	Leu	His	Met 480
	Gln	Ala	Leu	Pro	Pro 485	Arg										
<210> 5 <211> 6 <212> F <213> s	48 PRT	cia art	tificial													
<220> <223> L	.uc90-	V3 CA	ιR													
<400> 5	3															
	Met 1	Ala	Leu	Pro	Val 5	Thr	Ala	Leu	Leu	Leu 10	Pro	Leu	Ala	Leu	Leu 15	Leu

His Ala Ala Arg Pro Gln Val Gln Leu Gln Gln Pro Gly Ala Glu Leu 20 Val Arg Pro Gly Ala Ser Val Lys Leu Ser Cys Lys Ala Ser Gly Tyr 40 Ser Phe Thr Tyr Trp Met Asn Trp Val Lys Gln Arg Pro Gly Gln 50 Gly Leu Glu Trp Ile Gly Met Ile His Pro Ser Asp Ser Glu Thr Arg 70 Leu Asn Gln Lys Phe Lys Asp Lys Ala Thr Leu Thr Val Asp Lys Ser 95 Ser Ser Thr Ala Tyr Met Gln Leu Ser Ser Pro Thr Ser Glu Asp Ser Ala Val Tyr Tyr Cys Ala Arg Ser Thr Met Ile Ala Thr Arg Ala Met 120 Asp Tyr Trp Gly Gln Gly Thr Ser Val Thr Val Ser Ser Gly Gly Gly 130 135 Gly Ser Gly Gly Gly Ser Gly Gly Gly Ser Asp Ile Val Met 145 150 Thr Gln Ser Gln Lys Ser Met Ser Thr Ser Val Gly Asp Arg Val Ser 165 170 Ile Thr Cys Lys Ala Ser Gln Asp Val Ile Thr Gly Val Ala Trp Tyr 180 185 Gln Gln Lys Pro Gly Gln Ser Pro Lys Leu Leu Ile Tyr Ser Ala Ser Tyr Arg Tyr Thr Gly Val Pro Asp Arg Phe Thr Gly Ser Gly Ser Gly 210 Thr Asp Phe Thr Phe Thr Ile Ser Asn Val Gln Ala Glu Asp Leu Ala 225 230 Val Tyr Tyr Cys Gln Gln His Tyr Ser Thr Pro Leu Thr Phe Gly Ala 245 250 255

Gly Thr Lys Leu Glu Leu Lys Glu Pro Lys Ser Pro Asp Lys Thr His

	260		265		270
Thr Cys Pro 275	Pro Cys		Pro Pro Va 280	al Ala Gly Pr 28	o Ser Val Phe 5
Leu Phe Pro 290	Pro Lys	Pro Lys A 295	Asp Thr Le	eu Met Ile Al 300	a Arg Thr Pro
Glu Val Thr 305	Cys Val	Val Val A 310	Asp Val Se	er His Glu As 315	p Pro Glu Val 320
Lys Phe Asn	Trp Tyr 325	Val Asp G	_	lu Val His As 30	n Ala Lys Thr 335
Lys Pro Arg	Glu Glu 340	Gln Tyr A	Asn Ser Th 345	nr Tyr Arg Va	l Val Ser Val 350
Leu Thr Val 355	Leu His	_	Frp Leu As 360	sn Gly Lys Gl 36	u Tyr Lys Cys 5
Lys Val Ser 370	Asn Lys	Ala Leu P 375	Pro Ala Pr	ro Ile Glu Ly 380	s Thr Ile Ser
Lys Ala Lys 385	Gly Gln	Pro Arg G 390	Glu Pro Gl	ln Val Tyr Th 395	r Leu Pro Pro 400
Ser Arg Asp	Glu Leu 405	Thr Lys A		al Ser Leu Th 10	r Cys Leu Val 415
Lys Gly Phe	Tyr Pro 420	Ser Asp I	Ile Ala Va 425	al Glu Trp Gl	u Ser Asn Gly 430
Gln Pro Glu 435	Asn Asn		Thr Thr Pr 140	ro Pro Val Le 44	u Asp Ser Asp 5
Gly Ser Phe 450	Phe Leu	Tyr Ser L 455	Lys Leu Th	nr Val Asp Ly 460	s Ser Arg Trp
Gln Gln Gly 465	Asn Val	Phe Ser C 470	Cys Ser Va	al Met His Gl 475	u Ala Leu His 480
Asn His Tyr	Thr Gln 485	Lys Ser L		eu Ser Pro Gl 90	y Lys Lys Arg 495
Gly Arg Lys	Lys Leu 500	Leu Tyr I	lle Phe Ly 505	ys Gln Pro Ph	e Met Arg Pro 510

	Val	Gln	Thr 515	Thr	Gln	Glu	Glu	Asp 520	Gly	Cys	Ser	Cys	A rg 525	Phe	Pro	Glu
	Glu	Glu 530	Glu	Gly	Gly	Cys	Glu 535	Leu	Arg	Val	Lys	Phe 540	Ser	Arg	Ser	Ala
	Asp 545	Ala	Pro	Ala	Tyr	Gln 550	Gln	Gly	Gln	Asn	Gln 555	Leu	Tyr	Asn	Glu	Leu 560
	Asn	Leu	Gly	Arg	Arg 565	Glu	Glu	Tyr	Asp	Val 570	Leu	Asp	Lys	Arg	A rg 575	Gly
	Arg	Asp	Pro	Glu 580	Met	Gly	Gly	Lys	Pro 585	Arg	Arg	Lys	Asn	Pro 590	Gln	Glu
	Gly	Leu	Tyr 595	Asn	Glu	Leu	Gln	Lys 600	Asp	Lys	Met	Ala	Glu 605	Ala	Tyr	Ser
	Glu	Ile 610	Gly	Met	Lys	Gly	Glu 615	Arg	Arg	Arg	Gly	Lys 620	Gly	His	Asp	Gly
	Leu 625	Tyr	Gln	Gly	Leu	Ser 630	Thr	Ala	Thr	Lys	Asp 635	Thr	Tyr	Asp	Ala	Leu 640
	His	Met	Gln	Ala	Leu 645	Pro	Pro	Arg								
<210> 5 <211> 4 <212> F <213> 5	I34 PRT	cia ari	tificial													
<220> <223> L	_uc34-	V1 CA	ιR													
<400> 5	54															
	Met 1	Ala	Leu	Pro	Val 5	Thr	Ala	Leu	Leu	Leu 10	Pro	Leu	Ala	Leu	Leu 15	Leu
	His	Ala	Ala	Arg 20	Pro	Gln	Val	Gln	Leu 25	Gln	Gln	Ser	Gly	Ala 30	Glu	Leu
	Ala	Arg	Pro 35	Gly	Ala	Ser	Val	Lys 40	Leu	Ser	Cys	Lys	Ala 45	Ser	Gly	Tyr
	Thr	Phe 50	Thr	Ser	Tyr	Trp	Met 55	Gln	Trp	Val	Lys	Gln 60	Arg	Pro	Gly	Gln
	Gly	Leu	Glu	Trp	Ile	Gly	Ala	Ile	Tyr	Pro	Gly	Asp	Gly	Asp	Thr	Arg

65					70					75					80
Tyr	Thr	Gln	Lys	Phe 85	Lys	Gly	Lys	Ala	Thr 90	Leu	Thr	Ala	Asp	Lys 95	Ser
Ser	Ser	Thr	Ala 100	Tyr	Met	Gln	Leu	Ser 105	Ser	Leu	Ala	Ser	Glu 110	Asp	Ser
Ala	Val	Tyr 115	Tyr	Cys	Ala	Arg	Gly 120	Lys	Val	Tyr	Tyr	Gly 125	Ser	Asn	Pro
Phe	Ala 130	Tyr	Trp	Gly	Gln	Gly 135	Thr	Leu	Val	Thr	Val 140	Ser	Ala	Gly	Gly
Gly 145	Gly	Ser	Gly	Gly	Gly 150	Gly	Ser	Gly	Gly	Gly 155	Gly	Ser	Asp	Ile	Gln 160
Met	Thr	Gln	Ser	Ser 165	Ser	Tyr	Leu	Ser	Val 170	Ser	Leu	Gly	Gly	A rg 175	Val
Thr	Ile	Thr	Cys 180	Lys	Ala	Ser	Asp	His 185	Ile	Asn	Asn	Trp	Leu 190	Ala	Trp
Tyr	Gln	Gln 195	Lys	Pro	Gly	Asn	Ala 200	Pro	Arg	Leu	Leu	Ile 205	Ser	Gly	Ala
Thr	Ser 210	Leu	Glu	Thr	Gly	Val 215	Pro	Ser	Arg	Phe	Ser 220	Gly	Ser	Gly	Ser
Gly 225	Lys	Asp	Tyr		Leu 230		Ile	Thr		Leu 235		Thr	Glu	Asp	Val 240
Ala	Thr	Tyr	Tyr	Cys 245	Gln	Gln	Tyr	Trp	Ser 250	Thr	Pro	Trp	Thr	Phe 255	Gly
Gly	Gly	Thr	Lys 260	Leu	Glu	Ile	Lys	Gly 265	Leu	Ala	Val	Ser	Thr 270	Ile	Ser
Ser	Phe	Phe 275	Pro	Pro	Gly	Tyr	Gln 280	Lys	Arg	Gly	Arg	Lys 285	Lys	Leu	Leu
Tyr	Ile 290	Phe	Lys	Gln	Pro	Phe 295	Met	Arg	Pro	Val	Gln 300	Thr	Thr	Gln	Glu
Glu 305	Asp	Gly	Cys	Ser	Cys 310	Arg	Phe	Pro	Glu	Glu 315	Glu	Glu	Gly	Gly	Cys 320

	Glu	Leu	Arg	Val	Lys 325	Phe	Ser	Arg	Ser	Ala 330	Asp	Ala	Pro	Ala	Tyr 335	Gln
	Gln	Gly	Gln	Asn 340	Gln	Leu	Tyr	Asn	Glu 345	Leu	Asn	Leu	Gly	A rg 350	Arg	Glu
	Glu	Tyr	Asp 355	Val	Leu	Asp	Lys	Arg 360	Arg	Gly	Arg	Asp	Pro 365	Glu	Met	Gly
	Gly	Lys 370	Pro	Arg	Arg	Lys	Asn 375	Pro	Gln	Glu	Gly	Leu 380	Tyr	Asn	Glu	Leu
	Gln 385	Lys	Asp	Lys	Met	Ala 390	Glu	Ala	Tyr	Ser	Glu 395	Ile	Gly	Met	Lys	Gly 400
	Glu	Arg	Arg	Arg	Gly 405	Lys	Gly	His	Asp	Gly 410	Leu	Tyr	Gln	Gly	Leu 415	Ser
	Thr	Ala	Thr	Lys 420	Asp	Thr	Tyr	Asp	Ala 425	Leu	His	Met	Gln	Ala 430	Leu	Pro
	Pro	Arg														
<210> 5 <211> 4 <212> P <213> s	87 PRT	cia ari	tificial													
<220> <223> L	uc34-	V2 CA	ιR													
<400> 5	5															
	Met 1	Ala	Leu	Pro	Val 5	Thr	Ala	Leu	Leu	Leu 10	Pro	Leu	Ala	Leu	Leu 15	Leu
	His	Ala	Ala	Arg 20	Pro	Gln	Val	Gln	Leu 25	Gln	Gln	Ser	Gly	Ala 30	Glu	Leu
	Ala	Arg	Pro 35	Gly	Ala	Ser	Val	Lys 40	Leu	Ser	Cys	Lys	Ala 45	Ser	Gly	Tyr
	Thr	Phe 50	Thr	Ser	Tyr	Trp	Met 55	Gln	Trp	Val	Lys	Gln 60	Arg	Pro	Gly	Gln
	Gly 65	Leu	Glu	Trp	Ile	Gly 70	Ala	Ile	Tyr	Pro	Gly 75	Asp	Gly	Asp	Thr	Arg 80
	Tyr	Thr	Gln	Lys	Phe	Lys	Gly	Lys	Ala	Thr	Leu	Thr	Ala	Asp	Lys	Ser

				85					90					95	
Ser	Ser	Thr	Ala 100	Tyr	Met	Gln	Leu	Ser 105	Ser	Leu	Ala	Ser	Glu 110	Asp	Ser
Ala	Val	Tyr 115	Tyr	Cys	Ala	Arg	Gly 120	Lys	Val	Tyr	Tyr	Gly 125	Ser	Asn	Pro
Phe	Ala 130	Tyr	Trp	Gly	Gln	Gly 135	Thr	Leu	Val	Thr	Val 140	Ser	Ala	Gly	Gly
Gly 145	Gly	Ser	Gly	Gly	Gly 150	Gly	Ser	Gly	Gly	Gly 155	Gly	Ser	Asp	Ile	Gln 160
Met	Thr	Gln	Ser	Ser 165	Ser	Tyr	Leu	Ser	Val 170	Ser	Leu	Gly	Gly	A rg 175	Val
Thr	Ile	Thr	Cys 180	Lys	Ala	Ser	Asp	His 185	Ile	Asn	Asn	Trp	Leu 190	Ala	Trp
Tyr	Gln	Gln 195	Lys	Pro	Gly	Asn	Ala 200	Pro	Arg	Leu	Leu	Ile 205	Ser	Gly	Ala
Thr	Ser 210	Leu	Glu	Thr	Gly	Val 215	Pro	Ser	Arg	Phe	Ser 220	Gly	Ser	Gly	Ser
Gly 225	Lys	Asp	Tyr	Thr	Leu 230	Ser	Ile	Thr	Ser	Leu 235	Gln	Thr	Glu	Asp	Val 240
Ala	Thr	Tyr	Tyr	Cys 245	Gln	Gln	Tyr	Trp	Ser 250	Thr	Pro	Trp	Thr	Phe 255	Gly
Gly	Gly	Thr	Lys 260	Leu	Glu	Ile	Lys	Thr 265	Thr	Thr	Pro	Ala	Pro 270	Arg	Pro
Pro	Thr	Pro 275	Ala	Pro	Thr	Ile	Ala 280	Ser	Gln	Pro	Leu	Ser 285	Leu	Arg	Pro
Glu	Ala 290	Cys	Arg	Pro	Ala	Ala 295	Gly	Gly	Ala	Val	His 300	Thr	Arg	Gly	Leu
Asp 305	Phe	Ala	Cys	Asp	Ile 310	Tyr	Ile	Trp	Ala	Pro 315	Leu	Ala	Gly	Thr	Cys 320
Gly	Val	Leu	Leu	Leu 325	Ser	Leu	Val	Ile	Thr 330	Leu	Tyr	Cys	Lys	Arg 335	Gly

	Arg	Lys	Lys	Leu 340	Leu	Tyr	Ile	Phe	Lys 345	Gln	Pro	Phe	Met	Arg 350	Pro	Val
	Gln	Thr	Thr 355	Gln	Glu	Glu	Asp	Gly 360	Cys	Ser	Cys	Arg	Phe 365	Pro	Glu	Glu
	Glu	Glu 370	Gly	Gly	Cys	Glu	Leu 375	Arg	Val	Lys	Phe	Ser 380	Arg	Ser	Ala	Asp
	Ala 385	Pro	Ala	Tyr	Gln	Gln 390	Gly	Gln	Asn	Gln	Leu 395	Tyr	Asn	Glu	Leu	Asn 400
	Leu	Gly	Arg	Arg	Glu 405	Glu	Tyr	Asp	Val	Leu 410	Asp	Lys	Arg	Arg	Gly 415	Arg
	Asp	Pro	Glu	Met 420	Gly	Gly	Lys	Pro	Arg 425	Arg	Lys	Asn	Pro	Gln 430	Glu	Gly
	Leu	Tyr	Asn 435	Glu	Leu	Gln	Lys	Asp 440	Lys	Met	Ala	Glu	Ala 445	Tyr	Ser	Glu
	Ile	Gly 450	Met	Lys	Gly	Glu	Arg 455	Arg	Arg	Gly	Lys	Gly 460	His	Asp	Gly	Leu
	Tyr 465	Gln	Gly	Leu	Ser	Thr 470	Ala	Thr	Lys	Asp	Thr 475	Tyr	Asp	Ala	Leu	His 480
	Met	Gln	Ala	Leu	Pro 485	Pro	Arg									
<210> 5 <211> 6 <212> F <213> s	649 PRT	cia ari	tificial													
<220> <223> L	.uc34-	V3 CA	ιR													
<400> 5	66															
	Met 1	Ala	Leu	Pro	Val 5	Thr	Ala	Leu	Leu	Leu 10	Pro	Leu	Ala	Leu	Leu 15	Leu
	His	Ala	Ala	Arg 20	Pro	Gln	Val	Gln	Leu 25	Gln	Gln	Ser	Gly	Ala 30	Glu	Leu
	Ala	Arg	Pro 35	Gly	Ala	Ser	Val	Lys 40	Leu	Ser	Cys	Lys	Ala 45	Ser	Gly	Tyr
	Thr	Phe	Thr	Ser	Tyr	Trp	Met	Gln	Trp	Val	Lys	Gln	Arg	Pro	Gly	Gln

	50					55					60				
Gly 65	Leu	Glu	Trp	Ile	Gly 70	Ala	Ile	Tyr	Pro	Gly 75	Asp	Gly	Asp	Thr	Arg 80
Tyr	Thr	Gln	Lys	Phe 85	Lys	Gly	Lys	Ala	Thr 90	Leu	Thr	Ala	Asp	Lys 95	Ser
Ser	Ser	Thr	Ala 100	Tyr	Met	Gln	Leu	Ser 105	Ser	Leu	Ala	Ser	Glu 110	Asp	Ser
Ala	Val	Tyr 115	Tyr	Cys	Ala	Arg	Gly 120	Lys	Val	Tyr	Tyr	Gly 125	Ser	Asn	Pro
Phe	Ala 130	Tyr	Trp	Gly	Gln	Gly 135	Thr	Leu	Val	Thr	Val 140	Ser	Ala	Gly	Gly
Gly 145	Gly	Ser	Gly	Gly	Gly 150	Gly	Ser	Gly	Gly	Gly 155	Gly	Ser	Asp	Ile	Gln 160
Met	Thr	Gln	Ser	Ser 165	Ser	Tyr	Leu	Ser	Val 170	Ser	Leu	Gly	Gly	A rg 175	Val
Thr	Ile	Thr	Cys 180	Lys	Ala	Ser	Asp	His 185	Ile	Asn	Asn	Trp	Leu 190	Ala	Trp
Tyr	Gln	Gln 195	Lys	Pro	Gly	Asn	Ala 200	Pro	Arg	Leu	Leu	Ile 205	Ser	Gly	Ala
Thr	Ser 210	Leu	Glu	Thr	Gly	Val 215	Pro	Ser	Arg	Phe	Ser 220	_	Ser	Gly	Ser
Gly 225	Lys	Asp	Tyr	Thr	Leu 230	Ser	Ile	Thr	Ser	Leu 235	Gln	Thr	Glu	Asp	Val 240
Ala	Thr	Tyr	Tyr	Cys 245	Gln	Gln	Tyr	Trp	Ser 250	Thr	Pro	Trp	Thr	Phe 255	Gly
Gly	Gly	Thr	Lys 260	Leu	Glu	Ile	Lys	Glu 265	Pro	Lys	Ser	Pro	Asp 270	Lys	Thr
His	Thr	Cys 275	Pro	Pro	Cys	Pro	Ala 280	Pro	Pro	Val	Ala	Gly 285	Pro	Ser	Val
Phe	Leu 290	Phe	Pro	Pro	Lys	Pro 295	Lys	Asp	Thr	Leu	Met 300	Ile	Ala	Arg	Thr

Pro 305	Glu	Val	Thr	Cys	Val 310	Val	Val	Asp	Val	Ser 315	His	Glu	Asp	Pro	Glu 320
Val	Lys	Phe	Asn	Trp 325	Tyr	Val	Asp	Gly	Val 330	Glu	Val	His	Asn	Ala 335	Lys
Thr	Lys	Pro	Arg 340	Glu	Glu	Gln	Tyr	Asn 345	Ser	Thr	Tyr	Arg	Val 350	Val	Ser
Val	Leu	Thr 355	Val	Leu	His	Gln	Asp 360	Trp	Leu	Asn	Gly	Lys 365	Glu	Tyr	Lys
Cys	Lys 370	Val	Ser	Asn	Lys	Ala 375	Leu	Pro	Ala	Pro	Ile 380	Glu	Lys	Thr	Ile
Ser 385	Lys	Ala	Lys	Gly	Gln 390	Pro	Arg	Glu	Pro	Gln 395	Val	Tyr	Thr	Leu	Pro 400
Pro	Ser	Arg	Asp	Glu 405	Leu	Thr	Lys	Asn	Gln 410	Val	Ser	Leu	Thr	Cys 415	Leu
Val	Lys	Gly	Phe 420	Tyr	Pro	Ser	Asp	Ile 425	Ala	Val	Glu	Trp	Glu 430	Ser	Asn
Gly	Gln	Pro 435	Glu	Asn	Asn	Tyr	Lys 440	Thr	Thr	Pro	Pro	Val 445	Leu	Asp	Ser
Asp	Gly 450	Ser	Phe	Phe	Leu	Tyr 455	Ser	Lys	Leu	Thr	Val 460	Asp	Lys	Ser	Arg
Trp 465	Gln	Gln	Gly	Asn	Val 470	Phe	Ser	Cys	Ser	Val 475	Met	His	Glu	Ala	Leu 480
His	Asn	His	Tyr	Thr 485	Gln	Lys	Ser	Leu	Ser 490	Leu	Ser	Pro	Gly	Lys 495	Lys
Arg	Gly	Arg	Lys 500	Lys	Leu	Leu	Tyr	Ile 505	Phe	Lys	Gln	Pro	Phe 510	Met	Arg
Pro	Val	Gln 515	Thr	Thr	Gln	Glu	Glu 520	Asp	Gly	Cys	Ser	Cys 525	Arg	Phe	Pro
Glu	Glu 530	Glu	Glu	Gly	Gly	Cys 535	Glu	Leu	Arg	Val	Lys 540	Phe	Ser	Arg	Ser
Ala 545	Asp	Ala	Pro	Ala	Tyr 550	Gln	Gln	Gly	Gln	Asn 555	Gln	Leu	Tyr	Asn	Glu 560

Leu Asn Leu Gly Arg Arg Glu Glu Tyr Asp Val Leu Asp Lys Arg Arg

					565					570					575	
	Gly	Arg	Asp	Pro 580	Glu	Met	Gly	Gly	Lys 585	Pro	Arg	Arg	Lys	Asn 590	Pro	Gln
	Glu	Gly	Leu 595	Tyr	Asn	Glu	Leu	Gln 600	Lys	Asp	Lys	Met	Ala 605	Glu	Ala	Туг
	Ser	Glu 610	Ile	Gly	Met	Lys	Gly 615	Glu	Arg	Arg	Arg	Gly 620	Lys	Gly	His	Asp
	Gly 625	Leu	Tyr	Gln	Gly	Leu 630	Ser	Thr	Ala	Thr	Lys 635	Asp	Thr	Tyr	Asp	Ala 640
	Leu	His	Met	Gln	Ala 645	Leu	Pro	Pro	Arg							
<210> 5 <211> 4 <212> F <213> s	i33 PRT	cia ari	tificial													
<220> <223> L	₋ucX1-	V1 CA	AR.													
<400> 5	57															
<400> 5		Ala	Leu	Pro	Val 5	Thr	Ala	Leu	Leu	Leu 10	Pro	Leu	Ala	Leu	Leu 15	Lei
<400> 5	Met 1				5					10						
<400> 5	Met 1 His	Ala	Ala	Arg 20	5 Pro	Gln	Val	Gln	Leu 25	10 Gln	Gln	Ser	Gly	Pro 30	15	Lei
<400> 5	Met 1 His	Ala Lys	Ala Pro 35	Arg 20 Gly	5 Pro Ala	Gln	Val Val	Gln Lys 40	Leu 25 Ile	10 Gln Ser	Gln Cys	Ser Lys	Gly Ala 45	Pro 30 Ser	15 Glu	Let
<400> 5	Met 1 His Val	Ala Lys Phe 50	Ala Pro 35 Ser	Arg 20 Gly Ser	5 Pro Ala Ser	Gln Ser Trp	Val Val Met 55	Gln Lys 40 Asn	Leu 25 Ile Trp	Gln Ser Val	Gln Cys Lys	Ser Lys Gln 60	Gly Ala 45 Arg	Pro 30 Ser	15 Glu Gly	Let Ty:
<400> 5	Met 1 His Val Ala Gly 65	Ala Lys Phe 50	Ala Pro 35 Ser	Arg 20 Gly Ser	5 Pro Ala Ser	Gln Ser Trp Gly	Val Met 55	Gln Lys 40 Asn	Leu 25 Ile Trp	Gln Ser Val	Gln Cys Lys Gly 75	Ser Lys Gln 60	Gly Ala 45 Arg	Pro 30 Ser Pro	Glu Gly Gly	Let Ty:

5

Ala	Val	Tyr 115	Phe	Cys	Ala	Arg	Ser 120	Thr	Met	Ile	Ala	Thr 125	Gly	Ala	Met
Asp	Tyr 130	Trp	Gly	Gln	Gly	Thr 135	Ser	Val	Thr	Val	Ser 140	Ser	Gly	Gly	Gly
Gly 145	Ser	Gly	Gly	Gly	Gly 150	Ser	Gly	Gly	Gly	Gly 155	Ser	Glu	Thr	Thr	Val 160
Thr	Gln	Ser	Pro	Ala 165	Ser	Leu	Ser	Met	Ala 170	Ile	Gly	Glu	Lys	Val 175	Thr
Ile	Arg	Cys	Ile 180	Thr	Ser	Thr	Asp	Ile 185	Asp	Asp	Asp	Met	Asn 190	Trp	Tyr
Gln	Gln	Lys 195	Pro	Gly	Glu	Pro	Pro 200	Lys	Leu	Leu	Ile	Ser 205	Glu	Gly	Asn
Thr	Leu 210	Arg	Pro	Gly	Val	Pro 215	Ser	Arg	Phe	Ser	Ser 220	Ser	Gly	Tyr	Gly
Thr 225	Asp	Phe	Val	Phe	Thr 230	Ile	Glu	Asn	Met	Leu 235	Ser	Glu	Asp	Val	Ala 240
Asp	Tyr	Tyr	Cys	Leu 245	Gln	Ser	Asp	Asn	Leu 250	Pro	Leu	Thr	Phe	Gly 255	Gly
Gly	Thr	Lys	Leu 260	Glu	Ile	Lys	Gly	Leu 265	Ala	Val	Ser	Thr	Ile 270	Ser	Ser
Phe	Phe	Pro 275	Pro	Gly	Tyr	Gln	Lys 280	Arg	Gly	Arg	Lys	Lys 285	Leu	Leu	Tyr
Ile	Phe 290	Lys	Gln	Pro	Phe	Met 295	Arg	Pro	Val	Gln	Thr 300	Thr	Gln	Glu	Glu
Asp 305	Gly	Cys	Ser	Cys	A rg 310	Phe	Pro	Glu	Glu	Glu 315	Glu	Gly	Gly	Cys	Glu 320
Leu	Arg	Val	Lys	Phe 325	Ser	Arg	Ser	Ala	Asp 330	Ala	Pro	Ala	Tyr	Gln 335	Gln
Gly	Gln	Asn	Gln 340	Leu	Tyr	Asn	Glu	Leu 345	Asn	Leu	Gly	Arg	A rg 350	Glu	Glu
Tyr	Asp	Val 355	Leu	Asp	Lys	Arg	Arg 360	Gly	Arg	Asp	Pro	Glu 365	Met	Gly	Gly

Lys Pro Arg Arg Lys Asn Pro Gln Glu Gly Leu Tyr Asn Glu Leu Gln Lys Asp Lys Met Ala Glu Ala Tyr Ser Glu Ile Gly Met Lys Gly Glu 390 Arg Arg Gly Lys Gly His Asp Gly Leu Tyr Gln Gly Leu Ser Thr 405 410 Ala Thr Lys Asp Thr Tyr Asp Ala Leu His Met Gln Ala Leu Pro Pro 420 425 430 Arg <210> 58 <211> 487 <212> PRT <213> secuencia artificial <223> LucX1-V2 CAR <400> 58 Met Ala Leu Pro Val Thr Ala Leu Leu Pro Leu Ala Leu Leu Leu 10 His Ala Ala Arg Pro Gln Val Gln Leu Gln Gln Ser Gly Ala Glu Leu Ala Arg Pro Gly Ala Ser Val Lys Leu Ser Cys Lys Ala Ser Gly Tyr 35 40 Thr Phe Thr Ser Tyr Trp Met Gln Trp Val Lys Gln Arg Pro Gly Gln 50 Gly Leu Glu Trp Ile Gly Ala Ile Tyr Pro Gly Asp Gly Asp Thr Arg Tyr Thr Gln Lys Phe Lys Gly Lys Ala Thr Leu Thr Ala Asp Lys Ser Ser Ser Thr Ala Tyr Met Gln Leu Ser Ser Leu Ala Ser Glu Asp Ser 100 Ala Val Tyr Tyr Cys Ala Arg Gly Lys Val Tyr Tyr Gly Ser Asn Pro 120

5

Phe	Ala 130	Tyr	Trp	Gly	Gln	Gly 135	Thr	Leu	Val	Thr	Val 140	Ser	Ala	Gly	Gly
Gly 145	Gly	Ser	Gly	Gly	Gly 150	Gly	Ser	Gly	Gly	Gly 155	Gly	Ser	Asp	Ile	Gln 160
Met	Thr	Gln	Ser	Ser 165	Ser	Tyr	Leu	Ser	Val 170	Ser	Leu	Gly	Gly	Arg 175	Val
Thr	Ile	Thr	Cys 180	Lys	Ala	Ser	Asp	His 185	Ile	Asn	Asn	Trp	Leu 190	Ala	Trp
Tyr	Gln	Gln 195	Lys	Pro	Gly	Asn	Ala 200	Pro	Arg	Leu	Leu	Ile 205	Ser	Gly	Ala
Thr	Ser 210	Leu	Glu	Thr	Gly	Val 215	Pro	Ser	Arg	Phe	Ser 220	Gly	Ser	Gly	Ser
Gly 225	Lys	Asp	Tyr	Thr	Leu 230	Ser	Ile	Thr	Ser	Leu 235	Gln	Thr	Glu	Asp	Val 240
Ala	Thr	Tyr	Tyr	Cys 245	Gln	Gln	Tyr	Trp	Ser 250	Thr	Pro	Trp	Thr	Phe 255	Gly
Gly	Gly	Thr	Lys 260	Leu	Glu	Ile	Lys	Thr 265	Thr	Thr	Pro	Ala	Pro 270	Arg	Pro
Pro	Thr	Pro 275	Ala	Pro	Thr	Ile	Ala 280	Ser	Gln	Pro	Leu	Ser 285	Leu	Arg	Pro
Glu	Ala 290	Cys	Arg	Pro	Ala	Ala 295	Gly	Gly	Ala	Val	His 300	Thr	Arg	Gly	Leu
Asp 305	Phe	Ala	Cys	Asp	Ile 310	Tyr	Ile	Trp	Ala	Pro 315	Leu	Ala	Gly	Thr	Cys 320
Gly	Val	Leu	Leu	Leu 325	Ser	Leu	Val	Ile	Thr 330	Leu	Tyr	Cys	Lys	Arg 335	Gly
Arg	Lys	Lys	Leu 340	Leu	Tyr	Ile	Phe	Lys 345	Gln	Pro	Phe	Met	A rg 350	Pro	Val
Gln	Thr	Thr 355	Gln	Glu	Glu	Asp	Gly 360	Cys	Ser	Cys	Arg	Phe 365	Pro	Glu	Glu
Glu	Glu 370	Gly	Gly	Cys	Glu	Leu 375	Arg	Val	Lys	Phe	Ser 380	Arg	Ser	Ala	Asp

	Ala 385	Pro	Ala	Tyr	Gln	Gln 390	Gly	Gln	Asn	Gln	Leu 395	Tyr	Asn	Glu	Leu	Asn 400
	Leu	Gly	Arg	Arg	Glu 405	Glu	Tyr	Asp	Val	Leu 410	Asp	Lys	Arg	Arg	Gly 415	Arg
	Asp	Pro	Glu	Met 420	Gly	Gly	Lys	Pro	Arg 425	Arg	Lys	Asn	Pro	Gln 430	Glu	Gly
	Leu	Tyr	Asn 435	Glu	Leu	Gln	Lys	Asp 440	Lys	Met	Ala	Glu	Ala 445	Tyr	Ser	Glu
	Ile	Gly 450	Met	Lys	Gly	Glu	Arg 455	Arg	Arg	Gly	Lys	Gly 460	His	Asp	Gly	Leu
	Tyr 465	Gln	Gly	Leu	Ser	Thr 470	Ala	Thr	Lys	Asp	Thr 475	Tyr	Asp	Ala	Leu	His 480
	Met	Gln	Ala	Leu	Pro 485	Pro	Arg									
<210> 5 <211> 6 <212> F	348															
<213> s	ecuen	icia art	ificial													
<213> s	.ucX1-															
<213> s <220> <223> L	.ucX1- 59	V3 CA	ΛR	Pro	Val 5	Thr	Ala	Leu	Leu	Leu 10	Pro	Leu	Ala	Leu	Leu 15	Leu
<213> s <220> <223> L	ucX1- 59 Met 1	V3 CA	AR Leu		5					10					15	Leu Leu
<213> s <220> <223> L	ucX1- 59 Met 1 His	V3 CA	AR Leu Ala	Arg 20	5 Pro	Gln	Val	Gln	Leu 25	10 Gln	Gln	Ser	Gly	Pro 30	15 Glu	
<213> s <220> <223> L	ucX1- 69 Met 1 His	V3 CA Ala Ala Lys	Leu Ala Pro 35	Arg 20 Gly	5 Pro	Gln	Val	Gln Lys 40	Leu 25 Ile	10 Gln Ser	Gln Cys	Ser Lys	Gly Ala 45	Pro 30	15 Glu Gly	Leu
<213> s <220> <223> L	Met 1 His Val	V3 CA Ala Ala Lys Phe 50	Leu Ala Pro 35 Ser	Arg 20 Gly Ser	5 Pro Ala Ser	Gln Ser Trp	Val Val Met 55	Gln Lys 40 Asn	Leu 25 Ile Trp	Gln Ser Val	Gln Cys Lys	Ser Lys Gln 60	Gly Ala 45 Arg	Pro 30	Glu Gly Gly	Leu Tyr Gln

Ser	Ser	Thr	Ala 100	Tyr	Met	Gln	Leu	Ser 105	Ser	Leu	Thr	Ser	Val 110	Asp	Ser
Ala	Val	Tyr 115	Phe	Cys	Ala	Arg	Ser 120	Thr	Met	Ile	Ala	Thr 125	Gly	Ala	Met
Asp	Tyr 130	Trp	Gly	Gln	Gly	Thr 135	Ser	Val	Thr	Val	Ser 140	Ser	Gly	Gly	Gly
Gly 145	Ser	Gly	Gly	Gly	Gly 150	Ser	Gly	Gly	Gly	Gly 155	Ser	Glu	Thr	Thr	Val 160
Thr	Gln	Ser	Pro	Ala 165	Ser	Leu	Ser	Met	Ala 170	Ile	Gly	Glu	Lys	Val 175	Thr
Ile	Arg	Cys	Ile 180	Thr	Ser	Thr	Asp	Ile 185	Asp	Asp	Asp	Met	Asn 190	Trp	Tyr
Gln	Gln	Lys 195	Pro	Gly	Glu	Pro	Pro 200	Lys	Leu	Leu	Ile	Ser 205	Glu	Gly	Asn
Thr	Leu 210	Arg	Pro	Gly	Val	Pro 215	Ser	Arg	Phe	Ser	Ser 220	Ser	Gly	Tyr	Gly
Thr 225	Asp	Phe	Val	Phe	Thr 230	Ile	Glu	Asn	Met	Leu 235	Ser	Glu	Asp	Val	Ala 240
Asp	Tyr	Tyr	Cys	Leu 245	Gln	Ser	Asp	Asn	Leu 250	Pro	Leu	Thr	Phe	Gly 255	Gly
Gly	Thr	Lys	Leu 260	Glu	Ile	Lys	Glu	Pro 265	Lys	Ser	Pro	Asp	Lys 270	Thr	His
Thr	Cys	Pro 275	Pro	Cys	Pro	Ala	Pro 280	Pro	Val	Ala	Gly	Pro 285	Ser	Val	Phe
Leu	Phe 290	Pro	Pro	Lys	Pro	Lys 295	Asp	Thr	Leu	Met	Ile 300	Ala	Arg	Thr	Pro
Glu 305	Val	Thr	Cys	Val	Val 310	Val	Asp	Val	Ser	His 315	Glu	Asp	Pro	Glu	Val 320
Lys	Phe	Asn	Trp	Tyr 325	Val	Asp	Gly	Val	Glu 330	Val	His	Asn	Ala	Lys 335	Thr
Lys	Pro	Arg	Glu 340	Glu	Gln	Tyr	Asn	Ser 345	Thr	Tyr	Arg	Val	Val 350	Ser	Val

Leu	Thr	Val 355	Leu	His	Gln	Asp	Trp 360	Leu	Asn	Gly	Lys	Glu 365	Tyr	Lys	Cys
Lys	Val 370	Ser	Asn	Lys	Ala	Leu 375	Pro	Ala	Pro	Ile	Glu 380	Lys	Thr	Ile	Ser
Lys 385	Ala	Lys	Gly	Gln	Pro 390	Arg	Glu	Pro	Gln	Val 395	Tyr	Thr	Leu	Pro	Pro 400
Ser	Arg	Asp	Glu	Leu 405	Thr	Lys	Asn	Gln	Val 410	Ser	Leu	Thr	Cys	Leu 415	Val
Lys	Gly	Phe	Tyr 420	Pro	Ser	Asp	Ile	Ala 425	Val	Glu	Trp	Glu	Ser 430	Asn	Gly
Gln	Pro	Glu 435	Asn	Asn	Tyr	Lys	Thr 440	Thr	Pro	Pro	Val	Leu 445	Asp	Ser	Asp
Gly	Ser 450	Phe	Phe	Leu	Tyr	Ser 455	Lys	Leu	Thr	Val	Asp 460	Lys	Ser	Arg	Trp
Gln 465	Gln	Gly	Asn	Val	Phe 470	Ser	Cys	Ser	Val	Met 475	His	Glu	Ala	Leu	His 480
Asn	His	Tyr	Thr	Gln 485	Lys	Ser	Leu	Ser	Leu 490	Ser	Pro	Gly	Lys	Lys 495	Arg
Gly	Arg	Lys	Lys 500	Leu	Leu	Tyr	Ile	Phe 505	Lys	Gln	Pro	Phe	Met 510	Arg	Pro
Val	Gln	Thr 515	Thr	Gln	Glu	Glu	Asp 520	Gly	Cys	Ser	Cys	Arg 525	Phe	Pro	Glu
Glu	Glu 530	Glu	Gly	Gly	Cys	Glu 535	Leu	Arg	Val	Lys	Phe 540	Ser	Arg	Ser	Ala
Asp 545	Ala	Pro	Ala	Tyr	Gln 550	Gln	Gly	Gln	Asn	Gln 555	Leu	Tyr	Asn	Glu	Leu 560
Asn	Leu	Gly	Arg	Arg 565	Glu	Glu	Tyr	Asp	Val 570	Leu	Asp	Lys	Arg	Arg 575	Gly
Arg	Asp	Pro	Glu 580	Met	Gly	Gly	Lys	Pro 585	Arg	Arg	Lys	Asn	Pro 590	Gln	Glu
Gly	Leu	Tyr 595	Asn	Glu	Leu	Gln	Lys 600	Asp	Lys	Met	Ala	Glu 605	Ala	Tyr	Ser

Glu Ile Gly Met Lys Gly Glu Arg Arg Gly Lys Gly His Asp Gly 610 615 620 Leu Tyr Gln Gly Leu Ser Thr Ala Thr Lys Asp Thr Tyr Asp Ala Leu 625 630 635 His Met Gln Ala Leu Pro Pro Arg 645 <210> 60 <211> 434 <212> PRT 5 <213> secuencia artificial <220> <223> LucX2-V1 CAR 10 <400> 60 Met Ala Leu Pro Val Thr Ala Leu Leu Pro Leu Ala Leu Leu Leu 5 His Ala Arg Pro Gln Val Gln Leu Gln Gln Ser Gly Pro Glu Leu 20 Val Lys Pro Gly Ala Ser Val Lys Ile Ser Cys Lys Ala Ser Gly Tyr 40 35 Ala Phe Ser Ser Trp Met Asn Trp Val Lys Gln Arg Pro Gly Gln 50 55 Gly Leu Glu Trp Ile Gly Arg Ile Tyr Pro Gly Asp Gly Asp Thr Lys Tyr Asn Gly Lys Phe Lys Gly Lys Ala Thr Leu Thr Ala Asp Lys Ser 85 90 95 Ser Ser Thr Ala Tyr Met Gln Leu Ser Ser Leu Thr Ser Val Asp Ser 100 105 110 Ala Val Tyr Phe Cys Ala Arg Ser Thr Met Ile Ala Thr Gly Ala Met 115 120 125 Asp Tyr Trp Gly Gln Gly Thr Ser Val Thr Val Ser Ser Gly Gly Gly 130 Gly Ser Gly Gly Gly Ser Gly Gly Gly Ser Asp Ile Val Met 145 150 155

Thr	Gln	Ser	His	Lys 165	Phe	Met	Ser	Thr	Ser 170	Val	Gly	Asp	Arg	Val 175	Ser
Ile	Thr	Cys	Lys 180	Ala	Ser	Gln	Asp	Val 185	Ser	Thr	Ala	Val	Ala 190	Trp	Tyr
Gln	Gln	Lys 195	Pro	Gly	Gln	Ser	Pro 200	Lys	Leu	Leu	Ile	Tyr 205	Ser	Ala	Ser
Tyr	A rg 210	Tyr	Thr	Gly	Val	Pro 215	Asp	Arg	Phe	Thr	Gly 220	Ser	Gly	Ser	Gly
Thr 225	Asp	Phe	Thr	Phe	Thr 230	Ile	Ser	Ser	Val	Gln 235	Ala	Glu	Asp	Leu	Ala 240
Val	Tyr	Tyr	Cys	Gln 245	Gln	His	Tyr	Ser	Thr 250	Pro	Pro	Tyr	Thr	Phe 255	Gly
Gly	Gly	Thr	Lys 260	Leu	Glu	Ile	Lys	Gly 265	Leu	Ala	Val	Ser	Thr 270	Ile	Ser
Ser	Phe	Phe 275	Pro	Pro	Gly	Tyr	Gln 280	Lys	Arg	Gly	Arg	Lys 285	Lys	Leu	Leu
Tyr	Ile 290	Phe	Lys	Gln	Pro	Phe 295	Met	Arg	Pro	Val	Gln 300	Thr	Thr	Gln	Glu
Glu 305	Asp	Gly	Cys	Ser	Cys 310	Arg	Phe	Pro	Glu	Glu 315	Glu	Glu	Gly	Gly	Cys 320
Glu	Leu	Arg	Wa 1	-											
C1 n			Vai	1.ys 325	Phe	Ser	Arg	Ser	Ala 330	Asp	Ala	Pro	Ala	Tyr 335	Gln
GIII	Gly	Gln		325					330						
			Asn 340	325 Gln	Leu	Tyr	Asn	Glu 345	330 Leu	Asn	Leu	Gly	Arg 350	335	Glu
Glu	Tyr	Asp 355	Asn 340 Val	325 Gln Leu	Leu Asp	Tyr Lys	Asn Arg 360	Glu 345 Arg	330 Leu Gly	Asn Arg	Leu Asp	Gly Pro 365	Arg 350 Glu	335	Glu Gly
Glu Gly	Tyr Lys 370	Asp 355 Pro	Asn 340 Val	325 Gln Leu Arg	Leu Asp Lys	Tyr Lys Asn 375	Asn Arg 360 Pro	Glu 345 Arg Gln	330 Leu Gly Glu	Asn Arg Gly	Leu Asp Leu 380	Gly Pro 365 Tyr	Arg 350 Glu Asn	335 Arg Met	Glu Gly Leu

Thr Ala Thr	Lys Asp	Thr	Tyr	Asp	Ala	Leu	His	Met	Gln	Ala	Leu	${\tt Pro}$
,	420				425					430		

Pro Arg

<210> 61 5 <211> 487 <212> PRT <213> secuencia artificial

10

<220>

<223> LucX2-V2 CAR

<400> 61

Met Ala Leu Pro Val Thr Ala Leu Leu Pro Leu Ala Leu Leu Leu 10

His Ala Arg Pro Gln Val Gln Leu Gln Gln Ser Gly Pro Glu Leu

Val Lys Pro Gly Ala Ser Val Lys Ile Ser Cys Lys Ala Ser Gly Tyr

Ala Phe Ser Ser Trp Met Asn Trp Val Lys Gln Arg Pro Gly Gln

Gly Leu Glu Trp Ile Gly Arg Ile Tyr Pro Gly Asp Gly Asp Thr Lys 70 75

Tyr Asn Gly Lys Phe Lys Gly Lys Ala Thr Leu Thr Ala Asp Lys Ser 90 95

Ser Ser Thr Ala Tyr Met Gln Leu Ser Ser Leu Thr Ser Val Asp Ser 100 105

Ala Val Tyr Phe Cys Ala Arg Ser Thr Met Ile Ala Thr Gly Ala Met 115 120

Asp Tyr Trp Gly Gln Gly Thr Ser Val Thr Val Ser Ser Gly Gly Gly 130 135

Gly Ser Gly Gly Gly Ser Gly Gly Gly Ser Asp Ile Val Met 145 150 155 160

Thr Gln Ser His Lys Phe Met Ser Thr Ser Val Gly Asp Arg Val Ser 165 170

Ile T	Thr	Cys	Lys 180	Ala	Ser	Gln	Asp	Val 185	Ser	Thr	Ala	Val	Ala 190	Trp	Tyr
Gln G	31n	Lys 195	Pro	Gly	Gln	Ser	Pro 200	Lys	Leu	Leu	Ile	Tyr 205	Ser	Ala	Ser
Tyr A	Arg 210	Tyr	Thr	Gly	Val	Pro 215	Asp	Arg	Phe	Thr	Gly 220	Ser	Gly	Ser	Gly
Thr A 225	Asp	Phe	Thr	Phe	Thr 230	Ile	Ser	Ser	Val	Gln 235	Ala	Glu	Asp	Leu	Ala 240
Val T	ſyr	Tyr	Cys	Gln 245	Gln	His	Tyr	Ser	Thr 250	Pro	Pro	Tyr	Thr	Phe 255	Gly
Gly G	Sly	Thr	Lys 260	Leu	Glu	Ile	Lys	Thr 265	Thr	Thr	Pro	Ala	Pro 270	Arg	Pro
Pro I	Thr	Pro 275	Ala	Pro	Thr	Ile	Ala 280	Ser	Gln	Pro	Leu	Ser 285	Leu	Arg	Pro
Glu A	Ala 290	Cys	Arg	Pro	Ala	Ala 295	Gly	Gly	Ala	Val	His 300	Thr	Arg	Gly	Leu
Asp F 305	?he	Ala	Cys	Asp	Ile 310	Tyr	Ile	Trp	Ala	Pro 315	Leu	Ala	Gly	Thr	Cys 320
Gly V	/al	Leu	Leu	Leu 325	Ser	Leu	Val	Ile	Thr 330	Leu	Tyr	Cys	Lys	Arg 335	Gly
Arg I	Lys	Lys	Leu 340	Leu	Tyr	Ile	Phe	Lys 345	Gln	Pro	Phe	Met	Arg 350	Pro	Val
Gln I	Thr	Thr 355	Gln	Glu	Glu	Asp	Gly 360	Cys	Ser	Cys	Arg	Phe 365	Pro	Glu	Glu
Glu G	31u 370	Gly	Gly	Cys	Glu	Leu 375	Arg	Val	Lys	Phe	Ser 380	Arg	Ser	Ala	Asp
Ala F 385	?ro	Ala	Tyr	Gln	Gln 390	Gly	Gln	Asn	Gln	Leu 395	Tyr	Asn	Glu	Leu	Asn 400
Leu G	Gly	Arg	Arg	Glu 405	Glu	Tyr	Asp	Val	Leu 410	Asp	Lys	Arg	Arg	Gly 415	Arg
Asp P	?ro	Glu	Met 420	Gly	Gly	Lys	Pro	Arg 425	Arg	Lys	Asn	Pro	Gln 430	Glu	Gly

	Leu	Tyr	Asn 435	Glu	Leu	Gln	Lys	Asp 440	Lys	Met	Ala	Glu	Ala 445	Tyr	Ser	Glu
	Ile	Gly 450	Met	Lys	Gly	Glu	Arg 455	Arg	Arg	Gly	Lys	Gly 460	His	Asp	Gly	Leu
	Tyr 465	Gln	Gly	Leu	Ser	Thr 470	Ala	Thr	Lys	Asp	Thr 475	Tyr	Asp	Ala	Leu	His 480
	Met	Gln	Ala	Leu	Pro 485	Pro	Arg									
<210> 6 <211> 6 <212> F <213> s	649 PRT	cia art	ificial													
<220> <223> L	.ucX2-	V3 CA	۱R													
<400> 6	62															
	Met 1	Ala	Leu	Pro	Val 5	Thr	Ala	Leu	Leu	Leu 10	Pro	Leu	Ala	Leu	Leu 15	Leu
	His	Ala	Ala	Arg 20	Pro	Gln	Val	Gln	Leu 25	Gln	Gln	Ser	Gly	Pro 30	Glu	Leu
	Val	Lys	Pro 35	Gly	Ala	Ser	Val	Lys 40	Ile	Ser	Cys	Lys	Ala 45	Ser	Gly	Tyr
	Ala	Phe 50	Ser	Ser	Ser	Trp	Met 55	Asn	Trp	Val	Lys	Gln 60	Arg	Pro	Gly	Gln
	Gly 65	Leu	Glu	Trp	Ile	Gly 70	Arg	Ile	Tyr	Pro	Gly 75	Asp	Gly	Asp	Thr	Lys 80
	Tyr	Asn	Gly	Lys	Phe 85	Lys	Gly	Lys	Ala	Thr 90	Leu	Thr	Ala	Asp	Lys 95	Ser
	Ser	Ser	Thr	Ala 100	Tyr	Met	Gln	Leu	Ser 105	Ser	Leu	Thr	Ser	Val 110	Asp	Ser
	Ala	Val	Tyr 115	Phe	Cys	Ala	Arg	Ser 120	Thr	Met	Ile	Ala	Thr 125	Gly	Ala	Met
	Asp	Tyr 130	Trp	Gly	Gln	Gly	Thr 135	Ser	Val	Thr	Val	Ser 140	Ser	Gly	Gly	Gly

Gly 145	Ser	Gly	Gly	Gly	Gly 150	Ser	Gly	Gly	Gly	Gly 155	Ser	Asp	Ile	Val	Met 160
Thr	Gln	Ser	His	Lys 165	Phe	Met	Ser	Thr	Ser 170	Val	Gly	Asp	Arg	Val 175	Ser
Ile	Thr	Cys	Lys 180	Ala	Ser	Gln	Asp	Val 185	Ser	Thr	Ala	Val	Ala 190	Trp	Tyr
Gln	Gln	Lys 195	Pro	Gly	Gln	Ser	Pro 200	Lys	Leu	Leu	Ile	Tyr 205	Ser	Ala	Ser
Tyr	Arg 210	Tyr	Thr	Gly	Val	Pro 215	Asp	Arg	Phe	Thr	Gly 220	Ser	Gly	Ser	Gly
Thr 225	Asp	Phe	Thr	Phe	Thr 230	Ile	Ser	Ser	Val	Gln 235	Ala	Glu	Asp	Leu	Ala 240
Val	Tyr	Tyr	Cys	Gln 245	Gln	His	Tyr	Ser	Thr 250	Pro	Pro	Tyr	Thr	Phe 255	Gly
Gly	Gly	Thr	Lys 260	Leu	Glu	Ile	Lys	Glu 265	Pro	Lys	Ser	Pro	Asp 270	Lys	Thr
His	Thr	Cys 275	Pro	Pro	Cys	Pro	Ala 280	Pro	Pro	Val	Ala	Gly 285	Pro	Ser	Val
Phe	Leu 290	Phe	Pro	Pro	Lys	Pro 295	Lys	Asp	Thr	Leu	Met 300	Ile	Ala	Arg	Thr
Pro 305	Glu	Val	Thr	Cys	Val 310	Val	Val	Asp	Val	Ser 315	His	Glu	Asp	Pro	Glu 320
Val	Lys	Phe	Asn	Trp 325	Tyr	Val	Asp	Gly	Val 330	Glu	Val	His	Asn	Ala 335	Lys
Thr	Lys	Pro	Arg 340	Glu	Glu	Gln	Tyr	Asn 345	Ser	Thr	Tyr	Arg	Val 350	Val	Ser
Val	Leu	Thr 355	Val	Leu	His	Gln	Asp 360	Trp	Leu	Asn	Gly	Lys 365	Glu	Tyr	Lys
Cys	Lys 370	Val	Ser	Asn	Lys	Ala 375	Leu	Pro	Ala	Pro	Ile 380	Glu	Lys	Thr	Ile
Ser 385	Lys	Ala	Lys	Gly	Gln 390	Pro	Arg	Glu	Pro	Gln 395	Val	Tyr	Thr	Leu	Pro 400

Pro	Ser	Arg	Asp	Glu 405	Leu	Thr	Lys	Asn	Gln 410	Val	Ser	Leu	Thr	Cys 415	Leu
Val	Lys	Gly	Phe 420	Tyr	Pro	Ser	Asp	Ile 425	Ala	Val	Glu	Trp	Glu 430	Ser	Asn
Gly	Gln	Pro 435	Glu	Asn	Asn	Tyr	Lys 440	Thr	Thr	Pro	Pro	Val 445	Leu	Asp	Ser
Asp	Gly 450	Ser	Phe	Phe	Leu	Tyr 455	Ser	Lys	Leu	Thr	Val 460	Asp	Lys	Ser	Arg
Trp 465	Gln	Gln	Gly	Asn	Val 470	Phe	Ser	Cys	Ser	Val 475	Met	His	Glu	Ala	Leu 480
His	Asn	His	Tyr	Thr 485	Gln	Lys	Ser	Leu	Ser 490	Leu	Ser	Pro	Gly	Lys 495	Lys
Arg	Gly	Arg	Lys 500	Lys	Leu	Leu	Tyr	Ile 505	Phe	Lys	Gln	Pro	Phe 510	Met	Arg
Pro	Val	Gln 515	Thr	Thr	Gln	Glu	Glu 520	Asp	Gly	Cys	Ser	Cys 525	Arg	Phe	Pro
Glu	Glu 530	Glu	Glu	Gly	Gly	Cys 535	Glu	Leu	Arg	Val	Lys 540	Phe	Ser	Arg	Ser
Ala 545	Asp	Ala	Pro	Ala	Tyr 550	Gln	Gln	Gly	Gln	A sn 555	Gln	Leu	Tyr	Asn	Glu 560
Leu	Asn	Leu	Gly	Arg 565	Arg	Glu	Glu	Tyr	Asp 570	Val	Leu	Asp	Lys	Arg 575	Arg
Gly	Arg	Asp	Pro 580	Glu	Met	Gly	Gly	Lys 585	Pro	Arg	Arg	Lys	As n 590	Pro	Gln
Glu	Gly	Leu 595	Tyr	Asn	Glu	Leu	Gln 600	Lys	Asp	Lys	Met	Ala 605	Glu	Ala	Tyr
Ser	Glu 610	Ile	Gly	Met	Lys	Gly 615	Glu	Arg	Arg	Arg	Gly 620	Lys	Gly	His	Asp
Gly 625	Leu	Tyr	Gln	Gly	Leu 630	Ser	Thr	Ala	Thr	Lys 635	Asp	Thr	Tyr	Asp	Ala 640
Leu	His	Met	Gln	Ala 645	Leu	Pro	Pro	Arg							

5	<210> 64 <211> 17 <212> ADN <213> secuencia artificial	
	<220> <223> CS1 T01 izquierda TALE	
10	<400> 64	
	tgacttccag agagcaa	17
15	<210> 65 <211> 17 <212> ADN <213> secuencia artificial	
20	<220> <223> CS1 T01 derecha TALE	
	<400> 65	
25	aacatgcctc accctca	17
25	<210> 66 <211> 49 <212> ADN	
30	<213> homo sapiens <220> <223> CS1 T02 diana	
35	<400> 66	49
	ttccagagag caatatggct ggttccccaa catgcctcac cctcatcta	49
40	<210> 67 <211> 17 <212> ADN <213> secuencia artificial	
45	<220> <223> CS1 T02 izquierda TALE	
	<400> 67	
	ttccagagag caatatg	17
50	<210> 68 <211> 17 <212> ADN <213> secuencia artificial	
55	<220> <223> CS1 T02 derecha TALE	
	<400> 68	
60	tgcctcaccc tcatcta	17
	<210> 69 <211> 49 <212> ADN	

	<213> homo sapiens	
_	<220> <223> CS1 T03 diana	
5	<400> 69	
	ttgactctat tgtctggacc ttcaacacaa cccctcttgt caccataca	49
10	<210> 70 <211> 17 <212> ADN <213> secuencia artificial	
15	<220> <223> CS1 T03 izquierda TALE	
	<400> 70	
20	ttgactctat tgtctgg	17
25	<210> 71 <211> 17 <212> ADN <213> secuencia artificial	
	<220> <223> CS1 T03 derecha TALE	
30	<400> 71	
	cctcttgtca ccataca	17
35	<210> 72 <211> 49 <212> ADN <213> homo sapiens	
40	<220> <223> CD70 diana 1	
	<400> 72	
45	tggtcttttc ttccagtggg acgtagctga gctgcagctg aatcacaca <210>73 <211>17	49
50	<212> ADN <213> secuencia artificial	
	<220> <223> CD70 Diana 1-izquierda TALE	
55	<400> 73 tggtcttttc ttccagt	17
60	<210> 74 <211> 17 <212> ADN <213> secuencia artificial	
65	<220> <223> CD70 Diana 1-derecha TALE	
	<400> 74	

	tgcagctgaa tcacaca	17
5	<210> 75 <211> 49 <212> ADN <213> homo sapiens	
10	<220> <223> CD70 diana 2	
	<400> 75	
15	tggtgatctg cctcgtggtg tgcatccagc gcttcgcaca ggctcagca	49
15	<210> 76 <211> 17 <212> ADN <213> secuencia artificial	
20	<220> <223> CD70 Diana 2-izquierda TALE	
	<400> 76	
25	tggtgatctg cctcgtg	17
30	<210> 77 <211> 17 <212> ADN <213> secuencia artificial	
35	<220> <223> CD70 Diana 2-derecha TALE	
	<400> 77	
	ttcgcacagg ctcagca	17
40	<210> 78 <211> 57 <212> ADN <213> homo sapiens	
45	<220> <223> CD70 diana 3	
	<400> 78	
50	tgcgggctgc tttggtccca ttggtcgcgg gcttggtgat ctgcctcgtg gtgtgca	57
	<210> 79 <211> 17 <212> ADN	
55	<213> secuencia artificial	
	<220> <223> CD70 Diana 3-izquierda TALE	
60	<400> 79	
	tgcgggctgc tttggtc	17
65	<210> 80 <211> 17	
	<212> ADN	

	<213> secuer	ncia art	ificial														
E	<220> <223> CD70	Diana (3-dere	cha T	ALE												
5	<400> 80																
	ctgcctcgtg gtgtgca															17	
10	<210> 81 <211> 122 <212> PRT <213> secuer	ncia art	ificial														
15	<220> <223> Ab4 di	rigido c	ontra	CD70-	-cadeı	na VH											
	<400> 81																
	Gln 1	Val	Gln	Leu	Val 5	Glu	Ser	Gly	Gly	Gly 10	Val	Val	Gln	Pro	Gly 15	Arg	
	Ser	Leu	Arg	Leu 20	Ser	Cys	Ala	Ala	Ser 25	Gly	Phe	Thr	Phe	Ser 30	Asn	Tyr	
	Gly	Ile	His 35	Trp	Val	Arg	Gln	Ala 40	Pro	Gly	Lys	Gly	Leu 45	Glu	Trp	Val	
20	Ala	Val 50	Ile	Trp	Tyr	Asp	Gly 55	Ser	Asn	Lys	Tyr	Tyr 60	Ala	Asp	Ser	Val	
	Lys 65	Gly	Arg	Phe	Thr	Ile 70	Ser	Arg	Asp	Asn	Ser 75	Lys	Asn	Thr	Leu	Tyr 80	
	Leu	Gln	Met	Asn	Ser 85	Leu	Arg	Ala	Glu	Asp 90	Thr	Ala	Val	Tyr	Tyr 95	Cys	
	Ala	Arg	Asp	Gly 100	Gly	Tyr	Ser	Gly	Tyr 105	Asp	Ser	Gly	Phe	Asp 110	Tyr	Trp	
	Gly	Gln	Gly 115	Thr	Leu	Val	Thr	Val 120	Ser	Ser							
25	<210> 82 <211> 1358 <212> ADN <213> secuer	ncia art	ificial														
30	<220> <223> Ab4 di	rigido c	contra	CD70-	-cadei	na VH											
	<400> 82																

60

120

180

240 300

360

420

480

540

600

660

720

780

840

900

960

```
aggtgcagct ggtggagtct gggggaggcg tggtccagcc tgggaggtcc ctgagactct
 cctgtgcagc gtctggattc accttcagta actatggcat acactgggtc cgccaggctc
 caggcaaggg gctggagtgg gtggcagtta tatggtatga tggaagtaat aaatactatg
 cagactccgt gaagggccga ttcaccatct ccagagacaa ttccaagaac acgctgtatc
 tgcaaatgaa cagcctgaga gccgaggaca cggctgtgta ttactgtgcg agagatggag
 gatatagtgg ctacgattcg gggtttgact actggggcca gggaaccctg gtcaccgtct
 cctcagctag caccaagggc ccatccgtct tccccctggc accctcctcc aagagcacct
 ctgggggcac agcggccctg ggctgcctgg tcaaggacta cttccccgaa ccggtgacgg
 tgtcgtggaa ctcaggcgcc ctgaccagcg gcgtgcacac cttcccggct gtcctacagt
 cctcaggact ctactccctc agcagcgtgg tgaccgtgcc ctccagcagc ttgggcaccc
 agacctacat ctgcaacgtg aatcacaagc ccagcaacac caaggtggac aagaaagttg
 agcccaaatc ttgtgacaaa actcacacat gcccaccgtg cccagcacct gaactcctgg
 ggggaccgtc agtcttcctc ttcccccaa aacccaagga caccctcatg atctcccgga
 cccctgaggt cacatgcgtg gtggtggacg tgagccacga agaccctgag gtcaagttca
 actggtacgt ggacggcgtg gaggtgcata atgccaagac aaagccgcgg gaggagcagt
 acaacagcac gtaccgtgtg gtcagcgtcc tcaccgtcct gcaccaggac tggctgaatg
 qcaaqqaqta caaqtqcaaq qtctccaaca aaqccctccc aqcccccatc qaqaaaacca
                                                                       1020
 tctccaaagc caaagggcag ccccgagaac cacaggtgta caccctgccc ccatcccggg
                                                                       1080
 aggagatgac caagaaccag gtcagcctga cctgcctggt caaaggcttc tatcccagcg
                                                                       1140
 acategeegt ggagtgggag ageaatggge ageeggagaa caactacaag accaegeete
                                                                       1200
 ccgtgctgga ctccgacggc tccttcttcc tctatagcaa gctcaccgtg gacaagagca
                                                                       1260
 ggtggcagca ggggaacgtc ttctcatgct ccgtgatgca tgaggctctg cacaaccact
                                                                       1320
 acacgcagaa gagcctctcc ctgtctccgg gtaaatga
                                                                       1358
<210>83
<211> 112
<212> PRT
<213> secuencia artificial
<220>
<223> Ab4 dirigido contra CD70-cadena VL
<400>83
      Asp Ile Val Met Thr Gln Ser Pro Leu Ser Leu Pro Val Thr Pro Gly
      Glu Pro Ala Ser Ile Ser Cys Arg Ser Ser Gln Ser Leu Leu Asn Ser
                  20
      Asn Gly Tyr Asn Tyr Leu Asp Trp Tyr Leu Gln Lys Pro Gly Gln Ser
      Pro Gln Phe Leu Ile Tyr Leu Gly Ser Tyr Arg Ala Ser Gly Val Pro
          50
                               55
      Asp Arg Phe Ser Gly Ser Gly Ser Gly Thr Asp Phe Thr Leu Arg Ile
      65
      Ser Arg Val Glu Ala Glu Asp Val Gly Val Tyr Tyr Cys Ile Gln Thr
      Leu Gln Thr Pro Phe Thr Phe Gly Pro Gly Thr Lys Val Asp Ile Lys
                  100
                                       105
<210> 84
<211> 1476
```

5

10

15

<212> ADN

```
<213> secuencia artificial
      <220>
      <223> Ab4 dirigido contra CD70-cadena VL
5
      <400> 84
        gatattgtga tgactcagtc tccactctcc ctgcccgtca cccctggaga gccggcctcc
                                                                                 60
        atctcctgca ggtctagtca gagcctcctg aatagtaatg gatacaacta tttggattgg
                                                                                120
        tacctgcaga agccagggca gtctccacag ttcctgatct atttgggttc ttatcgggcc
                                                                                180
        tccggggtcc ctgacaggtt cagtggcagt ggatcaggca cagattttac actgagaatc
                                                                                240
                                                                                300
        agcagagtgg aggctgagga tgttggggtt tattactgta tacaaactct acaaactcca
                                                                                360
        ttcactttcg gccctgggac caaagtggat atcaaacgta cggtggctgc accatctgtc
                                                                                420
        ttcatcttcc cgccatctga tgagcagttg aaatctggaa ctgcctctgt tgtgtgcctg
                                                                                480
        ctgaataact tctatcccag agaggccaaa gtacagtgga aggtggataa cgccctccaa
        tcgggtaact cccaggagag tgtcacagag caggacagca aggacagcac ctacagcctc
                                                                                540
        agcagcaccc tgacgctgag caaagcagac tacgagaaac acaaagtcta cgcctgcgaa
                                                                                600
        gtcacccatc agggcctgag ctcgcccgtc acaaagagct tcaacagggg agagtgttag
                                                                                660
                                                                                720
        tectcaggae tetacteect cagcagegtg gtgacegtge cetecageag ettgggeace
                                                                                780
        cagacctaca tctgcaacgt gaatcacaag cccagcaaca ccaaggtgga caagaaagtt
        gageccaaat ettgtgacaa aacteacaca tgeecacegt geecageace tgaacteetg
                                                                                840
                                                                                900
        gggggaccgt cagtetteet ettecececa aaacccaagg acacceteat gateteeegg
                                                                                960
        acccctgagg tcacatgcgt ggtggtggac gtgagccacg aagaccctga ggtcaagttc
        aactggtacg tggacggcgt ggaggtgcat aatgccaaga caaagccgcg ggaggagcag
                                                                               1020
        tacaacagca cgtaccgtgt ggtcagcgtc ctcaccgtcc tgcaccagga ctggctgaat
                                                                               1080
        ggcaaggagt acaagtgcaa ggtctccaac aaagccctcc cagcccccat cgagaaaacc
                                                                               1140
        atctccaaag ccaaagggca gccccgagaa ccacaggtgt acaccctgcc cccatcccgg
                                                                               1200
        gaggagatga ccaagaacca ggtcagcctg acctgcctgg tcaaaggctt ctatcccagc
                                                                               1260
        gacatcgccg tggagtggga gagcaatggg cagccggaga acaactacaa gaccacgcct
                                                                               1320
        cccgtgctgg actccgacgg ctccttcttc ctctatagca agctcaccgt ggacaagagc
                                                                               1380
        aggtggcagc aggggaacgt cttctcatgc tccgtgatgc atgaggctct gcacaaccac
                                                                               1440
        tacacgcaga agagcctctc cctgtctccg ggtaaa
                                                                               1476
10
      <210>85
      <211> 122
      <212> PRT
      <213> secuencia artificial
15
      <223> Ab8 dirigido contra CD70-cadena VH
```

<400> 85

Gln Val Gln Leu Val Glu Ser Gly Gly Gly Val Val Gln Pro Gly Arg

```
5
                                                    10
                                                                         15
             Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Thr Phe Ser Ser Tyr
                          20
                                                25
             Gly Met His Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp Val
                      35
                                           40
             Ala Val Ile Trp Tyr Asp Gly Ser Asp Lys Tyr Phe Ala Asp Ser Val
                  50
                                       55
             Lys Gly Arg Phe Thr Ile Ser Arg Asp Asn Ser Lys Asn Thr Leu Tyr
                                   70
                                                        75
             Leu Gln Met Asn Ser Leu Arg Ala Glu Asp Thr Ala Val Tyr Tyr Cys
                               85
                                                    90
             Ala Arg Asp Gly Ile Ala Gly Ala Arg Tyr Val Tyr Phe Asp Tyr Trp
                          100
                                                105
             Gly Gln Gly Thr Leu Val Thr Val Ser Ser
                      115
                                           120
      <210>86
      <211> 560
5
      <212> ADN
       <213> secuencia artificial
      <223> Ab8 dirigido contra CD70-cadena VH
10
      <400> 86
        caggtgcagc tggtggagtc tgggggaggc gtggtccagc ctgggaggtc cctgagactc
                                                                                   60
        tectgtgeag egtetggatt cacetteagt agetatggea tgeaetgggt eegeeagget
                                                                                  120
        ccaggcaagg ggctggagtg ggtggcagtt atatggtatg atggaagtga taaatacttt
                                                                                  180
        gcagactccg tgaagggccg attcaccatc tccagagaca attccaagaa cacgctgtat
                                                                                  240
        ctgcaaatga acagcctgag agccgaggac acggctgtgt attactgtgc gagagatggg
                                                                                  300
        atagcaggag ctcgctacgt ctactttgac tactggggcc agggaaccct ggtcaccgtc
                                                                                  360
        tecteageta geaceaaggg eccateegte tteceeetgg eacecteete eaagageace
                                                                                  420
        tctgggggca cagcggccct gggctgcctg gtcaaggact acttccccga accggtgacg
                                                                                  480
        gtgtcgtgga actcaggcgc cctgaccagc ggcgtgcaca ccttcccggc tgtcctacag
                                                                                  540
        tcctcaggac tctactccct
                                                                                  560
15
      <210>87
      <211> 107
      <212> PRT
      <213> secuencia artificial
20
      <223> Ab8 dirigido contra CD70-cadena VL
      <400>87
```

		Asp 1	Ile	Gln	Met	Thr 5	Gln	Ser	Pro	Ser	Ser 10	Leu	Ser	Ala	Ser	Val 15	Gly	
		Asp	Arg	Val	Thr 20	Ile	Thr	Cys	Arg	Ala 25	Ser	Gln	Gly	Ile	Ser 30	Asn	Tyr	
		Leu	Ala	Trp 35	Phe	Gln	Gln	Lys	Pro 40	Gly	Lys	Ala	Pro	Lys 45	Ser	Leu	Ile	
		Tyr	Ala 50	Ala	Ser	Ser	Leu	Gln 55	Gly	Gly	Val	Pro	Ser 60	Lys	Phe	Ser	Gly	
		Ser 65	Gly	Ser	Gly	Thr	Asp 70	Phe	Thr	Leu	Thr	Ile 75	Ser	Ser	Leu	Gln	Pro 80	
		Glu	Asp	Phe	Ala	Thr 85	Tyr	Tyr	Cys	Gln	Gln 90	Tyr	Tyr	Asn	Tyr	Pro 95	Phe	
		Thr	Phe	Gly	Pro 100	Gly	Thr	Thr	Val	Asp 105	Ile	Lys						
5	<210> 88 <211> 645 <212> ADN <213> secuencia artificial																	
10	<220> <223> Ab8 dirigido contra CD70-cadena VL <400> 88																	
	gacatccaga tgacccagtc tccatcctcc ctgtctgcat ctgtaggaga cagagtcacc atcacttgtc gggcgagtca gggcattagc aattatttag cctggtttca gcagaaacca 1 gggaaagccc ctaagtccct gatctatgct gcatccagtt tgcaaggtgg ggtcccatca aagttcagcg gcagtggatc tgggacagat ttcactctca ccatcagcag cctgcagcct 2 gaagattttg caacttatta ctgccaacaa tattataatt acccattcac tttcggccct 3 gggaccacag tggatatcaa acgtacggtg gctgcaccat ctgtcttcat cttcccgcca 1 tctgatgagc agttgaaatc tggaactgcc tctgttgtgt gcctgctgaa taacttctat 4 cccagagagg ccaaagtaca gtggaaggtg gataacgccc tccaatcggg taactcccag 4 gagagtgtca cagagcagga cagcaaggac agcacctaca gcctcagcag caccctgacg 5 ctgagcaaag cagactacga gaaacacaaa gtctacgcct gcgaagtcac ccatcagggc 6															60 120 180 240 300 360 420 480 540 600 645		
15	<210> 89 <211> 1 <212> P <213> so	17 RT	cia arti	ficial														
20	<220> <223> 1 <400> 8		gido c	ontra (CD70-	caden	a VH											

	Gl: 1	n Ile	e Gln	Leu	Val 5	Gln	Ser	Gly	Pro	Glu 10	Val	Lys	Lys	Pro	Gly 15	Glu	
	Th	r Val	. Lys	Ile 20	Ser	Cys	Lys	Ala	Ser 25	Gly	Tyr	Thr	Phe	Thr 30	Asn	Tyr	
	Gl _:	y Met	Asn 35	Trp	Val	Lys	Gln	Ala 40	Pro	Gly	Lys	Gly	Leu 45	Lys	Trp	Met	
	G1 _:	y Ile 50	a Asn	Thr	Tyr	Thr	Gly 55	Glu	Pro	Thr	Tyr	Ala 60	Asp	Ala	Phe	Lys	
	G1 ₅		, Phe	Ala	Phe	Ser 70	Leu	Glu	Thr	Ser	Ala 75	Ser	Thr	Ala	Tyr	Leu 80	
	Gl	n Ile	e Asn	Asn	Leu 85	Lys	Asn	Glu	Asp	Thr 90	Ala	Thr	Tyr	Phe	Cys 95	Ala	
	Arc	g Asp	Tyr	Gly 100	Asp	Tyr	Gly	Met	Asp 105	Tyr	Trp	Gly	Gln	Gly 110	Thr	Ser	
	Va	l Thi	Val	Ser	Ser												
5	<210> 90 <211> 411 <212> ADN <213> secuencia artificial																
10	<220> <223> 1F6 dirigido contra CD70-cadena VH																
10	<400> 90																
	atggett atceagt tgeaagg ggaaagg gatgeet eagatea gactatg	tgg for the ctt of the	tgcag ctggg taaag aggga acctc	tctg tata tgga cggt aaaa	g ac c ct t gg t tg a tg	ctga tcac gctg cctt agga	ggtg aaac gata ctct cacg	aag tat aac ttg gct	aagc ggaa acct gaaa acat	ctg tga aca cct att	gaga actg ctgg ctgc tctg	gaca ggtg agag cagc tgca	gt caa g cc a ac t ag a	aaga cagg acat gcct gact	tctc ctcc atgc attt	c a t g	60 120 180 240 300 360 411
15	<210> 91 <211> 112 <212> PRT <213> secue	ncia aı	tificial														
20	<220> <223> 1F6 di	irigido	contra	CD70-	caden	ıa VL											
	<400> 91																

		Asp 1	Ile	Val	Leu	Thr 5	Gln	Ser	Pro	Ala	Ser 10	Leu	Ala	Val	Ser	Leu 15	Gly	
		Gln	Arg	Ala	Thr 20	Ile	Ser	Cys	Arg	Ala 25	Ser	Lys	Ser	Val	Ser 30	Thr	Ser	
		Gly	Tyr	Ser 35	Phe	Met	His	Trp	Tyr 40	Gln	Gln	Lys	Pro	Gly 45	Gln	Pro	Pro	
		Lys	Leu 50	Leu	Ile	Tyr	Leu	Ala 55	Ser	Asn	Leu	Glu	Ser 60	Gly	Val	Pro	Ala	
		Arg 65	Phe	Ser	Gly	Ser	Gly 70	Ser	Gly	Thr	Asp	Phe 75	Thr	Leu	Asn	Ile	His 80	
		Pro	Val	Glu	Glu	Glu 85	Asp	Ala	Ala	Thr	Tyr 90	Tyr	Cys	Gln	His	Ser 95	Arg	
		Glu	Val	Pro	Trp 100	Thr	Phe	Gly	Gly	Gly 105	Thr	Lys	Leu	Glu	Ile 110	Lys	Arg	
5	<210> 93 <211> 33 <212> A <213> se	96 DN	cia art	ificial														
0	<213> secuencia artificial <220> <223> 1F6 dirigido contra CD70-cadena VL																	
· ·	<400> 92	2																
	atggagacag acacactect gttatgggta etgetgetet gggttecagg ttecaetggt gaeattgtge tgacacagte teetgettee ttagetgtat etetggggea gagggeeace ateteatgea gggeeagea aagtgteagt acatetgget atagttttat geaetggtat caacagaaac caggacagee acecaaacte eteatetate ttgeateeaa eetagaatet ggggteeetg ecaggtteag tggeagtggg tetgggacag aceteaecet caacateeat eetgtggag aggaggatge tgeaacetat taetgteage acagtaggga ggtteegtgg acgtteggtg gaggeaceaa getggaaate aaacgg															60 120 180 240 300 360 396		
5	<210> 93 <211> 40 <212> P <213> se	64 RT	cia art	ificial														
20	<220> <223> A	b4 diri	gido c	ontra	CD70-	V1 CA	AR											
	<400> 93	3																

Met 1	Ala	Leu	Pro	Val 5	Thr	Ala	Leu	Leu	Leu 10	Pro	Leu	Ala	Leu	Leu 15	Leu
His	Ala	Ala	Arg 20	Pro	Gln	Val	Gln	Leu 25	Val	Glu	Ser	Gly	Gly 30	Gly	Val
Val	Gln	Pro 35	Gly	Arg	Ser	Leu	Arg 40	Leu	Ser	Cys	Ala	Ala 45	Ser	Gly	Phe
Thr	Phe 50	Ser	Asn	Tyr	Gly	Ile 55	His	Trp	Val	Arg	Gln 60	Ala	Pro	Gly	Lys
Gly 65	Leu	Glu	Trp	Val	Ala 70	Val	Ile	Trp	Tyr	Asp 75	Gly	Ser	Asn	Lys	Tyr 80
Tyr	Ala	Asp	Ser	Val 85	Lys	Gly	Arg	Phe	Thr 90	Ile	Ser	Arg	Asp	Asn 95	Ser
Lys	Asn	Thr	Leu 100	Tyr	Leu	Gln	Met	Asn 105	Ser	Leu	Arg	Ala	Glu 110	Asp	Thr
Ala	Val	Tyr 115	Tyr	Cys	Ala	Arg	Asp 120	Gly	Gly	Tyr	Ser	Gly 125	Tyr	Asp	Ser
Gly	Phe 130	Asp	Tyr	Trp	Gly	Gln 135	Gly	Thr	Leu	Val	Thr 140	Val	Ser	Ser	Gly
Gly 145	Gly	Gly	Ser	Gly	Gly 150	Gly	Gly	Ser	Gly	Gly 155	Gly	Gly	Ser	Asp	Ile 160
Val	Met	Thr	Gln	Ser 165	Pro	Leu	Ser	Leu	Pro 170	Val	Thr	Pro	Gly	Glu 175	Pro
Ala	Ser	Ile	Ser 180	Cys	Arg	Ser	Ser	Gln 185	Ser	Leu	Leu	Asn	Ser 190	Asn	Gly
Tyr	Asn	Tyr 195	Leu	Asp	Trp	Tyr	Leu 200	Gln	Lys	Pro	Gly	Gln 205	Ser	Pro	Gln
Phe	Leu 210	Ile	Tyr	Leu	Gly	Ser 215	Tyr	Arg	Ala	Ser	Gly 220	Val	Pro	Asp	Arg
Phe 225	Ser	Gly	Ser	Gly	Ser 230	Gly	Thr	Asp	Phe	Thr 235	Leu	Arg	Ile	Ser	Arg 240

Val	Glu	Ala	Glu	Asp 245	Val	Gly	Val	Tyr	Tyr 250	Cys	Ile	Gln	Thr	Leu 255	Gln
Thr	Pro	Phe	Thr 260	Phe	Gly	Pro	Gly	Thr 265	Lys	Val	Asp	Ile	Lys 270	Gly	Leu
Ala	Val	Ser 275	Thr	Ile	Ser	Ser	Phe 280	Phe	Pro	Pro	Gly	Tyr 285	Gln	Ile	Tyr
Ile	Trp 290	Ala	Pro	Leu	Ala	Gly 295	Thr	Cys	Gly	Val	Leu 300	Leu	Leu	Ser	Leu
Val 305	Ile	Thr	Leu	Tyr	Cys 310	Lys	Arg	Gly	Arg	Lys 315	Lys	Leu	Leu	Tyr	Ile 320
Phe	Lys	Gln	Pro	Phe 325	Met	Arg	Pro	Val	Gln 330	Thr	Thr	Gln	Glu	Glu 335	Asp
Gly	Cys	Ser	Cys 340	Arg	Phe	Pro	Glu	Glu 345	Glu	Glu	Gly	Gly	Cys 350	Glu	Leu
Arg	Val	Lys 355	Phe	Ser	Arg	Ser	Ala 360	Asp	Ala	Pro	Ala	Tyr 365	Gln	Gln	Gly
Glr	Asn 370	Gln	Leu	Tyr	Asn	Glu 375	Leu	Asn	Leu	Gly	A rg 380	Arg	Glu	Glu	Tyr
Asp	Val	Leu	Asp	Lys	Arg 390	Arg	Gly	Arg	Asp	Pro 395	Glu	Met	Gly	Gly	Lys 400
Pro	Arg	Arg	Lys	Asn 405	Pro	Gln	Glu	Gly	Leu 410	Tyr	Asn	Glu	Leu	Gln 415	Lys
Asp	Lys	Met	Ala 420	Glu	Ala	Tyr	Ser	Glu 425	Ile	Gly	Met	Lys	Gly 430	Glu	Arg
Arg	Arg	Gly 435	Lys	Gly	His	Asp	Gly 440	Leu	Tyr	Gln	Gly	Leu 445	Ser	Thr	Ala
Thr	Lys 450	Asp	Thr	Tyr	Asp	Ala 455	Leu	His	Met	Gln	Ala 460	Leu	Pro	Pro	Arg
94															

<210> 94

<211> 493

<212> PRT

<213> secuencia artificial

<220>

<223> Ab4 dirigido contra CD70-V2 CAR

<400> 94

Met 1	Ala	Leu	Pro	Val 5	Thr	Ala	Leu	Leu	Leu 10	Pro	Leu	Ala	Leu	Leu 15	Leu
His	Ala	Ala	Arg 20	Pro	Gln	Val	Gln	Leu 25	Val	Glu	Ser	Gly	Gly 30	Gly	Val
Val	Gln	Pro 35	Gly	Arg	Ser	Leu	Arg 40	Leu	Ser	Cys	Ala	Ala 45	Ser	Gly	Phe
Thr	Phe 50	Ser	Asn	Tyr	Gly	Ile 55	His	Trp	Val	Arg	Gln 60	Ala	Pro	Gly	Lys
Gly 65	Leu	Glu	Trp	Val	Ala 70	Val	Ile	Trp	Tyr	Asp 75	Gly	Ser	Asn	Lys	Tyr 80
Tyr	Ala	Asp	Ser	Val 85	Lys	Gly	Arg	Phe	Thr 90	Ile	Ser	Arg	Asp	Asn 95	Ser
Lys	Asn	Thr	Leu 100	Tyr	Leu	Gln	Met	Asn 105	Ser	Leu	Arg	Ala	Glu 110	Asp	Thr
Ala	Val	Tyr 115	Tyr	Cys	Ala	Arg	Asp 120	Gly	Gly	Tyr	Ser	Gly 125	Tyr	Asp	Ser
Gly	Phe 130	Asp	Tyr	Trp	Gly	Gln 135	Gly	Thr	Leu	Val	Thr 140	Val	Ser	Ser	Gly
Gly 145	Gly	Gly	Ser	Gly	Gly 150	Gly	Gly	Ser	Gly	Gly 155	Gly	Gly	Ser	Asp	Ile 160
Val	Met	Thr	Gln	Ser 165	Pro	Leu	Ser	Leu	Pro 170	Val	Thr	Pro	Gly	Glu 175	Pro
Ala	Ser	Ile	Ser 180	Cys	Arg	Ser	Ser	Gln 185	Ser	Leu	Leu	Asn	Ser 190	Asn	Gly
		195				Tyr	200					205			
Phe	Leu 210	Ile	Tyr	Leu	Gly	Ser 215	Tyr	Arg	Ala	Ser	Gly 220	Val	Pro	Asp	Arg

Phe 225	Ser	Gly	Ser	Gly	Ser 230	Gly	Thr	Asp	Phe	Thr 235	Leu	Arg	Ile	Ser	Arg 240
Val	Glu	Ala	Glu	Asp 245	Val	Gly	Val	Tyr	Tyr 250	Cys	Ile	Gln	Thr	Leu 255	Gln
Thr	Pro	Phe	Thr 260	Phe	Gly	Pro	Gly	Thr 265	Lys	Val	Asp	Ile	Lys 270	Thr	Thr
Thr	Pro	Ala 275	Pro	Arg	Pro	Pro	Thr 280	Pro	Ala	Pro	Thr	Ile 285	Ala	Ser	Gln
Pro	Leu 290	Ser	Leu	Arg	Pro	Glu 295	Ala	Cys	Arg	Pro	Ala 300	Ala	Gly	Gly	Ala
Val 305	His	Thr	Arg	Gly	Leu 310	Asp	Phe	Ala	Cys	Asp 315	Ile	Tyr	Ile	Trp	Ala 320
Pro	Leu	Ala	Gly	Thr 325	Cys	Gly	Val	Leu	Leu 330	Leu	Ser	Leu	Val	Ile 335	Thr
Leu	Tyr	Cys	Lys 340	Arg	Gly	Arg	Lys	Lys 345	Leu	Leu	Tyr	Ile	Phe 350	Lys	Gln
Pro	Phe	Met 355	Arg	Pro	Val	Gln	Thr 360	Thr	Gln	Glu	Glu	Asp 365	Gly	Cys	Ser
Cys	Arg 370	Phe	Pro	Glu	Glu	Glu 375	Glu	Gly	Gly	Cys	Glu 380	Leu	Arg	Val	Lys
Phe 385	Ser	Arg	Ser	Ala	Asp 390	Ala	Pro	Ala	Tyr	Gln 395	Gln	Gly	Gln	Asn	Gln 400
Leu	Tyr	Asn	Glu	Leu 405	Asn	Leu	Gly	Arg	Arg 410	Glu	Glu	Tyr	Asp	Val 415	Leu
Asp	Lys	Arg	Arg 420	Gly	Arg	Asp	Pro	Glu 425	Met	Gly	Gly	Lys	Pro 430	Arg	Arg
Lys	Asn	Pro 435	Gln	Glu	Gly	Leu	Tyr 440	Asn	Glu	Leu	Gln	Lys 445	Asp	Lys	Met
Ala	Glu 450	Ala	Tyr	Ser	Glu	Ile 455	Gly	Met	Lys	Gly	Glu 460	Arg	Arg	Arg	Gly
Lys	Gly	His	Asp	Gly	Leu	Tyr	Gln	Gly	Leu	Ser	Thr	Ala	Thr	Lys	Asp

470 465 475 480 Thr Tyr Asp Ala Leu His Met Gln Ala Leu Pro Pro Arg 485 <210> 95 <211> 584 5 <212> PRT <213> secuencia artificial <220> <223> Ab4 dirigido contra CD70-V3 CAR 10 <400>95 Met Ala Leu Pro Val Thr Ala Leu Leu Pro Leu Ala Leu Leu Leu His Ala Ala Arg Pro Gln Val Gln Leu Val Glu Ser Gly Gly Val Val Gln Pro Gly Arg Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Thr Phe Ser Asn Tyr Gly Ile His Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp Val Ala Val Ile Trp Tyr Asp Gly Ser Asn Lys Tyr Tyr Ala Asp Ser Val Lys Gly Arg Phe Thr Ile Ser Arg Asp Asn Ser Lys Asn Thr Leu Tyr Leu Gln Met Asn Ser Leu Arg Ala Glu Asp Thr 100 105 Ala Val Tyr Tyr Cys Ala Arg Asp Gly Gly Tyr Ser Gly Tyr Asp Ser 120 Gly Phe Asp Tyr Trp Gly Gln Gly Thr Leu Val Thr Val Ser Ser Gly 135 Gly Gly Ser Gly Gly Gly Ser Gly Gly Gly Ser Asp Ile 145 150 155 Val Met Thr Gln Ser Pro Leu Ser Leu Pro Val Thr Pro Gly Glu Pro 175 165 170 Ala Ser Ile Ser Cys Arg Ser Ser Gln Ser Leu Leu Asn Ser Asn Gly 180 185

Tyr	Asn	Tyr 195	Leu	Asp	Trp	Tyr	Leu 200	Gln	Lys	Pro	Gly	Gln 205	Ser	Pro	Gln
Phe	Leu 210	Ile	Tyr	Leu	Gly	Ser 215	Tyr	Arg	Ala	Ser	Gly 220	Val	Pro	Asp	Arg
Phe 225	Ser	Gly	Ser	Gly	Ser 230	Gly	Thr	Asp	Phe	Thr 235	Leu	Arg	Ile	Ser	Arg 240
Val	Glu	Ala	Glu	Asp 245	Val	Gly	Val	Tyr	Tyr 250	Cys	Ile	Gln	Thr	Leu 255	Gln
Thr	Pro	Phe	Thr 260	Phe	Gly	Pro	Gly	Thr 265	Lys	Val	Asp	Ile	Lys 270	Glu	Pro
Lys	Ser	Pro 275	Asp	Lys	Thr	His	Thr 280	Cys	Pro	Pro	Cys	Pro 285	Ala	Pro	Pro
Val	Ala 290	Gly	Pro	Ser	Val	Phe 295	Leu	Phe	Pro	Pro	Lys 300	Pro	Lys	Asp	Thr
Leu 305	Met	Ile	Ala	Arg	Thr 310	Pro	Glu	Val	Thr	Cys 315	Val	Val	Val	Asp	Val 320
Ser	His	Glu	Asp	Pro 325	Glu	Val	Lys	Phe	Asn 330	Trp	Tyr	Val	Asp	Gly 335	Val
Glu	Val	His	Asn 340	Ala	Lys	Thr	Lys	Pro 345	Arg	Glu	Glu	Gln	Tyr 350	Asn	Ser
Thr	Tyr	Arg 355	Val	Val	Ser	Val	Leu 360	Thr	Val	Leu	His	Gln 365	Asp	Trp	Leu
Asn	Gly 370	Lys	Glu	Tyr	Lys	Cys 375	Lys	Val	Ser	Asn	Lys 380	Ala	Leu	Pro	Ala
Pro 385	Ile	Glu	Lys	Thr	Ile 390	Ser	Lys	Ala	Lys	Gly 395	Gln	Pro	Arg	Glu	Pro 400
Gln	Val	Tyr	Thr	Leu 405	Pro	Pro	Ser	Arg	Asp 410	Glu	Leu	Thr	Lys	Asn 415	Gln
Val	Ser	Leu	Thr 420	Cys	Leu	Val	Lys	Gly 425	Phe	Tyr	Pro	Ser	Asp 430	Ile	Ala
Val	Glu	Trp	Glu	Ser	Asn	Gly	Gln	Pro	Glu	Asn	Asn	Tyr	Lys	Thr	Thr

			435					440					445			
	Pro	Pro 450	Val	Leu	Asp	Ser	Asp 455	Gly	Ser	Phe	Phe	Leu 460	Tyr	Ser	Lys	Leu
	Thr 465	Val	Asp	Lys	Ser	Arg 470	Trp	Gln	Gln	Gly	Asn 475	Val	Phe	Ser	Cys	Ser 480
	Val	Met	His	Glu	Ala 485	Leu	His	Asn	His	Tyr 490	Thr	Gln	Lys	Ser	Leu 495	Ser
	Leu	Ser	Pro	Gly 500	Lys	Ile	Tyr	Ile	Trp 505	Ala	Pro	Leu	Ala	Gly 510	Thr	Cys
	Gly	Val	Leu 515	Leu	Leu	Ser	Leu	Val 520	Ile	Thr	Leu	Tyr	Cys 525	Lys	Arg	Gly
	Arg	Lys 530	Lys	Leu	Leu	Tyr	Ile 535	Phe	Lys	Gln	Pro	Phe 540	Met	Arg	Pro	Val
	Gln 545	Thr	Thr	Gln	Glu	Glu 550	Asp	Gly	Cys	Ser	Cys 555	Arg	Phe	Pro	Glu	Glu 560
	Glu	Glu	Gly	Gly	Cys 565	Glu	Leu	Arg	Val	Lys 570	Phe	Ser	Arg	Ser	Ala 575	Asp
	Ala	Pro	Ala	Tyr 580	Gln	Gln	Gly	Gln								
<210> 9 <211> 4 <212> F <213> s	59 PRT	cia art	ificial													
<220> <223> A	\b8 diri	gido c	ontra	CD70-	-V1 C <i>F</i>	AR.										
<400> 9	6															
	Met 1	Ala	Leu	Pro	Val 5	Thr	Ala	Leu	Leu	Leu 10	Pro	Leu	Ala	Leu	Leu 15	Leu
	His	Ala	Ala	Arg 20	Pro	Gln	Val	Gln	Leu 25	Val	Glu	Ser	Gly	Gly 30	Gly	Val
	Val	Gln	Pro 35	Gly	Arg	Ser	Leu	Arg 40	Leu	Ser	Cys	Ala	Ala 45	Ser	Gly	Phe
	Thr	Phe 50	Ser	Ser	Tyr	Gly	Met 55	His	Trp	Val	Arg	Gln 60	Ala	Pro	Gly	Lys

Gly 65	Leu	Glu	Trp	Val	Ala 70	Val	Ile	Trp	Tyr	Asp 75	Gly	Ser	Asp	Lys	Tyr 80
Phe	Ala	Asp	Ser	Val 85	Lys	Gly	Arg	Phe	Thr 90	Ile	Ser	Arg	Asp	Asn 95	Ser
Lys	Asn	Thr	Leu 100	Tyr	Leu	Gln	Met	Asn 105	Ser	Leu	Arg	Ala	Glu 110	Asp	Thr
Ala	Val	Tyr 115	Tyr	Cys	Ala	Arg	Asp 120	Gly	Ile	Ala	Gly	Ala 125	Arg	Tyr	Val
Tyr	Phe 130	Asp	Tyr	Trp	Gly	Gln 135	Gly	Thr	Leu	Val	Thr 140	Val	Ser	Ser	Gly
Gly 145	Gly	Gly	Ser	Gly	Gly 150	Gly	Gly	Ser	Gly	Gly 155	Gly	Gly	Ser	Asp	Ile 160
Gln	Met	Thr	Gln	Ser 165	Pro	Ser	Ser	Leu	Ser 170	Ala	Ser	Val	Gly	As p 175	Arg
Val	Thr	Ile	Thr 180	Cys	Arg	Ala	Ser	Gln 185	Gly	Ile	Ser	Asn	Tyr 190	Leu	Ala
Trp	Phe	Gln 195	Gln	Lys	Pro	Gly	Lys 200	Ala	Pro	Lys	Ser	Leu 205	Ile	Tyr	Ala
Ala	Ser 210	Ser	Leu	Gln	Gly	Gly 215	Val	Pro	Ser	Lys	Phe 220	Ser	Gly	Ser	Gly
Ser 225	Gly	Thr	Asp	Phe	Thr 230	Leu	Thr	Ile	Ser	Ser 235	Leu	Gln	Pro	Glu	Asp 240
Phe	Ala	Thr	Tyr	Tyr 245	Cys	Gln	Gln	Tyr	Tyr 250	Asn	Tyr	Pro	Phe	Thr 255	Phe
Gly	Pro	Gly	Thr 260	Thr	Val	Asp	Ile	Lys 265	Gly	Leu	Ala	Val	Ser 270	Thr	Ile
Ser	Ser	Phe 275	Phe	Pro	Pro	Gly	Tyr 280	Gln	Ile	Tyr	Ile	Trp 285	Ala	Pro	Leu
Ala	Gly 290	Thr	Cys	Gly	Val	Leu 295	Leu	Leu	Ser	Leu	Val 300	Ile	Thr	Leu	Tyr
C176	T.370	Δra	G1 17	Δra	Tare	T.370	Len	T.611	Фттх	Tle	Dhe	Tare	Gln	Dro	Dho

	305					310					315					320
	Met	Arg	Pro	Val	Gln 325	Thr	Thr	Gln	Glu	Glu 330	Asp	Gly	Cys	Ser	Cys 335	Arc
	Phe	Pro	Glu	Glu 340	Glu	Glu	Gly	Gly	Cys 345	Glu	Leu	Arg	Val	Lys 350	Phe	Ser
	Arg	Ser	Ala 355	Asp	Ala	Pro	Ala	Tyr 360	Gln	Gln	Gly	Gln	Asn 365	Gln	Leu	Туг
	Asn	Glu 370	Leu	Asn	Leu	Gly	Arg 375	Arg	Glu	Glu	Tyr	Asp 380	Val	Leu	Asp	Lys
	Arg 385	Arg	Gly	Arg	Asp	Pro 390	Glu	Met	Gly	Gly	Lys 395	Pro	Arg	Arg	Lys	Asr 400
	Pro	Gln	Glu	Gly	Leu 405	Tyr	Asn	Glu	Leu	Gln 410	Lys	Asp	Lys	Met	Ala 415	Glu
	Ala	Tyr	Ser	Glu 420	Ile	Gly	Met	Lys	Gly 425	Glu	Arg	Arg	Arg	Gly 430	Lys	Gly
	His	Asp	Gly 435	Leu	Tyr	Gln	Gly	Leu 440	Ser	Thr	Ala	Thr	Lys 445	Asp	Thr	Туг
	Asp	Ala 450	Leu	His	Met	Gln	Ala 455	Leu	Pro	Pro	Arg					
<210> 97 <211> 48 <212> PI <213> se	38 RT	cia art	ificial													
<220> <223> Al	b8 diri	gido c	ontra	CD70-	-V2 C/	AR										
<400> 97	7															
	Met 1	Ala	Leu	Pro	Val 5	Thr	Ala	Leu	Leu	Leu 10	Pro	Leu	Ala	Leu	Leu 15	Leu
	His	Ala	Ala	Arg 20	Pro	Gln	Val	Gln	Leu 25	Val	Glu	Ser	Gly	Gly 30	Gly	Val
	Val	Gln	Pro 35	Gly	Arg	Ser	Leu	Arg 40	Leu	Ser	Cys	Ala	Ala 45	Ser	Gly	Phe
	Thr	Phe 50	Ser	Ser	Tyr	Gly	Met 55	His	Trp	Val	Arg	Gln 60	Ala	Pro	Gly	Lys

Gly Leu Glu 65	Trp Val	Ala Val	Ile	Trp	Tyr	Asp 75	Gly	Ser	Asp	Lys	Tyr 80
Phe Ala Asp	Ser Val 85	Lys Gly	Arg	Phe	Thr 90	Ile	Ser	Arg	Asp	Asn 95	Ser
Lys Asn Thr	Leu Tyr 100	Leu Gln	Met	Asn 105	Ser	Leu	Arg	Ala	Glu 110	Asp	Thr
Ala Val Tyr 115	Tyr Cys	Ala Arg	Asp 120	Gly	Ile	Ala	Gly	Ala 125	Arg	Tyr	Val
Tyr Phe Asp	Tyr Trp	Gly Gln 135		Thr	Leu	Val	Thr 140	Val	Ser	Ser	Gly
Gly Gly Gly 145	Ser Gly	Gly Gly 150	Gly	Ser	Gly	Gly 155	Gly	Gly	Ser	Asp	Ile 160
Gln Met Thr	Gln Ser 165	Pro Ser	Ser	Leu	Ser 170	Ala	Ser	Val	Gly	Asp 175	Arg
Val Thr Ile	Thr Cys	Arg Ala	Ser	Gln 185	Gly	Ile	Ser	Asn	Tyr 190	Leu	Ala
Trp Phe Gln 195	Gln Lys	Pro Gly	Lys 200	Ala	Pro	Lys	Ser	Leu 205	Ile	Tyr	Ala
Ala Ser Ser 210	Leu Gln	Gly Gly 215		Pro	Ser	Lys	Phe 220	Ser	Gly	Ser	Gly
Ser Gly Thr 225	Asp Phe	Thr Leu 230	Thr	Ile	Ser	Ser 235	Leu	Gln	Pro	Glu	Asp 240
Phe Ala Thr	Tyr Tyr 245	Cys Gln	Gln	Tyr	Tyr 250	Asn	Tyr	Pro	Phe	Thr 255	Phe
Gly Pro Gly	Thr Thr 260	Val Asp) Ile	Lys 265	Thr	Thr	Thr	Pro	Ala 270	Pro	Arg
Pro Pro Thr 275	Pro Ala	Pro Thr	: Ile 280	Ala	Ser	Gln	Pro	Leu 285	Ser	Leu	Arg
Pro Glu Ala 290	Cys Arg	Pro Ala 295		Gly	Gly	Ala	Val 300	His	Thr	Arg	Gly
Leu Asp Phe	Ala Cys	Asp Ile	. Tyr	Ile	Trp	Ala	Pro	Leu	Ala	Gly	Thr

	305					310					315					320
	Cys	Gly	Val	Leu	Leu 325	Leu	Ser	Leu	Val	Ile 330	Thr	Leu	Tyr	Cys	Lys 335	Arg
	Gly	Arg	Lys	Lys 340	Leu	Leu	Tyr	Ile	Phe 345	Lys	Gln	Pro	Phe	Met 350	Arg	Pro
	Val	Gln	Thr 355	Thr	Gln	Glu	Glu	Asp 360	Gly	Cys	Ser	Cys	Arg 365	Phe	Pro	Glu
	Glu	Glu 370	Glu	Gly	Gly	Cys	Glu 375	Leu	Arg	Val	Lys	Phe 380	Ser	Arg	Ser	Ala
	Asp 385		Pro	Ala	Tyr	Gln 390	Gln	Gly	Gln	Asn	Gln 395	Leu	Tyr	Asn	Glu	Leu 400
	Asn	Leu	Gly	Arg	Arg 405	Glu	Glu	Tyr	Asp	Val 410	Leu	Asp	Lys	Arg	Arg 415	Gly
	Arg	Asp	Pro	Glu 420	Met	Gly	Gly	Lys	Pro 425	Arg	Arg	Lys	Asn	Pro 430	Gln	Glu
	Gly	Leu	Tyr 435	Asn	Glu	Leu	Gln	Lys 440	Asp	Lys	Met	Ala	Glu 445	Ala	Tyr	Ser
	Glu	Ile 450	Gly	Met	Lys	Gly	Glu 455	Arg	Arg	Arg	Gly	Lys 460	Gly	His	Asp	Gly
		Tyr		Gly						Lys	_		_	_		Leu 480
	His	Met	Gln	Ala	Leu 485	Pro	Pro	Arg								
<210> 9 <211> 6 <212> P <213> s	74 PRT	cia arti	ificial													
<220> <223> A	.b8 diri	gido c	ontra	CD70-	V3 CA	AR										
<400> 9	8															
	Met 1	Ala	Leu	Pro	Val 5	Thr	Ala	Leu	Leu	Leu 10	Pro	Leu	Ala	Leu	Leu 15	Leu
	His	Ala	Ala	Arg 20	Pro	Gln	Val	Gln	Leu 25	Val	Glu	Ser	Gly	Gly 30	Gly	Val

Val	Gln	Pro 35	Gly	Arg	Ser	Leu	Arg 40	Leu	Ser	Cys	Ala	Ala 45	Ser	Gly	Phe
Thr	Phe 50	Ser	Ser	Tyr	Gly	Met 55	His	Trp	Val	Arg	Gln 60	Ala	Pro	Gly	Lys
Gly 65	Leu	Glu	Trp	Val	Ala 70	Val	Ile	Trp	Tyr	Asp 75	Gly	Ser	Asp	Lys	Tyr 80
Phe	Ala	Asp	Ser	Val 85	Lys	Gly	Arg	Phe	Thr 90	Ile	Ser	Arg	Asp	Asn 95	Ser
Lys	Asn	Thr	Leu 100	Tyr	Leu	Gln	Met	Asn 105	Ser	Leu	Arg	Ala	Glu 110	Asp	Thr
Ala	Val	Tyr 115	Tyr	Cys	Ala	Arg	Asp 120	Gly	Ile	Ala	Gly	Ala 125	Arg	Tyr	Val
Tyr	Phe 130	Asp	Tyr	Trp	Gly	Gln 135	Gly	Thr	Leu	Val	Thr 140	Val	Ser	Ser	Gly
Gly 145	Gly	Gly	Ser	Gly	Gly 150	Gly	Gly	Ser	Gly	Gly 155	Gly	Gly	Ser	Asp	Ile 160
Gln	Met	Thr	Gln	Ser 165	Pro	Ser	Ser	Leu	Ser 170	Ala	Ser	Val	Gly	Asp 175	Arg
Val	Thr	Ile	Thr 180	Cys	Arg	Ala	Ser	Gln 185	Gly	Ile	Ser	Asn	Tyr 190	Leu	Ala
Trp	Phe	Gln 195	Gln	Lys	Pro	Gly	Lys 200	Ala	Pro	Lys	Ser	Leu 205	Ile	Tyr	Ala
Ala	Ser 210	Ser	Leu	Gln	Gly	Gly 215	Val	Pro	Ser	Lys	Phe 220	Ser	Gly	Ser	Gly
Ser 225	Gly	Thr	Asp	Phe	Thr 230	Leu	Thr	Ile	Ser	Ser 235	Leu	Gln	Pro	Glu	Asp 240
Phe	Ala	Thr	Tyr	Tyr 245	Cys	Gln	Gln	Tyr	Tyr 250	Asn	Tyr	Pro	Phe	Thr 255	Phe
Gly	Pro	Gly	Thr 260	Thr	Val	Asp	Ile	Lys 265	Glu	Pro	Lys	Ser	Pro 270	Asp	Lys

Thr His Thr Cys Pro Pro Cys Pro Ala Pro Pro Val Ala Gly Pro Ser

		275					280					285			
Val	Phe 290	Leu	Phe	Pro	Pro	Lys 295	Pro	Lys	Asp	Thr	Leu 300	Met	Ile	Ala	Arg
Thr 305	Pro	Glu	Val	Thr	Cys 310	Val	Val	Val	Asp	Val 315	Ser	His	Glu	Asp	Pro 320
Glu	Val	Lys	Phe	Asn 325	Trp	Tyr	Val	Asp	Gly 330	Val	Glu	Val	His	Asn 335	Ala
Lys	Thr	Lys	Pro 340	Arg	Glu	Glu	Gln	Tyr 345	Asn	Ser	Thr	Tyr	Arg 350	Val	Val
Ser	Val	Leu 355	Thr	Val	Leu	His	Gln 360	Asp	Trp	Leu	Asn	Gly 365	Lys	Glu	Tyr
Lys	Cys 370	Lys	Val	Ser	Asn	Lys 375	Ala	Leu	Pro	Ala	Pro 380	Ile	Glu	Lys	Thr
Ile 385	Ser	Lys	Ala	Lys	Gly 390	Gln	Pro	Arg	Glu	Pro 395	Gln	Val	Tyr	Thr	Leu 400
Pro	Pro	Ser	Arg	Asp 405	Glu	Leu	Thr	Lys	Asn 410	Gln	Val	Ser	Leu	Thr 415	Cys
Leu	Val	Lys	Gly 420	Phe	Tyr	Pro	Ser	Asp 425	Ile	Ala	Val	Glu	Trp 430	Glu	Ser
Asn	Gly	Gln 435	Pro	Glu	Asn	Asn	Tyr 440	Lys	Thr	Thr	Pro	Pro 445	Val	Leu	Asp
Ser	Asp 450	Gly	Ser	Phe	Phe	Leu 455	Tyr	Ser	Lys	Leu	Thr 460	Val	Asp	Lys	Ser
Arg 465	Trp	Gln	Gln	Gly	Asn 470	Val	Phe	Ser	Cys	Ser 475	Val	Met	His	Glu	Ala 480
Leu	His	Asn	His	Tyr 485	Thr	Gln	Lys	Ser	Leu 490	Ser	Leu	Ser	Pro	Gly 495	Lys
Ile	Tyr	Ile	Trp 500	Ala	Pro	Leu	Ala	Gly 505	Thr	Cys	Gly	Val	Leu 510	Leu	Leu
Ser	Leu	Val 515	Ile	Thr	Leu	Tyr	Cys 520	Lys	Arg	Gly	Arg	Lys 525	Lys	Leu	Leu

	Tyr	Ile 530	Phe	Lys	Gln	Pro	Phe 535	Met	Arg	Pro	Val	Gln 540	Thr	Thr	Gln	Glu
	Glu 5 4 5	Asp	Gly	Cys	Ser	Cys 550	Arg	Phe	Pro	Glu	Glu 555	Glu	Glu	Gly	Gly	Cys 560
	Glu	Leu	Arg	Val	Lys 565	Phe	Ser	Arg	Ser	A la 570	Asp	Ala	Pro	Ala	Tyr 575	Gln
	Gln	Gly	Gln	Asn 580	Gln	Leu	Tyr	Asn	Glu 585	Leu	Asn	Leu	Gly	Arg 590	Arg	Glu
	Glu	Tyr	Asp 595	Val	Leu	Asp	Lys	Arg 600	Arg	Gly	Arg	Asp	Pro 605	Glu	Met	Gly
	Gly	Lys 610	Pro	Arg	Arg	Lys	Asn 615	Pro	Gln	Glu	Gly	Leu 620	Tyr	Asn	Glu	Leu
	Gln 625	Lys	Asp	Lys	Met	Ala 630	Glu	Ala	Tyr	Ser	Glu 635	Ile	Gly	Met	Lys	Gly 640
	Glu	Arg	Arg	Arg	Gly 645	Lys	Gly	His	Asp	Gly 650	Leu	Tyr	Gln	Gly	Leu 655	Ser
	Thr	Ala	Thr	Lys 660	Asp	Thr	Tyr	Asp	Ala 665	Leu	His	Met	Gln	Ala 670	Leu	Pro
	Pro	Arg														
<210> 9 <211> 4 <212> F <213> s	59 PRT	cia art	ificial													
<220> <223> 1	F6 diri	igido c	ontra	CD70	-V1 C/	AR										
<400> 9	9															
	Met 1	Ala	Leu	Pro	Val 5	Thr	Ala	Leu	Leu	Leu 10	Pro	Leu	Ala	Leu	Leu 15	Leu
	His	Ala	Ala	Arg 20	Pro	Gln	Ile	Gln	Leu 25	Val	Gln	Ser	Gly	Pro 30	Glu	Val
	Lys	Lys	Pro 35	Gly	Glu	Thr	Val	Lys 40	Ile	Ser	Cys	Lys	Ala 45	Ser	Gly	Tyr
	Thr	Phe	Thr	Asn	Tyr	Gly	Met	Asn	Trp	Val	Lys	Gln	Ala	Pro	Gly	Lys

	50					55					60				
Gly 65	Leu	Lys	Trp	Met	Gly 70	Ile	Asn	Thr	Tyr	Thr 75	Gly	Glu	Pro	Thr	Tyr 80
Ala	Asp	Ala	Phe	Lys 85	Gly	Arg	Phe	Ala	Phe 90	Ser	Leu	Glu	Thr	Ser 95	Ala
Ser	Thr	Ala	Tyr 100	Leu	Gln	Ile	Asn	Asn 105	Leu	Lys	Asn	Glu	Asp 110	Thr	Ala
Thr	Tyr	Phe 115	Cys	Ala	Arg	Asp	Tyr 120	Gly	Asp	Tyr	Gly	Met 125	Asp	Tyr	Trp
Gly	Gln 130	Gly	Thr	Ser	Val	Thr 135	Val	Ser	Ser	Gly	Gly 140	Gly	Gly	Ser	Gly
Gly 145	Gly	Gly	Ser	Gly	Gly 150	Gly	Gly	Ser	Asp	Ile 155	Val	Leu	Thr	Gln	Ser 160
Pro	Ala	Ser	Leu	Ala 165	Val	Ser	Leu	Gly	Gln 170	Arg	Ala	Thr	Ile	Ser 175	Cys
Arg	Ala	Ser	Lys 180	Ser	Val	Ser	Thr	Ser 185	Gly	Tyr	Ser	Phe	Met 190	His	Trp
Tyr	Gln	Gln 195	Lys	Pro	Gly	Gln	Pro 200	Pro	Lys	Leu	Leu	Ile 205	Tyr	Leu	Ala
Ser	Asn 210	Leu	Glu	Ser	Gly	Val 215	Pro	Ala	Arg	Phe	Ser 220	Gly	Ser	Gly	Ser
Gly 225	Thr	Asp	Phe	Thr	Leu 230	Asn	Ile	His	Pro	Val 235	Glu	Glu	Glu	Asp	Ala 240
Ala	Thr	Tyr	Tyr	Cys 245	Gln	His	Ser	Arg	Glu 250	Val	Pro	Trp	Thr	Phe 255	Gly
Gly	Gly	Thr	Lys 260	Leu	Glu	Ile	Lys	Arg 265	Gly	Leu	Ala	Val	Ser 270	Thr	Ile
Ser	Ser	Phe 275	Phe	Pro	Pro	Gly	Tyr 280	Gln	Ile	Tyr	Ile	Trp 285	Ala	Pro	Leu
Ala	Gly 290	Thr	Cys	Gly	Val	Leu 295	Leu	Leu	Ser	Leu	Val 300	Ile	Thr	Leu	Tyr

	Cys 305	Lys	Arg	Gly	Arg	Lys 310	Lys	Leu	Leu	Tyr	Ile 315	Phe	Lys	Gln	Pro	Phe 320
	Met	Arg	Pro	Val	Gln 325	Thr	Thr	Gln	Glu	Glu 330	Asp	Gly	Cys	Ser	Cys 335	Arg
	Phe	Pro	Glu	Glu 340	Glu	Glu	Gly	Gly	Cys 345	Glu	Leu	Arg	Val	Lys 350	Phe	Ser
	Arg	Ser	Ala 355	Asp	Ala	Pro	Ala	Tyr 360	Gln	Gln	Gly	Gln	Asn 365	Gln	Leu	Tyr
	Asn	Glu 370	Leu	Asn	Leu	Gly	A rg 375	Arg	Glu	Glu	Tyr	Asp 380	Val	Leu	Asp	Lys
	Arg 385	Arg	Gly	Arg	Asp	Pro 390	Glu	Met	Gly	Gly	Lys 395	Pro	Arg	Arg	Lys	Asn 400
	Pro	Gln	Glu	Gly	Leu 405	Tyr	Asn	Glu	Leu	Gln 410	Lys	Asp	Lys	Met	Ala 415	Glu
	Ala	Tyr	Ser	Glu 420	Ile	Gly	Met	Lys	Gly 425	Glu	Arg	Arg	Arg	Gly 430	Lys	Gly
	His	Asp	Gly 435	Leu	Tyr	Gln	Gly	Leu 440	Ser	Thr	Ala	Thr	Lys 445	Asp	Thr	Tyr
	Asp	Ala 450	Leu	His	Met	Gln	Ala 455	Leu	Pro	Pro	Arg					
<210> 1 <211> 4 <212> F <213> s	I88 PRT	cia art	ificial													
<220> <223> 1	F6 dir	igido d	ontra	CD70-	-V2 C/	4R										
<400> 1	00															
	Met 1	Ala	Leu	Pro	Val 5	Thr	Ala	Leu	Leu	Leu 10	Pro	Leu	Ala	Leu	Leu 15	Leu
	His	Ala	Ala	Arg 20	Pro	Gln	Ile	Gln	Leu 25	Val	Gln	Ser	Gly	Pro 30	Glu	Val
	Lys	Lys	Pro 35	Gly	Glu	Thr	Val	Lys 40	Ile	Ser	Cys	Lys	Ala 45	Ser	Gly	Tyr
	Thr	Phe	Thr	Asn	Tyr	Gly	Met	Asn	Trp	Val	Lys	Gln	Ala	Pro	Gly	Lys

	50					55					60				
Gly 65	Leu	Lys	Trp	Met	Gly 70	Ile	Asn	Thr	Tyr	Thr 75	Gly	Glu	Pro	Thr	Tyr 80
Ala	Asp	Ala	Phe	Lys 85	Gly	Arg	Phe	Ala	Phe 90	Ser	Leu	Glu	Thr	Ser 95	Ala
Ser	Thr	Ala	Tyr 100	Leu	Gln	Ile	Asn	Asn 105	Leu	Lys	Asn	Glu	Asp 110	Thr	Ala
Thr	Tyr	Phe 115	Cys	Ala	Arg	Asp	Tyr 120	Gly	Asp	Tyr	Gly	Met 125	Asp	Tyr	Trp
Gly	Gln 130	Gly	Thr	Ser	Val	Thr 135	Val	Ser	Ser	Gly	Gly 140	Gly	Gly	Ser	Gly
Gly 145	Gly	Gly	Ser	Gly	Gly 150	Gly	Gly	Ser	Asp	Ile 155	Val	Leu	Thr	Gln	Ser 160
Pro	Ala	Ser	Leu	Ala 165	Val	Ser	Leu	Gly	Gln 170	Arg	Ala	Thr	Ile	Ser 175	Cys
Arg	Ala	Ser	Lys 180	Ser	Val	Ser	Thr	Ser 185	Gly	Tyr	Ser	Phe	Met 190	His	Trp
Tyr	Gln	Gln 195	Lys	Pro	Gly	Gln	Pro 200	Pro	Lys	Leu	Leu	Ile 205	Tyr	Leu	Ala
Ser	Asn 210	Leu	Glu	Ser	Gly	Val 215	Pro	Ala	Arg	Phe	Ser 220	Gly	Ser	Gly	Ser
Gly 225	Thr	Asp	Phe	Thr	Leu 230	Asn	Ile	His	Pro	Val 235	Glu	Glu	Glu	Asp	Ala 240
Ala	Thr	Tyr	Tyr	Cys 245	Gln	His	Ser	Arg	Glu 250	Val	Pro	Trp	Thr	Phe 255	Gly
Gly	Gly	Thr	Lys 260	Leu	Glu	Ile	Lys	Arg 265	Thr	Thr	Thr	Pro	Ala 270	Pro	Arg
Pro	Pro	Thr 275	Pro	Ala	Pro	Thr	Ile 280	Ala	Ser	Gln	Pro	Leu 285	Ser	Leu	Arg
Pro	Glu 290	Ala	Cys	Arg	Pro	Ala 295	Ala	Gly	Gly	Ala	Val 300	His	Thr	Arg	Gly

	Leu 305	Asp	Phe	Ala	Cys	Asp 310	Ile	Tyr	Ile	Trp	Ala 315	Pro	Leu	Ala	Gly	Thr 320
	Cys	Gly	Val	Leu	Leu 325	Leu	Ser	Leu	Val	Ile 330	Thr	Leu	Tyr	Cys	Lys 335	Arg
	Gly	Arg	Lys	Lys 340	Leu	Leu	Tyr	Ile	Phe 345	Lys	Gln	Pro	Phe	Met 350	Arg	Pro
	Val	Gln	Thr 355	Thr	Gln	Glu	Glu	Asp 360	Gly	Cys	Ser	Cys	Arg 365	Phe	Pro	Glu
	Glu	Glu 370	Glu	Gly	Gly	Cys	Glu 375	Leu	Arg	Val	Lys	Phe 380	Ser	Arg	Ser	Ala
	Asp 385	Ala	Pro	Ala	Tyr	Gln 390	Gln	Gly	Gln	Asn	Gln 395	Leu	Tyr	Asn	Glu	Leu 400
	Asn	Leu	Gly	Arg	Arg 405	Glu	Glu	Tyr	Asp	Val 410	Leu	Asp	Lys	Arg	Arg 415	Gly
	Arg	Asp	Pro	Glu 420	Met	Gly	Gly	Lys	Pro 425	Arg	Arg	Lys	Asn	Pro 430	Gln	Glu
	Gly	Leu	Tyr 435	Asn	Glu	Leu	Gln	Lys 440	Asp	Lys	Met	Ala	Glu 445	Ala	Tyr	Ser
	Glu	Ile 450	Gly	Met	Lys	Gly	Glu 455	Arg	Arg	Arg	Gly	Lys 460	Gly	His	Asp	Gly
	Leu 465	Tyr	Gln	Gly	Leu	Ser 470	Thr	Ala	Thr	Lys	Asp 475	Thr	Tyr	Asp	Ala	Leu 480
	His	Met	Gln	Ala	Leu 485	Pro	Pro	Arg								
<210> 1 <211> 6 <212> F <213> s	74 PRT	cia art	ificial													
<220> <223> 1	F6 diri	gido c	ontra	CD70-	-V3 C <i>F</i>	A R										
<400> 1	01															
	Met 1	Ala	Leu	Pro	Val 5	Thr	Ala	Leu	Leu	Leu 10	Pro	Leu	Ala	Leu	Leu 15	Leu

His Ala Ala Arg Pro Gln Ile Gln Leu Val Gln Ser Gly Pro Glu Val

5

			20					25					30		
Lys	Lys	Pro 35	Gly	Glu	Thr	Val	Lys 40	Ile	Ser	Cys	Lys	Ala 45	Ser	Gly	Tyr
Thr	Phe 50	Thr	Asn	Tyr	Gly	Met 55	Asn	Trp	Val	Lys	Gln 60	Ala	Pro	Gly	Lys
Gly 65	Leu	Lys	Trp	Met	Gly 70	Ile	Asn	Thr	Tyr	Thr 75	Gly	Glu	Pro	Thr	Tyr 80
Ala	Asp	Ala	Phe	Lys 85	Gly	Arg	Phe	Ala	Phe 90	Ser	Leu	Glu	Thr	Ser 95	Ala
Ser	Thr	Ala	Tyr 100	Leu	Gln	Ile	Asn	Asn 105	Leu	Lys	Asn	Glu	Asp 110	Thr	Ala
Thr	Tyr	Phe 115	Cys	Ala	Arg	Asp	Tyr 120	Gly	Asp	Tyr	Gly	Met 125	Asp	Tyr	Trp
Gly	Gln 130	Gly	Thr	Ser	Val	Thr 135	Val	Ser	Ser	Gly	Gly 140	Gly	Gly	Ser	Gly
Gly 145	Gly	Gly	Ser	Gly	Gly 150	Gly	Gly	Ser	Asp	Ile 155	Val	Leu	Thr	Gln	Ser 160
Pro	Ala	Ser	Leu	Ala 165	Val	Ser	Leu	Gly	Gln 170	Arg	Ala	Thr	Ile	Ser 175	Cys
Arg	Ala	Ser	Lys 180	Ser	Val	Ser		Ser 185	_	Tyr	Ser	Phe	Met 190	His	Trp
Tyr	Gln	Gln 195	Lys	Pro	Gly	Gln	Pro 200	Pro	Lys	Leu	Leu	Ile 205	Tyr	Leu	Ala
Ser	Asn 210	Leu	Glu	Ser	Gly	Val 215	Pro	Ala	Arg	Phe	Ser 220	Gly	Ser	Gly	Ser
Gly 225	Thr	Asp	Phe	Thr	Leu 230	Asn	Ile	His	Pro	Val 235	Glu	Glu	Glu	Asp	Ala 240
Ala	Thr	Tyr	Tyr	Cys 245	Gln	His	Ser	Arg	Glu 250	Val	Pro	Trp	Thr	Phe 255	Gly
Gly	Gly	Thr	Lys 260	Leu	Glu	Ile	Lys	Arg 265	Glu	Pro	Lys	Ser	Pro 270	Asp	Lys

Thr	His	Thr 275	Cys	Pro	Pro	Cys	Pro 280	Ala	Pro	Pro	Val	Ala 285	Gly	Pro	Ser
Val	Phe 290	Leu	Phe	Pro	Pro	Lys 295	Pro	Lys	Asp	Thr	Leu 300	Met	Ile	Ala	Arg
Thr 305	Pro	Glu	Val	Thr	Cys 310	Val	Val	Val	Asp	Val 315	Ser	His	Glu	Asp	Pro 320
Glu	Val	Lys	Phe	Asn 325	Trp	Tyr	Val	Asp	Gly 330	Val	Glu	Val	His	As n 335	Ala
Lys	Thr	Lys	Pro 340	Arg	Glu	Glu	Gln	Tyr 345	Asn	Ser	Thr	Tyr	Arg 350	Val	Val
Ser	Val	Leu 355	Thr	Val	Leu	His	Gln 360	Asp	Trp	Leu	Asn	Gly 365	Lys	Glu	Tyr
Lys	Cys 370	Lys	Val	Ser	Asn	Lys 375	Ala	Leu	Pro	Ala	Pro 380	Ile	Glu	Lys	Thr
Ile 385	Ser	Lys	Ala	Lys	Gly 390	Gln	Pro	Arg	Glu	Pro 395	Gln	Val	Tyr	Thr	Leu 400
Pro	Pro	Ser	Arg	Asp 405	Glu	Leu	Thr	Lys	Asn 410	Gln	Val	Ser	Leu	Thr 415	Cys
Leu	Val	Lys	Gly 420	Phe	Tyr	Pro	Ser	Asp 425	Ile	Ala	Val	Glu	Trp 430	Glu	Ser
Asn	Gly	Gln 435	Pro	Glu	Asn	Asn	Tyr 440	Lys	Thr	Thr	Pro	Pro 445	Val	Leu	Asp
Ser	Asp 450	Gly	Ser	Phe	Phe	Leu 455	Tyr	Ser	Lys	Leu	Thr 460	Val	Asp	Lys	Ser
Arg 465	Trp	Gln	Gln	Gly	Asn 470	Val	Phe	Ser	Cys	Ser 475	Val	Met	His	Glu	Ala 480
Leu	His	Asn	His	Tyr 485	Thr	Gln	Lys	Ser	Leu 490	Ser	Leu	Ser	Pro	Gly 495	Lys
Ile	Tyr	Ile	Trp 500	Ala	Pro	Leu	Ala	Gly 505	Thr	Cys	Gly	Val	Leu 510	Leu	Leu
Ser	Leu	Val 515	Ile	Thr	Leu	Tyr	Cys 520	Lys	Arg	Gly	Arg	Lys 525	Lys	Leu	Leu

Tyr	530	Phe	Lys	GIn	Pro	9he 535	Met	Arg	Pro	Val	G1n 540	Thr	Thr	GIn	GLu
Glu 545	Asp	Gly	Cys	Ser	Cys 550	Arg	Phe	Pro	Glu	Glu 555	Glu	Glu	Gly	Gly	Cys 560
Glu	Leu	Arg	Val	Lys 565	Phe	Ser	Arg	Ser	A la 570	Asp	Ala	Pro	Ala	Tyr 575	Gln
Gln	Gly	Gln	Asn 580	Gln	Leu	Tyr	Asn	Glu 585	Leu	Asn	Leu	Gly	Arg 590	Arg	Glu
Glu	Tyr	Asp 595	Val	Leu	Asp	Lys	Arg 600	Arg	Gly	Arg	Asp	Pro 605	Glu	Met	Gly
Gly	Lys 610	Pro	Arg	Arg	Lys	Asn 615	Pro	Gln	Glu	Gly	Leu 620	Tyr	Asn	Glu	Leu
Gln 625	Lys	Asp	Lys	Met	Ala 630	Glu	Ala	Tyr	Ser	Glu 635	Ile	Gly	Met	Lys	Gly 640
Glu	Arg	Arg	Arg	Gly 645	Lys	Gly	His	Asp	Gly 650	Leu	Tyr	Gln	Gly	Leu 655	Ser
Thr	Ala	Thr	Lys 660	Asp	Thr	Tyr	Asp	Ala 665	Leu	His	Met	Gln	Ala 670	Leu	Pro

Pro Arg

REIVINDICACIONES

1. Un método ex vivo para preparar linfocitos T para inmunoterapia contra células patológicas que comprende la etapa de:

5

15

30

- (a) Inactivar genéticamente un gen en un linfocito T, que está implicado en la expresión o presentación de un marcador antigénico, estando presente dicho marcador antigénico sobre la superficie de dicho linfocito T y la célula patológica;
- 10 (b) Expresar en dicho linfocitos T un transgén que codifica un receptor de antígeno quimérico dirigido contra dicho marcador antigénico presente en la superficie de dicha célula patológica.
 - 2. El método de acuerdo con la reivindicación 1, en el que la etapa a) se lleva a cabo utilizando una nucleasa de corte raro.
 - 3. El método de acuerdo con la reivindicación 2, en el que dicha endonucleasa se expresa a partir de ARNm transfectado.
- 4. El método de acuerdo una cualquiera de las reivindicaciones 1 a 3, en el que dicho método incluye una etapa adicional de inactivar un gen que codifica un componente del receptor de linfocitos T (TCR).
 - 5. El método de acuerdo una cualquiera de las reivindicaciones 1 a 3, en el que dicho método incluye una etapa adicional de inactivar un gen que codifica un componente de HLA.
- 25 6. El método de acuerdo una cualquiera de las reivindicaciones 1 a 3, en el que dicho método incluye una etapa adicional de inactivar un gen que codifica β2m.
 - 7. El método de acuerdo una cualquiera de las reivindicaciones 1 a 3, en el que dicho método incluye una etapa adicional de inactivar un gen que codifica una proteína checkpoint inmunitaria seleccionada entre CTLA4, PPP2CA, PPP2CB, PTPN6, PTPN22, PDCD1, LAG3, HAVCR2, BTLA, CD160, TIGIT, CD96, CRTAM, LAIR1, SIGLEC7, SIGLEC9, CD244, TNFRSF10B, TNFRSF10A, CASP8, CASP10, CASP3, CASP6, CASP7, FADD, FAS, TGFBRII, TGFRBRI, SMAD2, SMAD3, SMAD4, SMAD10, SKI, SKIL, TGIF1, IL10RA, IL10RB, HMOX2, IL6R, IL6ST, EIF2AK4, CSK, PAG1, SIT1, FOXP3, PRDM1, BATF, GUCY1A2, GUCY1A3, GUCY1B2 y GUCY1B3.
- 35 8. El método de acuerdo una cualquiera de las reivindicaciones 1 a 3, en el que dicho método incluye una etapa adicional de inactivar un gen que confiere sensibilidad de las células inmunitarias a los fármacos quimioterapéuticos o inmunosupresores.
- 9. El método de acuerdo una cualquiera de las reivindicaciones 1 a 8, en el que dicho linfocito T en la etapa a) se deriva de un linfocito T inflamatorio, un linfocito T citotóxico, un linfocito T regulador o un linfocito T auxiliar.
 - 10. Un linfocito T diseñado mediante ingeniería genética obtenible de acuerdo con el método de una cualquiera de las reivindicaciones 1 a 9, caracterizado porque un gen implicado en la expresión o presentación de un marcador antigénico, que está presente tanto en la superficie de dicho linfocito T como en la de una célula patológica, está genéticamente inactivado dando como resultado por tanto la ausencia de dicho marcador antigénico en la superficie de dicho linfocito T; y caracterizado además porque dicho linfocito T expresa un receptor de antígeno quimérico dirigido contra dicho marcador antigénico presente en la superficie de dicha célula patológica.
- 11. El linfocito T diseñado mediante ingeniería genética de acuerdo con la reivindicación 10 que da como resultado el fenotipo [CAR CD38]⁺[CD38]⁻.
 - 12. El linfocito T diseñado mediante ingeniería genética de acuerdo con la reivindicación 10 que da como resultado el fenotipo [CAR CD70]⁺[CD70]⁻.
- 13. El linfocito T diseñado mediante ingeniería genética de acuerdo con la reivindicación 10 que da como resultado el fenotipo [CAR CS1]⁺[CS1]⁻.
- 14. Una población de linfocitos T diseñados mediante ingeniería genética de acuerdo con una cualquiera de las reivindicaciones 10 a 13 para su uso en el tratamiento de un paciente al que se le ha diagnosticado la presencia de células patológicas que presentan marcadores antigénicos específicos en común con los linfocitos T.

Nucleasa TAL

Nucleasa dedo de cinc

Meganucleasa

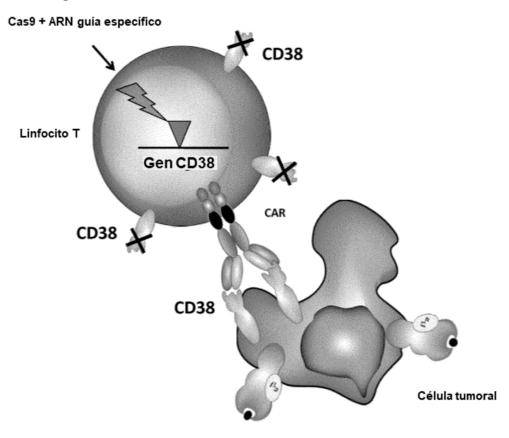
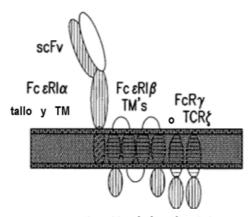



Figura 1

CAR multicadena

activación de los dominios de señalización

- la cadena beta permite que todos los dominios de señalización estén en la posición yuxtamembrana natural
- cadena beta ya colocada para interacción de señales procedentes de FcRg o TCRzeta

Figura 2

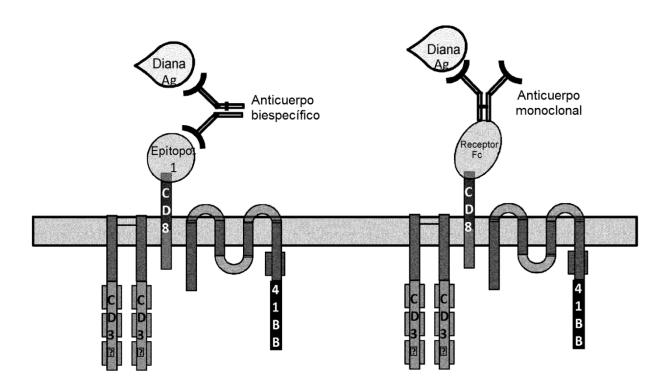


Fig. 3 Fig. 4

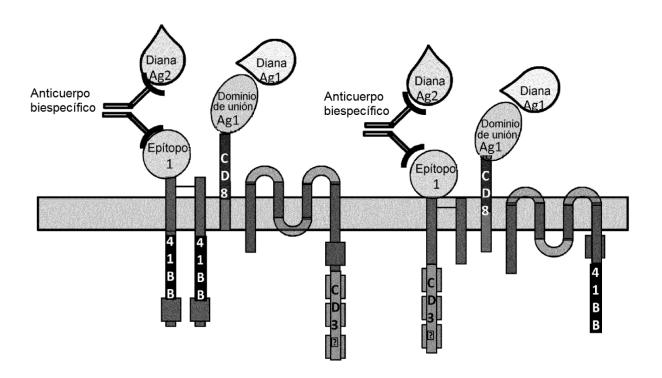


Fig. 5 Fig. 6

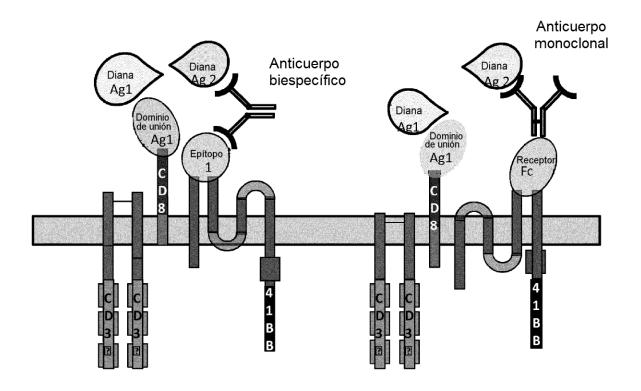


Fig. 7 Fig. 8

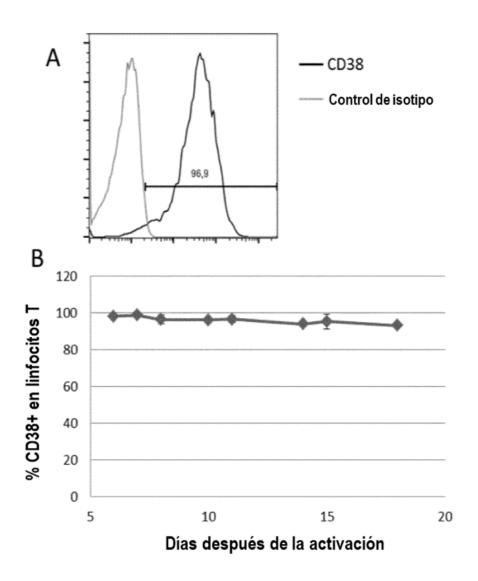


Figura 9

Figura 10A

7	ALESCHART GURBELLAR COURSISTS GREENCHARC CITECISC GULLIARE ARACCARE ICIGICIAE CELVAGIAIC CIRCLES	GCGAGIICAG	3375755333	GGGGACABAC	5775775777	GCALLANGE	AGAGGGAAAA	1010101106	COLCAGIALC	LABOUR LL
	TACCGGIIGA	CGCICAAGIC	GGGCCACAGG	INCCRETIGA CECTCANGTE GESCECACAGS ECECTSTITS GRACGACGGE CSAGAGAICE TETEGGGTIS AGACAGAACC GCAGICAIAG GACCAGGS	GGACGACGGC	CGAGAGATCC	TCTCGGGTTG	AGACAGAACC	GCAGTCATAG	GACCAGG
101	177	GGIRCICGCS	GIGGICGICC	CONTROL BUTTOTO BY	CCAGCAGTGG	AGCGGTCCGG	GCACCACCAA	GCGCITICCC	GAGACCGICC	TGGCGCGAIG
	AGGAGCAGCA.	CCACGAGGGG	CACCAGCAGG	GCAGCA CCACGAGCGC CACCAGG GCTCCACC GC	GITCHICACC	TCGCCAGGCC	STOSTCACC TCGCCAGGCC CGTGGTGGTT CGCGAAAGGG CTCTGGCAGG ACCGCGCTAC	CGCGAAAGGG	CTCTGGCAGG	ACCECECTAC
201	CGICARGIAC ACIGABAILC AICCIGAGAI GAGGIGGGII GGCGACIAAG GCGCACCGGI GGGCACIGCG GGGACAGCAG GGCCCCGCGC GCAGGGAAGC	ACTGABATIC	AICCIGAGAI	GAGGIGGGIT	GGCGACTAAG	GCGCACCGGI	GGGCACTGCG	GGGACAGCAG	2525222255	GCAGGGAAGC
	GCAGIICAIG	TGACTITAAG	TAGGACTETA	GCAGITCAIG IGACITIAAG IAAGAGICIA CICCACCCAA CCGCTGAIIC GGCGIGGCCA CCGGGGGGCGC CCGGGGGGGGGG	CCGCTGATIC	CGCGTGGCCA	CCCGTGACGC	CCCTGTCGIC	೦೦ಡಡಡಡದಡಿ	cerccerres
301	CGCCCGGAIC	gcc								
	ひびん だんかんじじじんじ	500								

В

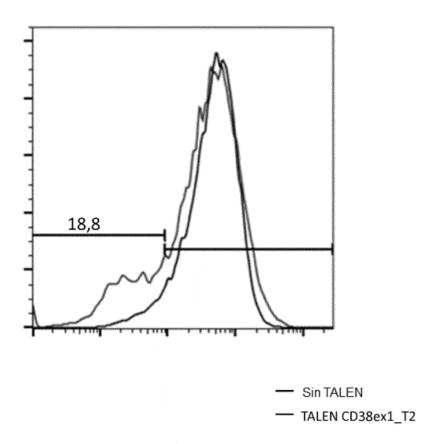
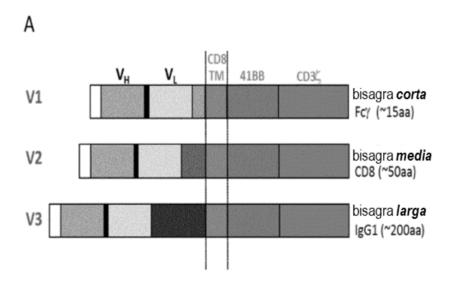



Figura 10 B

Figura 10C

В

Expresión de CD38 en las líneas de células diana

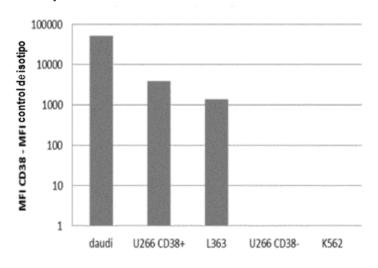
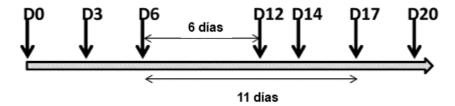



Figura 11

D0: purificación y activación de linfocitos T

D1: transfección de ARN de TALEn

D6: transducción de CAR

D12: análisis FACS

D14: ensayo de citotoxicidad

D17: reactivación D20: análisis FACS

Figura 12

T01: pCLS25985 / pCLS25986

pCLS25985: LEFT-NG-HD-HD-NI-NN-NI-NN-NI-NN-HD-NI-NG-NG-NG#-DERECHA pCLS25986: LEFT-NI-NN-NI-NG-NN-NI-NN-NN-NN-NN-NN-NN-NN-NN-NN-NN-HD-NG#-DERECHA

T02: pCLS25992 / pCLS26065

pCLS25992: LEFT-NN-NI-HD-NG-NG-HD-HD-NI-NN-NI-NN-NI-NN-HD-NI-NG#-DERECHA pCLS26065: LEFT-NN-NI-NN-NN-NN-NG-NN-NI-NN-NN-HD-NI-NG-NN-NG-NG-DERECHA

T03: pCLS25987 / pCLS25988

pCLS25987: LEFT-NG-NN-NI-HD-NG-HD-NG-NI-NG-NN-NG-HD-NG-NN-NG#-DERECHA pCLS25988: LEFT-NN-NG-NI-NG-NN-NN-NG-NN-NI-HD-NI-NI-NN-NI-NN-NG#-DERECHA

Figura 13

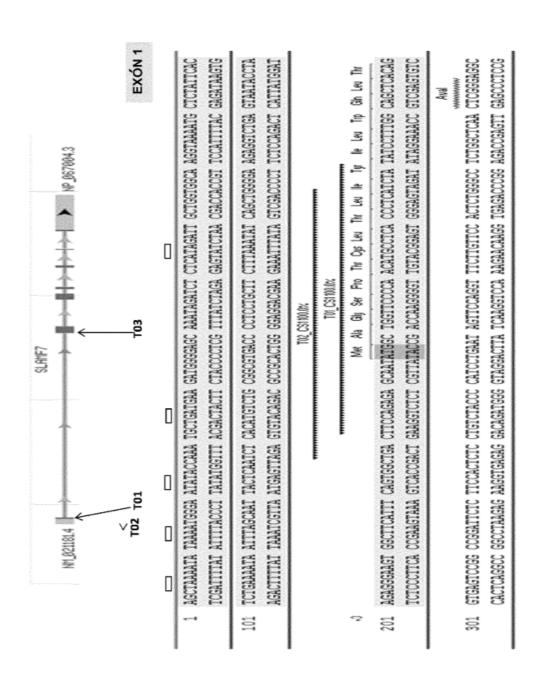


Figura 14A

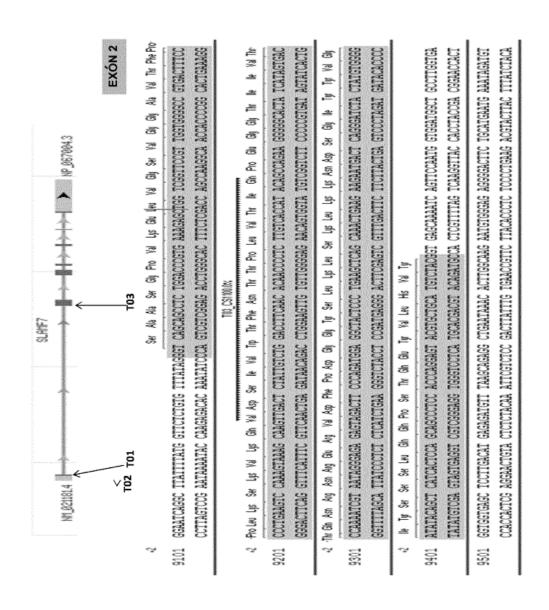
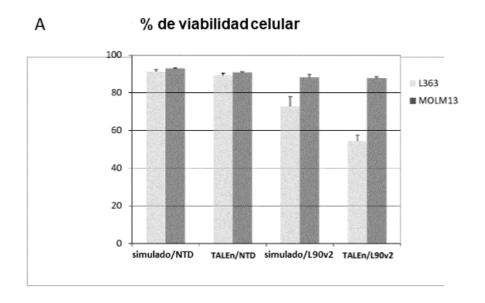



Figura 14B

% Lisis celular específica (CS1+)

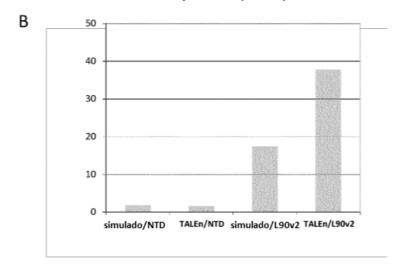


Figura 15

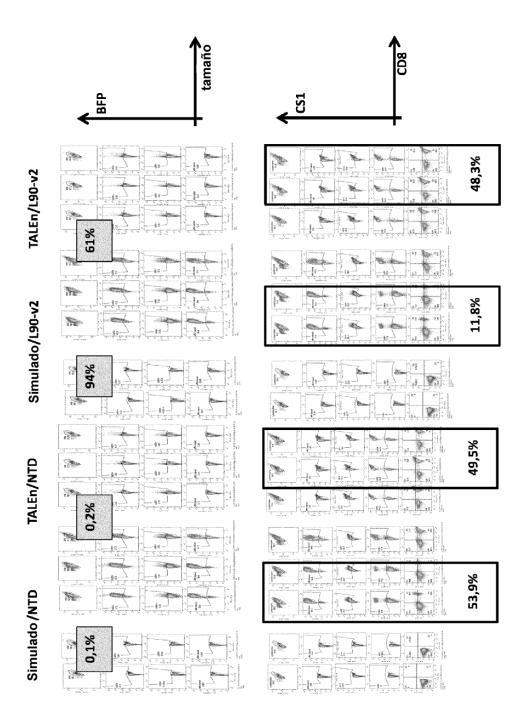
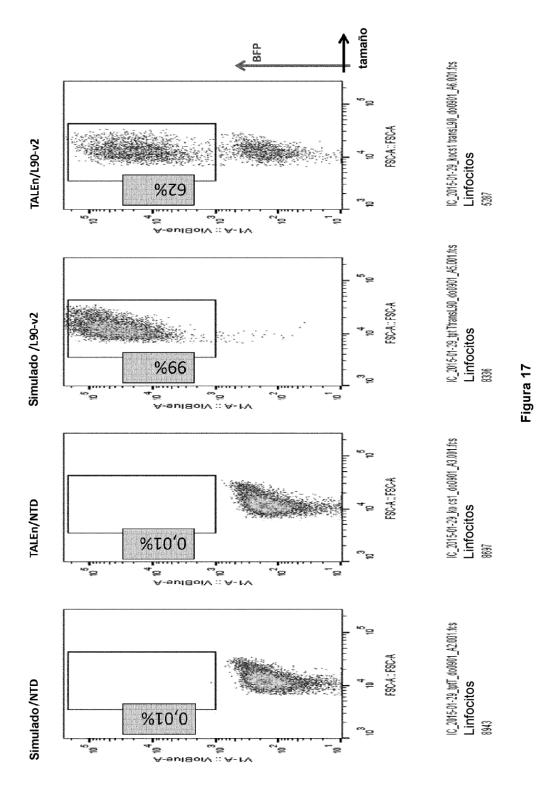
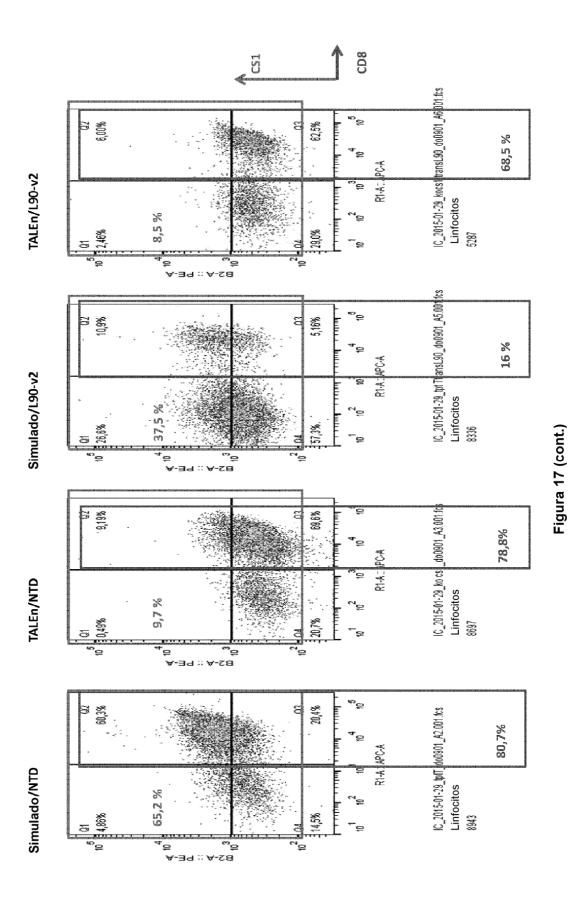




Figura 16

