

OFICINA ESPAÑOLA DE PATENTES Y MARCAS

ESPAÑA

11) Número de publicación: 2 714 000

61 Int. Cl.:

C07K 14/30 (2006.01) A61K 38/16 (2006.01) A61K 39/02 (2006.01)

(12)

TRADUCCIÓN DE PATENTE EUROPEA

T3

(86) Fecha de presentación y número de la solicitud internacional: 21.11.2013 PCT/CN2013/087599

(87) Fecha y número de publicación internacional: 28.05.2015 WO15074213

(96) Fecha de presentación y número de la solicitud europea: 21.11.2013 E 13897752 (5)

(97) Fecha y número de publicación de la concesión europea: 26.12.2018 EP 3072523

(54) Título: Composición para prevenir y curar una infección por micoplasma

(45) Fecha de publicación y mención en BOPI de la traducción de la patente: 24.05.2019

(73) Titular/es:

AGRICULTURAL TECHNOLOGY RESEARCH INSTITUTE (100.0%)
No. 1, Ln. 51, Dahu Road Xiangshan District Hsinchu City 300, TW

(72) Inventor/es:

LIN, JIUNN-HORNG; WANG, JYH-PERNG; CHEN, ZENG-WENG; FANG, CHIEN-YU; HSIEH, MING-WEI y YANG, PING-CHENG

(74) Agente/Representante:

VALLEJO LÓPEZ, Juan Pedro

DESCRIPCIÓN

Composición para prevenir y curar una infección por micoplasma

5 Antecedentes

Campo técnico

La presente divulgación se refiere a una vacuna contra *Mycoplasma* spp.; en especial, a una vacuna de subunidades contra *Mycoplasma* spp.

Descripción de la técnica anterior

- Mycoplasma spp. es conocida en la actualidad como la bacteria más pequeña capaz de autorreplicarse fuera de las células hospedadoras. Aunque la neumonía enzoótica porcina no causaría la muerte porcina, reducirá la eficacia de la alimentación y causará retraso en el crecimiento, inflamación e inmunosupresión, además de hacer que los cerdos sean más vulnerables a una infección de otros patógenos, convirtiéndose, por tanto, en un daño económico para la industria.
- Hasta el momento, la neumonía enzoótica porcina se evita mediante tres estrategias principales, que incluyen: la administración de medicamentos, la gestión del medio ambiente y la vacunación. Viendo la mala eficacia de prevención de los antibióticos contra *Mycoplasma hyopneumoniae*, la administración de medicamentos solo se puede usar con fines de tratamiento, y es difícil satisfacer las necesidades de prevención. Además, considerando que el abuso de fármacos puede conducir a una mayor infección causada por bacterias resistentes a los fármacos, la administración de medicamentos requiere planes cautelosos, y existen muchas limitaciones.
 - La gestión del medio ambiente constituye la base de la prevención de una infección por *Mycoplasma* spp. Un buen saneamiento y manejo porcino sería útil para reducir la aparición de infecciones. Por otro lado, la prevención podría ser más integral a través de la vacunación.
 - Las vacunas convencionales en el campo usan bacterias inactivas/muertas como el principio activo de las mismas. Sin embargo, el precio de las vacunas convencionales es demasiado alto, porque *Mycoplasma* spp. es una bacteria exigente, y es difícil de cultivar en el laboratorio. Para reducir el coste de las vacunas de *Mycoplasma* spp., los científicos intentan desarrollar de manera continua vacunas de diferentes tipos, tales como: (1) vacunas atenuadas; (2) vacunas de vectores; (3) vacunas de subunidades y (4) vacunas de ADN. Entre ellas, las vacunas de subunidades muestran el mayor potencial debido a las ventajas de facilidad de producción y a la alta seguridad.
- Hasta la fecha, hay varias posibles proteínas candidatas que se podrían usar para las vacunas de *M. hyopneumoniae*; sin embargo, no hay ningún informe adicional que verifique las proteínas adecuadas para las vacunas de *M. hyopneumoniae*.

Sumario

30

35

50

60

- A la vista de lo anterior, uno de los objetivos de la presente invención es proporcionar antígenos adecuados para su uso en vacunas contra *Mycoplasma* spp., produciendo así nuevas vacunas contra *Mycoplasma* spp. para reducir el coste de la prevención.
 - Otro objetivo de la presente invención es proporcionar una combinación de antígenos que sea adecuada para su uso en vacunas contra *Mycoplasma* spp. y, por lo tanto, proporcionar vacunas de subunidades con mejor rendimiento; por lo tanto, habría más opciones para las tareas de prevención.
 - La presente descripción proporciona una proteína para la prevención de una infección por *Mycoplasma* spp., que comprende una secuencia de aminoácidos de la SEQ ID NO: 01, la SEQ ID NO: 02 o una de sus combinaciones.
- La presente invención proporciona una composición para la prevención de una infección por *Mycoplasma* spp., como se desvela en la reivindicación 1. Otras realizaciones preferidas se definen en las subreivindicaciones dependientes. Preferentemente, dicho aditivo farmacéuticamente aceptable es un disolvente, un estabilizante, un diluyente, un conservante, un agente antibacteriano, un agente antifúngico, un agente isotónico, un agente retardador de la absorción o una combinación de los mismos.
 - La presente descripción describe además una composición para la prevención de una infección por *Mycoplasma* spp., que comprende: un principio activo, que tiene al menos dos proteínas seleccionadas de un grupo que consiste en P46, Tuf, MHP30 y NrdFC; y un adyuvante farmacéuticamente aceptable.
- 65 Dicho principio activo es P46, Tuf, MHP30 y NrdFC.

Dicho principio activo tiene al menos dos secuencias de aminoácidos seleccionadas de un grupo que consiste en la SEQ ID NO: 01, la SEQ ID NO: 02, la SEQ ID NO: 03 y la SEQ ID NO: 04.

Dicho principio activo tiene secuencias de aminoácidos de la SEQ ID NO: 01, la SEQ ID NO: 02, la SEQ ID NO: 03 y la SEQ ID NO: 04.

Dicho principio activo es de una concentración de 20 a 2.000 µg/ml basado en el volumen total de dicha composición.

Dicho adyuvante farmacéuticamente aceptable es un adyuvante completo de Freund, un adyuvante incompleto de Freund, un gel de alúmina, un tensioactivo, un adyuvante polianiónico, un péptido, una emulsión de aceite o una combinación de los mismos.

Preferentemente, la composición de la invención comprende además un aditivo farmacéuticamente aceptable.

15

- Preferentemente, dicho aditivo farmacéuticamente aceptable es un disolvente, un estabilizante, un diluyente, un conservante, un agente antibacteriano, un agente antifúngico, un agente isotónico, un agente retardador de la absorción o una combinación de los mismos.
- La presente invención también proporciona un vector de expresión como se define en la reivindicación 8. La descripción desvela además un vector de expresión para la preparación del principio activo mencionado anteriormente; en la que dicho vector de expresión comprende un plásmido; en el que dicho plásmido comprende: una secuencia de nucleótidos que comprende al menos una secuencia seleccionada de un grupo que consiste en la SEQ ID NO: 05, la SEQ ID NO: 06, la SEQ ID NO: 07 y la SEQ ID NO: 08; un gen que codifica una pareja de fusión, seleccionado de un grupo que consiste en MsyB de *E. coli*, YjgD de *E. coli*, GroS17 de *E. coli*, GroES de *Bacillus subtilis*, TrxA de *Alicyclobacillus acidocaldarius*, SUMO de *S. cerevisiae* y Vgb de *Vitreoscilla* spp.; y un elemento regulador.

Preferentemente, dicho elemento regulador comprende un promotor y un sitio de unión al ribosoma.

30

- Preferentemente, dicho plásmido es pET-MSY. pET-YjgD, pET-GroS17, pET-GroES, pET-TrxA, pET-SUMO o pET-Vgb también se desvelan en la presente descripción.
- En cuanto a dicho vector de expresión, siempre que, cuando dicha secuencia de nucleótidos es al menos una secuencia seleccionada de un grupo que consiste en la SEQ ID NO: 05, la SEQ ID NO: 06 y la SEQ ID NO: 08, dicho gen que codifica una pareja de fusión es MsyB de *E. coli*.
- En cuanto a dicho vector de expresión, siempre que, cuando dicha secuencia de nucleótidos es la SEQ ID NO: 07, dicho gen que codifica una pareja de fusión se selecciona de un grupo que consiste en YjgD de *E. coli*, GroS17 de *E. coli*, GroES de *Bacillus subtilis*, TrxA de *Alicyclobacillus acidocaldarius*, SUMO de *S. cerevisiae* y Vgb de *Vitreoscilla* spp.
 - Dicho vector de expresión se aplica para su uso en un sistema de expresión génica de E. coli.
- La presente invención proporciona además un método para la preparación de antígeno soluble como se define en la reivindicación 11. Por otra parte, la descripción desvela un método para la preparación de antígeno soluble, que comprende usar el vector de expresión; en el que dicho antígeno es P46, Tuf, MHP30 o NrdFC.
- En resumen, la presente invención se refiere a antígenos, composición y vector de expresión para la preparación de dicho antígeno para la prevención de una infección por *Mycoplasma* spp. La presente divulgación no solo proporciona nuevas opciones para tareas de prevención, sino que también demuestra que una vacuna de subunidades "combinada" de la combinación de al menos dos antígenos (es decir, que tiene al menos dos antígenos como principios activos) puede mejorar la inducción inmunitaria. Por otra parte, la presente invención enseña algunas parejas de fusión que son particularmente adecuadas para ayudar a la expresión de los antígenos mencionados anteriormente en un sistema de expresión de modo que sean favorables para aumentar la capacidad de producción de la preparación de las vacunas necesarias.

Breve descripción de los dibujos

La Figura 1 es el resultado de una electroforesis de proteínas, que muestra que varias parejas de fusión tienen diferentes efectos sobre la solubilidad de MHP30 preparada. Línea M: marcador proteico (escalera de proteína pretratada PageRulerTM; Fermentas, EE. UU.); Línea 1: BL21 de *E. coli* (DE3) (pET-YjgD-MHP30), proteína soluble; Línea 2: BL21 de *E. coli* (DE3) (pET-SUMO-MHP30), proteína soluble; Línea 3: BL21 de *E. coli* (DE3) (pET-GroS17-MHP30), proteína soluble; Línea 4: BL21 de *E. coli* (DE3) (pET-GroES-MHP30), proteína soluble; Línea 5: BL21 de *E. coli* (DE3) (pET-D-MHP30), proteína soluble; Línea 6: BL21 de *E. coli* (DE3) (pET-MsyB-MHP30), proteína soluble; Línea 7: BL21 de *E. coli* (DE3) (pET-Vgb-MHP30), proteína soluble; Línea 8: BL21 de

E. coli (DE3) (pET-TrxA-MHP30), proteína soluble.

La Figura 2 es el resultado de una electroforesis de proteínas, que muestra que las diversas parejas de fusión tienen diferentes efectos sobre la solubilidad de P46, NrdFC y Tuf preparada. Línea M: marcador proteico (escalera de proteína pretratada PageRuler™; Fermentas, EE. UU.); Línea 1: BL21 de *E. coli* (DE3) (pET-D-P46M), proteína soluble; Línea 2: BL21 de *E. coli* (DE3) (pET-D-P46M), proteína insoluble; Línea 3: BL21 de *E. coli* (DE3) (pET-D-NrdFC), proteína insoluble; Línea 4: BL21 de *E. coli* (DE3) (pET-D-NrdFC), proteína insoluble; Línea 5: BL21 de *E. coli* (DE3) (pET-D-Tuf), proteína insoluble; Línea 6: BL21 de *E. coli* (DE3) (pET-D-Tuf), proteína insoluble; Línea 7: BL21 de *E. coli* (DE3) (pET-MsyB-P46M), proteína soluble; Línea 8: BL21 de *E. coli* (DE3) (pET-MsyB-P46M), proteína insoluble; Línea 9: BL21 de *E. coli* (DE3) (pET-MsyB-NrdFC), proteína soluble; Línea 10: BL21 de *E. coli* (DE3) (pET-MsyB-NrdFC), proteína insoluble; Línea 11: BL21 de *E. coli* (DE3) (pET-MsyB-Tuf), proteína insoluble; Línea 12: BL21 de *E. coli* (DE3) (pET-MsyB-Tuf), proteína insoluble.

La Figura 3 es el resultado de una electroforesis de proteínas, que muestra la purificación de las presentes proteínas recombinantes MHP30, P46, NrdFC y Tuf. Línea M: marcador proteico (escalera de proteína pretratada PageRulerTM; Fermentas, EE. UU.); Línea 1: BL21 de *E. coli* (DE3) (pET-YjgD-MHP30), proteína soluble; Línea 2: BL21 de *E. coli* (DE3) (pET-MsyB-P46M), proteína soluble; Línea 3: BL21 de *E. coli* (DE3) (pET-MsyB-NrdFC), proteína soluble; Línea 4: BL21 de *E. coli* (DE3) (pET-MsyB-Tuf), proteína soluble; Línea 5: proteína de fusión MHP30 purificada; Línea 6: proteína de fusión P46 purificada; Línea 7: proteína de fusión NrdFC purificada; Línea 8: proteína de fusión Tuf purificada.

La Figura 4 muestra el resultado del ensayo de transferencia Western, que muestra que el antisuero de los ratones identificó el lisado celular total de *M. hyopneumoniae*.
 La Figura 5 muestra el resultado del ensayo ELISA, que muestra los resultados de los experimentos de exposición inmunitaria realizados en la Realización 7 de la presente invención.

25 Descripción detallada

5

10

15

30

35

40

50

55

60

65

La presente invención se refiere a antígenos, composición y vector de expresión para la preparación de dicho antígeno para la prevención de una infección por *Mycoplasma* spp. Específicamente, la presente invención demuestra el efecto antigénico de P46 y Tuf para preparar la composición para la prevención de una infección por *Mycoplasma* spp. Además, la presente descripción también demuestra una vacuna de subunidades "combinada" de la combinación de al menos dos de P46, Tuf, MHP30 y NrdFC como principios activos que pueden mejorar la inducción inmunitaria

Por otro lado, la presente descripción describe parejas de fusión, que son particularmente adecuadas para preparar P46, Tuf, MHP30 y NrdFC de alta solubilidad (es decir, hidrosolubilidad). Mediante el uso de las parejas de fusión mencionadas anteriormente, se puede reducir significativamente el tiempo y el coste necesarios para la preparación de vacunas.

En un aspecto de la presente invención, se describe una composición para la prevención de una infección por *Mycoplasma* spp., que comprende: un primer principio activo, que comprende una proteína de P46, Tuf, o una combinación de los mismos; y un adyuvante farmacéuticamente aceptable. En una realización alternativa, dicha composición puede comprender además un segundo principio activo. Dicho segundo principio activo comprende una proteína MHP30, NrdFC o una combinación de las mismas.

En otro aspecto, se describe una composición para la prevención de una infección por *Mycoplasma* spp., que comprende: un principio activo, que tiene al menos dos proteínas seleccionadas de un grupo que consiste en P46, Tuf, MHP30 y NrdFC; y un adyuvante farmacéuticamente aceptable.

En una realización alternativa de la presente invención, dicha P46 se corresponde con la secuencia de aminoácidos mostrada como SEQ ID NO: 01; dicha Tuf se corresponde con la secuencia de aminoácidos mostrada como SEQ ID NO: 02; dicha MHP30 se corresponde con la secuencia de aminoácidos mostrada como SEQ ID NO: 03; dicha NrdFC se corresponde con la secuencia de aminoácidos mostrada como SEQ ID NO: 04. Los expertos en la materia pueden entender fácilmente que, mientras no se interfiera el determinante antigénico formado mediante el plegamiento de un péptido de dicha secuencia de aminoácidos, dicho principio activo puede ser una proteína de fusión con al menos dos de dichas secuencias.

Normalmente, la combinación de dos o más antígenos en una sola vacuna no siempre es favorable para la inducción inmunitaria de la vacuna. De hecho, la combinación de dos o más antígenos en una sola vacuna puede causar una situación no deseada en la que la inducción inmunitaria de los dos o más antígenos entre en conflicto entre sí y, por lo tanto, se reduzca. Además, desde la perspectiva económica, incluso si no están en conflicto entre sí, si la inducción inmunitaria de los dos o más antígenos no presenta un efecto sinérgico, sería inútil combinar dos o más antígenos en una sola vacuna. Las investigaciones de la presente invención demostraron que P46, Tuf, MHP30 y NrdFC mostraron una mejor inducción inmunitaria mientras se usaban en combinación. Por lo tanto, en una realización alternativa, dicho principio activo de la presente composición comprende dos cualquiera o más de las proteínas mencionadas anteriormente; es decir, la vacuna combinada de la presente invención.

La concentración de dicho/s principio/s activo/s en la presente composición es de 20 a 2.000 µg/ml basada en el

volumen total de dicha composición. En una realización preferible de la presente invención, un principio activo de la presente composición es de una concentración de 20 a 500 μg/ml basada en el volumen total de dicha composición. En una realización alternativa de la presente invención, la presente composición contiene al menos una de dichas proteínas como principios activos; en la que la concentración total de esos principios activos es de 20 a 1.000 μg/ml, de 20 a 1.500 μg/ml o de 20 a 2.000 μg/ml basado en el volumen total de dicha composición.

Dicho adyuvante farmacéuticamente aceptable se usa para mejorar el efecto inmunitario de dicho principio activo, para estabilizar dicho principio activo y/o para aumentar la seguridad de las vacunas. Dicho adyuvante farmacéuticamente aceptable de la presente invención incluye, pero sin limitación: un adyuvante completo de Freund, un adyuvante incompleto de Freund, un gel de alúmina, un tensioactivo, un adyuvante polianiónico, un péptido, una emulsión de aceite o una combinación de los mismos.

Otro aspecto de la presente invención se refiere a un vector de expresión. Específicamente, dicho vector de expresión se usa para un sistema de expresión de *E. coli*. En otras palabras, dicho vector de expresión puede traducirse en un péptido de secuencia de aminoácidos de la proteína deseada, y el péptido puede plegarse formando el principio activo deseado requerido para la presente composición. Sin embargo, según el espíritu de la presente invención, los expertos en la materia pueden referirse a la divulgación de la presente invención y realizar las modificaciones correspondientes para que quepan en varios sistemas de expresión, sin que dejen de pertenecer al alcance de la presente invención (por ejemplo, modificando las secuencias para corresponder a diferente uso de codones).

Otro aspecto de la presente invención se refiere a un método para preparar una proteína para la prevención de una infección por *Mycoplasma* spp. usando dicho vector de expresión. Las proteínas preparadas por los vectores de expresión convencionales en el campo normalmente tienen el inconveniente de la insolubilidad; por lo tanto, es necesario tratar y resolver el producto purificado mediante urea y clorhidrato de guanidinio. Sin embargo, esos tratamientos no solo aumentan el coste de producción, sino que también provocan la desnaturalización de las proteínas, por lo que, a veces, se necesita un replegamiento de las proteínas desnaturalizadas para recuperar su función antigénica. Si bien existe cierta posibilidad de que el proceso de replegamiento falle, se podría reducir el efecto antigénico de esas proteínas. A la luz de la insuficiencia de la preparación convencional mencionada anteriormente, el presente método tiene fuerza para emparejar la pareja de fusión que es particularmente adecuada con el fin de proporcionar una excelente solubilidad a las proteínas mencionadas anteriormente para la prevención de una infección por *Mycoplasma* spp. Por lo tanto, se puede ahorrar en costes de producción, se pueden simplificar los procedimientos de preparación y se puede mejorar la eficacia de las proteínas producidas por ser los principios activos de las vacunas.

En una realización alternativa de la presente invención, dicho vector de expresión comprende un plásmido. dicho plásmido comprende: una secuencia de nucleótidos, un gen que codifica una pareja de fusión y un elemento regulador. Dicha secuencia de nucleótidos comprende al menos una secuencia seleccionada de un grupo que consiste en la SEQ ID NO: 05, la SEQ ID NO: 06, la SEQ ID NO: 07 y la SEQ ID NO: 08, que corresponden respectivamente a P46, Tuf, MHP30 y NrdFC.

En una realización alternativa, siempre que el funcionamiento del sistema de expresión génica no se vea obstaculizado, y la producción de dicha secuencia de nucleótidos y el plegamiento de la secuencia de aminoácidos consecuente de la misma no se vean interferidos, dicho plásmido puede comprender dos o más de dichas secuencias de nucleótidos.

Dicho gen que codifica una pareja de fusión se selecciona de un grupo que consiste en MsyB de *E. coli*, YjgD de *E. coli*, GroS17 de *E. coli*, GroES de *Bacillus subtilis*, TrxA de *Alicyclobacillus acidocaldarius*, SUMO de *S. cerevisiae* y Vgb de *Vitreoscilla* spp.

Dicho elemento regulador se refiere a un elemento requerido para iniciar la transcripción y la traducción en el sistema de expresión. Dicho elemento regulador comprenderá al menos un promotor y un sitio de unión al ribosoma. Preferentemente, dicho elemento regulador puede comprender además: un operador, una secuencia potenciadora, o una combinación de los mismos.

Los siguientes ejemplos mencionan los ensayos y experimentos de la presente invención con el fin de explicar con más detalle las características y ventajas de la presente invención. Se debe tener en cuenta que los siguientes ejemplos son ilustrativos, y que no se deben usar para limitar el alcance de las reivindicaciones de la presente invención

Ejemplo 1: Cepas y cultivo de las mismas.

10

15

20

25

30

35

40

45

50

55

60

Los presentes investigaciones identificaron que hay siete clases de *Mycoplasma* spp. aisladas de cerdos: *Mycoplasm hyopneumoniae*, *Mycoplasma hyorhinis*, *Mycoplasma hyosynoviae*, *Mycoplasma flocculare*, *Mycoplasma hyopnaryngis*, *Mycoplasma sualvi*, y *Mycoplasma bovigenitalium* (Gourlay *et al.*, 1978; Blank *et al.*, 1996; Assuncao *et al.*, 2005). Entre ellas, *Mycoplasm hyopneumoniae* es el principal patógeno que causa la neumonía por

micoplasma porcina. La tasa de infección está entre el 25 % y el 93 %. Por lo tanto, la presente investigación usó *Mycoplasm hyopneumoniae* (*Mycoplasm hyopneumoniae*, PRIT-5) como la fuente del gen del antígeno. Además, la presente investigación usó JM109 de *Escherichia coli* como hospedador para la clonación de genes y BL21 de *Escherichia coli* (DE3) como hospedador para la expresión de proteínas.

5

*M. hyopneumoniae*se cultivó usando medio de Friis (Friis *et al.*, 1975). Las cepas de *Escherichia coli (E. coli*) se cultivaron usando medio de LB (Luria-Bertani). La cantidad adecuada de antibiótico y/o el 1,5 % de agar para preparar medio sólido se añadieron opcionalmente de acuerdo con las condiciones del experimento.

10 Ejemplo 2: Clonación del gen del antígeno de M. hyopneumoniae

Se diseñaron cebadores específicos para diferentes genes de antígeno (Tabla 1). Se usó el genoma de *M. hyopneumoniae* se usó como molde y se realizó la amplificación usando los cebadores mencionados anteriormente. Los detalles de la amplificación de genes y la clonación se describen en los siguientes párrafos:

15

	Tabla 1: Conjuntos de cebadores para amplificar los genes deseados.
Genes	Secuencia del cebador (de 5' a 3')
deseado	S
MHP30	MHP30F (SEQ ID NO 09): GATATA <i>GGATCC</i> GCAAAATTAGACGATAATCTTCAGTATTCA MHP30R (SEQ ID NO 10): CAATAT <i>GTCGAC</i> TTAATTTTTACCTTGTTTTTTAATGATTTCGTC
P46	P46F (SEQ ID NO 11): GATATAGGATCCATGAAAAAAATGCTTAGAAAAAATTCTTG P46R (SEQ ID NO 12): CAATAT <i>GTCGAC</i> TTAGGCATCAGGATTATCAACATTAGC
NrdFC	NrdCF (SEQ ID NO 13): GGATATA GGATCCGATCTATTATATAAACTAATTGAATTAGAAAAAGATTATC NrdCR(SEQ ID NO 14):CAATATGTCGACTTAAAAACTCCCAATCTTCG
Tuf	TufF (SEQ ID NO 15): GATATA GGATCCATGGCAGTTGTTAAAACGACAGGAAAA TufR (SEQ ID NO 16): CAATATGTCGACTTATTTAATAATTTCGGTAACTGTTCCGGCA

*GGATCC: Sitio de corte de BamHI: GTCGAC: Sitio de corte de Sall

1. Extracción del genoma de M. hyopneumoniae.

20 La extracción del genoma de *M. hyopneumoniae* se realizó mediante el uso del kit de purificación de ADN (Tissue & Cell Genomic DNA Purification kit; GeneMark, Taiwán). En primer lugar, se llevaron a centrifugación 4,5 ml de caldo (5.870 ×g, 5 min) en tubos para desechar el sobrenadante y recoger el sedimento. Después, se añadieron 20 μl de proteinasa K (10 mg/ml) y 200 μl de reactivo de extracción para reaccionar a 56 °C durante 3 horas. Se mezclaron el sedimento y los reactivos anteriormente mencionados boca abajo o agitando el tubo cada 5 minutos durante el período para asegurarse de que estaban bien mezclados.

Tras la reacción con el reactivo de extracción, la solución se volvió transparente cuando el sedimento se digirió por completo. Luego se añadieron 200 µl de reactivo de unión para reaccionar a 70 °C durante 10 minutos. Después de eso, se añadieron 200 µl de etanol absoluto al tubo y se mezclaron. Se movió todo el contenido del tubo a una columna de centrifugación y se colocó la columna de centrifugación en un tubo de recolección. Tras la centrifugación (17.970 xg) durante 2 minutos, se desechó el efluente y se añadieron 700 µl de solución de lavado a la columna de centrifugación. Tras otra centrifugación (17.970 xg) durante 2 minutos, se desechó el efluente y se repitió el procedimiento mencionado anteriormente. Finalmente, se sometió el tubo a centrifugación (17.970 xg) durante 5 minutos para eliminar el etanol residual. Después, se colocó la columna de centrifugación en un tubo estéril y se añadió una cantidad adecuada de aqua estéril para eluir el ADN.

La concentración de ADN genómico de *M. hyopneumoniae* purificado se determinó usando el kit de ensayo de alta sensibilidad de ADNbc Quant-iTTM (Invitrogen, Madison, EE.UU.) y el fluorómetro Qubit (Invitrogen, Madison, Estados Unidos). La operación es: se mezcla el reactivo Quant-iT y tampón Quant-iT a una proporción de 1:200, obteniéndose una solución de trabajo. Se mezclaron 190 μl de solución de trabajo y 10 μl de la muestra patrón, y se colocaron a temperatura ambiente durante 2 minutos. Después, se representó una curva patrón. Después de eso, se mezclaron 2 μl de muestra y 198 μl de solución de trabajo, se colocaron durante 2 minutos y se detectaron con un fluorómetro Qubit para determinar la concentración del ADN genómico. La fórmula de cálculo de la concentración (ng/μl) fue: Valor medido x 100.

45

50

30

35

40

2. Amplificación de los genes deseados mediante la reacción en cadena de la polimerasa (PCR)

Se usó ADN genómico de *M. hyopneumoniae* como molde y los cebadores diseñados para el gen P46, el gen Tuf, el gen MHP30 y el gen NrdFC se usaron, respectivamente, para la reacción de PCR. Cada cebador usado y las condiciones para la reacción de PCR se mostraron en la siguiente Tabla 2 (las secuencias de los cebadores se enumeraron en la Tabla 1 anterior). 50 μl de mezcla de PCR contenían 1 × Tampón de PCR B de GDP-HiFi, 200 μM de mezcla de dATP, dTTP, dGTP y dCTP, tampón de amplificación 1 μM, 200 ng de ADN genómico de *M. hyopneumoniae* y 1 U de ADN polimerasa de GDP-HiFi. Tras la reacción de PCR, se realizó la electroforesis en gel

para confirmar la existencia del fragmento de ADN amplificado del tamaño esperado.

Tabla 2: Condiciones de PCR y conjuntos de cebadores

Genes deseados	Conjunto de cebadores	Condiciones
MHP30	MHP30F MHP30R	98 °C durante 5 minutos (un ciclo); 94 °C durante 30 segundos, 55 °C durante 30 segundos, 68 °C durante 30 segundos (35 ciclos); 68 °C durante 5 minutos (un ciclo).
P46	P46F P46R	98 °C durante 5 minutos (un ciclo); 94 °C durante 30 segundos, 55 °C durante 30 segundos, 68 °C durante 45 segundos (35 ciclos); 68 °C durante 5 minutos (un ciclo).
NrdFC	NrdCF NrdCR	98 °C durante 5 minutos (un ciclo); 94 °C durante 30 segundos, 55 °C durante 30 segundos, 68 °C durante 30 segundos (35 ciclos); 68 °C durante 5 minutos (un ciclo).
Tuf	TufF TufR	98 °C durante 5 minutos (un ciclo); 94 °C durante 30 segundos, 55 °C durante 30 segundos, 68 °C durante 45 segundos (35 ciclos); 68 °C durante 5 minutos (un ciclo).

Recogida del producto de la PCR y su clonación.

10

20

30

35

45

50

La recogida de los productos de PCR se realizó usando el kit de sistema de limpieza PCR-M™ (GeneMark, Taiwán; los experimentos se llevaron a cabo siguiendo el manual de instrucciones, y no se reitera en el presente documento). Después, se realizó la clonación usando el kit de clonación para PCR CloneJET. Los experimentos de clonación se realizaron de acuerdo con el manual de instrucciones, que se describe brevemente a continuación. En primer lugar, se mezcló el producto de PCR recogido con los reactivos y la ADN ligasa del kit para realizar la reacción de ligadura a 22 ºC durante 30 minutos. A continuación, se transformó la mezcla de ligadura en la cepa ECOSTM 9-5 de E. coli (Yeastern, Taiwán). Las condiciones de transformación se consultaron en el manual. Se transfirieron las bacterias transformadas a 1 ml de medio de recuperación de SOC y se cultivaron a 37 ºC con agitación a 250 rpm. Se colocó una cantidad apropiada de caldo en placas de medio sólido LB con ampicilina (100 μg/ml) y las placas se cultivaron a 37 °C durante 16 horas. Después de eso, se realizó una PCR de colonias para seleccionar las cepas cuya transformación tuvo éxito. La PCR de las colonias se realizó según las siguientes etapas. En primer lugar, se preparó un tubo que contenía una mezcla de PCR de 50 µl de mezcla maestra de PCR 2><Taq (Genomics, Taiwán), 0,5 µl de cebador directo para amplificar el gen deseado, 0,5 µl de cebador inverso para amplificar el gen deseado y 49 µl de aqua estéril. Tras la mezcla, la mezcla de PCR se distribuyó a varios tubos de PCR (10 µl/tubo). Las colonias de las placas mencionadas anteriormente se recogieron al azar en los tubos de PCR respectivamente para la reacción de PCR. Las condiciones de la reacción de PCR son: 95 °C durante 5 minutos (un ciclo); 95 °C durante 30 segundos, 55 °C durante 30 segundos, 72 °C durante X minutos (25 ciclos); 72 °C durante 7 minutos (un ciclo); en las que la "X" dependió del tiempo de extensión requerido por la ADN polimerasa, y se ajustó de acuerdo con el tamaño del fragmento que se iba a amplificar. La tasa de extensión de la ADN polimerasa de Tag es de 1 kb/min; por lo tanto, si el fragmento que se iba a amplificar tenía un tamaño de aproximadamente 1 kb, la "X" se establecería como 1 minuto. Tras la reacción, se realizó una electroforesis en gel para confirmar los resultados de la PCR. Para aquellas cepas de transformación que se confirmaron con éxito, tenían ADN insertado en sus plásmidos recombinantes, los plásmidos se extrajeron para la secuenciación del ADN. Los plásmidos que tenían el gen MHP30, el gen P46, el gen NrdFC y el gen Tuf se denominaron respectivamente pJET-MHP30, pJET-P46, pJET-NrdFC y pJET-Tuf.

Los resultados de la secuenciación de ADN mostraron que P46 colonizado en la presente invención tiene una secuencia de aminoácidos y una secuencia de nucleótidos como la SEQ ID NO 01 y SEQ ID NO 05, respectivamente. Tuf tiene una secuencia de aminoácidos y una secuencia de nucleótidos como la SEQ ID NO 02 y SEQ ID NO 06 respectivamente. MHP30 tiene una secuencia de aminoácidos y una secuencia de nucleótidos como la SEC ID NO 03 y la SEC ID NO 07 respectivamente. NrdFC tiene una secuencia de aminoácidos y una secuencia de nucleótidos como la SEQ ID NO 04 y SEQ ID NO 08, respectivamente.

40 Ejemplo 3: Mutación puntual y clonación del gen P46.

P46 tiene tres codones TGA. El codón TGA se tradujo como triptófano en *Mycoplasma* spp., pero como codón de parada en *E. coli*. Para evitar un fallo en el uso del sistema de expresión de *E. coli* para producir toda la proteína deseada, se debe realizar una mutación puntual en el codón TGA del gen P46 para reemplazarlos como TGG, que es traducido por *E. coli* como triptófano.

El principio para el diseño de cebadores mutacionales para la mutación puntual es que el punto de mutación se encontrará en la zona central del cebador, y que la Tf de los cebadores debe ser superior a 78 °C. La Tf de los cebadores puede calcularse mediante la fórmula proporcionada por Invitrogene: Tf = 81,5 + 0,41 (% de GC) - 675/N - % de desapareamiento. "% de GC" representa el porcentaje de G y C del cebador en cuestión; "N" representa la longitud del cebador en cuestión; "% de desapareamiento" representa el porcentaje de la base que se va a mutar del cebador en cuestión. Los cebadores usados para la mutación puntual del gen P46 se enumeraron en la siguiente

Tabla 3, incluyendo P46F/P46M2, P46M1/P46M4, P46M3/P46M6 y P46M5/P46R.

Tabla 3: Cebadores usados para la mutación puntual del gen P46

Genes deseados	Secuencia del cebador (de 5' a 3')
P46F	SEQ ID NO 11: GATATAGGATCCATGAAAAAAATGCTTAGAAAAAAATTCTTG
P46M2	SEQ ID NO 17: CTCTTTGGGCACTAATCCATCGAGGATTATCCGG
P46M1	SEQ ID NO 18: CCGGATAATCCTCGATGGATTAGTGCCCAAAGAG
P46M4	SEQ ID NO 19: ATTAGCTTGCTGAGTGAGCCAGTTATTTTGTGCATCC
P46M3	SEQ ID NO 20: GGATGCACAAAATAACTGGCTCACTCAGCAAGCTAAT
P46M6	SEQ ID NO 21: CGGCAGTTCCATAATTCCATCCTGGGACATAAAC
P46M5	SEQ ID NO 22: GTTTATGTCCCAGGATGGAATTATGGAACTGCCG
P46R	SEQ ID NO 12: CAATATGTCGACTTAGGCATCAGGATTATCAACATTAGC

Los 50 μl de mezcla de PCR contenían 1 x Tampón de PCR B de GDP-HiFi, 200 μM de mezcla de dATP, dTTP, dGTP y dCTP, tampón de amplificación 1 μM, 100 ng de pJET-P46 y 1 U de ADN polimerasa de GDP-HiFi. Las condiciones de la PCR fueron: 98 °C durante 2 minutos (un ciclo); 94 °C durante 30 segundos, 55 °C durante 30 segundos, 68 °C durante 45 segundos (35 ciclos); 68 °C durante 5 minutos (un ciclo). Tras la reacción de PCR, se realizó la electroforesis en gel para confirmar la existencia del fragmento de ADN amplificado del tamaño esperado.

Los productos de PCR se recogieron usando el kit de sistema de extracción en gel Gel-MTM y los experimentos se realizaron de acuerdo con el manual. Después, los cuatro productos de PCR recogidos se usaron como los moldes para la amplificación de los genes con el conjunto de cebadores P46F/P46R. Las condiciones de la PCR fueron: 98 °C durante 2 minutos (un ciclo); 94 °C durante 30 segundos, 55 °C durante 30 segundos, 68 °C durante 45 segundos (35 ciclos); 68 °C durante 5 minutos (un ciclo). Después de eso, se puede obtener la longitud completa del gen P46 sometido a mutación puntual. Los productos de PCR se recogieron mediante el uso del kit de sistema de limpieza PCR-MTM (GeneMark, Taiwán). Y la clonación del gen de mutación se realizó con el kit de clonación para PCR CloneJET. Para aquellas cepas de transformación que se confirmaron, mediante PCR de colonias, se logró insertar el ADN en sus plásmidos recombinantes, los plásmidos se extrajeron para la secuenciación del ADN. El plásmido que tenía el gen P46 mutado se denominó pJET-P46M.

Ejemplo 4: Establecimiento del presente vector de expresión de antígeno de M. hyopneumoniae.

Los plásmidos que tenían varias parejas de fusión se usaron como estructura principal para el establecimiento del vector de expresión de antígeno de *M. hyopneumoniae*. Los genes de parejas de fusión usados fueron MsyB de *E. coli*, YjgD de *E. coli*, el péptido parcial de GroS que contiene 17 aminoácidos (GroS17) de *E. coli*, GroES de *Bacillus subtilis*, TrxA de *Alicyclobacillus acidocaldarius*, SUMO de *S. cerevisiae*, Proteína D del bacteriófago phiX174 y Vgb de *Vitreoscilla* spp. El establecimiento se realizó de la siguiente manera:

30 1. El establecimiento del vector de expresión de MHP30.

10

15

20

35

40

45

El corte de pJET-MHP30 con *BamH*I y *Sal*I y el fragmento de ADN resultante se ligó en un plásmido de expresión de fusión previamente cortado por las mismas enzimas de restricción. El producto de ligadura se transformó luego en ECOS 9-5 de *E. coli*. Las cepas de transformación se seleccionaron mediante PCR de colonias y se confirmó si había fragmentos de ADN del tamaño esperado mediante el uso de electroforesis de ADN. Para aquellas cepas de transformación que se confirmaron con éxito, tenían ADN insertado en sus plásmidos recombinantes, los plásmidos se extrajeron para la secuenciación del ADN. Los plásmidos que tienen la secuencia de ADN correcta se denominaron respectivamente pET-MSY-MHP30, pET-YjgD-MHP30, pET-GroS17-MHP30, pET-GroES-MHP30, pET-TrxA-MHP30, pET-SUMO-MHP30, pET-D-MHP30 y pET-Vygb-MHP30.

2. El establecimiento del vector de expresión de P46.

El corte de pJET-P46M con *BamH*I y *Sal*I y los siguientes experimentos se realizaron refiriéndose a las etapas de establecimiento mencionadas anteriormente del vector de expresión de MHP30. Los plásmidos que tenían la secuencia de ADN correcta se denominaron respectivamente pET-D-P46M y pET-MSY-P46M.

3. El establecimiento del vector de expresión de NrdFC.

El corte de pJET-NrdFC con *BamH*I y *Sal*I y los siguientes experimentos se realizaron refiriéndose a las etapas de establecimiento mencionadas anteriormente del vector de expresión de MHP30. Los plásmidos que tenían la secuencia de ADN correcta se denominaron respectivamente pET-D-NrdFC y pET-MSY-NrdFC.

- 4. El establecimiento del vector de expresión de Tuf.
- 55 El corte de pJET-Tuf con BamHI y Sall y los siguientes experimentos se realizaron refiriéndose a las etapas de establecimiento mencionadas anteriormente del vector de expresión de MHP30. Los plásmidos que tienen la

secuencia de ADN correcta se denominaron respectivamente pET-D-Tuf y pET-MSY-Tuf.

Ejemplo 5: Expresión de antígenos de M. hyopneumoniae recombinantes y purificación de los mismos.

Respecto a la expresión de los antígenos deseados

10

15

20

25

30

35

40

Los vectores de expresión de antígeno se transformaron en BL21 de *E. coli* (DE3). Se seleccionó una colonia individual y se inoculó en medio LB que contenía kanamicina a una concentración final de 30 μg/ml, y se cultivó en condiciones de 37 °C y 180 rpm durante la noche. A continuación, se inoculó el caldo en medio LB recién preparado (que contenía kanamicina de concentración final de 30 μg/ml) en una proporción de 1:100 y en condiciones de cultivo de 37 °C y 180 rpm hasta que el valor de DO₆₀₀ del mismo alcanzó aproximadamente 0,6□0,8. Se añadió 0,1 mM de IPTG para inducir la expresión de la proteína deseada durante 4 horas. Después, se colocó el caldo bajo centrifugación (10.000 ×g, 10 minutos, 4 °C) y se recogió el sedimento. Después de eso, se separaron la porción soluble y la porción insoluble del mismo usando el kit de extracción de proteínas bacterianas Easy-Lyse (Epicenter, EE.UU.). La electroforesis de proteínas se realizó para observar la solubilidad de los antígenos recombinantes producidos.

Las Figuras 1 y 2 mostraron respectivamente diferente solubilidad de MHP30 tras usar varias parejas de fusión en la expresión; y diferente solubilidad de P46, NrdFC y Tuf tras usar varias parejas de fusión en la expresión. Los resultados indicaron que el uso de YjgD, SUMO, GroS17, GroES, Vgb o TrxA como pareja de fusión puede aumentar la solubilidad de MHP30. Por otro lado, el uso de MsyB como pareja de fusión puede proporcionar una solubilidad excelente de P46, NrdFC y Tuf.

Respecto a la purificación de los antígenos deseados

Aprovechando el hecho de que el marcador de Hig N' de la proteína recombinante puede formar enlace covalente coordinado con los iones de níquel o de cobalto, se usó cromatografía de afinidad de metal inmovilizado (IMAC) para la purificación de proteínas. El protocolo de purificación de proteínas se consultó en el QIA expressionist™ (cuarta edición, Qiagen). El sedimento se suspendió en tampón de lisis (NaH₂PO₄ 50 mM, NaCl 300 mM, imidazol 10 mM, pH 8,0) y se rompió mediante un homogenizador. Después, se realizó una centrifugación, y se recogió el sobrenadante. El sobrenadante recogido se introdujo en una columna de resina (1 ml de Ni-NTA) en la que se uniría el antígeno recombinante. Después de eso, se añadieron 15 ml de tampón de lavado (NaH₂PO₄ 50 mM, NaCl 300 mM, imidazol 20 mM, pH 8,0) para lavar la resina dentro de la columna con el fin de eliminar la unión inespecífica de proteínas. Finalmente, se introdujeron 20 ml de tampón de elución (NaH₂PO₄ 50 mM, NaCl 300 mM, imidazol 250 mM, pH 8,0) para eluir los antígenos en la resina. El tampón de elución contenía una alta concentración de imidazol para competir por el sitio de unión en la resina con las proteínas recombinantes, de modo que las proteínas recombinantes se pudieran lavar de la resina. El resultado de la purificación se observó mediante electroforesis de proteínas. De acuerdo con la Figura 3, se mostró claramente que el marcador de His marcado en N' de los presentes antígenos recombinantes fue favorable para purificar los presentes antígenos recombinantes mediante IMAC.

Ejemplo 6: Ensayos con antisueros de ratones.

En este ejemplo, se usaron ratones BALB/c hembra de 5 semanas (Centro Nacional de Animales de Laboratorio).

Los ratones se mantuvieron en una sala convencional para animales con aire acondicionado, y se recibieron comida y agua limpia. La exposición inmunitaria se realizó tras criar a los ratones durante 7 días. Se mezclaron los antígenos recombinantes purificados en los ejemplos mencionados anteriormente con adyuvante como una mezcla (adyuvante completo de Freund o adyuvante incompleto de Freund) a través de un conector de tres vías, y se inyectaron por vía subcutánea a los ratones. La primera inyección fue una formulación de adyuvante completo de Freund. Tras 7 días de la primera inyección, los ratones recibieron por inyección una formulación de adyuvante incompleto de Freund dos veces en un intervalo de 7 días. Tras 7 días a partir de la segunda inyección, se extrajo sangre de la órbita ocular de los ratones.

Se colocaron las muestras de sangre recogidas en la temperatura ambiente durante 1 hora y se colocaron a 4 °C durante la noche para dejar que la sangre se coagulara. Después, las muestras se sometieron a centrifugación (5.000 xg) durante 30 minutos, obteniéndose el antisuero, que contenía un anticuerpo específico contra el antígeno recombinante.

A continuación, se usó el antisuero obtenido contra el lisado celular total de *M. hyopneumoniae*. El protocolo experimental fue: suspender PRIT-5 de *M. hyopneumoniae* en el tampón SET (glucosa 50 mM, HCl 25 mM, EDTA 10 mM, pH 8,0) y añadir 5 x tampón de muestra (Tris-HCl 312,5 mM (pH 6,8), glicerol al 50 %, SDS al 10 %, azul de bromofenol al 0,05 %); calentar la muestra a 100 °C durante 5 minutos tras mezclar bien la muestra con el tampón mencionado anteriormente. Después, se realizó la electroforesis de proteínas. El gel, tras la electroforesis de proteínas, se sumergió en un tampón de transferencia (base Tris 25 mM, glicina 192 mM, metanol al 10 % (v/v), pH 8,3). Se enjuagó la membrana de PVDF del tamaño adecuado con metanol durante unos segundos, se lavó con agua desionizada y luego se sumergió en tampón de transferencia. Tras sumergir el gel y la membrana de PVDF en

tampón de transferencia durante 15 minutos, se colocaron por orden un papel de filtro, el gel, la membrana de PVDF y otro papel de filtro en una Celda de Transferencia Semiseca Trans-Blot SD para realizar la transferencia bajo un suministro eléctrico adecuado. Tras realizar la transferencia, la membrana de PVDF se sumergió en 20 ml de tampón de bloque (Tris 20 mM, NaCl 150 mM, leche desnatada al 5 %, pH 7,4) a temperatura ambiente durante 1 hora, y se añadieron 10 µl de antígeno recombinante en (dilución x2.000). Tras agitar a temperatura ambiente durante 1 hora, se desechó el tampón de bloqueo y la membrana de PVDF se realizó mediante 20 ml de tampón TBST (Tris 20 mM, NaCl 150 mM, Tween-20 al 0,05 %, pH 7,4) tres veces (5 minutos por cada uno). Luego se añadieron 20 ml de tampón de bloqueo y 4 µl de IgG anti-ratón de cabra conjugada con fosfatasa alcalina (H + L), y se agitó la mezcla a temperatura ambiente durante 1 hora. Después de eso, se lavó la membrana de PVDF con tampón de TBST tres veces y se añadió reactivo NBT/BCIP para la detección.

El resultado mostró que la mezcla del presente antígeno recombinante y adyuvante adecuado hizo inducir anticuerpos contra el antígeno en los ratones. Es decir, las presentes proteínas tenían potencial para ser inmunógenas (Figura 4).

Ejemplo 7: Pruebas inmunológicas y de exposición en cerdos.

1. Preparación de las vacunas.

10

15

25

30

35

40

45

50

- 20 Se mezclaron uno más de los antígenos recombinantes purificados de los ejemplos anteriormente mencionados con un adyuvante, obteniéndose las vacunas de subunidades o vacunas combinadas deseadas. La dosis de cada vacuna preparada fue de 2 ml, que contenía 200 µg de cada tipo de las presentes proteínas añadidas.
 - 2. Pruebas inmunológicas porcinas.

Las vacunas de subunidades o vacunas combinadas anteriormente mencionadas se usaron para las pruebas inmunológicas porcinas. Se adquirieron cerdos SPF de 2 semanas de la granja de cerdos SPF de la segunda generación del Animal Technology Institute Taiwán. Todos los cerdos se mantuvieron y se alimentaron por igual en la granja de cerdos SPF.

Las vacunas (2 ml) se inyectaron por vía intramuscular a los cerdos cuando alcanzaron la edad de 21 días, y se extrajo sangre a los 21, 42, 70 y 98 días para aislar el suero. Se usó el kit de ensayos de anticuerpos de Mycoplasma spp. (IDEXX) para analizar los anticuerpos séricos recogidos. La operación fue la siguiente. En primer lugar, se mezclaron suavemente 10 µl de suero con 390 µl de diluyentes de muestra, obteniéndose una mezcla. Se añadieron 100 µl de la mezcla a los pocillos de una placa de 96 pocillos, que ya tenían antígeno de Mycoplasma spp. en el interior. Además, se añadieron 100 µl de suero positivo y de suero negativo a diferentes pocillos de la placa como controles. La placa se colocó a temperatura ambiente durante 30 minutos. Después, se desechó el líquido de la placa y se añadieron 350 µl de tampón de lavado tres veces para el lavado. Luego se añadieron 350 µl de peroxidasa de rábano picante marcada con anticuerpos anti-porcinos a la placa, y la placa se colocó a temperatura ambiente durante 30 minutos. Después de eso, se desechó el líquido de la placa y se añadieron 350 µl de tampón de lavado tres veces para el lavado. Se añadieron 100 µl de solución de sustrato TMB a la placa, y la placa se colocó a temperatura ambiente durante 15 minutos. Después, se añadieron 100 µl de tampón de detención para terminar la reacción de color. Finalmente, se evaluó la absorbancia de cada pocillo a 650 nm por un lector ELISA para el cálculo del valor S/P. Valor S/P = (absorbancia de DO₆₅₀ del grupo de ensayo - absorbancia de DO₆₅₀ del grupo de control negativo)/(absorbancia de DO₆₅₀ del grupo de control positivo - absorbancia de DO₆₅₀ del grupo de control negativo). Cuanto mayor sea el valor S/P, más anticuerpos contra las proteínas de M. hyopneumoniae. Los resultados del experimento mostraron que los antígenos presentes eran capaces de inducir una respuesta inmunitaria; en los que la vacuna de P46 y la vacuna combinada (contenía los cuatro antígenos en una vacuna: P46, Tuf, MHP30 y NrdFC) mostraron el mejor efecto de inducción, y la respuesta inmunitaria inducida se pudo mantener hasta la edad de 14 semanas (Figura 5).

- 3. Ensayos de exposición porcinos.
- La vacuna de MH-PRIT-5 Bayovac® preparada usando PRIT-5 de *M. hyopneumoniae* se usó en este experimento como control para evaluar la eficacia inmunitaria de la presente vacuna de subunidades y vacuna combinada. Se adquirieron cerdos SPF de 4 semanas de la granja de cerdos SPF de la segunda generación del Animal Technology Institute Taiwán. Todos los cerdos se mantuvieron y se alimentaron por igual en la granja de cerdos SPF.
- El caldo bacteriano de *M. hyopneumoniae* usado para los ensayos de exposición fue preparado mediante: se recogió un tejido pulmonar porcino (de aproximadamente 3 × 3 cm²) infectado por *M. hyopneumoniae*, y se trituró en 20 ml de medio de Friis. Tras la centrifugación (148,8 ×g) durante 10 minutos, se transfirió el sobrenadante a un tubo limpio para la centrifugación (7.870 ×g) durante otros 40 minutos. Después, se desechó el sobrenadante y se volvió a suspender la precipitación con 6 ml de medio de Friis, obteniéndose una suspensión. Después de eso, se filtró la suspensión secuencialmente con filtros de 5 μm y 0,45 μm, obteniéndose el caldo bacteriano de exposición necesario para este experimento.

Las vacunas (2 ml) se inyectaron por vía intramuscular a los cerdos cuando alcanzaron la edad de 35 días. Se realizó otra inyección a la edad de 49 días de la misma manera. A la edad de 63 días, los cerdos inmunizados se anestesiaron y se expusieron administrando el caldo bacteriano de exposición (5 ml) a través de la tráquea. Tras 28 días a partir del día de la prueba, se sacrificaron los cerdos y se extrajeron los pulmones para evaluar el efecto inmunitario. La evaluación del efecto inmunitario se realizó de acuerdo con los siguientes criterios: se puntuó con 10 puntos uno cualquiera de los lóbulos superiores intermedios y lóbulos superiores de cualquier lado del pulmón en los que se observó un rasgo patológico; Se puntuaron con 5 puntos cualquiera de los lóbulos superiores intermedios y lóbulos diafragmáticos de cualquier lado del pulmón en los que se observó un rasgo patológico. La puntuación total fue de 55 puntos. Los registros de las observaciones se muestran en la Tabla 4.

10

Tabla 4: Evaluación de la lesión pulmonar en los ensavos de exposición

Antígeno/s	Punto de la lesión pulmonar
MHP30	27
P46	25
NrdFC	26
Tuf	23
MHP30+NrdFC+P46+Tuf	17
Vacuna de PRIT-5 (control positivo)	23
No se usó vacuna (control negativo)	30

De acuerdo con los datos mostrados en la Tabla 4, es evidente que las vacunas de subunidades de la presente invención fueron capaces de proporcionar efectos inmunitarios equivalentes a los de la vacuna convencional (MH-PRIT-5 de Bayovac®). Además, la vacuna combinada (contenía los cuatro antígenos en una vacuna: P46, Tuf, MHP30 y NrdFC) presentó un efecto inmunitario significativamente mejor que la vacuna convencional. En resumen, las presentes proteínas son, de hecho, adecuadas para su aplicación como principios activos de vacunas, y esas proteínas presentaron un efecto sinérgico mientras se usaban en combinación como vacuna combinada.

20 Los expertos en la materia pueden entender fácilmente las posibles modificaciones basándose en la divulgación de la presente invención sin apartarse del alcance de la misma. Por lo tanto, los ejemplos anteriores no se usarán para limitar la presente invención, sino que pretenden cubrir cualquier posible modificación dentro del alcance de la presente invención de acuerdo con las reivindicaciones que se citan a continuación.

25 Listado de secuencias

<110> INSTITUTO DE INVESTIGACIÓN DE TECNOLOGÍA AGRÍCOLA

<120> Composición para prevenir una infección por Mycoplasma spp.

30

<130>

<160>22

35 <170> PatentIn versión 3.5

<210> 1

<211>419

<212> PRT

40 <213> Mycoplasma hyopneumoniae

<400> 1

Met 1	Lys	Lys	Met	Leu 5	Arg	Lys	Lys	Phe	Leu 10	Tyr	Ser	Ser	Ala	Ile 15	Tyr
Ala	Thr	Ser	Leu 20	Ala	Ser	Ile	Ile	Ala 25	Phe	Val	Ala	Ala	Gly 30	Cys	Gly
Gln	Thr	Glu 35	Ser	Gly	Ser	Thr	Ser 40	Asp	Ser	Lys	Pro	Gln 45	Ala	Glu	Thr
Leu	Lys 50	His	Lys	Val	Ser	Asn 55	Asp	Ser	Ile	Arg	Ile 60	Ala	Leu	Thr	Asp
Pro 65	Asp	Asn	Pro	Arg	Trp 70	Ile	Ser	Ala	Gln	Arg 75	Asp	Ile	Ile	Ser	Tyr 80
Val	Asp	Glu	Thr	Glu 85	Ala	Ala	Thr	Ser	Thr 90	Ile	Thr	Lys	Asn	Gln 95	Asp
Ala	Gln	Asn	Asn 100	Trp	Leu	Thr	Gln	Gln 105	Ala	Asn	Leu	Ser	Pro 110	Ala	Pro
Lys	Gly	Phe 115	Ile	Ile	Ala	Pro	Glu 120	Asn	Gly	Ser	Gly	Val 125	Gly	Thr	Ala
Val	Asn 130	Thr	Ile	Ala	Asp	Lys 135	Gly	Ile	Pro	Ile	Val 140	Ala	Tyr	Asp	Arg
Leu 145	Ile	Thr	Gly	Ser	Asp 150	Lys	Tyr	Asp	Trp	Tyr 155	Val	Ser	Phe	Asp	Asn 160
Glu	Lys	Val	Gly	Glu 165	Leu	Gln	Gly	Leu	Ser 170	Leu	Ala	Ala	Gly	Leu 175	Leu

Gly	Lys	Glu	Asp 180	Gly	Ala	Phe	Asp	Ser 185	Ile	Asp	Gln	Met	Asn 190	Glu	Tyr
Leu	Lys	Ser 195	His	Met	Pro	Gln	Glu 200	Thr	Ile	Ser	Phe	Tyr 205	Thr	Ile	Ala
Gly	Ser 210	Gln	Asp	Asp	Asn	Asn 215	Ser	Gln	Tyr	Phe	Tyr 220	Asn	Gly	Ala	Met
Lys 225	Val	Leu	Lys	Glu	Leu 230	Met	Lys	Asn	Ser	Gln 235	Asn	Lys	Ile	Ile	Asp 240
Leu	Ser	Pro	Glu	Gly 245	Glu	Asn	Ala	Val	Tyr 250	Val	Pro	Gly	Trp	Asn 255	Tyr
Gly	Thr	Ala	Gly 260	Gln	Arg	Ile	Gln	Ser 265	Phe	Leu	Thr	Ile	Asn 270	Lys	Asp
Pro	Ala	Gly 275	Gly	Asn	Lys	Ile	Lys 280	Ala	Val	Gly	Ser	Lys 285	Pro	Ala	Ser
Ile	Phe 290	Lys	Gly	Phe	Leu	Ala 295	Pro	Asn	Asp	Gly	Met 300	Ala	Glu	Gln	Ala
Ile 305	Thr	Lys	Leu	Lys	Leu 310	Glu	Gly	Phe	Asp	Thr 315	Gln	Lys	Ile	Phe	Val 320
Thr	Gly	Gln	Asp	Tyr 325	Asn	Asp	Lys	Ala	Lys 330	Thr	Phe	Ile	Lys	Asp 335	Gly
Asp	Gln	Asn	Met 340	Thr	Ile	Tyr	Lys	Pro 345	Asp	Lys	Val	Leu	Gly 350	Lys	Val
Ala	Val	Glu 355	Val	Leu	Arg	Val	Leu 360	Ile	Ala	Lys	Lys	Asn 365	Lys	Ala	Ser
Arg	Ser 370	Glu	Val	Glu	Asn	Glu 375	Leu	Lys	Ala	Lys	Leu 380	Pro	Asn	Ile	Ser
Phe 385	Lys	Tyr	Asp	Asn	Gln 390	Thr	Tyr	Lys	Val	Gln 395	Asp	Lys	Asn	Ile	Asn 400
Thr	Ile	Leu	Val	Ser 405	Pro	Val	Ile	Val	Thr 410	Lys	Ala	Asn	Val	Asp 415	Asn

Pro Asp Ala

<210> 2
5 <211> 402
 <212> PRT
 <213> Mycoplasma hyopneumoniae

<400> 2

меt 1	Ата	vai	vai	Lys 5	rnr	Thr	сту	туѕ	10	Asp	Pne	Asp	Arg	15	туѕ
Glu	His	Ile	Asn 20	Ile	Gly	Thr	Ile	Gly 25	His	Val	Asp	His	Gly 30	Lys	Thr
Thr	Leu	Thr 35	Ala	Ala	Ile	Ser	Thr 40	Val	Leu	Ala	Lys	Arg 45	Gly	Leu	Ala
Glu	Ala 50	Lys	Asp	Tyr	Ala	Ser 55	Ile	Asp	Ala	Ala	Pro 60	Glu	Glu	Lys	Ala
Arg 65	Gly	Ile	Thr	Ile	Asn 70	Thr	Ala	His	Ile	Glu 75	Tyr	Ser	Thr	Asp	Lys 80
Arg	His	Tyr	Ala	His 85	Val	Asp	Cys	Pro	Gly 90	His	Ala	Asp	Tyr	Ile 95	Lys
Asn	Met	Ile	Thr 100	Gly	Ala	Ala	Gln	Met 105	Asp	Gly	Ala	Ile	Leu 110	Val	Val
Ala	Ala	Thr 115	Asp	Gly	Pro	Met	Pro 120	Gln	Thr	Arg	Glu	His 125	Ile	Leu	Leu
Ser	Lys 130	Gln	Val	Gly	Val	Pro 135	Lys	Met	Val	Val	Phe 140	Leu	Asn	Lys	Ile
Asp 145	Leu	Leu	Glu	Gly	Glu 150	Glu	Glu	Met	Val	Asp 155	Leu	Val	Glu	Val	Glu 160
Ile	Arg	Glu	Leu	Leu 165	Ser	Ser	Tyr	Asp	Phe 170	Asp	Gly	Asp	Asn	Thr 175	Pro
Ile	Ile	Arg	Gly 180	Ser	Ala	Arg	Gly	Ala 185	Leu	Glu	Gly	Lys	Pro 190	Glu	Trp
Glu	Ala	Lys 195	Val	Leu	Glu	Leu	Met 200	Asp	Ala	Val	Asp	Ser 205	Tyr	Ile	Asp
Ser	Pro 210	Val	Arg	Glu	Met	Asp 215	Lys	Pro	Phe	Leu	Met 220	Ala	Val	Glu	Asp

	Val 225	Phe	Thr	Ile	Thr	Gly 230	Arg	Gly	Thr	Val	Ala 235	Thr	Gly	Lys	Val	Glu 240
	Arg	Gly	Gln	Val	Lys 245	Leu	Asn	Glu	Glu	Val 250	Glu	Ile	Val	Gly	Tyr 255	Arg
	Glu	Glu	Pro	Lys 260	Lys	Thr	Val	Ile	Thr 265	Gly	Ile	Glu	Met	Phe 270	Asn	Lys
	Asn	Leu	Gln 275	Thr	Ala	Met	Ala	Gly 280	Asp	Asn	Ala	Gly	Val 285	Leu	Leu	Arg
	Gly	Val 290	Asp	Arg	Lys	Asp	Ile 295	Glu	Arg	Gly	Gln	Val 300	Ile	Ala	Lys	Pro
	Lys 305	Thr	Ile	Ile	Pro	His 310	Thr	Lys	Phe	Lys	Ala 315	Ala	Ile	Tyr	Ala	Leu 320
	Lys	Lys	Glu	Glu	Gly 325	Gly	Arg	His	Thr	Pro 330	Phe	Phe	Lys	Asn	Tyr 335	Lys
	Pro	Gln	Phe	Tyr 340	Phe	Arg	Thr	Thr	Asp 345	Val	Thr	Gly	Gly	Ile 350	Glu	Phe
	Glu	Pro	Gly 355	Arg	Glu	Met	Val	Ile 360	Pro	Gly	Asp	Asn	Val 365	Asp	Leu	Thr
	Val	Glu 370	Leu	Ile	Ala	Pro	Ile 375	Ala	Val	Glu	Gln	Gly 380	Thr	Lys	Phe	Ser
	Ile 385	Arg	Glu	Gly	Gly	Arg 390	Thr	Val	Gly	Ala	Gly 395	Thr	Val	Thr	Glu	Ile 400
lle Lys																
<210> 3 <211>282 <212> PRT <213> <i>Myd</i>		ma hy	/opne	umon	niae											
<400> 3																
	Ala	Lvs	Leu	Asp	Asp	Asn	T. 2 11	Gln	Tur	Ser	Phe	Glu	Ala	Ile	Lvs	Lvs

5

10

Lys	Glu	Leu 35	Asp	Asn	Lys	Ile	Lys 40	Gly	Ile	Leu	Pro	Gln 45	Pro	Pro	Ala
Ala	Lys 50	Pro	Glu	Ala	Ala	Lys 55	Pro	Val	Ala	Ala	Lys 60	Pro	Glu	Ala	Ala
Lys 65	Pro	Val	Ala	Ala	Lys 70	Pro	Glu	Ala	Ala	Lys 75	Pro	Val	Ala	Ala	Lys 80
Pro	Glu	Ala	Ala	Lys 85	Pro	Val	Ala	Ala	Lys 90	Pro	Glu	Ala	Ala	Lys 95	Pro
Val	Ala	Ala	Lys 100	Pro	Glu	Ala	Ala	Lys 105	Pro	Val	Ala	Ala	Lys 110	Pro	Glu
Ala	Ala	Lys 115	Pro	Val	Ala	Thr	Asn 120	Thr	Gly	Phe	Ser	Leu 125	Thr	Asn	Lys
Pro	Lys 130	Glu	Asp	Tyr	Phe	Pro 135	Met	Ala	Phe	Ser	Tyr 140	Lys	Leu	Glu	Tyr
Thr 145	Asp	Glu	Asn	Lys	Leu 150	Ser	Pro	Lys	Thr	Pro 155	Glu	Ile	Asn	Val	Phe 160
Leu	Glu	Leu	Val	His 165	Gln	Ser	Glu	Tyr	Glu 170	Glu	Gln	Lys	Ile	Ile 175	Lys
Glu	Leu	Asp	Lys 180	Thr	Val	Leu	Asn	Leu 185	Gln	Tyr	Gln	Phe	Gln 190	Glu	Val
Lys	Val	Ala 195	Ser	Asp	Gln	Tyr	Gln 200	Lys	Leu	Ser	His	Pro 205	Met	Met	Thr
Glu	Gly 210	Ser	Ser	Asn	Gln	Gly 215	Lys	Lys	Ala	Glu	Gly 220	Ala	Pro	Asn	Gln
Gly 225	Lys	Lys	Ala	Glu	Gly 230	Ala	Pro	Asn	Gln	Gly 235	Lys	Lys	Ala	Glu	Gly 240
Ala	Pro	Ser	Gln	Gly 245	Lys	Lys	Ala	Glu	Gly 250	Thr	Ser	Asn	Gln	Gln 255	Ser
Pro	Thr	Thr	Glu 260	Leu	Thr	Asn	Tyr	Leu 265	Pro	Asp	Leu	Gly	Lys 270	Lys	Ile
Asp	Glu	Ile 275	Ile	Lys	Lys	Gln	Gly 280	Lys	Asn						

<210> 4

	<211> <212> <213>	96 PRT	'asma	hyopi	neumo	oniae												
5	<400>	4																
		Asp 1	Leu	Leu	Tyr	Lys 5	Leu	Ile	Glu	Leu	Glu 10	Lys	Asp	Tyr	Leu	Tyr 15	Asp	
		Leu	Tyr	Ser	Glu 20	Val	Gly	Leu	Ala	Glu 25	Ser	Ala	Ile	Lys	Phe 30	Ser	Ile	
		Tyr	Asn	Ala 35	Gly	Lys	Phe	Leu	Gln 40	Asn	Leu	Gly	Tyr	Asp 45	Ser	Pro	Phe	
		Ser	Lys 50	Glu	Glu	Thr	Glu	Ile 55	Glu	Pro	Glu	Ile	Phe 60	Ser	Gln	Leu	Ser	
		Ala 65	Arg	Ala	Asp	Glu	Asn 70	His	Asp	Phe	Phe	Ser 75	Gly	Asn	Gly	Ser	Ser 80	
		Tyr	Val	Met	Ala	Leu 85	Ala	Glu	Glu	Thr	Glu 90	Asp	Glu	Asp	Trp	Glu 95	Phe	
10	<210> <211> <212> <213>	1260 ADN	lasma	hyopi	neumo	oniae												
15	<400>	5																
	ato	gaaaaa	aaa t	gctt	agaa	a aa	aatto	cttg	tatt	cato	cag d	ctatt	tatg	c aa	cttc	gctt		60
	gca	atcaat	ta t	tgca	tttg	t tg	cagca	aggt	tgtç	ggaca	aga d	cagaa	tcag	g tt	cgac	ttca		120
	gat	tctaa	aac c	acaa	gccg	a ga	ctcta	aaaa	cata	aagt	aa q	gtaat	gatt	c ta	ttcg	aata		180
		actaac																240
		gatga																300
		actcac																360 420
		cggaag																480
	_	aaagt	_					_		_		_	_		_			540
		gettt																600
		aattto																660

720

aatggtgcaa tgaaagtact taaagaatta atgaaaaatt cgcaaaataa aataattgat

ttatctcctg	aaggcgaaaa	tgctgtttat	gtcccaggat	gaaattatgg	aactgccggt	780
caaagaatcc	aatcttttct	aacaattaac	aaagatccag	caggtggtaa	taaaatcaaa	840
gctgttggtt	caaaaccagc	ttctattttc	aaaggatttc	ttgccccaaa	tgatggaatg	900
gccgaacaag	caatcaccaa	attaaaactt	gaaggatttg	atacccaaaa	aatctttgta	960
actggtcaag	attataatga	taaagccaaa	acttttatca	aagacggcga	tcaaaatatg	1020
acaatttata	aacctgataa	agttttagga	aaagttgctg	ttgaagttct	tcgggtttta	1080
attgcaaaga	aaaataaagc	atctagatca	gaagtcgaaa	acgaactaaa	agcaaagcta	1140
ccaaatattt	catttaaata	tgataatcaa	acatataaag	tacaagataa	aaatattaat	1200
acaattttag	taagtccagt	aattgttaca	aaagctaatg	ttgataatcc	tgatgcctaa	1260

<210> 6 <211> 1209 <212> ADN <213> Mycoplasma hyopneumoniae

<400> 6

atggcagttg ttaaaacgac agga	aaaaaaa gactttgatc	gttccaaaga	acatattaat	60
attggaacaa ttggtcatgt tgad	ccatgga aaaacaacac	taacagcagc	aatttcaact	120
gttttggcaa aaagaggact cgcq	ggaggca aaggattatg	cctcaattga	tgcagctcct	180
gaagaaaaag cacgaggaat taca	aattaat accgcccata	ttgaatatag	cactgacaaa	240
cggcactatg cccatgttga ttgc	cccaggt catgccgatt	atataaaaaa	tatgatcacc	300
ggagcggccc aaatggatgg agca	aatttta gtggttgcag	caaccgatgg	cccaatgcct	360
caaactcgtg aacacatttt atta	atcaaaa caagttggtg	tcccaaaaat	ggttgttttc	420
cttaataaaa ttgacttact tgaa	aggcgaa gaagaaatgg	ttgatttagt	tgaggtcgaa	480
attcgcgaac ttctttcttc ttat	gatttt gatggcgata	atactccaat	tattcgggga	540
tctgctcgtg gggcccttga agga	aaaacct gaatgggagg	caaaagtact	tgaattgatg	600
gacgcagttg attcttatat tgac	ctcacct gttcgggaaa	tggataaacc	ctttttgatg	660
gccgttgagg atgtttttac aatt	acagga cgtggaaccg	tagcaacggg	aaaagttgaa	720
agaggtcaag ttaaactaaa cgaa	agaagtg gaaattgtgg	gttatcgcga	agaacctaaa	780
aagaccgtaa tcaccggaat tgaa	aatgttt aataaaaatc	ttcaaactgc	gatggctggg	840
gataatgccg gtgttctcct acgt	ggagta gatcgaaaag	atatcgaacg	tggtcaggtt	900
attgcaaaac caaaaacaat tata	accgcat acaaaattta	aagctgcaat	ttatgccctt	960
aaaaaagaag aaggcggaag gcat	cacacca tttttcaaaa	attataaacc	acaattttat	1020
tttcgaacta ccgatgtaac aggo	eggaate gagtttgaac	caggtcgcga	gatggtaatt	1080
ccgggggata atgttgatct tacc	ogttgaa ttaattgooc	caattgccgt	tgagcaggga	1140
accaaattct cgatccgaga aggt	iggtaga accgtgggtg	ccggaacagt	taccgaaatt	1200
attaaataa				1209

<210> 7

5

<211> 849

<212> ADN

<213> Mycoplasma hyopneumoniae

<400> 7

	gcaaaattag acgat	aatct tcagtattca	tttgaagcta	tcaaaaaagg	ggaaactaca	60
	aaagaaggta aaaga	gaaga agtagataaa	aaagttaagg	aattagataa	taaaataaaa	120
	ggtatattgc ctcac	ccccc agcggctaaa	ccagaagcag	caaaaccagt	agcggctaaa	180
	ccagaagcag caaaa	ccagt agcggctaaa	cctgaagcag	caaaaccagt	agcggctaaa	240
	cctgaagcag caaaa	ccagt tgcggctaaa	cctgaagcag	caaaaccagt	tgcggctaaa	300
	cctgaagcag caaaa	ccagt tgcagctaaa	cctgaagcag	caaaaccagt	tgctactaat	360
	actggctttt cactt	acaaa taaaccaaaa	gaagactatt	tcccaatggc	ttttagttat	420
	aaattagaat atact	gacga aaataaatta	agcccaaaaa	caccggaaat	taatgtattt	480
	ttagaactag ttcat	caaag cgagtatgaa	gaacaaaaaa	taataaagga	actagacaaa	540
	actgttttaa atctt	caata tcaattccag	gaagtcaagg	tagctagtga	tcaatatcag	600
	aaacttagcc accca	atgat gaccgaggga	tcttcaaatc	aaggtaaaaa	agcagaggga	660
	gctcctaacc aaggo	aaaaa agcagaggga	gctcctaacc	aagggaaaaa	agcagagggc	720
	gctcctagtc aagga	aaaaa agccgaagga	acttctaacc	aacaaagccc	aactaccgaa	780
	ttaactaatt acctt	cctga cttaggtaaa	aaaattgacg	aaatcattaa	aaaacaaggt	840
	aaaaattaa					849
5	<210> 8 <211> 291 <212> ADN <213> Mycoplasma hyopne <400> 8	umoniae				
	gatctattat ataaa	ctaat tgaattagaa	aaagattatc	tctatgattt	atattctgaa	60
	gttggacttg ctgaa	tcagc aataaaattt	agcatttata	atgccgggaa	attcttgcaa	120
	aatctaggat atgat	tcacc tttttcaaaa	gaggaaaccg	aaattgaacc	tgaaattttt	180
	agtcaattat cggct	cgagc tgatgaaaat	catgactttt	tttcaggaaa	tggctcttct	240
10	tatgtaatgg cgctt	gctga agaaaccgaa	gatgaagatt	gggagtttta	a	291
15	<210> 9 <211> 42 <212> ADN <213> Secuencia artificial					
	<220> <223> CEBADOR					
20	<400> 9 gatataggat ccgcaaaatt agac	gataat cttcagtatt ca		42		
25	<210> 10 <211> 45 <212> ADN <213> Secuencia artificial					
30	<220> <223> CEBADOR <400> 10 caatatgtcg acttaatttt taccttgtt	t tttaatgatt tcgtc		45		

20

	<210> 11 <211> 42 <212> ADN <213> Secuencia artificial	
5	<220> <223> CEBADOR	
10	<400> 11 gatataggat ccatgaaaaa aatgcttaga aaaaaattct tg	42
15	<210> 12 <211> 39 <212> ADN <213> Secuencia artificial	
	<220> <223> CEBADOR	
20	<400> 12 caatatgtcg acttaggcat caggattatc aacattagc	39
25	<210> 13 <211> 52 <212> ADN <213> Secuencia artificial	
00	<220> <223> CEBADOR	
30	<400> 13 gatataggat ccgatctatt atataaacta attgaattag aaaaagatta tc	52
35	<210> 14 <211> 37 <212> ADN <213> Secuencia artificial	
40	<220> <223> CEBADOR	
	<400> 14 caatatgtcg acttaaaact cccaatcttc atcttcg	37
45	<210> 15 <211> 39 <212> ADN <213> Secuencia artificial	
50	<220> <223> CEBADOR	
	<400> 15 gatataggat ccatggcagt tgttaaaacg acaggaaaa	39
55	<210> 16 <211> 43 <212> ADN <213> Secuencia artificial	
60	<220> <223> CEBADOR	
65	<400> 16 caatatgtcg acttatttaa taatttcggt aactgttccg gca	43

5	<210> 17 <211> 34 <212> ADN <213> Secuencia artificial	
5	<220> <223> CEBADOR	
10	<400> 17 ctctttgggc actaatccat cgaggattat ccgg	34
15	<210> 18 <211> 34 <212> ADN <213> Secuencia artificial	
	<220> <223> CEBADOR	
20	<400> 18 ccggataatc ctcgatggat tagtgcccaa agag	34
25	<210> 19 <211> 37 <212> ADN <213> Secuencia artificial	
30	<220> <223> CEBADOR	
30	<400> 19 attagcttgc tgagtgagcc agttattttg tgcatcc	37
35	<210> 20 <211> 37 <212> ADN <213> Secuencia artificial	
40	<220> <223> CEBADOR	
	<400> 20 ggatgcacaa aataactggc tcactcagca agctaat	37
45	<210> 21 <211> 34 <212> ADN <213> Secuencia artificial	
50	<220> <223> CEBADOR	
55	<400> 21 cggcagttcc ataattccat cctgggacat aaac <210> 22 <211> 34 <212> ADN <213> Secuencia artificial	34
60	<220> <223> CEBADOR	
65	<400> 22 gtttatgtcc caggatggaa ttatggaact gccg	34

REIVINDICACIONES

- 1. Una composición para su uso en la prevención de una infección por Mycoplasma spp., que comprende:
- un primer principio activo, que comprende Tuf, que tiene la secuencia de la SEQ ID NO: 02; y un adyuvante farmacéuticamente aceptable.

10

25

30

- 2. La composición para su uso en la prevención de una infección por *Mycoplasma* spp. de acuerdo con la reivindicación 1, que comprende además un segundo principio activo que comprende una proteína de P46, MHP30, NrdFC o una combinación de las mismas;
- en donde dicha P46 tiene una secuencia de la SEQ ID NO: 01; dicha MHP30 tiene una secuencia de la SEQ ID NO: 03; dicha NrdFC tiene una secuencia de la SEQ ID NO: 04.
- 3. La composición para su uso en la prevención de una infección por *Mycoplasma* spp. de acuerdo con la reivindicación 2, en la que dicho primer principio activo y/o dicho segundo principio activo son independientemente de una concentración de 20 a 2.000 µg/ml basada en el volumen total de dicha composición.
- 4. La composición para su uso en la prevención de una infección por *Mycoplasma* spp. de acuerdo con la reivindicación 1, en la que dicho adyuvante farmacéuticamente aceptable es un adyuvante completo de Freund, un adyuvante incompleto de Freund, un gel de alúmina, un tensioactivo, un adyuvante polianiónico, un péptido, una emulsión de aceite o una combinación de los mismos.
 - 5. La composición para su uso en la prevención de una infección por *Mycoplasma* spp. de acuerdo con la reivindicación 1, que comprende además un aditivo farmacéuticamente aceptable.
 - 6. La composición para su uso en la prevención de una infección por *Mycoplasma* spp. de acuerdo con la reivindicación 5, en la que dicho aditivo farmacéuticamente aceptable es un disolvente, un estabilizante, un diluyente, un conservante, un agente antibacteriano, un agente antifúngico, un agente isotónico, un agente retardador de la absorción o una combinación de los mismos.
 - 7. La composición para su uso en la prevención de una infección por *Mycoplasma* spp. de acuerdo con la reivindicación 2, en donde dicha composición comprende P46, Tuf, MHP30 y NrdFC.
 - 8. Un vector de expresión que comprende un plásmido; en el que dicho plásmido comprende:
- una secuencia de nucleótidos que comprende la SEQ ID NO: 06; un gen que codifica una pareja de fusión, en el que dicha pareja de fusión es MsyB de *E. coli*; y un elemento regulador.
- 40 9. El vector de expresión de la reivindicación 8, en el que dicho elemento regulador comprende un promotor y un sitio de unión al ribosoma.
 - 10. El vector de expresión de la reivindicación 8, en el que dicho plásmido es pET-MSY-Tuf.
- 45 11. El vector de expresión de la reivindicación 8, que es para un sistema de expresión de genes de *E. coli*.
 - 12. Un método para preparar un antígeno soluble, que comprende usar dicho vector de expresión de la reivindicación 8; en donde dicho antígeno es Tuf.

23

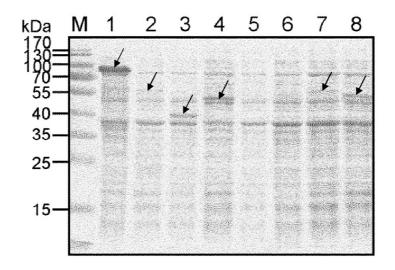


Figura 1

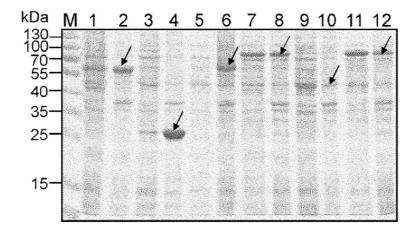


Figura 2

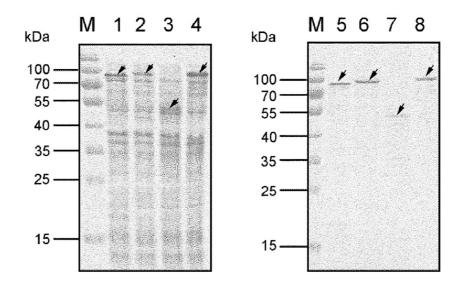


Figura 3

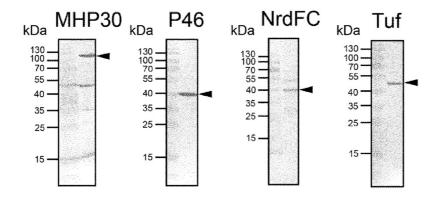


Figura 4

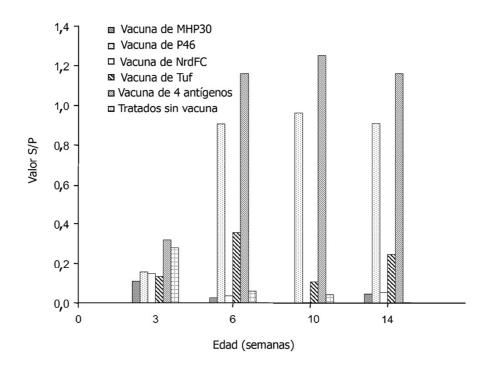


Figura 5