

OFICINA ESPAÑOLA DE PATENTES Y MARCAS

ESPAÑA

11) Número de publicación: 2 714 154

61 Int. Cl.:

C12N 15/10 C12N 15/63 C12N 9/22

(2006.01)

(2006.01)

(2006.01)

(12)

TRADUCCIÓN DE PATENTE EUROPEA

T3

96 Fecha de presentación y número de la solicitud europea: 05.12.2013 E 16183724 (0)
 97 Fecha y número de publicación de la concesión europea: 05.12.2018 EP 3138911

(54) Título: Modificación y regulación del genoma en base a CRISPR

(30) Prioridad:

06.12.2012 US 201261734256 P 30.01.2013 US 201361758624 P 05.02.2013 US 201361761046 P 15.03.2013 US 201361794422 P

Fecha de publicación y mención en BOPI de la traducción de la patente: 27.05.2019

73) Titular/es:

SIGMA ALDRICH CO. LLC (100.0%) 3050 Spruce Street St. Louis, MO 63103, US

(72) Inventor/es:

CHEN, FUQIANG y DAVIS, GREGORY D.

(74) Agente/Representante:

CARPINTERO LÓPEZ, Mario

DESCRIPCIÓN

Modificación y regulación del genoma en base a CRISPR

Campo de la invención

5

10

15

20

25

30

35

40

45

50

La presente divulgación se refiere a una modificación dirigida del genoma. En particular, la divulgación se refiere a endonucleasas guiadas por ARN que comprenden la proteína de tipo CRISPR/Cas y procedimientos para usar dichas proteínas para modificar y regular secuencias cromosómicas dirigidas.

Antecedentes de la invención

La modificación genómica dirigida es una herramienta poderosa para la manipulación genética de las células eucariotas, de embriones y de animales. Por ejemplo, las secuencias exógenas se pueden integrar en localizaciones genómicas dirigidas y/o las secuencias cromosómicas endógenas específicas se pueden eliminar, desactivar o modificar. Los procedimientos actuales se basan en el uso de enzimas nucleasas diseñadas genéticamente, tales como, por ejemplo, las nucleasas de dedos de cinc (ZFN, del inglés zinc finger nucleases) o nucleasas de tipo activadores de transcripción (TALEN, del inglés transcription activator-like effector nucleases). Estas nucleasas quiméricas contienen módulos de unión a ADN programables y específicos de secuencia unidos a un dominio de escisión de ADN no específico. Cada nueva diana genómica, sin embargo, requiere el diseño de una nueva ZFN o TALEN que comprende un nuevo módulo de unión a ADN específico de secuencia. Por lo tanto, estas nucleasas diseñadas a medida tienden a ser costosas y requieren mucho tiempo para prepararse. Por otra parte, las especificidades de ZFN y TALEN son tales que pueden mediar en escisiones fuera de la diana.

Por lo tanto, existe una necesidad de una tecnología de modificación de genoma dirigida que no requiera el diseño de una nueva nucleasa para cada nueva localización genómica dirigida. Además, existe una necesidad de una tecnología con especificidad aumentada con pocos o sin efectos fuera de la diana.

Sumario de la invención

La presente invención proporciona un procedimiento para modificar una secuencia cromosómica en una célula eucariota integrando una secuencia donadora, comprendiendo el procedimiento (a) introducir en la célula eucariota (i) al menos una endonucleasa guiada por ARN que comprende al menos una señal de localización nuclear o ácido nucleico que codifica al menos una endonucleasa guiada por ARN que comprende al menos una señal de localización nuclear, en la que la al menos una endonucleasa guiada por ARN es un sistema de proteínas de repeticiones palindrómicas cortas agrupadas y regularmente interespaciadas (CRISPR, del inglés clustered regularly interspersed short palindromic repeats)/(Cas) asociado a CRISPR de tipo II y el sistema de proteínas CRISPR/Cas de tipo II es una proteína Cas9, (ii) al menos un ARN o ADN quía que codifica al menos un ARN quía, y, (iii) un polinucleótido donador que comprende una secuencia donadora; y (b) cultivar la célula eucariota de manera que cada ARN guía guíe una endonucleasa guiada por ARN a un sitio diana en la secuencia cromosómica donde la endonucleasa quiada por ARN introduce una rotura de doble cadena en el sitio diana, y la rotura de doble cadena se repara mediante un proceso de reparación de ADN de manera que la secuencia cromosómica se modifica mediante inserción o sustitución de la secuencia donadora en la secuencia cromosómica, en el que el sitio diana en la secuencia cromosómica está seguido inmediatamente por un motivo advacente de protoespaciador (PAM), en el que el procedimiento no comprende un proceso de modificar la identidad genética de la línea germinal de un ser humano y, en el que el procedimiento no comprende un procedimiento de tratamiento del cuerpo humano o animal mediante cirugía o terapia. La invención también proporciona un procedimiento ex vivo o in vitro para modificar una secuencia cromosómica en una célula eucariota integrando una secuencia donadora, comprendiendo el procedimiento:

a) introducir en la célula eucariota (i) al menos una endonucleasa guiada por ARN que comprende al menos una seña de localización nuclear o ácido nucleico que codifica al menos una endonucleasa guiada por ARN que comprende al menos una señal de localización nuclear, en la que la al menos una endonucleasa guiada por ARN es un sistema de proteínas repeticiones palindrómicas cortas agrupadas y regularmente interespaciadas (CRISPR, del inglés *clustered regularly interspersed short palindromic repeats*)/(Cas) asociado a CRISPR de tipo II y el sistema de proteínas CRISPR/Cas de tipo II es una proteína Cas9, (ii) al menos un ARN o ADN guía que codifica al menos un ARN guía, y (iii) un polinucleótido donador que comprende la secuencia donadora; y b) cultivar la célula eucariota de manera que cada ARN guía guíe una endonucleasa guiada por ARN a un sitio diana en la secuencia cromosómica donde la endonucleasa guiada por ARN introduce una rotura de doble cadena, y la rotura de doble cadena se repara mediante un proceso de reparación de ADN de manera que la secuencia cromosómica se modifica mediante inserción o sustitución de la secuencia donadora en la secuencia cromosómica, en el que la secuencia diana en la secuencia cromosómica está seguida inmediatamente por un motivo adyacente de protoespaciador (PAM), y en el que el procedimiento no comprende un proceso de modificar la identidad genética de la línea germinal de un ser humano.

En una realización, la endonucleasa guiada por ARN puede derivar de una proteína Cas9. En otra realización, el ácido nucleico que codifica la endonucleasa guiada por ARN introducida en la célula puede ser ARNm. En una realización adicional, el ácido nucleico que codifica la endonucleasa guiada por ARN introducida en la célula puede ser ADN. En una realización adicional, el ADN que codifica la endonucleasa guiada por ARN puede ser parte de un

vector que comprende adicionalmente una secuencia que codifica el ARN guía. En determinadas realizaciones, la célula eucariota puede ser una célula humana, una célula de mamífero no humano, una célula madre, una célula de vertebrado no mamífero, una célula de invertebrado, una célula vegetal, o un organismo eucariota unicelular. En otras determinadas realizaciones, la célula eucariota es un embrión unicelular de animal no humano.

5 Otros aspectos y repeticiones de la divulgación se detallan a continuación.

Breve descripción de los dibujos

10

15

20

25

30

35

40

45

50

55

60

La **FIG. 1** representa el gráfico de la modificación del genoma usando dos endonucleasas guiadas por ARN, en la que las roturas de doble cadena se generan mediante dos endonucleasas guiadas por ARN que tienen actividad endonucleasa.

La **FIG. 2** el clasificador de células activadas por fluorescencia (FACS) de células K562 humanas transfectadas con ácido nucleico de Cas9, ARN que guía Cas9 y donador de ADN AAVS1-GFP. El eje Y representa la intensidad de auto fluorescencia en un canal rojo, y el eje X representa la intensidad de fluorescencia verde. **(A)** células K562 transfectadas con 10 μg de ARNm de Cas9 transcrito con un análogo de casquete anti-inverso, 0,3 nmol de doble cadena de ARNcr-ARNtracr prealineada, y 10 μg ADN del plásmido AAVS1-GFP; **(B)** células K562 transfectadas con 10 μg de ARNm de Cas9 transcrito con un análogo de casquete anti-inverso, 0,3 nmol de ARN quimérico y 10 μg ADN del plásmido AAVS1-GFP; **(C)** células K562 transfectadas con 10 μg de ARNm de Cas9 con casquete mediante la reacción de postranscripción de casquete, 0,3 nmol de ARN quimérico y 10 μg ADN del plásmido AAVS1-GFP; **(D)** células K562 transfectadas con 10 μg de ADN del plásmido de Cas9, 5 μg de ADN del plásmido de ARN quimérico con U6, y 10 μg de ADN del plásmido AAVS1-GFP; **(E)** células K562 transfectadas con 10 μg de ADN del plásmido con 10 μg de ADN del plásmido con reactivos de transfectadas con 10 μg de ADN del plásmido AAVS1-GFP; **(E)** células K562 transfectadas solo con reactivos de transfección.

La **FIG. 3** presenta un análisis de PCR de unión que documenta la integración dirigida de GFP en el locus AAVS1 en células humanas. Carril M: marcadores moleculares de ADN de 1 kb; Carril A: células K562 transfectadas con 10 µg de ARNm de Cas9 transcrito con un análogo de casquete anti-inverso, 0,3 nmol de doble cadena de ARNcr-ARNtracr prealineada, y 10 µg ADN del plásmido AAVS1-GFP; Carril B: células K562 transfectadas con 10 µg de ARNm de Cas9 transcrito con un análogo de casquete anti-inverso, 0,3 nmol de ARN quimérico y 10 µg ADN del plásmido AAVS1-GFP; Carril C: células K562 transfectadas con 10 µg de ARNm de Cas9 con casquete mediante la reacción de postranscripción de casquete, 0,3 nmol de ARN quimérico y 10 µg ADN del plásmido AAVS1-GFP; Carril D: células K562 transfectadas con 10 µg de ADN del plásmido de Cas9, 5 µg de ADN del plásmido de ARN quimérico con U6, y 10 µg de ADN del plásmido AAVS1-GFP; Carril E: células K562 transfectadas con 10 µg de ADN del plásmido AAVS1-GFP; Carril E: células K562 transfectadas con 10 µg de ADN del plásmido con reactivos de transfección.

Descripción detallada de la invención

En el presente documento se desvelan endonucleasas guiadas por ARN, que comprenden al menos una señal de localización nuclear, al menos un dominio nucleasa, y al menos un dominio que interacciona con un ARN guía para dirigir la endonucleasa a una secuencia de nucleótidos específica para la escisión. También se desvelan ácidos nucleicos que codifican las endonucleasas guiadas por ARN, así como procedimientos para usar las endonucleasas guiadas por ARN para modificar las secuencias cromosómicas de células eucariotas o embriones. La endonucleasa guiada por ARN interacciona con los ARN guía específicos, cada uno de los cuales dirige la endonucleasa a un sitio específico dirigido, en cuyo sitio la endonucleasa guiada por ARN introduce una rotura de doble cadena que se puede reparar mediante un proceso de reparación de ADN de manera que la secuencia cromosómica se modifica. Dado que la especificidad la proporciona el ARN guía, la endonucleasa basada en ARN es universal y se puede usar con diferentes ARN guías para dirigirse a diferentes secuencias genómicas. Los procedimientos desvelados en el presente documento se pueden usar para dirigirse y modificar secuencias cromosómicas específicas y/o introducir secuencias exógenas en localizaciones diana en el genoma de células o embriones. Se excluyen los procedimientos que comprenden un proceso para modificar la identidad genética de la línea germinal de un ser humano. Por otro lado, el direccionamiento es específico con efectos limitados fuera de la diana.

(I) Endonucleasas guiadas por ARN

Un aspecto de la presente divulgación proporciona endonucleasas guiadas por ARN que comprenden al menos una señal de localización nuclear, que permite la entrada de la endonucleasa en el núcleo de células eucariotas y embriones tales como, por ejemplo, embriones unicelulares no humanos. Las endonucleasas guiadas por ARN también comprenden al menos un dominio nucleasa y al menos un dominio que interacciona con un ARN guía. Una endonucleasa guiada por ARN se dirige a una secuencia específica de ácido nucleico (o sitio diana) mediante un ARN guía. El ARN guía interacciona con la endonucleasa guiada por ARN así como con el sitio diana de manera que, una vez dirigida al sitio diana, la endonucleasa guiada por ARN es capaz de introducir una rotura de doble cadena en el sitio diana de la secuencia de ácido nucleico. Dado que el ARN guía proporciona la especificidad para la escisión dirigida, la endonucleasa de la endonucleasa guiada por ARN es universal y se puede usar con diferentes ARN guía para escindir diferentes secuencias diana de ácido nucleico. En el presente documento se desvelan endonucleasas guiadas por ARN, ácidos nucleicos aislados (es decir, ARN y ADN) que codifica las endonucleasas guiadas por ARN, los vectores que comprenden ácidos nucleicos que codifican las endonucleasas guiadas por ARN

y los complejos de proteína-ARN que comprenden la endonucleasa guiada por ARN más un ARN guía.

La endonucleasa guiada por ARN puede provenir de un sistema de repeticiones palindrómicas cortas agrupadas y regularmente interespaciadas (CRISPR)/(Cas) asociado a CRISPR. El sistema CRISPR/Cas puede ser un sistema de tipo I, de tipo II o de tipo III. Los ejemplos no limitantes de proteínas CRISPR/Cas incluyen Cas3, Cas4, Cas5, Cas5e (o CasD), Cas6, Cas6e, Cas6f, Cas7, Cas8a1, Cas8a2, Cas8b, Cas8c, Cas9, Cas10, Cas10d, CasF, CasG, CasH, Csy1, Csy2, Csy3, Cse1 (o CasA), Cse2 (o CasB), Cse3 (o CasE), Cse4 (o CasC), Csc1, Csc2, Csa5, Csn2, Csm2, Csm3, Csm4, Csm5, Csm6, Cmr1, Cmr3, Cmr4, Cmr5, Cmr6, Csb1, Csb2, Csb3, Csx17, Csx14, Csx10, Csx16, CsaX, Csx3, Csz1, Csx15, Csf1, Csf2, Csf3, Csf4 y Cu1966.

Tal como se desvela en el presente documento, la endonucleasa guiada por ARN proviene de un sistema 10 CRISPR/Cas de tipo II, más específicamente una proteína Cas9. La proteína Cas9 puede ser de Streptococcus pyogenes, Streptococcus thermophilus, Streptococcus sp., Nocardiopsis dassonvillei, Streptomyces pristinaespiralis, Streptomyces viridochromogenes, Streptomyces viridochromogenes, Streptosporangium roseum, Streptosporangium roseum, Alicyclobacillus acidocaldarius, Bacillus pseudomycoides, Bacillus selenitireducens, Exiguobacterium sibiricum, Lactobacillus delbrueckii, Lactobacillus salivarius, Microscilla marina, Burkholderiales bacterium, Polaromonas naphthalenivorans, Polaromonas sp., Crocosphaera watsonii, Cyanothece sp., Microcystis aeruginosa, 15 Synechococcus sp., Acetohalobium arabaticum, Ammonifex degensii, Caldicelulosiruptor becscii, Candidatus Desulforudis, Clostridium botulinum, Clostridium difficile, Finegoldia magna, Natranaerobius thermophilus, Pelotomaculum thermopropionicum, Acidithiobacillus caldus, Acidithiobacillus ferrooxidans, Allochromatium vinosum, Marinobacter sp., Nitrosococcus halophilus, Nitrosococcus watsoni, Pseudoalteromonas haloplanktis, Ktedonobacter racemifer, Methanohalobium evestigatum, Anabaena variabilis, Nodularia spumigena, Nostoc sp., Arthrospira 20 maxima, Arthrospira platensis, Arthrospira sp., Lyngbya sp., Microcoleus chthonoplastes, Oscillatoria sp., Petrotoga mobilis, Thermosipho africanus, o Acaryochloris marina.

En general, las proteínas CRISPR/cas comprenden al menos un dominio de reconocimiento de ARN y/o un dominio de unión a ARN. Los dominios de reconocimiento de ARN y/o de unión a ARN interaccionan con los ARN guía. Las proteínas CRISPR/Cas también pueden comprender dominios nucleasa (es decir, dominios DNasa o RNasa), dominios de unión a ADN, dominios helicasa, dominios RNAsa, dominios de interacción proteína-proteína, dominios de dimerización, así como otros dominios.

25

30

35

40

45

50

55

La proteína de tipo CRISPR/Cas puede ser una proteína CRISPR/Cas de tipo silvestre, una proteína CRISPR/Cas modificada, o un fragmento de una proteína CRISPR/Cas de tipo silvestre o modificada. La proteína de tipo CRISPR/Cas se puede modificar para aumentar la afinidad y/o especificidad de unión a ácido nucleico, alterar una actividad enzimática y/o cambiar otra propiedad de la proteína. Por ejemplo, los dominios nucleasa (es decir, DNasa, RNasa) de la proteína de tipo CRISPR/Cas se pueden modificar, eliminar o desactivar. Como alternativa, se puede truncar la proteína de tipo CRISPR/Cas para retirar dominios que no son esenciales para la función de la proteína de fusión. La proteína de tipo CRISPR/Cas también se puede truncar o modificar para optimizar la actividad del dominio efector de la proteína de fusión.

En algunas realizaciones, la proteína de tipo CRISPR/Cas puede provenir de una proteína Cas9 de tipo silvestre o de un fragmento de la misma. En otras realizaciones, la proteína de tipo CRISPR/Cas puede provenir de una proteína Cas9 modificada. Por ejemplo, la secuencia de aminoácidos de la proteína Cas9 se puede modificar para alterar una o más propiedades (por ejemplo, actividad, afinidad, estabilidad de nucleasa, etc.) de la proteína. Como alternativa, los dominios de la proteína Cas9 no implicados en la escisión guiada por ARN se pueden eliminar de la proteína, de manera que la proteína Cas9 modificada es más pequeña que la proteína Cas9 de tipo silvestre.

En general, una proteína Cas9 comprende al menos dos dominios nucleasas (es decir, DNasa). Por ejemplo, una proteína Cas9 puede comprender un dominio de nucleasa de tipo RuvC y un dominio de nucleasa de tipo HNH. Los dominios de RuvC y HNH funcionan juntos para cortar cadenas únicas para generar una cadena de rotura doble en DNA (Jinek y col., Science, 337: 816-821).

La endonucleasa guiada por ARN desvelada en el presente documento comprende al menos una señal de localización nuclear. En general, una SLN comprende un tramo de aminoácidos básicos. Las señales de localización nuclear se conocen en la materia (véase, por ejemplo, Lange y col., J. Biol. Chem., 2007, 282:5101-5105). Por ejemplo, en una realización, la SLN puede ser una secuencia monopartita, tal como PKKKRKV (SEQ ID NO:1) o PKKKRRV (SEQ ID NO:2). En otra realización, la SLN puede ser una secuencia bipartita. En otra realización más, la SLN puede ser KRPAATKKAGQAKKKK (SEQ ID NO:3). La SLN se puede localizar en el extremo N-terminal, en el C-terminal o en una localización interna de la endonucleasa guiada por ARN.

La endonucleasa guiada por ARN puede comprender adicionalmente al menos un dominio de penetración celular. El dominio de penetración celular puede ser una secuencia de péptido de penetración celular que proviene de la proteína TAT del VIH-1. A modo de ejemplo, la secuencia de penetración celular de TAT puede ser GRKKRRQRRRPPQPKKKRKV (SEQ ID NO:4). Como alternativa, el dominio de penetración celular puede ser TLM (PLSSIFSRIGDPPKKKRKV; SEQ ID NO:5, una secuencia de péptido de penetración celular que proviene del virus de la hepatitis B. En otra alternativa, el dominio de penetración celular puede ser MPG (GALFLGWLGAAGSTMGAPKKKRKV; SEQ ID NO:6 o GALFLGFLGAAGSTMGAWSQPKKKRKV; SEQ ID NO:7). En

una alternativa adicional, el dominio de penetración celular puede ser Pep-1 (KETWWETWWTEWSQPKKKRKV; SEQ ID NO:8), VP22, un péptido de penetración celular del virus Herpes simplex, o una secuencia de péptido de poliarginina. El dominio de penetración celular se puede localizar en el extremo N-terminal, en el extremo C-terminal o en una localización interna de la proteína.

5 La endonucleasa guiada por ARN también puede comprender adicionalmente al menos un dominio marcador. Los ejemplos no limitantes de dominios marcadores incluyen proteínas fluorescentes, etiquetas de purificación y etiquetas de epítopo. En un ejemplo, el dominio marcador puede ser una proteína fluorescente. Los ejemplos no limitantes de proteínas fluorescentes adecuadas incluyen proteínas verdes fluorescentes (por ejemplo, GFP, GFP-2, tagGFP, turboGFP, EGFP, Emerald, Azami Green, Monomeric Azami Green, CopGFP, AceGFP, ZsGreen1), proteínas amarillas fluorescentes (por ejemplo, YFP, EYFP, Citrina, Venus, YPet, PhiYFP, ZsYellow1,), proteínas 10 azules fluorescentes (por ejemplo EBFP, EBFP2, Azurita, mKalama1, GFPuv, Sapphire, T-sapphire), proteínas cyan fluorescentes (por ejemplo ECFP, Cerulean, CyPet, AmCyan1, Midoriishi-Cyan), proteínas rojas fluorescentes (mKate, mKate2, mPlum, monómero DsRed, mCherry, mRFP1, DsRed-Express, DsRed2, DsRed-Monómero, HcRed-Tándem, HcRed1, AsRed2, eqFP611, mRasberry, mStrawberry, Jred), y proteínas naranjas fluorescentes (mOrange, mKO, Kusabira-Orange, Kusabira-Orange monomérica, mTangerine, tdTomato) o cualquier otra proteína 15 fluorescente adecuada. En otros ejemplos, el dominio marcador puede ser una etiqueta de purificación y/o una etiqueta de epítopo. Las etiquetas ejemplares incluyen, aunque no de forma limitativa, glutatión-S-transferasa (GST), proteína de unión a quitina (CBP), proteína de unión a maltosa, tiorredoxina (TRX), poli(NANP), etiqueta de purificación por afinidad en tándem (TAP), myc, AcV5, AU1, AU5, E, ECS, E2, FLAG, HA, nus, Softag 1, Softag 3, Strep, SBP, Glu-Glu, HSV, KT3, S, S1, T7, V5, VSV-G, 6xHis, proteína transportadora de carboxil biotina (BCCP) y 20 calmodulina.

En determinados ejemplos, la endonucleasa guiada por ARN puede ser parte de un complejo proteína-ARN que comprende un ARN guía. El ARN guía interacciona con la endonucleasa guiada por ARN para dirigir la endonucleasa a un sitio diana específico, en el que el extremo 5' del ARN guía alinea sus bases con una secuencia de protoespaciador específica.

(II) Ácidos nucleicos que codifican endonucleasas guiadas por ARN

25

30

35

40

45

50

55

60

Otro aspecto de la presente divulgación proporciona ácidos nucleicos que codifican cualquiera de las endonucleasas guiadas por ARN descritas anteriormente en la sección (I). El ácido nucleico puede ser ARN o ADN. En un ejemplo, el ácido nucleico que codifica la endonucleasa guiada por ARN es ARNm. El ARNm puede tener casquete en 5' y/o estar poliadenilado en 3'. En otro ejemplo, el ácido nucleico que codifica la endonucleasa guiada por ARN es ADN. El ADN puede estar presente en un vector (véase a continuación).

El ácido nucleico que codifica la endonucleasa guiada por ARN puede tener un codón optimizado para una traducción eficaz a proteína en la célula eucariota o animal de interés. Por ejemplo, se pueden optimizar codones para la expresión en seres humanos, ratones, ratas, hámsteres, vacas, cerdos, gatos, perros, peces, anfibios, plantas, levadura, insectos, etcétera (véase la base de datos del uso de codones en www.kazusa.or.jp/codon/). Los programas para la optimización de codones están disponibles como programas de dominio público (por ejemplo, OPTIMIZER en genomes.urv.es/OPTIMIZER; OptimumGene™ de GenScript en www.genscript.com/codon_opt.html). Los programas comerciales de optimización de codones también están disponibles.

El ADN que codifica la endonucleasa guiada por ARN se puede enlazar de manera operativa con al menos una secuencia de control del promotor. En algunas repeticiones, la secuencia codificante de ADN se puede unir de manera operativa a una secuencia de control del promotor para la expresión en la célula eucariota o animal de interés. La secuencia de control del promotor puede ser constitutiva, regulada o específica de tejido. Las secuencias de control del promotor constitutivas adecuadas incluyen, pero sin limitación, el promotor temprano inmediato de citomegalovirus (CMV), el promotor del virus del simio (SV40), el promotor tardío principal de adenovirus, el promotor del virus del sarcoma de Rous (VSR), el promotor del virus del tumor mamario del ratón (MMTV), el promotor de la fosfoglicerato cinasa (PGK), el promotor del factor de elongación (ED1)-alfa, los promotores de ubiquitina, los promotores de actina, los promotores de tubulina, los promotores de inmunoglobulina, fragmentos de los mismos o combinaciones de cualquiera de los anteriores. Los ejemplos de secuencias de control del promotor reguladas incluyen sin limitación aquellas reguladas por choque térmico, metales, esteroides, antibióticos o alcohol. Los ejemplos no limitantes de promotores específicos de tejido incluyen el promotor B29, el promotor de CD14, el promotor de CD43, el promotor de CD45, el promotor de CD68, el promotor de desmina, el promotor de elastasa-1, el promotor de endoglina, el promotor de fibronectina, el promotor de FIt-1, el promotor de GFAP, el promotor de GPIIb, el promotor de ICAM-2, el promotor de INF-β, el promotor de Mb, el promotor NphsI, el promotor de OG-2, el promotor de SP-B, el promotor de SYN1 y el promotor de WASP. La secuencia del promotor puede ser de tipo silvestre o se puede modificar para una expresión más eficiente o eficaz. En un ejemplo, el ADN codificante puede unirse de manera operativa a un promotor de CMV para la expresión constitutiva en células de mamífero.

La secuencia que codifica la endonucleasa guiada por ARN puede estar unida de manera operativa a una secuencia de promotor que es reconocida por una ARN polimerasa del fago para la síntesis *in vitro* de ARNm. En tales ejemplos, el ARN transcrito *in vitro* se puede purificar para su uso en los procedimientos detallados anteriormente en

la sección (III). Por ejemplo, la secuencia del promotor puede ser una secuencia del promotor T7, T3 o SP6 o una variación de la secuencia del promotor T7, T3 o SP6. En una realización a modo de ejemplo, el ADN que codifica la proteína está unido de manera operativa a un promotor T7 para la síntesis *in vitro* de ARNm usando una ARN polimerasa de T7.

En una alternativa, la secuencia que codifica la endonucleasa guiada por ARN puede estar unida de manera operativa a una secuencia del promotor para la expresión *in vitro* de la endonucleasa guiada por ARN en células bacterianas o eucariotas. En esos casos, la proteína expresada se puede purificar para su uso en los procedimientos detallados a continuación en la sección (III). Los promotores bacterianos adecuados incluyen, sin límite, promotores T7, promotores del operón lac, promotores *trp*, variaciones de los mismos, y combinaciones de los mismos. Un promotor bacteriano ejemplar es *tac*, que es un híbrido de los promotores *trp* y *lac*. Los ejemplos no limitantes de los promotores eucarióticos se enumeran anteriormente.

En aspectos adicionales, el ADN que codifica la endonucleasa guiada por ARN también puede estar unida a una señal de poliadenilación (por ejemplo, señal poliA del SV40, señal poliA de la hormona de crecimiento bovina (BGH), etc.) y/o al menos una secuencia de terminación transcripcional. Además, la secuencia que codifica la endonucleasa guiada por ARN también puede estar unida a la secuencia que codifica al menos una señal de localización nuclear, al menos un dominio de penetración celular y/o al menos un dominio marcador, que se detallan anteriormente en la sección (I).

15

20

25

40

45

50

55

60

En diversas realizaciones, el ADN que codifica la endonucleasa guiada por ARN puede estar presente en un vector. Los vectores adecuados incluyen vectores de plásmidos, fagémidos, cósmidos, minicromosomas artificiales, transposones y vectores víricos (por ejemplo, vectores lentivíricos, vectores víricos adenoasociados, etc.). En un ejemplo, el ADN que codifica la endonucleasa guiada por ARN está presente en un vector de plásmido. Los ejemplos no limitantes de vectores de plásmidos adecuados incluyen pUC, pBR322, pET, pBluescript, y variantes de los mismos. El vector puede comprender secuencias adicionales de control de la expresión (por ejemplo, secuencias potenciadoras, secuencias de Kozak, secuencias de poliadenilación, secuencias de terminación transcripcional, etc.), secuencias de marcador seleccionable (por ejemplo, genes de resistencia a antibióticos), orígenes de replicación y similares. La información adicional se puede encontrar en Current Protocols in Molecular Biology" de Ausubel y col., John Wiley & Sons, Nueva York, 2003 o "Molecular Cloning: A Laboratory Manual" de Sambrook y Russell, Cold Spring Harbor Press, Cold Spring Harbor, NY, 3ª edición, 2001.

En algunos ejemplos, el vector de expresión que comprende la secuencia que codifica la endonucleasa guiada por ARN puede comprender adicionalmente la secuencia que codifica un ARN guía. La secuencia que codifica el ARN guía generalmente está unido de manera operativa a al menos una secuencia de control de la transcripción para la expresión del ARN guía en la célula o embrión de interés. Por ejemplo, el ADN que codifica el ARN guía se puede unir de manera operativa a una secuencia del promotor que se reconoce mediante la ARN polimerasa III (Pol III). Los ejemplos de promotores de Pol III incluyen, pero sin limitación, los promotores de ARN U6, U3, H1 y 7SL de mamífero.

(III) Procedimiento para modificar una secuencia cromosómica usando una endonucleasa guiada por ARN

Como se ha indicado anteriormente, la presente invención abarca un procedimiento para modificar una secuencia cromosómica en una célula eucariota integrando la secuencia donadora, comprendiendo el procedimiento (a) introducir de la célula eucariota (i) al menos una endonucleasa guiada por ARN que comprende al menos una seña de localización nuclear o ácido nucleico que codifica al menos una endonucleasa guiada por ARN que comprende al menos una señal de localización nuclear, en la que la al menos una endonucleasa guiada por ARN es un sistema de proteínas repeticiones palindrómicas cortas agrupadas y regularmente interespaciadas (CRISPR, del inglés clustered regularly interspersed short palindromic repeats)/(Cas) asociado a CRISPR de tipo II y el sistema de proteínas CRISPR/Cas de tipo II es una proteína Cas9, (ii) al menos un ARN o ADN guía que codifica al menos un ARN guía, y, (iii) al menos un polinucleótido donador que comprende una secuencia donadora; y (b) cultivar la célula de manera que cada ARN quía dirija una endonucleasa guiada por ARN a un sitio diana en la secuencia cromosómica donde la endonucleasa quiada por ARN introduce una rotura de doble cadena en el sitio diana, y la rotura de doble cadena se repara mediante un proceso de reparación de ADN de manera que la secuencia cromosómica se modifica mediante la inserción o la sustitución de la secuencia donadora en la secuencia cromosómica, en la que el sitio diana en la secuencia cromosómica está seguido inmediatamente por un motivo adyacente al protoespaciador (PAM), en el que el procedimiento no comprende un proceso de modificar la identidad genética de la línea germinal de un ser humano y, en el que el procedimiento no comprende un procedimiento para el tratamiento del cuerpo humano o animal mediante cirugía o terapia.

La invención también proporciona un procedimiento ex vivo o in vivo de modificar una secuencia cromosómica en una célula eucariota integrando una secuencia donadora, comprendiendo el procedimiento:

(a) introducir en la célula eucariota (i) al menos una endonucleasa guiada por ARN que comprende al menos una seña de localización nuclear o ácido nucleico que codifica al menos una endonucleasa guiada por ARN que comprende al menos una señal de localización nuclear, en la que la al menos una endonucleasa guiada por ARN es un sistema de proteínas repeticiones palindrómicas cortas agrupadas y regularmente interespaciadas (CRISPR, del inglés clustered regularly interspersed short palindromic repeats)/(Cas) asociado a CRISPR de tipo

Il y el sistema de proteínas CRISPR/Cas de tipo II es una proteína Cas9, (ii) al menos un ARN o ADN guía que codifica al menos un ARN guía, y (iii) un polinucleótido donador que comprende la secuencia donadora; y b) cultivar la célula eucariota de manera que cada ARN guía guíe una endonucleasa guiada por ARN a un sitio diana en la secuencia cromosómica, la endonucleasa guiada por ARN introduce una rotura de doble cadena en el sitio diana, y la rotura de doble cadena se repara mediante un proceso de reparación de ADN de manera que la secuencia cromosómica se modifica por inserción o sustitución de la secuencia donadora en la secuencia cromosómica, en la que el sitio diana en la secuencia cromosómica está seguido inmediatamente por un motivo adyacente de protoespaciador (PAM) y, en el que el procedimiento no comprende un proceso de modificar la identidad genética de la línea germinal de un ser humano.

- 10 En algunas realizaciones, estos procedimientos pueden comprender la introducción de una endonucleasa guiada por ARN (o ácido nucleico codificante) y un ARN quía (o ADN codificante) en una célula o embrión, en la que la endonucleasa guiada por ARN introduce una rotura de doble cadena en la secuencia cromosómica dirigida. La secuencia donadora en el polinucleótido donador se puede intercambiar con o integrar en la secuencia cromosómica en el sitio dirigido durante la reparación de la rotura de doble cadena. Por ejemplo, en realizaciones en las que la 15 secuencia donadora está flanqueada aguas arriba y aguas abajo por secuencias que tienen una identidad de secuencia sustancial con las secuencias de aguas arriba y aguas abajo, respectivamente, del sitio dirigido en la secuencia cromosómica, la secuencia donadora se puede intercambiar con o integrar en la secuencia cromosómica en el sitio dirigido durante la reparación mediada por un proceso de reparación dirigido por la homología. Como alternativa, en realizaciones en las que la secuencia donadora está flanqueada por proyecciones compatibles (o las 20 proyecciones compatibles se generar in situ mediante la endonucleasa guiada por ARN) la secuencia donadora se puede enlazar directamente con la secuencia cromosómica escindida mediante un proceso de reparación no homólogo durante la reparación de la rotura de doble cadena. El intercambio o la integración de la secuencia donadora en la secuencia cromosómica modifica la secuencia cromosómica dirigida o introduce una secuencia exógena en la secuencia cromosómica de la célula o embrión.
- En otras realizaciones, el procedimiento puede comprender la introducción de dos endonucleasas guiadas por ARN (o ácido nucleico codificante) y dos ARN guías (o ADN codificantes) en una célula, en la que las endonucleasas guiadas por ARN introducen roturas de doble cadena en la secuencia cromosómica. Véase la FIG. 1. Las dos roturas pueden estar en varios pares de bases, en decenas de pares de bases o pueden estar separados por varios miles de pares de bases. La secuencia donadora en el polinucleótido donador se puede intercambiar con o integrar en la secuencia cromosómica durante la reparación de las roturas de doble cadena bien mediante un proceso de reparación basado en homología (por ejemplo, en realizaciones en las que la secuencia donadora está flanqueada aguas arriba y aguas abajo por secuencias que tienen una identidad de secuencia sustancial con las secuencias de aguas arriba y aguas abajo, respectivamente, de los sitios dirigidos en la secuencia cromosómica) o bien un proceso de reparación no homóloga (por ejemplo, en realizaciones en las que la secuencia donadora está flanqueada por proyecciones compatibles).

(a) Endonucleasa guiada por ARN

5

40

45

50

55

El procedimiento comprende introducir en una célula al menos una endonucleasa guiada por ARN que comprende al menos una seña de localización nuclear o ácido nucleico que codifica al menos una endonucleasa guiada por ARN que comprende al menos una señal de localización nuclear. Tales endonucleasas guiadas por ARN y ácidos nucleicos que codifican las endonucleasas guiadas por ARN se describen anteriormente en las secciones (I) y (II), respectivamente. Sin embargo, los procedimientos reivindicados excluyen los que comprenden un proceso para modificar la identidad genética de la línea germinal de un ser humano.

En algunas realizaciones, la endonucleasa guiada por ARN se puede introducir en la célula o embrión como una proteína aislada. En dichas realizaciones, la endonucleasa guiada por ARN puede comprender adicionalmente al menos un dominio de penetración celular, que facilita la captación celular de la proteína. En otras realizaciones, la endonucleasa guiada por ARN se puede introducir en la célula o embrión como una molécula de ARNm. Aún en otras realizaciones, la endonucleasa guiada por ARN se puede introducir en la célula o embrión como una molécula de ADN. En general, la secuencia de ADN que codifica la proteína está unida de manera operativa a una secuencia del promotor que funcionará en la célula o embrión de interés. La secuencia de ADN puede ser lineal, o la secuencia de ADN puede ser parte de un vector. Aún en otras realizaciones, se puede introducir la proteína en la célula o embrión como un complejo ARN-proteína que comprende la proteína y el ARN guía.

En realizaciones alternativas, el ADN que codifica la endonucleasa guiada por ARN puede comprender adicionalmente la secuencia que codifica un ARN guía. En general, cada una de las secuencias que codifican la endonucleasa guiada por ARN y el ARN guía están unidas de manera operativa la secuencia de control del promotor apropiada que permite la expresión de la endonucleasa guiada por ARN y el ARN guía, respectivamente, en la célula o embrión. La secuencia de ADN que codifica la endonucleasa guiada por ARN y el ARN guía puede comprender además secuencia(s) de control de la expresión, reguladoras y/o de procesamiento. La secuencia de ADN que codifica la endonucleasa guiada por ARN y el ARN guía puede ser lineal o puede ser parte de un vector.

(b) ARN guía

5

10

15

30

35

40

50

El procedimiento también comprende la introducción en una célula o embrión de al menos un ARN guía o ADN que codifica al menos un ARN guía. Un ARN guía interacciona con la endonucleasa guiada por ARN para dirigir la endonucleasa a un sitio diana específico, en cuyo sitio, el extremo 5' del ARN guía alinea sus bases con una secuencia de protoespaciador específica en la secuencia cromosómica.

Cada ARN guía comprende tres regiones: una primera región en el extremo 5' que es complementaria con el sitio diana en la secuencia cromosómica, una segunda región interna que forma una estructura en tallo-bucle, y una tercera región 3' que esencialmente permanece monocatenaria. La primera región de cada ARN guía es diferente, de manera que cada ARN guía a una proteína de fusión hacia un sitio diana específico. La segunda y tercera regiones de cada ARN guía pueden ser las mismas en todos los ARN guía.

La primera región del ARN guía es complementaria con la secuencia (es decir, la secuencia del protoespaciador) en el sitio diana en la secuencia cromosómica de manera que la primera región del ARN guía puede alinear sus bases con el sitio dirigido. En diversas realizaciones, la primera región del ARN guía puede comprender desde aproximadamente 10 nucleótidos a más de aproximadamente 25 nucleótidos. Por ejemplo, la región del alineamiento de bases entre la primera región del ARN guía y el sitio diana en la secuencia cromosómica puede ser de aproximadamente 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 22, 23, 24, 25 o más de 25 nucleótidos de longitud. En una realización a modo de ejemplo, la primera región de ARN guía es de aproximadamente 19, 20 o 21 nucleótidos de longitud.

El ARN guía también comprende una segunda región que forma una estructura secundaria. En algunas realizaciones, la estructura secundaria comprende un tallo (u horquilla) y un bucle. La longitud del bucle y del tallo puede variar. Por ejemplo, el bucle puede variar desde aproximadamente 3 hasta aproximadamente 10 nucleótidos de longitud, y el tallo puede variar desde aproximadamente 6 hasta aproximadamente 20 pares de bases de longitud. El tallo puede comprender una o más protuberancias de 1 a aproximadamente 10 nucleótidos. De este modo, la longitud global de la segunda región puede variar desde aproximadamente 16 hasta aproximadamente 60 nucleótidos de longitud. En una realización ejemplar, el bucle es de aproximadamente 4 nucleótidos de longitud y el tallo comprende aproximadamente 12 pares de bases.

El ARN guía también comprende una tercera región en el extremo 3' que permanece esencialmente monocatenario. De este modo, la tercera región no tiene complementariedad con ninguna secuencia cromosómica en la célula de interés y no tiene complementariedad con el resto del ARN guía. La longitud de la tercera región puede variar. En general, la tercera región es más de aproximadamente 4 nucleótidos de longitud. Por ejemplo, la longitud de la tercera región puede variar desde aproximadamente 5 hasta aproximadamente 60 nucleótidos de longitud.

La longitud combinada de la segunda y tercera región (también llamada la región universal o estructural) del ARN guía puede variar desde aproximadamente 30 hasta aproximadamente 120 nucleótidos de longitud. En un aspecto, la longitud combinada de la segunda y tercera región del ARN guía varía desde aproximadamente 70 hasta aproximadamente 100 nucleótidos de longitud.

En algunas realizaciones, el ARN guía comprende una única molécula que comprende las tres regiones. En otras realizaciones, el ARN guía puede comprender dos moléculas separadas. La primera molécula de ARN puede comprender la primera región del ARN guía y una mitad del "tallo" de la segunda región del ARN guía. La segunda molécula de ARN puede comprender la otra mitad del "tallo" de la segunda región del ARN guía y la tercera región del ARN guía. De este modo, en esta realización, la primera y segunda molécula de ARN contiene cada una una secuencia de nucleótidos que son complementarias entre sí. Por ejemplo, en una realización, la primera y segunda molécula de ARN comprende cada una una secuencia (de aproximadamente 6 a aproximadamente 20 nucleótidos) que alinea sus bases con la otra secuencia para formar un ARN guía funcional.

En algunas realizaciones, el ARN guía se puede introducir en la célula o embrión como una molécula de ARN. La molécula de ARN se puede transcribir *in vitro*. Como alternativa, la molécula de ARN se puede sintetizar químicamente.

En otras realizaciones, el ARN guía se puede introducir en la célula o embrión como una molécula de ADN. En esos casos, el ADN que codifica el ARN guía se puede unir de manera operativa a la secuencia de control del promotor para la expresión del ARN guía en la célula o embrión de interés. Por ejemplo, la secuencia codificante de ARN se puede unir de manera operativa a una secuencia del promotor que se reconoce mediante la ARN polimerasa III (Pol III). Los ejemplos de promotores de Pol III incluyen, pero sin limitación, promotores U6 o H1 de mamífero. En una realización ejemplar, la secuencia codificante de ARN se enlaza a un promotor U6 humano o de ratón. En otras realizaciones ejemplares, la secuencia codificante de ARN se enlaza a un promotor H1 humano o de ratón.

La molécula de ADN que codifica el ARN guía puede ser lineal o circular. En algunas realizaciones, la secuencia de ADN que codifica el ARN guía puede ser parte de un vector. Los vectores adecuados incluyen vectores de plásmidos, fagémidos, cósmidos, minicromosomas artificiales, transposones y vectores víricos. En una realización a modo de ejemplo, el ADN que codifica la endonucleasa guiada por ARN está presente en un vector de plásmido. Los ejemplos no limitantes de vectores de plásmidos adecuados incluyen pUC, pBR322, pET, pBluescript, y variantes de

los mismos. El vector puede comprender secuencias adicionales de control de la expresión (por ejemplo, secuencias potenciadoras, secuencias de Kozak, secuencias de poliadenilación, secuencias de terminación transcripcional, etc.), secuencias de marcador seleccionable (por ejemplo, genes de resistencia a antibióticos), orígenes de replicación y similares.

En realizaciones en las que tanto la endonucleasa guiada por ARN como el ARN guía se introducen en la célula como moléculas de ADN, cada una puede ser parte de una molécula separada (por ejemplo, un vector que contiene secuencia codificante de proteína y un segundo vector que contiene la secuencia codificante de ARN guía) o ambas pueden ser parte de la misma molécula (por ejemplo, un vector que contiene la secuencia codificante (y reguladora) tanto para la proteína como para el ARN guía).

10 (c) Sitio diana

15

20

40

45

50

55

Una endonucleasa guiada por ARN junto con un ARN guía se dirige a un sitio diana en la secuencia cromosómica, en la que la endonucleasa guiada por ARN introduce una rotura de doble cadena en la secuencia cromosómica. El sitio diana no tiene limitación de secuencia excepto en que la misma secuencia va seguida de manera inmediata (aguas abajo) de una secuencia consenso. Esta secuencia consenso también se conoce como motivo adyacente al protoespaciador (PAM, del inglés *protospacer adjacent motif*). Los ejemplos de PAM incluyen, pero sin limitación, NGG, NGGNG y NNAGAAW (en los que N se define como cualquier nucleótido y W se define bien como A o como T). Tal como se detalla anteriormente en la sección (III)(b), la primera región (en el extremo 5') del ARN guía es complementaria con el protoespaciador de la secuencia diana. Normalmente, la primera región del ARN guía es de aproximadamente 19 a 21 nucleótidos de longitud. De este modo, en determinados aspectos, la secuencia del sitio diana en la secuencia cromosómica es 5'-N₁₉₋₂₁-NGG-3'. El PAM está en letras cursivas.

El sitio diana puede estar en la región codificante de un gen, en un intrón de un gen, en una región de control de un gen, en una región no codificante entre genes, etc. El gen puede ser un gen codificante de proteína o un gen codificante de ARN. El gen puede ser cualquier gen de interés.

(d) Polinucleótido donador

El procedimiento comprende adicionalmente introducir al menos un polinucleótido donador en la célula o embrión. Un polinucleótido donador comprende al menos una secuencia donadora. En algunos aspectos, una secuencia donadora del polinucleótido donador se corresponde con una secuencia cromosómica endógena o natural. Por ejemplo, la secuencia donadora puede ser esencialmente idéntica a una parte de la secuencia cromosómica en cerca del sitio dirigido, pero que comprende al menos un cambio de nucleótido. Por lo tanto, la secuencia donadora puede comprender una versión modificada de la secuencia de tipo silvestre en el sitio dirigido de manera que, tras la integración o el intercambio con la secuencia natural, la secuencia en la localización cromosómica dirigida comprende al menos un cambio de nucleótido. Por ejemplo, el cambio puede ser una inserción de uno o más nucleótidos, una deleción de uno o más nucleótidos, una sustitución de uno o más nucleótidos, o combinaciones de los mismos. Como consecuencia de la integración de la secuencia modificada, la célula o el embrión/animal puede producir un producto génico modificado de la secuencia cromosómica dirigida.

En otros aspectos, la secuencia donadora del polinucleótido donador se corresponde con una secuencia exógena. Tal como se usa en el presente documento, una secuencia "exógena" se refiere a una secuencia que no es natural para la célula o embrión, o una secuencia cuya localización natural en el genoma de la célula o embrión está en una localización diferente. Por ejemplo, la secuencia exógena puede comprender secuencia codificante de proteína, que puede estar unida de manera operativa a una secuencia de control del promotor de manera que, tras la integración en el genoma, la célula o el embrión animal es capaz de expresar la proteína codificada por la secuencia integrada. Como alternativa, la secuencia exógena se puede integrar en la secuencia cromosómica de manera que su expresión se regule mediante una secuencia de control del promotor endógena. En otras repeticiones, la secuencia exógena puede ser una secuencia de control transcripcional, otra secuencia de control de la expresión, una secuencia codificante de ARN, etcétera. La integración de una secuencia exógena en una secuencia cromosómica se denomina "inserción".

Como se apreciará por los expertos en la materia, la longitud de la secuencia donadora puede variar y lo hará. Por ejemplo, la secuencia donadora puede variar en longitud desde varios nucleótidos hasta cientos de nucleótidos hasta cientos de nucleótidos.

Polinucleótido donador que comprende secuencias aguas arriba y aguas abajo. En algunas realizaciones, la secuencia donadora en el polinucleótido donador está flanqueado por una secuencia aguas arriba y una secuencia aguas abajo, que tiene identidad de secuencia sustancial con secuencias localizadas aguas arriba y aguas abajo, respectivamente, del sitio dirigido en la secuencia cromosómica. Debido a estas similitudes de secuencia, las secuencias aguas arriba y aguas abajo del polinucleótido donador permiten la recombinación homóloga entre el polinucleótido donador y la secuencia cromosómica dirigida de manera que la secuencia del donador se puede integrar en (o intercambiar con) la secuencia cromosómica.

La secuencia aguas arriba, tal como se usa en el presente documento, se refiere a una secuencia de ácido nucleico que comparte la identidad de secuencia sustancial con una secuencia cromosómica aguas arriba del sitio dirigido. De forma análoga, la secuencia aguas abajo se refiere a una secuencia de ácido nucleico que comparte la identidad de secuencia sustancial con una secuencia cromosómica aguas abajo del sitio dirigido. Tal como se usa en el presente documento, la frase "identidad de secuencia sustancial" se refiere a secuencias que tienen al menos aproximadamente el 75 % de identidad de secuencia. De este modo, las secuencias aguas arriba y aguas abajo en el polinucleótido donador pueden tener aproximadamente el 75 %, 76 %, 77 %, 78 %, 79 %, 80 %, 81 %, 82 %, 83 %, 84 %, 85 %, 86 %, 87 %, 88 %, 89 %, 90 %, 91 %, 92 %, 93 %, 94 %, 95 %, 96 %, 97 %, 98 % o 99 % de identidad de secuencia con la secuencia aguas arriba o aguas abajo del sitio dirigido. En una realización ejemplar, las secuencias aguas arriba y aguas abajo en el polinucleótido donador pueden tener aproximadamente el 95 % o el 100 % de identidad de secuencia con las secuencias cromosómicas aquas arriba o aquas abajo del sitio dirigido. En una realización, la secuencia aguas arriba comparte la identidad de secuencia sustancial con una secuencia cromosómica localizada inmediatamente aguas arriba del sitio dirigido (es decir, adyacente al sitio dirigido). En otras realizaciones, la secuencia aguas arriba comparte la identidad de secuencia sustancial con una secuencia cromosómica que se localizan en aproximadamente cien (100) nucleótidos aguas arriba del sitio dirigido. Por lo tanto, por ejemplo, la secuencia de aguas arriba puede compartir identidad de secuencia sustancial con una secuencia cromosómica que se localiza de aproximadamente 1 a aproximadamente 20, de aproximadamente 21 a aproximadamente 40, de aproximadamente 41 a aproximadamente 60, de aproximadamente 61 a aproximadamente 80, o de aproximadamente 81 a aproximadamente 100 nucleótidos aguas arriba desde el sitio dirigido. En una realización, la secuencia aguas abajo comparte la identidad de secuencia sustancial con una secuencia cromosómica localizada inmediatamente aguas abajo del sitio dirigido (es decir, adyacente al sitio dirigido). En otras realizaciones, la secuencia aguas abajo comparte la identidad de secuencia sustancial con una secuencia cromosómica que se localizan en aproximadamente cien (100) nucleótidos aguas abajo del sitio dirigido. Por lo tanto, por ejemplo, la secuencia de aguas abajo puede compartir identidad de secuencia sustancial con una secuencia cromosómica que se localiza de aproximadamente 1 a aproximadamente 20, de aproximadamente 21 a aproximadamente 40, de aproximadamente 41 a aproximadamente 60, de aproximadamente 61 a aproximadamente 80, o de aproximadamente 81 a aproximadamente 100 nucleótidos aguas abajo desde el sitio dirigido.

10

15

20

25

30

35

40

45

50

55

60

Cada secuencia aguas arriba o aguas abajo puede variar en longitud desde aproximadamente 20 nucleótidos a aproximadamente 5000 nucleótidos. En algunas realizaciones, las secuencias aguas arriba y aguas abajo pueden comprender aproximadamente 50, 100, 200, 300, 400, 500, 600, 700, 800, 900, 1000, 1100, 1200, 1300, 1400, 1500, 1600, 1700, 1800, 1900, 2000, 2100, 2200, 2300, 2400, 2500, 2600, 2800, 3000, 3200, 3400, 3600, 3800, 4000, 4200, 4400, 4600, 4800, o 5000 nucleótidos. En una realización ejemplar, las secuencias aguas arriba o aguas abajo pueden variar en longitud desde aproximadamente 50 a aproximadamente 1500 nucleótidos.

Los polinucleótidos donadores que comprenden las secuencias aguas arriba y aguas abajo con similitud de secuencia con la secuencia cromosómica dirigida pueden ser lineales o circulares. En realizaciones en las que el polinucleótido donador es circular, puede ser parte de un vector. Por ejemplo, el vector puede ser un vector de plásmido.

Polinucleótidos donadores que comprenden sitio(s) de escisión dirigido(s). En otras realizaciones, el polinucleótido donador puede comprender adicionalmente al menos un sitio de escisión dirigido que se reconoce mediante la endonucleasa guiada por ARN. El sitio de escisión dirigido añadido al polinucleótido donador se puede colocar aguas arriba o aguas abajo o ambos, aguas arriba y aguas abajo de la secuencia donadora. Por ejemplo, la secuencia donadora puede estar flanqueada mediante sitios de escisión dirigidos de manera que, tras la escisión por la endonucleasa guiada por ARN, la secuencia donadora está flanqueada por proyecciones que son compatibles con las de la secuencia cromosómica generadas tras la escisión mediante la endonucleasa guiada por ARN. Por consiguiente, la secuencia donadora se puede unir con la secuencia cromosómica escindida durante la reparación de la rotura de doble cadena mediante un proceso de reparación no homóloga. Generalmente, los polinucleótidos donadores que comprenden el(los) sitio(s) de escisión serán circulares (por ejemplo, pueden ser parte de un vector de plásmido).

Polinucleótido donador que comprende una secuencia donadora corta con proyecciones opcionales. En más realizaciones alternativas, el polinucleótido donador puede ser una molécula lineal que comprende una secuencia donadora corta con proyecciones cortas opcionales que son compatibles con las proyecciones generadas mediante la endonucleasa guiada por ARN. En dichas realizaciones, la secuencia donadora se puede unir directamente con la secuencia cromosómica escindida durante la reparación de la rotura de doble cadena. En algunos casos, la secuencia donadora puede ser menor de aproximadamente 1.000, menor de aproximadamente 500, menor de aproximadamente 250, o menor de aproximadamente 100 nucleótidos. En determinados casos, el polinucleótido donador puede ser una molécula lineal que comprende una secuencia donadora corta con extremos romos. En otras repeticiones, el polinucleótido donador puede ser una molécula lineal que comprende una secuencia donadora corta con proyecciones en 5' y/o 3'. Las proyecciones pueden comprender 1, 2, 3, 4 o 5 nucleótidos.

Normalmente, el polinucleótido donador será ADN. El ADN puede ser monocatenario o bicatenario y/o lineal o circular. El polinucleótido donador puede ser un plásmido de ADN, un cromosoma artificial bacteriano (BAC, del inglés bacterial artificial chromosome), un cromosoma artificial de levadura (YAC, del inglés yeast artificial chromosome), un vector vírico, una parte lineal de ADN, un fragmento de PCR, un ácido nucleico desnudo, o un

ácido nucleico que forma complejo con un vehículo de administración tal como un liposoma o un poloxámero. En determinadas realizaciones, el polinucleótido donador que comprende la secuencia donadora puede ser parte de un vector de plásmido. En cualquiera de estas situaciones, el polinucleótido donador que comprende la secuencia donadora puede comprender adicionalmente al menos una secuencia adicional.

5 (e) Introducción en la célula o embrión

10

15

20

25

30

35

40

45

50

55

La(s) endonucleasa(s) dirigida(s) por ARN (o el ácido nucleico codificante), el(los) ARN guía(s) (o ADN codificante) y el(los) polinucleótido(s) donador(es) opcional(es) se pueden introducir en una célula o embrión mediante una variedad de medios. En algunas realizaciones, se transfecta la célula o el embrión. Los procedimientos de transfección adecuados incluyen la transfección mediada por fosfato cálcico, la nucleofección (o electroporación), la transfección por polímeros catiónicos (por ejemplo, DEAE-dextrano o polietilenimina), la transducción vírica, la transfección por virosoma, la transfección por liposoma, la transfección por liposoma, la transfección por liposoma, la transfección por dendrímero, la transfección por choque térmico, la magnetofección, la lipofección, la biobalística, la impalefección, la sonoporación, la transfección óptica y la captación de ácidos nucleicos potenciada por un agente patentado. Los procedimientos de transfección son bien conocidos en la materia (véase, por ejemplo, "Current Protocols in Molecular Biology" Ausubel y col., John Wiley & Sons, Nueva York, 2003 o "Molecular Cloning: A Laboratory Manual" de Sambrook y Russell, Cold Spring Harbor Press, Cold Spring Harbor, NY, 3ª Edición, (2001). En otras realizaciones, las moléculas se introducen en la célula o el embrión mediante microinyección. Normalmente, el embrión en un embrión de etapa unicelular fecundado de la especie de interés. Por ejemplo, las moléculas se pueden inyectar en los pronúcleos de embriones unicelulares.

La(s) endonucleasa(s) dirigida(s) por ARN (o el ácido nucleico codificante), el(los) ARN guía(s) (o los ADN que codifican el ARN guía) y el(los) polinucleótido(s) donador(es) opcional(es) se pueden introducir en la célula o embrión de manera simultánea o de manera secuencial. La proporción de endonucleasa(s) dirigida(s) por ARN (o ácido nucleico codificante) frente al(los) ARN guía (o ADN codificante), generalmente será de aproximadamente una estequiometría tal que puedan formar un complejo ARN-proteína. En una realización, el ADN que codifica una endonucleasa dirigida por ARN y el ADN que codifica un ARN guía se administran juntos en el vector de plásmido.

(f) Cultivo de la célula o embrión

El procedimiento además comprende el mantenimiento de la célula o embrión en condiciones apropiadas, de manera que el(los) ARN guía dirija a la(s) endonucleasa(s) guiada(s) por ARN al(los) sitios dirigido(s) en la secuencia cromosómica, y la(s) endonucleasa(s) guiada por ARN introduzca(n) al menos una rotura de doble cadena en la secuencia cromosómica. Una rotura de doble cadena se puede reparar mediante un proceso de reparación de ADN de manera que la secuencia cromosómica se modifique mediante una deleción de al menos un nucleótido, una inserción de al menos un nucleótido, una sustitución de al menos un nucleótido o una combinación de las mismas.

Si no se introducen polinucleótidos donadores en la célula o embrión, la rotura de doble cadena podría repararse mediante un proceso de reparación por unión de extremos no homólogos (NHEJ, del inglés *non-homologous end-joining*). Dado que la NHEJ es propensa a errores, las deleciones de al menos un nucleótido, las inserciones de al menos un nucleótido, las sustituciones de al menos un nucleótido o las combinaciones de las mismas pueden tener lugar durante la reparación de la rotura. Por consiguiente, la secuencia en la secuencia cromosómica se puede modificar de manera que el marco de lectura de una región codificante se pueda desplazar y la secuencia cromosómica se inactive o se "suprima". Una secuencia cromosómica inactivada que codifica una proteína no produce la proteína codificada por la secuencia cromosómica de tipo silvestre.

En realizaciones en las que un polinucleótido donador que comprende secuencias aguas arriba y aguas abajo se introduce en la célula o embrión, la rotura de doble cadena se puede reparar mediante un proceso de reparación dirigida por homología (HDR, del inglés *homology-directed repair*) de manera que la secuencia donadora se integra en la secuencia cromosómica. Por consiguiente, se puede integrar una secuencia exógena en el genoma de la célula o embrión, o la secuencia cromosómica dirigida se puede modificar mediante el intercambio de una secuencia modificada por la secuencia cromosómica de tipo silvestre.

En realizaciones en las que un polinucleótido donador que comprende el sitio de escisión se introduce en la célula o embrión, la endonucleasa guiada por ARN puede escindir tanto la secuencia cromosómica dirigida como el polinucleótido donador. El polinucleótido donador linealizado se puede integrar en la secuencia cromosómica en el sitio de la rotura de doble cadena mediante unión entre el polinucleótido donador y la secuencia cromosómica escindida mediante un proceso de NHEJ.

En realizaciones en las que un polinucleótido donador lineal que comprende una secuencia donadora corta se introduce en la célula o embrión, la secuencia donadora corta se puede integrar en la secuencia cromosómica en el sitio de la rotura de doble cadena mediante un proceso de NHEJ. La integración puede tener lugar mediante la unión de extremos romos entre la secuencia donadora corta y la secuencia cromosómica en el sitio de la rotura de doble cadena. Como alternativa, la integración puede tener lugar mediante la unión de los extremos cohesivos (es decir,

que tienen proyecciones en 5' o en 3') entre una secuencia donadora corta que está flanqueada por proyecciones que son compatibles con las generadas mediante la endonucleasa de direccionamiento de ARN en la secuencia cromosómica escindida.

En general, la célula se mantiene en condiciones apropiadas para el crecimiento celular y/o su conservación. Las condiciones adecuadas de cultivo celular son bien conocidas en la materia y se describen, por ejemplo, en Santiago y col. (2008) PNAS 105:5809-5814; Moehle y col. (2007) PNAS 104:3055-3060; Urnov y col. (2005) Nature 435:646-651; y Lombardo y col. (2007) Nat. Biotechnology 25:1298-1306. Los expertos en la materia aprecian que los procedimientos para el cultivo de células son conocidos en la materia y pueden variar y lo harán dependiendo del tipo celular. Se puede usar la optimización habitual, en todos los casos, para determinar las mejores técnicas para un tipo celular en particular.

Se puede cultivar un embrión *in vitro* (por ejemplo, en cultivo celular). Normalmente, el embrión se cultiva a una temperatura apropiada y en medios apropiados con la proporción de O₂/CO₂ necesaria como para permitir la expresión de la endonucleasa guiada por ARN y del ARN guía, si fuese necesario. Los ejemplos no limitantes adecuados de medios incluyen los medios M2, M16, KSOM, BMOC y HTF. Un experto en la materia apreciará que las condiciones del cultivo pueden variar y lo harán dependiendo de la especie del embrión. Se puede usar la optimización habitual, en todos los casos, para determinar las mejores condiciones de cultivo para una especie particular de embrión. En algunos casos, una línea celular puede provenir de un embrión cultivado in vitro (por ejemplo, una línea de células madre embrionarias).

Como alternativa, se puede cultivar un embrión *in vivo* transfiriendo el embrión al útero de un hospedador femenino.

Hablando de manera general, el hospedador femenino es de la misma especie o similar que la del embrión. Preferentemente, el hospedador femenino está pseudoembarazado. Los procedimientos para preparar hospedadores femeninos pseudoembarazados se conocen en la materia. Además, los procedimientos para transferir un embrión en un hospedador femenino son conocidos. El cultivo de un embrión *in vivo* permite el desarrollo del embrión y pueden dar como resultado un nacimiento vivo de un animal que proviene del embrión. Tal animal comprendería la secuencia cromosómica modificada en cada célula del cuerpo. Se excluyen se manera específica del ámbito de la invención los procedimientos que comprenden un proceso para modificar la identidad genética de la línea germinal de un ser humano.

(g) Tipos de células y embriones

5

10

15

40

45

50

55

Una variedad de células eucariotas y embriones son adecuados para su uso en el procedimiento. Por ejemplo, la célula puede ser una célula humana, una célula de mamífero no humano, una célula de vertebrado no mamífero, una célula de invertebrado, una célula de insecto, una célula vegetal, una levadura, o un organismo eucariota unicelular. En general, el embrión es un embrión de mamífero no humano. En realizaciones específicas, los embriones pueden ser un embrión unicelular de mamífero no humano. Los embriones ejemplares, incluyendo los embriones unicelulares, incluyen sin limitación los embriones de ratón, de rata, de hámster, de roedor, de conejo, de gato, de perro, de oveja, de cerdo, de vaca, de caballo y de primate. Aún en otras realizaciones, la célula puede ser una célula madre. Las células madre adecuadas incluyen sin limitación las células madre embrionarias, las células madre de tipo ES, células madre fetales, células madre de adulto, células madre pluripotenciales, células madre de pluripotencialidad inducida, células madre multipotentes, células madre oligopotentes, células madre unipotentes y otras. En realizaciones ejemplares, la célula es una célula de mamífero.

Los ejemplos no limitantes de células de mamífero adecuadas incluyen las células de ovario de hámster chino (CHO), las células renales de cría de hámster (BHK); las células NSO de mieloma de ratón, las células 3T3 de fibroblasto embrionario de ratón (NIH3T3), las células A20 de linfoma de linfocitos B de ratón; las células B16 de melanoma de ratón; las células C2C12 de mioblasto de ratón; las células SP2/0 de mieloma de ratón; las células C3H-10T1/2 mesenquimales embrionarias de ratón; las células CT26 de carcinoma de ratón, las células DuCuP de próstata de ratón; las células EMT6 de mama de ratón; las células Hepa1c1c7 de hepatoma de ratón; las células J5582 de mieloma de ratón: las células MTD-1A epiteliales de ratón: las células MvEnd de miocardio de ratón: las células RenCa renales de ratón; las células RIN-5F pancreáticas de ratón; las células X64 de melanoma de ratón; las células YAC-1 de linfoma de ratón; las células 9L de glioblastoma de rata; las células RBL de linfoma de linfocitos B de rata; las células B35 de neuroblastoma de rata; las células de hepatoma de rata (HTC); las células BRL 3A de hígado de rata; las células renales caninas (MDCK); las células (CMT) mamarias caninas; las células D17 de osteosarcoma de rata; las células DH82 de monocito/macrófago de rata; las células (COS7) de fibroblastos de riñón de mono transformados por el virus SV-40; las células CVI-76 de riñón de mono; células (VERO-76) de riñón de mono verde africano; células (HEK293, HEK293T) de riñón embrionario humano; células (HELA) de carcinoma de cuello uterino humano; células (W138) de pulmón humano; células (Hep G2) de hígado humano; células de osteosarcoma U2-OS humano, células A549 humanas, células A-431 humanas, y células K562 humanas. Se puede encontrar una lista extensa de líneas celulares de mamíferos en el catálogo de la American Type Culture Collection (ATCC, Manassas, VA).

(IV) Células y animales modificados genéticamente

5

30

35

55

60

La presente divulgación abarca células embriones no humanos y animales no humanos modificados genéticamente, que comprenden al menos una secuencia cromosómica que se ha modificado usando el proceso mediado por endonucleasa guiada por ARN, usando los procedimientos descritos en el presente documento. La divulgación proporciona células que comprenden al menos una molécula de ADN o de ARN que codifica una endonucleasa guiada por ARN dirigida hacia una secuencia cromosómica de interés, al menos un ARN guía y uno o más polinucleótidos donadores. La divulgación también proporciona embriones no humanos que comprenden al menos una molécula de ADN o de ARN que codifica una endonucleasa guiada por ARN dirigida hacia una secuencia cromosómica de interés, al menos un ARN guía y uno o más polinucleótidos donadores.

- La presente divulgación proporciona animales no humanos, embriones no humanos o células animales modificados genéticamente que comprenden al menos una secuencia cromosómica modificada. La secuencia cromosómica modificada se modifica de manera que comprenda una secuencia integrada. La secuencia cromosómica se modifica con un proceso mediado por endonucleasa guiada por ARN, usando los procedimientos descritos en el presente documento.
- Tal como se ha tratado, un aspecto de la presente divulgación proporciona un animal modificado genéticamente en 15 el que se ha modificado al menos una secuencia cromosómica. En una realización, el animal modificado genéticamente comprende al menos una secuencia cromosómica inactivada. La secuencia cromosómica modificada se puede inactivar de manera que la secuencia no se transcriba y/o no se produzca una proteína funcional. Por lo tanto, un animal modificado genéticamente que comprende una secuencia cromosómica inactivada puede 20 denominarse un "animal genomanipulado por supresión génica" o un "animal genomanipulado secundariamente por supresión génica". La secuencia cromosómica inactivada puede incluir una mutación de deleción (es decir, deleción de uno o más nucleótidos), una mutación de inserción (es decir, inserción de uno o más nucleótidos), o una mutación interruptora (es decir. sustitución de un único nucleótido por otro nucleótido de manera que se introduzca un codón de parada). Como consecuencia de la mutación, la secuencia cromosómica dirigida se inactiva y no se 25 produce una proteína funcional. La secuencia cromosómica inactivada no comprende una secuencia introducida de manera exógena. También se incluyen en el presente documento animales modificados genéticamente en los que dos, tres, cuatro, cinco, seis, siete, ocho, nueve o diez o más secuencias cromosómicas están inactivadas.
 - En otra realización, la secuencia cromosómica modificada se puede alterar de manera que codifique un producto variante de proteína. Por ejemplo, un animal modificado genéticamente que comprende una secuencia cromosómica modificada puede comprender una(s) mutación(es) puntual(es) dirigidas u otra modificación de manera que se produzca un producto de proteína alterada. En una realización, la secuencia cromosómica se puede modificar de manera que al menos un nucleótido se cambie y la proteína expresada comprenda un resto de aminoácido cambiado (mutación de aminoácido). En otra realización, la secuencia cromosómica se puede modificar para que comprenda más de una mutación de aminoácido de manera que se cambie más de un aminoácido. Además, la secuencia cromosómica se puede modificar para que tenga una deleción o inserción de tres nucleótidos de manera que la proteína expresada comprenda una única deleción o inserción de aminoácido. La proteína variante o alterada puede tener propiedades o actividades alteradas en comparación con la proteína de tipo silvestre, tal como una especificidad por el sustrato alterada, una actividad enzimática alterada, unas tasas cinéticas alteradas, etc.
- En otra realización, el animal modificado genéticamente puede comprender al menos una secuencia integrada en el 40 cromosoma. Un animal modificado genéticamente que comprende una secuencia integrada puede denominarse un "animal genomanipulado por inserción génica" o un "animal genomanipulado secundariamente por inserción génica". La secuencia integrada en el cromosoma puede, por ejemplo, codificar una proteína ortóloga, una proteína endógena o combinaciones de ambas. En una realización, una secuencia que codifica una proteína ortóloga o una proteína endógena se puede integrar en una secuencia cromosómica que codifica una proteína de manera que la 45 secuencia cromosómica se inactiva, pero la secuencia exógena se expresa. En tal caso, la secuencia que codifica la proteína ortóloga o la proteína endógena puede estar unida de manera operativa a una secuencia de control del promotor. Como alternativa, una secuencia que codifica una proteína ortóloga o una proteína endógena se puede integrar en una secuencia cromosómica sin afectar a la expresión de una secuencia cromosómica. Por ejemplo, una secuencia que codifica una proteína se puede integrar en un locus "de sitio seguro", tal como el locus Rosa26, el 50 locus HPRT, o el locus AAV. La presente divulgación también abarca animales modificados genéticamente en los que dos, tres, cuatro, cinco, seis, siete, ocho, nueve o diez o más secuencias, incluyendo secuencias que codifican proteína(s), se integran en el genoma.

La secuencia integrada en el cromosoma que codifica una proteína puede codificar la forma de tipo silvestre de una proteína de interés o puede codificar una proteína que comprende al menos una modificación de manera que se produce una versión alterada de la proteína. Por ejemplo, una secuencia integrada en el cromosoma que codifica una proteína relacionada con una enfermedad o trastorno puede comprender al menos una modificación de manera que la versión alterada de la proteína producida provoque o potencie el trastorno asociado. Como alternativa, la secuencia integrada en el cromosoma que codifica una proteína relacionada con una enfermedad o trastorno puede comprender al menos una modificación de manera que la versión alterada de la proteína proteja frente al desarrollo del trastorno asociado.

En un ejemplo adicional, el animal modificado genéticamente puede ser un animal "humanizado" que comprende al menos una secuencia integrada en el cromosoma que codifica una proteína humana funcional. La proteína humana funcional puede no tener el correspondiente ortólogo en el animal modificado genéticamente. Como alternativa, el animal de tipo silvestre del que proviene el animal modificado genéticamente puede comprender un ortólogo correspondiente con la proteína humana funcional. En este caso, la secuencia ortóloga en el animal "humanizado" está inactivada de manera que no se crean proteínas funcionales y el animal "humanizado" comprende al menos una secuencia integrada en el cromosoma que codifica la proteína humana.

5

10

15

20

25

40

45

50

55

60

En otro ejemplo más, el animal modificado genéticamente puede comprender al menos una secuencia cromosómica modificada que codifica una proteína de manera que el patrón de expresión de la proteína está alterado. Por ejemplo, las regiones reguladoras que controlan la expresión de la proteína, tal como un promotor o un sitio de unión a factor de transcripción, se pueden alterar de manera que la proteína se sobreproduce, o se modifique la expresión temporal o específica de tejido de la proteína, o una combinación de los mismos. Como alternativa, el patrón de expresión de la proteína se puede alterar usando un sistema de animal genomodificado secundariamente por supresión génica. Un ejemplo no limitante de un sistema de animal genomodificado secundariamente por supresión génica incluye un sistema de recombinación Cre-lox. Un sistema de recombinación Cre-lox comprende una enzima recombinasa Cre, una ADN recombinasa específica de sitio que puede catalizar la recombinación de una secuencia de ácido nucleico entre sitios específicos (sitios lox) en una molécula de ácido nucleico. Los procedimientos para usar este sistema para producir expresión temporal y específica de tejido son conocidos en la materia. En general, un animal modificado genéticamente se genera con sitios lox que flanquean una secuencia cromosómica. En animal modificado genéticamente que comprende una secuencia cromosómica flanqueada por lox se puede cruzar entonces con otro animal modificado genéticamente que exprese la recombinasa Cre. Los animales de la progenie que comprende la secuencia cromosómica flanqueada por lox y la Cre recombinasa se producen entonces, y la secuencia cromosómica flanqueada por lox se recombina, llevando a una deleción o inversión de la secuencia cromosómica que codifica la proteína. La expresión de la recombinasa Cre se puede regular de manera temporal y secundaria para efectuar una recombinación regulada de manera temporal y secundaria de la secuencia cromosómica.

En cualquiera de estas realizaciones, el animal modificado genéticamente desvelado en el presente documento puede ser heterocigótico para la secuencia cromosómica modificada. Como alternativa, el animal modificado genéticamente puede ser homocigótico para la secuencia cromosómica modificada.

Los animales modificados genéticamente desvelados en el presente documento se pueden cruzarse para crear animales que comprendan más de una secuencia cromosómica modificada o para crear animales que sean homocigóticos para una o más secuencias cromosómicas modificadas. Por ejemplo, dos animales que comprenden la misma secuencia cromosómica modificada se pueden cruzar para crear un animal homocigótico para la secuencia cromosómica modificada. Como alternativa, los animales con diferentes secuencias cromosómicas modificadas se pueden cruzar para crear un animal que comprenda ambas secuencias cromosómicas modificadas.

Por ejemplo, un primer animal que comprende un gen "x" de una secuencia cromosómica inactivada se puede cruzar con un segundo animal que comprende que comprende una secuencia integrada en el cromosoma que codifica una proteína "X" de gen humano para dar lugar a una descendencia "X" de genes "humanizados" que comprende tanto la secuencia cromosómica del gen inactivado "x" como la secuencia "X" del gen humano integrado en el cromosoma. Asimismo, un animal con gen "X" humanizado se puede cruzar con un animal con gen "Y" humanizado para crear una descendencia con genes X/Y humanizados. Los expertos en la materia apreciarán que son posibles muchas combinaciones.

En otras realizaciones, un animal que comprende una secuencia cromosómica modificada se puede cruzar para combinar la secuencia cromosómica modificada con otros acervos genéticos. A modo de ejemplo no limitante, otros acervos genéticos pueden incluir los acervos genéticos de tipo silvestre, los acervos genéticos con mutaciones de deleción, los acervos genéticos con otra integración dirigida y los acervos genéticos con integraciones no dirigidas.

El término "animal", tal como se usa en el presente documento, se refiere a un animal no humano. El animal puede ser un embrión, un juvenil o un adulto. Los animales adecuados incluyen vertebrados tales como mamíferos, aves, reptiles, anfibios, moluscos y peces. Los ejemplos de mamíferos adecuados incluyen, sin limitación, roedores, animales de compañía, ganado y primates. Los ejemplos no limitantes de roedores incluyen ratones, ratas, hámsteres, jerbos y cobayas. Los animales de compañía adecuados incluyen, pero sin limitación, gatos, perros, conejos, erizos y hurones. Los ejemplos no limitantes de ganado incluyen caballos, cabras, ovejas, cerdos, vacas, llamas y alpacas. Los primates adecuados incluyen, pero sin limitación, monos capuchinos, chimpancés, lemures, macacos, titíes, tamarinos, monos araña, monos ardilla y monos de Vervet. Los ejemplos no limitantes de aves incluyen gallinas, pavos, patos y gansos. Como alternativa, el animal puede ser un invertebrado tal como un insecto, un nemátodo y similares. Los ejemplos no limitantes de insectos incluyen Drosohila y mosquitos. Un animal ejemplar es una rata. Los ejemplos no limitantes de las cepas de rata incluyen Dahl Salt-Sensitive, Fischer 344, Lewis, Long Evans Hooded, Sprague-Dawley y Wistar. En una realización, el animal no es un ratón modificado genéticamente. En cada una de las repeticiones precedentes de animales adecuados para la invención, el animal no incluye secuencias de transposones introducidas de forma exógena e integradas de manera aleatorizada.

Un aspecto adicional de la presente divulgación proporciona células o líneas celulares modificadas genéticamente que comprenden al menos una secuencia cromosómica modificada. La célula o línea celular modificada genéticamente puede provenir de cualquiera de los animales modificados genéticamente desvelados en el presente documento. Como alternativa, la secuencia cromosómica se puede modificar en una célula tal como se describe anteriormente en el presente documento (en los párrafos que describen las modificaciones de secuencias cromosómicas en animales) usando los procedimientos descritos en el presente documento. La divulgación también abarca un lisado de dichas células o líneas celulares.

Las células son células eucariotas. Las células hospedadoras adecuadas incluyen hongos o levaduras, tales como *Pichia, Saccharomyces,* o *Schizosaccharomyces;* células de insecto, tales como células SF9 *Spodoptera frugiperda* o células S2 de *Drosophila melanogaster;* y células de animales, tales como ratón, rata, hámster, primate no humano o células humanas. Las células ejemplares son de mamífero. Las células de mamífero pueden ser células primarias. En general, se puede usar cualquier célula primaria que sea sensible a las roturas de doble cadena. Las células pueden ser de una variedad de tipos celulares, por ejemplo, fibroblastos, mioblastos, linfocitos T o B, macrófagos, células epiteliales, etcétera.

Cuando se usan líneas celulares de mamífero, la línea celular puede ser cualquier línea celular establecida o una línea de células primarias que no se haya descrito aún. La línea celular puede ser adherente o no adherente o la línea celular puede crecer en condiciones que estimulen el crecimiento adherente, no adherente u organotípico usando técnicas convencionales conocidas por los expertos en la materia. Los ejemplos no limitantes de células y líneas celulares de mamífero se proporcionan en el presente documento en la sección (IV)(g). Aún en otras realizaciones, la célula puede ser una célula madre. Los ejemplos no limitantes de células madre adecuadas se proporcionan en la sección (IV)(g).

La presente divulgación también proporciona un embrión no humano modificado genéticamente que comprende al menos una secuencia cromosómica modificada. La secuencia cromosómica se puede modificar en un embrión tal como se describe anteriormente en el presente documento (en los párrafos que describen las modificaciones de secuencias cromosómicas en animales) usando los procedimientos descritos en el presente documento. En una realización, el embrión en un embrión no humano de etapa unicelular fecundado de la especie animal de interés. Los embriones ejemplares, incluyendo los embriones unicelulares, incluyen sin limitación, de ratón, de rata, de hámster, de roedor, de conejo, de gato, de perro, de oveja, de cerdo, de vaca, de caballo y embriones de primates.

Definiciones

10

25

40

50

55

Salvo que se defina de otra manera, todos los términos técnicos y científicos utilizados en el presente documento tienen el significado comúnmente entendido por un experto en la materia a la cual pertenece la presente invención. Las siguientes referencias a un experto en la materia una definición general de muchos de los términos usados en la presente invención: Singleton y col., Dictionary of Microbiology and Molecular Biology (2ª ed. 1994); The Cambridge Dictionary of Science and Technology (Walker ed., 1988); The Glossary of Genetics, 5ª Ed., R. Rieger y col. (eds.),
 Springer Verlag (1991); y Hale y Marham, The Harper Collins Dictionary of Biology (1991). Tal como se usa en el presente documento, los siguientes términos tienen los significados que se les atribuyen a menos que se especifique lo contrario.

Cuando se introducen elementos de la presente divulgación o de la(s) realización(es) preferida(s) de la(s) misma(s), los artículos "un", "una", "el", "la" y "dicho" pretenden significar que son uno o más de los elementos. Las expresiones "que comprende", "que incluye" y "que tiene" pretenden ser inclusivas y significar que pueden ser elementos adicionales que no sean los elementos enumerados.

Tal como se usa en el presente documento, la expresión "secuencia endógena" se refiere a una secuencia cromosómica que es natural para la célula.

El término "exógena", tal como se usa en el presente documento, se refiere a una secuencia se refiere a una secuencia que no es natural para la célula, o una secuencia cuya localización natural en el genoma de la célula está en una localización cromosómica diferente.

Un "gen", tal como se usa en el presente documento, se refiere a una región de ADN (incluyendo exones e intrones) que codifica un producto génico, así como a todas las regiones de ADN que regulan la producción del producto génico, tanto si tales secuencias reguladoras son adyacentes o no a secuencias codificantes y/o transcritas. En consecuencia, un gen incluye, pero no se limita necesariamente a, secuencias promotoras, terminadores, secuencias reguladoras de la traducción tales como sitios de unión a ribosomas y sitios de entrada interna en ribosomas, potenciadores, silenciadores, aislantes, elementos limitantes, orígenes de replicación, sitios de unión a matriz y regiones de control de locus.

El término "heterólogo" se refiere a una entidad que no es endógena o natural para la célula de interés. Por ejemplo, una proteína heteróloga se refiere a una proteína que proviene de o que originalmente proviene de una fuente exógena, tal como una secuencia de ácido nucleico introducida de manera exógena. En algunos casos, la proteína heteróloga no se produce normalmente por la célula de interés.

Las expresiones "ácido nucleico" y "polinucleótido" se refieren a un polímero de desoxirribonucleótidos o ribonucleótidos, de conformación lineal o circular y en forma monocatenaria o bicatenaria. Para los fines de la presente divulgación, estos términos no deben interpretarse como limitantes con respecto a la longitud de un polímero. Estos términos pueden abarcar los análogos conocidos de los nucleótidos naturales, así como nucleótidos que se modifican en la base, restos de azúcar y/o fosfatos (por ejemplo, estructuras principales de fosforotioatos). En general, un análogo de un nucleótido particular tiene la misma especificidad de emparejamiento de bases; es decir, un análogo de A emparejará su base con T.

El término "nucleótido" se refiere a desoxirribonucleótidos o ribonucleótidos. Los nucleótidos pueden ser nucleótidos covencionales (es decir, adenosina, guanosina, citidina, timidina y uridina) o análogos de nucleótido. Un análogo de nucleótido se refiere a un nucleótido que tiene una base de purina o de pirimidina modificada o un resto de ribosa modificado. Un análogo de nucleótido puede ser un nucleótido de origen natural (por ejemplo, inosina) o un nucleótido de origen no natural. Los ejemplos no limitantes de modificaciones en los restos de azúcar o de base de un nucleótido incluyen la adición (o eliminación) de grupos acetilo, grupos amino, grupos carboxilo, grupos carboximetilo, gupos hidroxilo, grupos metilo, grupos fosforilo y grupos tiol, así como la sustitución de los átomos de carbono y nitrógeno de las bases por otros átomos (por ejemplo, 7-deaza purinas). Los análogos de nucleótidos también incluyen didesoxinucleótidos, 2'-O-metil nucleotidos, ácidos nucleicos bloqueados (LNA), ácidos peptidonucleicos (PNA) y morfolinos.

Los términos "polipéptido" y "proteína" se usan de manera intercambiable para referirse a un polímero de restos de aminoácidos.

Las técnicas para determinar la identidad de secuencia de ácido nucleico y de aminoácidos se conocen en la materia. Normalmente, tales técnicas incluyen la determinación de la secuencia de nucleótidos de un ARNm para un gen y/o la determinación de la secuencia de aminoácidos codificada por la misma, y la comparación de estas secuencias con una segunda secuencia de nucleótidos o de aminoácidos. Las secuencias genómicas también se pueden determinar y comparar de esta manera. En general, identidad se refiere a una correspondencia exacta nucleótido a nucleótido o aminoácido a aminoácido de dos polinucleótidos o secuencias polipeptídicas, respectivamente. Dos o más secuencias (de polinucleótidos o aminoácidos) se pueden comparar determinando su porcentaje de identidad. El porcentaje de identidad de dos secuencias, sean secuencias de ácido nucleico o de aminoácidos, es el número de coincidencias exactas entre dos secuencias alineadas dividido entre la longitud de las secuencias más cortas y multiplicado por 100. Un alineamiento aproximado para las secuencias de ácido nucleico se proporciona mediante el algoritmo de homología local de Smith y Waterman, Advances in Applied Mathematics 2:482-489 (1981). Este algoritmo se puede aplicar a las secuencias de aminoácidos usando la matriz de puntuación desarrollada por Dayhoff, Atlas of Protein Sequences and Structure, M. O. Dayhoff ed., 5 supl. 3:353-358, National Biomedical Research Foundation, Washington, D.C., EEUU, y normalizada por Gribskov, Nucl. Acids Res. 14(6):6745-6763 (1986). Una implementación ejemplar de este algoritmo para determinar el porcentaje de identidad de una secuencia se proporciona por el Genetics Computer Group (Madison, Wis.) en la aplicación de utilidad "BestFit". Otros programas adecuados para calcular el porcentaje de identidad o la similitud entre secuencias son generalmente conocidos en la materia, por ejemplo, otro programa de alineamiento es BLAST, usado con parámetros por defecto. Por ejemplo, se pueden usar BLASTN y BLASTP usando los siguientes parámetros por defecto: genetic code=standard; filter=none; strand=both; cutoff=60; expect=10; Matrix=BLOSUM62; Descriptions=50 sequences; sort by=HIGH SCORE; Databases=non-redundant, GenBank+EMBL+DDBJ+PDB+GenBank CDS translations+Swiss protein+Spupdate+PIR. Los detalles de estos programas se pueden encontrar en la página web de GenBank.

Como se pueden hacer diversos cambios en las células mencionadas y procedimientos sin apartarse del ámbito de la invención, se pretende que toda la materia contenida en la descripción anterior y en los ejemplos que figuran a continuación, se puedan interpretar como ilustrativos y no en un sentido limitante.

Ejemplos

Los siguientes ejemplos ilustran determinados aspectos de la invención.

Ejemplo 1: Modificación del gen Cas9 para la expresión en mamíferos

Un gen Cas9 de la cepa MGAS15252 de Streptococcus pyogenes (Número de referencia YP_005388840.1) se optimizó con el codón de Homo sapiens de preferencia para potenciar su traducción en células de mamífero. El gen Cas9 también se modificó añadiendo una señal de localización PKKKRKV (SEQ ID NO:1) en el extremo C-terminal para dirigir la proteína a los núcleos de las células de mamífero. La Tabla 1 presenta la secuencia de aminoácidos de Cas9 modificada, con la secuencia de localización nuclear subrayada. La Tabla 2 presenta la secuencia de ADN de Cas9 modificada y optimizada con codón.

55

50

10

15

20

25

30

35

40

45

Tabla 1. Secuencia de aminoácidos de Cas9 modificada

MDKKYSIGLDIGTNSVGWAVITDDYKVPSKKFKVLGNTDRHSIKKNLIGALLFGSGET **AEATRLKRTARRRYTRRKNRICYLQEIFSNEMAKVDDSFFHRLEESFLVEEDKKHER** HPIFGNIVDEVAYHEKYPTIYHLRKKLADSTDKADLRLIYLALAHMIKFRGHFLIEGDLN PDNSDVDKLFIQLVQIYNQLFEENPINASRVDAKAILSARLSKSRRLENLIAQLPGEKR NGLFGNLIALSLGLTPNFKSNFDLAEDAKLQLSKDTYDDDLDNLLAQIGDQYADLFLA AKNLSDAILLSDILRVNSEITKAPLSASMIKRYDEHHQDLTLLKALVRQQLPEKYKEIFF DQSKNGYAGYIDGGASQEEFYKFIKPILEKMDGTEELLVKLNREDLLRKQRTFDNGSI PHQIHLGELHAILRRQEDFYPFLKDNREKIEKILTFRIPYYVGPLARGNSRFAWMTRK SEETITPWNFEEVVDKGASAQSFIERMTNFDKNLPNEKVLPKHSLLYEYFTVYNELTK VKYVTEGMRKPAFLSGEQKKAIVDLLFKTNRKVTVKQLKEDYFKKIECFDSVEISGVE DRFNASLGAYHDLLKIIKDKDFLDNEENEDILEDIVLTLTLFEDRGMIEERLKTYAHLFD DKVMKQLKRRRYTGWGRLSRKLINGIRDKQSGKTILDFLKSDGFANRNFMQLIHDDS LTFKEDIQKAQVSGQGHSLHEQIANLAGSPAIKKGILQTVKIVDELVKVMGHKPENIVI **EMARENQTTQKGQKNSRERMKRIEEGIKELGSQILKEHPVENTQLQNEKLYLYYLQN** GRDMYVDQELDINRLSDYDVDHIVPQSFIKDDSIDNKVLTRSDKNRGKSDNVPSEEV VKKMKNYWRQLLNAKLITQRKFDNLTKAERGGLSELDKAGFIKRQLVETRQITKHVA QILDSRMNTKYDENDKLIREVKVITLKSKLVSDFRKDFQFYKVREINNYHHAHDAYLN AVVGTALIKKYPKLESEFVYGDYKVYDVRKMIAKSEQEIGKATAKYFFYSNIMNFFKT EITLANGEIRKRPLIETNGETGEIVWDKGRDFATVRKVLSMPQVNIVKKTEVQTGGFS KESILPKRNSDKLIARKKDWDPKKYGGFDSPTVAYSVLVVAKVEKGKSKKLKSVKEL LGITIMERSSFEKNPIDFLEAKGYKEVKKDLIIKLPKYSLFELENGRKRMLASAGELQK GNELALPSKYVNFLYLASHYEKLKGSPEDNEQKQLFVEQHKHYLDEIIEQISEFSKRVI LADANLDKVLSAYNKHRDKPIREQAENIIHLFTLTNLGAPAAFKYFDTTIDRKRYTSTK EVLDATLIHQSITGLYETRIDLSQLGGDPKKKRKV (SEQ ID NO:9)

Tabla 2. Secuencia (5'-3') de ADN de Cas9 optimizada

ATGGACAAGAAGTACAGCATCGGCCTGGACATCGGCACCAACTCTGTGGGCTG GGCCGTGATCACCGACGACTACAAGGTGCCCAGCAAGAAATTCAAGGTGCTGG GCAACACCGACCGGCACAGCATCAAGAAGAACCTGATCGGCGCCCTGCTGTTC GGCTCTGGCGAAACAGCCGAGGCCACCCGGCTGAAGAGAACCGCCAGAAGAA GATACACCAGACGGAAGAACCGGATCTGCTATCTGCAAGAGATCTTCAGCAACG TGGAAGAGGATAAGAAGCACGAGCGGCACCCCATCTTCGGCAACATCGTGGAC GCCGACAGCACCGACAAGGCCGACCTGAGACTGATCTACCTGGCCCTGGCCCA CATGATCAAGTTCCGGGGCCACTTCCTGATCGAGGGCGACCTGAACCCCGACAA CAGCGACGTGGACAAGCTGTTCATCCAGCTGGTGCAGATCTACAATCAGCTGTT CGAGGAAAACCCCATCAACGCCAGCAGAGTGGACGCCAAGGCCATCCTGAGCG CCAGACTGAGCAAGAGCAGACGGCTGGAAAATCTGATCGCCCAGCTGCCCGGC GAGAAGCGGAATGGCCTGTTCGGCAACCTGATTGCCCTGAGCCTGGGCCTGAC CCCCAACTTCAAGAGCAACTTCGACCTGGCCGAGGATGCCAAACTGCAGCTGAG CAAGGACACCTACGACGACGACCTGGACAACCTGCTGGCCCAGATCGGCGACC

Tabla 2. Secuencia (5'-3') de ADN de Cas9 optimizada

AGTACGCCGACCTGTTTCTGGCCGCCAAGAACCTGTCCGACGCCATCCTGCTGA GCGACATCCTGAGAGTGAACAGCGAGATCACCAAGGCCCCCCTGTCCGCCTCT ATGATCAAGAGATACGACGAGCACCACCAGGACCTGACCCTGCTGAAAGCTCTC GTGCGGCAGCAGCTGCCTGAGAAGTACAAAGAGATTTTCTTCGACCAGAGCAAG AACGGCTACGCCGGCTACATCGATGGCGGAGCCAGCCAGGAAGAGTTCTACAA GTTCATCAAGCCCATCCTGGAAAAGATGGACGGCACCGAGGAACTGCTCGTGAA GCTGAACAGAGGACCTGCTGCGGAAGCAGCGGACCTTCGACAACGGCAGCA TCCCCCACCAGATCCACCTGGGAGAGCTGCACGCCATTCTGCGGCGGCAGGAA GATTTTTACCCATTCCTGAAGGACAACCGGGAAAAGATCGAGAAGATCCTGACCT TCAGAATCCCCTACTACGTGGGCCCTCTGGCCAGGGGAAACAGCAGATTCGCCT GGATGACCAGAAAGAGCGAGGAAACCATCACCCCCTGGAACTTCGAGGAAGTG GTGGACAAGGGCGCCAGCGCCCAGAGCTTCATCGAGCGGATGACCAACTTCGA TAAGAACCTGCCCAACGAGAAGGTGCTGCCCAAGCACAGCCTGCTGTACGAGTA CTTCACCGTGTACAACGAGCTGACCAAAGTGAAATACGTGACCGAGGGAATGCG GAAGCCCGCCTTTCTGAGCGGCGAGCAGAAAAAGGCCATCGTGGACCTGCTGT TCAAGACCAACCGGAAAGTGACCGTGAAGCAGCTGAAAGAGGACTACTTCAAGA AAATCGAGTGCTTCGACAGCGTGGAAATCAGCGGCGTGGAAGATCGGTTCAACG CCTCCCTGGGCGCCTATCACGATCTGCTGAAAATTATCAAGGACAAGGACTTCC TGGACAATGAGGAAAACGAGGACATTCTGGAAGATATCGTGCTGACCCTGACAC TGTTTGAGGACCGGGCATGATCGAGGAACGGCTGAAAACCTATGCCCACCTGT TCGACGACAAGTGATGAAGCAGCTGAAGCGGCGGAGATACACCGGCTGGGGC AGGCTGAGCCGGAAGCTGATCAACGGCATCCGGGACAAGCAGTCCGGCAAGAC AATCCTGGATTTCCTGAAGTCCGACGGCTTCGCCAACAGAAACTTCATGCAGCT GATCCACGACGACAGCCTGACCTTTAAAGAGGACATCCAGAAAGCCCAGGTGTC CGGCCAGGGACACTCTCTGCACGAGCAGATCGCCAATCTGGCCGGATCCCCCG CCATTAAGAAGGGCATCCTGCAGACAGTGAAGATTGTGGACGAGCTCGTGAAAG TGATGGGCCACAAGCCCGAGAACATCGTGATCGAAATGGCCAGAGAGAACCAG ACCACCAGAAGGGACAGAAGAACAGCCGCGAGAGAATGAAGCGGATCGAAGA GGGCATCAAAGAGCTGGGCAGCCAGATCCTGAAAGAACACCCCGTGGAAAACA CCCAGCTGCAGAACGAGAAGCTGTACCTGTACCTGCAGAATGGGCGGGATA TGTACGTGGACCAGGAACTGGACATCAACCGGCTGTCCGACTACGATGTGGACC ACATTGTGCCCCAGTCCTTCATCAAGGACGACTCCATCGATAACAAAGTGCTGAC TCGGAGCGACAAGAACCGGGGCAAGAGCGACAACGTGCCCTCCGAAGAGGTC GTGAAGAAGATGAAGAACTACTGGCGCCAGCTGCTGAATGCCAAGCTGATTACC CAGAGGAAGTTCGACAATCTGACCAAGGCCGAGAGAGGCGGCCTGAGCGAACT GGATAAGGCCGGCTTCATTAAGCGGCAGCTGGTGGAAACCCGGCAGATCACAA AGCACGTGGCACAGATCCTGGACTCCCGGATGAACACTAAGTACGACGAGAAC GACAAACTGATCCGGGAAGTGAAAGTGATCACCCTGAAGTCCAAGCTGGTGTCC GACTTCAGAAAGGATTTCCAGTTTTACAAAGTGCGCGAGATCAACAACTACCACC ACGCCCACGACGCCTACCTGAACGCCGTCGTGGGAACCGCCCTGATCAAAAAG TACCCTAAGCTGGAAAGCGAGTTCGTGTACGGCGATTACAAGGTGTACGACGTG CGGAAGATGATCGCCAAGAGCGAGCAGGAAATCGGCAAGGCTACCGCCAAGTA CTTCTTCTACAGCAACATCATGAACTTTTTCAAGACCGAGATCACACTGGCCAAC GGCGAGATCAGAAAGCGGCCTCTGATCGAGACAAACGGCGAAACCGGGGAGAT CGTGTGGGATAAGGGCCGGGATTTTGCCACAGTGCGGAAAGTGCTGTCCATGC CCCAAGTGAATATCGTGAAAAAGACCGAGGTGCAGACCGGCGGCTTCAGCAAA

Tabla 2. Secuencia (5'-3') de ADN de Cas9 optimizada

TGGGACCCTAAGAAGTACGGCGGCTTTGACAGCCCCACCGTGGCCTACTCTGT GCTGGTGGCCAAAGTGGAAAAGGGCAAGTCCAAGAAACTGAAGAGTGTGA AAGAGCTGCTGGGGATCACCATCATGGAAAGAAGCAGCTTCGAGAAGAATCCCA TCGACTTCTGGAAGCCAAGGGCTACAAAGAAGTGAAAAAGGACCTGATCATCA AGCTGCCTAAGTACTCCCTGTTCGAGCTGGAAAACGGCCGGAAGCGGATGCTG GCTTCTGCCGGCGAACTGCAGAAGGGAAACGAGCTGGCCCTGCCCTCCAAATA TGTGAACTTCCTGTACCTGGCCAGCCACTATGAGAAGCTGAAGGGCTCCCCCGA GGATAATGAGCAGAAACAGCTGTTTGTGGAACAGCACAAGCACTACCTGGACGA GATCATCGAGCAGATTAGCGAGTTCTCCAAGCGCGTGATCCTGGCCGATGCCAA CCTGGACAAGGTGCTGAGCGCCTACAACAAGCACCGGGATAAGCCCATCAGAG AGCAGGCCGAGAATATCATCCACCTGTTTACCCTGACCAACCTGGGAGCCCCTG CCGCCTTCAAGTACTTTGACACCACCATCGACCGGAAGAGGTACACCAGCACCA AAGAGGTGCTGGACGCCACCCTGATCCACCAGAGCATCACCGGCCTGTACGAG ACACGGATCGACCTGTCTCAGCTGGGAGGCGACCCCAAGAAAAAGCGCAAAGT G (SEQ ID NO:10)

La secuencia de ADN de Cas9 modificada se colocó en el control del promotor de citomegalovirus (CMV) para la expresión constituyente en células de mamífero. La secuencia de ADN de CAs9 modificada también se colocó en el promotor de control T7 para la síntesis *in vitro* de ARNm con la ARN polimerasa T7. La transcripción in vitro de ARN se realizó usando el kit MessageMAX T7 ARCA-Capped Message Transcription y el sistema de producción de ARNm T7 mScript Standard (Cellscript).

Ejemplo 2: Cas9 de direccionamiento

10

El locus del sitio de integración 1 del virus adenoasociado (AAVS1) se usó como una diana para la modificación del genoma humano mediada por Cas9. El locus AAVS1 humano se localiza en el intrón 1 (4427 pb) de la proteína fosfatasa 1, subunidad reguladora 12C (PPP1 R12C). La Tabla 3 presenta el primer exón (sombreado en gris) y el primer intrón de PPP1 R12C. La secuencia subrayada en el intrón es el sitio de modificación dirigida (es decir, el locus AAVS1).

Tabla 3. Primer exón e intrón de PPP1R12C (5'-3')

Tabla 3. Primer exón e intrón de PPP1R12C (5'-3')

AGCTCGACCCGCCGCCGCCGCCCGCCGCGCGTGCTGGACTCCACCAA CCCGGGGCCAGGTCCACCCTCTGCTGCGCCACCTGGGGCATCCTCCTTCCCCG TTGCCAGTCTCGATCCGCCCGTCGTTCCTGGCCCTGGGCTTTGCCACCCTATG CTGACACCCGTCCCAGTCCCCCTTACCATTCCCCTTCGACCACCCCACTTCCG AATTGGAGCCGCTTCAACTGGCCCTGGGCTTAGCCACTCTGTGCTGACCACTCT GCCCCAGGCCTCCTTACCATTCCCCTTCGACCTACTCTCTCCGCATTGGAGTC GCTTTAACTGGCCCTGGCTTTGGCAGCCTGTGCTGACCCATGCAGTCCTCCTTA CCATCCCTCCGACTTCCCCTCTTCCGATGTTGAGCCCCTCCAGCCGGTCCT GGACTTTGTCTCCTTGCCCTGCCCTCTCCTGAACCTGAGCCAGCTCCCAT AGCTCAGTCTGGTCTATCTGCCTGGCCCTGGCCATTGTCACTTTGCGCTGCCCT CCTCTCGCCCCGAGTGCCCTTGCTGTGCCGCCGGAACTCTGCCCTCTAACGCT GCCGTCTCTCCTGAGTCCGGACCACTTTGAGCTCTACTGGCTTCTGCGCCGC CTCTGGCCCACTGTTTCCCCTTCCCAGGCAGGTCCTGCTTTCTCTGACCTGCATT CTCTCCCCTGGGCCTGTGCCGCTTTCTGTCTGCAGCTTGTGGCCTGGGTCACCT CTACGGCTGGCCCAGATCCTTCCCTGCCGCCTCCTTCAGGTTCCGTCTTCCTCC ACTCCCTCTTCCCCTTGCTCTGCTGTTGCTGCCCAAGGATGCTCTTTCCGG AGCACTTCCTCCGGCGCTGCACCACGTGATGTCCTCTGAGCGGATCCTCCCC GTGTCTGGGTCCTCCGGGCATCTCTCCTCCCTCACCCAACCCCATGCCGTCT TCACTCGCTGGGTTCCCTTTTCCTTCTCTCTGGGGCCTGTGCCATCTCTCGTT TCTTAGGATGGCCTTCTCCGACGGATGTCTCCCTTGCGTCCCGCCTCCCCTTCT TGTAGGCCTGCATCACCGTTTTTCTGGACAACCCCAAAGTACCCCGTCTCCC TGGCTTTAGCCACCTCTCCATCCTCTTGCTTTCTTTGCCTGGACACCCCGTTCTC CTGTGGATTCGGGTCACCTCTCACTCCTTTCATTTGGGCAGCTCCCCTACCCCC CTTACCTCTAGTCTGTGCTAGCTCTTCCAGCCCCCTGTCATGGCATCTTCCAG GGGTCCGAGAGCTCAGCTAGTCTTCCTCCAACCCGGGCCCCTATGTCCACT TCAGGACAGCATGTTTGCTGCCTCCAGGGATCCTGTGTCCCCGAGCTGGGACCA CCTTATATTCCCAGGGCCGGTTAATGTGGCTCTGGTTCTGGGTACTTTTATCTGT CCCCTCCACCCCACAGTGGGGCCACTAGGGACAGGATTGGTGACAGAAAAGCC CCATCCTTAGGCCTCCTCCTTCCTAGTCTCCTGATATTGGGTCTAACCCCCACCT CCTGTTAGGCAGATTCCTTATCTGGTGACACACCCCCATTTCCTGGAGCCATCTC TCTCCTTGCCAGAACCTCTAAGGTTTGCTTACGATGGAGCCAGAGAGGATCCTG CCCGGTTCTCAGTGGCCACCCTGCGCTACCCTCTCCCAGAACCTGAGCTGCTCT GACGCGGCCGTCTGGTGCGTTTCACTGATCCTGGTGCTGCAGCTTCCTTACACT TCCCAAGAGGAGAAGCAGTTTGGAAAAACAAAATCAGAATAAGTTGGTCCTGAG TTCTAACTTTGGCTCTTCACCTTTCTAGTCCCCAATTTATATTGTTCCTCCGTGCG TCAGTTTTACCTGTGAGATAAGGCCAGTAGCCAGCCCCGTCCTGGCAGGGCTGT GGTGAGGAGGGGGTGTCCGTGTGGAAAACTCCCTTTGTGAGAATGGTGCGTC CTAGGTGTTCACCAGGTCGTGGCCGCCTCTACTCCCTTTCTCTCTTTCTCCATCCTT CTTTCCTTAAAGAGTCCCCAGTGCTATCTGGGACATATTCCTCCGCCCAGAGCA GGGTCCCGCTTCCCTAAGGCCCTGCTCTGGGCTTCTGGGTTTGAGTCCTTGGCA AGCCCAGGAGAGGCGCTCAGGCTTCCCTGTCCCCCTTCCTCGTCCACCATCTCA TGCCCTGGCTCTGCCCCTTCCCTACAGGGGTTCCTGGCTCTGCTCTTCAG ACTGAGCCCGTTCCCCTGCATCCCGTTCCCCTGCATCCCCCTTCCCCTGCAT CCCCAGAGGCCCAGGCCACCTACTTGGCCTGGACCCCACGAGAGGCCACCC

Tabla 3. Primer exón e intrón de PPP1R12C (5'-3')

10

CAGCCCTGTCTACCAGGCTGCCTTTTGGGTGGATTCTCCTCCAACTGTGGGGTG ACTGCTTGGCAAACTCACTCTTCGGGGTATCCCAGGAGGCCTGGAGCATTGGG GTGGGCTGGGGTTCAGAGAGGGGGGTTCCCTTCTCAGGTTACGTGGCCAAGA AGCAGGGGAGCTGGGTTTGGGTCAGGTCTGGGTGTGGGGTGACCAGCTTATGC TGTTTGCCCAGGACAGCCTAGTTTTAGCACTGAAACCCTCAGTCCTAGGAAAACA GGGATGGTTGGTCACTGTCTCTGGGTGACTCTTGATTCCCGGCCAGTTTCTCCA GCCCCCTGCTGTGGCTGTTCCCAAGTTCTTAGGGTACCCCACGTGGGTTTATC AACCACTTGGTGAGGCTGGTACCCTGCCCCCATTCCTGCACCCCAATTGCCTTA GTGGCTAGGGGGTTGGGGGCTAGAGTAGGAGGGGCTGGAGCCAGGATTCTTAG GGCTGAACAGAGAGAGCTGGGGCCTGGGCTCCTGGGTTTGAGAGAGGAGG GGCTGGGCCTGGACTCCTGGGTCCGAGGGAGGGGGCCTGGGCCTGGACT CCTGGGTCTGAGGGTGGAGGGACTGGGGCCTGGACTCCTGGGTCCGAGGGA GGAGGGCTGGGCCTGGACTCGTGGGTCTGAGGGAGGAGGGGCTGGGGGC CTGGACTTCTGGGTCTTAGGGAGGCGGGGCTGGGCCTGGACCCCTGGGTCTGA ATGGGGAGAGGCTGGGGCCTGGACTCCTTCATCTGAGGGCGGAAGGGCTGG GGCCTGGCCTCCTGGGTTGAATGGGGAGGGGTTGGGCCTGGACTCTGGAGTCC CTGGTGCCCAGGCCTCAGGCATCTTTCACAGGGATGCCTGTACTGGGCAGGTC CTTGAAAGGGAAAGGCCCATTGCTCTCCTTGCCCCCCTCCCCTATCGCCATGAC AACTGGGTGGAAATAAACGAGCCGAGTTCATCCCGTTCCCAGGGCACGTGCGG CCCCTTCACAGCCCGAGTTTCCATGACCTCATGCTCTTGGCCCTCGTAGCTCCC TCCCGCCTCCAGATGGGCAGCTTTGGAGAGGTGAGGGACTTGGGGGGTAA TTTATCCCGTGGATCTAGGAGTTTAGCTTCACTCCTCAGCTCCAGTTCAGG TCCCGGAGCCCACCAGTGTCCACAAGGCCTGGGGCAAGTCCCTCCTCCGACC CCCTGGACTTCGGCTTTTGTCCCCCCAAGTTTTGGACCCCTAAGGGAAGAATGA GAAACGGTGGCCCGTGTCAGCCCCTGGCTGCAGGGCCCCGTGCAGAGGGGGC CTCAGTGAACTGGAGTGTGACAGCCTGGGGCCCAGGCACACAGGTGTGCAGCT GTCTCACCCCTCTGGGAGTCCCGCCCAGGCCCCTGAGTCTGTCCCAGCACAGG GTGGCCTTCCTCCACCCTGCATAGCCCTGGGCCCACGGCTTCGTTCCTGCAGA AAGGCAGGAGGGGCTGGGGGCCAGGACTCCTGGCTCTGAAGGAGGAGGGGCT GGAACCTCTTCCCTAGTCTGAGCACTGGAAGCGCCACCTGTGGGTGACGG GGGTTTTGCCGTGTCTAACAGGTACCATGTGGGGTTCCCGCACCCAGATGAGAA GCCCCCTCCCTTCCCGTTCACTTCCTGTTTGCAGATAGCCAGGAGTCCTTTCGT GGTTTCCACTGAGCACTGAAGGCCTGGCCGGCCTGACCACTGGGCAACCAGGC GTATCTTAAACAGCCAGTGGCCAGAGGCTGTTGGGTCATTTTCCCCACTGTCCTA GCACCGTGTCCCTGGATCTGTTTTCGTGGCTCCCTCTGGAGTCCCGACTTGCTG GGACACCGTGGCTGGGGTAGGTGCGGCTGACGGCTGTTTCCCACCCCAG (SEQ ID NO:11)

Los ARN guías de Cas9 se diseñaron para el direccionamiento del locus humano AAVS1. Un ARN de 42 nucleótidos (denominado en el presente documento como una secuencia "ARNcr") que comprende (de 5' a 3') una secuencia de reconocimiento diana (es decir, una secuencia complementaria con la hebra no codificante de la secuencia diana) y secuencia de protoespaciador; un ARN de 85 nucleótidos (denominado en el presente documento como una secuencia de "ARNtracr") que comprende la secuencia 5' con complementariedad con la secuencia 3' del ARNcr y una secuencia de horquilla adicional; y un ARN quimérico que comprende los nucleótidos 1-32 del ARNcr, un bucle GAAA y los nucleótidos 19-45 del ARNtracr se preparó. El ARNcr se sintetizó químicamente por Sigma-Aldrich. El ARNtracr y el ARN quimérico se sintetizó mediante transcripción *in vitro* con ARN polimerasa T7 usando el kit T7-Scribe Standard RNA IVT (Cellscript). La secuencia codificante de ARN quimérico también se colocó en el control del promotor humano U6 para la transcripción *in vivo* en células humanas. La Tabla 4 presenta las secuencias de los ARN guías.

Tabla 4. ARN guías							
ARN	Secuencia 5'-3'	SEQ ID NO:					
AAVS1-ARNcr	ACCCCACAGUGGGGCCACUAGUUUUAGAGCUAUGCUGU UUUG	12					
ARNtracr	GGAACCAUUCAAAACAGCAUAGCAAGUUAAAAUAAGGCU AGUCCGUUAUCAACUUGAAAAAGUGGCACCGAGUCGGU GCUUUUUUU	13					
ARN quimérico	ACCCACAGUGGGGCCACUAGUUUUAGAGCUAGAAAUA GCAAGUUAAAAUAAGGCUAGUCCG	14					

Ejemplo 3: Preparación del polinucleótido donador para controlar la modificación del genoma

Se usó la integración dirigida de una proteína GFP en el extremo N-terminal de PPP1 R12C para controlar la modificación del genoma mediada por Cas9. Para mediar la integración mediante recombinación homóloga se preparó un polinucleótido donador. El donador de ADN de AAVS1-GFP contenía en 5' un brazo homólogo del locus AAVS1 (1185 pb), un receptor de corte y empalme de ARN, una secuencia codificante de turbo GFP, un finalizador de transcripción en 3', y un brazo homólogo del locus AAVS1 en 3' (1217 pb). La Tabla 5 presenta las secuencias del receptor de corte y empalme de ARN y la secuencia codificante de GFP seguida por el finalizador de transcripción en 3'. El ADN del plásmido se preparó usando el kit GenElute Endotoxin-Free Plasmid Maxiprep (Sigma).

Tabla 5. Secuencias en la secuencia del donador de ADN AAVS1.GFP								
	Secuencia 5'-3'	SEQ ID NO:						
Receptor de corte y empalme de ARN	CTGACCTCTTCTCCTCCCACAG	15						

Tabla 5. Secuer	ncias en la secuencia del donador de ADN AAVS1.GFP	
!	Secuencia 5'-3'	SEQ ID NO:
Secuencia codificante de GFP y finalizador de transcripción	GCCACCATGGACTACAAAGACGATGACGACAAGGTCGACT CTAGAGCTGCAGAGAGCGACGAGAGCGGCCTGCCCGCA TGGAGATCGAGTGCCGCATCACCGGCACCCTGAACGGCG TGGAGTTCGAGCTGGTGGGCGGCGGAGAGGGCACCCCCG AGCAGGGCCGCATGACCAACAAGATGAAGAGCACCAAAGG CGCCTGACCTTCAGCCCCTACCTGCTGAGCCACGTGATG GGCTACGGCTTCTACCACTTCGGCACCTACCCCAGCGGCT ACGAGAACCCCTTCCTGCACGCCATCAACAACAGGCGGCTA CACCAACACCCGCATCGAGAAGTACGAGGACGCGGCGT GCTGCACGTGAGCTTCAGCTACCGCTACGAGGCCGCGCG CGTGATCGGCGACTTCAAGGTGATGGGCACCGGCCG CGTGATCGGCGACTTCAAGGTGATGGGCACCGGCCG CGTGATCGGCGACTTCACGACACACGCGCGCCC GAGGACAGCGTGATCTTCACCGACAAGATCGTCCGCAGCA ACGCCACCGTGGAGCACCTGCACCCCATGGGCGATAACG ATCTGGATGGCAGCTTCACCCGCACCTTCAGCCTGCGCGA CGGCGGCTACTACAGCTCCGTGGTGGACAGCCACATGCAC TTCAAGAGCGCCATCCACCCCAGCATCCTGCAGAACGGGG GCCCCATGTTCGCCTTCCGCCGCGTGGAGGAGGATCACA GCAACACCGAGCTGGGCATCCTGTGGAGAACGGCCTT CAAGACCCCGGATGCAGCATCTTGTTTTTCCCCCTCC CCCGTGCCTTCCTTGACCCTGGAAGGTGCCACTCCCCCCCC	16

La integración de genes dirigida dará como resultado una proteína de fusión entre los primeros 107 aminoácidos de la PPP1 R12C y la turbo GFP. La proteína de fusión esperada contiene los primeros 107 restos de aminoácidos de PPP1R12C (resaltado en gris) de corte y empalme de ARN entre el primer exón de PPP1 R12C y el receptor de corte y empalme diseñado por ingeniería genética (véase la Tabla 6).

Tabla 6. Secuencia de aminoácidos predicha de la proteína de fusión PPP1R12C-GFP.

5

MSGEDGPAAGPGAAAAAARERRREQLRQWGARAGAEPGPGERRARTVRFERAAE FLAACAGGDLDEARLMLRAADPGPGAELDPAAPPPARAVLDSTNADGISALHQATM DYKDDDDKVDSRAAESDESGLPAMEIECRITGTLNGVEFELVGGGEGTPEQGRMTN KMKSTKGALTFSPYLLSHVMGYGFYHFGTYPSGYENPFLHAINNGGYTNTRIEKYED GGVLHVSFSYRYEAGRVIGDFKVMGTGFPEDSVIFTDKIVRSNATVEHLHPMGDNDL DGSFTRTFSLRDGGYYSSVVDSHMHFKSAIHPSILQNGGPMFAFRRVEEDHSNTEL GIVEYQHAFKTPDADAGEE (SEQ ID NO:17)

Ejemplo 4: Integración dirigida mediada por Cas9

La transfección se realizó en células K562 humanas. La línea celular K562 se obtuvo de la American Type Culture Collection (ATCC) y se cultivó en medio de Dulbecco modificado por Iscove, suplementado con FBS al 10 % y L-glutamina 2 mM. Todos los medios y suplementos se obtuvieron de Sigma-Aldrich. Los cultivos se dividieron un día antes de la transfección (a aproximadamente 0,5 millones de células por ml antes de la transfección). Las células se transfectaron con Solución V de Nucleofector (Lonza) en un Nucleofector (Lonza) con el programa T-016. Cada nucleofección contenía aproximadamente 0,6 millones de células. Los tratamientos de transfección se detallan en la Tabla 7. Las células se cultivaron a 37 °C y CO₂ al 5 % inmediatamente tras la nucleofección.

Tabla 7. Trata	Tabla 7. Tratamientos de transfección.									
Tratamiento	Cas9 modificada	ARN guía	Secuencia donadora							
А	ARNm de Cas9 transcrito con un análogo de casquete anti-inverso (10 µg)	doble cadena de ARNcr- ARNtracr prealineada (0,3 nmol)	ADN del plásmido AAVS1-GFP (10 μg)							
В	ARNm de Cas9 transcrito con un análogo de casquete anti-inverso (10 µg)	ARN quimérico (0,3 nmol)	ADN del plásmido AAVS1-GFP (10 μg)							
С	ARNm de Cas9 con casquete mediante la reacción de postrancripción de casquete (10 µg)	ARN quimérico (0,3 nmol)	ADN del plásmido AAVS1-GFP (10 μg)							
D	ADN del plásmido Cas9 (10 μg)	ADN del plásmido de ARN quimérico con U6 (5 μg)	ADN del plásmido AAVS1-GFP (10 µg)							
E	Ninguno	Ninguno	ADN del plásmido AAVS1-GFP (10 µg)							
F	Ninguno	Ninguno	Ninguno							

La clasificación de células activadas por fluorescencia (FACS) se realizó 4 días tras la transfección. Los datos de FACS se presentan en la **FIG. 2.** El porcentaje de GFP detectada en cada uno de los cuatro tratamientos experimentales (A-D) fue mayor que en los tratamientos de control (E, F), confirmando la integración de la secuencia donadora y la expresión de la proteína de fusión.

Ejemplo 5: Confirmación por PCR de la integración dirigida

15

20

25

El ADN genómico se extrajo de las células transfectadas con el kit GenElute Mammalian Genomic DNA Miniprep (Sigma) 12 días después de la transfección. El ADN genómico se amplificó entonces por PCR con un cebador hacia delante localizado fuera del brazo homólogo en 5' del donador del plásmido AAVS1-GFP y un cebador inverso localizado en la región 5' de la GFP. El cebador hacia delante fue 5'-CCACTCTGTGCTGACCACTCT-3' (SEQ ID NO:18) y el cebador inverso fue 5'-GCGGCACTCGATCTCCA-3' (SEQ ID NO:19). El tamaño del fragmento esperado de la PCR de unión fue de 1388 pb. La amplificación se llevó a cabo con JumpStart Taq ReadyMix (Sigma), usando las siguientes condiciones de ciclación: 98 °C durante 2 minutos para la desnaturalización inicial; 35 ciclos de 98 °C durante 15 segundos, 62 °C durante 30 segundos, y 72 °C durante 1 minuto y 30 segundos; y una extensión final a 72 °C durante 5 minutos. Los productos de PCR se resolvieron en gel de agarosa al 1 %.

Las células transfectadas con 10 µg de ARNm de Cas9 transcrito con un análogo de casquete anti-inverso, 0,3 nmol de doble cadena de ARNct-ARNtracr prealineada, y 10 µg ADN del plásmido AAVS1-GFP presentaron un producto de PCR del tamaño esperado (véase el carril A, **FIG. 3**).

El locus Rosa26 de ratón se puede dirigir para modificaciones genómicas. La Tabla 8 presenta una porción de la secuencia de Rosa26 de ratón en la que los posibles sitios diana se muestran en negrita. Cada sitio diana comprende un protoespaciador.

Tabla 8. Secuencia Rosa26 de ratón

5

10

15

20

25

GAGCGGCTGCGGGCGGGTGCAAGCACGTTTCCGACTTGAGTTGCCTCAAGAG GGGCGTGCTGAGCCAGACCTCCATCGCGCACTCCGGGGAGTGGAGGGAAGGA GCGAGGGCTCAGTTGGGCTGTTTTGGAGGCAGGAAGCACTTGCTCTCCCAAAGT

Los ARN guías se diseñaron para direccionar cada uno de los sitios diana en el locus Rosa26 de ratón. Estas secuencias se muestran en la Tabla 9, cada una es de 42 nucleótidos de longitud y la región 5' es complementaria a la hebra que no se presenta en la Tabla 8 (es decir, la hebra que es complementaria a la hebra mostrada en la Tabla 8).

Tabla 9. ARN guías de Rosa26 de ratón								
ARN	Secuencia 5'-3'	SEQ ID NO:						
mRosa26-ARNcr-1	CUCCAGUCUUUCUAGAAGAUGUUUUAGAGCUAU GCUGUUUUG	21						
mRosa26-ARNcr-2	UGAACAGGUGUAAAAUUGGAGUUUUAGAGCUAU GCUGUUUUG	22						
mRosa26-ARNcr-3	UGUCGGGAAGUUUUUUAAUAGUUUUAGAGCUAU GCUGUUUUG	23						

Los ARNcr se sintetizaron químicamente y se prealinearon con el ARNtracr (SEQ ID NO:13; véase el Ejemplo 2). El ARNcr / ARNtracr prealineado y el ARNm transcrito in vitro que codifica la proteína Cas9 modificada (SEQ ID NO. 9; véase el Ejemplo 1) se pueden microinyectar en los pronúcleos de embriones de ratón fecundados. Tras la guía hacia la diana establecida por el ARNcr, la proteína Cas9 escinde el sitio diana, y la rotura de doble cadena resultante se puede reparar mediante un proceso de reparación por unión de extremos no homólogos (NHEJ). Los embriones inyectados se pueden incubar bien a 37 °C, con CO2 al 5 % durante la noche o durante hasta 4 días, seguido por el análisis de genotipado, o los embriones invectados se pueden implantar en los ratones hembra receptores de manera que se puedan genotipar los animales nacidos vivos. Los embriones incubados in vitro o los tejidos de los animales nacidos vivos se pueden explorar para la presencia de una mutación inducida por Cas9 en el locus Rosa usando los procedimientos convencionales. Por ejemplo, los embriones o tejidos de fetos o animales nacidos vivos se pueden recolectar para la extracción y el análisis de ADN. El ADN se puede aislar usando procedimientos convencionales. La región dirigida del locus Rosa26 se puede amplificar por PCR usando cebadores apropiados. Dado que la NHEJ es propensa a errores, las deleciones de al menos un nucleótido, las inserciones de al menos un nucleótido, las sustituciones de al menos un nucleótido o las combinaciones de las mismas pueden tener lugar durante la reparación de la rotura. Las mutaciones se pueden detectar usando procedimientos de genotipado basados en PCR, tales como los ensayos de emparejamiento incorrecto Cel-I y de secuenciación de

Ejemplo 7: Modificación de genoma en embriones de ratón basada en Cas9

El locus Rosa26 se puede modificar en embriones de ratón mediante coinyección de un polinucleótido donador, tal como se detalla anteriormente en la sección (III)(d), junto con el ARNcr / ARNtracr prealineado y el ARNm que codifica la Cas9 modificada tal como se describe anteriormente en el Ejemplo 6. Los embriones incubados *in vitro* o los tejidos de animales nacidos vivos (tal como se describe en el Ejemplo 6) se pueden explorar para un locus

Rosa26 usando procedimientos de genotipado basados en PCR, tales como los ensayos RFLP, PCR de unión, y secuenciación de ADN.

Ejemplo 8: Modificación de genoma en embriones de rata basada en Cas9

5

10

15

20

25

El locus Rosa26 de rata se puede dirigir para modificaciones genómicas. La Tabla 10 presenta una porción de la secuencia de rata en la que los posibles sitios diana se muestran en negrita. Cada sitio diana comprende un protoespaciador.

Los ARN guías se diseñaron para direccionar cada uno de los sitios diana en el locus Rosa26 de rata. Estas secuencias se muestran en la Tabla 11, cada una es de 42 nucleótidos de longitud y la región 5' es complementaria a la hebra que no se presenta en la Tabla 10 (es decir, la hebra que es complementaria a la hebra mostrada en la Tabla 10).

Tabla 11. ARN guías de Rosa26 de rata							
ARN	Secuencia 5'-3'	SEQ ID NO:					
rRosa26-ARNcr-1	AGGGGAAGGGAAUCUUCCAGUUUUAGAGCUA UGCUGUUUUG	25					
rRosa26-ARNcr-2	UCUGCAACUGGAGUCUUUCUGUUUUAGAGCUA UGCUGUUUUG	26					
rRosa26-ARNcr-3	AGGCGGAGUCUUCUGGGCAGUUUUAGAGCUA UGCUGUUUUG	27					

Los ARNcr se sintetizaron químicamente y se prealinearon con el ARNtracr (SEQ ID NO:13; véase el Ejemplo 2). El ARNcr / ARNtracr prealineado y el ARNm transcrito in vitro que codifica la proteína Cas9 modificada (SEQ ID NO. 9; véase el Ejemplo 1) se pueden microinyectar en los pronúcleos de embriones de rata fecundados. Tras la guía hacia el sitio diana por el ARNcr, la proteína Cas9 escinde el sitio diana, y la rotura de doble cadena resultante se puede reparar mediante un proceso de reparación por unión de extremos no homólogos (NHEJ). Los embriones inyectados se pueden incubar bien a 37 °C, con CO₂ al 5 % durante la noche o durante hasta 4 días, seguido por el análisis de genotipado, o los embriones inyectados se pueden implantar en los ratones hembra receptores de manera que se puedan genotipar los animales nacidos vivos. Los embriones incubados in vitro o los tejidos de los animales nacidos vivos se pueden explorar para la presencia de una mutación inducida por Cas9 en el locus Rosa usando los procedimientos convencionales. Por ejemplo, los embriones o tejidos de fetos o animales nacidos vivos se pueden recolectar para la extracción y el análisis de ADN. El ADN se puede aislar usando procedimientos convencionales. La región dirigida del locus Rosa26 se puede amplificar por PCR usando cebadores apropiados. Dado que la NHEJ es propensa a errores, las deleciones de al menos un nucleótido, las inserciones de al menos un nucleótido, las sustituciones de al menos un nucleótido o las combinaciones de las mismas pueden tener lugar durante la reparación de la rotura. Las mutaciones se pueden detectar usando procedimientos de genotipado basados en PCR, tales como los ensayos de emparejamiento incorrecto Cel-l y de secuenciación de ADN.

Ejemplo 9: Modificación de genoma en embriones de rata basada en Cas9

El locus Rosa26 se puede modificar en embriones de rata mediante coinyección de un polinucleótido donador, tal como se detalla anteriormente en la sección (III)(d), junto con el ARNcr / ARNtracr prealineado y el ARNm que codifica la Cas9 modificada tal como se describe anteriormente en el Ejemplo 8. Los embriones incubados *in vitro* o los tejidos de ratas nacidas vivas (tal como se describe en el Ejemplo 8) se pueden explorar para un locus Rosa26 usando procedimientos de genotipado basados en PCR, tales como los ensayos RFLP, PCR de unión, y secuenciación de ADN.

```
LISTADO DE SECUENCIAS
```

<213> Secuencia artificial

5

```
<110> SIGMA-ALDRICH CO. LLC CHEN, Fuqiang DAVIS, Gregory D.
        KANG, Qiaohua KNIGHT, Scott W.
10
        <120> MODIFICACIÓN Y REGULACIÓN DEL GENOMA EN BASE A CRISPR
         <130> P2502EP05
        <140> PCT/US2013/073307
        <141> 05-12-2013
        <150> US 61/734.256
15
         <151> 06-12-2012
         <150> US 61/758.624
         <151> 30-01-2013
         <150> US 61/761.046
20
        <151> 05-02-2013
         <150> US 61/794.422
        <151> 15-03-2013
         <160> 27
         <170> PatentIn versión 3.5
25
        <210> 1
         <211>7
         <212> PRT
         <213> Secuencia artificial
         <220>
30
         <223> SINTETIZADO
         <400> 1
                                       Pro Lys Lys Arg Lys Val
         <210> 2
         <211>7
         <212> PRT
35
         <213> Secuencia artificial
         <223> SINTETIZADO
         <400> 2
                                       Pro Lys Lys Arg Arg Val
                                                           5
40
         <210> 3
         <211> 16
         <212> PRT
```

```
<220>
        <223> SINTETIZADO
        <400> 3
               Lys Arg Pro Ala Ala Thr Lys Lys Ala Gly Gln Ala Lys Lys Lys
                                 5
                                                        10
5
        <210> 4
        <211> 20
        <212> PRT
        <213> Secuencia artificial
        <220>
10
        <223> SINTETIZADO
        <400> 4
               Gly Arg Lys Lys Arg Arg Gln Arg Arg Pro Pro Gln Pro Lys Lys
                                 5
                                                        10
                                                                               15
               Lys Arg Lys Val
                            20
        <210> 5
        <211> 19
15
        <212> PRT
        <213> Secuencia artificial
        <220>
        <223> SINTETIZADO
        <400> 5
               Pro Leu Ser Ser Ile Phe Ser Arg Ile Gly Asp Pro Pro Lys Lys
                                 5
                                                        10
               Arg Lys Val
20
        <210>6
        <211> 24
        <212> PRT
        <213> Secuencia artificial
        <220>
25
        <223> SINTETIZADO
        <400>6
               Gly Ala Leu Phe Leu Gly Trp Leu Gly Ala Ala Gly Ser Thr Met Gly
               1
                                 5
                                                        10
               Ala Pro Lys Lys Lys Arg Lys Val
                            20
        <210> 7
30
        <211> 27
        <212> PRT
        <213> Secuencia artificial
        <220>
        <223> SINTETIZADO
        <400> 7
35
```

Gly Ala Leu Phe Leu Gly Phe Leu Gly Ala Ala Gly Ser Thr Met Gly

Ala Trp Ser Gln Pro Lys Lys Lys Arg Lys Val <210>8 <211> 21 <212> PRT 5 <213> Secuencia artificial <220> <223> SINTETIZADO <400>8 Lys Glu Thr Trp Trp Glu Thr Trp Trp Thr Glu Trp Ser Gln Pro Lys Lys Lys Arg Lys Val 10 <210> 9 <211> 1374 <212> PRT <213> Secuencia artificial <223> SINTETIZADO 15 <400> 9 Met Asp Lys Lys Tyr Ser Ile Gly Leu Asp Ile Gly Thr Asn Ser Val

Gly Trp Ala Val Ile Thr Asp Asp Tyr Lys Val Pro Ser Lys Lys Phe

Lys Val Leu Gly Asn Thr Asp Arg His Ser Ile Lys Lys Asn Leu Ile 35 40 45

Gly Ala Leu Leu Phe Gly Ser Gly Glu Thr Ala Glu Ala Thr Arg Leu

55

Lys 65	Arg	Thr	Ala	Arg	Arg 70	Arg	Туг	Thr	Arg	Arg 75	Lys	Asn	Arg	Ile	Cys 80
Tyr	Leu	Gln	Glu	Ile 85	Phe	Ser	Asn	Glu	Met 90	Ala	Lys	Val	Asp	Asp 95	Ser
Phe	Phe	His	A rg 100	Leu	Glu	Glu	Ser	Phe 105	Leu	Val	Glu	Glu	Asp 110	Lys	Lys
His	Glu	Arg 115	His	Pro	Ile	Phe	Gly 120	Asn	Ile	Val	Asp	Glu 125	Val	Ala	Tyr
His	Glu 130	Lys	Tyr	Pro	Thr	Ile 135	Tyr	His	Leu	Arg	Lys 140	Lys	Leu	Ala	Asp
Ser 145	Thr	Asp	Lys	Ala	Asp 150	Leu	Arg	Leu	Ile	Tyr 155	Leu	Ala	Leu	Ala	His 160
Met	Ile	Lys	Phe	Arg 165	Gly	His	Phe	Leu	Ile 170	Glu	Gly	Asp	Leu	Asn 175	Pro
Asp	Asn	Ser	Asp 180	Val	Asp	Lys	Leu	Phe 185	Ile	Gln	Leu	Val	Gln 190	Ile	Tyr
Asn	Gln	Leu 195	Phe	Glu	Glu	Asn	Pro 200	Ile	Asn	Ala	Ser	Arg 205	Val	Asp	Ala
Lys	Ala 210	Ile	Leu	Ser	Ala	Arg 215	Leu	Ser	Lys	Ser	Arg 220	Arg	Leu	Glu	Asn
Leu 225	Ile	Ala	Gln	Leu		Gly		Lys	Arg	Asn 235	_	Leu	Phe		Asn 240
Leu	Ile	Ala	Leu	Ser 245	Leu	Gly	Leu	Thr	Pro 250	Asn	Phe	Lys	Ser	As n 255	Phe
Asp	Leu	Ala	Glu 260	Asp	Ala	Lys	Leu	Gln 265	Leu	Ser	Lys	Asp	Thr 270	Tyr	Asp
Asp	Asp	Leu 275	Asp	Asn	Leu	Leu	Ala 280	Gln	Ile	Gly	Asp	Gln 285	Tyr	Ala	Asp
Leu	Phe 290	Leu	Ala	Ala	Lys	As n 295	Leu	Ser	Asp	Ala	Ile 300	Leu	Leu	Ser	Asp
Ile 305	Leu	Arg	Val	Asn	Ser 310	Glu	Ile	Thr	Lys	Ala 315	Pro	Leu	Ser	Ala	Ser 320

Met	Ile	Lys	Arg	Tyr 325	Asp	Glu	His	His	Gln 330	Asp	Leu	Thr	Leu	Le u 335	Lys
Ala	Leu	Val	Arg 340	Gln	Gln	Leu	Pro	Glu 3 4 5	Lys	Tyr	Lys	Glu	Ile 350	Phe	Phe
Asp	Gln	Ser 355	Lys	Asn	Gly	Tyr	Ala 360	Gly	Tyr	Ile	Asp	Gly 365	Gly	Ala	Ser
Gln	Glu 370	Glu	Phe	Tyr	Lys	Phe 375	Ile	Lys	Pro	Ile	Leu 380	Glu	Lys	Met	Asp
Gly 385	Thr	Glu	Glu	Leu	Leu 390	Val	Lys	Leu	Asn	Arg 395	Glu	Asp	Leu	Leu	Arg 400
Lys	Gln	Arg	Thr	Phe 405	Asp	Asn	Gly	Ser	Ile 410	Pro	His	Gln	Ile	His 41 5	Leu
Gly	Glu	Leu	His 420	Ala	Ile	Leu	Arg	Arg 425	Gln	Glu	Asp	Phe	Tyr 430	Pro	Phe
Leu	Lys	Asp 435	Asn	Arg	Glu	Lys	Ile 440	Glu	Lys	Ile	Leu	Thr 445	Phe	Arg	Ile
Pro	Tyr 450	Tyr	Val	Gly	Pro	Leu 455	Ala	Arg	Gly	Asn	Ser 460	Arg	Phe	Ala	Trp
Met 465	Thr	Arg	Lys	Ser	Glu 470	Glu	Thr	Ile	Thr	Pro 475	Trp	Asn	Phe	Glu	Glu 480
Val	Val	Asp	_	Gly 485	Ala	Ser	Ala		Ser 490		Ile	Glu	Arg	Met 495	
Asn	Phe	Asp	Lys 500	Asn	Leu	Pro	Asn	G1u 505	Lys	Val	Leu	Pro	Lys 510	His	Ser
Leu	Leu	Tyr 515	Glu	Tyr	Phe	Thr	Val 520	Tyr	Asn	Glu	Leu	Thr 525	Lys	Val	Lys
Tyr	Val 530	Thr	Glu	Gly	Met	Ar g 535	Lys	Pro	Ala	Phe	Leu 540	Ser	Gly	Glu	Gln
Lys 545	Lys	Ala	Ile	Val	Asp 550	Leu	Leu	Phe	Lys	Thr 555	Asn	Arg	Lys	Val	Thr 560
Val	Lys	Gln	Leu	Lys 565	Glu	Asp	Tyr	Phe	Lys	Lys	Ile	Glu	Сув	Phe	Asp

Ser Val Glu Ile Ser Gly Val Glu Asp Arg Phe Asn Ala Ser Leu Gly 580 585 590 Ala Tyr His Asp Leu Leu Lys Ile Ile Lys Asp Lys Asp Phe Leu Asp 605 Asn Glu Glu Asn Glu Asp Ile Leu Glu Asp Ile Val Leu Thr Leu Thr 610 615 Leu Phe Glu Asp Arg Gly Met Ile Glu Glu Arg Leu Lys Thr Tyr Ala His Leu Phe Asp Asp Lys Val Met Lys Gln Leu Lys Arg Arg Arg Tyr 645 650 Thr Gly Trp Gly Arg Leu Ser Arg Lys Leu Ile Asn Gly Ile Arg Asp 660 Lys Gln Ser Gly Lys Thr Ile Leu Asp Phe Leu Lys Ser Asp Gly Phe 680 Ala Asn Arg Asn Phe Met Gln Leu Ile His Asp Asp Ser Leu Thr Phe 700 Lys Glu Asp Ile Gln Lys Ala Gln Val Ser Gly Gln Gly His Ser Leu 705 710 His Glu Gln Ile Ala Asn Leu Ala Gly Ser Pro Ala Ile Lys Lys Gly Ile Leu Gln Thr Val Lys Ile Val Asp Glu Leu Val Lys Val Met Gly His Lys Pro Glu Asn Ile Val Ile Glu Met Ala Arg Glu Asn Gln Thr 760 Thr Gln Lys Gly Gln Lys Asn Ser Arg Glu Arg Met Lys Arg Ile Glu Glu Gly Ile Lys Glu Leu Gly Ser Gln Ile Leu Lys Glu His Pro Val 790 795 Glu Asn Thr Gln Leu Gln Asn Glu Lys Leu Tyr Leu Tyr Tyr Leu Gln 810 Asn Gly Arg Asp Met Tyr Val Asp Gln Glu Leu Asp Ile Asn Arg Leu

			820					825					830		
Ser	Asp	Tyr 835	Asp	Val	Asp	His	Ile 840	Val	Pro	Gln	Ser	Phe 845	Ile	Lys	Asp
Asp	Ser 850	Ile	Asp	Asn	Lys	Val 855	Leu	Thr	Arg	Ser	Asp 860	Lys	Asn	Arg	Gly
Lys 865	Ser	Asp	Asn	Val	Pro 870	Ser	Glu	Glu	Val	Val 875	Lys	Lys	Met	Lys	Asn 880
Tyr	Trp	Arg	Gln	Leu 885	Leu	Asn	Ala	Lys	Lец 890	Ile	Thr	Gln	Arg	Lys 895	Phe
Asp	Asn	Leu	Thr 900	Lys	Ala	Glu	Arg	Gly 905	Gly	Leu	Ser	Glu	Leu 910	Asp	Lys
Ala	Gly	Phe 915	Ile	Lys	Arg	Gln	Leu 920	Val	Glu	Thr	Arg	Gln 925	Ile	Thr	Lys
His	Val 930	Ala	Gln	Ile	Leu	Asp 935	Ser	Arg	Met	Asn	Thr 940	Lys	Tyr	Asp	Glu
As n 945	Asp	Lys	Leu	Ile	Arg 950	Glu	Val	Lys	Val	Ile 955	Thr	Leu	Lys	Ser	Lys 960
Leu	Val	Ser	Asp	Phe 965	Arg	Lys	Asp	Phe	Gln 970	Phe	Tyr	Lys	Val	Arg 975	Glu
Ile	Asn		Tyr 980		His	Ala		Asp 985		Tyr	Leu	Asn	Ala 990	Val	Val
Gly	Thr	Ala 995	Leu	Ile	Lys	Lys	Tyr 1000		o Lys	s Leu	ı Glı	10		Lu Pl	ne Val
Tyr	Gly 1010		э Туз	r Lys	s Val	. Ty: 101		sp Va	al A	rg Ly	-	et :	Ile A	Ala 1	Lys
Ser	Glu 1025		ı Glı	ı Ile	e Gly	Lys 103		la Ti	hr Al	la Ly		yr 1 035	Phe 1	?he ?	Гуr
Ser	Asn 1040		e Met	: Asr	n Phe	Phe 104		ys Tl	hr G	lu II		hr :	Leu i	Ala 1	Asn
Gly	Glu 1055		a Arç	j Lys	arg	Pro 106		eu I	le G	Lu Tl		sn (Gly (Slu !	Thr

Gly	Glu 1070	Ile	Val	Trp	Asp	Lys 1075	Gly	Arg	Asp	Phe	Ala 1080	Thr	Val	Arg
Lys	Val 1085	Leu	Ser	Met	Pro	Gln 1090		Asn	Ile	Val	Lys 1095	Lys	Thr	Glu
Val	Gln 1100	Thr	Gly	Gly	Phe	Ser 1105	Lys	G1u	Ser	Ile	Leu 1110	Pro	Lys	Arg
Asn	Ser 1115	Asp	Lys	Leu	Ile	Ala 1120		Lys	Lys	Asp	Trp 1125	Asp	Pro	Lys
Lys	Tyr 1130	_	Gly	Phe	Asp	Ser 1135		Thr	Val	Ala	Tyr 1140	Ser	Val	Leu
Val	Val 1145	Ala	Lys	Val	Glu	Lys 1150	Gly	Lys	Ser	Lys	Lys 1155	Leu	Lys	Ser
Val	Lys 1160	Glu	Leu	Leu	Gly	Ile 1165	Thr	Ile	Met	Glu	Arg 1170	Ser	Ser	Phe
Glu	Lys 1175	Asn	Pro	Ile	Asp	Phe 1180	Leu	Glu	Ala	Lys	Gly 1185	Tyr	Lys	Glu
Val	Lys 1190	Lys	Asp	Leu	Ile	Ile 1195		Leu	Pro	Lys	Tyr 1200	Ser	Leu	Phe
Glu	Leu 1205	Glu	Asn	Gly	Arg	Lys 1210		Met	Leu	Ala	Ser 1215	Ala	Gly	Glu
Leu	Gln 1220	Lys	Gly	Asn	Glu	Leu 1225	Ala	Leu	Pro	Ser	Lys 1230	Tyr	Val	Asn
Phe	Leu 1235	Tyr	Leu	Ala	Ser	His 1240		Glu	Lys	Leu	Lys 1245	Gly	Ser	Pro
Glu	Asp 1250	Asn	Glu	Gln	Lys	Gln 1255		Phe	Val	Glu	Gln 1260	His	Lys	His
Туг	Leu 1265	Asp	Glu	Ile	Ile	Glu 1270	Gln	Ile	Ser	Glu	Phe 1275	Ser	Lys	Arg
Val	Ile 1280	Leu	Ala	Asp	Ala	Asn 1285	Leu	Asp	Lys	Val	Leu 1290	Ser	Ala	Tyr
Asn	Lys 1295	His	Arg	Asp	Lys	Pro 1300	Ile	Arg	Glu	Gln	Ala 1305	Glu	Asn	Ile

Ile His Leu Phe Thr Leu Thr Asn Leu Gly Ala Pro Ala Ala Phe 1310 1315 1320

Lys Tyr Phe Asp Thr Thr Ile Asp Arg Lys Arg Tyr Thr Ser Thr 1325 1330 1335

Lys Glu Val Leu Asp Ala Thr Leu Ile His Gln Ser Ile Thr Gly 1340 1345 1350

Leu Tyr Glu Thr Arg Ile Asp Leu Ser Gln Leu Gly Gly Asp Pro 1355 1360 1365

Lys Lys Lys Arg Lys Val 1370

<210> 10

<211> 4122

<212> ADN

<213> Secuencia artificial

<220>

5

<223> SINTETIZADO

<400> 10

atggacaaga agtacagcat cggcctggac atcggcacca actctgtggg ctgggccgtg 60 atcaccgacg actacaaggt gcccagcaag aaattcaagg tgctgggcaa caccgaccgg 120 cacagcatca agaagaacct gatcggcgcc ctgctgttcg gctctggcga aacagccgag 180 gccacccggc tgaagagaac cgccagaaga agatacacca gacggaagaa ccggatctgc 240 300 tatctgcaag agatcttcag caacgagatg gccaaggtgg acgacagctt cttccacaga ctggaagagt ccttcctggt ggaagaggat aagaagcacg agcggcaccc catcttcggc 360 420 aacatcgtgg acgaggtggc ctaccacgag aagtacccca ccatctacca cctgagaaag 480 aagctggccg acagcaccga caaggccgac ctgagactga tctacctggc cctggcccac 540 atgateaagt teeggggeea etteetgate gagggegace tgaaceeega caacagegae gtggacaagc tgttcatcca gctggtgcag atctacaatc agctgttcga ggaaaacccc 600 660 atcaacgcca gcagagtgga cgccaaggcc atcctgagcg ccagactgag caagagcaga 720 cggctggaaa atctgatcgc ccagctgccc ggcgagaagc ggaatggcct gttcggcaac 780 etgattgeee tgageetggg eetgaeeeee aaetteaaga geaaettega eetggeegag gatgccaaac tgcagctgag caaggacacc tacgacgacg acctggacaa cctgctggcc 840 cagateggeg accagtaege egacetgttt etggeegeea agaacetgte egacgeeate 900 ctgctgagcg acatectgag agtgaacage gagateacea aggececect gteegeetet 960 1020 atgatcaaga gatacgacga gcaccaccag gacctgaccc tgctgaaagc tctcgtgcgg

cagcagetge	ctgagaagta	caaagagatt	ttcttcgacc	agagcaagaa	cggctacgcc	1080
ggctacatcg	atggcggagc	cagccaggaa	gagttctaca	agttcatcaa	gcccatcctg	1140
gaaaagatgg	acggcaccga	ggaactgctc	gtgaagctga	acagagagga	cctgctgcgg	1200
aagcagcgga	ccttcgacaa	cggcagcatc	ccccaccaga	tccacctggg	agagetgeae	1260
gccattctgc	ggcggcagga	agattttac	ccattcctga	aggacaaccg	ggaaaagatc	1320
gagaagatcc	tgaccttcag	aatcccctac	tacgtgggcc	ctctggccag	gggaaacagc	1380
agattcgcct	ggatgaccag	aaagagcgag	gaaaccatca	cccctggaa	cttcgaggaa	1440
gtggtggaca	agggcgccag	cgcccagagc	ttcatcgagc	ggatgaccaa	cttcgataag	1500
aacctgccca	acgagaaggt	gctgcccaag	cacagcctgc	tgtacgagta	cttcaccgtg	1560
tacaacgagc	tgaccaaagt	gaaatacgtg	accgagggaa	tgcggaagcc	cgcctttctg	1620
agcggcgagc	agaaaaaggc	catcgtggac	ctgctgttca	agaccaaccg	gaaagtgacc	1680
gtgaagcagc	tgaaagagga	ctacttcaag	aaaatcgagt	gcttcgacag	cgtggaaatc	1740
agcggcgtgg	aagatcggtt	caacgcctcc	ctgggcgcct	atcacgatct	gctgaaaatt	1800
atcaaggaca	aggacttcct	ggacaatgag	gaaaacgagg	acattctgga	agatatcgtg	1860
ctgaccctga	cactgtttga	ggaccggggc	atgatcgagg	aacggctgaa	aacctatgcc	1920
cacctgttcg	acgacaaagt	gatgaagcag	ctgaagcggc	ggagatacac	cggctggggc	1980
aggctgagcc	ggaagctgat	caacggcatc	cgggacaagc	agtccggcaa	gacaatcctg	2040
gatttcctga	agtccgacgg	cttcgccaac	agaaacttca	tgcagctgat	ccacgacgac	2100
agcctgacct	ttaaagagga	catccagaaa	gcccaggtgt	ccggccaggg	acactetetg	2160
cacgagcaga	tcgccaatct	ggccggatcc	cccgccatta	agaagggcat	cctgcagaca	2220
gtgaagattg	tggacgagct	cgtgaaagtg	atgggccaca	agcccgagaa	catcgtgatc	2280
gaaatggcca	gagagaacca	gaccacccag	aagggacaga	agaacagccg	cgagagaatg	2340
aagcggatcg	aagagggcat	caaagagctg	ggcagccaga	tcctgaaaga	acaccccgtg	2400
gaaaacaccc	agctgcagaa	cgagaagctg	tacctgtact	acctgcagaa	tgggcgggat	2460
atgtacgtgg	accaggaact	ggacatcaac	cggctgtccg	actacgatgt	ggaccacatt	2520
gtgccccagt	ccttcatcaa	ggacgactcc	atcgataaca	aagtgctgac	toggagogac	2580
aagaaccggg	gcaagagcga	caacgtgccc	tccgaagagg	tcgtgaagaa	gatgaagaac	2640
tactggcgcc	agctgctgaa	tgccaagctg	attacccaga	ggaagttcga	caatctgacc	2700
aaggccgaga	gaggcggcct	gagcgaactg	gataaggccg	gcttcattaa	gcggcagctg	2760
gtggaaaccc	ggcagatcac	aaagcacgtg	gcacagatcc	tggactcccg	gatgaacact	2820
aagtacgacg	agaacgacaa	actgatccgg	gaagtgaaag	tgatcaccct	gaagtccaag	2880

ctggtgtccg acttcagaaa ggatttccag ttttacaaag tgcgcgagat caacaactac	2940
caccacgece acgaegeeta cetgaacgee gtegtgggaa eegeeetgat caaaaagtae	3000
cctaagctgg aaagcgagtt cgtgtacggc gattacaagg tgtacgacgt gcggaagatg	3060
ategecaaga gegageagga aateggeaag getaeegeea agtaettett etaeageaae	3120
atcatgaact ttttcaagac cgagatcaca ctggccaacg gcgagatcag aaagcggcct	3180
ctgatcgaga caaacggcga aaccggggag atcgtgtggg ataagggccg ggattttgcc	3240
acagtgcgga aagtgctgtc catgccccaa gtgaatatcg tgaaaaagac cgaggtgcag	3300
accggcgct tcagcaaaga gtctatcctg cccaagagga actccgacaa gctgatcgcc	3360
agaaagaagg attgggaccc taagaagtac ggcggctttg acagccccac cgtggcctac	3420
tctgtgctgg tggtggccaa agtggaaaag ggcaagtcca agaaactgaa gagtgtgaaa	3480
gagetgetgg ggateaceat catggaaaga ageagetteg agaagaatee categaettt	3540
ctggaagcca agggctacaa agaagtgaaa aaggacctga tcatcaagct gcctaagtac	3600
tccctgttcg agctggaaaa cggccggaag cggatgctgg cttctgccgg cgaactgcag	3660
aagggaaacg agctggccct gccctccaaa tatgtgaact tcctgtacct ggccagccac	3720
tatgagaagc tgaagggctc ccccgaggat aatgagcaga aacagctgtt tgtggaacag	3780
cacaagcact acctggacga gatcatcgag cagattagcg agttctccaa gcgcgtgatc	3840
ctggccgatg ccaacctgga caaggtgctg agcgcctaca acaagcaccg ggataagccc	3900
atcagagage aggeegagaa tateateeae etgtttaeee tgaecaaeet gggageeeet	3960
gccgccttca agtactttga caccaccatc gaccggaaga ggtacaccag caccaaagag	4020
gtgctggacg ccaccctgat ccaccagagc atcaccggcc tgtacgagac acggatcgac	4080
ctgtctcage tgggaggega ceccaagaaa aagegeaaag tg	4122

<210> 11

<211> 4764

<212> ADN

<213> Homo sapiens

<400> 11

5

gegggegge ggtgegatgt eeggagagga tggeeeggeg getggeeegg gggeggegge 60
ggeggetgee egggagege gaegggagea getgeggeag tggggggege gggegggege 120
egageetgge eeeggagage geeggeeeg eacegteege ttegagegeg eegeegagtt 180
eetggeggee tgtgegggeg gegaeetgga egaggeggt etgatgetge gegeegeega 240
eeetggeeee ggegeegage tegaeeeege egegeegeeg eeeggeegeg eegtgetgga 300
etceaeeaae geegaeggta teagegeeet geaeeaggte agegeeeee geeggegte 360
teeeggggee aggteeaeee tetgetgege eacetgggge ateeteette eeegttgeea 420

gtctcgatcc	gccccgtcgt	tectggeeet	gggctttgcc	accctatgct	gacaccccgt	480
cccagtcccc	cttaccattc	cccttcgacc	accccacttc	cgaattggag	ccgcttcaac	540
tggccctggg	cttagccact	ctgtgctgac	cactctgccc	caggcctcct	taccattccc	600
cttcgaccta	ctctcttccg	cattggagtc	gctttaactg	gccctggctt	tggcagcctg	660
tgctgaccca	tgcagtcctc	cttaccatcc	ctccctcgac	ttcccctctt	ccgatgttga	720
gcccctccag	ccggtcctgg	actttgtctc	cttccctgcc	ctgccctctc	ctgaacctga	780
gccagctccc	atagctcagt	ctggtctatc	tgcctggccc	tggccattgt	cactttgcgc	840
tgccctcctc	tcgcccccga	gtgcccttgc	tgtgccgccg	gaactctgcc	ctctaacgct	900
gaagtatata	tectgagtec	ggaccacttt	gagctctact	ggattatgag	ccgcctctgg	960
cccactgttt	ccccttccca	ggcaggtcct	gctttctctg	acctgcattc	tctcccctgg	1020
gcctgtgccg	ctttctgtct	gcagcttgtg	gcctgggtca	cctctacggc	tggcccagat	1080
ccttccctgc	cgcctccttc	aggttccgtc	ttcctccact	ccctcttccc	cttgctctct	1140
gctgtgttgc	tgcccaagga	tgctctttcc	ggagcacttc	cttctcggcg	ctgcaccacg	1200
tgatgtcctc	tgagcggatc	ctccccgtgt	ctgggtcctc	teegggeate	tctcctccct	1260
cacccaaccc	catgccgtct	tcactcgctg	ggttcccttt	tccttctcct	tctggggcct	1320
gtgccatctc	tcgtttctta	ggatggcctt	ctccgacgga	tgtctccctt	gagtacagea	1380
teceettett	gtaggcctgc	atcatcaccg	tttttctgga	caaccccaaa	gtaccccgtc	1440
tccctggctt	tagccacctc	tccatcctct	tgctttcttt	gcctggacac	cccgttctcc	1500
tgtggattcg	ggtcacctct	cactcctttc	atttgggcag	ctcccctacc	ccccttacct	1560
ctctagtctg	tgctagctct	tecagecece	tgtcatggca	tcttccaggg	gtccgagagc	1620
tcagctagtc	ttcttcctcc	aacccgggcc	cctatgtcca	cttcaggaca	gcatgtttgc	1680
tgcctccagg	gatcctgtgt	ccccgagctg	ggaccacctt	atattcccag	ggccggttaa	1740
tgtggctctg	gttctgggta	cttttatctg	tcccctccac	cccacagtgg	ggccactagg	1800
gacaggattg	gtgacagaaa	agccccatcc	ttaggcctcc	teetteetag	tctcctgata	1860
ttgggtctaa	ccccacctc	ctgttaggca	gattccttat	ctggtgacac	acccccattt	1920
cctggagcca	teteteteet	tgccagaacc	tctaaggttt	gcttacgatg	gagccagaga	1980
ggatcctggg	agggagagct	tggcaggggg	tgggagggaa	gggggggatg	cgtgacctgc	2040
ccggttctca	gtggccaccc	tgcgctaccc	tctcccagaa	cctgagctgc	tctgacgcgg	2100
ccgtctggtg	cgtttcactg	atcctggtgc	tgcagcttcc	ttacacttcc	caagaggaga	2160
agcagtttgg	aaaaacaaaa	tcagaataag	ttggtcctga	gttctaactt	tggctcttca	2220
cctttctagt	ccccaattta	tattgttcct	ccgtgcgtca	gttttacctg	tgagataagg	2280
ccagtagcca	geceegteet	ggcagggctg	tggtgaggag	gggggtgtcc	gtgtggaaaa	2340

ctccctttgt	gagaatggtg	cgtcctaggt	gttcaccagg	tcgtggccgc	ctctactccc	2400
tttctctttc	tccatccttc	tttccttaaa	gagtccccag	tgctatctgg	gacatattcc	2460
tccgcccaga	gcagggtccc	gcttccctaa	ggccctgctc	tgggcttctg	ggtttgagtc	2520
cttggcaagc	ccaggagagg	cgctcaggct	tecetgteec	ccttcctcgt	ccaccatctc	2580
atgcccctgg	ctctcctgcc	ccttccctac	aggggttcct	ggctctgctc	ttcagactga	2640
gccccgttcc	cctgcatccc	cgttcccctg	catccccctt	cccctgcatc	ccccagaggc	2700
cccaggccac	ctacttggcc	tggaccccac	gagaggccac	cccagccctg	tctaccaggc	2760
tgccttttgg	gtggattctc	ctccaactgt	ggggtgactg	cttggcaaac	tcactcttcg	2820
gggtatccca	ggaggcctgg	agcattgggg	tgggctgggg	ttcagagagg	agggattccc	2880
ttctcaggtt	acgtggccaa	gaagcagggg	agctgggttt	gggtcaggtc	tgggtgtggg	2940
gtgaccagct	tatgctgttt	gcccaggaca	gcctagtttt	agcactgaaa	ccctcagtcc	3000
taggaaaaca	gggatggttg	gtcactgtct	ctgggtgact	cttgattccc	ggccagtttc	3060
tccacctggg	gctgtgtttc	tegteetgea	tectteteca	ggcaggtccc	caagcatcgc	3120
eccectgetg	tggctgttcc	caagttctta	gggtacccca	cgtgggttta	tcaaccactt	3180
ggtgaggctg	gtaccctgcc	cccattcctg	caccccaatt	gccttagtgg	ctagggggtt	3240
gggggctaga	gtaggagggg	ctggagccag	gattettagg	gctgaacaga	gaagagetgg	3300
gggcctgggc	tcctgggttt	gagagaggag	gggctggggc	ctggactcct	gggtccgagg	3360
gaggaggggc	tggggcctgg	actcctgggt	ctgagggtgg	agggactggg	ggcctggact	3420
cctgggtccg	agggaggagg	ggctggggcc	tggactcgtg	ggtctgaggg	aggaggggct	3480
gggggcctgg	acttctgggt	cttagggagg	cggggctggg	cctggacccc	tgggtctgaa	3540
tggggagagg	ctgggggcct	ggactccttc	atctgagggc	ggaagggctg	gggcctggcc	3600
teetgggttg	aatggggagg	ggttgggcct	ggactctgga	gtccctggtg	cccaggcctc	3660
aggcatcttt	cacagggatg	cctgtactgg	gcaggtcctt	gaaagggaaa	ggcccattgc	3720
teteettgee	cccctcccct	atcgccatga	caactgggtg	gaaataaacg	agccgagttc	3780
atcccgttcc	cagggcacgt	geggeeeett	cacagecega	gtttccatga	cctcatgctc	3840
ttggccctcg	tagetecete	ccgcctcctc	cagatgggca	gctttggaga	ggtgagggac	3900
ttggggggta	atttatcccg	tggatctagg	agtttagctt	cactccttcc	tcagctccag	3960
ttcaggtccc	ggagcccacc	cagtgtccac	aaggcctggg	gcaagtccct	cctccgaccc	4020
cctggacttc	ggcttttgtc	cccccaagtt	ttggacccct	aagggaagaa	tgagaaacgg	4080
tggcccgtgt	cageceetgg	ctgcagggcc	ccgtgcagag	ggggcctcag	tgaactggag	4140
tgtgacagcc	tggggcccag	gcacacaggt	gtgcagctgt	ctcacccctc	tgggagtccc	4200

geocaggeec etgagtetgt eccageacag ggtggeette etecaceetg catageeetg

ggcccacggc ttcgttcctg cagagtatet gctggggtgg tttccgagct tgacccttgg

4260

4320

		4000
		4380
	aggaggggct ggaacctctt coctagtotg agcactggaa gcgccacctg tgggtggtga	4440
	cgggggtttt gccgtgtcta acaggtacca tgtggggttc ccgcacccag atgagaagcc	4500
	coctcoctto occottoact toctottto agatagocag gagtcottto gtggtttcca	4560
	ctgagcactg aaggcctggc cggcctgacc actgggcaac caggcgtatc ttaaacagcc	4620
	agtggccaga ggctgttggg tcattttccc cactgtccta gcaccgtgtc cctggatctg	4680
	ttttegtgge teeetetgga gteeegaett getgggaeae egtggetggg gtaggtgegg	4740
	ctgacggctg tttcccaccc ccag	4764
5	<210> 12 <211> 42 <212> ARN <213> Secuencia artificial <220> <223> SINTETIZADO	
	<400> 12	
10	accecacagu ggggccacua guuuuagagc uaugcuguuu ug 42	
	<210> 13 <211> 86 <212> ARN <213> Secuencia artificial	
15	<220> <223> SINTETIZADO	
	<400> 13	
	ggaaccauuc aaaacagcau agcaaguuaa aauaaggcua guccguuauc aacuugaaaa	60
	aguggcaccg agucggugcu uuuuuu	86
20	<210> 14 <211> 62 <212> ARN <213> Secuencia artificial	
	<220> <223> SINTETIZADO	
25	<400> 14	
	accecacagu ggggccacua guuuuagage uagaaauage aaguuaaaau aaggeuague	60
	cg	62
30	<210> 15 <211> 25 <212> ADN <213> Secuencia artificial	
	<220> <223> SINTETIZADO	

<400> 15 ctgacctctt ctcttcctcc cacag 25 <210> 16 <211> 1009 5 <212> ADN <213> Secuencia artificial <220> <223> SINTETIZADO <400> 16 60 gccaccatgg actacaaaga cgatgacgac aaggtcgact ctagagctgc agagagcgac gagageggee tgeeegeeat ggagategag tgeegeatea eeggeaceet gaacggegtg 120 gagttcgagc tggtgggcgg cggagagggc acccccgagc agggccgcat gaccaacaag 180 240 atgaagagca ccaaaggcgc cctgaccttc agcccctacc tgctgagcca cgtgatgggc tacggettet accaettegg caectacece ageggetacg agaacceett eetgeaegee 300 360 atcaacaacg geggetacac caacaceege ategagaagt acgaggaegg eggegtgetg cacgtgaget teagetaceg etacgaggee ggeegegtga teggegaett caaggtgatg 420 480 ggcaccggct tccccgagga cagcgtgatc ttcaccgaca agatcgtccg cagcaacgcc acceptggage acctgcacce catgggcgat aacgatetgg atggcagett caccegcace 540 600 ttcagcctgc gcgacggcgg ctactacagc tccgtggtgg acagccacat gcacttcaag agegecated accorageat cetgeagaad gggggeecea tgttegeett eegeegegtg 660 720 gaggaggate acageaacae egagetggge ategtggagt aceageaege etteaagaee ccggatgcag atgccggtga agaatgaaga tctctgtgcc ttctagttgc cagccatctg 780 ttgtttgecc etceccegtg cetteettga ecetggaagg tgecactece actgteettt 840 900 cctaataaaa tgaggaaatt gcatcgcatt gtctgagtag gtgtcattct attctggggg gtggggtggg gcaggacagc aagggggagg attgggaaga caatagcagg catgctgggg 960 1009 atgeggtggg ctctatggac tegaggttta aacgtegacg eggeegegt 10 <210> 17 <211> 355 <212> PRT <213> Secuencia artificial <220> 15 <223> SINTETIZADO

41

<400> 17

Met 1	Ser	Gly	Glu	Asp 5	Gly	Pro	Ala	Ala	Gly 10	Pro	Gly	Ala	Ala	Ala 15	Ala
Ala	Ala	Arg	Glu 20	Arg	Arg	Arg	Glu	Gln 25	Leu	Arg	Gln	Trp	Gly 30	Ala	Arg
Ala	Gly	Ala 35	Glu	Pro	Gly	Pro	Gly 40	Glu	Arg	Arg	Ala	Arg 45	Thr	Val	Arg
Phe	Glu 50	Arg	Ala	Ala	Glu	Phe 55	Leu	Ala	Ala	Cys	Ala 60	Gly	Gly	Asp	Leu
Asp 65	Glu	Ala	Arg	Leu	Met 70	Leu	Arg	Ala	Ala	Asp 75	Pro	Gly	Pro	Gly	A 1a
Glu	Leu	Asp	Pro	Ala 85	Ala	Pro	Pro	Pro	Ala 90	Arg	Ala	Val	Leu	Asp 95	Ser
Thr	Asn	Ala	Asp 100	Gly	Ile	Ser	Ala	Leu 105	His	Gln	Ala	Thr	Met 110	Asp	Туг
Lys	Asp	Asp 115	Asp	Asp	Lys	Val	Asp 120	Ser	Arg	Ala	Ala	Glu 125	Ser	Asp	G1u
Ser	Gly 130	Leu	Pro	Ala	Met	Glu 135	Ile	Glu	Cys	Arg	Ile 140	Thr	Gly	Thr	Leu
Asn 145	Gly	Val	Glu	Phe	Glu 150	Leu	Val	Gly	Gly	Gly 155	Glu	Gly	Thr	Pro	Glu 160
Gln	Gly	Arg	Met	Thr 165	Asn	Lys	Met	_	Ser 170	Thr	Lys	Gly	Ala	Leu 175	Thr
Phe	Ser	Pro	Tyr 180	Leu	Leu	Ser	His	Val 185	Met	Gly	Tyr	Gly	Phe 190	Tyr	His
Phe	Gly	Thr 195	Tyr	Pro	Ser	Gly	Tyr 200	Glu	Asn	Pro	Phe	Leu 205	His	Ala	Ile
Asn	Asn 210	Gly	Gly	Tyr	Thr	Asn 215	Thr	Arg	Ile	Glu	Lys 220	Tyr	Glu	Asp	Gly
G1 y 225	Val	Leu	His	Val	Ser 230	Phe	Ser	Tyr	Arg	Tyr 235	Glu	Ala	Gly	Arg	Val 240
Ile	Gly	Asp	Phe	Lys 245	Val	Met	Gly	Thr	G1y 250	Phe	Pro	Glu	Asp	Ser 255	Val

Ile Phe Thr Asp Lys Ile Val Arg Ser Asn Ala Thr Val Glu His Leu 260 265 His Pro Met Gly Asp Asn Asp Leu Asp Gly Ser Phe Thr Arg Thr Phe 275 280 285 Ser Leu Arg Asp Gly Gly Tyr Tyr Ser Ser Val Val Asp Ser His Met 290 295 300 His Phe Lys Ser Ala Ile His Pro Ser Ile Leu Gln Asn Gly Gly Pro 305 310 315 320 Met Phe Ala Phe Arg Arg Val Glu Glu Asp His Ser Asn Thr Glu Leu 325 330 335 Gly Ile Val Glu Tyr Gln His Ala Phe Lys Thr Pro Asp Ala Asp Ala 340 345 350 Gly Glu Glu 355 <210> 18 <211> 21 <212> ADN 5 <213> Secuencia artificial <220> <223> SINTETIZADO <400> 18 ccactetgtg etgaceacte t 21 10 <210> 19 <211> 17 <212> ADN <213> Secuencia artificial <220> <223> SINTETIZADO 15 <400> 19 geggeacteg ateteca 17 <210> 20 <211> 711 20 <212> ADN <213> Mus musculus <400> 20

	gageggetge	ggggcgggtg	caagcacgtt	tccgacttga	gttgcctcaa	gaggggcgtg	60
	ctgagccaga	cctccatcgc	gcactccggg	gagtggaggg	aaggagcgag	ggctcagttg	120
	ggctgttttg	gaggcaggaa	gcacttgctc	tcccaaagtc	gctctgagtt	gttatcagta	180
	agggagetge	agtggagtag	gcggggagaa	ggccgcaccc	ttctccggag	gggggagggg	240
	agtgttgcaa	tacctttctg	ggagttetet	gctgcctcct	ggcttctgag	gaccgccctg	300
	ggcctgggag	aatcccttcc	ccctcttccc	tcgtgatctg	caactccagt	ctttctagaa	360
	gatgggcggg	g agtettetgg	gcaggcttaa	aggctaacct	ggtgtgtggg	cgttgtcctg	420
	caggggaatt	gaacaggtgt	aaaattggag	ggacaagact	tcccacagat	tttcggtttt	480
	gtcgggaagt	tttttaatag	gggcaaataa	ggaaaatggg	aggataggta	gtcatctggg	540
	gttttatgca	gcaaaactac	aggttattat	tgcttgtgat	ccgcctcgga	gtattttcca	600
	tcgaggtaga	ttaaagacat	gctcacccga	gttttatact	ctcctgcttg	agateettae	660
	tacagtatga	aattacagtg	tcgcgagtta	gactatgtaa	gcagaatttt	a	711
5	<210> 21 <211> 42 <212> ARN <213> Secuencia a	artificial					
	<220> <223> SINTETIZA	DO					
	<400> 21						
	cuccagucuu ucua	gaagau guuuuag	jagc uaugcuguu	u ug 42			
10	<210> 22 <211> 42 <212> ARN <213> Secuencia a	artificial					
15	<220> <223> SINTETIZA	DO					
	<400> 22						
	ugaacaggug uaaa	aauugga guuuua	gagc uaugcugu	uu ug 42			
20	<210> 23 <211> 42 <212> ARN <213> Secuencia a	artificial					
	<220> <223> SINTETIZA	DO					
	<400> 23						
25	идисдддаад ииии	iuuaaua guuuua	gage uaugeugut	uu ug 42			
	<210> 24 <211> 642 <212> ADN <213> Rattus rattu	s					
30	<400> 24	-					

	gggattcctc	cttgagttgt	ggcactgagg	aacgtgctga	acaagaccta	cattgcactc	60
	cagggagtgg	atgaaggagt	tggggctcag	tcgggttgta	ttggagacaa	gaagcacttg	120
	ctctccaaaa	gtcggtttga	gttatcatta	agggagctgc	agtggagtag	gcggagaaaa	180
	ggccgcaccc	ttctcaggac	gggggagggg	agtgttgcaa	tacctttctg	ggagttctct	240
	getgeeteet	gtcttctgag	gaccgccctg	ggcctggaag	attecettee	cccttcttcc	300
	ctcgtgatct	gcaactggag	tctttctgga	agataggcgg	gagtcttctg	ggcaggctta	360
	aaggctaacc	tggtgcgtgg	ggcgttgtcc	tgcagaggaa	ttgaacaggt	gtaaaattgg	420
	aggggcaaga	cttcccacag	attttcgatt	gtgttgttaa	gtattgtaat	aggggcaaat	480
	aagggaaata	gactaggcac	tcacctgggg	ttttatgcag	caaaactaca	ggttattatt	540
	gcttgtgatc	cgccctggag	aatttttcac	cgaggtagat	tgaagacatg	cccacccaaa	600
	ttttaatatt	cttccacttg	cgatccttgc	tacagtatga	aa		642
5	<210> 25 <211> 42 <212> ARN <213> Secuencia art	tificial					
	<220> <223> SINTETIZADO	0					
	<400> 25						
	agggggaagg gaauc	uucca guuuuag	gage uaugeugui	uu ug 42			
10	<210> 26 <211> 42 <212> ARN <213> Secuencia art	tificial					
15	<220> <223> SINTETIZADO	0					
	<400> 26						
	ucugcaacug gaguci	uuucu guuuuag	jage uaugeugut	uu ug 42			
20	<210> 27 <211> 42 <212> ARN <213> Secuencia art	tificial					
	<220> <223> SINTETIZADO	0					
	<400> 27						
25	aggcgggagu cuucu	gggca guuuuaç	jagc uaugeugui	uu ug 42			

REIVINDICACIONES

- 1. Un procedimiento de modificar una secuencia cromosómica de una célula eucariota mediante la integración de una secuencia donadora, comprendiendo el procedimiento:
 - a) introducir en la célula eucariota
- 5 (i) al menos una endonucleasa quiada por ARN que comprende al menos una seña de localización nuclear o ácido nucleico que codifica al menos una endonucleasa guiada por ARN que comprende al menos una señal de localización nuclear, en la que la al menos una endonucleasa quiada por ARN es un sistema de proteínas repeticiones palindrómicas cortas agrupadas y regularmente interespaciadas (CRISPR)/(Cas) asociado a CRISPR (CRISPR /Cas) de tipo II y el sistema de proteínas CRISPR/Cas de tipo II es una proteína Cas9, 10
 - (ii) al menos un ARN o ADN guía que codifica al menos un ARN guía, y
 - (iii) un polinucleótido donador que comprende la secuencia donadora; y
 - b) cultivar la célula eucariota de manera que cada ARN guía guíe una endonucleasa guiada por ARN a un sitio diana en la secuencia cromosómica, la endonucleasa quiada por ARN introduce una rotura de doble cadena en el sitio diana, y la rotura de doble cadena se repara mediante un proceso de reparación de ADN, de manera que la secuencia cromosómica se modifica mediante la inserción o la sustitución de la secuencia donadora en la secuencia cromosómica, en la que
 - el sitio diana en la secuencia cromosómica está seguido inmediatamente por un motivo adyacente de protoespaciador (PAM), el procedimiento no comprende un proceso de modificar la identidad genética de la línea germinal de un ser humano y, en el que el procedimiento no comprende un procedimiento para el tratamiento del cuerpo humano o animal mediante cirugía o terapia.
 - 2. Un procedimiento ex vivo o in vitro de modificar una secuencia cromosómica en una célula eucariota mediante integración de una secuencia donadora, comprendiendo el procedimiento:
 - a) introducir en la célula eucariota

15

20

25

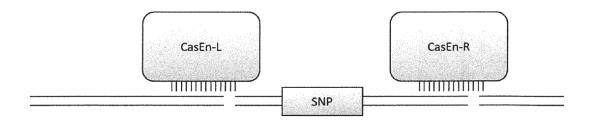
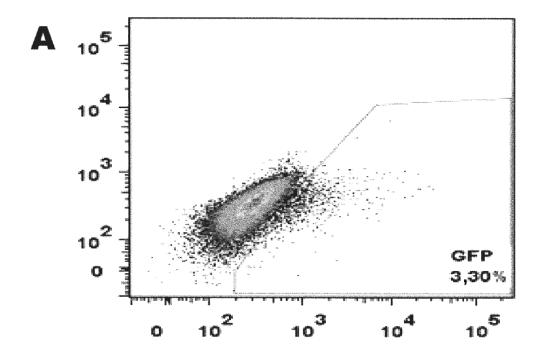
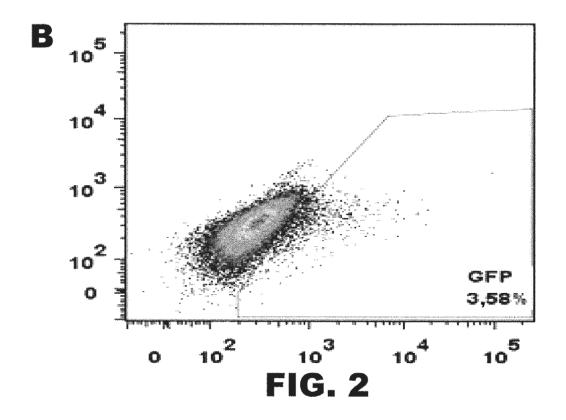
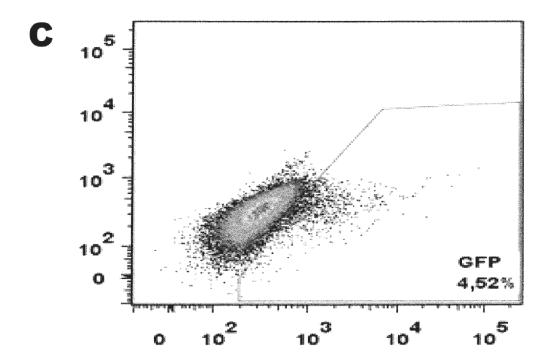
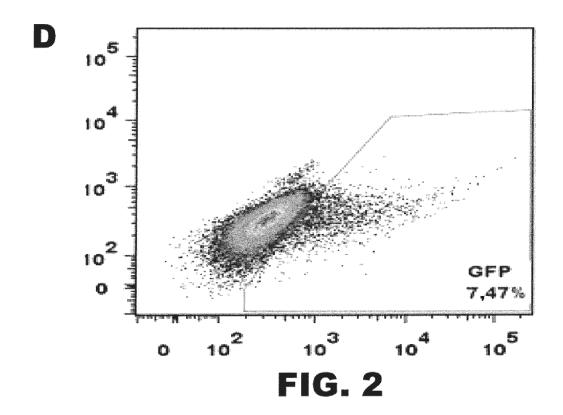
30

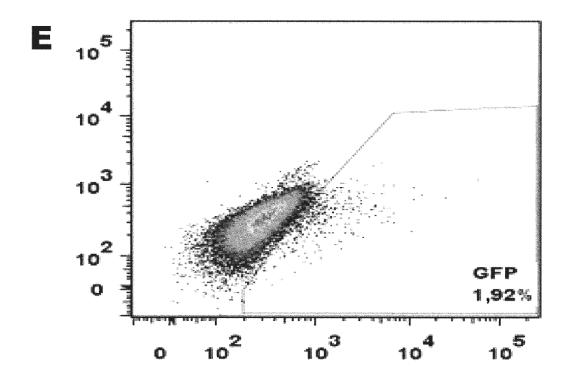
35

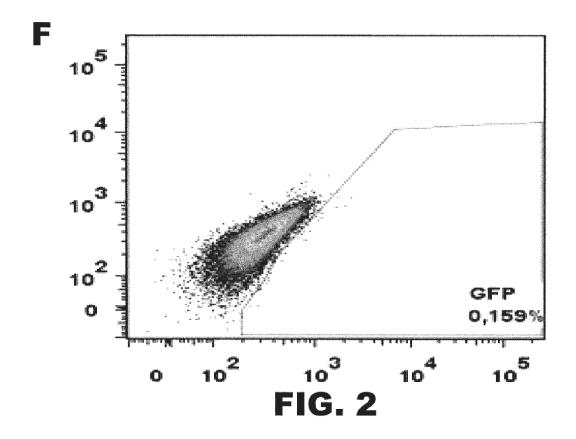
50

- (i) al menos una endonucleasa guiada por ARN que comprende al menos una seña de localización nuclear o ácido nucleico que codifica al menos una endonucleasa guiada por ARN que comprende al menos una señal de localización nuclear, en la que la al menos una endonucleasa quiada por ARN es un sistema de proteínas repeticiones palindrómicas cortas agrupadas y regularmente interespaciadas (CRISPR)/(Cas) asociado a CRISPR (CRISPR /Cas) de tipo II y el sistema de proteínas CRISPR/Cas de tipo II es una proteína Cas9,
 - (ii) al menos un ARN o ADN guía que codifica al menos un ARN guía, y
 - (iii) un polinucleótido donador que comprende la secuencia donadora; y
- b) cultivar la célula eucariota de manera que cada ARN quía quíe una endonucleasa quiada por ARN a un sitio diana en la secuencia cromosómica donde la endonucleasa guiada por ARN introduce una rotura de doble cadena en el sitio diana, y la rotura de doble cadena se repara mediante un proceso de reparación de ADN, de manera que la secuencia cromosómica se modifica mediante inserción o sustitución de la secuencia donadora en la secuencia cromosómica, en la que
- el sitio de diana en la secuencia cromosómica está inmediatamente seguido por un motivo adyacente al protoespaciador (PAM) y, en el que
- el procedimiento no comprende un proceso de modificar la identidad genética de la línea germinal de un ser humano.
- 40 3. El procedimiento de cualquier reivindicación anterior, en el que el sitio diana es un locus Rosa26, un locus HPRT, o un locus AAVS1.
 - 4. El procedimiento de cualquier reivindicación anterior, en el que la al menos una señal de localización nuclear se localiza en el extremo C-terminal de la endonucleasa.
- 5. El procedimiento de cualquier reivindicación anterior, en el que cada ARN guía comprende una primera región que 45 es complementaria con el sitio diana en la secuencia cromosómica.
 - 6. El procedimiento de cualquier reivindicación anterior, en el que cada ARN quía comprende una segunda región que interacciona con la endonucleasa quiada por ARN.
 - 7. El procedimiento de cualquier reivindicación anterior, en el que la secuencia donadora en el polinucleótido donador tiene al menos un cambio de nucleótido en relación con la secuencia cromosómica cerca del sitio diana en la secuencia cromosómica.
 - 8. El procedimiento de cualquier reivindicación previa, en el que la secuencia donadora en el polinucleótido donador está flanqueada por secuencias que tienen identidad de secuencia sustancial con secuencias localizadas aguas arriba y aguas abajo del sitio diana en la secuencia cromosómica.

- 9. El procedimiento de cualquier reivindicación anterior, en el que el polinucleótido donador comprende adicionalmente un sitio de escisión dirigido que se reconoce mediante la endonucleasa guiada por ARN.
- 10. El procedimiento de cualquier reivindicación anterior, en el que el ácido nucleico que codifica la endonucleasa guiada por ARN es ARNm.
- 5 11. El procedimiento de cualquiera de las reivindicaciones 1-9, en el que el ácido nucleico que codifica la endonucleasa guiada por ARN es ADN.
 - 12. El procedimiento de la reivindicación 11, en el que el ADN es parte de un vector que comprende adicionalmente una secuencia que codifica el ARN guía.
- 13. El procedimiento de cualquiera de las reivindicaciones 1-12, en el que la célula eucariota es una célula humana, una célula de mamífero no humano, o un embrión de mamífero no humano.
 - 14. El procedimiento de cualquiera de las reivindicaciones 1-12, en el que la célula eucariota es una célula de invertebrado, una célula de insecto, una célula vegetal, una levadura o un organismo eucariota unicelular.
 - 15. El procedimiento de la reivindicación 14, en el que la célula eucariota es una célula vegetal.
 - 16. El procedimiento de cualquiera de las reivindicaciones 1-15, en el que la célula eucariota está in vitro.
- 15 17. El procedimiento de cualquier reivindicación anterior, en el que el al menos un ARN guía se sintetiza químicamente.


FIG. 1



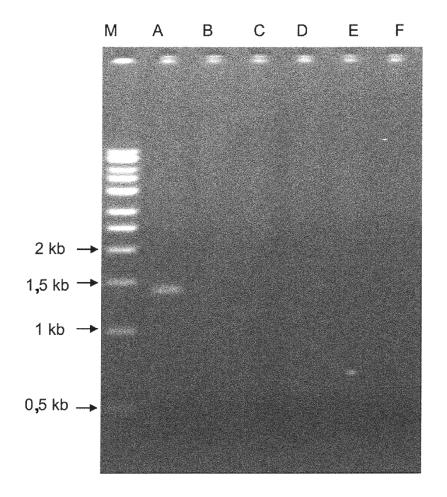


FIG. 3