

OFICINA ESPAÑOLA DE PATENTES Y MARCAS

ESPAÑA

①Número de publicación: 2 714 689

51 Int. Cl.:

C07K 14/165 (2006.01) A61K 39/215 (2006.01) C12N 7/00 (2006.01)

(12)

TRADUCCIÓN DE PATENTE EUROPEA

T3

(86) Fecha de presentación y número de la solicitud internacional: 01.05.2014 PCT/GB2014/051353

(87) Fecha y número de publicación internacional: 06.11.2014 WO14177873

(96) Fecha de presentación y número de la solicitud europea: 01.05.2014 E 14723470 (2)

(97) Fecha y número de publicación de la concesión europea: 05.12.2018 EP 2992005

(54) Título: Proteína de espina mutante que extiende el tropismo tisular del virus de bronquitis infecciosa (IBV)

(30) Prioridad:

03.05.2013 GB 201308057

Fecha de publicación y mención en BOPI de la traducción de la patente: 29.05.2019

(73) Titular/es:

THE PIRBRIGHT INSTITUTE (100.0%) Ash Road, Pirbright, Woking Surrey GU24 0NF, GB

(72) Inventor/es:

BRITTON, PAUL y BICKERTON, ERICA

(74) Agente/Representante:

ISERN JARA, Jorge

DESCRIPCIÓN

Proteína de espina mutante que extiende el tropismo tisular del virus de bronquitis infecciosa (IBV)

5 Campo de la invención

La presente invención se refiere a una proteína de espina (proteína S) de coronavirus. En particular una proteína S de IBV que, cuando se usa para producir un virus, provoca que el virus tenga tropismo tisular extendido. La presente invención también se refiere a secuencias de nucleótidos que codifican dicha proteína S; partículas virales que comprenden dicha proteína S y su uso en una vacuna para prevenir y/o tratar una enfermedad.

Antecedentes de la invención

Virus de la bronquitis infecciosa (IBV)

15

10

El virus de la bronquitis infecciosa aviar (IBV) es un patógeno altamente infeccioso y contagioso de las aves domésticas que se replica principalmente en el tracto respiratorio pero también en células epiteliales del intestino, riñón y oviducto. El IBV es un miembro de los *Coronaviridae* y coronavirus genéticamente muy similares provocan enfermedad en pavos y faisanes.

20

25

30

35

40

Las señales clínicas de BI incluyen estornudos, estertores traqueales, descarga nasal y sibilación. Las aves de tipo cárnico tienen aumento de peso reducido, mientras que las aves ponedoras ponen menos huevos. La infección respiratoria predispone a los pollos a infecciones bacterianas secundarias que pueden ser letales en polluelos. El virus también puede provocar daño permanente en el oviducto, especialmente en polluelos, lo que conduce a una producción y una calidad de huevos reducidas; y en el riñón, lo que conduce en ocasiones a enfermedad renal que puede ser letal.

Se usan en la actualidad vacunas tanto vivas como atenuadas en la vacunación de BI. Hasta la fecha, las vacunas más eficaces son virus atenuados vivos producidos de forma empírica después de pases repetidos con ocultación a través de huevos embrionados.

Un problema con este enfoque es que, tras el pase en serie, la inmunogenicidad del virus se reduce. Es necesario conseguir un equilibrio entre un grado aceptable de atenuación para hacer al virus seguro, y una pérdida aceptable de inmunogenicidad de modo que la vacuna del virus aún sea eficaz. Este "equilibrado" de la atenuación es un enfoque de ensayo y error, que hace el resultado del proceso de atenuación incierto.

Ya que la atenuación por pase en serie es en la práctica un acontecimiento aleatorio, la vacuna resultante está genéticamente mal definida ya que la base molecular de la atenuación se desconoce. Cada lote de virus atenuado será diferente, haciendo difícil conseguir uniformidad de la vacuna resultante y reproducibilidad del efecto protector/terapéutico *in vivo*.

Una desventaja adicional es que los huevos embrionados son caros y no pueden usarse como una fuente prolongada de virus.

- 45 El cultivo del virus en huevos embrionados es un proceso incómodo ya que cada huevo debe esterilizarse, mirarse al trasluz, inocularse con virus e incubarse antes de recoger volúmenes pequeños de líquido alantoideo de cada huevo y agrupar antes de la purificación. La falta de progresiones fiables de huevos de alta calidad da como resultado limitaciones en la cantidad de vacuna que puede producirse, particularmente en una situación de emergencia.
- Además de estos problemas logísticos y de provisiones, los huevos embrionados tienen otras limitaciones como un sistema hospedador para la producción de vacuna. Por ejemplo, hay preocupaciones crecientes acerca de la presencia de virus adventicios, particularmente retrovirus en huevos, que comprometerían la producción de vacunas virales atenuadas vivas.
- Existe por lo tanto la necesidad de vacunas de IBV alternativas y métodos para su producción que no padezcan las desventajas anteriormente mencionadas.

El IBV es un virus con envoltura que se replica en el citoplasma celular y contiene un genoma de ARN con sentido positivo, monocatenario.

60

65

La envoltura lipídica contiene al menos tres proteínas de membrana: la glucoproteína spike (S), proteína integral de membrana (M) y proteína pequeña de membrana (E). La proteína S de IBV es una glucoproteína de tipo I que oligomeriza en el retículo endoplásmico y se ensambla en membranas de viriones mediante interacciones no covalentes con la proteína de membrana. Después de la incorporación en partículas de coronavirus, la proteína S es responsable de la unión con el receptor de célula diana y fusión de las membranas viral y celular. La glucoproteína S consiste en cuatro dominios: una secuencia señal que se escinde durante la síntesis; el ectodominio, que está presente

en el exterior de la partícula del virión; la región transmembrana responsable del anclaje de la proteína S en la bicapa lipídica de la partícula de virión; y la cola citoplasmática.

La proteína S de IBV (1.162 aminoácidos) se escinde en dos subunidades, S1 (535 aminoácidos; 90 kDa) que 5 comprende la mitad N terminal de la proteína S, y S2 (627 aminoácidos; 84 kDa) que comprende la mitad C terminal de la proteína S.

La subunidad S2 se asocia de forma no covalente con la subunidad S1 y contiene los dominios transmembrana y de cola citoplasmática C terminal.

10

15

Los presentes inventores han mostrado previamente que el tropismo celular de IBV, asociado con el crecimiento en la línea celular de mamífero, células Vero, se determina por la subunidad S2 de la cepa Beaudette de IBV, y que la sustitución de una subunidad S2 con toda o parte de la subunidad S2 de Beaudette puede alterar (extender o reducir) el tropismo de células Vero del virus, dependiendo del tropismo celular del virus del que derivó la subunidad S2 (WO 2011/004146).

Han mostrado que para una cepa de IBV tal como M41, que tiene tropismo tisular restringido y es incapaz de crecer en células Vero, la sustitución de la subunidad S2 con toda o parte de la proteína S de IBV Beaudette da como resultado un virus que es capaz de crecer en líneas celulares tales como células Vero.

20

El tropismo celular extendido conferido al virus por sustitución de todas o parte de sus subunidades S2 significa que puede producirse reserva de virus para producción de vacuna cultivando en líneas celulares, en lugar de huevos embrionados o células primarias.

- 25 El uso de líneas celulares tales como células Vero tiene muchas ventajas:
 - (i) se ha validado previamente para el cultivo de virus y fines de diagnóstico;
 - (ii) las células (y por lo tanto virus) pueden cultivarse en suspensión, en lugar de lechos planos; y
 - (iii) es posible conseguir rendimientos uniformes.

30

35

Los presentes inventores han identificado previamente un "motivo" en la cepa de IBV Beaudette, que es capaz de conferir la capacidad de crecer en células Vero.

Los presentes inventores han identificado ahora varias sustituciones de aminoácidos que, cuando se usan junto con el motivo de Beaudette, potencian adicionalmente la capacidad del virus para crecer en líneas celulares.

Sumario de aspectos de la invención

Por lo tanto, en un primer aspecto, la presente invención proporciona una proteína de espina (proteína S) del virus de 40

50

55

bronquitis infecciosa (IBV) donde la secuencia del dominio S2 de la proteína S tiene al menos 98 % de identidad de secuencia con el dominio S2 de la proteína S de una cepa IBV con tropismo tisular restringido en su conjunto pero ignorando las posiciones de aminoácidos 686-694, 578, 617, 826, 857 y 1000 en referencia a la numeración de posición de la SEQ ID No. 2, pero que comprende la secuencia XBBXBX en la parte de la proteína S2 en los restos 686 a 691 en referencia a la numeración de posición de la secuencia proporcionada como SEQ ID No. 21, en la que B es un resto básico y X es cualquier aminoácido; y que comprende al menos una de las siguientes sustituciones de

45 aminoácidos en referencia a la numeración de posición de la SEQ ID NO: 2:

Leucina (L) a Fenilalanina (F) en la posición 578

Asparagina (N) a Serina (S) en la posición 617

Asparagina (N) a Serina (S) en la posición 826

Leucina (L) à Fenilalanina (F) en la posición 857 e

Isoleucina (I) a Valina (V) en la posición 1000

de modo que un virus IBV que comprende la proteína S tiene tropismo tisular extendido y en donde la numeración de posición de aminoácido se identifica por el alineamiento de la proteína S de IBV con la secuencia de la SEQ ID No. 2.

La proteína S de IBV puede comprender la secuencia SRRKRS o SRRRRS en la parte de la proteína S2 correspondiente a los restos 686 a 691 de la secuencia proporcionada como SEQ ID No. 2.

La proteína S de IBV puede comprender la secuencia SRRKRSLIE o SRRRRSVIE en la parte de la proteína S2 60 correspondiente a los restos 686 a 694 de la secuencia proporcionada como SEQ ID No. 2.

La proteína S de IBV puede comprender la sustitución de aminoácidos de Asparagina (N) a Serina (S) en la posición 617 en referencia a la numeración de posición de la SEQ ID NO: 2.

65

La proteína S de IBV puede comprender las siguientes sustituciones de aminoácidos en referencia a la numeración de posición de la SEQ ID NO: 2:

Leucina (L) a Fenilalanina (F) en la posición 578 y Asparagina (N) a Serina (S) en la posición 617.

La proteína S de IBV puede comprender las siguientes sustituciones de aminoácidos en referencia a la numeración de posición de la SEQ ID NO: 2:

10 Asparagina (N) a Serina (S) en la posición 826 Leucina (L) a Fenilalanina (F) en la posición 857 e Isoleucina (I) a Valina (V) en la posición 1000.

5

25

30

35

50

- En un segundo aspecto, la presente invención proporciona una secuencia de nucleótidos capaz de codificar una proteína S de acuerdo con el primer aspecto de la invención.
 - La invención también proporciona un plásmido que comprende una secuencia de nucleótidos de acuerdo con el segundo aspecto de la invención.
- 20 En un tercer aspecto, la presente invención proporciona una partícula viral que comprende una proteína S de acuerdo con el primer aspecto de la invención y/o una secuencia de nucleótidos de acuerdo con el segundo aspecto de la invención.
 - La partícula viral puede ser un virus de vaccinia recombinante (rVV) o un coronavirus.
 - La partícula viral puede ser capaz de crecer en una línea celular tal como células Vero.
 - La infección de células Vero por una partícula viral de acuerdo con el tercer aspecto de la invención puede bloquearse por heparina soluble.
 - En un cuarto aspecto, la presente invención proporciona una célula que comprende una secuencia de nucleótidos de acuerdo con el segundo aspecto de la invención; o una partícula viral de acuerdo con el tercer aspecto de la invención. La célula puede, por ejemplo, ser una célula, tal como una célula de riñón de polluelo primaria, capaz de producir virus recombinante usando un sistema de genética inversa, o una célula infectada con una partícula viral de acuerdo con el tercer aspecto de la invención.
 - La célula infectada con una partícula viral de acuerdo con el tercer aspecto de la invención puede ser derivable de una línea celular, tal como una célula Vero.
- 40 En un quinto aspecto, la presente invención proporciona una vacuna que comprende una partícula viral del cuarto aspecto de la invención.

Aspectos adicionales de la invención proporcionan:

- (i) una vacuna de acuerdo con el quinto aspecto de la invención para el tratamiento y/o prevención de una bronquitis infecciosa en un sujeto;
 - (ii) un método para producir una vacuna de acuerdo con el quinto aspecto de la invención, que comprende la etapa de infectar células Vero con una partícula viral de acuerdo con el tercer aspecto de la invención; y
 - (iii) un cultivo celular que comprende una célula o una población de células de acuerdo con el cuarto aspecto de la invención.

Descripción de las figuras

- Figura 1 Cinética de crecimiento de los seis rIBV variantes en células Vero. Todos los rIBV investigados se habían pasado 7 veces en células Vero.
 - Figura 2 Cinética de crecimiento de los seis rIBV variantes en células Vero sin pase previo en células Vero.
- Figura 3 Alineamiento de secuencias de aminoácidos de proteínas S completas para IBV Beaudette, M41, H120 y QX. La unión S1/S2 está en la posición 537. Las posiciones de aminoácidos en la subunidad S2 son 2 más que las mostradas en la SEQ ID NO 1 (578 se convierte en 580) debido a que la secuencia de QX S1 es dos aminoácidos más larga que las otras secuencias de S1.
- Figura 4 Alineamiento de secuencias de aminoácidos de las subunidades S2, para IBV Beaudette, M41, H120 y QX. Las modificaciones de aminoácidos ensayadas en los seis rIBV descritos en los Ejemplos están marcadas con una flecha roja.

Descripción detallada

IBV

- La bronquitis infecciosa (IB) aviar es una enfermedad respiratoria aguda y altamente contagiosa de pollos que provoca pérdidas económicas significativas. La enfermedad se caracteriza por señales respiratorias incluyendo jadeos, tos, estornudos, estertores traqueales y descarga nasal. En pollos jóvenes, puede producirse dificultad respiratoria grave. En ponedoras, son comunes dificultad respiratoria, nefritis, reducción de la producción de huevo y pérdida de calidad interna de huevo y calidad de cáscara de huevo.
 - En pollos de engorde, son señales clínicas comunes la tos y crepitación, que se propagan rápidamente en todas las aves de la instalación. La morbilidad es 100 % en bandadas no vacunadas. La mortalidad varía dependiendo de la edad, la cepa del virus y las infecciones secundarias pero puede ser de hasta el 60 % en bandadas no vacunadas.
- El primer serotipo de IBV identificado fue Massachusetts, pero en los Estados Unidos están en circulación en la actualidad varios serotipos, incluyendo Arkansas y Delaware, además del tipo Massachusetts identificado originalmente.
- La cepa de IBV Beaudette se derivó después de al menos 150 pases en embriones de polluelos. IBV Beaudette ya no es patógeno para aves adultas, pero mata rápidamente los embriones.
 - H120 es una cepa de vacuna de serotipo Massachusetts de IBV viva comercial, atenuada por aproximadamente 120 pases en huevos de pollos embrionados. H52 es otra cepa de Massachusetts, y representa un virus de pase anterior y ligeramente más patogénico (pase 52) durante el desarrollo de H120. Se usan habitualmente vacunas basadas en H120 y H52.
 - IB QX es un aislado de campo virulento de IBV. Se conoce en ocasiones como "QX chino" ya que se aisló originalmente después de brotes de enfermedad en la región de Qingdao en China. Desde ese momento el virus ha avanzado hacia Europa. Desde 2004, se han identificado problemas graves de producción de huevos con un virus muy similar en partes de Europa occidental, predominantemente en los Países Bajos, pero también comunicado desde Alemania, Francia, Bélgica, Dinamarca y en el Reino Unido.
 - El virus aislado de los casos de los Países Bajos fue identificado por el Instituto de Investigación de los Países Bajos en Deventer como una nueva cepa que denominaron D388. La conexión china vino de ensayos adicionales que mostraron que el virus era 99 % similar a los virus QX chinos. Se ha desarrollado ahora una cepa de virus de bronquitis infecciosa de tipo QX viva atenuada.

Proteína S

- 40 La proteína S de IBV comprende un ectodominio muy glucosilado, grande, que puede escindirse durante la biosíntesis en dos subunidades (S1 y S2) por una enzima de tipo furina en el aparato de Golgi. S1 comprende el dominio de unión al receptor y S2 comprende el dominio de fusión. La proteína S de IBV se escinde completamente en el límite S1/S2, especialmente en sistemas de embrión de pollo.
- 45 El dominio S2 contiene cinco dominios o regiones funcionales: dos dominios, HR1 y HR2, forman estructuras helicoidales que dan como resultado la estructura de tallo de la proteína; un dominio transmembrana responsable de anclar la proteína en la membrana de virión; un dominio citoplasmático rico en cisteína responsable de interaccionar con otras proteínas estructurales de virus y un quinto dominio, el péptido de fusión, responsable de fusión virus-célula o fusión entre células.

Las secuencias de aminoácidos para las cepas de IBV Beaudette y M41 son las siguientes:

SEQ ID NO 1: proteína S de IBV Beaudette. El motivo específico de Beaudette completo se muestra en negrita (aminoácidos 686-694).

55

50

25

30

35

```
1 mlvtplllvt llcalcsavl ydsssyvyyy qsafrppsgw hlgggayavv nissefnnag
61 sssgctvgii hggrvvnass iamtapssgm awsssqfcta hcnfsdttvf vthcykhggc
121 pltgmlqqnl irvsamkngq lfynltvsva kyptfrsfqc vnnltsvyln gdlvytsnet
181 idvtsagvyf kaggpitykv mrevkalayf vngtagdvil cdgsprglla cqyntgnfsd
241 gfypftnssl vkqkfivyre nsvnttctlh nfifhnetga npnpsgvqni qtyqtktaqs
301 gyynfnfsfl ssfvykesnf mygsyhpsck frletinngl wfnslsvsia ygplqggckq
361 svfkgratcc yaysyggpsl ckgvysgeld hnfecgllvy vtksggsrig tateppvitg
421 nnynnitlnt cvdyniygrt gqgfitnvtd savsynylad aglaildtsg sidifvvqge
481 yglnyykvnp cedvnqqfvv sggklvgilt srnetgsqll enqfyikitn gtrrfrrsit
541 envancpyvs ygkfcikpdg siativpkql eqfvaplfnv tenvlipnsf nltvtdeyiq
601 trmdkvqinc lqyvcgssld crklfqqygp vcdnilsvvn svgqkedmel lnfysstkpa
661 gfntpvlsnv stgefnisll ltnpssrrkr sliedllfts vesvglptnd ayknctagpl
721 qffkdlacar eyngllvlpp iitaemgaly tsslvasmaf qgitaagaip fatqlgarin
781 hlgitqslll knqekiaasf nkaighmqeg frstslalqq iqdvvskqsa iltetmasln
841 knfqaissvi qeiyqqfdai qanaqvdrli tgrlsslsvl asakqaeyir vsqqrelatq
901 kinecvksqs irysfcgngr hvltipqnap ngivfihfsy tpdsfvnvta ivgfcvkpan
961 asqyaivpan grgifiqvng syyitardmy mpraitagdv vtltscqany vsvnktvitt
1021 fvdnddfdfn delskwwndt khelpdfdkf nytvpildid seidriggvi gglndslidl
```

1081 eklsilktyi kwpwyvwlai afatiifili lgwvffmtgc cgcccgcfgi mplmskcgkk 1141 ssyyttfdnd vvteqyrpkk sv

SEQ ID NO 2: proteína S de IBV M41. Las posiciones de aminoácidos 686-691 y 578, 617, 826, 857 y 1000 se muestran en negrita.

1 mlvtplllvt llcvlcsaal ydsssyvyyy qsafrppngw hlhggayavv nissesnnag 61 sspgcivgti hggrvvnass iamtapssgm awsssqfcta hcnfsdttvfvthcykydgc 121 pitgmlqknf lrvsamkngq lfynltvsva kyptfksfqc vnnltsvyln gdlvytsnet 181 tdvtsagvyf kaggpitykv mrkvkalayf vngtagdvil cdgsprglla cgyntgnfsd 241 gfypfinssl vkqkfivyre nsvnttftlh nftfhnetga npnpsgvqni ltyqtqtaqs 301 gyynfnfsfl ssfvykesnf mygsyhpscn frletinngl wfnslsvsia ygplqggckq 361 svfsgratcc yaysyggpsl ckgvysgeld lnfecgllvy vtksggsriq tateppvitr 421 hnynnitlnt cvdyniygrt gqgfitnvtd savsynylad aglaildtsg sidifvvqge 481 ygltyykvnp cedvnqqfvv sggklvgilt srnetgsqll enqfyikitn gtrrfrrsit 541 envancpyvs ygkfcikpdg siativpkql eqfvapllnv tenvlipnsf nltvtdeyiq 601 trmdkvqinc lqyvcgnsld crdlfqqygp vcdnilsvvn sigqkedmel lnfysstkpa 661 gfntpflsnv stgefnisll lttpssprrr sfiedllfts vesvglptdd ayknctagpl 721 gflkdlacar eyngllvlpp iitaemqtly tsslvasmaf ggitaagaip fatqlqarin 781 hlgitqslll knqekiaasf nkaigrmqeg frstslalqq iqdvvnkqsa iltetmasln 841 knfgaissvi qeiyqqldai qanaqvdrli tgrlsslsvl asakqaehir vsqqrelatq 901 kinecvksqs irysfcgngr hvltipqnap ngivfihfsy tpdsfvnvta ivgfcvkpan 961 asqyaivpan grgifiqvng syyitardmy mpraitagdi vtltscqany vsvnktvitt 1021 fydnddfdfn delskwwndt khelpdfdkf nytypildid seidriggyi gglndslidl 1081 eklsilktyi kwpwyvwlai afatiifili lgwvffmtgc cgccgcfgi mplmskcgkk 1141 ssyyttfdnd vvteqnrpkk sv

La Figura 3 muestra un alineamiento entre las proteínas S de las cepas de IBV Beaudette, M41, H120 y QX.

La Figura 4 muestra un alineamiento entre las subunidades S2 de las cepas de IBV Beaudette, M41, H120 y QX.

5 TROPISMO TISULAR

15

45

Los coronavirus muestran fuerte tropismo de especie y tisular. De forma similar, los aislados clínicos de IBV muestran tropismo definido tanto *in vivo* como en cultivo celular.

- La cepa M41 se ha adaptado para crecimiento en células de riñón de polluelo primarias (CK) y se restringe a infección de células de pollo primarias, y por lo tanto es necesario cultivarla en huevos embrionados o células CK.
 - Se sabe que la cepa Beaudette, por otro lado, es capaz de infectar una serie de células en cultivo, incluyendo células Vero y células de riñón de cría de hámster (BHK).
 - Una cepa de IBV con tropismo tisular restringido es capaz de infectar un número menor de tipos celulares que un coronavirus con tropismo tisular extendido.
- Una cepa de IBV con tropismo tisular restringido puede, por ejemplo, restringirse a infección de células primarias, mientras que una cepa de IBV con tropismo tisular extendido puede (además de ser capaz de infectar células primarias) ser capaz de infectar una o más líneas celulares.
 - Una cepa de IBV con tropismo tisular extendido puede, por ejemplo, tener la capacidad de infectar células Vero.
- El linaje celular Vero se aisló en 1962 de células epiteliales de riñón extraídas de un mono verde africano (*Cercopithecus aethiops*). Las células Vero se usan para muchos fines experimentales y clínicos, incluyendo su acción como células hospedadoras para cultivar virus.
- El linaje celular Vero es continuo porque puede replicarse a través de muchos ciclos de división y no se convierte en senescente.
 - El linaje celular Vero se ha autorizado para su uso en la fabricación de vacunas y se usa actualmente para la producción de vacunas de la polio y rabia.
- Una cepa de IBV con tropismo tisular restringido puede ser inmunogénica y capaz de inducir una respuesta inmunitaria protectora o terapéutica *in vivo*. Los ejemplos de cepas con tropismo tisular restringido incluyen las cepas usadas en la actualidad para producción de vacunas. Para IBV, esto incluye cepas tales como: H52, H120, Ma5, 4/91, D41, D274, W93 y QX. La cepa con tropismo tisular restringido puede ser o derivar de un aislado "del campo" tal como BJ1, BJ2 o BJ3 (Li y Yang (2001) Avian Pathol 30: 535-541).
 - Un ejemplo de una cepa de IBV con tropismo tisular extendido es IBV Beaudette.
 - Puede establecerse tropismo celular experimentalmente simplemente exponiendo un tipo celular dado a infección por un virus. Después puede analizarse el efecto citopático (cpe) y el grado de formación de sincitios tras un cierto número de pases. El cambio de morfología de las células infectadas puede analizarse usando microscopía.

PROTEÍNA VARIANTE

- La presente invención se refiere a una proteína de espina (proteína S) de virus de bronquitis infecciosa (IBV) quimérica que se basa en una proteína S de una cepa de IBV con tropismo tisular restringido, pero que comprende un "motivo específico de Beaudette" junto con una o más sustituciones de aminoácidos específicas de Beaudette, de modo que un virus IBV que comprende la proteína S tiene tropismo tisular extendido.
- La expresión "basado en" indica que al menos el dominio S1 deriva o puede derivar de la cepa con tropismo tisular restringido. La mayor parte del dominio S2 también puede obtenerse o ser obtenible de la cepa con tropismo tisular restringido. Por ejemplo, los dominios transmembrana y/o citoplasmático pueden derivar o ser derivables de la cepa con tropismo tisular restringido. El dominio S2 puede corresponder a la secuencia del dominio S2 de la cepa con tropismo tisular restringido, sujeta a los siguientes cambios:
- 60 (1) inserción de un "motivo específico de Beaudette" en la parte de la proteína S2 correspondiente a los restos 686 a 691 de la secuencia proporcionada como SEQ ID NO 2;
 - (2) sustitución de aminoácidos en una o más de las siguientes posiciones, en referencia a la SEQ ID NO 2: 578, 617, 826, 857, 1000.
- 65 El dominio S2 puede comprender algunas mutaciones de aminoácidos adicionales, tales como sustituciones, inserciones o supresiones, siempre que no afecten de forma significativa a la capacidad de la subunidad S2 para

extender el tropismo tisular del virus resultante. Las mutaciones de aminoácidos adicionales pueden surgir, por ejemplo, como resultado del pase en una línea celular tal como células Vero. El dominio S2 puede, por ejemplo, comprender una mutación adicional en la posición del aminoácido 865 (glutamina (Q) a histidina (H)).

5 Considerando la secuencia de S2 completa sin posiciones de aminoácidos 686-694, 578, 617, 826, 857 y 1000, sustancialmente todo el resto de la secuencia puede corresponder a la de la secuencia de S2 de tipo silvestre de la cepa con tropismo tisular restringido.

La expresión "sustancialmente toda" significa que la proteína S2 tiene al menos 90, 95 o 98 % de la secuencia de tipo silvestre en su conjunto pero ignorando las posiciones de aminoácidos 686-694, 578, 617, 826, 857 y 1000.

La expresión "tipo silvestre" se usa para indicar un polipéptido que tiene una secuencia de aminoácidos primaria que es idéntica a la proteína nativa (es decir, la proteína viral).

Pueden realizarse comparaciones de identidad a la vista, o más habitualmente, con la ayuda de programas de comparación de secuencias disponibles fácilmente. Estos programas informáticos disponibles en el mercado pueden calcular el % de identidad entre dos o más secuencias. Un programa informático adecuado para llevar a cabo dicho alineamiento es el paquete GCG Wisconsin Bestfit (Universidad de Wisconsin, Estados Unidos; Devereux et al., 1984, Nucleic Acids Research 12: 387). Los ejemplos de otros software que pueden realizar comparaciones de secuencias incluyen, pero sin limitación, el paquete BLAST (véase Ausubel et al., 1999 misma referencia - Capítulo 18), FASTA (Atschul et al., 1990, J. Mol. Biol., 403-410) y el conjunto GENEWORKS de herramientas de comparación. Tanto BLAST como FASTA están disponibles para búsqueda fuera de línea y en línea (véase Ausubel et al., 1999 misma referencia, páginas 7-58 a 7-60). Sin embargo, para algunas aplicaciones, se prefiere usar el programa GCG Bestfit. También está disponible una nueva herramienta, denominada BLAST 2 Sequences para comparar secuencia proteica y de nucleótidos (véase FEMS Microbiol Lett 1999 174(2): 247-50; FEMS Microbiol Lett 1999 177(1): 187-8 y tatiana@ncbi.nlm.nih.gov).

La secuencia puede tener una o más supresiones, inserciones o sustituciones de restos de aminoácidos que producen un cambio silencioso y dan como resultado una molécula funcionalmente equivalente. Pueden realizarse sustituciones de aminoácidos deliberadas basándose en la similitud de polaridad, carga, solubilidad, hidrofobicidad, hidrofilia y/o la naturaleza anfipática de los restos siempre que la actividad se conserve. Por ejemplo, los aminoácidos con carga negativa incluyen ácido aspártico y ácido glutámico; los aminoácidos con carga positiva incluyen lisina y arginina; y los aminoácidos de grupos de cabeza polar sin carga que tienen valores de hidrofilia similares incluyen leucina, isoleucina, valina, glicina, alanina, asparagina, glutamina, serina, treonina, fenilalanina y tirosina.

Pueden realizarse sustituciones conservativas, por ejemplo de acuerdo con la Tabla posterior. Los aminoácidos en el mismo bloque de la segunda columna y preferentemente en la misma línea de la tercera columna pueden sustituirse entre sí:

ALIFÁTICOS	No polares	GAP
		ILV
	Polares sin carga	CSTM
		NQ
	Polares con carga	DE
		KR
AROMÁTICOS		HFWY

40

50

55

30

35

10

Un alineamiento entre proteínas S de diferentes cepas es sencillo porque los coronavirus comparten una estructura de dominio común y, entre cepas, deberían tener un nivel de identidad de secuencia relativamente alto. Puede usarse software de alineamiento tal como el paquete BLAST™ descrito anteriormente.

45 Ubicación de aminoácidos

La proteína S de la presente invención comprende la secuencia XBBXBX en la parte de la proteína S2 correspondiente a los restos 686 a 691 de la secuencia proporcionada como SEQ ID NO 2, donde B es un resto básico y X es cualquier aminoácido; y comprende al menos una de las siguientes sustituciones de aminoácidos en referencia a la numeración de posición de la SEQ ID NO: 2:

Leucina (L) a Fenilalanina (F) en la posición 578 Asparagina (N) a Serina (S) en la posición 617 Asparagina (N) a Serina (S) en la posición 826 Leucina (L) a Fenilalanina (F) en la posición 857 e Isoleucina (I) a Valina (V) en la posición 1000. La secuencia ID NO 2 es la secuencia de proteína S de la cepa M41 de IBV. Puede ser que la proteína S de otras cepas de IBV tenga numeración de aminoácidos ligeramente diferente. Por ejemplo, la secuencia de S1 de la cepa QX es dos aminoácidos más larga que las secuencias S1 de cepas tales como M1, Beaudette y H120. Esto significa que para una proteína S de acuerdo con la invención basada en QX, el motivo XBBXBX aparecería en la sección de secuencia en la posición 688-693. Las mutaciones anteriormente mencionadas estarían en las posiciones 580, 619, 828, 859 y 1002.

La expresión "en referencia a la numeración de posición de la SEQ ID NO 2" indica que la posición de aminoácido es equivalente a la mostrada para la secuencia de proteína S de M41 mostrada en la SEQ ID NO 2. Se apreciará que el número real del aminoácido del extremo N de la proteína puede variar entre proteínas S de IBV de diferentes cepas, como lo hace para QX como se ha explicado anteriormente. Sin embargo, debería estar claro a partir de un alineamiento de la proteína S de IBV con la secuencia de M41 de la SEQ ID NO 2 que es la posición de aminoácido "equivalente".

15 Se muestra un alineamiento de proteínas S de diversas cepas de IBV en la Figura 3.

La posición del motivo y mutaciones también puede proporcionarse en el contexto de la subunidad S2.

Se muestra un alineamiento de las subunidades S2 de diversas cepas de IBV en la Figura 4. Las posiciones de 20 aminoácidos correspondientes para la subunidad S2 se muestran en la siguiente tabla:

	Posición de proteína S de M41	Posición de subunidad S2 de M41
Motivo XXBBXBX	686-691	154-159
L→F	578	46
N→S	617	85
N→S	826	294
L→F	857	325
l→V	1000	468

Por lo tanto la proteína S de la presente invención comprende la secuencia XBBXBX en la parte de la proteína S2 correspondiente a los restos 154 a 159 de la secuencia mostrada en la Figura 4, donde B es un resto básico y X es cualquier aminoácido; y comprende al menos una de las siguientes sustituciones de aminoácidos en referencia a la numeración de posición de las secuencias mostradas en la Figura 4:

Leucina (L) a Fenilalanina (F) en la posición 46 Asparagina (N) a Serina (S) en la posición 85 Asparagina (N) a Serina (S) en la posición 294 Leucina (L) a Fenilalanina (F) en la posición 325 e Isoleucina (I) a Valina (V) en la posición 468.

SECUENCIA DE NUCLEÓTIDOS

La presente invención también proporciona una secuencia de nucleótidos capaz de codificar la proteína S de la presente invención.

La secuencia de nucleótidos puede ser natural, sintética o recombinante. Puede ser mono o bicatenaria, puede ser de 40 ADN o ARN o combinaciones de los mismos. Puede ser, por ejemplo, ADNc, un producto de PCR, secuencia genómica o ARNm.

La secuencia de nucleótidos puede optimizarse con respecto a codones para la producción en el hospedador/la célula hospedadora elegido.

Puede estar aislada o como parte de un plásmido, virus o célula hospedadora.

PLÁSMIDO

5

10

25

30

35

45

50 Un plásmido es una molécula de ADN extracromosómica separada del ADN cromosómico que es capaz de replicar independientemente del ADN cromosómico. Son habitualmente circulares y bicatenarios.

Los plásmidos, o vectores (como se conocen en ocasiones), pueden usarse para expresar una proteína en una célula hospedadora. Por ejemplo, una célula hospedadora bacteriana puede transfectarse con un plásmido capaz de codificar una proteína particular, para expresar esa proteína. El término también incluye cromosomas artificiales de levadura y cromosomas artificiales de bacterias que son capaces de acomodar partes más largas de ADN.

5

- El plásmido de la presente invención comprende una secuencia de nucleótidos capaz de codificar el gen S. También puede comprender una o más secuencias de nucleótidos de coronavirus adicionales o secuencias de nucleótidos capaces de codificar una o más proteínas de coronavirus tales como el gen de replicasa y/o gen 3.
- El plásmido también puede comprender un marcador de resistencia, tal como el gen de guanina xantina fosforribosiltransferasa (*gpt*) de *Escherichia coli*, que confiere resistencia a ácido micofenólico (MPA) en presencia de xantina e hipoxantina y se controla por el promotor temprano/tardío de virus vaccinia P_{7.5}.

PARTÍCULA VIRAL

15

- La presente invención también se refiere a una partícula viral con una proteína S de la presente invención. La partícula viral puede ser, por ejemplo, un virus vaccinia recombinante (rVV) o un coronavirus.
- La partícula viral puede ser recombinante.

20

- La partícula viral puede prepararse usando un sistema de genética inversa, tal como un sistema de genética inversa basado en virus vaccinia.
- Se conocen en la técnica sistemas de genética inversa adecuados (Casais *et al* (2001) J. Virol 75: 12359-12369; Casais *et al* (2003) J. Virol. 77: 9084-9089; Britton *et al* (2005) J. Virological Methods 123: 203-211; Armesto *et al* (2008) Methods in Molecular Biology 454: 255-273).

CÉLULA

30 La partícula viral puede usarse para infectar una célula.

Ya que la partícula viral que comprende el gen S de la presente invención tiene tropismo tisular extendido, la célula puede ser derivable de o una parte de una línea celular.

La célula puede ser, por ejemplo, una célula de riñón de cría de hámster (por ejemplo BHK-21) o una célula Vero.

La célula puede usarse para producir la partícula viral.

- Por lo tanto la presente invención también proporciona un método para producir una partícula viral que comprende las siguientes etapas:
 - (i) infección de una célula con una partícula viral de acuerdo con el sexto aspecto de la invención;
 - (ii) permitir que el virus se replique en la célula; y
 - (iii) recoger el virus descendiente.

45

- La célula puede ser de o parte de una línea celular, tal como una célula Vero. Las partículas virales pueden recogerse, por ejemplo del sobrenadante por métodos conocidos en la técnica, y opcionalmente purificarse.
- La presente invención también proporciona una célula que comprende una secuencia de nucleótidos de acuerdo con la invención y/o una partícula vírica de acuerdo con la invención. La célula puede ser capaz de producir una partícula viral recombinante de acuerdo con el cuarto aspecto de la invención usando un sistema de genética inversa. Por ejemplo, la célula puede comprender un genoma de virus recombinante que comprende una secuencia de nucleótidos capaz de codificar el gen S de la presente invención.
- La célula puede ser capaz de producir virus de recombinación recombinantes (por ejemplo virus vaccinia) que contiene el gen S. La célula puede ser una célula Vero.
 - Como alternativa la célula puede ser capaz de producir coronavirus recombinante por un sistema de genética inversa. La célula puede expresar o inducirse para expresar polimerasa T7 para rescatar la partícula viral recombinante. La célula puede ser una célula CK.

VACUNA

La partícula viral puede usarse para producir una vacuna.

65

60

La vacuna puede ser una forma atenuada viva de la partícula viral.

La presente invención también se refiere a un método para producir dicha vacuna que comprende la etapa de infectar células, por ejemplo células Vero, con una partícula viral que comprende una proteína quimérica de acuerdo con el primer aspecto de la invención.

MÉTODO DE VACUNACIÓN

5

10

30

35

40

55

60

La partícula viral de la presente invención puede usarse para tratar y/o prevenir la bronquitis infecciosa en un sujeto.

"Tratar" significa administrar la vacuna a un sujeto que tiene una enfermedad existente para disminuir, reducir o mejorar al menos un síntoma asociado con la enfermedad y/o para ralentizar, reducir o bloquear la progresión de la enfermedad.

- "Prevenir" significa administrar la vacuna a un sujeto que aún no ha contraído la enfermedad y/o que no muestra ningún síntoma de la enfermedad para evitar o alterar la causa de la enfermedad (por ejemplo infección) o para reducir o prevenir el desarrollo de al menos un síntoma asociado con la enfermedad.
- La vacuna puede administrarse a polluelos eclosionados o pollos, por ejemplo por colirio o administración intranasal.

 Aunque son precisos, estos métodos pueden ser caros por ejemplo para bandadas de pollos de engorde grandes. Las alternativas incluyen inoculación por pulverización de administración al agua para beber pero puede ser difícil asegurar la aplicación de vacuna uniforme usando dichos métodos.
- La vacuna puede proporcionarse en una forma adecuada para su administración, tal como un colirio para uso intraocular.
 - La vacuna puede administrarse por la inoculación en el huevo, por ejemplo mediante inyección de huevos embrionados. La vacunación en el huevo tiene la ventaja de que proporciona una resistencia de estadio temprano a la enfermedad. También facilita la administración de una dosis uniforme por sujeto, a diferencia de la inoculación por pulverización y administración mediante agua para beber.
 - La vacuna puede administrarse a cualquier compartimento adecuado del huevo, incluyendo fluido alantoideo, saco vitelino, amnios, celda de aire o embrión. Puede administrarse debajo de la membrana de la cáscara (celda de aire) y membrana corioalantoidea.
 - Habitualmente la vacuna se inyecta a huevos embrionados durante los estadios tardíos del desarrollo embrionario, generalmente durante el último trimestre del periodo de incubación, tal como 3-4 días antes de eclosionar. En los pollos, la vacuna puede administrarse entre el día 15 y el 19 del periodo de incubación de 21 días, por ejemplo al día 17 o 18.
 - El proceso puede automatizarse usando un proceso de inyección robótico, tal como el descrito en el documento WO 2004/078203.
- La vacuna puede administrarse junto con una o más vacunas distintas, por ejemplo, vacunas para otras enfermedades, tales como virus de enfermedad de Newcastle (NDV). La presente invención también proporciona una composición de vacuna que comprende una vacuna de acuerdo con la invención junto con uno o más vacunas adicionales. También se describe en el presente documento un kit que comprende una vacuna de acuerdo con la invención junto con una o más vacunas distintas para administración separada, secuencial o simultánea.
- La vacuna de la invención pueden usarse para tratar un sujeto aviar. Por ejemplo, el sujeto puede ser un polluelo o pollo.
 - Típicamente, un médico o veterinario determinará la dosis real que será más adecuada para un sujeto individual o grupo de sujetos y variará con la edad, el peso y la respuesta del sujeto o los sujetos particulares.
 - La composición puede comprender opcionalmente un vehículo, diluyente, excipiente o adyuvante farmacéuticamente aceptable. La elección de vehículo farmacéutico, excipiente o diluyente puede seleccionarse con respecto a la vía pretendida de administración y la práctica farmacéutica convencional. Las composiciones farmacéuticas pueden comprender como (o además de) el vehículo, excipiente o diluyente, cualquier aglutinante, lubricante, agente de suspensión, agente de recubrimiento, agente de solubilización y otros agentes vehículos adecuados que pueden ayudar o aumentar el suministro o la inmunogenicidad del virus.

Ejemplos

65 Ejemplo 1 - Generación de IBV recombinantes que comprenden aminoácidos derivados de Beaudette

Los presentes inventores han mostrado previamente que el motivo específico de Beaudette fue capaz de conferir la capacidad de crecer en células Vero pero no en el mismo grado que la subunidad S2 de Beaudette completa. En el trabajo previo de los presentes inventores, reemplazaron la secuencia de motivo específico de Beaudette equivalente en la subunidad S2 de M41 en BeauR-M41 (S) con el motivo específico de Beaudette. El rIBV resultante, BeauR-M41-S-BeauR-Hep, fue capaz de crecer en células Vero, sin embargo, los estudios cinéticos mostraron que no creció en el mismo grado que el rIBV que expresaba una proteína S que comprendía S1 de M41 y una S2 completa de Beaudette.

En el presente estudio, los presentes inventores han investigado si otros aminoácidos específicos de Beaudette pueden estar implicados en la adquisición de la capacidad para crecer en células Vero.

10

15

5

Para este fin, se generó una serie de rIBV basados en BeauR-M41-S-BeauR-Hep en los que se introdujeron otros aminoácidos derivados de Beaudette. Esto se consiguió generando ADNc basados en BeauR-M41-S-BeauR-Hep que tenían los aminoácidos específicos de Beaudette, 578F, 617S, 826S, 857F y 1000I, identificados en la S2 de Beaudette, introducidos en la glucoproteína S de rIBV BeauR-M41-S-BeauR-Hep para reemplazar los aminoácidos de M41 correspondientes 578L, 617N, 826N, 857L y 1000V.

Los cambios (M41 a Beaudette) fueron:

Leucina (L) a Fenilalanina (F) en la posición de 578
Asparagina (N) a Serina (S) en la posición 617
Asparagina (N) a Serina (S) en la posición 826
Leucina (L) a Fenilalanina (F) en la posición 857 e
Isoleucina (I) a Valina (V) en la posición 1000.

- Se sintetizaron dos regiones separadas de la glucoproteína S de M41 que contenían los cambios de aminoácidos deseados por Geneart y se clonaron en el vector de transferencia/recombinación pGPTNEB193. Estas se usaron para introducir las mutaciones en el ADNc de longitud completa de BeauR-M41-S-BeauR-Hep clonado en el genoma del virus vaccinia usando un método de selección dominante transitorio (TDS) para modificar el genoma del IBV. Los virus vaccinia recombinantes se exploraron para identificar aislados que contenían diferentes combinaciones de los aminoácidos de S2 específicos de Beaudette. Se llevó a cabo una TDS adicional para introducir los cinco aminoácidos específicos de Beaudette en el ADNc de longitud completa de BeauR-M41-S-BeauR-Hep. Los virus vaccinia recombinantes resultantes se exploraron mediante análisis de secuencia para identificar secuencias de ADNc de IBV que contenían todos los aminoácidos específicos de Beaudette.
- Después se rescataron rIBV infecciosos con diferentes combinaciones de los aminoácidos específicos de Beaudette en la subunidad S2 de la glucoproteína S de BeauR-M41-S-BeauR-Hep. Para hacer esto, los virus vaccinia recombinantes que contenían el ADNc de BeauR-M41-S-BeauR-Hep con las secuencias de S2 modificadas se semipurificaron y se extrajo el ADN. Se transfectaron células CK primarias con el ADN de virus vaccinia recombinante para recuperar los rIBV infecciosos, que posteriormente se pasaron en serie tres veces en células CK.

40

45

Se rescataron seis rIBV diferentes con diferentes combinaciones de mutaciones de la siguiente manera:

MSBH-NS - N a S en la posición 617 MSBH-LFNS - L a F en 578 y N a S en 617 MSBH-IV - I a V en 1000 MSBH-LFIV - L a F en 857 e I a V en 1000 MSBH-NSLFIV - N a S en 826, L a F en 857 e I a V en 1000 MSBH-LFNSNSLFIV - L a F en 578, N a S en 617, N a S en 826, L a F en 857 e I a V en 1000.

La cinética de crecimiento de los seis rIBV descritos anteriormente se analizó en células CK y se descubrió que las variantes crecían con cinética similar al virus parental, rIBV BeauR-M41-S-BeauR-Hep (datos no mostrados).

Los rIBV se pasaron en serie siete veces en células Vero y se secuenciaron los genes de S.

El análisis de secuencia mostró que, después del pase en células Vero, los seis rIBV tenían cambios de aminoácidos adicionales en comparación con el virus parental P3 CKC, con un aminoácido en la posición de aminoácido 865 (glutamina (Q) a histidina (H)) común para tres virus. Esta mutación también se produce en algunos otros virus, de modo que se cree que no es directamente responsable de la potenciación del crecimiento en células Vero pero puede interaccionar con las otras sustituciones que se introdujeron por ingeniería genética en la S2 de M41. Se cree que las mutaciones Q a H han surgido debido al crecimiento en células Vero.

Ejemplo 2 - Análisis de la cinética de crecimiento de los rIBV de células Vero

Las características de crecimiento de las variantes en células Vero se analizaron usando microscopia de campo claro.

El crecimiento de los aislados de rIBV se comparó con rIBV BeauR-M41-S-BeauR-Hep (M41 con el motivo Beaudette pero ninguna otra mutación derivada de Beaudette) para determinar si los cinco aminoácidos de Beaudette mejoran

la cinética de crecimiento. Los resultados se muestran en la Figura 1. Los cinco aminoácidos de S2 específicos de Beaudette en las seis combinaciones aisladas en los seis rIBV mejoraron el crecimiento de BeauR-M41-S-BeauR-Hep en células Vero.

5 Se descubrió que el rIBV variante, MSBH-LFNSNSLFIV, que tenía los cinco aminoácidos específicos de Beaudette introducidos crecía mejor.

Estos resultados muestran que otros aminoácidos específicos de Beaudette de S2 además del motivo específico de Beaudette están implicados en la capacidad de IBV Beaudette para crecer en células Vero. La introducción de estos aminoácidos puede usarse para generar rIBV con una subunidad S2 del virus parental pero con relativamente pocos cambios de aminoácidos.

En este experimento los rIBV investigados se habían pasado 7 veces en células Vero (Figura 1).

La cinética de crecimiento también se investigó para los rIBV en células Vero sin pase previo en células Vero. Los resultados se muestran en la Figura 2.

BeauR-M41 (S), que comprende el gen de S de M41 sin ningún aminoácido específico de S2 de Beaudette, no crece en células Vero. Se descubrió que la cepa de IBV Beaudette crecía mejor en este experimento. Sin embargo, como se muestra en la Figura 1 después del pase en las células Vero algunos de los rIBV crecen mejor que Beau-R. El rIBV con el sitio de motivo específico de Beaudette solamente, BeauR-M41-S-BeauR-Hep, crece en células Vero, pero en menor grado que Beaudette, incluso después del pase en células Vero.

Sin embargo, los rIBV variantes con mutaciones de aminoácidos mostraron crecimiento mejorado después de siete pases en células Vero, más notablemente: MSBH-LFNS, MSBH-NSLFIV y MSBH-NS.

Resulta interesante que estas tres variantes en P7-Vero (MSBH-LFNS MSBH-NSLFIV y MSBH-NS) producen un título mucho mayor que Beau-R a las 24 horas después de la infección. El título es casi 2 log (x100 veces) mejor que Beau-R a las 24 horas después de la infección. Las secuencias variantes ofrecen por lo tanto una ventaja añadida para una producción de vacunas ya que conducirían a un rendimiento muy aumentado.

LISTA DE SECUENCIAS

<110> The Pirbright Institute

35 <120> PROTEÍNA

30

<130> P101995PCT

40 <150> GB 1308057.7 <151> 03-05-2013

<160> 14

45 <170> PatentIn versión 3.5

<210> 1

<211> 1162

<212> PRT

50 <213> Virus de bronquitis infecciosa (IBV)

<400> 1

Met 1	Leu	Val	Thr	Pro 5	Leu	Leu	Leu	Val	Thr 10	Leu	Leu	Cys	Ala	Leu 15	Суз
Ser	Ala	Val	Leu 20	Tyr	Asp	Ser	Ser	Ser 25	Tyr	Val	Tyr	Tyr	Tyr 30	Gln	Ser
Ala	Phe	Arg 35	Pro	Pro	Ser	Gly	Trp 40	His	Leu	Gln	Gly	Gly 45	Ala	Tyr	Ala
Val	Val 50	Asn	Ile	Ser	Ser	Glu 55	Phe	Asn	Asn	Ala	Gly 60	Ser	Ser	Ser	Gly
Cys 65	Thr	Val	Gly	Ile	Ile 70	His	Gly	Gly	Arg	Val 75	Val	Asn	Ala	Ser	Ser 80
Ile	Ala	Met	Thr	Ala 85	Pro	Ser	Ser	Gly	Met 90	Ala	Trp	Ser	Ser	Ser 95	Gln
Phe	Cys	Thr	Ala 100	His	Cys	Asn	Phe	Ser 105	Asp	Thr	Thr	Val	Phe 110	Val	Thr
His	Cys	Tyr 115	Lys	His	Gly	Gly	Cys 120	Pro	Leu	Thr	Gly	Met 125	Leu	Gln	Gln
Asn	Leu 130	Ile	Arg	Val	Ser	Ala 135	Met	Lys	Asn	Gly	Gln 140	Leu	Phe	Tyr	Asn
Leu 145	Thr	Val	Ser	Val	Ala 150	Lys	Tyr	Pro	Thr	Phe 155	Arg	Ser	Phe	Gln	Cys 160

Val Asn Asn Leu Thr Ser Val Tyr Leu Asn Gly Asp Leu Val Tyr Thr

				165					170					175	
Ser	Asn	Glu	Thr 180	Ile	Asp	Val	Thr	Ser 185	Ala	Gly	Val	Tyr	Phe 190	Lys	Ala
Gly	Gly	Pro 195	Ile	Thr	Tyr	Lys	Val 200	Met	Arg	Glu	Val	Lys 205	Ala	Leu	Ala
Tyr	Phe 210	Val	Asn	Gly	Thr	Ala 215	Gln	Asp	Val	Ile	Leu 220	Сув	Asp	Gly	Ser
Pro 225	Arg	GLy	Leu	Leu	Ala 230	Сув	Gln	Tyr	Asn	Thr 235	Gly	Asn	Phe	Ser	Asp 240
Gly	Phe	Tyr	Pro	Phe 245	Thr	Asn	Ser	Ser	Leu 250	Val	Lys	Gln	Lys	Phe 255	Ile
Val	Tyr	Arg	Glu 260	Asn	Ser	Val	Asn	Thr 265	Thr	Сув	Thr	Leu	His 270	Asn	Phe
Ile	Phe	His 275	Asn	Glu	Thr	Gly	Ala 280	Asn	Pro	Asn	Pro	Ser 285	Gly	Val	Gln
Asn	Ile 290	Gln	Thr	Tyr	Gln	Thr 295	Lys	Thr	Ala	Gln	Ser 300	Gly	Tyr	Tyr	Asn
Phe 305	Asn	Phe	Ser	Phe	Leu 310	Ser	Ser	Phe	Val	Tyr 315	Lys	Glu	Ser	Asn	Phe 320
Met	Tyr	GLy	Ser	Tyr 325	His	Pro	Ser	Cys	Lys 330	Phe	Arg	Leu	Glu	Thr 335	Ile
Asn	Asn	Gly	Leu 3 4 0	Trp	Phe	Asn	Ser	Leu 345	Ser	Val	Ser	Ile	Ala 350	Tyr	Gly
Pro	Leu	Gln 355	Gly	Gly	Cys	Lys	Gln 360	Ser	Val	Phe	Lys	Gly 365	Arg	Ala	Thr
Cys	C ys 370	Tyr	Ala	Tyr	Ser	Tyr 375	Gly	Gly	Pro	Ser	Leu 380	Суѕ	Lys	Gly	Val
Tyr 385	Ser	GLy	Glu	Leu	Asp 390	His	Asn	Phe	Glu	Суs 395	Gly	Leu	Leu	Val	Туг 400
Val	Thr	Lys	Ser	Gly	Gly	Ser	Arg	Ile	Gln 410	Thr	Ala	Thr	Glu	Pro	Pro

V	al	Ile	Thr	Gln 420	Asn	Asn	Tyr	Asn	Asn 425	Ile	Thr	Leu	Asn	Thr 430	Cys	Val
A	sp	Tyr	Asn 435	Ile	Tyr	Gly	Arg	Thr 440	Gly	Gln	Gly	Phe	Ile 445	Thr	Asn	Val
T]	hr	Asp 450	Ser	Ala	Val	Ser	Tyr 455	Asn	Туг	Leu	Ala	Asp 460	Ala	Gly	Leu	Ala
	1e 65	Leu	Asp	Thr	Ser	Gly 470	Ser	Ile	Asp	Ile	Phe 475	Val	Val	Gln	Gly	Glu 480
T	yr	Gly	Leu	Asn	Tyr 485	Tyr	Lys	Val	Asn	Pro 490	Cys	Glu	Asp	Val	Asn 495	Gln
G.	ln	Phe	Val	Val 500	Ser	Gly	Gly	Lys	Leu 505	Val	Gly	Ile	Leu	Thr 510	Ser	Arg
A	sn	Glu	Thr 515	Gly	Ser	Gln	Leu	Leu 520	Glu	Asn	Gln	Phe	Tyr 525	Ile	Lys	Ile
T	hr	Asn 530	Gly	Thr	Arg	Arg	Phe 535	Arg	Arg	Ser	Ile	Thr 540	Glu	Asn	Val	Ala
	sn 45	Cys	Pro	Tyr	Val	Ser 550	Tyr	Gly	Lys	Phe	Сув 555	Ile	Lys	Pro	Asp	Gly 560
s	er	Ile	Ala	Thr	Ile 565	Val	Pro	Lys	Gln	Leu 570	Glu	Gln	Phe	Val	Ala 575	Pro
L	eu	Phe	Asn	Val 580	Thr	Glu	Asn	Val	Leu 585	Ile	Pro	Asn	Ser	Phe 590	Asn	Leu
T?	hr	Val	Thr 595	Asp	Glu	Tyr	Ile	Gln 600	Thr	Arg	Met	Asp	Lys 605	Val	Gln	Ile
A	sn	Cys 610	Leu	Gln	Tyr	Val	Cys 615	Gly	Ser	Ser	Leu	Asp 620	Cys	Arg	Lys	Leu
	he 25	Gln	Gln	Tyr	Gly	Pro 630	Val	Cys	Asp	Asn	Ile 635	Leu	Ser	Val	Val	Asn 640
S	er	Val	Gly	Gln	Lys 645	Glu	Asp	Met	Glu	Leu 650	Leu	Asn	Phe	Tyr	Ser 655	Ser
T	hr	Lys	Pro	Ala	_	Phe	Asn	Thr	Pro	Val	Leu	Ser	Asn	Val	Ser	Thr

Gly	Glu	Phe 675	Asn	Ile	Ser	Leu	Leu 680	Leu	Thr	Asn	Pro	Ser 685	Ser	Arg	Arg
Lys	Arg 690	Ser	Leu	Ile	Glu	Asp 695	Leu	Leu	Phe	Thr	Ser 700	Val	Glu	Ser	Val
Gly 705	Leu	Pro	Thr	Asn	Asp 710	Ala	Туг	Lys	Asn	C ys 715	Thr	Ala	Gly	Pro	Leu 720
Gly	Phe	Phe	Lys	Asp 725	Leu	Ala	Cys	Ala	Arg 730	Glu	Tyr	Asn	Gly	Leu 735	Leu
Val	Leu	Pro	Pro 740	Ile	Ile	Thr	Ala	Glu 745	Met	Gln	Ala	Leu	Tyr 750	Thr	Ser
Ser	Leu	Val 755	Ala	Ser	Met	Ala	Phe 760	Gly	Gly	Ile	Thr	Ala 765	Ala	Gly	Ala
Ile	Pro 770	Phe	Ala	Thr	Gln	Leu 775	Gln	Ala	Arg	Ile	As n 780	His	Leu	Gly	Ile
Thr 785	Gln	Ser	Leu	Leu	Leu 790	Lys	Asn	Gln	Glu	Lys 795	Ile	Ala	Ala	Ser	Phe 800
Asn	Lys	Ala	Ile	Gly 805	His	Met.	Gln	Glu	Gly 810	Phe	Arg	Ser	Thr	Ser 815	Leu
Ala	Leu	Gln	Gln 820	Ile	Gln	Asp	Val	Val 825	Ser	Lys	Gln	Ser	Ala 830	Ile	Leu
Thr	Glu	Thr 835	Met	Ala	Ser	Leu	A sn 840	Lys	Asn	Phe	Gly	Ala 845	Ile	Ser	Ser
Val	Ile 850	Gln	Glu	Ile	Tyr	Gln 855	Gln	Phe	Asp	Ala	Ile 860	Gln	Ala	Asn	Ala
Gln 865	Val	Asp	Arg	Leu	Ile 870	Thr	GLy	Arg	Leu	Ser 875	Ser	Leu	Ser	Val	Leu 880
Ala	Ser	Ala	Lys	Gln 885	Ala	Glu	Tyr	Ile	Arg 890	Val	Ser	Gln	Gln	Arg 895	Glu
Leu	Ala	Thr	Gln 900	Lys	Ile	Asn	Glu	Cys 905	Val	Lys	Ser	Gln	Ser 910	Ile	Arg
Tyr	Ser	Phe	Суѕ	Gly	Asn	Gly	Arg	His	Val	Leu	Thr	Ile	Pro	Gln	Asn

- Ala Pro Asn Gly Ile Val Phe Ile His Phe Ser Tyr Thr Pro Asp Ser 930 935 940
- Phe Val Asn Val Thr Ala Ile Val Gly Phe Cys Val Lys Pro Ala Asn 945 950 955 960
- Ala Ser Gln Tyr Ala Ile Val Pro Ala Asn Gly Arg Gly Ile Phe Ile 965 970 975
- Gln Val Asn Gly Ser Tyr Tyr Ile Thr Ala Arg Asp Met Tyr Met Pro 980 985 990
- Arg Ala Ile Thr Ala Gly Asp Val Val Thr Leu Thr Ser Cys Gln A 995 1000
- Asn Tyr Val Ser Val Asn Lys Thr Val Ile Thr Thr Phe Val Asp 1010 1015 1020
- Asn Asp Asp Phe Asp Phe Asn Asp Glu Leu Ser Lys Trp Trp Asn 1025 1030 1035
- Asp Thr Lys His Glu Leu Pro Asp Phe Asp Lys Phe Asn Tyr Thr 1040 1045 1050
- Val Pro Ile Leu Asp Ile Asp Ser Glu Ile Asp Arg Ile Gln Gly 1055 1060 1065
- Val Ile Gln Gly Leu Asn Asp Ser Leu Ile Asp Leu Glu Lys Leu 1070 1075 1080
- Ser Ile Leu Lys Thr Tyr Ile Lys Trp Pro Trp Tyr Val Trp Leu 1085 1095
- Ala Ile Ala Phe Ala Thr Ile Ile Phe Ile Leu Ile Leu Gly Trp 1100 1105 1110
- Val Phe Phe Met Thr Gly Cys Cys Gly Cys Cys Cys Gly Cys Phe 1115 1120 1125
- Gly Ile Met Pro Leu Met Ser Lys Cys Gly Lys Lys Ser Ser Tyr 1130 1135 1140
- Tyr Thr Thr Phe Asp Asn Asp Val Val Thr Glu Gln Tyr Arg Pro 1145 1150 1155

Lys Lys Ser Val

<211> 1162 <212> PRT

<213> Virus de bronquitis infecciosa (IBV)

5 <400> 2

Met Leu Val Thr Pro Leu Leu Leu Val Thr Leu Leu Cys Val Leu Cys 1 5 10 15

Ser Ala Ala Leu Tyr Asp Ser Ser Ser Tyr Val Tyr Tyr Gln Ser 20 25 30

Ala Phe Arg Pro Pro Asn Gly Trp His Leu His Gly Gly Ala Tyr Ala 35 40 45

Val Val Asn Ile Ser Ser Glu Ser Asn Asn Ala Gly Ser Ser Pro Gly 50 55 60

Cys Ile Val Gly Thr Ile His Gly Gly Arg Val Val Asn Ala Ser Ser 65 70 75 80

Ile Ala Met Thr Ala Pro Ser Ser Gly Met Ala Trp Ser Ser Ser Gln 85 90 95

Phe Cys Thr Ala His Cys Asn Phe Ser Asp Thr Thr Val Phe Val Thr 100 105 110

His Cys Tyr Lys Tyr Asp Gly Cys Pro Ile Thr Gly Met Leu Gln Lys 115 120 125

Asn Phe Leu Arg Val Ser Ala Met Lys Asn Gly Gln Leu Phe Tyr Asn 130 135 140

Leu Thr Val Ser Val Ala Lys Tyr Pro Thr Phe Lys Ser Phe Gln Cys 145 150 155 160

Val Asn Asn Leu Thr Ser Val Tyr Leu Asn Gly Asp Leu Val Tyr Thr 165 170 175

Ser Asn Glu Thr Thr Asp Val Thr Ser Ala Gly Val Tyr Phe Lys Ala 180 185 190

Gly Gly Pro Ile Thr Tyr Lys Val Met Arg Lys Val Lys Ala Leu Ala 195 200 205

Tyr Phe Val Asn Gly Thr Ala Gln Asp Val Ile Leu Cys Asp Gly Ser

	210					215					220				
Pro 225	Arg	Gly	Leu	Leu	Ala 230	Cys	Gln	Tyr	Asn	Thr 235	Gly	Asn	Phe	Ser	Asp 240
Gly	Phe	Tyr	Pro	Phe 245	Ile	Asn	Ser	Ser	Leu 250	Val	Lys	Gln	Lys	Phe 255	Ile
Val	Tyr	Arg	Glu 260	Asn	Ser	Val	Asn	Thr 265	Thr	Phe	Thr	Leu	His 270	Asn	Phe
Thr	Phe	His 275	Asn	Glu	Thr	Gly	Ala 280	Asn	Pro	Asn	Pro	Ser 285	Gly	Val	Gln
Asn	Ile 290	Leu	Thr	Tyr	Gln	Thr 295	Gln	Thr	Ala	Gln	Ser 300	Gly	Tyr	Tyr	Asn
Phe 305	Asn	Phe	Ser	Phe	Leu 310	Ser	Ser	Phe	Val	Tyr 315	Lys	Glu	Ser	Asn	Phe 320
Met	Tyr	Gly	Ser	Tyr 325	His	Pro	Ser	Cys	Asn 330	Phe	Arg	Leu	Glu	Thr 335	Ile
Asn	Asn	Gly	Leu 340	Trp	Phe	Asn	Ser	Leu 345	Ser	Val	Ser	Ile	Ala 350	Tyr	G1y
Pro	Leu	Gln 355	Gly	Gly	Cys	Lys	Gln 360	Ser	Val	Phe	Ser	Gly 365	Arg	Ala	Thr
Cys	Cys 370	Tyr	Ala	Tyr	Ser	Tyr 375	Gly	Gly	Pro	Ser	Leu 380	Суз	Lys	Gly	Val
Tyr 385	Ser	Gly	Glu	Leu	Asp 390	Leu	Asn	Phe	Glu	Cys 395	Gly	Leu	Leu	Val	Tyr 400
Val	Thr	Lys	Ser	Gly 405	Gly	Ser	Arg	Ile	Gln 410	Thr	Ala	Thr	Glu	Pro 415	Pro
Val	Ile	Thr	Arg 420	His	Asn	Tyr	Asn	Asn 425	Ile	Thr	Leu	Asn	Thr 430	Cys	Val
Asp	Tyr	Asn 435	Ile	Tyr	Gly	Arg	Thr 440	Gly	Gln	Gly	Phe	Ile 445	Thr	Asn	Val
Thr	Asp 450	Ser	Ala	Val	Ser	Tyr 455	Asn	Tyr	Leu	Ala	Asp	Ala	Gly	Leu	Ala

Ile Leu 465	Asp	Thr	Ser	Gly 470	Ser	Ile	Asp	Ile	Phe 475	Val	Val	Gln	Gly	Glu 480
Tyr Gly	Leu	Thr	Tyr 485	Tyr	Lys	Val	Asn	Pro 490	Cys	Glu	Asp	Val	Asn 495	Gln
Gln Phe	Val	Val 500	Ser	Gly	Gly	Lys	Leu 505	Val	Gly	Ile	Leu	Thr 510	Ser	Arg
Asn Glu	Thr 515	Gly	Ser	Gln	Leu	Leu 520	Glu	Asn	Gln	Phe	Tyr 525	Ile	Lys	Ile
Thr Asn 530	Gly	Thr	Arg	Arg	Phe 535	Arg	Arg	Ser	Ile	Thr 540	Glu	Asn	Val	Ala
Asn Cys 545	Pro	Tyr	Val	Ser 550	Tyr	Gly	Lys	Phe	C ys 555	Ile	Lys	Pro	Asp	Gly 560
Ser Ile	Ala	Thr	11e 565	Val	Pro	Lys	Gln	Leu 570	Glu	Gln	Phe	Val	Ala 575	Pro
Leu Leu	Asn	Val 580	Thr	Glu	Asn	Val	Leu 585	Ile	Pro	Asn	Ser	Phe 590	Asn	Leu
Thr Val	Thr 595	Asp	Glu	Tyr	Ile	Gln 600	Thr	Arg	Met	Asp	Lys 605	Val	Gln	Ile
Asn Cys 610	Leu	Gln	Tyr	Val	Cys 615	Gly	Asn	Ser	Leu	Asp 620	Cys	Arg	Asp	Leu
Phe Gln 625	Gln	Tyr	Gly	Pro 630	Val	Cys	Asp	Asn	Ile 635	Leu	Ser	Val	Val	Asn 640
Ser Ile	Gly	Gln	Lys 645	Glu	Asp	Met	Glu	Leu 650	Leu	Asn	Phe	Tyr	Ser 655	Ser
Thr Lys	Pro	Ala 660	Gly	Phe	Asn	Thr	Pro 665	Phe	Leu	Ser	Asn	Val 670	Ser	Thr
Gly Glu	Phe 675	Asn	Ile	Ser	Leu	Leu 680	Leu	Thr	Thr	Pro	Ser 685	Ser	Pro	Arg
Arg Arg 690	Ser	Phe	Ile	Glu	Asp 695	Leu	Leu	Phe	Thr	Ser 700	Val	Glu	Ser	Val
Gly Leu 705	Pro	Thr	Asp	Asp 710	Ala	Tyr	Lys	Asn	Cys 715	Thr	Ala	Gly	Pro	Leu 720

Gly	Phe	Leu	Lys	Asp 725	Leu	Ala	Cys	Ala	Arg 730	Glu	Tyr	Asn	Gly	Leu 735	Leu
Val	Leu	Pro	Pro 740	Ile	Ile	Thr	Ala	Glu 745	Met	Gln	Thr	Leu	Tyr 750	Thr	Ser
Ser	Leu	Val 755	Ala	Ser	Met	Ala	Phe 760	Gly	Gly	Ile	Thr	Ala 765	Ala	Gly	Ala
Ile	Pro 770	Phe	Ala	Thr	Gln	Leu 775	Gln	Ala	Arg	Ile	Asn 780	His	Leu	Gly	Ile
Thr 785	Gln	Ser	Leu	Leu	Leu 790	Lys	Asn	Gln	Glu	Lys 795	Ile	Ala	Ala	Ser	Phe 800
Asn	Lys	Ala	Ile	Gly 805	Arg	Met	Gln	Glu	Gly 810	Phe	Arg	Ser	Thr	Ser 815	Leu
Ala	Leu	Gln	Gln 820	Ile	Gln	Asp	Val	Val 825	Asn	Lys	Gln	Ser	Ala 830	Ile	Leu
Thr	Glu	Thr 835	Met	Ala	Ser	Leu	Asn 840	Lys	Asn	Phe	Gly	Ala 845	Ile	Ser	Ser
Val	Ile 850	Gln	Glu	Ile	Tyr	Gln 855	Gln	Leu	Asp	Ala	Ile 860	Gln	Ala	Asn	Ala
Gln 865	Val	Asp	Arg	Leu	Ile 870	Thr	GLy	Arg	Leu	Ser 875	Ser	Leu	Ser	Val	Leu 880
Ala	Ser	Ala	Lys	Gln 885	Ala	Glu	His	Ile	Ar g 890	Val	Ser	Gln	Gln	Arg 895	Glu
Leu	Ala	Thr	Gln 900	Lys	Ile	Asn	Glu	Cys 905	Val	Lys	Ser	Gln	Ser 910	Ile	Arg
Tyr	Ser	Phe 915	Cys	Gly	Asn	Gly	Arg 920	His	Val	Leu	Thr	11e 925	Pro	Gln	Asn
Ala	Pro 930	Asn	Gly	Ile	Val	Phe 935	Ile	His	Phe	Ser	Tyr 940	Thr	Pro	Asp	Ser
Phe 945	Val	Asn	Val	Thr	Ala 950	Ile	Val	Gly	Phe	Cys 955	Val	Lys	Pro	Ala	Asn 960
Ala	Ser	Gln	Tyr	Ala 965	Ile	Val	Pro	Ala	Asn 970	Gly	Arg	Gly	Ile	Phe 975	Ile

Gln Val Asn Gly Ser Tyr Tyr Ile Thr Ala Arg Asp Met Tyr Met Pro 980 Arg Ala Ile Thr Ala Gly Asp Ile Val Thr Leu Thr Ser Cys Gln Ala 1000 1005 995 Asn Tyr Val Ser Val Asn Lys Thr Val Ile Thr Thr Phe Val Asp 1010 1015 1020 Asn Asp Asp Phe Asp Phe Asn Asp Glu Leu Ser Lys Trp Trp Asn 1025 1030 1035 Asp Thr Lys His Glu Leu Pro Asp Phe Asp Lys Phe Asn Tyr Thr Val Pro Ile Leu Asp Ile Asp Ser Glu Ile Asp Arg Ile Gln Gly 1060 Val Ile Gln Gly Leu Asn Asp Ser Leu Ile Asp Leu Glu Lys Leu 1070 1075 Ser Ile Leu Lys Thr Tyr Ile Lys Trp Pro Trp Tyr Val Trp Leu 1090 Ala Ile Ala Phe Ala Thr Ile Ile Phe Ile Leu Ile Leu Gly Trp 1100 1105 1110 Val Phe Phe Met Thr Gly Cys Cys Gly Cys Cys Cys Gly Cys Phe 1125 1115 1120 Gly Ile Met Pro Leu Met Ser Lys Cys Gly Lys Lys Ser Ser Tyr 1130 1135 1140 Tyr Thr Thr Phe Asp Asn Asp Val Val Thr Glu Gln Asn Arg Pro 1150 1155 Lys Lys Ser Val 1160 <212> PRT <213> Secuencia artificial <223> Motivo de secuencia <221> misc_feature <222> (1)..(1) <223> Xaa puede ser cualquier aminoácido de origen natural

<210>3 <211>6

<220>

<220>

10

15

```
<220>
      <221> MISC FEATURE
      <222> (2)..(3)
      <223> Xaa es un resto de aminoácido básico (Arg, His, Lys)
 5
      <220>
      <221> misc_feature
      <222> (4)..(4)
      <223> Xaa puede ser cualquier aminoácido de origen natural
10
      <220>
      <221> MISC FEATURE
      <222> (5)..(5)
      <223> Xaa es un resto de aminoácido básico (Arg, His, Lys)
15
      <220>
      <221> misc_feature
      <222> (6)..(6)
      <223> Xaa puede ser cualquier aminoácido de origen natural
20
      <400> 3
                                           Xaa Xaa Xaa Xaa Xaa
                                                                5
25
      <210>4
      <211>6
      <212> PRT
      <213> Virus de bronquitis infecciosa (IBV)
30
      <400> 4
                                          Ser Arg Arg Lys Arg Ser
                                                                5
      <210>5
35
      <211> 6
      <212> PRT
      <213> Virus de bronquitis infecciosa (IBV)
      <400> 5
40
                                          Ser Arg Arg Arg Ser
                                                               5
      <210>6
      <211>9
45
      <212> PRT
      <213> Virus de bronquitis infecciosa (IBV)
      <400>6
                                   Ser Arg Arg Lys Arg Ser Leu Ile Glu
50
      <210>7
      <211>9
      <212> PRT
      <213> Virus de bronquitis infecciosa (IBV)
55
      <400> 7
```

Ser Arg Arg Arg Ser Val Ile Glu 1

	<210> 8
	<211> 1153
5	<212> PRT

<212> PRT

<213> Virus de bronquitis infecciosa (IBV)

<400> 8

Met Leu Val Thr Pro Leu Leu Leu Val Thr Leu Leu Cys Val Leu Cys 1 5 10 15

Ser Ala Ala Leu Tyr Asp Ser Ser Ser Tyr Val Tyr Tyr Gln Ser 20 25 30

Ala Phe Arg Pro Pro Asn Gly Trp His Leu His Gly Gly Ala Tyr Ala 35 40 45

Val Val Asn Ile Ser Ser Glu Ser Asn Asn Ala Gly Ser Ser Pro Gly 50 55 60

Cys Ile Val Gly Thr Ile His Gly Gly Arg Val Val Asn Ala Ser Ser 65 70 75 80

Ile Ala Met Thr Ala Pro Ser Ser Gly Met Ala Trp Ser Ser Gln 85 90 95

Phe Cys Thr Ala His Cys Asn Phe Ser Asp Thr Thr Val Phe Val Thr 100 105 110

His Cys Tyr Lys Tyr Asp Gly Cys Pro Ile Thr Gly Met Leu Gln Lys 115 120 125

Asn Phe Leu Arg Val Ser Ala Met Lys Asn Gly Gln Leu Phe Tyr Asn 130 135 140

Leu Thr Val Ser Val Ala Lys Tyr Pro Thr Phe Lys Ser Phe Gln Cys 145 150 155 160

Val Asn Asn Leu Thr Ser Val Tyr Leu Asn Gly Asp Leu Val Tyr Thr 165 170 175

10

Ser	Asn	Glu	Thr 180	Thr	Asp	Val	Thr	Ser 185	Ala	Gly	Val	Tyr	Phe 190	Lys	Ala
Gly	Gly	Pro 195	Ile	Thr	Tyr	Lys	Val 200	Met	Arg	Glu	Val	Lys 205	Ala	Leu	Ala
Туг	Phe 210	Val.	Asn	Gly	Thr	Ala 215	Gln	Asp	Val	Ile	Leu 220	Cys	Asp	G1.y	Ser
Pro 225	Arg	Gly	Leu	Leu	Ala 230	Cys	Gln	Tyr	Asn	Thr 235	Gly	Asn	Phe	Ser	Asp 240
Gly	Phe	Tyr	Pro	Phe 245	Ile	Asn	Ser	Ser	Leu 250	Val	Lys	Gln	Lys	Phe 255	Ile
Val	Туг	Arg	Glu 260	Asn	Ser	Val	Asn	Thr 265	Thr	Phe	Thr	Leu	His 270	Asn	Phe
Thr	Phe	His 275	Asn	Glu	Thr	Gly	Ala 280	Asn	Pro	Asn	Pro	Ser 285	Gly	Val	Gln
Asn	Ile 290	Gln	Thr	Tyr	Gln	Thr 295	Gln	Thr	Ala	Gln	Ser 300	Gly	Tyr	Tyr	Asn
Phe 305	Asn	Phe	Ser	Phe	Leu 310	Ser	Ser	Phe	Val	Tyr 315	Lys	Glu	Ser	Asn	Phe 320
Met	Tyr	Gly	Ser	Tyr 325	His	Pro	Ser	Cys	Asn 330	Phe	Arg	Leu	Glu	Thr 335	Ile
Asn	Asn	Gly	Leu 340		Phe	Asn		Leu 345		Val	Ser		Ala 350	Tyr	Gly
		355					360					365		Ala	
Суѕ	Cys 370	Tyr	Ala	Tyr	Ser	туr 375	Gly	Gly	Pro	Ser	Leu 380	Cys	Lys	Gly	Val
Tyr 385	Ser	Gly	Glu	Leu	Asp 390	Leu	Asn	Phe	Glu	Cys 395	Gly	Leu	Leu	Val	Tyr 400
Val	Thr	Lys	Ser	Gly 405	Gly	Ser	Arg	Ile	Gln 410	Thr	Ala	Thr	Glu	Pro 415	Pro
Val	Ile	Thr	Arg	His	Asn	Tyr	Asn	Asn 425	Ile	Thr	Leu	Asn	Thr	Cys	Val

Asp	Tyr	Asn 435	Ile	Tyr	Gly	Arg	Thr 440	Gly	Gln	Gly	Phe	Ile 445	Thr	Asn	Val
Thr	Asp 450	Ser	Ala	Val	Ser	Tyr 455	Asn	Tyr	Leu	Ala	Asp 460	Ala	Gly	Leu	Ala
Ile 465	Leu	Asp	Thr	Ser	Gly 470	Ser	Ile	Asp	Ile	Phe 475	Val	Val	Gln	Gly	Glu 480
Tyr	Gly	Leu	Thr	Tyr 485	Tyr	Lys	Val	Tyr	Pro 490	Суз	Glu	Asp	Val	Asn 495	Gln
Gln	Phe	Val	Val 500	Ser	Gly	Gly	Lys	Leu 505	Val	Gly	Ile	Leu	Thr 510	Ser	Arg
Asn	Glu	Thr 515	Gly	Ser	Gln	Leu	Leu 520	Glu	Asn	Gln	Phe	Tyr 525	Ile	Lys	Ile
Thr	Asn 530	Gly	Thr	Arg	Arg	Phe 535	Arg	Arg	Ser	Ile	Thr 540	G1u	Asn	Val	Ala
Asn 545	Cys	Pro	Tyr	Val	Ser 550	Tyr	Gly	Lys	Phe	Cys 555	Ile	Lys	Pro	Asp	Gly 560
Ser	Ile	Ala	Thr	Ile 565	Val	Pro	Lys	Gln	Leu 570	Glu	Gln	Phe	Val	Ala 575	Pro
Leu	Leu	Asn	Val 580	Thr	Glu	Asn	Val	Leu 585	Ile	Pro	Asn	Ser	Phe 590	Asn	Leu
Thr	Val	Thr 595	Asp	Glu	Tyr	Ile	Gln 600	Thr	Arg	Met	Asp	Lys 605	Val	Gln	Ile
Asn	Cys 610	Met	Gln	Tyr	Val	Cys 615	Gly	Asn	Ser	Leu	Asp 620	Cys	Arg	Asp	Leu
Phe 625	Gln	Gln	Tyr	Gly	Pro 630	Val	Cys	Asp	Asn	Ile 635	Leu	Ser	Val	Val	Asn 640
Ser	Ile	Gly	Gln	Lys 645	Glu	Asp	Met	Glu	Leu 650	Leu	Asn	Phe	Tyr	Ser 655	Ser
Thr	Lys	Pro	Ala 660	Gly	Phe	Asn	Thr	Pro 665	Phe	Leu	Ser	Asn	V al 670	Ser	Thr
Gly	Glu	Phe 675	Asn	Ile	Ser	Leu	Leu 680	Leu	Thr	Thr	Pro	Ser 685	Ser	Pro	Arg

Arg	Arg 690	Ser	Phe	Ile	Glu	Asp 695	Leu	Leu	Phe	Thr	Ser 700	Val	Glu	Ser	Val
Gly 705	Leu	Pro	Thr	Asp	Asp 710	Ala	Tyr	Lys	Asn	Cys 715	Thr	Ala	Gly	Pro	Leu 720
Gly	Phe	Leu	Lys	Asp 725	Leu	Ala	Cys	Ala	A rg 730	Glu	Tyr	Asn	Gly	Leu 735	Leu
Val	Leu	Pro	Pro 740	Ile	Ile	Thr	Ala	Glu 745	Met	Gln	Thr	Leu	Tyr 750	Thr	Ser
Ser	Leu	Val 755	Ala	Ser	Met	Ala	Phe 760	Gly	Gly	Ile	Thr	Ala 765	Ala	Gly	Ala
Ile	Pro 770	Phe	Ala	Thr	Gln	Leu 775	Gln	Ala	Arg	Ile	Asn 780	His	Leu	Gly	Ile
Thr 785	Gln	Ser	Leu	Leu	Leu 790	Lys	Asn	Gln	Glu	Lys 795	Ile	Ala	Ala	Ser	Phe 800
Asn	Lys	Ala	Ile	Gly 805	Arg	Met	Gln	Glu	Gly 810	Phe	Arg	Ser	Thr	Ser 815	Leu
Ala	Leu	Gln	Gln 820	Ile	Gln	Asp	Val	Val 825	Asn	Lys	Gln	Ser	Ala 830	Ile	Leu
Thr	Glu	Thr 835	Met	Ala	Ser	Leu	Asn 840	Lys	Asn	Phe	Gly	Ala 845	Ile	Ser	Ser
Met	11e 850	Gln	G1u	Ile	Tyr	Gln 855	Gln	Leu	Asp	Ala	Ile 860	Gln	Ala	Asn	Ala
Gln 865	Val	Asp	Arg	Leu	Ile 870	Thr	Gly	Arg	Leu	Ser 875	Ser	Leu	Ser	Val	Leu 880
Ala	Ser	Ala	Lys	Gln 885	Ala	Glu	His	Ile	Arg 890	Val	Ser	Gln	Gln	Arg 895	Glu
Leu	Ala	Thr	Gln 900	Lys	Ile	Asn	Glu	Cys 905	Val	Lys	Ser	Gln	Ser 910	Ile	Arg
туг	Ser	Phe 915	Cys	Gly	Asn	Gly	Arg 920	His	Val	Leu	Thr	Ile 925	Pro	Gln	Asn
Ala	Pro	Asn	Gly	Ile	Val	Phe	Ile	His	Phe	Ser	Tyr	Thr	Pro	Asp	Ser

930 9	35	940
Phe Val Asn Val Thr Ala I	le Val Gly Phe Cys 1	Val Lys Pro Ala Asn
945 950	955	960
Ala Ser Gln Tyr Ala Ile V	al Pro Ala Asn Gly i	Arg Gly Ile Phe Ile
965	970	975
Gln Val Asn Gly Ser Tyr T	yr Ile Thr Ala Arg i	Asp Met Tyr Met Pro
980	985	990
Arg Ala Ile Thr Ala Gly A	sp Ile Val Thr Leu	Thr Ser Cys Gln Ala
995	1000	1005
Asn Tyr Val Ser Val Asn	Lys Thr Val Ile Th:	r Thr Phe Val Asp
1010	1015	1020
Asn Asp Asp Phe Asp Phe .	Asn Asp Glu Leu Se:	r Lys Trp Trp Asn
1025	1030	1035
Asp Thr Lys His Glu Leu:	Pro Asp Phe Asp Ly:	s Phe Asn Tyr Thr
1040	1045	1050
Val Pro Ile Leu Asp Ile .	Asp Ser Glu Ile Asp	p Arg Ile Gln Gly
1055	1060	1065
Val Ile Gln Gly Leu Asn .	Asp Ser Leu Ile Asp	o Leu Glu Lys Leu
1070	1075	1080
Ser Ile Leu Lys Thr Tyr	Ile Lys Trp Pro Trp	p Tyr Val Trp Leu
1085	1090	1095
Ala Ile Ala Phe Ala Thr	Ile Ile Phe Ile Lea	u Ile Leu Gly Trp
1100	1105	1110
Val Phe Phe Met Thr Gly 11115	Cys Cys Gly Cys Cy: 1120	s Cys Gly Cys Phe 1125
Gly Ile Met Pro Leu Met	Ser Lys Cys Gly Ly:	s Lys Ser Ser Tyr
1130	1135	1140
Tyr Thr Thr Phe Asp Asn . 1145	Asp Val Val Thr 1150	

<210> 9

<211> 1162

<212> PRT

5

<213> Virus de bronquitis infecciosa (IBV)

<400> 9

Met 1	Leu	Val	Thr	Pro 5	Leu	Leu	Leu	Val	Thr 10	Leu	Leu	Суз	Ala	Leu 15	Суз
Ser	Ala	Ala	Leu 20	Tyr	Asp	Ser	Ser	Ser 25	Tyr	Val	Tyr	Tyr	Tyr 30	Gln	Ser
Ala	Phe	Arg 35	Pro	Pro	Asp	Gly	Trp 40	His	Leu	His	Gly	Gly 45	Ala	Tyr	Ala
Val	Val 50	Asn	Ile	Ser	Ser	Glu 55	Ser	Asn	Asn	Ala	Gly 60	Ser	Ser	Ser	Gly
Cys 65	Thr	Val	Gly	Ile	Ile 70	His	Gly	Gly	Arg	Val 75	Val	Asn	Ala	Ser	Ser 80
Ile	Ala	Met	Thr	Ala 85	Pro	Ser	Ser	Gly	Met 90	Ala	Trp	Ser	Ser	Ser 95	Gln
Phe	Cys	Thr	Ala 100	Tyr	Cys	Asn	Phe	Ser 105	Asp	Thr	Thr	Val	Phe 110	Val	Thr
His	Cys	Tyr 115	Lys	His	Val	Gly	Cys 120	Pro	Ile	Thr	Gly	Met 125	Leu	Gln	Gln
His	Ser 130	Ile	Arg	Val	Ser	Ala 135	Met	Lys	Asn	Gly	Gln 140	Leu	Phe	Tyr	Asn
Leu 145	Thr	Val	Ser	Val	Ala 150	Lys	Tyr	Pro	Thr	Phe 155	Lys	Ser	Phe	Gln	Cys 160
Val	Asn	Asn	Leu	Thr 165	Ser	Val	Tyr	Leu	Asn 170	Gly	Asp	Leu	Val	Tyr 175	Thr
Ser	Asn	Glu	Thr 180	Thr	Asp	Val	Thr	Ser 185	Ala	Gly	Val	Tyr	Phe 190	Lys	Ala
Gly	Gly	Pro 195	Ile	Thr	Tyr	Lys	Val 200	Met	Arg	Glu	Val	Arg 205	Ala	Leu	Ala
Tyr	Phe 210	Val	Asn	Gly	Thr	Ala 215	Gln	Asp	Val	Ile	Leu 220	Суѕ	Asp	Gly	Ser
Pro 225	Arg	Gly	Leu	Leu	Ala 230	Cys	Gln	Tyr	Asn	Thr 235	Gly	Asn	Phe	Ser	Asp 240

G	ily	Phe	Tyr	Pro	Phe 245	Thr	Asn	Ser	Ser	Leu 250	Val	Lys	Gln	Lys	Phe 255	Ile
V	'al	Tyr	Arg	Glu 260	Asn	Ser	Val	Asn	Thr 265	Thr	Phe	Thr	Leu	His 270	Asn	Phe
I	hr.	Phe	His 275	Asn	Glu	Thr	Gly	Ala 280	Asn	Pro	Asn	Pro	Ser 285	Gly	Val	Gln
A	sn	11e 290	Gln	Thr	Tyr	Gln	Thr 295	Gln	Thr	Ala	Gln	Ser 300	Gly	Tyr	Tyr	Asn
	he 05	Asn	Phe	Ser	Phe	Leu 310	Ser	Ser	Phe	Val	Tyr 315	Lys	Glu	Ser	Asn	Phe 320
M	iet	Туг	Gl.y	Ser	Туr 325	Tyr	Pro	Ser	Cys	Asn 330	Phe	Arg	Leu	Glu	Thr 335	Ile
A	sn	Asn	Gly	Leu 340	Trp	Phe	Asn	Ser	Leu 3 45	Ser	Val	Ser	Ile	Ala 350	Tyr	Gly
P	ro	Leu	Gln 355	Gly	Gly	Cys	Lys	Gln 360	Ser	Val	Phe	Ser	Gly 365	Arg	Ala	Thr
С	:ys	Cys 370	Tyr	Ala	Tyr	Ser	Tyr 375	Gly	Gly	Pro	Leu	Le u 380	Cys	Lys	Gly	Val
	'yr 85	Ser	Gly	Glu	Leu	Asp 390	His	Asn	Phe	Glu	Cys 395	Gly	Leu	Leu	Val	Tyr 400
V	al	Thr	Lys	Ser	Gly 405	Gly	Ser	Arg	Ile	Gln 410	Thr	Ala	Thr	Glu	Pro 415	Pro
V	al	Ile	Thr	Gln 420	His	Asn	Tyr	Asn	Asn 425	Ile	Thr	Leu	Asn	Thr 430	Cys	Val
A	sp	Tyr	Asn 435	Ile	Tyr	Gly	Arg	Thr 440	Gly	Gln	Gly	Phe	Ile 445	Thr	Asn	Val
Т	'hr	Asp 450	Ser	Ala	Val	Ser	Tyr 455	Asn	Tyr	Leu	Ala	Asp 460	Ala	Gly	Leu	Ala
	1e 65	Leu	Asp	Thr	Ser	Gly 470	Ser	Ile	Asp	Ile	Phe 475	Val	V al	Gln	Ser	Glu 480
T	'yr	Gly	Leu	Asn	Tyr 485	Tyr	Lys	Val	Asn	Pro 490	Суѕ	Glu	Asp	Val	Asn 495	Gln

Gln Ph	e Val	Val 500	Ser	Gly	Gly	Lys	Leu 505	Val	Gly	Ile	Leu	Thr 510	Ser	Arg
Asn Gl	u Thr 515	Gly	Ser	Gln	Leu	Leu 520	Glu	Asn	Gln	Phe	Tyr 525	Ile	Lys	Ile
Thr As	_	Thr	Arg	Arg	Phe 535	Arg	Arg	Ser	Ile	Thr 540	Glu	Ser	Val	Glu
Asn Cy 545	s Pro	туг	Val	Ser 550	Tyr	GLy	Lys	Phe	Cys 555	Ile	Lys	Pro	Asp	Gly 560
Ser Il	e Ala	Thr	11e 565	Val	Pro	Lys	Gln	Leu 570	Glu	Gln	Phe	Val	Ala 575	Pro
Leu Le	u Asn	Val 580	Thr	Glu	Asn	Val	Leu 585	Ile	Pro	Asn	Ser	Phe 590	Asn	Leu
Thr Va	1 Thr 595	Asp	Glu	Tyr	Ile	Gln 600	Thr	Arg	Met	Asp	Lys 605	Val	Gln	Ile
Asn Cy 61		Gln	Tyr	Ile	Cys 615	Gly	Asn	Ser	Leu	Glu 620	Cys	Arg	Asn	Leu
Phe Gl 625	n Gln	Tyr	Gly	Pro 630	Val	Cys	Asp	Asn	Ile 635	Leu	Ser	Val	Val	Asn 640
Ser Va	l Gly	Gln	Lys 645	Glu	Asp	Met	Glu	Leu 650	Leu	Asn	Phe	Tyr	Ser 655	Ser
Thr Ly	s Pro	Ala 660	Gly	Phe	Asn	Thr	Pro 665	Val	Leu	Ser	Asn	Val 670	Ser	Thr
Gly Gl	u Phe 675	Asn	Ile	Ser	Leu	Phe 680	Leu	Thr	Thr	Pro	Ser 685	Ser	Pro	Arg
Arg Ar 69	7	Phe	Ile	Glu	Asp 695	Leu	Leu	Phe	Thr	Ser 700	Val	Glu	Ser	Val
Gly Le 705	u Pro	Thr	Asp	Asp 710	Ala	Tyr	Lys	Asn	Cys 715	Thr	Ala	Gly	Pro	Leu 720
Gly Ph	e Leu	Lys	Asp 725	Leu	Val	Cys	Ala	Arg 730	Glu	Tyr	Asn	Gly	Leu 735	Leu

Ser	Leu	Val. 755	Ala	Ser	Met	Ala	Phe 760	Gly	Gly	Ile	Thr	Ala 765	Ala	Gly	Ala
Ile	Pro 770	Phe	Ala	Thr	Gln	Leu 775	Gln	Ala	Arg	Ile	Asn 780	His	Leu	Gly	Ile
Thr 785	Gln	Ser	Leu	Leu	Leu 790	Lys	Asn	Gln	Glu	Lys 795	Ile	Ala	Ala	Ser	Phe 800
Asn	Lys	Ala	Ile	Gly 805	His	Met	Gln	Glu	Gly 810	Phe	Arg	Ser	Thr	Ser 815	Leu
Ala	Leu	Gln	G1n 820	Ile	Gln	Asp	Val	Val 825	Asn	Lys	Gln	Ser	Ala 830	Ile	Leu
Thr	Glu	Thr 835	Met	Ala	Ser	Leu	Asn 840	Lys	Asn	Phe	Gly	Ala 845	Ile	Ser	Ser
Val	11e 850	Gln	Glu	Ile	Tyr	Gln 855	Gln	Leu	Asp	Ala	Ile 860	Gln	Ala	Asn	Ala
Gln 865	Val	Asp	Arg	Leu	Ile 870	Thr	Gly	Arg	Leu	Ser 875	Ser	Leu	Ser	Val	Leu 880
Ala	Ser	Ala	Lys	Gln 885	Ala	Glu	Tyr	Ile	Arg 890	Val	Ser	Gln	Gln	A rg 895	Glu
Leu	Ala	Thr	Gln 900	Lys	Ile	Asn	Glu	Cys 905	Val	Lys	Ser	Gln	Ser 910	Ile	Arg
Tyr	Ser	Phe 915	Cys	Gly	Asn	Gly	Arg 920	His	Val	Leu	Thr	Ile 925	Pro	Gln	Asn
Ala	Pro 930	Asn	Gly	Ile	Val	Phe 935	Ile	His	Phe	Ser	Tyr 940	Thr	Pro	Asp	Ser
Phe 945	Val	Asn	Val	Thr	Ala 950	Ile	Val	Gly	Phe	Cys 955	Val	Lys	Pro	Ala	Asn 960
Ala	Ser	Gln	Tyr	Ala 965	Ile	Val	Pro	Ala	Asn 970	Gly	Arg	Gly	Ile	Phe 975	Ile
Gln	Val	Asn	Gly 980	Ser	Tyr	Tyr	Ile	Thr 985	Ala	Arg	Asp	Met	Tyr 990	Met	Pro
Arg	Ala	Ile	Thr	Ala	Gly	Asp	Ile	Va]	L Thi	: Leu	ı Thi	: Sei	c Cy	γs G]	ln Val

	995						1000						1005					
	Asn	Tyr 1010		. Ser	Val	Asn	Lys 101		ar '	Val	Ile	Thr	Thr 1020	Phe	Val	Asp		
	Asn	Asp 1025		Phe	Asp	Phe	Asn 103		sp (Glu	Leu	Ser	Lys 1035		Trp	Asn		
	Asp	Thr 1040	_	His	Glu	Leu	Pro 104		sp 1	Phe	Asp	Lys	Phe 1050	Asn	Tyr	Thr		
	Val	Pro 1055		Leu	Asp	Ile	Asp 106		er (Glu	Ile	Asp	Arg 1065	Ile	Gln	Gly		
	Val	Ile 1070		Gly	Leu	Asn	Asp 107		er :	Leu	Ile	Asp	Leu 1080	Glu	Lys	Leu		
	Ser	Ile 1085		Lys	Thr	Tyr	Ile 109	_	ys '	Trp	Pro	Trp	Tyr 1095	Val	Trp	Leu		
	Ala	Ile 1100		. Phe	Ala	Thr	Ile 110		le 1	Phe	Ile	Leu	Ile 1110	Leu	Gly	Trp		
	Val	Phe 1115		Met	Thr	Gly	Cys 112		ys (Gly	Cys	Cys	Cys 1125		Cys	Phe		
	Gly	Ile 1130		Pro	Leu	Met	Ser 113		ys (Cys	Gly	Lys	Lys 1140	Ser	Ser	Tyr		
	Tyr	Thr 1145		Phe	Asp	Asn	Asp 115		al'	Val	Thr	Glu	Gln 1155	Tyr	Arg	Pro		
	Lys	Lys 1160		· Val														
<210> 10 <211> 1164 <212> PRT <213> Virus	de bro	onquiti	s infe	cciosa	(IBV)													
<400> 10																		
	Met 1	Leu	Val	Lys	Ser 5	Leu	Phe :	Leu	Val	L Th 10		e Le	u Cys	Ala	Leu 15	Cys		
	Ser	Ala	Asn	Leu 20	Phe	Asp	Ser	Asp	Asr 25	n As	n Ty	r Va	l Tyr	Tyr 30	Tyr	Gln		
	Ser	Ala	Phe	Arg	Pro	Pro	Asn (Gly	Trp	Hi	s Le	u Gl	n Gly	Gly	Ala	Tyr		

		35					40					45			
Ala	Val 50	Val	Asn	Ser	Thr	Asn 55	Tyr	Thr	Asn	Asn	Ala 60	Gly	Ser	Ala	His
G1n 65	Суз	Thr	Val	Gly	Val 70	Ile	Lys	Asp	Val	Tyr 75	Asn	Gln	Ser	Val	Ala 80
Ser	Ile	Ala	Met	Thr 85	Ala	Pro	Leu	Gln	Gly 90	Met	Ala	Trp	Ser	Lys 95	Ser
Gln	Phe	Cys	Ser 100	Ala	His	Сув	Asn	Phe 105	Ser	Glu	Ile	Thr	Val 110	Phe	Val
Thr	His	Cys 115	Tyr	Ser	Ser	Gly	Ser 120	Ser	Суз	Pro	Ile	Thr 125	Gly	Met	Ile
Pro	Arg 130	Asp	His	Ile	Arg	Ile 135	Ser	Ala	Met	Lys	Asn 140	Gly	Ser	Leu	Phe
Tyr 145	Asn	Leu	Thr	Val	Ser 150	Val	Ser	Lys	Tyr	Pro 155	Asn	Phe	Lys	Ser	Phe 160
Gln	Cys	Val	Asn	Asn 165	Phe	Thr	Ser	Val	Tyr 170	Leu	Asn	Gly	Asp	Leu 175	Val
Phe	Thr	Ser	Asn 180	Lys	Thr	Thr	Asp	Val 185	Thr	Ser	Ala	Gly	Val 190	Туг	Phe
Lys	Ala	Gly 195	Gly	Pro	Val	Asn	Tyr 200	Ser	Ile	Met	Lys	Glu 205	Phe	Lys	Val
Leu	Ala 210	Tyr	Phe	Val	Aşn	Gly 215	Thr	Ala	Gln	Asp	Val 220	Val	Leu	Cys	Asp
Asn 225	Ser	Pro	Lys	Gly	Leu 230	Leu	Ala	Cys	Gln	Tyr 235	Asn	Thr	Gly	Asn	Phe 240
Ser	Asp	Gly	Phe	Tyr 245	Pro	Phe	Thr	Asn	Ser 250	Thr	Leu	Val	Arg	Glu 255	Lys
Phe	Ile	Val	Туг 260	Arg	Glu	Ser	Ser	Val 265	Asn	Thr	Thr	Leu	Ala 270	Leu	Thr
Asn	Phe	Thr 275	Phe	Thr	Asn	Val	Ser 280	Asn	Ala	Gln	Pro	Asn 285	Ser	Gly	Gly

Val	Asn 290	Thr	Phe	His	Leu	Tyr 295	Gln	Thr	Gln	Thr	Ala 300	Gln	Ser	Gly	Tyr
Tyr 305	Asn	Phe	Asn	Leu	Ser 310	Phe	Leu	Ser	Gln	Phe 315	Val	Tyr	Lys	Ala	Ser 320
Asp	Phe	Met	Tyr	Gly 325	Ser	Tyr	His	Pro	Ser 330	Суѕ	Ser	Phe	Arg	Pro 335	Glu
Thr	Ile	Asn	Ser 340	Gly	Leu	Trp	Phe	Asn 345	Ser	Leu	Ser	Val	Ser 350	Leu	Thr
Tyr	Gly	Pro 355	Leu	Gln	Gly	Gly	C y s 360	Lys	Gln	Ser	Val	Phe 365	Ser	Gly	Lys
Ala	Thr 370	Суз	Cys	Tyr	Ala	туr 375	Ser	Tyr	ГÀЗ	Gly	Pro 380	Met	Ala	Cys	Lys
Gly 385	Val	Tyr	Ser	Gly	Glu 390	Leu	Ser	Thr	Asn	Phe 395	Glu	Cys	Gly	Leu	Leu 400
Val	Tyr	Val	Thr	Lys 405	Ser	Asp	Gly	Ser	Arg 410	Ile	Gln	Thr	Arg	Thr 415	Glu
Pro	Leu	Val	Leu 420	Thr	Gln	Tyr	Asn	Tyr 425	Asn	Asn	Ile	Thr	Leu 430	Asp	Lys
Суѕ	Val	Ala 435	Tyr	Asn	Ile	Tyr	Gly 440	Arg	Val	Gly	Gln	Gly 445	Phe	Ile	Thr
Asn	Val 450	Thr	Asp	Ser	Ala	Ala 455	Asn	Phe	Ser	Tyr	Leu 460	Ala	Asp	Gly	Gly
Leu 465	Ala	Ile	Leu	Asp	Thr 470	Ser	Gly	Ala	Ile	Asp 475	Val	Phe	Val	Val	Gln 480
Gly	Ile	Tyr	Gly	Leu 485	Asn	Tyr	Tyr	Lys	Val 490	Asn	Pro	Суѕ	Glu	Asp 495	Val
Asn	Gln	Gln	Phe 500	Val	Val	Ser	Gly	Gly 505	Asn	Ile	Val	Gly	Ile 510	Leu	Thr
Ser	Arg	Asn 515	Glu	Thr	Gly	Ser	Glu 520	Gln	Val	Glu	Asn	Gln 525	Phe	Tyr	Val
Lys	Leu 530	Thr	Asn	Ser	Ser	His 535	Arg	Arg	Arg	Arg	Ser 540	Ile	Gly	Gln	Asn

Val 545	Thr	Ser	Cys	Pro	Tyr 550	Val	Ser	Tyr	Gly	Arg 555	Phe	Cys	Ile	Glu	Pro 560
Asp	Gly	Ser	Leu	Lys 565	Met	Ile	Val	Pro	Glu 570	Glu	Leu	Lys	Gln	Phe 575	Val
Ala	Pro	Leu	Leu 580	Asn	Ile	Thr	Glu	Ser 585	Val	Leu	Ile	Pro	Asn 590	Ser	Phe
Asn	Leu	Thr 595	Val	Thr	Asp	Glu	Tyr 600	Ile	Gln	Thr	Arg	Met 605	Asp	Lys	Val
Gln	Ile 610	Asn	Cys	Leu	Gln	Tyr 615	Val	Cys	Gly	Asn	Ser 620	Leu	Glu	Cys	Arg
Lys 625	Leu	Phe	Gln	Gln	Tyr 630	Gly	Pro	Val	Cys	Asp 635	Asn	Ile	Leu	Ser	Val 640
Val	Asn	Ser	Val	Ser 645	Gln	Lys	Glu	Asp	меt 650	Glu	Leu	Leu	Ser	Phe 655	Tyr
Ser	Ser	Thr	Lys 660	Pro	Lys	Gly	Tyr	Asp 665	Thr	Pro	Val	Leu	Ser 670	Asn	Val
Ser	Thr	Gly 675	Glu	Phe	Asn	Ile	Ser 680	Leu	Leu	Leu	Lys	Pro 685	Pro	Ser	Ser
Pro	Ser 690	Gly	Arg	Ser	Phe	Ile 695	Glu	Asp	Leu	Leu	Phe 700	Thr	Ser	Val	Glu
Thr 705	Val	Gly	Leu	Pro	Thr 710	Asp	Ala	Glu	Tyr	Lys 715	Lys	Cys	Thr	Ala	Gly 720
Pro	Leu	Gly	Thr	Leu 725	Lys	Asp	Leu	Ile	Cys 730	Ala	Arg	Glu	Tyr	Asn 735	Gly
Leu	Leu	Val	Leu 740	Pro	Pro	Ile	Ile	Thr 745	Ala	Asp	Met	Gln	Thr 750	Met	Tyr
Thr	Ala	Ser 755	Leu	Val	Gly	Ala	Met 760	Ala	Phe	Gly	Gly	Ile 765	Thr	Ser	Ala
Ala	Ala 770	Ile	Pro	Phe	Ala	Thr 775	Gln	Ile	Gln	Ala	A rg 780	Ile	Asn	His	Leu
Gly 785	Ile	Thr	Gln	Ser	Leu 790	Leu	Met	Lys	Asn	Gln 795	Glu	Lys	Ile	Ala	Ala 800

Ser	Phe	Asn	Lys	Ala 805	Ile	Gly	His	Met	Gln 810	Glu	Gly	Phe	Arg	Ser 815	Thr
Ser	Leu	Ala	Leu 820	Gln	Gln	Ile	Gln	Asp 825	Val	Val	Asn	Lys	Gln 830	Ser	Ala
Ile	Leu	Thr 835	Glu	Thr	Met	Asn	Ser 840	Leu	Asn	Lys	Asn	Phe 845	Gly	Ala	Ile
Thr	Ser 850	Val	Ile	Gln	Asp	Ile 855	Tyr	Ala	Gln	Leu	Asp 860	Ala	Ile	Gln	Ala
Asp 865	Ala	Gln	Val	Asp	A rg 870	Leu	Ile	Thr	Gly	Ar g 875	Leu	Ser	Ser	Leu	Ser 880
Val	Leu	Ala	Ser	Ala 885	Lys	Gln	Ser	Glu	Tyr 890	Ile	Arg	Val	Ser	Gln 8 9 5	Gln
Arg	Glu	Leu	Ala 900	Thr	Gln	Lys	Ile	Asn 905	Glu	Cys	Val	Lys	Ser 910	Gln	Ser
Asn	Arg	Tyr 915	Gly	Phe	Cys	Gly	Ser 920	Gly	Arg	His	Val	Leu 925	Ser	Ile	Pro
Gln	Asn 930	Ala	Pro	Asn	Gly	Ile 935	Val	Phe	Ile	His	Phe 940	Thr	Tyr	Thr	Pro
Glu 945	Ser	Phe	Val	Asn	Val 950	Thr	Ala	Ile	Val	Gly 955	Phe	Cys	Val	Asn	Pro 960
				965	-				970			G1y	_	975	
Phe	Ile	Gln	Val 980	Asn	Gly	Thr	Tyr	ту г 985	Ile	Thr	Ala	Arg	Asp 990	Met	Tyr
Met	Pro	Arg 995	Asp	Ile	Thr	Ala	Gly 1000	_	o Ile	e Val	l Thi	100		ır Se	er Cy
Gln	Ala 101(ту:	: Val	L Asr	101		sn Ly	7S Th	ar Va		le 7)20	hr 7	hr E	he

Val Glu Asp Asp Asp Phe Asp Phe Asp Asp Glu Leu Ser Lys Trp

Trp Asn Asp Thr Lys His Gln Leu Pro Asp Phe Asp Asp Phe Asn

		104	10				10	045					1050			
	Туі	Th:		al Pr	o Il	e Le		sn 060	Ile	Ser	Gly	Glu	Ile 1065	Asp	Tyr	Ile
	Glı	n Gly 107		al II	e Gl	n Gl	_	∋u 075	Asn	Asp	Ser	Leu	Ile 1080	Asn	Leu	Glu
	Glı	ı Lei 108		er Il	e Il.	e Ly		nr 090	Tyr	Ile	Lys	Trp	Pro 1095	Trp	Tyr	Val
	Tr	2 Le:		la I]	e Gl	y Ph		La 105	Ile	Ile	Ile	Phe	Ile 1110	Leu	Ile	Leu
	Gly	y Try 111		al Ph	ıe Ph	e Me		nr 120	Gly	Cys	Cys	Gly	Cys 1125	Cys	Cys	Gly
	Суя	s Phe 113		ly II	e Il.	e Pr		∋u 135	Met	Ser	Lys	Cys	Gly 1140	Lys	Lys	Ser
	Sei	Ty:		yr Tì	ır Th	r Ph		sp 150	Asn	Asp	Val	Val	Thr 1155	Glu	Gln	Tyr
	Arq	9 Pro	_	ys Ly	rs Se	r Va	al									
<210> 11 <211> 630 <212> PRT <213> Virus	de bro	onguiti	s infe	cciosa	a (IBV)										
<400> 11		·			•											
	Arg 1	Arg	Phe	Arg	Arg 5	Ser	Ile	Th	r Gl	u As 10		ıl Al	la Asr	т Суя	s Pro 15	Tyr
	Val	Ser	Tyr	Gly 20	Lys	Phe	Cys	Ile	e Ly 25		o As	sp Gl	Ly Sei	: Ile 30	e Ala	1 Thr
	Ile	Val	Pro 35	Lys	Gln	Leu	Glu	Gl: 40	n Ph	e Va	.l A1	a Pi	o Let 45	ı Phe	e Ası	ı Val
	Thr	Glu 50	Asn	Val	Leu	Ile	Pro 55	Ası	n Se	r Ph	e As	n Le	eu Thi	. Val	L Thi	Asp
	Glu 65	Tyr	Ile	Gln	Thr	Arg 70	Met	Ası	o Ly	s Va	.1 G1 75		le Asr	т Суя	s Lev	ı Gln 80
	Tyr	Val	Cys	Gly	Ser	Ser	Leu	Asj	o Cy	s Ar	g Ly	s Le	eu Phe	e Gl	n Glr	ı Tyr

				85					90					95	
Gly	Pro	Val	Cys 100	Asp	Asn	Ile	Leu	Ser 105	Val	Val	Asn	Ser	Val 110	Gly	Gln
Lys	Glu	Asp 115	Met	Glu	Leu	Leu	Asn 120	Phe	Tyr	Ser	Ser	Thr 125	Lys	Pro	Ala
Gly	Phe 130	Asn	Thr	Pro	Val	Leu 135	Ser	Asn	Val	Ser	Thr 140	Gly	Glu	Phe	Asn
Ile 145	Ser	Leu	Leu	Leu	Thr 150	Asn	Pro	Ser	Ser	Arg 155	Arg	Lys	Arg	Ser	Leu 160
Ile	Glu	Asp	Leu	Leu 165	Phe	Thr	Ser	Val	Glu 170	Ser	Val	Gly	Leu	Pro 175	Thr
Asn	Asp	Ala	Tyr 180	Lys	Asn	Сув	Thr	Ala 185	Gly	Pro	Leu	Gly	Phe 190	Phe	Lys
Asp	Lėu	Ala 195	Cys	Ala	Arg	Glu	Tyr 200	Asn	Gly	Leu	Leu	Val 205	Leu	Pro	Pro
Ile	Ile 210	Thr	Ala	Glu	Met	Gln 215	Ala	Leu	Tyr	Thr	Ser 220	Ser	Leu	Val	Ala
Ser 225	Met	Ala	Phe	Gly	Gly 230	Ile	Thr	Ala	Ala	Gly 235	Ala	Ile	Pro	Phe	Ala 240
Thr	Gln	Leu		Ala 245	Arg	Ile			Leu 250	_	Ile	Thr	Gln	Ser 255	
Leu	Leu	Lys	Asn 260	Gln	Glu	Lys	Ile	Ala 265	Ala	Ser	Phe	Asn	Lys 270	Ala	Ile
Gly	His	Met 275	Gln	Glu	Gly	Phe	Arg 280	Ser	Thr	Ser	Leu	Ala 285	Leu	Gln	Gln
Ile	Gln 290	Asp	Val	Val	Ser	Lys 295	Gln	Ser	Ala	Ile	Leu 300	Thr	Glu	Thr	Met
Ala 305	Ser	Leu	Asn	Lys	As n 310	Phe	Gly	Ala	Ile	Ser 315	Ser	Val	Ile	Gln	Glu 320
Ile	Tyr	Gln	Gln	Phe	Asp	Ala	Ile	Gln	Ala	Asn	Ala	Gln	Val	Asp	Arg

Leu	Ile	Thr	Gly 340	Arg	Leu	Ser	Ser	Leu 345	Ser	Val	Leu	Ala	Ser 350	Ala	Lys
Gln	Ala	Glu 355	Tyr	Ile	Arg	Val	Ser 360	Gln	Gln	Arg	Glu	Leu 365	Ala	Thr	Gln
Lys	Ile 370	Asn	Glu	Суз	Val	Lys 375	Ser	Gln	Ser	Ile	Arg 380	Tyr	Ser	Phe	Cys
Gly 385	Asn	Gly	Arg	His	V al 390	Leu	Thr	Ile	Pro	G1n 395	Asn	Ala	Pro	Asn	Gly 400
Ile	Val	Phe	Ile	His 405	Phe	Ser	Tyr	Thr	Pro 410	Asp	Ser	Phe	Val	Asn 415	Val
Thr	Ala	Ile	Val 420	Gly	Phe	Суз	Val	Lys 425	Pro	Ala	Asn	Ala	Ser 430	Gln	Туг
Ala	Ile	Val 435	Pro	Ala	Asn	Gly	Arg 440	Gly	Ile	Phe	Ile	Gln 445	Val	Asn	Gly
Ser	Tyr 450	Tyr	Ile	Thr	Ala	Arg 455	Asp	Met	Tyr	Met	Pro 460	Arg	Ala	Ile	Thr
Ala 465	Gly	Asp	Val	Val	Thr 470	Leu	Thr	Ser	Суз	Gln 475	Ala	Asn	Tyr	Val	Ser 480
Val	Asn	Lys	Thr	Val 485	Ile	Thr	Thr	Phe	Val 490	Asp	Asn	Asp	Asp	Phe 495	Asp
Phe	Asn	Asp	Glu 500		Ser	Lys	Trp			Asp			His 510		Leu
Pro	Asp	Phe 515	Asp	Lys	Phe	Asn	Tyr 520	Thr	Val	Pro	Ile	Leu 525	Asp	Ile	Asp
Ser	Glu 530	Ile	Asp	Arg	Ile	Gln 535	Gly	Val	Ile	Gln	Gly 540	Leu	Asn	Asp	Ser
Leu 545	Ile	Asp	Leu	Glu	Lys 550	Leu	Ser	Ile	Leu	Lys 555	Thr	Tyr	Ile	Lys	Trp 560
Pro	Trp	Tyr	Val	Trp 565	Leu	Ala	Ile	Ala	Phe 570	Ala	Thr	Ile	Ile	Phe 575	Ile
Leu	Ile	Leu	Gly 580	Trp	Val	Phe	Phe	Met 585	Thr	Gly	Cys	Cys	Gly 590	Cys	Cys

Cys Gly Cys Phe Gly Ile Met Pro Leu Met Ser Lys Cys Gly Lys Lys 595 600 605

Ser Ser Tyr Tyr Thr Thr Phe Asp Asn Asp Val Val Thr Glu Gln Tyr 610 620

Arg Pro Lys Lys Ser Val 625 630

<210> 12

<211>621

<212> PRT

<213> Virus de bronquitis infecciosa (IBV)

<400> 12

Arg Arg Phe Arg Arg Ser Ile Thr Glu Asn Val Ala Asn Cys Pro Tyr 1 5 10 15

Val Ser Tyr Gly Lys Phe Cys Ile Lys Pro Asp Gly Ser Ile Ala Thr 20 25 30

Ile Val Pro Lys Gln Leu Glu Gln Phe Val Ala Pro Leu Leu Asn Val 35 40 45

Thr Glu Asn Val Leu Ile Pro Asn Ser Phe Asn Leu Thr Val Thr Asp 50 55 60

Glu Tyr Ile Gln Thr Arg Met Asp Lys Val Gln Ile Asn Cys Met Gln 65 70 75 80

Tyr Val Cys Gly Asn Ser Leu Asp Cys Arg Asp Leu Phe Gln Gln Tyr 85 90 95

Gly Pro Val Cys Asp Asn Ile Leu Ser Val Val Asn Ser Ile Gly Gln
100 105 110

Lys Glu Asp Met Glu Leu Leu Asn Phe Tyr Ser Ser Thr Lys Pro Ala 115 120 125

Gly Phe Asn Thr Pro Phe Leu Ser Asn Val Ser Thr Gly Glu Phe Asn 130 135 140

Ile Ser Leu Leu Leu Thr Thr Pro Ser Ser Pro Arg Arg Ser Phe
145 150 155 160

Ile Glu Asp Leu Leu Phe Thr Ser Val Glu Ser Val Gly Leu Pro Thr 165 170 175

Asp	Asp	Ala	Tyr 180	Lys	As n	Cys	Thr	Ala 185	Gly	Pro	Leu	Gly	Phe 190	Leu	Lys
Asp	Leu	Ala 195	Cys	Ala	Arg	Glu	Tyr 200	Asn	Gly	Leu	Leu	Val 205	Leu	Pro	Pro
Ile	Ile 210	Thr	Ala	Glu	Met	Gln 215	Thr	Leu	Tyr	Thr	Ser 220	Ser	Leu	Val	Ala
Ser 225	Met	Ala	Phe	Gly	Gly 230	Ile	Thr	Ala	Ala	Gly 235	Ala	Ile	Pro	Phe	Ala 240
Thr	Gln	Leu	Gln	Ala 245	Arg	Ile	Asn	His	Leu 250	Gly	Ile	Thr	Gln	Ser 255	Leu
Leu	Leu	Lys	Asn 260	Gln	Glu	Lys	Ile	Ala 265	Ala	Ser	Phe	Asn	Lys 270	Ala	Ile
Gly	Arg	Met 275	Gln	Glu	Gly	Phe	Arg 280	Ser	Thr	Ser	Leu	Ala 285	Leu	Gln	Gln
	290					295					300		Glu		
Ala 305	Ser	Leu	Asn	Lys	Asn 310	Phe	Gly	Ala	Ile	Ser 315	Ser	Met	Ile	Gln	Glu 320
	_			325					330				Val	335	
			340					345					Ser 350		-
Gln	Ala	G1u 355	His	Ile	Arg	Val	Ser 360	Gln	Gln	Arg	Glu	Leu 365	Ala	Thr	Gln
	370					375					380		Ser		
385					390					395			Pro		400
Ile	Val	Phe	Ile	His 405	Phe	Ser	Tyr	Thr	Pro 410	Asp	Ser	Phe	Val	Asn 415	Val
Thr	Ala	Ile	Val 420	Gly	Phe	Суѕ	Val	Lys 425	Pro	Ala	Asn	Ala	Ser 430	Gln	Tyr

Ala Ile Val Pro Ala Asn Gly Arg Gly Ile Phe Ile Gln Val Asn Gly 435 440

	Ser	Tyr 4 50	Tyr	Ile	Thr	Ala	Arg 455	Asp	Met	Tyr	Met	Pro 460	Arg	Ala	Ile	Thr
	Ala 465	Gly	Asp	Ile	Val	Thr 470	Leu	Thr	Ser	Cys	Gln 475	Ala	Asn	Tyr	Val	Ser 480
	Val	Asn	Lys	Thr	Val 485	Ile	Thr	Thr	Phe	Val 490	Asp	Asn	Asp	Asp	Phe 495	Asp
	Phe	Asn	Asp	Glu 500	Leu	Ser	Lys	Trp	Trp 505	Asn	Asp	Thr	Lys	His 510	Glu	Leu
	Pro	Asp	Phe 515	Asp	Lys	Phe	Asn	Tyr 520	Thr	Val	Pro	Ile	Leu 525	Asp	Ile	Asp
	Ser	Glu 530	Ile	Asp	Arg	Ile	Gln 535	Gly	Val	Ile	Gln	Gly 540	Leu	Asn	Asp	Ser
	Leu 545	Ile	Asp	Leu	Glu	Lys 550	Leu	Ser	Ile	Leu	Lys 555	Thr	Tyr	Ile	Lys	Trp 560
	Pro	Trp	Tyr	Val	Trp 565	Leu	Ala	Ile	Ala	Phe 570	Ala	Thr	Ile	Ile	Phe 575	Ile
	Leu	Ile	Leu	Gly 580	Trp	Val	Phe	Phe	Met 585	Thr	Gly	Cys	Cys	Gly 590	Cys	Cys
	Cys	Gly	Cys 595	Phe	Gly	Ile	Met	Pro 600	Leu	Met	Ser	Lys	Cys 605	Gly	Lys	Lys
	Ser	Ser 610	Tyr	Tyr	Thr	Thr	Phe 615	Asp	Asn	Asp	Val	Val 620	Thr			
<210> 13 <211> 630 <212> PR <213> Viro	Т	brongı	uitis int	feccios	sa (IB\	/)										
<400> 13		·			`	,										
	Arg 1	Arg	Phe	Arg	Arg 5	Ser	Ile	Thr	Glu	Ser 10	Val	Glu	Asn	Cys	Pro 15	Tyr
	Val	Ser	Tyr	Gly 20	Lys	Phe	Cys	Ile	Lys 25	Pro	Asp	Gly	Ser	Ile 30	Ala	Thr

Ile Val Pro Lys Gln Leu Glu Gln Phe Val Ala Pro Leu Leu Asn Val Thr Glu Asn Val Leu Ile Pro Asn Ser Phe Asn Leu Thr Val Thr Asp Glu Tyr Ile Gln Thr Arg Met Asp Lys Val Gln Ile Asn Cys Leu Gln Tyr Ile Cys Gly Asn Ser Leu Glu Cys Arg Asn Leu Phe Gln Gln Tyr 90 85 Gly Pro Val Cys Asp Asn Ile Leu Ser Val Val Asn Ser Val Gly Gln 100 Lys Glu Asp Met Glu Leu Leu Asn Phe Tyr Ser Ser Thr Lys Pro Ala 115 120 Gly Phe Asn Thr Pro Val Leu Ser Asn Val Ser Thr Gly Glu Phe Asn 130 135 Ile Ser Leu Phe Leu Thr Thr Pro Ser Ser Pro Arg Arg Ser Phe 145 150 160 155 Ile Glu Asp Leu Leu Phe Thr Ser Val Glu Ser Val Gly Leu Pro Thr Asp Asp Ala Tyr Lys Asn Cys Thr Ala Gly Pro Leu Gly Phe Leu Lys Asp Leu Val Cys Ala Arg Glu Tyr Asn Gly Leu Leu Val Leu Pro Pro 195 200 Ile Ile Thr Ala Glu Met Gln Thr Leu Tyr Thr Ser Ser Leu Val Ala 215 Ser Met Ala Phe Gly Gly Ile Thr Ala Ala Gly Ala Ile Pro Phe Ala Thr Gln Leu Gln Ala Arg Ile Asn His Leu Gly Ile Thr Gln Ser Leu Leu Leu Lys Asn Gln Glu Lys Ile Ala Ala Ser Phe Asn Lys Ala Ile 260 265 Gly His Met Gln Glu Gly Phe Arg Ser Thr Ser Leu Ala Leu Gln Gln

		275					280					285			
Ile	Gln 290	Asp	Val	Val	Asn	Lys 295	Gln	Ser	Ala	Ile	Leu 300	Thr	Glu	Thr	Met
Ala 305	Ser	Leu	Asn	Lys	Asn 310	Phe	Gly	Ala	Ile	Ser 315	Ser	Val	Ile	Gln	G1 32
Ile	Tyr	Gln	Gln	Leu 325	Asp	Ala	Ile	Gln	A 1a 330	Asn	Ala	Gln	Val	Asp 335	Arç
Leu	Ile	Thr	Gly 340	Arg	Leu	Ser	Ser	Leu 345	Ser	Val	Leu	Ala	Ser 350	Ala	Lys
Gln	Ala	Glu 355	Tyr	Ile	Arg	Val	Ser 360	Gln	Gln	Arg	Glu	Leu 365	Ala	Thr	Glr
Lys	Ile 370	Asn	Glu	Суз	Val	Lys 375	Ser	Gln	Ser	Ile	Arg 380	Tyr	Ser	Phe	Суз
Gly 385	Asn	Gly	Arg	His	Val 390	Leu	Thr	Ile	Pro	Gln 395	Asn	Ala	Pro	Asn	Gl ₃ 400
Ile	Val	Phe	Ile	His 405	Phe	Ser	Tyr	Thr	Pro 410	Asp	Ser	Phe	Val	Asn 415	Val
Thr	Ala	Ile	Val 420	Gly	Phe	Суs	Val	Lys 425	Pro	Ala	Asn	Ala	Ser 430	Gln	Туг
Ala		Val 435	Pro	Ala	Asn		Arg 440		Ile	Phe		Gln 445	Val	Asn	Gl
Ser	Tyr 450	Tyr	Ile	Thr	Ala	Arg 455	Asp	Met	Tyr	Met	Pro 460	Arg	Ala	Ile	Thi
Ala 465	Gly	Asp	Ile	Val	Thr 470	Leu	Thr	Ser	Cys	Gln 475	Val	Asn	Tyr	Val	Ser 480
Val	Asn	Lys	Thr	Val 485	Ile	Thr	Thr	Phe	Val 490	Asp	Asn	Asp	Asp	Phe 495	Asp
Phe	Asn	Asp	Glu 500	Leu	Ser	Lys	Trp	Trp 505	Asn	Asp	Thr	Lys	His 510	Glu	Let
Pro	Asp	Phe	Asp	Lys	Phe	Asn	Tyr	Thr	Val	Pro	Ile	Leu	Asp	Ile	Asp

Ser Glu Ile Asp Arg Ile Gln Gly Val Ile Gln Gly Leu Asn Asp Ser 530 540

Leu Ile Asp Leu Glu Lys Leu Ser Ile Leu Lys Thr Tyr Ile Lys Trp 545 550 555 560

Pro Trp Tyr Val Trp Leu Ala Ile Ala Phe Ala Thr Ile Ile Phe Ile 565 570 575

Leu Ile Leu Gly Trp Val Phe Phe Met Thr Gly Cys Cys Gly Cys Cys 580 585 590

Cys Gly Cys Phe Gly Ile Met Pro Leu Met Ser Lys Cys Gly Lys Lys 595 600 605

Ser Ser Tyr Tyr Thr Thr Phe Asp Asn Asp Val Val Thr Glu Gln Tyr 610 620

Arg Pro Lys Lys Ser Val 625 630

<210> 14

<211> 630

<212> PRT

<213> Virus de bronquitis infecciosa (IBV)

<400> 14

His Arg Arg Arg Ser Ile Gly Gln Asn Val Thr Ser Cys Pro Tyr

1 5 10 15

Val Ser Tyr Gly Arg Phe Cys Ile Glu Pro Asp Gly Ser Leu Lys Met 20 25 30

Ile Val Pro Glu Glu Leu Lys Gln Phe Val Ala Pro Leu Leu Asn Ile 35 40 45

Thr Glu Ser Val Leu Ile Pro Asn Ser Phe Asn Leu Thr Val Thr Asp 50 55 60

Glu Tyr Ile Gln Thr Arg Met Asp Lys Val Gln Ile Asn Cys Leu Gln 65 70 75 80

Tyr Val Cys Gly Asn Ser Leu Glu Cys Arg Lys Leu Phe Gln Gln Tyr 85 90 95

Gly Pro Val Cys Asp Asn Ile Leu Ser Val Val Asn Ser Val Ser Gln
100 105 110

Lys	Glu	Asp 115	Met	Glu	Leu	Leu	Ser 120	Phe	Tyr	Ser	Ser	Thr 125	Lys	Pro	Lys
Gly	Tyr 130	Asp	Thr	Pro	Val	Leu 135	Ser	Asn	Val	Ser	Thr 140	Gly	Glu	Phe	Asn
Ile 145	Ser	Leu	Leu	Leu	Lys 150	Pro	Pro	Ser	Ser	Pro 155	Ser	Gly	Arg	Ser	Phe 160
Ile	Glu	Asp	Leu	Leu 165	Phe	Thr	Ser	Val	Glu 170	Thr	Val	Gly	Leu	Pro 175	Thr
Asp	Ala	Glu	Tyr 180	Lys	Lys	Сув	Thr	Ala 185	Gly	Pro	Leu	Gly	Thr 190	Leu	Lys
Asp	Leu	Ile 195	Cys	Ala	Arg	Glu	Туг 200	Asn	Gly	Leu	Leu	Val 205	Leu	Pro	Pro
Ile	11e 210	Thr	Ala	Asp	Met	Gln 215	Thr	Met	Tyr	Thr	Ala 220	Ser	Leu	Val	Gly
Ala 225	Met	Ala	Phe	Gly	Gly 230	Ile	Thr	Ser	Ala	Ala 235	Ala	Ile	Pro	Phe	Ala 240
Thr	Gln	Ile	Gln	Ala 245	Arg	Ile	Asn	His	Leu 250	Gly	Ile	Thr	Gln	Ser 255	Leu
Leu	Met	Lys	Asn 260	Gln	Glu	Lys	Ile	Ala 265	Ala	Ser	Phe	Asn	Lys 270	Ala	Ile
Gly	His	Met 275	Gln	Glu	Gly	Phe	Arg 280	Ser	Thr	Ser	Leu	Ala 285	Leu	Gln	Gln
Ile	Gln 290	Asp	Val	Val	Asn	Lys 295	Gln	Ser	Ala	Ile	Leu 300	Thr	Glu	Thr	Met
Asn 305	Ser	Leu	Asn	Lys	Asn 310	Phe	Gly	Ala	Ile	Thr 315	Ser	Val	Ile	Gln	Asp 320
Ile	Tyr	Ala	Gln	Leu 325	Asp	Ala	Ile	Gln	Ala 330	Asp	Ala	Gln	Val	Asp 335	Arg
Leu	Ile	Thr	Gly 340	Arg	Leu	Ser	Ser	Leu 345	Ser	Val	Leu	Ala	Ser 350	Ala	Lys
Gln	Ser	Glu 355	Tyr	Ile	Arg	Val	Ser 360	Gln	Gln	Arg	Glu	Leu 365	Ala	Thr	Gln

Lys	11e 370	Asn	Glu	Cys	Val	Lys 375	Ser	Gln	Ser	Asn	Arg 380	Tyr	Gly	Phe	Cys
Gly 385	Ser	Gly	Arg	His	Val 390	Leu	Ser	Ile	Pro	G1n 395	Asn	Ala	Pro	Asn	Gly 400
Ile	Val	Phe	Ile	His 405	Phe	Thr	Tyr	Thr	Pro 410	Glu	Ser	Phe	Val	Asn 415	Val
Thr	Ala	Ile	Val 420	Gly	Phe	Cys	Val	Asn 425	Pro	Ala	Asn	Ala	Ser 430	Gln	Tyr
Ala	Ile	Val 435	Pro	Ala	Asn	Gly	Arg 440	Gly	Ile	Phe	Ile	Gln 445	Val	Asn	Gly
Thr	Туг 450	Tyr	Ile	Thr	Ala	Arg 455	Asp	Met	Tyr	Met	Pro 460	Arg	Asp	Ile	Thr
Ala 465	Gly	Asp	Ile	Val	Thr 470	Leu	Thr	Ser	Cys	Gln 475	Ala	Asn	Tyr	Val	Asn 480
Val	Asn	Lys	Thr	Val 485	Ile	Thr	Thr	Phe	Val 490	Glu	Asp	Asp	Asp	Phe 495	Asp
Phe	Asp	Asp	Glu 500	Leu	Ser	Lys	Trp	Trp 505	Asn	Asp	Thr	Lys	His 510	Gln	Leu
Pro	Asp	Phe 515	Asp	Asp	Phe	Asn	Tyr 520	Thr	Val	Pro	Ile	Leu 525	Asn	Ile	Ser
Gly	Glu 530	Ile	Asp	Tyr	Ile	G1n 535	Gly	Val	Ile	Gln	Gly 540	Leu	Asn	Asp	Ser
Leu 545	Ile	Asn	Leu		Glu 550		Ser	Ile		Lys 555		туг	Ile	Lys	Trp 560
Pro	Trp	Tyr	Val	Trp 565	Leu	Ala	Ile	Gly	Phe 570	Ala	Ile	Ile	Ile	Phe 575	Ile
Leu	Ile	Leu	Gly 580	Trp	Val	Phe	Phe	Met 585	Thr	Gly	Суз	Cys	Gly 590	Cys	Cys
Cys	Gly	Cys 595	Phe	Gly	Ile	Ile	Pro 600	Leu	Met	Ser	Lys	Cys 605	Gly	Lys	Lys
Ser	Ser 610	Tyr	Tyr	Thr	Thr	Phe 615	Asp	Asn	Asp	Val	Val 620	Thr	Glu	Gln	Tyr

49

Arg Pro Lys Lys Ser Val

630

REIVINDICACIONES

1. Una proteína de espina (proteína S) de virus de bronquitis infecciosa (IBV) en donde la secuencia del dominio S2 de la proteína S tiene al menos 98 % de identidad de secuencia con el dominio S2 de la proteína S de una cepa de IBV con tropismo tisular restringido en su conjunto pero ignorando las posiciones de aminoácidos 686-694, 578, 617, 826, 857 y 1000 en referencia a la numeración de posición de la SEQ ID NO 2, pero que comprende la secuencia XBBXBX en la parte de la proteína S2 en los restos 686 a 691 en referencia a la numeración de posición de la secuencia proporcionada como SEQ ID NO 2, donde B es un resto básico y X es cualquier aminoácido; y que comprende al menos una de las siguientes sustituciones de aminoácidos en referencia a la numeración de posición de la SEQ ID NO: 2:

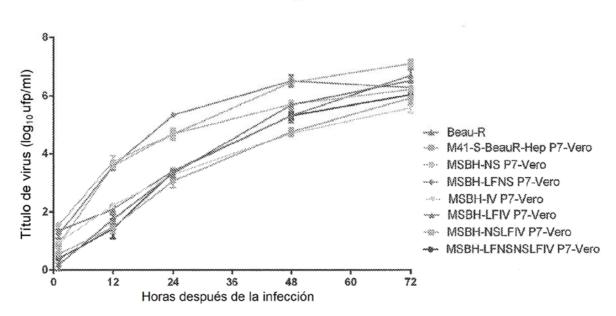
Leucina (L) a Fenilalanina (F) en la posición 578
Asparagina (N) a Serina (S) en la posición 617
Asparagina (N) a Serina (S) en la posición 826
Leucina (L) a Fenilalanina (F) en la posición 857 e
Isoleucina (I) a Valina (V) en la posición 1000
de modo que un virus IBV que comprende la proteína S tiene tropismo tisular extendido y
en donde la numeración de posición de aminoácido se identifica por alineamiento de la proteína S de IBV con la
secuencia de la SEQ ID NO 2.

20

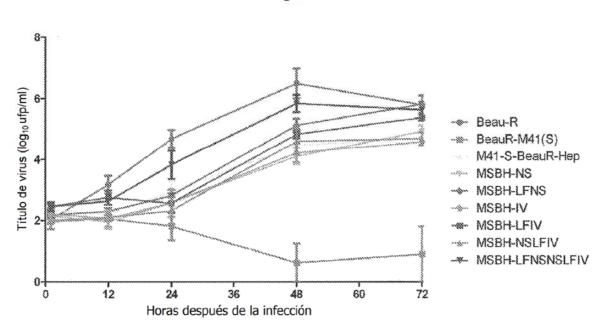
40

5

10


15

- 2. Una proteína S de IBV de acuerdo con la reivindicación 1, que comprende:
 - (a) la secuencia SRRKRS o SRRRRS en la parte de la proteína S2 correspondiente a los restos 686 a 691 de la secuencia proporcionada como SEQ ID NO 2; o
- 25 (b) la secuencia SRRKRSLIE o SRRRRSVIE en la parte de la proteína S2 correspondiente a los restos 686 a 694 de la secuencia proporcionada como SEQ ID NO 2.
 - 3. Una proteína S de IBV de acuerdo con la reivindicación 1 o 2, que comprende:
- (a) la sustitución de aminoácido Asparagina (N) a Serina (S) en la posición 617 en referencia a la numeración de posición de la SEQ ID NO: 2; o
 - (b) Leucina (L) a Fenilalanina (F) en la posición 578 y Asparagina (N) a Serina (S) en la posición 617 en referencia a la numeración de posición de la SEQ ID NO: 2.
- 4. Una proteína S de IBV de acuerdo con la reivindicación 1 o 2, que comprende las siguientes sustituciones de aminoácidos en referencia a la numeración de posición de la SEQ ID NO: 2:


Asparagina (N) a Serina (S) en la posición 826; Leucina (L) a Fenilalanina (F) en la posición 857; e Isoleucina (I) a Valina (V) en la posición 1000.

- 5. Una secuencia de nucleótidos que codifica una proteína S de IBV de acuerdo con cualquier reivindicación precedente.
- 45 6. Un plásmido que comprende una secuencia de nucleótidos de acuerdo con la reivindicación 5.
 - 7. Una partícula viral que comprende una proteína S de IBV de acuerdo con cualquiera de las reivindicaciones 1 a 4, y/o una secuencia de nucleótidos de acuerdo con la reivindicación 5.
- 50 8. Una célula que comprende una secuencia de nucleótidos de acuerdo con la reivindicación 5 y/o una partícula viral de acuerdo con la reivindicación 7.
 - 9. Una célula de acuerdo con la reivindicación 8 que es una célula Vero.
- 10. Una vacuna que comprende una partícula viral de acuerdo con la reivindicación 7.
 - 11. Una vacuna de acuerdo con la reivindicación 10 para uso en el tratamiento y/o la prevención de bronquitis infecciosa en un sujeto.
- 60 12. Un método para producir una vacuna de acuerdo con la reivindicación 10, que comprende la etapa de infectar células Vero con una partícula viral de acuerdo con la reivindicación 7.

Figura 3

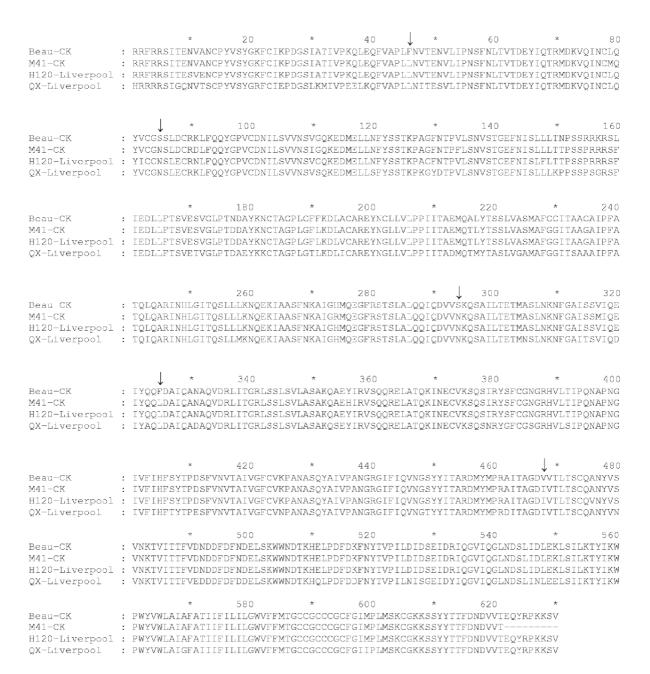

Beau-CK M41-CK H120-Liverpool QX-Liverpool	* 20 * 40 * 60 * 80 : MLVTPLLLVTLLCALCSAVLYDS-SSYVYYYQSAFRPPSGWHLQGGAYAVVNISSEFNNAGSSSGCTVGIIHGGRVVNAS : MLVTPLLLVTLLCVLCSAALYDS-SSYVYYYQSAFRPPNGWHLHGGAYAVVNISSESNNAGSSPGCIVGTIHGGRVVNAS : MLVTPLLLVTLLCALCSAALYDS-SSYVYYYQSAFRPPDGWHLHGGAYAVVNISSESNNAGSSSGCTVGIIHGGRVVNAS : MLVKSLFLVTILCALCSANLFDSDNNYVYYYQSAFRPPNCWHLQCCAYAVVNSTNYTNNACSAHQCTVCVIKDVYNQSVA
Beau-CK M41-CK H120-Liverpool QX-Liverpool	* 100 * 120 * 140 * 160 : SIAMTAPSSGMAWSSSQFCTAHCNFSDTTVFVTHCYKHGG-CPLTGMLQQNLIRVSAMKNGQLFYNLTVSVAKYPTFRSF : SIAMTAPSSGMAWSSSQFCTAHCNFSDTTVFVTHCYKYDG-CPITGMLQKNFLRVSAMKNGQLFYNLTVSVAKYPTFKSF : SIAMTAPSSGMAWSSSQFCTAYCNFSDTTVFVTHCYKHVG-CPITGMLQQHSIRVSAMKNGQLFYNLTVSVAKYPTFKSF : SIAMTAPLQGMAWSKSQFCSAHCNFSEITVFVTHCYSSGSSCPITGMIPRDHIRISAMKNGSLFYNLTVSVSKYPNFKSF
Beau-CK M41-CK H120-Liverpool QX-Liverpool	* 180 * 2C0 * 220 * 240 : QCVNNLTSVYLNGDLVYTSNETIDVTSAGVYFKAGGPITYKVMREVKALAYFVNGTAQDVILCDGSPRGLLACQYNTGNF : QCVNNLTSVYLNGDLVYTSNETTDVTSAGVYFKAGGPITYKVMREVKALAYFVNGTAQDVILCDGSPRGLLACQYNTGNF : QCVNNLTSVYLNGDLVYTSNETTDVTSAGVYFKAGGPITYKVMREVRALAYFVNGTAQDVLCDGSPRGLLACQYNTGNF : QCVNNFTSVYLNGDLVFTSNKTTDVTSAGVYFKAGGPVNYSIMKEFKVLAYFVNGTAQDVVLCDNSPKGLLACQYNTGNF
Beau-CK M41-CK H120-Liverpool QX-Liverpool	* 260 * 260 * 300 * 320 : SDGFYPFTNSSLVKQKFIVYRENSVNTTCTLHNFIFHNETGANPNPSGVQNIQTYQTKTAQSGYYNFNFSFLSSFVYKES : SDGFYPFINSSLVKQKFIVYRENSVNTTFTLHNFTFHNETGANPNPSGVQNIQTYQTÇTAQSGYYNFNFSFLSSFVYKES : SDGFYPFTNSSLVKQKFIVYRENSVNTTFTLHNFTFHNETGANPNPSGVQNIQTYQTÇTAQSGYYNFNFSFLSSFVYKES : SDGFYPFTNSTLVREKFIVYRESSVNTTLALTNFTFTNVSNAQPNSGGVNTFHLYQTÇTAQSGYYNFNLSFLSQFVYKAS
Beau-CK M41-CK H120-Liverpool QX Liverpool	* 340 * 360 * 380 * 400 : NFMYGSYHPSCKFRLETINNGLWFNSLSVSIAYGPLQGGCKQSVFKGRATCCYAYSYGGPSLCKGVYSGELDHNFECGLL : NFMYGSYHPSCNFRLETINNGLWFNSLSVSIAYGPLQGGCKQSVFSGRATCCYAYSYGGPSLCKGVYSGELDLNFECGLL : NFMYGSYYPSCNFRLETINNGLWFNSLSVSIAYGPLQGGCKQSVFSGRATCCYAYSYGGPLLCKGVYSGELDHNFECGLL : DFMYGSYIPSCSFRPETINSGLWFNSLSVSLTYGPLQGGCKQSVFSGKATCCYAYSYKGPMACKGVYSGELSINFECGLL
Beau-CK M41-CK H120-Liverpool QX-Liverpool	* 420 * 440 * 460 * 480 : VYVTKSGGSRIQTATEPPVITQNNYNNITLNTCVDYNIYGRTGQGFITNVTDSAVSYNYLADAGLAILDTSGSIDIFVVQ : VYVTKSGGSRIQTATEPPVITRHNYNNITLNTCVDYNIYGRTGQGFITNVTDSAVSYNYLADAGLAILDTSGSIDIFVVQ : VYVTKSGGSRIQTATEPPVITQHNYNNITLNTCVDYNIYGRTGQGFITNVTDSAVSYNYLADAGLAILDTSGSIDIFVVQ : VYVTKSDGSRIQTRTEPLVLTQYNYNNITLDKCVAYNIYGRVGQGFITNVTDSAANFSYLADGGLAILDTSGAIDVFVVQ
Beau-CK M41-CK H120-Liverpool QX-Liverpool	* 500 * 520 * 540 * 560 : GEYGLNYYKVNPCEDVNQQFVVSGGKLVGILTSRNETGSQLLENQFYIKITNGTRFRRSITENVANCPYVSYGKFCIKP : GEYGLTYYKVYPCEDVNQQFVVSGGKLVGILTSRNETGSQLLENQFYIKITNGTRFRRSITENVANCPYVSYGKFCIKP : SEYGLNYYKVNPCEDVNQQFVVSGGKLVGILTSRNETGSQLLENQFYIKITNGTRFRRSITESVENCPYVSYGKFCIKP : GIYGLNYYKVNPCEDVNQQFVVSGGNIVGILTSRNETGSEQVENQFYVKLTNSSHRRRSIGQNVTSCPYVSYGRFCIEP
Beau-CK M41-CK H120-Liverpool QX-Liverpool	* 580 * 6C0 * 620 * 640 : DGSIATIVPKQLEQFVAPLFNVTENVLIPNSFNLTVTDEYIQTRMDKVQINCLQYVCGSSLDCRKLFQQYGPVCDNILSV : DGSIATIVPKQLEQFVAPLLNVTENVLIPNSFNLTVTDEYIQTRMDKVQINCMQYVCGNSLDCRDLFQQYGPVCDNILSV : DGSIATIVPKQLEQFVAPLLNVTENVLIPNSFNLTVTDEYIQTRMDKVQINCLQYICGNSLECRNLFQQYGPVCDNILSV : DGSLKMIVPEELKQFVAPLLNITESVLIPNSFNLTVTDEYIQTRMDKVQINCLQYVCGNSLECRKLFQQYGPVCDNILSV
Beau-CK M41-CK H120-Liverpool QX-Liverpool	* 660 * 660 * 700 * 720 : VNSVGQKEDMELLNFYSSTKPAGFNTPVLSNVSTGEFNISLLLTNPSSRRKRSLIEDLLFTSVESVGLPTNDAYKNCTAG : VNSIGQKEDMELLNFYSSTKPAGFNTPFLSNVSTGEFNISLLLTTPSSPRRRSFIEDLLFTSVESVGLPTDDAYKNCTAG : VNSVGQKEDMELLNFYSSTKPAGFNTPVLSNVSTGEFNISLFLTTPSSPRRSFIEDLLFTSVESVGLPTDDAYKNCTAG : VNSVSQKEDMELLSFYSSTKPKGYDTPVLSNVSTGEFNISLLLKPPSSPSGRSFIEDLLFTSVETVGLPTDAEYKKCTAG
Beau-CK M41-CK H120-Liverpool QX-Liverpool	* 740 * 760 * 780 * 800 : PLGFFKDLACAREYNGLLVLPPIITAEMQALYTSSLVASMAFGGITAAGAIPFATQLÇARINHLGITQSLLLKNQEKIAA : PLGFLKDLACAREYNGLLVLPPIITAEMQTLYTSSLVASMAFGGITAAGAIPFATQLQARINHLGITQSLLLKNQEKIAA : PLGFLKDLVCAREYNGLLVLPPIITAEMQTLYTSSLVASMAFGGITAAGAIPFATQLQARINHLGITQSLLLKNQEKIAA : PLGTLKDLICAREYNGLLVLPPIITADMQTMYTASLVGAMAFGGITSAAAIPFATQIÇARINHLGITQSLLMKNQEKIAA

Figura 3 continuación Beau-CK : SFNKAIGHMQEGFRSTSLALQQIQDVVSKQSAILTETMASLNKNFGAISSVIQEIYQQFDAIQANAQVDRLITGRLSSLS M41-CK : SFNKAIGRMQEGFRSTSLALQQIQDVVNKQSAILTETMASLNKNFGAISSMIQEIYQQLDAIQANAQVDRLITGRLSSLS H120-Liverpool : SFNKAIGHMQEGFRSTSLALQQIQDVVNKQSAILTETMASLNKNFGAISSVIQEIYQQLDAIQANAQVDRLITGRLSSLS QX-Liverpool : SFNKAIGHMQEGFRSTSLALQQIQDVVNKQSAILTETMNSLNKNFGAITSVIQDIYAQLDAIQADAQVDRLITGRLSSLS 920 : VLASAKQAEYIRVSQQRELATQKINECVKSQSIRYSFCGNGRHVLTIPQNAPNGIVFIHFSYTPDSFVNVTAIVGFCVKP : VLASAKQAEHIRVSQQRELATQKINECVKSQSIRYSFCGNGRHVLTIPQNAPNGIVFIHFSYTPDSFVNVTAIVGFCVKP H120-Liverpool: VLASAKQAEYIRVSQQRELATQKINECVKSQSIRYSFCGNGRHVLTIPQNAPNGIVFIHFSYTPDSFVNVTAIVGFCVKP QX-Liverpool : VLASAKQSEYIRVSQQRELATQKINECVKSQSNRYGFCGSGRHVLSIPQNAPNGIVFIHFTYTPESFVNVTAIVGFCVNP 980 1000 : ANASQYAIVPANGRGIFIQVNGSYYITARDMYMPRAITAGDVVTLTSCQANYVSVNKTVITTFVDNDDFDFNDELSKWWN : ANASQYAIVPANGRGIFIQVNGSYYITARDMYMPRAITAGDIVTLTSCQANYVSVNKTVITTFVDNDDFDFNDELSKWWN Beau-CK M41-CK H120-Liverpool: ANASQYAIVPANGRGIFIQVNGSYYITARDMYMPRAITAGDIVTLTSCQVNYVSVNKTVITTFVDNDDFDFNDELSKWWN QX-Liverpool : ANASQYAIVPANGRGIFIQVNGTYYITARDMYMPRDITAGDIVTLTSCQANYVNVNKTVITTFVEDDDFDFDDELSKWWN 1080 : DTKHELPDFDKFNYTVPILDIDSEIDRIQGVIQGLNDSLIDLEKLSILKTYIKWPWYVWLAIAFATIIFILILGWVFFMT Beau-CK : DTKHELPDFDKFNYTVPILDIDSEIDRIQGVIQGLNDSLIDLEKLSILKTYIKWPWYVWLAIAFATIIFILILGWVFFMT H120-Liverpool : DTKHELPDFDKFNYTVFILDIDSEIDRIQGVIQGLNDSLIDLEKLSILKTYIKWPWYVWLAIAFATIIFILLIGWVFFMT QX-Liverpool : DTKHQLPDFDDFNYTVPILNISGEIDYIQGVIQGLNDSLINLEELSIIKTYIKWPWYVWLAIGFAIIIFILILGWVFFMT 1140 : GCCGCCCGCFGIMPLMSKCGKKSSYYTTFDNDVVTEQYRPKKSV M41-CK : GCCGCCGCFGIMPLMSKCGKKSSYYTTFDNDVVT-H120-Liverpool : GCCGCCCGCFGIMPLMSKCGKKSSYYTTFDNDVVTEQYRPKKSV

: GCCGCCCGCFGIIPLMSKCGKKSSYYTTFDNDVVTEOYRPKKSV

OX-Liverpool

Figura 4

