

OFICINA ESPAÑOLA DE PATENTES Y MARCAS

ESPAÑA

11) Número de publicación: 2 715 615

21) Número de solicitud: 201731387

(51) Int. Cl.:

E04C 2/26 (2006.01)

(12)

PATENTE DE INVENCIÓN CON EXAMEN

B2

22) Fecha de presentación:

05.12.2017

(43) Fecha de publicación de la solicitud:

05.06.2019

Fecha de concesión:

21.10.2019

(45) Fecha de publicación de la concesión:

28.10.2019

73 Titular/es:

SITJÀ GRATACÓS, Àngel (100.0%) Avenida Vilamajor, 62 08440 Cardedeu (Barcelona) ES

(72) Inventor/es:

SITJÀ GRATACÓS, Àngel

74 Agente/Representante:

SALVÀ FERRER, Joan

64 Título: PIEZA, PROCEDIMIENTO PARA SU FORMACIÓN Y USOS DE LA MISMA

(57) Resumen:

Pieza, procedimiento para su formación y usos de la misma.

La presente invención se refiere a una pieza caracterizada porque su composición comprende los siguientes componentes: fibras de vidrio alcaliresistentes o fibras de aceros especiales o fibras de polipropileno o combinaciones de las mismas, ligante hidráulico de cemento, pigmentos inorgánicos, policarboxilato, arenillas silíceas o graníticas y agua, y porque presenta una longitud entre 180 y 240 cm, una anchura entre 10 y 15 cm y un grosor entre 2 y 5 cm. La presente invención también se refiere al procedimiento de fabricación y a los usos de dicha pieza.

Aviso: Se puede realizar consulta prevista por el art. 41 LP 24/2015.

Dentro de los seis meses siguientes a la publicación de la concesión en el Boletín Oficial de

la Propiedad Industrial cualquier persona podrá oponerse a la concesión. La oposición deberá dirigirse a la OEPM en escrito motivado y previo pago de la tasa correspondiente (art. 43 LP 24/2015).

DESCRIPCIÓN

PIEZA, PROCEDIMIENTO PARA SU FORMACIÓN Y USOS DE LA MISMA

5 Campo de la invención

La presente invención se refiere al campo de la construcción. En particular, la presente invención se refiere a una pieza con unas características químicas y físicas determinadas que la hacen apta para el revestimiento de suelos y la formación de paredes.

10

Antecedentes de la invención

Es conocida la utilización ancestral de listones y tablas de madera para formar revestimientos de suelo o de muros o de formación de paredes y vallas.

15

El empleo de maderas para estos usos es deseado y valorado por la estética de las mismas, pero adolecen de problemas de durabilidad, muy en especial en sus aplicaciones en la intemperie, obligando a un costo de mantenimiento importante, o por sufrir serios problemas de deterioro, ya que la formación de astillas o roturas y deformaciones afectan a la seguridad de los usuarios.

20

25

También es conocida la solución de listones y tablas de hormigón moldeando sobre encofrados o partiendo de modelos de madera. El material conocido como hormigón también presenta problemas de durabilidad en piezas largas, estrechas y delgadas. Esto es debido a que es frágil y admite poca carga de uso, o bien, necesita unas armaduras internas de varilla de acero para que por simple refuerzo o por acción de pretensado se evite la rotura súbita de la pieza. No obstante, con el tiempo estas armaduras se deterioran ocasionando también en las piezas grietas, deformaciones o roturas.

30

Adicionalmente, también existen imitaciones en materiales sintéticos, a base de ligantes de resinas orgánicas, que más o menos reforzados, reproducen el aspecto de los listones y tablas de madera originales, pero sin conseguir superar los problemas de durabilidad por roturas, astillados y deformaciones, siendo además muy vulnerables al fuego.

35

Todos los antecedentes constituyen soluciones de alto costo considerando sus necesidades de cuidados, reparaciones y sustituciones, a pesar de lo cual resulta frecuente ver las piezas

de madera, hormigón o materiales plásticos, deformados, agrietados y rotos, cuando no astillados y desaristados, que pueden ocasionar lesiones en pies y manos de los usuarios.

Los presentes inventores han desarrollado una pieza con una composición particular que permite que tenga una longitud superior a 15 veces su anchura y 60 veces su grosor con la utilidad de poder constituir revestimientos de suelo capaces de soportar el paso de personas durante muchos años, así como de formar paredes mediante revestimientos de muros o conjuntos de cercados, sin romperse frágilmente.

10 Breve descripción de los dibujos

5

La figura 1 representa una vista en perspectiva de la pieza en su variante en que las caras superior e inferior son lisas.

Las figuras 2A y 2B representan una sección por rotura transversal de la pieza, en las cuales se pueden observar sobre todo las fibras, cuya rotura no se ha producido completamente dada la muy alta resistencia a tracción de éstas, sino que simplemente se han arrancado.

La figura 3 muestra el gráfico de temperatura (°C) vs. ciclo tiempo(h) correspondiente al 20 ejemplo 2c.

Las figuras 4A y 4B muestran esquemáticamente cómo se realizó el ensayo del ejemplo 3.

La figura 5 muestra los resultados del ensayo del ejemplo 3, en particular con respecto a la rotura a los 7 días.

La figura 6 muestra los resultados del ensayo del ejemplo 3, en particular con respecto a la rotura a los 28 días.

30 <u>Descripción de la invención</u>

35

La presente invención se refiere en un primer aspecto a una pieza caracterizada porque su composición comprende los siguientes componentes: fibras de vidrio alcaliresistentes o fibras de aceros especiales o fibras de polipropileno o combinaciones de las mismas, ligante hidráulico de cemento, pigmentos inorgánicos, policarboxilato, arenillas silíceas o graníticas y

agua, y porque presenta una longitud entre 180 y 240 cm, una anchura entre 10 y 15 cm y un grosor entre 2 y 5 cm. En una realización preferida, la pieza presenta una longitud de 200 cm, una anchura de 12,5 cm y un grosor de 3 cm. Con estas dimensiones el peso de la pieza suele ser de aproximadamente 18 kg, lo cual hace que sea fácilmente manejable a mano para montar resvestimientos de suelo, muros, paredes o formando tabiques y cercados.

En otra realización preferida, la pieza en su composición comprende, además, nanosílice, o metacaolín, o grafeno en forma de nanofibras, o polímero acrílico, o una combinación de los mismos.

10

15

20

5

En otra realización preferida, el ligante hidráulico de cemento está presente en la composición total de la pieza en una cantidad entre 600 y 1.000 kg por metro cúbico de composición total.

En otra realización preferida, dicho ligante hidráulico de cemento es cemento Portland blanco o gris, o cemento magnesiano, o cal hidráulica, o cenizas volantes, o una combinación de los mismos.

En otra realización preferida, las fibras de vidrio alcaliresistentes o fibras de aceros especiales o fibras de polipropileno o combinaciones de los mismos están presentes en la composición total de la pieza en una cantidad entre 40 y 100 kg por metro cúbico de la composición total.

En otra realización preferida, las arenas silíceas o graníticas están presentes en la composición total de la pieza en una cantidad entre 700 y 1.000 kg por metro cúbico de la composición total.

25

30

En otra realización preferida, el policarboxilato está presente en la composición total de la pieza en una cantidad entre 10 y 30 kg por metro cúbico de la composición total.

En otra realización preferida, el agua está presente en la composición total de la pieza en una cantidad entre 150 y 300 litros por metro cúbico de la composición total.

En otra realización preferida, los pigmentos inorgánicos están presentes en la composición total de la pieza en una cantidad entre 5 y 30 kg por metro cúbico de la composición total.

35 En otra realización preferida, el polímero acrílico está presente en la composición total de la pieza en una cantidad entre 20 y 100 kg por metro cúbico de la composición total.

En otra realización preferida, el grafeno en forma de nanofibras está presente en la composición total de la pieza en una cantidad entre 1 y 30 kg por metro cúbico de la composición total.

5

En otra realización preferida, la nanosílice está presente en la composición total de la pieza en una cantidad entre 8 y 20 kg por metro cúbico de la composición total.

10

En otra realización preferida, el metacolín está presente en la composición total de la pieza en una cantidad entre 60 y 120 kg por metro cúbico de la composición total.

En otra realización preferida, la pieza comprende, además, en su composición, dióxido de titanio anatasa sin dopar fotocataliticamente activo. Dicho dióxido de titanio puede estar presente en la composición de la pieza independientemente de si están presentes los elementos opcionales de nanosílice, metacaolín, grafeno en forma de nanofibras, polímero acrílico, o una combinación de los mismos.

20

15

La pieza obtenida tiene la particularidad de que está exenta de una armadura interior, como se describe en la técnica anterior, y que debido a la composición presenta una resistencia excepcional a la flexotracción, es decir se rompe únicamente después de una deformación previa y ostensible, evitando así una rotura frágil y consecuentemente una elevada seguridad de uso y una gran durabilidad.

25

Tal como se muestra en la figura 1, la pieza de la invención presenta una geometría que recuerda la de una tabla delgada de gran longitud y reducido grosor que podría ser como las de madera o de un perfil metálico del estado de la técnica. Cabe indicar que al tratarse de una pieza de respuesta a elevadas exigencias estéticas, las superficies pueden estar personalizadas de forma prácticamente ilimitada por texturas que son el negativo de las que previamente se han creado en los moldes o encofrados.

30

Tal como se muestra en la figura 2A y 2B, el material es un compuesto conglomerado de gran cantidad de fibras con una granulometría mineral y un aglomerante ultrafino que es reactivo al mezclarse todo el compuesto con agua en su proceso de moldeo.

35

Debe indicarse de que cada una de las realizaciones mencionadas anteriormente para el primer aspecto de la invención se puede combinar independientemente con una o más de

cualquiera de las realizaciones mencionadas en dicho primer aspecto de la invención.

En un segundo aspecto, la presente invención se refiere a un procedimiento para la formación de una pieza, según cualquiera de las realizaciones indicadas en el primer aspecto de la invención, que comprende las etapas de:

(a) mezclar los componentes.

5

10

15

20

25

30

- (b) verter los componentes en moldes mediante gravedad, inyección o bombeo y compactación simultánea.
- (c) colocar los moldes en cámaras de endurecimiento a una temperatura entre 20° y 70°C, preferiblemente entre 20°C y 60°C, y humedad entre 60% y 100%, preferiblemente entre 60% y 99%, para evitar la deformación que ocurriría en piezas tan estrechas, largas y delgadas, (d) desmoldar las piezas de los moldes.

En una realización, la temperatura en las cámaras de endurecimiento es entre 20°C y 60°C.

Independientemente de la temperatura, en una realización, la humedad en las cámaras de endurecimiento está entre el 60% y el 99%, preferiblemente entre el 60% y el 90%.

En dicho procedimiento, debe tenerse en cuenta que los moldes suelen prepararse de manera que sean negativos de las piezas a fabricar y que estén en una cantidad igual a la de las piezas a producir en un determinado tiempo, lo cual constituye el caso contrario de lo que es habitual en los procesos de fabricación de productos parecidos pero de mucha menor longitud en que el desmoldeo no es diferido sino inmediato gracias al empleo de máquinas prensa. El desmoldeo diferido provoca que las piezas reposen en sus moldes un día entero y después de extraer las piezas, pasan por un túnel de lavado y regresan a la posición en que vuelven a ser rellenados con el material compuesto que ya se ha expresado (etapa (a)).

La mezcla de los componentes de la etapa (a) suele realizarse en un dispersor-mezclador que gira a 300-1800 rpm para evitar la tendencia a la disgregación de dichos componentes. La utilización de dicho dispersor-mezclador es óptima, ya que este material, que no se puede considerar ni un hormigón ni un mortero, es una pasta como "un puré" de una granulometría de 0 a 1 mm que abraza fibras de vidrio alcaliresistentes en tan alta proporción que el amasado suele elaborarse con dicha máquina especial (dispersor-mezclador) que no mezcla sino que bate como una coctelera.

35

En la etapa (d), una vez desmoldadas las piezas, éstas pasan un control de calidad de

perfección de aspecto y de resistencia a la flexión que a las 24 h alcanza los 4 MPa, llegando a los 14 MPa cuatro semanas después.

Opcionalmente, antes de realizar el control de calidad, dichas piezas se secan a temperatura ambiente y se aplica un hidrófugo superficial, normalmente un agente protector orgánico, que confiere a las piezas una resistencia a la suciedad cuando están en uso.

En un tercer aspecto, la presente invención se refiere a la utilización de una pieza, según cualquiera de las realizaciones indicadas en el primer aspecto de la invención, para el revestimiento de suelos o para el revestimiento o formación de paredes.

En el caso de aplicarse en suelos, las piezas de la invención pueden formar pavimentos sobre bases de poca solidez como podrían ser las arenas en playas, disponiéndose a manera de rastreles las propias piezas como base a modo de traviesas, separadas a una distancia de entre 50 y 70 centímetros, para que encima de ellas se sujeten transversalmente las piezas de revestimiento en forma de tablas formando una continuidad de la superficie revestida.

Las piezas de la invención también pueden formar el tipo de pavimento denominado flotante, en el cual el revestimiento pisable deja las juntas abiertas unos milímetros para que a través de ellas evacúe el agua de la lluvia o de limpiezas, apoyándose sobre soportes adecuados que con graduación de altura pueden lograr un pavimento horizontal a pesar de ser inclinado en su base inferior para permitir la evacuación del agua.

En su uso como revestimiento de muros o para construir paredes y cercados, las piezas se sujetan mediante una tornillería adecuada o bien al muro a revestir o bien a unos pilarillos que se fabrican moldeados del mismo material.

A continuación, se proporcionarán de manera ilustrativa una serie de ejemplos que no pretenden limitar el alcance de la invención, el cual queda definido por las reivindicaciones adjuntas.

EJEMPLOS

EJEMPLO 1. Procedimiento de fabricación

35

10

15

20

25

30

Los componentes de la mezcla son los siguientes:

- 850 kg de cemento blanco
- 15 kg de óxido de hierro como pigmento
- 200 kg de harina caliza
- 400 kg de cuarzo triturado en granulometría de 0,5 mm de grosor
- 5 550 kg de cuarzo triturado en granulometría de 1 mm de grosor
 - 16 kg de fluidificante (policarboxilato)
 - 12 kg de hidrófugo en masa (estearato)
 - 200 litros de agua
 - 60 kg de fibra de vidrio alcali-resistente

10

20

25

Se trata de una producción en cadena en que las posiciones, los "eslabones" de la cadena, relacionados por orden, son los siguientes:

Primero: Preparación de los moldes que se han liberado de las piezas que contenían desde el día anterior. Hay tantos moldes como piezas a fabricar en la jornada. La preparación consiste en pasar los moldes por una posición a modo de túnel de lavado.

Segundo: Elaboración de la mezcla de materias primas, con una formulación indicada anteriormente, en un dispositivo dispersor-mezclador, que girando a diferentes velocidades durante 5 minutos, produce una pasta como una sopa con textura de crema, o "puré" con la proporción de fibra que se ha indicado perfectamente distribuida.

Tercero: Circulación y posicionamiento del molde limpio a la posición de llenado y compactación que consiste en una mesa vibrante. La posición de esta mesa de compactación es vecina de la del dispersador-mezclador.

Cuarto: Vertido forzado de la mezcla sobre el molde situado sobre la mesa compactándose durante 15 segundos.

30 Quinto: Circulación y posicionamiento del molde a zona de reposo durante 4 horas.

Sexto: Circulación y posicionamiento del molde a zona de endurecimiento constituida por una cámara a 20°C de temperatura y 99 por ciento de humedad.

35 Séptimo: Transcurridas un mínimo de 20 horas y un máximo de 60 horas tras un fin de semana: Circulación y posicionamiento a punto de extracción de las piezas desde el molde, mediante trabajo manual apoyado por mecanismo neumático.

Los moldes regresan al punto primero y se repite el ciclo.

5 Desde la anterior posición, punto Séptimo, las piezas, ya liberadas de sus moldes, siguen a:

Octavo: Circulación y posicionamiento a aplicación de hidrófugo superficial antimanchas, mediante trabajo manual apoyado por mecanismos dosificadores.

Noveno: Circulación al punto de verificación de calidad estética y de extracción de una pieza de cada 60 para su control de características físicas y mecánicas en laboratorio interno. Trabajos realizados manualmente.

Décimo: Circulación al punto de empaquetado y etiquetado, y sucesivas retiradas de los paquetes al patio de almacenamiento.

EJEMPLO 2

Como material a analizar se utilizaron piezas de la invención que tenía una composición por metro cúbico de:

- 850 kg de cemento blanco
- 15 kg de óxido de hierro como pigmento
- 200 kg de harina caliza
- 400 kg de cuarzo triturado en granulometría de 0,5 mm de grosor
- 25 550 kg de cuarzo triturado en granulometría de 1 mm de grosor
 - 16 kg de fluidificante (policarboxilato)
 - 12 kg de hidrófugo en masa (estearato)
 - 200 litros de agua
 - 60 kg de fibra de vidrio alcali-resistente

30

y cuyas dimensiones eran de 200 x 12,5 x 3 cm. Sobre las mismas se realizaron los siguientes ensayos:

- a) Resistencia a flexión y carga de rotura.
- b) Resistencia al desgaste por abrasión (método del disco ancho)
- 35 c) Absorción total de agua
 - d) Resistencia climática (determinación de la resistencia al hielo-deshielo)

e) Resistencia al deslizamiento/resbalamiento sin pulir (USRV).

Cabe indicar que hay ensayos que se desarrollan bajo el control de varias normas ya que el material de la presente invención no se encontraría bajo la norma de materiales similares pero con fines comparativos se utiliza también dicha norma. Por lo tanto, es posible que las dimensiones de la pieza se hayan tenido que ajustar para poder realizar el ensayo bajo la norma correspondiente.

2a. Resistencia a flexión y carga de rotura

10

5

Al tratarse de piezas muy largas estrechas y delgadas, su durabilidad está fuertemente vinculada a su resistencia a flexión, tanto para un uso como pavimento como para un uso como cerramiento de paredes.

En consecuencia, su control de calidad se basa en el control de su resistencia a flexión. Los ensayos correspondientes se efectúan conforme a normas europeas concretas que desde hace casi 20 años controlan los materiales con ligante hidráulico que contienen altas dosis de fibra de vidrio, concretamente son las normas UNE EN 1170-5. La normativa opera apoyando sobre dos rodillos de acero las piezas o los trozos representativos de piezas a una cierta distancia o luz entre apoyos que establece la norma y que es variable en función del tamaño de los trozos llamados probetas. En el centro de esta luz entre rodillos de apoyo, se aplica la carga de forma creciente y a una velocidad constante, hasta que la pieza o probeta se va deformando y finalmente se rompe. La máquina de laboratorio que hace el ensayo refleja en una gráfica como va subiendo la carga y que deformación va produciendo, expresa cual es la carga máxima registrada y cual es finalmente la deformación de rotura.

Las siguientes características se controlan según lo establecido por la Norma europea UNE EN 1338 para las baldosas para suelos exteriores:

30 Las piezas se refrendaron con mortero de cemento antes del ensayo.Se obtuvieron los siguientes resultados:

Baldosa (nº)	Distancia entre apoyos (mm)	Anchura en plano de rotura (mm)	Grueso de la baldosa en plano de rotura (mm)	Carga rotura (kN)	Resistencia a flexión (Mpa)	
1	350	120	29,5	3,07	15,4	
2	350	120	30,2	2,94	14,1	
3	350	120	29,3	2,69	13,7	
4	350	120	29,1	2,75	14,2	
5	350	120	30,7 2,92		13,6	
6	350	120	29,8	2,73	13,4	
7	350	120	30,5	2,65	12,5	
8	350	120	29,4	2,76	14,0	
			MEDIA	2,81	13,9	

Resultados 2a

20

Como puede observarse en la tabla que describe el ensayo para 8 baldosas (piezas según la invención) se obtuvo un resultado próximo a 14 MPa (13,9). De acuerdo con la Clase más exigente de la Norma europea (Clase de superior categoría - Clase 3, Marcado U) para baldosas de hormigón se requieren 5 MPa de característica y 4 de mínima. Por lo tanto, puede afirmarse que las piezas de la invención, que no tienen otro refuerzo interno que la fibra en toda su masa, son de un material de mucha mayor resistencia que lo que exige la Norma. Debe entenderse que las piezas son largas y delgadas y una cosa es la Resistencia y otra bien diferente es la Carga de Rotura la cual dependerá siempre de la posición de los apoyos.

15 2b. Resistencia al desgaste por abrasión (método del disco ancho)

Es una importante característica en el uso como pavimento. Debe ser lo más baja posible para evitar que las sucesivas pisadas degraden la superficie. En el laboratorio, una máquina presiona con un rodillo que gira 75 vueltas sobre la superficie de un trozo de pieza vertiendo al mismo tiempo una arenilla muy abrasiva. La huella que produce en la superficie es una hendidura rectangular de la que se mide el ancho en milímetros.

Se obtuvieron los siguientes resultados:

Baldosa (nº)	Desgaste (mm)	Valor superior (mm)
1	17,5	
2	16,0	17,5
3	16,5	

En base a la norma UNE-EN 1339:2004 + AC:2006

Clases de res	Clases de resistencia al desgaste por abrasión, según la norma UNE-EN 1339:2004 + AC:2006:						
Clase Marcado Requisito (para valores individuales)							
1 F Sin mediciones de esta característica							
2 G ≤ 26 mm							
3 H ≤ 23 mm							
4 I ≤ 20 mm							

Según la norma UNE 127339:2012, cuando se requiera durabilidad al uso, se recomienda que las baldosas cumplan, como mínimo, con el requisito de la clase 2.

5 Resultados 2b

La Resistencia a la Abrasión, o sea al desgaste, obtuvo un resultado de 17,5 mm de ancho de la hendidura que produce un disco que presiona con intermediación de un abrasivo, en lo que se denomina método del disco ancho en la referida Norma.

10

15

20

Existen varias Clases de menor a mayor resistencia a la abrasión y la más exigente debe ser de 20 mm como máximo de ancho de huella. Por lo tanto, las piezas de la invención con sólo 17,5 mm produce un resultado situado en la excelencia que se traducirá en un comportamiento autolimpiante en uso peatonal, por la tendencia a bruñirse y a lucir mejor cuanto más pasos reciba.

2c. Absorción total de agua

Esta característica debe ser lo más baja posible para evitar que las piezas se manchen con el uso. Los ensayos de control extraen primero en horno de laboratorio toda el agua ocluida que contiene la muestra y luego la sumergen en agua 24 horas; habiendo pesado exactamente la pieza antes y después de la inmersión, el incremento de peso dividido por el peso en seco es el coeficiente de absorción. Se indica en tanto por ciento.

Las piezas fueron hidrofugadas previamente al ensayo de absorción.

Se obtuvieron los siguientes resultados:

Baldosa (Nº)	Absorción total de agua (%)
1	6,1
2	5,9
3	6,0
Media	6,0

5

En base a la norma UNE-EN 1339:2004 + AC:2006:

Según la norma UNE-EN 1339:2004 + AC:2006, las baldosas deben cumplir los siguientes requisitos:								
Clase	Clase Marcado Absorción de agua (% en masa)							
1	1 A Sin medición de esta característica							
2	2 B ≤ 6% como media							

Según la norma UNE 127339:2012, con el objeto de asegurar la durabilidad del elemento para el uso habitual para el que se comercializan, las baldosas deben cumplir con el requisito de la clase 2, marcado B. Las baldosas cumplen este requisito si lo cumple la media de la muestra.

Resultados 2c

10

15

El Coeficiente de Absorción total de agua con un resultado del 6% en el ensayo se sitúa en la exigencia normal de la Norma, lo cual es satisfactorio porque siempre las altas dosis de fibras tienen tendencia a provocar más absorción. Las piezas analizadas contienen un ingrediente hidrófugo en la masa, lo cual ha compensado satisfactoriamente la tendencia de la fibra a esponjar el compuesto.

Es una característica que controla la durabilidad de la pieza y consiste en introducir una

2d. Resistencia climática (determinación de la resistencia al hielo-deshielo)

20 muestra de la pieza en una cámara climática que de forma programada durante 20 días, cada día pasa de +20°C a -20°C de una manera rápida establecida por la norma y así cada 24 horas durante dichos días, previamente habiendo impregnado la pieza en agua con sal. Al terminar los ciclos se puede rascar la superficie y pesar los gramos del material de la pieza que se han degradado, dándose así el resultado obtenido.

A partir de las piezas originales, se prepararon 3 probetas de dimensiones 125 x 125 mm manteniendo todo el grosor. Se realizaron 28 ciclos de hielo-deshielo, tal como se indica en la figura 3, empleando una solución de sales descongelantes al 3% de NaCl. Las piezas fueron hidrofugadas previamente al ensayo. Se obtuvieron los siguientes resultados:

5

Probeta (nº)	Area superficie de ensayo (m²)	Masa del material desprendido tras 28 ciclos (kg)	Pérdida de masa por unidad de área de la probeta (kg/m²)
1	0,015625	0,000	0,0
2	0,015625	0,000	0,0
3	0,015625	0,000	0,0
		Media	0,0
		Máximo individual	0,0

En base a la norma UNE-EN 1339:2004 + UNE-EN 1339:2994/AC:20016:

Según la nor requisitos:	ma UNE-EN	1339:2004 + UNE-EN 1339:2004/AC:20016, las baldosas deben cumplir los siguientes
Clase	Marcado	Pérdida de masa después del ensayo hielo-deshielo con sales anticongelantes
3	D	≤ 1,0 Kg/m² como media
		ningún valor individual > 1,5 kg/m²

10

15

Resultados 2d

La Resistencia climática utilizando el ensayo Hielo-deshielo con sales descongelantes es de un gran rigor porque durante 28 días cada 24 horas se ha pasado de una temperatura ambiente de 20°C a temperatura de -20°C, en pocas horas y cada día. El resultado puede considerarse como "mejor imposible" porque ha sido de 0,0 gramos de pérdida de masa, cuando la norma llega a aceptar un resultado de un kilogramo por metro cuadrado de promedio.

20

2e. Resistencia al deslizamiento/resbalamiento sin pulir (USRV)

Es un requerimiento esencial para el uso de cualquier pieza de pavimento exterior para que un viandante no resbale fácilmente si dicho pavimento está mojado. El control se efectúa con un artilugio en forma de péndulo, que situado sobre la superficie mojada, deja caer una zapata

de goma y su mayor o menor frenado al rozar la superficie de la pieza, levanta una aguja indicadora que queda a mayor o menor altura sobre un sector circular graduado, expresándose el valor alcanzado en esta graduación.

5 El ensayo de realizó en húmedo con el patín deslizante ancho sobre una superficie limpia de 126 mm.

Se obtuvieron los siguientes resultados:

Baldosa (nº)	Valor medio USRV de cada probeta	Valor mínimo de la muestra
1	51	
2	52	
3	48	48 USRV
4	49	
5	48	

10

<u>Según la norma UNE-EN 1339:2004 + AC:2006:</u>

Las baldosas de hormigón tienen una resistencia satisfactoria al deslizamiento/resbalamiento siempre y cuando la totalidad de su cara vista no haya sido pulida para producir una superficie muy lisa.

Si en algún caso excepcional se requiere un valor de la resistencia al deslizamiento/resbalamiento, se declarará el valor mínimo de resistencia al deslizamiento/resbalamiento.

Si la superficie de un adoquín contiene rugosidades, ranuras, surcos u otras características superficiales que impidan su ensayo por el método del péndulo de fricción, se considera que el producto satisface los requisitos establecidos por esta norma sin ser ensayado.

Bajo condiciónes normales de uso, las baldosas prefabricadas de hormigón tienen una satisfactoria durabilidad de la resistencia al deslizamiento/resbalamiento durante la vida útil del producto, siempre y cuando estén sometido a un mantenimiento normal, a menos que se haya empleado una gran proporción de áridos en su cara vista y se pulan excesivamente debido al uso.

<u>Según la norma UNE 127339:2012,</u> cuando se precise por motivos de seguridad en uso, se recomienda un valor superior a 45.

Según el Código Técnico de la Edificación, Sección SU1 SEGURIDAD FRENTE AL RIESGO DE CAIDAS, con el fin de limitar el riesgo de resbalamiento, los suelos de los eificios o zonas de uso residencial Público, Sanitario, Docente, Comercial, Administrativo y Pública Concurrencia, tendrán una clase adecuada conforme a la siguiente tabla, efectuando el ensayo de resistencia al deslizamiento/resbalamiento de los pavimentos (USRV) con la superficie húmeda con abundante agua según indica la norma UNF-FNV 12633:2003:

la norma UNE-ENV 12633:2003:						
Tabla 1.1; Clasificación de los suelos	s según su resbaladicidad	_				
Resistencia al deslizamiento R _d	Según el resultado de ensayo, la					
R _d ≤15	sifica como					
15 <r<sub>d≤35</r<sub>						
35 <r<sub>d≤45</r<sub>	: 3					
R _d >45						
Tabla 1.2; Clase ex	rigible a los suelos en func	ión de su localización				
Localización	Clase					
Zonas interiores secas :						
superficies con pendiente <6º	1					
superficies con pendiente ≥6°	% y escaleras		2			
Zonas interiores húmedas, tales com	o las entradas a los edif	ficios desde el espacio				
exterior (1), terrazas cubiertas, vestuarios,	baños, aseos, cocinas, etc.					
superficies con pendiente <60			2			
superficies con pendiente ≥6°	3					
Zonas exteriores. Piscinas ⁽²⁾ . Duchas	3					
(1) Excepto cuando se trate de accesos directos a zo	Excepto cuando se trate de accesos directos a zonas de uso restringido.					
(2) Zonas previstas para usuarios descalzos y en el fo	ondo de los vasos, en las zonas en las	s que la profundidad no exceda d	le 1,5m.			

Resultados 2e

La Resistencia al deslizamiento/resbalamiento sin pulir, con un resultado de 48 en húmedo, supera el resultado de 45, con lo cual se clasifica como Clase 3, que es el requerimiento máximo, para superficies en pendiente, escaleras, piscinas y duchas. Las Normas Europeas para pavimentos consideran la resistencia al deslizamiento/resbalamiento como requerimiento esencial y el resultado de las piezas de la invención en este ensayo inicial de tipo cumple satisfactoriamente.

5 EJEMPLO 3

10

15

Como material a analizar se utilizaron piezas de la invención con la composición del ejemplo 2 y cuyas dimensiones eran de 80 x 50 x 3 cm (Cabe indicar que se utilizan estas medidas de acuerdo con la norma del material compuesto – GFRC). Sobre dicha pieza se realizó un ensayo de Resistencia a flexión del GRC (hormigón reforzado con vidrio) (ensayo completo) de acuerdo con la norma UNE-EN 1170-5:1998.

Al tratarse de piezas muy largas, estrechas y delgadas, su durabilidad está fuertemente vinculada a su resistencia a flexión, tanto para un uso como pavimento como para un uso como cerramiento de paredes,

En consecuencia, su control de calidad se basa en el control de su resistencia a flexión. Los ensayos correspondientes se efectúan conforme a normas europeas concretas que desde hace casi 20 años controlan los materiales con ligante hidráulico que contienen altas dosis de fibra de vidrio, concretamente son las normas UNE EN 1170-5. La normativa opera apoyando sobre dos rodillos de acero las piezas o los trozos representativos de piezas a una cierta distancia o luz entre apoyos que establece la norma y que es variable en función del tamaño de los trozos llamados probetas. En el centro de esta luz entre rodillos de apoyo, se aplica la carga de forma creciente y a una velocidad constante, hasta que la pieza o probeta se va deformando y finalmente se rompe. La máquina de laboratorio que hace el ensayo refleja en una gráfica como va subiendo la carga y que deformación va produciendo, expresa cual es la carga máxima registrada y cual es finalmente la deformación de rotura.

5

10

15

Durante 24 horas previas al ensayo las probetas se sumergieron en un tanque lleno de agua $(20 \pm 2^{\circ}\text{C})$. Se aplicó una carga a una velocidad de (10 ± 1) N/s de acuerdo con las figuras 4A y 4B. Las probetas T1, T3, B1 y B3 se colocan con la cara "molde" hacia abajo sobre los dos soportes inferiores, y las probetas T2, T4, B2 y B4 se colocan con la cara "molde" en contacto con los soportes superiores.

Los resultados se indican en las tablas siguientes y en los gráficos de las figuras 5 y 6:

RESULTADOS A 7 DÍAS: (rotura el día 16/08/2017)								
Probeta (mm)	Distancia entre ejes (mm)	Ancho (mm)	Grueso (mm)	Contenid o de agua W (%)	Carga de rotura (N)	Tensió de rotur Flexión s (Mpa)	a a MOR	Valor Medio S _{MOR} (Mpa)
T1	300	48,9	31,2	6,1	2022	12,7		
T2	300	48,9	30,5	5,9	1893	12,5		
T3	300	49,2	30,7	6,1	2071	13,4		
T4	300	48,6	31,3	6,0	1818	11,5		12,3
B1	300	49,4	30,3	6,0	2037	13,5		12,3
B2	300	49,3	30,6	5,9	1748	11,4		
B3	300	49,5	30,3	5,9	1813	12,0		
B4	300	49,5	30,3	6,0	1780	11,7		
Pola	ciones entr	o lac	(T1+T2+T3+T4)/(B1+B2+B3+B4)					1,0
				(T1+T3)/	(T2+T4)			1,1
tensiones medias de rotura				(B1+B3)/	(B2+B4)			1,1

RESULTADOS A 7 DÍAS: (rotura el día 16/08/2017)									
	Límite	e de proporcionali	idad (LOP)	Punto de rotura (MOR)					
Probeta	Flecha	Deformación	Tensión	Flecha	Deformación	Tensión			
(nº)	D _{LOP} (mm)	e _{LOP}	S _{LOP} (MPa)	D _{MOR} (mm)	e _{mor}	S _{MOR} (MPa)			
T1	0,57	0,0009	12,7	0,57	0,0009	12,7			
T2	0,48	0,0008	12,5	0,48	0,0008	12,5			
T3	0,39	0,0006	13,4	0,39	0,0006	13,4			
T4	0,39	0,0006	11,5	0,39	0,0006	11,5			
B1	0,36	0,0006	13,5	0,36	0,0006	13,5			
B2	0,31	0,0005	11,4	0,31	0,0005	11,4			
В3	0,34	0,0005	12,0	0,34	0,0005	12,0			
B4	0,31	0,0005	11,7	0,31	0,0005	11,7			
Valor me	dio	0,0006	12,3		0,0006	12,3			

RESULTADOS A 28 DÍAS: (rotura el día 06/09/2017)									
Probeta (mm)	Distancia entre ejes (mm)	Ancho (mm)	Grueso (mm)	Contenid o de agua W (%)	Carga de rotura (N)	Tensió de rotur Flexión s (Mpa	a a MOR	Valor Medio S _{MOR} (Mpa)	
T1	300	50,0	27,1	6,0	1511	12,3			
T2	300	48,7	27,6	6,1	1551	12,5			
T3	300	49,5	27,3	6,1	1728	14,0			
T4	300	51,4	27,1	6,2	1755	13,9		13,0	
B1	300	47,3	31,2	6,0	2014	13,1		13,0	
B2	300	45,4	26,6	6,1	1540	14,4			
В3	300	49,0	26,9	5,9	1309	11,1			
B4	300	46,8	27,0	6,0	1450	12,7			
Dolo	olonos ontu	م امم	(T1+T2+T3+T4)/(B1+B2+B3+B4)					1,0	
	ciones entr es medias d			(T1+T3)	/(T2+T4)			1,0	
CONSIGNA	tensiones medias de rotura			(B1+B3)	/(B2+B4)			0,9	

RESULTADOS A 28 DÍAS: (rotura el día 06/09/2017)						
	Límite de proporcionalidad (LOP)			Punto de rotura (MOR)		
Probeta	Flecha	Deformación	Tensión	Flecha	Deformación	Tensión
(nº)	D _{LOP} (mm)	e _{LOP}	S _{LOP} (MPa)	D _{MOR} (mm)	e _{mor}	S _{MOR} (MPa)
T1	0,33	0,0005	12,3	0,33	0,0005	12,3
T2	0,27	0,0004	12,5	0,27	0,0004	12,5
T3	0,38	0,0005	14,0	0,38	0,0005	14,0
T4	0,44	0,0006	13,9	0,44	0,0006	13,9
B1	0,29	0,0005	13,1	0,29	0,0005	13,1
B2	0,4	0,0006	14,4	0,40	0,0006	14,4
В3	0,18	0,0003	11,1	0,18	0,0003	11,1
B4	0,36	0,0005	12,7	0,36	0,0005	12,7
Valor medio		0,0005	13,0		0,0005	13,0

Este ensayo es un control que se suele considerar muy técnico, muy riguroso, porque controla ya no sólo la rotura, sino que controla la **forma** cómo se produce la rotura (muy importante en un producto tan largo y delgado) que debe ser **NO SÚBITA, sino previa deformación**, es decir **no rotura frágil** sino con una pseudo-ductilidad. Esto es lo requerido internacionalmente para los materiales GRC y UHPC (Ultra-High Performance Concrete) que implican altas dosificaciones de fibra.

Cabe indicar las curvas CARGA-FLECHA son parecidas a las curvas de TENSIÓN-DEFORMACIÓN que controlan materiales dúctiles homogéneos.

El material de la invención, previamente habiendo sido castigado a 24 horas de inmersión en agua tal como exige esta norma, obtiene 12,5 MPa de promedio a 7 días y 13 MPa a 28 días, y lo que es más importante, las gráficas expresan que el comportamiento es elástico hasta alcanzar su máxima Carga, puesto que se observa el diagrama con una pendiente casi recta hasta alcanzar sus máximos, para luego ir deformando y deformando hasta la rotura total. Esto indica que no es una rotura frágil porque las fibras no se dejan romper y la Carga para poder romper la pieza se ve obligada a arrancarlas.

5

REIVINDICACIONES

- Pieza caracterizada porque su composición comprende los siguientes componentes: fibras
 de vidrio alcaliresistentes o fibras de aceros especiales o fibras de polipropileno o
 combinaciones de las mismas, ligante hidráulico de cemento, pigmentos inorgánicos,
 policarboxilato, arenillas silíceas o graníticas y agua, y porque presenta una longitud entre 180
 y 240 cm, una anchura entre 10 y 15 cm y un grosor entre 2 y 5 cm.
- 2. Pieza, según la reivindicación 1, caracterizada porque presenta una longitud de 200 cm, una anchura de 12,5 cm y un grosor de 3 cm.
 - 3. Pieza, según la reivindicación 1 o 2, caracterizada porque su composición comprende, además, nanosílice, o metacaolín, o grafeno en forma de nanofibras, o polímero acrílico, o una combinación de los mismos.
 - 4. Pieza, según cualquiera de las reivindicaciones 1 a 3, caracterizada porque el ligante hidráulico de cemento está presente en la composición en una cantidad entre 600 y 1.000 kg por metro cúbico de composición total.

20

- 5. Pieza, según cualquiera de las reivindicaciones 1 a 4, caracterizada porque el ligante hidráulico de cemento es cemento Portland blanco o gris, o cemento magnesiano, o cal hidráulica, o cenizas volantes, o una combinación de los mismos.
- 6. Pieza, según cualquiera de las reivindicaciones 1 a 5, caracterizada porque las fibras de vidrio alcaliresistentes o fibras de aceros especiales o fibras de polipropileno o combinaciones de los mismos están presentes en la composición en una cantidad entre 40 y 100 kg por metro cúbico de composición total.
- 7. Pieza, según cualquiera de las reivindicaciones 1 a 6, caracterizada porque las arenas silíceas o graniticas están presentes en la composición entre 700 y 1.000 kg por metro cúbico de composición total.
- 8. Pieza, según cualquiera de las reivindicaciones 1 a 7, caracterizada porque el policarboxilato está presente en la composición en una cantidad entre 10 y 30 kg por metro cúbico de composición total.

9. Pieza, según cualquiera de las reivindicaciones 1 a 8, caracterizada porque el agua está presente en la composición en una cantidad entre 150 y 300 litros por metro cúbico de composición total.

5

10. Pieza, según cualquiera de las reivindicaciones 1 a 9, caracterizada porque los pigmentos inorgánicos están presentes en la composición en una cantidad entre 5 y 30 kg por metro cúbico de composición total.

10

11. Pieza, según cualquiera de las reivindicaciones 3 a 10, caracterizada porque el polímero acrílico está presente en la composición en una cantidad entre 20 y 100 kg por metro cúbico de composición total.

15

12. Pieza, según cualquiera de las reivindicaciones 3 a 11, caracterizada porque el grafeno en forma de nanofibras está presente en la composición entre 1 y 30 kg por metro cúbico de composición total.

20

- 13. Pieza, según cualquiera de las reivindicaciones anteriores, caracterizada porque comprende además dióxido de titanio anatasa sin dopar fotocatalíticamente activo.
- 14. Procedimiento para la formación de una pieza, según cualquiera de las reivindicaciones anteriores, que comprende las etapas de:
- (a) mezclar los componentes.
- (b) verter los componentes en moldes mediante gravedad, inyección o bombeo y 25 compactación simultánea.
 - (c) colocar los moldes en cámaras de endurecimiento a una temperatura entre 20º y 70°C y humedad entre 60% y 100%.
 - (d) desmoldar las piezas de los moldes.

30

- 15. Utilización de una pieza, según cualquiera de las reivindicaciones 1 a 13, para el revestimiento de suelos.
 - 16. Utilización de una pieza, según cualquiera de las reivindicaciones 1 a 13, para el revestimiento o formación de paredes.

Figura 1

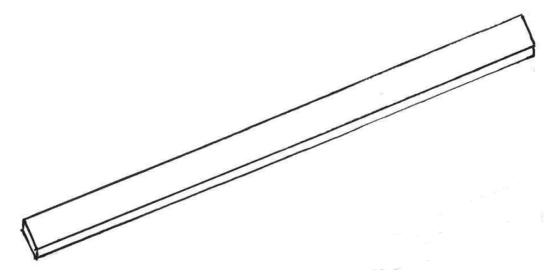


Figura 2A

Figura 2B

Figura 3

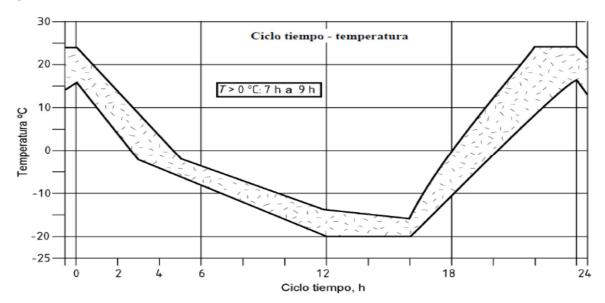


Figura 4A

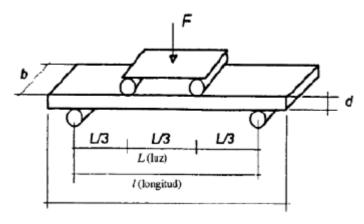
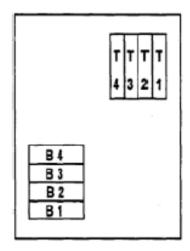
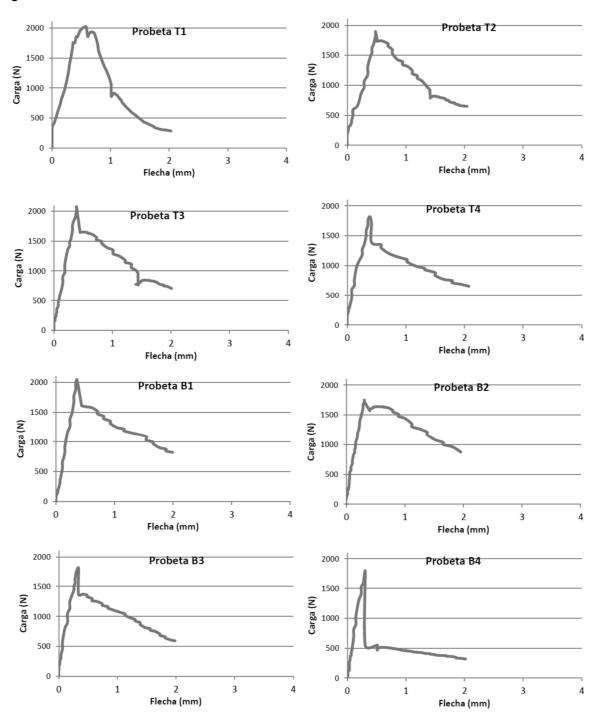
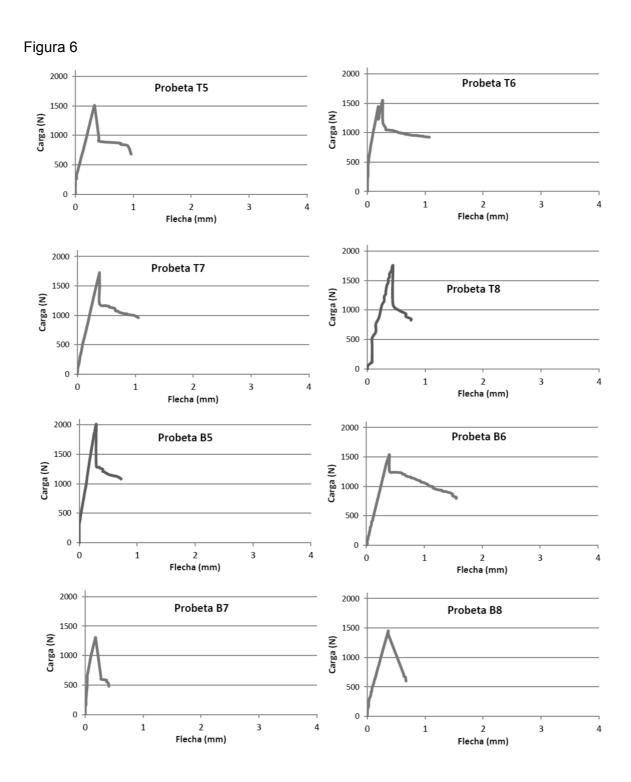





Figura 4B

