

OFICINA ESPAÑOLA DE PATENTES Y MARCAS

ESPAÑA

11) Número de publicación: 2 715 638

51 Int. Cl.:

C07K 14/00 (2006.01)
A61K 38/00 (2006.01)
A61K 38/16 (2006.01)
C07K 14/195 (2006.01)
C07K 14/315 (2006.01)
C07K 14/47 (2006.01)

(12)

TRADUCCIÓN DE PATENTE EUROPEA

T3

(86) Fecha de presentación y número de la solicitud internacional: 19.02.2013 PCT/SE2013/050139

(87) Fecha y número de publicación internacional: 29.08.2013 WO13126006

96 Fecha de presentación y número de la solicitud europea: 19.02.2013 E 13752233 (0)
 97 Fecha y número de publicación de la concesión europea: 02.01.2019 EP 2817329

54 Título: Polipéptidos que se unen al complemento humano C5

(30) Prioridad:

20.02.2012 SE 1250145

Fecha de publicación y mención en BOPI de la traducción de la patente: 05.06.2019 (73) Titular/es:

SWEDISH ORPHAN BIOVITRUM AB (PUBL) (100.0%)
112 76 Stockholm, SE

(72) Inventor/es:

BERGHARD, CHARLOTTA; BERGLUND, MAGNUS; STRÖMBERG, PATRIK; LINDBORG, MALIN; GUNNERIUSSON, ELIN y FELDWISCH, JOACHIM

(74) Agente/Representante:

CAMPELLO ESTEBARANZ, Reyes

DESCRIPCIÓN

Polipéptidos que se unen al complemento humano C5

5 Campo técnico

La presente descripción se refiere a polipéptidos que se unen al componente del complemento humano 5 (C5) y al uso de dichos polipéptidos en terapia.

10 Antecedentes

La proteína del complemento C5 es un componente principal del sistema del complemento; una parte clave del sistema inmunitario innato. El sistema del complemento es un sistema de supervivencia inmunitario intrincado con numerosas tareas en diversos procesos estrechamente controlados. Una de sus funciones es como defensa del huésped de la primera línea contra una infección a través de otros organismos mediante la discriminación de los tejidos huésped sanos de los restos celulares y células apoptóticas y necróticas. Además, está involucrado en la depuración de los complejos inmunitarios, la regulación de la respuesta inmunitaria adaptiva, la promoción de la regeneración tisular, la angiogénesis, la movilización de las células madre, y el desarrollo del sistema nervioso central (Woodruff *et al.* Mol Immunol 2011, 48 (14):1631-1642); Ricklin *et al.* Nat Immunol 2010, 11(9):785-795).

Cualquier desencadenante, por ejemplo, activación errónea o sin restricciones o regulación insuficiente, que altere el fino equilibrio de la activación y la regulación del complemento pueden llevar a afecciones patológicas, incluyendo el auto-ataque de las células huésped, lo que conduce a un extenso daño tisular.

El sistema del complemento consiste en aproximadamente 30 proteínas. Existen tres trayectorias para iniciar la 25 inmunidad del complemento; la trayectoria clásica que emplea C1q para reconocer complejos inmunitarios en la superficie de las células, la ruta de lectina que se inicia cuando la lectina de unión a manosa (MLB) reconoce ciertos azúcares y la ruta alternativa que se inicia espontáneamente por la hidrólisis del factor del complemento 3 (C3), un proceso suprimido por ciertas moléculas de superficie de la célula que no están presentes en los patógenos invasores. La ruta alternativa también actúa como un bucle de amplificación para el sistema del complemento. Las 30 tres rutas convergen en el nivel de C3. La escisión de C3 en C3a y C3b conduce a la formación de una convertasa que, a su vez, escinde el factor del complemento 5 (C5) en C5a y C5b. C5a es un atrayente muy potente de diversas células inmunitarias, mientras C5b se oligomeriza con C6-9 para formar un poro conocido como el complejo de ataque a membrana (MAC) o a veces el complejo terminal del complemento (TCC). La activación del sistema del complemento conduce a varios mecanismos con el propósito de neutralizar el patógeno; la formación del MAC en la 35 superficie de una célula tal como una bacteria invasora que conduce a la lisis, la disposición de los productos de escisión de C3 C4, C3b y C4b ayuda a la opsonización que conduce a la fagocitosis del patógeno por medio de macrófagos y anafilatoxinas tal como C3a y C5a atrae monocitos y neutrófilos al sitio de la activación, regula positivamente los marcadores de superficie lo que conduce a una susceptibilidad inmunológica aumentada y a la liberación de citocinas. 40

C5 es una glucoproteína de 190 kDa compuesta por 2 cadenas polipeptídicas ligadas a disulfuro, alfa y beta, con una masa molecular de 115 y 75 kDa, respectivamente (Tack et al. Biochem 1979, 18:1490-1497). Haviland et al. (J Immun 1991, 146: 362-368) construyeron la secuencia de ADNc completa del complemento humano pro-C5, que se pronostica que codifica una pro-molécula del aminoácido 1.676 que contiene un péptido líder del aminoácido 18 y un conector del aminoácido 4 que separa las cadenas alfa y beta. El bloqueo de la escisión de C5 en C5a C5b evita la formación de MAC y la formación de C5a pro-inflamatorio, pero deja el sistema efector del complemento aguas arriba intacto permitiendo la opsonización mediada por C3/C4.

El papel clave del sistema del complemento en la defensa contra patógenos en general hace de éste un objetivo interesante para intervención farmacéutica. Esto se enfatiza por el hecho de que muchas mutaciones o regulaciones alteradas del complemento están involucradas en diversas enfermedades y afecciones. Estas incluyen la susceptibilidad aumentada a enfermedades autoinmunes tales como lupus eritematoso sistémico (SLE), donde la deposición de los complejos inmunitarios activa la ruta clásica (Manderson et al. Annu Rev Immunol 2004, 22:431-456). Además, las mutaciones de las proteínas del complemento C1-C5 a menudo dan como resultado SLE o síntomas de tipo SLE. Otras enfermedades autoinmunes con una fuerte participación del sistema del complemento son artritis reumatoide (AR), donde los complejos inmunitarios pueden activar el complemento en la articulación de la AR, síndrome de Sjógren, dermatomiositis y otras enfermedades estimuladas por el autoanticuerpo, tales como síndrome de Guillain-Barré (GBS), síndrome de Fisher (Kaida et al. J. Neuroimmun 2010, 223:5-12) diferentes tipos de vasculitis, esclerosis sistémica, membrana basal anti-glomerular (anti-GBM) y el síndrome anti-fosfolípido (APS)

(Chen et al. J Autoimmun 2010, 34:J276-J286).

El sistema del complemento además está involucrado en los trastornos neurodegenerativos tales como la enfermedad de Alzheimer (EA), donde las placas Aβ activan directamente el sistema del complemento que conduce 5 al reclutamiento mediado por C5a de la microglía. Esto además se confirma cuando un antagonista de C5aR demostró ser neuroprotector en un modelo de ratón de EA (Fonseca et al. J Immunol 2009, 183:1375-1383). Los auto-anticuerpos contra el receptor de acetilcolina y la posterior activación del complemento son la causa más común de miastenia gravis, una enfermedad que afecta a las uniones neuromusculares (Toyka y Gold, Schweizer Archive Neurol Psych 2007, 158:309-321). La formación del MAC está involucrada en la patofisiología de la 10 esclerosis múltiple (EM) (Oh et al. Immunol Res 2008, 40:224-234). Además, en la enfermedad de Parkinson, la enfermedad de Huntington y las enfermedades por priones, tal como enfermedad de Creutzfeld-Jacob, la activación del complemento es una parte de la patología (Bonifati y Kishore, Mol Immunol 2007, 44:999-1010). En la cicatrización de heridas, las respuestas inflamatorias son un componente clave para restaurar la homeostasis tisular y el sistema del complemento está involucrado en el temprano reconocimiento del tejido dañado. Sin embargo, en 15 modelos de heridas crónicas y quemaduras severas, por ejemplo, la inhibición del complemento, por ejemplo, por el inhibidor de C1 dio como resultado una cicatrización mejorada y un daño tisular reducido sugiriendo ese complemento. Además, diversas deficiencias del complemento, tales como se ilustra por el ratón con inactivación genética de C4, se han encontrado como protectoras contra daños tisulares a largo plazo que son resultado de heridas (revisado en Cazender et al. Clinical and Developmental Immunology 2012, publicación en línea). Por último, 20 se ha demostrado que el crecimiento tumoral y la proliferación se facilitan por la activación del complemento, en particular por C5a, y que el bloqueo del receptor de C5a ralentiza este proceso. Además, los ratones que carecen de C3 muestran un crecimiento tumoral significativamente más lento que sus crías naturales (Markiewski et al. Nat Immunol 2008, 9:1225-1235).

- 25 La regulación disfuncional del complemento es la causa de varias afecciones de raras a ultra-raras, tales como hemoglobinuria nocturna paroxística (PNH) y síndrome urémico hemolítico atípico (aHUS), donde la hemólisis es un rasgo clave en la patología. En PNH, un clon de las células madres hematopoyéticas con el gen PIG-A mutado que codifica la subunidad A de fosfatidilinositol N-acetilglucosaminiltransferasa se apodera de un grupo de células sanguíneas. Esta mutación conduce a la pérdida de proteínas ancladas por GPI tales como los reguladores del 30 complemento CD55 y CD59. Los glóbulos rojos que carecen de CD55 y CD59 en la superficie se exponen a la lisis mediada por el complemento por MAC. Clínicamente, la PNH se manifiesta por la hemólisis que conduce a anemia, trombosis y aplasia medular. HUS atípica está provocada por mutaciones en las proteínas reguladoras de principalmente la ruta alternativa, tal como por mutaciones en el factor H.
- 35 El ojo es fuertemente indicado como un sitio para la patología inducida por el complemento. La causa más común de pérdida visual es la degeneración macular relacionada con la edad (AMD) donde, en su forma más grave (AMD exudativa o húmeda), las membranas neurovasculares coroideas patológicas se desarrollan bajo la retina. En Estados Unidos, aproximadamente el 10% de la población con edades de 65-74 muestran signos de degeneración macular y como máximo el 5% tienen deterioro visual como resultado de la AMD. Estos números aumentan do drásticamente con la edad, pero también existen factores genéticos. Entre estos genes los más fuertes asociados con la AMD son el factor del complemento H, factor B y C3 y el inhibidor de C1 (Bradley et al. Eye 2011, 25:683-693). Además, varios estudios y ensayos clínicos que utilizan varias moléculas de bloqueo del complemento han demostrado ser beneficiosas, sugiriendo que una molécula de bloqueo C5 podría ayudar a este grupo de pacientes. Sin embargo, los tratamientos actuales de AMD avanzada se dirigen hacia la inhibición de la vascularización inducida por el factor de crecimiento endotelial vascular (VEGF) mediante inyecciones intra-vítreas de, por ejemplo, Ranibizumab (fragmento de anticuerpo monoclonal) y Bevacizumab (anticuerpo monoclonal). En modelos de animal de uveítis, la inflamación del ojo debido a las respuestas inmunitarias a antígenos oculares, los anticuerpos de bloqueo frente al factor B de la ruta alternativa (Manickam et al. J Biol Chem 2011, 286:8472-8480), así como contra C5 (Copland et al. Clin Exp Immunol 2009, 159:303-314), mejoran el estado de la enfermedad.

En el trasplante de órganos sólidos, existen dos rutas mecánicas principales que conducen al rechazo o función retrasada/alterada del injerto: 1) las barreras inmunológicas entre el donante y el receptor con respecto al grupo sanguíneo (ABO) y las clases MCH, así como el grado de presensibilización del receptor frente al donante, es decir, la aparición de anticuerpos específicos del donante (DSA) que llevan a un rechazo agudo mediado por el anticuerpo (AMR); y 2) la condición del órgano trasplantado, así como el periodo de tiempo en que se ha mantenido sin una perfusión de sangre constante, es decir, el grado de daño isquémico o lesión por reperfusión/isquemia (IRI) del injerto. En ambas, AMR e IRI, el sistema del complemento está atacando al órgano reconocido como foráneo y, por lo tanto, una entidad que debe rechazarse. En AMR, los anticuerpos anti-donante preexistentes rápidamente forman complejos inmunitarios en la superficie del órgano foráneo, lo que conduce al reconocimiento por medio de C1q y la

posterior activación del sistema del complemento vía la ruta clásica. Este proceso, conocido como rechazo híperagudo, sucede en minutos y, por consiguiente, el moderno trasplante de órganos incompatibles incluye la eliminación de DSA antes del trasplante por medio de plasmaféresis o intercambio plasmático e IgG intravenosa combinada con diferentes inmunosupresores. Los nuevos tratamientos también incluyen agotamiento de linfocitos B a través del uso del anticuerpo anti-CD20 Rituximab (Genberg et al. Transplant 2008, 85:1745-1754). Estos protocolos han eliminado vastamente la aparición del rechazo híper-agudo, pero aún, en pacientes altamente sensibilizados, la incidencia de AMR aguda (semanas-meses) es tan alta como del 40% (Burns et al. Am J Transplant 2008, 6:2684-2694; Stegall et al. Am J Transplant 2011, publicación en línea anterior). Con respecto a IRI, la mayor parte de los puntos de evidencia en la ruta terminal con la posterior formación de MAC y la lisis como la causa principal del daño celular. Por lo tanto, un polipéptido de bloqueo de C5 sería protector contra el rechazo independientemente de que la causa sea AMR, IRI o, como sucede a menudo, una combinación tanto de AMR como de IRI. Como se esperaba, los órganos altamente perfundidos, tales como el hígado (Qin et al. Cell Mol Immunol 2006, 3:333-340), el corazón y los riñones son particularmente susceptibles al daño mediado por el complemento.

15 La colocación central de la proteína C5; la conexión de las partes próxima y terminal de la cascada del complemento, las hace un objetivo atractivo para intervención farmacéutica. Debido a que C5 es común en todas las rutas de la activación del complemento, el bloqueo de C5 detendrá el avance de la cascada independientemente del estímulo y evita de este modo las propiedades perjudiciales de la activación del complemento terminal mientras deja las funciones inmunoprotectoras e inmunorreguladoras de la cascada del complemento proximal intactas.

20 Se conocen anticuerpos dirigidos al complemento humano C5 a partir de los documentos, por ejemplo, WO 95/29697; WO 02/30985; y WO 2004/007553. Eculizumab (Soliris™) es un anticuerpo monoclonal humanizado dirigido contra la proteína C5 y previene la escisión de C5 en C5a y C5b. Eculizumab ha demostrado ser eficaz en el tratamiento de PNH, una enfermedad rara y a veces mortal de la sangre caracterizada por anemia hemolítica 25 intravascular, trombofilia y aplasia medular, y está aprobado para esta indicación. Eculizumab también fue recientemente aprobado por la FDA para el tratamiento del síndrome hemolítico atípico (aHUS), una enfermedad rara pero potencialmente mortal provocada por la pérdida del control de la ruta del complemento alternativa que conduce a la sobre-activación manifestada como microangiopatía trombótica (TMA) que conduce a un riesgo de daño constante en los órganos vitales, tales como el riñón, el corazón y el cerebro. En aHUS, el trasplante del 30 órgano dañado solo ayuda temporalmente al paciente ya que el hígado continúa produciendo la forma mutada de la proteína de control (casi siempre el factor del complemento H u otras proteínas de la ruta alternativa). Una enfermedad relacionada con una patofisiología aguda transitoria es HUS causado por infección de E. coli positivo para la toxina Shiga (STEC-HUS) (STEC-HUS) y existen datos prometedores que sugieren la eficacia también para esta afección (Lapeyraque et al. N Engl J Med 2011, 364:2561-2563). Finalmente, el anticuerpo de bloqueo de C5 35 Eculizumab ha demostrado ser eficaz en la prevención de AMR en receptores de riñones altamente incompatibles (Stegall, M. D. et al. Am J Transplant 2011, 11:2405-2413).

Aparte de los anticuerpos de longitud completa, se describen en la bibliografía los fragmentos variables monocatenarios (scFV), minicuerpos y aptámeros que activan C5. Estos inhibidores de C5 pueden unirse a través de diferentes sitios (epítopos) en la molécula C5 y pueden tener diferentes modos de acción. Por ejemplo, mientras Eculizumab interactúa con C5 a cierta distancia del sitio de escisión de convertasa, el minicuerpo Mubodina® interactúa con el sitio de escisión de C5. Se ha formulado la hipótesis de que inhibidor del complemento *Ornithodoros moubata* de la proteína inhibidora de C5 (OmCl, Nunn, M. A. *et al.* J Immunol 2005, 174:2084-2091) de la garrapata blanda *Ornithodoros moubata* se une al extremo distal del superdominio CUB-C5d-MG8, que está cerca del sitio de escisión de la convertasa (Fredslund *et al.* Nat Immunol 2008, 9 (7):753-760). En contraste con las tres proteínas mencionadas anteriormente que inhiben la escisión de C5, el anticuerpo monoclonal TNX-558 se une a un epítopo C5a presente tanto en C5 intacto como en C5a liberado sin inhibir la escisión de C5. (Fung *et al.* Clin Exp Immunol 2003, 133 (2):160-169).

50 Los anticuerpos con sus puentes disulfuro grandes de estructura multidominio, intra-cadena 12 e inter-cadena 4 y los patrones de glucosilación de complejo, tienen varias desventajas intrínsecas relacionadas con su estructura molecular. Por ejemplo, el tamaño del Eculizumab es de aproximadamente 148 kDa. La concentración de C5 en sangre humana es de aproximadamente 400 nM y con el fin de bloquear la actividad de C5 completamente, la concentración del inhibidor deber ser al menos igual o mayor que ésta. Por consiguiente, el régimen de tratamiento a 55 largo plazo estándar de PNH usando Soliris™ son infusiones intravenosas de 900 mg de proteína cada dos semanas, un tratamiento que principalmente tiene lugar en la clínica que conduce a una gran inconveniencia para el paciente y coste para la sociedad. También se ha notificado que Soliris™ causa dolor de pecho, fiebre, escalofríos, picazón, urticaria, enrojecimiento de la cara, sarpullido, mareos, problemas para respirar, o hinchazón de la cara, lengua y garganta, a pesar de que las razones de estos efectos secundarios no son claras. Además, no está activo

en ningún modelo de animal ensayado, incluyendo primates, imposibilitando los estudios de animales con el fármaco activo. Como se menciona anteriormente, los tratamientos actuales de AMD también dependen del anticuerpo y, por lo tanto, los tratamientos basados en inyecciones u otras rutas de administración con moléculas de menor peso molecular, son altamente requeridos.

Además, la producción del anticuerpo es más difícil y más costoso que la producción de pequeñas proteínas (Kenanova *et al.* Expert Opin Drug Deliv 2006, 3 (1):53-70). Otros inconvenientes generalmente relacionados con los anticuerpos se enumeran por Reilly *et al.* (Clin Pharmacokinet 1995, 28:126-142), tal como la reactividad cruzada y la unión no específica a tejidos normales, un metabolismo aumentado de los anticuerpos inyectados y la formación de anticuerpos anti-humanos (HAMA) que causan la reducción o pérdida del efecto terapéutico.

Por lo tanto, la provisión continua de agentes con actividad de bloqueo de C5 comparable sigue siendo un tema de interés sustancial dentro del campo. En particular, existe la necesidad continua de moléculas que eviten la cascada del complemento terminal, así como la formación de la molécula pro-inflamatoria C5a. También es de gran interés una provisión de usos de dichas moléculas en el tratamiento de la enfermedad.

Descripción

Es un objeto de la invención proporcionar nuevos agentes de unión a C5. Es además otro objeto de la invención 20 proporcionar nuevos agentes de unión a C5 para su uso en aplicaciones terapéuticas.

En un aspecto, se proporciona un polipéptido de unión a C5, que comprende un motivo de unión a C5, *BM*, cuyo motivo consiste en la secuencia de aminoácidos seleccionada de

```
25 i) 
EX<sub>2</sub>X<sub>3</sub>X<sub>4</sub>A X<sub>6</sub>X<sub>7</sub>EID X<sub>11</sub>LPNL X<sub>16</sub>X<sub>17</sub>X<sub>18</sub>QW X<sub>21</sub>AFIX<sub>25</sub> X<sub>26</sub>LX<sub>28</sub>D,
```

en la que, independientemente entre sí,

```
30
                           X<sub>2</sub> se selecciona de H, Q, S, T y V;
                           X<sub>3</sub> se selecciona de I, L, M y V;
                           X<sub>4</sub> se selecciona de A, D, E, H, K, L, N, Q, R, S, T e Y;
                           X<sub>6</sub> se selecciona de N y W;
35
                           X<sub>7</sub> se selecciona de A, D, E, H, N, Q, R, S y T;
                           X<sub>11</sub> se selecciona de A, E, G, H, K, L, Q, R, S, T e Y;
                           X<sub>16</sub> se selecciona de N y T;
                           X<sub>17</sub> se selecciona de I, L y V;
                           X<sub>18</sub> se selecciona de A, D, E, H, K, N, Q, R, S y T;
                           X<sub>21</sub> se selecciona de I, L y V;
40
                           X_{25} se selecciona de D, E, G, H, N, S y T;
                           X<sub>26</sub> se selecciona de K y S;
                           X<sub>28</sub> se selecciona de A, D, E, H, N, Q, S, T e Y;
                у
45
```

ii) una secuencia de aminoácidos que tiene al menos un 86% de identidad con la secuencia definida en i), en la que el polipéptido se une a C5;

en la que dicho motivo de unión a C5 forma parte de un dominio del conjunto de proteínas de tres hélices, y en la 50 que dicho polipéptido de unión a C5 muestra actividad de unión a C5 humano y a C5 de modelos animales, tales como ratón o rata.

La clase definida anteriormente de polipéptidos relacionados con la secuencia que tienen una afinidad de unión para C5 se deriva de una secuencia de polipéptido parental común. Más específicamente, la definición de la clase se basa en el análisis de un gran número de variantes de polipéptido aleatorias del polipéptido parental que se seleccionaron para su interacción con C5 en experimentos de selección. El motivo de unión a C5 identificado, o "BM", corresponde a la región de unión a diana del andamiaje parental, cuya región constituye dos hélices alfa dentro de un dominio del conjunto de proteínas tri-helicoidales. En el andamiaje parental, los residuos de aminoácidos variados de las dos hélices BM hélices BM constituyen una superficie de unión para la interacción con

la parte Fc constante de los anticuerpos. Por la variación aleatoria de los residuos de superficie de unión y la posterior selección de las variantes, la capacidad de interacción de Fc de la superficie de unión se ha reemplazado por una capacidad para la interacción con C5.

5 Como se considera en los siguientes Ejemplos, la selección de variantes de polipéptido de unión a C5 puede conseguirse, por ejemplo, por presentación en fagos para la selección de variantes sin tratamiento de un andamiaje proteico opcionalmente seguido de duración por afinidad y presentación en células para la selección de las variantes de unión a C5 maduradas por afinidad. Sin embargo, se entiende que cualquier sistema de selección, ya sea basado en fagos, basado en bacterias, basado en células u otro, puede utilizarse para la selección de los polipéptidos de 10 unión a C5.

Los términos "unión a C5" y "afinidad de unión a C5" como se utilizan en esta memoria descriptiva se refieren a una propiedad de un polipéptido que puede someterse a ensayo, por ejemplo, mediante el uso de tecnología de resonancia de plasmón superficial, tal como en un instrumento Biacore (GE Healthcare). La afinidad de unión a C5, 15 por ejemplo, puede someterse a ensayo en un experimento en el que C5 se inmoviliza en un chip sensor de un instrumento Biacore, y la muestra que contiene el polipéptido a someter a ensayo se pasa sobre el chip. Como alternativa, el polipéptido a someter a ensayo se inmoviliza en un chip sensor del instrumento, y una muestra que contiene C5, o un fragmento del mismo, se pasa sobre el chip. El experto en la técnica después puede interpretar los resultados obtenidos por medio de dichos experimentos para establecer al menos una medida cualitativa de la unión 20 del polipéptido a C5. Si se desea una medida cuantitativa, por ejemplo, para determinar la constante de disociación en equilibrio aparente KD para la interacción, también se pueden utilizar métodos de resonancia de plasmón superficial. Los valores de unión pueden definirse, por ejemplo, en un instrumento Biacore 2000 (GE Healthcare). C5 se inmoviliza en un chip sensor de la medición, y las muestras del polipéptido cuya afinidad se va a determinar se preparan por medio de dilución seriada y se inyectan sobre el chip. Los valores de K_D pueden calcularse entonces a 25 partir de los resultados utilizando, por ejemplo, el modelo de unión de Langmuir 1:1 del software BIAevaluation provisto por el fabricante del instrumento. El C5 o fragmento del mismo utilizado en la determinación de K_D, por ejemplo, pueden comprender la secuencia de aminoácidos representada por SEQ ID NO:760.

En una forma de realización, el polipéptido de unión a C5 de acuerdo con la presente invención, el polipéptido de 30 unión a C5 se une a C5 de tal forma que el valor de K_D de la interacción sea a lo sumo 1 x 10^{-6} M, tal como, a lo sumo 1 x 10^{-7} M, 1 x 10^{-8} M, o 1 x 10^{-9} M.

Un polipéptido de unión a C5 de acuerdo con la presente invención puede utilizarse como una alternativa para anticuerpos convencionales o sustancias de bajo peso molecular en diversas aplicaciones veterinarias y de 35 diagnóstico. En particular, el polipéptido de unión a C5 puede ser útil en cualquier método que requiera afinidad por C5 de un reactivo. Por consiguiente, el polipéptido de unión a C5 puede utilizarse como un reactivo de detección, un reactivo de captura, un reactivo de separación, un agente de diagnóstico o un agente terapéutico en dichos métodos.

- 40 Como un experto en la técnica comprenderá, la función de cualquier polipéptido, tal como la capacidad de unión a C5 de los polipéptidos como se definen en el presente documento, depende de la estructura terciaria del polipéptido. Por lo tanto, es posible hacer cambios menores en la secuencia de aminoácido de un polipéptido sin afectar en gran medida la estructura terciaria y función del mismo. Por lo tanto, en una forma de realización, el polipéptido comprende variantes modificadas del BM de i), que son de tal forma que la secuencia resultante es a menos un 89% idéntica a una secuencia que pertenece a la clase definida por i), tal como al menos un 93% idéntica, tal como al menos un 96% idéntica a una secuencia que pertenece a la clase definida por i). Por ejemplo, es posible que un residuo de aminoácido que pertenece a un cierto agrupamiento funcional de residuos de aminoácidos (por ejemplo, hidrófilo, polar, etc.) podría intercambiarse por otro residuo de aminoácido del mismo grupo funcional.
- 50 En otra forma de realización del polipéptido de unión a C5 como se define anteriormente, la secuencia de aminoácidos se selecciona de i) como se define anteriormente, y iii) una secuencia de aminoácidos que en las 13 posiciones variables como se representa por X_n, en la que n es 2-4, 6-7, 11, 16-18, 21, 25-26 y 28, tiene al menos un 84 % de identidad con la secuencia definida en i), y que en las posiciones 1, 5, 8-10, 12-15, 19-20, 22-24, 27 y 29 tiene al menos un 87% de identidad con la secuencia definida en i).

55

En una forma de realización del polipéptido de acuerdo con la presente invención, X_2 se selecciona de H, T y V. En otra forma de realización, X_2 se selecciona de T y V. En aún otra forma de realización, X_2 es V.

En una forma de realización del polipéptido de acuerdo con la presente invención, X3 se selecciona de I, L y V. En

ES 2 715 638 T3

otra forma de realización, X_3 se selecciona de I y L. En aún otra forma de realización, X_3 es I. En una forma de realización alternativa, X_3 es L.

En una forma de realización del polipéptido de acuerdo con la presente invención, X₄ se selecciona de A, D, E, K, L, 5 Q y R. En otra forma de realización, X₄ se selecciona de A, D, E, K y R. En aún otra forma de realización relacionada, X₄ se selecciona de D y E.

En una forma de realización del polipéptido de acuerdo con la presente invención, X6 es W.

10 En una forma de realización del polipéptido de acuerdo con la presente invención, X₇ se selecciona de A, D, N y T. En otra forma de realización, X₇ se selecciona de D y N. En aún otra forma de realización relacionada, X₇ es D. En una forma de realización alternativa, X₇ es N.

En una forma de realización del polipéptido de acuerdo con la presente invención, X₁₁ se selecciona de A, H, K, Q, R 15 y S. En otra forma de realización, X₁₁ se selecciona de A, H, K y R. En aún otra forma de realización relacionada, X₁₁ se selecciona de A, K y R. En aún otra forma de realización relacionada, X₁₁ se selecciona de K y R.

En una forma de realización del polipéptido de acuerdo con la presente invención, X₁₆ es T.

20 En una forma de realización del polipéptido de acuerdo con la presente invención, X₁₇ se selecciona de I y L. En otra forma de realización, X₁₇ es I. En una forma de realización alternativa, X₁₇ es L.

En una forma de realización del polipéptido de acuerdo con la presente invención, X₁₈ se selecciona de A, D, E, N, Q, S y T. En otra forma de realización, X₁₈ se selecciona de A, D, E, Q y S. En aún otra forma de realización 25 relacionada, X₁₈ se selecciona de D, E y Q. En aún otra forma de realización relacionada, X₁₈ se selecciona de D y E. En aún otra forma de realización relacionada, X₁₈ es D. En una forma de realización alternativa, X₁₈ es E.

En una forma de realización del polipéptido de acuerdo con la presente invención, X_{21} se selecciona de I y L. En otra forma de realización, X_{21} es I. En una forma de realización alternativa, X_{21} es L.

En una forma de realización del polipéptido de acuerdo con la presente invención, X_{25} se selecciona de E, H, N y T. En otra forma de realización, X_{25} se selecciona de E y N. En aún otra forma de realización relacionada, X_{25} es N.

En una forma de realización del polipéptido de acuerdo con la presente invención, X26 es K.

En una forma de realización del polipéptido de acuerdo con la presente invención, X₂₈ se selecciona de A, D, E, H, N, Q y S. En otra forma de realización del polipéptido divulgado anteriormente, X₂₈ se selecciona de A, D, E y S. En aún otra forma de realización relacionada, X₂₈ se selecciona de A, D y E. En aún otra forma de realización relacionada, X₂₈ se selecciona de D y E. En aún otra forma de realización relacionada, X₂₈ se selecciona de D y E. En aún otra forma de realización relacionada, X₂₈ se selecciona de D y E. En aún otra forma de realización relacionada, X₂₈ se selecciona de D y E. En aún otra forma de realización relacionada, X₂₈ se selecciona de D y E. En aún otra forma de realización relacionada, X₂₈ se selecciona de D y E. En aún otra forma de realización relacionada, X₂₈ se selecciona de D y E. En aún otra forma de realización relacionada, X₂₈ se selecciona de D y E. En aún otra forma de realización relacionada, X₂₈ se selecciona de D y E. En aún otra forma de realización relacionada, X₂₈ se selecciona de D y E. En aún otra forma de realización relacionada, X₂₈ se selecciona de D y E. En aún otra forma de realización relacionada, X₂₈ se selecciona de D y E. En aún otra forma de realización relacionada, X₂₈ se selecciona de D y E. En aún otra forma de realización relacionada, X₂₈ se selecciona de D y E. En aún otra forma de realización relacionada, X₂₈ se selecciona de D y E. En aún otra forma de realización relacionada, X₂₈ se selecciona de D y E. En aún otra forma de realización relacionada, X₂₈ se selecciona de D y E. En aún otra forma de realización relacionada, X₂₈ se selecciona de D y E. En aún otra forma de realización relacionada, X₂₈ se selecciona de D y E. En aún otra forma de realización relacionada, X₂₈ se selecciona de D y E. En aún otra forma de realización relacionada, X₂₈ se selecciona de D y E. En aún otra forma de realización relacionada, X₂₈ se selecciona de D y E. En aún otra forma de realización relacionada y E.

En una forma de realización del polipéptido de acuerdo con la presente invención, X₃X₄ se selecciona de LE y LD.

En una forma de realización del polipéptido de acuerdo con la presente invención, X₁₇X₁₈ se selecciona de IE y LD.

45 En las formas de realización anteriores del primer aspecto, se identifican los ejemplos de polipéptidos de unión a C5 que están dentro de la clase de polipéptidos. Se contempla que las formas de realización individuales anteriores pueden combinarse en todas las formas concebibles y aún estar dentro del alcance de la presente invención. Dichas combinaciones de formas de realización individuales definen una secuencia de aminoácidos restringida, en una o más de las posiciones X₂-X₂₈, de acuerdo como se comparó con la definición de aminoácido en i).

Las formas de realización anteriores de un polipéptido de unión a C5, por ejemplo, pueden combinarse de tal forma que el aminoácido i) cumple al menos cuatro de las siguientes ocho condiciones I-VIII:

```
I. X_2 es V;

II. X_3 se selecciona de I y L;

III. X_6 es W;

IV. X_7 se selecciona de D y N;

V. X_{17} se selecciona de I y L;

VI. X_{21} es L;
```

30

40

7

VII. X₂₅ es N; VIII. X₂₈ es D.

En algunos ejemplos de un polipéptido de unión a C5 de acuerdo con el primer aspecto, la secuencia de 5 aminoácidos i) cumple al menos cinco de las ocho condiciones I-VIII. Más específicamente, la secuencia de aminoácidos i) puede cumplir al menos seis de las ocho condiciones I-VIII, tal como al menos siete de las ocho condiciones I-VIII, tal como las ocho condiciones I-VIII.

Como se describe en los siguientes Ejemplos, la selección de las variantes de unión a C5 ha conducido a la identificación de secuencias de motivo motivos de unión (*BM*) a C5 individuales. Estas secuencias constituyen formas de realización individuales de polipéptidos de unión a C5 de acuerdo con este aspecto. Las secuencias de motivos de unión a C5 individuales se presentan en la Figura 1 y como SEQ ID NO:1-248. En algunas formas de realización de este aspecto, la secuencia *BM* i) se selecciona de una cualquiera de la SEQ ID NO:1-12, SEQ ID NO:20, SEQ ID NO:23-24, SEQ ID NO:26-28, SEQ ID NO:32-35, SEQ ID NO:38-39, SEQ ID NO:41, SEQ ID NO:46, SEQ ID NO:49, SEQ ID NO:56-57, SEQ ID NO:59, SEQ ID NO:66, SEQ ID NO:78-79, SEQ ID NO:87, SEQ ID NO:92, SEQ ID NO:106, SEQ ID NO:110, SEQ ID NO:119, SEQ ID NO:125, SEQ ID NO:141, SEQ ID NO:151, SEQ ID NO:161, SEQ ID NO:166, SEQ ID NO:187, SEQ ID NO:197, SEQ ID NO:203, SEQ ID NO:205, SEQ ID NO:215 y la SEQ ID NO:243. Más específicamente, la secuencia *BM* i) se selecciona de una cualquiera de la SEQ ID NO:1-12, tal como de SEQ ID NO:1, SEQ ID NO:2, SEQ ID NO:3, SEQ ID NO:4, y la SEQ ID NO:5. En particular, la secuencia 20 *BM* i) puede seleccionarse de SEQ ID NO:1 y la SEQ ID NO:4.

Como se menciona anteriormente, el motivo de unión (BM) a C5 forma parte de un dominio de conjuntos de proteínas de tres hélices. Por ejemplo, el *BM* puede constituir esencialmente dos hélices alfa con un bucle de interconexión, dentro de dicho dominio del conjunto de proteínas de tres hélices.

El dominio del conjunto de proteínas de tres hélices se selecciona, en otra forma de realización, de dominios de proteínas del receptor bacteriano. Los ejemplos no limitantes de dichos dominios son los cinco diferentes dominios de tres hélices de la Proteína A de Staphylococcus aureus, tal como el dominio B, y derivados del mismo. En algunas formas de realización, el dominio del conjunto de proteínas de tres hélices es una variante de proteína Z, 30 que se obtiene a partir de dicho dominio B de la proteína A de estafilococos.

En formas de realización de la invención, el polipéptido de unión a C5 puede comprender una secuencia de aminoácidos seleccionada de:

25

35

45

50

K-[BM]-DPSQS X_aX_bLLX_c EAKKL NDX_dQ;

en la que

i)

40 [BM] es un motivo de unión a C5 como se define anteriormente;

Xa se selecciona de A y S;

X_b se selecciona de N y E;

X_c se selecciona de A, S y C;

X_d se selecciona de A y S;

ii) una secuencia de aminoácidos que tiene al menos un 79% de identidad con una cualquiera de las secuencias definidas anteriormente. Dicha secuencia de aminoácidos puede tener al menos un 81 %, tal como al menos un 83 %, tal como al menos un 85 %, tal como al menos un 87 %, tal como al menos un 89 %, tal como al menos un 91 %, tal como al menos un 93 %, tal como al menos un 95 %, tal como al menos un 97 % de identidad con una cualquiera de las secuencias definidas anteriormente.

En una forma de realización del polipéptido de unión a C5 como se define anteriormente, Xa es A. En una forma de realización alternativa del polipéptido de unión a C5 como se define anteriormente, Xa es S.

55 En una forma de realización del polipéptido de unión a C5 como se define anteriormente, X₀ es N. En una forma de realización alternativa, X₀ es E.

En una forma de realización del polipéptido de unión a C5 como se define anteriormente, X_c es A. En una forma de realización alternativa, X_c es S. En aún otra forma de realización alternativa, X_c es C.

ES 2 715 638 T3

En una forma de realización del polipéptido de unión a C5 como se define anteriormente, X_d es A. En una forma de realización alternativa, X_d es S.

5 En una forma de realización del polipéptido de unión a C5 como se define anteriormente, X_a es A; X_b es N; X_c es A y X_d es A.

En una forma de realización adicional del polipéptido de unión a C5 como se define anteriormente, X_a es A; X_b es N; X_c es C y X_d es A.

En una forma de realización adicional del polipéptido de unión a C5 como se define anteriormente, X_a es S; X_b es E; X_c es S y X_d es S.

En una forma de realización adicional del polipéptido de unión a C5 como se define anteriormente, X_a es S; X_b es E; 15 X_c es C y X_d es S.

En aún una forma de realización adicional, la secuencia de aminoácidos del polipéptido de unión a C5 como se define anteriormente se selecciona de la SEQ ID NO:249-496, en particular de la SEQ ID NO:249-260, SEQ ID NO:268, SEQ ID NO:271-272, SEQ ID NO:274-276, SEQ ID NO:280-283, SEQ ID NO:286-287, SEQ ID NO:289, SEQ ID NO:294, SEQ ID NO:297, SEQ ID NO:304-305, SEQ ID NO:307, SEQ ID NO:314, SEQ ID NO:326-327, SEQ ID NO:335, SEQ ID NO:340, SEQ ID NO:354, SEQ ID NO:358, SEQ ID NO:367, SEQ ID NO:373, SEQ ID NO:389, SEQ ID NO:399, SEQ ID NO:409, SEQ ID NO:414, SEQ ID NO:435, SEQ ID NO:445, SEQ ID NO:451, SEQ ID NO:453, SEQ ID NO:463 y la SEQ ID NO:491, tal como de la SEQ ID NO:249-260. En una forma de realización adicional, la secuencia de aminoácidos se selecciona de la SEQ ID NO:249, SEQ ID NO:250, SEQ ID NO:251, SEQ ID NO:252 y la SEQ ID NO:253, tal como de la SEQ ID NO:249 y la SEQ ID NO:252.

Por lo tanto, en una forma de realización adicional, se proporciona un polipéptido de unión a C5 que comprende una secuencia de aminoácidos seleccionada de:

30 i)

10

YAK-[BM]-DPSQS SELLX_c EAKKL NDSQA P;

en la que [BM] es un motivo de unión a C5 como se define anteriormente y X_{C} se selecciona de S y C; y

ii) una secuencia de aminoácidos que tiene al menos un 81 % de identidad de secuencia con una cualquiera de las secuencias definidas en i) anteriormente.

Como alternativa, se proporciona un polipéptido de unión a C5 que comprende una secuencia de aminoácidos 40 seleccionada de:

i)

FNK-[BM]-DPSQS ANLLXc EAKKL NDAQA P;

45

35

en la que [BM] es un motivo de unión a C5 como se define anteriormente y X_c se selecciona de A y C; y

ii) una secuencia de aminoácidos que tiene al menos un 81 % de identidad de secuencia con una cualquiera de las secuencias definidas en i) anteriormente.

50

Como se analiza anteriormente, los polipéptidos que comprenden cambios menores en comparación con la secuencia de aminoácidos anterior sin afectar en gran medida a la estructura terciara y la función de la misma también están dentro del alcance de la presente solicitud. Por lo tanto, en algunas formas de realización, los polipéptidos de unión a C5 como se definen anteriormente pueden tener, por ejemplo, una secuencia que es al menos un 83 %, al menos un 84 %, al menos un 86 %, al menos un 88 %, al menos un 90 %, al menos un 92 %, al menos un 94 %, al menos un 96 % o al menos un 98 % idéntica a la secuencia definida en i).

En algunas formas de realización y como se divulga en los Ejemplos a continuación, el motivo de unión a C5 puede formar parte de un polipéptido de 58 o 60 aminoácidos. Tal polipéptido puede comprender, por ejemplo, una

secuencia seleccionada de una cualquiera de la SEQ ID NO:497-757, en particular una secuencia seleccionada de una cualquiera de la SEQ ID NO:497-508, SEQ ID NO:516, SEQ ID NO:519-520, SEQ ID NO:522-524, SEQ ID NO:528-531, SEQ ID NO:534-535, SEQ ID NO:537, SEQ ID NO:542, SEQ ID NO:545, SEQ ID NO:552-553, SEQ ID NO:555, SEQ ID NO:562, SEQ ID NO:574-575, SEQ ID NO:583, SEQ ID NO:588, SEQ ID NO:602, SEQ ID NO:606, SEQ ID NO:615, SEQ ID NO:621, SEQ ID NO:637, SEQ ID NO:647, SEQ ID NO:657, SEQ ID NO:662, SEQ ID NO:683, SEQ ID NO:693, SEQ ID NO:699, SEQ ID NO:701, SEQ ID NO:711, SEQ ID NO:739 y la SEQ ID NO:745-757, tal como una secuencia seleccionada de la SEQ ID NO:497-508 y la SEQ ID NO:497, SEQ ID NO:498, SEQ ID NO:499, SEQ ID NO:500, SEQ ID NO:501, SEQ ID NO:746, SEQ ID NO:747, SEQ ID NO:748, SEQ ID NO:750 y la SEQ ID NO:753, tal como de una cualquiera de la SEQ ID NO:497, SEQ ID NO:748 y la SEQ ID NO:753.

La unión de una molécula a C5 no necesariamente inhibe la escisión de C5. La inhibición depende del sitio de unión, y ya que no es enteramente claro qué efectos tiene la interacción con regiones específicas de C5, algunas moléculas de unión a C5 pueden interactuar con C5 sin inhibir su escisión en C5a y C5b. En una forma de realización de la presente invención, el polipéptido de unión a C5, cuando se administra, por ejemplo, a un sujeto mamífero, inhibe la escisión de C5. El polipéptido de unión a C5 de acuerdo con la invención puede inhibir más específicamente la escisión de C5 humano cuando se administra a un sujeto humano.

La estructura de C5 difiere en alguna forma entre las especies, y por lo tanto, se encontró que un aglutinante de C5 que se une a C5 de una especie puede estar inactivo en otras especies. El anticuerpo humanizado Eculizumab, por ejemplo, se une a un dominio de C5 comúnmente denominado MG7. Esta región es altamente variable entre las especies y, por lo tanto, la unión de Eculizumab está restringida a C5 humano. El polipéptido de unión a C5 de la presente invención, sin embargo, no está restringido a C5 humano, pero presenta actividad en modelos de animales también, como se demuestra en los Ejemplos adjuntos.

El experto en la técnica entenderá que se pueden hacer diversas modificaciones y/o adiciones a un polipéptido de unión a C5 de acuerdo con cualquier aspecto divulgado en el presente documento con el fin de adaptar el polipéptido a una aplicación específica sin apartarse del alcance de la presente invención. Por ejemplo, un polipéptido de unión a C5 de acuerdo con cualquier aspecto puede comprender aminoácidos N-terminal y/o C-30 terminal adicionales. Tal polipéptido deberá ser comprendido como un polipéptido con residuos de aminoácido adicionales en la primera y/o la última posición en la cadena del polipéptido, es decir en el extremo N y/o C-terminal. Por lo tanto, un polipéptido de unión a C5 puede comprender cualquier número adecuado de residuos de aminoácido adicionales, por ejemplo, al menos un residuo de aminoácido adicional. Cada residuo de aminoácido adicional puede individual o colectivamente añadirse con el fin de, por ejemplo, mejorar la producción, purificación, estabilización *in vivo* o *in vitro*, acoplamiento, o detección del polipéptido. Dichos residuos de aminoácido adicionales pueden comprender uno o más residuos de aminoácido añadidos con el propósito del acoplamiento químico. Un ejemplo de esto es la adición de un residuo de cisteína. Dichos residuos de aminoácido adicionales también pueden proporcionar una "etiqueta" para la purificación o detección del polipéptido, tal como una etiqueta His₆ o una etiqueta "myc" (c-myc) o una etiqueta "FLAG" para la interacción con anticuerpos específicos para la etiqueta o cromatografía de afinidad de metal inmovilizado (IMAC) en el caso de la etiqueta His₆.

Los aminoácidos adicionales como se analiza anteriormente pueden estar acoplados al polipéptido de unión a C5 por medio de conjugación química (utilizando métodos de química orgánica conocidos) o por cualquier otro medio, tal como la expresión del polipéptido de unión a C5 como una proteína de fusión.

Los aminoácidos adicionales como se analiza anteriormente, por ejemplo, pueden comprender uno o más dominios de polipéptido. Un dominio de polipéptido adicional puede proporcionar al polipéptido de unión a C5 otra función, tal como, por ejemplo, otra función de unión, o una función enzimática, o una función tóxica (por ejemplo, una inmunotoxina), o una función de señalización fluorescente, o combinaciones de las mismas.

Un dominio de polipéptido adicional además puede proporcionar al polipéptido de unión a C5 la misma función de unión. Por lo tanto, en una forma de realización más, se proporciona un polipéptido de unión a C5 que comprende al menos dos unidades monoméricas del polipéptido de unión a C5, cuya secuencia de aminoácidos puede ser igual o diferente. Las formas multiméricas de los polipéptidos pueden comprender un número adecuado de dominios, teniendo cada uno un motivo de unión a C5, y formando cada un "monómero" dentro del multímero. Todos estos dominios pueden tener la misma secuencia de aminoácidos, pero como alternativa, pueden tener diferentes secuencias de aminoácidos. En particular, el polipéptido de unión a C5 de la invención puede formar homo- o heterodímeros.

El dominio o dominios polipeptídicos adicionales como se describe anteriormente pueden unirse al polipéptido de unión a C5 por acoplamiento covalente utilizando métodos de química orgánica conocidos. Como alternativa, el polipéptido de unión a C5 que comprende el dominio o dominios polipeptídicos adicionales puede expresarse como uno o más polipéptidos de fusión, por ejemplo, en un sistema para la expresión recombinante de polipéptidos, o unirse de cualquier otra forma, ya sea directamente o vía un conector, por ejemplo, un conector de aminoácidos.

En algunas formas de realización, el dominio o dominios polipeptídicos adicionales pueden comprender un resto de extensión de semivida que aumenta la semivida del polipéptido de unión a C5 in vivo. Como se entiende por el experto en la técnica, semivida aumentada, o extendida significa una depuración más lenta de una molécula 10 particular de la sangre. Existen varias estrategias conocidas para prolongar la semivida de un polipéptido particular in vivo, tal como el acoplamiento del dominio Fe de un anticuerpo (conjugación de Fc) o acoplamiento a albúmina. Otro ejemplo es el acoplamiento a una fracción de extensión de la semivida, por ejemplo, un péptido o proteína, que se asociará a albúmina sérica in vivo. En particular, la fracción de extensión de la semivida puede ser una fracción de unión a albúmina. Una fracción de unión a albúmina puede consistir, por ejemplo, en un polipéptido de origen 15 natural, o un fragmento de unión a albúmina del mismo, o un polipéptido modificado. Un polipéptido modificado puede derivarse de un polipéptido de partida de origen natural sometiéndolo a técnicas de modificación de proteína, tales como mutaciones y alteraciones en un enfoque de sitio dirigido o aleatorio, con la visión de crear propiedades nuevas o mejoradas, tales como afinidad de unión para una molécula tal como albúmina. Tal polipéptido de unión a albúmina modificado puede ser, por ejemplo, una variante del andamiaje proteico, cuya variante se ha seleccionado 20 por su afinidad de unión específica para albúmina. En una forma de realización específica, el andamiaje proteico puede seleccionarse de dominios de Proteína G de estreptococo o derivados de los mismos, tales como, por ejemplo, el dominio GA1, el dominio GA2 y el dominio GA3 de la Proteína G de la cepa G148 del Estreptococo, en particular el dominio GA3.

25 Por consiguiente, en una forma de realización del polipéptido de unión a C5, los aminoácidos adicionales mejoran la estabilización *in vivo* o *in vitro* y comprenden un dominio de unión a albúmina (ABD) de la proteína G de estreptococo, o un derivado del mismo. Un ejemplo de un dominio de unión a albúmina que puede estar comprendido como un dominio polipeptídico adicional en el polipéptido de unión a C5 de la invención se expone en la SEQ ID NO:759. Otros ejemplos de dominios de unión a albúmina adecuados se describen en los documentos 30 WO 2009/016043 y WO 2012/004384. Tal polipéptido extendido con ABD se une a albúmina sérica *in vivo*, y se beneficia de su semivida más larga, que aumenta la semivida neta del propio polipéptido (véase, por ejemplo, WO 91/01743). El perfil farmacocinético de un polipéptido de unión a C5 que comprende un resto de unión a albúmina como se define anteriormente, se asemeja de esta forma a la de la albúmina sérica cuando se administra, por ejemplo, a un sujeto mamífero. El ABD y derivados del mismo se unen fuertemente a albúmina sérica humana 35 (HSA), así como a albúmina sérica de otras especies tales como de ratón y rata.

El ABD de la proteína G de estreptococo tiene 46 aminoácidos de longitud, y por lo tanto, cuando un polipéptido de unión a C5 de acuerdo con la invención comprende un resto ABD o un derivado del mismo, el tamaño global del polipéptido de unión a C5 es relativamente pequeño. Cuando se administra, por ejemplo, a un sujeto mamífero, tal como un sujeto humano, la parte de unión a albúmina del polipéptido de unión a C5 se asociará no covalentemente con la albúmina sérica y el polipéptido, por lo tanto, puede beneficiare de la depuración renal reducida y la recirculación aumentada en células epiteliales. Sin embargo, la penetración tisular aún puede ser rápida debido a las propiedades de extravasación de la albúmina sérica. Además, un polipéptido de unión a C5 que comprende una fracción de extensión de la semivida puede no solamente mostrar una semivida extendida *in vivo*, sino también una respuesta inmunológica reducida *in vivo*, como se compara con un polipéptido que carece de una fracción de extensión de la semivida (véase, por ejemplo, el documento WO 2005/097202).

El polipéptido de unión a C5 de la invención puede formar opcionalmente parte de un compuesto de unión a C5, que comprende al menos un polipéptido de unión a C5 de acuerdo con cualquier reivindicación anterior; al menos un 50 dominio de unión a albúmina de la proteína G estreptocócica, o un derivado del mismo, y al menos un resto de unión para unir dicho al menos un dominio o derivado del mismo, al extremo C o N de dicho al menos un polipéptido de unión a C5. Tal compuesto de unión a C5 tiene una alta afinidad por C5, así como para albúmina sérica *in vivo*, cuando se administra, por ejemplo, a un sujeto mamífero, y la unión a albúmina sérica no interfiere con la interacción con C5, como se demuestra en los siguientes Ejemplos.

En una forma de realización, el compuesto de unión a C5 tiene la estructura seleccionada de

[CBP1]-[L1]-[ALBD]; [CBP1]-[CBP2]-[L1]-[ALBD];

55

```
[CBP1]-[L1]-[ALBD]-[L2]-[CBP2];

[ALBD]-[L1]-[CBP1];

[ALBD]-[L1]-[CBP1]-[CBP2];

[CBP1]-[L1]-[CBP2]-[L2]-[ALBD]; y

5 [ALBD]-[L1]-[CBP1]-[L2]-[CBP2]
```

en la que, independientemente entre sí,

[CBP1] y [CBP2] son polipéptidos de unión a C5 que pueden ser iguales o diferentes;
 [L1] y [L2] son restos de unión que pueden ser iguales o diferentes; y
 [ALBD] es un dominio de unión a albúmina de la proteína G de estreptococo, o un derivado del mismo.

Los compuestos de unión a C5 preferidos tienen una estructura seleccionada de

```
15 [CBP1]-[CBP2]-[L1]-[ALBD];
[CBP1]-[L1]-[ALBD]-[L2]-[CBP2]; y lo más preferiblemente,
[CBP1]-[L1]-[ALBD].
```

Los ejemplos de restos de unión que pueden usarse en dichos compuestos de unión a C5 se seleccionan de G, GS; 20 [G₂S]_n; [G₃S]_n; [G₄S]_n, GS[G₄S]_n, en los que n es 0-7 (preferiblemente, n es 0-2); [S₂G]_m; [S₃G]_m; [S₄G]_m; en los que m es 0-7, y VDGS. Los conectores preferidos son GS y GS[G₄S]₂.

Los ejemplos de dominios de unión a albúmina, o derivados de los mismos que pueden estar comprendidos en un compuesto de unión a C5 son como se describe anteriormente. En particular, un ejemplo de un dominio de unión a 25 albúmina de determina en la SEQ ID NO:759.

Los compuestos particularmente preferidos de unión a C5 tienen la estructura [CBP1]-[L1]-[ALBD], en la que [CBP1] es un polipéptido seleccionado de la SEQ ID NO:748 y la SEQ ID NO:753, [L1] es GS, y [ALBD] es un polipéptido mostrado como la SEQ ID NO:759.

El polipéptido o los polipéptidos de unión a C5 comprendidos en un polipéptido de unión a C5 son, en una forma de realización, independientemente seleccionados de polipéptidos de unión a C5 58-mer o 60-mer como se describe previamente. En particular, el compuesto de unión a C5 pueden comprender uno o más polipéptidos de unión a C5 seleccionados independientemente de una cualquiera de la SEQ ID NO:497-508, SEQ ID NO:516, SEQ ID NO:519-35 520, SEQ ID NO:522-524, SEQ ID NO:528-531, SEQ ID NO:534-535, SEQ ID NO:537, SEQ ID NO:542, SEQ ID NO:545, SEQ ID NO:552-553, SEQ ID NO:555, SEQ ID NO:562, SEQ ID NO:574-575, SEQ ID NO:583, SEQ ID NO:588, SEQ ID NO:602, SEQ ID NO:606, SEQ ID NO:615, SEQ ID NO:621, SEQ ID NO:637, SEQ ID NO:647, SEQ ID NO:657, SEQ ID NO:662, SEQ ID NO:683, SEQ ID NO:693, SEQ ID NO:699, SEQ ID NO:701, SEQ ID NO:711, SEQ ID NO:739 y la SEQ ID NO:746-757, tal como una secuencia seleccionada de la SEQ ID NO:497-508 y la SEQ ID NO:498, SEQ ID NO:499, SEQ ID NO:500, SEQ ID NO:501, SEQ ID NO:746, SEQ ID NO:747, SEQ ID NO:748, SEQ ID NO:750 y la SEQ ID NO:753, tal como de una cualquiera de la SEQ ID NO:497, SEQ ID NO:748 y la SEQ ID NO:753.

45 Un polinucleótido que codifica un polipéptido de unión a C5 o un compuesto como se describe anteriormente, comprendido en un vector de expresión puede permitir la producción de un polipéptido de unión a C5 o un compuesto de unión a C5, por ejemplo, mediante expresión en una célula huésped.

Debe entenderse que el polipéptido de unión a C5 de acuerdo con la presente invención puede ser útil como agente terapéutico o de diagnóstico por derecho propio o como un medio para dirigirse a otros agentes terapéuticos o de diagnóstico, por ejemplo, efectos directos o indirectos sobre la proteína del complemento C5. Un efecto terapéutico directo puede lograrse, por ejemplo, inhibiendo la escisión de C5. Un polipéptido de unión a C5 de acuerdo con la invención o un compuesto de unión a C5 como se describe anteriormente, puede combinarse con un agente terapéutico. Ejemplos no limitantes de agentes terapéuticos que pueden demostrar ser útiles en una combinación de 55 este tipo son agentes inmunoestimulantes y radionúclidos.

Por lo tanto, el polipéptido de unión a C5 como tal, o como está comprendido en un compuesto de unión a C5 o una combinación como se describe anteriormente, se proporciona en una forma de realización para su uso en terapia, por ejemplo, para el tratamiento de una afección relacionada con C5, tal como una condición relacionada con C5 en

un mamífero, tal como un sujeto humano. En una forma de realización, dicha afección relacionada con C5 se selecciona de enfermedad inflamatoria, tal como la artritis inducida por antígenos, sepsis, inflamación sinovial, vasculitis y asma; enfermedad autoinmune, tal como lupus eritematoso sistémico (SLE), enfermedad de las aglutininas frías, artritis reumatoide, esclerosis múltiple (EM), síndrome de Sjögren, dermatomiositis, miastenia gravis 5 y otras enfermedades estimuladas por autoanticuerpos tal como síndrome de Guillain-Barré (GBS), síndrome de Fisher, esclerosis sistémica, membrana basal antiglomerular (anti-GBM) y síndrome antifosfolípido (APS); enfermedad infecciosa, tal como síndrome hemolítico-urémico (HUS), infecciones víricas, infecciones bacterianas e infecciones fúngicas; enfermedad cardiovascular, tal como infarto de miocardio (agudo) (sometimiento a revascularización por fibrinolisis o intervención coronaria percutánea (PCI)); trastornos neurodegenerativos tal como 10 enfermedad de Alzheimer (EA), enfermedad de Huntington, enfermedad de Creutzfeld-Jacob y enfermedad de Parkinson; cánceres; heridas; lesión de injerto, tal como lesión por reperfusión-isquemia (IRI) y rechazo mediado por anticuerpos agudo (AMR); enfermedad ocular, tal como degeneración macular relacionada con la edad (AMD), uveítis, enfermedades y trastornos oculares diabéticos, y retinopatía del prematuro; enfermedad renal, tal como glomerulonefritis membranosa, nefritis membranosa, nefropatía por inmunoglobulina A, nefritis lúpica, síndrome de 15 Goodpasture y glomerulonefritis post-estreptocócica; enfermedades pulmonares, tal como síndrome de dificultad respiratoria del adulto, enfermedad pulmonar obstructiva crónica y fibrosis quística; enfermedades hematológicas; tal como anemia hemolítica, hemoglobinuria paroxística fría, síndrome urémico hemolítico atípico (aHUS) y hemoglobinuria paroxística nocturna (PNH); enfermedades alérgicas, tal como choque anafiláctico, alergia y asma; y enfermedades dermatológicas, tal como pénfigo, pénfigo ampolloso, reacciones fototóxicas y psoriasis. En una 20 forma de realización más particular, el polipéptido de unión a C5, compuesto o combinación de acuerdo con la invención, se usa para el tratamiento de la hemoglobinuria nocturna paroxística (PNH).

Como se menciona al analizar el trasplante de órganos en la sección de antecedentes anterior, las diferencias entre el donante y el receptor (por ejemplo, ABO y las clases MCH), así como la condición del órgano trasplantado pueden conducir a un retraso en el funcionamiento o incluso al rechazo del órgano trasplantado. Por lo tanto, el tratamiento puede ser necesario para eliminar los anticuerpos anti-donante a pesar de una prueba cruzada positiva entre el donante y el receptor o para eliminar los anticuerpos ABO cuando se produce un trasplante contra la barrera ABO. Dicho tratamiento incluye típicamente la inmunoadsorción, por ejemplo, mediante el uso de técnicas de cromatografía de afinidad, tanto antes como después del trasplante o plasmaféresis. Sin embargo, dichos procedimientos corren el riesgo de eliminar casi todos los anticuerpos presentes en la circulación, incluyendo, por lo tanto, anticuerpos terapéuticos. Sin embargo, los polipéptidos o compuestos de unión a C5 de la invención no se ven afectados por ningún procedimiento de eliminación de anticuerpos y, por lo tanto, pueden aprovecharse en estos tratamientos.

35 En algunas afecciones relacionadas con C5 donde una patología aguda más local en tejidos fácilmente accesibles. tal como el pulmón y el torrente sanquíneo, domina en lugar de las patologías sistémicas, un fármaco con una semivida muy corta podría ser ventajoso sobre uno con una eliminación lenta. Por lo tanto, en dichas afecciones relacionadas con C5, un polipéptido de unión a C5 sin un resto de extensión de la semivida puede ser beneficioso. Como se explica anteriormente, un polipéptido de unión a C5 de acuerdo con la invención, debido a su tamaño 40 relativamente pequeño, presentará un perfil farmacocinético relativamente rápido cuando se administre a un mamífero, tal como un ser humano. El polipéptido de unión a C5 de acuerdo con la invención puede ser potencialmente activo en el tratamiento de afecciones relacionadas con C5, tal como asma (Zhang et al.(Zhang et al. Expert Rev Clin Immunol 2010, 6:269-277), sepsis (Ward et al. The Sci World J 2010, 10:2395-2402), y el síndrome de hipersensibilidad que incluye la pseudoalergia relacionada con la activación de C (CARPA, una reacción a ciertos 45 liposomas terapéuticos y fármacos basados en excipientes lipídicos que en casos raros pueden conducir a insuficiencia cardiopulmonar potencialmente mortal (Szebeni et al. Adv Drug Delivery Rev 2011, 63:1020-1030). Además, un polipéptido de unión a C5 de acuerdo con la invención se puede usar para la inhibición del complemento cuando un receptor de transfusión de sangre ha recibido sangre de un tipo incompatible (una situación que tiene lugar en aproximadamente 1:14000 unidades de transfusión en EE.UU., que está asociado con alta 50 mortalidad, Goodnough et al. Lancet 2003, 361:161-169).

Un método de tratamiento de una afección relacionada con C5 puede comprender la administración de un polipéptido de unión a C5, o una combinación como se describe anteriormente a un sujeto mamífero que lo necesite. En consecuencia, en el método de tratamiento, el sujeto se trata con un polipéptido de unión a C5, un compuesto de unión a C5 o una combinación de acuerdo con la invención. Más específicamente, la unión del polipéptido de unión a C5 o la combinación, a un C5 expresado en una superficie celular en el sujeto, inhibe la escisión de C5. La afección relacionada con C5 puede seleccionarse de una enfermedad inflamatoria; enfermedad autoinmune; enfermedad infecciosa; enfermedad cardiovascular; trastornos neurodegenerativos; cánceres; heridas; lesión de injerto; enfermedad ocular; enfermedad renal; enfermedades pulmonares; enfermedades hematológicas;

enfermedades alérgicas y enfermedades dermatológicas. En particular, la afección relacionada con C5 puede ser como se define anteriormente en relación con el uso terapéutico de un polipéptido, compuesto o combinación de unión a C5 de acuerdo con la invención. La afección relacionada con C5 puede ser, por ejemplo, la hemoglobinuria paroxística nocturna (PNH). En un método de tratamiento, dicho polipéptido de unión a C5 se administra por vía intravenosa, subcutánea, por inhalación, nasal, oral, intravítrea o tópica.

La invención se ilustrará ahora adicionalmente mediante los siguientes ejemplos no limitantes.

Breve descripción de las Figuras

10

15

20

30

35

40

45

50

55

La Figura 1 es una lista de las secuencias de aminoácidos de los ejemplos de motivos de unión a C5 comprendidos en los polipéptidos de unión a C5 de la invención (SEQ ID NO: 1-248), ejemplos de polipéptidos de unión a C5 49-mer de acuerdo con la invención (SEQ ID NO: 249-496), ejemplos de polipéptidos de unión a C5 58-mer de acuerdo con la invención (SEQ ID NO: 497-744) y ejemplos de polipéptidos de unión a C5 60-mer de acuerdo con la invención (SEQ ID NO: 745-757), así como las secuencias de la proteína Z (SEQ ID NO: 758), un dominio de unión a albúmina (ABD094, SEQ ID NO: 759), la entrada Swiss-Prot P01031 del C5 humano (residuos de aminoácidos 1-1676, SEQ ID NO: 760; cuya cadena α corresponde a los residuos de aminoácidos 678-1676 y la cadena β corresponde a los residuos de aminoácidos 19-673), la secuencia de la proteína de garrapata marcada con His $_6$ OmCI utilizada en el presente documento (SEQ ID NO: 761) y C5 de cynomolgus (SEQ ID NO: 762) derivado de una secuencia genómica (publicada en línea en www.ebi.ac.uk/ena; Ebeling et al. (2001) Genome Res. 21(10):1746-1756) usando C5 humano como plantilla. La secuencia contiene dos aminoácidos desconocidos "X" en las posiciones 63 y 1346.

La Figura 2 muestra el resultado de un análisis de unión típico realizado en un instrumento Biacore como se describe en el Ejemplo 2. Los sensogramas se obtuvieron mediante inyección de C5 humano (hC5; curva sólida de color negro), C5 de cynomolgus (cC5; curva de línea discontinua de color negro), C5 de rata (rC5; curva de guiones largos de color negro), dominio MG7 humano (hMG7; curva de puntos de color gris), e inmunoglobulina G humana (hlgG; curva sólida de color gris), respectivamente, sobre una variante Z dimérica inmovilizada (Z05477, SEQ ID NO:509).

La Figura 3 es un gráfico de columnas que muestra la respuesta en ELISA contra hC5 y rC5, respectivamente, para variantes Z maduradas seleccionadas. Las columnas negras corresponden a la absorbancia a 450 nm obtenida usando 0,05 μg/ml de hC5 (columna izquierda en cada grupo) y a la absorbancia a 450 nm obtenida usando 4 μg/ml de rC5 para cada variante Z (columna derecha en cada grupo), como se describe en el Ejemplo 4. Las respuestas para la variante Z Z05363 (SEQ ID NO: 510) se representan como un control positivo.

La Figura 4 muestra esquemáticamente diferentes construcciones que abarcan una o varias variantes Z de unión a C5 seleccionadas de la SEQ ID NO: 745-757, opcionalmente vinculadas a ABD094 (SEQ ID NO: 759).

La Figura 5 muestra los análisis de SDS-PAGE de variantes Z de unión a C5 purificadas (condición reducida) visualizadas por Instant Blue, como se describe en el Ejemplo 6. A) representa un ejemplo de Z-Z-ABD dimérico (carril 1 donde Z es igual a la SEQ ID NO:745 y ABD es igual a la SEQ ID NO:759) en comparación con diferentes proteínas de fusión Z-ABD (donde Z es igual a la SEQ ID NO:745 (carril 2), SEQ ID NO:748-757 (carril 4-13) fusionadas a ABD094 (SEQ ID NO:759) mediante un conector GS); B) representa una variante Z de unión a C5 (SEQ ID NO:753) en diferentes construcciones, y C) representa dos variantes Z de unión a C5 diferentes (SEQ ID NO:748, carriles 2-3 y 6 y la SEQ ID NO:753, carriles 4-5 y 7), en forma monomérica (carriles 6-7) y en fusión con ABD094 (SEQ ID NO:759) a través de un conector GS(G₄S)₂ (carriles 2-5).

Las Figuras 6A y B son diagramas que muestran datos ejemplares de la caracterización de respuesta a la dosis de la potencia de diferentes variantes Z de unión a C5 para inhibir la activación del complemento como se ve en un ensayo hemolítico, descrito en el Ejemplo 6. El suero deficiente en C5 se diluyó 63 veces y se complementó con hC5 0,1 nM. A) muestra el efecto de diferentes proteínas de fusión Z-ABD (las variantes Z correspondientes a SEQ ID NO: 745, SEQ ID NO: 748-753 y SEQ ID NO: 756 fusionadas a ABD094 (SEQ ID NO: 759) por un conector GS) a hC5, mientras que B) muestra el efecto de diferentes construcciones de unión a C5 que comprenden la misma variante Z de unión a C5 (Z06175a, SEQ ID NO: 753) como monómero o dímero, en fusión con ABD094 (SEQ ID NO: 759), o según se proporcione una etiqueta His₆ (seis residuos de histidina), en comparación con la proteína de garrapata de unión a C5 OmCl (SEQ ID NO: 761).

Las Figuras 7A y B son diagramas que muestran datos ejemplares de la unión en equilibrio en base a la técnica ECL de desplazamiento descrita en el Ejemplo 6. La Figura 7A muestra la unión a C5 de diferentes

variantes Z (SEQ ID NO: 745, SEQ ID NO: 748-757) en fusión con ABD094 (SEQ ID NO: 759) en comparación con la unión C5 de la proteína de garrapata OmCl (SEQ ID NO: 761). La Fig. 7B muestra la unión de diferentes construcciones de unión a C5 que comprenden la misma variante Z de unión a C5 (SEQ ID NO: 753) como monómero o dímero, en fusión con ABD094 (SEQ ID NO: 759), o como se proporciona con una etiqueta His6.

Las Figuras 8A y 8B muestran interacciones entre las variantes de Z-ABD y la albúmina sérica humana (HSA) estudiadas como se describe en el Ejemplo 7. A) Cromatografía de exclusión por tamaño (SEC) donde Z-ABD (Z06175a (SEQ ID NO: 753) fusionada a ABD094 (SEQ ID NO: 759) por un conector GS) se ha preincubado con cantidades equimolares de HSA (1). Como comparación, los cromatogramas para HSA en solitario (2) y Z-ABD en solitario (3) también se muestran en el gráfico. B) Sensores de Biacore de Z-ABD y Z-ABD-Z (Z06175a (SEQ ID NO: 753) fusionados a ABD094 (SEQ ID NO: 759) por los conectores especificados en la Figura 4, en la construcción 2 y la construcción 5, respectivamente) inyectados sobre una superficie recubierta con HSA. Cada una de las dos construcciones se inyectó a una concentración de 25, 100 y 400 nM.

La Figura 9 es un diagrama que muestra los perfiles farmacocinéticos para los compuestos de unión a C5 15 Z-ABD y Z-ABD-Z (Z06175a, SEQ ID NO: 753) fusionados a ABD094 (SEQ ID NO: 759) por los conectores especificados en la Figura 4, en la construcción 2 y la construcción 5, respectivamente) en ratas Sprague Dawley macho en el tiempo después de la administración intravenosa (i.v., 0,25 µmol/kg) y subcutánea (s.c., 0,5 µmol/kg), como se describe en el Ejemplo 8. Cada punto de datos representa un promedio de tres animales individuales en un punto de tiempo específico que varía de cinco minutos a dos semanas después de la dosificación de los animales que recibieron la dosis i.v. y de 15 minutos a dos semanas para los animales que recibieron la dosis s.c.

La Figura 10 muestra la hemólisis ex vivo en eritrocitos de oveja después de la exposición a suero diluido 1:5 de muestras de animales tomadas de ratas Sprague Dawley después de la administración intravenosa (i.v.; 0,25 µmol/kg) de Z-ABD (Z06175a (SEQ ID NO: 753) fusionada a ABD094 (SEQ ID NO: 759) por un conector GS), como se describe en el Ejemplo 8. Cada punto representa un animal individual en un punto de tiempo específico que varía de cinco minutos a dos semanas después de la dosificación.

La Figura 11 muestra la hemólisis ex vivo en eritrocitos de oveja después de la exposición a suero diluido 1:5 de muestras de animales tomadas de ratas Sprague Dawley después de la administración subcutánea (s.c.; 0,5 µmo/kg) de Z-ABD (Z06175a (SEQ ID NO: 753) fusionada a ABD094 (SEQ ID NO: 759) por un conector GS), como se describe en el Ejemplo 8. Cada punto representa un animal individual en un punto de tiempo específico que varía de 15 minutos a dos semanas.

La Figura 12 muestra la hemólisis frente a la concentración sérica de Z-ABD (Z06175a (SEQ ID NO: 753) fusionada a ABD094 (SEQ ID NO: 759) por un conector GS) después de la administración i.v. y s.c. a ratas Sprague Dawley macho, como se describe en el Ejemplo 8.

La Figura 13 muestra la hemólisis en eritrocitos de oveja frente a la concentración sérica de Z-ABD-Z (Z06175a (SEQ ID NO: 753) fusionada a ABD094 (SEQ ID NO: 759) por los conectores especificados en la Figura 4, construcción 5) después de la administración i.v. y s.c. a ratas Sprague Dawley macho, como se describe en el Ejemplo 8.

La Figura 14 muestra la exposición al suero de Z-ABD (Z06175a (SEQ ID NO:753) fusionada a ABD094 40 (SEQ ID NO:759) mediante un conector GS) después de la administración i.v. (415 nmol/kg) y s.c. (1250 nmol/kg) en monos macho Cynomolgus, como se describe en el Ejemplo 9. Cada punto de datos representa la media de tres animales individuales.

La Figura 15 es un diagrama que muestra el efecto (concentración de C5a en el lavado) de la molécula proinflamatoria zymosan (40 mg/kg i.p.) en solitario y en combinación con una molécula de fusión Z-ABD que se une a C5 (Z06175a (SEQ ID NO: 753) fusionada a ABD094 (SEQ ID NO: 759) mediante un conector GS) o OmCl (SEQ ID NO: 761) analizado como se describe en el Ejemplo 10. Z-ABD se administró a 20 nmol/kg (LD), 100 nmol/kg (MD) y 500 nmol/kg (HD) s.c. 18 h antes de la inducción con zymosan. Se administró i.p. OmCl (30 nmol/kg) 1 h antes del tratamiento con zymosan y se tomaron muestras 1 h después de la inducción con zymosan.

Las Figuras 16A y 16B muestran el perfil farmacocinético de Z-ABD (Z06175a (SEQ ID NO: 753) fusionada a ABD094 (SEQ ID NO: 759) por un conector GS) después de la administración intratraqueal de 500 nmol/kg en ratones C57bl hembra, como se describe en el Ejemplo 11. A) Concentración sérica en cada animal (n = 3 para cada punto de tiempo, 27 animales en total) y B) hemólisis en eritrocitos de oveja expuestos a estas muestras de suero diluidas 1:5.

Ejemplos

5

10

20

25

30

35

45

50

55

Los siguientes materiales se utilizaron a lo largo de este trabajo, excepto cuando se indique lo contrario.

Cepa de Escherichia coli RR1ΔM15 (Rüther, Nucleic Acids Res 10:5765-5772, 1982).

Cepa de Escherichia coli XL1-Blue (Agilent Technologies, cat. n.º 200268).

Proteína C5 del complemento humano (hC5). La pro-proteína de 1676 aminoácidos completa tiene el número de acceso de GenBank: NP_001726 (SEQ ID NO:760), en la que los aminoácidos 19-673 son la cadena beta y los aminoácidos 678-1676 son la cadena alfa. El C5 humano utilizado en el presente documento se adquirió en Quidel (cat. n.º A403)

Proteína C5 del complemento de Cynomolgus (cC5; SEQ ID NO: 762). La secuencia de cC5 se obtuvo a partir de la secuencia genómica de Cynomolgus (*Macaca fascicularis*) (www.ebi.ac.uk/ena; Ebeling *et al.* (2001) Genome Res. 21(10):1746-1756). La región codificante del C5 humano se recuperó de www.ensembl.org, y el gen C5 se localizó en el cromosoma 15. La región que contiene el gen tiene aproximadamente 110 000 bases de longitud y está contenida en los cóntigos CAEC01154150 a CAEC01154178. Los cóntigos se unieron manualmente a un solo archivo y se utilizaron como contexto genómico para el software sim4 para alinear la región codificante de C5 humano con el material genómico de Cynomolgus sin procesar. El C5 de Cynomolgus utilizado en el presente documento se purificó internamente a partir del suero usando un procedimiento de tres etapas; precipitación con PEG6000, intercambio iónico y cromatografía de afinidad para OmCI.

Proteína C5 del complemento de rata (rC5; Número de acceso de GenBank: El C5 de rata XP_001079130) utilizado en el presente documento se purificó internamente a partir del suero usando un procedimiento de tres etapas; precipitación con PEG6000, intercambio iónico y cromatografía de afinidad para OmCI.

Dominio MG7 humano (hMG7) de la proteína del complemento C5, correspondiente a los residuos de aminoácidos 822-931 de C5 humano (SEQ ID NO: 760; Fredslund *et al.* (2008) Nature Immunology 9: 753-760) producido internamente en células Freestyle HEK293. Proteína de unión a hMG7.

OmCl (AF2999, Nunn, M. A. *et al.* anteriormente) de garrapata blanda *Ornithodoros moubata* con una etiqueta His₀ en el extremo C (SEQ ID NO:761) se produjo internamente en la cepa de *E. coli* Origami(DE3) y se purificó en una columna HisTrap1.

Ejemplo 1: Selección y cribado de los polipéptidos de unión a la proteína del complemento C5

Materiales y métodos

10

15

20

30

Biotinilación de la proteína diana hC5: hC5 se biotiniló de acuerdo con las recomendaciones del fabricante a temperatura ambiente (TA) durante 40 min usando No-Weigh EZ-Link Sulfo-NHS-LC-Biotin (Pierce, cat. n.º 21327) sen un exceso molar de diez veces (10x). El intercambio de tampón posterior a PBS (fosfato 10 mM, NaCl 137 mM, KCl 2,68 mM, pH 7,4) se realizó utilizando columnas de centrifugación desaladoras de proteínas (Pierce, n.º de cat. 89849) de acuerdo con las instrucciones del fabricante.

Selección de presentación en fago de polipéptidos de unión a C5: Se usaron bibliotecas de variantes aleatorias de la proteína Z mostrada en el bacteriófago, construida en fagémido pAffi1/pAY00065/ pAY02947/pAY02592 esencialmente como se describe en Grönwall *et al.* J Biotechnol 2007, 128:162-183), para seleccionar polipéptidos de unión a C5. Se utilizaron tres vectores de biblioteca diferentes. Dos de estos utilizan un dominio de unión a la albúmina (ABD, GA3 de la proteína G de la cepa G148 de *Streptococcus*) como compañero de fusión a las variantes Z que generan las bibliotecas Zlib003Naive.I y Zlib006Naive.II. La tercera biblioteca, Zlib004Naive.I utiliza la molécula de unión a la ADN polimerasa *Taq* Z03639 (denominada Z_{TaqS1-1} en Gunneriusson *et al.* Protein Eng 1999, 12:873-878) como compañero de fusión. Las bibliotecas tenían los siguientes tamaños reales: 3 x 10⁹ (Zlib003Naive.I); 1,5 x 10¹⁰ (Zlib006Naive.II); y 1,4 x 10¹⁰ (Zlib004Naive.I), refiriéndose el número a la cantidad de variantes.

50 Las soluciones madre de fagos se prepararon en matraces de agitación (Zlib003Naive.I) como se describe en Grönwall *et al.* anteriormente o en un fermentador de 20 I (Zlib006Naive.II y Zlib004Naive.I). Las células de una solución madre de glicerol que contenía la biblioteca de fagémidos Zlib004Naive.I se inocularon en 20 I de TSB-YE (extracto de levadura tríptica con soja; 30 g/l de TSB, 5 g/l de extracto de levadura) complementado con el 2% de glucosa y 100 µg/ml de ampicilina. Las células de una solución madre de glicerol que contenía la biblioteca de fagémicos Zlib006Naive.II se inocularon en 20 I de un medio libre de prolina definido [hidrogenofosfato dipotásico 7 g/l, citrato trisódico dihidrato 1 g/l, uracilo 0,02 g/l, YNB (Disco™ base nitrógenada de levadura sin aminoácidos, Becton Dickinson) 6,7 g/l, glucosa monohidrato 5,5 g/l, L-alanina 0,3 g/l, monoclorhidrato de L-arginina 0,24 g/l, L-asparagina monohidrato 0,11 g/l, L-cisteína 0,1 g/l, ácido L-glutámico 0,3 g/l, L-glutamina 0,1 g/l, glicina 0,2 g/l, L-histidina 0,05 g/l, L-isoleucina 0,1 g/l, L-leucina 0,1 g/l, monoclorhidrato de L-lisina 0,25 g/l, L-metionina 0,1 g/l, L-

fenilalanina 0,2 g/l, L-serina 0,3 g/l, L-treonina 0,2 g/l, L-triptófano 0,1 g/l, L-triosina 0,05 g/l, L-valina 0,1 g/l] complementado con 100 μg/ml de ampicilina. Los cultivos se dejaron crecer a 37 °C en un fermentador (Belach Bioteknik, BR20). Cuando las células alcanzaron una densidad óptica (DO) de 0,7-0,8, se infectaron aproximadamente 2,6 l del cultivo utilizando un exceso molar 10x de fago auxiliar M13K07 (New England Biolabs 5 #N0315S). Las células se incubaron durante 30 minutos, después de lo cual el fermentador se llenó hasta 20 l con TSB-YE complementado con IPTG 100 μM (isopropil-β-D-1-tiogalactopiranósido, para la inducción de la expresión), 25 μg/ml de kanamicina y 12,5 μg/ml de carbenicilina y se dejaron crecer a 30°C durante 22 h. Las células en el cultivo se sedimentaron por centrifugación a 15.900 g y las partículas de fago que permanecían en el medio se precipitaron posteriormente dos veces en PEG/NaCl (polietilenglicol/cloruro de sodio), se filtraron y se disolvieron en PBS y glicerol como se describe en Grönwall *et al.* anteriormente. Las soluciones madre de fago se almacenaron a -80°C antes de su uso.

Las selecciones se realizaron en cuatro ciclos contra hC5 biotinilado. La preparación de la solución madre de fago. el procedimiento de selección y la amplificación de fago entre ciclos de selección se realizaron esencialmente como 15 se describe en el documento WO 2009/077175. Se usó PBS complementado con albúmina sérica bovina al 3% (BSA) y Tween20 al 0,1% como tampón de selección y los complejos del fago diana se capturaron directamente con Estreptavidina Dynabeads® M-280 (Dynal, cat. n.º 112.06). Se usaron 1 mg de perlas por 10 µg de proteína C5 del complemento. Se utilizó la cepa RR1ΔM15 de E. coli para la amplificación de fagos. En el ciclo 1 de las selecciones, se utilizó hC5 100 nM y se realizaron dos lavados con PBST al 0,1% (PBS complementado con el 0,1% de Tween-20 20). En los tres ciclos posteriores se aplicó una mayor rigorusidad, utilizando una concentración objetivo reducida y un mayor número de lavados. En el ciclo 2, 3 y 4; se usaron hC5 50 o 33 nM, hC5 25 o 11 nM y hC5 12,5 o 3,7 nM. En los ciclos 2, 3 y 4; se realizaron 4, 6 y 8 lavados, utilizando PBST al 0,1% en todos los ciclos o PBST al 0,2%, 0,3% y 0,4% en los ciclos 2, 3 y 4. Cribado de ELISA de variantes Z: Para probar si las moléculas de variantes Z seleccionadas podrían interactuar con la proteína C5 del complemento humano, se realizaron ensayos ELISA. Las 25 variantes Z se produjeron inoculando colonias individuales de las selecciones en 1 ml de medio TSB-YE complementado con 100 µg/ml de ampicilina e IPTG 0.1 mM en placas de pocillos profundos (Nunc, cat. n.º 278752). Las placas se incubaron durante 18-24 h a 37°C. Las células se sedimentaron por centrifugación, se resuspendieron en 300 µl de PBST al 0,05% y se congelaron a -80°C para liberar la fracción periplásmica de las células. Las muestras congeladas se descongelaron en un baño de agua y las células se sedimentaron por centrifugación. El 30 sobrenadante periplásmico contenía las variantes Z como fusiones a un dominio de unión a la albúmina (GA3 de la proteína G de la cepa G148 de Streptococcus), expresado como AQHDEALE-[Z#####]-VDYV-[ABD]-YVPG (Grönwall et al, anteriormente), o a la molécula de unión a la ADN polimerasa Tag Z03639, expresada como AQHDEALE-[Z#####]-VDYV-[Z03639]-YVPG. Z##### se refiere a variantes Z de 58 residuos de aminoácidos individuales.

Se recubrieron placas ELISA de 96 pocillos de media área (Costar, cat. n.º 3690) con 50 μl/pocillo de tampón de recubrimiento (carbonato de sodio 50 mM, pH 9,6) que contenían 4 μg/ml de un anticuerpo específico para variantes Z (Affibody, cat. n.º 20.1000.01.0005) y se incubaron durante una noche a 4°C. La solución de anticuerpo se eliminó por vertido y los pocillos se bloquearon con 100 μl de PBSC (PBS complementado con caseína al 0,5% (Sigma, cat. n.º C8654) durante 1-2 horas a TA. La solución de bloqueo se descartó y se añadieron 50 μl de solución periplásmica a los pocillos y se incubó durante 1 h a TA con agitación lenta. Los sobrenadantes se eliminaron por vertido y los pocillos se lavaron 4 veces con PBST al 0,05%. Después, se añadieron 50 μl de proteína de complemento biotinilada hC5, a una concentración de 5 μg/ml en PBSC, a cada pocillo. Las placas se incubaron durante 1,5 horas a TA seguido de lavados como se describe anteriormente. Se diluyó estreptavidina-HRP (peroxidasa de rábano picante; Dako, cat. n.º P0397) 1:10.000 en PBSC, se añadió a los pocillos que después se incubaron durante 45 minutos. Después del lavado como se describe anteriormente, se añadieron 50 μl de sustrato ImmunoPure TMB (Thermo Scientific, cat. n.º 34021) a los pocillos y las placas se trataron de acuerdo con las recomendaciones del fabricante. La absorbancia de los pocillos se midió a 450 nm utilizando un lector de placas multipocillo, Victor³ (Perkin Elmer).

Como control positivo, una fracción periplásmica que también contenía la molécula de unión a PSMA Z03938 expresada como AQHDEALE-[Z03938]-VDYV-[Z03639]-YVPG se sometió a ensayo frente a 5 µg/ml de proteína PSMA biotinilada. Como control negativo; la misma preparación periplásmica se ensayó contra la proteína del complemento hC5. La secuenciación se realizó para los clones con valores de absorbancia positivos contra hC5.

55

Secuenciación: Los fragmentos de PCR se amplificaron a partir de colonias individuales utilizando un programa de PCR estándar y los cebadores AFFI-21 (5'-tgcttccggctcgtatgttgtgtg) y AFFI-22 (5'-cggaaccagagccaccaccgg). La secuenciación de fragmentos amplificados se realizó utilizando el oligonucleótido biotinilado AFFI-72 (5'-biotinacggaaccagagccaccaccgg) y un kit de secuenciación de ciclos BigDye® Terminator v3.1 (Applied Biosystems),

utilizado de acuerdo con el protocolo del fabricante. Las reacciones de secuenciación se purificaron mediante la unión a perlas recubiertas con estreptavidina magnéticas (Detach Streptavidin Beads, Nordiag, cat. n.º 2012-01) utilizando un Magnatrix 8000 (Magnetic Biosolution) y se analizaron en analizador genético ABI PRISM® 3100 (PE Applied Biosystems).

ELISA de bloqueo: Los clones que se encontraron positivos para hC5 en el cribado ELISA se sometieron a un ensayo de bloqueo ELISA para dilucidar si su unión a diana se vio afectada por la presencia de las proteínas de unión a hC5 OmCl y/o proteína de unión a hMG7. El ELISA de bloqueo se realizó utilizando variantes Z expresadas en fracciones periplásmicas como se describe en la sección para el cribado ELISA anterior, pero configurando cultivos de 5 ml en tubos de fondo redondo de 12 ml y utilizando 2 ml de PBST al 0,05% para la disolución del sedimento. El ensayo de bloqueo ELISA se realizó como el ensayo de cribado ELISA, con una modificación de protocolo introducida en la etapa diana; OmCl o la proteína de unión a hMG7 se mezclaron con la proteína diana antes de la adición a la placa de ensayo. Se mezclaron 5 μg/ml de hC5 biotinilado con 5 veces o 20 veces el exceso molar de OmCl o la proteína de unión a hMG7, respectivamente, después se incubaron durante 1 h a TA para permitir la formación del complejo antes de la adición a la placa. Para cada clon, se obtuvieron una referencia (1), un control negativo (2) y una respuesta/señal de fondo (3), respectivamente, de la siguiente manera: en la etapa diana, solo se añadió hC5 a las variantes Z (como en el cribado ELISA) (1); se añadió la proteína irrelevante PSMA (producida internamente) a la proteína del complemento hC5, en lugar de OmCl o la proteína de unión a hMG7 (2); solo se añadió tampón a las variantes Z (3).

Resultados

20

25

40

<u>Selección de presentación de fago de los polipéptidos de unión a la proteína del complemento C5:</u> Se obtuvieron clones individuales después de dos-cuatro ciclos de selecciones de presentación en fago contra hC5 biotinilado.

<u>Cribado ELISA de variantes Z:</u> Los clones obtenidos después de cuatro ciclos de selección se produjeron en placas de 96 pocillos y se cribaron para determinar la actividad de unión a la proteína del complemento C5 en ELISA. En total, se cribaron casi 400 clones. Las mediciones de absorbancia mostraron muchos clones positivos para hC5. El resultado de una selección de clones se muestra en la Tabla 1; la variante Z05363 (SEQ ID NO: 510) se etiqueta con ABD, mientras que las otras variantes Z enumeradas se etiquetan con la molécula de unión *Taq* Z03639 como se describe en la sección de métodos. La molécula específica de PSMA Z03938 utilizada como control negativo dio una señal positiva para PSMA, mientras que no se obtuvo ninguna señal contra hC5.

<u>ELISA de bloqueo</u>: Los clones positivos para hC5 se sometieron a un ensayo de bloqueo utilizando las proteínas de unión a hC5 OmCl y la proteína de unión a hMG7. Para cinco clones, la señal de unión a la proteína del complemento C5 se extinguió completamente por la presencia de OmCl, alcanzando el mismo nivel que el fondo (Tabla 1). Uno de estos clones, concretamente, la variante Z05363 (SEQ ID NO: 510), también se sometió a ensayo para determinar su capacidad para unirse a hC5 en presencia de la proteína de unión a hMG7. La proteína de unión a hMG7 no inhibió la unión de Z05363 a hC5.

Tabla 1. Respuesta en ELISA a la diana, con o sin molécula de bloqueo para varias variantes Z.

Variante Z	SEQ ID NO:#	hC5 (DO 450 nm)	Bloqueo OmCl
Z05363	SEQ ID NO:510	3,143	completo
Z05477	SEQ ID NO:509	2,872	completo
Z05483	SEQ ID NO:511	0,531	completo
Z05538	SEQ ID NO:512	0,099	completo
Z05692	SEQ ID NO:513	0,944	completo

Secuenciación: La secuenciación se realizó para los clones con valores de absorbancia positivos frente a la proteína del complemento C5 en el cribado ELISA. A cada variante se le asignó un número de identificación único #####, y 45 las variantes individuales se denominan Z#####. Las secuencias de aminoácidos de las variantes Z de 58 residuos de aminoácidos de largo se enumeran en la Figura 1 y en la lista de secuencias como SEQ ID NO: 509-513. Los motivos de unión a la proteína del complemento C5 deducidos de estas variantes Z se enumeran en la Figura 1 y en la lista de secuencias como SEQ ID NO: 13-17. Las secuencias de aminoácidos de los polipéptidos de 49 residuos de aminoácidos de largo que se predice que constituyen el conjunto completo de tres hélices dentro de cada una de 50 estas variantes Z se enumeran en la Figura 1 y en la lista de secuencias como SEQ ID NO: 261-265.

Ejemplo 2: Producción y caracterización de variantes Z

Materiales y métodos

Subclonación de variantes Z, expresión y purificación de proteínas:

Se amplificaron cinco variantes Z de unión a la proteína del complemento C5 (Z05363 (SEQ ID NO:510); Z05477 (SEQ ID NO:509); Z05483 (SEQ ID NO:511); Z05538 (SEQ ID NO:512) y Z05692 (SEQ ID NO:513)) a partir de los vectores de biblioteca pAffi1/pAY00065/pAY02947. Se aplicó una estrategia de subclonación para la construcción de moléculas de Affibody diméricas con etiquetas His₆ N-terminales utilizando técnicas estándar de biología molecular y como se describe en detalle en el documento WO 2009/077175.

Los fragmentos génicos Z se subclonaron en el vector de expresión pAY01448 dando como resultado la secuencia codificada MGSSHHHHHHLQ-[Z#####][Z#####]-VD.

15 Las variantes Z subclonadas se transformaron en BL21(DE3) de *E. coli* y se expresaron en el sistema multifermentador Greta (Belach Bioteknik). En resumen, los cultivos se dejaron crecer a 37°C en 800 ml de medio TSB-YE que contenía 50 μg/ml de kanamicina. A una DO₆₀₀ de ~1, los cultivos se indujeron mediante la adición automática de IPTG a una concentración final de 0,05 mM. Los cultivos se enfriaron a aproximadamente 10°C después de 5 h de inducción, y se recogieron por centrifugación (20 min, 15.900 g). Los sobrenadantes se descartaron y los sedimentos celulares se recogieron y se almacenaron a -20°C hasta su uso posterior. Los niveles de expresión y el grado de solubilidad se estimaron mediante análisis SDS-PAGE en geles NuPAGE™ al 4-12% (Invitrogen) utilizando la tinción con azul de Coomassie.

Para las variantes Z expresadas principalmente como proteína soluble, los sedimentos celulares se resuspendieron en un tampón de unión (fosfato de sodio 20 mM, NaCl 0,5 M, imidazol 20 mM, pH 7,4) con una adición de 1000 U de Benzonase® (Merck, cat. no. 1.01654.001) y se alteraron por ultrasonidos. Para cada una de las variantes Z, la suspensión sometida a sonicación se aclaró por centrifugación (40 min, 25.000 g, 4°C) y el sobrenadante se cargó en una columna de His GraviTrap™ de 1 ml (GE Healthcare). La columna se lavó con tampón de lavado (fosfato de sodio 20 mM, NaCl 0,5 M, imidazol 60 mM, pH 7,4), antes de eluir las variantes Z con 3 ml de tampón de elución (fosfato de sodio 20 mM, NaCl 0,5 M, imidazol 0,5 M, pH 7.4). Las variantes Z que se expresaron principalmente como proteína insoluble se purificaron igualmente, pero se incluyó urea 8 M en el tampón de unión y lavado. Si fuera necesario, las variantes Z se purificaron adicionalmente mediante cromatografía de fase inversa (RPC) en columnas Resource™ de 1 ml (GE Healthcare) usando agua que incluía TFA al 0,1% (ácido trifluoroacético) como fase móvil y elución con un gradiente apropiado (típicamente 0-50% sobre 20 volúmenes de columna) de acetonitrilo, incluido TFA al 0,1%.

El tampón se cambió a PBS utilizando columnas PD-10 (GE Healthcare).

Caracterización de la proteína: la concentración de las variantes Z purificadas se determinó mediante mediciones de absorbancia a 280 nm utilizando coeficientes teóricos de extinción. La pureza se estimó mediante análisis de SDS-PAGE en geles NuPAGE™ al 4-12% (Invitrogen) usando tinción con azul de Coomassie. Para verificar la identidad y determinar los pesos moleculares de las variantes Z purificadas, se realizaron análisis por LC/MS en un sistema Agilent 1100 LC/MSD (Agilent Technologies).

45 Análisis de CD: Las variantes Z purificadas se diluyeron a 0,5 mg/ml en PBS. Para cada variante Z diluida, se registró un espectro de CD entre 250-195 nm a una temperatura de 20°C. Además, se realizó una medición de temperatura variable (VTM) para determinar la temperatura de fusión (Tm). En la VTM, la absorbancia se midió a 221 nm mientras que la temperatura se elevó de 20 a 90°C, con una pendiente de temperatura de 5°C/min. La capacidad de la variante Z para replegarse se evaluó mediante la recopilación de un espectro de CD adicional a 50 250-195 nm después de enfriamiento a 20°C. Las mediciones de CD se realizaron en un espectropolarímetro Jasco J-810 (Jasco Scandinavia AB) utilizando una celda con una longitud de trayectoria óptica de 1 mm.

Análisis de unión de Biacore: Se analizaron las interacciones de las cinco variantes Z de unión a hC5 diméricas marcadas con His6 subclonadas con hC5, cC5, rC5, hMG7 y hIgG (Sigma, cat. n.º G4386) en un instrumento Biacore (GE Healthcare). Las variantes Z se inmovilizaron en diferentes células de flujo en la capa de dextrano carboxilado de varias superficies del chip CM5 (GE Healthcare). La inmovilización se realizó mediante la química de acoplamiento de aminas de acuerdo con el protocolo del fabricante. Se activó y se desactivó una superficie de celda de flujo en cada chip para su uso como blanco durante las inyecciones de analito. Los analitos, diluidos en tampón de ejecución HBS-EP (GE Healthcare) hasta una concentración final de 100 nM, se inyectaron a un caudal de 10

μl/min durante 1 min. Después de 2 min de disociación, las superficies se regeneraron con una inyección de HCl 10 mM. Los resultados se analizaron en el software BiaEvaluation (GE Healthcare). Las curvas de la superficie en blanco se restaron de las curvas de las superficies del ligando.

5 Resultados

10

15

20

<u>Subclonación de variantes Z:</u> Se eligieron cinco clones únicos seleccionados (Z05477 (SEQ ID NO:509), Z05363 (SEQ ID NO:510), Z05483 (SEQ ID NO:511), Z05538 (SEQ ID NO:512) y Z05692 (SEQ ID NO:513)) para la subclonación como dímero en el vector de expresión pAY01448 y posteriormente se verificaron por secuenciación.

<u>Producción de proteínas:</u> Las variantes Z diméricas marcadas con histidina produjeron niveles de expresión aceptables del producto génico soluble. La pureza de los lotes producidos se estimó en más del 90% de acuerdo con lo evaluado por el análisis SDS-PAGE. El análisis LC/MS verificó el peso molecular correcto para todas las moléculas de la variante Z.

<u>Análisis de CD:</u> Las temperaturas de fusión (Tm) de las diferentes variantes Z se calcularon determinando el punto medio de la transición en el gráfico de la señal de CD frente a la temperatura. Los resultados para una serie de variantes Z plegables de manera reversible se resumen en la Tabla 2 a continuación.

Tabla 2. Temperaturas de fusión para una serie de variantes Z.

Variante Z	SEQ ID NO: N.º de variante Z monomérica	Tm (°C)
His ₆ -(Z05477) ₂	SEQ ID NO:509	45
His ₆ -(Z05363) ₂	SEQ ID NO:510	35
His ₆ -(Z05483) ₂	SEQ ID NO:511	44
His ₆ -(Z05538) ₂	SEQ ID NO:512	54
His ₆ -(Z05692) ₂	SEQ ID NO:513	52

Análisis de unión de Biacore: La unión de las cinco variantes Z diméricas subclonadas a diferentes especies de C5 y MG7, un subdominio de hC5, así como la unión de fondo a lgG se sometió a ensayo en un instrumento Biacore inyectando las diferentes proteínas sobre las superficies que contenían las variantes Z. Los niveles de inmovilización de ligando para las diferentes variantes Z en las superficies fueron: Z05363: 2080 RU, Z05477: 2180 RU, Z05483: 2010 RU, Z05538: 2570 RU y Z05692: 3270 RU. Las diferentes variantes de Z se sometieron a ensayo para determinar la unión a diferentes conjuntos de proteínas inyectadas a concentraciones de 100 nM, véase la Tabla 3. El resultado de las variantes Z sometidas a ensayo se muestra en la tabla como un resultado de +/- para cada proteína. Como ejemplo del análisis de unión de Biacore, la Figura 2 muestra los sensogramas obtenidos a partir del 30 Z05477 dimérico inmovilizado analizado contra hC5, cC5, rC5, hMG7 y hlgG.

Tabla 3. Respuesta de Biacore de diferentes variantes Z contra C5 de varias especies y proteínas de fondo seleccionadas relevantes.

Variante Z	SEQ ID NO: N.º de variante Z monomérica	hC5	cC5	rC5	hMG7	hlgG	
His ₆ -(Z05477) ₂	SEQ ID NO:509	+	+	+	-	-	
His ₆ -(Z05363) ₂	SEQ ID NO:510	+	+	+	-	-	
His ₆ -(Z05483) ₂	SEQ ID NO:511	+	+	+	-	-	
His ₆ -(Z05538) ₂	SEQ ID NO:512	+	+	+	-	-	
His ₆ -(Z05692) ₂	SEQ ID NO:513	+	+	-	-	-	

35 Ejemplo 3: Diseño y construcción de una biblioteca madura de variantes Z de unión a la proteína del complemento C5

En este Ejemplo, se construyó una biblioteca madurada. La biblioteca se usó para selecciones de polipéptidos de unión a hC5. Generalmente, se espera que las selecciones de bibliotecas maduradas produzcan aglutinantes con 40 afinidad aumentada (Orlova et al. Cancer Res 2006, 66(8):4339-48). En este estudio, los conectores bicatenarios aleatorios se generaron por la tecnología Slonomics® que permite la incorporación de conjuntos aleatorios de componentes básicos de trinucleótidos utilizando ligaduras y restricciones del ADN bicatenario construido posteriormente.

45 Materiales y métodos

<u>Diseño de biblioteca</u>: La biblioteca se basó en una selección de secuencias de las variantes Z de unión a hC5 descritas en los Ejemplos 1 y 2. En la nueva biblioteca, 13 posiciones variables en el andamiaje de la molécula Z estaban sesgadas hacia ciertos residuos de aminoácidos, de acuerdo con a una estrategia basada en las secuencias de variante Z definidas en la SEQ ID NO:509-513 (Z05477, Z05363, Z05483, Z05538, Z05692). Una biblioteca SlonoMax® de ADN bicatenario, que contenía la hélice 1 y 2 parcialmente asignada al azar de 147 pb de la secuencia de aminoácidos 5'-AA ATA AAT CTC GAG GTA GAT GCC AAA TAC GCC AAA GAA/GAG NNN NNN NNN GCA/GCC NNN NNN GAG/GAA ATC/ATT NNN NNN TTA/CTG CCT AAC TTA ACC/ACT NNN NNN CAA/CAG TGG NNN GCC/GCG TTC ATC/ATT NNN AAA/AAG TTA/CTG NNN GAT/GAC GAC CCA AGC CAG AGC TCA TTA TTT A-3' (los codones aleatorios se ilustran como NNN) flanqueados por los sitios de restricción *Xho*I y *Sac*I, se pidió a Sloning BioTechnology GmbH (Pucheim, Alemania). Las distribuciones teóricas de los residuos de aminoácidos en la nueva biblioteca que finalmente incluyen 12 posiciones de Z variables se dan en la Tabla 4.

Tabla 4: Diseño de biblioteca.

Posición de aminoácidos en la molécula de variante Z	Asignación al azar (abreviaturas de aminoácidos)	N.º de aminoácidos	Proporción
9	H,Q,S,T,V	5	1/5
10	I,L,V,W	4	1/4
11	A,D,E,H,K,L,N,R,S,T,Y	12	1/12
13	N,Q,W,Y	4	1/4
14	A,D,E,H,I,K,L,N,Q,R,S,T,V,W,Y	15	1/14
17	D,E	2	1/2
18	A,D,E,G,H,I,K,L,Q,R,S,T,V,Y	14	1/14
24	I,L,V	3	1/3
25	A,D,E,H,K,N,Q,R,S,T,Y	11	1/11
28	I,L,V	3	1/3
32	A,D,E,F,G,H,K,L,N,Q,R,S,T,V	14	1/14
35	A,D,E,H,K,N,Q,R,S,T,W,Y	12	1/12

15 Construcción de biblioteca: La biblioteca se amplificó usando Ampli*Taq* Gold polimerasa (Applied Biosystems, cat. n.º 4311816) durante 12 ciclos de PCR y los productos combinados se purificaron con un kit de purificación de PCR QIAquick (QIAGEN, cat. n.º 28106) de acuerdo con las recomendaciones del proveedor. El conjunto purificado de fragmentos de biblioteca aleatorizados se digirió con las enzimas de restricción *Xho*l y *Sac*l (New England Biolabs, cat. n.º R01460L, y cat. n.º R0156L) y se purificó una vez más con el kit de purificación por PCR. Posteriormente, el producto se purificó utilizando electroforesis en gel preparativa en un gel de agarosa al 1%.

El vector fagémido pAY02592 (esencialmente como pAffi1 descrito en Grönwall *et al.* anteriormente) se restringió con las mismas enzimas, se purificó utilizando extracción con fenol/cloroformo y precipitación con etanol. Los fragmentos restringidos y el vector restringido se ligaron en una relación molar de 5:1 con ADN ligasa T4 (New 25 England Biolabs, cat. n.º M0202S), durante 2 horas a TA, seguido de una incubación durante una noche a 4°C. El ADN ligado se recuperó mediante extracción con fenol/cloroformo y precipitación con etanol, seguido de disolución en Tris-HCl 10 mM, pH 8,5.

Las reacciones de ligadura (aproximadamente 250 ng de ADN/transformación) se sometieron a electroporación en células RR1ΔM15 de *E. coli* electrocompetentes (100 μl). Inmediatamente después de la electroporación, se añadió aproximadamente 1 ml de medio SOC (medio TSB-YE, glucosa al 1%, MgCl₂ 50 μM, MgSO₄ 50 μM, NaCl 50 μM y KCl 12,5 μM). Las células transformadas se incubaron a 37°C durante 50 min. Se tomaron muestras para la valoración y para la determinación del número de transformantes. Posteriormente, las células se agruparon y se cultivaron durante una noche a 37°C en 71 de medio TSB-YE, complementado con glucosa al 2% y 100 μg/ml de 35 ampicilina. Las células se sedimentaron durante 15 minutos a 4.000 g, se resuspendieron en una solución de PBS/glicerol (aproximadamente el 40% de glicerol). Las células se dividieron en alícuotas y se almacenaron a -80°C. Los clones de la biblioteca de variantes Z se secuenciaron para verificar el contenido y evaluar el resultado de la biblioteca construida en relación con el diseño de la biblioteca. La secuenciación se realizó como se describe en el Ejemplo 1 y se verificó la distribución de aminoácidos.

Preparación de la solución madre de fago: Las células de la solución madre de de glicerol que contenía la biblioteca de fagémidos C5 se inocularon en 20 l de un medio libre de prolina definido (descrito en el Ejemplo 1) complementado con 100 μg/ml de ampicilina, y se dejaron crecer a 37°C en un fermentador (Belach Bioteknik, BR20). Todas las etapas se realizaron como se describe en el Ejemplo 1 para la biblioteca Zlib006Naive.II. Después

40

del cultivo, las células se sedimentaron por centrifugación a 15.900 g y las partículas de fago que quedaron en el medio se precipitaron posteriormente dos veces en PEG/NaCl, se filtraron y se disolvieron en PBS y glicerol como se describe en el Ejemplo 1. Las soluciones madre de fago se almacenaron a -80°C hasta su uso en la selección.

5 Resultados

Construcción de biblioteca: La nueva biblioteca se diseñó basándose en un conjunto de variantes Z de unión a C5 bloqueadas por OmCl con propiedades de unión verificadas (Ejemplo 1 y 2). El tamaño teórico de la biblioteca diseñada fue de 6,7 x 10⁹ variantes Z. El tamaño real de la biblioteca, determinado por la valoración después de la transformación en las células RR1ΔM15 de *E. coli*, fue de 1,4 x 10⁹ transformantes.

La calidad de la biblioteca se sometió a ensayo mediante la secuenciación de 64 transformantes y comparando sus secuencias reales con el diseño teórico. Se mostró que el contenido de la biblioteca real en comparación con la biblioteca diseñada era satisfactorio. La posición bloqueada en la secuencia de aminoácidos diseñada (W en la posición 27) se reflejó en la secuencia real en que solo el aminoácido esperado se encontraba en esa posición. Por lo tanto, se construyó con éxito una biblioteca madura de polipéptidos de unión a hC5.

Ejemplo 4: Selección, cribado y caracterización de variantes Z a partir de una biblioteca madura

20 Materiales y métodos

Selección de presentación de fago de los polipéptidos de unión a la proteína del complemento C5: La proteína diana hC5 se biotiniló como se describe en el Ejemplo 1. Las selecciones de presentación de fagos se realizaron contra hC5 esencialmente como se describe en el Ejemplo 1 utilizando la nueva biblioteca de moléculas de variante Z descritas en el Ejemplo 3. Se usó XL1-Blue de *E. coli* para la amplificación de fagos. La selección se realizó inicialmente en dos pistas paralelas. En una pista, el tiempo de selección fue de 2 h, mientras que en la otra pista, se utilizaron tiempos de selección más cortos: 20 min en el primer ciclo y 10 min para los ciclos 2-4 posteriores. Estas dos pistas (1 y 2) se dividieron en el segundo ciclo, dando como resultado un total de seis pistas (1a-c y 2a-c, que diferían en la concentración objetivo y las condiciones de lavado). La selección se realizó en un total de cuatro ciclos. En el ciclo 1 de las selecciones, se utilizó la proteína del complemento C5 25 nM y se realizaron cinco lavados con PBST al 0,1%. En los tres ciclos posteriores se aplicó una mayor rigorusidad, utilizando una concentración objetivo reducida y un mayor número de lavados. En los ciclos 2, 3 y 4; se utilizaron 10, 5 o 2,5 nM de la proteína del complemento C5, 4, 1 o 0,25 nM de la proteína del complemento C5 y 1,6, 0,2 o 0,05 nM de la proteína del complemento C5. En los ciclos 2, 3 y 4; se realizaron 10, 15 y 20 lavados utilizando PBST al 0,1%. Además, el segundo último lavado se prolongó a 3 h con un exceso de 50x de hC5 no biotinilado en la solución de lavado para dos de las pistas (1c y 2c).

<u>Secuenciación de posibles aglutinantes:</u> Los clones individuales de las diferentes pistas de selección se seleccionaron para la secuenciación. Todos los clones realizados en el cribado ELISA se secuenciaron. La 40 amplificación de fragmentos génicos y el análisis de secuencia de fragmentos génicos se realizaron como se describe en el Ejemplo 1.

Cribado ELISA de variantes Z: Se recogieron aleatoriamente colonias individuales que contenían variantes Z de los clones seleccionados de la biblioteca madurada de la proteína del complemento C5 y se dejaron crecer en cultivos de 1 ml como se describe en el Ejemplo 1. Se liberaron proteínas periplásmicas mediante 8 ciclos repetidos de congelación-descongelación. Los cribados ELISA se realizaron esencialmente como se describe en el Ejemplo 1 con las siguientes excepciones. Las placas ELISA de 96 pocillos de área media se recubrieron con 2 μg/ml de un anticuerpo de cabra específico de ABD (producido internamente) diluido en tampón de recubrimiento. Se utilizó hC5 biotinilado a una concentración de 0,15 μg/ml y se realizó una incubación durante 1,5-2 h. La HRP conjugada con estreptavidina se obtuvo en Thermo Scientific (cat. n.º N100). La variante Z Z05363 (SEQ ID NO: 510) que se originó en las selecciones primarias (Ejemplo 1) se usó como control positivo, así como un control negativo que omite hC5.

Las variantes Z maduradas seleccionadas se sometieron a una segunda criba contra hC5 a una concentración inferior y se compararon con rC5. El ensayo se realizó esencialmente como se describe anteriormente. Se utilizaron hC5 y rC5 a una concentración de 0.05 μg/ml y 4 μg/ml, respectivamente. La variante Z Z05363 (SEQ ID NO: 510) también se utilizó como control positivo en este experimento. Como control negativo, se sometió a ensayo una unión de la variante Z a PDGF-Rβ (Z01977; descrita en el documento WO 2009/077175) contra hC5 o rC5 biotinilados.

En el análisis de secuencia profunda de variantes Z seleccionadas y la correlación de aminoácidos en las 13

posiciones aleatorias con temperaturas de fusión medidas y valores de Cl₅₀ para C5 humano y C5 de ratón en el ensayo de hemólisis (descrito en el Ejemplo 6), se sugirió una variante Z favorable no identificada entre los 558 clones secuenciados. Basándose en la variante Z Z05998 (SEQ ID NO: 499), un solo aminoácido, lle en la posición 10, se sustituyó con Leu utilizando tecnología convencional para la mutagénesis de sitio dirigido. La nueva variante 5 se denomina Z08044 (SEQ ID NO: 498). El motivo de unión a la proteína del complemento C5 deducido de esta variante Z se enumera en la Figura 1 y en la lista de secuencias como SEQ ID NO: 2. Las secuencias de aminoácidos del polipéptido de 49 residuos de aminoácidos de largo que se predice que constituyen el conjunto completo de tres hélices dentro de esta variante Z se enumeran en la Figura 1 y en la lista de secuencias como SEQ ID NO: 250.

10

Resultados

Selección de presentación de fago de los polipéptidos de unión a la proteína del complemento C5: La selección se realizó en un total de seis pistas paralelas que contenían cuatro ciclos cada una. Las diferentes pistas de selección 15 difirieron en la concentración objetivo y las condiciones de lavado de la siguiente manera: 1a) 2 h de tiempo de selección, alta concentración, lavado estándar, 1b) 2 h de tiempo de selección, baja concentración, lavado estándar, 1c) 2 h de tiempo de selección, concentración media, lavado largo, 2a) 10 min de tiempo de selección, alta concentración, lavado estándar, 2b) 10 min de tiempo de selección, baja concentración, lavado estándar, y 2c) 10 min de tiempo de selección, concentración media, lavado largo. Para cada ciclo de selección, la concentración 20 objetivo se redujo y las condiciones de lavado fueron más rigurosas. Todas las pistas dieron en cada ronda cantidades suficientes de partículas de fago en el eluato. La mayoría de las partículas de fago se encontraron en las pistas 1a y 2a, que representaban la concentración objetivo más alta y las condiciones de lavado más suaves. Secuenciación: Se secuenciaron clones seleccionados al azar (558). A cada variante Z se le asignó un número de identificación, Z#####, como se describe en el Ejemplo 1. En total, se identificaron 242 nuevas moléculas de 25 variante Z únicas. Las secuencias de aminoácidos de las variantes Z de 58 residuos de aminoácidos de largo se enumeran en la Figura 1 y en la lista de secuencias como la SEQ ID NO: 497, SEQ ID NO: 499-508 y SEQ ID NO: 514-744. Los motivos de unión a la proteína del complemento C5 deducidos de estas variantes Z se enumeran en la Figura 1 y en la lista de secuencias como SEQ ID NO: 1, SEQ ID NO: 3-12 y SEQ ID NO: 18-248. Las secuencias de aminoácidos de los polipéptidos de 49 residuos de aminoácidos de largo que se predice que constituyen el conjunto 30 completo de tres hélices dentro de cada una de estas variantes Z se enumeran en la Figura 1 y en la lista de secuencias como SEQ ID NO: 249, SEQ ID NO: 251-260 y SEQ ID NO: 266-496. Entre los clones secuenciados, 63 secuencias se produjeron dos o más veces.

Cribado ELISA de variantes Z: Los clones obtenidos después de cuatro ciclos de selección se produjeron en placas de 96 pocillos y se cribaron para determinar la actividad de unión a hC5 usando ELISA. Todos los clones seleccionados al azar se analizaron. Se encontró que 229 de las 242 variantes Z únicas dieron una respuesta más alta (0,3-3,1 UA) contra hC5 a una concentración de 0,15 μg/ml en comparación con el clon de control positivo Z05363 (SEQ ID NO: 510; una señal de absorbancia promedio de 0,3 AU), obtenida de las selecciones primarias (Ejemplo 1). Los clones de todas las pistas de selección mostraron señales positivas. Los controles negativos tenían 40 una absorbancia de aproximadamente 0,1 UA.

Se seleccionaron las variantes Z en función de su rendimiento en el cribado ELISA frente a hC5 y la frecuencia de aparición. Se ensayaron 43 variantes Z únicas contra una concentración inferior de hC5 (0,05 µg/ml), así como rC5 (4 µg/ml). Se obtuvo un resultado positivo contra rC5 para 40 de las variantes Z sometidas a ensayo, definidas como 2 veces la señal para el control negativo (0,4 AU). Los resultados para todas las variantes Z sometidas a ensayo contra la concentración más baja de hC5, así como contra rC5 se muestran en la Figura 3.

Ejemplo 5: Subclonación, producción y caracterización de un subconjunto de variantes Z de unión a la proteína del complemento C5

50

Materiales y métodos

Subclonación de moléculas de variante Z en vectores de expresión: En función del análisis de secuencia y el rendimiento en el ELISA contra la proteína del complemento C5 humano y de rata, se seleccionaron 45 clones para la subclonación en el vector de expresión pAY01448. Los fragmentos de la variante Z monomérica se amplificaron a partir del vector fagémido pAY02592 y la subclonación en pAY01448 se realizó como se describe en el Ejemplo 2, dando como resultado un vector que codifica la secuencia proteica MGSSHHHHHHLQ-[Z####]-VD.

Expresión y purificación de proteínas: Las 45 variantes Z en el formato His₆-(Z####) se expresaron en un sistema

multifermentador automatizado como se describe en el Ejemplo 2 o de manera similar en una configuración a pequeña escala de 100 ml de cultivos en matraces de agitación inducidos manualmente con IPTG a una concentración final de 0,4 mM. La purificación se realizó utilizando 1 ml de columnas HisGraviTrap™ esencialmente como se describe en el Ejemplo 2 o en una escala más pequeña utilizando 0,1 ml de His SpinTrap (GE Healthcare, cat. n.º 28-4013-53). El tampón se cambió a PBS utilizando columnas PD-10 o PD SpinTrap G-25 (GE Healthcare, cat. n.º 28-9180-04) de acuerdo con las instrucciones del fabricante. La concentración de variantes Z purificadas se determinó mediante mediciones de absorbancia a 280 nm y la pureza y la identidad se evaluaron mediante SDS-PAGE y LC/MS como se describe en el Ejemplo 2. Las muestras se dividieron en alícuotas y se almacenaron a -80°C hasta su uso posterior.

10

Análisis de CD: El análisis de CD para la determinación de las temperaturas de fusión y la reversibilidad del plegado se realizó como se describe en el Ejemplo 2.

Resultados

15

Expresión y purificación de proteínas: Podían expresarse las 45 variantes Z subclonadas y la solubilidad *in vitro* para todas las variantes purificadas era buena. LC/MS estimó que la pureza superaba el 90% para todas las variantes. Los pesos moleculares correctos se verificaron por LC-MS.

20 <u>Análisis de CD</u>: Las mediciones del espectro de CD realizadas a 20°C confirmaron la estructura α-helicoidal de las variantes Z a esta temperatura. Una superposición de los espectros obtenidos después de las mediciones de temperatura variable (calentamiento a 90°C seguido de enfriamiento a 20°C) en los espectros obtenidos antes de la medición de temperatura variable mostró que todas las variantes Z se repliegan completamente, o casi completamente, a sus estructuras α-helicoidales después del calentamiento a 90°C (resultados no mostrados). Las temperaturas de fusión para un conjunto de variantes Z se determinaron a partir de las mediciones de temperatura variable y se muestran en la Tabla 5.

Tabla 5. Temperaturas de fusión de variantes Z maduradas con una etiqueta de histidina fusionada directamente al extremo amino de la SEQ ID NO: 497 y la SEQ ID NO: 499-508.

Variante Z	SEQ ID NO: N.º de variante Z	Tm (°C)
His ₆ -Z06175	SEQ ID NO:497	44
His ₆ -Z05998	SEQ ID NO:499	45
His ₆ -Z06009	SEQ ID NO:500	45
His ₆ -Z06079	SEQ ID NO:501	46
His ₆ -Z06126	SEQ ID NO:502	44
His ₆ -Z06140	SEQ ID NO:503	42
His ₆ -Z06189	SEQ ID NO:504	47
His ₆ -Z06214	SEQ ID NO:505	44
His ₆ -Z06215	SEQ ID NO:506	41
His ₆ -Z06226	SEQ ID NO:507	44
His ₆ -Z06018	SEQ ID NO:508	46

30

Ejemplo 6: Caracterización in vitro de variantes Z de unión a C5

Materiales y métodos

35 <u>Cloración y producción de proteínas</u>: ADN que codifica un subconjunto de variantes Z de unión a C5 (SEQ ID NO: 745-757) donde el codón de *E. coli* se optimizó y se sintetizó por GeneArt, GmbH. Los genes sintéticos que representan las variantes Z de unión a C5 se subclonaron y se expresaron en *E. coli*. Los vectores de expresión que codifican construcciones de monómeros o dímeros de variantes Z opcionalmente unidos a un dominio de unión a albúmina (ABD094, SEQ ID NO: 759) se ilustran esquemáticamente en la Figura 4.

40

Las variantes Z expresadas intracelularmente se purificaron usando métodos de cromatografía convencionales. La homogeneización y la clarificación se realizaron por sonicación seguida de centrifugación y filtración. La cromatografía de intercambio aniónico se utilizó como etapa de captura. Se obtuvo una purificación adicional mediante cromatografía de interacción hidrófoba. Las purificaciones se realizaron en condiciones ácidas (pH 5,5). El 45 pulido y el intercambio de tampón se realizaron por cromatografía de exclusión por tamaño. Antes de la concentración hasta el contenido final de proteína, el nivel de endotoxina se redujo mediante cromatografía de

afinidad con polimixina B. Las proteínas producidas se analizaron por MALDI-TOF MS y en SDS-PAGE.

Además, la proteína OmCI expresada de forma recombinante (SEQ ID NO: 761) se usó como una molécula de referencia en los estudios *in vitro*.

Inhibición de la hemólisis: Para los estudios de la función de la ruta del complemento clásica y la inhibición de la misma por los polipéptidos de unión a C5, se prepararon eritrocitos de oveja a partir de sangre entera de oveja en solución de Alsever (Swedish National Veterinary Institute) y, posteriormente, se trataron con un antisuero de eritrocitos anti-ovino de conejo (Sigma) para convertirse en eritrocitos de oveja sensibilizados con anticuerpos (EA).

10 Todo el proceso se realizó en condiciones asépticas. Todos los demás reactivos fueron de fuentes comerciales.

El ensayo *in vitro* se realizó en una placa de microtitulación en forma de U de 96 pocillos mediante adiciones consecutivas de una proteína de ensayo, un suero de complemento y una suspensión de EA. Las concentraciones finales de todos los reactivos, en un volumen de reacción total de 50 μl por pocillo y a pH 7,3-7,4, fueron: CaCl₂ 0,15 mM; MgCl₂ 0,5 mM; NaN₃ 3 mM; NaCl 138 mM; gelatina al 0,1%; barbital sódico 1,8 mM; ácido barbitúrico 3,1 mM; 5 millones de EA; suero de la proteína del complemento C5 a una dilución adecuada, y la variante Z de unión a C5 a las concentraciones deseadas. Se utilizaron diferentes especies de sueros de complemento en el ensayo para definir potencias de especies cruzadas de las variantes Z. Para el suero de ratón, un suero humano empobrecido en C5 (C5D de Quidel cat. n.º A501) se tuvo que complementar en una cantidad igual.

Las variantes Z se preincubaron con el suero del complemento descrito anteriormente durante 20 minutos en hielo antes de comenzar la reacción mediante la adición de una suspensión de EA. La reacción hemolítica se dejó avanzar a 37°C durante la agitación durante 45 minutos y luego se terminó opcionalmente mediante la adición de 100 µl de una solución salina enfriada con hielo que contenía Tween 20 al 0,02%. Las células se centrifugaron hasta el fondo y la porción superior, correspondiente a 100 µl de sobrenadante, se transfirió a una microplaca transparente con pocillos de área media y fondo plano. Los resultados de la reacción se analizaron como densidad óptica utilizando un lector de placas de microtitulación a una longitud de onda de 415 nm.

En todas las ocasiones de ensayo, se incluyeron controles, vehículo y OmCl (SEQ ID NO: 761) en cada placa para definir los valores de las reacciones no inhibidas y completamente inhibidas, respectivamente. Estos valores se utilizaron para calcular el % de inhibición de la hemólisis del complemento en cualquier concentración de muestra dada. Las potencias inhibitorias (valores de Cl₅₀) de las variantes Z sometidas a ensayo se definieron aplicando el mismo ensayo en presencia de una concentración controlada de C5 humano añadido al suero empobrecido en C5. Para los inhibidores altamente potentes (bajo nanomolar a sub-nanomolar), una concentración final de C5 de la mezcla de reacción se controló a 0,1 nM, que se estableció opcionalmente utilizando sueros empobrecidos o deficientes en C5.

<u>Cinética in vitro y afinidad de variantes Z de unión a C5 con respecto a hC5 inmovilizado:</u> La afinidad de unión de varias variantes Z de unión a C5 (SEQ ID NO: 748-757) con respecto a hC5 se analizaron utilizando un instrumento Biacore T200 (GE Healthcare). El C5 humano (A403, Quidel Corporation) se acopló a un chip sensor CM5 (900 RU) usando química de acoplamiento de amina de acuerdo con el protocolo del fabricante. El acoplamiento se realizó inyectando hC5 a una concentración de 7,5 μg/ml en tampón de acetato de sodio 10 mM pH 5 (GE Healthcare). La célula de referencia se trató con los mismos reactivos, pero sin inyectar C5 humano.

45 Todos los experimentos se realizaron en HEPES 10 mM pH 7,4, NaCl 150 mM, EDTA 3 mM, tensioactivo P20 al 0,005% (tampón HBS-EP, GE Healthcare). Para los análisis cinéticos, el caudal fue de 30 μl/min y los datos se recopilaron a 25°C. Los datos de la celda de referencia se restaron para compensar los cambios en el índice de refracción en masa. En la mayoría de los casos, también se incluyó una inyección de HBS-EP como control, de modo que los sensogramas quedaron en blanco por duplicado. Las superficies se regeneraron en tampón HBS-EP.

La unión de variantes Z a hC5 inmovilizado se estudió con el método de cinética de ciclo único, en el que se inyectan cinco concentraciones de muestra una tras otra en el mismo ciclo sin regeneración entre inyecciones. Las constantes cinéticas se calcularon a partir de los sensogramas utilizando el modelo de analito Langmuir 1:1 o bivalente del software Biacore T200 Evaluation versión 1.0.

55

<u>Cinética in vitro y afinidad de las moléculas Z-ABD de unión a C5 con hC5 inmovilizado:</u> La unión de las moléculas Z-ABD (SEQ ID NO: 748-757 fusionadas a ABD094 (SEQ ID NO: 759) por un conector GS), a hC5 inmovilizado se evaluó utilizando un instrumento Biacore T200 (GE Healthcare).

- Unión de estado estable de variantes Z de unión a C5 a placas ECL revestidas con C5: La afinidad de una serie de construcciones de unión a C5 que comprenden variantes Z (SEQ ID NO: 745, SEQ ID NO: 748-757 fusionadas opcionalmente a ABD094 (SEQ ID NO: 759) en construcciones como se especifica en la Figura 4) con respecto a C5 humano se midió por desplazamiento de una variante Z-ABD de unión a C5 marcada con rutenio (SEQ ID NO: 748 fusionada a SEQ ID NO: 759 por un conector GS).
- La variante Z-ABD (SEQ ID NO: 748 fusionada a SEQ ID NO: 759 por un conector GS) a usar como trazador se marcó a una relación molar de 1:12 a 1:20 (proteína: SULFO-TAG NHS-Ester, Meso Scale Discovery, cat. n.º R91AN-1). La reacción de marcaje se realizó en hielo durante dos horas. El SULFO-TAG sin unir se eliminó utilizando una columna de desalinización de centrifugación Zeba™ (Thermo Scientific, cat. n.º 89889) y la concentración final de proteína se midió utilizando un reactivo de Bradford (Bradford, M.M., Anal. Biochem. 72: 248-254, 1976). La afinidad (constante de disociación, K₀) de la variante Z-ABD marcada con SULFO-TAG se determinó mediante análisis de unión de saturación de concentraciones crecientes de la variante Z-ABD marcada con respecto a pocillos de electroquimioluminiscencia recubiertos con C5 (ECL, Meso Scale Discovery). La variante Z-ABD marcada se analizó adicionalmente mediante LC/MS para determinar la distribución de las moléculas SULFO-TAG en la variante Z-ABD.
- El desplazamiento se realizó mediante el recubrimiento de placas ECL, multimatriz de 96 pocillos de alta unión, no recubiertas (Meso Scale Discovery, cat. n.º L15XB) con 50 fmol/pocillo de hC5 durante una noche a 4°C. Posteriormente, los sitios no específicos se bloquearon con PBS con el 1% de caseína durante dos horas a TA. Diferentes variantes Z fusionadas opcionalmente con ABD094 (SEQ ID NO: 759) (véase la Figura 4) se incubaron a diferentes concentraciones junto con aproximadamente 100 pM de la variante Z-ABD de unión a C5 marcada con SULFO-TAG en PBS con el 1% de caseína. La incubación duró tres horas a TA mientras se agitaba la placa a 300 rpm. Finalmente, la incubación se terminó por lavado 3 veces con 150 µl de PBS-Tween20 enfriado con hielo. Inmediatamente después del lavado final, se añadieron 150 µl de tampón de lectura 2x (tampón de lectura T 4x, Meso Scale Discovery cat. n.º R92TC-3 diluido 1:1 en H₂O ultrapuro) a cada pocillo y la señal se detectó utilizando un lector de placas (SECTOR Imager 2400, Meso Scale Discovery). La proteína de unión a C5 de origen natural OmCI (Nunn *et al.* anteriormente, SEQ ID NO: 761) se incluyó en el ensayo de desplazamiento como control positivo. La afinidad de unión de las construcciones de unión a C5 competentes y controles por C5 se determinó mediante un análisis de regresión no lineal utilizando Excel plugin XLfit5 y GraphPad Prism 4.
- Selectividad de unión de Z-ABD a C5 sobre C3, C4 e IgG: La unión de una variante Z-ABD (SEQ ID NO: 748 fusionada a SEQ ID NO: 759 por un conector GS) a las proteínas del complemento estrechamente relacionadas C3 y C4 del ser humano, así como la unión a la IgG humana (ya que el origen del dominio Z, la proteína A estafilocócica, es una proteína de unión a la IgG) se abordó mediante resonancia de plasmón superficial (SPR) utilizando un instrumento Biacore 2000 (GE Healthcare). La construcción Z-ABD se inmovilizó en un chip CM5 (GE-Healthcare) utilizando un acoplamiento de amina (70 RU). 40 nM y 400 nM de cada C3 humano (A401, Quidel), C4 (A402, Quidel) e IgG (12511, Sigma) diluida en tampón HBS-P (GE Healthcare) se inyectaron sobre la superficie. Cada inyección fue seguida de un ciclo de regeneración con NaOH 20 mM inyectado durante 30 s. El C5 humano a las mismas concentraciones se ejecutó en paralelo como control positivo.

Resultados

50

Clonación y producción de proteínas: Las variantes de proteínas producidas como se describe esquemáticamente en la Figura 4, donde "Z" se puede representar mediante la SEQ ID NO: 745 y la SEQ ID NO: 748-757, se analizaron por MALDI-TOF MS y en SDS-PAGE. (Figura 5)

<u>Inhibición de hemólisis:</u> Se ensayaron un subconjunto de variantes Z de unión a C5 para determinar la actividad de unión a C5 *in vitro* y la inhibición de la hemólisis en eritrocitos de oveja. Se calculó la concentración de la variante Z que dio como resultado un 50% de inhibición de la hemólisis (Cl₅₀) o un 50% de inhibición de la unión de trazador al

C5 humano. Las curvas representativas de concentración-respuesta para las variantes Z mostradas como SEQ ID NO: 745 y SEQ ID NO: 748-757 que inhiben la hemólisis como se describe en la sección de métodos se muestran en las Figuras 6A y 6B. El resultado para diferentes variantes Z fusionadas a ABD094 (SEQ ID NO: 759) a través de un conector GS corto se muestra en la Figura 6A.

La variante Z parental Z05477a (SEQ ID NO: 745) fusionada a ABD094 (SEQ ID NO: 759) separada por un conector GS corto presentó un valor de Cl₅₀ de aproximadamente 100 nM, mientras que las variantes Z-ABD de unión a C5 de segunda generación sometidas a ensayo típicamente inhibían la hemólisis con valores de Cl₅₀ de aproximadamente o por debajo de 1 nM. Esto sugiere un aumento de más de 100 veces en la potencia de las 10 variantes Z de unión a C5 identificadas en la selección de maduración y el cribado posterior.

En la Figura 6B, la unión a C5 se muestra para diversas combinaciones de una variante Z representativa (Z06175a; SEQ ID NO: 753) en solitario, como un dímero y en fusión con ABD094 (SEQ ID NO: 759) en el extremo N o el extremo C a través de diferentes conectores como se especifica en la figura. Las combinaciones de unión a C5 presentaron valores de Cl₅₀ que variaban de 86 pM a 12 nM con suero humano según se midió usando el ensayo descrito anteriormente. El valor correspondiente para la proteína de garrapata OmCl fue típicamente de 300 a 500 pM.

<u>Cinética in vitro</u>: Los estudios cinéticos de las características de unión para una serie de variantes Z (SEQ ID NO: 748-757) fusionadas opcionalmente con ABD094 (SEQ ID NO: 759), a hC5 inmovilizado, así como a C5 en presencia de albúmina humana, se realizaron utilizando el instrumento Biacore T200.

Los datos para diez variantes Z diferentes fusionadas a ABD094 a través de un conector GS se presentan en la Tabla 6.

Tabla 6. Características de unión a C5 humano para diferentes fusiones Z-ABD

Construcción	SEQ ID NO: N.º de variante Z	ka (1/Ms)	k _d (1/s)	K _D (M)		
	SEQ ID NO:748	$6,93 \times 10^5$	9,04 x 10 ⁻⁴	1,31 x 10 ⁻⁹		
	SEQ ID NO:749	$6,75 \times 10^5$	1,23 x 10 ⁻³	1,83 x 10 ⁻⁹		
Z-GS-ABD094	SEQ ID NO:750	7,65 x 10 ⁵	1,34 x 10 ⁻³	1,75 x 10 ⁻⁹		
Z-GS-ABD094	SEQ ID NO:751	6,90 x 10 ⁵	1,29 x 10 ⁻³	1,87 x 10 ⁻⁹		
	SEQ ID NO:752	7,02 x 10 ⁵	1,81 x 10 ⁻³	2,58 x 10 ⁻⁹		
	SEQ ID NO:753	7,90 x 10 ⁵	1,01 x 10 ⁻³	1,18 x 10 ⁻⁹		
	SEQ ID NO:754	5,00 x 10 ⁵	1,14 x 10 ⁻³	2,28 x 10 ⁻⁹		
	SEQ ID NO:755	6,84 x 10 ⁵	2,08 x 10 ⁻³	3,05 x 10 ⁻⁹		
	SEQ ID NO:756	$3,17 \times 10^5$	6,37 x 10 ⁻³	2,01 x 10 ⁻⁹		
	SEQ ID NO:757	4,63 x 10 ⁵	1,08 x 10 ⁻³	2,34 x 10 ⁻⁹		

La unión de la misma variante Z (SEQ ID NO: 753) pero en diferentes construcciones; es decir, con/sin ABD y diferentes conectores, también se analizaron utilizando Biacore T200. Además, el efecto de la albúmina en algunas fusiones Z-ABD también se evaluó realizando el mismo análisis en ausencia y en presencia de albúmina humana. Estos datos se presentan a continuación en la Tabla 7.

Tabla 7. Características de unión a C5 humano para una variante de fusión Z-ABD Z06175a (SEQ ID NO: 753, abreviada Z) comprendida en diferentes construcciones.

Construcción	Albúmina humana	ka (1/Ms)	k _d (1/s)	K _D (M)
Z-GS-ABD094	-	7,37 x 10 ⁵	1,06 x 10 ⁻³	1,43 x 10 ⁻⁹
Z-GS-ABD094	+	6,74 x 10 ⁵	9,62 x 10 ⁻⁴	1,43 x 10 ⁻⁹
Z-Z-GS-ABD094	-	5,93 x 10 ⁵	3,74 x 10 ⁻⁴	6,30 x 10 ⁻¹⁰
Z-Z-GS-ABD094	+	6,02 x 10 ⁵	4,67 x 10 ⁻⁴	7,76 x 10 ⁻¹⁰
Z-GS-ABD094-GSGGGGSGGGS-Z	-	8,69 x 10 ⁵	5,75 x 10 ⁻⁴	6,62 x 10 ⁻¹⁰
Z-GS-ABD094-GSGGGGSGGGS-Z	+	6,55 x 10 ⁵	3,83 x 10 ⁻⁴	5,86 x 10 ⁻¹⁰
Z-Z-GSGGGGSGGGS-ABD094	-	4,59 x 10 ⁵	6,32 x 10 ⁻⁴	1,38 x 10 ⁻⁹
Z-Z-GSGGGGSGGGS-ABD094	+	8,32 x 10 ⁵	9,39 x 10 ⁻⁴	1,13 x 10 ⁻⁹
Z-GS	-	2,42 x 10 ⁶	1,40 x 10 ⁻³	5,79 x 10 ⁻¹⁰
Z-GSGGGSGGGS-ABD094	-	3,64 x 10 ⁵	1,37 x 10 ⁻³	3,75 x 10 ⁻⁹

35

25

Se pudieron observar efectos sorprendentemente pequeños cuando se comparan las afinidades de las construcciones para hC5 (SEQ ID NO: 760) en presencia y ausencia de albúmina. Esto sugiere que la unión simultánea de albúmina al resto ABD de las construcciones no interfiere con la interacción de C5.

- 5 Unión de estado estable de variantes Z de unión a C5 a placas ECL revestidas con C5: Unión en estado estable de construcciones de unión a C5 compuestas por diferentes variantes Z (SEQ ID NO: 745 y 748-757), opcionalmente fusionadas a ABD094 (SEQ ID NO: 759) en las construcciones como se especifica en la Figura 4, a hC5 se evaluó en un ensayo de competición. Al competir por la unión a C5 recubierto en placas ECL con variantes Z de unión a C5 marcadas con SULFO-TAG (SEQ ID NO: 748) fusionadas a ABD (SEQ ID NO: 759), se evaluó la unión en estado estable de las construcciones de C5. Como comparación, también se incluyó la proteína de garrapata OmCI (SEQ ID NO: 761). La variante Z-ABD marcada que contenía la SEQ ID NO: 748 tenía una afinidad (Kd) de 0,9 nM para hC5. Además, se encontró que esta variante Z-ABD marcada se unió a un anticuerpo específico para la región constante de las variantes Z de una manera dependiente de la concentración con una Kd de 0,34 nM.
- 15 Se encontró que las variantes Z de unión a C5 (SEQ ID NO: 748-757) fusionadas en el extremo carboxi a ABD094 (SEQ ID NO: 759) por un conector GS desplazaban la variante Z-ABD etiquetada con SULFO-TAG 200 pM con valores de Cl₅₀ que variaban de aproximadamente 300 pM a 1 nM (Figura 7A), mientras que la construcción correspondiente que contenía la variante Z parental Z05477a (SEQ ID NO: 745) presentó un valor de Cl₅₀ de aproximadamente 30 nM. En contraste, se descubrió que la proteína de unión a C5 de origen natural OmCl se unía 20 a hC5 con una Cl₅₀ de 1,5 nM (Figura 7A). Por lo tanto, todas las variantes Z de segunda generación sometidas a ensayo (SEQ ID NO: 748-757) mostraron una afinidad de unión más alta para C5 humano que la variante Z parental Z05477a (SEQ ID NO: 745). Además, las afinidades fueron mayores que las de la unión de OmCl a C5 humano utilizando el mismo método.
- 25 Se probaron varias construcciones diferentes que contenían el mismo dominio de unión a C5 que un monómero, dímero, con o sin ABD, así como también unos pocos conectores diferentes entre los diferentes dominios (Figura 7B). Se encontró que las variantes monoméricas de Z06175a (SEQ ID NO: 753, fusionadas opcionalmente con una etiqueta His6 o un ABD C-terminal) y las variantes diméricas con un conector ABD C-terminal desplazaban la variante Z-ABD marcada con SULFO-TAG 200 pM con valores de Cl₅₀ que varían de aproximadamente 500 pM a 1,7 nM, mientras que la variante dimérica sin un ABD y la variante monomérica con un ABD N-terminal desplazaron Z-ABD etiquetado con SULFO-TAG 200 pM con valores de Cl₅₀ de 4 nM y 17 nM, respectivamente.

<u>Selectividad</u>: La selectividad se abordó mediante el análisis de SPR y la superficie con la variante Z-ABD inmovilizada (SEQ ID NO: 748 fusionada a la SEQ ID NO: 759 por un conector GS) no mostró una señal de SPR significativa cuando se sometió a 40 y 400 nM de los parálogos de C5 C3 y C4 humano, así como la IgG humana. Como comparación, el C5 humano 400 nM provocó una respuesta SPR de aproximadamente 450 RU que mostraba que la variante Z-ABD sometida a ensayo es selectiva para C5 sobre C3, C4 e IgG.

Ejemplo 7: Estudios de interacción de variantes Z-ABD con HSA, BSA y albúmina sérica de rata y ratón.

40 _

Materiales y métodos

Se usaron dos métodos diferentes, cromatografía de exclusión por tamaño y Biacore, para estudiar la interacción entre el dominio de unión a albúmina ABD094 fusionado a variantes Z de unión a C5. La cromatografía de exclusión por tamaño (SEC) se empleó para estudiar la interacción entre Z06175a-GS-ABD094 (SEQ ID NO: 753 fusionada con SEQ ID NO: 759 por un conector GS) y HSA. Brevemente, las cantidades equimolares de Z06175a-GS-ABD094 y HSA recombinante (Novozymes) se preincubaron en PBS a temperatura ambiente durante 60 minutos y luego se ejecutaron en una columna Superdex200 (GE Healthcare) utilizando el sistema SMART (GE Healthcare). Z06175a-GS-ABD094 y HSA también se ejecutaron por separado como controles.

La unión a albúmina inmovilizada se estudió utilizando un instrumento Biacore 2000 (GE Healthcare). La albúmina humana recombinante (Recombumin®, Novozymes) se acopló a un chip sensor CM5 (385 RU) utilizando la química de acoplamiento de amina de acuerdo con lo descrito por el fabricante. El acoplamiento se realizó inyectando albúmina humana en un tampón de acetato de sodio 10 mM, a pH 4,5 (GE Healthcare). La célula de referencia se trató con los mismos reactivos, pero sin inyectar albúmina humana. La inyección de HBS-EP también se incluyó como control, de modo que los sensogramas quedaron en blanco por duplicado. Los experimentos se realizaron en tampón HBS-EP, se usó glicina-HCl 10 mM pH 2 (GE Healthcare) para la regeneración, el caudal era de 30 µl/min y los datos se recopilaron a 25°C. Se sometieron a ensayo dos construcciones diferentes, Z-ABD (Z06175a-GS-ABD094) y Z-ABD-Z (Z06175a-GS-ABD094-GSGGGGGGGGGGGGGGGGGGS-Z06175a) a tres concentraciones diferentes; 25

nM, 100 nM y 400 nM. La versión 4.1.1 de BIAevaluation se utilizó para evaluar los datos de sensograma. De manera similar, también se investigó la unión de Z-ABD (Z06175a-GS-ABD094) a superficies inmovilizadas con albúmina sérica de rata (A4538, Sigma), ratón (A3559, Sigma) y vaca (BSA, Sigma).

5 Resultados

En una columna SEC, las moléculas más grandes se eluyen más rápido que las pequeñas. Como se ve en la Figura 8A, el HSA coinyectado + Z06175a-GS-ABD094 se eluye más rápido que cuando se inyecta HSA en solitario, lo que sugiere que las dos moléculas se comportan como un complejo estable en estas condiciones. El Z06175a-GS-10 ABD094 más pequeño se eluye más lentamente que el complejo o HSA en solitario, lo que demuestra que estas proteínas en solitario son más pequeñas que el complejo.

Los datos de Biacore 2000 para las variantes analizadas de Z-ABD y Z-ABD-Z muestran que Z-ABD tiene una tasa de asociación más rápida que cuando ABD está flanqueado por dominios Z en cada lado (Figura 8B). El análisis de 15 la afinidad de unión de los dominios Z fusionados a ABD apunta a una afinidad por debajo de 1 nM para Z-ABD, mientras que la variante Z-ABD-Z se une a HSA inmovilizada con una K_D por encima de 1 nM.

Z06175a-GS-ABD094 se unió a la albúmina sérica de rata con una afinidad muy alta (KD <100 pM), mientras que la interacción con la albúmina sérica de ratón inmovilizada fue más débil (KD de aproximadamente 4 nM) que tanto con 20 la albúmina sérica humana como de rata. La interacción con la albúmina sérica bovina no fue medible.

Estos datos coinciden bien con los datos publicados sobre una variante anterior de ABD (Jonsson *et al.* Protein Engineering, Design & Selection 2008, 21: 515-527) y muestran que la variante Z-ABD sometida a ensayo está fuertemente unida a la albúmina sérica en humanos en concentraciones clínicamente relevantes, así como en 25 ratones y ratas, lo que permite comparaciones de datos farmacocinéticos entre animales y seres humanos.

Ejemplo 8: Estudios farmacocinéticos de la variante Z de unión a C5 en ratas

Materiales y métodos

30

Fase de vida en roedores: La farmacocinética de dos construcciones de unión a C5 Z-ABD (Z06175a-GS-ABD094; SEQ ID NO: 753 fusionada a SEQ ID NO: 759 por un conector GS, Figura 4, construcción 2) y Z-ABD-Z (Z06175a-GS-ABD094-GSGGGGGGGGGS-Z06175a; (SEQ ID NO: 753 fusionada con la SEQ ID NO: 759 por un conector GS, seguido de un conector GS(G₄S)₂ y un segundo motivo de SEQ ID NO: 753, Figura 4, construcción 5) se estudió en ratas Sprague Dawley (SD) macho (250-300 g de peso corporal). A cada rata se le administró una dosis única, i.v. (250 nmol/kg) o s.c. (500 nmol/kg), de Z-ABD o A-ABD-Z (n = 3 por grupo de dosis). Se extrajeron muestras de sangre (200 μl) a los 5, 20 y 45 minutos, así como a 1,5, 4, 7, 24, 48, 72, 120, 168, 240 y 336 h después de la administración para el grupo i.v. y a los 15 y 30 min, 1, 2, 4, 7, 24, 48, 72, 120, 168, 240 y 336 h después de la administración para el grupo s.c. La sangre se recogió en tubos y se puso en la nevera durante 20 minutos para 40 permitir la coagulación. El suero se recogió posteriormente después de la centrifugación a 4000 rpm durante 10 minutos. Las muestras de suero se mantuvieron a -70°C en espera del análisis.

Determinación de las concentraciones de las variantes Z de unión a C5 en muestras de suero de animales utilizando LC/LC/MS/MS: Las concentraciones séricas de las construcciones Z-ABD y Z-ABD-Z de unión a C5, como se describe anteriormente, se determinaron por espectrometría de masas (LC/LC/MS/MS).

Las muestras de suero o plasma (25 μl) se diluyeron con 150 μl de una pepsina agarosa (7 mg/ml, Sigma, cat. n.º P0609) suspendida en tampón de formiato amónico 1 M, pH 3,0 en un tubo Eppendorf de 500 μl. Los tubos se taparon y se agitaron en un termomezclador compacto Eppendorf a 37°C durante 20 min. Después de la agitación, se añadieron 25 μl de una solución de patrón interno I(13C₆;15N)NKLDDDPSQSSEL (aminoácidos 31-44 de la SEQ ID NO: 746-757) (Thermo Fisher Scientific GmbH), diluida a 0,5 μM en ácido trifluoroacético al 0,1% (TFA). Después de la adición del patrón interno, las muestras se mezclaron y se filtraron a través de filtros de centrifugación de celulosa de 0,45 μm (Grace).

55 Las muestras estándar para la calibración se prepararon pesando 20 μl de solución madre de proteína con una concentración de proteína conocida (5-10 mg/ml), seguido de una dilución con plasma en blanco de la especie a analizar. El primer patrón estándar de plasma (3 μM) se diluyó adicionalmente hasta 0,1 μM.

Se inyectaron 40 µl de las muestras en un sistema de columna acoplada seguido de espectrometría de masas en

tándem con monitorización de reacción múltiple (MRM). La primera columna era una columna Ascentis RP-Amida empaquetada con partículas de 5 μm (2,1 x 150 mm, Supelco). Se usó una columna de enriquecimiento, una columna Newgard de Brownlee (3,2 x 15 mm) empaquetada con partículas C18 de 7 μm, para atrapar la fracción peptídica de analito de la primera columna. El efluente de la primera columna se diluyó con 1 ml/min de agua 5 bombeada por la bomba Shimadzu en un agitador de vórtice (Lee Scientific). La última columna era una columna de fase inversa de modo mixto y de intercambio catiónico (2,1 x 100 mm) empaquetada con partículas de 5 μm Primesep 100 (SIELC Inc).

Las fases móviles para la primera columna (RP-Amida) proporcionadas en un primer cromatógrafo de líquidos 10 (Acquity UPLC) fueron A: 2% de acetonitrilo, 0,1% de ácido acético, 0,1% de TFA y 97,8% de agua y B: acetonitrilo con el 0,1% de ácido acético y el 0,02% de TFA. El flujo fue de 0,5 ml/min y se usó un gradiente lineal para la elución. La muestra se eluyó en condiciones isocráticas con el 100% de A durante 1 minuto, seguido del 80% de A a los 7,9 minutos. A los 8,1 min, la columna se lavó con el 100% de B durante un minuto, seguido de un reacondicionamiento con el 100% de A. El efluente de la columna se conectó a una válvula de seis puertos Valco 15 controlada desde el software del espectrómetro de masas.

La columna trampa (3,2 x 15 mm) se conectó a la válvula de seis puertos en el modo de lavado a contracorriente. Las fases móviles para la segunda columna, proporcionadas en un segundo cromatógrafo de líquidos (Agilent 1100), fueron A: 80% de acetonitrilo, 19,9% de agua y 0,1% de ácido fórmico y B: 80% de acetonitrilo, 19% de agua, 0,5% de acético. ácido y 0,5% de TFA bombeados por un cromatógrafo de líquidos Agilent 1100 a 0,5 ml/min y eluidas con el siguiente gradiente: 100% A durante los primeros 5 minutos, seguido de B que aumenta gradualmente del 0 al 40%, de 5 a 10 minutos, seguido de un aumento al 100% de B durante los siguientes 6 segundos (10 a 10,1 minutos). B se mantuvo al 100% hasta 11,5 minutos seguido de un descenso al 0% (100% de A) durante los siguientes 6 segundos (11,5 a 11,6 minutos) y se mantuvo al 0% de B durante todo el ciclo hasta que se detuvo a los 13 minutos.

El efluente de la última columna se conectó a un espectrómetro de masas de cuadrupolo triple (Sciex API 4000) equipado con una fuente de iones de electronebulización operada en modo de ión positivo. Las transiciones de MRM fueron 780,9>814,4 para el analito y 784,5>821,4 para el patrón interno. El potencial de desintegración se optimizó a 35 V y la energía de colisión a 35 V. La energía de colisión eficaz fue de 70 eV, ya que el ión precursor estaba doblemente cargado, lo que daba un ión de fragmento cargado individualmente. Las relaciones de área de pico entre el analito y el patrón interno se utilizaron para la cuantificación. Las curvas de calibración lineal se obtuvieron con una recuperación del 85% y un límite de cuantificación de aproximadamente 40 nM.

35 Hemólisis ex vivo: Se realizó un ensayo hemolítico ex vivo para la activación del complemento con el fin de ensamblar óptimamente las condiciones in vivo para las muestras de suero de los estudios in vivo descritos anteriormente. Las muestras de suero se diluyeron 5 veces en un volumen de reacción total de 25 µl/pocillo que comprendía 5 millones de eritrocitos de oveja sensibilizados con anticuerpos (EA). En general, una porción de 20 µl de suspensión de EA que contenía todos los demás componentes (véase el Ejemplo 6) se mezcló (agitación durante 40 10 minutos) con 5 μl de muestra de suero para iniciar la activación hemolítica a 37°C. Para muestras de suero de ratón, tal como en el ejemplo 11, sin embargo, se tuvo que incluir 1 µl de C5D en la suspensión de 20 µl de EA. El ensayo ex vivo se realizó esencialmente como se describe para el ensayo in vitro del Ejemplo 6. Cálculos: La evaluación de los parámetros farmacocinéticos se basó en los datos de concentración de suero individual, la media (± desv. est.) se informa para cada grupo de dosis. Los niveles por debajo del límite inferior de cuantificación (LLOQ) 45 que aparecen en los puntos de muestreo terminales se omitieron del análisis farmacocinético. La concentración sérica máxima, la C_{máx} y el tiempo hasta la concentración sérica máxima observada, t_{máx}, se obtuvieron directamente de los datos de concentración sérica. Los parámetros farmacocinéticos; área bajo la curva (AUC, AUC₀... y AUC₀... uttimo calculada por el método trapezoidal lineal), biodisponibilidad subcutánea (F, calculada como (AUCsc/AUCiv) (Dosis_{iv}/Dosis_{sc})), semivida sérica terminal (T_{1/2,Z}, calculada como In 2/λz donde la estimación de la pendiente 50 terminal, λ_z , se basó en al menos 4 observaciones C = f(t)), tiempo medio de residencia (MRT, calculado como AUMC/AUC), depuración sérica (CL, calculada como Dosis/AUC₀-∞), volumen de distribución en estado estable (V₅s, calculado como CL*MRT) y volumen de distribución en la fase terminal (V_z , calculado como CL/ λ_z), se calcularon utilizando el software WinNonlin versión 5.2.1 (Pharsight Corp., EE. UU.), análisis no compartimental.

55 Resultados

Los datos farmacocinéticos para Z-ABD y Z-ABD-Z tras la administración i.v. (250 nmol/kg) y s.c. (500 nmol/kg) se resumen en la Tabla 8. Z-ABD fue cuantificable en suero hasta 10-14 días después de la dosis en el grupo i.v. y 14 días en el grupo s.c., mientras que Z-ABD-Z fue cuantificable en suero hasta 10 días después de la dosis en ambos

grupos de dosis (Figura 9). 14 días fue el punto de tiempo de muestreo final.

Correlacionando la concentración sérica del polipéptido de unión a C5 y la cantidad de hemólisis en eritrocitos de oveja, se encontró que Z-ABD obtuvo una inhibición completa de la hemólisis en las condiciones descritas (por 5 ejemplo, dilución de suero 1:5) a concentraciones séricas superiores a 1 µM (Figura 12), mientras que Z-ABD-Z alcanzó una inhibición total a concentraciones séricas de aproximadamente 0,5 µM (Figura 13). Sorprendentemente, como se ve en la Figura 9 y en la Tabla 8, Z-ABD tiene una menor depuración en suero, una semivida terminal más larga y una mayor biodisponibilidad que Z-ABD-Z. En términos de tiempo, esto condujo a una inhibición total de la hemólisis durante aproximadamente tres días después de la administración de 250 nmol/kg de Z-ABD (Figura 10) i.v. 10 o 500 nmol/kg s.c (Figura 11) a ratas S.D.

Tabla 8. Farmacocinética media (± desv. est.) de Z-ABD y Z-ABD-Z tras la administración i.v. y s.c. en ratas Sprague

		Z-ABD		Z-ABD-Z	
Ruta de administración		i.v.	S.C.	i.v.	S.C.
Dosis	nmol/kg	250	500	250	500
C _{máx}	μM		2,8 (0,2)		0,90 (0,10)
T _{máx}	h		18 <i>(9,8)</i>		17 (12)
AUC _{0-∞}	μM*h	233 (34)	252 (11)	79 <i>(7,5)</i>	64 (1,2)
AUC _{0-último}	μM*h	226 (37)	247 (11)	79 <i>(6,9)</i>	63 (1,0)
F	%		55 (3,1)		41 (2,6)
T _{1/2,Z}	h	58 (4,6)	57 (4,2)	36 (0,6)	46 (1,2)
MRT	h	69 <i>(2,6)</i>	80 (4,6)	27 (1,5)	63 <i>(2,6)</i>
CL	ml/h*kg	1,1 (0,2)		3,2 (0,2)	
Vss	ml/kg	73 (12)		83 (10)	
Vz	ml/kg	90 (18)		159 (12)	

15 Ejemplo 9: Estudios farmacocinéticos de variantes Z de unión a C5 en monos

Materiales y métodos

El estudio en fase de vida se realizó en Charles River, Nevada (www.criver.com), la formulación del fármaco 20 administrado y el análisis de las muestras de suero se realizaron internamente. La farmacocinética de una variante Z-ABD (Z06175a (SEQ ID NO: 753) fusionada a ABD094 (SEQ ID NO: 759) por un conector GS) se investigó en el mono Cynomolgus macho (n = 3) después de una administración i.v. (intravenosa) y s.c. (subcutánea). La evaluación de los parámetros farmacocinéticos se realizó de acuerdo con el Ejemplo 8, sin embargo, después de una administración i.v., se determinó la semivida en suero inicial (T_{1/2α}) correspondiente a la pendiente inicial de la 25 curva log-lineal de concentración sérica-tiempo, la semivida en suero intermedia (T_{1/26}) correspondiente a la pendiente de la curva log-lineal de concentración en suero-tiempo asociada con la fase secundaria (intermedia) y la semivida en suero terminal (T_{1/2γ}) correspondiente a la pendiente terminal de la curva log-lineal de concentración en suero-tiempo. $T_{1/2}$ se calculó como In $2/\lambda$, donde la estimación de la pendiente, λ , se basó en al menos 4 observaciones C = f(t). Los datos farmacocinéticos presentados para la administración sc se compensan por los 30 niveles de Z-ABD previos a la dosis, mientras que el gráfico que muestra la concentración en suero frente al tiempo después de la administración sc muestra las concentraciones en suero reales determinadas. Los monos tenían 2-4 años de edad con un peso corporal de 2,3-3 kg. Cada mono recibió una sola dosis i.v. (540 nmol/kg) seguida de una sola dosis s.c. (1635 nmol/kg) tres semanas después de la administración i.v. Las muestras de sangre se extrajeron a los 10 y 30 minutos y 1, 2, 4, 8, 24, 48, 72, 120, 168, 240, 336 y 504 horas después de la dosis tras ambas 35 administraciones. Las muestras de sangre se dejaron coagular durante 20-40 minutos a temperatura ambiente y después se centrifugaron a 1500 a 2200 RCF a 2-8°C durante 10-15 minutos antes de recoger y congelar el suero. Las muestras de suero se almacenaron a una temperatura inferior a -20°C hasta el análisis.

Las concentraciones séricas de Z-ABD se analizaron por LC/LC/MS/MS como se describe en el Ejemplo 8. Las concentraciones séricas determinadas por LC/LC/MS/MS también se confirmaron mediante una técnica de inmunoensayo de enzimas cuantitativas de tipo sándwich. Un anticuerpo policlonal específico para el compartimento Z de Z-ABD se aplicó sobre una microplaca. El anticuerpo policlonal no unido se eliminó por lavado y se añadió caseína como agente de bloqueo para reducir la unión inespecífica a la superficie plástica. Las muestras y los patrones se diluyeron en PBS que contenía caseína al 0,5% y entre el 1-5% de suero normal de mono. Después de 45 lavar la caseína no unida, se añadieron por pipeteo los patrones y las muestras a los pocillos, lo que permitió que

cualquier Z-ABD presente en la muestra, que se presumía se asociara principalmente con la albúmina sérica, se uniera al anticuerpo inmovilizado. Después de eliminar por lavado cualquier Z-ABD sin unir, se añadió un anticuerpo policlonal marcado con HRP específico para la albúmina para detectar el complejo inmovilizado de Z-ABD-albúmina mediante métodos colorométricos. El anticuerpo policlonal no unido se eliminó por lavado y se añadió una solución de sustrato a los pocillos y el color se desarrolló en proporción a la cantidad de Z-ABD unida. La evaluación y el cálculo de los parámetros farmacocinéticos se realizaron como se describe en el Ejemplo 8.

La hemólisis *ex vivo* en suero de monos cynomolgus dosificada con la variante Z-ABD descrita anteriormente se controló utilizando el método descrito en los Ejemplos 6 y 8 con la modificación de que el suero de mono se diluyó 10 solo dos veces en comparación con cinco veces para el suero de roedor.

Resultados

Se presentan los datos sobre la farmacocinética media (± desv. est.) de cada grupo de dosis. Las concentraciones séricas de Z-ABD fueron cuantificables en todos los puntos de tiempo tanto después de la administración i.v. como s.c. por LC/LC/MS/MS (Figura 14). Los datos de ELISA y los datos de LC/LC/MS/MS se correlacionaron linealmente con un coeficiente de 0,986, pero los datos de LC/LC/MS/MS se utilizaron para los cálculos. Tras la administración i.v. de Z-ABD, la semivida sérica inicial fue de 9,1 (0,8) horas, la semivida sérica intermedia fue de 84 (4) horas y la semivida sérica terminal fue de 198 (51) horas. El tiempo medio de residencia fue de 246 (62) horas. El volumen de distribución, V_{ss} y V_z se calculó a 110 (23) ml/kg y 127 (27) ml/kg respectivamente, y la depuración se estimó a 0,45 (0,02) ml/h*kg.

Tras la administración s.c., y corregidas por los niveles séricos pre-dosis restantes de la administración i.v., las concentraciones séricas máximas (C_{máx} media 21 (3) μM) se alcanzaron a las 8-24 h después de la dosis. La 25 semivida sérica terminal fue de 206 (*40*) horas y el tiempo de residencia medio fue de 250 (*68*) horas. La biodisponibilidad subcutánea se estimó en más del 70%.

El efecto farmacodinámico de la variante Z-ABD inyectada (Z06175a (SEQ ID NO: 753) fusionada a ABD094 (SEQ ID NO: 759) por un conector GS) se controló mediante hemólisis. El efecto hemolítico en el mono cynomolgus se suprimió completamente (≤20% de la dosis previa) durante al menos siete días después de la administración de 5 mg/kg de Z-ABD i.v. y 15 mg/kg Z-ABD s.c.

Ejemplo 10: Estudios in vivo utilizando peritonitis inducida por Zymosan

35 Materiales y métodos

Administración a ratones: Ratones hembra C57BL/6 recibieron diferentes concentraciones de una molécula de fusión Z-ABD (Z06175a-GS-ABD094, SEQ ID NO: 753 fusionada a SEQ ID NO: 759 por un conector GS) o el control positivo OmCl por vía intraperitoneal (i.p.) 1 hora antes de la inducción con zymosan, o por vía subcutánea (s.c.) 18 40 horas antes de la inducción con zymosan.

Se administraron i.p. 0,8 mg/ratón de zymosan. 1 hora después, se extrajeron muestras de sangre orbital (en viales de suero con activador de coagulación) bajo anestesia con isoflurano. Los animales fueron sacrificados por dislocación cervical. Se realizó una incisión en la piel y se visualizó la pared muscular abdominal. La solución de PBS (incluido EDTA 2 mM) se inyectó suavemente en la cavidad abdominal. Se masajeó el abdomen y se extrajo una muestra de líquido (1-2 ml). Las muestras se transfirieron a tubos de ensayo y se almacenaron en hielo húmedo antes de la centrifugación a 600 g durante 10 min. Se analizaron las concentraciones de proteína total y C5a en el sobrenadante.

50 Las muestras de sangre se mantuvieron en un refrigerador durante al menos 30 minutos y, posteriormente, se realizó una centrifugación a 2000 g. Las muestras de suero se almacenaron en el congelador (-70°C) para un análisis posterior de la actividad hemolítica y los niveles de Z06175a-GS-ABD094.

Análisis de la actividad de hemólisis en muestras de suero de animales: El análisis de la actividad de hemólisis se realizó de acuerdo con el ensayo de hemólisis descrito en los Ejemplos 6 y 7.

Análisis de la concentración de C5a en lavado de ratones dosificados con zymosan y moléculas de fusión Z-ABD de unión a C5: Para la detección de C5a en muestras de lavado peritoneal de ratón, se recubrieron placas de microtitulación (MaxiSorp, Nunc) durante una noche a 4°C con 100 µl/pocillo de anticuerpo anti-C5a (cat. n.º

MAB21501, R&D Systems) a una concentración de 1 μg/ml en un tampón de carbonato de sodio-bicarbonato de sodio 0,05 M, pH 9,6 (cat. n.° C-3041, Sigma). Las placas se lavaron tres veces con PBS que contenía Tween 20 al 0,05% (PBST, cat. n.° 09-9410-100, Medicago) y se bloquearon con 200 μl/pocillo de BSA al 1% (cat. n.° A7030, Sigma) en PBST durante 1-1,5 h a TA durante la agitación a 450 rpm. La placa se lavó de nuevo tres veces con PBST y después se incubó con 100 μl/pocillo de patrón C5a de ratón recombinante (cat. n.° 2150-C5, R&D Systems) a diversas concentraciones en PBST con BSA al 0,1% o muestras durante 2 h a TA durante la agitación a 450 rpm. Las muestras de alta concentración también se diluyeron en PBST con BSA al 0,1%. La placa se lavó una vez más tres veces con PBST y luego se incubó con 100 μl/pocillo de anticuerpo antiC5a biotinilado (cat. n.° BAF2150, R&D Systems) a una concentración de 0,1 μg/ml durante 1,5 h a TA mientras se agitaba la placa a 450 rpm. Después de lavar 3 veces con PBST, la placa se incubó con 100 μl/pocillo de estreptavidina-HRP (cat. n.° DY998, R&D Systems) a una dilución de 200 veces en tampón de bloqueo durante 20 minutos a TA durante agitación a 450 rpm. Después de tres lavados finales, la placa se desarrolló con 100 μl/pocillo de sustrato TMB (cat. n.° T0440, Sigma) y se leyó después de 20-30 minutos a 650 nm utilizando un lector de placas Spectramax Plus (Molecular Devices).

15 Se construyó una curva estándar representando la absorbancia a 650 nm para cada patrón frente a su concentración (intervalo 0-4000 pg/ml).

Determinación de la concentración de variante Z en muestras de suero de animales usando ECL: Las concentraciones séricas de Z06175a-GS-ABD094 de unión a C5 administrada (SEQ ID NO: 753 fusionada a Ia SEQ ID NO: 759 por un conector GS) y Z06175a-GS-ABD094-GSGGGGSGGGS-Z06175a (SEQ ID NO: 753 fusionada a SEQ ID NO: 759 por un conector GS, seguido de un conector GS(G4S)₂ y un segundo motivo de SEQ ID NO: 753, véase la Figura 4 para la descripción de la construcción) se determinaron por ECL. Se recubrieron placas multimatriz de 96 pocillos de alta unión, no recubiertas (Meso Scale Discovery cat. n.º L15XB) con una Ig de molécula anti-Affibody de cabra (Affibody AB, cat. n.º 20.1000.01.0005).

En similitud con el Ejemplo 6, una variante Z-ABD (Z06009a, SEQ ID NO: 748 fusionada a ABD094, SEQ ID NO: 759 Placas multimatriz se recubrieron con la IgG de molécula anti-Affibody de cabra (Affibody AB) durante una noche a 4°C, y posteriormente los sitios no específicos se bloquearon con PBS con caseína al 1% durante dos horas a temperatura ambiente.

Mientras tanto, las muestras de suero se descongelaron a partir de -70°C y se diluyeron en PBS con caseína en suero de la misma cepa animal. Los patrones y controles se diluyeron en el tampón correspondiente. Las muestras y los patrones se incubaron durante tres horas a TA mientras se agitaba la placa a 300 rpm. La incubación se terminó por lavado 3 veces de 150 μl de PBS-Tween20 enfriado con hielo. Inmediatamente después del lavado final, se añadieron 150 μl de tampón de lectura 2x (tampón de lectura T 4x, Meso Scale Discovery cat. n.º R92TC-3 diluido 1:1 en H₂O ultrapuro) a cada pocillo y la señal se detectó utilizando un lector de placas (SECTOR Imager 2400, Meso Scale Discovery).

En un experimento alternativo, las placas se recubrieron con C5 humano (SEQ ID NO: 760, 1 pmol/pocillo). Antes de 40 la adición a la placa recubierta, las muestras de suero y los patrones, diluidos en suero o en suero y PBS con caseína (todas las muestras y patrones se correspondieron con la misma concentración de suero), se calentaron a 60°C durante 30 minutos para desnaturalizar C5 endógeno. Este experimento alternativo proporcionó un método para la detección exclusiva de proteínas de unión a C5, mientras que la estrategia dependiente de anticuerpos descrita anteriormente se puede aplicar a todas las proteínas que se unen a ese anticuerpo en particular.

Resultados

30

Análisis de concentraciones séricas de Z-ABD y actividad de hemólisis en muestras de suero de animales: Las concentraciones séricas, así como la capacidad de afectar a la hemólisis en eritrocitos de oveja de la molécula de 50 fusión Z-ABD (Z06175a-GS-ABD094, SEQ ID NO: 753 fusionada a SEQ ID NO: 759 por un conector GS) se evaluó después de la administración de una dosis baja (20 nmol/kg), media (100 nmol/kg) y alta (500 nmol/kg). Las concentraciones séricas fueron relativamente lineales con la dosis, y la inhibición de la hemólisis confirmó que las moléculas en el suero eran activas y que la inhibición de la hemólisis también dependía de la concentración.

55 Análisis de la concentración de C5a en lavado de ratones dosificados con zymosan y moléculas de fusión Z-ABD de unión a C5: La molécula proinflamatoria zymosan se administró i.p. y en la Figura 15, se muestra el efecto sobre el producto de escisión de C5 altamente inflamatorio C5a en lavado en función de la dosis de zymosan en solitario y la dosis de zymosan después de una dosis de una variante Z de unión a C5 a 20, 100 y 500 nmol/kg administrada s.c. 18 h antes del tratamiento con zymosan. La

administración de Zymosan en solitario conduce a una elevación potente de C5a en el lavado. Este efecto se bloquea de una manera dependiente de la dosis por la molécula de fusión Z-ABD de unión a C5 presentada.

Ejemplo 11: Estudios farmacocinéticos de la proteína de unión a C5 en ratones después de la administración 5 intratraqueal

Materiales y métodos

Se estudió el perfil farmacocinético de la construcción de unión a C5 Z06175a-GS-ABD094 (SEQ ID NO: 753 fusionada a la SEQ ID NO: 759 por un conector GS) después de la administración intratraqueal a ratones C57bl hembra. La temperatura, la humedad relativa y la iluminación se ajustaron para mantener 22 ± 1°C, 55 ± 5% y un ciclo de 12 h de luz - 12 h de oscuridad, y se proporcionó dieta y agua a voluntad. Los animales se anestesiaron con isoflurano y se dosificaron directamente en los pulmones utilizando un micropulverizador con 500 nmol/kg de Z06175a-GS-ABD094. Se extrajo la mayor cantidad de sangre posible, bajo anestesia con isoflurano, de la vena cava a los 5 min, 30 min, 1 h, 3 h, 7 h, 16 h, 24 h, 48 h y 72 h (tres animales/punto temporal) para la preparación de muestras de suero. Las muestras de suero se prepararon recogiendo sangre en los tubos y colocando los tubos en el frigorífico durante 20 minutos. Posteriormente, los tubos se centrifugaron a 4000 rpm durante 10 minutos. Se preparó un mínimo de 100 µl de suero de cada muestra de sangre. Las muestras de suero se mantuvieron a -70°C antes del análisis. Las concentraciones séricas de Z06175a-GS-ABD094 en cada muestra se determinaron por ECL como se describe en el Ejemplo 10 y la capacidad de las muestras de suero para afectar a la hemólisis en eritrocitos de oveja se determinó como se describe en los Ejemplos 6 y 8.

Resultados

25 La concentración sérica en cada muestra y la capacidad correspondiente para afectar a la hemólisis en eritrocitos de oveja se describen en la Figura 16A y la Figura 16B, respectivamente. En 30 minutos, se alcanza una meseta con concentraciones séricas que varían entre 300 y 1000 nM, donde la hemólisis se bloquea casi por completo. En muestras de suero en los puntos de tiempo posteriores a las 7 h después de la administración, la hemólisis vuelve a producirse gradualmente. En el punto de tiempo final, tres días después de la dosificación, la hemólisis fue 30 aproximadamente el 70% del control (Figura 16B). Estos datos demuestran claramente la absorción de Z06175a-GS-ABD094 en la circulación sistémica después de la administración intratraqueal y que la molécula inhibe funcionalmente la hemólisis.

Ejemplo 12: Estudios farmacocinéticos de la variante Z de unión a C5 en ojo de conejo después de la administración 35 tópica e intravítrea

Materiales y métodos

50

55

<u>Fase de vida en conejos:</u> La farmacocinética de una variante Z (Z06175a, SEQ ID NO: 753 seguida de GS (Figura 4, construcción 1)) se estudió en ojo de conejo después de la administración intravítrea.

El estudio en fase de vida y la disección de ojos de animales dosificados (conejos pigmentados, 2 - 2.5 kg) se realizó en Iris Pharma, La Gaude, Francia (www.iris-pharma.com). Los animales se alojaron individualmente a $20 \pm 2^{\circ}$ C a al $55 \pm 10\%$ de humedad relativa con acceso a alimento y agua a voluntad.

Los animales se dividieron en tres grupos: 1) administración intravítrea (50 µl en cada ojo, n = 3, seis ojos en total) seguida de disección y toma de muestras de suero después de un día, 2) administración intravítrea (50 µl en cada ojo, n = 3) seguida de disección y toma de muestras de suero después de cuatro días y 3) animales no tratados (n = 5).

Se diseccionaron cuatro compartimentos oculares distintos (humor acuoso, vítreo, neuro-retina y RPE-coroides) y se congelaron inmediatamente a -80°C. La formulación del fármaco administrado (20,2 mg/ml en tampón fosfato 10 mM, NaCl 145 mM, pH 7,4) y el análisis del fármaco en diversos compartimentos oculares se realizaron de forma interna

Análisis de la variante Z en los compartimentos oculares disecados: Los compartimentos oculares disecados se enviaron en hielo seco y se almacenaron a -80°C hasta el análisis. Las muestras de retina y coroides se descongelaron en PBS 10 veces (volumen/peso) que contenía albúmina sérica humano al 1% en tubos Lysing Matrix D (MP Biomedical) que contenían perlas de cerámica y se agitaron a velocidad 4 durante 2 x 20 s en un

34

homogeneizador Savant Bio 101. El homogeneizado se eliminó de las perlas utilizando una pipeta y se transfirió a un tubo Eppendorf de 1,5 ml y se centrifugó a 900 rpm durante diez minutos. Las muestras de humor acuoso y vítreo se trataron de la misma forma que la retina y las coroides, con la excepción de que no fue necesaria la homogeneización. Las muestras de vítreo de los grupos uno y dos se diluyeron 10 veces más en el mismo tampón que anteriormente. Se prepararon cinco patrones en PBS con HSA (35,8 µM, 3,58 µM, 358 nM, 35,8 nM y 17,9 nM). Posteriormente, los patrones y las muestras se sometieron a digestión con pepsina y el análisis de la concentración de la variante Z en extractos tisulares se determinó utilizando el método LC/LC/MS/MS descrito en el Ejemplo 8.

Resultados

10

Las concentraciones de la variante Z después de la administración intravítrea fueron altas en todos los compartimentos después de un día (6 - 200 μM) y, sorprendentemente, se mantuvieron altas 4 días después de la administración (1,5 - 78 μM). En particular, la concentración de la molécula Z en el vítreo varió de 118 a 201 μM (promedio de 161 μM, n = 6 ojos) un día después de la inyección y se mantuvo en 26 a 78 μM (promedio de 46 μM, 15 n = 6) cuatro días después de la inyección, apuntando a un T_{1/2} de varios días. Parece que existe una relación inversa entre el tamaño y la eliminación de los fármacos después de la inyección intravítrea en el ojo de conejo, según se describe en los siguientes ejemplos; Moxifloxacino (PM <0,35 kDa, T1/2 = 1,72 h, Mohan *et al.* Trans Am Ophthalmol Soc 2005, 103:76-83), ESBA105 (PM = 26 kDa, T1/2 = 25 h, Ottiger *et al.* Investigative Ophthalmology & Visual Science 2009, 50: 779-786) y Ranibizumab (PM = 48 kDa, T1/2 = 2,88 días, Bakri *et al.* American Academy of Ophthalmology 2007, 114:2179-2182). La variante Z sometida a ensayo aquí tenía un peso molecular de 7,0 kDa, lo que sugería que la eliminación de la molécula Z fue más lenta de lo que se esperaría para tal molécula pequeña en el vítreo.

LISTA DE SECUENCIAS

```
25
           <110> Swedish Orphan Biovitrum AB
           <120> Polipéptidos
           <130> P41200767PCT00
30
           <160> 762
           <170> PatentIn versión 3.5
35
           <210> 1
           <211> 29
           <212> PRT
           <213> secuencia artificial
40
           <220>
           <223> Secuencia bacteriana modificada
           <400> 1
           Glu Val Leu Glu Ala Trp Asp Glu Ile Asp Arg Leu Pro Asn Leu Thr
           Ile Glu Gln Trp Leu Ala Phe Ile Asn Lys Leu Asp Asp
45
           <210> 2
           <211> 29
           <212> PRT
50
           <213> secuencia artificial
           <223> Secuencia bacteriana modificada
55
           <400> 2
```

ES 2 715 638 T3

```
Glu Val Leu Glu Ala Trp Asn Glu Ile Asp Arg Leu Pro Asn Leu Thr
           Ile Glu Gln Trp Leu Ala Phe Ile Asn Lys Leu Asp Asp
                        20
          <210> 3
          <211> 29
 5
          <212> PRT
          <213> secuencia artificial
          <220>
          <223> Secuencia bacteriana modificada
10
          Glu Val Ile Glu Ala Trp Asn Glu Ile Asp Arg Leu Pro Asn Leu Thr
           Ile Glu Gln Trp Leu Ala Phe Ile Asn Lys Leu Asp Asp
          20
                                25
15
          <210> 4
          <211> 29
          <212> PRT
          <213> secuencia artificial
20
          <220>
          <223> Secuencia bacteriana modificada
          <400> 4
          Glu Val Leu Glu Ala Trp Asp Glu Ile Asp Arg Leu Pro Asn Leu Thr
                                                  10
          Leu Asp Gln Trp Leu Ala Phe Ile Asn Lys Leu Asp Asp
25
                        20
                                              25
          <210> 5
          <211> 29
          <212> PRT
30
          <213> secuencia artificial
          <220>
          <223> Secuencia bacteriana modificada
35
          <400> 5
          Glu Val Leu Asp Ala Trp Asp Glu Ile Asp Ala Leu Pro Asn Leu Thr
           Leu Glu Gln Trp Leu Ala Phe Ile Asn Lys Leu Asp Asp
                        20
                                              25
          <210>6
          <211> 29
          <212> PRT
40
          <213> secuencia artificial
```

```
<220>
          <223> Secuencia bacteriana modificada
          Glu Val Ile Asp Ala Trp Asp Glu Ile Asp Arg Leu Pro Asn Leu Thr
                                                 10
          Leu Asp Gln Trp Leu Ala Phe Ile Asn Lys Leu Asp Asp
5
                       20
          <210> 7
          <211> 29
          <212> PRT
10
          <213> secuencia artificial
          <220>
          <223> Secuencia bacteriana modificada
15
          <400> 7
          Glu Thr Leu Glu Ala Trp Asp Glu Ile Asp Arg Leu Pro Asn Leu Thr
                                                 10
          Ile Glu Gln Trp Leu Ala Phe Ile Asn Lys Leu Asp Asp
                       20
                                             25
          <210>8
          <211> 29
20
          <212> PRT
          <213> secuencia artificial
          <220>
          <223> Secuencia bacteriana modificada
25
          <400> 8
          Glu Val Ile Asp Ala Trp Asn Glu Ile Asp Ala Leu Pro Asn Leu Thr
                                                 10
          Leu Asp Gln Trp Leu Ala Phe Ile Asn Lys Leu Asp Asp
          <210>9
30
          <211> 29
          <212> PRT
          <213> secuencia artificial
          <220>
35
          <223> Secuencia bacteriana modificada
          <400> 9
          Glu Val Leu Asp Ala Trp Asp Glu Ile Asp Lys Leu Pro Asn Leu Thr
                                                  10
          Ile Asp Gln Trp Leu Ala Phe Ile Asn Lys Leu Asp Asp
                       20
40
          <210> 10
          <211> 29
```

```
<212> PRT
          <213> secuencia artificial
          <220>
5
          <223> Secuencia bacteriana modificada
           Glu Val Leu Glu Ala Trp Asp Glu Ile Asp His Leu Pro Asn Leu Thr
                                                   10
           Leu Asp Gln Trp Leu Ala Phe Ile Asn Lys Leu Asp Asp
10
           20
                                 25
          <210> 11
          <211> 29
          <212> PRT
15
          <213> secuencia artificial
          <220>
          <223> Secuencia bacteriana modificada
          <400> 11
20
           Glu Val Leu Glu Ala Trp Asp Glu Ile Asp Ala Leu Pro Asn Leu Thr
           Ile Glu Gln Trp Leu Ala Phe Ile Asn Lys Leu Asp Asp
                        20
          <210> 12
          <211> 29
          <212> PRT
25
          <213> secuencia artificial
          <220>
          <223> Secuencia bacteriana modificada
30
          <400> 12
           Glu Val Leu Asp Ala Trp Asp Glu Ile Asp Lys Leu Pro Asn Leu Thr
           Leu Glu Gln Trp Leu Ala Phe Ile Asn Lys Leu Asp Asp
          <210> 13
35
          <211> 29
          <212> PRT
          <213> secuencia artificial
          <220>
40
          <223> Secuencia bacteriana modificada
          <400> 13
```

```
Glu Thr Ile Thr Ala Trp Asp Glu Ile Asp Lys Leu Pro Asn Leu Thr
           Ile Glu Gln Trp Leu Ala Phe Ile Gly Lys Leu Glu Asp
                        20
                                              25
          <210> 14
          <211> 29
 5
          <212> PRT
          <213> secuencia artificial
          <220>
          <223> Secuencia bacteriana modificada
10
           Glu Ser Met Lys Ala Trp Asp Glu Ile Asp Arg Leu Pro Asn Leu Asn
           Ile Asn Gln Trp Val Ala Phe Ile Asp Ser Leu Tyr Asp
                                             25
          <210> 15
          <211> 29
15
          <212> PRT
          <213> secuencia artificial
          <220>
20
          <223> Secuencia bacteriana modificada
           Glu Ser Ile Glu Ala Trp Thr Glu Ile Asp His Leu Pro Asn Leu Thr
                                                  10
           Ile Glu Gln Trp Leu Ala Phe Ile Asn Lys Leu Thr Asp
                        20
                                             25
25
          <210> 16
          <211> 29
          <212> PRT
          <213> secuencia artificial
30
          <220>
          <223> Secuencia bacteriana modificada
           Glu Val Leu Asp Ala Trp His Glu Ile Asp Thr Leu Pro Asn Leu Thr
                                                  10
           Val Arg Gln Trp Leu Ala Phe Ile Ser Lys Leu Glu Asp
                        20
                                              25
35
          <210> 17
          <211> 29
          <212> PRT
          <213> secuencia artificial
40
          <220>
```

```
<223> Secuencia bacteriana modificada
          <400> 17
           Glu His Ile Gln Ala Asn Glu Glu Ile Asp Arg Leu Pro Asn Leu Thr
           Ile Lys Gln Trp Leu Ala Phe Ile Asn Lys Leu His Asp
 5
           20
                                25
          <210> 18
          <211> 29
          <212> PRT
10
          <213> secuencia artificial
          <220>
          <223> Secuencia bacteriana modificada
15
          <400> 18
           Glu Val Leu His Ala Trp Ala Glu Ile Asp Ala Leu Pro Asn Leu Thr
                                                  10
           Ile Glu Gln Trp Leu Ala Phe Ile Asn Lys Leu Asp Asp
                        20
          <210> 19
20
          <211> 29
          <212> PRT
          <213> secuencia artificial
          <220>
25
          <223> Secuencia bacteriana modificada
          <400> 19
           Glu Val Leu Ala Ala Trp Asp Glu Ile Asp Ser Leu Pro Asn Leu Thr
                                                  10
           Leu Gln Gln Trp Leu Ala Phe Ile Asn Lys Leu Asp Asp
                        20
          <210> 20
30
          <211> 29
          <212> PRT
          <213> secuencia artificial
          <220>
35
          <223> Secuencia bacteriana modificada
          <400> 20
           Glu Val Ile Asp Ala Trp Asn Glu Ile Asp Ala Leu Pro Asn Leu Thr
           Leu Glu Gln Trp Leu Ala Phe Ile Asn Lys Leu Asp Asp
                        20
                                              25
40
          <210> 21
          <211> 29
```

```
<212> PRT
          <213> secuencia artificial
          <220>
 5
          <223> Secuencia bacteriana modificada
           Glu Val Leu Asp Ala Trp Asn Glu Ile Asp Ala Leu Pro Asn Leu Thr
                                                   10
           Ile Asp Gln Trp Leu Ala Phe Ile Asn Lys Leu Ser Asp
                        20
                                              25
10
          <210> 22
          <211> 29
          <212> PRT
          <213> secuencia artificial
15
          <220>
          <223> Secuencia bacteriana modificada
           Glu Val Ile Glu Ala Trp Asp Glu Ile Asp Gly Leu Pro Asn Leu Thr
                                                  10
           Ile Glu Gln Trp Leu Ala Phe Ile Asn Lys Leu Asp Asp
                        20
                                              25
20
          <210> 23
          <211> 29
          <212> PRT
          <213> secuencia artificial
25
          <220>
          <223> Secuencia bacteriana modificada
           Glu Val Leu Glu Ala Trp Asp Glu Ile Asp His Leu Pro Asn Leu Thr
                                                   10
           Leu Gln Gln Trp Leu Ala Phe Ile Asn Lys Leu Asp Asp
30
                        20
          <210> 24
          <211> 29
          <212> PRT
          <213> secuencia artificial
35
          <220>
          <223> Secuencia bacteriana modificada
          <400> 24
40
           Glu Val Ile Glu Ala Trp Asn Glu Ile Asp Ala Leu Pro Asn Leu Thr
                            5
                                                   10
                                                                        15
```

Ile Glu Gln Trp Leu Ala Phe Ile Asn Lys Leu Asp Asp

```
20
                                 25
          <210> 25
           <211> 29
           <212> PRT
 5
           <213> secuencia artificial
          <220>
           <223> Secuencia bacteriana modificada
10
           Glu Val Ile Ala Ala Trp Asn Glu Ile Asp Arg Leu Pro Asn Leu Thr
           Leu Thr Gln Trp Leu Ala Phe Ile Asn Lys Leu Asp Asp
          <210> 26
15
           <211> 29
           <212> PRT
           <213> secuencia artificial
          <220>
20
          <223> Secuencia bacteriana modificada
          <400> 26
           Glu Val Ile Glu Ala Trp Asp Glu Ile Asp Ala Leu Pro Asn Leu Thr
                                                   10
           Leu Gln Gln Trp Leu Ala Phe Ile Asn Lys Leu Asp Asp
                        20
25
          <210> 27
          <211> 29
           <212> PRT
          <213> secuencia artificial
30
          <220>
          <223> Secuencia bacteriana modificada
           <400> 27
           Glu Val Ile Ala Ala Trp Asp Glu Ile Asp Lys Leu Pro Asn Leu Thr
           Ile Glu Gln Trp Leu Ala Phe Ile Asn Lys Leu Asp Asp
                        20
35
          <210> 28
           <211> 29
           <212> PRT
           <213> secuencia artificial
40
          <220>
          <223> Secuencia bacteriana modificada
          <400> 28
```

	Giu vai .	iie Ala	5	p Asp	GIU	iie	10	тĀS	Leu	Pro	Asn	15	rnr	
	Leu Gln (Gln Trp 20	Leu Al	a Phe	Ile	Asn 25	Lys	Leu	Asp	Asp				
5	<210> 29 <211> 29 <212> PRT <213> secu		ificial											
40	<220> <223> Secuencia bacteriana modificada													
10	<400> 29 Glu Thr :	Ile Ala	Ala Tr	p Asp	Glu	Ile	Asp 10	Lys	Leu	Pro	Asn	Leu 15	Thr	
	Ile Glu (Gln Trp 20	Leu Al	a Phe	Ile	Asn 25	Lys	Leu	Asp	Asp				
15	<210> 30 <211> 29 <212> PRT <213> secu		ificial											
20	<220> <223> Secuencia bacteriana modificada													
	<400> 30 Glu Thr :	Ile Glu	Ala Tr	p Asn	Glu	Ile	Asp 10	Arg	Leu	Pro	Asn	Leu 15	Thr	
	Ile Glu (Gln Trp 20	Leu Al	a Phe	Ile	Asn 25	Lys	Leu	Asp	Asp				
25	<210> 31 <211> 29 <212> PRT <213> secu		ificial											
30	<220> <223> Secuencia bacteriana modificada													
	<400> 31 Glu Val 1	Leu Glu	Ala Tr	p Arg	Glu	Ile	Asp 10	Ala	Leu	Pro	Asn	Leu 15	Thr	
35	Ile Gln (Gln Trp	Leu Al	a Phe	Ile	Asn	Lys	Leu	Asp	Asp				
	20		25											
40	<210> 32 <211> 29 <212> PRT <213> secu		ificial											

```
<220>
          <223> Secuencia bacteriana modificada
          Glu Val Ile Glu Ala Trp Asp Glu Ile Asp Gln Leu Pro Asn Leu Thr
                                                  10
           Ile Glu Gln Trp Leu Ala Phe Ile Asn Lys Leu Asp Asp
5
                       20
          <210> 33
          <211> 29
          <212> PRT
10
          <213> secuencia artificial
          <220>
          <223> Secuencia bacteriana modificada
15
          <400> 33
          Glu Val Leu Arg Ala Trp Asp Glu Ile Asp His Leu Pro Asn Leu Thr
                                                 10
          Leu Glu Gln Trp Leu Ala Phe Ile Asn Lys Leu Asp Asp
                       20
                                             25
          <210> 34
          <211> 29
20
          <212> PRT
          <213> secuencia artificial
          <220>
          <223> Secuencia bacteriana modificada
25
          <400> 34
          Glu Val Leu Glu Ala Trp Asp Glu Ile Asp Arg Leu Pro Asn Leu Thr
                                                  10
          Leu Asn Gln Trp Leu Ala Phe Ile Asn Lys Leu Asp Asp
          <210> 35
30
          <211> 29
          <212> PRT
          <213> secuencia artificial
          <220>
          <223> Secuencia bacteriana modificada
35
          <400> 35
          Glu Val Leu Asp Ala Trp Asn Glu Ile Asp His Leu Pro Asn Leu Thr
                                                  10
           Ile Glu Gln Trp Leu Ala Phe Ile Asn Lys Leu Asp Asp
                       20
40
          <210> 36
          <211> 29
```

```
<212> PRT
          <213> secuencia artificial
           <220>
 5
          <223> Secuencia bacteriana modificada
           Glu Val Ile Asp Ala Trp Asn Glu Ile Asp Lys Leu Pro Asn Leu Thr
                                                   10
           Ile Glu Gln Trp Leu Ala Phe Ile Asn Lys Leu Asp Asp
                        20
                                              25
10
          <210> 37
           <211> 29
           <212> PRT
           <213> secuencia artificial
15
           <220>
          <223> Secuencia bacteriana modificada
           Glu Thr Leu Glu Ala Trp Asp Glu Ile Asp Gln Leu Pro Asn Leu Thr
                                                   10
           Leu Gln Gln Trp Leu Ala Phe Ile Asn Lys Leu Asp Asp
                        20
                                              25
20
          <210> 38
           <211> 29
           <212> PRT
           <213> secuencia artificial
25
           <220>
          <223> Secuencia bacteriana modificada
           Glu Val Ile Glu Ala Trp Asn Glu Ile Asp Ala Leu Pro Asn Leu Thr
                            5
                                                   10
           Leu Asp Gln Trp Leu Ala Phe Ile Asn Lys Leu Asp Asp
30
           20
                                 25
           <210> 39
           <211> 29
35
           <212> PRT
           <213> secuencia artificial
          <220>
40
           <223> Secuencia bacteriana modificada
          <400> 39
```

```
Glu Val Ile Asp Ala Trp Asn Glu Ile Asp Arg Leu Pro Asn Leu Thr
           Leu Gln Gln Trp Leu Ala Phe Ile Asn Lys Leu Asp Asp
                        20
          <210> 40
          <211> 29
 5
          <212> PRT
          <213> secuencia artificial
          <220>
          <223> Secuencia bacteriana modificada
10
           Glu Val Ile Asp Ala Trp Asn Glu Ile Asp Gln Leu Pro Asn Leu Thr
           Leu Glu Gln Trp Leu Ala Phe Ile Asn Lys Leu Asp Asp
          <210> 41
          <211> 29
15
          <212> PRT
          <213> secuencia artificial
          <220>
20
          <223> Secuencia bacteriana modificada
           Glu Thr Ile Ala Ala Trp Asp Glu Ile Asp His Leu Pro Asn Leu Thr
                                                  10
           Leu Glu Gln Trp Leu Ala Phe Ile Asn Lys Leu Asp Asp
                        20
                                             25
          <210> 42
25
          <211> 29
          <212> PRT
          <213> secuencia artificial
30
          <220>
          <223> Secuencia bacteriana modificada
           Glu Val Leu Gln Ala Trp Asp Glu Ile Asp His Leu Pro Asn Leu Thr
                                                  10
           Ile Gln Gln Trp Leu Ala Phe Ile Asn Lys Leu Ser Asp
                        20
                                             25
35
          <210> 43
          <211> 29
          <212> PRT
          <213> secuencia artificial
40
          <220>
```

```
<223> Secuencia bacteriana modificada
          <400> 43
           Glu Thr Leu His Ala Trp Ala Glu Ile Asp Arg Leu Pro Asn Leu Thr
           Ile Glu Gln Trp Leu Ala Phe Ile Asn Lys Leu Asp Asp
                                              25
 5
          <210> 44
          <211> 29
          <212> PRT
          <213> secuencia artificial
10
          <223> Secuencia bacteriana modificada
           Glu Val Leu Glu Ala Trp Asn Glu Ile Asp His Leu Pro Asn Leu Thr
           Leu Ala Gln Trp Leu Ala Phe Ile Asn Lys Leu Asp Asp
15
                        20
          <210> 45
          <211> 29
          <212> PRT
20
          <213> secuencia artificial
          <223> Secuencia bacteriana modificada
25
           Glu Val Ile Glu Ala Trp Asp Glu Ile Asp Lys Leu Pro Asn Leu Thr
                            5
                                                  10
           Ile Ala Gln Trp Leu Ala Phe Ile Asn Lys Leu Asp Asp
           20
                                 25
30
          <210> 46
          <211> 29
          <212> PRT
          <213> secuencia artificial
          <220>
35
          <223> Secuencia bacteriana modificada
           Glu Val Leu Asp Ala Trp Asp Glu Ile Asp His Leu Pro Asn Leu Thr
           Leu Gln Gln Trp Leu Ala Phe Ile Asn Lys Leu Asp Asp
                        20
                                              25
40
          <210> 47
          <211> 29
```

```
<212> PRT
          <213> secuencia artificial
          <220>
 5
          <223> Secuencia bacteriana modificada
           Glu Thr Ile Glu Ala Trp Asn Glu Ile Asp Lys Leu Pro Asn Leu Thr
                                                  10
           Leu Thr Gln Trp Leu Ala Phe Ile Asn Lys Leu Asp Asp
                        20
10
          <210> 48
          <211> 29
          <212> PRT
          <213> secuencia artificial
15
          <220>
          <223> Secuencia bacteriana modificada
           Glu Val Leu Glu Ala Trp Asn Glu Ile Asp Leu Leu Pro Asn Leu Thr
                                                  10
           Ile Glu Gln Trp Leu Ala Phe Ile Asn Lys Leu Asp Asp
                                              25
                        20
20
          <210>49
          <211> 29
          <212> PRT
          <213> secuencia artificial
25
          <220>
          <223> Secuencia bacteriana modificada
           Glu Val Ile Glu Ala Trp Asp Glu Ile Asp His Leu Pro Asn Leu Thr
                                                  10
           Ile Asp Gln Trp Leu Ala Phe Ile Asn Lys Leu Asp Asp
30
                        20
          <210> 50
          <211> 29
          <212> PRT
          <213> secuencia artificial
35
          <220>
          <223> Secuencia bacteriana modificada
40
           Glu Val Ile Ser Ala Trp Asn Glu Ile Asp Ala Leu Pro Asn Leu Thr
                            5
                                                  10
                                                                        15
           Leu Gln Gln Trp Leu Ala Phe Ile Asn Lys Leu Asp Asp
                        20
```

```
<210> 51
          <211> 29
           <212> PRT
 5
          <213> secuencia artificial
          <223> Secuencia bacteriana modificada
10
           Glu Val Ile Ala Ala Trp Asn Glu Ile Asp Lys Leu Pro Asn Leu Thr
                             5
                                                   10
           Leu Glu Gln Trp Leu Ala Phe Ile Asn Lys Leu Asp Asp
                                              25
          <210> 52
           <211> 29
           <212> PRT
15
          <213> secuencia artificial
           <220>
          <223> Secuencia bacteriana modificada
20
           <400> 52
           Glu Thr Ile Glu Ala Trp Asn Glu Ile Asp Ser Leu Pro Asn Leu Thr
                             5
                                                   10
           Leu Asp Gln Trp Leu Ala Phe Ile Asn Lys Leu Asp Asp
           20
                                 25
25
          <210> 53
           <211> 29
           <212> PRT
           <213> secuencia artificial
30
          <220>
          <223> Secuencia bacteriana modificada
           <400> 53
           Glu Val Leu Asp Ala Trp Asn Glu Ile Asp Gln Leu Pro Asn Leu Thr
           Leu Gln Gln Trp Leu Ala Phe Ile Asn Lys Leu Asp Asp
35
                        20
          <210> 54
          <211> 29
           <212> PRT
40
           <213> secuencia artificial
          <223> Secuencia bacteriana modificada
45
          <400> 54
```

```
Glu Val Leu Ala Ala Trp Asn Glu Ile Asp His Leu Pro Asn Leu Thr
           Ile Glu Gln Trp Leu Ala Phe Ile Asn Lys Leu Asp Asp
                        20
          <210> 55
          <211> 29
 5
          <212> PRT
          <213> secuencia artificial
          <220>
          <223> Secuencia bacteriana modificada
10
          <400> 55
           Glu Val Leu Glu Ala Trp Asp Glu Ile Asp His Leu Pro Asn Leu Thr
           Ile Thr Gln Trp Leu Ala Phe Ile Asn Lys Leu Asp Asp
          <210> 56
          <211> 29
15
          <212> PRT
          <213> secuencia artificial
          <220>
20
          <223> Secuencia bacteriana modificada
           Glu Thr Ile Asp Ala Trp Asn Glu Ile Asp His Leu Pro Asn Leu Thr
                                                  10
           Ile Glu Gln Trp Leu Ala Phe Ile Asn Lys Leu Asp Asp
                        20
                                              25
25
          <210> 57
          <211> 29
          <212> PRT
          <213> secuencia artificial
30
          <220>
          <223> Secuencia bacteriana modificada
           Glu Val Ile Glu Ala Trp Asn Glu Ile Asp His Leu Pro Asn Leu Thr
                                                  10
           Ile Gln Gln Trp Leu Ala Phe Ile Asn Lys Leu Asp Asp
                        20
                                              25
35
          <210> 58
          <211> 29
          <212> PRT
          <213> secuencia artificial
40
          <220>
```

```
<223> Secuencia bacteriana modificada
          <400> 58
           Glu Val Ile Gln Ala Trp Asn Glu Ile Asp Ala Leu Pro Asn Leu Thr
           Ile Ser Gln Trp Leu Ala Phe Ile Asn Lys Leu Asp Asp
                                              25
 5
          <210> 59
          <211> 29
          <212> PRT
          <213> secuencia artificial
10
          <223> Secuencia bacteriana modificada
           Glu Val Ile Ala Ala Trp Asp Glu Ile Asp Ser Leu Pro Asn Leu Thr
15
           Ile Glu Gln Trp Leu Ala Phe Ile Asn Lys Leu Asp Asp
           20
                                25
          <210> 60
20
          <211> 29
          <212> PRT
          <213> secuencia artificial
          <220>
25
          <223> Secuencia bacteriana modificada
          <400> 60
           Glu His Ile Glu Ala Trp Asn Glu Ile Asp Ala Leu Pro Asn Leu Thr
                                                  10
           Ile Glu Gln Trp Leu Ala Phe Ile Asn Lys Leu Gln Asp
                        20
30
          <210> 61
          <211> 29
          <212> PRT
          <213> secuencia artificial
          <220>
35
          <223> Secuencia bacteriana modificada
           Glu Val Leu Glu Ala Trp Asn Glu Ile Asp Lys Leu Pro Asn Leu Thr
           Leu Asp Gln Trp Leu Ala Phe Ile Asn Lys Leu Asp Asp
                        20
                                              25
40
          <210> 62
          <211> 29
```

```
<212> PRT
          <213> secuencia artificial
          <220>
 5
          <223> Secuencia bacteriana modificada
           Glu Val Ile Asp Ala Trp Asn Glu Ile Asp His Leu Pro Asn Leu Thr
                                                  10
           Ile Glu Gln Trp Leu Ala Phe Ile Asn Lys Leu Ala Asp
                        20
10
          <210> 63
          <211> 29
          <212> PRT
          <213> secuencia artificial
15
          <220>
          <223> Secuencia bacteriana modificada
           Glu Thr Ile Asp Ala Trp Asp Glu Ile Asp Lys Leu Pro Asn Leu Thr
                                                  10
           Ile Glu Gln Trp Leu Ala Phe Ile Asn Lys Leu Asp Asp
                        20
                                              25
20
          <210> 64
          <211> 29
          <212> PRT
          <213> secuencia artificial
25
          <220>
          <223> Secuencia bacteriana modificada
           Glu Val Ile Ala Ala Trp Asp Glu Ile Asp Leu Leu Pro Asn Leu Thr
                                                  10
           Leu Gln Gln Trp Leu Ala Phe Ile Asn Lys Leu Ala Asp
30
                        20
          <210> 65
          <211> 29
          <212> PRT
          <213> secuencia artificial
35
          <220>
          <223> Secuencia bacteriana modificada
40
           Glu Val Ile His Ala Trp Asp Glu Ile Asp Lys Leu Pro Asn Leu Thr
                            5
                                                  10
           Ile Glu Gln Trp Leu Ala Phe Ile Asn Lys Leu Asp Asp
                        20
```

```
<210> 66
          <211> 29
           <212> PRT
 5
          <213> secuencia artificial
          <223> Secuencia bacteriana modificada
10
           Glu Val Ile Ala Ala Trp Asn Glu Ile Asp His Leu Pro Asn Leu Thr
                             5
                                                   10
           Leu Glu Gln Trp Leu Ala Phe Ile Asn Lys Leu Asp Asp
           20
                                 25
15
          <210> 67
           <211> 29
           <212> PRT
           <213> secuencia artificial
20
          <220>
          <223> Secuencia bacteriana modificada
           <400> 67
           Glu Thr Leu Asp Ala Trp Asn Glu Ile Asp Lys Leu Pro Asn Leu Thr
           Leu Ser Gln Trp Leu Ala Phe Ile Asn Lys Leu Asp Asp
                        20
                                              25
25
          <210> 68
           <211> 29
           <212> PRT
           <213> secuencia artificial
30
          <220>
          <223> Secuencia bacteriana modificada
           <400> 68
           Glu Val Leu Glu Ala Trp Asn Glu Ile Asp Ala Leu Pro Asn Leu Thr
           Leu Glu Gln Trp Leu Ala Phe Ile Asn Lys Leu Asp Asp
35
                        20
           <210> 69
           <211> 29
           <212> PRT
40
           <213> secuencia artificial
           <223> Secuencia bacteriana modificada
45
          <400> 69
```

```
Glu Val Ile Gln Ala Trp Asp Glu Ile Asp His Leu Pro Asn Leu Thr
           Ile Ser Gln Trp Leu Ala Phe Ile Asn Lys Leu Asp Asp
                        20
          <210> 70
          <211> 29
 5
          <212> PRT
          <213> secuencia artificial
          <220>
          <223> Secuencia bacteriana modificada
10
           Glu Val Leu Gln Ala Trp Asp Glu Ile Asp Ser Leu Pro Asn Leu Thr
           Ile Glu Gln Trp Leu Ala Phe Ile Asn Lys Leu Asp Asp
          <210> 71
          <211> 29
15
          <212> PRT
          <213> secuencia artificial
          <220>
20
          <223> Secuencia bacteriana modificada
           Glu Thr Leu Glu Ala Trp Asp Glu Ile Asp His Leu Pro Asn Leu Thr
                                                  10
           Ile Ala Gln Trp Leu Ala Phe Ile Asn Lys Leu Asp Asp
                        20
                                             25
25
          <210> 72
          <211> 29
          <212> PRT
          <213> secuencia artificial
30
          <220>
          <223> Secuencia bacteriana modificada
           Glu Thr Ile Asp Ala Trp Asn Glu Ile Asp Arg Leu Pro Asn Leu Thr
                                                  10
           Ile Ser Gln Trp Leu Ala Phe Ile Asn Lys Leu Asp Asp
                        20
                                              25
35
          <210> 73
          <211> 29
          <212> PRT
          <213> secuencia artificial
40
          <220>
```

```
<223> Secuencia bacteriana modificada
          <400> 73
           Glu Val Leu Asp Ala Trp His Glu Ile Asp His Leu Pro Asn Leu Thr
           Ile Gln Gln Trp Leu Ala Phe Ile Asn Lys Leu Asp Asp
 5
           20
                                25
          <210> 74
          <211> 29
          <212> PRT
10
          <213> secuencia artificial
          <220>
          <223> Secuencia bacteriana modificada
15
           Glu Gln Ile Arg Ala Trp Asp Glu Ile Asp Lys Leu Pro Asn Leu Thr
           Ile Glu Gln Trp Leu Ala Phe Ile Asn Lys Leu Ala Asp
          <210> 75
20
          <211> 29
          <212> PRT
          <213> secuencia artificial
          <220>
25
          <223> Secuencia bacteriana modificada
          <400> 75
           Glu Thr Leu Tyr Ala Trp Asn Glu Ile Asp Lys Leu Pro Asn Leu Thr
                                                  10
           Ile Glu Gln Trp Leu Ala Phe Ile Glu Lys Leu Gln Asp
                        20
          <210> 76
30
          <211> 29
          <212> PRT
          <213> secuencia artificial
          <220>
35
          <223> Secuencia bacteriana modificada
           Glu Val Ile Glu Ala Trp Asn Glu Ile Asp Ala Leu Pro Asn Leu Thr
           Ile Asp Gln Trp Leu Ala Phe Ile Asn Lys Leu Asp Asp
                        20
40
          <210> 77
          <211> 29
```

```
<212> PRT
          <213> secuencia artificial
          <220>
 5
          <223> Secuencia bacteriana modificada
           Glu Val Leu Glu Ala Trp Asn Glu Ile Asp His Leu Pro Asn Leu Thr
                                                   10
           Ile Gln Gln Trp Leu Ala Phe Ile Asn Lys Leu Asp Asp
                        20
                                              25
10
          <210> 78
          <211> 29
          <212> PRT
          <213> secuencia artificial
15
          <220>
          <223> Secuencia bacteriana modificada
           Glu Thr Ile Glu Ala Trp Asp Glu Ile Asp Ala Leu Pro Asn Leu Thr
                                                  10
           Ile Glu Gln Trp Leu Ala Phe Ile Asn Lys Leu Asp Asp
                        20
                                              25
20
          <210> 79
          <211> 29
          <212> PRT
          <213> secuencia artificial
25
          <220>
          <223> Secuencia bacteriana modificada
           Glu Val Ile Glu Ala Trp Asn Glu Ile Asp His Leu Pro Asn Leu Thr
                                                   10
           Leu Gln Gln Trp Leu Ala Phe Ile Asn Lys Leu Asp Asp
30
                        20
          <210> 80
          <211> 29
          <212> PRT
          <213> secuencia artificial
35
          <220>
          <223> Secuencia bacteriana modificada
40
           Glu Val Ile Glu Ala Trp Asn Glu Ile Asp Lys Leu Pro Asn Leu Thr
                            5
                                                   10
                                                                        15
```

Ile Gln Gln Trp Leu Ala Phe Ile Asn Lys Leu Asp Asp

```
20
                                 25
          <210> 81
           <211> 29
           <212> PRT
 5
           <213> secuencia artificial
          <220>
           <223> Secuencia bacteriana modificada
10
           Glu Thr Leu Asp Ala Trp Ala Glu Ile Asp His Leu Pro Asn Leu Thr
           Leu Asp Gln Trp Leu Ala Phe Ile Asn Lys Leu Asp Asp
          <210> 82
15
           <211> 29
           <212> PRT
           <213> secuencia artificial
          <220>
20
          <223> Secuencia bacteriana modificada
          <400> 82
           Glu His Ile Asp Ala Trp Asn Glu Ile Asp Ala Leu Pro Asn Leu Thr
           Leu Ser Gln Trp Leu Ala Phe Ile Asn Lys Leu Asp Asp
                        20
25
          <210>83
          <211> 29
           <212> PRT
          <213> secuencia artificial
30
          <220>
          <223> Secuencia bacteriana modificada
           <400> 83
           Glu Val Leu Asp Ala Trp Asn Glu Ile Asp Lys Leu Pro Asn Leu Thr
           Ile Ala Gln Trp Leu Ala Phe Ile Asn Lys Leu Asp Asp
                        20
35
          <210> 84
           <211> 29
           <212> PRT
           <213> secuencia artificial
40
          <220>
          <223> Secuencia bacteriana modificada
          <400> 84
```

	1	iie (51u A	_	rnr	GIU	iie	10	Tyr	Leu	Pro	Asn	15	rnr
	Leu Gln		Frp Lo	eu Ala	Phe	Ile	Asn 25	Lys	Leu	Asp	Asp			
5	<210> 85 <211> 29 <212> PR <213> sec		a artific	cial										
40	<220> <223> Secuencia bacteriana modificada													
10	<400> 85 Glu Thr 1	Ile (Glu A	la Trp	Asn	Glu	Ile	Asp 10	His	Leu	Pro	Asn	Leu 15	Thr
	Ile Ala		Frp L	eu Ala	Phe	Ile	Asn 25	Lys	Leu	Asp	Asp			
15	<210> 86 <211> 29 <212> PR <213> sec		a artific	cial										
20	<220> <223> Secuencia bacteriana modificada													
	<400> 86 Glu Val 1	Ile (Gln A	la Trp	Asn	Glu	Ile	Asp 10	Lys	Leu	Pro	Asn	Leu 15	Thr
	Leu Glu		rp L	eu Ala	Phe	Ile	Asn 25	Lys	Leu	Asp	Asp			
25	<210> 87 <211> 29 <212> PR <213> sec		a artific	cial										
30	<220> <223> Secuencia bacteriana modificada													
	<400> 87 Glu Val 1	Ile (Glu A	_	Asp	Glu	Ile	Asp 10	His	Leu	Pro	Asn	Leu 15	Thr
35	Ile Glu	Gln 1	rp L	eu Ala	Phe	Ile	Asn	Lys	Leu	Asp	Asp			
	20			25										
40	<210> 88 <211> 29 <212> PR <213> sec		a artific	cial										

```
<220>
          <223> Secuencia bacteriana modificada
          <400> 88
          Glu Thr Ile Asp Ala Trp Asn Glu Ile Asp Leu Leu Pro Asn Leu Thr
                                                 10
          Ile Glu Gln Trp Leu Ala Phe Ile Asn Lys Leu Asp Asp
5
          <210>89
          <211> 29
          <212> PRT
10
          <213> secuencia artificial
          <220>
          <223> Secuencia bacteriana modificada
15
          <400>89
          Glu His Ile Asp Ala Trp Asn Glu Ile Asp Lys Leu Pro Asn Leu Thr
                                                 10
          Leu Asp Gln Trp Leu Ala Phe Ile Asn Lys Leu Asp Asp
                       20
          <210>90
          <211> 29
20
          <212> PRT
          <213> secuencia artificial
          <220>
          <223> Secuencia bacteriana modificada
25
          <400> 90
          Glu Val Val Ala Ala Trp Asn Glu Ile Asp Ala Leu Pro Asn Leu Thr
          Ile Glu Gln Trp Leu Ala Phe Ile Asn Lys Leu Asn Asp
          <210> 91
30
          <211> 29
          <212> PRT
          <213> secuencia artificial
          <220>
          <223> Secuencia bacteriana modificada
35
          Glu Val Ile Glu Ala Trp Asn Glu Ile Asp Ala Leu Pro Asn Leu Thr
                                                  10
          Leu Ala Gln Trp Leu Ala Phe Ile Asn Lys Leu Asp Asp
                       20
40
          <210>92
          <211> 29
```

```
<212> PRT
          <213> secuencia artificial
           <220>
 5
          <223> Secuencia bacteriana modificada
           Glu Val Leu Gln Ala Trp Asp Glu Ile Asp Arg Leu Pro Asn Leu Thr
                                                   10
           Leu Asp Gln Trp Leu Ala Phe Ile Asn Lys Leu Asp Asp
                        20
                                              25
10
          <210> 93
           <211> 29
           <212> PRT
           <213> secuencia artificial
15
           <220>
          <223> Secuencia bacteriana modificada
           Glu Val Ile Asp Ala Trp Asp Glu Ile Asp His Leu Pro Asn Leu Thr
                                                   10
           Ile Glu Gln Trp Leu Ala Phe Ile Asn Lys Leu Ser Asp
                        20
                                              25
20
          <210> 94
           <211> 29
           <212> PRT
           <213> secuencia artificial
25
           <220>
          <223> Secuencia bacteriana modificada
           Glu Val Val Glu Ala Trp Asn Glu Ile Asp Gln Leu Pro Asn Leu Thr
                            5
                                                   10
           Ile Glu Gln Trp Leu Ala Phe Ile Asn Lys Leu Asp Asp
30
           20
                                 25
           <210> 95
           <211> 29
35
           <212> PRT
           <213> secuencia artificial
          <220>
40
           <223> Secuencia bacteriana modificada
          <400>95
```

```
Glu Val Ile Gln Ala Trp Asn Glu Ile Asp Ala Leu Pro Asn Leu Thr
           Ile Glu Gln Trp Leu Ala Phe Ile Asn Lys Leu Asp Asp
                        20
          <210> 96
          <211> 29
 5
          <212> PRT
          <213> secuencia artificial
          <220>
          <223> Secuencia bacteriana modificada
10
           Glu Val Ile Gln Ala Trp Asp Glu Ile Asp Lys Leu Pro Asn Leu Thr
           Ile Asp Gln Trp Leu Ala Phe Ile Asn Lys Leu Ala Asp
          <210> 97
          <211> 29
15
          <212> PRT
          <213> secuencia artificial
          <220>
20
          <223> Secuencia bacteriana modificada
           Glu Val Val Ala Ala Trp Asp Glu Ile Asp Ala Leu Pro Asn Leu Thr
                                                  10
           Leu Thr Gln Trp Leu Ala Phe Ile Asn Lys Leu Asp Asp
                        20
                                             25
25
          <210> 98
          <211> 29
          <212> PRT
          <213> secuencia artificial
30
          <220>
          <223> Secuencia bacteriana modificada
           Glu Val Ile Gln Ala Trp Asn Glu Ile Asp Gly Leu Pro Asn Leu Thr
                                                  10
           Leu Ser Gln Trp Leu Ala Phe Ile Asn Lys Leu Asp Asp
                        20
                                              25
35
          <210> 99
          <211> 29
          <212> PRT
          <213> secuencia artificial
40
          <220>
```

```
<223> Secuencia bacteriana modificada
          <400>99
           Glu Thr Ile Glu Ala Trp Asp Glu Ile Asp Ala Leu Pro Asn Leu Thr
           Ile Thr Gln Trp Leu Ala Phe Ile Asn Lys Leu Asp Asp
                                              25
 5
          <210> 100
          <211> 29
          <212> PRT
          <213> secuencia artificial
10
          <223> Secuencia bacteriana modificada
           Glu Val Ile Asp Ala Trp Asn Glu Ile Asp His Leu Pro Asn Leu Thr
           Ile Gln Gln Trp Leu Ala Phe Ile Asn Lys Leu Ala Asp
15
                        20
          <210> 101
          <211> 29
          <212> PRT
20
          <213> secuencia artificial
          <223> Secuencia bacteriana modificada
25
          <400> 101
           Glu Thr Ile Glu Ala Trp Asn Glu Ile Asp Ala Leu Pro Asn Leu Thr
                            5
                                                  10
           Leu Asp Gln Trp Leu Ala Phe Ile Asn Lys Leu Glu Asp
           20
                                 25
30
          <210> 102
          <211> 29
          <212> PRT
          <213> secuencia artificial
          <220>
35
          <223> Secuencia bacteriana modificada
           Glu His Ile His Ala Trp Asn Glu Ile Asp Glu Leu Pro Asn Leu Thr
           Ile Glu Gln Trp Leu Ala Phe Ile Asn Lys Leu Ala Asp
                        20
                                              25
40
          <210> 103
          <211> 29
```

```
<212> PRT
          <213> secuencia artificial
          <220>
 5
          <223> Secuencia bacteriana modificada
           Glu Val Ile Asp Ala Trp Asp Glu Ile Asp His Leu Pro Asn Leu Thr
                                                  10
           Ile Asp Gln Trp Leu Ala Phe Ile Asn Lys Leu Ser Asp
                        20
10
          <210> 104
          <211> 29
          <212> PRT
          <213> secuencia artificial
15
          <220>
          <223> Secuencia bacteriana modificada
           Glu Val Ile Asp Ala Asn Asp Glu Ile Asp Ala Leu Pro Asn Leu Thr
                                                  10
           Ile Ala Gln Trp Leu Ala Phe Ile Asn Lys Leu His Asp
                                              25
                        20
20
          <210> 105
          <211> 29
          <212> PRT
          <213> secuencia artificial
25
          <220>
          <223> Secuencia bacteriana modificada
           Glu Thr Ile Glu Ala Trp Asp Glu Ile Asp Lys Leu Pro Asn Leu Thr
                                                  10
           Ile Glu Gln Trp Leu Ala Phe Ile Asn Lys Leu Asp Asp
30
                        20
          <210> 106
          <211> 29
          <212> PRT
          <213> secuencia artificial
35
          <220>
          <223> Secuencia bacteriana modificada
          <400> 106
40
           Glu Val Leu Leu Ala Trp Asp Glu Ile Asp His Leu Pro Asn Leu Thr
                            5
                                                  10
           Leu Glu Gln Trp Leu Ala Phe Ile Asn Lys Leu Asp Asp
```

20

```
<210> 107
          <211> 29
           <212> PRT
 5
          <213> secuencia artificial
          <223> Secuencia bacteriana modificada
10
           <400> 107
           Glu His Ile Asp Ala Trp Asn Glu Ile Asp Gly Leu Pro Asn Leu Thr
                                                   10
           Leu Glu Gln Trp Leu Ala Phe Ile Asn Lys Leu Asp Asp
                                              25
          <210> 108
           <211> 29
15
           <212> PRT
          <213> secuencia artificial
           <220>
          <223> Secuencia bacteriana modificada
20
           <400> 108
           Glu Val Ile Glu Ala Trp Ser Glu Ile Asp Ala Leu Pro Asn Leu Thr
                             5
                                                   10
           Ile Asp Gln Trp Leu Ala Phe Ile Asn Lys Leu Ala Asp
           20
                                 25
25
          <210> 109
           <211> 29
           <212> PRT
           <213> secuencia artificial
30
          <220>
          <223> Secuencia bacteriana modificada
           <400> 109
           Glu Gln Leu Asn Ala Trp Ala Glu Ile Asp Ala Leu Pro Asn Leu Thr
           Ile Glu Gln Trp Leu Ala Phe Ile Asn Lys Leu Asp Asp
35
                        20
          <210> 110
          <211> 29
           <212> PRT
40
          <213> secuencia artificial
          <223> Secuencia bacteriana modificada
45
          <400> 110
```

```
Glu Val Ile Asp Ala Trp Asn Glu Ile Asp Ala Leu Pro Asn Leu Thr
           Ile Ala Gln Trp Leu Ala Phe Ile Asn Lys Leu Asp Asp
                        20
          <210> 111
          <211> 29
 5
          <212> PRT
          <213> secuencia artificial
          <220>
          <223> Secuencia bacteriana modificada
10
          <400> 111
           Glu Thr Ile Asp Ala Trp Asn Glu Ile Asp Gln Leu Pro Asn Leu Thr
           Ile Glu Gln Trp Leu Ala Phe Ile Asn Lys Leu Asp Asp
          <210> 112
          <211> 29
15
          <212> PRT
          <213> secuencia artificial
          <220>
20
          <223> Secuencia bacteriana modificada
           Glu Val Ile Glu Ala Trp Asp Glu Ile Asp Lys Leu Pro Asn Leu Thr
                                                  10
           Leu Ala Gln Trp Leu Ala Phe Ile Asn Lys Leu Asp Asp
                        20
                                             25
          <210> 113
25
          <211> 29
          <212> PRT
          <213> secuencia artificial
30
          <220>
          <223> Secuencia bacteriana modificada
           Glu Val Leu Tyr Ala Trp Ala Glu Ile Asp His Leu Pro Asn Leu Thr
                                                  10
           Ile Glu Gln Trp Leu Ala Phe Ile Asn Lys Leu Asp Asp
                        20
                                             25
35
          <210> 114
          <211> 29
          <212> PRT
          <213> secuencia artificial
40
          <220>
```

```
<223> Secuencia bacteriana modificada
          <400> 114
           Glu Gln Ile Asp Ala Trp Asn Glu Ile Asp Arg Leu Pro Asn Leu Thr
           Ile Gln Gln Trp Leu Ala Phe Ile Asn Lys Leu Asp Asp
                                              25
 5
          <210> 115
          <211> 29
          <212> PRT
          <213> secuencia artificial
10
          <223> Secuencia bacteriana modificada
           Glu Val Leu Ala Ala Trp Asp Glu Ile Asp Arg Leu Pro Asn Leu Thr
15
           Ile Glu Gln Trp Leu Ala Phe Ile Asn Lys Leu Asp Asp
           20
                                25
          <210> 116
20
          <211> 29
          <212> PRT
          <213> secuencia artificial
          <220>
25
          <223> Secuencia bacteriana modificada
          <400> 116
           Glu Val Ile Glu Ala Trp Asp Glu Ile Asp His Leu Pro Asn Leu Thr
                                                  10
           Leu His Gln Trp Leu Ala Phe Ile Asn Lys Leu Asp Asp
                        20
30
          <210> 117
          <211> 29
          <212> PRT
          <213> secuencia artificial
          <220>
35
          <223> Secuencia bacteriana modificada
           Glu Val Ile Glu Ala Trp Asn Glu Ile Asp Lys Leu Pro Asn Leu Thr
           Leu Gln Gln Trp Leu Ala Phe Ile Asn Lys Leu Asp Asp
                        20
                                              25
40
          <210> 118
          <211> 29
```

```
<212> PRT
          <213> secuencia artificial
          <220>
 5
          <223> Secuencia bacteriana modificada
           Glu Val Ile Asp Ala Asn Asp Glu Ile Asp Ala Leu Pro Asn Leu Thr
                                                  10
           Ile Glu Gln Trp Leu Ala Phe Ile Asn Lys Leu His Asp
                        20
                                              25
10
          <210> 119
          <211> 29
          <212> PRT
          <213> secuencia artificial
15
          <220>
          <223> Secuencia bacteriana modificada
           Glu Val Ile Ala Ala Trp Asp Glu Ile Asp Ala Leu Pro Asn Leu Thr
                                                  10
           Ile Glu Gln Trp Leu Ala Phe Ile Asn Lys Leu Asp Asp
                        20
                                              25
20
          <210> 120
          <211> 29
          <212> PRT
          <213> secuencia artificial
25
          <220>
          <223> Secuencia bacteriana modificada
           Glu Val Ile Glu Ala Trp Thr Glu Ile Asp Gln Leu Pro Asn Leu Thr
                                                  10
           Leu Asp Gln Trp Leu Ala Phe Ile Asn Lys Leu Asp Asp
30
                        20
          <210> 121
          <211> 29
          <212> PRT
          <213> secuencia artificial
35
          <220>
          <223> Secuencia bacteriana modificada
          <400> 121
40
           Glu Val Ile Asn Ala Trp Asn Glu Ile Asp Ala Leu Pro Asn Leu Thr
                                                  10
                                                                        15
           Leu Gln Gln Trp Leu Ala Phe Ile Asn Lys Leu Asp Asp
                        20
```

```
<210> 122
          <211> 29
           <212> PRT
 5
          <213> secuencia artificial
          <223> Secuencia bacteriana modificada
10
           <400> 122
           Glu His Ile Glu Ala Trp Asp Glu Ile Asp His Leu Pro Asn Leu Thr
                             5
                                                   10
           Ile Asp Gln Trp Leu Ala Phe Ile Asn Lys Leu Ala Asp
           20
                                 25
15
          <210> 123
           <211> 29
           <212> PRT
           <213> secuencia artificial
20
          <220>
          <223> Secuencia bacteriana modificada
           Glu His Leu Glu Ala Trp Arg Glu Ile Asp Ala Leu Pro Asn Leu Thr
           Ile Glu Gln Trp Leu Ala Phe Ile Asn Lys Leu Asp Asp
                        20
                                              25
25
          <210> 124
           <211> 29
           <212> PRT
           <213> secuencia artificial
30
          <220>
          <223> Secuencia bacteriana modificada
           <400> 124
           Glu Val Leu Asp Ala Trp Asn Glu Ile Asp Lys Leu Pro Asn Leu Thr
           Leu Gln Gln Trp Leu Ala Phe Ile Asn Lys Leu Asp Asp
35
                        20
           <210> 125
           <211> 29
           <212> PRT
40
           <213> secuencia artificial
           <223> Secuencia bacteriana modificada
45
          <400> 125
```

```
Glu Val Ile Ala Ala Trp Asp Glu Ile Asp His Leu Pro Asn Leu Thr
           Ile Gln Gln Trp Leu Ala Phe Ile Asn Lys Leu Asp Asp
                        20
          <210> 126
          <211> 29
 5
          <212> PRT
          <213> secuencia artificial
          <220>
          <223> Secuencia bacteriana modificada
10
          <400> 126
           Glu Val Ile Gln Ala Trp Asn Glu Ile Asp Ala Leu Pro Asn Leu Thr
           Leu Glu Gln Trp Leu Ala Phe Ile Asn Lys Leu Asp Asp
          <210> 127
          <211> 29
15
          <212> PRT
          <213> secuencia artificial
          <220>
20
          <223> Secuencia bacteriana modificada
           Glu Val Ile Asp Ala Trp Asn Glu Ile Asp His Leu Pro Asn Leu Thr
                                                  10
           Ile Ala Gln Trp Leu Ala Phe Ile Asn Lys Leu Asp Asp
                        20
                                             25
          <210> 128
25
          <211> 29
          <212> PRT
          <213> secuencia artificial
30
          <220>
          <223> Secuencia bacteriana modificada
           <400> 128
           Glu Gln Leu Asp Ala Trp Asp Glu Ile Asp His Leu Pro Asn Leu Thr
                                                  10
           Ile Asp Gln Trp Leu Ala Phe Ile Asn Lys Leu Ser Asp
                        20
                                             25
35
          <210> 129
          <211> 29
          <212> PRT
          <213> secuencia artificial
40
          <220>
```

```
<223> Secuencia bacteriana modificada
          <400> 129
           Glu Val Leu Asn Ala Trp Asp Glu Ile Asp Lys Leu Pro Asn Leu Thr
           Ile Glu Gln Trp Leu Ala Phe Ile Asn Lys Leu Asp Asp
 5
           20
                                25
          <210> 130
          <211> 29
          <212> PRT
10
          <213> secuencia artificial
          <220>
          <223> Secuencia bacteriana modificada
15
          <400> 130
           Glu Val Leu Glu Ala Trp Asn Glu Ile Asp His Leu Pro Asn Leu Thr
                                                  10
           Ile Asp Gln Trp Leu Ala Phe Ile Asn Lys Leu Asp Asp
          <210> 131
20
          <211> 29
          <212> PRT
          <213> secuencia artificial
          <220>
25
          <223> Secuencia bacteriana modificada
          <400> 131
           Glu Val Leu Leu Ala Trp Asp Glu Ile Asp Arg Leu Pro Asn Leu Thr
                                                  10
           Ile Asp Gln Trp Leu Ala Phe Ile Asn Lys Leu Ala Asp
                        20
          <210> 132
30
          <211> 29
          <212> PRT
          <213> secuencia artificial
          <220>
35
          <223> Secuencia bacteriana modificada
          <400> 132
           Glu Val Ile Ala Ala Trp Asn Glu Ile Asp Gln Leu Pro Asn Leu Thr
           Leu Asp Gln Trp Leu Ala Phe Ile Asn Lys Leu Asp Asp
                        20
                                              25
40
          <210> 133
          <211> 29
```

```
<212> PRT
          <213> secuencia artificial
          <220>
 5
          <223> Secuencia bacteriana modificada
           Glu Thr Leu Leu Ala Trp Asp Glu Ile Asp Ala Leu Pro Asn Leu Thr
                                                   10
           Ile Glu Gln Trp Leu Ala Phe Ile Asn Lys Leu Asp Asp
                        20
                                              25
10
          <210> 134
          <211> 29
          <212> PRT
          <213> secuencia artificial
15
          <220>
          <223> Secuencia bacteriana modificada
           Glu Val Ile Asp Ala Trp Asn Glu Ile Asp Thr Leu Pro Asn Leu Thr
                                                  10
           Leu Glu Gln Trp Leu Ala Phe Ile Asn Lys Leu Asp Asp
                        20
                                              25
20
          <210> 135
          <211> 29
          <212> PRT
          <213> secuencia artificial
25
          <220>
          <223> Secuencia bacteriana modificada
          <400> 135
           Glu Val Leu His Ala Trp Asn Glu Ile Asp His Leu Pro Asn Leu Thr
                                                  10
           Leu Asn Gln Trp Leu Ala Phe Ile Asn Lys Leu Gln Asp
30
                        20
          <210> 136
          <211> 29
          <212> PRT
          <213> secuencia artificial
35
          <220>
          <223> Secuencia bacteriana modificada
          <400> 136
40
           Glu Val Ile Gln Ala Trp Asn Glu Ile Asp Ala Leu Pro Asn Leu Thr
                            5
                                                  10
                                                                        15
```

Ile Ala Gln Trp Leu Ala Phe Ile Asn Lys Leu Asp Asp

```
20
                                 25
          <210> 137
           <211> 29
           <212> PRT
 5
           <213> secuencia artificial
          <220>
           <223> Secuencia bacteriana modificada
10
           Glu Thr Val Asp Ala Trp Asn Glu Ile Asp Ala Leu Pro Asn Leu Thr
           Ile Glu Gln Trp Leu Ala Phe Ile Asn Lys Leu Asp Asp
          <210> 138
15
           <211> 29
           <212> PRT
           <213> secuencia artificial
          <220>
20
          <223> Secuencia bacteriana modificada
          <400> 138
           Glu Val Ile Gln Ala Trp Asp Glu Ile Asp His Leu Pro Asn Leu Thr
                                                   10
           Ile Asp Gln Trp Leu Ala Phe Ile Asn Lys Leu Asp Asp
                        20
25
          <210> 139
           <211> 29
           <212> PRT
          <213> secuencia artificial
30
          <220>
          <223> Secuencia bacteriana modificada
           <400> 139
           Glu Val Leu Asp Ala Trp Asn Glu Ile Asp Gln Leu Pro Asn Leu Thr
           Ile Gln Gln Trp Leu Ala Phe Ile Asn Lys Leu Asp Asp
                        20
35
          <210> 140
           <211> 29
           <212> PRT
           <213> secuencia artificial
40
          <220>
          <223> Secuencia bacteriana modificada
          <400> 140
```

```
Glu Thr Ile Glu Ala Trp Asn Glu Ile Asp Ala Leu Pro Asn Leu Thr
           Leu Asp Gln Trp Leu Ala Phe Ile Asn Lys Leu Asp Asp
                        20
          <210> 141
          <211> 29
 5
          <212> PRT
          <213> secuencia artificial
          <220>
          <223> Secuencia bacteriana modificada
10
          <400> 141
           Glu Val Ile Glu Ala Trp Asp Glu Ile Asp Ala Leu Pro Asn Leu Thr
           Ile Asp Gln Trp Leu Ala Phe Ile Asn Lys Leu Asp Asp
          <210> 142
          <211> 29
15
          <212> PRT
          <213> secuencia artificial
          <220>
20
          <223> Secuencia bacteriana modificada
           Glu Val Ile Glu Ala Trp Asn Glu Ile Asp Gln Leu Pro Asn Leu Thr
                                                  10
           Ile Gln Gln Trp Leu Ala Phe Ile Asn Lys Leu Asp Asp
                        20
                                             25
          <210> 143
25
          <211> 29
          <212> PRT
          <213> secuencia artificial
30
          <220>
          <223> Secuencia bacteriana modificada
           Glu Val Ile Glu Ala Trp Thr Glu Ile Asp His Leu Pro Asn Leu Thr
                            5
                                                  10
           Ile Glu Gln Trp Leu Ala Phe Ile Asn Lys Leu Asp Asp
35
           20
                                 25
          <210> 144
          <211> 29
          <212> PRT
40
          <213> secuencia artificial
```

```
<220>
          <223> Secuencia bacteriana modificada
          <400> 144
          Glu Val Ile Gln Ala Trp Asn Glu Ile Asp His Leu Pro Asn Leu Thr
                                                  10
          Leu Gln Gln Trp Leu Ala Phe Ile Asn Lys Leu Glu Asp
5
                       20
          <210> 145
          <211> 29
          <212> PRT
10
          <213> secuencia artificial
          <220>
          <223> Secuencia bacteriana modificada
15
          <400> 145
          Glu Val Ile Gln Ala Asn Asn Glu Ile Asp Gln Leu Pro Asn Leu Thr
                                                  10
          Ile Glu Gln Trp Leu Ala Phe Ile Asn Lys Leu His Asp
                       20
                                             25
          <210> 146
          <211> 29
20
          <212> PRT
          <213> secuencia artificial
          <220>
          <223> Secuencia bacteriana modificada
25
          <400> 146
          Glu Val Leu His Ala Trp Ser Glu Ile Asp Lys Leu Pro Asn Leu Thr
                                                  10
          Ile Glu Gln Trp Leu Ala Phe Ile Asn Lys Leu Asp Asp
          <210> 147
30
          <211> 29
          <212> PRT
          <213> secuencia artificial
          <220>
35
          <223> Secuencia bacteriana modificada
          <400> 147
          Glu Thr Ile Gln Ala Trp Asp Glu Ile Asp Lys Leu Pro Asn Leu Thr
                                                  10
          Leu Asp Gln Trp Leu Ala Phe Ile Asn Lys Leu Ser Asp
                       20
                                             25
40
          <210> 148
          <211> 29
```

```
<212> PRT
          <213> secuencia artificial
           <220>
 5
          <223> Secuencia bacteriana modificada
           Glu Thr Leu Arg Ala Trp Asp Glu Ile Asp Lys Leu Pro Asn Leu Thr
                                                   10
           Ile Gln Gln Trp Leu Ala Phe Ile Asn Lys Leu Ala Asp
                        20
                                              25
10
          <210> 149
           <211> 29
           <212> PRT
           <213> secuencia artificial
15
           <220>
          <223> Secuencia bacteriana modificada
           Glu Val Ile Asp Ala Trp Asn Glu Ile Asp His Leu Pro Asn Leu Thr
                                                   10
           Ile Glu Gln Trp Leu Ala Phe Ile Asn Lys Leu Glu Asp
                        20
                                              25
20
          <210> 150
           <211> 29
           <212> PRT
           <213> secuencia artificial
25
           <220>
          <223> Secuencia bacteriana modificada
           <400> 150
           Glu Val Ile Asp Ala Trp Asn Glu Ile Asp His Leu Pro Asn Leu Thr
                            5
                                                   10
           Leu Gln Gln Trp Leu Ala Phe Ile Asn Lys Leu Ala Asp
30
           20
                                 25
           <210> 151
           <211> 29
35
           <212> PRT
           <213> secuencia artificial
          <220>
40
           <223> Secuencia bacteriana modificada
          <400> 151
```

```
Glu Thr Ile Asp Ala Trp Asn Glu Ile Asp Ala Leu Pro Asn Leu Thr
           Leu Asp Gln Trp Leu Ala Phe Ile Asn Lys Leu Asp Asp
                        20
          <210> 152
          <211> 29
 5
          <212> PRT
          <213> secuencia artificial
          <220>
          <223> Secuencia bacteriana modificada
10
          <400> 152
           Glu Val Ile Glu Ala Trp Asn Glu Ile Asp Gln Leu Pro Asn Leu Thr
           Ile Glu Gln Trp Leu Ala Phe Ile Asn Lys Leu Asp Asp
          <210> 153
          <211> 29
15
          <212> PRT
          <213> secuencia artificial
          <220>
20
          <223> Secuencia bacteriana modificada
           Glu Val Ile Arg Ala Trp Asp Glu Ile Asp Gln Leu Pro Asn Leu Thr
                                                  10
           Leu Ser Gln Trp Leu Ala Phe Ile Asn Lys Leu Asp Asp
                        20
                                             25
          <210> 154
25
          <211> 29
          <212> PRT
          <213> secuencia artificial
30
          <220>
          <223> Secuencia bacteriana modificada
           <400> 154
           Glu Val Ile Glu Ala Trp Asn Glu Ile Asp Arg Leu Pro Asn Leu Thr
                                                  10
           Ile His Gln Trp Leu Ala Phe Ile Asn Lys Leu Asp Asp
                        20
                                             25
35
          <210> 155
          <211> 29
          <212> PRT
          <213> secuencia artificial
40
          <220>
```

```
<223> Secuencia bacteriana modificada
          <400> 155
           Glu Thr Ile Glu Ala Trp Asn Glu Ile Asp Gln Leu Pro Asn Leu Thr
           Ile Glu Gln Trp Leu Ala Phe Ile Asn Lys Leu Asp Asp
                                              25
 5
          <210> 156
          <211> 29
          <212> PRT
          <213> secuencia artificial
10
          <223> Secuencia bacteriana modificada
           Glu Val Leu Thr Ala Trp Ala Glu Ile Asp Ala Leu Pro Asn Leu Thr
           Leu Ser Gln Trp Leu Ala Phe Ile Asn Lys Leu Asp Asp
15
                        20
          <210> 157
          <211> 29
          <212> PRT
20
          <213> secuencia artificial
          <223> Secuencia bacteriana modificada
25
          <400> 157
           Glu Val Ile Glu Ala Trp Asp Glu Ile Asp Lys Leu Pro Asn Leu Thr
                            5
                                                  10
           Val Asp Gln Trp Leu Ala Phe Ile Asn Lys Leu Asp Asp
           20
                                 25
30
          <210> 158
          <211> 29
          <212> PRT
          <213> secuencia artificial
          <220>
35
          <223> Secuencia bacteriana modificada
           Glu Val Ile Asp Ala Trp Asn Glu Ile Asp His Leu Pro Asn Leu Thr
           Leu Thr Gln Trp Leu Ala Phe Ile Asn Lys Leu Asp Asp
                        20
                                              25
40
          <210> 159
          <211> 29
```

```
<212> PRT
          <213> secuencia artificial
          <220>
 5
          <223> Secuencia bacteriana modificada
           Glu Val Ile Glu Ala Trp Asn Glu Ile Asp Gln Leu Pro Asn Leu Thr
                                                  10
           Leu Asp Gln Trp Leu Ala Phe Ile Asn Lys Leu Asp Asp
                        20
10
          <210> 160
          <211> 29
          <212> PRT
          <213> secuencia artificial
15
          <220>
          <223> Secuencia bacteriana modificada
           Glu Thr Leu Gln Ala Trp Asp Glu Ile Asp His Leu Pro Asn Leu Thr
                                                  10
           Leu Asn Gln Trp Leu Ala Phe Ile Asn Lys Leu Asp Asp
                                              25
                        20
20
          <210> 161
          <211> 29
          <212> PRT
          <213> secuencia artificial
25
          <220>
          <223> Secuencia bacteriana modificada
           Glu Val Ile Asp Ala Trp Asn Glu Ile Asp His Leu Pro Asn Leu Thr
                                                  10
           Ile Glu Gln Trp Leu Ala Phe Ile Asn Lys Leu Asp Asp
30
                        20
          <210> 162
          <211> 29
          <212> PRT
          <213> secuencia artificial
35
          <220>
          <223> Secuencia bacteriana modificada
40
           Glu Val Ile Glu Ala Trp Asn Glu Ile Asp Leu Leu Pro Asn Leu Thr
                                                  10
                                                                        15
           Leu Ser Gln Trp Leu Ala Phe Ile Asn Lys Leu Asp Asp
                        20
```

```
<210> 163
          <211> 29
           <212> PRT
 5
          <213> secuencia artificial
          <223> Secuencia bacteriana modificada
10
           <400> 163
           Glu Val Ile Asp Ala Trp Asp Glu Ile Asp Arg Leu Pro Asn Leu Thr
                                                   10
           Leu Lys Gln Trp Leu Ala Phe Ile Asn Lys Leu Asp Asp
                                              25
          <210> 164
           <211> 29
15
           <212> PRT
          <213> secuencia artificial
           <220>
          <223> Secuencia bacteriana modificada
20
           <400> 164
           Glu Thr Leu His Ala Trp Asp Glu Ile Asp Lys Leu Pro Asn Leu Thr
                             5
                                                   10
           Ile Glu Gln Trp Leu Ala Phe Ile Asn Lys Leu Asp Asp
           20
                                 25
25
          <210> 165
           <211> 29
           <212> PRT
           <213> secuencia artificial
30
          <220>
          <223> Secuencia bacteriana modificada
           <400> 165
           Glu Val Ile Lys Ala Trp Asp Glu Ile Asp His Leu Pro Asn Leu Thr
           Leu Asn Gln Trp Leu Ala Phe Ile Asn Lys Leu Asp Asp
35
                        20
          <210> 166
           <211> 29
           <212> PRT
40
           <213> secuencia artificial
          <223> Secuencia bacteriana modificada
45
          <400> 166
```

```
Glu Val Ile Glu Ala Trp Asn Glu Ile Asp His Leu Pro Asn Leu Thr
           Leu Ala Gln Trp Leu Ala Phe Ile Asn Lys Leu Asp Asp
                        20
          <210> 167
          <211> 29
 5
          <212> PRT
          <213> secuencia artificial
          <220>
          <223> Secuencia bacteriana modificada
10
          <400> 167
           Glu Val Ile Gln Ala Trp Asn Glu Ile Asp His Leu Pro Asn Leu Thr
           Ile Asp Gln Trp Leu Ala Phe Ile Thr Lys Leu Glu Asp
                                             25
          <210> 168
          <211> 29
15
          <212> PRT
          <213> secuencia artificial
          <220>
20
          <223> Secuencia bacteriana modificada
           Glu Val Ile Glu Ala Trp Asn Glu Ile Asp Arg Leu Pro Asn Leu Thr
                                                  10
           Ile Lys Gln Trp Leu Ala Phe Ile Asn Lys Leu Asp Asp
                        20
                                             25
          <210> 169
25
          <211> 29
          <212> PRT
          <213> secuencia artificial
30
          <220>
          <223> Secuencia bacteriana modificada
           <400> 169
           Glu Val Ile Glu Ala Trp Asn Glu Ile Asp Ser Leu Pro Asn Leu Thr
                                                  10
           Leu Gln Gln Trp Leu Ala Phe Ile Asn Lys Leu Asp Asp
                        20
                                             25
35
          <210> 170
          <211> 29
          <212> PRT
          <213> secuencia artificial
40
          <220>
```

```
<223> Secuencia bacteriana modificada
          <400> 170
           Glu Thr Ile Asp Ala Trp Asn Glu Ile Asp Lys Leu Pro Asn Leu Thr
           Ile Glu Gln Trp Leu Ala Phe Ile Asn Lys Leu Asp Asp
                                              25
 5
          <210> 171
          <211> 29
          <212> PRT
          <213> secuencia artificial
10
          <223> Secuencia bacteriana modificada
           Glu Val Leu Glu Ala Trp Ala Glu Ile Asp Ala Leu Pro Asn Leu Thr
15
           Ile Ala Gln Trp Leu Ala Phe Ile Asn Lys Leu Asp Asp
           20
                                25
          <210> 172
20
          <211> 29
          <212> PRT
          <213> secuencia artificial
          <220>
25
          <223> Secuencia bacteriana modificada
          <400> 172
           Glu Thr Ile Asp Ala Trp Asn Glu Ile Asp Arg Leu Pro Asn Leu Thr
                                                  10
           Ile Glu Gln Trp Leu Ala Phe Ile Asn Lys Leu Asp Asp
                        20
30
          <210> 173
          <211> 29
          <212> PRT
          <213> secuencia artificial
          <220>
35
          <223> Secuencia bacteriana modificada
           Glu Thr Leu Lys Ala Trp Asp Glu Ile Asp Arg Leu Pro Asn Leu Thr
           Leu Glu Gln Trp Leu Ala Phe Ile Asn Lys Leu Asp Asp
                        20
                                              25
40
          <210> 174
          <211> 29
```

```
<212> PRT
          <213> secuencia artificial
          <220>
 5
          <223> Secuencia bacteriana modificada
           Glu Thr Ile Ala Ala Trp Asn Glu Ile Asp Ala Leu Pro Asn Leu Thr
                                                  10
           Leu Gln Gln Trp Leu Ala Phe Ile Asn Lys Leu Asp Asp
                        20
10
          <210> 175
          <211> 29
          <212> PRT
          <213> secuencia artificial
15
          <220>
          <223> Secuencia bacteriana modificada
           Glu Val Leu Gln Ala Trp Asn Glu Ile Asp His Leu Pro Asn Leu Thr
                                                  10
           Ile Gln Gln Trp Leu Ala Phe Ile Asn Lys Leu Asp Asp
                        20
                                              25
20
          <210> 176
          <211> 29
          <212> PRT
          <213> secuencia artificial
25
          <220>
          <223> Secuencia bacteriana modificada
           Glu Val Ile Glu Ala Trp Ser Glu Ile Asp His Leu Pro Asn Leu Thr
                                                  10
           Leu Gln Gln Trp Leu Ala Phe Ile Asn Lys Leu Asp Asp
30
                        20
          <210> 177
          <211> 29
          <212> PRT
          <213> secuencia artificial
35
          <220>
          <223> Secuencia bacteriana modificada
          <400> 177
40
           Glu Val Ile Asp Ala Trp Asn Glu Ile Asp Gly Leu Pro Asn Leu Thr
                                                  10
           Ile Glu Gln Trp Leu Ala Phe Ile Asn Lys Leu Asp Asp
                        20
```

```
<210> 178
          <211> 29
           <212> PRT
 5
          <213> secuencia artificial
           <223> Secuencia bacteriana modificada
10
           <400> 178
           Glu Val Ile His Ala Trp Asn Glu Ile Asp His Leu Pro Asn Leu Thr
                             5
                                                   10
           Leu Asn Gln Trp Leu Ala Phe Ile Asn Lys Leu Glu Asp
           20
                                 25
15
          <210> 179
           <211> 29
           <212> PRT
           <213> secuencia artificial
20
          <220>
          <223> Secuencia bacteriana modificada
           <400> 179
           Glu Val Leu Asp Ala Trp Asn Glu Ile Asp Ser Leu Pro Asn Leu Thr
           Leu Asp Gln Trp Leu Ala Phe Ile Asn Lys Leu Asp Asp
                        20
                                               25
25
          <210> 180
           <211> 29
           <212> PRT
           <213> secuencia artificial
30
          <220>
          <223> Secuencia bacteriana modificada
           <400> 180
           Glu Gln Ile Glu Ala Trp Asn Glu Ile Asp Arg Leu Pro Asn Leu Thr
           Leu Glu Gln Trp Leu Ala Phe Ile Asn Lys Leu Asp Asp
35
                        20
           <210> 181
           <211> 29
           <212> PRT
40
           <213> secuencia artificial
           <223> Secuencia bacteriana modificada
45
          <400> 181
```

```
Glu Val Val Asp Ala Trp Asn Glu Ile Asp Ala Leu Pro Asn Leu Thr
           Leu Gln Gln Trp Leu Ala Phe Ile Asn Lys Leu Asp Asp
                        20
          <210> 182
          <211> 29
 5
          <212> PRT
          <213> secuencia artificial
          <220>
          <223> Secuencia bacteriana modificada
10
          <400> 182
           Glu Val Ile Glu Ala Trp Asn Glu Ile Asp Lys Leu Pro Asn Leu Thr
           Ile Glu Gln Trp Leu Ala Phe Ile Asn Lys Leu Asp Asp
          <210> 183
          <211> 29
15
          <212> PRT
          <213> secuencia artificial
          <220>
20
          <223> Secuencia bacteriana modificada
           Glu Val Ile Glu Ala Asn Asp Glu Ile Asp Arg Leu Pro Asn Leu Thr
                                                  10
           Ile Glu Gln Trp Leu Ala Phe Ile Asn Lys Leu His Asp
                        20
                                             25
          <210> 184
25
          <211> 29
          <212> PRT
          <213> secuencia artificial
30
          <220>
          <223> Secuencia bacteriana modificada
           <400> 184
           Glu Thr Leu Gln Ala Trp Asp Glu Ile Asp Lys Leu Pro Asn Leu Thr
                                                  10
           Ile Glu Gln Trp Leu Ala Phe Ile Asn Lys Leu Asp Asp
                        20
                                             25
35
          <210> 185
          <211> 29
          <212> PRT
          <213> secuencia artificial
40
          <220>
```

```
<223> Secuencia bacteriana modificada
          <400> 185
           Glu Val Ile Glu Ala Trp Asp Glu Ile Asp His Leu Pro Asn Leu Thr
           Ile Asp Gln Trp Leu Ala Phe Ile Asn Lys Leu Ala Asp
 5
           20
                                25
          <210> 186
          <211> 29
          <212> PRT
10
          <213> secuencia artificial
          <220>
          <223> Secuencia bacteriana modificada
15
          <400> 186
           Glu Thr Ile Asp Ala Trp Asn Glu Ile Asp His Leu Pro Asn Leu Thr
                                                  10
           Leu Gln Gln Trp Leu Ala Phe Ile Asn Lys Leu Ala Asp
          <210> 187
20
          <211> 29
          <212> PRT
          <213> secuencia artificial
          <220>
25
          <223> Secuencia bacteriana modificada
          <400> 187
           Glu Val Ile Asp Ala Trp Asp Glu Ile Asp Lys Leu Pro Asn Leu Thr
                                                  10
           Ile Glu Gln Trp Leu Ala Phe Ile Asn Lys Leu Asp Asp
                        20
30
          <210> 188
          <211> 29
          <212> PRT
          <213> secuencia artificial
          <220>
35
          <223> Secuencia bacteriana modificada
           Glu Val Ile Glu Ala Trp Asn Glu Ile Asp Lys Leu Pro Asn Leu Thr
           Leu Ala Gln Trp Leu Ala Phe Ile Asn Lys Leu Asp Asp
                        20
                                              25
40
          <210> 189
          <211> 29
```

```
<212> PRT
          <213> secuencia artificial
          <220>
 5
          <223> Secuencia bacteriana modificada
           Glu Val Leu Gln Ala Trp Asp Glu Ile Asp Lys Leu Pro Asn Leu Thr
                                                   10
           Ile Gln Gln Trp Leu Ala Phe Ile Asn Lys Leu Asp Asp
                        20
                                              25
10
          <210> 190
          <211> 29
          <212> PRT
          <213> secuencia artificial
15
          <220>
          <223> Secuencia bacteriana modificada
           Glu Val Ile Ala Ala Trp Asn Glu Ile Asp Gly Leu Pro Asn Leu Thr
                                                  10
           Leu Gln Gln Trp Leu Ala Phe Ile Asn Lys Leu Asp Asp
                        20
                                              25
20
          <210> 191
          <211> 29
          <212> PRT
          <213> secuencia artificial
25
          <220>
          <223> Secuencia bacteriana modificada
           Glu Thr Leu Asn Ala Trp Asn Glu Ile Asp Ala Leu Pro Asn Leu Thr
                                                   10
           Leu Gln Gln Trp Leu Ala Phe Ile Asn Lys Leu Asp Asp
30
                        20
          <210> 192
          <211> 29
          <212> PRT
          <213> secuencia artificial
35
          <220>
          <223> Secuencia bacteriana modificada
          <400> 192
40
           Glu Val Leu Ser Ala Trp Asn Glu Ile Asp Gln Leu Pro Asn Leu Thr
                            5
                                                   10
                                                                        15
```

Leu Glu Gln Trp Leu Ala Phe Ile Asn Lys Leu Asp Asp

```
20
                                 25
          <210> 193
           <211> 29
           <212> PRT
 5
           <213> secuencia artificial
          <220>
           <223> Secuencia bacteriana modificada
10
           Glu Thr Leu Glu Ala Trp Asp Glu Ile Asp His Leu Pro Asn Leu Thr
                                                   10
           Leu His Gln Trp Leu Ala Phe Ile Asn Lys Leu Asp Asp
          <210> 194
15
           <211> 29
           <212> PRT
           <213> secuencia artificial
          <220>
20
          <223> Secuencia bacteriana modificada
          <400> 194
           Glu Gln Ile Glu Ala Trp Asn Glu Ile Asp His Leu Pro Asn Leu Thr
                                                   10
           Leu Gln Gln Trp Leu Ala Phe Ile Asn Lys Leu Ala Asp
                        20
25
          <210> 195
           <211> 29
           <212> PRT
          <213> secuencia artificial
30
          <220>
          <223> Secuencia bacteriana modificada
           Glu Val Val Glu Ala Trp Asp Glu Ile Asp Lys Leu Pro Asn Leu Thr
           Ile Glu Gln Trp Leu Ala Phe Ile Asn Lys Leu Asp Asp
                        20
35
          <210> 196
           <211> 29
           <212> PRT
           <213> secuencia artificial
40
          <220>
          <223> Secuencia bacteriana modificada
          <400> 196
```

```
Glu Val Leu Glu Ala Trp Asn Glu Ile Asp Glu Leu Pro Asn Leu Thr
           Ile Glu Gln Trp Leu Ala Phe Ile Asn Lys Leu Asp Asp
                        20
          <210> 197
          <211> 29
 5
          <212> PRT
          <213> secuencia artificial
          <220>
          <223> Secuencia bacteriana modificada
10
          <400> 197
           Glu Val Ile Asp Ala Trp Asn Glu Ile Asp Gln Leu Pro Asn Leu Thr
           Leu Gln Gln Trp Leu Ala Phe Ile Asn Lys Leu Asp Asp
          <210> 198
          <211> 29
15
          <212> PRT
          <213> secuencia artificial
          <220>
20
          <223> Secuencia bacteriana modificada
           Glu Thr Ile Asp Ala Trp Asp Glu Ile Asp Lys Leu Pro Asn Leu Thr
                                                  10
           Leu Ser Gln Trp Leu Ala Phe Ile Asn Lys Leu Asp Asp
                        20
                                             25
          <210> 199
25
          <211> 29
          <212> PRT
          <213> secuencia artificial
30
          <220>
          <223> Secuencia bacteriana modificada
           Glu Thr Ile Asp Ala Trp Asn Glu Ile Asp Gln Leu Pro Asn Leu Thr
                            5
                                                  10
           Leu Gln Gln Trp Leu Ala Phe Ile Asn Lys Leu Asp Asp
35
           20
                                 25
          <210> 200
          <211> 29
          <212> PRT
40
          <213> secuencia artificial
```

```
<220>
          <223> Secuencia bacteriana modificada
          <400> 200
          Glu Val Ile Gln Ala Trp Asp Glu Ile Asp Ala Leu Pro Asn Leu Thr
                                                  10
          Leu Asn Gln Trp Leu Ala Phe Ile Asn Lys Leu Asp Asp
5
                       20
          <210> 201
          <211> 29
          <212> PRT
10
          <213> secuencia artificial
          <220>
          <223> Secuencia bacteriana modificada
15
          <400> 201
          Glu Val Leu Asp Ala Trp Ala Glu Ile Asp Gln Leu Pro Asn Leu Thr
                                                  10
          Leu Gln Gln Trp Leu Ala Phe Ile Asn Lys Leu Asp Asp
                       20
          <210> 202
          <211> 29
20
          <212> PRT
          <213> secuencia artificial
          <220>
          <223> Secuencia bacteriana modificada
25
          <400> 202
          Glu His Ile Ala Ala Trp Asp Glu Ile Asp Ala Leu Pro Asn Leu Thr
                                                  10
          Ile Glu Gln Trp Leu Ala Phe Ile Asn Lys Leu Asp Asp
          <210> 203
30
          <211> 29
          <212> PRT
          <213> secuencia artificial
          <220>
          <223> Secuencia bacteriana modificada
35
          <400> 203
          Glu Val Ile Arg Ala Trp Asp Glu Ile Asp Ala Leu Pro Asn Leu Thr
                                                  10
          Ile Glu Gln Trp Leu Ala Phe Ile Asn Lys Leu Asp Asp
                       20
40
          <210> 204
          <211> 29
```

```
<212> PRT
          <213> secuencia artificial
           <220>
 5
          <223> Secuencia bacteriana modificada
           Glu Val Ile Asp Ala Trp Asp Glu Ile Asp Ala Leu Pro Asn Leu Thr
                                                   10
           Ile Asp Gln Trp Leu Ala Phe Ile Asn Lys Leu Ala Asp
                        20
                                              25
          <210> 205
10
           <211> 29
           <212> PRT
           <213> secuencia artificial
15
           <220>
          <223> Secuencia bacteriana modificada
           Glu Val Ile Asp Ala Trp Asn Glu Ile Asp Arg Leu Pro Asn Leu Thr
                                                   10
           Ile Gln Gln Trp Leu Ala Phe Ile Asn Lys Leu Asp Asp
                        20
                                              25
20
          <210> 206
           <211> 29
           <212> PRT
           <213> secuencia artificial
25
           <220>
          <223> Secuencia bacteriana modificada
           <400> 206
           Glu Val Ile Thr Ala Trp Asn Glu Ile Asp His Leu Pro Asn Leu Thr
                            5
                                                   10
           Leu Ser Gln Trp Leu Ala Phe Ile Asn Lys Leu Asp Asp
30
           20
                                 25
           <210> 207
           <211> 29
35
           <212> PRT
           <213> secuencia artificial
          <220>
40
           <223> Secuencia bacteriana modificada
          <400> 207
```

```
Glu Val Ile Asp Ala Trp Asn Glu Ile Asp Ala Leu Pro Asn Leu Thr
           Ile His Gln Trp Leu Ala Phe Ile Asn Lys Leu Asp Asp
                        20
          <210> 208
          <211> 29
 5
          <212> PRT
          <213> secuencia artificial
          <220>
          <223> Secuencia bacteriana modificada
10
          <400> 208
           Glu Gln Leu Lys Ala Trp Asp Glu Ile Asp Lys Leu Pro Asn Leu Thr
           Ile Glu Gln Trp Leu Ala Phe Ile Glu Lys Leu Gln Asp
                                             25
          <210> 209
          <211> 29
15
          <212> PRT
          <213> secuencia artificial
          <220>
20
          <223> Secuencia bacteriana modificada
           Glu His Ile Asp Ala Trp Thr Glu Ile Asp His Leu Pro Asn Leu Thr
                                                  10
           Ile Glu Gln Trp Leu Ala Phe Ile Asn Lys Leu Asp Asp
                        20
                                             25
          <210> 210
25
          <211> 29
          <212> PRT
          <213> secuencia artificial
30
          <220>
          <223> Secuencia bacteriana modificada
           <400> 210
           Glu Gln Leu Arg Ala Trp Asp Glu Ile Asp Lys Leu Pro Asn Leu Thr
                                                  10
           Ile Glu Gln Trp Leu Ala Phe Ile Asn Lys Leu Gln Asp
                        20
                                             25
35
          <210> 211
          <211> 29
          <212> PRT
          <213> secuencia artificial
40
          <220>
```

```
<223> Secuencia bacteriana modificada
          <400> 211
           Glu Val Leu Glu Ala Trp Arg Glu Ile Asp Ser Leu Pro Asn Leu Thr
           Ile Ala Gln Trp Leu Ala Phe Ile Asn Lys Leu Asp Asp
                                              25
 5
          <210> 212
          <211> 29
          <212> PRT
          <213> secuencia artificial
10
          <223> Secuencia bacteriana modificada
          <400> 212
           Glu Val Ile Gln Ala Trp Asn Glu Ile Asp Lys Leu Pro Asn Leu Thr
           Ile Glu Gln Trp Leu Ala Phe Ile Asn Lys Leu Asp Asp
15
                        20
          <210> 213
          <211> 29
          <212> PRT
20
          <213> secuencia artificial
          <223> Secuencia bacteriana modificada
25
          <400> 213
           Glu His Val Glu Ala Trp Asn Glu Ile Asp Gln Leu Pro Asn Leu Thr
                            5
                                                  10
           Ile Glu Gln Trp Leu Ala Phe Ile Asn Lys Leu Ala Asp
           20
                                 25
30
          <210> 214
          <211> 29
          <212> PRT
          <213> secuencia artificial
          <220>
35
          <223> Secuencia bacteriana modificada
           Glu Val Ile Asp Ala Trp Asp Glu Ile Asp Ala Leu Pro Asn Leu Thr
           Ile Asp Gln Trp Leu Ala Phe Ile Asn Lys Leu Ser Asp
                        20
                                              25
40
          <210> 215
          <211> 29
```

```
<212> PRT
          <213> secuencia artificial
          <220>
 5
          <223> Secuencia bacteriana modificada
           Glu Val Ile Glu Ala Trp Asn Glu Ile Asp His Leu Pro Asn Leu Thr
                                                  10
           Ile Glu Gln Trp Leu Ala Phe Ile Asn Lys Leu Asp Asp
                        20
                                              25
          <210> 216
10
          <211> 29
          <212> PRT
          <213> secuencia artificial
15
          <220>
          <223> Secuencia bacteriana modificada
           Glu Val Leu Gln Ala Trp Asp Glu Ile Asp Lys Leu Pro Asn Leu Thr
                                                  10
           Ile Glu Gln Trp Leu Ala Phe Ile Asn Lys Leu Ser Asp
                                              25
                        20
20
          <210> 217
          <211> 29
          <212> PRT
          <213> secuencia artificial
25
          <220>
          <223> Secuencia bacteriana modificada
           Glu Val Ile Lys Ala Trp Asn Glu Ile Asp Ser Leu Pro Asn Leu Thr
                                                  10
           Ile Glu Gln Trp Leu Ala Phe Ile Asn Lys Leu Asp Asp
30
                        20
          <210> 218
          <211> 29
          <212> PRT
          <213> secuencia artificial
35
          <220>
          <223> Secuencia bacteriana modificada
          <400> 218
40
           Glu Val Leu Glu Ala Trp His Glu Ile Asp Leu Leu Pro Asn Leu Thr
                            5
                                                  10
                                                                        15
           Ile Gln Gln Trp Leu Ala Phe Ile Asn Lys Leu Asp Asp
                        20
```

```
<210> 219
          <211> 29
           <212> PRT
 5
          <213> secuencia artificial
          <223> Secuencia bacteriana modificada
10
           <400> 219
           Glu Val Leu Glu Ala Trp Thr Glu Ile Asp Arg Leu Pro Asn Leu Thr
                             5
                                                   10
           Leu Asp Gln Trp Leu Ala Phe Ile Asn Lys Leu Asp Asp
                                              25
          <210> 220
           <211> 29
15
           <212> PRT
          <213> secuencia artificial
           <220>
          <223> Secuencia bacteriana modificada
20
           <400> 220
           Glu Gln Leu Tyr Ala Trp Asn Glu Ile Asp His Leu Pro Asn Leu Thr
                             5
                                                   10
           Ile Glu Gln Trp Leu Ala Phe Ile Glu Lys Leu Gln Asp
           20
                                 25
25
          <210> 221
           <211> 29
           <212> PRT
           <213> secuencia artificial
30
          <220>
          <223> Secuencia bacteriana modificada
           <400> 221
           Glu Val Leu Asn Ala Trp Asp Glu Ile Asp Lys Leu Pro Asn Leu Thr
                                                   10
           Ile Lys Gln Trp Leu Ala Phe Ile Asn Lys Leu Asp Asp
35
                        20
          <210> 222
           <211> 29
           <212> PRT
40
           <213> secuencia artificial
          <223> Secuencia bacteriana modificada
45
          <400> 222
```

	Glu Val Ile 1	-	Ala Trṛ 5	Asp	Glu	Ile	Asp 10	Lys	Leu	Pro	Asn	Leu 15	Thr
	Val Glu Gln	Trp	Leu Ala	Phe	Ile	Asn 25	Lys	Leu	Asp	Asp			
5	<210> 223 <211> 29 <212> PRT <213> secuence	cia artif	icial										
40	<220> <223> Secuencia bacteriana modificada												
10	<400> 223 Glu Val Val 1		Ala Tr <u>r</u> 5	Asp	Glu	Ile	Asp 10	Gln	Leu	Pro	Asn	Leu 15	Thr
	Leu Glu Gln	Trp :	Leu Ala	Phe	Ile	Asn 25	Lys	Leu	Asp	Asp			
15	<210> 224 <211> 29 <212> PRT <213> secuence	cia artif	îcial										
20	<220> <223> Secuencia bacteriana modificada												
	<400> 224 Glu Val Ile 1	_	Ala Tr <u>r</u> 5	Asp	Glu	Ile	Asp 10	Gln	Leu	Pro	Asn	Leu 15	Thr
	Leu Glu Gln	Trp :	Leu Ala	Phe	Ile	Asn 25	Lys	Leu	Asp	Asp			
25	<210> 225 <211> 29 <212> PRT <213> secuence	cia artif	icial										
30	<220> <223> Secuencia bacteriana modificada												
	<400> 225 Glu Thr Ile 1	_	Ala Tr <u>r</u> 5) Asn	Glu	Ile	Asp 10	His	Leu	Pro	Asn	Leu 15	Thr
	Leu Asp Gln	Trp :	Leu Ala	Phe	Ile	Asn 25	Lys	Leu	Asp	Asp			
35	<210> 226 <211> 29 <212> PRT <213> secuence	cia artif	ïcial										
40	<220>												

```
<223> Secuencia bacteriana modificada
          <400> 226
           Glu Val Val Ala Ala Trp Thr Glu Ile Asp Leu Leu Pro Asn Leu Thr
           Leu Asp Gln Trp Leu Ala Phe Ile Asn Lys Leu Glu Asp
 5
          <210> 227
          <211> 29
          <212> PRT
          <213> secuencia artificial
10
          <223> Secuencia bacteriana modificada
           Glu Val Val Ala Ala Trp Asp Glu Ile Asp Ala Leu Pro Asn Leu Thr
15
           Ile Glu Gln Trp Leu Ala Phe Ile Asn Lys Leu Ser Asp
           20
                                25
          <210> 228
20
          <211> 29
          <212> PRT
          <213> secuencia artificial
          <220>
25
          <223> Secuencia bacteriana modificada
          <400> 228
           Glu Thr Leu Glu Ala Trp Arg Glu Ile Asp Ser Leu Pro Asn Leu Thr
                                                  10
           Leu Glu Gln Trp Leu Ala Phe Ile Asn Lys Leu Asp Asp
                        20
          <210> 229
30
          <211> 29
          <212> PRT
          <213> secuencia artificial
          <220>
35
          <223> Secuencia bacteriana modificada
           Glu Val Ile Lys Ala Trp Asn Glu Ile Asp His Leu Pro Asn Leu Thr
           Leu Asp Gln Trp Leu Ala Phe Ile Asn Lys Leu Asp Asp
                        20
                                              25
40
          <210> 230
          <211> 29
```

```
<212> PRT
          <213> secuencia artificial
          <220>
 5
          <223> Secuencia bacteriana modificada
           Glu Val Leu Glu Ala Trp Thr Glu Ile Asp Lys Leu Pro Asn Leu Thr
                                                  10
           Ile Asp Gln Trp Leu Ala Phe Ile Asn Lys Leu Asp Asp
                        20
          <210> 231
10
          <211> 29
          <212> PRT
          <213> secuencia artificial
15
          <220>
          <223> Secuencia bacteriana modificada
           Glu Thr Leu Glu Ala Trp Asp Glu Ile Asp Lys Leu Pro Asn Leu Thr
                                                  10
           Ile Asp Gln Trp Leu Ala Phe Ile Asn Lys Leu Asp Asp
                        20
                                              25
20
          <210> 232
          <211> 29
          <212> PRT
          <213> secuencia artificial
25
          <220>
          <223> Secuencia bacteriana modificada
           Glu Val Ile Glu Ala Trp Asn Glu Ile Asp Lys Leu Pro Asn Leu Thr
                                                  10
           Ile Asp Gln Trp Leu Ala Phe Ile Asn Lys Leu Asp Asp
30
                        20
          <210> 233
          <211> 29
          <212> PRT
          <213> secuencia artificial
35
          <220>
          <223> Secuencia bacteriana modificada
          <400> 233
40
           Glu Thr Ile Asp Ala Trp Asn Glu Ile Asp Lys Leu Pro Asn Leu Thr
                                                  10
           Leu Glu Gln Trp Leu Ala Phe Ile Asn Lys Leu Asp Asp
                        20
```

```
<210> 234
          <211> 29
           <212> PRT
 5
          <213> secuencia artificial
          <223> Secuencia bacteriana modificada
10
           <400> 234
           Glu Thr Leu Asp Ala Trp Asp Glu Ile Asp Ala Leu Pro Asn Leu Thr
                             5
                                                   10
           Ile Asp Gln Trp Leu Ala Phe Ile Asn Lys Leu Glu Asp
           20
                                 25
15
          <210> 235
           <211> 29
           <212> PRT
           <213> secuencia artificial
20
          <220>
          <223> Secuencia bacteriana modificada
           <400> 235
           Glu Val Leu Ser Ala Trp Asn Glu Ile Asp His Leu Pro Asn Leu Thr
           Ile Gln Gln Trp Leu Ala Phe Ile Asn Lys Leu Asp Asp
                        20
                                              25
25
          <210> 236
           <211> 29
           <212> PRT
           <213> secuencia artificial
30
          <220>
          <223> Secuencia bacteriana modificada
           <400> 236
           Glu Val Ile Gln Ala Asn Asp Glu Ile Asp Lys Leu Pro Asn Leu Thr
           Ile Glu Gln Trp Leu Ala Phe Ile His Lys Leu His Asp
35
                        20
           <210> 237
           <211> 29
           <212> PRT
40
           <213> secuencia artificial
           <223> Secuencia bacteriana modificada
45
          <400> 237
```

	Glu His Leu 1	Asp	Ala 5	Trp	Asp	Glu	Ile	Asp 10	His	Leu	Pro	Asn	Leu 15	Thr
	Ile Gln Gln	Trp 20	Leu	Ala	Phe	Ile	Asn 25	Lys	Leu	Ala	Asp			
5	<210> 238 <211> 29 <212> PRT <213> secuen	cia art	ificial											
40	<220> <223> Secuencia bacteriana modificada													
10	<400> 238 Glu Val Ile 1	Gln	Ala 5	Trp	Asn	Glu	Ile	Asp 10	Gln	Leu	Pro	Asn	Leu 15	Thr
	Ile Glu Gln	Trp 20	Leu	Ala	Phe	Ile	Asn 25	Lys	Leu	Asp	Asp			
15	<210> 239 <211> 29 <212> PRT <213> secuen	cia art	ificial											
20	<220> <223> Secuencia bacteriana modificada													
	<400> 239 Glu Val Ile 1	Glu	Ala 5	Trp	Asn	Glu	Ile	Asp 10	Tyr	Leu	Pro	Asn	Leu 15	Thr
	Ile Ala Gln	Trp 20	Ile	Ala	Phe	Ile	Asn 25	Lys	Leu	Asp	Asp			
25	<210> 240 <211> 29 <212> PRT <213> secuen	cia art	ificial											
30	<220> <223> Secuen	cia ba	cteria	ına m	odific	ada								
	<400> 240 Glu Thr Ile 1	Gln	Ala 5	Trp	Asp	Glu	Ile	Asp 10	Arg	Leu	Pro	Asn	Leu 15	Thr
25	Leu Gln Gln	Trp 20	Leu	Ala	Phe	Ile	Asn 25	Lys	Leu	Asp	Asp			
35	<210> 241 <211> 29 <212> PRT <213> secuence	cia art	ificial											
40	<220>	oia ait	J.ai											

```
<223> Secuencia bacteriana modificada
          <400> 241
           Glu Thr Ile Gln Ala Trp Asp Glu Ile Asp Lys Leu Pro Asn Leu Thr
           Ile Glu Gln Trp Leu Ala Phe Ile Asn Lys Leu Asp Asp
 5
           20
                                25
          <210> 242
          <211> 29
          <212> PRT
10
          <213> secuencia artificial
          <220>
          <223> Secuencia bacteriana modificada
15
          <400> 242
           Glu Thr Leu Asp Ala Trp Ala Glu Ile Asp His Leu Pro Asn Leu Thr
                                                  10
           Ile Glu Gln Trp Leu Ala Phe Ile Asn Lys Leu Asp Asp
          <210> 243
20
          <211> 29
          <212> PRT
          <213> secuencia artificial
          <220>
25
          <223> Secuencia bacteriana modificada
          <400> 243
           Glu Val Ile Glu Ala Trp Asp Glu Ile Asp Lys Leu Pro Asn Leu Thr
                                                  10
           Leu Asn Gln Trp Leu Ala Phe Ile Asn Lys Leu Asp Asp
                        20
          <210> 244
30
          <211> 29
          <212> PRT
          <213> secuencia artificial
          <220>
35
          <223> Secuencia bacteriana modificada
          <400> 244
           Glu Val Leu Asp Ala Trp Asn Glu Ile Asp Gln Leu Pro Asn Leu Thr
           Ile Glu Gln Trp Leu Ala Phe Ile Asn Lys Leu Asp Asp
                        20
                                              25
40
          <210> 245
          <211> 29
```

```
<212> PRT
          <213> secuencia artificial
          <220>
 5
          <223> Secuencia bacteriana modificada
           Glu Val Leu His Ala Trp Asn Glu Ile Asp His Leu Pro Asn Leu Thr
                                                   10
           Ile Glu Gln Trp Leu Ala Phe Ile Glu Lys Leu Glu Asp
                        20
                                              25
10
          <210> 246
          <211> 29
          <212> PRT
          <213> secuencia artificial
15
          <220>
          <223> Secuencia bacteriana modificada
           Glu Val Ile Glu Ala Trp Gln Glu Ile Asp Lys Leu Pro Asn Leu Thr
                                                  10
           Ile Asp Gln Trp Leu Ala Phe Ile Asn Lys Leu Asp Asp
                        20
                                              25
20
          <210> 247
          <211> 29
          <212> PRT
          <213> secuencia artificial
25
          <220>
          <223> Secuencia bacteriana modificada
           Glu Val Val Asp Ala Trp Asn Glu Ile Asp Gln Leu Pro Asn Leu Thr
                                                   10
           Ile Glu Gln Trp Leu Ala Phe Ile Asn Lys Leu Asp Asp
30
                        20
          <210> 248
          <211> 29
          <212> PRT
          <213> secuencia artificial
35
          <220>
          <223> Secuencia bacteriana modificada
40
          <400> 248
           Glu Gln Ile Glu Ala Trp Asn Glu Ile Asp Ala Leu Pro Asn Leu Thr
                            5
                                                   10
                                                                        15
```

Ile Glu Gln Trp Leu Ala Phe Ile Asn Lys Leu Ala Asp

	20	25										
5	<210> 249 <211> 49 <212> PRT <213> secuencia artificial											
10	<220> <223> Secuencia bacteriana modificada											
	<400> 249 Lys Glu Val Leu Glu 1 5	Ala Trp	Asp Glu	Ile Asp	Arg Leu		Asn 15	Leu				
	Thr Ile Glu Gln Trp	Leu Ala	Phe Ile 25	Asn Lys	Leu Asp	Asp 30	Asp	Pro				
	Ser Gln Ser Ser Glu 35	Leu Leu	Ser Glu 40	Ala Lys	Lys Leu 45	Asn	Asp	Ser				
	Gln											
15	<210> 250 <211> 49 <212> PRT <213> secuencia artificia	I										
20	<220> <223> Secuencia bacteriana modificada											
	<400> 250 Lys Glu Val Leu Glu 1 5	Ala Trp	Asn Glu	Ile Asp	Arg Leu		Asn 15	Leu				
	Thr Ile Glu Gln Trp	Leu Ala	Phe Ile 25	Asn Lys	Leu Asp	Asp 30	Asp	Pro				
	Ser Gln Ser Ser Glu 35	Leu Leu	Ser Glu 40	Ala Lys	Lys Leu 45	Asn	Asp	Ser				
	Gln											
25	<210> 251 <211> 49 <212> PRT <213> secuencia artificia	I										
30	<220> <223> Secuencia bacteriana modificada											
	<400> 251											

Lys Glu Val Ile Glu Ala Trp Asn Glu Ile Asp Arg Leu Pro Asn Leu

Thr Ile Glu Gln Trp Leu Ala Phe Ile Asn Lys Leu Asp Asp Pro 20 25 30 Ser Gln Ser Ser Glu Leu Leu Ser Glu Ala Lys Lys Leu Asn Asp Ser 40 Gln <210> 252 <211> 49 <212> PRT 5 <213> secuencia artificial <220> <223> Secuencia bacteriana modificada 10 <400> 252 Lys Glu Val Leu Glu Ala Trp Asp Glu Ile Asp Arg Leu Pro Asn Leu Thr Leu Asp Gln Trp Leu Ala Phe Ile Asn Lys Leu Asp Asp Pro 20 25 Ser Gln Ser Ser Glu Leu Leu Ser Glu Ala Lys Lys Leu Asn Asp Ser 35 40 Gln <210> 253 15 <211> 49 <212> PRT <213> secuencia artificial 20 <223> Secuencia bacteriana modificada <400> 253 Lys Glu Val Leu Asp Ala Trp Asp Glu Ile Asp Ala Leu Pro Asn Leu Thr Leu Glu Gln Trp Leu Ala Phe Ile Asn Lys Leu Asp Asp Pro 25 Ser Gln Ser Ser Glu Leu Leu Ser Glu Ala Lys Lys Leu Asn Asp Ser 35 40 45 25 Gln <210> 254 <211> 49

<212> PRT <213> secuencia artificial <220> 5 <223> Secuencia bacteriana modificada Lys Glu Val Ile Asp Ala Trp Asp Glu Ile Asp Arg Leu Pro Asn Leu Thr Leu Asp Gln Trp Leu Ala Phe Ile Asn Lys Leu Asp Asp Pro Ser Gln Ser Ser Glu Leu Leu Ser Glu Ala Lys Lys Leu Asn Asp Ser Gln 10 <210> 255 <211> 49 <212> PRT <213> secuencia artificial <220> 15 <223> Secuencia bacteriana modificada <400> 255 Lys Glu Thr Leu Glu Ala Trp Asp Glu Ile Asp Arg Leu Pro Asn Leu Thr Ile Glu Gln Trp Leu Ala Phe Ile Asn Lys Leu Asp Asp Pro 25 Ser Gln Ser Ser Glu Leu Leu Ser Glu Ala Lys Lys Leu Asn Asp Ser 35 40 Gln 20 <210> 256 <211> 49 <212> PRT <213> secuencia artificial 25 <220> <223> Secuencia bacteriana modificada <400> 256

Lys Glu Val Ile Asp Ala Trp Asn Glu Ile Asp Ala Leu Pro Asn Leu

Thr Leu Asp Gln Trp Leu Ala Phe Ile Asn Lys Leu Asp Asp Pro 25 20 30 Ser Gln Ser Ser Glu Leu Leu Ser Glu Ala Lys Lys Leu Asn Asp Ser 40 Gln <210> 257 <211> 49 <212> PRT 5 <213> secuencia artificial <220> <223> Secuencia bacteriana modificada 10 <400> 257 Lys Glu Val Leu Asp Ala Trp Asp Glu Ile Asp Lys Leu Pro Asn Leu Thr Ile Asp Gln Trp Leu Ala Phe Ile Asn Lys Leu Asp Asp Pro 20 25 Ser Gln Ser Ser Glu Leu Leu Ser Glu Ala Lys Lys Leu Asn Asp Ser 35 40 Gln <210> 258 15 <211> 49 <212> PRT <213> secuencia artificial <220> 20 <223> Secuencia bacteriana modificada <400> 258 Lys Glu Val Leu Glu Ala Trp Asp Glu Ile Asp His Leu Pro Asn Leu 10 Thr Leu Asp Gln Trp Leu Ala Phe Ile Asn Lys Leu Asp Asp Asp Pro 20 25 30 Ser Gln Ser Ser Glu Leu Leu Ser Glu Ala Lys Lys Leu Asn Asp Ser 40 25 Gln<210> 259

```
<211> 49
          <212> PRT
          <213> secuencia artificial
          <220>
 5
          <223> Secuencia bacteriana modificada
          <400> 259
           Lys Glu Val Leu Glu Ala Trp Asp Glu Ile Asp Ala Leu Pro Asn Leu
           Thr Ile Glu Gln Trp Leu Ala Phe Ile Asn Lys Leu Asp Asp Pro
           Ser Gln Ser Ser Glu Leu Leu Ser Glu Ala Lys Lys Leu Asn Asp Ser
                                         40
          Gln
10
          <210> 260
          <211> 49
          <212> PRT
          <213> secuencia artificial
15
          <223> Secuencia bacteriana modificada
          <400> 260
          Lys Glu Val Leu Asp Ala Trp Asp Glu Ile Asp Lys Leu Pro Asn Leu
           Thr Leu Glu Gln Trp Leu Ala Phe Ile Asn Lys Leu Asp Asp Pro
                       20
           Ser Gln Ser Ser Glu Leu Leu Ser Glu Ala Lys Lys Leu Asn Asp Ser
20
          Gln
          <210> 261
          <211> 49
          <212> PRT
25
          <213> secuencia artificial
          <220>
          <223> Secuencia bacteriana modificada
30
          <400> 261
```

Lys Glu Thr Ile Thr Ala Trp Asp Glu Ile Asp Lys Leu Pro Asn Leu

Thr Ile Glu Gln Trp Leu Ala Phe Ile Gly Lys Leu Glu Asp Asp Pro 20 25 30 Ser Gln Ser Ser Glu Leu Leu Ala Glu Ala Lys Lys Leu Asn Asp Ala Gln <210> 262 <211> 49 <212> PRT 5 <213> secuencia artificial <220> <223> Secuencia bacteriana modificada 10 <400> 262 Lys Glu Ser Met Lys Ala Trp Asp Glu Ile Asp Arg Leu Pro Asn Leu Asn Ile Asn Gln Trp Val Ala Phe Ile Asp Ser Leu Tyr Asp Asp Pro Ser Gln Ser Ala Asn Leu Leu Ala Glu Ala Lys Lys Leu Asn Asp Ala 40 Gln <210> 263 15 <211> 49 <212> PRT <213> secuencia artificial <220> 20 <223> Secuencia bacteriana modificada Lys Glu Ser Ile Glu Ala Trp Thr Glu Ile Asp His Leu Pro Asn Leu 1 5 10 15 Thr Ile Glu Gln Trp Leu Ala Phe Ile Asn Lys Leu Thr Asp Asp Pro Ser Gln Ser Ser Glu Leu Leu Ala Glu Ala Lys Lys Leu Asn Asp Ala 40 25 Gln <210> 264

```
<211> 49
          <212> PRT
          <213> secuencia artificial
          <220>
5
          <223> Secuencia bacteriana modificada
          <400> 264
          Lys Glu Val Leu Asp Ala Trp His Glu Ile Asp Thr Leu Pro Asn Leu
          Thr Val Arg Gln Trp Leu Ala Phe Ile Ser Lys Leu Glu Asp Asp Pro
          Ser Gln Ser Ser Glu Leu Leu Ala Glu Ala Lys Lys Leu Asn Asp Ala
                                         40
          Gln
10
          <210> 265
          <211> 49
          <212> PRT
          <213> secuencia artificial
15
          <220>
          <223> Secuencia bacteriana modificada
          <400> 265
          Lys Glu His Ile Gln Ala Asn Glu Glu Ile Asp Arg Leu Pro Asn Leu
                            5
          Thr Ile Lys Gln Trp Leu Ala Phe Ile Asn Lys Leu His Asp Asp Pro
                       20
                                             25
          Ser Gln Ser Ser Glu Leu Leu Ala Glu Ala Lys Lys Leu Asn Asp Ala
20
                                         40
          Gln
          <210> 266
25
          <211>49
          <212> PRT
          <213> secuencia artificial
30
          <223> Secuencia bacteriana modificada
          <400> 266
```

Lys Glu Val Leu His Ala Trp Ala Glu Ile Asp Ala Leu Pro Asn Leu

Thr Ile Glu Gln Trp Leu Ala Phe Ile Asn Lys Leu Asp Asp Pro 20 25 30 Ser Gln Ser Ser Glu Leu Leu Ser Glu Ala Lys Lys Leu Asn Asp Ser 40 Gln <210> 267 <211> 49 <212> PRT 5 <213> secuencia artificial <220> <223> Secuencia bacteriana modificada 10 <400> 267 Lys Glu Val Leu Ala Ala Trp Asp Glu Ile Asp Ser Leu Pro Asn Leu Thr Leu Gln Gln Trp Leu Ala Phe Ile Asn Lys Leu Asp Asp Pro 25 Ser Gln Ser Ser Glu Leu Leu Ser Glu Ala Lys Lys Leu Asn Asp Ser 35 40 Gln <210> 268 15 <211> 49 <212> PRT <213> secuencia artificial 20 <223> Secuencia bacteriana modificada <400> 268 Lys Glu Val Ile Asp Ala Trp Asn Glu Ile Asp Ala Leu Pro Asn Leu Thr Leu Glu Gln Trp Leu Ala Phe Ile Asn Lys Leu Asp Asp Pro 25 Ser Gln Ser Ser Glu Leu Leu Ser Glu Ala Lys Lys Leu Asn Asp Ser Gln 25 <210> 269 <211> 49 <212> PRT

```
<213> secuencia artificial
          <220>
          <223> Secuencia bacteriana modificada
 5
          <400> 269
          Lys Glu Val Leu Asp Ala Trp Asn Glu Ile Asp Ala Leu Pro Asn Leu
           Thr Ile Asp Gln Trp Leu Ala Phe Ile Asn Lys Leu Ser Asp Asp Pro
           Ser Gln Ser Ser Glu Leu Leu Ser Glu Ala Lys Lys Leu Asn Asp Ser
                                         40
          Gln
          <210> 270
10
          <211>49
          <212> PRT
          <213> secuencia artificial
          <220>
          <223> Secuencia bacteriana modificada
15
          <400> 270
          Lys Glu Val Ile Glu Ala Trp Asp Glu Ile Asp Gly Leu Pro Asn Leu
           Thr Ile Glu Gln Trp Leu Ala Phe Ile Asn Lys Leu Asp Asp Pro
                                             25
           Ser Gln Ser Ser Glu Leu Leu Ser Glu Ala Lys Lys Leu Asn Asp Ser
20
          Gln
          <210> 271
          <211> 49
          <212> PRT
25
          <213> secuencia artificial
          <220>
          <223> Secuencia bacteriana modificada
30
          <400> 271
```

Lys Glu Val Leu Glu Ala Trp Asp Glu Ile Asp His Leu Pro Asn Leu

Thr Leu Gln Gln Trp Leu Ala Phe Ile Asn Lys Leu Asp Asp Pro 25 20 30 Ser Gln Ser Ser Glu Leu Leu Ser Glu Ala Lys Lys Leu Asn Asp Ser 40 Gln <210> 272 <211> 49 <212> PRT 5 <213> secuencia artificial <220> <223> Secuencia bacteriana modificada 10 <400> 272 Lys Glu Val Ile Glu Ala Trp Asn Glu Ile Asp Ala Leu Pro Asn Leu Thr Ile Glu Gln Trp Leu Ala Phe Ile Asn Lys Leu Asp Asp Pro 25 Ser Gln Ser Ser Glu Leu Leu Ser Glu Ala Lys Lys Leu Asn Asp Ser 35 40 Gln <210> 273 15 <211> 49 <212> PRT <213> secuencia artificial 20 <223> Secuencia bacteriana modificada <400> 273 Lys Glu Val Ile Ala Ala Trp Asn Glu Ile Asp Arg Leu Pro Asn Leu Thr Leu Thr Gln Trp Leu Ala Phe Ile Asn Lys Leu Asp Asp Pro 25 Ser Gln Ser Ser Glu Leu Leu Ser Glu Ala Lys Lys Leu Asn Asp Ser Gln 25 <210> 274 <211> 49 <212> PRT

```
<213> secuencia artificial
          <220>
          <223> Secuencia bacteriana modificada
 5
          <400> 274
          Lys Glu Val Ile Glu Ala Trp Asp Glu Ile Asp Ala Leu Pro Asn Leu
          Thr Leu Gln Gln Trp Leu Ala Phe Ile Asn Lys Leu Asp Asp Pro
          Ser Gln Ser Ser Glu Leu Leu Ser Glu Ala Lys Lys Leu Asn Asp Ser
                                         40
          Gln
          <210> 275
10
          <211>49
          <212> PRT
          <213> secuencia artificial
          <220>
15
          <223> Secuencia bacteriana modificada
          <400> 275
          Lys Glu Val Ile Ala Ala Trp Asp Glu Ile Asp Lys Leu Pro Asn Leu
          Thr Ile Glu Gln Trp Leu Ala Phe Ile Asn Lys Leu Asp Asp Pro
          Ser Gln Ser Ser Glu Leu Leu Ser Glu Ala Lys Lys Leu Asn Asp Ser
20
          Gln
          <210> 276
          <211> 49
          <212> PRT
25
          <213> secuencia artificial
          <220>
          <223> Secuencia bacteriana modificada
30
          <400> 276
```

Lys Glu Val Ile Ala Ala Trp Asp Glu Ile Asp Lys Leu Pro Asn Leu

Thr Leu Gln Gln Trp Leu Ala Phe Ile Asn Lys Leu Asp Asp Pro 20 25 30 Ser Gln Ser Ser Glu Leu Leu Ser Glu Ala Lys Lys Leu Asn Asp Ser Gln <210> 277 <211> 49 <212> PRT 5 <213> secuencia artificial <220> <223> Secuencia bacteriana modificada 10 <400> 277 Lys Glu Thr Ile Ala Ala Trp Asp Glu Ile Asp Lys Leu Pro Asn Leu Thr Ile Glu Gln Trp Leu Ala Phe Ile Asn Lys Leu Asp Asp Pro 25 Ser Gln Ser Ser Glu Leu Leu Ser Glu Ala Lys Lys Leu Asn Asp Ser 35 40 Gln <210> 278 15 <211> 49 <212> PRT <213> secuencia artificial 20 <223> Secuencia bacteriana modificada <400> 278 Lys Glu Thr Ile Glu Ala Trp Asn Glu Ile Asp Arg Leu Pro Asn Leu Thr Ile Glu Gln Trp Leu Ala Phe Ile Asn Lys Leu Asp Asp Pro 25 Ser Gln Ser Ser Glu Leu Leu Ser Glu Ala Lys Lys Leu Asn Asp Ser Gln 25 <210> 279 <211> 49 <212> PRT

```
<213> secuencia artificial
          <220>
          <223> Secuencia bacteriana modificada
5
          <400> 279
          Lys Glu Val Leu Glu Ala Trp Arg Glu Ile Asp Ala Leu Pro Asn Leu
          Thr Ile Gln Gln Trp Leu Ala Phe Ile Asn Lys Leu Asp Asp Pro
          Ser Gln Ser Ser Glu Leu Leu Ser Glu Ala Lys Lys Leu Asn Asp Ser
                                        40
          Gln
          <210> 280
10
          <211>49
          <212> PRT
          <213> secuencia artificial
          <220>
15
          <223> Secuencia bacteriana modificada
          <400> 280
          Lys Glu Val Ile Glu Ala Trp Asp Glu Ile Asp Gln Leu Pro Asn Leu
          Thr Ile Glu Gln Trp Leu Ala Phe Ile Asn Lys Leu Asp Asp Pro
          Ser Gln Ser Ser Glu Leu Leu Ser Glu Ala Lys Lys Leu Asn Asp Ser
                                         40
          Gln
20
          <210> 281
          <211> 49
          <212> PRT
          <213> secuencia artificial
25
          <223> Secuencia bacteriana modificada
          <400> 281
```

Lys Glu Val Leu Arg Ala Trp Asp Glu Ile Asp His Leu Pro Asn Leu

Thr Leu Glu Gln Trp Leu Ala Phe Ile Asn Lys Leu Asp Asp Pro 20 25 30 Ser Gln Ser Ser Glu Leu Leu Ser Glu Ala Lys Lys Leu Asn Asp Ser 40 Gln <210> 282 <211> 49 <212> PRT 5 <213> secuencia artificial <220> <223> Secuencia bacteriana modificada 10 <400> 282 Lys Glu Val Leu Glu Ala Trp Asp Glu Ile Asp Arg Leu Pro Asn Leu Thr Leu Asn Gln Trp Leu Ala Phe Ile Asn Lys Leu Asp Asp Pro 25 Ser Gln Ser Ser Glu Leu Leu Ser Glu Ala Lys Lys Leu Asn Asp Ser Gln 15 <210> 283 <211> 49 <212> PRT <213> secuencia artificial 20 <220> <223> Secuencia bacteriana modificada <400> 283 Lys Glu Val Leu Asp Ala Trp Asn Glu Ile Asp His Leu Pro Asn Leu Thr Ile Glu Gln Trp Leu Ala Phe Ile Asn Lys Leu Asp Asp Pro Ser Gln Ser Ser Glu Leu Leu Ser Glu Ala Lys Lys Leu Asn Asp Ser 40 25 Gln<210> 284

```
<211> 49
          <212> PRT
          <213> secuencia artificial
          <220>
 5
          <223> Secuencia bacteriana modificada
          <400> 284
           Lys Glu Val Ile Asp Ala Trp Asn Glu Ile Asp Lys Leu Pro Asn Leu
           Thr Ile Glu Gln Trp Leu Ala Phe Ile Asn Lys Leu Asp Asp Pro
           Ser Gln Ser Ser Glu Leu Leu Ser Glu Ala Lys Lys Leu Asn Asp Ser
                                         40
          Gln
10
          <210> 285
          <211> 49
          <212> PRT
          <213> secuencia artificial
15
          <223> Secuencia bacteriana modificada
          <400> 285
          Lys Glu Thr Leu Glu Ala Trp Asp Glu Ile Asp Gln Leu Pro Asn Leu
           Thr Leu Gln Gln Trp Leu Ala Phe Ile Asn Lys Leu Asp Asp Pro
                       20
           Ser Gln Ser Ser Glu Leu Leu Ser Glu Ala Lys Lys Leu Asn Asp Ser
20
          Gln
          <210> 286
          <211> 49
          <212> PRT
25
          <213> secuencia artificial
          <220>
          <223> Secuencia bacteriana modificada
30
          <400> 286
```

Lys Glu Val Ile Glu Ala Trp Asn Glu Ile Asp Ala Leu Pro Asn Leu

Thr Leu Asp Gln Trp Leu Ala Phe Ile Asn Lys Leu Asp Asp Pro 25 20 30 Ser Gln Ser Ser Glu Leu Leu Ser Glu Ala Lys Lys Leu Asn Asp Ser 40 Gln <210> 287 <211> 49 <212> PRT 5 <213> secuencia artificial <220> <223> Secuencia bacteriana modificada 10 <400> 287 Lys Glu Val Ile Asp Ala Trp Asn Glu Ile Asp Arg Leu Pro Asn Leu Thr Leu Gln Gln Trp Leu Ala Phe Ile Asn Lys Leu Asp Asp Pro Ser Gln Ser Ser Glu Leu Leu Ser Glu Ala Lys Lys Leu Asn Asp Ser Gln 15 <210> 288 <211> 49 <212> PRT <213> secuencia artificial 20 <220> <223> Secuencia bacteriana modificada <400> 288 Lys Glu Val Ile Asp Ala Trp Asn Glu Ile Asp Gln Leu Pro Asn Leu Thr Leu Glu Gln Trp Leu Ala Phe Ile Asn Lys Leu Asp Asp Pro Ser Gln Ser Ser Glu Leu Leu Ser Glu Ala Lys Lys Leu Asn Asp Ser 40 25 Gln <210> 289 <211> 49 <212> PRT

```
<213> secuencia artificial
          <220>
          <223> Secuencia bacteriana modificada
5
          <400> 289
          Lys Glu Thr Ile Ala Ala Trp Asp Glu Ile Asp His Leu Pro Asn Leu
          Thr Leu Glu Gln Trp Leu Ala Phe Ile Asn Lys Leu Asp Asp Pro
          Ser Gln Ser Ser Glu Leu Leu Ser Glu Ala Lys Lys Leu Asn Asp Ser
                                         40
          Gln
          <210> 290
10
          <211>49
          <212> PRT
          <213> secuencia artificial
          <220>
15
          <223> Secuencia bacteriana modificada
          <400> 290
          Lys Glu Val Leu Gln Ala Trp Asp Glu Ile Asp His Leu Pro Asn Leu
          Thr Ile Gln Gln Trp Leu Ala Phe Ile Asn Lys Leu Ser Asp Asp Pro
          Ser Gln Ser Ser Glu Leu Leu Ser Glu Ala Lys Lys Leu Asn Asp Ser
                                         40
          Gln
20
          <210> 291
          <211> 49
          <212> PRT
          <213> secuencia artificial
25
          <223> Secuencia bacteriana modificada
          <400> 291
```

Lys Glu Thr Leu His Ala Trp Ala Glu Ile Asp Arg Leu Pro Asn Leu

Thr Ile Glu Gln Trp Leu Ala Phe Ile Asn Lys Leu Asp Asp Pro 20 25 30 Ser Gln Ser Ser Glu Leu Leu Ser Glu Ala Lys Lys Leu Asn Asp Ser Gln <210> 292 <211> 49 <212> PRT 5 <213> secuencia artificial <220> <223> Secuencia bacteriana modificada 10 <400> 292 Lys Glu Val Leu Glu Ala Trp Asn Glu Ile Asp His Leu Pro Asn Leu Thr Leu Ala Gln Trp Leu Ala Phe Ile Asn Lys Leu Asp Asp Pro Ser Gln Ser Ser Glu Leu Leu Ser Glu Ala Lys Lys Leu Asn Asp Ser 40 Gln 15 <210> 293 <211> 49 <212> PRT <213> secuencia artificial 20 <220> <223> Secuencia bacteriana modificada <400> 293 Lys Glu Val Ile Glu Ala Trp Asp Glu Ile Asp Lys Leu Pro Asn Leu Thr Ile Ala Gln Trp Leu Ala Phe Ile Asn Lys Leu Asp Asp Pro Ser Gln Ser Ser Glu Leu Leu Ser Glu Ala Lys Lys Leu Asn Asp Ser 35 40 25 Gln <210> 294 <211> 49 <212> PRT

```
<213> secuencia artificial
          <220>
          <223> Secuencia bacteriana modificada
5
          <400> 294
          Lys Glu Val Leu Asp Ala Trp Asp Glu Ile Asp His Leu Pro Asn Leu
          Thr Leu Gln Gln Trp Leu Ala Phe Ile Asn Lys Leu Asp Asp Pro
          Ser Gln Ser Ser Glu Leu Leu Ser Glu Ala Lys Lys Leu Asn Asp Ser
                                        40
          Gln
          <210> 295
10
          <211>49
          <212> PRT
          <213> secuencia artificial
          <220>
15
          <223> Secuencia bacteriana modificada
          <400> 295
          Lys Glu Thr Ile Glu Ala Trp Asn Glu Ile Asp Lys Leu Pro Asn Leu
          Thr Leu Thr Gln Trp Leu Ala Phe Ile Asn Lys Leu Asp Asp Pro
          Ser Gln Ser Ser Glu Leu Leu Ser Glu Ala Lys Lys Leu Asn Asp Ser
                                         40
          Gln
20
          <210> 296
          <211> 49
          <212> PRT
          <213> secuencia artificial
25
          <223> Secuencia bacteriana modificada
          <400> 296
```

Lys Glu Val Leu Glu Ala Trp Asn Glu Ile Asp Leu Leu Pro Asn Leu

Thr Ile Glu Gln Trp Leu Ala Phe Ile Asn Lys Leu Asp Asp Pro 20 25 30 Ser Gln Ser Ser Glu Leu Leu Ser Glu Ala Lys Lys Leu Asn Asp Ser 40 Gln <210> 297 <211> 49 <212> PRT 5 <213> secuencia artificial <220> <223> Secuencia bacteriana modificada 10 <400> 297 Lys Glu Val Ile Glu Ala Trp Asp Glu Ile Asp His Leu Pro Asn Leu Thr Ile Asp Gln Trp Leu Ala Phe Ile Asn Lys Leu Asp Asp Pro 25 Ser Gln Ser Ser Glu Leu Leu Ser Glu Ala Lys Lys Leu Asn Asp Ser 35 40 Gln <210> 298 15 <211> 49 <212> PRT <213> secuencia artificial 20 <223> Secuencia bacteriana modificada <400> 298 Lys Glu Val Ile Ser Ala Trp Asn Glu Ile Asp Ala Leu Pro Asn Leu Thr Leu Gln Gln Trp Leu Ala Phe Ile Asn Lys Leu Asp Asp Pro 25 Ser Gln Ser Ser Glu Leu Leu Ser Glu Ala Lys Lys Leu Asn Asp Ser Gln 25 <210> 299 <211> 49 <212> PRT

```
<213> secuencia artificial
          <220>
          <223> Secuencia bacteriana modificada
 5
          <400> 299
          Lys Glu Val Ile Ala Ala Trp Asn Glu Ile Asp Lys Leu Pro Asn Leu
           Thr Leu Glu Gln Trp Leu Ala Phe Ile Asn Lys Leu Asp Asp Pro
           Ser Gln Ser Ser Glu Leu Leu Ser Glu Ala Lys Lys Leu Asn Asp Ser
                                         40
            Gln
10
          <210> 300
          <211> 49
          <212> PRT
          <213> secuencia artificial
15
          <220>
          <223> Secuencia bacteriana modificada
          <400> 300
          Lys Glu Thr Ile Glu Ala Trp Asn Glu Ile Asp Ser Leu Pro Asn Leu
           Thr Leu Asp Gln Trp Leu Ala Phe Ile Asn Lys Leu Asp Asp Pro
                       20
                                             25
           Ser Gln Ser Ser Glu Leu Leu Ser Glu Ala Lys Lys Leu Asn Asp Ser
                                         40
20
          Gln
          <210> 301
          <211>49
          <212> PRT
25
          <213> secuencia artificial
          <220>
          <223> Secuencia bacteriana modificada
          <400> 301
30
```

Lys Glu Val Leu Asp Ala Trp Asn Glu Ile Asp Gln Leu Pro Asn Leu

Thr Leu Gln Gln Trp Leu Ala Phe Ile Asn Lys Leu Asp Asp Pro 25 20 30 Ser Gln Ser Ser Glu Leu Leu Ser Glu Ala Lys Lys Leu Asn Asp Ser 40 Gln <210> 302 <211> 49 <212> PRT 5 <213> secuencia artificial <220> <223> Secuencia bacteriana modificada 10 <400> 302 Lys Glu Val Leu Ala Ala Trp Asn Glu Ile Asp His Leu Pro Asn Leu Thr Ile Glu Gln Trp Leu Ala Phe Ile Asn Lys Leu Asp Asp Pro 25 Ser Gln Ser Ser Glu Leu Leu Ser Glu Ala Lys Lys Leu Asn Asp Ser 35 40 Gln <210> 303 15 <211> 49 <212> PRT <213> secuencia artificial 20 <223> Secuencia bacteriana modificada <400> 303 Lys Glu Val Leu Glu Ala Trp Asp Glu Ile Asp His Leu Pro Asn Leu Thr Ile Thr Gln Trp Leu Ala Phe Ile Asn Lys Leu Asp Asp Pro 25 Ser Gln Ser Ser Glu Leu Leu Ser Glu Ala Lys Lys Leu Asn Asp Ser Gln 25 <210> 304 <211> 49 <212> PRT

```
<213> secuencia artificial
          <220>
          <223> Secuencia bacteriana modificada
 5
          <400> 304
          Lys Glu Thr Ile Asp Ala Trp Asn Glu Ile Asp His Leu Pro Asn Leu
           Thr Ile Glu Gln Trp Leu Ala Phe Ile Asn Lys Leu Asp Asp Pro
           Ser Gln Ser Ser Glu Leu Leu Ser Glu Ala Lys Lys Leu Asn Asp Ser
                                         40
          Gln
10
          <210> 305
          <211> 49
          <212> PRT
          <213> secuencia artificial
15
          <220>
          <223> Secuencia bacteriana modificada
          <400> 305
          Lys Glu Val Ile Glu Ala Trp Asn Glu Ile Asp His Leu Pro Asn Leu
           Thr Ile Gln Gln Trp Leu Ala Phe Ile Asn Lys Leu Asp Asp Pro
                                             25
           Ser Gln Ser Ser Glu Leu Leu Ser Glu Ala Lys Lys Leu Asn Asp Ser
                                         40
20
          Gln
          <210> 306
          <211> 49
          <212> PRT
          <213> secuencia artificial
25
          <220>
          <223> Secuencia bacteriana modificada
30
          <400> 306
```

Lys Glu Val Ile Gln Ala Trp Asn Glu Ile Asp Ala Leu Pro Asn Leu

Thr Ile Ser Gln Trp Leu Ala Phe Ile Asn Lys Leu Asp Asp Pro 20 25 30 Ser Gln Ser Ser Glu Leu Leu Ser Glu Ala Lys Lys Leu Asn Asp Ser Gln <210> 307 <211> 49 <212> PRT 5 <213> secuencia artificial <220> <223> Secuencia bacteriana modificada 10 <400> 307 Lys Glu Val Ile Ala Ala Trp Asp Glu Ile Asp Ser Leu Pro Asn Leu Thr Ile Glu Gln Trp Leu Ala Phe Ile Asn Lys Leu Asp Asp Pro 25 Ser Gln Ser Ser Glu Leu Leu Ser Glu Ala Lys Lys Leu Asn Asp Ser 40 Gln <210> 308 15 <211> 49 <212> PRT <213> secuencia artificial 20 <223> Secuencia bacteriana modificada <400> 308 Lys Glu His Ile Glu Ala Trp Asn Glu Ile Asp Ala Leu Pro Asn Leu Thr Ile Glu Gln Trp Leu Ala Phe Ile Asn Lys Leu Gln Asp Asp Pro 25 Ser Gln Ser Ser Glu Leu Leu Ser Glu Ala Lys Lys Leu Asn Asp Ser Gln 25 <210> 309 <211> 49 <212> PRT

```
<220>
          <223> Secuencia bacteriana modificada
 5
          <400> 309
          Lys Glu Val Leu Glu Ala Trp Asn Glu Ile Asp Lys Leu Pro Asn Leu
          Thr Leu Asp Gln Trp Leu Ala Phe Ile Asn Lys Leu Asp Asp Pro
                                             25
          Ser Gln Ser Ser Glu Leu Leu Ser Glu Ala Lys Lys Leu Asn Asp Ser
                                         40
                                                              45
          Gln
10
          <210> 310
          <211> 49
          <212> PRT
          <213> secuencia artificial
15
          <223> Secuencia bacteriana modificada
          <400> 310
          Lys Glu Val Ile Asp Ala Trp Asn Glu Ile Asp His Leu Pro Asn Leu
          Thr Ile Glu Gln Trp Leu Ala Phe Ile Asn Lys Leu Ala Asp Asp Pro
                                             25
          Ser Gln Ser Ser Glu Leu Leu Ser Glu Ala Lys Lys Leu Asn Asp Ser
                                        40
20
          Gln
          <210> 311
          <211> 49
          <212> PRT
25
          <213> secuencia artificial
          <220>
          <223> Secuencia bacteriana modificada
30
          <400> 311
```

<213> secuencia artificial

Lys Glu Thr Ile Asp Ala Trp Asp Glu Ile Asp Lys Leu Pro Asn Leu

Thr Ile Glu Gln Trp Leu Ala Phe Ile Asn Lys Leu Asp Asp Pro 20 25 30 Ser Gln Ser Ser Glu Leu Leu Ser Glu Ala Lys Lys Leu Asn Asp Ser 40 Gln <210> 312 <211> 49 <212> PRT 5 <213> secuencia artificial <220> <223> Secuencia bacteriana modificada 10 <400> 312 Lys Glu Val Ile Ala Ala Trp Asp Glu Ile Asp Leu Leu Pro Asn Leu Thr Leu Gln Gln Trp Leu Ala Phe Ile Asn Lys Leu Ala Asp Asp Pro 25 Ser Gln Ser Ser Glu Leu Leu Ser Glu Ala Lys Lys Leu Asn Asp Ser 35 40 Gln <210> 313 15 <211> 49 <212> PRT <213> secuencia artificial 20 <223> Secuencia bacteriana modificada <400> 313 Lys Glu Val Ile His Ala Trp Asp Glu Ile Asp Lys Leu Pro Asn Leu Thr Ile Glu Gln Trp Leu Ala Phe Ile Asn Lys Leu Asp Asp Pro 25 Ser Gln Ser Ser Glu Leu Leu Ser Glu Ala Lys Lys Leu Asn Asp Ser Gln

```
<210> 314
<211> 49
<212> PRT
          <213> artificial sequence
          <220>
          <223> Modified bacterial sequence
          <400> 314
          Lys Glu Val Ile Ala Ala Trp Asn Glu Ile Asp His Leu Pro Asn Leu
          Thr Leu Glu Gln Trp Leu Ala Phe Ile Asn Lys Leu Asp Asp Pro
                                             25
          Ser Gln Ser Ser Glu Leu Leu Ser Glu Ala Lys Lys Leu Asn Asp Ser
          Gln
 5
          <210> 315
          <211>49
          <212> PRT
          <213> secuencia artificial
10
          <220>
          <223> Secuencia bacteriana modificada
          <400> 315
          Lys Glu Thr Leu Asp Ala Trp Asn Glu Ile Asp Lys Leu Pro Asn Leu
          Thr Leu Ser Gln Trp Leu Ala Phe Ile Asn Lys Leu Asp Asp Pro
          Ser Gln Ser Ser Glu Leu Leu Ser Glu Ala Lys Lys Leu Asn Asp Ser
                                         40
          Gln
15
          <210> 316
          <211> 49
          <212> PRT
          <213> secuencia artificial
20
          <223> Secuencia bacteriana modificada
          <400> 316
```

Lys Glu Val Leu Glu Ala Trp Asn Glu Ile Asp Ala Leu Pro Asn Leu

Thr Leu Glu Gln Trp Leu Ala Phe Ile Asn Lys Leu Asp Asp Pro 20 25 30 Ser Gln Ser Ser Glu Leu Leu Ser Glu Ala Lys Lys Leu Asn Asp Ser 35 40 45 Gln <210> 317 5 <211> 49 <212> PRT <213> secuencia artificial 10 <220> <223> Secuencia bacteriana modificada <400> 317 Lys Glu Val Ile Gln Ala Trp Asp Glu Ile Asp His Leu Pro Asn Leu Thr Ile Ser Gln Trp Leu Ala Phe Ile Asn Lys Leu Asp Asp Pro 25 Ser Gln Ser Ser Glu Leu Leu Ser Glu Ala Lys Lys Leu Asn Asp Ser 40 Gln 15 <210> 318 <211>49 <212> PRT <213> secuencia artificial 20 <220> <223> Secuencia bacteriana modificada <400> 318 Lys Glu Val Leu Gln Ala Trp Asp Glu Ile Asp Ser Leu Pro Asn Leu Thr Ile Glu Gln Trp Leu Ala Phe Ile Asn Lys Leu Asp Asp Pro Ser Gln Ser Ser Glu Leu Leu Ser Glu Ala Lys Lys Leu Asn Asp Ser 40 25 Gln<210> 319 <211> 49

```
<212> PRT
          <213> secuencia artificial
          <220>
5
          <223> Secuencia bacteriana modificada
          Lys Glu Thr Leu Glu Ala Trp Asp Glu Ile Asp His Leu Pro Asn Leu
          Thr Ile Ala Gln Trp Leu Ala Phe Ile Asn Lys Leu Asp Asp Pro
                                            25
          Ser Gln Ser Ser Glu Leu Leu Ser Glu Ala Lys Lys Leu Asn Asp Ser
          Gln
10
          <210> 320
          <211> 49
          <212> PRT
          <213> secuencia artificial
          <220>
15
          <223> Secuencia bacteriana modificada
          <400> 320
          Lys Glu Thr Ile Asp Ala Trp Asn Glu Ile Asp Arg Leu Pro Asn Leu
          Thr Ile Ser Gln Trp Leu Ala Phe Ile Asn Lys Leu Asp Asp Pro
                       20
                                            25
          Ser Gln Ser Ser Glu Leu Leu Ser Glu Ala Lys Lys Leu Asn Asp Ser
                   35
                                        40
          Gln
20
          <210> 321
          <211> 49
          <212> PRT
          <213> secuencia artificial
25
          <220>
          <223> Secuencia bacteriana modificada
          Lys Glu Val Leu Asp Ala Trp His Glu Ile Asp His Leu Pro Asn Leu
                                                10
          Thr Ile Gln Gln Trp Leu Ala Phe Ile Asn Lys Leu Asp Asp Pro
30
```

25 20 30 Ser Gln Ser Ser Glu Leu Leu Ser Glu Ala Lys Lys Leu Asn Asp Ser 40 Gln<210> 322 <211> 49 <212> PRT <213> secuencia artificial <220> <223> Secuencia bacteriana modificada 10 Lys Glu Gln Ile Arg Ala Trp Asp Glu Ile Asp Lys Leu Pro Asn Leu 10 Thr Ile Glu Gln Trp Leu Ala Phe Ile Asn Lys Leu Ala Asp Asp Pro 20 25 30 Ser Gln Ser Ser Glu Leu Leu Ser Glu Ala Lys Lys Leu Asn Asp Ser 40 Gln <210> 323 15 <211> 49 <212> PRT <213> secuencia artificial <220> 20 <223> Secuencia bacteriana modificada <400> 323 Lys Glu Thr Leu Tyr Ala Trp Asn Glu Ile Asp Lys Leu Pro Asn Leu Thr Ile Glu Gln Trp Leu Ala Phe Ile Glu Lys Leu Gln Asp Asp Pro 20 25 Ser Gln Ser Ser Glu Leu Leu Ser Glu Ala Lys Lys Leu Asn Asp Ser 35 40 Gln 25 <210> 324 <211> 49 <212> PRT <213> secuencia artificial 30 <220>

<223> Secuencia bacteriana modificada

Lys Glu Val Ile Glu Ala Trp Asn Glu Ile Asp Ala Leu Pro Asn Leu Thr Ile Asp Gln Trp Leu Ala Phe Ile Asn Lys Leu Asp Asp Pro 25 Ser Gln Ser Ser Glu Leu Leu Ser Glu Ala Lys Lys Leu Asn Asp Ser 40 Gln <210> 325 5 <211> 49 <212> PRT <213> secuencia artificial 10 <220> <223> Secuencia bacteriana modificada Lys Glu Val Leu Glu Ala Trp Asn Glu Ile Asp His Leu Pro Asn Leu Thr Ile Gln Gln Trp Leu Ala Phe Ile Asn Lys Leu Asp Asp Pro 20 25 30 Ser Gln Ser Ser Glu Leu Leu Ser Glu Ala Lys Lys Leu Asn Asp Ser Gln 15 <210> 326 <211> 49 <212> PRT <213> secuencia artificial 20 <220> <223> Secuencia bacteriana modificada <400> 326 Lys Glu Thr Ile Glu Ala Trp Asp Glu Ile Asp Ala Leu Pro Asn Leu 25 10 15 Thr Ile Glu Gln Trp Leu Ala Phe Ile Asn Lys Leu Asp Asp Asp Pro Ser Gln Ser Ser Glu Leu Leu Ser Glu Ala Lys Lys Leu Asn Asp Ser 40 Gln

<400> 324

```
<210> 327
          <211> 49
          <212> PRT
 5
          <213> secuencia artificial
          <223> Secuencia bacteriana modificada
          <400> 327
10
          Lys Glu Val Ile Glu Ala Trp Asn Glu Ile Asp His Leu Pro Asn Leu
           Thr Leu Gln Gln Trp Leu Ala Phe Ile Asn Lys Leu Asp Asp Pro
           Ser Gln Ser Ser Glu Leu Leu Ser Glu Ala Lys Lys Leu Asn Asp Ser
          Gln
          <210> 328
          <211> 49
          <212> PRT
15
          <213> secuencia artificial
          <220>
          <223> Secuencia bacteriana modificada
20
          <400> 328
          Lys Glu Val Ile Glu Ala Trp Asn Glu Ile Asp Lys Leu Pro Asn Leu
                            5
           Thr Ile Gln Gln Trp Leu Ala Phe Ile Asn Lys Leu Asp Asp Pro
           Ser Gln Ser Ser Glu Leu Leu Ser Glu Ala Lys Lys Leu Asn Asp Ser
            Gln
25
          <210> 329
          <211> 49
          <212> PRT
          <213> secuencia artificial
30
          <220>
          <223> Secuencia bacteriana modificada
          <400> 329
```

Lys Glu Thr Leu Asp Ala Trp Ala Glu Ile Asp His Leu Pro Asn Leu

Thr Leu Asp Gln Trp Leu Ala Phe Ile Asn Lys Leu Asp Asp Pro 20 25 30 Ser Gln Ser Ser Glu Leu Leu Ser Glu Ala Lys Lys Leu Asn Asp Ser 40 Gln <210> 330 <211> 49 <212> PRT 5 <213> secuencia artificial <220> <223> Secuencia bacteriana modificada 10 <400> 330 Lys Glu His Ile Asp Ala Trp Asn Glu Ile Asp Ala Leu Pro Asn Leu Thr Leu Ser Gln Trp Leu Ala Phe Ile Asn Lys Leu Asp Asp Pro 25 Ser Gln Ser Ser Glu Leu Leu Ser Glu Ala Lys Lys Leu Asn Asp Ser 35 40 Gln <210> 331 15 <211> 49 <212> PRT <213> secuencia artificial 20 <223> Secuencia bacteriana modificada <400> 331 Lys Glu Val Leu Asp Ala Trp Asn Glu Ile Asp Lys Leu Pro Asn Leu Thr Ile Ala Gln Trp Leu Ala Phe Ile Asn Lys Leu Asp Asp Pro 25 Ser Gln Ser Ser Glu Leu Leu Ser Glu Ala Lys Lys Leu Asn Asp Ser Gln 25 <210> 332 <211> 49 <212> PRT

	<213> secuencia artificial															
5	<220> <223> Secuencia bacteriana modificada															
	<400 Lys 1			Ile	Glu 5	Ala	Trp	Thr	Glu	Ile 10	Asp	Tyr	Leu	Pro	Asn 15	Leu
	Thr	Leu	Gln	Gln 20	Trp	Leu	Ala	Phe	Ile 25	Asn	Lys	Leu	Asp	Asp 30	Asp	Pro
	Ser	Gln	Ser 35	Ser	Glu	Leu	Leu	Ser 40	Glu	Ala	Lys	Lys	Leu 45	Asn	Asp	Ser
	Gln															
10	<210> 333 <211> 49 <212> PRT <213> secuencia artificial															
15	<220> <223> Secuencia bacteriana modificada															
	<400 Lys 1			Ile	Glu 5	Ala	Trp	Asn	Glu	Ile 10	Asp	His	Leu	Pro	Asn 15	Leu
	Thr	Ile	Ala	Gln 20	Trp	Leu	Ala	Phe	Ile 25	Asn	Lys	Leu	Asp	Asp 30	Asp	Pro
	Ser	Gln	Ser 35	Ser	Glu	Leu	Leu	Ser 40	Glu	Ala	Lys	Lys	Leu 45	Asn	Asp	Ser
20	Gln															
25	<210> 334 <211> 49 <212> PRT <213> secuencia artificial															
	<220> <223> Secuencia bacteriana modificada															
30	<400> 334															

Lys Glu Val Ile Gln Ala Trp Asn Glu Ile Asp Lys Leu Pro Asn Leu

Thr Leu Glu Gln Trp Leu Ala Phe Ile Asn Lys Leu Asp Asp Pro 25 20 30 Ser Gln Ser Ser Glu Leu Leu Ser Glu Ala Lys Lys Leu Asn Asp Ser 40 Gln <210> 335 <211> 49 <212> PRT 5 <213> secuencia artificial <220> <223> Secuencia bacteriana modificada 10 <400> 335 Lys Glu Val Ile Glu Ala Trp Asp Glu Ile Asp His Leu Pro Asn Leu Thr Ile Glu Gln Trp Leu Ala Phe Ile Asn Lys Leu Asp Asp Pro 25 Ser Gln Ser Ser Glu Leu Leu Ser Glu Ala Lys Lys Leu Asn Asp Ser 35 40 Gln <210> 336 15 <211> 49 <212> PRT <213> secuencia artificial 20 <223> Secuencia bacteriana modificada <400> 336 Lys Glu Thr Ile Asp Ala Trp Asn Glu Ile Asp Leu Leu Pro Asn Leu Thr Ile Glu Gln Trp Leu Ala Phe Ile Asn Lys Leu Asp Asp Pro 25 Ser Gln Ser Ser Glu Leu Leu Ser Glu Ala Lys Lys Leu Asn Asp Ser Gln 25 <210> 337 <211> 49 <212> PRT

	<213> secuencia artificial											
5	<220> <223> Secuencia bacteriana modificada											
	<400>337 Lys Glu His Ile Asp Ala Trp Asn Glu Ile Asp Lys Leu Pro Asn Leu 1 5 10 15											
	Thr Leu Asp Gln Trp Leu Ala Phe Ile Asn Lys Leu Asp Asp Pro 20 25 30											
	Ser Gln Ser Ser Glu Leu Leu Ser Glu Ala Lys Lys Leu Asn Asp Ser 35 40 45											
	Gln											
10	<210> 338 <211> 49 <212> PRT <213> secuencia artificial											
15	<220> <223> Secuencia bacteriana modificada											
	<400>338 Lys Glu Val Val Ala Ala Trp Asn Glu Ile Asp Ala Leu Pro Asn Leu 1 5 10 15											
	Thr Ile Glu Gln Trp Leu Ala Phe Ile Asn Lys Leu Asn Asp Asp Pro 20 25 30											
	Ser Gln Ser Ser Glu Leu Leu Ser Glu Ala Lys Lys Leu Asn Asp Ser 35 40 45											
20	Gln											
25	<210> 339 <211> 49 <212> PRT <213> secuencia artificial											
	<220> <223> Secuencia bacteriana modificada											
30	<400> 339											

Lys Glu Val Ile Glu Ala Trp Asn Glu Ile Asp Ala Leu Pro Asn Leu

Thr Leu Ala Gln Trp Leu Ala Phe Ile Asn Lys Leu Asp Asp Pro 20 25 30 Ser Gln Ser Ser Glu Leu Leu Ser Glu Ala Lys Lys Leu Asn Asp Ser Gln <210> 340 <211> 49 <212> PRT 5 <213> secuencia artificial <220> <223> Secuencia bacteriana modificada 10 <400> 340 Lys Glu Val Leu Gln Ala Trp Asp Glu Ile Asp Arg Leu Pro Asn Leu Thr Leu Asp Gln Trp Leu Ala Phe Ile Asn Lys Leu Asp Asp Pro 25 Ser Gln Ser Ser Glu Leu Leu Ser Glu Ala Lys Lys Leu Asn Asp Ser 35 40 Gln <210> 341 15 <211> 49 <212> PRT <213> secuencia artificial 20 <223> Secuencia bacteriana modificada <400> 341 Lys Glu Val Ile Asp Ala Trp Asp Glu Ile Asp His Leu Pro Asn Leu Thr Ile Glu Gln Trp Leu Ala Phe Ile Asn Lys Leu Ser Asp Asp Pro 25 Ser Gln Ser Ser Glu Leu Leu Ser Glu Ala Lys Lys Leu Asn Asp Ser Gln 25 <210> 342 <211> 49 <212> PRT

```
<213> secuencia artificial
          <220>
          <223> Secuencia bacteriana modificada
5
          <400> 342
          Lys Glu Val Val Glu Ala Trp Asn Glu Ile Asp Gln Leu Pro Asn Leu
          Thr Ile Glu Gln Trp Leu Ala Phe Ile Asn Lys Leu Asp Asp Pro
          Ser Gln Ser Ser Glu Leu Leu Ser Glu Ala Lys Lys Leu Asn Asp Ser
                                        40
          Gln
          <210> 343
10
          <211>49
          <212> PRT
          <213> secuencia artificial
          <220>
15
          <223> Secuencia bacteriana modificada
          <400> 343
          Lys Glu Val Ile Gln Ala Trp Asn Glu Ile Asp Ala Leu Pro Asn Leu
          Thr Ile Glu Gln Trp Leu Ala Phe Ile Asn Lys Leu Asp Asp Pro
          Ser Gln Ser Ser Glu Leu Leu Ser Glu Ala Lys Lys Leu Asn Asp Ser
                                         40
          Gln
20
          <210> 344
          <211> 49
          <212> PRT
          <213> secuencia artificial
25
          <223> Secuencia bacteriana modificada
          <400> 344
```

Lys Glu Val Ile Gln Ala Trp Asp Glu Ile Asp Lys Leu Pro Asn Leu

Thr Ile Asp Gln Trp Leu Ala Phe Ile Asn Lys Leu Ala Asp Asp Pro 20 25 Ser Gln Ser Ser Glu Leu Leu Ser Glu Ala Lys Lys Leu Asn Asp Ser 40 Gln <210> 345 <211> 49 <212> PRT 5 <213> secuencia artificial <220> <223> Secuencia bacteriana modificada 10 <400> 345 Lys Glu Val Val Ala Ala Trp Asp Glu Ile Asp Ala Leu Pro Asn Leu Thr Leu Thr Gln Trp Leu Ala Phe Ile Asn Lys Leu Asp Asp Pro 25 Ser Gln Ser Ser Glu Leu Leu Ser Glu Ala Lys Lys Leu Asn Asp Ser Gln 15 <210> 346 <211> 49 <212> PRT <213> secuencia artificial 20 <220> <223> Secuencia bacteriana modificada <400> 346 Lys Glu Val Ile Gln Ala Trp Asn Glu Ile Asp Gly Leu Pro Asn Leu Thr Leu Ser Gln Trp Leu Ala Phe Ile Asn Lys Leu Asp Asp Pro 20 25 Ser Gln Ser Ser Glu Leu Leu Ser Glu Ala Lys Lys Leu Asn Asp Ser 40 25 Gln <210> 347

```
<211> 49
          <212> PRT
          <213> secuencia artificial
          <220>
 5
          <223> Secuencia bacteriana modificada
          <400> 347
           Lys Glu Thr Ile Glu Ala Trp Asp Glu Ile Asp Ala Leu Pro Asn Leu
           Thr Ile Thr Gln Trp Leu Ala Phe Ile Asn Lys Leu Asp Asp Pro
           Ser Gln Ser Ser Glu Leu Leu Ser Glu Ala Lys Lys Leu Asn Asp Ser
                                         40
          Gln
10
          <210> 348
          <211> 49
          <212> PRT
          <213> secuencia artificial
15
          <223> Secuencia bacteriana modificada
          <400> 348
          Lys Glu Val Ile Asp Ala Trp Asn Glu Ile Asp His Leu Pro Asn Leu
                            5
           Thr Ile Gln Gln Trp Leu Ala Phe Ile Asn Lys Leu Ala Asp Asp Pro
                       20
           Ser Gln Ser Ser Glu Leu Leu Ser Glu Ala Lys Lys Leu Asn Asp Ser
20
          Gln
          <210> 349
          <211> 49
          <212> PRT
25
          <213> secuencia artificial
          <223> Secuencia bacteriana modificada
30
          <400> 349
```

Lys Glu Thr Ile Glu Ala Trp Asn Glu Ile Asp Ala Leu Pro Asn Leu

Thr Leu Asp Gln Trp Leu Ala Phe Ile Asn Lys Leu Glu Asp Asp Pro 25 20 Ser Gln Ser Ser Glu Leu Leu Ser Glu Ala Lys Lys Leu Asn Asp Ser 40 Gln <210> 350 <211> 49 <212> PRT 5 <213> secuencia artificial <220> <223> Secuencia bacteriana modificada 10 <400> 350 Lys Glu His Ile His Ala Trp Asn Glu Ile Asp Glu Leu Pro Asn Leu Thr Ile Glu Gln Trp Leu Ala Phe Ile Asn Lys Leu Ala Asp Asp Pro Ser Gln Ser Ser Glu Leu Leu Ser Glu Ala Lys Lys Leu Asn Asp Ser Gln 15 <210> 351 <211> 49 <212> PRT <213> secuencia artificial 20 <220> <223> Secuencia bacteriana modificada <400> 351 Lys Glu Val Ile Asp Ala Trp Asp Glu Ile Asp His Leu Pro Asn Leu Thr Ile Asp Gln Trp Leu Ala Phe Ile Asn Lys Leu Ser Asp Asp Pro Ser Gln Ser Ser Glu Leu Leu Ser Glu Ala Lys Lys Leu Asn Asp Ser 40 25 Gln <210> 352 <211> 49 <212> PRT

```
<213> secuencia artificial
          <220>
          <223> Secuencia bacteriana modificada
5
          <400> 352
          Lys Glu Val Ile Asp Ala Asn Asp Glu Ile Asp Ala Leu Pro Asn Leu
          Thr Ile Ala Gln Trp Leu Ala Phe Ile Asn Lys Leu His Asp Asp Pro
          Ser Gln Ser Ser Glu Leu Leu Ser Glu Ala Lys Lys Leu Asn Asp Ser
                                         40
          Gln
          <210> 353
10
          <211>49
          <212> PRT
          <213> secuencia artificial
          <220>
15
          <223> Secuencia bacteriana modificada
          <400> 353
          Lys Glu Thr Ile Glu Ala Trp Asp Glu Ile Asp Lys Leu Pro Asn Leu
          Thr Ile Glu Gln Trp Leu Ala Phe Ile Asn Lys Leu Asp Asp Asp Pro
          Ser Gln Ser Ser Glu Leu Leu Ser Glu Ala Lys Lys Leu Asn Asp Ser
                                         40
          Gln
20
          <210> 354
          <211> 49
          <212> PRT
          <213> secuencia artificial
25
          <223> Secuencia bacteriana modificada
          <400> 354
```

Lys Glu Val Leu Leu Ala Trp Asp Glu Ile Asp His Leu Pro Asn Leu

Thr Leu Glu Gln Trp Leu Ala Phe Ile Asn Lys Leu Asp Asp Pro 20 25 30 Ser Gln Ser Ser Glu Leu Leu Ser Glu Ala Lys Lys Leu Asn Asp Ser Gln <210> 355 <211> 49 <212> PRT 5 <213> secuencia artificial <220> <223> Secuencia bacteriana modificada 10 <400> 355 Lys Glu His Ile Asp Ala Trp Asn Glu Ile Asp Gly Leu Pro Asn Leu Thr Leu Glu Gln Trp Leu Ala Phe Ile Asn Lys Leu Asp Asp Pro Ser Gln Ser Ser Glu Leu Leu Ser Glu Ala Lys Lys Leu Asn Asp Ser 40 Gln 15 <210> 356 <211>49 <212> PRT <213> secuencia artificial 20 <220> <223> Secuencia bacteriana modificada <400> 356 Lys Glu Val Ile Glu Ala Trp Ser Glu Ile Asp Ala Leu Pro Asn Leu Thr Ile Asp Gln Trp Leu Ala Phe Ile Asn Lys Leu Ala Asp Asp Pro 20 Ser Gln Ser Ser Glu Leu Leu Ser Glu Ala Lys Lys Leu Asn Asp Ser 35 40 25 Gln <210> 357 <211> 49 <212> PRT

```
<213> secuencia artificial
          <220>
          <223> Secuencia bacteriana modificada
5
          <400> 357
          Lys Glu Gln Leu Asn Ala Trp Ala Glu Ile Asp Ala Leu Pro Asn Leu
          Thr Ile Glu Gln Trp Leu Ala Phe Ile Asn Lys Leu Asp Asp Pro
          Ser Gln Ser Ser Glu Leu Leu Ser Glu Ala Lys Lys Leu Asn Asp Ser
                                        40
          Gln
          <210> 358
10
          <211>49
          <212> PRT
          <213> secuencia artificial
          <220>
15
          <223> Secuencia bacteriana modificada
          <400> 358
          Lys Glu Val Ile Asp Ala Trp Asn Glu Ile Asp Ala Leu Pro Asn Leu
          Thr Ile Ala Gln Trp Leu Ala Phe Ile Asn Lys Leu Asp Asp Pro
          Ser Gln Ser Ser Glu Leu Leu Ser Glu Ala Lys Lys Leu Asn Asp Ser
                                         40
          Gln
20
          <210> 359
          <211> 49
          <212> PRT
          <213> secuencia artificial
25
          <223> Secuencia bacteriana modificada
          <400> 359
```

Lys Glu Thr Ile Asp Ala Trp Asn Glu Ile Asp Gln Leu Pro Asn Leu

Thr Ile Glu Gln Trp Leu Ala Phe Ile Asn Lys Leu Asp Asp Pro 20 25 30 Ser Gln Ser Ser Glu Leu Leu Ser Glu Ala Lys Lys Leu Asn Asp Ser 40 Gln <210> 360 <211> 49 <212> PRT 5 <213> secuencia artificial <220> <223> Secuencia bacteriana modificada 10 <400> 360 Lys Glu Val Ile Glu Ala Trp Asp Glu Ile Asp Lys Leu Pro Asn Leu Thr Leu Ala Gln Trp Leu Ala Phe Ile Asn Lys Leu Asp Asp Pro 25 Ser Gln Ser Ser Glu Leu Leu Ser Glu Ala Lys Lys Leu Asn Asp Ser 35 40 Gln <210> 361 15 <211> 49 <212> PRT <213> secuencia artificial 20 <223> Secuencia bacteriana modificada <400> 361 Lys Glu Val Leu Tyr Ala Trp Ala Glu Ile Asp His Leu Pro Asn Leu Thr Ile Glu Gln Trp Leu Ala Phe Ile Asn Lys Leu Asp Asp Pro 25 Ser Gln Ser Ser Glu Leu Leu Ser Glu Ala Lys Lys Leu Asn Asp Ser Gln 25 <210> 362 <211> 49 <212> PRT

	<220: <223:		ruenc	ia ha	cteria	na m	odific	ehe								
5				ла ра	Cicria	ilia ili	ounic	aua								
	<400: Lys 1			Ile	Asp 5	Ala	Trp	Asn	Glu	Ile 10	Asp	Arg	Leu	Pro	Asn 15	Leu
	Thr	Ile	Gln	Gln 20	Trp	Leu	Ala	Phe	Ile 25	Asn	Lys	Leu	Asp	Asp 30	Asp	Pro
	Ser	Gln	Ser 35	Ser	Glu	Leu	Leu	Ser 40	Glu	Ala	Lys	Lys	Leu 45	Asn	Asp	Ser
	G1:	n														
10	-040	. 000														
	<210: <211: <212: <213:	> 49 > PR	Т	ia arti	ficial											
15	<220: <223:	>				na m	odific	ada								
	<400: Lys 1			Leu	Ala 5	Ala	Trp	Asp	Glu	Ile 10	Asp	Arg	Leu	Pro	Asn 15	Leu
	Thr	Ile	Glu	Gln 20	Trp	Leu	Ala	Phe	Ile 25	Asn	Lys	Leu	Asp	Asp 30	Asp	Pro
	Ser	Gln	Ser 35	Ser	Glu	Leu	Leu	Ser 40	Glu	Ala	Lys	Lys	Leu 45	Asn	Asp	Ser
20	Gln															
25	<2103 <2113 <2123 <2133	> 49 > PR	Т	ia arti	ificial											
	<220: <223:		cuenc	ia ba	cteria	na m	odific	ada								
30	<400	> 364	l													

<213> secuencia artificial

Lys Glu Val Ile Glu Ala Trp Asp Glu Ile Asp His Leu Pro Asn Leu

Thr Leu His Gln Trp Leu Ala Phe Ile Asn Lys Leu Asp Asp Pro 25 20 30 Ser Gln Ser Ser Glu Leu Leu Ser Glu Ala Lys Lys Leu Asn Asp Ser 40 Gln <210> 365 <211> 49 <212> PRT 5 <213> secuencia artificial <220> <223> Secuencia bacteriana modificada 10 <400> 365 Lys Glu Val Ile Glu Ala Trp Asn Glu Ile Asp Lys Leu Pro Asn Leu Thr Leu Gln Gln Trp Leu Ala Phe Ile Asn Lys Leu Asp Asp Pro 25 Ser Gln Ser Ser Glu Leu Leu Ser Glu Ala Lys Lys Leu Asn Asp Ser 35 40 Gln <210> 366 15 <211> 49 <212> PRT <213> secuencia artificial 20 <223> Secuencia bacteriana modificada <400> 366 Lys Glu Val Ile Asp Ala Asn Asp Glu Ile Asp Ala Leu Pro Asn Leu Thr Ile Glu Gln Trp Leu Ala Phe Ile Asn Lys Leu His Asp Asp Pro 25 Ser Gln Ser Ser Glu Leu Leu Ser Glu Ala Lys Lys Leu Asn Asp Ser Gln 25 <210> 367 <211> 49 <212> PRT

```
<213> secuencia artificial
          <220>
          <223> Secuencia bacteriana modificada
 5
          <400> 367
          Lys Glu Val Ile Ala Ala Trp Asp Glu Ile Asp Ala Leu Pro Asn Leu
           Thr Ile Glu Gln Trp Leu Ala Phe Ile Asn Lys Leu Asp Asp Pro
           Ser Gln Ser Ser Glu Leu Leu Ser Glu Ala Lys Lys Leu Asn Asp Ser
                                         40
          Gln
10
          <210> 368
          <211> 49
          <212> PRT
          <213> secuencia artificial
15
          <220>
          <223> Secuencia bacteriana modificada
          <400> 368
          Lys Glu Val Ile Glu Ala Trp Thr Glu Ile Asp Gln Leu Pro Asn Leu
           Thr Leu Asp Gln Trp Leu Ala Phe Ile Asn Lys Leu Asp Asp Pro
                                             25
           Ser Gln Ser Ser Glu Leu Leu Ser Glu Ala Lys Lys Leu Asn Asp Ser
                                         40
20
          Gln
          <210> 369
          <211> 49
          <212> PRT
          <213> secuencia artificial
25
          <220>
          <223> Secuencia bacteriana modificada
30
          <400> 369
```

Lys Glu Val Ile Asn Ala Trp Asn Glu Ile Asp Ala Leu Pro Asn Leu

Thr Leu Gln Gln Trp Leu Ala Phe Ile Asn Lys Leu Asp Asp Pro 20 25 30 Ser Gln Ser Ser Glu Leu Leu Ser Glu Ala Lys Lys Leu Asn Asp Ser Gln <210> 370 <211> 49 <212> PRT 5 <213> secuencia artificial <220> <223> Secuencia bacteriana modificada 10 <400> 370 Lys Glu His Ile Glu Ala Trp Asp Glu Ile Asp His Leu Pro Asn Leu Thr Ile Asp Gln Trp Leu Ala Phe Ile Asn Lys Leu Ala Asp Asp Pro 25 Ser Gln Ser Ser Glu Leu Leu Ser Glu Ala Lys Lys Leu Asn Asp Ser 40 Gln <210> 371 15 <211> 49 <212> PRT <213> secuencia artificial 20 <223> Secuencia bacteriana modificada <400> 371 Lys Glu His Leu Glu Ala Trp Arg Glu Ile Asp Ala Leu Pro Asn Leu Thr Ile Glu Gln Trp Leu Ala Phe Ile Asn Lys Leu Asp Asp Pro 25 Ser Gln Ser Ser Glu Leu Leu Ser Glu Ala Lys Lys Leu Asn Asp Ser Gln 25 <210> 372 <211> 49 <212> PRT

```
<220>
          <223> Secuencia bacteriana modificada
 5
          <400> 372
          Lys Glu Val Leu Asp Ala Trp Asn Glu Ile Asp Lys Leu Pro Asn Leu
          Thr Leu Gln Gln Trp Leu Ala Phe Ile Asn Lys Leu Asp Asp Pro
                                            25
          Ser Gln Ser Ser Glu Leu Leu Ser Glu Ala Lys Lys Leu Asn Asp Ser
                                        40
                                                              45
          Gln
10
          <210> 373
          <211> 49
          <212> PRT
          <213> secuencia artificial
15
          <223> Secuencia bacteriana modificada
          <400> 373
          Lys Glu Val Ile Ala Ala Trp Asp Glu Ile Asp His Leu Pro Asn Leu
          Thr Ile Gln Gln Trp Leu Ala Phe Ile Asn Lys Leu Asp Asp Pro
                                             25
          Ser Gln Ser Ser Glu Leu Leu Ser Glu Ala Lys Lys Leu Asn Asp Ser
                                        40
20
          Gln
          <210> 374
          <211> 49
          <212> PRT
25
          <213> secuencia artificial
          <220>
          <223> Secuencia bacteriana modificada
30
          <400> 374
```

<213> secuencia artificial

Lys Glu Val Ile Gln Ala Trp Asn Glu Ile Asp Ala Leu Pro Asn Leu

Thr Leu Glu Gln Trp Leu Ala Phe Ile Asn Lys Leu Asp Asp Pro 20 25 30 Ser Gln Ser Ser Glu Leu Leu Ser Glu Ala Lys Lys Leu Asn Asp Ser 40 Gln <210> 375 <211> 49 <212> PRT 5 <213> secuencia artificial <220> <223> Secuencia bacteriana modificada 10 <400> 375 Lys Glu Val Ile Asp Ala Trp Asn Glu Ile Asp His Leu Pro Asn Leu Thr Ile Ala Gln Trp Leu Ala Phe Ile Asn Lys Leu Asp Asp Pro 25 Ser Gln Ser Ser Glu Leu Leu Ser Glu Ala Lys Lys Leu Asn Asp Ser 35 40 Gln <210> 376 15 <211> 49 <212> PRT <213> secuencia artificial 20 <223> Secuencia bacteriana modificada <400> 376 Lys Glu Gln Leu Asp Ala Trp Asp Glu Ile Asp His Leu Pro Asn Leu Thr Ile Asp Gln Trp Leu Ala Phe Ile Asn Lys Leu Ser Asp Asp Pro 25 Ser Gln Ser Ser Glu Leu Leu Ser Glu Ala Lys Lys Leu Asn Asp Ser Gln 25 <210> 377 <211> 49 <212> PRT 152

F	<220 <223		cuenc	ia ba	cteria	ına m	odific	ada								
5	<400 Lys 1			Leu	Asn 5	Ala	Trp	Asp	Glu	Ile 10	Asp	Lys	Leu	Pro	Asn 15	Leu
	Thr	Ile	Glu	Gln 20	Trp	Leu	Ala	Phe	Ile 25	Asn	Lys	Leu	Asp	Asp 30	Asp	Pro
	Ser	Gln	Ser 35	Ser	Glu	Leu	Leu	Ser 40	Glu	Ala	Lys	Lys	Leu 45	Asn	Asp	Ser
	Gln															
10	<210 <211 <212 <213	> 49 > PR	Т	ia arti	ificial											
15	<220 <223		cuenc	cia ba	cteria	ına m	odific	ada								
	<400 Lys 1			Leu	Glu 5	Ala	Trp	Asn	Glu	Ile 10	Asp	His	Leu	Pro	Asn 15	Leu
	Thr	Ile	Asp	Gln 20	Trp	Leu	Ala	Phe	Ile 25	Asn	Lys	Leu	Asp	Asp 30	Asp	Pro
	Ser	Gln	Ser 35	Ser	Glu	Leu	Leu	Ser 40	Glu	Ala	Lys	Lys	Leu 45	Asn	Asp	Ser
	Gln															
20	<210 <211 <212 <213	> 49 > PR	Т	ia arti	ificial											
25	<220 <223		cuenc	ia ba	cteria	ına m	odific	ada								
	<400 Lys 1			Leu	Leu 5	Ala	Trp	Asp	Glu	Ile 10	Asp	Arg	Leu	Pro	Asn 15	Leu
	Thr	Ile	Asp	Gln 20	Trp	Leu	Ala	Phe	Ile 25	Asn	Lys	Leu	Ala	Asp 30	Asp	Pro
30	Ser	Gln	Ser	Ser	Glu	Leu	Leu	Ser	Glu	Ala	Lys	Lys	Leu	Asn	Asp	Ser

<213> secuencia artificial

45

40

Gln <210> 380 <211> 49 5 <212> PRT <213> secuencia artificial <220> <223> Secuencia bacteriana modificada 10 <400> 380 Lys Glu Val Ile Ala Ala Trp Asn Glu Ile Asp Gln Leu Pro Asn Leu 10 Thr Leu Asp Gln Trp Leu Ala Phe Ile Asn Lys Leu Asp Asp Pro 20 25 Ser Gln Ser Ser Glu Leu Leu Ser Glu Ala Lys Lys Leu Asn Asp Ser Gln <210> 381 15 <211> 49 <212> PRT <213> secuencia artificial <220> 20 <223> Secuencia bacteriana modificada <400> 381 Lys Glu Thr Leu Leu Ala Trp Asp Glu Ile Asp Ala Leu Pro Asn Leu Thr Ile Glu Gln Trp Leu Ala Phe Ile Asn Lys Leu Asp Asp Pro Ser Gln Ser Ser Glu Leu Leu Ser Glu Ala Lys Lys Leu Asn Asp Ser 35 40 Gln 25 <210> 382 <211> 49 <212> PRT <213> secuencia artificial 30 <223> Secuencia bacteriana modificada <400> 382

35

Lys Glu Val Ile Asp Ala Trp Asn Glu Ile Asp Thr Leu Pro Asn Leu

Thr Leu Glu Gln Trp Leu Ala Phe Ile Asn Lys Leu Asp Asp Pro 25 20 30 Ser Gln Ser Ser Glu Leu Leu Ser Glu Ala Lys Lys Leu Asn Asp Ser 40 Gln <210> 383 <211> 49 <212> PRT 5 <213> secuencia artificial <220> <223> Secuencia bacteriana modificada 10 <400> 383 Lys Glu Val Leu His Ala Trp Asn Glu Ile Asp His Leu Pro Asn Leu Thr Leu Asn Gln Trp Leu Ala Phe Ile Asn Lys Leu Gln Asp Asp Pro 25 Ser Gln Ser Ser Glu Leu Leu Ser Glu Ala Lys Lys Leu Asn Asp Ser 35 40 Gln <210> 384 15 <211> 49 <212> PRT <213> secuencia artificial 20 <223> Secuencia bacteriana modificada <400> 384 Lys Glu Val Ile Gln Ala Trp Asn Glu Ile Asp Ala Leu Pro Asn Leu 10 Thr Ile Ala Gln Trp Leu Ala Phe Ile Asn Lys Leu Asp Asp Pro 20 25 30 Ser Gln Ser Ser Glu Leu Leu Ser Glu Ala Lys Lys Leu Asn Asp Ser 40 25 Gln<210> 385

```
<211> 49
          <212> PRT
          <213> secuencia artificial
          <220>
 5
          <223> Secuencia bacteriana modificada
          <400> 385
           Lys Glu Thr Val Asp Ala Trp Asn Glu Ile Asp Ala Leu Pro Asn Leu
           Thr Ile Glu Gln Trp Leu Ala Phe Ile Asn Lys Leu Asp Asp Pro
           Ser Gln Ser Ser Glu Leu Leu Ser Glu Ala Lys Lys Leu Asn Asp Ser
                                         40
          Gln
10
          <210> 386
          <211> 49
          <212> PRT
          <213> secuencia artificial
15
          <223> Secuencia bacteriana modificada
          <400> 386
          Lys Glu Val Ile Gln Ala Trp Asp Glu Ile Asp His Leu Pro Asn Leu
           Thr Ile Asp Gln Trp Leu Ala Phe Ile Asn Lys Leu Asp Asp Pro
                       20
           Ser Gln Ser Ser Glu Leu Leu Ser Glu Ala Lys Lys Leu Asn Asp Ser
20
          Gln
          <210> 387
          <211> 49
          <212> PRT
25
          <213> secuencia artificial
          <220>
          <223> Secuencia bacteriana modificada
30
          <400> 387
```

	Lys 1	Glu	Val	Leu	Asp 5	Ala	Trp	Asn	Glu	Ile 10	Asp	Gln	Leu	Pro	Asn 15	Leu
	Thr	Ile	Gln	Gln 20	Trp	Leu	Ala	Phe	Ile 25	Asn	Lys	Leu	Asp	Asp 30	Asp	Pro
	Ser	Gln	Ser 35	Ser	Glu	Leu	Leu	Ser 40	Glu	Ala	Lys	Lys	Leu 45	Asn	Asp	Ser
	Gln															
5	<211 <212	> PR		ia arti	ificial											
10	<220 <223		cuenc	ia ba	cteria	ına m	odific	ada								
		> 388 Glu	} Thr	Ile	Glu 5	Ala	Trp	Asn	Glu	Ile 10	Asp	Ala	Leu	Pro	Asn 15	Leu
	Thr	Leu	Asp	Gln 20	Trp	Leu	Ala	Phe	Ile 25	Asn	Lys	Leu	Asp	Asp 30	Asp	Pro
	Ser	Gln	Ser 35	Ser	Glu	Leu	Leu	Ser 40	Glu	Ala	Lys	Lys	Leu 45	Asn	Asp	Ser
	Gln															
15	<211 <212	> PR		ia arti	ificial											
20	<220 <223		cuenc	ia ba	cteria	ına m	odific	ada								
		> 389 Gl u) Val	Ile	Glu	Ala	Trp	Asp	Glu	Ile	Asp	Ala	Leu	Pro	Asn	Leu
	1				5					10					15	
	Thr	Ile	Asp	Gln 20	Trp	Leu	Ala	Phe	Ile 25	Asn	Lys	Leu	Asp	Asp 30	Asp	Pro
	Ser	Gln	Ser 35	Ser	Glu	Leu	Leu	Ser 40	Glu	Ala	Lys	Lys	Leu 45	Asn	Asp	Ser
25	Gln															
	<210	> 390)													

```
<211> 49
          <212> PRT
          <213> secuencia artificial
          <220>
 5
          <223> Secuencia bacteriana modificada
          <400> 390
           Lys Glu Val Ile Glu Ala Trp Asn Glu Ile Asp Gln Leu Pro Asn Leu
           Thr Ile Gln Gln Trp Leu Ala Phe Ile Asn Lys Leu Asp Asp Pro
           Ser Gln Ser Ser Glu Leu Leu Ser Glu Ala Lys Lys Leu Asn Asp Ser
                                         40
          Gln
10
          <210> 391
          <211> 49
          <212> PRT
          <213> secuencia artificial
15
          <223> Secuencia bacteriana modificada
          <400> 391
          Lys Glu Val Ile Glu Ala Trp Thr Glu Ile Asp His Leu Pro Asn Leu
                            5
           Thr Ile Glu Gln Trp Leu Ala Phe Ile Asn Lys Leu Asp Asp Pro
                       20
                                             25
           Ser Gln Ser Ser Glu Leu Leu Ser Glu Ala Lys Lys Leu Asn Asp Ser
20
                                         40
           Gln
          <210> 392
25
          <211> 49
          <212> PRT
          <213> secuencia artificial
          <220>
30
          <223> Secuencia bacteriana modificada
          <400> 392
```

Lys Glu Val Ile Gln Ala Trp Asn Glu Ile Asp His Leu Pro Asn Leu

Thr Leu Gln Gln Trp Leu Ala Phe Ile Asn Lys Leu Glu Asp Asp Pro 20 25 30 Ser Gln Ser Ser Glu Leu Leu Ser Glu Ala Lys Lys Leu Asn Asp Ser 40 Gln <210> 393 <211> 49 <212> PRT 5 <213> secuencia artificial <220> <223> Secuencia bacteriana modificada 10 <400> 393 Lys Glu Val Ile Gln Ala Asn Asn Glu Ile Asp Gln Leu Pro Asn Leu Thr Ile Glu Gln Trp Leu Ala Phe Ile Asn Lys Leu His Asp Asp Pro 25 Ser Gln Ser Ser Glu Leu Leu Ser Glu Ala Lys Lys Leu Asn Asp Ser 35 40 Gln <210> 394 15 <211> 49 <212> PRT <213> secuencia artificial 20 <223> Secuencia bacteriana modificada <400> 394 Lys Glu Val Leu His Ala Trp Ser Glu Ile Asp Lys Leu Pro Asn Leu Thr Ile Glu Gln Trp Leu Ala Phe Ile Asn Lys Leu Asp Asp Pro 25 Ser Gln Ser Ser Glu Leu Leu Ser Glu Ala Lys Lys Leu Asn Asp Ser Gln 25 <210> 395 <211> 49 <212> PRT

```
<213> secuencia artificial
          <220>
          <223> Secuencia bacteriana modificada
 5
          <400> 395
          Lys Glu Thr Ile Gln Ala Trp Asp Glu Ile Asp Lys Leu Pro Asn Leu
           Thr Leu Asp Gln Trp Leu Ala Phe Ile Asn Lys Leu Ser Asp Pro
                       20
           Ser Gln Ser Ser Glu Leu Leu Ser Glu Ala Lys Lys Leu Asn Asp Ser
                                         40
          Gln
          <210> 396
10
          <211>49
          <212> PRT
          <213> secuencia artificial
          <220>
          <223> Secuencia bacteriana modificada
15
          <400> 396
          Lys Glu Thr Leu Arg Ala Trp Asp Glu Ile Asp Lys Leu Pro Asn Leu
           Thr Ile Gln Gln Trp Leu Ala Phe Ile Asn Lys Leu Ala Asp Asp Pro
                                             25
           Ser Gln Ser Ser Glu Leu Leu Ser Glu Ala Lys Lys Leu Asn Asp Ser
20
          Gln
          <210> 397
          <211> 49
          <212> PRT
          <213> secuencia artificial
25
          <220>
          <223> Secuencia bacteriana modificada
30
          <400> 397
```

Lys Glu Val Ile Asp Ala Trp Asn Glu Ile Asp His Leu Pro Asn Leu

Thr Ile Glu Gln Trp Leu Ala Phe Ile Asn Lys Leu Glu Asp Asp Pro 25 20 30 Ser Gln Ser Ser Glu Leu Leu Ser Glu Ala Lys Lys Leu Asn Asp Ser 40 Gln <210> 398 <211> 49 <212> PRT 5 <213> secuencia artificial <220> <223> Secuencia bacteriana modificada 10 <400> 398 Lys Glu Val Ile Asp Ala Trp Asn Glu Ile Asp His Leu Pro Asn Leu Thr Leu Gln Gln Trp Leu Ala Phe Ile Asn Lys Leu Ala Asp Asp Pro 25 Ser Gln Ser Ser Glu Leu Leu Ser Glu Ala Lys Lys Leu Asn Asp Ser 35 40 Gln <210> 399 15 <211> 49 <212> PRT <213> secuencia artificial 20 <223> Secuencia bacteriana modificada <400> 399 Lys Glu Thr Ile Asp Ala Trp Asn Glu Ile Asp Ala Leu Pro Asn Leu Thr Leu Asp Gln Trp Leu Ala Phe Ile Asn Lys Leu Asp Asp Pro 25 Ser Gln Ser Ser Glu Leu Leu Ser Glu Ala Lys Lys Leu Asn Asp Ser Gln 25 <210> 400 <211> 49 <212> PRT

	<213> s	ecuend	cia art	ificial											
5	<220> <223> S	ecuen	cia ba	cteria	ına m	odific	ada								
5	<400> 4 Lys Gl 1		Ile	Glu 5	Ala	Trp	Asn	Glu	Ile 10	Asp	Gln	Leu	Pro	Asn 15	Leu
	Thr Il	e Glu	Gln 20	Trp	Leu	Ala	Phe	Ile 25	Asn	Lys	Leu	Asp	Asp 30	Asp	Pro
	Ser Gl	n Ser 35	Ser	Glu	Leu	Leu	Ser 40	Glu	Ala	Lys	Lys	Leu 45	Asn	Asp	Ser
	Gln														
10	<210> 4 <211> 4 <212> P <213> s	9 RT	cia art	ificial											
15	<220> <223> S	ecuen	cia ba	cteria	ına m	odific	ada								
	<400> 4 Lys Gl 1		Ile	Arg 5	Ala	Trp	Asp	Glu	Ile 10	Asp	Gln	Leu	Pro	Asn 15	Leu
	Thr Le	u Ser	Gln 20	Trp	Leu	Ala	Phe	Ile 25	Asn	Lys	Leu	Asp	Asp 30	Asp	Pro
	Ser Gl	n Ser 35	Ser	Glu	Leu	Leu	Ser 40	Glu	Ala	Lys	Lys	Leu 45	Asn	Asp	Ser
20	Gln														
25	<210> 4 <211> 4 <212> P <213> s	9 RT	cia art	ificial											
•	<220> <223> S				ına m	odific	ada								
30	<400> 4	02													

Lys Glu Val Ile Glu Ala Trp Asn Glu Ile Asp Arg Leu Pro Asn Leu

Thr Ile His Gln Trp Leu Ala Phe Ile Asn Lys Leu Asp Asp Pro 20 25 30 Ser Gln Ser Ser Glu Leu Leu Ser Glu Ala Lys Lys Leu Asn Asp Ser Gln <210> 403 <211> 49 <212> PRT 5 <213> secuencia artificial <220> <223> Secuencia bacteriana modificada 10 <400> 403 Lys Glu Thr Ile Glu Ala Trp Asn Glu Ile Asp Gln Leu Pro Asn Leu Thr Ile Glu Gln Trp Leu Ala Phe Ile Asn Lys Leu Asp Asp Pro 25 Ser Gln Ser Ser Glu Leu Leu Ser Glu Ala Lys Lys Leu Asn Asp Ser 35 40 Gln <210> 404 <211> 49 15 <212> PRT <213> secuencia artificial 20 <223> Secuencia bacteriana modificada <400> 404 Lys Glu Val Leu Thr Ala Trp Ala Glu Ile Asp Ala Leu Pro Asn Leu Thr Leu Ser Gln Trp Leu Ala Phe Ile Asn Lys Leu Asp Asp Pro 25 Ser Gln Ser Ser Glu Leu Leu Ser Glu Ala Lys Lys Leu Asn Asp Ser Gln 25 <210> 405 <211> 49 <212> PRT

```
<213> secuencia artificial
          <220>
          <223> Secuencia bacteriana modificada
5
          <400> 405
          Lys Glu Val Ile Glu Ala Trp Asp Glu Ile Asp Lys Leu Pro Asn Leu
          Thr Val Asp Gln Trp Leu Ala Phe Ile Asn Lys Leu Asp Asp Pro
          Ser Gln Ser Ser Glu Leu Leu Ser Glu Ala Lys Lys Leu Asn Asp Ser
                                        40
          Gln
          <210> 406
10
          <211>49
          <212> PRT
          <213> secuencia artificial
          <220>
15
          <223> Secuencia bacteriana modificada
          <400> 406
          Lys Glu Val Ile Asp Ala Trp Asn Glu Ile Asp His Leu Pro Asn Leu
          Thr Leu Thr Gln Trp Leu Ala Phe Ile Asn Lys Leu Asp Asp Pro
          Ser Gln Ser Ser Glu Leu Leu Ser Glu Ala Lys Lys Leu Asn Asp Ser
                                         40
          Gln
20
          <210> 407
          <211> 49
          <212> PRT
          <213> secuencia artificial
25
          <223> Secuencia bacteriana modificada
          <400> 407
```

Lys Glu Val Ile Glu Ala Trp Asn Glu Ile Asp Gln Leu Pro Asn Leu

Thr Leu Asp Gln Trp Leu Ala Phe Ile Asn Lys Leu Asp Asp Pro 20 25 30 Ser Gln Ser Ser Glu Leu Leu Ser Glu Ala Lys Lys Leu Asn Asp Ser 40 Gln <210> 408 <211> 49 <212> PRT 5 <213> secuencia artificial <220> <223> Secuencia bacteriana modificada 10 <400> 408 Lys Glu Thr Leu Gln Ala Trp Asp Glu Ile Asp His Leu Pro Asn Leu Thr Leu Asn Gln Trp Leu Ala Phe Ile Asn Lys Leu Asp Asp Pro 25 Ser Gln Ser Ser Glu Leu Leu Ser Glu Ala Lys Lys Leu Asn Asp Ser Gln 15 <210> 409 <211> 49 <212> PRT <213> secuencia artificial 20 <220> <223> Secuencia bacteriana modificada Lys Glu Val Ile Asp Ala Trp Asn Glu Ile Asp His Leu Pro Asn Leu Thr Ile Glu Gln Trp Leu Ala Phe Ile Asn Lys Leu Asp Asp Pro 20 25 30 Ser Gln Ser Ser Glu Leu Leu Ser Glu Ala Lys Lys Leu Asn Asp Ser 25 Gln <210> 410

```
<211> 49
          <212> PRT
          <213> secuencia artificial
          <220>
 5
          <223> Secuencia bacteriana modificada
          <400> 410
           Lys Glu Val Ile Glu Ala Trp Asn Glu Ile Asp Leu Leu Pro Asn Leu
           Thr Leu Ser Gln Trp Leu Ala Phe Ile Asn Lys Leu Asp Asp Pro
           Ser Gln Ser Ser Glu Leu Leu Ser Glu Ala Lys Lys Leu Asn Asp Ser
                                         40
          Gln
10
          <210> 411
          <211> 49
          <212> PRT
          <213> secuencia artificial
15
          <223> Secuencia bacteriana modificada
          <400> 411
          Lys Glu Val Ile Asp Ala Trp Asp Glu Ile Asp Arg Leu Pro Asn Leu
                            5
           Thr Leu Lys Gln Trp Leu Ala Phe Ile Asn Lys Leu Asp Asp Pro
                       20
           Ser Gln Ser Ser Glu Leu Leu Ser Glu Ala Lys Lys Leu Asn Asp Ser
20
          Gln
          <210> 412
          <211> 49
          <212> PRT
25
          <213> secuencia artificial
          <223> Secuencia bacteriana modificada
30
          <400> 412
```

Lys Glu Thr Leu His Ala Trp Asp Glu Ile Asp Lys Leu Pro Asn Leu

Thr Ile Glu Gln Trp Leu Ala Phe Ile Asn Lys Leu Asp Asp Pro 25 20 30 Ser Gln Ser Ser Glu Leu Leu Ser Glu Ala Lys Lys Leu Asn Asp Ser 40 Gln <210> 413 <211> 49 <212> PRT 5 <213> secuencia artificial <220> <223> Secuencia bacteriana modificada 10 <400> 413 Lys Glu Val Ile Lys Ala Trp Asp Glu Ile Asp His Leu Pro Asn Leu Thr Leu Asn Gln Trp Leu Ala Phe Ile Asn Lys Leu Asp Asp Pro Ser Gln Ser Ser Glu Leu Leu Ser Glu Ala Lys Lys Leu Asn Asp Ser Gln 15 <210> 414 <211> 49 <212> PRT <213> secuencia artificial 20 <220> <223> Secuencia bacteriana modificada <400> 414 Lys Glu Val Ile Glu Ala Trp Asn Glu Ile Asp His Leu Pro Asn Leu Thr Leu Ala Gln Trp Leu Ala Phe Ile Asn Lys Leu Asp Asp Pro Ser Gln Ser Ser Glu Leu Leu Ser Glu Ala Lys Lys Leu Asn Asp Ser 40 25 Gln <210> 415 <211> 49 <212> PRT

```
<213> secuencia artificial
          <220>
          <223> Secuencia bacteriana modificada
5
          <400> 415
          Lys Glu Val Ile Gln Ala Trp Asn Glu Ile Asp His Leu Pro Asn Leu
          Thr Ile Asp Gln Trp Leu Ala Phe Ile Thr Lys Leu Glu Asp Asp Pro
          Ser Gln Ser Ser Glu Leu Leu Ser Glu Ala Lys Lys Leu Asn Asp Ser
                                         40
          Gln
          <210> 416
10
          <211>49
          <212> PRT
          <213> secuencia artificial
          <220>
15
          <223> Secuencia bacteriana modificada
          <400> 416
          Lys Glu Val Ile Glu Ala Trp Asn Glu Ile Asp Arg Leu Pro Asn Leu
          Thr Ile Lys Gln Trp Leu Ala Phe Ile Asn Lys Leu Asp Asp Asp Pro
          Ser Gln Ser Ser Glu Leu Leu Ser Glu Ala Lys Lys Leu Asn Asp Ser
                                         40
          Gln
20
          <210> 417
          <211> 49
          <212> PRT
          <213> secuencia artificial
25
          <223> Secuencia bacteriana modificada
          <400> 417
```

Lys Glu Val Ile Glu Ala Trp Asn Glu Ile Asp Ser Leu Pro Asn Leu

Thr Leu Gln Gln Trp Leu Ala Phe Ile Asn Lys Leu Asp Asp Pro 20 25 30 Ser Gln Ser Ser Glu Leu Leu Ser Glu Ala Lys Lys Leu Asn Asp Ser Gln <210> 418 <211> 49 <212> PRT 5 <213> secuencia artificial <220> <223> Secuencia bacteriana modificada 10 <400> 418 Lys Glu Thr Ile Asp Ala Trp Asn Glu Ile Asp Lys Leu Pro Asn Leu Thr Ile Glu Gln Trp Leu Ala Phe Ile Asn Lys Leu Asp Asp Pro Ser Gln Ser Ser Glu Leu Leu Ser Glu Ala Lys Lys Leu Asn Asp Ser 40 Gln 15 <210> 419 <211>49 <212> PRT <213> secuencia artificial 20 <220> <223> Secuencia bacteriana modificada <400> 419 Lys Glu Val Leu Glu Ala Trp Ala Glu Ile Asp Ala Leu Pro Asn Leu Thr Ile Ala Gln Trp Leu Ala Phe Ile Asn Lys Leu Asp Asp Pro Ser Gln Ser Ser Glu Leu Leu Ser Glu Ala Lys Lys Leu Asn Asp Ser 35 40 25 Gln <210> 420 <211> 49 <212> PRT

```
<213> secuencia artificial
          <220>
          <223> Secuencia bacteriana modificada
5
          <400> 420
          Lys Glu Thr Ile Asp Ala Trp Asn Glu Ile Asp Arg Leu Pro Asn Leu
           Thr Ile Glu Gln Trp Leu Ala Phe Ile Asn Lys Leu Asp Asp Pro
           Ser Gln Ser Ser Glu Leu Leu Ser Glu Ala Lys Lys Leu Asn Asp Ser
                                         40
          Gln
          <210> 421
10
          <211>49
          <212> PRT
          <213> secuencia artificial
          <220>
15
          <223> Secuencia bacteriana modificada
          <400> 421
          Lys Glu Thr Leu Lys Ala Trp Asp Glu Ile Asp Arg Leu Pro Asn Leu 1 5 10 15
           Thr Leu Glu Gln Trp Leu Ala Phe Ile Asn Lys Leu Asp Asp Pro
           Ser Gln Ser Ser Glu Leu Leu Ser Glu Ala Lys Lys Leu Asn Asp Ser
                                         40
          Gln
20
          <210> 422
          <211> 49
          <212> PRT
          <213> secuencia artificial
25
          <223> Secuencia bacteriana modificada
          <400> 422
```

Lys Glu Thr Ile Ala Ala Trp Asn Glu Ile Asp Ala Leu Pro Asn Leu

Thr Leu Gln Gln Trp Leu Ala Phe Ile Asn Lys Leu Asp Asp Pro 20 25 30 Ser Gln Ser Ser Glu Leu Leu Ser Glu Ala Lys Lys Leu Asn Asp Ser 40 Gln <210> 423 <211> 49 <212> PRT 5 <213> secuencia artificial <220> <223> Secuencia bacteriana modificada 10 <400> 423 Lys Glu Val Leu Gln Ala Trp Asn Glu Ile Asp His Leu Pro Asn Leu Thr Ile Gln Gln Trp Leu Ala Phe Ile Asn Lys Leu Asp Asp Pro 25 Ser Gln Ser Ser Glu Leu Leu Ser Glu Ala Lys Lys Leu Asn Asp Ser 35 40 Gln <210> 424 <211> 49 15 <212> PRT <213> secuencia artificial 20 <223> Secuencia bacteriana modificada <400> 424 Lys Glu Val Ile Glu Ala Trp Ser Glu Ile Asp His Leu Pro Asn Leu Thr Leu Gln Gln Trp Leu Ala Phe Ile Asn Lys Leu Asp Asp Pro 25 Ser Gln Ser Ser Glu Leu Leu Ser Glu Ala Lys Lys Leu Asn Asp Ser Gln 25 <210> 425 <211> 49 <212> PRT

	<213>	sec	uenci	a artı	ticial											
F	<220> <223>		uenc	ia ba	cteria	na m	odific	ada								
5	<400> Lys G			Ile	Asp 5	Ala	Trp	Asn	Glu	Ile 10	Asp	Gly	Leu	Pro	Asn 15	Leu
	Thr I	le	Glu	Gln 20	Trp	Leu	Ala	Phe	Ile 25	Asn	Lys	Leu	Asp	Asp 30	Asp	Pro
	Ser G		Ser 35	Ser	Glu	Leu	Leu	Ser 40	Glu	Ala	Lys	Lys	Leu 45	Asn	Asp	Ser
	Gln															
10	<210> <211> <212> <213>	49 PR1	Γ	a arti	ficial											
15	<220> <223>	Sec	uenc	ia ba	cteria	na m	odific	ada								
	<400> Lys G 1			Ile	His 5	Ala	Trp	Asn	Glu	Ile 10	Asp	His	Leu	Pro	Asn 15	Leu
	Thr I	Leu	Asn	Gln 20	Trp	Leu	Ala	Phe	Ile 25	Asn	Lys	Leu	Glu	Asp 30	Asp	Pro
	Ser G		Ser 35	Ser	Glu	Leu	Leu	Ser 40	Glu	Ala	Lys	Lys	Leu 45	Asn	Asp	Ser
20	Gln															
25	<210> <211> <212> <213>	49 PR1	Γ	a arti	ficial											
	<220> <223>		uenc	ia ba	cteria	na m	odific	ada								
30	<400>	427														

Lys Glu Val Leu Asp Ala Trp Asn Glu Ile Asp Ser Leu Pro Asn Leu

Thr Leu Asp Gln Trp Leu Ala Phe Ile Asn Lys Leu Asp Asp Pro 25 20 30 Ser Gln Ser Ser Glu Leu Leu Ser Glu Ala Lys Lys Leu Asn Asp Ser 40 Gln <210> 428 <211> 49 <212> PRT 5 <213> secuencia artificial <220> <223> Secuencia bacteriana modificada 10 <400> 428 Lys Glu Gln Ile Glu Ala Trp Asn Glu Ile Asp Arg Leu Pro Asn Leu Thr Leu Glu Gln Trp Leu Ala Phe Ile Asn Lys Leu Asp Asp Pro 25 Ser Gln Ser Ser Glu Leu Leu Ser Glu Ala Lys Lys Leu Asn Asp Ser 35 40 Gln <210> 429 15 <211> 49 <212> PRT <213> secuencia artificial 20 <223> Secuencia bacteriana modificada <400> 429 Lys Glu Val Val Asp Ala Trp Asn Glu Ile Asp Ala Leu Pro Asn Leu Thr Leu Gln Gln Trp Leu Ala Phe Ile Asn Lys Leu Asp Asp Pro 25 Ser Gln Ser Ser Glu Leu Leu Ser Glu Ala Lys Lys Leu Asn Asp Ser Gln 25 <210> 430 <211> 49 <212> PRT

```
<213> secuencia artificial
          <220>
          <223> Secuencia bacteriana modificada
 5
          <400> 430
          Lys Glu Val Ile Glu Ala Trp Asn Glu Ile Asp Lys Leu Pro Asn Leu
           Thr Ile Glu Gln Trp Leu Ala Phe Ile Asn Lys Leu Asp Asp Pro
           Ser Gln Ser Ser Glu Leu Leu Ser Glu Ala Lys Lys Leu Asn Asp Ser
                                         40
          Gln
10
          <210> 431
          <211> 49
          <212> PRT
          <213> secuencia artificial
15
          <220>
          <223> Secuencia bacteriana modificada
          <400> 431
          Lys Glu Val Ile Glu Ala Asn Asp Glu Ile Asp Arg Leu Pro Asn Leu
           Thr Ile Glu Gln Trp Leu Ala Phe Ile Asn Lys Leu His Asp Asp Pro
                                             25
           Ser Gln Ser Ser Glu Leu Leu Ser Glu Ala Lys Lys Leu Asn Asp Ser
                                         40
20
          Gln
          <210> 432
          <211> 49
          <212> PRT
25
          <213> secuencia artificial
          <220>
          <223> Secuencia bacteriana modificada
30
          <400> 432
```

Lys Glu Thr Leu Gln Ala Trp Asp Glu Ile Asp Lys Leu Pro Asn Leu

Thr Ile Glu Gln Trp Leu Ala Phe Ile Asn Lys Leu Asp Asp Pro 20 25 30 Ser Gln Ser Ser Glu Leu Leu Ser Glu Ala Lys Lys Leu Asn Asp Ser Gln <210> 433 <211> 49 <212> PRT 5 <213> secuencia artificial <220> <223> Secuencia bacteriana modificada 10 <400> 433 Lys Glu Val Ile Glu Ala Trp Asp Glu Ile Asp His Leu Pro Asn Leu Thr Ile Asp Gln Trp Leu Ala Phe Ile Asn Lys Leu Ala Asp Asp Pro 20 25 Ser Gln Ser Ser Glu Leu Leu Ser Glu Ala Lys Lys Leu Asn Asp Ser 40 Gln <210> 434 <211> 49 15 <212> PRT <213> secuencia artificial 20 <223> Secuencia bacteriana modificada <400> 434 Lys Glu Thr Ile Asp Ala Trp Asn Glu Ile Asp His Leu Pro Asn Leu Thr Leu Gln Gln Trp Leu Ala Phe Ile Asn Lys Leu Ala Asp Asp Pro 25 Ser Gln Ser Ser Glu Leu Leu Ser Glu Ala Lys Lys Leu Asn Asp Ser Gln 25 <210> 435 <211> 49 <212> PRT

```
<220>
          <223> Secuencia bacteriana modificada
 5
          <400> 435
          Lys Glu Val Ile Asp Ala Trp Asp Glu Ile Asp Lys Leu Pro Asn Leu
          Thr Ile Glu Gln Trp Leu Ala Phe Ile Asn Lys Leu Asp Asp Pro
                                             25
          Ser Gln Ser Ser Glu Leu Leu Ser Glu Ala Lys Lys Leu Asn Asp Ser
                                        40
                                                              45
          Gln
10
          <210> 436
          <211> 49
          <212> PRT
          <213> secuencia artificial
15
          <223> Secuencia bacteriana modificada
          <400> 436
          Lys Glu Val Ile Glu Ala Trp Asn Glu Ile Asp Lys Leu Pro Asn Leu
          Thr Leu Ala Gln Trp Leu Ala Phe Ile Asn Lys Leu Asp Asp Pro
                                             25
          Ser Gln Ser Ser Glu Leu Leu Ser Glu Ala Lys Lys Leu Asn Asp Ser
                                        40
20
          Gln
          <210> 437
          <211> 49
          <212> PRT
25
          <213> secuencia artificial
          <220>
          <223> Secuencia bacteriana modificada
30
          <400> 437
```

<213> secuencia artificial

Lys Glu Val Leu Gln Ala Trp Asp Glu Ile Asp Lys Leu Pro Asn Leu

Thr Ile Gln Gln Trp Leu Ala Phe Ile Asn Lys Leu Asp Asp Pro 20 25 30 Ser Gln Ser Ser Glu Leu Leu Ser Glu Ala Lys Lys Leu Asn Asp Ser 40 Gln <210> 438 <211> 49 <212> PRT 5 <213> secuencia artificial <220> <223> Secuencia bacteriana modificada 10 <400> 438 Lys Glu Val Ile Ala Ala Trp Asn Glu Ile Asp Gly Leu Pro Asn Leu Thr Leu Gln Gln Trp Leu Ala Phe Ile Asn Lys Leu Asp Asp Pro 25 Ser Gln Ser Ser Glu Leu Leu Ser Glu Ala Lys Lys Leu Asn Asp Ser 35 40 Gln <210> 439 15 <211> 49 <212> PRT <213> secuencia artificial 20 <223> Secuencia bacteriana modificada <400> 439 Lys Glu Thr Leu Asn Ala Trp Asn Glu Ile Asp Ala Leu Pro Asn Leu Thr Leu Gln Gln Trp Leu Ala Phe Ile Asn Lys Leu Asp Asp Pro 25 Ser Gln Ser Ser Glu Leu Leu Ser Glu Ala Lys Lys Leu Asn Asp Ser Gln 25 <210> 440 <211> 49 <212> PRT

5	<220> <223> Secuencia bacteriana modificada													
3	<400>440 Lys Glu Val Leu Ser Ala Trp Asn Glu Ile Asp Gln Leu Pro Asn Leu 1 5 10 15													
	Thr Leu Glu Gln Trp Leu Ala Phe Ile Asn Lys Leu Asp Asp Pro 20 25 30													
	Ser Gln Ser Ser Glu Leu Leu Ser Glu Ala Lys Lys Leu Asn Asp Ser 35 40 45													
	Gln													
10	<210> 441 <211> 49 <212> PRT <213> secuencia artificial													
15	<220> <223> Secuencia bacteriana modificada													
	<400>441 Lys Glu Thr Leu Glu Ala Trp Asp Glu Ile Asp His Leu Pro Asn Leu 1 5 10 15													
	Thr Leu His Gln Trp Leu Ala Phe Ile Asn Lys Leu Asp Asp Pro 20 25 30													
	Ser Gln Ser Ser Glu Leu Leu Ser Glu Ala Lys Lys Leu Asn Asp Ser 35 40 45													
	Gln													
20	<210> 442 <211> 49 <212> PRT <213> secuencia artificial													
25	<220> <223> Secuencia bacteriana modificada													
	<400>442 Lys Glu Gln Ile Glu Ala Trp Asn Glu Ile Asp His Leu Pro Asn Leu 1 5 10 15													
	Thr Leu Gln Gln Trp Leu Ala Phe Ile Asn Lys Leu Ala Asp Asp Pro													
30	Ser Gln Ser Ser Glu Leu Leu Ser Glu Ala Lys Lys Leu Asn Asp Ser													

<213> secuencia artificial

45

40

Gln <210> 443 <211> 49 5 <212> PRT <213> secuencia artificial <220> <223> Secuencia bacteriana modificada 10 <400> 443 Lys Glu Val Val Glu Ala Trp Asp Glu Ile Asp Lys Leu Pro Asn Leu 10 Thr Ile Glu Gln Trp Leu Ala Phe Ile Asn Lys Leu Asp Asp Pro 20 25 Ser Gln Ser Ser Glu Leu Leu Ser Glu Ala Lys Lys Leu Asn Asp Ser Gln <210> 444 15 <211> 49 <212> PRT <213> secuencia artificial <220> 20 <223> Secuencia bacteriana modificada <400> 444 Lys Glu Val Leu Glu Ala Trp Asn Glu Ile Asp Glu Leu Pro Asn Leu Thr Ile Glu Gln Trp Leu Ala Phe Ile Asn Lys Leu Asp Asp Pro Ser Gln Ser Ser Glu Leu Leu Ser Glu Ala Lys Lys Leu Asn Asp Ser 35 40 45 Gln 25 <210> 445 <211> 49 <212> PRT <213> secuencia artificial 30 <223> Secuencia bacteriana modificada <400> 445

35

Lys Glu Val Ile Asp Ala Trp Asn Glu Ile Asp Gln Leu Pro Asn Leu

Thr Leu Gln Gln Trp Leu Ala Phe Ile Asn Lys Leu Asp Asp Pro 25 20 30 Ser Gln Ser Ser Glu Leu Leu Ser Glu Ala Lys Lys Leu Asn Asp Ser 40 Gln <210> 446 <211> 49 <212> PRT 5 <213> secuencia artificial <220> <223> Secuencia bacteriana modificada 10 <400> 446 Lys Glu Thr Ile Asp Ala Trp Asp Glu Ile Asp Lys Leu Pro Asn Leu Thr Leu Ser Gln Trp Leu Ala Phe Ile Asn Lys Leu Asp Asp Pro 25 Ser Gln Ser Ser Glu Leu Leu Ser Glu Ala Lys Lys Leu Asn Asp Ser 40 Gln <210> 447 15 <211> 49 <212> PRT <213> secuencia artificial 20 <223> Secuencia bacteriana modificada <400> 447 Lys Glu Thr Ile Asp Ala Trp Asn Glu Ile Asp Gln Leu Pro Asn Leu 10 Thr Leu Gln Gln Trp Leu Ala Phe Ile Asn Lys Leu Asp Asp Pro 20 25 30 Ser Gln Ser Ser Glu Leu Leu Ser Glu Ala Lys Lys Leu Asn Asp Ser 40 25 Gln<210> 448

```
<211> 49
          <212> PRT
          <213> secuencia artificial
          <220>
 5
          <223> Secuencia bacteriana modificada
          <400> 448
           Lys Glu Val Ile Gln Ala Trp Asp Glu Ile Asp Ala Leu Pro Asn Leu
           Thr Leu Asn Gln Trp Leu Ala Phe Ile Asn Lys Leu Asp Asp Pro
           Ser Gln Ser Ser Glu Leu Leu Ser Glu Ala Lys Lys Leu Asn Asp Ser
                                         40
          Gln
10
          <210> 449
          <211> 49
          <212> PRT
          <213> secuencia artificial
15
          <223> Secuencia bacteriana modificada
          <400> 449
          Lys Glu Val Leu Asp Ala Trp Ala Glu Ile Asp Gln Leu Pro Asn Leu
           Thr Leu Gln Gln Trp Leu Ala Phe Ile Asn Lys Leu Asp Asp Pro
                       20
           Ser Gln Ser Ser Glu Leu Leu Ser Glu Ala Lys Lys Leu Asn Asp Ser
20
          Gln
          <210> 450
          <211> 49
          <212> PRT
25
          <213> secuencia artificial
          <220>
          <223> Secuencia bacteriana modificada
30
          <400> 450
```

Lys Glu His Ile Ala Ala Trp Asp Glu Ile Asp Ala Leu Pro Asn Leu

Thr Ile Glu Gln Trp Leu Ala Phe Ile Asn Lys Leu Asp Asp Pro 20 25 30 Ser Gln Ser Ser Glu Leu Leu Ser Glu Ala Lys Lys Leu Asn Asp Ser Gln <210> 451 <211> 49 <212> PRT 5 <213> secuencia artificial <220> <223> Secuencia bacteriana modificada 10 <400> 451 Lys Glu Val Ile Arg Ala Trp Asp Glu Ile Asp Ala Leu Pro Asn Leu Thr Ile Glu Gln Trp Leu Ala Phe Ile Asn Lys Leu Asp Asp Pro Ser Gln Ser Ser Glu Leu Leu Ser Glu Ala Lys Lys Leu Asn Asp Ser 40 Gln <210> 452 15 <211> 49 <212> PRT <213> secuencia artificial <220> 20 <223> Secuencia bacteriana modificada Lys Glu Val Ile Asp Ala Trp Asp Glu Ile Asp Ala Leu Pro Asn Leu 1 5 10 15 Thr Ile Asp Gln Trp Leu Ala Phe Ile Asn Lys Leu Ala Asp Asp Pro 20 Ser Gln Ser Ser Glu Leu Leu Ser Glu Ala Lys Lys Leu Asn Asp Ser 40 25 Gln <210> 453

```
<211> 49
          <212> PRT
          <213> secuencia artificial
          <220>
5
          <223> Secuencia bacteriana modificada
          <400> 453
          Lys Glu Val Ile Asp Ala Trp Asn Glu Ile Asp Arg Leu Pro Asn Leu
          Thr Ile Gln Gln Trp Leu Ala Phe Ile Asn Lys Leu Asp Asp Pro
          Ser Gln Ser Ser Glu Leu Leu Ser Glu Ala Lys Lys Leu Asn Asp Ser
                                         40
          Gln
10
          <210> 454
          <211> 49
          <212> PRT
          <213> secuencia artificial
15
          <223> Secuencia bacteriana modificada
          <400> 454
          Lys Glu Val Ile Thr Ala Trp Asn Glu Ile Asp His Leu Pro Asn Leu
                           5
          Thr Leu Ser Gln Trp Leu Ala Phe Ile Asn Lys Leu Asp Asp Pro
                       20
                                             25
          Ser Gln Ser Ser Glu Leu Leu Ser Glu Ala Lys Lys Leu Asn Asp Ser
20
                                         40
            Gln
          <210> 455
25
          <211>49
          <212> PRT
          <213> secuencia artificial
          <220>
30
          <223> Secuencia bacteriana modificada
          <400> 455
```

Lys Glu Val Ile Asp Ala Trp Asn Glu Ile Asp Ala Leu Pro Asn Leu

Thr Ile His Gln Trp Leu Ala Phe Ile Asn Lys Leu Asp Asp Pro 20 25 30 Ser Gln Ser Ser Glu Leu Leu Ser Glu Ala Lys Lys Leu Asn Asp Ser 40 Gln <210> 456 <211> 49 <212> PRT 5 <213> secuencia artificial <220> <223> Secuencia bacteriana modificada 10 <400> 456 Lys Glu Gln Leu Lys Ala Trp Asp Glu Ile Asp Lys Leu Pro Asn Leu Thr Ile Glu Gln Trp Leu Ala Phe Ile Glu Lys Leu Gln Asp Asp Pro 25 Ser Gln Ser Ser Glu Leu Leu Ser Glu Ala Lys Lys Leu Asn Asp Ser 35 40 Gln <210> 457 15 <211> 49 <212> PRT <213> secuencia artificial 20 <223> Secuencia bacteriana modificada <400> 457 Lys Glu His Ile Asp Ala Trp Thr Glu Ile Asp His Leu Pro Asn Leu Thr Ile Glu Gln Trp Leu Ala Phe Ile Asn Lys Leu Asp Asp Pro 25 Ser Gln Ser Ser Glu Leu Leu Ser Glu Ala Lys Lys Leu Asn Asp Ser Gln 25 <210> 458 <211> 49 <212> PRT

```
<213> secuencia artificial
          <220>
          <223> Secuencia bacteriana modificada
 5
          <400> 458
          Lys Glu Gln Leu Arg Ala Trp Asp Glu Ile Asp Lys Leu Pro Asn Leu
           Thr Ile Glu Gln Trp Leu Ala Phe Ile Asn Lys Leu Gln Asp Asp Pro
           Ser Gln Ser Ser Glu Leu Leu Ser Glu Ala Lys Lys Leu Asn Asp Ser
                                         40
          Gln
          <210> 459
10
          <211>49
          <212> PRT
          <213> secuencia artificial
          <220>
          <223> Secuencia bacteriana modificada
15
          <400> 459
          Lys Glu Val Leu Glu Ala Trp Arg Glu Ile Asp Ser Leu Pro Asn Leu
           Thr Ile Ala Gln Trp Leu Ala Phe Ile Asn Lys Leu Asp Asp Pro
                                             25
           Ser Gln Ser Ser Glu Leu Leu Ser Glu Ala Lys Lys Leu Asn Asp Ser
20
          Gln
          <210> 460
          <211> 49
          <212> PRT
          <213> secuencia artificial
25
          <220>
          <223> Secuencia bacteriana modificada
30
          <400> 460
```

Lys Glu Val Ile Gln Ala Trp Asn Glu Ile Asp Lys Leu Pro Asn Leu

Thr Ile Glu Gln Trp Leu Ala Phe Ile Asn Lys Leu Asp Asp Pro 25 20 30 Ser Gln Ser Ser Glu Leu Leu Ser Glu Ala Lys Lys Leu Asn Asp Ser 40 Gln <210> 461 <211> 49 <212> PRT 5 <213> secuencia artificial <220> <223> Secuencia bacteriana modificada 10 <400> 461 Lys Glu His Val Glu Ala Trp Asn Glu Ile Asp Gln Leu Pro Asn Leu Thr Ile Glu Gln Trp Leu Ala Phe Ile Asn Lys Leu Ala Asp Asp Pro 25 Ser Gln Ser Ser Glu Leu Leu Ser Glu Ala Lys Lys Leu Asn Asp Ser 35 40 Gln <210> 462 15 <211> 49 <212> PRT <213> secuencia artificial 20 <223> Secuencia bacteriana modificada <400> 462 Lys Glu Val Ile Asp Ala Trp Asp Glu Ile Asp Ala Leu Pro Asn Leu Thr Ile Asp Gln Trp Leu Ala Phe Ile Asn Lys Leu Ser Asp Asp Pro 25 Ser Gln Ser Ser Glu Leu Leu Ser Glu Ala Lys Lys Leu Asn Asp Ser Gln 25 <210> 463 <211> 49 <212> PRT

```
<213> secuencia artificial
          <220>
          <223> Secuencia bacteriana modificada
 5
          <400> 463
          Lys Glu Val Ile Glu Ala Trp Asn Glu Ile Asp His Leu Pro Asn Leu
           Thr Ile Glu Gln Trp Leu Ala Phe Ile Asn Lys Leu Asp Asp Pro
           Ser Gln Ser Ser Glu Leu Leu Ser Glu Ala Lys Lys Leu Asn Asp Ser
                                         40
          Gln
          <210> 464
10
          <211>49
          <212> PRT
          <213> secuencia artificial
          <220>
15
          <223> Secuencia bacteriana modificada
          <400> 464
          Lys Glu Val Leu Gln Ala Trp Asp Glu Ile Asp Lys Leu Pro Asn Leu
           Thr Ile Glu Gln Trp Leu Ala Phe Ile Asn Lys Leu Ser Asp Asp Pro
           Ser Gln Ser Ser Glu Leu Leu Ser Glu Ala Lys Lys Leu Asn Asp Ser
20
          Gln
          <210> 465
          <211> 49
          <212> PRT
25
          <213> secuencia artificial
          <220>
          <223> Secuencia bacteriana modificada
30
          <400> 465
```

Lys Glu Val Ile Lys Ala Trp Asn Glu Ile Asp Ser Leu Pro Asn Leu

Thr Ile Glu Gln Trp Leu Ala Phe Ile Asn Lys Leu Asp Asp Pro 20 25 30 Ser Gln Ser Ser Glu Leu Leu Ser Glu Ala Lys Lys Leu Asn Asp Ser 40 Gln <210> 466 <211>49 <212> PRT 5 <213> secuencia artificial <220> <223> Secuencia bacteriana modificada 10 <400> 466 Lys Glu Val Leu Glu Ala Trp His Glu Ile Asp Leu Leu Pro Asn Leu Thr Ile Gln Gln Trp Leu Ala Phe Ile Asn Lys Leu Asp Asp Pro 25 Ser Gln Ser Ser Glu Leu Leu Ser Glu Ala Lys Lys Leu Asn Asp Ser 35 40 Gln <210> 467 15 <211> 49 <212> PRT <213> secuencia artificial 20 <223> Secuencia bacteriana modificada <400> 467 Lys Glu Val Leu Glu Ala Trp Thr Glu Ile Asp Arg Leu Pro Asn Leu Thr Leu Asp Gln Trp Leu Ala Phe Ile Asn Lys Leu Asp Asp Pro 25 Ser Gln Ser Ser Glu Leu Leu Ser Glu Ala Lys Lys Leu Asn Asp Ser Gln 25 <210> 468 <211> 49 <212> PRT

```
<213> secuencia artificial
          <220>
          <223> Secuencia bacteriana modificada
5
          <400> 468
          Lys Glu Gln Leu Tyr Ala Trp Asn Glu Ile Asp His Leu Pro Asn Leu
          Thr Ile Glu Gln Trp Leu Ala Phe Ile Glu Lys Leu Gln Asp Asp Pro
          Ser Gln Ser Ser Glu Leu Leu Ser Glu Ala Lys Lys Leu Asn Asp Ser
                                         40
          Gln
          <210> 469
10
          <211>49
          <212> PRT
          <213> secuencia artificial
          <220>
15
          <223> Secuencia bacteriana modificada
          <400> 469
          Lys Glu Val Leu Asn Ala Trp Asp Glu Ile Asp Lys Leu Pro Asn Leu
          Thr Ile Lys Gln Trp Leu Ala Phe Ile Asn Lys Leu Asp Asp Pro
          Ser Gln Ser Ser Glu Leu Leu Ser Glu Ala Lys Lys Leu Asn Asp Ser
                                         40
          Gln
20
          <210> 470
          <211> 49
          <212> PRT
          <213> secuencia artificial
25
          <223> Secuencia bacteriana modificada
          <400> 470
```

Lys Glu Val Ile Arg Ala Trp Asp Glu Ile Asp Lys Leu Pro Asn Leu

Thr Val Glu Gln Trp Leu Ala Phe Ile Asn Lys Leu Asp Asp Pro 20 25 30 Ser Gln Ser Ser Glu Leu Leu Ser Glu Ala Lys Lys Leu Asn Asp Ser 40 Gln <210> 471 <211> 49 <212> PRT 5 <213> secuencia artificial <220> <223> Secuencia bacteriana modificada 10 <400> 471 Lys Glu Val Val Gln Ala Trp Asp Glu Ile Asp Gln Leu Pro Asn Leu Thr Leu Glu Gln Trp Leu Ala Phe Ile Asn Lys Leu Asp Asp Pro 25 Ser Gln Ser Ser Glu Leu Leu Ser Glu Ala Lys Lys Leu Asn Asp Ser Gln 15 <210> 472 <211> 49 <212> PRT <213> secuencia artificial 20 <220> <223> Secuencia bacteriana modificada <400> 472 Lys Glu Val Ile Arg Ala Trp Asp Glu Ile Asp Gln Leu Pro Asn Leu Thr Leu Glu Gln Trp Leu Ala Phe Ile Asn Lys Leu Asp Asp Pro 20 25 Ser Gln Ser Ser Glu Leu Leu Ser Glu Ala Lys Lys Leu Asn Asp Ser 40 25 Gln <210> 473

```
<211> 49
          <212> PRT
          <213> secuencia artificial
          <220>
 5
          <223> Secuencia bacteriana modificada
          <400> 473
           Lys Glu Thr Ile Asp Ala Trp Asn Glu Ile Asp His Leu Pro Asn Leu
           Thr Leu Asp Gln Trp Leu Ala Phe Ile Asn Lys Leu Asp Asp Pro
           Ser Gln Ser Ser Glu Leu Leu Ser Glu Ala Lys Lys Leu Asn Asp Ser
                                         40
          Gln
10
          <210> 474
          <211> 49
          <212> PRT
          <213> secuencia artificial
15
          <223> Secuencia bacteriana modificada
          <400> 474
          Lys Glu Val Val Ala Ala Trp Thr Glu Ile Asp Leu Leu Pro Asn Leu
                            5
                                                  10
           Thr Leu Asp Gln Trp Leu Ala Phe Ile Asn Lys Leu Glu Asp Asp Pro
                       20
           Ser Gln Ser Ser Glu Leu Leu Ser Glu Ala Lys Lys Leu Asn Asp Ser
20
          Gln
          <210> 475
          <211> 49
          <212> PRT
25
          <213> secuencia artificial
          <220>
          <223> Secuencia bacteriana modificada
30
          <400> 475
```

Lys Glu Val Val Ala Ala Trp Asp Glu Ile Asp Ala Leu Pro Asn Leu

Thr Ile Glu Gln Trp Leu Ala Phe Ile Asn Lys Leu Ser Asp Pro 25 20 30 Ser Gln Ser Ser Glu Leu Leu Ser Glu Ala Lys Lys Leu Asn Asp Ser 40 Gln <210> 476 <211> 49 <212> PRT 5 <213> secuencia artificial <220> <223> Secuencia bacteriana modificada 10 <400> 476 Lys Glu Thr Leu Glu Ala Trp Arg Glu Ile Asp Ser Leu Pro Asn Leu Thr Leu Glu Gln Trp Leu Ala Phe Ile Asn Lys Leu Asp Asp Pro Ser Gln Ser Ser Glu Leu Leu Ser Glu Ala Lys Lys Leu Asn Asp Ser Gln 15 <210> 477 <211> 49 <212> PRT <213> secuencia artificial 20 <220> <223> Secuencia bacteriana modificada <400> 477 Lys Glu Val Ile Lys Ala Trp Asn Glu Ile Asp His Leu Pro Asn Leu Thr Leu Asp Gln Trp Leu Ala Phe Ile Asn Lys Leu Asp Asp Pro Ser Gln Ser Ser Glu Leu Leu Ser Glu Ala Lys Lys Leu Asn Asp Ser 40 25 Gln <210> 478 <211> 49 <212> PRT

```
<213> secuencia artificial
          <220>
          <223> Secuencia bacteriana modificada
5
          <400> 478
          Lys Glu Val Leu Glu Ala Trp Thr Glu Ile Asp Lys Leu Pro Asn Leu
          Thr Ile Asp Gln Trp Leu Ala Phe Ile Asn Lys Leu Asp Asp Pro
                       20
          Ser Gln Ser Ser Glu Leu Leu Ser Glu Ala Lys Lys Leu Asn Asp Ser
                                         40
          Gln
          <210> 479
10
          <211>49
          <212> PRT
          <213> secuencia artificial
          <220>
15
          <223> Secuencia bacteriana modificada
          <400> 479
          Lys Glu Thr Leu Glu Ala Trp Asp Glu Ile Asp Lys Leu Pro Asn Leu
          Thr Ile Asp Gln Trp Leu Ala Phe Ile Asn Lys Leu Asp Asp Asp Pro
          Ser Gln Ser Ser Glu Leu Leu Ser Glu Ala Lys Lys Leu Asn Asp Ser
                                         40
          Gln
20
          <210> 480
          <211> 49
          <212> PRT
          <213> secuencia artificial
25
          <223> Secuencia bacteriana modificada
          <400> 480
```

Lys Glu Val Ile Glu Ala Trp Asn Glu Ile Asp Lys Leu Pro Asn Leu

Thr Ile Asp Gln Trp Leu Ala Phe Ile Asn Lys Leu Asp Asp Pro 20 25 30 Ser Gln Ser Ser Glu Leu Leu Ser Glu Ala Lys Lys Leu Asn Asp Ser Gln <210> 481 <211> 49 <212> PRT 5 <213> secuencia artificial <220> <223> Secuencia bacteriana modificada 10 <400> 481 Lys Glu Thr Ile Asp Ala Trp Asn Glu Ile Asp Lys Leu Pro Asn Leu Thr Leu Glu Gln Trp Leu Ala Phe Ile Asn Lys Leu Asp Asp Pro Ser Gln Ser Ser Glu Leu Leu Ser Glu Ala Lys Lys Leu Asn Asp Ser 40 Gln 15 <210> 482 <211> 49 <212> PRT <213> secuencia artificial 20 <220> <223> Secuencia bacteriana modificada <400> 482 Lys Glu Thr Leu Asp Ala Trp Asp Glu Ile Asp Ala Leu Pro Asn Leu Thr Ile Asp Gln Trp Leu Ala Phe Ile Asn Lys Leu Glu Asp Asp Pro 20 Ser Gln Ser Ser Glu Leu Leu Ser Glu Ala Lys Lys Leu Asn Asp Ser 35 40 45 25 Gln<210> 483 <211> 49 <212> PRT

```
<213> secuencia artificial
          <220>
          <223> Secuencia bacteriana modificada
5
          <400> 483
          Lys Glu Val Leu Ser Ala Trp Asn Glu Ile Asp His Leu Pro Asn Leu
          Thr Ile Gln Gln Trp Leu Ala Phe Ile Asn Lys Leu Asp Asp Pro
          Ser Gln Ser Ser Glu Leu Leu Ser Glu Ala Lys Lys Leu Asn Asp Ser
                                         40
          Gln
          <210> 484
10
          <211>49
          <212> PRT
          <213> secuencia artificial
          <220>
15
          <223> Secuencia bacteriana modificada
          <400> 484
          Lys Glu Val Ile Gln Ala Asn Asp Glu Ile Asp Lys Leu Pro Asn Leu
          Thr Ile Glu Gln Trp Leu Ala Phe Ile His Lys Leu His Asp Asp Pro
          Ser Gln Ser Ser Glu Leu Leu Ser Glu Ala Lys Lys Leu Asn Asp Ser
                                         40
          Gln
20
          <210> 485
          <211> 49
          <212> PRT
          <213> secuencia artificial
25
          <223> Secuencia bacteriana modificada
          <400> 485
```

Lys Glu His Leu Asp Ala Trp Asp Glu Ile Asp His Leu Pro Asn Leu

Thr Ile Gln Gln Trp Leu Ala Phe Ile Asn Lys Leu Ala Asp Asp Pro 20 25 30 Ser Gln Ser Ser Glu Leu Leu Ser Glu Ala Lys Lys Leu Asn Asp Ser 40 Gln <210> 486 <211> 49 <212> PRT 5 <213> secuencia artificial <220> <223> Secuencia bacteriana modificada 10 <400> 486 Lys Glu Val Ile Gln Ala Trp Asn Glu Ile Asp Gln Leu Pro Asn Leu Thr Ile Glu Gln Trp Leu Ala Phe Ile Asn Lys Leu Asp Asp Pro 25 Ser Gln Ser Ser Glu Leu Leu Ser Glu Ala Lys Lys Leu Asn Asp Ser 35 40 Gln <210> 487 15 <211> 49 <212> PRT <213> secuencia artificial 20 <223> Secuencia bacteriana modificada <400> 487 Lys Glu Val Ile Glu Ala Trp Asn Glu Ile Asp Tyr Leu Pro Asn Leu Thr Ile Ala Gln Trp Ile Ala Phe Ile Asn Lys Leu Asp Asp Pro 25 Ser Gln Ser Ser Glu Leu Leu Ser Glu Ala Lys Lys Leu Asn Asp Ser Gln 25 <210> 488 <211> 49 <212> PRT

	<213>	<213> secuencia artificial													
-	<220> <223> Secuencia bacteriana modificada														
5	<400> 4 Lys G	488 lu Thr	· Ile	Gln 5	Ala	Trp	Asp	Glu	Ile 10	Asp	Arg	Leu	Pro	Asn 15	Leu
	Thr L	eu Glr	Gln 20	Trp	Leu	Ala	Phe	Ile 25	Asn	Lys	Leu	Asp	Asp 30	Asp	Pro
	Ser G	ln Ser 35	Ser	Glu	Leu	Leu	Ser 40	Glu	Ala	Lys	Lys	Leu 45	Asn	Asp	Ser
	Gln														
10	<210> 489 <211> 49 <212> PRT <213> secuencia artificial														
15	<220> <223> Secuencia bacteriana modificada														
	<400> 4 Lys G	489 lu Thr	lle	Gln 5	Ala	Trp	Asp	Glu	Ile 10	Asp	Lys	Leu	Pro	Asn 15	Leu
	Thr I	le Glu	Gln 20	Trp	Leu	Ala	Phe	Ile 25	Asn	Lys	Leu	Asp	Asp 30	Asp	Pro
	Ser G	ln Ser 35	Ser	Glu	Leu	Leu	Ser 40	Glu	Ala	Lys	Lys	Leu 45	Asn	Asp	Ser
20	Gln														
25	<210> <211> <211> <212> <212> <213> <	49 PRT	cia art	ificial											
	<220> <223>	Secuen	cia ba	cteria	ana m	odific	ada								
30	<400>	490													

Lys Glu Thr Leu Asp Ala Trp Ala Glu Ile Asp His Leu Pro Asn Leu

Thr Ile Glu Gln Trp Leu Ala Phe Ile Asn Lys Leu Asp Asp Pro 25 20 30 Ser Gln Ser Ser Glu Leu Leu Ser Glu Ala Lys Lys Leu Asn Asp Ser 40 Gln <210> 491 <211> 49 <212> PRT 5 <213> secuencia artificial <220> <223> Secuencia bacteriana modificada 10 <400> 491 Lys Glu Val Ile Glu Ala Trp Asp Glu Ile Asp Lys Leu Pro Asn Leu Thr Leu Asn Gln Trp Leu Ala Phe Ile Asn Lys Leu Asp Asp Pro 25 Ser Gln Ser Ser Glu Leu Leu Ser Glu Ala Lys Lys Leu Asn Asp Ser 35 40 Gln <210> 492 <211> 49 15 <212> PRT <213> secuencia artificial 20 <223> Secuencia bacteriana modificada <400> 492 Lys Glu Val Leu Asp Ala Trp Asn Glu Ile Asp Gln Leu Pro Asn Leu Thr Ile Glu Gln Trp Leu Ala Phe Ile Asn Lys Leu Asp Asp Pro 25 Ser Gln Ser Ser Glu Leu Leu Ser Glu Ala Lys Lys Leu Asn Asp Ser Gln 25 <210> 493 <211> 49 <212> PRT

```
<213> secuencia artificial
          <220>
          <223> Secuencia bacteriana modificada
 5
          <400> 493
          Lys Glu Val Leu His Ala Trp Asn Glu Ile Asp His Leu Pro Asn Leu
           Thr Ile Glu Gln Trp Leu Ala Phe Ile Glu Lys Leu Glu Asp Asp Pro
           Ser Gln Ser Ser Glu Leu Leu Ser Glu Ala Lys Lys Leu Asn Asp Ser
                                         40
          Gln
10
          <210> 494
          <211> 49
          <212> PRT
          <213> secuencia artificial
15
          <220>
          <223> Secuencia bacteriana modificada
          <400> 494
          Lys Glu Val Ile Glu Ala Trp Gln Glu Ile Asp Lys Leu Pro Asn Leu
           Thr Ile Asp Gln Trp Leu Ala Phe Ile Asn Lys Leu Asp Asp Pro
                                             25
           Ser Gln Ser Ser Glu Leu Leu Ser Glu Ala Lys Lys Leu Asn Asp Ser
                                         40
20
          Gln
          <210> 495
          <211> 49
          <212> PRT
          <213> secuencia artificial
25
          <220>
          <223> Secuencia bacteriana modificada
30
          <400> 495
```

Lys Glu Val Val Asp Ala Trp Asn Glu Ile Asp Gln Leu Pro Asn Leu

Thr Ile Glu Gln Trp Leu Ala Phe Ile Asn Lys Leu Asp Asp Pro 20 25 Ser Gln Ser Ser Glu Leu Leu Ser Glu Ala Lys Lys Leu Asn Asp Ser Gln <210> 496 <211>49 <212> PRT 5 <213> secuencia artificial <220> <223> Secuencia bacteriana modificada 10 <400> 496 Lys Glu Gln Ile Glu Ala Trp Asn Glu Ile Asp Ala Leu Pro Asn Leu Thr Ile Glu Gln Trp Leu Ala Phe Ile Asn Lys Leu Ala Asp Asp Pro 25 Ser Gln Ser Ser Glu Leu Leu Ser Glu Ala Lys Lys Leu Asn Asp Ser 40 Gln <210> 497 15 <211> 58 <212> PRT <213> secuencia artificial 20 <223> Secuencia bacteriana modificada <400> 497 Val Asp Ala Lys Tyr Ala Lys Glu Val Leu Glu Ala Trp Asp Glu Ile Asp Arg Leu Pro Asn Leu Thr Ile Glu Gln Trp Leu Ala Phe Ile Asn 25 Lys Leu Asp Asp Pro Ser Gln Ser Ser Glu Leu Leu Ser Glu Ala Lys Lys Leu Asn Asp Ser Gln Ala Pro Lys 55 25 <210> 498 <211> 58

```
<212> PRT
          <213> secuencia artificial
          <220>
 5
          <223> Secuencia bacteriana modificada
          Val Asp Ala Lys Tyr Ala Lys Glu Val Leu Glu Ala Trp Asn Glu Ile
          Asp Arg Leu Pro Asn Leu Thr Ile Glu Gln Trp Leu Ala Phe Ile Asn
                       20
                                             25
          Lys Leu Asp Asp Pro Ser Gln Ser Ser Glu Leu Leu Ser Glu Ala
          Lys Lys Leu Asn Asp Ser Gln Ala Pro Lys
10
          <210> 499
          <211> 58
          <212> PRT
15
          <213> secuencia artificial
          <220>
          <223> Secuencia bacteriana modificada
20
          <400> 499
          Val Asp Ala Lys Tyr Ala Lys Glu Val Ile Glu Ala Trp Asn Glu Ile
          Asp Arg Leu Pro Asn Leu Thr Ile Glu Gln Trp Leu Ala Phe Ile Asn
                                             25
          Lys Leu Asp Asp Pro Ser Gln Ser Ser Glu Leu Leu Ser Glu Ala
                                         40
          Lys Lys Leu Asn Asp Ser Gln Ala Pro Lys
               50
          <210> 500
          <211> 58
25
          <212> PRT
          <213> secuencia artificial
          <223> Secuencia bacteriana modificada
30
          <400> 500
```

	Val 1	Asp	Ala	Lys	Tyr 5	Ala	Lys	Glu	Val	Leu 10	Glu	Ala	Trp	Asp	Glu 15	Ile
	Asp	Arg	Leu	Pro 20	Asn	Leu	Thr	Leu	Asp 25	Gln	Trp	Leu	Ala	Phe 30	Ile	Asn
	Lys	Leu	Asp 35	Asp	Asp	Pro	Ser	Gln 40	Ser	Ser	Glu	Leu	Leu 45	Ser	Glu	Ala
	Lys	Lys	Leu	Asn	Asp	Ser	Gln	Ala	Pro	Lys						
	50					55										
5	<211 <212	> 501 > 58 > PR > sec	Т	ia arti	ficial											
10	<220> <223> Secuencia bacteriana modificada															
		> 501 As p		Lys	Tyr 5	Ala	Lys	Glu	Val	Leu 10	Asp	Ala	Trp	Asp	Glu 15	Ile
	Asp	Ala	Leu	Pro 20	Asn	Leu	Thr	Leu	Glu 25	Gln	Trp	Leu	Ala	Phe 30	Ile	Asn
	Lys	Leu	Asp 35	Asp	Asp	Pro	Ser	Gln 40	Ser	Ser	Glu	Leu	Leu 45	Ser	Glu	Ala
15	Lys	Lys 50	Leu	Asn	Asp	Ser	Gln 55	Ala	Pro	Lys						
	<210> 502 <211> 58 <212> PRT <213> secuencia artificial															
20	<220> <223> Secuencia bacteriana modificada															
	<400	> 502	2													

Val Asp Ala Lys Tyr Ala Lys Glu Val Ile Asp Ala Trp Asp Glu Ile

Asp Arg Leu Pro Asn Leu Thr Leu Asp Gln Trp Leu Ala Phe Ile Asn 25 Lys Leu Asp Asp Pro Ser Gln Ser Ser Glu Leu Leu Ser Glu Ala Lys Lys Leu Asn Asp Ser Gln Ala Pro Lys <210> 503 <211> 58 <212> PRT <213> secuencia artificial <223> Secuencia bacteriana modificada 10 Val Asp Ala Lys Tyr Ala Lys Glu Thr Leu Glu Ala Trp Asp Glu Ile Asp Arg Leu Pro Asn Leu Thr Ile Glu Gln Trp Leu Ala Phe Ile Asn 25 Lys Leu Asp Asp Pro Ser Gln Ser Ser Glu Leu Leu Ser Glu Ala Lys Lys Leu Asn Asp Ser Gln Ala Pro Lys <210> 504 <211> 58 15 <212> PRT <213> secuencia artificial <220> 20 <223> Secuencia bacteriana modificada Val Asp Ala Lys Tyr Ala Lys Glu Val Ile Asp Ala Trp Asn Glu Ile Asp Ala Leu Pro Asn Leu Thr Leu Asp Gln Trp Leu Ala Phe Ile Asn 25 Lys Leu Asp Asp Pro Ser Gln Ser Ser Glu Leu Leu Ser Glu Ala Lys Lys Leu Asn Asp Ser Gln Ala Pro Lys 55

```
<210> 505
          <211> 58
          <212> PRT
          <213> secuencia artificial
 5
          <220>
          <223> Secuencia bacteriana modificada
          <400> 505
          Val Asp Ala Lys Tyr Ala Lys Glu Val Leu Asp Ala Trp Asp Glu Ile
          Asp Lys Leu Pro Asn Leu Thr Ile Asp Gln Trp Leu Ala Phe Ile Asn
                                             25
          Lys Leu Asp Asp Pro Ser Gln Ser Ser Glu Leu Leu Ser Glu Ala
10
                   35
                                        40
                                                              45
          Lys Lys Leu Asn Asp Ser Gln Ala Pro Lys
          <210> 506
15
          <211> 58
          <212> PRT
          <213> secuencia artificial
          <220>
20
          <223> Secuencia bacteriana modificada
          <400> 506
          Val Asp Ala Lys Tyr Ala Lys Glu Val Leu Glu Ala Trp Asp Glu Ile
          Asp His Leu Pro Asn Leu Thr Leu Asp Gln Trp Leu Ala Phe Ile Asn
          Lys Leu Asp Asp Pro Ser Gln Ser Ser Glu Leu Leu Ser Glu Ala
                   35
                                         40
          Lys Lys Leu Asn Asp Ser Gln Ala Pro Lys
25
          <210> 507
          <211> 58
          <212> PRT
          <213> secuencia artificial
30
          <223> Secuencia bacteriana modificada
          <400> 507
```

Val Asp Ala Lys Tyr Ala Lys Glu Val Leu Glu Ala Trp Asp Glu Ile

Asp Ala Leu Pro Asn Leu Thr Ile Glu Gln Trp Leu Ala Phe Ile Asn 25 Lys Leu Asp Asp Pro Ser Gln Ser Ser Glu Leu Leu Ser Glu Ala Lys Lys Leu Asn Asp Ser Gln Ala Pro Lys <210> 508 <211> 58 <212> PRT <213> secuencia artificial <223> Secuencia bacteriana modificada 10 Val Asp Ala Lys Tyr Ala Lys Glu Val Leu Asp Ala Trp Asp Glu Ile Asp Lys Leu Pro Asn Leu Thr Leu Glu Gln Trp Leu Ala Phe Ile Asn 25 Lys Leu Asp Asp Pro Ser Gln Ser Ser Glu Leu Leu Ser Glu Ala Lys Lys Leu Asn Asp Ser Gln Ala Pro Lys <210> 509 <211> 58 15 <212> PRT <213> secuencia artificial <220> 20 <223> Secuencia bacteriana modificada Val Asp Ala Lys Tyr Ala Lys Glu Thr Ile Thr Ala Trp Asp Glu Ile Asp Lys Leu Pro Asn Leu Thr Ile Glu Gln Trp Leu Ala Phe Ile Gly 25 Lys Leu Glu Asp Asp Pro Ser Gln Ser Ser Glu Leu Leu Ala Glu Ala Lys Lys Leu Asn Asp Ala Gln Ala Pro Lys 55

```
<210> 510
          <211> 58
          <212> PRT
          <213> secuencia artificial
 5
          <220>
          <223> Secuencia bacteriana modificada
          <400> 510
           Val Asp Asn Lys Phe Asn Lys Glu Ser Met Lys Ala Trp Asp Glu Ile
           Asp Arg Leu Pro Asn Leu Asn Ile Asn Gln Trp Val Ala Phe Ile Asp
10
                        20
                                             25
                                                                   30
           Ser Leu Tyr Asp Asp Pro Ser Gln Ser Ala Asn Leu Leu Ala Glu Ala
                                         40
           Lys Lys Leu Asn Asp Ala Gln Ala Pro Lys
                                    55
          <210> 511
15
          <211> 58
          <212> PRT
          <213> secuencia artificial
          <220>
20
          <223> Secuencia bacteriana modificada
          <400> 511
           Val Asp Ala Lys Tyr Ala Lys Glu Ser Ile Glu Ala Trp Thr Glu Ile
           Asp His Leu Pro Asn Leu Thr Ile Glu Gln Trp Leu Ala Phe Ile Asn
           Lys Leu Thr Asp Asp Pro Ser Gln Ser Ser Glu Leu Leu Ala Glu Ala
                   35
                                         40
           Lys Lys Leu Asn Asp Ala Gln Ala Pro Lys
25
          <210> 512
          <211> 58
          <212> PRT
          <213> secuencia artificial
30
          <223> Secuencia bacteriana modificada
          <400> 512
```

Val Asp Ala Lys Tyr Ala Lys Glu Val Leu Asp Ala Trp His Glu Ile

Asp Thr Leu Pro Asn Leu Thr Val Arg Gln Trp Leu Ala Phe Ile Ser 25 Lys Leu Glu Asp Asp Pro Ser Gln Ser Ser Glu Leu Leu Ala Glu Ala Lys Lys Leu Asn Asp Ala Gln Ala Pro Lys <210> 513 <211> 58 <212> PRT <213> secuencia artificial <223> Secuencia bacteriana modificada 10 Val Asp Ala Lys Tyr Ala Lys Glu His Ile Gln Ala Asn Glu Glu Ile Asp Arg Leu Pro Asn Leu Thr Ile Lys Gln Trp Leu Ala Phe Ile Asn Lys Leu His Asp Asp Pro Ser Gln Ser Ser Glu Leu Leu Ala Glu Ala Lys Lys Leu Asn Asp Ala Gln Ala Pro Lys <210> 514 <211> 58 15 <212> PRT <213> secuencia artificial <220> 20 <223> Secuencia bacteriana modificada Val Asp Ala Lys Tyr Ala Lys Glu Val Leu His Ala Trp Ala Glu Ile Asp Ala Leu Pro Asn Leu Thr Ile Glu Gln Trp Leu Ala Phe Ile Asn 25 Lys Leu Asp Asp Pro Ser Gln Ser Ser Glu Leu Leu Ser Glu Ala Lys Lys Leu Asn Asp Ser Gln Ala Pro Lys 55

```
<210> 515
          <211> 58
          <212> PRT
          <213> secuencia artificial
 5
          <220>
          <223> Secuencia bacteriana modificada
          <400> 515
          Val Asp Ala Lys Tyr Ala Lys Glu Val Leu Ala Ala Trp Asp Glu Ile
10
          Asp Ser Leu Pro Asn Leu Thr Leu Gln Gln Trp Leu Ala Phe Ile Asn
                                             25
          Lys Leu Asp Asp Pro Ser Gln Ser Ser Glu Leu Leu Ser Glu Ala
                                         40
          Lys Lys Leu Asn Asp Ser Gln Ala Pro Lys
          <210> 516
15
          <211> 58
          <212> PRT
          <213> secuencia artificial
20
          <223> Secuencia bacteriana modificada
          <400> 516
          Val Asp Ala Lys Tyr Ala Lys Glu Val Ile Asp Ala Trp Asn Glu Ile
          Asp Ala Leu Pro Asn Leu Thr Leu Glu Gln Trp Leu Ala Phe Ile Asn
          Lys Leu Asp Asp Pro Ser Gln Ser Ser Glu Leu Leu Ser Glu Ala
          Lys Lys Leu Asn Asp Ser Gln Ala Pro Lys
25
          <210> 517
          <211> 58
          <212> PRT
          <213> secuencia artificial
30
          <223> Secuencia bacteriana modificada
          <400> 517
```

	Val 1	Asp	Ala	Lys	Tyr 5	Ala	Lys	Glu	Val	Leu 10	Asp	Ala	Trp	Asn	Glu 15	Ile
	Asp	Ala	Leu	Pro 20	Asn	Leu	Thr	Ile	As p 25	Gln	Trp	Leu	Ala	Phe 30	Ile	Asn
	Lys	Leu	Ser 35	Asp	Asp	Pro	Ser	Gln 40	Ser	Ser	Glu	Leu	Leu 45	Ser	Glu	Ala
	Lys	Lys 50	Leu	Asn	Asp	Ser	Gln 55	Ala	Pro	Lys						
5	<210 <211 <212 <213	> 58 > PR	Т	ia arti	ficial											
10	<220> <223> Secuencia bacteriana modificada															
	<400 Val 1			Lys	Tyr 5	Ala	Lys	Glu	Val	Ile 10	Glu	Ala	Trp	Asp	Glu 15	Ile
	Asp	Gly	Leu	Pro 20	Asn	Leu	Thr	Ile	Glu 25	Gln	Trp	Leu	Ala	Phe 30	Ile	Asn
	Lys	Leu	Asp 35	Asp	Asp	Pro	Ser	Gln 40	Ser	Ser	Glu	Leu	Leu 45	Ser	Glu	Ala
15	Lys	Lys 50	Leu	Asn	Asp	Ser	Gln 55	Ala	Pro	Lys						
	<210 <211 <212 <213	> 58 > PR	Т	ia arti	ficial											
20	<220> <223> Secuencia bacteriana modificada															
		> 519 As p		Lys	Tyr 5	Ala	Lys	Glu	Val	Leu 10	Glu	Ala	Trp	Asp	Glu 15	Ile
	Asp	His	Leu	Pro 20	Asn	Leu	Thr	Leu	Gln 25	Gln	Trp	Leu	Ala	Phe 30	Ile	Asn
	Lys	Leu	Asp 35	Asp	Asp	Pro	Ser	Gln 40	Ser	Ser	Glu	Leu	Leu 45	Ser	Glu	Ala
25	Lys	Lys 50	Leu	Asn	Asp	Ser	Gln 55	Ala	Pro	Lys						

```
<210> 520
          <211> 58
          <212> PRT
          <213> secuencia artificial
 5
          <220>
          <223> Secuencia bacteriana modificada
          <400> 520
          Val Asp Ala Lys Tyr Ala Lys Glu Val Ile Glu Ala Trp Asn Glu Ile
          Asp Ala Leu Pro Asn Leu Thr Ile Glu Gln Trp Leu Ala Phe Ile Asn
          Lys Leu Asp Asp Pro Ser Gln Ser Ser Glu Leu Leu Ser Glu Ala
          Lys Lys Leu Asn Asp Ser Gln Ala Pro Lys
10
          <210> 521
          <211> 58
          <212> PRT
15
          <213> secuencia artificial
          <223> Secuencia bacteriana modificada
20
          <400> 521
          Val Asp Ala Lys Tyr Ala Lys Glu Val Ile Ala Ala Trp Asn Glu Ile
          Asp Arg Leu Pro Asn Leu Thr Leu Thr Gln Trp Leu Ala Phe Ile Asn
          Lys Leu Asp Asp Pro Ser Gln Ser Ser Glu Leu Leu Ser Glu Ala
          Lys Lys Leu Asn Asp Ser Gln Ala Pro Lys
          <210> 522
          <211> 58
25
          <212> PRT
          <213> secuencia artificial
          <223> Secuencia bacteriana modificada
30
          <400> 522
```

	Val 1	Asp	Ala	Lys	Tyr 5	Ala	Lys	Glu	Val	Ile 10	Glu	Ala	Trp	Asp	Glu 15	Ile
	Asp	Ala	Leu	Pro 20	Asn	Leu	Thr	Leu	Gln 25	Gln	Trp	Leu	Ala	Phe 30	Ile	Asn
	Lys	Leu	Asp 35	Asp	Asp	Pro	Ser	Gln 40	Ser	Ser	Glu	Leu	Leu 45	Ser	Glu	Ala
	Lys	Lys 50	Leu	Asn	Asp	Ser	Gln 55	Ala	Pro	Lys						
5	<210 <211 <212 <213	> 58 > PR	Т	ia arti	ficial											
10	<220> <223> Secuencia bacteriana modificada															
		> 523 As p		Lys	Tyr 5	Ala	Lys	Glu	Val	Ile 10	Ala	Ala	Trp	Asp	Glu 15	Ile
	Asp	Lys	Leu	Pro 20	Asn	Leu	Thr	Ile	Glu 25	Gln	Trp	Leu	Ala	Phe 30	Ile	Asn
	Lys	Leu	Asp 35	Asp	Asp	Pro	Ser	Gln 40	Ser	Ser	Glu	Leu	Leu 45	Ser	Glu	Ala
15	Lys	Lys 50	Leu	Asn	Asp	Ser	Gln 55	Ala	Pro	Lys						
	<210> 524 <211> 58 <212> PRT <213> secuencia artificial															
20	<220> <223> Secuencia bacteriana modificada															
		> 524 As p		Lys	Tyr 5	Ala	Lys	Glu	Val	Ile 10	Ala	Ala	Trp	Asp	Glu 15	Ile
	Asp	Lys	Leu	Pro 20	Asn	Leu	Thr	Leu	Gln 25	Gln	Trp	Leu	Ala	Phe 30	Ile	Asn
	Lys	Leu	Asp 35	Asp	Asp	Pro	Ser	Gln 40	Ser	Ser	Glu	Leu	Leu 45	Ser	Glu	Ala
25	Lys	Lys 50	Leu	Asn	Asp	Ser	Gln 55	Ala	Pro	Lys						
	<210	> 525	5							211						

```
<213> secuencia artificial
 5
          <220>
          <223> Secuencia bacteriana modificada
          <400> 525
          Val Asp Ala Lys Tyr Ala Lys Glu Thr Ile Ala Ala Trp Asp Glu Ile
          Asp Lys Leu Pro Asn Leu Thr Ile Glu Gln Trp Leu Ala Phe Ile Asn
          Lys Leu Asp Asp Pro Ser Gln Ser Ser Glu Leu Leu Ser Glu Ala
                                        40
          Lys Lys Leu Asn Asp Ser Gln Ala Pro Lys
10
          <210> 526
          <211> 58
          <212> PRT
          <213> secuencia artificial
15
          <220>
          <223> Secuencia bacteriana modificada
          <400> 526
          Val Asp Ala Lys Tyr Ala Lys Glu Thr Ile Glu Ala Trp Asn Glu Ile
          Asp Arg Leu Pro Asn Leu Thr Ile Glu Gln Trp Leu Ala Phe Ile Asn
          Lys Leu Asp Asp Pro Ser Gln Ser Ser Glu Leu Leu Ser Glu Ala
                                        40
          Lys Lys Leu Asn Asp Ser Gln Ala Pro Lys
20
          <210> 527
          <211> 58
          <212> PRT
25
          <213> secuencia artificial
          <220>
          <223> Secuencia bacteriana modificada
30
          <400> 527
          Val Asp Ala Lys Tyr Ala Lys Glu Val Leu Glu Ala Trp Arg Glu Ile
                            5
```

<211> 58 <212> PRT

Asp Ala Leu Pro Asn Leu Thr Ile Gln Gln Trp Leu Ala Phe Ile Asn

```
Lys Leu Asp Asp Pro Ser Gln Ser Ser Glu Leu Leu Ser Glu Ala
                   35
                                        40
          Lys Lys Leu Asn Asp Ser Gln Ala Pro Lys
              50
                                   55
          <210> 528
          <211> 58
          <212> PRT
 5
          <213> secuencia artificial
          <220>
          <223> Secuencia bacteriana modificada
10
          <400> 528
          Val Asp Ala Lys Tyr Ala Lys Glu Val Ile Glu Ala Trp Asp Glu Ile
          Asp Gln Leu Pro Asn Leu Thr Ile Glu Gln Trp Leu Ala Phe Ile Asn
          Lys Leu Asp Asp Pro Ser Gln Ser Ser Glu Leu Leu Ser Glu Ala
                                        40
          Lys Lys Leu Asn Asp Ser Gln Ala Pro Lys
                                   55
          <210> 529
15
          <211> 58
          <212> PRT
          <213> secuencia artificial
          <220>
20
          <223> Secuencia bacteriana modificada
          Val Asp Ala Lys Tyr Ala Lys Glu Val Leu Arg Ala Trp Asp Glu Ile
          Asp His Leu Pro Asn Leu Thr Leu Glu Gln Trp Leu Ala Phe Ile Asn
          Lys Leu Asp Asp Pro Ser Gln Ser Ser Glu Leu Leu Ser Glu Ala
                                        40
          Lys Lys Leu Asn Asp Ser Gln Ala Pro Lys
              50
                                   55
25
          <210> 530
          <211> 58
          <212> PRT
```

```
<213> secuencia artificial
          <220>
          <223> Secuencia bacteriana modificada
5
          <400> 530
          Val Asp Ala Lys Tyr Ala Lys Glu Val Leu Glu Ala Trp Asp Glu Ile
          Asp Arg Leu Pro Asn Leu Thr Leu Asn Gln Trp Leu Ala Phe Ile Asn
          Lys Leu Asp Asp Pro Ser Gln Ser Ser Glu Leu Leu Ser Glu Ala
                                        40
          Lys Lys Leu Asn Asp Ser Gln Ala Pro Lys
          <210> 531
10
          <211> 58
          <212> PRT
          <213> secuencia artificial
          <220>
15
          <223> Secuencia bacteriana modificada
          Val Asp Ala Lys Tyr Ala Lys Glu Val Leu Asp Ala Trp Asn Glu Ile
          Asp His Leu Pro Asn Leu Thr Ile Glu Gln Trp Leu Ala Phe Ile Asn
          Lys Leu Asp Asp Pro Ser Gln Ser Ser Glu Leu Leu Ser Glu Ala
                                        40
          Lys Lys Leu Asn Asp Ser Gln Ala Pro Lys
20
          <210> 532
          <211> 58
          <212> PRT
          <213> secuencia artificial
25
          <223> Secuencia bacteriana modificada
          <400> 532
```

	Val 1	Asp	Ala	Lys	Tyr 5	Ala	Lys	Glu	Val	Ile 10	Asp	Ala	Trp	Asn	Glu 15	Ile
	Asp	Lys	Leu	Pro 20	Asn	Leu	Thr	Ile	Glu 25	Gln	Trp	Leu	Ala	Phe 30	Ile	Asn
	Lys	Leu	Asp 35	Asp	Asp	Pro	Ser	Gln 40	Ser	Ser	Glu	Leu	Leu 45	Ser	Glu	Ala
	Lys	Lys 50	Leu	Asn	Asp	Ser	Gln 55	Ala	Pro	Lys						
5	<210 <211 <212 <213	> 58 > PR	Т	ia arti	ficial											
10	<220> <223> Secuencia bacteriana modificada															
10	<400 Val 1			Lys	Tyr 5	Ala	Lys	Glu	Thr	Leu 10	Glu	Ala	Trp	Asp	Glu 15	Ile
	Asp	Gln	Leu	Pro 20	Asn	Leu	Thr	Leu	Gln 25	Gln	Trp	Leu	Ala	Phe 30	Ile	Asn
	Lys	Leu	Asp 35	Asp	Asp	Pro	Ser	Gln 40	Ser	Ser	Glu	Leu	Leu 45	Ser	Glu	Ala
	Lys	Lys 50	Leu	Asn	Asp	Ser	Gln 55	Ala	Pro	Lys						
15	<210 <211 <212 <213	> 58 > PR	Т	ia arti	ficial											
20	<220 <223		cuenc	cia ba	cteria	ına m	odific	ada								
	<400 Val 1			Lys	Tyr 5	Ala	Lys	Glu	Val	Ile 10	Glu	Ala	Trp	Asn	Glu 15	Ile
	Asp	Ala	Leu	Pro 20	Asn	Leu	Thr	Leu	Asp 25	Gln	Trp	Leu	Ala	Phe 30	Ile	Asn
	Lys	Leu	Asp 35	Asp	Asp	Pro	Ser	Gln 40	Ser	Ser	Glu	Leu	Leu 45	Ser	Glu	Ala
25	Lys	Lys 50	Leu	Asn	Asp	Ser	Gln 55	Ala	Pro	Lys						

```
<210> 535
          <211> 58
          <212> PRT
          <213> secuencia artificial
 5
          <220>
          <223> Secuencia bacteriana modificada
          <400> 535
          Val Asp Ala Lys Tyr Ala Lys Glu Val Ile Asp Ala Trp Asn Glu Ile
          Asp Arg Leu Pro Asn Leu Thr Leu Gln Gln Trp Leu Ala Phe Ile Asn
          Lys Leu Asp Asp Pro Ser Gln Ser Ser Glu Leu Leu Ser Glu Ala
          Lys Lys Leu Asn Asp Ser Gln Ala Pro Lys
10
          <210> 536
          <211> 58
          <212> PRT
15
          <213> secuencia artificial
          <220>
          <223> Secuencia bacteriana modificada
20
          <400> 536
          Val Asp Ala Lys Tyr Ala Lys Glu Val Ile Asp Ala Trp Asn Glu Ile
          Asp Gln Leu Pro Asn Leu Thr Leu Glu Gln Trp Leu Ala Phe Ile Asn
          Lys Leu Asp Asp Pro Ser Gln Ser Ser Glu Leu Leu Ser Glu Ala
          Lys Lys Leu Asn Asp Ser Gln Ala Pro Lys
          <210> 537
          <211> 58
25
          <212> PRT
          <213> secuencia artificial
          <220>
          <223> Secuencia bacteriana modificada
30
          <400> 537
```

	Val 1	Asp	Ala	Lys	Tyr 5	Ala	Lys	Glu	Thr	Ile 10	Ala	Ala	Trp	Asp	Glu 15	Ile
	Asp	His	Leu	Pro 20	Asn	Leu	Thr	Leu	Glu 25	Gln	Trp	Leu	Ala	Phe 30	Ile	Asn
	Lys	Leu	Asp 35	Asp	Asp	Pro	Ser	Gln 40	Ser	Ser	Glu	Leu	Leu 45	Ser	Glu	Ala
	Lys	Lys 50	Leu	Asn	Asp	Ser	Gln 55	Ala	Pro	Lys						
5	<210 <211 <212 <213	> 58 > PR		ia arti	ficial											
40	<220 <223		cuenc	ia ba	cteria	na m	odific	ada								
10	<400 Val 1			Lys	Tyr 5	Ala	Lys	Glu	Val	Leu 10	Gln	Ala	Trp	Asp	Glu 15	Ile
	Asp	His	Leu	Pro 20	Asn	Leu	Thr	Ile	Gln 25	Gln	Trp	Leu	Ala	Phe 30	Ile	Asn
	Lys	Leu	Ser 35	Asp	Asp	Pro	Ser	Gln 40	Ser	Ser	Glu	Leu	Leu 45	Ser	Glu	Ala
	Lys	Lys 50	Leu	Asn	Asp	Ser	Gln 55	Ala	Pro	Lys						
15	<210 <211 <212 <213	> 58 > PR		ia arti	ficial											
20	<220 <223		cuenc	ia ba	cteria	na m	odific	ada								
	<400 Val 1			Lys	Tyr 5	Ala	Lys	Glu	Thr	Leu 10	His	Ala	Trp	Ala	Glu 15	Ile
	Asp	Arg	Leu	Pro 20	Asn	Leu	Thr	Ile	Glu 25	Gln	Trp	Leu	Ala	Phe 30	Ile	Asn
	Lys	Leu	Asp 35	Asp	Asp	Pro	Ser	Gln 40	Ser	Ser	Glu	Leu	Leu 45	Ser	Glu	Ala
25	Lys	Lys 50	Leu	Asn	Asp	Ser	Gln 55	Ala	Pro	Lys						
	<210	> 540)							047						

```
<211> 58
          <212> PRT
          <213> secuencia artificial
          <220>
 5
          <223> Secuencia bacteriana modificada
          <400> 540
          Val Asp Ala Lys Tyr Ala Lys Glu Val Leu Glu Ala Trp Asn Glu Ile
          Asp His Leu Pro Asn Leu Thr Leu Ala Gln Trp Leu Ala Phe Ile Asn
          Lys Leu Asp Asp Pro Ser Gln Ser Ser Glu Leu Leu Ser Glu Ala
                                         40
          Lys Lys Leu Asn Asp Ser Gln Ala Pro Lys
10
          <210> 541
          <211> 58
          <212> PRT
          <213> secuencia artificial
15
          <220>
          <223> Secuencia bacteriana modificada
          <400> 541
          Val Asp Ala Lys Tyr Ala Lys Glu Val Ile Glu Ala Trp Asp Glu Ile
          Asp Lys Leu Pro Asn Leu Thr Ile Ala Gln Trp Leu Ala Phe Ile Asn
          Lys Leu Asp Asp Pro Ser Gln Ser Ser Glu Leu Leu Ser Glu Ala
                                         40
          Lys Lys Leu Asn Asp Ser Gln Ala Pro Lys
20
          <210> 542
          <211> 58
          <212> PRT
25
          <213> secuencia artificial
          <223> Secuencia bacteriana modificada
30
          <400> 542
```

Val Asp Ala Lys Tyr Ala Lys Glu Val Leu Asp Ala Trp Asp Glu Ile 1 5 10 10 15

	Lys	Leu	Asp 35	Asp	Asp	Pro	Ser	Gln 40	Ser	Ser	Glu	Leu	Leu 45	Ser	Glu	Ala
	Lys	Lys 50	Leu	Asn	Asp	Ser	Gln 55	Ala	Pro	Lys						
5	<211 <212	> PR	Т	ia arti	ficial											
10	<220> <223> Secuencia bacteriana modificada <400> 543															
10				Lys	Tyr 5	Ala	Lys	Glu	Thr	Ile 10	Glu	Ala	Trp	Asn	Glu 15	Ile
	Asp	Lys	Leu	Pro 20	Asn	Leu	Thr	Leu	Thr 25	Gln	Trp	Leu	Ala	Phe 30	Ile	Asn
	Lys	Leu	Asp 35	Asp	Asp	Pro	Ser	Gln 40	Ser	Ser	Glu	Leu	Leu 45	Ser	Glu	Ala
	Lys	Lys 50	Leu	Asn	Asp	Ser	Gln 55	Ala	Pro	Lys						
15	<211 <212	> PR	Т	ia arti	ficial											
20	<220 <223		cuenc	ia ba	cteria	na m	odific	ada								
		> 544 Asp		Lys	Tyr 5	Ala	Lys	Glu	Val	Leu 10	Glu	Ala	Trp	Asn	Glu 15	Ile
	Asp	Leu	Leu	Pro 20	Asn	Leu	Thr	Ile	Glu 25	Gln	Trp	Leu	Ala	Phe 30	Ile	Asn
	Lys	Leu	Asp 35	Asp	Asp	Pro	Ser	Gln 40	Ser	Ser	Glu	Leu	Leu 45	Ser	Glu	Ala
25	Lys	Lys 50	Leu	Asn	Asp	Ser	Gln 55	Ala	Pro	Lys						

```
<210> 545
          <211> 58
          <212> PRT
          <213> secuencia artificial
 5
          <220>
          <223> Secuencia bacteriana modificada
          <400> 545
          Val Asp Ala Lys Tyr Ala Lys Glu Val Ile Glu Ala Trp Asp Glu Ile
          Asp His Leu Pro Asn Leu Thr Ile Asp Gln Trp Leu Ala Phe Ile Asn
          Lys Leu Asp Asp Pro Ser Gln Ser Ser Glu Leu Leu Ser Glu Ala
                                         40
          Lys Lys Leu Asn Asp Ser Gln Ala Pro Lys
10
          <210> 546
          <211> 58
          <212> PRT
15
          <213> secuencia artificial
          <220>
          <223> Secuencia bacteriana modificada
20
          <400> 546
          Val Asp Ala Lys Tyr Ala Lys Glu Val Ile Ser Ala Trp Asn Glu Ile
          Asp Ala Leu Pro Asn Leu Thr Leu Gln Gln Trp Leu Ala Phe Ile Asn
          Lys Leu Asp Asp Pro Ser Gln Ser Ser Glu Leu Leu Ser Glu Ala
                                         40
          Lys Lys Leu Asn Asp Ser Gln Ala Pro Lys
          <210> 547
          <211> 58
25
          <212> PRT
          <213> secuencia artificial
          <223> Secuencia bacteriana modificada
30
          <400> 547
```

Val Asp Ala Lys Tyr Ala Lys Glu Val Ile Ala Ala Trp Asn Glu Ile

Asp Lys Leu Pro Asn Leu Thr Leu Glu Gln Trp Leu Ala Phe Ile Asn 25 Lys Leu Asp Asp Pro Ser Gln Ser Ser Glu Leu Leu Ser Glu Ala Lys Lys Leu Asn Asp Ser Gln Ala Pro Lys <210> 548 <211> 58 <212> PRT <213> secuencia artificial <223> Secuencia bacteriana modificada 10 Val Asp Ala Lys Tyr Ala Lys Glu Thr Ile Glu Ala Trp Asn Glu Ile Asp Ser Leu Pro Asn Leu Thr Leu Asp Gln Trp Leu Ala Phe Ile Asn 25 Lys Leu Asp Asp Pro Ser Gln Ser Ser Glu Leu Leu Ser Glu Ala Lys Lys Leu Asn Asp Ser Gln Ala Pro Lys <210> 549 <211> 58 15 <212> PRT <213> secuencia artificial <220> 20 <223> Secuencia bacteriana modificada Val Asp Ala Lys Tyr Ala Lys Glu Val Leu Asp Ala Trp Asn Glu Ile Asp Gln Leu Pro Asn Leu Thr Leu Gln Gln Trp Leu Ala Phe Ile Asn 25 Lys Leu Asp Asp Pro Ser Gln Ser Ser Glu Leu Leu Ser Glu Ala Lys Lys Leu Asn Asp Ser Gln Ala Pro Lys 55

```
<210> 550
          <211> 58
          <212> PRT
          <213> secuencia artificial
 5
          <220>
          <223> Secuencia bacteriana modificada
          <400> 550
          Val Asp Ala Lys Tyr Ala Lys Glu Val Leu Ala Ala Trp Asn Glu Ile
          Asp His Leu Pro Asn Leu Thr Ile Glu Gln Trp Leu Ala Phe Ile Asn
          Lys Leu Asp Asp Pro Ser Gln Ser Ser Glu Leu Leu Ser Glu Ala
          Lys Lys Leu Asn Asp Ser Gln Ala Pro Lys
10
          <210> 551
          <211> 58
          <212> PRT
15
          <213> secuencia artificial
          <223> Secuencia bacteriana modificada
20
          <400> 551
          Val Asp Ala Lys Tyr Ala Lys Glu Val Leu Glu Ala Trp Asp Glu Ile
          Asp His Leu Pro Asn Leu Thr Ile Thr Gln Trp Leu Ala Phe Ile Asn
          Lys Leu Asp Asp Pro Ser Gln Ser Ser Glu Leu Leu Ser Glu Ala
                                         40
          Lys Lys Leu Asn Asp Ser Gln Ala Pro Lys
               50
                                    55
25
          <210> 552
          <211> 58
          <212> PRT
          <213> secuencia artificial
30
          <220>
          <223> Secuencia bacteriana modificada
          <400> 552
```

Val Asp Ala Lys Tyr Ala Lys Glu Thr Ile Asp Ala Trp Asn Glu Ile

Asp His Leu Pro Asn Leu Thr Ile Glu Gln Trp Leu Ala Phe Ile Asn 25 Lys Leu Asp Asp Pro Ser Gln Ser Ser Glu Leu Leu Ser Glu Ala Lys Lys Leu Asn Asp Ser Gln Ala Pro Lys <210> 553 <211> 58 <212> PRT <213> secuencia artificial <223> Secuencia bacteriana modificada 10 Val Asp Ala Lys Tyr Ala Lys Glu Val Ile Glu Ala Trp Asn Glu Ile Asp His Leu Pro Asn Leu Thr Ile Gln Gln Trp Leu Ala Phe Ile Asn 25 Lys Leu Asp Asp Pro Ser Gln Ser Ser Glu Leu Leu Ser Glu Ala Lys Lys Leu Asn Asp Ser Gln Ala Pro Lys <210> 554 <211> 58 15 <212> PRT <213> secuencia artificial <220> 20 <223> Secuencia bacteriana modificada Val Asp Ala Lys Tyr Ala Lys Glu Val Ile Gln Ala Trp Asn Glu Ile Asp Ala Leu Pro Asn Leu Thr Ile Ser Gln Trp Leu Ala Phe Ile Asn 25 Lys Leu Asp Asp Pro Ser Gln Ser Ser Glu Leu Leu Ser Glu Ala Lys Lys Leu Asn Asp Ser Gln Ala Pro Lys

```
<210> 555
          <211> 58
          <212> PRT
          <213> secuencia artificial
 5
          <220>
          <223> Secuencia bacteriana modificada
          <400> 555
           Val Asp Ala Lys Tyr Ala Lys Glu Val Ile Ala Ala Trp Asp Glu Ile
           Asp Ser Leu Pro Asn Leu Thr Ile Glu Gln Trp Leu Ala Phe Ile Asn
           Lys Leu Asp Asp Pro Ser Gln Ser Ser Glu Leu Leu Ser Glu Ala
                                         40
           Lys Lys Leu Asn Asp Ser Gln Ala Pro Lys
10
          <210> 556
          <211> 58
          <212> PRT
15
          <213> secuencia artificial
          <223> Secuencia bacteriana modificada
20
          <400> 556
           Val Asp Ala Lys Tyr Ala Lys Glu His Ile Glu Ala Trp Asn Glu Ile
           Asp Ala Leu Pro Asn Leu Thr Ile Glu Gln Trp Leu Ala Phe Ile Asn
           Lys Leu Gln Asp Asp Pro Ser Gln Ser Ser Glu Leu Leu Ser Glu Ala
                                         40
           Lys Lys Leu Asn Asp Ser Gln Ala Pro Lys
                                    55
          <210> 557
25
          <211> 58
          <212> PRT
          <213> secuencia artificial
30
          <223> Secuencia bacteriana modificada
          <400> 557
```

Val Asp Ala Lys Tyr Ala Lys Glu Val Leu Glu Ala Trp Asn Glu Ile

Asp Lys Leu Pro Asn Leu Thr Leu Asp Gln Trp Leu Ala Phe Ile Asn 25 Lys Leu Asp Asp Pro Ser Gln Ser Ser Glu Leu Leu Ser Glu Ala Lys Lys Leu Asn Asp Ser Gln Ala Pro Lys <210> 558 <211> 58 <212> PRT <213> secuencia artificial <223> Secuencia bacteriana modificada 10 Val Asp Ala Lys Tyr Ala Lys Glu Val Ile Asp Ala Trp Asn Glu Ile Asp His Leu Pro Asn Leu Thr Ile Glu Gln Trp Leu Ala Phe Ile Asn 25 Lys Leu Ala Asp Asp Pro Ser Gln Ser Ser Glu Leu Leu Ser Glu Ala Lys Lys Leu Asn Asp Ser Gln Ala Pro Lys <210> 559 <211> 58 15 <212> PRT <213> secuencia artificial <220> 20 <223> Secuencia bacteriana modificada Val Asp Ala Lys Tyr Ala Lys Glu Thr Ile Asp Ala Trp Asp Glu Ile Asp Lys Leu Pro Asn Leu Thr Ile Glu Gln Trp Leu Ala Phe Ile Asn 25 Lys Leu Asp Asp Pro Ser Gln Ser Ser Glu Leu Leu Ser Glu Ala Lys Lys Leu Asn Asp Ser Gln Ala Pro Lys 55

```
<210> 560
          <211> 58
          <212> PRT
          <213> secuencia artificial
 5
          <220>
          <223> Secuencia bacteriana modificada
          <400> 560
          Val Asp Ala Lys Tyr Ala Lys Glu Val Ile Ala Ala Trp Asp Glu Ile
          Asp Leu Leu Pro Asn Leu Thr Leu Gln Gln Trp Leu Ala Phe Ile Asn
                                             25
          Lys Leu Ala Asp Asp Pro Ser Gln Ser Ser Glu Leu Leu Ser Glu Ala
                                         40
          Lys Lys Leu Asn Asp Ser Gln Ala Pro Lys
10
          <210> 561
          <211> 58
          <212> PRT
15
          <213> secuencia artificial
          <223> Secuencia bacteriana modificada
20
          <400> 561
          Val Asp Ala Lys Tyr Ala Lys Glu Val Ile His Ala Trp Asp Glu Ile
                            5
          Asp Lys Leu Pro Asn Leu Thr Ile Glu Gln Trp Leu Ala Phe Ile Asn
                                             25
          Lys Leu Asp Asp Pro Ser Gln Ser Ser Glu Leu Leu Ser Glu Ala
                   35
                                         40
          Lys Lys Leu Asn Asp Ser Gln Ala Pro Lys
               50
                                   55
25
          <210> 562
          <211> 58
          <212> PRT
          <213> secuencia artificial
30
          <220>
          <223> Secuencia bacteriana modificada
          <400> 562
```

Val Asp Ala Lys Tyr Ala Lys Glu Val Ile Ala Ala Trp Asn Glu Ile

5 Asp His Leu Pro Asn Leu Thr Leu Glu Gln Trp Leu Ala Phe Ile Asn 25 Lys Leu Asp Asp Pro Ser Gln Ser Ser Glu Leu Leu Ser Glu Ala Lys Lys Leu Asn Asp Ser Gln Ala Pro Lys <210> 563 <211> 58 <212> PRT <213> secuencia artificial <223> Secuencia bacteriana modificada 10 Val Asp Ala Lys Tyr Ala Lys Glu Thr Leu Asp Ala Trp Asn Glu Ile Asp Lys Leu Pro Asn Leu Thr Leu Ser Gln Trp Leu Ala Phe Ile Asn 25 Lys Leu Asp Asp Pro Ser Gln Ser Ser Glu Leu Leu Ser Glu Ala 40 Lys Lys Leu Asn Asp Ser Gln Ala Pro Lys 50 55 15 <210> 564 <211> 58 <212> PRT <213> secuencia artificial 20 <220> <223> Secuencia bacteriana modificada <400> 564

Val Asp Ala Lys Tyr Ala Lys Glu Val Leu Glu Ala Trp Asn Glu Ile

Asp Ala Leu Pro Asn Leu Thr Leu Glu Gln Trp Leu Ala Phe Ile Asn 25 Lys Leu Asp Asp Pro Ser Gln Ser Ser Glu Leu Leu Ser Glu Ala Lys Lys Leu Asn Asp Ser Gln Ala Pro Lys <210> 565 <211> 58 <212> PRT <213> secuencia artificial <223> Secuencia bacteriana modificada 10 Val Asp Ala Lys Tyr Ala Lys Glu Val Ile Gln Ala Trp Asp Glu Ile Asp His Leu Pro Asn Leu Thr Ile Ser Gln Trp Leu Ala Phe Ile Asn 25 Lys Leu Asp Asp Pro Ser Gln Ser Ser Glu Leu Leu Ser Glu Ala Lys Lys Leu Asn Asp Ser Gln Ala Pro Lys <210> 566 <211> 58 15 <212> PRT <213> secuencia artificial <220> 20 <223> Secuencia bacteriana modificada Val Asp Ala Lys Tyr Ala Lys Glu Val Leu Gln Ala Trp Asp Glu Ile Asp Ser Leu Pro Asn Leu Thr Ile Glu Gln Trp Leu Ala Phe Ile Asn 25 Lys Leu Asp Asp Pro Ser Gln Ser Ser Glu Leu Leu Ser Glu Ala Lys Lys Leu Asn Asp Ser Gln Ala Pro Lys 55

```
<210> 567
          <211> 58
          <212> PRT
          <213> secuencia artificial
 5
          <220>
          <223> Secuencia bacteriana modificada
          <400> 567
          Val Asp Ala Lys Tyr Ala Lys Glu Thr Leu Glu Ala Trp Asp Glu Ile
          Asp His Leu Pro Asn Leu Thr Ile Ala Gln Trp Leu Ala Phe Ile Asn
          Lys Leu Asp Asp Pro Ser Gln Ser Ser Glu Leu Leu Ser Glu Ala
          Lys Lys Leu Asn Asp Ser Gln Ala Pro Lys
10
          <210> 568
          <211> 58
          <212> PRT
15
          <213> secuencia artificial
          <220>
          <223> Secuencia bacteriana modificada
20
          <400> 568
          Val Asp Ala Lys Tyr Ala Lys Glu Thr Ile Asp Ala Trp Asn Glu Ile
          Asp Arg Leu Pro Asn Leu Thr Ile Ser Gln Trp Leu Ala Phe Ile Asn
                       20
                                             25
          Lys Leu Asp Asp Pro Ser Gln Ser Ser Glu Leu Leu Ser Glu Ala
                   35
                                         40
                                                              45
          Lys Lys Leu Asn Asp Ser Gln Ala Pro Lys
25
          <210> 569
          <211> 58
          <212> PRT
          <213> secuencia artificial
30
          <223> Secuencia bacteriana modificada
          <400> 569
```

Val Asp Ala Lys Tyr Ala Lys Glu Val Leu Asp Ala Trp His Glu Ile

Asp His Leu Pro Asn Leu Thr Ile Gln Gln Trp Leu Ala Phe Ile Asn 25 Lys Leu Asp Asp Pro Ser Gln Ser Ser Glu Leu Leu Ser Glu Ala Lys Lys Leu Asn Asp Ser Gln Ala Pro Lys <210> 570 <211> 58 <212> PRT <213> secuencia artificial <223> Secuencia bacteriana modificada 10 Val Asp Ala Lys Tyr Ala Lys Glu Gln Ile Arg Ala Trp Asp Glu Ile Asp Lys Leu Pro Asn Leu Thr Ile Glu Gln Trp Leu Ala Phe Ile Asn 25 Lys Leu Ala Asp Asp Pro Ser Gln Ser Ser Glu Leu Leu Ser Glu Ala Lys Lys Leu Asn Asp Ser Gln Ala Pro Lys <210> 571 <211> 58 15 <212> PRT <213> secuencia artificial <220> 20 <223> Secuencia bacteriana modificada Val Asp Ala Lys Tyr Ala Lys Glu Thr Leu Tyr Ala Trp Asn Glu Ile Asp Lys Leu Pro Asn Leu Thr Ile Glu Gln Trp Leu Ala Phe Ile Glu 25 Lys Leu Gln Asp Asp Pro Ser Gln Ser Ser Glu Leu Leu Ser Glu Ala Lys Lys Leu Asn Asp Ser Gln Ala Pro Lys 55

```
<210> 572
          <211> 58
          <212> PRT
          <213> secuencia artificial
 5
          <220>
          <223> Secuencia bacteriana modificada
          <400> 572
          Val Asp Ala Lys Tyr Ala Lys Glu Val Ile Glu Ala Trp Asn Glu Ile
          Asp Ala Leu Pro Asn Leu Thr Ile Asp Gln Trp Leu Ala Phe Ile Asn
          Lys Leu Asp Asp Pro Ser Gln Ser Ser Glu Leu Leu Ser Glu Ala
                                        40
          Lys Lys Leu Asn Asp Ser Gln Ala Pro Lys
10
          <210> 573
          <211> 58
          <212> PRT
15
          <213> secuencia artificial
          <223> Secuencia bacteriana modificada
20
          <400> 573
          Val Asp Ala Lys Tyr Ala Lys Glu Val Leu Glu Ala Trp Asn Glu Ile
          Asp His Leu Pro Asn Leu Thr Ile Gln Gln Trp Leu Ala Phe Ile Asn
                       20
                                            25
                                                                  30
          Lys Leu Asp Asp Pro Ser Gln Ser Ser Glu Leu Leu Ser Glu Ala
                   35
                                        40
          Lys Lys Leu Asn Asp Ser Gln Ala Pro Lys
25
          <210> 574
          <211> 58
          <212> PRT
          <213> secuencia artificial
30
          <223> Secuencia bacteriana modificada
          <400> 574
```

Val Asp Ala Lys Tyr Ala Lys Glu Thr Ile Glu Ala Trp Asp Glu Ile

Asp Ala Leu Pro Asn Leu Thr Ile Glu Gln Trp Leu Ala Phe Ile Asn 25 Lys Leu Asp Asp Pro Ser Gln Ser Ser Glu Leu Leu Ser Glu Ala Lys Lys Leu Asn Asp Ser Gln Ala Pro Lys <210> 575 <211> 58 <212> PRT <213> secuencia artificial <223> Secuencia bacteriana modificada 10 Val Asp Ala Lys Tyr Ala Lys Glu Val Ile Glu Ala Trp Asn Glu Ile Asp His Leu Pro Asn Leu Thr Leu Gln Gln Trp Leu Ala Phe Ile Asn 25 Lys Leu Asp Asp Pro Ser Gln Ser Ser Glu Leu Leu Ser Glu Ala Lys Lys Leu Asn Asp Ser Gln Ala Pro Lys <210> 576 <211> 58 15 <212> PRT <213> secuencia artificial <220> 20 <223> Secuencia bacteriana modificada Val Asp Ala Lys Tyr Ala Lys Glu Val Ile Glu Ala Trp Asn Glu Ile Asp Lys Leu Pro Asn Leu Thr Ile Gln Gln Trp Leu Ala Phe Ile Asn 25 Lys Leu Asp Asp Pro Ser Gln Ser Ser Glu Leu Leu Ser Glu Ala Lys Lys Leu Asn Asp Ser Gln Ala Pro Lys 55

```
<210> 577
          <211> 58
          <212> PRT
          <213> secuencia artificial
 5
          <220>
          <223> Secuencia bacteriana modificada
          <400> 577
          Val Asp Ala Lys Tyr Ala Lys Glu Thr Leu Asp Ala Trp Ala Glu Ile
          Asp His Leu Pro Asn Leu Thr Leu Asp Gln Trp Leu Ala Phe Ile Asn
                                             25
          Lys Leu Asp Asp Pro Ser Gln Ser Ser Glu Leu Leu Ser Glu Ala
                                         40
          Lys Lys Leu Asn Asp Ser Gln Ala Pro Lys
10
          <210> 578
          <211> 58
          <212> PRT
15
          <213> secuencia artificial
          <223> Secuencia bacteriana modificada
20
          <400> 578
          Val Asp Ala Lys Tyr Ala Lys Glu His Ile Asp Ala Trp Asn Glu Ile
          Asp Ala Leu Pro Asn Leu Thr Leu Ser Gln Trp Leu Ala Phe Ile Asn
                                             25
          Lys Leu Asp Asp Pro Ser Gln Ser Ser Glu Leu Leu Ser Glu Ala
                                         40
          Lys Lys Leu Asn Asp Ser Gln Ala Pro Lys
25
          <210> 579
          <211> 58
          <212> PRT
          <213> secuencia artificial
30
          <223> Secuencia bacteriana modificada
          <400> 579
```

	Val 1	Asp	Ala	Lys	Tyr 5	Ala	Lys	Glu	Val	Leu 10	Asp	Ala	Trp	Asn	Glu 15	Ile
	Asp	Lys	Leu	Pro 20	Asn	Leu	Thr	Ile	Ala 25	Gln	Trp	Leu	Ala	Phe 30	Ile	Asn
	Lys	Leu	Asp 35	Asp	Asp	Pro	Ser	Gln 40	Ser	Ser	Glu	Leu	Leu 45	Ser	Glu	Ala
	Lys	Lys 50	Leu	Asn	Asp	Ser	Gln 55	Ala	Pro	Lys						
5	<211 <212	> PR		ia arti	ficial											
10	<220 <223		cuenc	ia ba	cteria	na m	odific	ada								
10		> 580 As p		Lys	Tyr 5	Ala	Lys	Glu	Val	Ile 10	Glu	Ala	Trp	Thr	Glu 15	Ile
	Asp	Tyr	Leu	Pro 20	Asn	Leu	Thr	Leu	Gln 25	Gln	Trp	Leu	Ala	Phe 30	Ile	Asn
	Lys	Leu	Asp 35	Asp	Asp	Pro	Ser	Gln 40	Ser	Ser	Glu	Leu	Leu 45	Ser	Glu	Ala
15	Lys	Lys 50	Leu	Asn	Asp	Ser	Gln 55	Ala	Pro	Lys						
	<211 <212	> PR		ia arti	ficial											
20	<220 <223		cuenc	ia ba	cteria	na m	odific	ada								
		> 581 As p		Lys	Tyr 5	Ala	Lys	Glu	Thr	Ile 10	Glu	Ala	Trp	Asn	Glu 15	Ile
	Asp	His	Leu	Pro 20	Asn	Leu	Thr	Ile	Ala 25	Gln	Trp	Leu	Ala	Phe 30	Ile	Asn
	Lys	Leu	Asp 35	Asp	Asp	Pro	Ser	Gln 40	Ser	Ser	Glu	Leu	Leu 45	Ser	Glu	Ala
25	Lys	Lys 50	Leu	Asn	Asp	Ser	Gln 55	Ala	Pro	Lys						

```
<210> 582
          <211> 58
          <212> PRT
          <213> secuencia artificial
 5
          <220>
          <223> Secuencia bacteriana modificada
          <400> 582
          Val Asp Ala Lys Tyr Ala Lys Glu Val Ile Gln Ala Trp Asn Glu Ile
          Asp Lys Leu Pro Asn Leu Thr Leu Glu Gln Trp Leu Ala Phe Ile Asn
                                             25
          Lys Leu Asp Asp Pro Ser Gln Ser Ser Glu Leu Leu Ser Glu Ala
          Lys Lys Leu Asn Asp Ser Gln Ala Pro Lys
10
          <210> 583
          <211> 58
          <212> PRT
15
          <213> secuencia artificial
          <220>
          <223> Secuencia bacteriana modificada
20
          <400> 583
          Val Asp Ala Lys Tyr Ala Lys Glu Val Ile Glu Ala Trp Asp Glu Ile
          Asp His Leu Pro Asn Leu Thr Ile Glu Gln Trp Leu Ala Phe Ile Asn
          Lys Leu Asp Asp Pro Ser Gln Ser Ser Glu Leu Leu Ser Glu Ala
          Lys Lys Leu Asn Asp Ser Gln Ala Pro Lys
          <210> 584
          <211> 58
25
          <212> PRT
          <213> secuencia artificial
          <220>
          <223> Secuencia bacteriana modificada
30
          <400> 584
```

Val Asp Ala Lys Tyr Ala Lys Glu Thr Ile Asp Ala Trp Asn Glu Ile 1 5 10 10 15

	Asp	Leu	Leu	Pro 20	Asn	Leu	Thr	Ile	Glu 25	Gln	Trp	Leu	Ala	Phe 30	Ile	Asn
	Lys	Leu	Asp 35	Asp	Asp	Pro	Ser	Gln 40	Ser	Ser	Glu	Leu	Leu 45	Ser	Glu	Ala
	Lys	Lys 50	Leu	Asn	Asp	Ser	Gln 55	Ala	Pro	Lys						
5	<211 <212	> PR		ia arti	ficial											
40	<220> <223> Secuencia bacteriana modificada <400> 585															
10			Ala	Lys	Tyr 5	Ala	Lys	Glu	His	Ile 10	Asp	Ala	Trp	Asn	Glu 15	Ile
	Asp	Lys	Leu	Pro 20	Asn	Leu	Thr	Leu	Asp 25	Gln	Trp	Leu	Ala	Phe 30	Ile	Asn
	Lys	Leu	Asp 35	Asp	Asp	Pro	Ser	Gln 40	Ser	Ser	Glu	Leu	Leu 45	Ser	Glu	Ala
15	Lys	Lys 50	Leu	Asn	Asp	Ser	Gln 55	Ala	Pro	Lys						
15	<211 <212	> PR		ia arti	ficial											
20	<220 <223		cuenc	ia ba	cteria	na m	odific	ada								
		> 586 As p) Ala	Lys	Tyr 5	Ala	Lys	Glu	Val	Val 10	Ala	Ala	Trp	Asn	Glu 15	Ile
	Asp	Ala	Leu	Pro 20	Asn	Leu	Thr	Ile	Glu 25	Gln	Trp	Leu	Ala	Phe 30	Ile	Asn
	Lys	Leu	Asn 35	Asp	Asp	Pro	Ser	Gln 40	Ser	Ser	Glu	Leu	Leu 45	Ser	Glu	Ala
25	Lys	Lys 50	Leu	Asn	Asp	Ser	Gln 55	Ala	Pro	Lys						
	<210	> 587	7							226						

```
<211> 58
          <212> PRT
          <213> secuencia artificial
          <220>
 5
          <223> Secuencia bacteriana modificada
          <400> 587
          Val Asp Ala Lys Tyr Ala Lys Glu Val Ile Glu Ala Trp Asn Glu Ile
          Asp Ala Leu Pro Asn Leu Thr Leu Ala Gln Trp Leu Ala Phe Ile Asn
          Lys Leu Asp Asp Pro Ser Gln Ser Ser Glu Leu Leu Ser Glu Ala
                                         40
          Lys Lys Leu Asn Asp Ser Gln Ala Pro Lys
10
          <210> 588
          <211> 58
          <212> PRT
          <213> secuencia artificial
15
          <220>
          <223> Secuencia bacteriana modificada
          <400> 588
          Val Asp Ala Lys Tyr Ala Lys Glu Val Leu Gln Ala Trp Asp Glu Ile
          Asp Arg Leu Pro Asn Leu Thr Leu Asp Gln Trp Leu Ala Phe Ile Asn
          Lys Leu Asp Asp Pro Ser Gln Ser Ser Glu Leu Leu Ser Glu Ala
                   35
                                         40
          Lys Lys Leu Asn Asp Ser Gln Ala Pro Lys
20
          <210> 589
          <211> 58
          <212> PRT
25
          <213> secuencia artificial
          <223> Secuencia bacteriana modificada
30
          <400> 589
```

	Val 1	Asp	Ala	Lys	Tyr 5	Ala	Lys	Glu	Val	Ile 10	Asp	Ala	Trp	Asp	Glu 15	Ile
	Asp	His	Leu	Pro 20	Asn	Leu	Thr	Ile	Glu 25	Gln	Trp	Leu	Ala	Phe 30	Ile	Asn
	Lys	Leu	Ser 35	Asp	Asp	Pro	Ser	Gln 40	Ser	Ser	Glu	Leu	Leu 45	Ser	Glu	Ala
	Lys	Lys 50	Leu	Asn	Asp	Ser	Gln 55	Ala	Pro	Lys						
5	<210 <211 <212 <213	> PR	Т	ia arti	ficial											
10	<220 <223		cuenc	ia ba	cteria	na m	odific	ada								
10		> 590 Asp		Lys	Tyr 5	Ala	Lys	Glu	Val	Val 10	Glu	Ala	Trp	Asn	Glu 15	Ile
	Asp	Gln	Leu	Pro 20	Asn	Leu	Thr	Ile	Glu 25	Gln	Trp	Leu	Ala	Phe 30	Ile	Asn
	Lys	Leu	Asp 35	Asp	Asp	Pro	Ser	Gln 40	Ser	Ser	Glu	Leu	Leu 45	Ser	Glu	Ala
15	Lys	Lys 50	Leu	Asn	Asp	Ser	Gln 55	Ala	Pro	Lys						
	<211 <212	> PR		ia arti	ficial											
20	<220 <223		cuenc	ia ba	cteria	na m	odific	ada								
		> 591 As p		Lys	Tyr 5	Ala	Lys	Glu	Val	Ile 10	Gln	Ala	Trp	Asn	Glu 15	Ile
	Asp	Ala	Leu	Pro 20	Asn	Leu	Thr	Ile	Glu 25	Gln	Trp	Leu	Ala	Phe 30	Ile	Asn
	Lys	Leu	Asp 35	Asp	Asp	Pro	Ser	Gln 40	Ser	Ser	Glu	Leu	Leu 45	Ser	Glu	Ala
25	Lys	Lys 50	Leu	Asn	Asp	Ser	Gln 55	Ala	Pro	Lys						

```
<210> 592
          <211> 58
          <212> PRT
          <213> secuencia artificial
 5
          <220>
          <223> Secuencia bacteriana modificada
          <400> 592
           Val Asp Ala Lys Tyr Ala Lys Glu Val Ile Gln Ala Trp Asp Glu Ile
           Asp Lys Leu Pro Asn Leu Thr Ile Asp Gln Trp Leu Ala Phe Ile Asn
           Lys Leu Ala Asp Asp Pro Ser Gln Ser Ser Glu Leu Leu Ser Glu Ala
                                         40
           Lys Lys Leu Asn Asp Ser Gln Ala Pro Lys
10
          <210> 593
          <211> 58
          <212> PRT
15
          <213> secuencia artificial
          <220>
          <223> Secuencia bacteriana modificada
20
          <400> 593
           Val Asp Ala Lys Tyr Ala Lys Glu Val Val Ala Ala Trp Asp Glu Ile
           Asp Ala Leu Pro Asn Leu Thr Leu Thr Gln Trp Leu Ala Phe Ile Asn
           Lys Leu Asp Asp Pro Ser Gln Ser Ser Glu Leu Leu Ser Glu Ala
           Lys Lys Leu Asn Asp Ser Gln Ala Pro Lys
          <210> 594
          <211> 58
25
          <212> PRT
          <213> secuencia artificial
          <220>
          <223> Secuencia bacteriana modificada
30
          <400> 594
```

Val Asp Ala Lys Tyr Ala Lys Glu Val Ile Gln Ala Trp Asn Glu Ile

Asp Gly Leu Pro Asn Leu Thr Leu Ser Gln Trp Leu Ala Phe Ile Asn 25 Lys Leu Asp Asp Pro Ser Gln Ser Ser Glu Leu Leu Ser Glu Ala Lys Lys Leu Asn Asp Ser Gln Ala Pro Lys <210> 595 <211> 58 <212> PRT <213> secuencia artificial <223> Secuencia bacteriana modificada 10 Val Asp Ala Lys Tyr Ala Lys Glu Thr Ile Glu Ala Trp Asp Glu Ile Asp Ala Leu Pro Asn Leu Thr Ile Thr Gln Trp Leu Ala Phe Ile Asn 25 Lys Leu Asp Asp Pro Ser Gln Ser Ser Glu Leu Leu Ser Glu Ala Lys Lys Leu Asn Asp Ser Gln Ala Pro Lys <210> 596 <211> 58 15 <212> PRT <213> secuencia artificial <220> 20 <223> Secuencia bacteriana modificada Val Asp Ala Lys Tyr Ala Lys Glu Val Ile Asp Ala Trp Asn Glu Ile Asp His Leu Pro Asn Leu Thr Ile Gln Gln Trp Leu Ala Phe Ile Asn 25 Lys Leu Ala Asp Asp Pro Ser Gln Ser Ser Glu Leu Leu Ser Glu Ala Lys Lys Leu Asn Asp Ser Gln Ala Pro Lys 55

```
<210> 597
          <211> 58
          <212> PRT
          <213> secuencia artificial
 5
          <220>
          <223> Secuencia bacteriana modificada
          <400> 597
           Val Asp Ala Lys Tyr Ala Lys Glu Thr Ile Glu Ala Trp Asn Glu Ile
           Asp Ala Leu Pro Asn Leu Thr Leu Asp Gln Trp Leu Ala Phe Ile Asn
           Lys Leu Glu Asp Asp Pro Ser Gln Ser Ser Glu Leu Leu Ser Glu Ala
10
                                         40
           Lys Lys Leu Asn Asp Ser Gln Ala Pro Lys
          <210> 598
15
          <211> 58
          <212> PRT
          <213> secuencia artificial
          <220>
20
          <223> Secuencia bacteriana modificada
           Val Asp Ala Lys Tyr Ala Lys Glu His Ile His Ala Trp Asn Glu Ile
           Asp Glu Leu Pro Asn Leu Thr Ile Glu Gln Trp Leu Ala Phe Ile Asn
           Lys Leu Ala Asp Asp Pro Ser Gln Ser Ser Glu Leu Leu Ser Glu Ala
                                         40
           Lys Lys Leu Asn Asp Ser Gln Ala Pro Lys
25
          <210> 599
          <211> 58
          <212> PRT
          <213> secuencia artificial
30
          <220>
          <223> Secuencia bacteriana modificada
          <400> 599
```

Val Asp Ala Lys Tyr Ala Lys Glu Val Ile Asp Ala Trp Asp Glu Ile

Asp His Leu Pro Asn Leu Thr Ile Asp Gln Trp Leu Ala Phe Ile Asn 25 Lys Leu Ser Asp Pro Ser Gln Ser Ser Glu Leu Leu Ser Glu Ala Lys Lys Leu Asn Asp Ser Gln Ala Pro Lys <210> 600 <211> 58 <212> PRT <213> secuencia artificial <223> Secuencia bacteriana modificada 10 Val Asp Ala Lys Tyr Ala Lys Glu Val Ile Asp Ala Asn Asp Glu Ile Asp Ala Leu Pro Asn Leu Thr Ile Ala Gln Trp Leu Ala Phe Ile Asn 25 Lys Leu His Asp Asp Pro Ser Gln Ser Ser Glu Leu Leu Ser Glu Ala Lys Lys Leu Asn Asp Ser Gln Ala Pro Lys <210> 601 <211> 58 15 <212> PRT <213> secuencia artificial <220> 20 <223> Secuencia bacteriana modificada Val Asp Ala Lys Tyr Ala Lys Glu Thr Ile Glu Ala Trp Asp Glu Ile Asp Lys Leu Pro Asn Leu Thr Ile Glu Gln Trp Leu Ala Phe Ile Asn 25 Lys Leu Asp Asp Pro Ser Gln Ser Ser Glu Leu Leu Ser Glu Ala Lys Lys Leu Asn Asp Ser Gln Ala Pro Lys 55

```
<210> 602
          <211> 58
          <212> PRT
          <213> secuencia artificial
 5
          <220>
          <223> Secuencia bacteriana modificada
          <400> 602
          Val Asp Ala Lys Tyr Ala Lys Glu Val Leu Leu Ala Trp Asp Glu Ile
          Asp His Leu Pro Asn Leu Thr Leu Glu Gln Trp Leu Ala Phe Ile Asn
10
          Lys Leu Asp Asp Pro Ser Gln Ser Ser Glu Leu Leu Ser Glu Ala
          Lys Lys Leu Asn Asp Ser Gln Ala Pro Lys
          <210> 603
          <211> 58
15
          <212> PRT
          <213> secuencia artificial
          <220>
20
          <223> Secuencia bacteriana modificada
          Val Asp Ala Lys Tyr Ala Lys Glu His Ile Asp Ala Trp Asn Glu Ile
          Asp Gly Leu Pro Asn Leu Thr Leu Glu Gln Trp Leu Ala Phe Ile Asn
          Lys Leu Asp Asp Pro Ser Gln Ser Ser Glu Leu Leu Ser Glu Ala
          Lys Lys Leu Asn Asp Ser Gln Ala Pro Lys
          <210> 604
25
          <211> 58
          <212> PRT
          <213> secuencia artificial
30
          <223> Secuencia bacteriana modificada
          <400> 604
```

Val Asp Ala Lys Tyr Ala Lys Glu Val Ile Glu Ala Trp Ser Glu Ile

Asp Ala Leu Pro Asn Leu Thr Ile Asp Gln Trp Leu Ala Phe Ile Asn 25 Lys Leu Ala Asp Asp Pro Ser Gln Ser Ser Glu Leu Leu Ser Glu Ala Lys Lys Leu Asn Asp Ser Gln Ala Pro Lys <210> 605 <211> 58 <212> PRT <213> secuencia artificial <223> Secuencia bacteriana modificada 10 Val Asp Ala Lys Tyr Ala Lys Glu Gln Leu Asn Ala Trp Ala Glu Ile Asp Ala Leu Pro Asn Leu Thr Ile Glu Gln Trp Leu Ala Phe Ile Asn 25 Lys Leu Asp Asp Pro Ser Gln Ser Ser Glu Leu Leu Ser Glu Ala Lys Lys Leu Asn Asp Ser Gln Ala Pro Lys <210> 606 <211> 58 15 <212> PRT <213> secuencia artificial <220> 20 <223> Secuencia bacteriana modificada Val Asp Ala Lys Tyr Ala Lys Glu Val Ile Asp Ala Trp Asn Glu Ile Asp Ala Leu Pro Asn Leu Thr Ile Ala Gln Trp Leu Ala Phe Ile Asn 25 Lys Leu Asp Asp Pro Ser Gln Ser Ser Glu Leu Leu Ser Glu Ala Lys Lys Leu Asn Asp Ser Gln Ala Pro Lys 55

```
<210> 607
          <211> 58
          <212> PRT
          <213> secuencia artificial
 5
          <220>
          <223> Secuencia bacteriana modificada
          <400> 607
          Val Asp Ala Lys Tyr Ala Lys Glu Thr Ile Asp Ala Trp Asn Glu Ile
10
          Asp Gln Leu Pro Asn Leu Thr Ile Glu Gln Trp Leu Ala Phe Ile Asn
                       20
                                             25
          Lys Leu Asp Asp Pro Ser Gln Ser Ser Glu Leu Leu Ser Glu Ala
                                         40
          Lys Lys Leu Asn Asp Ser Gln Ala Pro Lys
                                    55
          <210> 608
15
          <211> 58
          <212> PRT
          <213> secuencia artificial
          <220>
20
          <223> Secuencia bacteriana modificada
          Val Asp Ala Lys Tyr Ala Lys Glu Val Ile Glu Ala Trp Asp Glu Ile
          Asp Lys Leu Pro Asn Leu Thr Leu Ala Gln Trp Leu Ala Phe Ile Asn
          Lys Leu Asp Asp Pro Ser Gln Ser Ser Glu Leu Leu Ser Glu Ala
                   35
                                         40
          Lys Lys Leu Asn Asp Ser Gln Ala Pro Lys
25
          <210> 609
          <211> 58
          <212> PRT
          <213> secuencia artificial
30
          <220>
          <223> Secuencia bacteriana modificada
          <400> 609
```

Val Asp Ala Lys Tyr Ala Lys Glu Val Leu Tyr Ala Trp Ala Glu Ile

Asp His Leu Pro Asn Leu Thr Ile Glu Gln Trp Leu Ala Phe Ile Asn 25 Lys Leu Asp Asp Pro Ser Gln Ser Ser Glu Leu Leu Ser Glu Ala Lys Lys Leu Asn Asp Ser Gln Ala Pro Lys <210> 610 <211> 58 <212> PRT <213> secuencia artificial <223> Secuencia bacteriana modificada 10 Val Asp Ala Lys Tyr Ala Lys Glu Gln Ile Asp Ala Trp Asn Glu Ile Asp Arg Leu Pro Asn Leu Thr Ile Gln Gln Trp Leu Ala Phe Ile Asn 25 Lys Leu Asp Asp Pro Ser Gln Ser Ser Glu Leu Leu Ser Glu Ala Lys Lys Leu Asn Asp Ser Gln Ala Pro Lys <210> 611 <211> 58 15 <212> PRT <213> secuencia artificial <220> 20 <223> Secuencia bacteriana modificada Val Asp Ala Lys Tyr Ala Lys Glu Val Leu Ala Ala Trp Asp Glu Ile Asp Arg Leu Pro Asn Leu Thr Ile Glu Gln Trp Leu Ala Phe Ile Asn 25 Lys Leu Asp Asp Pro Ser Gln Ser Ser Glu Leu Leu Ser Glu Ala Lys Lys Leu Asn Asp Ser Gln Ala Pro Lys 55

```
<210> 612
          <211> 58
          <212> PRT
          <213> secuencia artificial
 5
          <220>
          <223> Secuencia bacteriana modificada
          <400> 612
          Val Asp Ala Lys Tyr Ala Lys Glu Val Ile Glu Ala Trp Asp Glu Ile
          Asp His Leu Pro Asn Leu Thr Leu His Gln Trp Leu Ala Phe Ile Asn
                                             25
          Lys Leu Asp Asp Pro Ser Gln Ser Ser Glu Leu Leu Ser Glu Ala
                                         40
          Lys Lys Leu Asn Asp Ser Gln Ala Pro Lys
10
          <210> 613
          <211> 58
          <212> PRT
15
          <213> secuencia artificial
          <223> Secuencia bacteriana modificada
20
          <400> 613
          Val Asp Ala Lys Tyr Ala Lys Glu Val Ile Glu Ala Trp Asn Glu Ile
          Asp Lys Leu Pro Asn Leu Thr Leu Gln Gln Trp Leu Ala Phe Ile Asn
          Lys Leu Asp Asp Pro Ser Gln Ser Ser Glu Leu Leu Ser Glu Ala
          Lys Lys Leu Asn Asp Ser Gln Ala Pro Lys
          <210> 614
          <211> 58
25
          <212> PRT
          <213> secuencia artificial
          <223> Secuencia bacteriana modificada
30
          <400> 614
```

	Val 1	Asp	Ala	Lys	Tyr 5	Ala	Lys	Glu	Val	Ile 10	Asp	Ala	Asn	Asp	Glu 15	Ile
	Asp	Ala	Leu	Pro 20	Asn	Leu	Thr	Ile	Glu 25	Gln	Trp	Leu	Ala	Phe 30	Ile	Asn
	Lys	Leu	His 35	Asp	Asp	Pro	Ser	Gln 40	Ser	Ser	Glu	Leu	Leu 45	Ser	Glu	Ala
	Lys	Lys 50	Leu	Asn	Asp	Ser	Gln 55	Ala	Pro	Lys						
5	<210 <211 <212 <213	> 58 > PR	Т	ia arti	ficial											
10	<220 <223		cuenc	ia ba	cteria	na m	odific	ada								
	<400 Val 1		Ala	Lys	Tyr 5	Ala	Lys	Glu	Val	Ile 10	Ala	Ala	Trp	Asp	Glu 15	Ile
	Asp	Ala	Leu	Pro 20	Asn	Leu	Thr	Ile	Glu 25	Gln	Trp	Leu	Ala	Phe 30	Ile	Asn
	Lys	Leu	Asp 35	Asp	Asp	Pro	Ser	Gln 40	Ser	Ser	Glu	Leu	Leu 45	Ser	Glu	Ala
15	Lys	Lys 50	Leu	Asn	Asp	Ser	Gln 55	Ala	Pro	Lys						
	<210 <211 <212 <213	> 58 > PR	Т	ia arti	ficial											
20	<220 <223		cuenc	ia ba	cteria	na m	odific	ada								
		> 616 As p) Ala	Lys	Tyr 5	Ala	Lys	Glu	Val	Ile 10	Glu	Ala	Trp	Thr	Glu 15	Ile
	Asp	Gln	Leu	Pro 20	Asn	Leu	Thr	Leu	Asp 25	Gln	Trp	Leu	Ala	Phe 30	Ile	Asn
	Lys	Leu	Asp 35	Asp	Asp	Pro	Ser	Gln 40	Ser	Ser	Glu	Leu	Leu 45	Ser	Glu	Ala
25	Lys	Lys 50	Leu	Asn	Asp	Ser	Gln 55	Ala	Pro	Lys						

```
<210> 617
          <211> 58
          <212> PRT
          <213> secuencia artificial
 5
          <220>
          <223> Secuencia bacteriana modificada
          <400> 617
           Val Asp Ala Lys Tyr Ala Lys Glu Val Ile Asn Ala Trp Asn Glu Ile
           Asp Ala Leu Pro Asn Leu Thr Leu Gln Gln Trp Leu Ala Phe Ile Asn
                                             25
           Lys Leu Asp Asp Pro Ser Gln Ser Ser Glu Leu Leu Ser Glu Ala
                                         40
           Lys Lys Leu Asn Asp Ser Gln Ala Pro Lys
10
          <210> 618
          <211> 58
          <212> PRT
15
          <213> secuencia artificial
          <220>
          <223> Secuencia bacteriana modificada
20
          <400> 618
           Val Asp Ala Lys Tyr Ala Lys Glu His Ile Glu Ala Trp Asp Glu Ile
           Asp His Leu Pro Asn Leu Thr Ile Asp Gln Trp Leu Ala Phe Ile Asn
           Lys Leu Ala Asp Asp Pro Ser Gln Ser Ser Glu Leu Leu Ser Glu Ala
                                         40
           Lys Lys Leu Asn Asp Ser Gln Ala Pro Lys
          <210> 619
          <211> 58
25
          <212> PRT
          <213> secuencia artificial
          <220>
          <223> Secuencia bacteriana modificada
30
          <400> 619
```

	Val 1	Asp	Ala	Lys	Tyr 5	Ala	Lys	Glu	His	Leu 10	Glu	Ala	Trp	Arg	Glu 15	Ile
	Asp	Ala	Leu	Pro 20	Asn	Leu	Thr	Ile	Glu 25	Gln	Trp	Leu	Ala	Phe 30	Ile	Asn
	Lys	Leu	Asp 35	Asp	Asp	Pro	Ser	Gln 40	Ser	Ser	Glu	Leu	Leu 45	Ser	Glu	Ala
	Lys	Lys 50	Leu	Asn	Asp	Ser	Gln 55	Ala	Pro	Lys						
5	<210 <211 <212 <213	> 58 > PR	Т	ia arti	ficial											
10	<220> <223> Secuencia bacteriana modificada <400> 620															
				Lys	Tyr 5	Ala	Lys	Glu	Val	Leu 10	Asp	Ala	Trp	Asn	Glu 15	Ile
	Asp	Lys	Leu	Pro 20	Asn	Leu	Thr	Leu	Gln 25	Gln	Trp	Leu	Ala	Phe 30	Ile	Asn
	Lys	Leu	Asp 35	Asp	Asp	Pro	Ser	Gln 40	Ser	Ser	Glu	Leu	Leu 45	Ser	Glu	Ala
15	Lys	Lys 50	Leu	Asn	Asp	Ser	Gln 55	Ala	Pro	Lys						
	<210 <211 <212 <213	> 58 > PR		ia arti	ificial											
20	<220 <223	_	cuenc	ia ba	cteria	na m	odific	ada								
		> 621 As p		Lys	Tyr 5	Ala	Lys	Glu	Val	Ile 10	Ala	Ala	Trp	Asp	Glu 15	Ile
	Asp	His	Leu	Pro 20	Asn	Leu	Thr	Ile	Gln 25	Gln	Trp	Leu	Ala	Phe 30	Ile	Asn
	Lys	Leu	Asp 35	Asp	Asp	Pro	Ser	Gln 40	Ser	Ser	Glu	Leu	Leu 45	Ser	Glu	Ala
25	Lys	Lys 50	Leu	Asn	Asp	Ser	Gln 55	Ala	Pro	Lys						
	<210	> 622	2							050						

```
<211> 58
          <212> PRT
          <213> secuencia artificial
 5
          <220>
          <223> Secuencia bacteriana modificada
          <400> 622
          Val Asp Ala Lys Tyr Ala Lys Glu Val Ile Gln Ala Trp Asn Glu Ile
          Asp Ala Leu Pro Asn Leu Thr Leu Glu Gln Trp Leu Ala Phe Ile Asn
          Lys Leu Asp Asp Pro Ser Gln Ser Ser Glu Leu Leu Ser Glu Ala
                                        40
          Lys Lys Leu Asn Asp Ser Gln Ala Pro Lys
10
          <210> 623
          <211> 58
          <212> PRT
          <213> secuencia artificial
15
          <220>
          <223> Secuencia bacteriana modificada
          <400> 623
          Val Asp Ala Lys Tyr Ala Lys Glu Val Ile Asp Ala Trp Asn Glu Ile
          Asp His Leu Pro Asn Leu Thr Ile Ala Gln Trp Leu Ala Phe Ile Asn
          Lys Leu Asp Asp Pro Ser Gln Ser Ser Glu Leu Leu Ser Glu Ala
                                        40
          Lys Lys Leu Asn Asp Ser Gln Ala Pro Lys
20
          <210> 624
          <211> 58
          <212> PRT
25
          <213> secuencia artificial
          <223> Secuencia bacteriana modificada
30
          <400> 624
          Val Asp Ala Lys Tyr Ala Lys Glu Gln Leu Asp Ala Trp Asp Glu Ile
```

Asp His Leu Pro Asn Leu Thr Ile Asp Gln Trp Leu Ala Phe Ile Asn

Lys Leu Ser Asp Pro Ser Gln Ser Ser Glu Leu Leu Ser Glu Ala 40 Lys Lys Leu Asn Asp Ser Gln Ala Pro Lys 55 <210> 625 <211> 58 <212> PRT 5 <213> secuencia artificial <220> <223> Secuencia bacteriana modificada 10 <400> 625 Val Asp Ala Lys Tyr Ala Lys Glu Val Leu Asn Ala Trp Asp Glu Ile Asp Lys Leu Pro Asn Leu Thr Ile Glu Gln Trp Leu Ala Phe Ile Asn Lys Leu Asp Asp Pro Ser Gln Ser Ser Glu Leu Leu Ser Glu Ala 40 Lys Lys Leu Asn Asp Ser Gln Ala Pro Lys 55 <210> 626 15 <211> 58 <212> PRT <213> secuencia artificial <220> 20 <223> Secuencia bacteriana modificada Val Asp Ala Lys Tyr Ala Lys Glu Val Leu Glu Ala Trp Asn Glu Ile Asp His Leu Pro Asn Leu Thr Ile Asp Gln Trp Leu Ala Phe Ile Asn Lys Leu Asp Asp Pro Ser Gln Ser Ser Glu Leu Leu Ser Glu Ala 40 Lys Lys Leu Asn Asp Ser Gln Ala Pro Lys 50 55 25 <210> 627 <211> 58

```
<212> PRT
          <213> secuencia artificial
          <220>
5
          <223> Secuencia bacteriana modificada
          Val Asp Ala Lys Tyr Ala Lys Glu Val Leu Leu Ala Trp Asp Glu Ile
          Asp Arg Leu Pro Asn Leu Thr Ile Asp Gln Trp Leu Ala Phe Ile Asn
                                             25
          Lys Leu Ala Asp Asp Pro Ser Gln Ser Ser Glu Leu Leu Ser Glu Ala
          Lys Lys Leu Asn Asp Ser Gln Ala Pro Lys
                                    55
10
          <210> 628
          <211> 58
          <212> PRT
          <213> secuencia artificial
          <220>
15
          <223> Secuencia bacteriana modificada
          Val Asp Ala Lys Tyr Ala Lys Glu Val Ile Ala Ala Trp Asn Glu Ile
          Asp Gln Leu Pro Asn Leu Thr Leu Asp Gln Trp Leu Ala Phe Ile Asn
          Lys Leu Asp Asp Pro Ser Gln Ser Ser Glu Leu Leu Ser Glu Ala
          Lys Lys Leu Asn Asp Ser Gln Ala Pro Lys
                                    55
20
          <210> 629
          <211> 58
          <212> PRT
          <213> secuencia artificial
25
          <220>
          <223> Secuencia bacteriana modificada
          <400> 629
```

Val Asp Ala Lys Tyr Ala Lys Glu Thr Leu Leu Ala Trp Asp Glu Ile

Asp Ala Leu Pro Asn Leu Thr Ile Glu Gln Trp Leu Ala Phe Ile Asn 25 Lys Leu Asp Asp Pro Ser Gln Ser Ser Glu Leu Leu Ser Glu Ala Lys Lys Leu Asn Asp Ser Gln Ala Pro Lys <210> 630 <211> 58 <212> PRT <213> secuencia artificial <223> Secuencia bacteriana modificada 10 Val Asp Ala Lys Tyr Ala Lys Glu Val Ile Asp Ala Trp Asn Glu Ile Asp Thr Leu Pro Asn Leu Thr Leu Glu Gln Trp Leu Ala Phe Ile Asn 25 Lys Leu Asp Asp Pro Ser Gln Ser Ser Glu Leu Leu Ser Glu Ala Lys Lys Leu Asn Asp Ser Gln Ala Pro Lys <210> 631 15 <211> 58 <212> PRT <213> secuencia artificial <220> 20 <223> Secuencia bacteriana modificada Val Asp Ala Lys Tyr Ala Lys Glu Val Leu His Ala Trp Asn Glu Ile Asp His Leu Pro Asn Leu Thr Leu Asn Gln Trp Leu Ala Phe Ile Asn 25 30 Lys Leu Gln Asp Asp Pro Ser Gln Ser Ser Glu Leu Leu Ser Glu Ala

45

40

Lys Lys Leu Asn Asp Ser Gln Ala Pro Lys <210> 632 <211> 58 <212> PRT 5 <213> secuencia artificial <220> <223> Secuencia bacteriana modificada 10 <400> 632 Val Asp Ala Lys Tyr Ala Lys Glu Val Ile Gln Ala Trp Asn Glu Ile Asp Ala Leu Pro Asn Leu Thr Ile Ala Gln Trp Leu Ala Phe Ile Asn 20 25 Lys Leu Asp Asp Pro Ser Gln Ser Ser Glu Leu Leu Ser Glu Ala 40 Lys Lys Leu Asn Asp Ser Gln Ala Pro Lys <210> 633 15 <211> 58 <212> PRT <213> secuencia artificial <220> 20 <223> Secuencia bacteriana modificada Val Asp Ala Lys Tyr Ala Lys Glu Thr Val Asp Ala Trp Asn Glu Ile Asp Ala Leu Pro Asn Leu Thr Ile Glu Gln Trp Leu Ala Phe Ile Asn 25 Lys Leu Asp Asp Pro Ser Gln Ser Ser Glu Leu Leu Ser Glu Ala 40 45 Lys Lys Leu Asn Asp Ser Gln Ala Pro Lys 25 <210> 634 <211> 58 <212> PRT <213> secuencia artificial 30 <220> <223> Secuencia bacteriana modificada

35

		> 634 As p		Lys	Tyr 5	Ala	Lys	Glu	Val	Ile 10	Gln	Ala	Trp	Asp	Glu 15	Ile
	Asp	His	Leu	Pro 20	Asn	Leu	Thr	Ile	Asp 25	Gln	Trp	Leu	Ala	Phe 30	Ile	Asn
	Lys	Leu	Asp 35	Asp	Asp	Pro	Ser	Gln 40	Ser	Ser	Glu	Leu	Leu 45	Ser	Glu	Ala
	Lys	Lys 50	Leu	Asn	Asp	Ser	Gln 55	Ala	Pro	Lys						
5	<210 <211 <212 <213	> PR	Т	ia arti	ficial											
10	<220> <223> Secuencia bacteriana modificada															
		> 635 As p		Lys	Tyr 5	Ala	Lys	Glu	Val	Leu 10	Asp	Ala	Trp	Asn	Glu 15	Ile
	Asp	Gln	Leu	Pro 20	Asn	Leu	Thr	Ile	Gln 25	Gln	Trp	Leu	Ala	Phe 30	Ile	Asn
	Lys	Leu	Asp 35	Asp	Asp	Pro	Ser	Gln 40	Ser	Ser	Glu	Leu	Leu 45	Ser	Glu	Ala
	Lys	Lys 50	Leu	Asn	Asp	Ser	Gln 55	Ala	Pro	Lys						
15	<210 <211 <212 <213	> 58 > PR	Т	ia arti	ficial											
20	<220 <223		cuenc	ia ba	cteria	na m	odific	ada								
		> 636 As p		Lys	Tyr 5	Ala	Lys	Glu	Thr	Ile 10	Glu	Ala	Trp	Asn	Glu 15	Ile
25	Asp	Ala	Leu	Pro	Asn	Leu	Thr	Leu	Asp	Gln	Trp	Leu	Ala	Phe	Ile	Asn

20 25 30 Lys Leu Asp Asp Pro Ser Gln Ser Ser Glu Leu Leu Ser Glu Ala 40 Lys Lys Leu Asn Asp Ser Gln Ala Pro Lys <210> 637 <211> 58 <212> PRT 5 <213> secuencia artificial <220> <223> Secuencia bacteriana modificada 10 <400> 637 Val Asp Ala Lys Tyr Ala Lys Glu Val Ile Glu Ala Trp Asp Glu Ile Asp Ala Leu Pro Asn Leu Thr Ile Asp Gln Trp Leu Ala Phe Ile Asn Lys Leu Asp Asp Pro Ser Gln Ser Ser Glu Leu Leu Ser Glu Ala 40 Lys Lys Leu Asn Asp Ser Gln Ala Pro Lys <210> 638 <211> 58 15 <212> PRT <213> secuencia artificial <220> 20 <223> Secuencia bacteriana modificada <400> 638 Val Asp Ala Lys Tyr Ala Lys Glu Val Ile Glu Ala Trp Asn Glu Ile Asp Gln Leu Pro Asn Leu Thr Ile Gln Gln Trp Leu Ala Phe Ile Asn Lys Leu Asp Asp Pro Ser Gln Ser Ser Glu Leu Leu Ser Glu Ala 40 Lys Lys Leu Asn Asp Ser Gln Ala Pro Lys 25 <210> 639 <211> 58 <212> PRT <213> secuencia artificial

```
<220>
          <223> Secuencia bacteriana modificada
5
          <400> 639
          Val Asp Ala Lys Tyr Ala Lys Glu Val Ile Glu Ala Trp Thr Glu Ile
          Asp His Leu Pro Asn Leu Thr Ile Glu Gln Trp Leu Ala Phe Ile Asn
          Lys Leu Asp Asp Pro Ser Gln Ser Ser Glu Leu Leu Ser Glu Ala
                   35
                                        40
          Lys Lys Leu Asn Asp Ser Gln Ala Pro Lys
          <210> 640
          <211> 58
          <212> PRT
10
          <213> secuencia artificial
          <220>
          <223> Secuencia bacteriana modificada
15
          <400> 640
          Val Asp Ala Lys Tyr Ala Lys Glu Val Ile Gln Ala Trp Asn Glu Ile
          Asp His Leu Pro Asn Leu Thr Leu Gln Gln Trp Leu Ala Phe Ile Asn
          Lys Leu Glu Asp Asp Pro Ser Gln Ser Ser Glu Leu Leu Ser Glu Ala
                                        40
          Lys Lys Leu Asn Asp Ser Gln Ala Pro Lys
          <210> 641
20
          <211> 58
          <212> PRT
          <213> secuencia artificial
          <220>
25
          <223> Secuencia bacteriana modificada
          <400> 641
          Val Asp Ala Lys Tyr Ala Lys Glu Val Ile Gln Ala Asn Asn Glu Ile
```

10

15

Asp Gln Leu Pro Asn Leu Thr Ile Glu Gln Trp Leu Ala Phe Ile Asn Lys Leu His Asp Asp Pro Ser Gln Ser Ser Glu Leu Leu Ser Glu Ala 40 Lys Lys Leu Asn Asp Ser Gln Ala Pro Lys <210> 642 <211> 58 <212> PRT 5 <213> secuencia artificial <220> <223> Secuencia bacteriana modificada 10 <400> 642 Val Asp Ala Lys Tyr Ala Lys Glu Val Leu His Ala Trp Ser Glu Ile Asp Lys Leu Pro Asn Leu Thr Ile Glu Gln Trp Leu Ala Phe Ile Asn Lys Leu Asp Asp Pro Ser Gln Ser Ser Glu Leu Leu Ser Glu Ala 40 Lys Lys Leu Asn Asp Ser Gln Ala Pro Lys <210> 643 <211> 58 15 <212> PRT <213> secuencia artificial <220> 20 <223> Secuencia bacteriana modificada <400> 643 Val Asp Ala Lys Tyr Ala Lys Glu Thr Ile Gln Ala Trp Asp Glu Ile Asp Lys Leu Pro Asn Leu Thr Leu Asp Gln Trp Leu Ala Phe Ile Asn Lys Leu Ser Asp Asp Pro Ser Gln Ser Ser Glu Leu Leu Ser Glu Ala Lys Lys Leu Asn Asp Ser Gln Ala Pro Lys 25 50 55 <210> 644

5

```
<211> 58
          <212> PRT
          <213> secuencia artificial
          <220>
 5
          <223> Secuencia bacteriana modificada
          <400> 644
           Val Asp Ala Lys Tyr Ala Lys Glu Thr Leu Arg Ala Trp Asp Glu Ile
           Asp Lys Leu Pro Asn Leu Thr Ile Gln Gln Trp Leu Ala Phe Ile Asn
           Lys Leu Ala Asp Asp Pro Ser Gln Ser Ser Glu Leu Leu Ser Glu Ala
                                         40
           Lys Lys Leu Asn Asp Ser Gln Ala Pro Lys
10
          <210> 645
          <211> 58
          <212> PRT
          <213> secuencia artificial
15
          <220>
          <223> Secuencia bacteriana modificada
          <400> 645
           Val Asp Ala Lys Tyr Ala Lys Glu Val Ile Asp Ala Trp Asn Glu Ile
           Asp His Leu Pro Asn Leu Thr Ile Glu Gln Trp Leu Ala Phe Ile Asn
           Lys Leu Glu Asp Asp Pro Ser Gln Ser Ser Glu Leu Leu Ser Glu Ala
                                         40
           Lys Lys Leu Asn Asp Ser Gln Ala Pro Lys
20
          <210> 646
          <211> 58
          <212> PRT
25
          <213> secuencia artificial
          <223> Secuencia bacteriana modificada
30
          <400> 646
```

Val Asp Ala Lys Tyr Ala Lys Glu Val Ile Asp Ala Trp Asn Glu Ile

```
Asp His Leu Pro Asn Leu Thr Leu Gln Gln Trp Leu Ala Phe Ile Asn
                                           25
          Lys Leu Ala Asp Asp Pro Ser Gln Ser Ser Glu Leu Leu Ser Glu Ala
          Lys Lys Leu Asn Asp Ser Gln Ala Pro Lys
          <210> 647
          <211> 58
          <212> PRT
          <213> secuencia artificial
          <223> Secuencia bacteriana modificada
10
          Val Asp Ala Lys Tyr Ala Lys Glu Thr Ile Asp Ala Trp Asn Glu Ile
          Asp Ala Leu Pro Asn Leu Thr Leu Asp Gln Trp Leu Ala Phe Ile Asn
                                           25
          Lys Leu Asp Asp Pro Ser Gln Ser Ser Glu Leu Leu Ser Glu Ala
          Lys Lys Leu Asn Asp Ser Gln Ala Pro Lys
          <210> 648
          <211> 58
15
          <212> PRT
          <213> secuencia artificial
          <220>
20
          <223> Secuencia bacteriana modificada
          Val Asp Ala Lys Tyr Ala Lys Glu Val Ile Glu Ala Trp Asn Glu Ile
          Asp Gln Leu Pro Asn Leu Thr Ile Glu Gln Trp Leu Ala Phe Ile Asn
                                           25
          Lys Leu Asp Asp Pro Ser Gln Ser Ser Glu Leu Leu Ser Glu Ala
                                       40
          Lys Lys Leu Asn Asp Ser Gln Ala Pro Lys
25
              50
                                   55
          <210> 649
```

```
<211> 58
          <212> PRT
          <213> secuencia artificial
          <220>
 5
          <223> Secuencia bacteriana modificada
          <400> 649
          Val Asp Ala Lys Tyr Ala Lys Glu Val Ile Arg Ala Trp Asp Glu Ile
          Asp Gln Leu Pro Asn Leu Thr Leu Ser Gln Trp Leu Ala Phe Ile Asn
          Lys Leu Asp Asp Pro Ser Gln Ser Ser Glu Leu Leu Ser Glu Ala
                                         40
          Lys Lys Leu Asn Asp Ser Gln Ala Pro Lys
10
          <210> 650
          <211> 58
          <212> PRT
          <213> secuencia artificial
15
          <220>
          <223> Secuencia bacteriana modificada
          <400> 650
          Val Asp Ala Lys Tyr Ala Lys Glu Val Ile Glu Ala Trp Asn Glu Ile
          Asp Arg Leu Pro Asn Leu Thr Ile His Gln Trp Leu Ala Phe Ile Asn
          Lys Leu Asp Asp Pro Ser Gln Ser Ser Glu Leu Leu Ser Glu Ala
                   35
                                         40
          Lys Lys Leu Asn Asp Ser Gln Ala Pro Lys
20
          <210> 651
          <211> 58
          <212> PRT
25
          <213> secuencia artificial
          <223> Secuencia bacteriana modificada
30
          <400> 651
```

	Val 1	Asp	Ala	Lys	Tyr 5	Ala	Lys	Glu	Thr	Ile 10	Glu	Ala	Trp	Asn	Glu 15	Ile
	Asp	Gln	Leu	Pro 20	Asn	Leu	Thr	Ile	Glu 25	Gln	Trp	Leu	Ala	Phe 30	Ile	Asn
	Lys	Leu	Asp 35	Asp	Asp	Pro	Ser	Gln 40	Ser	Ser	Glu	Leu	Leu 45	Ser	Glu	Ala
	Lys	Lys 50	Leu	Asn	Asp	Ser	Gln 55	Ala	Pro	Lys						
5	<211 <212	> PR	Т	ia arti	ficial											
10	<220> <223> Secuencia bacteriana modificada															
10		> 652 As p		Lys	Tyr 5	Ala	Lys	Glu	Val	Leu 10	Thr	Ala	Trp	Ala	Glu 15	Ile
	Asp	Ala	Leu	Pro 20	Asn	Leu	Thr	Leu	Ser 25	Gln	Trp	Leu	Ala	Phe 30	Ile	Asn
	Lys	Leu	Asp 35	Asp	Asp	Pro	Ser	Gln 40	Ser	Ser	Glu	Leu	Leu 45	Ser	Glu	Ala
	Lys	Lys 50	Leu	Asn	Asp	Ser	Gln 55	Ala	Pro	Lys						
15	<211 <212	> PR	Т	ia arti	ficial											
20	<220 <223		cuenc	cia ba	cteria	na m	odific	ada								
		> 653 Asp		Lys	Tyr 5	Ala	Lys	Glu	Val	Ile 10	Glu	Ala	Trp	Asp	Glu 15	Ile
	Asp	Lys	Leu	Pro 20	Asn	Leu	Thr	Val	Asp 25	Gln	Trp	Leu	Ala	Phe 30	Ile	Asn
	Lys	Leu	Asp 35	Asp	Asp	Pro	Ser	Gln 40	Ser	Ser	Glu	Leu	Leu 45	Ser	Glu	Ala
25	Lys	Lys 50	Leu	Asn	Asp	Ser	Gln 55	Ala	Pro	Lys						

```
<210> 654
          <211> 58
          <212> PRT
          <213> secuencia artificial
 5
          <220>
          <223> Secuencia bacteriana modificada
          <400> 654
          Val Asp Ala Lys Tyr Ala Lys Glu Val Ile Asp Ala Trp Asn Glu Ile
          Asp His Leu Pro Asn Leu Thr Leu Thr Gln Trp Leu Ala Phe Ile Asn
          Lys Leu Asp Asp Pro Ser Gln Ser Ser Glu Leu Leu Ser Glu Ala
          Lys Lys Leu Asn Asp Ser Gln Ala Pro Lys
10
          <210> 655
          <211> 58
          <212> PRT
15
          <213> secuencia artificial
          <220>
          <223> Secuencia bacteriana modificada
20
          <400> 655
          Val Asp Ala Lys Tyr Ala Lys Glu Val Ile Glu Ala Trp Asn Glu Ile
          Asp Gln Leu Pro Asn Leu Thr Leu Asp Gln Trp Leu Ala Phe Ile Asn
          Lys Leu Asp Asp Pro Ser Gln Ser Ser Glu Leu Leu Ser Glu Ala
          Lys Lys Leu Asn Asp Ser Gln Ala Pro Lys
          <210> 656
          <211> 58
25
          <212> PRT
          <213> secuencia artificial
          <220>
          <223> Secuencia bacteriana modificada
30
          <400> 656
```

Val Asp Ala Lys Tyr Ala Lys Glu Thr Leu Gln Ala Trp Asp Glu Ile

Asp His Leu Pro Asn Leu Thr Leu Asn Gln Trp Leu Ala Phe Ile Asn 25 Lys Leu Asp Asp Pro Ser Gln Ser Ser Glu Leu Leu Ser Glu Ala Lys Lys Leu Asn Asp Ser Gln Ala Pro Lys <210> 657 <211> 58 <212> PRT <213> secuencia artificial <223> Secuencia bacteriana modificada 10 Val Asp Ala Lys Tyr Ala Lys Glu Val Ile Asp Ala Trp Asn Glu Ile Asp His Leu Pro Asn Leu Thr Ile Glu Gln Trp Leu Ala Phe Ile Asn 25 Lys Leu Asp Asp Pro Ser Gln Ser Ser Glu Leu Leu Ser Glu Ala Lys Lys Leu Asn Asp Ser Gln Ala Pro Lys <210> 658 <211> 58 15 <212> PRT <213> secuencia artificial <220> 20 <223> Secuencia bacteriana modificada Val Asp Ala Lys Tyr Ala Lys Glu Val Ile Glu Ala Trp Asn Glu Ile Asp Leu Leu Pro Asn Leu Thr Leu Ser Gln Trp Leu Ala Phe Ile Asn 25 Lys Leu Asp Asp Pro Ser Gln Ser Ser Glu Leu Leu Ser Glu Ala Lys Lys Leu Asn Asp Ser Gln Ala Pro Lys 55

```
<210> 659
          <211> 58
          <212> PRT
          <213> secuencia artificial
 5
          <220>
          <223> Secuencia bacteriana modificada
          <400> 659
          Val Asp Ala Lys Tyr Ala Lys Glu Val Ile Asp Ala Trp Asp Glu Ile
          Asp Arg Leu Pro Asn Leu Thr Leu Lys Gln Trp Leu Ala Phe Ile Asn
                                             25
          Lys Leu Asp Asp Pro Ser Gln Ser Ser Glu Leu Leu Ser Glu Ala
                                         40
          Lys Lys Leu Asn Asp Ser Gln Ala Pro Lys
10
          <210> 660
          <211> 58
          <212> PRT
15
          <213> secuencia artificial
          <223> Secuencia bacteriana modificada
20
          <400> 660
          Val Asp Ala Lys Tyr Ala Lys Glu Thr Leu His Ala Trp Asp Glu Ile
          Asp Lys Leu Pro Asn Leu Thr Ile Glu Gln Trp Leu Ala Phe Ile Asn
          Lys Leu Asp Asp Pro Ser Gln Ser Ser Glu Leu Leu Ser Glu Ala
                                         40
          Lys Lys Leu Asn Asp Ser Gln Ala Pro Lys
               50
                                    55
25
          <210> 661
          <211> 58
          <212> PRT
          <213> secuencia artificial
30
          <220>
          <223> Secuencia bacteriana modificada
          <400> 661
```

Val Asp Ala Lys Tyr Ala Lys Glu Val Ile Lys Ala Trp Asp Glu Ile

Asp His Leu Pro Asn Leu Thr Leu Asn Gln Trp Leu Ala Phe Ile Asn 25 Lys Leu Asp Asp Pro Ser Gln Ser Ser Glu Leu Leu Ser Glu Ala Lys Lys Leu Asn Asp Ser Gln Ala Pro Lys <210> 662 <211> 58 <212> PRT <213> secuencia artificial <223> Secuencia bacteriana modificada 10 Val Asp Ala Lys Tyr Ala Lys Glu Val Ile Glu Ala Trp Asn Glu Ile Asp His Leu Pro Asn Leu Thr Leu Ala Gln Trp Leu Ala Phe Ile Asn 25 Lys Leu Asp Asp Pro Ser Gln Ser Ser Glu Leu Leu Ser Glu Ala Lys Lys Leu Asn Asp Ser Gln Ala Pro Lys <210> 663 <211> 58 15 <212> PRT <213> secuencia artificial <220> 20 <223> Secuencia bacteriana modificada Val Asp Ala Lys Tyr Ala Lys Glu Val Ile Gln Ala Trp Asn Glu Ile Asp His Leu Pro Asn Leu Thr Ile Asp Gln Trp Leu Ala Phe Ile Thr 25 Lys Leu Glu Asp Asp Pro Ser Gln Ser Ser Glu Leu Leu Ser Glu Ala Lys Lys Leu Asn Asp Ser Gln Ala Pro Lys 55

```
<210> 664
          <211> 58
          <212> PRT
          <213> secuencia artificial
 5
          <220>
          <223> Secuencia bacteriana modificada
          <400> 664
          Val Asp Ala Lys Tyr Ala Lys Glu Val Ile Glu Ala Trp Asn Glu Ile
          Asp Arg Leu Pro Asn Leu Thr Ile Lys Gln Trp Leu Ala Phe Ile Asn
                                             25
          Lys Leu Asp Asp Pro Ser Gln Ser Ser Glu Leu Leu Ser Glu Ala
                                         40
          Lys Lys Leu Asn Asp Ser Gln Ala Pro Lys
10
          <210> 665
          <211> 58
          <212> PRT
15
          <213> secuencia artificial
          <223> Secuencia bacteriana modificada
20
          <400> 665
          Val Asp Ala Lys Tyr Ala Lys Glu Val Ile Glu Ala Trp Asn Glu Ile
          Asp Ser Leu Pro Asn Leu Thr Leu Gln Gln Trp Leu Ala Phe Ile Asn
          Lys Leu Asp Asp Pro Ser Gln Ser Ser Glu Leu Leu Ser Glu Ala
                                         40
          Lys Lys Leu Asn Asp Ser Gln Ala Pro Lys
                                    55
          <210> 666
25
          <211> 58
          <212> PRT
          <213> secuencia artificial
30
          <223> Secuencia bacteriana modificada
          <400> 666
```

Val Asp Ala Lys Tyr Ala Lys Glu Thr Ile Asp Ala Trp Asn Glu Ile

Asp Lys Leu Pro Asn Leu Thr Ile Glu Gln Trp Leu Ala Phe Ile Asn 25 Lys Leu Asp Asp Pro Ser Gln Ser Ser Glu Leu Leu Ser Glu Ala Lys Lys Leu Asn Asp Ser Gln Ala Pro Lys <210> 667 <211> 58 <212> PRT <213> secuencia artificial <223> Secuencia bacteriana modificada 10 Val Asp Ala Lys Tyr Ala Lys Glu Val Leu Glu Ala Trp Ala Glu Ile Asp Ala Leu Pro Asn Leu Thr Ile Ala Gln Trp Leu Ala Phe Ile Asn 25 Lys Leu Asp Asp Pro Ser Gln Ser Ser Glu Leu Leu Ser Glu Ala Lys Lys Leu Asn Asp Ser Gln Ala Pro Lys <210> 668 <211> 58 15 <212> PRT <213> secuencia artificial <220> 20 <223> Secuencia bacteriana modificada Val Asp Ala Lys Tyr Ala Lys Glu Thr Ile Asp Ala Trp Asn Glu Ile Asp Arg Leu Pro Asn Leu Thr Ile Glu Gln Trp Leu Ala Phe Ile Asn 25 Lys Leu Asp Asp Pro Ser Gln Ser Ser Glu Leu Leu Ser Glu Ala Lys Lys Leu Asn Asp Ser Gln Ala Pro Lys 55

```
<210> 669
          <211> 58
          <212> PRT
          <213> secuencia artificial
 5
          <220>
          <223> Secuencia bacteriana modificada
          <400> 669
          Val Asp Ala Lys Tyr Ala Lys Glu Thr Leu Lys Ala Trp Asp Glu Ile
          Asp Arg Leu Pro Asn Leu Thr Leu Glu Gln Trp Leu Ala Phe Ile Asn
                                             25
          Lys Leu Asp Asp Pro Ser Gln Ser Ser Glu Leu Leu Ser Glu Ala
          Lys Lys Leu Asn Asp Ser Gln Ala Pro Lys
10
          <210> 670
          <211> 58
          <212> PRT
15
          <213> secuencia artificial
          <223> Secuencia bacteriana modificada
20
          <400> 670
          Val Asp Ala Lys Tyr Ala Lys Glu Thr Ile Ala Ala Trp Asn Glu Ile
                            5
          Asp Ala Leu Pro Asn Leu Thr Leu Gln Gln Trp Leu Ala Phe Ile Asn
                                             25
          Lys Leu Asp Asp Pro Ser Gln Ser Ser Glu Leu Leu Ser Glu Ala
                   35
                                         40
          Lys Lys Leu Asn Asp Ser Gln Ala Pro Lys
               50
                                    55
25
          <210> 671
          <211> 58
          <212> PRT
          <213> secuencia artificial
30
          <220>
          <223> Secuencia bacteriana modificada
          <400> 671
```

Val Asp Ala Lys Tyr Ala Lys Glu Val Leu Gln Ala Trp Asn Glu Ile

Asp His Leu Pro Asn Leu Thr Ile Gln Gln Trp Leu Ala Phe Ile Asn 25 Lys Leu Asp Asp Pro Ser Gln Ser Ser Glu Leu Leu Ser Glu Ala Lys Lys Leu Asn Asp Ser Gln Ala Pro Lys <210> 672 <211> 58 <212> PRT <213> secuencia artificial <223> Secuencia bacteriana modificada 10 Val Asp Ala Lys Tyr Ala Lys Glu Val Ile Glu Ala Trp Ser Glu Ile Asp His Leu Pro Asn Leu Thr Leu Gln Gln Trp Leu Ala Phe Ile Asn 25 Lys Leu Asp Asp Pro Ser Gln Ser Ser Glu Leu Leu Ser Glu Ala Lys Lys Leu Asn Asp Ser Gln Ala Pro Lys <210> 673 <211> 58 15 <212> PRT <213> secuencia artificial <220> 20 <223> Secuencia bacteriana modificada Val Asp Ala Lys Tyr Ala Lys Glu Val Ile Asp Ala Trp Asn Glu Ile Asp Gly Leu Pro Asn Leu Thr Ile Glu Gln Trp Leu Ala Phe Ile Asn 25 Lys Leu Asp Asp Pro Ser Gln Ser Ser Glu Leu Leu Ser Glu Ala Lys Lys Leu Asn Asp Ser Gln Ala Pro Lys 55

```
<210> 674
          <211> 58
          <212> PRT
          <213> secuencia artificial
 5
          <220>
          <223> Secuencia bacteriana modificada
          <400> 674
           Val Asp Ala Lys Tyr Ala Lys Glu Val Ile His Ala Trp Asn Glu Ile
           Asp His Leu Pro Asn Leu Thr Leu Asn Gln Trp Leu Ala Phe Ile Asn
                                             25
           Lys Leu Glu Asp Asp Pro Ser Gln Ser Ser Glu Leu Leu Ser Glu Ala
                                         40
           Lys Lys Leu Asn Asp Ser Gln Ala Pro Lys
10
          <210> 675
          <211> 58
          <212> PRT
15
          <213> secuencia artificial
          <220>
          <223> Secuencia bacteriana modificada
20
          <400> 675
           Val Asp Ala Lys Tyr Ala Lys Glu Val Leu Asp Ala Trp Asn Glu Ile
           Asp Ser Leu Pro Asn Leu Thr Leu Asp Gln Trp Leu Ala Phe Ile Asn
           Lys Leu Asp Asp Pro Ser Gln Ser Ser Glu Leu Leu Ser Glu Ala
           Lys Lys Leu Asn Asp Ser Gln Ala Pro Lys
          <210> 676
          <211> 58
25
          <212> PRT
          <213> secuencia artificial
          <223> Secuencia bacteriana modificada
30
          <400> 676
```

	Val 1	Asp	Ala	Lys	Tyr 5	Ala	Lys	Glu	Gln	Ile 10	Glu	Ala	Trp	Asn	Glu 15	Ile
	Asp	Arg	Leu	Pro 20	Asn	Leu	Thr	Leu	Glu 25	Gln	Trp	Leu	Ala	Phe 30	Ile	Asn
	Lys	Leu	Asp 35	Asp	Asp	Pro	Ser	Gln 40	Ser	Ser	Glu	Leu	Leu 45	Ser	Glu	Ala
	Lys	Lys 50	Leu	Asn	Asp	Ser	Gln 55	Ala	Pro	Lys						
5	<210> 677 <211> 58 <212> PRT <213> secuencia artificial <220>															
10	<220> <223> Secuencia bacteriana modificada <400> 677															
		> 677 As p		Lys	Tyr 5	Ala	Lys	Glu	Val	Val 10	Asp	Ala	Trp	Asn	Glu 15	Ile
	Asp	Ala	Leu	Pro 20	Asn	Leu	Thr	Leu	Gln 25	Gln	Trp	Leu	Ala	Phe 30	Ile	Asn
	Lys	Leu	Asp 35	Asp	Asp	Pro	Ser	Gln 40	Ser	Ser	Glu	Leu	Leu 45	Ser	Glu	Ala
15	Lys	Lys 50	Leu	Asn	Asp	Ser	Gln 55	Ala	Pro	Lys						
00	<211 <212	> 678 > 58 > PR > sec	Т	ia arti	ficial											
20	<220 <223	> > Sed	cuenc	ia ba	cteria	na m	odific	ada								
		> 678 As p		Lys	Tyr 5	Ala	Lys	Glu	Val	Ile 10	Glu	Ala	Trp	Asn	Glu 15	Ile
	Asp	Lys	Leu	Pro 20	Asn	Leu	Thr	Ile	Glu 25	Gln	Trp	Leu	Ala	Phe 30	Ile	Asn
	Lys	Leu	Asp 35	Asp	Asp	Pro	Ser	Gln 40	Ser	Ser	Glu	Leu	Leu 45	Ser	Glu	Ala
25	Lys	Lys 50	Leu	Asn	Asp	Ser	Gln 55	Ala	Pro	Lys						

```
<210> 679
          <211> 58
          <212> PRT
          <213> secuencia artificial
 5
          <220>
          <223> Secuencia bacteriana modificada
          <400> 679
           Val Asp Ala Lys Tyr Ala Lys Glu Val Ile Glu Ala Asn Asp Glu Ile
           Asp Arg Leu Pro Asn Leu Thr Ile Glu Gln Trp Leu Ala Phe Ile Asn
                                             25
           Lys Leu His Asp Asp Pro Ser Gln Ser Ser Glu Leu Leu Ser Glu Ala
                                         40
           Lys Lys Leu Asn Asp Ser Gln Ala Pro Lys
10
          <210> 680
          <211> 58
          <212> PRT
15
          <213> secuencia artificial
          <223> Secuencia bacteriana modificada
20
          <400> 680
           Val Asp Ala Lys Tyr Ala Lys Glu Thr Leu Gln Ala Trp Asp Glu Ile
           Asp Lys Leu Pro Asn Leu Thr Ile Glu Gln Trp Leu Ala Phe Ile Asn
           Lys Leu Asp Asp Pro Ser Gln Ser Ser Glu Leu Leu Ser Glu Ala
           Lys Lys Leu Asn Asp Ser Gln Ala Pro Lys
          <210> 681
          <211> 58
25
          <212> PRT
          <213> secuencia artificial
          <220>
          <223> Secuencia bacteriana modificada
30
          <400> 681
```

	Val 1	Asp	Ala	Lys	Tyr 5	Ala	Lys	Glu	Val	Ile 10	Glu	Ala	Trp	Asp	Glu 15	Ile
	Asp	His	Leu	Pro 20	Asn	Leu	Thr	Ile	Asp 25	Gln	Trp	Leu	Ala	Phe 30	Ile	Asn
	Lys	Leu	Ala 35	Asp	Asp	Pro	Ser	Gln 40	Ser	Ser	Glu	Leu	Leu 45	Ser	Glu	Ala
	Lys	Lys 50	Leu	Asn	Asp	Ser	Gln 55	Ala	Pro	Lys						
5	<210 <211 <212 <213	> 58 > PR	Т	ia arti	ficial											
10	<220 <223		cuenc	ia ba	cteria	na m	odific	ada								
10		> 682 As p		Lys	Tyr 5	Ala	Lys	Glu	Thr	Ile 10	Asp	Ala	Trp	Asn	Glu 15	Ile
	Asp	His	Leu	Pro 20	Asn	Leu	Thr	Leu	Gln 25	Gln	Trp	Leu	Ala	Phe 30	Ile	Asn
	Lys	Leu	Ala 35	Asp	Asp	Pro	Ser	Gln 40	Ser	Ser	Glu	Leu	Leu 45	Ser	Glu	Ala
15	Lys	Lys 50	Leu	Asn	Asp	Ser	Gln 55	Ala	Pro	Lys						
. •	<210 <211 <212 <213	> 58 > PR		ia arti	ficial											
20	<220 <223		cuenc	ia ba	cteria	na m	odific	ada								
		> 683 As p		Lys	Tyr 5	Ala	Lys	Glu	Val	Ile 10	Asp	Ala	Trp	Asp	Glu 15	Ile
	Asp	Lys	Leu	Pro 20	Asn	Leu	Thr	Ile	Glu 25	Gln	Trp	Leu	Ala	Phe 30	Ile	Asn
	Lys	Leu	Asp 35	Asp	Asp	Pro	Ser	Gln 40	Ser	Ser	Glu	Leu	Leu 45	Ser	Glu	Ala
25	Lys	Lys 50	Leu	Asn	Asp	Ser	Gln 55	Ala	Pro	Lys						
	<210	> 684	1													

```
<211> 58
          <212> PRT
          <213> secuencia artificial
          <220>
 5
          <223> Secuencia bacteriana modificada
          <400> 684
          Val Asp Ala Lys Tyr Ala Lys Glu Val Ile Glu Ala Trp Asn Glu Ile
          Asp Lys Leu Pro Asn Leu Thr Leu Ala Gln Trp Leu Ala Phe Ile Asn
          Lys Leu Asp Asp Pro Ser Gln Ser Ser Glu Leu Leu Ser Glu Ala
                                         40
          Lys Lys Leu Asn Asp Ser Gln Ala Pro Lys
10
          <210> 685
          <211> 58
          <212> PRT
          <213> secuencia artificial
15
          <220>
          <223> Secuencia bacteriana modificada
          <400> 685
          Val Asp Ala Lys Tyr Ala Lys Glu Val Leu Gln Ala Trp Asp Glu Ile
          Asp Lys Leu Pro Asn Leu Thr Ile Gln Gln Trp Leu Ala Phe Ile Asn
          Lys Leu Asp Asp Pro Ser Gln Ser Ser Glu Leu Leu Ser Glu Ala
                                         40
          Lys Lys Leu Asn Asp Ser Gln Ala Pro Lys
20
          <210> 686
          <211> 58
          <212> PRT
25
          <213> secuencia artificial
          <223> Secuencia bacteriana modificada
30
          <400> 686
```

	Val 1	Asp	Ala	Lys	Tyr 5	Ala	Lys	Glu	Val	Ile 10	Ala	Ala	Trp	Asn	Glu 15	Ile
	Asp	Gly	Leu	Pro 20	Asn	Leu	Thr	Leu	Gln 25	Gln	Trp	Leu	Ala	Phe 30	Ile	Asn
	Lys	Leu	Asp 35	Asp	Asp	Pro	Ser	Gln 40	Ser	Ser	Glu	Leu	Leu 45	Ser	Glu	Ala
	Lys	Lys 50	Leu	Asn	Asp	Ser	Gln 55	Ala	Pro	Lys						
	<210 <211 <212 <213	> 58 > PR	Т	ia arti	ficial											
10	<220> <223> Secuencia bacteriana modificada															
10		> 687 Asp		Lys	Tyr 5	Ala	Lys	Glu	Thr	Leu 10	Asn	Ala	Trp	Asn	Glu 15	Ile
	Asp	Ala	Leu	Pro 20	Asn	Leu	Thr	Leu	Gln 25	Gln	Trp	Leu	Ala	Phe 30	Ile	Asn
	Lys	Leu	Asp 35	Asp	Asp	Pro	Ser	Gln 40	Ser	Ser	Glu	Leu	Leu 45	Ser	Glu	Ala
15	Lys	Lys 50	Leu	Asn	Asp	Ser	Gln 55	Ala	Pro	Lys						
	<210 <211 <212 <213	> 58 > PR		ia arti	ficial											
20	<220 <223		cuenc	ia ba	cteria	na m	odific	ada								
		> 688 As p		Lys	Tyr 5	Ala	Lys	Glu	Val	Leu 10	Ser	Ala	Trp	Asn	Glu 15	Ile
	Asp	Gln	Leu	Pro 20	Asn	Leu	Thr	Leu	Glu 25	Gln	Trp	Leu	Ala	Phe 30	Ile	Asn
	Lys	Leu	Asp 35	Asp	Asp	Pro	Ser	Gln 40	Ser	Ser	Glu	Leu	Leu 45	Ser	Glu	Ala
25	Lys	Lys 50	Leu	Asn	Asp	Ser	Gln 55	Ala	Pro	Lys						

```
<210> 689
          <211> 58
          <212> PRT
          <213> secuencia artificial
5
          <220>
          <223> Secuencia bacteriana modificada
          <400> 689
          Val Asp Ala Lys Tyr Ala Lys Glu Thr Leu Glu Ala Trp Asp Glu Ile
          Asp His Leu Pro Asn Leu Thr Leu His Gln Trp Leu Ala Phe Ile Asn
                                             25
          Lys Leu Asp Asp Pro Ser Gln Ser Ser Glu Leu Leu Ser Glu Ala
                   35
                                         40
          Lys Lys Leu Asn Asp Ser Gln Ala Pro Lys
10
          50
                                55
          <210> 690
15
          <211> 58
          <212> PRT
          <213> secuencia artificial
          <220>
20
          <223> Secuencia bacteriana modificada
          Val Asp Ala Lys Tyr Ala Lys Glu Gln Ile Glu Ala Trp Asn Glu Ile
          Asp His Leu Pro Asn Leu Thr Leu Gln Gln Trp Leu Ala Phe Ile Asn
                                             25
          Lys Leu Ala Asp Asp Pro Ser Gln Ser Ser Glu Leu Leu Ser Glu Ala
          Lys Lys Leu Asn Asp Ser Gln Ala Pro Lys
                                    55
          <210> 691
25
          <211> 58
          <212> PRT
          <213> secuencia artificial
30
          <223> Secuencia bacteriana modificada
          <400> 691
```

Val Asp Ala Lys Tyr Ala Lys Glu Val Val Glu Ala Trp Asp Glu Ile

Asp Lys Leu Pro Asn Leu Thr Ile Glu Gln Trp Leu Ala Phe Ile Asn 25 Lys Leu Asp Asp Pro Ser Gln Ser Ser Glu Leu Leu Ser Glu Ala Lys Lys Leu Asn Asp Ser Gln Ala Pro Lys <210> 692 <211> 58 <212> PRT <213> secuencia artificial <223> Secuencia bacteriana modificada 10 Val Asp Ala Lys Tyr Ala Lys Glu Val Leu Glu Ala Trp Asn Glu Ile Asp Glu Leu Pro Asn Leu Thr Ile Glu Gln Trp Leu Ala Phe Ile Asn 25 Lys Leu Asp Asp Pro Ser Gln Ser Ser Glu Leu Leu Ser Glu Ala Lys Lys Leu Asn Asp Ser Gln Ala Pro Lys <210> 693 <211> 58 15 <212> PRT <213> secuencia artificial <220> 20 <223> Secuencia bacteriana modificada Val Asp Ala Lys Tyr Ala Lys Glu Val Ile Asp Ala Trp Asn Glu Ile Asp Gln Leu Pro Asn Leu Thr Leu Gln Gln Trp Leu Ala Phe Ile Asn 25 Lys Leu Asp Asp Pro Ser Gln Ser Ser Glu Leu Leu Ser Glu Ala Lys Lys Leu Asn Asp Ser Gln Ala Pro Lys 55

```
<210> 694
          <211> 58
          <212> PRT
          <213> secuencia artificial
 5
          <220>
          <223> Secuencia bacteriana modificada
          <400> 694
          Val Asp Ala Lys Tyr Ala Lys Glu Thr Ile Asp Ala Trp Asp Glu Ile
          Asp Lys Leu Pro Asn Leu Thr Leu Ser Gln Trp Leu Ala Phe Ile Asn
                                             25
          Lys Leu Asp Asp Pro Ser Gln Ser Ser Glu Leu Leu Ser Glu Ala
10
                   35
                                        40
                                                             45
          Lys Lys Leu Asn Asp Ser Gln Ala Pro Lys
          <210> 695
15
          <211> 58
          <212> PRT
          <213> secuencia artificial
          <220>
20
          <223> Secuencia bacteriana modificada
          <400> 695
          Val Asp Ala Lys Tyr Ala Lys Glu Thr Ile Asp Ala Trp Asn Glu Ile
          Asp Gln Leu Pro Asn Leu Thr Leu Gln Gln Trp Leu Ala Phe Ile Asn
          Lys Leu Asp Asp Pro Ser Gln Ser Ser Glu Leu Leu Ser Glu Ala
                   35
                                         40
          Lys Lys Leu Asn Asp Ser Gln Ala Pro Lys
25
          <210> 696
          <211> 58
          <212> PRT
          <213> secuencia artificial
30
          <223> Secuencia bacteriana modificada
          <400> 696
```

Val Asp Ala Lys Tyr Ala Lys Glu Val Ile Gln Ala Trp Asp Glu Ile

Asp Ala Leu Pro Asn Leu Thr Leu Asn Gln Trp Leu Ala Phe Ile Asn 25 Lys Leu Asp Asp Pro Ser Gln Ser Ser Glu Leu Leu Ser Glu Ala Lys Lys Leu Asn Asp Ser Gln Ala Pro Lys <210> 697 <211> 58 <212> PRT <213> secuencia artificial <223> Secuencia bacteriana modificada 10 Val Asp Ala Lys Tyr Ala Lys Glu Val Leu Asp Ala Trp Ala Glu Ile Asp Gln Leu Pro Asn Leu Thr Leu Gln Gln Trp Leu Ala Phe Ile Asn 25 Lys Leu Asp Asp Pro Ser Gln Ser Ser Glu Leu Leu Ser Glu Ala Lys Lys Leu Asn Asp Ser Gln Ala Pro Lys <210> 698 <211> 58 15 <212> PRT <213> secuencia artificial <220> 20 <223> Secuencia bacteriana modificada Val Asp Ala Lys Tyr Ala Lys Glu His Ile Ala Ala Trp Asp Glu Ile Asp Ala Leu Pro Asn Leu Thr Ile Glu Gln Trp Leu Ala Phe Ile Asn 25 Lys Leu Asp Asp Pro Ser Gln Ser Ser Glu Leu Leu Ser Glu Ala Lys Lys Leu Asn Asp Ser Gln Ala Pro Lys 55

```
<210> 699
          <211> 58
          <212> PRT
          <213> secuencia artificial
 5
          <220>
          <223> Secuencia bacteriana modificada
          <400> 699
           Val Asp Ala Lys Tyr Ala Lys Glu Val Ile Arg Ala Trp Asp Glu Ile
           Asp Ala Leu Pro Asn Leu Thr Ile Glu Gln Trp Leu Ala Phe Ile Asn
10
                       20
                                             25
                                                                   30
           Lys Leu Asp Asp Pro Ser Gln Ser Ser Glu Leu Leu Ser Glu Ala
                                         40
           Lys Lys Leu Asn Asp Ser Gln Ala Pro Lys
                                    55
          <210> 700
15
          <211> 58
          <212> PRT
          <213> secuencia artificial
          <220>
20
          <223> Secuencia bacteriana modificada
          <400> 700
           Val Asp Ala Lys Tyr Ala Lys Glu Val Ile Asp Ala Trp Asp Glu Ile
           Asp Ala Leu Pro Asn Leu Thr Ile Asp Gln Trp Leu Ala Phe Ile Asn
           Lys Leu Ala Asp Asp Pro Ser Gln Ser Ser Glu Leu Leu Ser Glu Ala
                   35
                                         40
           Lys Lys Leu Asn Asp Ser Gln Ala Pro Lys
25
          <210> 701
          <211> 58
          <212> PRT
          <213> secuencia artificial
30
          <223> Secuencia bacteriana modificada
          <400> 701
```

Val Asp Ala Lys Tyr Ala Lys Glu Val Ile Asp Ala Trp Asn Glu Ile

Asp Arg Leu Pro Asn Leu Thr Ile Gln Gln Trp Leu Ala Phe Ile Asn 25 Lys Leu Asp Asp Pro Ser Gln Ser Ser Glu Leu Leu Ser Glu Ala Lys Lys Leu Asn Asp Ser Gln Ala Pro Lys <210> 702 <211> 58 <212> PRT <213> secuencia artificial <223> Secuencia bacteriana modificada 10 Val Asp Ala Lys Tyr Ala Lys Glu Val Ile Thr Ala Trp Asn Glu Ile Asp His Leu Pro Asn Leu Thr Leu Ser Gln Trp Leu Ala Phe Ile Asn 25 Lys Leu Asp Asp Pro Ser Gln Ser Ser Glu Leu Leu Ser Glu Ala Lys Lys Leu Asn Asp Ser Gln Ala Pro Lys <210> 703 <211> 58 15 <212> PRT <213> secuencia artificial <220> 20 <223> Secuencia bacteriana modificada Val Asp Ala Lys Tyr Ala Lys Glu Val Ile Asp Ala Trp Asn Glu Ile Asp Ala Leu Pro Asn Leu Thr Ile His Gln Trp Leu Ala Phe Ile Asn 25 Lys Leu Asp Asp Pro Ser Gln Ser Ser Glu Leu Leu Ser Glu Ala Lys Lys Leu Asn Asp Ser Gln Ala Pro Lys 55

```
<210> 704
          <211> 58
          <212> PRT
          <213> secuencia artificial
 5
          <220>
          <223> Secuencia bacteriana modificada
          <400> 704
          Val Asp Ala Lys Tyr Ala Lys Glu Gln Leu Lys Ala Trp Asp Glu Ile
10
           Asp Lys Leu Pro Asn Leu Thr Ile Glu Gln Trp Leu Ala Phe Ile Glu
                                             25
           Lys Leu Gln Asp Asp Pro Ser Gln Ser Ser Glu Leu Leu Ser Glu Ala
                                         40
           Lys Lys Leu Asn Asp Ser Gln Ala Pro Lys
          <210> 705
15
          <211> 58
          <212> PRT
          <213> secuencia artificial
          <220>
20
          <223> Secuencia bacteriana modificada
          <400> 705
           Val Asp Ala Lys Tyr Ala Lys Glu His Ile Asp Ala Trp Thr Glu Ile
           Asp His Leu Pro Asn Leu Thr Ile Glu Gln Trp Leu Ala Phe Ile Asn
           Lys Leu Asp Asp Pro Ser Gln Ser Ser Glu Leu Leu Ser Glu Ala
           Lys Lys Leu Asn Asp Ser Gln Ala Pro Lys
25
          <210> 706
          <211> 58
          <212> PRT
          <213> secuencia artificial
30
          <223> Secuencia bacteriana modificada
          <400> 706
```

	Val 1	Asp	Ala	Lys	Tyr 5	Ala	Lys	Glu	Gln	Leu 10	Arg	Ala	Trp	Asp	Glu 15	Ile
	Asp	Lys	Leu	Pro 20	Asn	Leu	Thr	Ile	Glu 25	Gln	Trp	Leu	Ala	Phe 30	Ile	Asn
	Lys	Leu	Gln 35	Asp	Asp	Pro	Ser	Gln 40	Ser	Ser	Glu	Leu	Leu 45	Ser	Glu	Ala
	Lys	Lys 50	Leu	Asn	Asp	Ser	Gln 55	Ala	Pro	Lys						
5	<210 <211 <212 <213	> 58 > PR	Т	ia arti	ficial											
10	<220 <223		cuenc	ia ba	cteria	na m	odific	ada								
	<400 Val 1			Lys	Tyr 5	Ala	Lys	Glu	Val	Leu 10	Glu	Ala	Trp	Arg	Glu 15	Ile
	Asp	Ser	Leu	Pro 20	Asn	Leu	Thr	Ile	Ala 25	Gln	Trp	Leu	Ala	Phe 30	Ile	Asn
	Lys	Leu	Asp 35	Asp	Asp	Pro	Ser	Gln 40	Ser	Ser	Glu	Leu	Leu 45	Ser	Glu	Ala
15	Lys	Lys 50	Leu	Asn	Asp	Ser	Gln 55	Ala	Pro	Lys						
	<210 <211 <212 <213	> 58 > PR	Т	ia arti	ficial											
20	<220 <223		cuenc	ia ba	cteria	na m	odific	ada								
		> 708 As p		Lys	Tyr 5	Ala	Lys	Glu	Val	Ile 10	Gln	Ala	Trp	Asn	Glu 15	Ile
	Asp	Lys	Leu	Pro 20	Asn	Leu	Thr	Ile	Glu 25	Gln	Trp	Leu	Ala	Phe 30	Ile	Asn
	Lys	Leu	Asp 35	Asp	Asp	Pro	Ser	Gln 40	Ser	Ser	Glu	Leu	Leu 45	Ser	Glu	Ala
25	Lys	Lys 50	Leu	Asn	Asp	Ser	Gln 55	Ala	Pro	Lys						

```
<210> 709
          <211> 58
          <212> PRT
          <213> secuencia artificial
 5
          <220>
          <223> Secuencia bacteriana modificada
          <400> 709
           Val Asp Ala Lys Tyr Ala Lys Glu His Val Glu Ala Trp Asn Glu Ile
           Asp Gln Leu Pro Asn Leu Thr Ile Glu Gln Trp Leu Ala Phe Ile Asn
           Lys Leu Ala Asp Asp Pro Ser Gln Ser Ser Glu Leu Leu Ser Glu Ala
                                         40
           Lys Lys Leu Asn Asp Ser Gln Ala Pro Lys
10
          <210> 710
          <211> 58
          <212> PRT
15
          <213> secuencia artificial
          <220>
          <223> Secuencia bacteriana modificada
20
          <400> 710
           Val Asp Ala Lys Tyr Ala Lys Glu Val Ile Asp Ala Trp Asp Glu Ile
           Asp Ala Leu Pro Asn Leu Thr Ile Asp Gln Trp Leu Ala Phe Ile Asn
           Lys Leu Ser Asp Pro Ser Gln Ser Ser Glu Leu Leu Ser Glu Ala
           Lys Lys Leu Asn Asp Ser Gln Ala Pro Lys
          <210> 711
          <211> 58
25
          <212> PRT
          <213> secuencia artificial
          <220>
          <223> Secuencia bacteriana modificada
30
          <400> 711
```

	Val 1	Asp	Ala	Lys	Tyr 5	Ala	Lys	Glu	Val	Ile 10	Glu	Ala	Trp	Asn	Glu 15	Ile
	Asp	His	Leu	Pro 20	Asn	Leu	Thr	Ile	Glu 25	Gln	Trp	Leu	Ala	Phe 30	Ile	Asn
	Lys	Leu	Asp 35	Asp	Asp	Pro	Ser	Gln 40	Ser	Ser	Glu	Leu	Leu 45	Ser	Glu	Ala
	Lys	Lys 50	Leu	Asn	Asp	Ser	Gln 55	Ala	Pro	Lys						
5	<211 <212	> 712 > 58 > PR > sec	Т	ia arti	ificial											
10	<220> <223> Secuencia bacteriana modificada <400> 712															
)> 712 As p		Lys	Tyr 5	Ala	Lys	Glu	Val	Leu 10	Gln	Ala	Trp	Asp	Glu 15	Ile
	Asp	Lys	Leu	Pro 20	Asn	Leu	Thr	Ile	Glu 25	Gln	Trp	Leu	Ala	Phe 30	Ile	Asn
	Lys	Leu	Ser 35	Asp	Asp	Pro	Ser	Gln 40	Ser	Ser	Glu	Leu	Leu 45	Ser	Glu	Ala
15	Lys	Lys 50	Leu	Asn	Asp	Ser	Gln 55	Ala	Pro	Lys						
	<211 <212	> 713 > 58 !> PR !> sec	Т	ia arti	ificial											
20	<220 <223)> > Se	cuenc	ia ba	cteria	na m	odific	ada								
)> 713 As p		Lys	Tyr 5	Ala	Lys	Glu	Val	Ile 10	Lys	Ala	Trp	Asn	Glu 15	Ile
	Asp	Ser	Leu	Pro 20	Asn	Leu	Thr	Ile	Glu 25	Gln	Trp	Leu	Ala	Phe 30	Ile	Asn
	Lys	Leu	Asp 35	Asp	Asp	Pro	Ser	Gln 40	Ser	Ser	Glu	Leu	Leu 45	Ser	Glu	Ala
25	Lys	Lys 50	Leu	Asn	Asp	Ser	Gln 55	Ala	Pro	Lys						
	<210	> 714	1													

```
<212> PRT
          <213> secuencia artificial
 5
          <220>
          <223> Secuencia bacteriana modificada
          <400> 714
          Val Asp Ala Lys Tyr Ala Lys Glu Val Leu Glu Ala Trp His Glu Ile
          Asp Leu Leu Pro Asn Leu Thr Ile Gln Gln Trp Leu Ala Phe Ile Asn
          Lys Leu Asp Asp Pro Ser Gln Ser Ser Glu Leu Leu Ser Glu Ala
                                        40
          Lys Lys Leu Asn Asp Ser Gln Ala Pro Lys
10
          <210> 715
          <211> 58
          <212> PRT
          <213> secuencia artificial
15
          <220>
          <223> Secuencia bacteriana modificada
          <400> 715
          Val Asp Ala Lys Tyr Ala Lys Glu Val Leu Glu Ala Trp Thr Glu Ile
          Asp Arg Leu Pro Asn Leu Thr Leu Asp Gln Trp Leu Ala Phe Ile Asn
          Lys Leu Asp Asp Pro Ser Gln Ser Ser Glu Leu Leu Ser Glu Ala
                                        40
          Lys Lys Leu Asn Asp Ser Gln Ala Pro Lys
20
          <210> 716
          <211> 58
          <212> PRT
25
          <213> secuencia artificial
          <220>
          <223> Secuencia bacteriana modificada
30
          <400> 716
          Val Asp Ala Lys Tyr Ala Lys Glu Gln Leu Tyr Ala Trp Asn Glu Ile
                            5
```

<211> 58

Asp His Leu Pro Asn Leu Thr Ile Glu Gln Trp Leu Ala Phe Ile Glu

```
Lys Leu Gln Asp Asp Pro Ser Gln Ser Ser Glu Leu Leu Ser Glu Ala
                                        40
          Lys Lys Leu Asn Asp Ser Gln Ala Pro Lys
                                   55
          <210> 717
          <211> 58
          <212> PRT
 5
          <213> secuencia artificial
          <220>
          <223> Secuencia bacteriana modificada
10
          Val Asp Ala Lys Tyr Ala Lys Glu Val Leu Asn Ala Trp Asp Glu Ile
          Asp Lys Leu Pro Asn Leu Thr Ile Lys Gln Trp Leu Ala Phe Ile Asn
          Lys Leu Asp Asp Pro Ser Gln Ser Ser Glu Leu Leu Ser Glu Ala
                                        40
          Lys Lys Leu Asn Asp Ser Gln Ala Pro Lys
                                   55
          <210> 718
15
          <211> 58
          <212> PRT
          <213> secuencia artificial
          <220>
20
          <223> Secuencia bacteriana modificada
          Val Asp Ala Lys Tyr Ala Lys Glu Val Ile Arg Ala Trp Asp Glu Ile
          Asp Lys Leu Pro Asn Leu Thr Val Glu Gln Trp Leu Ala Phe Ile Asn
          Lys Leu Asp Asp Pro Ser Gln Ser Ser Glu Leu Leu Ser Glu Ala
                                        40
          Lys Lys Leu Asn Asp Ser Gln Ala Pro Lys
              50
                                   55
25
          <210> 719
          <211> 58
          <212> PRT
```

```
<213> secuencia artificial
          <220>
          <223> Secuencia bacteriana modificada
5
          <400> 719
          Val Asp Ala Lys Tyr Ala Lys Glu Val Val Gln Ala Trp Asp Glu Ile
          Asp Gln Leu Pro Asn Leu Thr Leu Glu Gln Trp Leu Ala Phe Ile Asn
          Lys Leu Asp Asp Pro Ser Gln Ser Ser Glu Leu Leu Ser Glu Ala
                                        40
          Lys Lys Leu Asn Asp Ser Gln Ala Pro Lys
          <210> 720
10
          <211> 58
          <212> PRT
          <213> secuencia artificial
          <220>
15
          <223> Secuencia bacteriana modificada
          Val Asp Ala Lys Tyr Ala Lys Glu Val Ile Arg Ala Trp Asp Glu Ile
          Asp Gln Leu Pro Asn Leu Thr Leu Glu Gln Trp Leu Ala Phe Ile Asn
                                            25
          Lys Leu Asp Asp Pro Ser Gln Ser Ser Glu Leu Leu Ser Glu Ala
                                        40
          Lys Lys Leu Asn Asp Ser Gln Ala Pro Lys
20
          <210> 721
          <211> 58
          <212> PRT
          <213> secuencia artificial
25
          <223> Secuencia bacteriana modificada
          <400> 721
```

	Val 1	Asp	Ala	Lys	Tyr 5	Ala	Lys	Glu	Thr	Ile 10	Asp	Ala	Trp	Asn	Glu 15	Ile
	Asp	His	Leu	Pro 20	Asn	Leu	Thr	Leu	Asp 25	Gln	Trp	Leu	Ala	Phe 30	Ile	Asn
	Lys	Leu	Asp 35	Asp	Asp	Pro	Ser	Gln 40	Ser	Ser	Glu	Leu	Leu 45	Ser	Glu	Ala
	Lys	Lys 50	Leu	Asn	Asp	Ser	Gln 55	Ala	Pro	Lys						
5	<210 <211 <212 <213	> 58 > PR	Т	ia arti	ficial											
10	<220 <223		cuenc	cia ba	cteria	ına m	odific	ada								
10	<400 Val 1		_	Lys	Tyr 5	Ala	Lys	Glu	Val	Val 10	Ala	Ala	Trp	Thr	Glu 15	Ile
	Asp	Leu	Leu	Pro 20	Asn	Leu	Thr	Leu	Asp 25	Gln	Trp	Leu	Ala	Phe 30	Ile	Asn
	Lys	Leu	Glu 35	Asp	Asp	Pro	Ser	Gln 40	Ser	Ser	Glu	Leu	Leu 45	Ser	Glu	Ala
	Lys	Lys 50	Leu	Asn	Asp	Ser	Gln 55	Ala	Pro	Lys						
15	<210 <211 <212 <213	> 58 > PR	Т	ia arti	ficial											
20	<220 <223		cuenc	cia ba	cteria	ına m	odific	ada								
	<400 Val 1			Lys	Tyr 5	Ala	Lys	Glu	Val	Val 10	Ala	Ala	Trp	Asp	Glu 15	Ile
	Asp	Ala	Leu	Pro 20	Asn	Leu	Thr	Ile	Glu 25	Gln	Trp	Leu	Ala	Phe 30	Ile	Asn
	Lys	Leu	Ser 35	Asp	Asp	Pro	Ser	Gln 40	Ser	Ser	Glu	Leu	Leu 45	Ser	Glu	Ala
25	Lys	Lys 50	Leu	Asn	Asp	Ser	Gln 55	Ala	Pro	Lys						

```
<210> 724
          <211> 58
          <212> PRT
          <213> secuencia artificial
 5
          <220>
          <223> Secuencia bacteriana modificada
          <400> 724
          Val Asp Ala Lys Tyr Ala Lys Glu Thr Leu Glu Ala Trp Arg Glu Ile
          Asp Ser Leu Pro Asn Leu Thr Leu Glu Gln Trp Leu Ala Phe Ile Asn
                                             25
          Lys Leu Asp Asp Pro Ser Gln Ser Ser Glu Leu Leu Ser Glu Ala
          Lys Lys Leu Asn Asp Ser Gln Ala Pro Lys
10
          <210> 725
          <211> 58
          <212> PRT
15
          <213> secuencia artificial
          <220>
          <223> Secuencia bacteriana modificada
20
          <400> 725
          Val Asp Ala Lys Tyr Ala Lys Glu Val Ile Lys Ala Trp Asn Glu Ile
          Asp His Leu Pro Asn Leu Thr Leu Asp Gln Trp Leu Ala Phe Ile Asn
          Lys Leu Asp Asp Pro Ser Gln Ser Ser Glu Leu Leu Ser Glu Ala
          Lys Lys Leu Asn Asp Ser Gln Ala Pro Lys
          <210> 726
          <211> 58
25
          <212> PRT
          <213> secuencia artificial
          <220>
          <223> Secuencia bacteriana modificada
30
          <400> 726
```

Val Asp Ala Lys Tyr Ala Lys Glu Val Leu Glu Ala Trp Thr Glu Ile

Asp Lys Leu Pro Asn Leu Thr Ile Asp Gln Trp Leu Ala Phe Ile Asn 25 Lys Leu Asp Asp Pro Ser Gln Ser Ser Glu Leu Leu Ser Glu Ala Lys Lys Leu Asn Asp Ser Gln Ala Pro Lys <210> 727 <211> 58 <212> PRT <213> secuencia artificial <223> Secuencia bacteriana modificada 10 Val Asp Ala Lys Tyr Ala Lys Glu Thr Leu Glu Ala Trp Asp Glu Ile Asp Lys Leu Pro Asn Leu Thr Ile Asp Gln Trp Leu Ala Phe Ile Asn Lys Leu Asp Asp Pro Ser Gln Ser Ser Glu Leu Leu Ser Glu Ala Lys Lys Leu Asn Asp Ser Gln Ala Pro Lys <210> 728 <211> 58 15 <212> PRT <213> secuencia artificial <220> 20 <223> Secuencia bacteriana modificada Val Asp Ala Lys Tyr Ala Lys Glu Val Ile Glu Ala Trp Asn Glu Ile Asp Lys Leu Pro Asn Leu Thr Ile Asp Gln Trp Leu Ala Phe Ile Asn 25 Lys Leu Asp Asp Pro Ser Gln Ser Ser Glu Leu Leu Ser Glu Ala 40 Lys Lys Leu Asn Asp Ser Gln Ala Pro Lys 25 50 55 <210> 729

```
<211> 58
          <212> PRT
          <213> secuencia artificial
          <220>
 5
          <223> Secuencia bacteriana modificada
          <400> 729
           Val Asp Ala Lys Tyr Ala Lys Glu Thr Ile Asp Ala Trp Asn Glu Ile
           Asp Lys Leu Pro Asn Leu Thr Leu Glu Gln Trp Leu Ala Phe Ile Asn
           Lys Leu Asp Asp Pro Ser Gln Ser Ser Glu Leu Leu Ser Glu Ala
                                         40
           Lys Lys Leu Asn Asp Ser Gln Ala Pro Lys
10
          <210> 730
          <211> 58
          <212> PRT
          <213> secuencia artificial
15
          <220>
          <223> Secuencia bacteriana modificada
          <400> 730
           Val Asp Ala Lys Tyr Ala Lys Glu Thr Leu Asp Ala Trp Asp Glu Ile
           Asp Ala Leu Pro Asn Leu Thr Ile Asp Gln Trp Leu Ala Phe Ile Asn
           Lys Leu Glu Asp Asp Pro Ser Gln Ser Ser Glu Leu Leu Ser Glu Ala
                                         40
           Lys Lys Leu Asn Asp Ser Gln Ala Pro Lys
20
          <210> 731
          <211> 58
          <212> PRT
25
          <213> secuencia artificial
          <223> Secuencia bacteriana modificada
30
          <400> 731
```

	Val 1	Asp	Ala	Lys	Tyr 5	Ala	Lys	Glu	Val	Leu 10	Ser	Ala	Trp	Asn	Glu 15	Ile
	Asp	His	Leu	Pro 20	Asn	Leu	Thr	Ile	Gln 25	Gln	Trp	Leu	Ala	Phe 30	Ile	Asn
	Lys	Leu	Asp 35	Asp	Asp	Pro	Ser	Gln 40	Ser	Ser	Glu	Leu	Leu 45	Ser	Glu	Ala
	Lys	Lys 50	Leu	Asn	Asp	Ser	Gln 55	Ala	Pro	Lys						
5	<210 <211 <212 <213	> 58 > PR	Т	ia arti	ficial											
10	<220 <223		cuenc	ia ba	cteria	na m	odific	ada								
10	<400 Val 1	-		Lys	Tyr 5	Ala	Lys	Glu	Val	Ile 10	Gln	Ala	Asn	Asp	Glu 15	Ile
	Asp	Lys	Leu	Pro 20	Asn	Leu	Thr	Ile	Glu 25	Gln	Trp	Leu	Ala	Phe 30	Ile	His
	Lys	Leu	His 35	Asp	Asp	Pro	Ser	Gln 40	Ser	Ser	Glu	Leu	Leu 45	Ser	Glu	Ala
	Lys	Lys 50	Leu	Asn	Asp	Ser	Gln 55	Ala	Pro	Lys						
15	<210 <211 <212 <213	> 58 > PR	Т	ia arti	ficial											
20	<220 <223		cuenc	ia ba	cteria	na m	odific	ada								
	<400 Val 1			Lys	Tyr 5	Ala	Lys	Glu	His	Leu 10	Asp	Ala	Trp	Asp	Glu 15	Ile
	Asp	His	Leu	Pro 20	Asn	Leu	Thr	Ile	Gln 25	Gln	Trp	Leu	Ala	Phe 30	Ile	Asn
	Lys	Leu	Ala 35	Asp	Asp	Pro	Ser	Gln 40	Ser	Ser	Glu	Leu	Leu 45	Ser	Glu	Ala
25	Lys	Lys 50	Leu	Asn	Asp	Ser	Gln 55	Ala	Pro	Lys						

```
<210> 734
          <211> 58
          <212> PRT
          <213> secuencia artificial
 5
          <220>
          <223> Secuencia bacteriana modificada
          <400> 734
          Val Asp Ala Lys Tyr Ala Lys Glu Val Ile Gln Ala Trp Asn Glu Ile
          Asp Gln Leu Pro Asn Leu Thr Ile Glu Gln Trp Leu Ala Phe Ile Asn
                                             25
          Lys Leu Asp Asp Pro Ser Gln Ser Ser Glu Leu Leu Ser Glu Ala
                                         40
          Lys Lys Leu Asn Asp Ser Gln Ala Pro Lys
10
          <210> 735
          <211> 58
          <212> PRT
15
          <213> secuencia artificial
          <220>
          <223> Secuencia bacteriana modificada
20
          <400> 735
          Val Asp Ala Lys Tyr Ala Lys Glu Val Ile Glu Ala Trp Asn Glu Ile
          Asp Tyr Leu Pro Asn Leu Thr Ile Ala Gln Trp Ile Ala Phe Ile Asn
          Lys Leu Asp Asp Pro Ser Gln Ser Ser Glu Leu Leu Ser Glu Ala
          Lys Lys Leu Asn Asp Ser Gln Ala Pro Lys
          <210> 736
          <211> 58
25
          <212> PRT
          <213> secuencia artificial
          <220>
          <223> Secuencia bacteriana modificada
30
          <400> 736
```

Val Asp Ala Lys Tyr Ala Lys Glu Thr Ile Gln Ala Trp Asp Glu Ile

5

Asp Arg Leu Pro Asn Leu Thr Leu Gln Gln Trp Leu Ala Phe Ile Asn 25 Lys Leu Asp Asp Pro Ser Gln Ser Ser Glu Leu Leu Ser Glu Ala Lys Lys Leu Asn Asp Ser Gln Ala Pro Lys <210> 737 <211> 58 <212> PRT <213> secuencia artificial <223> Secuencia bacteriana modificada 10 Val Asp Ala Lys Tyr Ala Lys Glu Thr Ile Gln Ala Trp Asp Glu Ile Asp Lys Leu Pro Asn Leu Thr Ile Glu Gln Trp Leu Ala Phe Ile Asn 25 Lys Leu Asp Asp Pro Ser Gln Ser Ser Glu Leu Leu Ser Glu Ala Lys Lys Leu Asn Asp Ser Gln Ala Pro Lys <210> 738 <211> 58 15 <212> PRT <213> secuencia artificial <220> 20 <223> Secuencia bacteriana modificada Val Asp Ala Lys Tyr Ala Lys Glu Thr Leu Asp Ala Trp Ala Glu Ile Asp His Leu Pro Asn Leu Thr Ile Glu Gln Trp Leu Ala Phe Ile Asn 25 Lys Leu Asp Asp Pro Ser Gln Ser Ser Glu Leu Leu Ser Glu Ala Lys Lys Leu Asn Asp Ser Gln Ala Pro Lys 55

```
<210> 739
          <211> 58
          <212> PRT
          <213> secuencia artificial
 5
          <220>
          <223> Secuencia bacteriana modificada
          <400> 739
          Val Asp Ala Lys Tyr Ala Lys Glu Val Ile Glu Ala Trp Asp Glu Ile
          Asp Lys Leu Pro Asn Leu Thr Leu Asn Gln Trp Leu Ala Phe Ile Asn
                                             25
          Lys Leu Asp Asp Pro Ser Gln Ser Ser Glu Leu Leu Ser Glu Ala
          Lys Lys Leu Asn Asp Ser Gln Ala Pro Lys
10
          <210> 740
          <211> 58
          <212> PRT
15
          <213> secuencia artificial
          <223> Secuencia bacteriana modificada
20
          <400> 740
          Val Asp Ala Lys Tyr Ala Lys Glu Val Leu Asp Ala Trp Asn Glu Ile
          Asp Gln Leu Pro Asn Leu Thr Ile Glu Gln Trp Leu Ala Phe Ile Asn
          Lys Leu Asp Asp Pro Ser Gln Ser Ser Glu Leu Leu Ser Glu Ala
                                         40
          Lys Lys Leu Asn Asp Ser Gln Ala Pro Lys
               50
                                    55
25
          <210> 741
          <211> 58
          <212> PRT
          <213> secuencia artificial
30
          <220>
          <223> Secuencia bacteriana modificada
          <400> 741
```

Val Asp Ala Lys Tyr Ala Lys Glu Val Leu His Ala Trp Asn Glu Ile

Asp His Leu Pro Asn Leu Thr Ile Glu Gln Trp Leu Ala Phe Ile Glu 25 Lys Leu Glu Asp Asp Pro Ser Gln Ser Ser Glu Leu Leu Ser Glu Ala Lys Lys Leu Asn Asp Ser Gln Ala Pro Lys <210> 742 <211> 58 <212> PRT <213> secuencia artificial <223> Secuencia bacteriana modificada 10 Val Asp Ala Lys Tyr Ala Lys Glu Val Ile Glu Ala Trp Gln Glu Ile Asp Lys Leu Pro Asn Leu Thr Ile Asp Gln Trp Leu Ala Phe Ile Asn 25 Lys Leu Asp Asp Pro Ser Gln Ser Ser Glu Leu Leu Ser Glu Ala Lys Lys Leu Asn Asp Ser Gln Ala Pro Lys <210> 743 <211> 58 15 <212> PRT <213> secuencia artificial <220> 20 <223> Secuencia bacteriana modificada Val Asp Ala Lys Tyr Ala Lys Glu Val Val Asp Ala Trp Asn Glu Ile Asp Gln Leu Pro Asn Leu Thr Ile Glu Gln Trp Leu Ala Phe Ile Asn 25 Lys Leu Asp Asp Pro Ser Gln Ser Ser Glu Leu Leu Ser Glu Ala Lys Lys Leu Asn Asp Ser Gln Ala Pro Lys 55

```
<210> 744
          <211> 58
          <212> PRT
          <213> secuencia artificial
 5
          <220>
          <223> Secuencia bacteriana modificada
          <400> 744
           Val Asp Ala Lys Tyr Ala Lys Glu Gln Ile Glu Ala Trp Asn Glu Ile
           Asp Ala Leu Pro Asn Leu Thr Ile Glu Gln Trp Leu Ala Phe Ile Asn
                                             25
           Lys Leu Ala Asp Asp Pro Ser Gln Ser Ser Glu Leu Leu Ser Glu Ala
                                         40
           Lys Lys Leu Asn Asp Ser Gln Ala Pro Lys
10
          <210> 745
          <211> 60
          <212> PRT
15
          <213> secuencia artificial
          <220>
          <223> Secuencia bacteriana modificada
          <400> 745
20
           Val Asp Ala Lys Tyr Ala Lys Glu Thr Ile Thr Ala Trp Asp Glu Ile
           Asp Lys Leu Pro Asn Leu Thr Ile Glu Gln Trp Leu Ala Phe Ile Gly
           Lys Leu Glu Asp Asp Pro Ser Gln Ser Ser Glu Leu Leu Ala Glu Ala
                                         40
           Lys Lys Leu Asn Asp Ala Gln Ala Pro Lys Val Asp
                                    55
          <210> 746
25
          <211> 60
          <212> PRT
          <213> secuencia artificial
30
          <223> Secuencia bacteriana modificada
          <400> 746
```

Ala Glu Ala Lys Tyr Ala Lys Glu Val Ile Glu Ala Trp Asn Glu Ile

Asp Arg Leu Pro Asn Leu Thr Ile Glu Gln Trp Leu Ala Phe Ile Asn 25 Lys Leu Asp Asp Pro Ser Gln Ser Ser Glu Leu Leu Ser Glu Ala Lys Lys Leu Asn Asp Ser Gln Ala Pro Lys Val Asp 55 <210> 747 <211> 60 <212> PRT <213> secuencia artificial <223> Secuencia bacteriana modificada 10 Ala Glu Ala Lys Tyr Ala Lys Glu Val Leu Glu Ala Trp Asn Glu Ile Asp Arg Leu Pro Asn Leu Thr Ile Glu Gln Trp Leu Ala Phe Ile Asn 25 Lys Leu Asp Asp Pro Ser Gln Ser Ser Glu Leu Leu Ser Glu Ala Lys Lys Leu Asn Asp Ser Gln Ala Pro Lys Val Asp <210> 748 <211>60 15 <212> PRT <213> secuencia artificial <220> 20 <223> Secuencia bacteriana modificada Ala Glu Ala Lys Tyr Ala Lys Glu Val Leu Glu Ala Trp Asp Glu Ile Asp Arg Leu Pro Asn Leu Thr Leu Asp Gln Trp Leu Ala Phe Ile Asn 25 Lys Leu Asp Asp Pro Ser Gln Ser Ser Glu Leu Leu Ser Glu Ala Lys Lys Leu Asn Asp Ser Gln Ala Pro Lys Val Asp 55

```
<210> 749
          <211> 60
          <212> PRT
          <213> secuencia artificial
 5
          <220>
          <223> Secuencia bacteriana modificada
          <400> 749
          Ala Glu Ala Lys Tyr Ala Lys Glu Val Leu Asp Ala Trp Asp Glu Ile
          Asp Lys Leu Pro Asn Leu Thr Leu Glu Gln Trp Leu Ala Phe Ile Asn
                                            25
          Lys Leu Asp Asp Pro Ser Gln Ser Ser Glu Leu Leu Ser Glu Ala
          Lys Lys Leu Asn Asp Ser Gln Ala Pro Lys Val Asp
10
          <210> 750
          <211> 60
          <212> PRT
15
          <213> secuencia artificial
          <223> Secuencia bacteriana modificada
20
          <400> 750
          Ala Glu Ala Lys Tyr Ala Lys Glu Val Leu Asp Ala Trp Asp Glu Ile
                            5
          Asp Ala Leu Pro Asn Leu Thr Leu Glu Gln Trp Leu Ala Phe Ile Asn
                                            25
          Lys Leu Asp Asp Pro Ser Gln Ser Ser Glu Leu Leu Ser Glu Ala
                   35
                                        40
          Lys Lys Leu Asn Asp Ser Gln Ala Pro Lys Val Asp
                                   55
               50
25
          <210> 751
          <211> 60
          <212> PRT
          <213> secuencia artificial
30
          <220>
          <223> Secuencia bacteriana modificada
          <400> 751
```

Ala Glu Ala Lys Tyr Ala Lys Glu Val Ile Asp Ala Trp Asp Glu Ile 5 Asp Arg Leu Pro Asn Leu Thr Leu Asp Gln Trp Leu Ala Phe Ile Asn 25 Lys Leu Asp Asp Pro Ser Gln Ser Ser Glu Leu Leu Ser Glu Ala Lys Lys Leu Asn Asp Ser Gln Ala Pro Lys Val Asp <210> 752 <211> 60 5 <212> PRT <213> secuencia artificial <223> Secuencia bacteriana modificada 10 Ala Glu Ala Lys Tyr Ala Lys Glu Thr Leu Glu Ala Trp Asp Glu Ile Asp Arg Leu Pro Asn Leu Thr Ile Glu Gln Trp Leu Ala Phe Ile Asn Lys Leu Asp Asp Pro Ser Gln Ser Ser Glu Leu Leu Ser Glu Ala 40 Lys Lys Leu Asn Asp Ser Gln Ala Pro Lys Val Asp 50 55 60 15 <210> 753 <211> 60 <212> PRT <213> secuencia artificial 20 <220> <223> Secuencia bacteriana modificada <400> 753

Ala Glu Ala Lys Tyr Ala Lys Glu Val Leu Glu Ala Trp Asp Glu Ile

Asp Arg Leu Pro Asn Leu Thr Ile Glu Gln Trp Leu Ala Phe Ile Asn Lys Leu Asp Asp Pro Ser Gln Ser Ser Glu Leu Leu Ser Glu Ala Lys Lys Leu Asn Asp Ser Gln Ala Pro Lys Val Asp 55 <210> 754 <211> 60 <212> PRT <213> secuencia artificial <223> Secuencia bacteriana modificada 10 Ala Glu Ala Lys Tyr Ala Lys Glu Val Ile Asp Ala Trp Asn Glu Ile Asp Ala Leu Pro Asn Leu Thr Leu Asp Gln Trp Leu Ala Phe Ile Asn 25 Lys Leu Asp Asp Pro Ser Gln Ser Ser Glu Leu Leu Ser Glu Ala Lys Lys Leu Asn Asp Ser Gln Ala Pro Lys Val Asp <210> 755 <211>60 15 <212> PRT <213> secuencia artificial <220> 20 <223> Secuencia bacteriana modificada Ala Glu Ala Lys Tyr Ala Lys Glu Val Leu Asp Ala Trp Asp Glu Ile Asp Lys Leu Pro Asn Leu Thr Ile Asp Gln Trp Leu Ala Phe Ile Asn 25 Lys Leu Asp Asp Pro Ser Gln Ser Ser Glu Leu Leu Ser Glu Ala Lys Lys Leu Asn Asp Ser Gln Ala Pro Lys Val Asp 55

```
<210> 756
          <211> 60
          <212> PRT
          <213> secuencia artificial
 5
          <220>
          <223> Secuencia bacteriana modificada
          <400> 756
          Ala Glu Ala Lys Tyr Ala Lys Glu Val Leu Glu Ala Trp Asp Glu Ile
          Asp His Leu Pro Asn Leu Thr Leu Asp Gln Trp Leu Ala Phe Ile Asn
          Lys Leu Asp Asp Pro Ser Gln Ser Ser Glu Leu Leu Ser Glu Ala
          Lys Lys Leu Asn Asp Ser Gln Ala Pro Lys Val Asp
10
          <210> 757
          <211> 60
          <212> PRT
15
          <213> secuencia artificial
          <223> Secuencia bacteriana modificada
20
          <400> 757
          Ala Glu Ala Lys Tyr Ala Lys Glu Val Leu Glu Ala Trp Asp Glu Ile
          Asp Ala Leu Pro Asn Leu Thr Ile Glu Gln Trp Leu Ala Phe Ile Asn
                                             25
          Lys Leu Asp Asp Pro Ser Gln Ser Ser Glu Leu Leu Ser Glu Ala
                   35
                                         40
                                                              45
          Lys Lys Leu Asn Asp Ser Gln Ala Pro Lys Val Asp
25
          <210> 758
          <211> 58
          <212> PRT
          <213> secuencia artificial
30
          <223> Secuencia bacteriana modificada
          <400> 758
```

Val Asp Asn Lys Phe Asn Lys Glu Gln Gln Asn Ala Phe Tyr Glu Ile

	1				5					10					15	
	Leu	His	Leu	Pro 20	Asn	Leu	Asn	Glu	Glu 25	Gln	Arg	Asn	Ala	Phe 30	Ile	Gln
	Ser	Leu	Lys 35	Asp	Asp	Pro	Ser	Gln 40	Ser	Ala	Asn	Leu	Leu 45	Ala	Glu	Ala
	Lys	Lys 50	Leu	Asn	Asp	Ala	Gln 55	Ala	Pro	Lys						
5	<211 <212	> 759 > 46 > PR > sec	Т	ia arti	ficial											
10	<220 <223	> > Sed	cuenc	ia ba	cteria	na m	odific	ada								
		> 759 Ala		Ala	Lys 5	Glu	Ala	Ala	Asn	Ala 10	Glu	Leu	Asp	Ser	Tyr 15	Gly
	Val	Ser	Asp	Phe 20	Tyr	Lys	Arg	Leu	Ile 25	Asp	Lys	Ala	Lys	Thr 30	Val	Glu
	Gly	Val	Glu 35	Ala	Leu	Lys	Asp	Ala 40	Ile	Leu	Ala	Ala	Leu 45	Pro		
15	<211 <212	> 760 > 167 > PR > Ho	76 T	apiens	5											
20		> 760 Gly		Leu	Gly	Ile	Leu	Cys	Phe	Leu	Ile	Phe	Leu	Gly	Lys	Thr

1				5					10					15	
Trp	Gly	Gln	Glu 20	Gln	Thr	Tyr	Val	Ile 25	Ser	Ala	Pro	Lys	Ile 30	Phe	Arg
Val	Gly	Ala 35	Ser	Glu	Asn	Ile	Val 40	Ile	Gln	Val	Tyr	Gly 45	Tyr	Thr	Glu
Ala	Phe 50	Asp	Ala	Thr	Ile	Ser 55	Ile	Lys	Ser	Tyr	Pro 60	Asp	Lys	Lys	Phe
Ser 65	Tyr	Ser	Ser	Gly	His 70	Val	His	Leu	Ser	Ser 75	Glu	Asn	Lys	Phe	Gln 80
Asn	Ser	Ala	Ile	Leu 85	Thr	Ile	Gln	Pro	Lys 90	Gln	Leu	Pro	Gly	Gly 95	Gln
Asn	Pro	Val	Ser 100	Tyr	Val	Tyr	Leu	Glu 105	Val	Val	Ser	Lys	His 110	Phe	Ser
Lys	Ser	Lys 115	Arg	Met	Pro	Ile	Thr 120	Tyr	Asp	Asn	Gly	Phe 125	Leu	Phe	Ile
His	Thr 130	Asp	Lys	Pro	Val	Tyr 135	Thr	Pro	Asp	Gln	Ser 140	Val	Lys	Val	Arg
Val 145	Tyr	Ser	Leu	Asn	Asp 150	Asp	Leu	Lys	Pro	Ala 155	Lys	Arg	Glu	Thr	Val 160
Leu	Thr	Phe	Ile	Asp 165	Pro	Glu	Gly	Ser	Glu 170	Val	Asp	Met	Val	Glu 175	Glu
Ile	Asp	His	Ile 180	Gly	Ile	Ile	Ser	Phe 185	Pro	Asp	Phe	Lys	Ile 190	Pro	Ser
Asn	Pro	Arg 195	Tyr	Gly	Met	Trp	Thr 200	Ile	Lys	Ala	Lys	Tyr 205	Lys	Glu	Asp
Phe	Ser 210	Thr	Thr	Gly	Thr	Ala 215	Tyr	Phe	Glu	Val	Lys 220	Glu	Tyr	Val	Leu
Pro 225	His	Phe	Ser	Val	Ser 230	Ile	Glu	Pro	Glu	Tyr 235	Asn	Phe	Ile	Gly	Tyr 240
Lys	Asn	Phe	Lys	Asn 245	Phe	Glu	Ile	Thr	Ile 250	Lys	Ala	Arg	Tyr	Phe 255	Tyr

 Glu
 Asp
 Leu
 Lys
 Asp
 Asp
 Glu
 Lys
 Glu
 Met
 Met
 Glu
 Thr
 Ala
 Met
 Ala
 Ala
 Met
 Leu
 Ile
 Asp
 Glu
 Ala
 Gly
 Ile
 Ala
 Glu
 Val
 Ile
 Ala
 Asp
 Ser
 Glu

 Thr
 Ala
 Val
 Leu
 Ser
 Tyr
 Tyr
 Tyr
 Tyr
 Tyr
 Asp
 Leu
 Asp
 Asp

Asn Lys Val Val Thr Glu Ala Asp Val Tyr Ile Thr Phe Gly Ile Arg

265

260

- Phe Asn Val Lys Thr Asp Ala Pro Asp Leu Pro Glu Glu Asn Gln Ala 435 440 445
- Arg Glu Gly Tyr Arg Ala Ile Ala Tyr Ser Ser Leu Ser Gln Ser Tyr 450 455 460
- Leu Tyr Ile Asp Trp Thr Asp Asn His Lys Ala Leu Leu Val Gly Glu 465 470 475 480
- His Leu Asn Ile Ile Val Thr Pro Lys Ser Pro Tyr Ile Asp Lys Ile 485 490 495
- Thr His Tyr Asn Tyr Leu Ile Leu Ser Lys Gly Lys Ile Ile His Phe 500 505 510

Gly	Thr	Arg 515	Glu	Lys	Phe	Ser	Asp 520	Ala	Ser	Tyr	Gln	Ser 525	Ile	Asn	Ile
Pro	Val 530	Thr	Gln	Asn	Met	Val 535	Pro	Ser	Ser	Arg	Leu 540	Leu	Val	Tyr	Tyr
Ile 545	Val	Thr	Gly	Glu	Gln 550	Thr	Ala	Glu	Leu	Val 555	Ser	Asp	Ser	Val	Trp 560
Leu	Asn	Ile	Glu	G1u 565	Lys	Cys	Gly	Asn	Gln 570	Leu	Gln	Val	His	Leu 575	Ser
Pro	Asp	Ala	Asp 580	Ala	Tyr	Ser	Pro	Gly 585	Gln	Thr	Val	Ser	Leu 590	Asn	Met
Ala	Thr	Gly 595	Met	Asp	Ser	Trp	Val 600	Ala	Leu	Ala	Ala	Val 605	Asp	Ser	Ala
Val	Tyr 610	Gly	Val	Gln	Arg	Gly 615	Ala	Lys	Lys	Pro	Leu 620	Glu	Arg	Val	Phe
Gln 625	Phe	Leu	Glu	Lys	Ser 630	Asp	Leu	Gly	Cys	Gly 635	Ala	Gly	Gly	Gly	Leu 640
Asn	Asn	Ala	Asn	Val 645	Phe	His	Leu	Ala	Gly 650	Leu	Thr	Phe	Leu	Thr 655	Asn
Ala	Asn	Ala	Asp 660	Asp	Ser	Gln	Glu	Asn 665	Asp	Glu	Pro	Cys	Lys 670	Glu	Ile
Leu	Arg	Pro 675	Arg	Arg	Thr	Leu	Gln 680	Lys	Lys	Ile	Glu	Glu 685	Ile	Ala	Ala
Lys	Tyr 690	Lys	His	Ser	Val	Val 695	Lys	Lys	Cys	Cys	Tyr 700	Asp	Gly	Ala	Cys
Val 705	Asn	Asn	Asp	Glu	Thr 710	Cys	Glu	Gln	Arg	Ala 715	Ala	Arg	Ile	Ser	Leu 720
Gly	Pro	Arg	Сув	Ile 725	Lys	Ala	Phe	Thr	Glu 730	Cys	Cys	Val	Val	Ala 735	Ser
Gln	Leu	Arg	Ala 740	Asn	Ile	Ser	His	Lys 745	Asp	Met	Gln	Leu	Gly 750	Arg	Leu
His	Met	Lys 755	Thr	Leu	Leu	Pro	Val 760	Ser	Lys	Pro	Glu	Ile 765	Arg	Ser	Tyr

Phe	Pro 770	Glu	Ser	Trp	Leu	Trp 775	Glu	Val	His	Leu	Val 780	Pro	Arg	Arg	Lys
Gln 785	Leu	Gln	Phe	Ala	Leu 790	Pro	Asp	Ser	Leu	Thr 795	Thr	Trp	Glu	Ile	Gln 800
Gly	Val	Gly	Ile	Ser 805	Asn	Thr	Gly	Ile	Cys 810	Val	Ala	Asp	Thr	Val 815	Lys
Ala	Lys	Val	Phe 820	Lys	Asp	Val	Phe	Leu 825	Glu	Met	Asn	Ile	Pro 830	Tyr	Ser
Val	Val	Arg 835	Gly	Glu	Gln	Ile	Gln 840	Leu	Lys	Gly	Thr	Val 845	Tyr	Asn	Tyr
Arg	Thr 850	Ser	Gly	Met	Gln	Phe 855	Cys	Val	Lys	Met	Ser 860	Ala	Val	Glu	Gly
11e 865	Cys	Thr	Ser	Glu	Ser 870	Pro	Val	Ile	Asp	His 875	Gln	Gly	Thr	Lys	Ser 880
Ser	Lys	Cys	Val	Arg 885	Gln	Lys	Val	Glu	Gly 890	Ser	Ser	Ser	His	Leu 895	Val
Thr	Phe	Thr	Val 900	Leu	Pro	Leu	Glu	Ile 905	Gly	Leu	His	Asn	Ile 910	Asn	Phe
Ser	Leu	Glu 915	Thr	Trp	Phe	Gly	Lys 920	Glu	Ile	Leu	Val	Lys 925	Thr	Leu	Arg
Val	Val 930	Pro	Glu	Gly	Val	Lys 935	Arg	Glu	Ser	Tyr	Ser 940	Gly	Val	Thr	Leu
Asp 945	Pro	Arg	Gly	Ile	Tyr 950	Gly	Thr	Ile	Ser	Arg 955	Arg	Lys	Glu	Phe	Pro 960
Tyr	Arg	Ile	Pro	Leu 965	Asp	Leu	Val	Pro	Lys 970	Thr	Glu	Ile	Lys	Arg 975	Ile
Leu	Ser	Val	Lys 980	Gly	Leu	Leu	Val	Gly 985	Glu	Ile	Leu	Ser	Ala 990	Val	Leu
Ser	Gln	Glu 995	Gly	Ile	Asn	Ile	Leu 1000		r His	s Le	ı Pro	100		Ly Se	er Ala
Glu	Ala	Glı	ı Let	ı Met	: Sei	· Val	L Va	al Pi	o Va	al Ph	ne Ty	r v	/al I	he E	lis

	1010					1015					1020			
Tyr	Leu 1025	Glu	Thr	Gly	Asn	His 1030	Trp	Asn	Ile	Phe	His 1035	Ser	Asp	Pro
Leu	Ile 1040	Glu	Lys	Gln	Lys	Leu 1045	Lys	Lys	Lys	Leu	Lys 1050	Glu	Gly	Met
Leu	Ser 1055	Ile	Met	Ser	Tyr	Arg 1060	Asn	Ala	Asp	Tyr	Ser 1065	Tyr	Ser	Val
Trp	Lys 1070	Gly	Gly	Ser	Ala	Ser 1075	Thr	Trp	Leu	Thr	Ala 1080	Phe	Ala	Leu
Arg	Val 1085	Leu	Gly	Gln	Val	Asn 1090	Lys	Tyr	Val	Glu	Gln 1095	Asn	Gln	Asn
Ser	Ile 1100		Asn	Ser		Leu 1105		Leu	Val		Asn 1110	Tyr	Gln	Leu
Asp	Asn 1115	Gly	Ser	Phe	Lys	Glu 1120	Asn	Ser	Gln	_	Gln 1125	Pro	Ile	Lys
Leu	Gln 1130	Gly	Thr	Leu	Pro	Val 1135	Glu	Ala	Arg	Glu	Asn 1140	Ser	Leu	Tyr
Leu	Thr 1145	Ala	Phe	Thr	Val	Ile 1150	Gly	Ile	Arg	Lys	Ala 1155	Phe	Asp	Ile
Cys	Pro 1160	Leu	Val	Lys	Ile	Asp 1165	Thr	Ala	Leu	Ile	Lys 1170	Ala	Asp	Asn
Phe	Leu 1175	Leu	Glu	Asn	Thr	Leu 1180	Pro	Ala	Gln	Ser	Thr 1185	Phe	Thr	Leu
Ala	Ile 1190	Ser	Ala	Tyr	Ala	Leu 1195	Ser	Leu	Gly	Asp	Lys 1200	Thr	His	Pro
Gln	Phe 1205	Arg	Ser	Ile	Val	Ser 1210	Ala	Leu	Lys	Arg	Glu 1215	Ala	Leu	Val
Lys	Gly 1220	Asn	Pro	Pro	Ile	Tyr 1225	Arg	Phe	Trp	Lys	Asp 1230	Asn	Leu	Gln
His	Lys 1235	Asp	Ser	Ser	Val	Pro 1240	Asn	Thr	Gly	Thr	Ala 1245	Arg	Met	Val

Glu	Thr 1250		Ala	Tyr	Ala	Leu 1255		Thr	Ser	Leu	Asn 1260		Lys	Asp
Ile	Asn 1265	_	Val	Asn		Val 1270		Lys	Trp	Leu	Ser 1275		Glu	Gln
Arg	Tyr 1280	Gly	Gly	Gly	Phe	Tyr 1285		Thr	Gln	Asp	Thr 1290	Ile	Asn	Ala
Ile	Glu 1295	_	Leu	Thr	Glu	Туг 1300		Leu	Leu	Val	Lys 1305	Gln	Leu	Arg
Leu	Ser 1310	Met	Asp	Ile	_	Val 1315		Tyr	Lys	His	Lys 1320	Gly	Ala	Leu
His	As n 1325	_	Lys	Met		Asp 1330		Asn	Phe	Leu	Gly 1335	_	Pro	Val
Glu	Val 1340		Leu	Asn		Asp 1345		Ile	Val		Thr 1350		Phe	Gly
Ser	Gly 1355		Ala	Thr		His 1360		Thr	Thr		Val 1365		Lys	Thr
Ser	Thr 1370		Glu	Glu		Cys 1375		Phe	Tyr		Lys 1380		Asp	Thr
Gln	Asp 1385		Glu	Ala		His 1390		Arg	Gly		Gly 1395	Asn	Ser	Asp
Tyr	Lys 1400	_	Ile	Val		Cys 1405		Ser	Tyr	_	Pro 1410	Ser	Arg	Glu
Glu	Ser 1415	Ser	Ser	Gly	Ser	Ser 1420	His	Ala	Val	Met	Asp 1425	Ile	Ser	Leu
Pro	Thr 1430	Gly	Ile	Ser	Ala	Asn 1435	Glu	Glu	Asp	Leu	Lys 1440	Ala	Leu	Val
Glu	Gly 1445	Val	Asp	Gln	Leu	Phe 1450	Thr	Asp	Tyr	Gln	Ile 1455		Asp	Gly
His	Val 1460	Ile	Leu	Gln	Leu	Asn 1465	Ser	Ile	Pro	Ser	Ser 1470	Asp	Phe	Leu
Cys	Val 1475	Arg	Phe	Arg	Ile	Phe 1480	Glu	Leu	Phe	Glu	Val 1485	Gly	Phe	Leu

Ser Pro 1490		Thr	Phe	Thr	Val 1495	-	Glu	Tyr	His	Arg 1500		Asp	Lys
Gln Cys 1505		Met	Phe	Tyr	Ser 1510	Thr	Ser	Asn	Ile	Lys 1515	Ile	Gln	Lys
Val Cys 1520		Gly	Ala		Cys 1525		Cys	Val	Glu	Ala 1530	Asp	Cys	Gly
Gln Met 1535		Glu	Glu	Leu	Asp 1540		Thr	Ile		Ala 1545	Glu	Thr	Arg
Lys Gln 1550		Ala	Cys	Lys	Pro 1555	Glu	Ile	Ala	Tyr	Ala 1560	Tyr	Lys	Val
Ser Ile 1565		Ser	Ile	Thr	Val 1570	Glu	Asn	Val	Phe	Val 1575	Lys	Tyr	Lys
Ala Thr 1580		Leu	Asp	Ile	Tyr 1585		Thr	Gly	Glu	Ala 1590	Val	Ala	Glu
Lys Asp 1595		Glu	Ile	Thr	Phe 1600	Ile	Lys	Lys	Val	Thr 1605	Cys	Thr	Asn
Ala Glu 1610		Val	Lys	Gly	Arg 1615		Tyr	Leu		Met 1620	Gly	Lys	Glu
Ala Leu 1625		Ile	Lys	_	Asn 1630	Phe	Ser	Phe	_	Tyr 1635	Ile	Tyr	Pro
Leu Asp 1640		Leu	Thr	Trp	Ile 1645	Glu	Tyr	Trp	Pro	Arg 1650	Asp	Thr	Thr
Cys Ser 1655		Cys	Gln	Ala	Phe 1660	Leu	Ala	Asn	Leu	Asp 1665	Glu	Phe	Ala
Glu Asp 1670		Phe	Leu	Asn	Gly 1675	Cys							
<210> 761 <211> 170 <212> PR <213> Orr) T	oros n	nouba	ata									
<400> 761 Met Asp 1			Ser 2	Asp (Cys T	hr G	ly S	_	lu P	ro Va	l As	p Al 15	

	Gln	Ala	Phe	Ser 20	Glu	Gly	Lys	Glu	Ala 25	Tyr	Val	Leu	Val	Arg 30	Ser	Thr
	Asp	Pro	Lys 35	Ala	Arg	Asp	Cys	Leu 40	Lys	Gly	Glu	Pro	Ala 45	Gly	Glu	Lys
	Gln	Asp 50	Asn	Thr	Leu	Pro	Val 55	Met	Met	Thr	Phe	Lys 60	Asn	Gly	Thr	Asp
	Trp 65	Ala	Ser	Thr	Asp	Trp 70	Thr	Phe	Thr	Leu	Asp 75	Gly	Ala	Lys	Val	Thr 80
	Ala	Thr	Leu	Gly	Asn 85	Leu	Thr	Gln	Asn	Arg 90	Glu	Val	Val	Tyr	Asp 95	Ser
	Gln	Ser	His	His 100	Cys	His	Val	Asp	Lys 105	Val	Glu	Lys	Glu	Val 110	Pro	Asp
	Tyr	Glu	Met 115	Trp	Met	Leu	Asp	Ala 120	Gly	Gly	Leu	Glu	Val 125	Glu	Val	Glu
	Cys	Cys 130	Arg	Gln	Lys	Leu	Glu 135	Glu	Leu	Ala	Ser	Gly 140	Arg	Asn	Gln	Met
	Tyr 145	Pro	His	Leu	Lys	Asp 150	Cys	Gly	Gly	Gly	Gly 155	Ser	Glu	Asn	Leu	Tyr 160
	Phe	Gln	Gly	Ser	His 165	His	His	His	His	His 170						
5	<211 <212	> 762 > 167 > PR > Ma	76 T	fascio	cularis	5										
10	<222	> > mis > 63) > Xaa	(63)		r cua	lquier	· amir	noácio	do de	orige	en nat	tural				
15	<222	> > mis > (13 > Xaa	46)(1346		lquier	· amir	noácio	do de	orige	en nat	tural				
20		> 762 Gly		Leu	Gly 5	Ile	Leu	Cys	Phe	Leu 10	Ile	Phe	Leu	Gly	Lys 15	Thr

Trp	Gly	Gln	Glu 20	Gln	Thr	Tyr	Val	Ile 25	Ser	Ala	Pro	Lys	Ile 30	Phe	Arg
Val	Gly	Ala 35	Ser	Glu	Asn	Ile	Val 40	Ile	Gln	Val	Tyr	Gly 45	Tyr	Thr	Glu
Ala	Phe 50	Asp	Ala	Thr	Ile	Ser 55	Ile	Lys	Ser	Tyr	Pro 60	Asp	Lys	Xaa	Phe
Ser 65	Tyr	Ser	Ser	Gly	His 70	Val	His	Leu	Ser	Ser 75	Glu	Asn	Lys	Phe	Gl n 80
Asn	Ser	Ala	Val	Leu 85	Thr	Ile	Gln	Pro	Lys 90	Gln	Leu	Pro	Gly	Gly 95	Gln
Asn	Gln	Val	Ser 100	Tyr	Val	Tyr	Leu	Glu 105	Val	Val	Ser	Lys	His 110	Phe	Ser
Lys	Ser	Lys 115	Lys	Ile	Pro	Ile	Thr 120	Tyr	Asp	Asn	Gly	Phe 125	Leu	Phe	Ile
His	Thr 130	Asp	Lys	Pro	Val	Tyr 135	Thr	Pro	Asp	Gln	Ser 140	Val	Lys	Val	Arg
Val 145	Tyr	Ser	Leu	Asn	Asp 150	Asp	Leu	Lys	Pro	Ala 155	Lys	Arg	Glu	Thr	Val 160
Leu	Thr	Phe	Ile	Asp 165	Pro	Glu	Gly	Ser	Glu 170	Ile	Asp	Met	Val	Glu 175	Glu
Ile	Asp	His	Ile 180	Gly	Ile	Ile	Ser	Phe 185	Pro	Asp	Phe	Lys	Ile 190	Pro	Ser
Asn	Pro	Arg 195	Tyr	Gly	Met	Trp	Thr 200	Ile	Gln	Ala	Lys	Tyr 205	Lys	Glu	Asp
Phe	Ser 210	Thr	Thr	Gly	Thr	Ala 215	Phe	Phe	Glu	Val	Lys 220	Glu	Tyr	Val	Leu
Pro 225	His	Phe	Ser	Val	Ser 230	Val	Glu	Pro	Glu	Ser 235	Asn	Phe	Ile	Gly	Tyr 240
Lys	Asn	Phe	Lys	Asn 245	Phe	Glu	Ile	Thr	Ile 250	Lys	Ala	Arg	Ile	Phe 255	Tyr
Asn	Lys	Val	Val 260	Thr	Glu	Ala	Asp	Val 265	Tyr	Ile	Thr	Phe	Gly 270	Ile	Arg

Glu	Asp	Leu 275	Lys	Asp	Asp	Gln	Lys 280	Glu	Met	Met	Gln	Thr 285	Ala	Met	Gln
Asn	Thr 290	Met	Leu	Ile	Asn	Gly 295	Ile	Ala	Glu	Val	Thr 300	Phe	Asp	Ser	Glu
Thr 305	Ala	Val	Lys	Glu	Leu 310	Ser	Tyr	Tyr	Ser	Leu 315	Glu	Asp	Leu	Asn	Asn 320
Lys	Tyr	Leu	Tyr	11e 325	Ala	Val	Thr	Val	11e 330	Glu	Ser	Thr	Gly	Gly 335	Phe
Ser	Glu	Glu	Ala 340	Glu	Ile	Pro	Gly	11e 345	Lys	Tyr	Val	Leu	Ser 350	Pro	Tyr
Lys	Leu	Asn 355	Leu	Val	Ala	Thr	Pro 360	Leu	Phe	Leu	Lys	Pro 365	Gly	Ile	Pro
Tyr	Ser 370	Ile	Lys	Val	Gln	Val 375	Lys	Asp	Ala	Leu	Asp 380	Gln	Leu	Val	Gly
Gly 385	Val	Pro	Val	Thr	Leu 390	Asn	Ala	Gln	Thr	Ile 395	Asp	Val	Asn	Gln	Glu 400
Thr	Ser	Asp	Leu	Glu 405	Pro	Arg	Lys	Ser	Val 410	Thr	Arg	Val	Asp	Asp 415	Gly
Val	Ala	Ser	Phe 420	Val	Val	Asn	Leu	Pro 425	Ser	Gly	Val	Thr	Val 430	Leu	Glu
Phe	Asn	Val 435	Lys	Thr	Asp	Ala	Pro 440	Asp	Leu	Pro	Asp	Glu 445	Asn	Gln	Ala
Arg	Glu 450	Gly	Tyr	Arg	Ala	Ile 455	Ala	Tyr	Ser	Ser	Leu 460	Ser	Gln	Ser	Tyr
Leu 465	Tyr	Ile	Asp	Trp	Thr 470	Asp	Asn	His	Lys	Ala 475	Leu	Leu	Val	Gly	Glu 480
Tyr	Leu	Asn	Ile	Ile 485	Val	Thr	Pro	Lys	Ser 490	Pro	Tyr	Ile	Asp	Lys 495	Ile
Thr	His	Tyr	Asn 500	Tyr	Leu	Ile	Leu	Ser 505	Lys	Gly	Lys	Ile	Ile 510	His	Phe

Gly Thr Arg Glu Lys Leu Ser Asp Ala Ser Tyr Gln Ser Ile Asn Ile 515 520 525

Pro Val Thr Gln Asn Met Val Pro Ser Ser Arg Leu Leu Val Tyr Tyr 535 Ile Val Thr Gly Glu Gln Thr Ala Glu Leu Val Ser Asp Ser Val Trp Leu Asn Ile Glu Glu Lys Cys Gly Asn Gln Leu Gln Val His Leu Ser Pro Asp Ala Asp Thr Tyr Ser Pro Gly Gln Thr Val Ser Leu Asn Met 585 Val Thr Gly Met Asp Ser Trp Val Ala Leu Thr Ala Val Asp Ser Ala 600 Val Tyr Gly Val Gln Arg Arg Ala Lys Lys Pro Leu Glu Arg Val Phe Gln Phe Leu Glu Lys Ser Asp Leu Gly Cys Gly Ala Gly Gly Leu Asn Asn Ala Asn Val Phe His Leu Ala Gly Leu Thr Phe Leu Thr Asn Ala Asn Ala Asp Asp Ser Gln Glu Asn Asp Glu Pro Cys Lys Glu Ile 665 Ile Arg Pro Arg Arg Met Leu Gln Glu Lys Ile Glu Glu Ile Ala Ala Lys Tyr Lys His Leu Val Val Lys Lys Cys Cys Tyr Asp Gly Val Arg Ile Asn His Asp Glu Thr Cys Glu Gln Arg Ala Ala Arg Ile Ser Val 705 710 Gly Pro Arg Cys Val Lys Ala Phe Thr Glu Cys Cys Val Val Ala Ser Gln Leu Arg Ala Asn Asn Ser His Lys Asp Leu Gln Leu Gly Arg Leu His Met Lys Thr Leu Leu Pro Val Ser Lys Pro Glu Ile Arg Ser Tyr 755 760 Phe Pro Glu Ser Trp Leu Trp Glu Val His Leu Val Pro Arg Arg Lys

	770					775					780				
Gln 785	Leu	Gln	Phe	Ala	Leu 790	Pro	Asp	Ser	Val	Thr 795	Thr	Trp	Glu	Ile	Gln 800
Gly	Val	Gly	Ile	Ser 805	Asn	Ser	Gly	Ile	Cys 810	Val	Ala	Asp	Thr	Ile 815	Lys
Ala	Lys	Val	Phe 820	Lys	Asp	Val	Phe	Leu 825	Glu	Met	Asn	Ile	Pro 830	Tyr	Ser
Val	Val	Arg 835	Gly	Glu	Gln	Val	Gln 840	Leu	Lys	Gly	Thr	Val 845	Tyr	Asn	Tyr
Arg	Thr 850	Ser	Gly	Met	Gln	Phe 855	Cys	Val	Lys	Met	Ser 860	Ala	Val	Glu	Gly
Ile 865	Cys	Thr	Ser	Glu	Ser 870	Pro	Val	Ile	Asp	His 875	Gln	Gly	Thr	Lys	Ser 880
Ser	Lys	Cys	Val	A rg 885	Gln	Lys	Val	Glu	Gly 890	Ser	Ser	Asn	His	Leu 895	Val
Thr	Phe	Thr	V al 900	Leu	Pro	Leu	Glu	Ile 905	Gly	Leu	Gln	Asn	Ile 910	Asn	Phe
Ser	Leu	Glu 915	Thr	Ser	Phe	Gly	Lys 920	Glu	Ile	Leu	Val	Lys 925	Ser	Leu	Arg
Val	Val 930	Pro	Glu	Gly	Val	Lys 935	Arg	Glu	Ser	Tyr	Ser 940	Gly	Ile	Thr	Leu
Asp 945	Pro	Arg	Gly	Ile	Tyr 950	Gly	Thr	Ile	Ser	Arg 955	Arg	Lys	Glu	Phe	Pro 960
Tyr	Arg	Ile	Pro	Leu 965	Asp	Leu	Val	Pro	Lys 970	Thr	Glu	Ile	Lys	Arg 975	Ile
Leu	Ser	Val	Lys 980	Gly	Leu	Leu	Val	Gly 985	Glu	Ile	Leu	Ser	Ala 990	Val	Leu
Ser	Arg	Glu 995	Gly	Ile	Asn	Ile	Leu 1000		r His	s Let	ı Pro	100		Ly Se	er Ala
Glu	Ala 1010		ı Leı	ı Met		va:	1 V a 15	al P	ro Va	al Pl		yr 1 020	Val I	Phe I	His

Tyr	Leu 1025	Glu	Thr	Gly	Asn	His 1030	-	Asn	Ile	Phe	His 1035		Asp	Pro
Leu	Ile 1040	Glu	Lys	Arg	Asn	Leu 1045		Lys	Lys	Leu	Lys 1050		Gly	Met
Val	Ser 1055		Met	Ser	_	Arg 1060		Ala	Asp	Tyr	Ser 1065	_	Ser	Val
Trp	Lys 1070	Gly	Gly	Ser	Ala	Ser 1075		Trp	Leu	Thr	Ala 1080		Ala	Leu
Arg	Val 1085		Gly	Gln	Val	His 1090		Tyr	Val	Glu	Gln 1095	Asn	Gln	Asn
Ser	Ile 1100	Cys	Asn	Ser	Leu	Leu 1105		Leu	Val	Glu	Asn 1110	Tyr	Gln	Leu
Asp	Asn 1115		Ser	Phe	Lys	Glu 1120	Asn	Ser	Gln	Tyr	Gln 1125	Pro	Ile	Lys
Leu	Gln 1130	Gly	Thr	Leu	Pro	Val 1135		Ala	Arg	Glu	Asn 1140	Ser	Leu	Tyr
Leu	Thr 1145		Phe	Thr	Val	Ile 1150	_	Ile	Arg	_	Ala 1155	Phe	Asp	Ile
Cys	Pro 1160		Val	Lys		Asn 1165		Ala	Leu		Lys 1170		Asp	Thr
Phe	Leu 1175		Glu	Asn		Leu 1180		Ala	Gln	Ser	Thr 1185	Phe	Thr	Leu
Ala	Ile 1190	Ser	Ala	Tyr		Leu 1195		Leu	Gly		Lys 1200		His	Pro
Gln	Phe 1205	Arg	Ser	Ile	Val	Ser 1210	Ala	Leu	Lys	Arg	Glu 1215	Ala	Leu	Val
Lys	Gly 1220	Asn	Pro	Pro	Ile	Tyr 1225	Arg	Phe	Trp	Lys	Asp 1230	Ser	Leu	Gln
His	Lys 1235	Asp	Ser	Ser	Val	Pro 1240	Asn	Thr	Gly	Thr	Ala 1245	Arg	Met	Val
Glu	Thr 1250	Thr	Ala	Tyr	Ala	Leu 1255		Thr	Ser	Leu	Asn 1260	Leu	Lys	Asp

Ile	Asn 1265		Val	Asn	Pro	Ile 1270		Lys	Trp	Leu	Ser 1275		Glu	Gln
Arg	Tyr 1280	_	Gly	Gly	Phe	Tyr 1285		Thr	Gln	Asp	Thr 1290	Ile	Asn	Ala
Ile	Glu 1295	Gly	Leu	Thr	Glu	Tyr 1300		Leu	Leu	Val	Lys 1305	Gln	Leu	Arg
Leu	Asn 1310	Met	Asp	Ile	Asp	Val 1315	Ala	Tyr	Lys	His	Lys 1320	Gly	Pro	Leu
His	Asn 1325	Tyr	Lys	Met	Thr	Asp 1330		Asn	Phe		Gly 1335	Arg	Pro	Val
Glu	Val 1340	Leu	Leu	Asn		Asp 1345		Val	Val	Ser	Thr 1350	Gly	Phe	Gly
Ser	Gly 1355		Ala	Thr	Val	His 1360		Thr	Thr		Val 1365	His	Lys	Thr
Ser	Thr 1370		Glu	Glu	Val	Cys 1375		Phe	Tyr		Lys 1380	Ile	Asp	Thr
Gln	Asp 1385		Glu	Ala	Ser	His 1390	_	Arg	Gly	_	Gly 1395	Asn	Ser	Asp
Tyr	Lys 1400	Arg	Ile	Val	Ala	Cys 1405		Ser	Tyr	_	Pro 1410	Ser	Lys	Glu
Glu	Ser 1415	Ser	Ser	Gly	Ser	Ser 1420	His	Ala	Val	Met	Asp 1425	Ile	Ser	Leu
Pro	Thr 1430	Gly	Ile	Asn	Ala	Asn 1435	Glu	Glu	Asp	Leu	Lys 1440	Ala	Leu	Val
Glu	Gly 1445	Val	Asp	Gln	Leu	Phe 1450	Thr	Asp	Tyr	Gln	Ile 1455	Lys	Asp	Gly
His	Val 1460	Ile	Leu	Gln	Leu	Asn 1465	Ser	Ile	Pro	Ser	Ser 1470	Asp	Phe	Leu
Cys	Val 1475	Arg	Phe	Arg	Ile	Phe 1480	Glu	Leu	Phe	Glu	Val 1485	Gly	Phe	Leu
Ser	Pro 1490	Ala	Thr	Phe	Thr	Val 1495	Tyr	Glu	Tyr	His	Arg 1500	Pro	Asp	Lys

Gln Cys Thr Met Phe Tyr Ser Thr Ser Asn Ile Lys Ile Gln Lys 1505 1510 Val Cys Glu Gly Ala Thr Cys Lys Cys Ile Glu Ala Asp Cys Gly 1520 1530 Gln Met Gln Lys Glu Leu Asp Leu Thr Ile Ser Ala Glu Thr Arg 1540 Lys Gln Thr Ala Cys Asn Pro Glu Ile Ala Tyr Ala Tyr Lys Val Ile Ile Thr Ser Ile Thr Thr Glu Asn Val Phe Val Lys Tyr Lys 1565 1570 1575 Lys Asp $\,$ Ser Glu Ile Thr Phe $\,$ Ile Lys Lys Val Thr $\,$ Cys Thr Asn Ala Glu Leu Val Lys Gly Arg Gln Tyr Leu Ile Met Gly Lys Glu Ala Leu Gln Ile Lys Tyr Asn Phe Thr Phe Arg Tyr Ile Tyr Pro 1625 1630 Leu Asp Ser Leu Thr Trp Ile Glu Tyr Trp Pro Arg Asp Thr Thr 1640 1645 Cys Ser Ser Cys Gln Ala Phe Leu Ala Asn Leu Asp Glu Phe Ala

Glu Asp Ile Phe Leu Asn Gly Cys

1675

1670

REIVINDICACIONES

```
Polipéptido de unión a C5, que comprende un motivo de unión a C5, BM, motivo que consiste en una
    1.
    secuencia de aminoácidos seleccionada de
 5
                                EX<sub>2</sub>X<sub>3</sub>X<sub>4</sub>A X<sub>6</sub>X<sub>7</sub>EID X<sub>11</sub>LPNL X<sub>16</sub>X<sub>17</sub>X<sub>18</sub>QW X<sub>21</sub>AFIX<sub>25</sub> X<sub>26</sub>LX<sub>28</sub>D,
             en la que, independientemente entre sí,
10
             X<sub>2</sub> se selecciona de H, Q, S, T v V;
             X<sub>3</sub> se selecciona de I, L, M y V;
             X<sub>4</sub> se selecciona de A, D, E, H, K, L, N, Q, R, S, T e Y;
             X<sub>6</sub> se selecciona de N y W;
             X<sub>7</sub> se selecciona de A, D, E, H, N, Q, R, S y T;
             X<sub>11</sub> se selecciona de A, E, G, H, K, L, Q, R, S, T e Y;
15
             X<sub>16</sub> se selecciona de N y T;
             X<sub>17</sub> se selecciona de I, L y V;
             X<sub>18</sub> se selecciona de A, D, E, H, K, N, Q, R, S y T;
             X<sub>21</sub> se selecciona de I, L y V;
20
             X<sub>25</sub> se selecciona de D, E, G, H, N, S y T;
             X<sub>26</sub> se selecciona de K y S;
             X<sub>28</sub> se selecciona de A, D, E, H, N, Q, S, T e Y;
    У
             ii) una secuencia de aminoácidos que tiene al menos un 86% de identidad con la secuencia definida en i),
25
             en la que el polipéptido se une a C5;
    en la que dicho motivo de unión a C5 forma parte de un dominio del conjunto de proteínas de tres hélices, y en la
    que dicho polipéptido de unión a C5 muestra actividad de unión a C5 humano y a C5 de modelos animales, tales
    como ratón o rata.
30
    2.
                   Polipéptido de unión a C5 de acuerdo con la reivindicación 1, en el que X₃ se selecciona de I, L y V.
    3.
                   Polipéptido de unión a C5 de acuerdo con cualquier reivindicación anterior, en el que X6 es W.
35 4.
                   Polipéptido de unión a C5 de acuerdo con cualquier reivindicación anterior, en el que X<sub>16</sub> es T.
    5.
                   Polipéptido de unión a C5 de acuerdo con cualquier reivindicación anterior, en el que X<sub>26</sub> es K.
                   Polipéptido de unión a C5 de acuerdo con cualquier reivindicación anterior, en el que la secuencia de
40 aminoácidos se selecciona de una cualquiera de la SEQ ID NO:1-248; tal como de una cualquiera de la SEQ ID
    NO:1-12, SEQ ID NO:20, SEQ ID NO:23-24, SEQ ID NO:26-28, SEQ ID NO:32-35, SEQ ID NO:38-39, SEQ ID
    NO:41, SEQ ID NO:46, SEQ ID NO:49, SEQ ID NO:56-57, SEQ ID NO:59, SEQ ID NO:66, SEQ ID NO:78-79, SEQ
    ID NO:87, SEQ ID NO:92, SEQ ID NO:106, SEQ ID NO:110, SEQ ID NO:119, SEQ ID NO:125, SEQ ID NO:141,
    SEQ ID NO:151, SEQ ID NO:161, SEQ ID NO:166, SEQ ID NO:187, SEQ ID NO:197, SEQ ID NO:203, SEQ ID
45 NO:205, SEQ ID NO:215 y la SEQ ID NO:243; tal como de una cualquiera de la SEQ ID NO:1-12.
    7.
                   Polipéptido de unión a C5 de acuerdo con cualquier reivindicación anterior, que comprende una
    secuencia de aminoácidos seleccionada de:
50
             i)
                                            K-[BM]-DPSQS XaXbLLXc EAKKL NDXdQ;
             en la que
55
             [BM] es un motivo de unión a C5 como se define en una cualquiera de las reivindicaciones 1-6;
             Xa se selecciona de A y S;
             X<sub>b</sub> se selecciona de N y E;
             Xc se selecciona de A, S y C;
             X<sub>d</sub> se selecciona de A y S;
```

У

- ii) una secuencia de aminoácidos que tiene al menos un 79% de identidad con una cualquiera de las secuencias definidas anteriormente.
- 5 8. Polipéptido de unión a C5 de acuerdo con la reivindicación 7, en el que la secuencia de aminoácidos se selecciona de una cualquiera de la SEQ ID NO:249-496; tal como de una cualquiera de la SEQ ID NO:249-260, SEQ ID NO:268, SEQ ID NO:271-272, SEQ ID NO:274-276, SEQ ID NO:280-283, SEQ ID NO:286-287, SEQ ID NO:289, SEQ ID NO:294, SEQ ID NO:397, SEQ ID NO:304-305, SEQ ID NO:307, SEQ ID NO:314, SEQ ID NO:326-327, SEQ ID NO:335, SEQ ID NO:340, SEQ ID NO:354, SEQ ID NO:358, SEQ ID NO:367, SEQ ID NO:373, SEQ ID NO:389, SEQ ID NO:399, SEQ ID NO:409, SEQ ID NO:414, SEQ ID NO:435, SEQ ID NO:445, SEQ ID NO:451, SEQ ID NO:453, SEQ ID NO:463 y la SEQ ID NO:491; tal como de una cualquiera de la SEQ ID NO:249-260.
- 9. Polipéptido de unión a C5 de acuerdo con una cualquiera de las reivindicaciones 1-8, en el que la secuencia de aminoácidos se selecciona de una cualquiera de la SEQ ID NO:497-757; tal como de una cualquiera 15 de la SEQ ID NO:497-508, SEQ ID NO:516, SEQ ID NO:519-520, SEQ ID NO:522-524, SEQ ID NO:528-531, SEQ ID NO:534-535, SEQ ID NO:537, SEQ ID NO:542, SEQ ID NO:545, SEQ ID NO:552-553, SEQ ID NO:555, SEQ ID NO:562, SEQ ID NO:574-575, SEQ ID NO:583, SEQ ID NO:588, SEQ ID NO:602, SEQ ID NO:606, SEQ ID NO:615, SEQ ID NO:621, SEQ ID NO:637, SEQ ID NO:647, SEQ ID NO:657, SEQ ID NO:662, SEQ ID NO:683, SEQ ID NO:693, SEQ ID NO:699, SEQ ID NO:701, SEQ ID NO:711, SEQ ID NO:739 y la SEQ ID NO:746-757; tal como de una cualquiera de la SEQ ID NO:497, SEQ ID NO:497, SEQ ID NO:498, SEQ ID NO:499, SEQ ID NO:500, SEQ ID NO:501, SEQ ID NO:746, SEQ ID NO:747 SEQ ID NO:748, SEQ ID NO:750 y la SEQ ID NO:753.
- Polipéptido de unión a C5 de acuerdo con cualquier reivindicación anterior, en el que el polipéptido de
 unión a C5 se une a C5 de tal forma que el valor de K_D de la interacción es a lo sumo 1 x 10⁻⁶ M, tal como, a lo sumo 1 x 10⁻⁷ M, tal como, a lo sumo 1 x 10⁻⁸ M.
- 11. Polipéptido de unión a C5 de acuerdo con cualquier reivindicación anterior, que comprende además aminoácidos C terminales y/o N terminales que mejora la producción, purificación, estabilización *in vivo* o *in vitro*, 30 acoplamiento o detección del polipéptido.
 - 12. Polipéptido de unión a C5 de acuerdo con la reivindicación 11, que comprende además una fracción de extensión de la semivida que aumenta la semivida del polipéptido de unión a C5 *in vivo*, siendo dicha fracción de extensión de la semivida un dominio Fc de un anticuerpo.

35

13. Compuesto de unión a C5, que comprende al menos un polipéptido de unión a C5 de acuerdo con cualquier reivindicación anterior; al menos un dominio de unión a albúmina de la proteína G estreptocócica, y al menos un resto de unión para unir dicho al menos un dominio al extremo C o N de dicho al menos un polipéptido de unión a C5.

40

14. Compuesto de unión a C5 de acuerdo con la reivindicación 13, que tiene una estructura seleccionada de

```
[CBP1]-[L1]-[ALBD];

45 [CBP1]-[CBP2]-[L1]-[ALBD];

[CBP1]-[L1]-[ALBD]-[L2]-[CBP2];

[ALBD]-[L1]-[CBP1];

[ALBD]-[L1]-[CBP1]-[CBP2];

[CBP1]-[L1]-[CBP2]-[L2]-[ALBD]; y

50 [ALBD]-[L1]-[CAP1]-[L2]-[CBP2]
```

en la que, independientemente entre sí,

[CBP1] y [CBP2] son polipéptidos de unión a C5 que pueden ser iguales o diferentes; 55 [L1] y [L2] son restos de unión que pueden ser iguales o diferentes; y [ALBD] es un dominio de unión a albúmina de la proteína G estreptocócica.

15. Compuesto de unión a C5 de acuerdo con la reivindicación 14, en el que el resto de unión se selecciona de G, GS; [G₂S]_n; [G₃S]_n; [G₄S]_n, en los que n es 0-7; [S₂G]_m; [S₃G]_m; [S₄G]_m; en los que m es 0-

7, y VDGS.

5

- 16. Compuesto de unión a C5 de acuerdo con una cualquiera de las reivindicaciones 13-15, en el que dicho dominio de unión a albúmina es como se expone en la SEQ ID NO:759.
- 17. Compuesto de unión a C5 de acuerdo con una cualquiera de las reivindicaciones 13-16, en el que cada uno de dichos polipéptidos de unión a C5 se selecciona independientemente de un polipéptido como se define en la reivindicación 9.
- 10 18. Polinucleótido que codifica un polipéptido de acuerdo con una cualquiera de las reivindicaciones 1-12 o un compuesto de acuerdo con una cualquiera de las reivindicaciones 13-17.
- 19. Combinación de un polipéptido de unión a C5 de acuerdo con una cualquiera de las reivindicaciones 1-12, o un compuesto de unión a C5 de acuerdo con una cualquiera de las reivindicaciones 13-17 con un agente 15 terapéutico.
 - 20. Polipéptido de unión a C5 de acuerdo con una cualquiera de las reivindicaciones 1-12, compuesto de unión a C5 de acuerdo con una cualquiera de las reivindicaciones 13-17 o combinación de acuerdo con la reivindicación 19 para su uso en terapia.
- 21. Polipéptido de unión a C5 de acuerdo con una cualquiera de las reivindicaciones 1-12, compuesto de unión a C5 de acuerdo con una cualquiera de las reivindicaciones 13-17, o combinación de acuerdo con la reivindicación 19 para el tratamiento de una afección relacionada con C5 seleccionada de enfermedad inflamatoria; enfermedad autoinmune; enfermedad infecciosa; enfermedad cardiovascular; trastornos neurodegenerativos; cáncer; lesión de injerto; heridas; enfermedad ocular; enfermedad renal; enfermedades pulmonares; enfermedades hematológicas; enfermedades alérgicas y enfermedades dermatológicas, tales como para el tratamiento de la hemoglobinuria paroxística nocturna (PNH).

Polipéptido	Fig. 1	SEQ ID
Polipéptido	Secuencia de aminoácidos	SEQ ID
CBM06175	EVLEAWDEIDRLPNLTIEQWLAFINKLDD	1
CBM08044	EVLEANNEIDRLPNLTIEQWLAFINKLDD	2
CBM05998	EVIEAWNEIDRLPNLTIEQWLAFINKLDD	3
CBM06009	EVLEAMDEIDRLPNLTLDQWLAFINKLDD	4
CBM06079	EVLDAMDEIDALPNLTLEQWLAFINKLDD	5
CBM06126	EVIDAMDEIDRLPNLTLDQWLAFINKLDD	6
CBM06140	ETLEAMDEIDRLPNLTIEQWLAFINKLDD	7
CBM06189	EVIDAMNEIDALPNLTLDQWLAFINKLDD	80
CBM06214	EVIDAMDEIDKLPNLTIDQWLAFINKLDD	9
CBM06215	EVLEAMDEIDHLPNLTLDQWLAFINKLDD	10
CBM06226	EVLEAMDEIDALPNLTIEQWLAFINKLDD	11
CBM06018	EVIDAMDEIDKLPNLTLEQWLAFINKLDD	12
CBM05477	ETITAMDEIDKLPNLTIEQWLAFIGKLED	13
CBM05363	ESMKAWDEIDRLPNLNINQWVAFIDSLYD	14
CBM05483	ESIEAWTEIDHLPNLTIEQWLAFINKLTD	15
CBM05538	EVLDAWHEIDTLPNLTVRQWLAFISKLED	16
CBM05692	EHIQANEEIDRLPNLTIKQWLAFINKLHD	17
CBM05994	EVLHAWAEIDALPNLTIEQWLAFINKLDD	18
CBM05995	EVLAAMDEIDSLPNLTLQQWLAFINKLDD	19
CBM05996	EVIDAMNEIDALPNLTLEQWLAFINKLDD	20
CBM05997	EVLDAWNEIDALPNLTIDQWLAFINKLSD	21
CBM05999	EVIEAMDEIDGLPNLTIEQWLAFINKLDD	22
CBM06000	EVLEAWDEIDHLPNLTLQQWLAFINKLDD	23

CRM06001	EVITEAMMET DAT (TITEOMIA PINKI, D)	5
		17
CBM06002	EVIAAWNEIDRILDRILTLYSWIAFINKIDD	25
CBM06003	EVIEAWDEIDALPNLTLQQWLAFINKLDD	56
CBM06004	EVIAAWDEIDKLPNLTIEQWLAFINKLDD	27
CBM06005	EVIAAWDEIDKLPNLTLQQWLAFINKLDD	28
CBM06006	ETIAAWDEIDKLPNLTIEQWLAFINKLDD	59
CBM06007	ETIEAWNEIDRLPNLTIEGWLAFINKLDD	30
СВМО 6008	EVLEAWREIDALPNLTIQQWLAFINKLDD	31
CBM06010	EVIEAWDEIDQLPNLTIEQWLAFINKLDD	32
CBM06011	EVIRANDEIDHIPNLTIEGWLAFINKLDD	33
CBM06012	EVLEAWDEIDRLPNLTINQWLAFINKLDD	34
CBM06013	EVLDAWNEIDHLPNLTIEQWLAFINKLDD	35
CBM06014	EVIDAWNEIDKLPNLTIEQWLAFINKLDD	36
CBM06015	ETLEAWDEIDQLPNLTLQQWLAFINKLDD	37
CBM06016	EVIEAWNEIDALPNLTLDQWLAFINKLDD	38
CBM06017	EVIDAWNEIDRLPNLTLQQWLAFINKLDD	39
CBM06019	EVIDAWNEIDQLPNLTLEQWLAFINKLDD	40
CBM06020	ETIAAWDEIDHLPNLTLEGWLAFINKLDD	41
CBM06024	EVLQAWDEIDHLPNLTIQQWLAFINKLSD	42
CBM06025	ETLHAWAEIDRLPNLTIEQWLAFINKLDD	43
CBM06026	EVLEAWNEIDHLPNLTLAQWLAFINKLDD	44
CBM06027	EVIEAWDEIDKLPNLTIAQWLAFINKLDD	45
CBM06028	EVLDAWDEIDHLPNLTLQQWLAFINKLDD	46
CBM06029	ETIEAWNEIDKLPNLTLTQWLAFINKLDD	47
CBM06030	EVLEAWNEIDLLPNLTIEQWLAFINKLDD	48
CBM06031	EVIEAWDEIDHLPNLTIDQWLAFINKLDD	49

CBM06032	EVISAWNEIDALPNLTLQQWLAFINKLDD	50
CBM06033	EVIAAWNEIDKLPNLTLEQWLAFINKLDD	51
CBM06034	ETIEAWNEIDSLPNLTLDQWLAFINKLDD	52
CBM06035	EVLDAWNEIDQLPNLTLQQWLAFINKLDD	53
CBM06037	EVLAAWNEIDHLPNLTIEQWLAFINKLDD	54
CBM06038	EVLEAWDEIDHLPNLTITQWLAFINKLDD	55
CBM06039	ETIDAWNEIDHLPNLTIEQWLAFINKLDD	99
CBM06040	EVIEAWNEIDHLPNLTIQQWLAFINKLDD	57
CBM06041	EVIÇANNEIDALPNLTISQWLAFINKLDD	28
CBM06043	EVIAAWDEIDSLPNLTIEQWLAFINKLDD	59
CBM06044	EHIEAWNEIDALPNLTIEQWLAFINKLQD	09
CBM06045	EVLEAWNEIDKLPNLTLDQWLAFINKLDD	61
CBM06047	EVIDAMNEIDHLPNLTIEQWLAFINKLAD	62
CBM06048	ETIDAWDEIDKLPNLTIEQWLAFINKLDD	63
CBM06049	EVIAAWDEIDLLPNLTLQQWLAFINKLAD	64
CBM06050	EVIHAMDEIDKLPNLTIEQWLAFINKLDD	65
CBM06051	EVIAAWNEIDHLPNLTLEQWLAFINKLDD	99
CBM06052	ETLDAWNEIDKLPNLTLSQWLAFINKLDD	29
CBM06053	EVLEAWNEIDALPNLTLEQWLAFINKLDD	89
CBM06054	EVIQAMDEIDHLPNLTISQWLAFINKLDD	69
CBM06055	EVLQAWDEIDSLPNLTIEQWLAFINKLDD	70
CBM06056	ETLEAWDEIDHLPNLTIAQWLAFINKLDD	71
CBM06057	ETIDAWNEIDRLPNLTISQWLAFINKLDD	72
CBM06058	EVLDAWHEIDHLPNLTIQQWLAFINKLDD	73
CBM06059	EQIRAWDEIDKLPNLTIEQWLAFINKLAD	74
CBM06060	ETLYAMNEIDKLPNLTIEQWLAFIEKLQD	75

CBM06061	EVIEAWNEIDALPNITIDOWIAFINKLDD	76
СВМ06062	EVLEAWNEIDHLPNLTIQQWLAFINKLDD	77
CBM06063	ETIEAWDEIDALPNLTIEGWLAFINKLDD	78
CBM06065	EVIEAWNEIDHLPNLTLQQWLAFINKLDD	79
СВМО 6066	EVIEAWNEIDKLPNLTIQQWLAFINKLDD	80
СВМО 6068	ETIDAWAEIDHIPNLTIDQWLAFINKLDD	81
CBM06069	EHIDAWNEIDALPNLTLSQWLAFINKLDD	82
CBM06070	EVLDAWNEIDKLPNLTIAQWLAFINKLDD	83
CBM06071	EVIEAWTEIDYLPNLTLQQWLAFINKLDD	84
СВМ06072	ETIEAWNEIDHLPNLTIAQWLAFINKLDD	85
CBM06073	EVIQAMNEIDKLPNLTLEQWLAFINKLDD	86
CBM06074	EVIEAWDEIDHLPNLTIEQWLAFINKLDD	87
CBM06075	ETIDAWNEIDLLPNLTIEQWLAFINKLDD	88
CBM06076	EHIDAWNEIDKLPNLTIDQWLAFINKLDD	89
CBM06077	EVVAAWNEIDALPNLTIEQWLAFINKLND	06
CBM06080	EVIEAWNEIDALPNLTLAQWLAFINKLDD	91
CBM06081	EVLQAWDEIDRLPNLTLDQWLAFINKLDD	92
CBM06082	EVIDAWDEIDHLPNLTIEQWLAFINKLSD	93
СВМО 6083	EVVEAWNEIDQLPNLTIEQWLAFINKLDD	94
CBM06084	EVIQAWNEIDALPNLTIEQWLAFINKLDD	95
CBM06085	EVIQAWDEIDKLPNLTIDQWLAFINKLAD	96
CBM06086	EVVAAWDEIDALPNLTLTQWLAFINKLDD	97
CBM06087	EVIQAWNEIDGLPNLTLSQWLAFINKLDD	86
CBM06088	ETIEAWDEIDALPNLTITQWLAFINKLDD	66
CBM06089	EVIDAWNEIDHLPNLTIQQWLAFINKLAD	100
CBM06090	ETIEAWNEIDALPNLTLDQWLAFINKLED	101

CBM06091	EHIHAWNEIDELPNLTIEOWLAFINKLAD	102
CBM06092	EVIDAWDEIDHLPNLTIDQWLAFINKLSD	103
CBM06093	EVIDANDEIDALPNLTIAQWLAFINKLHD	104
CBM06095	ETIEAWDEIDKLPNLTIEQWLAFINKLDD	105
CBM06097	EVLLAWDEIDHLPNLTLEQWLAFINKLDD	106
CBM06098	EHIDAWNEIDGLPNLTLEQWLAFINKLDD	107
CBM06099	EVIEAWSEIDALPNLTIDQWLAFINKLAD	108
CBM06100	EQLNAWAEIDALPNLTIEQWLAFINKLDD	109
CBM06101	EVIDAWNEIDALPNLTIAQWLAFINKLDD	110
CBM06103	ETIDAWNEIDQLPNLTIEQWLAFINKLDD	111
CBM06104	EVIEAWDEIDKLPNLTLAQWLAFINKLDD	112
CBM06105	EVLYAWAEIDHLPNLTIEQWLAFINKLDD	113
CBM06107	EQIDAWNEIDRLPNLTIQQWLAFINKLDD	114
CBM06108	EVLAAWDEIDRLPNLTIEQWLAFINKLDD	115
CBM06109	EVIEAWDEIDHLPNLTLHQWLAFINKLDD	116
CBM06110	EVIEAWNEIDKLPNLTLQQWLAFINKLDD	117
CBM06111	EVIDANDEIDALPNLTIEQWLAFINKLHD	118
CBM06112	EVIAAWDEIDALPNLTIEQWLAFINKLDD	119
CBM06113	EVIEAWTEIDQLPNLTLDQWLAFINKLDD	120
CBM06114	EVINAWNEIDALPNLTLQQWLAFINKLDD	121
CBM06115	EHIEAWDEIDHLPNLTIDQWLAFINKLAD	122
CBM06116	EHLEAWREIDALPNLTIEQWLAFINKLDD	123
CBM06117	EVLDAWNEIDKLPNLTLQQWLAFINKLDD	124
CBM06118	EVIAAWDEIDHLPNLTIQQWLAFINKLDD	125
CBM06119	EVIÇAWNEIDALPNLTLEQWLAFINKLDD	126
CBM06121	EVIDAWNEIDHLPNLTIAQWLAFINKLDD	127

CREWO 6123 EVILANDELDELENITIEQUIAFINKIDD CREWO 6124 EVILANDELDELENITIEQUIAFINKIDD CREWO 6125 EVILANDELDELENITIEQUIAFINKIDD CREWO 6127 EVILANDELDELENITIEQUIAFINKIDD CREWO 6129 EVILANDELDIALENITIEQUIAFINKIDD CREWO 6131 EVILANDELDIALENITIEQUIAFINKIDD CREWO 6133 EVIDANBELDIALENITIEQUIAFINKIDD CREWO 6134 EVILANDELDIALITIEQUIAFINKIDD CREWO 6135 EVIDANBELDOLENITIEQUIAFINKIDD CREWO 6136 EVILANDELDOLENITIEQUIAFINKIDD CREWO 6137 EVILANDELDOLENITIEQUIAFINKIDD CREWO 6138 EVILANDELDOLENITIEQUIAFINKIDD CREWO 6139 EVILANDELDOLENITIEQUIAFINKIDD CREWO 6139 EVILANDELDOLENITIEQUIAFINKIDD CREWO 6141 EVILANDELDELINITIEQUIAFINKIDD CREWO 6142 EVILANDELDELINITIEQUIAFINKIDD CREWO 6143 EVILANDELDOLENITIEQUIAFINKIAD CREWO 6144 EVILANDELDOLENITIEQUIAFINKIAD CREWO 6145 EVILANDELDOLENITIEQUIAFINKIAD CREWO 6146 EVILANDELDOLENITIEQUIAFINKIAD CREWO 6147 EVILANDELDOLENITIEQUIAFINKIAD CREWO 6148 EVILANDELDOLENITIEQ	CBM06122	EQLDAWDEIDHLPNLTIDQWLAFINKLSD	128
EVILEAWNE EVILAWDE EVILAWNE	CBM06123	EVINAWDEIDKLPNLTIEQWLAFINKLDD	129
EVILAWDE EVILAWDE EVILAWNE	CBM06124	EVLEAWNEIDHLPNLTIDQWLAFINKLDD	130
EVIDAWNE EVIDAWNE EVIDAWNE EVIDAWNE EVIDAWNE EVICAMNE EVIDAMNE EVIDAMNE EVIDAMNE EVIDAMNE EVIDAMNE EVIDAMNE	CBM06125		131
EVIDAWNE EVIDAWNE EVIDAWNE EVICAMNE EVICAMNE EVICAMNE EVIEAWNE EVIEAWNE EVIEAWNE EVICAMNE EVICAMNE EVICAMNE EVICAMNE EVICAMNE EVICAMNE EVICAMNE EVICAMNE EVIDAWNE EVIDAWNE EVIDAWNE EVIDAWNE EVIDAWNE EVIDAWNE EVIDAWNE	CBM06127	EVIAAWNEIDQLPNLTLDQWLAFINKLDD	132
EVILHAWNE EVILHAWNE EVIÇAWNE EVIÇAWNE EVIEAWNE EVIEAWNE EVIEAWNE EVIÇANNE	CBM06128	ETLLAWDEIDALPNLTIEQWLAFINKLDD	133
EVILHAWNE EVIÇAWNE EVIÇAWNE EVIÇAWNE EVIEAWNE EVIEAWNE EVIEAWNE EVIEAWNE EVIEAWNE EVIÇAMNE EVIÇAMNE EVIÇAMNE EVIÇAMNE EVIÇAMNE EVIÇAMNE EVIÇAMNE EVIÇAMNE EVIÇAMNE EVIDAWNE EVIDAWNE EVIDAWNE EVIDAWNE	CBM06129	EVIDAWNEIDTLPNLTLEQWLAFINKLDD	134
EVIÇAWNE EVIDAWNE EVIDAWNE EVIEAWNE EVIEAWNE EVIEAWNE EVIEAWNE EVICAMNE EVICAMNE EVIDAWNE EVIDAWNE EVIDAWNE EVIDAWNE EVIDAWNE EVIDAWNE EVIDAWNE EVIDAWNE	CBM06131	EVLHAWNEIDHLPNLTINQWLAFINKLQD	135
ETTDAWNE EVIÇAWDE EVICAMNE EVIEAWNE EVIEAWNE EVIÇANNE EVIÇANNE EVIÇANNE EVIÇANNE EVIÇANNE EVIÇANNE EVIDAWNE EVIDAWNE EVIDAWNE EVIDAWNE EVIDAWNE EVIDAWNE	CBM06132		136
EVIÇAWDE EVIDAWNE EVIEAWNE EVIEAWNE EVIEAWNE EVIÇANDE EVIÇANDE EVIÇANDE EVIÇANDE EVIÇANDE EVIDAWNE EVIDAWNE EVIDAWNE EVIDAWNE EVIDAWNE	CBM06133	ETVDAWNEIDALPNLTIEQWLAFINKLDD	137
EVIEAWNE EVIEAWNE EVIEAWNE EVIEAWNE EVIÇANNE EVIÇANNE EVIDAWNE EVIDAWNE EVIDAWNE EVIDAWNE EVIDAWNE EVIDAWNE EVIDAWNE	CBM06134	EVIÇAWDEIDHLPNLTIDQWLAFINKLDD	138
EVIEAWNE EVIEAWNE EVIEAWNE EVIÇAWNE EVIÇAWNE EVIÇAWNE ETIÇAWDE ETIÇAWNE ETIDAWNE EVIDAWNE EVIDAWNE EVIDAWNE EVIDAWNE	CBM06135	EVIDAWNEIDQIPNLTIQQWLAFINKLDD	139
	CBM06136	ETIEAWNEIDALPNLTLDQWLAFINKLDD	140
	CBM06137	EVIEAWDEIDALPNLTIDQWLAFINKLDD	141
	CBM06138	EVIEAWNEIDQLPNLTIQQWLAFINKLDD	142
	CBM06139	EVIEAWTEIDHLPNLTIEQWLAFINKLDD	143
	CBM06141	EVIQAWNEIDHLPNLTLQQWLAFINKLED	144
	CBM06142	EVIQANNEIDQLPNLTIEQWLAFINKLHD	145
	CBM06143	EVLHAWSEIDKLPNLTIEQWLAFINKLDD	146
	CBM06144	ETIQAWDEIDKLPNLTLDQWLAFINKLSD	147
	CBM06145	ETLRAWDEIDKLPNLTIQQWLAFINKLAD	148
	CBM06146	EVIDAWNEIDHIPNLTIEQWLAFINKLED	149
	CBM06147	EVIDAWNEIDHIPNLTLQQWLAFINKLAD	150
	CBM06148		151
EVIRAWDE	CBM06149	EVIEAWNEIDQLPNLTIEQWLAFINKLDD	152
	CBM06150		153

CBM06151	EVIEAWNEIDRLPNLTIHQWLAFINKLDD	154
CBM06152	ETIEAWNEIDQLPNLTIEQWLAFINKLDD	155
CBM06153	EVLTAWAEIDALPNLTLSQWLAFINKLDD	156
CBM06154	EVIEAWDEIDKLPNLTVDQWLAFINKLDD	157
CBM06155	EVIDAWNEIDHLPNLTLTQWLAFINKLDD	158
СВМО6156	EVIEAWNEIDQLPNLTLDQWLAFINKLDD	159
CBM06157	ETLQAWDEIDHLPNLTINQWLAFINKLDD	160
CBM06158	EVIDAMNEIDHLPNLTIEQWLAFINKLDD	161
CBM06159	EVIEAWNEIDLIPNLTLSQWLAFINKLDD	162
CBM06160	EVIDAWDEIDRIPNLTLKQWLAFINKLDD	163
CBM06161	ETLHAWDEIDKLPNLTIEQWLAFINKLDD	164
CBM06162	EVIKAWDEIDHLPNLTLNQWLAFINKLDD	165
СВМО 6163	EVIEAWNEIDHLPNLTLAQWLAFINKLDD	166
CBM06164	EVIQAWNEIDHLPNLTIDQWLAFITKLED	167
CBM06165	EVIEAWNEIDRLPNLTIKQWLAFINKLDD	168
CBM06167	EVIEAWNEIDSLPNLTLQQWLAFINKLDD	169
CBM06168	ETIDAWNEIDKLPNLTIEQWLAFINKLDD	170
CBM06169	EVLEAWAEIDALPNLTIAQWLAFINKLDD	171
CBM06170	ETIDAWNEIDRLPNLTIEQWLAFINKLDD	172
СВМО 6171	ETIKAWDEIDRIPNITIEQWIAFINKIDD	173
CBM06172	ETIAAWNEIDALPNLTLQQWLAFINKLDD	174
CBM06173	EVLQAWNEIDHLPNLTIQQWLAFINKLDD	175
CBM06174	EVIEAWSEIDHLPNLTLQQWLAFINKLDD	176
CBM06176	EVIDAWNEIDGLPNLTIEQWLAFINKLDD	177
CBM06178	EVIHAMNEIDHLPNLTLNQWLAFINKLED	178
CBM06179	EVLDAWNEIDSLPNLTLDQWLAFINKLDD	179

181 182 183 184 185 186 187 188 190 191 192 193 194 195 196 197 200 201 203 204 205 206 207 208 209 201 202 203 204	EQIEAWNEIDRLPNLTLEQWLAFINKLDD
183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 201 202 203 204 205 204 205 206 207 208 209 201 202 203 204 205	EVVDAWNEIDALPNLTLQQWLAFINKLDD
183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 190 191 192 193 194 195 196 197 198 199 190 191 192 193 194 195 196 197 198 199 190 191 192 193 194 195 196 197 198 199 190 191 192 193 194 195 1	EVIEAWNEIDKLPNLTIEQWLAFINKLDD
184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 190 191 192 193 194 195 196 197 198 199 190 191 192 193 194 195 196 197 198 199 190 191 192 193 194 195 196 197 198 199 190 191 192 193 194 195 196 1	EVIEANDEIDRLPNLTIEQWLAFINKLHD
185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 190 191 192 193 194 195 196 197 198 199 190 191 192 193 194 195 196 197 198 199 190 191 192 193 194 195 196 197 198 199 190 190 191 192 193 194 195 196 1	ETLQAWDEIDKLPNLTIEQWLAFINKLDD
186 187 188 188 189 190 191 192 193 194 195 196 197 198 199 190 191 192 193 194 195 196 197 198 199 190 191 192 193 194 195 196 197 198 199 190 191 192 193 194 195 196 197 198 199 190 191 192 193 194 195 196 197 1	EVIEAWDEIDHLPNLTIDQWLAFINKLAD
187 188 189 190 191 192 193 194 195 196 197 198 199 190 191 192 193 194 195 196 197 198 201 202 203 204 205 206 207 208 209	ETIDAWNEIDHLPNLTLQQWLAFINKLAD
188 189 180 181 181 182 183 184 185 186 187 188 189 180 180 181 182 183 184 185 186 187 188 189 180 180 181 182 183 184 185 186 187 188 189 180 180 181 182 183 184 185 186 187 188 189 180 180 181 182 183 184 185 1	EVIDAWDEIDKLPNLTIEQWLAFINKLDD
189 180 180 181 182 183 184 185 186 187 188 189 180 180 181 182 183 184 185 186 187 188 189 180 180 181 182 183 184 185 186 187 188 189 180 180 181 182 183 184 185 186 187 188 189 180 180 180 181 181 182 181 181 1	EVIEAWNEIDKLPNLTLAQWLAFINKLDD
190 191 192 193 194 195 196 197 198 199 190 191 192 193 194 195 196 197 198 199 201 202 203 204 205 206 207 208 209 201 202 203 204 205 206 207 208 209 201 202 203 204 205 206 207 208 209 201 202 203 204 205 206 2	EVLQAWDEIDKLPNLTIQQWLAFINKLDD
191 192 193 194 195 196 197 198 199 190 191 201 202 203 204 205 206 207 208 209 201 202 203 204 205 206 207 208	eviaawneidglpnltloowlafinkldd
193 194 195 196 197 198 199 190 191 192 193 194 195 196 197 200 201 202 203 204 205 206 207 208 209 201 202 203 204	ETLNAWNEIDALPNLTLQQWLAFINKLDD
193 194 195 196 197 198 199 190 191 192 193 194 195 196 197 201 202 203 204 205 206 207 208 209 201 202 203 204 205	EVLSAWNEIDQLPNLTLEQWLAFINKLDD
194 195 196 197 198 199 200 201 202 203 204 205 207 208 209 201 202 203 204 205 206 207 208 209 201 202 203 204 205	ETLEAWDEIDHLPNLTLHQWLAFINKLDD
195 196 197 198 198 199 200 201 202 203 204 205 206 207 208 209 201 202 203 204 205 206 207 208 209 201 202 203 204 205	eqieawneidhlpnltlqqwlafinklad
196 197 198 198 199 200 201 202 203 204 205 206 207 208 209 201 202 203 204 205 206 207 208 209 201 202 203 204 205	EVVEAWDEIDKLPNLTIEQWLAFINKLDD
197 198 200 201 202 203 204 205 206 207 208 209 201 202 203 204 205 206 207 208 209 204 205 206 207 208 209 205	EVLEAWNEIDELPNLTIEQWLAFINKLDD
198 200 201 202 203 204 205 206 207 208 209 201 202 203 204 205 206 207 208 209 209 205	EVIDAWNEIDQLPNLTLQQWLAFINKLDD
199 200 201 202 203 204 205 206 207 208 209 209 201 202 203 204 205	ETIDAWDEIDKLPNLTLSQWLAFINKLDD
200 201 202 203 204 205 206 207 208 209 204 205	etidawneidqlpnltlqqwlafinkldd
201 202 203 204 205	EVIQAWDEIDALPNLTLNQWLAFINKLDD
202 203 204 205	EVLDAWAEIDQLPNLTLQQWLAFINKLDD
203 204 205	EHIAAWDEIDALPNLTIEQWLAFINKLDD
204	EVIRAWDEIDALPNLTIEQWLAFINKLDD
205	EVIDAWDEIDALPNLTIDQWLAFINKLAD
	EVIDAWNEIDRLPNLTIQQWLAFINKLDD

CBM0 6210 EQLKAWDEIDKLFNLTIHQWIAFINKLDD CBM0 6211 EQLKAWDEIDKLPNLTIEQWLAFINKLDD CBM0 6212 EHIDAWTEIDHLPNLTIEQWLAFINKLDD CBM0 6213 EQLRAWBEIDSLPNLTIEQWLAFINKLDD CBM0 6216 EVLEAWREIDSLPNLTIEQWLAFINKLDD CBM0 6217 EVLQAWNEIDQLPNLTIEQWLAFINKLDD CBM0 6220 EVLEAWNEIDQLPNLTIEQWLAFINKLDD CBM0 6221 EVLQAWDEIDALPNLTIEQWLAFINKLDD CBM0 6221 EVLQAWDEIDALPNLTIEQWLAFINKLDD CBM0 6222 EVIKAWNEIDSLPNLTIEQWLAFINKLDD CBM0 6224 EVLEAWHEIDLLPNLTIEQWLAFINKLDD CBM0 6224 EVLEAWHEIDLLPNLTIEQWLAFINKLDD CBM0 6227 EVLEAWHEIDLLPNLTIEQWLAFINKLDD CBM0 6227 EVLEAWHEIDLLPNLTIEQWLAFINKLDD CBM0 6228 EVLRAWDEIDGLPNLTIEQWLAFINKLDD CBM0 6230 EVVQAWDEIDQLPNLTIEQWLAFINKLDD CBM0 6230 EVVQAWDEIDQLPNLTIEQWLAFINKLDD CBM0 6231 EVIRAWDEIDLLPNLTIEQWLAFINKLDD CBM0 6232 EVIRAWDEIDLLPNLTIEQWLAFINKLDD CBM0 6234 EVVAAWTEIDLLPNLTIEQWLAFINKLDD CBM0 6234 EVVAAWTEIDLLPNLTIEQWLAFINKLDD CBM0 6235 ETIDAWNEIDLLPNLTIEQWLAFINKLDD CBM0 6236 EVIRAWDEIDLLPNLTIEQWLAFINKLDD CBM0 6236 EVIRAWDEIDLLPNLTIEQWLAFINKLDD CBM0 6236 EVIRAWNEIDLLPNLTIEQWLAFINKLDD	206
	207
	208
	509
	210
	211
	212
	213
	214
	215
EVIKAWNE EVLEAWHE EVLEAWNE EQLYAWNE EVLAWNE EVYQAWDE EVYQAWDE ETIDAWNE ETIEAWRE ETIEAWRE ETIEAWRE ETIEAWRE	216
EVLEAWHE EVLEAWTE EQLYAWNE EVLNAWDE EVVQAWDE EVVQAWDE EVVAAWTE ETLEAWRE ETLEAWRE ETLEAWRE	217
	218
	219
	220
	221
	222
	223
	224
	225
	526
ETLEAWRE: EVIKAWNE:	227
EVIKAWNE	228
	229
CBM06237 EVLEAWTEIDKLPNLTIDQWLAFINKLDD	230
CBM06238 ETLEAWDEIDKLPNLTIDQWLAFINKLDD	231

CBMU6239	EVIEAWNEIDKLENLITDOMLAFINKLDD	232
CBM06240	ETIDAWNEIDKLPNLTLEQWLAFINKLDD	233
CBM06241	ETLDAWDEIDALPNLTIDQWLAFINKLED	234
CBM06242	EVLSAWNEIDHLPNLTIQQWLAFINKLDD	235
CBM0 62 4 4	EVIQANDEIDKLPNLTIEQWLAFIHKLHD	236
CBM06245	EHIDAWDEIDHIPNITIQQWIAFINKIAD	237
CBM06246	EVIQAWNEIDQLPNLTIEQWLAFINKLDD	238
CBM06247	EVIEAWNEIDYLPNLTIAQWIAFINKLDD	239
CBM06248	ETIQAWDEIDRIPNLTLQQWLAFINKLDD	240
CBM06249	ETIQAWDEIDKLPNLTIEQWLAFINKLDD	241
CBM06250	ETLDAWAEIDHLPNLTIEQWLAFINKLDD	242
CBM06251	EVIEAWDEIDKLPNLTLNQWLAFINKLDD	243
CBM06252	EVIDAWNEIDQIPNLTIEQWIAFINKIDD	244
CBM06253	EVLHAWNEIDHLPNLTIEQWLAFIEKLED	245
CBM06254	EVIEAWQEIDKLPNLTIDQWLAFINKLDD	246
CBM06257	EVVDAWNEIDQLPNLTIEQWLAFINKLDD	247
CBM06258	EQIEAWNEIDALPNLTIEQWLAFINKLAD	248
P06175	KEVLEAWDEIDRLPNLTIEQWLAFINKLDDDPSQSSELLSEAKKLNDSQ	249
P08044	KEVLEAWNEIDRLPNLTIEQWLAFINKLDDDPSQSSELLSEAKKLNDSQ	250
P05998	KEVIEAWNEIDRIPNLTIEQWLAFINKLDDDPSQSSELLSEAKKLNDSQ	251
P06009	KEVLEAWDEIDRLPNLTLDQWLAFINKLDDDPSQSSELLSEAKKLNDSQ	252
P06079	KEVILDAWDEIDALPNLTLEQWLAFINKLDDDPSQSSELLSEAKKLNDSQ	253
P06126	KEVIDAWDEIDRIPNLTLDQWLAFINKLDDDPSQSSELLSEAKKLNDSQ	254
P06140	KETLEAWDEIDRLPNLTIEQWLAFINKLDDDPSQSSELLSEAKKLNDSQ	255
P06189	KEVIDAWNEIDALPNLTLDQWLAFINKLDDDPSQSSELLSEAKKLNDSQ	256
P06214	KEVLDAWDEIDKLPNLTIDQWLAFINKLDDDPSQSSELLSEAKKLNDSQ	257

P06215	KEVLEANDEIDHLPNLTLDOWLAFINKLDDDPSOSSELLSEAKKLNDSO	258
P06226	KEVLEAWDEIDALPNLTIEQWLAFINKLDDDPSQSSELLSEAKKLNDSQ	259
P06018	KEVIDAWDEIDKLPNLTLEGWLAFINKLDDDPSQSSELLSEAKKLNDSQ	260
P05477	KETITANDEIDKLPNLTIEGWLAFIGKLEDDPSQSSELLAEAKKLNDAQ	261
P05363	KESMKAWDEIDRLPNINQWVAFIDSLYDDPSQSANLLAEAKKINDAQ	262
P05483	KESIEAWTEIDHLPNLTIEGWLAFINKLTDDPSQSSELLAEAKKLNDAQ	263
P05538	KEVLDAWHEIDTLPNLTVRQWLAFISKLEDDPSQSSELLAEAKKLNDAQ	264
P05692	KEHIQANEEIDRLPNLTIKQWLAFINKLHDDPSQSSELLAEAKKLNDAQ	265
P05994	KEVLHAWAEIDALPNLTIEGWLAFINKLDDDPSQSSELLSEAKKLNDSQ	266
P05995	KEVLAAWDEIDSLPNLTLQQWLAFINKLDDDPSQSSELLSEAKKLNDSQ	267
P05996	KEVIDAWNEIDALPNLTLEGWLAFINKLDDDPSQSSELLSEAKKLNDSQ	268
P05997	KEVLDAWNEIDALPNLTIDQWLAFINKLSDDPSQSSELLSEAKKLNDSQ	569
P05999	KEVIEAWDEIDGLPNLTIEQWLAFINKLDDDPSQSSELLSEAKKLNDSQ	270
P06000	KEVLEAWDEIDHLPNLTLQQWLAFINKLDDDPSQSSELLSEAKKLNDSQ	271
P06001	KEVIEAWNEIDALPNLTIEQWLAFINKLDDDPSQSSELLSEAKKLNDSQ	272
P06002	KEVIAAWNEIDRLPNLTLTQWLAFINKLDDDPSQSSELLSEAKKLNDSQ	273
P06003	KEVIEAWDEIDALPNLTLQQWLAFINKLDDDPSQSSELLSEAKKLNDSQ	274
P06004	KEVIAAWDEIDKLPNLTIEQWLAFINKLDDDPSQSSELLSEAKKLNDSQ	275
P06005	KEVIAAWDEIDKLPNLTLQQWLAFINKLDDDPSQSSELLSEAKKLNDSQ	276
P06006	KETIAAWDEIDKLPNLTIEQWLAFINKLDDDPSQSSELLSEAKKLNDSQ	277
P06007	KETIEAWNEIDRLPNLTIEQWLAFINKLDDDPSQSSELLSEAKKLNDSQ	278
P06008	KEVLEAWREIDALPNLTIQQWLAFINKLDDDPSQSSELLSEAKKLNDSQ	279
P06010	KEVIEAWDEIDQLPNLTIEQWLAFINKLDDDPSQSSELLSEAKKLNDSQ	280
P06011	KEVLRAWDEIDHLPNLTLEQWLAFINKLDDDPSQSSELLSEAKKLNDSQ	281
P06012	KEVLEAWDEI DRLPNLTLNQWLAFI NKLDDDPSQSSELLSEAKKLNDSQ	282
P06013	KEVIDAWNEIDHLPNLTIEQWLAFINKLDDDPSQSSELLSEAKKLNDSQ	283

KETLEAWDE KEVIDAWNE KEVIDAWNE KEVIDAWNE KETLHAWAE KEVLEAWNE KEVLEAWNE KEVLEAWNE KEVIEAWNE KEVIDAWNE KEVILEAWNE	P06014	KEVIDAMNEIDKIPNITIEOMIAFINKLDDDPSOSSELLSEAKKINDSO	284
KEVIEAWNE KEVIDAWNE KEVIDAWNE KETIAAWDE KETIHAWAE KEVIEAWNE		OSUNTA SA TANKI DINI TANKI A TANKI DINI SA	5 6
KEVIEAWNE KEVIDAWNE KEVIDAWNE KEVILAAWDE KEVILAAWDE KEVILAAWDE KEVILAAWNE KEVIEAWNE KEVIEAWNE KEVIEAWNE KEVIEAWNE KEVIEAWNE KEVIEAWNE KEVIEAWNE KEVILEAWNE		KETTERMUETUĞURUNT LÜÇMUR TUNLUDUR SÇSETLESERANDESÇ	782
KEVIDAWNE KEVIDAWNE KETIAAWDE KETIHAWAE KEVILAAWDE KEVILAAWDE KEVILAAWDE KEVILAAWDE KEVILAAWDE KEVILAAWDE KEVILAAWNE KEVILAAWNE		KEVIEAWNEIDALPNLTLDQWLAFINKLDDDPSQSSELLSEAKKLNDSQ	586
KEVIDAWNE KETIAAWDE KETIHAWAE KEVIEAWNE KEVIEAWNE KEVIEAWNE KEVIEAWNE KEVIEAWNE KEVIEAWNE KEVIEAWNE KEVIEAWNE KEVIEAWNE KEVIDAWNE KEVIDAWNE KEVIDAWNE KEVIDAWNE KEVIDAWNE KEVIDAWNE KEVIDAWNE KEVIDAWNE KEVIEAWNE KEVIEAWNE KEVIEAWNE KEVIEAWNE KEVIEAWNE KEVIEAWNE KEVIEAWNE KEVIEAWNE KEVIEAWNE		KEVIDAWNEIDRLPNLTLQQWLAFINKLDDDPSQSSELLSEAKKLNDSQ	287
KETIAAWDE KEVLQAWDE KEVLEAWNE KEVLEAWNE KEVLEAWNE KEVLEAWNE KEVLEAWNE KEVIEAWNE		KEVIDAWNEIDQLPNLTLEQWLAFINKLDDDPSQSSELLSEAKKLNDSQ	288
KEVLÇAWDE KETLHAWAE KEVLEAWNE		KETIAAWDEIDHLPNLTLEQWLAFINKLDDDPSQSSELLSEAKKLNDSQ	289
		KEVLQAWDEIDHLPNLTIQQWLAFINKLSDDPSQSSELLSEAKKLNDSQ	290
		KETLHAWAEIDRLPNLTIEQWLAFINKLDDDPSQSSELLSEAKKLNDSQ	291
		KEVLEAWNEIDHLPNLTLAQWLAFINKLDDDPSQSSELLSEAKKLNDSQ	292
		KEVIEAWDEIDKLPNLTIAQWLAFINKLDDDPSQSSELLSEAKKLNDSQ	293
		KEVLDAMDEI DHLPNLTLQQWLAFINKLDDDPSQSSELLSEAKKLNDSQ	294
		KETIEAWNEIDKLPNLTLTQWLAFINKLDDDPSQSSELLSEAKKLNDSQ	295
		KEVLEAWNEI DLI.PNI.TI EQWI.AFI NKI.DDDPSQSSELI.SEAKKI.NDSQ	296
		KEVIEAWDEIDHLPNLTIDQWLAFINKLDDDPSQSSELLSEAKKLNDSQ	297
		KEVISAWNEIDALPNLTLQQWLAFINKLDDDPSQSSELLSEAKKLNDSQ	298
		KEVIAAWNEIDKLPNLTLEQWLAFINKLDDDPSQSSELLSEAKKLNDSQ	299
		KETIEAWNEIDSLPNLTLDQWLAFINKLDDDPSQSSELLSEAKKLNDSQ	300
		KEVLDAWNEIDQLPNLTLQQWLAFINKLDDDPSQSSELLSEAKKLNDSQ	301
		KEVLAAWNEIDHLPNLTIEQWLAFINKLDDDPSQSSELLSEAKKLNDSQ	302
		KEVLEAWDEI DHLPNLTITQWLAFINKLDDDPSQSSELLSEAKKLNDSQ	303
KEVIEAWNE KEVIQAWNE KEVIAAWDE KEHIEAWNE KEVLEAWNE		KETIDAWNEIDHLPNLTIEQWLAFINKLDDDPSQSSELLSEAKKLNDSQ	304
		KEVIEAWNEIDHLPNLTIQQWLAFINKLDDDPSQSSELLSEAKKLNDSQ	305
		KEVIQAWNEIDALPNLTISQWLAFINKLDDDPSQSSELLSEAKKLNDSQ	306
		KEVIAAWDEIDSLPNLTIEQWLAFINKLDDDPSQSSELLSEAKKLNDSQ	307
		KEHIEAWNEIDALPNLTIEQWLAFINKLQDDPSQSSELLSEAKKLNDSQ	308
		KEVLEAWNEI DKLPNLTLDQWLAFINKLDDDPSQSSELLSEAKKLNDSQ	309

P06047	KEVIDAWNEIDHLPNLTIEOWLAFINKLADDPSOSSELLSEAKKLNDSO	310
P06048	KETIDAMDEIDKLPNLTIEOWLAFINKLDDDPSOSSELLSEAKKLNDSO	311
P06049	KEVIAAWDEIDLIPNLTLQQWLAFINKLADDPSQSSELLSEAKKLNDSQ	312
P06050	KEVIHAWDEIDKLPNLTIEGWLAFINKLDDDPSGSSELLSEAKKINDSQ	313
P06051	KEVIAAWNEIDHLPNLTLEGWLAFINKLDDDPSQSSELLSEAKKLNDSQ	314
P06052	KETLDAWNEIDKLPNLTLSQWLAFINKLDDDPSQSSELLSEAKKLNDSQ	315
P06053	KEVLEAWNEIDALPNLTLEGWLAFINKLDDDPSQSSELLSEAKKLNDSQ	316
P06054	KEVIQAWDEIDHLPNLTISQWLAFINKLDDDPSQSSELLSEAKKLNDSQ	317
P06055	KEVLQAWDEIDSLPNLTIEGWLAFINKLDDDPSQSSELLSEAKKLNDSQ	318
P06056	KETLEAWDEIDHLPNLTIAQWLAFINKLDDDPSQSSELLSEAKKLNDSQ	319
P06057	KETIDAWNEIDRLPNLTISQWLAFINKLDDDPSQSSELLSEAKKLNDSQ	320
P06058	KEVLDAWHEIDHLPNLTIQQWLAFINKLDDDPSQSSELLSEAKKLNDSQ	321
P06059	KEQIRAWDEIDKLPNLTIEQWLAFINKLADDPSQSSELLSEAKKLNDSQ	322
P06060	KETLYAWNEIDKLPNLTIEGWLAFIEKLQDDPSQSSELLSEAKKLNDSQ	323
P06061	KEVIEAWNEIDALPNLTIDQWLAFINKLDDDPSQSSELLSEAKKLNDSQ	324
P06062	KEVLEAWNEIDHLPNLTIQQWLAFINKLDDDPSQSSELLSEAKKLNDSQ	325
P06063	KETIEAWDEIDALPNLTIEGWLAFINKLDDDPSQSSELLSEAKKLNDSQ	326
P06065	KEVIEAWNEIDHLPNLTLQQWLAFINKLDDDPSQSSELLSEAKKLNDSQ	327
P06066	KEVIEAWNEIDKLPNLTIQQWLAFINKLDDDPSQSSELLSEAKKLNDSQ	328
P06068	KETLDAWAEIDHLPNLTLDQWLAFINKLDDDPSQSSELLSEAKKLNDSQ	329
P06069	KEHIDAWNEIDALPNLTLSQWLAFINKLDDDPSQSSELLSEAKKLNDSQ	330
P06070	KEVLDAWNEIDKLPNLTIAQWLAFINKLDDDPSQSSELLSEAKKLNDSQ	331
P06071	KEVIEAWTEIDYLPNLTLQQWLAFINKLDDDPSQSSELLSEAKKLNDSQ	332
P06072	KETIEAWNEIDHLPNLTIAQWLAFINKLDDDPSQSSELLSEAKKLNDSQ	333
P06073	KEVIQAWNEIDKLPNLTLEQWLAFINKLDDDPSQSSELLSEAKKLNDSQ	334
P06074	KEVIEAWDEIDHLPNLTIEQWLAFINKLDDDPSQSSELLSEAKKLNDSQ	335

P06075	KETIDAWNEIDLIPNITIEQWLAFINKLDDDPSQSSELLSEAKKINDSQ	336
P06076	KEHIDAWNEIDKLPNLTLDQWLAFINKLDDDPSQSSELLSEAKKLNDSQ	337
P06077	KEVVAAWNEIDALPNLTIEQWLAFINKLNDDPSQSSELLSEAKKLNDSQ	338
P06080	KEVIEAWNEIDALPNLTLAQWLAFINKLDDDPSQSSELLSEAKKINDSQ	339
P06081	KEVLQAWDEIDRLPNLTLDQWLAFINKLDDDPSQSSELLSEAKKLNDSQ	340
P06082	KEVIDAWDEIDHLPNLTIEQWLAFINKLSDDPSQSSELLSEAKKLNDSQ	341
P06083	KEVVEAWNEIDQLPNLTIEQWLAFINKLDDDPSQSSELLSEAKKLNDSQ	342
P06084	KEVIQAWNEIDALPNLTIEQWLAFINKLDDDPSQSSELLSEAKKLNDSQ	343
P06085	KEVIQAWDEIDKLPNLTIDQWLAFINKLADDPSQSSELLSEAKKLNDSQ	344
P06086	KEVVAAWDEIDALPNLTLTQWLAFINKLDDDPSQSSELLSEAKKLNDSQ	345
P06087	KEVIQAWNEIDGLPNLTLSQWLAFINKLDDDPSQSSELLSEAKKLNDSQ	346
P06088	KETIEAWDEIDALPNLTITQWLAFINKLDDDPSQSSELLSEAKKINDSQ	347
P06089	KEVIDAWNEIDHLPNLTIQQWLAFINKLADDPSQSSELLSEAKKLNDSQ	348
P06090	KETIEAWNEIDALPNLTIDQWLAFINKLEDDPSQSSELLSEAKKINDSQ	349
P06091	KEHIHAWNEIDELPNLTIEQWLAFINKLADDPSQSSELLSEAKKLNDSQ	350
P06092	KEVIDAWDEIDHLPNLTIDQWLAFINKLSDDPSQSSELLSEAKKINDSQ	351
P06093	KEVIDANDEIDALPNLTIAQWLAFINKLHDDPSQSSELLSEAKKLNDSQ	352
P06095	KETIEAWDEIDKLPNLTIEQWLAFINKLDDDPSQSSELLSEAKKLNDSQ	353
P06097	KEVLLAWDEI DHI.PNI.TIEQWI.AFI NKI.DDDPSQSSELLSEAKKI.NDSQ	354
P06098	KEHIDAWNEIDGLPNLTLEQWLAFINKLDDDPSQSSELLSEAKKLNDSQ	355
P06099	KEVIEAWSEIDALPNLTIDQWLAFINKLADDPSQSSELLSEAKKINDSQ	356
P06100	KEQINAWAEIDALPNLTIEQWLAFINKLDDDPSQSSELLSEAKKINDSQ	357
P06101	KEVIDAWNEIDALPNLTIAQWLAFINKLDDDPSQSSELLSEAKKINDSQ	358
P06103	KETIDAWNEIDQLPNLTIEQWLAFINKLDDDPSQSSELLSEAKKLNDSQ	359
P06104	KEVIEAWDEIDKLPNLTLAQWLAFINKLDDDPSQSSELLSEAKKLNDSQ	360
P06105	KEVLYAWAEIDHLPNLTIEQWLAFINKLDDDPSQSSELLSEAKKLNDSQ	361

P06107	KEQIDAWNEIDRLPNLTIQQWLAFINKLDDDPSQSSELLSEAKKLNDSQ	362
P06108	KEVLAAWDEIDRLPNLTIEQWLAFINKLDDDPSQSSELLSEAKKLNDSQ	363
P06109	KEVIEAWDEIDHLPNLTLHQWLAFINKLDDDPSQSSELLSEAKKLNDSQ	364
P06110	KEVIEAWNEIDKLPNLTLQQWLAFINKLDDDPSQSSELLSEAKKINDSQ	365
P06111	KEVIDANDEIDALPNLTIEQWLAFINKLHDDPSQSSELLSEAKKLNDSQ	366
P06112	KEVIAAWDEIDALPNLTIEQWLAFINKLDDDPSQSSELLSEAKKLNDSQ	367
P06113	KEVIEAWTEIDQLPNLTLDQWLAFINKLDDDPSQSSELLSEAKKLNDSQ	368
P06114	KEVINAWNEIDALPNLTLQQWLAFINKLDDDPSQSSELLSEAKKLNDSQ	369
P06115	KEHIEAWDEIDHLPNLTIDQWLAFINKLADDPSQSSELLSEAKKLNDSQ	370
P06116	KEHLEAWREIDALPNLTIEQWLAFINKLDDDPSQSSELLSEAKKLNDSQ	371
P06117	KEVLDAWNEIDKLPNLTLQQWLAFINKLDDDPSQSSELLSEAKKLNDSQ	372
P06118	KEVIAAWDEIDHLPNLTIQQWLAFINKLDDDPSQSSELLSEAKKLNDSQ	373
P06119	KEVIQAWNEIDALPNLTLEQWLAFINKLDDDPSQSSELLSEAKKINDSQ	374
P06121	KEVIDAWNEIDHLPNLTIAQWLAFINKLDDDPSQSSELLSEAKKINDSQ	375
P06122	KEQLDAWDEIDHLPNLTIDQWLAFINKLSDDPSQSSELLSEAKKLNDSQ	376
P06123	KEVLNAWDEIDKLPNLTIEQWLAFINKLDDDPSQSSELLSEAKKINDSQ	377
P06124	KEVLEAWNEIDHLPNLTIDQWLAFINKLDDDPSQSSELLSEAKKLNDSQ	378
P06125	KEVLLAWDEIDRLPNLTIDQWLAFINKLADDPSQSSELLSEAKKLNDSQ	379
P06127	KEVIAAWNEIDQLPNLTIDQWLAFINKLDDDPSQSSELLSEAKKINDSQ	380
P06128	KETLLAWDEIDALPNLTIEQWLAFINKLDDDPSQSSELLSEAKKINDSQ	381
P06129	KEVIDAWNEIDTLPNLTLEQWLAFINKLDDDPSQSSELLSEAKKINDSQ	382
P06131	KEVLHAWNEIDHLPNLTINQWLAFINKLQDDPSQSSELLSEAKKINDSQ	383
P06132	KEVIQAWNEIDALPNLTIAQWLAFINKLDDDPSQSSELLSEAKKINDSQ	384
P06133	KETVDAWNEIDALPNLTIEQWLAFINKLDDDPSQSSELLSEAKKINDSQ	385
P06134	KEVIQAWDEIDHLPNLTIDQWLAFINKLDDDPSQSSELLSEAKKLNDSQ	386
P06135	KEVLDAWNEIDQLPNLTIQQWLAFINKLDDDPSQSSEILSEAKKINDSQ	387

P06136	KETIEAWNEIDALPNITIDOWLAFINKIDDDPSQSSELLSEAKKLNDSQ	388
P06137	KEVIEAWDEIDALPNLTIDQWLAFINKLDDDPSQSSELLSEAKKLNDSQ	389
P06138	KEVIEAWNEIDQLPNLTIQQWLAFINKLDDDPSQSSELLSEAKKLNDSQ	390
P06139	KEVIEAWTEIDHLPNLTIEQWLAFINKLDDDPSQSSELLSEAKKLNDSQ	391
P06141	KEVIQAWNEIDHLPNLTLQQWLAFINKLEDDPSQSSELLSEAKKLNDSQ	392
P06142	KEVI QANNEI DQLPNLTI E QWLAFINK LHDDPSQSSELLSEAKKLNDSQ	393
P06143	KEVLHAWSEIDKLPNLTIEQWLAFINKLDDDPSQSSELLSEAKKLNDSQ	394
P06144	KETIQAWDEIDKLPNLTLDQWLAFINKLSDDPSQSSELLSEAKKLNDSQ	395
P06145	KETLRAWDEIDKLPNLTIQQWLAFINKLADDPSQSSELLSEAKKLNDSQ	396
P06146	KEVIDAWNEIDHLPNLTIEQWLAFINKLEDDPSQSSELLSEAKKLNDSQ	397
P06147	KEVIDAWNEIDHLPNLTLQQWLAFINKLADDPSQSSELLSEAKKLNDSQ	398
P06148	KETIDAWNEIDALPNLTLDQWLAFINKLDDDPSQSSELLSEAKKLNDSQ	399
P06149	KEVIEAWNEIDQLPNLTIEQWLAFINKLDDDPSQSSELLSEAKKLNDSQ	400
P06150	KEVIRAWDEIDQLPNLTLSQWLAFINKLDDDPSQSSELLSEAKKLNDSQ	401
P06151	KEVIEAWNEIDRLPNLTIHQWLAFINKLDDDPSQSSELLSEAKKLNDSQ	402
P06152	KETIEAWNEIDQLPNLTIEQWLAFINKLDDDPSQSSELLSEAKKLNDSQ	403
P06153	KEVLTAWAEIDALPNLTLSQWLAFINKLDDDPSQSSELLSEAKKLNDSQ	404
P06154	KEVIEAWDEIDKLPNLTVDQWLAFINKLDDDPSQSSELLSEAKKLNDSQ	405
P06155	KEVIDAWNEIDHLPNLTLTQWLAFINKLDDDPSQSSELLSEAKKLNDSQ	406
P06156	KEVIEAWNEIDQLPNLTLDQWLAFINKLDDDPSQSSELLSEAKKLNDSQ	407
P06157	KETLQAWDEIDHLPNLTINQWLAFINKLDDDPSQSSELLSEAKKLNDSQ	408
P06158	KEVIDAWNEIDHLPNLTIEGWLAFINKLDDDPSQSSELLSEAKKLNDSQ	409
P06159	KEVIEAWNEIDLLPNLTLSQWLAFINKLDDDPSQSSELLSEAKKLNDSQ	410
P06160	KEVIDAWDEIDRIPNLTIKQWLAFINKIDDDPSQSSEILSEAKKINDSQ	411
P06161	KETLHAWDEIDKLPNLTIEGWLAFINKLDDDPSQSSELLSEAKKLNDSQ	412
P06162	KEVIKAWDEIDHLPNLTINQWLAFINKLDDDPSQSSELLSEAKKLNDSQ	413

KEVIEAWNEIDHLPNLTLAQWLAFINKLDDDPSQSSELLSEAKKLNDSQ	DDDPSQSSELLSEAKKLNDSQ	414
KEVIÇ	KEVIQAWNEIDHLPNLTIDQWLAFITKLEDDPSQSSELLSEAKKLNDSQ	415
KEVIE?	KEVIEAWNEIDRLPNLTIKQWLAFINKLDDDPSQSSELLSEAKKLNDSQ	416
KEVIEAWN	: AWNEIDSLPNLTLQQWLAFINKLDDDPSQSSELLSEAKKLNDSQ	417
KETI	KETIDAWNEIDKLPNLTIEQWLAFINKLDDDPSQSSELLSEAKKLNDSQ	418
KEV	KEVLEAWAEIDALPNLTIAQWLAFINKLDDDPSQSSELLSEAKKLNDSQ	419
KET	KETIDAWNEIDRLPNLTIEGWLAFINKLDDDPSQSSELLSEAKKLNDSQ	420
KET	KETIKAWDEIDRLPNLTLEQWLAFINKLDDDPSQSSELLSEAKKLNDSQ	421
KET	KETIAAWNEIDALPNLTLQQWLAFINKLDDDPSQSSELLSEAKKLNDSQ	422
KE	KEVLQAWNEIDHLPNLTIQQWLAFINKLDDDPSQSSELLSEAKKLNDSQ	423
KE	KEVIEAWSEIDHLPNLTLQQWLAFINKLDDDPSQSSELLSEAKKLNDSQ	424
KE	KEVIDAWNEIDGLPNLTIEQWLAFINKLDDDPSQSSELLSEAKKLNDSQ	425
Ä	KEVIHAWNEIDHLPNLTLNQWLAFTNKLEDDPSQSSELLSEAKKLNDSQ	426
呂	KEVLDAWNEIDSLPNLTLDQWLAFINKLDDDPSQSSELLSEAKKLNDSQ	427
KE	KEQIEAWNEIDRLPNLTLEQWLAFINKLDDDPSQSSELLSEAKKLNDSQ	428
N	KEVVDAWNEIDALPNLTLQQWLAFINKLDDDPSQSSELLSEAKKLNDSQ	429
찚	KEVIEAWNEIDKLPNLTIEGWLAFINKLDDDPSQSSELLSEAKKLNDSQ	430
꿃	KEVIEANDEIDRLPNLTIEQWLAFINKLHDDPSQSSELLSEAKKLNDSQ	431
X	KETLQAWDEIDKLPNLTIEQWLAFINKLDDDPSQSSELLSEAKKLNDSQ	432
찚	KEVIEAWDEIDHLPNLTIDQWLAFINKLADDPSQSSELLSEAKKLNDSQ	433
召	KETIDAWNEIDHLPNLTLQQWLAFINKLADDPSQSSELLSEAKKLNDSQ	434
呂	KEVIDAWDEIDKLPNLTIEGWLAFINKLDDDPSQSSELLSEAKKLNDSQ	435
召	KEVIEAWNEIDKLPNLTLAQWLAFINKLDDDPSQSSELLSEAKKLNDSQ	436
五	KEVLQAWDEIDKLPNLTIQQWLAFINKLDDDPSQSSELLSEAKKLNDSQ	437
KE	KEVIAAWNEIDGLPNLTLQQWLAFINKLDDDPSQSSELLSEAKKLNDSQ	438
KE	KETINAWNEIDALPNLTLQQWLAFINKLDDDPSQSSELLSEAKKLNDSQ	439

P06193	KEVLSAWNEIDOLPNITLEOWLAFINKIDDDPSOSSELLSEAKKINDSO	440
P06194	KETLEAWDEIDHLPNLTLHQWLAFINKLDDDPSQSSELLSEAKKLNDSQ	441
P06195	KEQIEAWNEIDHLPNLTLQQWLAFINKLADDPSQSSELLSEAKKLNDSQ	442
P06196	KEVVEAWDEIDKI.PNI.TIEQWI.AFINKI.DDDPSQSSELLSEAKKI.NDSQ	443
P06197	KEVLEAWNEIDELPNLTIEQWLAFINKLDDDPSQSSELLSEAKKLNDSQ	444
P06198	KEVIDAWNEIDQIPNLTLQQWLAFINKLDDDPSQSSELLSEAKKLNDSQ	445
P06199	KETIDAWDEIDKLPNLTLSQWLAFINKLDDDPSQSSELLSEAKKLNDSQ	446
P06200	KETIDAWNEIDQLPNLTLQQWLAFINKLDDDPSQSSELLSEAKKLNDSQ	447
P06201	KEVIQAWDEIDALPNLTINQWIAFINKLDDDPSQSSELLSEAKKLNDSQ	448
P06202	KEVLDAWAETDQLPNLTLQQWLAFINKLDDDPSQSSELLSEAKKLNDSQ	449
P06203	KEHIAAWDEIDALPNLTIEQWLAFINKLDDDPSQSSELLSEAKKLNDSQ	450
P06206	KEVIRAWDEIDALPNLTIEQWLAFINKLDDDPSQSSELLSEAKKLNDSQ	451
P06207	KEVIDAWDEIDALPNLTIDQWLAFINKLADDPSQSSELLSEAKKLNDSQ	452
P06208	KEVIDAWNEIDRIPNLTIQQWLAFINKLDDDPSQSSELLSEAKKLNDSQ	453
P06209	KEVITAWNEIDHLPNLTLSQWLAFINKLDDDPSQSSELLSEAKKLNDSQ	454
P06210	KEVIDAWNEIDALPNLTIHQWLAFINKLDDDPSQSSELLSEAKKLNDSQ	455
P06211	KEQLKAWDEIDKLPNLTIEQWLAFIEKLQDDPSQSSELLSEAKKLNDSQ	456
P06212	KEHIDAWTEIDHLPNLTIEQWLAFINKLDDDPSQSSELLSEAKKLNDSQ	457
P06213	KEQLRAWDEIDKLPNLTIEQWLAFINKLQDDPSQSSELLSEAKKLNDSQ	458
P06216	KEVLEAWREIDSLPNLTIAQWLAFINKLDDDPSQSSELLSEAKKLNDSQ	459
P06217	KEVIQAWNEIDKLPNLTIEQWLAFINKLDDDPSQSSELLSEAKKLNDSQ	460
P06218	KEHVEAWNEIDQLPNLTIEQWLAFINKLADDPSQSSELLSEAKKLNDSQ	461
P06219	KEVIDAWDEIDALPNLTIDQWLAFINKLSDDPSQSSELLSEAKKLNDSQ	462
P06220	KEVIEAWNEIDHLPNLTIEGWLAFINKLDDDPSQSSELLSEAKKLNDSQ	463
P06221	KEVLQAWDEIDKLPNLTIEQWLAFINKLSDDPSQSSELLSEAKKLNDSQ	464
P06222	KEVIKAWNEIDSLPNLTIEQWLAFINKLDDDPSQSSELLSEAKKLNDSQ	465

P06223	KEVLEAWHEIDLIPNITIQQWLAFINKLDDDPSQSSELLSEAKKLNDSQ	466
P06224	KEVLEAWTEIDRLPNLTLDQWLAFINKLDDDPSQSSELLSEAKKLNDSQ	467
P06225	KEQLYAWNEIDHLPNLTIEGWLAFIEKLQDDPSQSSELLSEAKKLNDSQ	468
P06227	KEVLNAWDEIDKLPNLTIKQWLAFINKLDDDPSQSSELLSEAKKLNDSQ	469
P06228	KEVIRAWDEIDKLPNLTVEQWLAFINKLDDDPSQSSELLSEAKKLNDSQ	470
P06230	KEVVQAWDEIDQLPNLTLEQWLAFINKLDDDPSQSSELLSEAKKLNDSQ	471
P06231	KEVIRAWDEIDQLPNLTLEQWLAFINKLDDDPSQSSELLSEAKKLNDSQ	472
P06232	KETIDAWNEIDHLPNLTLDQWLAFINKLDDDPSQSSELLSEAKKLNDSQ	473
P06233	KEVVAAWTEIDLIPNLTIDQWIAFINKLEDDPSQSSELLSEAKKINDSQ	474
P06234	KEVVAAWDEIDALPNLTIEQWLAFINKLSDDPSQSSELLSEAKKLNDSQ	475
P06235	KETLEAWREIDSLPNLTLEQWLAFINKLDDDPSQSSELLSEAKKLNDSQ	476
P06236	KEVIKAWNEIDHIPNLTLDQWIAFINKLDDDPSQSSELLSEAKKINDSQ	477
P06237	KEVLEAWTEIDKLPNLTIDQWLAFINKLDDDPSQSSELLSEAKKLNDSQ	478
P06238	KETLEAWDEIDKLPNLTIDQWLAFINKLDDDPSQSSELLSEAKKLNDSQ	479
P06239	KEVIEAWNEIDKLPNLTIDQWLAFINKLDDDPSQSSELLSEAKKLNDSQ	480
P06240	KETIDAWNEIDKLPNLTLEQWLAFINKLDDDPSQSSELLSEAKKLNDSQ	481
P06241	KETIDAWDEIDALPNITIDQWIAFINKLEDDPSQSSELLSEAKKINDSQ	482
P06242	KEVLSAWNEIDHLPNLTIQQWLAFINKLDDDPSQSSELLSEAKKLNDSQ	483
P06244	KEVIQANDEIDKLPNLTIEQWLAFIHKLHDDPSQSSELLSEAKKLNDSQ	484
P06245	KEHIDAWDEIDHIPNITIQQWIAFINKLADDPSQSSELLSEAKKLNDSQ	485
P06246	KEVIQAWNEIDQLPNLTIEQWLAFINKLDDDPSQSSELLSEAKKLNDSQ	486
P06247	KEVIEAWNEIDYLPNLTIAQWIAFINKLDDDPSQSSELLSEAKKLNDSQ	487
P06248	KETI QAWDEI DRIPNITI QOWLAFINKL DDDPSQSSELLSEAKKINDSQ	488
P06249	KETIQAWDEIDKLPNLTIEQWLAFINKLDDDPSQSSELLSEAKKLNDSQ	489
P06250	KETIDAWAEIDHIPNITIEQWLAFINKLDDDPSQSSELLSEAKKINDSQ	490
P06251	KEVIEAWDEIDKLPNLTLNQWLAFINKLDDDPSQSSELLSEAKKLNDSQ	491

P06252	KEVLDAWNEIDQLPNLTIEQWLAFINKLDDDPSQSSELLSEAKKLNDSQ	492
P06253	KEVLHAWNEIDHLPNLTIEQWLAFIEKLEDDPSQSSELLSEAKKLNDSQ	493
P06254	KEVIEAWQEIDKLPNLTIDQWLAFINKLDDDPSQSSELLSEAKKLNDSQ	494
P06257	KEVVDAWNEIDQLPNLTIEQWLAFINKLDDDPSQSSELLSEAKKLNDSQ	495
P06258	KEQIEAWNEIDALPNLTIEGWLAFINKLADDPSQSSELLSEAKKLNDSQ	496
206175	VDAKYAKEVLEAWDEIDRLPNLTIEQWLAFINKLDDDPSQSSELLSEAKKLNDSQAPK	497
208044	VDAKYAKEVLEAWNEIDRLPNLTIEQWLAFINKLDDDPSQSSELLSEAKKLNDSQAPK	498
Z05998	VDAKYAKEVIEAWNEIDRLPNLTIEQWLAFINKLDDDPSQSSELLSEAKKLNDSQAPK	499
206009	VDAKYAKEVLEAWDEIDRLPNLTLDQWLAFINKLDDDPSQSSELLSEAKKLNDSQAPK	200
206079	VDAKYAKEVI.DAWDEIDALPNI.TLEQWI.AFTINKLDDDPSQSSELLSEAKKI.NDSQAPK	501
206126	VDAKYAKEVIDAWDEIDRIPNLTLDQWLAFINKLDDDPSQSSELLSEAKKLNDSQAPK	502
206140	VDAKYAKETLEAWDEIDRLPNLTIEQWLAFINKLDDDPSQSSELLSEAKKLNDSQAPK	503
Z06189	VDAKYAKEVIDAWNEIDALPNLTLDQWLAFINKLDDDPSQSSELLSEAKKLNDSQAPK	504
Z06214	VDAKYAKEVI.DAWDEIDKI.PNI.TIDQWI.AFINKI.DDDPSQSSELL.SEAKKI.NDSQAPK	505
Z06215	VDAKYAKEVLEAWDEIDHLPNLTLDQWLAFINKLDDDPSQSSELLSEAKKLNDSQAPK	206
206226	VDAKYAKEVLEAWDEIDALPNLTIEQWLAFINKLDDDPSQSSELLSEAKKLNDSQAPK	507
206018	VDAKYAKEVI.DAWDEIDKI.PNI.TLEQWI.AFI.NKI.DDDPSQSSELL.SEAKKI.NDSQAPK	208
Z05477	VDAKYAKETITAWDEIDKLPNLTIEQWLAFIGKLEDDPSQSSELLAEAKKLNDAQAPK	509
Z05363	VDNKFNKESMKAWDEIDRLPNININQWVAFIDSLYDDPSQSANLLAEAKKINDAQAPK	510
Z05483	VDAKYAKESIEAWTEIDHLPNLTIEQWLAFINKLTDDPSQSSELLAEAKKLNDAQAPK	511
Z05538	VDAKYAKEVLDAWHEIDTLPNLTVRQWLAFISKLEDDPSQSSELLAEAKKLNDAQAPK	512
Z05692	VDAKYAKEHIQANEEIDRLPNLTIKQWLAFINKLHDDPSQSSELLAEAKKLNDAQAPK	513
Z05994	VDAKYAKEVLHAWAEIDALPNLTIEQWLAFINKLDDDPSQSSELLSEAKKLNDSQAPK	514
Z05995	VDAKYAKEVLAAWDEIDSLPNLTLQQWLAFINKLDDDPSQSSELLSEAKKLNDSQAPK	515
Z05996	VDAKYAKEVIDAWNEIDALPNLTLEQWLAFINKLDDDPSQSSELLSEAKKLNDSQAPK	516
Z05997	VDAKYAKEVLDAWNEIDALPNLTIDQWLAFINKLSDDPSQSSELLSEAKKLNDSQAPK	517

40500	TO THE TOTAL	1
66607	VDANTANEVIEAWDELDGLENDLIEWWHIINKINKLDDDFSQSSELDSEAKKLINDSQAFK	218
206000	VDAKYAKEVLEAWDEIDHLPNLTLQQWLAFINKLDDDPSQSSELLSEAKKLNDSQAPK	519
206001	VDAKYAKEVIEAWNEIDALPNLTIEGWLAFINKLDDDPSQSSELLSEAKKLNDSQAPK	520
206002	VDAKYAKEVIAAWNEIDRLPNLTLTQWLAFINKLDDDPSQSSELLSEAKKLNDSQAPK	521
206003	VDAKYAKEVIEAWDEIDALPNLTLQQWLAFINKLDDDPSQSSELLSEAKKLNDSQAPK	522
206004	VDAKYAKEVIAAWDEIDKLPNLTIEGWLAFINKLDDDPSQSSELLSEAKKLNDSQAPK	523
206005	VDAKYAKEVIAAWDEIDKLPNLTLQQWLAFINKLDDDPSQSSELLSEAKKLNDSQAPK	524
206006	VDAKYAKETIAAWDEIDKLPNLTIEQWLAFINKLDDDPSQSSELLSEAKKLNDSQAPK	525
206007	VDAKYAKETIEAWNEIDRLPNLTIEGWLAFINKLDDDPSQSSELLSEAKKLNDSQAPK	526
Z06008	VDAKYAKEVLEAWREIDALPNLTIQQWLAFINKLDDDPSQSSELLSEAKKLNDSQAPK	527
Z06010	VDAKYAKEVIEAWDEIDQLPNLTIEQWLAFINKLDDDPSQSSELLSEAKKLNDSQAPK	278
206011	VDAKYAKEVLRAWDEIDHLPNLTLEQWLAFINKLDDDPSQSSELLSEAKKLNDSQAPK	529
Z06012	VDAKYAKEVLEAWDEIDRLPNLTINQWLAFINKLDDDPSQSSELLSEAKKLNDSQAPK	530
Z06013	VDAKYAKEVLDAWNEIDHLPNLTIEQWLAFINKLDDDPSQSSELLSEAKKLNDSQAPK	531
206014	VDAKYAKEVIDAWNEIDKLPNLTIEQWLAFINKLDDDPSQSSELLSEAKKLNDSQAPK	532
206015	VDAKYAKETLEAWDEIDQLPNLTLQQWLAFINKLDDDPSQSSELLSEAKKLNDSQAPK	533
206016	VDAKYAKEVIEAWNEIDALPNLTLDQWLAFINKLDDDPSQSSELLSEAKKLNDSQAPK	534
Z06017	VDAKYAKEVIDAWNEIDRLPNLTLQQWLAFINKLDDDPSQSSELLSEAKKLNDSQAPK	535
Z06019	VDAKYAKEVIDAWNEIDQLPNLTLEQWLAFINKLDDDPSQSSELLSEAKKLNDSQAPK	236
Z06020	VDAKYAKETIAAWDEIDHLPNLTLEQWLAFINKLDDDPSQSSELLSEAKKLNDSQAPK	537
Z06024	VDAKYAKEVLQAWDEIDHLPNLTIQQWLAFINKLSDDPSQSSELLSEAKKLNDSQAPK	238
Z06025	VDAKYAKETLHAWAEIDRLPNLTIEQWLAFINKLDDDPSQSSELLSEAKKLNDSQAPK	539
206026	VDAKYAKEVLEAWNEIDHLPNLTLAQWLAFINKLDDDPSQSSELLSEAKKLNDSQAPK	540
Z06027	VDAKYAKEVIEAWDEIDKLPNLTIAQWLAFINKLDDDPSQSSELLSEAKKLNDSQAPK	541
Z06028	VDAKYAKEVLDAWDEIDHLPNLTLQQWLAFINKLDDDPSQSSELLSEAKKLNDSQAPK	542
Z06029	VDAKYAKETIEAWNEIDKLPNLTLTQWLAFINKLDDDPSQSSELLSEAKKLNDSQAPK	543

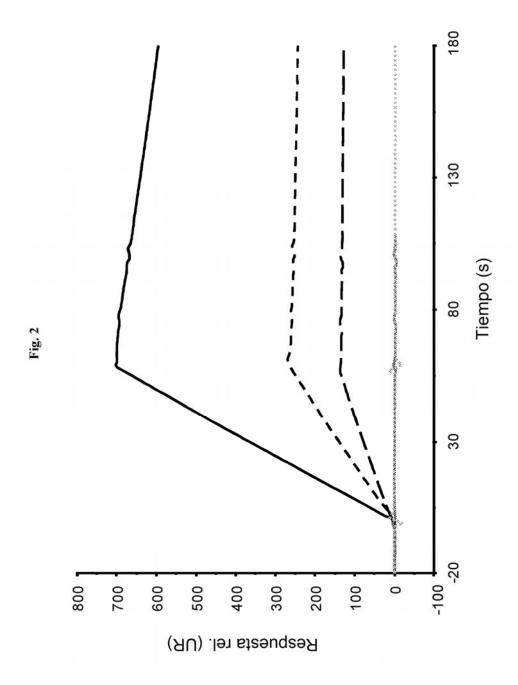
206030	VADAKVAREVI EARINET DI I. DNI HI POMI A PINKI DAD BOCCETI GEAKKI NI GAADK	200
		144
206031	VDAKYAKEVIEAWDEIDHLPNLTIDQWLAFINKLDDDPSQSSELLSEAKKLNDSQAPK	545
Z06032	VDAKYAKEVISAWNEIDALPNLTLQQWLAFINKLDDDPSQSSELLSEAKKLNDSQAPK	546
Z06033	VDAKYAKEVIAAWNEIDKLPNLTLEQWLAFINKLDDDPSQSSELLSEAKKLNDSQAPK	547
206034	VDAKYAKETIEAWNEIDSLPNLTLDQWLAFINKLDDDPSQSSELLSEAKKLNDSQAPK	548
Z06035	VDAKYAKEVIDAWNEIDQLPNLTLQQWLAFINKLDDDPSQSSELLSEAKKLNDSQAPK	549
Z06037	VDAKYAKEVLAAWNEIDHLPNLTIEQWLAFINKLDDDPSQSSELLSEAKKLNDSQAPK	550
Z06038	VDAKYAKEVLEAWDEIDHLPNLTITQWLAFINKLDDDPSQSSELLSEAKKLNDSQAPK	551
Z06039	VDAKYAKETIDAWNEIDHLPNLTIEQWLAFINKLDDDPSQSSELLSEAKKLNDSQAPK	552
Z06040	VDAKYAKEVIEAWNEIDHLPNLTIQQWLAFINKLDDDPSQSSELLSEAKKLNDSQAPK	553
206041	VDAKYAKEVIQAWNEIDALPNLTISQWLAFINKLDDDPSQSSELLSEAKKLNDSQAPK	554
Z06043	VDAKYAKEVIAAWDEIDSLPNLTIEQWLAFINKLDDDPSQSSELLSEAKKLNDSQAPK	555
Z06044	VDAKYAKEHIEAWNEIDALPNLTIEQWLAFINKLQDDPSQSSELLSEAKKLNDSQAPK	256
Z06045	VDAKYAKEVLEAWNEIDKLPNLTLDQWLAFINKLDDDPSQSSELLSEAKKLNDSQAPK	557
Z06047	VDAKYAKEVIDAWNEIDHLPNLTIEQWLAFINKLADDPSQSSELLSEAKKLNDSQAPK	258
Z06048	VDAKYAKETIDAWDEIDKLPNLTIEQWLAFINKLDDDPSQSSELLSEAKKLNDSQAPK	559
Z06049	VDAKYAKEVIAAWDEIDLLPNLTLQQWLAFINKLADDPSQSSELLSEAKKLNDSQAPK	260
Z06050	VDAKYAKEVIHAWDEIDKLPNLTIEQWLAFINKLDDDPSQSSELLSEAKKLNDSQAPK	561
Z06051	VDAKYAKEVIAAWNEIDHLPNLTLEQWLAFINKLDDDPSQSSELLSEAKKLNDSQAPK	295
Z06052	VDAKYAKETIDAWNEIDKLPNLTLSQWLAFINKLDDDPSQSSELLSEAKKLNDSQAPK	563
Z06053	VDAKYAKEVLEAWNEIDALPNLTLEQWLAFINKLDDDPSQSSELLSEAKKLNDSQAPK	564
Z06054	VDAKYAKEVIQAWDEIDHLPNLTISQWLAFINKLDDDPSQSSELLSEAKKLNDSQAPK	295
206055	VDAKYAKEVLQAWDEIDSLPNLTIEQWLAFINKLDDDPSQSSELLSEAKKLNDSQAPK	995
Z06056	VDAKYAKETLEAWDEIDHLPNLTIAQWLAFINKLDDDPSQSSELLSEAKKLNDSQAPK	267
Z06057	VDAKYAKETIDAWNEIDRLPNLTISQWLAFINKLDDDPSQSSELLSEAKKLNDSQAPK	568
Z06058	VDAKYAKEVIDAWHEIDHLPNLTIQQWLAFINKLDDDPSQSSELLSEAKKLNDSQAPK	695

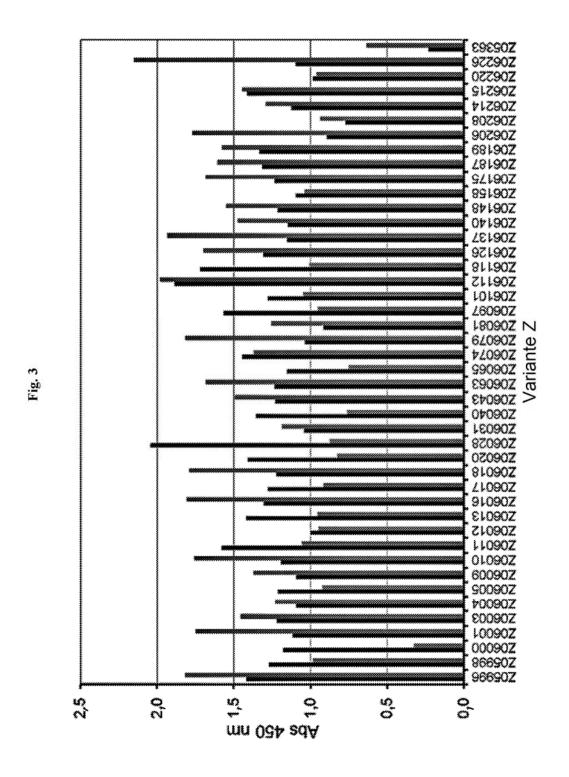
1 0 0		
206059	VDAKYAKEQIRAWDEIDKLPNLTIEQWLAFINKLADDPSQSSELLSEAKKLNDSQAPK	220
206060	VDAKYAKETLYAWNEIDKLPNLTIEQWLAFIEKLQDDPSQSSELLSEAKKLNDSQAPK	571
206061	VDAKYAKEVIEAWNEIDALPNLTIDQWLAFINKLDDDPSQSSELLSEAKKLNDSQAPK	572
206062	VDAKYAKEVLEAWNEIDHLPNLTIQQWLAFINKLDDDPSQSSELLSEAKKLNDSQAPK	573
206063	VDAKYAKETIEAWDEIDALPNLTIEQWLAFINKLDDDPSQSSELLSEAKKLNDSQAPK	574
Z06065	VDAKYAKEVIEAWNEIDHLPNLTLQQWLAFINKLDDDPSQSSELLSEAKKLNDSQAPK	575
Z06066	VDAKYAKEVIEAWNEIDKLPNLTIQQWLAFINKLDDDPSQSSELLSEAKKLNDSQAPK	576
Z06068	VDAKYAKETLDAWAEIDHLPNLTLDQWLAFINKLDDDPSQSSELLSEAKKLNDSQAPK	577
69090Z	VDAKYAKEHIDAWNEIDALPNLTLSQWLAFINKLDDDPSQSSELLSEAKKLNDSQAPK	578
Z06070	VDAKYAKEVLDAWNEIDKLPNLTIAQWLAFINKLDDDPSQSSELLSEAKKLNDSQAPK	579
206071	VDAKYAKEVIEAWTEIDYLPNLTLQQWLAFINKLDDDPSQSSELLSEAKKLNDSQAPK	580
Z06072	VDAKYAKETIEAWNEIDHLPNLTIAQWLAFINKLDDDPSQSSELLSEAKKLNDSQAPK	581
Z06073	VDAKYAKEVIQAWNEIDKLPNLTLEQWLAFINKLDDDPSQSSELLSEAKKLNDSQAPK	582
Z06074	VDAKYAKEVIEAWDEIDHLPNLTIEQWLAFINKLDDDPSQSSELLSEAKKLNDSQAPK	583
206075	VDAKYAKETIDAWNEIDLLPNLTIEQWLAFINKLDDDPSQSSELLSEAKKLNDSQAPK	584
206076	VDAKYAKEHIDAWNEIDKLPNLTLDQWLAFINKLDDDPSQSSELLSEAKKLNDSQAPK	585
Z06077	VDAKYAKEVVAAWNEIDALPNLTIEQWLAFINKLNDDPSQSSELLSEAKKLNDSQAPK	586
Z06080	VDAKYAKEVIEAWNEIDALPNLTLAQWLAFINKLDDDPSQSSELLSEAKKLNDSQAPK	287
Z06081	VDAKYAKEVLQAWDEI DRLPNLTLDQWLAFINKLDDDPSQSSELLSEAKKLNDSQAPK	588
Z06082	VDAKYAKEVIDAWDEIDHLPNLTIEQWLAFINKLSDDPSQSSELLSEAKKLNDSQAPK	589
Z06083	VDAKYAKEVVEAWNEIDQLPNLTIEQWLAFINKLDDDPSQSSELLSEAKKLNDSQAPK	290
Z06084	VDAKYAKEVIQAWNEIDALPNLTIEQWLAFINKLDDDPSQSSELLSEAKKLNDSQAPK	591
206085	VDAKYAKEVIQAWDEIDKLPNLTIDQWLAFINKLADDPSQSSELLSEAKKLNDSQAPK	592
206086	VDAKYAKEVVAAWDEIDALPNLTLTQWLAFINKLDDDPSQSSELLSEAKKLNDSQAPK	593
206087	VDAKYAKEVIQAWNEIDGLPNLTLSQWLAFINKLDDDPSQSSELLSEAKKLNDSQAPK	594
880902	VDAKYAKETIEAWDEIDALPNLTITQWLAFINKLDDDPSQSSELLSEAKKLNDSQAPK	295

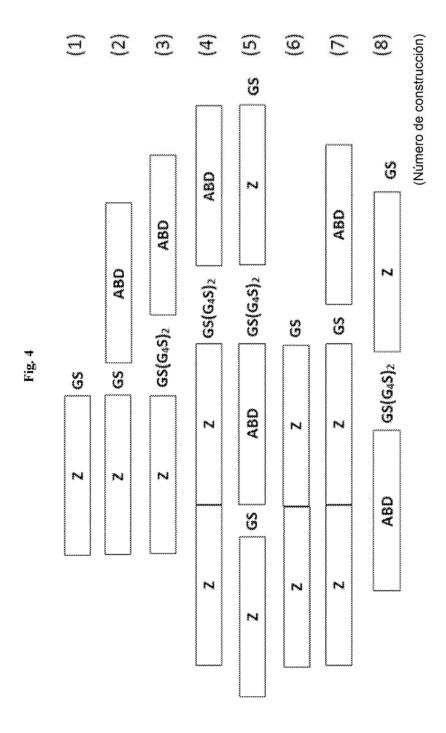
Ą	VDAKYAKEVIDAWNEIDHLPNLTIQQWLAFINKLADDPSQSSELLSEAKKLNDSQAPK	596
VDAKYAKETIEAWNE	TIEAWNEIDALPNLTLDQWLAFINKLEDDPSQSSELLSEAKKLNDSQAPK	597
VDAKYAKEHIHAWNE	HIHAWNEIDELPNLTIEQWLAFINKLADDPSQSSELLSEAKKLNDSQAPK	298
VDAKYAKEVIDAWDE	VIDAWDEIDHLPNLTIDQWLAFINKLSDDPSQSSELLSEAKKLNDSQAPK	599
VDAKYAKEVIDANDE	VDAKYAKEVIDANDEIDALPNLTIAQWLAFINKLHDDPSQSSELLSEAKKLNDSQAPK	009
VDAKYAKETIEAWDE	TIEAWDEIDKLPNLTIEQWLAFINKLDDDPSQSSELLSEAKKLNDSQAPK	601
VDAKYAKEVLLAWDE	VLLAWDEIDHLPNLTLEQWLAFINKLDDDPSQSSELLSEAKKLNDSQAPK	602
VDAKYAKEHIDAWNI	HIDAWNEIDGLPNLTLEQWLAFINKLDDDPSQSSELLSEAKKLNDSQAPK	603
VDAKYAKEVIEAWSE	VIEAWSEIDALPNLTIDQWLAFINKLADDPSQSSELLSEAKKLNDSQAPK	604
VDAKYAKEQLNAWA	QLNAWAEIDALPNLTIEQWLAFINKLDDDPSQSSELLSEAKKLNDSQAPK	909
VDAKYAKEVIDAWNE	VDAKYAKEVIDAWNEIDALPNLTIAQWLAFINKLDDDPSQSSELLSEAKKLNDSQAPK	909
VDAKYAKETIDAWNE	TIDAWNEIDQLPNLTIEQWLAFINKLDDDPSQSSELLSEAKKLNDSQAPK	209
VDAKYAKEVIEAWDE	VIEAWDEIDKLPNLTLAQWLAFINKLDDDPSQSSELLSEAKKLNDSQAPK	809
VDAKYAKEVLYAWAE	VLYAWAEIDHLPNLTIEQWLAFINKLDDDPSQSSELLSEAKKLNDSQAPK	609
VDAKYAKEQIDAWN	QIDAWNEIDRLPNLT1QQWLAFINKLDDDPSQSSELLSEAKKLNDSQAPK	610
VDAKYAKEVLAAWDI	VLAAWDEIDRLPNLTIEQWLAFINKLDDDPSQSSELLSEAKKLNDSQAPK	611
VDAKYAKEVIEAWD	VIEAWDEIDHLPNLTLHQWLAFINKLDDDPSQSSELLSEAKKLNDSQAPK	612
VDAKYAKEVIEAW	VIEAWNEIDKLPNLTLQQWLAFINKLDDDPSQSSELLSEAKKLNDSQAPK	613
VDAKYAKEVIDANI	VIDANDEIDALPNLTIEQWLAFINKLHDDPSQSSELLSEAKKLNDSQAPK	614
VDAKYAKEVIAAW	VIAAWDEIDALPNLTIEQWLAFINKLDDDPSQSSELLSEAKKLNDSQAPK	615
VDAKYAKEVIEAW	VIEAWTEIDQLPNLTLDQWLAFINKLDDDPSQSSELLSEAKKLNDSQAPK	616
VDAKYAKEVINAW	VDAKYAKEVINAWNEIDALPNLTLQQWLAFINKLDDDPSQSSELLSEAKKLNDSQAPK	617
VDAKYAKEHIEAW	HIEAWDEIDHLPNLTIDQWLAFINKLADDPSQSSELLSEAKKLNDSQAPK	618
VDAKYAKEHLEAW	VDAKYAKEHLEAWREIDALPNLTIEGWLAFINKLDDDPSQSSELLSEAKKLNDSQAPK	619
VDAKYAKEVLDAW	VLDAWNEIDKLPNLTLQQWLAFINKLDDDPSQSSELLSEAKKLNDSQAPK	620
VDAKYAKEVIAAW	VIAAWDEIDHLPNLTIQQWLAFINKLDDDPSQSSELLSEAKKLNDSQAPK	621

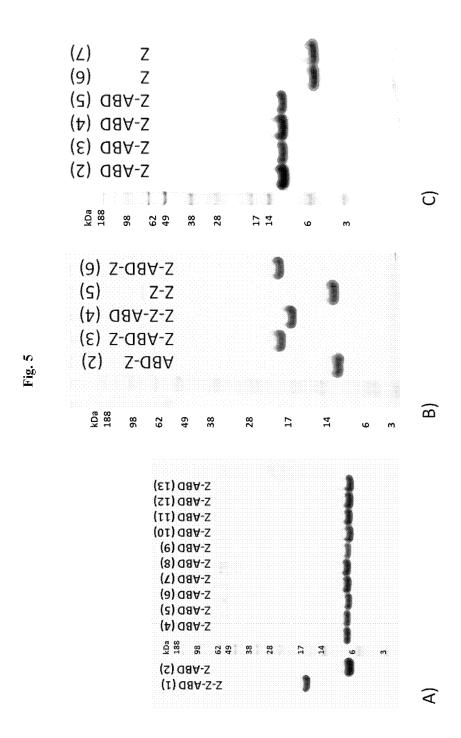
77	AND NOT THE AND THE PARTY OF TH	
ZUBILS	VDARIAREVIQAWNEIDALPNLTIEGWLAFINKLDDDPSQSSELLSEARKLNDSQAFK	622
206121	VDAKYAKEVIDAWNEIDHLPNLTIAQWLAFINKLDDDPSQSSELLSEAKKLNDSQAPK	623
Z06122	VDAKYAKEQLDAWDEIDHLPNLTIDQWLAFINKLSDDPSQSSELLSEAKKLNDSQAPK	624
z06123	VDAKYAKEVINAWDEIDKLPNLTIEQWLAFINKLDDDPSQSSELLSEAKKLNDSQAPK	625
Z06124	VDAKYAKEVLEAWNEIDHLPNLTIDQWLAFINKLDDDPSQSSELLSEAKKLNDSQAPK	979
Z06125	VDAKYAKEVLLAWDEIDRLPNLTIDQWLAFINKLADDPSQSSELLSEAKKLNDSQAPK	627
206127	VDAKYAKEVIAAWNEIDQLPNLTLDQWLAFINKLDDDPSQSSELLSEAKKLNDSQAPK	628
Z06128	VDAKYAKETLLAWDEIDALPNLTIEQWLAFINKLDDDPSQSSELLSEAKKLNDSQAPK	629
206129	VDAKYAKEVIDAWNEIDTLPNLTLEQWLAFINKLDDDPSQSSELLSEAKKLNDSQAPK	630
Z06131	VDAKYAKEVLHAWNEIDHLPNLTINQWLAFINKLQDDPSQSSELLSEAKKLNDSQAPK	631
Z06132	VDAKYAKEVIQAWNEIDALPNLTIAQWLAFINKLDDDPSQSSELLSEAKKLNDSQAPK	632
Z06133	VDAKYAKETVDAWNEIDALPNLTIEQWLAFINKLDDDPSQSSELLSEAKKLNDSQAPK	633
Z06134	VDAKYAKEVIQAWDEIDHLPNLTIDQWLAFINKLDDDPSQSSELLSEAKKLNDSQAPK	634
Z06135	VDAKYAKEVLDAWNEIDQLPNLTIQQWLAFINKLDDDPSQSSELLSEAKKLNDSQAPK	635
Z06136	VDAKYAKETIEAWNEIDALPNLTLDQWLAFINKLDDDPSQSSELLSEAKKLNDSQAPK	989
206137	VDAKYAKEVIEAWDEIDALPNLTIDQWLAFINKLDDDPSQSSELLSEAKKLNDSQAPK	637
Z06138	VDAKYAKEVIEAWNEIDQLPNLTIQQWLAFINKLDDDPSQSSELLSEAKKLNDSQAPK	638
Z06139	VDAKYAKEVIEAWTEIDHLPNLTIEQWLAFINKLDDDPSQSSELLSEAKKLNDSQAPK	639
206141	VDAKYAKEVIQAWNEIDHLPNLTLQQWLAFINKLEDDPSQSSELLSEAKKLNDSQAPK	640
206142	VDAKYAKEVIQANNEIDQLPNLTIEQWLAFINKLHDDPSQSSELLSEAKKLNDSQAPK	641
Z06143	VDAKYAKEVLHAWSEIDKLPNLTIEQWLAFINKLDDDPSQSSELLSEAKKLNDSQAPK	642
Z06144	VDAKYAKETIQAWDEIDKLPNLTLDQWLAFINKLSDDPSQSSELLSEAKKLNDSQAPK	643
Z06145	VDAKYAKETLRAWDEIDKLPNLTIQQWLAFINKLADDPSQSSELLSEAKKLNDSQAPK	644
Z06146	VDAKYAKEVIDAWNEIDHLPNLTIEGWLAFINKLEDDPSQSSELLSEAKKLNDSQAPK	645
Z06147	VDAKYAKEVIDAWNEIDHLPNLTLQQWLAFINKLADDPSQSSELLSEAKKLNDSQAPK	646
Z06148	VDAKYAKETIDAWNEIDALPNLTLDQWLAFINKLDDDPSQSSELLSEAKKLNDSQAPK	647

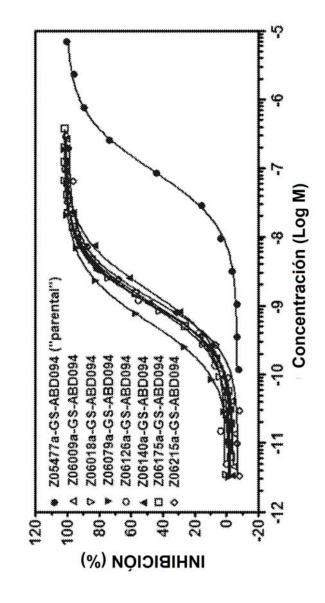
206149	VDAKYAKEUTEAMNETDOLDNI.THEOMI.AFTNKI.DDDPSOSSEII.SEAKKI.NDSOADK	873
	i i i i i i i i i i i i i i i i i i i	2
206150	VDAKYAKEVIRAWDEIDQLPNLTLSQWLAFINKLDDDPSQSSELLSEAKKLNDSQAPK	649
Z06151	VDAKYAKEVIEAWNEIDRLPNLTIHQWLAFINKLDDDPSQSSELLSEAKKLNDSQAPK	650
Z06152	VDAKYAKETIEAWNEIDQLPNLTIEQWLAFINKLDDDPSQSSELLSEAKKLNDSQAPK	651
Z06153	VDAKYAKEVLTAWAEIDALPNLTLSQWLAFINKLDDDPSQSSELLSEAKKLNDSQAPK	652
Z06154	VDAKYAKEVIEAWDEIDKLPNLTVDQWLAFINKLDDDPSQSSELLSEAKKLNDSQAPK	653
Z06155	VDAKYAKEVIDAWNEIDHLPNLTLTQWLAFINKLDDDPSQSSELLSEAKKLNDSQAPK	654
Z06156	VDAKYAKEVIEAWNEIDQLPNLTLDQWLAFINKLDDDPSQSSELLSEAKKLNDSQAPK	655
Z06157	VDAKYAKETLQAWDEIDHLPNLTLNQWLAFINKLDDDPSQSSELLSEAKKLNDSQAPK	959
Z06158	VDAKYAKEVIDAWNEIDHLPNLTIEQWLAFINKLDDDPSQSSELLSEAKKLNDSQAPK	657
Z06159	VDAKYAKEVIEAWNEIDLLPNLTLSQWLAFINKLDDDPSQSSELLSEAKKLNDSQAPK	658
Z06160	VDAKYAKEVIDAWDEIDRLPNLTLKQWLAFINKLDDDPSQSSELLSEAKKLNDSQAPK	629
206161	VDAKYAKETLHAWDEIDKLPNLTIEGWLAFINKLDDDPSQSSELLSEAKKLNDSQAPK	099
Z06162	VDAKYAKEVIKAWDEIDHLPNLTLNQWLAFINKLDDDPSQSSELLSEAKKLNDSQAPK	661
Z06163	VDAKYAKEVIEAWNEIDHLPNLTLAQWLAFINKLDDDPSQSSELLSEAKKLNDSQAPK	662
Z06164	VDAKYAKEVIQAWNEIDHLPNLTIDQWLAFITKLEDDPSQSSELLSEAKKLNDSQAPK	663
Z06165	VDAKYAKEVIEAWNEIDRLPNLTIKQWLAFINKLDDDPSQSSELLSEAKKLNDSQAPK	664
Z06167	VDAKYAKEVIEAWNEIDSLPNLTLQQWLAFINKLDDDPSQSSELLSEAKKLNDSQAPK	665
Z06168	VDAKYAKETIDAWNEIDKLPNLTIEQWLAFINKLDDDPSQSSELLSEAKKLNDSQAPK	999
Z06169	VDAKYAKEVLEAWAEIDALPNLTIAQWLAFINKLDDDPSQSSELLSEAKKLNDSQAPK	667
Z06170	VDAKYAKETIDAWNEIDRLPNLTIEQWLAFINKLDDDPSQSSELLSEAKKLNDSQAPK	899
206171	VDAKYAKETIKAWDEIDRLPNLTLEQWLAFINKLDDDPSQSSELLSEAKKLNDSQAPK	699
206172	VDAKYAKETIAAWNEIDALPNLTLQQWLAFINKLDDDPSQSSELLSEAKKLNDSQAPK	029
Z06173	VDAKYAKEVLQAWNEIDHLPNLTIQQWLAFINKLDDDPSQSSELLSEAKKLNDSQAPK	671
Z06174	VDAKYAKEVIEAWSEIDHLPNLTLQQWLAFINKLDDDPSQSSELLSEAKKLNDSQAPK	672
206176	VDAKYAKEVIDAWNEIDGLPNLTIEQWLAFINKLDDDPSQSSELLSEAKKLNDSQAPK	673

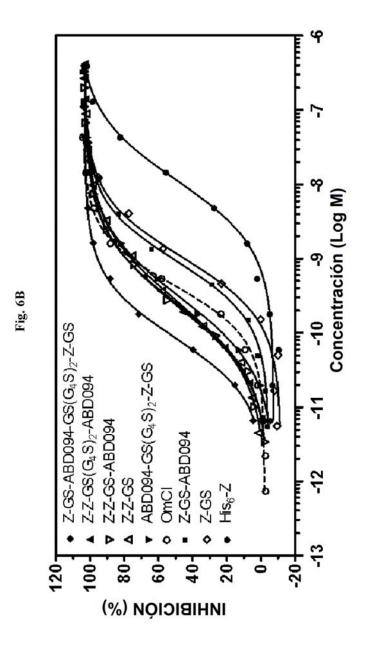

206178	VDAKYAKEVIHAWNEIDHLPNLTINQWLAFINKLEDDPSQSSELLSEAKKINDSQAPK	674
206179	VDAKYAKEVLDAWNEIDSLPNLTLDQWLAFINKLDDDPSQSSELLSEAKKLNDSQAPK	675
206180	VDAKYAKEQIEAWNEIDRLPNLTLEGWLAFINKLDDDPSQSSELLSEAKKLNDSQAPK	929
206181	VDAKYAKEVVDAWNEIDALPNLTLQQWLAFINKLDDDPSQSSELLSEAKKLNDSQAPK	677
Z06182	VDAKYAKEVI EAWNEIDKLPNLTIEQWLAFINKLDDDPSQSSELLSEAKKLNDSQAPK	829
Z06183	VDAKYAKEVI EANDEIDRLPNLTI EQWLAFINKLHDDPSQSSELLSEAKKLNDSQAPK	629
Z06184	VDAKYAKETLQAWDEIDKLPNLTIEQWLAFINKLDDDPSQSSELLSEAKKLNDSQAPK	089
Z06185	VDAKYAKEVI EAWDEIDHLPNLTIDQWLAFINKLADDPSQSSELLSEAKKLNDSQAPK	681
206186	VDAKYAKETIDAWNEIDHLPNLTLQQWLAFINKLADDPSQSSELLSEAKKLNDSQAPK	682
206187	VDAKYAKEVIDAWDEIDKLPNLTIEGWLAFINKLDDDPSQSSELLSEAKKLNDSQAPK	683
Z06188	VDAKYAKEVIEAWNEIDKLPNLTLAQWLAFINKLDDDPSQSSELLSEAKKLNDSQAPK	684
Z06190	VDAKYAKEVLQAWDEIDKLPNLTIQQWLAFINKLDDDPSQSSELLSEAKKLNDSQAPK	685
206191	VDAKYAKEVIAAWNEIDGLPNLTLQQWLAFINKLDDDPSQSSELLSEAKKINDSQAPK	989
Z06192	VDAKYAKETLINAWNEIDALPNLTLQQWLAFINKLDDDPSQSSELLSEAKKLNDSQAPK	687
Z06193	VDAKYAKEVLSAWNEIDQLPNLTLEQWLAFINKLDDDPSQSSELLSEAKKLNDSQAPK	889
Z06194	VDAKYAKETLEAWDEIDHLPNLTLHQWLAFINKLDDDPSQSSELLSEAKKLNDSQAPK	689
Z06195	VDAKYAKEQIEAWNEIDHLPNLTLQQWLAFINKLADDPSQSSELLSEAKKLNDSQAPK	069
Z06196	VDAKYAKEVVEAWDEIDKLPNLTIEQWLAFINKLDDDPSQSSELLSEAKKLNDSQAPK	691
Z06197	VDAKYAKEVLEAWNEIDELPNLTIEQWLAFINKLDDDPSQSSELLSEAKKLNDSQAPK	692
Z06198	VDAKYAKEVIDAWNEIDQLPNLTLQQWLAFINKLDDDPSQSSELLSEAKKLNDSQAPK	693
Z06199	VDAKYAKETIDAWDEIDKLPNLTLSQWLAFINKLDDDPSQSSELLSEAKKLNDSQAPK	694
Z06200	VDAKYAKETIDAWNEIDQLPNLTLQQWLAFINKLDDDPSQSSELLSEAKKLNDSQAPK	695
Z06201	VDAKYAKEVI QAWDEIDALPINLTINQWLAFINKIDDDPSQSSELLSEAKKINDSQAPK	969
Z06202	VDAKYAKEVLDAWAEIDQLPNLTLQQWLAFINKLDDDPSQSSELLSEAKKLNDSQAPK	697
Z06203	VDAKYAKEHIAAWDEIDALPNLTIEQWLAFINKLDDDPSQSSELLSEAKKINDSQAPK	698
Z06206	VDAKYAKEVIRAWDEIDALPNLTIEQWLAFINKLDDDPSQSSELLSEAKKINDSQAPK	669

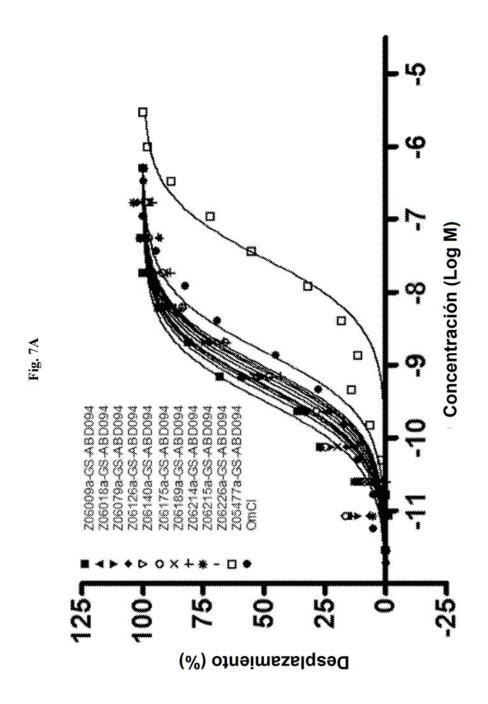

10000	THE WAS PRICED AND THE PART AND THE PART OF A DEPART O	60
70707	VDANTANEVIDANDELDALFNILLDØWLAFINGESØSSELLSEANNINDSØAFN	900
206208	VDAKYAKEVIDAWNEIDRLPNLTIQQWLAFINKLDDDPSQSSELLSEAKKLNDSQAPK	701
Z06209	VDAKYAKEVITAWNEIDHLPNLTLSQWLAFINKLDDDPSQSSELLSEAKKLNDSQAPK	702
206210	VDAKYAKEVIDAWNEIDALPNLTIHQWLAFINKLDDDPSQSSELLSEAKKLNDSQAPK	703
206211	VDAKYAKEQIKAWDEIDKLPNLTIEGWLAFIEKLQDDPSQSSELLSEAKKLNDSQAPK	704
Z06212	VDAKYAKEHIDAWTEIDHLPNLTIEQWLAFINKLDDDPSQSSELLSEAKKLNDSQAPK	705
Z06213	VDAKYAKEQLRAWDEIDKLPNLTIEGWLAFINKLQDDPSQSSELLSEAKKLNDSQAPK	902
206216	VDAKYAKEVLEAWREIDSLPNLTIAQWLAFINKLDDDPSQSSELLSEAKKLNDSQAPK	707
206217	VDAKYAKEVIQAWNEIDKLPNLTIEQWLAFINKLDDDPSQSSELLSEAKKLNDSQAPK	708
Z06218	VDAKYAKEHVEAWNEIDQLPNLTIEQWLAFINKLADDPSQSSELLSEAKKLNDSQAPK	200
Z06219	VDAKYAKEVIDAWDEIDALPNLTIDQWLAFINKLSDDPSQSSELLSEAKKLNDSQAPK	710
Z06220	VDAKYAKEVIEAWNEIDHLPNLTIEQWLAFINKLDDDPSQSSELLSEAKKLNDSQAPK	711
z06221	VDAKYAKEVLQAWDEIDKLPNLTIEQWLAFINKLSDDPSQSSELLSEAKKLNDSQAPK	712
Z06222	VDAKYAKEVIKAWNEIDSLPNLTIEQWLAFINKLDDDPSQSSELLSEAKKLNDSQAPK	713
Z06223	VDAKYAKEVLEAWHEIDLLPNLTIQQWLAFINKLDDDPSQSSELLSEAKKLNDSQAPK	714
Z06224	VDAKYAKEVLEAWTEIDRLPNLTLDQWLAFINKLDDDPSQSSELLSEAKKLNDSQAPK	715
Z06225	VDAKYAKEQLYAWNEIDHLPNLTIEGWLAFIEKLQDDPSQSSELLSEAKKLNDSQAPK	716
Z06227	VDAKYAKEVINAWDEIDKLPNLTIKQWLAFINKLDDDPSQSSELLSEAKKLNDSQAPK	717
Z06228	VDAKYAKEVIRAWDEIDKLPNLTVEQWLAFINKLDDDPSQSSELLSEAKKLNDSQAPK	718
Z06230	VDAKYAKEVVQAWDEIDQLPNLTLEQWLAFINKLDDDPSQSSELLSEAKKLNDSQAPK	719
Z06231	VDAKYAKEVIRAWDEIDQLPNLTLEQWLAFINKLDDDPSQSSELLSEAKKLNDSQAPK	720
Z06232	VDAKYAKETIDAWNEIDHLPNLTLDQWLAFINKLDDDPSQSSELLSEAKKLNDSQAPK	721
Z06233	VDAKYAKEVVAAWTEIDLLPNLTLDQWLAFINKLEDDPSQSSELLSEAKKLNDSQAPK	722
Z06234	VDAKYAKEVVAAWDEIDALPNLTIEQWLAFINKLSDDPSQSSELLSEAKKLNDSQAPK	723
Z06235	VDAKYAKETLEAWREIDSLPNLTLEQWLAFINKLDDDPSQSSELLSEAKKLNDSQAPK	724
206236	VDAKYAKEVIKAWNEIDHLPNLTLDQWLAFINKLDDDPSQSSELLSEAKKLNDSQAPK	725

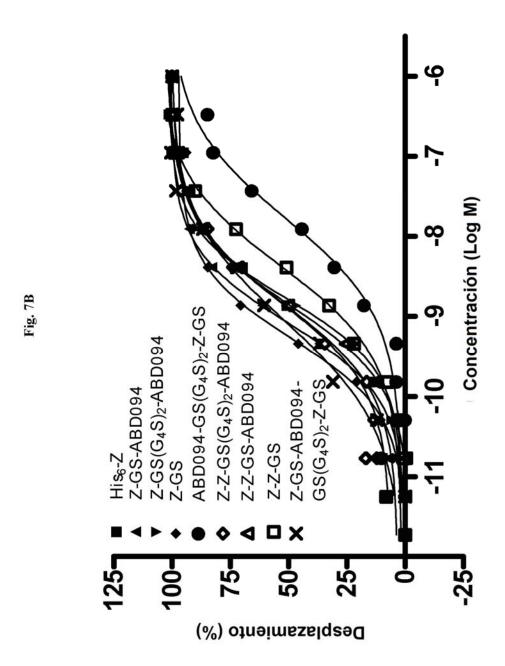

7.06237	VDAKYAKEVI.EAWTETDKI.PNI.TTDOWI.AFTNKI.DDPSOSSEI.I.SEAKKI.NDSOAPK	7.76
Z06238	VDAKYAKETLEAWDEIDKLENLTIDOWLAFINKLDDDPSOSSELLSEAKKLNDSOAPK	777
00000	VDAKVAKEVITEAUNETDKI DNI TITDOHI AETNKI DDDEOGEETI GEAKKI NDGADK	727
20070	VINCENTAL LEGISLATION OF THE WILLIAM	97/
206240	VDAKYAKETIDAWNEIDKLPNLTLEQWLAFINKLDDDPSQSSELLSEAKKLNDSQAPK	729
Z06241	VDAKYAKETLDAWDEIDALPNLTIDQWLAFINKLEDDPSQSSELLSEAKKLNDSQAPK	730
Z06242	VDAKYAKEVLSAWNEIDHLPNLTIQQWLAFINKLDDDPSQSSELLSEAKKLNDSQAPK	731
206244	VDAKYAKEVIQANDEIDKLPNLTIEQWLAFIHKLHDDPSQSSELLSEAKKLNDSQAPK	732
206245	VDAKYAKEHLDAWDEIDHLPNLTIQQWLAFINKLADDPSQSSELLSEAKKLNDSQAPK	733
206246	VDAKYAKEVIQAWNEIDQLPNLTIEQWLAFINKLDDDPSQSSELLSEAKKLNDSQAPK	734
206247	VDAKYAKEVIEAWNEIDYLPNLTIAQWIAFINKLDDDPSQSSELLSEAKKLNDSQAPK	735
Z06248	VDAKYAKETIQAWDEIDRLPNLTLQQWLAFINKLDDDPSQSSELLSEAKKLNDSQAPK	736
Z06249	VDAKYAKETIQAWDEIDKLPNLTIEQWLAFINKLDDDPSQSSELLSEAKKLNDSQAPK	737
Z06250	VDAKYAKETLDAWAEIDHLPNLTIEQWLAFINKLDDDPSQSSELLSEAKKLNDSQAPK	738
Z06251	VDAKYAKEVIEAWDEIDKLPNLTLNQWLAFINKLDDDPSQSSELLSEAKKLNDSQAPK	739
Z06252	VDAKYAKEVLDAWNEIDQLPNLTIEQWLAFINKLDDDPSQSSELLSEAKKLNDSQAPK	740
Z06253	VDAKYAKEVLHAWNEIDHLPNLTIEQWLAFIEKLEDDPSQSSELLSEAKKLNDSQAPK	741
Z06254	VDAKYAKEVIEAWQEIDKLPNLTIDQWLAFINKLDDDPSQSSELLSEAKKLNDSQAPK	742
Z06257	VDAKYAKEVVDAWNEIDQLPNLTIEQWLAFINKLDDDPSQSSELLSEAKKLNDSQAPK	743
Z06258	VDAKYAKEQIEAWNEIDALPNLTIEQWLAFINKLADDPSQSSELLSEAKKLNDSQAPK	744
Z05477a	VDAKYAKETITAWDEIDKI.PNLTIEQWI.AFIGKI.EDDPSQSSELI.AEAKKI.NDAQAPKVD	745
Z05998a	aeakyakevieawneidripnitieqwiafinkidddppsqsseliseakkindsqapkvd	746
Z08044a	AEAKYAKEVLEAWNEIDRLPNLTIEQWLAFINKLDDDPSQSSELLSEAKKLNDSQAPKVD	747
Z06009a	AEAKYAKEVLEAWDEIDRLPNLTLDQWLAFINKLDDDPSQSSELLSEAKKLNDSQAPKVD	748
Z06018a	AEAKYAKEVLDAWDEIDKLPNLTLEQWLAFINKLDDDPSQSSELLSEAKKLNDSQAPKVD	749
Z06079a	AEAKYAKEVLDAWDEIDALPNLTLEQWLAFINKLDDDPSQSSELLSEAKKLNDSQAPKVD	750
Z06126a	AEAKYAKEVIDAWDEIDRIPNLTLDQWLAFINKLDDDPSQSSELLSEAKKLNDSQAPKVD	751

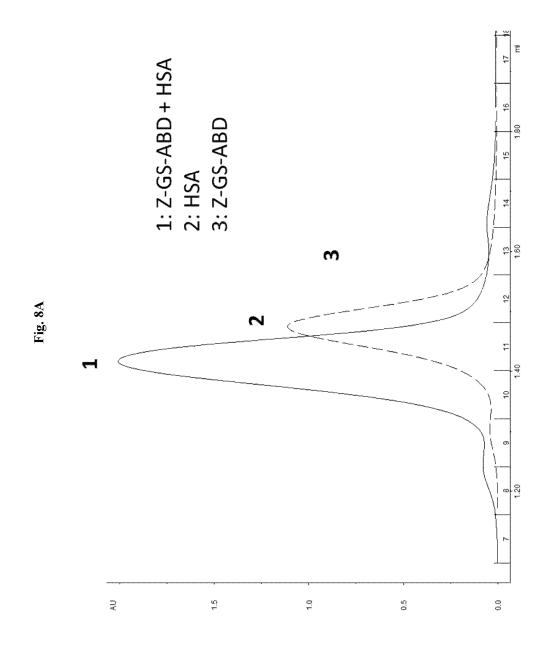

Z06140a	AEAKYAKETLEAWDEIDRLPNLTIEGWLAFINKLDDDPSQSSELLSEAKKLNDSQAPKVD	752
Z06175a	AEAKYAKEVLEAWDEIDRLPNLTIEQWLAFINKLDDDPSQSSELLSEAKKLNDSQAPKVD	753
Z06189a	AEAKYAKEVIDAWNEIDALPNLTLDQWLAFINKLDDDPSQSSELLSEAKKLNDSQAPKVD	754
Z06214a	AEAKYAKEVLDAWDEIDKLPNLTIDQWLAFINKLDDDPSQSSELLSEAKKLNDSQAPKVD	755
Z06215a	AEAKYAKEVLEAWDEIDHLPNLTLDQWLAFINKLDDDPSQSSELLSEAKKLNDSQAPKVD	756
Z06226a	AEAKYAKEVLEAWDEIDALPNLTIEQWLAFINKLDDDPSQSSELLSEAKKLNDSQAPKVD	757
200000	VDNKFNKEQQNAFYEILHLPNLNEEQRNAFIQSLKDDPSQSANLLAEAKKLNDAQAPK	758
ABD094	LAEAKEAANAELDSYGVSDFYKRLIDKAKTVEGVEALKDAILAALP	759
C5 humano	MGLLGILCFLIFLGKTWGQEQTYVISAPKIFRVGASENIVIQVYGYTEAFDATISIKSYPDKKFSYSSGHVHLSSENKFQ NSALLLIOPKQLEGGQNEVSYYLEVVSKHFSKSKRAPITYDNGFLEIHTDKEVYTPDQSYKVRYYSLNDLKPARRETV LTTIOPKQLEGGQNEVSYYLEVVSKHFSKSRAPITYDNGFLEIHTDKEVYTPDQSYKVRYYSLDNDLKPARRETY LTTIOPEGSEVDMYEEIDHIGIISFPDFKIPSNEYGAMTIKARYEDFSTFGTAVFESVYLEHSYSTEEPZYNFIGK KNFKNFEITIKARYFYNKVYTEADYITFGIREDLKDDQKEAMGTAMQTAMQTMLINGIAQYTEDSETAVKELSYSLEDINN KYLIAVTYLESTGGFSEEAEIPGIKVULSPYKLNIVATPLFLKPGIPPPTRYQYNDSLDQLOGVPVTLNAQTIDVNGE TSDLDPSKGYTRVDGGVASFVLALDSGTYVLLSPYKTNYLDATDLFLKPGIPPYSSLLLVYYIVTGEQTAELVSDSVM IANIIVTPKSPYIDKITHYNYLLILSKGKIIHFGTREKFSDASVQSINIPVTQNAVFSSRLLVYYIVTGEQTAELVSDSVM IANIIVTPKSPYIDKITHYNYLLILSKGKIIHFGTREKFSDASVQSINIPVTQNAVFSKRCYTOGACVNNDETCEQRAARISL GPRCIKAFTECCVVASQLRANISHKDMQLGRLHMKTLLLPSKREIRSYFPESNUMWYHLDPRRKQLQFALEYSDSTTTWEIQ GVGISNTGICVADTVKAKVFKDYFLENNIPYSVRGEGILLLVFTRKTLLOFRKFEPPPYTTERTICSSPYIDHQGTKS SKCVRQKVEGSSSBLLVTFTVLPLEIGLHNIPSLETFFGKEILVYTLRVVPEGVKRESYSGWQFVKRESYSGWGTKS SKCVRQKVEGSSSBLLVTFTVLPLEIGLHNIPSLETFFGKEILVYTLRVVPEGVKRESYSGWGTKRESTGNIPNIFRIBDFLI EKQKLKKKILKEGALSIMSYRNADVSSYSVWRGGSASTWILTAFLLRANTFLENTLPRAZISTATNHVIFRBDFLI EKQKLKKKILKEGALSIMSYRNADVSSYSVWRGGSASTWILTAFLARYDDLIVSTOFTHENTLPRAZISTGNY GGGFFSTYOSTLLATGALSTATHYNGTALSMYNDTSTARYANDISICRATTATH GGGFFSTYOSTLATTATOGDIEASHYRGYGNSSYNTYNDTRYMTTRYNDTIVNPYNPVIKMLSEEQRY GGGFFSTYODTINALGGALTSACLISMSTYRGYGNSTATAYATALLTSINLXDITVSTOFTSGTATVH ALVEGVRDILTSACHALSMOTOVSYKHKAALNYKARATLDIYKYTGTENTYNPYIKTGTSACHATTH ALVOHKRETSTEEVCSFYLKIDTQDIEASHYRGYGNSTOFTCSSCQAFLANDISIEPPTUGC EGAACKCVERALCGOMGEELDLITSACHAYGNSPRYTYSTISITYTEYTYRYTHYRYTGTSTATTISYTSTITE IKKVTCTNAELVKRQVLAGROOTTSFRYIYPLTSFRYITSITYRYTGTSTATTISYTDIYKTGTGSTTE IKKVTCTNAELVKRQVILMGKEALQIKKPETAYATVSTISITYTYRYTHYRYTGTSTATTISYTSTITE IKKVTCTNAELVKRQVILMGKEALQIKKPETAYATVSTISITYTYRYTYRYTYRYTYRYTTISYTYRYTYRYTYRYTYRYTYRYTYRYTYRYTYRYTYRYTY	760

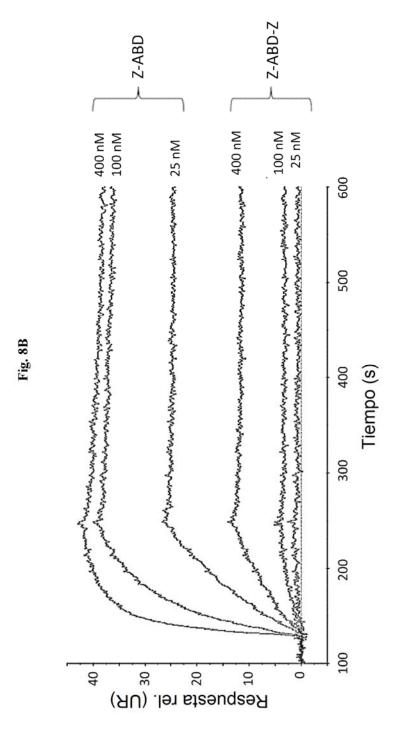

OmCI – His6	MDSESDCTGSEPVDAFQAFSEGKEAYVLVRSTDPKARDCLKGEPAGEKQDNTLPVMMTFKNGTDWASTDWTFTLDGAKVTATLGNLTQNREVVYDSQSHHCH VDKVEKEVPDYEMWMLDAGGLEVEVECCRQKLEELASGRNQMYPHLKDCGGGGSENLYFQGSHHHHHH	761
C5 Cynomolgus	MGLIGILCFLIFIGKTWGGEQTYVISAPKIFRVGASENIVIQVYGYTEAFDATISIKSYPDKXFSYSSGHVHLSSENKFQNSAVLTIQPKQLPGGQNQVSYVYLEVVSKH FSKSKKIPITYDNGFLIHTDKPVYTPDQSVKVRVYSLNDDLKPAKRETYLTFIDPEGSEIDMVEEIDHIGIISFPDFKIPSNPRYGMWTIQAKYKEDFSTTGTAFFEVKEY VLPHFSVSVEPESNFIGYKNFKNFEITIKARIFYNKVYTEADVYITFGIREDLKDDQKEMMQTAMQNTMLINGIAEVTFDSETAVKELSYYSLEDLNNKYLYIAJTVIES TGGFSEEAEIPGIKYVLSPYKLNLVATPLFLKPGIPYSIKVQVKDALDQLYGGVPVTLNAQTIDVNQETSDLEPRKSVTRVDDGVASFVVNLPSGVTVLEFRNKTDAPD LPDENQAREGYRAIAYSSLSQSYLYIDMYTPRKJUGPKYDALDQLYGGVPVTLNAQTIDVNQETSDLEPRKSVTRVDDGVASFVVNLPSGVTVLEFRNKTDAPD LPDENQAREGYRAIAYSSLSQSYLYIDMYTPRKJUNJTPKSPYIDKITHYNYLILSKGKIIHFGTREKLSDASYQSINIPVTQNNVPSSRLLVYYIVTGEQTAEL VSDSVWLINIERCGNQLQVHLSPDAJTYSPGQTYSLNINITTPKSPYIDKITHYNYLILSKGKIIHFGTREKLSDASYQSINIPVTQNNNVPSRRLLLPVSKEIL RSYFDESQUNDEPCKEIIRPRRMLQEKIEEIAAKYKHLVVKKCYDGVRINHVPTLECORAARISVGPRCVKAFTECCVASQLRANNSHKDQLGGLLHMYKTLLPVSSACGGGGGLUNANVFHLAGITFLTNANTHYNTTGRANNSHKDQLGGRLHMATLLPVSTSPYREGIOLUK RSYFDESQUNDEPCKEIIRPRRMLQEALUSGVNPTFTVLPLEIGLQNINFSLETSFGKEILVKSLKVFKDVREGSYGSGTTDPRGIYGTISRRKEFPYRIPLDLVPKTEIRRILSVKGLLVG EQINQNSICNISLILMLVENOVOFVYFFYLTGTGNHWNIFTSDPLIEKRNLEKKLKEGMVSIMSYRNADTSTCANTATAALTAISAYALSLGDVKTHPQ FRSIVSALKREALVKGNPPIYRFWKDSLQHKDSSVPNTGTARMVETTAYALLTSLNLKDINYVNPIIKANTSTSEQRSGGFYSTQDTINAIEGLTFSSLLVKQLRLNDDI FRSIVSALKREALVKGNPPIYRFWVDSLQHKDSSVPRTGTARNVTTVVHKTSTSEEVCSFYKKITGOVEASHYRGYGNSDYKRIVACASYKPSKEGSSS HAVMDISLEDTISAETRKQTACNPEIAYRKVIITSTITENVFVKYKRATLLDIYKTGEAVAEKDSETFIKKYTCTNAELVKGRQYLIMGKEALQIKYNFTFRYIYPLDSIT WIEYWPRDTTCSSCQAFLANLDEFAEDIFLNGC	762
AFFI-21	tgcttccggctcgtatgttgtgtg	763
AFFI-22	dgaaccacacagagccaccacacagga	764
AFFI-72	cggaaccaccaccgg	765
Sec. de vector	МGSSHHHHHHLQ	992
Sec. de biblioteca	AA ATA AAT CTC GAG GTA GAT GCC AAA TAC GCC AAA GAA/GAG NNN NNN GCA/GCC NNN NNN GAG/GAA ATC/ATT NNN NNN TA/CTG CCT AAC TTA ACC/ACT NNN NNN CAA/CAG TGG NNN GCC/GCG TTC ATC/ATT NNN AAA/AAG TTA/CTG NNN GAT/GAC GAC CCA AGC CAG AGC TCA TTA TTT A	767
Z06175a-GS- ABD094	AEAKYAKEVLEAWDEIDRLPNLTIEQWLAFINKLDDDPSQSSELLSEAKKLNDSQAPKVDGSLAEAKEAANAELDSYGVSDFYKRLIDKAKTVEGVEALKDAILAALP	768
Z06175a-Z06175a- GS-ABD094	AEAKYAKEVLEAWDEIDRLPNLTIEQWLAFINKLDDDPSQSSELLSEAKKLNDSQAPKVDAEAKYAKEVLEAWDEIDRLPNLTIEQWLAFINKLDDDPSQSSELLSEA KKLNDSQAPKVDGSLAEAKEAANAELDSYGVSDFYKRLIDKAKTVEGVEALKDAILAALP	769
206175a-GS- ABD094- GSGGGGSGGGS- 206175a	AEAKYAKEVLEAWDEIDRI PNITIEQWIAFINKLDDDPSQSSELLSEAKKLNDSQAPKVDGSLAEAREAANAELDSYGVSDFYKRLIDKAKTVEGVEALKDAILAALP GSGGGGSGGGSAEAKYAKEVLEAWDEIDRLPNITIEQWLAFINKLDDDPSQSSELLSEAKKLNDSQAPKVD	077
206175a-206175a- GSGGGSGGGGS- ABD094	AEAKYAKEVLEAWDEIDRLPNLTIEQWLAFINKLDDDPSQSSELLSEAKKLNDSQAPKVDAEAKYAKEVLEAWDEIDRLPNLTIEQWLAFINKLDDDPSQSSELLSEA KKLNDSQAPKVDGSGGGGSGGGSLAEAKEAANAELDSYGVSDFYKRLIDKAKTVEGVEALKDAILAALP	177
Z06175a-GS	AEAKYAKEVLEAWDEIDRLPNLTIEQWLAFINKLDDDPSQSSELLSEAKKLNDSQAPKVDGS	772
Z06175a- GSGGGGSGGGGS-	AEAKYAKEVLEAWDEIDRLPNLTIEQWLAFINKLDDDPSQSSELLSEAKKLNDSQAPKVDGSGGGGGGGGGGGGGLAEAKEAANAELDSYGVSDFYKRLIDKAKTVEGVE ALKDAILAALP	773
ABD094		

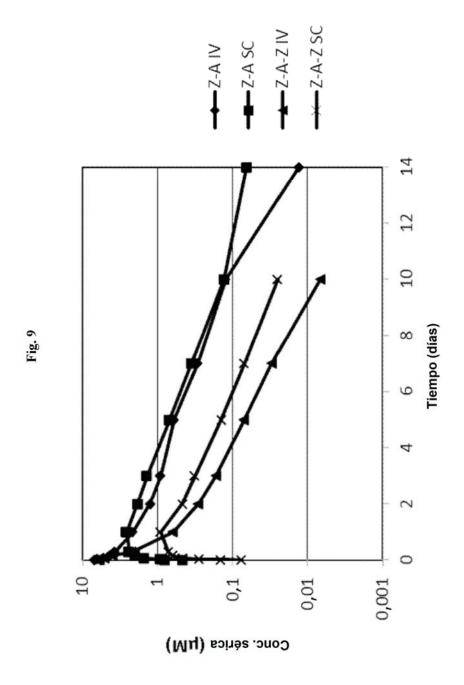


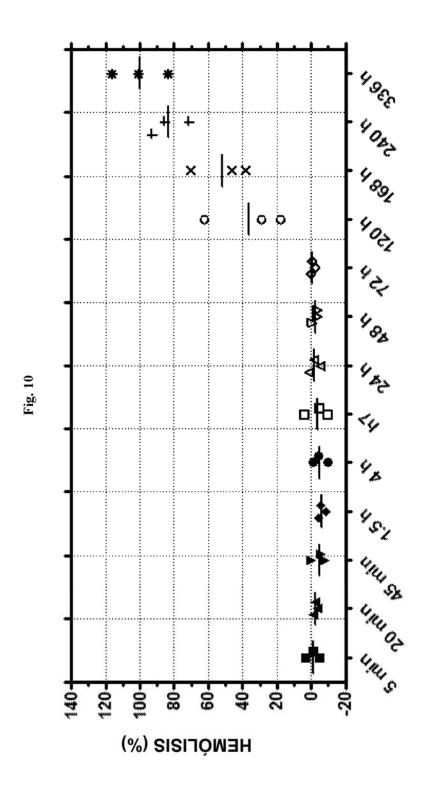


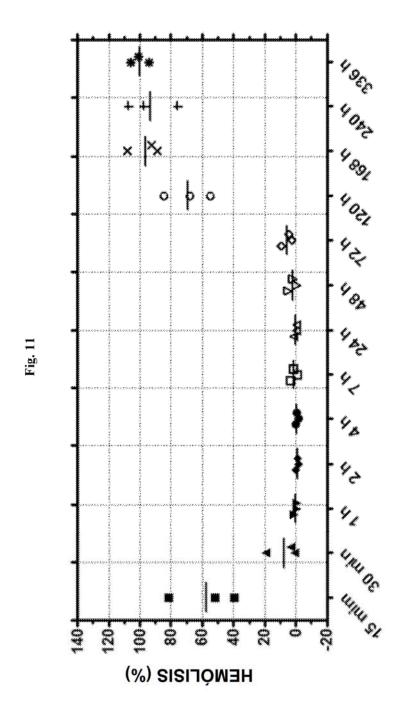


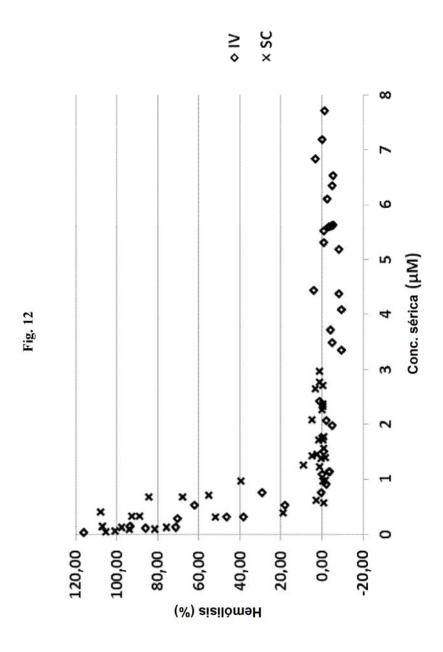


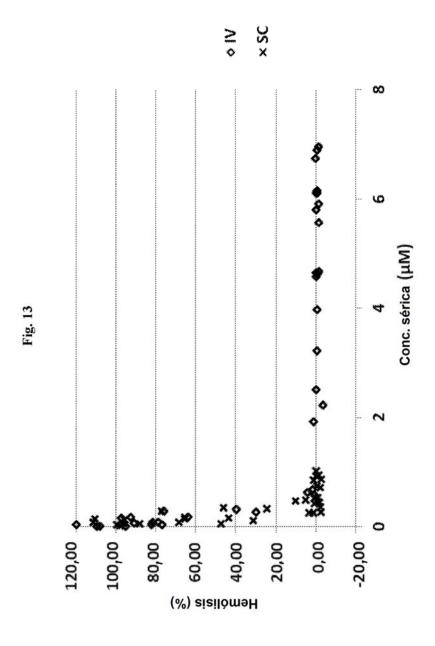


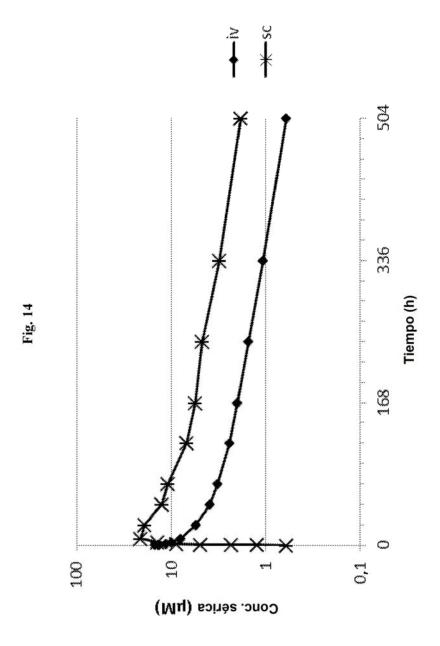


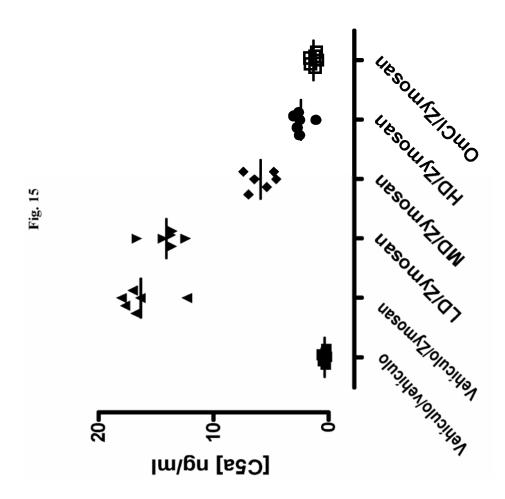


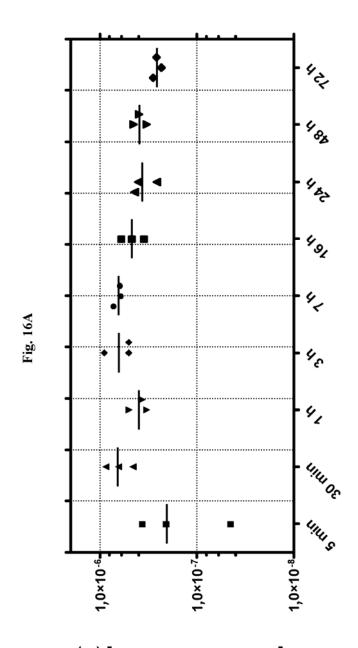


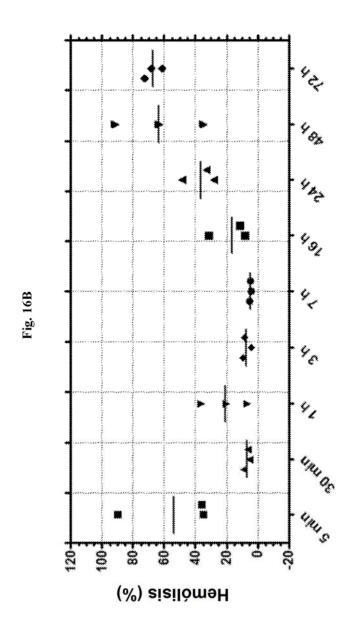












(M) [46008A-SD-6371605]

