

OFICINA ESPAÑOLA DE PATENTES Y MARCAS

ESPAÑA

11) Número de publicación: 2 716 831

(51) Int. CI.:

A61K 39/09 (2006.01)

(12)

TRADUCCIÓN DE PATENTE EUROPEA

T3

(86) Fecha de presentación y número de la solicitud internacional: 06.10.2009 PCT/GB2009/051321

(87) Fecha y número de publicación internacional: 15.04.2010 WO10041056

96) Fecha de presentación y número de la solicitud europea: 06.10.2009 E 09748131 (1)

(97) Fecha y número de publicación de la concesión europea: 05.12.2018 EP 2352519

(54) Título: Composición que comprende proteínas de superficie ancladas por sortasa de Streptococcus

(30) Prioridad:

06.10.2008 GB 0818231

(45) Fecha de publicación y mención en BOPI de la traducción de la patente: 17.06.2019 (73) Titular/es:

THE UNIVERSITY OF NOTTINGHAM (100.0%) University Park Nottingham, Nottinghamshire NG7 2RD, GB

(72) Inventor/es:

LEIGH, JAMES

(74) Agente/Representante:

ARIAS SANZ, Juan

Observaciones:

Véase nota informativa (Remarks, Remarques o Bemerkungen) en el folleto original publicado por la Oficina Europea de Patentes

DESCRIPCIÓN

Composición que comprende proteínas de superficie ancladas por sortasa de Streptococcus uberis

La presente invención se refiere a una composición inmunogénica para su uso en la inducción de una respuesta inmunitaria contra *Streptococcus uberis* y, en particular, a composiciones inmunogénicas capaces de inducir una respuesta inmunitaria protectora.

Streptococcus uberis (S. uberis) actualmente es responsable de aproximadamente un 20-30 % de todos los casos de 10 mastitis en el Reino Unido y tiene una incidencia similar en todo el mundo. La mastitis sigue siendo la enfermedad infecciosa más importante desde el punto de vista económico de las vacas lecheras en todo el mundo. Se ha estimado una pérdida anual debida a la mastitis clínica en el Reino Unido de aproximadamente 170 millones de libras y de entre 1,5-2,0 billones de dólares en los Estados Unidos. Estas pérdidas pueden atribuirse a una reducción en la producción de leche, a los costes asociados de tratamiento y al sacrificio de las vacas persistentes e infectadas repetidamente. 15 Los microorganismos que producen mastitis pueden dividirse en los que muestran una vía de transmisión contagiosa, tales como Staphylococcus aureus y Streptococcus agalactiae y los que infectan además la ubre con frecuencia desde un depósito ambiental, tales como Escherichia coli y Streptococcus uberis. La aplicación de diversas medidas de control durante las dos últimas décadas, basadas en prácticas de ordeño mejoradas, desinfección de la ubre después del ordeño y tratamiento antimicrobiano intramamario de rutina después de cada lactación, ha resultado eficaz contra 20 patógenos con una sola vía de transmisión contagiosa, pero tiene poco o ningún impacto sobre la incidencia de la infección de la glándula mamaria desde depósitos ambientales. El fallo del control de la mastitis bovina causada por S. uberis se atribuye en gran medida a la insuficiente información sobre la patogénesis de la infección.

La mastitis bovina, que produce inflamación de la glándula mamaria (ubre), normalmente se produce como resultado de una infección intramamaria por bacterias. Los signos de mastitis varían de acuerdo con factores en el hospedador y el patógeno invasor y la infección intramamaria puede producir una enfermedad subclínica o clínica. La mastitis subclínica, por definición, no muestra signos obvios de enfermedad. La infección asociada con la enfermedad clínica puede variar desde anomalías visibles en la leche (agregados de proteínas o coágulos) acompañadas de dolor e inflamación en la glándula afectada, hasta la producción de una secreción que está compuesta únicamente de proteína agregada en un fluido seroso. En los casos graves, puede haber signos sistémicos tales como una temperatura elevada y pérdida de apetito, que pueden evolucionar hasta bacteremia o septicemia y ocasionar la muerte del animal.

La leche de una glándula mamaria no infectada contiene leucocitos, incluyendo macrófagos, neutrófilos y linfocitos típicamente por debajo de 150.000 células/ml. La infección normalmente produce una respuesta inflamatoria localizada, caracterizada por la entrada de neutrófilos en el cuadrante infectado de la glándula mamaria y la leche. El recuento resultante de células en la leche se usa internacionalmente como medida sustituta de la infección de la glándula mamaria y como una medida de la calidad de la leche y la salud de la ubre. La leche de cuadrantes infectados subclínicamente normalmente tiene un recuento celular superior a 250.000 células/ml, pero esta cifra puede variar ampliamente. La leche de cuadrantes infectados clínicamente normalmente contiene más de 2.000.000 células/ml. La interacción entre bacterias y/o sus productos y el gran número de neutrófilos en la secreción se ha considerado la causa principal subyacente a la tasa reducida de producción de leche, degradación de la secreción y la inducción de cambios inflamatorios generalizados característicos de la mastitis.

Leigh *et al.* (2004) se refiere a la identificación de factores de virulencia de *Streptococcus uberis* que pueden ser candidatos útiles para la inclusión en una vacuna.

Un objetivo de la presente invención es proporcionar una o más composiciones que pueden usarse para inducir una respuesta inmunitaria protectora contra *Streptococcus uberis* y, por lo tanto, prevenir o reducir la incidencia de mastitis.

De acuerdo con un primer aspecto, la presente invención proporciona una composición inmunogénica que comprende las proteínas ancladas por sortasa de *Streptococcus uberis* SUB1154 que consisten en la secuencia de aminoácidos representada por la SEQ ID NO 7, SUB1095 que consiste en la secuencia de aminoácidos representada por la SEQ ID NO: 8 y SUB0145 que consiste en la secuencia de aminoácidos representada en la SEQ ID NO 2, o una proteína con un 95 % o más de identidad de secuencia con la misma, en donde la composición es capaz de inducir una respuesta inmunitaria, cuando se administra a un sujeto y en donde la composición inmunogénica es capaz de inducir una respuesta inmunitaria dirigida a un antígeno presente en la composición y actúa previniendo o reduciendo la infección por *Streptococcus uberis* en un sujeto al que se ha administrado la composición inmunogénica.

La referencia al porcentaje de homología se refiere al porcentaje de identidad entre dos secuencias alineadas. El porcentaje de identidad se refiere a los restos en dos proteínas que son iguales, cuando las secuencias de las proteínas están alineadas para una correspondencia máxima y cuando se tienen en cuenta inversiones y translocaciones. Preferentemente, el porcentaje de identidad ignora cualquier diferencia conservativa entre las secuencias alineadas que no afectan a la función. El porcentaje de identidad entre las secuencias alineadas puede establecerse usando herramientas bien establecidas (tales como el algoritmo BLAST - Basic Local Alignment Search Tool; Altschul et al., (1990) J Mol Biol. 215:403-10).

Una composición inmunogénica es una composición que es capaz de inducir una respuesta inmunitaria contra un

antígeno presente en la composición cuando la composición se administra a un sujeto. Preferentemente, la respuesta inmunitaria inducida es protectora. Preferentemente, el sujeto es un mamífero, más preferentemente un rumiante, tal como una vaca, oveja o cabra. El antígeno presente en la composición inmunogénica de la invención puede ser una o más proteínas que están ancladas a la superficie de Streptococcus uberis por la enzima sortasa.

5

10

15

La respuesta inmunitaria puede reconocer y destruir Streptococcus uberis. Como alternativa o además, la respuesta inmunitaria inducida puede impedir o prevenir la replicación de Streptococcus uberis. Como alternativa o además, la respuesta inmunitaria inducida puede impedir o prevenir la enfermedad que causa Streptococcus uberis, tal como mastitis, en el sujeto. Preferentemente, la respuesta inmunitaria inducida por la composición también es capaz de dirigirse a cepas de Streptococcus uberis distintas de las cepas de las que derivan las proteínas en la composición.

La respuesta inmunitaria generada puede ser una respuesta inmunitaria celular y/o mediada por anticuerpos. Normalmente, una respuesta inmunitaria incluye, aunque no de forma limitativa, uno o más de los siguientes efectos, la producción de anticuerpos. linfocitos B, linfocitos T auxiliares, linfocitos T supresores y/o linfocitos T citotóxicos. dirigidos a dichas una o más proteínas inmunogénicas en la composición.

20

La composición también puede comprender uno o más antígenos adicionales, además de una o más proteínas ancladas por sortasa de S. uberis o una o más proteínas de S. uberis. Los antígenos adicionales también pueden ser capaces de inducir una respuesta inmunitaria dirigida al organismo patógeno del que derivan. Los antígenos adicionales pueden proceder de S. uberis o pueden proceder de un organismo patógeno diferente.

La composición puede usarse para inducir/producir una respuesta inmunitaria protectora cuando se administra a un sujeto. La respuesta inmunitaria protectora puede hacer que S. uberis se destruya tras la infección de un sujeto, o puede prevenir o inhibir la replicación de S. uberis y/o que produzca una enfermedad en un sujeto.

25

30

La composición puede usarse como una vacuna profiláctica o una vacuna terapéutica contra S. uberis.

También se desvela una composición farmacéutica que comprende una o más proteínas ancladas por sortasa de S. uberis, o una o más proteínas de S. uberis, o parte de las mismas, junto con un vehículo o excipiente farmacéuticamente aceptable.

Preferentemente, la composición farmacéutica comprende una composición de acuerdo con cualquier aspecto de la invención.

35

Preferentemente, la composición farmacéutica es capaz de producir una respuesta inmunitaria protectora contra S. uberis.

La frase "producir una respuesta inmunitaria protectora", como se usa en el presente documento, significa que la composición es capaz de generar una respuesta protectora en un organismo hospedador, tal como una vaca, a la que 40 se administra.

Preferentemente, una respuesta inmunitaria protectora protege contra la infección posterior por S. uberis. La respuesta inmunitaria protectora puede eliminar o reducir el nivel de infección al reducir la replicación de S. uberis afectando al modo de acción de S. uberis. Preferentemente, la respuesta inmunitaria protectora reduce o previene la enfermedad causada por S. uberis.

Los excipientes y vehículos aceptables adecuados para uso en una composición farmacéutica serán bien conocidos por los expertos en la materia. Estos pueden incluir vehículos sólidos o líquidos. Los vehículos líquidos adecuados incluyen aqua y solución salina. Las proteínas de la composición pueden formularse en una emulsión o pueden formularse en liposomas o microesferas biodegradables.

La composición puede comprender además un adyuvante. Los adyuvantes adecuados serán bien conocidos por los expertos en la materia y pueden incluir Adyuvante Incompleto de Freund (para uso en animales) y sales metálicas. tales como sales de aluminio o calcio.

55

45

50

La composición también puede comprender polímeros u otros agentes para controlar la consistencia de la composición y/o controlar la liberación de las proteínas desde la composición.

La composición también puede comprender otros agentes, tales como diluyentes, que pueden incluir agua; solución 60 salina; glicerol u otros alcoholes adecuados, etc.; agentes humectantes o emulsionantes; agentes tamponantes; agentes espesantes, por ejemplo, celulosa o derivados de celulosa; conservantes; detergentes, agentes antimicrobianos; y similares.

Preferentemente, los principios activos en la composición tienen una pureza mayor del 50 %, normalmente una pureza mayor del 80 %, a menudo una pureza mayor del 90 % y, más preferentemente, una pureza mayor de 65 aproximadamente el 95 %, el 98 % o el 99 %. Siendo los que se usan más a menudo los principios activos que se

aproximan a una pureza del $100 \,\%$, por ejemplo, una pureza de aproximadamente el $99,5 \,\%$ o una pureza de aproximadamente el $99,9 \,\%$.

La composición de la presente invención puede usarse como una vacuna contra infecciones causadas por *S. uberis*. La vacuna puede administrarse profilácticamente a animales con riesgo de exposición a *S. uberis* y/o terapéuticamente a animales que ya se han expuesto a *S. uberis*.

Preferentemente, si la composición se usa como una vacuna, la composición comprende una cantidad inmunológicamente eficaz de antígeno (que comprende proteínas de *S. uberis*). Una "cantidad inmunológicamente eficaz" de un antígeno es una cantidad que, cuando se administra a un individuo, ya sea en una sola dosis o en una serie de dosis, es eficaz para el tratamiento o prevención de la infección por *S. uberis*. Esta cantidad variará dependiendo de la salud y estado físico del individuo a tratar y del antígeno. Es de esperar que la cantidad caiga en un intervalo relativamente amplio que puede determinarse por ensayos de rutina.

10

20

25

50

55

60

65

La vía de administración de la composición puede variar dependiendo de la formulación de las proteínas en la composición. La composición puede disponerse para administrarse por vía intramuscular, intradérmica, subcutánea, intraperitoneal, intravenosa o intramamaria. Como alternativa, la composición puede disponerse para administrarse por vía parenteral, tal como mediante administración intranasal, oral, bucal, por inhalación, epidérmica, transcutánea, tópica, vaginal o rectal.

La composición puede disponerse para administrarse como una sola dosis o como parte de un programa de múltiples dosis. Las múltiples dosis pueden administrarse como una inmunización primaria seguida de una o más inmunizaciones de refuerzo. El periodo de tiempo adecuado entre las inmunizaciones de presentación y de refuerzo puede determinarse de una manera de rutina.

Las composiciones de la invención pueden inducir una respuesta de anticuerpo bactericida en suero después de administrarse a un sujeto. Estas respuestas se miden convenientemente en ratones y los resultados son un indicador convencional de la eficacia de la vacuna.

30 Las composiciones de la invención pueden ser también, o como alternativa, capaces de inducir una respuesta inmunitaria que produce proteínas en las células hospedadoras para defender contra la infección por *S. uberis*, sin necesidad de destruir las bacterias.

De acuerdo con aspecto adicional, la presente invención proporciona el uso de proteínas ancladas por sortasa de Streptococcus uberis SUB1154 (que consiste en la secuencia de aminoácidos representada por la SEQ ID NO 7), SUB1095 (que consiste en la secuencia de aminoácidos representada por la SEQ ID NO: 8) y SUB0145 (que consiste en la secuencia de aminoácidos representada por la SEQ ID NO 2), o una proteína con un 95 % o más de identidad de secuencia con la misma en la preparación de un medicamento para inducir una respuesta inmunitaria y prevenir o reducir la infección por Streptococcus uberis en un sujeto al que se le ha administrado el medicamento, en donde el medicamento se usa para la vacunación profiláctica o terapéutica de sujetos contra S. uberis.

Los usos y composiciones de la invención preferentemente son para la prevención y/o tratamiento de una enfermedad causada por *S. uberis*.

El experto en la materia apreciará que cualquiera de las características preferibles analizadas anteriormente pueden aplicarse a cualquiera de los aspectos de la invención.

A continuación se describirán realizaciones preferidas de la presente invención, meramente a modo de ejemplo, con referencia a las siguientes figuras y ejemplos.

En las figuras y ejemplos que se proporcionan más adelante, las referencias a las proteínas ancladas por sortasa de S. *uberis* SUB1154, SUB1095 y SUB0145 forman parte de la invención; la referencia a otras proteínas ancladas por sortasa de S. *uberis* se citan solo por referencia.

Las figuras 1A, B y C - muestran los resultados del aislamiento de bacterias, el recuento de células somáticas y la respuesta clínica después de la exposición a *S. uberis* 0140J de tipo silvestre y un mutante de *S. uberis* Srt en vacas lecheras. La figura 1(A) muestra la recuperación bacteriana de *S. uberis* después de la exposición. Los datos se representan como las medias geométricas del número de bacterias obtenidas a partir de la leche de animales expuestos a la cepa 0140J (cuadrados; n = 4) o el mutante SrtA (triángulos; n = 8). La figura 1 (B) ilustra la respuesta inflamatoria después de la exposición al tipo silvestre y al mutante Srt de *S. uberis*. Los datos se representan por las medias geométricas del número de células somáticas obtenidas a partir de la leche de animales expuestos a la cepa 0140J (cuadrados; n = 4) o el mutante SrtA (triángulos; n = 8). La figura 1 (C) ilustra las puntuaciones clínicas combinadas de manifestaciones clínicas después de la exposición al tipo silvestre y al mutante Srt de *S. uberis*. Los datos se representan por la media de puntuaciones clínicas dadas para el aspecto del cuadrante y el aspecto de la leche, como se indica en la figura 2 con la cepa 0140J (cuadrados; n = 4) o el mutante SrtA (triángulos; n = 8);

Figura 2 - ilustra en forma de tabla la manifestación de una respuesta clínica a la infección por *Streptococcus uberis*. Todos los cuadrantes y muestras de leche se analizaron frente a estos criterios en cada ordeño después de la exposición;

Figura 3 - ilustra en forma de tabla las proteínas encontradas mediante examen bioinformático del genoma de *S. uberis* que probablemente se anclan mediante sortasa; Se sometió a búsqueda el genoma de *S. uberis* usando el motivo LPXXG para las supuestas proteínas ancladas por sortasa. La lista de proteínas identificadas se refinó usando el contexto y la posición del motivo, es decir, LPXXG hacia el extremo C y seguido de una región hidrófoba y restos cargados en una posición C terminal y la presencia de un péptido señal de secreción reconocible en el extremo N;

La figura 4A: presenta un listado de proteínas ancladas por sortasa identificadas en extractos de la pared celular de *S. uberis* 0140J cultivada en medio THB. ^a Gen y comentario de la proteína de acuerdo con la secuencia genómica de *Streptococcus uberis* 0140J (Ward *et al* 2009); ^b Valores de masa molecular teórica de precursores de proteína obtenidos a partir de la base de datos de Artemis del Wellcome Trust Sanger Institute (http://www.sanger.ac.uk/); ^c Número de aciertos de péptido único para cada proteína; ^d Porcentaje de secuencia de proteína cubierta por péptidos detectados experimentalmente; ^e 2 péptidos identificados en la fracción de pared celular del mutante SrtA. La figura 4B: presenta un listado de proteínas ancladas por sortasa identificadas en extractos de la pared celular de *S. uberis* 0140J cultivada en medio BHI. ^a Gen y comentario de la proteína de acuerdo con la secuencia genómica de *Streptococcus uberis* 0140J (Ward *et al* 2009); ^b Valores de masa molecular teórica de precursores de proteína obtenidos a partir de la base de datos de Artemis del Wellcome Trust Sanger Institute (http://www.sanger.ac.uk/); ^c Número de aciertos de péptido único para cada proteína; ^d Porcentaje de secuencia de proteína cubierta por péptidos detectados experimentalmente; ^e 4 péptidos identificados en la fracción de pared celular del mutante SrtA;

Las figuras 5A y 5B - muestran la identificación de Sub1154 y Sub 1370 de extractos de *Streptococcus uberis* 0140J y el mutante srtA. Figura 5A - se usó antisuero de conejo contra Sub1154 para sondar manchas de inmunotransferencia de extractos de proteínas con detergente de 0140J (calle 2) y el mutante SrtA (calle 3), y de medios concentrados y precipitados de 0140J (calle 4), mutante SrtA (calle 5) y mutante Sub1154 (calle 6). Los patrones del peso molecular se muestran en la calle 1. Figura 5B - se usó antisuero de conejo contra Sub1370 para sondar manchas de inmunotransferencia de extractos de proteínas con detergente de 0140J (calle 1) y el mutante SrtA (calle 2), y de medios concentrados y precipitados de 0140J (calle 3), mutante SrtA (calle 4) y mutante Sub1370 (calle 5). Los patrones del peso molecular se muestran en la calle 6;

Las figuras 6A a 6O - son las secuencias de aminoácidos de proteínas ancladas por sortasa de S. uberis;

La figura 6A es la secuencia de SUB1370 (Seq ID No: 1) una cinc carboxipeptidasa;

La figura 6B es la secuencia de SUB0145 (Seq ID No. 2) una proteína de unión a lactoferrina;

La figura 6C es la secuencia de SUB0135 (Seq ID No: 3) un precursor de frucano beta fructosidasa;

La figura 6D es la secuencia de SUB1730 (Seq ID No: 4);

5

25

30

50

55

60

65

La figura 6E es la secuencia de SUB0888 (Seq ID No: 5);

La figura 6F es la secuencia de SUB0207 (Seq ID No: 6);

La figura 6G es la secuencia de SUB1154 (Seq ID No: 7) una serina proteasa de tipo subtilina;

La figura 6H es la secuencia de SUB1095 (Seq ID No: 8) una proteína de tipo colágeno:

40 La figura 6I es la secuencia de SUB0826 (Seq ID No: 9) una supuesta subtilasa anclada a la superficie;

La **figura 6J** es la secuencia de SUB0164 (Seq ID No: 10) una supuesta proteína de unión a fibronectina anclada a la superficie y truncada (pero se codifica por un probable pseudogén);

La **figura 6K** es la secuencia de SUB0348 (Seq ID No: 11) un vestigio de una supuesta proteína de tipo colágeno (pero se codifica por un pseudogén);

La **figura 6L** es la secuencia de SUB1739 (Seq ID No: 12) una supuesta proteína anclada a la superficie (pero se codifica por un pseudogén);

La figura 6M es la secuencia de SUB0206 (Seq ID No: 13) una supuesta proteína exportada de función desconocida:

La **figura 6N** es la secuencia de SUB0241 (Seq ID No: 14) una supuesta proteína anclada a la superficie de función desconocida;

La **figura 60** es la secuencia de SUB0337 (Seq ID No: 15) una supuesta proteína de unión a glutamina localizada en la superficie;

La **figura 7** muestra la colonización bacteriana después de la exposición con el tipo silvestre (0140J) y cepas mutantes atenuadas que carecen de sub0145, sub1095 o sub1154. Los datos se expresan como medias geométricas de Log₁₀ ufc/ml detectadas en muestras de leche obtenidas en cada ordeño después de la exposición experimental.

Los datos presentados más adelante demuestran que proteínas ancladas a la superficie de *S. uberis* mediante sortasa, una transamidasa, son importantes en virulencia y además describen que algunas de estas proteínas (por ejemplo, sub1095, sub1154 y sub0145) son esenciales para la virulencia y, por lo tanto, es necesario que sean funcionales para que esta bacteria produzca la enfermedad. Las proteínas son buenos inmunógenos. Es probable que las respuestas inmunitarias contra estas proteínas en forma de anticuerpos anulen su función, por lo tanto, la proteína identificada podría ser útil como inclusiones dentro de composiciones inmunogénicas destinadas a reducir o prevenir la infección o enfermedades causadas por *S. uberis*.

Ejemplo 1: Producción y evaluación de un mutante SrtA de S. uberis.

Métodos y Materiales

5

20

25

30

35

Cepas Bacterianas y Reactivos.

A lo largo de todo el estudio se usó la cepa 0140J de *Streptococcus uberis*, aislada originalmente de un caso clínico de mastitis bovina en el Reino Unido. La bacteria se cultivó del modo de rutina en caldo Todd Hewitt o en caldo de infusión cerebro corazón.

Se produjo leche desnatada a partir de leche bovina de partida recogida asépticamente a partir de varias vacas lecheras del rebaño de vacas lecheras en el Instituto de Salud Animal. Se recogió leche de animales que estaban libres de infección intramamaria. Después de la centrifugación (3.000 x g, 10 min); se separó cuidadosamente la leche desnatada de la capa de grasa superior y del precipitado de células sedimentadas. La esterilidad de la leche desnatada se determinó mediante el cultivo en placas de 500 µl de leche directamente sobre agar sangre que contenía esculina (1,0 %, p/v; ABA) y mediante un cultivo de enriquecimiento de 5 ml de leche en un volumen igual de caldo Todd Hewitt seguido por aislamiento de colonias individuales en ABA. En ambos casos, las placas se incubaron a 37 °C durante 18 h. La leche desnatada se almacenó a 4 °C y se usó antes de que hubieran transcurrido 72 h.

Otras cepas bacterianas y reactivos se usaron como se describe en el texto.

Aislamiento del mutante srtA por selección genotípica.

El mutante srtA (Sub0881) se aisló después de la exploración por PCR de un banco de mutantes de *S. uberis* 0140J pGhost9::ISS1 siguiendo un protocolo similar al descrito previamente (Taylor, D. L. et al, 2003. J Bacteriol 185:5210-5219; Ward, P. N. et al 2001 Infect Immun 69:392-399). En resumen, se reunieron cultivos de una noche de placas de 96 pocillos individuales y se preparó ADN genómico para usarse como molde en reacciones de amplificación por PCR que contenían un cebador específico de locus, P261 (srtA) y un cebador específico de ISS1, P247 o P250. La amplificación se realizó usando treinta y cinco ciclos (95 °C durante 20 s, 54 °C durante 1 min y 72 °C durante 3 min) y se realizó con la mezcla maestra AmpliTaq Gold (ABI). Los productos se visualizaron después de electroforesis en gel, tinción con bromuro de etidio y transiluminación con luz UV. Después de la identificación de la placa, se identificó de manera similar un sitio del pocillo usando ADN genómico reunido de las columnas y filas de la placa diana. Después del aislamiento del clon mutante, se promovió la escisión del vector plasmídico mediante cultivo a la temperatura permisiva (28 °C) sin selección con antibiótico. La pérdida del vector pGhost9 y la retención de ISS1 se confirmaron por transferencia de Southern como se ha descrito previamente (Ward, P. N. et al 2001 Infect Immun 69:392-399). La presencia de la inserción en srtA se confirmó por amplificación por PCR del marco de lectura abierto y secuenciación del producto resultante a través de la unión entre ISS1 y el ORF alterado. Los cebadores de PCR usados se muestran en la Tabla 1 mostrada a continuación:

Designación	Secuencia (5'-3')	Aplicación	Molde	Temp. de hibridación (°C)
P247 IS <i>S1</i> dir	GCTCTTCGGATTTTCGGTATC	sonda de ISS1	pGh9::ISS1	58
P250 IS <i>S1</i> inv	CATTTTCCACGAATAGAAGGACTGTC	sonda de ISS1	pGh9::ISS1	61
P261	TGGTTGAAGCAGAAGCTGAA	Exploración de ISS1 dentro de ORF de srtA vs P247	pGh9::ISS1	55
P409	GAGCAATTGCAAAATGAAAAGC	Amplificación de ORF de Sub1154	ADN genómico de S. uberis 0140J	58
P410	ATGTCAAAAGCCCGGTACCTTTACAG	Amplificación de ORF de Sub1154	ADN genómico de S. uberis 0140J	58
P615	GAAATGATGATGAGA	Exploración de ISS1 dentro de ORF de Sub1154 vs P247	conjuntos de ADN genómico de S. uberis 0140J::pGhost9- ISS1	57

P630	AGCCACAAACACCATTCACA	Exploración de ISS1 dentro de ORF de Sub1154 vs P247	conjuntos de ADN genómico de <i>S.</i> uberis 0140J::pGhost9- ISS1	59
P480	GAAGAAGTGGTAACTGCTACAAAC	Amplificación de ORF de Sub1370	ADN genómico de S. uberis 0140J	60
P481	TACTAACTTCTTGTCATCTTGGTACCTTTT	Amplificación de ORF de Sub1370 Exploración de ISS1 dentro de ORF de Sub1370	ADN genómico de S. uberis 0140J	64
P621	CAACGAATCAACAAACTGAAAGC-3'	Exploración de ISS1 dentro de Sub1370 vs P250	conjuntos de ADN genómico de S. uberis 0140J::pGhost9- ISS1	59

Tabla 1: Cebadores de PCR. P247 ISS1 dir (SEQ ID NO: 16); P250 ISS1 inv (SEQ ID NO: 17); P261 (SEQ ID NO: 18); P409 (SEQ ID NO: 19); P410 (SEQ ID NO: 20); P615 (SEQ ID NO: 21); P630 (SEQ ID NO: 22); P480 (SEQ ID NO: 23); P481 (SEQ ID NO: 24); P621 (SEQ ID NO: 25).

Extracción de ADN cromosómico de S. uberis

5

10

15

20

25

30

40

Se preparó ADN genómico usando una variación del método de Hill y Leigh como se ha descrito previamente (Hill, A. W. et al 1994 FEMS Immunol Med Microbiol 8:109-117). En resumen, se centrifugaron 1,5 ml de un cultivo de una noche a 10.000 x g durante 2 minutos y el sedimento celular se lavó con 500 µl de Tris-Cl 10 mM, EDTA 5 mM, pH 7,8. Las paredes de las células bacterianas se rompieron por resuspensión en 375 µl de Tris-Cl 10 mM, EDTA 5 mM pH 7,8 que contenía 30 unidades/ml de mutanolisina y 10 mg/ml de lisozima (ambas de Sigma-Aldrich, St Louis, MO, Estados Unidos) y posterior incubación a 37 °C durante 30 minutos. La lisis celular total se consiguió mediante la adición de 20 µl de solución de SDS (20 % p/v en Tris-Cl 50 mM, EDTA 20 mM, pH 7,8) y Proteinasa K (Sigma) a una concentración final de 150 µg/ml y una incubación adicional a 37 °C durante 1 h. El material de la pared celular se retiró por precipitación después de la adición de 200 µl de NaCl saturado y la posterior centrifugación a 12.000 x g durante 10 minutos. El sobrenadante se extrajo con fenol cloroformo y el ADN se precipitó mediante la adición de 2 volúmenes de etanol absoluto. Los sedimentos de ADN se lavaron con etanol acuoso al 70 % y se secaron al aire antes de la resuspensión en tampón TE que contenía 20 µg/ml de ARNasa-A (Sigma).

Exposición de vacas lecheras en lactación a S. uberis 0140J y al mutante SrtA

El papel de SrtA en la patogénesis de la infección se determinó por comparación de la virulencia de la cepa 0140J y el mutante que carecía de SrtA (mutante srtA) en un modelo de infección intramamaria en vacas lecheras. Se cultivaron bacterias durante 18 h a 37 °C en caldo Todd Hewitt. Las células se recuperaron por centrifugación (10.000 x g, 10 min), se suspendieron en solución salina sin pirógenos (Sigma) y se diluyeron en la misma para proporcionar la densidad celular requerida. Se mantuvieron en hielo suspensiones de cada cepa antes de usarse para la exposición de los animales. Tanto antes como después de la exposición se contó el número de bacterias viables en alícuotas idénticas de cada suspensión.

Para la exposición, se seleccionaron seis vacas lecheras, en las 2-10 semanas de su primera lactación, del rebaño de vacas lecheras del instituto. Los criterios de selección fueron: ausencia de signos de mastitis, ausencia de bacterias en muestras de leche antes de la exposición, sin historia de mastitis durante la presente lactación y sin indicios de infección intramamaria en muestras de leche tomadas 7 y 14 días después del parto. Los animales se expusieron en cuadrantes mamarios por infusión de 1 ml de solución salina sin pirógenos (Sigma) que contenía *S. uberis*. Dos animales se expusieron en un total de cuatro cuadrantes con 6,0 x10² ufc de cepa 0140J y cuatro animales más se expusieron en un total de ocho cuadrantes con una dosis similar del mutante srtA. Después de la exposición, se ordeñó a los animales y se inspeccionaron dos veces al día (07:00 h y 15:30 h) y aquellos en los que se alcanzaron criterios predeterminados para puntos de valoración clínicos (leche coagulada y decolorada y/o cuadrante de ubre inflamado o con molestias cuando se palpa) se trataron con antibióticos de marca comercial en consonancia con los criterios prescritos indicados en la figura 2. Se tomaron muestras de leche y se analizaron con respecto a las bacterias y células somáticas, como se describe más adelante.

Análisis de muestras de leche

El número de bacterias viables presentes se estimó mediante cultivo directo en placas de 1 ml y 100 µl de cada muestra de leche en ABA. Las muestras también se diluyeron en solución salina y se cultivaron en placas directamente 50 µl de cada dilución en ABA. En cada caso, se determinó la presencia y/o número de *S. uberis* y el genotipo de los aislados recuperados se determinó mediante comparación de polimorfismos de longitud de fragmentos de restricción (RFLP) de ADN cromosómico y amplificación del locus de srtA, como se describe más adelante. El número de células somáticas presentes en las muestras de leche se determinó usando un contador coulter (Beckman Coulter, Ltd).

Preparación de proteínas a partir de medio de crecimiento bacteriano por precipitación con metanolcloroformo

Se dejaron crecer bacterias en BHI (200 ml) con cultivos desarrollados hasta una DO600nm de aproximadamente 0,5 y se recogieron por centrifugación (16.000 x g, 20 min, 4 °C) y el medio de crecimiento bacteriano se esterilizó por filtración a través de un filtro de 0,22 µM (Millipore). Después de la adición de inhibidor de proteasa completo (Roche) a una concentración 1X, el medio de crecimiento bacteriano se concentró aproximadamente 100 veces usando dispositivos de filtración centrífuga Amicon (Millipore) con una exclusión de peso molecular de 10 kDa. Para precipitar las proteínas, se añadieron 600 µl de metanol y 150 µl de cloroformo (ambos de BDH) a 200 µl de medio de crecimiento bacteriano concentrado. La preparación se agitó con vórtice y se añadieron 450 µl de agua MilliQ antes de la centrifugación (16.000 x g, 1 min). La fase superior se retiró cuidadosamente y se desechó y se añadieron 450 µl de metanol al material restante que agitó con vórtice y se centrifugó (16.000 x g, 2 min). El sobrenadante se desechó y el sedimento restante se secó al aire antes de la resuspensión en tampón de carga de SDS.

Extracción de proteínas no ancladas con detergente

10

15

20

30

Los sedimentos bacterianos de los cultivos anteriores se lavaron 3 veces en 40 ml de PBS y se resuspendieron en 500 µl de PBS que contenía hialuronidasa (100 U/ml, Sigma-Aldrich). Las células se incubaron durante 2 horas a 37 °C y el material capsular hidrolizado se retiró por centrifugación (8000 x g, 6 min, 4 °C). Las células se lavaron 3 veces en 40 ml de PBS y se resuspendieron en 200 µl de Nonldet P-40 (NP-40) al 0,1 % (v/v) en PBS. El extracto de detergente se recogió después de retirar las células bacterianas por centrifugación (16.000 x g, 10 min, 4 °C).

Producción y purificación de proteínas Sub1154 y Sub 1370 recombinantes

Se diseñaron cebadores p409 y p410 (véase la tabla anterior) para amplificar a partir del ADN genómico de S. uberis 0140J la secuencia codificante madura predicha (es decir, que carece de la secuencia señal N-terminal) de Sub1154, 35 un supuesto sustrato de srtA con homología con la serina proteasa de tipo subtilasa. Se generó un amplicón de 3,4 kb usando polimerasa de alta fidelidad Phusion™ (New England Biolabs), se purificó usando un kit de purificación por PCR MinElute (Qiagen) y se trató con Kpnl (New England Biolabs) para facilitar la clonación direccional. El plásmido pQE1 (Qiagen) se preparó usando Pvull, Kpnl y fosfatasa Antarctic (todas de New England Biolabs) y la construcción se ligó (ADN Ligasa de T4, New England Biolabs) durante una noche a 20 °C de acuerdo con las instrucciones de los 40 fabricantes. Se desalificaron veinte microlitros de la mezcla de ligamiento usando el método de Atrazhev y Elliott (Atrazhev, A. M., y J. F. Elliott. 1996 Biotechniques 21:1024). Se utilizaron aproximadamente 10 ng de la mezcla de ligamiento desalificada para transformar Escherichia coli M15 pREP4 (Qiagen) y se seleccionaron clones recombinantes en placas de agar LB Kan 25 µg/ml Amp 50 µg/ml. Se purificó proteína Sub1154 (etiqueta 6 x His) recombinante comenzando en el resto Asp34 por dilución (1/30) de cultivo de una noche en 1600 ml de caldo LB que 45 contenía 50 µg/ml de ampicilina y 25 µg/ml de kanamicina y se cultivó a 20 °C sin agitación durante 2 h. Se preparó Sub1370 recombinante de forma similar, pero usando los cebadores P480 y P481, y se cultivó de manera similar en 800 ml de medio de cultivo. Se indujo la expresión de proteínas añadiendo IPTG a una concentración final de 0,2 mM. Los cultivos se incubaron durante 2-4 h más y después se centrifugaron a 8.000 x g durante 20 min para recoger las células bacterianas. Se purificaron aproximadamente 0,3 mg y 1 mg de proteínas solubles Sub1370 y Sub1154 con 50 etiqueta 6 x His, respectivamente, en presencia de inhibidores de proteasa (Complete-EDTA free; Roche) usando cartuchos de alto flujo CelLytic y HisSelect (ambos de Sigma) de acuerdo con las instrucciones de los fabricantes.

Producción de antisuero de Sub1154 y Sub1370 en ratones e inmunotransferencia

55 Se suministraron cinco alícuotas de aproximadamente 50 μg de proteínas Sub1154 y Sub1370 recombinantes purificadas liofilizadas a Davids Biotechnologie (Alemania) para la producción de sueño en conejos. Se suministró antisuero (50 ml) esterilizado por filtración y que contenía un 0,02 % de azida sódica como conservante.

Se separaron extractos de medio y detergente de cultivos de *S. uberis* de tipo silvestre y un mutante SrtA en geles de dodecilsulfato sólido y poliacrilamida al 10 % (SDS-PAGE) y después se transfirieron a membranas de nitrocelulosa (Amersham) para la inmunodetección o, como alternativa, se tiñeron con Coomassie usando InstantBlue (Novexin). La transferencia se realizó a 170 mA durante 1 h en un aparato Transblot (Biorad) en tampón de transferencia que consistía en base Tris 25 mM, glicina 192 mM y metanol al 20 % (v/v), pH 8,1-8,4. Después de la transferencia, las membranas se incubaron en una solución de bloqueo de leche desnatada en polvo al 1 % en PBS a 4 °C durante una noche. Las membranas se lavaron tres veces durante 5 min en PBS que contenía Tween 20 al 0,1 % (PBST) y después se incubaron con antisuero de conejo a una dilución 1/12.000 para el antisuero de Sub1154 y una dilución de 1/16.000

para el antisuero de Sub1370 en solución de bloqueo durante 1 hora. Las membranas se lavaron tres veces durante 5 min en PBST y después se incubaron con inmunoglobulina G de cabra anti-conejo conjugada con HRP a una dilución de 1/1.000 (Southern Biotech) durante 1 hora. Las membranas se lavaron de nuevo como se ha indicado anteriormente y se detectó el conjugado con HRP usando una solución de 4-cloronaftol (0,5 mg/ml) en PBS que contenía un 16,7 % de metanol y un 0,00015 % (v/v) de H_2O_2 , se incubó durante 1 hora en la oscuridad, antes de lavar las membranas en PBS y de dejarlas secar.

Aislamiento y caracterización genética de mutante srtA

15

40

50

55

60

El análisis del genoma completo de *S. uberis* 0140J confirmó la presencia de un solo homólogo de sortasa, sortasa A (srtA) (Ward, P.N. et al (presentado en 2008) BMC Genomics). Se aisló un clon mutante con el elemento IS*S1* insertado entre los pares de bases 248 y 249 de, y en orientación inversa a, la secuencia codificante de sortasa. El producto de traducción de este gen de srtA mutado consistía en los primeros 82 restos de los 252 aminoácidos codificados en el ORF de srtA junto con 18 restos más en el elemento IS*S1* antes de alcanzar un codón de terminación.

Infectividad y virulencia de *S. uberis* de tipo silvestre y mutante srtA después de la exposición experimental en la glándula mamaria bovina.

La infectividad y virulencia del mutante srtA, en comparación con la cepa de tipo silvestre, se determinó por exposición de la glándula mamaria bovina de varias vacas lecheras. Todos los cuadrantes expuestos de animales que recibieron 600 ufc de *S. uberis* de tipo silvestre se infectaron y propagaron las bacterias a aproximadamente 10⁶ a 10⁷ ufc/ml a las 48 - 60 h después de la exposición (figura 1A). Después de la exposición de ocho cuadrantes en cuatro animales con una dosis similar del mutante srtA, todos mostraron evidencia de infección y el mutante srtA se detectó en leche a niveles similares a los del tipo silvestre durante hasta 24 h después de la exposición. Sin embargo, posteriormente la colonización bacteriana se redujo, desde un máximo de 10⁴ ufc/ml de leche a las 24 h después de la exposición, de tal manera que al final del experimento (7 días después de la exposición) el número medio de bacterias presentes era de aproximadamente 10 ufc/ml (figura 1B). En este momento solo dos de los ocho cuadrantes continuaban propagando bacterias, habiendo eliminado el resto la infección (< 1 ufc/ml de leche).

La infiltración celular en la glándula mamaria en respuesta a la infección fue idéntica en los dos grupos de animales y no fue dependiente de la cepa de exposición. En cada caso, fue similar a la notificada previamente en este modelo y alcanzó un máximo de aproximadamente 10⁷ células/ml de leche a las 48-60 h después de la exposición. En animales expuestos con la cepa de tipo silvestre, esto coincidió con la aparición de signos clínicos agudos de mastitis (figura 2 y figura 1C) que requirieron la administración de terapia con antibióticos para eliminar la infección y aliviar los signos de la enfermedad. En un marcado contraste, los animales que recibieron el mutante srtA mostraron pocos o ningún signo de mastitis (figura 2 y figura 1C).

Los resultados presentados en la figura 1 demuestran que *S. uberis* requiere la proteína sortasa, codificada por srtA, para la expresión completa de virulencia por esta bacteria. Aunque inicialmente era capaz de colonizar la glándula mamaria bovina de manera similar a *S. uberis* de tipo silvestre, el mutante que carece de SrtA no podía colonizar la glándula a altos niveles; siendo los números máximos de bacterias aproximadamente 1000 veces menores que los detectados en leche de animales expuestos con la cepa de tipo silvestre. Esto corresponde a la incapacidad del mutante srtA de inducir signos clínicos progresivos de enfermedad.

45 Se entiende que srtA ancla una o más proteínas a la superficie de la bacteria que son responsables de la virulencia, es decir, del alto nivel de colonización y/o inducción de reacciones inflamatorias severas asociadas con la enfermedad clínica.

Detección de proteínas ancladas a sortasa en S. uberis

Para identificar proteínas ancladas a la pared celular de *S. uberis* por sortasa, se compararon las proteínas de la pared celular de *S. uberis* de tipo silvestre con las de un mutante SrtA de *S. uberis*.

La metodología usada para aislar péptidos trípticos de proteínas de la pared celular ancladas es la siguiente. Se dejaron crecer cultivos bacterianos en THB o BHI tanto hasta la fase exponencial como hasta la fase estacionaria de crecimiento. Los cultivos exponenciales se dejaron crecer en 1,5 litros de caldo hasta una densidad óptica de 0,6 a DO550nm, mientras que los cultivos de fase estacionaria se dejaron crecer en 1 litro de caldo durante una noche. Se recogieron sedimentos de células bacterianas por centrifugación (16.000 x g, 10 min, 4 °C) y se lavaron consecutivamente con PBS, Nonidet P40 (NP40) al 0,1 % (v/v) en PBS y PBS y se recogieron por centrifugación como se ha indicado anteriormente. Los sedimentos celulares se resuspendieron en PBS que contenía inhibidores de proteasa IX Complete (Roche) y se rompieron mediante batido con microesferas en tubos de microcentrífuga tapados a rosca que contenían microesferas de 0,1 mm de circonio/sílice a 5 intervalos de 1 min a máxima velocidad, con periodos de reposo entre medias en hielo. Las células no rotas y las microesferas se retiraron por centrifugación dos veces (8.000 x g, 10 min, 4 °C) y los sobrenadantes después se sometieron a centrifugación de alta velocidad (125.000 x g, 30 min). Los sedimentos resultantes se resuspendieron en SDS/PBS al 4 % y se calentaron a 80 °C durante 4 horas y después se centrifugaron (200.000 x g 30 min). Los sedimentos resultantes se lavaron 4 veces con agua MilliQ

- a 30 $^{\circ}$ C y se centrifugaron como anteriormente. Después, los sedimentos se resuspendieron en bicarbonato amónico 50 mM que contenía 1 µg de tripsina de calidad de proteómica (Sigma) y se incubaron con agitación durante una noche a 37 $^{\circ}$ C. Se recogieron péptidos del sobrenadante después de la centrifugación (16.000 x g, 10 min) y la digestión se detuvo mediante la adición de ácido fórmico a una concentración final del 0,1 %.
- Los péptidos se separaron y se analizaron por nanoLC-MS/MS usando un sistema de cromatografía líquida de fase inversa. La interpretación y presentación de los datos de MS/MS se realizó de acuerdo con guías publicadas, realizándose las búsquedas usando el software Mascot (Matrixscience, Londres, Reino Unido) usando una base de datos genómicos generada para S. uberis 0140J.
- 10 Las secuencias de los péptidos trípticos se alinearon con la secuencia genómica traducida de *Streptococcus uberis* para identificar las proteínas presentes.
- Se observó que las nueve proteínas presentadas en las figuras 4 y B estaban presentes en las paredes celulares preparadas a partir de *S. uberis* 0140J, pero estaban ausentes de preparaciones equivalentes fabricadas a partir de cultivos del mutante deficiente en srtA isogénico de *S. uberis*, lo que demuestra que las proteínas son proteínas ancladas por sortasa.

La secuencia de las nueve proteínas ancladas por sortasa se proporcionan en las figuras 6A a 6I. Las figuras 6J a 6O son las secuencias de las supuestas proteínas ancladas por sortasa identificadas por proteómica.

Detección de proteína Sub1154 y Sub1370 en extractos de proteína de *S. uberis* de tipo silvestre y mutante Srt A

- Se generaron Sub1154 recombinante y Sub1370 recombinante, dos ejemplos de proteínas ancladas por sortasa de S. uberis, ambas a partir de ADN genómico amplificado de S. uberis y el producto se clonó en E. coli usando el vector pQE1, que incorporó una etiqueta de 6 x His en el extremo N de cada proteína. La proteína recombinante se purificó utilizando la etiqueta de 6 x His y se usó para la producción de antisuero.
- Después se usaron anti-Sub1154 y anti-Sub1370 de conejo para detectar las proteínas Sub1154 y Sub1370 por inmunotransferencia de extractos de medio y detergente de *S. uberis* 0140J y el mutante srtA. También se sondaron con el antisuero extractos de medio de mutantes de Sub1154 y Sub1370 cultivados en BHI. La detección de Sub1154 se confirmó en el extracto de detergente de srtA y también en el extracto del medio del mutante de Sub1154. En este último caso se detectó la forma truncada predicha de la proteína (figura 5A). La proteína correspondiente a Sub1370 se detectó solo en el medio de crecimiento obtenido del mutante srtA (figura 5B). La presencia de las proteínas Sub1154 y Sub1370 únicamente en extractos del mutante srtA indica que, en la cepa de tipo silvestre, las proteínas se anclan a la pared celular de *S. uberis* por la sortasa.

Ejemplo 2: investigación del requisito de proteínas ancladas por sortasa específicas para la virulencia de *S. uberis*

Continuando con la identificación de proteínas ancladas por sortasa, cada uno de los genes que las codificaban se introdujo dentro de la cepa de tipo silvestre por mutación. Los mutantes, de los que cada uno carecía de una proteína anclada por sortasa individual, se usaron en un modelo de exposición en vacas lecheras para evaluar la virulencia. Las proteínas ausentes de los animales que mostraban virulencia reducida o no mostraban virulencia están implicadas en la patogénesis/patología de la enfermedad. La inducción de una respuesta inmunitaria neutralizadora (anticuerpos) contra cualquiera de, y preferentemente todas, estas proteínas, disminuiría la enfermedad después de la infección con cepas de tipo silvestre. Por lo tanto, serían útiles en la prevención de la mastitis en vacas vacunas que contuvieran cualquiera o todas las proteínas identificadas como implicadas en la virulencia.

50 Metodología

20

40

45

Producción y aislamiento de cepas mutantes de S. uberis que carecen de proteínas ancladas por SrtA (Sub 0135, Sub 0145, Sub0207, Sub0241, Sub 0826, Sub0888, Sub1095, Sub1154, Sub1370, Sub1730)

Se pusieron mutantes de inserción inactivados dentro de un banco de mutantes de inserción aleatorios por exploración por PCR de un banco de mutantes de *S. uberis* 0140J pGhost9::ISS1 siguiendo un protocolo similar al descrito previamente (Taylor, D. L. et al, 2003. J Bacteriol 185:5210-5219; Ward, P. N. et al 2001 Infect Immun 69:392-399). En resumen, se reunieron cultivos de una noche de placas de 96 pocillos individuales y se preparó ADN genómico para usarse como molde en reacciones de amplificación por PCR que contenían un cebador específico de locus para cada gen de interés y se usaron junto con un cebador específico para *IS*S1. Después del aislamiento del clon mutante, se promovió la escisión del vector plasmídico mediante cultivo a la temperatura permisiva (28 °C) sin selección con antibiótico. La pérdida del vector pGhost9 y la retención de ISS1 se confirmaron por transferencia de Southern como se ha descrito previamente (Ward, P. N. et al 2001 Infect Immun 69:392-399). La presencia de la inserción en el ORF apropiado se confirmó por amplificación por PCR del marco de lectura abierto y secuenciación del producto resultante a través de la unión entre ISS1 y el ORF alterado.

Los intentos de aislar un mutante de inserción a partir del banco de mutantes aleatorios de 0140J son ISS1 localizado apropiadamente cerca del inicio de la secuencia codificante de SUB1154 no tuvieron éxito. Se usó una estrategia de eliminación dirigida para impedir la producción del producto génico SUB1154. En resumen, se amplificaron dos fragmentos localizados en cualquier extremo del marco de lectura abierto de 3432 pares de bases a partir de ADN genómico. Los dos fragmentos se purificaron y después se usaron como un molde en proporciones iguales en una reacción de amplificación por PCR adicional para generar un solo producto Δ1154 que carecía de 3169 pares de bases de la secuencia codificante de SUB1154 de 3432 pares de bases. Este amplicón se subclonó en el sitio de clonación múltiple del plásmido sensible a la temperatura pG+h9 de bajo número de copias. La construcción del plásmido se amplificó por transformación de *E. coli* TG1 RepA con selección en 200 µg/µl de eritromicina a 37,5 °C y se usaron 10 ng del plásmido purificado posteriormente para transformar adicionalmente S. uberis 0140J con selección en 1 µg/ml de eritromicina a 28 °C. Los transformantes S. uberis 0140J / pG⁺h9::Δ1154 se cultivaron hasta una DO₅₅₀ de 0.5 en cultivo en caldo Todd Hewitt a 28 °C, después, la temperatura de cultivo se elevó a la temperatura no permisiva de replicación del plásmido de 37,5 °C para forzar una sola integración cromosómica cruzada. Se seleccionaron integrantes en THA que contenía eritromicina a 1 µg/ml a 37 °C y posteriormente se cultivaron en THB que carecía de antibiótico a 28 °C para promover la escisión del replicón pG+h9 mediante un segundo acontecimiento de entrecruzamiento. Las bacterias resultantes se cultivaron en placas con THA y se repicaron colonias después del cultivo durante una noche a 37 °C. La eliminación del locus de Sub1154 se determinó por amplificación por PCR del locus de Sub1154.

20 Exposición de vacas lecheras en lactación a S. uberis

El requisito de sustratos de SrtA individuales para la virulencia se determinó por exposición experimental en un modelo de infección intramamaria bien establecido en vacas lecheras. Se cultivaron bacterias durante 18 h a 37 °C en caldo Todd Hewitt. Las células se recuperaron por centrifugación (10.000 x g, 10 min), se suspendieron en solución salina sin pirógenos (Sigma) y se diluyeron en la misma solución para proporcionar la densidad celular requerida (500-1500 ufc/ml). Se mantuvieron en hielo suspensiones de cada cepa antes de usarse para la exposición de los animales. Tanto antes como después de la exposición se contó el número de bacterias viables en alícuotas idénticas de cada suspensión.

30 Para la exposición, se seleccionaron vacas lecheras, en las 2-10 semanas de su primera lactación. Los criterios de selección fueron: ausencia de signos de mastitis, ausencia de bacterias en muestras de leche antes de la exposición, sin historia de mastitis durante la presente lactación y sin indicios de infección intramamaria por S. uberis en muestras de leche tomadas 7 y 14 días después del parto. Los animales se expusieron en cuadrantes mamarios por infusión de 1 ml de solución salina sin pirógenos (Sigma) que contenía entre 500-1500 ufc de S. uberis.

Después de la exposición, se ordeñó a los animales y se inspeccionaron dos veces al día (07:00 h y 15:30 h) durante un periodo de 4 días. Aquellos en los que se alcanzaron los criterios predeterminados para puntos de valoración clínicos (leche coagulada y decolorada y/o cuadrante de ubre inflamado o con molestias cuando se palpa) se trataron con antibióticos de marca comercial. Se tomaron muestras de leche en cada ordeño y se analizaron con respecto a la presencia de bacterias y células somáticas, como se describe más adelante.

Análisis de muestras de leche

El número de bacterias viables presentes se estimó mediante cultivo directo en placas de 50 µl de cada muestra de leche en ABA. Las muestras también se diluyeron en solución salina y se cultivaron en placas directamente 50 µl de cada dilución en ABA. En cada caso, se determinó la presencia y/o número de S. uberis y el genotipo de los aislados recuperados se determinó mediante amplificación del locus apropiado. El número de células somáticas presentes en las muestras de leche se determinó usando un contador coulter portátil DeLaval de acuerdo con las instrucciones del fabricante.

Resultados

Se usaron mutantes que carecían de uno de Sub 0145, Sub1095 o Sub1154 para la exposición en los cuadrantes mamarios para determinar si la mutación había ocasionado una mayor atenuación de S. uberis. En todos los casos, se recuperaron las cepas de la leche después de la exposición y cada una se sometió a genotipado para mostrar la presencia del gen correctamente mutado. La exposición con las cepas (que carecían de sub1095, sub0145 o sub1154) tuvo como resultado una colonización relativamente baja durante el experimento (Fig. 7) y, al contrario de lo que ocurría con la cepa de tipo silvestre, ninguna de estas cepas fue capaz de inducir, en ningún caso, signos clínicos de enfermedad. Por consiguiente, la función de estas proteínas en la patogéness de la infección puede considerarse esencial y no redundante. Sería predecible que la inducción de una respuesta inmunitaria neutralizadora (anticuerpos) contra cualquiera de, y preferentemente todas, estas proteínas, disminuiría la enfermedad después de la infección con cepas de tipo silvestre.

LISTADO DE SECUENCIAS

<110> The University of Nottingham

11

55

60

65

10

15

25

35

40

45

	<120> C	ompo	sicion														
5	<130> J. <150> G <151> 0	B081	3231.3														
	<160> 2	5															
10	<170> P	atentl	n vers	ión 3.	5												
15	<210> 1 <211> 1 <212> P <213> S	073 RT	coccu	s uber	is												
	<400> 1																
		Met 1	Thr	Lys	Asn	Arg 5	Ser	Ser	His	Ser	Thr 10	Tyr	Ala	Asp	Lys	Val 15	Ile
		Lys	Gly	Leu	Ser 20	Ala	Ser	Cys	Phe	Ile 25	Leu	Gly	Ala	Phe	Val 30	Phe	Ala
		Gln	Gln	Val 35	Ser	Ala	Glu	Glu	Val 40	Val	Thr	Ala	Thr	Asn 45	Thr	Ser	Leu
		Thr	Ala 50	Pro	Thr	Val	Thr	Thr 55	Val	Ser	Pro	Leu	Thr 60	Asn	Thr	Asp	Val
		Ser 65	Ala	Thr	Ala	Val	Ala 70	Ala	Asp	Ser	Ile	Ala 75	Ser	Pro	Val	Thr	Thr 80
		Thr	Asp	Ser	Asn	Leu 85	Asn	Ser	Ala	Pro	Ile 90	Ile	Asp	Thr	Ser	Asn 95	Pro
		Ser	Asn	Ile	Thr 100	Ser	Pro	Thr	Asp	Thr 105	Asn	Thr	Ser	Thr	Thr 110	Ser	Ser
		Asp	Thr	Thr 115	Ser	Ser	Pro	Ile	Pro 120	Val	Thr	Leu	Asn	Lys 125	Ala	Ala	Ile
		Ala	Ser 130	Pro	Thr	Ser	Gln	Thr 135	Glu	Thr	Leu	Ala	Ser 140	Gln	Glu	Ile	Tyr
		Met 145	Asp	Lys	Val	Asn	Gln 150	Val	Thr	Ile	Asn	Thr 155	Thr	Val	Asn	Pro	Ala 160

Thr	Pro	Met	Thr	Trp 165	Thr	Ile	Glu	Asn	Tyr 170	Pro	Asn	Gln	Thr	Tyr 175	Asn
Met	Gln	Thr	Gly 180	Asp	Phe	Thr	Gly	Ser 185	Pro	Ser	Tyr	Thr	Val 190	Thr	Ser
Thr	Ser	Pro 195	Asn	Asn	Ser	Ser	Val 200	Gln	Ile	Glu	Ile	Pro 205	Pro	Leu	Phe
Gly	Thr 210	Asp	Leu	Ser	Leu	Arg 215	Trp	Pro	Asn	Asn	Ile 220	Arg	Arg	Thr	Tyr
Arg 225	Asp	Tyr	Met	Gly	Ser 230	Tyr	Thr	Leu	Lys	Gly 235	Ile	Ser	Glu	Asp	Gly 240
Leu	Thr	Ile	Val	Thr 245	Lys	Glu	Leu	Ile	Leu 250	Arg	Pro	Tyr	Ala	Asp 255	Tyr
Met	Thr	His	Glu 260	Glu	Leu	Leu	Asn	Glu 265	Leu	Asn	Ala	Ile	Glu 270	Ala	Asn
His	Ala	Thr 275	Asp	Arg	Leu	Val	Thr 280	Ile	Glu	Thr	Ile	Gly 285	Gln	Ser	Ala
Leu	Gly 290	Asn	Ala	Ile	Lys	Met 295	Gly	Ile	Val	Ala	Lys 300	Asp	Gln	Ala	Ser
Leu 305	Asp	Thr	Tyr	Leu	Asn 310	Gln	Thr	Thr	Pro	Met 315	Met	Leu	Met	Asp	Pro 320
Asp	Gln	Ala	Leu	Asn 325	Leu	Leu	Ala	Gln	Gly 330	Lys	Phe	Asp	Tyr	Lys 335	Leu
Pro	Ile	Leu	Ile 340	Asn	Asn	Thr	His	Ala 345	Asp	Glu	Gln	Pro	Gly 350	Ile	Asp
Val	Val	Arg 355	Gly	Leu	Phe	Lys	Thr 360	Phe	Ala	Thr	Glu	Ser 365	Val	Ile	Asn
Tyr	Gln 370	Thr	Val	Asp	Ala	Ala 375	Asn	Asn	Pro	Thr	Thr 380	Val	Gln	Ile	Asp
Ile 385	Lys	Ala	Leu	Leu	Asp 390	Lys	Val	Ile	Leu	Leu 395	Phe	Asn	Phe	Thr	Glu 400

Asn	Pro	Asp	Gly	Asp 405	Ile	Ala	Asn	Thr	Arg 410	Ala	Leu	Asn	Asn	Gly 415	Leu
Asp	Pro	Asn	Arg 420	Asp	Thr	Gly	Tyr	Gln 425	Thr	Asn	Pro	Glu	Thr 430	Arg	Ala
Ile	Val	Glu 435	Gln	Ile	Asn	Lys	Trp 440	Asn	Pro	Ile	Ser	Ile 445	Phe	Asp	Val
His	Gly 450	Phe	Val	Lys	Glu	Phe 455	Leu	Ile	Glu	Pro	Cys 460	Thr	Pro	Pro	His
Asp 465	Pro	Asn	Phe	Glu	Tyr 470	Asp	Leu	Phe	Asp	Ala 475	Ser	Leu	Val	Glu	Gly 480
Ala	Arg	Glu	Met	Gly 485	Asn	Ala	Gly	Ile	Thr 490	Asn	Ser	Val	Tyr	Asp 495	Ser
Tyr	Ile	Ile	Pro 500	Lys	Phe	Asp	Tyr	Gly 505	Ser	Gly	Trp	Asp	Asp 510	Ser	Phe
Ser	Gly	Tyr 515	Thr	Ala	Val	Tyr	Gly 520	Leu	Tyr	Gln	Gly	Ile 525	Leu	Gly	His
Thr	Ile 530	Glu	Ile	Pro	Glu	Thr 535	Asn	Gln	Glu	Ser	Tyr 540	Asn	Ala	Gly	Tyr
Phe 545	Ala	Val	Leu	Ala	Gly 550	Ile	Asn	Tyr	Asp	Leu 555	Ala	Asn	Ser	Asp	Gln 560
Leu	Met	Lys	Asn	Lys 565	Leu	Thr	Phe	Phe	Ser 570	Arg	Gly	Ile	His	Lys 575	Ala
Glu	Val	Ala	Ala 580	Ala	Glu	Glu	Ala	Leu 585	Leu	Thr	Val	Asp	Gly 590	Ser	Val
Lys	Gly	Arg 595	Ile	Lys	Asp	Gly	His 600	Asp	Thr	Phe	Phe	Pro 605	Asp	Tyr	Tyr
Met	Ile 610	Pro	Met	Thr	Leu	Ser 615	Thr	Glu	Ser	Asp	Thr 620	Asp	Gln	Ala	Phe
Lys 625	Met	Ile	Asp	Tyr	Phe 630	Arg	Arg	Asn	Gly	Val 635	Ile	Leu	Asn	Glu	Leu 640
Thr	Ala	Asp	Val	Ala	Gly	Tyr	His	Lys	Gly	Asp	Leu	Val	Ile	Asp	Met

	645	650)	655
Ala Gln Ala Lys 660	Arg Gly Phe	Ala Asn His	s Val Leu Tyr	Lys Gly Ala 670
Asn Glu Ser Glu 675	Trp Pro Ala	Met Tyr Ala	a Glu Leu Val 685	Met Asn Phe
Pro Ala Met Arg 690	Gly Phe Lys 695	Ala Asp Ala	a Ile Tyr Ala 700	Asp Ser Leu
Phe Ala Gly Asn 705	Leu Gly Ala 710	Val Thr Let	1 Thr Ser Ala 715	Pro Arg Thr 720
Ala Pro Ser Asp	Lys Glu Tyr 725	Tyr Ile Val		Ser Leu Ala 735
Ala Val Gln Ala 740	Val Asn Ala	Ala Ile Aro	g Ala Gly Lys	Asn Val Tyr 750
Leu Thr Asn Asp 755	Gly Tyr Val	Met Asp Lys	s Ala Thr Tyr 765	Glu Ser Val
Ile Gly Thr Tyr 770	Pro Leu Phe 775	Ala Gln Ala	a Thr Cys Met 780	Lys Pro Val
Gly Asp Thr Leu 785	Lys Ala Ile 790	Lys Val Tyı	Ala Pro Gly 795	Asn Pro Asn 800
Leu Tyr Leu Gly	Phe Asn Ser 805	Pro Ser Glu 810		Ala Leu Asn 815
Gln Met Gly Phe 820	Asp Val Val	Pro Ser Val	l Asp Gln Ala	Asp Val Ile 830
Val Leu Asp Asn 835	Asp Gln Phe	Asp Ala Sen 840	Tile Leu Gly 845	Lys Lys Pro
Val Ile Ile Leu 850	Gly Gly Ser 855	Ala Met Ala	a Lys Leu Glu 860	Ser Leu Gly
Ile Leu Thr Gly 865	Phe Asp Ala 870	Ala Met Thi	s Ser Glu Ser 875	Asp Gly Ser 880
Ser Tyr Glu Gly	Leu Met Lys 885	Ile Ser Let	_	Ser Pro Tyr 895

Thr Ser Gly Tyr Ala Ala Asn Ser Leu Tyr Tyr Ser Asn Ser Gly Ser 905 900 Trp Ile Glu Gly Val Pro Thr Gly Phe Met Thr Leu Ala Asn Ile Ser 915 920 925 Ala Ser Asp Phe Tyr Val Ser Gly Trp Trp Pro Asn His Glu Gly Leu 930 935 Ala Asn Lys Thr Val Ala Ile Ser Gly Leu Tyr Gln Gly Gln Pro Met 945 950 955 Phe Ile Phe Ala Gly Asn Pro Val Asn Lys Thr His Thr Ile Asn Phe 965 Tyr Arg Trp Val Ser Asn Ala Ile Phe Gly Thr Asn Leu Thr Ser Phe 985 Ile Glu Gly Gln Cys Thr Ile Pro Thr Asp Ser Glu Thr Gln Val Val 995 1000 1005 Arg Val Asn His Asn Gly Gln Thr Val Ala Val Tyr Gln Gln Val 1010 1015 1020 Ala Asn Lys Glu Val Asn Gly Thr Val Ser Gln Asn Ser Leu Pro 1030 1025 1035 Ala Leu Ala Asp Gly Ser His Lys Asp Asp Ser Lys Leu Phe Trp 1045 1040 1050 Val Thr Gly Leu Leu Val Ala Ser Gly Gly Leu Phe Ala Ala Leu 1060 1065 Lys Arg Arg Glu Asp 1070 <210> 2 <211> 515 <212> PRT <213> Streptococcus uberis <400> 2 Met Arg Lys Phe Tyr Tyr Lys Glu Lys Lys Met Glu Ile Lys Gln Lys

10

5

10

His	Gly	Lys	His 20	Ala	Leu	Arg	Lys	Ala 25	Val	Thr	Ala	Ala	Val 30	Leu	Ala
Gly	Thr	Ala 35	Phe	Ser	Ser	Leu	Gly 40	Gly	Phe	Ala	Gly	Ala 45	Val	Thr	Thr
Val	Lys 50	Ala	Glu	Asp	Leu	Phe 55	Thr	Ile	Asn	Asn	Ser 60	Glu	Val	Gln	Asp
Lys 65	Leu	Glu	Ser	Lys	Val 70	Lys	Gln	Leu	Leu	Glu 75	Ala	Gln	Arg	Lys	Gly 80
Glu	Asp	Ile	Ser	Glu 85	Lys	Leu	Arg	Glu	Leu 90	Leu	Ser	Glu	Leu	Pro 95	Thr
Asp	Ile	Leu	Lys 100	Asp	Ile	Met	Leu	Ser 105	Asn	Ile	Glu	Ala	Asp 110	Tyr	Leu
Leu	Gly	Phe 115	Leu	Lys	Pro	Ala	Val 120	Glu	Glu	Met	Val	Arg 125	Arg	Ser	Glu
Gln	Asn 130	Asp	Glu	Arg	Trp	Lys 135	Asp	Ile	Thr	Glu	Lys 140	Thr	Leu	Ala	Leu
Glu 145	Ala	Leu	Lys	Asp	Ser 150	Glu	Arg	Glu	Ile	Arg 155	Lys	Glu	Lys	Glu	Lys 160
Leu	Glu	Asp	Glu	Val 165	Gln	Leu	Ala	Lys	Val 170	Lys	Ile	Glu	Thr	Lys 175	Glu
Ser	Glu	Leu	Asn 180	Asp	Leu	Lys	Lys	Asp 185	Tyr	Ile	Asp	Thr	Arg 190	Glu	Glu
Leu	Ala	Asp 195	Thr	Ile	Glu	Glu	Leu 200	Asp	Glu	Val	Lys	Asn 205	Ser	Ile	Val
Glu	Lys 210	Glu	Ala	Lys	Val	Lys 215	Gly	Leu	Glu	Glu	Lys 220	Leu	Arg	Asp	Leu
Glu 225	Lys	Glu	Leu	Gly	Asp 230	Tyr	Asp	Lys	Lys	Leu 235	Ser	Glu	Ala	Ala	Lys 240
Gln	Asn	Ser	Asp	Leu 245	Ser	Asn	Glu	Asn	Lys 250	Glu	Leu	Lys	Glu	Asn 255	Leu
Asn	Thr	Δla	Glu	Asn	Tle	Thr	Val	Glu	T.e11	Gln	Lws	Lvs	Ser	His	Glu

			260					265					270		
Leu	Glu	Lys 275	Thr	Lys	Lys	Glu	Val 280	Glu	Leu	Glu	Leu	Lys 285	Ala	Glu	Lys
Glu .	Ala 290	Leu	Glu	Ala	Glu	Lys 295	Val	Lys	Leu	Ala	Glu 300	Ala	Asn	Glu	Ala
Asn . 305	Asp	Lys	Leu	Ser	Glu 310	Glu	Arg	Asp	Ala	Ala 315	Lys	Lys	Glu	Ala	Glu 320
Lys	Val	Pro	Glu	Leu 325	Glu	Gly	Gln	Val	Glu 330	Lys	Leu	Val	Glu	Glu 335	Ile
Thr .	Ala	Ala	Lys 340	Lys	Glu	Ala	Glu	Glu 345	Leu	Gln	Ala	Lys	Ala 350	Glu	Gly
Leu	Glu	Lys 355	Asp	Phe	Glu	Ala	Val 360	Lys	Ala	Glu	Lys	Glu 365	Ala	Leu	Glu
Ala	Glu 370	Ile	Ala	Lys	Leu	Lys 375	Glu	Asp	His	Gln	Lys 380	Glu	Val	Asp	Ala
Leu . 385	Asn	Ala	Leu	Leu	Ala 390	Asp	Lys	Glu	Lys	Met 395	Leu	Lys	Ser	Leu	Gln 400
Glu	Gln	Leu	Asp	Lys 405	Ala	Lys	Glu	Glu	Ala 410	Met	Lys	Asn	Glu	Gln 415	Met
Ser	Gln	Glu	Glu 420	Lys	Ala	Lys	Leu	Gln 425	Ala	Glu	Leu	Asp	Lys 430	Ala	Lys
Gln	Glu	Leu 435	Ala	Glu	Lys	Ile	Lys 440	Asp	Met	Pro	Asn	Lys 445	Val	Ala	Pro
Gln .	Ala 450	Glu	Gly	Lys	Ala	Asn 455	Ala	Gly	Gln	Ala	Ala 460	Pro	Asn	Gln	Asn
Gln . 465	Asn	Asn	Gln	Ala	Gln 470	Ala	Asn	Gln	Ala	Lys 475	Asn	Ala	Asn	Asn	Leu 480
Pro	Ser	Thr	Gly	Asp 485	Lys	Pro	Val	Asn	Pro 490	Leu	Leu	Val	Ala	Ser 495	Gly
Leu	Ser	Leu	Met 500	Ile	Gly		_	505		Val	Tyr	Ala	Gly 510	Lys	Arg
						тΣ	s L	•	ту 15						

<211> 1269 <212> PRT <213> Streptococcus uberis

5 <400> 3

Met Lys Gln Glu Lys Lys Cys Val Asn Trp Phe Met Arg Lys Arg Gly Lys Gln Trp Ile Tyr Gly Cys Gly Ile Leu Ile Cys Gly Leu Val Phe Gly Val Glu Ala Thr Ser Val Ala Ala Glu Thr Ile Pro Thr Thr Ala 40 Thr Val Glu Thr Leu Asn Ser Asp Val Thr Ser Lys Thr Ser Gln Glu 50 55 Thr Gln Lys Thr Thr Glu Ile Ala Thr Pro Val Ser Glu Ile Val Met 70 75 Pro Ser Gln Gln Lys Val Val Glu Glu Val Thr Gln Glu Val Ser Val 85 90 Gln Asn Gln Glu Thr Val Ile Asn Met Pro Val Leu Thr Gln Gly Val 100 105 Asn Ile Ala Gly Pro Asn Glu Thr Ala Ile Leu Thr Asp Ser Ile Val Gln Asn Asn Val Gln Pro Ile Asp Arg Val Glu Lys Met Glu Thr Ser 130 135 Phe Ser Thr Glu Leu Thr Lys Lys Ala Glu Ser Ser Tyr Asn Thr Asn 145 150 155 Leu Gln Asp Leu Asn Tyr Asp Pro Asn Val Trp Glu Val Arg Glu Asp 165 170 175 Gly Leu Tyr Ser Asn Ala Val Gly Lys Gly Asp Asn Phe Leu Phe Ser 190 180 185

Ala	Ser	Thr 195	Gly	Glu	Asn	Phe	Ile 200	Phe	Gln	Thr	Asp	Val 205	Thr	Phe	Leu
Gln	Asn 210	Thr	Gly	Ala	Ala	Ser 215	Leu	Val	Phe	Arg	Ser 220	Asn	Asn	Asp	Pro
Glu 225	Asn	Leu	Asn	Gly	Tyr 230	Val	Val	Asn	Leu	Asp 235	Gly	Asn	Ser	His	Lys 240
Ala	Arg	Leu	Trp	Arg 245	Trp	Ala	Glu	Ala	Asn 250	Leu	Ile	Asn	Asp	Lys 255	Glu
Ile	Leu	Ala	Ser 260	Pro	Asp	Asn	Lys	Tyr 265	Phe	Leu	Lys	Val	Val 270	Ala	Thr
Asn	Gly	Trp 275	Ile	Ser	Tyr	Tyr	Ile 280	Asn	Gly	Ile	Leu	Ile 285	Ala	Asn	Leu
Ser	Asp 290	Tyr	Thr	Ile	Gln	Arg 295	Asp	Asp	Leu	Gly	Gln 300	Thr	Thr	Tyr	Ile
Lys 305	Asp	Gly	His	Phe	Gly 310	Leu	Leu	Asn	Trp	Asn 315	Gly	Glu	Met	Val	Phe 320
Gln	Asn	Thr	Phe	Tyr 325	Arg	Glu	Leu	Thr	Asn 330	Glu	Glu	Leu	Pro	Leu 335	Leu
Asn	Asp	Val	Thr 340	Val	Thr	Ser	Lys	Asn 345	Gly	Pro	Val	Glu	Pro 350	Lys	Gly
Gln	Phe	Phe 355	Ser	Glu	Ser	Ser	Val 360	Tyr	Ile	Gln	Tyr	Val 365	Ser	Asn	Asp
Ala	Ser 370	Thr	Val	Asp	Leu	Ser 375	Phe	Asp	Ala	Asn	Asn 380	Ser	Asp	Ala	Leu
Ile 385	Thr	Val	Thr	Asp	Ala 390	His	Gly	Lys	Val	Tyr 395	Ser	Asn	Pro	Ser	Ala 400
Ile	Pro	Val	Thr	Val 405	Gly	Pro	Asn	Tyr	Leu 410	Thr	Val	Thr	Ser	Thr 415	Tyr
Thr	Thr	Thr	Asp 420	Gly	Tyr	Val	Ile	Pro 425	Ser	Thr	Tyr	Arg	Ile 430	Asn	Val
His	Arg	Arg	Gln	Pro	Gln	Ser	Val	Tyr	Tyr	Asn	Glu	Asn	Phe	Arg	Asp

	435				440					445			
Gln Tyr 450	His Ty	r Ser		Lys 155	Asp	Gly	Trp	Ala	Asn 460	Asp	Pro	Asn	Gly
Leu Val 465	Tyr Ty		Gly V 470	/al	Tyr	His	Met	Phe 475	Tyr	Gln	Phe	Tyr	Asp 480
Asp Thr	Lys Tr	Gly 485	Pro M	Met	His	Trp	Ala 490	His	Ala	Thr	Ser	Thr 495	Asp
Leu Ile	His Tr		Asp (Gln	Pro	Ile 505	Ala	Phe	Tyr	Pro	Asp 510	Tyr	Asn
Gly Thr	Met Pho	e Ser	Gly (Ile 520	Val	Ala	Asp	Val	Asn 525	Asn	Ser	Ser
Gly Leu 530	Phe As	o Ser		Asn 535	Gly	Gly	Leu	Val	Ala 540	Leu	Ile	Thr	Ile
Asn Gly 545	Glu Gl		Arg I 550	Ile	Lys	Leu	Ala	Tyr 555	Ser	Thr	Asp	Glu	Gly 560
Lys Thr	Trp Gl:	n Lys [*] 565	Val <i>A</i>	Asp	Glu	Ile	Val 570	Ala	Asp	Trp	Thr	Thr 575	Asp
Pro Leu	Gln Th	_	Asp E	Phe .	Arg	Asp 585	Pro	Lys	Val	Phe	Arg 590	Trp	Glu
Asn Lys	Trp Pho	e Met	Val I		Ala 600		Gly	Pro		Arg 605		Tyr	Ser
Ser Asp 610	Asp Le	ı Lys .		Trp 515	Thr	Val	Glu	Ser	Thr 620	Tyr	Pro	Asp	Leu
His Thr 625	Glu Cy		Asp I 630	Leu	Tyr	Pro	Val	Leu 635	Ala	Glu	Asp	Gln	Thr 640
Val Lys	Trp Va	l Leu 645	Ser <i>P</i>	Arg	Gly	Gly	Arg 650	Tyr	Tyr	Lys	Val	Gly 655	Asp
Leu Gln	Gln Ala		Gly <i>P</i>	Asn	Trp	Lys 665	Phe	Ile	Pro	Asp	Ala 670	Asn	Tyr
Gln Glu	Thr As ₁	o Ser	Ile M		Asn 680	Phe	Gly	Lys	Asp	Ser 685	Tyr	Ala	Ala

Met	Thr 690	Tyr	Tyr	Val	Gln	Asp 695	Phe	Gly	Thr	Lys	Ala 700	Asn	Pro	Thr	Ile
Pro 705	Lys	Ile	Ile	Glu	Leu 710	Asn	Trp	Met	Asn	Thr 715	Trp	Asp	Asn	Tyr	Cys 720
Asn	Leu	Val	Ala	Asp 725	Arg	Leu	Gly	Gln	Ser 730	Phe	Asn	Gly	Thr	Phe 735	Asn
Leu	Asn	Leu	Glu 740	Leu	Gly	Leu	Val	Lys 745	Glu	Gly	Asp	Lys	Tyr 750	Val	Leu
Thr	Gln	Thr 755	Pro	Val	Glu	Ala	Tyr 760	Glu	Ser	Leu	Arg	Asp 765	Asn	Asp	Asn
Lys	Val 770	Glu	Tyr	Lys	Asn	Val 775	Val	Val	Gly	Lys	Glu 780	Asn	Asp	Leu	Phe
Lys 785	Asp	Phe	Ser	Gly	Asp 790	Thr	Tyr	Glu	Ile	Val 795	Ala	His	Phe	Lys	Pro 800
Ser	Asp	Lys	Thr	Thr 805	Lys	Val	Gly	Phe	Asn 810	Leu	Arg	Val	Gly	Ser 815	Gly
Glu	Met	Thr	Lys 820	Val	Tyr	Tyr	Asp	Leu 825	Ile	Ala	Gly	Arg	Ile 830	Ile	Ile
Asp	Arg	Ser 835	Gln	Ser	Gly	Ile	Ile 840	Leu	Thr	Glu	Leu	Phe 845	Ser	Asn	Ile
Asp	Ser 850	Gln	Ala	Val	Thr	Pro 855	Asn	Ile	Asp	Gly	Ser 860	Ile	Asp	Leu	His
Ile 865	Phe	Val	Asp	Arg	Ala 870	Ser	Val	Glu	Val	Phe 875	Ser	Lys	Asn	His	Thr 880
Val	Ala	Gly	Ala	Asn 885	Gln	Ile	Phe	Thr	Ser 890	Ala	Gln	Ser	Leu	Gly 895	Leu
Glu	Val	Leu	Ile 900	Asp	Gly	Glu	Asp	Ala 905	Lys	Ala	Asp	Ile	Val 910	Leu	Tyr
Pro	Leu	Lys 915	Ser	Ile	Trp	Lys	Asn 920	Lys	Ile	Ile	Asp	Thr 925	Thr	Pro	Gln

Ile Val Ile Pro Ala Ser Glu Pro Lys Val Arg Met Asn Val Gly Asp Ser Thr Thr Val Lys Ala Tyr Val Ser Pro Val Gly Ala Ser Gln Asp Leu Ile Trp Asn Ile Ser Asn Pro Ser Leu Val Leu Asp Gln Ile Ser Gly Asn Gln Val Phe Leu Lys Ala Ile Lys Lys Gly Gln Val Ile Val Arg Ala Gln Ser Gln Ser Asn Pro Ala Val Tyr Gln Asp Phe Ile Ile Asp Ile Leu Glu Asp Asn Phe Asn Thr Asn Val Lys Asp Val Asn 1010 1015 Val Phe Ser Gly Asp Trp Tyr Val Asp Gly Glu Ser Leu Lys Val Ala Asn His Asn Ser Asn Asp Ile Tyr Met Ser Ala Asp Lys Ile Pro Tyr Glu Asn Tyr Gln Met Asp Leu Asp Ile Lys Tyr Gly Arg Gly Ile Val Asn Ile Phe Phe Ala Ser Gly Asn Pro Asp Ala Asn Asn Ala Tyr Thr Ile Gln Phe Gly Ser Asn Asn Ser Val Arg Leu Phe Arg Phe Tyr Arg Asp Thr Ile Phe Glu Ala Pro Met Ile Asp Val Ile Asn Asp Asn Gln Phe His His Val Arg Leu Val Lys Ser Ala Asn Val Ile His Val Tyr Val Asp Asn Glu Met Val Met Ser Tyr Thr Phe Asp Gln Val Glu Glu Phe Phe Asn Asn Pro Tyr Leu

Gly Leu Gly Leu Trp Asp Gly Glu Leu Ala Val Gln Asn Phe Tyr 1160 1165 Val Ile Asp Leu Asp Ala Gln Lys Pro Val Phe Val Glu Glu His 1175 1180 1185 Glu Lys Glu Lys Leu Leu Ser Glu Leu Lys Lys Ser Val Val Lys 1190 1195 1200 Thr Ser Ser Tyr Ser Thr Leu Lys Thr Ile Glu Thr Ser Ser Lys 1205 1210 1215 Thr Asn Ser Glu Asn Leu Glu Ala Pro Thr Val Ser Lys Lys Asn 1220 1225 1230 Leu Pro Met Thr Ser Asp Ser Asn Asn Asn Leu Glu Glu Leu Gly 1235 1240 1245 Ile Leu Val Ile Leu Thr Thr Leu Gly Ala Phe Leu Gly Arg Val 1255 1250 1260

Ile Leu Lys Lys Glu Lys 1265

<210> 4 <211> 369

<212> PRT <213> Streptococcus uberis

<400> 4

5

Met Lys Lys Lys Gln Glu Met Lys Tyr Tyr Leu Arg Lys Ser Ala Tyr 1 5 10 15

Gly Leu Ala Ala Val Ser Val Ala Val Leu Ala Val Gly Ser Pro Val 20 25 30

Ser Ala Gl
n Glu Lys Ala Ala Ser Thr Glu Ala Thr Pro Lys Val Ala 35
 40 45

Pro Lys Val Pro Glu Lys Pro Ser Lys Glu Val Ile Lys Lys Ala Leu 50 55 60

Lys Lys Thr Asp Glu Glu Thr Lys Glu Lys Glu Lys Glu Ala Lys Glu 65 70 75 80

Lys Val Glu Asn Ser Glu Glu Ser Thr Ala Met Val Ser Glu Leu Ser 85 90 95

Ser	Thr	Asn	Glu 100	Glu	Thr	Ser	Ser	Glu 105	Glu	Glu	Asn	Asn	Thr 110	Asp	Glu
Glu	Glu	Thr 115	Asp	Gly	Leu	Glu	Ser 120	Glu	Glu	Ser	Glu	Glu 125	Thr	Glu	Ser
Glu	Val 130	Lys	Glu	Glu	Ser	Glu 135	Glu	Glu	Lys	Glu	Asp 140	Asp	Pro	Ser	Glu
Ser 145	Asp	Thr	Glu	Val	Glu 150	Asn	Val	Glu	Ala	Ile 155	Asn	Leu	Ser	Glu	Ala 160
Glu	Gly	Asn	Asp	Ser 165	Ser	Lys	Pro	Glu	Thr 170	Ser	Glu	Glu	Val	Thr 175	Ala
Glu	Glu	Asp	Arg 180	Gln	Glu	Thr	Asp	Arg 185	Leu	Ala	Glu	Val	Lys 190	Thr	Glu
Glu	Ser	Ala 195	Lys	Glu	Gly	Asp	Glu 200	Asp	Ala	Asp	Lys	Lys 205	Asp	Glu	Ala
Glu	Glu 210	Lys	Ala	Lys	Lys	Gly 215	Ala	Glu	Leu	Ser	Arg 220	Val	Lys	Ala	Glu
Ala 225	Leu	Ala	Lys	Leu	Glu 230	Ala	Leu	Asn	Ala	Ser 235	Arg	Leu	Met	Lys	Lys 240
Ile	Val	Glu	Ser	Gly 245	Lys	Thr	Val	Glu	Gly 250	Ile	Leu	Ser	Phe	Met 255	Lys
Glu	Ser	Leu	Pro 260	Gln	Leu	Glu	Ala	Ala 265	Arg	Ala	Ser	Glu	Gln 270	Ala	Lys
Ala	Pro	Glu 275	Val	Thr	Gln	Ser	Pro 280	Asp	His	Leu	Pro	Ser 285	Glu	Lys	Lys
Ala	Val 290	His	Asn	Pro	Val	Gln 295	Val	Ala	Lys	Arg	Ser 300	Glu	Ser	Leu	Glu
Gln 305	Lys	Ala	Glu	Asn	Ala 310	Lys	Thr	Ser	Thr	Asn 315	Leu	Gln	Asn	Thr	Gln 320
Ile	Pro	Val	Gln	Glu 325	Ala	Lys	Arg	Thr	Gln 330	Ala	Gln	Leu	Pro	Ser 335	Thr

Gly Glu Asp Tyr Gln Ala Tyr Leu Val Ala Ala Ala Met Ala Leu Ile 345 340 Ala Ser Ser Gly Met Val Ala Tyr Gly Ser Tyr Arg Lys Lys Gln 360 Lys <210> 5 <211> 278 <212> PRT <213> Streptococcus uberis <400> 5 Met Ser Lys Pro Met Thr Lys Lys Lys Ala Ile Ser Ile Gln Lys 10 Ser Val Lys Pro Ile Leu Gly Phe Thr Phe Gly Ala Leu Leu Ser Thr Val Phe Thr Pro Ser Val Phe Ala Glu Glu Val Val Ser Ser Leu 40 Gly His Ala Thr Ser Gly Leu Leu Ser Val Ser Val Pro Lys Glu Leu Thr Ser Leu Glu Thr Thr Tyr Leu Met Ala Ser Glu Ser Pro Ser Asn Thr Leu Thr Ser Asp Thr Ile Ser Ser Asp Asn Gly Gly Thr Ala Ser Asn Pro Asn Glu Ile Val Thr Thr Glu Thr Thr Ser Glu Ala Ile 110 100 105 Pro Phe Asp Thr Glu Val Ile Gln Asn Pro Asp Leu Pro Ile Gly Glu 115 120 125 Ile Lys Val Val Gln Glu Gly Val Ala Gly Glu Val Thr Val Thr Lys 130 135 140 Thr Thr Thr Ile Thr Leu Asn Gly Val Ser Gln Ser Thr Thr Thr 145 150 155 160

10

5

Glu Ser Arg Val Pro Val Lys Lys Pro Ile Asn Lys Ile Ile Glu Val

165 170 175 Gly Thr Lys Glu Ile Ser Thr Ser Pro Ser Ser Ser Asp Val Ile Thr 180 185 Val Ser Pro Ser Pro Ser Ser Thr Ser Ser Glu Ser Asn Gln Gly 200 Ser Leu Thr Pro Ala Pro Lys Ser Arg Gln Asn Ser Gln Glu Lys Lys 210 215 220 Gly Ser Gln Thr Lys Lys Ser Lys Asp Asp Ala Lys Glu Lys Glu Gly 230 235 Asp Lys Lys Glu Leu Pro Pro Thr Gly Ser Gln Glu Ser Gly Ile Phe 245 250 Ser Leu Phe Ser Ala Leu Ile Ser Thr Ala Leu Gly Leu Phe Leu Leu 265 Lys Ser Asn Lys Asn Asp 275 <210> 6 <211> 499 <212> PRT <213> Streptococcus uberis <400>6 Met Lys Ser Tyr Leu Lys Arg Arg Tyr Gly Leu Ile Thr Thr Ser Val Leu Ala Ala Thr Val Leu Ala Thr Gly Trp Gln Ser Thr Ser Val Leu 2.0 25 Ala Glu Asn Pro Thr Thr Ser Pro Thr Thr Thr Val Thr Ser Asn Gly 35 40 Phe Asn Phe Asn Ala Thr Leu Leu Asp His Asn Gly Lys Thr Val Ser 50 55 60 Gly Lys Thr Val Ser Leu Tyr Asp Ile Thr Asp Gly Asn Arg Thr Leu 70 75 65 Val Gln Ser Ala Val Ser Asp Gln Asn Gly Ile Ala Ser Phe Ser Gln 85 90

Leu	Pro	Leu	Asn 100	Arg	Asn	Leu	Ser	Val 105	Phe	Val	Asp	Asn	Val 110	Ala	Gln
Gly	Tyr	Thr 115	Thr	Arg	Thr	Ser	Glu 120	Ser	Gly	Gln	Val	Arg 125	Ser	Ser	Ala
Phe	Tyr 130	Ile	Asp	Gly	Gln	Gly 135	Thr	Asn	Thr	Pro	Lys 140	Tyr	Ser	Asp	Lys
Thr 145	Ile	Thr	Ile	Ser	Val 150	Leu	Asn	Glu	Glu	Ala 155	Glu	Pro	Leu	Ala	Asn 160
Gln	Lys	Val	Thr	Leu 165	Thr	Asn	Pro	Leu	Lys 170	Glu	Val	Val	Gly	Glu 175	Ala
Met	Thr	Asp	Ala 180	Asp	Gly	His	Val	Val 185	Phe	Lys	Asp	Lys	Leu 190	Leu	Glu
Gly	Val	Phe 195	Tyr	Asn	Tyr	Ala	Val 200	Asn	Gly	Lys	Ala	Ile 205	Asp	Ser	Ala
Gln	Pro 210	Asp	Ser	Lys	Arg	Ser 215	Val	Phe	Leu	Glu	Ser 220	Asn	Gln	Leu	Ala
Lys 225	Glu	Gly	Phe	Thr	Phe 230	Thr	Ala	Thr	Ile	Leu 235	Gly	Lys	Asn	Gly	Lys 240
Thr	Val	Ala	Gly	Lys 245	Thr	Val	Ser	Leu	Tyr 250	Asp	Ile	Thr	Asp	Gly 255	Asn
Arg	Thr	Leu	Val 260	Gln	Ser	Ala	Val	Ser 265	Asp	Gln	Asn	Gly	Ile 270	Ala	Ser
Phe	Ser	Gln 275	Leu	Pro	Leu	Asn	Arg 280	Asn	Leu	Ser	Val	Phe 285	Ile	Asp	Asp
Val	Ala 290	Gln	Gly	Tyr	Thr	Thr 295	Arg	Thr	Ser	Glu	Asn 300	Gly	Gln	Val	Arg
Ser 305	Ser	Ala	Phe	Tyr	Val 310	Asp	Gly	Gln	Gly	Thr 315	Asn	Thr	Pro	Lys	Tyr 320
Ser	Asp	Lys	Thr	Ile 325	Thr	Ile	Ser	Val	Leu 330	Asn	Glu	Glu	Gly	Glu 335	Pro

Leu Ala Asn Gln Lys Val Thr Leu Ile Asn Pro Leu Lys Glu Val Ile Gly Glu Ala Asn Thr Asp Ala Asn Gly Lys Val Ile Phe Thr Asp Lys Leu Leu Asp Gly Val Phe Tyr Thr Tyr Ala Val Asn Asp Gln Thr Ile Asp Ala Thr Gln Pro Asp Thr Ser Arg Asn Val Phe Leu Arg Ala Asp Gln Ile Leu Lys Glu Ser Pro Lys Asn Thr Ala Ser Glu Ala Ala Thr Asn Leu Glu Lys Thr Thr Glu Ser Lys Glu Gly Asn Met Pro Gln Gln Asn Gln Ser Glu Ala Lys Glu Lys Ala Pro Glu Lys Gln Val Asp Ala Asn Ala Asn Lys Lys Ala Pro Gly His Gly Glu Ala Lys Lys Gly Leu Pro Met Ala Gly Glu Arg Gly Ser Arg Leu Phe Thr Phe Ile Gly Leu Ser Leu Ile Leu Gly Ile Ala Gly Tyr Leu Leu Lys His Lys Lys Val Lys Ser <210> 7 <211> 1144 <212> PRT <213> Streptococcus uberis <400> 7 Met Val Lys Asn Asn Ile His Ser Arg Lys Lys His Ile Leu Lys Ile Ser Leu Leu Ala Thr Ser Val Leu Thr Thr Thr Val Ser Thr Val Ser

Ala Glu Gln Leu Gln Asn Glu Lys Gln Ser Asp Leu Leu Ser Lys Met

Thr	Glu 50	Thr	Ser	Thr	Pro	His 55	Thr	Ile	Ile	Ser	Ser 60	Glu	Asp	Leu	Ser
Asn 65	Ser	Asn	Gln	Glu	Ala 70	Asn	Gln	Lys	Asp	Glu 75	Thr	Ala	Ser	Lys	Ser 80
Leu	Gln	Pro	Met	Ile 85	Glu	Lys	Val	Asp	Pro 90	Ser	His	Ile	Gln	Ala 95	Leu
Trp	Glu	Lys	Val 100	Gly	Thr	Gly	Glu	Gly 105	Asp	Val	Leu	Ala	Val 110	Ile	Asp
Ser	Gly	Ile 115	Glu	Thr	Lys	His	Ser 120	Met	Leu	Gln	Leu	Pro 125	Glu	Asp	Ala
Asp	Lys 130	Met	Tyr	Thr	Asp	Gln 135	Ala	Ser	Ile	Asp	Ser 140	Lys	Lys	Gln	Leu
Leu 145	Gly	Ile	Glu	Arg	Gly 150	Gln	Trp	Ile	Asn	Asp 155	Lys	Leu	Pro	Phe	Tyr 160
His	Asp	Tyr	Thr	Gln 165	Gly	Glu	Glu	Ser	Ile 170	Asp	Arg	Asn	Thr	Tyr 175	His
Gly	Thr	His	Val 180	Ala	Gly	Ile	Ala	Thr 185	Ala	Ser	Gly	Leu	Thr 190	Gln	Lys
Glu	Asn	Lys 195	Glu	Gln	Met	Gln	Gly 200	Ile	Val	Pro	Asn	Ala 205	Gln	Leu	Leu
Phe	Leu 210	Lys	Val	Gly	Gln	Pro 215	Ser	Val	Glu	Gly	Glu 220	Arg	Glu	Lys	His
Tyr 225	Ala	Met	Ala	Ile	Lys 230	Asp	Ala	Ile	Ala	Leu 235	Gly	Ala	Thr	Ala	Ile 240
Asn	Met	Ser	Phe	Gly 245	Gln	Val	Gly	Lys	Ala 250	Ser	His	Glu	Leu	Asn 255	Asp
Asp	Phe	Lys	Lys 260	Ala	Leu	Ala	Leu	Ala 265	Ala	Asp	Lys	Gly	Val 270	Ala	Ile
Val	Val	Ala 275	Ala	Gly	Asn	Asp	Tyr 280	Ala	Met	Gly	Gly	Ser 285	Gln	Thr	Lys

Pro	Leu 290	Ala	Lys	Asn	Pro	Asp 295	Thr	Gly	Val	Ile	Gly 300	Thr	Pro	Ala	Thr
Thr 305	Glu	Glu	Val	Phe	Thr 310	Val	Ala	Ala	Tyr	Val 315	Ala	Pro	His	Tyr	Trp 320
Ser	Arg	Val	Leu	Ser 325	Val	Thr	Asp	Gly	Ser 330	Thr	Ser	Lys	Ala	Leu 335	Ala
Leu	Glu	Met	Ala 340	Ser	Pro	Phe	Ala	Glu 345	Asn	Lys	Asp	Tyr	Glu 350	Leu	Ile
Phe	Leu	Glu 355	Lys	Gly	Leu	Glu	Thr 360	Glu	Glu	Asn	Ala	Glu 365	Arg	Leu	Lys
Asn	Lys 370	Val	Leu	Val	Leu	Asn 375	Tyr	Asp	Phe	Val	Thr 380	Asn	Ser	Lys	Glu
Val 385	Ala	Glu	Lys	Val	Glu 390	Ala	Leu	Gly	Ala	Ala 395	Gly	Val	Leu	Val	His 400
Asn	Asn	Gln	Ala	Lys 405	Lys	Pro	Leu	Ile	Pro 410	Leu	Ala	Tyr	Asn	Gly 415	Pro
Leu	Pro	Met	Gly 420	Phe	Ile	Ser	Lys	Glu 425	Asp	Ala	Asp	Trp	Leu 430	Lys	Thr
Met	Thr	Ser 435	Pro	Gln	Phe	Arg	Leu 440	Lys	Lys	Glu	Lys	Gln 445	Leu	Val	Glu
Val	Pro 450	Gly	Gly	Arg	Gln	Met 455	Thr	Asn	Phe	Ser	Ser 460	Trp	Gly	Leu	Ser
Val 465	Asp	Gly	Asn	Met	Lys 470	Pro	Asp	Phe	Ala	Ala 475	Pro	Gly	Tyr	Glu	Ile 480
Tyr	Ser	Pro	Thr	Pro 485	Gly	Asn	Asp	Tyr	Ser 490	Lys	Met	Ser	Gly	Thr 495	Ser
Ala	Ala	Ser	Pro 500	His	Ala	Met	Gly	Ile 505	Ile	His	Leu	Val	Arg 510	Lys	His
Ile	Gln	Lys 515	Glu	Tyr	Pro	His	Leu 520	Ser	Ala	Lys	Glu	Gln 525	Leu	Gln	Leu

Val	Lys 530	Asn	Leu	Leu	Met	Ser 535	Thr	Ala	Ser	Pro	Ile 540	Tyr	Ser	Glu	Leu
Asp 545	His	Ser	Tyr	Tyr	Ser 550	Pro	Arg	Val	Gln	Gly 555	Ala	Gly	Ala	Leu	Asp 560
Ala	Lys	Lys	Ala	Leu 565	Glu	Thr	Asp	Val	Tyr 570	Val	Thr	Ala	Ala	Asp 575	Gly
Leu	Ser	Lys	Ile 580	Gln	Leu	Gly	Asp	Val 585	Asn	Asn	Gln	Phe	Glu 590	Leu	Arg
Val	Thr	Leu 595	His	Asn	Leu	Ser	Asn 600	Gln	Glu	Lys	Asn	Phe 605	Thr	Tyr	Phe
Ala	Arg 610	Val	Leu	Thr	Asp	Lys 615	Val	Glu	Lys	Gly	Arg 620	Ile	Leu	Leu	Arg
Pro 625	Gln	Glu	Leu	Tyr	Gln 630	Thr	Arg	Pro	Leu	Gln 635	Val	Lys	Leu	Ala	Pro 640
Asn	Gln	Lys	Gln	Glu 645	Val	Val	Ile	Lys	Val 650	Asp	Ile	Ser	Asn	Phe 655	Asp
Gln	Gln	Leu	Lys 660	Ala	Gln	Met	Pro	Asn 665	Gly	Tyr	Phe	Leu	Asp 670	Gly	Phe
Val	Val	Phe 675	Gln	Ser	Lys	Glu	Gly 680	Ala	Gln	Lys	Asp	Leu 685	Ser	Ile	Pro
Phe	Ile 690	Ala	Phe	Lys	Gly	Lys 695	Phe	Ala	Asp	Leu	Glu 700	Ala	Leu	Asp	Ser
Pro 705	Ile	Tyr	Arg	Asn	Leu 710	Asp	Gly	Thr	Phe	Tyr 715	Tyr	Ser	Pro	Lys	Glu 720
Gly	Gln	Asp	Pro	Tyr 725	Asp	Phe	Glu	Val	Asp 730	Ser	Ile	Gln	Gln	Ile 735	Lys
Glu	Gln	Tyr	Met 740	Thr	Gly	Leu	Ile	Thr 745	Thr	Phe	Thr	Pro	Trp 750	Ser	Leu
Val	Glu	Gly 755	Ser	Lys	Ile	Asp	Gly 760	Phe	Ser	Pro	Glu	Met 765	Ala	Ser	Glu
Phe	Ser	Thr	Thr	Asp	Tyr	Leu	Gly	Ser	Tyr	Asn	Lys	Glu	Gly	Asp	Asn

	770					775					780				
Thr 785	Val	Arg	Arg	Phe	Arg 790	Phe	Val	Glu	Gly	Lys 795	Pro	Tyr	Leu	Ala	Leu 800
Ser	Pro	Asn	Gly	Asp 805	Asp	Asn	Met	Asp	Lys 810	Val	Gly	Phe	Arg	Gly 815	Val
Phe	Leu	Arg	Asn 820	Val	Arg	Asp	Ile	Lys 825	Ala	Gln	Val	Phe	Ala 830	Ser	Asp
Asp	Leu	Gln 835	His	Pro	Ile	Trp	Glu 840	Ser	Pro	Ile	Lys	Ala 845	Phe	Ala	Lys
Lys	Asp 850	Val	Asn	Thr	Asn	Asp 855	Ile	Lys	Glu	Ser	Met 860	Leu	Glu	Asn	Thr
Val 865	Trp	Glu	Gly	Lys	Asp 870	Ala	Ser	Gly	Asn	Pro 875	Val	Thr	Glu	Gly	Leu 880
Tyr	Arg	Tyr	Arg	Val 885	Thr	Tyr	Thr	Pro	Leu 890	Ala	Glu	Gly	Ala	Lys 895	Glu
Gln	Phe	Ile	Asp 900	Phe	Asp	Ile	Leu	Val 905	Asp	Leu	Thr	Pro	Ser 910	Lys	Leu
Pro	Gln	Ser 915	Ala	Ile	Leu	Met	Leu 920	Ala	Glu	Arg	Arg	Ile 925	Glu	Leu	Thr
Glu	Ser 930	Arg	Asp	Tyr	Leu	Ser 935	His	Asp	Thr	Tyr	Arg 940	Asp	Arg	Leu	Tyr
Tyr 945	Lys	Tyr	Gly	Thr	Asp 950	Asp	Ile	Asn	Phe	Thr 955	Thr	Phe	Glu	Lys	Asp 960
Asp	Met	Gly	His	Phe 965	Val	Ile	Pro	Asn	Gln 970	Val	Glu	Asp	Glu	Leu 975	Ser
Gly	Glu	Lys	Ile 980	Thr	Ile	Asn	Leu	Asp 985	Lys	Thr	Asp	His	Phe 990	Phe	Phe
Val	Arg	Glu 995	Asp	Phe	Ser	Gly	Asn 1000		e Sei	r Val	l Il€	e Sei 100		eu Se	er Glı
Leu	Leu 1010		n Asr	n His	s Sei	Asp 101		ln M∈	et H:	is Se	er Le	eu (Glu (Glu S	Ser

Lys Ser Asp Arg Lys Glu Ser Asn Thr Gly Asp Ile Arg His Glu 1025 1030 Lys Gln Glu Asn Leu Ser Gln Gln Thr Leu Leu Ser Thr Pro Ser 1045 Ile Asp Gly Gln Lys Gln Asn Asp Gln Leu Met Val Glu Lys Glu 1060 Lys Asp Ile Met Asp Glu Ser Lys Ser Glu Arg Ser Glu Lys Asn 1075 1070 Lys Phe Pro Lys Val Pro Ala Ser Ile Thr Leu Lys Asp Gly Thr 1085 1095 1090 Leu Tyr Pro Gln Ser Ile Ser Gln Lys Thr Ser Leu Pro Lys Thr 1100 1105 1110 Val Asp Ser Gln Lys Thr Met Thr Phe Leu Gly Ile Ala Met Leu 1115 1120 1125 Phe Gly Gly Ile Leu Gln Val Leu Trp Ser Tyr Phe Lys Lys Arg 1130 1135 1140 Asp <210> 8 <211> 484 <212> PRT <213> Streptococcus uberis <400> 8 Met Thr His Met Asn Asn Gly Arg Tyr Lys Gln Arg Phe Ser Leu 10 Arg Lys Tyr Lys Phe Gly Ala Ala Ser Val Leu Leu Gly Thr Ile Phe 20 25 Ala Leu Gly Met Thr Gly Thr Thr Ala Gln Ala Gln Met Pro Ser His 40 Ser His Pro Gly Gly Val Tyr Pro Gly Gly Ile Ile Pro Gly Ala Pro 55

5

Gly 65	Ala	Ile	Pro	Gly	Ile 70	Pro	Gly	Gly	Gly	Ser 75	Gly	Phe	Asp	Phe	Asp 80
Pro	Ser	Gly	Tyr	Pro 85	Ala	Gly	Pro	His	Gly 90	Tyr	Leu	Pro	Ser	Tyr 95	Gly
Pro	Gly	Gly	Val 100	Gly	Met	Leu	Gln	Gly 105	Pro	Pro	Gly	Pro	Ala 110	Gly	Pro
Ile	Gly	Pro 115	Asn	Gly	Ile	Pro	Gly 120	Glu	Arg	Gly	Pro	Val 125	Gly	Pro	Ala
Gly	Ala 130	Glu	Gly	Pro	Arg	Gly 135	Pro	Lys	Gly	Asp	Lys 140	Gly	Glu	Thr	Gly
Gln 145	Gln	Gly	Pro	Arg	Gly 150	Glu	Ala	Gly	Ile	Ala 155	Gly	Pro	Ser	Gly	Pro 160
Gln	Gly	Pro	Ala	Gly 165	Val	Ala	Gly	Pro	Ala 170	Gly	Pro	Gln	Gly	Val 175	Ala
Gly	Arg	Asp	Gly 180	Arg	Asp	Gly	Arg	Asp 185	Gly	Arg	Pro	Gly	Glu 190	Ala	Gly
Leu	Asp	Gly 195	Leu	Asp	Gly	Leu	Asn 200	Gly	Leu	Asn	Gly	Ile 205	Asp	Gly	Thr
Asp	Gly 210	Lys	Asp	Gly	Lys	Asp 215	Gly	Lys	Asp	Gly	Gln 220	Asn	Gly	Gln	Asp
Gly 225	Lys	Asn	Gly	Arg	Asn 230	Gly	Gln	Asp	Gly	Gln 235	Lys	Gly	Lys	Asp	Gly 240
Gln	Asn	Gly	Arg	Asn 245	Gly	Gln	Asp	Gly	Lys 250	Ala	Gly	Lys	Asp	Gly 255	Lys
Ser	Gly	Thr	Asp 260	Gly	Lys	Asn	Gly	Lys 265	Ala	Gly	Thr	Asp	Gly 270	Lys	Asn
Gly	Lys	Ser 275	Gly	Lys	Asp	Gly	Lys 280	Ala	Gly	Thr	Asp	Gly 285	Lys	Asn	Gly
Arg	Ala 290	Gly	Thr	Asp	Gly	Lys 295	Asn	Gly	Lys	Ala	Gly 300	Gln	Asp	Gly	Lys
Asp	G] v	Lvs	Asn	G] v	Thr	Asp	G] v	Leu	Asn	G] v	Ara	Asp	Glv	Ara	Asr

	305					310	310 315								320	
	Gly	Arg	Asp	Gly	Arg 325	Asp	Gly	Arg	Asp	Gly 330	Leu	Asp	Gly	Lys	Asp 335	Gly
	Lys	Asn	Gly	Lys 340	Asp	Gly	Glu	Ser	Pro 345	Ile	Ile	Asn	Val	Lys 350	Asp	Asn
	Gly	Asn	Gly 355	Ser	His	Thr	Ile	Thr 360	Phe	Leu	Asn	Pro	Asp 365	Gly	Ser	Arg
	Lys	Glu 370	Val	Thr	Ile	Ser	Asn 375	Gly	Lys	Asp	Gly	Gln 380	Pro	Gly	Arg	Asp
	Gly 385	Lys	Asp	Gly	Arg	Asp 390	Gly	Lys	Asp	Gly	Met 395	Pro	Gly	Arg	Asp	Gly 400
	Met	Asn	Gly	Lys	Asp 405	Gly	Gln	Ala	Ala	Ala 410	Gly	Asn	Thr	Ala	Gly 415	Lys
	Gly	Asn	Ala	Ser 420	Asp	Met	Lys	Pro	Lys 425	Ala	Met	Ala	Ala	Pro 430	Ala	Ala
	Met	Thr	Asn 435	Gln	Asn	Ala	His	Ala 440	Asn	Asn	Asn	Gly	Pro 445	Ala	Lys	Ala
	Gln	Leu 450	Pro	Ser	Thr	Gly	Asp 455	Lys	Ala	Asn	Pro	Phe 460	Phe	Thr	Ala	Ala
	Ala 465	Leu	Ala	Val	Met	Ala 470	Ser	Ala	Gly	Met	Val 475	Ala	Val	Ser	Arg	Lys 480
	Arg	Lys	Glu	Asp												
<210> 9 <211> 1482 <212> PRT <213> Streptococcus uberis																
<400> 9																
	Leu 1	Arg	Tyr	Lys	Lys 5	Met	Thr	Arg	Ser	Ser 10	Asn	Ser	Arg	Ile	Val 15	Leu
	Gln	Ser	Thr	Leu 20	Ile	Met	Ile	Phe	Ala 25	Ser	Ser	Cys	Val	Asn 30	His	Phe

Lys	Gly	Thr 35	Ile	His	Ala	Asp	Glu 40	Lys	Val	Ile	Asn	Gly 45	Ser	Glu	Ala
Ser	Ile 50	Gln	Val	Asp	Tyr	Thr 55	Leu	Asn	Thr	Ala	Ser 60	Glu	Asn	Arg	Gln
Ile 65	Pro	Glu	Glu	Lys	Val 70	Thr	Glu	Glu	Ala	Thr 75	Asn	Asp	Gln	Pro	Glu 80
Leu	Leu	Glu	Lys	Gln 85	Ala	Ala	Phe	Leu	His 90	Glu	Gly	Arg	Glu	Lys 95	Asn
Thr	Glu	Asn	Leu 100	Pro	Leu	Asp	Gly	Arg 105	Gly	Ser	Leu	Ile	Ala 110	Ser	Ile
Asp	Ser	Gly 115	Val	Asp	Ile	Lys	His 120	Glu	Ala	Phe	Ala	Asn 125	Asn	Asp	Asp
Asn	His 130	Asp	Phe	His	Lys	Glu 135	Thr	Glu	Val	Ser	Glu 140	Gly	Ser	Thr	Ser
Lys 145	Ile	Pro	Phe	Val	Tyr 150	Asp	Phe	Leu	Ser	Gly 155	Asp	Thr	Ser	Val	Arg 160
Asp	Asp	Glu	Glu	Glu 165	His	Gly	Met	His	Ile 170	Ala	Gly	Ile	Leu	Val 175	Gly
Asp	Ser	Lys	Lys 180	Gly	Phe	Lys	Gly	Met 185	Ala	Pro	Lys	Ala	Gln 190	Leu	Ile
Ala	Tyr	Arg 195	Thr	Trp	Ser	Lys	Asn 200	Asn	Ser	Glu	Gly	Tyr 205	Gln	Glu	Ala
Asn	Gln 210	Phe	Phe	Ala	Met	Lys 215	Asp	Ala	Ile	Lys	Arg 220	Gly	Ala	Asp	Val
Ile 225	Ser	Leu	Ser	Ile	Gly 230	Glu	Ile	Gly	Ser	Gly 235	Gln	Asn	Asp	Asp	Ile 240
Trp	Ala	Lys	Val	Leu 245	Glu	Glu	Ala	Lys	Lys 250	Lys	Asn	Val	Val	Val 255	Val
Ala	Ala	Met	Gly 260	Asn	Tyr	Gly	Thr	Ser 265	Ala	Thr	Ser	Asn	Thr 270	Phe	Asp

Gln	Val	Val 275	Asp	Glu	Thr	Phe	Pro 280	Gln	Thr	Asp	Ser	Ser 285	Thr	Leu	Leu
Ser	Val 290	Ser	Ala	Asn	Pro	Glu 295	Val	Ile	Gly	Val	Gly 300	Ser	Ile	Phe	Glu
Lys 305	Glu	Met	Tyr	Leu	Pro 310	Thr	Leu	Lys	Ile	Asp 315	Thr	Leu	Glu	Val	Pro 320
Tyr	Glu	Asn	Ile	Asn 325	Trp	Gln	Asn	Tyr	Tyr 330	Leu	Phe	Lys	Gln	Glu 335	Lys
Gln	Glu	Arg	Ile 340	Ser	Phe	Asn	Glu	Met 345	Leu	Ile	Thr	Leu	Asn 350	Gln	Ser
Lys	Glu	Glu 355	Gly	Ser	Leu	Lys	Asp 360	Lys	Val	Val	Ile	Ile 365	Glu	Arg	Gln
Ala	Glu 370	Asn	Ile	Phe	Pro	Gln 375	Leu	Lys	Glu	Val	Met 380	Lys	Lys	Gly	Ala
Lys 385	Gly	Val	Ile	Leu	Ile 390	Asn	Gln	Ser	Gly	Pro 395	Thr	Thr	Tyr	Gly	Asn 400
Tyr	Glu	Thr	Val	Pro 405	Glu	Leu	Arg	Asn	Thr 410	Leu	Leu	Asp	Asp	Glu 415	Asp
Gly	Asp	Phe	Lys 420	Lys	Thr	Trp	Ala	Val 425	Ser	Ile	Ser	Ala	Asn 430	Asp	Gly
Lys	Ala	Leu 435	Lys	Asp	Tyr	Leu	Gln 440	Lys	Gln	Asp	Lys	Lys 445	Lys	Ser	Tyr
Ser	Leu 450	Val	Phe	Asn	Thr	Lys 455	Pro	Gln	Leu	Lys	His 460	Val	Phe	Lys	Tyr
Pro 465	Gly	Val	Ser	Gly	Phe 470	Ser	Thr	Trp	Gly	Pro 475	Gly	Leu	Asp	Leu	Thr 480
Leu	Lys	Pro	Asp	Ile 485	Val	Ala	Pro	Gly	Glu 490	Asn	Ile	Tyr	Ser	Thr 495	Gly
Asn	Asp	Asn	Ser 500	Tyr	Phe	Ile	Ser	Ser 505	Gly	Thr	Ser	Met	Ser 510	Ala	Pro
Lys	Val	Ala	Gly	Ala	Ser	Ala	Met	Phe	Leu	Pro	Val	Thr	Lys	Lys	Trp

		515					520					525			
Gln	Lys 530	Lys	Trp	Glu	Lys	Gln 535	Asn	Val	Ser	Met	Ser 540	Ile	Pro	Gln	Leu
Thr 545	Lys	Leu	Leu	Phe	Gln 550	Asn	Thr	Ala	Asp	Ile 555	Leu	Tyr	Asp	His	Ser 560
Val	Pro	Asn	Gly	Lys 565	Pro	Ile	Leu	Pro	Tyr 570	Ser	Pro	Arg	Arg	Gln 575	Gly
Ala	Gly	Ala	Leu 580	Asn	Val	Lys	Lys	Ala 585	Ala	Gln	Thr	Asn	Val 590	Phe	Val
Thr	Ser	Ala 595	Asp	Asn	Lys	Gly	Ala 600	Ile	Leu	Leu	Lys	Asp 605	Phe	Lys	Glu
Ser	Arg 610	Lys	Glu	Phe	Asp	Ile 615	Val	Ile	Arg	Asn	Phe 620	Ser	Asp	Gln	Val
Arg 625	Arg	Phe	Lys	Ile	Glu 630	Pro	Gly	Ser	Val	Leu 635	Gly	Lys	Ile	Leu	Tyr 640
Ser	Lys	Asp	Arg	Lys 645	Asn	Tyr	Asp	Lys	Asn 650	Glu	Thr	Ile	Gln	Thr 655	Val
His	Ser	Arg	Val 660	Ile	Lys	Asp	Ser	Ala 665	Ile	Glu	Ser	Pro	Leu 670	Tyr	Val
Gln	Ile	Ala 675	Pro	Asn	Ser	Ser	Met 680		Leu	Pro	Leu	Lys 685	Leu	Asn	Val
Gly	Lys 690	Ala	Val	Glu	Asn	Glu 695	Phe	Val	Glu	Gly	Phe 700	Ile	Lys	Leu	Arg
Ser 705	Leu	Glu	Lys	Asp	Gln 710	Pro	Asp	Leu	Asn	Ile 715	Pro	Met	Gly	Phe	Tyr 720
Gly	Asp	Trp	Asn	Ser 725	Glu	Asn	Ile	Leu	Asp 730	Pro	Val	Ala	Trp	Gln 735	Glu
Gly	Ser	Lys	Thr 740	Arg	Leu	Thr	Gly	Ile 745	Val	His	Pro	Tyr	Gly 750	Leu	Gly
Glu	Asp	Lys 755	Phe	Asp	Ile	Val	Pro 760	Trp	Gly	Val	Asp	Tyr 765	Glu	Lys	Trp

Lys Gln Asp 770	Pro Lys	Ala Leu 775	Asp Ala	Asp Gln	Arg Phe 780	Tyr Val	Met
Gln Ser Gln 785	_	Ile Ala 790	Asn His	Ala Lys 795	Met Arg	Leu Arg	Leu 800
Ile Phe Met	Arg His 805	Ala Lys	Asp Tyr	Arg Val	Asp Ile	Leu Asn 815	Ser
Gln Lys Asp	Lys Val 820	Leu Lys	Thr Leu 825	_	Gly His	Gln Ala 830	Pro
Lys Tyr Met 835	Glu Ser	Ala Leu	Leu Glu 840	His Gly	Asp Gln 845		Met
Gln Phe Ala 850	Asp Phe	Asp Pro 855	Asp Leu	Glu Trp	Asp Gly 860	Ser Val	Tyr
Asn Pro Lys 865		Thr Glu 870	Asp Pro	Leu Pro 875	Asp Gly	Asn Tyr	Phe 880
Ile Arg Val	Ser Ser 885	Arg Ile	Ser Lys	Asn Arg 890	Pro Tyr	Gln Glu 895	His
Ile Ile Pro	Phe Ala	Ile Asp	Asn Gln 905		Lys Val	Lys Ile 910	Glu
Glu Lys Thr 915	Ala Leu	Gln Val	Val Phe	His Val	Asp Asp 925	Ala His	Leu
Gln Gly Ile 930	Arg Leu	Val Lys 935	Asp Asn	Lys Ile	Ile Gln 940	Thr Leu	Glu
Thr Asp Thr 945	Gln Gly	Arg Phe 950	Arg Leu	Asn Leu 955	Ala Asp	Phe Gln	Gly 960
Lys Gly Phe	Glu Leu 965	Glu Ala	Ile Asp	Phe Ala 970	Glu Asn	Lys Thr 975	Ile
Ile Asp Leu	Asp Ser 980	Leu Lys	Glu Lys 985		Gly Tyr	Leu Phe 990	Gly
Ala Ser Ser 995	Ser Tyr	Asn Lys	Ser Ar	g Tyr Ar	g Ser Pr 10	_	er Vai

Ala	His 1010	Lys	Asn	Ala	Glu	Asp 1015		Leu	His	Glu	Asn 1020	Ser	Glu	Glu
Ser	Glu 1025	Glu	Ile	Ala	Ser	Ala 1030	Leu	Thr	Phe	Glu	Asp 1035	Gly	Ser	Asp
Phe	His 1040	Asp	Gly	Lys	Lys	Thr 1045		Ala	Tyr	Ser	Glu 1050		Asn	Lys
Ser	Asn 1055	Asp	Asn	Ser	Val	His 1060	Leu	Lys	Asp	Asn	Thr 1065	Tyr	Tyr	Arg
Asp	Tyr 1070	Tyr	Ile	His	Leu	Lys 1075	Glu	Gly	Gln	Arg	Leu 1080	Leu	Val	Thr
Thr	Thr 1085	Asn	Ala	Phe	His	Asn 1090	Ser	Lys	Gln	Gly	Asn 1095	Asp	Ile	Thr
Ala	Pro 1100	Thr	Trp	Gln	Ala	Asn 1105	Tyr	Thr	Tyr	Asp	Pro 1110	Ser	Thr	Asn
Gln	Gly 1115	Gln	Tyr	Tyr	Arg	Lys 1120	Ile	Ala	Ile	Pro	Ile 1125	Tyr	Gln	Gly
Ser	Asn 1130	Thr	Ile	Asn	Val	Lys 1135	Ala	Phe	Tyr	Lys	Asp 1140	Lys	Leu	Ile
Phe	Asn 1145	Lys	Gly	Tyr	Ala	Val 1150	Lys	Leu	Asp	Thr	Glu 1155	Val	Pro	Gln
Leu	Thr 1160	Phe	Asp	Asn	Pro	Asn 1165	Ile	Ser	Phe	Thr	Ser 1170	Asp	Lys	Trp
Gln	Asn 1175	Leu	Ser	Asp	Asp	Glu 1180	Tyr	Asp	Asp	Asp	Asn 1185	Ile	Val	Gly
Thr	Ile 1190	Thr	Ile	Pro	Asn	Asn 1195	Thr	Leu	Arg	Leu	Ser 1200	Gly	Lys	Ile
Arg	Asp 1205	Gly	Leu	Asp	Gly	Trp 1210	Arg	Met	Phe	Ile	Asn 1215	Gly	Asp	Met
Val	Asp 1220	Ser	Asp	Ile	Lys	Leu 1225	Gly	Glu	Tyr	Asp	Asp 1230	Ile	Phe	Gln

Gln	Asn 1235	Arg	Arg	Gln	Trp	Lys 1240		Glu	Lys	Gln	Val 1245	Glu	Asn	Asp
Asp	Tyr 1250	Val	Leu	Ile	Lys	Leu 1255	Ser	Asp	His	Val	Lys 1260	Asn	Ser	Arg
Ser	Tyr 1265	Leu	Phe	Lys	Val	Lys 1270		Asp	Pro	Thr	Val 1275	Ser	Glu	Tyr
His	Phe 1280	Thr	Asn	Lys	Asn	Asp 1285	Ile	Ile	Asp	Asp	Asp 1290	Lys	Thr	Leu
Leu	Thr 1295	Leu	Asn	Thr	Leu	Thr 1300	Asp	Ser	Ser	Leu	Gly 1305	Tyr	Ala	Asn
Lys	Leu 1310	Leu	Asn	Met	Pro	Lys 1315	_	Leu	Val	Lys	Ser 1320	Thr	Asp	Asp
Leu	Phe 1325	Lys	Ala	Met	Thr	Met 1330	Leu	Phe	Lys	Lys	Glu 1335	Ser	Phe	Phe
Leu	Tyr 1340	Pro	Leu	Lys	Asn	Asp 1345		Asn	Thr	Asn	Gly 1350	Ile	Ser	Met
Met	Thr 1355	Ser	Leu	Val	Gln	Phe 1360	Gln	Ala	Lys	Asp	Val 1365	Lys	Glu	Asn
Ile	Pro 1370	Leu	Glu	Trp	Glu	Ile 1375		Thr	Lys	Ala	Ser 1380	Asp	Ser	Arg
Gln	Leu 1385		-		Asn	Leu 1390	_			-		Arg	Leu	Asp
Gln	Val 1400	Ser	Thr	Asn	Pro	Leu 1405	Ala	His	Gln	Leu	Pro 1410	Leu	Glu	Asn
Ser	Asn 1415	Gln	Glu	Asn	Gly	Gln 1420	Asp	Ala	Ile	Leu	Thr 1425	Ser	Thr	Lys
Val	Leu 1430	Pro	Met	Ser	Lys	Ser 1435	Ser	Ile	Phe	Arg	Asp 1440	Ser	Leu	Arg
Glu	Thr 1445	Ser	Leu	Pro	Glu	Thr 1450	Arg	Asp	Ser	Ser	Ser 1455	Met	Ala	Asn
Trp	Ser	Leu	Ala	Phe	Phe	Leu	Ser	Ala	Val	Ile	Cys	Phe	Phe	Lys

1460 1465 1470

Gly Arg Arg Lys Arg Leu Asn Lys Leu 1475 1480

<210> 10 <211> 550

<211> 330 <212> PRT

<213> Streptococcus uberis

<400> 10

Met Glu Asn Gln Asn Gln Leu Thr Leu Gln Gly Ile Leu Gly Lys Cys

1 10 15

Leu Lys Trp Phe Leu Leu Leu Ser Ile Ser Leu Phe Thr Ala Phe Pro 20 25 30

Phe Ile Trp Met Leu Ile Ser Ser Leu Lys Thr Lys Ala Glu Val Met 35 40 45

Asn Thr Glu Val Ile Trp Pro His Ile Pro Gln Trp Gly Asn Tyr Leu 50 55 60

Glu Ile Phe Thr Gln Ser Pro Ile Pro Lys Tyr Ile Trp Asn Ser Leu 65 70 75 80

Trp Thr Ser Val Val Ile Val Leu Ile Gln Ile Val Thr Gly Ala Met 85 90 95

Leu Ala Tyr Ala Leu Val Phe Leu Arg Phe Lys Gly Arg Gln Leu Ile 100 105 110

Phe Ala Ile Val Met Gly Thr Tyr Met Leu Pro Ala Ala Ala Thr Tyr 115 120 125

Ile Pro Ser Tyr Ile Ile Leu Ser Lys Gly Gly Met Leu Asn Thr Leu 130 135 140

Thr Gly Leu Ile Val Ser Ser Thr Ile Ser Ile Phe Gly Ile Phe Leu 145 150 155 160

Leu Arg Gln Ala Phe Met Gln Val Pro Arg Ser Leu Ile Glu Ala Ser 165 170 175

Arg Met Asp Gly Ala Ser His Phe Arg Val Leu Trp Glu Ile Val Cys 180 185 190

Pro	Met	Thr 195	Lys	Ser	Ser	Phe	Ile 200	Thr	Phe	Gly	Leu	Met 205	Ser	Phe	Ile
Ala	Ala 210	Tyr	Asn	Ser	Gly	Lys 215	Glu	Thr	Ser	Ile	Gly 220	Asp	Val	Thr	Leu
Thr 225	Phe	Ser	Lys	Glu	Leu 230	Val	Pro	Val	Pro	Asn 235	Ile	Asp	Glu	Glu	Ile 240
Val	Ile	Pro	Ser	Ile 245	Pro	Glu	Lys	Pro	Leu 250	Val	Glu	Pro	Glu	Val 255	Asp
Ser	Ile	Leu	Pro 260	Leu	Ile	Pro	Leu	Gln 265	Pro	Ser	Leu	Pro	Ile 270	Tyr	Pro
Ser	Pro	Asp 275	Leu	Pro	Glu	Met	Glu 280	Gln	Pro	Asp	Gln	Asp 285	Ser	Pro	Glu
Ile	Ser 290	Gly	Gln	Ser	Gln	Ile 295	Val	Asp	Ile	Val	Glu 300	Asp	Thr	Leu	Pro
Gly 305	Val	Ser	Gly	Gln	Gln 310	Ser	Ser	Ser	Glu	Glu 315	Thr	Glu	Ile	Thr	Glu 320
Asp	Thr	Arg	Pro	Glu 325	Ser	Asp	Asn	Glu	Ile 330	Ile	Ile	Gly	Gly	Gln 335	Ser
Glu	Leu	Val	Asp 340	Ile	Val	Glu	Asp	Thr 345	Gln	Ser	Gly	Met	Ser 350	Gly	Gln
His	Ser	Ser 355	Ser	Glu	Glu	Thr	Glu 360	Ile	Ser	Glu	Asp	Thr 365	Arg	Pro	Glu
Ser	Asp 370	Asn	Glu	Ile	Ile	Val 375	Gly	Gly	Gln	Asn	Glu 380	Leu	Val	Asp	Ile
Val 385	Glu	Asp	Thr	Gln	Pro 390	Ser	Leu	Ser	Gly	His 395	Gln	Ser	Glu	Ser	Gln 400
Glu	Thr	Val	Thr	Val 405	Glu	Asp	Thr	Gln	Pro 410	Asn	Gln	Thr	Asn	Ile 415	Leu
Ile	Gly	Gly	Gln 420	Ser	Glu	Ile	Val	Asp 425	Ile	Ile	Glu	Asp	Thr 430	Gln	Ala

Gly Met Thr Gly Gln Tyr Ser Ser Thr Asp Gln Leu Thr Ile Val Glu 435 440 Asp Thr Leu Pro Glu Gln Met Glu Glu Thr Asp Glu Ile Lys Ser Asp 450 455 460 Ser Gln Val Met Asp Ile Pro Lys Val Asn Asp Thr Asn Asn Asp Lys 470 475 Gly Ala Lys Ala Ser Val Ala Phe Asp Val Glu Glu Ser Lys Val Val Thr Thr Gln Asp Ile Lys Pro Ser Thr Tyr Val Lys Gly Asp Asn Gln 500 505 510 Leu Pro Gln Thr Gly Asp Asp Asp Asn Val Asn Ala Phe Phe Thr Leu 515 520 Ala Ala Leu Ser Val Ile Gly Ala Thr Gly Leu Arg Gln Asn Lys Arg 530 535 540

Arg Glu Lys Glu Arg Asn 545 550

<210> 11 <211> 93

<212> PRT

5

<213> Streptococcus uberis

<400> 11

Val Val Lys Val Thr Val Asp Gly Ser Asp Asn Ser Thr Ile Asp Ser 1 5 10 15

Gly Phe Val Lys Val Glu Gln Pro Thr Pro Gly Ser Asn Ser Ser Ser 20 25 30

Glu Ser Leu Ser Gln Ser Thr Thr Gln Ser Ser Ser Gln Ser Ser Ser 35 40 45

Ala Lys Pro Val Ala Ser Gln Thr Ala Ala Glu Leu Pro His Thr Gly 50 55 60

Gln Ala Glu Asn Asn Gly Leu Tyr Gly Ser Ala Ala Leu Ala Ile Leu 65 70 75 80

Ala Ala Leu Gly Leu Ala Gly Lys Lys Arg Asp Glu Lys 85 90

10

<210> 1 <211> 1 <212> F <213> S	116 PRT	coccus	s uber	is												
<400> 1	2															
	Met 1	Phe	Lys	Thr	Lys 5	Lys	Glu	Ile	Phe	Ser 10	Ile	Arg	Lys	Thr	Ala 15	Leu
	Gly	Val	Gly	Ser 20	Val	Leu	Leu	Gly	Val 25	Ile	Leu	Thr	Thr	Gln 30	Val	Ala
	Ser	Ala	Asn 35	Glu	Val	Ser	Leu	Met 40	Thr	Pro	Ser	Val	Asp 45	Lys	Ser	Leu
	Thr	Thr 50	Thr	Ser	Pro	Val	Leu 55	Glu	Ser	Thr	Ser	Ser 60	Gln	Leu	Ala	Ala
	Thr 65	Thr	Ala	Pro	Thr	Thr 70	Thr	Asp	Thr	Thr	Ser 75	Asn	Val	Thr	Ala	Thr 80
	Ser	Pro	Val	Leu	Ala 85	Ala	Ala	Thr	Thr	Ala 90	Pro	Ser	Val	Thr	Thr 95	Ser
	Pro	Ile	Ala	Ser 100	Pro	Ile	Arg	Tyr	Val 105	Ser	Asp	Pro	Asn	Gln 110	Pro	Val
	Gly	Tyr	Arg 115	Ala	Thr	Gln	Val	Gln 120	Gly	Thr	Asp	Gly	Ser 125	Ile	Ile	Thr
	Thr	Gln 130	Thr	Gly	Ala	Leu	Asp 135	Ala	Asn	Gly	Asn	Pro 140	Ile	Val	Thr	Val
	Glu 145	Arg	Ile	Glu	Pro	Thr 150	Lys	Thr	Val	Ile	Val 155	Leu	Gly	Thr	Lys	Ser 160
	Thr	Ser	Gln	Val	Thr 165	Ser	Thr	Gln	Ala	Ala 170	Thr	Thr	Thr	Tyr	Ser 175	Ile
	Asp	Val	Thr	Lys 180	Pro	Val	Gly	Thr	Asp 185	Val	Val	Ile	Pro	Ala 190	Val	Asp
	Gly	Gln	Thr 195	Thr	Thr	Thr	Thr	Thr 200	Tyr	Lys	Ile	Glu	Thr 205	Ala	Thr	Thr

Ala	Pro 210	Val	Ser	Pro	Ser	Val 215	Leu	Ser	Glu	Gly	Tyr 220	Lys	Trp	Ile	Asp
Gln 225	Pro	Phe	Tyr	His	Val 230	Asp	Thr	Thr	Gln	Thr 235	Leu	Pro	Ser	Asp	Arg 240
Ile	Ser	Ile	Asp	Gln 245	Leu	Phe	Val	Pro	Met 250	Pro	Val	Leu	Thr	Pro 255	Asp
Tyr	Asn	Thr	Thr 260	Glu	Ser	Thr	Val	Arg 265	Glu	Tyr	Ala	Gln	Tyr 270	Ala	Glu
Asn	Tyr	Met 275	Tyr	Asp	Tyr	Ile	Thr 280	Val	Thr	Asn	Pro	Asp 285	Gly	Ser	Thr
Thr	Arg 290	Gln	Gln	Val	Ile	Arg 295	Pro	Val	Thr	Ser	Glu 300	Met	Leu	Asp	Pro
Thr 305	Asn	Thr	Arg	Leu	Arg 310	Thr	Leu	Thr	Gly	Leu 315	Thr	Asp	Asp	Asn	Ala 320
Phe	Tyr	Ser	Arg	Leu 325	Phe	Asp	Ala	Ser	Gln 330	Gln	Asp	Leu	Trp	Asn 335	Thr
Ser	Ala	Gln	Asp 340	Tyr	Gly	Leu	Glu	Ile 345	Val	Pro	Glu	Asp	Leu 350	Ser	Thr
Ser	Thr	Asp 355	Asp	Phe	Leu	Arg	Tyr 360	His	Ser	Ser	Asn	Ile 365	Ile	Asn	Asp
Ala	Leu 370								Tyr				Gln	Leu	Ala
Tyr 385	Asp	Leu	Val	Ser	Leu 390	Gly	Thr	Leu	Thr	Ser 395	Asp	Gln	Gln	Ser	Ala 400
Met	Asp	Met	Met	Thr 405	Ser	Gln	Phe	Glu	Ser 410	Leu	Thr	Leu	Arg	Tyr 415	Asn
Asn	Tyr	Lys	Asp 420	Ser	Val	Ala	Ile	Val 425	Val	Asp	Tyr	Ser	Asn 430	Thr	Thr
Met	Ser	Ala 435	Thr	Gln	Ala	Asp	Phe 440	Glu	Ala	Lys	Leu	Ala 445	Ala	Leu	Pro
Val	Glu	Val	Gln	Arg	Ala	Ile	Ser	Glu	Leu	Thr	Ile	Tyr	Asp	Gly	Gln

	450					455					460				
Ile 465	Pro	Gly	Met	Gly	Glu 470	Thr	Thr	Leu	Gly	Leu 475	Ala	Asn	Ser	Ala	Asp 480
Gln	Thr	Ile	Ala	Leu 485	Lys	Tyr	Glu	Ala	Asn 490	Asn	Leu	Asn	Leu	Val 495	Ser
Thr	Val	Leu	His 500	Glu	Met	Thr	His	Ile 505	Ile	Asp	Phe	Lys	Ser 510	Gly	Leu
Tyr	Ser	Glu 515	Thr	Thr	Asp	Arg	Asn 520	Thr	Asp	Gly	Ser	Leu 525	Ser	Thr	Val
Met	Ala 530	Phe	Ser	Asp	Thr	Gln 535	Glu	Phe	Leu	Asp	Val 540	Tyr	His	Thr	Tyr
Phe 545	Asp	Arg	Pro	Asp	Val 550	Trp	Ser	Tyr	Tyr	Arg 555	Asp	Asn	Ser	Glu	Glu 560
Ala	Phe	Ala	Glu	Gly 565	Leu	Ser	Gln	Tyr	Ile 570	Met	His	Arg	Leu	Phe 575	Gly
Thr	Pro	Tyr	Ser 580	Thr	Tyr	Ile	Ala	Asn 585	Pro	Tyr	Thr	Gly	Asp 590	Ala	Tyr
Asn	Pro	Gly 595	Asp	Gly	Ser	Gly	Tyr 600	Ser	Pro	Phe	Ala	Glu 605	Thr	Glu	Phe
Tyr	Phe 610	Ala	Ser	Leu	Tyr	Asn 615	Arg	Leu	Phe	Glu	Tyr 620	Pro	Arg	Thr	Ala
Gln 625	Val	Val	Pro	Tyr	Leu 630	Val	Thr	Thr	Thr	Thr 635	Thr	Ala	Pro	Val	Asn 640
Gly	Gln	Val	Ile	Tyr 645	Gly	Ala	Met	Pro	Glu 650	Glu	Thr	Thr	Thr	Thr 655	Thr
Pro	Tyr	Thr	Thr 660	Val	Tyr	Val	Gly	Asp 665	Thr	Ser	Phe	Ala	Tyr 670	Asp	Pro
Thr	Gly	Gln 675	Thr	Asp	Arg	Val	Gln 680	Ala	Gly	Val	Asp	Gly 685	Thr	Glu	Thr
Ile	Arg 690	Thr	Thr	Tyr	Ser	Leu 695	Asp	Ser	Asn	Asn	Gln 700	Leu	Val	Ala	Thr

Gln 705	Thr	Val	Ile	Ser	Ser 710	Thr	Pro	Val	Gln	Asn 715	Gln	Ile	Ile	Thr	Lys 720
Gly	Thr	Gln	Pro	Thr 725	Val	Val	Asp	Thr	Ser 730	Val	Pro	Met	Thr	Ile 735	Val
Tyr	Gln	Glu	Val 740	Thr	Asp	Gly	Ser	Leu 745	Gly	Asp	Trp	Gln	Val 750	Asn	Val
Leu	Asp	Ala 755	Gly	Gln	Asp	Gly	Leu 760	Ile	Arg	Ser	Thr	Thr 765	Thr	Tyr	Ser
Val	Asp 770	Pro	Val	Thr	Gly	Ile 775	Val	Thr	Pro	Ser	Thr 780	Thr	Glu	Ala	Thr
Ile 785	Thr	Ala	Met	Arg	Pro 790	Met	Ile	Val	Gln	Tyr 795	Gln	Val	Gly	Ser	Glu 800
Lys	Val	Thr	Ala	Ile 805	Pro	Tyr	Gln	Thr	Arg 810	Tyr	Val	Ile	Asp	Thr 815	Ser
Leu	Ala	Thr	Gly 820	Thr	Gln	Val	Ile	Val 825	Gln	Glu	Gly	Val	Asn 830	Gly	Ser
Ser	Thr	Glu 835	Ser	Val	Gln	Ser	Tyr 840	Asn	Phe	Ile	Gln	Asp 845	Gly	Ser	Asn
Ser	Arg 850	Phe	Asp	Ala	Ile	Val 855	Tyr	Ala	Ser	Pro	Val 860	Val	Val	Ala	Ala
Gln 865	Asp	Gln	Val	Ile	Ala 870	Val	Gly	Gly	Gln	Asp 875	Gln	Val	Thr	Asp	Gln 880
Ala	Val	Ala	Lys	Thr 885	Ile	Phe	Tyr	Gln	Glu 890	Val	Thr	Asp	Gly	Ser 895	Leu
Gly	Asp	Trp	Gln 900	Val	Lys	Val	Leu	Asp 905	Ala	Gly	Gln	Asp	Gly 910	Leu	Val
Arg	Thr	Thr 915	Thr	Ser	Tyr	Ser	Val 920	Asp	Pro	Val	Thr	Gly 925	Ile	Val	Thr
Pro	Ser 930	Thr	Thr	Glu	Ala	Thr 935	Ile	Thr	Ala	Met	Lys 940	Pro	Met	Ile	Val

Gln Tyr Gln Val Gly Lys Ser Lys Leu Ser Ala Ile Pro Phe Leu Thr Glu Tyr Ile Thr Asp Asp Ser Leu Ala Val Gly Leu Glu Lys Val Ile 965 970 Gln Glu Gly Val Gly Gly Thr Gln Ile Glu Thr Val Gln Ser Phe Asn 985 Phe Ile Gln Asp Gly Ala Asn Ser His Phe Glu Asn Ile Val Tyr Ser 1000 1005 Ser Pro Thr Ile Val Val Ala Ala Val Asp Gln Val Ile Ala Arg 1010 1015 1015 Gly Thr Lys Val Val Glu Val Val Val Ala Val Pro Glu Val Val 1030 Thr Pro Lys Pro Glu Thr Ser Glu Val Ile Ser Pro Glu Lys Gly 1040 1045 Gln Thr Ala Pro Thr Ile Thr Val Glu Ala Ile Lys Ala Pro Ala 1060 Gln Lys Lys Ala Lys Val Glu Val Val Thr Thr Pro Lys Glu Ser 1075 Leu Pro Thr Thr Gly Asp Asp Gln Asn Leu Leu Val Thr Leu Met 1085 1090 1095 Ser Ser Leu Leu Leu Met Ser Leu Gly Leu Gly Leu Lys Lys 1100 1105 1110 Glu Asp Glu 1115 <210> 13 <211> 467 <212> PRT <213> Streptococcus uberis <400> 13 Leu Leu Ala Leu Ser Gln Leu Pro Asp Lys Leu Leu Glu Lys Ile Asp 5 10

Ile Thr Cys Phe Asp Asp Pro Lys His Phe Gly Arg Gly Ile Pro Phe

5

10

			20					25					30		
Gln	Glu	Asp 35	Ser	Ser	Thr	Ala	Trp 40	Ile	Asn	Ser	Pro	Ile 45	Asp	Ala	Ile
Ser	Tyr 50	Asp	Tyr	His	Asp	Met 55	Asn	Asp	Phe	Gln	Asn 60	Trp	Met	Glu	Gln
Lys 65	Gly	Leu	Asp	Thr	Asp 70	Gln	Ser	Tyr	Val	Pro 75	Arg	Ser	Leu	Tyr	Gly 80
Arg	Tyr	Met	Thr	Glu 85	Arg	Ala	His	Asp	Leu 90	Leu	Gln	Lys	Leu	Lys 95	Ala
Ser	Val	Ile	His 100	Glu	Lys	Val	Thr	Gln 105	Leu	Asn	Tyr	Glu	Pro 110	Asp	Ser
Gln	Lys	Trp 115	Asn	Ile	Gly	Thr	Ser 120	Gln	Arg	Thr	Ile	Pro 125	Thr	Arg	Phe
Asp	Glu 130	Val	His	Leu	Thr	Cys 135	Gly	Glu	Leu	Pro	Val 140	Leu	Asp	Pro	Tyr
His 145	Leu	Gln	Gly	Asn	Pro 150	Asn	Tyr	Ile	Ala	Asp 155	Pro	Tyr	Pro	Leu	Lys 160
Asn	Leu	Pro	Lys	Gln 165	Pro	Gly	Lys	Lys	Asp 170	Arg	Ile	Ala	Ile	Ile 175	Gly
Thr	Gly	Leu	Ala 180	Ser	Ile	Asp	Thr	Leu 185	Lys	Trp	Leu	Leu	Lys 190	Asn	Ser
Gln	Ala	Asp 195	Leu	Leu	Ala	Phe	Ser 200	Pro	Ser	Met	Thr	Phe 205	Pro	Thr	Val
Arg	Ile 210	Leu	Lys	Lys	Glu	Thr 215	Ile	Asp	Trp	Gln	Phe 220	Leu	Thr	Asp	Thr
Asn 225	Lys	Gln	Lys	Leu	Phe 230	Glu	Glu	Asn	Ser	Phe 235	Asn	Phe	Lys	Ser	Leu 240
Glu	Asn	Leu	Phe	Leu 245	Ser	Glu	Leu	Gln	Ala 250	Leu	Gly	Phe	Gln	Asn 255	Trp
Glu	Glu	Thr	Cys	Arg	Gln	Phe	Leu	Ala		Gly	Ile	Pro	Gly	Ile	Ser

Leu Ser Leu Ala Phe Pro Ala Gln Leu Phe Leu Leu Gln Gln Leu Ala Ser His Leu Val Asp Trp Leu Thr Asp Phe Trp Pro Gln Met Thr Leu Ser Asp Arg Gln Tyr Tyr Lys Glu Asn Tyr Gly Lys Ala Ile Ile Asn Leu Arg Asn Pro Met Pro Glu Glu Ala Gly Arg Leu Leu Ile Glu Ala Thr Ala Gln Gly Arg Leu Gln Ile Ile Glu Ala Val Thr Asp Ile Glu Ala Gly Asn Tyr Gly Phe Val Leu Lys Arg Glu Val Gly Lys Glu Leu Ser Val Ala Thr Val Ile Asn Ala Thr Gly Tyr His Leu Lys Glu Ser Asn Val His Gln Ala Arg Thr Leu Ile Gln Gln Val Ile Arg Asp Gly Leu Val Gln Ile Asn Pro Glu Gly Gly Leu Ser Ile Leu Pro Gln Thr Gly Gln Val Ile Ser Pro Lys Tyr Gly Ile Leu Ala Thr Leu Tyr Ala His Gly Ser Leu Val Asn Gly Val Ile Tyr Gln Asn Asn Ser Thr Ile Lys Ile Gln Gln Met Ala Glu Arg Ala Ile Gly Asn Val Ile Lys Lys

Pro Thr Ile

<210> 14 <211> 818 <212> PRT

<213> Streptococcus uberis

<400> 14

Met 1	Arg	Lys	His	Tyr 5	Val	Ser	Lys	Ser	Ala 10	Ile	Phe	Leu	Ala	Met 15	Leu
Val	Ala	Thr	Gly 20	Ser	Ala	Gln	Phe	Val 25	Lys	Ala	Glu	Thr	Pro 30	Thr	Thr
Thr	Thr	Ser 35	Pro	Ala	Thr	Ser	Leu 40	Thr	Asp	Ala	Ser	Ala 45	Ser	Thr	Thr
Pro	Thr 50	Thr	Asn	Thr	Thr	Ser 55	Thr	Val	Thr	Pro	Ala 60	Leu	Asp	Pro	Asn
Thr 65	Asn	Phe	Thr	Val	Asp 70	Ser	Ser	Ala	Thr	Thr 75	Ser	Thr	Thr	Thr	Pro 80
Ser	Pro	Val	Glu	Ala 85	Ala	Ala	Ile	Ser	Pro 90	Val	Ile	Ala	Thr	Ala 95	Gln
Pro	Thr	Thr	Asn 100	Val	Thr	Ser	Ala	Ser 105	Leu	Ala	Pro	Ala	Ala 110	Asn	Thr
Met	Ala	Thr 115	Thr	Pro	Val	Glu	Gly 120	Gln	Thr	Val	Asp	Val 125	Arg	Ile	Ile
Ser	Thr 130	Thr	Asp	Leu	His	Ser 135	Asn	Leu	Val	Asn	Tyr 140	Asp	Tyr	Tyr	Gln
Asp 145	Lys	Ala	Ser	Gln	Thr 150	Ile	Gly	Leu	Ala	Lys 155	Ala	Ala	Val	Leu	Ile 160
Asp	Gln	Ala	Lys	Ala 165	Glu	Asn	Pro	Asn	Ala 170	Val	Leu	Val	Asp	Asn 175	Gly
Asp	Ile	Leu	Gln 180	Gly	Thr	Pro	Leu	Gly 185	Thr	Tyr	Glu	Ala	Leu 190	Ile	Asp
Pro	Leu	Gln 195	Pro	Gly	Glu	Val	His 200	Pro	Met	Tyr	Ala	Ala 205	Leu	Asp	Lys
Leu	Gly 210	Phe	Asp	Ala	Ser	Thr 215	Leu	Gly	Asn	His	Glu 220	Phe	Asn	Tyr	Gly
Leu 225	Thr	Phe	Ile	Glu	Asn 230	Ala	Ile	Ala	Ser	Ala 235	Gly	Leu	Pro	Ile	Leu 240
Asn	Ala	Asn	Val	Phe	Asp	Ala	Ala	Thr	Gly	Glu	Tyr	Leu	Phe	Gln	Pro

	245	250		255
Tyr Ala Ile Vai		Phe Thr Asp 265	Ala Asn Gly	Gln Ala Val 270
Asp Leu Lys Ile 275	e Gly Ile Thr	Gly Ile Val 280	Pro Pro Gln 285	Ile Met Leu
Trp Asp Lys Ala 290	Asn Leu Glu 295	Gly Lys Val	Thr Val Lys 300	Asp Ala Val
Gln Ala Val Thi 305	Glu Ile Ile 310	Pro Thr Ile	Lys Asn Ala 315	Gly Ala Asp 320
Ile Val Leu Val	. Leu Ala His 325	Thr Gly Ile 330	Gly Asp Asp	Val Tyr Glu 335
Thr Gly Glu Glu 340	_	Tyr Gln Ile 345		Ala Gly Val 350
Asp Ala Val Val	. Thr Gly His	Ser His Ala 360	Glu Phe Pro 365	Ser Gly Gln
Asp Thr Gly Phe	e Tyr Glu Ser 375	Tyr Asn Gly	Val Asp Gly 380	Val Ser Gly
Leu Ile Asn Gly 385	7 Thr Pro Val 390	Thr Met Ala	Gly Lys Tyr 395	Gly Asp His 400
Ile Gly Ile Ile	e Asp Leu Asn 405			Lys Trp Thr 415
Val Asn Arg Asp 420		Ala Glu Ile 425	Arg Lys Ile	Asp Thr Lys 430
Ser Thr Ile Ala 435	a Asp Ala Asp	Ile Leu Ala 440	Leu Ala Gln 445	Ala Ser His
Leu Gly Thr Ile 450	e Asp Tyr Val 455	Arg Gln Thr	Val Gly Glu 460	Thr Thr Ala
Pro Ile Asn Ser 465	Tyr Phe Ala 470	Leu Val Lys	Asp Asp Pro 475	Ser Val Gln 480
Ile Val Asn Asr	n Ala Gln Leu 485	Trp Tyr Ala 490	Lys Gln Gln	Leu Ala Gly 495

Thr	Pro	Glu	Ala 500	Asp	Leu	Pro	Leu	Leu 505	Ser	Ala	Ala	Ala	Pro 510	Phe	Lys
Ala	Gly	Thr 515	Arg	Asn	Asp	Pro	Thr 520	Ala	Tyr	Thr	Asp	Ile 525	Pro	Ala	Gly
Pro	Ile 530	Ala	Ile	Lys	Asn	Val 535	Ala	Asp	Leu	Tyr	Leu 540	Tyr	Asp	Asn	Val
Thr 545	Ala	Ile	Leu	Lys	Leu 550	Thr	Gly	Ala	Asp	Ile 555	Lys	Glu	Trp	Leu	Glu 560
Met	Ser	Ala	Gly	Gln 565	Phe	Asn	Thr	Ile	Asp 570	Pro	Asn	Val	Ala	Gly 575	Pro
Gln	Asn	Leu	Val 580	Asn	Thr	Asp	Tyr	Arg 585	Thr	Tyr	Asn	Phe	Asp 590	Val	Ile
Asp	Gly	Val 595	Thr	Tyr	Glu	Phe	Asp 600	Val	Thr	Gln	Pro	Asn 605	Lys	Tyr	Asp
Ala	Lys 610	Gly	Asn	Leu	Leu	Asn 615	Pro	Asn	Ala	Ser	Arg 620	Val	Arg	Asn	Leu
Lys 625	Phe	Gln	Gly	Lys	Glu 630	Ile	Asp	Pro	Asn	Gln 635	Glu	Phe	Met	Val	Val 640
Thr	Asn	Asn	Tyr	Arg 645	Ala	Ser	Gly	Ser	Phe 650	Pro	Gly	Val	Lys	Asn 655	Ala
Thr	Ile	Asn	Arg 660	Leu	Leu	Asn	Leu	Glu 665	Asn	Arg	Gln	Ala	Ile 670	Ile	Asn
Tyr	Ile	Val 675	Ser	Glu	Lys	Thr	Ile 680	Asn	Pro	Ser	Ala	Asp 685	Asn	Asn	Trp
Tyr	Phe 690	Ala	Asp	Thr	Ile	Gln 695	Gly	Leu	Asp	Leu	His 700	Phe	Leu	Ser	Ala
Asp 705	Thr	Ser	Lys	Asn	Leu 710	Ile	Gly	Asp	Lys	Ala 715	Asp	Ile	Ser	Tyr	Thr 720
Gly	Pro	Ser	Thr	Ile 725	Glu	Gly	Phe	Gly	Asp 730	Phe	Val	Phe	Thr	Tyr 735	Val

Lys Pro Glu Leu Pro Val Ala Thr Pro Glu Thr Pro Gln Glu Thr Gly 745 750 740 Ser Gln Leu Thr Glu Asn Arg Arg Gln Glu Ile His Gln Leu Ala Thr 760 Arg Val Tyr Asn Gln Thr Lys Ala Thr Ser Ser Ser Thr Thr Lys Ala 775 Glu Leu Pro Lys Ala Gly Ser Gln Glu Ser Lys Gly Leu Phe Phe Met 790 795 Gly Leu Ser Leu Leu Gly Leu Ala Gly Leu Ile Thr Lys Lys Glu Glu 810 Arg Gln <210> 15 <211> 516 <212> PRT <213> Streptococcus uberis <400> 15 Met Arg Lys Phe Leu Met Ser Cys Phe Ala Ala Leu Leu Leu Phe 10 5 Ala Gly Val Ser Gln Ala Asp Ala Asp Gln Tyr Leu Arg Val Gly Met 20 25 Glu Ala Ala Tyr Ala Pro Phe Asn Trp Thr Gln Asp Asp Asn Ser Asn 35 Gly Ala Val Pro Ile Glu Gly Thr Asn Gln Tyr Ala Asn Gly Tyr Asp 50 55 Val Gln Val Ala Lys Lys Val Ala Lys Ser Leu Asn Lys Lys Leu Leu 70 75 80 Val Val Lys Thr Ser Trp Thr Gly Leu Ile Pro Ala Leu Thr Ser Gly 85 90 95 Lys Ile Asp Met Ile Ala Ala Gly Met Ser Pro Thr Glu Glu Arg Lys 100 105 110 Lys Glu Ile Ala Phe Ser Asp Ser Tyr Tyr Thr Ser Glu Pro Val Ile

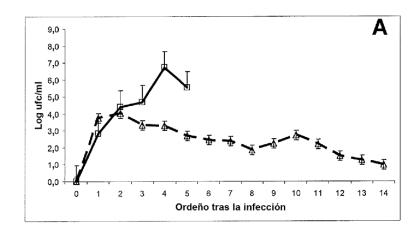
5

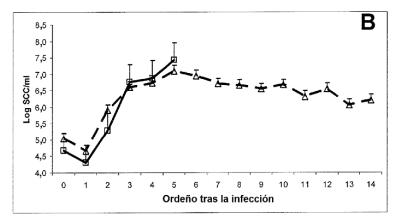
10

	115				120					125			
Val Val 130	Lys A	la Asp	Ser	Lys 135	Phe	Ala	Lys	Ala	Lys 140	Ser	Leu	Asp	Asp
Phe Ala 145	Gly A	la Lys	Ile 150	Thr	Ala	Gln	Gln	Gly 155	Val	Trp	His	Val	Asn 160
Leu Ile	Pro G	In Ile 165	Asn	Gly	Val	Lys	Ala 170	Gln	Thr	Pro	Met	Gly 175	Asp
Phe Ser		let Arg 80	Gln	Ala	Leu	Ser 185	Ser	Gly	Val	Ile	Asp 190	Gly	Tyr
Ile Ser	Glu A 195	rg Pro	Glu	Ala	Met 200	Thr	Ala	Glu	Asn	Ala 205	Asn	Ser	Ala
Phe Lys 210	Met V	al Val	Leu	Lys 215	Lys	Ala	Phe	Thr	Val 220	Asn	Glu	Ser	Asp
Ala Ala 225	Ile A	la Val	Gly 230	Met	Arg	Lys	Asp	Asp 235	Pro	Arg	Ile	Val	Gln 240
Val Asn	Thr V	al Leu 245	Ala	Asp	Leu	Ser	Ala 250	Asn	Asp	Arg	Leu	Asp 255	Leu
Met Asp		et Val 60	Thr	Leu	Gln	Pro 265	Lys	Glu	Lys	Lys	Ala 270	Glu	Asn
Gly Val	Gln P 275	ro Ser	Phe	Leu	Asp 280	Gln	Met	Trp	Ser	Ile 285	Val	Thr	Lys
Asn Trp 290	Lys G	In Phe	Leu	Arg 295	Gly	Thr	Gly	Leu	Thr 300	Leu	Leu	Ile	Ser
Thr Ile 305	Gly T	hr Ile	Val 310	Gly	Leu	Ile	Ile	Gly 315	Leu	Leu	Ile	Gly	Ile 320
Tyr Arg	Thr A	la Pro 325	Lys	Ser	Lys	His	Lys 330	Val	Leu	Ala	Phe	Phe 335	Gln
Lys Leu		ly Trp	Phe	Leu	Asn	Val 345	Tyr	Ile	Glu	Val	Phe 350	Arg	Gly
Thr Pro	Met I 355	le Val	Gln	Ser	Met 360	Val	Ile	Tyr	Tyr	Gly 365	Thr	Ala	Gln

	Ala	Phe 370	Gly	Ile	Ser	Ile	Asp 375	Arg	Thr	Leu	Ala	Ala 380	Ile	Phe	Ile	Val	
	Ser 385	Ile	Asn	Thr	Gly	Ala 390	Tyr	Met	Thr	Glu	Ile 395	Val	Arg	Gly	Gly	Ile 400	
	Phe	Ala	Val	Asp	Lys 405	Gly	Gln	Phe	Glu	Ala 410	Ala	Thr	Ala	Leu	Gly 415	Phe	
	Thr	His	Gly	Gln 420	Thr	Met	Arg	Lys	Ile 425	Val	Leu	Pro	Gln	Val 430	Val	Arg	
	Asn	Ile	Leu 435	Pro	Ala	Thr	Gly	Asn 440	Glu	Phe	Val	Ile	Asn 445	Ile	Lys	Asp	
	Thr	Ser 450	Val	Leu	Asn	Val	Ile 455	Ser	Val	Val	Glu	Leu 460	Tyr	Phe	Ser	Gly	
	Asn 465	Thr	Val	Ala	Thr	Gln 470	Asn	Tyr	Gln	Tyr	Phe 475	Gln	Thr	Phe	Ser	Val 480	
	Ile	Ala	Val	Ile	Tyr 485	Phe	Ile	Leu	Thr	Phe 490	Thr	Val	Thr	Arg	Ile 495	Leu	
	Arg	Tyr	Val	Glu 500	Arg	Arg	Ile	Asp	Asp 505	Asp	Asn	Tyr	Thr	Thr 510	Thr	Val	
	Asn	Glu	Leu 515	Pro													
<210> 10 <211> 2 <212> A <213> S	1 DN	cia art	ificial														
<220> <223> C	ebado	r															
<400> 10 gctct		a tt1	ttcg	gtat	С												21
<210> 1' <211> 20 <212> A <213> S	6 DN	cia art	ificial														
<220> <223> C	ebado	r															
<400> 1 catttt		: gaa	ıtaga	aagg	acto	ŋtc											26
<210> 18	8																

	<211> 20 <212> ADN <213> Secuencia artificial		
5	<220> <223> Cebador		
10	<400> 18 tggttgaagc agaagctgaa		20
15	<210> 19 <211> 22 <212> ADN <213> Secuencia artificial		
10	<220> <223> Cebador		
20	<400> 19 gagcaattgc aaaatgaaaa	gc	22
25	<210> 20 <211> 26 <212> ADN <213> Secuencia artificial		
	<220> <223> Cebador		
30	<400>20 atgtcaaaag cccggtacct	ttacag	26
35	<210> 21 <211> 23 <212> ADN <213> Secuencia artificial		
40	<220> <223> Cebador <400> 21		
	gaaatgatga tgagaaattg <210> 22	aga	23
45	<211> 20 <212> ADN <213> Secuencia artificial		
50	<220> <223> Cebador		
	<400>22 agccacaaac accattcaca	?	20
55	<210> 23 <211> 24 <212> ADN <213> Secuencia artificial		
60	<220> <223> Cebador		
65	<400>23 gaagaagtgg taactgctac	aaac	24


	<210> 24 <211> 30	
	<211> 30 <212> ADN	
	<213> Secuencia artificial	
5	<220> <223> Cebador	
	<400> 24	
10	tactaacttc ttgtcatctt ggtacctttt	30
	<210> 25	
	<211> 23	
4.5	<212> ADN	
15	<213> Secuencia artificial	
	<220>	
	<223> Cebador	
20	<400> 25	
	caacgaatca acaaactgaa agc	23


REIVINDICACIONES

- 1. Una composición inmunogénica que comprende las proteínas ancladas por sortasa de *Streptococcus uberis* SUB1154 que consiste en la secuencia de aminoácidos representada por la SEQ ID NO 7, SUB1095 que consiste en la secuencia de aminoácidos representada por la SEQ ID NO: 8 y SUB0145 que consiste en la secuencia de aminoácidos representada por la SEQ ID NO 2, o una proteína con un 95 % o más identidad de secuencia con la misma, en donde la composición es capaz de inducir una respuesta inmunitaria, cuando se administra a un sujeto y en donde la composición inmunogénica es capaz de inducir una respuesta inmunitaria dirigida a un antígeno presente en la composición y actúa previniendo o reduciendo la infección por *Streptococcus uberis* en un sujeto al que se ha administrado la composición inmunogénica.
 - 2. La composición inmunogénica de la reivindicación 1 en donde el sujeto es un mamífero, opcionalmente un rumiante.
- 3. La composición inmunogénica de cualquier reivindicación anterior, en donde la composición comprende uno o más antígenos adicionales, además de proteínas ancladas por sortasa de *S. uberis*.

10

- 4. La composición inmunogénica de cualquier reivindicación anterior, en donde la composición es una vacuna profiláctica o terapéutica contra *S. uberis*.
- 20 5. La composición inmunogénica de cualquier reivindicación anterior, en donde la composición comprende además un adyuvante.
- 6. La composición inmunogénica de cualquier reivindicación anterior, en donde la composición comprende polímeros u otros agentes para controlar la consistencia de la composición y/o para controlar la liberación de las proteínas de la composición.
 - 7. La composición inmunogénica de cualquier reivindicación anterior, en donde los principios activos en la composición tienen una pureza mayor del 50 %.
- 30 8. La composición inmunogénica de cualquier reivindicación anterior que es una composición farmacéutica que comprende tres proteínas ancladas por sortasa de S. uberis, junto con un vehículo o excipiente farmacéuticamente aceptable.
- 9. Uso de proteínas ancladas por sortasa de *Streptococcus uberis* SUB1154 que consiste en la secuencia de aminoácidos representada por la SEQ ID NO 7, SUB1095 que consiste en la secuencia de aminoácidos representada por la SEQ ID NO: 8 y SUB0145 que consiste en la secuencia de aminoácidos representada por la SEQ ID NO 2, o una proteína con un 95 % o más de identidad de secuencia con la misma, en la preparación de un medicamento para inducir una respuesta inmunitaria y prevenir o reducir la infección por *Streptococcus uberis* en un sujeto al que se le ha administrado el medicamento, en donde el medicamento se usa para la vacunación profiláctica o terapéutica de sujetos contra *S. uberis*.
 - 10. La composición de cualquiera de las reivindicaciones 1-8 para su uso para la prevención y/o tratamiento de una enfermedad causada por *S. uberis*.

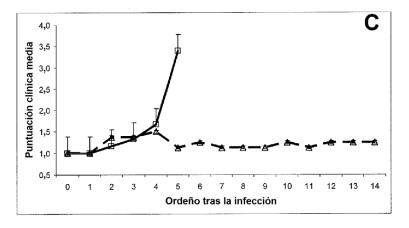


Figura 1

PUNTUACIÓN	ASPECTO DEL CUADRANTE	PUNTUACIÓN	ASPECTO DE LA LECHE
1	NORMAL	1	NORMAL
2	ANORMAL (p.ej. endurecimiento)	2	LIGERA ALTERACIÓN (p.ej. unas pocas escamas)
3	ANORMAL (p.ej. calor, sensibilidad)	3	ANORMAL (p.ej. coágulos y/o grumos)
4	INFLAMACIÓN (p.ej. distendido y con molestias durante la palpación)	4	ANORMAL (p.ej. cambios en el color y/o composición)

Figura 2

Gen	Supuesto motivo de anclaje	Comentarios adicionales
SUB0145	LPXTG	Proteína de unión a lactoferrina
SUB0164	LPXTG	Pseudogén
SUB0207	LPXAG	
SUB0241	LPKAG	2', 3' -nucleótido cíclico 2' -fosfodiesterasa
SUB0337	LPATG	Proteína de unión a aminoácidos de transportador ABC
SUB0348	LPHTG	Pseudogén
SUB0888	LPPTG	Proteína de tipo colágeno
SUB1095	LPSTG	
SUB1730	LSPTG	
SUB1739	LPTTG	Pseudogén

Figura 3

				Fase de	Fase de crecimiento exponencial	ponencial	Fase de	Fase de crecimiento estacionario	stacionario
Gena	Comentario de la proteína	Supuesto anclaje	Masa molecular	Puntuación MASCOT	N.° de péptidos emparejados	Cobertura (%) ^d	Puntuación MASCOT	N.º de péptidos emparejados ^c	Cobertura (%) ^d
sub0135	Supuesto precursor de fructano beta-fructosidasa	LPMTSDS	142.956	41	(1)	4,1	541	10	11,3
sub0145	Supuesta proteína de unión a la lactoferrina	LPSTGDK	57.829	1138	15 ^e	29,2	969	18	31,8
sub0207	Supuesta proteína anclada a la superficie	LPMAGER	53.765	39	2	5,4	117	2	5,4
sub0826	Supuesta proteína de la familia subtilasa anclada a la superficie	LPETRDS	168.468	ND	ND	ND	50	2	1,2
8880qns	sub0888 Supuesta proteína anclada a la superficie	LPPTGSQ	29.230	105	(1)	12,9	164	2	18,0
sub1095	Supuesta proteína anclada a la superficie de tipo colágeno	LPSTGDK	47.642	59	(1)	1,7	88	2	4,3
sub1154	sub1154 Supuesto precursor de C5a peptidasa	LPKTVDS	127.957	89	(1)	1,7	111	9	4,8
sub1370 Supuesta cinc-carbo	Supuesta cinc-carboxipeptidasa	LPALADG	116.563	507	7	10,6	2614	17	25,5
sub1730	sub1730 Supuesta proteína anclada a la superfície	LPSTGED	40.439	165	2	8,9	238	4	13,6

Figura 4A

				Fase de ci	Fase de crecimiento exponencial	ponencial	Fase de c	Fase de crecimiento estacionario	tacionario
Gena	Comentario de la proteína	Supuesto anclaje	Masa molecular	Puntuación MASCOT	N.° de péptidos	Cobertura (%) ^d	Puntuación MASCOT	N.° de péptidos	Cobertura (%) ^d
	-	por sortasa	$(Da)^b$		emparejados ^c				
sub0135	sub0135 Supuesto precursor de fructano beta-fructosidasa	LPMTSDS	142.956	286	5	5,8	1032	18	23,2
sub0145	sub0145 Supuesta proteína de unión a la lactoferrina	LPSTGDK	57.829	3047	17 ^e	27,0	746	15	28,8
sub0207	sub0207 Supuesta proteína anclada a la superficie	LPMAGER	53.765	50	(1)	2,4	163	4	11,2
8880qns	sub0888 Supuesta proteína anclada a la superfície	LPPTGSQ	29.230	209	2	18,0	118	2	18,0
sub1154	sub1154 Supuesto precursor de C5a peptidasa	LPKTVDS	127.957	153	3	3,4	237	10	14,4
sub1370	sub1370 Supuesta cinc-carboxipeptidasa	LPALADG 116.563	116.563	146	3	4,0	1079	12	22,3
sub1730	sub1730 Supuesta proteína anclada a la superficie	LPSTGED	40.439	81	(1)	4,1	167	4	13,8

Figura 4B

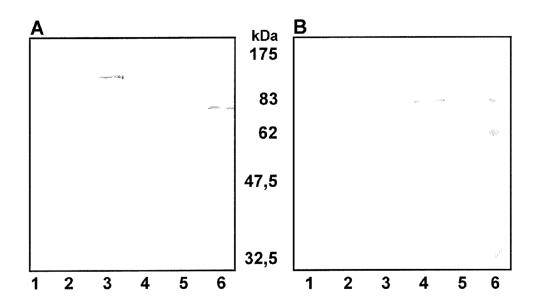


Figura 5

MTKNRSSHSTYADKVIKGLSASCFILGAFVFAQQVSAEEVVTATNTSLTA PTVTTVSPLTNTDVSATAVAADSIASPVTTTDSNLNSAPIIDTSNPSNITSPTD TNTSTTSSDTTSSPIPVTLNKAAIASPTSOTETLASQEIYMDKVNQVTINTTV NPATPMTWTIENYPNQTYNMQTGDFTGSPSYTVTSTSPNNSSVQIEIPPLFG TDLSLRWPNNIRRTYRDYMGSYTLKGISEDGLTIVTKELILRPYADYMTHEE LLNELNAIEANHATDRLVTIETIGQSALGNAIKMGIVAKDQASLDTYLNQTT PMMLMDPDOALNLLAOGKFDYKLPILINNTHADEQPGIDVVRGLFKTFATE SVINYOTVDAANNPTTVOIDIKALLDKVILLFNFTENPDGDIANTRALNNGL DPNRDTGYQTNPETRAIVEQINKWNPISIFDVHGFVKEFLIEPCTPPHDPNFE YDLFDASLVEGAREMGNAGITNSVYDSYIIPKFDYGSGWDDSFSGYTAVYG LYQGILGHTIEIPETNQESYNAGYFAVLAGINYDLANSDQLMKNKLTFFSRG IHKAEVAAAEEALLTVDGSVKGRIKDGHDTFFPDYYMIPMTLSTESDTDQA FKMIDYFRRNGVILNELTADVAGYHKGDLVIDMAQAKRGFANHVLYKGAN ESEWPAMYAELVMNFPAMRGFKADAIYADSLFAGNLGAVTLTSAPRTAPS DKEYYIVSNNSLAAVQAVNAAIRAGKNVYLTNDGYVMDKATYESVIGTYP LFAOATCMKPVGDTLKAIKVYAPGNPNLYLGFNSPSEVSLALNQMGFDVV PSVDQADVIVLDNDQFDASILGKKPVIILGGSAMAKLESLGILTGFDAAMTS ESDGSSYEGLMKISLDANSPYTSGYAANSLYYSNSGSWIEGVPTGFMTLANI SASDFYVSGWWPNHEGLANKTVAISGLYQGQPMFIFAGNPVNKTHTINFYR WVSNAIFGTNLTSFIEGQCTIPTDSETQVVRVNHNGQTVAVYQQVANKEVN GTVSQNSLPALADGSHKDDSKLFWVTGLLVASGGLFAALKRRED

Figura 6A

MRKFYYKEKKMEIKQKHGKHALRKAVTAAVLAGTAFSSLGGFAGAVT
TVKAEDLFTINNSEVQDKLESKVKQLLEAQRKGEDISEKLRELLSELPTDILK
DIMLSNIEADYLLGFLKPAVEEMVRRSEQNDERWKDITEKTLALEALKDSE
REIRKEKEKLEDEVQLAKVKIETKESELNDLKKDYIDTREELADTIEELDEV
KNSIVEKEAKVKGLEEKLRDLEKELGDYDKKLSEAAKQNSDLSNENKELKE
NLDTAENITVELQKKSHELEKTKKEVELELKAEKEALEAEKVKLAEANEAN
DKLSEERDAAKKEAEKVPELEGQVEKLVEEITAAKKEAEELQAKAEGLEKD
FEAVKAEKEALEAEIAKLKEDHQKEVDALNALLADKEKMLKSLQEQLDKA
KEEAMKNEQMSQEEKAKLQAELDKAKQELAEKIKDMPNKVAPQAEGKAN
AGQAAPNQNQNNQAQANQAKNANNLPSTGDKPVNPLLVASGLSLMIGAG
AFVYAGKRKKG

Figura 6B

MKQEKKCVNWFMRKRGKQWIYGCGILICGLVFGVEATSVAAETIPTTA TVETLNSDVTSKTSQETQKTTEIATPVSEIVMPSQQKVVEEVTQEVSVQNQETVINMPVLTOGVNIAGPNETAILTDSIVQNNVQPIDRVEKMETSFSTELTKK AESSYNTNLQDLNYDPNVWEVREDGLYSNAVGKGDNFLFSASTGENFIFQT DVTFLQNTGAASLVFRSNNDPENLNGYVVNLDGNSHKARLWRWAEANLI NDKEILASPDNKYFLKVVATNGWISYYINGILIANLSDYTIQRDDLGQTTYIK DGHFGLLNWNGEMVFQNTFYRELTNEELPLLNDVTVTSKNGPVEPKGQFF SESSVYIOYVSNDASTVDLSFDANNSDALITVTDAHGKVYSNPSAIPVTVGP NYLTVTSTYTTTDGYVIPSTYRINVHRRQPQSVYYNENFRDQYHYSVKDGW ANDPNGLVYYNGVYHMFYQFYDDTKWGPMHWAHATSTDLIHWEDQPIAF YPDYNGTMFSGCIVADVNNSSGLFDSENGGLVALITINGEGQRIKLAYSTDE GKTWQKVDEIVADWTTDPLQTRDFRDPKVFRWENKWFMVIAGGPLRLYSS DDLKNWTVESTYPDLHTECPDLYPVLAEDQTVKWVLSRGGRYYKVGDLQ QADGNWKFIPDANYQETDSIMNFGKDSYAAMTYYVQDFGTKANPTIPKIIE LNWMNTWDNYCNLVADRLGQSFNGTFNLNLELGLVKEGDKYVLTQTPVE AYESLRDNDNKVEYKNVVVGKENDLFKDFSGDTYEIVAHFKPSDKTTKVG FNLRVGSGEMTKVYYDLIAGRIIIDRSOSGIILTELFSNIDSQAVTPNIDGSIDL HIFVDRASVEVFSKNHTVAGANQIFTSAQSLGLEVLIDGEDAKADIVLYPLK SIWKNKIIDTTPQIVIPASEPKVRMNVGDSTTVKAYVSPVGASQDLIWNISNP SLVLDOISGNOVFLKAIKKGQVIVRAQSQSNPAVYQDFIIDILEDNFNTNVKD VNVFSGDWYVDGESLKVANHNSNDIYMSADKIPYENYQMDLDIKYGRGIV NIFFASGNPDANNAYTIQFGSNNSVRLFRFYRDTIFEAPMIDVINDNQFHHV RLVKSANVIHVYVDNEMVMSYTFDQVEEFFNNPYLGLGLWDGELAVQNF YVIDLDAQKPVFVEEHEKEKLLSELKKSVVKTSSYSTLKTIETSSKTNSENLE APTVSKKNLPMTSDSNNNLEELGILVILTTLGAFLGRVILKKEK

Figura 6C

MKKKQEMKYYLRKSAYGLAAVSVAVLAVGSPVSAQEKAASTEATPKVA
PKVPEKPSKEVIKKALKKTDEETKEKEKEKEAKEKVENSEESTAMVSELSSTNE
ETSSEEENNTDEEETDGLESEESEETESEVKEESEEEKEDDPSESDTEVENVE
AINLSEAEGNDSSKPETSEEVTAEEDRQETDRLAEVKTEESAKEGDEDADK
KDEAEEKAKKGAELSRVKAEALAKLEALNASRLMKKIVESGKTVEGILSFM
KESLPQLEAARASEQAKAPEVTQSPDHLPSEKKAVHNPVQVAKRSESLEQK
AENAKTSTNLQNTQIPVQEAKRTQAQLPSTGEDYQAYLVAAAMALIASSGM
VAYGSYRKKKQK

Figura 6D

MSKPMTKKKKAISIQKSVKPILGFTFGALLLSTVFTPSVFAEEVVSSLGHA
TSGLLSVSVPKELTSLETTTYLMASESPSNTLTSDTISSDNGGTASNPNEIVTT
ETTSEAIPFDTEVIQNPDLPIGEIKVVQEGVAGEVTVTKTTTTITLNGVSQSTT
TESRVPVKKPINKIIEVGTKEISTSPSSSDVITVSPSPSSTSSESNQQGSLTPAPK
SRQNSQEKKGSQTKKSKDDAKEKEGDKKE<u>LPPTGSQ</u>ESGIFSLFSALISTALG
LFLLKSNKND

Figura 6E

MKSYLKRRYGLITTSVLAATVLATGWQSTSVLAENPTTSPTTTVTSNGFN
FNATLLDHNGKTVSGKTVSLYDITDGNRTLVQSAVSDQNGIASFSQLPLNR
NLSVFVDNVAQGYTTRTSESGQVRSSAFYIDGQGTNTPKYSDKTITISVLNE
EAEPLANQKVTLTNPLKEVVGEAMTDADGHVVFKDKLLEGVFYNYAVNG
KAIDSAQPDSKRSVFLESNQLAKEGFTFTATILGKNGKTVAGKTVSLYDITD
GNRTLVQSAVSDQNGIASFSQLPLNRNLSVFIDDVAQGYTTRTSENGQVRSS
AFYVDGQGTNTPKYSDKTITISVLNEEGEPLANQKVTLINPLKEVIGEANTD
ANGKVIFTDKLLDGVFYTYAVNDQTIDATQPDTSRNVFLRADQILKESPKN
TASEAATNLEKTTESKEGNMPQQNQSEAKEKAPEKQVDANAANKKAPGHG
EAKKGLPMAGERGSRLFTFIGLSLILGIAGYLLKHKKVKS

Figura 6F

MVKNNIHSRKKHILKISLLATSVLTTTVSTVSAEQLQNEKQSDLLSKMTET STPHTIISSEDLSNSNQEANQKDETASKSLQPMIEKVDPSHIQALWEKVGTGE GDVLAVIDSGIETKHSMLOLPEDADKMYTDOASIDSKKOLLGIERGOWIND KLPFYHDYTOGEESIDRNTYHGTHVAGIATASGLTOKENKEOMOGIVPNAQ LLFLKVGQPSVEGEREKHYAMAIKDAIALGATAINMSFGQVGKASHELNDD FKKALALAADKGVAIVVAAGNDYAMGGSQTKPLAKNPDTGVIGTPATTEE VFTVAAYVAPHYWSRVLSVTDGSTSKALALEMASPFAENKDYELIFLEKGL ETEENAERLKNKVLVLNYDFVTNSKEVAEKVEALGAAGVLVHNNOAKKPL IPLAYNGPLPMGFISKEDADWLKTMTSPQFRLKKEKQLVEVPGGRQMTNFS SWGLSVDGNMKPDFAAPGYEIYSPTPGNDYSKMSGTSAASPHAMGIIHLVRKHIOKEYPHLSAKEQLQLVKNLLMSTASPIYSELDHSYYSPRVQGAGALDA KKALETDVYVTAADGLSKIOLGDVNNOFELRVTLHNLSNOEKNFTYFARV LTDKVEKGRILLRPOELYOTRPLQVKLAPNQKQEVVIKVDISNFDQQLKAQ MPNGYFLDGFVVFQSKEGAQKDLSIPFIAFKGKFADLEALDSPIYRNLDGTF YYSPKEGODPYDFEVDSIQQIKEQYMTGLITTFTPWSLVEGSKIDGFSPEMA SEFSTTDYLGSYNKEGDNTVRRFRFVEGKPYLALSPNGDDNMDKVGFRGV FLRNVRDIKAOVFASDDLOHPIWESPIKAFAKKDVNTNDIKESMLENTVWE GKDASGNPVTEGLYRYRVTYTPLAEGAKEQFIDFDILVDLTPSKLPQSAILM LAERRIELTESRDYLSHDTYRDRLYYKYGTDDINFTTFEKDDMGHFVIPNQ VEDELSGEKITINLDKTDHFFFVREDFSGNFSVISLSQLLNNHSDQMHSLEES KSDRKESNTGDIRHEKQENLSQQTLLSTPSIDGQKQNDQLMVEKEKDIMDE SKSERSEKNKFPKVPASITLKDGTLYPQSISQKTSLPKTVDSQKTMTFLGIAM LFGGILQVLWSYFKKRD

Figura 6G

MTHMNNNGRYKQRFSLRKYKFGAASVLLGTIFALGMTGTTAQAQMPSH SHPGGVYPGGIIPGAPGAIPGIPGGGSGFDFDPSGYPAGPHGYLPSYGPGGVG MLQGPPGPAGPIGPNGIPGERGPVGPAGAEGPRGPKGDKGETGQQGPRGEA GIAGPSGPQGPAGVAGPAGPQGVAGRDGRDGRDGRPGEAGLDGLDGLNGL NGIDGTDGKDGKDGKDGQNGQDGKNGRNGQDGQKGKDGQNGRNGQDGK AGKDGKSGTDGKNGKAGTDGKNGKSGKDGKAGTDGKNGRAGTDGKNGK AGQDGKDGKNGTDGLNGRDGRDGRDGRDGRDGRDGKNGKNGKDGESPII NVKDNGNGSHTITFLNPDGSRKEVTISNGKDGQPGRDGKDGRDGKDGKDGMPG RDGMNGKDGQAAAGNTAGKGNASDMKPKAMAAPAAMTNQNAHANNNG PAKAQLPSTGDKANPFFTAAALAVMASAGMVAVSRKRKED

Figura 6H

 ${\bf LRYKKMTRSSNSRIVLQSTLIMIFASS} CVNHFKGTIHADEKVINGSEASIQV$ DYTLNTASENRQIPEEKVTEEATNDQPELLEKQAAFLHEGREKNTENLPLD GRGSLIASIDSGVDIKHEAFANNDDNHDFHKETEVSEGSTSKIPFVYDFLSGD TSVRDDEEEHGMHIAGILVGDSKKGFKGMAPKAOLIAYRTWSKNNSEGYQ EANQFFAMKDAIKRGADVISLSIGEIGSGQNDDIWAKVLEEAKKKNVVVVA AMGNYGTSATSNTFDQVVDETFPQTDSSTLLSVSANPEVIGVGSIFEKEMYL PTLKIDTLEVPYENINWONYYLFKQEKQERISFNEMLITLNQSKEEGSLKDK VVIIEROAENIFPOLKEVMKKGAKGVILINQSGPTTYGNYETVPELRNTLLD DEDGDFKKTWAVSISANDGKALKDYLQKQDKKKSYSLVFNTKPQLKHVFK YPGVSGFSTWGPGLDLTLKPDIVAPGENIYSTGNDNSYFISSGTSMSAPKVA GASAMFLPVTKKWQKKWEKQNVSMSIPQLTKLLFQNTADILYDHSVPNGK PILPYSPRROGAGALNVKKAAQTNVFVTSADNKGAILLKDFKESRKEFDIVI RNFSDQVRRFKIEPGSVLGKILYSKDRKNYDKNETIQTVHSRVIKDSAIESPL YVQIAPNSSMILPLKLNVGKAVENEFVEGFIKLRSLEKDQPDLNIPMGFYGD WNSENILDPVAWQEGSKTRLTGIVHPYGLGEDKFDIVPWGVDYEKWKQDP KALDADORFYVMOSOAGIANHAKMRLRLIFMRHAKDYRVDILNSQKDKVL ${\tt KTLKTGHQAPKYMESALLEHGDQYQMQFADFDPDLEWDGSVYNPKTNTE}$ DPLPDGNYFIRVSSRISKNRPYQEHIIPFAIDNQKPKVKIEEKTALQVVFHVD DAHLQGIRLVKDNKIIQTLETDTQGRFRLNLADFQGKGFELEAIDFAENKTII DLDSLKEKEVGYLFGASSSYNKSRYRSPRSVAHKNAEDILHENSEESEEIASA LTFEDGSDFHDGKKTNAYSEINKSNDNSVHLKDNTYYRDYYIHLKEGQRLL VTTTNAFHNSKQGNDITAPTWQANYTYDPSTNQGQYYRKIAIPIYQGSNTINVKAFYKDKLIFNKGYAVKLDTEVPQLTFDNPNISFTSDKWQNLSDDEYDDD NIVGTITIPNNTLRLSGKIRDGLDGWRMFINGDMVDSDIKLGEYDDIFQQNR RQWKYEKQVENDDYVLIKLSDHVKNSRSYLFKVKIDPTVSEYHFTNKNDII DDDKTLLTLNTLTDSSLGYANKLLNMPKDLVKSTDDLFKAMTMLFKKESF FLYPLKNDLNTNGISMMTSLVQFQAKDVKENIPLEWEIKTKASDSRQLLYQ NLKNEKERLDQVSTNPLAHQLPLENSNQENGQDAILTSTKVLPMSKSSIFRD SLRETSLPETRDSSSMANWSLAFFLSAVICFFKGRRKRLNKL

Figura 61

MENQNQLTLQGILGKCLKWFLLLSISLFTAFPFIWMLISSLKTKAEVMNTEV IWPHIPQWGNYLEIFTQSPIPKYIWNSLWTSVVIVLIQIVTGAMLAYALVFLR FKGRQLIFAIVMGTYMLPAAATYIPSYIILSKGGMLNTLTGLIVSSTISIFGIFL LRQAFMQVPRSLIEASRMDGASHFRVLWEIVCPMTKSSFITFGLMSFIAAYN SGKETSIGDVTLTFSKELVPVPNIDEEIVIPSIPEKPLVEPEVDSILPLIPLQPSL PIYPSPDLPEMEQPDQDSPEISGQSQIVDIVEDTLPGVSGQQSSSEETEITEDT RPESDNEIIIGGQSELVDIVEDTQSGMSGQHSSSEETEISEDTRPESDNEIIVGG QNELVDIVEDTQPSLSGHQSESQETVTVEDTQPNQTNILIGGQSEIVDIIEDTQ AGMTGQYSSTDQLTIVEDTLPEQMEETDEIKSDSQVMDIPKVNDTNNDKGA KASVAFDVEESKVVTTQDIKPSTYVKGDNQLPQTGDDDNVNAFFTLAALSV IGATGLRQNKRREKERN

Figura 6J

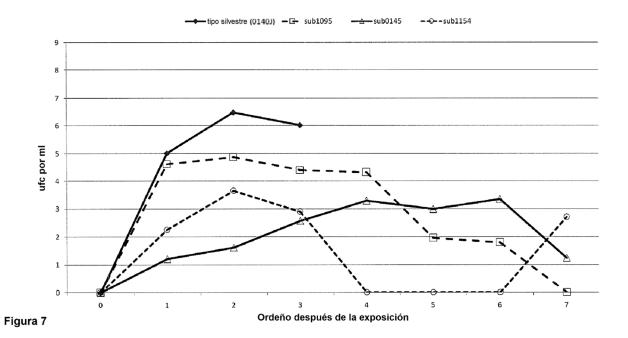
VVKVTVDGSDNSTIDSGFVKVEQPTPGSNSSSESLSQSTTQSSSQSSSAKPVA SQTAAELPHTGQAENNGLYGSAALAILAALGLAGKKRDEK

Figura 6K

MFKTKKEIFSIRKTALGVGSVLLGVILTTQVASANEVSLMTPSVDKSLTTTSP VLESTSSQLAATTAPTTTDTTSNVTATSPVLAAATTAPSVTTSPIASPIRYVS DPNQPVGYRATQVQGTDGSIITTQTGALDANGNPIVTVERIEPTKTVIVLGT KSTSQVTSTQAATTTYSIDVTKPVGTDVVIPAVDGQTTTTTTYKIETATTAP VSPSVLSEGYKWIDQPFYHVDTTQTLPSDRISIDQLFVPMPVLTPDYNTTEST VREYAQYAENYMYDYITVTNPDGSTTRQQVIRPVTSEMLDPTNTRLRTLTG LTDDNAFYSRLFDASQQDLWNTSAQDYGLEIVPEDLSTSTDDFLRYHSSNII NDALYVDIKADYLRAQLAYDLVSLGTLTSDQQSAMDMMTSQFESLTLRYN NYKDSVAIVVDYSNTTMSATQADFEAKLAALPVEVQRAISELTIYDGQIPG MGETTLGLANSADQTIALKYEANNLNLVSTVLHEMTHIIDFKSGLYSETTD RNTDGSLSTVMAFSDTQEFLDVYHTYFDRPDVWSYYRDNSEEAFAEGLSQ YIMHRLFGTPYSTYIANPYTGDAYNPGDGSGYSPFAETEFYFASLYNRLFEY PRTAQVVPYLVTTTTTAPVNGQVIYGAMPEETTTTTPYTTVYVGDTSFAYD PTGQTDRVQAGVDGTETIRTTYSLDSNNQLVATQTVISSTPVQNQIITKGTQ PTVVDTSVPMTIVYQEVTDGSLGDWQVNVLDAGQDGLIRSTTTYSVDPVTG IVTPSTTEATITAMRPMIVQYQVGSEKVTAIPYQTRYVIDTSLATGTQVIVQE GVNGSSTESVQSYNFIQDGSNSRFDAIVYASPVVVAAQDQVIAVGGQDQVT DOAVAKTIFYOEVTDGSLGDWOVKVLDAGODGLVRTTTSYSVDPVTGIVT PSTTEATITAMKPMIVQYQVGKSKLSAIPFLTEYITDDSLAVGLEKVIQEGVG GTQIETVQSFNFIQDGANSHFENIVYSSPTIVVAAVDQVIARGTKVVEVVVA VPEVVTPKPETSEVISPEKGQTAPTITVEAIKAPAQKKAKVEVVTTPKESLPT TGDDONLLVTLMSSLLLMSLGLGLKKKEDE

Figura 6L

LLALSQLPDKLLEKIDITCFDDPKHFGRGIPFQEDSSTAWINSPIDAISYDYHD MNDFQNWMEQKGLDTDQSYVPRSLYGRYMTERAHDLLQKLKASVIHEKV TQLNYEPDSQKWNIGTSQRTIPTRFDEVHLTCGELPVLDPYHLQGNPNYIAD PYPLKNLPKQPGKKDRIAIIGTGLASIDTLKWLLKNSQADLLAFSPSMTFPTV RILKKETIDWQFLTDTNKQKLFEENSFNFKSLENLFLSELQALGFQNWEETC RQFLAEGIPGISLSLAFPAQLFLLQQLASHLVDWLTDFWPQMTLSDRQYYK ENYGKAIINLRNPMPEEAGRLLIEATAQGRLQIIEAVTDIEAGNYGFVLKRE VGKELSVATVINATGYHLKESNVHQARTLIQQVIRDGLVQINPEGGLSILPQ TGQVISPKYGILATLYAHGSLVNGVIYQNNSTIKIQQMAERAIGNVIKKPTI


Figura 6M

MRKHYVSKSAIFLAMLVATGSAQFVKAETPTTTTSPATSLTDASASTTPTTN TTSTVTPALDPNTNFTVDSSATTSTTTPSPVEAAAISPVIATAQPTTNVTSASLAPAANTMATTPVEGQTVDVRIISTTDLHSNLVNYDYYQDKASQTIGLAKA AVLIDOAKAENPNAVLVDNGDILOGTPLGTYEALIDPLQPGEVHPMYAALD KLGFDASTLGNHEFNYGLTFIENAIASAGLPILNANVFDAATGEYLFQPYAI VTKSFTDANGQAVDLKIGITGIVPPQIMLWDKANLEGKVTVKDAVQAVTEII PTIKNAGADIVLVLAHTGIGDDVYETGEENVGYQIASLAGVDAVVTGHSHA EFPSGODTGFYESYNGVDGVSGLINGTPVTMAGKYGDHIGIIDLNVSYTGG KWTVNRDKNHAEIRKIDTKSTIADADILALAQASHLGTIDYVRQTVGETTAP INSYFALVKDDPSVQIVNNAQLWYAKQQLAGTPEADLPLLSAAAPFKAGTR NDPTAYTDIPAGPIAIKNVADLYLYDNVTAILKLTGADIKEWLEMSAGQFN TIDPNVAGPQNLVNTDYRTYNFDVIDGVTYEFDVTQPNKYDAKGNLLNPN ASRVRNLKFOGKEIDPNOEFMVVTNNYRASGSFPGVKNATINRLLNLENRQ AIINYIVSEKTINPSADNNWYFADTIQGLDLHFLSADTSKNLIGDKADISYTG ${\tt PSTIEGFGDFVFTYVKPELPVATPETPQETGSQLTENRRQEIHQLATRVYNQ}$ TKATSSSTTKAELPKAGSQESKGLFFMGLSLLGLAGLITKKEERQ

Figura 6N

MRKFLMSCFAALLLLFAGVSQADADQYLRVGMEAAYAPFNWTQDDNSNG AVPIEGTNQYANGYDVQVAKKVAKSLNKKLLVVKTSWTGLIPALTSGKIDM IAAGMSPTEERKKEIAFSDSYYTSEPVIVVKADSKFAKAKSLDDFAGAKITA QQGVWHVNLIPQINGVKAQTPMGDFSQMRQALSSGVIDGYISERPEAMTAE NANSAFKMVVLKKAFTVNESDAAIAVGMRKDDPRIVQVNTVLADLSANDR LDLMDKMVTLQPKEKKAENGVQPSFLDQMWSIVTKNWKQFLRGTGLTLLI STIGTIVGLIIGLLIGIYRTAPKSKHKVLAFFQKLFGWFLNVYIEVFRGTPMIV QSMVIYYGTAQAFGISIDRTLAAIFIVSINTGAYMTEIVRGGIFAVDKGQFEA ATALGFTHGQTMRKIVLPQVVRNILPATGNEFVINIKDTSVLNVISVVELYFS GNTVATQNYQYFQTFSVIAVIYFILTFTVTRILRYVERRIDDDNYTTTVNELP

Figura 60

