

OFICINA ESPAÑOLA DE PATENTES Y MARCAS

ESPAÑA

11) Número de publicación: 2 716 997

51 Int. CI.:

F03D 7/02 (2006.01)

(12)

TRADUCCIÓN DE PATENTE EUROPEA

T3

86 Fecha de presentación y número de la solicitud internacional: 01.07.2013 PCT/DK2013/050217

(87) Fecha y número de publicación internacional: 15.05.2014 WO14071947

(96) Fecha de presentación y número de la solicitud europea: 01.07.2013 E 13736475 (8)

(97) Fecha y número de publicación de la concesión europea: 27.02.2019 EP 2917570

(54) Título: Sistemas de control de la orientación de turbina eólica

(30) Prioridad:

09.11.2012 DK 201270689

Fecha de publicación y mención en BOPI de la traducción de la patente: 18.06.2019

(73) Titular/es:

VESTAS WIND SYSTEMS A/S (100.0%) Hedeager 42 8200 Aarhus N, DK

(72) Inventor/es:

FREDERIKSEN, THOMAS y RASMUSSEN, LARS VERMUND

(74) Agente/Representante:

ARIAS SANZ, Juan

DESCRIPCIÓN

Sistemas de control de la orientación de turbina eólica

25

- La presente invención se refiere a generadores de turbina eólica y en particular a generadores de turbina eólica que comprenden un conjunto de una o más palas que se disponen para rotar alrededor de un eje horizontal y en la que el conjunto de palas también se dispone para un movimiento de rotación alrededor de un eje vertical, que es también conocido como rotación de orientación o azimutal.
- Al permitir la rotación alrededor de un eje vertical, esto habilita al conjunto de palas para ser orientado de modo que las palas siempre miren en la dirección del viento y de ese modo conviertan la energía eólica en energía eléctrica con óptima eficiencia.
- Un generador de turbina eólica típico se ilustra en la figura 1. El generador de turbina eólica 1 comprende una torre 2, una góndola 3 montada en la parte superior de la torre 2 y un rotor 4 operativamente acoplado a un generador 5 dentro de la góndola 3. La turbina eólica 1 convierte la energía cinética del viento en energía eléctrica. Además del generador 5, la góndola 3 aloja los diversos componentes requeridos para convertir la energía eólica en energía eléctrica y también los diversos componentes requeridos para operar y optimizar el rendimiento de la turbina eólica 1. La torre 2 soporta la carga presentada por la góndola 3, el rotor 4 y otros componentes de la turbina eólica dentro de la góndola 3.
 - El rotor 4 incluye un buje central 6 y tres palas de rotor alargadas 7 de configuración aproximadamente plana que se extienden radialmente hacia el exterior desde el buje central 6. En funcionamiento, las palas 7 se configuran para interactuar con el flujo de aire pasante para producir empuje que provoca que el buje central 6 rote alrededor de su eje longitudinal. Al exceder el viento un nivel mínimo activará el rotor 4 y le permitirá rotar dentro de un plano sustancialmente perpendicular a la dirección del viento. La rotación es convertida en energía eléctrica por el generador 5 y es suministrada normalmente a la red eléctrica.
- La góndola 3 se monta sobre la torre 2 por medio de un acoplamiento que permite a la góndola 3 y de ese modo también a las palas 7, rotar alrededor de un eje vertical. La rotación de orientación se lleva a cabo en una secuencia de: (a) iniciar la rotación de la góndola; (b) mantener la rotación de la góndola; y (c) detener la rotación de la góndola.
- Es usual que la rotación de orientación sea propulsada por medio de uno o más motores eléctricos, también conocidos como mecanismos de orientación. Se detecta la dirección del viento con relación a la orientación de la góndola para generar una señal de control que se suministra al motor eléctrico para efectuar la rotación del conjunto de palas de modo que las palas 7 miren en la dirección del viento.
- Durante el funcionamiento, el conjunto de palas se somete típicamente a grandes fuerzas cortantes que generan momentos de giro, que pueden actuar en un sentido para provocar que el conjunto de palas rote fuera del ángulo de rotación deseado. Para contrarrestar dichos momentos de giro, dichos sistemas de control están provistos convencionalmente con frenos mecánicos pasivos que se disponen para retener el conjunto de palas en el ángulo de orientación deseado. Como alternativa o de manera adicional, los motores eléctricos pueden disponerse para generar un contrapar que actúa sobre el conjunto de palas en el sentido opuesto al de los momentos de giro que surgen de las fuerzas cortantes.
 - Se describirá ahora una disposición típica para el control del ángulo de orientación de una pala de turbina eólica con referencia a la figura 2.
- Se fija una gran rueda dentada 8 a la torre 2 del generador de turbina eólica 1. Se acoplan un cierto número de engranajes de piñones dentados 9 con la gran rueda dentada 8 alrededor de su circunferencia. Los engranajes de piñones 9 son accionados por motores eléctricos 10 respectivos que se montan sobre la góndola 3 del generador de turbina eólica 1. Como con las disposiciones de engranajes que implican ruedas dentadas, hay un cierto grado de retroceso, también denominado como "movimiento perdido", "juego" o "histéresis", que es el resultado de que los dientes de los engranajes de piñón 9 no se engranan totalmente con los dientes de la rueda dentada principal 8. Por ello, durante una inversión en el sentido de rotación, los engranajes de piñón 9 girarán en un cierto grado antes de acoplarse totalmente con la rueda dentada 8 principal. El grado de retroceso dependerá de las tolerancias de fabricación, de modo que el grado de retroceso para cada engranaje de piñón 9 será en general diferente. Para impedir la rotación de la góndola 3, se aplican frenos de fricción mecánica 11 a la rueda dentada principal 9 en la dirección de las flechas 12.
 - Los motores eléctricos 10 son controlados por un módulo de control 13. La dirección del viento es detectada por un módulo sensor 14 que genera una señal de salida que se suministra al módulo de control 13.
- 65 Se describen otros sistemas de orientación en los documentos EP 2402597 A1, EP 2189656 A2 y US 5990568.

El documento WO2010/100271A2 divulga un sistema de orientación con un cojinete fijo a la torre y al menos un motor de orientación dispuesto para permitir que la góndola realice un movimiento rotativo junto con el cojinete, en el que el sistema de orientación comprende medios de control para determinar un punto de consigna teniendo en cuenta un tamaño y dirección de un par basándose en al menos un error de orientación.

5

10

El documento US2011/309620A1 divulga un generador de turbina eólica provisto con un dispositivo de accionamiento de la orientación que genera una fuerza de accionamiento para hacer que la orientación haga girar la góndola y un mecanismo de freno para generar fuerza de frenado para frenar el giro de la góndola. Además se divulga un sistema de control que controla el dispositivo de accionamiento de la orientación y el mecanismo de freno, el sistema de control proporciona la fuerza de frenado para la góndola mediante el uso del mecanismo de freno en respuesta a la detección de la aparición de un estado de alta velocidad del viento.

Surgen un cierto número de problemas durante el funcionamiento de dichos sistemas convencionales.

15 En primer lugar, el par que se requiere sea generado por los motores eléctricos 10 está sujeto a las fuerzas cortantes a las que se ha hecho referencia anteriormente, que pueden cambiar rápidamente. Esto puede dar lugar a vibraciones indeseables en el generador de turbina eólica 1, que pueden acortar la vida útil de los componentes del generador 1.

En segundo lugar, dado que el grado de retroceso es diferente para cada engranaje de piñón 9, se deduce que, durante una inversión en la rotación de orientación, no todos los engranajes de piñón 9 quedarán acoplados con la rueda dentada principal 8 al mismo tiempo, y de ese modo se requerirá que algunos de los motores 10 generen un nivel mucho más alto de par de salida que otros. A lo largo del tiempo, los motores 10 que accionan esos engranajes de piñón 9 que tienen la menor cantidad de retroceso estarán sometidos a una carga mayor y por lo tanto presentarán un grado mayor de desgaste que los otros motores 10 y requerirán mantenimiento o sustitución más frecuentemente.

En tercer lugar, durante una operación de frenado usando frenos mecánicos pasivos, las fuerzas cortantes pueden a veces ser tan grandes que provoquen que los frenos fallen o patinen. Esto no solo podría conducir a que el conjunto de palas esté orientado fuera del ángulo de orientación deseado, sino también a un posible fallo o rotura de otros componentes del generador de turbina eólica 1.

Sería deseable por lo tanto proporcionar sistemas de control que superen, o al menos mitiguen, algunas o todas las desventajas anteriores de los sistemas conocidos.

35

50

55

60

65

30

De acuerdo con un primer aspecto de la presente invención se proporciona un sistema de control para un generador de turbina eólica de eje horizontal en el que la góndola se dispone para la rotación alrededor de un eje vertical con relación a la torre por medio de uno o más motor(es) eléctrico(s) y en la que se proporciona un freno mecánico, comprendiendo el sistema: medios para detectar una primera y segunda condiciones de funcionamiento del generador de turbina eólica; y medios sensibles a una primera condición de funcionamiento detectada para acoplar el freno mecánico de modo que frene la rotación relativa de la góndola y la torre y en respuesta a una segunda condición de funcionamiento detectada para el control de la potencia suministrada al (a los) motor(es) de modo que el (los) motor(es) se disponga(n) para generar un contrapar para frenar la rotación relativa de la góndola y la torre.

De este modo, puede reducirse el desgaste sobre el freno mecánico compartiendo la carga de frenado global con el (los) motor(es).

La primera condición de funcionamiento detectada es una carga externa que es menor que un primer valor predeterminado, y la segunda condición de funcionamiento detectada es una carga externa que es mayor que un segundo valor predeterminado.

En este caso, el primer valor predeterminado de la carga externa es menor que el segundo valor predeterminado de la carga externa, dado que si la primera y la segunda cargas externas predeterminadas se eligieran para ser la misma, esto podría dar lugar a inestabilidad cuando la carga externa está próxima a este valor, dado que los diferentes modos de frenado podrían alternar rápidamente. Esto se impide de modo efectivo al requerir que el primer valor predeterminado sea más bajo que el segundo valor predeterminado. Esta situación es análoga a los ajustes de termostato de doble umbral en sistemas de calefacción central doméstica, en los que el sistema se energiza cuando la temperatura cae por debajo de un primer valor más bajo y se desenergiza posteriormente cuando la temperatura excede un segundo valor, más alto, impidiendo de ese modo las rápidas oscilaciones todo/nada que podrían surgir si solo se usara un único umbral de temperatura.

Cuando el (los) motor(es) se dispone(n) para generar un contrapar de frenado, la potencia suministrada al (a los) motor(es) es preferentemente tal que, mientras la velocidad de rotación permanece dentro de un intervalo predeterminado de valores definidos por una velocidad mínima y una velocidad máxima, el par de salida del (de los) motor(es) también se mantiene dentro de un intervalo de valores predeterminado definido por un par mínimo y un par máximo, en el que la relación de la velocidad máxima a la velocidad mínima es mayor que la relación del par máximo al par mínimo, proporcionando de ese modo las ventajas a las que se ha hecho referencia anteriormente.

El sistema de control se dispone preferentemente de modo que, en respuesta a la primera condición de funcionamiento detectada, el (los) motor(es) genere(n) sustancialmente ningún contrapar.

El sistema de control se dispone preferentemente de modo que, en respuesta a la segunda condición de funcionamiento detectada, los frenos mecánicos se desacoplan, de modo que se reduzca el nivel de desgaste de los frenos.

En una realización, el sistema de control comprende: medios para controlar la potencia suministrada al motor de modo que, mientras la velocidad de rotación permanece dentro de un intervalo predeterminado de valores definidos por una velocidad mínima y una velocidad máxima, el par de salida del motor también se mantiene dentro de un intervalo de valores predeterminado definido por un par mínimo y un par máximo, en el que la relación de la velocidad máxima a la velocidad mínima es mayor que la relación del par máximo al par mínimo.

De este modo, el nivel de par generado por el motor se varía en un grado menor que la velocidad de rotación del motor, reduciendo de ese modo las indeseables vibraciones que tienen lugar cuando cambia el par de salida.

En una realización, los medios para controlar la potencia suministrada al motor se disponen de modo que, cuando la velocidad de rotación se mueve fuera del intervalo de valores predeterminado, el par de salida del motor se cambia a un nuevo intervalo predeterminado de valores para hacer que la velocidad de rotación vuelva a un nivel dentro del intervalo predeterminado. Esto permite que el motor funcione dentro de un régimen de par-velocidad en el que se optimiza la eficiencia del motor.

En una realización, el motor se controla para proporcionar un par de salida sustancialmente constante siempre que la velocidad de rotación permanezca dentro del intervalo predeterminado. Con dicho protocolo de control, cualesquiera variaciones en el par se limitan a situaciones en las que la velocidad de rotación del motor se mueve fuera de su intervalo actual.

El intervalo predeterminado de valores de la velocidad de rotación puede cambiarse de acuerdo con las condiciones de funcionamiento del generador de turbina eólica.

Aunque se prefiere que el intervalo predeterminado de valores para la velocidad de rotación del motor permanezca fijo durante un conjunto dado de condiciones de funcionamiento, sería alternativamente posible proporcionar intervalos de valores predeterminados respectivos diferentes para los diferentes valores discretos del par de salida.

En una realización, la góndola se dispone para su rotación alrededor de un eje vertical con relación a la torre por medio de una pluralidad de motores eléctricos dispuesto cada uno para controlar la rotación de un engranaje de piñón respectivo, disponiéndose los engranajes de piñón para su engrane con una única rueda dentada, comprendiendo el sistema: medios para controlar la velocidad de cada motor de modo que la velocidad esté a un primer nivel hasta que cada uno de los engranajes de piñón respectivos haya engranado totalmente con la única rueda dentada y un segundo nivel posterior para efectuar la rotación relativa de la góndola y la torre, siendo el segundo nivel más alto que el primer nivel.

Esto impide que cualquier motor único desarrolle el alto nivel del par de salida requerido para generar la rotación de orientación de la góndola antes de que todos los engranajes de piñón hayan quedado totalmente engranados con la única rueda dentada y de ese modo reduce el desgaste sobre los motores que podría surgir en caso contrario si solo uno o algunos de los engranajes de piñón estuvieran totalmente engranados antes de que los motores asociados desarrollaran el par de salida total requerido para la rotación de orientación.

Cuando los engranajes de piñón han engranado totalmente con la única rueda dentada, la potencia suministrada al motor es preferentemente tal que, mientras la velocidad de rotación permanece dentro de un intervalo predeterminado de valores definidos por una velocidad mínima y una velocidad máxima, el par de salida del motor también se mantiene dentro de un intervalo de valores predeterminado definido por un par mínimo y un par máximo, en el que la relación de la velocidad máxima a la velocidad mínima es mayor que la relación del par máximo al par mínimo.

El sistema de control comprende preferentemente además medios para determinar el par de salida de cada motor. De este modo, puede establecerse fácilmente que el par de salida de cada motor esté realmente a nivel bajo antes de suministrar a los motores suficiente potencia para generar el alto nivel del par de salida.

60 Los medios de determinación del par comprenden preferentemente medios para detectar la velocidad de rotación de cada motor. Dichos medios de detección pueden estar fácilmente disponibles y pueden tomar la forma de un codificador de desplazamiento rotativo óptico o magnético simple montado sobre el árbol del motor. El valor de la velocidad de rotación se usa entonces para determinar el par de salida del motor a partir del nivel de potencia suministrado al motor.

La presente invención se extiende además a un método para el control de un generador de turbina eólica de eje

4

_

55

45

50

10

20

30

-

horizontal en el que la góndola se dispone para su rotación alrededor de un eje vertical con relación a la torre por medio de al menos un motor eléctrico y en el que se proporciona un freno mecánico, comprendiendo el método: detectar primera y segunda condiciones de funcionamiento del generador de turbina eólica; y en respuesta a una primera condición de funcionamiento detectada, hacer que el freno mecánico frene la rotación relativa de la góndola y la torre; y, en respuesta a una segunda condición de funcionamiento detectada, controlar la potencia suministrada al (a los) motor(es) de modo que el (los) motor(es) se disponga(n) para generar un contrapar para frenar la rotación relativa de la góndola y la torre, en el que la primera condición de funcionamiento detectada comprende una carga externa que es menor que un primer valor predeterminado, en el que una segunda condición de funcionamiento detectada comprende una carga externa que es mayor que un segundo valor predeterminado y en el que el primer valor predeterminado de la carga externa es menor que el segundo valor predeterminado de la carga externa.

En una realización, se dispone la góndola para ser girada con respecto a la torre alrededor de un eje vertical mediante uno o más motores, comprendiendo el método: controlar la potencia suministrada al (a los) motor(es) de modo que, mientras la velocidad de rotación permanece dentro de un intervalo predeterminado de valores definidos por una velocidad mínima y una velocidad máxima, el par de salida del (de los) motor(es) también se mantiene dentro de un intervalo de valores predeterminado definido por un par mínimo y un par máximo, en el que la relación de la velocidad máxima a la velocidad mínima es mayor que la relación del par máximo al par mínimo.

En una realización la góndola se dispone para su rotación alrededor de un eje vertical con relación a la torre por medio de una pluralidad de motores eléctricos dispuesto cada uno para controlar la rotación de un engranaje de piñón respectivo, disponiéndose los engranajes de piñón para su engrane con una única rueda dentada, comprendiendo el método: controlar la potencia suministrada a cada motor de modo que el par esté a un primer nivel hasta que cada uno de los engranajes de piñón respectivos haya engranado totalmente con la única rueda dentada y un segundo nivel posterior para efectuar la rotación relativa de la góndola y la torre, siendo el segundo nivel más alto que el primer nivel.

Se describirán ahora realizaciones preferidas de la presente invención con referencia a los dibujos adjuntos, en los que:

30 la figura 1 ilustra los componentes estructurales principales de una turbina eólica;

10

15

40

55

- la figura 2 es un diagrama esquemático del sistema de control de una realización preferida de la presente invención;
- la figura 3 es un diagrama de flujo que ilustra un método preferido de acuerdo con una primera realización de la presente invención:
 - la figura 4 es un gráfico que ilustra la relación entre el par de salida y la velocidad de rotación de acuerdo con la realización de la figura 3;
 - la figura 5 es un gráfico que ilustra la variación en el tiempo tanto del par de salida como de la velocidad de rotación de acuerdo con la realización de la figura 3;
- la figura 6 es un diagrama de flujo que ilustra un método preferido de acuerdo con una segunda realización de la presente invención;
 - la figura 7 es un gráfico que ilustra la variación del par de salida con el tiempo de acuerdo con la realización de la figura 6:
- la figura 8 es un diagrama de flujo que ilustra un método preferido de acuerdo con una tercera realización de la presente invención; y
 - la figura 9 es un gráfico que ilustra la relación del par de salida a la velocidad de rotación de acuerdo con la realización de la figura 8.
 - En la siguiente descripción de las realizaciones preferidas, se usan los mismos números de referencia a todo lo largo para describir los mismos, o equivalentes, elementos o características.
- Volviendo a referirnos a la figura 2, en las realizaciones preferidas de la presente invención se dispone una pluralidad de motores eléctricos 10 para controlar la rotación de un número respectivo de engranajes de piñón 9. Cada motor 10 recibe alimentación desde el módulo de control 13 y cada motor 10 incorpora un codificador de desplazamiento rotativo (no mostrado) respectivo que suministra una señal de salida al módulo de control 13 que se usa por el módulo de control 13 para calcular la velocidad de rotación actual del motor. El módulo de control 13 es capaz por lo tanto de calcular el par de salida de cada motor dependiendo de (a) el nivel de potencia suministrado al motor; y (b) la velocidad de rotación del motor.

Cada uno de los motores eléctricos 10 es un motor de c. a. alimentado desde la red eléctrica. Cada uno de los motores 10 se conecta a la red eléctrica a través de un convertidor de frecuencia (no mostrado) que convierte la frecuencia de la red de típicamente 50 Hz o 60 Hz, dependiendo del territorio, a la frecuencia apropiada para la velocidad de rotación deseada del motor 10.

5

El nivel de potencia suministrado a los motores eléctricos 10 es controlado dependiendo de cierto número de condiciones de funcionamiento, tal y como se describe con mayor detalle más adelante. El módulo de control 13 se dispone para suministrar a los motores eléctricos 10 un nivel de potencia apropiado para uno de entre varios modos de funcionamiento. Dichos modos de funcionamiento pueden incluir: (a) un modo estacionario, en el que las palas 7 de la turbina eólica se mantienen en un ángulo de orientación deseado; (b) un modo de orientación, en el que las palas 7 de la turbina eólica se giran hacia un ángulo de orientación deseado; y (c) un modo de frenado, en el que las palas están rotando actualmente alrededor del eje de orientación fuera de un ángulo de orientación deseado, por ejemplo debido a las fuerzas cortantes del viento. Los motores 10 también pueden controlarse dependiendo del desplazamiento en la dirección del viento, la cantidad de turbulencia y/o el nivel de carga sobre una o más partes del generador de turbina eólica.

15

20

En una primera realización de la presente invención, el módulo de control 13 suministra potencia a cada uno de los motores eléctricos 10 a un nivel determinado por el protocolo siguiente. Siempre que la velocidad de rotación del motor esté dentro de un intervalo de valores predeterminados, el par de salida del motor se mantiene sustancialmente constante, Sin embargo, si la velocidad del motor se mueve a un nivel fuera de este intervalo, el par de salida del motor se desplaza entonces a un nivel diferente de modo que lleve a la velocidad de rotación de vuelta a un valor dentro del intervalo predeterminado. Se apreciará que este protocolo restringe el número de cambios en el nivel del par de salida de cada motor al número de ocasiones en las que la velocidad de rotación del motor se mueve fuera del intervalo predeterminado. De este modo, se mitigan los efectos indeseables de un gran número de cambios en el par de salida.

25

30

Las etapas de este protocolo se ilustran en la figura 3, en la que, para cada motor 10, se detecta la velocidad de rotación actual en la etapa 15 y se realiza la determinación de si la velocidad está dentro del intervalo predeterminado. Si es este el caso, entonces se mantiene el nivel de par actual en la etapa 16 y el protocolo vuelve a la etapa 15. Sin embargo, si la velocidad se ha desplazado a un nivel fuera de este intervalo, entonces se realiza una determinación en la etapa 17 sobre si la velocidad de rotación está por debajo del intervalo predeterminado. Si es así, entonces el par de salida se incrementa en la etapa 18 a un nivel más alto y el protocolo vuelve a la etapa 15. Si, sin embargo, se evalúa en la etapa 17 que la velocidad de rotación actual está por encima del intervalo predeterminado, entonces el nivel del par se disminuye en la etapa 19 a un nivel más bajo y el protocolo vuelve a la etapa 15.

35

De este modo, el par de salida de cada motor 10 se mantiene en un nivel casi constante siempre que la velocidad de rotación del motor 10 permanezca dentro del intervalo predeterminado y se desplaza a un nuevo nivel solamente cuando la velocidad de rotación del motor 10 se mueve fuera del intervalo.

40

Aunque este protocolo se optimiza mediante el mantenimiento del par de salida en un valor sustancialmente constante cuando la velocidad de rotación está dentro del intervalo predeterminado, se apreciará que el nivel del par puede desplazarse ligeramente de este valor constante. La característica importante de este protocolo es que las variaciones en el par de salida de cada motor se mantienen en un mínimo, si es posible.

45

50

La dependencia del par de salida T del motor 10 sobre la velocidad de rotación ω del motor 10 se ilustra en la figura 4, a partir de la que puede verse que, cuando la velocidad de rotación está entre los valores ω_1 y ω_2 , el par de salida T se mantiene en el nivel T_1 . Fuera de este intervalo de la velocidad de rotación ω , el par T se eleva o reduce en rampa a un nuevo nivel (no mostrado). Esta relación se ilustra adicionalmente en la figura 5, que muestra la variación con respecto al tiempo t de tanto el par T como de la velocidad de rotación ω cuando la velocidad de rotación ω se mueve desde un nivel dentro de un intervalo predeterminado definido por ω +/- $\Delta\omega$, a un nivel fuera de ese intervalo, el par de salida T se mueve desde un primer nivel constante, relativamente bajo T_a a un segundo nivel constante, relativamente bajo T_b , de modo que la velocidad de rotación vuelva a un valor dentro del intervalo predeterminado.

55

En una segunda realización de la presente invención, que se usa para iniciar una rotación de orientación de las palas 7 de la turbina eólica, el módulo de control 13 suministra potencia a cada uno de los motores eléctricos 10 a un nivel determinado por el protocolo siguiente, ilustrado por el diagrama de flujo de la figura 6.

60

Para iniciar la rotación de orientación, el módulo de control 13 genera una señal de orden de rotación de orientación. Por ello, la primera etapa 20 del protocolo es determinar si se ha generado dicha señal de orden de orientación. Si no, entonces esta etapa 20 se repite continuamente hasta el momento en que se genere una señal, punto en el que se energizan todos los motores eléctricos 10 a una primera, baja velocidad en la etapa 21. Como se ha descrito anteriormente, el par de salida de cada motor 10 se calcula midiendo la velocidad de rotación del motor y la potencia de entrada del motor 10. Inicialmente, algunos de los engranajes de piñón 9 no estarán totalmente engranados con la rueda dentada principal 8 debido a los efectos del retroceso. Por ello, la velocidad de rotación inicial de esos

motores 10 que se conectan a estos engranajes de piñón 9 estará a un nivel relativamente alto con el par de salida bajo asociado, dado que no habrá ninguna resistencia a la rotación desde la inercia de la rueda dentada principal 8. Sin embargo, para aquellos engranajes de piñón 9 que ya están totalmente engranados con la rueda dentada principal 8, la velocidad de rotación de los motores asociados 10 estará a un nivel relativamente bajo con el par de salida alto asociado, dado que encontrarán resistencia inercial desde la rueda dentada principal 8. Por ello, en la etapa 22, se determina si todos los engranajes de piñón 9 están totalmente engranados con la rueda dentada principal 8 mediante la medición de la velocidad de rotación de cada uno de los motores 10. Si la velocidad de rotación de uno cualquiera de los motores está a un alto nivel, lo que implica que el engranaje de piñón 9 asociado no está aún totalmente engranado, entonces esta etapa 22 de determinación se repite hasta que todos los engranajes de piñón 9 están totalmente engranados con la rueda dentada principal 8, punto en el que todos los motores se energizan a la velocidad nominal en la etapa 23.

10

15

20

25

50

55

60

La razón detrás de este protocolo es asegurar que todos los engranajes de piñón 9 están totalmente engranados con la rueda dentada principal 8 antes de que uno cualquiera de los motores 10 se haga funcionar con el par total. De este modo, se comparte la carga sobre los motores 10, para de ese modo reducir el desgaste sobre los motores y la necesidad de sustitución frecuente. Se apreciará que las tolerancias de fabricación conducirán a que los mismos engranajes de piñón 9 se engranen repetidamente con la rueda dentada principal 8 antes que los otros engranajes de piñón 9. Por ello, sin dicho protocolo, los motores 10 que están asociados con los engranajes de piñón 9 que tienden a engranar primero con la rueda dentada principal 8 sufrirían la mayor carga y serían los primeros en recibir mantenimiento o sustitución.

El incremento en el valor absoluto del par de salida T del motor 10 con respecto al momento de giro en la dirección de las agujas del reloj $t_{\rm CW}$ (o giro en sentido contrario a las agujas del reloj $t_{\rm CCW}$) en esta realización se ilustra en la figura 7, a partir de la que puede verse que el par de salida es inicialmente cero y se incrementa gradualmente hasta que alcanza el par de arranque, o precarga, $T_{\rm s}$ (para giro en el sentido de las agujas del reloj, o $-T_{\rm s}$ para giro en sentido contrario), punto el que todos los actuadores están engranados con la rueda dentada principal 8 y listos para elevar hasta el par total requerido para girar la rueda dentada principal 8.

En una tercera realización de la presente invención, que se usa para controlar la reducción en la velocidad de 30 rotación de la orientación de las palas 7 de la turbina eólica, el módulo de control 13 se dispone para controlar el frenado requerido dependiendo de la carga externa. En esta disposición, el módulo sensor 14 descrito anteriormente con referencia a la figura 2 se dispone para proporcionar una señal de salida indicativa de la carga externa. Cuando la carga externa está a un bajo nivel, todo el frenado se realiza usando puramente los frenos de fricción mecánicos 11 (véase la figura 2). Sin embargo, cuando la carga externa está a un alto nivel, todo el frenado se realiza aplicando 35 un contrapar adecuado a cada uno de los motores eléctricos 10, es decir un par en el sentido que reduce la velocidad de orientación de las palas 7 de la turbina eólica. La razón para el intervalo entre las dos cargas externas es impedir la generación de vibraciones indeseables que podrían ser el resultado si se usara un único valor de umbral de la carga externa para determinar el tipo de frenado a ser realizado. Esto es análogo a los sistemas de calentamiento central domésticos que usan dos umbrales para controlar un termostato. Claramente, cuando se inicia 40 el frenado, y la carga externa está entre estos valores, entonces el sistema debe ser capaz de determinar qué modo de frenado usar. En este caso, se usa un único valor de umbral. Sin embargo, en funcionamiento, esto se pasa al protocolo de doble umbral descrito anteriormente.

Dicha disposición es ventajosa al permitir que la carga de los motores sea compartida cuando la carga externa es alta y cuando por lo tanto es probable también que la fuerza de frenado requerida sea alta. Además, esto reduce el nivel de desgaste en los frenos de fricción mecánicos 11.

Este protocolo se ilustra en la figura 8. Se determina primero si se ha generado una señal de orden de freno en la etapa 24. Si no está presente la señal de orden de freno, se asegura en la etapa 25 que no se aplica un frenado mecánico o contrapar. La etapa 24 se repite a continuación hasta el momento en que se ha generado una señal de orden de freno, en cuyo caso, se determina entonces en la etapa 26 si la carga externa es menor que el valor de umbral único. Si es así, entonces se inicia el frenado mecánico en la etapa 27, seguido por la etapa 28 de confirmación de que está presente la señal de orden de freno. Si la señal de orden de freno ya no está presente, el protocolo vuelve a la etapa 24. Si la señal de orden de freno está aún presente, entonces se determina en la etapa 29 si la carga externa se ha elevado por encima del umbral alto. Si no, entonces el protocolo vuelve a la etapa 27 en donde se mantiene el frenado mecánico. Si, sin embargo, la carga externa se ha elevado realmente por encima del umbral alto, entonces se detiene el frenado mecánico (no mostrado) y los motores 10 son controlados de modo que se genere el frenado de contrapar en la etapa 30, seguido por la etapa 31 de confirmación de que está presente la señal de orden de freno. Si la señal de orden de freno ya no está presente, el protocolo vuelve a la etapa 24. Si la señal de orden de freno está aún presente, entonces se determina en la etapa 32 si la carga externa ha caído por debajo del umbral bajo. Si no, entonces el protocolo vuelve a la etapa 30 en donde se mantiene el frenado por contrapar. Si, sin embargo, la carga externa ha caído realmente por debajo del umbral bajo, entonces se detiene el frenado por contrapar (no mostrado) y se acopla el frenado por fricción mecánica en la etapa 27.

Aunque en este protocolo, hay solo un único modo de frenado en cualquier momento, es decir o bien el frenado mecánico o bien el frenado por contrapar, sería posible alternativamente disponer que se apliquen tanto el frenado

mecánico como por contrapar con bajas cargas externas, dado que esto reduciría incluso más el desgaste sobre los frenos de fricción mecánicos 11. Además, sería también posible iniciar el frenado usando ambos modos y a continuación pasar al modo de frenado único cuando la carga externa o bien cae por debajo del umbral bajo o bien excede el umbral alto.

5

10

En este protocolo, la dependencia del par de salida T de los motores 10 sobre la velocidad de rotación ω del motor 10 se ilustra en la figura 9. Cabe remarcar que, durante el modo de frenado, los engranajes de piñón 9 están siendo accionados no solo por el motor 10 asociado sino por la rueda dentada 8 como resultado de la rotación de orientación de la góndola 3. Como puede verse en el dibujo, cuando la magnitud o valor absoluto, de la velocidad de rotación es menor que ω_3 , los motores 10 no generan contrapar T. Solo cuando la magnitud de la velocidad de rotación ω es mayor que ω_3 se aplica el contrapar T y el nivel del contrapar T se incrementa monótonamente con la velocidad de rotación ω .

15

Se apreciará que pueden realizarse muchas modificaciones a las realizaciones descritas anteriormente sin apartarse del alcance de la presente invención que se define por las reivindicaciones siguientes.

20

Por ejemplo, aunque hay tres realizaciones preferidas implicando cada una un protocolo de control respectivo, se concibe que estas puedan combinarse. Por ello, el primer protocolo descrito anteriormente con referencia a la figura 3 puede aplicarse al segundo protocolo ilustrado en el diagrama de flujo de la figura 6 de modo que, durante una rotación de orientación, el par de alto nivel de la segunda realización adopta un valor dependiendo de la velocidad de rotación de los motores. Además, el primer protocolo puede aplicarse al tercer protocolo descrito anteriormente con referencia al diagrama de flujo de la figura 8, de modo que, durante el frenado por contrapar, el nivel de contrapar generado por los motores adopte igualmente un valor dependiendo de la velocidad de rotación de los motores.

Además, aunque en las realizaciones preferidas descritas anteriormente los engranajes de piñón 9 se disponen dentro de la rueda dentada 8, sería posible naturalmente disponer los engranajes de piñón 9 tanto dentro como sobre la periferia exterior de la rueda dentada 8. Además, aunque en las realizaciones preferidas los motores son motores de c. a. alimentados desde la red eléctrica a través de convertidores de frecuencia, sería posible alternativamente usar motores de c. c.

30

REIVINDICACIONES

1. Un sistema de control para un generador de turbina eólica de eje horizontal en el que la góndola se dispone para la rotación alrededor de un eje vertical con relación a la torre por medio de uno o más motores eléctricos y en la que se proporciona un freno mecánico, comprendiendo el sistema:

medios para detectar una primera y segunda condiciones de funcionamiento del generador de turbina eólica; y medios sensibles a una primera condición de funcionamiento detectada para acoplar el freno mecánico de modo que frene la rotación relativa de la góndola y la torre y en respuesta a una segunda condición de funcionamiento detectada para el control de la potencia suministrada al (a los) motor(es) de modo que el (los) motor(es) se disponga(n) para generar un contrapar para frenar la rotación relativa de la góndola y la torre, en el que la primera condición de funcionamiento detectada comprende una carga externa que es menor que un primer valor predeterminado, en el que la segunda condición de funcionamiento detectada comprende una carga externa que es mayor que un segundo valor predeterminado y en el que el primer valor predeterminado de la carga externa es menor que el segundo valor predeterminado de la carga externa.

2. Un sistema de control según se reivindica en la reivindicación 1, en el que cuando el (los) motor(es) se dispone(n) para generar un contrapar, la potencia suministrada al (a los) motor(es) es tal que, mientras la velocidad de rotación permanece dentro de un intervalo predeterminado de valores definidos por una velocidad mínima y una velocidad máxima, el par de salida del (de los) motor(es) también se mantiene dentro de un intervalo de valores predeterminado definido por un par mínimo y un par máximo, en el que la relación de la velocidad máxima a la

15

35

40

55

60

65

3. Un sistema de control según se reivindica en la reivindicación 1 o la reivindicación 2, en el que, en respuesta a la primera condición de funcionamiento detectada, el (los) motor(es) se dispone(n) para no generar sustancialmente ningún par de salida.

velocidad mínima es mayor que la relación del par máximo al par mínimo.

- 4. Un sistema de control según se reivindica en una cualquiera de las reivindicaciones 1 a 3, en el que, en respuesta a la segunda condición de funcionamiento detectada, se desacopla el freno mecánico.
- 5. Un sistema de control según se reivindica en cualquiera de las reivindicaciones anteriores para un generador de turbina eólica de eje horizontal que comprende una góndola montada sobre una torre, disponiéndose la góndola para ser girada con respecto a la torre alrededor de un eje vertical mediante un motor, comprendiendo el sistema:

medios para controlar la potencia suministrada al motor de modo que, mientras la velocidad de rotación permanece dentro de un intervalo predeterminado de valores definidos por una velocidad mínima y una velocidad máxima, el par de salida del motor también se mantiene dentro de un intervalo de valores predeterminado definido por un par mínimo y un par máximo, en el que la relación de la velocidad máxima a la velocidad mínima es mayor que la relación del par máximo al par mínimo.

- 6. Un sistema de control según se reivindica en cualquiera de las reivindicaciones anteriores, en el que los medios para controlar la potencia suministrada al motor se disponen de modo que, cuando la velocidad de rotación se mueve fuera del intervalo de valores predeterminado, el par de salida del motor se cambia a un nuevo intervalo predeterminado de valores para hacer que la velocidad de rotación vuelva a un nivel dentro del intervalo predeterminado.
- 45 7. Un sistema de control según se reivindica en cualquiera de las reivindicaciones anteriores, en el que los medios para controlar la potencia suministrada al motor se disponen de modo que el motor se mantenga con un par de salida sustancialmente constante mientras la velocidad de rotación permanece dentro del intervalo predeterminado.
- 8. Un sistema de control según se reivindica en cualquiera de las reivindicaciones anteriores para un generador de turbina eólica de eje horizontal en el que la góndola se dispone para su rotación alrededor de un eje vertical con relación a la torre por medio de una pluralidad de motores eléctricos dispuesto cada uno para controlar la rotación de un engranaje de piñón respectivo, disponiéndose los engranajes de piñón para su engrane con una única rueda dentada, comprendiendo el sistema:

medios para controlar la velocidad de cada motor de modo que la velocidad esté a un primer nivel hasta que cada uno de los engranajes de piñón respectivos haya engranado totalmente con la única rueda dentada y un segundo nivel posterior para efectuar rotación relativa de la góndola y la torre, siendo el segundo nivel más alto que el primer nivel.

- 9. Un sistema de control según se reivindica en cualquiera de las reivindicaciones anteriores, en el que cuando los engranajes de piñón han engranado totalmente con la única rueda dentada, la potencia suministrada al motor es tal que, mientras la velocidad de rotación permanece dentro de un intervalo predeterminado de valores definidos por una velocidad mínima y una velocidad máxima, el par de salida del motor también se mantiene dentro de un intervalo de valores predeterminado definido por un par mínimo y un par máximo, en el que la relación de la velocidad máxima a la velocidad mínima es mayor que la relación del par máximo al par mínimo.
- 10. Un sistema de control según se reivindica en cualquiera de las reivindicaciones anteriores, que comprende

además medios para determinar el par de salida de cada motor.

10

15

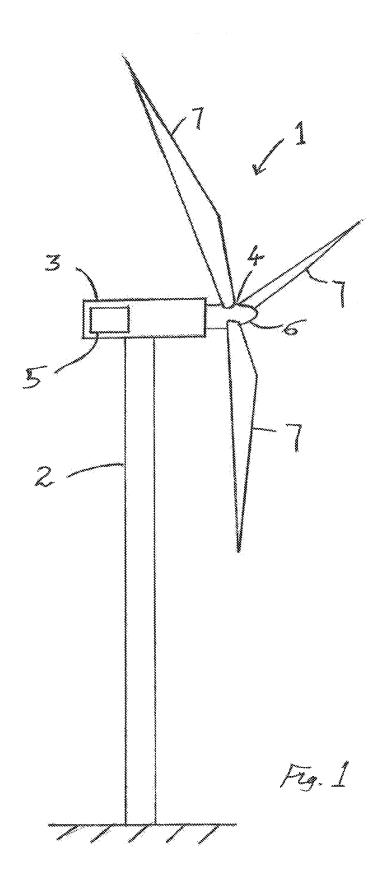
20

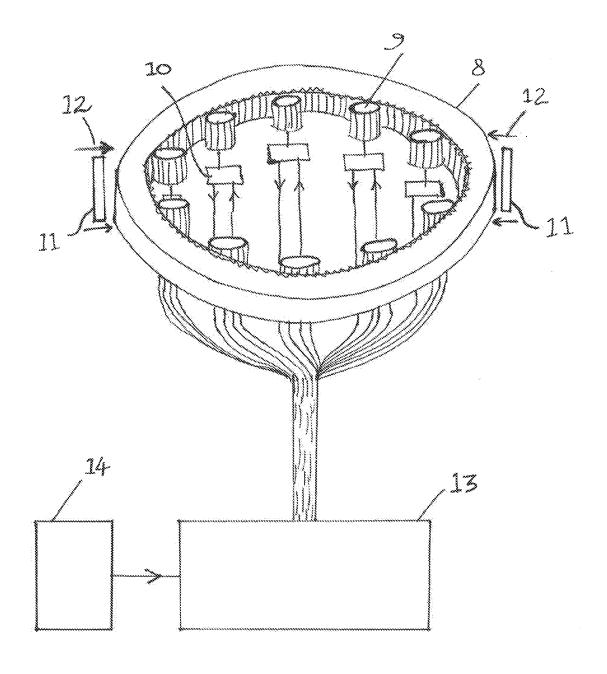
30

11. Un método para controlar un generador de turbina eólica de eje horizontal en el que la góndola se dispone para rotación alrededor de un eje vertical con relación a la torre por medio de al menos un motor eléctrico, y en el que se proporciona un freno mecánico, comprendiendo el método:

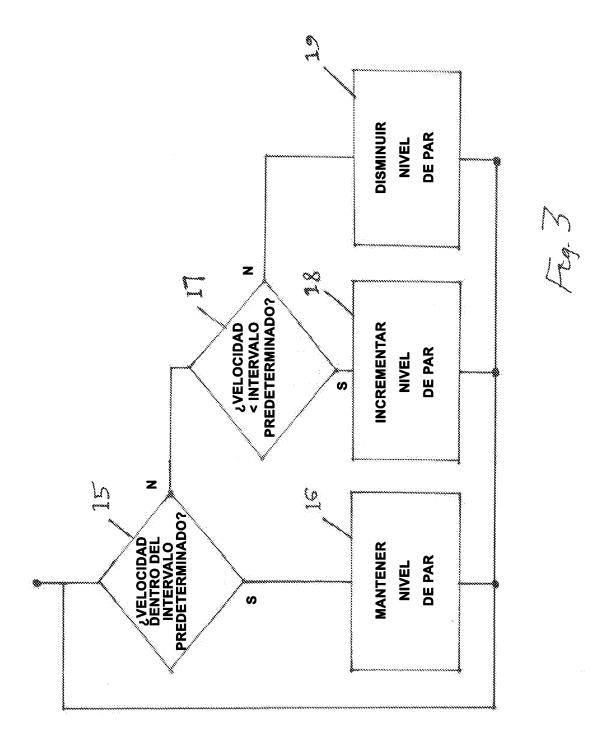
detectar primera y segunda condiciones de funcionamiento del generador de turbina eólica; y

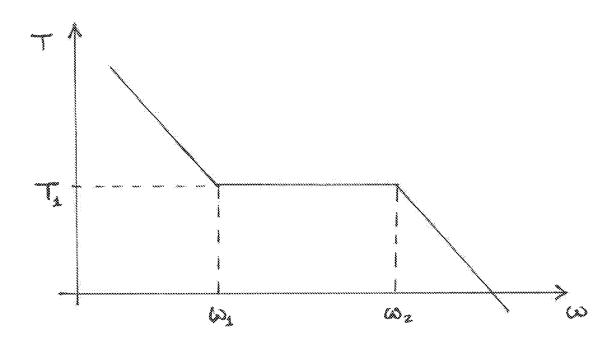
en respuesta a una primera condición de funcionamiento detectada, hacer que el freno mecánico frene la rotación relativa de la góndola y la torre; y, en respuesta a una segunda condición de funcionamiento detectada, controlar la potencia suministrada al (a los) motor(es) de modo que el (los) motor(es) se disponga(n) para generar un contrapar para frenar la rotación relativa de la góndola y la torre,

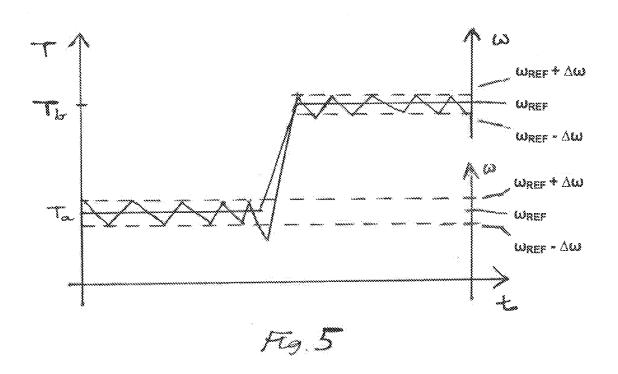

en el que la primera condición de funcionamiento detectada comprende una carga externa que es menor que un primer valor predeterminado, en el que la segunda condición de funcionamiento detectada comprende una carga externa que es mayor que un segundo valor predeterminado y en el que el primer valor predeterminado de la carga externa es menor que el segundo valor predeterminado de la carga externa.

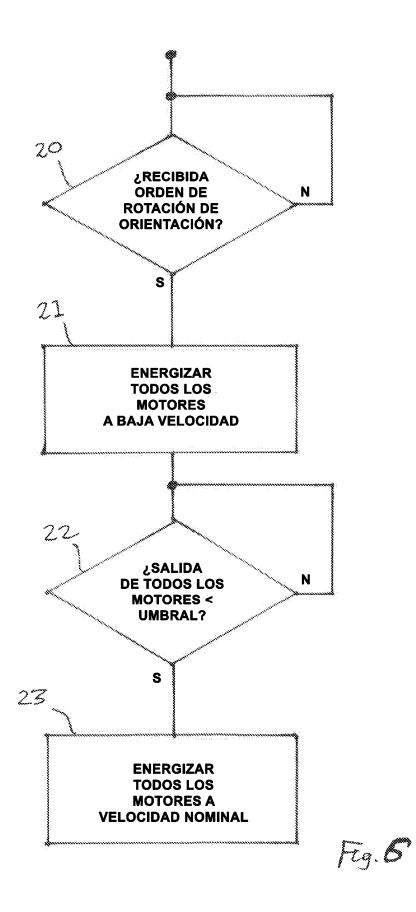

12. Método de acuerdo con la reivindicación 11, se dispone la góndola para ser girada con respecto a la torre alrededor de un eje vertical mediante uno o más motores, comprendiendo el método:

controlar la potencia suministrada al (a los) motor(es) de modo que, mientras la velocidad de rotación permanece dentro de un intervalo predeterminado de valores definidos por una velocidad mínima y una velocidad máxima, el par de salida del (de los) motor(es) también se mantiene dentro de un intervalo de valores predeterminado definido por un par mínimo y un par máximo, en el que la relación de la velocidad máxima a la velocidad mínima es mayor que la relación del par máximo al par mínimo.


13. Método de acuerdo con la reivindicación 11 o 12, disponiéndose la góndola para su rotación alrededor de un eje vertical con relación a la torre por medio de una pluralidad de motores eléctricos dispuesto cada uno para controlar la rotación de un engranaje de piñón respectivo, disponiéndose los engranajes de piñón para su engrane con una única rueda dentada, comprendiendo el método:


controlar la potencia suministrada a cada motor de modo que el par esté a un primer nivel hasta que cada uno de los engranajes de piñón respectivos haya engranado totalmente con la única rueda dentada y un segundo nivel posterior para efectuar la rotación relativa de la góndola y la torre, siendo el segundo nivel más alto que el primer nivel




Fo. 2

