

OFICINA ESPAÑOLA DE PATENTES Y MARCAS

ESPAÑA

11) Número de publicación: 2 717 531

61 Int. Cl.:

A61M 25/00 (2006.01) A61L 29/08 (2006.01) A61L 29/14 (2006.01)

(12)

TRADUCCIÓN DE PATENTE EUROPEA

T3

Fecha de presentación y número de la solicitud europea: 30.10.2008 E 17153991 (9)
 Fecha y número de publicación de la concesión europea: 02.01.2019 EP 3184141

(54) Título: Procedimiento para liberación sostenida de agente esclerosante

(30) Prioridad:

30.10.2007 US 983739 P

(45) Fecha de publicación y mención en BOPI de la traducción de la patente: 21.06.2019

(73) Titular/es:

UTI LIMITED PARTNERSHIP (100.0%) Suite 130, 3553 - 31 Street N.W. Calgary, AB T2I 2K7, CA

(72) Inventor/es:

TREMBLAY, ALAIN y DUMITRIU, SEVERIAN

(74) Agente/Representante:

CARPINTERO LÓPEZ, Mario

DESCRIPCIÓN

Procedimiento para liberación sostenida de agente esclerosante

Campo de la invención

5

10

15

20

25

40

45

La presente divulgación se refiere de forma general a un procedimiento y a un sistema para el tratamiento de enfermedades pleurales. Más en particular, la presente divulgación se refiere a un procedimiento y a un sistema para el tratamiento de enfermedades pleurales que comprenden proporcionar una baja dosis de agente esclerosante a lo largo de un período de tiempo para conseguir una pleurodesis difusa de las capas pleurales. Más particularmente aún, la presente divulgación se refiere a un catéter revestido con un agente esclerosante que proporciona drenaje y que consigue pleurodesis de las capas pleurales a través de la liberación sostenida del agente esclerosante.

Información de los antecedentes

Las enfermedades pleurales son problemas médicos frecuentes que suelen requerir un caro tratamiento de hospitalización, frecuentemente de carácter invasivo o quirúrgico. Entre loe ejemplos no exhaustivos de enfermedades pleurales se incluyen derrames pleurales y neumotórax. Los derrames pleurales son acumulaciones de fluido en torno al pulmón y el neumotórax (PTX) es un hundimiento del pulmón debido al aire que entra en el espacio pleura.

Los derrames pleurales pueden estar causados por diversas afecciones médicas comunes como cáncer, tuberculosis, insuficiencia cardíaca congestiva, neumonía, embolia pulmonar, cirrosis con ascitis, pancreatitis o enfermedad vascular del colágeno. Si la cantidad de fluido es importante, se comprime el pulmón y el paciente experimenta dificultad respiratoria y tos. Dichos derrames suelen resultar difíciles de tratar y tienen como resultado una dificultad respiratoria recurrente, así como frecuentes visitas al hospital para múltiples tratamientos. Existen muchos elementos diferentes que deberían tomarse en cuenta para el tratamiento y control de los derrames pleurales, en particular derrames pleurales malignos. *Véase* American Thoracic Society, Management of Malignant Pleural Effusions, 162 AM. J. de RESPIRATORY AND CRITICAL CARE 1987- 2001 (2000, que se incorpora en el presente documento como referencia).

En vista de las molestias y sufrimiento que se pueden atribuir a los derrames pleurales y las características de la población de pacientes que la padecen, un enfoque de tratamiento preferente debería ofrecer un alivio inmediato de los síntomas a menudo y a largo plazo, evitar la hospitalización, poderse aplicar a la mayoría de los pacientes, tener unos efectos secundarios mínimos y evitar la repetición de procedimientos molestos.

30 El enfoque habitual en los pacientes con derrame pleural maligno sintomático (MPE) es realizar una punción pleural (toracentesis) o intentar la pleurodesis con un agente esclerosante, como talco o tetraciclina colocando un catéter intercostal o a través de toracoscopia quirúrgica e intentar la pleurodesis con un agente esclerosante como talco o una tetraciclina. El primer enfoque es intensivo en lo que se refiere a los recursos (al requerir múltiples consultas médicas o al departamento de ecografías), doloroso y solamente parcial o temporalmente eficaz para aliviar los síntomas. El segundo requiere hospitalización y puede requerir una anestesia general. Por otra parte, tan solo puede realizarse en una porción del paciente, que ha de someterse a la colocación de tubos torácicos, puede ser significativamente doloroso y se ha asociado con diferentes complicaciones pulmonares.

Denver Biomed Inc. (que forma parte actualmente de Cardinal Helath) ha desarrollado un procedimiento ambulatorio más nuevo, Pleurx, utilizando un catéter tunelizado a largo plazo insertado en el espacio pleural. Lamentablemente, la mayoría de los pacientes necesitan un drenaje continuado con el catéter para el resto de su vida, si bien en algunos pacientes se consigue la pleurodesis al cabo de un promedio de aproximadamente 8-12 semanas de drenaje. El drenaje prolongado supone posibles impactos en la calidad de vida, tasas de complicación (debido a las infecciones), coste de los suministros y el estado nutricional.

El documento CA 2.466.636, titulado "PLEURODESIS QUÍMICA LOCALIZADA" describe un sistema de terapia con oxígeno a largo plazo que tiene un suministro de oxígeno unido directamente al pulmón o pulmones del paciente para tratar hipoxia. El sistema incluye una fuente de oxígeno, una o más válvulas y conductos para transportar el fluido. Los conductos de transporte del fluido unen la fuente de oxígeno con los sitios enfermos dentro de los pulmones del paciente. Para que el sistema sea eficaz, se requiere un sello hermético al aire entre la pleura parietal y visceral. La pleurodesis guímica localizada se utiliza para crear el sello.

El neumotórax espontáneo primario (PSP) es un neumotórax en pacientes sin una enfermedad pulmonar preexistente. El neumotórax espontáneo secundario (SSP) es un neumotórax que aparece en pacientes con una serie de enfermedades pulmonares, como enfermedad pulmonar obstructiva crónica (EPOC), enfisema o fibrosis pulmonar. La mayoría de los casos de neumotórax se pueden tratar con un simple drenaje de tubo torácico. Si bien los pacientes que experimentan neumotórax están en un alto riesgo de un evento recurrente en el futuro, por lo general no se ofrece al paciente un tratamiento dirigido a reducir ese riesgo hasta que no experimentan dos o más episodios de hundimiento del pulmón dado el carácter invasivo de los tratamientos preventivos disponibles hoy en

Los pacientes con insuficiencia cardíaca grave pueden desarrollar derrames pleurales recurrentes que complican su atención médica y causan crecientes dificultades respiratorias. Dada la falta de tratamientos locales eficaces y seguros para estos derrames, La única solución para el problema es la optimización de la función cardíaca. Lamentablemente, la recurrencia de la acumulación de fluido es frecuente.

5 Un procedimiento seguro, mínimamente invasivo y eficaz para conseguir un control a largo plazo del neumotórax o los derrames pleurales malignos supondría un enorme beneficio para estos pacientes.

Sumario

15

35

40

45

50

Se desea un procedimiento y un sistema para proporcionar tratamiento para enfermedades pleurales, al mismo tiempo que se reducen al mínimo los problemas asociados de las opciones de tratamiento que existen.

- Por consiguiente, en un primer aspecto, la presente invención proporciona un agente esclerosante para su uso en un procedimiento de fusión de dos capas pleurales para crear una pleurodesis difusa de una primera capa pleural y una segunda capa pleural, en el que el procedimiento comprende:
 - (a) proporcionar un catéter revestido con un agente esclerosante, en el que el catéter comprende un extremo proximal y un extremo distal y, en el que dicho catéter proporciona una liberación sostenida del agente esclerosante a la capa pleural a lo largo de un período de tiempo de al menos dos horas: e
 - (b) insertar el extremo distal del catéter en el espacio pleural entre una primera capa pleural y una segunda capa pleural, en el que el extremo distal del catéter se inserta en un punto de inserción:

en el que la liberación del agente esclerosante crea una pleurodesis difusa de la primera capa pleural y la segunda capa pleural y en el que:

- 20 (ii) la pleurodesis difusa comprende una pluralidad de adherencias entre la primera capa pleural y la segunda capa pleural;
 - (ii) la pluralidad de adherencias cubren al menos el veinticinco por ciento del área superficial de la primera capa pleural; y
 - (iii) al menos una de las adherencias está a más de cinco centímetros del punto de inserción.
- También se desvela en el presente documento un sistema para tratar enfermedades pleurales proporcionando una baja dosis de un agente esclerosante a lo largo de un período de tiempo para conseguir pleurodesis de las capas pleurales. Las realizaciones ilustrativas concretas comprenden un catéter revestido con un agente esclerosante que consigue pleurodesis de las capas pleurales a través de la liberación sostenida del agente esclerosante. Al proporcionar el agente esclerosante a lo largo de un período de tiempo, en lugar de una única dosis grande, se deberían reducir los efectos secundarios negativos (como molestias al paciente). El uso de un catéter de un agente esclerosante de liberación sostenida también puede ofrecer un alivio inmediato de los síntomas y a largo plazo, evitar la hospitalización, la posibilidad de aplicarlo a la mayoría de los pacientes, unos efectos secundarios mínimos y evitar la repetición de procedimientos molestos.
 - Se describen asimismo sistemas para tratar enfermedad pleural, incluyendo derrames pleurales. Los ejemplos de realizaciones comprenden proporcionar un nivel de dosis bajo de un agente esclerosante a lo largo de un período de tiempo para conseguir pleurodesis de las capas pleurales, lo cual puede reducir la probabilidad de que se vuelvan a formar neumotórax o derrames pleurales. El nivel de dosis puede seleccionarse a un nivel que es suficientemente bajo como para minimizar o reducir los efectos secundarios negativos asociados generalmente con la administración de un agente esclerosante en una sola dosis para conseguir pleurodesis. El nivel de dosis se puede seleccionar a un nivel que está por debajo de la cantidad mínima considerada como terapéuticamente eficaz en una sola dosis. Sin embargo, es posible seguir consiguiendo la pleurodesis por la dosificación repetida (o liberación sostenida).
 - En el presente documento se describen además ciertos ejemplos que incluyen un catéter con un agente esclerosante que se inserta en el espacio pleural. El agente esclerosante puede liberarse con liberación sostenida a lo largo de un período de tiempo para conseguir pleurodesis general o difusa de las capas pleurales. En ciertas realizaciones, se puede liberar la mayor parte del agente esclerosante (p.ej., más de un cincuenta por ciento de la cantidad total de agente esclerosante contenida en el catéter) a una velocidad constante a lo largo de doce, veinticuatro, treinta y seis, cuarenta y ocho, sesenta o setenta y dos horas. En ciertas realizaciones, se puede liberar la mayor parte del agente esclerosante durante un período comprendido entre tres y quince días. En realizaciones concretas, se puede liberar el agente esclerosante de modo que se libere aproximadamente un diez por ciento del agente esclerosante cada dos, cuatro, seis, ocho, diez, doce, catorce, dieciséis, dieciocho, veinte, veintidós, veinticuatro, veintiséis, veintiocho, treinta, treinta y dos, treinta y cuatro o treinta y seis horas. Por otra parte, se puede utilizar el catéter para drenar fluido o aire del espacio pleural. En ciertos ejemplos, se puede acoplar un dispositivo de succión y/o almacenamiento al catéter para favorecer la extracción y almacenamiento de fluido o aire. En ejemplos concretos, el agente esclerosante es nitrato de plata.

Al administrar el agente esclerosante con liberación sostenida con un procedimiento único, se puede evitar al paciente múltiples procedimientos de tratamiento y evitar requerimientos de hospitalización prolongada.

Ciertas realizaciones descritas en el presente documento comprenden un procedimiento de promoción de pleurodesis. El procedimiento puede comprender proporcionar un catéter que comprende un extremo proximal, un extremo distal y un agente esclerosante proximal al extremo distal. El agente esclerosante puede configurarse para promover la inflamación o fibrosis de la capa pleural. El procedimiento puede incluir insertar el extremo distal del catéter en el espacio pleural entre una primera capa pleural y una segunda capa pleural, proporcionar una liberación sostenida del agente esclerosante a lo largo de un período de tiempo de al menos 12 horas en el espacio pleural y crear una pleurodesis difusa de las capas pleurales primera y segunda. En ciertas realizaciones, el período de tiempo puede ser superior o igual a veinticuatro horas. En otras realizaciones, el período de tiempo puede ser superior a cuarenta y ocho o setenta y dos horas. En otra realización más, el período de tiempo puede ser entre tres y quince días. En realizaciones concretas, el agente esclerosante comprende nitrato de plata.

5

10

15

25

45

50

55

En ciertas realizaciones descritas en el presente documento, la primera capa pleural es una capa pleural visceral y la segunda capa pleural es una capa pleural parietal. En realizaciones concretas, la pleurodesis difusa comprende una pleurodesis de al menos el veinticinco por ciento del hemitórax y la capa pleural visceral se fusiona con la capa pleural parietal en una pluralidad de emplazamientos. En otras realizaciones, la pleurodesis difusa comprende una pleurodesis de al menos veinticinco por ciento de un hemitórax la capa pleural visceral se fusiona con la capa pleural parietal en una pluralidad de emplazamientos.

La pleurodesis difusa comprende múltiples adherencias entre la primera capa pleural y la segunda capa pleural y una porción de las múltiples adherencias puede estar localizada al menos a tres centímetros desde el extremo distal del catéter cuando se inserta el extremo distal en el espacio pleural. Las realizaciones concretas también pueden comprender drenar un derrame pleural o aire del espacio pleural a través de un catéter.

En realizaciones concretas descritas en el presente documento, el derrame pleural puede estar asociado a cáncer, insuficiencia cardíaca congestiva, cirrosis, tuberculosis, neumonía, embolia pulmonar, pancreatitis o enfermedad vascular del colágeno. En ciertas realizaciones, el derrame pleural puede comprender un derrame pleural maligno.

Ciertas realizaciones descritas en el presente documento pueden comprender también proporcionar un dispositivo que crea una presión negativa, acoplar el dispositivo al catéter y poner en funcionamiento el dispositivo para proporcionar una presión negativa al espacio pleural. Realizaciones concretas pueden comprender también drenar el derrame pleural hacia un recipiente acoplado al dispositivo.

30 Realizaciones concretas descritas en el presente documento comprenden un agente esclerosante para su uso en un procedimiento de tratamiento de una enfermedad pleural. El procedimiento comprende proporcionar un catéter que comprende un extremo proximal, un extremo distal y un agente esclerosante proximal al extremo distal. El agente esclerosante puede configurarse para promover inflamación o fibrosis de una capa pleural. El procedimiento comprende insertar el extremo distal del catéter en un espacio pleural entre una primera capa pleural y una segunda capa pleural, extraer un derrame pleural o aire del espacio pleural a través del catéter y proporcionar una liberación 35 sostenida del agente esclerosante a lo largo de un periodo de tiempo en el espacio pleural. El procedimiento comprende crear una pleurodesis difusa de la primera capa pleural con la segunda capa pleural. En realizaciones concretas, el periodo de tiempo es superior o igual a veinticuatro horas. En realizaciones concretas, el periodo de tiempo puede ser entre tres y quince días. En ciertas realizaciones, la enfermedad pleural es neumotórax. En 40 realizaciones concretas, el agente esclerosante comprende nitrato de plata. Ciertas realizaciones pueden comprender también proporcionar un dispositivo que crea una presión negativa, acoplar el dispositivo al catéter y poner en funcionamiento el dispositivo para proporcionar presión negativa al espacio pleural.

La presente invención proporciona un agente esclerosante para su uso en un procedimiento de fusión de dos capas pleurales para crear pleurodesis difusa, tal como se define además en la reivindicación 1. En ciertas realizaciones, el procedimiento puede comprender proporcionar un catéter revestido con nitrato de plata, en el que el catéter comprende un extremo proximal y un extremo distal. El procedimiento comprende insertar el extremo distal del catéter en un espacio pleural entre una primera capa pleural y una segunda capa pleural, en el que se inserta el extremo distal del catéter en un punto de inserción. El procedimiento puede comprender también proporcionar una liberación sostenida del nitrato de plata en la capa pleural y crear una pleurodesis de la primera capa pleural y la segunda capa pleural, en el que la pleurodesis comprende una pluralidad de adherencias entre la primera capa pleural y la segunda capa. La pluralidad de adherencias cubre al menos el veinticinco por ciento del área superficial de la primera capa pleural y al menos una de las adherencias está a más de cinco centímetros del punto de inserción.

La liberación sostenida de nitrato de plata en la capa pleural tiene lugar a lo largo de un período de tiempo de al menos doce horas.

Se desvela asimismo un procedimiento de revestimiento de un catéter que comprende: (a) introducir un catéter o una porción del mismo para su revestimiento en una solución de quitosano y, opcionalmente, mantener el catéter o porción del mismo en esta solución durante un primer período de tiempo, en el que la solución de quitosano

comprende ácido acético; seguido de (b) introducir el catéter o la porción del mismo en una primera solución de nitrato de plata y, opcionalmente, mantener el catéter o la porción del mismo en esta solución durante un segundo período de tiempo; seguido de (c) introducir el catéter o la porción del mismo en una segunda solución de nitrato de plata y, opcionalmente, mantener el catéter o la porción del mismo en esta solución durante un tercer período de tiempo. En ciertas realizaciones, el procedimiento comprende también (d) secar el catéter o la porción del mismo; (e) repetir las etapas (a)-(c) para formar un hidrogel y o bien: (i) introducir el catéter o la porción del mismo en una solución de glutaraldehído y, opcionalmente, mantener el catéter o la porción en esta solución durante un cuarto período de tiempo; o bien (ii) introducir el catéter o la porción del mismo en una solución de hialuronato sódico y, opcionalmente, mantener el catéter o la porción del mismo en una tercera solución de nitrato de plata y, opcionalmente, mantener el catéter o la porción del mismo en una tercera solución de nitrato de plata y, opcionalmente, mantener el catéter o la porción del mismo en esta solución durante un sexto período de tiempo. En realizaciones concretas, tras la etapa (i) o (ii), se seca el catéter o la porción del mismo.

5

10

15

20

25

30

45

50

El primer período de tiempo puede ser aproximadamente 5-10 segundos, el segundo período de tiempo puede ser aproximadamente 1-2 minutos, el tercer período de tiempo puede ser aproximadamente 24 horas, el cuarto período de tiempo puede ser aproximadamente 8 minutos, y/o el sexto período de tiempo puede ser aproximadamente 4 horas. La concentración de quitosano puede oscilar entre aproximadamente 1,4-1,8 % (p/p). La concentración de quitosano puede oscilar entre aproximadamente 400,000 y 600,000 g/mol. El peso molecular del quitosano puede oscilar entre 150,000 – 700,000 g/moles. El grado de acetilación del quitosano puede ser aproximadamente 18-20 %. El grado de acetilación del quitosano puede ser aproximadamente 18-20 %. El grado de acetilación del quitosano puede ser aproximadamente 5 °C. La temperatura de la solución de quitosano puede ser aproximadamente 2 – 8 °C. La concentración de ácido acético puede ser aproximadamente 1 % (p/p). La concentración de ácido acético es aproximadamente 0,6 – 1,5 %. La solución de ácido acético se puede preparar utilizando agua desionizada, agua doblemente destilada y otras formas de agua sin iones Cl. La concentración de la primera y/o la segunda solución de nitrato de plata puede ser aproximadamente 14-18 % (p/p). La concentración de la primera y/o la segunda solución de nitrato de plata puede ser aproximadamente 10 - 15 % (p/p).

La primera solución de nitrato de plata puede comprenderse en un tubo de precipitación. Se puede preparar una o más soluciones de nitrato de plata utilizando agua desionizada, agua doblemente destilada u otras formas de agua sin iones CI. Las concentraciones de la primera y segunda solución de nitrato de plata puede ser la misma, mientras que, en otras realizaciones, las concentraciones de las soluciones de nitrato de plata primera y segunda son diferentes. El primer período de tiempo puede ser aproximadamente 1 minuto. El primer período de tiempo puede ser aproximadamente 1-5 minutos. El segundo período de tiempo puede ser aproximadamente 5 minutos. El segundo período de tiempo puede ser aproximadamente 2 - 9 minutos. El tercer período de tiempo puede ser aproximadamente 24 horas. El tercer período de tiempo puede ser aproximadamente 20 - 40 horas.

El periodo de tiempo entre la etapa (b) y la etapa (c) puede ser menos de aproximadamente 5 segundos. El periodo de tiempo entre la etapa (b) y la etapa (c) puede ser menos de aproximadamente 2 - 10 segundos. Se puede limpiar el catéter o la porción del mismo antes de la etapa (a). La limpieza puede comprender el contacto del catéter o la porción del mismo con aproximadamente 98 % (p/p) de etanol. La limpieza puede comprender el contacto del catéter o la porción del mismo con aproximadamente 70 – 98 % (p/p) de etanol. Es posible no secar el catéter o la porción del mismo entre las etapas (b) y (c). Tras la etapa (e), se puede aclarar el catéter o porción del mismo en agua destilada. Se puede aclarar el catéter o porción del mismo en agua destilada durante aproximadamente 10-20 segundos tras la etapa (e).

La concentración de glutaraldehído puede ser aproximadamente 0,98 %. La concentración de glutaraldehído puede ser aproximadamente 0,7 – 1,5 % (p/p). La solución de glutaraldehído se puede preparar utilizando agua desionizada, agua doblemente destilada u otra forma de agua sin iones Cl. El cuarto período de tiempo puede ser aproximadamente 8 minutos. El cuarto período de tiempo puede ser aproximadamente 6 - 12 minutos. Se puede aclarar el catéter o la porción del mismo en agua destilada inmediatamente antes de la etapa (i) y/o inmediatamente antes del secado. La concentración de la tercera solución de nitrato de plata puede ser aproximadamente 16 %. La concentración de la tercera solución de nitrato de plata puede ser aproximadamente 14 - 20 % y/o la concentración de hialuronato sódico puede ser aproximadamente 1 - 3 % (p/p). El quinto período de tiempo puede ser aproximadamente 48 - 62 horas.

La etapa de secado de la etapa (f) puede realizarse a una temperatura de 12 - 37 °C. El grado de inflado del hidrogel, α , es aproximadamente 125. El grado de inflado del hidrogel, α , es aproximadamente 125 - 220 %. El catéter o porción del mismo comprende silicona-, poliuretano o PVC.

Se desvela asimismo un procedimiento de revestimiento de un catéter o porción del mismo para su revestimiento que comprende: (a) formar un primer revestimiento sobre un catéter o la porción del mismo, que comprende revestir secuencialmente el catéter o la porción del mismo con capas en el siguiente orden: una primera capa de quitosano, una primera capa de nitrato de plata y una segunda capa de nitrato de plata; (b) formar un segundo revestimiento sobre el catéter o la porción del mismo que se estratifica encima de la parte superior del primer revestimiento, que comprende revestir secuencialmente el catéter o la porción del mismo con capas en el siguiente orden: una segunda capa de quitosano, una tercera capa de nitrato de plata y una cuarta capa de nitrato de plata; y (c) tras la etapa (b),

introducir el catéter o la porción del mismo en una solución de glutaraldehído; y (d) secar el catéter o la porción del mismo.

Se desvela también un procedimiento de revestimiento de un catéter o la porción del mismo para su revestimiento que comprende: (a) formar un primer revestimiento sobre un catéter o la porción del mismo, que comprende revestir secuencialmente el catéter o la porción del mismo con capas en el siguiente orden: una primera capa de quitosano, una primera capa de nitrato de plata y una segunda capa de nitrato de plata; (b) formar un segundo revestimiento sobre el catéter o la porción del mismo que se estratifica sobre la parte superior del primer revestimiento, que comprende, tras la etapa (a), revestir secuencialmente el catéter o la porción del mismo con capas en el siguiente orden: una segunda capa de quitosano, una tercera capa de nitrato de plata y una cuarta capa de nitrato de plata; y (c) tras la etapa (b), introducir el catéter o la porción del mismo en una solución de hialuronato sódico, seguido de la introducción del catéter o la porción del mismo en una quinta solución de nitrato de plata; y (d) secar el catéter o la porción del mismo.

5

10

15

20

25

35

40

55

En ciertas realizaciones de cualquiera de los aspectos de la presente invención, pueden emplearse otros agentes distintos a nitrato de plata. Entre los ejemplos no exhaustivos de dichos agentes se incluyen metal de plata, óxido de plata o sales de plata, incluyendo sulfato de plata, carbonato de plata, fosfato de plata, sulfuro de plata, yodato de plata, haluros de plata (p.ej., cloruro de plata) y sulfadiazina de plata.

Se contempla la posible implantación de cualquiera de las realizaciones explicadas en la presente memoria descriptiva con respecto a cualquier uso descrito en el presente documento y *viceversa*. Asimismo, pueden emplearse los sistemas descritos en el presente documento para conseguir los procedimientos tal como se describen en el presente documento.

Los términos " pleurodesis general " o "pleurodesis difusa" se definen como pleurodesis que se distribuye por todas las capas pleurales y no está confinada a un emplazamiento específico. La pleurodesis general o difusa comprende una adherencia o fusión de las capas pleurales que no se limita al emplazamiento en el que se introduce el agente esclerosante en el espacio pleural. La pleurodesis general o difusa comprende la adherencia o fusión de las capas pleurales a una distancia medida de 5 cm, o más, desde el emplazamiento en el que se introduce el agente esclerosante. La pleurodesis general o difusa comprende la adherencia o fusión de al menos un veinticinco por ciento y en ciertos ejemplos no exhaustivos, más de un treinta por ciento, cuarenta por ciento o cincuenta por ciento de las capas pleurales. La pleurodesis general o difusa comprende la adherencia o fusión de las capas pleurales en múltiples emplazamientos.

30 El término y la expresión "aproximadamente" o "en torno a" se definen como cercano tal como lo entienden las personas expertas en la materia y, en una realización no exhaustivas los términos se definen como dentro de 10 %, preferentemente dentro de 5 %, más preferentemente dentro de 1 % y lo más preferentemente dentro de 0,5 %.

Los términos "inhibir" o "reducir" o cualquier variación de estos términos, cuando se utilizan en las reivindicaciones y/o la memoria descriptiva incluye cualquier disminución que se pueda medir o una inhibición completa para conseguir un resultado deseado.

El término "eficaz", tal como se utiliza dicho término en la memoria descriptiva y/o las reivindicaciones, significa adecuado para conseguir un resultado deseado, esperad o pretendido.

El uso de la palabra "un" o "una" cuando se utiliza en conjunto con el término "que comprende" en las reivindicaciones y/o la memoria descriptiva puede significar "uno" pero también se corresponde con el significado "uno o más", "al menos uno" y "uno o más de uno.".

El uso del término "o" en las reivindicaciones se utiliza para significar "y/o" a no ser que se indique explícitamente para referirse a alternativas solamente o a alternativas que son excluyentes entre sí, aunque la divulgación corrobore una definición que se refiere a alternativas solamente e "y/o".

Tal como se utiliza en la presente memoria descriptiva y en las reivindicaciones, las expresiones "que comprende" (y cualquier forma conjugada de comprender, como "comprenden" o "comprende"), "que tiene" (y cualquier forma conjugada de tener, como "tienen" y "tiene"), "que incluye" (y cualquier forma conjugada de incluir, como "incluyen" o "incluye") o "que contiene" (y cualquier forma conjugada de contener como "contienen" o "contiene) son inclusivas o abiertas y no excluyen elementos o etapas de procedimiento adicionales que no se citen.

Tal como se utilizan en el presente documento "introducir" y "variantes de los mismos se refieren a colocar un catéter o un catéter revestido con al menos una capa, tal como se describe en el presente documento, en contacto físico con una solución. Entre los procedimientos no exhaustivos de dicha introducción se incluyen inmersión y baño.

Tal como se utiliza en el presente documento, el término "aproximadamente" se utiliza para indicar que el valor incluye el error de desviación típica para el dispositivo y/o procedimiento que se emplea para determinar el valor.

Otros objetos, características y ventajas de la presente invención se pondrán de manifiesto a partir de la descripción detallada.

Breve descripción de los dibujos

10

30

40

45

50

La Figura 1 ilustra una vista esquemática y transversal de un ejemplo de realización de un catéter instalado en un espacio pleural.

La Figura 2 ilustra un ejemplo de realización de un catéter.

- 5 La Figuras 3A-3C ilustra resultados experimentales con el uso directo de inyecciones de dosis diaria de nitrato de plata
 - La Figuras 4A-4C ilustra resultados experimentales con el uso directo de inyecciones de dosis diaria de doxiciclina.
 - La Figura 5 ilustra una tabla de un sistema de graduación normal utilizado para evaluar los resultados experimentales.
 - La Figura 6 ilustra un gráfico de los resultados del análisis experimental de un estudio de dosificación de catéter revestido utilizando un modelo de animal pequeño.
 - La Figura 7 ilustra una tabla de los resultados del análisis experimental de un estudio de dosificación de catéter revestido utilizando un modelo de animal pequeño.
- La Figura 8 es una fotografía en la que se demuestra la patología macroscópica de una muestra de animal con un espacio pleural utilizado como control contralateral.
 - La Figura 9A es una fotografía en la que se demuestra la patología macroscópica de una muestra de animal con un espacio pleural tratado con un catéter de liberación sostenida.
- La Figura 9B es una imagen microscópica de pleurodesis en el espacio pleural de una muestra de animal tratado con un catéter de liberación sostenida.
 - La Figura 9C es un gráfico en el que se muestra las puntuaciones de fibrosis histopatológicas de espacios pleurales de control tratados y sin tratar para cada grupo de tratamiento.
 - La Figura 10 es una tabla de las puntuaciones de pleurodesis para animales grandes tratados con catéteres de liberación sostenida de nitrato de plata.
- La Figura 11 es un gráfico de las puntuaciones de pleurodesis para animales grandes individuales tratados con catéteres de liberación sostenida de nitrato de plata.
 - La Figura 12 es un gráfico en el que se ilustra la cinética de liberación de un catéter de poliuretano revestido con geles de quitosano nitrato de plata.
 - La Figura 13 es un gráfico en el que se ilustra la cinética de liberación de un catéter de poliuretano revestido con geles de quitosano nitrato de plata.
 - La Figura 14 es un gráfico en el que se ilustra la cinética de liberación de un catéter de silicona revestido con geles de quitosano nitrato de plata.
 - La Figura 15 es un gráfico en el que se ilustra la cinética de liberación de un catéter de silicona revestido con geles de guitosano nitrato de plata.

35 <u>Descripción detallada de realizaciones ilustrativas</u>

Haciendo referencia a continuación al ejemplo de realización presentado en la Figura 1, una cavidad torácica 450 comprende un hemitórax derecho 200, un hemitórax izquierdo 300 y una tráquea 400. El hemitórax derecho 200 comprende un espacio pleural 250 entre una capa parietal 210 y a capa visceral 220, que abarca un pulmón derecho 270. De manera similar, el hemitórax izquierdo 300 comprende un espacio pleural 350 entre una capa parietal 310 y una capa visceral 320, que abarca un pulmón izquierdo 370. La Figura 1 no está a escala y ciertas porciones pueden estar aumentadas para mayor facilidad y detalle.

En ciertas condiciones que se describen a lo largo de la presente divulgación, se puede acumular un derrame pleural 230 o aire en el espacio pleural 250 entre la capa parietal 210 y la capa visceral 220. Para drenar el derrame pleural 230 o aire desde el espacio pleural 250, se puede insertar un catéter 100 en el espacio pleural 250. En el ejemplo de realización presentado, el catéter 100 comprende un extremo proximal 120, un extremo distal 110 y un agente esclerosante 130 proximal al extremo distal 110. En ciertas realizaciones, el catéter 100 puede estar acoplado a un dispositivo de presión negativa 140 y/o un recipiente 150. El dispositivo de presión negativa 140 puede ser cualquier dispositivo ligero, portátil y pequeño capaz de crear una presión negativa en el catéter 100 y el espacio pleural 250. En ciertas realizaciones, el dispositivo de presión negativa puede ser una bomba de vacío o un compresor de vacío. El recipiente 150 está configurado para recibir y contener fluido/aire del derrame pleural 230 a medida que se drena

desde el espacio pleural 250 a través del catéter 100.

5

10

15

20

35

40

45

50

55

En el ejemplo de realización presentado en la Figura 1, se inserta el extremo distal 110 del catéter 100 en el espacio pleural 250 de manera que también se coloca la porción del catéter 100 que comprenden agente esclerosante 130 en el espacio pleural 250. En ciertas realizaciones, el agente esclerosante 130 comprende un material, como nitrato de plata, que promueve la inflamación y/o fibrosis de la capa parietal 210 y/o la capa visceral 220. Al promover la inflamación y/o fibrosis de la capa parietal 210 y/o la capa visceral, las capas pleurales pueden fusionarse para conseguir una pleurodesis general o difusa. Esto puede ayudar a prevenir que se vuelva a acumular el fluido o aire en el espacio pleural 250 y reducir así la probabilidad de que se vuelvan a formar derrames pleurales/PTX. En otras realizaciones, el agente esclerosante 130 puede comprender un material, o combinación de materiales, diferentes al nitrato de plata. Una lista no exhaustiva de ejemplos de materiales que puede comprender el agente esclerosante 130 incluye: doxiciclina, minociclina, tetraciclina, talco, bleomicina, doxorubicina, proviodina, TGF beta, mepacrina, otros antibióticos, otros agentes antineoplásicos otras citocinas y agentes biológicos.

En los ejemplos de realizaciones, el catéter 100 está configurado para una liberación sostenida del agente esclerosante 130 en el espacio pleural 250 a lo largo de un período de tiempo prolongado. En ciertos ejemplos, el agente esclerosante 130 puede liberarse a lo largo de un período de tiempo que oscila entre veinticuatro horas y varios días. Al permitir la liberación del agente esclerosante 130 a lo largo de un período de tiempo prolongado, se cree que es posible minimizar los posibles efectos secundarios relacionados con la pleurodesis. En lugar de inyectar el agente esclerosante en una sola dosis, se administra el agente de forma sostenida a lo largo de un período de tiempo. Se cree que el agente esclerosante puede administrarse a un nivel suficiente para conseguir la pleurodesis deseada, aunque lo bastante bajo para reducir los efectos secundarios comunes con dichas administraciones de dosis únicas. Entre dichos efectos secundarios se incluyen molestias que el paciente sienta y complicaciones pulmonares. En ciertas realizaciones, el catéter 100 puede insertarse en el espacio pleural 250 en un paciente ambulatorio. Dicho procedimiento puede reducir el coste y las molestias para el paciente para tratar el derrame pleural 230.

En la Figura 2 se muestra un ejemplo de realización del catéter 100. En esta realización, el catéter 100 comprende un agujero de drenaje lateral 115 para facilitar el drenaje del espacio pleural 250. Otras realizaciones pueden comprender agujeros de drenaje lateral adicionales. El agujero de drenaje lateral 115 proporciona un camino adicional para que el fluido o el aire fluyan hacia el catéter 100 en el caso de que se bloquee el extremo distal 110.

Se puede aplicar el agente esclerosante 130 al catéter 100 a través de uno entre muchos procedimientos, entre los que se incluyen, sin limitarse a ellos, revestimiento por centrifugación, pulverización, inmersión, impregnación superficial, etc. Las realizaciones concretas de revestimiento se describen en la sección titulada "preparación de catéteres revestidos" más adelante.

En ciertas realizaciones, el uso del dispositivo de presión negativa 140 también puede ayudar a conseguir la pleurodesis de la capa parietal 210 y la capa visceral 220. El agente esclerosante puede aplicarse también en un procedimiento como el desvelado en la patente estadounidense No. 6.287.285. El dispositivo de presión negativa 140 puede ayudar a proporcionar la aposición de la capa parietal 210 y la capa visceral 220, lo cual puede reducir la probabilidad de que se acumule fluido/aire entre las capas y se permita que el agente esclerosante 130 fusione eficazmente las capas. En ciertas realizaciones, el dispositivo de presión negativa 140 proporciona una presión negativa de en torno a 4-50 centímetros de agua. El dispositivo de presión negativa 140 puede comprender también un dispositivo de retro fluido (como por ejemplo una válvula de control, no se muestra) para prevenir el retorno del fluido o el aire a través del catéter 100 al espacio pleural 250.

El recipiente 150 puede acoplarse a un dispositivo de presión negativa 140 para capturar la acumulación de fluido/aire extraído del espacio pleural 250. En ciertas realizaciones, el recipiente 150 tiene una capacidad de en torno a 500 mililitros y está sujeto de manera que se puede desprender a un dispositivo de presión negativa 140. En ciertas realizaciones, el recipiente 150 puede extraerse fácilmente del catéter 100 y/o el dispositivo de presión negativa de manera que se pueda vaciar el recipiente 150 del fluido drenado del espacio pleural 250. En ciertas realizaciones, se puede acoplar un recipiente al catéter sin dispositivo de presión negativa.

Preparación de catéteres revestidos

Los iones metálicos (*p.ej.*, oro, plata, cobre) tienen una actividad antimicrobiana de alto espectro (Spadaro *y col.*, 1974; Schaeffer *y col.*, 1988). Los iones de plata se utilizan para prevenir la colonización bacteriana en los catéteres (Maki y col., 1988; Groeger *y col.*, 1993; Raad *y col.*, 1996). Los iones de plata se depositan en el catéter como una fina capa de plata metálica, normalmente con un espesor de ≤ 1 μm, a través de un proceso en el que se utiliza vapor a baja temperatura y un alto grado de vacío (Sioshansi, 1991; Sioshansi, 1994; Sioshansi y Tobin, 1995; Bambauer *y col.*, 1998). Esta tecnología se ha aplicado a catéteres hechos de silicona, poliuretano y otros polímeros. Actualmente, se emplean catéteres con revestimientos de palta en combinación con otros agentes antimicrobianos, como cloruro de benzalconio (BKC) (Li *y col.*, 1999) que se ha depositado sobre catéteres hechos de poliuretano (Maki *y col.*, 1997; Hentschel y Munstedt, 1999) y silicona (Raad *y col.*, 1996). Los procedimientos utilizados para depositar iones de plata sobre la superficie de los catéteres se pueden clasificar del siguiente modo: (i) inclusión de nanopartículas de plata (Samuuel y Guggenbichler, 2004) y (ii) revestimiento con plata en fase vapor

(Tobin y Bambauer, 2003). Vargas *y col.* /16/ han demostrado que el nitrato de plata administrado en el espacio pleural es una forma eficaz de producir pleurodesis y el nitrato de plata es un agente esclerosante conocido (Bouros *y col.*, 2000; Gallivan, 2001).

En el presente documento se describen hidrogeles de nitrato de plata con los que se han revestido la superficie de catéteres de poliuretano y silicona. Para crear el revestimiento, se han empleado dos procedimientos diferentes: una reacción de quelación entre quitosano e iones de plata, seguido de (i) reacción de quelación entre quitosano e ión de plata y reticulación final con glutaraldehído o (ii) reacción de quelación entre quitosano e ion de plata y finalmente a) una reacción entre quelato de quitosano con ion de plata y ácido hialurónico.

En lo que se refiere a la reacción de quelación, el quitosano forma un complejo con los iones en el que se han modificado las propiedades físico-químicas y la estructura súper molecular. La modificación súper molecular consiste en una transformación de las moléculas de quitosano en solución desde una estructura helicoidal a una forma desorganizada aleatoria. Esta estructura tiene la capacidad de retener los iones de plata por fuerzas de van der Waals e iónicas. Las modificaciones físico-químicas transforman el quitosano en un hidrogel. El grado de inflado del hidrogel depende de la concentración de la solución de nitrato de plata y el tiempo de reacción. La estabilidad dimensional del hidrogel y el control del grado de inflado del hidrogel se llevan a cabo a través de dos procedimientos: (1) reticulación con glutaraldehído y (2) revestimiento de la capa final de quitosano-Ag⁺ con un complejo poliónico con una base de quitosano-Ag⁺ y ácido hialurónico. Los hidrogeles explicados en el presente documento forman irreversible y pueden eluir iones de plata a una velocidad constante a lo largo del tiempo, por ejemplo dos semanas.

20 En términos generales, los factores no exhaustivos que influyen en la preparación y las propiedades de los catéteres revestidos con quitosano-plata incluyen:

- Las características físico-químicas del quitosano: la masa molecular de quitosano se encuentra normalmente entre 400.000 y 600.000 g/mol con un grado de acetilación (DA) de 18-20 %.
- La concentración de la solución de quitosano: la concentración de quitosano en una solución de 1 % ácido acético se encuentra normalmente entre 1,4-1,8 %. Cuanta más alta es la concentración, más espeso es el revestimiento.
- La temperatura de la solución de quitosano: la temperatura es normalmente 5 °C para asegurar el espesor de revestimiento apropiado.
- La concentración de solución de nitrato de plata: la concentración de solución de nitrato de plata se encuentra normalmente entre 14-16 %.
- El tiempo de reacción y la temperatura para el revestimiento con quitosano del catéter y el nitrato de plata es normalmente 24 horas a temperatura ambiente.
- El tiempo de fraguado con una solución de glutaraldehído al 1 % es normalmente 8 min.
- El tiempo de secado tras el revestimiento con el complejo de quitosano plata es normalmente 24 horas.

A continuación, se describen ejemplos de procedimientos de preparación de catéteres revestidos de acuerdo con estos factores y la presente invención.

Ejemplo 1

25

30

45

50

Preparación de catéteres revestidos con quitosano-Ag[†] y reticulación con glutaraldehído

Preparación de soluciones

40 **Solución de ácido acético al 1 % (p/p)**: Se combinaron en un matraz graduado de 1000 ml, 10 g de ácido acético concentrado (98 %) y 990 ml de agua doblemente destilada (sin iones Cl⁻).

Solución de quitosano al 1,8 % (p/p): Se agregaron a una mezcladora de 3 l, 982 ml de solución de ácido acético al 1 % y 18 g de quitosano (tipo VANSN con un grado de acetilación (DA) = 20 % y una masa molar de 585.000 g/mol). Se agitó la solución hasta que se disolvió el quitosano. Se centrifugó la solución (3500 rpm) para eliminar los posibles microgeles y las partículas de color. Se mantuvo la solución a 5 °C.

Solución de nitrato de plata al 14 % (p/p): Se agregaron nitrato de plata (35 g) y agua doblemente destilada hasta la marca de llenado de 250 ml de un matraz graduado. La solución se mantuvo a temperatura ambiente y fuera de la luz

Solución de glutaraldehído al 0,98% (p/p): Se agregaron a un matraz graduado de 200 ml, 2 ml de solución acuosa al 98 % de glutaraldehído. Se agregó agua doblemente destilada hasta la marca de llenado.

Etapa A: Aplicación de la primera capa que comprende quitosano- Ag⁺

En primer lugar se limpió la superficie de los catéteres con una solución al 98 % de etanol y finalmente se secó. El espesor del revestimiento y la cantidad de plata incluida depende de la concentración del quitosano y de la solución de nitrato de plata. Cuanto menores son las concentraciones de las soluciones de quitosano, menor es el espesor

del revestimiento de hidrogel. En este ejemplo, se empleó una solución de quitosano al 1,8 % (p/p) y una solución de nitrato de plata al 14 % (p/p).

Se llenó un cilindro de 100 ml con una solución de quitosano al 1,8 % (p/p) y se mantuvo a 5 °C. Se sumergió la porción del catéter para su revestimiento en la solución y se mantuvo durante 1 minuto. A continuación, se introdujo la porción del catéter revestida inmediatamente en un tubo de precipitación que contenía una solución de nitrato de plata al 18 % (p/p). Se mantuvieron los catéteres en esta solución durante 5 minutos. A continuación, se introdujo el catéter en una segunda solución de una solución de nitrato de plata al 18 % durante 24 horas.

Etapa B: Aplicación de la segunda capa de revestimiento del complejo quitosano-Ag⁺ para formar un hidrogel

Después de aplicar la primera capa sin secado, se aclaró el catéter en agua destilada (sin Cl⁻) y se sumergió en una solución de quitosano al 1,8 % (p/p) a 5 °C y se mantuvo durante 1 minuto. Se depositó la segunda capa sobre la parte superior de la primera capa. Inmediatamente después de esta etapa de inmersión, se sumergió el catéter en una solución de nitrato de plata al 18 % (p/p) y se mantuvo durante 1 minuto para la primera precipitación y, a continuación, en una solución final de nitrato de plata al 18 % (p/p) durante 24 horas. Se evaluaron las concentraciones de las soluciones de nitrato de plata y se corrigieron cada 3 a 4 usos.

El grado de inflado del hidrogel varía entre α = 3000 para períodos de reacción de 3 horas a α = 125 para períodos de reacción de 24 horas, en donde α representa el grao de inflado: α = ((masa en equilibrio del hidrogel hidratado – peso en seco del hidrogel)/ peso seco del hidrogel x 100).

Etapa C: Reticulación de los hidrogeles de quitosano-Ag⁺ depositados en el catéter con glutaraldehído

Tras las etapas A y B, se aclararon los catéteres preparados en agua destilada y se sumergieron en un cilindro de 100 ml que contenía solución al 0,98 % (p/p) de glutaraldehído y se dejó durante 8 minutos. A continuación, se proporcionó un aclarado final a los catéteres en agua destilada y después se secaron durante 48 horas a temperatura ambiente.

Ejemplo 2

50

5

25 Preparación de catéteres revestidos con complejo de quitosano-Ag⁺ y complejo de hialuronato-Ag⁺

Preparaciones de solución

Solución de ácido acético al 1 % (p/p): Véase el Ejemplo 1.

Solución de quitosano al 1,8 % (p/p): Véase el Ejemplo 1

Solución de nitrato de plata al 16 % (p/p): Se agregaron 40 g de nitrato de plata y agua doblemente destilada hasta la marca de llenado de 250 ml de un matraz graduado. La solución se mantuvo a temperatura ambiente y fuera de la luz.

Solución de hialuronato sódico al 1 % (p/p): Se agregó a un vidrio 1 g de ácido hialurónico sódico y 99 g de agua. Se agitó la solución hasta que se disolvió el ácido hialurónico (en torno a 3-4 horas). Se mantuvo la solución en el refrigerador y se llevó a la temperatura ambiente antes de su uso.

35 <u>Etapa A: Aplicación de la primera capa de revestimiento con una solución de quitosano-Ag</u>[†]

Comentarios del procedimiento:

Se limpiaron los catéteres con etanol al 98 % antes del revestimiento y se secaron. El espesor del revestimiento y la calidad de la plata incluida dependen de la concentración del quitosano y las soluciones de nitrato de plata. Cuanto menores son las concentraciones de las soluciones de quitosano, menor es el espesor del revestimiento de hidrogel.

40 En este ejemplo se empleó una solución de quitosano al 1,8 % (p/p). La concentración de la solución de nitrato de plata puede determinar la concentración de la plata en las capas y sus propiedades de inflado. No son recomendables las concentraciones por debajo de 16 % (p/p) de nitrato de plata ya que el revestimiento no contiene suficiente plata, la capa se hinchará en una solución acuosa y la estabilidad será débil. Para estabilizar las capas en estas condiciones, puede emplearse reticulación, como por ejemplo una solución al 1 % (p/p) de glutaraldehído (véase Ejemplo 1). Con el uso de una concentración al 16 % (p/p) de nitrato de plata, por ejemplo, se evita la necesidad de utilizar un agente de reticulación de esta manera.

La temperatura es un factor más en relación con el espesor del revestimiento. Cuanto mayor es la temperatura, menor es por lo general el espesor de la capa. Por ejemplo, un aumento de la temperatura de 5 °C a 20 °C tiene como resultado una disminución del espesor de la capa en un 50 %. Para los catéteres a base de silicona, poliuretano y PVC, 5 °C es un ejemplo de temperatura que se puede emplear. No ser recomienda el uso de una temperatura inferior a 0 °C o en el intervalo de 0-3 °C ya que el espesor de la capa aumenta significativamente y es difícil de controlar la uniformidad del espesor de la capa.

Procedimiento:

5

15

20

30

35

Se llenó un cilindro de 100 ml con la solución de quitosano y se mantuvo a 5 °C. Se sumergió la porción del catéter para su revestimiento en la solución y se mantuvo durante 1 minuto. A continuación, se introdujo la porción del catéter revestida inmediatamente en un tubo de precipitación que contenía una solución de nitrato de plata al 18 % (p/p). Se mantuvieron los catéteres en esta solución durante 5 minutos. A continuación, se introdujo el catéter en una segunda solución de nitrato de plata al 18 % (p/p) durante 24 horas.

Etapa B: Aplicación de la segunda capa de revestimiento de solución de quitosano-Ag⁺ para formar un hidrogel

Véase la Etapa B del Ejemplo 1 anterior.

10 <u>Etapa C: Aplicación de la tercera capa de revestimiento de un complejo de solución de quitosano-Ag</u>⁺ <u>hialuronato sódico-ion Ag</u>⁺

Comentarios del procedimiento:

La aplicación de una capa superficial de ácido hialurónico-quitosano-Ag⁺ tiene la ventaja de aumentar la elasticidad de los catéteres en un entorno húmedo y disminuye el grado de inflado de las capas de quitosano-Ag⁺ depositadas en las etapas A y B. Esta capa aumenta también la biocompatibilidad y la concentración superficial de los iones de plata.

Procedimiento:

Después de la etapa B, se sumergieron los catéteres en una solución de hialuronato sódico al 1 % (p/p) y se mantuvo durante 4 horas. Durante este período, se formó el complejo de quitosano-hialuronato. A continuación, se trataron los catéteres con una solución al 16 % (p/p) de nitrato de plata durante 10 minutos. A continuación, se secaron los catéteres durante 48 horas.

PROCEDIMIENTOS EXPERIMENTALES PARA CONFIRMAR LA EFICACIA

Los siguientes ejemplos se presentan como ejemplos no exhaustivos de procedimientos para analizar los procedimientos y aparatos desvelados en la presente memoria descriptiva.

25 Ejemplo comparativo 3

Dosificación directa diaria a niveles bajos

Se llevaron a cabo estos experimentos para determinar si dosis bajas de agentes esclerosantes podían dar como resultado una pleurodesis satisfactoria administrándolos de un modo repetido. Utilizando dosis diarias de nitrato de plata o de doxiciclina en dosis decrecientes, partiendo del límite más bajo que previamente se había notificado como eficaz, se administraron dosis que siguieron decreciendo en regímenes de un solo día, 5 días o 14 días. En teoría, la utilización de dosis más bajas de forma repetida puede reducir la frecuencia y/o gravedad de los efectos secundarios.

Se llevaron a cabo todos los experimentos en un modelo de conejo de pleurodesis cuyo uso había estado muy extendido en el campo de la pleurodesis en muchos centros de todo el mundo. Tal como se explica con mayor detalle a continuación, la pleurodesis normal se califica con una puntuación de uno a ocho y se utiliza para la evaluación de la eficacia de la pleurodesis, en la que el número uno representa el espacio pleural normal y el ocho representa sínfisis pleural completa. Una puntuación de 5 o más alta se considera normalmente acorde al éxito de la pleurodesis.

Procedimientos con doxiciclina

40 Se trató un total de 18 animales con doxiciclina a dosis de 1 mg/kg, 5 mg/kg o 10 mg/kg. Los animales (n = 2) en 20 el grupo de 10 mg/kg recibieron solo la inyección del único día, los animales (n = 2/grupo) en el intervalo de 5 mg/kg recibieron la inyección 1 día, 5 días o 14 días, y los animales en el intervalo de dosis más bajo de 1 mg/kg (n = 2/grupo) recibieron inyecciones repetidas durante 5 días o 14 días. Los resultados se compararon con los grupos placebo (n = 2/grupo), a los que se proporcionó inyecciones de solución salina durante 1, 5 o 14 días. Todas las dosis se administraron tras un drenaje diario. Al final del período de tratamiento, los animales se sometieron a eutanasia y se puntuó la pleurodesis de acuerdo con el sistema de puntuación convencional que se muestra en la Figura 5.

Resultados con doxiciclina

La Figura 4A proporciona una tabla con resultados experimentales de muestras individuales utilizando doxiciclina, 50 mientras que la Figura 4B proporciona una tabla que resume las puntuaciones de pleurodesis promedio para las muestras sobre la base de diferentes concentraciones y días de administración. La Figura 4C proporciona una representación gráfica de los resultados proporcionados en la Figura 4B.

La dosis eficaz mínima notificada para la doxiciclina en este modelo es de 10 mg/kg como una dosis única. En los experimentos iniciales de los autores de la invención esta dosis dio como resultado una puntuación media de 4,5. El uso de la mitad de esta dosis, a 5 mg/kg, repetida durante 5 días, no dio como resultado una pleurodesis aunque, cuando se utilizó esta dosis durante 14 días, se obtuvo una puntuación de 5. Una dosis incluso menor de un mg/kg fue ineficaz para causar pleurodesis, ya fuera a los 5 días o 14 días. Siendo así, para la doxiciclina una reducción del 50 % de la dosis individual puede seguir consiguiendo la pleurodesis cuando se repite a lo largo de dos semanas. Se desconoce si esta moderada reducción de la dosis diaria conduciría a una reducción significativa de los efectos secundarios.

10 Procedimientos con nitrato de plata

5

15

20

25

30

45

50

55

Se trató un total de 20 animales con nitrato de plata a concentraciones de dosificación del 0,05 %, 0,085 %, 0,425 % y 0,85 %. Hay que señalar que las inyecciones de dosis únicas eficaces de nitrato de plata notificadas en este modelo oscilan entre 0,3 % y 0,5 %. En una publicación, se notificó que una concentración del 0,25 % es ineficaz, pero los datos globales son limitados. Se les asignó a los grupos un periodo de tratamiento de 1 día, 5 días o 14 días de inyecciones repetidas. Se utilizó un mínimo de 2 animales para cada uno de los 10 grupos, y se analizaron 2 animales más en el intervalo de dosis más bajo (0,05 %). Véase la Tabla 2. Los resultados se compararon con los grupos de placebo, a los que se les proporcionó inyecciones de solución salina durante 1, 5 o 14 días (n = 2/grupo). Se administraron todas las dosis tras un drenaje diario. Al final del período de tratamiento, los animales se sometieron a eutanasia y se puntuó la pleurodesis de acuerdo con la tabla de puntuación convencional (mostrada en la Figura 5). También se evaluó el grado de inflamación y de fibrosis pleural.

Resultados con nitrato de plata

La Figura 3A proporciona una tabla con los resultados experimentales de muestras individuales utilizando nitrato de plata, mientras que la Figura 3B proporciona una tabla que resume las puntuaciones de pleurodesis promedio para las muestras sobre la base de distintas concentraciones y días de administración. La Figura 3C proporciona una representación gráfica de los resultados proporcionados en la Figura 3B. Tal como se ilustra en las Figuras 3A-3C, se lograron puntuaciones de pleurodesis satisfactorias (más o igual a 5) a concentraciones del 0,050 % cuando se administró la dosificación durante 14 días. Además, se lograron puntuaciones de pleurodesis satisfactorias a concentraciones del 0,085 % se administró cuando la dosificación durante 5 días.

Se logró una excelente pleurodesis (puntuación promedio de 8/8) con una única inyección diaria a una dosis del 0,85 % y el 0,425 %, en consonancia con publicaciones anteriores. Por el contrario, una dosis más baja del 0,085 % fue ineficaz en conseguir la pleurodesis como única dosis, pero fue eficaz cuando se repitió de forma diaria durante 5 días (puntuación promedio de 7,5/8) y la dosis mínima de 0,05 % solo fue eficaz en el grupo que recibió 14 días de inyecciones repetidas (puntuación promedio de 6,5/8). Las tendencias indican claramente que a dosis bajas son necesarios varios días de tratamiento para conseguir una pleurodesis eficaz con nitrato de plata.

Una ventaja de dicho régimen de dosificación puede estar relacionada con una reducción de los efectos secundarios. Los efectos secundarios asociados con los procedimientos actuales de pleurodesis pueden ser tanto molestos como peligrosos. Se ha notificado dolor intenso tras la administración de tetraciclina intrapleural (Light y col., 1990), y también se ha notificado que es significativo con doxiciclina (Heffner y col., 1994; Mansson, 1988; Herrington y col., 1996, 15 Pulsiripunya y col., 1996), talco (Thompson y col., 1998; Marom y col., 1999; Brant e Eaton, 2001; Stefani y col., 2006) y nitrato de plata (Wied y col., 1981). Los anestésicos locales intrapleurales pueden reducir el dolor (Sherman y col., 1988), pero casi siempre se necesitan agentes analgésicos narcóticos (Elpern y col., 1994).

Existen datos que indican que los efectos adversos de los agentes esclerosantes pueden depender de la dosis. En un modelo animal, el aumento de la dosis de TGF beta más allá de lo necesario para la pleurodesis, da como resultado un aumento del volumen del fluido pleural formado (Light y col., 2000). Asimismo, los animales tratados con una dosis más alta desarrollaron fibrosis pleural contralateral así como inflamación peritoneal, lo cual indica una toxicidad sistémica. En otro estudio, los animales que recibieron dosis más altas de minociclina intrapleural presentaron una tasa de mortalidad más alta (Light y col., 1994). En un modelo similar, se demostró que los animales que recibieron dosis altas de talco por vía intrapleural presentaron tasas más altas de depósitos de talco en el pulmón, el mediastino, el pericardio y el hígado. Por otra parte, la respuesta inflamatoria sistémica fue significativamente más alta con dosis más altas de talco (Montes y col., 2003). Hay quien ha asociado los casos clínicos de SDRA) tras la administración de talco con las dosis utilizadas más altas (Rinaldo y col., 1983; Kennedy y col., 1994).

En el caso del nitrato de plata, en particular, se ha observado que una concentración del 0,1 % dio como resultado una respuesta sistémica inferior por lo que se refiere a un incremento del recuento de leucocitos y neutrofilia, así como de niveles en suero de interleucina-8 y de VEGF, que la dosis del 0,5 % (Marchi y col., 2005). Por otra parte, un ensayo en seres humanos ha demostrado que los pacientes toleraban perfectamente una concentración del 0,5 % (Paschoalini y col., 2005), aunque los profesionales clínicos habían abandonado este agente varias décadas

antes debido al dolor y los efectos secundarios graves asociados con concentraciones de hasta el 10 % (Wied y col., 1981; Wied y col., 1983).

Conclusiones

Estos experimentos indican que la administración repetida de agentes esclerosantes a dosis consideradas subterapéuticas, cuando se administran como una dosis única, pueden seguir siendo eficaces para causar una pleurodesis eficaz. El nitrato de plata, en particular, parece ofrecer la posibilidad de reducir en gran medida la dosis al mismo tiempo que mantiene su efecto si se administra durante 14 días.

Ejemplo 4

35

40

45

Dosificación por catéter revestido. Modelo de conejo

El tratamiento de los derrames pleurales suele consistir en tentativas para crear una sínfisis pleural con un agente esclerosante, habitualmente administrado como una dosis de bolo único. Tal como se ha demostrado, la administración repetida de una dosis baja de nitrato de plata (NA) (en comparación con la administración de una dosis única alta) puede conducir a una pleurodesis eficaz. El objetivo del presente estudio es demostrar la pleurodesis eficaz con un catéter de liberación sostenida que eluye una dosis baja de nitrato de plata de forma continua durante 14 días.

El estudio consistió en un experimento *in vivo* con 3 grupos de 6 conejos, en un modelo animal perfectamente descrito para enfermedades pleurales. El estudio consistió en la colocación de un catéter revestido con NP en el espacio pleural y de un catéter de placebo/sin revestir en los controles. El espacio pleural contralateral de cada animal sirvió como control adicional.

Se sometió a los animales a la colocación de un catéter intrapleural de calibre pequeño con anestesia general. Los catéteres estaban o bien sin revestir o bien revestidos con 24 mg NP o revestidos con 50 mg de NP, y se colocaron en el espacio pleural derecho. Un animal en el grupo de 50 mg no completó el estudio. Se aspiraron los catéteres de forma diaria durante 14 días para retirar cualquier fluido pleural y se retiraron el día 15, y se realizó la necropsia el día 29. Se evaluó la eficacia de la pleurodesis con una puntuación de 1-8 (1-normal, 8-sínfisis pleural superior al 50 % del hemitórax), considerándose significativa una puntuación de más de o igual a 5 (Figura 5).

Procedimiento experimental: colocación del catéter pleural - conejos

Se utilizaron conejos blancos neozelandeses libres de patógenos específicos que pesaban de 1,5 a 2,0 kg. Se alojó a todos los animales de forma que se minimizaba la exposición a patógenos. Se atendió a los animales con procedimientos normalizados de funcionamiento.

30 Los animales recibieron duprenorfina 0,02-0,05 mg/kg s.c. de forma preoperatoria y se indujo la anestesia con un agente inhalatorio.

Se rasuró y preparó a los animales. La pared torácica lateral derecha y la posterior y el lomo requirieron rasurado y, tras la inducción de la anestesia, se puso al animal en la posición de decúbito lateral izquierdo antes del procedimiento de lavado y preparación. Se administró oxígeno complementario mediante una máscara. Se insertó un tubo de polietileno (descrito a continuación) en el espacio pleural derecho, tal como se expone a continuación. Se realizó una incisión de 1 cm en la piel con un bisturí a lo largo del hemitórax derecho. 5 cm lateral con respecto a la línea vertebral y 2 cm proximal al borde costal. La fascia subcutánea se asió con pinzas y se cortó con unas tijeras, creando una apertura de 0,5 cm. Se utilizó una disección roma para entrar al espacio pleural con unas pinzas curvas pequeñas evitando de este modo la lesión del pulmón subyacente. A continuación, se hizo avanzar el tubo torácico suavemente de forma anterior a través de las pinzas abiertas a una distancia de 5-6 cm. Se aspiró el tubo con una jerinquilla para confirmar la permeabilidad y resorber el aire que pudo haber entrado en la cavidad pleural durante la inserción del catéter. Asimismo, se tunelizó el extremo proximal del catéter bajo la piel hasta el lomo del animal y se suturó para evitar la migración. Esto se realizó haciendo una incisión de 0,5 cm en la piel, en la línea media de la base del cuello, seguido del paso de unas pinzas estrechas por vía subcutánea en dirección caudal y, después, lateral al sitio de la inserción del catéter. A continuación, se tiró con las pinzas del extremo proximal del tubo para salir por la pequeña incisión del cuello. Se unió un adaptador i.v. sin aguja al extremo proximal de la entubación y se aspiró una vez más el tubo para asegurar la permeabilidad y la ausencia de un neumotórax. Se aplicó una sutura a la incisión del cuello y se envolvió alrededor de la vía i.v. para mantenerla en su posición. Se cerraron la pared torácica, la fascia y la piel en el sitio de inserción, cada una con dos a tres suturas con seda 2.0.

50 Se llevó de nuevo a los animales al área de aislamiento una vez que se recuperaron. Durante el periodo de estudio se proporcionó analgesia con duprenorfina 0,02-0,05 mg/kg s.c. cada 8-12 h según fue necesario al observar evidencia de dolor tal como anorexia, bruxismo, vigilancia del sitio quirúrgico o agitación.

Configuración del catéter

Se construyeron los catéteres con tubos de polietileno de calidad médica (de 1,58 mm de diámetro interior, 3,18 mm 30 de diámetro exterior). Se aplicó el revestimiento del catéter a lo largo de los 3 cm distales para suministrar una dosis de NP determinada previamente para conducir a una pleurodesis eficaz durante un período de 14 días (24 mg durante 14 días). Además, se repitió el estudio con un catéter de dosis superior (50 mg durante 14 días). Se incorporaron orificios de drenaje laterales adicionales inmediatamente proximales al revestimiento para facilitar el drenaje. Los catéteres se esterilizaron por gas de óxido de etileno y se envasaron en un paquete sellado y estéril. El extremo proximal de los tubos se equipó con un sistema de acceso/válvula estéril en el momento de la colocación.

Atención clínica v supervisión

Se atendió a todos los animales con procedimientos normalizados de funcionamiento. Se evaluó el bienestar general de los animales diariamente. En los días 1, 8, 15, 22 y 29 del estudio se midieron sus pesos. El personal veterinario realizó observaciones clínicas diarias y exámenes clínicos antes del tratamiento y, en los días 1, 8, 15, 22 y 29. Se aspiró el fluido del catéter pleural a diario y se documentó el volumen del fluido extraído. Se mantuvo durante 14 días el catéter pleural.

15 Eutanasia y necropsia

5

El día 29 del estudio los animales se sometieron a eutanasia con la inyección de 3 ml de Euthanyl™ (pentobarbital 240 mg/ml) por vía intravenosa en la vena auricular marginal. Los animales que murieron o que requirieron eutanasia antes del día 29 fueron sometidos a un examen de necropsia.

El tórax se retiró en bloque. Se accedió a la tráquea con una aguja fijada a una jeringa llena de 50 ml de formalina al 10 % en solución salina tamponada con fosfato, que se inyectó en la tráquea para inflar los pulmones. Tras el inflado, se ligó la tráquea con puntos de sutura de nilón y se sumergió el tórax completo en una solución de formalina al 10 % durante al menos 48 h. A continuación, se expuso cada cavidad pleural realizando incisiones bilaterales a través de los diafragmas y a través de todas las costillas en la línea medioclavicular. De esta manera, se extirparon el esternón y las partes medias de las costillas anteriores, de forma que pudieran evaluarse el pulmón y las cavidades pleurales. Se registraron la presencia o ausencia en cada animal de hemotórax (sangre coagulada en la cavidad pleural) y la posición del mediastino. Se realizó el examen macroscópico de la pleura y se clasificó de acuerdo con una escala de 8 puntos (véase la Figura 5, véase también Lee, Teixeira, Devin, y col. Transforming Growth Factorbeta 2 Induces Pleurodesis Significantly Faster than Talc, 163 AM. J. OF RESPIRATORY AND CRITICAL CARE 640 (2001), que se incorpora al presente documento como referencia). Se tomaron de forma bilateral muestras de la pleura, el pulmón y el diafragma para la evaluación histopatológica.

Patología

Se fijaron las muestras obtenidas en la necropsia según un protocolo de fijación con formalina tamponada neutra convencional. Se aplicaron a los cortes histológicos las tinciones de hematoxilina y eosina (H y E) y de Musto.

La fibrosis pleural se clasificó como ninguna (0), ambigua (1), media (2), moderada (3) o grave (4).

35 Análisis estadístico

- a. Análisis de datos: se calcularon los valores medios para las puntuaciones de pleurodesis y los valores de laboratorio.
- Se utilizaron términos descriptivos para el análisis patológico.
- b. Estadística: se comparó con una prueba t la puntuación de pleurodesis media entre los grupos de tratamiento y de control. El uso de grupos de 6 animales permite la detección de una diferencia en la puntuación de pleurodesis de 2 a 6 (es decir, 4 puntos de diferencia, con un SD de 2), con un alfa de 0,05 y un beta de 0,9.

Ética

40

45

50

El Comité del Cuidado de Animales de la Universidad de Calgary aprobó el estudio. Se tomaron todas las precauciones para asegurarse de que los investigadores cumplían de forma rigurosa las normas para el tratamiento ético de los animales en investigación experimental con animales.

Resultados

A continuación se proporcionan en la Figura 6 los resultados de una prueba realizada de acuerdo con el procedimiento explicado anteriormente en el Ejemplo 4. Estos resultados demuestran que la pleurodesis se consiguió con éxito en cada uno de los animales tratados con un catéter revestido con nitrato de plata, que liberó de forma sostenida 50 mg de nitrato de plata *in vivo* a lo largo de un período de 14 días (puntuación superior o igual a 5). En el grupo en el que el catéter liberó de forma sostenida 24 mg de nitrato de plata a lo largo de un período de 14 días, se consiguió una pleurodesis satisfactoria en 4 de los 6 animales. La Figura 7 ilustra una tabla de las puntuaciones de pleurodesis promedio conseguidas para diversos niveles de dosificación.

La Figura 8 es una fotografía que presenta la patología macroscópica de una muestra animal con un espacio pleural no fusionado utilizado como un control contralateral. En la Figura 8 es visible un pulmón 500 adyacente a una pared torácica 510 y un diafragma 530. Tal como se muestra en la Figura 8, el espacio pleural 520 (entre el pulmón 500 y el diafragma 530) no está fusionado y no presenta adherencias. En este ejemplo, no se ha insertado catéter ni se ha introducido agente esclerosante. En consecuencia, el espacio pleural es visible en su estado "normal".

La Figura 9A es una fotografía que presenta la patología macroscópica de una muestra animal con un espacio pleural fusionado. Tal como se muestra en la Figura 9A, se insertó un catéter de liberación sostenida 540 en un espacio pleural que rodeaba un pulmón 600 que está próximo a una pared torácica 610 y un diafragma 630, de acuerdo con el procedimiento descrito anteriormente para el Ejemplo 4. En esta muestra en particular, el catéter 540 se revistió con nitrato de plata y se suministró a una dosis de aproximadamente 50 mg durante un período de 14 días. Tal como se muestra en la Figura 9A, el espacio pleural 620 se ha fusionado y se ha conseguido una pleurodesis eficaz con la liberación sostenida de nitrato de plata desde el catéter 540. El espacio pleural 620 presenta pleurodesis difusa con una mayoría de las capas pleurales fusionadas y la adhesión de las capas pleurales en áreas que se emplazan lejos del catéter 540.

La Figura 9C demuestra que la puntuación histológica de fibrosis (escala 0-4) fue significativamente más alta para el espacio pleural derecho en los animales que recibieron un catéter revestido (24 mg o 50 mg) en comparación con los 40 catéteres sin revestir (p < 0,05) así como en comparación con el espacio pleural de control contralateral (izquierda) (p ≤ 0,05). La figura 9B representa una sección histológica (mancha Musto) del pulmón y el espacio pleural que presenta fibrosis extendida (grado 4) y que tiene como resultado sínfisis pleural en un animal tratado con un catéter revestido de 50 mg.

Ejemplo 5

5

10

40

Dosificación con catéter revestido. Modelo de oveja

El objetivo del presente estudio es demostrar la pleurodesis eficaz con un catéter de liberación sostenida que eluye una dosis baja de nitrato de plata de forma constante durante 14 días en un modelo de animal grande.

25 Procedimiento experimental: colocación del catéter pleural - ovejas

El estudio consistió en un experimento *in vivo* en grupos de cuatro ovejas, que consistió en la colocación de catéteres revestidos con NP en el espacio pleural derecho. Cuatro animales de control fueron sometidos a la colocación de un tubo torácico sin el revestimiento de elución de fármaco. El espacio pleural contralateral de cada animal sirvió como control adicional.

30 Se realizó un control diario de los constantes vitales, incluyendo el peso. Se sometió a eutanasia a los animales el día 29 y se realizó la necropsia, que incluyó el examen microscópico de la pleura y el pulmón. Se sometió a un tercer grupo de cuatro animales a la colocación de un catéter revestido con una dosis reducida en un 25 %, ya que la puntuación de pleurodesis fue superior a 5 con la dosis probada inicial.

Se utilizó un modelo animal perfectamente descrito de enfermedad pleural y pleurodesis utilizando ovejas de un año (Suffolk) que pesaban 25-30 kg. (Lee, y col., 2002; Lee y col., 2000). Se necesitó un total de 12 animales para completar el estudio. Se alojó a todos los animales de forma que se minimizara la exposición a patógenos. Los animales se atendieron con procedimientos normalizados de funcionamiento.

Se bañó y esquiló a los animales. Se indujo la anestesia general por inhalación. Se rasuraron la circunferencia de la pared torácica y el lomo y, después de la inducción de la anestesia, el animal se puso en posición de decúbito lateral izquierdo, antes del procedimiento de lavado y preparación. Se administró oxígeno complementario mediante una máscara. Se insertó en el espacio pleural derecho un catéter pleural estéril diseñado a partir de tubo de silicona de calidad médica con un orificio lateral adicional, del siguiente modo. Se realizó una incisión de 3 cm en la piel con un bisturí a lo largo del tórax lateral derecho, 15-20 cm lateral con respecto a la línea vertebral en el 7º espacio intercostal. Se sujetó con pinzas la fascia subcutánea y se cortó con unas tijeras, creando una apertura de 0,5 cm.

45 Se realizó una disección roma para entrar al espacio pleural con unas pinzas romas curvas, evitando de este modo dañar el pulmón subyacente. A continuación, se hizo avanzar el tubo suavemente de forma anterior a través de las pinzas abiertas a una distancia de 10-15 cm. Se aspiró el tubo con una jeringuilla para confirmar la permeabilidad y reabsorber el aire que pudo haber entrado en la cavidad pleural durante la inserción del catéter.

Por otra parte, se tunelizó el extremo proximal del catéter bajo la piel hacia el lomo del animal y se suturó para evitar la migración. Esto se realizó haciendo una incisión de 1 cm en la piel al nivel de los cuerpos vertebrales en la línea media, seguido del paso de unas pinzas estrechas por vía subcutánea en una dirección posterior y después lateral al sitio de la inserción del catéter. Después se tiró con las pinzas del extremo proximal del tubo para salir por la escisión del lomo. Se unió un adaptador i.v. sin aguja al extremo proximal del tubo y el tubo se aspiró otra vez para asegurar la permeabilidad y la ausencia de neumotórax. Se aplicó una sutura a la escisión del lomo y se envolvió alrededor de la vía i.v. sin aguja para mantenerla en su posición. Se cerraron la pared torácica, la fascia y la piel en el sitio de la inserción, cada una con 2 a 3 suturas de seda de 2.0. Una vez recuperados los animales se llevaron de

nuevo a su área de alojamiento. Durante el período de estudio se proporcionó analgesia con buprenorfina 0,01-0,02 mg/kg s.c. cada 6-8 h según fue necesario al notar evidencia de dolor, como 30 anorexia, bruxismo, vigilancia del sitio quirúrgico o nerviosismo.

Configuración del catéter

Se construyeron catéteres a partir de un tubo de silicona de calidad médica de 4,88 mm de diámetro exterior (área de superficie de 1,533 cm² por cm de tubo). Se aplicó el revestimiento del catéter a lo largo de los 13 cm distales de tal modo que se suministrará la dosis de NP durante un periodo de 14 días. La dosis de nitrato de plata se extrapoló de experimentos anteriores en un modelo de conejo. Aunque no se ha notificado ningún estudio con ovejas con nitrato de plata de única dosis, parecen ser eficaces otros agentes de pleurodesis a dosis similares a las utilizadas de forma clínica. Para los primeros 4 animales tratados se utilizó una dosis de nitrato de plata total para 14 días de 1.000 mg. Dada su eficacia, se trató un grupo adicional con una dosis reducida de 750 mg.

Para facilitar el drenaje se incorporó un orificio lateral de drenaje adicional inmediatamente proximal al revestimiento. Se esterilizaron los catéteres por gas de óxido de etileno y se envasaron en un envase sellado y estéril. Se equipó el extremo proximal de cada tubo con un sistema de acceso/válvula estéril en el momento de la colocación.

15 Atención clínica y supervisión

Se atendió a todos los animales según procedimientos normalizados de funcionamiento para la cría de ovejas. Se evaluó el bienestar general de los animales diariamente. Los pesos se midieron en los días 1, 8, 15, 22 y 29 del estudio. El personal veterinario realizó observaciones clínicas y exámenes clínicos diarios antes del tratamiento y en los días 1, 8, 15, 22 y 29. Se aspiró el fluido del catéter pleural de forma regular y se documentó el volumen del fluido extraído. Los catéteres pleurales se mantuvieron durante un mínimo de 14 días y hasta que el fluido extraído llegó a ser menos de 20 ml/oveja por día durante 2 días consecutivos.

Eutanasia y necropsia

20

25

35

40

Se sometió a eutanasia los animales el día 29 del estudio con Euthanyl-Forte (pentobarbital 540 mg/ml, 10 ml cada 50 kg) por vía intravenosa en la vena yugular mientras se constreñía de forma manual. En el momento de la autopsia se abrió el tórax de forma ventral y se expusieron las cavidades pleurales. Se evaluó el grado de pleurodesis macroscópica de acuerdo con el sistema de puntuación de 8 puntos que se muestra en la Figura 5. Se obtuvieron muestras de pleura visceral, de diafragma y de pulmón de forma bilateral y se pusieron en formalina al 10 % en solución salina tamponada con fosfato.

Análisis estadístico

- 30 a. Análisis de datos: se calcularon los valores medios para las puntuaciones de pleurodesis y los valores de laboratorio.
 - b. Estadística: se comparó la puntuación de pleurodesis media para un dado agente a una dosis particular con el control apropiado con una prueba t. El uso de grupos de 4 animales permitió la detección de una diferencia en la puntuación de pleurodesis de 1,5 a 6 (es decir, una diferencia de 4,5 puntos, con una desviación típica de 3) con un alfa de 0,05 y un beta de 0,8.

Resultados

Las puntuaciones de pleurodesis medias en el lado tratado (derecho) fueron de 1,0, 6,67 y 7,33 para los grupos sin revestir, de 750 mg y de 1 g, respectivamente (p = 0,001 frente al grupo sin revestir para cada grupo de NP). En el grupo de 1 g, los tres animales presentaron muchas adherencias difusas entre la pleura visceral y la parietal, lejos del sitio del catéter, con sínfisis del hemitórax lejos del sitio del catéter. Cada muestra del grupo de 1 g presentó una puntuación de 7 o más, de acuerdo con el sistema de puntuación explicado en la Figura 5. Las puntuaciones para el lado no tratado (izquierdo) fueron de 1,0 para todos los grupos. Las Figuras 10 y 11 proporcionan los datos de la tabla y gráficos, respectivamente, que ilustran la puntuación de pleurodesis para cada animal del estudio.

Demostración de las propiedades de liberación sostenida

- Se realizaron experimentos para demostrar la liberación sostenida eficaz de nitrato de plata desde los catéteres que se revistieron con nitrato de plata de acuerdo con los procedimientos proporcionados en la presente divulgación. La cinética de elución de un fármaco desde un revestimiento de liberación sostenida se puede medir *in vivo* o *in vitro*. (Spador, y col., 1974; Schaeffer, y col., 1988; Maki y col., 1988; Groeger y col., 1993; Raad y col., 1996). Los catéteres utilizados en el procedimiento de demostración *in vitro* descrito a continuación fueron equivalentes a los catéteres utilizados en los experimentos *in vivo* que se ha descrito anteriormente.
 - El procedimiento de medición de la cinética del fármaco *in vivo* convencional introducido al sistema (en general mediante administración oral) es para medir la cantidad del fármaco en el sistema circulatorio. Este procedimiento se considera en general como el más preciso y proporciona una descripción precisa de cómo la medicación se difunde en el sistema. Sin embargo, en el tratamiento de enfermedad pleural, la absorción sistémica o intravascular no es el

resultado deseado, de modo que este procedimiento no es pertinente.

El procedimiento *in vitro* es un procedimiento más básico pero aceptado para la medición de la cinética de liberación. Se introduce la muestra en una solución (habitualmente mantenida a pH 5 o 7) y se mide la cantidad eluida de fármaco a intervalos de tiempo regulares (1-10). La cantidad eluida de fármaco se calcula después a partir de la siguiente ecuación:

$$m_{sn} = C_{sn} V_e + \sum_{i=0}^{n-1} C_i V_i$$
 (Ec. 1)

en la que:

5

10

20

30

35

40

m_{NP} = cantidad de nitrato de plata (NP) liberada de la muestra un determinado tiempo (mg);

C_{NP} = concentración de nitrato de plata (NP) en la muestra extraída (mg/ml);

V_e = volumen de eluyente recirculado a través del sistema (ml);

V_i = volumen de la muestra extraída, i, (ml);

C_i = concentración de nitrato de plata (NP) en la muestra extraída, i, (mg/ml).

Procedimientos de medición

Se colocaron en un recipiente 50 ml de agua destilada y una masa conocida de catéteres revestidos de hidrogel/plata secos y se protegió de la luz. El sistema se mantuvo a una temperatura de 37 °C y se ajustó a una agitación de 55 rpm.

Después de la primera hora, se retiraron 2 ml de solución con una pipeta y se sustituyeron inmediatamente con 2 ml de agua (o disolvente). Para el análisis *in vitro*, se utilizó agua destilada para analizar la tasa de elución de los catéteres revestidos de hidrogel/plata, ya que los fluidos fisiológicos producen una precipitación de plata libre y también depositan en la superficie del catéter una capa de proteína que puede modificar la cinética. En un contexto *in vivo*, el complejo proteína/plata se descompone, el nitrato de plata se encuentra en su forma molecular y la cinética no se perturba. Se midió la concentración de AgNO₃ en la solución en cada punto de tiempo a través de dos procedimientos distintos: (1) electroquímico: el procedimiento de VRA (voltamperometría de redisolución anódica) y (2) de absorción atómica: el procedimiento de EAA (espectroscopia de absorción atómica).

25 <u>Cinética de liberación de iones de plata a partir de catéteres de poliuretano</u>

En la Figura 12 se presenta un ejemplo de cinética de difusión de nitrato de plata a partir de un catéter de poliuretano revestido con el revestimiento de hidrogel/plata. Tal como se muestra en la figura, la cantidad de nitrato de plata eluida del catéter permaneció bastante constante durante un período de 10 días.

Tal como se muestra en la Figura 13, la esterilización con óxido de etileno no disminuyó la cantidad de nitrato de plata en los catéteres, ni modificó la cinética de liberación.

Cinética de liberación de iones de plata a partir de catéteres de silicona

Además de los catéteres de poliuretano descritos anteriormente también se utilizaron los catéteres de silicona con un diámetro exterior de 4,88 mm (área de superficie externa de 1,533 cm² por cm de tubo). Los catéteres de silicona se revistieron a lo largo de una longitud de 13 cm. Se prepararon dos dosis distintas de catéteres, Si5A y Si5B. Si5A proporciona una elución constante de aproximadamente 250 mg de nitrato de plata para 13 cm de catéter revestido durante un periodo de 10 días, lo cual se demuestra en la Figura 14 durante el periodo inicial de 3 días. Si5B proporciona una elución constante de aproximadamente 150 mg para 13 cm de catéter revestido y la Figura 15 demuestra esta elución durante el periodo completo de 14 días. Durante el análisis experimental se observó que aproximadamente el veinte por ciento del nitrato de plata permaneció en el catéter tras el período de prueba de 14 días (lo cual dio como resultado una tasa de liberación promedio de aproximadamente el 5,7 % del nitrato de plata por día).

REFERENCIAS

Patente estadounidense 4.265.848
Patente estadounidense 4.496.464
45
Patente estadounidense 5.304.121
Patente estadounidense 5.344.401
Patente estadounidense 5.576.072
Patente estadounidense 5.662.960
Patente estadounidense 5.674.192
50
Patente estadounidense 5.709.672
Patente estadounidense 5.733.496
Patente estadounidense 5.954.706
Patente estadounidense 6.221.425

```
Patente estadounidense 6.287.285
           Patente estadounidense 6.409.716
           Patente estadounidense 6.541.116
           Patente estadounidense 6.645.547
 5
           Patente estadounidense 6.656.517
           Patente estadounidense 6.719.991
           Patente estadounidense 6.897.349
           Patente estadounidense 6.916.379
           Patente estadounidense 7.048.962
10
           Publicación de patente estadounidense 20060025816
           Publicación de patente estadounidense 20060116721
           American Thoracic Society, Am. J. Respir. Crit. Care med., 162(5): 1987-2001, 2000.
           Bambauer y col., ASAIO J., 303-308, 1998.
           Bouros v col., Chest. 118:577-579, 2000.
           Brant y Eaton, Respirology, 6(3):181-185, 2001.
15
           Dumitriu y col., Clin. Materials, 6:265-276, 1990.
           Dumitriu y col., J. Bioactive Compat. Polym., 5:310-326, 1990.
           Dumitriu y Dumitriu, Biomaterials, 12:821-826, 1991.
Dumitriu y col., Colloid. Polym. J., 269:1140-1147, 1991.
20
           Dumitriu y col., J. Biomat. Applications, 6:80-88, 1991.
           Dumitriu y col., In: High Performance Biomaterials. A Comprehensive Guide to Medical and Pharmaceutical
           Applications, Szycher (Ed.), Technomic publ. Co., Inc., PA, 669-731, 1991.
           Dumitriu y col., In: Polymers in Medicine: Biomedical and Pharmaceutical Aplicacións, Ottenbritte y chiellini
           (Eds.), Technomic Publ. Co., Inc., PA, 115-145, 1991.
25
           Dumitriu y col., Il Farmaco, 47:509-518, 1992.
           Dumitriu y col., J. Biomat. Applications, 6:251-260, 1992.
           Dumitriu y col., J. Biomat. Applications, 7:265-276, 1993.
           Elpern y col., J. Crit. Illn., 9(12):1105-1110, 1994.
           Gallivan, Chest, 119:1624-1625, 2001.
30
           Groeger y col., Ann. Surg., 218:106-10, 1993.
           Heffner y col., Chest, 105(6):1743-1747, 1994.
           Hentschel y Munstedt, Infection, 1:S43-45, 1999.
           Herrington y col., Pharmacotherapy, 16(2):280-285, 1996.
           Kennedy v col., Chest, 106(2):342-346, 1994.
35
           Lee y col., Respirology, 7(3):209-16, 2002.
           Lee y col., Thorax, 55(12):1058-62, 2000.
           Li y col., J. Biomater. Appl., 13:206-223, 1999.
           Light y col., Am. J. Respir. Crit. Care Med., 162(1):98-104, 2000.
           Light y col., Chest, 106(2):577-582, 1994.
40
           Light y col., Chest, 107(6):1702-1706, 1995.
           Light y col., JAMA, 264(17):2224-2230, 1990.
           Maki y col., Am. J. Med., 85:307-14, 1988.
           Maki y col., Ann. Intern. Med., 127:257-266, 1997.
           Mansson, Scand. J. Infect. Dis. Suppl., 53:29-34, 1988.
           Marchi y col., Chest, 128(3):1798-1804, 2005.
45
           Marom y col., Radiology, 210(1):277-281, 1999.
           Montes y col., Am. J. Respir. Crit. Care Med., 168(3):348-355, 2003.
           Paschoalini y col., Chest, 128(2):684-689, 2005.
           Pulsiripunya y col., Respirology, 1(1):69-72, 1996. Rorac. Cardiovas. Surg., 85(4):523-526, 1983.
50
           Samuuel y Guggenbichler, Int. J. Antimicrob. Agents, 23S1:S75-S78, 2004.
           Schaeffer y col., J. Urol., 139:69-73, 1988.
           Sherman v col., Chest, 93(3):533-536, 1988.
           Sioshansi y Tobin, Med. Plastics Biomat., 2:50-59, 1995.
55
           Sioshansi, Artif. Organs, 18:266-271, 1994.
           Sioshansi, Orthopaedics Today, 11:24-25, 1991.
           Spadaro y col., Agents Chemother., 6:637-642, 1974.
           Stefani y col., Eur. J. Cardiothorac. Surg., 30(6):827-832, 2006.
           Thompson y col., Ann. Pharmacother., 32(7-8):739-742, 1998.
60
           Tobin y Bambauer, Therap. Apheresis Dialysis, 7(6):504-509, 2003.
           Tremblay y Michaud, Chest, 129(2):362-368, 2006.
           Vargas y col., Chest, 108(4):1080-1083, 1995.
Vargas y col., Chest, 118:808-813, 2000.
           Vied y col., J. Thorac. Cardiovasc. Surg., 1983; 86(4):591-593, 1983.
```

Wied y col., Scand. J. Thorac. Cardiovasc. Surg., 15(3):305-307, 1981.

65

REIVINDICACIONES

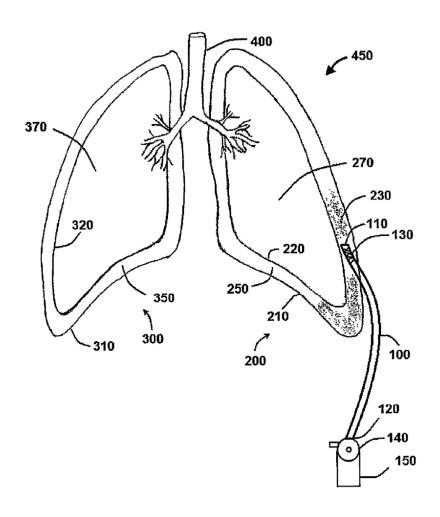
- 1. Un agente esclerosante para su uso en un procedimiento de fusión de dos capas pleurales para crear una pleurodesis difusa de una primera capa pleural y una segunda capa pleural, en el que el procedimiento comprende:
- (a) proporcionar un catéter revestido con el agente esclerosante, en el que el catéter comprende un extremo proximal y un extremo distal y en el que dicho catéter proporciona liberación sostenida del agente esclerosante a la capa pleural a lo largo de un periodo de tiempo de al menos doce horas; e
 - (b) insertar el extremo distal del catéter en un espacio pleural entre una primera capa pleural y una segunda capa pleural, en el que el extremo distal del catéter se inserta en un punto de inserción;

en el que la liberación del agente esclerosante crea una pleurodesis difusa de la primera capa pleural y la segunda capa pleural y en el que:

- (i) la pleurodesis difusa comprende una pluralidad de adherencias entre la primera capa pleural y la segunda capa;
- (ii) la pluralidad de adherencias cubre al menos veinticinco por ciento del área superficial de la primera capa pleural; y
- (iii) al menos una de las adherencias está a más de cinco centímetros del punto de inserción.
- 2. El agente esclerosante para su uso de acuerdo con la reivindicación 1, en el que el procedimiento comprende además:

proporcionar un dispositivo que crea una presión negativa; acoplar el dispositivo al extremo proximal del catéter; y operar el dispositivo para proporcionar una presión negativa al espacio pleural.

- 3. El agente esclerosante para su uso de acuerdo con la reivindicación 2, en el que dicho dispositivo es una bomba de vacío o un compresor de vacío.
- 4. El agente esclerosante para su uso de acuerdo con la reivindicación 1, en el que el procedimiento comprende además drenar un derrame pleural o aire del espacio pleural a través del catéter.
- 5. El agente esclerosante para su uso de acuerdo con la reivindicación 4, en el que el derrame pleural está asociado a cáncer, insuficiencia cardíaca congestiva, cirrosis, tuberculosis, neumonía, embolia pulmonar, pancreatitis o enfermedad vascular del colágeno.
 - 6. El agente esclerosante para su uso de acuerdo con la reivindicación 4, en el que el derrame pleural comprende un derrame pleural maligno.
- 30 7. El agente esclerosante para su uso de acuerdo con la reivindicación 4, en el que el procedimiento comprende además:


proporcionar un dispositivo que crea una presión negativa; acoplar el dispositivo al catéter; y operar el dispositivo para proporcionar una presión negativa al espacio pleural.

- 35 8. El agente esclerosante para su uso de acuerdo con la reivindicación 6, en el que el procedimiento comprende además drenar el derrame pleural en un recipiente acoplado al dispositivo.
 - 9. El agente esclerosante para su uso de acuerdo con la reivindicación 1, en el que el agente esclerosante es una sal de plata.
- 10. El agente esclerosante para su uso de acuerdo con la reivindicación 1, en el que el agente esclerosante es un
 40 haluro de plata, óxido de plata, sulfato de plata, carbonato de plata, fosfato de plata, sulfuro de plata, yodato de plata o sulfadiazina de plata.
 - 11. El agente esclerosante para su uso de acuerdo con la reivindicación 1, en el que el agente esclerosante es un antibiótico, un agente antineoplásico, un agente biológico o una citocina.
- 12. El agente esclerosante para su uso de acuerdo con la reivindicación 1, en el que el agente esclerosante es doxiciclina, minociclina, tetraciclina, talco, bleomicina, doxorubicina, proviodina, TGF-β o mepacrina.
 - 13. El agente esclerosante para su uso de acuerdo con la reivindicación 1, en el que se reviste el catéter con el agente esclerosante por revestimiento con centrifugación, pulverización, inmersión o impregnación superficial.
 - 14. El agente esclerosante para su uso de acuerdo con la reivindicación 13, en el que el agente esclerosante es nitrato de plata y el catéter está revestido con un hidrogel de quitosano.

5

15

20

FIG. 1

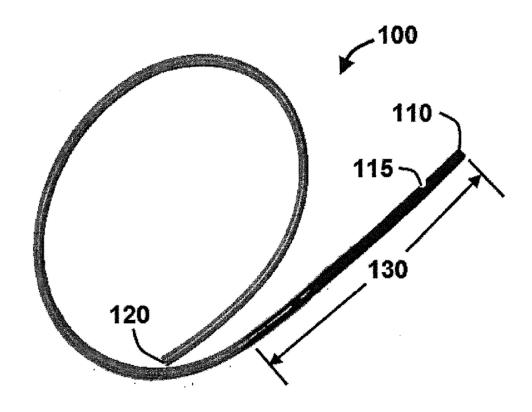


FIG. 2

Muestras individuales - Inyecciones de nitrato de plata

Número de animales	Concentración AgNO3	Volumen por dosis	Dosis total (mg/kg)	Dosis diaria (mg/kg)	Dia(s) de administración	Puntuación promedio (tratados)	promedio	Total de fluido drenado	Máx. de fluido drenado en período de 24 horas
2	0%	lml/kg	0	0,00	1	1	1	0,7	0,4
2	0%	1ml/kg	0	0,00	5	1	1	2,3	0,9
2	0,85 %	lml/kg	8,5	8,00	1	8	1,5	59,25	
2	0,425 %	lml/kg	4,25	4,25	1	8	1	47	21
2	0,085 %	lml/kg	0,8	0,80	1	4,75	1	48	19
2	0,085 %	lml/kg	4,25	0,80	5	7,5	1	0,5	0,5
2	0,085 %	lmi/kg	11,9	0,80	14	8	1	55,5	20
2	0,05 %	1mi/kg	0,5	0,50	1	1,5	1	0,25	0,5
4	0,05 %	lml/kg	2,5	0,50	5	3,25	1	16,75	5
4	0,05 %	lml/kg	7	0,50	14	6,5	1	21	4,625

FIG. 3A

Puntuación de pleurodesis promedio en lado tratado con inyecciones de nitrato de plata varios días

Días /concentración NP	0,850%	0,425%	0,085%	0,050%	Placebo
1	8	8	4,75	1,5	1
5			7,5	3,25	1
14			8	6,5	1,5

FIG. 3B

Puntuación de pleurodesis promedio en lado tratado con inyecciones de nitrato de plata varios días

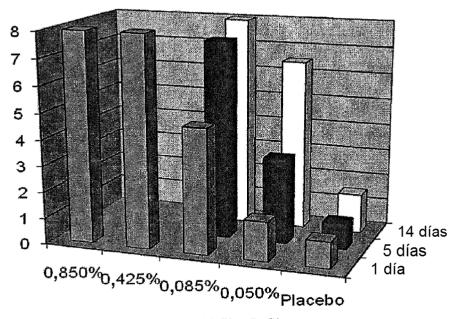


FIG. 3C

N	Volum por de		Dosis total (mg/kg)	Dosis diaria (mg/kg)	Día(s) de administración	Puntuación promedio (tratados)	Puntuación promedio (control)	Total de fluido drenado	Máx. de fluido drenado en período de 24 horas
	2 1m	l/kg	0	0,00	1	1	1	0,7	0,4
	2 1m	l/kg	0	0,00	5	1	1	2,3	0,9
	2 1m	l/kg	10	10,00	1	4,5	1	8	6
	2 1m	ıl/kg	5	5,00	1	2,5	1	22,5	9
	2 1m	ıl/kg	25	5,00	5	5	1	5,5	-5,5
	2 1m	ıl/kg	70	5,00	14	7,5	1	20	7
	2 1m	ıl/kg	5	1,00	5	1	1	0	0
	2 1m	ıl/kg	14	1,00	14	1	1	0	0

FIG. 4A

Puntuación de pleurodesis promedio en lado tratado con inyecciones de desoxiciclina varios días

Días /Doxiciclina (mg/kg)	10 mg/kg 5 mg/kg	1 mg/kg	Placebo
1	4,5 2,50	i	1
5	5,00	1	1
14	7,50	1	1,5

FIG. 4B

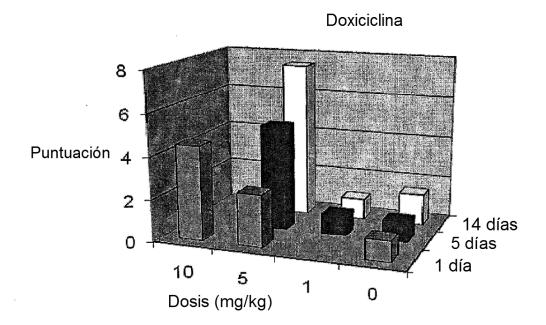


FIG. 4C

Escala para la evaluación pleural macroscópica

Una puntuación ≥ 5 se considera como una pleurodesis satisfactoria

1	No hay adherencias entre la pleura visceral y parietal.
2	Adherencias raras entre la pleura visceral y parietal sin sínfisis.
3	Algunas adherencias dispersas entre la pleura visceral y parietal sin sínfisis.
4	Muchas adherencias difusas entre la pleura visceral y parietal fuera del sitio del catéter sin sínfisis.
5	Muchas adherencias difusas entre la pleura visceral y parietal fuera del sitio del catéter con sínfisis que implica menos de un 5 % del hemitórax o se limita al sitio del catéter.
6	Muchas adherencias difusas entre la pleural visceral y parietal fuera del sitio del catéter con sínfisis que implica de 5 a 25 % del hemitórax con un componente de sínfisis fuera del sitio del catéter.
7	Muchas adherencias entre la pleura visceral y parietal fuera del sitio del catéter con sínfisis que implica un 25 a 50 % del hemitórax y con un componente de sínfisis fuera del sitio del catéter.
8	Muchas adherencias difusas entre la pleura visceral y parietal fuera del sitio del catéter con sínfisis que implica más de un 50 % del hemitórax y con un componente de sínfisis fuera del sitio del catéter.

FIG. 5

Puntuaciones de pleurodesis individual para estudio con animales pequeños

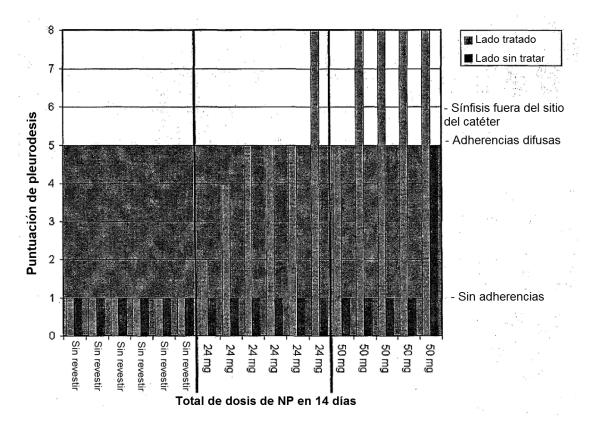
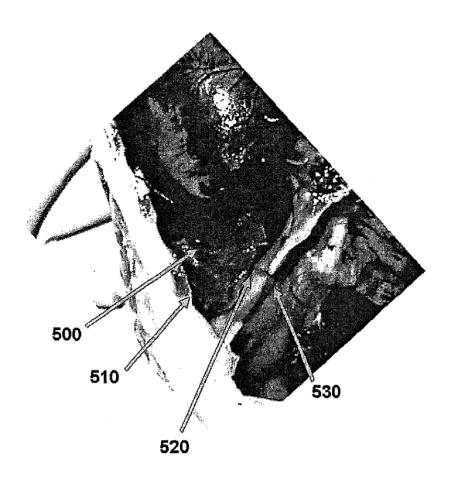
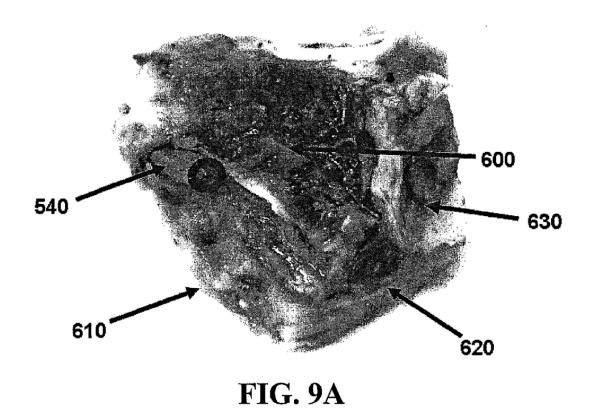


FIG. 6

Puntuaciones medias


Tipo de catéter	Dosis	Puntuación lado tratado	Puntuación lado de control	
Sin revestir	0 mg	1	1	
Nitrato de plata	24 mg	4,82†	1‡	
Nitrato de plata	50 mg	7,4†	1,6*	

†p=0,001 frente a no revestido


*p=0,011 frente a lado contralateral

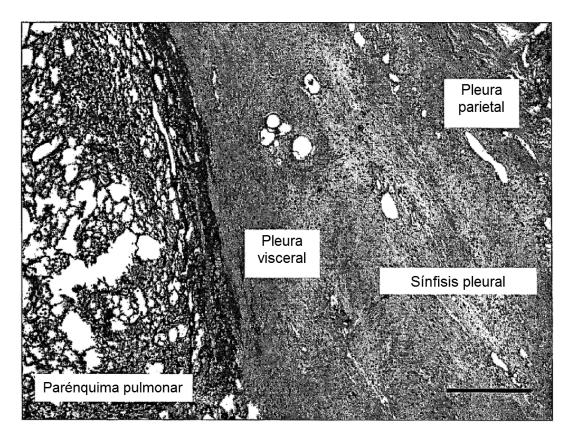

‡p=0,005 frente al lado contralateral

FIG. 7

FIG. 8

La barra representa 500 micrometros

FIG. 9B

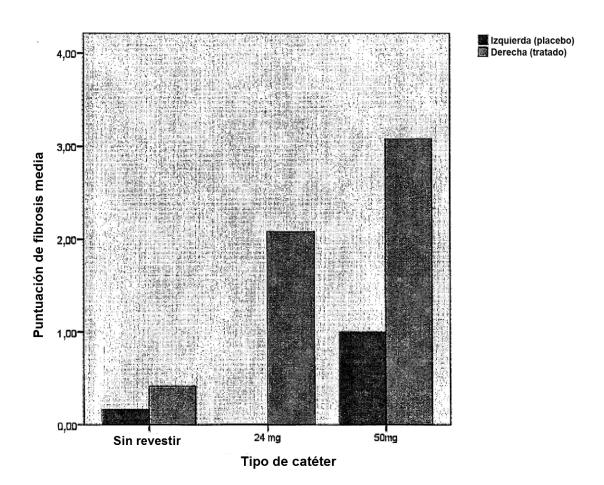
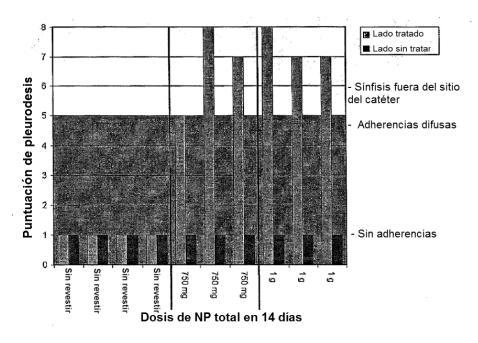


FIG. 9C


Puntuaciones de pleurodesis para animales grandes tratados con catéteres de liberación sostenida de nitrato de plata

Dosis:	1 g		750mg		Placebo	Placebo	
	Puntuación parte tratada	Puntuación parte sin tratar	Puntuación parte tratada	Puntuación parte sin tratar	Puntuación parte tratada	Puntuación parte sin tratar	
	8	1	5	1	1	1	
	7	1	8	1	1	1	
	7	1	7	1	1	1	
	*	1	**	**	1	1	
Promedio	7,33	1,00	6,67	1,00	1,00	1,00	

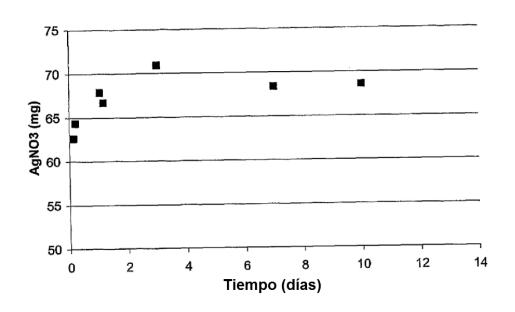
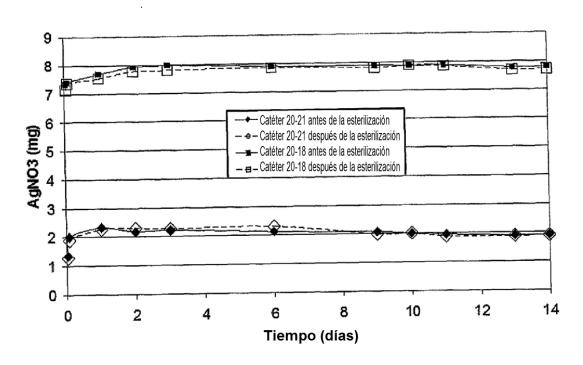
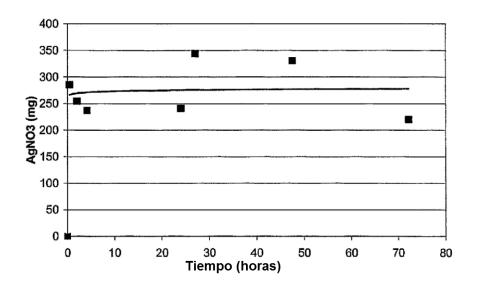

^{*}extirpado el día 3. ** no fue sometido a colocación de catéter

FIG. 10


Puntuaciones de pleurodesis individual para animales grandes tratados con catéter de liberación sostenida con nitrato de plata


FIG. 11

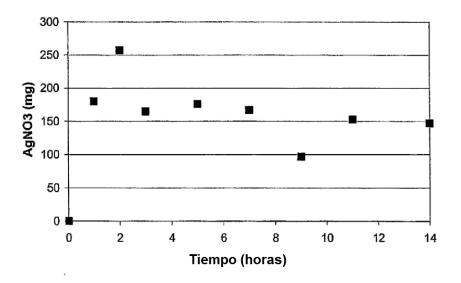

FIG. 12

FIG. 13

FIG. 14

FIG. 15