

OFICINA ESPAÑOLA DE PATENTES Y MARCAS

ESPAÑA

11) Número de publicación: 2 718 331

51 Int. Cl.:

C07K 14/365 (2006.01)

(12)

TRADUCCIÓN DE PATENTE EUROPEA

T3

(86) Fecha de presentación y número de la solicitud internacional: 04.12.2012 PCT/EP2012/074366

(87) Fecha y número de publicación internacional: 13.06.2013 WO13083566

96) Fecha de presentación y número de la solicitud europea: 04.12.2012 E 12794734 (9)

(97) Fecha y número de publicación de la concesión europea: 23.01.2019 EP 2788373

(54) Título: Nuevo elemento integrador y conjugador de actinomiceto de Actinoplanes sp. SE50/110 como plásmido para la transformación genética de actinobacterias relacionadas

(30) Prioridad:

08.12.2011 EP 11192618

(45) Fecha de publicación y mención en BOPI de la traducción de la patente: 01.07.2019

(73) Titular/es:

BAYER INTELLECTUAL PROPERTY GMBH (100.0%)
Alfred-Nobel-Str. 10
40789 Monheim am Rhein, DE

(72) Inventor/es:

KLEIN, ANDREAS; SELBER, KLAUS; WEHLMANN, HERMANN; ROSEN, WINFRIED; PÜHLER, ALFRED; SCHWIENTEK, PATRICK; KALINOWSKI, JÖRN Y WEHMEIER, UDO

(74) Agente/Representante:

CARPINTERO LÓPEZ, Mario

DESCRIPCIÓN

Nuevo elemento integrador y conjugador de actinomiceto de *Actinoplanes* sp. SE50/110 como plásmido para la transformación genética de actinobacterias relacionadas

El organismo procariótico *Actinoplanes* sp. SE50/110 produce el inhibidor de la alfa-glucosidasa acarbosa, que se utiliza en todo el mundo en el tratamiento de la diabetes mellitus tipo 2. Basándose en el hecho de que la prevalencia de diabetes tipo 2 está aumentando rápidamente en todo el mundo, se espera en el futuro una demanda creciente de acarbosa. Con el fin de cumplir con estas expectativas, deben llevarse a cabo manipulaciones genéticas de la cepa y sus derivados con el objetivo de aumentar los rendimientos de acarbosa. Sin embargo, no existen actualmente herramientas para la manipulación genética de esta cepa, lo que dificulta el proceso de mejora de la cepa.

5

10

15

20

25

30

35

40

55

60

La presente invención se refiere a una secuencia de ADN innata dentro de la secuencia completa del genoma de *Actinoplanes* sp. SE50/110 que se asemeja a la estructura de un elemento integrador y conjugador de actinomiceto (AICE). Se utilizaron AICE relacionados para establecer herramientas de manipulación genética para otras bacterias en el pasado. En el presente documento, los presentes inventores describen las características únicas del AICE específico descubiertas en *Actinoplanes* sp. SE50/110, que son claramente diferentes de cualquier otro AICE conocido en su totalidad, pero comparte partes menores con similitud de secuencia variable con otros AICE caracterizados de otras especies.

Actinoplanes sp. SE50/110 es una bacteria Gram positiva, aeróbica, con un genoma de alto contenido en G+C de aproximadamente 9,25 MB de tamaño (Schwientek y col., 2012). El organismo médicamente importante es el productor natural de una variedad de sustancias químicamente relacionadas, que se descubrió que inhiben alfaglucosidasas humanas (Caspary y Graf, 1979), lo que las hace especialmente adecuadas para aplicaciones farmacéuticas (Frommer y col., 1975, 1977 a, 1977 b, 1979). En particular, el pseudotetrasacárido acarbosa, que se sintetiza por medio de enzimas codificadas por el bien caracterizado grupo de genes de acarbosa (Wehmeier y Piepersberg, 2004) se utiliza en todo el mundo en el tratamiento de la diabetes mellitus tipo 2 (no insulinodependiente).

La diabetes mellitus tipo 2 es una enfermedad crónica con más de 250 millones de personas afectadas en todo el mundo. Manejada inadecuadamente o no tratada, puede dar lugar a casos graves de insuficiencia renal, ceguera, cicatrización lenta de heridas y arteriopatías, incluyendo aterosclerosis arterial coronaria (IDF, 2009). Como la incidencia de la diabetes tipo 2 está aumentando rápidamente en todo el mundo, debe anticiparse una demanda creciente de medicamentos para la diabetes como acarbosa. El pseudotetrasacárido acarbosa se produce actualmente mediante fermentación industrial de cepas de rendimiento optimizado, que se basan en la bacteria de tipo silvestre Actinoplanes sp. SE50/110 (ATCC 31044; CBS 674.73). El documento WO2012016960 desvela la secuencia completa del genoma de Actinoplanes sp. SE50/110. Aunque la optimización de la cepa clásica a través de mutagénesis convencional fue una manera muy exitosa de aumentar la producción de acarbosa en el pasado, esta estrategia parece haber alcanzado sus límites por el momento. Con el fin de aumentar adicionalmente la eficacia de producción, deben aplicarse procedimientos de ingeniería genética dirigidos, lo que requieren un sistema de transformación funcional para Actinoplanes sp. SE50/110. Los experimentos anteriores revelaron que Actinoplanes sp. SE50/110 y Actinoplanes friuliensis (y probablemente la mayoría de los otros Actinoplanes sp.) no permiten procedimientos de transformación convencionales como la electroporación o la transformación mediada por PEG, a pesar de que se han hecho serios esfuerzos (Heinzelmann y col., 2003). En este contexto, se ha identificado un elemento integrador y conjugador de actinomiceto (AICE) en el genoma de Actinoplanes sp. SE50/110 (GenBank: CP003170) que puede utilizarse para este fin como se ha demostrado previamente para especies relacionadas (Hosted y col., 2005.).

Los AICE son una clase de elementos genéticos móviles que poseen una organización estructural altamente conservada con módulos funcionales para escisión/integración, replicación, transferencia por conjugación y regulación (te Poele, Bolhuis, y col., 2008). Siendo capaces de replicarse de forma autónoma, también se dice que median en la adquisición de módulos adicionales que codifican funciones, tales como características de resistencia y metabólicas, que confieren una ventaja selectiva para el hospedador en ciertas condiciones ambientales (Burrus y Waldor, 2004). Se identificó un nuevo AICE, denominado pACPL, en la secuencia del genoma completo de *Actinoplanes* sp. SE50/110 (Fig. 1). Su tamaño de 13,6 kb y la organización génica estructural concuerdan bien con otros AICE conocidos de especies estrechamente relacionadas como *Micromonospora rosario*, *Salinispora tropica* o *Streptomyces coelicolor* (te Poele, Bolhuis, y col., 2008).

La mayoría de los AICE conocidos subsisten en su genoma hospedador mediante la integración en el extremo 3' de un gen de ARNt por recombinación específica de sitio entre dos secuencias cortas idénticas (segmentos de identidad *att*) dentro de los sitios de unión localizados en el genoma (*attB*) y el AICE (*attP*), respectivamente (te Poele, Bolhuis, y col., 2008). En pACPL, los segmentos de identidad *att* son de 43 nt en tamaño y *attB* se solapa con el extremo 3' de un gen de ARNt de prolina. Adenás, el segmento de identidad en *attP* está flanqueado por dos repeticiones de 21 nt que contienen dos emparejamientos erróneos: GTCACCCAGTTAGT(T/C)AC(C/T)CAG. Estas muestran altas similitudes con los sitios tipo brazo identificados en el AICE pSAM2 de *Strepomyces ambofaciens*. Con respecto a pSAM2, se demostró que la integrasa se une a estas repeticiones y que son esenciales para la

recombinación eficaz (Raynal y col., 2002).

15

35

Además del sitio de integración genómico de ARNt de prolina, se demostró que pACPL subsiste en al menos doce copias (Fig. 2) como un elemento extracromosómico en una célula promedio de *Actinoplanes* sp. SE50/110 (Schwientek y col., 2012). pACPL hospeda 22 secuencias codificantes de proteínas.

- 5 El elemento integrador y conjugador de actinomiceto de la presente invención se selecciona del grupo que consiste en:
 - a) un polinucleótido que tiene la secuencia de SEQ ID 1, y
 - b) un polinucleótido que tiene al menos el 90 % de identidad con la secuencia de SEQ ID 1.
- Los preferidos son los AICE que tienen al menos el 95 % de identidad con la secuencia de SEQ ID 1. Más preferidos son los AICE que tienen al menos el 98 % de identidad con la secuencia de SEQ ID 1.

Descripción detallada de las 22 secuencias codificantes de proteína de pACPL

El gen *int* (marca de locus genómico: ACPL_6310) codifica la integrasa del AICE con una longitud de 388 aminoácidos. Su secuencia muestra el 74 % de similitud con una integrasa (GenBank: EFL40120.1) de *Streptomyces griseoflavus* Tu4000 dentro de los primeros 383 aminoácidos. El dominio de integrasa de la proteína se localiza desde el aminoácido 182 al 365 y presenta una elevada similitud (e-valor 2,90e-21) con el motivo de firma Int/Topo IB (dominio conservado: cd01182). La integrasa es responsable de la integración en un gen de ARNt por recombinación específica de sitio que se produce entre los dos sitios de unión similares *attB* en el cromosoma y *attP* en el AICE (te Poele, Bolhuis, y col., 2008).

- El gen xis (marca de locus genómico: ACPL_6309) codifica la escisionasa del AICE con una longitud de 68 aminoácidos. Presenta la mayor similitud con la proteína hipotética Sros_7036 (GenBank: ACZ89735.1) de Streptosporangium roseum DSM 43021. La proteína contiene un motivo hélice-giro-hélice (pfam12728) moderadamente conservado (e-valor: 1,31e-07) entre los aminoácidos 9-55. Xis es necesario en combinación con Int para mediar la escisión del AICE del cromosoma en preparación para la amplificación y la transferencia a otros hospedadores (te Poele, Bolhuis, y col., 2008).
- El gen *repSA* (marca de locus genómico: ACPL_6308) codifica la proteína de iniciación de replicación del AICE con una longitud de 598 aminoácidos. Tiene la mayor similitud con una proteína de iniciación de replicación de un plásmido putativo (GenBank: ADL48867.1) de *Micromonospora aurantiaca* ATCC 27029. La proteína se asemeja a la bien caracterizada proteína RepSA de *Streptomyces ambofaciens* que se ha descubierto que aplica un mecanismo de replicación en círculo rodante (Hagège y col., 1993).
- 30 El gen *aice1* (marca de locus genómico: ACPL_6307) codifica una proteína con función desconocida con una longitud de 97 aminoácidos. Presenta el 69 % de similitud en los primeros 80 aminoácidos con respecto a la proteína hipotética Micau_5360 (GenBank: ADL48866.1) de *Micromonospora aurantiaca* ATCC 27029.
 - El gen *spdA* (marca de locus genómico: ACPL_6306) codifica una proteína de difusión putativa del AICE con una longitud de 107 aminoácidos. SpdA presenta el 54 % de similitud con una proteína de difusión (GenBank: ABD10289.1) de *Frankia* sp. CcI3. Las proteínas de difusión están implicadas en la formación de pústulas, lo que refleja un retraso temporal del crecimiento de las células del receptor que se encuentran en proceso de adquisición de un AICE a partir de una célula donadora. De este modo, las proteínas de difusión ayudan en la difusión intramicelial (Kataoka y col.I, 1994; Grohmann y col., 2003; te Poele, Bolhuis, y col., 2008).
- El gen *spdB* (marca de locus genómico: ACPL_6305) codifica una proteína de difusión putativa del AICE con una longitud de 169 aminoácidos. SpdB presenta el 84 % de similitud entre los aminoácidos 40 131 con respecto a una proteína de difusión (GenBank: AAX38998.1) de *Micromonospora rosaria*. Las proteínas de difusión están implicadas en la formación de pústulas, lo que refleja un retraso temporal del crecimiento de las células del receptor que se encuentran en proceso de adquisición de un AICE a partir de una célula donadora. De este modo, las proteínas de propagación ayudan en la difusión intramicelial (Kataoka y col., 1994; Grohmann y col., 2003; te Poele, Bolhuis y col., 2008). Se ha descubierto un péptido señal para SpdB, su sitio de escisión se predice en la posición 18. Además, se descubrieron tres hélices transmembrana en las posiciones i53-70o75-97i109-131o.
 - El gen *aice2* (marca de locus genómico: ACPL_6304) codifica una proteína con función desconocida con una longitud de 96 aminoácidos. Presenta el 57 % de similitud entre los aminoácidos 12 89 con respecto a la proteína hipotética Micau 5358 (GenBank: ADL48864.1) de *Micromonospora aurantiaca* ATCC 27029.
- 50 El gen *aice3* (marca de locus genómico: ACPL_6303) codifica una proteína con función desconocida con una longitud de 61 aminoácidos. No presenta similitud significativa con ninguna de las proteínas en bases de datos públicas.
 - El gen aice4 (marca de locus genómico: ACPL_6302) codifica una proteína con función desconocida con una longitud de 138 aminoácidos. Presenta el 69 % de similitud en los últimos 113 aminoácidos con respecto a la

proteína hipotética Micau 5357 (GenBank: ADL48863.1) de Micromonospora aurantiaca ATCC 27029.

5

25

35

40

45

El gen aice5 (marca de locus genómico: ACPL_6301) codifica una proteína con función desconocida con una longitud de 108 aminoácidos. Presenta el 79 % de similitud con respecto a la secuencia de aminoácidos completa de la proteína hipotética Micau_5356 (GenBank: ADL48862.1) de Micromonospora aurantiaca ATCC 27029. Esta proteína tiene una coincidencia con pfam baja (e-valor 0,0022) para factores sigma con función extracitoplásmica (ECF). Estos factores sigma pueden unirse a la ARN polimerasa con el fin de estimular la transcripción de genes específicos. Se cree que se activan al recibir un estímulo del medio ambiente y son a menudo cotranscritos con uno o más reguladores negativos (Helmann, 2002).

El gen aice6 (marca de locus genómico: ACPL_6300) codifica una proteína con función desconocida con una longitud de 149 aminoácidos. Presenta el 50 % de similitud con la secuencia de aminoácidos completa de la proteína hipotética VAB18032_01645 (GenBank: AEB47413.1) de *Verrucosispora maris* AB-18-032.

El gen *aice7* (marca de locus genómico: ACPL_6299) codifica una proteína con función desconocida con una longitud de 66 aminoácidos. No presenta similitud con ninguna de las proteínas en bases de datos públicas. Aice7 contiene una única hélice transmembrana que abarca desde el aminoácido 9 al 31.

El gen *tra* (marca de locus genómico: ACPL_6298) codifica la proteína principal de transferencia del AICE con una longitud de 293 aminoácidos. Presenta el 74 % de similitud a lo largo de la mayor parte con respecto a una proteína de división celular (GenBank: ADL48859.1) de *Micromonospora aurantiaca* ATCC 27029. Tra contiene un dominio con similitud significativa (e-valor 3,1e-14) con respecto al dominio FtsK/SpolIIE entre los aminoácidos 29 - 187, que se encuentra en todos los AICE y genes de transferasa de *Streptomyces* (te Poele, Bolhuis, y col., 2008). Varios experimentos han proporcionado evidencias de que los homólogos de Tra son responsables de la translocación de ADN de doble cadena a las cepas receptoras. La translocación se produce en las puntas de las hifas del micelio de apareamiento (Possoz y col., 2001; Reuther y col., 2006).

El gen aice8 (marca de locus genómico: ACPL_6297) codifica una proteína con función desconocida con una longitud de 124 aminoácidos. Presena el 44 % de similitud entre los aminoácidos 44 - 116 con respecto a la secuencia de la proteína FadE6 (GenBank: EGT86701.1) de *Mycobacterium colombiense* CECT 3035. Si bien la proteína completa FadE6 tiene 733 aminoácidos que se asemejan a una acil-CoA deshidrogenasa, es poco probable que Aice8 tenga una función similar ya que no contiene los dominios catalíticos de FadE6 y es de solo 124 aminoácidos de longitud.

El gen aice9 (marca de locus genómico: ACPL_6296) codifica una proteína con función desconocida con una longitud de 320 aminoácidos. Presenta el 68 % de similitud a lo largo de la mayor parte de la secuencia con respecto a la proteína hipotética Micau_5352 (GenBank: ADL48858.1) de Micromonospora aurantiaca ATCC 27029. Esta proteína contiene cuatro hélices transmembrana en las posiciones i32-51057-79i88-1100115-134i.

El gen aice10 (marca de locus genómico: ACPL_6295) codifica una proteína con función desconocida con una longitud de 69 aminoácidos. No presenta similitud significativa con ninguna de las proteínas en bases de datos públicas.

El gen pra (marca de locus genómico: ACPL_6294) es probable que codifique el activador de los genes repSA, xis e int. Presenta una longitud de 105 aminoácidos y presenta el 90 % de similitud a lo largo de la secuencia completa con respecto a la proteína hipotética Micau_5352 (GenBank: ADL48857.1) de Micromonospora aurantiaca ATCC 27029. Se cree que Pra, que regula la transferencia y la replicación del AICE, es reprimido por el regulador transcripcional Korsa en el AICE pSAM2 de Streptomyces ambofaciens (Sezonov y col., 2000). Al reprimir Pra, el AICE permanece en su forma integrada en el cromosoma.

El gen *reg* (marca de locus genómico: ACPL_6293) codifica una proteína reguladora del AICE con una longitud de 444 aminoácidos. Presenta el 50 % de similitud a lo largo de la secuencia completa con respecto a un regulador putativo (GenBank: CCB75999.1) de *Streptomyces cattleya* NRRL 8057. Reg contiene un dominio de hélice-girohélice, que abarca los aminoácidos 4 - 72. Aunque la similitud de secuencia entre Reg y Korsa de pSAM2 es muy baja, la localización de *reg* entre los genes *pra* y *nud* puede ser una indicación de que Reg se asemeje a un homólogo de KorSA, el cual se encuentra frecuentemente en esta organización genética (te Poele, Bolhuis, y col., 2008).

El gen *nud* (marca de locus genómico: ACPL_6292) codifica una proteína que contiene un dominio de hidrolasa NUDIX entre los aminoácidos 29 - 144. Presenta un tamaño de 172 aminoácidos y presenta el 72 % de similitud a lo largo de la secuencia para una proteína hipotética (GenBank: EFL09132.1) de *Streptomyces* sp. AA4 y diversas hidrolasas NUDIX de especies estrechamente relacionadas. Nud presenta el 42 % de similitud entre los aminoácidos 21 - 108 con respecto a la proteína Pif de pSAM2. Pif también contiene un dominio de hidrolasa NUDIX, y se demostró que está involucrado en la señalización intercelular, que se cree que inhibe la replicación y la transferencia del AICE con el fin de evitar la transferencia redundante entre células que albergan pSAM2 (Possoz y col., 2003; te Poele, Bolhuis, y col., 2008). Por lo tanto, es probable que Pra, Reg y Nud en pACPL se asemejen a un mecanismo regulador similar al que Pra, Korsa y Pif realizan para pSAM2.

- El gen *mdp* (marca de locus genómico: ACPL_6291) codifica una fosfohidrolasa dependiente de metal con una longitud de 80 aminoácidos. Presenta el 66 % de similitud a lo largo de su secuencia con respecto a una fosfohidrolasa dependiente de metal (GenBank: ABD10513.1) de *Frankia* sp. Ccl3. Los genes que codifican mdp se encuentran con frecuencia en un grupo con homólogos de *pra*, *reg* y *nud* en otros AICE (te Poele, Bolhuis, y col., 2008). Las fosfohidrolasas dependientes de metal pueden estar implicadas en la transducción de señales o el metabolismo de ácidos nucleicos (te Poele, Samborskyy, y col., 2008).
- El gen *aice11* (marca de locus genómico: ACPL_6290) codifica una proteína con función desconocida con una longitud de 256 aminoácidos. No presenta similitud significativa con ninguna de las proteínas en bases de datos públicas.
- El gen *aice12* (marca de locus genómico: ACPL_6289) codifica una proteína con función desconocida con una longitud de 93 aminoácidos. No presenta similitud significativa con ninguna de las proteínas en bases de datos públicas.

Referencias

5

- Burrus, V., Waldor, M.K., 2004. Shaping bacterial genomes with integrative and conjugative elements. Res. Microbiol 155, 376-386.
 - Caspary, W.F., Graf, S., 1979. Inhibition of human intestinal alpha-glucosidehydrolases by a new complex oligosaccharide. Res Exp Med (Berl) 175, 1-6.
 - Frommer, W., Junge, B., Keup, U., Mueller, L., Schmidt, D., 1977. Amino sugar derivatives. German patent DE 2347782 (US patent 4,062,950).
- Frommer, W., Junge, B., Müller, L., Schmidt, D., Truscheit, E., 1979. Neue Enzyminhibitoren aus Mikroorganismen. Planta Med 35, 195-217.
 - Frommer, W., Puls, W., Schäfer, D., Schmidt, D., 1975. Glycoside-hydrolase enzyme inhibitors. German patent DE 2064092 (US patent 3,876,766).
- Frommer, W., Puls, W., Schmidt, D., 1977. Process for the production of a saccharase inhibitor. German patent DE 2209834 (US patent 4,019,960).
 - Grohmann, E., Muth, G., Espinosa, M., 2003. Conjugative Plasmid Transfer in Gram-Positive Bacteria. Microbiol. Mol. Biol. Rev. 67, 277-301.
 - Hagège, J., Pernodet, J.L., Friedmann, A., Guérineau, M., 1993. Mode and origin of replication of pSAM2, a conjugative integrating element of Streptomyces ambofaciens. Mol. Microbiol. 10, 799-812.
- Heinzelmann, E., Berger, S., Puk, O., Reichenstein, B., Wohlleben, W., Schwartz, D., 2003. A Glutamate Mutase Is Involved in the Biosynthesis of the Lipopeptide Antibiotic Friulimicin in Actinoplanes friuliensis. Antimicrob Agents Chemother 47, 447-457.
 - Helmann, J.D., 2002. The extracytoplasmic function (ECF) sigma factors. Adv. Microb. Physiol. 46, 47-110.
- Hosted, T.J., Jr, Wang, T., Horan, A.C., 2005. Characterization of the Micromonospora rosaria pMR2 plasmid and development of a high G+C codon optimized integrase for site-specific integration. Plasmid 54, 249-258.
 - IDF, 2009. IDF Diabetes Atlas, 4th edn. International Diabetes Federation, Brussels, Belgium: International Diabetes Federation.
- Kataoka, M., Kiyose, Y.M., Michisuji, Y., Horiguchi, T., Seki, T., Yoshida, T., 1994. Complete Nucleotide Sequence of the Streptomyces nigrifaciens Plasmid, pSN22: Genetic Organization and Correlation with Genetic Properties. Plasmid 32, 55-69.
 - te Poele, E.M., Bolhuis, H., Dijkhuizen, L., 2008. Actinomycete integrative and conjugative elements. Antonie Van Leeuwenhoek 94, 127-143.
- te Poele, E.M., Samborskyy, M., Oliynyk, M., Leadlay, P.F., Bolhuis, H., Dijkhuizen, L., 2008. Actinomycete integrative and conjugative pMEA-like elements of Amycolatopsis and Saccharopolyspora decoded. Plasmid 59, 202-216.
 - Possoz, C., Gagnat, J., Sezonov, G., Guérineau, M., Pernodet, J.-L., 2003. Conjugal immunity of Streptomyces strains carrying the integrative element pSAM2 is due to the pif gene (pSAM2 immunity factor). Mol. Microbiol. 47, 1385-1393.
- Possoz, C., Ribard, C., Gagnat, J., Pernodet, J.L., Guérineau, M., 2001. The integrative element pSAM2 from Streptomyces: kinetics and mode of conjugal transfer. Mol. Microbiol. 42, 159-166.

Raynal, A., Friedmann, A., Tuphile, K., Guerineau, M., Pernodet, J.-L., 2002. Characterization of the attP site of the integrative element pSAM2 from Streptomyces ambofaciens. Microbiology (Reading, Engl.) 148, 61-67.

Reuther, J., Gekeler, C., Tiffert, Y., Wohlleben, W., Muth, G., 2006. Unique conjugation mechanism in mycelial streptomycetes: a DNA-binding ATPase translocates unprocessed plasmid DNA at the hyphal tip. Mol. Microbiol. 61. 436-446.

Schwientek, P., Szczepanowski, R., Rückert, C., Kalinowski, J., Klein, A., Selber, K., Wehmeier, U.F., Stoye, J., Pühler, A., 2012. The complete genome sequence of the acarbose producer Actinoplanes sp. SE50/110. BMC Genomics 1-2.

Sezonov, G., Possoz, C., Friedmann, A., Pernodet, J.L., Guérineau, M., 2000. KorSA from the Streptomyces 10 integrative element pSAM2 is a central transcriptional repressor: target genes and binding sites. J. Bacteriol. 182,

Wehmeier, U.F., Piepersberg, W., 2004. Biotechnology and molecular biology of the alpha-glucosidase inhibitor acarbose. Appl. Microbiol. Biotechnol 63, 613-625.

LISTADO DE SECUENCIAS

15

5

<110> Bayer Pharma AG

<120> Nuevo elemento integrador y conjugador de actinomiceto de Actinoplanes sp. SE50/110 como plásmido para la transformación genética de actinobacterias relacionadas

```
20
          <130> N/A
          <160>45
25
          <170> PatentIn versión 3.5
          <210> 1
          <211> 13643
          <212> ADN
          <213> Actinoplanes sp. SE50/110
30
          <220>
          <221> aen
          <222> (112)..(1278)
35
          <223> nombre del gen: int; hebra codificante: inversa
```

<220>

40 <223> nombre del gen: xis; hebra codificante: inversa <220> <221> gen <222> (1510)..(3306) 45

<220>

<221> gen

<222> (1275)..(1481)

<223> nombre del gen: repSA; hebra codificante: inversa

<221> gen <222> (3308)..(3601) 50 <223> nombre del gen: aice1; hebra codificante: inversa <220> <221> gen <222> (3598)..(3921)

55 <223> nombre del gen: spdA; hebra codificante: inversa

> <220> <221> gen <222> (3918)..(4427)

<223> nombre del gen: spdB; hebra codificante: inversa 60

<220>

```
<221> gen
          <222> (4424)..(4714)
          <223> nombre del gen: aice2; hebra codificante: inversa
 5
          <220>
          <221> gen
          <222> (4711)..(4896)
          <223> nombre del gen: aice3; hebra codificante: inversa
10
          <220>
          <221> gen
          <222> (4893)..(5309)
          <223> nombre del gen: aice4; hebra codificante: inversa
          <220>
15
          <221> gen
          <222> (5306)..(5632)
          <223> nombre del gen: aice5; hebra codificante: inversa
          <220>
20
          <221> gen
          <222> (5629)..(6078)
          <223> nombre del gen: aice6; hebra codificante: inversa
          <220>
25
          <221> gen
          <222> (6165)..(6365)
          <223> nombre del gen: aice7; hebra codificante: inversa
30
          <220>
          <221> gen
          <222> (6362)..(7243)
          <223> nombre del gen: tra; hebra codificante: inversa
          <220>
35
          <221> gen
          <222> (7310)..(7684)
          <223> nombre del gen: aice8; hebra codificante: inversa
40
          <220>
          <221> gen
          <222> (7696)..(8616)
          <223> nombre del gen: aice9; hebra codificante: inversa
45
          <220>
          <221> gen
          <222> (8731)..(8940)
          <223> nombre del gen: aice10; hebra codificante: inversa
          <220>
50
          <221> gen
          <222> (9109)..(9426)
          <223> nombre del gen: pra; hebra codificante: inversa
55
          <220>
          <221> gen
          <222> (9663)..(10997)
          <223> nombre del gen: reg; hebra codificante: directa
          <220>
60
          <221> gen
          <222> (11012)..(11530)
          <223> nombre del gen: nud; hebra codificante: directa
          <220>
65
          <221> gen
```

<222> (11542)..(11784)
<223> nombre del gen: mdp; hebra codificante: inversa
5 <221> gen
<222> (11881)..(12651)
<223> nombre del gen: aice11; hebra codificante: directa
<220>
10 <221> gen
<222> (12626)..(12907)
<223> nombre del gen: aice12; hebra codificante: inversa
<400> 1

15

ctgggggtca aggggtcgca ggttcaaatc ctgtcagccc gacgcaggtc agagggcata 60 120 tctcatcgaa ggatatgccc tctctgcatg tctgggtaac taactgggtg actaagcccc 180 aggagtgtca teeggaeega agateeggte catggeeace gegeegttea geagaaeegg gcgcagttgg tggcggtaaa cggtctcggt gatcgaggtg ccggaatgac cacacaggtc 240 300 360 ttcgcggggc gtccattcag ccggattcat tccggggaca gccgcgacga tcgcgcggaa ggctcgcagc acgttgtgcc ggtcgagctg ggtgccgacc ttgctggcgc agacgtagtc 420 atccggtcgt ggatctccgt gcgccgcgcg ttgcgcggtg aggacccgga cacagcgaac 480 cggcagggcg agtgaacgcc gtgacttctt ggtcttggtg tcaccgtggg cgcgcaccga 540 600 atgccatacg tggatggccg gcggaatcgg tggctcggcg tccggacgtc cgaccaggtc gacgtgctgc caggtgagtt ctcgcagttc ctcggtacga gcaccggtca gcagcgacaa 660 aactacatac gcgtgcaggc tgctcgactc ggcagcgacg aggagcgctt tggcctgctc 720 gtaggtgagt gacttggagg gtcgtccggc ggtgccggtc ggtaccttgc agagtgcgac 780 gacgttgcgc atgaccttgt cgcgggccat cgctcggttg atggcgcgat tcgcgatcga 840 gtgcagcagt cgcagcgtgc gggtgctgag aatcttggct ttgtcggcca gccacctgtc 900 960 aatgtcggtg gcgctgagtt ccttctgttt gctggggtca cggagcttgc gtgcaccgat cgccgggatg atgtgaccgt tggccagcag cgtgtagttg ttgaccgttt cctcgtcgac 1020 1080 gtcgggaagt ccgtaggtga gccagtccgt gacggcgtcg gcgaccgtgt agccggtcgt ggggatcgac agcccgtcct ggtactcacg gatcttctga cggagtgcat tgttggcctc 1140 ggtcttggtc ttgccgcttg ccttacggac gatgcgttta ccggccgggg tgtatccgac 1200 1260 ggtgaccgag gcgatccagc gctggcgctg ttcgtcccag tgcagcccgc cgtctccacg gctgcggcgt ttggtcatgc ggcgactcct ttcttgcttt cctgttcgag cagggtgacg 1320 taggcggtga tggcgctggc cgggaccagc cgggtgcgac cctccttgac ggtgcgcaac 1380 1440 cgccccgagc ggatcagttc atagatgacg gaacggctca agctcagcat ccgcatggct 1500 tccgggatgc ggtagagcgc cttcggggtg atgccgtcca acgggtgact cctccttttg 1560 cggcttcgat caggcggcgt tcaaggcgac aggccgggac gtgctcgctt cgtgcgcgag ttcctctcgg ccgatggctt gtcgctcgcg ggcctgagcc gcagcggtgt tggcgaggag 1620 1680 tgcgtcgccg gtggtgtgcc agccgactcc ggcgaaggtc agggtgccga cgataagcgt ggtttcgtcg aggtggtcga cggtgtgcac ggtggcgttg tcggccggat cgggctcagc 1740

CC	ggcggaag	tcgatgcgag	tctcgcggag	caggcggaag	gtgaccgagt	accggcgggc	1800
tt	tggtgagg	aagtggccgc	cgaagccgag	catgtgcgcc	cagcggcgga	gccgggcgta	1860
tg	gggtgggc	tggcggtcgt	tgggccgttg	ggtgtcaagg	ctggcttgac	gttcggcgac	1920
gca	atacaggg	caggtccggt	agcgggtgcg	ggtaccgcag	tccggacagt	ggcggggcgc	1980
tc	caaagggc	tgccggattt	tggcaccggc	ggtgccggtg	tagacgggga	gtcggatcgc	2040
cg	ttttgcca	gctggggcgt	cggggtcgtt	gccgagatgc	cagcaggcgt	ggatgagccg	2100
gg	cgatgtgg	teteeggegg	gatcggcgtg	ctgcgtgatg	gtgtcgccgg	tgatgcgcgt	2160
cg	aattgtgg	ccggtgatct	cggtgctttt	ggtggcgtac	ttggcgaggt	atccggcgac	2220
ca	tgctgtcg	gtgacttcgc	cggtgccggt	gaggctgatc	gggcggatgt	cgatctgttc	2280
gc	cccaggcc	atcggccagc	cgtccggccg	gtcagggtgg	tctggggtgg	tgaagtcgat	2340
gt	cgctggcg	gcggtgagtg	cgtcgaccag	gtcgttgagg	ccgatgccgg	gtggtgggc	2400
ga	cgacgcgg	gtggggtcgg	tggggtcgat	gccgtcgagc	cggatcaggg	cgtggaagtg	2460
ga	ccgcgccg	cggcgttgca	tctcggcggc	tttgccgtgg	gcgaggcgga	ccggtgggat	2520
CC	ggcgcagg	tttttgccgt	tgctgacctc	gtggaacggg	atgccgcggg	ctttgcagag	2580
tt	tggcgagg	cggcgttcgg	cgtcctgttt	ggtgcggtgc	cagagttcgc	cggagaacag	2640
gti	tccagacg	acgtggtgct	ggtggtcgta	gcagtccagg	cagaggggac	ggccgagctg	2700
gg	ggtcgccg	ggttcgtggc	gtgcccagca	gacggcgggt	tggtagtgct	ggcagaggcc	2760
gg	ggttgcgg	cgggcgtggc	agggttcggg	gcggcagcta	cagcgggcgc	gattcgtgca	2820
gg ¹	tgtgtttg	cggacgtggc	gggtgtggac	cgcgccgaag	gaggggggg	tgagggtgac	2880
ga	acacggcg	gggtgccggg	cgaccgtggt	ggggacgcct	ttgccgccga	tgagcccggc	2940
gc	gcaggatc	tggaacgcgt	cgcgctggta	ggtgcgggcg	caggcggggc	acacggtgga	3000
gc	gccggtta	ccgcaggcct	tgtagatagc	ggcatcggga	agttggtcgg	tgtgccggga	3060
gt	cgagcagg	cgcccggtgg	tggcttcgat	ggtgtcgagg	gtgccggtga	gccggaccgg	3120
gc	gggtgcac	ccggcggcgg	cgcggacgtg	gtcgagccag	tcgaagtagc	cgggttgggt	3180
gg	cgcgggtg	agggcttggc	cggctgcggt	gtagtcggcg	ggtggggtg	tccaggcgtc	3240
gg	cgttcgag	cccgcacccc	gggcagagtt	ctcccggggt	gcgaggtcca	gcgtcgacgt	3300
gc	tcatgtca	ggcagcgatc	ctggtggtgg	cgagctgcgg	gccgtggtgg	ccgacgaagg	3360
tg	ctggtgat	gtgccgttcg	atgacggtga	tgcggcaggc	cgggcattgc	cgatggtggg	3420
gti	tcgtgacg	gccgcagtcg	ataacggcgg	tcttgtcgcc	gcagcggatg	gagatggggt	3480
tg	cggcaggg	gccgccgtcg	acggtggcga	cgatggtgcg	gcgggtgtcg	aacgggtgca	3540
gc	tcagggtt	ggctgggcag	gtgtgggtga	tgtggtggat	gtcgacgtgg	acgaaggtca	3600
to	gggcgccg	ccggtcaggg	tcgggatgtg	cccgttgatg	cgtgccgggt	tggtgtcccg	3660

gatggtggtg	atcagggttt	cggcgacggc	cggggtgatg	ttgagtcgca	gggcgaggtc	3720
gtcggcggtg	atgggctggc	cggtggtctg	ctcgtgctgg	acgaccgaga	accgggcggc	3780
gggcagcagg	tgagccggga	cgaccggcgc	ggtctgtggg	gtggccggct	gttcgaccgg	3840
agcggtcggg	ccggtggtgg	tgtgctccgg	ttccggagtg	gtcgccgtac	cgcgggcttt	3900
gatcttgttg	acggcggtca	tgagttcggt	ggcttgtttg	tcgatggcgg	tgaagtcggg	3960
gcggatgcgt	ccggcgacga	gttcgacgcc	gatgaccacg	acgacgacca	gggcgaagac	4020
gatgcgcatg	ccgaggtcgc	cggggcggcg	aagttgacgg	tggccgagag	cagggctgcg	4080
ccgatgaaga	cggccatggc	ccagcgtttg	gcgtctttga	cgatgccggg	ggtgcggacg	4140
acgatcagca	tcgagaccat	ggcggtgtcg	aagatcgccg	ggggtaggta	ggcgaagtag	4200
cccgcgccgg	tgctggccag	gtagtgggcc	tggtggaggt	agctggtgat	cagtgcgccg	4260
atgagggtgg	ctcggttgta	gcgtttgacg	ctgtcgatgg	ccttgagcat	gttcgggacg	4320
gcgctcttgg	cgtactcgat	ggcgaactgt	tcggtgaggt	tgacgctcgc	gggggcggcc	4380
gggccggtgg	tcggctgttg	ggccgccttc	ctgcggagag	ggttcatcgg	atgcctccgt	4440
cgttggtgac	ggggatgacc	gcgacgacgc	ccatgcaggc	ttcgcaccag	acggcggaca	4500
ggccgtcgtc	gaacagttcg	ttgatgcggt	cgtcgagggt	ttcgtattcg	gcggggaaca	4560
gcgacgtgct	gccgcattcg	tcgcaccact	gctcggtcgg	gcagaggcac	aggaccgggc	4620
cgaggtccgg	gtggataccg	gcggggctca	tgccgccgat	gcaccacagg	cagttgtcgg	4680
tggccaggtg	cttgcccagg	tcgatgaggc	tcatcgtgag	acctccggtg	accggagcgc	4740
ctggtcggtc	cageegeaga	cgtcacagtc	gcggtagccg	cagtactggc	agcactgcga	4800
acgatcctgg	tctttcggca	tgacttctgc	gcagtagtgg	tcgccgcact	ggcaccgtgt	4860
cgtagcgggg	ctgttgtttt	cagggtccgt	ggtcatcggc	tgcctcctac	ttcgcagctc	4920
aggcagatac	cggtgcggcg	cgggatgtag	tagtcacggg	tgacgccgca	ggagtcgcag	4980
gtgcggcggg	cgagcagcat	cttggcgacg	accgcgagct	gcgccgcggt	gggaacacgt	5040
ttcggcttgg	cgaggtcgcg	ccggtagagg	taggcgacgc	ggcgttgtcc	gcggtgcatc	5100
cacaggatct	gggcgacggg	gtcgtagccg	ttggggcaga	ggccgtcggc	gcgcagctgg	5160
cgtcgggtgg	ccaggtgctc	gggcgcctgc	cggtagggga	aggtggggaa	gccgtagcgg	5220
ctgccggtgg	ggtcgtagaa	ctcgacgcgg	atgccggtgc	gggcgccgag	ggcttcgagg	5280
tagtcgttgg	tcagggcgga	ggtggtcatt	tatcgcctcc	ccagcgttgc	tgggcggctt	5340
ggcgggagat	gccgagccgg	tcgccgattt	cggcccagga	atagccgtag	gcgcgcaggc	5400
cgatgacggc	ctcgctgatg	gcgtcgtcga	gctgggcgga	gagtccgacc	atgtcgcgca	5460
gggcttcgac	gtcgccggtg	gcgacgcgtt	tggcgaaggc	gcggatgatg	cgccggacga	5520

aggcggcgta	ttcgtcgttc	tcgacgacgt	cgcggcggcg	cggcttcgaa	ggccggctgt	5580
caccggccgg	ggcggtaggt	gtcaaggcag	ggttgacgta	cgacaggctc	accgggcacc	5640
cccggtgtgg	tgcagacgat	cccagtcgtc	agcggcgtcg	gtgagggtct	cgatgacctc	5700
gtcgcgggtg	cggccctcgt	agtcgttcca	gtcgccgacg	acgtcgatgg	cgctggtctc	5760
gtagaagccg	gtcggggtgt	attccaggtc	gagccaggcg	gcgaagacgc	gcagggcgcg	5820
gatggcggcg	atggtgtcgg	ggtcgccgtc	gagggtgcac	acgccggagg	ccaggcagcg	5880
gccggtggcg	gcggtcatga	tegegeegga	ggcgcaggcg	ggcggaaact	gcccgtcggt	5940
gatggcgacc	aggtcgtaaa	actggtgctg	ggtccagccg	tgctgctgga	ggtagagggc	6000
ggcggcgcgc	agcagcgcgg	ccggggtcat	cgtcgggtcg	gtaacgggtg	tgttggccgg	6060
ttgatgggta	ggcttcatgg	cagccacgtc	ctttcgaggc	tgttggtgga	ggtcggcaga	6120
acccgcttgc	ttgcaggctg	tgggggttct	gtcgaccgct	tccgttatgc	ggttgtggtc	6180
cccggtgccg	tccagcggcg	aggatggtgc	ttgcgcacat	gggcggcggt	gatcgccagg	6240
gcgaggacac	cgaccggtgc	ctggtgccgg	gtgaggtggc	cgacgagaag	gccggcgagg	6300
taggcggtcg	tggtggcggt	tccagcgatt	acgccggtga	tggcctgagc	gcgggtttcg	6360
gtcatgccgc	catctcccat	tgggtgcgcc	cggtgtagga	ggtcgtggtg	gcgggattgg	6420
tagggcggcg	tagccaggcg	gcatagtcgg	cgatggcgta	gatgtcgtcg	tcggacagcc	6480
aggccgcctt	gatcgggtac	gggagcttct	tctcggcgcg	cagcagggct	tcgccggggt	6540
tgtcggggct	gatggtggag	gcgtcgaagc	cgacctctgc	gaggccggag	ccgaggatga	6600
cgtcggagga	gccgacggtg	gtgcaccgga	aggcgcagcg	gtagccgaac	aggtcccgca	6660
ggctggcggg	gatgatgtcc	caggagggc	gctgggtggc	gccgacgacg	ggcatggcgc	6720
aggcgcggcc	cagagcgacc	aggccccgga	gcagggtcga	gaactcttcc	tgttgggcct	6780
tggtgcctag	cacggtcgag	aacatcgcga	tctcgtcgat	gatggtgatg	atcgtggaga	6840
ggttgtcctc	ccgtgtgatt	ttgcggcggc	ggttggcgag	cagccagcgg	tagcggttgc	6900
gggcgacggt	gagcaggcga	cgcacggtct	tgatggccag	gtcgatgtcg	tcgccgatga	6960
aggcgtccat	gatcggttcc	caggggccga	gttcgaccca	tttgccgtcc	atgccgatca	7020
ggcgggtgtt	gtcgctgagt	gcggcggtcg	ccgcgacgag	gttgagcagg	ccggacttgc	7080
cgccgccggg	ctcaccagcg	gtaagcaggt	tgtggtagac	gatgtcgagc	gtgacgtgct	7140
cgccaaactc	gtcgatgccg	atgaacaggg	gatcgaacat	cgacatgcca	ggcccgacag	7200
gcacccggtc	ggtgccgagc	ggatcgcagg	cgatggtgct	cacgagette	gcctcccttc	7260
cggaggtgaa	agggcaggac	gctcgcggtg	gagcgccctg	cggtaggggt	cagatgggtt	7320
cggtggtgac	gagcgggtcc	cacccggatt	cgcgtttcac	ggccgacgcg	cggcggcaga	7380
gttcggccac	gagctggccg	cagttgtgcg	cgatggttcc	caggcgggcg	atcagctcgc	7440

cccgctgttg ttcggtgagc	ccgtgatggc	tcccgtcggt	cacgtcccag	ccgtcgtcga	7500
tgtagagctg ggcgagtccg	ttgccgtcgc	tgaacagccc	ggcggtcatc	caggccaggt	7560
cttccagggc ctgccgggag	tcgatgtcgc	tgacgatcag	ttcgtcgttg	acgaagtcgg	7620
tgacgccctg cggatcgagg	cgttcgaggt	gctgggtctg	accgtagagg	tcgaagatgc	7680
tcatacgggt gctcctcaga	tccactggtt	gatgtcgtcg	ccgtcgtcgg	cggcagtggc	7740
gggtttgcgg ccgttgctgc	tggcagcggc	ctgtttcggg	atggccggct	cggtggccgt	7800
cgggatgtcg tcgatgtcgg	gcaggtcgag	gcccgtgaca	gtggccgact	ctttatcgtc	7860
gagcggcacg atcggatcga	tctcgtcgat	caggggggtg	ctcaccttgg	cggtgaggac	7920
ttcgcggcgc ttgatgtcga	agcgcacgaa	cgcagaattg	gtgctaccgg	ccaggtcgac	7980
cctgaccgtt ttggcatggc	aggccacggc	gatcttgccg	acctgctgcg	tgaggtaatc	8040
gaccgacagg ccgggccgca	gtaggaccca	gactcgttcc	cccaccgggg	tgggccaggc	8100
teegaggate agegggagge	taccggagcg	gttggtgatg	atgaactgcg	agaagcagac	8160
gcgcaggcga tgccgcacgg	cgacacacca	gaagatggcg	acggtccagc	ggcgcaggac	8220
cggaacgcag gccgggccgc	cgaccaggac	ggcaaggatg	accgcggtca	agatttgtga	8280
ggtactggcg gccagggcgg	tccagcccca	ggccagcagg	acggtggctc	cgatttcggg	8340
agtccaccac cagagcattc	gcaggaccgg	ccagctacgg	accagtgccc	agacgagggc	8400
gccgcagaca gcggcgatcg	gagccgcgac	gaacgcggcc	agcagcgggt	gcatgtggcc	8460
cttggccacg accagagcga	ccaggccgct	cacgatgacg	gtgaagatga	acgcgaaacg	8520
cgcgttctcg gcagccgagc	gatgtacccg	ctgctcgatg	acggtgacag	ttccggagcc	8580
tegeceagaa eggeegggae	gggtagattt	ggacacgaca	cgtcctccct	tgcgggttgg	8640
atgggttcag gcgtggggcc	ggatggtgtg	cgaccgttac	cggccccgcg	ctttcttact	8700
ggtgatcagc gcccacgcgg	gacgcgattg	tcagcgctga	gcgcgctggg	gcttcggctg	8760
caccgagccg taccgggaga	aggccataac	cgtgaggcca	ggaagaatgc	ggccagcggc	8820
ctggttgatg aggtctttgg	tctcgaggag	atcaccctgt	tcggtgatcg	gatttttcga	8880
gtggatgtcg atggagccgt	agcccccttg	gaacatgtag	gacacgtagt	aacggaacat	8940
gatgggttcc tttcaaaaaa	atgatgatgg	ccgcatattg	cggccggagg	ccggaacgaa	9000
atcgctccgg ccatccgatg	aatgagcagg	gattacggca	gcaaaaggcc	gcctgggatc	9060
agatgccacg gacactgtgg	cggcagtacg	gatggggttg	cgaagggcct	acttcgccga	9120
ggcaccggag agcggcttca	gcgacaccgc	acggaacgcg	acgccgttac	gcccgttggt	9180
cgcccacgga atggcctcga	gctgctcgat	ggcgacgagc	tgtcccaccg	tcacgttcgg	9240
cttttcgcca gccgtcgtga	tggcgatgac	ctcgccgccg	gtctcgtcga	gcacgatgac	9300

ctgggtggac cacatgggcc	ggccagtgtt	cttctcggaa	cgctggttgc	cgttctggtc	9360
gttcttcggc tcggtcggct	tcgacaccgt	cacctgcttg	ccggtcgtgt	ccacgtacag	9420
cttcacgaag atctccttcg	ttccagggat	ccaactggaa	tcccgaacct	ttttgttgag	9480
ccgatcggct ccgccctcca	tgaaacgcgg	aaaattggcc	ccgcagcagg	tctccagatt	9540
tgatccgcgg agggcatcac	tggctggcag	tgactaggac	tgactcgggc	cttgcgaatg	9600
acacgtcgat agggcagtgt	gaatgcggcg	cattatcgac	tctcacaggg	cggaggctag	9660
agatgacgcc gctgcggctg	gaaaggcaga	agctcggctg	gtcgagaacc	cgccttgctc	9720
acgaactgga gcgacgggcg	cagggaagat	tcagcctggc	caccagagcg	agtcttctgc	9780
ggatgatctc agcgtgggaa	agcggcgcgc	gagacacctc	ggacccgtat	cgcactctgc	9840
tgtgcgaggc gtatggccgg	accgctgacg	agttgggcct	gggtggtggc	accgaccgag	9900
cagaatcgag cgtcggcctg	tcctacgctt	catcgcttga	cgcggcagcc	gcaatacttt	9960
ctgaccttgc ccggttcgat	gacatgaagc	accctgcggt	gagccagggc	cgctaccagc	10020
ccgatgcgtt gaacgcggta	tgtctggact	ggctgttcgg	cacagcctcg	aatgacatgc	10080
cagcaggcgc tggaaaacgc	gtcaccatga	aggacgtcga	ggagateege	gccaccacgt	10140
cgatgttcga cagcctggat	cgccgattcg	gaggggagaa	cgcccgcagt	atggccgtgc	10200
gttttctgcg cgaggcggtg	ctgccgagat	tcggcaagac	atccgaccag	accgtaacta	10260
ctgagcttta cagagcagca	gcgatcctct	gcgagctgat	cgggtggatg	tcgttcgaca	10320
cctcacgcaa ctcgttggca	cagcggtatt	tcacccaagc	gctgcgattg	gccgaggcag	10380
ctggtgaccg cgcctatgcc	tcgtacatct	tggcgagcat	ggcggaccaa	gcgctcttcc	10440
tgaagaggcc tgaccaggcg	ctacgacttg	cacaggtcgc	tcgcgatgcg	ggggaaaagg	10500
ccggcgttgc ggtggccaca	accgaggcga	gcatgctgga	ggctcgcgca	ttcgcagccc	10560
agggtgacga gagcggctgc	accagggcgt	tgcttcgcgc	ggaageegee	ttcaacagca	10620
tcagcgcaga cgacaacccg	agttgggcga	accactgggg	tgacatcttg	tttgccagtc	10680
acgctggcac ctgttgggtc	gatcttggtg	cgccgaagga	ggcagcgagc	ttggttcgga	10740
cagtctggga cagcgcgaag	gatcaggccc	gtcgtcgggt	ctacagcggc	gttcagctcg	10800
ctcgcgtggc gctgcttacg	aacgaggtgg	aacaagcggt	gtcgtatggg	atcgccgccc	10860
ttgaggcgac gagcggcttg	acttcgaatc	gctcgttgca	gcagcttcgc	gacctgcgtg	10920
atcagcttgg aaaccatgcc	aagcatcctg	ctgttgtgga	gttcgaggag	cgcgctcgat	10980
tggtgctggc cgcttgagta	ccgtaagcct	cgtgacgttg	gccgaggacc	tggaccgcga	11040
aggtgaaccc gagcgggagt	tcaaccccgg	gatcgcgcag	cgactaccta	ggaagcgggt	11100
tgctggcgga gcgctgatcc	gcgactcggc	tgatcgaatc	ctgttcgtcg	tgccgaacta	11160
caageceetg etggaeatee	ccggcggcat	tgccgagggc	aacgaatctc	cgctcgcagc	11220

gtgccgacgt	gagatcaagg	aggagatcgg	cctagacctg	ccgatcggcc	gacttctcgt	11280
ggtcgactgg	atcccgcagc	acggcgtgtg	gccggacggc	gtgatgttca	tcttcgacgg	11340
cggccggcta	accgacgacg	agtcccgcga	cctgaagcac	accgatgatg	agctggtagg	11400
actgaagttc	cttgccctcg	atgatgcacg	ccatcagctt	cggccctcaa	tggttcgcag	11460
gctcgaagca	gggatagagg	ccttgtccga	tggagagccg	cggtatctgg	agttcggtcg	11520
gactcagtaa	agcggatggc	cttaccggcg	ttccatccgt	tcggatgttc	gggcgatggc	11580
tgcattgaga	tcatcggcag	cctcggtgat	gaacgctgtc	acgagatggc	ccggcccgta	11640
acgttccttg	atctcggcta	cccgctcctc	gaaggtcgtt	cgttccccgt	cgggtgtcgt	11700
ggtgagatcg	cagaaccaga	gggcgtcccg	gaccggcgac	gcctcgtcat	ggaaagctgc	11760
aagttcctcc	gcaaggcctc	gcatcttggc	ttcgcgtatc	gcacacgaat	ggtgcgctac	11820
aaggtgaaca	agccgttccg	gagcactgac	ggaccgaagg	aagtacgccc	cgtctagcgg	11880
atggaaaccc	gtctgcacga	gatctggcgc	atacccgatg	tcgtggagta	cagcagcagc	11940
ctcaagcaag	cgggcatcgt	cgccggcggc	gttaccaaca	gtacgagcct	tcgccgcgac	12000
accttgaacg	tgagaccagc	gacgtggcag	cacatccgcg	aggacgcgtt	cagacgtttg	12060
gtatgcccaa	gcgaccatcg	acatggaccc	aacgatatcg	gtgaactcgc	agattcgtat	12120
gcgttgacgg	agccggtcgg	ctgccggatc	ttgttcaaac	tttctgtacg	tcttcaaggc	12180
ggcccgaaac	gggccgctca	cgccgccgcc	tgggcgcgtg	ccggtcgctt	agctggcgca	12240
cacgaccggc	acgccggcag	cccgtcggct	ggcgtgcagg	agcggatcgg	gccgcggcga	12300
cgacagtcca	acaggcgggt	tgaggctggg	gagtttggcc	gctgccgacc	ggtgcggcca	12360
gggcgacgcg	gccgagctgc	cgcgcgcggc	cgcagcgcga	gtcacggccg	tcggccgccg	12420
ggcgcggcgg	cgcgcagtgt	gtccgggccg	ctcctccgag	gtcaagggcg	cttcgcgtcg	12480
caagcgacgg	ccgcaagcgg	ccgccctgga	cctcggagcc	tctgcggccc	tagcggccaa	12540
gtggtcaagc	ggcaggccga	tggcctgccc	gcaggtggac	gcgcgccacc	gcacccggtc	12600
cacccgactc	tgcaagaacc	gttcgctact	tcagcgtcaa	tgaggaattg	acaccttgga	12660
cgtctttggc	ggccaattcg	caaaggcgct	tgtgggcctc	tccgaaagcg	tcgattctgt	12720
attgtcgatc	atcgcgcagc	ttgatgaatt	gttcctcgtg	ctttggatta	tctggcccca	12780
cttgcggtgc	agcgcaaaag	gtttgatatt	ccttatgcgc	tatggccgcc	tgctcgaacg	12840
cccatcgcca	ttcactcatg	cacttcctaa	attcggcagt	gctgaatatc	gaggcaagtg	12900
cgtccatgcg	agcctgctcc	ttggcgtcgc	tcaaatcgtt	tttgtactct	tcatctgcaa	12960
taatgcatcg	gcgtaattgg	tcgcgagtaa	gtgcaaacca	cgttaccaac	tccaagtaag	13020
ctgactttcg	atcggcgtgc	gcggcgatct	ctctctggta	aacccgttcg	ctctgcttgc	13080

taaaattccc cagaaagaat tgaaacccgg cccccgctat cgcaaaaaat ccggttatca

13140

		cagcgggcca	gaagggtgtc	atccgcattc	ctcatctctg	gatcaggctg	acacgggctt	13200
		ccatggtctc	cgtgtgcgtc	aagccctacg	gtccagtagg	actgcgaaca	ggtgagttct	13260
		cgccgcacgg	ggacgcctcg	ccgcctgcgc	cttaagaccc	tactgtggtg	gacatgacgc	13320
		gcaacatcga	tgcagtgctt	cgggtctcgc	ctgcagacgg	acggtggtat	gtggacatcc	13380
		ctgagttcaa	cctgagagtg	gatcttccgg	cgtcaaggca	aagtagcgac	ctgcgtaacc	13440
		ggctaaacga	cgccgtggca	ccgcacgtgc	ctgcggggac	cgacttcgtg	atcaagatgg	13500
		cacctgagtg	agtggcgcgc	cttcctgagt	gactaactgg	gtgacaatcg	ccaacgatca	13560
		tggcggacaa	gcgtggacgc	tgatggacgt	ggacccgcag	gtgagcagtg	tgttgaccaa	13620
		gttcattcaa	gatcatgagt	tgc				13643
5	<210> 2 <211> 2 <212> A <213> A <400> 2	282 ADN Actinoplanes sp	o. SE50/110					
		atggacgcac	ttgcctcgat	attcagcact	gccgaattta	ggaagtgcat	gagtgaatgg	60
		cgatgggcgt	tcgagcaggc	ggccatagcg	cataaggaat	atcaaacctt	ttgcgctgca	120
		ccgcaagtgg	ggccagataa	tccaaagcac	gaggaacaat	tcatcaagct	gcgcgatgat	180
		cgacaataca	gaatcgacgc	tttcggagag	gcccacaagc	gcctttgcga	attggccgcc	240
10		aaagacgtcc	aaggtgtcaa	ttcctcattg	acgctgaagt	ag		282
15	<210> 3 <211> 7 <212> A <213> A <400> 3	771 ADN Actinoplanes sp	o. SE50/110					
		atggaaaccc	gtctgcacga	gatctggcgc	atacccgatg	tcgtggagta	cagcagcagc	60
		ctcaagcaag	cgggcatcgt	cgccggcggc	gttaccaaca	gtacgagcct	tcgccgcgac	120
		accttgaacg	tgagaccagc	gacgtggcag	cacateegeg	aggacgcgtt	cagacgtttg	180
		gtatgcccaa	gcgaccatcg	acatggaccc	aacgatatcg	gtgaactcgc	agattcgtat	240
		gcgttgacgg	agccggtcgg	ctgccggatc	ttgttcaaac	tttctgtacg	tcttcaaggc	300
		ggcccgaaac	gggccgctca	cgccgccgcc	tgggcgcgtg	ccggtcgctt	agctggcgca	360
		cacgaccggc	acgccggcag	cccgtcggct	ggcgtgcagg	agcggatcgg	gccgcggcga	420
		cgacagtcca	acaggcgggt	tgaggctggg	gagtttggcc	gctgccgacc	ggtgcggcca	480
		gggcgacgcg	gccgagctgc	cgcgcgcggc	cgcagcgcga	gtcacggccg	tcggccgccg	540
		ggcgcggcgg	cgcgcagtgt	gtccgggccg	ctcctccgag	gtcaagggcg	cttcgcgtcg	600
		caagcgacgg	ccgcaagcgg	ccgccctgga	cctcggagcc	tetgeggeee	tageggeeaa	660
		gtggtcaagc	ggcaggccga	tggcctgccc	gcaggtggac	gcgcgccacc	gcacccggtc	720
		cacccgactc	tgcaagaacc	gttcgctact	tcagcgtcaa	tgaggaattg	a	771

5	<210> 4 <211> 24 <212> A <213> A		o. SE50/110					
	<400> 4							
		atgcgaggcc	ttgcggagga	acttgcagct	ttccatgacg	aggcgtcgcc	ggtccgggac	60
		gccctctggt	tctgcgatct	caccacgaca	cccgacgggg	aacgaacgac	cttcgaggag	120
		cgggtagccg	agatcaagga	acgttacggg	ccgggccatc	tcgtgacagc	gttcatcacc	180
		gaggctgccg	atgatctcaa	tgcagccatc	gcccgaacat	ccgaacggat	ggaacgccgg	240
10		taa						243
15	<210> 5 <211> 5 <212> A <213> A <400> 5	19 DN <i>ctinoplanes</i> sp	o. SE50/110					
		gtgacgttgg	ccgaggacct	ggaccgcgaa	ggtgaacccg	agcgggagtt	caaccccggg	60
		atcgcgcagc	gactacctag	gaagcgggtt	gctggcggag	cgctgatccg	cgactcggct	120
		gatcgaatcc	tgttcgtcgt	gccgaactac	aagcccctgc	tggacatccc	cggcggcatt	180
		gccgagggca	acgaatctcc	gctcgcagcg	tgccgacgtg	agatcaagga	ggagatcggc	240
		ctagacctgc	cgatcggccg	acttctcgtg	gtcgactgga	tcccgcagca	cggcgtgtgg	300
		ccggacggcg	tgatgttcat	cttcgacggc	ggccggctaa	ccgacgacga	gtcccgcgac	360
		ctgaagcaca	ccgatgatga	gctggtagga	ctgaagttcc	ttgccctcga	tgatgcacgc	420
		catcagcttc	ggccctcaat	ggttcgcagg	ctcgaagcag	ggatagaggc	cttgtccgat	480
		ggagagccgc	ggtatctgga	gttcggtcgg	actcagtaa			519
20	<210> 6 <211> 1: <212> A <213> A		o. SE50/110					
25	<400> 6							
		atgacgccgc	tgcggctgga	aaggcagaag	ctcggctggt	cgagaacccg	ccttgctcac	60
		gaactggagc	gacgggcgca	gggaagattc	agcctggcca	ccagagcgag	tcttctgcgg	120
		atgatctcag	cgtgggaaag	cggcgcgcga	gacacctcgg	acccgtatcg	cactctgctg	180
		tacaaaacat	atogccogac	cactaacaaa	ttaaacctaa	gtggtggcac	cgaccgagca	240

gaatcgagcg	teggeetgte	ctacgcttca	tcgcttgacg	cggcagccgc	aatactttct	300
gaccttgccc	ggttcgatga	catgaagcac	cctgcggtga	gccagggccg	ctaccagccc	360
gatgcgttga	acgcggtatg	tctggactgg	ctgttcggca	cagcctcgaa	tgacatgcca	420
gcaggcgctg	gaaaacgcgt	caccatgaag	gacgtcgagg	agatccgcgc	caccacgtcg	480
atgttcgaca	gcctggatcg	ccgattcgga	ggggagaacg	cccgcagtat	ggccgtgcgt	540
tttctgcgcg	aggcggtgct	gccgagattc	ggcaagacat	ccgaccagac	cgtaactact	600
gagctttaca	gagcagcagc	gatcctctgc	gagctgatcg	ggtggatgtc	gttcgacacc	660
tcacgcaact	cgttggcaca	gcggtatttc	acccaagcgc	tgcgattggc	cgaggcagct	720
ggtgaccgcg	cctatgcctc	gtacatcttg	gcgagcatgg	cggaccaagc	gctcttcctg	780
aagaggcctg	accaggcgct	acgacttgca	caggtcgctc	gcgatgcggg	ggaaaaggcc	840
ggcgttgcgg	tggccacaac	cgaggcgagc	atgctggagg	ctcgcgcatt	cgcagcccag	900
ggtgacgaga	gcggctgcac	cagggcgttg	cttcgcgcgg	aagccgcctt	caacagcatc	960
agcgcagacg	acaacccgag	ttgggcgaac	cactggggtg	acatcttgtt	tgccagtcac	1020
gctggcacct	gttgggtcga	tcttggtgcg	ccgaaggagg	cagcgagctt	ggttcggaca	1080
gtctgggaca	gcgcgaagga	tcaggcccgt	cgtcgggtct	acagcggcgt	tcagctcgct	1140
cgcgtggcgc	tgcttacgaa	cgaggtggaa	caagcggtgt	cgtatgggat	cgccgccctt	1200
gaggcgacga	gcggcttgac	ttcgaatcgc	tcgttgcagc	agcttcgcga	cctgcgtgat	1260
cagcttggaa	accatgccaa	gcatcctgct	gttgtggagt	tcgaggagcg	cgctcgattg	1320
gtgctggccg	cttga					1335
<210> 7 <211> 318 <212> ADN <213> Actinoplanes sp	o. SE50/110					
<400> 7				L-L		60
					gaccgagccg	60
	agaacggcaa					120
	tcgtgctcga					180
					ggccattccg	240
		cggcgtcgcg	ttccgtgcgg	tgtcgctgaa	gccgctctcc	300
ggtgcctcgg	cgaagtag					318
<210> 8 <211> 210 <212> ADN <213> Actinoplanes sp	o. SE50/110					

<400> 8

atgttccgtt actacgtgtc ctacatgttc caagggggct acggctccat cgacatccac

60

	togaaaaato ogatoacoga acagggtgat otootogaga ocaaagacot catcaaccag	120
	geogetggee geattettee tggeeteaeg gttatggeet teteceggta eggeteggtg	180
	cageegaage eecagegege teagegetga	210
5	<210> 9 <211> 921 <212> ADN <213> Actinoplanes sp. SE50/110	
	<400> 9	
	gtgtccaaat ctacccgtcc cggccgttct gggcgaggct ccggaactgt caccgtcatc	60
	gagcagcggg tacatcgctc ggctgccgag aacgcgcgtt tcgcgttcat cttcaccgtc	120
	atcgtgagcg gcctggtcgc tctggtcgtg gccaagggcc acatgcaccc gctgctggcc	180
	gcgttcgtcg cggctccgat cgccgctgtc tgcggcgccc tcgtctgggc actggtccgt	240
	agctggccgg tcctgcgaat gctctggtgg tggactcccg aaatcggagc caccgtcctg	300
	ctggcctggg gctggaccgc cctggccgcc agtacctcac aaatcttgac cgcggtcatc	360
	ettgeegtee tggteggegg eeeggeetge gtteeggtee tgegeegetg gaeegtegee	420
	atcttetggt gtgtegeegt geggeatege etgegegtet gettetegea gtteateate	480
	accaaccgct ccggtagcct cccgctgatc ctcggagcct ggcccacccc ggtgggggaa	540
	cgagtetggg tectactgeg geeeggeetg teggtegatt aceteaegea geaggtegge	600
	aagategeeg tggeetgeea tgeeaaaaeg gteagggteg acetggeegg tageaceaat	660
	tetgegtteg tgegettega cateaagege egegaagtee teacegeeaa ggtgageace	720
	cecetgateg aegagatega teegategtg eegetegaeg ataaagagte ggeeaetgte	780
	acgggcctcg acctgcccga catcgacgac atcccgacgg ccaccgagcc ggccatcccg	840
	aaacaggccg ctgccagcag caacggccgc aaacccgcca ctgccgccga cgacggcgac	900
10	gacatcaacc agtggatctg a	921
	<210> 10 <211> 375 <212> ADN	
15	<213> Actinoplanes sp. SE50/110	
	<400> 10	

60

atgagcatct tcgacctcta cggtcagacc cagcacctcg aacgcctcga tccgcagggc

	gtcaccgact tcgtcaacga cgaactgatc gtcagcgaca tcgactcccg gcaggccctg	120
	gaagacctgg cctggatgac cgccgggctg ttcagcgacg gcaacggact cgcccagctc	180
	tacatcgacg acggctggga cgtgaccgac gggagccatc acgggctcac cgaacaacag	240
	cggggcgagc tgatcgcccg cctgggaacc atcgcgcaca actgcggcca gctcgtggcc	300
	gaactetgee geegegegte ggeegtgaaa egegaateeg ggtgggaeee getegteaee	360
	accgaaccca tctga	375
5	<210> 11 <211> 882 <212> ADN <213> Actinoplanes sp. SE50/110 <400> 11	
	gtgagcacca tcgcctgcga tccgctcggc accgaccggg tgcctgtcgg gcctggcatg	60
	togatgttog atococtgtt catoggoato gaogagtttg gogagoacgt cacgotogac	120
	atcgtctacc acaacctgct taccgctggt gagcccggcg gcggcaagtc cggcctgctc	180
	aacetegteg eggegaeege egeaeteage gacaacacee geetgategg catggaegge	240
	aaatgggteg aacteggeee etgggaaceg atcatggaeg eetteategg egaegaeate	300
	gacctggcca tcaagaccgt gcgtcgcctg ctcaccgtcg cccgcaaccg ctaccgctgg	360
	ctgctcgcca accgccgccg caaaatcaca cgggaggaca acctctccac gatcatcacc	420
	atcatcgacg agatcgcgat gttctcgacc gtgctaggca ccaaggccca acaggaagag	480
	ttetegaece tgeteegggg cetggteget etgggeegeg cetgegeeat geeegtegte	540
	ggcgccaccc agcgcccctc ctgggacatc atccccgcca gcctgcggga cctgttcggc	600
	taccgctgcg ccttccggtg caccaccgtc ggctcctccg acgtcatcct cggctccggc	660
	ctcgcagagg tcggcttcga cgcctccacc atcagccccg acaaccccgg cgaagccctg	720
	ctgcgcgccg agaagaagct cccgtacccg atcaaggcgg cctggctgtc cgacgacgac	780
	atctacgcca tcgccgacta tgccgcctgg ctacgccgcc ctaccaatcc cgccaccacg	840
10	acctectaca eegggegeae eeaatgggag atggeggeat ga	882
15	<210> 12 <211> 201 <212> ADN <213> Actinoplanes sp. SE50/110	
	<400> 12	
	atgaccgaaa cccgcgctca ggccatcacc ggcgtaatcg ctggaaccgc caccacgacc	60
	gestaceteg seggesttet egteggesas steaseseggs accaggeass ggteggtgts	120
	ctcgccctgg cgatcaccgc cgcccatgtg cgcaagcacc atcctcgccg ctggacggca	180
20	ccggggacca caaccgcata a	201
	<210> 13	

	<211> 450 <212> ADN <213> <i>Actinoplanes</i> sp. SE50/110	
5	<400> 13	
	atgaageeta eecateaace ggecaacaca eeegttaceg accegaegat gaceeeggee	60
	gegetgetge gegeegeege cetetacete cageageaeg getggaeeca geaceagttt	120
	tacgacctgg tegecateae egacgggeag ttteegeeeg cetgegeete eggegegate	180
	atgaccgccg ccaccggccg ctgcctggcc tccggcgtgt gcaccctcga cggcgacccc	240
	gacaccateg eegecateeg egecetgege gtettegeeg eetggetega eetggaatae	300
	accccgaccg gcttctacga gaccagcgcc atcgacgtcg tcggcgactg gaacgactac	360
	gagggccgca cccgcgacga ggtcatcgag accctcaccg acgccgctga cgactgggat	420
	cgtctgcacc acaccggggg tgcccggtga	450
10	<210> 14 <211> 327 <212> ADN <213> Actinoplanes sp. SE50/110	
15	<400> 14	
	gtgageetgt egtaegteaa eeetgeettg acacetaeeg eeeeggeegg tgaeageegg	60
	cettegaage egegeegeeg egaegtegte gagaaegaeg aataegeege ettegteegg	120
	cgcatcatcc gegeettege caaacgegte gecaceggeg aegtegaage eetgegegae	180
	atggteggae teteegeeca getegaegae geeateageg aggeegteat eggeetgege	240
	gcctacgget attectggge egaaategge gaeeggeteg geateteeeg eeaageegee	300
	cagcaacgct ggggaggcga taaatga	327
20	<210> 15 <211> 417 <212> ADN <213> Actinoplanes sp. SE50/110	
	<400> 15	
	atgaccacct ccgccctgac caacgactac ctcgaagccc tcggcgcccg caccggcatc	60
	cgcgtcgagt tctacgaccc caccggcagc cgctacggct tccccacctt cccctaccgg	120
	caggegeeeg ageaeetgge caeeegaege cagetgegeg eegaeggeet etgeeeeaae	180
	ggctacgacc ccgtcgccca gatcctgtgg atgcaccgcg gacaacgccg cgtcgcctac	240
	ctctaccggc gcgacctcgc caagccgaaa cgtgttccca ccgcggcgca gctcgcggtc	300
	gtcgccaaga tgctgctcgc ccgccgcacc tgcgactcct gcggcgtcac ccgtgactac	360
25	tacatcccgc gccgcaccgg tatctgcctg agctgcgaag taggaggcag ccgatga	417
00	<210> 16 <211> 186 <212> ADN	
30	<213> Actinoplanes sp. SE50/110	
	<400> 16	

		atgaccacgg	accctgaaaa	caacagcccc	gctacgacac	ggtgccagtg	cggcgaccac	60
		tactgcgcag	aagtcatgcc	gaaagaccag	gatcgttcgc	agtgctgcca	gtactgcggc	120
		taccgcgact	gtgacgtctg	cggctggacc	gaccaggcgc	tccggtcacc	ggaggtctca	180
		cgatga						186
5	<210> 1 <211> 2 <212> A <213> A	91	o. SE50/110					
	<400> 1	7						
		atgagcctca	tcgacctggg	caagcacctg	gccaccgaca	actgcctgtg	gtgcatcggc	60
		ggcatgagcc	ccgccggtat	ccacccggac	ctcggcccgg	tcctgtgcct	ctgcccgacc	120
		gagcagtggt	gcgacgaatg	cggcagcacg	tcgctgttcc	ccgccgaata	cgaaaccctc	180
		gacgaccgca	tcaacgaact	gttcgacgac	ggcctgtccg	ccgtctggtg	cgaagcctgc	240
10		atgggcgtcg	tcgcggtcat	ccccgtcacc	aacgacggag	gcatccgatg	a	291
15		10 ADN Actinoplanes sp). SE50/110					
	<400> 1	ŏ						
		atgaaccctc	tccgcaggaa	ggcggcccaa	cagccgacca	ccggcccggc	cgcccccgcg	60
		agcgtcaacc	tcaccgaaca	gttcgccatc	gagtacgcca	agagcgccgt	cccgaacatg	120
		ctcaaggcca	tcgacagcgt	caaacgctac	aaccgagcca	ccctcatcgg	cgcactgatc	180
		accagctacc	tccaccaggc	ccactacctg	gccagcaccg	gcgcgggcta	cttcgcctac	240
		ctacccccgg	cgatcttcga	caccgccatg	gtctcgatgc	tgatcgtcgt	ccgcaccccc	300
		ggcatcgtca	aagacgccaa	acgctgggcc	atggccgtct	tcatcggcgc	agccctgctc	360
		tcggccaccg	tcaacttcgc	cgccccggcg	acctcggcat	gcgcatcgtc	ttcgccctgg	420
		tcgtcgtcgt	ggtcatcggc	gtcgaactcg	tcgccggacg	catccgcccc	gacttcaccg	480
20		ccatcgacaa	acaagccacc	gaactcatga				510
25	<210> 1 <211> 3 <212> A <213> A	24	o. SE50/110					
	<400> 1	9						

	atgaccgccg tcaacaagat caaagcccgc ggtacggcga ccactccgga accggagcac	60
	accaccaccg gcccgaccgc tccggtcgaa cagccggcca ccccacagac cgcgccggtc	120
	gteceggete acetgetgee egeegeeegg tteteggteg tecageaega geagaceaec	180
	ggccagccca tcaccgccga cgacctcgcc ctgcgactca acatcacccc ggccgtcgcc	240
	gaaaccetga teaceaceat eegggacace aacceggeae geateaaegg geacateeeg	300
	accetgaceg geggegeeeg atga	324
5	<210> 20 <211> 294 <212> ADN <213> Actinoplanes sp. SE50/110	
40	<400> 20	
10	atgacetteg tecaegtega catecaceae ateaeceaea eetgeecage caaceetgag	60
	ctgcacccgt tcgacacccg ccgcaccatc gtcgccaccg tcgacggcgg cccctgccgc	120
	aaccccatct ccatccgctg cggcgacaag accgccgtta tcgactgcgg ccgtcacgaa	180
	ccccaccatc ggcaatgccc ggcctgccgc atcaccgtca tcgaacggca catcaccagc	240
	acettegteg gecaceaegg ceegeagete gecaceaeca ggategetge etga	294
15	<210> 21 <211> 1797 <212> ADN <213> Actinoplanes sp. SE50/110	
	<400> 21	
	atgagcacgt cgacgctgga cctcgcaccc cgggagaact ctgcccgggg tgcgggctcg	60
	aacgccgacg cctggacacc cccacccgcc gactacaccg cagccggcca agccctcacc	120
	cgcgccaccc aacccggcta cttcgactgg ctcgaccacg tccgcgccgc cgccgggtgc	180
	accegeeegg teeggeteae eggeaeeete gacaceateg aageeaeeae egggegeetg	240
	ctcgactccc ggcacaccga ccaacttccc gatgccgcta tctacaaggc ctgcggtaac	300
	eggegeteca eegtgtgeee egeetgegee egeacetace agegegaege gtteeagate	360
	ctgcgcgccg ggctcatcgg cggcaaaggc gtccccacca cggtcgcccg gcaccccgcc	420
	gtgttegtea eceteacege ecceteette ggegeggtee acaceegeea egteegeaaa	480
	cacacetgea egaategege eegetgtage tgeegeeeeg aaceetgeea egeeegeege	540
	aaccccggcc tctgccagca ctaccaaccc gccgtctgct gggcacgcca cgaacccggc	600
	gacccccage teggeegtee cetetgeetg gactgetacg accaccagea ceaegtegte	660
	tggaacctgt tctccggcga actctggcac cgcaccaaac aggacgccga acgccgcctc	720
	gccaaactct gcaaagcccg cggcatcccg ttccacgagg tcagcaacgg caaaaacctg	780
	cgccggatcc caccggtccg cctcgcccac ggcaaagccg ccgagatgca acgccgcggc	840
20	geggtecact tecaegeest gateeggete gaeggeateg acceeacega ecceaecege	900

		gtcgtcgccc	caccacccgg	catcggcctc	aacgacctgg	tcgacgcact	caccgccgcc	960
		agcgacatcg	acttcaccac	cccagaccac	cctgaccggc	cggacggctg	gccgatggcc	1020
		tggggcgaac	agatcgacat	ccgcccgatc	agcctcaccg	gcaccggcga	agtcaccgac	1080
		agcatggtcg	ccggatacct	cgccaagtac	gccaccaaaa	gcaccgagat	caccggccac	1140
		aattcgacgc	gcatcaccgg	cgacaccatc	acgcagcacg	ccgatcccgc	cggagaccac	1200
		atcgcccggc	tcatccacgc	ctgctggcat	ctcggcaacg	accccgacgc	cccagctggc	1260
		aaaacggcga	tccgactccc	cgtctacacc	ggcaccgccg	gtgccaaaat	ccggcagccc	1320
		tttggagcgc	cccgccactg	tccggactgc	ggtacccgca	cccgctaccg	gacctgccct	1380
		gtatgcgtcg	ccgaacgtca	agccagcctt	gacacccaac	ggcccaacga	ccgccagccc	1440
		accccatacg	cccggctccg	ccgctgggcg	cacatgctcg	gcttcggcgg	ccacttcctc	1500
		accaaagccc	gccggtactc	ggtcaccttc	cgcctgctcc	gcgagactcg	catcgacttc	1560
		cgccgggctg	agcccgatcc	ggccgacaac	gccaccgtgc	acaccgtcga	ccacctcgac	1620
		gaaaccacgc	ttatcgtcgg	caccctgacc	ttcgccggag	tcggctggca	caccaccggc	1680
		gacgcactcc	tegecaacae	cgctgcggct	caggcccgcg	agcgacaagc	catcggccga	1740
		gaggaactcg	cgcacgaagc	gagcacgtcc	cggcctgtcg	ccttgaacgc	cgcctga	1797
5	<210> 2 <211> 2 <212> A <213> A	207	o. SE50/110					
	<400> 2	22						
		ttggacggca	tcaccccgaa	ggcgctctac	cgcatcccgg	aagccatgcg	gatgctgagc	60
		ttgagccgtt	ccgtcatcta	tgaactgatc	cgctcggggc	ggttgcgcac	cgtcaaggag	120
		ggtcgcaccc	ggctggtccc	ggccagcgcc	atcaccgcct	acgtcaccct	gctcgaacag	180
10		gaaagcaaga	aaggagtcgc	cgcatga				207
15	<210> 2 <211> 1 <212> A <213> A	167	o. SE50/110					
	<400> 2	23						
		atgaccaaac	gccgcagccg	tggagacggc	gggctgcact	gggacgaaca	gcgccagcgc	60
		tggatcgcct	cggtcaccgt	cggatacacc	ccggccggta	aacgcatcgt	ccgtaaggca	120
		agcggcaaga	ccaagaccga	ggccaacaat	gcactccgtc	agaagatccg	tgagtaccag	180
		gacgggctgt	cgatccccac	gaccggctac	acggtcgccg	acgccgtcac	ggactggctc	240
		acctacggac	ttcccgacgt	cgacgaggaa	acggtcaaca	actacacgct	gctggccaac	300

ctcagcgcca	ccgacattga	caggtggctg	gccgacaaag	ccaagattct	cagcacccgc	420
acgctgcgac	tgctgcactc	gatcgcgaat	cgcgccatca	accgagcgat	ggcccgcgac	480
aaggtcatgc	gcaacgtcgt	cgcactctgc	aaggtaccga	ccggcaccgc	cggacgaccc	540
tccaagtcac	tcacctacga	gcaggccaaa	gcgctcctcg	tcgctgccga	gtcgagcagc	600
ctgcacgcgt	atgtagtttt	gtcgctgctg	accggtgctc	gtaccgagga	actgcgagaa	660
ctcacctggc	agcacgtcga	cctggtcgga	cgtccggacg	ccgagccacc	gattccgccg	720
gccatccacg	tatggcattc	ggtgcgcgcc	cacggtgaca	ccaagaccaa	gaagtcacgg	780
cgttcactcg	ccctgccggt	tcgctgtgtc	cgggtcctca	ccgcgcaacg	cgcggcgcac	840
ggagatccac	gaccggatga	ctacgtctgc	gccagcaagg	tcggcaccca	gctcgaccgg	900
cacaacgtgc	tgcgagcctt	ccgcgcgatc	gtcgcggctg	tccccggaat	gaatccggct	960
gaatggacgc	cccgcgaatt	acggcacagt	ttcgtttcgc	tgctgtccga	caatgggatg	1020
agcatcgagg	aaatcgccga	cctgtgtggt	cattccggca	cctcgatcac	cgagaccgtt	1080
taccgccacc	aactgcgccc	ggttctgctg	aacggcgcgg	tggccatgga	ccggatcttc	1140
ggtccggatg	acactcctgg	ggcttag				1167

<210> 24

<211>93

<212> PRT

<213> Actinoplanes sp. SE50/110

<400> 24

Met Asp Ala Leu Ala Ser Ile Phe Ser Thr Ala Glu Phe Arg Lys Cys $1 \hspace{1.5cm} 5 \hspace{1.5cm} 10 \hspace{1.5cm} 15$

Met Ser Glu Trp Arg Trp Ala Phe Glu Gln Ala Ala Ile Ala His Lys 20 25 30

Glu Tyr Gln Thr Phe Cys Ala Ala Pro Gln Val Gly Pro Asp Asn Pro 35 40 45

Lys His Glu Glu Gln Phe Ile Lys Leu Arg Asp Asp Arg Gln Tyr Arg 50 55 60

Ile Asp Ala Phe Gly Glu Ala His Lys Arg Leu Cys Glu Leu Ala Ala 65 70 75 80

Lys Asp Val Gln Gly Val Asn Ser Ser Leu Thr Leu Lys 85

10

5

<210> 25

<211> 256

<212> PRT

15 <213> Actinoplanes sp. SE50/110

<400> 25

Met Glu Thr Arg Leu His Glu Ile Trp Arg Ile Pro Asp Val Val Glu

1				5					10					15	
Tyr	Ser	Ser	Ser 20	Leu	Lys	Gln	Ala	Gly 25	Ile	Val	Ala	Gly	Gly 30	Val	Thr
Asn	Ser	Thr 35	Ser	Leu	Arg	Arg	Asp 40	Thr	Leu	Asn	Val	Arg 45	Pro	Ala	Thr
Trp	Gln 50	His	Ile	Arg	Glu	Asp 55	Ala	Phe	Arg	Arg	Leu 60	Val	Cys	Pro	Ser
A sp 65	His	Arg	His	Gly	Pro 70	Asn	Asp	Ile	Gly	Glu 75	Leu	Ala	Asp	Ser	Tyr 80
Ala	Leu	Thr	Glu	Pro 85	Val	Gly	Cys	Arg	Ile 90	Leu	Phe	Lys	Leu	Ser 95	Val
Arg	Leu	Gln	Gly 100	Gly	Pro	Lys	Arg	Ala 105	Ala	His	Ala	Ala	Ala 110	Trp	Ala
Arg	Ala	Gly 115	Arg	Leu	Ala	Gly	Ala 120	His	Asp	Arg	His	Ala 125	Gly	Ser	Pro
Ser	Ala 130	Gly	Val	Gln	Glu	Arg 135	Ile	Gly	Pro	Arg	Arg 140	Arg	Gln	Ser	Asn
Arg 145	Arg	Val	Glu	Ala	Gly 150	Glu	Phe	Gly	Arg	Cys 155	Arg	Pro	Val	Arg	Pro 160
Gly	Arg	Arg	Gly	Arg 165	Ala	Ala	Ala	Arg	Gly 170	Arg	Ser	Ala	Ser	His 175	Gly
Arg	Arg	Pro	Pro 180	Gly	Ala	Ala	Ala	Arg 185	Ser	Val	Ser	Gly	Pro 190	Leu	Leu
Arg	Gly	Gln 195	Gly	Arg	Phe	Ala	Ser 200	Gln	Ala	Thr	Ala	Ala 205	Ser	Gly	Arg
Pro	Gly 210	Pro	Arg	Ser	Leu	Cys 215	Gly	Pro	Ser	Gly	Gln 220	Val	Val	Lys	Arg
Gln 225	Ala	Asp	Gly	Leu	Pro 230	Ala	Gly	Gly	Arg	Ala 235	Pro	Pro	His	Pro	Val 240
His	Pro	Thr	Leu	Gln 245	Glu	Pro	Phe	Ala	Thr 250	Ser	Ala	Ser	Met	Arg 255	Asn
210> 26 211> 80 212> PRT 213> <i>Actinoplane</i> s	sp. S	E50/ [^]	110												

5

10

<400> 26

			Met 1	Arg	Gly	Leu	Ala 5	Glu	ı Glu	Leu	Ala	Ala 10	Phe	His	Asp	Glu	Ala 15	Ser	
			Pro	Val	Arg	Asp 20	Ala	Leu	ı Trp	Phe	Cys 25	Asp	Leu	Thr	Thi	Thr 30	Pro	Asp	
			Gly	Glu	Arg 35	Thr	Thr	Phe	Glu	Glu 40	Arg	Val	Ala	Glu	Ile 45	e Lys	Glu	Arg	
			Tyr	Gly 50	Pro	Gly	His	Leu	Val 55	Thr	Ala	Phe	Ile	Thr 60	Glu	ı Ala	Ala	Asp	
			Asp 65	Leu	Asn	Ala	Ala	Ile 70	Ala	Arg	Thr	Ser	Glu 75	Arg	Met	: Glu	Arg	Arg 80	
5	<210> 2 <211> 1 <212> F <213> A	72 PRT	lanes	sp. S	E50/1	110													
	<400> 2	7																	
		Met 1	Thr	Leu	Ala	a G1 5	.u A	sp	Leu	Asp	Arg	Gl1	u Gl	.у G	lu	Pro	Glu	Arg 15	Glu
		Phe	Asn	Pro	Gl ₃ 20	y Il	.e A	la	Gln	Arg	Leu 25	Pro	o Ar	g L	ys	Arg	Val 30	Ala	Gly
		Gly	Ala	Leu 35	Ile	e Ar	eg A	sp	Ser	Ala 40	Asp	Ar	g Il	e L	eu	Phe 45	Val	Val	Pro
		Asn	Tyr 50	Lys	Pro	o L∈	u I		Asp 55	Ile	Pro	Gl	y Gl		le 0	Ala	Glu	Gly	Asn
		Glu 65	Ser	Pro	Le		.a A 7		Cys	Arg	Arg		u I1 75		ys	Glu	Glu	Ile	Gly 80
10		Leu	Asp	Leu	Pro	o I1 85		ly	Arg	Leu	Leu	Va:	l Va	ıl A	sp	Trp	Ile	Pro 95	Gln

His Gly Val Trp Pro Asp Gly Val Met Phe Ile Phe Asp Gly Gly Arg 100 105 110

		Leu	Thr	As p 115	Asp	Glu	Ser	Arg	As p 120	Leu	Lys	His	Thr	125	_	p Gl	u Leu
		Val	Gly 130	Leu	Lys	Phe	Leu	Ala 135	Leu	Asp	Asp	Ala	Arg 140		s Gl	n Le	u Arg
		Pro 145	Ser	Met	Val	Arg	Arg 150	Leu	Glu	Ala	Gly	Ile 155		Ala	a Le	u Se	r Asp 160
		Gly	Glu	Pro	Arg	Tyr 165	Leu	Glu	Phe	Gly	Arg 170	Thr	Gln				
5	<210> 28 <211> 44 <212> PF <213> Ac	4 RT	anes s	p. SE	50/110	0											
	<400> 28	3															
		Me 1	t Th	r Pro	Let	a Arg	, Leu	Glu	Arg	Gln	Lys 10	Leu	Gly	Trp	Ser	Arg 15	Thr
		Ar	g Le	u Ala	a His	s Glu	ı Leu	Glu	Arg	Arg 25	Ala	Gln	Gly	Arg	Phe 30	Ser	Leu
		Al	a Th	r Arç 35	g Ala	a Ser	Leu	Leu	Arg 40	Met	Ile	Ser	Ala	Trp 45	Glu	Ser	Gly
		Al	a Ar 50	g Asp	Thi	e Ser	Asp	Pro 55	Tyr	Arg	Thr	Leu	Leu 60	Cys	Glu	Ala	Tyr
		G1 65		g Thi	Ala	a Asp	Glu 70	Leu	Gly	Leu	Gly	Gly 75	Gly	Thr	Asp	Arg	Ala 80
		Gl	u Se	r Sei	· Val	L Gly 85	' Leu	Ser	Tyr	Ala	Ser 90	Ser	Leu	Asp	Ala	Ala 95	Ala
		Al	a Il	e Lei	1 Sei 100	_	Leu	Ala	Arg	Phe 105	Asp	Asp	Met	Lys	His 110	Pro	Ala
		Va	l Se	r Glr 115	_	Ar g	Tyr	Gln	Pro 120	Asp	Ala	Leu	Asn	Ala 125	Val	Cys	Leu
10		As	р Тг 13	p Leu O	ı Phe	e Gly	Thr	Ala 135	Ser	Asn	Asp	Met	Pro 140	Ala	Gly	Ala	Gly

Ly 14		g Va	l Thr	Met	Lys 150	Asp	Val	Glu	Glu	Ile 155	Arg	Ala	Thr	Thr	Ser 160
Me	t Ph	e As	p Ser	Leu 165	_	Arg	Arg	Phe	Gly 170	Gly	Glu	Asn	Ala	Arg 175	Ser
Me	t Ala	a Va	1 Arg 180		Leu	Arg	Glu	Ala 185	Val	Leu	Pro	Arg	Phe 190	Gly	Lys
Th	r Se	r As	p Gln 5	Thr	Val	Thr	Thr 200	Glu	Leu	туг	Arg	Ala 205	Ala	Ala	Ile
Le	u Cy: 21		u Leu	Ile	Gly	Trp 215	Met	Ser	Phe	Asp	Thr 220	Ser	Arg	Asn	Ser
Le [.] 22		a Gl	n Arg	Tyr	Phe 230	Thr	Gln	Ala	Leu	Arg 235	Leu	Ala	Glu	Ala	Ala 240
G1	y As	o Ar	g Ala	Tyr 245		Ser	Tyr	Ile	Leu 250	Ala	Ser	Met	Ala	Asp 255	Gln
Al	a Le	u Ph	e Leu 260	-	Arg	Pro	Asp	Gln 265	Ala	Leu	Arg	Leu	Ala 270	Gln	Val
Al	a Ar	g As 27	p Ala 5	Gly	Glu	Lys	Ala 280	Gly	Val	Ala	Val	Ala 285	Thr	Thr	Glu
Al	a Se: 29		t Leu	Glu	Ala	Arg 295	Ala	Phe	Ala	Ala	Gln 300	Gly	Asp	Glu	Ser
G1 30		s Th	r Arg	Ala	Leu 310	Leu	Arg	Ala	Glu	Ala 315	Ala	Phe	Asn	Ser	Ile 320
Se	r Ala	a As	p Asp	Asn 325		Ser	Trp	Ala	Asn 330	His	Trp	Gly	Asp	Ile 335	Leu
Ph	e Ala	a Se	r His 340		Gly	Thr	Cys	Trp 345	Val	Asp	Leu	Gly	Ala 350	Pro	Lys
G1	u Ala	a Al 35	a Ser 5	Leu	Val	Arg	Thr 360	Val	Trp	Asp	Ser	Ala 365	Lys	Asp	Gln
Al	a Ar	_	g Arg	· Val	Tyr	Ser 375	Gly	Val	Gln	Leu	Ala 380	Arg	Val	Ala	Leu
Le .		r As	n Glu	Val	Glu 390	Gln	Ala	Val	Ser	Tyr 395	Gly	Ile	Ala	Ala	Leu 400
Glu	Ala	Thr	Ser	Gly 405	Leu	Thr	Ser	Asn	Arg 410	Ser	Leu	Glr	n Gl	n Le 41	-
Asp	Leu	Arg	Asp 420	Gln	Leu	Gly	Asn	His 425	Ala	Lys	His	Pro	Ala 43		l Val
Glu	Phe	Glu 435	Glu	Arg	Ala	Arg	Leu 440	Val	Leu	Ala	Ala	L			

<210> 29

```
<211> 105
        <212> PRT
        <213> Actinoplanes sp. SE50/110
 5
        <400> 29
                     Met Lys Leu Tyr Val Asp Thr Thr Gly Lys Gln Val Thr Val Ser Lys
                     Pro Thr Glu Pro Lys Asn Asp Gln Asn Gly Asn Gln Arg Ser Glu Lys
                     Asn Thr Gly Arg Pro Met Trp Ser Thr Gln Val Ile Val Leu Asp Glu
                     Thr Gly Gly Glu Val Ile Ala Ile Thr Thr Ala Gly Glu Lys Pro Asn
                                              55
                     Val Thr Val Gly Gln Leu Val Ala Ile Glu Gln Leu Glu Ala Ile Pro
                     Trp Ala Thr Asn Gly Arg Asn Gly Val Ala Phe Arg Ala Val Ser Leu
                                                           90
                     Lys Pro Leu Ser Gly Ala Ser Ala Lys
        <210> 30
10
        <211> 69
        <212> PRT
        <213> Actinoplanes sp. SE50/110
        <400> 30
15
                     Met Phe Arg Tyr Tyr Val Ser Tyr Met Phe Gln Gly Gly Tyr Gly Ser 1 10 15
                     Ile Asp Ile His Ser Lys Asn Pro Ile Thr Glu Gln Gly Asp Leu Leu
                     Glu Thr Lys Asp Leu Ile Asn Gln Ala Ala Gly Arg Ile Leu Pro Gly
                             35
                     Leu Thr Val Met Ala Phe Ser Arg Tyr Gly Ser Val Gln Pro Lys Pro
                     Gln Arg Ala Gln Arg
20
        <210> 31
        <211> 306
        <212> PRT
        <213> Actinoplanes sp. SE50/110
25
        <400> 31
```

Met Ser Lys Ser Thr Arg Pro Gly Arg Ser Gly Arg Gly Ser Gly Thr

	1				5					10					15	
	Val	Thr	Val	Ile 20	Glu	Gln	Arg	Val	His 25	Arg	Ser	Ala	Ala	Glu 30	Asn	Ala
	Arg	Phe	Ala 35	Phe	Ile	Phe	Thr	Val 40	Ile	Val	Ser	Gly	Leu 45	Val	Ala	Leu
	Val	Val 50	Ala	Lys	Gly	His	Met 55	His	Pro	Leu	Leu	Ala 60	Ala	Phe	Val	Ala
	Ala 65	Pro	Ile	Ala	Ala	Val 70	Cys	Gly	Ala	Leu	Val 75	Trp	Ala	Leu	Val	Arg 80
	Ser	Trp	Pro	Val	Leu 85	Arg	Met	Leu	Trp	Trp 90	Trp	Thr	Pro	Glu	Ile 95	Gly
	Ala	Thr	Val	Leu 100	Leu	Ala	Trp	Gly	Trp 105	Thr	Ala	Leu	Ala	Ala 110	Ser	Thr
	Ser	Gln	Ile 115	Leu	Thr	Ala	Val	Ile 120	Leu	Ala	Val	Leu	Val 125	Gly	Gly	Pro
	Ala	Cys 130		Pro	Val	Leu	Arg 135	Arg	Trp	Thr	Val	Ala 140	Ile	Phe	Trp	Cys
	Val 145	Ala	Val	Arg	His	Arg 150	Leu	Arg	Val	Cys	Phe 155	Ser	Gln	Phe	Ile	Ile 160
	Thr	Asn	Arg	Ser		Ser	Leu	Pro	Leu	Ile 170	Leu	Gly	Ala	Trp		Thr
]	Pro '	Val	Gly	Glu 180	165 Arg	Val	Trp	Val	Leu 185		Arg	Pro	Gly	Leu 190		Val

Asp Tyr Leu Thr Gln Gln Val Gly Lys Ile Ala Val Ala Cys His Ala 195 200 205

Lys Thr Val Arg Val Asp Leu Ala Gly Ser Thr Asn Ser Ala Phe Val 210 215 220

Arg Phe Asp Ile Lys Arg Arg Glu Val Leu Thr Ala Lys Val Ser Thr 225 230 235 240

Pro Leu Ile Asp Glu Ile Asp Pro Ile Val Pro Leu Asp Asp Lys Glu 245 250 255

Ser Ala Thr Val Thr Gly Leu Asp Leu Pro Asp Ile Asp Asp Ile Pro 260 265 270

Thr Ala Thr Glu Pro Ala Ile Pro Lys Gln Ala Ala Ala Ser Ser Asn $275 \hspace{1.5cm} 280 \hspace{1.5cm} 285 \hspace{1.5cm}$

Gly Arg Lys Pro Ala Thr Ala Ala Asp Asp Gly Asp Asp Ile Asn Gln

Trp Ile 305

F	<210><211><211><212><213>	· 124 · PRT	oplane	s sp. S	SE50/1	10											
5	<400>	32															
		Met 1	Ser	Ile	Phe	Asp 5	Leu	Tyr	Gly	Gln	Thr 10	Gln	His	Leu	Glu	Arg 15	Leu
		Asp	Pro	Gln	Gly 20	Val	Thr	Asp	Phe	Val 25	Asn	Asp	Glu	Leu	Ile 30	Val	Ser
		Asp	Ile	Asp 35	Ser	Arg	Gln	Ala	Leu 40	Glu	Asp	Leu	Ala	Trp 45	Met	Thr	Ala
		Gly	Leu 50	Phe	Ser	Asp	Gly	Asn 55	Gly	Leu	Ala	Gln	Leu 60	Tyr	Ile	Asp	Asp
		Gly 65	Trp	Asp	Val	Thr	Asp 70	Gly	Ser	His	His	Gly 75	Leu	Thr	Glu	Gln	Gln 80
		Arg	Gly	Glu	Leu	Ile 85	Ala	Arg	Leu	Gly	Thr 90	Ile	Ala	His	Asn	Cys 95	Gly
		Gln	Leu	Val	A la 100	Glu	Leu	Cys	Arg	Arg 105	Ala	Ser	Ala	Val	Lys 110	Arg	Glu
10		Ser	Gly	Trp 115	Asp	Pro	Leu	Val	Thr 120	Thr	Glu	Pro	Ile				
15	<210><211><211><212><213>	· 293 · PRT	oplane	s sp. S	SE50/1	10											
	<400>																

Met 1	Ser	Thr	Ile	Ala 5	Cys	Asp	Pro	Leu	Gly 10	Thr	Asp	Arg	Val	Pro 15	Val
Gly	Pro	Gly	Met 20	Ser	Met	Phe	Asp	Pro 25	Leu	Phe	Ile	Gly	Ile 30	Asp	Glu
Phe	Gly	Glu 35	His	Val	Thr	Leu	Asp 40	Ile	Val	Tyr	His	Asn 45	Leu	Leu	Thr
Ala	Gly 50	Glu	Pro	Gly	Gly	Gly 55	Lys	Ser	Gly	Leu	Leu 60	Asn	Leu	Val	Ala
Ala 65	Thr	Ala	Ala	Leu	Ser 70	Asp	Asn	Thr	Arg	Leu 75	Ile	Gly	Met	Asp	Gly 80
Lys	Trp	Val	Glu	Leu 85	Gly	Pro	Trp	Glu	Pro 90	Ile	Met	Asp	Ala	Phe 95	Ile
Gly	Asp	Asp	Ile 100	Asp	Leu	Ala	Ile	Lys 105	Thr	Val	Arg	Arg	Leu 110	Leu	Thr
Val	Ala	Arg 115	Asn	Arg	Tyr	Arg	Trp 120	Leu	Leu	Ala	Asn	Arg 125	Arg	Arg	Lys
Ile	Thr 130	Arg	Glu	Asp	Asn	Leu 135	Ser	Thr	Ile	Ile	Thr 140	Ile	Ile	Asp	Glu
Ile 145	Ala	Met	Phe	Ser	Thr 150	Val	Leu	Gly	Thr	Lys 155	Ala	Gln	Gln	Glu	Glu 160
Phe	Ser	Thr	Leu	Leu 165	Arg	Gly	Leu	Val	Ala 170	Leu	Gly	Arg	Ala	Cys 175	Ala

Met Pro Val Val Gly Ala Thr Gln Arg Pro Ser Trp Asp Ile Ile Pro

				180					185					190		
	Ala	Ser	Leu 195	Arg	Asp	Leu	Phe	Gly 200	Tyr	Arg	Cys	Ala	Phe 205	Arg	Cys	Thr
	Thr	Val 210	Gly	Ser	Ser	Asp	Val 215	Ile	Leu	Gly	Ser	Gly 220	Leu	Ala	Glu	Val
	Gly 225	Phe	Asp	Ala	Ser	Thr 230	Ile	Ser	Pro	Asp	Asn 235	Pro	Gly	Glu	Ala	Leu 240
	Leu	Arg	Ala	Glu	Lys 245	Lys	Leu	Pro	Tyr	Pro 250	Ile	Lys	Ala	Ala	Trp 255	Leu
	Ser	Asp	Asp	Asp 260	Ile	Tyr	Ala	Ile	Ala 265	Asp	Tyr	Ala	Ala	Trp 270	Leu	Arg
	Arg	Pro	Thr 275	Asn	Pro	Ala	Thr	Thr 280	Thr	Ser	Tyr	Thr	Gly 285	Arg	Thr	Gln
	Trp	Glu 290	Met	Ala	Ala											
5	<210> 34 <211> 66 <212> PRT <213> Actinop	lanes s	sp. SE	50/11	0											
	<400> 34															
	Met 1	Thr	Glu	Thr	Arg 5	Ala	Gln	Ala	Ile	Thr 10	Gly	Val	Ile	Ala	Gly 15	Thr
	Ala	Thr	Thr	Thr 20	Ala	Tyr	Leu	Ala	Gly 25	Leu	Leu	Val	Gly	His 30	Leu	Thr
	Arg	His	Gln 35	Ala	Pro	Val	Gly	Val 40	Leu	Ala	Leu	Ala	Ile 45	Thr	Ala	Ala
	His	Val 50	Arg	Lys	His	His	Pro 55	Arg	Arg	Trp	Thr	Ala 60	Pro	Gly	Thr	Thr
10	Thr 65	Ala														
15	<210> 35 <211> 149 <212> PRT <213> Actinop	lanes s	sp. SE	50/11	0											
	<400> 35															

Met Lys Pro Thr His Gln Pro Ala Asn Thr Pro Val Thr Asp Pro Thr 1 5 5 10 10 10

Met Thr Pro Ala Ala Leu Leu Arg Ala Ala Ala Leu Tyr Leu Gln Gln 20 25 30

		His	Gly	Trp 35	Thr	Gln	His	Gln	Phe 40	Tyr	Asp	Leu	Val	Ala 45	Ile	Thr	Asp
		Gly	Gln 50	Phe	Pro	Pro	Ala	Cys 55	Ala	Ser	Gly	Ala	Ile 60	Met	Thr	Ala	Ala
		Thr 65	Gly	Arg	Cys	Leu	A la 70	Ser	Gly	Val	Суѕ	Thr 75	Leu	Asp	Gly	Asp	Pro 80
		Asp	Thr	Ile	Ala	Ala 85	Ile	Arg	Ala	Leu	Arg 90	Val	Phe	Ala	Ala	Trp 95	Leu
		Asp	Leu	Glu	Tyr 100	Thr	Pro	Thr	Gly	Phe 105	Tyr	Glu	Thr	Ser	A la 110	Ile	Asp
		Val	Val	Gly 115	Asp	Trp	Asn	Asp	Tyr 120	Glu	Gly	Arg	Thr	Arg 125	Asp	Glu	Val
		Ile	Glu 130	Thr	Leu	Thr	Asp	Ala 135	Ala	Asp	Asp	Trp	Asp 140	Arg	Leu	His	His
		Thr 145	Gly	Gly	Ala	Arg											
5	<210> 36 <211> 108 <212> PRT <213> Actinopi	lanes	sp. S	E50/	110												
	<400> 36																
		Met 1	Ser	Leu	Ser	Tyr 5	Val	Asn	Pro	Ala	Leu 10	Thr	Pro	Thr	Ala	Pro 15	Ala
		Gly	Asp	Ser	Arg 20	Pro	Ser	Lys	Pro	Arg 25	Arg	Arg	Asp	Val	Val 30	Glu	Asn
10		Asp	Glu	Tyr 35	Ala	Ala	Phe	Val	Arg 40	Arg	Ile	Ile	Arg	Ala 45	Phe	Ala	Lys
		Arg	Val 50	Ala	Thr	Gly	Asp	Val 55	Glu	Ala	Leu	Arg	Asp 60	Met	Val	Gly	Leu
		Ser 65	Ala	Gln	Leu	Asp	Asp 70	Ala	Ile	Ser	Glu	Ala 75	Val	Ile	Gly	Leu	Arg 80
		Ala	Tyr	Gly	Tyr	Ser 85	Trp	Ala	Glu	Ile	Gly 90	Asp	Arg	Leu	Gly	Ile 95	Ser
		Arg	Gln	Ala	Ala 100	Gln	Gln	Arg	Trp	Gly 105	Gly	Asp	Lys				

5	<210> 37 <211> 138 <212> PRT <213> Actinopl	lanes	sp. S	E50/	110												
	<400> 37																
		Met 1	Thr	Thr	Ser	Ala 5	Leu	Thr	Asn	Asp	Tyr 10	Leu	Glu	Ala	Leu	Gly 15	Ala
		Arg	Thr	Gly	Ile 20	Arg	Val	Glu	Phe	Tyr 25	Asp	Pro	Thr	Gly	Ser 30	Arg	Tyr
		Gly	Phe	Pro 35	Thr	Phe	Pro	Tyr	Arg 40	Gln	Ala	Pro	Glu	His 45	Leu	Ala	Thr
		Arg	Arg 50	Gln	Leu	Arg	Ala	Asp 55	Gly	Leu	Cys	Pro	Asn 60	Gly	Tyr	Asp	Pro
		Val 65	Ala	Gln	Ile	Leu	Trp 70	Met	His	Arg	Gly	Gln 75	Arg	Arg	Val	Ala	Tyr 80
		Leu	Tyr	Arg	Arg	Asp 85	Leu	Ala	Lys	Pro	Lys 90	Arg	Val	Pro	Thr	Ala 95	Ala
		Gln	Leu	Ala	Val 100	Val	Ala	Lys	Met	Leu 105	Leu	Ala	Arg	Arg	Thr 110	Cys	Asp
		Ser	Cys	Gly 115	Val	Thr	Arg	Asp	Tyr 120	Tyr	Ile	Pro	Arg	A rg 125	Thr	Gly	Ile
10	.040. 00	Cys	Leu 130	Ser	Cys	Glu	Val	Gly 135	Gly	Ser	Arg						
	<210> 38 <211> 61 <212> PRT <213> Actinopl	lanes	sp. S	E50/	110												
15	<400> 38																
		Met 1	Thr	Thr	Asp	Pro 5	Glu	Asn	Asn	Ser	Pro 10	Ala	Thr	Thr	Arg	Cys 15	Gln
		Cys	Gly	Asp	His 20	Tyr	Cys	Ala	Glu	Val 25	Met	Pro	Lys	Asp	Gln 30	Asp	Arg
		Ser	Gln	Cys 35	Cys	Gln	Tyr	Cys	Gly 40	Tyr	Arg	Asp	Cys	Asp 45	Val	Cys	Gly
		Trp	Thr 50	Asp	Gln	Ala	Leu	Arg 55	Ser	Pro	Glu	Val	Ser 60	Arg			
20	<210> 39 <211> 96 <212> PRT <213> Actinopl	lanes	sp. S	E50/	110												

<40	>00	39

Met Ser Leu Ile Asp Leu Gly Lys His Leu Ala Thr Asp Asn Cys Leu 1 5 10 15

Trp Cys Ile Gly Gly Met Ser Pro Ala Gly Ile His Pro Asp Leu Gly 20 25 30

Pro Val Leu Cys Leu Cys Pro Thr Glu Gln Trp Cys Asp Glu Cys Gly 35 40 45

Ser Thr Ser Leu Phe Pro Ala Glu Tyr Glu Thr Leu Asp Asp Arg Ile 50 55 60

Asn Glu Leu Phe Asp Asp Gly Leu Ser Ala Val Trp Cys Glu Ala Cys 65 70 75 80

Met Gly Val Val Ala Val Ile Pro Val Thr Asn Asp Gly Gly Ile Arg 85 90 95

5 <210> 40 <211> 169 <212> PRT <213> Actinoplanes sp. SE50/110

10 <400> 40

Met Asn Pro Leu Arg Arg Lys Ala Ala Gln Gln Pro Thr Thr Gly Pro 1 5 10 15

Ala Ala Pro Ala Ser Val Asn Leu Thr Glu Gln Phe Ala Ile Glu Tyr 20 25 30

		Ala	Lys	Ser 35	Ala	Val	Pro	Asn	Met 40	Leu	Lys	Ala	ı Ile	45	o Se	r Va	al Lys
		Arg	Tyr 50	Asn	Arg	Ala	Thr	Leu 55	Ile	Gly	Ala	Leu	1 Il€ 60	e Th	r Se	r T	yr Leu
		His 65	Gln	Ala	His	Tyr	Leu 70	Ala	Ser	Thr	Gly	Ala 75	Gl	у Ту:	r Ph	e Al	La Tyr 80
		Leu	Pro	Pro	Ala	Ile 85	Phe	Asp	Thr	Ala	Met 90	Val	. Sei	r Met	t Le	u II 95	le Val
		Val	Arg	Thr	Pro 100	Gly	Ile	Val	Lys	Asp 105	Ala	Lys	Arq	J Tr	9 Al 11		et Ala
		Val	Phe	Ile 115	Gly	Ala	Ala	Leu	Leu 120	Ser	Ala	Thr	· Val	L As: 12:		e Al	la Ala
		Pro	A la 130	Thr	Ser	Ala	Cys	Ala 135	Ser	Ser	Ser	Pro	140	_	r Se	r Se	er Trp
		Ser 145	Ser	Ala	Ser	Asn	Ser 150	Ser	Pro	Asp	Ala	Ser 155		a Pr	o Th	r Se	er Pro 160
		Pro	Ser	Thr	Asn	Lys 165	Pro	Pro	Asn	Ser							
5	<210> 41 <211> 107 <212> PRT <213> Actin	oplan	es sp	. SE50	0/110												
	<400> 41																
		M € 1	et Th	nr Al	a Vai	L Asr 5	lys	Ile	Lys	Ala	Arg 10	Gly	Thr	Ala	Thr	Thr 15	Pro
		G:	lu Pr	co Gl	u Hi: 20	s Thr	Thr	Thr	Gly	Pro 25	Thr	Ala	Pro	Val	Glu 30	Gln	Pro
		A	la Th	r Pr 35		n Thr	Ala	Pro	Val 40	Val	Pro	Ala	His	Leu 45	Leu	Pro	Ala
		A.	la Ar 50	rg Ph)	e Se:	r Val	Val	Gln 55	His	Glu	Gln	Thr	Thr 60	Gly	Gln	Pro	Ile
10		T1 65		.a As	p Ası	o Leu	Ala 70	Leu	Arg	Leu	Asn	Ile 75	Thr	Pro	Ala	Val	Ala 80
		G]	Lu Th	ır Le	u Ile	e Thr 85	Thr	Ile	Arg	Asp	Thr 90	Asn	Pro	Ala	Arg	Ile 95	Asn
		G]	Ly Hi	s Il.	e Pro		Leu	Thr	Gly	Gly 105	Ala	Arg					

<210> 42 <211>97 <212> PRT <213> Actinoplanes sp. SE50/110 5 <400> 42 Met Thr Phe Val His Val Asp Ile His His Ile Thr His Thr Cys Pro 15 5 Ala Asn Pro Glu Leu His Pro Phe Asp Thr Arg Arg Thr Ile Val Ala 20 25 30 Thr Val Asp Gly Gly Pro Cys Arg Asn Pro Ile Ser Ile Arg Cys Gly 35 40 45 Asp Lys Thr Ala Val Ile Asp Cys Gly Arg His Glu Pro His His Arg 55 Gln Cys Pro Ala Cys Arg Ile Thr Val Ile Glu Arg His Ile Thr Ser Thr Phe Val Gly His His Gly Pro Gln Leu Ala Thr Thr Arg Ile Ala Ala 10 <210> 43 <211> 598 <212> PRT <213> Actinoplanes sp. SE50/110 15 <400> 43 Met Ser Thr Ser Thr Leu Asp Leu Ala Pro Arg Glu Asn Ser Ala Arg 5 10 15 Gly Ala Gly Ser Asn Ala Asp Ala Trp Thr Pro Pro Pro Ala Asp Tyr 20 25 30 Thr Ala Ala Gly Gln Ala Leu Thr Arg Ala Thr Gln Pro Gly Tyr Phe 40

Asp	Trp 50	Leu	Asp	His	Val	Arg 55	Ala	Ala	Ala	Gly	Cys 60	Thr	Arg	Pro	Val
Arg 65	Leu	Thr	Gly	Thr	Leu 70	Asp	Thr	Ile	Glu	Ala 75	Thr	Thr	Gly	Arg	Leu 80
Leu	Asp	Ser	Arg	His 85	Thr	Asp	Gln	Leu	Pro 90	Asp	Ala	Ala	Ile	Tyr 95	Lys
Ala	Cys	Gly	Asn 100	Arg	Arg	Ser	Thr	Val 105	Cys	Pro	Ala	Cys	Ala 110	Arg	Thr
Tyr	Gln	Arg 115	Asp	Ala	Phe	Gln	Ile 120	Leu	Arg	Ala	Gly	Leu 125	Ile	Gly	Gly
Lys	Gly 130	Val	Pro	Thr	Thr	Val 135	Ala	Arg	His	Pro	Ala 140	Val	Phe	Val	Thr
Leu 145	Thr	Ala	Pro	Ser	Phe 150	Gly	Ala	Val	His	Thr 155	Arg	His	Val	Arg	Lys 160
His	Thr	Cys	Thr	Asn 165	Arg	Ala	Arg	Cys	Ser 170	Cys	Arg	Pro	Glu	Pro 175	Cys
His	Ala	Arg	Arg 180	Asn	Pro	Gly	Leu	Cys 185	Gln	His	Tyr	Gln	Pro 190	Ala	Val
Cys	Trp	Ala 195	Arg	His	Glu	Pro	Gly 200	Asp	Pro	Gln	Leu	Gly 205	Arg	Pro	Leu
Cys	Leu 210	Asp	Cys	Tyr	Asp	His 215	Gln	His	His	Val	Val 220	Trp	Asn	Leu	Phe
Ser 225	Gly	Glu	Leu	Trp	His 230	Arg	Thr	Lys	Gln	Asp 235	Ala	Glu	Arg	Arg	Leu 240
Ala	Lys	Leu	Cys	Lys 245	Ala	Arg	Gly	Ile	Pro 250	Phe	His	Glu	Val	Ser 255	Asn
Gly	Lys	Asn	Leu 260	Arg	Arg	Ile	Pro	Pro 265	Val	Arg	Leu	Ala	His 270	Gly	Lys
Ala	Ala	Glu 275	Met	Gln	Arg	Arg	Gly 280	Ala	Val	His	Phe	His 285	Ala	Leu	Ile
Arg	Leu 290	Asp	Gly	Ile	Asp	Pro 295	Thr	Asp	Pro	Thr	Arg 300	Val	Val	Ala	Pro

Pro Pro Gly Ile Gly Leu Asn Asp Leu Val Asp Ala Leu Thr Ala Ala 305 310 315 320

Ser	Asp	Ile	Asp	Phe 325	Thr	Thr	Pro	Asp	His 330	Pro	Asp	Arg	Pro	Asp 335	Gly
Trp	Pro	Met	Ala 340	Trp	Gly	Glu	Gln	Ile 345	Asp	Ile	Arg	Pro	Ile 350	Ser	Leu
Thr	Gly	Thr 355	Gly	Glu	Val	Thr	Asp 360	Ser	Met	Val	Ala	Gly 365	Tyr	Leu	Ala
Lys	Tyr 370	Ala	Thr	Lys	Ser	Thr 375	Glu	Ile	Thr	Gly	His 380	Asn	Ser	Thr	Arg
Ile 385	Thr	Gly	Asp	Thr	Ile 390	Thr	Gln	His	Ala	Asp 395	Pro	Ala	Gly	Asp	His 400
Ile	Ala	Arg	Leu	Ile 405	His	Ala	Cys	Trp	His 410	Leu	Gly	Asn	Asp	Pro 415	Asp
Ala	Pro	Ala	Gly 420	Lys	Thr	Ala	Ile	Arg 425	Leu	Pro	Val	Tyr	Thr 430	Gly	Thr
Ala	Gly	Ala 435	Lys	Ile	Arg	Gln	Pro 440	Phe	Gly	Ala	Pro	Arg 445	His	Cys	Pro
Asp	Cys 450	Gly	Thr	Arg	Thr	A rg 4 55	Tyr	Arg	Thr	Cys	Pro 460	Val	Cys	Val	Ala
Glu 465	Arg	Gln	Ala	Ser	Leu 470	Asp	Thr	Gln	Arg	Pro 475	Asn	Asp	Arg	Gln	Pro 480
Thr	Pro	Tyr	Ala	Arg 485	Leu	Arg	Arg	Trp	Ala 490	His	Met	Leu	Gly	Phe 495	Gly
Gly	His	Phe	Leu 500	Thr	Lys	Ala	Arg	Arg 505	Tyr	Ser	Val	Thr	Phe 510	Arg	Leu
Leu	Arg	Glu 515	Thr	Arg	Ile	Asp	Phe 520	Arg	Arg	Ala	Glu	Pro 525	Asp	Pro	Ala
Asp	Asn 530	Ala	Thr	Val	His	Thr 535	Val	Asp	His	Leu	Asp 540	Glu	Thr	Thr	Leu
Ile	Val	Gly	Thr	Leu	Thr	Phe	Ala	Gly	Val	Gly	Trp	His	Thr	Thr	Gly

555

560

550

545

Asp Ala Leu Leu Ala Asn Thr Ala Ala Gln Ala Arg Glu Arg Gln 565 570 Ala Ile Gly Arg Glu Glu Leu Ala His Glu Ala Ser Thr Ser Arg Pro Val Ala Leu Asn Ala Ala 595 <210> 44 <211>68 5 <212> PRT <213> Actinoplanes sp. SE50/110 <400> 44 Met Asp Gly Ile Thr Pro Lys Ala Leu Tyr Arg Ile Pro Glu Ala Met 10 Arg Met Leu Ser Leu Ser Arg Ser Val Ile Tyr Glu Leu Ile Arg Ser 25 Gly Arg Leu Arg Thr Val Lys Glu Gly Arg Thr Arg Leu Val Pro Ala 35 40 Ser Ala Ile Thr Ala Tyr Val Thr Leu Leu Glu Gln Glu Ser Lys Lys 50 55 Gly Val Ala Ala 10 65 <210> 45 <211> 388 <212> PRT 15 <213> Actinoplanes sp. SE50/110 <400> 45 Met Thr Lys Arg Arg Ser Arg Gly Asp Gly Gly Leu His Trp Asp Glu Gln Arg Gln Arg Trp Ile Ala Ser Val Thr Val Gly Tyr Thr Pro Ala Gly Lys Arg Ile Val Arg Lys Ala Ser Gly Lys Thr Lys Thr Glu Ala 40 Asn Asn Ala Leu Arg Gln Lys Ile Arg Glu Tyr Gln Asp Gly Leu Ser 55

Ile Pro Thr Thr Gly Tyr Thr Val Ala Asp Ala Val Thr Asp Trp Leu 70 Thr Tyr Gly Leu Pro Asp Val Asp Glu Glu Thr Val Asn Asn Tyr Thr 90 Leu Leu Ala Asn Gly His Ile Ile Pro Ala Ile Gly Ala Arg Lys Leu Arg Asp Pro Ser Lys Gln Lys Glu Leu Ser Ala Thr Asp Ile Asp Arg 120 Trp Leu Ala Asp Lys Ala Lys Ile Leu Ser Thr Arg Thr Leu Arg Leu Leu His Ser Ile Ala Asn Arg Ala Ile Asn Arg Ala Met Ala Arg Asp 150 155 Lys Val Met Arg Asn Val Val Ala Leu Cys Lys Val Pro Thr Gly Thr 170 Ala Gly Arg Pro Ser Lys Ser Leu Thr Tyr Glu Gln Ala Lys Ala Leu 185 Leu Val Ala Ala Glu Ser Ser Leu His Ala Tyr Val Val Leu Ser 195 Leu Leu Thr Gly Ala Arg Thr Glu Glu Leu Arg Glu Leu Thr Trp Gln His Val Asp Leu Val Gly Arg Pro Asp Ala Glu Pro Pro Ile Pro Pro 225 230 235 Ala Ile His Val Trp His Ser Val Arg Ala His Gly Asp Thr Lys Thr Lys Lys Ser Arg Arg Ser Leu Ala Leu Pro Val Arg Cys Val Arg Val 260 265 Leu Thr Ala Gln Arg Ala Ala His Gly Asp Pro Arg Pro Asp Asp Tyr 280 Val Cys Ala Ser Lys Val Gly Thr Gln Leu Asp Arg His Asn Val Leu 290 300 295 Arg Ala Phe Arg Ala Ile Val Ala Ala Val Pro Gly Met Asn Pro Ala

305	310		315	320
Glu Trp Thr P	ro Arg Glu I 325	-	Ser Phe Val Ser 330	Leu Leu Ser 335
	et Ser Ile G 40	Glu Glu Ile 7 345	Ala Asp Leu Cys	Gly His Ser 350
Gly Thr Ser I 355	le Thr Glu T	Thr Val Tyr 7 360	Arg His Gln Leu 365	Arg Pro Val
Leu Leu Asn G 370	_	Ala Met Asp i 375	Arg Ile Phe Gly 380	Pro Asp Asp
Thr Pro Gly A	la			

REIVINDICACIONES

- 1. Un elemento integrador y conjugador de actinomiceto que se selecciona del grupo que consiste en:
 - a) un polinucleótido que consiste en la secuencia de la SEQ ID NO: 1 y

5

- b) un polinucleótido que consisten una secuencia que tiene al menos el 90 % de identidad con la secuencia de la SEQ ID NO: 1.
- 2. El elemento integrador y conjugador de actinomiceto de la reivindicación 1 que consiste en una secuencia que tiene al menos el 95 % de identidad con la secuencia de la SEQ ID NO: 1.

pACPL (13.643 pb) de Actinoplanes sp. SE50/110

| State | Sta

Fig. 1

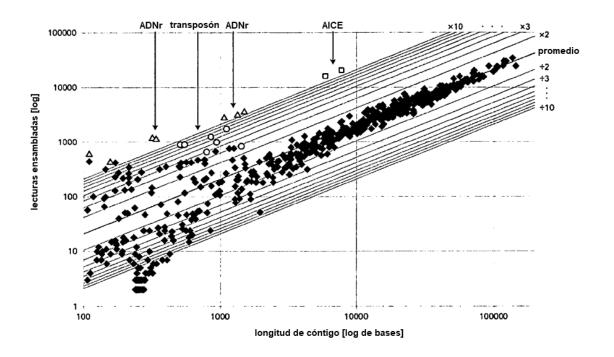


Fig. 2