

OFICINA ESPAÑOLA DE PATENTES Y MARCAS

ESPAÑA

11) Número de publicación: 2 718 431

(21) Número de solicitud: 201731498

(51) Int. Cl.:

F24S 20/66 (2008.01)

(12)

SOLICITUD DE PATENTE

A1

(22) Fecha de presentación:

29.12.2017

(43) Fecha de publicación de la solicitud:

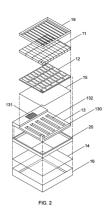
01.07.2019

(71) Solicitantes:

UNIVERSIDAD DE VALLADOLID (100.0%) Plaza de Santa Cruz, 5 Bajo 47002 Valladolid ES

(72) Inventor/es:

CONTRERAS LEIVA, Paloma y JOVÉ SANDOVAL, Félix


(74) Agente/Representante:

CARVAJAL Y URQUIJO, Isabel

(54) Título: MURO CAPTADOR DE ENERGÍA

(57) Resumen:

La presente invención da a conocer un muro captador de energía del tipo que comprende: una cara exterior destinada a recibir radiación solar; y una cara interior opuesta a dicha cara exterior orientada hacia un habitáculo; dicho muro captador de energía comprendiendo entre dichas caras exterior e interior una capa PCM que dispone de material PCM y un circuito de aire disponiendo dicho circuito de aire una salida de aire hacia el habitáculo y estando el muro captador de energía dotado de medios de conducción térmica entre el circuito de aire y la capa PCM.

DESCRIPCIÓN

MURO CAPTADOR DE ENERGÍA

Campo de la invención

5

10

15

20

25

30

La presente invención se refiere a un muro captador de energía, en concreto, la presente invención se refiere a un muro con capacidad de captación de energía siendo dicho muro un elemento constructivo con captación de energía de forma pasiva.

Antecedentes de la invención

En los últimos tiempos la sociedad, a través de programas divulgativos, ha tomado conciencia sobre la necesidad de ahorrar energía y de hacer un uso eficiente de la misma. En este sentido es evidente el crecimiento del uso de las energías renovables.

En este sentido, existen diversos proyectos para mejorar el consumo energético, por ejemplo, en edificios con el objetivo de tener un consumo energético en calefacción y refrigeración sea casi nulo.

Los sistemas de acondicionamiento pasivo han estado siempre presentes en el comportamiento tanto de los seres humanos como de la mayoría de los animales. Desde la actitud más elemental de buscar la protección en cuevas ante los factores climáticos, a las más evolucionadas de reproducir lo que la naturaleza proporcionaba en el lugar, con las dimensiones y la forma deseadas. Estos hechos constructivos simples dieron lugar gracias a la experiencia transmitida de generación en generación, a lo que, partiendo de la arquitectura popular, llegara a ser la arquitectura pasiva y bioclimática.

La arquitectura solar pasiva, posee sistemas, que permiten un ahorro energético necesario en una sociedad económicamente cada vez más consciente de la importancia que tiene el cuidado de nuestro planeta. Por ejemplo, son conocidos elementos tales como el Muro Trombe.

El Muro Trombe, dado a conocer en la Patente Estadounidense US246626, es un muro en el que se absorbe la radiación solar en la cara exterior y se transfiere este a través de una pared por conducción hasta la cara interior del muro.

La presente invención se refiere a un colector solar de aire. El colector solar de aire es un sistema solar pasivo sencillo que implica la captación de la energía del sol por una superficie vidriada que son dimensionadas para cada orientación y en función de las

necesidades de calor del edificio o local a climatizar, para posteriormente ser acumulada en un circuito de absorción de aire y cedida al interior

Hasta la fecha, investigadores y universidades, viendo el potencial de la temática han querido centrarse en los colectores solares, así como los materiales de cambio de fase trabajados desde la ingeniería. De entre los estudios más recientes y significativos nos encontramos con una serie de artículos publicados en dos de las revistas de mayor impacto internacional entre el año 2000 hasta nuestros días, Energy and Building y Renewable & Sustainable and Energible. Destaca el Instituto de Tecnología de Massachusetts, apoyado en ocasiones por entidades relevantes como la Universidad del Rey Fahd de Petróleo y Minerales en Arabia Saudí y Departamentos de Ingeniería Mecánica de varias Facultades de la India, como la de Anna, Chennai y la de Sri Venkateswara en Sriperumpudur o el Centro Científico y Técnico de la Construcción en, Saint-Martin- Heres, Francia y la Universidad Joseph Fourier en Francia.

5

10

15

20

25

30

Es importante destacar a la vista de los anteriores artículos que los colectores solares de aire son un tema novedoso que hasta el momento ha tenido, mayoritariamente, un tratamiento desde la ingeniería para desarrollar colectores que ya encontramos comercialmente. La aplicación en arquitectura de estos, necesaria y fundamental ha sido prácticamente dejada de lado al entenderse como un añadido a posteriori en fachadas soleadas.

Un ejemplo de colector solar de aire es el "Solar Wall", aplicado en la base militar estadounidense de Ft. Drum, al norte del estado de Nueva York. Este colector consiste en un revestimiento íntegramente metálico perforado colocado en la cara exterior de un edificio, en este caso, años de investigación han erradicado la necesidad de recubrirlo con vidrio, mejorando la capacidad de integración en edificios comerciales, industriales o institucionales. Al eliminar dicho recubrimiento, se reducen costes y se acorta el marco temporal de la rentabilidad de la inversión.

La radiación solar calienta el revestimiento de metal mientras que los ventiladores crean una presión negativa en la cavidad del aire, lo que permite extraer el aire calentado con la energía solar a través de las perforaciones de los paneles.

Los problemas de los colectores de la técnica anterior son, entre otros, su difícil incorporación a muros ya existentes y la posibilidad de su incorporación como elemento arquitectónico.

La presente invención soluciona los problemas de la técnica anterior mediante una estructura innovadora. En concreto, la presente invención da a conocer un muro captador de energía del tipo que comprende:

- una cara exterior destinada a recibir radiación solar;
- una cara interior opuesta a dicha cara exterior orientada hacia un habitáculo;

comprendiendo dicho muro captador de energía entre dichas caras exterior e interior una capa PCM que dispone de material PCM y un circuito de aire disponiendo dicho circuito de aire una salida de aire hacia el habitáculo y estando el muro captador de energía dotado de medios de conducción térmica entre el circuito de aire y la capa PCM.

Preferentemente, los medios de conducción térmica comprenden una placa de refuerzo entre la capa de PCM y el circuito de aire siendo dicha placa de refuerzo una placa térmicamente conductiva.

Además, la placa de refuerzo funciona como una placa rigidizadora y puede ser por, ejemplo, una chapa o placa de aluminio.

En el caso de edificios sin ventilación externa, el circuito de aire puede comprender una entrada de aire desde el habitáculo. En el caso de edificios terciarios la entrada de aire al circuito de aire puede estar conectada a una fuente o a un circuito de alimentación de aire externo al habitáculo.

Con el fin de dotar al muro con mayor capacidad de calentamiento, el muro puede comprender un absorbedor conectado térmicamente al circuito de aire. Dicho absorbedor estará, preferentemente, en contacto térmicamente a la capa de PCM a fin de poder conducir calor hasta dicha capa de PCM

Más preferentemente, el muro puede comprender una pared de inercia que define la cara interior del muro captador de energía. Dicha pared de inercia puede estar constituida por un material con alto nivel de inercia como plaquetas de barro o ladrillo refractario y, además, puede disponer de un bastidor adicional.

En cuanto al material PCM, la presente invención contempla que sea, por ejemplo, un material que cambia de estado sólido a líquido ante la presencia de calor tal como ceras y/o parafinas.

30

5

10

15

20

25

Adicionalmente, el muro puede comprender un vidrio que define la cara exterior del muro captador de energía, preferentemente, dicho vidrio es un vidrio con capacidad anti reflectante.

Breve descripción de las figuras

5

En las figuras adjuntas se muestran, de manera ilustrativa y no limitativa, ejemplos de realización del sistema según la presente invención, en las que:

10

15

- La figura 1 muestra un ejemplo de un habitáculo dentro de un edificio que incorpora un muro según la presente invención.
- La figura 2 muestra un despiece mecánico de un ejemplo de realización de un muro según la presente invención.
- Las figuras 3A y 3B muestran secciones longitudinales del ejemplo de muro de la figura 2.

La figura 3 muestra de forma esquemática las capas que conforman un muro según la presente invención.

Descripción detallada de un modo de realización

La presente invención da a conocer un muro captador de energía en el que dicha captación de energía se realiza mediante la utilización de materiales con cambio de fase, conocidos en la técnica como PCM (siglas de la expresión en inglés "phase change materials"). Los materiales con cambio de fase (PCM) poseen la capacidad de almacenar de calor (unidades de almacenamiento de calor latente), alto calor de fusión y punto de transición de fase en el entorno de la temperatura de operación. El objetivo de su incorporación al muro captador de energía es la de evitar la pérdida de calor mediante la absorción o desprendimiento del mismo.

25

20

La figura 1 muestra un primer ejemplo de realización en la que se dispone un muro captador de energía (1) adyacente a un muro convencional (3). Preferentemente, el muro captador de energía (1) de la presente invención se puede disponer debajo de una ventana (2).

30

En la figura 1 se muestra la cara interior del muro captador de energía (1), es decir, la cara orientada hacia el interior del receptáculo. El muro captador de energía (1) de la figura 1 está destinado a su utilización en edificios y dispone de una entrada de aire que circula, al

menos parcialmente, a través del muro captador de energía y se recircula hacia el interior del habitáculo tras su paso por elementos destinados a modificar la temperatura del aire.

La figura 2 muestra un ejemplo de muro según la presente invención. En el despiece de la figura 2 se observa un ejemplo de muro que comprende un bastidor (16) cuya función es la de soportar las demás capas del muro captador de energía (1). En un ejemplo de realización, el bastidor (16) puede ser un bastidor en ángulo 500 mm + 200 mm de acero carbono (hierro) de espesor 3 mm. Estas medidas serían especialmente adecuadas para un muro captador de energía (1) de 1000 mm x 1000 mm.

5

10

15

20

25

30

El bastidor (16) puede ser un bastidor de una sola pieza, fabricado mediante plegado. De esta manera, el bastidor (16) soporta sobradamente el peso de todas las capas. Este tipo de elaboración y elección de materiales permite que el muro captador de energía (1) de la presente invención sea una estructura portante.

Adicionalmente, el muro captador de energía (1) comprende un vidrio (14) que es, preferentemente, un vidrio selectivo que puede contar con recubrimiento anti reflectivo a fin de permitir que la mayor cantidad de energía solar pase a través del mismo para calentar los elementos absorbedores y/o PCM que se explicará en mayor detalle a continuación. Alternativamente, un muro según la presente invención puede disponer de un vidrio simple (ESG) para reducir costes de fabricación con el que se conseguiría una menor captación de energía pero que puede ser suficiente en determinadas aplicaciones.

En realizaciones particulares de la presente invención, el muro colector de energía (1) puede disponer de una capa aislante (20) que tiene una doble función de evitar pérdidas de calor hacia el bastidor (16) y actuar como elemento contrafuegos. Un ejemplo del tipo de capa aislante (20) según la presente invención es un panel de lana mineral, por ejemplo, el fabricado por Knauf. Dicho panel es incombustible, aislante térmico, aislante acústico, dimensionalmente estable e inalterable en el tiempo lo que lo hace particularmente adecuado para el muro colector de energía (1) de la presente invención.

El muro captador solar (1) comprende, además, un circuito de aire (13) que comprende una entrada de aire (130), por ejemplo, desde la cara interior del muro el aire se hace circular por el circuito de aire que comprende, por ejemplo, un serpentín (132) y luego se hace circular nuevamente en dirección a la cara interior a través de una salida de aire (131).

El calentamiento del aire que pasa a través del circuito de aire (13) para calentar el habitáculo expuesto a la cara interior del muro captador de energía (1) se puede realizar, por ejemplo, mediante dos formas complementarias de calentamiento: La disposición de un

absorbedor de energía solar entre el vidrio (14) y el circuito de aire (13) y/o la disposición de una capa de PCM con capacidad de conducción térmica hacia el circuito de aire (13).

En cuando al absorbedor, se puede disponer un absorbedor del tipo conocido y comúnmente utilizado en generadores fotovoltaicos como, por ejemplo, un absorbedor bitubular de doble flujo o cualquier otro material con capacidad de absorber fotones de radiación solar en forma de calor para transferirla, en este caso, al circuito de aire (13).

5

10

15

20

25

30

Por otra parte, el circuito de aire (13) se calienta mediante la acción de una capa de PCM (12). La capa PCM dispone de una serie de receptáculos que disponen en su interior materiales con capacidad de cambio de fase como, por ejemplo, parafinas o ceras.

El PCM empleado encontrará su cambio de fase, preferentemente, a unos 40 °C, que es la temperatura que podría alcanzarse en la capa de PCM (12) al recibir energía del Sol. Materiales orgánicos, tales como ceras, parafinas y otros PCM de fácil acceso en el mercado son preferentes.

Dado que, ante la presencia de energía calórica la capa de PCM (12) puede ser sustancialmente líquida, es posible incorporar una placa de refuerzo (15) cuya función es mantener la capa de PCM (12) en una forma determinada. En el caso de la figura 2, la placa de refuerzo (15) se dispone entre la capa de PCM (12) y el circuito de aire (13), por lo que la placa de refuerzo (15) deber ser conductiva térmicamente, por ejemplo, puede ser una chapa de aluminio.

Finalmente, se dispone una pared de inercia (11) que dota al muro de una rigidez suficiente para ser un muro estructural. En este caso, se ha optado por una solución pétrea de ladrillo refractario de 4 cm de espesor que se dejará vista en la parte interna de la vivienda. Una característica de la pared de inercia (11) es que, preferentemente, debe estar compuesta por material con alto nivel de inercia como plaquetas de barro o ladrillo refractario. Opcionalmente la pared de inercia puede disponer de un bastidor adicional (19) para mantener unido el muro colector de energía (1).

La figuras 3A y 3B muestran dos secciones longitudinales del muro colector de la figura 2. En concreto, la figura 3A muestra una sección longitudinal que coincide con la salida de aire (131) y la figura 3B muestra una sección longitudinal que coincide con una parte longitudinal del serpentín (132).

En dichas secciones longitudinales se observa la disposición del muro captador de energía (1) como elemento arquitectónico, preferentemente, estructural. En este ejemplo, el

muro captador de energía dispone de su cara exterior hacia la fachada soleada de una estructura, es decir, orientada al sol (17) para recibir la radiación solar y su cara interior hacia un receptáculo (18).

La energía solar recibida por el muro hace que la capa de PCM (12) se caliente generando un cambio de fase en los materiales que la componen, por ejemplo, de estado sólido a estado líquido almacenando energía en forma de calor.

5

10

15

20

25

30

En el caso de que la estructura sea un edificio, el muro captador de energía (1) dispone de una entrada de aire proveniente del receptáculo (18) que se hace circular a lo largo del circuito de aire, en concreto, del serpentín (132). El circuito de aire (13) se calienta debido al contacto directo o indirecto con la capa de PCM (12) lo que, a su vez, calienta el aire que circula a través de dicho circuito.

En el caso de edificios terciarios, dado que deben disponer de ventilación, la entrada de aire (130) puede estar conectada a una fuente de ventilación externa al habitáculo.

Finalmente, el aire es recirculado nuevamente hacia el receptáculo (18) con una mayor temperatura.

La presencia de la pared de inercia (11) dota al muro captador de energía (1) de una rigidez que permite su utilización como muro estructural y, adicionalmente, la utilización de ladrillo refractario permite mantener la temperatura interna del circuito de aire (13) y la capa de PCM (12).

La figura 4 muestra un esquema de las capas que puede comprender un muro captador de energía (1) según la presente invención.

El muro captador de energía (1) comprende una capa exterior que se dispone hacia el Sol (17) y una capa interior que se dispone hacia un receptáculo interno (18). Entre dichas capas exterior e interior se dispone un circuito de aire (13) y una capa de PCM con capacidad de conducción térmica hacia el circuito de aire (13).

Opcionalmente, se puede disponer de medios adicionales de calentamiento del circuito de aire y/o de la capa de PCM, por ejemplo, mediante la disposición de un absorbedor (133) conectado térmicamente al circuito de aire (13) y/o a la capa de PCM (12).

Para dotar el muro colector de energía (1) de una rigidez que lo permita soportar las cargas típicas de un muro estructural, se contempla la adición de un bastidor (16) y de un muro de inercia (11).

REIVINDICACIONES

- 1. Muro captador de energía del tipo que comprende:
 - una cara exterior destinada a recibir radiación solar;
 - una cara interior opuesta a dicha cara exterior orientada hacia un habitáculo;

caracterizado porque dicho muro captador de energía comprende entre dichas caras exterior e interior una capa de PCM que dispone de material PCM y un circuito de aire disponiendo dicho circuito de aire una salida de aire hacia el habitáculo y estando el muro captador de energía dotado de medios de conducción térmica entre el circuito de aire y la capa PCM.

- 2. Muro, según la reivindicación 1, caracterizado porque los medios de conducción térmica comprenden una placa de refuerzo entre la capa de PCM y el circuito de aire siendo dicha placa de refuerzo una placa térmicamente conductiva.
- 15 3. Muro, según la reivindicación 2, caracterizado porque la placa de refuerzo es una placa de aluminio.
 - 4. Muro, según cualquiera de las reivindicaciones anteriores, caracterizado porque el circuito de aire comprende una entrada de aire desde el habitáculo.
 - 5. Muro, según cualquiera de las reivindicaciones 1 a 4, caracterizado porque el circuito de aire comprende una entrada de aire desde un circuito de alimentación de aire.
- 6. Muro, según cualquiera de las reivindicaciones anteriores, caracterizado porque comprende un absorbedor conectado térmicamente al circuito de aire.
 - 7. Muro, según cualquiera de las reivindicaciones anteriores, caracterizado porque comprende un absorbedor conectado térmicamente a la capa de PCM.
- 30 8. Muro, según cualquiera de las reivindicaciones anteriores, caracterizado porque comprende una pared de inercia que define la cara interior del muro captador de energía.

20

5

10

- 9. Muro, según la reivindicación 9 caracterizado porque la pared de inercia dispone de un bastidor adicional.
- Muro, según la reivindicación 8, caracterizado porque la pared de inercia comprende
 una serie de ladrillos refractarios.
 - 11. Muro, según cualquiera de las reivindicaciones anteriores, caracterizado porque el material PCM es un material que cambia de estado sólido a líquido ante la presencia de calor.
- 10 12. Muro, según la reivindicación 11, caracterizado porque el material PCM es una cera y/o una parafina.
 - 13. Muro, según cualquiera de las reivindicaciones anteriores, caracterizado porque comprende un vidrio que define la cara exterior del muro captador de energía.

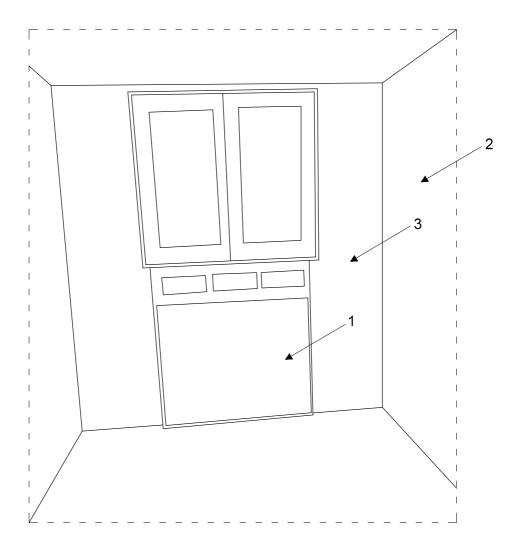


FIG. 1

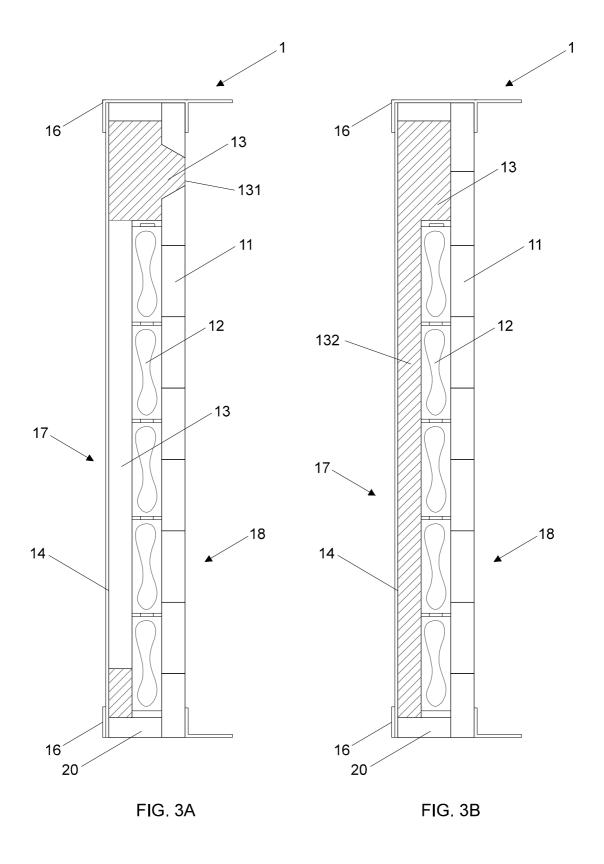



FIG. 2

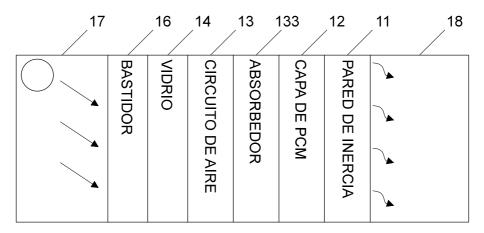


FIG. 4

(21) N.º solicitud: 201731498

22 Fecha de presentación de la solicitud: 29.12.2017

32 Fecha de prioridad:

INFORME SOBRE EL ESTADO DE LA TECNICA

⑤ Int. Cl.:	F24S20/66 (2018.01)

DOCUMENTOS RELEVANTES

21.01.2019

Categoría	66	Documentos citados	Reivindicacione afectadas	
X	CN 101324352 A (UNIV CHONGQING) 17/12/2008, Todo el documento & resumen de la base de datos Epodoc. Recuperado de Epoque; AN-CN-200810069972-A.		1-13	
Х	CN 101761150 A (UNIV NORTH C Descripción; figura 1A & resumen o Recuperado de Epoque; AN-CN-20	de la base de datos Epodoc.	1-13	
Х	Todo el documento & resumen de	I 104746647 A (UNIV BEIJING TECHNOLOGY) 01/07/2015, do el documento & resumen de la base de datos Epodoc. cuperado de Epoque; AN-CN-201510058357-A.		
Х	WO 2011018088 A2 (HELIOPOWE Página 27, línea 32 - página 28, lín		1, 11	
Α	WO 2009043338 A2 (UNIV KASSE Figuras & resumen de la base de c AN-DE-2008001606-W.	EL et al.) 09/04/2009, latos Epodoc. Recuperado de Epoque;	1	
А	GB 2103783 A (EURATOM) 23/02/ Todo el documento.	/1983,	1	
X: d Y: d n	egoría de los documentos citados e particular relevancia e particular relevancia combinado con ot nisma categoría sfleja el estado de la técnica	O: referido a divulgación no escrita ro/s de la P: publicado entre la fecha de prioridad y la de de la solicitud E: documento anterior, pero publicado despué de presentación de la solicitud	•	
	para todas las reivindicaciones	para las reivindicaciones nº:		
Fecha de realización del informe		Examinador	Página	

J. Merello Arvilla

1/2

INFORME DEL ESTADO DE LA TÉCNICA Nº de solicitud: 201731498 Documentación mínima buscada (sistema de clasificación seguido de los símbolos de clasificación) F24S Bases de datos electrónicas consultadas durante la búsqueda (nombre de la base de datos y, si es posible, términos de búsqueda utilizados) INVENES, EPODOC, WPI