

OFICINA ESPAÑOLA DE PATENTES Y MARCAS

ESPAÑA

11) Número de publicación: 2 719 106

51 Int. Cl.:

C12N 15/80 (2006.01) C12N 15/113 (2010.01)

(12)

TRADUCCIÓN DE PATENTE EUROPEA

T3

(86) Fecha de presentación y número de la solicitud internacional: 10.03.2014 PCT/SG2014/000114

(87) Fecha y número de publicación internacional: 18.09.2014 WO14142747

96 Fecha de presentación y número de la solicitud europea: 10.03.2014 E 14765272 (1)

(97) Fecha y número de publicación de la concesión europea: 27.02.2019 EP 2970993

(54) Título: Secuencias de polinucleótidos de Rhodosporidium y Rhodotorula y sus usos

(30) Prioridad:

14.03.2013 US 201361782832 P

Fecha de publicación y mención en BOPI de la traducción de la patente: **08.07.2019**

(73) Titular/es:

TEMASEK LIFE SCIENCES LABORATORY LIMITED (100.0%) National University of Singapore, 1 Research Link Singapore 117604, SG

(72) Inventor/es:

CHENG, HSIN I.; PENG, NI y JI, LIANGHUI

(74) Agente/Representante:

SÁEZ MAESO, Ana

DESCRIPCIÓN

Secuencias de polinucleótidos de Rhodosporidium y Rhodotorula y sus usos

5 Antecedentes de la invención

La presente invención se refiere al campo de la biotecnología fúngica, más particularmente a sistemas fuertes de expresión de genes en especies de los subfilos Pucciniomycotina y Ustilaginomycotina.

- Las publicaciones y otros materiales usados en la presente descripción para mostrar los antecedentes de la invención, y en particular, los casos para proporcionar detalles adicionales con respecto a la práctica, por conveniencia se referencian en el texto siguiente por el autor y la fecha y se enumeran alfabéticamente por el autor en la bibliografía anexa.
- Pucciniomycotina es un subfilo de hongos en el filo de Basidiomycota (Kirk y otros, 2008). Posee muchas especies que tienen importantes aplicaciones industriales. Por ejemplo, un número de especies en los géneros *Rhodosporidium* y *Sporidiobolus*, tal como *Rhodosporidium toruloides* (también conocido como *Rhodotorula gracilis, Rhodosporidium glutinis, Rhodotorula glutinis, Torula koishikawensis* y *Torula rubescens*) y *Sporobolomyces salmonicolor,* son levaduras unicelulares ricas en aceite capaces de fermentación de alta densidad (Hu y otros, 2009; Meng y otros, 2009). Estas especies poseen gran potencial como un huésped para la producción de hidrocarbonos de cadena larga, tal como triacilglicerol (TAG, o grasa), ésteres de ácidos grasos (biodiesel), alcoholes grasos, alcoholes, lactonas, terpenoides y vitaminas (Wu y otros, 2010a; Wu y otros, 2010b; Zhao y otros, 2010a; Zhao y otros, 2010b). En otro ejemplo, las especies en el subfilo *Ustilaginomycotina*, en particular, los géneros *Ustilago* y *Pseudozyma*, se conocen por producir glucolípidos, que pueden funcionar como tensioctivos o fungicidas (Hewald y otros, 2005; Teichmann y otros, 2010).
- Los promotores que son capaces de dirigir la expresión fuerte de genes, tanto de manera constitutiva o inducible, son críticos para el desarrollo de aplicaciones biotecnológicas de un microorganismo. El documento núm. WO 2012/169969, describe varias secuencias de polinucleótidos derivadas de la región aguas arriba del gen de la *gliceraldehído fosfato deshidrogenasa* (*GPD1*), el gen del *factor de iniciación de la traducción* (*TEF1*), y el gen putativo de la *estearoil-CoA-delta 9-desaturasa* (*FAD1*) de especies fúngicas seleccionadas que son capaces de funcionar como un promotor fuerte de la expresión de genes en los subfilos *Pucciniomycotinay Ustilaginomycotina*. Como el uso repetido del promotor idéntico o altamente homólogo corre el riesgo de inestabilidad del genoma, la modificación epigenética y genética de la cromatina resulta de la mutación puntual inducida por repetición (RIP) o al silenciamiento del ARN (Horns y otros, 2012), un grupo de promotores agrandados es altamente deseable para los subfilos *Pucciniomycotina* y *Ustilaginomycotina*, en donde los promotores funcionalmente verificados son escasos.

Los promotores son secuencias de ADN ubicadas en la región 5' adyacente al sitio de inicio de la transcripción. Aloja una combinación de elementos de ADN que actúan en cis para interactuar con los factores de transcripción al activar o reprimir la transcripción de la polimerasa de ARN. Hasta la fecha, han sido publicadas el secuencias aleatorias del genoma para Rhodotorula glutinis ATCC 204091(Acceso al GenBank: GL989638.1), Rhodosporidium toruloidesMTCC 457 (Acceso al 40 GenBank: PRJNA112573), Rhodosporidium toruloides NP11 (GenBank: ALAU00000000.1) y han sido publicadas genoma incompletas Rhodotorula WP1 (http://genome.jgisecuencias del para graminis psf.org/Rhoba1_1/Rhoba1_1.home.html) Sporobolomyces roseus (http://genome.jgi-У psf.org/Sporo1/Sporo1.home.html). Las secuencias de ARN, los datos aleatorios proteómicos y del genoma publicados para Rhodosporidium toruloides NP11 (Zhu, Z., y otros, 2012) no son capaces de definir la secuencia de promotores funcionales debido a que la actividad de un promotor está influenciada por varios factores, tales como la ubicación de los 45 extremos 5' y 3', el silenciamiento postranscripcional, la influencia de intrón, etc. La actividad de un promotor en una especie heteróloga huésped es incluso más impredecible. Se conocen promotores de organismos diferentes que permiten la expresión de polipéptidos de interés en una especie fúngica, por ejemplo, descritos en los documentos núms. WO 2005/049805 A2; WO 2005/003310 A2; CN 102 268 432 B; Avis T.J. y otros, 2008; Nevau B. y otros, 2007; US 50 2006/057690 A1, Liu Y. y otros, 2013 y Abbott E.P. y otros, 2013.

Resumen de la invención

60

65

La presente invención se refiere al campo de la biotecnología fúngica, más particularmente a sistemas fuertes de expresión de genes en especies de los subfilos *Pucciniomycotina* y *Ustilaginomycotina*.

En un primer aspecto, la presente invención proporciona secuencias de polinucleótidos que funcionan como promotores fuertes de la expresión de genes en los géneros *Rhodosporidium, Rhodotorula, Sporobolomyces, Pseudozyma y Ustilago*. Estas secuencias de polinucleótidos se denominan a veces en la presente descripción como secuencias de polinucleótidos promotoras. Como se reivindica en la reivindicación 9 más abajo, la presente invención proporciona un promotor aislado que comprende la secuencia de nucleótidos de sec. con núm. de ident.:6 u 8, o la porción promotora de la misma. En una modalidad, las secuencias de polinucleótidos promotoras comprenden la secuencia establecida en cualquiera de las sec. con núms. de ident.:6 u 8. En otra modalidad, las secuencias de polinucleótidos promotoras comprenden la secuencia promotora de cualquiera de las sec. con núms. de ident.:6 u 8, es decir, la secuencia sin los sitios de clonación. Cada una de las secuencias de polinucleótidos promotoras contiene al menos un motivo de secuencia GAGGAG, que funciona para potenciar la expresión de genes en dichas especies fúngicas. Cada una de las secuencias

de polinucleótidos es efectiva para llevar a cabo la expresión fuerte de genes en los géneros *Rhodosporidium, Rhodotorula, Sporobolomyces, Pseudozyma* y *Ustilago*. Además, los fragmentos operables de estas secuencias de polinucleótidos promotoras pueden aislarse mediante el uso de ensayos convencionales de tamizaje de promotores y pueden tamizarse para la selección eficiente de las células fúngicas transformadas mediante el uso de las técnicas descritas en la presente descripción. En una modalidad, un fragmento operable, también denominado una porción promotora en la presente descripción, tiene aproximadamente 400 pares de bases hasta aproximadamente 1100 pares de bases de longitud comenzando desde la posición -1 del codón ATG. Como se usa en la presente descripción "hasta" se refiere a la longitud de la porción promotora de los promotores establecidos en las sec. con núms. de ident. descritas. Por lo tanto, "hasta" se refiere a la longitud máxima de la secuencia promotora si hay menos de 1100 nucleótidos de los promotores de las sec. con núms. de ident. descritas.

En un segundo aspecto, la presente invención proporciona un constructo de ADN, como se reivindica en la reivindicación 1 más abajo, que comprende las secuencias de polinucleótidos promotoras descritas en la presente descripción, un polipéptido unido operablemente que codifica una secuencia y una secuencia de ARN terminadora de la transcripción unida operablemente. Cualquier terminador de la transcripción eucariótico, bien conocido por un experto en la técnica, puede usarse. Tal constructo de ADN permite la expresión fuerte del polipéptido en una especie fúngica en la que el genoma está sesgado en C y G. El constructo de ADN permite la expresión eficiente del polipéptido en una especie fúngica seleccionada de los subfilos *Pucciniomycotina* y *Ustilaginomycotina*. Las especies de particular importancia son aquellas en los géneros *Rhodosporidium*, *Rhodotorula*, *Sporobolomyces*, *Ustilago* y *Pseudozyma*, en los cuales residen un número de especies con gran potencial para la bioconversión de recursos renovables en productos de alto valor, tales como triglicéridos, biodiesel, alcohol graso, vitaminas, lactona, terpenoides y biotensioactivos.

Breve descripción de las figuras

10

15

20

35

40

45

50

- La Figura 1 muestra los vectores de clonación y transformación para los promotores. Ambos, pPN007 y pRH2031 se basan en pPZP200 y contienen el marcador de selección con higromicina *Urngpd1::hpt-3*. Rt*GFP* es un gen de GFP de codón optimizado para el genoma rico en GC.
- La Figura 2 muestra la ubicación de los motivos GAGGAG. Las líneas verticales con * indican los motivos GAGGAG en orientación sentido, las líneas restantes son en la orientación antisentido.
 - La Figura 3 muestra la fluorescencia relativa de RtGFP dirigida por los promotores *ENO1y FAD1* de varias longitudes, que se definen como el número de nucleótidos que comienza desde el primer nucleótido del codón putativo de inicio de la traducción (ATG) hasta el punto del extremo 5', excluyendo los sitios de restricción añadidos. Los promotores mostraron tendencia similar en los medios YNB y YNB libre de nitrógeno (N¹). 35S-Ω es un promotor básico que contiene el promotor del gen 35S del *virus del mosaico de la coliflor* que comienza desde la caja TATA hasta la posición -1 del UTR 5' y la secuencia omega del potenciador de la traducción del *virus del mosaico del tabaco* (TMV) insertado de manera inmediata aguas arriba de RtGFP. La fluorescencia basal de la cepa no transformada (*R. toruloides* ATCC 10657) se sustrajo en todos los valores.

La Figura 4A muestra detalles de la secuencia promotora de 519 pb de Rg2ENO1. Las flechas indican las posiciones de los extremos 5' de varias deleciones.

La Figura 4B muestra el código y la longitud de cada uno de los promotores Rg2ENO1 truncados.

La Figura 5A y la Figura 5B muestran la fluorescencia relativa de RtGFP dirigida por los promotores *ENO1* de varias longitudes, que se definen como el número de nucleótidos que comienza desde el primer nucleótido del codón putativo de inicio de la traducción (ATG) hasta el punto del extremo 5', excluyendo los sitios de restricción añadidos. Los promotores mostraron tendencia similar en los medios YNB (Figura 5A) y YNB libre de nitrógeno (N⁻) (Figura 5B). Rg1 Wt se refiere a la fluorescencia basal de *R. glutinis* ATCC 90781.

Descripción detallada de la invención

- A menos que se defina de cualquier otra manera, todos los términos técnicos y científicos usados en la presente descripción tienen el mismo significado que el que se conoce comúnmente por el experto en la técnica a la que pertenece la invención.
- El término "unido operablemente" o "unido operativamente" se define en la presente descripción como una configuración en la que una secuencia reguladora o de control se coloca apropiadamente en una posición con relación a la secuencia de nucleótidos del constructo de ácido nucleico de manera que la secuencia de control dirige la expresión de un polinucleótido de la presente invención. Las secuencias reguladoras o de control pueden colocarse en el lado 5' de la secuencia de nucleótidos o en el lado 3' de la secuencia de nucleótidos como se conoce bien en la técnica.
- El término "expresión fuerte" como se usa en la presente descripción significa la expresión de una proteína marcadora o ARNm a un nivel detectable mediante el uso de métodos de detección conocidos, por ejemplo, fluorescencia para GFP, ensayo de actividad para los genes GUS y lacZ.

La presente invención se refiere al campo de la biotecnología fúngica, más particularmente a sistemas fuertes de expresión de genes en especies de los subfilos *Pucciniomycotina* y *Ustilaginomycotina*.

5

10

15

20

25

30

35

40

45

50

55

60

65

En un primer aspecto, la presente invención proporciona secuencias de polinucleótidos que funcionan como promotores fuertes de la expresión de genes en los géneros Rhodosporidium, Rhodotorula, Sporobolomyces, Pseudozyma y Ustilago. Estas secuencias de polinucleótidos se denominan a veces en la presente descripción como secuencias de polinucleótidos promotoras. En una modalidad, las secuencias de polinucleótidos promotoras comprenden la secuencia establecida en cualquiera de las sec. con núms. de ident.:6 u 8. En otra modalidad, las secuencias de polinucleótidos promotoras comprenden la secuencia promotora de cualquiera de las sec. con núms. de ident.:6 u 8, es decir, la secuencia sin los sitios de clonación. Cada una de las secuencias de polinucleótidos promotoras contiene al menos un motivo de secuencia GAGGAG, que funciona para potenciar la expresión de genes en dichas especies fúngicas. Cada una de las secuencias de polinucleótidos es efectiva para llevar a cabo la expresión fuerte de genes en los géneros Rhodosporidium, Rhodotorula, Sporobolomyces, Pseudozyma y Ustilago. Además, los fragmentos operables de estas secuencias de polinucleótidos promotoras pueden aislarse mediante el uso de ensavos convencionales de tamizaie de promotores y pueden tamizarse para la selección eficiente de las células fúngicas transformadas mediante el uso de las técnicas descritas en la presente descripción. En una modalidad, un fragmento operable, también denominado una porción promotora en la presente descripción, tiene aproximadamente 400 pares de bases hasta aproximadamente 1100 pares de bases de longitud comenzando desde la posición -1 del codón ATG. Como se usa en la presente descripción "hasta" se refiere a la longitud de la porción promotora de los promotores establecidos en las sec. con núms. de ident. descritas. Por lo tanto, "hasta" se refiere a la longitud máxima de la secuencia promotora si hay menos de 1100 nucleótidos de los promotores de las sec. con núms. de ident. descritas.

En un segundo aspecto, la presente invención proporciona un constructo de ADN que comprende las secuencias de polinucleótidos promotoras descritas en la presente descripción, un polipéptido unido operablemente que codifica la secuencia y una secuencia de ARN terminadora de la transcripción unida operablemente. Cualquier terminador de la transcripción eucariótico, bien conocido por un experto en la técnica, puede usarse. Tal constructo de ADN permite la expresión fuerte del polipéptido en una especie fúngica en la que el genoma está sesgado en C y G. De particular importancia son las especies de los subfilos *Pucciniomycotina* y *Ustilaginomycotina*. Las especies de particular importancia son aquellas en los géneros *Rhodosporidium*, *Rhodotorula*, *Sporobolomyces*, *Ustilagoy Pseudozyma*, en los cuales residen un número de especies con gran potencial para la bioconversión de recursos renovables en productos de alto valor, tales como triglicéridos, biodiesel, alcohol graso, vitaminas, lactona, terpenoides y biotensioactivos.

La hibridación de ácidos nucleicos, una técnica bien conocida por aquellos con experiencia en la técnica de la manipulación del ADN, puede usarse para identificar otros polinucleótidos adecuados. De acuerdo con la invención otros promotores adecuados para su uso pueden obtenerse mediante la identificación de polinucleótidos que hibridan selectivamente con los promotores descritos anteriormente por hibridación bajo condiciones de baja rigurosidad, condiciones de moderada rigurosidad, o condiciones de alta rigurosidad. Las secuencias que hibridan selectivamente, típicamente tienen al menos 50 % de identidad de secuencia, preferentemente al menos 70 %, 80 % o 90 % de identidad de secuencia, y con la máxima preferencia 95 %, 98 % o 99 % de identidad de secuencia entre sí.

Las búsquedas en bases de datos y las búsquedas de homología de las bases de datos de genomas y nucleótidos identifican moléculas similares de ADN o ARN basadas en la alineación de nucleótidos mediante el uso de algoritmos o programas de computadoras y estas técnicas son bien conocidas por los expertos en la técnica. De acuerdo con la invención otros polinucleótidos adecuados para su uso pueden obtenerse mediante la identificación *in silico* de polinucleótidos para las secuencias reguladoras con al menos 50 % de identidad de secuencia, preferentemente al menos 70 %, 80 % o 90 % de identidad de secuencia, y con la máxima preferencia 95 %, 98 % o 99 % de identidad de secuencia entre sí.

La invención proporciona una secuencia de polinucleótidos promotora seleccionada de las sec. con núms. de ident.:6 u 8, o la secuencia promotora de la misma, es decir, la secuencia sin los sitios de clonación. En una descripción, una secuencia de polinucleótidos promotora se proporciona que tiene al menos 60 % de identidad con cualquiera de estas secuencias de polinucleótidos promotoras. En otra descripción, una secuencia de polinucleótidos promotora se proporciona que tiene 70 % de identidad con cualquiera de estas secuencias de polinucleótidos promotoras. En una descripción adicional, una secuencia de polinucleótidos promotora se proporciona que tiene 80 % de identidad con cualquiera de estas secuencias de polinucleótidos promotoras. En una descripción adicional, una secuencia de polinucleótidos promotora se proporciona que tiene 90 % de identidad con cualquiera de estas secuencias de polinucleótidos promotoras. En otra modalidad, una secuencia de polinucleótidos promotora se proporciona que tiene 95 % de identidad con cualquiera de estas secuencias de polinucleótidos promotoras. En otra modalidad, una secuencia de polinucleótidos promotora se proporciona que tiene 98 % de identidad con cualquiera de estas secuencias de polinucleótidos promotoras. En una modalidad, una secuencia promotora en la presente descripción, tiene aproximadamente 400 pares de bases hasta aproximadamente 1100 pares de bases de longitud que comienza desde la posición -1 del codón ATG. Como se usa en la presente descripción "hasta" se refiere a la longitud de la porción promotora de los promotores establecidos en las sec. con núms. de ident. descritas. Por lo tanto, "hasta" se refiere a la longitud máxima de la secuencia promotora si hay menos de 1100 nucleótidos de los promotores de las sec. con núms. de ident. descritas.

La invención proporciona un constructo de polinucleótido que comprende un promotor aislado descrito en la presente descripción, tal como uno seleccionado de las sec. con núms. de ident.:6 u 8, o la porción promotora de las mismas, unido operativamente a una secuencia que codifica un polipéptido que se une operativamente a un terminador de la transcripción. En una modalidad, un fragmento operable, también denominado una porción promotora en la presente descripción, tiene aproximadamente 400 pares de bases hasta aproximadamente 1100 pares de bases de longitud comenzando desde la posición -1 del codón ATG. Como se usa en la presente descripción "hasta" se refiere a la longitud de la porción promotora de los promotores establecidos en las sec. con núms. de ident. descritas. Por lo tanto, "hasta" se refiere a la longitud máxima de la secuencia promotora si hay menos de 1100 nucleótidos de los promotores de las sec. con núms. de ident. descritas. En una modalidad, el constructo de polinucleótido permite la expresión eficiente de un polipéptido en una especie fúngica seleccionada de los subfilos *Pucciniomycotina* y *Ustilaginomycotina*. La especie fúngica es preferentemente una seleccionada del género *Rhodosporidium, Rhodoturula, Ustilago, Pseudozyma,* o *Sporobolomyces*, el genoma de los cuales contiene al menos 50 % de C y G, preferentemente más del 60 % de C y G.

10

15

20

25

30

35

40

45

50

65

En una modalidad, el constructo de polinucleótido se inserta en un vector T-ADN, un vector trasportador, o en un cromosoma fúngico, en donde la secuencia que codifica el polipéptido contiene al menos 50 % de CG, preferentemente 60 % de CG y con la máxima preferencia más del 80 % de CG.

En otra modalidad, la secuencia de polinucleótidos promotora contiene al menos una secuencia GAGGAG, o invierte la secuencia complementaria de la misma. En otra modalidad, el promotor aislado se une operativamente a un gen que codifica una enzima de resistencia a antibióticos, una enzima de resistencia a herbicida, GFP, GUS, lacZ, terpeno sintasa, ácido graso desaturasa, P450 citocromo oxidasa, glucanasa, xilanasa, mananasa, manosidasa, glucosidasa, glucomananasa, xiluglucanasa, hidroximetilglutaril-CoA sintasa, hidroximetilglutaril-CoA reductasa, acetil-CoA Cacetiltransferasa, mevalonato cinasa, fosfomevalonato cinasa, difosfomevalonato descarboxilasa, isopentenil-difosfato delta-isomerasa, farnesil difosfato sintasa, geranilgeranil difosfato sintasa, metil transferasa, o glucosil transferasa, beta-carotenoide hidroxilasa, beta-carotenoide oxidasa.

En una modalidad, puede usarse cualquier terminador de la transcripción operable en las especies fúngicas. Los terminadores se ubican típicamente aguas abajo (3') del gen, después del codón de parada (TGA, TAG o TAA). Los terminadores desempeñan un papel importante en el procesamiento y la estabilidad del ARN así como también en la traducción. La mayoría, pero no todos los terminadores, contienen una secuencia de poliadenilación o sitio de escisión. Ejemplos de secuencias específicas de poliadenilación son AAUAAA o AAUAAU. Estas secuencias se conocen como los elementos próximos aguas arriba (NUE) (Nagaya y otros, 2010). Los NUE usualmente residen aproximadamente 30 pb de una región rica en GU (Mogen y otros, 1990; Mogen y otros, 1992; Rothnie y otros 1994), conocida con elementos lejanos aguas arriba (FUE). Los FUE potencian el procesamiento en la secuencia de poliadenilación o el sitio de escisión, que usualmente es un CA o UA en una región rica en U (Bassett, 2007). Dentro del terminador, existen elementos que aumentan la estabilidad del ARN transcrito (Ohme-Takagi y otros, 1993; Newman y otros, 1993; Gutiérrez y otros, 1999) y pueden también controlar la expresión de genes (Ingelbrecht, 1989; An y otros, 1989).

La hibridación de ácidos nucleicos, una técnica bien conocida por aquellos con experiencia en la técnica de la manipulación del ADN, puede usarse para identificar otros terminadores adecuados. De acuerdo con la invención otros promotores adecuados para su uso pueden obtenerse mediante la identificación de terminadores que hibridan selectivamente con los promotores descritos anteriormente por hibridación bajo condiciones de baja rigurosidad, condiciones de moderada rigurosidad, o condiciones de alta rigurosidad. Las secuencias que hibridan selectivamente, típicamente tienen al menos 50 % de identidad de secuencia, preferentemente al menos 70 %, 80 % o 90 % de identidad de secuencia, y con la máxima preferencia 95 %, 98 % o 99 % de identidad de secuencia entre sí.

Las búsquedas en bases de datos y las búsquedas de homología de las bases de datos de genomas y nucleótidos identifican moléculas similares de ADN o ARN basadas en la alineación de nucleótidos mediante el uso de algoritmos o programas de computadoras y estas técnicas son bien conocidas por los expertos en la técnica. De acuerdo con la invención otros terminadores adecuados para su uso pueden obtenerse mediante la identificación *in silico* de terminadores para las secuencias reguladoras con al menos 50 % de identidad de secuencia, preferentemente al menos 70 %, 80 % o 90 % de identidad de secuencia entre sí.

Un ADN de interés puede añadirse al constructo de polinucleótido. El ADN de interés se une operativamente al promotor y a un terminador. Cualquier promotor y terminador operable en las especies de los subfilos Pucciniomycotina y Ustilaginomycotina puede usarse. En algunas modalidades, el ADN de interés puede usarse para insertar o modificar rutas metabólicas, tales como biosíntesis de ácidos grasos, biosíntesis de lípidos, biosíntesis de triglicéridos, y las similares. El ADN de interés puede insertarse en el genoma de las células fúngicas para potenciar la bioconversión de los recursos renovables en productos de alto valor, tales como triglicéridos, biodiesel, alcohol graso, vitaminas, biotensioactivos, lactona, terpenoide y similares.

Un constructo de polinucleótido puede introducirse directamente en el ADN genómico de la célula fúngica mediante el uso de técnicas tales como electroporación y microinyección de los protoplastos de las células vegetales, o el constructo de polinucleótido puede introducirse directamente al tejido fúngico mediante el uso de métodos balísticos, tal como bombardeo con partículas de ADN. Alternativamente, el constructo de polinucleótido puede combinarse con regiones flanqueantes adecuadas de T-ADN e introducirse en un vector huésped convencional de *Agrobacterium tumefaciens*. Las

funciones de virulencia del huésped *Agrobacterium tumefaciens* dirigirá la inserción del constructo en el ADN de las células fúngicas cuando la célula se infecta por la bacteria. Por lo tanto, puede usarse cualquier método, que proporcione una transformación/transfección efectiva. Ver, por ejemplo, las patentes de Estados Unidos núms. 7,241,937, 7,273,966 y 7,291,765 y las publicaciones de solicitud de patentes de Estados Unidos núms. 2007/0231905 y 2008/0010704 y las referencias citadas en los mismas. Ver además, las solicitudes internacionales publicadas núms. WO 2005/103271 y WO 2008/094127 y las referencias citadas en las mismas.

5

10

15

20

25

30

35

Los hongos transformados se transfieren a medio de cultivo estándar (por ejemplo, medio de nutrientes sólidos o líquidos, grano, vermiculita, compost, turba, madera, aserrín, paja, etc.) y se crecen o se cultivan en una manera conocida por el experto en la técnica.

Después de que el polinucleótido se incorpora establemente en los hongos transformados, puede transferirse a otros hongos por cruce sexual. Puede usarse cualquiera de una serie de técnicas de reproducción estándar, en dependencia de las especies a cruzar.

Puede ser útil generar un número de hongos individuales transformados con cualquier constructo recombinante para recuperar hongos libres de cualquier efecto posicional. También puede ser preferible seleccionar los hongos que contienen más de una copia del constructo de polinucleótido introducido de manera que se obtengan niveles altos de expresión de la molécula recombinante.

Puede ser conveniente producir líneas fúngicas que sean homocigóticas para un gen particular si es posible en las especies particulares. En algunas especies esto se logra mediante el uso de cultivos monospóricos. Al usar estas técnicas, es posible producir una línea haploide que porta el gen insertado y después duplicar el número de cromosomas de manera espontánea o mediante el uso de colchicina. Esto da lugar a un hongo que es homocigótico para el gen insertado, que puede evaluarse fácilmente si el gen insertado porta un gen de marcador de selección adecuado para la detección de los hongos que portan el gen. Alternativamente, los hongos pueden autofertilizarse, lo que conduce a la producción de una mezcla de esporas que consiste en, en el caso más simple, tres tipos, homocigotos (25 %), heterocigotos (50 %) y nulos (25 %) para el gen insertado. Aunque es relativamente fácil clasificar los hongos nulos de aquellos que contienen el gen, es posible en la práctica clasificar los hongos homocigotos de los heterocigotos mediante análisis de la transferencia Southern en el que se presta atención cuidadosa a cargar las cantidades exactamente equivalentes de ADN de la población mezclada, y se clasifica los heterocigotos por la intensidad de la señal de una sonda específica para el gen insertado. Es recomendable verificar los resultados del análisis de la transferencia Southern permitiendo que cada transformante independiente se autofertilice, dado que puede obtenerse evidencia adicional para homocigosis por el simple hecho que si los hongos eran homocigotos para el gen insertado, todas las líneas fúngicas subsecuentes del propio individuo contendrán el gen, mientras que si el hongo era heterocigoto para el gen, la generación que crece de la propia semilla contendrá líneas fúngicas nulas. Por lo tanto, con la simple autofertilización se puede seleccionar líneas fúngicas homocigotas que también pueden confirmarse por el análisis de la transferencia Southern.

La creación de líneas parentales homocigotas hace posible la producción de hongos y esporas híbridos que contendrán un componente proteico modificado. Las líneas parentales homocigotas transgénicas se mantienen con cada parental que contiene la primera o segunda secuencia de ADN recombinante unida operablemente a un promotor. También se incorpora en este esquema las ventajas de cultivar un cultivo híbrido, que incluye la combinación de los rasgos más valiosos y vigor híbrido.

45 La práctica de la presente invención emplea, a menos que se indique lo contrario, técnicas convencionales de química, biología molecular, microbiología, ADN recombinante, genética, inmunología biología celular, cultivo celular y biología transgénica, que están dentro del estado de la técnica. Ver, por ejemplo, Maniatis y otros, 1982, Molecular Cloning (Cold Spring Harbor Laboratory Press, Cold Spring Harbor, Nueva York); Sambrook y otros, 1989, Molecular Cloning, 2da Ed. (Cold Spring Harbor Laboratory Press, Cold Spring Harbor, Nueva York); Sambrook y Russell, 2001, Molecular Cloning, 3ra Ed. (Cold Spring Harbor Laboratory Press, Cold Spring Harbor, Nueva York); Ausubel y otros, 1992), Current Protocols 50 in Molecular Biology (John Wiley & Sons, incluidas las actualizaciones periódicas); Glover, 1985, ADN Cloning (IRL Press, Oxford); Russell, 1984, Molecular biology of plants: a laboratory course manual (Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y.); Anand, Techniques for the Analysis of Complex Genomes, (Academic Press, Nueva York, 1992); Guthrie y Fink, Guide to Yeast Genetics and Molecular Biology (Academic Press, Nueva York, 1991); Harlow y Lane, 1988, Antibodies, (Cold Spring Harbor Laboratory Press, Cold Spring Harbor, Nueva York); Nucleic Acid 55 Hybridization (B. D. Hames & S. J. Higgins eds. 1984); Transcription And Translation (B. D. Hames & S. J. Higgins eds. 1984); Culture Of Animal Cells (R. I. Freshney, Alan R. Liss, Inc., 1987); Immobilized Cells And Enzymes (IRL Press, 1986); B. Perbal, A Practical Guide To Molecular Cloning (1984); the treatise, Methods In Enzymology (Academic Press, Inc., N.Y.); Methods In Enzymology, Vols. 154 y 155 (Wu y otros eds.), Immunochemical Methods In Cell And Molecular Biology (Mayer y Walker, eds., Academic Press, London, 1987); Handbook Of Experimental Immunology, Volúmenes I-IV 60 (D. M. Weir y C. C. Blackwell, eds., 1986); Riott, Essential Immunology, 6ta Edición, Blackwell Scientific Publications, Oxford, 1988; Fire y otros, ARN Interference Technology: From Basic Science to Drug Development, Cambridge University Press, Cambridge, 2005; Schepers, ARN Interference in Practice, Wiley-VCH, 2005; Engelke, RNA Interference (RNAi): The Nuts & Bolts of siRNA Technology, DNA Press, 2003; Gott, RNA Interference, Editing, and Modification: Methods and Protocols (Methods in Molecular Biology), Human Press, Totowa, NJ, 2004; Sohail, Gene Silencing by RNA Interference: 65

Technology and Application, CRC, 2004.

EJEMPLOS

La presente invención se describe con referencia a los siguientes Ejemplos, que se ofrecen a modo de ilustración y no pretenden limitar la invención de ninguna manera. Se utilizaron técnicas estándar bien conocidas en la técnica o técnicas específicamente descritas a continuación.

Ejemplo 1

5

15

20

25

10 Cultivo de Cepas Microbianas y Métodos Moleculares Básicos

La cepa Rhodosporidium toruloides ATCC10657 (referida como Rt1), y la cepa Rhdotorula glutinis ATCC204091 (referida como Rg2), Pseudozyma aphidis ATCC32657, se obtuvieron de American Type Culture Collections (ATCC). Sporobolomyces roseus FGSC 10293 (IAM13481) y Rhodotorula graminis WP1 (FGSC WP1) (referidas como Rg3) se obtuvieron de Fungal Genetics Stock Center (Universidad de Missouri, EE.UU). La cepa de Ustilago maydis y la cepa Agrobacterium tumefaciens AGL-1 han sido descritas (Ji y otros, 2010; Lazo y otros, 1991). La cepa de Escherichia coli XL1-Blue se usó para la manipulación y amplificación de rutina de plásmidos. Las cepas fúngicas se cultivaron a 28 °C en caldo YPD (1 % de extracto de levadura, 2 % de peptona, 2 % de glucosa) o en agar patata-dextrosa sólido (PDA). A. tumefaciens se cultivó a 28 °C en medio líquido o sólido 2YT (1,6 % de triptona, 1 % de extracto de levadura, 0,5 % de NaCl). E. coli se creció en caldo LB o en agar sólido LB.

El ADN genómico se extrajo en base al método descrito para U. maydis (Ji y otros, 2010) con algunas modificaciones. En resumen, el cultivo celular en fase exponencial se recogió y se lavó con 1 M de sorbitol. Las células se resuspendieron en 0,1 ml de tampón SCS (1 M de sorbitol, 20 mM de citrato de sodio, pH 5,8) y se suplementaron con perlas de vidrio (1 mm de diámetro, Sigma-Aldrich, EE.UU). La lisis de las células se produjo por agitación vorticial y el ADN genómico se aisló después de la extracción con fenol/cloroformo y se precipitó con etanol. El ADN extraído se cuantificó con el Espectrofotómetro NanoDrop® ND-1000 (Nanodrop Technologies, EE.UU) y la calidad del ADN se analizó mediante electroforesis en gel de agarosa.

30 Ejemplo 2

Transformación mediada por Agrobacterium tumefaciens (ATMT)

ATMT se realizó esencialmente como se describió anteriormente para *R. toruloides, S. roseus, U maydis y Pseudozyma* aphidis (Ji, y otros, 2010; Liu, y otros, 2012). El cocultivo de las células fúngicas y de los donantes Agrobacterium se realizó a pH 5,6, 24 °C durante 2,5-3 días en membranas de nailon y la selección se realizó en placas YPD que contienen 300 μg/ml de cefotaxima y 150-300 μg/ml (150 μg/ml para *R. toruloides, R. glutinis,* y 300 μg/ml para *P. aphidis* y *S. roseus*) de higromicina B a 28 °C durante 3-5 días.

40 Ejemplo 3

Clonación de los promotores

Basado en la abundancia de la secuencia EST publicada en varios medios (Ho y otros, 2007), seleccionamos un número de genes (Tabla 1) como fuente potencial de promotores fuertes para Rhodosporidium y Rhodotorula. Otros genes candidatos incluyen aquellos que codifican proteínas de la biosíntesis de ácidos grasos en Rhodosporidium y Rhodotorula, por ejemplo, acetil-CoA sintasa (ACC1), proteína portadora de acil-CoA (ACP1), piruvato descarboxilasa (PDC1) y el gen regulado por nitrato (NAR1). Las secuencias CDS de Ustilago maydis se buscaron contra la base de datos genómica de Rhodosporidium y Rhodotorula.

Tabla 1

		Genes Car	ndidatos con P	romotor Fuerte	
Medio Completo*	medio sin carbono*	Medio sin nitrógeno*	teliospora latente*	Descripción	ID de MUMDB
7	18	22	3	gliceraldehído 3-fosfato deshidrogenasa	um02491
35	54	22	11	TAL1 - transaldolasa probable	um04138
8	12	6	0	Actina probable	um11232
107	79	65	32	proteína de fusión ubiquitina/proteína ribosomal S27a probable	um04588

65

50

55

	Ę	5	
1	C)	

146	54	16	8	FPR1 - peptidil-prolil cis-trans isomerasa, proteína de unión a FK506 probable	um11054		
35	37	14	17	CPR1 - ciclofilina (peptidilprolil isomerasa) probable	um03726		
48	13	29	4	cadena alfa del factor de elongación de la traducción eEF-1 probable	um00924		
0	0	0	2	PDC1 - piruvato descarboxilasa, isoenzima 1 probable	um03994		
17	6	11	1	ENO1 - enolasa I (2-fosfoglicerato deshidratasa) probable	um03356		
Nota: * L	os números ir	ndican el total d	de aciertos en	la biblioteca de EST del medio respe	ctivo.		

Para definir el extremo 3' de los promotores, se realizó RACE 5' mediante el uso del kit de Amplificación de ADNc BD SMARTerTM RACE (Clontech, California, EE.UU) de acuerdo con las instrucciones del fabricante. Los fragmentos promotores de ADN se obtuvieron por PCR mediante el uso de un cebador del extremo 3' que se diseña en el primer ATG en las regiones 5' no traducidas, usualmente con un sitio de solapamiento *Ncol* (CCATGG) o *Bsp*HI (TCATGA) en el codón ATG. BamHI se usa si la secuencia de ADN contiene los sitios Ncol y BspHI. Los cebadores 5' se diseñaron a 1-2 kb del ATG. Los cebadores se enumeran en la Tabla 2. Los fragmentos de PCR se digirieron con las enzimas correspondientes, se clonaron en pPN006 o pRH2031 (Figura 1), que es un vector T-ADN que contiene el casete Rt*GPD1*:Rt*GFP:nos* (Liu y otros, 2012).

Tabla 2

3	C

sec. con núm. de	Nombre del	Origen	Longitud (pb)	Cebadores 5' del PCR (sec. con núm. de ident.:)	Cebadores 3' del PCR (sec. con núm. de ident.:
ident.:	promotor		(17	,	(**************************************
1	Rg2TEF1	R. glutinis ATCC 204091 factor de elongación de la traducción	1017	AAAGGTACCGTGCG AGAAGAAGCGAGG C (13)	AAACCATGGTTCCCC CCCAGTACACAGTAC AGTA (14)
2	Rg3TEF1	R. graminis cepa WP1 factor de elongación de la traducción	946	AAAGGTACCCATGC TGCTGCTGCCCCTC A (15)	ATACCATGGTGGATG AAGTGAGATTCGAGT G (16)
3	Rg3S27	R. graminis cepa WP1 proteína ribosomal S27	1464	AAAGGTACCCAAAG GGAGAGGAGCGGG CG (17)	AAACCATGGTGACCT ACGCCTACACAAGGG TGC (18)
4	Rg2ACP1	R glutinis ATCC 204091 proteína portadora de acil-CoA	1321	AAAGGTACCTGAGC GGGCGAGCCGCGAG (19)	aaaTCATGACTGAACA AAGTTTTCCTGCGGC GC (20)
5	Rg2NAR1	R.glutinis ATCC 204091 nitrato reductasa	1499	AAAGGTACCGCTCA TCATCGAGCGAGGG CAG (21)	AAACCATGGCGGCGG GTGATTCTTCTTGGTT C (22)

1596

1391

1500

1500

1222

1507

1646

gactagtcGCCAGGGAA

CGCAGAGAAGG (23)

gactagtcGGCGAAGAG

GAGGGGTGTTAGG

gactagtCGTGCAGAAG

gactagtcGGGAGGATT

GATGATCGGGTTGC

AAAGGTACCGCGAG

AAAGGTACCACTAC

CTCGTCACGACCCA

AAAGGCGCGCCTGA

AGCTGTACATCGAG

GGGAAGGCAGGA

GAGTCG (31)

GGGTG (33)

GTGGAC (35)

GAACCCGAGGAG

(25)

(27)

(29)

aaaccatgGCTGTGAGAG

GAGTATCGCAG (24)

aaaggatccgccatTGCGGT TCAAAGGCTGGGCG

aaaccatgGCGAGGCGAG

aaacCATGGTGGTCGA

AAACCATGGTCGGAC

GGTGGGAAGGGGG

AAACCATGGTGTAGG

TAGCTGCGGCGGGT

aaaCCATGGTCCCACA

ATCAGTAGTTGTCCT

CGGAAG (36)

GGA (32)

(34)

GCTTGTGAGG (30)

AGGGGTTGAG (28)

(26)

5	
•	

6

7

8

9

10

11

12

Rg2ENO1

Rg2PDC1

Rg3ENO1

Rg3PDC1

Rg3PP1

Rg3TAL1

Rg2ACC1

10

15

20

25

30

35

40

45 Ejemplo 4

Actividad del promotor en Rhodosporidium en medio de producción lípidos

R. ATCC 204091

enolasa

(fosfopiruvato

hidratasa)

R. glutinis ATCC

204091 piruvato

descarboxilasa

R. graminis cepa WP1 enolasa

(fosfopiruvato

hidratasa)

R.graminis cepa

WP1 piruvato

descarboxilasa

R. graminis cepa

WP1peptidilprolil

isomerasa

R. graminis cepa

WP1 transaldolasa

R. glutinis ATCC 204091 acetil-CoA

sintasa

Los constructos reporteros GFP del promotor se transformaron a Rhodosporidium toruloides ATCC 10657 por el método ATMT. Las colonias transformadas (>100) se agruparon, se cultivaron en medio YPD con 150 µg/ml de higromicina B y 50 300 µg/ml de cefataxoma y se diluyeron a aproximadamente 0,1 de DO600 en el medio de producción lípidos [10 mM K2HPO4-KH2PO4, (pH 6,13), 4 g/L de extracto de levadura, 0,3 g/L de urea, 0,1 g/L de Na2SO4, 10 mg/L de tirosina, valina y vitamina B (B1+B6), 8 % de glucosa] sin antibióticos adicionados. Las cepas se cultivaron a 28 °C con agitación (280 rpm) durante 2 días y después se diluyeron a aproximadamente 0,1 de DO600 durante 24 horas y los cultivos se ajustaron a 0.6 unidades de DO600 antes de someterlos a la medición de la fluorescencia en un lector Tecan M200 55 mediante el uso de 476 nm como longitud de onda de excitación, y 509 nm como longitud de onda de emisión; valor de ganancia 100. La intensidad de la fluorescencia se normalizó a DO600 y se sustrajo contra los cultivos celulares no transformados bajo las mismas condiciones. Rg3TAL1 es débil mientras que Rg2ACC1 no mostró actividad evidente (Tabla 3). Los transformantes del reportero Rg2ACC1 en Rhodosporidium glutinis ATCC 90781 que no mostraron 60 fluorescencia de la GFP se cultivaron en un medio limitado de nitrógeno (glucosa 70 g/l, extracto de levadura 0,75 g/l, (NH4)2SO4 0,1 g/l, KH2PO4 1,0 g/l, MgSO4·7H2O 1,5 g/l, pH 5,6) durante 24 horas (no mostrado). El promotor RtGPD1 se establece en la sec. con núm. de ident.:38.

Tabla 3

Fluorescencia Relativa de la GFP de los Promotores seleccionados en Rhodosporidium toruloides Promotor Rg2TEF1 Rg3TEF1 Rg3TAL1 Rg3S27 Rg3*PPI* Rg2ENO1 Rg2ACC1 RtGPD1 0 Lectura de fluorescencia 183 616 83 316 566 383 1100

Ejemplo 5

5

15

20

10 Actividad del Promotor en Medio rico en N y libre de N en Rhodosporidium, Pseudozyma, Ustilago y Sporobolomyces

Un conjunto seleccionado de constructos reporteros GFP del promotor se transformaron mediante el método ATMT a *Rhodosporidium toruloides* ATCC 10657, *Ustilago maydis L8, Pseudozyma aphidis* ATCC32657 y *Sporobotomyces roseus* FGSC 10293. Las colonias transformadas (>100) se agruparon, se cultivaron en medio YPD con 150 μg/ml (o 300 μg/ml para *Pseudozyma aphidis*) de higromicina B y 300 μg/ml de cefataxoma durante 2 días a 28 °C y se diluyeron a aproximadamente 0,1 DO600 en medio YNB y también en medio YNB N- (ambos medios con 5 % de glucosa) y se continuó el cultivo durante 1-3 días con agitación. La DO600 y la fluorescencia de la GFP se midieron con Tecan infinite200. La intensidad de la fluorescencia de la GFP (normalizada contra la DO600) se indica en las Tablas 4-11. Los promotores Umgpdl, RtGPD1, Rg3GPD1, Rg2FAD1 y SrGPD1 se establecen en las sec. con núms. de ident:37, 38, 39, 40 y 41, respectivamente. El aislamiento de estos promotores se describe en el documento núm. WO 2012/169969.

Tabla 4

					Intensidad d	Intensidad de la Fluorescencia en R. toruloides ATCC 10657 en Medio YNB	ncia en <i>R. tor</i> u	loides ATCC	10657 en Med	io YNB				
	Rg2TEF1	Rg3TEF1	Rg2TEF1 Rg3TEF1 Rg3S27 Rg2ACP1		Rg2NAR1	Rg2NAR1 Rg2ENO1 Rg2PDC1 Rg3ENO1 Rg3PDC1 Umgpd1 RtGPD1	Rg2PDC1	Rg3EN01	Rg3PDC1	Umgpd1		Rg3GPD1 R2FAD1		SrGPD1
Día1	67098,1±4 810,2	493314,2± 17949,6	67098,1±4 493314,2± 315280,7±1 822714,3±2 810,2 17949,6 3486,8 9975,4	822714,3±2 9975,4	76162,8±5 196,2	76162,8±5 1229511,5±3 439906,8±2 310853,1±1 524990,1±1 185894,4± 647267,9±1 482273,0±1 790204,6±2 94929,5±3 196,2 8057,0 0026,2 1379,8 9316,2 5956,8 7825,0 7080,6 6581,6 6581,6	439906,8±2 0026,2	310853,1±1 1379,8	524990,1±1 9316,2	185894,4± 5956,8	647267,9±1 7825,0	482273,0±1 7080,6	790204,6±2 6581,6	94929,5±3 664,8
Día2	90051,8±5 580,0	324001,3± 15528,4	324001,3± 138885,1±5 15528,4 578,8	90051,8±5 324001,3± 138885,1±5 328422,2±1 580,0 15528,4 578,8	77194,7±5 304,6	77194,7±5 960118,3±35 195357,6±1 73,8 1318157,8±1 23430,4±1 9049,2 17780,8 25505,2±2 57888,5±3 304,6 167,0 4536,8 73,8 73,8 73,8 7305,8 1392,6 9049,2 7780,8 7780,8 4257,0 134,6	195357,6±1 4536,8	49159,7±24 73,8	318157,8±1 3705,8	23430,4±1 1392,6	470829,4±1 9049,2	302113,7±2 7780,8	2 622505,2±2 4257,0	57888,5±3 134,6
Día3	125629,1± 5884,6	109829,4± 5871,2	71034,5±37 93,6	125629,1± 109829,4± 71034,5±37 391254,0±1 5884,6 5871,2 93,6 5650,6	72916,9±5 191,4	72916,9±5 1080769,4±3 186096,4±1 69658,8±27 179610,3±7 52504,2±2 417595,6±1 294063,5±1 678405,8±2 72393,3±3 191,4 7277,4 5397,2 17,4 379,4 197,4 6078,8 6096,2 5364,6 5364,6 3584,6	186096,4±1 5397,2	69658,8±27 17,4	179610,3±7 379,4	52504,2±2 197,4	417595,6±1 6078,8	294063,5±1 6996,2	678405,8±2 5364,6	72393,3±3 358,4

abla 5

Rg2TEF Rg3TEF1 Rg3SZ7 Rg2ACP1 Rg2ENO1 Rg2PDC1 Rg3ENO Rg3PDC1 Umgpd1 RtGPD 1 RtGPD 1					
Rg2TEF Rg3TEF1 Rg3S27 Rg2ACP1 Rg2ENO1 Rg2PDC1 Rg3BOC Rg3PDC1 Umgpd1 RtGPD 1 Rg3CPD1 Rg3CPD1 Rg2FDD1 Rg2PDC1 Rg3PDC1 Umgpd1 RtGPD 1 Rg3CPD1 Rg5CPD1 Rg2FDD1 Rg2PDC1 Rg3PDC1 Umgpd1 RtGPD 1 Rg3CPD1 Rg5CPD1 Rg4S60,2± Rg1C,0 Rg3PDC1 Umgpd1 RtGPD 1 Rg3CPD1 Rg3CPD1 Rg4S60,2± Rg1C,0 Rg3PDC1 Rg3CPD1 Rg3CPD1 Rg3CPD1 Rg5CPD1 Rg4S60,2± Rg2CD1 Rg3CPD1 Rg3CPD1		SrGPD1	208402,0± 3765,5	74769,4±3 235,3	27930,9±3 459,1
Rg2TEF Rg3SZ7 Rg2ACP1 Rg2ENO1 Rg2PDC1 Rg3ENO Rg3PDC1 Umgpd1 RtGPD 1 Rg3GPD1 Rg3GPD1 Rg3GPD1 RtGPD 1 RtGPD 1 Rg3GPD1 RtGPD 1 RtGPD 1 RtGPD 1 RtGPD 1 RtGPD 1 Rg3GPD1 RtGPD 1 RtGPD 1		R2FAD1	1046580,2± 26682,3	729764,3±2 4357,7	495414,9±2 5564,6
Rg2TEF Rg3TEF1 Rg3S27 Rg2ACP1 Rg2ENO1 Rg2ENO1 Rg2PDC1 Rg3ENO Rg3PDC1 Umgpd1 RtGPD 1		Rg3GPD1	543617,9±1 7181,3	325267,7±2 7881,5	143840,6±1 7096,9
Rg2TEF Rg3TEF1 Rg2ACP1 Rg2NAR1 Rg2ENO1 Rg2PDC1 Rg3ENO Rg3PDC1 Umgpd1		RtGPD 1	798469,1±1 7925,7	559941,0±1 9149,9	240704,2±1 6179,5
Rg2TEF Rg3TEF1 Rg3S27 Rg2ACP1 Rg2NAR1 Rg2ENO1 Rg2PDC1 Rg3ENO Rg3PDC1	NB libre de N	Umgpd1	179467,0± 6057,5	70298,9±1 1493,3	42892,0±2 298,1
Rg2TEF Rg3S27 Rg2ACP1 Rg2ENO1 Rg2ENO1 Rg2PDC1 Rg3ENO	77 en Medio Y	Rg3PDC1	521271,4±1 9416,9	229565,0±1 3806,5	116966,8±7 480,1
Rg2TEF Rg3S27 Rg2ACP1 Rg2ENO1 Rg2PDC1 Rg2PDC1	8 ATCC <i>106</i> 5	Rg3ENO	146494,1±1 1480,5	87625,2±25 74,5	41721,8±28 18,1
Rg2TEF Rg3TEF1 Rg3S27 Rg2ACP1 Rg2NAR1 Rg2ENO1	en R. toruloide	Rg2PDC1	446260,0±2 0126,9	189373,9±1 4637,5	175901,0±1 5497,9
Rg2TEF Rg3TEF1 Rg3S27 Rg2ACP1 Rg2NAR1	luorescencia e	Rg2ENO1	1424622,6± 38157,7	1023479,6± 35267,7	1045808,5± 37378,1
Rg2TEF Rg3TEF1 Rg3S27 Rg2ACP1 Rg2ACP1 E5110,9 8050,3 3587,5 0076,1 E5188,0,7 5629,1 979,5 3269,1 101884, 75616,7±59 131082,7±3 274152,1±1 Dia3 6±6085, 71,9 894,3 5751,3 274152,1±1	nsidad de la F	Rg2NAR1	272301,0± 5296,9	96375,2±5 405,3	49724,9±5 292,1
Día1 Rg2TEF Rg3TEF1 Rg3S27 Día1 70881,8 380951,5±1 365547,6±1 45110,9 8050,3 3587,5 5625,0 154658,6±1 229116,8±5 101884, 75616,7±59 131082,7±3 131082,7±3 3894,3	Inter	Rg2ACP1	815919,4±3 0076,1	194767,0±1 3269,1	274152,1±1 5751,3
Rg2TEF Rg3TEF1 Dia1 70881,8 380951,5±1 ±5110,9 8050,3 154658,6±1 Dia2 85225,0 154658,6±1 ±5880,7 5629,1 5629,1 Dia3 6±6085, 71,9 3 562085, 71,9		Rg3S27	365547,6±1 3587,5	229116,8±5 979,5	131082,7±3 894,3
Rg2TEF Dia1 70881,8 ±5110,9 Dia2 85225,0 101884, 101884,		Rg3TEF1	380951,5±1 8050,3	154658,6±1 5629,1	75616,7±59 71,9
Dia2 Dia3		Rg2TEF	70881,8 ±5110,9	85225,0 ±5880,7	101884, 6±6085, 3
					Día3

abla 6

	SrGPD1	23103,0±14 55,1	3854,7±31 4634,5+30 6430,8±59 5748,1±51 8123,9±61 6537,3±584, 9876,9±80 9713,0±709, 4859,7±61 7830,9±752, 1,2 6,2 5,9 9,0 7,0 7,0 8	, 1679,0±13 2504,6±30 3504,2±41 3165,2±39 4602,1±78 3260,7+324, 4542,3±15 5781,1±478, 2671,1±16 3900,5±290, 7.9 1.5 0.4 6.5 0.2 1
	Rg2FAD1	16309,0±2 15,5	4859,7±61 5,0	2671,1±16 7.1
	Rg3GPD1	37495,4±17 74,8	9713,0±709, 4	5781,1±478, 1
	RtGPD1 Rg3GPD1 Rg2FAD1 SrGPD1	29319,0±4 65,9	9876,9±80 3,1	4542,3±15 4.2
8		11741,6±5 15870,6±7 90,4 78,4 86,7 90,0 7733,8±9 22180,7±10 65,9 74,8 74,8 15,5 55,1	6537,3±584, 8	3260,7+324, 1
Intensidad de la Fluorescencia en P. aphidis en Medio YNB	Rg2NAR1 Rg2ENO1 Rg2PDC1 Rg3ENO1 Rg3PDC1 Umgpd1	27733,8±9 86,7	8123,9±61 7,0	4602,1±78 0.2
en P. aphidis	Rg3ENO1	19768,3±9 78,4	5748,1±51 9,0	3165,2±39 6.5
luorescencia	Rg2PDC1	21807,7±7 90,4	6430,8±59 5,9	3504,2±41 0.4
sidad de la Fl	Rg2EN01	15870,6±7 83,5	4634,5+30 6,2	2504,6±30 1.5
Inten	Rg2NAR1	11741,6±5 77,1	3854,7±31 1,2	1679,0±13 7.9
	Rg2ACP1	20710,7± 24954,1±13 17864,7±9 25694,5±10 835,5 84,7	Día2 5617,3±2 7829,7±612, 4804,2±40 7541,3±629, 58,1 5	Día3 3738,0±1 3980,9±298, 3106,8±24 3793,1±699, 0.7
		3 17864,7±9 03,2	4804,2±40 3,4	3106,8±24 0.7
	Rg2TEF1 Rg3TEF1 Rg3S27	24954,1±13 47,7	7829,7±612, 5	3980,9±298, 1
	Rg2TEF1	20710,7± 535,5	5617,3±2 68,1	3738,0±1 73.8
		Día1	Día2	Día3

abla 7

				Inter	nsidad de la	insidad de la Fluorescencia en P. aphidis ATCC 10657 en Medio YNB libre de N	a en <i>P. aphidi</i> s	s ATCC <i>10657</i>	7 en Medio YN	IB libre de N				
	Rg2TEF1	Rg2TEF1 Rg3TEF1 Rg3S27 Rg2ACP1	Rg3S27		Rg2NAR1	Rg2NAR1 Rg2ENO1 Rg2PDC1 Rg3ENO1 Rg3PDC1 Umgpd1 RtGPD1 Rg3GPD1 Rg2FAD1 StGPD1	Rg2PDC1	Rg3ENO1	Rg3PDC1	Umgpd1	RtGPD1	Rg3GPD1	Rg2FAD1	StGPD1
Día 1	Día 4030,5±45 1 5,2	Día 4030,5±45 17201,3±114 4757,5±36 14666,9±32 5,5 7,8 2,0	4757,5±36 1466 7,8 2,0		5485,1±49 0,5	5485,1±49 13203,8±46 10218,7±27 12705,6±83 11338,6±33 9034,5±257 11511,6±39 9322,7±208 13410,0±38 21144,1±93 0.5	10218,7±27 1,8	12705,6±83 1,7	11338,6±33 8,7	9034,5±257	11511,6±39 6,1	9322,7±208 ,6	13410,0±38 3,1	21144,1±93 6,9
Día 2	5247,5±21 4,5	Día 5247,5±21 14281,5±290 7093,2±32 7835,6±503 2 4,5 ,6	7093,2±32 2,7	7835,6±503 ,6	6845,8±54 9,0	6845,8±54 6734,8±245 5801,6±476 3302,7±415 9382,1±193 13731,3±46 10564,5±14 10390,4±56 16069,0±49 16013,3±20 9,0 7,8 2,5 7,5 2,0 2,1	5801,6±476 ,7	3302,7±415 ,2	9382,1±193 ,6	13731,3±46 7,8	10564,5±14 2,5	10390,4±56 7,5	16069,0±49 2,0	16013,3±20 2,1
Día 3	5762,8±53	Dia 5762,8±53 12371,9±223 1983,5±18 2564,9±224 3 0.3 6 0.5	1983,5±18 0.5		2014,3±20 3.4	2014,3±20 2791,4±226 2013,8±187 5876,3±297 5874,1±585 5004,3±243 7856,3±215 9851,7±233 12774,0±22 14045,7±31 3.4 1.8 8 4 2 2 1.5 2 1	2013,8±187	5876,3±297	5874,1±585	5004,3±243	7856,3±215	9851,7±233	12774,0±22 5.3	14045,7±31

Tabla 8

	SrGPD1	20121,3±9 32,4	13639,8±5 67,3	7559,5±21 9,2
	Rg3GPD1 Rg2FAD1 SrGPD1	5663.0±59 10351,3±6 17224,0±8 18699,4±6 30749,5±16 12977,4±97 38101,5±10 16539,8±5 35361,2±12 20121,3±9 8,1 08,5 13,1 89,9 58,1 8,4 12,5 40,3 90,8 32,4	1899,9±25 3508,0±18 1948,5±26 4185,3±23 2,9 10692,2±45 14498,0±10 33043,3±92 5729,0±29 13483,6±72 13639,8±5 2,3 3,5 8,4 6,9 2,9 2,9 3,2 13639,8±5 13483,6±72 13639,8±5	6453,6±29 1885,2±13 1610,0±19 10261,0±8 13449,8±68 10667,8±10 37663,7±83 4328,0±49 19667,2±12 7559,5±21 5,7 8,7 9,4 8,7 9,4 8,7 9,4 9,4
	Rg3GPD1	16539,8±5 40,3	5729,0±29 0,4	4328,0±49 8,1
	RtGPD1	38101,5±10 12,5	33043,3±92 4,6	37663,7±83 9,4
82		12977,4±97 8,4	14498,0±10 96,3	10667,8±10 8,7
Intensidad de la Fluorescencia en <i>IJ. mavdis I.8</i> en medio YNB	Rg2NAR1 Rg2ENO1 Rg2PDC1 Rg3ENO1 Rg3PDC1 Umgpd1	30749,5±16 58,1	10692,2±45 2,9	13449,8±68 9,7
en <i>U. mavdis</i>	Rg3ENO1	18699,4±6 89,9	4185,3±23 6,9	10261,0±8 58,7
luorescencia	Rg2PDC1	17224,0±8 13,1	1948,5±26 8,4	1610,0±19 8,6
sidad de la F	Rg2ENO1	10351,3±6 08,5	3508,0±18 3,5	1885,2±13 8,7
Inten	Rg2NAR1	5663,0±59 8,1	1899,9±25 2,3	6453,6±29 5,7
	Rg2ACP1	16705,1+9 87,7	7046,8±58 4,2	1651,0±12 5,3
	Rg3S27	8744,3±74 3,4	12961,1±7 89,4	2132,4±19 6,8
	Rg2TPF1 Rg3TEF1 Rg3S27	Día 4497,4±40 31255,7±19 8744,3±74 16705,1+9 1 5,1 87,7 3,4 87,7	Dia 2237,4±19 20291,8±10 12961,1±7 7046,8±58 64,2 89,4 4,2	Día 728,7±142 29221,7±19 2132,4±19 1651,0±12 3 35,6 6,8 5,3
	Rg2TPF1	4497,4±40 5,1	2237,4±19 0,0	728,7±142 ,3
		Día 1	Día 2	Día 3

abla 9

	SrGPD2	19682,9±11 36,5	10507,5±50 9,5	5509,8±293, 1
	Rg2FAD1	27948,4±10 73,6	19059,7±83 9,1	14070,9±81 2,8
	Rg3GPD1	5161,0±20 4,5	9944,7±30 0,1	5116,4±33 2,8
	RtGPD1 Rg3GPD1 Rg2FAD1	36784,6±90 9,4	31362,0±93 1,9	22029,0±79 1,3
ore de N		8457,1±275, 2	15615,6±10 01,7	5416,3±157, 7
Intensidad de la Fluorescencia en U . maydis $L8$ en Medio YNB libre de N	Rg2NAR1 Rg2ENO1 Rg2PDC1 Rg3ENO1 Rg3PDC1 Umgpd1	20887,7±10 43,2	18643,1±85 3,6	10741,0±61 9,2
. maydis L8 en	Rg3ENO1	13592,6±90 7,9	16443,4±10 23,5	3832,4±251, 7
scencia en <i>U</i>	Rg2PDC1	5099,7±36 3,5	6278,8±43 5,4	2136,7±10 8,1
de la Fluore	Rg2ENO1	3393,2±25 8,4	8782,8±38 4,2	402,1±138
Intensidad	Rg2NAR1	4965,9±29 1,7	8929,3±33 2,9	1052,9±99 ,3
		14420,4±78 5,7	12643,8±78 4,1	3563,5±105 ,6
	Rg3S27	4848,0±743 ,4	11189,0±62 8,3	5243,9±171 ,1
	Rg2TEF1 Rg3TEF1 Rg3S27 Rg2ACP1	Día 2736,3±19 2344,3±16 4848,0±743 1420,4±78 4965,9±29 3393,2±25 5099,7±36 13592,6±90 20887,7±10 8457,1±275, 36784,6±90 5161,0±20 27948,4±10 19682,9±11 5,3 74,3 4,5 1,7 8,4 1,7 8,4 3,5 1,9 1,7 8,4 1,9 1,9 1,9 1,9 1,9 1,9 1,9 1,9 1,9 1,9	Día 4635,9±20 22335,2±98 11189,0±62 12643,8±78 8929,3±33 8782,8±38 6278,8±43 16443,4±10 18643,1±85 15615,6±10 31362,0±93 9944,7±30 19059,7±83 10507,5±50 2 0,5 4,7 5 8,3 4,1 2,9 4,1 2,9 4,2 5,4 23,5 5,4 3,6 3,6 3,6 3,6 3,7 1,9 1,9 1,9 1,9 1,9 1,1 1,9 1,9	Dia 4778,9±24 21945,0±15 5243,9±171 3563,5±105 1052,9±99 402,1±138 2136,7±10 3832,4±251, 10741,0±61 5416,3±157, 22029,0±79 5116,4±33 14070,9±81 5509,8±293, 3 1.3 2.3 31,6 1.3 2.8 1 7 8,1 8,1 8,1 8,1 8,1 8,1 8,1 8,1 8,1 8,1
	Rg2TEF1	2736,3±19 5,3	4635,9±20 0,5	4778,9±24 2,3
		Día 1	Día 2	Día 3

Tabla 10

7223,1±1 7997,9±116 5486,4±103 11336,9±69 7453,9±854 16829,3±85 7401,2±897 7108,0±108 7110,1±521 13471,3±36 7832,5±496, 6434,0±963 10613,7±10 24326,0±87 0.5 8 9,4 2,6 8,1 15,8 6,5
025,8 9,4 2,b 8,1 1,1 2,3 1,5 1,6 1,6 1,7 1,6 1,6 1,6 1,6 1,7 1,6 1,2,8 1,3 1,6 1,6 1,3 1,6 1,6 1,2 1,2 1,2 1,2 1,6 1,2 1,2 1,1
Díaz Díaz Díaz Díaz Díaz Díaz Díaz Díaz
7997,9±116 5486,4±103 11336,9±69 7453,9±854 9,4 2.6 8,1 ,1 (2.6±159 7978,3±164 6425,8±963 8653,9±158 8,7 8,7 7,5
7997,9±116 5486,4±103 11336,9±69 9,4 8,1 6212,6±159 7978,3±164 6425,8±963 8,7 8,1
7997,9±116 5486,4±103 9,4 2,6 6212,6±159 7978,3±164 8,7 8,1
7997,9±116 9,4 6212,6±159 8,7
Día2 Día3

Tabla 11

			10	4
	SrGPD2	47127,7±10 96,3	14795,5±75 6,5	9154,6±174 7,4
	Rg2FAD1	45162,3±45 73,9	10948,1±89 5,8	3946,5±119 5,9
	Pg3GPD1	49641,6±19 95,2	10303,5±84 3,4	4013,7±110 9,8
	PtGPD1	60102,2±23 65,9	12012,4±37 6,8	7854,3±915 ,8
de N	Umgpd1	53744,0±14 95,1	7691,8±249 ,3	5897,1±815 ,4
Jio YNB libre	Rg3PDC1	42986,2±21 65,7	11959,0±40 1,7	4879,3±615 ,1
oseus en Med	Rg2NAR1 Rg2ENO1 Rg2PDC1 Rg3ENO1 Rg3PDC1 Umgpd1 PtGPD1 Pg3GPD1 Rg2FAD1 SrGPD2	43722,6±22 36,3	11550,1±96 7,6	4986,2±154 8,4
Intensidad de la Fluorescencia en S. <i>roseus</i> en Medio YNB libre de N	Rg2PDC1	25733,8±31 18,1	5662,3±777 ,5	3541,9±110 8,4
	Rg2ENO1	38138,8±11 63,6	11034,9±73 2,3	2857,4±747 ,6
	Rg2NAR1	39594,0±46 78,3	9190,2±734 ,1	2165,8±143 7,5
		37998,4±21 62,6	13226,8±57 8,1	6968,6±813
	Rg3S27	34075,9±31 15,7	10507,2±91 2,6	3012,9±149 8,1
	Rg2TEF1 Rg3TEF1 Rg3S27 Rg2ACP1	Día 30415,8±21 38195,6±21 34075,9±31 37998,4±21 38594,0±46 38138,8±11 25733,8±31 43722,6±22 42986,2±21 53744,0±14 60102,2±23 49641,6±19 45162,3±45 47127,7±10 411,3 63,4 15,7 62,6 23,4 15,7 62,6 23,4 15,7 62,9 18,1 36,3 65,7 95,7 18,1 18,1 36,3 65,7 95,7 18,1 18,1 36,3 65,7 95,7 18,1 18,1 36,3 65,7 18,1 18,1 18,1 18,1 18,1 18,1 18,1 18	Día 6135,6±905 9358,5±104 10507,2±91 13226,8±57 9190,2±734 11034,9±73 5662,3±777 11550,1±96 11959,0±40 7691,8±249 12012,4±37 10303,5±84 10948,1±89 14795,5±75 2,6 8,1 1,7 1,6 1,7 1,7 1,6 1,7 1,7 1,6 1,7 1,7 1,6 1,7 1,7 1,7 1,7 1,7 1,7 1,7 1,7 1,7 1,7	Día 2698,7±120 5401,2±144 3012,9±149 6968,6±813 2165,8±143 2857,4±747 3541,9±110 4986,2±154 4879,3±615 5897,1±815 7854,3±915 4013,7±110 3946,5±119 9154,6±174 3 6.9 8,7 1 8,7 1 8,4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
	Rg2TEF1	30415,8±21 11,3	6135,6±905 ,8	2698,7±120 6,9
		Día 1	Día 2	Día 3

Ejemplo 6

Identificación de los Elementos Críticos para los Promotores Fuertes

- Las secuencias promotoras de Rg3*TEF1*, Rg3*S27*, Rg2*ACP1*, Rg2*ENO1*, Rg2*PDC1*, Rg3*PDC1*y Rg2*FAD1* (estearoil-CoA delta-9 desaturasa) se sometieron a escaneo de motivos promotores mediante el uso de Gibbs Motif Sampler en http://ccmbweb.ccv.brown.edu/cgi-bin/gibbs.12.pl?data_type=DNA&layout=advancedprgm&restore=/var/www/cgi-bin/euk.def.txt.
- Se encontró un motivo conservado que comparte la secuencia núcleo GAGGAG en cada promotor. Notablemente, el promotor Rg2*FAD1*, que está dentro de los promotores más fuertes contiene el mayor número de motivos. (Figura 2).

Ejemplo 7

20

25

30

55

60

65

15 Deleción Anidada de los Promotores Rg2FAD1 y Rg2ENO1

Los constructos reporteros GFP del promotor de longitud completa Rg2*ENO1* y Rg2*FAD1* (gen de estearoil-CoA delta-9 desaturasa) en pRH2031 se modificaron para tener promotores acortados en serie. Esto se realizó sustituyendo el promotor con fragmentos de PCR de aproximadamente 300, 500, 1000 y 1500 pb del promotor. Todos los cebadores 5' incluyeron un sitio de corte *Spel* mientras que el cebador 3' contiene un sitio de corte *Ncol*. Los constructos se transformaron mediante el método ATMT a *Rhodosporidium toruloides* ATCC 10657. Las colonias transformadas (>500) se agruparon, se cultivaron en medio YNB con 150 μg/ml de higromicina B y 300 μg/ml de cefataxoma durante 2 días a 28 °C y se diluyeron a aproximadamente 0,1 DO₆₀₀ en medio YNB y también en medio YNB N⁻ (ambos medios con 5 % de glucosa) y se continuó el cultivo durante 24 horas con agitación. Los cultivos alcanzaron DO₆₀₀ de 0,2 unidades en los medios YNB N+ y YNB N⁻. La fluorescencia de la GFP se midió con Tecan infinite M200. El parámetro de ganancia se establece consistentemente a 85; la longitud de onda de Excitación y Emisión son 476, 509. La intensidad de la fluorescencia de la GFP (normalizada contra la DO600) se indica en la Figura 3, que muestra que la longitud mínima del promotor *ENO1* para la expresión óptima del gen reportero es aproximadamente 320 a 520 pb, mientras que el promotor FAD1 requiere aproximadamente 570 a 1120 pb.

Ejemplo 8

Deleción Anidada del Promotor de 519 pb Rg2ENO1

35 Los cebadores se diseñaron en varias ubicaciones en la secuencia promotora de 519 pb de Rg2ENO1, que se usaron para el PCR en combinación con el cebador inverso que se dirige al extremo 3' del promotor (Figura 4A). Todos los cebadores 5' incluyeron un sitio de corte Spel mientras que el cebador 3' contiene un sitio de corte Ncol. Las longitudes de los productos del PCR (excluyendo la secuencia enlazadora extra en el extremo 5' y el codón ATG en el sitio 3') se resumen en la Figura 4B. Los fragmentos de PCR se digirieron individualmente con Spel y Ncol y se clonaron en pRH2031-40 Rq2ENO1-RtGFP en los mismos sitios, sustituyendo el promotor ENO1 de longitud completa. Los constructos se transformaron mediante el método ATMT a Rhodotorula glutinis ATCC 90781, que es el parental diploide de Rhodosporidium toruloides ATCC 10657 y ATCC 10788. Las colonias transformadas (>500) se agruparon, se cultivaron en medio YNB con 150 µg/ml de higromicina B y 300 µg/ml de cefataxoma durante 2 días a 28 °C y se diluyeron a aproximadamente 0,1 DO₆₀₀ en medio YNB y también en medio YNB N (ambos medios con 5 % de glucosa) y se continuó 45 el cultivo durante 12 horas con agitación. Los cultivos alcanzaron DO₆₀₀ de 0,5~0,7 en los medios YNB y YNB N. La fluorescencia de la GFP se midió con Tecan infinite M200. El parámetro de ganancia se establece consistentemente a 85; la longitud de onda de Excitación y Emisión son 476, 509. La intensidad de la fluorescencia de la GFP (normalizada contra DO600) se indica en la Figura 5A y 5B. El promotor mostró tendencias similares en los dos medios probados. La mayor disminución en la actividad se observó en el promotor M6 y M7. Otra disminución significativa se observó entre M3 y M6, 50 donde pueden encontrarse varios motivos relacionados con GAGGAG (Figura 4A).

El uso de los términos " un", " una" y "el/la" y referentes similares en el contexto de la descripción de la invención (especialmente en el contexto de las siguientes reivindicaciones) se debe interpretar que abarca tanto el singular como el plural, a menos que se indique de cualquier otra manera en la presente descripción o se contradiga evidentemente por el contexto. Los términos "que comprende", "que tiene", "que incluye" y "que contiene" deben interpretarse como términos abiertos (es decir, que significan "que incluye pero sin limitarse a") a menos que se indique lo contrario. La mención de intervalos de valores en la presente descripción tiene meramente la intención de servir como un método abreviado para referirse individualmente a cada valor por separado que cae dentro del intervalo, a menos que se indique de cualquier otra forma en la presente, y cada valor por separado se incorpora en la descripción como si se mencionara individualmente en la presente. Todos los métodos descritos en la presente descripción pueden realizarse en cualquier orden adecuado a menos que se indique de cualquier otra manera en la presente descripción o el contexto lo contradiga claramente de cualquier otra manera. El uso de cualquiera y todos los ejemplos, o lenguaje ilustrativo (por ejemplo, "tal como") proporcionados en la presente descripción simplemente tiene el propósito de ilustrar mejor la invención y no representa una limitación en el alcance de la invención al menos que se reivindique de cualquier otra forma. Ningún lenguaje en la descripción debe interpretarse como que indica cualquier elemento no reivindicado como esencial para la práctica de la invención.

En la presente se describen modalidades de esta invención que incluyen el mejor modo conocido de los inventores para llevar a cabo la invención.

El término "expresión eficiente" se refiere a la expresión de una proteína reportera a un nivel que es detectable por fluorometría, fotomicroscopía o selección fenotípica de los transformantes mediante antibióticos, tal como higromicina.

Bibliografía

35

45

- Abbott, E.P. y otros, 2013. Overcoming recalcitrant transformation and gene manipulation in yeasts. Applied microbiology and biotechnology, vol. 97, 283-295.
 - An, G., y otros, 1989. Functional analysis of the 3' control region of the potato wound-inducible proteinase inhibitor II gene. Plant Cell, 1: 115-122.
- Avis, T.J., 2008. Usefulness of heterologous promoters in the Pseudozyma flocculosa gene expression system. Bioscience, biotechnology and biochemistry, pg 456.
 - Bassett, C.L., 2007. Regulation of Gene Expression in Plants: The Role of Transcript Structure and Processing. New York: Springer Press.
- Bölker, M., y otros, 1995. Tagging pathogenicity genes in Ustilago maydis by restriction enzyme-mediated integration (REMI). Mol Gen Genet. 248, 547-52.
- Boulton, S., y otros, 1999. Interactive effects of inhibitors of poly(ADP-ribose) polymerase and DNA-dependent protein kinase on cellular responses to DNA damage. Carcinogenesis. 20, 199-203.
 - Boulton, S., y otros, 1996. Wortmannin is a potent inhibitor of DNA double strand break but not single strand break repair in Chinese hamster ovary cells. Carcinogenesis. 17, 2285-90.
- Bundock, P., y otros, 1995. Trans-kingdom T-DNA transfer from Agrobacterium tumefaciens to Saccharomyces cerevisiae. EMBO J. 14, 3206-14.
 - Choi, J., y otros, 2007. Genome wide analysis of T DNA integration into the chromosomes of Magnaporthe oryzae. Molecular Microbiology. 66, 371-382.
- Comai, L., y otros, 1983. An altered aroA gene product confers resistance to the herbicide glyphosate. Science. 221, 370.
 - De Groot, M. J. A., y otros, 1998. Agrobacterium tumefaciens-mediated transformation of filamentous fungi. Nature Biotechnology. 16, 839-842.
- de Oliveira, M. L. P., y otros, 2009. High-efficiency Agrobacterium-mediated transformation of citrus via sonication and vacuum infiltration. Plant Cell Reports. 28, 387-395.
 - Durant, S., Karran, P., 2003. Vanillins--a novel family of DNA-PK inhibitors. Nucleic Acids Res. 31, 5501-12.
- Gietz, R.D. and Woods, R. A., 2002. Transformation of yeast by lithium acetate/single-stranded carrier DNA/polyethylene glycol method. Methods Enzymol. 350, 87-96.
- Goldstein, A. L. y McCusker, J. H., 1999. Three new dominant drug resistance cassettes for gene disruption in Saccharomyces cerevisiae. Yeast. 15, 1541-1553.
 - Gutiérrez, R.A., y otros, 1999. Current perspectives on mRNA stability in plants: multiple levels and mechanisms of control. Trends Plant Sci, 4: 429-438.
- Hajdukiewicz, P., y otros, 1994. The small, versatilepPZP family ofAgrobacterium binary vectors for plant transformation. Plant Molecular Biology. 25, 989-994.
 - Haughn, G. W., y otros, 1988. Transformation with a mutant Arabidopsis acetolactate synthase gene renders tobacco resistant to sulfonylurea herbicides. Molecular and General Genetics. 211, 266-271.
- Heiser, W. C., 2000. Optimizing electroporation conditions for the transformation of mammalian cells. Methods in Molecular Biology. 130, 117-34.
- Hentges, P., y otros, 2005. Three novel antibiotic marker cassettes for gene disruption and marker switching in Schizosaccharomyces pombe. Yeast. 22, 1013-9.

- Hewald, S., y otros, 2005. Genetic analysis of biosurfactant production in Ustilago maydis. Applied and Environmental Microbiology. 71, 3033.
- Hill, J., y otros, 1991. DMSO-enhanced whole cell yeast transformation. Nucleic Acids Research. 19, 5791.
- Ho, Eric CH, y otros (2007). Gene discovery and transcript analyses in the corn smut pathogen Ustilago maydis: expressed sequence tag and genome sequence comparison. BMC genomics 8:334.
- Horns, F., y otros, 2012. Patterns of repeat-induced point mutation in transposable elements of basidiomycete fungi.

 Genome biology and evolution, 4, 240-247.
 - Hu, C., y otros, 2009. Effects of biomass hydrolysis by-products on oleaginous yeast Rhodosporidium toruloides. Bioresour Technol. 100, 4843-7.
- laniri, G., y otros, 2011. Development of resources for the analysis of gene function in Pucciniomycotina red yeasts. Fungal Genetics and Biology. 48, 685-695.
 - Ingelbrecht, I.L., y otros, 1989. Different 3' end regions strongly influence the level of gene expression in plant cells. Plant Cell, 1: 671-680.
 - Ito, H., y otros, 1983. Transformation of intact yeast cells treated with alkali cations. Journal of bacteriology. 153, 163-8.
 - Ji, L., y otros, 2010. A Simplified and efficient method for transformation and gene tagging of Ustilago maydis using frozen cells. Fungal Genet Biol. 47, 279-87.
- Kämper, J., 2004. A PCR-based system for highly efficient generation of gene replacement mutants in Ustilago maydis. Mol Genet Genomics. 271, 103-10.
- Khanna, H. K., y otros, 2007. Inhibition of Agrobacterium-induced cell death by antiapoptotic gene expression leads to very high transformation efficiency of banana. Molecular Plant-Microbe Interactions. 20, 1048-1054.
 - Kirk, M. P., y otros Dictionary of the Fungi. CABI, Wallingford, 2008, pp. 716.

5

20

- Krugel, H., y otros, 1988. Analysis of the nourseothricin-resistance gene (nat) of Streptomyces noursei. Gene. 62, 209-35 217.
 - Kück, U. y Hoff, B., 2010. New tools for the genetic manipulation of filamentous fungi. Appl Microbiol Biotechnol. 86, 51-62
- 40 Kuo, C. Y., y otros, 2004. Cloning of glyceraldehyde-3-phosphate dehydrogenase gene and use of the gpd promoter for transformation in Flammulina velutipes. Appl Microbiol Biotechnol. 65, 593-9.
 - Lazo, G. R., y otros, 1991. A DNA transformation-competent Arabidopsis genomic library in Agrobacterium. Biotechnology (N Y). 9, 963-7.
- Liu, Y. G., Chen, Y., 2007. High-efficiency thermal asymmetric interlaced PCR for amplification of unknown flanking sequences. BioTechniques. 43, 649-50, 652, 654 passim.
- Liu y otros, 2012, Characterization of glyceraldehyde-3-phosphate dehydrogenase gene RtGPD1 and development of genetic transformation method by dominant selection in oleaginous yeast Rhodosporidium toruloides. Applied Microbiology and Biotechnology. 10.1007/s00253-012-4223-9.
 - Liu, Y. G., Whittier, R. F., 1995. Thermal asymmetric interlaced PCR: automatable amplification and sequencing of insert end fragments from P1 and YAC clones for chromosome walking. Genomics. 25, 674-81.
- Maehara, T., y otros, 2010. Improvement of the Transformation Efficiency of Flammulina velutipes Fv-1 Using the Glyceraldehyde-3-phosphate Dehydrogenase Gene Promoter. Bioscience, Biotechnology, and Biochemistry. 74, 2523-2525.
- Maier, F. J., Schafer, W., 1999. Mutagenesis via insertional- or restriction enzyme-mediated-integration (REMI) as a tool to tag pathogenicity related genes in plant pathogenic fungi. Biol Chem. 380, 855-64.
 - Meng, X., y otros, 2009. Biodiesel production from oleaginous microorganisms. Renewable Energy. 34, 1-5.
- Meyer, V., 2008. Genetic engineering of filamentous fungi--Progress, obstacles and future trends. Biotechnology Advances. 26, 177-185.

- Meyer, V., y otros, 2003. Comparison of different transformation methods for Aspergillus giganteus. Curr Genet. 43, 371-7.
- Mogen, B.D., y otros, 1990. Upstream sequences other than AAUAAA are required for efficient messenger RNA 3'-end formation in plants. Plant Cell, 2: 1261-1272.
 - Mogen, B.D., y otros, 1992. Several distinct types of sequence elements are required for efficient mRNA 3' end formation in a pea rbcS gene. Molecular and Cellular Biology, 12: 5406-5414.
- Nagaya, S., y otros, 2010. The HSP terminator of Arabidopsis thaliana Increases Gene Expression in Plant Cells. Plant Cell Physiol, 51: 328-332.
- Neveu, B. y otros, 2007. Cloning of the glyceraldehyde-3-phosphate dehydrogenase gene from Pseudozyma flocculosa and functionality of its promoter in two Pseudozyma species. Antonie van Leeuwenhoek, Kluwer Academic Publishers, vol. 92, no. 2, 245-255.
 - Neveu, B. y otros, 2007. The Pseudozyma flocculosa actin promoter allows the strong expression of a recombinant protein in the Pseudozyma species. Applied microbiology and biotechnology, vol. 74, no. 6, 1300-1307.
- Newman, T.C., y otros, 1993. DST sequences, highly conserved among plant SAUR genes, target reporter transcripts for rapid decay in tobacco. Plant Cell, 5: 701-14.
 - Ochman, H., y otros, 1988. Genetic applications of an inverse polymerase chain reaction. Genetics. 120, 621-3.
- Ohme-Takagi, M., y otros, 1993. The effect of sequences with high AU content on mRNA stability in tobacco. Proc Natl Acad Sci USA, 90: 11811-5.
- Pfeifer, T. A., y otros, 1997. Baculovirus immediate-early promoter-mediated expression of the Zeocin (TM) resistance gene for use as a dominant selectable marker in Dipteran and Lepidopteran insect cell lines. Gene. 188, 183-190.
 - Punt, P. J., y otros, 1987. Transformation of Aspergillus based on the hygromycin B resistance marker from Escherichia coli. Gene. 56, 117-124.
- Rosenzweig, K. E., y otros, 1997. Radiosensitization of human tumor cells by the phosphatidylinositol3-kinase inhibitors wortmannin and LY294002 correlates with inhibition of DNA-dependent protein kinase and prolonged G2-M delay. Clin Cancer Res. 3, 1149-56.
- Rothnie, H.M., y otros, 1994. The contribution of AAUAAA and the upstream element UUUGUA to the efficiency of mRNA 3'-end formation in plants. EMBO (Eur Mol Biol Organ) J, 13: 2200-2210.
 - Schulz, B., y otros, 1990. The b alleles of U. maydis, whose combinations program pathogenic development, code for polypeptides containing a homeodomain-related motif. Cell. 60, 295-306.
- Scorer, C. A., y otros, 1994. Rapid Selection Using G418 of High Copy Number Transformants of Pichia pastoris for High level Foreign Gene Expression. Nature Biotechnology. 12, 181-184.
- Skalitzky, D. J., y otros, 2003. Tricyclic benzimidazoles as potent poly(ADP-ribose) polymerase-1 inhibitors. J Med Chem. 46. 210-3.
 - Smith, G. y Jackson, S., 1999. The DNA-dependent protein kinase. Genes & development. 13, 916.

- Smith, T. L. y Leong, S. A., 1990. Isolation and characterization of a Ustilago maydis glyceraldehyde-3-phosphate dehydrogenase-encoding gene. Gene. 93, 111-7.
- Soltani, J., y otros, Agrobacterium-mediated transformation of non-plant organisms. In: T. Tzfira, V. Citovsky, Eds.), Agrobacterium: from biology to biotechnology. Springer press, New York, USA, 2008, pp. 649-675.
- Spellig, T., y otros, 1996. Green fluorescent protein (GFP) as a new vital marker in the phytopathogenic fungus Ustilago maydis. Mol Gen Genet. 252, 503-9.
 - Steiner, S. y Phillippsen P, 1994. Sequence and promoter analysis of the highly expressed TEF gene of the filamentous fungus Ashbya gossypii. Mol Gen Genet 242, 263-271.
- 65 Sweigard, J. A., y otros, 1998. Magnaporthe grisea pathogenicity genes obtained through insertional mutagenesis. Mol Plant Microbe Interact. 11, 404-12.

- Takeno, S., y otros, 2005. Transformation of oil-producing fungus, Mortierella alpina 1S-4, using Zeocin, and application to arachidonic acid production. Journal of bioscience and bioengineering. 100, 617-622.
- 5 Teichmann, B., y otros, 2010. Molecular characterization of the biocontrol activity of Pseudozyma flocculosa. Phytopathology. 100.
 - Tentori, L., y otros, 2002. Potential clinical applications of poly(ADP-ribose) polymerase (PARP) inhibitors. Pharmacol Res. 45, 73-85.
- 10 Tully, M. y Gilbert, H. J., 1985. Transformation of Rhodosporidium toruloides. Gene. 36, 235-40.
 - Turgeon, B. G., y otros, 2010. Protoplast transformation of filamentous fungi. Methods in molecular biology. 638, 3-19.
- van Attikum, H., y otros, 2001. Non-homologous end-joining proteins are required for Agrobacterium T-DNA integration. Embo J. 20, 6550-8.
 - van Attikum, H., y otros, 2003. The Arabidopsis AtLIG4 gene is required for the repair of DNA damage, but not for the integration of Agrobacterium T-DNA. Nucleic Acids Res. 31, 4247-55.
- Vega, J. M., y otros, 2008. Improvement of Agrobacterium-mediated transformation in Hi-II maize (Zea mays) using standard binary vectors. Plant cell reports. 27, 297-305.
- Veuger, S. J., y otros, 2003. Radiosensitization and DNA repair inhibition by the combined use of novel inhibitors of DNAdependent protein kinase and poly(ADP-ribose) polymerase-1. Cancer Res. 63, 6008-15.
 - Willmore, E., y otros, 2004. A novel DNA-dependent protein kinase inhibitor, NU7026, potentiates the cytotoxicity of topoisomerase II poisons used in the treatment of leukemia. Blood. 103,4659-65.
- Wu, S. y Letchworth, G. J., 2004. High efficiency transformation by electroporation of Pichia pastoris pretreated with lithium acetate and dithiothreitol. BioTechniques. 36, 152-155.
 - Wu, S., y otros, 2010a. Phosphate-limitation mediated lipid production by Rhodosporidium toruloides. Bioresour Technol. 101, 6124-9.
- Wu, S., y otros, 2010b. Microbial lipid production by Rhodosporidium toruloides under sulfate-limited conditions. Bioresour Technol.
- Ye, X. y Gilbertson, L., use of multiple transformation enhancer sequences to improve plant transformation efficiency. EP Patent 2,038,420, 2009.
 - Zhao, X., y otros, 2010a. Lipid production by Rhodosporidium toruloides Y4 using different substrate feeding strategies. J Ind Microbiol Biotechnol.
- Zhao, X., y otros, 2010b. Lipid production from Jerusalem artichoke by Rhodosporidium toruloides Y4. J Ind Microbiol Biotechnol. 37, 581-5.
 - Zhu, Z., y otros, 2012, A multi-omic map of the lipid-producing yeast Rhodosporidium toruloides, Nature Communications, 3. 1112.
 - Listado de Secuencias
 - <110> Temasek Life sciences Laboratory Limited
- 55 <120> Secuencias de polinucleótidos de Rhodosporidium y Rhodotorula y sus usos
 - <130> 2577-230
 - <150> US 61/782,832
- 60 <151> 2013-03-14
 - <160>41
 - <170> PatentIn versión 3.5

65

35

50

<210> 1

```
<211> 1027
     <212> ADN
     <213> Rhodotorula glutinis ATCC 204091
 5
     <220>
     <221> misc característica
     <222> (1)..(6)
     <223> sitio de clonación KpnI
10
     <220>
     <221> misc característica
     <222> (1022)..(1027)
     <223> sitio de clonación Ncol
     <400> 1
15
        ggtaccgtgc gagaagaagc gaggcacgcg aagcggtaga agcaatgaag cgaggcgaga
                                                                                     60
        gcgagagagg cagggcttca gccatgtcca gctgatcggc tgtaacgtcg cgccgggcca
                                                                                    120
        gtctgttgaa tttgttgcgt cgcctgagcg taatagaagt gcagtagtct actccgcatg
                                                                                    180
20
        ccgagaacgt cgaagagcgc gaagtaggga gtcgagggaa gcgagggtgg caaacacagc
                                                                                   240
        aacgacaagc ggttccgctt cgctcaaaag ctcgttgacg ttgttttgac gttttgaaga
                                                                                    300
        cagtacaaca gcagcaagag gcgtgcgaag cgttggtggc gagagcagcg acaaggaggg
25
                                                                                   360
        aggaatgagg gagtggtggc gagggctcgc aaacgggcgt acgcctcgaa tggagacgtg
                                                                                   420
                                                                                   480
        cgagtcgttc ttcgacgtcc gagggatgcc gagcgccgag acggagcacg caacgagcga
        gaggagagca gccgcgcaag gtgattcgag tggcgcaagc ggaggacgac gaggagacgg
                                                                                   540
30
        acgagggagg aggagggatg gcgagcgagc atcggacggc ggggcgcgag agacggcgtg
                                                                                   600
        aggagccggg tgtggagagt ttgaggaggc gcgggatgcg aagtggctgg gtgtgcggag
                                                                                   660
        tgagcggtgg caaagagcgc acttagagtc tagagcgagg cagtagtagt agagctgtat
                                                                                   720
35
       gaatgaatac aaagtgtgaa tacaacagtt tgtaatgcga ttctgagctt ggacgtgtgc
                                                                                   780
       gcgcgagagg gcgacttgca agccagcgcc cgctcgctct tcttccttct gcacctcgcg
                                                                                   840
       tcaaccctcg catctcacac ctacactcgc attcaaagtg cgtacactct cccacgacac
                                                                                   900
40
       acggggacgg cgcacaccac cgcgcgtcgc ttgaacggcg tcgccacttc gagccgtcac
                                                                                   960
       tgacttcgtc ctcgtcctcc ctcctctact ctcttgtact gtactgtgta ctggggggga
                                                                                  1020
                                                                                  1027
       accatgg
45
     <210> 2
     <211>956
50
      <212> ADN
     <213> Rhodotorula glutinis ATCC 204091
     <220>
     <221> misc característica
55
     <222> (1)..(6)
     <223> sitio de clonación KpnI
     <220>
     <221> misc característica
60
     <222> (951)..(956)
     <223> sitio de clonación Ncol
     <400> 2
```

	ggtacccatg	ctgctgctgc	ccctcaaagg	tcctctcgtc	cacgtccgac	gagtctggac	60	
	agctttcaca	gtcccgagag	tgcaagagcg	aggcgggctc	acggttccgc	aaaggagcgc	120	
5	gaggtccgac	cgccggccgg	tctccttgcc	cgcctcgcct	cacctcctct	tgcagcaggt	180	
	tcacctcttc	gaggtcactc	gatcgctcgc	agcgatgcgc	aggtacaagt	acgctaggcg	240	
	agagcgtcga	aagcggggtt	ctgcgaggga	ctggacgctg	cagagcgcgg	tcgagagagg	300	
10	ctcgagtggc	gctttgaccg	ctcgacgcaa	ggcatgcgct	cctccgtttg	agctcgcaga	360	
	tactgccgtg	cgaagacgag	cataggctgt	ggctgcggta	gcaaggagcc	ggcgagagaa	420	
	agctgtgctc	gagcaggacg	agagacggtc	cgcgcgcttg	agaaggtcga	ggtgaggcgt	480	
15	cgcaaccggg	ttggatctcg	attctcggcg	aactacggct	tcggcgaggg	ccaaagcgac	540	
10	ggcaggccgc	gcaagctggc	caggcgagag	cgcgagagtc	gcgagctgaa	gcgggcgcgg	600	
	ggtagagcaa	gctggggaag	cgagagaggg	agagagagag	agtgaggggg	tggcgaggtg	660	
20	gagacgaggc	gagcggttgg	cttgcgcgcg	cgcgagaggg	atcgaggcga	gaggcgagcc	720	
20	ccgagagtgg	aaggaaggac	gaggaaacct	gcgtgcggag	gcgccgcgcg	cgcgtgccac	780	
	ctggctgagc	acgggcccga	gcttgaggga	gctgggggcg	cgcgagcgag	acgagggcag	840	
25	ggcgagcccg	cgcgtggcgg	ccgcctcgca	acccaaggct	cgccctggcc	gccgctcttg	900	
25	ctctctttcc	tccaccttcg	cgtctcacca	ctcgaatctc	acttcatcca	ccatgg	956	
30 35 40	<211> 1474 <212> ADN <213> Rhodoto <220> <221> misc_ca <222> (1)(6) <223> sitio de o <220> <221> misc_ca <222> (1469)(<223> sitio de o <400> 3	racterística clonación Kpn racterística 1474)	I					
45							64	•
70	-					gc gagagggaag	60	
50	gtcgagggag	agatgggagc	gcgaaaggt	c daããcâdãa	a gagggaggg	gt ggggtcggga	120	
55								
60								

```
ccaagggggc agagaggctc acaaggacgg aggagcttac tccgccttga ccttgcgggt
                                                                                 180
       ggcggtggtg ccctcgcgga agctgcggcg cgaggaaggt cgtcagggcc gggcccaggg
                                                                                 240
 5
       gaggaacgag gacggcgacg acgacgcacc cgttcttgaa gcggcgcgag acgcccttca
                                                                                 300
       ggtgctgcat gcggccagtg ccagtggtgt ggcggcgctt ggccttctgt ccccactcgt
                                                                                 360
       ctgcgcggcg agggagaagg cgaggtgagc acgacggcgc gcgagggccg gacgaggctg
                                                                                 420
10
       agagggggac gcacacgagc ggagcttggc cgcggggtag ccgcacgaag cgcacgactt
                                                                                 480
       gtgctgcttg tggaacgagc ggcggccgca gcgacggcac agactgtggg accacgaggg
                                                                                 540
       tcaaccgggt gctcgcgaga caggagcgcg gcttgtctcg aagcacgggc aaagagagcg
                                                                                 600
15
       ttggacgcac gtgtgactct tggtgtggcg gagaccgaac gaggtggtac ccttcgtctg
                                                                                 660
       tggggcgcaa ggaggagtgg gtcagcgtcg ggcctcgagg cgcctgggtc gtcgacctcq
                                                                                 720
       cccgctcccg atcctcgcgc cgtcctgctc ctcctctct caaccctgcg acgtgttgcg
                                                                                 780
20
       gcagcagcag cttgctggga catgtgggga gggcggcaag gcgaggggag gtcgaggtgc
                                                                                 840
       gaatgtgggt ggtcgcgctt ggcggggcag catgtcgtcg cggcctcgag ccgggcgggc
                                                                                 900
       gacctggtgg ccgggtcgag cgagaggcgt gggagggagt ggcgcaaatg gcgtgcgctc
                                                                                 960
25
       agaggcgggt tgtcgaggcg tcgaggcgga cgaggtcgag gaggtcgagg tgggaagctg
                                                                                1020
       ctgctgctgc tcgggcgtcg tcgccgcgtc ccgagtgccc cgtgcgcgcc cctgctgccg
                                                                                1080
       ctccttgggc cgtcctggtc ccacctgccc gtgccgtcct ccacgagagc gcgagtgggg
                                                                                1140
30
       ctgtgcgccg ggttgcgctc caactttgcg agagagcgag gacgggggca tggctcgctc
                                                                                1200
       gccggcctcg ggtcgttcga ggggtcgggg gcgggttgcg ggagggtggt gcgaggtggc
                                                                                1260
       gggcttacca ttgtcgcgtc ggagaggggg gtttggcctg cgagaagacg aggagacgag
                                                                                1320
35
       aggccggggg aggcgaggcg gcgaggcggc gagacggctc ggaccaagcg cqcqccqcca
                                                                                1380
       aagtctgcct cgccgctcgc gctcgcctcc ctcttgctct ccacctcctc ctaggaccac
                                                                               1440
       aaaggcaccc ttgtgtaggc gtaggtcacc atgg
                                                                               1474
40
     <210>4
     <211> 1327
     <212> ADN
45
     <213> Rhodotorula glutinis ATCC 204091
     <220>
     <221> misc_característica
     <222> (1)..(6)
50
     <223> sitio de clonación KpnI
     <220>
     <221> misc característica
     <222> (1322)..(1327)
55
     <223> sitio de clonación BspHI
     <400> 4
```

65

	ggtacctgag	cgggcgagcc	gcgagcgagg	agcgttgagg	aggaagggag	ggagggagga	60
	gggagaggga	gggaggggac	ccccatcttt	ctattcattc	acaaagacga	cggtgcggag	120
5	gggtccctcg	agtgtttggg	ctgggcttcg	gagtctcgta	gcgagcaagt	agtgtttctc	180
	tccgtttcga	cagctcgtat	tgtcatttct	tgttcattgt	cgtttccggc	gactgcaggt	240
	acgctgattt	tcggcggaga	cgacaagcac	gtgggttgtg	agcagcgagt	tgagcaagaa	300
10	aaagcggacg	aaggccctcg	tcgggggctt	caagtcaaga	ttctgcggag	attctgcgag	360
	agactgcaag	cgttgaacct	gttgagatct	cgtcggacga	cagcacagtg	tccgtctcgc	420
	tcaatgcgat	aggaagcgag	agagaggagg	aggatatcgg	aggaaggcgt	gtttgcgttc	480
15	gctccaggcg	tcgcaagatc	cggcgtagag	cacaatcgtc	gttggttcga	cgtttgtagt	540
	tcgtcacgag	tgagggcgaa	gcctggcaag	caaagaaggg	gacgagcgac	tcggcagcta	600
	tcgctggagg	agggcgactt	tgtggcccgt	ttccgtcgag	ctcgacgcga	gtgagcgcag	660
20	ggtcggtccg	aaccgatgcc	atggacgcag	tgagcgaggc	cggatgtgcg	atgctgtttc	720
	aagcgagcga	aggaagggag	aaagcgagcg	agaggtcctc	ctcctgtctt	cctcacgcct	780
	tccgaaggcc	gacaagaggc	gtagacgtcg	acgagtcaac	ggtttgacgt	cgctcaggcc	840
25	tgtagcgggt	cgtcggaagc	tgggaaagag	aggaaccaac	gagtaacaag	cgcgagagtc	900
	tcctcaaggc	ggacaattgc	ctcgcttcgg	tcccggtcga	gctcttccag	taccagcgag	960
	ggcgaaagtc	gtcgatgcgt	gcgcatccaa	ggccaagcgt	cgcagtcgag	aagagcgaga	1020
30	gtgaagcgag	tgaagcggga	gagtgagagc	gggtaatccg	cgtacttacg	agtgggttgt	1080
	attccttctt	gtaatggcag	attacctcga	ttggccacgt	cacgttccgg	gagtgcccgg	1140
	gcgtgggcaa	aagggcgagc	gcggcgcctc	tctctcttgc	ttcctcagca	gagcagctct	1200
35	cccctcgagt	acgtcgacgg	gctcactaca	gctagcaaca	gcaaggctac	cacgccagct	1260
	acacgccagc	tcacccaact	cacaccgctc	gttgtcgccg	cgcgccgcag	gaaaactttg	1320
	ttcagtc						1327
40	<210> 5 <211> 1509 <212> ADN <213> Rhodoto	rula glutinis Al	ГСС 204091				
45	<220>	J					
	<221> misc_car <222> (1)(6) <223> sitio de co						
50	<220>	•					
	<220> <221> misc_car <222> (1504)(<223> sitio de c	1509)					
55	<400> 5						

```
60
       ggtaccgctc atcatcgagc gagggcagca gcgacctgcg gactggccga agaacttccc
                                                                                  120
       cggccagcgc ttcgaggaca aggacattcg cacgcctcgc tctcagtggc ggtacatcaa
       gctggcgacc acagacgacc tctcgccgac tgaggagaac acgacgtcct gcgccgtccg
                                                                                  180
 5
       gtacggcgag gactcgcagc tcgccatctt ccacgttccc ggcaaggggt acttctgcac
                                                                                  240
       gcagcagatg tgtcctcgtg cgtcgcgcct gctctcttt tctttatttg ctggctgact
                                                                                  300
                                                                                  360
10
       cgtgctgact cgcccgaaac ctcagacaag cgcgccttca tcctcgagca tggcatcgtc
       teggacgacg ggagtggeca cetetacgte teetgeeege tecacaageg caactteege
                                                                                420
       ctcgacaacg gcgactgcct caacgacgag gagtacaaga tcctcgcgtt tgatgtcaag
                                                                                480
15
       gaggagaacg gcgacttgct cgttcaggtt cctccgcctg acgagctcga cgctttgatt
                                                                                540
       gggtgcgtct cgcttagccc tctctcaaag acctgagctg acccttctga ttgtccgcag
                                                                                600
       ctcgtcgaag tggatggtgc gcaaagcgac cgccgaagcc ttcggtcgca acgcagcgac
                                                                                660
20
       agccatcgag tgcgtcccct ccaagcttct gttttccgcg cgcacactag gctgacgaca
                                                                                720
       agtctctgca ggatcgtcgg accgtcaggc gaggttgacg aggacaagaa ggcagcggga
                                                                                780
       acagagtgcg gcgaagcgga taagtcttgc gggacgcaca agctcgagtg gtgattcttg
                                                                                840
25
       cgggtccgtc acagccaatg tatctatctc tagatgtcct tctcgggtat atcagttgtt
                                                                                900
       cgtgcatcgt agacgtcgtt tagcagctct cgttcagcca cttgcgaagg cccgcttctt
                                                                                960
       cgacgacaag gacggcttcg cttcctttac ctcgtcgtct gagcgttctc aagggaccct
                                                                               1020
       cctacgccct tcttcgcaca ggagcggccg acgaggcagc cttgctggct tatcqtcgct
                                                                               1080
30
       tecgeettte atgetegage aagteeteet gegagtgtee egacgtegge eegeettgee
                                                                               1140
       caaggtcgcc gactgtccta tcgcgacact gcgaatgcac tgctgtccgc gccggagact
                                                                               1200
       gtgcggcgcg aattgagggc aaagtcgtgc atttgcgaaa cggtatccgc tcgaagggcc
                                                                               1260
35
       cacqatagac ctccaccggc ctcaaacttg gcgacagggt cgcttccgac ggcggacagc
                                                                               1320
       aagttagget ttggegtegt egetgegate egetttgegg gaeecettat egegaetgee
                                                                               1380
       qqattcqatt qqcqatatct ctcqctcqct ggcctcqctg gacagctqqa caqtctctqc
                                                                               1440
40
       agcgtcgaag cgacgtcgat aaagtcagcg acgtcctcgc gaaccaagaa gaatcacccg
                                                                               1500
       ccgccatgg
                                                                               1509
45
     <210>6
     <211> 1606
     <212> ADN
     <213> Rhodotorula glutinis ATCC 204091
50
     <220>
     <221> misc característica
     <222> (1)..(6)
     <223> sitio de clonación Spel
55
     <220>
     <221> misc característica
     <222> (1601)..(1606)
     <223> sitio de clonación Ncol
     <400>6
60
```

```
actagtcgcc agggaacgca gagaaggcgg gacgagcgag ggtgagtcgc gcaagtcgac
                                                                                  60
       gaagaagccg aggtcaacgt cgagggttgt caagttctgg cagacggaca gcagccacac
                                                                                120
       taatcgctgc cgacttctga tgcatcgtcg cgcgggtgtc agctcctagc cgtggaagga
                                                                                180
5
                                                                                240
       ggaagccagg acgttctcac cgggcgacgc attgcttgtg ccagacctcg aggcgagctt
       gtcgcgtcga aagaccggcg acctcgtccg gctcaaattc cagcccgagt gattgccctg
                                                                                300
       acaacaaagg cgaaaagctg aagccggtac caaaggtcgg tccatcgaaa gtcgcgctcc
                                                                                360
10
       gaagactggc gtcgacggat ctgaccatcg ctgcccctcc tgcgtctgct ttgaggcacc
                                                                              420
       ttacagcctg ctcgtctcgt tcggagcctc cgcatccgct tggcaggacc acctcgcgac
                                                                              480
15
       cagtgacctc ccttgcgatg gctcgccaag tcttgcatac tccggcgacg ttgcggaagg
                                                                              540
       cgcaggtggg gcaggagatg cggagcgttg tgaactgtcc gttgacgagg agtgtcggcg
                                                                              600
       aaagaagggc ggtggtgaga gagtaggtga ggatcttgag gaggagttca ggaggaagtg
                                                                             660
20
                                                                             720
       aggaaaggtc tgccggtgac tggtaaggct gaagcatgat ggcgagtgta gccaagtgat
       ccgagcgacg atcaagagac gaaggacgag acaacgcttc agcgcgcgaa gagagcgagc
                                                                             780
       gaggaccete etggtegaga ggetatecag tegecaaceg gtacceatee agtttgeagg
                                                                             840
25
       gttgaaacac agctgagagg atcagcgagt ggtagcgcaa actcctaagg cgctgaacgt
                                                                             900
                                                                             960
       caaggacagc gagcgtgagc gtgtggaagc gacttgcgaa ggccaaactc gtgtcgcgct
       ggccaaccgc cgtgccgctt tgacgcgctt ctgcgccctc cgcctattca gagagtatgc
                                                                            1020
30
                                                                            1080
       1140
       aaccgcggtc ctcgaccttc aacgtcccgg gaggcccgtc cacgactccc agacgtctct
                                                                            1200
       gcttgttgtt ctacgtcgtc gcggcgttgt gcagagtcca gcgcgcgccc gtcgtcgact
                                                                            1260
35
       tctgacaagc gataaattcc gagaccagcg ggagaaggcg gaacgagagg aggaggcgag
       ctggcgtcct tgcgacctcg ttgagcagtt caagcgagca gattgagcag cagtgcgtcg
                                                                            1320
       agtgagccaa ctcacgttct catatcggtc cctgagcgat atcgatgagg cgaaggacga
                                                                            1380
       cgacgagcga actgatctcg cgctctccct cttccccttc actctttcca ctcagaaaca
                                                                            1440
40
       acacgtgcgt cttctctgaa cgctatcaga caatccagga ccatcgctga ccgcgcgctc
                                                                            1500
       actcqtcqcc tgacttcatc gcccaaccaa cccgctcgtc accgactgga tctctccctc
                                                                            1560
       ccctcacacc acctgttgcg ctgcgatact cctctcacag ccatgg
                                                                            1606
45
     <210>7
     <211> 1408
     <212> ADN
50
     <213> Rhodotorula glutinis ATCC 204091
     <220>
     <221> misc característica
     <222> (1)..(6)
55
     <223> sitio de clonación spel
     <220>
     <221> misc_característica
     <222> (1403)..(1408)
     <223> sitio de clonación BamHI
60
     <400> 7
```

	actagtcggc gaagaggagg ggtgttagga gggagagctg tgcgaggggg agaggtcagt	60
	ccgagcacga tacgcgagca ggccaagcgg cttcatgttc actccaagct cgatgcggtc	120
5	gagaagtacg agctccttga cgagtgaaag ggagagaaga gagactcacc aaccccggcg	180
	cgaccttcac gaaccgcaac ttcccctcac acgcctcact acacgccctc tcaaacacct	240
	cgagcgtcgc gtagtgcgag agcttgaaga ataggtaggc gaggaaggag gaggcgaaga	300
10	gggcggccat ctagcgaaca agttgggtta gctgggtggg ggaaagggaa gaggggagga	360
	agagggggag ggtaccatga tccagcctat gtcgacttgc agttggaggg gcatcctgtg	420
	cgcgtactgg cgtcagcggc ggacgacaag gcaggtagac gagagagggg gccggggaac	480
15	gcactcgcag ttgcgcacgt ccgagaggaa catgtacgag tagccggccc acatgacgct	540
	cagcagcgcc gcaagcgtgt agtggaagat gagcctgccc attggcagtc agcgccgacg	600
	cggacaaact ctgggtgaag agaaaggaga gaacgcacca cttctcctcc ttcagcactc	660
20	ccctcgccca gaccgccccc aacacaatac agacgagatc gatagttgcc ccagtcacag	720
	cgagcgcgag ttggctgtag acgaggtgtt tgagccgtct gtgggcggga gaggtgcgga	780
	tgcgctggat ctgcgcgggg gagagttttg ggacgaagtt ggggtcgtcg gccatggtga	840
25	gcccgtcgta gtagctgtct gagcgagcct agtagtgcgc tggacgagca gagcccagag	900
	tcgagacgag cgtgagcagg agacgaggtt cggagtgtcc gcggagggcg acgagacgac	960
	gagcgagctt gggagaagcg cgagcatgtc cagcagcgta gtctcgaggc cgccagcagt	1020
30	agtagagcac agcaatgagg caggaaggag cgcaagggag ggaaagagcg cgacgaaggg	1080
	tcgaggtgat gaagtccaag gacaggggga ccaccctcgc ccgcttctcc ctcgctctcc	1140
	ccacgaagtg accacttgta aggctggtaa ttcattccat acagtctaca tacacttgca	1200
35	gccatccgct tcccctgcga tgccagtttc ggtcaccgtg ggactccgat gcgatgatgc	1260
	ggccgagttg gcttcctcga cccgctctca cacgctcata ccagcctctc ccagcctgct	1320
	accgctctct ggctctgcca aacacccact cgagcacacc cacccaacca gcgaactcgc	1380
40	ccagcctttg aaccgcaatg gcggatcc	1408
45	<210> 8 <211> 1480 <212> ADN <213> Rhodotorula graminis cepa WP1	
.0		
50	<220> <221> misc_característica <222> (1)(6) <223> sitio de clonación Spel	
55	<220> <221> misc_característica <222> (1475)(1480) <223> sitio de clonación Ncol <400> 8	

```
actagtcgtg cagaaggaac ccgaggaggt cagtgcgcgg tcgagagagg aaaaggagag
                                                                                    60
       agagacgcac cgagcgaggc attgcgcgtg ccagcgctca gcctgtacct cgcgactgct
                                                                                   120
       gatgaaagcg tcgtcgccgc ccgacatgac cgccgcctcg ctcgactggt cgccgacgac
                                                                                   180
5
       gtcgacgccg gaaggaggtg cgccccagcc gcaggcggcg cgcctcaggc tcacgtcgac
                                                                                   240
                                                                                   300
       gtgccggacg ttcgacgctc gccacgggtc gtgctcgagg gctttgacga cgagctcgtc
                                                                                   360
       gcgctcggcg ctgccgcacc cattggcgaa cgtgacgtcc tggccgagca cctcctgcgc
10
       gatggcgcgc cacaggcggc agacggacgc gacctggcgg taggcgcacg tgcgacaggt
                                                                                   420
       qaccqtqaqq tqcqcaaact qqccqtggac gaggagaggc tcagagatga qcgaggtcgt
                                                                                480
15
       gagggcgtgg cggatgacct tgaggaggag ctcgtgcggc acggcagaga gggtcggcat
                                                                                540
       qatqqtqtqc qqcqcqqtcq qcaqtctcqa gagaqatqtq tagaqgaaga acgatqtcqc
                                                                                600
       cagateggte gageaggage eggtgegagg eggetegagg accgtegegg tegaggaceg
                                                                                660
20
       qtcacggctg gacgatcgag gagacgcgcc cccgtcgagc gcagcggcca gacgcaagcg
                                                                                720
                                                                                780
       agcacctttg aggctgtact ccaaaacccg gagcgccggc tcgggagccg tgtcctcqca
       ggatcctcgg tcgacagcgc cgagtcggag agggccagcc gacctcgggc cgcccgacgc
                                                                                840
25
       ccqqccqcaq ctcctccqqt ccqacctqca gctcatccca gcagatcgac tttqaqaqcq
                                                                                900
                                                                                960
       aagcccccag gaagctgcct gagcgacctc gaggcttggg aaggtcgccg agccacggct
       gggagagcga gctccctcac agtcgagacc ggctccaagt cgaatcgcac actcgtagct
                                                                               1020
30
       gcaccgcaaa agtgtgtgca gagctggagc gagcgaccgc gcgaggcgcg agggtcgcga
                                                                               1080
       gaaagcgggc gagcggtgcg agtgcgcccg agacgccgag agagggcgcg agggcgagcg
                                                                               1140
       ggcctcgcga gccctctgga gcgtgcagag gcggcgggga ggagcagagt gagggaggga
                                                                               1200
35
       agacceteca gagetggeag gagecaaegg agegeggaaa teagtgagat egatgeggtt
                                                                               1260
       ctcgagacga ttcgaccgcc ctcgtcgtca acgtcgcgcc ctcgtccctc tcctctccc
                                                                               1320
       accacctctc cggtacctct acacgagtgc gttctgtccc gagatctgat ctcgacqccq
                                                                               1380
40
       cacggcactg actgaccgcc cacctcgtct ccctcgcccg tcccacactc tcccttccga
                                                                              1440
       cctcccacct cctcgctcaa cccctctcgc ctcgccatgg
                                                                              1480
     <210>9
     <211> 1532
45
     <212> ADN
     <213> Rhodotorula graminis cepa WP1
     <220>
50
     <221> misc característica
     <222> (1)..(6)
     <223> sitio de clonación Spel
     <220>
55
     <221> misc característica
     <222> (1527)..(1532)
     <223> sitio de clonación Ncol
     <400>9
60
```

```
60
       actagtcggg aggattgatg atcgggttgc ggtacaaggc gaggccgagg acgagctgga
       gggcgccgag gacgagggtc gagatgccga gctgcgaggg gacgaggccg ccaatcgagg
                                                                                  120
       tcgtgtcaga cggccgtacc gagtgatctc atagcgggtc cgccgacgca gaaagacgaa
                                                                                  180
 5
       gagaaactca cgacgagggg gctcagcttg acaaagttga gctttgtcgt gcagccagac
                                                                                  240
       gagctgcgat aggagcgagg gtcagtgcgc ccgctctcgg atgaatgcgc agtcgaggag
                                                                                  300
       ggacaggggc gcaccaggtg acgatgaaca tgtcgaggac gccgtactgc agcatcttgc
                                                                                  360
10
       ggaagaggta gaaatgccac gccgaagcga aggtgacggc aaactgcgag agggacgagg
                                                                                  420
                                                                                  480
       tcagtgcgag ggtccgcaac agggagaggg cactcgtcac ggaccatcat ccagcccagg
15
       tcqatctqta qctqatcagg gaagctgtgc cgggtgcgag agaggtcaat gtcgaagctt
                                                                                540
                                                                                600
       qqcaqctcqt cqaqqaagaa gaggacggcg agggacgcac gccatgaact tgatgtgacg
       ctcgaagacg accgagtagc cgagccacat cattgtgagg acgccggcgc agacgtagtg
                                                                                660
20
                                                                                720
       qaaqatqaac ctgaqagggc aagaggtcag tctcgaaacg agggaggaag ccggctcgag
                                                                                780
       caggacgagg cgggcgcaac ggacgcacca tttctcggcg gcgacgatat tgcgagccca
                                                                                840
       cacqqccccq agcactagac aggtgatgtt ggcgaccgcg ccgccgacgg cgagagcgag
25
       aacgctgtag acgaagtgct tgatgcgtcg gtggattggc gctcgtcgga tcctcgcgat
                                                                                900
       ctgggccttq gtgagcggtg gtggcgggcc aagcggtggg ccagcagctg tgctcatcgc
                                                                                960
       agcagcqqtq cqqcqcaaqa qcqactqtqq agctcqaqqq agaggagcqc qqcaqqqqaa
                                                                               1020
30
       agcgagaccq aggaggagcg agcgcggaca ggcgaggcgg accggacgtt ccggtgcggc
                                                                               1080
       tcqactqqcq tqcqaqacqa qcaggccgtc gccggaagca gccgtgtccg gcggaaagag
                                                                               1140
       ccaggcgcgc gagcgggcg gagcagacag cggcggtccg agcgcgcggg gcaggttcga
                                                                               1200
35
       cgaaagtcgg gctcgggtca ggctcgcgcg agcgcatgag atgccgtcga gcgagcccat
                                                                              1260
                                                                              1320
       gtacagagtc gagcgagaga gcgaagtgcg tggaaggaga gtggtccaag agtggagcgc
       cgtggagatg agacagatga tggcgaacct cggccacagc ctctcggtcc tgccacagca
                                                                              1380
       gctctgtgag tctccctgac ccgccagccc gcgcttcaga actcacagac cacctacaca
                                                                              1440
40
                                                                              1500
       gactcgcgca ccagctcgaa ccgcgccaga ccaccgcctc gccgcctccc cacctcgact
                                                                              1532
       gcttccgaac ctcacaagct cgaccaccat gg
45
     <210> 10
     <211> 1222
     <212> ADN
     <213> Rhodotorula graminis cepa WP1
50
     <220>
     <221> misc característica
     <222> (1)..(6)
     <223> sitio de clonación KpnI
55
     <220>
     <221> misc característica
     <222> (1217)..(1222)
     <223> sitio de clonación Ncol
60
     <400> 10
```

```
60
        qqtaccqcqa qqqqaagggc aggagagtcg ccggaacacc gggcaaggag acaaggacaa
        agagcgagcg cgcacgcacc gtctggcggt cgggctgggt ggggcgggtc cgagtagcgc
                                                                                120
                                                                                180
       tqaccqaaqa qcqaqqaqqa ggaaaagcga gcgcggcggg cgtgggaagg agggcaagga
 5
       qqqcqqcqgc gacgccaaaa aaggccagat tcgcggggca gtgatcgagt gccgtccgcg
                                                                                240
                                                                                300
       agctcaacca gcgagcgctc tctcgcgcgc agcggtgcgc ttctttcgcc agccgatgcg
                                                                                360
       caccgttcag aagcacgtcg cccgcaccga gagcgcctcc tcgcgagcct gtgaccacct
10
                                                                                420
       cgtcgacccg cttcccgcgg cttttctcgc cggcctggac cgccgctatc agatcgtgcc
                                                                                480
       catgagacaa gcgactcgtc gaaaggacga cgatctcgta gtactgggtc cctgcgcaac
        gctcagccgt ccgtccccgt caaagtgctt cggcggaggg gaccgtgcgc gagacgccca
                                                                                  540
15
        agttggcctc ctcaagtcgg tagatccagc ttaacgctat caagggttgc atggtgtagt
                                                                                  600
        tggtcatcac gtcagtttaa cattcagttc actgaaggtc ctcagttcaa acctgggtgc
                                                                                  660
        gatcaccttt ttggctcggc ggcattgcgc ccttacaccc gcacgggtct acttcccttt
                                                                                  720
20
        gcaagcgacc aagcgaagca tcctctcgct cgtaaagctg ccggcgagga ggtcagacgg
                                                                                  780
        gttggcgggc cgtcgaaggt cggctcaccc tcaacgctgc cggctgacca cgccaggcga
                                                                                  840
        gctatcattg ctttgaaagc ttcgaaaacg cccaggcatg cacagaaagc cgcccgcgag
                                                                                  900
25
       aggctcaagt tggcgccgag ctgcggtcga gagacgacga cgacgtggga gctccctcgc
                                                                                  960
       ctctcctct ttctctccca ccccatcagc ccaagtgagt cgctcgctct tccgcaaggg
                                                                                 1020
       tcagcgcacg cgttgctccg cgacagggca gcgcgtgcgc tcaccagggt cccccgttcg
                                                                                1080
30
       cccggcgagt tggcactgac gaggtgcctt gccccctcc gctccctcc cctttggcct
                                                                                1140
       cctctctcgc acgcacactc tctccctgca ccccttgcac cttcccgaca ctctccccc
                                                                                1200
       ccttcccacc gtccgaccat gg
                                                                                1222
35
     <210> 11
     <211> 1507
     <212> ADN
40
     <213> Rhodotorula graminis cepa WP1
     <220>
     <221> misc característica
     <222> (1)..(6)
     <223> sitio de clonación KpnI
45
     <220>
     <221> misc_característica
     <222> (1522)..(1527)
50
     <223> sitio de clonación Ncol
     <400> 11
```

33

55

60

```
ggtaccacta cctcgtcacg acccagggtg cgttcccctt ctcgccgcgt ccacagccac
                                                                                  60
       gacgttgcga gtccctaacg cgtccgctcc cccgtgcagg tggtcctccg cacggcgcct
                                                                                120
       acacgcagac atcgtcgacg ccgtcgcacg acgcccactt tgccgtccag accctgtcgc
                                                                                180
5
       gcttcggcct cgcgtacctc ctcgcgtcgt ccaacacgct caaggacacg tggctgagcg
                                                                                240
       tgtgcgcgcc cgccggcgcc aagggccccg aacccgacgt cgacgacctc gagctcgaga
                                                                                300
       agcgcgagca ccgcgacaag tggctcctcg ggcgcatcat gggccagggc aagcaggact
                                                                                360
10
       cggcgctcgg ggacgcagtc gctgtcgtga gtcctctact ctcggccgtt ctcgagactt
                                                                                420
       ggggtgcgag attgaccttg cgctcccgcc tctcgcttgc agcaattcca caagcacttt
                                                                                480
       ccgcacctgc gctcggcgca cctcttcccc ggctttgtct ttacgtgcgt ccctctcgtt
                                                                                540
15
       ccccctctc tccacgtgcg ccaccagcct gactcgcccc tcgcctgccc cgtcccgcag
                                                                                600
       caacgccctc gcgtcgacct cgctcgtccc ctcgccgatc ctgtcgctgt acaacctcgt
                                                                                660
       cgggcccctc gcggcgcgca tcctgccctt tggcaacctg cccgagacgt acgccqacgt
                                                                                720
20
       gcccgtgtac gtcgcggcca acccggcagc gcgcagccaa gggctcgagt actgcaacga
                                                                                780
       gcgcatgaag ccgctcggga gcccggcgtg ggccgagggc gcgacgggcg caaaggtgtg
                                                                                 840
25
                                                                                 900
       ggacgggctg agggccatga tcgaggagtg agctggtggg cgggcgagcg aggagccgga
       qaqqaqqqc qqaacqtgtt tqaqaaggtc gcgctttgct cgtcggtcgc gqqcqcagcc
                                                                                 960
                                                                                1020
       gtggctgtag ccagtctcgc tttgcagtgt cactcttgta catagctgag caaggcctag
30
       cgtcgcgaga gagctgcgct gtggcgcctg gtcgaggccc gagagcgtcg cgctcagggg
                                                                                1080
       cgagctgctc gcggctcacc aaggggctcg agcggtgcgc gctcgacagg ggaccgagag
                                                                                1140
       ctgcaggaga cagaccggag gaaaaagctc tggcgagcga ggagcggggc cacactgagt
                                                                                1200
35
       ctggggaagc gacggacgag gatgagcgca tccactcttg agtttcgccg aggcgcgagc
                                                                                1260
       tggcggtcga caaccgagca agctcctcct cttcctccac cacactcgcc cctagcacac
                                                                                1320
       gtgagtctcg ctccctcgcc actgtcgacc agcacacgct cgtccaccgc cctgtgcgcc
                                                                                1380
40
       ctgtgcggct tgcggtcgag cgaggccgcg ggtcgggtct ctgccacccg aggaaccatc
                                                                                1440
       gatgtcgctg acgcttcgct cctcgtcctc ctcctcctcc cacccgccgc agctacctac
                                                                                1500
       accatgg
                                                                                1507
45
     <210> 12
     <211> 1646
     <212> ADN
     <213> Rhodotorula glutinis ATCC 204091
50
     <220>
     <221> misc característica
     <222> (1)..(6)
     <223> sitio de clonación ASCI
55
     <220>
     <221> misc característica
     <222> (1641)..(1646)
     <223> sitio de clonación Ncol
60
     <400> 12
```

```
ggcgcgcctg aagctgtaca tcgaggtgga cgacagcgcg ggcaaggatg cgccagcaat
                                                                                60
       cgtttgtggg tcgcttcttt cctcgcagca cgcttttgtc ggctccctga tcagcacaca
                                                                               120
       agctaactaa cgctctggtt tcgctggcag tcatgcacgg ccttggctcg tcaacctcgt
                                                                               180
 5
       tctgggaagc gcccttctcc cgctcaaacc tgtcctcccg cttccgcctc atccgctacg
                                                                               240
       acttcgacgg ccacggtctc tcgcccgtct cgtccctcga cgcagcagat gacggcgcca
                                                                               300
       tgatcccgct cgacgacctc gtcggggact tggcggctgt gatcgagtgg gctggggtgg
                                                                               360
10
       agaaggttgc gggagttgtt ggacactcga tgagcgggct ggtggcgagc acatttgcgg
                                                                               420
       ccaagtaccc gcagaagctc gacaagctcg gtgagtcgca ttgaaccttc ctccgccgtc
                                                                               480
       tcttctccgc tgacgattcg tcgacttggc cctgcttctc gcgcagtcct cctcggcgca
                                                                               540
15
       atgcgctctc tgaaccctac cgtccaaagc aacatgctca agcgagccga tacagtcctc
                                                                               600
       gaatccggcc tctcagcaat cgtcgcacaa gtcgtctccg ccgctttgtc cgacaagtca
                                                                               660
                                                                               720
       aagcaggact cgcccctctc ggcagcgatg gtgcgaacgc tcgtgcttgg aacggacccg
20
       agagggtacg cggcggtg tagggcgctt gcgggtgcga aggacccgga ttactcgagc
                                                                               780
       atcaaggccg agacgttggg tgcgttcgct tgttctcctt cctctgcttt tctcccagca
                                                                                840
                                                                                900
       actgacgcaa gcgtctgcaa cacagtcgtc gcaggcgagt ttgactacct ctcgaacaag
25
                                                                                960
       gagacgaccg acgcgctggt caacgacatc ccgggcgcgg agaaggtcca gatggacagt
       gtcggccact ggcacgccgt cgaggacccc gttggactcg ccaagatcct cgatgggttc
                                                                               1020
       ttcttgcagg ggaaatgagg ttgggaaggg gggatagact ggggagaacg gcaggtgcgt
                                                                               1080
30
       acgcagcgga cgtcggtcgg gaggactttt tcggggagga tattcgctga ctgactccga
                                                                               1140
                                                                               1200
       cgtcqctttc ctccttgcag tatcttcaga agggatggga ggaggcgaac tgcaagggta
       atgaacgaga caacgccgag ggaggaagcg ccggaactct cgggggcgaa gaaggagtgg
                                                                               1260
35
                                                                               1320
       tgtcttcgcc agcgaacagc ttccggggtg ggttggacag cgccagtaga attccagcgt
                                                                               1380
       cgcaacagag ctctagtcga ccgcgatcac ccacaaggac gagagcgggt cgcgccttgt
                                                                               1440
       ccgcttcccc atcctcgtcc tgctcttgct ctcttcccta ccacactctc ccgcttgcgg
40
       gctctctttc tcgcttggcg ctcctgctac cgctactcta gactctccta gtctccctgc
                                                                               1500
       acaaccatcc ctatcccctc cgcctctctc gcacaccccc cacagcttcg ttccccaact
                                                                               1560
       tcacttccga tgccqtqcgt cgcctccctt tcgcctggcg ggcccgcgcc tgcttccgag
                                                                               1620
45
                                                                               1646
       gacaactact gattgtggga ccatgg
     <210> 13
50
     <211> 28
     <212> ADN
     <213> Secuencia Artificial
     <220>
55
     <223> Cebador del PCR
     <400> 13
                                      28
     aaaggtaccg tgcgagaaga agcgaggc
60
     <210> 14
     <211> 34
     <212> ADN
     <213> Secuencia Artificial
65
     <220>
```

<223> Cebador del PCR

	<400> 14 aaaccatggt tccccccag tacacagtac agta 34
5	<210> 15 <211> 29 <212> ADN <213> Secuencia Artificial
10	<220> <223> Cebador del PCR
	<400> 15 aaaggtaccc atgctgctgc tgcccctca 29
15	<210> 16 <211> 31 <212> ADN <213> Secuencia Artificial
20	<220> <223> Cebador del PCR
25	<400> 16 ataccatggt ggatgaagtg agattcgagt g 31
20	<210> 17 <211> 29 <212> ADN <213> Secuencia Artificial
30	<220> <223> Cebador del PCR
35	<400> 17 aaaggtaccc aaagggagag gagcgggcg 29
40	<210> 18 <211> 33 <212> ADN <213> Secuencia Artificial
	<220> <223> Cebador del PCR
45	<400> 18 aaaccatggt gacctacgcc tacacaaggg tgc 33
50	<210> 19 <211> 28 <212> ADN <213> Secuencia Artificial
EE	<220> <223> Cebador del PCR
55	<400> 19 aaaggtacct gagcgggcga gccgcgag 28
60	<210> 20 <211> 33 <212> ADN <213> Secuencia Artificial
	<220>

65

<223> Cebador del PCR

	<400> 20 aaatcatgac tgaacaaagt tttcctgcgg cgc	33
5	<210> 21 <211> 31 <212> ADN <213> Secuencia Artificial	
10	<220> <223> Cebador del PCR	
	<400> 21 aaaggtaccg ctcatcatcg agcgagggca g	31
15	<210> 22 <211> 32 <212> ADN <213> Secuencia Artificial	
20	<220> <223> Cebador del PCR	
25	<400> 22 aaaccatggc ggcgggtgat tcttcttggt tc	32
25	<210> 23 <211> 28 <212> ADN <213> Secuencia Artificial	
30	<220> <223> Cebador del PCR	
35	<400> 23 gactagtcgc cagggaacgc agagaagg	28
40	<210> 24 <211> 29 <212> ADN <213> Secuencia Artificial	
	<220> <223> Cebador del PCR	
45	<400> 24 aaaccatggc tgtgagagga gtatcgcag	29
50	<210> 25 <211> 30 <212> ADN <213> Secuencia Artificial	
	<220> <223> Cebador del PCR	
55	<400> 25 gactagtcgg cgaagaggag gggtgttagg	30
60	<210> 26 <211> 34 <212> ADN <213> Secuencia Artificial	
65	<220> <223> Cebador del PCR	

	<400> 26 aaaggatccg ccattgcggt tcaaaggctg ggcg 34					
5	<210> 27 <211> 29 <212> ADN <213> Secuencia Artificial					
10	<220> <223> Cebador del PCR					
	<400> 27 gactagtcgt gcagaaggaa cccgaggag 29					
15	<210> 28 <211> 28 <212> ADN <213> Secuencia Artificial					
20	<220> <223> Cebador del PCR					
25	<400> 28 aaaccatggc gaggcgagag gggttgag 28					
	<210> 29 <211> 31 <212> ADN <213> Secuencia Artificial					
30	<220> <223> Cebador del PCR					
35	<400> 29 gactagtcgg gaggattgat gatcgggttg c 31					
40	<210> 30 <211> 26 <212> ADN <213> Secuencia Artificial					
	<220> <223> Cebador del PCR					
45	<400> 30 aaaccatggt ggtcgagctt gtgagg 26					
50	<210> 31 <211> 33 <212> ADN <213> Secuencia Artificial					
55	<220> <223> Cebador del PCR					
55	<400> 31 aaaggtaccg cgaggggaag ggcaggagag tcg					
60	<210> 32 <211> 32 <212> ADN <213> Secuencia Artificial					
65	<220> <223> Cebador del PCR					

	<400> 32 aaaccatggt cggacggtgg gaaggggggg ga	32
5	<210> 33 <211> 33 <212> ADN <213> Secuencia Artificial	
10	<220> <223> Cebador del PCR	
	<400> 33 aaaggtacca ctacctcgtc acgacccagg gtg	33
15	<210> 34 <211> 29 <212> ADN <213> Secuencia Artificial	
20	<220> <223> Cebador del PCR	
05	<400> 34 aaaccatggt gtaggtagct gcggcgggt 29	
25	<210> 35 <211> 34 <212> ADN <213> Secuencia Artificial	
30	<220> <223> Cebador del PCR	
35	<400> 35 aaaggcgcgc ctgaagctgt acatcgaggt ggac	34
40	<210> 36 <211> 37 <212> ADN <213> Secuencia Artificial	
	<220> <223> Cebador del PCR	
45	<400> 36 aaaccatggt cccacaatca gtagttgtcc tcggaag	37
50	<210> 37 <211> 672 <212> ADN <213> ustilago maydis	
55	<220> <221> misc_característica <222> (1)(6) <223> sitio de clonación KpnI	
60	<220> <221> misc_característica <222> (667)(672) <223> sitio de clonación Ncol	
	<400> 37	

	ggtaccggcg	cgctagtcct	taaaactgaa	ggcgggaaac	gacaatctga	tccaagctca	- 60
	agctaagctc	tagtgattag	atcttgctga	taggcaggtt	tgcttggaga	atggggggaa	120
5	aagactgacc	gaagaaacag	cgagatctag	aagtgataag	cggaaagaat	ctgacttgct	180
	gtgatcagca	gccaatttt	ttttcgtttt	tttttttca	ctccacatcg	tcgtgcgtgc	240
	acggtctgca	tgtgtaaatt	gtattcatcg	aaagccacag	ttgaatacat	cagcccgatg	300
10	tggatttcga	aaaccaatta	atcttggaat	tcacgcgctc	agatcagtcc	atagagtcga	360
	cttcggctgt	ttccaagagc	ttcttctctg	cgaggtggtt	gcccgtgttt	ctcgctggga	420
15	aaaaaggatc	gattattatt	cgcttctacc	tcgctcgcac	ccttggcctg	ctgaaggaaa	480
10	cagcgccgag	actcggtcac	ggttgctggg	ctccgtgttg	atgctgggac	ggcgcaaagt	540
	ggggcccgcg	cactcttcga	gccaaggacc	tcactcttca	agaacaagcg	ctgtcgccat	600
20	cgtcttcttc ·	tttctgctcc	accatcgaat	ctttcttct	cgtttcgaaa	ccaaaacact	660
	cttccaccat	gg					672
25	<210> 38 <211> 1450 <212> ADN <213> Rhodospo	oridium toruloic	les				
30	<220> <221> misc_cara <222> (1)(6) <223> sitio de clo						
35	<220> <221> misc_cara <222> (1445)(14 <223> sitio de clo	450)					
40	<400> 38						
45							
50							
55							

```
ggtaccggcg cgctagtctg cagaactacg ccctctcaca cccaacttcc gactcgaccg
                                                                                  60
        gcggtacgag cacgacctac ttctactgcc tgccatcgac atccgggcgg gtcgctgcct
                                                                                 120
        accetgtgcg ttctgcgccc tccctcgtct cgggaggcag tgtctgacag aagctttgcg
                                                                                 180
5
        cgcagtaccc cgtcaagatg caactctacg caacgttcgg cacagaagtc gccaagctcc
                                                                                 240
        gcgcatcgcc gcctcaagct ctcgcgctgc ccgacggtgt cgtctattac gaggcggaga
                                                                                 300
        agctcgagtt gccggctttg ccagcggcgg tcaaggttga ggtggagacg gagaaggcgg
                                                                                 360
10
        gagtagcggg ggaggacaat gaggcgaagg gtgagatggt gctggtggag actcttacgg
                                                                                 420
        tggagcagga ggagattgaa ttgggctcgg gagtcgtgca gattgaggag tcgttgctcg
                                                                                 480
                                                                                 540
        tcaagctgga ggtcagcggc tgatccttcc gttcgttgca aggatcgtct gcatgtttcg
15
        cttctctcaa tgacacaacc tggagagcgc tcccgtcagc gagaatcgag gacattccgc
                                                                                 600
       agctcgtgag caagcggagg tgcgaggctc cctcgaaagc tgcgcctctt cagacggctt
                                                                                 660
       gttctctcct gctctggtgg gctggcctga catgtaatgt gctccgccgc aagtccgtcg
                                                                                 720
20
       tcggtctcaa ttcgacgttg aaagggcata gcgcaaggaa gaaccctctg cggacatgca
                                                                                 780
       gaattactgg ctcgcctgct ccttcgtcta ctggaataag tcctgtctcg ttaaagcccc
                                                                                 840
25
       aacgtcgttt ttcgacgttt gtaaggcgca agaggtgcta tgggctacgc aggaagctga
                                                                                 900
                                                                                 960
       gaggacatag aagtcggggg aggaacggcg cagagcggca gttgcggaag catgaggaaa
       gcgagacggt ccagcatctg cagcgccaat ccgcaatctc ctggttgagc ctgcaccgga
                                                                                1020
30
       agcgtcggaa cagtatgcgc agagtcgaac gcaagtaaga aagacgcacc ctcacactcg
                                                                                1080
       cttacttcga gccatacaac ggatcaaagc tgcgcgtatc tcggcttgta agggccggaa
                                                                                1140
       agcaacctcg gagatggaca cgtcacatca ccaacttatc gatctcggcc gtcgacgtcg
                                                                                1200
                                                                               1260
35
       cagagagggc gagagaagcg gtgaaggagg gaaacaaccc ctcgagagca tgatccgacc
       gaatctgcag cgcaggaagc cgttacaagc ccgcctcgag cgcaggtcgg gtccagccgg
                                                                               1320
                                                                               1380
       gggacgaaac gcgcgaggct gattcgtgag cgaaggaagc cgcatcgaca agttcgctcc
40
       cctttgccct ctttcccatc acccqttctc qccttacccq ctcagaacaa caccagatca
                                                                               1440
                                                                               1450
       ctcaccatgg
45
     <210> 39
     <211>963
     <212> ADN
     <213> Rhodotorula graminis cepa WP1
50
     <220>
     <221> misc característica
     <222> (1)..(6)
     <223> sitio de clonación Ascl
55
     <220>
     <221> misc característica
     <222> (958)..(963)
```

65

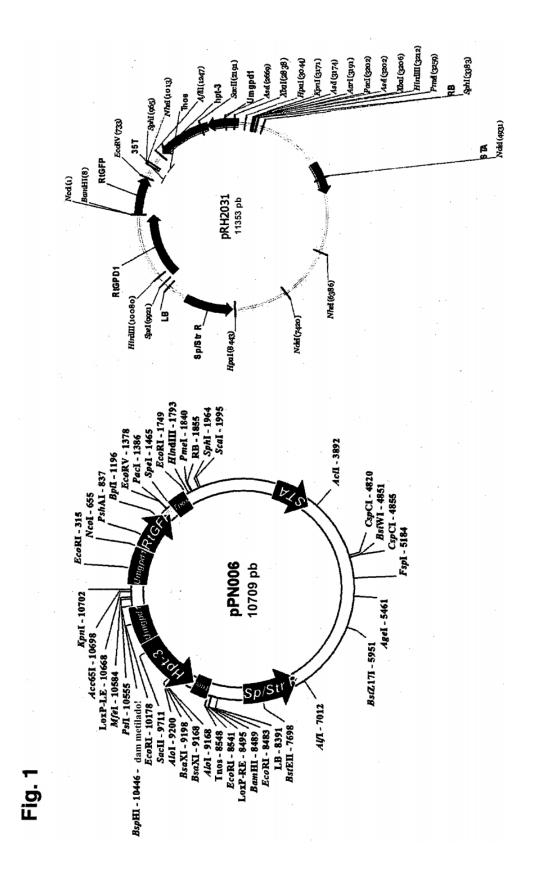
60

<223> sitio de clonación Ncol

<400>39

	ggcgcgccta	cgtctacgtc	aagggcaatg	ccgacgtgac	caaggccatc	ggccaggacc	60
	tcgccttctt	ctcggtccct	gtcgagctcg	gcgtgcgtcc	cgccgctctc	tctctctctt	120
5	tctctcggcc	gcgcctcacg	tgatccacga	cgtcgtactg	acccttgcga	atgtgcgcgc	180
	ccgcagccca	acggcgtcga	gaaggtgcac	ccgctcggcg	acctgacggc	gttcgagaag	240
	gagctcctcg	aggcgtgcct	cggcgagctg	cccgggtcca	tctccaaggg	cgagtcgttc	300
10	atccagggct	ccaagctctg	actcgccggc	gcatcgacgg	gcgcgagcca	caaggcgagg	360
	atgtgagagg	aggcgtttcc	tccaccttgg	accccatctg	ccgcctccct	ttctctctct	420
	ttctttccct	tcctctctct	ctctctctct	ctcgttctcc	tccttctggg	cctctcggac	480
15	ctcttcctcg	ccgtcgactc	gtgaaaatgc	agtgcgcgtt	tctgtacctt	gtcctgcgag	540
	agagatctgg	ttctgcgagg	gtgagtcgtt	gccttggccg	tggcacgcct	cgccgcagcg	600
	agagagaaga	ggccacggtc	caggacgacg	acgacgagga	ggaagcgcaa	aaggcgagac	660
20	accgagtgcc	atcgattccc	cgctcgaacc	tgctcacggc	tgtcgaaggc	ggtgcgccac	720
	ggtgcttgcg	ggagcgaaag	caagctggcg	tcgtcctctt	gaactggttc	gagtccgtga	780
	gggcggcgac	gagaactcag	gcgaggtgct	cgcgtcggaa	caagccgggc	ttgtggtcga	840
25	gggagcgaga	gcgaggcagc	gccgtcgtcg	ccgaggcaag	agcggcatcg	acaagttggc	900
	ccgtcgcctc	tcgctccctc	ttctcctcct	cccaccacca	cctttctcca	gctcgaacca	960
	tgg						963
30	<210> 40 <211> 2148 <212> ADN <213> Rhodotori	ula glutinis AT	CC 204091				
35	<220> <221> misc_cara <222> (1)(6) <223> sitio de clo						
40	<220> <221> misc_cara <222> (2143)(2 <223> sitio de cle	148)					
45	<400> 40						
50							
55							

	ggcgcgccac	catctcctcg	tcgcttcttc	cctctcctt	ggcgcccaca	ccgcttcgca	60
	gggctcacgg	actgctcaca	tcgtttgtgt	gcgtcgctgt	gcatgtccac	gcaccactcc	120
5	cagccccac	gagcgcctca	aaagacgcgg	acgcagacgo	ccgccgaacg	acggcacgcc	180
	cctcttctca	ctagcgcgac	gaaccagctg	cgacgattc	gitgcgcttatg	ttagccggac	240
	ttctggcttg	ctttgcgctg	ctgcgtccgt	cttgtggtg	ggatcggctc	gatgggggtt	300
10	tgctcgtttg	ctgggagacg	gtcgcctctc	cctcctcct	ttcactcctc	gttagctttc	360
	tacgctcatt	ggttctgcga	accatctaca	tcacgctcgc	tcgtcatgct	cgtactacga	420
	tcaacacccc	tgctcgtcgt	gctttccctc	ctctccgtcc	tctcggccgc	gtccagcgác	480
15	ttgcccagcc	aacttccccc	gcacgccggt	gagtctccca	cacttccttg	cgaccccaac	540
	ccagcatctg	acatccgcat	cacgcagccc	tcccgccttc	ccactcctcc	ctcttcaccg	600
	actcctcctc	ctcctcccct	gattcctcgt	ccctcaaagc	cccgcagcct	cttcccttca	660
20	aaatcaagcg	ccccgctcg	ctcgaacaag	tgcagcagaa	cctcgggaag	aggctggcga	720
	agcgcggcga	ggaggggagt	aagacggaga	gggtgccgtt	tggtcagagg	agtgcgacgg	780
	cggcgagtgc	gggtggacaa	ggtggagcgg	ggacggggag	ggcgacgcag	cgcgttacgg	840
25	gcggaggaag	cagaggtgca	ggaggaggcg	gagggagtgt	cgcggctgct	cagcctgtcc	900
	cttcgactac	ccagacggtc	gagacaggct	ctaagatcgt	ctcgactggt	cttctgaccg	960
	tagcgtcgcc	gtcgacggca	gatggaggag	gcgggacggt	cacccaggtc	gagacggcct	1020
30	cctcaggggt	attgatcacc	agcacggcgg	gagcggcgag	ttcagcggcg	gcgtcggacg	1080
	tcgctagcgc	acaggcagcg	gaggcgacgt	cgagtacgag	catgatcagc	ggaggagcgg	1140
	cggctggcgg	gagtttaagc	aggatgctgg	cgggaggagt	tgcgggtgca	gccctgatcc	1200
35	tcctcgtgcg	gtgagcaggc	gaagcgagga	gctcatgtag	atacagcata	gacagtatat	1260
	atcgccagga	tagcttgcaa	cagccgccgg	tcggtttatt	ccattgtcct	cgaccccatg	1320
	cgaaggcgag	ctctgctcgt	cagctggcca	agctggccag	cagacgagcg	ttggggtggc	1380
40	ggaacgccaa	cggcatggag	taaagcagcc	gtgaggatga	cggaggagct	cgggcgaggt	1440
	gatggggatt	ctagcaggaa	cagcagagcg	gcgaggagga	gaggaaccgg	aagcacagtc	1500
	tcgtggccgc	ttgttgcaga	tcccagtgtc	gctagagtgc	tcgtcgtcat	cagagcgagt	1560
45	gaacaaagcg	atgccctgaa	gaacgatgag	cgaatgagtc	gaagcggcgt	ctaccggtga	1620
	actcggggtg	tggcaaatga	gcgagacgag	gagtgcccgc	cagagttgcc	acgtcgaccc	1680
	cacgtcggaa	tcgacgttga	tagagtgaac	gaagccattg	cagaccccag	aaggtggcca	1740
50	tgttgtggaa	gcgagggcag	gagcgagggg	agaaggcgag	gaggaggagg	ggctggggaa	1800
	gcccgtccgg	gaatggcgca	gctgggtgcc	ggggatgtgc	gcgagtggcg	gaggagtcga	1860
	gcgtgagagt	tctggaacac	ggggcgcgca	caagggtcga	gggccgtgac	gagttcgccg	1920
55	ggcggtggtc	gggctgaggg	cgagcgcgcg	ttggggacga	cgacgcccga	cgccctcgct	1980
	cttcgtcctc	accgcttccc	ggagaacttt	gctgtactct	gcttctccct ·	tcacactctc	2040
	acacccactc	acacaccctt	ccatccacac	acaagctatc	cgcacacctc ·	tcacacccga	2100
60	ccccagctcg	ccccatcctc	ttcgcacccg	gctcatcgaa	aaccatgg		2148


	<210> 41 <211> 1009 <212> ADN <213> Sporobolomyces roseus	
5	<220> <221> misc_característica <222> (1)(6)	
10	<223> sitio de clonación Ascl	
15	<220> <221> misc_característica <222> (1004)(1009) <223> sitio de clonación Ncol	
15	<400> 41	
	ggcgcgccga agttatacct cagaggtctc aaaaacgaaa aagtcatgca agaatctcct	60
20	ttgacgtgag ggttatttct cttcctctag tagtctacga gaatcgcaaa gatcggaaaa	120
	ctgatgcatc tttgtgttca cgggttagcg atttgatctt ttcgattccc aaaatcgtat	180
	cgttcctgtc gcagggaact acgctcaaag ccggcactct gatcatcacg ggagtgagtt	240
25	ttgagctctc cctctatgag agtgcaaggt tcgtcgctga tggtgtaatc cgctcatgcc	300
	ttcccctcta ccttctcctt tgtccattct ctctactacg gttgtcacat cttccttctc	aaa 120 tat 180 gtt 240 gcc 300 ttc 360 gga 420 tat 480 ggc 540 ttc 600 ggt 720 tac 780 gga 840 tg 900
	cgacagaccc cgcacggaat tggagcgtac tcgaatcctc cggaattctt caaggacgga	420
30	gacgtcttca gggtcgagat ctcgggaggc atcgggagtt tggtcaacaa gatcgaatat	480
00	gaaaagtaga taatccgtta ctcaggtcaa tggtatggct tcgaagatgc tggaatcagc	540
	cggaaagcaa agctggagag aaaaatcgag attgcgaaac gtgcgatgtc atttcgtttc	600
35	gagctcgcaa ccatctcgta tccctctgag ctacatacaa acgtcactac ggcctcggag	660
00	tgactccctg cgagcggatt gaaggagatc acggtcgaat cagctagacc ttcgcaacgt	720
	tttcgcgctc gcacgttctt atcgatctac tgagattgac tcgaaaaagt cttctctcac	780
40	ggtcgattga actttgaatg aactctcagg ttgcgcgaga gccaatacga gccgaccaga	840
+0	ggcaattcgg agcttcccgg aacgttccaa ggagagggat tttccgagag attacgattg	120 180 240 300 360 420 480 540 600 660 720 780 840 900
	cgagatagaa aaaaggctag ctttcgattt cgagagagat tactttcaag ttcgctgctt	960
45	ccaactcttg ctccaacccc ctccactcct tctctacaaa acaccatgg	1009

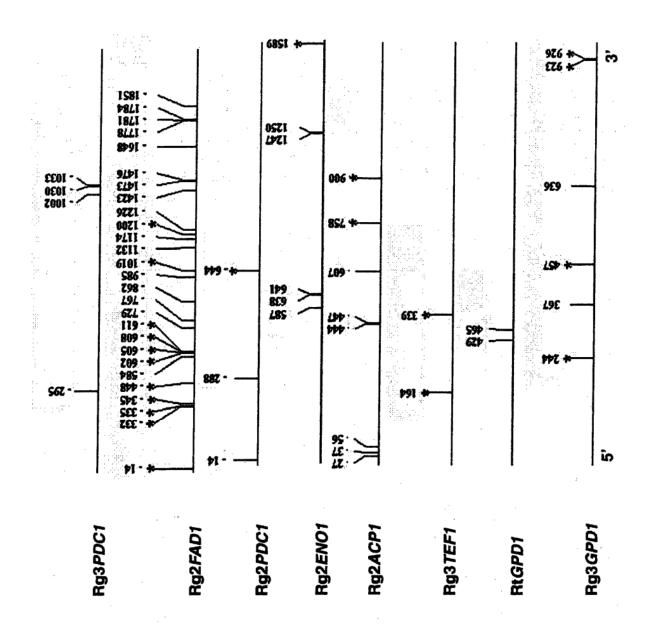
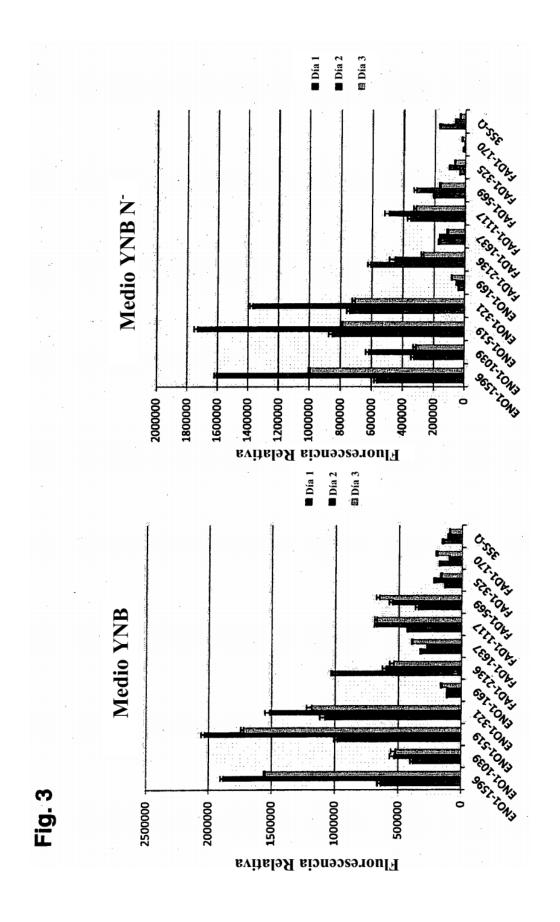
Reivindicaciones

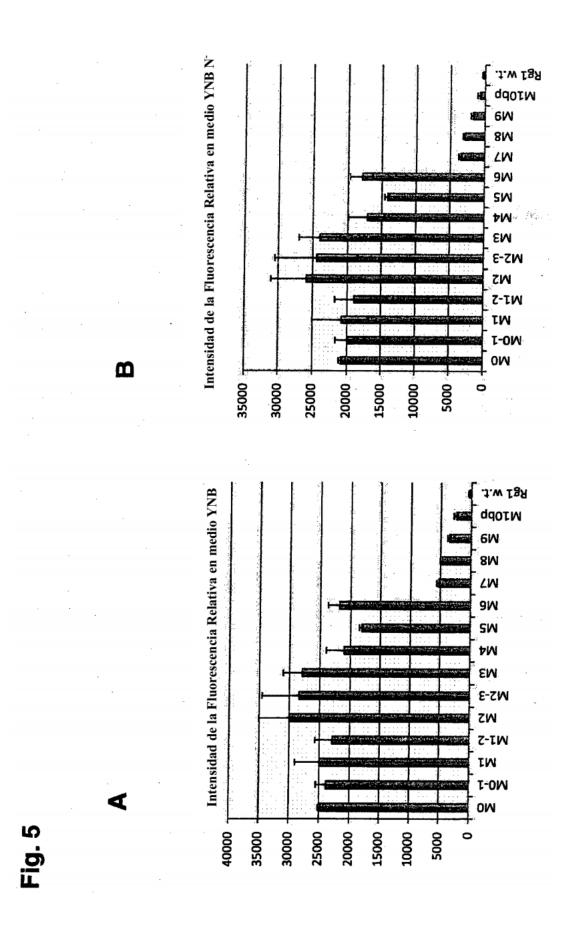
5

20

- 1. Un constructo de ADN que comprende una secuencia aislada de nucleótidos seleccionada de la sec. con núm. de ident.: 6 u 8, o la porción promotora de la misma, unida operativamente a una secuencia que codifica un polipéptido unido operativamente a un terminador de la transcripción, en donde el constructo de ADN permite la expresión eficiente del polipéptido en una especie fúngica seleccionada de los subfilos *Pucciniomycotina* y *Ustilaginomycotina*.
- 2. El constructo de ADN de conformidad con la reivindicación 1, en donde la porción promotora es de aproximadamente 400 pares de bases hasta aproximadamente 1100 pares de bases de longitud que comienza desde la posición -1 del codón ATG.
- 3. El constructo de ADN de conformidad con la reivindicación 1 o 2, en donde las especies fúngicas se seleccionan de los géneros *Rhodosporidium, Rhodoturula, Pseudozyma, Ustilago* o *Sporobolomyces*, en donde el genoma contiene al menos 50 % de C y G.
 - 4. El constructo de ADN de conformidad con la reivindicación 1, 2 o 3, en donde la secuencia que codifica el polipéptido contiene al menos 50 % de CG, preferentemente 60 % de CG y con la máxima preferencia más del 70 % de CG.
 - 5. Una célula fúngica que contiene al menos un constructo de ADN de cualquiera de las reivindicaciones 1 a la 4, con la condición de que, la célula fúngica no es de Rhodotorula glutinis ATCC 204091 o Rhodotorula graminis WP1.
- 6. La célula fúngica de conformidad con la reivindicación 5, en donde la célula preferentemente contiene no más de 3 copias idénticas de una secuencia de nucleótidos establecida en la sec. con núm. de ident.:6 u 8, o la porción promotora de la misma, preferentemente no más de 2 copias idénticas de una secuencia de nucleótidos establecida en la sec. con núm. de ident.:6 u 8, o la porción promotora de la misma.
- 7. La célula fúngica de conformidad con la reivindicación 6, en donde la porción promotora es de aproximadamente 400 pares de bases hasta aproximadamente 1100 pares de bases de longitud que comienza desde la posición -1 del codón ATG.
- 8. La célula fúngica de conformidad con la reivindicación 5, 6 o 7, en donde la célula fúngica se selecciona de las especies de los subfilos *Pucciniomycotina* y *Ustilaginomycotina*, preferentemente seleccionada de los géneros *Rhodosporidium, Rhodoturula, Pseudozyma, Ustilago* o *Sporobolomyces*.
 - 9. Un promotor aislado seleccionado del grupo que consiste en:
 - (i) un promotor que comprende la secuencia de nucleótidos de la sec. con núm. de ident.: 6 u 8, o la porción promotora de la misma;
- 40 (ii) un promotor que comprende una secuencia de nucleótidos que tiene al menos 95 % de identidad con la secuencia de nucleótidos de la sec. con núm. de ident.: 6 u 8, o la porción promotora de la misma; y
 - (iii) un promotor que comprende una secuencia de nucleótidos que tiene al menos 98 % de identidad con la secuencia de nucleótidos de la sec. con núm. de ident.: 6 u 8, o la porción promotora de la misma,
- en donde el promotor permite la expresión eficiente de una secuencia que codifica un polipéptido unido operativamente al promotor en una especie fúngica seleccionada de los subfilos *Pucciniomycotina* y *Ustilaginomycotina*.
 - 10. El promotor aislado de conformidad con la reivindicación 9, en donde la porción promotora es de aproximadamente 400 pares de bases hasta aproximadamente 1100 pares de bases de longitud que comienza desde la posición -1 del codón ATG.
 - 11. El promotor aislado de conformidad con la reivindicación 9 o la 10, en donde el promotor aislado se inserta en un vector T-ADN, un vector transportador, o en un cromosoma fúngico.
- 55 12. El promotor aislado de la reivindicación 9, 10 u 11, en donde la especie fúngica se selecciona de los géneros Rhodosporidium, Rhodoturula, Pseudozyma, Ustilago o Sporobolomyces, en donde el genoma contiene al menos 50 % de C y G.
- 13. Un vector T-ADN o un vector transportador que comprende el constructo de ADN de cualquiera de las reivindicaciones 1-4.
 - 14. Un cromosoma fúngico que comprende el constructo de ADN de cualquiera de las reivindicaciones 1-4, con la condición de que, el cromosoma fúngico no sea de Rhodotorula glutinis ATCC 204091 o Rhodotorula graminis WP1.

46


Fig. 2

Longitud (pb)

	Nombre Longitud Nombre del Promotor (pb) del Promotor			M0-1 498 M5		M1-2 436 M7	M2-3 417 M9			
TOWNSTONE I	51 CCAGACGTCT CTGCTTGTTG TCTACGTCG TCGCGGGTT GTGCAGAGTC	101 CAGCGCGCGC CCGTCGTCGA CTTCTGACAA GCGATAAATT CCGAAGACCAG	151 CGGGRANAGG VCGGAACGAGA GGAGGAGGG AGCTGCGTC CTTGCGACCT	201 CGTTGRGCAG TICAAGCGAG CAGAITGAGC AGCAGTGCGT CGAGTGGCC	EMEN M7 V 251 AACTCACGTT CTCATATCGG TCCCTGAGCG AIAITCGATGA GGCGAAGGAC	301 GACGACGAGC GAACTGARCT CGCGCTCTCC CTCTTCCCCT TCACTCTTCC	M9 351 CACTCAGAAA CAACACGTGC GTCTTCTCTG AACGCTATCA GACAATCCAG 401 GACCATCGCT GACGGGGG TCACTCGTG CCTGACTTCA TCGCCCAAC	451 AACCCGCTCG TCACCGACTG GATCTCTCCC TCCCCTCACA CCACCTGTTG M10	1 CACTISCANTA CTCCTCTCAC AGCCATGG	Nool

Ι

