

OFICINA ESPAÑOLA DE PATENTES Y MARCAS

ESPAÑA

11) Número de publicación: 2 723 776

61 Int. Cl.:

A61K 39/12 (2006.01) A61K 39/42 (2006.01) A61K 39/39 (2006.01) A61K 38/16 (2006.01) A61P 37/00 (2006.01)

(12)

TRADUCCIÓN DE PATENTE EUROPEA

T3

86 Fecha de presentación y número de la solicitud internacional: 12.05.2010 PCT/US2010/034537

(87) Fecha y número de publicación internacional: 18.11.2010 WO10132561

(96) Fecha de presentación y número de la solicitud europea: 12.05.2010 E 10775467 (3)

(97) Fecha y número de publicación de la concesión europea: 30.01.2019 EP 2429577

(54) Título: Nuevas cepas de rotavirus humano y vacunas

(30) Prioridad:

12.05.2009 US 177393 P

Fecha de publicación y mención en BOPI de la traducción de la patente: **02.09.2019**

(73) Titular/es:

THE GOVERNMENT OF THE UNITED STATES OF AMERICA, AS REPRESENTED BY THE SECRETARY, DEPARTMENT OF HEALTH AND HUMAN SERVICES (100.0%)
Centers for Disease Control and Prevention Technology Transfer Office 4770 Buford Highway, MS K79
Atlanta, GA 30341, US

(72) Inventor/es:

JIANG, BAOMING; GLASS, ROGER I.; WANG, YUHUAN Y GENTSCH, JON

(74) Agente/Representante:

ISERN JARA, Nuria

DESCRIPCIÓN

Nuevas cepas de rotavirus humano y vacunas

5 CAMPO DE LA INVENCIÓN

La presente invención se refiere generalmente a cepas de vacunas de virus, así como a composiciones de vacunas y métodos relacionados con las mismas. Más específicamente, la presente invención se refiere a cepas de vacunas contra rotavirus A humano, composiciones de vacunas y métodos de uso para inducir una respuesta inmunológica 10 contra el rotavirus A en un sujeto.

ANTECEDENTES DE LA INVENCIÓN

De los diversos virus patógenos entéricos que causan diarrea grave en niños, el rotavirus es el más común y causa un promedio de 611.000 muertes al año. Prácticamente todos los niños están infectados por rotavirus a la edad de 5 años. Se cree que el virus es altamente contagioso y se ha descrito como un virus "democrático", ya que la infección no afecta a ningún grupo socioeconómico o geográfico en particular de manera desproporcionada. Si bien la mayoría de los niños que tienen acceso a atención médica de apoyo y paliativa adecuada sobreviven a la infección sin consecuencias significativas a largo plazo, el número de muertes asociadas con diarrea grave, vómitos, 20 deshidratación y shock es inaceptable y, de ser posible, requiere una intervención preventiva.

El rotavirus A es un virus icosaédrico de la familia Reoviridae con una morfología de centro radial distinta. Los rotavirus particulares se clasifican por grupo, subgrupo y serotipo de acuerdo con las propiedades características de las proteínas de la cápside viral. Las partículas de rotavirus contienen 3 capas de proteínas que rodean el genoma viral, que consiste en 11 segmentos de ARN bicatenario, codificando cada segmento una proteína. Las proteínas virales incluyen proteínas estructurales denominadas VP y proteínas no estructurales denominadas NSP. Varias proteínas estructurales son particularmente importantes para provocar una respuesta inmunológica en un huésped, ya que estas proteínas están presentes en la superficie más externa de las partículas virales. En particular, las proteínas VP7 y VP4 ocupan ambas un lugar destacado en la respuesta inmunológica del huésped y, por lo tanto, también han desempeñado un papel central en el desarrollo de vacunas contra rotavirus.

Las variantes de las proteínas estructurales VP7 y VP4 caracterizan distintos serotipos de rotavirus A. En particular. las variantes de VP7 humana se identifican como serotipos "G", incluyendo al menos los serotipos G1, G2, G3, G4, así como los G5, G6, G8, G9, G10, G11, G12, G13 y G14 menos comunes. Las variantes de la proteína estructural 35 VP4 se identifican como serotipos "P", incluyendo P1A, P1B, P2A, P3, P4, P5, P6 y P8. Debido a que los rotavirus intactos se caracterizan tanto por una proteína VP7 como por una proteína VP4, los serotipos de virus individuales se nombran de acuerdo con la identidad de la variante de estas dos proteínas contenidas en el virus en particular. Por ejemplo, un rotavirus A común contiene variantes tanto G1 como P[8] de VP7 y VP4, respectivamente. El serotipo G1, P[8] del rotavirus A es una de las formas más comunes del virus que causan la enfermedad en todo el 40 mundo. El serotipo G1 del rotavirus A es el serotipo más común asociado con la enfermedad humana en todo el mundo. Se han desarrollado varias vacunas que utilizan las cepas de rotavirus A G1 con el objetivo de desarrollar inmunidad en un huésped contra cepas de rotavirus A G1, así como cepas de rotavirus A que tienen otros serotipos. Sin embargo, este enfoque se ha visto limitado por diferencias importantes entre los serotipos G1 y G2. En particular, las cepas de rotavirus A G2 se derivan de un linaje diferente al de la mayoría de las otras cepas de 45 rotavirus. Esto se demuestra mediante experimentos de hibridación de ácidos nucleicos que muestran que los transcritos marcados de los 11 segmentos génicos de las cepas G2, también conocido como el genogrupo DS-1, no se hibridan con los ácidos nucleicos correspondientes de las cepas conocidas como el genogrupo Wa del rotavirus A, que incluye G1, G3, G4 y G9. La falta de hibridación de estos genes homólogos indica que las diferencias en las proteínas codificadas, tal como las proteínas de la cápside externa VP4 y VP7 y la proteína de la cápside interna 50 VP6, son sustanciales. Estas diferencias genéticas respaldan las observaciones de que los individuos infectados o inmunizados con una cepa G1 tienen menos probabilidades de mostrar protección cruzada contra las cepas G2 que otras cepas del genogrupo Wa.

Además, para las cepas comunes de rotavirus A G1 y G2, se reconoce cada vez más una diversidad de tipos de rotavirus humanos que contribuyen a la diarrea aguda grave en todo el mundo. Esta diversidad subraya la necesidad de vacunas fuertes capaces de generar inmunidad contra varias cepas. Recientemente, la United States Food and Drug Administration suspendió el uso de la vacuna ROTARIX citando contaminantes en su preparación. Por lo tanto, el número de vacunas disponibles para el rotavirus está disminuyendo en un momento en que las infecciones siguen siendo un problema mundial grave. Otra vacuna, RotaTeq®, parece ser segura y eficaz para prevenir la diarrea en

niños de países de ingresos medios y altos, y actualmente está autorizada y recomendada para su uso en bebés de todo el mundo. Sin embargo, la eficacia de esta vacuna se reduce en los países pobres de África y Asia.

Por lo tanto, existe una necesidad continua de vacunas contra el rotavirus A humano de tipos tanto comunes como 5 menos comunes.

BREVE DESCRIPCIÓN DE LOS DIBUJOS

15

40

- La Figura 1A es una imagen xerográfica de una micrografía electrónica que muestra viriones de rotavirus A aislados intactos identificados como cepa CDC-9, con serotipo P[8], G1;
 - la Figura 1B es una imagen xerográfica de una micrografía electrónica que muestra viriones de rotavirus A aislados intactos identificados como cepa CDC-66, con serotipo P[4], G2;
 - la Figura 2 muestra una reproducción xerográfica de una imagen de un gel de poliacrilamida que ilustra perfiles de ARN de la cepa de rotavirus A CDC-9 aislada de una muestra de heces (S) y células Vero (V) y que muestra electroferotipos de ARN largo (CDC-9) típicos para la cepa de rotavirus;
 - la Figura 3 muestra una reproducción xerográfica de una imagen de un gel de poliacrilamida que ilustra perfiles de ARN de la cepa de rotavirus A CDC-66 aislada de una muestra de heces y células Vero y que muestra electroferotipos de ARN corto típicos para esta cepa de rotavirus;
- la Figura 4A muestra bandas de partículas de rotavirus purificadas con CsCl de la cepa de rotavirus A CDC-20 9;
 - la Figura 4B muestra proteínas virales estructurales identificadas de la cepa de rotavirus A CDC-9 analizadas por SDS-PAGE en comparación con marcadores de peso molecular;
 - la Figura 5A es un gráfico de barras que muestra los títulos de anticuerpos totales en respuesta a rotavirus inactivados térmicamente en ratones control y vacunados;
- la Figura 5B es un gráfico de barras que muestra los títulos de anticuerpos de neutralización en respuesta a rotavirus inactivados térmicamente en ratones control y vacunados;
 - la Figura 6 es un gráfico de barras que muestra las respuestas de anticuerpos séricos totales al rotavirus inactivado térmicamente formulado con $AI(OH)_3$ en ratones control y vacunados.
- La Figura 7A muestra la propagación del virus en muestras fecales de lechones vacunados sin antígeno y con 750 microgramos de fosfato de aluminio en 4 animales;
 - la Figura 7B muestra la propagación del virus en muestras fecales de lechones inmunizados con antígeno y sin adyuvante;
 - la Figura 7C muestra la propagación del virus en muestras fecales de lechones inmunizados con antígeno y adyuvante;
- la Figura 7D muestra la propagación del virus medida en muestras fecales de lechones inmunizados solamente con tampón;
 - la Figura 8A es un gráfico de barras que muestra la respuesta de anticuerpos IgG específicos de rotavirus en sueros de lechones vacunados sin antígeno y con 600 microgramos de fosfato de aluminio (barras de color negro) o lechones vacunados con 50 microgramos de antígeno y con 600 microgramos de fosfato de aluminio (barras sombreadas);
 - la Figura 8B es un gráfico de barras que muestra la respuesta de los anticuerpos de neutralización en sueros de lechones vacunados sin antígeno y con 600 microgramos de fosfato de aluminio o lechones vacunados con 50 microgramos de antígeno y con 600 microgramos de fosfato de aluminio;
- la Figura 9A muestra la propagación del virus en muestras fecales de lechones vacunados sin antígeno y con 600 microgramos de fosfato de aluminio; y
 - la Figura 9B muestra la propagación del virus en muestras fecales de lechones vacunados con 50 microgramos de antígeno y con 600 microgramos de fosfato de aluminio.

RESUMEN DE LA INVENCIÓN

50 La invención se define en las reivindicaciones.

Se proporciona una composición de vacuna que incluye una o más cepas aisladas de rotavirus, de forma ilustrativa, la cepa CDC-9, en combinación con un vehículo farmacéuticamente aceptable. Una vacuna de la invención incluye opcionalmente un adyuvante.

Las cepas CDC-9 en una vacuna de la invención son opcionalmente rotavirus atenuados vivos o rotavirus inactivados.

Se aprecia que una vacuna de la invención incluye opcionalmente al menos dos cepas aisladas de rotavirus. Las al menos dos cepas aisladas de rotavirus tienen cada una independientemente un serotipo del grupo G de G1, G2, G3, G4, G5, G6, G7, G8, G9, G10, G11, G12, G13 o G14. Opcionalmente, las al menos dos cepas de rotavirus aisladas tienen cada una independientemente un serotipo del grupo P de P1A, P1B, P2A, P3, P4, P5, P6, P8, P11, o P12.

Una vacuna de la invención se administra opcionalmente por vía parenteral u oral.

También se proporciona una cepa aislada de rotavirus que es ilustrativamente una cepa CDC-9.

- 10 Se proporciona una vacuna de la invención que incluye un vehículo farmacéuticamente aceptable mezclado con una cepa aislada de rotavirus caracterizada por tener un grupo G1. Las cepas de serotipo del grupo G1 o G2 descritas en el presente documento opcionalmente tienen cada una independientemente un serotipo del grupo P de P1A, P1B, P2A, P3, P4, P5, P6, P8, P11 o P12. La cepa de rotavirus humano descrita en el presente documento se caracteriza por tener un serotipo del grupo G1 que es CDC-96.
 - Se proporciona un método para inducir una respuesta inmunológica a un rotavirus en un sujeto que incluye administrar una composición de vacuna que incluye un vehículo farmacéuticamente aceptable mezclado con una cepa de rotavirus humano aislada de CDC-9.
- 20 Se proporciona un método para inducir una respuesta inmunológica a un rotavirus en un sujeto que incluye administrar una composición de vacuna que incluye un vehículo farmacéuticamente aceptable mezclado con una cepa de rotavirus humano aislada caracterizada por tener un serotipo del grupo G1.
- También se proporciona una vacuna que incluye un vehículo farmacéuticamente aceptable mezclado con un 25 rotavirus humano aislado. Una porción de rotavirus humano aislado como se describe en el presente documento puede ser un péptido o polipéptido que incluye una secuencia de aminoácidos de SEQ ID No. 2; SEQ ID No. 5; SEQ ID No. 8; SEQ ID No. 11; SEQ ID No. 14; SEQ ID No. 17; SEQ ID No. 20; SEQ ID No. 23; SEQ ID No. 26; SEQ ID No. 29; SEQ ID No. 32; SEQ ID No. 3; SEQ ID No. 6; SEQ ID No. 9; SEQ ID No. 12; SEQ ID No. 15; SEQ ID No. 18; SEQ ID No. 21; SEQ ID No. 24; SEQ ID No. 27; SEQ ID No. 30; SEQ ID No. 33;.

DESCRIPCIÓN DETALLADA DE LAS FORMAS DE REALIZACIÓN PREFERIDAS

Se proporcionan nuevas cepas aisladas de rotavirus A humano y vacunas que incluyen dichas cepas y métodos para vacunar a humanos contra la enfermedad por rotavirus A.

- Se pretende que los términos científicos y técnicos usados en el presente documento tengan los significados comúnmente entendidos por los expertos en la técnica. Dichos términos se encuentran definidos y se usan en contexto en diversas referencias estándar, incluyendo J. Sambrook y D.W. Russell, Molecular Cloning: A Laboratory Manual, Cold Spring Harbor Laboratory Press; 3ª Ed., 2001; F.M. Ausubel, Ed., Short Protocols in Molecular Biology,
- 40 Current Protocols; 5ª Ed., 2002; B. Alberts et al., Molecular Biology of the Cell, 4ª Ed., Garland, 2002; D.L. Nelson y M.M. Cox, Lehninger Principles of Biochemistry, 4ª Ed., W.H. Freeman & Company, 2004; Wild, D., The Immunoassay Handbook, 3ª Ed., Elsevier Science, 2005; Gosling, J. P., Immunoassays: A Practical Approach, Practical Approach Series, Oxford University Press, 2005; Antibody Engineering, Kontermann, R. y Dübel, S. (Eds.), Springer, 2001; Harlow, E. y Lane, D., Antibodies: A Laboratory Manual, Cold Spring Harbor Laboratory Press, 1988;
- 45 Ausubel, F. et al., (Eds.), Short Protocols in Molecular Biology, Wiley, 2002; J. D. Pound (Ed.) Immunochemical Protocols, Methods in Molecular Biology, Humana Press; 2^a ed., 1998; B.K.C. Lo (Ed.), Antibody Engineering: Methods and Protocols, Methods in Molecular Biology, Humana Press, 2003; y Kohler, G. y Milstein, C., Nature, 256:495-497 (1975).

50 Rotavirus humanos

30

Las nuevas cepas de rotavirus A humano, como se describe en el presente documento, se identifican ilustrativamente como CDC-9, fragmentos de las mismas u homólogos de las mismas.

55 La cepa de rotavirus A CDC-9 se aisló a partir de un espécimen fecal de un niño de 5 meses en Providence, Rhode Island. La cepa CDC-9 de rotavirus humano se caracterizó por RT-PCR utilizando cebadores específicos de tipo G y P. El análisis de RT-PCR indica que la cepa aislada CDC-9 es una cepa que tiene un genotipo P[8], G1. Las características particulares de CDC-9, su identificación, aislamiento y pases en células Vero se describen en Esona, MD, et al., Human Vaccines, 2010; 6:1-7.

Después del aislamiento de la muestra fecal, la cepa aislada de rotavirus CDC-9 se adaptó para crecer en células MA104 que se prepararon y se congelaron antes de 1980 y tienen documentación completa. Después, la cepa CDC-9 se adaptó para crecer en células Vero cualificadas para la producción de vacunas. CDC-9 se purificó realizando 3 rondas de dilución limitante y después de la amplificación en células Vero, se purificó adicionalmente realizando 3 rondas de ensayos en placa. La cepa aislada CDC-9 se pasó 7 y 38 veces en células MA104 y Vero, respectivamente (45 pases en total). La adaptación y todos los pases se realizan utilizando procedimientos operativos estándar y materias primas y reactivos certificados, y bajo las Directrices de Buenas Prácticas de Laboratorio. A diferencia de otras cepas de referencia o de laboratorio, la cepa aislada CDC-9 tiene un historial 10 completo de pases y documentación.

El título de la cepa CDC-9 de rotavirus humano pasada es de aproximadamente 107 ffu/ml.

La cepa de rotavirus humano aislada CDC-9 se estudió mediante microscopía electrónica utilizando viriones de 15 CDC-9 aislados del medio de cultivo de células Vero infectadas. La Figura 1A muestra una micrografía electrónica de viriones aislados de CDC-9. La micrografía muestra que los viriones tienen la morfología típica de los viriones de rotavirus A humano.

La cepa de rotavirus humano aislada CDC-9 se examinó adicionalmente usando electroforesis en gel de 20 poliacrilamida de ARN aislado de la cepa. Como se muestra en la Figura 2, CDC-9 tiene un electroferotipo de ARN largo típico y los perfiles de ARN tanto del aislado original de las heces como del rotavirus con pase de Vero son idénticos. También se muestra en la Figura 2 un estándar de comparación que incluye un perfil de ARN de un rotavirus humano del genogrupo Wa.

25 La cepa de rotavirus humano aislada CDC-9 en heces y células Vero (pase 27) se analizó mediante análisis de secuencia de todo el genoma.

Secuencias de aminoácidos de CDC9 de proteínas codificadas por ácidos nucleicos aislados de una muestra de heces: CDC9 NSP1 aa - stool es la SEQ ID No. 2; CDC9 NSP 2 aa - stool es la SEQ ID No. 5; CDC9 NSP 3 aa - 30 stool es la SEQ ID No. 8; CDC9 NSP 4 aa - stool es la SEQ ID No. 11; CDC9 NSP 5 aa - stool es la SEQ ID No. 14; CDC9 VP1 aa - stool es la SEQ ID No. 17; CDC9 VP 2 aa - stool es la SEQ ID No. 20; CDC9 VP 3 aa - stool es la SEQ ID No. 23; CDC9 VP 4 aa - stool es la SEQ ID No. 26; CDC9 VP 6 aa - stool es la SEQ ID No. 29; y CDC9 VP 7 aa - stool es la SEQ ID No. 32.

35 Secuencias de nucleótidos de CDC9 de ácidos nucleicos aislados de una muestra de heces: CDC9 NSP1 nt - stool es la SEQ ID No. 35; CDC9 NSP 2 nt - stool es la SEQ ID No. 38; CDC9 NSP 3 nt - stool es la SEQ ID No. 41; CDC9 NSP 4 nt - stool es la SEQ ID No. 44; CDC9 NSP 5 nt - stool es la SEQ ID No. 47; CDC9 VP1 nt - stool es la SEQ ID No. 50; CDC9 VP 2 nt - stool es la SEQ ID No. 53; CDC9 VP 3 nt - stool es la SEQ ID No. 56; CDC9 VP 4 nt - stool es la SEQ ID No. 59; CDC9 VP 6 nt - stool es la SEQ ID No. 62; y CDC9 VP 7 nt - stool es la SEQ ID No. 65.

Secuencias de aminoácidos de CDC9 de proteínas codificadas por ácidos nucleicos aislados de rotavirus CDC9 en el pase 27 aislado de células Vero: CDC9 NSP1 aa - Vero es la SEQ ID No. 3; CDC9 NSP 2 aa - Vero es la SEQ ID No. 6; CDC9 NSP 3 aa - Vero es la SEQ ID No. 9; CDC9 NSP 4 aa - Vero es la SEQ ID No. 12; CDC9 NSP 5 aa - Vero es la SEQ ID No. 15; CDC9 VP1 aa - Vero es la SEQ ID No. 18; CDC9 VP 2 aa - Vero es la SEQ ID No. 21; 45 CDC9 VP 3 aa - Vero es la SEQ ID No. 24; CDC9 VP 4 aa - Vero es la SEQ ID No. 27; CDC9 VP 6 aa - Vero es la SEQ ID No. 30; y CDC9 VP 7 aa - Vero es la SEQ ID No. 33.

Secuencias de nucleótidos de CDC9 de ácidos nucleicos aislados de rotavirus CDC9 en el pase 27 aislado de células Vero: CDC9 NSP1 nt - Vero es la SEQ ID No. 36; CDC9 NSP 2 nt - Vero es la SEQ ID No. 39; CDC9 NSP 3 nt - Vero es la SEQ ID No. 42; CDC9 NSP 4 nt - Vero es la SEQ ID No. 45; CDC9 NSP 5 nt - Vero es la SEQ ID No. 48; CDC9 VP1 nt - Vero es la SEQ ID No. 51; CDC9 VP 2 nt - Vero es la SEQ ID No. 54; CDC9 VP 3 nt - Vero es la SEQ ID No. 57; CDC9 VP 4 nt - Vero es la SEQ ID No. 60; CDC9 VP 6 nt - Vero es la SEQ ID No. 63; y CDC9 VP 7 nt - Vero es la SEQ ID No. 66.

55 Como se muestra en el presente documento, se compararon secuencias de nucleótidos y aminoácidos del genoma completo de rotavirus CDC-9 aislados de heces y cultivo infectado con secuencias de aminoácidos y nucleótidos de genoma completo de KU de referencia u otras cepas G1P8 de rotavirus A.

Además, como se muestra en la Tabla 2, los genes CDC-9 (excepto para el segmento 3) comparten una alta

identidad de secuencia con los genes correspondientes de la cepa KU humana del prototipo P[8],G1.

Tabla 2. Porcentajes de identidad de nucleótidos (NT) y aminoácidos deducidos (AA) de segmentos del gen de la cepa de vacuna contra rotavirus CDC-9 en comparación con las secuencias génicas afines de la cepa de rotavirus 5 prototipo KU.

CDC-9							
Gen	% de NT	% de AA					
VP1	88	96					
VP2	95	98					
VP3	77	80					
VP4	91	94					
VP6	91	98					
VP7	93	96					
NSP1	83	81					
NSP2	90	94					
NSP3	93	95					
NSP4	93	94					
NSP5	93	94					

Además, se han documentado cambios en las secuencias nt y aa del genoma completo de la cepa CDC-9 a partir de heces hasta el pase 27 en células Vero, como se muestra en la Tabla 3.

Tabla 3 Cambios de nt y aa en los genes de CDC-9 de heces hasta el pase 27 en células Vero

Segmento génico	N.º de cambios de nt	Posición de nt	N.º de cambios de aa	Posición de aa
NSP1	1	396 A→G	1	122 Q→R
NSP2	0		0	
NSP3	0		0	
NSP4	0	0	0	
NSP5	1	155C → T	1	45 A → I
VP1	0		0	
VP2	0		0	
VP3 (DS-1)	0		0	
VP4	6	161G→A, 1001C→T, 1101G→A, 1162G→C, 1171A→C, 2025T→C	5	51G→D, 331S→F, 364M→I, 385D→H, 388I→L
VP6	1	325C→T	1	101A→V
VP7	1	678G→A	0	
Total:	10		8	

El rotavirus aislado CDC-9 en células Vero es un reordenamiento que tiene todos los genes (excepto el segmento 3) de una cepa de tipo KU. CDC-9 tiene un segmento 3 derivado de una cepa de tipo DS-1, ya que CDC-9 VP3 comparte una alta identidad con el gen afín de la cepa DS-1. Este reordenamiento podría haber ocurrido durante la infección natural o cuando los rotavirus G1P8 y G2P4 en el espécimen fecal se adaptaron y se sometieron a pases en el cultivo celular. Se ha descrito que la VP3 de rotavirus posee guanililtransferasa y puede estar implicada en la replicación viral y la morfogénesis.

Vacunas

20

Las vacunas y los métodos para su uso para inducir inmunidad activa y protección contra una enfermedad inducida por rotavirus en un sujeto se proporcionan de acuerdo con la presente invención.

En formas de realización particulares, las composiciones de vacuna para mejorar la protección inmunológica contra 25 una enfermedad mediada por rotavirus en un sujeto se proporcionan de acuerdo con la presente invención que incluye una cepa de rotavirus humano mezclada con un vehículo farmacéuticamente aceptable.

El término "composición de vacuna" se usa en el presente documento para referirse a una composición que incluye un agente biológico capaz de inducir una respuesta inmunológica en un sujeto inoculado con la composición de 5 vacuna. En formas de realización particulares, el agente biológico es un rotavirus vivo atenuado y/o inactivo. En formas de realización adicionales, el agente biológico es una porción antigénica de un rotavirus.

En formas de realización particulares, una cepa de rotavirus humano incluida en una composición de vacuna de la presente invención es CDC-9. Las combinaciones de estas cepas de rotavirus humanos se incluyen opcionalmente en las composiciones de vacuna de la presente invención. Además, una cepa de rotavirus humana distinta de CDC-9 se incluye opcionalmente en una composición de vacuna de la presente invención.

En una composición de vacuna de acuerdo con la presente divulgación, se incluyen al menos dos cepas de rotavirus. Las dos o más cepas de rotavirus tienen cada una independientemente un serotipo G G1, G2, G3, G4, G5, G6, G7, G8, G9, G10, G11, G12, G13 o G14. Por lo tanto, por ejemplo, al menos la cepa CDC-9 reivindicada está presente en una composición de vacuna de la presente invención junto con al menos una segunda cepa de rotavirus humano que tiene un serotipo G G1, G2, G3, G4, G5, G6, G7, G8, G9, G10, G11, G12, G13 o G14.

Cada una de las al menos dos cepas de rotavirus incluidas en una composición de vacuna tiene un serotipo P que 20 es P1A, P1B, P2A, P3, P4, P5, P6, P8, P11, o P12 en formas de realización particulares.

Una composición de vacuna para mejorar la protección inmunológica contra una enfermedad mediada por rotavirus en un sujeto incluye una primera cepa de rotavirus humano caracterizada por tener un serotipo G1 y una segunda cepa de rotavirus humana caracterizada por tener un serotipo G2 en formas de realización particulares de una composición de vacuna de la presente invención. Cada una de las dos cepas de rotavirus tiene independientemente un serotipo del grupo P que es P1A, P1B, P2A, P3, P4, P5, P6, P8, P11 o P12.

La cepa de rotavirus humano que tiene un serotipo G1 es CDC-9.

30 Las combinaciones de cepas de rotavirus humanos en formas de realización particulares de una composición de vacuna de la presente invención incluyen CDC-9.

Una cepa de rotavirus humano incluida en una composición de vacuna de acuerdo con la presente invención es un rotavirus vivo atenuado o un rotavirus inactivado. La elección del rotavirus vivo atenuado o rotavirus inactivado 35 depende de factores tales como la vía de administración de la composición de vacuna.

Se describe en el presente documento una composición de vacuna que incluye una cepa CDC-9 de rotavirus humano, uno o más polipéptidos de CDC-9 de rotavirus A y/o un fragmento inmunógeno de uno o más polipéptidos de CDC-9 y/o CDC-66 de rotavirus, puede estimular la generación de anticuerpos neutralizantes contra una cepa de 40 rotavirus A CDC-9.

Las composiciones de vacunas se describen en el presente documento que incluyen uno o más polipéptidos de rotavirus A y/o un fragmento inmunógeno de uno o más polipéptidos de rotavirus A. En una composición de vacuna como se describe en el presente documento, se puede incluir un polipéptido de CDC-9, un homólogo del mismo, y/o un fragmento inmunógeno del mismo.

El término "homólogo" se refiere a un polipéptido caracterizado por una homología de secuencia de aminoácidos con respecto a un polipéptido de rotavirus A de CDC-9 de referencia.

50 Secuencias CDC-9

Por consiguiente, la presente descripción proporciona un virus que incluye una NSP1 que tiene la SEQ ID NO: 2 o un homólogo que tiene una secuencia de aminoácidos que es más del 80%, es más del 81%, más del 82%, más del 83%, más del 84%, más del 85%, más del 86%, más del 87%, más del 88%, más del 89%, más del 90%, más del 91%, más del 92%, más del 93%, más del 94%, más del 95%, más del 96%, más del 97%, más del 98% o más del 99% idéntica a la SEQ ID NO: 2. Además, la presente descripción proporciona un virus que incluye una NSP1 que tiene la SEQ ID NO: 3 o un homólogo que tiene una secuencia de aminoácidos que es más del 80%, es más del 81%, más del 82%, más del 83%, más del 85%, más del 86%, más del 87%, más del 88%, más del 89%, más del 90%, más del 91%, más del 92%, más del 93%, más del 94%, más del 95%, más del 96%, más d

97%, más del 98% o más del 99% idéntica a la SEQ ID NO: 3.

La presente descripción proporciona un virus que incluye una NSP2 que tiene la SEQ ID NO: 5 o un homólogo que tiene una secuencia de aminoácidos que es más del 80%, es más del 81%, más del 82%, más del 83%, más del 84%, más del 85%, más del 86%, más del 87%, más del 88%, más del 89%, más del 90%, más del 91%, más del 92%, más del 93%, más del 94%, más del 95%, más del 96%, más del 97%, más del 98% o más del 99% idéntica a la SEQ ID NO: 5.

La presente descripción proporciona un virus que incluye una NSP3 que tiene la SEQ ID NO: 8 o un homólogo que 10 tiene una secuencia de aminoácidos que es más del 80%, es más del 81%, más del 82%, más del 83%, más del 84%, más del 85%, más del 86%, más del 87%, más del 88%, más del 89%, más del 90%, más del 91%, más del 92%, más del 93%, más del 94%, más del 95%, más del 96%, más del 97%, más del 98% o más del 99% idéntica a la SEQ ID NO: 8.

15 La presente descripción proporciona un virus que incluye una NSP4 que tiene la SEQ ID NO: 11 o un homólogo que tiene una secuencia de aminoácidos que es más del 80%, es más del 81%, más del 82%, más del 83%, más del 84%, más del 85%, más del 86%, más del 87%, más del 88%, más del 89%, más del 90%, más del 91%, más del 92%, más del 93%, más del 94%, más del 95%, más del 96%, más del 97%, más del 98% o más del 99% idéntica a la SEQ ID NO: 11.

La presente descripción proporciona un virus que incluye una NSP5 que tiene la SEQ ID NO: 14 o un homólogo que tiene una secuencia de aminoácidos que es más del 80%, es más del 81%, más del 82%, más del 83%, más del 84%, más del 85%, más del 86%, más del 87%, más del 88%, más del 89%, más del 90%, más del 91%, más del 92%, más del 93%, más del 94%, más del 95%, más del 96%, más del 97%, más del 98% o más del 99% idéntica a 18 SEQ ID NO: 14. Además, la presente descripción proporciona un virus que incluye una NSP5 que tiene la SEQ ID NO: 15 o un homólogo que tiene una secuencia de aminoácidos que es más del 80%, es más del 81%, más del 82%, más del

82%, más del 83%, más del 84%, más del 85%, más del 86%, más del 87%, más del 88%, más del 89%, más del 90%, más del 91%, más del 92%, más del 93%, más del 94%, más del 95%, más del 96%, más del 97%, más del 98% o más del 99% idéntica a la SEQ ID NO: 15.

Por consiguiente, la presente descripción proporciona un virus que incluye una VP1 que tiene la SEQ ID NO: 17 o un homólogo que tiene una secuencia de aminoácidos que es más del 80%, es más del 81%, más del 82%, más del 83%, más del 84%, más del 85%, más del 86%, más del 87%, más del 88%, más del 89%, más del 90%, más del 91%, más del 92%, más del 93%, más del 94%, más del 95%, más del 96%, más del 97%, más del 98% o más del 35 99% idéntica a la SEQ ID NO: 17.

La presente descripción proporciona un virus que incluye una VP2 que tiene la SEQ ID NO: 20 o un homólogo que tiene una secuencia de aminoácidos que es más del 81%, más del 82%, más del 83%, más del 84%, más del 85%, más del 86%, más del 87%, más del 88%, más del 99%, más del 91%, más del 92%, más del 93%, 40 más del 94%, más del 95%, más del 96%, más del 97%, más del 98% o más del 99% idéntica a la SEQ ID NO: 20.

La presente descripción proporciona un virus que incluye una VP3 que tiene la SEQ ID NO: 23 o un homólogo que tiene una secuencia de aminoácidos que es más del 80%, más del 81%, más del 82%, más del 83%, más del 84%, más del 85%, más del 86%, más del 87%, más del 88%, más del 89%, más del 90%, más del 91%, más del 92%, más del 93%, más del 94%, más del 95%, más del 96%, más del 97%, más del 98% o más del 99% idéntica a la SEQ ID NO: 23.

La presente descripción proporciona un virus que incluye una VP4 que tiene la SEQ ID NO: 26 o un homólogo que tiene una secuencia de aminoácidos que es más del 80%, más del 81%, más del 82%, más del 83%, más del 84%, 50 más del 85%, más del 86%, más del 87%, más del 88%, más del 89%, más del 90%, más del 91%, más del 92%, más del 93%, más del 94%, más del 95%, más del 96%, más del 97%, más del 98% o más del 99% idéntica a la SEQ ID NO: 26. Además, la presente descripción proporciona un virus que incluye una VP4 que tiene la SEQ ID NO: 27 o un homólogo que tiene una secuencia de aminoácidos que es más del 80%, más del 81%, más del 82%, más del 83%, más del 84%, más del 85%, más del 86%, más del 87%, más del 88%, más del 89%, más del 90%, más del 99%, más del 92%, más del 93%, más del 94%, más del 95%, más del 96%, más del 97%, más del 98% o más del 99% idéntica a la SEQ ID NO: 27.

La presente descripción proporciona un virus que incluye una VP6 que tiene la SEQ ID NO: 29 o un homólogo que tiene una secuencia de aminoácidos que es más del 80%, más del 81%, más del 82%, más del 83%, más del 84%,

más del 85%, más del 86%, más del 87%, más del 88%, más del 89%, más del 90%, más del 91%, más del 92%, más del 93%, más del 94%, más del 95%, más del 96%, más del 97%, más del 98% o más del 99% idéntica a la SEQ ID NO: 29. Además, la presente descripción proporciona un virus que incluye una VP6 que tiene la SEQ ID NO: 30 o un homólogo que tiene una secuencia de aminoácidos que es más del 80%, más del 81%, más del 82%, más del 83%, más del 84%, más del 85%, más del 86%, más del 87%, más del 88%, más del 89%, más del 90%, más del 91%, más del 92%, más del 93%, más del 94%, más del 95%, más del 96%, más del 97%, más del 98% o más del 99% idéntica a la SEQ ID NO: 30.

La presente descripción proporciona un virus que incluye una VP7 que tiene la SEQ ID NO: 32 o un homólogo que 10 tiene una secuencia de aminoácidos que es más del 80%, más del 81%, más del 82%, más del 83%, más del 84%, más del 85%, más del 86%, más del 87%, más del 88%, más del 89%, más del 90%, más del 91%, más del 92%, más del 93%, más del 94%, más del 95%, más del 96%, más del 97%, más del 98% o más del 99% idéntica a la SEQ ID NO: 32.

15 La presente descripción proporciona una NSP1, NSP2, NSP3, NSP4, NSP5, VP1, VP2, VP3, VP4, VP6, o VP7 aislada o purificada. El término "purificado" o "aislado" como se usa en el presente documento, pretende referirse a una composición, aislable de otros componentes, en las composiciones se purifican en cualquier grado con respecto a su estado obtenible naturalmente, es decir, en este caso, con respecto a su pureza dentro de una célula, con respecto a la pureza dentro de un virión, o con respecto a su pureza dentro de un organismo infeccioso. Una 20 composición aislada, por lo tanto, también se refiere a una proteína, péptido, ácido nucleico u oligonucleótido, sustancialmente libre del entorno en el que puede producirse naturalmente.

Se reconoce que numerosas variantes, análogos u homólogos se incluyen por la presente descripción, incluyendo sustituciones de aminoácidos, alteraciones, modificaciones u otros cambios de aminoácidos que aumentan, disminuyen o no alteran la función o la propensión inmunógena del inmunógeno o vacuna de la invención. Se aprecia además que las secuencias como se describen en el presente documento pueden modificarse opcionalmente mediante la adición de uno o más aminoácidos, azúcares, nucleótidos, grupos colgantes, fluoróforos, luminóforos, moléculas radioactivas, lípidos, ácidos grasos, derivados de los mismos, u otros grupos conocidos en la técnica. Ilustrativamente, un inmunógeno puede conjugarse con una proteína. Opcionalmente, un inmunógeno se conjuga con una proteína que promueve la inmunogenicidad de un inmunógeno, ilustrativamente, hemocianina de lapa californiana (KLH), albúmina de suero bovino (BSA), o modificaciones de los mismos, así como la proteína inmunógena BLUE CARRIER de Thermo Scientific, Rockford, IL. Otras fuentes de conjugados de proteínas inmunogénicas naturales o artificiales se conocen en la técnica. Opcionalmente, un inmunógeno se conjuga con un anticuerpo. Opcionalmente, un inmunógeno se conjuga con otras regiones de la proteína G que pueden o no contener también epítopos.

De acuerdo con la presente descripción, la NSP1 tiene la SEQ ID NO: 2 o la SEQ ID No. 3, o es un homólogo que tiene una secuencia de aminoácidos que es más del 80%, más del 81%, más del 82%, más del 83%, más del 84%, más del 85%, más del 86%, más del 87%, más del 88%, más del 89%, más del 90%, más del 91%, más del 92%, 40 más del 93%, más del 94%, más del 95%, más del 96%, más del 97%, más del 98% o más del 99% idéntica a la SEQ ID NO: 2 o a la SEQ ID No. 3.

La presente descripción proporciona una NSP2 aislada o purificada que tiene la SEQ ID NO: 5 o es un homólogo que tiene una secuencia de aminoácidos que es más del 80%, más del 81%, más del 82%, más del 83%, más del 84%, más del 85%, más del 86%, más del 88%, más del 89%, más del 90%, más del 91%, más del 92%, más del 93%, más del 94%, más del 95%, más del 96%, más del 97%, más del 98% o más del 99% idéntica a la SEQ ID NO: 5. La presente descripción proporciona una NSP3 aislada o purificada que tiene la SEQ ID NO: 8 o es un homólogo que tiene una secuencia de aminoácidos que es más del 80%, más del 81%, más del 82%, más del 83%, más del 84%, más del 85%, más del 86%, más del 87%, más del 88%, más del 89%, más del 90%, más del 91%, más del 92%, más del 93%, más del 94%, más del 95%, más del 96%, más del 97%, más del 98% o más del 99% idéntica a la SEQ ID NO: 8.

La presente descripción proporciona una NSP4 aislada o purificada que tiene la SEQ ID NO: 11 o un homólogo que tiene una secuencia de aminoácidos que es más del 80%, más del 81%, más del 82%, más del 83%, más del 84%, 55 más del 85%, más del 86%, más del 87%, más del 88%, más del 89%, más del 90%, más del 91%, más del 92%, más del 93%, más del 94%, más del 95%, más del 96%, más del 97%, más del 98% o más del 99% idéntica a la SEQ ID NO: 11.

La presente descripción proporciona una NSP5 aislada o purificada que tiene la SEQ ID NO: 14 o la SEQ ID NO. 15

o es un homólogo que tiene una secuencia de aminoácidos que es más del 80%, más del 81%, más del 82%, más del 83%, más del 84%, más del 85%, más del 86%, más del 87%, más del 88%, más del 89%, más del 90%, más del 91%, más del 92%, más del 93%, más del 95%, más del 96%, más del 97%, más del 98% o más del 99% idéntica a la SEQ ID NO: 14 o la SEQ ID NO. 15. La presente descripción proporciona una VP1 aislada o purificada que tiene la SEQ ID NO: 17 o es un homólogo que tiene una secuencia de aminoácidos que es más del 80%, más del 81%, más del 82%, más del 83%, más del 85%, más del 86%, más del 87%, más del 88%, más del 89%, más del 90%, más del 91%, más del 92%, más del 93%, más del 94%, más del 95%, más del 96%, más del 97%, más del 98% o más del 99% idéntica a la SEQ ID NO: 17.

- 10 La presente descripción proporciona una VP2 aislada o purificada que tiene la SEQ ID NO: 20 o es un homólogo que tiene una secuencia de aminoácidos que es más del 80%, más del 81%, más del 82%, más del 83%, más del 84%, más del 85%, más del 86%, más del 87%, más del 88%, más del 99%, más del 90%, más del 91%, más del 92%, más del 93%, más del 94%, más del 95%, más del 96%, más del 97%, más del 98% o más del 99% idéntica a la SEQ ID NO: 20. La presente descripción proporciona una VP3 aislada o purificada que tiene la SEQ ID NO: 23 o es un homólogo que tiene una secuencia de aminoácidos que es más del 80%, más del 81%, más del 82%, más del 83%, más del 84%, más del 85%, más del 86%, más del 87%, más del 88%, más del 89%, más del 90%, más del 91%, más del 92%, más del 93%, más del 94%, más del 95%, más del 96%, más del 97%, más del 98% o más del 99% idéntica a la SEQ ID NO: 23.
- 20 La presente descripción proporciona una VP4 aislada o purificada que tiene la SEQ ID NO: 26 o la SEQ ID NO. 27 o es un homólogo que tiene una secuencia de aminoácidos que es más del 80%, más del 81%, más del 82%, más del 83%, más del 84%, más del 85%, más del 86%, más del 87%, más del 88%, más del 89%, más del 90%, más del 91%, más del 92%, más del 93%, más del 94%, más del 95%, más del 96%, más del 97%, más del 98% o más del 99% idéntica a la SEQ ID NO: 26 o la SEQ ID NO. 27. La presente invención proporciona una VP6 aislada o purificada que tiene la SEQ ID NO: 29 o la SEQ ID NO. 30 o es un homólogo que tiene una secuencia de aminoácidos que es más del 80%, más del 81%, más del 82%, más del 83%, más del 84%, más del 85%, más del 86%, más del 87%, más del 88%, más del 90%, más del 91%, más del 92%, más del 93%, más del 94%, más del 95%, más del 96%, más del 97%, más del 98% o más del 99% idéntica a la SEQ ID NO: 29 o la SEQ ID NO. 30.
- La presente invención proporciona una VP7 aislada o purificada que tiene la SEQ ID NO: 32 o es un homólogo que tiene una secuencia de aminoácidos que es más del 80%, más del 81%, más del 82%, más del 83%, más del 84%, más del 85%, más del 86%, más del 87%, más del 88%, más del 89%, más del 90%, más del 91%, más del 92%, más del 93%, más del 94%, más del 95%, más del 96%, más del 97%, más del 98% o más del 99% idéntica a la 35 SEQ ID NO: 32. Un ácido nucleico aislado o purificado que codifica una proteína descrita anteriormente o un fragmento de la misma, se describe en el presente documento. Opcionalmente, el ácido nucleico aislado o purificado que codifica una proteína descrita anteriormente o un fragmento de la misma se incluye en un vector.
- Un ácido nucleico que codifica NSP1 incluye la secuencia de nucleótidos de SEQ ID NO: 35; SEQ ID NO: 36; o un 40 fragmento de la misma que codifica al menos nueve aminoácidos contiguos. Un ácido nucleico que codifica NSP2 incluye la secuencia de nucleótidos de SEQ ID NO: 38; o un fragmento de la misma que codifica al menos nueve aminoácidos contiguos. Un ácido nucleico que codifica NSP3 incluye la secuencia de nucleótidos de SEQ ID NO: 41; o un fragmento de la misma que codifica al menos nueve aminoácidos contiguos. Un ácido nucleico que codifica NSP4 incluye la secuencia de nucleótidos de SEQ ID NO: 44; o un fragmento de la misma que codifica al menos 45 nueve aminoácidos contiguos. Un ácido nucleico que codifica NSP5 incluye la secuencia de nucleótidos de SEQ ID NO: 47; SEQ ID NO: 48; o un fragmento de la misma que codifica al menos nueve aminoácidos contiguos. Un ácido nucleico que codifica VP1 incluye la secuencia de nucleótidos de SEQ ID NO: 50; o un fragmento de la misma que codifica al menos nueve aminoácidos contiguos. Un ácido nucleico que codifica VP2 incluye la secuencia de nucleótidos de SEQ ID NO: 53; o un fragmento de la misma que codifica al menos nueve aminoácidos contiguos. Un 50 ácido nucleico que codifica VP3 incluye la secuencia de nucleótidos de SEQ ID NO: 23; o un fragmento de la misma que codifica al menos nueve aminoácidos contiguos. Un ácido nucleico que codifica VP4 incluye la secuencia de nucleótidos de SEQ ID NO: 59; SEQ ID NO: 60; o un fragmento de la misma que codifica al menos nueve aminoácidos contiguos. Un ácido nucleico que codifica VP6 incluye la secuencia de nucleótidos de SEQ ID NO: 62; SEQ ID NO: 63; o un fragmento de la misma que codifica al menos nueve aminoácidos contiguos. Un ácido nucleico 55 que codifica VP7 incluye la secuencia de nucleótidos de SEQ ID NO: 65; o un fragmento de la misma que codifica al menos nueve aminoácidos contiguos.

Un experto en la técnica apreciará que, debido a la degeneración del código genético, un polipéptido particular o fragmento del mismo puede codificarse por más de una secuencia de ácido nucleico.

Se pueden introducir mutaciones utilizando técnicas estándar de biología molecular, tal como la mutagénesis de sitio dirigido y la mutagénesis mediada por PCR. Un experto en la técnica reconocerá que pueden introducirse una o más mutaciones de aminoácidos sin alterar las propiedades funcionales de los polipéptidos de rotavirus. Por ejemplo, se pueden hacer una o más sustituciones, adiciones o eliminaciones de aminoácidos sin alterar las propiedades funcionales de los polipéptidos de rotavirus. También se aprecia que varias mutaciones aumentan, disminuyen o no cambian opcionalmente la inmunogenicidad de un polipéptido de la invención.

Se pueden hacer sustituciones de aminoácidos conservativas en polipéptidos de rotavirus para producir homólogos.

10 Las sustituciones de aminoácidos conservativas son sustituciones reconocidas en la técnica de un aminoácido por otro aminoácido que tiene características similares. Por ejemplo, cada aminoácido puede describirse como que tiene una o más de las siguientes características: electropositivo, electronegativo, alifático, aromático, polar, hidrófobo e hidrófilo. Una sustitución conservativa es una sustitución de un aminoácido que tiene una característica estructural o funcional específica para otro aminoácido que tiene la misma característica. Los aminoácidos ácidos incluyen aspartato, glutamato; los aminoácidos básicos incluyen histidina, lisina, arginina; los aminoácidos alifáticos incluyen isoleucina, leucina y valina; los aminoácidos aromáticos incluyen fenilalanina, glicina, tirosina y triptófano; los aminoácidos polares incluyen aspartato, glutamato, histidina, lisina, asparagina, glutamina, arginina, serina, treonina y tirosina; y los aminoácidos hidrófobos incluyen alanina, cisteína, fenilalanina, glicina, isoleucina, leucina, metionina, prolina, valina y triptófano; y las sustituciones conservativas incluyen la sustitución entre aminoácidos dentro de cada grupo. Los aminoácidos también pueden describirse en términos de tamaño relativo, alanina, cisteína, aspartato, glicina, asparagina, prolina, treonina, serina, valina, que típicamente se consideran pequeños.

Al llevar a cabotales cambios, se puede considerar el índice hidropático de los aminoácidos. La importancia del índice de aminoácidos hidropáticos para conferir una función biológica interactiva a un polipéptido se entiende generalmente en la técnica. Se sabe que ciertos aminoácidos pueden sustituirse por otros aminoácidos que tienen un índice o puntuación hidropática similar y aún dan como resultado un polipéptido con una actividad biológica similar. A cada aminoácido se le ha asignado un índice hidropático en base a sus características de hidrofobicidad y carga. Estos índices son: isoleucina (+4,5); valina (+4,2); leucina (+3,8); fenilalanina (+2,8); cisteína/cistina (+2,5); metionina (+1,9); alanina (+1,8); glicina (-0,4); treonina (-0,7); serina (-0,8); triptófano (-0,9); trirosina (-1,3); prolina (-3,5); histidina (-3,2); glutamato (-3,5); glutamina (-3,5); asparagina (-3,5); lisina (-3,9); y arginina (-4,5).

Se cree que el carácter hidropático relativo del aminoácido determina la estructura secundaria del polipéptido resultante, lo que a su vez define la interacción del polipéptido con otras moléculas, tales como enzimas, sustratos, receptores, anticuerpos, antígenos y similares. Se sabe en la técnica que un aminoácido puede estar sustituido con otro aminoácido que tiene un índice hidropático similar y todavía obtener un polipéptido funcionalmente equivalente. En tales cambios, se prefiere la sustitución de aminoácidos cuyos índices hidropáticos están dentro de ± 2, se prefieren particularmente aquellos dentro de ± 1, y se prefieren aún más particularmente aquellos dentro de ± 0,5.

40 La sustitución de aminoácidos similares también se puede llevar a cabosobre la base de la hidrofilicidad, en particular, cuando el polipéptido o péptido equivalente biológicamente funcional creado de este modo está destinado para su uso en formas de realización inmunológicas. Los siguientes valores de hidrofilicidad se han asignado a residuos de aminoácidos: arginina (+3,0); lisina (+3,0); aspartato (+3,0 ± 1); glutamato (+3,0 ± 1); serina (+0,3); asparagina (+0,2); glutamina (+0,2); glicina (0); prolina (-0,5 ± 1); treonina (-0,4); alanina (-0,5); histidina (-0,5); triptófano (-1,0); metionina (-1,3); valina (-1,5); leucina (-1,8); isoleucina (-1,8); tirosina (-2,3); fenilalanina (-2,5); triptófano (-3,4). Se entiende que un aminoácido puede sustituirse por otro que tenga un valor de hidrofilicidad similar y todavía obtener un polipéptido biológicamente equivalente y, en particular, un polipéptido inmunológicamente equivalente. En tales cambios, se prefiere la sustitución de aminoácidos cuyos valores de hidrofilicidad están dentro de ± 2, se prefieren particularmente aquellos dentro de ± 1, y se prefieren aún más particularmente aquellos dentro de ± 0,5.

Como se describe anteriormente, las sustituciones de aminoácidos se basan generalmente en la similitud relativa de los sustituyentes de cadena lateral de aminoácidos, por ejemplo, su hidrofobicidad, hidrofilia, carga, tamaño, y similares. Las sustituciones ejemplares que toman en consideración diversas de las características anteriores se conocen bien por los expertos en la técnica e incluyen (residuo original: sustitución ejemplar): (Ala: Gly, Ser), (Arg: Lys), (Asn: Gln, His), (Asp: Glu, Cys, Ser), (Gln: Asn), (Glu: Asp), (Gly: Ala), (His: Asn, Gln), (Ile: Leu, Val), (Leu: Ile, Val), (Lys: Arg), (Met: Leu, Tyr), (Ser: Thr), (Thr: Ser), (Tip: Tyr), (Tyr: Trp, Phe), y (Val: Ile, Leu). Las formas de realización de esta descripción contemplan, por lo tanto, equivalentes funcionales o biológicos de un polipéptido como se expone anteriormente. En particular, las formas de realización de los polipéptidos pueden incluir variantes

que tienen aproximadamente el 50%, 60%, 70%, 80%, 90% y el 95% de identidad de secuencia con el polipéptido de interés.

Las partículas de rotavirus, ácidos nucleicos, polipéptidos y fragmentos de los mismos pueden producirse en células 5 huésped recombinantes usando técnicas convencionales bien conocidas. Cualquier construcción de ácido nucleico, que sea eficaz en la producción de la proteína codificada o fragmento de la misma en una célula huésped, puede usarse para producir partículas de rotavirus, polipéptidos de rotavirus o fragmentos de los mismos.

Un experto en la técnica reconoce muchas formas de preparar CDC-9 de la invención o virus para su uso en una composición de vacuna de la invención o en procesos de la invención. De manera ilustrativa, es una práctica común aislar un supuesto rotavirus de una muestra de heces u otra muestra biológica, incluyendo opcionalmente el pase en un cultivo celular, tal como en células Vero similares a los métodos ilustrados en Esona, MD, et al., Human Vaccines, 2010; 6:1-7. Un experto en la técnica aísla regularmente cepas de virus y caracteriza la secuencia del genoma mediante técnicas bien conocidas en la técnica. Es una práctica común para un experto en la técnica secuenciar un genoma viral y comparar la secuencia de salida con una secuencia modelo tal como las secuencias de CDC-9 descritas en el presente documento para determinar si el virus aislado tiene la secuencia genética requerida para ser CDC-9, u homólogos de la misma.

Un experto en la técnica también conoce métodos para modificar un rotavirus modelo tal como KU o DS-1 para 20 producir virus CDC-9. Uno de estos métodos utiliza el enfoque de genética inversa de Komoto, S., et al., PNAS USA, 2006; 103:4646-4651. Brevemente, cada uno de los genes de la cepa KU se puede aislar y amplificar tomando el fluido de cultivo de las células MA104 infectadas, extrayendo el ARNds viral y sintetizando el ADNc utilizando la transcriptasa inversa del virus de la mieloblastosis aviar (Seikagaku Kogyo, Tokio, Japón) utilizando un cebador inicial. Está ya dentro del nivel de habilidad en la técnica diseñar cebadores para sintetizar ADNc. Los expertos en la 25 técnica conocen numerosos programas gratuitos y disponibles comercialmente para la síntesis de cebadores. llustrativamente, los cebadores para el gen KU VP4 se describen en Komoto, S., et al., PNAS USA, 2006; 103:4646-4651. La modificación de las secuencias de KU o cualquier otra cepa a las de CDC-9 se realiza de manera ilustrativa estableciendo las modificaciones de secuencia, por ejemplo, mediante alineamientos de secuencia. Una vez que se aclaran las sustituciones de los nucleótidos, se pueden lograr modificaciones del ADNc utilizando el kit de 30 mutagénesis de sitio dirigido QUICKCHANGE XL, disponible en Agilent Technologies, Santa Clara, CA. Las secuencias génicas modificadas para ajustarse a las de CDC-9, u homólogos de las mismas, se insertan opcionalmente en una línea celular, tal como las células COS-7 junto con un virus auxiliar, tal como KU que se utiliza para servir como base para la inserción de genes en nuevos virus. Los virus modificados se aíslan posteriormente por técnicas conocidas. Se usa un proceso iterativo opcional mediante el cual cada gen individual de CDC-9 se 35 sustituye por el gen del virus auxiliar, paso a paso, por lo que la cepa de virus sustituida aislada de la sustitución del primer gen se usa como un virus auxiliar para la sustitución del segundo gen, y así sucesivamente, hasta que CDC-9 se crea a partir de una cepa fuente.

Se pueden encontrar ejemplos ilustrativos de virus auxiliares o rotavirus modelo en los N.º de acceso de GenBank: 40 (a) Cepas VP3: RV161-00 (DQ490547), RV176-00 (DQ490553), DRC88 (DQ005112), DRC86 (DQ005123), TB-Chen (AY787654), DS-1 (AY277914), AU-1 (DQ490537), T152 (DQ146701), Hosokawa (DQ870491), Hochi (AY277915), Wa (AY267335), L26 (AY277918), KU (AB022767), Dhaka25-02 (DQ146651), Dhaka12-03 (DQ146662), B4633-03 (DQ146640), PO-13 (AB009631).

- 45 (b) Cepas VP7 (G1): SK417 (EU839907), DH415 (EU839906), MMC82 (EU839913), Dhaka18-02 (AY631051), MMC56 (EU839911), Matlab159-02 (AY631055), ISO-4 (AY098670), Thai-2104 (DQ512982), CMH042/04 (EF199713), 417 (D16328), T73 (AF450291), TE1 (D17721), K18 (D16319), Chi-87 (DQ512998), J-4825 (DQ512989), 88H249 (AB081795), 421 (D16326), RV-4 (M64666), AU007 (AB081799), HOU8697 (U88717), Mvd9607 (AF480295), 80 (D16325), DC03 (AF183859), KU (AB222788), K2 (D16323), K8 (D16344), Egy-8 50 (U26374), Brz-5 (U26367), Wa (K02033), D (AB118022), C95 (L24165), T449 (M92651), DS-1 (AB118023).
- (c) Cepas VP4 P[8]: ITO (AB008280), D (EF672570), Wa (L34161), Hochi (AB008295), Odelia (AB008296), VA70 (AJ540229), CH32 (AB008274), MO (AB008278), KU (AB222784), Wi61 (EF672619), F45 (U30716) P (EF672598), AI-39 (AB008283), 90-544 (AB008304), B4633-03 (DQ146641), Dhaka25-02 (DQ146652), SK438 (EU839955), 55 DH402 (EU839958), DH415 (EU839955), DS-1(AB118025).
 - (d) Cepas NSP4: Dhaka16-03 (DQ492678), 1099 (AJ236759), Dhaka12-03 (DQ146669), Dhaka25-02 (DQ146658), KU (AB022772), Wa (AF093199), RMC321 (AF541921), OSU (D88831), AU-1 (D89873), CMH120/04 (DQ923799), B4106 (AY740732), C-11 (AF144793), DRC86 (DQ005116), DRC88 (DQ005105), DS-1 (AF174305), TB-Chen

(AY787650), Ch-1 (AB065287).

Otros métodos, cebadores, técnicas de aislamiento, técnicas de secuenciación, y técnicas de caracterización se conocen por los expertos en la técnica y son operables de manera similar en el presente documento. De manera 5 ilustrativa, se pueden reconstituir los virus CDC-9 de novo a partir de genes aislados, tal como mediante el ensamblaje de partículas de virus con genes capturados, de manera ilustrativa, mediante las técnicas o modificaciones de Gonzalez, SA, and Affranchino, JL, J. Gen. Virol., 1995; 76:2357-2360.

Las construcciones de expresión y los métodos para su generación y uso para expresar una proteína deseada se conocen en la técnica, como se describe, por ejemplo, en Sambrook et al., Molecular Cloning: A Laboratory Manual, Cold Spring Harbor Laboratory Press, 2001; Ausubel, F. et al., (Eds.), Short Protocols in Molecular Biology, Wiley, 2002; y S. J. Higgins y B. D. Hames (Eds.), Protein Expression: A Practical Approach, Oxford University Press, Estados Unidos, 1999.

- 15 De forma ilustrativa, una molécula de ácido nucleico que codifica uno o más polipéptidos de rotavirus y/o fragmentos de polipéptidos de rotavirus, está unida operativamente a secuencias reguladoras que controlan la expresión transcripcional en un vector de expresión. El vector de expresión se introduce en una célula huésped y las partículas de rotavirus producidas, uno o más polipéptidos de rotavirus y/o fragmentos de polipéptidos de rotavirus, se pueden aislar. Las construcciones ilustrativas incluyen unir operativamente una molécula de ácido nucleico de rotavirus en el plásmido pT7 amplificando primero la molécula de ácido nucleico usando cebadores que incluyen una secuencia promotora T7 y ligando los ácidos nucleicos amplificados en el vector de expresión de T7 pX8dT como se describe por Schnell, MJ, et al., EMBO J, 1994; 13:4195-4203.
- Los ejemplos no limitantes de secuencias reguladoras que controlan la expresión transcripcional en un vector de expresión incluyen ilustrativamente un promotor, un potenciador, una señal de corte y empalme, un sitio de inicio de la transcripción, una señal de terminación de la transcripción, una señal de poliadenilación, un sitio de entrada al ribosoma interno (IRES) y combinaciones de estas u otras secuencias reguladoras.
- Los vectores de expresión incluyen, pero sin limitación, vectores virales y vectores bacterianos usados para expresar 30 una proteína deseada. Los ejemplos no limitantes de vectores de expresión incluyen plásmidos bacterianos, bacteriófagos, adenovirus, virus adenoasociados, virus del herpes, virus vaccinia y lentivirus.
 - Una célula huésped para la expresión de polipéptidos y fragmentos de los mismos, puede ser procariótica o eucariótica, tal como células bacterianas, vegetales, de insectos, hongos, levadura y mamíferos.
 - Se introduce un vector de expresión en una célula huésped utilizando técnicas bien conocidas, tales como infección o transfección, incluyendo transfección con fosfato de calcio, transfección mediada por liposomas, electroporación y sonoporación.
- 40 Además de la metodología recombinante, se pueden usar técnicas de síntesis química para producir polipéptidos y fragmentos de los mismos. Por ejemplo, se puede usar la síntesis en fase sólida, la síntesis en fase de solución, la síntesis en fase sólida parcial o la condensación de fragmentos.
- El término "aislado", como se usa en el presente documento, se refiere a una sustancia que se ha separado de otros componentes celulares asociados con la sustancia en la naturaleza, o cuando se produce de forma recombinante no pretende asociarse con la sustancia, y que puede interferir con el uso de la sustancia en usos terapéuticos, profilácticos, de diagnóstico, de investigación u otros. Generalmente, una sustancia aislada descrita en el presente documento es al menos aproximadamente un 80% pura, al menos aproximadamente un 90% pura, al menos aproximadamente un 95% pura, o más de aproximadamente un 99% pura. La purificación se logra utilizando una metodología estándar bien conocida, tal como el fraccionamiento y/o la cromatografía, tal como la precipitación con sulfato de amonio y la cromatografía de elución, tal como la cromatografía de exclusión por tamaño, la cromatografía de desplazamiento, la cromatografía de intercambio iónico, y la cromatografía de bioafinidad. La metodología de purificación ejemplar se describe en S. Doonan, Protein Purification Protocols Humana Press, 1996.
- 55 El porcentaje de identidad se determina mediante la comparación de secuencias de aminoácidos o ácido nucleico, incluida una secuencia de aminoácidos o ácido nucleico de rotavirus A de referencia y una supuesta secuencia de aminoácidos o ácido nucleico homóloga. Los algoritmos utilizados para la determinación del porcentaje de identidad incluyen de forma ilustrativa los algoritmos de S. Karlin y S. Altshul, PNAS, 90:5873-5877, 1993; T. Smith y M. Waterman, Adv. Appl. Math. 2:482-489, 1981, S. Needleman y C. Wunsch, J. Mol. Biol., 48:443-453, 1970, W.

Pearson y D. Lipman, PNAS, 85:2444-2448, 1988 y otros incorporados en implementaciones informatizadas, tales como, pero sin limitación, GAP, BESTFIT, FASTA, TFASTA; y BLAST, por ejemplo, incorporado en el paquete de software Wisconsin Genetics, Genetics Computer Group, 575 Science Drive, Madison, WI y disponible públicamente en el National Center for Biotechnology Information.

Los polipéptidos de rotavirus A CDC-9, un homólogo de los mismos y/o un fragmento inmunógeno de los mismos, pueden prepararse por cualquiera de diversos métodos, incluido el aislamiento de partículas de virus de fuentes tales como células cultivadas o muestras de pacientes, aislamiento de uno o más polipéptidos y/o uno o más fragmentos de polipéptidos de partículas virales, producción recombinante de polipéptidos virales, fragmentos y/o partículas virales, incluyendo partículas intactas y pseudovíricas, y/o mediante técnicas de síntesis química. Los métodos de aislamiento de partículas de virus, polipéptidos de virus y/o uno o más fragmentos de polipéptidos de virus, producción recombinante de polipéptidos de virus, fragmentos de polipéptidos de virus y/o partículas de virus, se describen en detalle en el presente documento, en las referencias citadas en el presente documento, y se conocen por los expertos en la técnica.

Un antígeno se puede hacer más inmunogénico si se desea unirlo a una molécula portadora tal como albúmina de suero bovino o hemocianina de lapa californiana y/o mediante el uso de un adyuvante. El enlace portador se puede lograr por cualquiera de diversas técnicas, incluyendo, de forma ilustrativa, pero sin limitación, la conjugación y la expresión de una proteína de fusión.

Los polipéptidos o péptidos expresados de forma recombinante pueden marcarse para permitir un aislamiento más fácil. Por ejemplo, dichos polipéptidos y péptidos están etiquetados opcionalmente de manera ilustrativa, marcados con Fc, marcados con 6xHIS, marcados con FLAG, o por otros marcadores adecuados para el aislamiento de un polipéptido marcado.

Formulación de vacunas

15

20

25

En formas de realización particulares de la invención, se prepara una cepa de rotavirus A para su inclusión en una composición de vacuna de la presente invención mediante métodos estándar usados típicamente para la 30 preparación de rotavirus vivo o inactivado. Por ejemplo, generalmente se inocula un tipo de célula compatible con una cepa de rotavirus y las células se mantienen en condiciones que permiten la replicación viral y la producción de partículas infecciosas.

Un ejemplo particular de un tipo celular que permite la infección por rotavirus, la replicación y la producción de 35 partículas es una línea celular de mamífero tal como una línea celular Vero.

Se recogen partículas de rotavirus, típicamente a partir de sobrenadante de cultivo celular para su inclusión en una composición de vacuna. Las partículas de rotavirus pueden aislarse del sobrenadante de cultivo celular, por ejemplo mediante filtración y/o centrifugación. Las partículas de rotavirus aisladas se liofilizan opcionalmente, tal como para resuspensión posterior en un vehículo farmacéuticamente aceptable.

El término "portador farmacéuticamente aceptable" se refiere a un portador que es sustancialmente no tóxico para un sujeto y sustancialmente inerte al rotavirus incluido en una composición de vacuna. Un portador farmacéuticamente aceptable es una forma de sólido, líquido o gel y típicamente es estéril y libre de pirógenos.

Una composición de vacuna de la presente invención puede estar en cualquier forma adecuada para la administración a un sujeto.

Una composición de vacuna se administra por cualquier vía de administración adecuada, incluidas las vías de 50 administración oral y parenteral, tal como intravenosa, intradérmica, intramuscular, mucosa, nasal o subcutánea.

Por ejemplo, una composición de vacuna para administración parenteral puede formularse como un líquido inyectable que incluye un rotavirus y un vehículo farmacéuticamente aceptable. Los ejemplos de vehículos acuosos y no acuosos adecuados incluyen agua, etanol, polioles tales como propilenglicol, polietilenglicol, glicerol y similares, mezclas adecuadas de los mismos; aceites vegetales tales como aceite de oliva; y ésteres orgánicos inyectables tales como oleato de etilo. La fluidez apropiada puede mantenerse, por ejemplo, mediante el uso de un revestimiento, tal como lecitina, mediante el mantenimiento de un tamaño de partícula deseado en el caso de dispersiones, y/o mediante el uso de un tensioactivo, tal como lauril sulfato sódico. Opcionalmente, se incluye un estabilizador tal como, por ejemplo, sacarosa, EDTA, EGTA y un antioxidante.

Una forma de dosificación sólida para administración o para suspensión en un líquido antes de la administración incluye ilustrativamente cápsulas, comprimidos, polvos y gránulos. En tales formas de dosificación sólidas, un rotavirus se mezcla con al menos un portador que incluye ilustrativamente un tampón tal como, por ejemplo, citrato de sodio o un fosfato de metal alcalino que incluye ilustrativamente fosfatos de sodio, fosfatos de potasio y fosfatos de calcio; una carga tal como, por ejemplo, almidón, lactosa, sacarosa, glucosa, manitol y ácido silícico; un aglutinante tal como, por ejemplo, carboximetilcelulosa, alginatos, gelatina, polivinilpirrolidona, sacarosa y goma arábiga; un humectante tal como, por ejemplo, glicerol; un agente disgregante tal como, por ejemplo, agar-agar, carbonato de calcio, almidones vegetales tales como almidón de patata o tapioca, ácido algínico, ciertos silicatos complejos y carbonato de sodio; un retardador de solución tal como, por ejemplo, parafina; un acelerador de absorción tal como, por ejemplo, un compuesto de amonio cuaternario; un agente humectante tal como, por ejemplo, alcohol cetílico, monoestearato de glicerol y un glicol; un adsorbente tal como, por ejemplo, caolín y bentonita; un lubricante tal como, por ejemplo, talco, estearato de calcio, estearato de magnesio, un polietilenglicol sólido o laurilsulfato de sodio; un conservante tal como un agente antibacteriano y un agente antifúngico, incluyendo, por ejemplo, ácido sórbico, gentamicina y fenol; y un estabilizador tal como, por ejemplo, sacarosa, EDTA, EGTA y un antioxidante.

Las formas de dosificación sólidas incluyen opcionalmente un revestimiento, tal como un revestimiento entérico. El revestimiento entérico es típicamente un material polimérico. Los materiales de revestimiento entérico preferidos tienen las características de ser polímeros bioerosionables, gradualmente hidrolizables y/o gradualmente solubles en agua. La cantidad de material de revestimiento aplicado a una dosis sólida generalmente determina el intervalo de tiempo entre la ingestión y la liberación del fármaco. Se aplica un revestimiento que tiene un espesor de tal forma que el revestimiento completo no se disuelve en los fluidos gastrointestinales a un pH inferior a 3 asociado con los ácidos del estómago, pero se disuelve por encima de un pH 3 en el entorno del intestino delgado. Se espera que cualquier polímero aniónico que presente un perfil de solubilidad dependiente del pH se use fácilmente como un revestimiento entérico en la práctica de la presente invención para lograr la administración del agente activo al tracto gastrointestinal inferior. La selección del material de revestimiento entérico específico depende de propiedades tales como la resistencia a la desintegración en el estómago; impermeabilidad a los fluidos gástricos y la difusión del agente activo mientras está en el estómago; la capacidad de disiparse en el sitio del intestino objetivo; la estabilidad física y química durante el almacenamiento; la no toxicidad; y la facilidad de aplicación.

Los materiales de revestimiento entérico adecuados incluyen ilustrativamente polímeros de celulosa, tales como hidroxipropilcelulosa, hidroxietilcelulosa, hidroxipropil metil celulosa, metil celulosa, etil celulosa, acetato de celulosa, acetato ftalato de celulosa, acetato trimelitato de celulosa, ftalato de hidroxipropilmetilcelulosa, succinato de hidroxipropilmetilcelulosa, succinato de hidroxipropilmetilcelulosa y carboximetilcelulosa sódica; polímeros y copolímeros de ácido acrílico, preferiblemente formados a partir de ácido acrílico, ácido metacrílico, acrilato de metilo, metilacrilato de amonio, acrilato de etilo, metacrilato de metilo y/o etilo; polímeros y copolímeros de vinilo tales como polivinilpirrolidona, acetato de polivinilo, acetato ftalato de polivinilo, copolímero de ácido crotónico de acetato de vinilo y copolímeros de acetato de etilenvinilo; goma laca; y combinaciones de los mismos. Un material de revestimiento entérico particular incluye polímeros de ácido acrílico y copolímeros descritos, por ejemplo, en la Patente de Estados Unidos N.º 6.136.345.

El revestimiento entérico contiene opcionalmente un plastificante para evitar la formación de poros y grietas que permitan la penetración de los fluidos gástricos en la forma de dosificación sólida. Los plastificantes adecuados incluyen ilustrativamente, citrato de trietilo (Citroflex 2), triacetina (triacetato de glicerilo), citrato de acetil trietilo 45 (Citroflec A2), Carbowax 400 (polietilenglicol 400), ftalato de dietilo, citrato de tributilo, monoglicéridos acetilados, glicerol, ésteres de ácidos grasos, propilglicol, y ftalato de dibutilo. En particular, típicamente, un revestimiento compuesto por un polímero acrílico carboxílico aniónico contiene aproximadamente del 10% al 25% en peso de un plastificante, particularmente ftalato de dibutilo, polietilenglicol, citrato de trietilo y triacetina. El revestimiento también puede contener otros excipientes de revestimiento tales como antiadherentes, antiespumantes, lubricantes (por ejemplo, estearato de magnesio) y estabilizantes (por ejemplo, hidroxipropilcelulosa, ácidos o bases) para solubilizar o dispersar el material de revestimiento, y para mejorar el rendimiento del revestimiento y el producto revestido.

Las formas de dosificación líquidas para administración oral incluyen rotavirus y un vehículo farmacéuticamente aceptable formulado como una emulsión, solución, suspensión, jarabe o elixir. Una forma de dosificación líquida de 55 una composición de vacuna de la presente invención puede incluir un agente humectante, un agente emulsionante, un agente de suspensión, un edulcorante, un saporífero o un agente perfumante.

Se encuentra información detallada sobre los ingredientes, equipos y procesos habituales para preparar formas de dosificación en Pharmaceutical Dosage Forms: Tablets, eds. H. A. Lieberman et al., Nuevo York: Marcel Dekker,

Inc., 1989; y en L.V. Allen, Jr. et al., Ansel's Pharmaceutical Dosage Forms and Drug Delivery Systems, 8ª Ed., Philadelphia, PA: Lippincott, Williams & Wilkins, 2004, en su totalidad y en el capítulo 16; A. R. Gennaro, Remington: The Science and Practice of Pharmacy, Lippincott Williams & Wilkins, 21ª ed., 2005, particularmente el capítulo 89; y J. G. Hardman et al., Goodman & Gilman's The Pharmacological Basis of Therapeutics, McGraw-Hill Professional, 5 10ª ed., 2001.

Un adyuvante se incluye opcionalmente en una composición de virus de acuerdo con formas de realización de la presente invención. Los adyuvantes son conocidos en la técnica e incluyen ilustrativamente adyuvante de Freund, hidróxido de aluminio, fosfato de aluminio, óxido de aluminio, saponina, dextranos tales como DEAE-dextrano, 10 aceites vegetales tales como aceite de cacahuete, aceite de oliva y/o acetato de vitamina E, aceite mineral, lipopolisacáridos bacterianos, peptidoglicanos y proteoglicanos.

El término "sujeto" se usa en el presente documento para referirse a un ser humano. Los animales no humanos, que incluyen ilustrativamente otros primates, vacas, caballos, ovejas, cabras, cerdos, perros, gatos, aves, aves de corral 15 y roedores, también se mencionan por el término sujeto en formas de realización particulares de la presente invención.

El rotavirus aislado se trata para inactivar o atenuar el rotavirus. Por lo tanto, en formas de realización particulares, una vacuna para rotavirus humano incluye un rotavirus humano atenuado vivo o un rotavirus humano inactivado.

El término "rotavirus atenuado vivo" se refiere a un rotavirus que tiene la capacidad de infectar un huésped apropiado o una célula huésped y replicarse, y el término se utiliza para distinguir un rotavirus "inactivado". El término "rotavirus atenuado vivo" se refiere a un rotavirus caracterizado por una virulencia sustancialmente reducida en comparación con el rotavirus humano de tipo salvaje. El término "virulencia" se utiliza para describir el grado de patogenicidad de un rotavirus en una célula huésped o un organismo huésped. La virulencia se determina utilizando cualquiera de los diversos ensayos reconocidos en la técnica. Por ejemplo, la virulencia se puede evaluar exponiendo las células huésped cultivadas a un rotavirus atenuado y determinando el número de células que muestran una respuesta patógena y/o la gravedad de la respuesta patógena provocada. La disminución de la virulencia está presente cuando un rotavirus atenuado tiene una capacidad disminuida para causar uno o más efectos patógenos en una célula huésped y/o en un organismo huésped.

El término rotavirus "inactivado" se usa en el presente documento para referirse al rotavirus que se ha destruido y que, por lo tanto, no es capaz de replicarse ni de infectar una célula huésped ni un organismo huésped.

35 La inactivación se logra mediante cualquiera de las diversas técnicas que incluyen ilustrativamente la inactivación utilizando uno o más agentes guímicos, la inactivación térmica y/o la inactivación de luz UV.

Los agentes químicos usados para inactivar un rotavirus se conocen en la técnica e incluyen agentes tales como etileniminas tales como etilenimina binaria; aldehídos reticulantes tales como formaldehído y glutaraldehído; 40 proteasas que incluyen ilustrativamente pronasa, tripsina y/o quimotripsina; y detergentes tales como etoxilatos de octilfenol y sales de alquil trimetilamonio. El rotavirus puede inactivarse por tratamiento con una base, por ejemplo, por incubación del rotavirus a un pH superior a pH 10,0.

La inactivación térmica se puede lograr por calentamiento a temperaturas superiores a 50° centígrados, por ejemplo.

La inactivación se evalúa mediante técnicas estándar en la técnica, que incluyen ilustrativamente el muestreo de virus en diversos momentos durante un procedimiento de inactivación y la observación de los efectos citopáticos o la infectividad de una muestra en células adecuadas, tales como células Vero.

50 Se aprecia que, además del rotavirus atenuado vivo e inactivado, se incluye opcionalmente una porción antigénica de un rotavirus en una composición de vacuna de acuerdo con la presente descripción. Por lo tanto, por ejemplo, una proteína o péptido derivado de rotavirus capaz de inducir una respuesta inmunológica en un sujeto también se describe en el presente documento. En particular, una porción antigénica de una cepa de rotavirus humana identificada como CDC-9 se incluye opcionalmente en una composición de vacuna descrita en el presente 55 documento.

Los métodos para inducir una respuesta inmunológica contra una enfermedad mediada por rotavirus en un sujeto se proporcionan de acuerdo con formas de realización de la presente invención que incluyen administrar una cantidad terapéutica de una composición de vacuna que incluye al menos una cepa de rotavirus humana.

La frase "cantidad terapéuticamente eficaz" se usa en el presente documento para referirse a una cantidad eficaz para inducir una respuesta inmunológica suficiente para prevenir o mejorar los signos o síntomas de una enfermedad mediada por rotavirus. La inducción de una respuesta inmunológica en un sujeto puede determinarse mediante cualquiera de las diversas técnicas conocidas en la técnica, que incluyen ilustrativamente la detección de anticuerpos anti-rotavirus, la medición del título de anticuerpos anti-rotavirus y/o el ensayo de proliferación de linfocitos. Los métodos ilustrativos para la detección de anticuerpos anti-rotavirus se ilustran por Tsunemitsu, H, et al., J. Clin. Microbiol., 1992; 30:2129-2134. Los signos y síntomas de la enfermedad mediada por rotavirus pueden monitorizarse para detectar la inducción de una respuesta inmunológica a la administración de una composición de vacuna de la presente invención en un sujeto. Una respuesta inmunológica es ilustrativamente una reducción de los signos y síntomas clínicos de la enfermedad mediada por rotavirus, tal como la reducción de la cantidad de virus propagado en las heces, la reducción del número de días en los que el virus se propaga en las heces, la reducción del número de días que el sujeto tiene diarrea, la reducción de la mortalidad, la reducción de la morbilidad, la reducción de la pérdida de peso o el aumento de peso. Una respuesta inmunológica es ilustrativamente, el desarrollo de anticuerpos anti-rotavirus, la activación de linfocitos T, linfocitos B u otras células inmunes tras la administración de una composición de la invención, u otras respuestas inmunes conocidas en la técnica.

Un método para inducir una respuesta inmunológica contra una enfermedad mediada por rotavirus en un sujeto puede incluir la administración de 10⁴ a 10⁸ ffu de una vacuna viva atenuada o de 1 a 25 microgramos de virus 20 inactivado en una composición de vacuna típica.

En algunas formas de realización, un método para inducir una respuesta inmunológica contra una enfermedad mediada por rotavirus en un sujeto incluye administrar una cantidad terapéuticamente eficaz de una composición de vacuna que incluye la cepa de rotavirus humano reivindicada CDC-9.

En una forma de realización adicional, un método para inducir una respuesta inmunológica contra una enfermedad mediada por rotavirus en un sujeto incluye administrar una cantidad terapéuticamente eficaz de la composición de vacuna reivindicada que es un serotipo del grupo G1, y una segunda cepa de rotavirus humana caracterizada por tener un serotipo del grupo G2.

La administración de una composición de vacuna de acuerdo con un método como se describe en el presente documento puede incluir la administración de una o más dosis de una composición de vacuna a un sujeto al mismo tiempo. Como alternativa, pueden administrarse dos o más dosis de una composición de vacuna a intervalos de tiempo de días, semanas o años. Un programa adecuado para la administración de dosis de la composición de vacuna depende de varios factores, incluyendo la edad y el estado de salud del sujeto, el tipo de composición de vacuna utilizada y la vía de administración, por ejemplo. Un experto en la técnica es capaz de determinar fácilmente una dosis y un programa de administración para la administración a un sujeto particular.

Las formas de realización de composiciones y métodos de la invención se ilustran en los siguientes ejemplos. Estos 40 ejemplos se proporcionan con fines ilustrativos y no se consideran limitaciones en el alcance de las composiciones de la invención.

EJEMPLOS

25

30

45 Ejemplo 1 - Adaptación y pases:

Un ml de una suspensión de virus al 10% en DMEM se complementa con neomicina en un tubo estéril de baja unión de 1,7 ml, se mezcla bien y después se centrifuga durante 10 minutos a 3.000 rpm en una microcentrífuga Eppendorf. El sobrenadante se transfiere a un nuevo tubo y se centrifuga durante 10 minutos a 10.000 rpm 50 (8.000xg). El sobrenadante clarificado se esteriliza por pase a través de un filtro de poro de 0,45 micrómetros. El sobrenadante se ensaya por EIA (Rotaclone; Meridian Biosciences) y si el valor de DO es >1,0, se almacena a 4°C antes de usarlo para la infección. La extracción de heces y las pruebas de Rotaclone se pueden llevar a caboel día antes de la infección.

55 El medio de cultivo se elimina de las monocapas celulares en tubos de rodillos individuales. Cada tubo de rodillo se lava con 2 ml de medio de mantenimiento, después se añaden 2 ml de medio de mantenimiento a cada tubo y se incuban a 37 ℃ en un aparato rodante hasta que el inóculo del virus esté listo.

Se transfiere una alícuota de 0,5 ml de sobrenadante a un tubo estéril y se añade 1 microlitro de solución madre de

CaCl₂ (300 gramos por litro) para obtener una concentración final de 800 microgramos por mililitro. El tubo se incuba a temperatura ambiente durante 30 minutos antes de añadir 3 microlitros de solución madre de tripsina porcina (2,5 miligramos por mililitro) - concentración final de 15 microgramos por mililitro. La mezcla se incuba durante 60 min a 37°C. El mismo volumen de MEM se trata de la misma manera que un inóculo simulado. Se utilizan puntas de pipeta separadas para añadir por pipeteo la suspensión de virus y las soluciones de tripsina. Todas las adiciones por pipeteo de virus deben realizarse dentro de la cabina de seguridad biológica.

El medio se elimina de cada tubo de rodillo y se añaden de 0,2 a 0,3 mililitros de suspensión de virus tripsinizado o inóculos simulados a cada tubo de rodillo utilizando una pipeta estéril separada. Los tapones se aprietan y los tubos 10 se incuban a 37°C en un aparato de tubo de rodillo ubicado en una incubadora. Después de 2 horas de incubación, el inóculo se elimina con una pipeta de 1 ml y se lava suavemente con 2 ml de medio de mantenimiento.

Se añaden dos mililitros de medio de mantenimiento que contienen diversas concentraciones (10, 20 o 30 microgramos por ml, dependiendo de la cepa) de tripsina en cada tubo y se incuban durante 2 horas a 37 ℃ en un 15 aparato de tubo de rodillo ubicado en una incubadora.

Las células se observan diariamente para determinar el efecto citopático (CPE), se recogen el día 4 y se almacenan a -70 °C. Las células se someten a congelación y descongelación dos veces antes del siguiente pase.

20 Los lisados celulares congelados y descongelados se tratan con CaCl₂ y tripsina como se describe anteriormente y los pases posteriores se realizan como anteriormente. Las células se someten a congelación y descongelación al menos una vez y se analizan para determinar el antígeno del rotavirus mediante el kit Rotaclone, o el título del virus se determina mediante ensayos de FFA.

25 Ejemplo 2 - Producción y purificación de cepas de rotavirus

La producción de rotavirus se realiza mediante el uso de botellas de ruedas de producción a gran escala. En pocas palabras, las células Vero se cultivan en medio Eagle modificado por Dulbecco complementado por suero fetal bovino al 5 % (Invitrogen Corp., Grand Island, NY) y 50 microgramos/mililitro de neomicina (Sigma Corp., St. Louis, 30 MO). Las monocapas confluentes de células Vero en botellas con ruedas se infectan con una cepa de rotavirus particular en una multiplicidad de infección de 0,1.

El rotavirus obtenido mediante la producción a gran escala se purifica de acuerdo con los procedimientos operativos estándar. En pocas palabras, el rotavirus se extrae de cultivos infectados de células Vero cuatro días después de la infección. Las partículas de rotavirus de triple capa se purifican a partir de los sobrenadantes mediante centrifugación a través de almohadillas de sacarosa al 40% en tampón TNC durante 2 horas a 106.750 x g usando un rotor SW32Ti y después a través de centrifugaciones isopícnicas en gradientes de CsCl durante 17 horas a 111.160 g usando un rotor SW40Ti. Las partículas de rotavirus también pueden purificarse usando gradientes de sacarosa. El tampón TNC es Tris 10 mM, pH 8,0, NaCl 140 mM y CaCl₂ 10 mM. Las partículas de rotavirus 40 purificadas se resuspenden en un tampón diluyente que es una solución salina equilibrada de Hanks con CaCl₂ y MgCl₂, obtenida de Invitrogen Corp., Grand Island, NY, complementada con sorbitol al 10% (Sigma Corp., St. Louis, MO). El rotavirus aislado resuspendido se almacena a -70 ℃ hasta que se inactiva y se administra a un sujeto en este ejemplo.

- 45 Se analiza el rotavirus purificado para determinar la pureza y la identidad mediante cualquiera de diversas técnicas, incluyendo ilustrativamente SDS-PAGE seguido de tinción con azul de Coomassie, transferencia Western utilizando un anticuerpo específico de rotavirus y/o microscopía electrónica. Además, la pureza y la identidad de las cepas de rotavirus purificadas se logran mediante la identificación de proteínas virales estructurales particulares.
- 50 La Figura 4A muestra rotavirus purificados con CsCl de la cepa CDC-9. La Figura 4B muestra proteínas virales estructurales identificadas de CDC-9 de doble y triple capa analizadas por SDS-PAGE en comparación con los marcadores de peso molecular.

Ejemplo 3 - Inmunogenicidad de rotavirus inactivado (IRV)

55

La inmunogenicidad de las cepas de rotavirus se ensaya en un modelo de ratón. Las partículas purificadas de rotavirus eliminadas se administran por vía intramuscular a ratones sin adyuvante. Los animales se inmunizan con cantidades de proteína de rotavirus destruida en el intervalo de 2 a 20 microgramos.

La inmunogenicidad se ensaya midiendo títulos de inmunoglobulina que incluyen IgM, IgA e IgG en muestras de sangre obtenidas en diversos momentos después de la administración. Los títulos de anticuerpos neutralizantes se miden mediante un ensayo de microneutralización, como se describe en detalle en Jiang, B., Vaccine, 17:1005-1013, 1999. En resumen, los sueros de ratón se diluyen en serie dos veces en pocillos duplicados y se incuban con rotavirus RRV inactivado con tripsina. El rotavirus activado o medio MEM libre de suero tratado de manera similar se incuba en ausencia de suero de ratón y sirve como control positivo y negativo, respectivamente. A cada pocillo se le añaden células MA104 en medio MEM complementado con una concentración final de 10 microgramos/mililitro de tripsina y 0,5% de suero de pollo, obtenido de Invitrogen Corp., Grand Island, NY. Después de la incubación a 37°C durante 18 horas, las células se fijan con formalina. Los antígenos del rotavirus en las células MA104 se detectan incubando células con suero hiperinmune anti-RRV de conejo, IgG anti-conejo marcada con HRP y después tetrametil bencidina. El título de anticuerpos neutralizantes en un suero se define como la recíproca de la dilución más alta, lo que da una reducción del 70% en el valor de absorbancia en comparación con la del control de virus.

Los títulos de anticuerpos en ratones inyectados con partículas de rotavirus purificadas destruidas se comparan con los títulos de anticuerpos en ratones de control. Los títulos de anticuerpos en ratones de control son típicamente menores de 100. Las Figuras 5A y 5B ilustran los títulos de anticuerpos neutralizantes y totales en ratones de control y vacunados. Respuestas de anticuerpos séricos totales (Figura 5A) y anticuerpos neutralizantes (Figura 5B) a rotavirus inactivados térmicamente en ratones. Los ratones se vacunaron I.M. dos veces con YK- destruido y los anticuerpos neutralizantes y totales específicos de rotavirus (IgA, IgG e IgM) se determinan por EIA como se describe. Para el anticuerpo total, cada muestra de suero se ensaya a una dilución inicial de 1:100. Las muestras de suero previas al sangrado no tienen anticuerpos detectables en esta dilución. Se utiliza un valor de 20 para determinar los títulos medios geométricos y la ilustración. El anticuerpo neutralizante se prueba a una dilución inicial de 1:20. Los títulos de anticuerpos se expresan como la media geométrica para cada grupo (n = 7 o 6). Las barras de error representan 1 error estándar.

Ejemplo 4 - Adyuvante

25

En un ejemplo adicional, se añade Al(OH)3 como adyuvante a las partículas de rotavirus en una vacuna administrada a ratones. Los animales se inmunizan por vía intramuscular una vez con 2 microgramos o 0,2 microgramos de 30 partículas de rotavirus purificadas destruidas en presencia o ausencia de 600 microgramos de Al(OH)3. AlOH aumenta drásticamente los títulos de anticuerpos totales en ratones a ambas concentraciones de rotavirus administrados. No se detectaron títulos de anticuerpos (menos de 100 diluciones) en ratones de control inmunizados con 600 microgramos de Al(OH)3.

35 La Figura 6 es un gráfico de barras que muestra las respuestas de anticuerpos séricos totales al rotavirus inactivado térmicamente formulado con Al(OH)₃ en ratones control y vacunados. Los ratones se vacunaron I.M. una vez con YK-1 destruido en ausencia o presencia de Al(OH)₃ y los anticuerpos totales específicos de rotavirus (IgA, IgG e IgM) se determinan mediante EIA como se describe. Para el anticuerpo total, cada muestra de suero se ensaya a una dilución inicial de 1:100. Las muestras de suero previas al sangrado no tienen anticuerpos detectables en esta dilución. Se utiliza un valor de 20 para determinar los títulos medios geométricos y la ilustración. Los títulos de anticuerpos se expresan como la media geométrica para cada grupo (n = 6). Las barras de error representan 1 error estándar.

Ejemplo 5 - Modelo de lechón gnotobiótico

Se usa un modelo de lechón gnotobiótico de la enfermedad por rotavirus. Este modelo de lechón permite llevar a cabopruebas en condiciones definidas, evitando problemas de exposición ambiental de los animales y utilizando la enfermedad como variable de resultado. Este modelo también permite probar una vacuna contra rotavirus inactivado que tiene un serotipo G1 frente a una exposición a Wa homotípica. Los lechones gnotobióticos son el mejor modelo animal actual para la infección y la enfermedad con cepas de rotavirus humano. (Véanse Saif LJ, et al., Archives of Virology, 1996;12:S153-61; y losef C, et al., Vaccine, 2002;20:1741-53)

Se seleccionan trece lechones gnotobióticos bebés y se asignan aleatoriamente a 4 grupos como se indica en la Tabla 6.

Tabla 6. Diseño del estudio con lechones

Nombre del grupo	Número de lechones en el grupo	Antígeno CDC-9 (microgramos)	Fosfato de aluminio (microgramos)
AA	4	0	750
BB	4	75	0
CC	3	75	750
DD	2	0 (tampón)	0 (tampón)

Cada grupo de animales indicado en la Tabla 6 se mantiene en aisladores separados. Los animales en los grupos 5 BB y CC se vacunan por vía intramuscular 3 veces con una vacuna de rotavirus inactivada con o sin adyuvante, respectivamente. La formulación de vacuna en este ejemplo incluye 75 microgramos de rotavirus CDC-9 purificado destruido en un diluyente mezclado con 750 microgramos de fosfato de aluminio. Los animales en los grupos AA y DD se vacunan con 750 microgramos de fosfato de aluminio y tampón, respectivamente, de la misma manera. La adsorción del antígeno se determina mediante el método de Bradford, que mostró que aproximadamente el 50% del 10 antígeno estaba unido al fosfato de aluminio. Tanto el antígeno unido como el no unido se inyectaron en estas inmunizaciones.

Como se muestra en la Tabla 6, los lechones se inmunizan con una formulación de vacuna que no incluye antígeno y 750 microgramos de fosfato de aluminio; 75 microgramos de antígeno y sin fosfato de aluminio; 75 microgramos de 15 antígeno y 750 microgramos de fosfato de aluminio; o ningún antígeno y ningún fosfato de aluminio, que es solo tampón. Cada vacunación se lleva a cabo inyectando 0,5 mililitros de la formulación de vacuna en los músculos de las patas traseras de los lechones. Después de 3 dosis de la formulación de vacuna administrada a intervalos de 10-12 días, los lechones se exponen por vía oral a rotavirus Wa virulento. Antes de la exposición al virus, a cada lechón se le inocula 3 mililitros de bicarbonato de sodio para neutralizar los ácidos en el estómago. Las muestras fecales se 20 recogen de los lechones expuestos diariamente durante 10 días. Las muestras de sangre se recogen a lo largo del experimento a intervalos de 7-14 días. La Figura 7A muestra la propagación del virus en muestras fecales de lechones vacunados sin antígeno y con 750 microgramos de fosfato de aluminio en 4 animales. La Figura 7B muestra la propagación del virus en muestras fecales de lechones inmunizados con antígeno y sin adyuvante. La Figura 7C muestra la propagación del virus en muestras fecales de lechones inmunizados con antígeno y adyuvante. 25 La Figura 7D muestra la propagación del virus medida en muestras fecales de lechones inmunizados solamente con tampón. Estas ilustran que los lechones que se vacunaron de forma simulada solo con fosfato de aluminio o con un diluyente de tampón, solamente propagaron rotavirus hasta 5 días y con un título alto. Por el contrario, los lechones que están vacunados con rotavirus inactivado sin fosfato de aluminio están parcialmente protegidos, como lo demuestra un recorte de 1 día de propagación o una propagación retardada y reducida. De los 3 lechones que se 30 vacunan con rotavirus inactivado y fosfato de aluminio, 2 están completamente protegidos y solamente 1 tiene una corta propagación reducida de 1 día. Por lo tanto, estos resultados muestran la eficacia de la formulación de vacuna de acuerdo con las formas de realización de la presente invención.

Ejemplo 6 - Modelo de lechón gnotobiótico II

Para repetir el experimento anterior, seleccionan once lechones gnotobióticos bebés y se asignan aleatoriamente a 2 grupos como se indica en la Tabla 7.

Tabla 7. Diseño del estudio con lechones

Nombre del	Número de lechones en el	Antígeno CDC-9	fosfato de aluminio
grupo	grupo	(microgramos)	(microgramos)
GG	5	0	600
HH	6	50	600

40

35

Como se muestra en la Tabla 7, y como se describe por Wang, Y, et al., Inactivated rotavirus vaccine induces protective immunity in gnotobiotic piglets, en la prensa, los lechones se inmunizan con una formulación de vacuna que no contiene antígeno y 600 microgramos de fosfato de aluminio o 50 microgramos de antígeno y 600 microgramos de fosfato de aluminio. Cada vacunación se lleva a cabo inyectando 0,5 mililitros de la formulación de vacuna en los músculos de las patas traseras de los lechones. Después de 3 dosis de la formulación de vacuna administrada a intervalos de 10-12 días, los lechones se exponen por vía oral a rotavirus Wa virulento. Antes de la exposición al virus, a cada lechón se le inocula 3 mililitros de bicarbonato de sodio para neutralizar los ácidos en el estómago. Las muestras fecales se recogen de los lechones expuestos diariamente durante 10 días. Las muestras

de sangre se recogen a lo largo del experimento a intervalos de 7-14 días.

La Figura 8A muestra el nivel de respuesta de anticuerpos IgG específicos de rotavirus en sueros de lechones vacunados sin antígeno y con 600 microgramos de fosfato de aluminio (barras de color negro) o lechones 5 vacunados con 50 microgramos de antígeno y con 600 microgramos de fosfato de aluminio (barras sombreadas). La Figura 8B muestra la respuesta de anticuerpos IgG específicos de rotavirus en sueros de lechones vacunados sin antígeno y con 600 microgramos de fosfato de aluminio (barras de color negro) o lechones vacunados con 50 microgramos de antígeno y con 600 microgramos de fosfato de aluminio (barras sombreadas). Los lechones vacunados con antígeno desarrollan niveles significativos de IgG en suero. La exposición oral con rotavirus mejora 10 aún más los niveles séricos de IgG. Los niveles de actividad neutralizante son significativamente más altos en los lechones vacunados con 50 microgramos de antígeno y con 600 microgramos de fosfato de aluminio que en los animales inmunizados de forma simulada.

La Figura 9A muestra la propagación del virus en muestras fecales de lechones vacunados con 50 microgramos de antígeno y con 600 microgramos de fosfato de aluminio. La Figura 9B muestra la propagación del virus en muestras fecales de lechones vacunados sin antígeno y con 600 microgramos de fosfato de aluminio. Estas figuras ilustran que los lechones que se vacunaron de forma simulada solo con fosfato de aluminio o con un diluyente de tampón, solamente propagaron rotavirus hasta 5 días y con un título alto. Por el contrario, los lechones que están vacunados con rotavirus inactivado y fosfato de aluminio están protegidos de la propagación.

Estos resultados muestran la eficacia de la formulación de vacuna de acuerdo con las formas de realización de la presente invención y confirman los resultados en el primer experimento con lechones. Estos resultados demuestran claramente que la IRV formulada con alumbre es altamente inmunógena y protege contra la infección en lechones y, en consecuencia, establece una prueba de concepto para la vacuna inactivada contra rotavirus.

Secuencias CDC-9

25

30

CDC9 Stool NSP	1 SEQ ID N	No. 2					
10 . MATFKDACYYYKRINK				.	.		
90 . LRMRTFKNEVTKNDLM				.	.	$\dots \vdash \dots \vdash$	
170 . YDSMRDINQTPFSFTN					.		
250 . FKIQITRNCSELSSDW				.	.		
330 . CKWCSINNGYTVWNDF				.	.	$\dots \mid \dots \mid \mid$	
410 . DTVKYVMFNHEVNWDV					.		

CDC9 Vero NSP1 SEQ ID No. 3

10 20 30 40 50 60 70	80 DSQPHL
90 100 110 120 130 140 150	
170 180 190 200 210 220 230	
250 260 270 280 290 300 310	320 ATEVHN
330 340 350 360 370 380 390	
410 420 430 440 450 460 470	480 VDYDS
CDC9 Stool NSP2 SEQ ID No. 5	
10 20 30 40 50 60 70	80 IMFNKV
90 100 110 120 130 140 150	
170 180 190 200 210 220 230	
250 260 270 280 290 300 310VFATYKNNAKSGNTTDFNLLDQRIIWQNWYAFTSSMKQGNTIDVCKKLLFQKMKQEKNPFKGLSTDRKMDEVSHV	/GI
10 20 30 40 50 60 70	
90 100 110 120 130 140 150	160 GEIVFQ
170 180 190 200 210 220 230	
250 260 270 280 290 300 310	/GI
10 20 30 40 50 60 70	
90 100 110 120 130 140 150	
170 180 190 200 210 220 230	
250 260 270 280 290 300 310	

10 MESTQQMVSSIINTSFEA							
90 NRNWMTDSKTVAKLDEDV					140 KLMKDKIERG	150 EVEVDDSYID	160 EKM
170 EIDTIDWKSRYDQLEKRF		190 . YNTWVQKAKF		210 . WISQQQNQI	220 ADLQQYCNKL	230 ETDLQGKFSS	240 LVS
250 SVEWYLRSMELPDDVKND	IEQQLNSIDI	INPINAIDDI					
CDC9 Stool NSP4 10	20	30 .					
90 KLAGYKEQVTTKDEIEQQ							
170 SGKNPYEPIEVTASM	050 10	N. 40					
CDC9 NSP4 aa Ve	20	30					
90 KLAGYKEQVTTKDEIEQQ			.1				
170 SGKNPYEPIEVTASM CDC9 Stool NSP5 10	20	30			60	70	80
MSLSIDVTSLPSISSSIF							
90 VKTNADAGVSMDSSTQSR				.1			
170 DDSDSDDGKCKNCKYKKK CDC9 Vero NSP5 S	. YFALRMRMKR SEQ ID NO	VAMQLIEDL). 15	40	50	60	70	80
MSLSIDVTSLPSISSSIF							
90 VKTNADAGVSMDSSTQSR							
170 DDSDSDDGKCKNCKYKKK CDC9 Stool VP1 S	YFALRMRMKR	VAMQLIEDL					

10 MGKYNLILSEYLSFVYN							
90 . KYNAVERKLVNYAKGKE	100 LEADLTANELI		120 LFQSAEEYTD:			150 . WLERHSNDVA	160 DAN
170 KIYKRRLDLFTIVASTI							
250 AKLVSSPMSILVALIDI							
330 LMSKIYSWSFHVGFRKÇ							
410 SNGESRQLKFGLKTIFS							
490 LSYAKHTREYAEFYSQS							
570 YKQTQINLMDSYVQIPD]					
650 TDVTKQMVQDVSNDVRE							
730 KLRGFETDREFILTKII	740 QMTSVAITGS	750 LRLFPSERVL	760 TTNSTFKVFD:	770 SEDFIIEYGT	780 IDDEVYIQRAI	790 FMSLSSQKSG	800 IAD
810 EIASSQTFKNYVNKLSD							
890 IKPFFVTSEANLPIQYF							
970 YLVSLGVPPVDAGTYVG							
1050 IINHAIKNGAWISLFCN CDC9 Vero VP1 S	YPKSEMIKLW	. KMWNITALR:					

							70 . ATLLSILSYS	
	1	.			.		150 . LERHSNDVAD	
	1		.	.			230 . LIILSYSNRS	
							310 . EWLVDCSLEK	
							390 . selagllsms:	
	1				.		470 . YFIAQHAVVE	
	Īl						550 . TNDPKVIQTLI	
		.					630 . DGDDNYAVLQI	
		.					710 . QAAILYSNYI	
							790 . MSLSSQKSGI	
 EIASSQTFKI	810 NYVNKLSDQ	820 . LLISKNVIVS	830 . KGIAVTEKAK	840 . LNSYAPVYLE	850 . KRRAQISALL	860 . IMLQKPVSFK	870 . SNKITINDIL	880 . RD
 IKPFFVTSE	890 ANLPIQYRK	900 . FMPTLPDNVQ	910 . YVIQCIGSRT	920 . YQIEDSGSKS:	930 . SISKLISKYS	940 . VYKPSIEELY	950 . KVISLREQEI	960 . QL
 YLVSLGVPP	1		.	1000 . INYGCYQLFD	.		1030 . VTFILHLYAK	1040 . LE
 IINHAIKNG	 AWISLFCNY: ol VP2 SI	. pksemiklwki E Q ID No .	. KMWNITALRS: 20	PYTSANFFQD				
 MAYRKRGTK	10 REDLPQQNE	20 . RLQEKEIENN	30 . IDVTMENKNK	40 . NINKNNNRNN	50 . NRKQQLSDKV	60 . LSQKEEIITD	70 . VQDDIKITDE	80 . :VK
	1					.	150 . LPIYRANGEK	
							230 . .IFQDEETEGV	
	250	260	270	280	290	300	310	320

330 340 350 360 370 380 390	
410 420 430 440 450 460 470	
490 500 510 520 530 540 550	560 SNRL
570 580 590 600 610 620 630	640 RIND
650 660 670 680 690 700 710	
730 740 750 760 770 780 790	
810 820 830 840 850 860 870	
890 900 DTVEPINAIAFDNMRIMNEL CDC9 Vero VP2 SEQ ID No. 21	
10 20 30 40 50 60 70	
90 100 110 120 130 140 150	
170 180 190 200 210 220 230	
250 260 270 280 290 300 310	
330 340 350 360 370 380 390	
410 420 430 440 450 460 470	
490 500 510 520 530 540 550	
570 580 590 600 610 620 630	640 RIND
650 660 670 680 690 700 710	
730 740 750 760 770 780 790	800 I
QGVIIAYRDMQLERDEMYGFVNIARNLDGYQQINLEELMRTGDYGQITTMLLNNQPVALVGALPFVTDSSVISLIA:	
QGVIIAYRDMQLERDEMYGFVNIARNLDGYQQINLEELMRTGDYGQITTMLLNNQPVALVGALPFVTDSSVISLIA 810 820 830 840 850 860 870	KLDA 880

DTVEPINAIAFDNMRIMNEL

CDC9 Stool VP3 SEQ ID No.23

10 MKVLALRHSVAQVYADT							
90 TYDYIDNVVYLHDYSYY							
170 DELDFQSFILKKIKERM							
250 LKQERWLGKRLSQFDIG							
330 ELFYMNDVQKLKDNSII							
410							
490 QKKALMTVRINNTFKDE							
570 DQFANHMSISRRSHQIR			.				
650 SIEGGKYYEHAPIELIY							
730	740	750 	760 .	770 .	780	790 .	800
FGVLNISEQMLPDVITI 810	820 	830 	ILSDEVIVAN.	ISGATSIILV	IINAFIKEQI.	irgyskmrif	.UAIT
CDC9 Vero VP3 S	SEQ ID No	24	40	50	60	70	80
MKVLALRHSVAQVYADT	QVYTHDDSKD	EYENAFLISN	ILTTHNILYLI	NYNVKTLQIL	NKSGIAAIEI(2KIDELFTLI	RCNF
90 TYDYIDNVVYLHDYSYY					.		
170 DELDFQSFILKKIKERM				.			
250 LKQERWLGKRLSQFDIG		270	280				
330	× × × × × × × × × × × × × × × × × × ×						
 ELFYMNDVOKLKDNSII	340	350 	360 .	. SAPSYWIYDV 370 .	 KQYSNLKFET(380 .	. WDPLDTPYSN 390 .	400
ELFYMNDVQKLKDNSII 410	340 YIDIRTDRGT 420 	350 VDWKEWRKIV 430 	360 ERQTIDNLH: 440 	. SAPSYWIYDV 370 . IAYKYLSTGK 450	. KQYSNLKFETV 380 . AKVCCVKMTAI 460 .	. WDPLDTPYSN 390 . MDLELPISAK 470 .	400 ***********************************
ELFYMNDVQKLKDNSII 410 PTTEIRSEFYLVMDIWD 490	340	TLYQYYDIYE 350 VDWKEWRKIV 430 GVLYSYINNT 510	360 ZERQTIDNLH: 440 SITENVFIQQI 520			. 390 . MDLELPISAR 470 . DFNNREDVVK	400 **LLHH* 480 **LLHH 480 **LINN
#10	340 YIDIRTDRGT 420 SKNIKRFIPK 500 PKVGFKNIYD 580	350 VDWKEWRKIV 430 510 WTFLPTDFET	360	370 . 1370 . 134KYLSTGK 450 . 530 . GCLGIFGLSI	380 AKVCCVKMTAI 460 YIIALYALSNI 540 SLASKPTGNNI		400 KLLHH 480 KLINN 560 KYFKL
410 PTTEIRSEFYLVMDIWD 490 QKKALMTVRINNTFKDE 500 DQFANHMSISRRSHQIR	340 YIDIRTDRGT 420 SKNIKRFIPK 500 PKVGFKNIYD 580	TLYQYYDIYE 350 . VDWKEWRKIV 430 . 510 WTFLPTDFET 590 . YIFRDLSNNN	BEKPIVYMIG: 360		XQYSNLKFETY 380 AKVCCVKMTAI 460 YIIALYALSNI 540 SLASKPTGNNI 620 LIYYRYNYSFI		400 480 480 481
410 PTTEIRSEFYLVMDIWD QKKALMTVRINNTFKDE DQFANHMSISRRSHQIR SIEGGKYYEHAPIELIY	340	TLYQYYDIYE 350 VDWKEWRKIV 430 GVLYSYINNT 510 WTFLPTDFET 590 YIFRDLSNNN 670 LQDDLTVLRY	360 . 360 . ERQTIDNLH: 440 . SITENVFIQQI 520 . NGSIITSYDO . . EFNLIGTNVEI 680 . . SSNEIENYINI		460 YIIALYALSNI 540 SLASKPTGNNI 620 LIYYRYNYSFI 700 PNYFIGVKFKI	390 390 470 470 550 10 HLFILSGTDR 630 11 DLKRWIYLHS 710 NIPYKYNVKV	400 KLLHH 480 KLINN 560 YYFKL 640 STIGKA
410 PTTEIRSEFYLVMDIWD 490 QKKALMTVRINNTFKDE 570 DQFANHMSISRRSHQIR	340	TLYQYYDIYE 350 VDWKEWRKIV 430 510 WTFLPTDFET 590 YIFRDLSNNN 670 LQDDLTVLRY 750	360	370 370 1AYKYLSTGK 450 530 610 6CLGIFGLSI 610 NSVSGHVYNA 690 RVYSITYADD 770			400 410

CDC9 Stool VP4 SEQ ID N	lo. 26	40	5.0	60	70	80
 MASLIYRQLLTNSYSVDLYDEIEQIO	
90 100 WILINSNTNGVVYESTNNSDFWTAV						
170 180 TRLVGILKYGGRVWTFHGETPRATTI						
250 260 siqykraqvdediivsktslwkemq:						
330 340 GVNNFSYNGGSLPTDFGISRYEVIKI						
410 420 VSLHFAGVTLSTQFTDFVSLNSLRFI						
490 500 TPIMNSVTVRQDLERQLTDLREEFN:						
570 580 SEMTNSLSDAASSASRNVSIRSNLSA						
650 660 KTKIDMSTQIGKNTLPDIVTEASEKI						
730 740 IDFKTLKNLNDNYGITRTEALNLIK: CDC9 Vero VP4 SEQ ID N 10 20	SNPNMLRNFIN			60	70	80
 MASLIYRQLLTNSYSVDLYDEIEQIG		.				
90 100 WILINSNTNGVVYESTNNSDFWTAV						
170 180 TRLVGILKYGGRVWTFHGETPRATTI						
250 260 siqykraqvdediivsktslwkemq	270 . YNRDIIIRFKF	280 . GNSIVKMGGL	290 . GYKWSEISYF	300 . XAANYQYNYLR	310 . DGEQVTAHTI	320 rcsvn
330 340 GVNNFSYNGGFLPTDFGISRYEVIKI						
410 420 VSLHFAGVTLSTQFTDFVSLNSLRFI						
490 500 	510 .			540 .	550 .	560 l
TPIMNSVTVRQDLERQLTDLREEFN:	SLSQEIAMAQL:	IDLALLPLDM	FSMFSGIKST	CIDLTKSMATS	VMKKFRKSKI	LATSI
570 580 SEMTNSLSDAASSASRNVSIRSNLS	590 . AISNWTNVSND	600 . VSNVTNSLND	610 . ISTQTSTIGE	620 . KLRLKEMITQ	630 . TEGMSFDDIS	640 SAAVL
650 660 KTKIDMSTQIGKNTLPDIVTEASEKI	.	.	.	$\dots \dots .$.	
730 740 IDFKTLKNLNDNYGITRTEALNLIKS CDC9 Stool VP6 SEQ ID N	SNPNMLRNFIN					

10 . MEVLYSLSKTLKDARD						
90 . ARTTIEYFIDFIDNVO						
170 . SASFTLNRSQPMHDNI						
250 . ADGATTWFFNPIILRE						
330 GLTLRIESAVCESVLZ	ADANETLLAN	VTAVRQEYAII				
CDC9 Vero VP6 10 . MEVLYSLSKTLKDARD	20	30 				
90 . ARTTIEYFIDFIDNVO						
170 .sasftlnrsqpmhdni						
250 . ADGATTWFFNPIILRE						
330 GLTLRIESAVCESVLZ	ADANETLLAN	VTAVRQEYAII				
CDC9 Stool VP7	20 	30 				
90 . LCLYYPTEASTQISDG						
170 . NEWLCNPMDITLYYYÇ						
250 . TTTCTIRNCKKLGPRE						
. AFYYRV CDC9 Vero VP7	SEQ ID N	lo 33				
10 . MYGIEYTTILIFLISI	20	30 .				
90 LCLYYPTEASTQISDG						160
170 NEWLCNPMDITLYYYÇ						240
250 . TTTCTIRNCKKLGPRE						320
. AFYYRV CDC9 Stool NSF	°1 SEQ ID	No. 35				

10 					1	1		1
90	10	0 1:	lo 1	20 1	30 1	40 1	50 1	60 I
TGAATCATGCAG								
170 GACTGTTGCCA) 1 ACACACTGA	80 CTTAACTTA	190 CTGTCGAGGT	200 TGTACCATGT	210 ATCATGTATG	220 TCAGTGGTGT	230 AGTCAATATG	240 A
250 . TAGATGCTTTC				1	1	1	ĪI	
330 . ATTTGATTGACA					1	1	1	400 T
410 AAATGTAGAAA					1	1	1	
490 . AGATGGTGATG					1	1	1	
570 . TAATAGATATG				1	1	1	i	
650 . GAATATGCACTO				1		1	1	
730 . TAATGTAATAGA				1	1	1	1	
810				1	1	1	1	
890 . TCAACCAGATG) 9 FAGAATGTT	00 9 TACGCAGCA	910 AAACTTAAA	920 ATAGCATCTA	930 AACATATAAA	940 ACCAAATTAT	950 GTAACATCAA	960 A
970 . TCATAGAACATO								
105 . GAATTAAGAAGA	50 1	060 :	L070	1080 	1090	1100	1110	1120
113 TCGCAGGAAAAG	30 1	140	1150	1160 	1170	1180	1190	1200
123 . AATATTTAATTO				1	1	1	1	
129 TTAATTTATTAC	00 1 GTTCAGAGC	300 : GTTGGTAAA	310 GTACCACAAA	1320 TACTGACTTT	1330 AAATGACATT	1340 ATCATAATCA	1350 TGAAATCTAT	1360 C
137 ATATATGAGTGG				1		1	1	1
145 . TACAGGAATGAA				l l	1	1	1	
AGACTCCCTGCA CDC9 Vero	 ACTAGAGTA	 GCGCCTAGG	 CAGCATAAAA					

10 . GGCTTTTTTTTGAAA/	20 AGTCTTGTGGA	30 . AGCCATGGC	40 . FACTTTCAAA	50 . GATGCTTGTT	60 . ATTATTATAA	70 . GAGAATTAACA	80 TAAA
90 TGAATCATGCAGTCTTC			.	.		.	
170 . GACTGTTGCCAACACAC		$\ldots \ldots .$.			
250 . TAGATGCTTTCTTGATA							
330 . ATTTGATTGACATGTA							
410 . AAATGTAGAAATGAAT				.			
490 AGATGGTGATGTTTAT			520 . FAGTATGCGT	530 . GACATTAATC	540 . AAACTCCATT	.	560 AATT
570 TAATAGATATGTATGA							
650 GAATATGCACTCAGATA	660 ATTTTTCAAAA	670 . TCAAGGTTT	680 . ATTAGTGAAA	690 . AGAGGAAATG	700 . TATTAGTGAT	710 . TTACATTTT	720 CCAC
730 . TAATGTAATAGAAAAT							
810 . ACGGAGCATGTAAACT				.	.	.	
890 . TCAACCAGATGTAGAA:	rgtttacgcag	. GCATAAACTT	AAAATAGCAT	. CTAAACATAT	'AAAACCAAAT	TATGTAACAT	CAAA
970 TCATAGAACATCAGCGA		TAACTGTAA	ATGGTGCTCA				
1050 GAATTAAGAAGATATA	rgataacatti	TCAATTTTC:	. FACGAGCTTT	AGTCAAATCA		TTGGACATTG	
TCGCAGGAAAAGATATA	 ATGAACATATT	. AAAGATGTT	. CTGGATGTAT	GTGATGATGA	AAAATGGAAA	ATGGCGGTAG	CGGA
1210			.	.		.	
1290 . TTAATTTATTAGTTCAG	1300	1310	1320	1330	1340	1350	1360
1370 . ATATATGAGTGGTTTGA	1380	1390	1400	1410	1420	1430	1440
1450 TACAGGAATGAAGACTO	1460	1470	1480	1490	1500	1510	1520
1530 . AGACTCCCTGCACTAGA CDC9 Stool NSP2	1540 AGTAGCGCCTA	1550 . .GGCAGCATA	1560 .				

	10	20				60	70	80
					. GGCTGAGCTAC			
			.	.	130 1 . AATGTATGTTC	.		
			.		210 . CCACAATTTAG			
					290 . FATCTTAATTI			
	330	340	350 .	360 .		380 .	390	400
			.		450 . rctgtgttga1			
					530 . rgcagctttt			
					610 . AAATTACGTTC			
				.	690 . AGATTTGCTG1			
 CTATAGAG	730 . TTGTTAAATA	740 . FTCATCAGTTO	750 . GCTAACCATGO		770 . ATTTGCTACAT	780 . [ATAAGAATA	790 ATGCTAAGAG	800 . TG
		.			850 . ATTGGTATGC <i>I</i>	. [[.
					930 . CAAGAGAAAA			
					1010 . CGATTCAAGAA		1	
AGAAAGCG	1050 . CTTATGTGACG	2	00					
	ero NSP2 S	20	30		50	60	70	80
					. GGCTGAGCTA			

90 . TGGAGAACGATAGCTA								
170 .	180	190	200	210	220 	230	240	
250 . TAATTCGAGAGGAATG								
330 AAGTTACACAATCTGA								
410 . GAAAATCATCAAGATG	racttttcca [°]	TTCGAAAGAA	CTACTCTTAA	AATCTGTG:	TTGATAGCTAT	TGGTCAGTCA	AAAGA	
490 AATCGAAACTACTGCT								
TAGATCATAAATTAAT	.							
650 GATGTATGTGTTAAAG								
730 . CTATAGAGTTGTTAAA								
810 . GTAATACTACTGATTT								
890 . GGTAATACAATTGATG						.		
970 TGATAGAAAAATGGAT		.						
. AGAAAGCGCTTATGTG; CDC9 Stool NSP	ACC 3 SEQ ID I	No. 41	40	50	60	70	80	
GGCTTTTAATGCTTTT		
90 . TTGAAGCTGCAGTTGT								
170 . GTTAAAAGTAAATTTGA			.					240
250 . GGCGTTAAATGGAAAG			.	1 1			1	320
330 . AAGACGTAAATAAACT			.					400
410 . GTGAAAAGAATACCAGG			.					480
490 . TGAGGTTGATGATTCA								

570 	.		1				640
AAAGATTTGAGTCACTAA/ 650 ATGTACTCTCTTCAGAAT	660 670	680	690 	700	710	720 I	
730	740 750	760	770 	780 	790 .	800 I	
	820 830 .	840	850 	860 	870 .	880 I	
890 AGAAATTTAGTTCAGGATT	.		1				
970 TGAATAGTCACATAATTAA			I I				1040
1050 AAAACCTAAATGGCTATAC	GGGCGTTATGTGA	vcc					
	20 30	40					
90 : TTGAAGCTGCAGTTGTTG						.	
GTTAAAAGTAAATTTGAT	ratgtaatggatg	ACTCTGGTGTTA	. AAAATAATCTTTTG	GGTAAAGCTAT		CA	
250 GGCGTTAAATGGAAAGTT	. . TGGCTCAGCTATT	AGAAATAGAAAT'	. rggatgactgactc	TAAAACGGTTG	CTAAATTGGA'	TG	
AAGACGTAAATAAACTTA		 TTCTAAAGGAAT			GCTTGTTTTA		
 GTGAAAAGAATACCAGGAA	. .	 TAATTAAGTGCAG	.			.	
TGAGGTTGATGATTCATA	. . FATTGATGAGAAA 580 59	 ATGGAAATTGATA	. ACCATTGATTGGAA 610	 ATCTCGTTATG	ACCAATTAGA 630	AA 640	
AAAGATTTGAGTCACTAAA	AACAAAGAGTTAC 660 67	rgagaaatacaa: 0 680	FACTTGGGTACAAA 690	AAGCGAAGAAA 700	GTAAATGAGA 710	AT 720	
ATGTACTCTCTTCAGAAT	GTCATTTCACAACA	AGCAGAATCAAA: 0 760	ragcagatettea <i>r</i> 770	CAATATTGTAA 780	TAAATTGGAA 790	AC 800	
TGACTTGCAAGGCAAATT	CAGTTCATTAGTG	CATCAGTTGAG 0 840	rggtatttaagato 850	TATGGAATTAC 860	CAGATGATGT 870	AA 880	
AGAATGATATTGAACAGCA 890 	900 91: 	FGATTTAATTAA: 0 920	FCCCATTAATGCTA 930 .	440 940	950 	TT 960 .	
AGAAATTTAGTTCAGGAT	980 991 .	1000	1010	1020	1030	1040	
1050	1060 10°		COLCINIGAGCACA	MAAAL	CIMMONUTGI	CA	
 AAAACCTAAATGGCTATA CDC9 Stool NSP4 S	GGGGCGTTATGTG	ACC					

10 GGCTTTTAAAAGTTCTG	20 GTTCCGAGAGA	30 . AGCGCGTGCG	40 . GAAAGATGGA	50 . TAAGCTTGCC	60 . GACCTCAACT	70 . ACACATTGAG	80 TGTA
90 ATCACTTTAATGAATGA			.	.		.	
170 AACAGTGTTGTTCACAT]] .	.	220 . AAACGTCAAA	230 . ATGTTCATAC	240 AAAG
250 TGATCAAGTATTGTATA	260 \GTCACAATTA	270 . ATTAATACTC	280 . FTTTAAAATT	290 . GGCAGGATAT	300 . AAAGAACAAG	310 . FTACCACTAA	320 AGAC
330 GAAATTGAGCAACAGAT							
410 AATTGAACAAGTTGAAT			.				
490 AATTTAATCAGAAGAAT	500 ATAAAAACGO	510 . CTAGATGAGTG	520 . gggagagcgg	530 . AAAAAATCCA	540 . TATGAACCGA:	550 . ragaggtgac	560 TGCA
570 TCTATGTGAGAGGTTGA							
650 ATTGACTGAGAAGCCAC	660 CAGTCAATCAT	670 . TATCGCGTGT	680 . ggctcagcct	690 . TAATCCCGTT	700 . TGACCAATCCA	710 . AGCGAATGTT	720 'GGAC
	STCTTAATGTO SEQID N 20	 BACC lo.45 30	40				80
GGCTTTTAAAAGTTCTG	STTCCGAGAGA	AGCGCGTGCG	GAAAGATGGA	TAAGCTTGCC	GACCTCAACT	ACACATTGAG	TGTA
90 ATCACTTTAATGAATGA	100 ACACATTGCAT	110 	120 . CAGGACCCTG	130 . GAATGGCGTA	140 . TTTTCCATATA	150 . ATTGCATCTG	160 TTCT
170 AACAGTGTTGTTCACAT	180 TACATAAAGO	190 . CTTCAATTCC	200 . AACAATGAAA	210 . ATAGCATTAA	220 . AAACGTCAAA	230 . ATGTTCATAC	240 AAAG
250 TGATCAAGTATTGTATA							
330 GAAATTGAGCAACAGAT	340 GGATAGAATT		360 . ATGAGACGTC	.	380 . GATTGATAAA	390 . ГТААСТАСТС	400 GTGA
410 AATTGAACAAGTTGAAT			.	1 1 .		.	
490 AATTTAATCAGAAGAAT							
570 TCTATGTGAGAGGTTGA							
650 ATTGACTGAGAAGCCAC				.		.	
730 GTTAATGGAAGGAAAGG CDC9 Stool NSP5	FTCTTAATGT	FACC					

10 GGCTTTTAAAGCGG	20 CTACAGTGATGT	30 CTCTCAGCAT	40 TGACGTAACA	50 AAGTCTTCCCT	60 CAATTTCTTC	70 TAGTATCTTI	80 AAAAA
90 TGAATCGTCTTCTA	100 ACAACGTCAACT	110 CTTTCTGGAA	120 AATCTATTGO	130 GTAGGAGTGAA	140 CAGTACATTT	150 CACCAGATGO	160 CAGAAG
170 CATTCAATAAGTAG	180 CATGTTGTCGAA	190 GTCTCCAGAG	200 GATATTGGAG	210 CCATCTGATTC	220 TGCTTCAAAC	230 GATCCACTCA	240 ACCAGC
250 TTTTCGATTAGATC	260 GAATGCAGTTA	270 AGACAAATGC	280 AGACGCTGGC	290 CGTGTCTATGG	300 GATTCATCGAC	310 ACAATCACGA	320 ACCTTC
330 AAGCAACGTTGGAT							
410 CAATTTCAACTGAT							
490 GATTCTGAAGATTA							
570 CGCACTAAGAATGA							
650 GCTCCCCACTCCC	STTTTGTGACC						
CDC9 Vero NS	20	30 	40 TGACGTAAC <i>I</i>	50 AAGTCTTCCCT	60 'CAATTTCTTC'	70 TAGTATCTTT	80 AAAAA
90 TGAATCGTCTTCTA	100 ACAACGTCAACT	110 CTTTCTGGAA	120 AATCTATTGG	130 GTAGGAGTGAA	140 CAGTACATTT	150 CACCAGATGT	160 ragaag
170 CATTCAATAAGTAG							
250 TTTTCGATTAGATC							
330 AAGCAACGTTGGAT							
410 CAATTTCAACTGAT							
490 GATTCTGAAGATTA							
570 CGCACTAAGAATGA							
650 cctccccactcccc CDC9 Stool VI	STTTTGTGACC	lo. 50					

10 GGCTATTAAAGCTGTAC	20 AATGGGGAAGT	30 . TACAATCTAA	40 rcttgtcaga:	50 ATATTTATCAT	60 . TTTGTTTATA	70 . ATTCACAATC	80 TGC
90 AGTTCAAATACCAATTT	100 ATTATTCTTC	110 . CAATTCAGAA	120 ГТАGAAAAAA	130 GATGTATTGAG	140 . GTTTCATGCT	150 . AAATGTGTTG	160 FACA
170 GTTCTAAAAAAGGTATG	180 TCATTAAAACC	190 . CTTTATTTGAZ	200 AGAGTATAAA	210 GATGTAATAGA	220 ATAATGCAACG	230 . GTTACTATCT	240 'ATA
250 TTATCATATTCTTATGA	260 TAAATACAACG	270 . GCTGTGGAACG	280 GTAAACTAGT	290 CAATTATGCTA	300 \AAGGTAAACC	310 . CTTTAGAGGC	320 TGA
330 TTTAACGGCAAACGAGC							
410 CATTAATGGATCCTGCT			440 AAATTTAAAT			470 ACGACACTCA	480 AAT
490 GACGTTGCTGATGCAAA	500 TAAAATTTAT#	510 . AAGCGTAGAC	520 FAGATTTATT	530 FACCATAGTGG	540 . GCATCTACAAT	550 . CAAATAAATA	560 .cgg
570 AGTACCCAGACATAATG							
650 ACTCATCTATAGAAATG	660 CTTATGTCAGT		680 rgaggattat				720 TAC
730 TCAAATAGATCAACGTT	740 AGCAAAACTAG	750 . GTTTCATCTCC	760 CAATGTCAAT	770 ATTAGTTGCAT	780 . TTAATAGATAT	790 . CAATGGTAC	800 GTT
810 TATTACGAATGAAGAAT	820 TGGAACTTGAG	830 . STTTTCGGATA	840 AAATATGTTA	850 AGGCAATTGT <i>I</i>	860 ACCTGATCAA	870 . ATTTTCGATG	880 AAT
890 TACAGGAAATGATTGAC	900 AATATGAAGA <i>I</i>	910 . AAGTTGGTTT	920 AGTAGACATA	930 CCAAGAATGAT	940 rtcaagaatgo	950 . GTTAGTTGAT	960 TGT
970 TCATTAGAGAAATTTAC	ACTGATGTCAA	AAATTTATT(CTTGGTCATT	rcatgttggt1	TTAGAAAACA	\AAAAATGAT'	TGA
1050 TGCAGCATTAGACCAAT	1060 TGAAGACAGAG	1070 GTACACTGAAG	1080 GATGTAGATG	1090 GTGAGATGTAG	1100 CAATGAGTATA	1110 . ACAATGTTAA	1120 TTA
GAGATGAAATAGTTAAA	 ATGCTAGAAG1	ACCAGTTAA	 ACATGACGAT	 CATCTACTTCC	STGATTCAGA	ATTAGCTGGA	TTG
1210 TTATCAATGTCATCAGC	1220 TTCAAATGGTG	1230 . GAATCAAGGCA	1240 AACTTAAATT	1250 rggtctcaaa <i>a</i>	1260 . \CAATATTTT	1270 . CAACTAAGAA	1280 AAA
1290 TATGCATGTTATGGATG							
1370 CATTAGGTCGTAGAGAT							
1450 GCTGTCGTAGAAAAAAT							
1530 ATCATACGGTGATGTGA	1 1						
1610		1630	1640	1650 	1660 	1670 	1680

AACATAACACACAGCCAT	TTAGAAAAGG	AATAATTATG	GGTTTAGAT <i>I</i>	ATGTTATCTA#	TATGACTAA1	GATCCAAAA	GTA
1690 				1730			1760
ATACAAACGCTAAATTTA							
1770 CAAAAAGATTCAGTATGG					.1		
1850 TTAAAACAGTATTGTCAA				1890 AAAATAATCAG		1910 . rgatgataat	1920 TAT
1930 GCAGTACTACAATTTAAC]			
2010 AATGAATGCTAAAGTTAA	.1				.1		
	2100	2110	2120	2130	2140	2150	2160
TTTTTAGAGCTGGTATAA	ACTTATTAAA	TAATGAGAAG	GCGTGGACAAA	AGTACACAATG	GGATCAAGC	AGCTATTTTA	TAT
2170 TCGAACTACATTGTTAAC							
2250 TGTAGCCATTACTGGATC	.1]	.1		
2330 CAGAAGATTTCATTATAG]	
2410							
2490 ATCAAAAAACGTAATTGT	.1				.1		
2570 AAAAACGTCGTGCGCAAA							
	2660	2670 .	2680	2690 	2700	2710 	2720
	2740	2750	2760	2770 	2780	2790 	2800
2810	2820	2830	2840	2850	2860	2870	2880
CATCGATTTCAAAGTTAA							
2890 GAACAAGAAATACAGTTG							
2970 TTCGCAAGACAAGTATAA	.1				.1		
3050			3080 . CCCTTTTAAA	3090 GGTAAGATACO	3100 . AGCCGTAACA	3110 . ATTTATATTA	3120 .CAT
3130 CTCTATGCAAAACTTGAA							
3210 TGAGATGATTAAACTATG	3220	3230	3240	3250 	3260	3270 	3280
3290	3300	LOGINOATAF		STOTOGOTAL	11011101		

ATTAGAGTGCTTAGATGTGACC

CDC9 Vero VP1 S			4.0	F.0	60	7.0	0.0
10 . GGCTATTAAAGCTGTACA		.					
90 AGTTCAAATACCAATTT			.1	.1			
170 GTTCTAAAAAAGGTATG			.1				
250 TTATCATATTCTTATGA			.1				
330 TTTAACGGCAAACGAGC	340 FTGATTATGAA	350 . AATAACAAAA	360 . .TAACTTCTGA	370 . .ACTGTTTCAG	380 . TCAGCCGAA	390 GAATATACCGA	400 ATT
410 CATTAATGGATCCTGCTA							
490 GACGTTGCTGATGCAAA							
570 AGTACCCAGACATAATGA			600 . GAAGTGATGAA			630 GTAACTTGGGG	640 CTA
650 ACTCATCTATAGAAATGG						[[
730 TCAAATAGATCAACGTTA							
810 TATTACGAATGAAGAAT			.1	.1			
890 TACAGGAAATGATTGACA			.1				
970 TCATTAGAGAAATTTAC							
1050 TGCAGCATTAGACCAAT							
1130 GAGATGAAATAGTTAAAA							
1210 TTATCAATGTCATCAGC		1230 . AATCAAGGCA			1260 . .CAATATTTT		1280 AAA
1290 TATGCATGTTATGGATGA							
1370 CATTAGGTCGTAGAGAT			.1	.1			1
1450 GCTGTCGTAGAAAAAAT							
1530 ATCATACGGTGATGTGAG		1550 . TCCAGTAATT	1560 . CTATGGTGCT	1570 . 'ATACACAGAC	1580 . GTTTCACAAT	1590 rgggattcgtd	1600 CAC

		1	1	1640 GTTTAGATAT	1	1		1
		1	1	1720 CTCATGGATT		1		
		1	1	1800 ACAAACTAAG	1	1	1	
1	850 	1860 	1870 	1880	1890	1900	1910	1920
				TTATAACCAA 1960 				
GCAGTACTAC	AATTTAACA	CCGATGTCAC	TAAACAAATG	GTCCAAGATG	TGTCAAACGA	TGTGAGACAT	'ATATATTCTA	.G
		1	1	2040 TATTGAAATA	1			
		1	1	2120 GTGGACAAAG	1		1	
				2200 				
				'GATAGAGAAT 2280				
TGTAGCCATI	'ACTGGATCA	CTAAGGCTAT	TTCCGTCAGA	2280 ACGAGTGTTA	ACTACTAATI	'CTACATTCAA	AGTATTTGAC	Т
		1	1	2360 Baagtatatat	1	1	1	
		1	1	2440 TTCAAAAATT	1	1	1	
		1	1	2520 :AGAAAAAGCG	1	1		
		1	1	2600 TACAGAAGCO	1	1		
2	650	2660	2670	2680	2690	2700	2710	2720
				TCTGAAGCCA				
2 AACACTACCT	730 GATAACGTC	2740 CAATATGTTA	2750 TACAATGTAI	2760 AGGATCAAGG	2770 ACGTATCAGA	2780 TAGAAGATAG	2790 TGGGTCGAAA	2800 T
		1	1	2840 AACCATCAAT				
		1	1	1	1			
			2990	CCGCCAGTTG	3010	3020	3030	3040
				TAATTTATTA				
		1		3080 CTTTTAAAGG	1			
		1	1	3160 GAATGGAGCAT	1	1		
		1		3240 AGCATTACGG				
	3290	3300						
ATTAGAGTGO	TTAGATGT	FACC	53					

10 GGCTATTAAAGGCTCAA]					
90 AAAAAGAAATTGAAAAT	100 'AATATAGACG'	110 FAACCATGGA	120 AAATAAAAAT	130 AAAAATATTA	140 ATAAAAATAA	150 TAATAGAAAT	160 AAC
170 AATAGAAAGCAGCAATT	180 ATCTGACAAA	190 GTGTTATCAC.	200 AAAAAGAGGA	210 AATAATAACT	220 GATGTACAAG	230 ATGACATCAA	240 AAT
250 AACTGATGAAGTTAAAA							
330 AAGAAGTACAGTACGAA							
410 ATAAGACCAGAACAAGC							
490 TGGTGAGAAAGAATTAA	500 	510 GTATTGGAAA	520 TTGAAAAAGG	530 ATACGTTGCC	540 AGACGGAGAT	550 TATGACGTAC	560 GCG
570 AATATTTTTTAAATTTA							
650							
730 AGAGGGAGTTATTAGAA	740 GATTTATCGC	750 AGATATGAGA	760 CAACAAATTC	770 AAGCTGATAG	780 AAATATTGTC	790 AATTATCCAT	800 CAA
810							
890 TTTAATTATATACCAGA							
970 ATATATTAGACCAAATC	980 TGTTGCAAGA	990 FAGACTAAAT	1000 TTACATGATA.	1010 ATTTTGAATC	1020 ATTATGGGAC	1030 ACAATAACTA	1040 CAT
1050 CGAATTATATATTAGCA							
1130							
1210 AAATGATTGTTTTAAAA]		
1290 TGTCACTTATATCTGGC							
1370 TTGGCTATAATAAACAC	1380	1390	1400	1410	1420	1430	1440
1450 ATTTCAAATAGCAGAGC	1460	1470	1480	1490	1500	1510	1520

1530 AAGTTGTTATTGATGGA							1
1610 GCATTAATGCAGTTATC	1620 . CTAGACAACAA	1630 FTTCCGACCA	1640 TGCCAGTTGA	1650 rtacaaaaga	1660 rcaatccaaac	1670 GAGGAATATT	1680 GTT
1690 ATTGTCTAACAGATTGG							1
1770 CTATGAATATGCAACAT							
1850 GGAAATACCACAGTAAT							
1930 TGAACGAATTAACGATG							
2010 TTGAGGATTTTTTGAAA							
2090 CTTAGATTATTGCCAGT							
2170 TTCAGATAAAATTGCTC							1
2250 ACATCGCTAGGAACCTC							
2330 ACTATGCTATTAAACAA							
2410 AGCGAAATTGGATGCCA						[]	
2490 TAAATTCTGATTCTAAT							
2570 GTACCACAACCTTTTGA							
2650 ATCTTTCGTTTCTGCAG							1
2730 cgccaaccccactgtgd CDC9 Vero VP2 \$	GAGATATGACC	54					
10 GGCTATTAAAGGCTCAA	20 	30 					
90 AAAAAGAAATTGAAAAT							
170 AATAGAAAGCAGCAATT							
250 AACTGATGAAGTTAAA <i>I</i>							
330	340	350	360	370	380	390	400

 AAGAAGTACAGTACGAA							
410 ATAAGACCAGAACAAGO							
490 TGGTGAGAAAGAATTAA		j					
570 AATATTTTTTAAATTTA	580 ATATGATCAAA	590 TACTGATAGA	600 AATGCCAGAT	610 . TATTTATTA	620 CTAAAAGATA1	630 . rggctgtagaz	640 AAAT
650 AAAAACTCTAGGGATGO	660 CTGGTAAAGTT	670 	680 AGACTGCAAG	690 ll. TATTTGTGA	700 TGCCATATTTC	710 ll. CAAGATGAAGA	720 I AGAC
730 AGAGGGAGTTATTAGAA							
810 TTTTACATCCAATTGAC	820 CCATGCATTTA	830 ATGAATATTT	840 TCTGAACCAT	850 . CAATTAGTT	860 . GAACCATTGAA	870 ATAACGACAT	880 TATT
890 TTTAATTATATACCAGA	900 AAAGAATAAGA	910 AATGATGTCA	920 ACTATATTT	930 . GAATATGGA	940 TATGAATTTAG	950 CCATCAACAGO	960 CAAG
970 ATATATTAGACCAAATC							
1050 CGAATTATATATTAGCA	1060 AAGATCAGTCG	1070 TGCCTGATTI	1080 . GAAGGAAAA	1090 . \GAATTAGTT	1100 . TCAACTGAAGO	1110 CTCAGATACAG	1120 GAAA
1130 ATGTCTCAAGATTTGCA							
1210 AAATGATTGTTTTAAAA	1220 ACACTGATAGC	1230 AGCTATGTTA	1240 AGTCAACGTA	1250 . ACAATGTCAT	1260 . TAGATTTTGTA	1270 . AACTACGAAT	1280 FATA
1290 TGTCACTTATATCTGGG	1300 CATGTGGCTAT	1310 TGACTGTTAT	1320 ACCAAATGAT	1330 . ATGTTTCTT	1340 CGTGAGTCGCT	1350 RAGTTGCATGO	1360 CGAA
1370 TTGGCTATAATAAACAG							
1450 ATTTCAAATAGCAGAGG							
1530 AAGTTGTTATTGATGG7	1540 \GTGTTAAATC	1550 AAACACTTAA	1560 TGACAACATT	1570 . AGGAATGGA	1580 CAAGTTATTA/	1590 	1600 GGAA
1610 GCATTAATGCAGTTATC							
1690 ATTGTCTAACAGATTGG							
1770 CTATGAATATGCAACAT							
1850 GGAAATACCACAGTAAT							
1930 TGAACGAATTAACGATG							
2010	2020	2030	2040	2050	2060	2070	2080

TTGAGGATTTTTGAA							
2090 CTTAGATTATTGCCAG							
2170 . TTCAGATAAAATTGCT							
2250 . ACATCGCTAGGAACCT							
2330 . ACTATGCTATTAAACA							
2410 . AGCGAAATTGGATGCC							
2490 . TAAATTCTGATTCTAA							
2570 . GTACCACAACCTTTTG							
2650 . ATCTTTCGTTTCTGCA	2660 GACACGGTTGA		2680 CGCAATTGCTT	2690 . TTGACAATA	2700 rgcgcattate	2710 . GAACGAACTG	2720 TAAA
2730 . CGCCAACCCACTGTG	GAGATATGACC						
CDC9 Stool VP3	20	30	40				80
GGCTATTAAAGCAGTA							
GGCTATTAAAGCAGTA	CCAĞTAGTĞTG 100 	TTTTACCTCT	rgatggtgta <i>r</i> 120 	AACATGAAAG 130	TATTAGCTTTA 140 .	AAGÀCATAĞI 150 .	TGTGG 160
GGCTATTAAAGCAGTA	CCAGTAGTGTG 100 CACTCAGGTGT 180	TTTTACCTCT 110	FGATGGTGTAA 120 ATGATTCTAAA 200 .	AACATGAAAG 130 AGATGAGTAT 210 	TATTAGCTTTZ 140 . GAGAACGCATT 220 .	AAGACATAĞT 150 . rcttaatttc 230 .	TGTGG 160 TGTAAT 240
90 CTCAGGTGTATGCAGA	CCAGTAGTGTG 100 CACTCAGGTGT 180 TATTATATTTA	110ACACACATGA 190AATTATAATG	TGATGGTGTAA 120 . ATGATTCTAAA 200 . GTAAAAAACGCT	ACATGAAAG 130 AGATGAGTAT 210 CACAGATATT. 290	TATTAGCTTTZ 140 GAGAACGCATT 220 AAATAAATCTG 300	AAGACATAGT 150 . rCTTAATTTC 230 . GGTATAGCTC 310 .	240 CTAAT 240 GCAAT
GGCTATTAAAGCAGTA 90 CTCAGGTGTATGCAGA 170 CTCACTACCACATAATAC 250	CCAGTAGTGTG 100 CACTCAGGTGT 180 . TATTATATATTTA 260 . GATGAATTATT	110	TGATGGTGTAA 120	ACATGAAAG 130	TATTAGCTTTZ 140 GAGAACGCAT 220 AAATAAATCTG 300 ATTACATTGAT	AAGACATAGT 150 CCTTAATTTC 230 GGTATAGCTC 310	240 ETAAT 240 GCAAT 320 TTACT
90 . CTCAGGTGTATGCAGA. 170 . CTCACTACCATAATATA. 250 . AGAGATACAGAAGATA.	CCAGTAGTGTG 100 CACTCAGGTGT 180 . TATTATATATTA 260 . GATGAATTATT 340 . TTATACTAATA 420 .	110	TGATGGTGTAA 120 ATGATTCTAAA 200 GTAAAAAACGCT 280 FAGATGTAACT 360 GGACTGACCAA	130	TATTAGCTTTZ 140 . GAGAACGCAT 220 . AAATAAATCTG 300 . ATTACATTGAT 380 . ACCAAGACAAZ	AAGACATAGI 150 . FOTTAATTTO 230 . GGTATAGCTO 310 . FAATGTTGTT 390 . ATATAGAAGA	240 CTAAT 240 TTACT 400
90	CCAGTAGTGTG 100 . CACTCAGGTGT 180 . TATTATTATATTTA 260 . GATGAATTATT 340 . TTATACTAATA 420 AGCTGACATAC	110	TGATGGTGTAF 120	130	TATTAGCTTT 140 GAGAACGCAT 220 AAATAAATCTC 300 ATTACATTGAT 380 ACCAAGACAAI 460 ACATTATAATT	AAGACATAGI 150	240 CTAAT 240 GCAAT 320 TTACT 400 ATTAT 480 AGATG
GGCTATTAAAGCAGTA 90 CTCAGGTGTATGCAGA 170 CTCACTACACATAATA 250 AGAGATACAGAAGATA 330 TACATGACTATTCATA 410 TTATTACCAGGATGGA	CCAGTAGTGTG 100 CACTCAGGTGT 180 . TATTATATTTA 260 . GATGAATTATT 340 . TTATACTAATA 420 . AGCTGACATAC 500 . GATGATGATAC 500 .	110	TGATGGTGTAF 120	ACATGAAAG 130	TATTAGCTTTZ 140 GAGAACGCAT 220 AAATAAATCTGAT 380 ATTACATTGAT 380 ACCAAGACAAZ 460 ACATTATAATT 540 TAGACTTCCAG	AAGACATAGI 150	160 TTAAT 240 GCAAT 320 TTACT 400 ATTAT 480 AGATG 560 ACTCA 640
GGCTATTAAAGCAGTA 90 . CTCAGGTGTATGCAGA: 170 . CTCACTACACATAATA: 250 . AGAGATACAGAAGATA- 330 TACATGACTATTCATA: 410 . TTATTACCAGGATGGA. 490 . TCAAAAATGCAGCTACA:	CCAGTAGTGTG 100 CACTCAGGTGT 180 . TATTATATTTA 260 . GATGAATTATT 420 . TTATACTAATA 420 . GAGTGACATAC 500 . GATGATGATGATAC 580 . GATGACAACAT GATGACAACAT	110	TGATGGTGTAA 120	ACATGAAAG 130	140 GAGAACGCAT 220 AAATAAATCTO 380 ATTACATTGAT 380 ACCAAGACAAT 460 ACATTATAATT 540 TAGACTTCCAO 620 GTATTTAGAGG	AAGACATAGI 150	240 240 320 320 400 401 480 460
GGCTATTAAAGCAGTA 90 . CTCAGGTGTATGCAGA 170 . CTCACTACACATAATA 250 . AGAGATACAGAAGATA 330 . TACATGACTATTCATA 410 . TTATTACCAGGATGGA 490 . TCAAAAATGCAGCTACA- 570 . AGAAGATTAAAGAAAGG 650 .	CCAGTAGTGTG 100	110	TGATGGTGTAF 120	130	TATTAGCTTT 140 . GAGAACGCAT 220 . AAATAAATCTC 300 . ATTACATTGA: 380 . ACCAAGACAAi 460 . ACATTATAATT 540 . TAGACTTCCAC 620 . GTATTTAGAGZ 700 . GTTTACTTTT	AAGACATAGI 150	160 240 320 320 400 480 480 460 477 AAA 4720 4720 4720 480

${\tt TATCACAGTTTGATATTGGTCAATATAAGAATATGCTAAATGTATTAACGACTTTGTATCAATATTACGATATATCAT}$
890 900 910 920 930 940 950 960
970 980 990 1000 1010 1020 1030 1040
1050 1060 1070 1080 1090 1100 1110 1120
1130 1140 1150 1160 1170 1180 1190 1200 .
1210 1220 1230 1240 1250 1260 1270 1280
1290 1300 1310 1320 1330 1340 1350 1360
1370 1380 1390 1400 1410 1420 1430 1440
1450 1460 1470 1480 1490 1500 1510 1520
1530 1540 1550 1560 1570 1580 1590 1600 .
1610 1620 1630 1640 1650 1660 1670 1680
1690 1700 1710 1720 1730 1740 1750 1760
1770 1780 1790 1800 1810 1820 1830 1840
1850 1860 1870 1880 1890 1900 1910 1920
1930 1940 1950 1960 1970 1980 1990 2000
2010 2020 2030 2040 2050 2060 2070 2080
2090 2100 2110 2120 2130 2140 2150 2160
2170 2180 2190 2200 2210 2220 2230 2240 .
2250 2260 2270 2280 2290 2300 2310 2320
2330 2340 2350 2360 2370 2380 2390 2400 .
2410 2420 2430 2440 2450 2460 2470 2480
2490 2500 2510 2520 2530 2540 2550 2560
ACACTACAAAACTGTACATAGATTCTATTTACTTAAGAAAAATAAAAGGTAACACGGTGTTTGATATGACTGGGTGAGCT
2570 2580 2590 . AAAAACTTAACACACTAGTCATGATGTGACC

CDC9 Vero VP3 S	EQ ID No.	57	40	5.0	60	70	9.0
10 GGCTATTAAAGCAGTACC							
90 CTCAGGTGTATGCAGACA							
170 CTCACTACACATAATATA				.1		1 1	
250 AGAGATACAGAAGATAGA							
330 TACATGACTATTCATATT				.1			
410 TTATTACCAGGATGGAAG					.		
490 TCAAAATGCAGCTACAGA							
570 AGAAGATTAAAGAAAGGA		590 . ACTACCAATA				630 FAAGTTATTT	640 AAA
650 ACGTTATCAGTAAATCAT							
730 AATAAAACAGTTCTCGAA							
810 TATCACAGTTTGATATTG							
890 GAAAAACCAATCGTATAT							
970 TGAAACGTGGGATCCACT							
1050 TTAAAGATAATTCAATAC							
1130 GAAAGGCAAACTATTGAC	1140 . CAATTTGCATA	1150 . TTGCATACAA	1160 . ATATCTATCT	1170 . ACAGGGAAAG	1180 . GCTAAGGTATO	1190 GTTGCGTTAA	1200 AAT
1210 GACCGCCATGGATTTAGA							
1290 TAGTGATGGATATATGGG							
1370 ATTACTGAAAACGTATTC					.		
1450 ATCAAATGATTTTAACAA							

1530 ATAATACGTTTAAAGAC							
1610 AATGGATCAATAATTAC	1620 FTCATATGATG	1630 . GGTGTCTAGG	1640 GTATCTTTGG	1650 FTTATCAATAT	1660 . CGCTAGCTTC	1670 . CAAAACCAAC	1680 TGG
1690 TAATAATCATTTGTTCA	1700 FTTTAAGTGG <i>A</i>	1710 . ACAGACAAGI	1720 FATTTTAAAT	1730 rggatcaatti	1740 . GCAAATCATA	1750 . TGAGCATAT	1760 CAC
1770 GACGATCACATCAGATAG	1780 CGATTTTCGG#	1790 . AGTCAGCCACT	1800 FTCATATTCG	1810 GGATATATTT	1820 . TAGGGATTTG	1830 . GTCTAATAAT	1840 AAT
1850 TTCAATTTAATAGGTAC							
1930 TTCATTTGACCTTAAAC							
2010 CTCCAATTGAATTGATT							
2090 TCAAATGAGATAGAAAA	2100 CTATATCAACA	2110 . AGAGTTTATAC	2120 GCATAACATA	2130 CGCCGACGATO	2140 . CCTAATTACTT	2150 . TATTGGAGT	2160 TAA
2170 GTTTAAAAATATTCCTTA							
2250 TACCAGATGTAATAACG							
2330 TTATCTGATGAGGTGTA							
2410 GCAAATCACATTTGGAC			[]				
2490 ACACTACAAAACTGTAC							
AAAAACTTAACACACTA	STCAAGATGT	 GACC					
CDC9 Stool VP4 S	20	30					
90 AATTGGATCAGGAAAAA							
170 GTCATGGAGAGATAAAT							
250 AACGATTATTGGATACT							
330 AGTCGTTGCTATTGAAC							
410 GTAACGATTCAAATAAA							

490	500	510	520 	530		550 .	
ACTTCTGACACCAGACT 570							
570 TACTGACAGTTCAAGTA	 CTGCAAATTT <i>I</i>	 AATAATATA	 Caattacaa	TTCATTCAGA	 ATTTTACATTA	. ATTCCAAGGT	 ccc
650 AGGAATCTAAATGCAAT							
730 TCATCTAGATCGATACA	740 	750 GCACAAGTTGA	760 ATGAAGACAT	770 FATAGTTTCA	780 AAAACTTCATT	790 . CATGGAAAGA	800 AAT
810 GCAGTATAATAGGGATA							
890 CTGAAATATCATATAAG							
970 TCAGTAAATGGAGTGAA							
1050 TAAAGAAAATTCTTATG					1100 FATGGTATATG	1110 . GTTAGATCAT	1120 TAG
1130 CAGCTAATTTAAATTCA	1140 GTGAGATGTAG	1150 	1160 	1170 	1180 FAGGTGCATGC	1190 . CCCACTAATA	1200 AAT
1210	1220	1230	1240	1250	1260	1270	1280
1290 	1300	1310	1320	1330	1340	1350	1360
	1380	1390	1400	1410	1420	1430	1440
	1460	1470	1480	1490	1500	1510	1520 l
1530 	1540	1550	1560	1570	1580	1590	1600
	1620	1630	1640	1650	1660	1670	1680
	1700	1710	1720 	1730	1740	1750	1760
	1780	1790	1800	1810	1820	1830	1840
1850 	1860	1870	1880	1890	1900	1910	1920
1930 	1940	1950	1960	1970	1980	1990	2000
2010	2020	2030	2040	2050	2060	2070	2080
2090 CATACAAAATTAATACA	2100	2110	2120	2130	2140	2150	2160

2170 TCAGCGATAATCGATTT							
2250 TAAGTCGAATCCAAATA						.	
2330 TACAATGTAAATTGTGA CDC9 Vero VP4 S	 gaacgctatt SEQ ID NC 20	'GAGGATGTG <i>I</i>). 60 30	ACC 40	50			80
GGCTATAAAATGGCTTC	GCTCATTTAT	'AGACAGCTT	CTCACTAATT	CATATTCAGT	AGATTTATAT	GATGAAATAG.	AGCA
90 AATTGGATCAGGAAAAA				.		.	
170 ATCATGGAGAGATAAAT							
250 AACGATTATTGGATACT				.		.	
330 AGTCGTTGCTATTGAAC			360 . FAGACAATATA	370 . ATGATATTTG	380 . GTGAAAGTAA	390 . ACAATTTAAT	400 GTGA
410 GTAACGATTCAAATAAA			.			.	
490 ACTTCTGACACCAGACT						.	
570 TACTGACAGTTCAAGTA							
650 AGGAATCTAAATGCAAT				.			
730 TCATCTAGATCGATACA							
810 GCAGTATAATAGGGATA						.	
890 CTGAAATATCATATAAG							
970 TCAGTAAATGGAGTGAA							
1050 TAAAGAAAATTCTTATG							
1130 CAGCTAATTTAAATTCA							
1210 GGTGGCGCTGTTTCGTT			.		.		
1290 ATTTAGATTTAGTTTGA							
1370	1380	1390	1400	1410	1420	1430	1440

. CCGCTAATCCGAATAA							
1450 . GATTATCAGACTCCAA				.	.	.	
1530 . TAACTCATTGTCACAA				.	.	.	
1610 . CAGGAATTAAAAGTAC	1620 AATTGATTTAA	1630 .CTAAATCAAT	1640 . GGCGACTAG	1650 . rgtaatgaag.	1660 . AAATTTAGAA	1670 . AATCAAAATT	1680 AGCT
1690 . ACATCAATTTCAGAAA	1700 TGACTAATTCA	1710 TTGTCAGATG	1720 	1730 . CAGCATCAAG	1740 . AAACGTTTCT	1750 . ATTAGATCGA	1760 ATTT
1770 . ATCTGCGATTTCAAAT			.		.		
1850 . CATCTACAATTGGTAA						.	
1930 . GCTGTACTAAAAACAA				.	.	.	
2010 . GAAATTTATTCCAAAA					.		
2090 . CATACAAAATTAATAC	2100 ATTTGATGAAG	2110 TTCCATTCGA	2120 . ATGTAAACAA	2130 . ATTCGCTGAA	2140 . CTAGTAACAG	2150 . ATTCTCCAGT	2160 TATA
.							
I CAGCGATAAT CGATT	TTAAGACATTG	AAAAATTTAA			rcggacagaa	GCGTTAAATT	TAAT
			ATGATAATT	ATGGAATCAC'	rcggacagaa(
2250 . TAAGTCGAATCCAAAT	2260 ATGTTACGTAA	2270 TTTCATTAAT	2280	ATGGAATCAC' 2290 .	rcggacagaa 2300 .	2310	2320
2250 TAAGTCGAATCCAAAT 2330 TACAATGTAAATTGTG CDC9 Stool VP6	2260 'ATGTTACGTAA 2340 'AGAACGCTATT	2270 TTTCATTAA1 2350 GAGGATGTGA	ATGATAATT. 2280 . CCAAAATAAT	ATGGAATCAC 2290 . CCAATTATAA	TCGGACAGAA 2300 . GGAATAGAAT	2310 . rgaacagtta	2320 ATAC
2250 TAAGTCGAATCCAAAT 2330 TACAATGTAAATTGTG CDC9 Stool VP6	2260 . ATGTTACGTAA 2340 . AGGAACGCTATT SEQ ID NO	2270 	AATGATAATT; 2280 . CCAAAATAAT	ATGGAATCAC 2290 . CCAATTATAA	CGGACAGAA 2300 . GGAATAGAAT 60 	2310 . rgaacagtta 70 .	2320 ATAC 80
2250	2260 PATGTTACGTAA 2340 PAGAACGCTATT SEQ ID NO 20 PAGACACATGG	2270	AATGATAATT. 2280 . CCAAAATAATG CCC 40 . ATTCATTGTC	ATGGAATCAC 2290 CCAATTATAA	CGGACAGAAC 2300	2310 . TGAACAGTTA 70 . GGGATAAGAT	2320 ATAC 80 PTGTT 160
2250 . TAAGTCGAATCCAAAT 2330 . TACAATGTAAATTGTG CDC9 Stool VP6 10 . GGCTTTAAAACGAAGT	2260 ATGTTACGTAA 2340 AGAACGCTATT SEQ ID NO 20 CTTCGACATGG 100 CTTAATGTTAGC	2270	ATGATAATT. 2280	2290 . CCAATTATAA: 50 . AAAAACTCTT 130 . ATCAAATGAT	CGGACAGAAC 2300	2310 . TGAACAGTTA 70 . GGGATAAGAT 150 . AACGGAAATC 230	2320 ATAC 80 PTGTT 160 GACTT 240
2250 . TAAGTCGAATCCAAAT 2330 . TACAATGTAAATTGTG CDC9 Stool VP6 10 . GGCTTTAAAAACGAAGT . GAAGGTACATTATATT 170	2260 ATGTTACGTAA 2340 AGAACGCTATT SEQ ID No 20 CTTCGACATGG 100 CTAAATGTTAGG	2270	ATGATAATT 2280	2290 . CCAATTATAA	GO GO AAAGATGCTA 140	70	2320 ATAC 80 TTGTT 160 FACTT 240 AAATC 320
2250 . TAAGTCGAATCCAAAT 2330 . TACAATGTAAATTCTG CDC9 Stool VP6 . 10 . GGCTTTAAAACGAAGT 90 . GAAGGTACATTATATT 170 . TCAAACTGGAGGAATT	2260 ATGTTACGTAA 2340 AGAACGCTATT SEQ ID NO 20 COTTCGACATGG 100 COTTAATGTTAGC 180 CGGCAATTTACC 260 TGAGACTGCTA 340	2270	ATGATAATT 2280	2290 . CCAATTATAA: 50 . AAAAACTCTT 130 . ATCAAATGAT 210 . GACTTTGGCC 290 . TATTGATTCC 370 .	GOGACAGAAC 2300	70 GGGATAAGAT 150 AACGGAAATC 230 TAGGCTTTX 310 TATGTATGGA	2320 ATAC 80 FTGTT 160 SACTT 240 ATAATC 320 ATGAA 400
2250 . TAAGTCGAATCCAAAT 2330 . TACAATGTAAATTCTG CDC9 Stool VP6 . GGCTTTAAAACGAAGT 90 . GAAGGTACATTATATT 170 . TCAAACTGGAGGAATT 250 . TTGATGCTAATTATGT	2260 ATGTTACGTAA 2340 IAGAACGCTATT SEQ ID NO 20 CTTCGACATGG 100 CTAATGTTAGC 180 CGGCAATTTACC 260 TGAGACTGCTA 340 AAAGAAATGGA 420	2270	ATGATAATT. 2280 . CCAAAATAATG 40 . ATTCATTGTC 120 . CAGCAATTTA 200 . TTGGACATTT 280 . TCGAGTATTT 360 . CAATCTGAGG 440 .	2290 . CCAATTATAA: 50 . AAAAACTCTT 130 . ATCAAATGAT 210 . GACTTTGGCC . TATTGATTC 370 . CATTGAGAAAA 450 .	CGGACAGAAC 2300 . GGAATAGAAT 60 . AAAGATGCTA 140 . AGTAACCATG 220 . TACTAGGTAC 300 . AATGATAATG 380 . GCTAGCCGGT	2310 . TGAACAGTTA 70 . GGGATAAGAT 150 . AACGGAAATC 230 . TACGCTTTX 310 . TATGTATGGX 390 . ATTAAATTTX 470 .	2320 ATAC 80 FTGTT 160 GACTT 240 AAATC 320 ATGAA 400 AAAAG 480
2250 . TAAGTCGAATCCAAAT 2330 . TACAATGTAAATCTG CDC9 Stool VP6 . GGCTTTAAAACGAAGT 90 . GAAGGTACATTATATT 170 . TCAAACTGGAGGAATT 250 . TTGATGCTAATTATGT 330 . ATGGCAAGAGAGTCTC	2260 ATGTTACGTAA 2340 AGAACGCTATT SEQ ID No 20 CTTCGACATGG 100 CTAATGTTACG 180 TGAGACTGCTA 340 TGAGACTGCTA 340 TGAGACTGCTA 340 TCATCAGAATA	2270	ATGATAATT 2280	2290	CGGACAGAAC 2300	70	2320 ATAC 80 FTGTT 160 FACTT 240 AAATC 320 ATGAA 400 AAAAG 480 FTTTC 560

ATGTGGCTTAATGCTGG	SATCAGAAATT	CAAGTAGCTG	GATTTGACTA:	TCGTGTGCT	CTAAATGCTCC	AGCAAATAT	ГСА
650 GCAATTTGAACATATTG							
730 GTTTTCCAAGAGTTATT							
810 GAAGTAGAATTTTTACT							
890 TACAATTCGCCTGTCAT							
970 CTTTTCAACATCATGCA							
1050 GAAACTTTATTGGCGAA							
1130 TTGGACTGAGCTAATTA	1140 .CTAACTATTC.	1150 ACCATCTAGG	1160 GAAGATAATT	1170 rgcaacgtgtc	1180 CTTTACAGTAG	1190 . CCTCTATCA	1200 GAA
1210 GCATGTTAATTAAGTGA							
1290 ctctacaagtaaggaca CDC9 Vero VP6 S	 TGGCTCCATG	 TTCGCTACGT					
10 GGCTTTAAAACGAAGTC	20	30					
90 GAAGGTACATTATATTO							
170 TCAAACTGGAGGAATTG							
250 TTGATGCTAATTATGT	260	070			ACIAGGIACIA	ACGCTTTTAA	AIC
				290	300	310	320
330 ATGGTAAGAGAGTCTCA	340 	 GAACTACGAT 350 	 CGAGTATTTT 360 	290 ATTGATTTCA 370 	300 TTGATAATGTA 380 	310 ATGTATGGAT 390 	320 GAA 400
	340 AAGAAATGGA 420	GAACTACGAT 350 IIIII GTAGCTCCAC 430 IIIIII	360 AATCTGAGGC	290 	300 TTGATAATGTA 380 CTAGCCGGTA1 460	310 	320 GAA 400 AAG 480
ATGGTAAGAGAGTCTCA	340aaagaaatgga 420 CCATCAGAATA 500	GAACTACGAT 350 .II GTAGCTCCAC 430 .II TATAGAAAAT 510	GAGTATTT. 360 . . AATCTGAGGC: 440 . . TGGAATTTAC.	290	300	310 . atgtatggat 390 . . ttaaatttaa 470 . . ggatttgttt 550	320 GAA 400 AAG 480 TTC
ATGGTAAGAGAGTCTCA 410 . AATAAACTTTAATAATT	340	GAACTACGAT 350 GTAGCTCCAC 430 TATAGAAAAAT 510 CGTCATTTAC	CGAGTATTT. 360 . . AATCTGAGGC. 440 . . TGGAATTTAC. 520 . . TTTTAAATAGA	290 ATTGATTCA 370 ATTGAGAAAG 450 AAAAATAGAAG. 530 TCTCAACCAA	300	310	320 GAA 400 AAAG 480 TTC 560 ACC
ATGGTAAGAGAGTCTCA 410 AATAAACTTTAATAAATT 490 ATAAACCTAATATATTT	340	GAACTACGAT 350 GTAGCTCCAC 430 TATAGAAAAT 510 CGTCATTTAC 590 CAAGTAGCTG	GATTTGACTA	290	300	310	320 GAA 400 AAG 480 TTC 560 ACC 640 TCA
ATGTGGCTTAATGCTGG	340 . AAAGAAATGGA 420 . CCATCAGAATA 500 . CCCATACTCAG 580 . GATCAGAAATT 660 . CTCCAGCTAAG	GAACTACGAT 350 GTAGCTCCAC 430 TATAGAAAAT 510 CGTCATTTAC 590 CAAGTAGCTG 670 GCCTCGCCTA	GATTTGACTA GATTTGACT 520	290	300	310 . ATGTATGGAT 390 . . TTAAATTTAA 470 . . GGATTTGTTT 550 . . TTAATGGGA 630 . . CAGCAAATAT 710 . GCAGAAAGAT	320 GAA 400 AAG 480 TTC 560 ACC 640 TCA 720 TTA

890 	900	910 .	920 .	930 	940	950 	960 I
TACAATTCGCCTGTCA	TTCCAATTAA:	rgcgtccacc.	AAACATGACG	CCAGCCGTAA	ATGCATTATT	TCCGCAAGC	ACAAC
970 . CTTTTCAACATCATGC							
1050			1080				1120
GAAACTTTATTGGCGAA							
1130 . TTGGACTGAGCTAATT		.	1160 . GGAAGATAAT	1170 . TTGCAACGTG	1180 . STCTTTACAGT	1190 'AGCCTCTAT	1200 CAGAA
1210 . GCATGTTAATTAAGTG		.					
1290	1300	1310	1320	1330	1340	1350	
CTCTACAAGTAAGGAC	ATGGCTCCAT	GTTCGCTACG					
CDC9 Stool VP7	20	30	40	50	60	70	80
GGCTTTAAAAGAGAGAGA							
90 . CTTTCTGATATCAATC		.	.				
170	180			210	220	230	240
TGTTAATTTTTGTAGC							
250 . ACTGTATATTCCAACT							
330 TCAAATCAGTGATGGT							
410 TTAAAGAGTACTCAAA							
490 . GATCAAAGTCTTGAAT							
570 .	580	590	600	610	620	630	640
ATTATATTATCAG	CAATCGGGAGA	AATCAAATAA	GTGGATATCA	ATGGGATCAT	CATGTACTGT	GAAAGTGTG	rccac
650 TGAATACACAAACGTT							
730 GCTATAGTGGATGTCG							
810 . GTTAGGTCCAAGAGAG						11	
890 . ATCCACAAATTGAGAG							
970 . CAGATTGTACAGGTAA'							
1050 ATTAGAATTGTATGATGCDC9 Vero VP7	GTGACC	o. 66					

10 GGCTTTAAAAGAGAGAGA							
90 CTTTCTGATATCAATCA	100 TTCTACTTAA				140 GGACTACATT	150 ATATATAGAT	160 TTT
170 TGTTAATTTTTGTAGCA	180 TTATTTGCCT	190 TAACTAAAGC	200 TCAGAATTAT	210 GGACTTAATA	220 TACCAATAAC	230 AGGATCAATG	240 GAT
250 ACTGTATATTCCAACTC							
330 TCAAATCAGTGATGGTG							
410 TTAAAGAGTACTCAAAT							
490 GATCAAAGTCTTGAATT	500 'AGATATGTCA	510 GAATTAGCTG	520 ATTTGATATT	530 GAATGAATGG	540 TTATGTAATC	550 CAATGGATAT	560 AAC
570 ATTATATTATTATCAGG							
650 TGAATACACAAACGTTA							
730 GCTATAGTGGATGTCGT							
810 GTTAGGTCCAAGAGAGA							
890 ATCCACAAATTGAGAGA							
970 CAGATTGTACAGGTAAT							
1050 ATTAGAATTGTATGATG							

Alineamientos de secuencias de CDC-9

Alineamiento de secuencias aa del gen NSP1 de las cepas CDC-9 y Dhaka25-02.

NSP1aa Dhaka25-02(tipo Wa)

CDC9-Stool MATEKDACYYYKRINKLNHAVLKLGVNDTWRPSPPTKYKGWCLDCCQHTD

 ${\tt MATFKDACYYYKRINKLNHAVLKLGVNDTWRPSPPTKYKGWCLDCCQHTD}$

CDC9-Vero MATFKDACYYYKRINKLNHAVLKLGVNDTWRPSPPTKYKGWCLDCCQHTD

Dhaka25-02(tipo Wa)

LTYCRGCTMYHVCQWCSQYDRCFLDNQPHL

CDC9-Stool LTYCRGCTMYHVCQWCSQYDRCFLDSQPHL

CDC9-Vero LTYCRGCTMYHVCQWCSQYDRCFLDSQPHL

Dhaka25-02(tipo Wa) CDC9-Stool

LRMRTFKNEVTKNDLMNLIDMYNILFPINQRIVDKFISSTRQHKCRNECM LRMRTFKNEVTKNDLMNLIDMYNILFPINORIVDKFISSTROHKCRNECM CDC9-Vero LRMRTFKNEVTKNDLMNLIDMYNILFPINQRIVDKFISSTRRHKCRNECM Dhaka25-02(tipo Wa) TOWYNHLLMPITLOSLSIELDGDVYYVFGY CDC9-Stool TQWYNHLLMPITLQSLSIELDGDVYYVFGY TQWYNHLLMPITLQSLSIELDGDVYYVFGY CDC9-Vero Dhaka25-02(tipo Wa) YDSMRDINQTPFSFTNLIDMYDKLLLDNVNFNRMSFLPVALQQEYALRYF YDSMRDINQTPFSFTNLIDMYDKLLLDNVNFNRMSFLPVALQQEYALRYF CDC9-Stool YDSMRDINQTPFSFTNLIDMYDKLLLDNVNFNRMSFLPVALQQEYALRYF CDC9-Vero Dhaka25-02(tipo Wa) SKSRFISEKRKCISDLHFSTNVIENLHNPS CDC9-Stool SKSRFISEKRKCISDLHFSTNVIENLHNPS CDC9-Vero SKSRFISEKRKCISDLHFSTNVIENLHNPS Dhaka25-02(tipo Wa) FKIQITRNCSELSSDWNGACKLVKDMSTYFNVLKTSHIEFYSISTRCRMF CDC9-Stool FKIOITRNCSELSSDWNGACKLVKDMSTYFNVLKTSHIEFYSISTRCRMF CDC9-Vero FKIOITRNCSELSSDWNGACKLVKDMSTYFNVLKTSHIEFYSISTRCRMF Dhaka25-02(tipo Wa) 320 TQHKLKIASKHIKPNYVTSNHRTSATEVHN CDC9-Stool TOHKLKIASKHIKPNYVTSNHRTSATEVHN CDC9-Vero TOHKLKIASKHIKPNYVISNHRISATEVHN Dhaka25-02(tipo Wa) CDC9-Stool CKWCSINNGYTVWNDFRIKKIYDNIFNFLRALVKSNSNIGHCSSQEKIYE CKWCSINNGYTVWNDFRIKKIYDNIFNFLRALVKSNSNIGHCSSQEKIYE CDC9-Vero CKWCSINNGYTVWNDFRIKKIYDNIFNFLRALVKSNSNIGHCSSQEKIYE Dhaka25-02(tipo Wa) HIKDVLDVCDDEKWKMAVAEIFNCLEPVEL CDC9-Stool HIKDVLDVCDDEKWKMAVAEIFNCLGPVEL HIKDVLDVCDDEKWKMAVAEIFNCLGPVEL CDC9-Vero Dhaka25-02(tipo Wa) 401 DTVKYVLFNHEVNWDVINLLVQSVGKVPQILTLNDIIIIMKSIIYEWFDI DTVKYVMFNHEVNWDVINLLVQSVGKVPQILTLNDIIIIMKSIIYEWFDI DTVKYVMFNHEVNWDVINLLVQSVGKVPQILTLNDIIIIMKSIIYEWFDI CDC9-Stool CDC9-Vero

Dhaka25-02(tipo Wa) CDC9-Stool

RYMRNTPMTTFTVDKLRQLCTGVKTVDYDS RYMRNTPMTTFTVDKLRQLCTGMKTVDYDS RYMRNTPMTTFTVDKLRQLCTGMKTVDYDS CDC9-Vero 486 Dhaka25-02(tipo Wa) GISDVE (SEQ ID NO. 1) GISDVE (SEQ ID NO. 2) GISDVE (SEQ ID NO. 3) CDC9-Stool CDC9-Vero Alineamiento de secuencias aa del gen NSP2 de las cepas CDC-9 y KU. NSP2aa KU MAELACFCYPHLENDSYKFIPFNNLAIKCMLTAKVDKKDQDKFYNSIIYGIAPPPQFKKR CDC9-Stool MAELACFCYPHLENDSYKFIPFNNLAIKCMLTAKVDKKDQDKFYNSIVYGIAPPPQFRKR MAELACFCYPHLENDSYKFIPFNNLAIKCMLTAKVDKKDQDKFYNSIVYGIAPPPQFRKR CDC9-Vero NSP2aa KU 8.0 YNTNDNSRGMNYETPMLIKV CDC9-Stool YNTSDNSRGMNYETIMFNKV YNTSDNSRGMNYETIMFNKV CDC9-Vero KU AILICEALNSIKVTQSDVANVLSRVVSVRHLENLVLRKENHQDVLFHSKELLLKSVLIAI AILICEALNSIKVTQSEVANVLSRVVSVRHLENLVLRKENHQDVLFHSKELLLKSVLIAI AILICEALNSIKVTQSEVANVLSRVVSVRHLENLVLRKENHQDVLFHSKELLLKSVLIAI CDC9-Stool CDC9-Vero 160 KU GOSKEIETTATAEGGEIVFO GOSKEIETTATAEGGEIVFO CDC9-Stool GOSKEIETTATAEGGEIVFO CDC9-Vero KU NVAFTMWKLTYLDHKLMPILDQNFIEYKITMNEDKPISDVHVKELIAELRWQYNRFAVIT NAAFTMWKLTYLDHKLMPILDQNFIEYKITLNEDKPISDVCVKELVAELRWQYNRFAVIT NAAFTMWKLTYLDHKLMPILDQNFIEYKITLNEDKPISDVCVKELVAELRWQYNRFAVIT CDC9-Stool CDC9-Vero HGKGHYRVVKYSSVANHADR CDC9-Stool HGKGHYRVVKYSSVANHADR HGKGHYRVVKYSSVANHADR CDC9-Vero KU VFATYKNNAKSGNVIDFNLLDQRIIWQNWYAFTSSMKQGFTLDVCKKLLFQKMKQERNPF VFATYKNNAKSGNTTDFNLLDQRIIWQNWYAFTSSMKQGNTIDVCKKLLFQKMKQEKNPF CDC9-Stool VFATYKNNAKSGNTTDFNLLDQRIIWQNWYAFTSSMKQGNTIDVCKKLLFQKMKQEKNPF CDC9-Vero 317 KU KGLSTDRKMDEVSRIGI (SEQ ID NO. 4) (SEQ ID NO. 5) (SEQ ID NO. 6) CDC9-Stool KGLSTDRKMDEVSHVGT KGLSTDRKMDEVSHVGI CDC9-Vero Alineamiento de secuencias aa del gen NSP3 de las cepas CDC-9 y KU. NSP3aa KU MESTQQMVSSIINTSFEAAVVAATSTLELMGIQYDYNEVFTRVKSKFDYVMDDSGVKNNL CDC9-Stool MESTQQMVSSIINTSFEAAVVAATSTLELMGIQYDYNEVFTRVKSKFDYVMDDSGVKNNL MESTQQMVSSIINTSFEAAVVAATSTLELMGIQYDYNEVFTRVKSKFDYVMDDSGVKNNL CDC9-Vero NSP3aa

KU

CDC9-Stool LGKAITIGPACNEKFGSAIR LGKAITIDQALNGKFGSAIR LGKAITIDQALNGKFGSAIR CDC9-Vero KU OT NRNWMIDSKTVAKLDEDVNKLRMTLSSKGIDQKMRVLNACFSVKRIPGKSSSIIKCTRLM NRNWMTDSKTVAKLDEDVNKLRMTLSSKGIDQKMRVLNACFSVKRIPGKSSSIIKCTKLM NRNWMTDSKTVAKLDEDVNKLRMTLSSKGIDQKMRVLNACFSVKRIPGKSSSIIKCTKLM CDC9-Stool CDC9-Vero KDKLERGEVEVDDSYVDEKM CDC9-Stool KDKIERGEVEVDDSYIDEKM KDKIERGEVEVDDSYIDEKM CDC9-Vero KU 101 EIDTIDWKSRYDQLEKRFESLKQRVNEKYNAWVQKAKKVNENMYSLQNVISQQQNQIADL EIDTIDWKSRYDQLEKRFESLKQRVTEKYNTWVQKAKKVNENMYSLQNVISQQQNQIADL EIDTIDWKSRYDQLEKRFESLKQRVTEKYNTWVQKAKKVNENMYSLQNVISQQQNQIADL CDC9-Stool CDC9-Vero ΚIJ QQYCNKLEVDLQGKFSSLVS CDC9-Stool QQYCNKLETDLQGKFSSLVS QQYCNKLETDLQGKFSSLVS CDC9-Vero KU SVEWYLRSMELPDDVKTDVEQQLNSIDLINPIGAIDDIESLIRNLIQDYDRTFLMLKGLL SVEWYLRSMELPDDVKNDIEQQLNSIDLINPINAIDDIESLVRNLVQDYDRTFLMLKGLL SVEWYLRSMELPDDVKNDIEQQLNSIDLINPINAIDDIESLVRNLVQDYDRTFLMLKGLL CDC9-Stool CDC9-Vero KU (SEQ ID NO. 7) (SEQ ID NO. 8) KOCNYEYAYE CDC9-Stool KÕCNYEYVYE KOCNYEYVYE (SEO ID NO. 9) CDC9-Vero Alineamiento de secuencias aa del gen NSP4 de las cepas CDC-9 y KU. NSP4aa KU MDKLADLNYTLSVITLMNDTLHSIIQDPGMAYFTYIASVLTVLFTLHKASIPTMKIALKT MDKLADLNYTLSVITLMNDTLHSIIQDPGMAYFPYIASVLTVLFTLHKASIPTMKIALKT CDC9-Stool MDKLADLNYTLSVITLMNDTLHSIIQDPGMAYFPYIASVLTVLFTLHKASIPTMKIALKT CDC9-Vero NSP4aa KU 80 SKCSYKVIKYCIVTIINTLL SKCSYKVIKYCIVTIINTLL CDC9-Stool CDC9-Vero SKCSYKVIKYCIVTIINTLL KU RLAGYKEQVTTKDEIEQOMDRIVKEMRRQLEMIDKLTTREIEQVELLKSIHDNLITRSVD KLAGYKEQVTTKDEIEQOMDRIVKEMRRQLEMIDKLTTREIEQVELLKRIYDNLITRPVD CDC9-Stool KLAGYKEQVTTKDEIEQQMDRIVKEMRRQLEMIDKLTTREIEQVELLKRIYDNLITRPVD CDC9-Vero KU 160 VIDMSKEFNQKNIKTLDEWE CDC9-Stool IVDMTKEFNOKNIKTLDEWE IVDMTKEFNOKNIKTLDEWE CDC9-Vero

KU 175 SGRNPYEPSEVTASM (SEQ ID NO. 10) CDC9-Stool SGKNPYEPIEVTASM (SEQ ID NO. 11) SGKNPYEPIEVTASM (SEQ ID NO. 12) CDC9-Vero Alineamiento de secuencias aa del gen NSP5 de las cepas CDC-9 y KU. NSP5aa KU MSLSIDVTSLPSISSSIFKNESSSTTSTLSGKSIGRNEQYVSPDIDAFNKYMLSKSPEDI MSLSIDVTSLPSISSSIFKNESSSTTSTLSGKSIGRSEQYISPDAEAFNKYMLSKSPEDI CDC9-Stool ${\tt MSLSIDVTSLPSISSSIFKNESSSTTSTLSGKSIGRSEQYISPDVEAFNKYMLSKSPEDI}$ CDC9-Vero ΚIJ GPSDSASNDPLTSFSIRSNA GPSDSASNDPLTSFSIRSNA CDC9-Stool GPSDSASNDPLTSFSIRSNA CDC9-Vero KU VKTNADAGVSMDSSTOSRPSSNVGCDOMDFSLNKGINVSASLDSCVSISTNOKKEKSKKD CDC9-Stool VKTNADAGVSMDSSTQSRPSSNVGCDQLDFSLTKGINVSANLDSCISISTDHKKEKSKKD VKTNADAGVSMDSSTQSRPSSNVGCDQLDFSLTKGINVSANLDSCISISTDHKKEKSKKD CDC9-Vero 160 KU KSRKHYPRIEADSDSEDYVL CDC9-Stool KSRKHYPRIEADSDSEDYVL KSRKHYPRIEADSDSEDYVL CDC9-Vero ΚIJ (SEQ ID NO. 13) (SEQ ID NO. 14) (SEQ ID NO. 15) DDSDSDDGKCKNCKYKKKYFALRMRMKQVAMQLIEDL CDC9-Stool DDSDSDDGKCKNCKYKKKYFALRMRMKRVAMQLIEDL DDSDSDDGKCKNCKYKKKYFALRMRMKRVAMOLIEDL CDC9-Vero Alineamiento de secuencias aa del gen VP1 de las cepas CDC-9 y KU. VP1aa KU MGKYNLILSEYLSFVYNSQSAVQIPIYYSSNSELETRCIEFHAKCVDNSKKGLSLKPLFE MGKYNLILSEYLSFVYNSQSAVQIPIYYSSNSELEKRCIEFHAKCVDSSKKGMSLKPLFE MGKYNLILSEYLSFVYNSQSAVQIPIYYSSNSELEKRCIEFHAKCVDSSKKGMSLKPLFE CDC9-Stool CDC9-Vero VP1aa KU EYKDVTDNATLLSILSYSYD CDC9-Stool EYKDVIDNATLLSILSYSYD EYKDVIDNATLLSILSYSYD CDC9-Vero KYNAVERKLVSYAKGKPLEADLTANELDYENNKITSELFQSAEEYTDSLMDPAILTSLSS KYNAVERKLVNYAKGKPLEADLTANELDYENNKITSELFQSAEEYTDSLMDPAILTSLSS CDC9-Stool KYNAVERKLVNYAKGKPLEADLTANELDYENNKITSELFQSAEEYTDSLMDPAILTSLSS CDC9-Vero 160 KU NLNAVMFWLERHSNDIADAN CDC9-Stool NUNAVMEWLERHSNDVADAN NLNAVMFWLERHSNDVADAN CDC9-Vero ΚIJ CDC9-Stool

161

KIYKRRLDLFTIVASTINKYGVPRHNEKYRYEYEVMKDKPYYLVTWANSSIEMLMSVFSH KIYKRRLDLFTIVASTINKYGVPRHNEKYRYEYEVMKDKPYYLVTWANSSIEMLMSVFSH CDC9-Vero $\verb|KIYKRRLDLFTIVASTINKYGVPRHNEKYRYEYEVMKDKPYYLVTWANSSIEMLMSVFSH|$

KU EDYLIAKELIVLSYSNRSTL EDYLIAKELIILSYSNRSTL CDC9-Stool EDYLIAKELIILSYSNRSTL CDC9-Vero

KU

AKLVSSPMSILVALIDINGTFITNEELELEFSDKYVKAIVPDQTFDELQEMINNMKKIGL AKLVSSPMSILVALIDINGTFITNEELELEFSDKYVKAIVPDQIFDELQEMIDNMKKVGL CDC9-Stool AKLVSSPMSILVALIDINGTFITNEELELEFSDKYVKAIVPDQIFDELQEMIDNMKKVGL

CDC9-Vero

320

KU VDIPRMIQEWLIDCSLEKFT

CDC9-Stool

VDIPRMIQEWLVDCSLEKFT VDIPRMIQEWLVDCSLEKFT CDC9-Vero

KU

LMSKIYSWSFHVGFRKQKMIDAALDQLKTEYTKDVDDEMYNEYTMLIRDEIVKMLEIPVK CDC9-Stool LMSKIYSWSFHVGFRKOKMIDAALDOLKTEYTEDVDGEMYNEYTMLIRDEIVKMLEVPVK LMSKIYSWSFHVGFRKOKMIDAALDOLKTEYTEDVDGEMYNEYTMLIRDEIVKMLEVPVK

CDC9-Vero

KU

HDDHLLRDSELAGLLSMSSA HDDHLLRDSELAGLLSMSSA CDC9-Stool HDDHLLRDSELAGLLSMSSA CDC9-Vero

KU

SNGESRQIKFGRKTIFSTKKNMHVMDDIAHGKYTPGVIPPVNVDKPIPLGRRDVPGRRTR CDC9-Stool ${\tt SNGESR} \widehat{\sf QLKFGLKTIFSTKKNMHVMDDIAHGRYTPGIIPPVNVDRPIPLGRRDVPGRRTR} \\ {\tt SNGESR} \widehat{\sf QLKFGLKTIFSTKKNMHVMDDIAHGRYTPGIIPPVNVDRPIPLGRRDVPGRRTR} \\$

CDC9-Vero

KU

IIFILPYEYFIAQHAVVEKM IIFILPYEYFIAQHAVVEKM CDC9-Stool IIFILPYEYFIAQHAVVEKM CDC9-Vero

KU

LLYAKHTREYAEFYSQSNQLLSYGDVTRFLSSNSMVLYTDVSQWDSSQHNTQPFRKGIIM LSYAKHTREYAEFYSQSNQLLSYGDVTRFLSSNSMVLYTDVSQWDSSQHNTQPFRKGIIM LSYAKHTREYAEFYSQSNQLLSYGDVTRFLSSNSMVLYTDVSQWDSSQHNTQPFRKGIIM CDC9-Stool

CDC9-Vero

GLDMLSNMTNDPKVVQALNL GLDMLSNMTNDPKVIQTLNL CDC9-Stool GLDMLSNMTNDPKVIQTLNL CDC9-Vero

KU

YKQTQINLMDSYVQIPDGNVIKKNQYGAVASGEKQTKAANSIANLALIKTVLSRIANKYS CDC9-Stool YKŐTŐINLMDSYVŐIPDGNVIKKIŐYGAVASGEKŐTKAANSIANLALIKTVLSRIANKYS YKOTOINLMDSYVŐIPDGNVIKKIÓYGAVASGEKOTKAANSIANLALIKTVLSRIANKYS

CDC9-Vero

KU
CDC9-Stool
FITKIIRVSGDDNYAVLQFN
FITKIIRVDGDDNYAVLQFN
FITKIIRVDGDDNYAVLQFN
FITKIIRVDGDDNYAVLQFN

KU 641

CDC9-Stool TDLTKQMIQDVSNDVRYIYFRMNAKVKALVSTVGIEIAKRYLAGGKIFFRAGINLLNNEK TDVTKQMVQDVSNDVRHIYSRMNAKVKALVSTVGIEIAKRYLAGGKIFFRAGINLLNNEK TDVTKQMVQDVSNDVRHIYSRMNAKVKALVSTVGIEIAKRYLAGGKIFFRAGINLLNNEK

CDC9-Vero

KU
CDC9-Stool

RGQSTQWDQAAILYSNYIVN
RGQSTQWDQAAILYSNYIVN
RGQSTQWDQAAILYSNYIVN
RGQSTQWDQAAILYSNYIVN

KU 721

CDC9-Stool

KLRGFETDREFILTKIIQMTSVAITGSLRLFPSERVLTTNSTFKVFDSEDFILEYGTTDD

KLRGFETDREFILTKIIQMTSVAITGSLRLFPSERVLTTNSTFKVFDSEDFILEYGTTDD

KLRGFETDREFILTKIIQMTSVAITGSLRLFPSERVLTTNSTFKVFDSEDFILEYGTTDD

CDC9-Vero

KU
CDC9-Stool
EVYIQRAFMSLSSQKSGIAD
EVYIQRAFMSLSSQKSGIAD
EVYIQRAFMSLSSQKSGIAD
EVYIQRAFMSLSSQKSGIAD

KU 801

CDC9-Stool CDC9-Vero CDC9-Vero

KU

CDC9-Stool

LQKPVSFKSNKNTINEILRD
LQKPVSFKSNKITINDILRD
LOKPVSFKSNKITINDILRD

CDC9-Vero

KU 881

CDC9-Stool IKPFFVTTEDNLPIQYRKFMPTLPDNVQYVIQCIGSRTYQIEDSGSKSSISKLISKYSVY IKPFFVTSEANLPIQYRKFMPTLPDNVQVVIQCIGSRTYQIEDSGSKSSISKLISKYSVY IKPFFVTSEANLPIQYRKFMPTLPDNVQYVIQCIGSRTYQIEDSGSKSSISKLISKYSVY

KU 960

CDC9-Stool KPSIEELYKVISLREQEIQL KPSIEELYKVISLREQEIQL CDC9-Vero KPSIEELYKVISLREQEIQL

961

KU

CDC9-Stool YLVSLGVPLVDASAYVASRIYSQDKYKILESYVYNLLSINYGCYQLFDFNSPDLEKLIRI YLVSLGVPPVDAGTYVGSRIYSQDKYKILESYVYNLLSINYGCYQLFDFNSPDLEKLIRI YLVSLGVPPVDAGTYVGSRIYSQDKYKILESYVYNLLSINYGCYQLFDFNSPDLEKLIRI

KU 1040
CDC9-Stool PFKGKIPAVTFILHLYAKLE
PFKGKIPAVTFILHLYAKLE
PFKGKIPAVTFILHLYAKLE
PFKGKIPAVTFILHLYAKLE

KU

IINYAIKNRAWISVFCNYPKSEMIKLWKKMWSITALRSPY IINHAIKNGAWISLFCNYPKSEMIKLWKKMWNITALRSPY CDC9-Stool IINHAIKNGAWISLFCNYPKSEMIKLWKKMWNITALRSPY

CDC9-Vero

KU 1088

TSANFFQD TSANFFQD (SEQ ID NO. 16 (SEQ ID NO. 17 (SEQ ID NO. 18 CDC9-Stool TSANFFQD CDC9-Vero

Alineamiento de secuencias aa del gen VP2 de las cepas CDC-9 y Dhaka25-02.

VP2aa

Dhaka25-02(tipo Wa)

MAYRKRGTKREDLPQQNERLQEKEIENNIDVTMENKNKNINKNNNK MAYRKRGTKREDLPQQNERLQEKEIENNIDVTMENKNKNINKNNNRNNNR CDC9-Stool MAYRKRGTKREDLPQQNERLQEKEIENNIDVTMENKNKNINKNNNRNNNR CDC9-Vero

VP2aa

CDC9-Vero

Dhaka25-02(tipo Wa) 80 KQQLSDKVLLQKEEIITDVQDDIKITDEVK CDC9-Stool KQQLSDKVLSQKEEIITDVQDDIKITDEVK KQQLSDKVLSQKEEIITDVQDDIKITDEVK

Dhaka25-02(tipo Wa) KSSKEESKQLLEILKTKEDHQKEVQYEILQKTIPTFEPKESILKKLEDIR KSSKEESKQLLEILKTKEDHQKEVQYEILQKTIPTFEPKESILKKLEDIR KSSKEESKQLLEILKTKEDHQKEVQYEILQKTIPTFEPKESILKKLEDIR CDC9-Stool

CDC9-Vero

Dhaka25-02(tipo Wa) PEQAKKQMKLFRIFEPRQLPIYRANGEKEL PEQAKKQMKLFRIFEPRQLPIYRANGEKEL CDC9-Stool PEQAKKOMKLFRIFEPROLPIYRANGEKEL CDC9-Vero

Dhaka25-02(tipo Wa)

RNRWYWKLKKDTLPDGDYDVREYFLNLYDQILIEMPDYLLLKDMAVENKN CDC9-Stool RNRWYWKLKKDTLPDGDYDVREYFINLYDQILIEMPDYLLLKDMAVENKN RNRWYWKLKKDTLPDGDYDVREYFINLYDQILIEMPDYLLLKDMAVENKN CDC9-Vero

Dhaka25-02(tipo Wa) SRDAGKVVDSETASICDAIFQDEETEGVIR SRDAGKVVDSETASICDAIFQDEETEGVIR CDC9-Stool SRDAGKVVDSETASICDAIFQDEETEGVIR CDC9-Vero

Dhaka25-02(tipo Wa)

RFIADMRQQIQADRNIVNYPSILHPIDHAFNEYFLNHQLVEPLNNDIIFN RFIADMRQQIQADRNIVNYPSILHPIDHAFNEYFLNHQLVEPLNNDIIFN RFIADMRQQIQADRNIVNYPSILHPIDHAFNEYFLNHQLVEPLNNDIIFN CDC9-Stool CDC9-Vero

Dhaka25-02(tipo Wa) YIPERIRNDVNYILNMDMNLPSTARYIRPN CDC9-Stool YIPERIRNDVNYILNMDMNLPSTARYIRPN YIPERIRNDVNYILNMDMNLPSTARYIRPN CDC9-Vero

Dhaka25-02(tipo Wa)

LLQDRLNLHDNFESLWDTITTSNYILARSVVPDLKEKELVSTEAQIQKMS CDC9-Stool LLÕDRLNLHDNFESLWDTITTSNYILARSVVPDLKEKELVSTEAÕIÕKMS $\verb|LLQDRLNLHDNFESLWDTITTSNYILARSVVPDLKEKELVSTEAQIQKMS|$

CDC9-Vero

Dhaka25-02(tipo Wa) QDLQLEALTIQSETQFLAGINSQAANDCFK QDLQLEALTIQSETQFLAGINSQAANDCFK CDC9-Stool QDLQLEALTIQSETQFLAGINSQAANDCFK CDC9-Vero Dhaka25-02(tipo Wa) TLIAAMLSQRTMSLDFVTTNYMSLISGMWLLTVIPNDMFLRESLVACELA CDC9-Stool TLIAAMLSQRTMSLDFVTTNYMSLISGMWLLTVIPNDMFLRESLVACELA TLIAAMLSQRTMSLDFVTTNYMSLISGMWLLTVIPNDMFLRESLVACELA CDC9-Vero Dhaka25-02(tipo Wa) IINTIVYPAFGMQRMHYRNGDPQTPFQIAE IINTIVYPAFGMQRMHYRNGDPQTPFQIAE CDC9-Stool IINTIVYPAFGMQRMHYRNGDPQTPFQIAE CDC9-Vero QQIQNFQVANWLHFINNNRFRQVVIDGVLNQTLNDNIRNGQVINQLMEAL Dhaka25-02(tipo Wa) CDC9-Stool QQIQNFQVANWLHFINNNRFRQVVIDGVLNQTLNDNIRNGQVINQLMEAL CDC9-Vero QQIQNFQVANWLHFINNNRFRQVVIDGVLNQTLNDNIRNGQVINQLMEAL Dhaka25-02(tipo Wa) MQLSRQQFPTMPVDYKRSIQRGILLLSNRL MQLSRQQFPTMPVDYKRSIQRGILLLSNRL MQLSRQQFPTMPVDYKRSIQRGILLLSNRL CDC9-Stool CDC9-Vero Dhaka25-02(tipo Wa) GQLVDLTRLLSYNYETLMACITMNMQHVQTLTTERLQLTSVTSLCMLIGN CDC9-Stool GQLVDLTRLLSYNYETLMACITMNMQHVQTLTTERLQLTSVTSLCMLIGN GQLVDLTRLLSYNYETLMACITMNMQHVQTLTTERLQLTSVTSLCMLIGN CDC9-Vero Dhaka25-02(tipo Wa) TTVIPSPOTLFHYYNINVNFHSNYNERIND CDC9-Stool TTVIPSPQTLFHYYNVNVNFHSNYNERIND TTVIPSPOTLFHYYNVNVNFHSNYNERIND CDC9-Vero Dhaka25-02(tipo Wa) AVAIITAANRLNLYQKKMKSIVEDFLKRLQIFDVPRVPDDQMYRLRDRLR CDC9-Stool AVAIITAANRINIYQKKMKSIVEDFLKRIQIFDVPRVPDDQMYRLRDRLR AVAIITAANRINIYQKKMKSIVEDFLKRLQIFDVPRVPDDQMYRLRDRLR CDC9-Vero Dhaka25-02(tipo Wa) LLPVERRRLDIFNLILMNMEQIERASDKIA CDC9-Stool LLPVERRRLDIFNLILMNMEQIERASDKIA LLPVERRRLDIFNLILMNMEQIERASDKIA CDC9-Vero Dhaka25-02(tipo Wa) QGVIIAYRDMQLERDEMYGFVNIARNLDGYQQINLEELMRTGDYGQITTM QGVIIAYRDMQLERDEMYGFVNIARNLDGYQQINLEELMRTGDYGQITTM QGVIIAYRDMQLERDEMYGFVNIARNLDGYQQINLEELMRTGDYGQITTM CDC9-Stool CDC9-Vero

Dhaka25-02(tipo Wa) CDC9-Stool

LLNNQPVALVGALPFVTDSSVISLIAKLDA LLNNQPVALVGALPFVTDSSVISLIAKLDA CDC9-Vero LLNNQPVALVGALPFVTDSSVISLIAKLDA

Dhaka25-02(tipo Wa)

TVFAQIVKLRKVDTLKPILYKINSDSNDFYLVANYDWIPTSTTKVYKQVP CDC9-Stool TVFAQIVKLRKVDTLKPILYKINSDSNDFYLVANYDWIPTSTTKVYKQVP TVFAQIVKLRKVDTLKPILYKINSDSNDFYLVANYDWIPTSTTKVYKQVP CDC9-Vero

Dhaka25-02(tipo Wa) QPFDFRASMHMLTSNLTFTVYSDLLSFVSA QPFDFRASMHMLTSNLTFTVYSDLLSFVSA QPFDFRASMHMLTSNLTFTVYSDLLSFVSA CDC9-Stool

Dhaka25-02(tipo Wa) 900

(SEQ ID NO. 19) (SEQ ID NO. 20) (SEQ ID NO. 21) DTVEPINAIAFDNMRIMNEL CDC9-Stool DTVEPINAIAFDNMRIMNEL DTVEPINALAFDNMRIMNEL CDC9-Vero

Alineamiento de secuencias aa del gen VP3 de las cepas CDC-9 y DS-1.

VP3aa

CDC9-Vero

DS-1

T MKVLALRHSVAQIYADTQVYTHDDSKDDYENAFLISNLTTHNILYLNYSVKTLQILNKSG MKVLALRHSVAQVYADTQVYTHDDSKDEYENAFLISNLTTHNILYLNYNVKTLQILNKSG CDC9-Stool MKVLALRHSVAQVYADTQVYTHDDSKDEYENAFLISNLTTHNILYLNYNVKTLQILNKSG

CDC9-Vero

VP3aa

DS-1 IAAIEIQKIDELFTLIRCNF IAAIEIOKIDELFTLIRCNF CDC9-Stool IAAIEIQKIDELFTLIRCNF CDC9-Vero

DS-1 TYDYIDDVVYLHDYSYYANNEIRTDQYWVTKTNIEDYLLPGWKLTYVGYNGSDTRGHYNF TYDYIDNVVYLHDYSYYTNNEIRTDQHWITKTNIEDYLLPGWKLTYVGYNGSDTRGHYNF TYDYIDNVVYLHDYSYYTNNEIRTDQHWITKTNIEDYLLPGWKLTYVGYNGSDTRGHYNF CDC9-Stool

CDC9-Vero

DS-1 SFRCQNAATDDDVIIEYIYS CDC9-Stool SFRCQNAATDDDAIIEYIYS SFRCQNAATDDDAIIEYIYS CDC9-Vero

DS-1 NELDFQNFILKKIKERMTTSLPIARLSNRVFRDKLFKTLSVNHDKVVNVGPRNESMFTFL DELDFQSFILKKIKERMTTSLPIARLSNRVFRDKLFKTLSVNHDKVVNIGPRNESMFTFL CDC9-Stool DELDFÖSFILKKIKERMTTSLPIARLSNRVFRDKLFKTLSVNHDKVVNIGPRNESMFTFL CDC9-Vero

DHPSIKQFSNGPYLVKDTIK DS-1

CDC9-Stool

DYPSIKQFSNGPYLVKDTIK CDC9-Vero DYPSIKQFSNGPYLVKDTIK

DS-1 CDC9-Stool

LKQERWLGKRLSQFDIGQYKNMLNVLTTLYQYYDMYHEKPIIYMIGSAPSYWIYDVKQYS LKŐERWLGKRLSŐFDIGŐYKNMLNVLTTLYŐYYDIYHEKPIVYMIGSAPSYWIYDVKŐYS LKQERWLGKRLSŐFDIGŐYKNMLNVLTTLYŐYYDIYHEKPIVYMIGSAPSYWIYDVKŐYS CDC9-Vero DS-1 DLKFETWDPLDTPYSNLHHK NLKFETWDPLDTPYSNLHHK CDC9-Stool NLKFETWDPLDTPYSNLHHK CDC9-Vero DS-1 ELFYINDVQKLKDNSILYIDIRTDRGNMDWKEWRKVVEGQTADNLHIAYKYLSTGKAKIC CDC9-Stool ELFYMNDVÖKLKDNSILYIDIRTDRGTVDWKEWRKIVERÖTIDNLHIAYKYLSTGKAKVC ELFYMNDVÖKLKDNSILYIDIRTDRGTVDWKEWRKIVERÖTIDNLHIAYKYLSTGKAKVC CDC9-Vero DS-1 400 CDC9-Stool CVKMTAMDVELPISAKLLHH CVKMTAMDLELPISAKLLHH CVKMTAMDLELPISAKLLHH CDC9-Vero DS-1 PTTEIRSEFYLMMDIWDSKNIKRFIPKGVLYSYINNTITENVFIQQPFKLKTLKNEYVIA PTTEIRSEFYLVMDIWDSKNIKRFIPKGVLYSYINNTITENVFIQQPFKLKTLKNEYIIA PTTEIRSEFYLVMDIWDSKNIKRFIPKGVLYSYINNTITENVFIQQPFKLKTLKNEYIIA CDC9-Stool CDC9-Vero 480 DS-1 LYALSNDLNNREDVVKLINN LYALSNDFNNREDVVKLINN CDC9-Stool LYALSNDFNNREDVVKLINN CDC9-Vero DS-1 QKRALITVRINNTFKDEPKVGFKNIYDWTFLPTDFEMNGSIITSYDGCLGIFGLSISLAS CDC9-Stool QKKALMTVRINNTFKDEPKVGFKNIYDWTFLPTDFETNGSIITSYDGCLGIFGLSISLAS OKKALMTVRINNTFKDEPKVGFKNIYDWTFLPTDFETNGSIITSYDGCLGIFGLSISLAS CDC9-Vero DS-1 560 KPTGNNHLFILSGTDKYFKL CDC9-Stool KPTGNNHLFILSGTDKYFKL KPTGNNHLETLSGTDKYFKL CDC9-Vero DS-1 DQFANHMSISRRSHQIRFSESATSYSGYIFRDLSNNNFNLIGTNVENSVSGHVYNALIYY CDC9-Stool DQFANHMSISRRSHQIRFSESATSYSGYIFRDLSNNNFNLIGTNVENSVSGHVYNALIYY DQFANHMSISRRSHQIRFSESATSYSGYIFRDLSNNNFNLIGTNVENSVSGHVYNALIYY CDC9-Vero DS-1 RYNYSFDLKRWIYLHSTGKA RYNYSFDLKRWIYLHSTGKA CDC9-Stool RYNYSFDLKRWIYLHSTGKA CDC9-Vero DS-1 ${\tt SIEGGKYYEHAPIELIYACRSAREFAKLQDDLTVLRYSNEIENYINKVYSITYADDPNYF}$ CDC9-Stool SIEGGKYYEHAPIELIYACRSAREFAKLQDDLTVLRYSNEIENYINRVYSITYADDPNYF SIEGGKYYEHAPIELIYACRSAREFAKLQDDLTVLRYSNEIENYINRVYSITYADDPNYF CDC9-Vero

DS-1

CDC9-Stool

IGIKFKNIPYKYNVKVPHLT
IGVKFKNIPYKYNVKVPHLT
CDC9-Vero
IGVKFKNIPYKYNVKVPHLT

DS-1 721

CDC9-Stool FGVLNISEQMLPDAIAILKKFKNELFGMDITTSYTYMLSDEVYVANISGVLSTYFKIYNA FGVLNISEQMLPDVITILKRFKNELFGMEVTTSYTYMLSDEVYVANISGVLSTYFKIYNA FGVLNISEQMLPDVITILKRFKNELFGMEVTTSYTYMLSDEVYVANISGVLSTYFKIYNA

DS-1

CDC9-Stool

CDC9-Vero

800

FYKEQITFGQSRMFIPHVTL
FYKEQITFGQSRMFIPHVTL
FYKEQITFGQSRMFIPHVTL

DS-1
CDC9-Stool
SFSNEKTVRIDTTKLYIDSIYLRKIKGDTV
SFSNEKTVRIDTTKLYIDSIYLRKIKGNTV
SFSNEKTVRIDTTKLYIDSIYLRKIKGNTV
SFSNEKTVRIDTTKLYIDSIYLRKIKGNTV
FDMTG
SEQ ID NO. 22)
FDMTG
SEQ ID NO. 24)

Alineamiento de secuencias aa del gen VP4 de las cepas CDC-9 y KU.

VP4aa

KU ¹

MASLIYRQLLTNSYSVDLHDEIEQIGSEKTQNVTVNPGPFAQTRYAPVNWGHGEINDSTT
CDC9-Stool MASLIYRQLLTNSYSVDLYDEIEQIGSGKTQNVTINPGPFAQTRYAPVNWGHGEINDSTT

CDC9-Vero MASLIYRQLLTNSYSVDLYDEIEQIGSGKTQNVTINPGPFAQTRYAPVNWDHGEINDSTT

VP4aa

KU
CDC9-Stool
VEPILDGPYQPTTFKPLTDY
VEPILDGPYQPTTFTPPNDY
VEPILDGPYQPTTFTPPNDY

KU 81

CDC9-Stool WILINSNTNGVVYESTNNSDFWTAVVAVEPHVNPVDRQYTVFGENKQFNVRNDSDKWKFL WILINSNTNGVVYESTNNSDFWTAVVAIEPHVTPVDRQYMIFGESKQFNVSNDSNKWKFL WILINSNTNGVVYESTNNSDFWTAVVAIEPHVTPVDRQYMIFGESKQFNVSNDSNKWKFL

KU 160
CDC9-Stool EMFRGSSQNEFYNRRTLTSD EMFRSSSQNEFYNRRTLTSD EMFRSSSQNEFYNRRTLTSD EMFRSSSQNEFYNRRTLTSD

KU 161

CDC9-Stool

TKLVGILKYGGRIWTFHGETPRATTDSSNTANLNDISIIIHSEFYIIPRSQESKCNEYIN
TRLVGILKYGGRVWTFHGETPRATTDSSSTANLNNISITIHSEFYIIPRSQESKCNEYIN
TRLVGILKYGGRVWTFHGETPRATTDSSSTANLNNISITIHSEFYIIPRSQESKCNEYIN

CDC9-Vero

KU
CDC9-Stool
NGLPPIQNTRNVVPLSLSSR
NGLPPIQNTRNVVPLPLSSR
NGLPPIQNTRNVVPLPLSSR
NGLPPIQNTRNVVPLPLSSR

KU CDC9-Stool

SIQYKRAQVNEDITISKTSLWKEMQCNRDIIIRFKFGNSIVKLGGLGYKWSEISYKAANY SIQYKRAQVDEDIIVSKTSLWKEMQYNRDIIIRFKFGNSIVKMGGLGYKWSEISYKAANY CDC9-Vero SIQYKRAQVDEDIIVSKTSLWKEMQYNRDIIIRFKFGNSIVKMGGLGYKWSEISYKAANY KU QYNYLRDGEQVTAHTTCSVN CDC9-Stool QYNYLRDGEQVTAHTTCSVN QYNYLRDGEQVTAHTTCSVN CDC9-Vero KU GVNNFSYNGGSLPTDFSVSRYEVIKENSYVYVDYWDDSKAFRNMVYVRSLAANLNSVKCT CDC9-Stool GVNNFSYNGGSLPTDFGISRYEVIKENSYVYVDYWDDSKAFRNMVYVRSLAANLNSVRCT GVNNFSYNGGFLPTDFGISRYEVIKENSYVYVDYWDDSKAFRNIVYVRSLAANLNSVRCT CDC9-Vero KU 400 GGSYNFSIPVGAWPVMNGGA GGSYDFSIPVGAWPVINGGA CDC9-Stool GGSYHFSLPVGAWPVINGGA CDC9-Vero KU VSLHFAGVTLSTQFTDFVSLNSLRFRFSLTVDEPSFSILRTRTVNLYGLPAANPNNGNEY VSLHFAGVTLSTQFTDFVSLNSLRFRFSLTVDEPPFSILRTRTVNLYGLPAANPNNGNEY CDC9-Stool ${\tt VSLHFAGVTLSTQFTDFVSLNSLRFRFSLTVDEPPFSILRTRTVNLYGLPAANPNNGNEY}$ CDC9-Vero KU YEISGRFSLISLVPTNDDYQ CDC9-Stool YEISGRFSLISLVPTNDDYQ YEISGRESLISLVPTNDDYC CDC9-Vero KU $\label{temp} TPIMNSVTVRQDLERQLTDLREEFNSLSQEIAMSQLIDLALLPLDMFSMFSGIKSTIDLT\\ TPIMNSVTVRQDLERQLTDLREEFNSLSQEIAMAQLIDLALLPLDMFSMFSGIKSTIDLT\\$ CDC9-Stool TPIMNSVTVRQDLERQLTDLREEFNSLSQEIAMAQLIDLALLPLDMFSMFSGIKSTIDLT CDC9-Vero KU KSMATSVMKKFRKSKLATSI CDC9-Stool KSMATSVMKKFRKSKLATSI KSMATSVMKKFRKSKLATSI CDC9-Vero KU 561 SEMTNSLSDAASSASRSVSIRSNISTISNWTNVSNDVSNVTNSLSDISTQTSTISKNLRL CDC9-Stool SEMTNSLSDAASSASRNVSIRSNLSAISNWTNVSNDVSNVTNSLNDISTQTSTIGKKLRL ${\tt SEMTNSLSDAASSASRNVSIRSNLSAISNWTNVSNDVSNVTNSLNDISTQTSTIGKKLRL}$ CDC9-Vero KU ${\tt KEMITQTEGMSFDDISAAVL}$ CDC9-Stool KEMITQTEGMSFDDISAAVI KEMITQTEGMSFDDISAAVL

KTKIDMSTQIGKNTLPDIVTEASEKFIPKRSYRILKDDEVMEINTEGKVFAYKIDTLNEV

KTKIDMSTQIGKNTLPDIVTEASEKFIPKRSYRILKDDEVMEINTEGKFFAYKINTFDEV KTKIDMSTQIGKNTLPDIVTEASEKFIPKRSYRILKDDEVMEINTEGKFFAYKINTFDEV

CDC9-Vero

KU

CDC9-Stool

CDC9-Vero

PFDVNKFAELVTNSPVISAI KU

CDC9-Stool

PFDVNKFAELVTDSPVISAI PFDVNKFAELVTDSPVISAI CDC9-Vero

KU

IDFKTLKNLNDNYGITRIEALNLIKSNPNVLRNFINQNNP IDFKTLKNLNDNYGITRTEALNLIKSNPNMLRNFINQNNP IDFKTLKNLNDNYGITRTEALNLIKSNPNMLRNFINQNNP CDC9-Stool CDC9-Vero

KU 775 IIRNRIEQLILQCKL

(SEQ ID NO. 25) (SEQ ID NO. 26) (SEQ ID NO. 27) CDC9-Stool IIRNRIEQLILQCKL IIRNRIEQLILQCKL CDC9-Vero

Alineamiento de secuencias aa del gen VP6 de las cepas CDC-9 y KU.

VP6aa

KU MEVLYSLSKTLKDARDKIVEGTLYSNVSDLIQQFNQMIVTMNGNDFQTGGIGNLPIRNW CDC9-Stool MEVLYSLSKTLKDARDKIVEGTLYSNVSDLIQQFNQMIVTMNGNDFQTGGIGNLPIRNW

CDC9-Vero VP6aa

ΚIJ FDFGLLGTTLLNLDANYVEN CDC9-Stool FDFGLLGTTLLNLDANYVET FDFGLLGTTLLNLDANYVET CDC9-Vero

KU

ARTTIEYFIDFIDNVCMDEMAREAQRNGVAPQSEALGKLAGIKFKRINFDNSSEYIENWN CDC9-Stool ARTTIEYFIDFIDNVCMDEMARESQRNGVAPQSEALRKLAGIKFKRINFNNSSEYIENWN ARTTIEYFIDFIDNVCMDEMVRESQRNGVAPQSEALRKLAGIKFKRINFNNSSEYIENWN

CDC9-Vero

KU LQNRRQRTGFVFHKPNIFPY CDC9-Stool LONRRORTGFVFHKPNIFPY LONRRORTGFVFHKPNIFPY CDC9-Vero

KU

SASFTLNRSQPMHDNLMGTMWLNAGSEIQVAGFDYSCAINAPANIQQFEHIVQLRRALTT SASFTLNRSQPMHDNLMGTMWLNAGSEIQVAGFDYSCALNAPANIQQFEHIVQLRRALTT CDC9-Stool SASFTLNRSQPMHDNLMGTMWLNAGSEIQVAGFDYSCALNAPANIQQFEHIVQLRRALTT CDC9-Vero

KU ATITLLPDAERFSFPRVINS CDC9-Stool ATITLLPDAERFSFPRVINS ATITLLPDAERFSFPRVINS

CDC9-Vero

KU

ADGATTWFFNPVILRPNNVEVEFLLNGQIINTYQARFGTIIARNFDTIRSLFQLMRPPNM ADGATTWFFNPIILRPNNVEVEFLLNGQIINTYQARFGTIVARNFDTIRLSFQLMRPPNM ADGATTWFFNPIILRPNNVEVEFLLNGQIINTYQARFGTIVARNFDTIRLSFQLMRPPNM CDC9-Stool CDC9-Vero

KU TPAVNALFPQAQPFQHHATV TPAVNALFPQAQPFQHHATV CDC9-Stool TPAVNALFPQAQPFQHHATV CDC9-Vero

66

KU

GLTLRIESAVCESVLADANETLLANVTAVRQEYAIPVGPVFPPGMNWTELITNYSPSRED CDC9-Stool GLTLRIESAVCESVLADANETLLANVTAVRQEYAIPVGPVFPPGMNWTELITNYSPSRED GLTLRIESAVCESVLADANETLLANVTAVRQEYAIPVGPVFPPGMNWTELITNYSPSRED

CDC9-Vero

KU 397

(SEQ ID NO. 28) (SEQ ID NO. 29) (SEQ ID NO. 30) NLQRVFTVASIRSMLIK CDC9-Stool NLQRVFTVASIRSMLIK NLQRVFTVASIRSMLIK CDC9-Vero

Alineamiento de secuencias aa del gen VP7 de las cepas CDC-9 y KU.

VP7aa

ΚIJ

MYGIEYTTILIFLISIILLNYILKSVTRIMDYIIYRFLLITVALFALTRAQNYGLNLPIT MYGIEYTTILIFLISIILLNYILKSVTRIMDYIIYRFLLIFVALFALTKAQNYGLNIPIT MYGIEYTTILIFLISIILLNYILKSVTRIMDYIIYRFLLIFVALFALTKAQNYGLNIPIT CDC9-Stool

CDC9-Vero

KU GSMDTVYTNSTQEEVFLTST CDC9-Stool GSMDTVYSNSTREEVFLTST GSMDTVYSNSTREEVFLTST

CDC9-Vero

KU

LCLYYPTEASTQINDGDWKDSLSQMFLTKGWPTGSVYFKEYSSIVDFSVDPQLYCDYNLV LCLYYPTEASTQISDGEWKDSLSQMFLIKGWPTGSVYFKEYSNIVDFSVDPQLYCDYNLV LCLYYPTEASTQISDGEWKDSLSQMFLIKGWPTGSVYFKEYSNIVDFSVDPQLYCDYNLV CDC9-Stool

CDC9-Vero

160

LMKYDQSLELDMSELADLIL KU

CDC9-Stool

LMKYDQSLELDMSELADLIL CDC9-Vero LMKYDQSLELDMSELADLIL

KU

NEWLCNPMDITLYYYQQSGESNKWISMGSSCTVKVCPLNTQTLGIGCQTTNVDSFEMVAE NEWLCNPMDITLYYYQQSGESNKWISMGSSCTVKVCPLNTQTLGIGCQTTNVDSFETVAE NEWLCNPMDITLYYYQQSGESNKWISMGSSCTVKVCPLNTQTLGIGCQTTNVDSFETVAE CDC9-Stool

CDC9-Vero

240 KU NEKLAIVDVVDGINHKINLT NEKLAIVDVVDGINHKINLT CDC9-Stool NEKLAIVDVVDGINHKINLT

CDC9-Vero

KU

TTTCTIRNCKKLGPRENVAVIQVGGSNVLDITADPTTNPQTERMMRVNWKKWWQVFYTIV CDC9-Stool TTTCTIRNCKKLGPRENVAVIQVGGANILDITADPTTNPQIERMMRVNWKRWWQVFYTIV TTTCTIRNCKKLGPRENVAVIQVGGANILDITADPTTNPQIERMMRVNWKRWWQVFYTIV

CDC9-Vero

DYINQIVQVMSKRSRSLNSA DYINQIVQVMSKRSRSLNSA DYINQIVQVMSKRSRSLNSA CDC9-Stool CDC9-Vero

KU

CDC9-Stool

(SEQ ID NO. 31) (SEQ ID NO. 32) DYINQIVQVMSKRSRSLNSAAFYYRV DYINQIVQVMSKRSRSLNSAAFYYRV CDC9-Vero DYINQIVQVMSKRSRSLNSAAFYYRV (SEQ ID NO. 33)

Alineamiento de secuencias nt del gen NSP1 de las cepas CDC-9 y Dhaka25-02.

NSP1nt

Dhaka25-02(tipo Wa)

CDC9-Stool

GGCTTTTTTTTGAAAAGTCTTGTGGAAGCCATGGCTACTTTCAAAGATGCTTG CDC9-Vero

NSP1nt

Dhaka25-02(tipo Wa) TTATTATTATAAGAGAATTAACAAATTGAATCATGC CDC9-Stool TTATTATTATAAGAGAATTAACAAATTGAATCATGC TTATTATTATAAGAGAATTAACAAATTGAATCATGC CDC9-Vero

Dhaka25-02(tipo Wa)

CDC9-Stool

AGTCTTGAAGTTAGGAGTTAATGATACATGGAGACCATCACCTCCGACCAAATA AGTCTTGAAGTTAGGAGTTAATGATACATGGAGACCATCACCTCCGACCAAATA AGTCTTGAAGTTAGGAGTTAATGATACATGGAGACCATCACCTCCGACCAAATA CDC9-Vero

Dhaka25-02(tipo Wa) TAAAGGATGGTGTCTGGACTGTTGCCAACACACTGA TAAAGGATGGTGTCTGGACTGTTGCCAACACACTGA CDC9-Stool TAAAGGATGGTGTCTGGACTGTTGCCAACACACTGA

CDC9-Vero

Dhaka25-02(tipo Wa)

CDC9-Stool

CDC9-Vero

Dhaka25-02(tipo Wa) ATATGATAGATGCTTTCTTGATAATCAACCACATCT CDC9-Stool ATATGATAGATGCTTTCTTGATAGTCAACCACATCT ATATGATAGATGCTTTCTTGATAGTCAACCACATCT CDC9-Vero

Dhaka25-02(tipo Wa)

CDC9-Stool ATTGAGAATGAGAACTTTCAAGAATGAAGTGACGAAAAATGATTTAATGAATTT
ATTGAGAATGAGAACTTTCAAGAATGAAGTGACGAAAAATGATTTAATGAATTT

ATTGAGAATGAGAACTTTCAAGAATGAAGTGACGAAAAATGATTTAATGAATTT CDC9-Vero

Dhaka25-02(tipo Wa) 360 AATTGACATGTATAATATATTATTTCCTATAAATCA CDC9-Stool

GATTGACATGTATAATATATTATTTCCTATAAATCA

CDC9-Vero GATTGACATGTATAATATTATTTCCTATAAATCA

361

Dhaka25-02(tipo Wa) AAGAATAGTAGATAAATTTATTAGTAGTACAAGACAACATAAATGTAGAAATGA

CDC9-Stool

AAGAATAGTAGACAAATTTATTAGTAGTACAAGACAACATAAATGTAGAAATGA

CDC9-Vero AAGAATAGTAGACAAATTTATTAGTAGTACAAGACGACATAAATGTAGAAATGA

Dhaka25-02(tipo Wa)
CDC9-Stool

ATGTATGACACAGTGGTATAATCACCTATTGATGCC

ATGTATGACACAGTGGTATAATCACCTATTGATGCC

CDC9-Vero atgtatgacacagtggtataatcacctattgatgcc

Dhaka25-02(tipo Wa) 451

CDC9-Stool AATAACATTACAATCTCTATCAATTGAATTAGATGGTGATGTTTATTACGTATT

 ${\tt AATAACATTACAATCTCTATCAATTGAATTAGATGGTGATGTTTATTACGTATT}$

CDC9-Vero AATAACATTACAATCTCTATCAATTGAATTAGATGGTGATGTTTATTACGTATT

Dhaka25-02(tipo Wa) TGGATATTATGATAGTATGCGTGACATTAATCAAAC TGGATATTATGATAGTATGCGTGACATTAATCAAAC

CDC9-Vero TGGATATTATGATAGTATGCGTGACATTAATCAAAC

Dhaka25-02(tipo Wa) 541

CDC9-Stool TCCATTCTCATTTACAAATTTAATAGATATGATAAGTTGCTACTTGATAA

CDC9-Vero TCCATTCTCATTTACAAATTTAATAGATATGATAAGTTGCTACTTGATAA

Dhaka25-02(tipo Wa)
CDC9-Stool

TGTAAATTTTAATCGAATGTCATTCTTACCAGTAGC
TGTAAATTTTAATCGAATGTCATTCTTACCAGTAGC

CDC9-Vero TGTAAATTTTAATCGAATGTCATTCTTACCAGTAGC

Dhaka25-02(tipo Wa) 631

CDC9-Stool ATTACAACAAGAATATGCACTCAGATATTTTTCAAAAATCAAGGTTTATTAGTGA ATTACAACAAGAATATGCACTCAGATATTTTTCAAAAATCAAGGTTTATTAGTGA

CDC9-Vero ATTACAACAAGAATATGCACTCAGATATTTTTCAAAATCAAGGTTTATTAGTGA

Dhaka25-02(tipo Wa) 720
CDC9-Stool AAAGAGGAAATGTATTAGTGATTTACATTTTTCCAC AAAGAGGAAATGTATTAGTGATTTACATTTTTCCAC

CDC9-Vero AAAGAGGAAATGTATTAGTGATTTACATTTTTCCAC

Dhaka25-02(tipo Wa) 721

CDC9-Stool TAATGTAATAGAAAAATTTACACAAATCCAAAGTTTTAAAAATACAAAATTACACGTAA TAATGTAATAGAAAAATTTACACAAATCCAAAGTTTTAAAAATACAAAATTACACGTAA

CDC9-Vero TAATGTAATAGAAAATTTACACAATCCAAGTTTTAAAATACAAATTACACGTAA

Dhaka25-02(tipo Wa)

CDC9-Stool

TTGTAGTGAATTATCTTCTGATTGGAACGAGGATG

TTGTAGTGAATTATCTTCTGATTGGAACGAGGATG

CDC9-St001 TTGTAGTGAATTATCTTCTGATTGGAACGGAGCATG
TTGTAGTGAATTATCTTCTGATTGGAACGGAGCATG

Dhaka25-02(tipo Wa) CDC9-Stool

 ${\tt CAAACTTGTTAAAGATATGAGTACTTATTTTAATGTGCTAAAAACATCACATAT}\\ {\tt TAAACTTGTTAAAGATATGAGTACTTATTTTAATGTGCTAAAAACATCACATAT}\\$ CDC9-Vero

 ${\tt TAAACTTGTTAAAGATATGAGTACTTATTTTAATGTGCTAAAAACATCACATAT}$

Dhaka25-02(tipo Wa) 900 ${\tt TGAATTTTATAGTATTTCAACCAGATGTAGAATGTT}$ CDC9-Stool

TGAATTTTATAGTATTTCAACCAGATGTAGAATGTT TGAATTTTATAGTATTTCAACCAGATGTAGAATGTT CDC9-Vero

Dhaka25-02(tipo Wa)

 ${\tt TACGCAGCATAAACTTAAAATAGCATCCAAACATATAAAACCAAATTATGTAAC}$ CDC9-Stool TACGCAGCATAAACTTAAAATAGCATCTAAACATATAAAACCAAATTATGTAAC
TACGCAGCATAAACTTAAAATAGCATCTAAACATATAAAACCAAATTATGTAAC

CDC9-Vero

Dhaka25-02(tipo Wa) 990 ATCAAATCATAGAACATCAGCGACTGAGGTGCATAA CDC9-Stool

ATCAAATCATAGAACATCAGCGACTGAGGTGCATAA ATCAAATCATAGAACATCAGCGACTGAGGTGCATAA CDC9-Vero

Dhaka25-02(tipo Wa)

CDC9-Stool

Dhaka25-02(tipo Wa)

 $\tt CTGTAAATGGTGCTCAATTAATAACGGTTATACTGTATGGAATGATTTTAGAAT\\ CTGTAAATGGTGCTCAATTAATAACGGTTATACTGTATGGAATGATTTAGAAT\\$ CDC9-Stool

CTGTAAATGGTGCTCAATTAATAACGGTTATACTGTATGGAATGATTTTAGAAT CDC9-Vero

1080 TAAGAAGATATATGATAACATTTTCAATTTTCTACG

Dhaka25-02(tipo Wa)

TAAGAAGATATATGATAACATTTTCAATTTTCTACG TAAGAAGATATATGATAACATTTTCAATTTTCTACG CDC9-Vero

AGCTTTAGTCAAATCAAATTCTAATATTGGACATTGTTCGTCGCAGGAAAAGAT CDC9-Stool AGCTTTAGTCAAATCAAATTCTAATATTGGACATTGTTCGTCGCAGGAAAAGAT

AGCTTTAGTCAAATCAAATTCTAATATTGGACATTGTTCGTCGCAGGAAAAGAT CDC9-Vero

Dhaka25-02(tipo Wa) 1170 ATATGAACATATTAAAGATGTTCTGGATGTATGTGA CDC9-Stool

CDC9-Vero

Dhaka25-02(tipo Wa) 1171

TGATGAAAAATGGAAAATGGCGGTAGCGGAAATATTTAATTGTTTAGAACCAGT CDC9-Stool

CDC9-Vero

Dhaka25-02(tipo Wa) CDC9-Stool

AGAACTTGATACTGTTAAATATGTTATGTTTAATCA

CDC9-Vero

Dhaka25-02(tipo Wa)

TGAGGTAAATTGGGATGTTATTAATTTATTAGTTCAGAGCGTTGGTAAAGTACC CDC9-Stool TGAGGTAAATTGGGATGTTATTAATTTATTAGTTCAGAGCGTTGGTAAAGTACC

 ${\tt TGAGGTAAATTGGGATGTTATTAATTTATTAGTTCAGAGCGTTGGTAAAGTACC}$ CDC9-Vero

Dhaka25-02(tipo Wa) ACAAATACTGACTTTAAATGACATTATCATAATCAT ACAAATACTGACTTTAAATGACATTATCATAATCAT CDC9-Stool ACAAATACTGACTTTAAATGACATTATCATAATCAT CDC9-Vero

Dhaka25-02(tipo Wa)

GAAATCTATCATATATGAGTGGTTTGATATCAGATATATGAGGAATACACCAAT CDC9-Stool GAAATCTATCATATATGAGTGGTTTGATATCAGATATATGAGGAATACACCAAT

GAAATCTATCATATATGAGTGGTTTGATATCAGATATATGAGGAATACACCAAT CDC9-Vero

Dhaka25-02(tipo Wa) GACTACATTTACAGTTGACAAATTAAGACAGTTATGGACTACATTTACAGTTGACAAATTAAGACAGTTATG CDC9-Stool

GACTACATTTACAGTTGACAAATTAAGACAGTTATG CDC9-Vero

Dhaka25-02(tipo Wa)

TACAGGAGTGAAGACTGTTGATTATGATTCCGGCATATCTGACGTTGAATAATG CDC9-Stool TACAGGAATGAAGACTGTTGATTATGATTCCGGCATATCTGACGTTGAATAATG
TACAGGAATGAAGACTGTTGATTATGATTCCGGCATATCTGACGTTGAATAATG

CDC9-Vero

Dhaka25-02(tipo Wa) AAATAGAGATCACATTTGCCACCATAAGACTCCCTG CDC9-Stool AAATAGAGATCACATTTGCCACCATAAGACTCCCTG

AAATAGAGATCACATTTGCCACCATAAGACTCCCTG CDC9-Vero

Dhaka25-02(tipo Wa)

CACTAGAGTAGCGCCTAGGCAGCATAAAA---TGTG CDC9-Stool CACTAGAGTAGCGCCTAGGCAGCATAAAAAAGTGTG CACTAGAGTAGCGCCTAGGCAGCATAAAAAAGTGTG CDC9-Vero

Dhaka25-02(tipo Wa) 1569

(SEQ ID NO. 34) CDC9-Stool ACC (SEQ ID NO. 35) ACC (SEO ID NO. 36) CDC9-Vero

Alineamiento de secuencias nt del gen NSP2 de las cepas CDC-9 y KU.

NSP2nt KU

 $\begin{array}{ll} \tt GGCTTTTAAAGCGTCTCAGTCGCCGTTTGAGC-TTACGGTGTAGCCATGGCTGA\\ \tt GGCTTTTAAAGCGTCTCAGTCGCCGTTTTGAGCCTTGCGGTGTAGCCATGGCTGA\\ \end{array}$ CDC9-Stool

GGCTTTTAAAGCGTCTCAGTCGCCGTTTGAGCCTTGCGGTGTAGCCATGGCTGA CDC9-Vero

NSP2nt

ΚIJ GCTAGCTTGCTTTTGTTATCCTCATTTGGAGAACGA GCTAGCTTGCTTTTGTTATCCTCATTTGGAGAACGA CDC9-Stool GCTAGCTTGCTTTTGTTATCCTCATTTGGAGAACGA CDC9-Vero

ΚIJ

CDC9-Stool

CDC9-Vero

KU TAAAGTGGACAAAAAGGATCAAGATAAATTTTACAA

AAAAGTAGATAAAAAAGATCAAGATAAATTTTATAA CDC9-Stool

CDC9-Vero AAAAGTAGATAAAAAAGATCAAGATAAATTTTATAA KU TTCTATTATTTATGGAATTGCGCCGCCGCCACAATTTAAAAAACGTTATAATAC CDC9-Stool CDC9-Vero KU TAATGACAATTCAAGAGGTATGAATTATGAAACGCC TAGTGATAATTCGAGAGGAATGAATTACGAAACAAT TAGTGATAATTCGAGAGGAATGAATTACGAAACAAT CDC9-Stool CDC9-Vero KH TATGTTAATCAAGGTGGCCATATTAATTTGTGAAGCACTTAATTCAATTAAAGT CDC9-Stool TATGTTTAATAAGGTGGCTATCTTAATTTGTGAAGCACTTAATTCGATTAAAGT
TATGTTTAATAAGGTGGCTATCTTAATTTGTGAAGCACTTAATTCGATTAAAGT CDC9-Vero KU TACTCAATCTGATGTTGCTAATGTTCTTTCAAGAGT TACACAATCTGAAGTTGCAAATGTTCTTTCAAGAGT TACACAATCTGAAGTTGCAAATGTTCTTTCAAGAGT CDC9-Stool CDC9-Vero KU CDC9-Stool CDC9-Vero KU TGTGCTGTTTCATTCAAAAGAATTATTATTAAAATC CDC9-Stool TGTACTTTTCCATTCGAAAGAACTACTCTTAAAATC
TGTACTTTTCCATTCGAAAGAACTACTCTTAAAATC CDC9-Vero KU CGTTTTAATAGCTATTGGTCAATCGAAAGAAATTGAAACTACTGCTACTGCTGA CDC9-Stool TGTGTTGATAGCTATTGGTCAGTCAAAAGAAATCGAAACTACTGCTACTGCCGA ${\tt TGTGTTGATAGCTATTGGTCAGTCAAAAGAAATCGAAACTACTGCTACTGCCGA}$ CDC9-Vero KU AGGAGGAGAAATAGTATTTCAGAATGTAGCTTTTAC CDC9-Stool AGGAGGAGAATAGTATTTCAGAATGCAGCTTTTAC AGGAGGAGAATAGTATTTCAGAATGCAGCTTTTAC CDC9-Vero KU TATGTGGAAATTAACGTATTTAGATCATAAGTTGATGCCTATTTTGGACCAAAA
TATGTGGAAATTGACGTATTTAGATCATAAATTAATGCCTATTTTGGATCAGAA CDC9-Stool TATGTGGAAATTGACGTATTTAGATCATAAATTAATGCCTATTTTGGATCAGAA CDC9-Vero TTTTATTGAATACAAAATTACAATGAATGAAGATAA CDC9-Stool TTTCATTGAATATAAAATTACGTTGAATGAAGATAA TTTCATTGAATATAAAATTACGTTGAATGAAGATAA CDC9-Vero KU ACCAATTTCAGATGTGCATGTTAAGGAACTTATCGCTGAATTGAGATGGCAGTA CDC9-Stool ACCAATTTCAGATGTATGTGTTAAAGAACTCGTTGCTGAATTAAGATGGCAGTA CDC9-Vero ACCAATTTCAGATGTATGTGTTAAAGAACTCGTTGCTGAATTAAGATGGCAGTA

KU TAATAGATTTGCTGTAATAACACATGGTAAAGGTCA TAACAGATTTGCTGTAATAACACATGGTAAAGGTCA CDC9-Stool TAACAGATTTGCTGTAATAACACATGGTAAAGGTCA CDC9-Vero

KU CTATAGAGTTGTTAAATATTCATCAGTTGCTAACCATGCAGATAGAGTGTTTGC CDC9-Stool $\tt CTATAGAGTTGTTAAATATTCATCAGTTGCTAACCATGCAGATAGAGTATTTGC$ $\tt CTATAGAGTTGTTAAATATTCATCAGTTGCTAACCATGCAGATAGAGTATTTGC$

CDC9-Vero

KU TACATATAAAAATAATGCTAAGAGTGGTAATGTTAT TACATATAAGAATAATGCTAAGAGTGGTAATACTAC CDC9-Stool TACATATAAGAATAATGCTAAGAGTGGTAATACTAC CDC9-Vero

KU

TGACTTTAACTTATTGGACCAAAGAATCATTTGGCAAAATTGGTATGCATTTAC
TGATTTCAATTTGCTAGACCAAAGAATTATTTGGCAAAATTGGTATGCATTTAC CDC9-Stool TGATTTCAATTTGCTAGACCAAAGAATTATTTGGCAAAATTGGTATGCATTTAC

CDC9-Vero

KU CDC9-Stool ATCTTCAATGAAACAAGGTAATACAATTGATGTATG CDC9-Vero

KU

TAAGAAACTGCTATTTCAAAAGATGAAACAGGAGAGAAACCCATTTAAAGGACT TAAGAAACTACTCTTTCAAAAGATGAAACAAGAGAAAAATCCGTTCAAAGGATT CDC9-Stool

TAAGAAACTACTCTTTCAAAAGATGAAACAAGAGAAAAATCCGTTCAAAGGATT CDC9-Vero

KU GTCAACTGATAGAAAGATGGATGAAGTCTCACGTAT CDC9-Stool GTCAACTGATAGAAAAATGGATGAAGTCTCACATGT GTCAACTGATAGAAAAATGGATGAAGTCTCACATGT

CDC9-Vero

KU

TGGAATTTAATTCGCTTTCGATTTGAGAATGATGATGACGGAGCAAGAATAGAA CDC9-Stool TGGAATTTAATTCGCTTTCGATTCAAGAATGATGATGACGAAGCAAGAATAGAA TGGAATTTAATTCGCTTTCGATTCAAGAATGATGATGACGAAGCAAGAATAGAA

CDC9-Vero

KU

1059 AGCGCTTATGTGACC AGCGCTTATGTGACC (SEQ ID NO. 37) (SEQ ID NO. 38) (SEQ ID NO. 39) CDC9-Stool AGCGCTTATGTGACC CDC9-Vero

Alineamiento de secuencias nt del gen NSP3 de las cepas CDC-9 y KU. NSP3nt

KU

GGCTTTTAATGCTTTTCAGTGGTTGCTGCTCAAGATGGAGTCTACTCAGCAGAT GGCTTTTAATGCTTTTCAGTGGTTGCTGCTCAAGATGGAGTCTACTCAGCAGAT CDC9-Stool ${\tt GGCTTTTAATGCTTTTCAGTGGTTGCTGCTCAAGATGGAGTCTACTCAGCAGAT}$

CDC9-Vero

KU

CDC9-Stool GGTAAGTTCTATTATTAATACTTCTTTTGAAGCTGC GGTAAGCTCTATTATTAACACTTCTTTTGAAGCTGC

CDC9-Vero GGTAAGCTCTATTATTAACACTTCTTTTGAAGCTGC

KU

AGTTGTTGCTGCCACTTCAACATTAGAATTAATGGGTATTCAATATGATTACAA
AGTTGTTGCTGCCACTTCAACATTAGAATTAATGGGTATTCAATATGATTACAA CDC9-Stool AGTTGTTGCTGCCACTTCAACATTAGAATTAATGGGTATTCAATATGATTACAA

CDC9-Vero

KU

TGAAGTATTTACTAGAGTTAAAAGTAAATTTGATTA TGAAGTATTTACTAGAGTTAAAAGTAAATTTGATTA CDC9-Stool TGAAGTATTTACTAGAGTTAAAAGTAAATTTGATTA CDC9-Vero

KU

TGTAATGGATGATTCTGGCGTTAAAAACAACCTTTTGGGTAAAGCTATAACTAT TGTAATGGATGACTCTGGTGTTTAAAAATAATCTTTTGGGTAAAGCTATAACTAT TGTAATGGATGACTCTGGTGTTAAAAATAATCTTTTGGGTAAAGCTATAACTAT CDC9-Stool

CDC9-Vero

KU TGGGCCGGCGTGTAATGAAAAGTTTGGCTCAGCAAT CDC9-Stool

TGACCAGGCGTTAAATGGAAAGTTTGGCTCAGCTAT TGACCAGGCGTTAAATGGAAAGTTTGGCTCAGCTAT CDC9-Vero

KU

CDC9-Vero

ΚIJ

TAGAAATAGAAATTGGATGATTGATTCCAAAACAGTTGCTAAATTAGATGAAGA CDC9-Stool TAGAAATAGAAATTGGATGACTGACTCTAAAACGGTTGCTAAAATTGGATGAAGA TAGAAATAGAAATTGGATGACTGACTCTAAAACGGTTGCTAAAATTGGATGAAGA

CDC9-Vero

KU CGTGAATAAACTTAGAATGACGTTATCTTCTAAAGG CDC9-Stool CGTAAATAAACTTAGAATGACATTGTCTTCTAAAGG CGTAAATAAACTTAGAATGACATTGTCTTCTAAAGG

AATCGATCAAAAGATGAGAGTACTTAATGCTTGTTTTAGTGTAAAAAGAATACC CDC9-Stool AATCGACCAAAAGATGAGAGTACTTAATGCTTGTTTTAGTGTGAAAAGAATACC

AATCGACCAAAAGATGAGAGTACTTAATGCTTGTTTTAGTGTGAAAAGAATACC CDC9-Vero

KU

AGGGAAATCATCATCAATAATCAAATGCACCAGACT AGGAAAATCATCATCAATAATTAAGTGCACTAAACT CDC9-Stool

AGGAAAATCATCATCAATAATTAAGTGCACTAAACT CDC9-Vero

KU

TATGAAGGATAAACTAGAACGTGGAGAAGTTGAAGTTGATGATTCATATGTTGA CATGAAGGATAAAATAGAACGTGGGGAAGTTGAGGTTGATGATTCATATATTTGA CDC9-Stool

CATGAAGGATAAAATAGAACGTGGGGAAGTTGAGGTTGATGATTCATATATTGA CDC9-Vero

KU

TGAGAAAATGGAAATTGATACTATTGATTGGAAATC CDC9-Stool TGAGAAAATGGAAATTGATACCATTGATTGGAAATC TGAGAAAATGGAAATTGATACCATTGATTGGAAATC

CDC9-Vero

KU

CDC9-Stool 541

CDC9-Vero TCGTTATGACCAATTAGAAAAAAGATTTGAGTCACTAAAACAAAGAGTTACTGA

CDC9-Vero

KU 631

CDC9-Stool AAATGAAAATATGTACTCTCTTCAGAATGTCATTTCACAACAGCAAAACCAAAT AAATGAGAATATGTACTCTCTTCAGAATGTCATTTCACAACAGCAGAATCAAAT AAATGAGAATATGTACTCTCTTCAGAATGTCATTTCACAACAGCAGAATCAAAT

CDC9-Vero

KU
CDC9-Stool
AGCAGATCTTCAACAATATTGTAATAAATTGGAAAC
AGCAGATCTTCAACAATATTGTAATAAATTGGAAAC
AGCAGATCTTCAACAATATTGTAATAAATTGGAAAC
AGCAGATCTTCAACAATATTGTAATAAATTGGAAAC

KU 72

CDC9-Stool TGATTTGCAAGGCAAATTTAGTTCATTAGTGTCGTCAGTTGAGTGGTATCTAAG
TGACTTGCAAGGCAAATTCAGTTCATTAGTGTCATCAGTTGAGTGGTATTTAAG
TGACTTGCAAGGCAAATTCAGTTCATTAGTGTCATCAGTTGAGTGGTATTTAAG
TGACTTGCAAGGCAAATTCAGTTCATTAGTGTCATCAGTTGAGTGGTATTTAAG

CDC9-Vero

KU 810

CDC9-Stool ATCTATGGAACTACCAGATGATGTAAAGAATGATAT
ATCTATGGAATTACCAGATGATGTAAAGAATGATAT
ATCTATGGAATTACCAGATGATGTAAAGAATGATAT
ATCTATGGAATTACCAGATGATGTAAAGAATGATAT

CDC9-Vero

KU 811

CDC9-Stool TGAACAGCAGTTAAATTCAATTGATTTAATTCACATTGGTGCTATAGATGA TGAACAGCAGTTAAATTCAATTGATTAATTCACATTAATGCCATTAATGCTATAGATGA

CDC9-Vero

KU
CDC9-Stool
TATCGAATCATTGATTAGAAATTTAATTCAAGATTA
TATCGAATCATTGGTTAGAAATTTAGTTCAGGATTA
TATCGAATCATTGGTTAGAAATTTACTTCAGGATTA

CDC9-Vero

KU 901

CDC9-Stool

TGACAGAACATTTTTAATGTTTAAAAGGACTTTTGAAGCAATGCAACTATGAATA
TGATAGAACATTTTTAATGCTAAAGGGACTGTTGAAGCAATGCAACTATGAATA
TGATAGAACATTTTTAATGCTAAAGGGACTGTTGAAGCAATGCAACTATGAATA

CDC9-Vero

KU
CDC9-Stool
TGCATATGAGTAGTCACATAATTTAAAAATATTAAC
TGTATATGAATAGTCACATAATT-AAAAATCATTAAC

CDC9-Vero TGTATATGAATAGTCACATAATT—AAAATCATTAAC

KII 991

CDC9-Stool CATCTACACATGACCCTCTATGAGCACAATAGTTAAAAAGCTAACACTGTCAAAA CATCTACACATGACCCTCTATGAGCACAATAGTTAAAAAGCTAACACTGTCAAAA CATCTACACATGACCCTCTATGAGCACAATAGTTAAAAAGCTAACACTGTCAAAA

CDC9-Vero

KU CDC9-Stool

1075

ACCTAAATGGCTATAGGGGCGTTATGTGACC (SEQ ID NO. 40) ACCTAAATGGCTATAGGGGCGTTATGTGACC ACCTAAATGGCTATAGGGGCGTTATGTGACC (SEQ ID NO. 41) (SEQ ID NO. 42) CDC9-Vero Alineamiento de secuencias nt del gen NSP4 de las cepas CDC-9 y KU. NSP4nt KU GGCTTTTAAAAGTTCTGTTCCGAGAGAGCGCGTGCGGAAAGATGGATAAGCTTG GGCTTTTAAAAGTTCTGTTCCGAGAGAGCGCGTGCGGAAAGATGGATAAGCTTG CDC9-Stool GGCTTTTAAAAGTTCTGTTCCGAGAGAGCGCGTGCGGAAAGATGGATAAGCTTG CDC9-Vero NSP4nt KU CCGACCTCAACTACACATTGAGTGTAATCACTCTAA CDC9-Stool CCGACCTCAACTACACATTGAGTGTAATCACTTTAA CCGACCTCAACTACACATTGAGTGTAATCACTTTAA CDC9-Vero KU TGAATGACACATTGCATTCTATAATTCAGGATCCTGGAATGGCGTATTTTACAT CDC9-Stool TGAATGACACATTGCATTCTATAATTCAGGACCCTGGAATGGCGTATTTTCCAT TGAATGACACATTGCATTCTATAATTCAGGACCCTGGAATGGCGTATTTTCCAT CDC9-Vero KU ATATTGCATCTGTTCTAACAGTTTTGTTCACATTAC CDC9-Stool ATATTGCATCTGTTCTAACAGTGTTGTTCACATTAC ATATTGCATCTGTTCTAACAGTGTTGTTCACATTAC CDC9-Vero KU ATAAAGCTTCAATTCCAACCATGAAAATAGCATTGAAAACATCAAAATGTTCAT CDC9-Stool ATAAAGCTTCAATTCCAACAATGAAAATAGCATTAAAAACGTCAAAATGTTCAT ATAAAGCTTCAATTCCAACAATGAAAATAGCATTAAAAACGTCAAAATGTTCAT CDC9-Vero KU ATAAAGTGATTAAATATTGTATAGTCACGATCATTA CDC9-Stool ACAAAGTGATCAAGTATTGTATAGTCACAATTATTA ACAAAGTGATCAAGTATTGTATAGTCACAATTATTA CDC9-Vero ΚIJ ATACTCTTTTAAGATTGGCTGGATATAAAGAGCAGGTTACTACTAAAGACGAAA CDC9-Stool ATACTCTTTTAAAATTGGCAGGATATAAAGAACAAGTTACCACTAAAGACGAAA ATACTCTTTTAAAATTGGCAGGATATAAAGAACAAGTTACCACTAAAGACGAAA CDC9-Vero KU TTGAGCAACAGATGGATAGAATTGTTAAAGAGATGA CDC9-Stool TTGAGCAACAGATGGATAGAATTGTAAAAGAGATGA TTGAGCAACAGATGGATAGAATTGTAAAAGAGATGA CDC9-Vero KU GACGTCAGCTGGAGATGATTGATAAACTAACTACTCGTGAAATTGAACAGGTTG CDC9-Stool GACGTCAGCTGGAGATGATTGATAAATTAACTACTCGTGAAATTGAACAAGTTG GACGTCAGCTGGAGATGATTGATAAATTAACTACTCGTGAAATTGAACAAGTTG CDC9-Vero KU AATTGCTTAAAAGTATACATGACAACTTGATAACTA CDC9-Stool ${\tt AATTGCTTAAACGTATATATGACAATTTAATAACTA} \\ {\tt AATTGCTTAAACGTATATATGACAATTTAATAACTA} \\$ CDC9-Vero

KU GATCAGTTGACGTTATAGATATGTCGAAGGAATTCAATCAGAAAAACATCAAAA CDC9-Stool GACCAGTTGACATTGTAGATATGACGAAGGAATTTAATCAGAAGAATATAAAAA GACCAGTTGACATTGTAGATATGACGAAGGAATTTAATCAGAAGAATATAAAAA CDC9-Vero KU CGCTAGATGAATGGGAGAGTGGAAGGAATCCATATG CGCTAGATGAGTGGGAGAGGGGGAAAAAATCCATATG CDC9-Stool CGCTAGATGAGTGGGAGAGCGGAAAAAATCCATATG CDC9-Vero KU CDC9-Stool CDC9-Vero KU TCGGAAGCGGCGAACTCTTCACCGCAAGCCCCATT CDC9-Stool TCGGAAGCGGCGAACTCTTCACCGCAAGCCCCATT ${\tt TCGGAAGCGGGGAACTCTTCACCGCAAGCCCCATT}$ CDC9-Vero KU CDC9-Stool $\tt GGACCTGATGATTGACTGAGAAGCCACAGTCAATCATATCGCGTGTGGCTCAGC$ CDC9-Vero KU CTTAATCCCGTTTAACCAATCCAGCGAGTGTTGGAC CTTAATCCCGTTTGACCAATCCAGCGAATGTTGGAC CTTAATCCCGTTTGACCAATCCAGCGAATGTTGGAC CDC9-Stool CDC9-Vero KU GTTAATGGAAGGAATGGTCTTAGTGTGACC (SEQ ID NO. 43) (SEQ ID NO. 44) CDC9-Stool GTTAATGGAAGGAAAGGTCTTAATGTGACC GTTAATGGAAGGAAAGGTCTTAATGTGACC CDC9-Vero Alineamiento de secuencias nt del gen NSP5 de las cepas CDC-9 y KU. NSP5nt KU $\tt GGCTTTTAAAGCGCTACAGTGATGTCTCTCAGCATTGACGTGACGAGTCTTCCC$ CDC9-Stool GGCTTTTAAAGCGCTACAGTGATGTCTCTCAGCATTGACGTAACAAGTCTTCCC GGCTTTTAAAGCGCTACAGTGATGTCTCTCAGCATTGACGTAACAAGTCTTCCC CDC9-Vero NSP5nt KU TCAATTTCTTCTAGCATTTTTAAAAATGAATCGTCT CDC9-Stool TCAATTCTTCTAGTATCTTTAAAAATGAATCGTCT TCAATTTCTTCTAGTATCTTTAAAAATGAATCGTCT CDC9-Vero KU CDC9-Stool ${\tt TCTACAACGTCAACTCTTTCTGGAAAATCTATTGGTAGGAGTGAACAGTACATT}\\ {\tt TCTACAACGTCAACTCTTTCTGGAAAATCTATTGGTAGGAGTGAACAGTACATT}\\$ CDC9-Vero KU ${\tt TCACCAGATATCGATGCGTTCAATAAATACATGTTG}\\ {\tt TCACCAGATGCAGAAGCATTCAATAAGTACATGTTG}\\ {\tt TCACCAGATGTAGAAGCATTCAATAAGTACATGTTG}\\$ CDC9-Stool

KU TCGAAGTCTCCAGAGGATATTGGACCATCTGATTCTGCTTCAAACGATCCACTC CDC9-Stool TCGAAGTCTCCAGAGGATATTGGACCATCTGATTCTGCTTCAAACGATCCACTC ${\tt TCGAAGTCTCCAGAGGATATTGGACCATCTGATTCTGCTTCAAACGATCCACTC}$ CDC9-Vero KU ACCAGCTTTTCGATTAGATCGAATGCGGTTAAGACA ACCAGCTTTTCGATTAGATCGAATGCAGTTAAGACA CDC9-Stool ACCAGCTTTTCGATTAGATCGAATGCAGTTAAGACA CDC9-Vero KU AATGCAGATGCTGGCGTGTCTATGGATTCATCAACACAATCACGACCTTCAAGC
AATGCAGACGCTGGCGTGTCTATGGATTCATCGACACAATCACGACCTTCAAGC
AATGCAGACGCTGGCGTGTCTATGGATTCATCGACACAATCACGACCTTCAAGC CDC9-Stool CDC9-Vero KU 360 AACGTTGGGTGCGATCAAATGGATTTCTCCTTAAAT CDC9-Stool AACGTTGGATGCGATCAATTGGATTTCTCCTTGACC AACGTTGGATGCGATCAATTGGATTTCTCCTTGACC CDC9-Vero KU ${\tt AAAGGTATTAATGTTAGTGCTAGTCTTGATTCATGTGTATCAATTTCAACTAAT} \\ {\tt AAAGGTATTAATGTTAGTGCTAATCTTGATTCATGTATATCAATTTCAACTGAT} \\$ CDC9-Stool AAAGGTATTAATGTTAGTGCTAATCTTGATTCATGTATATCAATTTCAACTGAT CDC9-Vero KU CAAAAAAAGGAGAAATCTAAGAAGGATAAAAGTAGG CDC9-Stool CATAAGAAGGAGAAATCCAAGAAAGATAAAAGTAGG CATAAGAAGGAGAAATCCAAGAAAGATAAAAGTAGG CDC9-Vero KU AAACACTACCCAAGAATTGAAGCAGATTCTGACTCTGAGGATTATGTTTTTGGAT AAACACTACCCGAGAATTGAAGCAGATTCTGATTCTGAAGATTATGTTTTTGGAT CDC9-Stool AAACACTACCCGAGAATTGAAGCAGATTCTGATTCTGAAGATTATGTTTTGGAT CDC9-Vero KH CDC9-Stool GATTCAGATAGTGATGACGGCAAATGTAAGAATTGT GATTCAGATAGTGATGACGGTAAATGCAAGAATTGT GATTCAGATAGTGATGACGGTAAATGCAAGAATTGT CDC9-Vero KU AAATATAAAAAGAAATATTTTGCATTAAGAATGAGGATGAAACAAGTCGCAATG CDC9-Stool AAATATAAGAAAAAATATTTCGCACTAAGAATGAGGATGAAGCGAGTCGCAATG AAATATAAGAAAAAATATTTCGCACTAAGAATGAGGATGAAGCGAGTCGCAATG CDC9-Vero KH CAATTGATAGAAGACTTGTAATGTCGACCTGAGGAC CDC9-Stool CAATTGATCGAAGATTTGTAATGTCAACCTGAGAGC CAATTGATCGAAGATTTGTAATGTCAACCTGAGAGC

ACACTAGGGAGCTCCCCACTCCCGTTTTGTGACC CDC9-Stool ACACTAGGGAGCTCCCCACTCCCGTTTTGTGACC ACACTAGGGAGCTCCCCACTCCCGTTTTGTGACC

CDC9-Vero

KU

CDC9-Vero

Alineamiento de secuencias nt del gen VP1 de las cepas CDC-9 y KU. VP1nt

(SEQ ID NO. 46)

(SEQ ID NO. 47) (SEQ ID NO. 48)

KU $\tt GGCTATTAAAGCTGTACAATGGGGAAGTACAATCTAATTTTGTCAGAATATTTATCATTC GGCTATTAAAGCTGTACAATGGGGAAGTACAATCTAATCTTGTCAGAATATTTATCATTT$ CDC9-Stool ${\tt GGCTATTAAAGCTGTACAATGGGGAAGTACAATCTAATCTTGTCAGAATATTTATCATTT}$ CDC9-Vero VP1nt KU GTTTATAATTCACAATCTGCAGTTCAAATA CDC9-Stool GTTTATAATTCACAATCTGCAGTTCAAATA GTTTATAATTCACAATCTGCAGTTCAAATA CDC9-Vero KU CCAATCTATTATTCTTCCAATTCTGAATTAGAAACGAGATGCATTGAATTTCATGCCAAA CDC9-Stool CCAATTTATTATTCTTCCAATTCAGAATTAGAAAAAAGATGTATTGAGTTTCATGCTAAA $\verb|CCAATTTATTCTTCCAATTCAGAATTAGAAAAAAGATGTATTGAGTTTCATGCTAAA| \\$ CDC9-Vero KU 180 TGTGTTGATAATTCAAAGAAAGGGTTATCA CDC9-Stool TGTGTTGACAGTTCTAAAAAAGGTATGTCA TGTGTTGACAGTTCTAAAAAAGGTATGTCA CDC9-Vero KU CDC9-Stool CDC9-Vero 270 KU CDC9-Stool TTATCATATTCGTATGATAAATATAATGCT TTATCATATTCTTATGATAAATACAACGCT TTATCATATTCTTATGATAAATACAACGCT CDC9-Vero KU GTAGAGCGGAAATTAGTTAGTTATGCTAAAGGTAAACCACTTGAAGCTGATTTAACAGCA CDC9-Stool GTGGAACGTAAACTAGTCAATTATGCTAAAGGTAAACCTTTAGAGGCTGATTTAACGGCA GTGGAACGTAAACTAGTCAATTATGCTAAAGGTAAACCTTTAGAGGCTGATTTAACGGCA CDC9-Vero KU AACGAACTTGATTATGAAAATAATAAAATA CDC9-Stool AACGAGCTTGATTATGAAAATAACAAAATA AACGAGCTTGATTATGAAAATAACAAAATA CDC9-Vero KU ACTTCTGAACTATTTCAGTCAGCCGAAGAATACACTGATTCATTAATGGATCCCGCCATA
ACTTCTGAACTGTTTCAGTCAGCCGAAGAATATACCGATTCATTAATGGATCCTGCTATA
ACTTCTGAACTGTTTCAGTCAGCCGAAGAATATACCGATTCATTAATGGATCCTGCTATA CDC9-Stool CDC9-Vero KU TTGACTTCACTATCTTCAAATTTAAATGCA TTAACTTCATTATCTTCAAATTTAAATGCA TTAACTTCATTATCTTCAAATTTAAATGCA CDC9-Stool CDC9-Vero KU GTTATGTTTTGGCTAGAACGACATTCAAACGATATTGCTGATGCAAATAAAATTTATAAA GTTATGTTTTGGTTAGAACGACACTCAAATGACGTTGCTGATGCAAATAAAATTTATAAA GTTATGTTTTGGTTAGAACGACACTCAAATGACGTTGCTGATGCAAATAAAATTTATAAA CDC9-Stool CDC9-Vero

KU CGCAGATTAGATTTATTTACTATAGTAGCA CGTAGACTAGATTTATTTACCATAGTGGCA CDC9-Stool CGTAGACTAGATTTATTTACCATAGTGGCA CDC9-Vero KU TCTACAATAAATAAATATGGGGTACCGAGACATAATGAAAAATACAGATACGAATATGAA
TCTACAATAAATAAATACGGAGTACCCAGACATAATGAAAAATACAGATATGAATACGAA
TCTACAATAAATAAATACGGAGTACCCAGACATAATGAAAAATACAGATATGAATACGAA CDC9-Stool CDC9-Vero 630 KU GTAATGAAAGATAAACCATACTATTTAGTG CDC9-Stool GTGATGAAGGATAAACCGTATTACTTAGTA GTGATGAAGGATAAACCGTATTACTTAGTA CDC9-Vero KU ACTTGGGCTAATTCGTCCATAGAAATGCTTATGTCAGTATTTTCACATGAAGATTATCTA
ACTTGGGCTAACTCATCTATAGAAATGCTTATGTCAGTGTTTTCACATGAGGATTATTTA
ACTTGGGCTAACTCATCTATAGAAATGCTTATGTCAGTGTTTTCACATGAGGATTATTTA CDC9-Stool CDC9-Vero KU ATAGCAAAAGAATTGATTGTTTTATCATAT ATAGCAAAAGAATTAATAATCTTATCATAC CDC9-Stool ATAGCAAAAGAATTAATAATCTTATCATAC CDC9-Vero KU TCAAATAGGTCGACATTAGCTAAATTGGTTTCATCTCCAATGTCTATATTAGTTGCATTG CDC9-Stool TCAAATAGATCAACGTTAGCAAAACTAGTTTCATCTCCAATGTCAATATTAGTTGCATTA
TCAAATAGATCAACGTTAGCAAAACTAGTTTCATCTCCAATGTCAATATTAGTTGCATTA CDC9-Vero KU ATAGATATTAATGGTACATTCATTACGAAT CDC9-Stool ATAGATATCAATGGTACGTTTATTACGAAT ATAGATATCAATGGTACGTTTATTACGAAT CDC9-Vero KU GAAGAGTTAGAGCTTGAATTTTCAGATAAATATGTTAAAGCAATTGTACCTGATCAGACT CDC9-Stool GAAGAATTGGAACTTGAGTTTTCGGATAAATATGTTAAGGCAATTGTACCTGATCAAATT GAAGAATTGGAACTTGAGTTTTCGGATAAATATGTTAAGGCAATTGTACCTGATCAAATT CDC9-Vero KU TTCGATGAATTGCAAGAGATGATTAATAAT CDC9-Stool TTCGATGAATTACAGGAAATGATTGACAAT TTCGATGAATTACAGGAAATGATTGACAAT CDC9-Vero KU ATGAAAAAAATTGGTTTAGTAGATATTCCTAGGATGATCCAAGAATGGTTAATCGATTGC CDC9-Stool ATGAAGAAAGTTGGTTTAGTAGACATACCAAGAATGATTCAAGAATGGTTAGTTGATTGT $\tt ATGAAGAAAGTTGGTTTAGTAGACATACCAAGAATGATTCAAGAATGGTTAGTTGATTGT$ CDC9-Vero KU TCATTAGAGAAATTCACGCTGATGTCAAAA CDC9-Stool TCATTAGAGAAATTTACACTGATGTCAAAA TCATTAGAGAAATTTACACTGATGTCAAAA

KU CDC9-Stool

CDC9-Vero

ΚIJ GACCAATTGAAGACGGAATATACTAAGGAT GACCAATTGAAGACAGAGTACACTGAAGAT CDC9-Stool

GACCAATTGAAGACAGAGTACACTGAAGAT CDC9-Vero

KU

GTGGATGATGAAATGTACAATGAATACACTATGTTAATTAGAGATGAAAATAGTGAAAATG CDC9-Stool GTAGATGGTGAGATGTACAATGAGTATACAATGTTAATTAGAGATGAAATAGTTAAAATGGTAGATGGTGAGATGTACAATGAGTATACAATGTTAATTAGAGATGAAATAGTTAAAAATG

CDC9-Vero

KU TTAGAAATTCCAGTTAAACATGATGATCAT CDC9-Stool

CTAGAAGTACCAGTTAAACATGACGATCAT CTAGAAGTACCAGTTAAACATGACGATCAT CDC9-Vero

KU

CTACTTCGTGATTCAGAACTAGCTGGATTGTTATCAATGTCATCAGCTTCAAATGGTGAA CDC9-Stool

CTACTTCGTGATTCAGAATTAGCTGGATTGTTATCAATGTCATCAGCTTCAAATGGTGAACTACTTCGTGATTCAGAATTAGCTGGATTGTTATCAATGTCATCAGCTTCAAATGGTGAA CDC9-Vero

1260 KU TCAAGACAAATCAAATTTGGTCGCAAAACA CDC9-Stool TCAAGGCAACTTAAATTTGGTCTCAAAACA TCAAGGCAACTTAAATTTGGTCTCAAAACA

CDC9-Vero

KU

ATATTTTCAACTAAGAAGAATATGCATGTGATGGATGATATAGCACATGGAAAGTATACT ATATTTTCAACTAAGAAAAATATGCATGTTATGGATGATATTGCACATGGAAGGTATACT ATATTTTCAACTAAGAAAAATATGCATGTTATGGATGATATTGCACATGGAAGGTATACT CDC9-Stool

CDC9-Vero

KU 1350 CCAGGTGTTATTCCTCCAGTGAACGTAGAT CCTGGTATCATTCCTCCAGTAAACGTAGAT CDC9-Stool

CCTGGTATCATTCCTCCAGTAAACGTAGAT CDC9-Vero

KU

AAACCAATTCCACTAGGTCGTAGAGATGTTCCTGGAAGGCGTACGAGAATTATATTCATA CDC9-Stool AGACCAATTCCATTAGGTCGTAGAGATGTTCCTGGACGAAGAACAAGAATTATATTCATA
AGACCAATTCCATTAGGTCGTAGAGATGTTCCTGGACGAAGAACAAGAATTATATTCATA

CDC9-Vero

KU CTTCCATATGAGTATTTTATTGCACAACAT

CDC9-Stool TTACCATATGAATACTTTATTGCGCAGCAC
TTACCATATGAATACTTTATTGCGCAGCAC

CDC9-Vero

KU

CDC9-Stool

GCTGTCGTAGAAAAAATGTTATCATACGCAAAGCATACTAGAGAGTATGCGGAATTTTAC CDC9-Vero

KU

CDC9-Stool TCACAGTCAAATCAATTGTTATCATAGGGT
CDC9-Vero TCACAGTCAAATCAATTGCTATCATACGGT

KU 1531

CDC9-Stool GATGTTACGAGATTTTTGTCCAGTAACTCTATGGTTTTATATACAGACGTTTCACAATGG
GATGTGACAAGATTCTTATCCAGTAATTCTATGGTGCTATACACAGACGTTTCACAATGG
GATGTGACAAGATTCTTATCCAGTAATTCTATGGTGCTATACACAGACGTTTCACAATGG

CDC9-Vero

KU
CDC9-Stool
GACTCGTCGCAGCATAACACACAGCCATTC
GATTCGTCACAACATAACACACAGCCATTT
GATTCGTCACAACATAACACACAGCCATTT

CDC9-Vero

KU 1621

CDC9-Stool AGGAAGGGAATAATTATGGGTCTAGACATGCTAACTAACGATCCAAAGGTA
AGAAAAGGAATAATTATGGGTTTAGATATGTAACTAATGATCAAAAGGTA
AGAAAAGGAATAATTATGGGTTTAGATATGTTATCTAATATGACTAATGATCCAAAAGTA
AGAAAAGGAATAATTATGGGTTTAGATATGTTATCTAATATGACTAATGATCCAAAAGTA

KU
CDC9-Stool
GTACAAGCATTGAATTTATATAAGCAAACA
ATACAAACGCTAAATTTATATAAACAAACA
CDC9-Vero

KU 1711

CDC9-Stool CAAATTAACCTTATGGATTCATACGTTCAGATACCAGATGGTAACGTAATCAAAAAAGAAC CAAATTAATCTCATGGATTCATATGTTCAAATACCTGATGGTAATGTAATCAAAAAAGATT CAAAATTAATCTCATGGATTCATATGTTCAAATACCTGATGGTAATGTAATCAAAAAAGATT

CDC9-Vero

KU
CDC9-Stool
CDC9-Vero

KU 1801

CDC9-Stool CAAACTAAAGCAGCTAATTCCATAGCTAACTTAGCCCTTATTAAAACAGTACTATCAAGG CAAACTAAAGCAGCTAATTCTATAGCTAATTTGGCACTCATTAAAACAGTATTTGTCAAGG CAAACTAAGGCAGCTAATTCTATAGCTAATTTTGGCACTCATTAAAACAGTATTTGTCAAG CAAACTAAGGCAGCTAATTCTATAGCTAATTTTTGCACTCATTAAAACAGTATTTTCCAAG

KU
CDC9-Stool
ATTGCAAATAAATACTCTTTTATAACTAAA
ATTGCAAATAAATATTCTTTTATAACCAAA
ATTGCAAATAAATATTCTTTTATAACCAAA
ATTGCAAATAAATATTCTTTTATAACCAAA

KU 1891

CDC9-Stool ATAATTAGAGTAAGTGGTGATGACAATTATGCAGTATTACAATTTAATACTGACCTCACA ATAATCAGAGTTGATGGTGATGATAATTATGCAGTACTACAATTTAACACCGATGTCACT CDC9-Vero ATAATCAGAGTTGATGGTGATGATAATTATGCAGTACTACAATTTAACACCGATGTCACT

KU 1980
CDC9-Stool AAACAGATGATTCAAGATGTGTCTAATGAC
AAACAAATGGTCCAAGATGTGTCAAACGAT
AAACAAATGGTCCAAGATGTGTCAAACGAT

KU CDC9-Stool

1981

GTGAGATATATATTTTAGAATGAATGCAAAAGTTAAAGCACTAGTGTCGACAGTTGGT GTGAGACATATATTCTAGAATGAATGCTAAAGTTAAAGCATTGGTATCTACAGTCGGT CDC9-Vero

 $\tt GTGAGACATATATTCTAGAATGAATGCTAAAGTTAAAGCATTGGTATCTACAGTCGGT$

KU ATTGAAATAGCAAAAAGATACTTAGCTGGA

CDC9-Stool ATTGAAATAGCAAAAAGATATATAGCTGGA ATTGAAATAGCAAAAAGATATATAGCTGGA

CDC9-Vero

KU

GGAAAAATATTCTTTAGAGCTGGCATAAATTTATTAAATAATGAAAAACGTGGGCAGAGT CDC9-Stool GGAAAAATATTTTTTAGAGCTGGTATAAACTTATTAAATAATGAGAAGCGTGGACAAAGT GGAAAAATATTTTTTTAGAGCTGGTATAAACTTATTAAATAATGAGAAGCGTGGACAAAGT

CDC9-Vero

KU ACGCAATGGGATCAAGCAGCTATTCTATAT ACACAATGGGATCAAGCAGCTATTTTATAT ACACAATGGGATCAAGCAGCTATTTTATAT CDC9-Stool

CDC9-Vero

ΚIJ 2161

TCAAATTACATTGTTAACAAATTACGAGGATTTGAGACTGATAGAGAATTTATATTAACT CDC9-Stool

CDC9-Vero

2250
AAAATTATACAAATGACTTCCGTAGCCATC CDC9-Stool AAAATTATACAAATGACATCTGTAGCCATT

AAAATTATACAAATGACATCTGTAGCCATT CDC9-Vero

KU 2251

ACTGGATCGCTAAGGTTATTTCCATCAGAACGAGTATTAACTACCAATTCAACGTTCAAA CDC9-Stool ${\tt ACTGGATCACTAAGGCTATTTCCGTCAGAACGAGTGTTAACTACTAATTCTACATTCAAA}$

ACTGGATCACTAAGGCTATTTCCGTCAGAACGAGTGTTAACTACTAATTCTACATTCAAA CDC9-Vero

ΚIJ 2340 GTATTTGATTCAGAAGATTTCATTATAGAA CDC9-Stool

GTATTTGACTCAGAAGATTTCATTATAGAG GTATTTGACTCAGAAGATTTCATTATAGAG CDC9-Vero

TATGGAACAACTGATGATGAAGTGTATATACAAAGAGCATTCATGTCATTGTCTAGTCAG CDC9-Stool TATGGAACAACTGACGATGAAGTATATATACAGAGAGCATTTATGTCATTGTCTAGTCAA

TATGGAACAACTGACGATGAAGTATATATACAGAGAGCATTTATGTCATTGTCTAGTCAA CDC9-Vero

KH

AAATCGGGAATAGCTGATGAAATTGCCTCT CDC9-Stool AAGTCAGGAATAGCTGATGAAATTGCCTCT AAGTCAGGAATAGCTGATGAAATTGCCTCT

CDC9-Vero

ΚIJ

KU

CDC9-Stool

TCACAAACATTCAAAAATTATGTTAATAAATTATCTGACCAACTATTAATATCAAAAAAAC CDC9-Vero

GTAATTGTATCTAAAGGTATAGCAGTAACG CDC9-Stool GTAATTGTATCCAAAGGTATAGCTGTAACA

CDC9-Vero GTAATTGTATCCAAAGGTATAGCTGTAACA

KU

2521
GAGAAGGCTAAATTGAATTCATACGCGCCAATATATTTAGAAAAACGTCGTGCGCAAATA CDC9-Stool GAAAAAGCGAAATTGAATTCATATGCACCAGTTTATTTAGAAAAACGTCGTGGGCAAATA GAAAAAGCGAAATTGAATTCATATGCACCAGTTTATTTAGAAAAACGTCGTGCGCAAATA CDC9-Vero

ΚIJ 2610 TCAGCGTTATTAACCATGTTGCAGAAACCA TCAGCGCTATTAACTATGTTACAGAAGCCA CDC9-Stool

TCAGCGCTATTAACTATGTTACAGAAGCCA CDC9-Vero

KU

GTGTCATTTAAATCAAATAAAAATACTATTAATGAAATTTTACGTGATATAAAACCATTC
GTGTCATTTAAATCAAATAAAATTACTATTAATGACATTTTGCGTGACATAAAAACCATTT CDC9-Stool GTGTCATTTAAATCAAATAAAATTACTATTAATGACATTTTGCGTGACATAAAACCATTT

CDC9-Vero

KU TTTGTCACTACTGAAGATAATTTACCAATT TTTGTTACTTCTGAAGCCAATTTGCCAATT CDC9-Stool

TTTGTTACTTCTGAAGCCAATTTGCCAATT CDC9-Vero

KU

CAATATAGAAAATTTATGCCTACATTGCCAGATAATGTTCAATACGTCATACAATGTATACAATACAGAAAATTTATGCCAACACTACCTGATAACGTCCAATATGTTATACAATGTATA CDC9-Stool CAATACAGAAAATTTATGCCAACACTACCTGATAACGTCCAATATGTTATACAATGTATA

CDC9-Vero

KU GGATCAAGGACATATCAAATAGAAGATAGC GGATCAAGGACGTATCAGATAGAAGATAGT CDC9-Stool

GGATCAAGGACGTATCAGATAGAAGATAGT CDC9-Vero

KU

GGATCGAAATCGTCAATTTCAAAGTTAATATCAAAATATTCAGTTTATAAACCATCAATT CDC9-Stool GGGTCGAAATCATCGATTTCAAAGTTAATATCAAAATACTCAGTTTACAAACCATCAATT GGGTCGAAATCATCGATTTCAAAGTTAATATCAAAATACTCAGTTTACAAACCATCAATT

CDC9-Vero

KU

GAAGAGTTGTACAAAGTTATATCTCTAAGA GAGGAACTATATAAAGTTATATCTTTACGA CDC9-Stool GAGGAACTATATAAAGTTATATCTTTACGA CDC9-Vero

KU

CDC9-Stool

GAACAAGAATACAGTTGTATTTAGTTTCACTAGGAGTTCCGCCAGTTGATGCAGGCACG CDC9-Vero

KU TATGTAGCATCAAGGATATATTCACAAGAT TACGTCGGGTCAAGAATATATTCGCAAGAC CDC9-Stool

TACGTCGGGTCAAGAATATATTCGCAAGAC CDC9-Vero

KU

CDC9-Stool

CDC9-Vero

3060 KU CAATTATTCGATTTCAACTCTCCAGATCTA CDC9-Stool CAATTATTCGATTTTAATTCTCCAGATTTA CAATTATTCGATTTTAATTCTCCAGATTTA

CDC9-Vero

KU

GAAAAGCTTATACGAATTCCTTTTAAAGGCAAAATACCAGCTGTAACGTTCATATTGCAT GAGAAACTTATACGAATTCCTTTTAAAGGTAAGATACCAGCCGTAACATTTATATTACAT CDC9-Stool

GAGAAACTTATACGAATTCCTTTTAAAGGTAAGATACCAGCCGTAACATTTATATTACAT CDC9-Vero

ΚIJ CTTTATGCTAAGTTAGAAATAATAAATTAT CTCTATGCAAAACTTGAAATAATAAATCAT CTCTATGCAAAACTTGAAATAATAAATCAT CDC9-Stool

CDC9-Vero

KU

GCTATAAAGAATAGAGCTTGGATTAGTGTATTCTGTAATTATCCAAAATCTGAGATGATT GCCATTAAGAATGGAGCATGGATTAGTTTTGTTCTGTAATTACCCAAAATCTGAGATGATT CDC9-Stool

GCCATTAAGAATGGAGCATGGATTAGTTTGTTCTGTAATTACCCAAAATCTGAGATGATT CDC9-Vero

KU 3240

AAGTTATGGAAGAAAATGTGGAGCATAACA CDC9-Stool AAACTATGGAAGAAAATGTGGAACATAACA

AAACTATGGAAGAAAATGTGGAACATAACA CDC9-Vero

 ${\tt GCACTACGATCGCCCTATACTAGTGCGAATTTCTTTCAAGATTAGAACGCTTAGATGTGA}$ KU

CDC9-Stool

GCATTACGGTCTCCCTATACTAGTGCGAATTTCTTTCAAGATTAGAGTGCTTAGATGTGA

 $\tt GCATTACGGTCTCCCTATACTAGTGCGAATTTCTTTCAAGATTAGAGTGCTTAGATGTGA$ CDC9-Vero

KU 3302

CC CC (SEQ ID NO. 49) CDC9-Stool (SEQ ID NO. 50) (SEQ ID NO. 51) CDC9-Vero

Alineamiento de secuencias nt del gen VP2 de las cepas CDC-9 y Dhaka25-02

VP2nt

Dhaka25-02(tipo Wa)

GGCTATTAAAGGCTCAATGGCGTACAGGAAGCGCGGAACTAAACGTGAAG CDC9-Stool GGCTATTAAAGGCTCAATGGCGTACAGGAAGCGCGGAACTAAACGTGAAG GGCTATTAAAGGCTCAATGGCGTACAGGAAGCGCGGAACTAAACGTGAAG CDC9-Vero

VP2nt

Dhaka25-02(tipo Wa) ACTTACCACAACAAAATGAACGTCTGCAAGAAAAAGAAAT CDC9-Stool

ACTTACCACAACAAAATGAACGTCTGCAAGAAAAAGAAAT ACTTACCACAACAAAATGAACGTCTGCAAGAAAAAGAAAT CDC9-Vero

Dhaka25-02(tipo Wa) CDC9-Stool CDC9-Vero

	91 TGAAAATAATATAGACGTAACCATGGAAAATAAAAATAAAAATATTAATA TGAAAATAATATAGACGTAACCATGGAAAATAAAAATAAAAATATTAATA TGAAAATAATATAGACGTAACCATGGAAAATAAAAATAAAAATATTAATA
Dhaka25-02(tipo Wa) CDC9-Stool CDC9-Vero	180 AAAATAATAATAAAAATAACAATAGAAAGCAGCAATTATC AAAATAATAATAGAAATAACAATAGAAAGCAGCAATTATC AAAATAATAATAGAAATAACAATAGAAAGCAGCAATTATC
Dhaka25-02(tipo Wa) CDC9-Stool CDC9-Vero	181 TGACAAAGTGTTATTACAAAAAGAGGAAATAATAACTGATGTACAAGATG TGACAAAGTGTTATCACAAAAAGAGGAAATAATAACTGATGTACAAGATG TGACAAAGTGTTATCACAAAAAGAGGAAATAATAACTGATGTACAAGATG
Dhaka25-02(tipo Wa) CDC9-Stool CDC9-Vero	270 ACATCAAAATAACTGATGAAGTTAAAAAATCGTCAAAAGA ACATCAAAATAACTGATGAAGTTAAAAAATCGTCAAAAGA ACATCAAAATAACTGATGAAGTTAAAAAATCGTCAAAAGA
Dhaka25-02(tipo Wa) CDC9-Stool CDC9-Vero	271 AGAGTCGAAACAGTTACTCGAAATATTAAAAACGAAAGAAGATCATCAGA AGAGTCGAAACAGTTACTCGAAATATTAAAAACGAAAGAAGATCATCAGA AGAGTCGAAACAGTTACTCGAAATATTAAAAACGAAAGAAGATCATCAGA
Dhaka25-02(tipo Wa) CDC9-Stool CDC9-Vero	360 AAGAAGTACAGTACGAAATTCTACAAAAAACAATACCGAC AAGAAGTACAGTAC
Dhaka25-02(tipo Wa) CDC9-Stool CDC9-Vero	361 TTTTGAACCAAAAGAATCAATTTTGAAAAAATTAGAAGATATAAGACCAG TTTTGAACCAAAAGAATCAATTTTGAAAAAATTAGAAGATATAAGACCAG TTTTGAACCAAAAGAATCAATTTTGAAAAAATTAGAAGATATAAGACCAG
Dhaka25-02(tipo Wa) CDC9-Stool CDC9-Vero	450 AACAAGCTAAGAAGCAAATGAAATTGTTTAGAATATTTGA AACAAGCTAAGAAGCAAATGAAATTGTTTAGAATATTTGA AACAAGCTAAGAAGCAAATGAAATTGTTTAGAATATTTGA
Dhaka25-02(tipo Wa) CDC9-Stool CDC9-Vero	451 ACCAAGACAATTACCAATCTACCGAGCAAATGGTGAGAAAGAA
Dhaka25-02(tipo Wa) CDC9-Stool CDC9-Vero	540 ATAGATGGTATTGGAAATTGAAAAAGGATACGTTGCCAGA ATAGATGGTATTGGAAATTGAAAAAGGATACGTTGCCAGA ATAGATGGTATTGGAAATTGAAAAAGGATACGTTGCCAGA
Dhaka25-02(tipo Wa) CDC9-Stool CDC9-Vero	541 CGGAGATTATGACGTACGCGAATATTTTTTAAATTTATATGATCAAATAC CGGAGATTATGACGTACGCGAATATTTTTTAAATTTATATGATCAAATAC CGGAGATTATGACGTACGCGAATATTTTTTAAATTTATATGATCAAATAC
Dhaka25-02(tipo Wa) CDC9-Stool CDC9-Vero	630 TGATAGAAATGCCAGATTATTTATTACTAAAAGATATGGC TGATAGAAATGCCAGATTATTTATTACTAAAAGATATGGC TGATAGAAATGCCAGATTATTTATTACTAAAAGATATGGC

Dhaka25-02(tipo Wa) TGTAGAAAATAAAAACTCTAGGGATGCTGGTAAAGTTGTAGATTCTGAGA CDC9-Stool TGTAGAAAATAAAAACTCTAGGGATGCTGGTAAAGTTGTAGATTCTGAGA TGTAGAAAATAAAAACTCTAGGGATGCTGGTAAAGTTGTAGATTCTGAGA CDC9-Vero Dhaka25-02(tipo Wa) CTGCAAGTATTTGTGATGCCATATTTCAAGATGAAGAGAC CTGCAAGTATTTGTGATGCCATATTTCAAGATGAAGAGAC CTGCAAGTATTTGTGATGCCATATTTCAAGATGAAGAGAC CDC9-Stool CDC9-Vero Dhaka25-02(tipo Wa) AGAGGGAGTTATTAGAAGATTTATCGCAGATATGAGACAACAAATTCAAG CDC9-Stool AGAGGGAGTTATTAGAAGATTTATCGCAGATATGAGACAACAAATTCAAG AGAGGGAGTTATTAGAAGATTTATCGCAGATATGAGACAACAAATTCAAG CDC9-Vero Dhaka25-02(tipo Wa) CTGATAGAAATATTGTCAATTATCCATCAATTTTACATCC CDC9-Stool CTGATAGAAATATTGTCAATTATCCATCAATTTTACATCC CTGATAGAAATATTGTCAATTATCCATCAATTTTACATCC CDC9-Vero Dhaka25-02(tipo Wa) AATTGACCATGCATTTAATGAATATTTTCTGAACCATCAATTAGTTGAAC CDC9-Stool AATTGACCATGCATTTAATGAATATTTTCTGAACCATCAATTAGTTGAAC AATTGACCATGCATTTAATGAATATTTTCTGAACCATCAATTAGTTGAAC CDC9-Vero Dhaka25-02(tipo Wa) CATTGAATAACGACATTATTTTTAATTATATACCAGAAAG CDC9-Stool CATTGAATAACGACATTATTTTTAATTATATACCAGAAAG CATTGAATAACGACATTATTTTTAATTATATACCAGAAAG CDC9-Vero Dhaka25-02(tipo Wa) ${\tt AATAAGAAATGATGTCAACTATATTTTGAATATGGATATGAATTTACCAT}$ CDC9-Stool AATAAGAAATGATGTCAACTATATTTTGAATATGGATATGAATTTACCAT AATAAGAAATGATGTCAACTATATTTTGAATATGGATATGAATTTACCAT CDC9-Vero Dhaka25-02(tipo Wa) CAACAGCAAGATATATTAGACCAAATCTGTTGCAAGATAGCAACAGCAAGATATATTAGACCAAATCTGTTGCAAGATAG CDC9-Stool CAACAGCAAGATATATTAGACCAAATCTGTTGCAAGATAG CDC9-Vero Dhaka25-02(tipo Wa) ACTAAATTTACATGATAATTTTGAATCATTATGGGACACAATAACTACAT ACTAAATTTACATGATAATTTTGAATCATTATGGGACACAATAACTACAT CDC9-Stool ACTAAATTTACATGATAATTTTGAATCATTATGGGACACAATAACTACAT CDC9-Vero Dhaka25-02(tipo Wa) CGAATTATATTAGCAAGATCAGTCGTGCCTGATTTGAA CDC9-Stool CGAATTATATATTAGCAAGATCAGTCGTGCCTGATTTGAA CGAATTATATTAGCAAGATCAGTCGTGCCTGATTTGAA CDC9-Vero Dhaka25-02(tipo Wa) GGAAAAAGAATTAGTTTCGACTGAAGCTCAGATACAGAAAATGTCTCAAG CDC9-Stool

1170 Dhaka25-02(tipo Wa) ATTTGCAGCTTGAAGCTTTAACAATACAATCTGAAACGCA CDC9-Stool ${\tt ATTTGCAGCTTGAAGCTTTAACAATACAATCTGAAACGCAATTTGCAGCTTGAAGCTTTAACAATACAATCTGAAACGCAATTGAAACGCAATTGAAACGCAATTGAAACGCAATTGAAACGCAATTGAAACGCAATTGAAACGCAATTGAAACGCAATTGAAACGCAATTGAAACGCAATTGAAACGCAATTGAAACGCAATTGAAACGCAATTGAAACGCAATTGAAACGCAATTGAAACGCAATTGAAACGCAATTGAAACGAATTGAAACGAATTGAAAATTGAAATTGAAATTGAAATTGAAAATTGAAATTGAAAATTGAAATTGAAAATTGAAATTGAAAATTGAAAATTGAAAATTGAAAATTGAAAATTGAAAATTGAAAATTGAAAATTGAAAATTGAAAATTGAAATTGAAATTGAAATTGAAATTGAAATTGAAATTGAAATTGAAATTGAAATTGAAATTGAAATTGAAATTGAAATTGAAATTGAAATTGAAATTGAAATTGAATTGAAATTGAATTGAATTGAAATTGAAATTGAAATTGAAATTGAAATTGAAATTGAAATTGAAATTG$ CDC9-Vero Dhaka25-02(tipo Wa) ATTTCTGGCCGGCATAAATTCACAAGCAGCAAATGATTGTTTTAAAACAC ATTTCTGGCCGGCATAAATTCACAAGCAGCAAATGATTGTTTTAAAACAC CDC9-Stool ATTTCTGGCCGGCATAAATTCACAAGCAGCAAATGATTGTTTTAAAACAC CDC9-Vero Dhaka25-02(tipo Wa) TGATAGCAGCTATGTTAAGTCAACGTACAATGTCATTAGA CDC9-Stool TGATAGCAGCTATGTTAAGTCAACGTACAATGTCATTAGA TGATAGCAGCTATGTTAAGTCAACGTACAATGTCATTAGA CDC9-Vero Dhaka25-02(tipo Wa) TTTTGTAACTACGAATTATATGTCACTTATATCTGGCATGTGGCTATTGA CDC9-Stool CDC9-Vero Dhaka25-02(tipo Wa) CTGTTATACCAAATGATATGTTTCTTCGTGAGTCGCTAGT CTGTTATACCAAATGATATGTTTCTTCGTGAGTCGCTAGT CDC9-Stool CTGTTATACCAAATGATATGTTTCTTCGTGAGTCGCTAGT CDC9-Vero Dhaka25-02(tipo Wa) TGCATGCGAATTGGCTATAATAAACACTATAGTTTACCCAGCATTTGGAA TGCATGCGAATTGGCTATAATAAACACTATAGTTTACCCAGCATTTGGAA TGCATGCGAATTGGCTATAATAAACACTATAGTTTACCCAGCATTTGGAA CDC9-Stool CDC9-Vero 1440 Dhaka25-02(tipo Wa) TGCAAAGAATGCATTATAGGAATGCGGATCCCCAGACTCC TGCAAAGAATGCATTATAGGAATGCGGATCCCCAGACTCC CDC9-Stool TGCAAAGAATGCATTATAGGAATGGCGATCCCCAGACTCC CDC9-Vero Dhaka25-02(tipo Wa) ATTTCAAATAGCAGAGCAACAAATACAAAATTTTCAAGTAGCTAATTGGT CDC9-Stool ATTTCAAATAGCAGAGCAACAAATACAAAATTTTCAAGTAGCTAATTGGT ATTTCAAATAGCAGAGCAACAAATACAAAATTTTCAAGTAGCTAATTGGT CDC9-Vero Dhaka25-02(tipo Wa) TACATTTTATTAATAATAATAGATTTAGACAAGTTGTTAT
TACATTTTATTAATAATAATAGATTTAGACAAGTTGTTAT CDC9-Stool TACATTTTATTAATAATAATAGATTTAGACAAGTTGTTAT CDC9-Vero Dhaka25-02(tipo Wa) TGATGGAGTGTTAAATCAAACACTTAATGACAACATTAGGAATGGACAAG
TGATGGAGTGTTAAATCAAACACTTAATGACAACATTAGGAATGGACAAG CDC9-Stool ${\tt TGATGGAGTGTTAAATCAAACACTTAATGACAACATTAGGAATGGACAAG}$ CDC9-Vero Dhaka25-02(tipo Wa) 1620 CDC9-Stool TTATTAATCAATTAATGGAAGCATTAATGCAGTTATCTAG TTATTAATCAATTAATGGAAGCATTAATGCAGTTATCTAG TTATTAATCAATTAATGGAAGCATTAATGCAGTTATCTAG CDC9-Vero

Dhaka25-02(tipo Wa) CDC9-Stool

ACAACAATTTCCGACCATGCCAGTTGATTACAAAAGATCAATCCAAAGAG ACAACAATTTCCGACCATGCCAGTTGATTACAAAAGTCAATCCAAACAG ACAACAATTTCCGACCATGCCAGTTGATTACAAAAGATCAATCCAAACAG ACAACAATTTCCGACCATGCCAGTTGATTACAAAAGATCAATCCAAAGAG CDC9-Vero Dhaka25-02(tipo Wa) GAATATTGTTATTGTCTAACAGATTGGGTCAGTTAGTTGA GAATATTGTTATTGTCTAACAGATTGGGTCAGTTAGTTGA CDC9-Stool GAATATTGTTATTGTCTAACAGATTGGGTCAGTTAGTTGA CDC9-Vero Dhaka25-02(tipo Wa) ${\tt TTTAACGAGATTATTATCATATAATTATGAAACTCTAATGGCTTGTATAA}$ CDC9-Stool TTTAACGAGATTATTATCATATAATTATGAAACTCTAATGGCTTGTATAA TTTAACGAGATTATTATCATATAATTATGAAACTCTAATGGCTTGTATAA CDC9-Vero Dhaka25-02(tipo Wa) CTATGAATATGCAGCATGTTCAAACTCTCACTACTGAAAG CDC9-Stool CTATGAATATGCAACATGTTCAAACTCTCACTACTGAAAG CTATGAATATGCAACATGTTCAAACTCTCACTACTGAAAG CDC9-Vero Dhaka25-02(tipo Wa) ATTACAGTTAACTTCTGTCACATCTTTATGTATGTTAATTGGAAATACCA CDC9-Stool ATTACAGTTAACTTCTGTCACATCTTTATGTATGTTAATTGGAAATACCA ATTACAGTTAACTTCTGTCACATCTTTATGTATGTTAATTGGAAATACCA CDC9-Vero 1890 Dhaka25-02(tipo Wa) CAGTAATTCCAAGTCCACAAACACTATTTCACTATTATAA CDC9-Stool CAGTAATTCCAAGTCCACAAACACTATTTCACTATTATAA CAGTAATTCCAAGTCCACAAACACTATTTCACTATTATAA CDC9-Vero Dhaka25-02(tipo Wa) TATAAATGTAAATTTTCATTCAAATTATAATGAACGAATTAACGATGCTG CDC9-Stool ${\tt TGTAAATGTAAATTTTCATTCAAATTATAATGAACGAATTAACGATGCTG} {\tt TGTAAATGTAAATTTTCATTCAAATTATAATGAACGAATTAACGATGCTG}$ CDC9-Vero Dhaka25-02(tipo Wa) 1980 TGGCTATCATTACGGCTGCTAATAGACTAAATTTATATCA CDC9-Stool TGGCTATCATTACGGCCGCTAATAGACTAAAATTTATATCA TGGCTATCATTACGGCCGCTAATAGACTAAATTTATATCA CDC9-Vero Dhaka25-02(tipo Wa) GAAAAAAATGAAATCAATAGTTGAGGATTTTTTGAAAAGATTGCAAATTT GAAAAAAATGAAATCAATAGTTGAGGATTTTTTGAAAAGATTGCAAATTT CDC9-Stool GAAAAAATGAAATCAATAGTTGAGGATTTTTTGAAAAGATTGCAAATTT

Dhaka25-02(tipo Wa) CDC9-Stool

CDC9-Vero

CDC9-Vero

Dhaka25-02(tipo Wa)

CDC9-Stool

CDC9-Vero

GAGAGACAGACTTAGATTATTGCCAGTTGAAAGACGAAGACTTGATATAT GAGAGACAGACTTAGATTATTGCCAGTTGAAAGACGAAGACTTGATATAT GAGAGACAGACTTAGATTATTGCCAGTTGAAAGACGAAGACTTGATATAT

TTGATGTACCACGAGTACCAGATGATCAAATGTACAGATT

TTGATGTACCACGAGTACCAGATGATCAAATGTACAGATT TTGATGTACCACGAGTACCAGATGATCAAATGTACAGATT

2070

Dhaka25-02(tipo Wa)

TTAACTTAATATTAATGAATATGGAGCAGATCGAACGAGC

CDC9-Stool

2160

CDC9-Vero Dhaka25-02(tipo Wa) 2161 TTCAGATAAAATTGCTCAAGGAGTAATAATTGCTTATAGAGATATGCAGC ${\tt TTCAGATAAAATTGCTCAAGGAGTAATAATTGCTTATAGAGATATGCAGC}$ CDC9-Stool CDC9-Vero TTCAGATAAAATTGCTCAAGGAGTAATAATTGCTTATAGAGATATGCAGC Dhaka25-02(tipo Wa) TAGAAAGAGATGAGATGTATGGATTTGTTAACATCGCTAG CDC9-Stool CDC9-Vero Dhaka25-02(tipo Wa) GAACCTCGATGGATATCAACAAATCAATTTAGAAGAGTTAATGAGAACTG GAACCTCGATGGATATCAACAAATCAATTTAGAAGAGTTAATGAGAACTG CDC9-Stool GAACCTCGATGGATATCAACAAATCAATTTAGAAGAGTTAATGAGAACTG CDC9-Vero Dhaka25-02(tipo Wa) GAGACTATGGTCAAATTACTACTATGCTATTAAACAATCA GAGACTATGGTCAAATTACTACTATGCTATTAAACAATCA GAGACTATGGTCAAATTACTACTATGCTATTAAACAATCA CDC9-Stool CDC9-Vero 2 Dhaka25-02(tipo Wa) GCCTGTAGCTTTGGTAGGAGCATTACCATTTGTAACAGATTCATCAGTTA GCCTGTAGCTTTGGTAGGAGCATTACCATTTGTAACAGATTCATCAGTTA GCCTGTAGCTTTGGTAGGAGCATTACCATTTGTAACAGATTCATCAGTTA CDC9-Stool CDC9-Vero

Dhaka25-02(tipo Wa)
CDC9-Stool

CDC9-Vero

TATCGCTTATAGCGAAATTGGATGCCACAGTATTTGCTCA
TATCGCTTATAGCGAAATTGGATGCCACAGTATTTGCTCA
TATCGCTTATAGCGAAATTGGATGCCACAGTATTTGCTCA
TATCGCTTATAGCGAAATTGGATGCCACAGTATTTGCTCA

Dhaka25-02(tipo Wa)
CDC9-Stool
CDC9-Vero

2431
AATAGTTAAACTTAGAAAAGTGGACACTTTAAAACCGATATTGTATAAAA
AATAGTTAAACTTAGAAAAGTGGACACTTTAAAACCGATATTGTATAAAA
AATAGTTAAACTTAGAAAAGTGGACACTTTAAAACCGATATTGTATAAAA

Dhaka25-02(tipo Wa) 2520
CDC9-Stool TAAATTCTGATTCTAATGATTCTACTTAGTTGCAAATTA
TAAATTCTGATTCTAATGATTCTACTTAGTTGCAAATTA
TAAATTCTGATTCTAATGATTCTACTTAGTTGCAAATTA

Dhaka25-02(tipo Wa)
CDC9-Stool
CDC9-Vero

2521
TGATTGGATACCGACTTCAACTACAAAAGTTTATAAACAAGTACCACAAC
TGATTGGATACCGACTTCAACTACAAAAGTTTATAAACAAGTACCACAAC
TGATTGGATACCGACTTCAACTACAAAAGTTTATAAACAAGTACCACAAC
TGATTGGATACCGACTTCAACTACAAAAGTTTATAAACAAGTACCACAAC

Dhaka25-02(tipo Wa)
CDC9-Stool
CTTTTGATTTCAGAGCATCAATGCATATGTTAACGTCTAA
CTTTTGATTTCAGAGCATCAATGCATATGTTAACGTCTAA
CTTTTGATTTCAGAGCATCAATGCATATGTTAACGTCTAA
CTTTTGATTTCAGAGCATCAATGCATATGTTAACGTCTAA

Dhaka25-02(tipo Wa) 2611

CDC9-Stool CTTAACTTTTACCGTTTATTCTGATTACTATCTTTCGCAGACA CTTAACTTTTACCGTTTATTCTGATTACTATCTTTCGCAGACA CTTAACTTTTACCGTTTATTCTGATTACTATCTTTCTGCAGACA CTTAACTTTTACCGTTTATTCTGATTACTATCTTTCTGCAGACA

CDC9-Vero

Dhaka25-02(tipo Wa)
CDC9-Stool

CGGTTGAACCTATTAACGCAATTGCTTTTGACAATATGCG
CGGTTGAACCTATTAACGCAATTGCTTTTTGACAATATGCG
CGGTTGAACCTATTAACGCAATTGCTTTTTGACAATATGCG
CGGTTGAACCTATTAACGCAATTGCTTTTTGACAATATGCG

CDC9-Vero

Dhaka25-02(tipo Wa) 2701

CDC9-Stool CATTATGAACGAACTGTAAACGCCAACCCCACTGTGGAGA
CATTATGAACGAACTGTAAACGCCAACCCCACTGTGGAGA
CATTATGAACGAACTGTAAACGCCAACCCCACTGTGGAGA
CATTATGAACGAACTGTAAACGCCAACCCCACTGTGGAGA

CDC9-Vero

Dhaka25-02(tipo Wa) 2747

CDC9-Stool TATGACC (SEQ ID NO. 52)

CDC9-Vero TATGACC (SEQ ID NO. 53)

TATGACC (SEQ ID NO. 54)

Alineamiento de secuencias nt del gen VP3 de las cepas CDC-9 y DS-1.

VP3nt

DS-1

CDC9-Stool GGCTATTAAAGCAGTACTAGTAGTGTTTTTACCTCTGATGGTGTAAAACATGAAAGTATT GGCTATTAAAGCAGTACCAGTAGTGTTTTTACCTCTGATGGTGTAAAACATGAAAGTATT GGCTATTAAAGCAGTACCAGTAGTGTTTTTACCTCTGATGGTGTAAAACATGAAAGTATT GGCTATTAAAGCAGTACCAGTAGTGTTTTTACCTCTGATGGTGTAAAACATGAAAGTATT

CDC9-Vero

VP3nt

DS-1
CDC9-Stool
AGCTTTAAGACATAGTGTGGCTCAGATATA
AGCTTTAAGACATAGTGTGGCTCAGGTGTA
AGCTTTAAGACATAGTGTGGCTCAGGTGTA

CDC9-Vero

DS-1 91

CDC9-Stool TGCAGATACTCAGGTGTACACACATGATGACTCTAAAGATGATTATGAAAATGCGTTCTT
TGCAGACACTCAGGTGTACACACATGATGATTATTAAAGATGAGTATGAGAACGCATTCTT
TGCAGACACTCAGGTGTACACACATGATGATTCTAAAGATGAGTATGAGAACGCATTCTT

CDC9-Vero

180 AATTTCTAATCTCACTACACATAATATATT

AATTTCTAATCTCACTACACATAATATATT AATTTCTAATCTCACTACACATAATATATT

CDC9-Stool CDC9-Vero

DS-1

DS-1 181

CDC9-Stool ATATTTAAATTATAGTGTAAAAAACACTGCAAATATTGAATAAATCCGGTATAGCTGCAAT ATATTTAAATTATAATGTAAAAAACGCTACAGATATTAAATTAAATCTGGTATAGCTGCAAT ATATTTAAATTATAATGTAAAAAACGCTACAGATATTAAATTAAATCTGGTATAGCTGCAAT ATATTTAAATTATAATGTAAAAAACGCTACAGATATTAAATTAAATCTGGTATAGCTGCAAT

CDC9-Vero

DS-1 270

AGAGATACAGAAGATAGATGAGTTATTCAC

CDC9-Stool AGAGATACAGAAGATAGATTATTCAC AGAGATACAGAAGATAGATTATTCAC AGAGATACAGAAGATAGATTATTCAC

CDC9-Vero

DS-1 271

CDC9-Vero

DS-1

CDC9-Stool TTCATATTATGCTAATAATGAAATACGGAC TTCATATTATACTAATAATGAAATACGGAC CDC9-Vero TTCATATTATACTAATAATGAAATACGGAC DS-1 CDC9-Stool CDC9-Vero DS-1 GACATATGTTGGATACAATGGAAGTGATAC GACATACGTTGGATACAATGGAAGTGATAC CDC9-Stool GACATACGTTGGATACAATGGAAGTGATAC CDC9-Vero DS-1 GAGAGGACATTATAATTTTTTTTTTTAGATGTCAGAATGCAGCTACAGATGATGATGATGAT CDC9-Stool GCGCGGACATTATAATTTTTCATTTAGATGTCAAAATGCAGCTACAGATGATGATGCAAT GCGCGGACATTATAATTTTCATTTAGATGTCAAAATGCAGCTACAGATGATGATGCAAT CDC9-Vero DS-1 AATAGAGTATATCTATTCAAATGAATTAGA CDC9-Stool AATAGAGTATATCTATTCAGATGAATTAGA AATAGAGTATATCTATTCAGATGAATTAGA CDC9-Vero DS-1 $\verb|CTTCCAGAACTTTATACTCAAAAAGATTAAAGAAAGGATGACAACATCACTACCAATAGC|$ CDC9-Stool CDC9-Vero DS-1 AAGACTTTCAAATCGCGTATTTAGAGATAA CDC9-Stool AAGACTTTCAAATCGTGTATTTAGAGATAA AAGACTTTCAAATCGTGTATTTAGAGATAA CDC9-Vero DS-1 ATTATTTAAAACGTTGTCAGTAAATCATGATAAAGTAGTTAATGTTGGACCTAGAAATGA CDC9-Stool GTTATTTAAAACGTTATCAGTAAATCATGATAAAGTAGTTAATATTGGGCCCAGAAATGAGTTATTTAAAACGTTATCAGTAAATCATGATAAAGTAGTTAATATTGGGCCCAGAAATGA CDC9-Vero DS-1 ATCTATGTTTACTTTTTTAGACCATCCATC CDC9-Stool ATCTATGTTTACTTTTTTAGACTATCCATC ATCTATGTTTACTTTTTTAGACTATCCATC CDC9-Vero DS-1 AATAAAACAATTCTCTAATGGACCATATTTGGTTAAAGATACAATTAAACTCAAACAAGA CDC9-Stool AATAAAACAGTTCTCGAATGGACCGTATTTAGTTAAAGATACAATTAAACTCAAACAAGA AATAAAACAGTTCTCGAATGGACCGTATTTAGTTAAAGATACAATTAAACTCAAACAAGA CDC9-Vero DS-1 GAGATGGCTTGGTAAAAGATTATCACAGTT GAGATGGCTTGGTAAAAGATTATCACAGTT CDC9-Stool GAGATGGCTTGGTAAAAGATTATCACAGTT CDC9-Vero

DS-1

CDC9-Stool 811

TGACATTGGTCAATATAAGAATATGTTAAATGTATTAACGACTTTATATCAATATTACGA TGATATTGGTCAATATAAGAATATGCTAAATGTTATTAACGACTTTGTATCAATATTACGA
TGATATTGGTCAATATAAGAATATGCTAAATGTTATTAACGACTTTGTATCAATATTACGA

CDC9-Vero

DS-1 TATGTATCATGAAAAACCAATTATATATAT CDC9-Stool TATATATCATGAAAAACCAATCGTATATAT

TATATATCATGAAAAACCAATCGTATATAT CDC9-Vero

DS-1

SATAGGATCAGCGCCCTCGTATTGGATATATGATGTCAAACAGTACTCTGACTTGAAATT CDC9-Stool GATAGGATCAGCGCCTTCGTATTGGATATATGACGTCAAACAGTATTCTAACTTGAAATT

GATAGGATCAGCGCCTTCGTATTGGATATATGACGTCAAACAGTATTCTAACTTGAAATT CDC9-Vero

DS-1 TGAGACATGGGATCCACTAGATACACCATA CDC9-Stool TGAAACGTGGGATCCACTAGATACACCATA TGAAACGTGGGATCCACTAGATACACCATA

DS-1 991

CDC9-Vero

TTCTAATTTACATCATAAGGAATTATTTTACATAAATGACGTGCAAAAACTTAAAGATAA CDC9-Stool CTCTAATTTACATCATAAGGAATTATTTTACATGAATGACGTGCAAAAACTTAAAGATAA

CTCTAATTTACATCATAAGGAATTATTTTACATGAATGACGTGCAAAAACTTAAAGATAA CDC9-Vero

DS-1 1080 TTCGATACTATATATAGATATAAGAACAGA CDC9-Stool TTCAATACTATATATAGATATAAGAACAGA TTCAATACTATATATAGATATAAGAACAGA CDC9-Vero

DS-1

TAGAGGAAATATGGACTGGAAGGAATGGCGAAAAGTGGTGGAAGGGCAAACTGCTGACAA CDC9-Stool TAGAGGAACTGTAGACTGGAAGGAATGGCGAAAAATAGTAGAAAGGCAAACTATTGACAA

TAGAGGAACTGTAGACTGGAAGGAATGGCGAAAAATAGTAGAAAGGCAAACTATTGACAA CDC9-Vero

DS-1 TTTACATATTGCATATAAATATCTATCTAC
TTTGCATATTGCATACAAATATCTATCTAC CDC9-Stool

TTTGCATATTGCATACAAATATCTATCTAC CDC9-Vero

DS-1

AGGAAAAGCTAAGATATGTTGTGTTAAAATGACCGCTATGGATGTAGAATTACCAATATC
AGGGAAAGCTAAGGTATGTTGCGTTAAAATGACCGCCATGGATTTAGAATTACCAATATC
AGGGAAAGCTAAGGTATGTTGCGTTAAAATGACCGCCATGGATTTAGAATTACCAATATC CDC9-Stool

CDC9-Vero

DS-1 TGCAAAACTGCTTCACCATCCAACTACAGA CDC9-Stool TGCAAAATTGCTTCACCATCCAACTACAGA TGCAAAATTGCTTCACCATCCAACTACAGA

DS-1

CDC9-Vero

AATTAGATCAGAGTTTTATTTAATGATGGATATATGGGACTCCAAAAATATTAAAAGATT CDC9-Stool GATTAGATCAGAGTTTTATCTAGTGATGGATATATGGGACTCTAAAAATATTAAAAGATT GATTAGATCAGAGTTTTATCTAGTGATGGATATATGGGACTCTAAAAATATTAAAAGATT

CDC9-Vero

DS-1 CDC9-Stool

1350

CATACCAAAAGGTGTATTATACTCATATAT CATACCAAAAGGTGTATTATACTCATATAT CATACCAAAAGGTGTATTATACTCATATAT CDC9-Vero

DS-1

AAACAATACAATTACTGAAAACGTATTTATACAACAACCTTTTAAGTTGAAAACATTGAA CDC9-Stool AAACAATACAATTACTGAAAACGTATTCATACAACAACCTTTTAAGTTGAAAACATTGAA AAACAATACAATTACTGAAAACGTATTCATACAACAACCTTTTAAGTTGAAAACATTGAA

CDC9-Vero

DS-1 AAATGAATATGTAATAGCACTTTATGCTTT AAATGAATATATAATAGCACTTTATGCTTT CDC9-Stool AAATGAATATATAATAGCACTTTATGCTTT CDC9-Vero

DS-1

CDC9-Stool

CDC9-Vero

DS-1 1530 GTTAATAACGGTGAGAATTAACAATACATT GTTAATGACAGTGAGAATTAATAATACGTT CDC9-Stool GTTAATGACAGTGAGAATTAATAATACGTT CDC9-Vero

DS-1

TAAAGATGAACCGAAAGTCGGATTTAAAAACATTTACGATTGGACATTTTTGCCAACGGA CDC9-Stool CDC9-Vero

DS-1 TTTTGAGATGAATGGATCAATAATTACCTC
TTTTGAAACTAATGGATCAATAATTACTTC CDC9-Stool TTTTGAAACTAATGGATCAATAATTACTTC

DS-1

CDC9-Vero

ATATGATGGGTGTCTAGGTATCTTTGGTTTATCAATATCGCTAGCTTCAAAACCAACTGG

CDC9-Stool

CDC9-Vero ${\tt ATATGATGGGTGTCTAGGTATCTTTGGTTTATCAATATCGCTAGCTTCAAAACCAACTGG}$

DS-1 TAATAATCATTTATTCATTTTAAGTGGTAC CDC9-Stool TAATAATCATTTGTTCATTTTAAGTGGAAC TAATAATCATTTGTTCATTTTAAGTGGAAC CDC9-Vero

DS-1

GGACAAGTATTTTAAATTGGATCAATTCGCAAATCATATGAGTATATCACGACGATCACA CDC9-Stool AGACAAGTATTTTAAATTGGATCAATTTGCAAATCATATGAGCATATCACGACGATCACA AGACAAGTATTTTAAATTGGATCAATTTGCAAATCATATGAGCATATCACGACGATCACA

CDC9-Vero

DS-1 CDC9-Stool

TCAGATACGATTTTCTGAGTCAGCCACTTC TCAGATACGATTTTCGGAGTCAGCCACTTC TCAGATACGATTTTCGGAGTCAGCCACTTC CDC9-Vero DS-1 ATACTCGGGATACATTTTTAGAGATTTGTCTAATAATAATTTCAATTTAATAGGTACGAA CDC9-Stool ATATTCGGGATATATTTTTAGGGATTTGTCTAATAATAATTTCAATTTAATAGGTACGAA ATATTCGGGATATATTTTTAGGGATTTGTCTAATAATAATTTCAATTTAATAGGTACGAA CDC9-Vero DS-1 TGTAGAGAATTCAGTATCCGGACACGTATA CDC9-Stool TGTAGAGAATTCAGTATCCGGACACGTGTA TGTAGAGAATTCAGTATCCGGACACGTGTA CDC9-Vero DS-1 TAATGCATTGATTTATTATAGATATAATTACTCATTTGACCTTAAACGATGGATATACTT CDC9-Stool TAATGCATTGATTTATTATAGATATAATTATTCATTTGACCTTAAACGATGGATATACTT TAATGCATTGATTTATTATAGATATAATTATTCATTTGACCTTAAACGATGGATATACTT CDC9-Vero DS-1 ACATTCAACAGGTAAAGCTAGCATTGAAGG ACATTCAACAGGCAAAGCTAGTATTGAAGG CDC9-Stool ACATTCAACAGGCAAAGCTAGTATTGAAGG CDC9-Vero DS-1 CDC9-Stool CDC9-Vero DS-1 2070 ATTCGCGAAATTGCAAGATGATTTAACAGT CDC9-Stool ATTTGCGAAACTGCAAGATGATTTAACGGT ATTTGCGAAACTGCAAGATGATTTAACGGT CDC9-Vero DS-1 ${\tt ATTAAGATATCAAATGAGATAGAAAACTATATCAATAAAGTTTATAGTATAACATACGC}$ CDC9-Stool

DS-1 CGACGACCCTAATTACTTTATTGGAATTAA CGACGATCCTAATTACTTTATTGGAGTTAA CDC9-Stool CGACGATCCTAATTACTTTATTGGAGTTAA

CDC9-Vero

CDC9-Vero

DS-1 GTTTAAAAATATTCCTTACAAGTATAACGTTAAAGTACCACATCTCACATTTGGCGTGTT CDC9-Stool GTTTAAAAATATTCCTTATAAGTATAACGTTAAAGTACCACATCTCACATTTGGCGTGTTGTTTAAAAAATATTCCTTATAAGTATAACGTTAAAGTACCACATCTCACATTTGGCGTGTT

 ${\tt ATTAAGATATCAAATGAGATAGAAAACTATATCAACAGAGTTTATAGCATAACATACGC}$ ATTAAGATATTCAAATGAGATAGAAAACTATATCAACAGAGTTTATAGCATAACATACGC

CDC9-Vero

DS-1 AAATATTTCTGAACAGATGTTACCAGATGC CDC9-Stool AAATATTTCTGAACAAATGCTACCAGATGT AAATATTTCTGAACAAATGCTACCAGATGT CDC9-Vero

DS-1 CDC9-Stool

AATAGCAATTTTAAAGAATTTAAGAATGAACTATTTGGAATGGACATAACAACGAGTTA AATAACGATTTTAAAGAGATTTAAGAATGAGTTATTTGGAATGGAAGTAACAACGAGTTA CDC9-Vero $\tt AATAACGATTTTAAAGAGATTTAAGAATGAGTTATTTGGAATGGAAGTAACAACGAGTTA$ DS-1 TACATATATGTTATCTGATGAGGTGTATGT TACGTACATGTTATCTGATGAGGTGTATGT CDC9-Stool TACGTACATGTTATCTGATGAGGTGTATGT CDC9-Vero DS-1 AGCAAATATAAGTGGTGTACTATCAACATATTTCAAAATTTACAACGCGTTTTATAAAGA AGCAAATATAAGTGGTGTACTATCAACATATTTCAAAATTTATAATGCGTTTTTATAAAGA CDC9-Stool AGCAAATATAAGTGGTGTACTATCAACATATTTCAAAATTTATAATGCGTTTTATAAAGA CDC9-Vero 2430 ACAAATTACATTTGGACAGTCAAGAATGTT DS-1 CDC9-Stool GCAAATCACATTTGGACAGTCAAGAATGTT GCAAATCACATTTGGACAGTCAAGAATGTT CDC9-Vero DS-1 TATTCCCCATGTAACGTTGAGTTTTAGTAATGAGAAAACAGTGAGAATAGACACTACAAA CDC9-Stool CDC9-Vero DS-1 ATTGTACATAGATTCCATTTATCTAAGAAA CDC9-Stool ACTGTACATAGATTCTATTTACTTAAGAAA ACTGTACATAGATTCTATTTACTTAAGAAA CDC9-Vero DS-1 AATAAAAGGTGACACAGTGTTTGATATGACTGAGTGAGCTAAAAACTTAACACACTAGTC CDC9-Stool CDC9-Vero DS-1 ATGATGTGACC (SEQ ID NO. 55) CDC9-Stool (SEQ ID NO. 56) (SEQ ID NO. 57) ATGATGTGACC AAGATGTGACC CDC9-Vero Alineamiento de secuencias nt del gen VP4 de las cepas CDC-9 y KU. VP4nt KU ${\tt GGCTATAAAATGGCTTCGCTCATTTATAGACAGCTTCTCACTAATTCATATTCAGTAGAT}$ CDC9-Stool ${\tt GGCTATAAAATGGCTTCGCTCATTTATAGACAGCTTCTCACTAATTCATATTCAGTAGAT} {\tt GGCTATAAAATGGCTTCGCTCATTTATAGACAGCTTCTCACTAATTCATATTCAGTAGAT}$ CDC9-Vero VP4nt KU TTACATGATGAAATAGAGCAAATTGGGTCA CDC9-Stool TTATATGATGAAATAGAGCAAATTGGATCA TTATATGATGAAATAGAGCAAATTGGATCA

CDC9-Vero

KU CDC9-Stool

GAAAAAACTCAAAACGTAACTGTAAATCCAGGTCCATTTGCCCAAACTAGATATGCTCCA
GGAAAAACTCAGAATGTAACCATAAATCCGGGTCCATTTGCACAGACTAGATATGCTCCA
GGAAAAACTCAGAATGTAACCATAAATCCGGGTCCATTTGCACAGACTAGATATGCTCCA CDC9-Vero KU 180 GTAAATTGGGGTCATGGAGAGATAAATGAT GTCAATTGGGGTCATGGAGAGATAAATGAT CDC9-Stool GTCAATTGGGATCATGGAGAGATAAATGAT CDC9-Vero KU TCAACCACAGTAGAACCAATTTTAGATGGTCCTTATCAGCCTACTACATTTAAACCACTT
TCGACTACAGTAGAACCAATTTTAGACGGTCCTTATCAGCCAACTACATTTACTCCACCT
TCGACTACAGTAGAACCAATTTTAGACGGTCCTTATCAGCCAACTACATTTACTCCACCT CDC9-Stool CDC9-Vero KU ACTGATTATTGGATACTTATTAACTCAAAT CDC9-Stool AACGATTATTGGATACTTATTAATTCAAAT AACGATTATTGGATACTTATTAATTCAAAT CDC9-Vero KU ACAAATGGAGTGGTATACGAGAGTACGAATAATAGTGACTTTTGGACTGCAGTCGTTGCT CDC9-Stool ACAAATGGACTGGTATATGAAAGTACAAATAATAGTGACTTTTGGACTGCAGTCGTTGCT ACAAATGGAGTGGTATATGAAAGTACAAATAATAGTGACTTTTTGGACTGCAGTCGTTGCT CDC9-Vero KU GTTGAACCGCACGTTAATCCAGTAGATAGA CDC9-Stool ATTGAACCGCATGTCACCCCAGTAGATAGA ATTGAACCGCATGTCACCCCAGTAGATAGA CDC9-Vero KU CAATATACTGTATTTGGTGAAAATAAACAATTTAATGTAAGAAATGATTCAGATAAATGG CDC9-Stool CDC9-Vero ΚIJ AAGTTTTTAGAAATGTTTAGAGGCAGTAGT CDC9-Stool AAGTTTTTAGAAATGTTCAGAAGCAGTAGT AAGTTTTTAGAAATGTTCAGAAGCAGTAGT CDC9-Vero KU CAAAATGAATTTTATAATAGACGTACACTAACTTCTGATACTAAACTCGTAGGAATATTA CDC9-Stool CAAAATGAATTTTATAATAGACGTACATTAACTTCTGACACCAGACTTGTAGGAATATTA CAAAATGAATTTTATAATAGACGTACATTAACTTCTGACACCAGACTTGTAGGAATATTA CDC9-Vero 540 AAATATGGTGGAAGGATATGGACATTTCAT KU CDC9-Stool AAATATGGTGGAAGAGTATGGACATTTCAT AAATATGGTGGAAGAGTATGGACATTTCAT CDC9-Vero

GGTGAAACACCGAGAGCTACTACTGATAGCTCAAATACTGCAAATTTAAACGATATATCA

KU

CDC9-Stool

KU
CDC9-Stool
ATTATAATACATTCAGAATTTTATATTATC
ATTACAATTCAGAATTTTACATTATT
ATTACAATTCATCAGAATTTTACATTATT
ATTACAATTCATCAGAATTTTACATTATT

KU 631

CDC9-Stool CCAAGGTCCCAAGAATCTAAGTGTAATGAATATTATAACAATGGTTTGCCACCAATTCAA CCAAGGTCCCAGGAATCTAAATGCAATGAATATATTAATAATGGTCTGCCACCAATTCAA CCAAGGTCCCAGGAATCTAAATGCAATGAATATATTAATAATGGTCTGCCACCAATTCAA

CDC9-Vero

KU
CDC9-Stool
AATACTAGAAATGTAGTACCATTATCATTA
AATACTAGAAATGTAGTACCATTACCATTA
CDC9-Vero
AATACTAGAAATGTAGTTCCATTACCATTA

KU 72:

CDC9-Stool TCATCTAGATCCATACAGTATAAAAGAGCACAAGTTAATGAAGATATTACAATTTCAAAA TCATCTAGATCGATACAGTATAAGAGAGCACAAGTTGATGAAGACATTATAGTTTCAAAA TCATCTAGATCGATACAGTATAAGAGAGCACAAGTTGATGAAGACATTATAGTTTCAAAA TCATCTAGATCGATACAGTATAAGAGAGCACAAGTTGATGAAGACATTATAGTTTCAAAA

KU
CDC9-Stool
ACCTCATTATGGAAAGAAATGCAATGTAAT
ACTTCATTATGGAAAGAAATGCAGTATAAT
ACTTCATTATGGAAAGAAATGCAGTATAAT
ACTTCATTATGGAAAGAAATGCAGTATAAT

KU 811

CDC9-Stool CDC9-Vero CDC9-Vero

KU
CDC9-Stool
TATAAATGGTCCGAAATATCATATAAAGCA
TATAAATGGTCTGAAATATCATATAAAGCA
TATAAATGGTCTGAAATATCATATAAAGCA
TATAAATGGTCTGAAATATCATATAAAGCA

KU 901

CDC9-Stool GCAAATTATCAATATAATTATCTACGTGATGGCGAACAAGTAACTGCACATACTACTTGC GCAAATTATCAATATTATTATCTACGTGACGGTGAACAAGTAACCGCACACACCACTTGT GCAAATTATCAATATAATTATTATCTTACGTGACGGTGAACAAGTAACCGCACACACCACTTGT GCAAATTATCAATATAATTATTATCTTACGTGACGGTGAACAAGTAACCGCACACACCACTTGT

KU
CDC9-Stool
TCAGTAAATGGAGTAAATAATTTTAGCTAC
TCAGTAAATGGAGTGAACAATTTTAGCTAT

CDC9-Vero TCAGTAAATGGAGTGAACAATTTTAGCTAT

KU 991

CDC9-Stool AACGGAGGATCTTTACCTACTGATTTTAGTGTCTCAAGGTATGAAGTTATTAAAGAAAAT AATGGAGGGTCCCTACCCACTGATTTTGGTATTTCAAGGTATGAAGTTATTAAAGAAAAT AATGGAGGGTTCCTACCCACTGATTTTGGTATTTCAAGGTATGAAGTTATTAAAGAAAAT

KU 1080
CDC9-Stool TCTTATGTATATGTAGATTATTGGGATGAT
TCTTATGTATATGTAGACTATTGGGATGAT
TCTTATGTATATGTAGACTATTGGGATGAT
TCTTATGTATATGTAGACTATTGGGATGAT

KU 1081

CDC9-Stool

TCAAAAGCATTTAGAAATATGGTATATGTCAGATCATTAGCAGCTAATTTGAACTCAGTG
TCAAAAGCATTTAGAAATATGGTATATGTTAGATCATTAGCAGCTAATTTAAATTCAGTG
TCAAAAGCATTTAGAAATATAGTATATGTTAGATCATTAGCAGCTAATTTAAATTCAGTG

CDC9-Vero

KU
CDC9-Stool
AAATGTACAGGTGGAAGTTATAACTTTAGT
ACATGTACAGGTGGAAGTTATCACTTAGT
AGATGTACAGGTGGAAGTTATCATTTCAGT
AGATGTACAGGTGGAAGTTATCATTTCAGT

KU 1171

KU 1260
CDC9-Stool GTTACATTATCTACGCAATTCACAGATTTC
GTTACATTATCCACGCAATTTACTGATTTT
GTTACATTATCCACGCAATTTACTGATTTT

1261

KU

CDC9-Stool GTATCATTGAATTCACTACGATTTAGATTTAGATTTGACAGTGGATGAGCCATCTTTTCA GTATCATTGAATTCATTAGATTAGATTAGATTTAGATTTAGATTTAGATTTAGATTTAGATTTAGATTTAGATTTAGATTTAGATTTAGATTAGATTAGATTTAGA

KU 135
CDC9-Stool ATATTGAGAACACGTACGGTGAATTTGTAC
ATATTGAGAACACGTACAGTGAATTTGTAT
ATATTGAGAACACGTACAGTGAATTTGTAT
ATATTGAGAACACGTACAGTGAATTTGTAT

KU 1351

CDC9-Stool GGATTACCAGCTGCAAATCCAAATAATGGAAATGAATACTATGAAATATCAGGAAGGTTT GGATTACCAGCCGCTAATCCGAATAATGGAAATGAATACTATGAAATATCAGGAAGGTTT GGATTACCAGCCGCTAATCCGAATAATGGAAATGAATACTACGAAATATCAGGAAGGTTT GGATTACCAGCCGCTAATCCGAATAATGGAAATGAATACTACGAAATATCAGGAAGGTTT

KU
CDC9-Stool
TCGCTCATTTCTTTAGTTCCAACTAATGAT
TCACTCATTTCTTTAGTTCCGACTAATGAT
TCACTCATTTCTTTAGTTCCGACTAATGAT
TCACTCATTTCTTTAGTTCCGACTAATGAT

KU 1441

CDC9-Stool GATTATCAGACTCCAATTATGAATTCAGTAACAGTAAGACAAGATTTAGAACGTCAACTT
GATTATCAGACTCCAATTATGAATTCAGTGACGGTAAGACAAGATTTAGAGGGCCAACTT
GATTATCAGACTCCAATTATGAATTCAGTGACGGTAAGACAAGATTTAGAGCGCCAACTT
GATTATCAGACTCCAATTATGAATTCAGTGACGGTAAGACAAGATTTAGAGCGCCAACTT

KU
CDC9-Stool
ACTGATTTACGAGAGGAATTTAATTCATTA
ACTGATTTACGGGAAGAATTTAACTCATTG
ACTGATTTACGGGAAGAATTTAACTCATTG

KU 1531

CDC9-Stool TCACAAGAAATAGCTATGTCACAATTAATTGATTTAGCGTTATTACCTTTAGATATGTTT
TCACAAGAAATAGCTATGGCACAATTGATTTAGCACTGTTGCCTCTAGATATGTTT
TCACAAGAAATAGCTATGGCACAATTGATTTAGCACTGTTGCCTCTAGATATGTTT
TCACAAGAAATAGCTATGGCACAATTGATTTAGCACTGTTGCCTCTAGATATGTTT

KU TCTATGTTTTCAGGAATTAAAAGTACAATT TCCATGTTTTCAGGAATTAAAAGTACAATT CDC9-Stool TCCATGTTTTCAGGAATTAAAAGTACAATT CDC9-Vero

KU

GATTTGACTAAATCAATGGCAACTAGTGTAATGAAAAAATTTAGAAAAATCAAAATTAGCT GATTTAACTAAATCAATGGCGACTAGTGTAATGAAGAAATTTAGAAAAATCAAAATTAGCT CDC9-Stool GATTTAACTAAATCAATGGCGACTAGTGTAATGAAGAAATTTAGAAAAATCAAAATTAGCT

CDC9-Vero

1710 KU ACATCAATTTCAGAAATGACTAATTCATTG ACATCAATTTCAGAAATGACTAATTCATTG CDC9-Stool ACATCAATTTCAGAAATGACTAATTCATTG CDC9-Vero

KU

TCAGACGCAGCATCATCAGCATCAAGAAGCGTTTCTATCAGATCGAATATATCCACAATT
TCAGATGCTGCTTCATCAGCATCAAGAAACGTTTCTATTAGATCGAATTTATCTGCGATT
TCAGATGCTGCTTCATCAGCATCAAGAAACGTTTCTATTAGATCGAATTTATCTGCGATT CDC9-Stool CDC9-Vero

KU 1800 TCGAATTGGACTAATGTTTCAAATGATGTA CDC9-Stool TCAAATTGGACTAATGTTTCAAATGATGTG TCAAATTGGACTAATGTTTCAAATGATGTG CDC9-Vero

KU

TCAAATGTGACTAATTCGTTGAGTGATATTTCAACACAAACGTCTACAATCAGTAAGAAC CDC9-Stool TCAAACGTAACTAATTCATTAAATGATATTTCAACACAAACATCTACAATTGGTAAGAAA ${\tt TCAAACGTAACTAATTCATTAAATGATATTTCAACACAAACATCTACAATTGGTAAGAAA}$ CDC9-Vero

ΚIJ CTTAGATTAAAAGAAATGATTACTCAAACT CDC9-Stool CTTAGATTAAAAGAAATGATTACTCAAACT CTTAGATTAAAAGAAATGATTACTCAAACT CDC9-Vero

KU

GAAGGAATGAGTTTTGATGATATTTCAGCGGCAGTATTAAAAACAAAAATAGATATGTCT CDC9-Stool GAAGGAATGAGCTTTGATGACATTTCAGCAGCTGTACTAAAAACAAAAATAGATATGTCT GAAGGAATGAGCTTTGATGACATTTCAGCAGCTGTACTAAAAACAAAAATAGATATGTCT CDC9-Vero

1980 ACTCAAATTGGAAAGAATACTTTACCCGAT ACTCAAATTGGAAAAAATACTTTACCTGAT ACTCAAATTGGAAAAAATACTTTACCTGAT KU CDC9-Stool

CDC9-Vero

ΚIJ

CDC9-Stool ATAGTTACAGAAGCATCTGAGAAATTTATTCCAAAACGATCATACCGAATATTAAAGGAT CDC9-Vero

KU GATGAAGTAATGGAAATTAATACTGAAGGG GATGAAGTAATGGAAATTAATACTGAAGGA CDC9-Stool

GATGAAGTAATGGAAATTAATACTGAAGGA CDC9-Vero

KU

CDC9-Stool AAATTCTTTGCATACAAAATTAATACATTTGATGAAGTTCCATTCGATGTAAACAAATTC CDC9-Vero AAATTCTTTGCATACAAAATTAATACATTTGATGAAGTTCCATTCGATGTAAACAAATTC KU 2160 GCTGAACTTGTAACAAATTCTCCAGTTATA CDC9-Stool GCTGAACTAGTAACAGATTCTCCAGTTATA GCTGAACTAGTAACAGATTCTCCAGTTATA CDC9-Vero KU TCAGCAATAATCGATTTTAAAACATTAAAAAATTTGAATGATAATTATGGAATTACTCGA TCAGCGATAATCGATTTTAAGACATTGAAAAATTTTAAATGATAATTATGGAATCACTCGG CDC9-Stool TCAGCGATAATCGATTTTAAGACATTGAAAAATTTAAATGATAATTATGGAATCACTCGG CDC9-Vero KU 2250 ATAGAAGCATTAAATTAAATCGAAT CDC9-Stool ACAGAAGCGTTAAATTTAATTAAGTCGAAT ACAGAAGCGTTAAATTTAATTAAGTCGAAT CDC9-Vero KU CCAAATGTATTACGTAATTTCATTAACCAAAATAATCCAATTATAAGGAATAGAATTGAA
CCAAATATGTTACGTAATTTCATTAATCAAAATAATCCAATTATAAGGAATAGAATTGAA CDC9-Stool CCAAATATGTTACGTAATTCATTAATCAAAATAATCCAATTATAAGGAATAGAATTGAA CDC9-Vero KU 2340 CAGCTAATTCTACAATGTAAATTGTGAGAA CDC9-Stool CAGTTAATACTACAATGTAAATTGTGAGAA CAGTTAATACTACAATGTAAATTGTGAGAA CDC9-Vero 2341 2359 CGCTATTGAGGATGTGACC CGCTATTGAGGATGTGACC KU (SEQ ID NO. 58) (SEQ ID NO. 59) CDC9-Stool CGCTATTGAGGATGTGACC (SEQ ID NO. 60) CDC9-Vero Alineamiento de secuencias nt del gen VP6 de las cepas CDC-9 y KU. VP6nt KU GGCTTTAAAACGAAGTCTTCGACATGGAGGTTCTGTACTCACTGTCAAAAACTCTTAAAG CDC9-Stool GGCTTTAAAACGAAGTCTTCGACATGGAGGTTCTGTATTCATTGTCAAAAACTCTTAAAG ${\tt GGCTTTAAAACGAAGTCTTCGACATGGAGGTTCTGTATTCATTGTCAAAAAACTCTTAAAG}$ CDC9-Vero ATGCTAGGGACAAAATTGTTGAAGGTACAT CDC9-Stool ATGCTAGGGATAAGATTGTTGAAGGTACAT ATGCTAGGGATAAGATTGTTGAAGGTACAT CDC9-Vero ΚIJ CDC9-Stool TATATTCTAATGTTAGCGATCTTATTCAGCAATTTAATCAAATGATAGTAACCATGAACG
TATATTCTAATGTTAGCGATCTTATTCAGCAATTTAATCAAATGATAGTAACCATGAACG CDC9-Vero KU 180 GAAATGACTTTCAAACTGGAGGAATTGGTA GAAATGACTTTCAAACTGGAGGAATTGGCA CDC9-Stool

CDC9-Vero

KU CDC9-Stool GAAATGACTTTCAAACTGGAGGAATTGGCA

181 ATTTACCTATTAGGAATTGGACTTTCGATTTTGGTCTATTAGGTACAACACTTTTAAATT CDC9-Vero KU TAGACGCTAATTACGTTGAGAATGCTAGAA TTGATGCTAATTATGTTGAGACTGCTAGAA CDC9-Stool TTGATGCTAATTATGTTGAGACTGCTAGAA CDC9-Vero KU CDC9-Stool CDC9-Vero KU 360 AAGCTCAAAGAAATGGAGTAGCTCCACAAT CDC9-Stool AGTCTCAAAGAAATGGAGTAGCTCCACAAT AGTCTCAAAGAAATGGAGTAGCTCCACAAT CDC9-Vero KU CCGAAGCATTGGGGAAGTTAGCAGGTATTAAATTCAAAAGAATAAATTTTGATAATTCAT CTGAGGCATTGAGAAAGCTAGCCGGTATTAAAATTTAAAAGAATAAACTTTAATAATTCAT CDC9-Stool CTGAGGCATTGAGAAAGCTAGCCGGTATTAAATTTAAAAGAATAAACTTTAATAATTCAT CDC9-Vero ΚIJ CTGAATATATAGAAAATTGGAACTTACAAA CAGAATATATAGAAAATTGGAATTTACAAA CDC9-Stool CAGAATATATAGAAAATTGGAATTTACAAA CDC9-Vero KU ATAGGAGGCAGCGTACCGGATTTGTTTTTCATAAACCTAATATATTTTCCATACTCAGCTT ATAGAAGACAACGTACTGGATTTGTTTTTCATAAACCTAATATATTTTCCATACTCAGCGT ATAGAAGACAACGTACTGGATTTGTTTTTCATAAACCTAATATATTTTCCATACTCAGCGT CDC9-Stool CDC9-Vero KU CATTCACTTTAAATAGATCTCAACCAATGC CDC9-Stool CATTTACTTTAAATAGATCTCAACCAATGC CATTTACTTTAAATAGATCTCAACCAATGC CDC9-Vero ΚIJ $\label{eq:total} ATGACAATTTGATGGGAACTATGTGGCTTAATGCTGGATCAGAAATTCAGGTAGCTGGATATGATAATTTAATGGGAACCATGTGGCTTAATGCTGGATCAGAAATTCAAGTAGCTGGAT$ CDC9-Stool ATGATAATTTAATGGGAACCATGTGGCTTAATGCTGGATCAGAAATTCAAGTAGCTGGAT CDC9-Vero KU TTGATTATTCATGCGCTATAAATGCACCAG CDC9-Stool TTGACTATTCGTGTGCTCTAAATGCTCCAG TTGACTATTCGTGTGCTCTAAATGCTCCAG CDC9-Vero

KU

CDC9-Stool

KU TAACTTTATTGCCTGATGCAGAGAGATTCA CDC9-Stool TAACTTTGTTACCTGATGCAGAAAGATTTA TAACTTTGTTACCTGATGCAGAAAGATTTA CDC9-Vero KU CDC9-Stool CDC9-Vero TTTTAAGACCGAATAATGTTGAAGTAGAAT CDC9-Stool TCCTAAGACCAAACAATGTAGAAGTAGAAT TCCTAAGACCAAACAATGTAGAAGTAGAAT CDC9-Vero KU TTTTGTTGAATGGACAAATTATCAATACATATCAAGCTAGATTTGGCACTATTATTGCAA CDC9-Stool TTTTACTGAATGGACAAATTATTAATACATATCAAGCTAGATTTGGCACTATTGTCGCAA ${\tt TTTTACTGAATGGACAAATTATTAATACATATCAAGCTAGATTTGGCACTATTGTCGCAA}$ CDC9-Vero KU GAAATTTCGATACGATTCGGTCATTATTCC CDC9-Stool GAAATTTTGATACAATTCGCCTGTCATTCC GAAATTTTGATACAATTCGCCTGTCATTCC CDC9-Vero KU AGTTAATGCGTCCACCAAATATGACGCCAGCTGTTAATGCACTGTTTCCGCAAGCACAAC CDC9-Stool AATTAATGCGTCCACCAAACATGACGCCAGCCGTAAATGCATTATTTCCGCAAGCACAACAATTAATGCGTCCACCAAACATGACGCCAGCCGTAAATGCATTATTTCCGCAAGCACAAC CDC9-Vero KU CTTTTCAACATCATGCAACAGTTGGACTTA CTTTTCAACATCATGCAACAGTTGGACTTA CDC9-Stool CTTTTCAACATCATGCAACAGTTGGACTTA CDC9-Vero ΚIJ CATTACGTATTGAATCTGCAGTTTGTGAATCAGTGCTTGCGGATGCTAATGAGACTCTAT CDC9-Stool CDC9-Vero KU 1080 TGGCGAATGTGACCGCAGTACGTCAAGAGT CDC9-Stool TGGCGAATGTTACCGCAGTACGTCAAGAGT TGGCGAATGTTACCGCAGTACGTCAAGAGT CDC9-Vero ΚIJ 1081 CDC9-Stool ATGCTATACCAGTTGGACCAGTATTTCCACCAGGCATGAATTGGACTGAGCTAATTACTA
ATGCTATACCAGTTGGACCAGTATTTCCACCAGGCATGAATTGGACTGAGCTAATTACTA CDC9-Vero 1170 ACTATTCACCATCTAGAGAAGATAATTTAC KU CDC9-Stool

CDC9-Vero

ACTATTCACCATCTAGGGAAGATAATTTGC ACTATTCACCATCTAGGGAAGATAATTTGC

KU 1171 AACGTGTTTTTACGGTAGCTTCCATTAGAAGCATGTTGATTAAGTGAGGACCAGACTAAG CDC9-Stool CDC9-Vero KU CATCTGGTATCCAATCTTAGTTAGCATGTA CDC9-Stool CATCTGGTATCCAATCTTAGTTAGCATGTA CATCTGGTATCCAATCTTAGTTAGCATGTA CDC9-Vero KU 1261 GCTACATCAAGTCATTCAGACTCTTCAAGTAAGGACATGATTTCATGTTCGCTACGTAGA GCTATATCAAGTCATTCAGACTCTACAAGTAAGGACATGGCTCCATGTTCGCTACGTAGA CDC9-Stool GCTATATCAAGTCATTCAGACTCTACAAGTAAGGACATGGCTCCATGTTCGCTACGTAGA CDC9-Vero KU 1356 GTAACTGTCTGAATGATGTGAGAGGATGTGACC (SEQ ID NO. 61) CDC9-Stool GTAACTGTATGAATGATGTAGTGAGAGGATGTGACC GTAACTGTATGAATGATGTAGTGAGAGGATGTGACC (SEQ ID NO. 62) (SEQ ID NO. 63) CDC9-Vero Alineamiento de secuencias nt del gen VP7 de las cepas CDC-9 y KU. VP7nt KU GGCTTTAAAAGAGAGAATTTCCGTTTGGCTAACGGTTAGCTCCTTTTAATGTATGGTATT CDC9-Stool CDC9-Vero KU GAATATACCACAATTCTAATCTTTTTGATA CDC9-Stool GAATATACCACAATTCTAATCTTTCTGATA GAATATACCACAATTCTAATCTTTCTGATA CDC9-Vero KU TCAATCATTCTACTCAACTATATATTAAAATCAGTGACTCGAATAATGGACTACATTATA CDC9-Stool ${\tt TCAATCATTCTACTTAACTATATATAAAATCAGTGACCCGAATAATGGACTACATTATA$ ${\tt TCAATCATTCTACTTAACTATATATAAAATCAGTGACCCGAATAATGGACTACATTATA}$ CDC9-Vero KU TACAGATTTTTGTTGATTACTGTAGCATTA
TATAGATTTTTGTTAATTTTTTTTAGCATTA CDC9-Stool TATAGATTTTTGTTAATTTTTTGTAGCATTA CDC9-Vero ΚIJ CDC9-Stool TTTGCCTTAACTAAAGCTCAGAATTATGGACTTAATATACCAATAACAGGATCAATGGAT TTTGCCTTAACTAAAGCTCAGAATTATGGACTTAATATACCAATAACAGGATCAATGGAT CDC9-Vero KU ACTGTATATACCAACTCTACTCAAGAAGAA CDC9-Stool ACTGTATATTCCAACTCTACTCGAGAAGAA ACTGTATATTCCAACTCTACTCGAGAAGAA CDC9-Vero GTGTTCCTAACTTCTACATTATGTCTATATTATCCAACTGAAGCAAGTACTCAAATCAAT CDC9-Stool

GATGGTGACTGGAAAGACTCATTGTCGCAA

GATGGTGAATGGAAAGACTCATTATCGCAA GATGGTGAATGGAAAGACTCATTATCGCAA CDC9-Vero KU ATGTTTCTCACAAAAGGTTGGCCAACAGGATCTGTTTACTTCAAAGAGTACTCAAGTATT CDC9-Stool ATGTTTCTTATAAAAGGTTGGCCAACAGGATCAGTCTATTTTAAAGAGTACTCAAATATC ATGTTTCTTATAAAAGGTTGGCCAACAGGATCAGTCTATTTTAAAGAGTACTCAAATATC CDC9-Vero KU GTTGATTTTTCTGTTGACCCGCAACTGTAT GTTGATTTTTCCGTTGACCCACAATTATAT CDC9-Stool GTTGATTTTTCCGTTGACCCACAATTATAT CDC9-Vero KU GTTGATTTTTCCGTTGACCCACAATTATATGACCAAAGTCTTGAATTAGATATGTCAGAG CDC9-Stool TGTGATTATAACTTAGTACTAATGAAGTATGATCAAAGTCTTGAATTAGATATGTCAGAA ${\tt TGTGATTATAACTTAGTACTAATGAAGTATGATCAAAGTCTTGAATTAGATATGTCAGAA}$ CDC9-Vero KU TTAGCTGATTTAATATTGAATGAATGGTTA TTAGCTGATTTGATATTGAATGAATGGTTA CDC9-Stool TTAGCTGATTTGATATTGAATGAATGGTTA CDC9-Vero KU CDC9-Stool TGTAATCCAATGGATATAACATTATATTATTATCAGCAATCGGGAGAATCAAATAAGTGG CDC9-Vero

ΚIJ

CDC9-Stool GTGTGTCCACTGAATACACAAACGTTAGGAATAGGTTGTCAAACAACAAATGTAGACTCA

ATATCGATGGGATCATCATGTACTGTGAAA ATATCAATGGGATCATCATGTACTGTGAAA

ATATCAATGGGATCATCATGTACTGTGAAA

CDC9-Vero

KU

CDC9-Stool

CDC9-Vero

KU

CDC9-Stool

720 TTTGAAATGGTTGCTGAGAATGAGAAATTA CDC9-Stool TTTGAAACAGTTGCTGAGAATGAAAAATTA TTTGAAACAGTTGCTGAGAATGAAAAATTA

CDC9-Vero

KU

CDC9-Stool

CDC9-Vero

KU ACTATTCGAAATTGTAAGAAATTAGGTCCA CDC9-Stool ACTATTCGAAATTGTAAGAAGTTAGGTCCA ACTATTCGAAATTGTAAGAAGTTAGGTCCA CDC9-Vero

KU CDC9-Stool

AGAGAAAATGTAGCTGTAATACAAGTTGGTGGTTCTAATGTATTAGATATAACAGCAGAT AGAGAGAATGTGGCTGTAATACAAGTTGGTGGCGCTAATATATTAGACATAACAGCGGAT AGAGAGAATGTGGCTGTAATACAAGTTGGTGGCGCTAATATATTAGACATAACAGCGGAT CDC9-Vero 900 CCAACAACTAATCCACAAACTGAGAGAATG CCAACAACTAATCCACAAATTGAGAGAATG KU CDC9-Stool CCAACAACTAATCCACAAATTGAGAGAATG CDC9-Vero KU CDC9-Stool $\tt ATGAGAGTGAATTGGAAAAGATGGTGGCAAGTGTTCTATACTATAGTAGATTATTAAT$ CDC9-Vero KU CAAATTGTACAGGTGATGTCCAAAAGATCA CAGATTGTACAGGTAATGTCCAAAAGATCA CDC9-Stool CAGATTGTACAGGTAATGTCCAAAAGATCA CDC9-Vero KU AGATCATTAAATTCTGCGGCTTTTTATTATAGAGTATAGATTATCTTAGATTAGAATTG
AGATCATTAAATTCCGCTGCGTTCTATTATAGAGTATAGATATATCTTAGATTAGAATTG
AGATCATTAAATTCCGCTGCGTTCTATTATAGAGTATAGATATATCTTAGATTAGAATTG CDC9-Stool CDC9-Vero 1062 TTCGATGTGACC TATGATGTGACC KU (SEQ ID NO. 64) (SEQ ID NO. 65) (SEQ ID NO. 66) CDC9-Stool TATGATGTGACC CDC9-Vero

Alineamientos de secuencias de CDC-66

Alineamiento de secuencias nt del gen NSP1 de las cepas CDC-66 y DS-1.				
	10 20 30 40 50 60 70			
DS-1 NSP1 CDC66 stool CDC66 vero	GGCTTTTTTTTGAAAAGTCTTGTGGAAGCCATGGCTACTTTTAAAGATGCTTGCT			
DS-1 NSP1 CDC66 stool CDC66 vero	80 90 100			
	110 120 130 140 150 160 170			

DS-1 NSP1 CDC66 stool	TTAGGAGCTAATGATGTCTGGAGACCTTCTACTCTAACAAAACGTAAAGGATGGTGCTTAGATTGTTGTC TTAGGAGCTAATGATGTTTGGAGACCTTCTACTCTAACAAAACGTAAAGGATGGTGCTTAGATTGTTGTC
CDC66 vero	TTAGGAGCTAATGATGTTTGGAGACCTTCTACTCTAACAAAACGTAAAGGATGGTGCTTAGATTGTTGTC
DS-1 NSP1 CDC66 stool CDC66 vero	180 190 200 AACACAGGATTTAACTTACTGCCAAGGAT AACACAGGATTTGACTTACTGCCAAGGAT AACACAGGATTTGACTTTACTGCCAAGGAT
	210 220 230 240 250 260 270
DS-1 NSP1 CDC66 stool CDC66 vero	GTCTAATATATCACGTTTGTGAATGGTGTAGTCAATATAACAGATGTTTTCTTGATGATGATGATCCTCATTT GCTTAATATATCACGTTTGTGAATGGTGTAGTCAATATAGCAGATGCTTTCTTGATAATGATCCGCATTT GCTTAATATATCACGTTTGTGAATGGTGTAGTCAATATAGCAGATGCTTTCTTGATAATGATCCGCATTT
DS-1 NSP1 CDC66 stool CDC66 vero	280 290 300 ACTAAGAATGCGAACTTTTAGAAATGAAAT ACTAAGAATGCGAACTTTTAGAAATGAAAT
DS-1 NSP1 CDC66 stool CDC66 vero	310 320 330 340 350 360 370
DS-1 NSP1 CDC66 stool CDC66 vero	380 390 400 CATAAATTTGCAAACACAATTAAACAGCAT AATAAGTTTGCAAACACAATTAAACAACAT AATAAGTTTGCAAACACAATTAAACAACAT AATAAGTTTGCAAACACAATTAAACAACAT
DS-1 NSP1 CDC66 stool CDC66 vero	410 420 430 440 450 460 470
DS-1 NSP1 CDC66 stool CDC66 vero	480 490 500
DS-1 NSP1 CDC66 stool CDC66 vero	510 520 530 540 550 560 570
DS-1 NSP1 CDC66 stool CDC66 vero	580 590 600
	610 620 630 640 650 660 670
DS-1 NSP1 CDC66 stool CDC66 vero	TTTTGACAGAATGGCATTTTTACCATTAACATTACAACAAGAGTATGCACTTAGATATTTTTCAAAATCA TTTTGACAGAATGGCATTTTTACCATTAACATTACACAAGAATATGCACTTAGATATTTTTCAAAATCA TTTTGACAGAATGGCATTTTTACCATTAACATTACAGCAAGAATATGCACTTAGATATTTTTCAAAATCA TTTTGACAGAATGGCATTTTTACCATTAACATTACAGCAAGAATATGCACTTAGATATTTTTCAAAATCA
DS-1 NSP1 CDC66 stool CDC66 vero	680 690 700 AGATTTATTACTGAAAGAAGAAATGTATT AGATTTATTACTGAAAGAAGAAATGTATT AGATTTATTACTGAAAGAAGAAGTATT AGATTTATTACTGAAAGAAGAAGTATT
DS-1 NSP1 CDC66 stool CDC66 vero	710 720 730 740 750 760 770
	780 790 800
DS-1 NSP1 CDC66 stool CDC66 vero	GGAATTGTAGTAATATGTCAGTTGAATGGA GAAATTGCAGCAATATGTCAGTTGAATGGA GAAATTGCAGCAATATGTCAGTTGAATGGA
	810 820 830 840 850 860 870

DS-1 NSP1 CDC66 stocl CDC66 verc	ATAAGGCGTGTAATATTATTAGAAATATAAGTGATTATTTCGATATACTAAAATCGTCACACACTGAGTT ATAAAGCATGTAATCTTATTAAAAATATAAGTAATTATTTCGATATACTCAAATCGTCACATACTGAGTC ATAAAGCATGTAATCTTATTAAAAATATAAGTAATTATTTCGATATACTCAAATCGTCACATACTGAGTC
DS-1 NSP1 CDC66 stocl CDC66 vero	880 890 900 CTATAATTATCTCCTAGATCTAGAATGTT TTATAATGTATCTCCTAGATCTAGACTATT TTATAATGTATCTCCTAGATCTAGACTATT TTATAATGTATCTCCTAGATCTAGACTATT
DS-1 NSP1 CDC66 stool CDC66 vero	910 920 930 940 950 960 970
DS-1 NSP1 CDC66 stool CDC66 vero	980 990 1000 TTGGCTACTGAAGTACATAATTGTAAATGG TTGGCTACTGAAGTACACAATTGCAAATGG TTGGCTACTGAAGTACACAATTGCAAATGG
DS-1 NSP1 CDC66 stocl CDC66 vero	1010 1020 1030 1040 1050 1060 1070
DS-1 NSP1 CDC66 stool CDC66 vero	1080 1090 1100
DS-1 NSP1 CDC66 stool CDC66 vero	1110 1120 1130 1140 1150 1160 1170
DS-1 NSP1 CDC66 stool CDC66 vero	1180 1190 1200
DS-1 NSP1 CDC66 stool CDC66 vero	1210 1220 1230 1240 1250 1260 1270
DS-1 NSP1 CDC66 stool CDC66 vero	1280 1290 1300 TGGAATGTGAATGTATTAATAATGT TGGAATGTATGTA
DS-1 NSP1 CDC66 stool CDC66 vero	1310 1320 1330 1340 1350 1360 1370
DS-1 NSP1 CDC66 stocl CDC66 vero	1380 1390 1400
DS-1 NSP1 CDC66 stool CDC66 vero	1410 1420 1430 1440 1450 1460 1470
DS-1 NSP1 CDC66 stool CDC66 vero	1480 1490 1500
	1510 1520 1530 1540 1550

```
-CTCGCCACCATGAGACTCTCTGCACTAGAGTAGCGCCTAGGC
DS-1 NSP1
CDC66 stool AAATTATGTTCGCCACCATAAGACTCTCTGCACTAGAGTAGCGCCTAGGCCCACATAAGACTCTCTGCACTAGAGTAGCGCCTAGGCCACATAAGACTCTCTGCACTAGAGTAGCGCCTAGGC
                                                  1560
                                 AGCATTAAAA-GTGTGACC
                                                                                                   (SEQ ID NO. 67)
(SEQ ID NO. 68)
DS-1 NSP1
 CDC66 stool AGCATAAAAAAGTGTGACC
                                                                                                (SEQ ID NO. 69)
CDC66 vero
                                  AGCATAAAAAAGTGTGACC
Alineamiento de secuencias aa del gen NSP1 de las cepas CDC-66 y DS-1.
                                 10 20 30 40 50 60 70

MATFKDACYQYKKLNKLNNAVLKLGANDVWRPSTLTKRKGWCLDCCQHTDLTYCQGCLIYHVCEWCSQYN
MATFKDACYQYKKLNKLNNAVLKLGANDVWRPSTLTKRKGWCLDCCQHTDLTYCQGCLIYHVCEWCSQYS
MATFKDACYQYKKLNKLNNAVLKLGANDVWRPSTLTKRKGWCLDCCQHTDLTYCQGCLIYHVCEWCSQYS
DS-1 NSP1
CDC66 stool
CDC66 vero
DS-1 NSP1 RCFLDDDPHLLRMRTFRNEITKSDLENLIN RCFLDNDPHLLRMRTFRNEITKSDLENLIN RCFLDNDPHLLRMRTFRNEITKSDLENLIN RCFLDNDPHLLRMRTFRNEITKSDLENLIN
                                  DS-1 NSP1
CDC66 stool
CDC66 vero
                                  \verb|MYDTLFPINQKIVNKFANTIKQHKCRNEYLIQWYNHFLMPITLQSLSIELDGDIYYIFGYYDDMHKINQT|\\
                                                    180 190
                                  PFSFTNLISKYDMLLLDSINFDRMAFLPLT
DS-1 NSP1
CDC66 stool
CDC66 vero
                                  PFSFTNLISKYDVLLLDSINFDRMAFLPLT
PFSFTNLISKYDVLLLDSINFDRMAFLPLT
                                  DS-1 NSP1
CDC66 stool LQQEYALRYFSKSRFITERRKCIELSHFSDNILNDLHNPNFTLQVIRNCSNMSVEWNKACNLIKNISNYF LQQEYALRYFSKSRFITERRKCIELSHFSDNILNDLHNPNFTLQVIRNCSNMSVEWNKACNLIKNISNYF
DS-1 NSP1 DILKSSHTESYNVSPRCPVFTQYKLKIASK DILKSSHTESYNVSPRCPVFTQYKLK DILKSTHESYNVSPRCPVFTQYKLK DILKSTHESYNVSPRCPVFTQYKLK DILKSTHESYNVSPRCPVFTQYKLK DILKSTHESYNVSPRCPVFTQYKL DILKSTHESYNVSPRCPVFTQYKL DILKSTHESYNVSPRCPVFTQYKNT DILKSTHESYNVSPRCPVFTQYKT DILKSTHESYNVSPRCPVFTQYKT DILKSTHESYNVSPRCPVFTQYKT DILKSTHESYNVS
                                 DS-1 NSP1
CDC66 stool
CDC66 vero
                                  LIKPNYVASNHNSLATEVHNCKWCSINNNSIVWTDFRIKNVYNDIFNFIRALVKSNLYVGHCSSEEKIYE
                                  ....|....|....|....|
SIKEVLNVCKENEWNMLVTEMFNQLEPIKL
DS-1 NSP1
CDC66 stool SIKDILNVCKENEWNMLVTEIFNQLDPIKL CDC66 vero SIKDILNVCKENEWNMLVTEIFNQLDPIKL
                                                                               420
                                                                                                         430
                                                                                                                                   440
                                                                                                                                                             450
                                                                                                                                                                                        460
                                  DS-1 NSP1
CDC66 stool
CDC66 vero
                                   NDDSYVLLNYEINWNVMNVLINSIGKVPKILTLSDVISILRIIIYDWFDIRFMRNTPMTTFTVNKLKQLY
DS-1 NSP1 EKDRTAEHDSRISDIE EKDRTAEYDSGISDVD EKDRTAEYDSGISDVD
                                                                                  (SEQ ID NO. 70)
(SEQ ID NO. 71)
(SEQ ID NO. 72)
```

Alineamiento de secuencias nt del gen NSP2 de las cepas CDC-66 y DS-1.

DS-1 NSP2 CDC66 stool	10 . GGCTTTTAAAGCGTCT GGCTTTTAAAGCGTCT GGCTTTTAAAGCGTCT	 CAGTCGCCG CAGTCGCCG	TTTGAGCCTT(TTTGAGCCTT(. GCGGTGTAGCO GCGGTGTAGCO	 CATGGCTGAG CATGGCTGAG	 CTAGCTTGCT CTAGCTTGCT	 TTTGT TTTGC
CDC00 VCIO	OCCITITANACCOTC	CAUICOCCU	IIIOAGCCII	COOLOTAGE	AIGGCIGAG	CIAGCIIGCI	11100
	80	90	100				
DS-1 NSP2	TATCCCCATTTGGAGA	ATGATAGCT.	ATAAA				
CDC66 stool	TATCCCCATTTGGAGA	ACGATAGCT.	ATAAA				
CDC66 vero	TATCCCCATTTGGAGA	ACGATAGCT.	ATAAA				
			130				
	.		.	.			
DS-1 NSP2	TTTATTCCATTTAATA	ATTTAGCCA	TAAAATGTAT(GTTGACAGCA <i>I</i>	AAGTGGATA	AAAAAGATCA	GGATA
CDC66 stool	TTTATTCCTTTTAACA	ATTTGGCTA	TAAAATGTAT	GTTGACAGCA	AAGTAGAGA	AAAAAGATCA	GGACA
CDC66 vero	TTTATTCCTTTTAACA	ATTTGGCTA	FAAAATGTAT(STTGACAGCA	AAGTAGAGA	AAAAAGATCA	GGACA

	400
DS-1 NSP2 CDC66 stool CDC66 vero	180 190 200 AATTTTACAATTCAATAATTTATGGTATTG AATTTTACAATTCGATAATCTATGGTATTG AATTTTACAATTCGATAATCTATGGTATTG AATTTTACAATTCGATAATCTATGGTATTG
DS-1 NSP2 CDC66 stool CDC66 vero	210 220 230 240 250 260 270 CGCCACCACCGCAATTTAAAAAACGCTATAAATACAAATGACAATTCCAGAGGAATGAAT
DS-1 NSP2 CDC66 stool CDC66 vero	280 290 300 AATGTTTAATAAGGTGGCAGCATTAATTTG AATGTTTAACAAGGTGGCGGTGCTAATTTG AATGTTTAACAAGGTGGCGGTGCTAATTTG AATGTTTAACAAGGTGGCGGTGCTAATTTG
DS-1 NSP2 CDC66 stool CDC66 vero	310 320 330 340 350 360 370
DS-1 NSP2 CDC66 stool CDC66 vero	380 390 400 AGACATTTGGAAAACTTAGTATTAAGAAGA AGACATCTTGAGAATTTAGTATTAAGAAGA AGACATCTTGAGAATTTAGTATTGAGAAGA AGACATCTTGAGAATTTAGTATTGAGAAGA
DS-1 NSP2 CDC66 stool CDC66 vero	410 420 430 440 450 460 470 GAAAATCATCAGGATGTTATTTCATTCATAGAGAGCTACTTATTAGAATCAGTACTTAATAGCTATTGGTC GAAAATCATCAGGATGTTCTTTTTCACTCAAAAGAGCTACTCAAATCAGTTTTTAATAGCTATTGGTC GAAAATCATCAGGATGTTCTTTTTCACTCAAAAGAGCTACTACTCAAATCAGTTTTAATAGCTATTGGTC GAAAATCATCAGGATGTTCTTTTTCACTCAAAAGAGCTACTACTCAAATCAGTTTTTAATAGCTATTGGTT
DS-1 NSP2 CDC66 stool CDC66 vero	480 490 500 ATTCGAAAGAATTGAAACGACTGCTG ATTCAAAGGAGATTGAAACGACTGCCACTG ATTCAAAGGAGATTGAAACGACTGCCACTG ATTCAAAGGAGATTGAAACGACTGCCACTG
DS-1 NSP2 CDC66 stool CDC66 vero	510 520 530 540 550 560 570
DS-1 NSP2 CDC66 stool CDC66 vero	580 590 600
DS-1 NSP2	610 620 630 640 650 660 670
CDC66 stool CDC66 vero	TGAGTACAAAATTACAGTTAACGAAGGTAAACCAATCTCAGAATCTCATATAAAAAGAACTTATTGCTGAA TGAATATAAAATTACAGTAAAATGAAGAAACCAATTTCAGAGTCACACGTAAAAGAACTTATTGCTGAA TGAATATAAAATTACAGTAAATGAAGATAAACCAATTTCAGAGTCACACGTAAAAGAACTTATTGCTGAA TGAATATAAAATTACAGTAAATGAAGATAAACCAATTTCAGAGTCACACGTAAAAGAACTTATTGCTGAA
CDC66 stool	TGAGTACAAAATTACAGTTAACGAAGGTAAACCAATCTCAGAATCTCATATAAAAGAACTTATTGCTGAA TGAATATAAAATTACAGTAAATGAAGATAAACCAATTTCAGAGTCACACGTAAAAGAACTTATTGCTGAA
CDC66 stool CDC66 vero DS-1 NSP2 CDC66 stool	TGAGTACAAAATTACAGTTAACGAAGGTAAACCAATCTCAGAATCTCATATAAAAGAACTTATTGCTGAA TGAATATAAAATTACAGTAAATGAAGATAAACCAATTTCAGAGTCACACGTAAAAGAACTTATTGCTGAA TGAATATAAAATTACAGTAAATGAAGATAAACCAATTTCAGAGTCACACGTAAAAGAACTTATTGCTGAA 680 690 700 TTGCGGTGGCAATATAATAAAATTTGCGGTG TTACGGTGGCAATATAATAAAATTTGCGGTG
DS-1 NSP2 CDC66 vero DS-1 NSP2 CDC66 stool CDC66 vero DS-1 NSP2 CDC66 stool	TGAGTACAAAATTACAGTTAACGAAGGTAAACCAATCTCAGAATCTCATATAAAAGAACTTATTGCTGAA TGAATATAAAATTACAGTAAATGAAGATAAACCAATTTCAGAGTCACACGTAAAAGAACTTATTGCTGAA TGAATATAAAATTACAGTAAATGAAGATAAACCAATTTCAGAGTCACACGTAAAAGAACTTATTGCTGAA 680 690 700 TTGCGGTGGCAATATAAATTTGCGGTG TTACGGTGGCAATATAAATATTGCAGTA TTACGGTGGCAATACAATA

	000 000
DS-1 NSP2 CDC66 stool CDC66 vero	880 890 900 GATGAAACAAGGTAATACTCTCGATACATG AATGAAACAAGGTAATACTCTTGATGTATG AATGAAACAAGGTAATACTCTTGATGTATG AATGAAACAAGGTAATACTCTTGATGTATG
DS-1 NSP2 CDC66 stool CDC66 vero	910 920 930 940 950 960 970 CAAGAAACTACTCTTTCAAAAAATTAAGCGAGAAACTAATCCGTTCAAGGGACTGTCAACTGATAGGAAG CAAAAAACTACTCTTCAAAAAAATGAAACGAGAAAGTAATCCATTTAAGGGGCTGTCAACTGATAGAAAA CAAAAAACTACTCTTCAAAAAAATGAAACGAGAAAGTAATCCATTTAAGGGGCTTGTAACTGATAGAAAA
DS-1 NSP2 CDC66 stool CDC66 vero	980 990 1000 ATGGATGAAGTTTCTCAAGTAGGAATTTAA ATGGATGAAGTTTCTCAAGTAGGAATCTAA ATGGATGAAGTTTCTCAAGTAGGAATCTAA
DS-1 NSP2 CDC66 stool CDC66 vero	1010 1020 1030 1040 TTCGTTATCGATTCAAGAATGGGTATGAGAGTAAGAAT TTCGTTATCTGTTTGAAGGTGGGTATGGCAGAGTAAGAAT TTCGTTATCTGTTTGAAGGTGGGTATGGCAGAGTAAGAAT
DS-1 NSP2 CDC66 stool CDC66 vero	1050 AGAAAGCGCTTATGTGACC (SEQ ID NO. 73) AGAAAGCGCTTATGTGACC (SEQ ID NO. 74) AGAAAGCGCTTATGTGACC (SEQ ID NO. 75)
Alineamient	to de secuencias aa del gen NSP2 de las cepas CDC-66 y DS-1.
DS-1 NSP2 CDC66 stool CDC66 vero	10 20 30 40 50 60 70 MAELACFCYPHLENDSYKFIPFNNLAIKCMLTAKVDKKDQDKFYNSIIYGIAPPPQFKKRYNTNDNSRGM MAELACFCYPHLENDSYKFIPFNNLAIKCMLTAKVEKKDQDKFYNSIIYGIAPPPQFKKRYNTNDNSRGM MAELACFCYPHLENDSYKFIPFNNLAIKCMLTAKVEKKDQDKFYNSIIYGIAPPPQFKKRYNTNDNSRGM MAELACFCYPHLENDSYKFIPFNNLAIKCMLTAKVEKKDQDKFYNSIIYGIAPPPQFKKRYNTNDNSRGM
DS-1 NSP2 CDC66 stool CDC66 vero	80 90 100 NYETSMFNKVAALICEALNSTKVTQSDIAS NYETVMFNKVAVLICEALNSIKVTQSDVAS NYETVMFNKVAVLICEALNSIKVTQSDVAS
DS-1 NSP2 CDC66 stool CDC66 vero	110 120 130 140 150 160 170
DS-1 NSP2 CDC66 stool CDC66 vero	180 190 200 YLEHKLMPILDPNFIEYKITVNEGKPISES YLEHKLMPILDQNFIEYKITVNEDKPISES YLEHKLMPILDQNFIEYKITVNEDKPISES
DS-1 NSP2 CDC66 stool CDC66 vero	210 220 230 240 250 260 270
DS-1 NSP2 CDC66 stool CDC66 vero	280 290 300 310
Alineamient	to de secuencias nt del gen NSP3 de las cepas CDC-66 y DS-1.
DS-1 NSP3 CDC66 stool CDC66 vero	10 20 30 40 50 60 70 GGCTTTTAATGCTTTTCAGTGGTTGATGCTCAAGATGGAGTCTACTCAACAGATGGATCTTCTATTATT GGCTTTTAATGCTTTTCAGTGGTTGATGCTCAAGATGGAGTCTACTCAACAGATGGTATCTCTATTATT GGCTTTTAATGCTTTTCAGTGGTTGATGCTCAAGATGGAGTCTACTCAACAGATGGTATCTTCTATTATT
DS-1 NSP3	80 90 100 AACTCTTCTTTTGAAGCTGCAGTTGTCGCT

CDC66 stool CDC66 vero	AACTCTTCTTTTGAAGCTGCAGTTGTCGCT AACTCTTCTTTTGAAGCTGCAGTTGTCGCT
DS-1 NSP3 CDC66 stool CDC66 vero	110 120 130 140 150 160 170 GCAACTTCTACCTTGGAGTTAATGGGTATTCAATATGATTAATGAAGTATACACTAGAGTTAAAAGTA GCAACTTCTACATTAGAATTAATGGGTATTCAATATGATTATAATGAAGTATATCACTAGAGTTAAAAGTA GCAACTTCTACATTAGAATTAATGGGTATTCAATATGATTATAATGAAGTATATCATAGAGTTAAAAGTA
DS-1 NSP3 CDC66 stool CDC66 vero	180 190 200 AGTTTGATTTTGTAATGGATGATTCTGGTG AGTTTGATTTTGTAATGGATGATTCTGGCG AGTTTGATTTTGTAATGGATGATTCTGGCG
DS-1 NSP3 CDC66 stool CDC66 vero	210 220 230 240 250 260 270 TTAAAAATAATTTAATGGGTAAAGCAGCTACAATTGATCAGGCTTTGAATGGTAAGTTTAGTTCATCTAT TTAAGAATAATCTAATAGGTAAAGCAGCTACAATTGATCAGGCTTTGAATGGTAAGTTTAGTTCATCTAT TTAAGAATAATCTAATAGGTAAAGCAGCTACAATTGATCAGGCTTTGAATGGTAAGTTTAGTTCATCTAT
DS-1 NSP3 CDC66 stool CDC66 vero	280 290 300
DS-1 NSP3 CDC66 stool CDC66 vero	310 320 330 340 350 360 370
DS-1 NSP3 CDC66 stool CDC66 vero	380 390 400
DS-1 NSP3 CDC66 stool CDC66 vero	410 420 430 440 450 460 470
DS-1 NSP3 CDC66 stool CDC66 vero	480 490 500
DS-1 NSP3 CDC66 stool CDC66 vero	510 520 530 540 550 560 570
DS-1 NSP3 CDC66 stool CDC66 vero	580 590 600 GTCATTAAAGCAGCGAGTTAATGAAAAGTA GTCGTTAAAACAGCGAGTTAATGAAAAGTA GTCGTTAAAACAGCGAGTTAATGAAAAGTA GTCGTTAAAACAGCGAGTTAATGAAAAGTA
DS-1 NSP3 CDC66 stool CDC66 vero	610 620 630 640 650 660 670
DS-1 NSP3 CDC66 stool CDC66 vero	680 690 700 CAGCAAGCTCATATCAATTACAAATA CAGCAAGCTCATATTAATGAATTACAAGTA CAGCAAGCTCATATTAATGAATTACAAGTA CAGCAAGCTCATATTAATGAATTACAAGTA
DS-1 NSP3 CDC66 stool CDC66 vero	710 720 730 740 750 760 770
DS-1 NSP3	780 790 800 TACGGTCCATGGAGCTATCAGATGACATTA

CDC66 stool CDC66 vero	TACGGTCTATGGAACTATCAGATGACATTA TACGGTCTATGGAACTATCAGATGACATTA
DS-1 NSP3 CDC66 stool CDC66 vero	810 820 830 840 850 860 870 AATCAGATATTGAACAACAACTCAATTCAATAGATCATATTAATCCAGTTAATGCTTTCGATGATTTGA AATCAGATATTGAACAACAACTTAATTCAATAGATCATATTAATCCAGTTAATGCTTTTGATGATTTTGA AATCAGATATTGAACAACAACTTAATTCAATAGATCATATTAATCCAGTTAATGCTTTTGATGATTTTGA AATCAGATATTGAACAACAACTTAATTCAATAGATCATATTAATCCAGTTAATGCTTTTGATGATTTTGA
DS-1 NSP3 CDC66 stool CDC66 vero	880 890 900 GTCCATTCTTCGTAATTTAATATCTCATTA GTCTATTCTTCGTAATTTAATATCTGATTA GTCTATTCTTCGTAATTTAATATCTGATTA GTCTATTCTTCGTAATTTAATATCTGATTA
DS-1 NSP3 CDC66 stool CDC66 vero	910 920 930 940 950 960 970 TGATAGAATTTTTATTATGTTTAAAGGATTGTTGCAGCAAAGTAATTACACTTATACCTATGAATAAACA TGATAGAATTTTTATTATGTTTAAAGGATTGTTGCAGCAAAGTAATTACACTTATACCTATGAATAAACA TGATAGAATTTTTATTATGTTTAAAGGATTGTTGCAGCAAAGTAATTACACTTATACCTATGAATAAACA TGATAGAATTTTTATTATGTTTAAAGGATTGTTGCAGCAAAGTAATTACACTTATACCTATGAATAAACA
DS-1 NSP3 CDC66 stool CDC66 vero	980 990 1000 TGGTATAACCATCTTCACGTAACCCTCT TGGCATATTACCATCTTCACGTAACCCTCT TGGCATATTACCATCTTCACGTAACCCTCT
DS-1 NSP3 CDC66 stool CDC66 vero	1010 1020 1030 1040 1050 ATGAGCACAATAGTTAAAAGCTAACACTGTCAAAAAACCTAAATGGCTAT ATGAGCACAATAGTTAAAAGCTAACACTGTCAAAAAACCTAAATGGCTAT ATGAGCACAATAGTTAAAAGCTAACACTGTCAAAAAACCTAAATGGCTAT ATGAGCACAATAGTTAAAAGCTAACACTGTCAAAAAACCTAAATGGCTAT
DS-1 NSP3 CDC66 stool CDC66 vero	1060 . AGGGCGTTATGTGACC (SEQ ID NO. 79) AGGGCGTTATGTGACC (SEQ ID NO. 80) AGGGGCGTTATGTGACC (SEQ ID NO. 81)
	to do conservicio de del mar NODO de las comos ODO CC y DO 4
Alineamient	to de secuencias aa dei gen NSP3 de las cepas CDC-66 y DS-1.
DS-1 NSP3 CDC66 stool CDC66 vero	to de secuencias aa del gen NSP3 de las cepas CDC-66 y DS-1. 10 20 30 40 50 60 70 .
DS-1 NSP3 CDC66 stool	10 20 30 40 50 60 70 MLKMESTQQMASSIINSSFEAAVVAATSTLELMGIQYDYNEVYTRVKSKFDFVMDDSGVKNNLMKKAATI MLKMESTQQMVSSIINSSFEAAVVAATSTLELMGIQYDYNEVYTRVKSKFDFVMDDSGVKNNLIGKAATI
DS-1 NSP3 CDC66 stool CDC66 vero DS-1 NSP3 CDC66 stool	10 20 30 40 50 60 70
DS-1 NSP3 CDC66 stool CDC66 vero DS-1 NSP3 CDC66 stool CDC66 vero DS-1 NSP3 CDC66 stool	10
DS-1 NSP3 CDC66 stool CDC66 vero	10
DS-1 NSP3 CDC66 stool CDC66 vero	10
DS-1 NSP3 CDC66 stool CDC66 vero DS-1 NSP3 CDC66 stool CDC66 vero	10

DS-1 NSP4	
CDC66 stool CDC66 vero	——————————————————————————————————————
	80 90 100
DS 1 NSP4 CDC66 stool CDC66 vero	ATTGAGTGTAATCACTTTAATGAATAATAC ATTGAGTGTAATCACTTTAATGAATAGTAC ATTGAGTGTAATCACTTTAATGAATAGTAC
	110 120 130 140 150 160 170
DS-1 NSP4 CDC66 stool CDC66 vero	ATTACACACAATACTAGAGGATCCAGGAATGGCGTATTTTCCTTATATTGCATCTGTCCTGACAGTTTTA ATTACATACAATATTAGAGGATCCAGGAATGGCGTATTTTCCTTATATTGCATCTGTCATGACAGTTTTG ATTACATACAATATTAGAGGATCCAGGAATGGCGTATTTTCCTTATATTGCATCTGTCATGACAGTTTT
	180 190 200
DS-1 NSP4 CDC66 stool CDC66 vero	TTCGCATTACACAAAGCGTCAATTCCAACA TTTACATTACA
	210 220 230 240 250 260 270
DS-1 NSP4 CDC66 stool CDC66 vero	ATGAAAATAGCATTGAAGACGTCAAAATGTTCATATAAAGTAGTAAAGTATTGTATTGTAACGATCTTTA ATGAAAATAGCATTGAAGACGTCAAAATGTTCGTATAAAGTAGTAAAGTATTGTATTGTAACGGTTCTTA ATGAAAATAGCATTGAAGACGTCAAAATGTTCGTATAAAGTAGTAAAGTATTGTATTGTAACGGTTCTTA
	280 290 300
DS-1 NSP4 CDC66 stool CDC66 vero	ATACATTACTAAAACTAGCAGGTTACAAAG ATACATTATTAAAGTTAGCAGGTTACAAAG ATACATTATTAAAGTTAGCAGGTTACAAAG
	310 320 330 340 350 360 370
DS-1 NSP4 CDC66 stool CDC66 vero	AACAAATTACTACTAAAGATGAAATAGAAAAGCAAATGGACAGAGTTGTTAAAGAAATGAGACGTCAATT AACAAATTACTACTAAAGATGAAATAGAAAAACAAATGGACAGAGTCGTTAAAGAAATGAGACGTCAGTT AACAAATTACTACTAAAGATGAAATAGAAAAACAAATGGACAGAGTCGTTAAAGAAATGAGACGTCAGTT
	380 390 400
DS-1 NSP4 CDC66 stool CDC66 vero	AGAGATGATTGATAAACTAACTACGCGTGA AGAGATGATTGATAAACTAACTACACGTGA AGAGATGATTGATAAACTAACTACACGTGA
	410 420 430 440 450 460 470
DS-1 NSP4 CDC66 stool CDC66 vero	AATTGAGCAAGTTGAATTACTTAAACGTATCTACGATAAATTGATGGTGCGATCGACTGACGAGATAGAT
	480 490 500
DS-1 NSP4 CDC66 stool CDC66 vero	ATGACAAAAGAAATTAATCAAAAGAACGTG ATGACAAAAGAAATTAATCAAAAGAACGTA ATGACAAAAGAAATTAATCAAAAGAACGTA
	510 520 530 540 550 560 570
DS-1 NSP4 CDC66 stool CDC66 vero	AGANCGCTNGANGNGTGGGNGANTGGANANANTCCTTNTGANCCANANGANGTGNCTGCNGCANTGTGNG AGANCGCTAGANGAGTGGGAGAGCGGGAAAANTCCTTATGANCCAAAAGAAGTGACTGCAGCGATGTGAG AGANCGCTAGAAGAGTGGGAGAGCGGGAAAAATCCTTATGANCCAAAAGAAGTGACTGCAGCGATGTGAG
	580 590 600
DS-1 NSP4 CDC66 stool CDC66 vero	AGGTTGAGCTGCGTCGACTGTCTTCGGAA AGGTTGAGCTGCCGTCGACTGTCTTCGGAA AGGTTGAGCTGCCGTCGACTGTCTTCGGAA
	610 620 630 640 650 660 670
DS-1 NSP4 CDC66 stool CDC66 vero	GCGGCGGAGTTCTTTACAGTAAGCTCCATCAGACCTGATGGCTAGGCTAAGAAGCCATAGTCAGCCATATC GCGGCGGAGTTCTTTACAGTAAACTCCATTGGACCCGATGGCTGAGTAAGAAGCCATAGTCAGCCATATC GCGGCGGAGTTCTTTACAGTAAACTCCATTGGACCCGATGGCTGGC
DS-1 NSP4 CDC66 stool CDC66 vero	680 690 700 GCGTGTGGCTTAAGCCTTAATCCCGTTTAA GCGTGTGGCTTAAGCCTTAATCCCGTTTAA GCGTGTGGCTTAAGCCTTAATCCCGTTTAA
	710 720 730 740 750
DS-1 NSP4 CDC66 stool CDC66 vero	CCAATCCGGTCAGCACCGGACGTTAATGGAAGGAAAGGTCTTAATGTGACC CTAATCCGGTCAGCACCGGACGTTAATGGAAGGAAAGGTCTTAATGTGACC CTAATCCGGTCAGCACCGGACGTTAATGGAAGGAAAGGTCTTAATGTGACC CTAATCCGGTCAGCACCGGACGTTAATGGAAGGAAAGGTCTTAATGTGACC (SEQ ID NO. 85) (SEQ ID NO. 87)

Alineamient	o de secuencias aa del gen NSP4 de las cepas CDC-66 y DS-1.
DS-1 NSP4 CDC66 stool CDC66 vero	MEKLTDLNYTLSVITLMNNTLHTILEDPGMAYFPYIASVLTVLFALHKASIPTMKIALKTSKCSYKVVKY MEKFTDLNYTLSVITLMNSTLHTILEDPGMAYFPYIASVMTVLFTLHKASIPTMKIALKTSKCSYKVVKY MEKFTDLNYTLSVITLMNSTLHTILEDPGMAYFPYIASVMTVLFTLHKASIPTMKIALKTSKCSYKVVKY
DS-1 NSP4 CDC66 stool CDC66 vero	80 90 100 CIVTIFNTLLKLAGYKEQITTKDEIEKQMD CIVTVLNTLLKLAGYKEQITTKDEIEKQMD CIVTVLNTLLKLAGYKEQITTKDEIEKQMD
DS-1 NSP4 CDC66 stool CDC66 vero	110 120 130 140 150 160 RVVKEMRRQLEMIDKLTTREIEQVELLKRIYDKLMVRSTDEIDMTKEINQKNVRTLEEWE RVVKEMRRQLEMIDKLTTREIEQVELLKRIYDKLIVRSTDEIDMTKEINQKNVRTLEEWE RVVKEMRRQLEMIDKLTTREIEQVELLKRIYDKLIVRSTDEIDMTKEINQKNVRTLEEWE
DS-1 NSP4 CDC66 stool CDC66 vero	170 NGKNPYBPKEVTAAM (SEQ ID NO. 88) SGKNPYEPKEVTAAM (SEQ ID NO. 89) SGKNPYEPKEVTAAM (SEQ ID NO. 90)
Alineamient	o de secuencias nt del gen NSP5 de las cepas CDC-66 y DS-1.
DS-1 NSP5 CDC66 stool CDC66 vero	10 20 30 40 50 60 70
DS-1 NSP5 CDC66 stool CDC66 vero	80 90 100 TTTATAAAAATGAATCGTCTTCAACAACGT TTTATAAAAATGAATCGTTTTCAACAACGT TTTATAAAAATGAATCGTTTTCAACAACGT
DS-1 NSP5 CDC66 stool CDC66 vero	110 120 130 140 150 160 170
DS-1 NSP5 CDC66 stool CDC66 vero	180 190 200 ATACATGTTGTCAAAATCTCCAGAAGATAT GTACATGTTGTCAAAATCTCCAGAAGATAT GTACATGTTGTCAAAATCTCCAGAAGATAT
DS-1 NSP5 CDC66 stool CDC66 vero	210 220 230 240 250 260 270
DS-1 NSP5 CDC66 stool CDC66 vero	280 290 300
DS-1 NSP5 CDC66 stool CDC66 vero	310 320 330 340 350 360 370
DS-1 NSP5 CDC66 stool CDC66 vero	380 390 400

	410 420 430 440 450 46		
DS-1 NSP5 CDC66 stool CDC66 vero	CAATATCTACCACATCAAAGAAGGAGAAATCTAAACAAGAAAAACAAAAATAAGTATAAAA	AATGTTACCCA AATATTATCCA	
	480 490 500 		
DS-1 NSP5 CDC66 stool CDC66 vero	AAAATCGAAGCAGAGTCTGATTCCGATGA		
	510 520 530 540 550 56		
DS-1 NSP5 CDC66 stool CDC66 vero	TTACATATTAGATGATTCAGATAGCGATGATGGAAAATGTAAAAATTGCAAATATAAAAA. ATACGTATTAGATGATTCAGATAGTGATGATGGAAAATGTAAAAATTGCAAGTATAAAAA. ATACGTATTAGATGATTCAGATAGTGATGATGGAAAATGTAAAAATTGCAAGTATAAAAA. ATACGTATTAGATGATCAGATAGTGATGATGGAAAATGTAAAAATTGCAAGTATAAAAA.	GAAATATTTT GAAATATTTT	
	580 590 600 		
DS-1 NSP5 CDC66 stool CDC66 vero	GCACTTCGTTTAAGAATGAAACAAGTTGCA		
	610 620 630 640 650 66		
DS-1 NSP5 CDC66 stool CDC66 vero	ATGCAATTAATTAAAGATTTATGAAAATTTTCTGATTACTCTTGTCATTAATTA	'ATTCACTCAA 'ATTTACTTAA	
	680 690 700 		
DS-1 NSP5 CDC66 stool CDC66 vero	TGCACGGATAATAAATGCTATCTAATTATA		
	710 720 730 740 750 76	770	
DS-1 NSP5 CDC66 stool CDC66 vero	TTGTATGATAATTATTACAATATATACTGTGTTATTGAATTTAATGATATCCTAATGATA	.G .GAAGATTGAT	
	780 790 800 810 820		
DS-1 NSP5 CDC66 stool CDC66 vero	GCGTCTACCCTAAGAGATCACTAGGGAGCTCCCCACTCCCGTTTTGTGACC (SEQ I	ID NO. 91) ID NO. 92) ID NO. 93)	
Alineamient	nto de secuencias aa del gen NSP5 de las cepas CDC-66 y DS	3-1.	
		50 70	
DS-1 NSP5 CDC66 stool CDC66 vero	MSLSIDVTSLPSISSSVYKNESSSTTSTISGKSIGRSEQYISPDAEAFNKYMLSKSPEDI	GPSDSASNDP GPSDSASNDP	
	80 90 100		
DS-1 NSP5			
CDC66 stool CDC66 vero	 LTSFSIRSNAVKTNADAGVSMDSSAQSRPS LTSFSIRSNAVKTNADAGVSMDSSAQSRPS LTSFSIRSNAVKTNADAGVSMDSSAQSRPS		
CDC66 stool	LTSFSIRSNAVKTNADAGVSMDSSAQSRPS LTSFSIRSNAVKTNADAGVSMDSSAQSRPS LTSFSIRSNAVKTNADAGVSMDSSAQSRPS 110 120 130 140 150 16	50 170	
CDC66 stool	LTSFSIRSNAVKTNADAGVSMDSSAQSRPS LTSFSIRSNAVKTNADAGVSMDSSAQSRPS LTSFSIRSNAVKTNADAGVSMDSSAQSRPS 110 120 130 140 150 16	OYILDDSDSDD EYVLDDSDSDD	
CDC66 stool CDC66 vero DS-1 NSP5 CDC66 stool	LTSFSIRSNAVKTNADAGVSMDSSAQSRPS LTSFSIRSNAVKTNADAGVSMDSSAQSRPS LTSFSIRSNAVKTNADAGVSMDSSAQSRPS 110 120 130 140 150 16 SDIGYDQMDFSLNKGIKFDATVDSSISITTSKKEKSKQENKNKYKKYYPKIEAESDSDD SDIGYDQMDFSLNKGIKIDATMDSSISISTTSKKEKSKQENKNKYKKYYPKIEAESDSDE SDIGYDQMDFSLNKGIKIDATMDSSISISTTSKKEKSKQENKNKYKKYYPKIEAESDSDE SDIGYDQMDFSLNKGIKIDATMDSSISISTTSKKEKSKQENKNKYKKYYPKIEAESDSDE	OYILDDSDSDD EYVLDDSDSDD	
CDC66 stool CDC66 vero DS-1 NSP5 CDC66 stool	LTSFSIRSNAVKTNADAGVSMDSSAQSRPS LTSFSIRSNAVKTNADAGVSMDSSAQSRPS LTSFSIRSNAVKTNADAGVSMDSSAQSRPS 110 120 130 140 150 16 SDIGYDQMDFSLNKGIKFDATVDSSISISTTSKKEKSKQENKNKYKKCYPKIEAESDSDD SDIGYDQMDFSLNKGIKIDATMDSSISISTTSKKEKSKQENKNKYKKYYPKIEAESDSDE SDIGYDQMDFSLNKGIKIDATMDSSISISTTSKKEKSKQENKNKYKKYYPKIEAESDSDE SDIGYDQMDFSLNKGIKIDATMDSSISISTTSKKEKSKQENKNKYKKYYPKIEAESDSDE 180 190 200 GKCKNCKYKKKYFALRLRMKQVAMQLIKDL (SEQ ID NO. 94)	OYILDDSDSDD EYVLDDSDSDD	
DS-1 NSP5 CDC66 vero DS-1 NSP5 CDC66 vero DS-1 NSP5 CDC66 vero	LTSFSIRSNAVKTNADAGVSMDSSAQSRPS LTSFSIRSNAVKTNADAGVSMDSSAQSRPS LTSFSIRSNAVKTNADAGVSMDSSAQSRPS 110 120 130 140 150 16	 YYILDDSDSDD YYVLDDSDSDD YYVLDDSDSDD	

CDC66 stool CDC66 vero	GGCTATTAAAGCTGTACAATGGGGAAGTATAATCTAATC
DS-1 VP1 CDC66 stool CDC66 vero	80 90 100 CACAATCTGCAGTTCAAATTCCAATTTATT CACAATCTGCAGTTCAAATTCCAATTTATT CACAATCTGCAGTTCAAATTCCAATTTATT CACAATCTGCAGTTCAAATTCCAATTTATT
DS-1 VP1 CDC66 stool CDC66 vero	110 120 130 140 150 160 170
DS-1 VP1 CDC66 stool CDC66 vero	180 190 200 GGTTTATCACTGAAGAAATTATTTAGTGA GGTCTATCACTGAAAAAACTATTCAATGA GGTCTATCACTGAAAAAACTATTCAATGA
DS-1 VP1 CDC66 stool CDC66 vero	210 220 230 240 250 260 270
DS-1 VP1 CDC66 stool CDC66 vero	280 290 300 GTTGAACGGAAATTAGTTAAATATGCAAAA GTTGAACGGAAATTAGTAAATATGCGAAA GTTGAACGGAAATTAGTAAAATATGCGAAA
DS-1 VP1 CDC66 stool CDC66 vero	310 320 330 340 350 360 370
DS-1 VP1 CDC66 stool CDC66 vero	380 390 400 TATTTCCAACAGAAGAACATATACTGATT TGTTTCCGACAGCGGAAGAATACACCGACT TGTTTCCGACAGCGGAAGAATACACCGACT
DS-1 VP1 CDC66 stool CDC66 vero	410 420 430 440 450 460 470
DS-1 VP1 CDC66 stool CDC66 vero	480 490 500 ACACGAAAATGATACTGCTGAAAAGCTTAA ACACGAAAATGATACTGCTGAAAGATTTAA ACACGAAAATGATACTGCTGAAAGATTTAA
DS-1 VP1 CDC66 stool CDC66 vero	510 520 530 540 550 560 570
DS-1 VP1 CDC66 stool CDC66 vero	580 590 600 CACAATGCAAAATATAGATATGAT CACAATGCAAAATATAGATATGATGAT CACAATGCAAAATATAGATATGATAGATATGAT CATAATGCAAAATATAGATATGAATATGAT
DS-1 VP1 CDC66 stool CDC66 vero	610 620 630 640 650 660 670
DS-1 VP1 CDC66 stool CDC66 vero	680 690 700 TTTCTCATGAAGATTACTTGCAAGAG TTTCTCATGAAGATTATTTGCAAGAG TTTCTCATGAAGATTATTTTGCAAGAG TTTCTCATGAAGATTATTTAATTGCAAGAG
DS-1 VP1	710 720 730 740 750 760 770 AATTGATAGTATTATCATATTCTAATAGATCAACTTTAGCAAAGTTGGTGTCATCTCCAATGTCAATTTT

CDC66 stool CDC66 vero	AATTGATAGTACTGTCATATTCTAATAGATCAACTTTGGCAAAATTAGTATCATCTCCAATGTCAATTTT AATTGATAGTACTGTCATATTCTAATAGATCAACTTTGGCAAAATTAGTATCATCTCCAATGTCAATTTT
DS-1 VP1 CDC66 stool CDC66 vero	780 790 800
DS-1 VP1 CDC66 stool CDC66 vero	810 820 830 840 850 860 870
DS-1 VP1 CDC66 stocl CDC66 vero	880 890 900
DS-1 VP1 CDC66 stocl CDC66 vero	910 920 930 940 950 960 970 ATGAGGAAAGCTEGATTGGTTGACATACCTAAGATGATACAAGACTGGTTACTTGATTGA
DS-1 VP1 CDC66 stool CDC66 vero	980 990 1000
DS-1 VP1 CDC66 stool CDC66 vero	1010 1020 1030 1040 1050 1060 1070
DS-1 VP1 CDC66 stool CDC66 vero	1080 1090 1100 TACAGAAAATETAGATGAATCTATCG TATAGAAGATCTAGATGAAATCTATCG TATAGAAGATCTAGATGAAATCTATCG TATAGAAGATCTAGATGACGAAATCTATCG
DS-1 VP1 CDC66 stocl CDC66 vero	1110 1120 1130 1140 1150 1160 1170 TGAATATACTATGTTGATAACAGATGAAGTTGTTAAGATGCTTGAAGAATCAGTAAAACATGACGACCAT TGAATATACAATGTTAATAACAGATGAAGTTGTTAAAATGCTTGAAGAATCAGTAAAACATGATGACCAC TGAATATACAATGTTAATAACAGATGAAGTTGTTAAAATGCTTGAAGAATCAGTAAAACATGATGACCAC
DS-1 VP1 CDC66 stool CDC66 vero	1180 1190 1200 TTGTTACAAGATTCTGAATTAGCTGGATTG CTATTACAAGATTCTGAATTAGCTGGCTTG CTATTACAAGATTCTGAATTAGCTGGCTTG
DS-1 VP1 CDC66 stool CDC66 vero	1210 1220 1230 1240 1250 1260 1270
DS-1 VP1 CDC66 stocl CDC66 vero	1280 1290 1300 CTAAAAAGAACATGCATGATGATGATA CTAAAAAGAACATGCATGTTATGGATGATA CTAAAAAGAACATGCATGTTATGGATGATA CTAAAAAGAACATGCATGTTATGGATGATA
DS-1 VP1 CDC66 stocl CDC66 vero	1310 1320 1330 1340 1350 1360 1370
DS-1 VP1 CDC66 stool CDC66 vero	1380 1390 1400 AAGAGATSTACCAGGAAGAACAACTAGGAT AAGAGATSTACCAGGAAGAACAACTAGAAT AAGAGATSTACCAGGAAGAACAACTAGAAT AAGAGATGTACCAGGAAGAACAACTAGAAT
DS-1 VP1	1410 1420 1430 1440 1450 1460 1470

CDC66 stocl CDC66 vero	AATATTCATATTGCCGTATGAATATTTTATAGCACAGCATGCTGTGGTTGAGAAAATGTTAATCTATGCAA AATATTCATATTGCCGTATGAATATTTTATAGCACAGCATGCTGTGGTTGAGAAAATGTTAATCTATGCAA
DS-1 VP1 CDC66 stocl CDC66 verc	1480 1490 1500
DS-1 VP1 CDC66 stool CDC66 vero	1510 1520 1530 1540 1550 1560 1570
DS-1 VP1 CDC66 stocl CDC66 vero	1580 1590 1600
DS-1 VP1 CDC66 stocl CDC66 vero	1610 1620 1630 1640 1650 1660 1670
DS-1 VP1 CDC66 stocl CDC66 vero	1680 1690 1700 TGCTACAGTCATCCAGACACTAAATCTATA TGCTAAAGTTATTCAGACACTAAATTTATA TGCTAAAGTTATTCAGACACTAAATTTATA
DS-1 VP1 CDC66 stool CDC66 vero	1710 1720 1730 1740 1750 1760 1770 TAAACAAACGCAAATTAACTTGATGGACTCATATGTTCAAATACCAGATGGCAATGTATATAAGAAAATA TAAACAAACACAAATTAACTTGATGGACTCATATGTTCAAATACCAGATGGTAATGTTATTAAGAAAATA TAAACAAACACAAATTAACTTGATGGACTCATATGTTCAAATACCAGATGGTAATGTTATTAAGAAAATA
DS-1 VP1 CDC66 stock CDC66 vero	1780 1790 1800 CAGTATGGAGCCGTAGCATCAGGAGAAAAA CAGTATGGAGCTGTAGCATCAGGAGAGAAA CAGTATGGAGCTGTAGCATCAGGAGAGAAA CAGTATGGAGCTGTAGCATCAGGAGAGAAA
DS-1 VP1 CDC66 stocl CDC66 verc	1810 1820 1830 1840 1850 1860 1870
DS-1 VP1 CDC66 stocl CDC66 verc	1880 1890 1900 AATACTCATTCATCACAAAAATAATAAGAG AATATTCATTTGCCACAAAAATAATAAGAG AATATTCATTTGCCACAAAAATAATAAGAG
DS-1 VP1 CDC66 stocl CDC66 vero	1910 1920 1930 1940 1950 1960 1970
DS-1 VP1 CDC66 stocl CDC66 vero	1980 1990 2000
DS-1 VP1 CDC66 stocl CDC66 vero	2010 2020 2030 2040 2050 2060 2070
DS-1 VP1 CDC66 stool CDC66 verc	2080 2090 2100 GGAAAATATTTTTTTAGAGCCGGAATAAAT GGAAAAATATTCTTTAGAGCAGAATAAAT GGAAAAATATTCTTTTAGAGCAGGAATAAAT
DS-1 VP1	2110 2120 2130 2140 2150 2160 2170

CDC66 stool CDC66 vero	TTGCTTAATAATGAAAAAAGAGGACAAAGTACGCAATGGGATCAGGCAGCAGTTTTATACTCTAATTACA TTGCTTAATAATGAAAAAAAGAGGACAAAGTACGCAATGGGATCAGGCAGCAGTTTTATACTCTAATTACA
DS-1 VP1 CDC66 stool CDC66 vero	2180 2190 2200 TTGTAAATAGACTTAGGGGTTTTGAGACTG TTGTAAATAGACTTAGAGGGTTTGAGACTG TTGTAAATAGACTTAGAGGGTTTGAGACTG TTGTAAATAGACTTAGAGGGTTTGAGACTG
DS-1 VP1 CDC66 stool CDC66 vero	2210 2220 2230 2240 2250 2260 2270
DS-1 VP1 CDC66 stool CDC66 vero	2280 2290 2300 TCCCTCTSAACGCGTATTAACCACAACTC TCCTTCTGAACGTGTTTAACTACGAATTC TCCTTCTGAACGTGTTTAACTACGAATTC TCCTTCTGAACGTGTTTAACTACGAATTC
DS-1 VP1 CDC66 stool CDC66 vero	2310 2320 2330 2340 2350 2360 2370
DS-1 VP1 CDC66 stool CDC66 vero	2380 2390 2400
DS-1 VP1 CDC66 stool CDC66 vero	2410 2420 2430 2440 2450 2460 2470
DS-1 VP1 CDC66 stocl CDC66 vero	2480 2490 2500 AATTACTTTTTTCAAAAAATAATATAGTAT AGCTACTTTTTTCAAAAAATAATATAGTAT AGCTACTTTTTTCAAAAAATAATATAGTAT
DS-1 VP1 CDC66 stocl CDC66 vero	2510 2520 2530 2540 2550 2560 2570
DS-1 VP1 CDC66 stool CDC66 vero	2580 2590 2600
DS-1 VP1 CDC66 stocl CDC66 vero	2610 2620 2630 2640 2650 2660 2670
DS-1 VP1 CDC66 stocl CDC66 vero	2680 2690 2700
DS-1 VP1 CDC66 stocl CDC66 vero	2710 2720 2730 2740 2750 2760 2770
DS-1 VP1 CDC66 stool CDC66 vero	2780 2790 2800
DS-1 VP1	2810 2820 2830 2840 2850 2860 2870

CDC66 stool CDC66 vero	CAGCAATATCCCGGCTTATATCAAAGTACTCAGTTTATAAACCATCGATCG
DS-1 VP1 CDC66 stool CDC66 vero	2880 2890 2900 TTCACTACATGAAAATGAAATACAATTGTA TTCATTACATGAGAATGAAATACAATTATA TTCATTACATGAGAATGAAATACAATTATA
DS-1 VP1 CDC66 stool CDC66 vero	2910 2920 2930 2940 2950 2960 2970
DS-1 VP1 CDC66 stool CDC66 vero	2980 2990 3000 AAATATAGGATACTGGAATCATATATT AAATACAGGATATTGGAATCATATATAT AAATACAGGATATTGGAATCATATATATATATATATATAT
DS-1 VP1 CDC66 stool CDC66 vero	3010 3020 3030 3040 3050 3060 3070
DS-1 VP1 CDC66 stool CDC66 vero	3080 3090 3100 TTAGAATACCGTTCAAAGGAAAGATACCAG TTAGAATACCATTTAAAGGGAAGATACCAG TTAGAATACCATTTAAAGGGAAGATACCAG
DS-1 VP1 CDC66 stool CDC66 vero	3110 3120 3130 3140 3150 3160 3170
DS-1 VP1 CDC66 stool CDC66 vero	3180 3190 3200
DS-1 VP1 CDC66 stool CDC66 vero	3210 3220 3230 3240 3250 3260 3270
DS-1 VP1 CDC66 stool CDC66 vero	3280 3290 3300
Alineamient	o de secuencias aa del gen VP1 de las cepas CDC-66 y DS-1.
DS-1 VP1 CDC66 stool	10 20 30 40 50 60 70 MGKYNLILSEYLSFIYNSQSAVQIPIYYSSNSELESRCIEFHSKCLENSKNGLSLKKLFSEYSDVIENAT MGKYNLILSEYLSFIYNSQSAVQIPIYYSSNSELESRCIEFHSKCLENSKNGLSLKKLFNEYSDVIENAT MGKYNLILSEYLSFIYNSQSAVQIPIYYSSNSELESRCIEFHSKCLENSKNGLSLKKLFNEYSDVIENAT
DS-1 VP1 CDC66 stool CDC66 vero	80 90 100 LLSILSYSYDKYNAVERKLVKYAKSKPLEA LLSILSYSYDKYNAVERKLVKYAKGKPLEA LLSILSYSYDKYNAVERKLVKYAKGKPLEA
DS-1 VP1 CDC66 stool CDC66 vero	110 120 130 140 150 160 170 DLTLNELDYENNKITSELFPTEEEYTDSLMDPAILTSLSSNLNAVMFWLEKHENDTAEKLKIYKRRLDLF DLTVNELDYENNKITSELFPTAEEYTDSLMDPAILTSLSSNLNAVMFWLEKHENDTAERFKIYKRRLDLF DLTVNELDYENNKITSELFPTAEEYTDSLMDPAILTSLSSSLNAVMFWLEKHENDTAERFKIYKRRLDLF
DS-1 VP1 CDC66 stool CDC66 vero	180 190 200 SIVASTINKYGVPRHNAKYRYEYDVMKDKP IIVASTVNKYGVPRHNAKYRYEYDVMKDKP IIVASTVNKYGVPRHNAKYRYEYDVMKDKP

DS-1 VP1 CDC66 stool CDC66 vero	210 220 230 240 250 260 270
DS-1 VP1 CDC66 stool CDC66 vero	280 290 300 FSNKYVRATVPDQTFDELKQMLDNMRKAGL FSNKYVRAVVPDQTFDELKQMLDSMRKAGI. FSNKYVRAVVPDQTFDELKQMLDSMRKAGI.
DS-1 VP1 CDC66 stool CDC66 vero	310 320 330 340 350 360 370 VDIPKMIQDWLVDCSIEREPLMAKIYSWSFHVGFRKQKMLDAALDQLKTEYTENVDDEMYREYTMLIRDE VDIPKMIQDWLVDCSIEKFPLMAKIYSWSFHVGFRKQKMLDAALDQLKTEYIEDVDDEMYREYTMLIRDE VDIPKMIQDWLVDCSIEKFPLMAKIYSWSFHVGFRKQKMLDAALDQLKTEYIEDVDDEMYREYTMLIRDE
DS-1 VP1 CDC66 stool CDC66 vero	380 390 400 VVKMLEESVKHDDHLLQDSELAGLLSMSSA VVKMLEESVKHDDHLLQDSELAGLLSMSSA VVKMLEESVKHDDHLLQDSELAGLLSMSSA
DS-1 VP1 CDC66 stool CDC66 vero	410 420 430 440 450 460 470 SNCESRQLKFGRKTIFSTKKNMHVMDDMANGRYTPGIIPPVNADKPIPLGRRDVPGRRTRIIFILPYEYF SNCESRQLKFGRKTVFSTKKNMHVMDDMANGRYTPGIIPPVNADKPIPLGRRDVPGRRTRIIFILPYEYF SNGESRQLKFGRKTVFSTKKNMHVMDDMANGRYTPGIIPPVNADKPIPLGRRDVPGRRTRIIFILPYEYF
DS-1 VP1 CDC66 stool CDC66 vero	480 490 500 IAQHAVVEKMLIYAKHTREYAEFYSQSNQL IAQHAVVEKMLIYAKHTREYAEFYSQSNQL IAQHAVVEKMLIYAKHTREYAEFYSQSNQL IAQHAVVEKMLIYAKHTREYAEFYSQSNQL
DS-1 VP1 CDC66 stool CDC66 vero	510 520 530 540 550 560 570 LSYGDVTRFLSNNSMVLYTDVSQWDSSQHNTQPFRKGIIMGLDILANMTNDARVIQTLNLYKQTQINLMD LSYGDVTRFLSNNAMVLYTDVSQWDSSQHNTQPFRKGIIMGLDILANMTNDARVIQTLNLYKQTQINLMD LSYGDVTRFLSNNAMVLYTDVSQWDSSQHNTQPFRKGIIMGLDILANMTNDAKVIQTLNLYKQTQINLMD
DS-1 VP1 CDC66 stool CDC66 vero	580 590 600 SYVQIPDGNVIKKIQYGAVASGEKQTKAAN SYVQIPDGNVIKKIQYGAVASGEKQTKAAN SYVQIPDGNVIKKIQYGAVASGEKQTKAAN SYVQIPDGNVIKKIQYGAVASGEKQTKAAN
DS-1 VP1 CDC66 stool CDC66 vero	610 620 630 640 650 660 670 SIANLALIKTVLSRISNKYSFITKIIRVDGDDNYAVLQFNTEVTKQMVQDVSNDVRETYARMNAKVKALV SIANLALIKTVLSRISNKYSFATKIIRVDGDDNYAVLQFNTEVTKQMVQDVSNDVREIYARMNAKVKALV SIANLALIKTVLSRISNKYSFATKIIRVDGDDNYAVLQFNTEVTKQMVQDVSNDVREIYARMNAKVKALV SIANLALIKTVLSRISNKYSFATKIIRVDGDDNYAVLQFNTEVTKQMVQDVSNDVREIYARMNAKVKALV
DS-1 VP1 CDC66 stool CDC66 vero	680 690 700 STVGIEIAKRYIAGGKIFFRAGINLLNNEK STVGIEIAKRYIAGGKIFFRAGINLLNNEK STVGIEIAKRYIAGGKIFFRAGINLLNNEK
DS-1 VP1 CDC66 stool CDC66 vero	710 720 730 740 750 760 770
DS-1 VP1 CDC66 stool CDC66 vero	780 790 800 IIEYGTTDDEVYIQRAFMSLSSQRSGIAD IIEYGTTDDEVYIQRAFMSLSSQRSGIAD IIEYGTTDDEVYIQRAFMSLSSQRSGIAD
DS-1 VP1 CDC66 stool CDC66 vero	810 820 830 840 850 860 870 EISASSTFKNYVSKLSEQLLFSKNNIVSRGIALTEKAKLNSYAPISLEKRRAQISALLTMLQKPVTFKSN EIAASPTFKNYVSRLSEQLLFSKNNIVSKGIALTEKAKLNSYAPISLEKRRAQISALLTMLQKPVTFKSN EIAASPTFKNYVSRLSEQLLFSKNNIVSKGIALTEKAKLNSYAPISLEKRRAQISALLTMLQKPVTFKSN
DS-1 VP1 CDC66 stool CDC66 vero	880 890 900 KITINDILKDIKPFFTLSEAHLPMQYQKFM KITINDILKDIKPFFTVSEAHLPIQYQKFM KITINDILKDIKPFFTVSEAHLPIQYQKFM

DS-1 VP1 CDC66 stool CDC66 vero	910 920 930 940 950 960 970 .
DS-1 VP1 CDC66 stool CDC66 vero	980 990 1000 DADTYVGSKIYSQDKYRILESYVYNLLSIN DADTYVGSKIYSQDKYRILESYVYNLLSIN DADTYVGSKIYSQDKYRILESYVYNLLSIN
DS-1 VP1 CDC66 stool CDC66 vero	1010 1020 1030 1040 1050 1060 1070 YGCYQLFDFNSPDLEKLIRIPFKGKIPAVTFILHLYAKLEVINYAIKNGSWISLFCNYPKSEMIKLWKKM YGCYQLFDFNSPDLEKLIRIPFKGKIPAVTFILHLYAKLEVINHAIKNGSWISLFCNYPKSEMIKLWKKM YGCYQLFDFNSPDLEKLIRIPFKGKIPAVTFILHLYAKLEVINHAIKNGSWISLFCNYPKSEMIKLWKKM
DS-1 VP1 CDC66 stool CDC66 vero	1080 WNITSLRSPYTNANFFQD (SEQ ID NO. 100) WNITSLRSPYTNANFFQD (SEQ ID NO. 101) WNITSLRSPYTNANFFQD (SEQ ID NO. 102)
Alineamient	to de secuencias nt del gen VP2 de las cepas CDC-66 y DS-1.
DS-1 VP2 CDC66 stool CDC66 vero	10 20 30 40 50 60 70 GGCTATTAAAGGCTCAATGGCGTACAGGAAACGTGGAGCGGCCGTGAGGCAAACTTAAATAATAATGAT GGCTATTAAAGGCTCAATGGCGTACAGGAAACGTGGAGCGCCGTGAGGCAACTTAAATAATAATGAT GGCTATTAAAGGCTCAATGGCGTACAGGAAACGTGGAGCGCCGTGAGGCGAACTTAAATAATAATGAT GGCTATTAAAGGCTCAATGGCGTACAGGAAACGTGGAGCGCGCCGTGAGGCGAACTTAAATAATAATGAT
DS-1 VP2 CDC66 stool CDC66 vero	80 90 100 CGAATGCAGGAAAAATTGATGAAAAGCAA CGAATGCAGGAGAAAATTGATGAAAAACAA CGAATGCAGGAGAAAATTGATGAAAAACAA
DS-1 VP2 CDC66 stool CDC66 vero	110 120 130 140 150 160 170
DS-1 VP2 CDC66 stool CDC66 vero	180 190 200 AAGAAGTTAAAATTACTGATGAGGTGAAAA AGGAAGTTAAAGTTACTGATGAGGTAAAAA AGGAAGTTAAAGTTACTGATGAGGTAAAAA AGGAAGTTAAAGTTACTGATGAGGTAAAAA
DS-1 VP2 CDC66 stool CDC66 vero	210 220 230 240 250 260 270 AATCAACAAAAGAAGATCAAAGCAGTTGCTTGAAGTGTTAAAAACAAAGGAAGAAACTCAGAAAGAGAT AATCAACGAAAGAAGATCGCAAACAATTGCTTGAAGTATTGCAAACCAAAGGAAACAATCAGAAAGAA
DS-1 VP2 CDC66 stool CDC66 vero	280 290 300 ACAGTATGAAATATTGCAGAAAACTATACC ACAGTATGAAATATTACAAAAAACTATACC ACAGTATGAAATATTACAAAAAACTATACC ACAGTATGAAATATTACAAAAAAACTATACC
DS-1 VP2 CDC66 stool CDC66 vero	310 320 330 340 350 360 370
DS-1 VP2 CDC66 stool CDC66 vero	380 390 400 ACTAAGCTATTTAGAATATTTGAACCGAAA ACTAAGCTATTTAGAATATTTGAACCGAAA ACTAAGCTATTTAGAATATTTGAACCGAAA
DS-1 VP2 CDC66 stool CDC66 vero	410 420 430 440 450 460 470

DS-1 VP2	480 490 500 TACCTTACCAGATGGAGATTACGATGTGA	
CDC66 stool CDC66 vero	TACACTACCAGACGGAGACTATGATGTGA TACACTACCAGACGGAGACTATGATGTGA	
	510 520 530 540 550 560 570	
DS-1 VP2 CDC66 stool CDC66 vero		
	580 590 600	
DS-1 VP2 CDC66 stool CDC66 vero		
	610 620 630 640 650 660 670	
DS-1 VP2 CDC66 stool CDC66 vero	AGGTAAGGTTGTTGATTCAGAAACGGCTAGCATATTGCGACGCCATTTTTCAAGATGAAGAAACAGAAGGT AGGTAAAGTCGTTGATTCAGAAACGGCTAATATATGCGATGCCATATTTCAAGATGAAGAAACGGAAGGT AGGTAAAGTCGTTGATTCAGAAACGGCTAATATATGCGATGCCATATTTCAAGATGAAGAAACGGAAGGT	
	680 690 700	
DS-1 VP2 CDC66 stool CDC66 vero		
	710 720 730 740 750 760 770	
DS-1 VP2 CDC66 stool CDC66 vero	CAGCGTGTGCAAGCTGATAGAAATGTTGTCAACTATCCATCAATTATTGCATCCAATAGATTATGCATTTA CAGCGTGTGCAAGCTGATAGAAATGTTGTCAATTATCCATCAATATTACCATCAATAGATTATGCATTTA CAGCGTGTGCAAGCTGATAGAAATGTTGTCAATTATCCATCAATATTACATCCAATAGATTATGCATTTA CAGCGTGTGCAAGCTGATAGAAATGTTGTCAATTATCCATCAATATTACATCCAATAGATTATGCATTTA	
	780 790 800	
DS-1 VP2 CDC66 stool CDC66 vero		
	810 820 830 840 850 860 870	
DS-1 VP2 CDC66 stool CDC66 vero	810 820 830 840 850 870	
CDC66 stool	AACCATTGAATAATGATATATATTTAATTATACCAGAAAGGATAAGAATGATGTTAATTATATCCAGAAAGGATAAGAATGATGTTAATTATATCCAGAAAGGATAAGAATGATGTTAATTATATTCCAACCATTGAATAATGATATATAT	
CDC66 stool	AACCATTGAATAATGATATATTTAATTATATACCAGAAAGGATAAGAAATGATGTTAATTACATTCTC AACCATTGAATAATGATATATATATTAATTATATCCAGAAAGGATAAGAAATGATGTTAATTATATTCTC AACCATTGAATAATGATATATATATATTATAT	
CDC66 stool CDC66 vero DS-1 VP2 CDC66 stool	AACCATTGAATAATGATATAATATTTAATTATATACCAGAAAAGGATAAGAAATGATGTTAATTACATTCTC AACCATTGAATAATGATATAATATTTAATTATATCCAGAAAAGGATAAGAAATGATGTTAATTATATTCTC AACCATTGAATAATGATATAATATTTAATTATATCCAGAAAAGGATAAGAAATGATGTTAATTATATTCTC 880 890 900	
CDC66 stool CDC66 vero DS-1 VP2 CDC66 stool	AACCATTGAATAATGATATAATATTTAATTATATATACCAGAAAAGGATAAGAATGATGTTAATTACATTCTC AACCATTGAATAATGATATAATATTTAATTATATACCAGAAAGGATAAGAAATGATGTTAATTAA	
DS-1 VP2 CDC66 vero DS-1 VP2 CDC66 stool CDC66 vero DS-1 VP2 CDC66 stool	AACCATTGAATAATGATATAATATTTAATTATATATACCAGAAAGGATAAGAATGATGTTAATTATATTCC AACCATTGAATAATGATATAATATTTAATTATATACCAGAAAGGATAAGAATGATGTTAATTATATTCC AACCATTGAATAATGATATAATATTTAATTATATACCAGAAAGGATAAGAATGATGTTAATTATATTCC AACCATTGAATAATGATAATATTTAATTATATACCAGAAAGGATAAGAATGATGTTAATTATATCCC AACATTGAATAATGATAATATTTAATTATATACCAGAAAGGATAAGAATGATGTTAATTATATCCC 880 890 900	
DS-1 VP2 CDC66 vero DS-1 VP2 CDC66 stool CDC66 vero DS-1 VP2 CDC66 stool	AACCATTGAATAATATTTAATTATTATTATTATTATTATTATTA	
DS-1 VP2 CDC66 stool CDC66 vero DS-1 VP2 CDC66 stool CDC66 vero DS-1 VP2 CDC66 stool CDC66 vero DS-1 VP2 CDC66 stool	ACCATTGAATAATGATATAATATTTAATTATATATATACAGAAAGGATAAGAATGATGTTAATTACATTCTC AACCATTGAATAATGATATATATTATAT	
DS-1 VP2 CDC66 stool CDC66 vero DS-1 VP2 CDC66 stool CDC66 vero DS-1 VP2 CDC66 stool CDC66 vero DS-1 VP2 CDC66 stool	ACCATTGAATAATATTTAATTATATATATATATACAGAAAAGAATAAGAATGATGTTAATTACTCTC AACCATTGAATAATAATATTTAATTATATATATATACCAGAAAGGATAAGAATGATGTTAATTACTCTC AACCATTGAATAATGATATAATATTTAATTATATCCAGAAAGGATAAGAAATGATGTTAATTATATCTC AACCATTGAATAATGATATAATATTTAATTATACCAGAAAGGATAAGAAATGATGTTAATTATATCTC 880 890 900 AATATGGATAGAAATTTAACATCAACTGC AATATGGACAGAAATTTACCATCAACTGC AATATGGACAGAAATTTACCATCAACTGC 910 920 930 940 950 960 970 CAGATATATAAGACCTAACTTCAAGATAGATTGAATTTACACGATAATTTTGAATCGCTATGGGAT CAGATATATAAGACCTAACTTCCAAGATAGATTGAATTTACACGATAATTTTGAATCACTATGGGAT CAGATATATAAGACCTAATTTACTTCAAGATAGATTGAATTTGCACGATAATTTTGAATCACTATGGGAT 980 990 1000 ACAATAACCACATCAAATTATATCTTGGCA ACAATAACTACATCAAATTATATTTTGGCG ACAATAACTACATCAAATTATATTTTGGCG	
DS-1 VP2 CDC66 stool CDC66 vero	AACCATTGAATAATGATATAATATTTAATTATATATATACCAGAAAGGATAAGAATGATGTTAATTACCAGAAAGGATAAGAATGATGTTAATTACCAGAAAGGATAAGAATGATGTTAATTACCAGAAAGGATAAGAATGATGTTAATTACTCTCAACCATTGAATAATGATTATATATA	
DS-1 VP2 CDC66 stool CDC66 vero	AACCATTGAATAATGATATAATATTTAATTATATATATACCAGAAAAGAATAAGATTTAATTAA	
DS-1 VP2 CDC66 stool CDC66 vero DS-1 VP2 CDC66 stool CDC66 stool CDC66 vero	AACCATTGAATAATGATATAATATTTAATTATATATATACCAGAAAGGATAAGAATGATTAATTA	

CDC66 vero	AAACACAGTTTCTAACAGGTATAAATTCACAAGCAGCTAACGATTGTTTTAAAACCTTAATTGCAGCAAT
	1180 1190 1200
DS-1 VP2 CDC66 stocl CDC66 verc	1180 1190 1200
DS-1 VP2 CDC66 stocl CDC66 vero	1210 1220 1230 1240 1250 1260 1270
DS-1 VP2 CDC66 stocl CDC66 vero	1280 1290 1300 ATAAGGGACTCGTTAGTAGCCTGCCAGCTA ATAAGGGAATCATTAGTCGCCTGTCAACTA ATAAGGGAATCATTAGTCGCCTGTCAACTA
	1310 1320 1330 1340 1350 1360 1370
DS-1 VP2 CDC66 stocl CDC66 verc	GCTATAGTAAATACAATAATCTATCCAGCATTTGGAATGCAACGCATGCAT
	1380 1390 1400
DS-1 VP2 CDC66 stock CDC66 vero	AAACACCGTTTCAGATAGCAGAACAGCAAA AAACACCGTTTCAGATAGCAGAACAGCAAA AAACACCGTTTCAGATAGCAGAACAGCAAA
	1410 1420 1430 1440 1450 1460 1470
DS-1 VP2 CDC66 stocl CDC66 vero	TTCAAAATTTCCAAGTTGCAAATTGGTTACATTTTGTTAATAATAATCAATTTAGACAGGCAGTTATTCA TTCAAAATTTCCAAGTCGCAAATTGGTTACATTTTGTTAATAATAATCAATTTAGACAGGCAGTTATTCA TTCAAAAATTTCCAAGTCGCAAATTGGTTACATTTTGTTAATAATAATCAATTTAGACAGGCAGTTATTCA TTCAAAATTTCCAAGTCGCAAATTGGTTACATTTTGTTAATAATAATCAATTTAGACAGGCAGTTATTCA
	1480 1490 1500
DS-1 VP2 CDC66 stocl CDC66 verc	TGGTGTATTGAACCAGGTATTAAATGACAA TGGTGTATTGAATCAGGTACTGAATGACAA TGGTGTATTGAATCAGGTACTGAATGACAA TGGTGTATTGAATCAGGTACTGAATGACAA
	1510 1520 1530 1540 1550 1560 1570
DS-1 VP2 CDC66 stocl CDC66 vero	TATTAGAAGTGGTCATGTTATTAATCAACTAATGGAAGCTTTAATGCAGTTGTCGCGACAACAATTTCCA TATTAGAAATGGTCATGTTATTAATCAACTGATGGAAGCTCTAATGCAGCTGTCGCGACAACAATTTCCA TATTAGAAATGGTCATGTTATTAATCAACTGATGGAAGCTCTAATGCAGCTGTCGCGACAACAATTTCCA
	1580 1590 1600
DS-1 VP2 CDC66 stool CDC66 vero	ACCATGCCAGTTGATTATAAGAGGTCAATT ACCATGCCAATTGATTATAAGAGATCAATT ACCATGCCAATTGATTATAAGAGATCAATT
	1610 1620 1630 1640 1650 1660 1670
DS-1 VP2 CDC66 stocl CDC66 verc	CAACGTGGAATATTACTGTTATCTAACAGACTTGGTCAGTTAGTT
	1680 1690 1700
DS-1 VP2 CDC66 stool CDC66 vero	
	1710 1720 1730 1740 1750 1760 1770
DS-1 VP2 CDC66 stocl CDC66 verc	TGAACATGCAACATGTTCAAACTTTAACAACAGAAAAATTACAATTAACGTCAGTCA
	1780 1790 1800
DS-1 VP2 CDC66 stocl CDC66 vero	GCTTATTGGAAACGCGACTGTTATACCAAG GCTTATTGGAAATGCGACTGTTATTCCAAG GCTTATTGGAAATGCGACTGTTATTCCAAG
	1810 1820 1830 1840 1850 1860 1870
DS-1 VP2 CDC66 stool	TCCACAAACATTATTTCATTATATAACGTTAATGTTAATTTTCATTCA

CDC66 vero	TCCACAAACATTATTTCATTATTATAACGTTAACGTTAATTTTCATTCA
CDC00 VCIO	
DS-1 VP2 CDC66 stocl CDC66 verc	1880 1890 1900 GATGCAGTAGCTATAACTGCTGCTAAT GATGCAGTAGCTATAATAACTGCTGCCAAC GATGCAGTAGCTATAATAACTGCTGCCAAC GATGCAGTAGCTATAATAACTGCTGCCAAC
DS-1 VP2 CDC66 stocl CDC66 vero	1910 1920 1930 1940 1950 1960 1970, AGACTAAACCTATATCAGAAAAAAATGAAGGCAATTGTTGAGGATTTTTTAAAAGAGATTATATATTTTTG AGATTGAATCTATATCAGAAAAAAGATGAAGGCTATTGTTGAGGATTTCTTAAAAAGATTATACATTTTTG AGATTGAATCTATATCAGAAAAAGATGAAGGCTATTGTTGAGGATTTCTTAAAAAAGATTATACATTTTTG AGATTGAATCTATATCAGAAAAAGATGAAGGCTATTGTTGAGGGATTTCTTAAAAAAGATTATACATTTTTG
DS-1 VP2 CDC66 stocl CDC66 vero	1980 1990 2000 ATGTATCTAGAGTTCCGGACCACAATGT ATGTATCTAGAGTTCCTGACGACCAATGT ATGTATCTAGAGTTCCTGACGACCAATGT ATGTATCTAGAGTTCCTGACGACCAAATGT
	2010 2020 2030 2040 2050 2060 2070
DS-1 VP2 CDC66 stool CDC66 vero	ATAGATTAAGGGACAGATTACGCTTATTGCCAGTAGAAATCAGAAGATTGGATATCTTTAACCTAATATT ATAGATTAAGGGATAGATTACGTTTATTGCCAGTAGAAATCAGAAGATTAGATATCTTCAATCTAATACT ATAGATTAAGGGATAGAATTACGTTTATTGCCAGTAGAAATCAGAAGATTAGATATCTTCAATCTAATACT
DS-1 VP2 CDC66 stocl CDC66 verc	2080 2090 2100 AATGAATATGGATCAAATTGAACGTGCCTC AATGAACATGGATCAAATTGAACGTGCCTC AATGAACATGGATCAAATTGAACGTGCCTC AATGAACATGGATCAAATTGAACGTGCCTC
DS-1 VP2 CDC66 stocl CDC66 vero	2110 2120 2130 2140 2150 2160 2170
DS-1 VP2 CDC66 stocl CDC66 vero	2180 2190 2200 TATGTAAATATAGCTAGAAATTTAGACGGA TATGTAAATATAGCTAGAAATTTAGATGGA TATGTAAATATAGCTAGAAATTTAGATGGA TATGTAAATATAGCTAGAAATTTAGATGGA
DS-1 VP2 CDC66 stool CDC66 vero	2210 2220 2230 2240 2250 2260 2270
DS-1 VP2 CDC66 stool CDC66 vero	2280 2290 2300 ATAATCAACCGTAGCATTGGTTGGAGCAC ATAATCAACCAGTAGCATTGGTTGGAGCAC ATAATCAACCAGTAGCATTGGTTGGAGCAC ATAATCAACCAGTAGCATTGGTTGGAGCAC
DS-1 VP2 CDC66 stool CDC66 vero	2310 2320 2330 2340 2350 2360 2370
DS-1 VP2 CDC66 stool CDC66 vero	2380 2390 2400 AGTCAAATTACGAAAAGTTGATACTTTAAA AGTTAAATTACGAAAAGTTGATACTTTAAA AGTTAAATTACGAAAAGTTGATACTTTAAA AGTTAAATTACGAAAAGTTGATACTTTAAA
DS-1 VP2 CDC66 stocl CDC66 vero	2410 2420 2430 2440 2450 2460 2470
DS-1 VP2 CDC66 stocl CDC66 vero	2480 2490 2500 ACTTCGACTACGAAAGTATACAAACAGGTC ACTTCGACTACAAAAGTATACAAACAGGTT ACTTCGACTACAAAAGTATACAAACAGGTT ACTTCGACTACAAAAGTATACAAACAGGTT
DS-1 VP2	2510 2520 2530 2540 2550 2560 2570
CDC66 stool	CCGCAACAGTTTGATTTTAGAAATTCAATGCATATGTTAACTTCGAATCTTACTTTTACGGTTTATTCAG

CDC66 vero	CCGCAACAGTTTGATTTTAGAAATTCAATGCATATGTTAACTTCGAATCTTACTTTTACGGTTTATTCAG
DS-1 VP2 CDC66 stool CDC66 vero	2580 2590 2600 ACCTTCTCGCATTCGTGTCAGCTGATACAG ATCTTCTCGCGTTCGTATCAGCTGACACAG ATCTTCTCGCGTTCGTATCAGCTGACACAG
DS-1 VP2 CDC66 stool CDC66 vero	2610 2620 2630 2640 2650 2660 2670
DS-1 VP2 CDC66 stool CDC66 vero	2680 GTGGAGATATGACC (SEQ ID NO. 103) GTGGAGATATGACC (SEQ ID NO. 104) GTGGAGATATGACC (SEQ ID NO. 105)
Alineamient	o de secuencias aa del gen VP2 de las cepas CDC-66 y DS-1.
DS-1 VP2 CDC66 stool CDC66 vero	10 20 30 40 50 60 70 MAYRKRGARREANLNNNDRMQEKNDEKQDSNKIQLSDKVLSKKEEIVTDSHEEVKITDEVKKSTKEESKQ MAYRKRGARREANLNNNDRMQEKIDEKQDSNKIQLSDKVLSKKEEVVTDSHEEVKVTDEVKKSTKEESKQ MAYRKRGARREANLNNNDRMQEKIDEKQDSNKIQLSDKVLSKKEEVVTDSHEEVKVTDEVKKSTKEESKQ
DS-1 VP2 CDC66 stool CDC66 vero	80 90 100 LLEVLKTKEEHQKEIQYEILQKTIPTFEPK LLEVLKTKEEHQKEIQYEILQKTIPTFEPK LLEVLKTKEEHQKEIQYEILQKTIPTFEPK
DS-1 VP2 CDC66 stool CDC66 vero	110 120 130 140 150 160 170
DS-1 VP2 CDC66 stool CDC66 vero	180 190 200
DS-1 VP2 CDC66 stool CDC66 vero	210 220 230 240 250 260 270
DS-1 VP2 CDC66 stool CDC66 vero	280 290 300 NYIPERIRNDVNYILNMDRNLPSTARYIRP NYIPERIRNDVNYILNMDRNLPSTARYIRP NYIPERIRNDVNYILNMDRNLPSTARYIRP
DS-1 VP2 CDC66 stool CDC66 vero	310 320 330 340 350 360 370
DS-1 VP2 CDC66 stool CDC66 vero	380 390 400 SQAANDCFKTLIAAMLSQRTMSLDFVTTNY SQAANDCFKTLIAAMLSQRTMSLDFVTTNY SQAANDCFKTLIAAMLSQRTMSLDFVTTNY
DS-1 VP2 CDC66 stool CDC66 vero	410 420 430 440 450 460 470
DS-1 VP2 CDC66 stool CDC66 vero	480 490 500 LHFVNNNQFRQAVIDGVLNQVLNDNIRSGH LHFVNNNQFRQAVIDGVLNQVLNDNIRNGH LHFVNNNQFRQAVIDGVLNQVLNDNIRNGH

	E10
DS-1 VP2 CDC66 stool CDC66 vero	510 520 530 540 550 560 570
	580 590 600
DS-1 VP2 CDC66 stool CDC66 vero	TTEKLQLTSVTSLCMLIGNATVIPSPQTLF TTEKLQLTSVTSLCMLIGNATVIPSPQTLF TTEKLQLTSVTSLCMLIGNATVIPSPQTLF
DS-1 VP2 CDC66 stool CDC66 vero	610 620 630 640 650 660 670
	680 690 700
DS-1 VP2 CDC66 stool CDC66 vero	 LPVEIRRLDIFNLILMNMDQIERASDKIAQ LPVEIRRLDIFNLILMNMDQIERASDKIAQ LPVEIRRLDIFNLILMNMDQIERASDKIAQ
	710 720 730 740 750 760 770
DS-1 VP2 CDC66 stool CDC66 vero	GVIIAYRDMHLERDEMYGYVNIARNLDGFQQINLEELMRSGDYAQITNMLLNNQPVALVGALPFITDSSV GVIIAYRDMHLERDEMYGYVNIARNLDGFQQINLEELMRSGDYAQITMMLLNNQPVALVGALPFITDSSV GVIIAYRDMHLERDEMYGYVNIARNLDGFQQINLEELMRSGDYAQITNMLLNNQPVALVGALPFITDSSV
	780 790 800
DS-1 VP2 CDC66 stool CDC66 vero	ISLIAKLDATVFAQIVKLRKVDTLKPILYK ISLIAKLDATVFAQIVKLRKVDTLKPILYK ISLIAKLDATVFAQIVKLRKVDTLKPILYK
	810 820 830 840 850 860
DS-1 VP2 CDC66 stool CDC66 vero	INSDSNDFYLVANYDWVPTSTTKVYKQVPQQFDFRNSMHMLTSNLTFTVYSDLLAFVSAD INSDSNDFYLVANYDWVPTSTTKVYKQVPQQFDFRNSMHMLTSNLTFTVYSDLLAFVSAD INSDSNDFYLVANYDWVPTSTTKVYKQVPQQFDFRNSMHMLTSNLTFTVYSDLLAFVSAD
DS-1 VP2 CDC66 stool CDC66 vero	870 TVEPINAVAFDNMRIMNEL (SEQ ID NO. 106) TVEPINAVAFDNMRIMNEL (SEQ ID NO. 107) TVEPINAVAFDNMRIMNEL (SEQ ID NO. 108)
CDC66 stool CDC66 vero	TVEPINAVAFDNMRIMNEL (SEQ ID NO. 106) TVEPINAVAFDNMRIMNEL (SEQ ID NO. 107) TVEPINAVAFDNMRIMNEL (SEQ ID NO. 108)
CDC66 stool CDC66 vero	TVEPINAVAFDNMRIMNEL (SEQ ID NO. 106) TVEPINAVAFDNMRIMNEL (SEQ ID NO. 107) TVEPINAVAFDNMRIMNEL (SEQ ID NO. 108) to de secuencias nt del gen VP3 de las cepas CDC-66 y DS-1.
CDC66 stool CDC66 vero	TVEPINAVAFDNMRIMNEL (SEQ ID NO. 106) TVEPINAVAFDNMRIMNEL (SEQ ID NO. 107) TVEPINAVAFDNMRIMNEL (SEQ ID NO. 108)
CDC66 stool CDC66 vero Alineamient DS-1 VP3 CDC66 stool	TVEPINAVAFDNMRIMNEL (SEQ ID NO. 106) TVEPINAVAFDNMRIMNEL (SEQ ID NO. 107) TVEPINAVAFDNMRIMNEL (SEQ ID NO. 108) TO de secuencias nt del gen VP3 de las cepas CDC-66 y DS-1. 10 20 30 40 50 60 70
CDC66 stool CDC66 vero Alineamient DS-1 VP3 CDC66 stool	TVEPINAVAFDNMRIMNEL (SEQ ID NO. 106) TVEPINAVAFDNMRIMNEL (SEQ ID NO. 107) TVEPINAVAFDNMRIMNEL (SEQ ID NO. 108) TO de secuencias nt del gen VP3 de las cepas CDC-66 y DS-1. 10 20 30 40 50 60 70
CDC66 stool CDC66 vero Alineamient DS-1 VP3 CDC66 stool CDC66 vero DS-1 VP3 CDC66 stool	TVEPINAVAFDNMRIMNEL (SEQ ID NO. 106) TVEPINAVAFDNMRIMNEL (SEQ ID NO. 107) TVEPINAVAFDNMRIMNEL (SEQ ID NO. 108) TO de secuencias nt del gen VP3 de las cepas CDC-66 y DS-1. 10 20 30 40 50 60 70 .
CDC66 stool CDC66 vero Alineamient DS-1 VP3 CDC66 stool CDC66 vero DS-1 VP3 CDC66 stool	TVEPINAVAFDNMRIMNEL (SEQ ID NO. 106) TVEPINAVAFDNMRIMNEL (SEQ ID NO. 107) TVEPINAVAFDNMRIMNEL (SEQ ID NO. 108) RO de secuencias nt del gen VP3 de las cepas CDC-66 y DS-1. 10 20 30 40 50 60 70
CDC66 stool CDC66 vero Alineamient DS-1 VP3 CDC66 stool CDC66 vero DS-1 VP3 CDC66 stool CDC66 vero DS-1 VP3 CDC66 stool CDC66 vero	TVEPINAVAFDNMRIMNEL (SEQ ID NO. 106) TVEPINAVAFDNMRIMNEL (SEQ ID NO. 107) TVEPINAVAFDNMRIMNEL (SEQ ID NO. 108) **Ro de secuencias nt del gen VP3 de las cepas CDC-66 y DS-1. 10 20 30 40 50 60 70
CDC66 stool CDC66 vero Alineamient DS-1 VP3 CDC66 stool CDC66 vero DS-1 VP3 CDC66 stool CDC66 vero DS-1 VP3 CDC66 stool CDC66 vero	TVEPINAVAFDNMRIMNEL (SEQ ID NO. 106) TVEPINAVAFDNMRIMNEL (SEQ ID NO. 107) TVEPINAVAFDNMRIMNEL (SEQ ID NO. 108) RO de secuencias nt del gen VP3 de las cepas CDC-66 y DS-1. 10 20 30 40 50 60 70 .
CDC66 stool CDC66 vero Alineamient DS-1 VP3 CDC66 stool CDC66 vero DS-1 VP3 CDC66 stool CDC66 vero DS-1 VP3 CDC66 stool CDC66 vero DS-1 VP3 CDC66 stool CDC66 stool CDC66 stool CDC66 stool CDC66 stool	TVEPINAVAFDNMRIMNEL (SEQ ID NO. 106) TVEPINAVAFDNMRIMNEL (SEQ ID NO. 107) TVEPINAVAFDNMRIMNEL (SEQ ID NO. 108) **Ro de secuencias nt del gen VP3 de las cepas CDC-66 y DS-1. 10 20 30 40 50 60 70
CDC66 stool CDC66 vero Alineamient DS-1 VP3 CDC66 stool CDC66 vero DS-1 VP3 CDC66 stool CDC66 vero DS-1 VP3 CDC66 stool CDC66 vero DS-1 VP3 CDC66 stool CDC66 stool CDC66 stool CDC66 stool CDC66 stool	TVEPINAVAFDNMRIMNEL (SEQ ID NO. 106) TVEPINAVAFDNMRIMNEL (SEQ ID NO. 107) TVEPINAVAFDNMRIMNEL (SEQ ID NO. 108) RO de secuencias nt del gen VP3 de las cepas CDC-66 y DS-1. 10 20 30 40 50 60 70
CDC66 stool CDC66 vero Alineamient DS-1 VP3 CDC66 stool CDC66 vero DS-1 VP3 CDC66 stool	TVEPINAVAFDNMRIMBEL (SEQ ID NO. 106) TVEPINAVAFDNMRIMBEL (SEQ ID NO. 107) TVEPINAVAFDNMRIMBEL (SEQ ID NO. 108) TO de secuencias nt del gen VP3 de las cepas CDC-66 y DS-1. 10 20 30 40 50 60 70

DS-1 VP3 CDC66 stool CDC66 vero	GCTAATTAGATGTAATTTTACATACGACTA GTTAATTAGATGTAACTTTACATATGATTA GTTAATTAGATGTAACTTTACATATGATTA
DS-1 VP3 CDC66 stool CDC66 vero	TATTGATGACGTTGTTTACTTACATCACTACTCATATTATCATATAATCAATAAT
DS-1 VP3 CDC66 stool CDC66 vero	380 390 400 TGGGTAACCAAGACAATATAGAAGACTAT TGGATAACCAAGACAAATATAGAAGATTAT TGGATAACCAAGACAATATAGAAGATTAT TGGATAACCAAGACAATATAGAAGATTAT
DS-1 VP3 CDC66 stool CDC66 vero	410 420 430 440 450 460 470 CTATTACCAGGATGGAAATTGACATATGTTGGATACAATGGAAGTGATACGAGAGGACATTATAATTTTT TTATTACCAGGATGGAAGCTGACATACGTTGGATATAATGGAAGTGATACGCGCGGGACATTATAATTTTT TTATTACCAGGATGGAAGCTGACATACGTTGGATATAATGGAAGTGATACGCGCGGGACATTATAATTTTT
DS-1 VP3	480 490 500 CTTTTAGATGTCAGATGCAGCTACAGATG
CDC66 stool CDC66 vero	CATTTAGATGTCAAAATGCGGCTACAGATG CATTTAGATGTCAAAATGCGGCTACAGATG
DS-1 VP3 CDC66 stool CDC66 vero	510 520 530 540 550 560 570 ATGATGTAATAATAGAGTATATCTATTCAAATGAATTAGACTTCCAGAACTTTATACTCAAAAAGATTAA ATGATGCAATAATAGAGTATATCTATTCAGATGAATTAGACTTCCAGAGTTTTATACTCAAGAAGATTAA ATGATGCAATAATAGAGTATATCTATTCAGATGAATTAGACTTCCAGAGTTTTATACTCAAGAAGATTAA
DS-1 VP3 CDC66 stool CDC66 vero	580 590 600
DS-1 VP3 CDC66 stool CDC66 vero	610 620 630 640 650 660 670
DS-1 VP3 CDC66 stool CDC66 vero	680 690 700
DS-1 VP3 CDC66 stool CDC66 vero	710 720 730 740 750 760 770
DS-1 VP3 CDC66 stool CDC66 vero	780 790 800
DS-1 VP3 CDC66 stool CDC66 vero	810 820 830 840 850 860 870
DS-1 VP3 CDC66 stool CDC66 vero	880 890 900 TATGTATCATGAAAAACCAATTATATAT TATATATCATGAAAAACCAATCATATATAT TATATATCATGAAAAACCAATCATATATAT
DS-1 VP3 CDC66 stool CDC66 vero	910 920 930 940 950 960 970 GATAGGATCAGCGCCTCGTATTGGATATATGATGTCAAACAGTACTCTGACTTGAAATTTGAGACATGG GATAGGATCAGCGCCTTCGTATTGGATATATGACGTCAAACAGTATTCTAACTTGAAATTTGAAACGTGG GATAGGATCAGCGCCTTCGTATTGGATATATGACGTCAAACAGTATTCTAACTTGAAATTTGAAACGTGG

980		
DS-1 VP3	CDC66 stool	GATCCACTAGATACACCATATTCTAATTTA GATCCACTAGATACACCATACTCTAATTTA
DS-1 VP3	CDC66 stool	 CATCATAAGGAATTATTTTACATAAATGACGTGCAAAAACTTAAAGATAATTCGATACTATATATA
	CDC66 stool	TAAGAACAGATAGAGGAAATATGGACTGGA TACGAACAGATAGAGGAACTGTAGACTGGA
DS-1 VP3 CAGGARAAGCTAGAATATCCGATACAAGTTCTTCCACATCCAACTCCAACTCCAACTACACACTTCCACCCCCACTCCAACTCCAACTCCAACTCCAACTCCAACTCCACCCCACTCCAACTCCAACTCCAACTCCAACTCCACCCCACTCCAAC	CDC66 stool	AGGAATGGCGAAAAGTGGTGGAAGGGCAAACTGCTGACAATTTACATATTGCATATAAATATCTATC
DS-1 VP3	CDC66 stool	CAGGAAAAGCTAAGATATGTTGTGTTAAAAT CAGGGAAAAGCTAAAGTATGTTGCGTTAAAAT
DS-1 VP3 CAGGATTTATCAGATAGATACAATATATAGGAC CAGGATTTATCAGATAGATAGATATAGGAC CAGGATTTATCAGATAGATAGGAC CAGGATTTATCAGATAGATAGGAC CAGGATTTATCAGATAGATAGGAC CAGGATTTATCAGATAGATAGGAC CAGGATTTATCAGATAGATAGGAC CAGGATTTATACTAGTAGATAGGAC CAGGATTTATACTAGTAGATAGGAC CAGGATTTATACTAGATAGAATATAAAAGATTCATACCAAAAAGGTGTATTATACCATATAACAATAACAATTACTGAAA TCCAAAAAATATAAAAAGATTCATACCAAAAAGGTGTATTATACCGTATATAAACAATACAATTACTGAAA TCTAAAAAATATTAAAAAGATTCATACCAAAAAGGTGTATTATACCGTATATAAACAATACAATTACTGAAA CAGGATATTATACACAAAAAGGTGTATTATACCGTATATAAACAATACAATTACTGAAA CAGGATATTATACAACAACACCTTTTAAGGTTGA CAGGATATAAAAAAAAACAACCTTTATAGGTTAA CAGGATATTATACAACAACACCTTTATAGGTTAA CAGGATATAATAAACAACACCTTTATAGGTTAA CAGGATATAATAAACAACACCTTTATAGGTTAA CAGGATATAATAAACAACACACACAACAACAACAACAACAACACACACACA	CDC66 stool	GACCGCTATGGATGTAGAATTACCAATATCTGCAAAACTGCTTCACCATCCAACTACAGAAATTAGATCA GACCGCTATGGATTTAGAATTACCGATATCTGCAAAGTTGCTTCACCATCCAACTACAGAGATTAGATCA
DS-1 VP3 CDC66 stool CDC66 vero TCAAAAATATTAAAACATTCATACCAAAAGGTGTATTATACTCCTATATATA	CDC66 stool	GAGTTTTATTTAATGATGGATATATGGGAC GAGTTTTATCTAGTGATGGATATATGGGAC
DS-1 VP3	CDC66 stool	TCCAAAAATATTAAAAGATTCATACCAAAAGGTGTATTATACTCATATATAAACAATACAATTACTGAAA TCTAAAAATATTAAAAGATTCATACCAAAAGGTGTATTATACTCGTATATAAACAATACAATTACTGAAA
DS-1 VP3 CD66 vero DS-1 V	CDC66 stool	ACGTATTTATACAACAACCTTTTAAGTTGA ACGTATTCATACAACAACCTTTTAAGTTAA
DS-1 VP3	CDC66 stool	AAACATTGAAAAATGAATATGTAATAGCACTTTATGCTTTATCAAATGATCTTAACAATAGAGAAGATGT AAACATTGAAAAACGAATATATATAGCACTTTATGCTTTATCAAATGATTTTAACAACAGAGAAGATGT
DS-1 VP3 CDC66 stool CDC66 vero GTTAATGACGGTGAGAATTAACAATACATTTAAAGATGAACCGAAAAGTCGGATTTAAAAAACATTTACGAT GTTAATGACAGTGAGAATTAATAATACGTTTAAAGATGAACCAAAAGTCGGATTTAAAAAACATTTACGAT GTTAATGACAGTGAGAATTAATAATACGTTTAAAGATGAACCAAAAGTCGGATTTAAAAAACATTTACGAT GTTAATGACAGTGAGAATTAATAATACGTTTAAAGATGAACCAAAAGTCGGATTTAAAAAACATTTACGAT GTTAATGACAGGAATTAATAATACGTTTAAAGATGAACCAAAAGTCGGATTTAAAAAACATTTACGAT DS-1 VP3 CDC66 stool DS-1 VP3 CDC66 stool AATGGACATTTCTACCAACGGATTTTGAGACT DS-1 VP3 CDC66 stool AATGGACAATAATTACCTCATATGATGGATGTCTAGGTATTTTTGGTTTATCAATATCACTAGCTTCAA AATGGACAATAATTACTTCATATGATGGGTGTCTAGGTATCTTTGGTTTATCAATATCGCTACACTTCAA AATGGACACAAATAATTACCTTCATATGATGGGTGTCTAGGTATCTTTTGGTTTATCAATATCGCTACCTTCAA AATGGATCAATAATTACTTCATATGATGGGTGTCTAGGTATCTTTTGGTTTATCAATATCGCTACCTTCAA	CDC66 stool	GGTAAAACTAATCAATAATCAGAAAAGAGC GGTGAAACTAATTAATAATCAGAAAAAAGC
DS-1 VP3 CDC66 stool CDC7 CDC66 stool CDC66 stool CDC7 CDC66 stool	CDC66 stool	GTTAATAACGGTGAGAATTAACAATACATTTAAAGATGAACCGAAAGTCGGATTTAAAAACATTTACGAT GTTAATGACAGTGAGAATTAATAATACGTTTAAAGATGAACCAAAAGTCGGATTTAAAAAACATTTACGAT
DS-1 VP3 AATGGATCAATAATTACCTCATATGATGGATGTCTAGGTATTTTTGGTTTATCAATATCACTAGCTTCAA CDC66 stool AATGGATCAATAATTACTTCATATGATGGGTGTCTAGGTATCTTTTGGTTTATCAATATCGCTAGCTTCAA	CDC66 stool	TGGACATTTTTGCCAACGGATTTTGAGATG TGGACATTTCTACCAACGGATTTTGAGACT
		AATGGATCAATAATTACCTCATATGATGGATGTCTAGGTATTTTTGGTTTATCAATATCACTAGCTTCAA

DS-1 VP3 CDC66 stool CDC66 vero	1680 1690 1700 AACCAACCGGTAATAATCATTTATTCATTT AACCAACTGGTAATAATCATTTGTTCATTT AACCAACTGGTAATAATCATTTGTTCATTT AACCAACTGGTAATAATCATTTGTTCATTT
DS-1 VP3 CDC66 stool CDC66 vero	1710 1720 1730 1740 1750 1760 1770
DS-1 VP3 CDC66 stool CDC66 vero	1780 1790 1800
DS-1 VP3 CDC66 stool CDC66 vero	1810 1820 1830 1840 1850 1860 1870 ATACTCGGGATACATTTTTAGACATTTGTCTAATAATAATTTCAATTTAATAGGTACGAATGTAGACAAT ATATTCGGGATATATTTTTTTTTT
DS-1 VP3 CDC66 stool CDC66 vero	1880 1890 1900 TCAGTATCCGGACACGTATATAATGCATTG TCAGTATCCGGACACGTATATAATGCATTG TCAGTATCCGGGCACGTATATAATGCATTG TCAGTATCCGGGCACGTATATAATGCATTG
DS-1 VP3 CDC66 stool CDC66 vero	1910 1920 1930 1940 1950 1960 1970
DS-1 VP3 CDC66 stool CDC66 vero	1980 1990 2000 GCATTGAAGGTGGTAAGTATTATGAACATG GTATTGAAGGTGGTAAGTATTATGAACATG GTATTGAAGGTGGTAAGTATTATGAACATG GTATTGAAGGTGGTAAGTATTATGAACATG
DS-1 VP3 CDC66 stool CDC66 vero	2010 2020 2030 2040 2050 2060 2070
DS-1 VP3 CDC66 stool CDC66 vero	2080 2090 2100
DS-1 VP3 CDC66 stool CDC66 vero	2110 2120 2130 2140 2150 2160 2170
DS-1 VP3 CDC66 stool CDC66 vero	2180 2190 2200 ATTCCTTACAAGTATAACGTTAAAGTACCA ATTCCTTATAAGTACAACGTTAAAATACCA ATTCCTTATAAGTACAACGTTAAAATACCA
DS-1 VP3 CDC66 stool CDC66 vero	2210 2220 2230 2240 2250 2260 2270
DS-1 VP3 CDC66 stool CDC66 vero	2280 2290 2300 TTAAGAATGAACTATTTGGAATGGACATAA TTAAAAATGAGTTATTTGGAATGGAA

DS-1 VP3 CDC66 stool CDC66 vero	2380 2390 2400 TTTCAAAATTTACAACGCCTTTTATAAAGA TTTCAAAATTTATAATGCGTTTTATAAAGA TTTCAAAATTTATAATGCGTTTTATAAAGA
DS-1 VP3 CDC66 stool CDC66 vero	2410 2420 2430 2440 2450 2460 2470 ACAAATTACATTTGGACAGTCAAGAATGTTTATTCCCCATGTAACGTTTAAGTAATGAGAAAACA GCAAATCACATTTGGACAATCAAGAATGTTTATTCCTCATGTAACGTTGAGTTTTAGTAATGAGAAAACG GCAAATCACATTTGGACAATCAAGAATGTTTATTCCTCATGTAACGTTGAGTTTTAGTAATGAGAAAACG GCAAATCACATTTGGACAATCAAGAATGTTTATTCCTCATGTAACGTTGAGTTTTAGTAATGAGAAAACG
DS-1 VP3 CDC66 stool CDC66 vero	2480 2490 2500 GTGAGAATAGACATACAAAATTGTACATA GTGAGAATAGACATCACAAAACTGTACATA GTGAGAATAGACATCACAAAACTGTACATA
DS-1 VP3 CDC66 stool CDC66 vero	2510 2520 2530 2540 2550 2560 2570 GATTCCATTTATCTAAGAAAAATAAAAGGTGACCAGGTGTTTGATATGACTGAGTGAG
DS-1 VP3 CDC66 stool CDC66 vero	CACACTAGTCATGATGTGACC (SEQ ID NO. 109) CACACTAGTCATGATGTGACC (SEQ ID NO. 110) CACACTAGTCATGATGTGACC (SEQ ID NO. 111)
Alineamient	o de secuencias aa del gen VP3 de las cepas CDC-66 y DS-1.
DS-1 VP3 CDC66 stool CDC66 vero	10 20 30 40 50 60 70 MKVLALRHSVAQIYADTQVYTHDDSKDDYENAFLISNLTTHNILYLNYSVKTLQILNKSGIAAIEIQKID MKVLALRHSVAQVYADTQVYTHDDSKDEYENAFLISNLTTHNILYLNYNVKTLQILNKSGIAAIEIQKID MKVLALRHSVAQVYADTQVYTHDDSKDEYENAFLISNLTTHNILYLNYNVKTLQILNKSGIAAIEIQKID
DS-1 VP3 CDC66 stool CDC66 vero	80 90 100 ELETLIRCNFTYDYIDDVVYLHDVSYYANN ELFTLIRCNFTYDYIDDVVYLHDYSYYTNN ELFTLIRCNFTYDYIDDVVYLHDYSYYTNN
DS-1 VP3 CDC66 stool CDC66 vero	110 120 130 140 150 160 170
DS-1 VP3 CDC66 stool CDC66 vero	180 190 200 KKIKERMTTSLPIARLSNRVFRDKLFKTLS KKIKERMTTSLPIARLSNRVFRDKLFKTLS KKIKERMTTSLPIARLSNRVFRDKLFKTLS
DS-1 VP3 CDC66 stool CDC66 vero	210 220 230 240 250 260 270 VNHDKVVNVGPRNESMFTFLDHPSIKQFSNGPYLVKDTIKLKQERWLGKRLSQFDIGQYKNMLNVLTTLY VNHDKVVNIGPRNESMFTFLDYPSIKQFSNGPYLVKDTIKLKQERWLGKRLSQFDIGQYKNMLNVLTTLY VNHDKVVNIGPRNESMFTFLDYPSIKQFSNGPYLVKDTIKLKQERWLGKRLSQFDIGQYKNMLNVLTTLY
DS-1 VP3 CDC66 stool CDC66 vero	280 290 300 QYYDIYHEKPIIYMIGSAPSYWIYDVKQYS QYYDIYHEKPIIYMIGSAPSYWIYDVKQYS QYYDIYHEKPIIYMIGSAPSYWIYDVKQYS
DS-1 VP3 CDC66 stool CDC66 vero	310 320 330 340 350 360 370 DLKFETWDPLDTPYSNLHHKELFYINDVQKLKDNSILYIDIRTDRGNMDWKEWRKVVEGQTADNLHIAYK NLKFETWDPLDTPYSNLHHKELFYINDVQKLKDNSILYIDIRTDRGTVDWKEWRKIVERQTIDNLRIAYK NLKFETWDPLDTPYSNLHHKELFYINDVQKLKDNSILYIDIRTDRGTVDWKEWRKIVERQTIDNLRIAYK NLKFETWDPLDTPYSNLHHKELFYINDVQKLKDNSILYIDIRTDRGTVDWKEWRKIVERQTIDNSRIAYK
DS-1 VP3 CDC66 stool CDC66 vero	380 390 400 YLSTGKAKICCVKMTAMDVELPISAKLLHH YLSTGKAKVCCVKMTAMDLELPISAKLLHH YLSTGKAKVCCVKMTAMDLELPISAKLLHH

DS-1 VP3 CDC66 stool	410 420 430 440 450 460 470
CDC66 vero	PTTEIRSEFYLVMDIWDSKNIKRFIPKGVLYSYINNTITENVFIQQPFKLKTLKNEYIIALYALSNDFNN
DS-1 VP3 CDC66 stool CDC66 vero	480 490 500 REDVVKLINNQRRALITVRINNTFKDEPKV REDVVKLINNQKKALMTVRINNTFKDEPKV REDVVKLINNQKKALMTVRINNTFKDEPKV
DS-1 VP3 CDC66 stool CDC66 vero	510 520 530 540 550 560 570
DS-1 VP3 CDC66 stool CDC66 vero	580 590 600 RRSHQIRFSESATSYSGYIFRDLSNNNFNL RRSHQIRFSESATSYSGYIFRDLSNNNFNL RRSHQIRFSESATSYSGYIFRDLSNNNFNL
DS-1 VP3 CDC66 stool CDC66 vero	610 620 630 640 650 660 670,,,,,,,,,,
DS-1 VP3 CDC66 stool CDC66 vero	680 690 700 DLTVLRYSNEIENYINKVYSITYADDPNYF DLTVLRYSNEIENYINKVYSITYADDPNYF DLTVLRYSNEIENYINKVYSITYADDPNYF
DS-1 VP3 CDC66 stool CDC66 vero	710 720 730 740 750 760 770
DS-1 VP3 CDC66 stool CDC66 vero	780 790 800 LSTYFKIYNAFYKEQITFGQSRMFIPHVTL LSTYFKIYNAFYKEQITFGQSRMFIPHVTL LSTYFKIYNAFYKEQITFGQSRMFIPHVTL
DS-1 VP3 CDC66 stool CDC66 vero	810 820 830 SFSNEKTVRIDITKLYIDSIYLRKIKGDTVFDMTE (SEQ ID NO. 112) SFSNEKTVRIDITKLYIDSIYLRKIKGDTVFDMTG (SEQ ID NO. 113) SFSNEKTVRIDITKLYIDSIYLRKIKGDTVFDMTG (SEQ ID NO. 114)

Alineamiento de secuencias nt del gen VP4 de las cepas CDC-66 y DS-1.

DS-1 VP4 CDC66 stool CDC66 vero	10 20 30 40 50 60 70 GGCTATAAAATGGCTTCACTCATTTATAGACAACTTCTCACTAATTCATATTCGGTAGACTTACATGATG GGCTATAAAATGGCTTCACTCATTTATAGACAACTTCTCACTAATTCATATTCGGTAGACTTGCATGACG GGCTATAAAATGGCTTCACTCATTTATAGACAACTTCTCACTAATTCATATTCGGTAGACTTGCATGACG
DS-1 VP4 CDC66 stool CDC66 vero	80 90 100 AAATAGAACAGATTGGATGGAGAAAACTC AAATAGAACAGATTGGATCGGAGAAAACTC AAATAGAACAGATTGGATCGGAGAAAACTC AAATAGAACAGATTGGATCGGAGAAAACTC
DS-1 VP4 CDC66 stool CDC66 vero	110 120 130 140 150 160 170 AAACTGTAACAGTAAATCCAGGTCCATTTGCACAAACCAGATACGCTCCAGTTAATTGGGGTCATGGGGA AAAATGTGACGGTAAATCCAGGCCCATTTGCACAGACTAGATACGCTCCAGTTAATTGGGGACACGGAGA AAAATGTGACGGTAAATCCAGGCCCATTTGCACAGACTAGATACGCTCCAGTTAATTGGGGACACGGAGA AAAATGTGACGGTAAATCCAGGCCCATTTGCACAGACTAGATACGCTCCAGTTAATTGGGGACACGGAGA
DS-1 VP4 CDC66 stool CDC66 vero	180 190 200 GATTAATGATTCAACTACAGTGGAACCAGT GATTAATGATTCAACTACAGTAGAACCAGT GATTAATGATTCAACTACAGTAGAACCAGT GATTAATGATTCAACTACAGTAGAACCAGT
DS-1 VP4 CDC66 stool CDC66 vero	210 220 230 240 250 260 270
DS-1 VP4 CDC66 stool CDC66 vero	280 290 300 ACAAATGGAGTAGTACGAAAGTACAAAAT ACAGATGGAGTAGTCTATGAGAGTACAAAT ACAGATGGAGTAGTCTATGAGAGTACAAAT ACAGATGGAGTAGTATTATGAGAGTACAAAT
DS-1 VP4 CDC66 stool CDC66 vero	310 320 330 340 350 360 370 AATAATGACTTTTGGACAGCAGTTATCGCAGTTGAACCACATGTTAGTCAAACAAA
DS-1 VP4 CDC66 stool CDC66 vero	380 390 400 TATTTGGTGAAAATAAGCAGTTTAACGTAG TATTTGGTGAAAATAAGCAGTTTAACGTAG TATTTGGTGAAAATAAGCAGTTTAACGTAG TATTTGGTGAAAATAAGCAGTTTAACGTAG
DS-1 VP4 CDC66 stool CDC66 vero	410 420 430 440 450 460 470
DS-1 VP4 CDC66 stool CDC66 vero	480 490 500 ACGGACTCTAACTTCTAGTAATAGACTTGT ACGGACTTTAACCTCTAATAATAAACTTGT ACGGACTTTAACCTCTAATAATAAACTTGT
DS-1 VP4 CDC66 stool CDC66 vero	510 520 530 540 550 560 570
DS-1 VP4 CDC66 stool CDC66 vero	580 590 600 TCAAATACTGCGGATTTAAATAATATCA TCGAATACTGCGGATTTAAATAATATCA TCGAATACTGCGGATTTAAATAATATCA TCGAATACTGCGGATTTAAATAATATCA
DS-1 VP4 CDC66 stool CDC66 vero	610 620 630 640 650 660 670
DS-1 VP4	680 690 700 ATGGTTTACCACCAATTCAGAATACTAGAA

CDC66 stocl CDC66 vero	ATGGTTTACCACCAATTCAAAATACTAGAA ATGGTTTACCACCAATTCAAAATACTAGAA
DS-1 VP4 CDC66 stocl CDC66 verc	710 720 730 740 750 760 770
DS-1 VP4 CDC66 stool CDC66 vero	780 790 800
DS-1 VP4 CDC66 stocl CDC66 verc	810 820 830 840 850 860 870
DS-1 VP4 CDC66 stocl CDC66 verc	880 890 900
DS-1 VP4 CDC66 stocl CDC66 vero	910 920 930 940 950 960 970
DS-1 VP4 CDC66 stool CDC66 verc	980 990 1000
DS-1 VP4 CDC66 stocl CDC66 vero	1010 1020 1030 1040 1050 1060 1070
DS-1 VP4 CDC66 stocl CDC66 verc	1080 1090 1100 CTGGGATGATTCAAAAGCATTTAGAAATAT CTGGGATGATTCAAAAGCATTTAGAAATAT CTGGGATGATTCAAAAGCATTTAGAAATAT
DS-1 VP4 CDC66 stool CDC66 vero	1110 1120 1130 1140 1150 1160 1170 GGTGTATGTTAGATCGCTAGCAGCAAATTTAAATTCAGTGAAATCGACAGGGGGGTTATATATTTTAGA GGTATATGTTAGATCGTTAGCAGCAAATTTAAATTCAGTGAAATCGCTAGGTGGAAGCTATCATTTTAGA GGTATATGCTAGATCGTTAGCAGCAAATTTAAATTCAGTGAAATCCGTAGGTGGAAGCTATAATTTTAGA GGTATATGCTAGATCGTTAGCAGCAAATTTAAATTCAGTGAAATCCGTAGGTGGAAGCTATAATTTTAGA
DS-1 VP4 CDC66 stool CDC66 vero	1180 1190 1200 TTGCCCGTAGGTAAATGGCCTATTATGAAT TTACCTGTAGGTGAATGGCCTATTATGAAT TTACCTGTAGGTGAATGGCCTATTATGAAT
DS-1 VP4 CDC66 stocl CDC66 vero	1210 1220 1230 1240 1250 1260 1270
DS-1 VP4 CDC66 stocl CDC66 vero	1280 1290 1300 ATTCACTGCGATTTAGATTTAACAG ATTCGCTACGATTTAGATTCAGTTTAACAG ATTCGCTACGATTTAGATTCAGTTTAACAG ATTCGCTACGATTTAGATTCAGTTTAACAG
DS-1 VP4 CDC66 stool CDC66 vero	1310 1320 1330 1340 1350 1360 1370
DS-1 VP4	1380 1390 1400 AAACAATGGAAATGAATACTATGAAATGTC

CDC66 stocl CDC66 vero	AAACAATGGAAATGAATACTATGAAGTGTC AAACAATGGAAATGAATACTATGAAGTGTC
DS-1 VP4 CDC66 stocl CDC66 verc	1410 1420 1430 1440 1450 1460 1470
DS-1 VP4 CDC66 stool CDC66 vero	1480 1490 1500
DS-1 VP4 CDC66 stool CDC66 vero	1510 1520 1530 1540 1550 1560 1570
DS-1 VP4 CDC66 stool CDC66 vero	1580 1590 1600 TACTACCTTTAGATATGTTTTCTATGTTTT TATTACCTTTAGATATGTTTTCTATGTTTT TATTACCTTTAGATATGTTTTCTATGTTTT
DS-1 VP4 CDC66 stool CDC66 vero	1610 1620 1630 1640 1650 1660 1670
DS-1 VP4 CDC66 stool CDC66 vero	1680 1690 1700 GAAATTAGCTACATCAATTTCAGAAATGAC AAAATTAGCTACATCAGTTTCAGAAATGAC AAAATTAGCTACATCGATTTCAGAAATGAC AAAATTAGCTACATCGATTTCAGAAATGAC
DS-1 VP4 CDC66 stocl CDC66 verc	1710 1720 1730 1740 1750 1760 1770 TAATTCATTGTCAGATGCGGCTTCATCAGCAGCATCAAGAAGTGCTTCTATTAGATCAAATTTATCTACGATT TAATTCATTGTCAGATGCGGCTTCGTCGGCATCAAGAAGTGCTTCTATTAGATCAAATTTATCGACAATT TAATTCATTGTCAGATGCGGCTTCGTCGGCATCAAGAAGTGCTTCTATTAGATCAAATTTATCGACAATT TAATTCATTGTCAGATGCGGCTTCGTCGGCATCAAGAAGTGCTTCTATTAGATCAAATTTATCGACAATT
DS-1 VP4 CDC66 stocl CDC66 verc	1780 1790 1800
DS-1 VP4 CDC66 stool CDC66 vero	1810 1820 1830 1840 1850 1860 1870,,,,,,,,
DS-1 VP4 CDC66 stocl CDC66 vero	1880 1890 1900 GAGAGATGATTACTCAAACTGAAGGATTGA AAGAAATGATTACTCAAACTGAAGGAATTA AAGAAATGATTACTCAAACTGAAGGAATTA
DS-1 VP4 CDC66 stocl CDC66 vero	1910 1920 1930 1940 1950 1960 1970 GTTTTGATGATATTTCAGCAGCTGTACTGAAAACGAAAATAGATATGTCCACACAAATTGGAAAAAACAC GTTTTGACGATATTTCAGCAGCCGTATTGAAAACGAAAATAGATATGTCCACACAAATTGGAAAAAATAC GTTTTGACGATATTTCAGCAGCCGTATTGAAAACGAAAATAGATATGTCCACACAAATTGGAAAAAATAC
DS-1 VP4 CDC66 stocl CDC66 vero	1980 1990 2000
DS-1 VP4 CDC66 stool CDC66 vero	2010 2020 2030 2040 2050 2060 2070
DS-1 VP4	2080 2090 2100 AAGTTTTTTGCATATAAAGTGGATACACTC

CDC66 stool CDC66 vero	AAGTTTTTTGCTTATAAAGTGGATACACTT AAGTTTTTTGCTTATAAAGTGGATACACTT
DS-1 VP4 CDC66 stool CDC66 vero	2110 2120 2130 2140 2150 2160 2170
DS-1 VP4 CDC66 stool CDC66 vero	2180 2190 2200 TAGACTTTAAGACGTTAAAAAATTTAAACG TAGATTTTAAAACGTTAAAGAATTTAAACG TAGATTTTAAAACGTTAAAGAATTTAAACG
DS-1 VP4 CDC66 stool CDC66 vero	2210 2220 2230 2240 2250 2260 2270 ACAATTATGGAATTACTCGTATTGAAGCGTTTAATTTAA
DS-1 VP4 CDC66 stool CDC66 vero	2280 2290 2300 2310 2320 2330 2340
DS-1 VP4 CDC66 stool CDC66 vero	2350 TGTCATCCAGGATGTGACC (SEQ ID NO. 115) CGCTATTGAGGATGTGACC (SEQ ID NO. 116) CGCTATTGAGGATGTGACC (SEQ ID NO. 117)
Alineamient	o de secuencias aa del gen VP4 de las cepas CDC-66 y DS-1.
DS-1 VP4 CDC66 stool CDC66 vero	10 20 30 40 50 60 70 MASLIYRQLLTNSYSVDLHDEIEQIGSEKTQSVTVNPGPFAQTRYAPVNWGHGEINDSTTVEPVLDGPYQ MASLIYRQLLTNSYSVDLHDEIEQIGSEKTQNVTVNPGPFAQTRYAPVNWGHGEINDSTTVEPVLDGPYQ MASLIYRQLLTNSYSVDLHDEIEQIGSEKTQNVTVNPGPFAQTRYAPVNWGHGEINDSTTVEPVLDGPYQ
DS-1 VP4 CDC66 stool CDC66 vero	80 90 100 PTTFKPPNDYWLLISSNTNGVVYESTNNND PTTFKPPNDYWLLISSNTDGVVYESTNNSD PTTFKPPNDYWLLISSNTDGVVYESTNNSD
DS-1 VP4 CDC66 stool CDC66 vero	110 120 130 140 150 160 170 FWTAVIAVEPHVSQTNRQYILFGENKQFNVENNSDKWKFFEMFKGSSQGMFSNRRTLTSSNRLVGMLKYG FWTAVIAVEPHVSQTNRQYVLFGENKQFNVENSSDKWKFFEMFKGSSQSDFSNRRTLTSNNKLVGMLKYG FWTAVIAVEPHVSQTNRQYVLFGENKQFNVENSSDKWKFFEMFKGSSQSDFSNRRTLTSNNKLVGMLKYG FWTAVIAVEPHVSQTNRQYVLFGENKQFNVENSSDKWKFFEMFKGSSQSDFSNRRTLTSNNKLVGMLKYG
DS-1 VP4 CDC66 stool CDC66 vero	180 190 200 GRVWTFHGETPRATTDSSNTADLNNISIII GRVWTFHGETPRATTDSSNTADLNNISIII GRVWTFHGETPRATTDSSNTADLNNISIII
DS-1 VP4 CDC66 stool CDC66 vero	210 220 230 240 250 260 270 HSEFYIIPRSQESKCNEYINNGLPPIQNTRNVVPLSLSSRSIQYRRAQVNEDITISKTSLWKEMQYNRDI HSEFYIIPRSQESKCNEYINNGLPPIQNTRNVVPLSLSSRSIQYRRAQVNEDITISKTSLWKEMQYNRDI HSEFYIIPRSQESKCNEYINNGLPPIQNTRNVVPLSLSSRSIQYRRAQVNEDIKISKTSLWKEMQYNRDI
DS-1 VP4 CDC66 stool CDC66 vero	280 290 300 IIRPKFGNSVIKLGGLGYKWSEISYKAANY IIRPKFGNSIIKLGGLGYKWSEISYKAANY IIRPKFGNSIIKLGGLGYKWSEISYKAANY
DS-1 VP4 CDC66 stool CDC66 vero	310 320 330 340 350 360 370 QYSYSRDGEQVTAHTTCSVNGVNNFSYNGGSLPTDFSISRYEVIKENSYVYIDYWDDSKAFRNMVYVRSL QYSYSRDGEQVTAHTTCSVNGVNNFSYNGGSLPTDFSISRYEVIKENSYVYIDYWDDSKAFRNMVYVRSL QYSYSRDGEQVTAHTTCSVNGVNNFSYNGGSLPTDFSISRYEVIKENSYVYIDYWDDSKAFRNMVYARSL
DS-1 VP4 CDC66 stool CDC66 vero	380 390 400 AANLNSVKCTGGSYNFRLPVGKWPIMNGGA AANLNSVKCVGGSYDFRLPVGEWPIMNGGA AANLNSVKCVGGSYNFRLPVGGWPIMNGGA

	410 420 430 440 450 460 470
DS-1 VP4 CDC66 stool CDC66 vero	
	480 490 500
DS-1 VP4 CDC66 stool CDC66 vero	SLVQTNDDYQTPIMNSVTVRQDLERQLNDL SLVPTNDDYQIPIMNSVTVRQDLERQLNDL SLVPTNDDYQIPIMNSVTVRQDLERQLNDL
DS-1 VP4 CDC66 stool CDC66 vero	510 520 530 540 550 560 570 REEFNSLSQEIAMSQLIDLALLPLDMFSMFSGIKSTIDLTKSMATSVMKKFRKSKLATSISEMTNSLSDA REEFNSLSQEIAMSQLIDLALLPLDMFSMFSGIKSTIDLTKSMATSVMKKFRKSKLATSISEMTNSLSDA REEFNSLSQEIAMSQLIDLALLPLDMFSMFSGIKSTIDLTKSMATSVMKKFRKSKLATSISEMTNSLSDA
DS-1 VP4 CDC66 stool CDC66 vero	580 590 600 ASSASRSASIRSNLSTISNWTNTSKSVSNV ASSASRSASIRSNLSTISNWSDASKSVLNV ASSASRSASIRSNLSTISNWSDASKSVLNV
DS-1 VP4 CDC66 stool CDC66 vero	610 620 630 640 650 660 670
DS-1 VP4 CDC66 stool CDC66 vero	680 690 700 SYRVLKDDEVMEINTEGKFFAYKVDTLNEI SYRVLKDDEVMEVNTEGKFFAYKVDTLNEI SYRVLKDDEVMEVNTEGKFFAYKVDTLNEI SYRVLKDDEVMEVNTEGKFFAYKVDTLNEI
DS-1 VP4 CDC66 stool CDC66 vero	710 720 730 740 750 760 PFDINKFAELVTDSPVISAIIDFKTLKNLNDNYGITRIEAFNLIKSNPNVLRNFINÇNNP PFDINKFAELVTDSPVISAIIDFKTLKNLNDNYGITRIEALNLIKSNPNVLRNFINÇNNP PFDINKFAELVTDSPVISAIIDFKTLKNLNDNYGITRIEALNLIKSNPNVLRNFINÇNNP
	770
DS-1 VP4 CDC66 stool CDC66 vero	IIRNRIEQLILQCKL (SEQ ID NO. 118) IIRNRIEQLILQCKL (SEQ ID NO. 119) IIRNRIEQLILQCKL (SEQ ID NO. 120)
Alineamient	o de secuencias nt del gen VP6 de las cepas CDC-66 y DS-1.
DS-1 VP6 CDC66 stool CDC66 vero	10 20 30 40 50 60 70 GGCTTTTAAACGAAGTCTTCAACATGGATGTTTTATATTCATTATCAAAAACTCTTAAGGATGCTAGAGA GGCTTTAAAACGAAGTCTTCAACATGGATGTCCTGTACTCCTTGTCAAAAACTCTTAAAGATGCTAGAGA GGCTTTAAAAACGAAGTCTTCAACATGGATGTCCTGTACTCCTTGTCAAAAACTCTTAAAGATGCTAGAGA GGCTTTAAAAACGAAGTCTTCAACATGGATGTCCTGTACTCCTTGTCAAAAACTCTTAAAGATGCTAGAGA
DS-1 VP6 CDC66 stool CDC66 vero	80 90 100 CAAAATTGTCGAAGGCACTTATACTCTAA CAAAATTGTCGAAGGCACATTATACTCTAA CAAAATTGTCGAAGGCACATTATACTCTAA
DS-1 VP6 CDC66 stool CDC66 vero	110 120 130 140 150 160 170 TGTTAGTGATCTAATTCAACAATTTAATCAAATGATAATTACTATGAATGGAAATGAATTTCAGACTGGA TGTGAGTGATCTAATTCAACAATTTAACCAAATGATAATTACTATGAATGGAAATGAGTTCCAAACTGGA TGTGAGTGATCTAATTCAACAATTTAACCAAATGATAATTACTATGAATGGAAATGAGTTCCAAACTGGA
DS-1 VP6 CDC66 stool CDC66 vero	180 190 200 GGAATTGGTAATCTACCAACCAGAAATTGG GGAATTGGTAATCTACCAATTAGAAATTGG GGAATTGGTAATCTACCAATTAGAAATTGG
DS-1 VP6 CDC66 stool CDC66 vero	210 220 230 240 250 260 270
	280 290 300

DS-1 VP6 CDC66 stool CDC66 vero	ACACAATTGATTATTTGTAGACACAATTGACTATTTGTAGACACAATTGACTATTTGTAGACACAATTGACTATTTTGTAGACACAATTGACTATTTTGTAGACACAATTGACTATTTTGTAGACACAATTGACTATTTTGTAGACACAATTGACTATTTTGTAGACACAATTGACACAATTGACACACAATTGACACACAC
DS 1 VP6 CDC66 stool CDC66 vero	310 320 330 340 350 360 370 ATAACGTATGGATGGATGGATGGTTAGAGAATCACAAAGAAACGAATTCACCGACGTCAGAATCACATCACT ACAACGTATGTATGGATGAAATGGTTAGAGAATCACAAACGAAATGGAATTGCACCACAATCACATTCACT ACAACGTATGTATGGATGAAATGGTTAGAGAATCACAAAGAAATGGAATTGCACCACAATCAGATTCACT
DS-1 VP6 CDC66 stool CDC66 vero	380 390 400 TAGAAAACTATCAGGAATTAAATTTAAAAG TAGAAAATTGTCAGGCATTAAGTTCAAAAG TAGAAAATTGTCAGGCATTAAGTTCAAAAG
DS-1 VP6 CDC66 stool CDC66 vero	410 420 430 440 450 460 470
DS-1 VP6 CDC66 stool CDC66 vero	480 490 500
DS-1 VP6 CDC66 stool CDC66 vero	510 520 530 540 550 560 570
DS-1 VP6 CDC66 stool CDC66 vero	580 590 600
DS-1 VP6 CDC66 stool CDC66 vero	610 620 630 640 650 660 670
DS-1 VP6 CDC66 stool CDC66 vero	680 690 700 AGTATTAACGACGCTACAATAACTCTCTT AGTTTTAACTACGACTACAATAACACTTTT AGTTTTAACTACAGCTACAATAACACTTTT AGTTTTAACTACAGCTACAATAACACTTTT
DS-1 VP6 CDC66 stool CDC66 vero	710 720 730 740 750 760 770
DS-1 VP6 CDC66 stool CDC66 vero	780 790 800
DS-1 VP6 CDC66 stool CDC66 vero	810 820 830 840 850 860 870 GAAGTAGAATTCTATTGAATGGACAGATAATAAATCATTATCAGGCAAGATTTGGTACAATTGTAGCTA GAAGTGGAGTTTCTACTAAACGGTCAGATAATAAAACACTTACCAGGCTAGATTTGGAACAATCGTAGCTA GAAGTGGAGTTTCTACTAACACGGTCAGATAATAAACACTTACCAGGCTAGATTTTGGAACAATCGTAGCTA
DS 1 VP6 CDC66 stool CDC66 vero	880 890 900
DS-1 VP6 CDC66 stool	910 920 930 940 950 960 970AATTAATGAGACCACCAAATATGACCCCATCAGTGCAGCACTTTTCCCTAACGCGCAGCCATTTGAACA AGTTGATGAGACCACCAAATATGACACCAGCAGTAGCAGCATTATTTCCAAATGCGCAGCCATTTGAACA

CDC66 vero	AGTTGATGAGACCACCAAATATGACACCAGCAGTAGCAGCATTATTTCCAAATGCGCAGCCATTTGAACA
	980 990 1000
DS-1 VP6 CDC66 stool CDC66 vero	TCATGCTATGGCCTAACATTACGAAT TCATGCTACAGTAGGACTCACACTCAGAAT TCATGCTACAGTAGGACTGACACTGAGAAT TCATGCTACAGTAGGACTGACACTGAGAAT
DS-1 VP6 CDC66 stool CDC66 vero	1010 1020 1030 1040 1050 1060 1070 TGAATCTGCAGTTTGTGAGTCAGTGCTTGCTGATGCTAGTGAAACAATGTTAGCTAATGTAACATCTGTT TGAATCTGCAGTTTGTGAATCTGTACTTGCCGACGCAAGCGAGACAATGCTAGCAAATGTGACATCTGTT TGAATCTGCAGTTTGTGAATCTGTACTTGCCGACGCAAGCGAGACAATGCTAGCAAATGTGACATCTGTT
DS-1 VP6 CDC66 stool CDC66 vero	1080 1090 1100 AGACAAGAATATGCAATACCAGTTGGACCA AGACAAGAATACGCAATACCAGTTGGACCA AGACAAGAATACGCAATACCAGTTGGACCA AGACAAGAATACGCAATACCAGTTGGACCA
DS-1 VP6 CDC66 stool CDC66 vero	1110 1120 1130 1140 1150 1160 1170 GTTTTTCCACCAGGTATGAATTGGACTGATTTAATTACTAACTA
DS-1 VP6 CDC66 stool CDC66 vero	1180 1190 1200
DS-1 VP6 CDC66 stool CDC66 vero	1210 1220 1230 1240 1250 1260 1270
DS-1 VP6 CDC66 stool CDC66 vero	1280 1290 1300 GCTGTTTGAACTCTACAGTAAGGGTACGT GCTGTTTGAACTCTGTAAGTAAGGATGCGT GCTGTTTGAACTCTGTAAGTAAGGATGCGT
DS-1 VP6 CDC66 stool CDC66 vero	1310 1320 1330 1340 TTACGTATTCGCTACGTAGAGTAATCACTCAGATGACGTA CTACGTATTCGCTACACACAGTAATCACTCAGATGATGTA CTACGTATTCGCTACACAGAGTAATCACTCAGATGATGTA
DS-1 VP6 CDC66 stool CDC66 vero	1350 . GTGAGAGGATGTGACC (SEQ ID NO. 121) GTGAGAGGATGTGACC (SEQ ID NO. 122) GTGAGAGGATGTGACC (SEQ ID NO. 123)
Alineamient	o de secuencias aa del gen VP6 de las cepas CDC-66 y DS-1.
DS-1 VP6 CDC66 stool CDC66 vero	10 20 30 40 50 60 70 MDVLYSLSKTLKDARDKIVEGTLYSNVSDLIQQFNQMIITMNGNEFQTGGIGNLPTRNWSFDFGLLGTTL MDVLYSLSKTLKDARDKIVEGTLYSNVSDLIQQFNQMIITMNGNEFQTGGIGNLPIRNWNFDFGLLGTTL MDVLYSLSKTLKDARDKIVEGTLYSNVSDLIQQFNQMIITMNGNEFQTGGIGNLPIRNWNFDFGLLGTTL
DS-1 VP6 CDC66 stool CDC66 vero	80 90 100 LNLDANYVETARNTIDYFVDFVDNVCMDEM LNLDANYVETARNTIDYFVDFVDNVCMDEM LNLDANYVETARNTIDYFVDFVDNVCMDEM LNLDANYVETARNTIDYFVDFVDNVCMDEM
DS-1 VP6 CDC66 stool CDC66 vero	110 120 130 140 150 160 170 VRESQRNGIAPQSESLRKLSGIKFKRINFDNSSEYIENWNLQNRRQRTGFTFHKPNIFPYSASFTLNRSQ VRESQRNGIAPQSDSLRKLSGIKFKRINFDNSSEYIENWNLQNRRQRTGFTFHKPNIFPYSASFTLNRSQ VRESQRNGIAPQSDSLRKLSGIKFKRINFDNSSEYIENWNLQNRRQRTGFTFHKPNIFPYSASFTLNRSQ
DS-1 VP6 CDC66 stool CDC66 vero	180 190 200 PAHDNLMGTMWLNAGSEIQVAGFDYSCAIN PAHDNLMGTMWLNAGSEIQVAGFDYSCAIN PAHDNLMGTMWLNAGSEIQVAGFDYSCAIN

DS-1 VP6 CDC66 stool CDC66 vero	210 220 230 240 250 260 270
DS-1 VP6 CDC66 stool CDC66 vero	280 290 300 NTYQARFGTIVARNFDTIRLSFQLMRPPNM NTYQARFGTIVARNFDTIRLSFQLMRPPNM NTYQARFGTIVARNFDTIRLSFQLMRPPNM
DS-1 VP6 CDC66 stool CDC66 vero	310 320 330 340 350 360 370 TPSVAALFPNAQPFEHHATVGLTLRIESAVCESVLADASETMLANVTSVRQEYAIPVGPVFPPGMNWTDL TPAVAALFPNAQPFEHHATVGLTLRIESAVCESVLADASETMLANVTSVRQEYAIPVGPVFPPGMNWTDL TPAVAALFPNAQPFEHHATVGLTLRIESAVCESVLADASETMLANVTSVRQEYAIPVGPVFPPGMNWTDL
DS-1 VP6 CDC66 stool CDC66 vero	380 390 ITNYSPSREDNLQRVFTVASIRSMLVK (SEQ ID NO. 124) ITNYSPSREDNLQRVFTVASIRSMLVK (SEQ ID NO. 125) ITNYSPSREDNLQRVFTVASIRSMLVK (SEQ ID NO. 126)
Alineamient	o de secuencias nt del gen VP7 de las cepas CDC-66 y DS-1.
DS-1 VP7 CDC66 stool CDC66 vero	10 20 30 40 50 60 70 GGCTTTAAAAACGAGAATTTCCGTCTGGCTAGCGGTTAGCTCTTTTTAATGTATGGTATTGAATATACCA GGCTTTAAAAGAGAGAATTTCCGTCTGGCTAGCGGTTAGCTCTTTTTAATGTATGGTATTGAATATACCA GGCTTTAAAAGAGAGAATTTCCGTCTGGCTAGCGGTTAGCTCTTTTTAATGTATGGTATTGAATATACCA
DS-1 VP7 CDC66 stool CDC66 vero	80 90 100 CAATTCTGACCATTTTAATATCTATCATAT CAATTCTGACCATTTTAATATCTATCATAT CAATTCTGACCATTTTAATATCTATCATAT CAATTCTGACCATTTTAATATCTATCATAT
DS-1 VP7 CDC66 stool CDC66 vero	110 120 130 140 150 160 170
DS-1 VP7 CDC66 stool CDC66 vero	180 190 200 TGCTTTAATATCACCATTTGTAAGGACACA CGCTCTGATGTCACCATTTGTGAGGACACA CGCTCTGATGTCACCATTTGTGAGGACACA CGCTCTGATGTCACCATTTGTGAGGACACA
DS-1 VP7 CDC66 stool CDC66 vero	210 220 230 240 250 260 270
DS-1 VP7 CDC66 stool CDC66 vero	280 290 300 CCATTTTTAACTTCGACGCTATGTTTATAC TCATTTCTAACTTCAACGTTATGTTTATAT TCATTTCTAACTTCAACGTTATGTTTATAT
DS-1 VP7 CDC66 stool CDC66 vero	310 320 330 340 350 360 370 TATCCAGCAGAAGCTAAAAATGAGATTTCAGATGATGAATGGGAAAATACTCTATCACAATTATTTTTAA TATCCAACAGAAGCTAAAAATGAGATTTCAGATAATGAATG
DS-1 VP7 CDC66 stool CDC66 vero	380 390 400
DS-1 VP7 CDC66 stool CDC66 vero	410 420 430 440 450 460 470

	400	4.0.0	500				
DS-1 VP7 CDC66 stool CDC66 vero	480 GATGAGATATGACA GATGCGATATGATA GATGCGATATGATA	ATACATCTGAA ATACATCTGAA	TTAGA TTAGA				
	510	520	530	540	550	560	570
DS-1 VP7 CDC66 stool CDC66 vero	TGCATCAGAGTTAC TGCATCGGAATTAC TGCATCGGAATTAC	GCAGATCTTATA GCAGATCTTATA	TTGAATGAA: TTGAACGAA:	rggctgtgcaa rggctgtgcaa	TCCTATGGAC.	ATATCACTTT ATATCACTTT	ACTAT ACTAT
DS-1 VP7 CDC66 sLool CDC66 vero	580 TATCAACAAAGTAG TATCAACAAAAATAG TATCAACAAAAATAG	SCGAATCAAATA SCGAATCAAATA	AATGG AATGG				
DS-1 VP7 CDC66 stool CDC66 vero	610 ATATCGATGGGAAG ATATCGATGGGAAG ATATCGATGGGAAG	CAGACTGCACGG CAGACTGCACGG	TAAAAGTTT(TAAAAGTTT(STCCACTCAAT STCCACTCAAT	'ACACAAACCT 'ACGCAAACTT	TAGGCATTGG TAGGAATTGG	ATGCA ATGCA
DS-1 VP7 CDC66 stool CDC66 vero	680 AAACTACGGACGTA AAACTACGGACGTA AAACTACGGACGTA	AAACACATTTGA GGATACATTTGA	GATTG GATTG				
DS-1 VP7 CDC66 stool CDC66 vero	710 TTGCGTCGTCTGA TTGCGTCGTCTGA TTGCGTCGTCTGA	AAATTGGTAAT	TACTGACGT: TACTGATGT:	rgtaaatggtg rgtaaatggtg	TTAATCATAA TTAATCATAA	GATAAATATT AATAAATATT	TCAAT TCAAT
DS-1 VP7 CDC66 stool CDC66 vero	780 AAATACGTGCACTA AAATACGTGCACTA AAATACGTGCACTA	ATACGTAACTGT ATACGTAATTGT	AATAA AATAA				
DS-1 VP7 CDC66 stool CDC66 vero	810 ATTAGGACCACGAC ACTAGGACCACGAC ACTAGGACCACGAC	GAAAATGTTGCT GAAAATGTTGCT	ATAATTCAA(ATAATTCAA(STTGGTGGACC STTGGTGGACC	GAACGCATTA GAACGCACTA	GATATCACTG GATATCACTG	CTGAT CTGAT
	880	890	900				
DS-1 VP7 CDC66 stool CDC66 vero	CCAACAACAGTCCCCCAACAACAGTTCCCCCAACAACAGTTCC	CACAAGTTCAAA CACAGGTTCAAA	GAATC GAATT				
DS-1 VP7 CDC66 stool CDC66 vero	910 ATGCGAATAAATTC ATGCGAGTAAATTC ATGCGAGTAAATTC	GAAAAAATGGT GAAAAAAATGGT	GGCAAGTAT: GGCAAGTGT:	TTTATACAGTA TTTATACAGTA	GTTGACTATA GTTGATTATA	TTAACCAAGT TTAACCAAAT	TATAC TATAC
DS-1 VP7 CDC66 stool CDC66 vero	980 AAGTCATGTCCAAA AAGTTATGTCCAAA AAGTTATGTCCAAA	ACGATCAAGATC ACGGTCAAGATC	ATTAG ATTAG				
DS-1 VP7 CDC66 stool CDC66 vero	1010 ACGCAGCTGCATTT ACACGGCTGCTTTT ACACGGCTGCTTTT	TATTATAGAAT TATTATAGAAT	TTAGATATA TTAGATATA	SATTAGATTAG ACTTAGATTAG	AGTTG AATTG		
DS-1 VP7 CDC66 stool CDC66 vero	1060 . TATGATGTGACC TATGATGTGACC TATGATGTGACC	(SEQ ID NO. (SEQ ID NO. (SEQ ID NO.	128)				
Alineamient	to de secuencia	as aa del ge	en VP7 de	las cepas	CDC-66 v	DS-1.	
10 20		40	50	60	70		

DS-1 VP7 CDC66 stool CDC66 vero	
DS-1 VP7 CDC66 stool CDC66 vero	80 90 100 TSGEPFLTSTLCLYYPAEAKNEISDDEWEN TSGESFLTSTLCLYYPTEAKNEISDNEWEN TSGESFLTSTLCLYYPTEAKNEISDNEWEN
DS-1 VP7 CDC66 stool CDC66 vero	110 120 130 140 150 160 170 TLSQLFLTKGWPIGSVYFKDYNDINTFSVNPQLYCDYNVVLMRYDNTSELDASELADLILNEWLCNPMDI TLSQLFLTKGWPTGSVYFKDYNDITTFSMNPQLYCDYNVVLMRYDNTSELDASELADLILNEWLCNPMDI TLSQLFLTKGWPTGSVYFKDYNDITTFSMNPQLYCDYNVVLMRYDNTSELDASELADLILNEWLCNPMDI
DS-1 VP7 CDC66 stool CDC66 vero	180 190 200 SLYYYQQSSESNKWISMGTDCTVKVCPLNT SLYYYQQNSESNKWISMGTDCTVKVCPLNT SLYYYQQNSESNKWISMGTDCTVKVCPLNT
DS-1 VP7 CDC66 stool CDC66 vero	210 220 230 240 250 260 270 QTLGIGCKTTDVNTFEIVASSEKLVITDVVNGVNHKINISINTCTIRNCNKLGPRENVAIIQVGGPNALD QTLGIGCKTTDVDTFEIVASSEKLVITDVVNGVNHKINISINTCTIRNCNKLGPRENVAIIQVGGPNALD QTLGIGCKTTDVDTFEIVASSEKLVITDVVNGVNHKINISINTCTIRNCNKLGPRENVAIIQVGGPNALD
DS-1 VP7 CDC66 stool CDC66 vero	280 290 300 310 320

REIVINDICACIONES

1. Una composición de vacuna para su uso en la inducción de una respuesta inmunológica contra un rotavirus en un sujeto, que comprende:

un vehículo farmacéuticamente aceptable mezclado con una cepa de rotavirus aislada de CDC-9, la cepa de rotavirus de CDC-9 **caracterizada por que** es un rotavirus humano A, que tiene un genotipo P[8], G1, y

una VP1 que tiene la secuencia de aminoácidos SEQ ID NO:17; una VP2 que tiene la secuencia de aminoácidos SEQ ID NO:20; una VP3 que tiene la secuencia de aminoácidos SEQ ID NO:23; una VP4 que tiene la secuencia de aminoácidos SEQ ID NO:26; una VP6 que tiene la secuencia de aminoácidos SEQ ID NO:29; una VP7 que tiene la secuencia de aminoácidos SEQ ID NO:32;

5

30

40

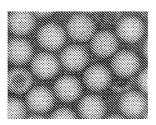
una NSP1 que tiene la secuencia de aminoácidos SEQ ID NO:2; una NSP2 que tiene la secuencia de aminoácidos SEQ ID NO:5; una NSP3 que tiene la secuencia de aminoácidos SEQ ID NO:8; una NSP4 que tiene la secuencia de aminoácidos SEQ ID NO:11; y

una NSP5 que tiene la secuencia de aminoácidos SEQ ID NO:14,

o una VP1 que tiene la secuencia de aminoácidos SEQ ID NO:18; una VP2 que tiene la secuencia de aminoácidos SEQ ID NO:21;

una VP3 que tiene la secuencia de aminoácidos SEQ ID NO:24; una VP4 que tiene la secuencia de aminoácidos SEQ ID NO:27;

una VP6 que tiene la secuencia de aminoácidos SEQ ID NO:30; una VP7 que tiene la secuencia de aminoácidos SEQ ID NO:33;


una NSP1 que tiene la secuencia de aminoácidos SEQ ID NO:3; una NSP2 que tiene la secuencia de aminoácidos SEQ ID NO:6;

una NSP3 que tiene la secuencia de aminoácidos SEQ ID NO:9; una NSP4 que tiene la secuencia de aminoácidos SEQ ID NO:12; y

una NSP5 que tiene la secuencia de aminoácidos SEQ ID NO:15.

- 2. La composición de vacuna para su uso de la reivindicación 1, que comprende además un adyuvante.
- 35 3. La composición de vacuna para su uso de la reivindicación 1, en la que la cepa de rotavirus humano aislada es un rotavirus atenuado vivo.
 - 4. La composición de vacuna para su uso de la reivindicación 1, en la que la cepa de rotavirus humano aislada es un rotavirus inactivado.
 - 5. La composición de vacuna para su uso de la reivindicación 1, que comprende al menos dos cepas de rotavirus aisladas.
- 6. La composición de vacuna para su uso de la reivindicación 1, formada para administración parenteral 45 a un sujeto.
 - 7. La composición de vacuna para su uso de la reivindicación 1, formada para administración oral a un sujeto.
- 50 8. Una composición de vacuna para su uso de una cualquiera de las reivindicaciones 1 a 7, en la que la cepa de rotavirus aislada de CDC-9 está caracterizada por las secuencias de aminoácidos: SEQ ID NO:2; SEQ ID NO:5; SEQ ID NO:8; SEQ ID NO:11; SEQ ID NO:14; SEQ ID NO:17; SEQ ID NO:20; SEQ ID NO:23; SEQ ID NO:26; SEQ ID NO:29; y SEQ ID NO:32.
- 55 9. Una composición de vacuna para su uso de una cualquiera de las reivindicaciones 1 a 7, en la que la cepa de rotavirus aislada de CDC-9 está **caracterizada por** las secuencias de aminoácidos: SEQ ID NO:3; SEQ ID NO:6; SEQ ID NO:9; SEQ ID NO:12; SEQ ID NO:15; SEQ ID NO:18; SEQ ID NO:21; SEQ ID NO:24; SEQ ID NO:27; SEQ ID NO:30; y SEQ ID NO:33.

- 10. Una cepa de rotavirus aislada de CDC-9 caracterizada por que es un rotavirus humano A, que tiene un genotipo P[8], G1, y una VP1 que tiene la secuencia de aminoácidos SEQ ID NO:17; una VP2 que tiene la secuencia de aminoácidos SEQ ID NO:20;
 5 una VP3 que tiene la secuencia de aminoácidos SEQ ID NO:23; una VP4 que tiene la secuencia de aminoácidos SEQ ID NO:26; una VP6 que tiene la secuencia de aminoácidos SEQ ID NO:29; una VP7 que tiene la secuencia de aminoácidos SEQ ID NO:32; una NSP1 que tiene la secuencia de aminoácidos SEQ ID NO:2;
 10 una NSP2 que tiene la secuencia de aminoácidos SEQ ID NO:5; una NSP3 que tiene la secuencia de aminoácidos SEQ ID NO:5;
- una NSP2 que tiene la secuencia de aminoácidos SEQ ID NO:5; una NSP3 que tiene la secuencia de aminoácidos SEQ ID NO:8; una NSP4 que tiene la secuencia de aminoácidos SEQ ID NO:11; y una NSP5 que tiene la secuencia de aminoácidos SEQ ID NO:14, o
- una VP1 que tiene la secuencia de aminoácidos SEQ ID NO:18; una VP2 que tiene la secuencia de aminoácidos SEQ ID NO:21; una VP3 que tiene la secuencia de aminoácidos SEQ ID NO:24; una VP4 que tiene la secuencia de aminoácidos SEQ ID NO:27; una VP6 que tiene la secuencia de aminoácidos SEQ ID NO:30;
 una VP7 que tiene la secuencia de aminoácidos SEQ ID NO:33; una NSP1 que tiene la secuencia de aminoácidos SEQ ID NO:3; una NSP2 que tiene la secuencia de aminoácidos SEQ ID NO:6;
- una NSP1 que tiene la secuencia de aminoácidos SEQ ID NO:3; una NSP2 que tiene la secuencia de aminoácidos SEQ ID NO:6; una NSP3 que tiene la secuencia de aminoácidos SEQ ID NO:19; una NSP4 que tiene la secuencia de aminoácidos SEQ ID NO:12; y
- 25 una NSP5 que tiene la secuencia de aminoácidos SEQ ID NO:15.
- 11. Una cepa de rotavirus aislada de CDC-9 de la reivindicación 10, en la que la cepa de rotavirus aislada de CDC-9 está caracterizada por las secuencias de aminoácidos: SEQ ID NO:2; SEQ ID NO:5; SEQ ID NO:8; SEQ ID NO:11; SEQ ID NO:14; SEQ ID NO:17; SEQ ID NO:20; SEQ ID NO:23; SEQ ID NO:26; SEQ ID NO:29; y SEQ ID NO:32.
- 12. Una cepa de rotavirus aislada de CDC-9 de la reivindicación 10, en la que la cepa de rotavirus aislada de CDC-9 está **caracterizada por** las secuencias de aminoácidos: SEQ ID NO:3; SEQ ID NO:6; SEQ ID NO:9; SEQ ID NO:12; SEQ ID NO:15; SEQ ID NO:18; SEQ ID NO:21; SEQ ID NO:24; SEQ ID NO:27; SEQ ID NO:30; y SEQ ID NO:33.
 - 13. Una composición de vacuna para su uso en la inducción de una respuesta inmunológica a un rotavirus en un sujeto, que comprende:
- un vehículo farmacéuticamente aceptable mezclado con una cepa de rotavirus aislada de CDC-9 de acuerdo con 40 cualquiera de las reivindicaciones 10 a 12, caracterizada por que tiene un serotipo del grupo G1, y una cepa de rotavirus aislada caracterizada por que tiene un serotipo del grupo G2.
- 14. La composición de vacuna para su uso de la reivindicación 13, en la que la cepa de rotavirus humano caracterizada por que tiene un serotipo del grupo G2 tiene cada una un serotipo del grupo P de P1A, P1B, P2A, P3, 45 P4, P5, P6, P8, P11 o P12.

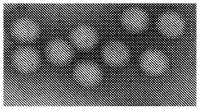


Figura 1A

Figura 1B

Wa CDC-9 Heces Vero

Figura 2

MM RRV CDC-66 Heces Vero

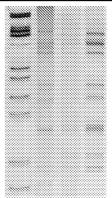
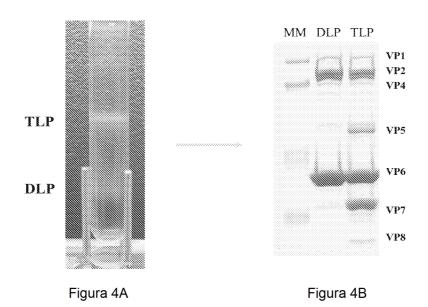
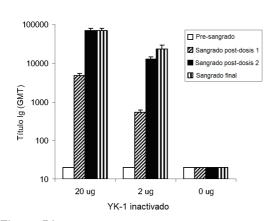




Figura 3

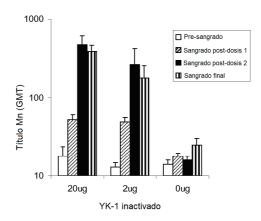


Figura 5A

Figura 5B

Figura 6

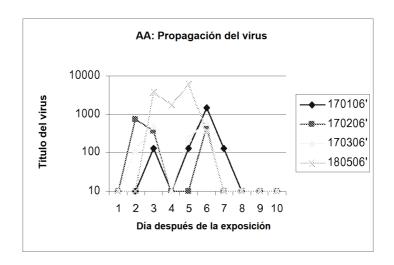


Figura 7A

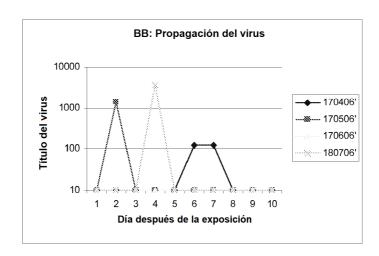


Figura 7B

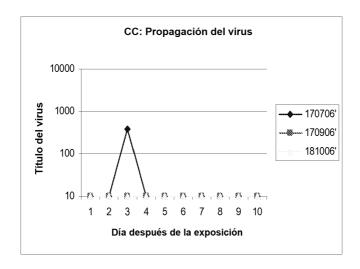


Figura 7C

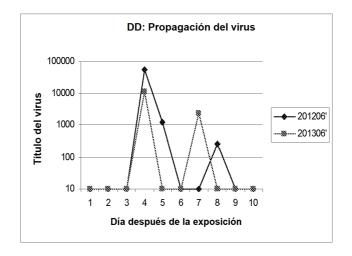
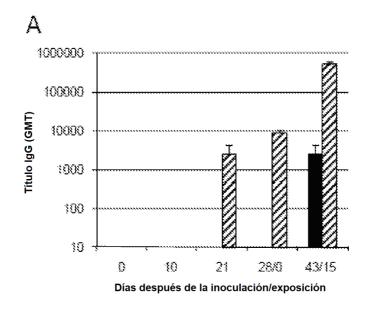



Figura 7D

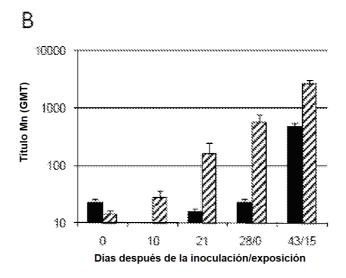
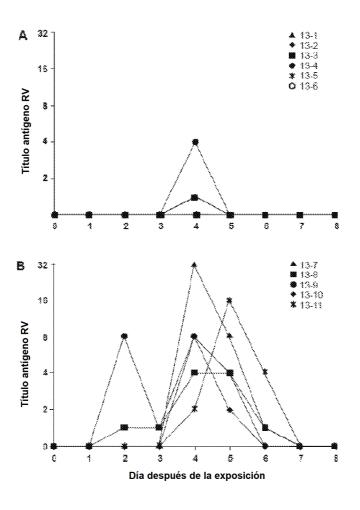



FIG. 8

