

OFICINA ESPAÑOLA DE PATENTES Y MARCAS

ESPAÑA

① Número de publicación: 2 724 000

51 Int. Cl.:

C12N 1/20 (2006.01) C12R 1/15 (2006.01) C12P 13/10 (2006.01) C12N 15/77 (2006.01) C12N 9/10 (2006.01)

(12)

TRADUCCIÓN DE PATENTE EUROPEA

T3

86 Fecha de presentación y número de la solicitud internacional: 13.10.2015 PCT/KR2015/010768

(87) Fecha y número de publicación internacional: 21.04.2016 WO16060437

(96) Fecha de presentación y número de la solicitud europea: 13.10.2015 E 15850829 (1)

(97) Fecha y número de publicación de la concesión europea: 03.04.2019 EP 3153573

(54) Título: Microorganismo del género Corynebacterium para producir L-arginina y método de producción de L-arginina utilizando el mismo

(30) Prioridad:

13.10.2014 KR 20140137794 29.05.2015 KR 20150076331

(45) Fecha de publicación y mención en BOPI de la traducción de la patente: 05.09.2019 (73) Titular/es:

CJ CHEILJEDANG CORPORATION (100.0%) CJ Cheiljedang Center, 330, Dongho-ro, Jung-gu Seoul 04560, KR

(72) Inventor/es:

BAE, HYUN AE; LEE, HAN HYOUNG; KANG, MIN GYEONG; KIM, JONG HYUN Y KIM, HYE WON

(74) Agente/Representante:

CAMPELLO ESTEBARANZ, Reyes

DESCRIPCIÓN

Microorganismo del género Corynebacterium para producir L-arginina y método de producción de L-arginina utilizando el mismo

[Campo técnico]

5

10

La presente invención se refiere a un microorganismo del género *Corynebacterium* que tiene la capacidad de producir L-arginina y un método para producir L-arginina utilizando el mismo.

[Técnica antecedente]

La L-arginina es un aminoácido ampliamente utilizado en los complementos de aminoácidos, medicamentos farmacéuticos, alimentos, etc., y ha habido demanda para el desarrollo de una producción eficiente de L-arginina en 15 las industrias relacionadas.

El método para producir L-arginina por un método de fermentación biológica convencional es un método para producir L-arginina directamente a partir de fuentes de carbono y nitrógeno, y se han indicado diversos métodos que incluyen un método que utiliza una cepa modificada inducida de un microorganismo del género *Brevibacterium* o 20 *Corynebacterium*, un método que utiliza una línea celular bacteriana desarrollada para tener una capacidad mejorada de producción de aminoácidos por fusión celular, etc. Recientemente, se inactivó un método para usar una cepa genética recombinante, en la que se inactivó un gen que inhibe la expresión del operón de biosíntesis de arginina *argR* (Patente de Estados Unidos N.º 7.160.705), y un método para usar la sobreexpresión de *argF* en el operón de arginina (Patente coreana N.º 10-0854234), etc. En particular, la eliminación en *argR*, que controla el 25 operón de arginina, se ha considerado como un factor importante en la producción de arginina.

De acuerdo con los hechos conocidos hasta ahora, en un microorganismo de *Corynebacterium*, el gen *argCJBDFR*, que está involucrado en la biosíntesis de arginina, se constituye en forma de un operón y se somete a una inhibición por retroalimentación por arginina intracelular (Vehary Sakanyan, et al., Microbiology, 142:9-108, 1996), lo que 30 impone una limitación en su producción de L-arginina de alto rendimiento.

[Descripción]

[Problema técnico]

or

Por consiguiente, los presentes inventores, mientras intentan aumentar el rendimiento de producción de L-arginina, descubrieron que la L-arginina puede producirse con un rendimiento mayor en comparación con la cepa parental productora de L-arginina, mejorando las actividades del operón de arginina y la ornitina carbamoiltransferasa, sin ninguna eliminación en el represor de arginina (*argR*), que se ha conocido convencionalmente como un factor importante, completando de este modo la presente invención.

[Solución técnica]

Un objeto de la presente invención es proporcionar un microorganismo del género *Corynebacterium* que tiene la 45 capacidad de producir L-arginina.

Otro objeto de la presente invención es proporcionar un método para producir L-arginina usando el microorganismo del género *Corynebacterium*.

50 [Efectos ventajosos]

La L-arginina se puede producir con alto rendimiento usando un microorganismo productor de L-arginina del género *Corynebacterium* con actividades mejoradas de un operón de arginina y ornitina carbamoiltransferasa (*ArgF* o *ArgF2*) de acuerdo con la presente invención. Además, la L-arginina producida con alto rendimiento se puede utilizar 55 eficazmente en las industrias farmacéutica y farmacológica humana.

[Mejor modo]

En un aspecto para lograr los objetos identificados anteriormente, la presente invención proporciona un

microorganismo del género *Corynebacterium* capaz de producir L-arginina con actividades mejoradas de un operón de arginina y ornitina carbamoiltransferasa.

En la presente invención, el operón de arginina es un operón que consiste en enzimas involucradas en el mecanismo de biosíntesis de L-arginina, y en particular, el operón de arginina consiste en enzimas que constituyen las etapas cíclicas de la biosíntesis de L-arginina. Específicamente, el operón de arginina consiste en N-acetilglutamilo fosfato reductasa (*ArgC*), glutamato N-acetiltransferasa (*ArgC*), N-acetilglutamato cinasa (*ArgB*), acetilornitina aminotransferasa (*ArgD*), ornitina carbamoiltransferasa (*ArgF*), y el represor de arginina (*ArgR*), y estas enzimas están involucradas en las reacciones enzimáticas continuas de la biosíntesis de L-arginina.

Estas enzimas que constituyen el operón de arginina están implicadas en la biosíntesis final de L-arginina utilizando L-glutamato como un precursor. La glutamato N-acetiltransferasa (*ArgJ*) sintetiza N-acetilglutamato utilizando L-glutamato como precursor, y puede ser uno codificado por el gen *argJ*. En particular, el grupo acetilo se obtiene descomponiendo N-acetilornitina en L-ornitina. Se sabe que la glutamato N-acetiltransferasa participa en una 15 reacción de reciclaje para la biosíntesis de L-arginina en microorganismos que pertenecen al género *Corynebacterium*.

El N-acetilglutamato producido se sintetiza en N-acetilglutamil fosfato por N-acetilglutamato cinasa (*ArgB*), el ADP se produce al consumir ATP como coenzima, y puede ser uno codificado por el gen *argB*. Debido a que se sabe que está sujeto a inhibición por retroalimentación por parte del producto final, L-arginina, se conocen modificaciones que liberan la inhibición por retroalimentación por L-arginina, y había informes de que la productividad de L-arginina puede mejorarse utilizando la misma (Patente China N.º 102021154, y Amino Acids. 2012 Jul;43(1): 255-66. doi: 10.1007/s00726-011-1069-x. Epub 8 de sept. de 2011).

25 La N-acetilglutamil fosfato reductasa (*ArgC*) también se denomina acetilglutamato semialdehído deshidrogenasa en *E. coli* o levaduras, y puede estar codificada por el gen *argC*. El N-acetilglutamil fosfato se convierte en N-acetilglutamato 5-semialdehído por esta enzima. Se utiliza NADPH como una coenzima para suministrar energía. El 5-semialdehído N-acetilglutamato producido se convierte en N-acetilornitina usando L-glutamato como donante de aminoácidos, y esta reacción está mediada por la acetilornitina aminotransferasa (*ArgD*). La acetilornitina 30 aminotransferasa puede estar codificada por el gen *argD*. La N-acetilornitina convertida administra su grupo acetilo a L-glutamato mediante la reacción de reciclaje de la glutamato N-acetiltransferasa (*ArgJ*), y reacciona como L-ornitina.

La ornitina carbamoiltransferasa (*ArgF*) se denomina generalmente ornitina carbamoilasa, y puede codificarse por los genes *argF* o *argF2*. La L-ornitina se une al fosfato de carbamoílo para formar L-citrulina, y se produce un fosfato como producto de reacción secundaria. La L-citrulina producida finalmente se sintetiza en L-arginina por las reacciones enzimáticas de ácido argininosuccínico sintasa (*ArgG*) y ácido argininosuccínico liasa (*ArgH*), que están presentes separadas del operón de arginina, mencionado anteriormente. La L-arginina se sintetiza mediante un total de 8 etapas biosintéticas, y en la presente invención, el aumento de la productividad de L-arginina se indujo mediante el fortalecimiento de la actividad del operón de arginina (*argCJBDFR*).

Las enzimas que constituyen el operón de arginina pueden incluirse dentro del alcance de la presente invención siempre que tengan las actividades descritas anteriormente, y específicamente, las enzimas pueden ser proteínas derivadas de un microorganismo del género Corynebacterium. Más específicamente, la glutamato N-45 acetiltransferasa (ArgJ) puede incluir la secuencia de aminoácidos de la SEQ ID NO: 19, o una secuencia de aminoácidos que tenga una homología con la secuencia de al menos el 70%, específicamente el 80%, y más específicamente el 90% o más. La N-acetilglutamato cinasa (ArgB) puede incluir la secuencia de aminoácidos de la SEQ ID NO: 21, o una secuencia de aminoácidos que tenga una homología de al menos el 70% con la secuencia, específicamente el 80%, y más específicamente el 90% o más. Además, en el caso de la enzima correspondiente, 50 se pueden introducir modificaciones conocidas en la técnica para liberar la inhibición por retroalimentación mediante arginina. La N-acetilglutamil fosfato reductasa (ArgC) puede incluir la secuencia de aminoácidos de la SEQ ID NO: 23, o una secuencia de aminoácidos que tenga una homología de al menos el 70% con la secuencia, específicamente el 80%, y más específicamente el 90% o más. La acetilornitina aminotransferasa (ArgD) puede incluir la secuencia de aminoácidos de la SEQ ID NO: 25, o una secuencia de aminoácidos que tenga una 55 homología de al menos el 70% con la secuencia, específicamente el 80%, y más específicamente el 90% o más. La ornitina carbamoiltransferasa (ArgF) puede incluir una secuencia de aminoácidos de la SEQ ID NO: 1 o la SEQ ID NO: 3, o puede incluir una secuencia de aminoácidos que tenga una homología de al menos el 70% con la secuencia de aminoácidos de la SEQ ID NO: 1 o la SEQ ID NO: 3. Específicamente, la ornitina carbamoiltransferasa (ArgF) puede incluir una secuencia de aminoácidos que tiene una homología de al menos el 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98 %, o el 99% o superior a la secuencia de aminoácidos de la SEQ ID NO: 1 o la SEQ ID NO: 3. Además, es obvio que las secuencias de aminoácidos que incluyen una deleción, modificación, sustitución o adición en uno o más residuos de aminoácidos, están dentro del alcance de la presente invención, siempre que tengan la homología con las proteínas anteriores y tengan sustancialmente la misma actividad biológica o la actividad 5 correspondiente con respecto a las proteínas anteriores.

Como se usa en el presente documento, el término "homología" se refiere al grado de similitud entre dos secuencias de aminoácidos o secuencias de nucleótidos para comparación, y su homología se puede determinar por comparación a simple vista o utilizando un algoritmo bioinformático, que proporciona resultados de análisis de un grado de homología mediante el alineamiento de secuencias para la comparación. La homología entre las dos secuencias de aminoácidos se puede indicar en porcentajes. Los algoritmos automatizados útiles se pueden utilizar en los módulos de software informático GAP, BESTFIT, FASTA y TFASTA de Wisconsin Genetics Software Package (Genetics Computer Group, Madison, WI, EE. UU.). Otros algoritmos útiles y determinaciones de homología en alineamiento ya están automatizados en software tal como FASTP, BLAST, BLAST2, PSIBLAST y CLUSTALW.

15

En la presente invención, la mejora de la actividad del operón de arginina puede referirse a la mejora de la actividad en al menos una enzima entre las enzimas presentes en el operón de arginina, sin embargo, no incluye la mejora única del gen argR en solitario. Por ejemplo, la mejora de la actividad del operón de arginina puede referirse a la mejora de las actividades de todas las enzimas presentes en el operón a través de la mejora del promotor para una enzima presente en el operón de arginina, y específicamente, puede referirse a la mejora de la actividad de todo el operón por el aumento del promotor de la N-acetilglutamil fosfato reductasa. Además, en la presente invención, el aumento en la expresión de un gen que codifica al menos una enzima entre las enzimas que constituyen el operón de arginina también puede considerarse como el aumento de la actividad del operón de arginina.

25 Como se usa en el presente documento, el término "mejora" de actividad se refiere a la provisión de un microorganismo sin una actividad particular de una proteína con la actividad de la proteína, o el aumento de la actividad intracelular en el microorganismo que posee la actividad de la proteína, etc., y se refiere al aumento de la actividad intracelular de la proteína en comparación con la actividad intrínseca de la proteína. Como se usa en el presente documento, el término actividad intrínseca se refiere al estado activo de la enzima que se posee en estado 30 natural o pre-modificado por el microorganismo que pertenece al género *Corynebacterium*.

Para mejorar o aumentar la actividad de la enzima, pueden ser aplicables diversos métodos conocidos en la técnica. Los ejemplos del método, aunque no están limitados al mismo, pueden incluir un método para aumentar el número de copias de secuencias de nucleótidos que codifican enzimas insertando adicionalmente un polinucleótido que incluye una secuencia de nucleótidos que codifica la enzima correspondiente en un cromosoma o introduciendo el polinucleótido en un sistema vectorial, etc., un método para reemplazar promotores enzimáticos con promotores fuertes, y específicamente, puede incluir un método para introducir una modificación en los promotores, y un método para modificar la enzima en uno con actividad fuerte por modificación genética.

40 Los ejemplos específicos en la presente invención pueden incluir un método para modificar el promotor enzimático presente en el operón de arginina con respecto a un promotor que es fuerte en comparación con el promotor endógeno, a través de la modificación o sustitución del promotor. Se puede conectar un promotor mejorado o un promotor heterogéneo con una modificación de sustitución de nucleótidos en lugar del promotor para la enzima endógena, y los ejemplos de los promotores heterogéneos pueden incluir el promotor pcj7 (Patente coreana N.º 10-45 0620092), promotor lysCP1 (Patente coreana N.º 10-0930203), promotor EF-Tu, promotor groEL, promotor aceA, promotor aceB, etc., pero sin limitación a los mismos.

Como se usa en el presente documento, el término "promotor" se refiere a una secuencia de ácido nucleico no codificada aguas arriba de una región codificante, que incluye una región de unión a la polimerasa y tiene una 50 actividad de inicio de la transcripción en ARNm de un gen aguas abajo del promotor, es decir, la región de ADN donde la polimerasa se une e inicia la transcripción del gen, y se encuentra en la región 5' de la región de inicio de la transcripción del ARNm.

En la presente invención, la mejora de la actividad de la ornitina carbamoiltransferasa se puede llevar a cabo 55 utilizando diversos métodos bien conocidos en la técnica, y son los mismos que se describen anteriormente. Específicamente, la mejora se puede lograr mediante la transformación de un vector de expresión que incluye un polinucleótido que codifica la ornitina carbamoiltransferasa en una cepa bacteriana, pero no se limita a lo mimo.

Como se usa en el presente documento, el término "transformación" se refiere a una introducción de ADN en un

huésped, haciendo así replicable el ADN insertado como un factor extracromosómico o por integración cromosómica. Específicamente, el transformante de la presente invención puede insertarse en un cromosoma mediante recombinación homóloga entre la secuencia de una molécula de ácido nucleico, que tiene la actividad promotora dentro de un vector después de la transformación del vector que incluye el ADN anterior en una célula 5 huésped, y la secuencia en la región promotora del gen diana endógeno, o puede retenerse en forma de un plásmido.

El método de transformación de vectores de la presente invención puede incluir cualquier método que pueda introducir un ácido nucleico en una célula, y cualquier tecnología estándar apropiada conocida en la técnica puede seleccionarse y llevarse a cabo de acuerdo con cada célula huésped. Por ejemplo, puede usarse electroporación, precipitación con fosfato de calcio (CaPO₄), precipitación con cloruro de calcio (CaCl₂), microinyección, un método de polietilenglicol (PEG), un método de DEAE-dextrano, un método de liposomas catiónicos, un método de acetato de litio/DMSO, etc., pero el método no se limita a los mismos.

15 Como se usa en el presente documento, el término "un microorganismo del género *Corynebacterium* (*Corynebacterium* sp.)" puede referirse a todas las cepas que pertenecen al género *Corynebacterium* que tienen la capacidad de producir L-arginina, por ejemplo, *Corynebacterium glutamicum, Corynebacterium ammoniagenes, Corynebacterium thermoaminogenes, Brevibacterium flavum, Brevibacterium fermentum, etc., pero sin limitación a las mismas. Específicamente, se puede usar <i>Corynebacterium glutamicum*, pero el microorganismo no se limita a la 20 misma.

En otro aspecto, la presente invención proporciona un método para producir L-arginina que incluye el cultivo de un microorganismo productor de L-arginina del género *Corynebacterium* en medios de cultivo apropiados.

- 25 En la presente invención, el cultivo de microorganismos puede llevarse a cabo de acuerdo con métodos ampliamente conocidos en la técnica, y las condiciones de temperatura de cultivo, horas de cultivo, pH del medio de cultivo, etc., pueden ajustarse de manera apropiada. Los métodos de cultivo conocidos se describen en detalle en las referencias (Chmiel; Bioprozesstechnik 1. Einfuhrung in die Bioverfahrenstechnik (Gustav Fischer Verlag, Stuttgart, 1991), y Storhas; Bioreaktoren und periphere Einrichtungen (Vieweg Verlag, Braunschweig / Wiesbaden, 30 1994)). Adicionalmente, los métodos de cultivo pueden incluir cultivo discontinuo, cultivo continuo y cultivo alimentado por lotes, y específicamente, los cultivos pueden llevarse a cabo continuamente por un proceso discontinuo o alimentado por lotes o alimentado por lotes repetido, pero no se limitan a los mismos.
- Los medios de cultivo a usar deben cumplir de manera apropiada las condiciones requeridas de una cepa particular. 35 Los medios de cultivo utilizados para diversos microorganismos ya son conocidos (por ejemplo, "Manual of Methods for General Bacteriology" from American Society for Bacteriology (Washington D.C., EE.UU., 1981)). Las fuentes de carbono que deben estar contenidas en los medios pueden incluir sacáridos y carbohidratos (por ejemplo, glucosa, sacarosa, lactosa, fructosa, maltosa, melaza, almidón y celulosa), aceites y grasas (por ejemplo, aceite de soja, aceite de semilla de girasol, aceite de cacahuete y aceite de coco), ácidos grasos (por ejemplo, ácido palmítico, 40 ácido esteárico y ácido linoleico), alcoholes (por ejemplo, glicerol y etanol), ácidos orgánicos (por ejemplo, ácido acético), etc. Estos materiales se pueden usar individualmente o como una mezcla, pero sin limitación a los mismos. Las fuentes de nitrógeno a contener en el medio pueden incluir compuestos orgánicos que contienen nitrógeno (por ejemplo, peptona, extracto de levadura, salsa de carne, extracto de malta, licor de maceración de maíz, polvo de harina de soja y urea), y compuestos inorgánicos (por ejemplo, sulfato de amonio, cloruro de amonio, fosfato de 45 amonio, carbonato de amonio y nitrato de amonio), y estos materiales también se pueden usar individualmente o como una mezcla, pero sin limitación a los mismos. Las fuentes de fósforo que deben estar contenidas en el medio pueden incluir dihidrógeno fosfato de potasio o hidrogenofosfato dipotásico o una sal equivalente que contenga sodio del mismo, pero sin limitación a los mismos. Los medios de cultivo pueden contener sales metálicas esenciales para el crecimiento (por ejemplo, sulfato de magnesio o sulfato de hierro), y se pueden usar materiales esenciales 50 que promueven el crecimiento, tales como aminoácidos y vitaminas, además de los materiales descritos anteriormente. Además, se puede añadir un precursor apropiado a los medios de cultivo. Los materiales a suministrar descritos anteriormente se pueden añadir a los medios de una vez o de manera apropiada durante el
- 55 El pH del medio de cultivo puede ajustarse de manera apropiada utilizando un compuesto básico (por ejemplo, hidróxido de sodio, hidróxido de potasio o amoniaco) o un compuesto ácido (por ejemplo, ácido fosfórico o ácido sulfúrico).

cultivo.

La espumación se puede ajustar usando un agente antiespumante tal como éster de poliglicol de ácido graso. Una

condición aerobia se puede mantener introduciendo oxígeno o una mezcla de gases que contiene oxígeno, por ejemplo, aire, en un medio de cultivo. La temperatura de cultivo puede ser de 20°C a 45°C, y específicamente, de 25°C a 40°C. El cultivo puede continuarse hasta que se obtenga una cantidad máxima de la producción de L-aminoácido deseada, y específicamente de 10 horas a 160 horas. La L-arginina se puede liberar en el medio de 5 cultivo o puede permanecer contenida en la célula.

Mientras tanto, el método para producir L-arginina de la presente invención, que incluye el cultivo del microorganismo descrito anteriormente, puede incluir además una etapa de recuperación de L-arginina durante el cultivo. Es decir, el método para producir L-arginina de la presente invención puede incluir cultivar un microorganismo del género *Corynebacterium* en medios de cultivo y recuperar la L-arginina del microorganismo y los medios de cultivo. La etapa de recuperación de arginina puede significar separar la arginina de las células o los medios de cultivo utilizando un método de recuperación de arginina ampliamente conocido en la técnica. Los métodos de recuperación de L-arginina pueden incluir centrifugación, filtración, extracción, pulverización, secado, evaporación, precipitación, cristalización, electroforesis, disolución fraccional, cromatografía (por ejemplo, intercambio iónico, afinidad, hidrofobicidad, exclusión por tamaño y cromatografía líquida de alto rendimiento), etc., pero sin limitación a los mismos.

[Modo de la invención]

25

30

20 En lo sucesivo en el presente documento, la presente invención se describirá con más detalle con referencia a los siguientes ejemplos. Sin embargo, estos ejemplos son solo para fines ilustrativos, y la invención no pretende limitarse por estos ejemplos.

Ejemplo 1: Construcción de un vector con un operón de arginina mejorado

Con el fin de mejorar el operón de arginina en el cromosoma de un microorganismo, se construyó un vector en el que se eliminó el autopromotor de la N-acetilglutamil fosfato reductasa (*ArgC*) y se sustituyó con un promotor diferente. Como promotor de sustitución, se utilizó lysCP1 (SEQ ID NO: 18 divulgada en la Patente coreana N.º 10-0930203), que tiene una fuerte actividad inductora de la expresión.

Primero, los fragmentos de ADN se amplificaron mediante la reacción en cadena de la polimerasa primaria (PCR) utilizando el ADN cromosómico de una cepa de tipo salvaje de Corynebacterium glutamicum (N.º de Acceso: ATCC13869) como plantilla, junto con un par de cebadores de SEQ ID NO: 13 (cebador de infusión SF_pargC_PR_pDC; 5'-CGAGCTCGGTACCCGGGCAAAGAATACGGCTTCCTTGGC-3') y SEQ ID NO: 14 (cebador infusión/enzima de restricción SR pargC PR Xbal-Xhol-BamHI; 5'-CTGGATCCTCGAGTCTAGAGACGGGTTAGACATGCAAAA-3') y un par de cebadores de SEQ ID NO: 15 (cebador SF_pargC_PR_Spel-Scal-BamHI; infusión/enzima restricción de GACTCGAGGATCCAGTACTAGTATGATAATCAAGGTTGCAAT-3') y SEQ ID NO: 16 (cebador de infusión SR pargC PR pDC; 5'-TGCAGGTCGACTCTAGGGTAACGCCTTCTTTCAAAG-3'). Las condiciones específicas 40 para la reacción de PCR fueron las siguientes: la reacción de PCR se realizó mediante desnaturalización a 95°C durante 10 minutos, hibridación a 55°C durante 30 segundos, y alargamiento a 72°C durante 1 minuto utilizando un dispositivo de PCR (termociclador Bio-rad C1000) y polimerasa Pfu (Macrogen), y se repite durante 28 ciclos.

Los fragmentos de PCR primarios obtenidos de este modo se purificaron usando el kit de purificación de ADN de fragmentos (GeneAll), y después se conectaron tres fragmentos de ADN mezclándolos con un vector pD, que ya se preparó mediante digestión con enzimas de restricción Xmal-Xbal. Los fragmentos de ADN conectados se sometieron a una reacción a 50°C durante 10 minutos utilizando el kit de clonación In-fusion (Clontech) y, por lo tanto, se construyó un vector pD-RargC PR.

50 La inserción del promotor de sustitución se realizó de tal manera que el promotor lysCP1 se amplificó usando el pDZ-lysCP1 (Patente coreana 10-0930203) como plantilla junto con un par de cebadores de SEQ ID NO: 5 (cebador de infusión SF_PlysCPI_Xhol-Xbal; 5'-CCGTCTCTAGACTCGAGCCATCTTTTGGGGTGCGG-3') y SEQ ID NO: 6 (cebador de infusión SR_PlysCP1_Spel; 5'-TTGATTATCATACTAGTCTTTGTGCACCTTTCGAT-3'), y se conectó mezclándolos con un vector pD-PargC_PR, que ya se había preparado por digestión con enzimas de restricción 55 Xhol-Spel. Los métodos de PCR y clonación In-Fusion son los mismos que los descritos anteriormente, y finalmente se construyó un vector pD-PargC::lysCP1 a través de los métodos.

Ejemplo 2: Construcción de un vector con ornitina carbamoiltransferasa mejorada

Para mejorar la ornitina carbamoiltransferasa, una de las enzimas de biosíntesis de arginina, se construyó un vector de expresión recombinante. Se usó p117-cj7-GFP (Patente coreana N.º 10-0620092) como el vector de plantilla, y la secuencia de nucleótidos que codifica GFP en el vector de plantilla se eliminó mediante tratamiento con enzimas de restricción EcoRV-Xba I, y se insertó con *argF*, derivado de una cepa de tipo salvaje de *Corynebacterium* 5 *glutamicum* ATCC13869, y *argF*2 (Patente Coreana N.º 10-0830290).

Los fragmentos de ADN del gen argF se amplificaron mediante PCR utilizando el ADN cromosómico de una cepa de tipo salvaje de Corynebacterium glutamicum (N.º de acceso: ATCC13869) como plantilla, junto con un par de (cebador cebadores infusión SF_argF_EcoRV; SEQ ID NO: de 10 ACGAAAGGAAACACTCGATATCATGACTTCACAACCACAGGT-3') y SEQ ID NO: 8 (cebador de infusión SR argF Xbal; 5'-GCCAAAACAGCTCTAGATTACCTCGGCTGGTGGGCCA-3'). La reacción de PCR se realizó por desnaturalización a 95°C durante 10 minutos, hibridación a 55°C durante 30 segundos, y alargamiento a 72°C durante 2 minutos utilizando polimerasa Pfu, y se repitió durante 28 ciclos. Los fragmentos de PCR obtenidos de este modo se purificaron y se mezclaron con p117-cj7-GFP, que ya se había tratado con enzimas de restricción 15 EcoRV-Xbal, y se conectaron mediante el método de clonación In-Fusion, y por lo tanto, se construyó un vector de expresión recombinante, p117-Pci7-argF.

El gen argF se amplificó a través de PCR utilizando el ADN cromosómico de una cepa de tipo salvaje de Corynebacterium glutamicum (N.º de acceso: ATCC13032) como plantilla, junto con un par de cebadores de SEQ ID 20 NO: 9 (cebador de infusión SF_argF2_EcoRV; 5'-ACGAAAGGAAACACTCGATATCATGGCCAGAAAACATCTGCT-**SEQ** ID NO: 10 (cebador de infusión SR argF2 Xbal; GCCAAAACAGCTCTAGACTACGCATTGATCGACCGAG-3') y polimerasa Pfu (Macrogen), a través de PCR por desnaturalización a 95°C durante 10 minutos, hibridación a 55°C durante 30 segundos, y alargamiento a 72°C durante 2 minutos usando polimerasa Pfu, que se repitió durante 28 ciclos. Los fragmentos de PCR obtenidos de 25 este modo se purificaron y se mezclaron con p117-cj7-GFP, que ya se había tratado con enzimas de restricción EcoRV-Xbal, y se conectaron mediante el kit de clonación In-Fusion, y por lo tanto, se construyó un vector de expresión recombinante, p117-Pcj7-argF2.

Adicionalmente, se construyó un vector de expresión recombinante, que puede expresar simultáneamente los genes argF y argF2. El vector de expresión construido de este modo, p117-Pcj7-argF, se trató con Notl y después se insertó p117-Pcj7-argF2 en el mismo. Específicamente, la reacción de PCR se realizó utilizando el plásmido recombinante, p117-Pcj7-argF2, como plantilla, junto con el cebador de SEQ ID NO: 11 (cebador de infusión SF_Pcj7_argF2_Notl; 5'-CCTTTTTGCGGCGGCCGCAGAAACATCCCAGCGCTACT-3') y la SEQ ID NO: 12 (cebador de infusión SR_argF2_Notl; 5'-CACCGCGGTGGCGGCCGCCAAAAAGGCCATCCGTCA-3') y polimerasa Pfu, por desnaturalización a 95°C durante 10 minutos, hibridación a 55°C durante 30 segundos, y alargamiento a 72°C durante 2,5 minutos, y se repitió durante 28 ciclos. Los fragmentos de PCR obtenidos de este modo se purificaron y se mezclaron con p117-Pcj7-argF, que ya se había tratado con la enzima de restricción Notl, y se conectaron mediante el kit de clonación In-fusion, y finalmente se construyó un vector de expresión recombinante, p117-Pcj7-argF/Pcj7-argF2.

Ejemplo 3: Construcción de una cepa que tiene un vector recombinante insertado en la misma 3-1. Inserción de un vector con un operón de arginina mejorado

Para sustituir un autopromotor de un operón de arginina en el cromosoma de *Corynebacterium*, pD-PargC::lysCP1, el vector recombinante construido en el Ejemplo 1, se transformó en una cepa de *Corynebacterium* productora de arginina existente, y por lo tanto, se construyó una cepa de *Corynebacterium* insertada con un vector recombinante. Específicamente, la secuencia del promotor lysCP1 se insertó en el cromosoma al transformar pD-PargC::lysCP1, el vector recombinante construido en el Ejemplo 1, en las cepas existentes productoras de arginina de KCCM10741P (Patente Coreana N.º 10-07916590) y ATCC21831, sustituye de este modo la secuencia auto-promotora poseída por la cepa parental con la secuencia promotora del vector a través de recombinación homóloga.

Al llevar a cabo la transformación, el vector recombinante se insertó primero en KCCM10741P y ATCC21831 a través de un método de impulso eléctrico (Appl Microbiol Biotechnol. 1999 Oct; 52(4): 541-5), y las cepas con las inserciones en su cromosoma mediante la recombinación de secuencias homólogas se seleccionaron en medios que contenían 25 mg/l de kanamicina. Las cepas primarias seleccionadas se sometieron a cruzamiento, y de ese modo se seleccionaron aquellas cepas en las que los promotores se sustituyeron con el promotor lysCP1 y se eliminó el vector. La presencia de la sustitución del promotor en las cepas transformadas finales se confirmó mediante PCR utilizando un par de cebadores de SEQ ID NO: 5 y SEQ ID NO: 6, y las cepas se denominaron KCCM10741P_ΔPargC::lysCP1 y ATCC21831_ΔPargC::lysCP1.

3-2. Inserción de un vector con ornitina carbamoiltransferasa mejorada

Los vectores de expresión recombinante, p117-Pcj7-argF, p117-Pcj7-argF2, y p117-Pcj7-argF/Pcj7-argF2 la cepa KCCM10741P ΔPargC::lysCP1 5 construidos en el Ejemplo 2, se insertaron en ATCC21831 \(\Delta PargC::\text{lysCP1}\) mediante un método de impulso eléctrico, se selección en medios que contenían 25 mg/l de kanamicina, y las cepas que expresaban adicionalmente argF, argF2, y argF/argF2 se construyeron KCCM10741P_APargC::lysCP1_Pcj7-argF, finalmente. denominaron Las cepas KCCM10741P ΔPargC::lysCP1_Pcj7-argF2, KCCM10741PΔPargC::lysCP1_Pcj7-argF/Pcj7-argF2, 10 ATCC21831_ΔPargC::lysCP1_Pcj7-argF, ATCC21831 ΔPargC::lysCP1 Pcj7-argF2, ATCC21831_ΔPargC::lysCP1_Pcj7-argF/Pcj7-argF2, y entre ellas, KCCM10741P_ΔPargC::lysCP1_Pcj7-argF2 se renombraron como CA06-2044, y se depositaron en el Korean Culture Center of Microorganisms (KCCM) bajo el Tratado de Budapest el 9 de diciembre de 2013, con el número de registro KCCM11498P.

15 Ejemplo 4: Evaluación de las cepas construidas

Con el fin de examinar el efecto de la mejora del operón de arginina y ornitina carbamoiltransferasa en la capacidad Corynebacterium glutamicum KCCM10741P ΔPargC::lysCP1, de producción de arginina usando KCCM10741P ΔPargC::lysCP1 Pcj7-argF, KCCM10741P ΔPargC::lysCP1 Pcj7-argF2, 20 KCCM10741P ΔPargC::lysCP1 Pcj7-argF/Pcj7-argF2, ATCC21831 ΔPargC::lysCP1, ATCC21831_ΔPargC::lysCP1_Pcj7-argF, ATCC21831 ΔPargC::lysCP1 Pcj7-argF2, ATCC21831_APargC::lysCP1_Pcj7-argFPcj7-argFP2, que son cepas productoras de arginina construidas en el Ejemplo 3, se cultivaron como se muestra a continuación. En particular, se usaron Corynebacterium glutamicum KCCM10741P y ATCC21831, que son las cepas parentales, como control, y un bucle de platino de las cepas se 25 inoculó respectivamente en un matraz con deflectores en las esquinas de 250 ml que contenía 25 ml (6% de glucosa, 3% de sulfato de amonio, 0,1% de fosfato de potasio, 0,2% de sulfato de magnesio heptahidrato, 1,5% de licor macerado de maíz (CSL), 1% de NaCl, 0,5% de extracto de levadura y 100 μg/l de biotina, pH 7,2) de un medio de producción, y se incubaron a 30°C a 200 rpm durante 48 horas. Una vez completado el cultivo, la cantidad de producción de L-arginina se midió por HPLC, y los resultados se muestran en la Tabla 1 a continuación.

[Tabla 1]

Confirmación de las capacidades de producción de arginina por la cepa parental y las cepas recombinantes											
Сера	DO	Conc. de arginina (g/l)	Conc. de ornitina (g/l)								
KCCM10741P	91	3,0	0,2								
KCCM10741P_ΔPargC::lysCP1	72	2,2	1,9								
KCCM10741P _ΔPargC::lysCP1_Pcj7-argF	69	4,3	0,2								
KCCM10741P _ΔPargC::lysCP1_Pcj7-argF2	70	4,1	0,5								
KCCM10741P _ΔPargC::lysCP1_Pcj7-argF/Pcj7-argF2	69	4,5	0,2								
ATCC21831	102	4,2	0,3								
ATCC21831_APargC::lysCP1	86	3,2	2,9								
ATCC21831_ΔPargC::lysCP1_Pcj7 -argF	86	5,5	0,3								
ATCC21831_ΔPargC::lysCP1_Pcj7 -argF2	88	5,3	0,6								
ATCC21831_APargC::lysCP1_Pcj7 -argF/Pcj7-argF2	85	5,6	0,3								

Como se muestra en la Tabla 1 anterior, las cepas, donde los genes que codifican el operón de arginina y ornitina carbamoiltransferasa se mejoraron simultáneamente, mostraron un aumento máximo del 50% en la capacidad de producción de arginina en comparación con la del control. Además, el aumento en la concentración de arginina y la ornitina, que se muestra en la mejora del operón de arginina en solitario (KCCM10741P_APargC::lysCP1 y ATCC21831_APargC::lysCP1), se resolvieron introduciendo argF, argF2 o argF y argF2, y finalmente mostrando el resultado del aumento de la concentración de arginina.

40 <110> CJ CheilJedang Corporation

<120> Un microorganismo del género Corynebacterium que tiene la capacidad de producir L-arginina y un método para producir L-arginina utilizando la misma

45 <130> OPA15238-PCT

```
<150> KR10-2014-0137794
          <151> 13/10/2014
          <150> KR10-2015-0076331
5
          <151> 29/05/2015
          <160> 26
          <170> KopatentIn 2.0
10
          <210> 1
          <211> 319
          <212> PRT
          <213> argF de Corynebacterium glutamicum
15
          <400> 1
          Met Thr Ser Gln Pro Gln Val Arg His Phe Leu Ala Asp Asp Asp Leu
          Thr Pro Ala Glu Gln Ala Glu Val Leu Thr Leu Ala Ala Lys Leu Lys
          Ala Ala Pro Phe Ser Glu Arg Pro Leu Glu Gly Pro Lys Ser Val Ala
          Val Leu Phe Asp Lys Thr Ser Thr Arg Thr Arg Phe Ser Phe Asp Ala
          Gly Ile Ala His Leu Gly Gly His Ala Ile Val Val Asp Ser Gly Ser 65 70 75 80
          Ser Gln Met Gly Lys Gly Glu Thr Leu Gln Asp Thr Ala Ala Val Leu
          Ser Arg Tyr Val Glu Ala Ile Val Trp Arg Thr Tyr Ala His Ser Asn
                                           105
          Phe His Ala Met Ala Glu Thr Ser Thr Val Pro Leu Val Asn Ser Leu
          Ser Asp Asp Leu His Pro Cys Gln Ile Leu Ala Asp Leu Gln Thr Ile
          Val Glu Asn Leu Ser Pro Glu Glu Gly Pro Ala Gly Leu Lys Gly Lys
          Lys Ala Val Tyr Leu Gly Asp Gly Asp Asn Asn Met Ala Asn Ser Tyr
          Met Ile Gly Phe Ala Thr Ala Gly Met Asp Ile Ser Ile Ile Ala Pro
          Glu Gly Phe Gln Pro Arg Ala Glu Phe Val Glu Arg Ala Glu Lys Arg
                                       200
```

Gly Gln Glu Thr Gly 210	Ala Lys Val 215	Val Val Thr	Asp Ser Leu Asp Glu 220	
Val Ala Gly Ala Asp 225	Val Val Ile 230	Thr Asp Thr 235	Trp Val Ser Met Gly 240	
Met Glu Asn Asp Gly 245	Ile Asp Arg	Thr Thr Pro 250	Phe Val Pro Tyr Gln 255	
Val Asn Asp Glu Val 260	Met Ala Lys	Ala Asn Asp 265	Gly Ala Ile Phe Leu 270	
His Cys Leu Pro Ala 275	Tyr Arg Gly 280	Lys Glu Val	Ala Ala Ser Val Ile 285	
Asp Gly Pro Ala Ser 290	Lys Val Phe 295	Asp Glu Ala	Glu Asn Arg Leu His 300	
Ala Gln Lys Ala Leu 305	Leu Val Trp 310	Leu Leu Ala 315	His Gln Pro Arg	
<210> 2 <211> 960 <212> ADN <213> argF de Coryneba	cterium glutamic	um		
<400> 2 atgacttcac aaccacag	gt tegecattte	ctggctgatg	atgateteae eeetgeagag	60
caggcagagg ttttgacc	ct agccgcaaag	ctcaaggcag	cgccgttttc ggagcgtcca	120
ctcgagggac caaagtcc	gt tgcagttctt	tttgataaga	cttcaactcg tactcgcttc	180
tccttcgacg cgggcatc	gc tcatttgggt	ggacatgcca	tcgtcgtgga ttccggcagc	240
tcacagatgg gtaagggc	ga gaccctgcag	gacaccgcag	ctgtattgtc ccgctacgtg	300
gaagcaattg tgtggcgc	ac ctacgcacac	agcaatttcc	acgccatggc ggagacgtcc	360
actgtgccac tggtgaac	c cttgtccgat	gatctgcacc	catgccagat tctggctgat	420
ctgcagacca tcgtggaa	aa cctcagccct	gaagaaggcc	cagcaggcct taagggtaag	480
aaggctgtgt acctgggc	ga tggcgacaac	aacatggcca	actcctacat gattggcttt	540
gccaccgcgg gcatggat	at ctccatcatc	gctcctgaag	ggttccagcc tcgtgcggaa	600
ttcgtggagc gcgcggaa	aa gcgtggccag	gaaaccggcg	cgaaggttgt tgtcaccgac	660
agcctcgacg aggttgcc	gg cgccgatgtt	gtcatcaccg	atacctgggt atccatgggt	720
atggaaaacg acggcatc	ga tegeaceaca	cctttcgttc	cctaccaggt caacgatgag	780
gtcatggcga aagctaac	ga cggcgccatc	ttcctgcact	gccttcctgc ctaccgcggc	840
aaagaagtgg cagcctcc	gt gattgatgga	ccagcgtcca	aagttttcga tgaagcagaa	900
aaccgcctcc acgctcag	aa agcactgctg	gtgtggctgc	tggcccacca gccgaggtaa	960
				960

10

5

<210> 3 <211> 274 <212> **PRT**

<213> argF2 de Corynebacterium glutamicum

	> 3 Ala	Arg	Lys		Leu	Leu	Ser	Leu	Ala 10	Asp	Trp	Asn	Arg	_	Glu
1 Leu	Glu	Ala	Leu	5 Phe	Glu	Leu	Ala	Glu		Tyr	Glu	Ala	Gly	15 Gly	Gly
			20					25		_			30		
Pro	Arg	Phe 35	Asp	Gly	Ala	Ala	Ala 40	Met	Phe	Phe	Pro	Pro 45	Thr	Ser	Leu
Arg	Thr 50	Arg	Leu	Ser	Phe	Glu 55	Arg	Gly	Ala	Thr	Ala 60	Met	Gly	Leu	Gln
Pro 65	Ile	Thr	Phe	Pro	Ser 70	Asp	Ser	Leu	Asp	Lys 75	Asp	Glu	Asp	Leu	Val 80
Asp	Val	Val	Gly	Tyr 85	Leu	Ser	Gln	Trp	Ala 90	Asp	Val	Val	Val	Val 95	Arg
His	Pro	Gln	Leu 100	Thr	Ala	Leu	Gln	Arg 105	Leu	Ala	Ser	Ala	Asp 110	Ala	Ala
Pro	Val	Ile 115	Asn	Ala	Met	Thr	Ser 120	Glu	Asn	His	Pro	Cys 125	Glu	Val	Leu
Ser	Asp 130	Leu	Tyr	Ala	Leu	Ser 135	Arg	His	His	Asp	Ile 140	Ser	Ala	Leu	Arg
Tyr 145	Leu	Phe	Val	Gly	Gly 150	Asp	Gly	Asn	Ile	Ala 155	Arg	Ala	Trp	Trp	Glu 160
Ala	Ala	Gln	Ala	Phe 165	Gly	Leu	Glu	Met	Arg 170	Gln	Ser	Cys	Pro	Glu 175	Glu
Leu	Arg	Val	Val 180	Gly	Met	Pro	Trp	Glu 185	Glu	Asn	Leu	Pro	His 190	Ala	Ile
Ala	Ser	Ala 195	Asp	Val	Val	Leu	Thr 200	Asp	Gly	Pro	Gly	Arg 205	His	Ala	Glu
Leu	Leu 210	Glu	Pro	Tyr	Arg	Val 215	Thr	Ala	Ala	Leu	Leu 220	Asp	Arg	Ala	Pro
Arg 225	Gly	Val	Arg	Leu	Ala 230	Pro	Cys	Pro	Pro	Phe 235	Ile	Arg	Gly	Arg	Glu 240
Val	Ser	Ala	Asp	Ala 245	Ile	Glu	His	Pro	Ala 250	Phe	Val	Gly	Tyr	Ser 255	Phe
Lys	Arg	His	Leu 260	Met	Pro	Val	Gln	Gln 265	Ala	Ile	Leu	Ala	Arg 270	Ser	Ile
Asn	Ala														

5 <210> 4 <211> 825 <212> ADN

<213> argF2 de Corynebacterium glutamicum

10 <400> 4

60

atggccagaa aacatctgct ctccctggca gactggaaca gaggcgagct tgaggcatta

	ttcgagctcg cggagcagta tgaagctggc ggtgggccac gattcgatgg tgccgcggcg	12
	atgttcttcc cgccgacgag tttgcgtaca cggctctcat tcgagcgtgg ggcaacggca	18
	atgggactcc agccgatcac gttcccgtca gacagcctgg acaaggacga agatctcgtc	24
	gacgtcgtcg gctatctctc gcagtgggct gatgtcgttg tcgtccgaca cccgcaattg	30
	acggcgcttc agcggttggc gtcagcggat gcagcgcccg tgatcaacgc gatgacgagt	36
	gagaaccatc cgtgcgaagt cctctcggac ttgtatgcgc tgtctcgtca ccatgacatt	42
	tcggccctgc ggtacctgtt tgtcggtggc gatggcaaca tcgccagggc ctggtgggag	48
	gcggcccaag cgttcggcct cgagatgcgg cagagttgtc ctgaagagct gcgtgtcgtc	54
	gggatgccgt gggaggagaa cctgccgcat gcaattgcat cagcggatgt cgtgctgacg	60
	gatgggccag gtagacatgc ggagttactc gagccgtatc gtgtgaccgc tgcgttgttg	66
	gatcgcgcgc cccgtggagt gcggctcgcg ccctgcccgc cgttcatccg cgggcgcgaa	72
	gtgagcgccg atgcgatcga gcatccggcg ttcgtcgggt actcgttcaa gcgtcatctc	78
	atgccggttc agcaggcgat tctggctcgg tcgatcaatg cgtag	82
5	<210> 5 <211> 35 <212> ADN <213> Secuencia artificial	
10	<220> <223> cebador SF_PlysCP1_Xhol-Xbal	
10	<400> 5 ccgtctctag actcgagcca tcttttgggg tgcgg 35	
15	<210> 6 <211> 35 <212> ADN <213> Secuencia artificial	
20	<220> <223> cebador SR_PlysCP1_Spel	
	<400> 6 ttgattatca tactagtctt tgtgcacctt tcgat 35	
25	<210> 7 <211> 42 <212> ADN <213> Secuencia artificial	
30	<220> <223> cebador SF_argF_EcoRV	
35	<400> 7 acgaaaggaa acactcgata tcatgacttc acaaccacag gt 42	

```
<210> 8
           <211> 37
           <212> ADN
           <213> Secuencia artificial
 5
           <220>
           <223> cebador SR_argF_Xbal
10
           gccaaaacag ctctagatta cctcggctgg tgggcca
                                                       37
           <210> 9
           <211> 42
           <212> ADN
           <213> Secuencia artificial
15
           <220>
           <223> cebador SF_argF2_EcoRV
20
           acgaaaggaa acactcgata tcatggccag aaaacatctg ct
                                                                    42
           <210> 10
           <211> 37
25
           <212> ADN
           <213> Secuencia artificial
           <220>
           <223> cebador SR_argF2_Xbal
30
           <400> 10
           gccaaaacag ctctagacta cgcattgatc gaccgag
                                                       37
           <210> 11
35
           <211> 38
           <212> ADN
           <213> Secuencia artificial
           <220>
40
           <223> cebador SF_Pcj7_argF2_NotI
           cctttttgcg gcggccgcag aaacatccca gcgctact
                                                       38
45
           <210> 12
           <211> 38
           <212> ADN
           <213> Secuencia artificial
50
           <220>
           <223> cebador SR_argF2_NotI
           <400> 12
           caccgcggtg gcggccgccg caaaaaggcc atccgtca 38
55
           <210> 13
           <211> 39
           <212> ADN
           <213> Secuencia artificial
```

	<220> <223> cebador SF_pargC_PR_pDC	
5	<400> 13 cgagctcggt acccgggcaa agaatacggc ttccttggc 39	
10	<210> 14 <211> 39 <212> ADN <213> Secuencia artificial	
15	<220> <223> cebador SR_pargC_PR_Xbal-Xhol-BamHI	
15	<400> 14 ctggatcctc gagtctagag acgggttaga catgcaaaa 39	
20	<210> 15 <211> 42 <212> ADN <213> Secuencia artificial	
25	<220> <223> cebador SF_pargC_PR_Spel-Scal-BamHI	
	<400> 15 gactcgagga tccagtacta gtatgataat caaggttgca at 42	
30	<210> 16 <211> 36 <212> ADN <213> Secuencia artificial	
35	<220> <223> cebador SR_pargC_PR_pDC	
40	<400> 16 tgcaggtcga ctctagggta acgccttctt tcaaag 36	
40	<210> 17 <211> 317 <212> ADN	
45	<213> Promotor cj7 de Corynebacterium glutamicum	
.0	<400> 17 agaaacatcc cagcgctact aatagggagc gttgaccttc cttccacgga ccggtaatcg	60
	gagtgcctaa aaccgcatgc ggcttaggct ccaagatagg ttctgcgcgg ccgggtaatg	120
	catcttcttt agcaacaagt tgaggggtag gtgcaaataa gaacgacata gaaatcgtct	180
	cctttctgtt tttaatcaac atacaccacc acctaaaaat tccccgacca gcaagttcac	240
	agtattcggg cacaatatcg ttgccaaaat attgtttcgg aatatcatgg gatacgtacc	300
	caacgaaagg aaacact	317
50	<210> 18 <211> 353	

	<212> ADN <213> Promotor lysCP1 de Corynebacterium glutamicum										
	<400> 18 ccatcttttg gggtgcggag cgcgatccgg tgtctgacca cggtgcccca tgcgattgtt	60									
	aatgccgatg ctagggcgaa aagcacggcg agcagattgc tttgcacttg attcagggta	120									
	gttgactaaa gagttgctcg cgaagtagca cctgtcactt ttgtctcaaa tattaaatcg	180									
	aatatcaata tatggtctgt ttattggaac gcgtcccagt ggctgagacg catccgctaa	240									
	agececagga accetgtgea gaaagaaaac acteetetgg etaggtagae acagtttatt	300									
5	gtggtagagt tgagcgggta actgtcagca cgtagatcga aaggtgcaca aag	353									
10	<210> 19 <211> 388 <212> PRT <213> argJ de Corynebacterium glutamicum										
	<400> 19 Met Ala Lys Lys Gly Ile Thr Ala Pro Lys Gly Phe Val Ala Ser Ala 1 5 10 15										
	Thr Thr Ala Gly Ile Lys Ala Ser Gly Asn Pro Asp Met Ala Leu Val 20 25 30										
	Val Asn Gln Gly Pro Glu Phe Ser Ala Ala Ala Val Phe Thr Arg Asn 35 40 45										
	Arg Val Phe Ala Ala Pro Val Lys Val Ser Arg Glu Asn Val Ala Asp 50 55 60										
	Gly Gln Ile Arg Ala Val Leu Tyr Asn Ala Gly Asn Ala Asn Ala Cys 65 70 75 80										
	Asn Gly Leu Gln Gly Glu Lys Asp Ala Arg Glu Ser Val Ser His Leu 85 90 95										
	Ala Gln Asn Leu Gly Leu Glu Asp Ser Asp Ile Gly Val Cys Ser Thr										

			100					105					110		
Gly	Leu	Ile 115	Gly	Glu	Leu	Leu	Pro 120	Met	Asp	Lys	Leu	Asn 125	Thr	Gly	Ile
Asp	Gln 130	Leu	Thr	Ala	Glu	Gly 135	Ala	Leu	Gly	Asp	Asn 140	Gly	Ala	Ala	Ala
Ala 145	Lys	Ala	Ile	Met	Thr 150	Thr	Asp	Thr	Val	Asp 155	Lys	Glu	Thr	Val	Val 160
Phe	Ala	Asp	Gly	Trp 165	Thr	Val	Gly	Gly	Met 170	Gly	Lys	Gly	Val	Gly 175	Met
Met	Ala	Pro	Ser 180	Leu	Ala	Thr	Met	Leu 185	Val	Cys	Leu	Thr	Thr 190	Asp	Ala
Ser	Val	Thr 195	Gln	Glu	Met	Ala	Gln 200	Ile	Ala	Leu	Ala	Asn 205	Ala	Thr	Ala
Val	Thr 210	Phe	Asp	Thr	Leu	Asp 215	Ile	Asp	Gly	Ser	Thr 220	Ser	Thr	Asn	Asp
Thr 225	Val	Phe	Leu	Leu	Ala 230	Ser	Gly	Ala	Ser	Gly 235	Ile	Thr	Pro	Thr	Gln 240
Asp	Glu	Leu	Asn	Asp 245	Ala	Val	Tyr	Ala	Ala 250	Cys	Ser	Asp	Ile	Ala 255	Ala
Lys	Leu	Gln	Ala 260	Asp	Ala	Glu	Gly	Val 265	Thr	Lys	Arg	Val	Ala 270	Val	Thr
Val	Val	Gly 275	Thr	Thr	Asn	Asn	Glu 280	Gln	Ala	Ile	Asn	Ala 285	Ala	Arg	Thr
Val	Ala 290	Arg	Asp	Asn	Leu	Phe 295	Lys	Cys	Ala	Met	Phe 300	Gly	Ser	Asp	Pro
Asn 305	Trp	Gly	Arg	Val	Leu 310	Ala	Ala	Val	Gly	Met 315	Ala	Asp	Ala	Asp	Met 320
Glu	Pro	Glu	Lys	Ile 325	Ser	Val	Phe	Phe	As n 330	Asp	Gln	Ala	Val	Cys 335	Leu
Asp	Ser	Thr	Gly 340	Ala	Pro	Gly	Ala	Arg 345	Glu	Val	Asp	Leu	Ser 350	Gly	Ala
Asp	Ile	Asp 355	Val	Arg	Ile	Asp	Leu 360	Gly	Thr	Ser	Gly	Glu 365	Gly	Gln	Ala
Thr	V al 370	Arg	Thr	Thr	Asp	Leu 375	Ser	Phe	Ser	Tyr	Val 380	Glu	Ile	Asn	Ser
A la 385	Tyr	Ser	Ser												
<212	> 20 > 116 > AD > arg	N	Coryr	nebac	teriur	n glui	tamic	um							
<400	> 20														

atggccaaaa	aaggcattac	cgcgccgaaa	ggcttcgttg	cttctgcaac	gaccgcgggt	60
attaaagctt	ctggcaatcc	tgacatggcg	ttggtggtta	accagggtcc	agagttttcc	120
gcagcggccg	tgtttacacg	caaccgagtt	ttcgcagcgc	ctgtgaaggt	gagccgggag	180
aacgttgctg	atggccagat	cagggctgtt	ttgtacaacg	ctggtaatgc	taatgcgtgt	240
aatggtctgc	agggtgagaa	ggatgctcgt	gagtctgttt	ctcatctagc	tcaaaatttg	300
ggcttggagg	attccgatat	tggtgtgtgt	tccactggtc	ttattggtga	gttgcttccg	360
atggataagc	tcaatacagg	tattgatcag	ctgaccgctg	agggcgcttt	gggtgacaat	420
ggtgcagctg	ctgccaaggc	gatcatgacc	actgacacgg	tggataagga	aaccgtcgtg	480
tttgctgatg	gttggactgt	cggcggaatg	ggcaagggcg	tgggcatgat	ggcgccgtct	540
cttgccacca	tgctggtctg	cttgaccact	gatgcatccg	ttactcagga	aatggctcag	600
attgcgctgg	ctaatgctac	ggccgttacg	tttgacaccc	tggatattga	tggatcaacc	660
tccaccaatg	acaccgtgtt	cctgctggca	tctggcgcta	gcggaatcac	cccaactcag	720
gatgaactca	acgatgcggt	gtacgcagct	tgttctgata	tcgcagcgaa	gcttcaggct	780
gatgcagagg	gggtgaccaa	gcgcgttgct	gtgacagtgg	tgggaaccac	caacaacgag	840
caggcgatca	atgcggctcg	cacggttgct	cgtgacaatt	tgttcaagtg	cgcaatgttt	900
ggatctgatc	caaactgggg	tcgcgtgttg	gctgcagtcg	gcatggctga	tgctgatatg	960
gaaccagaga	agatttctgt	gttcttcaat	gatcaagcag	tatgccttga	ttccactggc	1020
gctcctggtg	ctcgtgaggt	ggatctttcc	ggcgctgaca	ttgatgtccg	aattgatttg	1080
ggcaccagtg	gggaaggcca	ggcaacagtt	cgaaccactg	acctgagctt	ctcctacgtg	1140
gagatcaact	ccgcgtacag	ctcttaa				1167

_

<210> 21 <211> 317 <212> PRT

<213> argB de Corynebacterium glutamicum

<400> 21

Met Asn Asp Leu Ile Lys Asp Leu Gly Ser Glu Val Arg Ala Asn Val 1 5 10 15

Leu Ala Glu Ala Leu Pro Trp Leu Gln His Phe Arg Asp Lys Ile Val 20 25 30

Val Val Lys Tyr Gly Gly Asn Ala Met Val Asp Asp Asp Leu Lys Ala 35 40 45

Ala Phe Ala Ala Asp Met Val Phe Leu Arg Thr Val Gly Ala Lys Pro $50 \hspace{1cm} 55 \hspace{1cm} 60$

Val Val Val His Gly Gly Gly Pro Gln Ile Ser Glu Met Leu Asn Arg 65 70 80

Val Gly Leu Gln Gly Glu Phe Lys Gly Gly Phe Arg Val Thr Thr Pro

				85					90					95			
Glu	Val	Met	Asp 100	Ile	Val	Arg	Met	Val 105	Leu	Phe	Gly	Gln	Val 110	Gly	Arg		
Asp	Leu	Val 115	Gly	Leu	Ile	Asn	Ser 120	His	Gly	Pro	Tyr	Ala 125	Val	Gly	Thr		
Ser	Gly 130	Glu	Asp	Ala	Gly	Leu 135	Phe	Thr	Ala	Gln	Lys 140	Arg	Met	Val	Asn		
Ile 145	Asp	Gly	Val	Pro	Thr 150	Asp	Ile	Gly	Leu	Val 155	Gly	Asp	Ile	Ile	Asn 160		
Val	Asp	Ala	Ser	Ser 165	Leu	Met	Asp	Ile	Ile 170	Glu	Ala	Gly	Arg	Ile 175	Pro		
Val	Val	Ser	Thr 180	Ile	Ala	Pro	Gly	Glu 185	Asp	Gly	Gln	Ile	Tyr 190	Asn	Ile		
Asn	Ala	Asp 195	Thr	Ala	Ala	Gly	Ala 200	Leu	Ala	Ala	Ala	Ile 205	Gly	Ala	Glu		
Arg	Leu 210	Leu	Val	Leu	Thr	Asn 215	Val	Glu	Gly	Leu	Tyr 220	Thr	Asp	Trp	Pro		
Asp 225	Lys	Ser	Ser	Leu	Val 230	Ser	Lys	Ile	Lys	Ala 235	Thr	Glu	Leu	Glu	Ala 240		
Ile	Leu	Pro	Gly	Leu 245	Asp	Ser	Gly	Met	Ile 250	Pro	Lys	Met	Glu	Ser 255	Cys		
Leu	Asn	Ala	Val 260	Arg	Gly	Gly	Val	Ser 265	Ala	Ala	His	Val	Ile 270	Asp	Gly		
Arg	Ile	Ala 275	His	Ser	Val	Leu	Leu 280	Glu	Leu	Leu	Thr	Met 285	Gly	Gly	Ile		
Gly	Thr 290	Met	Val	Leu	Pro	Asp 295	Val	Phe	Asp	Arg	Glu 300	Asn	Tyr	Pro	Glu		
Gly 305	Thr	Val	Phe	Arg	Lys 310	Asp	Asp	Lys	Asp	Gly 315	Glu	Leu					
<210 <211 <212 <213	> 954 > AD	N	Coryi	nebad	cteriu	m glu	tamic	cum									
<400 atga		act t	gato	caaaç	ga tt	tago	gctct	gaç	ggtgd	cgcg	caaa	itgto	ect o	egete	gaggcg	6	0
ttgc	ccato	ggt t	gcag	gcatt	t co	cgcga	acaaç	, att	gtto	gtcg	tgaa	atat	gg d	ggaa	acgcc	12	0
atgo	gtgga	atg a	atgat	ctca	aa go	gctgo	etttt	gct:	gccg	gaca	tggt	ctto	ett <u>c</u>	gegea	ccgtg	18	0
ggcc	gcaaa	aac o	cagto	ggtgg	gt go	cacgo	gtggt	gga	accto	caga	tttc	tgaç	gat c	gctaa	accgt	24	0
gtgg	gtct	cc a	agggo	gagt	t ca	aggg	gtggt	tto	ccgto	gtga	ccac	tcct	ga ç	gtca	tggac	30	0
atto	gtgcg	gca t	ggt	gatat	t to	gtca	aggto	ggt	cgcg	gatt	tagt	tggt	tt ç	gatca	actct	36	0

cato	gcco	ett a	acgct	gtgg	g aa	cct	cggt	gaç	gato	ccg	gcct	gttt	ac c	gege	agaag
cgca	ıtggt	ca a	acato	gato	ià că	gtaco	cact	gat	atto	gtt	tggt	cgga	ıga c	atca	ittaat
gtcc	gatgo	ect o	cttcc	ttga	ıt go	gatat	cato	gaç	gccc	gtc	gcat	tcct	gt c	gtct	ctacg
atto	gatao	ag (gcgaa	gacç	ig co	agat	ttac	aac	catca	acg	ccga	tacc	egc a	ıgcgg	gtgct
ttgg	gctgc	cag o	cgatt	ggto	rc aç	gaaco	gcctg	cto	gtto	tca	ccaa	tgto	ıga a	aggto	tgtac
acco	gatto	gc (ctgat	aaga	ıg ct	cact	ggtg	tac	aaga	ıtca	aggo	cacc	ga c	gctgg	aggcc
atto	ttcc	egg (gactt	gatt	c cg	gcat	gatt	CC	aaga	ıtgg	agto	ttgc	tt c	gaatg	cggtg
cgto	aggg	gag 1	taago	gcto	jc to	atgt	catt	gad	ggcc	gca	tcgc	gcac	etc c	gtgt	tgctg
gago	tttt	ga (ccato	ggto	g aa	ttgg	gcacg	ato	gtgc	tgc	cgga	tgtt	tt t	gato	gggag
aatt	atco	egg a	aaggo	cacco	rt tt	ttag	gaaaa	gad	gaca	agg	atgo	ggaa	ict c	gtaa	
<210 <211 <212 <213	> 347 > PR	T	Cory	nebad	cteriu	m glu	tamic	um							
<400 Met 1		Ile	Lys	Val 5	Ala	Ile	Ala	Gly	Ala 10	Ser	Gly	Tyr	Ala	Gly 15	Gly
Glu	Ile	Leu	Arg 20	Leu	Leu	Leu	Gly	His 25	Pro	Ala	Tyr	Ala	Ser 30	Gly	Glu
Leu	Glu	Ile 35	Gly	Ala	Leu	Thr	Ala 40	Ala	Ser	Thr	Ala	Gly 45	Ser	Thr	Leu
Gly	Glu 50	Leu	Met	Pro	His	Ile 55	Pro	Gln	Leu	Ala	Asp 60	Arg	Val	Ile	Gln
Asp 65	Thr	Thr	Ala	Glu	Thr 70	Leu	Ala	Gly	His	Asp 75	Val	Val	Phe	Leu	Gly 80
Leu	Pro	His	Gly	Phe 85	Ser	Ala	Glu	Ile	Ala 90	Leu	Gln	Leu	Gly	Pro 95	Asp
Val	Thr	Val	Ile 100	Asp	Cys	Ala	Ala	Asp 105	Phe	Arg	Leu	Gln	Asn 110	Ala	Ala
Asp	Trp	Glu 115	Lys	Phe	Tyr	Gly	Ser 120	Glu	His	Gln	Gly	Thr 125	Trp	Pro	Tyr
Gly	Ile 130	Pro	Glu	Ile	Pro	Gly 135	His	Arg	Glu	Ala	Leu 140	Arg	Gly	Ala	Lys
Arg 145	Val	Ala	Val	Pro	Gly 150	Cys	Phe	Pro	Thr	Gly 155	Ala	Thr	Leu	Ala	Leu 160
Leu	Pro	Ala	Val	Gln 165	Ala	Gly	Leu	Ile	Glu 170	Pro	Asp	Val	Ser	Val 175	Val

Ser Ile Thr Gly Val Ser Gly Ala Gly Lys Lys Ala Ser Val Ala Leu 180 $$ 185 $$ 185 $$ 190 $$

_		_					_	_	_		_	_		_	
Leu	GIĄ	Ser 195	GLu	Thr	Met	GLY	200	Leu	Lys	Ala	Tyr	Asn 205	Thr	Ser	GLY
Lys	His 210	Arg	His	Thr	Pro	Glu 215	Ile	Ala	Gln	Asn	Leu 220	Gly	Glu	Val	Ser
Asp 225	Lys	Pro	Val	Lys	Val 230	Ser	Phe	Thr	Pro	Val 235	Leu	Ala	Pro	Leu	Pro 240
Arg	Gly	Ile	Leu	Thr 245	Thr	Ala	Thr	Ala	Pro 250	Leu	Lys	Glu	Gly	Val 255	Thr
Ala	Glu	Gln	Ala 260	Arg	Ala	Val	Tyr	Glu 265	Glu	Phe	Tyr	Ala	Gln 270	Glu	Thr
Phe	Val	His 275	Val	Leu	Pro	Glu	Gly 280	Ala	Gln	Pro	Gln	Thr 285	Gln	Ala	Val
Leu	Gly 290	Ser	Asn	Met	Cys	His 295	Val	Gln	Val	Glu	Ile 300	Asp	Glu	Glu	Ala
Gly 305	Lys	Val	Leu	Val	Thr 310	Ser	Ala	Ile	Asp	Asn 315	Leu	Thr	Lys	Gly	Thr 320
Ala	Gly	Ala	Ala	Val 325	Gln	Cys	Met	Asn	Leu 330	Ser	Val	Gly	Phe	Asp 335	Glu
Ala	Ala	Gly	Leu 340	Pro	Gln	Val	Gly	Val 345	Ala	Pro					

<210> 24 <211> 1044

<212> ADN

<213> argC de Corynebacterium glutamicum

<400> 24 atgacaatca	aggttgcaat	cgcaggagcc	agtggatatg	ccggcggaga	aatccttcgt	60
ctccttttag	gccatccagc	ttatgcatct	ggtgaactag	aaatcggagc	actcaccgcg	120
gcatcaaccg	caggcagcac	gctcggtgaa	ttgatgccac	acattccgca	gttggcggat	180
cgtgttattc	aagacaccac	agctgaaact	ctagccggtc	atgatgtcgt	atttctagga	240
cttccacacg	gattctctgc	agaaattgca	cttcagctcg	gaccagatgt	cacagtgatt	300
gactgtgcag	ctgactttcg	tctgcaaaat	gctgcagatt	gggagaagtt	ctacggctca	360
gagcaccagg	gaacatggcc	ttatggcatt	ccagaaatac	caggacaccg	cgaggctctt	420
cgtggtgcta	agcgtgtagc	agtgccagga	tgtttcccaa	ccggtgcaac	cttggctctt	480
cttcctgcgg	ttcaagcggg	acttatcgag	ccagatgttt	ccgtagtgtc	catcaccggc	540
gtatcaggtg	caggtaagaa	agcatctgtt	gcactacttg	gctcggaaac	catgggttca	600
ctcaaggcgt	acaacacctc	cggaaagcac	cgccacaccc	cggaaattgc	ccagaacctc	660
ggcgaagtca	gcgacaagcc	agtcaaggtg	agcttcaccc	cagtgcttgc	accgttacct	720
cgcggaattc	tcaccactgc	aaccgcacct	ttgaaagaag	gcgttaccgc	agagcaggct	780

cgcgcagtat atgaagagtt ctatgcacag gaaaccttcg tgcatgttct tccagaaggt	840						
gcacagccac aaacccaagc agttcttggc tccaacatgt gccacgtgca ggtagaaatt	900						
gatgaggaag caggcaaagt ccttgttacc tccgcaatcg ataacctcac caagggaact	960						
geeggegeeg etgtteagtg catgaactta agegttgget ttgatgagge ageaggeetg	1020						
ccacaggtcg gcgtcgcacc ttaa 1044							
<210> 25 <211> 391 <212> PRT <213> argD de Corynebacterium glutamicum							
<400> 25 Mot Son The Lou Clu The Ten Dec Cle Val Tlo Tlo Age The Two Clu							
Met Ser Thr Leu Glu Thr Trp Pro Gln Val Ile Ile Asn Thr Tyr Gly 1 10 15							
Thr Pro Pro Val Glu Leu Val Ser Gly Lys Gly Ala Thr Val Thr Asp 20 25 30							
Asp Gln Gly Lys Val Tyr Ile Asp Leu Leu Ala Gly Ile Ala Val Asn 35 40 45							
Ala Leu Gly His Ala His Pro Ala Ile Ile Glu Ala Val Thr Asn Gln 50 55 60							
Ile Gly Gln Leu Gly His Val Ser Asn Leu Phe Ala Ser Arg Pro Val65707580							
Val Glu Val Ala Glu Glu Leu Ile Lys Arg Phe Ser Leu Asp Asp Ala 85 90 95							
Thr Leu Ala Ala Gln Thr Arg Val Phe Phe Cys Asn Ser Gly Ala Glu 100 105 110							
Ala Asn Glu Ala Ala Phe Lys Ile Ala Arg Leu Thr Gly Arg Ser Arg 115 120 125							
Ile Leu Ala Ala Val His Gly Phe His Gly Arg Thr Met Gly Ser Leu 130 135 140							
Ala Leu Thr Gly Gln Pro Asp Lys Arg Glu Ala Phe Leu Pro Met Pro 145 150 155 160							
Ser Gly Val Glu Phe Tyr Pro Tyr Gly Asp Thr Asp Tyr Leu Arg Lys 165 170 175							
Met Val Glu Thr Asn Pro Thr Asp Val Ala Ala Ile Phe Leu Glu Pro 180 185 190							
Ile Gln Gly Glu Thr Gly Val Val Pro Ala Pro Glu Gly Phe Leu Lys 195 200 205							
Ala Val Arg Glu Leu Cys Asp Glu Tyr Gly Ile Leu Met Ile Thr Asp 210 215 220							
Glu Val Gln Thr Gly Val Gly Arg Thr Gly Asp Phe Phe Ala His Gln 225 230 235 240							

5

His Asp Gly Val Val Pro Asp Val Val Thr Met Ala Lys Gly Leu Gly

	245		250		255	
Gly Gly Leu Pro 260	_	Cys Leu 265	Ala Thr	Gly Arg Ala 27		
Leu Met Thr Pro 275	Gly Lys His	Gly Thr 280	Thr Phe	Gly Gly Ass 285	n Pro Val	
Ala Cys Ala Ala 290	Ala Lys Ala 295	Val Leu	Ser Val	Val Asp Asp 300	o Ala Phe	
Cys Ala Glu Val 305	Thr Arg Lys 310	Gly Glu	Leu Phe 315	Lys Glu Le	ı Leu Ala 320	
Lys Val Asp Gly	Val Val Asp 325	Val Arg	Gly Arg 330	Gly Leu Met	Leu Gly 335	
Val Val Leu Glu 340		Ala Lys 345	Gln Ala	Val Leu Asp	-	
Lys His Gly Val 355	Ile Leu Asn	Ala Pro 360	Ala Asp	Asn Ile Ile 365	e Arg Leu	
Thr Pro Pro Leu	Val Ile Thr 375	Asp Glu	Glu Ile	Ala Asp Ala 380	a Val Lys	
Ala Ile Ala Glu 385	Thr Ile Ala 390					
<210> 26 <211> 1176 <212> ADN <213> argD de Cory	nebacterium glu	tamicum				
<400> 26 atgagcacgc tgga	aacttg gccaca	ıggtc att	attaata	cgtacggcac	cccaccagtt	60
gagctggtgt ccgg	caaggg cgcaac	cgtc acc	gatgacc	agggcaaagt	ctacatcgac	120
ttgctcgcgg gcat	cgcagt caacgo	gttg ggc	cacgccc	acccggcgat	catcgaggcg	180
gtcaccaacc agat	cggcca acttgg	tcac gtc	tcaaact	tgttcgcatc	caggcccgtc	240
gtcgaggtcg ccga	ggagct catcaa	ıgcgt ttt	tcgcttg	acgacgccac	cctcgccgcg	300
caaacccggg tttt	cttctg caacto	gggc gcc	gaagcaa	acgaggctgc	tttcaagatt	360
gcacgcttga ctgg	tcgttc ccggat	tctg gct	gcagttc	atggtttcca	cggccgcacc	420
atgggttccc tcgc	gctgac tggcca	igcca gad	aagcgtg	aagcattcct	gccaatgcca	480
agcggtgtgg agtt	ctaccc ttacgg	cgac acc	gattact	tgcgcaaaat	ggtagaaacc	540
aacccaacgg atgt	ggctgc tatctt	cctc gag	rccaatcc	agggtgaaac	gggcgttgtt	600
ccagcacctg aagg	atteet caagge	agtg cgc	gagctgt	gcgatgagta	cggcatcttg	660
atgatcaccg atga	agtcca gactgg	cgtt ggc	cgtaccg	gcgatttctt	tgcacatcag	720
cacgatggcg ttgt	tcccga tgtggt	gacc atg	gccaagg	gacttggcgg	cggtcttccc	780
atcggtgctt gttt	ggccac tggccg	rtgca gct	gaattga	tgaccccagg	caagcacggc	840

accactttcg	gtggcaaccc	agttgcttgt	gcagctgcca	aggcagtgct	gtctgttgtc	900
gatgacgctt	tctgcgcaga	agttacccgc	aagggcgagc	tgttcaagga	acttcttgcc	960
aaggttgacg	gcgttgtaga	cgtccgtggc	aggggcttga	tgttgggcgt	ggtgctggag	1020
cgcgacgtcg	caaagcaagc	tgttcttgat	ggttttaagc	acggcgttat	tttgaatgca	1080
ccggcggaca	acattatccg	tttgaccccg	ccgctggtga	tcaccgacga	agaaatcgca	1140
gacgcagtca	aggctattgc	cgagacaatc	gcataa			1176

REIVINDICACIONES

- Un microorganismo del género *Corynebacterium* que tiene la capacidad de producir L-arginina con actividades mejoradas de un operón de arginina y ornitina carbamoiltransferasa en comparación con las actividades
 de cada uno en una cepa parental de producción de L-arginina de *Corynebacterium*, en el que el operón de arginina comprende un represor de arginina.
 - 2. El microorganismo de la reivindicación 1, en el que la ornitina carbamoiltransferasa es la secuencia de aminoácidos de la SEQ ID NO: 1 o la SEQ ID NO: 3.
 - 3. El microorganismo de la reivindicación 1, en el que el microorganismo del género *Corynebacterium* es *Corynebacterium glutamicum*.
- 4. Un método para producir L-arginina, que comprende:
 15
 cultivar un microorganismo del género *Corynebacterium* de una cualquiera de las reivindicaciones 1 a 3 en un medio de cultivo; y

recuperar la L-arginina del microorganismo o del medio.