

OFICINA ESPAÑOLA DE PATENTES Y MARCAS

ESPAÑA

11) Número de publicación: 2 724 101

51 Int. Cl.:

B29L 31/52 (2006.01) B32B 5/02 (2006.01) B32B 27/08 (2006.01) B32B 27/12 (2006.01) B32B 1/00 (2006.01) A63B 3/00 (2006.01) A63B 5/06 A63B 5/12 (2006.01) A63B 7/02 (2006.01) B29C 70/52 (2006.01)

(12)

TRADUCCIÓN DE PATENTE EUROPEA

T3

(86) Fecha de presentación y número de la solicitud internacional: 10.05.2016 PCT/FR2016/051083

(87) Fecha y número de publicación internacional: 17.11.2016 WO16181060

96 Fecha de presentación y número de la solicitud europea: 10.05.2016 E 16726138 (7)

97) Fecha y número de publicación de la concesión europea: 27.02.2019 EP 3294424

54) Título: Elemento de agarre de un equipamiento deportivo

(30) Prioridad:

13.05.2015 FR 1554343

(45) Fecha de publicación y mención en BOPI de la traducción de la patente: **06.09.2019**

73 Titular/es:

GYMNOVA (100.0%) 45 rue Gaston de Flotte 13012 Marseille, FR

(72) Inventor/es:

ESTEVES, OLIVIER

74 Agente/Representante:

ISERN JARA, Jorge

DESCRIPCIÓN

Elemento de agarre de un equipamiento deportivo

5

15

20

25

30

40

La presente invención se refiere a un elemento de agarre manual de un equipo deportivo, por ejemplo, un pasamanos de aparato de gimnasia.

El pasamanos de un aparato corresponde a la zona de agarre del aparato, es decir, el elemento que el gimnasta ase o sobre el que se apoya y se suspende durante la realización de un ejercicio o de un programa de gimnasia. Tal pasamanos se implementa, por ejemplo, en las barras asimétricas y las barras paralelas.

Aunque se describe en el campo de la gimnasia y, en particular, en relación con un pasamanos de barras asimétricas, la presente invención puede tratar sobre cualquier elemento de agarre manual de equipo deportivo dispuesto sobre un núcleo de material compuesto.

Los pasamanos de barras asimétricas conocidos en el estado de la técnica incluyen un tubo de material compuesto a base de fibras de vidrio, opcionalmente reforzado por unas fibras de carbono, y un revestimiento de madera que recubre el tubo de material compuesto. En el aparato llamado barras asimétricas, un pasamanos corresponde a cada una de las dos barras horizontales del aparato e incluye, de hecho, las zonas de agarre que el usuario ase para la ejecución de su programa.

El revestimiento de madera tiene varias funciones. Ofrece una cierta comodidad al usuario, mejora su adherencia (generalmente designada en el campo de los equipos de deporte por el término inglés "grip") y, por lo tanto, su buen agarre y permite la absorción de la humedad.

No obstante, el revestimiento de madera de los pasamanos presenta un cierto número de inconvenientes. En primer lugar, la madera necesita un buen mantenimiento para tener una buena longevidad. Además, la madera es sensible al calor y a la humedad y puede deteriorarse rápidamente en unas condiciones inadecuadas de utilización, de transporte o de almacenamiento.

Además, el revestimiento de madera se somete a los ciclos de flexión del pasamanos durante el paso de los gimnastas. Estos ciclos de flexiones participan en el despegue y en el deterioro del revestimiento de madera.

Además, cuando el revestimiento de madera está deteriorado, existe un riesgo de lesión durante el agarre del pasamanos. Por ejemplo, el usuario puede cortarse sobre un revestimiento hendido o clavarse unas astillas.

Finalmente, el revestimiento se realiza después de conformación del núcleo del pasamanos. Tradicionalmente, para la fabricación de un pasamanos de barras asimétricas, se realiza una barra de material compuesto con armazón de fibra de vidrio, luego, se reviste de madera en un segundo momento. El revestimiento se realiza, generalmente, en otro taller que la conformación del núcleo. Esto conlleva una cierta complejidad logística y unos costes de realización importantes.

Los documentos DE 28 14 212 A1 y DE 28 24 696 A1 desvelan un elemento de agarre de equipo deportivo, que incluye un núcleo de material compuesto que incluye un armazón fibroso incluido en una matriz polimérica y que incluye una capa externa que envuelve el núcleo.

La invención tiende a resolver al menos uno de los inconvenientes anteriormente citados.

- La invención trata, en particular, sobre un elemento de agarre de un equipo deportivo, que incluye un núcleo de material compuesto que incluye un armazón fibroso incluido en una matriz polimérica. El elemento de agarre incluye una capa externa que envuelve el núcleo y que incluye un material textil entrelazado, distinto del armazón, en parte incrustado en la matriz y que emerge de dicha matriz sobre una superficie exterior del elemento de agarre.
- Un elemento de agarre constituido de este modo tiene unas características mecánicas análogas a los elementos de agarre con núcleo compuesto conocidos en el estado de la técnica, al tiempo que mejora la calidad del agarre, la comodidad y limita los riesgos de lesión. En particular, el material textil que emerge en superficie de la matriz de polímero permite una mejor adherencia entre la mano y el elemento de agarre. Las fibras del material textil que emergen en superficie pueden ofrecer, igualmente, unas características de absorción de la humedad, que se buscan en las aplicaciones tales como los pasamanos de aparato de gimnasia.

Según un modo de realización, el material textil entrelazado está constituido sustancialmente de fibras naturales. Por ejemplo, el textil puede estar constituido de fibras naturales elegidas de entre: unas fibras de lino, unas fibras de yute, unas fibras de bambú, unas fibras de cáñamo.

65

La capa externa puede incluir una capa única de material textil entrelazado. La capa externa puede incluir de dos a cuatro capas superpuestas de material textil entrelazado.

El armazón fibroso puede incluir, por ejemplo, unas fibras de vidrio y/o unas fibras de carbono.

5 La invención trata, igualmente, sobre un pasamanos de un aparato de gimnasia y, preferentemente, de barras asimétricas o de barras paralelas, constituido de un elemento de agarre tal como se ha descrito anteriormente.

La invención trata, igualmente, sobre un equipo deportivo que incluye un elemento de agarre tal como se ha descrito anteriormente, siendo dicho equipo deportivo ya sea unas barras asimétricas de gimnasia, ya sea unas barras paralelas de gimnasia, ya sea otro aparato de gimnasia, ya sea un remo, ya sea un zagual, ya sea una pértiga de salto con pértiga. Otros equipos deportivos pueden incluir un elemento de agarre tal como se ha descrito anteriormente y, constituir, de este modo, un objeto de la invención.

Según otro aspecto, la invención trata sobre un procedimiento de fabricación de un elemento de agarre de un equipo deportivo tal como se ha descrito anteriormente, que incluye las etapas de:

- formación simultánea del núcleo y de la capa externa y polimerización de la matriz;
- lijado de una superficie exterior de la capa externa, de modo que se haga emerger de la matriz polimerizada el material textil de la capa externa.

En tal procedimiento, la formación de la capa externa puede implementar un material textil entrelazado que incluye unos hilos termofusibles.

En tal procedimiento, la formación simultánea del núcleo y de la capa externa se puede realizar, por ejemplo, por pultrusión.

Otras particularidades y ventajas de la invención se harán evidentes también en la descripción a continuación.

En los dibujos adjuntos, dados a título de ejemplos no limitativos:

30

35

55

65

20

10

- la figura 1 presenta esquemáticamente unas barras asimétricas de gimnasia;
- la figura 2 presenta una vista en corte transversal esquemático de un pasamanos de barras asimétricas de acuerdo con un modo de realización de la invención;
- la figura 3 presenta una vista en corte transversal esquemático de un pasamanos de barras paralelas de acuerdo con un modo de realización de la invención;
- la figura 4 presenta un ejemplo de procedimiento, según un modo de realización particular de un objeto de la invención.
- La figura 1 presenta de manera esquemática unas barras asimétricas, que son unos aparatos de gimnasia para mujeres. Durante la ejecución de un programa en las barras asimétricas, la gimnasta ejecuta un cierto número de figuras, alrededor de dos barras posicionadas en unos planos verticales y horizontales distintos. El aparato incluye una estructura que incluye cuatro montantes M1, M2, M3 y M4, que soportan las dos barras que constituyen unos pasamanos 1, 1', es decir, unos elementos de agarre del aparato durante su utilización.
- La figura 2 presenta un corte transversal esquemático de un pasamanos 1 de barras asimétricas según un modo de realización de la invención. El pasamanos 1 constituye el elemento de agarre de las barras asimétricas. Incluye un núcleo 2 de material compuesto, que incluye un armazón fibroso y una matriz polimérica. En particular, el armazón fibroso incluye, generalmente, unas fibras de vidrio. Alternativamente o como complemento, el núcleo puede incluir unas fibras de carbono y/o de kevlar™. La matriz polimérica es, generalmente, a base de resina termoendurecible, a base de resinas de polímeros de síntesis, tales como, por ejemplo, las resinas de poliéster isoftálico y resina epoxi.

Las fibras (tradicionalmente de vidrio y/o de carbono) que incluye el núcleo pueden presentarse tradicionalmente antes de implementación en forma de hilos o haz de fibras (generalmente, designado según la denominación inglesa "roving"), de tejido o de estera. La elección del tipo de fibras empleadas, la asociación con una matriz adaptada y la geometría elegida permiten conferir al elemento obtenido lo sustancial de las características mecánicas deseadas. En concreto, un pasamanos de barras asimétricas debe presentar una resistencia suficiente y una cierta rigidez, con el fin de que el aparato completo esté de acuerdo con un estándar dado.

El núcleo del pasamanos de acuerdo con el modo de realización de la invención representado en el presente documento está envuelto con un recubrimiento que constituye una capa externa 3. La capa externa 3 incluye un material textil entrelazado, distinto del armazón. Un material textil entrelazado corresponde tradicionalmente a un tejido o a una trenza obtenida por entrelazamiento de fibras textiles.

De este modo, en el caso en que el armazón fibroso incluye, igualmente, unas fibras entrelazadas, el material textil entrelazado de la capa externa 3 es distinto del del núcleo. La capa externa está estrechamente unida al núcleo,

estando el material textil entrelazado de la capa externa 3 en parte incrustado en la matriz del material compuesto que constituye el núcleo. El material textil entrelazado emerge de la matriz sobre la superficie exterior 4 del pasamanos. En particular, en el contexto de la aplicación de la invención a un pasamanos de barras asimétricas, el material textil entrelazado de la capa externa 3 está suficientemente descubierto en superficie del pasamanos para ofrecer un buen agarre, es decir, una buena adherencia de las manos de la gimnasta sobre el pasamanos, así como una buena comodidad de uso y una cierta absorción de la humedad. De manera similar, en cualquier otra aplicación, el material textil entrelazado de la capa externa 3 está suficientemente descubierto en superficie del elemento de agarre para ofrecer un agarre, una comodidad de uso y, opcionalmente, una cierta absorción de la humedad, de acuerdo con el uso considerado.

10

Preferentemente, el tejido empleado en la capa externa 3 está sustancialmente (es decir, muy predominantemente, por ejemplo, en más de un 90 % en número o en masa) constituido de fibras naturales. Por ejemplo, las fibras naturales implementadas pueden ser, entre otras, unas fibras de lino, unas fibras de yute, unas fibras de bambú, unas fibras de cáñamo o cualquier mezcla de varias de estas fibras.

15

Según el tipo de tejido empleado, en concreto, según la naturaleza de sus fibras, el tipo de tejedura, su espesor, etc., pueden ser necesarias varias capas superpuestas de tejidos para la obtención de las características de comodidad y/o de adherencia deseadas. Por ejemplo, se pueden implementar dos, tres o cuatro capas superpuestas. En el contexto de la aplicación de la invención a un pasamanos de barras asimétricas, pueden emplearse tradicionalmente dos capas de tejido de lino.

20

En el contexto de la aplicación de la invención a un pasamanos de barras asimétricas, el núcleo puede tener un diámetro exterior del orden de 40 mm (tradicionalmente con más o menos 1 mm de aproximación) y la capa externa un espesor del orden de 0,7 mm. El núcleo puede presentarse en forma de un tubo hueco, de diámetro interior, por ejemplo, del orden de 26 mm.

25

Un pasamanos de barra asimétrica de acuerdo con un modo de realización de la invención puede, a título de ejemplo no limitativo, incluir aproximadamente un 61 % en peso de fibras de vidrio, un 3 % de fibras de carbonos y un 5 % de tejido de lino. La parte de fibras de refuerzo, tradicionalmente de fibras de vidrio y/o de carbono), confiere en gran parte al pasamanos las propiedades mecánicas que se buscan. Las proporciones y la disposición de las fibras de refuerzo en el núcleo pueden variar, de este modo, fuertemente de una aplicación a otra, con el fin de conferir al pasamanos u otro elemento de agarre las características deseadas.

35

30

La capa externa 3 puede incluir, además, un material termofusible. En concreto, puede tratarse de un material termofusible convencionalmente disponible en el mercado, en concreto, de un adhesivo termoplástico (generalmente, designado por la expresión inglesa "hot-melt"). La presencia en la capa externa de tal material termofusible puede conferirle un contacto gomoso o una cierta pegajosidad, mejorando la comodidad de agarre. El material termofusible puede proceder de hilos termofusibles presentes en el material textil entrelazado empleado para la obtención de la capa externa, antes de obtención de esta última.

40

45

La figura 3 presenta un corte esquemático de un pasamanos de barras paralelas de acuerdo con un modo de realización de la invención. Los pasamanos de barras paralelas presentan la particularidad de no presentar una sección circular, sino una forma ovalada con una superficie de apoyo superior ligeramente aplanada. No obstante, tal pasamanos puede estar constituido de un elemento de agarre de acuerdo con una variante de la invención, constituido de manera análoga al pasamanos de sección circular descrito con referencia a la figura 2. Las características mecánicas que se buscan para un pasamanos de barras paralelas son diferentes de las que se buscan para un pasamanos de barras paralelas deben presentar una rigidez en flexión importante, en concreto, bajo carga vertical. De este modo, además de la geometría de la sección del núcleo 3 (y, al final, del pasamanos), la constitución del núcleo 3 se adapta, tradicionalmente, aumentando la cantidad de refuerzos de carbono y optimizando su posicionamiento. Al igual que el elemento de agarre de la figura 2, el elemento de agarre de la figura 3 incluye una capa externa 3 que incluye un material textil entrelazado (tejido, trenza) cuyas unas fibras emergen de la matriz del material compuesto sobre la superficie exterior 4 del pasamanos.

50

55

La figura 4 presenta un ejemplo de procedimiento objeto de la invención, según un modo de realización particular. En una primera etapa, el núcleo y la capa externa se forman simultáneamente. Un procedimiento ventajoso, representado en la figura 4, que permite esta formación es el procedimiento de pultrusión.

60

La pultrusión (término procedente de los términos ingleses "pull", que significa "tirar" y "extrusion", idéntico en francés) designa un procedimiento en el que unas fibras 5, tradicionalmente unas fibras de vidrio y/o de carbono, por ejemplo, en forma de hilos o haces de hilos, se tiran a través de un baño 6 de una matriz líquida a base de resina polimérica de la que se cargan, luego, se tira el conjunto a través de una boquilla calentada que conlleva la polimerización de la matriz. La boquilla confiere al elemento obtenido una sección constante (como en un procedimiento de extrusión). Según el procedimiento considerado y los medios empleados para su implementación, el elemento puede preformarse por medio de una preforma 8 antes del paso por la boquilla calentada 7.

65

El material textil entrelazado 9, destinado a ser incluido en la capa externa del elemento de agarre envuelve las fibras 5 del armazón fibroso del núcleo durante la pultrusión. El material textil entrelazado se incrusta, de este modo, en la matriz polimérica durante la pultrusión. En concreto, puede tratarse de un tejido o de una trenza que contiene sustancialmente unas fibras naturales, por ejemplo, unas fibras de lino, unas fibras de yute, unas fibras de bambú, unas fibras de cáñamo o una mezcla de varias de estas fibras.

5

10

20

25

30

35

40

En una variante preferente de la invención, el material textil entrelazado 9 puede contener unos hilos termofusibles. En el contexto de un tejido, los hilos termofusibles se pueden mezclar, en concreto, con los hilos de urdimbre. El material termofusible se funde, al menos en parte, bajo el efecto de la polimerización exotérmica de la matriz y del calentamiento de la boquilla 7. El material termofusible puede permitir ayudar a la retención en posición, durante la pultrusión, del material textil entrelazado. Además, el material termofusible presente en la capa externa del elemento de agarre ofrece unas ventajas mencionadas anteriormente, en términos de comodidad y de agarre.

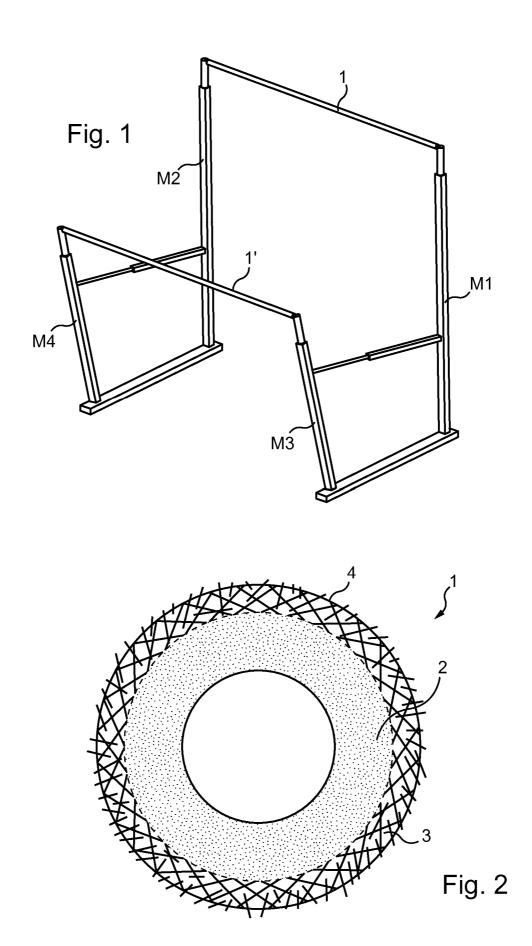
En la salida de la boquilla calentada 7 se obtiene un elemento alargado de sección correspondiente a la sección deseada del elemento de agarre. El elemento alargado se divide, de modo que se obtenga un elemento de agarre bruto 10.

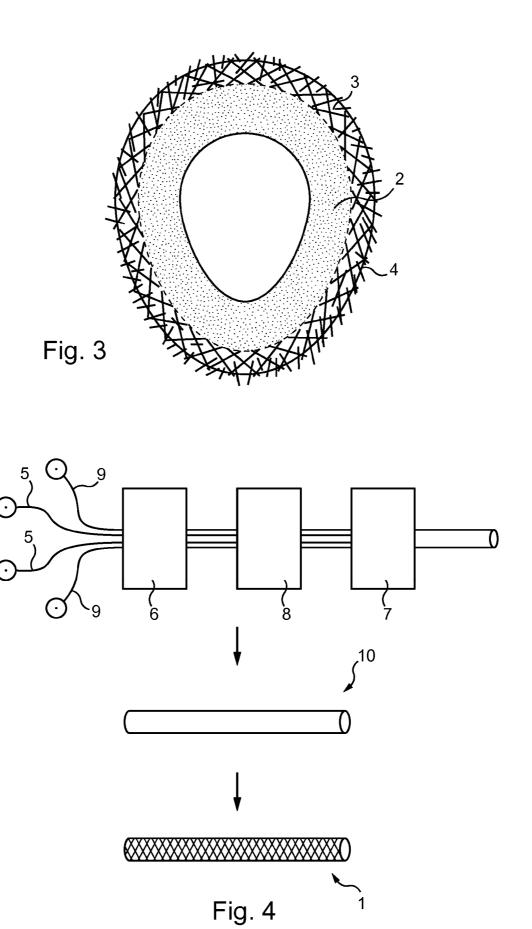
En una siguiente etapa del procedimiento, la superficie exterior de la capa externa del elemento de agarre bruto 10 se lija, de modo que se aumente su rugosidad y que se haga emerger de la matriz el material textil entrelazado. Según las propiedades que se buscan de adherencia en la mano y de absorción de la humedad, el lijado será más o menos importante, con el fin de hacer que emerjan más o menos las fibras de dicho material textil sobre la superficie exterior del elemento de agarre 1 obtenido de este modo.

Según otra variante de un procedimiento de acuerdo con la invención, la pultrusión se puede reemplazar por una estratificación en molde.

La invención desarrollada de este modo ofrece un elemento de agarre para equipo deportivo, que puede ser, tradicionalmente, pero no exclusivamente, un pasamanos de aparato de gimnasia tal como un pasamanos de potro, anillas, barras paralelas y, ventajosamente, de barras asimétricas. Otros elementos de agarre de equipos deportivos se pueden realizar de conformidad con la invención, por ejemplo: la zona de agarre de un remo o de un zagual, de una pértica de salto con pértiga, de un arco, de una raqueta o de un manillar.

Un elemento de agarre de acuerdo con la invención permite la obtención de una buena calidad de agarre, tanto en términos de adherencia como de comodidad. Ofrece, llegado el caso, igualmente, unas calidades de absorción de humedad.


Un elemento de agarre de acuerdo con la invención puede obtenerse por un procedimiento, objeto de la invención, igualmente, en el que el núcleo compuesto y la capa externa que incluye se obtienen simultáneamente, por ejemplo, por pultrusión. Esto reduce los costes de fabricación. Por ejemplo, en lo que se refiere a la aplicación de la invención a los pasamanos de barras asimétricas, ya no es necesario el revestimiento del núcleo con una capa de madera.


REIVINDICACIONES

- 1. Elemento de agarre de un equipo deportivo, que incluye un núcleo (2) de material compuesto que incluye un armazón fibroso incluido en una matriz polimérica,
- 5 incluyendo el elemento de agarre una capa externa (3) que envuelve el núcleo (2), caracterizado por que la capa externa (3) incluye un material textil entrelazado, distinto del armazón, en parte incrustado en la matriz y que emerge de dicha matriz sobre una superficie exterior (4) del elemento de agarre.
- 2. Elemento de agarre según la reivindicación 1, en el que el material textil entrelazado está constituido sustancialmente de fibras naturales.
 - 3. Elemento de agarre según la reivindicación 2, en el que el textil está constituido de fibras naturales elegidas de entre: unas fibras de lino, unas fibras de yute, unas fibras de bambú, unas fibras de cáñamo.
- 4. Elemento de agarre según una de las reivindicaciones anteriores, cuya capa externa (3) incluye de dos a cuatro capas superpuestas de material textil entrelazado.
 - 5. Elemento de agarre según una de las reivindicaciones anteriores, en el que el armazón fibroso incluye unas fibras de vidrio y/o unas fibras de carbono.
 - 6. Pasamanos (1, 1') de un aparato de gimnasia y, preferentemente, de barras asimétricas o de barras paralelas, constituido de un elemento de agarre según una de las reivindicaciones anteriores.
- 7. Equipo deportivo que incluye un elemento de agarre según una de las reivindicaciones 1 a 5, siendo dicho equipo deportivo ya sea unas barras asimétricas de gimnasia, ya sea unas barras paralelas de gimnasia, ya sea otro aparato de gimnasia, ya sea un remo, ya sea un zagual, ya sea una pértiga de salto con pértiga.
 - 8. Procedimiento de fabricación de un elemento de agarre de un equipo deportivo según una de las reivindicaciones 1 a 5, que incluye las etapas de:
 - formación simultánea del núcleo (2) y de la capa externa (1) y polimerización de la matriz;
 - lijado de una superficie exterior (4) de la capa externa (3), de modo que se haga emerger de la matriz polimerizada el material textil de la capa externa.
- 35 9. Procedimiento de fabricación según la reivindicación 8, en el que la formación de la capa externa (3) implementa un material textil entrelazado que incluye unos hilos termofusibles.
 - 10. Procedimiento de fabricación según la reivindicación 8 o la reivindicación 9, en el que la formación simultánea del núcleo (2) y de la capa externa (3) se realiza por pultrusión.

30

20

